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Summary

This thesis contributes to developing and applying tensor network methods to simulate
correlated many-body quantum systems.

Numerical simulations of correlated quantum many-body systems are challenging.
To describe a many-body wavefunction, the required number of parameters grows
exponentially with respect to the system size. This exponential wall fundamentally
limits our progress on correlated quantum systems in low dimensions. Tensor network
methods in recent years have proven to be a useful framework to understand, control
and possibly reduce this intrinsic complexity.
The basic idea of tensor network methods is to decompose a many-body wave

function as a network of small, multi-index tensors. A one-dimensional (1D) tensor
network factorizes a wave function into a train of three-index tensors. This 1D
tensor network ansatz is called a matrix product state (MPS) or a tensor train. A
two-dimensional (2D) tensor network state is called a projected entangled-pair state
(PEPS). This peculiar name PEPS comes from a quantum information perspective,
where each local tensor is interpreted as a projector and correlates with the rest of
the tensor network through (auxiliary) maximally entangled pairs.
In the first part, we consider MPSs to study 1D and quasi-2D quantum systems.

The key parameter of an MPS is its bond dimension, which controls the numerical
accuracy. How large a bond dimension can be reached highly depends on the
algorithms employed. The contemporary algorithms, although widely used, have to
limit the bond dimension due to their high numerical costs. We develop a controlled
bond expansions (CBE) scheme that allows us to grow the bond dimensions with
marginal computational efforts. This CBE scheme stems from a geometric point of
view to parametrize the variational space of an MPS and can be applied in various
contexts. Here, we focus on applying the CBE scheme to two types of problems.
The first are optimization problems, like solving the extremal eigenvalue problem.
This is relevant for the ground state search, and we show that CBE can accelerate
the convergence of MPS in terms of CPU time. The second is to solve ordinary
differential equations, such as the time-dependant Schrödinger equation. With the
help of CBE, it becomes feasible to use MPS to simulate long-time dynamics that
could not be accurately computed hitherto.
In the second part, we employ PEPS to simulate 2D quantum systems. PEPS is

an expensive but powerful tool to simulate 2D lattices directly in the thermodynamic
limit. The PEPS on infinite lattices is acronymed iPEPS. For completeness, a
pedagogical review of iPEPS based on Benedikt Bruognolo’s PhD work, which I
helped polsih for publication in Scipost, is included to cover the algorithmic details.
Using iPEPS methods, we study the two-dimensional t-J model on square lattices
at the small doping. In this work, we uncover the importance of spin rotational
symmetry. Our numerics suggest that by allowing spontaneous spin-symmetry
breaking or not, we can supress or permit the emergence of superconducting order in
the thermodynamic limit. This finding provides useful insight to cuprate materials.
Also, we use iPEPS to investigate the ground state nature of the honeycomb Kitaev-Γ
model. Through a joint effort of classical and iPEPS simulations, we identify an
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exotic magnetic order in the parameter regime relevant to α-RuCl3 materials.
In the third and final part, we study the parton construction of tensor network

states. Here, we do not simulate the ground state of a given many-body Hamiltonian.
Instead, we take an indirect route that first constructs a parton state in an enlarged
Hilbert space, and then applies the Gutzwiller projection to return to the original
physical Hilbert space. Such a parton approach has been an important theoretical
technique to treat electron-electron correlations nonperturbatively in condensed
matter physics. Its marriage with tensor network methods furthers its influence.
Various properties of parton wave functions, which are difficult to compute previously,
can now be easily accessed. We first use the parton approach to construct MPSs
that harbor SU(N) chiral topological orders. The MPS representation of these
Gutzwiller projected parton states allows us to compute entanglement spectra, which
hold crucial information to characterize different chiral topological orders. We also
develop a method to construct parton states using PEPSs. In this project, we use
PEPS to approximate parton states of the π-flux models that host U(1)-Dirac spin
liquids. Our approach enables us to compute the critical exponent of the spin-spin
correlations for the spin-half system, whose value is still currently under debate.
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1 Introduction

The challenge of quantum many-body problems comes from the number of degrees
of freedom one has to deal with to represent a quantum state. For example, in
quantum spin-1/2 systems, each spin is described by two components, i.e., spin-up
and spin-down states, but to represent a quantum state of N spins, the total number
of components becomes 2N . In three dimensions and beyond, single-particle theories,
such as Landau’s Fermi-liquid theory, have much success in decoupling such immense
degrees of freedom to reduce the problem’s complexity. However, in one and two
dimensions, the spatial constriction effectively enhances the mutual interactions
between quantum entities (being either spins or itinerant fermions). This makes
the problem difficult to handle in framework of the single-particle approximation
or its related perturbative approaches. Many experimental phenomena, including
Mott transitions [Mot68], high-Tc superconductivity [Gro89, Dag94, LNW06] and the
fractional quantum Hall effect [TSG82, STG99], can only be explained by explicitly
taking the electron-electron interactions into account.

Due to the absence of effective single-particle theories, interacting quantum systems
in low dimensions to large extent need to be solved by numerical means. This thesis
works on developing and applying tensor network methods to computationally solve
quantum many-body problems in one and two dimensions. The quantum many-body
problems we are concerned with are model Hamiltonians defined on discrete lattices.
They contain far less degrees of freedom than real-world materials, aiming to capture
the low-energy physics pertaining to experimental observations. Albeit with drastic
simplification, solving model Hamiltonians that are “interesting” remains a daunting
task.

The two-dimensional one-band Hubbard model [Edi13, And07] is one of the text-
book examples. The Hamiltonian under second quantization reads

H = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c†i,σcj,σ + h.c.

)
+ U

∑
i

c†i,↑ci,↑c
†
i,↓ci,↓ , (1.1)

with c†i,σ and ci,σ the fermionic creation and annihilation operators of spin σ electrons
on lattice site i, and 〈i, j〉 enumerating all nearest-neighbor sites. The first term
describes the kinetics, the hopping of fermions with amplitude t, and the second
term is the on-site Coulomb interaction of strength U that describes the repulsion
between spin-up and spin-down electrons at the same site. Since its first appearance
in 1963 [Hub63], numerous concepts and journal articles have been dedicated to
this simple-looking model. For example, on the square lattice, at half-filling, for
small U , the system is metallic; with sufficient large U , the system becomes a Mott
insulator undergoing a Mott transition [Koh64, Mot68, IFT98]. Slightly away from
half-filling with a sizable U , the physics is most interesting. Its ground state has been
speculated to be a doped chiral spin liquid, a d-wave superconductor, or a spin stripe
[Sch89, ZG89, LNW06]. To these days, its phase diagram as well as its spectral
properties close to half-filling remain unclear. This thesis is essentially developing
tensor network methods that may lead to answering the above question someday.
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Tensor network methods have been undergoing active development over the past
thirty years. The unifying feature of these methods is their capability to describe
weakly-entangled states efficiently, and therefore provide an accurate parametrization
to simulate low-lying states of short-range Hamiltonians. In this thesis, we study
two types of tensor network Ansätze: matrix product states (MPS) and projected
entangled-pair states (PEPS). We use them to solve model Hamiltonians, such as
the Hubbard model, Hubbard-like models, and frustrated spin models in one and
two dimensions. To set the scene, we below briefly introduce (i) MPS which will be
studied in Chapter 2, (ii) PEPS in Chapter 3, and (iii) the use of MPS and PEPS to
represent projected parton wave functions in Chapter 4.

1.1 Matrix Product States
The matrix product state (MPS) is a one-dimensional tensor network ansatz. It
represents a quantum many-body state as follows:

|Ψ〉 =
∑

σ1σ2...σL

∑
a1...aL−1

Mσ1
1a1M

σ2
a1a2 . . .M

σL
aL−11 |σ1σ2 . . . σL 〉 . (1.2)

Here Mσ`
a`−1a` is a rank-3 tensor, where σ` enumerates all states in its local computa-

tional basis, such as |↑〉 and |↓〉 for a spin-1/2, and a`−1 and a`, the so-called virtual
indices, connect to the left and right tensors respectively.

Compactly, we can read the summation over a` as matrix-matrix multiplications,
i.e.,

|Ψ〉 =
∑

σ1σ2...σL

Mσ1Mσ2 . . .MσL |σ1σ2 . . . σL 〉 , (1.3)

where Mσ1 , Mσ` , and MσL are 1×D1, D`−1 ×D` and DL−1 × 1 matrices. By that,
the evaluation of |Ψ〉 becomes a matter of calculating the products of those matrices.
Hence the name matrix product state. This simple rewriting turns out to be an
effective way to parametrize a certain class of quantum states. Most importantly,
the curse of dimensionality becomes irrelevant if the maximal rank, or the bond
dimension, of M matrices, D = max{D1, D2, . . . DL−1}, can be made much smaller
than (dim(σ))L/2. This insight had a great impact on the course of simulations of
correlated quantum systems.

The density-matrix renormalization group

As is understood nowadays, MPSs are a class of variational Ansätze underlying the
density matrix renormalization group (DMRG) [Sch11]. The connection between
MPS and DMRG, however, was not entirely obvious in the first place.
The density-matrix renormalization group (DMRG) method was conceived by

Steven White back in 1992 [Whi92]. White’s seminal paper was published under
the title: Density Matrix Formulation for Quantum Renormalization Groups, as a
technical advance to fix the numerical renormalization group (NRG) when solving
quantum lattice problems in real space. NRG works well for quantum impurity
problems, such as the single impurity Anderson model, where an interacting fermionic
site (impurity) is coupled to the non-interacting conduction electrons (bath) [Wil75].
During the RG flow, as the energy scale is well-separated, NRG needs only to
retain the lowest energy states at every iteration, and truncates the rest to avoid



1.1 Matrix Product States 3

the exponential blow-up of the dimensionality. This turns out to work poorly for
one-dimensional spin chains [WN92].
White’s key insight is that, instead of keeping the lowest-energy states, one can

use the reduced density matrix to identify the relevant states one should retain. The
idea is as follows. Let us take a bipartite system composed of two blocks of spins L
and R. Then its wave function |Ψ〉 can be expressed as

|Ψ〉 =
NL∑
i

NR∑
j

Φij |i〉L |j〉R ; (1.4)

and accordingly, the reduced density matrix of L is ρL = TrR(|Ψ〉 〈Ψ|) =
∑
i |i〉L 〈i|LΦijΦ∗ji.

To approximate |Ψ〉 by truncation is to find a |Ψ′〉 by keeping only D < NL states
that minimizes || |Ψ′〉 − |Ψ〉 ||. This can be done by choosing |i〉L as the eigenvectors
of ρL that correspond to its D largest eigenvalues. This density matrix formulation
for real space RG relished its swift success. Its high numerical accuracy at solving
low-lying states for the 1D S = 1 Heisenberg model was most astonishing [WH93].
Two years after White’s first paper, DMRG became the standard jargon.

Historically, MPSs antedate DMRG. They were a class of states introduced by
Affleck, Kennedy, Lieb, and Tasaki (AKLT) in 1987, under the name of finitely cor-
related state, as an analytical ansatz to study certain types of spin models [AKLT87].
Hitherto, DMRG and MPS have appeared to be two unrelated concepts. It was
Stellan Östlund and Stefan Rommer, three years after White’s breakthrough, that
first identified the conceptual link in Ref. [OR95]. This is important because MPS,
which can thus be optimized via DMRG, has become a flexible variational ansatz,
with the widened prospect of numerically tackling low-dimensional quantum systems.

In this vein, a surge of progress in ironing out the MPS simulability was later
sparked by Guifre Vidal in the early 2000s. He pointed out in Ref. [Vid03] that the
DMRG truncation in Eq. (1.4) can be readily understood as a Schmidt decomposition.
To simplify, suppose that |i〉L and |j〉R form orthonormal bases of L and R partitions
respectively. Then, the DMRG truncation of |Ψ〉 is equivalent to first performing
the singular value decomposition (SVD), i.e., Φij = UiαλαV

†
αj , and then keeping only

the largest D singular values,

|Ψ〉 ≈
NL∑
i

NR∑
j

D∑
α=1

UiαSαV
†
αj |i〉L |j〉R =

D∑
α=1

Sα |α〉L |α〉R . (1.5)

Here, U (or V †) is the left (or right) isometric matrix projecting |i〉L (or |i〉R) into
the truncated Schmidt basis.
Furthermore, the rank D now acquires a clear meaning as a measure of the

entanglement entropy between blocks L and R:

SL|R = −Tr(ρLlogρL) = −Tr(ρRlogρR) =
D∑
α=1

S2
αlogS2

α. (1.6)

With that, we could see at a given bond dimension D, the entanglement entropy that
can be encoded in a MPS is always bounded, below a length-independent constant,
log(D).
Hence, given a finite bond dimension, the MPS simulability is restricted. This

observation was quickly refined by M. Hastings, F. Verstraete, J.I. Cirac, F. Pollmann,
F. Brandao, M. Horodecki, and many others [Has07, VC06, PMTM09, PTBO10,
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ECP10, BH14]. We thus arrive at the current understanding — MPS can simulate
ground states faithfully for any gapped local one-dimensional Hamiltonian, as these
ground states satisfy the entanglement area law, which bounds the entanglement
entropy between any bi-partitions to be below a certain constant regardless of the
system size.

Canonical forms

In the previous subsection, we have assumed that |i〉L and |j〉R in Eq. (1.5) are
orthonormal bases known a priori. However, it indeed requires a little work to go
from Eq. (1.3) to Eq. (1.5).
To that end, we have to recognize that the definition in Eq. (1.3) is not unique.

The state remains unchanged after a gauge transformation between two adjacent
matrices, Mσ` and Mσ`+1 , such as

Mσ` →Mσ`X, Mσ`+1 → X−1Mσ`+1 , (1.7)

for every σ` and σ`+1, where X is an invertible matrix.
Exploiting this non-uniqueness, we can fix the MPS gauge to our convenience. An

SVD of Mσ` , as M(a`−1,σ`),a` = ASV †, gives us a left-normalized MPS tensor Aσ`a`−1a` ,
following

|a`〉 =
∑

a`−1,σ`

Aσ`a`−1a` |a`−1〉 |σ`〉 , (1.8)

with
∑
a`−1σ`

Aσ`a`−1a`(A
σ`
a`−1a

′
`
)∗ = δa`a′` and X = SV † to be absorbed to the next

tensor. Similarly, we could also obtain a right-normalized MPS tensor B via
Ma`−1,(σ`,a`) = USB, such that

|a`−1〉 =
∑
σ`,a`

Bσ`
a`−1a` |σ`〉 |a`〉 , (1.9)

and
∑
σ`a`

Bσ`
a`−1a`(B

σ`
a′
`−1a`

)∗ = δa`−1a
′
`−1

.
Applying a sequence of recursive SVD starting from the left and right boundaries,

it is always possible to bring an MPS into some particular canonical form. For
instance, the site-` canonicalized MPS reads,

|Ψ〉 =
∑

σ1σ2...σL
a1,...,aL−1

Aσ1
1a1 . . . C

σ`
a`−1a`B

σ`+1
a`a`+1 . . . B

σL
aL−11 |σ1σ2 . . . σL〉 (1.10)

=
∑

a`−1σ`a`

 ∑
σ1...σ`−1
a1...a`−2

Aσ1
1a1 . . . A

σ`−1
a`−2a`−1 |σ1 . . . σ`−1〉

Cσ`a`−1a` |σ`〉 (1.11)

 ∑
σ`+1...σL
a`...aL−1

Bσ`+1
a`a`+1 . . . B

σL
aL−11 |σ`+1 . . . σL〉


=

∑
a`−1σ`a`

Cσ`a`−1a` |a`−1〉 |σ`〉 |a`〉 . (1.12)

Due to the isometric property of left-normalized A tensors (or right-normalized B
tensors), the collective states |a`−1〉 (or |a`〉) consequently form an orthnormal basis
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representing the left (or right) blocks of sites, which is of the same form as Eq. (1.5).

Tensor diagram notations

To avoid hairy-index equations as we have just seen, it is convenient to introduce
tensor diagram notations [Sch11, BC17, STG+19, CPGSV21]. Here, we follow the
notation introduced in Ref. [P3].

A general tensor is represented by a circle with legs sticking out, each representing
a tensor index. For example,

[C`]σ`a`−1a` =
�σ

�C
a −1 a . (1.13)

As for left-normalized A and right-normalized B tensors, we distinguish them with
triangles [P3],

[A`]σ`a`−1a` =
�σ

�A
aa −1
, [B`]σ`a`−1a` =

�σ

�B
aa −1

(1.14)

And the tensor contraction, or the summing over tensor indices, is denoted by
connecting the corresponding legs between two tensors. With that, the tensor
diagram of Eq. (1.10) reads,

|Ψ〉 =
1σ �σ1−�σ +1�σ

1A 1−�A �C +1�B B

σ

L

L

. (1.15)

Also, the isometric condition of A` and B` tensors [see Eq. (1.8)-(1.9)] can be depicted
as following,

==
�A

�
∗A � 1−��

∗B

�B

,=�A�
†A =

�

†B
�

B , (1.16)

with a single line to represent the identity matrix.

Tangent space methods

Meanwhile, a rather different approach to work with MPSs was developed separately
by mathematicians. The general idea is to confine the variational space of a wave
function |Ψ〉 to a vector space spanned by the first order variations of its given
parameters [Dir30, McL64, BLKL88, MMC90, HLW06]. This vector space is called
the tangent space of |Ψ〉. As the tangent space is a rather small subspace embedded
in the full Hilbert space, imposing tangent space approximations to a MPS leads
to efficient numerical implementation. [KL07, KL10, HCO+11, LO13, UV20]. They
were first used to study real-time evolution [LRSV13, LOV15, ZMPR15, HLO+16,
LPB+17, Wu20], and then quickly found its wide application in ground state search,
computing low-energy excitations and spectral functions [HOV13, Van17, ZSVF+18,
VDVH+21]. Overall, the crucial ingredient for all the tangent space methods is the
design of the tangent space projector, which helps us to project an arbitrary state
onto the tangent space of an MPS.
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Given an MPS of the form Eq. (1.15), under the fixed rank (bond dimension)
approximation [Lub15, HLO+16], the tangent space projector reads,

P1s =
L∑
`=1
P1s
` −

L−1∑
`=1
Pb
` = −∑ ∑L 1−L

=1� � �=1�1 1L L

,

(1.17)

where each term, P1s
` or Pb

` , is composed of a train of fixed A/B isometries. This
additive decomposition is tremendously useful. As we will see later, it allows us to
project the MPS into separate local parameter spaces, which makes it possible to
formulate efficient one-site algorithms.

Tangent space construction

To motivate Eq. (1.17), we here outline the construction of the tangent space projector
for a two-site MPS, following Ref. [LO13, P3]. The key here is to see that, given
Ψ = AΛB, its variation, δΨ, under the fixed rank approximation, can be expressed as
a sum of one-derivatives of local tensors, each of the same rank as the original MPS.
In other words, each tangent vector δΨ is of the form (δA)ΛB+A(δΛ)B+AΛ(δB).
Furthermore, we can always decompose δAΛ as AΛ′ + AΛ′, where A is the

orthogonal complement of A. And likewise, ΛδB = Λ′′B + Λ′′B, with B the
orthogonal complement of B. With a little reshuffling, we then arrive at

δΨ = + +B BA AA
′

Λ Λ̃
′′

Λ B
, (1.18)

where Λ̃ = Λ′ + δΛ + Λ′′, and we use gray triangles to denote the orthogonal
complements of A and B.

It is important to note that the three terms on the right of Eq. (1.18) are mutually
orthogonal to each other. Because of that, the parametrization of δΨ in terms of
orthogonal projectors that are additive becomes straightforward. We can indeed
project onto the first term by AA†(δΨ)B†B; the second by AA†(δΨ)B†B; and the
third by AA†(δΨ)B†B. Diagrammatically, these three projectors together read

PΨ = + + . (1.19)

Moreover, with PΨ in hand, we can project any arbitrary vector, say Φ, into the
tangent space of Ψ, simply via PΨΦ. This projection is indeed an approximation,
as it omits the term (AA†)Φ(B†B), which is a vector living outside of the tangent
space manifold.
We can generalize the above observation to arbitrary lengths of MPS. To do

so, let us first consider variations of MPS in Eq. (1.10) on a single bond, `, i.e.,
A`C`+1 =A`Λ`B`+1, while the other tensors remain fixed. Following the previous
argument, we have the tangent space projector for A`Λ`B`+1 as follows:

P` + +

+ , (1.20)
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where the second equality exploits the completeness relation, that is

,=+ =+ (1.21)

Moving to the next bond, `′ = `+ 1, we again apply the same construction and
have

P`′ + +

+ . (1.22)

However, the two tangent spaces associated with projector P` and P`′ are not mutually
orthogonal to each other. This can be clearly seen by comparing the second lines of
Eq. (1.20) and (1.22); noticing that the second term in the second line of Eq. (1.20)
is the same as the first term in the second line of Eq. (1.22). To build a composite
projector for the joint tangent spaces of A`Λ`B`+1 and A`+1Λ`+1B`+2, we should
consider this term only once to avoid double counting. Therefore, only the last term
of Eq. (1.22) should be included. The same argument goes for `′ = `+ 2 . . .L on the
right, that only the last terms of P`′ , involving B`′+1, need to be taken into account.
In the exact same fashion, we can apply the argument again for `′ = 1 . . . `− 1 bonds
on the left, where only the first terms of P`′ , involving A`′ , are to be considered.

Overall, we arrive at the tangent space projector under the fixed rank approximation
that reads,

P1s

L

(1.23)

which is essentially identical to Eq. (1.17).

One-site algorithms

To be concrete, let us here consider how to use the tangent space projector P1s to
approximately solve the time-dependent Schrödinger equation.

The principle idea of the tangent space approach is to restrict the variational space
of MPS within its tangent space, V1s. For a time-dependent problem, say given a
state |Ψ(t)〉 at time t, the time evolution which is governed by a Hamiltonian H, will
inevitably lead to a state H |Ψ(t)〉 out of the tangent space of |Ψ(t)〉. Therefore, to
stay within V1s, what we have to do is to approximate H |Ψ(t)〉 by its orthogonal
projection onto this tangent space. This approximation can be easily implemented
via the tangent space projector, P1s:

|Ψ̇(t)〉 = −iH |Ψ〉 ≈ −iP1sH |Ψ〉 . (1.24)

The important step that leads to an efficient one-site algorithm is to utilize the fact
that the projector P1s admits an additive decomposition. As shown in Eq. (1.17),
we can always split P1s into a set of orthogonal projectors, P1s

` and Pb
` . By further
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1A 1−�A �C +1�B BL

0) Prepare     �C

1) Compute     

2) Update     �C

3) Prepare    
A +1B�Λ

4) Compute     

5) Update     

� +1�1−� � +1�1−�1 L +1�� � +1�1 L

1A BL

Figure 1.1 The substeps of the one-site algorithm for time integrating an MPS with a
Hamiltonian H and time step δ.

invoking the Lie-Trotter approximation, Eq. (1.24) can then be solved by integrating
a set of local differential equations sequentially. For example, upon applying +P1s

` , we
obtain a local equation where only a single tensor C` needs to be explicitly integrated,
as shown in Step. (2) of Fig. 1.1. And by applying −Pb

` , we similarly arrive at a
local equation where only a matrix Λ` is involved, as shown in Step (5) of Fig. 1.1.
The whole scheme can be implemented very efficiently, if these equations are to be
solved from left to right (or from right to left). As there is at most one physical
index involved during the local updates, this is hence called the one-site algorithm.

Going beyond the fixed-rank approximation

While the tangent space approach outlined above leads to an efficient one-site
implementation, the accuracy is not very well controlled. This is especially true
when applying P1s leads to a significant deviation from the unprojected one [HOV13,
YW20, DC21, CKL22]. For real time evolution, one can estimate the inacuraccy
through the projection error, ||(H − P1sH) |Ψ〉 ||. In Chaper 2, we developed a
method, controlled bond expansion (CBE), to adjust the tangent space dynamically
to reduce the projection error. Combining CBE with the standard one-site algorithms,
we eventually achieve an efficient and accurate implementation that is useful for both
ground state search and real-time evolution.

1.2 Projected entangled-paired states
Projected entangled-paired states (PEPS) are generalization of matrix product states
(MPS) for parametrizing wave functions on quantum lattices with dimensions higher
than one [VWPGC06, VMC08]. For an MPS, the wave function is factorized into
a train of three-leg tensors Mσ

l,r, where each local physical site (σ) is connected to
its nearest neighboring ones on the left and right through indices l and r. Those
tensor indices, l and r, not enumerating the local physical states, are called virtual
indices. They are degrees of freedom, delineating the entanglement between the local
physical site and the rest of the system.

The same design principle applies to the local tensor parametrization of PEPS. For
example, on a two-dimensional (2D) square lattice, each local PEPS tensor has five
legs Mσ

l,u,d,r, which connect the local physical site (σ) to its nearest neighbors in four
different directions, left (l), up (u), down (d) and right (r) [see Fig. 1.2(a)]. Such a
tensor network factorization, following the lattice geometry, allows PEPS to carry
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Figure 1.2 (a) The rank-5 PEPS tensor associates with each lattice site on a square lattice.
The tensor leg pointing down enumerates the local physical states, while the others connect
to neighboring tensors in the wave function. (b) The infinite PEPS to parametrize a 2D
quantum state.

the entanglement through virtual indices in a more natural way. With its increased
connectivity, we expect PEPS to offer a more efficient parametrization than MPS to
tackle 2D quantum lattice problems.
Indeed, the generalization to PEPS allows us to simulate bona fide 2D quantum

states. This is in contrast to the MPS, which is restricted to simulate states for
one-dimensional or narrow-width cylinder systems. Research along this direction
has been fruitful [JOV+08, OV09, COBV10, BCOT11, LCBn14, PBT+15, ZCC+17,
PCC19, ZP20, SSB+20, LZP21, LGL+22]. Particularly, the ground-state search
via PEPS on infinite lattices, hence called infinite PEPS (iPEPS), provides unique
insights to resolve competitive low-lying states that are close in energy [CRT14,
LXC+17, LKC+20]. Being able to work directly in the thermodynamic limit, iPEPS
has become a powerful tool to study the phase diagrams of 2D frustrated spins and
interacting fermions.

Figure 1.3 Schematics for computing 〈Ψ|ÔΨ〉 via CTMRG to approximate the environment
of iPEPS. The environmental tensors Cs and T s are assumed to have bond dimensions χ.

However, iPEPS is much harder to handle computationally than the MPS. This is
because, when computing local expectation values of local tensors, such as the energy
density, we have to first evaluate the so-called environment, which is the reduced
density matrix representing the bulk part of the state. As iPEPS has no canonical
form to exploit as in the case of MPS, the evaluation of the environment needs to be
carried out explicitly. The exact evaluation of the environment scales exponentially
with respect to the number of lattice sites. By introducing some RG schemes, it
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is possible to essentially achieve an iPEPS algorithm with polynomial complexity
[see Fig. 1.3]. Among several proposals, in this thesis we adopt the corner transfer
matrix renormalization group (CTMRG) method [NO96, NO97, OV09], which is
most numerically stable, and easy to extend when considering iPEPS with a large
unit-cell.
Furthermore, to simulate the ground state of a local Hamiltonian H, we perform

imaginary time evolution, |Ψ〉 ≈ e−τH |Ψ0〉
||e−τH |Ψ0〉|| , where |Ψ0〉 is some initial state. The

imaginary time evolution of iPEPS can be combined with different levels of crudity
in approximating the iPEPS environment. This in turn gives us three different
optimization schemes: simple-update, fast-full-update and full-update methods. The
simple-update is computationally cheap [JWX08]. However, because of its gross
simplification of the environmental tensors, simple-update often fails to give full
account of the physics, especially when close to the phase transition. On the
other hand, the full-update[JOV+08, COBV10] is notoriously expensive due to the
slow convergence of the CTMRG scheme. The fast-full-update improves upon this
by accelerating the convergence with a better initialization, but cannot reduce
computational complexity further [PBT+15].

In Chapter. 3, we first expatiate the detail of iPEPS algorithms mentioned above.
The long review article [P4] is largely based on Benedikt Bruognolo’s PhD thesis. I
have only helped in polishing the manuscript at its final stage and had no contribution
to any numerical calculations. It is included here to cover the algorithmic details
used in [P5] and [P6]. There we use iPEPS to investigate the ground states for the
2D t-J model on the square lattice and the Kitaev-Γ model on the honeycomb lattice.

1.3 Parton construction for tensor network states
Tensor network methods have provided valuable numerical insights into correlated
quantum systems. This owes much not only to the fact that tensor network
parametrizations are efficient to describe lowly-entangled states, but also to the
strenuous efforts made so far mostly focusing on bringing the computational cost
under control. In a sense, tensor network methods have become a powerful numerical
grinding machine, when mean-field or perturbative theories become unreliable due
to the strong interactions. However, the versatility of tensor network methods is not
limited to only this.

The new angle here is to use tensor network states to represent the so-called parton
wave functions. Parton wave functions have a long history originally conceived in
particle physics. In condensed matter physics, the construction of parton wave
functions has also developed into a vital technique to describe collective phenomena
emerging from the interactions.
In particular, the parton construction is a powerful approach to study quantum

spin-liquids [Gut63, AA88, Wen91a, AM88, RS91]. The basic idea is to rewrite the
spins in terms of bosons or fermions with enlarged Hilbert spaces subject to certain
constraints. For example, a spin-1/2 operator can be represented by Abrikosov
fermions,

S = 1
2c
†
ασαβcβ, (1.25)

where c†α is a fermionic creation operator with spin index α =↑, ↓, and σ is the
vector of Pauli matrices. The parton construction introduces spurious degrees of
freedom (empty and doubly occupied states), which must be removed to fulfill the
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local constraint,
∑
α c
†
αcα = 1.

A remarkable feature of the parton construction is that, though introduced artifi-
cially, these partons might indeed become the true quasiparticles that govern the
low-energy behaviors of the spin systems. Its success relies on physical intuition to
engineer suitable parton Hamiltonians that (i) are easy to solve and (ii) nonetheless
capture the desired physics phenomenologically after projecting out the spurious
states. The second step, the implementation of local projections to fix the particle
number on each lattice site, turns out to be problematic. For example, in variational
Monte Carlo and functional renormalization group approaches, typically only the
average particle number can be controlled through Lagrangian multipliers. This
makes it unreliable to use parton construction to study the energetics of competing
low-lying states. By contrast, using tensor network representations of parton states
in the real space, we can implement these local constraints exactly.

Parton construction for MPS

In this thesis, we work on spin models where partons can be chosen to be fermions.
Generalizing Eq. (1.25), we use a fermionic parton representation of the SU(N) spin
operators [Wen91b], S =

∑
σσ′ c

†
σTσσ′cσ′ , where Tσσ′ are matrix representations of

the SU(N) generators in the fundamental representation, and c†`σ is the fermionic
creation operator. Then, we construct some fermionic quadratic Hamiltonian Hparton
that is exactly solvable and its ground state is a Slater determinant. The strong
interactions, which bring out the correlation, are approximated ad hoc by the
Gutzwiller projection, PmG , to have exactly m fermions per site everywhere[Gut63].
Overall, the projected parton wave function reads,

|Ψ〉 = PmG

Q∏
q=1

∏
σ

d†qσ |0〉 , (1.26)

where |0〉 is the fermionic vacuum, and d†qσ are the single-particle orbitals of the par-
tons. These single-particle orbitals are composed of local operators d†qσ =

∑
`A`(q)c

†
`σ,

with A(q) the eigenmodes of Hparton in its single-particle basis. The Gutzwiller pro-

jector is PmG =
L∏
`=1

∏
p 6=m

n̂`−p
m−p , where p runs over all values from 0 to N except p = m.

This operation projects out any state that has the particle number per site differed
from m, and can be trivially implemented in tensor networks.

On the other hand, to express the Slater determinant as a tensor network requires
some approximation. For an MPS, how to achieve this optimally has been ironed
out in Ref. [WWT20]. The important observation is that each single particle orbital
d†kσ can be written as a matrix product operator (MPO) of a bond dimension D = 2
[see Fig. 1.4] [SRF+13, WWT20]. Compactly, the MPO, whose entries viewed as
matrices with respect to their virtual indices, reads,

d†qσ =
(
0 1

) L∏
j=1

(
1` 0

A`(q)c†`σ F`

)(1
0

)
. (1.27)

Here, c†`σ is the local fermionic creation operator, 1` the local identity operator, and
F` is the local parity operator introduced to account for the anticommutation relation
across different sites. With this, it becomes straightforward to compute Eq. (1.26).
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= =P
1
G

(b)(a)

Figure 1.4 (a) Schematics of the projected parton state construction for spin 1/2 model
(figure modified from Ref. [WWT20]). (b) The MPO–MPS approach to obtain |Ψ〉 =
P 1
G

∏Q
q

∏
σ=↑↓ d

†
kσ |0〉.

Starting from the fermionic vacuum, which is a MPS of D = 1, we sequentially
apply d†qσ to it. The contraction of an MPO with D = 2 to an MPS generates a new
MPS with a doubled bond dimension. Without any truncation, this will eventually
lead to a MPS of D = 22Q. In another word, the contraction of a stack of MPOs,
which can also be regarded as a contraction of a two-dimensional tensor network
(see Fig. 1.4), has been known to be exponentially difficult. It is thus imperative
to apply some approximation. To thwart such exponential growth, we restrict the
maximal bond dimension of the MPS by truncating away small singular values during
the MPO–MPS evolution. Accepting the truncation error, we in the end attain an
approximate Slater determinant as an MPS. In [P7], we will use the MPO–MPS
method to generate projected parton states to study SU(N) chiral spin liquids.

Parton construction for PEPS

Another different route is to resort to PEPS to represent the Slater determinant and
its Gutzwiller projected state. While the general idea is the same as that of MPS,
the formulation is slightly different, due to the difference in tensor network topology
and the assumption of translational invariance.
In [P8], we develop an approach to construct Gutzwiller projected parton states

using particle-number-conserved PEPSs that exploit the U(1) symmetry. As an
example, we here consider the U(1)-symmetric PEPS on a square lattice. On each
lattice site r, we have P physical fermionic (parton) modes, with creation operators
c†r,µ (µ = 1, . . . , P ). In the PEPS framework, we further introduce M virtual
fermionic modes along each edge, with creation operators c†r,ν,α (ν = l, r, d, u and
α = 1, . . . ,M), where l, r, d, u denote left, right, down, and up directions, respectively.
And these virtual fermions are maximally entangled to their counterparts on the
nearest neighbor sites:

|I〉 =
∏
r
Îr(x)Îr(y) |0〉v =

∏
r

M∏
α=1

c†r,r,α + c†r+x,l,α√
2

c†r,u,α + c†r+y,d,α√
2

|0〉v , (1.28)

where |0〉v is the vacuum of virtual fermions, and on a L× L torus, we have created
Nv = 2ML2 virtual fermions.
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On the other hand, the physical fermions on different lattice sites are not directly
entangled with one another, but indirectly through the entangled virtual modes via
a linear map on each site (local PEPS projector),

T̂r =
∑

{mµ},{nν,α}
T (r){mµ}{nν,α} ×

 P∏
µ=1

(c†r,µ)mµ
 ∏

ν=l,r,d,u

M∏
α=1

(c†r,ν,α)nν,α
 . (1.29)

The overall PEPS projector then reads,

|T 〉 =
∏
r
T̂r|0〉p,v, (1.30)

where |0〉p,v is the joint vacuum state of physical and virtual fermions. The fermionic
parton wave function is defined by |Ψ〉 = 〈I|T 〉, by which the virtual degrees of
freedom are entirely contracted out [see Fig 1.5].

(a) (b)

Figure 1.5 (a) Schematics for U(1) PEPS, where Tr is the local rank-5 PEPS projector
depicted by circles and the virtual maximally entangled-paired bonds in oval shapes. By
appropriately combining local PEPS projector and virtual bonds, we can return to the typical
PEPS formalism drawn in (b) introduced in Sec. 1.2.

For the purpose of describing a fermionic parton state with a fixed particle number,
we can first impose the U(1) particle number constraint to the PEPS projector |T 〉.
Second, to further simplify, we assume that T (r) in Eq. (1.29) is r-independent, and
we have henceforth a translational invariant PEPS. Moreover, since we are only
concerned with quadratic parton Hamiltonians, the local PEPS projector T̂r can
eventually be parametrized as a local Slater determinant,

T̂r =
Q∏
q=1

d†r,q, (1.31)

where the single-particle orbitals, d†r,q, are linear combinations of local physical modes
c†r,µ and virtual modes c†r,ν,α at the same site. On a L × L square lattice, we thus
obtain a parton state for PEPS, |Ψ〉 = 〈I|T 〉 with a fixed total particle number
(Q− 2M)L2.

The above simplification, namely taking T̂r to be both translationally invariant and
also a Slater determinant, has consequences. It gives rise to certain restrictions on the
types of band structure we can simulate. This is more transparent to understand in
the momentum space, with c†r = 1

L

∑
k c
†
ke
−ik·r for both physical and virtual fermions.

The Fourier transformation of the PEPS projector is trivial, as its local terms are
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decoupled,

|T 〉 =
∏
k

Q∏
q=1

d†k,q |0〉p,v . (1.32)

As for the virtual modes, the nearest-neighboring hopping yields a k dependent phase,
and we have

|I〉 =
∏
k

M∏
α=1

1
2(c†k,r,α + c†k,l,αe

−ikx)(c†k,u,α + c†k,d,αe
−iky) |0〉v . (1.33)

Importantly, both |T 〉 and |I〉 are k-separable, and so does the overall PEPS. That
is,

|Ψ〉 =
∏
k

 Q∏
q=1

M∏
α=1
〈0|v

1
2(ck,r,α + ck,l,αe

+ikx)(ck,u,α + ck,d,αe
+iky)d†k,q |0〉p,v

 .
(1.34)

From the above Eq. (1.34), it becomes clear that each k-point must have the
same number of physical fermions, Q− 2M . Therefore, we expect that our parton
construction for PEPS can only describe systems with completely filled bands, either
a band insulator with a finite energy gap, or a semimetal having Dirac cones or
quadratic band touching points.
In [P8], we will explain how to numerically optimize the introduced fermionic

parton ansatz for PEPS, and we will demonstrate its performance with the π-flux
model on square lattices and the [0, π]-flux model on kagome lattices.
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2 Matrix Product States

2.1 Overview
To these days, matrix product states (MPS) have become the de facto standard
tool to study frustrated spins and interacting fermions on one-dimensional lattices
and narrow-width cylinders and ladders. MPS can simulate ground states via the
density matrix renormalization group (DMRG) and real-time evolution via the time-
dependent variational principle (TDVP). Both DMRG and TDVP are algorithms
run in polynomial time scale, O(LD3dn). Here L is the number of lattice sites, D is
the MPS bond dimension and d is the dimension of the local physical Hilbert space.
And n is an integer, determining the number of physical sites to be simultaneously
updated during optimization.

One-site update The one-site update scheme with complexity O(LD3d) is the
cheapest among all. However, it leads to poor accuracy for both DMRG and TDVP.
The important ingredient that is missing compared to multi-site update schemes is
the possibility to increase the MPS bond dimensions D when necessary.
This problem was first addressed by Steven White in 2005 by adding noise to

DMRG [Whi05]. The noise refers to small random numbers added to the reduced
density matrices before diagonalization, which helps to bump DMRG out of local
minima when the initial guess is poor and far away from the true ground state. This
perturbative approach was refined later by Hubig et al. in 2015 [HMSW15] and was
widely implemented. An exemplary application is the study of the two-dimensional
Hubbard model on width-6 cylinders [QCS+20], where unprecedented large bond
dimension DMRG calculations were carried out. However, this perturbative approach
requires extra care during the calculations, and its numerical cost is not yet optimal.
For real-time evolution, we are facing a similar issue again. It is widely known

that the one-site TDVP, without changing the bond dimension, guarantees energy
and norm conservation [HCO+11, LO13, LRSV13]. This merit however does not say
anything about other physical quantities, nor does it ensure the numerical accuracy
in the long time [GD19, CSZ20, MB20]. When the MPS bond dimension is overly
restricted, TDVP induces projection errors and the accompanied inaccuracy is hard
to control.
To simulate accurate dynamics, some scheme to adaptively increase the bond

dimension to accommodate the entanglement growth in time is necessary. In 2020,
Yang and White first proposed a global bond expansion scheme [YW20]. Later,
several local bond expansion schemes have also been put forward [DRV21, DC21,
CKL22, EOS22, XXX+22]. All these attempts are shown to improve the accuracy
of the one-site TDVP to some extent. Nonetheless, a method that achieves optimal
efficiency and numerical accuracy in the long-time is still in need.

Controlled bond expansion Using tangnet space methods, we develop a unified
approach, controlled bond expansion (CBE), that works for both the one-site DMRG
and the one-site TDVP. For typical one-site algorithms, the parameter space that
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one can work with is confined, as these algorithms only evolve the MPS within its
one-site tangent space manifold and cannot go beyond. To improve the accuracy, we
use CBE that aims to enlarge the MPS bond dimension, such that it explores the
variational space beyond its one-site subspace. CBE inspects the full two-site tangent
space manifold, but only enriches the MPS with the relevant portion distilled from
that. Therefore, CBE manages to achieve two-site accuracy with one-site costs.

For concrete applications, we show that both CBE–DMRG and CBE–TDVP can
achieve accuracy comparable to the typical two-site update scheme at single-site
costs. In [P1], we benchmarked the numerical cost of CBE–DMRG, which evidences
the linear scaling of d in time complexity. In [P2], we illustrate the performance
of CBE–TDVP with several numerical examples on finite quantum lattices. We
then close this chapter with a discussion [P3] on generalizing the tangent space
construction to a multi-site scenario (up to now only one- and two-site formulas
exist), and its potential application in the future.

P1 Controlled bond expansion for DMRG ground state search at single-site costs
Andreas Gleis, Jheng-Wei Li, and Jan von Delft
arXiv:2207.14712 (2022)

P2 Time-dependent variational principle with controlled bond expansion for matrix
product states
Jheng-Wei Li, Andreas Gleis, and Jan von Delft
arXiv:2208.10972 (2022)

P3 Projector formalism for kept and discarded spaces of matrix product states
Andreas Gleis, Jheng-Wei Li and Jan von Delft
arXiv:2207.13161 (2022)
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Controlled bond expansion for DMRG ground state search at single-site costs
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DMRG ground state search algorithms employing symmetries must be able to expand virtual
bond spaces by adding or changing symmetry sectors if these lower the energy. Traditional
single-site DMRG does not allow bond expansion; two-site DMRG does, but at much higher
computational costs. We present a controlled bond expansion (CBE) algorithm that yields two-site
accuracy and convergence per sweep, at single-site costs. Given a matrix product state Ψ defining a
variational space, CBE identifies parts of the orthogonal space carrying significant weight in HΨ and
expands bonds to include only these. CBE–DMRG uses no mixing parameters and is fully variational.

DOI:

Introduction.— A powerful tool for studying ground
state properties of one- and two-dimensional quantum
systems is the density martrix renormalization group
(DMRG) [1–7]. Prominent two-dimensional applications
include the t-J [8–11] and Hubbard [12–18] models, and
quantum magnets [19–22]. Due to their high numerical
costs, such studies are currently limited to either small
finite-sized systems or cylinders with small circumference.
Progress towards computationally cheaper DMRG ground
state search algorithms would clearly be welcome.

In this paper, we address this challenge. A DMRG
ground state search explores a variational space spanned
by matrix product states. If symmetries are exploited, the
algorithm must be able to expand the auxiliary spaces as-
sociated with virtual bonds by adjusting symmetry sectors
if this lowers the energy. Traditional single-site or one-
site (1s) DMRG, which variationally updates one site at
a time, does not allow such bond expansions. As a result,
it often gets stuck in metastable configurations having
quantum numbers different from the actual ground state.
Two-site (2s) DMRG naturally leads to bond expansion,
but carries much higher computational costs.

Hence, schemes have been proposed for achieving bond
expansions at sub-2s costs, such as density matrix pertur-
bation [23] or subspace expansion [24]. However, in these
schemes, the degree of subspace expansion per local up-
date is controlled by a heuristic mixing factor. Depending
on its value, some subspace expansion updates increase,
rather then decrease, the energy.

Here, we present a controlled bond expansion (CBE)
algorithm which lowers the energy with each step and
yields 2s accuracy and convergence per sweep, at 1s costs.
Given a matrix product state Ψ defining a variational
space, our key idea is to identify parts of the 2s orthogonal
space that carry significant weight in HΨ, and to include
only these parts when expanding the virtual bonds of a
1s Hamiltonian. Remarkably, these parts can be found
via a projector that can be constructed at 1s costs.

MPS basics.— We briefly recall some standard MPS
concepts [5], adopting the diagrammatic conventions of

Ref. 25. Consider an L -site system with an open bound-
ary MPS wavefunction Ψ having dimensions d for physical
sites and D for virtual bonds. Ψ can be written in bond-
canonical form w.r.t. to any bond `,

Ψ =
1A 2A A +1B LBLB

DDd d

1−�Λ
. (1)

The tensors Λ` ( ), A` ( ) and B` ( ) are variational
parameters. They are linked by gauge relations, A`Λ` =
Λ`−1B`, useful for shifting the bond tensor Λ` to neighbor-
ing bonds. A` and B` are left and right-sided isometries,
respectively, projecting Dd-dimensional parent (P) spaces
to D-dimensional kept (K) image spaces [25]; they satisfy

= == =
�A

�
∗A

�
∗B

�B

,=�A�
†A =

�

†B
�

B
�
K

1−�
K . (2)

The Hamiltonian can similary be expressed as a matrix
product operator (MPO) with virtual bond dimension w,

H = LWLW1W 2W �W

d dw
1−

. (3)

For 2s or 1s DMRG, the energy of Ψ is lowered by pro-
jecting H to a local variational space associated with sites
(`, `+1) or `, respectively, and using its ground state (GS)
within that space to locally update Ψ. The corresponding
2s and 1s Hamiltonians can be computed recursively using

H2s
` =

� +1� +2�1−� � +1� +2�1−�

D Dd d

1

=
L

, (4a)

H1s
` =

� +1�1−�

D Dd

=

� +1�1−�2−�
=

� +1� +2�1−�

. (4b)

To perform 2s or 1s updates, one replaces ψ2s
` =A`Λ`B`+1

or ψ1s
` =C` =A`Λ` ( ) by the GS solutions of

(H2s
` −E)ψ2s

` = 0 , E=

� +1� � +1�+2�1−�

�A �Λ +1�B
, (5a)

(H1s
` −E)ψ1s

` = 0 ,

�

E=

� +1�1−�

�C
. (5b)
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Updating site by site, one sweeps back and forth through
the MPS until the GS energy converges.

The local variational space is larger for 2s than 1s
DMRG by a factor d, O(D2d2) vs. O(D2d). This enables
2s DMRG to increase (“expand”) the bond dimension
during updates by including new states (and symmetry
sectors!) from the 2s space. 1s DMRG cannot do this,
and hence often fails to yield accurate GS energies. The
better performance of 2s vs. 1s has its price: much higher
numerical costs, O

(
D3d3 +D3d2w

)
vs. O

(
D3dw

)
[5].

Discarded spaces.— To track those parts of 2s spaces
not contained in 1s spaces, we introduce orthogonal

complements of A` and B`, denoted A`( ) and B`( ).
These isometries have image spaces, called discarded (D)
spaces [25], of dimension D=D(d−1), orthogonal to the

kept images of A` and B`. Thus A1` ( ) =A`⊕A` and

B1

` ( )=B`⊕B` are unitaries on their parent spaces, with

DdDdD D

�A �B �B�B⊕ =
D D D DD D DD

d dd
⊕=

d dd

�A �A , . (6)

The unitarity conditions for A1` and B1

` imply orthonor-
mality and completeness relations complementing Eq. (2),
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If the unitary maps A1†` and B1†
`+1 of Eq. (6) are applied to

some of the open indices of H1s
` ψ

1s
` , H1s

`+1ψ
1s
`+1 and H2s

` ψ
2s
`

as indicated below, they map the diagrams of Eqs. (5) to
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The first three terms from the third line also appear in
the first two lines, but the fourth, involving , does not.
Let DD denote the image of the orthogonal complements
A`⊗B`+1 ( ⊗ ), then DD is orthogonal to the variational
space explored by 1s DMRG on sites (`, `+1). DD is much
larger than the latter, of dimension D2 = D2(d−1)2 vs.
2D2d, and (importantly!) may contain new symmetry
sectors. Thus DD is the 2s ingredient lacking in 1s schemes.

This can also be seen considering the energy variance
∆E = ‖(H−E)Ψ‖2. By expanding it into contributions
involving orthogonal projections on one, two, or more
sites [26], ∆E= ∆1⊥

E +∆2⊥
E +. . . , one obtains [25]

∆1⊥
E =

�=1�

∑L 2

, ∆2⊥
E =

� +1�=1�

∑1−L 2

. (8)

1s DMRG minimizes only ∆1⊥
E , 2s minimizes ∆1⊥

E and
∆2⊥
E . We thus seek to expand the K image of or at the

expense of the D image of or . This transfers weight
from ∆2⊥

E to ∆1⊥
E , making it accessible to 1s minimization.

Controlled bond expansion.— The CBE algorithm rests
on two new insights, substantiated by the quality of its re-
sults. The first insight is that the subspace of DD relevant
for lowering the GS energy is relatively small: it is the
subspace on which H2s

` ψ
2s
` and hence ∆2⊥

E have significant
weight. When expanding a bond, it thus suffices to add
only this small subspace (hence the moniker controlled
bond expansion), or only part of it, to be called relevant
DD (rDD). Since DD is the image of A` ⊗ B`+1( ⊗ ),

rDD can be viewed as the image of Ãtr
` ⊗ B`+1( ⊗ )

or A` ⊗ B̃tr
`+1( ⊗ ), where the isometries Ãtr

` ( ) or

B̃tr
`+1 ( ) are truncated versions of A` or B`+1 and have

image dimensions D̃, say. It turns out that one may
choose D̃ < D, independent of d, thus rDD, of dimension
D̃D, is indeed much smaller than DD. The second insight
is that Ãtr

` or B̃tr
`+1 can be constructed at 1s costs using a

novel scheme explained in Figs. 1 and 2. We call it shrewd
selection since it is cheap, efficient and practical, though
not strictly optimal (that would require 2s costs).

Based on these insights, a CBE update of bond ` pro-
ceeds in four substeps. We describe them for a right-to-left
sweep for building Ãtr

` and updating C`+1 (left-to-right

sweeps, building B̃tr
`+1 and updating C`, are analogous).

(i) Compute Ãtr
` ( ) using shrewd selection.

(ii) Expand bond ` from dimension D to D+ D̃ by

replacing A` by an expanded isometry Aex
` ( ) = A`⊕Ãtr

` ,

and C`+1 by an expanded tensor initialized as Cex,i
`+1 ( ),

defined such that Aex
` C

ex,i
`+1 = A`C`+1:

⊕ =
D DD D̃ D

d d d

�
exA�A �

trÃ
=

D
d +1�

+1�
i,exC +1�C

)D̃+D(
. (9)

Also construct an expanded one-site Hamiltonian, defined
in a variational space of dimension D(D + D̃)d:

H1s,ex
`+1 =

+1�

=
Dd

)δ(1+D

+1�

D̃+D
. (10)

(iii) Update Cex
`+1 variationally by using an iterative

eigensolver, as usual in DMRG, to find the GS solution of
(H1s,ex

`+1 −E)Cex
`+1 = 0, starting from Cex,i

`+1 . (We employ a

Lanczos eigensolver.) This has costs of O
(
D3dw

)
. Thus,

Cex
`+1 can be updated at 1s costs, while including only the

most relevant 2s information via the contribution of Ãtr
` .

(iv) Shift the isometry center from site `+ 1 to site `
using a singular value decomposition (SVD) and truncate

(trim) bond ` from dimension D+ D̃ back to D, removing
low-weight states. The discarded weight, say ξ, of this
bond trimming serves as error measure. It can be used
for extrapolations, e.g. of GS energy versus ξ, just as
for 2s DMRG. This yields GS energies comparable in
accuracy to 2s DMRG or 2s variance extrapolations [26]
(see below), though computing ξ requires only 1s costs.
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FIG. 1. During a right-to-left CBE sweep, bond ` is expanded

from A`( ) to A` ⊕ Ãtr
` ( ⊕ ), where Ãtr

` ( ), with image

dimension D̃, is a truncation of A`( ), with image dimension
D=D(d−1). This expansion will reduce ∆2s

E significantly if

Ãtr
` ⊕B`+1( ⊗ ) targets rDD, a D̃D-dimensional subspace of

the D2-dimensional space DD on which H2s
` ψ

2s
` has significant

weight. Ideally, Ãtr
` should minimize the cost function C1, the

difference between applying the projectors A`A
†
` or Ãtr

` Ã
tr
`
† to

H2s
` ψ

2s
` B

†
`+1B`+1. However, exact minimization of C1 would

involve 2s costs (feasible if d, w and D are comparatively small,
but in general undesirable). To maintain 1s costs, O(D3dw),
we instead use shrewd selection, involving two separate trun-
cations (explained in Fig. 2, depicted schematically in Fig. 3).
The first truncation (preselection) truncates the central MPS
bond from D→D′ (specified below) in the presence of its en-
vironment by minimizing C2; this replaces the full complement

by a preselected complement, A` → Âpr
` , with reduced

image dimension, D→D̂=D′w [27]. The second truncation
(final selection) minimizes C3 with central MPO bond closed

as appropriate for H2s
` ψ

2s
` : it further truncates Âpr

` to yield

the final truncated complement, Ãtr
` , → , D̂→D̃ <D. To

ensure 1s costs for final selection we need D̂=D, and thus
choose D′=D/w for preselection. Though shrewd selection
involves severe bond reductions, it yields rDDs suitable for
efficiently lowering the GS energy (in step (iii)). Section S-2
in [28] illustrates this by analysing singular value spectra.

The energy minimization based on H1s,ex
`+1 is variational,

hence each CBE update strictly lowers the GS energy.
Moreover, although CBE explores a much smaller varia-
tional space than 2s DMRG, it still converges at the same
rate (as shown below), since it focuses on the subspace
that really matters for energy reduction.

We remark that bond expansion using a truncated DD

has been proposed before [24, 29]. But our choice of
Aex
` ( ) is more optimal than for the subspace expansion

of Ref. [24], which requires a heuristic mixing factor and
yields updates that sometimes raise the energy; and our
method of finding Aex

` ( ) at 1s costs is cheaper than
that used in [29] (for the variational uniform MPS algo-
rithm [30]), which uses an SVD requiring 2s costs.

Sweeping.— Our computations exploit non-Abelian
symmetries [31, 32], where bond dimensions, denoted D∗,
count symmetry multiplets (D counts states). Usually,
D∗ is increased with each update during sweeping, from
an initial D∗i to a final D∗f = αD∗i , with α > 1. To achieve

this with using CBE, we (i,ii) use D′∗'D∗f /w∗, D̂∗=D∗f
(cf. Fig. 2) and expand from D∗i to

D∗i + D̃∗ = D∗f (1 + δ), (11)

(iii) call the iterative eigensolver, and (iv) truncate back

DdD d
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s̃ †ṽ

D < D˜

FIG. 2. Shrewd selection: Computation of (a-c) the prese-

lected complement Âpr
` ( ) to minimize C2, and (d) the final

truncated complement Ãtr
` ( ) to minimize C3, using four

SVDs, all with at most 1s costs. For each, an arrow indicates
a bond being opened before doing the SVD, shading and sym-
bols in matching colors indicate the SVD input and output,
and the latter is written as USV † or usv† when involving
no or some truncation, respectively. Importantly, we express

A`A
†
` and B

†
`+1B`+1 (grey) as 1P

` −A`A
†
` and 1

P
` −B†`+1B`+1

(Eq. (7b)), avoiding the computation of A` and B`+1. (a) The
first SVD canonicalizes the right side of the diagram, assigning
its weights to the central MPS bond. (b) The second SVD and
truncation reduces the dimension of this bond, D→D′=D/w.
(c) The third SVD regroups indices to combine the truncated
MPS bond and the MPO bond into a composite bond of di-

mension D̂=D′w=D, yielding the preselected complement

Âpr
` = Û ( ). Nominally, step (c) would require no truncation

if exact arithmetic were used, but in practice (numerically)
zero singular values, of order O(10−16), may arise; these must

be discarded to ensure A†`Â
pr
` = 0. (d) The fourth SVD and

truncation yields the final truncated complement Ãtr
` =Âpr

` ũ

( ), with bond reduction D̂→D̃<D.

to D∗f when shifting the isometry center. We use α=
√

2
and δ=0.1 (for CBE), unless stated otherwise. For the
CBE and 2s DMRG comparisons shown below, we use
the same initial state: a D∗i =1 valence bond state with
one fermion per site, uniform density and total spin 0.

Results.— We now benchmark CBE–DMRG for free
fermions in one dimension (1D), then illustrate its perfor-
mance for computationally challenging models: the 1D
Hubbard-Holstein model and the 2D Hubbard and Kondo-
Heisenberg-Holstein models on cylinders. We choose not
to discuss their rich physics, aiming here only to demon-
strate the feasibility of studying them with CBE–DMRG.

All CPU time measurements were done on a single core
of an Intel Core i7-9750H processor.

�
2sψ�

2sH

+1�
1sψ+1�

1sH

FIG. 3. The projection H2s
` ψ

2s
`

A
†
`7−→ H1s

`+1ψ
1s
`+1 to the tangent

space (yellow) of the MPS manifold (blue) discards informa-
tion from DD (depicted by grey arrows for DD basis vectors).
Relevant information is recovered at 1s cost by constructing
rDD through preselection (red), then final selection (orange).
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FIG. 4. Relative error in GS energy vs. (a) CPU time and
(b) number of half-sweeps ns, for CBE and 2s DMRG. Eex is
the exact GS energy. (c) Quality of linear extrapolation of
the GS energy using various error measures. Dashed (solid)
lines show linear fits to data points lying on or above (on or
below) the grey bar, computed using D∗max ≤ 300 (≥ 300),
representing intermediate (high) accuracy calculations; when
these lines touch zero, the extrapolated error changes sign.

Free fermions.— To benchmark our CBE scheme,
we consider a chain of spinful free fermions, exactly
solvable but non-trivial for DMRG, with Hamiltonian
Hff = −∑L−1

i=1

∑
σ

(
c†iσci+1σ + h.c.

)
and L = 100 sites.

We exploit U(1)ch ⊗ SU(2)sp charge and spin symmetry,
with local dimension d∗[d] = 3[4]. The MPO dimension
is w∗[w]=4[6]. We seek the GS in the sector with total
spin S=0, at half-filling, with particle number N=L .

Figure 4(a) plots the relative error in energy vs. CPU
time for different D∗max for both CBE and 2s schemes;
Fig. 4(b) plots it vs. the number of half-sweeps ns. While
convergence with ns is comparable for CBE and 2s, CBE
requires less CPU time than 2s by a factor of ' 2. (This
speedup factor is less than d∗ = 3, since d∗ is quite small
and steps not involving the iterative eigensolver have the
same numerical cost for both CBE and 2s schemes.)

Figure 4(c) shows linear-fit extrapolations of the energy
in terms of the discarded weight ξ and the 2s variance (the
latter computed following Ref. [26]). The quality of the
extrapolations is comparable for all considered methods:
they all reduce the error in energy by roughly one order
compared to the most accurate data point considered, as
expected [23, 26]. The error is smaller for δ = 0.3 than for
δ = 0.1, and its dependence on discarded weight slightly
less noisy (though this hardly affects the extrapolation).

Hubbard-Holstein model (chain).— As a more chal-
lenging application, we consider interacting spinful elec-
trons on a 1D chain coupled to phonons [33–37], described

FIG. 5. Hubbard-Holstein model: (a) Convergence of the
GS energy versus number of half-sweeps ns at fixed d∗ =
3(Nmax

ph +1). E0 was obtained by linear ξ-extrapolation of
data from D∗max ∈ [1000, 1200]. (b) CPU time per sweep for
different d∗ at fixed D∗max, showing d∗ vs. d∗2 scaling for the
CBE vs. 2s algorithms.

by the Hamiltonian HHH = −∑iσ

(
c†iσci+1σ + h.c.

)
+

U
∑
i ni↑ni↓+ωph

∑
i b
†
i bi +g

∑
i

(
ni↑+ni↓−1

)(
b†i + bi

)
.

We chose U = 0.8, g =
√

0.2, ωph = 0.5, L = N = 50
half-filled sites, total spin S=0, and restricted the max-
imum local number of excited phonons to Nmax

ph . Then,
d∗[d] = 3(Nmax

ph +1) [4(Nmax
ph +1)] and w∗[w] = 4[6].

Figure 5(a) shows the relative error in energy vs. num-
ber of half-sweeps ns for different D∗max at fixed d∗ = 12,
comparing CBE and 2s schemes. The convergence with
ns is again similar for CBE and 2s. Figure 5 (b) compares
the CPU time per sweep for CBE and 2s for different
d∗ at fixed D∗max. Linear and quadratic fits confirm the
expected d∗ or d∗2 scaling, respectively, showing unam-
bigously that CBE indeed has 1s scaling.

Fermionic models on cylinders.— To check the ability
of CBE–DMRG to deal with very challenging models, we
have also tested it on fermionic models on 10×4 cylinders,
exploiting U(1)ch ⊗ SU(2)sp charge and spin symmetries.
As a benchmark, we have considered the Hubbard model
up to D∗ = 12000 where we find good agreement with
data from Ref. 26. We then considered a more challenging
Kondo-Heisenberg-Holstein model, which features phys-
ical and MPO bond-dimensions from d∗[d] = 4[8] and
w∗[w] = 10[16] (up to D∗ = 15000) up to d∗[d] = 16[32]
and w∗[w]=14[30] (up to D∗ = 7000), respectively. More
information and data demonstrating stable convergence of
CBE–DMRG is shown in the supplemental material [28].

Summary and outlook.— CBE expands bonds by
adding subspaces on which ∆2s

E , the 2s contribution to
the energy variance, has significant weight, thus making
these subspaces accessible to 1s energy minimization. The
above results show that CBE yields 2s accuracy and con-
vergence per sweep, at 1s costs. In contrast to previous
1s methods, CBE avoids mixing parameters and is fully
variational (up to bond trimming when shifting the isom-
etry center). It has 1s costs, since the variational space is
only slightly expanded relative to 1s DMRG. 2s conver-
gence is achieved since the bond expansion is controlled,
targeting only highly relevant parts of the 2s variational
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space contributing strongly to the energy variance ∆2s
E .

Using shrewd selection, these can be identified at 1s costs.

Due to its significant costs savings, CBE opens the
door to studying challenging models of current interest
at higher accuracy (larger D) than previously possible,
or tackling more complex models, with d or w so large
that they were hitherto out of reach. Examples are multi-
band models with several different type of couplings, in
particular in two-dimensional settings, models involving
bosonic excitations, and quantum-chemical applications.

More generally, CBE can be used in any context requir-
ing variational optimization of an MPS. Apart from energy
minimization, an example is approximating a given Ψ by
a Ψ′ with smaller bond dimension through minimization
of ||Ψ′−Ψ||. CBE can also be used to build Krylov spaces
with 2s accuracy at 1s costs, thus impacting all of the large
variety of MPS methods relying on Krylov methods. For
example, in a follow-up paper [38] we focus on MPS time
evolution using the time-dependent variational principle
(TDVP), and use CBE to achieve dramatic improvements
in performance. Finally, analogous statements hold for
contexts involving the variational optimization or the
time evolution of MPOs. We thus expect that CBE will
be widely used and become an indispensable tool in the
MPS/MPO toolbox.

We thank Andreas Weichselbaum for stimulating discus-
sions, and Seung-Sup Lee, Juan Espinoza, Matan Lotem,
Jeongmin Shim and Andreas Weichselbaum for helpful
comments on our manuscript. Our numerical simulations
employed the QSpace tensor library [31, 32]. This research
was funded in part by the Deutsche Forschungsgemein-
schaft under Germany’s Excellence Strategy EXC-2111
(Project No. 390814868), and is part of the Munich Quan-
tum Valley, supported by the Bavarian state government
with funds from the Hightech Agenda Bayern Plus.
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U. Schollwöck, S. R. White, and S. Zhang (Simons Col-
laboration on the Many-Electron Problem), Absence of
superconductivity in the pure two-dimensional Hubbard
model, Phys. Rev. X 10, 031016 (2020).

[17] Y.-F. Jiang, J. Zaanen, T. P. Devereaux, and H.-C. Jiang,
Ground state phase diagram of the doped Hubbard model
on the four-leg cylinder, Phys. Rev. Research 2, 033073
(2020).

[18] H.-C. Jiang and S. A. Kivelson, Stripe order enhanced
superconductivity in the Hubbard model, PNAS 119,
e2109406119 (2022).

[19] S. Yan, D. A. Huse, and S. R. White, Spin-liquid ground
state of the S = 1/2 kagome Heisenberg antiferromagnet,
Science 332, 1173 (2011).

[20] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Na-
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This supplement offers additional material on three is-
sues: in Sec. S-1, a detailed analysis of preselection and fi-
nal selection; in Sec. S-2, numerical results illustrating the
performance of CBE-DMRG for very challenging models
(the Hubbard model and the Kondo-Heisenberg-Holstein
model, both defined on a cylinder); and in Sec. S-3, a
pseudocode for constructing the truncated complement
using shrewd selection.

S-1. SHREWD SELECTION

Figures 1 and 2 in the main text discuss a novel scheme,
called shrewd selection, needed for CBE. It involves two
separate truncations, called preselection and final selec-
tion. In this section we discuss these in more detail, and
illustrate their effects on the properties of various singular
value spectra and singular vectors. We here write bond
dimensions with ∗, indicating numbers of multiplets (not
states), since these determine computational complexities
and truncation thresholds and are the quantities shown
in the figures. Relations such as D̂ = D′w, exact for
Abelian symmetries where all symmetry multiplets have
dimension 1, become approximate, D̂∗ ' D′∗w∗, when
written for non-Abelian symmetries.

A. Options for preselection and final selection

The key idea of CBE is to expand the isometry A`( ),
whose image (the kept space) initially has dimension D∗i ,
through a direct sum with a so-called truncated comple-
ment, an isometry with image dimension D̃∗ (<D∗i ). The
latter is obtained through a suitable truncation of the full
complement, A`( ), whose image (the discarded space)
initially has dimension D∗'D∗i (d∗−1). Figure 1 defines
three cost functions, C1, C2 and C3, relevant for construct-
ing the truncated complement. The optimal choice for
the truncated complement, to be denoted Atr

` ( ) here, is
obtained by exact minimization of C1, but that requires
2s costs. Therefore, the main text proposes an alternative
two-step strategy, requiring only 1s costs. First perform
preselection: obtain a preselected complement Âpr

` ( ),

with image dimension D̂∗'D′∗w∗, through minimization
of C2 (Fig. 2, steps (a-c)). Then perform final selection:

obtain the desired truncated complement, denoted Ãtr
`

( ), through minimization of C3 (Fig. 2, step (d)).

The minimization of the cost functions C1 and C3 de-
fined in Fig. 1 involves performing SVDs and truncations
of the following two tensors, respectively:

M full =

�

+1�

�=

u sSU V † v†

D∗
D∗ D∗

d∗
D∗

D∗

d∗D∗
, (S1a)

M̂pr =

+1

=

U S V † v†u s

D∗

d∗
D∗

d∗D∗

D∗
D∗

D∗
. (S1b)

They differ only in one ingredient, A
†
`( ) vs. Âpr

`
†( ),

but since these have vastly different open leg dimensions,
D∗ vs. D̂∗, the SVD costs differ vastly too, 2s vs. 1s. The

isometries u( ) or ũ( ) obtained from the above SVDs

and truncations, both with image dimension D̃∗, can then

be used to construct A
tr

` ( ) or Ãtr
` ( ) as follows:

=
Atr A u

D∗D∗
d∗

, (S2a)

=
uAtr Apr

D∗D∗
d∗

. (S2b)

Both A
tr

` ( ) and Ãtr
` ( ) have image dimension D̃∗; the

former serves as reference (equivalent to using no prese-
lection, D′∗ = D∗, the latter is an approximation to the
former. An even cruder approximation is obtained if one
performs preselection without final selection: for that,
truncate Û ' û in step (c) of Fig. 2 using D̂∗=D̃∗ (not

D′∗w∗), and use the resulting isometry, Âtr
` ( ) = û, as

approximation for A
tr

` ( ), omitting step (d) altogether:

=
D∗D∗

d∗

Atr û
. (S2c)

To illustrate the effects of preselection, we will com-
pare four settings: (I) the reference, Atr( ); or three
versions of preselection with D′∗=D∗f /w

∗, 0.1D∗f /w
∗ or

1, to be called (II) moderate, (III) severe or (IV) extreme
preselection, respectively, all followed by final selection,
yielding three versions of Ãtr( ). Here, D∗f is the final
bond dimension after an update, obtained by expanding
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the bond from dimension D∗i to D∗i +D̃∗=D∗f (1+δ), then
trimming it back to D∗f . To illustrate the importance of
final selection we also consider a fifth setting: (V) mod-

erate preselection and Û ' û truncation, without final
selection, yielding Âtr

` ( ).

In the main text, we recommended performing CBE
updates using moderate preselection followed by final
selection. We showed (Fig. 4(a)) that this yields equally
fast convergence per sweep for the GS energy as 2s update.
Below, we elucidate why moderate preselection works
so well. To this end, we analyze various singular value
spectra (Sec. S-1 B) and left singular vectors (Sec. S-1 C),
with D∗f = D∗max fixed. We also show that severe and
even extreme preselection likewise yield full convergence,
albeit at slower rates, by comparing various convergence
rates per sweep while increasing D∗f (Sec. S-1 D).

B. Singular values

We start by comparing the singular values of the tensors
M full and M̂pr, i.e. the diagonal elements of the diagonal
matrices S( ) and S̃( ) in Eqs. (S1), denoted Si (i =

1, . . . , D∗) and S̃i (i = 1, . . . , D̂∗), respectively. They
differ strongly in number, but if the largest S̃i values
roughly mimic the largest Si values, serving as reference,
then preselection is “efficient”, in that it yields essentially
optimal results for the dominant singular values.

Figure S-1 compares Si (grey) and S̃i (orange: moderate
or brown: severe preselection) for bond ` = L /2 of both
the least and most challenging models considered in this
work: (a,b) the free fermion chain of Fig. 3, and (c,d)
the KHH cylinder of Fig. S-5. Here, we consider the case
that D∗f has reached D∗max and is not grown further, and

hence choose D̃∗=D∗f δ (with δ = 0.1), so that D∗i = D∗f .

For (II) moderate preselection (D′∗ =D∗f /w
∗) the S̃i

(orange) and Si (grey) values coincide quite well in the
range where they are largest, and eventually drift apart
as they get smaller. Especially for the largest D̃∗=D∗f δ
(δ= 0.1) singular values, i.e. the ones that survive final
selection and are used for bond expansion, the agreement
is rather good (Figs. S-1 (b,d)). This is a very important
finding—it indicates that moderate preselection is efficient.
By contrast, (III) severe preselection (D′∗=0.1D∗f /w

∗),
shown only in Fig. S-1 (a,b), yields Si (brown) values
that differ substantially from their S̃i (grey) counterparts,
even in the range of largest values. Therefore, in this case
preselection is too severe to be very efficient.

(We note in passing that when using severe preselection,
the corresponding final selection involves almost no further
truncation, since D̂∗ (given by ' D′∗w∗ = 0.1D∗) is

almost equal to D̃∗ (given by D∗δ). For the present

example, we have D̂∗=63 and D̃∗=60.)

In Figs. S-1 (a,b), the length of the grey vs. orange lines
visually illustrates the main rationale for our CBE strat-

FIG. S-1. Comparison of singular values for three truncation
settings (I-III) defined in Sec. S-1 A: the singular values Si of
the tensor M full, obtained (I) without preselection (reference,

grey); and the singular values S̃i of the tensor M̂pr, obtained
using (II) moderate preselection (D′∗=D∗f /w

∗, orange) and
(III) severe preselection (D′∗=0.1D∗f /w

∗, brown), all followed

by final selection with D̃∗=0.1D∗f . They are all computed for
bond `=L /2 of (a,b) the free fermion chain of Fig. 3, and (c,d)
the KHH cylinder of Fig. S-5(d). (b,d) Subsets of the data
from (a,c), shown on linear scales, focusing on the range of the

largest D̃∗=D∗f δ singular values Si and S̃i (with δ=0.1). This
range contains all singular vectors comprising the truncated

complement Ãtr( ) obtained after final selection and used
for bond expansion. The singular values found with moderate
(orange) or no (grey) preselection agree rather well, but those
from severe preselection (brown) differ significantly from these.

egy: the number of Si values is generally very much larger
than needed for successful bond expansion, D

∗ � D̃∗.
Thus, the 2s full complement subspace (obtained by ex-
cluding the 1s variational space from the 2s variational
space), is likewise much larger than needed for energy
minimization—only a small subspace thereof really mat-
ters. CBE aims to identify parts of that small subspace;
shrewd selection offers a cheap way of doing so, yield-
ing a notable speedup when computing the truncated
complement.

C. Singular vectors

We next turn to a comparison of singular vectors to
further quantify the benefits of using (II) moderate rather
than (III) severe preselection, and of using final selection.

For the latter purpose, we consider a truncation scheme
(V) involving moderate preselection but no final selec-
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FIG. S-2. Comparison of weights (S3) with which reference
singular vectors Si from Atr

` ( ) are supported in truncated
spaces obtained with three truncation settings (II-IV) defined
in Sec. S-1 A: w̃i gives the weight of |Si〉 in span{|S̃j〉}, the

image of Ãtr
` ( ), computed through shrewd selection, using ei-

ther (II) moderate (orange dots) or (III) severe (brown crosses)
preselection; and ŵi gives the weight of |Si〉 in span{|Ŝj〉}, the

image of Âpr
` ( ), computed using (IV) moderate preselection

without final selection (pink circles). Both panels show the
same data, on (a) a linear and (b) a log scale.

tion: after the minimization of the cost function C2
(see Fig. 2(c)), we directly truncate Û Ŝ V̂ † ' û ŝ v̂†

from D̂∗ to D̃∗, and define the truncated complement
as Âtr

` = û ( ), with singular vectors |Ŝi〉.
To compare singular vectors we compute the weights

w̃i =
D̃∗∑

j=1

|〈S̃j |Si〉|2 =

i

i

, (S3a)

ŵi =
D̃∗∑

j=1

|〈Ŝj |Si〉|2 =

i

i

. (S3b)

Here, w̃i is the weight with which a singular vector
|Si〉 (ordered by size of corresponding singular value)
from the image of Atr

` ( ) is supported in the subspace

span{|S̃j〉}, the image of Ãtr
` ( ); and ŵi gives its weight

in span{|Ŝj〉}, the image of Âtr
` ( ). In less technical

terms, the weights characterize how well reference singu-
lar vectors can be represented in these truncated spaces.

These weights are shown in Fig. S-2 for the free fermion
data corresponding to Fig. S-1(a). For (II) moderate pre-
selection plus final selection (w̃i, orange dots), all weights
are close to one. Thus, this truncation scheme almost per-
fectly captures that part of the 2s subspace most relevant
for minimizing the GS energy. By contrast, for both (III)

FIG. S-3. Influence of preselection on CBE–DMRG conver-
gence rate, for a half-filled free-fermion chain (L = N = 20).
The GS energy is plotted as function of the number of half-
sweeps, ns, for three values of D′∗, used for preselection. We
start from a D∗i = 1 valence bond state, set δ = 0.1, increase
D∗ using α = 1.1 until D∗ = 300 is reached, and continue
sweeping with α = 1 thereafter.

severe preselection plus final selection (w̃i, brown crosses)
and (V) moderate preselection without final selection (ŵi,
pinc circles), most weights are significantly smaller than 1;
four are numerically zero. Thus, both these schemes dis-
card a significant part of the space relevant for minimizing
the GS energy.

D. Convergence rate per sweep

The weights obtained for severe preselection (D′∗ =
δD∗/w∗) in Fig. S-2 pose the question whether D′∗ can be
too small to give converged results. In this case, preselec-
tion would not only be inefficient, but actually unsuccess-
ful. To explore this, Fig. S-3 compares the CBE–DMRG
convergence rate for several choices of D′∗, correspond-
ing to (II) moderate (red), (III) severe (green), and (IV)
extreme (blue) preselection.

As expected, convergence slows down with smaller D′∗.
Remarkably, however, once convergence has been reached,
the converged results agree (even for D′∗ = 1, a truly
extreme choice!). In this sense, the preselection strat-
egy is robust—converged results don’t depend on D′∗.
Note, though, that the computation time does not de-
pend significantly on D′∗ (provided it is clearly smaller
than D∗). On the other hand, it obviously does depend
on the number of sweeps, and the time per sweep can be
very large for expensive models. Therefore, D′∗ should
not be chosen too small, to avoid a time-costly increase
in the number of sweeps.

To summarize: a bond expansion is efficient, yielding
a significant reduction in GS energy and therefore quick
convergence, if D′∗ is large enough that the “most im-
portant” states |Si〉, i.e. those with the largest singular
values Si, are well represented in the expanded space, i.e.
have weights w̃i ' 1.

However, even if D′∗ is so small that most of the im-
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portant states |Si〉 are represented with small weights,
a bond expansion can nevertheless be successful, in the
sense of adding some relevant new states, provided that
these weights are non-zero, w̃i 6= 0. The reason is that
the states |S̃i〉 added to A`( ) contain information about
the optimal states |Si〉 with finite w̃i, i.e. those |Si〉 are
not orthogonal to the expanded kept space. As long as
this information is available, subsequent 1s updates will
optimize the kept sector accordingly; the states |S̃i〉 just
offer a somewhat less optimal starting point for that than
the |Si〉.

Note that it is of utmost importance for successful
bond expansion that information on the most important
|Si〉 is included. Since only a small set of states is in
the end used for expansion, the most important states
must be prioritized; otherwise, inferior information is
included in the kept space, rendering the bond expansion
unsuccessful: Subsequent 1s updates may then optimize
towards a suboptimal kept sector, as the optimal one may
not be available to the 1s update, e.g. due to symmetry
constraints. The energy will still decrease due to the
unsuccessful bond expansion plus 1s update, but not as
much as if the correct information on the most important
|Si〉 is correctly included. The result will be a suboptimal
final state at the desired finite bond dimension D∗max, i.e.
we have wasted resources.

Fig. S-3 shows that CBE–DMRG correctly includes in-
formation on the most optimal states when expanding the
bond, independent of D′∗. Even with extreme preselection
(D′∗ = 1), it does not get stuck with some sub-optimal
state at D∗max = 300, but eventually converges (albeit
slowly) to the same GS as found with larger choices of
Dmax.

S-2. FERMIONIC MODELS ON CYLINDERS

In this section, we show that our CBE–DMRG methods
works well also for rather challenging fermionic models
on 10× 4 cylinders. We first show that for the Hubbard
model on a 10× 4 cylinder, we obtain results in line with
Ref. 26. Then, we show results for a Kondo-Heisenberg-
Holstein (KHH) model on a 10×4 cylinder, featuring huge
physical and MPO bond dimensions up to d∗[d]=16[32]
and w∗[w]=14[30], respectively. Our intention is to show
that CBE–DMRG is stable for models at the edge of what
is possible with current DMRG techniques, not to discuss
their rich physics.

FIG. S-4. Error in GS energy versus discarded weight for the
Hubbard model on a 10 × 4 cylinder. The reference energy
E0 = −27.8816942 is obtained by linear ξ-extrapolation to
ξ=0 (grey line) using the largest four D∗ values. D∗ values are
shown next to their corresponding data point. The horizontal
lines show the most accurate computations with 2s DMRG
and DMRG3S from Ref. 26, table I as reference values.

A. Hubbard model

The Hubbard model on a 10× 4 cylinder is described
by the Hamiltonian

HH = −
∑

σ=↑,↓

∑

〈`,`′〉

(
c†`σc`′σ + h.c.

)
+ U

∑

`

n`↑n`↓ .

(S4)

where ` = (x, y) is a 2D site index,
∑
〈`,`′〉 a sum over

nearest-neighbors, c†`σ are fermionic creation operators at

site ` with spin σ and n`σ = c†`σc`σ are the corresponding
number operators. Following Ref. 26, we choose U = 8,
and search for the GS in the sector with total filling
N = 36, i.e. 10% hole doping, and total spin S = 0.
We exploit U(1)ch ⊗ SU(2)sp charge and spin symmetries.
The MPO is implemented in real space, snaking around
the cylinder (in contrast to Ref. 26, were a hybrid-space
implementation was used).

Our CBE–DMRG results, shown in Fig. S-4 show nice
convergence with D∗, indicated by the linear ξ scaling
of the energy. We obtain comparable GS energies as in
Ref. 26, but for given D∗ reach slightly lower energies.
We attribute this difference to the different MPO imple-
mentations used (real-space vs. hybrid-space)[13, 39].

B. Kondo-Heisenberg-Holstein model

As an even more challenging application of CBE–
DMRG, we compute the GS of a Kondo-Heisenberg-
Holstein (KHH) model on a 10× 4 cylinder.

The KHH model consists of conduction electron, lo-
cal magnetic moment and Holstein-phonon degrees of
freedom, described by the Hamiltonian

HKHH = −
∑

σ=↑,↓

∑

〈`,`′〉

(
c†`σc`′σ + h.c.

)
(S5)
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FIG. S-5. Error in GS energy versus discarded weight for
the KHH model on a 10 × 4 cylinder, with (a) only Kondo
coupling, (b) Kondo and Heisenberg coupling, (c) Kondo and
Holstein coupling and (c) Kondo, Heisenberg and Holstein
coupling. Legends state our choices for JH and Nmax

ph , and
corresponding values of d∗[d] and w∗[w]. For each panel, E0

was obtained by linear ξ-extrapolation to ξ = 0 (grey line)
using the four largest D∗ values. The very largest D∗ is shown
next to its data point; D∗ changes by 1k between adjacent
data points.

+ 2JK

∑

`

S` · s` + JH

∑

〈`,`′〉
S` · S`′

+ ωph

∑

`

b†`b` + g
∑

`

(n`↑ + n`↓ − 1)
(
b†` + b`

)
.

We use the same notation for fermion operators c†`σ on a
cylinder as in Eq. (S4) for the Hubbard model. Moreover,

s` = 1
2

∑
ss′ c

†
`sσss′c`s′ is the conduction electron spin

operator, S` the spin operator of a spin 1
2 local moment,

and b†` a phonon creation operator, all for site `.

To deal with the infinite local phonon Hilbert space, we
restrict the maximum number of local phonon excitations
to Nmax

ph (specified below) in our DMRG calculations.

The KHH model is relevant for heavy-fermion materials,
which consist of itinerant conduction electrons, hybridiz-

ing with localized f orbitals [40]. At low energies, only
the spin degree of freedom of the f electrons remain,
leading to a Kondo-Heisenberg (KH) model, which is
the KHH model at Nmax

ph = 0. While the inclusion of
optical phonon degrees of freedom, which leads to the
KHH model, is rather scarce in the literature, there is
experimental data available suggesting these may play a
role in heavy-fermion physics [41].

Heavy-fermion materials feature many interesting phe-
nomena. One of the not so well understood ones is the
so-called Kondo breakdown quantum critical point. When
the system is tuned across this critical point, the FS
volume abruptly changes [42], leading to a violation of
Luttinger’s theorem [43] and strange metal behavior at
finite temperatures. Here, our goal is just to showcase
the ability of CBE–DMRG to deal with the KHH model;
we leave the discussion of its rich physics to future work.

In our CBE–DMRG calculations, we use Kondo-
coupling JK = 2.5, Holstein-coupling g = 0.5 to the
phonons and optical phonon frequency ωph = 0.5. Two
different values for Nmax

ph ∈ {0, 3} and the Heisenberg
coupling JH ∈ {0, 0.5} are considered, respectively.

We performed GS searches for N=L (1+ 1
4 )=50 and

S=0, i.e. at 25% electron doping. Figure S-5 shows the
energy error vs. ξ for four parameter combinations (see
legends). The linear ξ-dependence of E demonstrates
proper convergence of CBE–DMRG. Very large D∗ values
are achievable despite the rather huge values of d and w.
This is remarkable especially for JH =0.5 and Nmax

ph =3
(Fig. S-5(d)), where 2s schemes become excessively costly.

S-3. PSEUDOCODE FOR SHREWD SELECTION

Below, we provide a pseudocode for computing the trun-
cated complement during CBE using shrewd selection.
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Algorithm 1 Computation of truncated complement using shrewd selection

Input: 2s Hamiltonian H2s
` = L`−1W`W`+1R`+2, 2s wavefunction ψ2s = A`Λ`B`+1 in bond-canonical form, preselection

bond-dimension D′, truncated complement dimension D̃

Output: truncated complement Ãtr
` ( )

1: function getRorth(R`+2,W`+1,B`+1,Λ`)
2: Compute Rtmp

`+1 = Λ`B`+1W`+1R`+2

3: Compute Rorth
`+1 = Rtmp

`+1 −Rtmp
`+1B

†
`+1B`+1

4: return Rorth
`+1

5: end function
6: (Fig. 2(a)): SVD `-bond of Rorth

`+1 = USV †

7: function getLorth(L`−1,W`,A`,U ,S)
8: Compute Ltmp

` = L`−1W`US

9: Compute Lorth
` = Ltmp

` −A`A
†
`L

tmp
`

10: return Lorth
`

11: end function
12: (Fig. 2(b)): SVD Lorth

` = U ′S′V ′† and truncate all except the largest D′ singular values in S′: U ′S′V ′†
trunc→ u′s′v′†

13: (Fig. 2(c)): Redirect the MPO-leg of u′s′ and perform an SVD on its combined MPO- and `-bond, u′s′ = Û ŜV̂ †. Truncate

all singular values in Ŝ which are numerically zero to ensure A†`Û = 0. . warning: A†`Û = 0 is crucial and must be ensured!

14: (Optional): safety orthogonalization of Û by SVD on Û −A`A
†
`Û plus truncation of small singular values.

15: Assign Âpr
` = Û ( )

16: function getCorth(L`−1,W`,W`+1,R`+2,A`,Λ`,B`+1,Âpr
` )

17: Compute Lpr
` = (Âpr

` )†L`−1W`A`

18: Compute Ctmp
`+1 = Lpr

` Λ`B`+1W`+1R`+2

19: Compute Corth
`+1 = Ctmp

`+1 − Ctmp
`+1B

†
`+1B`+1

20: return Corth
`+1

21: end function
22: (Fig. 2(d)): SVD Corth

`+1 = Ũ S̃ Ṽ † and truncate all except the largest D̃ singular values: Ũ S̃ Ṽ †
trunc→ ũ s̃ ṽ†

23: Compute Ãtr
` = Âpr

` ũ ( )

TABLE I. Pseudocode for computing the truncated complement Ãtr
` using shrewd selection.
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We present a controlled bond expansion (CBE) approach to simulate quantum dynamics based on
the time-dependent variational principle (TDVP) for matrix product states. Our method alleviates
the numerical difficulties of the standard, fixed-rank one-site TDVP integrator by increasing bond
dimensions on the fly to reduce the projection error. This is achieved in an economical, local
fashion, requiring only minor modifications of standard one-site TDVP implementations. We il-
lustrate the performance of CBE–TDVP with several numerical examples on finite quantum lattices.

DOI:

Introduction.— The time-dependent variational prin-
ciple (TDVP) [1–4] is a standard tool for time-evolving
the Schrödinger equation on a constrained manifold
parametrizing the wave function. Tensor networks (TN)
offer efficient parametrizations based on low-rank approx-
imations [5–12]. Their combination, TN–TDVP, holds
much potential for studying the dynamics of quantum
lattice models [13–32], quantum field theories [33, 34],
and quantum chemistry problems [35–40].

Here, we focus on matrix product states (MPSs), an
elementary class of TN states. Their time evolution, pio-
neered in Refs. [41–43], can be treated using a variety of
methods, reviewed in Refs. [8, 44]. Among these, MPS–
TDVP [15, 18–22], which uses Lie-Trotter decomposi-
tion to integrate a train of tensors sequentially, arguably
gives the best results regarding both physical accuracy
and performance [44]: it (i) is applicable for long-ranged
Hamiltonians, and its one-site (1s) version (1TDVP) en-
sures (ii) unitary time evolution, (iii) energy conservation
[15, 45] and (iv) numerical stability [18, 21, 23].

A drawback of 1TDVP, emphasized in Refs. 46–48, is
use of a fixed -rank integration scheme. This offers no
way of dynamically adjusting the MPS rank (or bond
dimension), as needed to track the entanglement growth
typically incurred during MPS time evolution. For this,
a rank-adaptive two-site (2s) TDVP (2TDVP) algorithm
can be used [22], but it has much higher computational
costs and in practice does not ensure properties (ii-iii).

To remedy this drawback, we introduce a rank-adap-
tive integrator for 1TDVP that is more efficient than pre-
vious ones [49–52]. It ensures properties (i-iv) at the
same numerical costs as 1TDVP, with marginal over-
head. Our key idea is to control the TDVP projection
error [22, 49, 53] by adjusting MPS ranks on the fly via
the controlled bond expansion (CBE) scheme of Ref. [54].
CBE finds and adds subspaces missed by 1s schemes but
containing significant weight from HΨ. When used for
DMRG ground state searches, CBE yields 2s accuracy
with faster convergence per sweep, at 1s costs [54]. CBE–

TDVP likewise comes at essentially 1s costs.
MPS basics.— Let us recall some MPS basics, adopting

the notation of Refs. 54 and 55. For an L -site system an
open boundary MPS wave function Ψ having dimensions
d for physical sites and D for virtual bonds can always
be written in site-canonical form,

Ψ =
1A 2A 1−A C +1B LBLB

DD d

1−
. (1)

The tensors C` ( ), A` ( ) and B` ( ) are variational pa-
rameters. A` and B` are left and right-sided isometries,
respectively, projectingDd-dimensional parent (P) spaces
to D-dimensional kept (K) images spaces; they obey

= == =
�A

�
∗A

�
∗B

�B

,=�A�
†A =

�

†B
�

B
�
K

1−�
K . (2)

The gauge relations C` = A`Λ` = Λ`−1B` ensure that
Eq. (1) remains unchanged when moving the orthogonal-
ity center C` from one site to another.

The Hamiltonian can likewise be expressed as a matrix
product operator (MPO) with virtual bond dimension w,

H = LWLW1W 2W �W

d dw
1−

. (3)

Its projection to the effective local state spaces associated
with site ` or bond ` yields effective one-site or zero-site
Hamiltonians, respectively, computable recursively via

H1s
` =

� +1�1−� � +1�1−�

D Dd

1

=
L

, (4a)

Hb
` =

� +1�

D D

=

� +1�1−�
=

� +1� +2�

. (4b)

These act on 1s or bond representations of the wave func-
tion, ψ1s

` =C`( ) or ψb
` =Λ`( ), respectively.

Let A` ( ) and B` ( ) be isometries that are orthogo-
nal complements of A` and B`, with discarded (D) image
spaces of dimension D=D(d−1), obeying orthonormality
and completeness relations complementing Eq. (2) [54]:
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, (5a)

,= =+
� � �� � �

= =+
�
P

1−�
P . (5b)

Tangent space projector.— Next, we recapitulate the
TDVP strategy. It aims to solve the Schrödinger equa-
tion, iΨ̇ = HΨ, constrained to the manifold M of all
MPSs of the form (1), with fixed bond dimensions. Since
HΨ typically has larger bond dimensions than Ψ and
hence does not lie in M, the TDVP aims to minimize
‖iΨ̇−HΨ‖ within M. This leads to

iΨ̇(t) = P1s(t)HΨ(t), (6)

where P1s(t) is the projector onto the tangent space of
M at Ψ(t), i.e. the space of all 1s variations of Ψ(t):

P1s = −∑ ∑L 1−L

=1′� ′� ′�=1′�1 1L L

(7)

= + +
∑ ∑L
=1′� ′� +1=′�1 L1 L ′�1 L�̄ �̄

�̄
.

The form in the first line was derived by Lubich, Oseledts,
and Vandereycken [21] (Theorem 3.1), and transcribed
into MPS notation in Ref. [22]. For further explanations
of its form, see Refs. [55, 56]. The second line, valid for
any ¯̀=1, . . . ,L−1, follows via Eq. (5b); Eq. (5a) implies
that all its terms conveniently are mutually orthogonal,
and that the projector property (P1s)2 = P1s holds [55].

One-site TDVP.— The 1TDVP algorithm [21, 22] rep-
resents Eq. (6) by 2L−1 coupled equations, iĊ`=H1s

` C`
and iΛ̇` = −Hb

` Λ`, stemming, respectively, from the L

single-site and L−1 bond projectors of P1s (Eq. (7), first
line). Evoking a Lie-Trotter decomposition, they are then
decoupled and for each time step solved sequentially, for
C` or Λ` (with all other tensors fixed). For a time step
from t to t′= t+δ one repeatedly performs four substeps,
e.g. sweeping right to left: (1) Integrate iĊ`+1 =H1s

`+1C`+1

from t to t′; (2) QR factorize C`+1(t′) = Λ`(t
′)B`+1(t′);

(3) integrate iΛ̇` =−Hb
` Λ` from t′ to t; and (4) update

A`(t)C`+1(t)→ C`(t)B`+1(t′), with C`(t) = A`(t)Λ`(t).
1TDVP has two leading errors. One is the Lie-Trotter

decomposition error. It can be reduced by higher-order
integration schemes [45, 57]; we use a third-order inte-
grator with error O(δ3) [58]. The second error is the
projection error from projecting the Schrödinger equa-
tion into the tangent space of M at Ψ(t), quantified by
∆P = ‖(1−P1s)HΨ(t)‖2. It can be reduced brute force
by increasing the bond dimension, as happens when using
2TDVP [22, 44, 47], or through global subspace expan-
sion [50]. Here, we propose a local approach, similar in
spirit to that of Ref. [52], but more efficient, with 1s costs,
and without stochastic ingredients, in contrast to [40].

Controlled bond expansion.— Our key idea is to use
CBE to reduce the 2s contribution in ∆P , given by ∆2⊥

P =∥∥P2⊥HΨ
∥∥2

, where P2⊥ = P2s(1−P1s). Here, P2s is the
projector onto 2s variations of Ψ, and P2⊥ its component

orthogonal to the tangent space projector (see also [55]):

P2s =
1 L=1 1 L

L 1−

=2

L 1−
− , (8a)

P2⊥ =
∑1−L

=1� �1 L

, ∆2⊥
P =

� +1�
=1�

∑1−L 2

= ,. (8b)

Now note that ∆2⊥
P is equal to ∆2⊥

E = ‖P2⊥(H−E)Ψ‖2,
the 2s contribution to the energy variance [53–55]. In
Ref. [54], discussing ground state searches via CBE–
DMRG, we showed how to minimize ∆2⊥

E at 1s costs:
each bond ` can be expanded in such a manner that the
added subspace carries significant weight from P2⊥HΨ.
This expansion removes that subspace from the image
of P2⊥, thus reducing ∆2⊥

E significantly. Consider, e.g.,

a right-to-left sweep and let Ãtr
` ( ) be a truncation of

A` ( ) having an image spanning such a subspace, of

dimension D̃, say. To expand bond ` from D to D + D̃,
we replace A`( ) by Aex

` ( ), C`+1( ) by Cex
`+1( ) and

H1s
`+1 by H1s,ex

`+1 , with expanded tensors defined as

⊕ =
D DD D̃ D

d d d

�
exA�A �

trÃ
=

D
d +1�

+1�
exC +1�C

)D̃+D(
, (9)

H
(1,ex)
`+1 =

+1�

=
Dd

)δ(1+D

+1�

D̃+D
. (10)

Note that Ψ remains unchanged, Aex
` C

ex
`+1 = A`C`+1.

Similarly, the projection error ∆2⊥
P can be minimized

through a suitable choice of the truncated complement
Ãtr
` ( ) [54]. We find Ãtr

` using the so-called shrewd selec-
tion strategy of Ref. [54] (Figs. 1 and 2 there); it avoids
computation of , and has 1s costs regarding CPU
and memory, thus becoming increasingly advantageous
for large D and d. Shrewd selection involves two trunca-
tions (D→D′ and D̂→D̃ in Ref. [54]). Here, we choose
these to respect singular value thresholds of ε′ = 10−4

and ε̃= 10−6, respectively; empirically, these yield good
results in the benchmark studies presented below.

CBE–TDVP.— It is straightforward to incorporate
CBE into the 1TDVP algorithm: simply expand each
bond ` from D→ D+D̃ before time-evolving it. Con-
cretely, when sweeping right-to-left, we add step (0): ex-
pand A`, C`+1, H

1s
`+1 → Aex

` , C
ex
`+1, H

1s,ex
`+1 following Eq. (9)

(and by implication also Λ`, H
b
` → Λex

` , H
b,ex
` ). The

other steps remain as before, except that in (2) we re-
place the QR factorization by an SVD. This allows us
to reduce (trim) the bond dimension from D + D̃ to a
final value Df , as needed in two situations [49, 51, 59]:
First, while standard 1TDVP requires keeping and even
padding small singular values in order to retain a fixed
bond dimension [13, 18], that is not necessary here. In-
stead, for bond trimming, we discard small singular val-
ues below an empirically determined threshold ε = 10−12.
This keeps the MPS rank as low as possible, without im-
pacting the accuracy [49]. Second, once D + D̃ exceeds
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FIG. 1. 100-site XX spin chain: Time evolution of a do-
main wall, computed with time step δ = 0.05 and U(1) spin
symmetry. (a) Local magnetization profile Sz` (t). (b) Entan-
glement entropy EE(t) between the left and the right half of
the chain. (c) Bond dimension Df(t) and its pre-trimming

expansion D̃(t) per time step, for Dmax = 120. (d,e) Error
analysis: magnetization δSz(t) (solid line),i.e., the maximum
deviation (over `) of Sz` (t) from the exact result, , energy
δE(t) (dashed line), and discarded weight ξ(t) (dotted line)
for Dmax =40 (red), 80 (blue) and 120 (black), computed with
(d) CBE–TDVP or (e) 2TDVP. Remarkably, the errors are
comparable in size, although CBE–TDVP has much smaller
computational costs.

Dmax, we trim it back down to Dmax aiming to limit com-
putational costs. The trimming error is characterized by
its discarded weight, ξ(t), which we either control or mon-
itor. The TDVP properties of (ii) unitary evolution and
(iii) energy conservation [51] hold to within order ξ(t).

Results.— We now benchmark CBE–TDVP for three
spin models, then illustrate its performance for large d us-
ing the Peierls–Hubbard model with d = 36. Our bench-
mark comparisons track the time evolution of the entan-
glement entropy EE(t) between the left and right halves

of a chain, the bond dimensions Df(t) and D̃(t), the dis-
carded weight ξ(t), the deviations from exact results of
spins expectation values, δS(t), and the energy change,
δE(t), which should vanish for unitary time evolution.

XX model: domain wall motion.— We consider a spin
chain with Hamiltonian HXX =

∑
`(S

x
` S

x
`+1 + Sy` S

y
`+1).

We compute the time evolution of the local magnetiza-
tion profile Sz` (t) = 〈Ψ(t)|Ŝz` |Ψ(t)〉, initialized with a
sharp domain wall, |Ψ(0)〉 = |↑↑ . . .↑↓↓ . . .↓〉. For com-
parison, the analytical solution for L → ∞ reads [60]

Sz` (t) = −1/2
∑`−1
n=1−` Jn(t)2, for ` ≥ 1 (right half) and

Sz` = −Sz1−` otherwise, where Jn(t) is the Bessel func-
tion of the first kind. The domain wall spreads with
time [Fig. 1(a)], entailing a steady growth of the entan-
glement entropy (EE) between the left and right halves

of the spin chain [Fig. 1(b)]. D(t) and D̃(t) [Fig. 1(c)]

start from 1 and 0. Initially, D̃ remains remarkably small
(. 10), while Df increases in steps of D̃ until reaching

Dmax. Thereafter D̃ increases noticeably, but remains
below Dmax for all times shown here. This reflects CBE
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FIG. 2. 100-site one-axis twisting model: Time evolution of
an initially x-polarized spin state, computed using δ = 0.01
and Z2 spin symmetry. (a) Total spin Stot

x (t), (b) entan-
glement entropy, and (c) bond dimensions. (d) Error anal-
ysis: error in total spin density δstotx (t) (solid line), energy
δE(t) (dashed line), and discarded weight ξ(t) (dotted line),
for Dmax = 500.

frugality—bonds are expanded only as much as needed.

Figure 1(d) illustrates the effects of changingDmax, fol-
lowing the error analysis of Ref. 61. The leading error is
quantified by δSz(t) (solid line), the maximum deviation
(over `) of Sz` (t) from the exact result. Comparing the
data for Dmax = 40, 80, 120, we observe a finite bond di-
mension effect: The error δSz increases appreciably once
the discarded weight ξ (dotted line) becomes larger than
10−11. By contrast, the energy change (dashed line) stays
small irrespective of the choice of Dmax. (For more dis-
cussion of error accumulation, see Ref. [56].) Figure 1(e)
shows a corresponding error analysis for 2TDVP, com-
puted using D=Dmax; its errors are comparable to those
of CBE–TDVP, though the latter is much cheaper.

One-axis twisting (OAT) model: quantum revivals.—
The OAT model has a very simple Hamiltonian, HOAT =
(
∑
` S

z
` )2/2, but its long-range interactions are a chal-

lenge for tensor network methods using real-space
parametrizations. We study the evolution of Stot

x (t) =

〈Ψ(t)|∑` Ŝ
x
` |Ψ(t)〉, for an initial |Ψ(0)〉 having all spins

x-polarized (an MPS with D = 1). The exact result,
Stot
x (t) = (L/2)cosL−1(t/2), exhibits periodic collapses

and revivals [62]. Yang and White [50] have studied
the short-time dynamics using TDVP with global sub-
space expansion, reaching times t ≤ 0.5. CBE–TDVP is
numerically stable for much longer times [Fig. 2(a)]; it
readily reached t = 12π, completing three cycles. (More
would have been possible with linear increase in com-
putation time.) This stability is remarkable, since the
rapid initial growth of the entanglement entropy, the
finite time-step size, and the limited bond dimension
[Fig. 2(b,c)] cause some inaccuracies, which remain vis-
ible throughout [Fig. 2(d)]. However, such numerical
noise evidently does not accumulate over time and does
not spoil the long-time dynamics: CBE–TDVP retains
the treasured properties (i-iv) of 1TDVP, up to the trun-
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FIG. 3. 40-site SU(2) Haldane-Shastry model: (a-d) Time
evolution of a spin excitation, computed with δ = 0.05 and
SU(2) spin symmetry. (a1,a2) Real and imaginary parts of
C(x, t), (b) entanglement entropy, and (c) bond dimensions.
(d) Error analysis: δC(t), the maximum of δC(x, t) over x
(solid line), energy δE(t) (dashed line) and discarded weight
ξ(t) (dotted line), for Dmax = 500. (f) Normalized spec-
tral function S(k, ω)/S(π, 0), obtained using tmax = 60. (g)
S(π, ω)/S(π, 0), obtained using tmax = 20, 40, 60; red lines
indicate exact peak heights.

cation tolerance governed by ξ.
SU(2) Haldane-Shastry model: spectral function.—

Our final benchmark example is the SU(2) Haldane-
Shastry model on a ring of length L , with Hamiltonian

HHS = J
∑

`<`′≤L

π2S` · S`′
L 2sin2 π

L
(`− `′) . (11)

Its ground state correlator, C(x, t)=〈Ψ0|Ŝx(t)Ŝ0(0)|Ψ0〉,
is related by discrete Fourier transform to its spectral
function, S(k, ω), given by (0 < `′ < ` ≤ L /2) [63, 64]

S
(

2(`+ `′) π
L
, π

2

L2 ((`+ `′)L − 2(`2 + `′
2
) + `− `′)

)
(12)

=
2`− 2`′ − 1

(2`− 1)(L − 2`′ − 1)

`−1∏

`=`′+1

2`(L − 2`)

(2`− 1)(L − 2`− 1)
.

Figures 3(a,b) show the real and the imaginary parts
of C(x, t), computed using CBE–TDVP. For early times
(t ≤ 20), the local excitation introduced at ` = 0, t = 0
spreads ballistically, as reported previously [28, 65, 66].
Once the counter-propagating wavefronts meet on the
ring, an interference pattern emerges. Our numerical re-
sults remain accurate throughout, as shown by the error
analysis in Fig. 3(e). Figure 3(f) shows the corresponding
spectral function S(k, ω), obtained by discrete Fourier

FIG. 4. Peierls–Hubbard model: Real-space scattering of two
electron wave packets, for U=10 and ωph =3, computed with
δ = 0.05, nph

max == 8 and U(1) spin symmetry. (a,b) Spin
magnetic moment Sz(x, t) for g = 0 and g = 1. (c) Phonon
density nph(x, t), (d) bond dimensions, and (e) error analysis:
energy δE(t) (dashed line) and discarded weight ξ(t) (dotted
line), all computed for g=1, with Dmax = 500.

transform of C(x, t) using a maximum simulation time
of tmax. Figure 3(g) shows a cut along k=π: peaks can
be well resolved by increasing tmax, with relative heights
in excellent agreement with the exact Eq. (12).

Peierls–Hubbard model: scattering dynamics.— Fi-
nally, we consider the scattering dynamics of interact-
ing electrons coupled to phonons. This interaction leads
to non-trivial low-energy physics involving polarons [67–
79]; the numerical study of polaron dynamics is currently
attracting increasing attention [69, 80–84]. Here, we con-
sider the 1-dimensional Peierls–Hubbard model,

HPH =
∑

`

Un`↑n`↓ +
∑

`

ωphb
†
`b` (13)

+
∑

`σ

(c†`σc`+1σ+h.c.)
(
−t+ b†`+b`−b

†
`+1−b`+1

)
.

Spinful electrons with onsite interaction strength U and
hopping amplitude t = 1, and local phonons with fre-
quency ωph, are coupled with strength g through a Peierls
term modulating the electron hopping.

We consider two localized wave packets with opposite
spins, average momenta k = ±π/2 and width W [85, 86],

initialized as |Ψ±〉 =
∑
`Ae

−(
x`∓x0

W )2e∓ikx`c†`± |0〉, where
|0〉 describes an empty lattice. Without electron-phonon
coupling [g = 0, Fig. 4(a)], there is little dispersion ef-
fect through the time of flight, and the strong interac-
tion causes an elastic collision. By contrast, for a sizable
coupling in the nonperturbative regime [77, 79] [g = 1,
Figs. 4(b-e)], phonons are excited by the electron motion
[Fig. 4(c)]. After the two electrons have collided, they
show a tendency to remain close to each other (though
a finite distance apart, since U is large) [Fig. 4(b)]; they
thus seem to form a bi-polaron, stabilized by a significant
phonon density in the central region [Fig. 4(c)].

We limited the phonon occupancy to nph
max =8 per site.

Then, d = 4(nph
max+1)=36, and D=35Df is so large that

2TDVP would be utterly unfeasible. By contrast, CBE–
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TDVP requires a comparatively small bond expansion of
only D̃(t) ≤ 4Dmax for the times shown; after that, the
discarded weight ξ(t) becomes substantial [Figs. 4(d,e)].

Conclusions and outlook.— Among the schemes for
MPS time evolution, 1TDVP has various advantages (see
introduction), but its projection error is uncontrolled.
2TDVP remedies this, albeit at 2s costs, O(d2wD3),
and is able to simulate dynamics reliably [44]. CBE–
TDVP at 1s costs, O(dwD3) achieves the same accu-
racy as 2TDVP. Moreover, CBE–TDVP comes with sig-
nificantly slower growth of bond dimensions D in time,
which speeds up the calculations further (see Ref. [56]).

Our benchmark tests of CBE–TDVP, on three exactly
solvable spin models (two with long-range interactions),
demonstrate its reliability. Our results on the Peierls–
Hubbard model suggest that bi-polarons form during
electron scattering—an effect not previously explored nu-
merically. This illustrates the potential of CBE–TDVP
for tracking complex dynamics in computationally very
challenging models.

For applications involving the time evolution of MPSs
defined on “doubled” local state spaces, with effective
local bond dimensions deff = d2, the cost reduction of
CBE–TDVP vs. 2TDVP, O(d2wD3) vs. O(d4wD3), will
be particularly dramatic. Examples are finite tempera-
ture properties, treated by purification of the density ma-
trix [87] or dissipation-assisted operator evolution [88];
and the dynamics of open quantum systems [89], de-
scribed by Liouville evolution of the density matrix [90–
92] or by an influence matrix approach [93].
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S-1. SINGLE SITE (FIXED RANK) TANGENT
SPACE PROJECTOR

The structure (7) of the tangent space projector P1s

can be motivated by the following short-cut argument
(equivalent to invoking gauge invariance [21, 22]). If Ψ
is represented as an MPS, then its tangent vectors δΨ
under the fixed-rank approximation can be expressed as
a sum of MPSs each containing one derivative of a local
tensor. This representation is not unique, but its gauge
redundancy can be easily removed. To do so, let us first
consider the variation of MPS in Eq. (1) on a single bond
`, i.e., A`C`+1 = A`Λ`B`+1, while the other tensors re-
main fixed (and hence are not depicted below). Its first
order variation then gives us δA`Λ`B`+1 + A`δΛ`B`+1 +
A`Λ`δB`+1. By further rewriting δA`Λ` as A`Λ

′
` +A`Λ

′
`

and Λ`δB`+1 as Λ′′`B`+1+Λ′′`B`+1, we obtain the following
unique decomposition,

+ +=
�Λ +1�B�A +1�B +1�B�A �A�A �

′
Λ �Λ̃ �

′′
Λ +1�B

, (S1)

with Λ̃` = Λ′` + δΛ` + Λ′′` . The three terms on the right
are mutually orthogonal to each other. Each of them
belongs to the image space of one of the following three
orthogonal projectors:

, , ; (S2)

their sum is a tangent space projector for A`Λ`B`+1. Re-
peating the same argument for all the bonds, while avoid-
ing double counting, i.e., including every term only once,
we readily obtain P1s given by the second line of Eq. (7).

Therefore, given an MPS of the form (1), P1s is indeed
the orthogonal projector onto its tangent space under
the fixed-rank approximation. For real-time evolution,
applying the Hamiltonian to |Ψ〉 leads the state out of
its tangent space. In the 1TDVP scheme, H |Ψ〉 is ap-
proximated by P1sH |Ψ〉, its orthogonal projection onto
the tangent space, leading to Eq. (6).

S-2. ANALYSIS OF CBE-TDVP ERROR
PROPAGATION

The TDVP time evolution of an MPS under the fixed-
rank approximation is unitary, with energy conservation
if the Hamiltonian is time-independent. Expanding the

tangent space does not spoil these desirable properties,
provided that no truncations are performed. However,
then the bond dimension would keep growing with time,
which is not practical for studies of long-time dynamics.

With our CBE approach, we instead restrict the bond
dimension growth by bond trimming using ε = 10−12,
and also stopping the increase of Df once it has reached
a specified maximal value Dmax. Due to these trunca-
tions, the desirable TDVP properties are no longer sat-
isfied exactly. However, for each time step they do hold
within the truncation error, as shown by Ceruti, Kusch,
and Lubich [51]. Thus, the time evolution per time step
is almost unitary. Nevertheless, errors can accumulate
with time, hence it is unclear a priori to what extent the
desirable TDVP properties survive over long times.

To investigate this, we revisit our first benchmark ex-
ample for the domain wall motion of the XX model. We
use CBE–TDVP (while exploiting U(1) spin symmetry)
to compute the forward-backward fidelity [Fig. S-1(a)]

F (t̄) = |〈Ψ−(t̄)|Ψ+(t)〉|2 , t̄= tmax−t ∈ [0, tmax] . (S3)

Here, |Ψ+(t)〉 = e−iHt |Ψ(0)〉 is obtained through for-
ward evolution for time t, and |Ψ−(t̄)〉=eiHt̄ |Ψ+(tmax)〉
through forward evolution until time t= tmax, then back-
evolution for t̄= tmax−t to get back to time t. The de-
viation of the fidelity from unity, δF (t̄)=1−F (t̄), equals
zero for unitary evolution; increases with t̄ if time evo-
lution is computed using truncations; and tends to 1 for
t̄→ tmax if truncations are too severe.

Figure 1(b) shows the back-evolution of the domain
wall described by |Ψ−(t̄)〉 as t̄ increases from 0 to tmax =
40, where both |Ψ+(t)〉 and |Ψ−(t̄)〉 were computed us-
ing CBE–TDVP with the truncation parameters stated
in the main text, namely ε̃= 10−6 and Dmax = 120. The
corresponding δF (t̄) (Fig. 1(d), black dashes) shows ini-
tial transient growth, but then saturates at a remarkably
small plateau value of 6.7 × 10−5. Moreover, the cor-
responding bond expansion per update, D̃(t̄) (Fig. 1(e),
black dots), increases only fairly slowly. For these trun-
cation settings, the CBE–TDVP errors are thus clearly
under good control and do not accumulate rapidly, so
that long-time evolution can be computed accurately.

The fidelity becomes worse (δF (t̄) increases) if the
singular-value threshold for bond expansion, ε̃, is raised
(Fig. 1(d), dashed lines). Nevertheless, even for ε̃ as large
as 10−2 we find long-time plateau behavior for δF (t̄), im-
plying that the errors remain controlled. This illustrates
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FIG. S-1. (a) Forward-backward time evolution for the com-
putation of F (t). (b,c) Back-evolution of the domain wall,
described by |Ψ−(t̄)〉, computed using (b) CBE–TDVP and
(c) 1TDVP. (d) Time evolution of δF (t̄) = 1−F (t̄), computed
via 1TDVP with D = 120 (dash-dotted line), and via CBE–
TDVP using three values of ε̃, and either with Dmax = 120
(dashed lines) or Dmax =∞ (solid lines). (e) Time evolution
of the corresponding bond dimensions Df(t̄) (solid lines) and

D̃(t̄) (dots). (The solid green curve shows Df/5.)

the robustness of CBE–TDVP. The plateau value can
be decreased by increasing Dmax, but the reduction be-
comes significant only if ε̃ is sufficiently small. Even for
Dmax =∞ (Fig. 1(d), solid lines) the plateau reduction
relative toDmax =120 is modest, whereas the correspond-
ing growth in Df (Fig. 1(e), solid lines) becomes so rapid
that this setting is not recommended in practice.

Finally, Figs. 1(c) and 1(d) (dash-dotted, purple line)
also show 1TDVP results, computed with D = 120: the
domain wall fails to recontract to a point, and the fidelity
reaches zero (δF (t̄) reaches 1). This occurs even though
1TDVP uses no truncations besides the tangent space
projection, and hence yields unitary time evolution. This
poor performance illustrates a key limitation of 1TDVP
when exploiting symmetries (as here): time evolution in-
volves transitions to sectors having quantum numbers not
yet present, but 1TDVP cannot include these, due to the
fixed-rank nature of its tangent space projection. CBE–
TDVP by construction lifts this restriction.

S-3. COMPARISON OF CPU TIME FOR
CBE–TDVP AND 2TDVP

In this section, we compare the CPU time for CBE–
TDVP and 2TDVP. As a demonstration, we use the one-
axis twisting (OAT) model discussed in Results in the
main text. All CPU time measurements were done on a
single core of an Intel Core i7-9750H processor.

First, we compare the early-time behavior of CBE–
TDVP and 2TDVP. From t = 0 to 1.5, both methods
yield good accuracy as shown in Fig. S-2(a). The CPU
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FIG. S-2. 60-site one-axis twisting model for spin S = 1/2:
Time evolution of an initially x-polarized spin state, com-
puted using δ = 0.01, Dmax = 500, and Z2 spin symmetry.
(a) Total spin Stot

x (t) for CBE–TDVP (blue), 2TDVP (red)
and the exact solution (black). (b) CPU time for CBE-TDVP
(blue) and 2TDVP (red). (c,d) Color scale plot of the bond
dimension as a function of time for all MPS bonds, for (c)
2TDVP and (d) CBE–TDVP.

time spent to achieve this, however, is quite different. In
Fig. S-2(b), we see that while the 2TDVP takes about
two days, CBE–TDVP accomplishes the same time span
overnight.

The main reason for this difference does not lie in the
1s vs. 2s scaling of CBE–TDVP vs. 2TDVP (discussed
below), because d = 2 (for S = 1/2) is small, and CBE
involves some algorithmic overhead for determining the
truncated complement Ãtr

` ( ). Instead, the difference
reflects the fact that the growth in MPS bond dimen-
sion D(t) with time is much slower for CBE-TDVP than
2TDVP. This implies dramatic cost savings, since both
methods have time complexity proportional to D3. Fig-
ure S-2(c,d) show the time evolution of bond dimensions
for all MPS bonds for CBE–TDVP and 2TDVP respec-
tively. For 2TDVP [Fig. S-2(c)], the bond dimensions
grow almost exponentially and quickly saturate to their
specified maximal value, here Dmax = 500. This sat-
uration is reflected by the early onset of linear growth
in the CPU time in Fig. S-2(b). By contrast, the bond
dimensions of CBE–TDVP show a much slower growth
[Fig. S-2(d)], yielding a strong reduction in CPU time
compared to 2TDVP.

Second, we demonstrate that when D is fixed, the time
complexity of CBE–TDVP vs. 2TDVP scales as d vs.
d2, implying 1s vs. 2s scaling. Figure S-3 shows this by
displaying the CPU time per sweep for the OAT model
for several different values of the spin S, with the MPS
bond dimension fixed at Dmax = 500.
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Any matrix product state |Ψ〉 has a set of associated kept and discarded spaces, needed for the
description of |Ψ〉, and changes thereof, respectively. These induce a partition of the full Hilbert
space of the system into mutually orthogonal spaces of irreducible n-site variations of |Ψ〉. Here,
we introduce a convenient projector formalism and diagrammatic notation to characterize these
n-site spaces explicitly. This greatly facilitates the formulation of MPS algorithms that explicitly or
implicitly employ discarded spaces. As an illustration, we derive an explicit expression for the n-site
energy variance and evaluate it numerically for a model with long-range hopping. We also describe
an efficient algorithm for computing low-lying n-site excitations above a finite MPS ground state.

DOI:

I. INTRODUCTION

Matrix product states (MPS) are widely used for the
numerical description of quantum systems defined on
one- or two-dimensional lattices. Well-known MPS-based
algorithms include ground state searches and time evo-
lution using the density matrix renormalization group
(DMRG and tDMRG) [1–6], time-evolving block decima-
tion (TEBD) methods [7–9], or the time-dependent varia-
tional principle (TDVP) [10–14]; and the computation of
spectral information using the numerical renormalization
group (NRG) [15–17], DMRG [18–21], or so-called post-
MPS approaches [14, 22]; see Refs. [23–25] for reviews.

All such algorithms involve update steps: a quantum
state of interest, |Ψ〉, is represented in MPS form, and its
constituent tensors are updated, e.g. during optimization
or time evolution. During an update, highly relevant
information is kept (K) and less relevant information dis-
carded (D). A sequence of updates thereby endows the
full Hilbert space of the system, V, with a structure of
intricately nested K or D subspaces, changing with each
update, containing states from V which either do (K) or
do not (D) contribute to the description of |Ψ〉.

The nested structure of V is rarely made explicit in the
formulation of MPS algorithms. A notable exception is
NRG, where D states are used to construct a complete
basis [26] of approximate energy eigenstates for V, fa-
cilitating the computation of time evolution or spectral
information [16, 17]. For the computation of local mul-
tipoint correlators [27] using NRG, it has proven useful
to elucidate the structure of K and D subspaces by intro-
ducing projectors having these subspaces as their images.
The orthogonality properties of K and D projectors bring
structure and clarity to the description of rather complex
algorithmic strategies.

Inspired by the convenience of K and D projectors in
the context of NRG, we here introduce an analogous
but more general K,D projector formalism and diagram-
matic conventions suitable for the description of arbitrary
MPS algorithms. In particular, our K,D projectors offer a

natural language for the formulation of algorithms that
explicitly or implicitly employ discarded spaces; this in-
cludes algorithms evoking the notion of tangent spaces
[10, 12–14, 22] and generalizations thereof, as will be
described later.

To formulate the goals of this paper, we here briefly
indicate how the nested subspaces mentioned above come
about. Concrete constructions follow in later sections.

An MPS |Ψ〉 written in canonical form is defined by a set
of isometric tensors [23]. The image space of an isometric
tensor, its kept space, is needed for the description of
|Ψ〉. The orthogonal complement of the kept space, its
discarded space, is not needed for |Ψ〉 itself, but for the
description of changes of |Ψ〉 due to an update step, e.g.
during variational optimization, time evolution, or the
computation of excitations above the ground state. Any
such change can be assigned to one of the subspaces Vns

in the nested hierarchy

V
0s ⊂ V1s ⊂ V2s ⊂ · · · ⊂ VLs = V, (1)

where V is the full Hilbert space of a system of L sites,
V
ns the subspace spanned by all n-site (ns) variations

of |Ψ〉, and V0s = span{|Ψ〉} the one-dimensional space
spanned by the reference MPS itself. The orthogonality
of kept and discarded spaces induces a partition of each
V
ns into nested orthogonal subspaces [6, 28], such that

V
ns = ⊕nn′=0V

n′⊥ , (2)

where Vn⊥ is the subspace of Vns spanned by all irre-
ducible ns variations not expressible through n′s varia-
tions with n′ < n, and V0⊥ = V0s. In particular, the full
Hilbert space can be represented as V= ⊕L

n=0V
n⊥.

The subspaces defined above underlie, implicitly or ex-
plicitly, all MPS algorithms. V1s is the so-called tangent
space of |Ψ〉, i.e. the space of all one-site (1s) variations
of |Ψ〉. It plays an explicit role in numerous recent MPS
algorithms, such as TDVP time-evolution, or the descrip-
tion of translationally invariant MPS and their excitations
[13, 14, 28]. It also features implicitly in MPS algorithms
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formulated using 1s update schemes, such as the 1s formu-
lation of DMRG [23], because 1s updates explore states
from V

1s. Likewise, the space V2s implicitly underlies all
2s MPS algorithms such as 2s DMRG ground state search,
2s time-dependent DMRG (tDMRG), or 2s TDVP, in that
2s updates explore states from V

2s. Moreover, V1⊥ and
V

2⊥ are invoked explicitly when computing the 2s energy
variance, an error measure for MPS ground state searches
introduced in Ref. [6]. Finally, Vns is implicitly invoked
in MPS algorithms defining excited states of translation-
ally invariant MPS through linear combinations of local
excitations defined on n sites [22].

The construction of a basis for Vns and Vn⊥ is well
known for n = 1 [12], and for n = 2 it is outlined in
Ref. [6]. However, we are not aware of a general, explicit
construction for n> 2, as needed, e.g., to compute the
ns energy variance. Here, we explicitly construct pro-
jectors, Pns and Pn⊥, having Vns and Vn⊥ as images,
respectively. For n = 1, this amounts to a construction
of a basis for the tangent space V1s. More generally, our
K,D projector formalism used to construct Pns and Pn⊥
greatly facilitates the formulation of MPS algorithms that
explicitly or implicitly employ discarded spaces. As an
illustration, we derive an explicit expression for the n-site
energy variance, generalizing the error measure proposed
in Ref. [6], and evaluate it numerically for a model with
long-range hopping, the Haldane-Shastry model. We also
show how the multiparticle ns excitations proposed in
Ref. [22] are formulated in our scheme, and propose a
strategy for computing them explicitly, for any n.

We expect that the K,D projector formalism developed
here will be particularly useful for improving the efficiency
of MPS algorithms by incorporating information from
V
n⊥ into suitably expanded versions of V(n′<n)s without

fully computing Vn⊥. For example, we have recently
developed a scheme, called controlled bond expansion,
which incorporates 2s information into 1s updates for
DMRG ground state search [29] and TDVP time evolution
[30], in a manner requiring only 1s costs.

This paper is structured as follows. In Sec. II we col-
lect some well-known facts about MPSs, and formally
define the associated kept and discarded spaces and corre-
sponding projectors. Section III, the heart of this paper,
describes the construction of the Pns and Pn⊥ projectors
for general n. As applications of our projector formalism,
we compute the ns energy variance of the Haldane-Shastry
model in Sec. IV, and describe the construction and com-
putation of ns excitations in Sec. V. We end with a brief
outlook in Sec. VI.

II. MPS BASICS

This section offers a concise, tutorial-style summary of
MPS notation and the associated diagrammatics. More-
over, we formalize the notion of kept spaces, needed to
describe an MPS |Ψ〉, and discarded spaces, needed to
describe changes to it at specified sites. We also recapit-

ulate the definition of local bond, 1s and 2s projectors
routinely used in 1s and 2s MPS algorithms.

A. Basic MPS notation

Consider a quantum chain with sites labeled ` = 1, ...,L .
Let each site be represented by a d-dimensional Hilbert
space, v`, with local basis states |σ`〉, σ` = 1, ..., d. The
full Hilbert space is V=

∏
⊗` v` = span{|σ〉}, with basis

states |σ〉 = |σ1〉|σ2〉···|σL 〉. Any state |Ψ〉 = |σ〉Ψσ ∈ V
can be written as an open boundary MPS, with wavefunc-
tion of the form

Ψσ = [M1]σ1
1α1

[M2]σ2
α1α2
···[ML ]σL

αL−11 (3)

=
LM1M 2M

1σ 2σ
1α 2α1 1

Lσ
1−Lα

.

(This diagram depicts both the wavefunction Ψ and the
corresponding state |Ψ〉.) Sums over repeated indices
are implied throughout, and depicted diagramatically
by bonds. Each M` is a three-leg tensor with elements
[M`]

σ`
α`−1α`

. Its physical and virtual bond indices, σ`
and α`−1, α`, have dimensions d and D`−1, D`, respec-
tively. The outermost bonds, to dummy sites represented
by crosses, have D0 = DL = 1. The bond dimensions
D` are adjustable parameters, controlling the amount of
entanglement an MPS can encode. (In the literature,
it is common practice to drop the subscript on D` for
brevity, understanding that D can nevertheless vary from
bond to bond.) Likewise, a Hamiltonian acting within V,

H = |σ〉Hσσ′〈σ′|, can be expressed as an MPO, with

Hσσ′
= [W1]

σ1σ
′
1

1ν1
[W2]

σ2σ
′
2

ν1ν2 ···[WL ]
σLσ′L
νL−11, (4)

= LW1W 2W

1σ 2σ
1 1

1
′σ 2

′σ
L
′σ

Lσ
1−Lν1ν 2ν

,

where the four-leg tensors W` have elements [W`]
σ`σ
′
`

ν`−1ν` ,
and the virtual bond indices ν` have dimensions w`.

Any MPS wavefunction can be brought into canonical
form w.r.t. an “orthogonality center” at site ` ∈ [1,L ],
or w.r.t. bond ` connecting sites ` and `+ 1,

Ψσ =

1σ �σ1−�σ +1�σ

1A 1−�A �C +1�B

Lσ

LB

1−�D2−�D +1�D�D
, (5)

where we indicated some of the bond dimensions. Here,
A˜̀ and B˜̀′ (with 1≤ ˜̀<`< ˜̀′≤L ) satisfy the relations

[
A†˜̀
]σ
αᾱ

[
A˜̀

]σ
ᾱα′

=
[
1

K

˜̀

]
αα′

,
[
B˜̀′

]σ
αᾱ

[
B†˜̀′
]σ
ᾱα′

=
[
1

K

˜̀′−1

]
αα′

,

= == =
�̃A

�̃
∗A
α

α′α

α

′α

′α

α

′α
ᾱ ᾱ

′�̃
∗B

′�̃
B

,′αα

]
�̃
K

[
′αα

]
1−′�̃

K
[

, (6)

or A†˜̀A˜̀ = 1
K

˜̀ , B˜̀′B
†
˜̀′ = 1

K

˜̀′−1
for short, where 1K

˜̀ de-

notes a D˜̀×D˜̀ unit matrix. (The superscript K stands
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for “kept”, for reasons explained below.) The open trian-
gles representing A˜̀ and B˜̀′ are oriented such that their
diagonals face left or right, respectively. The orthogonality
center can be shifted left or right by using singular value
decomposition (SVD) to express it as C` = U`−1S`−1B`
or C` = A`S`V

†
` :

1−�A �C

�C +1�B +1�B

1−�A
,

.

= =
�B�B

= =

1−�C

�A �A +1�C

1−�U

�
†V

1−�S

�S
(7)

Here U`−1, V †` , S`−1, S` are square matrices, the former
two unitary, the latter two diagonal and containing SVD
singular values. (Shifting can be combined with trunca-
tion, if desired, by discarding some small singular values
and correspondingly reducing the bond dimension.) By

renaming V †` B`+1 as B`+1 and defining Λ` = S`, we can
also express Ψσ in “bond-canonical” form w.r.t. bond `:

1A �A LB

1−�D +1�D�D�D

�Λ1−�A +1�B
. (8)

The fact that the same MPS can be written in many
different but equivalent ways reflects the gauge freedom
of MPS representations.

B. Kept spaces

Given an MPS |Ψ〉 in canonical form, its constituent
tensors can be used to define a set of state spaces defined
on parts of the chain, and a sequence of isometric maps
between these state spaces. Let us make this explicit to
reveal the underlying structures.

The A˜̀ tensors for sites 1 to ˜̀ can be used to define a
set of left kept (K) states |ΨK

˜̀α
〉, and the B˜̀′ tensors for

sites ˜̀′ to L can be used to define right K states |ΦK

˜̀′α′
〉,

with wavefunctions of the form

ΨK

˜̀α
=

1A �̃A
α , ΦK

˜̀′α′
=

LB′�̃B
′α . (9)

These states are called kept, since they are building blocks
of |Ψ〉. Their spans define left and right K spaces,

V
K

˜̀′ = span{|ΨK

˜̀α
〉} ⊂ v1 ⊗ ...⊗ v˜̀ , (10)

W
K

˜̀′ = span{|ΦK

˜̀′α′
〉} ⊂ v˜̀′ ⊗ ...⊗ vL , (11)

of dimension D˜̀ and D˜̀′−1, respectively. The dummy
sites 0 and L + 1 are represented by one-dimensional
spaces, VK

0 and WK
L+1.

Each A˜̀ and B˜̀′ tensor defines an isometric map, from
a parent (P) space involving a direct product of a K space
and a local space, to an adjacent K space:

A˜̀:VK

˜̀−1
⊗v˜̀→ V

K

˜̀ , |ΨK

˜̀−1,α
〉|σ˜̀〉

[
A˜̀]

σ˜̀

αα′ = |ΨK

˜̀α′
〉,

B˜̀′ :v˜̀′⊗WK

˜̀′+1
→W

K

˜̀′ ,
[
B˜̀′ ]

σ˜̀′
αα′ |σ˜̀′〉|ΦK

˜̀′+1,α′
〉 = |ΦK

˜̀′α
〉.

(To connect sites 1 and L to their neighboring dummy
sites, we define ΨK

0,1 = 1, ΦK
L+1,1 = 1.) We orient the

triangles depicting A˜̀ and B˜̀′ such that equal-length
legs point to parent spaces and 90-degree angles to kept
spaces. The dimensions of left or right kept and parent
spaces satisfy D˜̀≤ D˜̀−1d or D˜̀′−1 ≤ dD˜̀′ , respectively.
If a kept space is smaller than its parent space, it has
an orthogonal complement, called discarded (D) space,
discussed in Sec. II D below. The fact that the maps A˜̀

and B˜̀′ are isometries follows from Eqs. (6). These ensure
that the left and right K basis states form orthonormal
sets,

〈ΨK

˜̀α
|ΨK

˜̀α′
〉 =

[
1

K

˜̀

]
αα′

, 〈ΦK

˜̀′α
|ΦK

˜̀′α′
〉 =

[
1

K

˜̀′−1

]
αα′

,

= =,

1 �̃ ′�̃ L
�̃
K

1−′�̃
K

. (12)

The basis states can be used to build projectors onto the
left or right K spaces VK

˜̀ or WK

˜̀′ , depicted as

PK

˜̀ =
∑

α

|ΨK

˜̀α
〉〈ΨK

˜̀α
| =

1 �̃1 �̃

, (13a)

QK

˜̀′ =
∑

α′

|ΦK

˜̀′α′
〉〈ΦK

˜̀′α′
| =

�̃′ L

, (13b)

with PK
0 =1, QK

L+1 =1, and (PK

˜̀ )2 =PK

˜̀ , (QK

˜̀′)
2 =QK

˜̀′ :

= =,

�̃ �̃ ′�̃ ′�̃

. (14)

C. Bond, 1s and 2s projectors

The above projectors can, in turn, be used to construct
bond, 1s and 2s projectors acting on the full chain,

Pb
` = PK

` ⊗QK

`+1 =

� +1�

, (15a)

P1s
` = PK

`−1⊗1d⊗QK

`+1 =

� +1�1−�
, (15b)

P2s
` = PK

`−1⊗1d⊗1d⊗QK

`+2 =

� +1� +2�1−�
, (15c)

defined for `∈ [0,L ], `∈ [1,L ] and `∈ [1,L −1], respec-
tively. They mutually commute and satisfy (PX

` )2 =PX

` ,
as follows from Eqs. (12) and (14). For example:

(Pb
` )2 = =

� �

= Pb
` .

The projectors Pb, P1s and P2s map the full V into the
subspaces VK

` ⊗WK

`+1, VK

`−1 ⊗ v` ⊗WK

`+1 and VK

`−1 ⊗
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v` ⊗ v`+1 ⊗WK

`+2. These spaces offer three equivalent
representations of the same state |Ψ〉, in bond-, 1s- or
2s-canonical form,

|Ψ〉 = |ΨK

`α〉|ΦK

`+1,α′〉
[
ψb
`

]
αα′

(16a)

= |ΨK

`−1,α〉|σ`〉|ΦK

`+1,α′〉
[
ψ1s
`

]σ`

αα′
(16b)

= |ΨK

`−1,α〉|σ`〉|σ`+1〉|ΦK

`+2,α′〉
[
ψ2s
`

]σ`σ`+1

αα′
, (16c)

ψb
` = Λ`, ψ1s

` = C`, ψ2s
` = A`Λ`B`+1. (16d)

These forms emphasize the tensors describing bond `, site
` or sites (`, `+1) and the bond in between, respectively.
For example, Eqs. (16a) and (16b) are depicted as

Ψ =
1A �A LB�Λ +1�B

�α
KΨ

︷︸︸︷ ︷︸︸︷

1A LB+1�B

︷︸︸︷ ︷︸︸︷

,α1−�
KΨ

1−�A �C
=

′,α+1�
KΦ ′,α+1�

KΦ

αα ′α ′α
�σ

.

The projections of the Hamiltonian into these spaces,
Hx
` = Px

`HPx
` , have matrix elements of the form

Hb
` =

� +1�

, H1s
` = ,

� +1�1−�

H2s
` = ,

� +1� +2�1−�

(17)

with left and right environments for sites `± 1 given by

L` = = =

1 � �� 1−�L

, (18a)

R` = = =

� L � +1�R

. (18b)

Here the first equalities define L` and R`, the second
equalities show how they can be computed recursively,
starting from L0 = 1, RL+1 = 1. The open triangles on
L` and R` signify that they are computed using left- or
right-normalized A or B tensors.

The above matrix elements are standard ingredients
in numerous MPS algorithms. To give a specific exam-
ple, we briefly recall their role in DMRG ground state
searches. These seek approximate ground state solutions
to H|Ψ〉 = E|Ψ〉 through a sequence of local optimization
steps. Focusing on bond `, or site `, or sites (`, `+1), one
updates Λ`, or C`, or A`Λ`B`+1, by finding the ground
state solution of, respectively,

(Hb
` −E)ψb

` = 0 , E=

� +1�

, (19a)

(H1s
` −E)ψ1s

` = 0 ,

�

E=

� +1�1−�

, (19b)

(H2s
` −E)ψ2s

` = 0 , E=

� +1� � +1�+2�1−�

. (19c)

One then uses Eq. (7) to shift the orthogonality center
to the neighboring bond or site, optimizes it, and sweeps
back and forth through the chain until the ground state

energy has converged. These three schemes are known as
0s or bond DMRG, 1s and 2s DMRG, respectively. They
differ regarding their flexibility for increasing (“expand-
ing”) virtual bond dimensions, which increases the size
of the variational space and hence the accuracy of the
converged ground state energy. 0s and 1s DMRG offer no
way of doing this, because the tensors Λ` or C` have the
same dimensions after the update as before. By contrast,
2s DMRG does offer a way of expanding bond dimensions:
the bonds connecting the updated tensors A`, Λ` and
B`+1 have dimensions dmin(D`−1, D`+1), which is ≥ D`;
one may thus expand bond ` by retaining more than D`

singular values in Λ`. However, this comes at a price.
The numerical cost is O(D3d2w) for applying H2s to ψ2s

during the iterative solution of the eigenvalue problem
Eq. (19c), and O(D3d3) for SVDing the resulting eigen-
state to identify the updated A, Λ, and B. By contrast,
for 1s DMRG the costs are lower: O(D3dw) for applying
H1s to C, and O(D3d) for SVDing C to shift to the next
site. Various schemes have been proposed for achieving
2s accuracy at 1s costs, see Refs. [4, 5, 29].

D. Discarded spaces

In this section, we define discarded spaces as the or-
thogonal complements of kept spaces, and introduce their
corresponding isometries and discarded space projectors.

As mentioned above, the kept spaces VK

˜̀ and WK

˜̀′ have

dimensions smaller than the parent spaces VK

˜̀−1
⊗v˜̀ and

v˜̀′⊗WK

˜̀′+1
from which they are constructed. Their or-

thogonal complements are the above-mentioned discarded
spaces, to be denoted VD

˜̀ and WD

˜̀′ , respectively, of di-
mension D˜̀−1d − D˜̀ and D˜̀′d − D˜̀′−1. By definition,
span{VK

˜̀ ,V
D

˜̀ } and span{WK

˜̀′ ,W
D

˜̀′} yield the full parent

spaces, respectively. Let A˜̀ and B ˜̀′ be isometries from
the parent to the discarded spaces,

A˜̀:VK

˜̀−1
⊗v˜̀→ V

D

˜̀ , |ΨK

˜̀−1,α
〉|σ˜̀〉

[
A˜̀]

σ˜̀

αα′ = |ΨD

˜̀α′
〉,

B ˜̀′ :v˜̀′⊗WK

˜̀′+1
→W

D

˜̀′ ,
[
B ˜̀′ ]

σ˜̀′
αα′ |σ˜̀′〉|ΦK

˜̀′+1,α′
〉 = |ΦD

˜̀′α
〉.

Then A˜̀⊕ A˜̀ and B˜̀′ ⊕ B ˜̀′ are unitary maps on the
parent spaces, and Eq. (6) is complemented by relations
expressing orthonormality and completeness:

A
†
˜̀A˜̀ = 1D

˜̀ , A†˜̀A˜̀ = 0 , B ˜̀′B
†
˜̀′ = 1D

˜̀′−1
, B ˜̀′B

†
˜̀′ = 0 ,

�

= == = , , ,= 0 = 0
�
D

1−�
D

� � � �

, (20)

A˜̀A
†
˜̀+A˜̀A

†
˜̀ = 1P

˜̀ , B†˜̀′B˜̀′+B
†
˜̀′B ˜̀′ = 1P

˜̀′−1
,

,= =+
� � �� � �

= =+
�
P

1−�
P . (21)

Here, left- or right-oriented grey triangles denote the
complements A˜̀ and B ˜̀′ associated with discarded spaces.
The orthogonality relations (6) and (20) state that K

meeting K or D meeting D yield unity, whereas K meeting
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D yields zero. We will use them often below. For the
completeness relations (21), 1P

˜̀ = 1K

˜̀−1
⊗1d and 1P

˜̀′−1
=

1d⊗1K

˜̀′ are identity matrices on the parent spaces, with
1d a d×d unit matrix. In numerical practice, it desirable

to avoid the explicit computation of A˜̀A
†
˜̀ or B

†
˜̀′B ˜̀′ ,

since these are huge objects. Instead, one can always use

Eq. (21) to express them as 1P

˜̀ −A˜̀A
†
˜̀ or 1P

˜̀′−1
−B†˜̀′B˜̀′ .

Equations (21) imply additional identities that will
likewise be useful below:

= =+
�

� �

+ , (22a)

= +++
+1��

� � �

, (22b)

= +
+1��

� � �

− − . (22c)

The first two lines can be used to express 1s or 2s projec-
tors through bond projectors, as elaborated below. The
third line follows from the first two. The two equivalent
forms on the right of Eq. (22a) arise from combining the
physical state space of site ` with virtual state spaces
on either the left or the right, yielding either left- or
right-normalized parent spaces.

In complete analogy to Eqs. (9) to (13), the complement
isometries can be used to define orthonormal bases states
for the left and right discarded spaces VD

˜̀ and WD

˜̀′ ,

ΨD

˜̀α
=

1A
,α

�̃A
ΦD

˜̀′α′
=

LB
,′α

′�̃B
(23)

satisfying the orthonormality relations

= =,

1 �̃ ′�̃ L
�̃
D

1−′�̃
D

, (24a)

,

1 �̃ ′�̃ L

= 0 = 0 . (24b)

The corresponding projectors are defined as

PD

˜̀ =
∑

α

|ΨD

˜̀α
〉〈ΨD

˜̀α
| =

1 �̃1 �̃

, (25)

QD

˜̀′ =
∑

α′

|ΦD

˜̀′α′
〉〈ΦD

˜̀′α′
| =

�̃′ L

, (26)

with PD
0 =QD

L+1 =0. They obey orthonormality relations,

PX

˜̀PX

˜̀ = δXXPX

˜̀ , QX

˜̀′QX

˜̀′ = δXXQX

˜̀′ , (27)

where here and henceforth, X,X ∈ {K,D}. Moreover,
Eq. (21) implies the completeness relations

PK

˜̀ + PD

˜̀ = PK

˜̀−1
⊗ 1d , QK

˜̀′ +QD

˜̀′ = 1d ⊗QK

˜̀′+1
, (28)

stating that the kept and discarded projectors of a given
site together form a projector for their parent space. These
will play a crucial role in subsequent sections.

To conclude this section, we apply the projector identity
(22b) to the open legs of the state H2s

` ψ
2s
` appearing in

the 2s Schrödinger (19c). We obtain:

=

+

� +1�

� +1� � +1� � +1� � +1�

+2�1−� � +1� � +1� � +1�

+ + ,

+ + + .

(29)

If only the first term is retained, the 2s Schrödinger
Eq. (19c) reduces to the bond Schrödinger Eq. (19a),
sandwiched between A` and B`+1:

A`(H
b
` −E)Λ`B`+1 = 0 . (30a)

The first term together with the second or third therm
reduces to the 1s Schrödinger Eq. (19b) for sites `+ 1 or
`, left- or right-contracted with A` and B`+1, respectively:

A`(H
1s
`+1−E)C`+1 = 0 (30b)

(H1s
` −E)C`B`+1 = 0 . (30c)

All four terms together of course give the full 2s
Schrödinger Eq. (19c),

(H2s
` −E)A`Λ`B`+1 = 0 . (30d)

Evidently, the fourth term in Eq. (29), involving a DD pro-
jector pair, is beyond the reach of 1s schemes. A strategy
for nevertheless computing its most important contribu-
tions with 1s costs, called controlled bond expansion, has
recently been formulated in Ref. [29].

III. CONSTRUCTION OF Pns AND Pn⊥

As discussed in the introduction, each site of an MPS
|Ψ〉 induces a splitting of the local Hilbert space into
K and D sectors. This induces an partition of the full
vector space V into intricately nested orthogonal sub-
spaces [6]. It is useful to identify orthogonal projectors
for these subspaces. Gauge invariance—the existence of
many equivalent representations of |Ψ〉—makes this a
nontrivial task. It can be accomplished systematically by
Gram-Schmidt orthogonalization, formulated in projector
language. The following three sections are devoted to this
endeavor.

In the present section, we define a set of projectors,
PXX

`¯̀
, X,X ∈ {K,D}, involving kept and/or discarded sec-

tors at sites `, ¯̀. These serve as building blocks for all
projectors introduced thereafter. Then, in Sec. III B, we
define generalized local n-site (ns) projectors, Pns

` , de-
scribing variations of |Ψ〉 involving up to n contiguous
sites. In Sec. III C, we add them up to obtain global ns
projectors, Pns; and in Sec. III D we orthogonalize these
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to obtain irreducible global ns projectors, Pn⊥, not ex-
pressible through combinations of variations on subsets
of n′ < n sites. They are useful for various purposes,
including the computation of the energy variance [6], and
the formulation of MPS algorithms based on the notion
of tangent spaces [11–14, 30] and generalizations thereof.
Throughout, we concisely summarize the properties of
the various projectors encountered along the way.

A. Projectors for kept and discarded sectors, PXX

`¯̀

We start by introducing kept and discarded space pro-
jectors defined on the full Hilbert space V. To this end,
we supplement PX

` and QX

` by right or left environments
(E) comprising the entire rest of the chain, and define

PXE

` = PX

` ⊗ 1⊗L−`
d , PEX

` = 1⊗`−1
d ⊗QX

` , (31)

PKE

` =
L�

, PEK

` =
1 �

,

PDE

` =
L�

, PED

` =
1 �

.

with ` ∈ [0,L ] for PXE

` and ` ∈ [1,L + 1] for PEX

` . Equa-
tions (12) and (24) imply orthogonality relations for pro-
jectors with E on the same side (both right or both left):

PXE

` PXE
¯̀ = δ`<

¯̀
δXKPXE

¯̀ +δ`
¯̀
δXXPXE

` +δ`>
¯̀PXE

` δKX, (32a)

PEX

` PEX
¯̀ = δ`<

¯̀PEX

` δKX+δ`
¯̀
δXXPEX

` +δ`>
¯̀
δXKPEX

¯̀ . (32b)

The δ symbols indicate that the first, second, and third
terms contribute only for ` < ¯̀, ` = ¯̀, and ` > ¯̀, re-
spectively. Thus, same-site projectors are orthonormal;
different-site products with Es on the same side, of the
type PXE

` PXE
¯̀ (or PEX

` PEX
¯̀ ), vanish if the earlier (later)

site hosts a D; if it hosts a K, they yield the projector from
the other site. We depict two cases of Eq. (32a) below:

PDE

` PDE

` =

�

=

�

� �

= PDE

` .

PKE

` PDE
¯̀ =

�

=

�̄ �̄

�

= PDE
¯̀ .

Equation (32a) was first written down in that form in
Ref. [27], Eq. (29), in the context of NRG. There, one
deals exclusively with left-normalized states, and sites to
the right of the orthogonality center are treated purely as
environmental degrees of freedom, described by product
states. Equation (32b) is the counterpart of (32a) for
right-normalized states.

Projector products with Es in the middle, PXE

` PEX
¯̀ , and

` < ¯̀, again yield projectors. We denote them by

PXX

`¯̀ = PXE

` PEX
¯̀ (0 ≤ ` < ¯̀≤ L +1) , (33)

PKK

`¯̀ =
� �̄

, PKD

`¯̀ =
� �̄

,

PDK

`¯̀ =
� �̄

, PDD

`¯̀ =
� �̄

.

They have local unit operators on n = ¯̀− (` + 1) con-
tiguous sites, sandwiched between any combination of K

and D projectors to the left and right. In this sense, they
generalize Eqs. (15) and will be called generalized local ns
projectors. They fulfill numerous orthogonality relations
following directly from Eqs. (32). For example:

PXX

`¯̀ PX′X′

`¯̀ = δXX′δX X
′PXX

`¯̀ , (34a)

∀`<`′ : PDX

`¯̀ PX′ X′

`′ ¯̀′ = 0 , ∀¯̀< ¯̀′: PXX

`¯̀ PX′D
`′ ¯̀′ = 0 , (34b)

PDX

`¯̀ PDX
′

`′ ¯̀′ ∼ δ``′ , PXD

`¯̀ PX′D
`′ ¯̀′ ∼ δ ¯̀̀̄ ′ . (34c)

Thus, two projectors having the same site indices are
orthonormal; projector products involving a D on a site
earlier or later than all other indexed sites vanish; those
involving two Ds on the same side but different sites vanish,
too. Some of these relations are illustrated below:

PDK

`¯̀ PDK

`¯̀ = =

� ��̄ �̄

� ��̄ �̄

= PDK

`¯̀ ,

PDK

`¯̀ PKK

`′ ¯̀′ =

�

′�

�̄

′�̄

= 0 ,

PDK

`¯̀ PDD

`¯̀′ =

�

=

�̄

′�̄

�

� �

�̄

′�̄

= PDD

`¯̀′ .

Eq. (28) implies another useful property (for ¯̀−`>1),

PKX

`¯̀ = PKX

`+1,¯̀ + PDX

`+1¯̀ , PXK

`¯̀ = PXK

`,¯̀−1 + PXD

`,¯̀−1 , (35)

reflecting Eq. (22b). Thus, a K on a given site ` (or ¯̀) can
be decomposed into K and D on the inner neighboring site
`+ 1 (or ¯̀− 1), thereby expressing one projector through
two that both target one less site. This decomposition
will be used repeatedly below.

B. Local n-site projectors, Pns
`

The KK projectors merit special attention. For ¯̀−` = 1,
2 or 3, they correspond to the bond, 1s and 2s projectors
introduced in Eqs. (15). These can be expressed as

Pb
` = PKK

`,`+1, P1s
` = PKK

`−1,`+1, P2s
` = PKK

`−1,`+2 . (36)

Generalizing the notation of (36), we define a set of local
ns projectors (for n ≥ 0 and ` ∈ [1,L +1−n]) as:

Pns
` = PKK

`−1,`+n =

� n+�1−�

︷︸︸︷
sitesn

. (37)
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Then P0s
` = Pb

`−1, and for n ≥ 1, these projectors span
the spaces of variations of |Ψ〉 on n contiguous sites from
` to ` + n − 1. However, projectors Pns

` and Pns
`′ with

` 6= `′ are not orthogonal. Instead, the following relations
hold for all ` < `′,

Pns
` Pns

`′ = P(n−1)s
`+1 Pns

`′ = Pns
` P(n−1)s

`′ = P(n−1)s
`+1 P(n−1)s

`′ ,

(38)

as can be verified using Eqs. (32). For example, for

Pns
` Pns

`′ = =

�

′� ′�

n+� n+�

n+′� n+′�

+1� � +1�

,

P(n−1)s
`+1 Pns

`′ = =

′� ′�

n+� n+�

n+′� n+′�

+1� +1�+1�

,

we obtain the same result in both cases. In particular, for
n ≥ 1, two ns projectors mismatched by one site yield an
(n−1)-site projector,

Pns
` Pns

`+1 = P(n−1)s
`+1 (39)

=

�

︷︸︸︷

n+�
︷︸︸︷

+1� +1n+�

n+�+1�

.

Orthogonalized versions of the Pns
` projectors will be

constructed in the next subsection. Here, we collect some
properties, following from Eq. (32), that will be needed
for that purpose:

∀` < `′: PDX

`¯̀ Pns
`′ = 0 , (40a)

∀(`+n)≤ ¯̀′: Pns
` PX′D

`′ ¯̀′ = 0 . (40b)

Thus, Pns
` is annihilated by a left D on its left or a right

D on its right. For example,

Pns
` PKD

`′ ¯̀′ =

′�

n+��

′�̄

= 0 .

Using Eq. (35), Pns
` can be expressed through two

(n−1)s projectors:

Pns
` = PKK

`,`+n + PDK

`,`+n = PKK

`−1,`+n−1 + PKD

`−1,`+n−1

= P(n−1)s
`+1 + PDK

`,`+n = P(n−1)s
` + PKD

`−1,`+n−1 (41)

=

� n+� � n+�

+
+1� +1�

=

�

+

�1−n+�
︷︸︸︷

1−n+�
︷︸︸︷

1−� 1−�

.

The existence of two different decompositions of Pns
` , mim-

icking Eq. (22a), reflects the gauge freedom of MPSs. This

can be exploited to write PDK

`,`+n as P(n−1)s
` +PKD

`−1,`−1+n−
P(n−1)s
`+1 , converting DK to KD, or vice versa. Repeated

use yields an identity that will be useful below:

`′∑

`=¯̀

PDK

`,`+n = P(n−1)s
¯̀ +

`′∑

`=¯̀

PKD

`−1,`−1+n−P(n−1)s
`′+1 . (42)

C. Global ns projectors, Pns

We now are ready to define the ns spaces Vns. For
n = 0, we define V0s = span{|Ψ〉}. For n ≥ 1, we define
V
ns as the span of |Ψ〉 and all states |Ψ′〉 differing from

it on at most n contiguous sites:

V
ns = span

{

�

︷︸︸︷

n+�

sitesn

| ` ∈ [1,L +1−n]
}
. (43)

For n=1, V1s is the tangent space of |Ψ〉. More concretely,
V
ns is defined as the image of all local ns projectors:

V
ns = span

{
im(Pns

1 ), im(Pns
2 ), . . . , im(Pns

L+1−n)
}
. (44)

For any n′ ≤ n, the image im(Pn′s` ) is by construction

fully contained in the image im(Pns
` ), hence Vn′s is a

subspace of Vns, implying the nested hierarchy (1).
Let Pns be the projector having Vns as image; then,

im(Pns) contains im(Pns
` ) for all ` ∈ [1,L + 1− n]. For-

mally, Pns has the defining properties

(
Pns

)2
= Pns , PnsPns

` = Pns
` , (45a)

Pns
` |Φ〉 = 0 ∀` =⇒ Pns|Φ〉 = 0 . (45b)

Moreover, the nested structure of the Vnss implies

∀n′ < n : PnsPn′s = Pn′s . (46)

Let us construct Pns explicitly. Simply summing up the
local projectors Pns

` does not yield a projector because
the images of Pns

` and Pns
`′ are not orthogonal. A set of

mutually orthogonal local projectors can be obtained by
projecting out the overlap between Pns

` and Pns
`±1. We

thus define

Pns
`≶ = Pns

`

(
1V− Pns

`±1

)
, (47)

so that Pns
`≶Pns

`′ = 0 holds for neighboring `, `′ with ` ≶ `′.
It suffices to orthogonalize ns projectors mismatched by
one site, since from these we can select a set of projectors
mutually orthogonal on all sites. Indeed, Eqs. (39) and
(41) yield (n−1)-site projectors containing Ds,

Pns
`< = Pns

` − P(n−1)s
`+1 = PDK

`,`+n , (48a)

Pns
`> = Pns

` − P(n−1)s
` = PKD

`−1,`−1+n , (48b)
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and the Ds ensure the orthonormality relations (cf. (34))

Pns
`≶Pns

`′≶ = δ``′Pns
`≶ , (49a)

∀` < `′: Pns
`<Pns

`′> = 0 , (49b)

∀` ≶ `′: Pns
`≶Pns

`′ = 0 . (49c)

These equations have a remarkable implication: for
any choice of `′ ∈ [1,L −n+1], the projectors Pns

`< for
` ∈ [1, `′ − 1], Pns

`′ , and Pns
`> for ` ∈ [`′ + 1,L + 1 − n]

form an orthonormal set, and this set contains a Pns
` (in

projected form) for every ` ∈ [1,L + 1− n]. We define
the global ns projector as their sum,

Pns =
`′−1∑

`=1

Pns
`< + Pns

`′ +
L +1−n∑

`=`′+1

Pns
`> (50)

=
`′−1∑

`=1 � n+�
′

+
′� n+′�

+
L +1−n∑

`=`′+1
′

1−� 1−n+�
︷︸︸︷

.

Here, `′ may be chosen freely as convenience dictates;
different choices are equivalent, being related by Eqs. (41).
The orthogonality relations (49) ensure the properties
(45a). For example,

PnsPns
`′ = 0 + Pns

`′ Pns
`′ + 0 = Pns

`′ . (51)

The property (45b) is ensured by orthogonalizing Pns
`

w.r.t. each other and thus never including states with
Pns
` |Φ〉 = 0 ∀`. This confirms that im(Pns) contains

im(Pns
` ) for all ` ∈ [1,L + 1 − n]; thus, Pns indeed is

the desired projector having Vns as image. Evaluating
Eq. (50) using the middle expressions from (48), we obtain

Pns =

L +1−n∑

`=1

Pns
` −

L−n∑

`=1

P(n−1)s
`+1 (52a)

=
L +1−n∑

`=1 � n+�

−
L−n∑

`=1 +1� n+�

,

expressing Pns through local ns and (n−1)s projectors in
a manner manifestly independent of `′, and not involving
an D sectors. The occurrence of the first term, a sum over
all Pns

` , is no surprise; the nontrivial part of the above
construction was establishing the form of the second term,
needed to ensure that Pns is a projector. Note that
Eq. (52a) directly implies property (45b). Alternatively,
we can use the rightmost forms of (48) in (50) to obtain

Pns =
`′∑

`=1

PDK

`,`+n + PKK

`′,`′+n +
L−n∑

`=`′

PKD

`,`+n , (52b)

now expressed purely through (n−1)s projectors, with all
but one involving D sectors.

For n = 1, Eqs. (52) reproduce the well-known tangent
space projector,

P1s =
L∑

`=1

P1s
` −

L−1∑

`=1

Pb
` (53a)

=

L∑

`=1 �

−
L−1∑

`=1 �

,

=
`′∑

`=1

PDK

`,`+1 + PKK

`′,`′+1 +
L−1∑

`=`′

PKD

`,`+1 (53b)

=
`′∑

`=1 �

+
′�

+

L−1∑

`=`′ �

.

These expressions are widely used in MPS algorithms
based on tangent space concepts, such as time evolution
using the time-dependent variational principle (TDVP)
[11–14, 30]. The form (53a), or (53b) with the choice
`′ = L − 1, was first given Lubich, Oseledts and Van-
dereycken [11] (Theorem 3.1), and transcribed into MPS
notation in Ref. [12]. In these works it was derived in
a different manner than here, using arguments invoking
gauge invariance. Our derivation has the advantage that
it generalizes directly to ns projectors. For n = 2, our ex-
pression (52a) for P2s reproduces the projector proposed
in Ref. [12] for 2s TDVP:

P2s =
L−1∑

`=1 �

−
L−1∑

`=2 �

.

(54)

D. Irreducible global ns projectors, Pn⊥

Our final step is to orthogonalize the global Pns projec-
tors to obtain mutually orthogonal global ns projectors,
Pn⊥. This step is inspired by the observation, made in
Ref. 6, that a given MPS |Ψ〉 induces a decomposition of
the full Hilbert space into mutually orthogonal subspaces,

V= ⊕L

n=0V
n⊥, (55)

where V0⊥ is spanned by |Ψ〉, and for n ≥ 1 each Vn⊥

is the complement of V(n−1)s in Vns = V
(n−1)s⊕Vn⊥.

Each Vn⊥ is irreducible, comprising variations of |Ψ〉
defined on n contiguous sites that are not expressible
through variations on subsets of n′ < n sites.

The decomposition (55) induces a decomposition of
the identity on V into a sum of irreducible, mutually
orthogonal projectors, Pn⊥, each with a Vn⊥ as image:

1V = 1⊗L
d =

L∑

n=0

Pn⊥ , Pn⊥Pn′⊥ = δnn
′Pn⊥ . (56)
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We now construct the Pn⊥ projectors through a Gram-
Schmidt procedure. For n ≥ 1, we define Pn⊥ by project-
ing out P(n−1)s from Pns, using Eq. (46):

Pn⊥ = Pns
(
1V− P(n−1)s

)
= Pns − P(n−1)s . (57)

This scheme is initialized by the definition

P0⊥ = P0s = |Ψ〉〈Ψ| (58a)

= P0s
L+1 = PKK

L ,L+1 =
LL1

, (58b)

= P0s
1 = PKK

0,1 =
L1

. (58c)

The two equivalent forms for P0⊥, (59b) and (58c), reflect
MPS gauge invariance.

For n = 1, Eqs. (57) and (52a), with P0s = P0s
1 , yield

P1⊥ = P1s − P0s =

L∑

`=1

[
P1s
` − P0s

`

]
(59a)

=
L∑

`=1

[

�

−
�

]
.

More compact forms are obtained by evaluating Eq. (57)
using Eq. (52b), choosing either `′=L or 0 for P0s:

P1⊥ =
L∑

`=1

PDK

`,`+1 =
L∑

`=1 �

, (59b)

=
L∑

`=1

PKD

`−1,` =
L∑

`=1 �

. (59c)

Diagrammatically, the latter expressions also follow di-
rectly from (59a), using (22a). That two equivalent forms
exist again reflects MPS gauge invariance.

For n ≥ 2, Eqs. (57) and (52a) yield

Pn⊥ =

L +1−n∑

`=1

[
Pns
` − P(n−1)s

`+1 − P(n−1)s
` + P(n−2)s

`+1

]
(60a)

=
L +1−n∑

`=1

[

� n+�

−
+1� n+�

−

˜˜
�
1−n+�

1−n+�
︷︸︸︷

+

˜˜
+1�
1−n+�

1−n+�
︷︸︸︷︷︸︸︷

]
.

A more compact form is obtained by evaluating Eq. (57)
using Eq. (52b), choosing `′ = L + 1− n for both terms:

Pn⊥ =

L +1−n∑

`=1

PDK

`,`+n + PKK

L+1−n,L+1

−
L +1−n∑

`=1

PDK

`,`+n−1 − PKK

L+1−n,L − PKD

L+1−n,L

=

L−(n−1)∑

`=1

PDD

`,`+n−1 =

L−(n−1)∑

`=1
� 1−n+�

︷︸︸︷

.

(60b)

We used the first and second relations in Eq. (35) to
combine the

∑
` sums and cancel the remaining terms.

Diagrammatically, Eq. (60b) also follows directly from
(60a), using a relation analogous to (22c) (with n − 2
additional unit operator lines in the middle). Its form is
very natural: n−2 unit operators are sandwiched between
two Ds, which project out contributions contained in n′-
site projectors with n′ < n. For future reference we also
display the n = 2 projector:

P2⊥ =
L−1∑

`=1

PDD

`,`+1 =
L−1∑

`=1 �

. (61)

This projector is implicitly used in Ref. [6] to compute the
2s variance, as will be recapitulated below. It also plays
a key role in controlled bond expansion algorithms for
performing DMRG ground state searches [29] and TDVP
time evolution [30] with 2s accuracy at 1s costs.

Equations (58) to (61), giving explicit formulas for Pn⊥
for all n, are the main results of the last three sections.

The orthonormality of the Pn⊥, guaranteed by construc-
tion, relies on gauge invariance. This is seen when verify-
ing orthonormality explicitly. For example, P1⊥P0⊥ = 0
can be shown in two ways, using either PDK

`,`+1PKK
L ,L+1 = 0

or PKD

`−1,`PKK
0,1 = 0 (both relations hold ∀` ∈ [1,L ]).

We continue with some remarks providing intuition
about the structure of states in the image of Pn⊥. The
basis states for the spaces Vn⊥ can be chosen such that
they involve wavefunctions of the following forms:

V
0⊥ :

L1 �
(`∈ [0,L ]), (62a)

V
1⊥ :

�
(`∈ [1,L ]), (62b)

�
(`∈ [1,L ]), (62c)

V
2⊥ :

�
(`∈ [1,L−1]), (62d)

V
(n>2)⊥ :

� 1−n+�
︷︸︸︷ (`∈ [1,L−n+1]). (62e)

Due to MPS gauge invariance, any choice of ` in Eq. (62a)
for V0⊥ yields the same wavefunction Ψ. Gauge invari-
ance also implies that the wavefunctions in Eqs. (62b)
and (62c) for V1⊥ are not all independent; nevertheless,
both forms are useful.

The basis states for V(n>0)⊥ differ from the reference
state |Ψ〉 in V0⊥ through the replacement of a kept by a
discarded space involving precisely one site for n = 1, and
two adjacent sites for n = 2. For n > 2, they differ by two
discarded spaces and n−2 contiguous sites sandwiched
between them, involving virtual bond spaces orthogonal
to those from |Ψ〉. Therefore, states from V

n⊥ and Vn′⊥
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are manifestly mutually orthogonal if n 6= n′. This can
be checked via Eqs. (24), e.g. for V0⊥ and V1⊥:

= 0 , = 0 . (63)

States of the form (62) yield a complete basis for V.
This is ensured by our Gram-Schmidt construction; but
for P1⊥, the completeness is not self-evident. For example,
consider a state |Ψ′〉 of the following form:

Ψ′ =
′�

′�
′Λ

Ψ =
′�

′�Λ
,

〈Ψ|Ψ′〉 = = = 0 . (64)

It differs from |Ψ〉 only in the K space of bond of `′, having
a bond matrix Λ′`′ orthogonal to the Λ`′ of |Ψ〉. Since
|Ψ′〉 is orthogonal to |Ψ〉 it does not lie in V0⊥, but it is
not immediately apparent that it lies in im(P1⊥). To see
that it does, we rewrite Eq. (59b) such that it contains
DKs to the left of site ` and KDs to its right, using Eq. (42)
(with ¯̀, `′ there replaced by `′ + 1, L ):

P1⊥ =

`′−1∑

`=1

PDK

`,`+1 + P1s
`′ +

L∑

`=`′+1

PKD

`−1,` − PKK

L ,L+1 . (65)

When evaluating P1⊥|Ψ′〉 using this form, and recalling
that PKK

L ,L+1 = |Ψ〉〈Ψ|, we find that all terms but the
second yield zero, and the second yields |Ψ′〉, as claimed
above. In this manner, one sees that the image of P1⊥

indeed contains all single-site and single-bond variations
of |Ψ〉 that are orthogonal to |Ψ〉.

To conclude this section, we remark that the nested
structure of V is an integral part for (thermo)dynamical
computations using the NRG [16, 17, 24], although a
slightly different structure from Pn⊥ is used to systemat-
ically span the full Hilbert space. While the chain consid-
ered in NRG is in principle semi-infinite, this chain is in
practice cut off naturally by thermal weights [17, 24]. The
resulting chain length L increases logarithmically with
decreasing temperature. In NRG, the so-called Anders-
Schiller basis [26] is routinely used, which decomposes the
full identity as follows:

1V =

L∑

`=1 L�

. (66)

Here, all states of the parent space associated with the
last site, L , are considered discarded, i.e. the kept space
of site L has dimension 0. The projectors occurring in
Eq. (66) are constructed from approximate eigenstates
of the Hamiltonian, so that this decomposition of unity
can be used, e.g., to explicitly construct time-evolution
operators [26], full thermal density matrices [17, 24] or
evaluate Lehmann representations for two-point [17] or
recently even multi-point [27, 31] spectral functions.

IV. ENERGY VARIANCE

The decomposition of the identity 1V into mutually
orthogonal n-site projections can be used to similarly split
the energy variance, ∆E = ‖(H−E)Ψ‖2, of a state with
average energy E = 〈Ψ|H|Ψ〉 into n-site contributions.
For n = 1 and 2, these were given in Ref. [6]. Here, we
extend their analysis to general n:

∆E =

L∑

n=0

〈Ψ|(H−E)Pn⊥(H−E)|Ψ〉 =

L∑

n=1

∆n⊥
E , (67a)

∆n⊥
E = ‖Pn⊥HΨ‖2 (67b)

=

{∑L
`=1 ‖PDK

`,`+1HΨ‖2 (n = 1),
∑L +1−n
`=1 ‖PDD

`,`+n−1HΨ‖2 (n ≥ 2) .
(67c)

In the first line, we used (56), 1V =
∑L

n=0 Pn⊥; since

P0⊥ = |Ψ〉〈Ψ| and P(n>0)⊥|Ψ〉 = 0, the potentially large
contributions linear and quadratic in E drop out. This
convenient feature, emphasized in Ref. [6], significantly
improves the accuracy of the determination of ∆E . The
cumulative ns variance is defined as ∆ns

E =
∑n
n′=1 ∆n′⊥

E .
Expressed diagrammatically, the 1s and ns variance are

∆1⊥
E =

L∑

`=1

2

�

=
L∑

`=1 �

2

, (68a)

∆
(n≥2)⊥
E =

L−(n−1)∑

`=1 �

2

1−n+�
︷︸︸︷

. (68b)

To compute these expressions in practice, the D projectors
are expressed through K projectors using Eq. (21), e.g.

∆1⊥
E =

L∑

`=1

2

��

− . (69)

FIG. 1. The n-site variance, ∆n⊥
E , of the L = 40 Haldane-

Shastry model for different D∗. ∆1⊥
E is numerically zero (i.e.

∆1⊥
E . 10−16) when DMRG is converged properly, plotted

here symbolically at ∆1⊥
E = 10−16.
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If the Hamiltonian contains only local and nearest-
neighbor terms, all contributions with n>2 are zero [6],
i.e. ∆E = ∆2s

E . However, it has been argued in Ref. 6 that
even if long-range terms are present, ∆2s

E is a reliable error
measure. Here, we confirm this for the case of the spin- 1

2
Haldane-Shastry model on a ring of length L = 40, with
Hamiltonian

HHS =
∑

`<`′≤L

π2S` · S`′
L 2sin2 π

L
(`− `′) . (70)

Figure 1 shows ∆n⊥
E for n ∈ {1, 2, . . . , 10} and four choices

of D∗. In all cases, ∆n⊥
E is largest for n = 2, and smaller

by an order magnitude or more for n > 2, with the
decrease being stronger the larger D∗. For this model,
therefore, ∆2⊥

E by itself suffices to reliably estimate the
energy error.

V. n-SITE EXCITATIONS

The ns projectors can be used as an Ansatz to compute
low energy excitations. This so-called excitation Ansatz
has been very successful in infinite systems [14, 22, 28, 32]
and lately also shown to be reliable on finite lattices [33].
Using our diagrammatic notation, we generalize the 1s
Ansatz for finite systems used in Ref. 33 to n sites, similar
to the ns Ansatz for infinite systems [22, 28].

In the ns excitation Ansatz, the wavefunctions for the
excitations are parametrized as

|Ψns
ex〉 =

L−n+1∑

`=1

1
� 1−n+�

︷︸︸︷

T1 Tn , (71)

where T `i>1 ( ) are generic tensors of rank 3 and T `1 ( )
are tensors of the form

+= δ , +1L−n
=T1 . (72)

The construction (71) is such that it can represent any
state in the image of Pns, i.e. Pns|Ψns

ex〉 = |Ψns
ex〉.

It seems that |Ψns
ex〉 cannot be efficiently computed,

since it involves a sum over L − n+ 1 (i.e. many!) terms,
and performing MPS sums explicitly leads to increased
bond dimensions. However, that can be avoided here.
The isometries A` ( ) and B` ( ) flanking the modified
sites reappear in every summand and only need to be
saved once; hence only the tensors T `i need to be saved.
In the case of n = 1 for example, we have to save L
tensors of dimensions D × d×D, i.e. the same memory
requirement as for an MPS with bond dimension D.

Second, due to Eq. (72), all summands are by construc-
tion mutually orthogonal, facilitating the computation of
overlaps. Consider |Ψns

ex〉 and |Ψ′ns
ex 〉, characterized by T `i

and T ′`i , respectively. Their overlap is then given by

〈Ψ′ns
ex |Ψns

ex〉 =
L−n+1∑

`=1

T1 Tn

TnT1

, (73)

while the computation of sums or differences can be done
on the level of the T `i , i.e.

|Ψns
ex〉+ a|Ψ′ns

ex 〉 → ∀` :

� 1−n+�
︷︸︸︷

� 1−n+�
︷︸︸︷

+a
Tn TnT1T1 . (74)

If
∏n
i=1 T

`
i and

∏n
i=1 T

′`
i are represented as MPSs, Eq. (74)

in effect involves a sum of two ns MPS; this is manageable
if n is not too large. In the case n = 1, there is only T `1
and T ′`1 , i.e. in this case, no MPS sums are required.

To determine the tensors T `i for |Ψns
ex〉 explicitly, one

projects the Hamiltonian onto the space Vns and solves
for low-energy states of

PnsHPns|Ψns
ex〉 = Ens

ex |Ψns
ex〉 (75)

that are orthogonal to the ground state. This can be done
using some iterative eigensolver like the Lanczos method,
initialized by some appropriate initial wavefunction. Ex-
plicit orthogonalization w.r.t. to the ground state is re-
quired, since our Ansatz space Pns contains the ground
state, whose kept and discarded spaces span the image of
Pns.

To run an iterative eigensolver, a scheme is needed for
efficiently applying the projected Hamiltonian PnsHPns

to the state |Ψns
ex〉. The resulting state, say |Ψns

ex〉 =
PnsHPns|Ψns

ex〉, will again be of the form (71), but de-
scribed by tensors T `i . To find these, we compute the
tensors

T1 T2 Tn
=

L−n+1∑

`′=1 �1

T 1 Tn

L

, (76)

and project T̃ `1 to the discarded space to obtain T `1 ,

= +1L−n−(1 − δ , ) A∗

A

T1 T1
T1

, (77)

such that Eq. (72) is fulfilled.
To evaluate Eq. (76), we split the sum

∑
`′ into terms

with `′ < ` and `′ ≥ `, and express these as follows:

T1 T2 Tn
=

n∑

m=1

T −m
m+1 T −m

n

Lm
−1 R +n

(78)

+

n∑

m=0

T +m
1 T +m

n−m

L −1 Rm
+n

.

Next to the left and right environments L` and R` defined
in Eq. (18), these expressions contain another set of envi-
ronments, denoted by Lm` and Rm` , each involving those

m of the T `
′
i tensors in Eq. (76) that do not face open

physical legs. For m = 0, m ∈ {1, . . . , n−1} or m = n,
they are defined by the left equalities below; the right
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equalities show how for each m, Lm`+1 and Rm`−1 can be
computed recursively from Lm` and Rm` , initialized with
L0

0 = 1, Lm>0
0 = 0, R0

L +1 = 1, Rm>0
L +1 = 0:

L0
` = =

L

=

L0
−1

, (79a)

Lm` = =
︷︸︸︷

T −m+1
1 T −m+1

m

−m+1
L −m

=

T −m+1
m

Lm−1
−1

,

Ln` = =
`−n+1∑

`′=1

B=81 = [width=0.27\linewidth]

T 1 Tn

L −1

=

T −n+1
n

Ln−1
−1

+

Ln
−1

,

R0
` = =

R

=

R0
+1

, (79b)

Rm` = =
︷︸︸︷

T −n+m
n−m+1 T −n+m

n

+m−1 R +m

=

T −n+m
n−m+1

Rm−1
+1

,

Rn` = =

L−n+1∑

`′=`

T 1 Tn

R +n

=

T1

Rn−1
+1

+

Rn
+1

.

The solution of Eq. (75) using an iterative eigensolver
has costs scaling with O(D3dnw), the same as ns DMRG.
However, because the Ansatz Eq. (71) is built from a sum
over L −n+1 MPSs, states can be captured which would
need significantly larger bond dimensions if represented
in standard fashion as an MPS. Because there are n
summands in Eq. (71) which differ from the ground state
at site ` (with corresponding tensors T `1 , . . . , T

`−n+1
n at

site `), an MPS representation would need bond dimension
D(1+n), assuming A`, B` and T `i are tensors of dimension
D × d × D. Optimizing such an MPS with ns DMRG
comes with O(D3(n+ 1)3dnw) costs, larger by (n+ 1)3

than the costs for optimizing the Ansatz Eq. (71). Of
course, the latter Ansatz is much more restrictive than
a generic MPS of bond dimension D(1 + n). However,
that should not be a limitation if the physics of interest
involves single- or few-particle excitations, as is the case,
e.g., when computing correlations functions of single- or
few-particle operators.

We test the ns excitation Ansatz on a Haldane-Shastry
model on a ring of length L = 40 (see Eq. (70) for the
Hamiltonian), for which we seek to compute the lowest
energy excitation with total spin S = 1 above the total
spin S = 0 ground state. For comparison, we have also
computed this state by performing a DMRG ground state
search in the S = 1 sector.

Fig. 2 shows the corresponding relative errors in energy
versus the bond dimension D∗. As reference values, we
use the exact energies ES=0

exact = −π2(L + 5/L )/24 and
ES=1

exact = −π2(L − 7/L )/24 for the ground state and
excited state [34–36], respectively. Remarkably, we find

FIG. 2. Relative error in energy of the lowest-lying S = 1
excited state of the Haldane-Shastry model, computed using
the n-site excitation Ansatz (circles), or using DMRG (blue
diamonds). Black diamonds show DMRG results for the S=0
ground state. The dashed blue lines are guides to the eye.

that for the same D∗, the n= 1 site excitation Ansatz
yields an S = 1 excitation energy that is more accurate
than that obtained from DMRG by one to two orders of
magnitude, even though the computational cost of both
approaches at the same D∗ is comparable. In fact, the
relative error obtained by the excitation Ansatz for the
S = 1 state is comparable to (even slightly lower than)
that obtained by DMRG for the S = 0 ground state.

The reason for the high accuracy of the excitation
Ansatz is that the first excited state is essentially a super-
position of local spin excitations, i.e. it fits Ansatz (71).
The excitation Ansatz avoids representing this superpo-
sition as a single MPS, which would require about twice
the bond dimension. Instead, it exploits the fact that
each local excitation differs from the ground state only
locally. This leads to a more economic Ansatz compared
to DMRG, which needs about twice the bond dimension.
This can also be seen in Fig. 2, where the relative error in
energy of the 1s excitation Ansatz at some D∗ almost coin-
cides with the corresponding error of DMRG at 2D∗. The
latter error is slightly smaller than the former, because
the 2D∗ MPS Ansatz used by DMRG is less restrictive
than the D∗ excitation Ansatz, though this improvement
is rather marginal.

The capability of the excitation Ansatz can be further
improved by considering n > 1, leading to a reduction of
the relative error in energy compared to n=1, see Fig. 2.
This reduction is rather small and further improvements
seem to become ever smaller for ever larger n. However,
with increasing n the costs for this Ansatz increase ex-
ponentially, as ∼ dn. Therefore, including information
beyond n= 1 by brute force, i.e. by just going to n> 1,
is not advisable. Nevertheless, we believe that valuable
improvements of the Ansatz may be achievable, while
circumventing the exponential dn scaling, by including
only the those parts of the n > 1 sectors that contribute
to the excited state with significant weight. It should
be possible to identify these parts by generalizing the
strategy proposed in our recent work on controlled bond
expansion in both DMRG ground state search [29] and
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TDVP time evolution [30]. We leave this as a topic for
future study.

More generally, we believe that the diagrammatics for
the n-site excitation Ansatz and the projector formalism
developed in this work will provide a solid foundation to
construct systematic improvements to the 1-site excitation
Ansatz without a significant increase in computational
costs.

VI. SUMMMARY AND OUTLOOK

We have developed a projector formalism for kept and
discarded spaces of MPS, together with a convenient
diagrammatic notation. We use it to derive explicit ex-
pressions for global n-site projectors Pns and irreducible
n-site projectors Pn⊥. We then use our results to derive
explicit formulas for the n-site variance and evaluate it
for the Haldane-Shastry model, showing that indeed the
2-site contribution is the most dominant one. Further, we
derive explicit diagrammatic formulas to perform excited
state computations based on the n-site excitation Ansatz
for finite, non-translation invariant MPS.

The K,D projector formalism and diagrammatic nota-
tion developed here proved very convenient for the ap-
plications considered in this work. More generally, we
expect them to provide a convenient tool for the devel-
opment of new MPS algorithms that explicitly or im-
plicitly utilize the properties of discarded spaces. The
information contained in these is a resource, useful for

describing changes or variations of a given MPS, and for
algorithms exploiting this resource, the K,D projector for-
malism facilitates book-keeping thereof. Indeed, we have
developed the formalism presented here while working out
a controlled bond expansion algorithm to perform both
DMRG ground-state searches [29] and time evolutions
using the time-dependent variational principle [30] with
2-site accuracy at 1-site computational cost. Morever,
our formalism provides the tools needed to efficiently im-
plement the perspectives outlined in Refs. 14 and 22 for
post-MPS applications, that build on a given MPS to
compute low energy excitation spectra.

As a final remark, we note that though we focused on
MPSs in this work, our formalism should be generaliz-
able to any tensor network for which canonical forms are
available, such as tensor networks without loops.
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3 Projected Entangled-Paired States

3.1 Overview
For two-dimensional quantum systems, the infinite projected entangled-pair state
(iPEPS) is a useful tool to directly simulate ground states in the thermodynamic limit.
iPEPS, however, comes with demanding computational costs both in memory and
time. An important technical aspect of iPEPS is to exploit continuous symmetries to
improve its performance. In [P4], we discuss the implementation details to achieve
that.

The t-J model In [P5], we use iPEPS to study the doped t-J model on square
lattices [GJR87, DR92]. The t-J model is related to the one-band Hubbard model in
the strong-coupling limit. When U/t→∞, the double occupancies are energetically
unfavoured and suppressed. Their contribution to the low energies is only through
the virtual hopping processes. Particularly, the two-site virtual hoppings produce
the superexchange antiferromagnetic interactions with J = 4t2/U . At small hole
doping, the t-J model is commonly regarded as the minimal model of the cuprate
materials [ZR88].
The t-J model is well understood at certain parameter regimes. First, at exact

half-filling, the t-J model reduces to the Heisenberg model. Its ground state has long-
range anti-ferromagnetic order; exotic phases postulated analytically, such as resonant
valence bond states [KRS87] or flux phases [AM88], were dispelled by numerics
[RY88, DM88, San97]. Second, at the single hole limit, the string picture gives a
succinct description of the hole motion [Tru88, GKNB+18, GZSD18, GP20, JXK+21],
where the mobile hole creates a ferromagnetic bubble, often called a Nagaoka polaron
[Nag66]. However, at finite doping, the nonperturbative nature of the hole-hole
interactions immediately puts the string picture in a difficult ground [DW89, SCW96,
WSCT97, EBHA02]. Third, at large J/t, the ground state undergoes a phase
separation into a hole-rich and a hole-poor region [RY89, KEL90, EKL90, EBHA02].
The regime of large J/t is only of acdemic interest, since the physical relevant regime
with a large U corresponds to a small value of J/t.

For J/t . 0.5, the ground state nature of the t-J model at small but finite doping
remains controversial. One possibility is a spatially uniform superconductivity [KL88,
HM99, CS00]. Another is a tendency towards phase separation [EKL90, HM97,
PKH98]. The third one is stripe order with periodic spin and charge modulations in
the real space [Sch89, ZG89, PcvZ93, WS98]. The discovery of stripe order appears
to be a theoretical success, as it rationalizes an anomaly observed in La2−xBaxCuO4
materials, in which superconductivity is sharply suppressed at doping x = 1/8.
Nonetheless, we have to bear in mind that these numerics did not give account
for the origin of d-wave superconducting order. Besides the insulated stripe order
just mentioned, a stripe with modulated superconductivity has also been considered
[BFK+07] and supported by recent tensor network calculations [CRT14, JWK18].
In short, the physics of t-J model at the physical relevant regime is far from

clear. Here, we revisited this old problem using symmetric iPEPS. Exploiting the
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continuous symmetries within iPEPS has two advantages. First, the sparse tensor
implementation reduces the computational cost. Second, this gives us a numerical
knob to turn on and off certain global symmetries to target low-energy states that
belong to different symmetry sectors. We demonstrated how by allowing or disallowing
the breaking of the spin rotational symmetry affects the superconductivity and the
stripe order that are competing with each other at small doping.

The Kitaev-Γ model Ever since Kitaev’s proposal of spin liquids on honeycomb
lattices [Kit06], its experimental realization has been unflaggingly pursued. The
prime candidate material is α-RuCl3. At low energies, spectroscopic experiments
reveal fractionalized excitations, hinting towards proximate spin liquid behavior
[BBY+16, BYK+17]. Even so, its phase diagram, complicated by significant non-
Kitaev interactions, is not well understood to date. The minimal microscopic model
to clarify the physics of α-RuCl3 includes not only the Kitaev (K) interactions, but
also the off-diagonal symmetric (Γ) interactions.
When Γ and K are roughly of equal strength, whether there exists a quantum

Kitaev-Γ spin liquid for S = 1/2 is a heated debate. Early calculations using exact
diagonalization [CYW+18] and infinite DMRG [GWY+18] suggested an extended
spin liquid phase away from the Kitaev limit. Such optimism was quickly refuted.
Careful inspections reveal unexpected ramifications of having the Γ interactions.
A zig-zag ordering was identified via the variational Monte Carlo [WNL19]. Also,
incommensurate order, nematic order, and complicated magnetic order found by
different tensor network methods [JDJ19, GCKK20, LKC+20] can not be excluded.

In [P6], we use iPEPS to study the Kitaev-Γ model. For quantum spins S = 1/2,
our iPEPS simulations find an unusual magnetic order at Γ/|K| ∼ 1. It breaks the
translational symmetry and forms an 18-sublattice pattern. Guided by classical
Monte Carlo simulations performed by Ke Liu, we trace the origin of this exotic
quantum magnetic order to its classical counterpart.
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Abstract

Infinite projected entangled pair states (iPEPS) have emerged as a powerful tool for
studying interacting two-dimensional fermionic systems. In this review, we discuss the
iPEPS construction and some basic properties of this tensor network (TN) ansatz. Special
focus is put on (i) a gentle introduction of the diagrammatic TN representations forming
the basis for deriving the complex numerical algorithm, and (ii) the technical advance
of fully exploiting non-abelian symmetries for fermionic iPEPS treatments of multi-band
lattice models. The exploitation of non-abelian symmetries substantially increases the
performance of the algorithm, enabling the treatment of fermionic systems up to a bond
dimension D = 24 on a square lattice. A variety of complex two-dimensional (2D)
models thus become numerically accessible. Here, we present first promising results
for two types of multi-band Hubbard models, one with 2 bands of spinful fermions of
SU(2)spin⊗SU(2)orb symmetry, the other with 3 flavors of spinless fermions of SU(3)flavor
symmetry.
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1 Introduction

Ever since the discovery of high-Tc superconductivity, there is a great need for developing and
improving numerical approaches for studying one-band and multi-band fermionic many-body
systems in two spatial dimensions. Quantum Monte-Carlo (QMC) is an excellent candidate
for this challenge [1]. However, the presence of the fermionic sign problem in these systems
at finite doping often restricts the applicability of QMC to special points in the phase diagram
close to half filling.

Tensor network techniques represent a promising alternative to QMC to successfully deal
with complex systems of itinerant fermions. In particular, the density matrix renormalization
group (DMRG) applied to two-dimensional clusters has provided us with some remarkable in-
sights. Examples include the discovery of the spin-liquid ground state of the Kagome Heisen-
berg model [2,3] or the first observation of stripe states in the hole-doped t-J model [4]. More
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recently, also the infinite projected entangled pair state (iPEPS) approach was successfully used
for a detailed study of the t-J model [5,6], as well as for clarifying the spin-liquid nature of the
spin-half Kagome Heisenberg model [7, 8]. In addition, a combined iPEPS and DMRG study,
supported by other numerical methods, led to a consensus regarding the existence of stripe
order in the hole-doped Hubbard model [9].

A PEPS can be constructed by considering a lattice system where the entanglement of
each site to the rest of the system is encoded via virtual degrees of freedom (entangled pairs)
associated with the lattice bonds connecting that site to its neighbors. Projecting all virtual
degrees of freedom associated with a given site to the physical Hilbert space of that site gen-
erates a PEPS tensor for that site [10]. Such a tensor network representation can be consid-
ered as a generalization of Affleck, Kennedy, Lieb and Tasaki (AKLT) states or tensor product
states, which date back to even earlier literature [11–14]. In short, many tensor network algo-
rithms to simulate many-body states in 2D are based on the PEPS representation, including the
tensor renormalization group (TRG) [15, 16], the second renormalization group (SRG) [17],
the higher-order tensor renormalization group [18], tensor network renormalization [19,20],
DMRG-like ground-state optimization [21, 22] and promising extensions to excited states by
means of tangent space methods [23].

Despite many interesting developments, PEPS has not yet reached its full potential in appli-
cation to frustrated and fermionic 2D systems. This is mostly due to the technical complexity
of the algorithm, especially when dealing with fermionic signs [24] and when implementing
symmetries explicitly [25–33]. Nevertheless, PEPS has recently proven its competitiveness
and, for instance, provided new insights for underdoped Hubbard model [9, 34, 35] and t-J
models [5,6,36], for spin-1

2 [7,8] and spin-1 Kagome-Heisenberg models [37], as well as for
the Shastry-Sutherland model [38,39]. At the same time, PEPS is still in its infancy and there
is much room for technical progress boosting the performance of the method [40–42].

In this work, we consider the PEPS method applied to translationally invariant systems,
the so-called iPEPS ansatz [43], and focus on an aspect where further technical progress is
certainly possible – the exploitation of symmetries. If the Hamiltonian is invariant under some
symmetry group, its energy eigenstates can be grouped into multiplets transforming as irre-
ducible representations (irreps) under symmetry transformations. Correspondingly, a tensor
network for such a system can be constructed from tensors whose legs (both physical and
virtual) carry irrep labels. Keeping track of this multiplet structure can reduce computational
costs tremendously, since tensors acquire block substructures. Moreover, for non-abelian sym-
metries the relevant bond dimension is reduced from D, the number of individual states per
bond, to D∗, the number of multiplets per bond. Computational costs scaling as Dα can thus
effectively be reduced by a factor of (D/D∗)α. Also, memory requirements, the primary bottle-
neck for iPEPS calculations, can be significantly reduced. However, the tensor block structure
entails overhead in the code complexity and performance, which requires some special care,
specifically so if many, individually small blocks arise. With α ¦ 12 for iPEPS and D/D∗ ' 3
for SU(2) symmetry or larger for SU(N > 2), the potential benefits of exploiting symme-
tries are evidently enormous. In practice, however, keeping track of symmetry labels requires
codes with an additional layer of complexity, in particular for symmetry groups having outer
multiplicity > 1, such as SU(N > 2). While the exploitation of abelian symmetries in PEPS
codes is becoming fairly routine by now, the number of applications of non-abelian PEPS can
still be counted on one hand [33,37,44], all involving SU(2) symmetry.

Believing that non-abelian PEPS nevertheless holds great promise, we devote this tutorial
review to a detailed exposition of its key ingredients. We offer a pedagogical review of the
most important aspects of the PEPS representation and the iPEPS algorithm, mainly following
the work of Philippe Corboz and coworkers [5,6,24,45–47]. In particular, we discuss how to
perform contractions [Sec. 3.3], how to keep track of fermionic minus signs, and how to per-

3



SciPost Phys. Lect.Notes 25 (2021)

form tensor optimization via imaginary-time evolution [Sec. 3.5], including the gauge fixing
for iPEPS [47, 48]. Additionally, we go beyond the scope of Corboz’ work by explaining how
arbitrary non-abelian symmetries can explicitly incorporated in the fermionic iPEPS ansatz in
a generic manner, based on the QSpace [30] tensor library. A pedagogical discussion of SU(2)
iPEPS was recently given in Ref. [49], with benchmarking computations on spin systems re-
ported in Ref. [50]. Our treatment of symmetries represents a fully alternative approach to
theirs, which permits us to deal with non-trivial outer multiplicities (OM) on a general foot-
ing. While OM is not present for SU(2) for rank-3 tensors, it already also occurs for SU(2)
for tensors of rank r > 3. For larger symmetries, such as SU(N > 2), OM already occurs
generically even at the elementary level of rank-3 tensors.

A first application of our non-abelian fermionic iPEPS code, published concurrently with
this tutorial review, is a study of the 2D fermionic t-J model [51] – by exploiting either U(1)
or SU(2) symmetry to allow or forbid spontaneous spin symmetry breaking, we elucidate
the interplay between antiferromagnetic order, stripe formation and pairing correlations. In
the present work, we further illustrate the power of non-abelian iPEPS by presenting some
exemplary results for two 2D fermionic Hubbard models of higher complexity: a model with
two degenerate bands of spinful fermions, featuring SU(2)spin ⊗ SU(2)orb symmetry, and a
model with three degenerate bands of spinless fermions, featuring SU(3)flavor symmetry.

2 Tensor network diagrams and convention

As implied by their name, tensor network techniques typically involve a large number of ten-
sors of various rank that are iteratively manipulated. These manipulation steps may vary in
their complexity and, for example, include matrix multiplication, or decomposition techniques
such as singular value or eigenvalue decompoitions. In order to simplify the lengthy mathe-
matical expressions which describe these steps and typically involve large sums over multiple
indices, we heavily rely on using a diagrammatic representation for tensor network states.
Analogous to the role of Feynman diagrams in quantum field theories, these tensor network
diagrams are pictorial representation of mathematical expressions and help a great deal grasp-
ing the essence a TN algorithm. Since we extensively employ this pictorial language in this
review, we here give a brief summary of our conventions together with an explanation on how
to understand these diagrams in the following.

Each TN diagram consists of one or multiple extended objects (squares, circles, ...), which
are connected by lines. Objects and lines represent tensors and indices, respectively. In the
following, we give a few simple examples. For instance, a matrix or rank-2 tensor A has two
indices α,β ,

Aαβ = . (1)

The number of values that an index can take is called its dimension.
The next expression, illustrating a matrix multiplication

∑
β

AαβBβγ = , (2)

involves the sum over the common index β of A and B. This contraction is indicated by a line
connecting A and B.
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In addition to the simple expressions shown above, we often have to deal with diagrams
containing multiple sums and open indices, such as

∑
α,γ

AαδBαβγCγε = . (3)

It holds generally true, that the diagrammatic representation becomes more beneficial, the
more complex the expression and the larger the number of tensors involved since the logic of
reading and understanding these diagrams remains the same.

For more evolved topics, such as fermionic TN descriptions and symmetric TNs, the dia-
grams will contain extra features. We will introduce these features in detail at the appropriate
parts of this review.

3 Infinite projected entangled pair states

Projected entangled pair states (PEPS) present the natural generalization of the well-known
MPS ansatz to higher spatial dimensions [10]. Analogously to their 1D counterpart, a PEPS
consists of a set of high-ranked tensors which are connected by virtual bonds along the physical
directions of the corresponding lattice system. In addition, PEPS satisfy the area law of the
entanglement entropy in two dimensions [52], thus being able to faithfully represent physical
states in gapped lattice models.

In this section, we give a pragmatic introduction to the PEPS construction from the point
of view of numerical practitioners. To this end, we only briefly elaborate the ansatz and its
properties before discussing numerical details of contraction, optimization, fermionic systems,
and the implementation of symmetries.

3.1 PEPS ansatz and properties

To give a practical example, we consider a generic many-body wavefunction |ψ〉 on a 3 × 3
cluster. In its most general form, the wavefunction can be expressed in terms of the rank-9
coefficient tensor Ψσ1

1σ
1
2 ... σ3

3
acting in the local Fock space |σx

y〉,

|ψ〉=
∑

σ1
1σ

1
2 ... σ3

3

Ψσ1
1σ

1
2 ... σ3

3
|σ1

1〉|σ1
2〉...|σ3

3〉 , (4)

where the integer indices x and y enumerate sites in the horizontal and vertical direction. The
local or physical index σx

y ∈ 1, ..., d labels states in the local Hilbert space at site r = (x , y).
Obviously, this generic representation suffers from an exponential system-size scaling, which
is reflected in the fact that the number of elements of Ψ is equal to the total Hilbert space
dN = d9. Here N denotes the total number of sites and the local dimension d describes the
total number of quantum states per site. Typical values are d = 2 for a spin-1

2 system or spinless
fermions, d = 3 for spin-1, and d = 4 for spinful fermions.

The key idea of the PEPS construction is to circumvent the exponential scaling in system
size by decomposing Ψ into a set of high-ranked tensors (in the following denoted M tensors).
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A PEPS representation for the wavefunction in Eq. (4) requires a total of nine M tensors,

|ψ〉=
∑

σ1
1σ

1
2 ... σ3

3
α1α2 ... α6
γ1γ2 ... γ6

M
σ1

1
α1γ1

M
σ1

2
α2γ1γ2

... M
σ3

3
α6γ6
|σ1

1σ
1
2 ... σ3

3〉 . (5)

Each tensor M has a set of virtual indices, αi for horizontal bonds and γi for vertical bonds,
connecting each M to its counterparts on up to four neighboring sites, according to the lattice
geometry. Following Sec. 2, the diagrammatic representation can be easily derived by intro-
ducing the diagram for a rank-5 “bulk” tensor

M
σx

y

αβγρ
= . (6)

The boundary tensors of a finite-size PEPS contain fewer legs. Since we focus on the transla-
tionally invariant formulation of PEPS in the following, we refrain from a detailed discussion
of various boundary conditions and the corresponding tensors [48].

In general, the number of M tensors in the PEPS representation is equal to the number
of sites in the system, e.g., N = L × L tensors for a square lattice of L × L sites. Starting
from Eq. (6), the diagrammatic representation of the full wavefunction |ψ〉 in Eqs. (4) and (5)
follows immediately,

= .

(7)

In principle, one can perform such a decomposition exactly for any arbitrary many-body wave-
function. For larger systems, however, the dimension of the virtual indices has to be increased
exponential which, for numerical purposes, is not practicable. Therefore, one limits the di-
mension of the virtual bonds of each PEPS tensor to some upper cutoff D [53]. Thus adding
an additional site (or row/column of sites) only leads to a polynomial increase in the number
of coefficients of the wavefunction. In numerical practice, D is used as a control parameter
for the numerical accuracy. It is typically restricted to D ≤ 8-16, depending on the model and
lattice geometry, because for larger values the numerical costs become unfeasibly high.

Restricting the bond dimension of the M tensors comes at a price: only a subset of states can
efficiently be represented by a PEPS, since D also limits the maximum amount of entanglement
that can be captured by the construction. Fortunately, this is perfectly in line with the area law
of the entanglement entropy in 2D, which is fully satisfied by a PEPS representation. Hence,
PEPS are ideally suited to approximate low-energy states, including the ground state of local
gapped Hamiltonians in two dimensions. Although this statement cannot yet be put on such a
mathematically rigorous foundation as 1D, it is strongly supported by numerical evidence [54].

Moreover, the PEPS representation has the remarkable property that, in contrast to MPS,
it is capable of faithfully representing algebraically decaying correlation functions, which are
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characteristic for gapless models. This can easily be shown for the example of the partition
function of the 2D Ising model [52]. Therefore, the PEPS ansatz is in principle able to also treat
critical ground state wavefunctions. In practice, however, this does not help substantially in the
context of 2D quantum criticality (the above mentioned example deals with classical and not
quantum criticality). Based on the quantum-to-classical correspondence, one would require a
3D PEPS construction to faithfully approximate a critical 2D quantum system. Thus, in reality
PEPS faces the same challenges in the context of gapless 2D systems as MPS treating critical
1D models: Both TN frameworks may yield results ranging from excellent to moderate quality
depending on the “severeness” of the area-law violation in a particular system [53].

3.2 iPEPS

For finite-size PEPS simulations, each M tensor is typically chosen to be different (similar to
MPS applications for finite systems). Alternatively, it is possible to exploit the translational
invariance of a system and directly work in the thermodynamic limit (of course, this approach
also works for MPS [55]). In this way, finite-size and boundary effects can be completely
eliminated.

In order to construct an infinite PEPS (iPEPS) [43], we first choose a fixed unit cell of a
certain size, and repeat it periodically to cover the entire infinitely large lattice. The size of
the fundamental unit cell directly translates into the number of different M tensors required
for the iPEPS representation. For instance, one can impose strict translational invariance and
choose a unit cell of size 1× 1,

|ψ〉= . (8)

The resulting iPEPS representation of |ψ〉 then requires only a single M tensor.
However, ordered ground states often break translational invariance to some degree. An

iPEPS ansatz of type (8) cannot capture this behavior. Therefore, it is advisable to relax the
translational invariance to some extent by choosing a larger unit cell. For example, the follow-
ing ansatz is fully compatible with a antiferromagnetic ground-state order using two different
M tensors in a 2× 2 unit cell:

|ψ〉= . (9)
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In principle, unit-cells of arbitrary size can be considered, e.g.,

|ψ〉= . (10)

The numerical costs scale linearly with the number of tensors in the unit cell, meaning that
large unit cells become numerically expensive. A natural guideline to evaluate which unit-
cell sizes should be considered in a simulation is to remember that the unit cell should be
compatible with the actual ground-state order. Otherwise, one does not obtain the actual
ground state from an iPEPS calculation. Instead, one ends up with the lowest-energy state for
the system constrained to the corresponding unit-cell geometry and, therefore, is restricted to
specific orders.

When studying systems with competing low-energy orders, the flexible unit-cell setup of
the iPEPS algorithm actually becomes a big advantage. By probing different unit cells, it
is possible to stabilize wavefunctions with competing orders independently. Comparing the
energies obtained from the corresponding simulations, one may then determine which order
survives in the ground state of the system [5,6].

3.3 Contractions

To extract local observables, perform overlaps, or to actually optimize the tensors, the (i)PEPS
framework requires contracting an (infinitely) large tensor network. This turns out to be much
more challenging than in context of MPS where, for example, overlaps can be evaluated exactly
with only polynomial costs in system size. For a PEPS tensor network, however, the calculation
of an exact overlap represents an exponentially hard problem [56] and cannot be performed
efficiently. Fortunately, there exist a variety of approximate schemes to deal with this issue.

In this review, we focus on the corner transfer matrix method (CTM) [57, 58], which is
particularly well suited for iPEPS applications on square-lattice geometries. Alternatively, it is
also possible to rely on an infinite MPS technique for the purpose of this work [43, 59, 60].
Other contraction schemes based on renormalization ideas, such as the tensor renormaliza-
tion group [15, 16], or tensor network renormalization [19, 20], do have some technical dis-
advantages (e.g., environmental recycling [47,61] is not possible, and difficulties arise when
calculating longer-ranged correlators, ect.), rendering them unsuitable for our purposes.

Before discussing the details of the CTM scheme for evaluating the scalar product 〈ψ|ψ〉,
we first introduce the corresponding diagram of 〈ψ| for the 3× 3 square-lattice toy example,

= ,
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(11)

which is a mirror image of Eq. (7). The contraction of 〈ψ|ψ〉 can be done site by site using
so-called reduced tensor m = M x†

y M x
y , which is obtained by tracing over the joint physical

index of M x†
y M x

y ,

mx
y (αα′)(ββ ′)(γγ′)(ρρ′) =

∑
σx

y

M
σx

y †

ργβα
M
σx

y

α′β ′γ′ρ′ =

= = , (12)

where the double indices (e.g., (αα′)) have dimension D2, as indicated by their increased line
thickness. In the second line, we redrew the lines representing indices γ and ρ in such a way
that pairs of corresponding primed and unprimed indices match up. This diagrammatically
performed “index bending” exploits the non-uniqueness of the graphical representation for a
tensor network [45]. This modification is completely trivial for bosonic iPEPS but will add
additional complications in the context of fermions [see Sec. 4].

To reduce the complexity of the TN diagrams appearing in the following, we introduce a
modified version of the conjugate tensor that automatically accounts for the index bending
discussed in Eq. (12):

= . (13)

This distinction may seem unnecessary at this point, since M̄ x†
y and M x†

y are mathematically
equivalent objects in the context of bosons. However, this is not the case for fermionic systems
[c.f. Eq. (61)]. Therefore, we emphasize the importance of this modification already here.

The scalar product 〈ψ|ψ〉 for this simple example is obtained by contracting all physical
and virtual index of the nine m tensors,

〈ψ|ψ〉 =
∗
=

9
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(13)
= =

= (14)

Note that the second step (
∗
=) also exploits the non-uniqueness of the diagrammatic repre-

sentation by employing a number of so-called “jump-moves” [45]. In these operations, it is
possible to drag a line over a tensor without changing the corresponding TN. For example, the
line connecting M2

3 and M3
3 was dragged downward acroos M3

2
†. Again, this modification is

trivial in context of bosonic PEPS, but nontrivial for fermionic PEPS [see Sec. 4].
Studying the small tensor networks in Eq. (14), it becomes obvious that the exact contrac-

tion of the expression scales exponential with system sizes. No matter in which order one
decides to contract the tensors, i.e., which “contraction pattern” one uses, one always gener-
ates an object with a number of open indices scaling with L (here L = 3).

3.3.1 Corner transfer matrix scheme

Since it is not possible to perform the exact calculation of a scalar product efficiently in the
PEPS nor in the iPEPS framework, one has to rely on approximate approaches. A particularly
powerful contraction scheme is based on ideas of the corner transfer matrix (CTM) renor-
malization group proposed by Nishino and Okunishi [57]. Their idea was later adapted by
Orús and Vidal [58] in the context of quantum systems to efficiently evaluate an iPEPS tensor
network contraction.

The key insight of the approach is to represent the infinitely large tensor network by a
small number of tensors, zooming into a 1×1 or 2×2 window of sites (in general, this might
be only a subset of the full unit cell, which in general has the size Lx × L y). The rest of the
system, the so-called “environment”, is represented by a set of corner matrices C and transfer
tensors T . For the 2× 2 subset embedded in the environment, this takes the form

⇒ ,

where the environmental tensor network is represented by a set of four corner matrices
(Clu, Cld , Cru, Crd with subscripts denoting the spatial location, i.e., l, r, u, d stand for left,
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right, up, down, respectively), and eight transfer tensors (two tensors for each direction,
Tl , Tr , Tu, Td , respectively). In this representation, a new set of virtual indices is introduced
connecting tensors of the environment only. As we discuss below, the dimension χ of these
indices acts as additional parameter controlling the accuracy of the environmental approxima-
tion (reasonable choices are χ ¾ D2).

Figure 1: CTM coarse graining move to the left lattice direction: (i) extra unit cell is
first inserted, and then column-wise integrated into the left part of the environment
by performing two subsequent (ii) absorption and (iii) renormalization steps.

CTM protocol.– The environmental tensors are obtained by performing directional coarse
graining moves in each direction of the lattice. Each coarse graining move consists of three
different steps: (i) insertion of an extra unit cell; (ii) absorption of a single row or column of the
unit-cell tensors into the set of environmental tensors in one lattice direction, leading to an en-
larged environmental bond dimension χD2; (iii) renormalization (or truncation/compression)
of the enlarged environmental tensors to their original size. Steps (ii) and (iii) are repeated
until the inserted unit cell has been fully absorbed into the set of environmental tensors in the
one particular direction. Next, an additional unit cell is inserted next to the original unit cell
in one of the other directions, and the move is carried out with respect to another direction of
the lattice. A full coarse graining step is completed after one move in each of the four lattice
directions (left, right, top, bottom) has been performed.

In the following, we illustrate this procedure for an iPEPS representation with a 2×2 unit
cell, using four M tensors that all have the property M x

y = M x+2
y = M x

y+2 = M x+2
y+2 (as in

Eq.9). A directional move to the left then includes the steps illustrated in Fig. 1. Note that
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the extra unit cell has been inserted horizontally on the left (this is also the case for a move
to the right). Moreover, two absorption and renormalization steps are carried out, at the end
of which the inserted unit cell has been fully integrated into the left part of the environment.
This set of operations yields an updated set of environmental tensors for the direction of the
coarse graining step.

We also sketch in Fig. 2 a coarse graining move towards the top of the lattice. In this case,

Figure 2: CTM coarse graining move to the top of the lattice: (i) extra unit cell is
first inserted, and then row-wise integrated into the upper part of the environment
by performing two subsequent (ii) absorption and (iii) renormalization steps (only
first step is shown).

the unit cell is inserted vertically. Then we follow the same protocol as for the left move. Only
the direction of the absorption and renormalization steps differs. After also carrying out these
coarse graining moves with respect to the other two lattice directions, a full coarse graining
step has been completed. The full cycle is typically repeated multiple times depending on the
correlation length in the system. For example, for a gapped system a few (∼ 10) steps may
be sufficient to obtain converged results. However, for a critical system, due to the absence of
the energy gap, the number of steps required to reach convergence in local observables can be
significantly larger, up to ¦ 100 steps.

Renormalization.– In addition to the number of steps performed, the convergence of the
results also strongly depends on the implementation of the renormalization step, which trun-
cates the environmental tensors after the absorption step. The renormalization is crucial for
the performance of the CTM scheme. However, its implementation details are not very straight-
forward, and currently there seems to be ample room for future improvement. The ambiguity
of implementation details is mostly caused by the lack of an exact canonical representation for
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a PEPS TN, which implies that there is no obvious optimal way of performing the truncation
(in contrast to an MPS tensor network, which can be truncated optimally even in the context
of translationally invariant systems [60]).

We list and comment on a number of different renormalization schemes. One corresponds
to the directional updated scheme proposed by Orús and Vidal in Ref. [58], which we found
to work well only in the context of very homogenous wavefunctions. This method takes only
small subsets of the environment into account and implicitly assumes full translational in-
variance when generating the projectors (or isometries) to perform the truncation. This ulti-
mately yields a very biased truncation pattern for inhomogeneous systems, where this method
is bound to fail. The second approach is based on the original CTMRG of Nishino and Oku-
nishi [57] and was first employed by Corboz, Jordan and Vidal Ref. [24] in the context of
iPEPS. In this case, the full environment is taken into account in each truncation step, which
presents a crucial advantage for simulating inhomogeneous states. On the other hand, it is
severely limited by machine precision, making it unstable for large values of environmental
bond dimension χ. This is far from ideal since it is desirable to use χ as additional control
parameter. To overcome these shortcomings, Corboz, Rice and Troyer Ref. [6] introduced a
third CTM variant that shows strongly improved convergence properties in comparison to the
original CTMRG scheme and, at the same time, overcomes the inhomogeneity issues of the
directional updated scheme. In the following, we sketch how to obtain the projectors used
to reduce the sizes of the environmental tensors after an absorption step in the left direction,
following Ref. [6]. The protocol works similarly for the other spatial directions of the lattice.

In the first step, we enforce two cuts in the tensor network consisting of the 2×2 unit-cell
subset embedded in the effective environment as follows

⇒ .

(15)

Our goal is to obtain projectors (or isometries) that are inserted after an absorption step at
a specific bond to “project” (or truncate/compress) the enlarged environmental Hilbert space
D2χ back to its original size χ. In this example, we specifically aim for the projectors to be
inserted into the two bonds split by the left cut.1 To this end, we contract the two upper and
lower parts of the tensor network, leading to rank-4 tensors Qu and Qd . By applying a singular
value (or QR) decomposition to both of these tensors, we obtain

= = . (16)

1Analogously, we could use (15) to obtain the projectors for the two split bonds on the right. This becomes
necessary when performing a CTM move into the right direction of the lattice.
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The product RuRd is then subjected to an additional SVD where only the χ largest singular
values are kept,

= ≈ ⇒ ≈ . (17)

Using the inverse matrices R−1
u and R−1

d , we generate the projectors P x
y , P̃ x

y that are inserted
at the left cut of the tensor network (15):

I = ≈ = . (18)

The protocol is repeated for the entire row of the unit cell to be absorbed into the environment
during this particular coarse graining step (i.e., L y times). In our example of an 2×2 unit cell,
we therefore also obtain P x

y+1 and P̃ x
y+1 (or alternatively P x

y−1 and P̃ x
y−1 due to translational

invariance) by considering the tensor network and repeating the procedure sketched above,

⇒ = .

(19)

Now we are fully equipped to renormalize the entire set of environmental tensor which are
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subject to truncation during an absorption step to the left,

= . (20)

What has been achieved is a scheme that compressed the bond dimensions of the environmen-
tal tensors along the left row in a way that encodes information from the full environment.
Thus we can appropriately deal with translational symmetry breaking in the iPEPS wavefunc-
tion. At the same time, this procedure leads to numerically stable results since we can eliminate
spurious parts of the SVD spectrum during the intermediate SVD decompositions in Eq. (16)
by discarding very small singular values (e.g., < 10−7). This helps to reduce the influence of
numerical noise in the subsequent steps.

Figure 3: A unit cell of size 3× 2 consists of six different M tensors (here denoted
M , N , O, P,Q, and R). For each of the six relative coordinates in the unit cell, we have
to obtain a 2×2 CTM representation (indicated by the solid and dashed squares, and
explicitly illustrated for two examples). Therefore, the CTM scheme here requires
storing 24 corner matrices and 24 transfer tensors in total.

Larger unit cells.– The CTM scheme can also deal with rectangular unit cells of arbitrary
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sizes containing Lx × L y = N different M tensors, where the relative position of each tensor
in the unit cell is labeled by its coordinate r = (x , y). To this end, we assign one set of corner
matrices and transfer tensors to each coordinate, requiring a total number of 4N corner matri-
ces and 4N transfer tensors to be stored independently. We illustrate this approach for a 3×2
unit cell in Fig. 3. After initialization (see below), the environmental tensors are then itera-
tively updated by performing coarse graining moves in all four lattice directions, as outlined
above. However, an entire CTM cycle now includes Lx coarse graining steps to the left and
right, respectively, as well as L y coarse graining steps to the top and L y to the bottom of the
lattice. Note that using a larger zooming window is not an option, since the numerical costs
quickly become unfeasible.

Initialization.– While covering the coarse graining procedure to obtain the converged en-
vironmental tensors, we have not yet discussed the initialization of the CTM scheme. In prin-
ciple, one could start from an arbitrary set of corner matrices and transfer tensors. However,
choosing a completely random set can significantly increase the number of coarse graining
steps required for obtaining a stable environment TN and sometimes even cause numerical
instabilities. In practice, we found that optimal convergence is achieved by starting from an
environmental tensor set formed by the corresponding M x

y tensors and their conjugates, which
previously have been generated by means of ground-state optimization [see Sec. 3.5]. We il-
lustrate this initialization procedure for two examples,

= , = . (21)

Effective contraction pattern.– The numerical costs of implementing the square-lattice CTM
scheme presented above scales as O(D6χ3), with iPEPS bond dimension D and environmental
bond dimension χ. Note that these costs are equivalent to those of the infinite MPS method
from Ref. [43]. Assuming that χ =O(D2), we end up with a total cost scaling of O(D12) for the
iPEPS algorithm. The underlying assumption behind this cost scaling is that all contractions are
carried out as efficiently as possible, which forces us to pay some attention to the contraction
patterns. In particular, we cannot directly work with the reduced tensors mx

y , but rather need

to perform contractions involving M x
y and its conjugate M x†

y sequentially.
This is illustrated below for contracting a part of the diagram in Eq. (15). First consider

the case explicitly using the reduced tensor mx
y ,

= = .

(22)

Counting the involved indices in the dashed box, it becomes clear that the last contraction step
scales rather unfavorably as O(D8χ2).
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If we want to achieve the optimal scaling O(D6χ2d) in this step, we have to contract over
M x

y and M x†
y sequentially,

= =

= (23)

The same applies to contraction orders of other TN such as, for example, the one shown in
Eq. (20) and many others. It pays off to constantly pay attention and ensuring that the optimal
contraction pattern is used when implementing an iPEPS algorithm. Otherwise, the backlash
of an inefficient iPEPS implementation will quickly become apparent, since simulations with
moderate to large D will not be feasible. Note that the most expensive steps of the CTM algo-
rithm occur when generating the projectors. To obtain the tensor Qu in Eq. (16), for instance,
one has to perform the contraction,

. (24)

This always yields a cost scaling of O(χ3D6) which cannot be reduced further.

3.4 Expectation value

The CTM scheme enables us to evaluate observables within the iPEPS framework. For this
case, we consider a simple two-site observable Ô(x+1,y)

(x ,y) which, for example, represents a spin-
spin correlation function involving two neighboring sites. To compute an approximation for
the expectation value 〈Ô(x+1,y)

(x ,y) 〉 = 〈ψ|Ô
(x+1,y)
(x ,y) |ψ〉/〈ψ|ψ〉, we represent the environment of

the two contiguous sites r = (x , y) and r ′ = (x , y + 1) in terms of the corner matrices and
transfer tensors encountered in the last section,

〈ψ|Ô(x+1,y)
(x ,y) |ψ〉χ =
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=

= . (25)

The contraction of the final tensor network, consisting of the six environmental tensors E1, ... , E6,
the two M tensors, their conjugates, and the operator Ô can be carried out efficiently. It pro-
duces an approximation of 〈ψ|Ô(x+1,y)

(x ,y) |ψ〉 ≈ 〈ψ|Ô
(x+1,y)
(x ,y) |ψ〉χ which is generally expected to

deviate from the exact value due to the non-exact representation of the full tensor network.
The correct value of 〈ψ|Ô(x+1,y)

(x ,y) |ψ〉/〈ψ|ψ〉 ≈ 〈ψ|Ô
(x+1,y)
(x ,y) |ψ〉χ/〈ψ|ψ〉χ should be recovered

in the limit χ →∞. In practice, one evaluates Eq. (25) for a number of different values of
χ = 10, 20, ..., 100, 150, ... until the observable shows no more significant dependence on χ.
The required value for χ to obtain converged results strongly varies depending on the physical
properties of the corresponding system and the employed iPEPS bond dimension D. If one is
already well within the relevant low-energy critical regime, it can therefore be useful to ex-
trapolate observables towards 1/χ → 0 and 1/D → 0 [62, 63]. A theoretical justification for
such an approach is based on the theory of finite entanglement scaling, which has been well
analyzed in the one-dimensional scenario [64–67].

3.5 Ground state search

An iPEPS is an approximate representation for the ground-state wavefunction of a local Hamil-
tonian on a two-dimensional lattice. Having addressed the contraction issue by means of the
CTM scheme [see previous Sec. 3.3], the remaining open question concerns finding the ground-
state iPEPS representation, given some Hamiltonian Ĥ with only nearest-neighbor interactions.
(Albeit technical more complicated, iPEPS can also treat longer-ranged interactions, for more
details see Ref. [24,38].)

Here we follow the strategy proposed in the original iPEPS formulation by Jordan, Orús,
Vidal, Verstraete and Cirac [43], and use the imaginary time evolution to target the ground
state,

|ψ0〉= lim
τ→∞

e−τĤ |ψ〉����e−τĤ |ψ〉
���� . (26)

The time-evolution operator e−τĤ is further decomposed by Suzuki-Trotter decomposition,

e−Ĥτ ≈
Nb∏
j=1

e
−ĥx ,x′

y,y′τ +O(τ2), (27)
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where ĥx ,x ′
y,y ′ describes the local interaction terms acting on a pair of nearest-neighbor sites in

the unit cell, and Ĥ =
∑
〈(x ,y),(x ′,y ′)〉 ĥ

x ,x ′
y,y ′ . The two-site gates, e

−ĥx ,x′
y,y′τ, are subsequently applied

to the corresponding pairs of M tensors, M x
y and M x ′

y ′ . As in the case of MPS, the resulting
tensor has to be truncated accordingly to restore the original form of the iPEPS representation.

In the MPS framework, the truncation can be implemented in an optimal way using the
canonical form of the MPS and employing a single singular value decomposition. In the con-
text of iPEPS, this step turns out to be more evolved. Due to the lack of an exact canonical
form for the iPEPS, one has to rely on approximate techniques to account for the effects of the
environment when employing the truncation. This can be done using several different opti-
mization schemes, such as the simple update [68] and the full update [43]. We discuss both of
these approaches extensively in the rest of this section.

Although not employed in the context of this review, we also note that two groups recently
introduced alternative optimization schemes, which do not rely on imaginary time evolution
[21,22]. Instead, they implement a variational update method,

min
{M x

y }
�
E0

�
=
〈ψ0|Ĥ|ψ0〉
〈ψ0|ψ0〉

. (28)

The major technical challenge of these newly developed schemes is to find an approximate,
yet accurate, representation for the full Hamiltonian Ĥ. Corboz [21] achieves this based on
a modified CTM scheme, while Vanderstraeten, Haegeman, Corboz and Verstraete [22] build
on MPS techniques. In addition, it is still unclear how to optimally translate the local update
performed on a pair of tensors to the iPEPS representation in the infinite system. Despite
these issues, both variational optimization techniques already obtain very impressive results,
illustrating that the iPEPS formalism will continuously improve and become more competitive
in the near future.

3.5.1 Bond projection

In this work, we only consider the optimization via imaginary-time evolution based on two-
site Trotter gates, which implies that we constantly have to update two neighboring M tensors
at once (i.e., there is no one-site version of this algorithm). Hence, it is essential to perform
the tensor updates as efficiently as possible. Treating the full M tensors in this context turns
out to be numerically very inefficient (i.e., numerical costs of O(D12) in the context of the full
update). Instead, it is always advisable to perform the tensor update on two subtensors with
lower rank which are easily obtained by a bond projection [69], leading to a significant cost
reduction (i.e., O(D6d3) [47]. Note that this scheme does not introduce further approxima-
tions since the two-site Trotter gate only changes properties of the corresponding bond but
leaves the remaining bonds of the iPEPS tensors unchanged.

The bond projection is obtained by performing two exact SVD (or QR) decompositions:

= =

= . (29)
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The tensor optimization now only affects the subtensors v x
y and wx+1

y , whereas the remain-
ing bonds are shifted into the subtensors X x

y and Y x
y , which can be treated as parts of the

environment tensor network during the optimization.
Each tensor update is initialized by applying the corresponding Trotter gate in the bond

projection,

e−ĥx ,x+1
y,y τ|ψ〉 =

=

= = |ψ(ṽ, w̃)〉 . (30)

The Trotter gate increases the initial bond dimension D of the subtensors v x
y and wx+1

y . Restor-

ing the original representation exactly yields a pair of enlarged subtensors ṽ x
y and w̃x+1

y with
bond dimension dD (illustrated by the increased line thickness in Eq. (30)). In a next step, we
have to find an appropriate truncation scheme to obtain a pair of subtensors v′xy and w′x+1

y
with the original bond dimension D to prevent an exponential blowup of the iPEPS tensors.

In the following, we present two different truncation methods: (i) the simple update [68],
a numerically very efficient and fast approach which, however, relies on a strong simplification
of the environmental tensor network and thus carries out the truncation in a suboptimal way;
(ii) the full update scheme [43] which leads to an optimal truncation by incorporating the
effects of the entire wavefunction appropriately. However, the full update comes at the price
of requiring significantly more numerical resources.

3.5.2 Simple update

The simple update, introduced by Jiang, Weng and Xiang Ref. [68] is formulated in a slightly
modified iPEPS representation. So far, we only dealt with M tensors located directly at sites of
the lattice. For the simple update we put an extra set of tensors on the bonds of the iPEPS tensor
network. These tensors, here labeled λx

y for horizontal and λ̃x
y for vertical bonds, are diagonal

matrices similar to those used in Vidal’s TEBD and iTEBD formulation for time-evolving matrix
product states [59,70].

Starting from the standard iPEPS representation that has been adopted in this review, so
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far, it requires only a minor adaption to translate into this modified representation,

= , (31)

where Γ x
y in combination with the roots of all four bond tensors yields the original M x

y tensor.
The key idea of the simplified update is to approximate the full environment of two neighboring
sites, r = (x , y) and r ′ = (x+1, y), by only the diagonal tensors surrounding this pair of sites.
This procedure is adopted from MPS-based time evolution via the iTEBD algorithm.

To perform the simple update explicitly, we switch first into the bond projection to carry
out the optimization more efficiently. We illustrate the projection here explicitly since different
tensors are involved in the modified iPEPS representation,

=

= . (32)

Now the Trotter gate is applied to the subtensors on the bond, adding entanglement and po-
tentially increasing the bond dimension to dD. To obtain the pair of subtensors v′xy and w′x+1

y
with the original bond dimension D, the simple update relies on a simple SVD,

=

=

=

= . (33)

No extra iteration or optimization is required to complete the update (hence, the name “simple”
update). The updated diagonal bond matrix λ′xy contains the D largest singular values, the

optimized subtensors are obtained from v′xy = U and w′x+1
y = V †.
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To restore the form of the iPEPS tensors from Qx
y and Qx+1

y , we apply the inverse of the
additional bond tensors, which have not been altered by this optimization step,

= , = . (34)

The simple update is particular appealing due to its low complexity and high numerical effi-
ciency; the truncation based on a plain SVD in Eq. (33) only scales with O(D3d6) operations.
Yet, the truncation itself cannot be considered optimal in the context of iPEPS. It would have
been optimal if we had gauged the surrounding bonds in such a way that they exclusively
contain orthonormal basis sets. Unfortunately, this is only possible if the environment is sepa-
rable, as in the case of MPS or other tensor networks without loops. In fact, one can show that
a tensor optimization performed in this way presents an optimal update for an infinite tensor
network on a Bethe lattice [69].

Any iPEPS representation on a standard 2D lattice, however, does feature loops, which
means that we cannot separate the environment into two blocks and find a gauge with or-
thonormal basis sets on all surrounding bonds. Hence, the simple update introduces a sys-
tematic error, as it does not properly account for the full environment of the bond during the
optimization. The magnitude of this error turns out to be less severe than one might expect.
Especially for systems in gapped phases, the simple update leads to excellent results [45].
Moreover, its numerical efficiency often allows simulations with larger bond dimensions com-
pared to the full update; thus it can give access to complex systems which remain out of reach
for full-update calculations.

We conclude this section with a few practical comments concerning the implementation of
the simple update:

• For a generic unit cell, the simple update is employed sequentially on all bonds in the
system. One can easily work with a second-order Trotter decomposition by reversing the
application order of the gates in every second step.

• The normalization of the tensor network can be conveniently achieved on the fly by
normalizing the trace of each updated diagonal bond matrix λ′xy to unity. This procedure
leads to a numerically fully stable algorithm.

• To obtain a meaningful representation of the ground state by means of imaginary-time
evolution, we start from a random set of tensors and use a fairly large time step
τ=O(10−1). A large initial time step is important since it minimizes the risk of getting
stuck in a local energy minimum and, in case of symmetric iPEPS implementation, it en-
ables us to dynamically adapt the symmetry sectors on the bonds (starting from a very
small time step, one can get stuck in the initial symmetry configuration and not reach all
relevant sectors). To decrease the effect of the Trotter error, we then gradually reduce
τ as soon as we observe convergence with respect to the SVD spectra (typically after a
few hundred or thousand time steps). After reaching a time step of the order O(10−5),
the ground-state wavefunction is typically converged.

• Measurements of observables are performed with the converged iPEPS representation,
obtained from the simple update, as input for the CTM scheme. Relying on CTM, this
leads to a total numerical cost scaling of O(χ3D6), which is, in principle, equivalent to
the cost scaling of the full update. In the latter, however, the full environment has to be
calculated in every step and not just at the end to perform measurements.
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3.5.3 Full update

The full update introduced by Jordan, Orús, Vidal, Verstraete and Cirac [43] represents a clean
and accurate protocol for performing the tensor update during imaginary-time evolution. Its
name is derived from the fact that the effects of the entire wavefunction on the bond tensors
are considered, including the full environmental TN. The only approximation stems from the
non-exact contraction of the environmental TN, which we carry out based on the CTM scheme
[see Sec. 3.3.1].

After the application of the Trotter gate in Eq. (30), the full update generates the optimized
pair of subtensors v′xy and w′x+1

y with bond dimension D by minimizing the squared norm
between |ψ(v′, w′)〉 and the wavefunction |ψ(ṽ, w̃)〉 containing the exact subtensors ṽ x

y and

w̃x+1
y with enlarged bond dimension dD,

d(ṽ, w̃, v′, w′) =
����|ψ(v′, w′)〉 − |ψ(ṽ, w̃)〉

����2 . (35)

To minimize Eq. (35) with respect to v′xy and w′x+1
y , we first have to obtain an effective repre-

sentation of the environment with respect to the bond to be updated (marked red):

. (36)

This is achieved via the CTM scheme, leading to an approximate representation of the envi-
ronment in terms of corner matrices and transfer tensors,

=

(37)

As in the case of the simple update, we carry out the tensor update for efficiency reasons
in the bond projection, as discussed above. In order to generate the full environment in this
representation, we have to account for the subtensors X x

y and Y x+1
y as well as their conjugates,

and multiply them to the effective environment shown in Eq. (37), obtaining

= . (38)
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In this way, it is possible to represent the cost function (35) diagrammatically,

d(ṽ, w̃, v′, w′)
= 〈ψ(v′, w′)|ψ(v′, w′)〉+ 〈ψ(ṽ, w̃)|ψ(ṽ, w̃)〉 − 〈ψ(v′, w′)|ψ(ṽ, w̃)〉 − 〈ψ(ṽ, w̃)|ψ(v′, w′)〉

= +

− − . (39)

d(ṽ, w̃, v′, w′) is a quadratic function of the tensors v′xy and w′x+1
y . Thus, the optimized sub-

tensors can be found using an alternating least-square algorithm [43].
To this end, we can first optimize v′xy while keeping w′x+1

y fixed. Analogous to the MPS

compression, we form the partial derivative of Eq. (39) with respect to v′†,x
y ,

∂

∂ v′†
d(ṽ, w̃, v′, w′) !

= 0 ⇒ = . (40)

The solution for v′xy in Eq. (40) is found by inverting R. Using the bond projection, the in-

version can be computed exactly with moderate numerical effort O(d3D6). The full M tensor
representation, on the other hand, leads to an unfeasible costs of O(D12) for the exact inver-
sion, and O(D8) employing approximation methods.

After obtaining the optimized subtensor v′xy , we next update w′x+1
y while keeping v′xy fixed

by forming the partial derivative of Eq. (39) with respect to w′†,x+1
y ,

∂

∂ w′†
d(ṽ, w̃, v′, w′) !

= 0 ⇒ = . (41)
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The solution for w′x+1
y is again computed by matrix inversion of R.

This alternation process is repeated until the subtensors v′xy and w′x+1
y converge. Monitor-

ing the cost function d(ṽ, w̃, v′, w′) after every iteration step i, the convergence is detected by
means of a fidelity measure which, following Phien, Bengua, Tuan, Corboz and Orús [47], can
be defined as

fd = |di+1 − di|/d0 . (42)

The alternating optimization is stopped in case fd drops below some small threshold
εd =O(10−10) while showing no sign of large fluctuations.

Equipped with the converged subtensors v′xy and w′x+1
y , the original iPEPS form is then

restored,

= , = , (43)

so that we can apply the next Trotter gate and repeat the full update optimization.

3.5.4 Alternative approaches

By accounting for the entire many-body wavefunction of the infinite system, the full update
provides an optimization scheme that is free from the systematic error plaguing the simple
update. Only the CTM representation of the effective environment induces some approximate
character to the algorithm. The high accuracy of the method, however, comes at the price
of drastically enhanced numerical costs since the full effective environment, in principle, has
to be calculated after the application of every single Trotter gate (i.e., typically thousands of
times). The fast-full update [47], where one updates the effective environment and site tensors
simultaneously, offers an immediate improvement to this problem. Another possibility is the
cluster update [71, 72], a hybrid version of the simple and the full update, which takes into
account an improved, yet not complete version of the effective environment. Also, we note
that it may be possible to achieve improvements in accuracy when computing the environment
by properly removing the short-range entanglement residing in loops. To this end, it may
be fruitful to combine the CTM method with other entanglement filtering algorithms, such
as the Loop-TNR algorithm [73], graph-independent local truncation [74], full environment
truncation [75], or entanglement branching [76].

Besides imaginary time evolution based algorithms, gradient-based energy minimization
algorithms have also been found to be useful [22, 77, 78]. In particular, an automatic dif-
ferentiation (AD) approach can be applied to reduce the complexity of the implementation,
as the evaluation of gradients involves a huge number of summation of tensor environments
[77,79–83], which always needs to be done iteratively in any case. The prescription is generic,
and may therefore also be attractive when combining AD techniques with non-abelian iPEPS
in the future.

3.5.5 Gauge fixing

A well-known technical fact in the context of MPS is that the gauge degree of freedom on the
bond indices can be efficiently exploited to generate a canonical representation [84]. Through
the correct gauge, the effective environment of a specific bond, or rather its tensor network
representation, can be replaced by identity matrices, ensuring numerical precision and stabil-
ity of the MPS framework. The success of this scheme is closely linked to the fact that the
environmental tensor network of an MPS is separable, such that the left and right block can be
gauged independently. In the case of PEPS and iPEPS, the environment no longer factorizes
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into different blocks, due to the presence of loops in the tensor network. In other words, cut-
ting the TN at a single bond does not yield a bipartition of the system (as in the case of MPS),
and therefore no full canonical PEPS or iPEPS representation exists.

Nevertheless, it is still possible to exploit the gauge degree of freedom on the bonds to
improve the stability of the algorithm. Inspired by the 1D gauging protocol, Lubasch, Cirac,
and Bañuls [48] recently introduced a gauge-fixing prescription for finite PEPS calculations
that was later adapted in the context of iPEPS by Ref. [47]. It yields a significantly better
conditioned effective environment and thus strongly improves the stability of the tensor opti-
mization during the full update.

The gauge protocol [48] starts from the effective environment in the bond projection (38)
which, after symmetrization, is subject to an eigenvalue decomposition,

= ≈ = . (44)

During this process, we remove the contributions from small negative eigenvalues to restore
the positivity of Efull. Next we independently apply a QR and LQ decomposition to the tensor
Z ,

= = , (45)

and insert two identities LL−1 and R−1R, into the left and right bond indices of the effective
environment, respectively. This yields a renormalized pair of subtensors v̄ x

y and w̄x+1
y and a

modified environment Ēfull:

= . (46)

Moreover, one also has to apply the inverse L−1, R−1 to the subtensors X x
y and Y x+1

y , respec-
tively, so that the full M tensors can be restored properly after the tensor update [c.f. Eq. (43)],

= , = . (47)

4 Fermionic tensor networks

For the tensor network representations discussed so far, we implicitly restricted our discus-
sion to bosonic quantum many-body models. However, some of the most challenging and
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interesting open questions with respect to the physics of strongly correlated systems involve
fermions. Especially in two dimensions, the t-J model, the Hubbard model, and its multi-band
extensions continuously attract much attention, since they are believed to play an important
role for understanding of high-Tc superconductivity and quantum criticality. Due to the lack
of alternative approaches (QMC is particularly limited by the sign problem in this context),
much hope is set on tensor network techniques to treat these complex fermionic models under
controlled conditions.

TN representations can incorporate fermionic statistics in any spatial dimension, and sev-
eral different approaches have been developed for its efficient implementation, being mathe-
matically all equivalent [45,46,85–89]. The most useful point of view for practitioners is that
taken by Corboz and Vidal [85], adapted to the iPEPS by Corboz, Orús, Bauer and Vidal [45].
It fully implements the fermionic exchange rules in terms of modifications to the tensor net-
work diagrams. In the following, we briefly review the main ingredients for fermionic tensor
networks, mostly following [45], although not with the same formal rigor, to keep the presenta-
tion compact. We refer to Sec. 4.4 for technical details on the fermionic iPEPS implementation
in combination with non-abelian symmetries.

For simplicity, we focus on a lattice of spinless fermions with a local Hilbert space dimension
d = 2 on every site (though everything can easily be generalized to fermions with d > 2 [45]).
The fermionic statistic of this model is typically treated at the level of operators, specifically
by the anticommutation relations of the fermionic annihilation and creation operators, ĉ j and

ĉ†
j ,

{ĉ j , ĉ†
j′}= δ j j′ {ĉ j , ĉ j′}= 0 . (48)

In addition, one always imposes some fermionic ordering of the sites, such that a fully occupied
state on the lattice containing N sites can be expressed by means of second quantization using
the vacuum state |01〉|02〉 ...|0N 〉 and an ordered sequence of creation operators,

|11〉|12〉 ... |1N 〉= ĉ†
1 ĉ†

2 ĉ†
3 ... ĉ†

N |01〉|02〉 ... |0N 〉 . (49)

Starting from the techniques discussed in the context of bosonic systems, how can we incor-
porate the fermionic statistic into the framework of tensor networks? One possibility is to
employ a Jordan-Wigner transformation to represent the fermionic operators in terms of Pauli
matrices. In this way, the fermionic operator ĉ j is expressed in terms of bosonic operators
in a non-local form, which can be described by a so-called Jordan-Wigner string acting on all
sites j′ < j that appear “earlier” in the fermionic order of Eq. (49) [90]. These strings can be
treated efficiently in the MPS framework, where it is always possible to choose the fermionic
order j equivalent to the position of a site in the MPS chain mapping. However, it leads to
severe complications in the context of PEPS, where two nearest-neighbor sites r = (x , y) and
r ′ = (x + 1, y) on the lattice might appear far apart in terms of their fermionic order j and
j′ [45].

To retain the “locality” of the iPEPS algorithm as well, we here adopt a different approach
for the treatment of fermionic statistic in the tensor network language. This formulation builds
on two simple “fermionization” rules discussed below, that were pioneered in the context of
fermionic MERA by Refs. [85] and [46], and later adapted to the PEPS and iPEPS framework
[45].

4.1 Parity conservation

A Fermionic Hamiltonian typically preserves the parity of the particle number of the state it
acts on, defined to be p = 1 or −1 for an even or an odd number of particles, respectively.
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This Z2 parity symmetry enables us to define wavefunctions and operators in terms of a well-
defined parity quantum number p, resulting in a block structure in the tensor network. In
particular, every index of a tensor can be assigned a well-defined parity.

The first fermionization rule enforces parity conservation in a TN representation. To this
end, all tensors have to be chosen to be parity preserving. Taking a generic element of some
M tensor as example, it means that

M
[σx

y ]

αβγρ
= 0 if p(α)p(β)p(γ)p(ρ)p(σx

y) = −1 , (50)

with p(α) ∈ {−1, 1} describing the parity of the state labeled by the index α [45]. This imme-
diately has the consequence that operators changing the parity number of a state, such as ĉ j
have to be encoded with an additional index (see below). Parity conservation does not directly
capture the fermionic statistic. However, it is crucial in order to track the fermionic signs, since
we are able to distinguish states containing an even or odd number of fermions.

4.2 Fermionic swap gates

The second fermionization rule of [85] incorporates the fermionic statistics into the tensor
network formalism. It implies that each line crossing in the TN is replaced by a fermionic
swap gate,

Ŝαβ
β ′α′ = δαβ ′δβα′ S(α,β) = , (51)

with S(α,β) = −1 if p(α) = p(β) = −1 and S(α,β) = 1 otherwise.
Why do the swap gates mimic the anticommutation relations of the fermions? Each line

of the TN diagrams corresponds to a fermionic degree of freedom representing either physical
(site indices) or virtual particles (bond indices). Any line crossing then corresponds to a parti-
cle exchange [85]. The implication of such an exchange depends on the nature of the particles.
In the case of bosons such a swap is a trivial operation without any consequence. In the context
of other particles, such as fermions, the underlying particle statistic does yield non-trivial con-
sequences. For instance, additional factors of −1 have to be multiplied to the tensor network
when swapping two states with odd fermionic parity number. Thus, the fermionic statistic of
any tensor network can be captured by adding swap gates of type (51) to the diagrammatic
representation. As a prerequisite, one has to be able to read out the parity of every index in
the TN (hence, the first rule).

We emphasize that the fermionization rules can be readily implemented into any standard
bosonic TN algorithm without altering the leading numerical costs, since the swap gates can
typically be absorbed into a single tensor [85]. All steps can be performed completely analo-
gously. In our iPEPS implementation we were able to recycle most parts of our code for bosonic
systems by simply adding swap gates at the appropriate lines.

4.3 Fermionic operators

Another prerequisite to capture the fermionic statistic in a TN representation relates to the
proper definition of local fermionic operators. Consider a generic two-site operator Ôi j acting
on sites i and j, with j > i not necessarily labeling contiguous sites in terms of the imposed
fermionic order. Applied to a generic wavefunction, the resulting TN diagram contains a num-
ber of fermionic swap gates (illustrated in detail for MPS and iPEPS below). The impact of
these gates on the wavefunction can be interpreted as swapping the physical index of site i
such that it becomes contiguous to j with respect to the fermionic order. But this alone does
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not fully account for the fermionic statistics. In addition, the fermionic order of the local two-
site Hilbert space generated by sites i and j has to be properly incorporated on the level of the
operators, which leads to factors of −1 for some matrix elements.

While easily generalizable to arbitrary systems [45], we illustrate this briefly for the simple
example of spinless fermions, where the operator is expanded in the two-site basis
|σiσ j〉= (c†

i )
σ j̃ (c†

j )
σ j |0i0 j〉, with σ j ∈ {0,1}:

Ô =
∑

σ′iσ
′
j

σiσ j

O
σ′iσ

′
j

σiσ j
|σiσ j〉〈σ′iσ′j| . (52)

The coefficients O
σ′iσ

′
j

σiσ j
are given by

O
σ′iσ

′
j

σiσ j
= 〈σiσ j|Ô|σ′iσ′j〉= 〈0i0 j|(ĉi)

σi (ĉ j)
σ j Ô(ĉ†

i )
σ′i (ĉ†

j )
σ′j |0i0 j〉 . (53)

If the operator describes a pairing term, Ô = ĉi ĉ j , the only non-vanishing coefficient is

O
1i1 j

0i0 j
= 〈0i0 j|ĉi ĉ j ĉ

†
i ĉ†

j |0i0 j〉= −1 . (54)

A standard hopping term Ô = ĉ†
i ĉ j also has only a single nonzero element,

O
0i1 j

1i0 j
= 〈0 j′0 j|ĉi ĉ†

i ĉ j ĉ
†
j |0i0 j〉= 1 . (55)

We conclude this part with an additional comment on operators that change the parity of
a state, such as Ô = ĉ j . The first fermionization rule restricts our TN description to parity
preserving tensors, as defined in Eq. (50). Naively, this would imply that simple annihilation
or creation operators could not be properly described by fermionic TNs, since their tensor
representation does not conserve fermionic parity. However, any parity changing tensor can
be represented by a parity conserving tensor just by adding an additional single-valued index
δ with p(δ) = −1 [45]. For instance, the diagrammatic form ĉ j is then given by

(ĉ)
σ′j
σ j ,δ
= , (56)

where the red line indicates that δ only takes a single value, i.e., represents a singleton dimen-
sion in a rank-3 tensor. This representation ensures that the only nonzero element, (ĉ)

1 j

0 j ,δ
, now

satisfies Eq. (50):
p(1 j)p(0 j)p(δ) = (−1)(+1)(−1) = 1. (57)

4.4 Fermionic PEPS implementation

To enter this discussion, we return to our finite-size PEPS example on a 3 × 3 square-lattice
cluster used in the beginning of Sec. 3.1. Recall that each site is labeled according to its coor-
dinate in space, r = (x , y), so that the local basis states are denoted by |σx

y〉. In addition, we
now have to decide on a specific fermionic order and use an additional label j, running from
1 to 9, to enumerate all sites of the system, |σx

y, j〉 (the red color of the fermionic index acts as
guide for the eyes). Thus, a specific state in the Fock space can be expressed as

|σ1
1,1〉|σ1

2,2〉...|σ3
3,9〉= (ĉ†

1)
σ1

1(ĉ†
2)
σ1

2 ... (ĉ†
9)
σ3

3 |01
1,1〉|01

1,2〉...|03
1,9〉 . (58)
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Diagrammatically, this ordering always corresponds to the order in which the open indices of
the wavefunction |ψ〉 are drawn, and directly affects the specific appearance of the PEPS TN,

(59)

= .

We emphasize that a different fermionic order automatically leads to a different diagrammatic
representation, where the swap gates (black diamonds) potentially act on a different set of
bonds. In this work, we only consider the fermionic ‘zig-zag‘ order of Eq. (59) which (i) can
also easily be applied to an infinite lattice system and (ii) enables us to recycle all bosonic
iPEPS diagrams depicted in Sec. 3.1. For an explicit example of imposing another fermionic
order, see Ref. [45].

After obtaining the proper diagrammatic form of the PEPS, all subsequent operations follow
in complete analogy from the bosonic case. The only additional feature are the swap gates,
which are put on every line crossing. For instance, an overlap calculation 〈ψ|ψ〉, derived in
Eq. (14) for the bosonic PEPS by performing a number of jump moves, is carried out similarly
for a fermionic system,

(60)

〈ψ|ψ〉 = = .

To reduce the complexity of the diagram, we again introduced a modified representation M̄ x†
y

of the conjugate tensors in the second step of Eq. (60). In contrast to the bosonic case, where
M̄ x†

y and M x†
y are mathematically equivalent objects [see Eq. (13)], we emphasize that M̄ x†

y
here includes two fermionic swap gates that are absorbed into the tensor, according to

= . (61)

4.5 Fermionic iPEPS implementation

Considering fermions in an infinite lattice system, the protocol of imposing a zig-zag fermionic
order on the lattice can be adopted in a very straightforward manner [45]. In hindsight,
we already implied this kind of ordering when drawing the iPEPS diagrams in Sec. 3.1. The
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extensions from the bosonic to the fermionic case is easily achieved by the presence of the
fermionic swap gates at line crossings.

In most iPEPS applications, the modified definition of the conjugate tensor M̄ x†
y , (61), and

the fermionic version of the reduced tensor mx
y

= (62)

simplify the algorithm by a great deal. For instance, the calculation of an overlap 〈ψ|ψ〉 can
even be represented diagrammatically without any swap gates present,

(63)

= .

In principle, this would also enable us to carry out the coarse graining steps in the CTM cal-
culation exactly in the same way as in bosonic iPEPS in terms of the reduced m tensors. To
perform the algorithm with an efficient cost scaling, however, the M tensors and their con-
jugates have to be kept separated [see Sec. 3.3]. This typically leads to the presence of four
additional swap gates for each site (only two when using M̄ x†

y ).
The strategy of incorporating the swap gates appearing in a TN is to absorb them into one

single tensor [85]. Depending on the TN, this is not always possible in the very first contraction
step. Nevertheless, every swap gate can typically be absorbed at some intermediate contraction
step. We illustrate this procedure for the contraction of parts of the CTM environment,

= =

= =
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= . (64)

Swap gates also appear in the context of tensor optimization and the evaluation of a two-site
operator, such as,

〈ψ|Ô|ψ〉= . (65)

We conclude this section by pointing out the modifications to the full-update protocol in the
context of fermions. Again, most of the steps are exactly the same as in the bosonic version of
the algorithm. In particular, the actual tensor optimization does not contain any swap gates
due to the absence of line crossings in Eq. (39). However, the initialization slightly differs since
one has to account for the presence of swap gates when performing the bond projection,

=

= (66)

Importantly, the swap gate acts differently on the conjugate tensors, so that the conjugate
subtensors have to be generated by two independent SVD or QR decompositions,

=

= . (67)

The tensor network representation of the effective environment also contains an additional set
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of swap gates,

Efull = . (68)

Whereas the tensor optimization does not differ from the bosonic formulation, the restoration
of the actual iPEPS representation after the update works in a slightly modified way,

= = . (69)

Compared to the bosonic case in Eq. (43), we have to account for the additional swap gate.

5 Implementation of symmetries

The exploitation of symmetries, where available, is very important for writing efficient tensor
network codes. In this Section we address various aspects of this issue.

5.1 Abelian symmetries

For a lattice model with abelian symmetries, quantum states can be labeled |ql〉, where q is an
abelian “charge” quantum number, and l distinguishes different states with the same charge.
Consider the simplest non-trivial example of a rank-3 tensor A, which fuses the tensor product
of two elementary state spaces with abelian symmetry, |q′m〉 and |q′′n〉, into the combined
tensor product space |ql〉. This operation can be expressed as

|ql〉=
∑
q′ l ′

∑
q′′ l ′′
|q′l ′〉|q′′l ′′〉 (Aq

q′q′′)
l
l ′ l ′′ . (70)

To reflect the system’s abelian symmetry, the A tensor carries a q-label for the symmetry sector
of each of the indices l, l ′ and l ′′. From a numerical perspective this introduces additional
bookkeeping effort. At the same time, symmetry-specific selection rules enforce a large num-
ber of elements of A to be exactly zero [for the example of U(1) particle conservation, the
selection rule takes the form q = q′ + q′′]. Keeping only the nonzero elements leads to sparse
tensor structures and, hence, results in significant computational speed-up and reduced mem-
ory requirements.

5.2 Non-abelian symmetries

Let us now consider the same example in the context of non-abelian symmetries. Then quan-
tum states can be organized into irreducible symmetry multiplets (irreps) that carry an addi-
tional label qz that specifies the internal structure of an individual multiplet, e.g. |ql〉 → |ql; qz〉.
The decomposition of a direct product of two irreps into a direct sum of irreps is fully defined
by the Clebsch-Gordan coefficients (CGCs) of the symmetries present. In this description, the
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coefficients of the A tensor in Eq. (70) factorize into tensor products of reduced matrix elements
and CGCs, so that Eq. (70) generalizes to

|ql; qz〉=
∑

q′ l ′q′z

∑
q′′ l ′′q′′z

��q′l ′; q′z
� ��q′′l ′′; q′′z

� ·
Aq

q′q′′
l

l ′ l ′′ ·
�
Cq

q′q′′
�qz

q′zq′′z
. (71)

Here
�
Cq

q′q′′
�qz

q′zq′′z
≡ 
qq′; qzq′z

��q′′; q′′z
�

represent CGCs, and
Aq

q′q′′
l

l ′ l ′′ denote reduced matrix

elements of the basis transformation [30]. This allows one to compress the nonzero data blocks
of the tensors, further reducing the numerical requirements, yet at the price of a significantly
increased bookkeeping effort.

The same structure as in Eq. (71) also carries over to the coefficients of arbitrary operators
Ôq′q′z that acts in a given (local) state space |ql; qz〉, where the latter itself is already properly
organized w.r.t. given symmetries. Clearly, if one wants to exploit symmetries in numerical
simulations, these symmetries must be well-defined throughout at every step and, in partic-
ular, for each individual tensorial object under consideration. Hence one also needs to know
how operators transform under given symmetries. That is, all operators can be reduced to or
built from irreducible tensor operators (irrops). These elementary objects consist of a set of
operators (like a spinor) that under symmetry operation are transformed into each other com-
pletely analogously to the states of a particular irreducible multiplet q′, in which case q′z labels
the individual operators in the set. The intimate relation to states becomes apparent when the
irrop acts on a scalar state |0〉, i.e., a singlet in all symmetries having q = 0 like a vacuum state.
Then Ôq′q′z |0〉 ≡ |q′q′z〉 associates an irrop with an irrep, up to normalization and assuming the
state is not destroyed. Both of them transform according to the irrep q′. Generally then, a
particular irrop with multiplet index l ′(= 1), can be expressed in a factorized form exploiting
the Wigner-Eckart theorem,



ql; qz

��Ôq′ l ′;q′z

��q′′l ′′; q′′z
�≡ 
ql; qz

�� ·
�
Ôq′ l ′;q′z

��q′′l ′′; q′′z
��
=
Oq

q′q′′
l

l ′ l ′′ · (C
q
q′q′′)

qz
q′zq′′z

, (72)

with CGCs Cq
q′q′′ and reduced matrix elements ‖Oq

q′q′′‖l
l ′ l ′′ . The latter describe transitions be-

tween multiplets ql and q′′n within a given Hilbert space induced by the irrop Ôq′ l ′ .
The conceptual structure of the tensor describing a basis transformation or operator ma-

trix elements is thus the same. With focus on the tensor alone, i.e., skipping the ket states
contracted with the tensor in Eq. (71), the tensor itself may be written more compactly in the
generic form [31],

A=
⊕

q
‖A‖q ⊗ Cq , (73)

where q now is the full collection of symmetry labels for all indices (legs) in a particular
block realization. For example for the cases above, q← (q′, q′′; q) where, by convention, e.g.,
subscript indices are grouped and listed before superscript indices. This demonstrates that
each tensor acquires a block structure (collected via the outer sum), and that for each such
block, Clebsch-Gordan tensors are split off in a tensor-product structure. The tensor product
involves a reduced matrix element tensor (RMT) and a corresponding generalized Clebsch-
Gordon coefficient tensor (CGT) with the same tensor rank. This reduces the actual number of
freely choosable matrix elements, and thus the effective dimensionality of the tensor, A→ ‖A‖q,
e.g., going from D states on a given index (leg) to D∗ ≤ D multiplets. For abelian symmetries
there is no reduction, D∗ = D, whereas for SU(N), one empirically finds an effective average
dimensional reduction of D∗ ∼ D/3N−1� D.

The conceptual framework described above forms the basis for the QSpace tensor library
[30,31] for building many-body state spaces in the presence of symmetries [Eq. (71)] and for
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describing the actions of operators therein [Eq. (72)]. It allows one to construct a tensor net-
work and its constituent tensors step by step in an iterative fashion. For a tutorial illustration
of its underlying ideas, see App. A.

5.3 Outer multiplicity

When dealing with non-abelian symmetries, one generically also encounters outer multiplicity,
i.e. direct sums in which the same irrep or irrop (or the same combination of several of them)
occurs more than once. Consider, for example, an SU(2) rank-4 CGT having two incoming
and two outgoing legs with symmetry labels (S1, S2) and (S′1, S′2), respectively. Then, there are
several different possibilities to fuse (S1, S2) to an intermediate irrep S and to subsequently
split the latter into (S′1, S′2):

.

(74)

In this sense, the outer multiplicity (OM) of the rank-4 CGT on the left is larger than one. Each
of the terms in the direct sum on the right corresponds to an independent CGT within a set of or-
thognal CGTs Cµq , all carrying the same external symmetry labels q ≡ (S1, S2; S′1, S′2), but distin-
guished by an outer multiplicity labelµ (here given by S). For example, if S1 = S2 = S′1 = S′2 = S,
then the outer multiplicity label µ = S can take the values 0,1, . . . , 2S. Since the outer multi-
plicity label is being summed over on the right, it is no longer visible at the level of the rank-4
CGT on the left.

SU(2) CGTs generically have OM larger than 1 once their rank is r ≥ 4. For general non-
abelian symmetries such as SU(N ≥ 3), OM larger than 1 already also occurs at the level of
rank-3 CGTs, e.g., in the standard state space decomposition as in Eq. (71). There, the same
q on the l.h.s. can arise in several different ways, which needs to be distinguished through an
outer multiplicity index µ:

|q(lµ); qz〉=
∑

q′ l ′q′z

∑
q′′ l ′′q′′z

��q′l ′; q′z
� ��q′′l ′′; q′′z

� ·
Aq

q′q′′
lµ

l ′ l ′′ ·
�
Cqµ

q′q′′
�qz

q′zq′′z
, (75)

where l̃ ≡ (lµ) just labels the overall mutiplets on the l.h.s., whereas the multiplicity index µ on
the r.h.s. constitutes an additional dimension of the RMT ‖A‖ within its particular symmetry
sector tied to the CGT Cqµ

q′q′′ . In the presence of OM, the tensor representation in Eq. (73)
generalizes to

A=
⊕

q

�∑
µ

‖A‖µq ⊗ Cµq
�

, (76)

with a regular summation over the multiplicity index µ here. OM evidently also increases the
effective dimension of the reduced matrix element tensors ‖A‖qµ. In general, OM needs to
be properly accounted for (once and for all) at the level of rank-3 CGTs [30]. Moreover, to
ensure overall consistency, OM needs to be tracked meticulously not only when performing
direct product decompositions into direct sums, but also when performing (iterative pairwise)
contractions of tensors [31].

5.4 PEPS with symmetries

Building on the fusion rules for different state spaces in Eq. (71), one can generate symmetric
tensor networks consisting of higher-rank tensors. This can be easily understood from the per-
spective of contracting multiple A tensors to some larger-ranked object. The resulting tensor
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⇔

Figure 4: Schematic construction of a PEPS tensor network state. The elementary
tensor M associated with each site (left panel) is tiled in a translational invariant
fashion into a PEPS (right panel). The index order of its five legs is arbitrary but
fixed. Here we use the order (l, r, t, b,σ) ≡ (1, 2,3, 4,5) for left, right, top, bottom,
and local state spaces, respectively. When exploiting symmetries, every individual
index (i.e., leg of a tensor or line) represents a state space that must be expressed
in terms of symmetry subspaces, throughout. For non-abelian symmetries, a given
index describes a state space s that is organized as |s〉 ≡ |qn; qz〉, where q specifies
a symmetry sector, n a specific multiplet within the symmetry sector q, whereas qz
indexes the internal multiplet structure which can be split off as a tensor product
with a generalized CGTs [30].

then represents a tensor product of several state spaces. Setting up a symmetric PEPS tensor
network, for example, follows exactly this pattern, leading to the diagrammatic representa-
tions in Fig. (4) for a single tensor (left) and a contraction of several such tensors (right): The
symmetrized M tensors contain additional arrows on the index lines to indicate which state
spaces are incoming and outgoing (i.e., which (group of) state spaces are fused into which,
according to Eq. (71)). We have some freedom in fixing the direction of these arrows and some
choices might be more convenient to implement than others. Note that the extra index of M3

3
determines the global symmetry state of a specific PEPS representation. Of course, the sym-
metric PEPS also guarantees that the corresponding quantum state is symmetric, i.e., forms a
well-defined symmetry multiplet.

Symmetry-induced selection rules cause a large number of matrix elements to be exactly
zero, thus bringing the Hamiltonian into a block-diagonal structure and subdividing tensors
into well-defined symmetry sectors. Keeping only the nonzero elements, we can achieve
tremendous improvement in speed and accuracy in numerical simulations by the incorpo-
ration of symmetries. In the context of non-abelian symmetries, the nonzero data blocks are
not independent of each other and can be further compressed using reduced matrix elements
together with the Clebsch-Gordan algebra for multiplet spaces.

The special ingredient of our fermionic iPEPS implementation, that sets our work apart
from that of other iPEPS practitioners, concerns the explicit incorporation of non-abelian sym-
metries, such as SU(2)spin ⊗ SU(N)orb with the fermionic Z2 parity symmetry in the particle
sector. The non-abelian symmetries are fully encoded in the QSpace [30] tensor library, which
automatically handles the symmetry-induced fusion rules of both the reduced matrix elements
and the Clebsch-Gordan space.

Non-abelian iPEPS was pioneered by Liu, Li, Weichselbaum, von Delft and Su [37] for the
case of the spin-1 Kagome Heisenberg antiferromagnet, which illustrated an SU(2)spin symmet-
ric iPEPS representation in terms of a “projection” picture. Following ideas of SU(2) invariant
iPEPS representations for the spin-1

2 resonating valence-bond state [91, 92] and the spin-1
resonating AKLT state [93], the symmetric iPEPS tensors can be understood as emerging from
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sets of “virtual particles” associated with each site that are pairwise maximally entangled along
each virtual bond with their nearest neighbor sites, and then projected into the local degrees
of freedom of the corresponding site. Starting from such an SU(2) invariant iPEPS, even-
tually one only specifies the effective bond dimension D∗, and lets the tensor optimization
dynamically determine the relevant symmetry sectors on each bond. The number of multi-
plets D∗ translates into a significantly larger actual number of states, D, associated with each
bond (note that D may vary for the same D∗ depending on the actual multiplets being used).
In practice, the maximal feasible values for D∗ correspond to retaining an actual number of
states D which typically lies out of reach of standard iPEPS calculations incorporating abelian
symmetries only.

5.5 Technicalities

In the remainder of this section we briefly point out some important technicalities when im-
plementing non-abelian iPEPS.

5.5.1 Global symmetry sector

Ref. [37] states that the projection picture is dense, in the sense that it can cover the full
Hilbert space and generate any symmetry eigenstate. Whereas this is true for finite-size PEPS,
we emphasize that for translational invariant systems where the iPEPS is tiled with the same
M tensor, by construction, there cannot be a “drift” in average value of a quantum number
along any line of M tensors. In the case of non-abelian symmetries this implies that the global
symmetry label of the iPEPS is always constrained to the singlet sector. This is conceptually
similar to the case of U(1) symmetries in iPEPS, where states are restricted to a global sym-
metry sector corresponding to the quantum number zero, i.e., q = 0 (see Ref. [94], referred
as ‘identity charge’ therein).

We note, however, that for abelian U(1) symmetries such as charge, any local filling can
be realized based on the simple observation that U(1) symmetry labels are additive. Hence
one is free to shift them locally and scale them globally at will. Specifically, one may shift the
charge labels associated with the local state space of each site relative to the targeted mean
local occupation q̄, i.e., q→ q− q̄. By this simple relabeling trick, average charges associated
with the virtual bonds can fluctuate around q = 0. For non-abelian symmetries, however, such
a relabeling scheme appears ill-suited, so that, by construction, our iPEPS implementation
represents a global singlet. For our results below at finite doping, we still also only use Z2
charge parity even though charge itself is conserved.

5.5.2 Arrow convention

When exploiting symmetries, every index represents a state space with a particular symmetry
multiplet. Now when fusing state spaces across tensors, this naturally introduces the concept
of state spaces that ‘enter’ a given tensor, and state spaces that ‘emerge’ from it. For tensors this
implies in a graphical depiction that one has to distinguish ingoing and outgoing legs, i.e., every
leg acquires a direction, specified by an arrow [e.g., see Fig. 4]. Mathematically, this is equiva-
lent to distinguishing between co- and contravariant indices (a notational convention not used
here) [31]. The action of raising or lowering indices then corresponds to reverting arrows, as
schematically depicted in Fig. 5. This is an operation that represents gauge-transformations of
tensor network states, leaving the physical properties of the individual states unaffected [95].
Importantly, within a tensor network state, a summed over, i.e., contracted index connecting a
pair of tensors, where it is outgoing from one tensor, and incoming to the other.

37



SciPost Phys. Lect.Notes 25 (2021)

=

= =

Figure 5: Arrow inversion. An identity, I = U†U , is inserted on a bond (here the
center bond) where up to normalization the unitary U represents a 1 j symbol [31],
i.e., a (degenerate) rank-3 tensor which combines two state spaces, q and its dual
q̄ into a scalar singlet state. Upon absorbing U and U† on opposite sides with the
neighboring tensors, effectively, the arrow on the center bond has been reverted.
The singlet index (dashed line) can be omitted in the end.

(a) (b)

Figure 6: Arrow convention for M tensor (panel a) as they enter inside the corner
transfer matrix (CTM) setup in (panel b). The latter combines bra and ket state as
required for the minimization of the total energy E = 〈ψ|H|ψ〉when truncating [58].
From the perspective of an individual site, this “double layer” tensor network trans-
lates into 〈M | . . . |M〉. For this, note that we have reverted the bond indices of the
‘bra-tensor’ M → M̄ such that they point in the same direction as the corresponding
indices of M . Only then one can fuse the ‘double bond index’ into a single fat in-
dex. This greatly simplifies many fusion steps during the CTM procedure. The black
diamonds in (a) indicate fermionic swap gates [45,85].

When setting up a symmetric iPEPS representation, we therefore have to choose an “arrow
convention” for all iPEPS tensors. On a square lattice, when a single M tensor with four virtual
bond indices tiles an entire 2D iPEPS, this necessarily implies that two virtual bond indices
must be ingoing and two outgoing [cf. Fig. 4(b)].

For compactness and readability of the code, we want to minimize the number of steps in
the algorithm that involve reverting arrows as in Fig. 5. To this end, we establish the arrow
convention for M tensors as well as the corner transfer matrices as shown in Fig. 6. Thus the
quantum labels on all virtual bonds always “flow” from the upper left to the lower right corner
of the tensor network.

5.5.3 Efficient contractions

The standard procedure when contracting tensors in the absence of any symmetries is to reshape
a contraction into an effective matrix product [96] where efficient libraries can be utilized.
That is, for any tensor in a contraction, the indices that are contracted as well as the ones that
are kept, are grouped, i.e., permuted into order, and then fused into hyperindices.

This strategy also carries over when implementing symmetries, abelian and non-abelian
alike. In principle, one has the option of matching symmetry sectors first, and then do the
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contractions for every match in the above spirit. However, for abelian and non-abelian sym-
metries alike, this would cause a significant proliferation of symmetry sectors with increasing
rank already for an individual tensor, yet also for matching symmetry combinations when con-
tracting a pair of tensors. Roughly, if there are on average m symmetry sectors associated
with each of the r legs of a given rank-r tensor, one may expect up to mr possible symmetry
combinations. The situation is worse still for non-abelian symmetries, where the tensor prod-
ucts of two multiplets can give rise to many different multiplets. Therefore a computation
of a contraction is slowed down by (exponentially) many combinations with increasing rank
of the involved tensors. Yet the individual contractions of matching symmetry sectors often
involve only small effective block matrices. As a consequence, the above strategy becomes
prohibitively inefficient strongly with increasing rank of the tensors. For an efficient way to
proceed, one therefore first needs to merge indices into hyperindices (respecting fusion rules
in the presence of non-abelian symmetries), and then do the contraction.

An efficient non-abelian iPEPS implementation therefore must fuse indices in contractions
prior to the actual contraction, while being aware that only legs that point in the same direction
can be fused [e.g. see Fig. 6]. After the contraction, the remaining open indices must be
given back their original structure. In the presence of non-abelian symmetries, the fusion is
effectively taken care of by an additional contraction with unitary tensors, which need to be
reapplied on the open indices. This is an extra layer of complication that concerns each and
every contraction that involve tensors with rank r ¦ 4.

To be specific, we consider the the two-band Hubbard model (discussed in Sec. 6.1 below)
with Z2 ⊗ SU(2)spin ⊗ SU(2)orb, retaining D∗ = 6 multiplets on each bond. Already the M
tensors of rank 5 are complicated objects. However, the numerically most demanding tensors
appear during the CTM coarse graining. Here, we typically have to deal with rank-6 and rank-
7 tensors, and it depends strongly on the implementation details whether the CTM procedure
is still feasible. Let us focus on a typical rank-6 tensor appearing several times in a CTM step,
obtained by contracting the following TN diagram,

= . (77)

Each thin line corresponds to a single-layer bond index of dimension D∗, while the thick lines
are environmental bond indices of dimension χ∗ = 80. The resulting tensor on the r.h.s of
Eq. (77) requires only 390 MB of memory for the reduced matrix elements, as compared to
an estimated 883 GB without symmetries. This highlights the efficiency of the non-abelian
symmetries, where here we gain more than factor of 2,000 only in terms of storage require-
ment! At the same time, its QSpace consists of about 430, 000(!) individual symmetry blocks.
Numerically, this number corresponds to (0.61χ∗)2(0.61 D∗)4, in agreement with an expected
exponential proliferation of symmetry blocks with increasing rank. The sizes of the symmetry
blocks, of course, are comparatively small, on average containing only 100 = 102 individual
coefficients.

To reduce the rank of this tensor, it is possible to fuse the three indices pointing to the left
and to the bottom, respectively. This yields the rank-2 matrix representation,

= , (78)
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with size 28,000 × 28, 000 on the multiplet level. Being a rank-2 object, it must be block-
diagonal. The matrix only contains 37 symmetry blocks of larger size (on average, each block
consists of 7502 coefficients). Remarkably, the reduced matrix elements of the latter matrix
require slightly less memory (350 MB) than those of the original rank-6 tensor. To a very
minor extent, this may be attributed to overhead for organizing the long lists of symmetry
blocks in the tensor. More importantly, the rank-6 tensor has significant outer multiplicity [30,
31], which is absent in the rank-2 tensor. Most importantly, however, this simple comparison
strongly suggests that the symmetry blocks in the rank-2 matrix representation are densely
populated by the entries in the rank-6 tensor.

Now how do the two different representations perform in terms of contraction speed? To
compare them, we consider the next step of the CTM scheme, which requires forming the upper
part of the environment, by contraction the following tensor network, both in the rank-6 and
rank-2 representation

⇔ . (79)

The speed of the contraction vastly differs. Contracting two rank-2 objects results in 37 con-
tractions of the block-diagonal rank-2 objects, which is performed with QSpace [30] in about
one second of CPU time. In contrast, we had to terminate the contraction of the rank-6 ten-
sors after four hours (!) of calculation time. In the latter case, 109 individual contractions are
allowed by symmetry. Although the effort for each of these contractions is minimal, having to
process their vast number step by step leads to a significant overhead, and thus to a drastic
decrease in numerical efficiency.

6 Examples

Our main goal here is to illustrate the potential of non-abelian iPEPS, discussing both the
benefits and limitations of exploiting non-abelian symmetries, by showing exemplary results
for symmetric two and three band Hubbard models. A full analysis of the intricate physics of
each of these systems goes beyond the scope of this work and is left for future studies.

Whereas the one-band Hubbard model already features important aspects of strongly cor-
related materials, such as the Mott insulator transition or the emergence of d-wave super-
conducting pairing, for a multi-band Hubbard model a number of fascinating phenomena
emerge from the interplay of different electron orbitals which cannot be captured by an ef-
fective model with a single band. Both intra-atomic Coulomb exchange or the presence of
crystal field splitting can give rise to a number of intriguing effects, such as the existence of
an orbital-selective Mott insulating phase, where only one orbital becomes insulating while
the other retains its metallic properties [97–101]. In order to understand this physics from
a theoretical perspective, it is clearly necessary to go beyond a single-band system and study
multi-band generalizations of the Hubbard model.

In addition to perspectives in strongly correlated materials, multi-band high-symmetry
models, such as SU(N) Hubbard models or related Heisenberg models give rise to fascinat-
ing new types of quantum states including exotic magnetically ordered phases. These are not
only of general academic interest but recently have also become experimentally accessible in
the context of cold atoms [102,103].

The exponentially large quantum many-body Hilbert space and the ensuing strong elec-
tronic correlations pose an extreme challenge to numerical approaches. Besides, one also

40



SciPost Phys. Lect.Notes 25 (2021)

has to deal with an enlarged parameter space that substantially adds to the complexity of
these systems. For instance, the spinful symmetric two-band Hubbard model with only on-
site interactions already contains additional parameters such as Hund’s interaction energy in
comparison to its single-band version. Therefore, wide regions of the phase diagram of these
models remain blank and there is a compelling need for developing numerical methods that
can reliably deal with such systems in an unbiased way.

6.1 Spinful two-band Hubbard model

In this section, we demonstrate that fermionic iPEPS enhanced with non-abelian symmetries is
a valuable ansatz to deal with symmetric complex multi-band systems in 2D. As a first example,
we consider the repulsive Hubbard model with M = 2 bands and spin and orbital degeneracy
on the square lattice. Specifically, we consider the Hamiltonian [104],

Ĥ =
∑
〈i j〉

∑
mσ

�− t ĉ†
imσ ĉ jmσ +H.c.

�
+ U

2

∑
i

n̂i(n̂i − 1) (80a)

Ĥµ = Ĥ − (µ+ 3U
2︸︷︷︸
≡µ0

)
∑

i

n̂i , (80b)

with hopping amplitude t between nearest-neighbor sites 〈i j〉, spin index σ ∈ {↑,↓}, orbital
index m = 1, . . . , M , and site occupation n̂i ≡

∑
mσ n̂imσ. We take t := 1 as unit of energy,

throughout. We tune the average occupation via the chemical potential µ in Eq. (80b). But
when computing the ground state energies, we compute the expectation values of the Hamil-
tonian in Eq. (80a), otherwise. The chemical potential in Eq. (80b) was offset by µ0 such that
µ = 0 corresponds to half-filling in the presence of a finite onsite Coulomb energy U . Over-
all, the Hamiltonian in (80) features both an SU(2)spin and SU(2)orbital symmetry, which we
exploit in our iPEPS implementation. We ignore local Hund’s coupling. Therefore spin and
orbital index become interchangeable, resulting in 4 equivalent flavors. Overall, this actually
leads to an enlarged SU(4) symmetry of 4 spinless flavors (not exploited here). Also, we
exploit only charge parity conservation rather than U(1) charge, and tune the filling via a
chemical potential. The reason for this is partly technical, in that by being interested in finite
doping we do not necessarily have integer filling in our unit cell. As a benefit, by just tracking
charge parity, this immediately also permits the study of superconducting correlations.

For the ground state of a given average filling n = n(µ), set via Eq. (80b), we define the
ground state energy per site e0, the bond energy ei j

0 , and the generalized spin-singlet pairing
amplitude ∆i j as the expectation values

e0 ≡ 1
N 〈Ĥ〉 (81a)

ei j
0 ≡

¬
−t
∑
mσ

�
ĉ†

imσ ĉ jmσ +H.c.
�
+ U

8

�
n̂i(n̂i − 1) + n̂ j(n̂ j − 1)

�¶
(81b)

∆i j ≡ 1p
2

∑
m



ĉim↑ ĉ jm↓ − ĉim↓ ĉ jm↑

�
, (81c)

with N the (fictitious total) number of sites. Here the ‘bond energy’ includes the Coulomb
interaction energy U/2 of each of its associated pair of sites, weighted by 1/z with z = 4 the
coordination number on the square lattice. Therefore, the average bond energy of all nearest

beighbor bonds, ei j
0 =

1
4

∑
j∈[n.n. of i]

ei j , is related to the average energy per site, e0, by ei j
0 =

e0
2 ,

since on average there are two bonds associated with each site.
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Table 1: Typical multiplet configurations on the auxiliary bonds obtained from sym-
metric iPEPS simulations on the square lattice with two symmetric spinful orbitals.
The rows show the results for varying multiplet bond dimension D∗ (left column) at
half filling. The corresponding state space dimension D is listed in the right column.
In the multiplet listing on the left, the notation (·)m indicates m multiplets in the sym-
metry sector (·), with m= 1 if not specified. For better readability, we also adopt the
QSpace [30] convention of specifying SU(2) multiplets through the integer number
2S (i.e., the number of boxes in the corresponding Young tableaux).

D∗ multiplets in symmetry sectors (Z2, SU(2)spin, SU(2)orb) D
3 (1,0, 0)⊕ (−1,1, 1) ⊕ (1, 2,0) 1+ 4+ 3= 8
4 (1,0, 0)⊕ (−1,1, 1)2 ⊕ (1, 2,0) 1+ 8+ 3= 12
5 (1,0, 0)⊕ (−1,1, 1)2 ⊕ (1, 2,0)⊕ (1,2, 2) 1+ 8+ 3+ 9= 21
6 (1,0, 0)⊕ (−1,1, 1)2 ⊕ (1, 2,0)⊕ (1,0, 2)⊕ (1,2, 2) 1+ 8+ 3+ 3+ 9= 24

We study the Hamiltonian (80) for finite hole hoping by tuning µ≤ 0 (which is equivalent
by particle-hole transformation to particle doping µ ≥ 0). To our knowledge, the phase dia-
gram of this system is largely unknown away from integer filling. However, some interesting
results are available for certain points in parameter space.

At half-filling 〈n〉 = 2, several studies based on a sign-problem-free determinant quantum
Monte-Carlo method addressed the magnetic properties of the model [105–107]. Their find-
ings support the existence of long-ranged antiferromagnetic (AF) order for larger interactions
U ≥ 2 [106]. Interestingly, the AF order does not show a monotonic behavior with respect
to U; instead, it exhibits a maximum around U ≈ 8 and then decreases again towards larger
interactions strengths. Whether or not the long-ranged AF order persists in the limit U →∞
remains an open question. A previous QMC study of the corresponding Heisenberg model
found no AF order but potentially a gapless spin-liquid phase in this regime [108]. Another
recent work based on variational QMC [109] addressed the Mott transition of the half-filled
Hubbard model, finding a critical coupling Uc ≈ 11 for the case of degenerate bands (their
ansatz is rather biased, however, as it only accounts for a non-magnetic solutions).

In the quarter-filled case 〈n〉= 1 at infinite U , the Hamiltonian (80) can be mapped on an
SU(4)-symmetric Heisenberg model, which was studied in Ref. [110]. Their combined iPEPS
and ED study finds a rather exotic Neel-like order with dimers alternating between pairs of
flavors, pointing towards a spontaneously broken SU(4) symmetry with an enlarged unit cell.

In this section, we present a first step towards a systematic iPEPS study of the symmetric
two-band Hubbard model (80) that, in addition to half- and quarter filling, also investigates
arbitrary doping regimes. The main challenge for iPEPS in the context of such a two-band
model is the strongly enlarged local Hilbert space. In total, we need to deal with four different
flavors of fermions (2 spins × 2 orbitals) resulting in a local state space dimension d = 16 per
site, larger by a factor of four relative to the d = 4 in the one-band version.

To treat systems with a large local state space within iPEPS (or other TN approaches) one
can follow two different strategies, as illustrated in Fig. 7: (a) either one keeps a lattice as a
single unit with a large local state space (and hence preserves its symmetry), or (b) artificially
splits it, for the sake of the iPEPS simulation, into smaller sublattices. Strategy (a) is hardly
feasible for standard iPEPS techniques, even when incorporating all abelian symmetries of the
system. For (b), a natural choice is to split the lattice into two interleaved sublattices, one
for each orbital. The drawback, besides an artificially broken lattice symmetry, is that iPEPS
then has to handle longer-ranged interactions and correlations in its ansatz. This necessitates
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Figure 7: Schematic depiction of two-band setups for a spinful Hubbard model, with
the two bands depicted by the different colors red and green. In setup (a) all four
fermionic flavors still reside on a given lattice site, leading to an enlarged Hilbert
space of d = 42. This setup respects flavor symmetry, which thus may be exploited.
Setup (b) avoids the enlarged local Hilbert space by splitting the lattice into two
sublattice, one for each band. This comes at the cost of introducing an additional set
of sites, causing interaction terms to become longer-ranged.
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Figure 8: Non-abelian iPEPS results for the two-band Hubbard model with a 2×2 unit
cell using simple update at half-filling 〈n〉 = 2. Panels (a) and (b) display the nor-
malized ground-state energy per site e0/U as a function of U from iPEPS for various
multiplet bond dimensions D∗ (black symbols) in comparison to QMC data (red sym-
bols). The iPEPS energies were obtained by extrapolation vs. 1/D∗2→ 0 (squares),
with the extrapolations shown in (c). The convergence of the energy with the envi-
ronmental bond dimension χ∗ is shown in (d), where the maximum χ∗ = 60 roughly
corresponds to χ = 200. Labels (1) and (2) in panels (a) and (b) point to individ-
ual iPEPS wavefunctions characterized in panels (e) and (f). There the diameter of
the black dots is proportional to the average local occupation, and the bond width
to the bond energy ei j

0 [Eq. (81b)]. To better illustrate the breaking of translational
invariance in the unit cell, the right subpanels in (e) and (f) depict the same wave-
functions, but with bond energies shifted relative to their mean, ei j

0 → ei j
0 − (e0/2).

Here red (gray) bond correspond to positive (negative) values, respectively.
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swap gates in the implementation of imaginary time evolution, which generates an additional
source of error.

Here we follow strategy (a) because this preserves the orbital SU(2) symmetry, where we
can fully exploit all available non-abelian symmetry. Specifically, with finite doping in mind, we
incorporate Z2 ⊗ SU(2)spin ⊗ SU(2)orb symmetry. This way, the local state space with d = 16
is reduced to an effective multiplet dimension d∗ = 6. At the same time this enables us to
retain up to D∗ = 6 multiplets on each virtual bond, which corresponds to an effective bond
dimension of D = 24 states [cf. Table. 1]. This enables us to run simple-update simulations
for a wide regime of parameters, the results of which are presented in the following.

We start with the half-filled case 〈n〉 = 2, i.e., µ = 0 in (80b), to benchmark against ex-
isting determinant projector QMC data [111]. The results of this analysis are summarized
in Fig. 8. Panels (a,b) show the normalized ground-state energies per site versus the inter-
action strength U obtained from a simple-update iPEPS simulation on a 2× 2 unit cell. The
various bond dimensions D∗ = 3, 4,5, 6 in Fig. 8(a,b) are made up of dominant multiplets
which emerge dynamically from the iPEPS simulations for each D∗. They are listed in Table 1,
for completeness. The extrapolated energies for 1/(D∗)2 → 0 are empirically determined by
polynomial fits as depicted in Fig. 8(c). The convergence of our data with respect to the en-
vironmental bond dimension χ∗ is shown in Fig. 8(d). We attach no significance to the bump
seen at small χ∗, since our focus is on the large-χ∗ convergence. Note that QMC simulates
finite-size systems with periodic BC, hence its ground state energy, specifically so in Fig. 8(a),
is expected to still increase with increasing system size, as it converges from below. Never-
theless, we find good agreement, to within 1%, of our extrapolated energies with the QMC
results, confirming the reliability of our approach.

At half filling, following the work of Ref. [106], we expect the presence of long-ranged AF
order for all values of U considered in Fig. 8. This is also supported by the Mott plateau seen
in Fig. 9(b,d) at half-filling. Since by construction our iPEPS is SU(2)spin invariant, however,
a direct measurement of the local magnetization is not possible. Nevertheless, we expect that
the symmetry-breaking AF order still to be present, yet symmetrized and hence only accessible
via static spin-spin correlations over longer distances.

In the context of symmetric iPEPS simulations for a spin-1
2 Heisenberg model, we have

observed (not shown) that the two-fold degeneracy in the AF ground state manifests itself as a
spontaneous formation of row or column stripes which, in agreement with the AF state itself,
breaks translational symmetry within the unit cell. Interestingly, we here also observe such an
effect in the iPEPS wavefunctions in the 2-band Hubbard model as shown in Figs. 8(e,f). For
U = 4 [Fig. 8(e)], we clearly observe that two out of eight independent bonds in the unit cell
carry a substantially reduced energy. This suggests (at least) a 4-fold degenerate ground state.

Based on this loose connection, we will refer to the symmetry-broken regime as the AF
regime where the strength of the spatial symmetry breaking in our simulations may roughly
correlate with the AF magnetic moment. For U = 10 [Fig. 8(f)] the “AF order” is weaker than
at U = 4, consistent with the finding of Ref. [106] that the strength of AF order decrease for
U → ∞. Ultimately, of course, the precise AF nature needs to be studied via long-ranged
spin-spin correlations. This is left for future work.

Next we turn to the case of arbitrary filling away from half-filling, which is equally accessi-
ble to iPEPS, but not to QMC. We focus on small to intermediate interactions, U = 4 and U = 8.
By symmetry, it is sufficient to consider only the case of finite hole doping, δ ≡ 2−〈n〉> 0, i.e.,
〈n〉 < 2. For the 2-band case, this regime has not been explored in detail by other methods
so far. Figure 9 summarizes our iPEPS results as a function of filling, tuned by means of a
chemical potential [cf. Eq. (80b)]. Figures 9(a,c) show the ground-state energy per site, e0/U ,
as a function of δ for D∗ = 5 and 6.

The dependence of the filling 〈n〉= 2−δ on the chemical potential is shown in Figs. 9(b,d).
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Figure 9: Non-abelian iPEPS results for the two-band Hubbard model away from half
filling for U = 4 (left panels) and U = 8 (right panels). Panels (a) and (c) display the
normalized ground-state energy e0/U as a function of doping δ for multiplet bond
dimensions D∗ = 5,6. (b) and (d) show the filling 〈n〉 as a function of the chemical
potential µ. (In contrast to Figs. 8(a,b), no QMC data are available for comparison
here, hence no 1/D∗2 extrapolations were performed.) The parameter points (1) to
(6) are analyzed in detail in the corresponding panels (1-6) in the center by char-
acterizing the underlying iPEPS wave function. Again, the filling per site and the
bond energy are proportional to the diameter of the black dots and the width of the
bonds, where red (gray) bond correspond to positive (negative) values, respectively.
The bond energies change signs at small doping, which is due to the definition of
ei j

0 in Eq. (81b), where the Coulomb interaction energy (positive) competes with the
kinetic energy (negative).

For either U , the systems are in the AF regime for zero or small doping δ, as inferred from
the symmetry-broken states depicted in Figs. 9(1,4). For U = 4 we find an energy minimum
around δ ' 1.2. In this regime, we still observe a significant dependence of the energy on bond
dimension D∗, hinting at a strongly entangled ground state. For U = 8, for the same range
in chemical potential [Fig. 9(b,d)], we reach a smaller range in doping [Fig. 9(c)]. Since here
the interaction strength is comparable to the non-interacting bandwidth is W = 8, we also see
a Mott plateau at 〈n̂〉= 1 [Fig. 9(d)] that is absent for U = 4 [Fig. 9(b)] [112].

At zero filling, i.e, δ = 2, the ground state energy is zero, i.e. with Eq. (81a), e0(n= 0) = 0
[similar as in Fig. 9(a)] irrespective of the strength of U . Therefore the data in Fig. 9(c), al-
ready turning negative, will necessarily also reach a minimum somewhere in the regime for
1< δ < 2.

In addition to antiferromagnetism, we also expect superconducting order to play an im-
portant role in the two-band Hubbard model at finite hole doping. To check for the presence of
d-wave superconductivity, we measure a generalized singlet-pairing amplitude∆i j [Eq. (81c)].
The results for different values of U and δ are displayed in Fig. 10. We find that, indeed, super-
conducting order is present for the entire doping range 0< δ < 1 for all considered interaction
strengths. Two effects that will require further attention in the future, are the suppression of
superconductivity at δ = 1, and the fact that∆ decreases with increasing interaction strength.
Both appear justified on intuitive grounds, however: Charge fluctuations are suppressed with
increasing interaction strength, specifically so at integer filling. Moreover, for filling n ® 1,
local double occupancy is strongly suppressed for sizable U , yet double occupancy is required
for finite∆ to start with. We also observe strong inhomogeneity of∆i j across different bonds.
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Figure 10: Generalized singlet-pairing amplitude |∆| per site, extracted from iPEPS
wavefunctions with D∗ = 5 as a function of the hole doping δ. |∆| ≡ 〈|∆i j|〉 is
obtained by averaging over the absolute value of ∆i j for each bond in the unit cell.
Labels 1 and 2 point to individual iPEPS wavefunctions characterized on the right,
where the filling per site and the singlet-pairing amplitude are proportional to the
diameter of the black dots and the width of the bonds, respectively [blue (cyan) bond
correspond to positive (negative) ∆i j].

This may indicate a tendency toward spontaneous symmetry breaking of the orbital symmetry
that is conserved by construction in our iPEPS implementation, or to the fact that the actual
ground state breaks translational symmetry in a different way. Simulations on different unit-
cell geometries are needed to shed light on this issue.

In conclusion, we have presented first fermionic iPEPS simulations of the two-band Hub-
bard model, which incorporates spin- and orbital SU(2) symmetry explicitly in the TN ansatz.
The excellent agreement of our results found at half-filling with QMC data encouraged us to
explore also the hole-doped regime, where our initial results uncover a number of intriguing
features. Going forward, much work remains to be done to fully understand the guiding mech-
anisms and phases in this regime. This includes the study of longer-ranged spin-spin correla-
tors, the comparison to simulations on different unit cells and unveiling the dependencies of
various quantities such as energy and d-wave pairing as a function of interaction strength and
doping more carefully. Since in the present model spin and orbital flavors are equivalent (e.g.,
there is no onsite Hund’s coupling J), the efficiency of iPEPS could be further enhanced by
exploiting the full SU(4)flavor symmetry present in the Hamiltonian within QSpace [30]. After
fully understanding the phase diagram in this parameter regime, it will be highly interesting to
study the effects of finite Hund’s coupling J on the emergence of superconductivity and other
competing orders. Moreover, it would also be worthwhile to analyze whether abelian iPEPS
simulations are numerically feasible in a modified setup involving separate sublattice for the
two bands (c.f. Fig. 7). This would yield a different perspective on the ground-state properties
of the model, especially in the context of spontaneous symmetry breaking.

6.2 Three-flavor Hubbard model

In addition to basic SU(2) symmetries, QSpace [30] also provides a convenient framework for
the incorporation of more complex non-abelian symmetries such as SU(N > 2). To explore the
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potential of this feature within fermionic iPEPS, we consider a symmetric spinless three-flavor
Hubbard model where we fully exploit the SU(3) flavor symmetry. Its Hamiltonian has the
same form as in (80), except that the composite index (m,σ) is replaced by a single flavor
index, m = 1, 2,3. Choosing µ0 = U here, this again also ensures that µ = 0 corresponds to
half-filling. In contrast to the spinful case, however, the fact that N = 3 is odd implies that
half-filling is metallic, unless symmetry broken (see below). Only integer filling results in Mott
or Heisenberg physics for larger U [112].

Although systems with a total of three symmetric flavors are not naturally realized by the
atomic configuration of any real electronic material, SU(N > 2) realizations of the fermionic
Hubbard model currently attract a lot of attention in the context of cold-atom experiments
based on alkaline earth-like atoms such as ytterbium [102, 103], where such systems have
become directly accessible in highly controlled setups. SU(N) symmetric systems feature a
number of exotic phases and magnetic properties, which are of interest from a condensed
matter perspective. In addition, they are also relevant for other fields, for example in the
context of studying lattice gauge theories for quantum chromodynamics [113].

So far, little is known for the spinless SU(3) Hubbard model on the 2D square lattice. Some
work has been done for the weak to intermediate coupling limit, where one expects the emer-
gence of a flavor density wave breaking the translational symmetry of the lattice [114]. At
half filling in particular, it is expected that two flavors occupy the same lattice site whereas
neighboring sites exclusively host the third flavor, such that a bipartite two-sublattice struc-
ture emerges. This is motivated by the following consideration: a site with single occupancy
transforms in the defining three-dimensional representation 3 of SU(3), whereas a doubly
filled site is a fully filled site with one hole, which transforms in the conjugate representation
3̄. Within the symmetry broken setting above then, neighboring sites could, in principle, bind
into a singlet configuration.

At integer filling n = 1 and in the strong coupling limit, the model can be mapped onto
an SU(3) Heisenberg model in the defining 3 representation (physically equivalent, for n= 2,
this becomes the dual 3̄). This is believed to favor a three-sublattice order with finite magnetic
moments [115]. On intuitive grounds, note that for an SU(3) Heisenberg model in the 3
representation, a multiple of three sites is required to form a singlet. This is not naturally
suited to the square lattice, and hence results in frustration, eventually giving rise to a three-
sublattice order.

We have again reduced the numerical complexity of our model system by fully incorporat-
ing the non-abelian SU(3) symmetry in the fermionic iPEPS ansatz. To this end, the full local
fermionic state space, d = 8, can be reduced to d∗ = 4 multiplets. We then performed simple-
update calculations with a multiplet bond dimensions up to D∗ = 6. Again, the symmetry
sectors are dynamically adapted during the optimization. We illustrate examples of the rele-
vant multiplet contributions encountered in iPEPS simulations with varying D∗ at half filling
in Table 2.

We performed iPEPS simulations on both 2 × 2 and 3 × 3 unit cells with two and three
different tensors, respectively, to slightly bias the emergence of the two- and three-sublattice
order expected from the considerations discussed above. Any tendency towards spontaneous
symmetry breaking of SU(3), are, however, symmetrized by our setup. Figures 11(a,b) sum-
marize our results for the ground-state energy per site, e0/U , as a function of filling, 〈n〉, both
at weak coupling U = 1 and stronger coupling U = 6. In either case, the simulations on both
unit-cell geometries surprisingly yield very compatible ground-state energies.

For U = 1 at half-filling, which in the present case of N = 3 corresponds to half-integer
filling on average, we observe a tendency toward translational symmetry breaking in the form
of modulation of the occupancy on different sites for both 2×2 and 3×3 clusters (wavefunction
1 and 2). This is in qualitative agreement with Ref. [114], which predicts a phase with
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Figure 11: Non-abelian iPEPS results for the three-flavor Hubbard model for U = 1
(left panels) and U = 6 (right panels). Panels (a) and (c) display the ground-state
energy e0/U as a function of filling 〈n〉 for iPEPS simulations on a 2×2 and 3×3 unit
cell, whereas (b) and (d) show the filling 〈n〉 as a function of the chemical potential
µ. Panels (1) to (6) depict individual iPEPS wavefunctions at the points marked in
panels (a,c). The filling per site and the bond energy are proportional to the diameter
of the black dots and the width of the bonds, respectively.

Table 2: Typical multiplet configurations on the auxiliary bonds obtained from SU(3)
symmetric iPEPS simulations on the square lattice Hubbard model with three equiv-
alent flavors. The different rows show the results for increasing multiplet bond di-
mension D∗ (left column) at half filling. The SU(3) multiplet labels are in Dynkin
form, where we adopt the compact QSpace [30] notation. For the center column we
use the same notation as in Table 1.

D∗ multiplets in symmetry sectors (Z2, SU(3)flavor) D
4 (−1,00)⊕ (−1, 01)⊕ (1, 01) ⊕ (1, 10) 1+ 3+ 3+ 3= 10
5 (−1,00)⊕ (−1, 11)⊕ (1, 01) ⊕ (1, 10) 1+ 8+ 3+ 3= 16
6 (−1,00)⊕ (−1, 11)⊕ (1, 01)2 ⊕ (1, 10) 1+ 8+ 6+ 3= 19

two-sublattice order with single and double occupancy on neighboring sites. This is almost
realized by wavefunction 1 shown in Fig. 11, with occupancies N ≈ 1.19 and N ≈ 1.81 on
neighboring sites. For the 2 × 2 cluster, this also goes hand in hand with a pinning of the
occupation at average 〈n〉= 1.5 [Fig. 11(b,d)], suggesting that the system energetically prefers
a translationlly symmetry broken state. The density modulation are substantially suppressed
on the 3 × 3 unit cell, where we find two sites having the same occupancy N ≈ 1.58 while
slightly fewer particles occupy the third site N ≈ 1.32 at essentially no pinning of the average
occupation when changing the chemical potential. The density-wave modulation disappears
both in the case when the occupation significantly deviates from the half-filled case, and also
for stronger interaction, as illustrated by the wave functions 3, 4, 5, and 6 in Fig. 11.

As already pointed out with Figs. 11(b,d), the occupancy is clearly not a smooth increasing
function of the chemical potential, which drives the filling. While the 2 × 2 unit cell shows
plateaus – and hence favors – half-filling, this is not the case for the 3 × 3 unit cells. The
situation is completely reverse, however, at integer filling 〈n〉= 2 as seen in Figs. 11(b,d).

48



SciPost Phys. Lect.Notes 25 (2021)

At this filling, a 2× 2 unit cell cannot be in a singlet configuration, but has residual spin.
Hence there is a certain degree of frustration in this setup. By contrast, the 3× 3 unit cell can
host a singlet configuration at 〈n〉 = 2. Interestingly, the 3× 3 unit cell already shows charge
locking for the case of rather smaller U = 1, which may be due to frustration in the present
case. Eventually, however, this will require a more thorough analysis based on an extrapolation
of D∗→∞.

Locking of charge at integer filling is typically a signature of Mott physics, which is to some
extent also expected in the three-flavor model at 〈n〉 = 2 [112, 116]. However, locking may
also occur if the occupation inside an enlarged unit cell changes by integers. This effect may
be physical, e.g., as suggested above, in that 3 and 3̄ bind into singlets, which occurs at half-
filling. The effect may also be artificial, in which case it depends on numerical details and
should become less pronounced with increasing D∗. This can be observed for the plateau at
filling 〈n〉= 1.5 (data not shown).

In summary, nevertheless, based on the earlier arguments we do expect that in the present
case the 2× 2 unit cell is more suitable for the half-filled case, whereas the 3× 3 unit cell is a
better fit for integer filling. Furthermore, it should be possible to reveal additional information
about the flavor order by studying (i) longer-ranged correlators and (ii) switching off the SU(3)
in favor of two abelian U(1) symmetries and explicitly allowing spontaneous breaking of the
flavor symmetry.

7 Conclusion

In this review, we attempt to give an overview of the rapid developments of iPEPS, which
has reached a remarkable sophistication over the last few years. A large part of the review,
addressed to newcomers to the field, is dedicated to to two widely used ground state search
methods: simple-update and full-update. Simple-update is very competitive in run-time, while
full-update yields highly accurate results that are important to characterize ground states of
correlated electrons. Besides that, we present a comprehensive technical detail about using
non-abelian symmetry in iPEPS, where a seemly formidable computational overhead can be
avoided by careful implementation. Two non-trivial examples, the two-band Hubbard model
and the three-flavor Hubbard model, are included to show how exploiting symmetry can be
useful. All in all, we hope that this review will motivate more efforts to the development of
2D tensor network algorithms, which have the potential for achieving crucial for advances in
computational studies of correlated electrons.

Funding information The Deutsche Forschungsgemeinschaft supported BB, JWL and JvD
through the Excellence Cluster “Nanosystems Initiative Munich” and the Excellence Strategy-
EXC-2111-390814868. JWL was also supported by DFG WE4819/3-1. AW was supported
by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-
SC0012704.

A Constructing tensors with symmetry

In this Appendix, we provide a sketch of how to deal with non-abelian symmetry in tensor net-
works. For simplicity, we use SU(2) as a concrete example. The strategy can be generalized
to SU(N) (for more detail, we refer to Ref. 30, 31). The example illustrates the conceptual
bottom-up approach underlying the QSpace tensor library [30, 31] for implementing sym-
metries in tensor networks: construct all ingredients step by step, systematically combining
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elementary building blocks into more complex structures.

A.1 SU(2) spin algebra

A group element of SU(2) can be represented by an unitary transformation, Ĝ = eiŜ , in
a complex vector space, with Ŝ an arbitrary Hermitian matrix in that space. This matrix
can be parametrized by three independent real numbers ϕa, with a ∈ {x , y, z}, such that
Ŝ =

∑
aϕaŜa ≡ ϕ · Ŝ, with Ŝa the generators of the symmetry, satisfying [Ŝa, Ŝb] = iεabc Ŝc . In

the defining, two-dimensional representation with spin multiplet label S = 1
2 , the generators

can be chosen as Ŝa ≡ 1
2σ

a, with σa the Pauli matrices.
This is the smallest non-trivial SU(2) matrix representation. More generally, an SU(2)

irreducible representation (irrep) with spin S has dimension 2S + 1, i.e. the generators Ŝ are
represented by matrices of size (2S + 1)× (2S + 1).

In general, an irreducible multiplet consists of a set of states that can be labeled by their
eigenvalues of the generators that were chosen diagonal, i.e., in the SU(2) context, Sz . For a
general non-abelian symmetry, this can be a set of generators, say Qz , resulting in a tuple of
labels qz . These can be lexicographically sorted, with the largest, i.e., the maximum weight
state being unique. Its weights qz therefore can be used to label the entire multiplet. In the
SU(2) context, max(Sz) = S.

Alternatively, the complete set of Casimir operators also labels a multiplet uniquely. Hence
there exists a well-defined polynomial mapping from the maximum weight labels to the Casimir
labels. For example, in the case of SU(2), S→ S(S+1), with the latter being the eigenvalue of
the quadratic Casimir, Ŝ2 ≡ ŜaŜa, using Einstein summation convention. Other than that, the
Casimir operators are not required, and so we do not use them. Instead, we use convenient
internal conventions on the normalization of generators, with a subsequent linear mapping of
the maximum weight labels to standard Dynkin labels. In particular, this implies for SU(2) the
symmetry labels q = 2S. For one, this is consistent with SU(N > 2), e.g., in that q is equiv-
alent to the number of boxes in its corresponding Young tableau. Moreover, this also has the
advantage that all symmetry labels are integers, which we find more readable and convenient
on practical grounds. We use the notation q as label for irreducible multiplets, in order to
emphasize that this can be a tuple of labels for an irreducible multiplet for any symmetry.

A.2 Tensor product decomposition

A tensor product of two irreps q1 and q2 can be decomposed into a direct sum of irreps,

V q1 ⊗ V q2 =
⊕

q
Mq

q1q2
V q , (82)

where in this symbolic notation, the multiplicity coefficients Mq
q1q2

are integers encoding the
fusion rules. That is, irreps that do occur in the product decomposition have Mq

q1q2
> 0,

whereas multiplets q with Mq
q1q2
= 0 do not occur in the decomposition [for SU(2) Mq

q1q2
= 1

for q = 2S ∈ |q1− q2|, |q1− q2|+2, q1+ q2, and Mq
q1q2
= 0 otherwise]. For general non-abelian

symmetries as for SU(N ≥ 3), the same irrep q can routinely occur multiple times, i.e., having
outer multiplicity Mq

q1q2
> 1.

The coupled basis vector |q, qz〉 and the direct product basis |q1, q1z〉⊗ |q2, q2z〉 are related
by a unitary basis transformation matrix, namely,

|q1, q1z〉 ⊗ |q2, q2z〉 =
�∑

q,qz

|q, qz〉 〈q, qz|
�
|q1, q1z〉 ⊗ |q2, q2z〉︸ ︷︷ ︸
≡
�

Cq
q1q2

�qz

q1zq2z

, (83)

50



SciPost Phys. Lect.Notes 25 (2021)

where (Cq
q1q2
)qz
q1zq2z

are the standard Clebsch-Gordan coefficient (CGC) spaces. The notation
here emphasizes the tensorial structure, in that the Clebsch-Gordan tensor (CGT) Cq

q1q2
is in-

dexed by the qz-labels (in the presence of inner multiplicity where degeneracies in the the
qz-labels occur, caveats apply [30]). The rank-3 CGTs above are fundamental building blocks
since any higher-rank CGC can be generated from them.

Example: Direct product of two spin-half multiplets The tensor product of the two vector
spaces of two spin-half multiplets, having q1 = q2 = 2S = 1, can be decomposed into a spin-
singlet, q = 0, and a spin-triplet, q = 2S = 2, i.e, 1⊗ 1= 0⊕ 2.

The unitary basis transformation matrix from the direct product basis to the coupled basis
can be read as

(using the familiar labels 〈S, Sz| for the rows and |S1z , S2z〉 for the columns on the r.h.s.),




C0
q1q2

C2
q1q2



=

〈0, 0|
〈1, 1|
〈1, 0|
〈1,−1|

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉



0 1/
p

2 −1/
p

2 0

1 0 0 0
0 1/

p
2 1/

p
2 0

0 0 0 1




. (84)

This includes two sets of CGCs concatenated vertically, namely for q = 0 and q = 2, as indicated
by the horizontal lines separating them. These CGCs are fully defined by symmetries. They
can be explicitly computed via (generalized) tensor-product decomposition [30], and stored
as separate tensors in sparse format in a database.

A.3 Irreducible tensor operator

State spaces and operators are tightly related. For example, if one creates a particle with spin-
half on top of a singlet (or vacuum state), ĉ†

σ|0〉 ≡ |σ〉, the operator on the l.h.s. necessarily
needs to transform under symmetry like the resulting state on the r.h.s. Symmetry operations
on the state to the right translate into commutation relations for the operators on the left, and
Clebsch-Gordan coefficients come into play, as also evidenced by the Wigner-Eckart theorem.

For example, in the case of SU(2), the operation of a raising or lowering operator for
an irreducible operator (irrop) T̂ SSz , which by notation transforms like a spin-S multiplet,
translates into the following relations:

[(Ŝx ± iŜy), T̂ SSz ] =
Æ

S(S + 1)− Sz(Sz ± 1) T̂ SSz±1 (85)

[Ŝz , T̂ SSz ] = Sz T̂ SSz . (86)

This demonstrates that just as a multiplet |SSz〉 is irreducible under a given symmetry, so is the
irrop. In particular, an irrop represents a set of operators, here labeled by Sz , which carries a
representation of the symmetry group.

Now if an irrop acts on a non-trivial state space that itself transforms like a non-scalar sym-
metry multiplet, the resulting states correspond to a tensor product of symmetry multiplets,
and the rules of tensor product decomposition of multiplets apply. This is manifested in the
Wigner Eckart theorem (returning to generic ‘q-labels’),

〈q1q1z| T̂ qqz |q2q2z〉 ≡ 〈q1q1z| ·
�
T̂ qqz × |q2q2z〉

�
= 〈q1‖T̂ q‖q2〉

�
Cq1

qq2

�q1z

qzq2z
, (87)

where the reduced matrix element 〈q1‖T̂ q‖q2〉 is the only remaining effective matrix element
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not determined by symmetry, but depending on the physical action of the operator. Other
than that, the Wigner-Eckart theorem demonstrates that the matrix elements of an irrop are
not independent of each other, but are highly constrained by symmetry operations, i.e., related
by CGCs. In other words, an SU(2) symmetric tensor can be factorized into two parts, reduced
tensor elements and CGCs. With both state space decomposition and operator representation
thus linked to CGTs, this forms a natural framework to build tensors of arbitrary complexity
precisely on the basis of tensor network states.

A.4 PEPS tensor construction

Here we demonstrate, based on an instructive example relevant for the present context, how
complex tensors can be built from elementary building blocks, making explicit use of rank-3
CGTs. With the focus on iPEPS in this work, the building block of the iPEPS itself is a local rank-
5 tensor M , with four virtual bond indices, say L(eft), R(ight), U(p), and D(own), together
with a local state space, P(hysical). So how would one build, or even initialize such a tensor
while respecting non-abelian symmetries in a generic fashion?

(a) (b)

(c) (d)

L U

P

DL U

R

D*

P R*A1 A2 B1
*

A1 A2 B1

VI VO*

VI VO

M̃

U

L

P D

R

Figure 12: Steps (a)-(c) for building rank-5 PEPS tensor in (d) from ele-
mentary rank-3 tensors. (a) Iterative fusion of the “incoming” state spaces,
V P ⊗ V L ⊗ V U ≡ �

V P ⊗ V L
� ⊗ V U ≡ V I , first combining the physical states space

P with the left bond L via A1, then fusing the result with the upper bond U via A2.
(b) Fusion of the ‘outgoing’ states spaces, V R∗ ⊗ V D∗ ≡ V O∗. (c) Fusing together the
results of (a) and the conjugate [31] of (b) into a global singlet via the bond tensor
M̃ . The latter is block-diagonal with trivial CGCs; its reduced matrix elements can be
chosen arbitrarily, e.g., such that the overall tensor may satisfy certain lattice sym-
metries. The indices R and D became outgoing indices in the last step. (d) The final
rank-5 PEPS tensor after contracting all tensors in (c). Each leg U , D, L, R and P rep-
resents a state space which in the presence of non-abelian symmetries is organized
via the generic composite labels |ql; qz〉 as introduced with Eq. (71).

The prescription to build such a rank-5 PEPS tensor M is summarized in Fig. 12. We assume
that the state spaces of each of the constituent bonds are already specified (or have been
obtained in some fashion). Importantly, each bond also has a direction, indicating whether an
index enters or leaves the final desired object. As indicated in Fig. 12(d), the tensor M has three
incoming indices, (P, L, U), and two outgoing indices, (R, D). So one can fuse the state spaces
in either case. A set of state spaces, such as (L, U , P), can be build iteratively by adding one
state space at a time, V P ⊗ V L ⊗ V U ≡ �V P ⊗ V L

�⊗ V U ≡ V I , where I stands for the combined
incoming state space, as depicted in Fig. 12(a). The same can be done for the outgoing state
spaces, except that by the very concept of fusing input spaces into output, the tensor product
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deals with the opposite direction of R and D, namely also ingoing. Hence the state space in
the dual (or conjugate) representation needs to be considered in the fusion itself, as indicated
by the asterisk in V R∗ ⊗ V D∗ ≡ V O∗ in Fig. 12(b). Here O stands for the combined state spaces
of legs eventually leaving the tensor M .

Having fused in- and outgoing state spaces separately and without truncation, the final
step is to tie together the two fused state spaces into a global singlet, symbolically written as
V I ⊗ V O∗→ 0, with q = 0 the scalar representation, i.e., a singlet. This sixth index, namely a
global singlet state, then corresponds to a singleton dimension that can be skipped. Since for
any irrep q only the combination with its dual q∗ can result in a singlet, the CGCs for this step
are simple (1 j symbols in the language of [31]), as one can only link in a 1-to-1 correspondence
between V I and V O∗. However, the situation is much simpler still, since one needs to contract
the conjugate of the V O∗ above, in order to obtain the final desired index directions. The
conjugate of the entire object in Fig. 12(b) can be drawn pictorially as a mirror image [here
left-to-right, as in Fig. 12(c)], with all arrows reversed [see [31] for details]. This now can be
simply contracted with the tensors in Fig. 12(a) as shown in Fig. 12(c). Since arrow directions
are preserved, this implies that the only free choice of tensor coefficients left are in the tensor
M̃ in Fig. 12(c) that ties together in- and outgoing state spaces. Via Wigner Eckart theorem,
the tensor M̃ is a scalar operator, where with the corresponding singleton dimension of the
irrop set skipped, this can be written as a plain block-diagonal tensor, with the corresponding
CGTs Cq

0q = 1q being trivial identity matrizes in the multiplet space of the respective multiplet
q.

The above example reflects the generic transparent guiding principle when working with
symmetric tensors, namely: to construct arbitrarily complex tensors from known, manage-
able, elementary building blocks. In the present case, this included (i) the fusion of pairs of
state spaces [via Ai and Bi , as well as the final fusion into a trivial scalar multiplet via M̃ in
Figs. 12(a-c)]. This was followed by (ii) the pairwise contraction of symmetric tensors [31] to
obtain M in Fig. 12(d). Here, for example, one may have used the nested pairwise grouping
A1A2M̃B1 = ((A1 ∗A2) ∗ (M̃ ∗ B1)), where ‘∗’ refers to the contraction of a pair tensors on fully
connected indices, which simply generalizes matrix multiplication to tensors.
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We study the two-dimensional t-J model on a square lattice using infinite projected entangled pair states
(iPEPS). At small doping, multiple orders, such as antiferromagnetic order, stripe order and superconducting
order, are intertwined or compete with each other. We demonstrate the role of spin symmetry at small doping by
either imposing SU(2) spin symmetry or its U(1) subgroup in the iPEPS ansatz, thereby excluding or allowing
spontaneous spin-symmetry breaking, respectively, in the thermodynamic limit. From a detailed comparison of
our simulations, we provide evidence that stripe order is pinned by long-range antiferromagnetic order. We also
find SU(2) iPEPS, enforcing a spin-singlet state, yields a uniform charge distribution and favors d-wave singlet
pairing.

DOI: 10.1103/PhysRevB.103.075127

I. INTRODUCTION

The discovery of high-temperature superconductivity has
triggered intense research on the properties of the one-band
t-J model on a square lattice, which has been argued to cap-
ture essential low-energy properties of cuprate materials [1].
Despite many analytical and numerical works, full consen-
sus regarding the competing low-energy states with different
charge, spin, and superconducting orders of the t-J model
has not yet been reached. One category includes so-called
stripe states, featuring spin-density waves and charge-density
waves [2–24], where some of these states also exhibit co-
existing d-wave superconducting order. Another potential
candidate for the ground state of the hole-doped t-J model is
a superconducting state with uniform hole density [18,25,26].
Recently, Corboz et al. [24], using infinite projected entangle
pair states (iPEPS), demonstrated the energetically extremely
close competition of the uniform state and the stripe state,
even for the largest accessible numerical simulations. Similar
work on the Hubbard model also pointed towards a striped
ground state [27–33]. Nevertheless, the underlying physical
mechanism causing these intriguing ground-state properties
remains elusive, and refined work in this direction is clearly
necessary.

In this paper, we focus on the so-called λ5 stripe state,
featuring spin and charge modulations with a period of λ =
5 lattice spacings, which was previously shown to be en-
ergetically favorable near hole doping δ � 0.1 at J/t = 0.4
(referred to as the W5 stripe in [24]). We use iPEPS (i) to
study the evolution of λ5 stripe order from its optimal doping
δ � 0.1 into the spin and charge uniform phase and (ii) to pro-
vide insight into the relation between stripes and long-range
antiferromagnetic (AF) order in the thermodynamic limit.

In particular, we show that by implementing either U(1)
or SU(2) spin symmetry in the iPEPS ansatz, the relevance
of long-range AF order can be directly examined. Our anal-
ysis complements the finite-size scaling often used in density
matrix renormalization group (DMRG) and quantum Monte
Carlo (QMC) simulations, thereby addressing the question
of “the fate of the magnetic correlations in the 2D limit”
raised in Ref. [34]. Moreover, we show that the SU(2) iPEPS
ansatz which, by construction, represents a spin-singlet state,
possesses d-wave singlet pairing order. Such SU(2) iPEPS can
be interpreted as a generalized resonating valence bond (RVB)
state [35–39], and in this sense our finding of d-wave pairing
for the SU(2) iPEPS is reminiscent of Anderson’s original
RVB proposal [40–42].

II. MODEL AND METHODS

The t-J Hamiltonian is given by

Ĥ = −t
∑
〈i j〉σ

(c̃†
iσ c̃ jσ + H.c.)+ J

∑
〈i j〉

(
Ŝi · Ŝ j − 1

4
n̂in̂ j

)
, (1)

with the spin operators Ŝi, projected fermionic operators c̃iσ =
ĉiσ (1 − ĉ†

iσ̄ ĉiσ̄ ), spin label σ ∈ {↑,↓}, and 〈i j〉 indexing all
nearest-neighbor sites on a square lattice. To control the dop-
ing, we minimize Ĥ − μN̂ for a specified choice of chemical
potential μ (see the Supplemental Material [62], Sec. S-II.).
We set t = 1 as the unit of energy and use J/t = 0.4 through-
out.

We use iPEPS to obtain an approximate ground state
for Eq. (1). The iPEPS ground state is a tensor network
state consisting of a unit cell of rank-5 tensors, i.e., tensors
with five indices or legs, repeated periodically on an infinite
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FIG. 1. U(1) and SU(2) iPEPS results for the t-J model at J/t = 0.4. (a) The energy per hole eh as a function of hole doping δ for 5×2 and
2×2 unit cells. (b)–(d) Spin, hole, and singlet pairing amplitude profiles at δ � 0.1, 0.2, and 0.3. U(1) iPEPS (D = 8) yields stripes on 5 × 2
clusters and charge-uniform states on 2 × 2 clusters; SU(2) iPEPS (D∗ = 6) yields spin singlets. Symbols and linewidths are drawn to scale as
indicated.

square lattice [24,43–48]. Each rank-5 tensor has one physical
index and four virtual indices (bonds) connecting to the four
nearest-neighboring sites. The accuracy of such a variational
ansatz is guaranteed by the area law and can be systematically
improved by increasing the bond dimension D.

Using the QSPACE tensor network library [49], we can
simply switch between exploiting either U(1) or SU(2) spin
symmetries for our iPEPS implementation [50]. This allows
us to use sufficiently large bond dimensions to obtain accurate
ground state wave functions. With SU(2) iPEPS [35–39,50–
55], we push the reduced bond dimension D∗ up to 8,
where D∗ is the number of retained SU(2) multiplets per
virtual bond, which corresponds to a full bond dimension
of D � 13 states. To optimize the iPEPS wave functions
via imaginary-time evolution, we use full-update and fast
full-update methods [24,45,47,56,57]. The contraction of the
two-dimensional infinite lattice is evaluated approximately by
the corner transfer matrix method [24,58–61], which gener-
ates so-called environment tensors with an environment bond
dimension χ . For SU(2) iPEPS, the environment bond dimen-
sions used here are χ∗ = 144 (χ � 300) for D∗ = 6 (D � 11)
and χ∗ = 128 (χ � 270) for D∗ = 8 (D � 13). For U(1)
iPEPS, the environment bond dimensions are χ = 256 for
D = 8 and χ = 200 for D = 10.

III. ENERGETICS

In Fig. 1(a), we show the energy per hole, eh(δ) ≡ (es −
e0)/δ, as a function of hole doping δ, obtained from vari-
ous iPEPS simulations (plots of es(δ) vs δ are shown in the
Supplemental Material [62], Fig. S3). Here es is the average
ground state energy per site, and e0 = −0.467775 is the nu-
merically exact value for the AF phase at zero doping taken
from Ref. [63]. Using U(1) iPEPS on a 5 × 2 unit cell, we
find a minimum at δc � 0.1, as previously reported [24]. If
phase separation, involving a mixture of AF and stripe orders,
sets in with decreasing δ, then δc provides an upper bound

for this onset (see the Supplemental Material for details).
Increasing the bond dimension from D = 8 to D = 10 im-
proves the ground state energy consistently for every doping
δ considered here. On the other hand, using SU(2) iPEPS
(D∗ = 6), we obtain a spin-singlet state with no stripe fea-
ture on a 5 × 2 unit cell. Moreover, the ground state energy
is almost independent of the shape of unit cells (compare
5 × 2 and 2 × 2 data). We further improve the ground states
using D∗ = 8 on the 2 × 2 unit cell. Overall, for δ � 0.2
in Fig. 1(a), we see that the U(1) λ5 stripe state yields a
substantially lower ground state energy than the spin-singlet
state, while the latter lies below the former for δ � 0.25.
From a technical perspective, our calculations show that for
the non-symmetry-breaking phase favored at δ � 0.25, SU(2)
iPEPS benefits from the full utilization of the spin-rotational
symmetry, even though U(1) iPEPS has a larger number of
variational parameters when D > D∗.

Next, we take a close look at each individual iPEPS for
three values of doping. The stripe states obtained using U(1)
iPEPS, shown in the top left parts of Figs. 1(b)–1(d), exhibit
modulation of charge and spin densities along the y direction.
At δ � 0.1, we find hole doping to be maximal along the top
row, implying a site-centered stripe, in agreement with previ-
ous work [24]. Note that the spins in the two rows on either
side of the top row (rows 2 and 5) are ordered antiferromag-
netically (implying a so-called π phase shift across the top
row), thereby reducing the energy of transverse hole hopping
along the domain wall [10,11,16]. At δ � 0.2, we find hole
doping to be maximal between two rows (the first and second),
implying a bond-centered stripe, as frequently observed in
DMRG, density matrix embedding theory (DMET), and QMC
calculations [10,27]. Finally, at δ � 0.3, the hole densities
are roughly equal across all sites, with residual charge and
spin modulation. Overall, the stripe states we find here are
in agreement with previous studies, which concluded that in
the t-J model stripe formation is predominantly driven by
the competition between the kinetic energy and the exchange
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energy [2,3,9,15]. However, the same mechanism can also
induce the pairing formation [12,18,26,64]. Therefore, it is a
priori unclear under what circumstances the system will favor
stripe order or pairing at small doping. To clarify this issue,
we now turn to our SU(2) iPEPS results.

In contrast to the U(1) iPEPS results, switching on spin-
rotational symmetry on the 5 × 2 unit cell by using SU(2)
iPEPS suppresses the AF order and hence the spin modula-
tion, as shown in the top right parts of Figs. 1(b)–1(d). The
resulting state no longer shows any spin stripes and instead
has the same structure as the uniform state obtained on a
2 × 2 unit cell at similar doping [see the bottom right parts
of Figs. 1(b)–1(d)]. In addition, enforcing SU(2) symmetry
also makes charge modulations completely disappear as well.
This observation suggests that in the t-J model charge density
waves are strongly tied to spin stripes.

We have also examined d-wave superconducting or-
der by computing the singlet paring amplitude, 〈�i j〉 =

1√
2
〈c̃i↑c̃ j↓ − c̃i↓c̃ j↑〉. For the U(1) iPEPS λ5 stripe states in

Figs. 1(b)–1(d), we cannot directly identify a d-wave pairing
character, in contrast to Refs. [24,27], which found opposite
signs for the amplitude of the bonds along the x and y axes.
However, a word of caution is necessary in reading this re-
sult when the ground state spontaneously breaks SU(2) spin
symmetry because even a trivial term, such as 〈c̃i↑c̃ j↓〉, could
yield a nonzero contribution to 〈�i j〉. For a more rigorous
diagnosis, one should explicitly study the pair correlation
function [34,65–67], which goes beyond the scope of this
work. Hence, our results do not exclude the possibility that
stripes and d-wave superconducting order could coexist. For
example, in the case of the U(1) results of Figs. 1(b)–1(d)
we find that local d-wave order including the proper signs
is absent at δ � 0.1 and 0.2. However, it is present for the
2 × 2 U(1) cell at δ � 0.3, where the local magnetization is
too small to sustain significant AF order.

On the other hand, the SU(2) iPEPS is a spin-singlet
state by construction. It takes into account short-range spin
correlations but excludes long-range AF order, which breaks
spin-rotational symmetry in the thermodynamic limit (see
the Supplemental Material for details). This rules out the
aforementioned ambiguity, and the singlet pairing amplitude
becomes a robust measure. As shown in Figs. 1(b)–1(d), a
d-wave pattern appears on both the 5 × 2 and 2 × 2 unit
cells. Figure 2 shows the averaged singlet pairing amplitude,
� = 1

N

∑
〈i j〉 f (ri j ) 〈�i j〉, as a function of doping, where N is

the number of sites in the unit cells, ri j ≡ r j − ri, and f (r)
is a d-wave form factor, which takes the values f (±ŷ) =
−1 and f (±x̂) = 1, respectively. The error bar indicates the
mean absolute deviation of the pairing amplitudes among all
bonds. In the 2 × 2 case, the pronounced deviation is mostly
attributed to the difference in pairing amplitudes along the x
and y directions. A similar phenomenon was also observed in
a recent large-scale DMRG calculation [34], and an almost
equal mixture between d-wave and s-wave singlet paring am-
plitude was suggested. Upon increasing the bond dimension
D∗ from 6 to 8, the d-wave pairing order increases. This
is different from the previous analysis of charge uniform
states using U(1) iPEPS, where pairing is suppressed with
increasing D [24]. Furthermore, the 5 × 2 case also shows a
rather uniform d-wave pattern. The magnitude of the pairing
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FIG. 2. Averaged singlet pairing amplitude as a function of dop-
ing using SU(2) iPEPS. The error bar shows the mean absolute
deviation of the pairing amplitudes among all bonds. For the 5 × 2
unit cell, the error bars are smaller than the symbols.

amplitude in Fig. 2 is small but finite, even if about an order
of magnitude smaller than reported in other U(1) iPEPS or
DMRG simulations [19,21,24]. This appears consistent with
Fig. 1(d) for δ�0.3, showing d-wave order with an amplitude
slightly smaller for 2×2 SU(2) than for 2 × 2 U(1) or 5×2
SU(2), which are comparable. All in all, our SU(2) iPEPS
results show that, if spin rotational symmetry is enforced,
the doped t-J model exhibits d-wave superconductivity in the
thermodynamic limit, in agreement with an early prediction
from mean-field theory [41].

IV. INFLUENCE OF STRIPES ON
ANTIFERROMAGNETIC ORDER

In the previous section we showed that stripes can be
stabilized as ground states using the U(1) iPEPS at doping
0.1 � δ � 0.2 on a 5 × 2 unit cell. By contrast, the SU(2)
iPEPS shows no signature of any spatial modulations of spin
and charge density. This suggests that the stripes and the AF
order are intimately related. While such a viewpoint has been
discussed extensively both theoretically and experimentally
since the discovery of the so-called 1

8 anomaly [68–71], direct
understanding of how AF order coexists with stripes is still
lacking.

To address this, we have computed the staggered spin-spin
correlation functions for the ground state,

C(i) = (−1)x+y

3
4 (1 − δ)N

∑
j∈unit cell

〈Ŝ j+i · Ŝ j〉, (2)

with i = (x, y). The prefactor normalizes the same-site corre-
lator to unity, C(0) = 1, given (1 − δ)N spins per unit cell.
This facilitates the comparison of different unit cells and dop-
ing. In the following, we analyze C(i) along the long (y) and
short (x) directions of the unit cell.

First, we study the staggered spin-spin correlations on a
5 × 2 unit cell at doping δ � 0.1, 0.2, and 0.3, using U(1)
iPEPS. In Fig. 3(a), we can clearly identify λ5 stripe order at
δ � 0.1 and 0.2, with staggered spin-spin correlations oscillat-
ing around zero, reflecting the pattern already seen in the left
panels of Figs. 1(b) and 1(c). The staggered magnetic order
undergoes a phase shift of π across the length of the 5 × 2
unit cell, resulting in a period of λm = 10. At doping δ � 0.3,
the correlations decay much more rapidly, with weak residual
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FIG. 3. Normalized staggered spin-spin correlation functions,
computed on a 5 × 2 unit cell along the long (y) direction (left
column) and the short (x) direction (right column), using (a) and
(b) U(1) iPEPS and (c)–(f) SU(2) iPEPS, on linear and semilogarith-
mic scales, respectively. Solid symbols indicate the variational state
[U(1) or SU(2)] with the lower energy for a given δ.

oscillations remaining at large distances. Given its higher
variational energy compared to its SU(2) counterpart, this
reflects the numerical inefficiency of using a broken-
symmetry ansatz to simulate a spin singlet when many
low-energy states are nearly degenerate. By contrast, Fig. 3(b)
shows that the correlations along the “short” direction de-
crease with doping but remain positive at large distances,
indicating long-range AF order, i.e., C(|i| → ∞) = 0, al-
though attenuated with increasing δ. Therefore, Figs. 3(a)
and 3(b) suggest that stripes along the long direction go hand
in hand with long-range AF order along the short direction.

To further elucidate this point, we turn our attention to
the SU(2) iPEPS. Again, we have computed the staggered
spin-spin correlations on a 5 × 2 unit cell using SU(2) iPEPS.
In Figs. 3(c) and 3(d), the correlations along the long and
short directions are nearly identical and rapidly decay to zero,
showing no sign of either stripes or the long-range AF order.
Note that for SU(2) iPEPS, the instability of a given state
towards AF order can be detected by the increase in corre-
lation length with increasing χ∗. (We illustrate this for the
Heisenberg model in the Supplemental Material [62], Sec.
SI). However, this tendency is not observed at δ = 0.1 [see
Figs. 3(e) and 3(f)]. In short, we conclude that stripes emerge
only in the presence of long-range AF order.

To strengthen our previous statement, we further consider
L × 2 unit cells with L = 5, 4, 3, 2 at δ � 0.2 using U(1)
iPEPS (D = 8). Those could host spin stripes of periods
λ = L or an AF ordered state for L = 2. A previous iPEPS
study showed a very close competition between a λ5 stripe
state and an AF state with uniform charge distribution (L = 2)
at δ � 0.1 [24]. For a 2 × 2 unit cell [Fig. 4(a)], the spin-
spin correlations along both the long and short directions
quickly decay to nearly zero, showing that AF order is weak
at δ � 0.2 if a charge-uniform state is assumed. The same
charge-uniform state is also favored for a 4 × 2 unit cell:
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FIG. 4. Comparison of normalized staggered spin-spin correla-
tion functions for δ � 0.2 using U(1) iPEPS at D = 8 along the
long (y) direction and the short (x) direction on L × 2 unit cells for
L = 2, 3, 4, 5 in (a)–(d), respectively. The inset in (b) is a λ4 stripe
state obtained from different initialization.

we obtain this by initializing the 4 × 2 unit cell of a full-
update optimization using two copies of the 2 × 2 unit cell
in Fig. 4(a), which yields a slightly lower energy than a λ4
stripe state [inset in Fig. 4(b)] initialized from simple-update
results. By contrast, 3 × 2 and 5 × 2 unit cells show a clear
stripe feature along the long direction, together with nonzero
long-range AF order along the short one [Figs. 4(c) and 4(d)],
and slightly lower ground state energy than those of 2 × 2 and
4 × 2. However, the bond dimension D used here is not large
enough to conclusively resolve the close competition between
the different states. Overall, by plotting the correlations along
both the short and long directions in the same panel, we see
that the amplitude of the stripe modulation is the same as that
of attenuated long-rage AF correlations. This further confirms
that the stripes and the long-range AF order are indeed tied to
each other at finite doping.

V. SUMMARY

We have studied the doped t-J model with J/t = 0.4 using
U(1) and SU(2) iPEPS. For doping 0.1 � δ � 0.2, the λ5
striped charge and spin order with U(1) symmetry is energet-
ically favorable compared to a spin-singlet state with SU(2)
symmetry. By contrast, for δ � 0.25, the latter is favored. By
studying the spin-spin correlations, we find a close link be-
tween stripe order and long-range AF order. At small doping,
the U(1) iPEPS shows that spin stripes emerge along one spa-
tial direction, while attenuated long-range AF order persists
along the other spatial direction. Upon increasing doping, the
strength of stripe order decreases hand in hand with long-
range AF order. By contrast, the SU(2) iPEPS, which does
not break spin rotational symmetry, excludes long-range AF
order and hence stripe formation but yields d-wave super-
conducting order at finite doping. Our study demonstrates the
utility and importance of being able to turn on and off the
SU(2) spin-rotational symmetry at will—it gives direct insight
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into the interplay between regimes with spontaneously broken
symmetries and where SU(2) invariance remains intact.
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In this Supplementary Material, we include discussions
of the 2D Heisenberg model, phase separation, d-wave
order, symmetries, and some further results of our com-
putations, detailing how the nature of the iPEPS states
studied here change with doping.

S-I. CORRELATIONS OF THE 2D
HEISENBERG MODEL

In the main text, we point out the difference between
U(1) iPEPS and SU(2) iPEPS in the doped t-J model.
Here, we further illustrate that for δ = 0. It is known
that, at zero doping, the t-J model reduces to the an-
tiferromagnetic Heisenberg model, and the ground state
exhibits spontaneous symmetry breaking. At this criti-
cal point, we show that the U(1) iPEPS has finite AF
magnetization, and hence rigid long-range order. In con-
trast, the SU(2) iPEPS can not have long-range order in a
given ground state, even though the paramagnetic phase
is unstable and the criticality can be inferred by the slow
decay of the staggered spin-spin correlation function.

In Table S1 we summarize our results for the 2D AF
Heisenberg model obtained from U(1)-symmetric and the
SU(2)-symmetric iPEPS calculations, using J = 1 as unit
of energy. Our U(1) iPEPS variational energy per site,
e0 = −0.6693, agrees well with the best estimate from
QMC (see Table S1), namely −0.6694. The SU(2) sim-
ulations, by construction, represent a symmetrized state
and hence cannot gain energy from spontaneously sym-
metry breaking. Therefore they yield a slightly higher
energy, consistent with previous works [38, 54].

Next, we study how symmetry affects the real-space

TABLE S1. Comparison of the ground state energy per
site e0, and the square of the local magnetization m2

stag, for
the 2D Heisenberg model between U(1) and SU(2) iPEPS
results. We report values obtained at the largest possible
CTM environment in the measurement, for U(1) D = 4 and
8, χ = 512 and, for SU(2) D∗ = 4, χ∗ = 128.

e0 m2
stag

U(1)D=4 −0.6686 0.1271
U(1)D=8 −0.6693 0.1141

SU(2)D∗=4 (D=12) −0.6686 —

QMC [63] −0.6694 0.0944
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FIG. S1. (a) Staggered spin-spin correlation functions (b)
The inverse of correlation length 1/ξR extracted from the

asymptotic large-distance behaviors C(r) ' C0e
−r/ξRvs χ∗

for SU(2) iPEPS (c) C0 vs 1/χ∗ for SU(2) iPEPS

spin-spin correlations. Fig. S1(a) shows the staggered
spin-spin correlations for both U(1) and SU(2) symme-
try, for several values of χ, on a semilogarithmic scale.
For the U(1) iPEPS, the correlations quickly saturate
to a nonzero value with increasing distance, resulting
in a finite magnetization lim

r→∞
C(r) = m2

stag, and re-

main almost the same upon increasing χ from 64 to
512. This suggests that these CTM simulations are al-
ready well converged with respect to χ for the given finite
value of D. The subleading spin-spin correlations on top
of this AF background can be extracted by computing
δCij = 〈Ŝi · Ŝj〉 − 〈Ŝi〉 · 〈Ŝj〉 (not shown), which decay
exponentially with r ≥ 5 lattice spacings.

For the case of SU(2) iPEPS, on the other hand, it

holds by construction that 〈Ŝj〉 = 0. Therefore, C(r)
itself decays exponentially at sufficiently large distance
r. In either case, δC for U(1) or C for SU(2) here, this
implies finite gaps induced by the finite bond dimensions
D and the finite environment dimensions χ. However,
for the case of SU(2), the slope of the exponential decay
has a strong dependence on χ. The correlation length
increases with increasing χ, and no sign of saturation is
found up to χ∗ = 128 (χ ' 500), as expected for a critical
state with no gap (see Fig. S1(b,c)).

Recently, it has also been pointed out that SU(2)
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FIG. S2. A pictorial representation of an iPEPS on a 2× 2
lattice with an ABBA tiling pattern. σ, l, u, d, r represents
the physical index and four virtual indices at left, up, down
and right directions, respectively.

FIG. S3. Plot of 〈Si · Sj〉− 1
Nsite

∑
i 〈Si · Sj〉 to illustrate the

breaking of translational symmetry, with blue (green) bonds
representing positive (negative) values.

iPEPS is capable of capturing the critical phase in
the study of the J1-J2 Heisenberg model [38]. How-
ever, we notice a subtle difference regarding the issue of
symmetry-breaking between our simulations and theirs.
In their SU(2) iPEPS simulations for D∗ = 4, the CTM
approximation at finite χ induces symmetry breaking,
and the resulting spurious staggered magnetization only
vanishes when χ → ∞. In contrast, no such observa-
tion of symmetry-breaking appears in our SU(2) iPEPS
calculations. We suspect the difference comes from the
different setup of the PEPS ansatz. In Ref. 38, a single-
site PEPS with C4v rotational symmetry is assumed, and
the virtual multiplets occuring in the ansatz are manually
preselected. For D∗ = 4, they are fixed to {0, ( 1

2 )3} (here
the superscript specifies the multiplicity, i.e., the num-
ber of multiplets in a given symmetry sector, resulting in
D = 1 + 3 · 2 = 7 states total).

Instead, we use a 2 × 2 unit cell with 4 independent
tensors, and we allow the quantum numbers at virtual
legs to fluctuate during optimization. In our setup, the
converged 2 × 2 PEPS shows an ABBA tiling pattern
(see Fig. S2). The variationally selected virtual space
for D∗ = 4 leads to the multiplets {0, 12, 2} (i.e., D =
1 + 2 · 3 + 5 = 12) for three virtual legs, and {( 1

2 )2, ( 3
2 )2}

(i.e., D = 2 ·2+2 ·4 = 12) for the fourth one. This seems
to break the translational and rotational symmetry for
a single site (see Fig. S3). However, all bonds have the
same total bond dimension of D = 12 states. (Note that,
if the local state space has half-integer spin, it is not
possible to have all-integer or all half-integer spins on all
virtual bonds. Of course, the iPEPS tensors could be
symmetrized to have a linear combination of integer and
half-integer spins on each of the virtual bonds. But a
priori, having the above configuration with half-integer

spins on only one virtual leg in the SU(2) iPEPS does not
necessarily imply that the state is physically anisotropic.)

In short, we have addressed the key difference be-
tween U(1) and SU(2) iPEPS for the 2D AF Heisenberg
model. U(1) iPEPS (D = 8) exhibits long-range AF or-
der, breaking spin rotational symmetry, and the quantum
fluctuations are short-ranged. In contrast, SU(2) iPEPS
(D∗ = 4) is critical: at any finite χ, there is no long-
range AF order, but the AF spin fluctuations are strong
and slowly decaying. Taking χ→∞, we find a diverging
correlation length ξR, as expected for quantum criticality.

S-II. PHASE SEPARATION

The energy per hole eh(δ), related to the energy per
site by es = δ · eh + e0, has often been used to detect the
stability of a given phase at small doping relative to the
AF phase at the zero doping. [7, 15, 23, 24]. It has been
argued that if eh(δ) has a minimum at δc, the system
phase separates for hole densities 0 < δ < δc [24].

Here we point out that this statement holds only in the
dilute limit, i.e. for δc � 1. If δc is not very small, the
statement has to be refined: then δc does not mark the
onset of phase separation, but rather provides an upper
bound for this onset. This can be seen as follows: For a
system to phase separate, the energy per site, es, must
have a negative curvature, i.e., e′′s (δ) < 0, or, equiva-
lently, e′′s = (δ · eh + e0)′′ = 2e′h + δe′′h < 0. Now, consider
lowering δ down to a value δc at which e′h(δc) = 0, then
e′′s (δc) = δce

′′
h(δc). Now as seen in Fig. 1 in the main text,

the curvature e′′h(δ) > 0 is positive. Since also δ > 0, this
implies that for e′′s (δ) to vanish and thus phase separa-
tion to set in, δ has to be lowered some more. In this
sense, δc constitutes an upper bound for the onset of
phase separation. If δce

′′
h(δc) is very small, e.g., by al-

ready having δ � 1, the upper bound and the actual
onset may practically coincide. In general, however, they
can differ considerably.

In Ref. [24], Corboz et al. found a value of δc = 0.1 for
U(1) simulations of a λ5 system (see Fig. 4 of their sup-
plement, data for W5, D = 8). In Fig. 1(a) of our main
text, our λ5 U(1) data is consistent with their result—
we likewise find δc ' 0.1. Based on the above line of
reasoning, we regard this as an upper bound for phase
separation. Our λ5 SU(2) data in Fig. 1(a) has a min-
imum at δc ' 0.2. However, this yields no additional
information on phase separation, since at that value of
doping, the U(1) data already lies energetically below the
SU(2) data.

Our interpretation of δc ' 0.1 as an upper bound for
the onset of phase separation is confirmed by Fig. S5.
There we have replotted the data for eh(δ) vs. δ from
Fig. 1(a) of the main text, but now showing es(δ) vs. δ,
instead. In the simulated doping range (δ > 0.1), we find
e′′s ≥ 0 for both our U(1) and SU(2), i.e., no indication
of phase separation, even though the U(1) and SU(2)
results for eh show a clear minima near δ ' 0.1 and 0.2,
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FIG. S4. The grand-canonical energy per site fi(µ) of
Eq. (S.1), plotted vs. chemical potential µ. Each colored sym-
bol, placed at (µi, fi(µi)), represents a U(1) iPEPS state |Ψi〉,
obtained by minimizing 〈Ψi|Ĥ − µiN̂ |Ψi〉 on the 5 × 2 unit
cell for a specified value of µ = µi; the color-matched number
gives the corresponding value of doping, δi = 1−ni. A color-
matched line through a symbol shows (µ, fi(µ)), plotted by
varying µ in Eq. (S.1) while keeping ei and ni fixed as com-
puted for µi. Symbols with the same µi but different fi(µi)
values can arise, because iPEPS optimizations starting from
different randomized initial states can get stuck in different
local minima, corresponding to excited states. For reference,
the lower horizontal dashed black line was obtained using a
U(1) 2 × 2 unit cell for the Heisenberg model, having δ = 0
by definition. The latter unit cell is more naturally suited to
describe the AF state and hence already well coincides with
the thermodynamic limit for large µ [cf. Table S1].

respectively.
To further elucidate the different stability properties

of the regimes δ & 0.1 or . 0.1, we now describe in more
detail how we obtained the data of Fig. 1(a), which shows
the energy per hole eh as a function of δ. To obtain dif-
ferent values of δ, we varied the chemical potential µ as
input parameter. Concretely, we picked a specified set of
values of the chemical potential, {µ1, µ2, . . . }. For each

µi, we minimized 〈Ψi|Ĥ − µiN̂ |Ψi〉 to find an iPEPS

state |Ψi〉. We then computed ei = 〈Ψi|Ĥ|Ψi〉/Nsites,

ni = 〈Ψi|N̂ |Ψi〉/Nsites, and the doping δi = 1 − ni.
The state |Ψi〉 spans a one-dimensional variational space
for minimizing the grand-canonical (ground state) energy
per site,

fi(µ) = ei − µ(ni − 1), (S.1)

as a function of µ, where ei and ni are kept constant
as computed for given µi. Here we also added a trivial
shift +µ on the r.h.s., such that zero doping (half-filling)
gives rise to a horizontal line vs. µ in Fig. S4. For each
data point (µi, fi(µi)) depicted by a symbol, we also plot
a color-matched line fi(µ) vs. µ. By construction, this
line always also passes through its corresponding sym-
bol. For a given value of µ, the state |Ψi〉 having the
lowest fi(µ) may be viewed as the “stable” one. It cor-
responds to the ground state for the given setting, en-
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FIG. S5. (a,b) Energy per site, es, as a function of hole
doping δ for U(1) and SU(2) iPEPS. (c,d) Same data, but
relative to a linear fit, i.e., adding f(δ) = 0.63 δ + 0.25 to
improve the visibility of the curvature.

tailing finite-size effects through a combination of the
chosen unit-cell geometry and bond dimension. The en-
velope constructed from the corresponding lowest-lying
straight-line segments shows the evolution of the grand-
canonical energy f(µ) with chemical potential. For each
µi yielding a stable solution, the pair of values δi and
eh,i = (ei − e0)/δi yield a data point in Fig. 1(a).

We find stable solutions for δ & 0.1 corresponding
to µ . 1.45, but none for δ . 0.1. This likely reflects
stronger finite-size effects, since δ . 0.1 describes fillings
less than one particle per unit cell here. For example,
note that for small doping, 0 < δ . 0.07, the symbols
and corresponding lines start to lie above the zero dop-
ing case even for the 5×2 unit cell itself (horizontal black
solid line, δ = 0). At zero doping, finally, there is a mi-
nor finite-size effect, in that the energy for the 5× 2 unit
cell (solid black line) lies above that of the 2× 2 unit cell
(dashed solid line), the latter computed for the Heisen-
berg model. This reflects the incommensurability of the
5× 2 unit cell with underlying AF phase.

S-III. D-WAVE PAIRING

In the main text we reported that our U(1) re-
sults for the λ5 stripe show no evidence for a d-wave
pattern, i.e. the local singlet pairing order 〈∆ij〉 =
1√
2
〈c̃i↑c̃j↓ − c̃i↓c̃j↑〉, though non-zero, does not have op-

posite signs on horizontal and vertical bonds. This find-
ing differs somewhat from previous DMRG and iPEPS
studies, which did report d-wave order for U(1) wave
functions [19, 24, 27]. To resolve this issue, we have per-
formed a set of U(1) simulations for which we strongly
biased our system by adding sizable pairing fields,

Dij = hij(∆ij + ∆†ij), (S.2)
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FIG. S6. U(1) iPEPS simulations at δ ' 0.1 with a 5×2 unit
cell with the pairing fields in Eq. (S.2) to probe sensitivity to
d-wave pairing order. The left (right) column of numbers give
hole densities (local moments), averaged in terms of absolute
value over the two sites in a row.

to the Hamiltonian to stabilize the d-wave pattern [6,
19, 33]. We chose the same amplitudes on all bonds,
|hij | = 0.10, but with opposite signs along vertical and
horizontal directions. This indeed stabilizes states show-
ing d-wave pairing, with a typical example shown in
Fig. S6.

Similar to the analysis in Ref. [33] on the Hubbard
model, we find that local observables, such as, hole den-
sities and local moments, change only slightly when in-
troducing pairing pinning fields (compare on-site data in
Fig. S6 and upper middle panel in Table S2). This be-
havior is consistent with previous simulations. The 5× 2
unit cell in Fig. S6, by having (1/δ) ' 2λ, features a
so-called half-filled stripe [27]. The present calculation
therefore shows that a half-filled stripe can coexist with
singlet pairing, and that the latter can have a d-wave
pattern (albeit here enhanced with the help of pinning
fields). This is in stark contrast to a filled stripe (i.e.,
with λ = 1/δ), for which a charge gap is present but the
pairing amplitude is entirely suppressed. For example, a
filled stripe is seen in the main text in the U(1) simula-
tion at δ = 0.2 in Fig. (1c). It shows strongly reduced
pairing correlations, in contrast to the non-stripe system
in the corresponding SU(2) simulation right next to it.

Our results for simulations using pairing pinning fields,
exemplified by Fig. S6, leave open the possibility of
coexisting stripe order and d-wave singlet pairing of
the type observed previously. What is still unclear is
whether the d-wave singlet pairing represents a sponta-
neous symmetry-broken order or not. Our U(1) iPEPS
simulations cannot directly answer this question. This
is because without even though the local pairing ∆ij

does not display d-wave pairing if the pinning field is
switched off, a d-wave pattern might nevertheless be
present, though visible only to non-local correlators.

AF order in the U(1) simulations appears to be able
to overshadow an underlying d-wave singlet pairing. For
example, consider the first column in Table S2 for a 2×2
unit cell which favors the charge uniform state. As δ
is increased from 0.1 through 0.2 to 0.3, the local AF
moment decreases, and with it also the observed strong
pairing expectation values with uniform sign. Eventually,
the state approaches a singlet state with a negligible lo-
cal magnetic moment. At the same time, notably, the
d-wave singlet pairing pattern (now with the the alter-
nating signs of d-wave order) appears without any help
of pinning field.

Conversely, one can simply consider an SU(2) singlet
state. In this case, the phase of the singlet pairing can
be measured locally without the interference of triplet
pairing. As seen in Fig. 1(b-d) of the main text, singlet
pairing is clearly present, albeit weak, for δ = 0.1, 0.2 and
0.3. It thus appears that spontaneous symmetry breaking
towards singlet pairing is more easily detectable when
the symmetry-unbroken state is already a condensate of
singlets. From this perspective, our result suggests that
the d-wave singlet pairing order does exist.

Assuming that stripe order and d-wave pairing order
compete at small doping, our SU(2) results should be
considered an upper bound for the d-wave pairing or-
der parameter, since SU(2) enforcement suppresses the
stripes. However, a complete analysis of the dependency
of d-wave order on the bond dimension D is still lacking.

In summary, we conclude that as long as the ground
state is close to a singlet, d-wave pairing is present in
the t-J model. If stripe order occurs and the stripe is
not filled, the d-wave pairing can possibly coexist with
the stripe order. What remains unclear is the precise
magnitude of the pairing amplitude, which likely requires
simulations with even larger bond dimensions than we
have reported here.

S-IV. FURTHER SYMMETRY AND FILLING
RELATED TECHNICALITIES

In this section, we document the details of our iPEPS
simulations for the doped t-J model with J/t = 0.4. In
our setup, the total particle number is not conserved, and
Z2 parity symmetry is used in the charge sector. The
average number of holes is controlled by the chemical
potential µ. In order to ensure that at µ = 0 the system

half-filled, we add an additional term, 2t2

J

∑
i(n̂i − 1

2 ),
to the t-J model [65]. This term is similar to the one
used in the Hubbard model, U

2

∑
i(n̂i − 1

2 ), to make the
Coulomb interaction particle-hole symmetric. The spin
sector, as discussed in the main text, has either U(1) or
SU(2) symmetry.
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S-V. FURTHER FIGURES

For reference, Tables S2-S3 depict detailed numerical
values for the iPEPS states shown in Fig. 1(b-d), and
several related states.
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TABLE S2. U(1) iPEPS with D = 8 and D = 10 at doping δ ' 0.1, 0.2 and 0.3. Within each column separated by vertical
lines, the left (right) column of numbers give hole densities (local moments), averaged (in terms of absolute value) over the two
sites in a row.

δ D = 8 D = 8 D = 10

0.1

0.097

0.096

0.211

0.216

0.172

0.132

0.049

0.034

0.094

0.049

0.195

0.309

0.323

0.262

Ekin=-0.134 Epot=-0.173

0.158

0.147

0.074

0.045

0.087

0.090

0.131

0.271

0.304

0.258

0.2

0.195

0.195

0.063

0.060

0.255

0.251

0.180

0.127

0.187

0.069

0.081

0.226

0.296

0.213

0.260

0.252

0.172

0.123

0.193

0.058

0.087

0.222

0.285

0.200

0.3

0.305

0.304

0.004

0.007

0.333

0.334

0.264

0.316

0.262

0.083

0.079

0.204

0.034

0.212

0.345

0.347

0.295

0.344

0.298

0.076

0.073

0.155

0.073

0.148

 
            hole density                                      magnetic moment                                    pairing parameter (×10-3)
           
            0.1             0.2            0.3                 0.1             0.2           0.3                          1                 5               10                      
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TABLE S3. SU(2) iPEPS with D∗ = 6 and D∗ = 8 at doping δ ' 0.1, 0.2 and 0.3. The left column of numbers gives hole
densities averaged over the two sites in a row. The number on each bond is the singlet pairing amplitude.

δ D∗ = 6 D∗ = 6 D∗ = 8

0.1

0.094

0.095

0.094

0.094

0.094

1.2×10-4

4.8×10-5

7.1×10-5

4.8×10-5

8.9×10-5

1.2×10-4

7.5×10-5

1.6×10-5

1.1×10-4

1.5×10-4

-1.2×10-4-1.2×10-4

-1.9×10-4

-1.4×10-4

-1.2×10-4

-9.5×10-5

-1.7×10-4

-1.5×10-5

-7.2×10-5

-9.2×10-5

0.115

0.115

1.0×10-3 2.1×10-3

2.4×10-3 0.7×10-3

-1.2×10-3 -0.1×10-3

-0.3×10-3 -1.5×10-3

0.2

0.199

0.199

0.199

0.199

0.199

2.6×10-3

2.6×10-3

2.5×10-3

2.7×10-3

2.6×10-3

2.6×10-3

2.5×10-3

2.6×10-3

2.5×10-3

2.6×10-3

-2.6×10-3-2.6×10-3

-2.6×10-3

-2.6×10-3

-2.5×10-3

-2.6×10-3

-2.6×10-3

-2.5×10-3

-2.6×10-3

-2.5×10-3

0.212

0.212

3.6×10-3

6.8×10-3

6.9×10-3

3.8×10-3

-1.8×10-3 -1.1×10-3

-1.2×10-3 -1.9×10-3

0.205

0.205

-3.7×10-3

-5.2×10-3

-5.2×10-3

-3.8×10-3

2.9×10-3 2.5×10-3

2.5×10-3 2.9×10-3

0.3

0.299

0.299

0.299

0.299

0.299

4.8×10-3

5.0×10-3

4.6×10-3

5.0×10-3

4.8×10-3

4.9×10-3

4.7×10-3

5.0×10-3

4.7×10-3

4.9×10-3

-4.8×10-3-4.8×10-3

-4.7×10-3

-4.9×10-3

-4.6×10-3

-4.9×10-3

-4.9×10-3

-4.6×10-3

-4.9×10-3

-4.7×10-3

0.296

0.296

1.6×10-3 2.3×10-3

2.5×10-3 1.4×10-3

-4.2×10-3 -4.2×10-3

-3.9×10-3 -3.9×10-3

0.302

0.303

-4.1×10-3 -4.2×10-3

-4.4×10-3 -3.7×10-3

5.3×10-3 4.4×10-3

4.5×10-3 4.8×10-3

 
            hole density                                      pairing parameter (×10-3)
           
            0.1             0.2            0.3                 1                 5               10                      
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We investigate the ground-state nature of the honeycomb Kitaev-Γ model in the material-relevant
parameter regime through a combination of classical and quantum simulations. The classical model
is imprinted with a tangle of highly structured spin double helices. This helix tangle exhibits 18
inequivalent helical axes and features a spontaneous periodicity anisotropy and a sgn(Γ)-determined
chirality pattern. Infinite PEPS simulations with clusters up to 36 sites identify hallmarks of this
many-body order in the quantum spin-1/2 model. Our findings provide a fresh perspective of the
Kitaev-Γ model and enrich the physics of Kitaev magnetism.

Introduction. The honeycomb Kitaev-Γ Hamiltonian
is a paradigmatic model for the physics of two-
dimensional Kitaev magnets [1–6]. The Kitaev exchange
leads to an exactly solvable spin liquid [7] and can be
realized in d-electron transition-metal compounds with
edge-shared geometry [1]. However, a Γ term generically
exists owing to symmetry [3, 4]. Indeed, in the proximate
spin-liquid material α-RuCl3 [8–17], this term has been
found to be as large as the Kitaev interaction [18–24].
Theoretical studies further suggest that the Γ exchange
can induce exotic phases beyond a Kitaev spin liquid
(KSL) [23–40]. Nonetheless, state-of-the-art numerical
methods, including exact diagonalization [25, 38], ten-
sor network [26–29], variational Monte Carlo [30], and
functional renormalization group [31] techniques, have
yielded highly diverse results for the spin-1/2 Kitaev-
Γ model, leaving the quantum phase diagram obscure.
Consensus exits for a KSL at finite Γ but even its extent
is debated.

In this Letter, we conduct large-scale classical and
quantum simulations to unravel the ground-state nature
of the honeycomb Kitaev-Γ model in the most puzzling
yet relevant region for materials. We first demonstrate
that the classical ground state imprints a tangle of spin
double helices (Fig. 1). This helix tangle exhibits a num-
ber of distinctive characteristics including a multitude
of different helical axes, anisotropic spacial periodicities,
and sgn(Γ)-determined chirality patterns [Eq. (5)]. The
emergence of such sophisticated helicity poses fundamen-
tal challenges to quantum algorithms and may have been
the source of non-coherent observations in the literature.
Nevertheless, our infinite projected entangled pair states
(iPEPS) calculations identify signatures of this unprece-
dented many-body order, showing that it can survive
quantum fluctuations in the spin-1/2 case.

Model and symmetry. The Kitaev-Γ model on a hon-
eycomb lattice comprises two bond-dependent terms: a
directional Ising-type interaction and a symmetric off-
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Figure 1. A classical ground state of the honeycomb Kitaev-Γ
model at Γ = −K. The letters Aj , Bj , Cj with j = 1, 2, 3 are
assigned to distinct rotation axes, and their colors distinguish
the odd (blue) and even (orange) honeycomb sublattices, to-
gether defining a 3 × 3 unit cell with 18 sublattices. Spins
belonging to the same sublattice form helices and swirl about
their respective rotation axes. The lower panel illustrates the
spiral components of spins along the r1 direction. Six of the
18 helices specified by a unit cell are highlighted with solid
lines, while other twelve are presented as dashed lines. Cy-
cles on the side indicate different spiral strengths, and arrows
reflect the opposite chirality on the odd and even honeycomb
sublattices. â1,2 denote the lattice unit vectors. The linear
system size is L = 72.

diagonal Γ interaction,

H =
∑

〈ij〉γ
KSγi S

γ
j + Γ

(
Sαi S

β
j + Sβi S

α
j

)
. (1)

Here, γ labels the three different types of bonds, and
α, β, γ ∈ {x, y, z} are mutually exclusive. For example,
the local Hamiltonian on a z-bond reads Hz = KSzi S

z
j +
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Γ
(
Sxi S

y
j + Syi S

x
j

)
. For simplicity, we assume the coupling

strengths on the three bonds are uniform. Nevertheless,
one expects that a small bond anisotropy (e.g., Kz 6=
Kx,y) does not alter the nature of the underlying phases
as in the case of a pure Kitaev model [7].

The Hamiltonian Eq. (1) has a hidden global symmetry
that intertwines the spacial and spin spaces and leads to
an additional two-fold degeneracy. This is easily seen by
rewriting the Hamiltonian as H =

∑
〈ij〉γ Si · Ĵ

γ
ijSj , in

terms of three exchange tensors

Ĵxij =
[
K

Γ
Γ

]
, Ĵyij =

[
Γ

K
Γ

]
, Ĵzij =

[
Γ

Γ
K

]
. (2)

One can verify that Ĵγij , hence the local environment
of spins, is invariant under the transformations

σαβi Ĵγijσ
αβ
j = Ĵγij , (3)

σαγi Ĵγijσ
γβ
j = Ĵγij , (4)

where σαβi denotes spin reflections transforming a spin
as σαβi Sγi = −Sγi . Theses transformations alternate the
three spin reflections in accordance with the index rule
of Eqs. (3) and (4), until covering the entire lattice (see
SM [41] for a concrete example). In contrast to normal
global symmetries, such as the time reversal and homo-
geneous spin rotations, this hidden symmetry can modify
correlations in the system and make two distinct orders
degenerate.

Selected parameter region. The main open problems
in constructing the phase diagram of the spin-1/2 Kitaev-
Γ model can be viewed from three fronts. First, although
mounting numerical evidences suggest an extended KSL
regime under a small Γ, different algorithms find different
extents of this regime [27–31]. Furthermore, in the large
Γ limits, the fate of thermal Γ spin liquids [36, 42, 43]
in the spin-1/2 case is unsettled and prone to simulation
techniques [44, 45]. Away from these two limits, a diver-
sity of candidate ground states have been suggested, in-
cluding non-Kitaev spin liquids, quantum paramagnets,
incommensurate or spiral orders, and various magnetic
states [26–31]. As all these open problems cannot be re-
solved in a single work, we focus our efforts on the regime
where both interactions are sizable and competing, which
is of the highest relevance for real materials. For conve-
nience, we parameterize the two interactions using an an-
gle parameter θ as K = sin θ, Γ = cos θ. We consider the
frustrated region with a ferromagnetic K and an anti-
ferromagnetic Γ (1.5π < θ < 2π), which corresponds
to the exchange parameters realized in the d-electron
Ir- and Ru-based compounds [22, 24, 46]. Through a
mapping θ → θ + π and simultaneously S2i → S2i,
S2i → −S2i+1 [47], its results also enlighten the physics
at 0.5π < θ < π. Other parameter regions with θ ∈
(0, 0.5π) and (π, 1.5π) are unfrustrated and understood
to develop strong 120◦-type magnetic orders [25, 36].
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Figure 2. Magnetizations of the classical spin-helix complex
with comparable Kitaev and Γ interaction, K = sin θ,Γ =

cos θ. The longitudinal components m‖µ reflect a long-range
order in the helical axes, and the transversal components m⊥µ
measure the spiral magnitudes. The classical order is fully
characterized as the total magnetization

(
m
‖
µ

)2
+
(
m⊥µ

)2
= 1.

The m⊥µ component at θ ≈ 1.67π is small but non-vanishing
(see Fig. 3). The inset exemplifies the orientations of m‖A1

,
m
‖
B1

and m
‖
C1

(indicated by colors) at θ = 1.75π.

Tangle of spin helices. We first discuss the classical
ground states in the selected parameter regime. The
growing interest towards the classical Kitaev-Γ model
is not merely a compromise to the quantum complexity
but is rewarded with rich physics [34–40]. In particu-
lar, two recent works [34, 38] based on analysis of small
systems reported various large-unit-cell states including
two degenerate 6- and 18-site structures. By examin-
ing large systems at temperature T = 10−3

√
K2 + Γ2,

the Tensorial-kernel support vector machine (TKSVM)
method [48–50] mapped these two states to a frustrated
phase spanning over 1.58π . θ < 2π [36]. This phase
can be understood by the competition between two clas-
sical spin liquids, and its order parameter exhibits an
intrinsic undersaturation indicating the lack of perfect
translationally invariant order [36].

We now reveal that the missing magnitude in the order
parameter encodes a quintessential nature of the classi-
cal ground state, which is only manifested at large sys-
tem sizes and very cold temperatures. We utilize parallel
tempering Monte Carlo methods to reach temperatures
down to T = 10−5

√
K2 + Γ2 for systems of linear size

size up to L = 72 and 108. We further cool the system to
T → 0 by eliminating the thermal noise; see the SM [41]..

In Fig. 1, we show a representative ground-state con-
figuration at Γ = −K (θ = 1.75π). First ignoring the
subscripts j = 1, 2, 3, one can recognize a motif with
seemingly repeating C-A-B-B-A-C pattern, which corre-
sponds to the X-phase and the 6-site order in the litera-
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Figure 3. The oscillation parameter Ωµ(r) for B-helices at
Γ = −K/

√
3 (blue) and −K (orange) (θ = 1.67π, 1.75π).

The oscillation reflects the phase difference between two spins
Sµ,r0 and Sµ,r0+r, and the amplitude is proportional to m⊥µ .
For visibility, the Γ = −K/

√
3 curve is rescaled by a factor

103. Filled and open symbols are measured along the r1 and
r2 directions, respectively, hence exhibit different periodici-
ties. The linear size is L = 72, and r1, r2 = 0, 1, . . . , L

3
− 1.

ture [34, 38]. Then applying the transformations Eqs. (3)
and (4), it will retrieve the subscripts and enlarge to a
3×3 superstructure containing 18 sublattices. Neverthe-
less, these motifs are only approximate and the ground
states do not have true translational symmetry.

To further illustrate the structure, we define a generic
sublattice magnetization m

‖
µ = 1

Ncell

∑
cells Sµ by aver-

aging spins over the (approximate) 3 × 3 unit cell, with
µ = Aj , Bj , Cj . Thanks to the hidden symmetry, the
resultant m

‖
µ can be discriminated into three categories

whose magnitudes are denoted as m‖A,m
‖
B ,m

‖
C . These

scalar magnetizations are measured in Fig. 2 in a subre-
gion around Γ = −K, where one clearly sees the unsatu-
ration and a general suppression with increasing Γ.

In fact, m
‖
µ only captures the rotation axes (or lon-

gitudinal components) of an ensemble of highly struc-
tured spin helices. To find the spiral (transverse) compo-
nents, it is convenient to work in local coordinates where
m̃
‖
µ = (0, 0, m

‖
µ) for each sublattice. The transverse

components of a spin can then be characterized by an
ansatz

S̃⊥µ,r = m⊥µ
(
cos 6π

L (2r1 + r2), sgn(Γ)η sin 6π
L (2r1 + r2), 0

)
.

(5)

Here, m⊥µ = 1
Ncell

∑
cells |S̃⊥µ | defines a spiral magneti-

zation, r = (r1, r2) with r1, r2 = 0, 1, . . . , L3 − 1 la-
bels the unit cells, and η = 0, 1 distinguishes the even
and odd honeycomb sublattices. This ansatz is verified
in Fig. 2 by measuring a saturated total magnetization(
m
‖
µ

)2
+
(
m⊥µ
)2

= 1.

Several prominent features of the classical ground
states can now be made explicit. A “unit cell” can only be
defined for the longitudinal moments m‖µ, which are the
source of the long-range magnetic correlations and stable
2
3M magnetic Bragg peaks [34, 36]. Spins in the same
unit cell form helices and rotate about the respective m‖µ.
Thus there is a 3× 3 modulation in the helical axes, and
the system cannot be simplified as rigid clusters rotat-
ing about a common axis. The spin helices living on the
even and odd honeycomb sublattices develop staggered
(uniform) chirality patterns if Γ is anti-ferromagnet (fer-
romagnet). Therefore, the 18 helices specified in a unit
cell can be viewed as nine double helices with their (rela-
tive) chirality determined by the sign of Γ, as visualized
in Fig. 1.

Moreover, this intricate helicity is an imprinted feature
of the entire frustrated phase 1.58π . θ < 2π, while it
may be hardly noticeable for weaker Γ values. This can
be demonstrated by introducing an oscillation parameter

Ωµ(r) =
1

m⊥µ

(
Sµ,r0 · Sµ,r0+r − |m‖µ|2

)
, (6)

whose amplitude is proportional to the spiral magnitude
m⊥µ . In Fig. 3, Ωµ is measured for B-helices. Despite the
extremely small m⊥B ∼ 10−4 at the weaker Γ = −K/

√
3,

the expected cosine oscillation is still formed.
Also remarkable is the spontaneous anisotropy in spa-

cial periodicities: The helix pitch is L3 pitch in the C-A-B
modulated direction but is L

6 pitch within a Aj , Bj , or
Cj chain (the r1 direction in Fig. 1), which is encoded in
the ansatz Eq. (5) and reflected in Fig. 3.

Proximate quantum ground states. The identification
of the classical ground state provides a reference for un-
derstanding the quantum model. Indeed, strong mag-
netic orders established in the classical limit often can
persist in the quantum spin-1/2 case with a reduced or-
dering moment and shifted phase boundary. Examples
can be found in both Kitaev magnets [25, 37, 51] and
other highly frustrated systems such as triangular anti-
ferromagnets [52, 53]. In the current problem our full
characterization of the helix tangle is especially helpful
as the intricacies of this order pose challenges that lie far
beyond the capabilities of any state-of-the-art quantum
algorithm.

Our hope with the iPEPS is that if Γ, hence the spiral
m⊥µ , is not too strong, it may capture a consistent lon-
gitudinal magnetization. We consider three tensor net-
work ansatzes built from a 4-site, a 16-site, and a 36-site
cluster. These clusters cover potential competing orders
such as ferromagnetic, Néel,

√
3×
√

3, stripy, and zigzag
type orders which are commonly found in Kitaev mag-
nets [25, 37, 54]. The 36-site cluster can further fit two
unit cells of the classical helical axes. We scan the param-
eter space through a simple update scheme [55, 56] with
a large bond dimensionD = 8. Typically over 600 initial-
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Figure 4. (Proximate) Ground state energies computed with
iPEPS. In the regime with comparable Kitaev and Γ inter-
actions (1.6π < θ < 1.9π), the 36-site cluster systematically
gives the lowest energies and develops a magnetic pattern sim-
ilar to the classical longitudinal magnetization m

‖
µ. At larger

Γ (θ > 1.9π), the 16-site and 4-site clusters take over and cap-
ture a zigzag-type order. Small magnetizations are obtained
near the Kitaev corner (θ < 1.6π) where the 4-site cluster is
preferred. The inset shows the energy convergence with the
environmental bond dimension χ.

izations are simulated at each θ value. Physical quantities
are measured using a CTMRG method [57, 58] with envi-
ronmental bond dimensions χ > D2. For comparison, we
have also examined a full update scheme [51, 59] but find
the improvements are limited for the symmetry-broken
states. See SM for details [41].

We present our iPEPS results in Fig. 4. In the pa-
rameter regime 1.6π < θ < 1.9π, the 36-site cluster
systematically leads to the lowest energies whose vari-
ations in χ are significantly smaller than the energy dis-
tinctions between different clusters. This confirms the
convergence of our simulations and exclude competing
magnetic orders. Remarkably, the quantum magnetic
moments mµ in the cluster display a very similar sub-
lattice structure as the classical m‖µ [41]. Their strengths
reduce from the classical values 0.8 . |m‖A,B,C | . 1 to
0.3S . |mA,B,C | . 0.5S but remain sizable to distin-
guish from paramagnetic states. In Fig. 5, orientations
of the quantum mµ are inspected and found close to the
classical longitudinal magnetization.

The resemblances between the quantum and classical
magnetic moments indicate persistence of longitudinal
magnetization. In particular for the weaker Γ regime
such as θ ≈ 1.67π, there the helicity emerges with a mag-
nitude in the order of m⊥µ ∼ 10−4 (Fig. 3). Since the en-
ergy is expected to scale with |m⊥µ |2, the iPEPS ansatzes
may remain legitimate at such a Γ value. Adding that
we do not observe signals of a phase transition at imme-
diately stronger Γ in both quantum and classical cases,
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Figure 5. Comparison of quantum (solid arrows) and clas-
sical (dashed arrows) sublattice magnetizations at θ =
1.67π, 1.75π, 1.83π (Γ = −K/

√
3,−K,−

√
3K). Orientations

of the quantum magnetic moments are very close to the clas-
sical longitudinal magnetizations, while the magnitudes re-
duce to 0.3S . |mA,B,C | . 0.5S from the classical values
0.8 . |m‖A,B,C | . 1. The axes are rotated for visualization.

the classical order can be anticipated to survive quan-
tum fluctuations at least for a finite extent of moderate
Γ values.

In the large Γ regime (θ > 1.9π), the 16-site and 4-
site clusters take over with indistinguishable energies but
both show a clear zigzag type magnetization [41]. Nev-
ertheless, here we expect iPEPS ansatzes to fail due to
the underlying strong helicity. The observed zigzag order
may reflect a numerical artifact or a consequence of a pos-
sible quantum order-by-disorder at the Γ point [44, 45].

Near the Kitaev corner (θ < 1.6π) we obtain small
magnetizations, which is consistent with the litera-
ture [28–30].

Summary and discussion. Understanding the physics
of the honeycomb Kitaev-Γ model is crucial for both in-
terpreting experimental observations and exploring novel
phases in Kitaev magnets. In this work, we have investi-
gated its ground-state properties through a combination
of comprehensive classical and quantum simulations. We
discovered a tangle of highly structured spin double he-
lices imprinted in the classical ground states at material-
relevant Γ values. This helix tangle stands out among
typical spiral magnets [60–63] by its intricate modulation
of helical axes, spontaneous periodicity anisotropy, and
well regulated chirality pattern. The full characterization
of the classical ground state becomes particularly valu-
able in view of fundamental limitations in state-of-the-
art quantum numerical algorithms. Converged iPEPS
calculations reproduced magnetic moments resembling
the classical longitudinal magnetization and signal per-
sistence of the helix tangle against quantum fluctuations.
The emergence of the unconventional helicity may leave
fingerprints to dynamical and transport behaviors such as
inducing spectrum broadening, long-living currents and
anomalous diffusions [64–66].
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S.I. CLASSICAL GROUND STATES

A. Details of the classical simulations

Simulating highly frustrated models with large system sizes is in general a challenging task. To ensure we access
the correct classical ground states, we first use a parallel tempering Monte Carlo (PTMC) method to generate spin
configurations at a low temperature T = 10−5

√
K2 + Γ2 and then cool the system to T → 0 by eliminating remnant

small thermal noises (see below). We mostly consider lattices with linear spacing L = 72 (10, 386 spins) on a torus,
and have also checked larger lattices up to L = 108 (23, 328 spins) at particular parameter points. Such large systems
sizes and low temperatures are crucial to manifest the spin helices.

We use parallel tempering jointly with heat bath and over-relaxation algorithms to equilibrate the system [70]. NT =
256 logarithmically equidistant temperatures are used to ensure efficient iterations between different temperatures [71].
Typically 107 Monte Carlo sweeps are performed in an individual run. All independent runs have converged to the
same states, confirming the ergodicity of our simulations.

The PTMC generates spin configurations lying slightly above the classical ground states by an energy scale ∆E ∼
10−5 preset by the lowest simulated temperature. We cool the system to further approach the ground states by
iteratively aligning spins along their local molecular fields Bloc

i [72],

Snew
i =

Bloc
i

|Bloc
i |
|Sold
i |. (S1)

Here Bloc
i =

∑
〈ij〉γ Ĵ

γ
ijSj and the exchange tensors Ĵγij are reproduced for convenience

Ĵxij =
[
K

Γ
Γ

]
, Ĵyij =

[
Γ

K
Γ

]
, Ĵzij =

[
Γ

Γ
K

]
. (S2)

We continue to cool the spins untill the maximum difference in energies of the spin configurations between successive
iterations |Eold−Enew|max is less than 10−14. Evolutions of energies and magnetizations during the cooling are shown
in Fig. S1 for example. At each fixed parameter point, we examine a number of statistically uncorrelated configurations
and find identical energies up to the numerical precision, which reaffirm the ergodicity of our simulations.

B. Simulated states vs. magnetic ansatzes

A common strategy for finding magnetic ground states is to assume a small periodic cluster and minimize the local
Hamiltonian, while the choice of the cluster can be guided by small-size simulations or knowledge about the spin
structure factor. However, this approach will fail in the case of the Kitaev-Γ model due to the emergent helicity which
is quintessential for the physics of the classical ground states. Instead, its solutions are magnetic ansatzes manifesting
the sublattice (longitudinal) magnetizations of the helical axes.

In Fig. S2, we show two such ansatzes states obtained at Γ = −K by enforcing a 3× 3 cluster. The two states have
a six-site and a 18-site unit cell, respectively, related by the hidden symmetry σαβi Ĵγijσ

αβ
j = Ĵγij and σ

αγ
i Ĵγijσ

γβ
j = Ĵγij .

Both can be reconstructed from three elementary unit-length spins S̃A, S̃B , S̃C , where the tilde symbols are used to
distinguish from spins Sµ in a simulation.

The energy of these ansatz states are higher than the simulated energy on a L = 72 lattice as compared in Fig. S1.
This is because the emergent helicity brings an infinite degeneracy and allows continuous spin orientations that do
not fit into small clusters or small lattices.
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Figure S1. Cooling of a classical state simulated on a L = 72 lattice at Γ = −K (θ = 1.75π), with |Si| = 1. (a) Convergence
of the energy. The energy per spin is Esite = −0.92423895 before the cooling and is Esite = −0.92424917 after the cooling
(solid line); both are lower than the ansatz energy Esite = −0.92393734 (dashed line). The inset magnifies the evolution in
a short time period. (b-d) Convergence of the sublattice (longitudinal) magnetizations, m‖A,B,C , of the helical axes. These
magnetizations converge to values below unity owing to non-vanishing spiral magnetizations m⊥A,B,C .

Nevertheless, the ansatz states still offer useful information by capturing longitudinal magnetizations of the helical
axes. They not only give the correct sublattice structure, but the ansatz spins S̃A,B,C also approximate to the
simulated sublattice magnetic moments m‖µ = 1

Ncell

∑
cells Sµ in orientations to high precision.

For a quantitative description, we introduce a cosine de-similarity

Dµ =
1

2

(
1− S̃µ ·

m
‖
µ

|m‖µ|

)
∈ [0, 1] , (S3)
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Figure S2. Two degenerate magnetic ansatzes obtained by enforcing a 3 × 3 periodic cluster at K = −Γ. (a) The three spin
orientations S̃A, S̃B , S̃C form a pattern of C-A-B-B-A-C repeating over the lattice. (b) The degenerate configuration can be
obtained by applying the hidden symmetry.
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magnitudes. Nevertheless, even at the large Γ value θ ≈ 1.92π, the de-similarities remain remarkably small, and the magnetic
ansatzes can still provide a proximate description of the correct sublattice structure.
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Figure S4. Geometries of the iPEPS ansatzes and energy convergence. The three clusters are indicated by shadings in the left
panel. The 36-site cluster leads to the lowest energy at the moderate Γ = −K (θ = 1.75π), but is superseded by the 16-site
and 4-site clusters at a stronger Γ ≈ −3.73K (θ ≈ 1.92π).

which measures the orientation difference between S̃A,B,C and m
‖
A,B,C by ignoring their magnitudes.

As measured in Fig. S3, even in the region where the spiral magnetizations m⊥µ have become comparable in
magnitude with the longitudinal m‖µ (see Fig. 2 in the main text), Dµ remains extremely small for all the three
elementary orientations. This hence provides a visualization for the classical ground states: the sublattice magnetic
moments can be approximately estimated using the magnetic ansatzes, while the actual spins are swirling about those
moments and form helices.
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Figure S5. Magnetic structures computed by the iPEPS at θ = 1.75π, 1.92π (Γ = −K,−3.73K), with S = 1
2
. (a) Sites in the

36-site cluster are labeled in a similar way as the 3×3 unit cell of the classical helical axes. Aj , Bj , Cj indicate three elementary
orientations of the magnetic moments. The numbers show the strength of the corresponding sublattice magnetization. (b) A
zigzag order captured by the 16-site cluster. A and Ã denote two opposite magnetic moments.

S.II. PROXIMATE QUANTUM GROUND STATES

A. Details of iPEPS simulations

Our iPEPS ansatzes are formulated on a brick-wall lattice which maps onto the honeycomb lattice by introducing
a trivial index on each tensor [51, 73]. Three tensor ansatzes with a 4-site, a 16-site, and a 36-site geometry are
considered, as illustrated in Fig. S4 (left panel). The former two geometries are chosen to probe ferromagnetic,
Néel, stripy, and zigzag-type orders, while the latter can (additionally) capture

√
3 ×
√

3-type orders as well as the
longitudinal sublattice magnetization of the helical axes. We initialize our simulations using both random tensors and
the corresponding classical ground states. Typically over 600 initializations are examined for each θ value.

We adopt a simple update scheme [55, 56] to scan the parameter space and run the simulations with a bond
dimension D = 8. In addition, we have also compared the results with the full update scheme [51, 59] at particular
parameter points. Although it has been shown that the full update method can noticeably improve simulations at the
Kitaev spin liquid points [51], we nevertheless find that the improvements are limited for the present symmetry-broken
states.

We use the corner transfer matrix renormalization group (CTMRG) method [57, 58] to determine the value of
physical quantities. Large environmental dimensions χ > D2 are examined for ensuring the CTMRG convergence as
exemplified in Fig. S4 for a moderate and a large Γ value. In the parameter regime Γ, 1.6π < θ < 1.9π the 36-site
cluster provides the best approximation to the ground state and can be clearly distinguished from other two clusters.
The 16-site and 4-site clusters lead to the lowest energies for the large Γ regime θ > 1.9π with nearly degenerate values.
Their energy difference is comparable to the energy variation due to the finite χ approximation, while convergences
of the 16-site cluster appear to be better over this regime. Nevertheless, there we expect the iPEPS to fail because of
growing spirality. Hence the change from the 36-site ansatz to the 16-site or 4-site one does not necessarily reflect a
phase transition.
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B. Comparison of quantum and classical magnetic moments

Very large system sizes are required to represent a helix state, while the situation in the Kitaev-Γ model is especially
challenging. In our classical simulations on the L = 72 lattice, each helix is “only” formed by 24 spins due to the
3 × 3 modulation of the helical axes. Faithful simulations of the spin-1/2 Kitaev-Γ model are hence far beyond the
capabilities of available quantum algorithms.

Nevertheless, our detailed characterization of the classical helicity provides a possibility to gain insight in the
quantum ground states in regimes where the helicity remains mild in strength. As we measured in the main text
by the oscillation parameter Ωµ (Fig. 3), the classical spiral magnetization is about m⊥µ ∼ 10−4 at Γ = −K/

√
3

(θ ≈ 1.67π). Since this quantity affects the energy of a two-body Hamiltonian in quadratic form, i.e. in a magnitude
O(10−8), we expect the iPEPS ansatzes to remain legitimate at such a Γ value despite that the ground state is not
translationally invariant. Provided the simulations do not detect signals of a phase transition when slightly increasing
Γ, one naturally expects the same physics to manifest for a finite parameter regime. Then by comparing the structures
of the classical and quantum moments, we may infer whether the classical order is immediately destroyed by quantum
fluctuations.

The magnetic pattern captured by our converged simulations using the 36-site cluster shows remarkable resemblances
to the longitudinal magnetization of the classical helical axes. In addition to the orientations of its magnetic moments
presented in the main text (Fig. 5.), we show in Fig. S5 the structure and magnitudes of its sublattice magnetizations.
The 16-site and 4-site clusters capture a zigzag-type order in the large Γ region, which is also depicted in Fig. S5.
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4 Parton construction of tensor network states

4.1 Overview
Using parton construction of tensor network states (TNSs) to study spin liquids
involves two steps. We first approximate the parton fermionic state as TNSs, then
we apply the Gutzwiller projection that projects the parton fermionic state to single
occupancy to obtain the final spin wave function.

SU(N) chiral spin liquids Parton construction of MPSs is useful to characterize
topological orders [WWT20]. A topological phase in a gapped system contains a set
of nearly degenerate ground states with special properties. They all lie below the
bulk gap, but can be neither distinguished by local order parameters, nor smoothly
deformed into one another by local unitary transformations. Besides that, these
states manifest different patterns of long-range entanglement, and each of them may
feature a distinct entanglement spectrum that corresponds to a specific topological
sector. Being able to obtain a full set of these nearly degenerate ground states is
important for characterizing topological orders.
In this vein, an important notion called minimally entangled state (MES) was

first introduced by Zhang Yi et al. [ZGT+12]. On cylinders, the MESs define a
set of orthogonal states that span the identical space of these degenerate ground
states, and they minimize the entanglement entropy through a cut that splits open
edges on the left and the right into two disjoint parts. The minimization of this
bipartite entanglement entropy also maximizes the topological entanglement entropy
[LW06, Kit06]. By doing so, these MESs are in one-to-one correspondence with
having different anyonic fluxes threading through the cylinder [ZGT+12, ZMP13,
CV13, ZMPR15].
Conceptually, the search for MESs on cylinders comes natural for DMRG. In

reality, however, using DMRG to find a complete set of MESs is obstructed by the
finite size effect. On a finite-width cylinder, the ground state degeneracy is lifted, and
a naive DMRG calculation is unlikely to capture states that are being pushed high in
energy. This obstruction tinges the search of spin liquids using DMRG with doubt,
since with limited access to only one topological sector the topological properties
can only be indirectly inferred [JWB12, CCG+21]. Empirical approaches have been
developed to tackle this issue. For simple cases, such as the Z2 spin liquids and
simplest chiral spin liquids (ν = 1/2 Laughlin state) [KL87, KL89], a trial-and-error
approach [CV13, BCK+14] and adiabatic flux-insertion [HSC14b, HSC14a] have
shown some initial success. However, it is not easy to foresee how to generalize these
approaches to more complicated scenarios.

In [P7], we use parton construction to address this difficulty for the SU(N) chiral
spin liquids. By engineering suitable parton Hamiltonians, we can manipulate edge
modes that control different types of anyonic flux through the cylinder at will. We
then express these parton wave functions as MPSs, and the resulting N different
projected parton MPSs constitute a complete set of MESs that fully characterizes
the SU(N) chiral spin liquids. With the MESs, we further use DMRG to find the
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suitable spin Hamiltonian that can stabilize them as ground states. The proposal of
such SU(N) spin Hamiltonians with only short-range interactions paves the way for
experimentalists to realize chiral spin liquids in the future [CNA+11, GLHF14, Aid16].

U(1) Dirac spin liquids In [P8], we develop a Gaussian PEPS approach to
represent parton fermionic states as iPEPS on two-dimensional infinite lattices.
Specifically, we use iPEPS to approximate ground states for the π-flux model on a
square lattice and the [0, π]-flux model on a kagome lattice. The ground states for
these fermionic parton models have gapless Dirac fermions at half-filling, and their
corresponding projected wave functions are believed to describe the gapless U(1)
spin liquids.

The progress in validating the parton-constructed gapless spin liquids for S = 1/2
has been slow. In the large-N limit, stable spin liquids can be obtained [RW06].
However, for N = 2, i.e. the spin one-half, whether such a parton approach indeed
leads to gapless spin liquids after the Gutzwiller projection remains questionable. For
parton models containing gapless fermions, any small perturbation due to the gauge-
field fluctuations may trigger off instabilities towards some spontaneous symmetry
breaking upon applying the Gutzwiller projection [Has00]. In recent, two numerical
studies for S = 1/2 were performed using the DMRG [HZOP17] and the variational
Monte Carlo [FPB21] on narrow cylinders. While the results are encouraging, the
fate of parton-constructed gapless spin liquids in the thermodynamic limit remains
unknown. Using iPEPS, we find tentative evidence towards gapless spin liquids for
S = 1/2.
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In the physics of the fractional quantum Hall (FQH) effect, a zoo of Abelian topological phases can be obtained
by varying the magnetic field. Aiming to reach the same phenomenology in spin like systems, we propose a
family of SU(N)-symmetric models in the fundamental representation, on the square lattice with short-range
interactions restricted to triangular units, a natural generalization for arbitrary N of an SU(3) model studied
previously where time-reversal symmetry is broken explicitly. Guided by the recent discovery of SU(2)1 and
SU(3)1 chiral spin liquids (CSL) on similar models we search for topological SU(N )1 CSL in some range of the
Hamiltonian parameters via a combination of complementary numerical methods such as exact diagonalizations
(ED), infinite density matrix renormalization group (iDMRG) and infinite Projected Entangled Pair State
(iPEPS). Extensive ED on small (periodic and open) clusters up to N = 10 and an innovative SU(N)-symmetric
version of iDMRG to compute entanglement spectra on (infinitely long) cylinders in all topological sectors
provide unambiguous signatures of the SU(N )1 character of the chiral liquids. An SU(4)-symmetric chiral
PEPS, constructed in a manner similar to its SU(2) and SU(3) analogs, is shown to give a good variational
ansatz of the N = 4 ground state, with chiral edge modes originating from the PEPS holographic bulk-edge
correspondence. Finally, we discuss the possible observation of such Abelian CSL in ultracold atom setups where
the possibility of varying N provides a tuning parameter similar to the magnetic field in the physics of the FQH
effect.

DOI: 10.1103/PhysRevB.104.235104

I. INTRODUCTION

Quantum spin liquids are states of matter of two-
dimensional electronic spin systems not showing any sign of
spontaneous symmetry breaking down to zero temperature
[1–3]. Spin liquids with long-range entanglement may also
exhibit topological order [4] such as the spin-1/2 resonating
valence bond (RVB) state on the kagome lattice [5]. Among
the broad family of spin liquids, chiral spin liquids (CSL)
[6–10] form a very special and interesting class [11] ex-
hibiting broken time-reversal symmetry and chiral topological
order [4]. Intimately related to FQH states [12], CSL are
incompressible quantum fluids (i.e., with a bulk gap) and host
both (Abelian or non-Abelian) anyonic quasiparticles in the
bulk [13] and chiral gapless modes on the edge [14]. After
the original papers, the Kalmeyer-Laughlin CSL lay dormant
for many years until an explicit parent Hamiltonian was con-
structed [15,16] using Laughlin’s idea [8]. Later somewhat
simpler Hamiltonians were found using different methods
[17,18]. An important step towards the goal of finding a chiral
spin liquid in realistic systems was taken by examining a

physically motivated model for a Mott insulator (Hubbard
model) with broken time-reversal symmetry [19,20]. Then, an
Abelian CSL was identified in the (chiral) spin-1/2 Heisen-
berg model on the triangular lattice [21,22]. Note that CSL
hosting non-Abelian excitations (useful for topological quan-
tum computing [23]) have also been introduced in different
contexts [24–26].

It was early suggested that, in systems with enhanced
SU(N ) symmetry, realizable with ultracold alkaline earth
atoms loaded in optical lattices [27], CSL can naturally appear
[28], although this original proposal on the square lattice
remained controversial. Later on, an Abelian CSL was indeed
identified on the triangular lattice in SU(N) Heisenberg mod-
els with N > 2 [29]. The presence of a chiral spin interaction,
achievable experimentally via a synthetic gauge field, seems
to be a key feature to stabilize SU(N) CSL [30]. Neverthe-
less, the T and P violation required for a CSL could emerge
spontaneously in T-invariant models, as found for N = 2 in a
spin-1/2 Kagome Heisenberg model [31–33] or, for N = 3,
in the Mott phase of a Hubbard model on the triangular
lattice [34]. Note also that, using optical pumping, it is now

2469-9950/2021/104(23)/235104(33) 235104-1 ©2021 American Physical Society
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possible to realize (so far in one dimension) strongly corre-
lated liquids of ultracold fermions with a tunable number N
of spin components and SU(N) symmetry [35]. This offers the
prospect to be able to experimentally tune the system through
various topological liquids, as it is realized in the physics of
the FQH effect via a tunable external magnetic field. Apart
from ultracold atom setups, condensed matter systems may
also host SU(N) CSL. For example, it has been proposed very
recently that an SU(4) CSL could be realized in double-layer
moiré superlattices [36].

In recent years, projected entangled pair states (PEPS)
[37] have progressively emerged as a powerful tool to study
quantum spin liquids providing variational ground states
competitive with other methods [38–40]. PEPS also offer a
powerful framework to encode topological order [41–43] and
construct chiral Abelian [44] and non-Abelian [45] SU(2) spin
liquids. Generically, SU(2) CSL described by PEPS exhibit
linearly dispersing chiral branches in the entanglement spec-
trum (ES) well described by Wess-Zumino-Witten (WZW)
SU(2)k (with the level of the WZW model k = 1 for Abelian
CSL) conformal field theory (CFT) for one-dimensional
edges [46].

Recently, on a square lattice with three-dimensional spin
degrees of freedom which transform as the fundamental rep-
resentation of SU(3) on every site, an Abelian CSL was found
as the ground state (GS) of a simple Hamiltonian involving
only nearest-neighbor and next-nearest-neighbor (color) per-
mutations and (imaginary) three-site cyclic permutations [47].
Exact diagonalizations (ED) of open finite-size clusters and
infinite-PEPS (iPEPS) in the thermodynamic limit (and en-
coding the full SU(3) symmetry) unambiguously showed the
existence of chiral edge modes following the SU(3)1 WZW
CFT. Interestingly, these results can be viewed as extending
previous results obtained for an SU(2) spin-1/2 (i.e., N = 2)
chiral Heisenberg model [20,48]. Exactly the same type of
Hamiltonian can be defined for N-dimensional spin degrees
of freedom transforming according to the fundamental rep-
resentation of SU(N), for arbitrary integer N � 2. It is then
natural to speculate that, if such SU(N) models also host CSLs
for N > 3, then the later should also be of the SU(N )1 type.
Note however that, although a chiral perturbation necessary
induces, from linear response theory, a finite response of the
quantum spin system, it, by no means, implies the existence
of topological order or the absence of conventional (lattice
or magnetic) symmetry breaking, which both characterize a
CSL. The emergence of a uniform CSL with protected edge
modes is therefore a subtle feature that needs to be inves-
tigated on a case by case basis. It is far from clear that the
findings for SU(3) generalize to SU(N > 3) bearing in mind
that N may be commensurate or incommensurate with the
fixed number of nearest neighbors on the square lattice. Then,
in this work, we have (i) generalized the chiral Hamiltonians
of Refs. [20,47,48] to arbitrary N , (ii) defined a subset of these
SU(N) models whose Hamiltonians can be written solely as a
sum of S3-symmetric operators acting on all triangles within
square plaquettes (as in Ref. [47]), and (iii) studied these
models up to N = 10 using a combination of complementary
numerical techniques such as ED, density matrix renormal-
ization group (DMRG) and iPEPS, supplemented by CFT
analytical predictions.

We then start by generalizing the SU(2) and SU(3) chiral
Hamiltonians by placing, on every site of a square lattice,
an N-dimensional spin degree of freedom, which transforms
as the fundamental representation of SU(N). As for N = 3,
we consider the most general SU(N)-symmetric short-range
three-site interaction:

H = J1

∑
〈i, j〉

Pi j + J2

∑
〈〈k,l〉〉

Pkl

+ JR

∑
�i jk

(
Pi jk + P−1

i jk

) + iJI

∑
�i jk

(
Pi jk − P−1

i jk

)
, (1)

where the first (second) term corresponds to two-site permu-
tations over all (next-)nearest-neighbor bonds, and the third
and fourth terms are three-site (clockwise) permutations on
all triangles of every plaquette. Pi j (Pi jk) is defined through
its action on the local basis states, Pi j |α〉i|β〉 j = |β〉i|α〉 j

(Pi jk|α〉i|β〉 j |γ 〉k = |γ 〉i|α〉 j |β〉k , for a fixed orientation of the
triangle i, j, k, let’s say anticlockwise). To restrict the number
of parameters, we have chosen J2 = J1/2. In that case, the
two-body part (J1 and J2) on the interacting triangular units
becomes S3 symmetric, hence mimicking the corresponding
Hamiltonian on the triangular lattice.1 We then use the same
parametrization as in Ref. [47]:

J1 = 2J2 = 4
3 cos θ sin φ, JR = cos θ cos φ,

JI = sin θ, (2)

and restrict ourselves to antiferromagnetic couplings J1, J2 >

0, i.e., 0 � θ � π/2 and 0 � φ � π . Note however that, for
φ > π/2, the amplitude of the (real) three-site permutation JR

becomes ferromagnetic (JR < 0). A detailed analysis of the
multiplet structure of a 2 × 2 plaquette of the Hamiltonian
above is given in Appendix A.

For N = 2, various forms of the Hamiltonian (1) can be
found in the literature [20,48]. In the original formulation
[20], a chiral interaction 4J3 Si · (S j × Sk ) on all triangular
units �(i jk) is introduced, corresponding to the three-site
cyclic permutations of (1) with amplitudes JR = 0 and JI = J3.
Also, the two-site exchange interactions are introduced here
as spin-1/2 Heisenberg couplings, which is equivalent from
the identity 2Si · S j = Pi j − 1

2 .2 A Hamiltonian including a
(pure-imaginary) cyclic permutation iλc(Pi jkl − P−1

i jkl ) on each
plaquette �(i jkl ) was also introduced [48]. In fact, the pla-
quette cyclic permutation i(Pi jkl − H.c.) can be rewritten as
i
2 (Pi jk + Pjkl + Pkli + Pli j − H.c.),3 so that this model corre-
sponds also to JR = 0 and we can identify JI = J3 = λc/2. An
optimum choice of parameters for the stability of the SU(2)
CSL phase is found to be (in our notations) J2/J1 � 0.47 and
JI/J1 � 0.21 [20]. Furthermore, evidence is provided that the

1The chiral spin liquid phase should also exist away from J2 =
J1/2, due to its gapped nature.

2This can be extended to all fundamental IRREPs of SU(N):
Pi j = Ji · J j + 1

N , where Jα are the generators defined in Eq. (C1)
of Appendix C. Note, the usual SU(2) spin operators are given by
S = (1/

√
2)J.

3This decomposition holds only for N = 2 (in the fundamental
representation).
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FIG. 1. We considered various system topologies: (a) periodic
cluster topologically equivalent to a torus; (b) open cluster topologi-
cally equivalent to a disk; (c) cylinder with left and right boundaries.
We used (a) and (b) in ED and the infinite-length version of (c) in
DMRG and iPEPS. The chiral modes of the CSL are schematically
shown on the system edges.

CSL survives in a rather extended zone of parameter space
around this point. Also, an SU(2)-symmetric PEPS ansatz [44]
provides an accurate representation of the GS at the optimum
values of the parameters [48], and of its edge modes [49]
following an SU(2)1 WZW CFT.

For N = 3, from ED, DMRG and iPEPS simulations, clear
evidence of a gapped CSL is found for J2 = J1/2 and angles
like θ = φ = π/4 corresponding to JR/J1 = 0.75 and JI/J1 �
1.06 [47], and around these values in a rather extended pa-
rameter range (see Supplemental Material of Ref. [47]). In
addition, edge modes are found to closely follow the predic-
tions of the SU(3)1 CFT.

In the following, we will investigate model (1) using
complementary ED and DMRG techniques, providing over-
whelming evidence of a stable topological CSL phase. Various
systems of different topology, as shown in Fig. 1, will be used.
A torus geometry enables to probe bulk properties while a disk
or a cylinder geometry, with one or two edges respectively,
provides information on the existence and on the nature of
edge modes. More precisely, the topological nature of a CSL
phase can be established from (i) the topological GS degener-
acy [4] on periodic clusters, (ii) the existence of chiral edge
modes [14] both in open systems like Fig. 1(b) and in the
entanglement spectra of (quasi)infinite cylinders, and (iii) the
content of the edge modes following closely the prediction
of some chiral CFT theory. The Abelian CSL expected here
should be revealed by exactly N quasidegenerate GS on a
closed manifold and by the exact SU(N )1 WZW CFT con-
tent of its edge modes. The second goal of the paper, beside
establishing the existence of the SU(N )1 CSL phase itself, is
to provide its faithful representation in terms of an SU(N)-
symmetric PEPS. Following the prescription for N = 2 and

TABLE I. List of periodic clusters used here in ED: number of
sites Ns, cluster size vectors t1 and t2, and point-group symmetry.
Eigenstates can be labeled according to discrete momenta in the BZ.
At high-symmetry points 	, X , or M of the BZ, eigenstates can be
further labeled by the C4-symmetry (C2-symmetry) IRREP labels, A,
B, Ea, and Eb (A and B)—see Fig. 4.

Ns t1 t2 point group

8 (2,2) (2,−2) C4v

11 (1,3) (3, −2) C2

12 (1,3) (4,0) C2

13 (2, −3) (3,2) C4

14 (1,4) (3, −2) C2

15 (1,4) (4,1) C2v

16 (4,0) (0,4) C4v

18 (3,3) (3, −3) C4v

19 (1,4) (4, −3) C2

20 (4,2) (−2, 4) C4

21 (1,4) (5, −1) C2

N = 3, we shall focus on the N = 4 case. Common features
observed for PEPS with these three values of N allow us to
draw heuristic rules and conclusions for general N .

II. EXACT DIAGONALIZATIONS

A. Exact diagonalizations in the U(1) basis and in the standard
Young tableaux (SYT) basis

We start this section by a brief review of the two distinct
and complementary exact diagonalization methods used in
this work.

First, for periodic clusters (see Table I), we can imple-
ment the spatial symmetries (and in particular the translations)
which allows us to both reduce the size of the matrix to diag-
onalize by a factor typically equal to Ns (where Ns is the size
of the cluster) and to directly obtain the momenta associated
to each eigenenergy.

However, as N increases, EDs performed this way are
severely limited by the size of the available clusters since the
dimension of the Hilbert space increases exponentially with
Ns. A way to overcome such limitations is to implement the
SU(N) symmetry and this is the second ED protocol that we
have employed here. In particular, when Ns is a multiple of
N , the ground state of Hamiltonian (1) is an SU(N) singlet
state for a wide range of parameters. The singlet sector has
a dimension much smaller than the one of the full Hilbert
space. The gain to implement the full SU(N) symmetry and
to look for the lowest energy states directly in the singlet
sector is huge and increases with N . For instance, for N = 10
and Ns = 20, the singlet sector has only dimension 16796,
while the dimension of the full Hilbert space is 1020. In
addition, to write the matrix representing the Hamiltonian
in the singlet subspace and in the sectors labeled by higher
dimensional SU(N) irreducible representation (IRREP), we
have employed the algorithms detailed in Refs. [50,51], which
is mainly based on the use of Standard Young Tableaux
and on the theory of the representation of the permutation
group.
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In particular, it allows one to bypass the need for the
Clebsch-Gordan coefficients, which can only be calculated
with an algorithm whose complexity also increases with N
(see Ref. [52]). Typically, for the present problem, through
this method, we can address clusters with Ns ∼ 20 sites for
N up to 10. Note that contrary to the first ED method based
on the implementation of spatial symmetries, the momenta
can only be accessed in a second stage: we first calculate the
eigenvectors and then the effect of translation or rotation on
them.

B. Periodic clusters: bulk gap and GS manifold

The results for N = 2 and N = 3 described above suggest
that the existence of an Abelian CSL may be generic for
arbitrary integer N . To investigate such an appealing scenario,
we start by examining, for larger N , the low-energy spectra
obtained on Ns-site periodic clusters (see Table I for details
about clusters used). For antiferromagnetic and frustrating
couplings J1 > 0, J2 > 0, we expect the lowest-energy to
belong to the antisymmetric IRREP aIRN (r0) defined by a
Young tableau of r0 vertical boxes, r0 = mod(Ns, N ). In par-
ticular, in the case where Ns is an integer multiple of N (r0 =
0), the low-energy states are expected to belong to the singlet
subspace. However, at, e.g., θ = π/4, when increasing φ be-
yond φ = π/2, JR changes sign and states belonging to the
antisymmetric IRREP are gradually destabilized with respect
to the completely symmetric (ferromagnetic) state of energy
Eferro/Ns = 3J1 + 8JR. In particular, we clearly see at θ = π/4
a macroscopic energy gain (penalty) of the lowest-energy
eigenstate of aIRN (r0) with respect to the ferromagnetic state
at φ = π/2 (φ = π ) (see Appendix D). This fact indicates a
transition at φ = φF (somewhere in the range π/2 < φF < π )
between one (or several) spin liquid phase(s) and a ferromag-
netic phase. Note also that a detailed analysis of the 2 × 2
plaquette Hamiltonian in Appendix A, shows that the antifer-
romagnetic states dominate the low energy regime, yet with
the ferromagnetic regime in close proximity.

We now focus on the prospective spin liquid region dis-
cussed above and consider the case of Ns = kN , k ∈ N, so
that no quasiparticle excitations would be populating the GS
of a CSL phase. To identify the exact nature(s) of the spin
liquid(s), one needs to examin in details the low-energy singlet
subspace (gap structure, degeneracies, etc.). A selection of the
singlet energy spectra for fixed θ = π/4, plotted versus φ (for
fixed φ = π/2, plotted versus θ ), is shown in Fig. 2 for N
ranging from 2 to 10 (for N = 4, 7, 8, 9). For all the values of
N studied here, in a broad interval of φ (φ < φF ) or θ values,
a clear gap is observed between a group of degenerate and
quasidegenerate states and the rest of the singlet spectrum.
Interestingly, for θ = π/4 and N > 3, we observe level cross-
ings occuring in the singlet subspace at some value of φlc <

π/2, suggesting the existence of two different gapped phases.
For 0 � φ < φlc, we observe a twofold quasidegenerate GS
manifold within the singlet subspace which are translationally
invariant but which break the lattice point group π/2-rotation
symmetry.4 This could correspond to a nematic valence clus-

4Both states are translationally invariant and have different ±1
characters under π/2-rotation, for C4-symmetric clusters.

ter state as also seen in SU(2) spin-1 models [53,54]. Note
that, as a finite-size effect, the ground state of the total spec-
trum for small φ and θ around π/4 is not necessarily a singlet
state when Ns < N2 (see Appendix D). A more careful investi-
gation of this phase, although interesting, is beyond the scope
of this work and left for a future study.

We now move to a closer inspection of the gapped spin
liquid phase seen for N = 2, 3 and φ < φF , and for N > 3
and φlc < φ < φF , and identify it as a CSL. Interestingly,
we note that φ = π/2—corresponding to a pure imaginary
three-site cyclic permutation—is always located within this
gapped phase (note, for N = 3, φ = π/4 instead was cho-
sen in Ref. [47]). This gapped phase is also stable within
a significant range of the parameter θ , around θ = π/4 and
φ = π/2, e.g. also at θ = π/6. Hence, in the following, we
shall mostly report results obtained at fixed φ = π/2 (i.e., for
a pure imaginary three-site permutation) and for θ = π/4 or,
occasionally, θ = π/6.

To identify the type of (singlet) gapped phase, we now
investigate the exact degeneracy and the quantum numbers
of the singlet GS manifold. Figure 3 shows a zoom of the
low-energy spectra at θ = π/4 and φ = π/2, with the exact
degeneracy of each level below the gap. A simple counting
shows that there are exactly N states below the gap. Note that
the first excitation defining the gap does not belong to the
singlet sector but most often belongs to the adjoint IRREP of
dimension N2 − 1, except for some of the largest values of N
(like N = 9) for which finite size effects are the strongest. This
is an extension of the SU(2) case where the first excitation in
antiferromagnetic spin liquids are typically spin-1 “magnons.”
In the thermodynamic limit, the gap in the singlet sector
should be bounded from above by twice the true “magnetic”
gap as two isolated “magnons” can fuse into a singlet. If a
singlet bound state occurs between two magnons, the singlet
gap is then strictly smaller than twice the magnon gap.

The above observation of the N-fold degeneracy of the GS
space suggests that the gapped phases indeed correspond to
Abelian SU(N )1 chiral spin liquids. As realized already for
N = 3 in Ref. [47], it is possible to obtain, for arbitrary N , the
exact momenta of the various states in the GS manifold ex-
pected for an Abelian SU(N )1 CSL. This can be inferred from
a simple generalized exclusion principle (GEP) [55,56] with
clustering rules (see Appendix B for details). As a final check
for periodic systems, we then focus on two distinct commen-
surability relations between the cluster size Ns and N ; either
(i) Ns = kN , k ∈ N, for which, as above, the GS contains no
quasiparticle or (ii) Ns = kN − 1, k ∈ N, for which, a single
quasihole populates the GS. Note that in case (ii), r0 = N − 1
so that the IRREP of the GS manifold is the N̄ antifundamen-
tal IRREP. The GEP implies a GS (quasi)degeneracy of N
and Ns for (i) and (ii), respectively. This is indeed observed
as shown in Fig. 4. The predictions of the GEP are even more
precise, providing all GS momenta expected for the (Abelian)
CSL on every periodic cluster (see Appendix B for details on
the way momenta are assigned). We have checked that—in
most cases—all GS momenta reported in Fig. 4 match
the ones predicted by the heuristic rules. In particular, for
Ns = kN − 1, the GS manifold is made of exactly one N̄ (anti-
fundamental) IRREP at each cluster momentum. Rare failures
of the GEP rules (which may be attributed to cluster shapes,
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FIG. 2. Low-energy spectra computed by ED in the SYT singlet basis on periodic clusters of Ns = kN sites, k ∈ N, and [(a)–(i)] for a fixed
value of θ = π/4 as a function of φ, for N ranging from 2 to 10, or [(k)–(n)] for a fixed value of φ = π/2 as a function of θ ∈ [0, π/2], for
N = 4, 7, 8, 9. Only 10 (40) lowest singlet levels are shown at small N in (a)–(e) and (k) [larger N in (f)–(i) and (l)–(n)). The φ and θ axes
being discretized, lines connecting the data points are used as guides to the eye (hence, levels crossings around φlc may look like anticrossings).
N degenerate or quasidegenerate singlets (see Figs. 3 and 4 and text) are separated from the higher energy states by a gap, in an extended (φ, θ )
region around (π/2, π/4). The energy of the (fully polarized) ferromagnetic state (Eferro = 2

√
2Ns(2 cos φ + sin φ)), crossing the singlet GS

at φ = φF , is shown as a dashed line in (a)–(i). The location of the CSL and ferromagnetic phases along the cuts (c)–(i) and (k)–(n) are
schematized in (j). Note that for N = 2 and 3 [(a) and (b)] the CSL is expected to extend all the way to φ = 0.

FIG. 3. Zoom of the singlet low-energy spectra at θ = π/4 and
φ = π/2, for N ranging from 2 to 10, and the same cluster sizes as in
Fig. 2. The GS energy is subtracted off for better comparison between
the various spectra. The exact degeneracy g of each level is indicated
on the plot as ×g. The first nonsinglet excitation belonging to the
adjoint IRREP above the N quasidegenerate low-energy singlets is
shown as a filled triangle (see text).

etc.) to predict the correct momenta will be discussed in
Appendix B.

Interestingly, the above features predicted and observed
in the case of a single quasihole can be understood using
a simple physical argument. If the single quasihole would
be static, it could be placed on each of the Ns sites of the
cluster, and this, for each of the N topological (singlet) sec-
tors, hence spanning a NsN-dimensional Hilbert space. The
effective hopping allows the quasihole states to form a weakly
dispersing band below the gap, hence with N states at every
momentum. From the SU(N)-symmetry, these N states should
form a single multiplet belonging to the N̄ (antifundamental)
IRREP, as predicted by the GEP and found numerically.

C. Open systems: edge physics and CFT content

The previous results give strong evidence of the CSL nature
of the GS of the model, for the parameters chosen, from its
bulk properties on periodic systems (topologically equivalent
to tori). We complete the identification of the CSL phase by
the investigation by ED of open clusters. The existence of a
chiral edge mode fulfilling the SU(N )1 WZW CFT should be
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FIG. 4. Low-energy spectra on periodic clusters at fixed φ = π/2 and for θ = π/4 [(a)–(d)] or θ = π/6 (e)–(h)]. Clusters with site
numbers Ns = kN (left) or Ns = kN − 1 (right), k ∈ N, are chosen to obtain 0 and 1 quasihole, respectively, in the putative CSL. The respective
BZ with the allowed discrete momenta is shown on each plot as a gray square—only nonequivalent momenta are labeled—and the number
of equivalent momenta appearing are listed as grayed squared numbers. For Ns = kN (left), the GS manifold is composed of N singlets (open
circles). For Ns = kN − 1 (right), it is composed of Ns quasidegenerate levels, one level at each cluster momentum. Each level is comprised of
N degenerate states forming a N̄ antifundamental IRREP (open triangles).

reflected in the precise content of its low-energy spectrum.
By choosing finite-size clusters with (i) open boundaries and
(ii) C4 point-group symmetry, we can investigate the low-
energy spectrum as a function of the angular momentum, l =
0,±1, 2 (mod[4]) and reveal a single chiral branch linearly
dispersing only in one direction, as expected. At a given N ,
changing the cluster size Ns—whenever such a C4-symmetric
cluster is available—enables to change the topological sector
defined by the integer r0 = mod(Ns, N ), r0 = 0, . . . , N − 1.
Indeed, each topological sector is characterized by the SU(N)
IRREP of its GS, corresponding to the antisymmetric IRREP
aIRN (r0) (defined by a Young tableau of r0 vertical boxes),
and can then be reached whenever Ns = kN + r0. Note that
the dimension of aIRN (r0) is given by N!

(N−r0 )!r0! .
The ED investigation of the chiral edge modes has been

carried out on two types of open systems, all exhibiting C4

symmetry with respect to the cluster center. The first type of
clusters is build around a central site by adding successive
shells of four sites at 90◦ angles. The second type of open
clusters are built in the same way but from a center 2 × 2
plaquette. The 13-site, 17-site, and 21-site (16-site) clusters

belongs to the first (second) category, as shown on the right-
hand side of Fig. 5. Note that the 17-site cluster is “chiral,”
i.e., it breaks reflection symmetry (parity), and spectra for
JI > 0 and JI < 0 are expected to be (slightly) different. Here,
JI > 0 and the Pi jk permutation is assumed counterclockwise.
ED spectra obtained on such clusters for N = 4, 5, 6, 7, 8
are shown in Fig. 5, for φ = π/2 and θ = π/4 or π/6 (as
specified in the caption). In all cases, we observed a rather
sharply defined low-energy chiral edge mode, i.e., a group of
levels (i) well-separated from higher-energy levels by a gap,
(ii) following a linear dispersion with respect to the angular
momentum, and (iii) with a very precise and nontrivial content
in terms of SU(N) multiplets. Each edge mode is character-
ized by its GS given by the antisymmetric IRREP aIRN (r0).
For each pair (N, r0) occurring in Fig. 5, we have computed
the expected “tower of states” (ToS) generated by aIRN (r0),
as predicted by the SU(N )1 WZW CFT—see Appendix C.
Numerically, one can use (N − 1) U(1) quantum numbers to
diagonalize the Hamiltonian and identify the IRREP content
for each group of exactly degenerate levels. A careful check
shows that, generically, the quantum numbers of the chiral
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FIG. 5. Low-energy spectra on open C4-symmetric clusters depicted on the right-hand side of the figure, as a function of the angular
momentum l (with respect to the GS angular momentum l0), at fixed φ = π/2 and for θ = π/4 (a)–(d)] or θ = π/6 [(e)–(h)]. Symbols
labeling the various SU(N) IRREPs entering the chiral mode are shown in the legends. The Young diagrams for the corresponding IRREPs
can be identified using the tables in Appendix C. The GS IRREPs are fully antisymmetric, and labeled by Young diagrams consisting of a
single column of r0 = mod(Ns, N ) boxes, with degeneracy N!

(N−r0 )!r0! . Identifying l − l0 with the Virasoro level L0, all low-energy ToS in (a)–(h)
for 0 � l − l0 � 3 follow exactly the WZW CFT predictions of Tables VIII, IX, XII, XIII, XVI, XV, XVII, and XXI, respectively. The only
exception is the SU(6) 15 (SU(8) 1) tower, for which two multiplets 15 and 21 (1 and 63) are missing in the L0 = 3 Virasoro level.

edge mode spectra match exactly the WZW CFT ToS predic-
tions (identifying the angular momentum with the Virasoro
level L0), providing a real hallmark of the CSL phase. For two
cases corresponding to the smallest Ns = 16 cluster, a small
number of multiplets in the CFT predictions are missing in
Fig. 5. We have explicitly checked that finite-size effects can
indeed lead to incomplete towers.

III. DMRG

For characterizing chiral topological states, the correspon-
dence between the entanglement spectrum and the conformal
tower of states is a fingerprint evidence. While DMRG is in
principle suited for this purpose, a technical difficulty is that
the characterization of topological order requires the full set of
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(quasi)degenerate ground states and, furthermore, these states
should be combined into the so-called minimally entangled
state (MES) basis [57]. In this section, we use a two-step
procedure to accomplish this task: (i) build Gutzwiller pro-
jected parton wave functions which describe the SU(N )1 CSL,
use them to construct the MES basis on the cylinder, and
convert them into MPS; ii) initialize DMRG with the parton-
constructed MES basis. This strategy allows us to find the full
set of N (quasi)degenerate ground states in the MES basis.
The parton picture also helps us to identify the correspondence
between the entanglement spectrum and the SU(N )1 confor-
mal towers.

A. Parton wave functions

In this section, we outline the parton approach to con-
struct trial wave functions for the SU(N ) CSL model. To
construct the minimally entangled states (MESs) [57], we
use a fermionic parton representation of the SU(N ) gener-
ators [58–60], Sμ

i = ∑
σσ ′ c†

iσ T μ

σσ ′ciσ ′ , where T μ

σσ ′ are matrix
representations of the SU(N ) generators in the fundamental
representation, and c†

iσ is the creation operator at site i. A local
constraint

∑
σ c†

iσ ciσ = 1 has to be imposed to ensure that
singly occupied fermions represent the N states in the SU(N )
fundamental representation, i.e., |σ 〉 = c†

σ |0〉 (site index sup-
pressed), with |0〉 being the vacuum of partons. The SU(N )
CSL with SU(N )1 topological order can be constructed by
Gutzwiller projecting a fully occupied C = 1 Chern band of
fermionic partons, where C is the Chern number. To have a
systematic construction for all N , we design the following
quadratic Hamiltonian for partons on a square lattice:

Hp = −
∑

m,n,σ

(txc†
m+1,n,σ cm,n,σ + tyeimϕc†

m,n+1,σ cm,n,σ )

−
∑

m,n,σ

(t2ei(mϕ±π/N )c†
m±1,n+1,σ cm,n,σ ) + H.c.

− μ
∑

m,n,σ

c†
m,n,σ cm,n,σ . (3)

The phase ϕ is chosen to be 2π/N , so that the flux through
each square plaquette is 2π/N and each triangular plaquette is
π/N . To minimize finite-size effects, we maximize the band
gap by choosing t2 = ty/2.

The design of the parton Hamiltonian (3) follows a lattice
discretization of the Landau level problem, i.e., 2D electrons
in a strong magnetic field (with the Landau gauge). Under
periodic boundary conditions (torus geometry), the fluxes in
the square/triangular plaquette are chosen such that there
are N bands with the lowest band having Chern number
C = 1 (see Fig. 6). The N = 2 case has been considered
previously in Refs. [57,61–63], which was used to construct
Gutzwiller projected wave functions representing the SU(2)
CSL of Kalmeyer-Laughlin type. For N > 2, the lowest band
becomes flat and indeed resembles the lowest Landau level.
The trial wave functions for describing the SU(N )1 CSL are
obtained by (i) tuning the chemical potential μ such that the
lowest band is completely filled and all others empty, yielding
a filling of 1/N on the lattice when also including the edge
mode (see Fig. 7) and (ii) Gutzwiller projecting the Fermi
sea with fully occupied lowest band. Strictly speaking, this

FIG. 6. Band structures of the parton Hamiltonian on the torus
along high symmetry directions for N = 2, 3 and 4. We set tx = ty

for N = 2 and 4, and tx = ty/2 for N = 3.

construction does not depend on the flatness of the C = 1
band. Here, our extra requirement of a nearly flat band serves
another purpose: the single-particle wave functions of a flat
band can be made more localized, which helps to suppress the
entanglement growth when converting Gutzwiller projected
wave functions into MPS [63]. Last but not the least, this
parton Hamiltonian is also designed to support exact zero
modes on the cylinder, which, as we shall see, are important
for constructing the MES basis.

For our purpose, we shall consider the cylinder geometry
(with circumference Ny) rather than the torus geometry, with
open boundaries in the x direction and a periodic (or twisted)
boundary condition in the y direction. This allows us to char-
acterize the MESs via the entanglement spectrum [61,64],
and to use these wave functions to initialize our DMRG
simulations [65].

FIG. 7. The parton single-particle levels including the edge states
on a wide cylinder for N = 2 to 9. Filling the Fermi sea up to zero
energy corresponds to a filling fraction 1/N . This fully occupies the
lowest parton band as well as the edge states up to the degenerate
zero modes at the single-particle momentum ky = π/N . These exact
zero modes, denoted by dLσ and dRσ , are localized at the left and right
boundaries of the cylinder, respectively.
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By diagonalizing the parton Hamiltonian (3) on the cylin-
der, we obtain a set of single-particle orbitals composed of
local operators, d†

kσ
= ∑

m,n Am,n(k)c†
m,n,σ . For N = 2, it is

known that the exact zero modes play an important role
in constructing the MESs [61,63]. These exact zero modes,
denoted by dLσ and dRσ , localize at the two boundaries
of the cylinder. Their occurrence at the single-particle mo-
mentum ky = π/2 requires that for mod(Ny, 4) = 0 (2), the
parton Hamiltonian has periodic (antiperiodic) boundary con-
dition in the y direction. The two MESs with Sz = 0 are
then written as Gutzwiller projected wave functions, |�1〉 =
PGd†

L↑d†
R↓|〉 and |�2〉 = PGd†

L↑d†
L↓|〉, where PG imposes

the single-occupancy constraint at each site and |〉 is the
state with all parton modes below the zero modes being fully
occupied. In this representation, it is transparent that the zero
mode d†

L(R)σ creates a semion carrying spin-1/2 (with spin
projection σ ) at the left (right) boundary of the cylinder. It was
found [63] that the entanglement spectra of |�1〉 and |�2〉 cor-
respond to the conformal towers of states of the chiral SU(2)1

WZW model in its spin-1/2 (semion) and spin-0 (identity)
sectors, respectively. To qualify as the (quasi) degenerate
ground states of chiral spin liquids, the wave functions should
be SU(2) spin singlets. While |�2〉 is manifestly a spin sin-
glet, |�1〉 needs to be combined with PGd†

L↓d†
R↑|〉 to form

a spin singlet |�̃1〉 = PG(d†
L↑d†

R↓ − d†
L↓d†

R↑)|〉. However, the
entanglement spectrum of |�̃1〉 would then correspond to two
copies of spin-1/2 conformal towers due to the entanglement
cut of an additional nonlocal singlet formed by a pair of two
spin-1/2 semions at the boundaries [66].

This parton construction of MESs for the SU(2) CSL can
be naturally generalized to the SU(N) CSL. To allow for exact
zero modes, the hopping parameters in Eq. (3) are chosen
as tx = ty if N is even, and tx = ty cos(π/N ) otherwise. This
ensures that the exact zero modes, d†

Lσ and d†
Rσ , appear at

ky = π/N (see Fig. 7), which is always allowed for a suitably
chosen boundary condition (i.e., periodic or twisted) in the y
direction. Occupying N of these boundary modes distributed
arbitrarily over left and right boundaries ensures that the total
momentum of the state in y direction is zero. As such this is
then consistent with a width-N cylinder with plain periodic
boundary conditions around the cylinder.

With that, MESs belonging to N different topological sec-
tors can be written in analogy to the SU(2) case as

|�p〉 = PG (d†
L1 . . . d†

Lpd†
R,p+1 . . . d†

RN |〉), (4)

p = 0, . . . , N . Here d†
L(R)σ creates an elementary anyon of the

chiral SU(N )1 theory and also transforms under the SU(N)
fundamental representation. Therefore p = 0 (N) corresponds
to all N anyons either located, equivalently and respectively, at
the left or right boundary. The entanglement spectra of these
states |�p〉 should be in one-to-one correspondence with the
N Kac-Moody conformal towers of the chiral SU(N )1 WZW
model, whose N primary fields are labeled by Young diagrams
with p vertical boxes, respectively. However, except for p = 0
or N, the states above do not yet describe proper SU(N) multi-
plets. For a more direct comparison with CFT, the N boundary
modes need to be antisymmetrized over all flavors into an
overall SU(N) singlet. The corresponding SU(N) singlets can

be written as

|�̃p〉 = PG
(
εσ1...σN d†

Lσ1
. . . d†

Lσp
d†

Rσp+1
. . . d†

RσN
|〉), (5)

where εσ1...σN is the totally antisymmetric Levi-Civita ten-
sor. Eq. (5) indicates that for nonidentity sectors, multiple
branches contribute to the entanglement spectrum. The num-
ber of branches is N!

(N−p)!p! , where N! comes from the
Levi-Civita tensor, and the factors (N − p)! and p! account
for the antisymmetrization of the anyons on the left or right
edge, represented by N − p or p vertical boxes in the corre-
sponding Young tableau, IRREPS p̄ and p, respectively. Note
that as such this precisely also corresponds to the dimensions
dim(aIRN (p)) = dim(aIRN (N − p)) [see Sec. II C above].

Using the matrix-product-operator matrix-product-state
(MPO–MPS) method of Ref. [63] to implement the parton
construction, we can express the filled Fermi sea of the above
parton wave function |�̃p〉 as an MPS. The principal idea for
that is as follows: (i) the vacuum state |0〉 is an MPS with
bond dimension D = 1; (ii) the nonlocal parton operator d†

kσ
,

subject to Wannier localization, can be written as an MPO
of bond dimension D = 2; (iii) the MPOs d†

kσ
are applied

sequentially onto the MPS with possible compression after
each step, resulting in an MPS with a finite bond dimension
that represents a filled Fermi sea; and (iv) the Gutzwiller
projector PG = ∏L

�=1 P� is applied to separately enforce the
local constraint,

∑
σ c†

m,n,σ cm,n,σ = 1, on each site to recover
the correct local physical subspace.

B. Infinite DMRG

For a cylinder geometry, the N different minimally entan-
gled states of the SU(N ) CSLs, each carrying distinct anyonic
flux threading through the hole in the annulus, form a com-
plete basis for the N-fold degenerate ground states. Finding
such a complete basis numerically for the Hamiltonian of
Eq. (1) would be a convincing validation for our short-range
CSL proposal.

Numerically the finite system width Ny lifts the N-fold
ground-state degeneracy, with an energy gap which decreases
with increasing width. If the cylinder is infinitely long, CFT
predicts that the energy splittings (with respect to the ground
state) are given by 2πv

Ny
(hp + h̄p), where v is the velocity of

the chiral edge states and hp, h̄p are conformal weights of the
primary fields (corresponding to the respective anyons at the
boundaries). Thus, we expect a power-law splitting O(1/Ny)
for chiral topological phases (rather than exponential, as in
the case of nonchiral topological phases with gapped edges
[5,23,67]).

This hampers the search for distinct topological sectors via
DMRG, a ground-state search algorithm when using cylin-
ders. Previous DMRG works [31,67–72] have shed some light
on this, showing that the presumably higher-energy states
can still be examined by adopting tailored boundaries, e.g.,
imposing ZN charges.5

5For SU(N )1 CSL, all topological sectors can be obtained in this
way. However, for some topological phases, other types of anyon
sectors can appear, such as a “defect line” cutting along the x direc-
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FIG. 8. The entanglement spectra on width-6 cylinders for SU(2)
CSLs. (a) Identity sector. (b) Semion sector (⊗ 1

2 ). Identifying Ky with
the Virasoro level L0, the content of the chiral branches agrees exactly
with the CFT predictions of Tables IV and II up to Ky = 4 (mod[6]).

Concretely, DMRG is used to optimize the bulk part of the
cylinder, while a small portion of spins at the boundaries are
engineered to mitigate finite-width effects, thereby favoring
different topological sectors if any exist. However, how to
engineer the boundary spins and choose suitable lattice ori-
entation remains an elusive undertaking.

Our work here is an extension of the above idea, and
the parton approach paves a systematic way to construct the
boundary spins for different MESs. For the identity sector,
we use typical infinite DMRG (iDMRG) to find the ground
state for Eq. (1) [73,74]. For other sectors that are higher in
energy, we use the parton approach outlined above to initialize
several possible MESs by occupying edge modes in different
ways, then use the infinite DMRG algorithm to minimize the
(bulk) ground-state energy with respect to the Hamiltonian
of Eq. (1) for each. The ED calculations in Sec. II suggest
a substantial region of a gapped CSL in the parameter space
of (θ, φ) = (sin−1(JI ), tan−1( 3

4 J1/JR)) for each N . Here we
focus on only one point within that phase, for N = 2 up to
4. While N = 2 and 3 have been investigated by ED and
iPEPS previously, a thorough DMRG study for them has
not been performed. We therefore include them here too, to
corroborate the consistency of the model as well as the method
for different N . We choose (θ, φ) = (π/12, π/2) for N = 2,
(θ, φ) = (π/6, π/2) for N = 3, and (θ, φ) = (π/4, π/2) for
N = 4. The widths of the cylinder are chosen to be a multiple
of N , so that if N different MESs do exist, all of them they can
be found for arbitrary cylinder lengths.

The entanglement spectrum, as the fingerprint of topo-
logical order, can be readily extracted from iDMRG wave
functions. To enable a comparison with CFT, we identify the
entanglement levels by their SU(N) irreps and the momentum
ky = 2πKy

Ny
, Ky ∈ N [67], as the converged states should be

tion. This is also very common and appears in, e.g., Z2 [5] and Ising
topological phases. Then, adopting tailored boundaries in DMRG is
not sufficient to detect such topological sectors.

TABLE II. SU(2)1 WZW model—The direct product of the
conformal tower of the spin-1/2 primary (left: see Table V in Ap-
pendix C) with a spin-1/2 gives a new tower (right) with a doubling
of the number of states in each Virasoro level indexed by L0.

translationally invariant along the y direction. They are thus
(approximate) eigenstates of the translation operator, with
phase factors as eigenvalues, from which we extract the as-
sociated momenta ky. From Fig. 8(a), we see that the identity
sector agrees with the SU(2)1 WZW CFT (see Table IV) for
the first few low-lying states. For the semion sector, the ES
[see Fig. 8(b)] consists of a new conformal tower containing
integer spin multiplets, and twice the number of states ex-
pected for the semionic conformal tower. This discrepancy
is rooted in the fact that semions carry spin-1/2 quantum
numbers and can be best understood from the parton con-
text [63]: the CFT content describes a single edge mode for
spin-1/2, while the state in our simulation is a spin-singlet,
corresponding to an antisymmetric combination of two spin-
1/2 edge modes. In other words, neither of the semion states
carrying spin-1/2 at the edges, i.e., |�1〉 = PGd†

L↑d†
R↓|〉 or

|�1′ 〉 = PGd†
R↑d†

L↓|〉, does have a definite total spin. A spin-
singlet can be formed, however, via a linear combination of
|�1〉 and |�1′ 〉, which leads to the doubling of the number of
states of the conformal towers [75]. This can be easily verified
by a direct product of the conformal towers of the spin-1/2
primary of Table V (Appendix C) with a spin-1/2, as shown
in Table II. This observation applies also for cases of N > 2
: for nonidentity sectors, the ESs contain, in each Virasoro
level, an integer multiplicity (�N) of the number of states of a
single CFT tower. In general, it is possible to account for such
a multiplicity by taking the direct product of each conformal
tower with the conjugate of its primary spin (see Tables XXVI,
XXVII, and XXVIII in Appendix F as examples). This brings
our simulations in overall agreement with CFT as shown in
Figs. 9 and 10 for N = 3 and N = 4, respectively, and a di-
rect comparison with Tables XXVI, XXVII and XXVIII (see
Appendix F). Conversely, one also could have “quenched” the
edge spins p and p̄ in the DMRG simulation by coupling them
to an artificial additional physical edge site with spin p̄ and
p at the left and right boundary, respectively. However, we
refrained from doing so.

To summarize: in this section we have shown that a DMRG
ground-state search for the Hamiltonian of Eq. (1), initialized
with an MPS obtained via Gutzwiller-projected parton con-
struction, yields entanglement spectra in excellent agreement
with the expectations for SU(N )1 CSLs. At a technical level,
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FIG. 9. The entanglement spectra on width-6 cylinders for SU(3) CSLs. (a) Identity sector. (b)
3

sector (⊗
3̄

). (c)

3̄

sector (⊗
3

).

Identifying Ky with the Virasoro level L0, the content of the chiral branches agrees exactly with the CFT predictions of tables VI and XXVI up
to Ky = 3 (mod[6]). Note that the towers of the 3 and 3̄ sectors are identical, apart from an overall conjugation of all IRREPs.

this required the following innovations: (i) the Gutzwiller pro-
jected wave functions for SU(N )1 CSLs, including the MES
basis on the cylinder, are systematically constructed; (ii) the
powerful tensor network library incorporating non-Abelian

symmetry efficiently converts the projected wave functions
into MPSs with high fidelity; and (iii) the iDMRG is initial-
ized with the MES basis and preserves the SU(N) symmetry.
The combination of these innovative techniques allows us to

FIG. 10. The entanglement spectra on width-8 cylinders for SU(4) CSLs. (a) Identity sector. (b)
4

sector (⊗

4̄

). (c)

6

sector (⊗
6

).

(d)

4̄

sector (⊗
4

). Note that the towers of the 4 and 4̄ sectors are identical, apart from an overall conjugation of all IRREPs. Identifying Ky

with the Virasoro level L0, the content of the chiral branches agrees exactly with the CFT predictions of tables VIII, XXVII and XXVIII up to
Ky = 3.
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FIG. 11. PEPS on the square lattice involving site A tensors
and bond B tensors. The bond dimension on the black links is D,
up to D∗ = 4 (D = 15), and the vertical red segments correspond
to the physical space F spanned by the d = N (d∗ = 1) physical
degrees of freedom. All indices (i.e., legs or lines) carry arrows which
indicate whether legs enter or leave a tensor in terms of state space
fusion. This can be translated into co- and contravariant tensor index
notation, respectively [76,77]. Note that reverting an arrow also flips
all affected IRREPS into their dual representations.

obtain all N degenerate ground states of the SU(N )1 CSL and
characterize them from the entanglement spectrum.

IV. IPEPS

The results obtained from ED and iDMRG have shown
affirmative evidences for SU(N )1 CSL in a wide range of
parameters with arbitrary N . On the other hand, a varia-
tional ansatz capturing properties of the CSL phase is also
highly desired, especially in terms of symmetric PEPS. Fol-
lowing the implementation of chiral PEPS for N = 2 (see
Refs. [44,48,49]) and N = 3 (see Ref. [47]), we will first
outline the general scheme of the construction, with focus
on how the relevant symmetries are realized on the local
tensors. We then proceed to a variational optimization of the
very few parameters. Finally, we investigate the entanglement
properties and bulk correlations of the optimized chiral PEPS,
confronting the results with general considerations.

A. Symmetric PEPS construction

Let us first extend the construction of chiral PEPS used
for N = 2 (see Refs. [44,48,49]) and N = 3 (see Ref. [47]
for more details). The PEPS is obtained by contracting the
network represented in Fig. 11, i.e., by summing all virtual
indices on the links connecting rank-(z + 1) site and rank-2
bond tensors, z being the lattice coordination number, z = 4
for the square lattice. The physical space F on every lattice
site is spanned by d = N states transforming according to the
fundamental IRREP of SU(N). The choice of the virtual space
on the z = 4 bonds around each site can be made following
heuristic rules valid for all N . In other words, we construct a
SU(N)-symmetric PEPS from site/bond tensors with virtual
(or bond state) space,

VN = • ⊕ ⊕ · · · ⊕

⎫⎪⎪⎬⎪⎪⎭N − 1, (6)

TABLE III. Number of symmetric site-tensors in each class char-
acterized by the IRREP of the C4v point group of the square lattice
(rows) and the occupation numbers {n6, n4, n4̄, n1} of the 6, 4, 4̄, and
1 multiplets on the 4 virtual bonds (columns).

{0, 0, {0, 1, {1, 0, {1, 3, {3, 0, {0, 2, {2, 1, {1, 1,

3, 1} 0, 3} 1, 2} 0, 0} 1, 0} 1, 1} 0, 1} 2, 0}
A1 1 2 1 2 3 3 4
A2 1 1 2 2 3 3 5
B1 1 2 1 2 3 3 4
B2 1 1 2 2 3 3 5

where the direct sum contains all N IRREPs defined by
single column Young diagrams of 0 up to N − 1 boxes, con-
sistently with the N = 2 and N = 3 cases, V2 = 1 ⊕ 2 and
V3 = 1 ⊕ 3 ⊕ 3̄.6 For the N = 4 case, we then assume V4 =
1 ⊕ 4 ⊕ 6 ⊕ 4̄ (with bond dimension D = 15). By construc-
tion, the bond state (or virtual) space remains the same when
the direction of arrow in Fig. 11 is reverted, as V maps into
itself when all IRREPs are flipped into their dual. Note that
the site tensor A can be seen as a linear map (or projection)
(VN )⊗z → F onto the physical state space, and the bond
tensor B as fusing bond state spaces into a fully entangled
pair singlet state, (VN )⊗2 → •. As such, the tensors A and B
explicitly correspond to the “P” and “EP” part in the acronym
PEPS, respectively. Up to normalization, the bond tensor B
corresponds to an orthogonal matrix inserted into each bond
within the tensor network [76,77]. It is real and defined as a
weighted sum of three elementary (reflection-symmetric) ten-
sors representing the three allowed fusion channels • ⊗ • →
•, 6 ⊗ 6 → • and 4 ⊗ 4̄ → •. As such, it does not add any

variational degrees of freedom.
As for N = 2 and 3, we classify the SU(4)-symmetric site-

tensors according to (i) the number nα of α-IRREPs appearing
on their z = 4 virtual bonds, nocc = {n6, n4, n4̄, n1} (

∑
nα =

z) and (ii) the (one-dimensional) IRREP of the C4v point group
of the square lattice [78] (see Table III). Since the chiral spin
liquid only breaks P (parity) and T (time-reversal) but does not
break the product PT, the PEPS complex site tensor A should
be invariant (up to a sign) under PT symmetry but acquires a
complex conjugation under P or T separately (up to a sign).
The simplest adequate ansatz has the following form:

A = AR + iAI =
NR∑

a=1

λR
a Aa

R + i
NI∑

b=1

λI
bAb

I , (7)

where the real elementary tensors Aa
R and Ab

I either transform
according to the A1 and A2 IRREPs, respectively, or according
to the B1 and B2 IRREPs, respectively, giving rise to two
possible families, AA and AB. NR = 16 and NI = 17 are the
numbers of the elementary tensors in each class and λR

a and λI
a

are arbitrary real coefficients of these tensors to be optimized
variationally.

6To describe non-Abelian SU(N )k CSL, k > 1, we speculate that
one should include all IRREPS in V with up to k columns, consis-
tently with the SU(2)2 case [45].
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To contract the infinite (double layer) tensor network, we
have used the iPEPS method employing a corner transfer ma-
trix renormalization group (CTMRG) algorithm [79,80] and
obtain the fixed-point environment tensors used to compute
the variational energy (on a 2 × 2 plaquette) or the entangle-
ment spectra on infinite cylinders [47,48]. In order to cope
with the large bond dimension (D = 15), the tensor contrac-
tions at each CTMRG step have been performed using the
full SU(N)-symmetry, thanks to the QSpace library [76,77].
This changes the description of any vector space V from
state-based to multiplet-based. For numerical efficiency then,
importantly, the dimensionality is reduced from DV states to
an effective dimension of D∗

V multiplets, where for SU(N) it
typically holds D∗

V � DV . As an example, the bond dimen-
sion D2 = 225 of the double layer (rank-4) tensor AA∗ (used
in CTMRG) can be reduced to D2∗ = 26 which represents the
number of multiplets in the product space:

ν⊗2
4 = 4

1• ⊕ 4
4

⊕ 4

4̄

⊕ 4

6

⊕ 1
10

⊕ 1

10

⊕ 3

15

⊕ 2

20

⊕ 1

20′

⊕ 2

20

. (8)

By fully enforcing SU(N) symmetries on all tensors and in-
dices, this automatically implies that singular values within
any multiplet are degenerate. Therefore naturally, state space
truncation is also always performed based on entire multi-
plets. Degeneracies across different multiplets, however, can
be arbitrarily split depending on the algorithm and overall
convergence. For SU(4), we have increased the environment
dimension up to χ∗ = 221 multiplets (corresponding to χ =
1350 states) to control truncation errors. The optimization
of the PEPS (7) with respect to its variational parameters
is done within a variational optimization scheme [81]. For
θ = π/4 and φ = π/2, the best variational energy (per site)
e � −2.105 (close to the DMRG estimate −2.14) is obtained
for the AB ansatz that we shall consider hereafter.

B. Entanglement spectrum and edge physics

Both ED and DMRG computations have shown over-
whelming evidence of SU(N )1 edge modes, both on disk
and cylinder geometries, a fingerprint of the Abelian CSL
phase. We note that, apart from the trivial (identity) sector,
the conformal towers previously obtained using PEPS on
cylinders for N = 2 and 3 bear some differences with those
obtained in DMRG. For example, the spin-1/2 semionic
branch of the SU(2) spin-1/2 chiral PEPS corresponds exactly
to the SU(2)1 conformal tower—consisting of half-integer
spin multiplets—associated to the WZW spin-1/2 primary
field and its descendants, but with an exact twofold degen-

eracy [44,48,49]. For the SU(3) spin- chiral PEPS, in the

topological sectors defined by imposing Q = ±1 Z3 charges
at the boundaries (stricly speaking, infinitely far away), three
chiral branches—instead of a single one—separated in mo-
mentum by 2π/3 are observed in the ES, whose level contents
follow the prediction of the Virasoro levels of the SU(3)1

WZW CFT [47]. Interestingly, both DMRG and PEPS show
the same number of states in each Virasoro level, namely N
times the WZW CFT content. These particular features of the
PEPS ansatz are now further tested in the case of the SU(4)
model in order to draw more general (empirical) statements

for SU(N) spin- chiral PEPS.

The ES, revealing the topological properties of the PEPS,
is computed by placing the optimized D = 15 (D∗ = 4) PEPS
on a width-4 infinite cylinder partitioned in two halves. The
PEPS holographic bulk-edge correspondence [47,82] enables
to compute the ES simply from the (fixed-point) environment
tensors. The four topological sectors are selected by impos-
ing a well-defined total Z4 charge Q at both ends (strictly
speaking at infinity) on the virtual levels. Following the as-
signment q1 = 0, q4 = 1, q4̄ = −1, and q6 = 2, we have Q =∑

qα mod[4], where the sum runs over the virtual open bonds
along the circumference at the boundaries. In practice, this is
performed by filtering out the components of the environment
tensors used to approximate each halves of the cylinder.

A necessary ingredient for identifying the linear dispersing
modes in ES is the momentum quantum number associated
with each energy level, which originates from the translation
invariance along the circumference of the cylinder. For that
purpose, we consider the momentum projection operator Pky :

Pky = 1

Ny

Ny−1∑
r=0

e−ikyrT r, (9)

where ky = 2π
Ny

Ky, Ky = 0, 1, 2, . . . , Ny − 1, and T is the
one-site translation operator acting on the virtual degrees
of freedom. Since T commutes with ρ, we can diagonalize
PkyρPky , whose nonzero eigenvalues are also eigenvalues of
ρ, and corresponding eigenstates carry momentum quantum
number ky, to obtain ES and momentum quantum number
simultaneously. In this setup, the action of translation operator
on ρ can be implemented as a permutation of indices of ρ.

In Fig. 12, the ES in the four topological sectors are shown
as a function of the momentum ky along the circumference.
For Q = 2, 0 and ±1, we identify one, two or four linearly
dispersing chiral branches, respectively. When two or four
branches are seen, the later are equally spaced in momentum,
i.e., by 2π/2 = π and by 2π/4 = π/2, respectively. Despite
the very small circumference (Nv = 4), for Q = 2 and 0 the
expected SU(4)1 counting of the first Virasoro levels is satis-
fied. For Q = ±1, due to limited resolution in K-space, the
states of the second Virasoro level of each branch are not
clearly separated from the continuum above. Although it is
difficult to draw definite conclusions on such a thin cylinder,
it seems that the SU(4) chiral PEPS reveals, as for the SU(2)
and SU(3) cases, a duplication of the chiral branches for most
topological sectors. In the SU(2) PEPS this was attributed to
the so-called “dressed mirror symmetry” within the virtual
degrees of freedom [83]. Note however that there is no exact
degeneracy in the N = 3 and N = 4 cases, in contrast to
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FIG. 12. Entanglement spectra on an infinitely long width-4 cylinder obtained from an SU(4) (D = 15) PEPS wave function optimized for
θ = π/4, φ = π/2 and environment dimension χ = 1350. Spectra are plotted vs perimeter momentum ky and, to better evidence their chiral
nature, the ky = −π/2 spectrum is replicated at ky = 3π/2. Appropriate Z4 charge boundaries Q = 2, 0 and ±1 are set up to select the 6 (a),
1 (b), and 4/4̄ [(c) and (d)] topological sectors, showing one, two and four branches, respectively. Note that the 4 and 4̄ spectra are identical
apart from an overall charge conjugation of all IRREPs (and small finite-χ numerical errors).

N = 2, so that the duplication of the chiral modes may have
a different origin here. In any case, as for the DMRG wave
function, the duplication of the chiral states in the PEPS is
linked to the fact that the ansatz is not a MES but, rather,
carry an extra entanglement due to its global singlet nature.
However, the manifestation in the ES is different in the two
cases.

C. Correlation lengths

It was proven that any short-range quadratic parent Hamil-
tonian for chiral noninteracting PEPS is gapless [84]. This
suggests that a fundamental obstruction or “no-go theorem”
may prevent to describe a gapped CSL phase with a 2D PEPS
(of finite bond dimension D). In fact, the PEPS optimized
for the N = 2 and N = 3 chiral Heisenberg models [47,48]
reveal rather long-range correlations and growing correlation
lengths with environment dimension χ . It is therefore of much
interest to also test this important feature in our SU(4) PEPS.
For that purpose, we have computed the leading correlation
lengths (associated to the leading correlations in the bulk of
the PEPS) from the leading eigenvalues of the transfer matrix

(TM) [44] (with no gauge “vison” flux). These correlation
lengths, plotted in Fig. 13, show no sign of saturation with
χ∗/D2∗, or equivalently with χ/D2 (D = 15)—at least the
three largest ones. The latter (shown in orange color) have
been obtained from the singlet eigenvalues of the TM and,
probably, correspond to dimer correlations. The next two
(shown in blue color) correspond to spinon correlations. We
note that all correlation lengths remain rather short, even for
the largest χ value. However, the data for N = 2, 3 and 4
clearly show that all correlation lengths are comparable at
the same value of χ/D2. For example, the dimer correlation
length ranges between 3.5 and 6 for χ/D2 = 6, weakly depen-
dent on N and on the model parameters. Since the PEPS bond
dimension increases significantly with N (D = 3, 7, 15 for
N = 2, 3, 4, respectively) the maximum achievable value of
χ/D2, and hence of the correlation lengths, decreases strongly
with N .

Note that in the SU(2) case, the diverging nature of the
correlation lengths was shown to be associated, not to a
conventional critical behavior but, rather, to the existence of
“long-range tails” (of very small weight) in most correlation
functions [48]. We believe such a property also holds for any
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FIG. 13. Leading correlation lengths obtained from the transfer
matrix (in the absence of gauge flux) for the case of SU(4) plotted
versus the number of multiplets χ∗ kept in the environmental tensors,
normalized by D2∗ = 26 which represents the number of multiplets
in the product space of D × D states with D fixed. The SU(4) IRREPs
associated to these correlation lengths are indicated.

SU(N) CSL, although it could not be established here for
N = 4 due to the large value of the bond dimension D.

V. CONCLUSION AND OUTLOOK

In this work, the previous family of SU(3) chiral Heisen-
berg models on the square lattice has been generalized to any
SU(N) fundamental IRREP as physical degrees of freedom.
The construction follows two steps: the first one consists in
building up the most general fully translational, rotational
and SU(N)-symmetric model (possibly breaking time-reversal
symmetry) whose interactions extend at most to three-sites
within the square plaquettes. In a second step, one restricts
to a subset of this model family whose Hamiltonians can be
written solely as a sum of S3-symmetric operators defined on
all the triangles within the square plaquettes. By doing so, we
expect to mimic some of the physics of the triangular lattice
with three-site chiral interactions, although keeping the full
C4v point group symmetry of the square lattice. This procedure
defines a sub-family of chiral Heisenberg models spanned by
two independent parameters (angles) that we have explored in
details.

Extensive ED computations bring overwhelming evidence
of extended regions of stability of SU(N) CSL phases for all
N , up to N = 10. The Abelian SU(N )1 topological nature of
these phases has been clearly established from the many-body
low-energy spectra of periodic (tori) and open (disks) clusters.
When the system size Ns is commensurate with N (so that no
anyons is present in the GS) a N-fold GS degeneracy is ob-
served on small tori as expected. When the commensurability
between Ns and N is such that a single quasihole populates
the GS, Ns quasidegenerate GS are found, as expected. Fi-
nally, chiral many-body low-energy spectra on open clusters
following WZW CFT counting rules provide an even more
stringent test of the existence of the SU(N )1 Abelian CSL.

iDMRG computations by enabling to access much larger
systems—typically infinitely long broad cylinders—provide
most valuable and complementary results for N = 2, 3, 4.
Gutwiller-projected parton wave functions offer a guide to
construct iDMRG ansatze in each topological sector. Due to
their SU(N) global singlet nature, the iDMRG wave functions
carry larger entanglement than MES (they can be seen as
linear combinations of MES, except in the trivial sector) and,
hence, show ES with more structure whose complete under-
standing has been fully provided.

Following the prescriptions for N = 2 and N = 3, we have
constructed a family of chiral SU(4)-symmetric PEPS and, un-
der optimization, a good variational PEPS ansatz is obtained
for the chiral SU(4) Heisenberg model. The entanglement
spectra obtained in the N = 4 topological sectors of an in-
finitely long cylinder reveal chiral modes. The multiplicity
of the chiral modes is attributed to the non-MES nature of
the singlet PEPS ansatz in most topological sectors. Finally,
growing correlation lengths with environment dimension are
consistent with the existence of “long-range tails” (of very
small weight) in correlation functions (evidenced explicitly
for N = 2 [48]). We speculate that these long-range tails
would fade away (i.e., their weights would continuously van-
ish) for increasing D, providing a more and more faithful
representation of the GS. If correct, this implies that the no-go
theorem [84] does not practically prevent an accurate chiral
PEPS representation of the topological gapped CSL phase.

We note that the SU(N) CSL is stable in some regime
where the three-site interaction is purely imaginary (corre-
sponding to φ = π/2), mostly studied here. In fact, this case
is relevant in ultracold atom systems which can realize an
SU(N) fermionic Hubbard model [27]. In the presence of
an artificial gauge field (providing complex amplitudes to
the effective hoppings), at 1/N filling (one particle per site),
the large-U Mott insulating phase [19,29,30] can be approx-
imately described by our Hamiltonian, so that an Abelian
SU(N) phase on the square lattice may be seen experimentally
if low-enough temperatures could be reached. Experimental
setups of ultracold atoms at other fractional fillings like k/N
(k ∈ N particles/per site) could be also of great interest and
be described by new types of SU(N) spin Hamiltonians, like
the two-fermion SU(4) model [85] with additional chiral in-
teractions on triangular units, opening the way to observe
non-Abelian CSL.
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APPENDIX A: ANALYSIS OF 2 × 2 PLAQUETTE

The focus of the present paper is on chiral spin liquids
which have the SU(N) flavor symmetry intact both locally
and globally. In particular, the ground state remains an SU(N)
singlet in the thermodynamic limit. This suggests that also the
low-energy regime of smaller clusters should have a singlet
ground state. If that is not possible by finite size, at least, one
may expect to have a ground state that is closest to a singlet in
the sense that they tend to prefer to fill up full columns in the
corresponding Young tableau (YT).

In this spirit, this Appendix analyzes the 2 × 2 plaquette as
an elementary unit of the Hamiltonian. The Hamiltonian (1)
on the full 2D square lattice can be rewritten as

H =
∑

p

Hp, (A1)

where Hp is the Hamiltonian for a single square plaquette p of
2 × 2 sites that combines all terms i, j, k ∈ p (in order to avoid
overcounting along the edge of the plaquette, we set J1 →
1
2 J1 for Hp, whereas J2, JR, and JI remain the same). Now
with Hp the combined set of local operators that can be used
to tile the entire 2D Hamiltonian, it is natural to analyze its
multiplet structure. Multiplets in Hp that are low in energy are
expected to be important in the low energy physics on the 2D
lattice itself, whereas multiplets of Hp at higher energies will
likely play a minor role. Clearly, the ground state multiplet
of Hp also may change when tuning the coupling parameters
{J1, J2, JR, JI}. This then may signal a qualitative change of
the overall low-energy behavior of the 2D system, e.g., a low-
order phase transition for similar coupling parameters.

The eigenspectrum of the 2 × 2 plaquette Hamiltonian Hp

is analyzed in Fig. 14 for N = 2, 3, 4, 5 in panels (a)–(d),
respectively. The SU(N) multiplet structure is fully resolved
as indicated with the legend. For the sake of the discussion
here, we use Dynkin labels in compact notation to identify
symmetry sectors where q ≡ (q1 . . . qN−1) directly specifies
to corresponding SU(N) YT via differential length offsets of
the number of boxes in subsequent rows of the YT (e.g., see
also Appendix A in Ref. [86]). For example, (10 . . . 0)N−1 is
the fundamental or defining representation also labeled as N in
the main text, and (10 . . . 01)N−1 is the adjoint representation.
The reverse order (qN−1 . . . q1) ≡ q̄ specifies the dual IRREP

FIG. 14. Eigenspectrum of a 2 × 2 cluster described by the pla-
quette Hamiltonian Hp in Eq. (A1) vs φ using the parametrization
in Eq. (2), with θ = π/4 fixed as in the main text [e.g., see Fig. 2].
To focus on energy per site, the energies are divided by the number
of sites Ns = 4 as indicated. (a)–(d) refer to case of N = 2, 3, 4, 5
symmetric flavors, respectively. Colors indicate symmetry sectors as
indicated with the legend based on Dynkin labels. The small numbers
on top of each line in panel (a) indicate the degeneracy of multiplets
which shows that the green line only is twofold degenerate. This also
holds for all data in the other panels.

to any q = (q1 . . . qN−1). For the case of SU(2), having a
single number (q1) only, the integer q1 simply counts the
total number of boxes in the YT, and thus corresponds to a
spin S ≡ q1/2 multiplet. Its adjoint is given by S = 1, i.e.,
multiplet q = (2).

a. General aspects of SU(N) permutation Hamiltonian

The Hamiltonian (1) and therefore also Hp above is defined
via simple permutations of flavors over two or three sites. A
direct consequence of this is, that all eigenenergies appearing
for SU(N) exactly also must appear for SU(N ′ > N), as can
be clearly observed in Fig. 14. The simple reason is that
adding additional flavors N ′ − N > 0 on top of all sites, the
Hamiltonian will not make any reference to these when ap-
plying it to a state that only contains up to the first N flavors.
The multiplet label needs to adapt, though. By using Dynkin
labels, this simply concatenates additional trailing numbers
qi. Considering a four-site plaquette here, these extra trailing
numbers must all be zero for N ′ > 4, as largely already also
observed for SU(4) itself [see legend in Fig. 14(d)]. With this
clearly also the degeneracy in terms of states within these
multiplets changes as required by the increased Hilbert space.
However the eigenenergies themselves remain exactly the
same. Therefore given a Hamiltonian that solely consists of
permutations of otherwise symmetric flavors, the many-body

235104-16



ABELIAN SU(N )1 CHIRAL SPIN LIQUIDS ON THE … PHYSICAL REVIEW B 104, 235104 (2021)

eigenspectrum for a given SU(N) is exactly inherited also to
all cases SU(N ′ > N). This is made explicit across the panels
in Fig. 14 by choosing matching color coding. For example,
what was a singlet in SU(2), i.e., the green line for q = (0),
becomes q = (02) for SU(3), and then q = (020 . . .) for larger
N still.

When increasing the number of flavors N → N ′ > N ,
however, also new eigenenergies can emerge that were previ-
ously absent. For example, in Fig. 14, this is seen as additional
lines that appear when going from N = 2 → 3 (yellow lines)
or N = 3 → 4 (blue line). Given a four-site plaquette with the
fundamental IRREP on each site, the number of lines will no
longer change for N ′ > 4, as seen by going from N = 4 → 5,
since all YTs with four boxes are already present.

b. Low-energy regimes

Now the analysis in Fig. 14 tracks the eigenvalues vs. φ

for fixed θ = π/4 similar to Fig. 2 in the main text. The red
line in Fig. 14 corresponds to the fully symmetric IRREP
q = (40 . . .)N−1 that is present for all N � 2. This multi-
plet crosses over and becomes the ground state for φ > π

for N � 4, and already earlier for N = 2 and N = 3. This
shows that the 2 × 2 plaquette becomes ferromagnetic around
φ � π [note that based on Eq. (2), φ > π corresponds to
negative, and hence ferromagnetic J1 and J2]. As such, this
signals the onset of ferrogmagnetism on the full 2D system,
also consistent with the analysis of the larger clusters in
Fig. 2.

Finally, with focus on a singlet ground state, on the given
four-site plaquette this can only be achieved exactly for N = 2
and N = 4. Interestingly then, the singlet for SU(2) [green
line in Fig. 14(a)] becomes a nonsinglet for N > 2, i.e., (02)
for SU(3), and (020 . . .) thereafter. Instead, an entirely new
singlet shows up for SU(4) in the low-energy regime, and re-
mains an eigenenergy for N � 4 (blue line). Therefore, while
in the case of SU(2) the singlet is favored for small φ ∈ [0, π ],
it is favored for larger φ ∈ [0, π ] for SU(4) and onward. What
comes closest to a singlet for SU(3) on the 2 × 2 plaquette,
on the other hand, is the multiplet (10), i.e., the fundamental
IRREP. Based on the fusion of the four fundamental IRREPs
on the 2 × 2 plaquette to start with, this already fused three of
these into a singlet. As seen by the yellow line in Fig. 14(b),
the multiplet (10) is the ground state for a wide range φ ∈
[0, π ], including small but excluding large φ where the system
becomes ferromagnetic. This is perfectly consistent with the
analysis on the larger cluster in Fig. 2(a) in the main text
which for N = 3 also shows the chiral phase extending all the
way down to φ = 0.

The chiral phase was identified in Fig. 2 with the gapped
phase around φ � π/2. However, when reducing φ, as seen
in Fig. 2 for N > 3, this gapped phase closes at finite φ. Even
more, for certain N it appears to reopen before approach-
ing φ = 0. Hence based on Fig. 2 having the chiral phase
identified with the regime of larger φ � π/2, this is entirely
consistent with the regime in the present analysis of the 2 × 2
plaquette where the system is (or tends towards becoming)
a singlet for N � 4 in Figs. 14(c) and 14(d). Note that for
N > 4, the blue line in Fig. 14(d) corresponds to the fully

antisymmetric multiplet where four boxes are stacked on top
of each other into a single column in the corresponding YT.

In the chiral regime φ � π/2, also the coupling strength
of the real three-site permutation term HR

i jk ≡ JR(Pi jk + P−1
i jk )

turns negative, i.e., having JR < 0. Its effect is revealed by
looking at the eigenvalues in the three-site eigenbasis for
given triangle triangle (i jk). One finds for N � 3 that the
completely symmetric multiplet (30 . . .) and the completely
antisymmetric multiplet (001 . . .) [equivalent to (00) for
SU(3)] are eigenstates to the same eigenvalue +2JR, whereas
the twofold degenerate multiplets (110 . . .) have eigenvalue
−JR (which are eventually differentiated by the complex term
JI ). Hence negative JR equally favors both, the completely
symmetric multiplet (ferromagnetic) as well as the completely
antisymmetric multiplet (antiferromagnetic) on any triangle.
When considering all triangles within a 2 × 2 plaquette as
analyzed in Fig. 14, the antiferromagnetic states dominate the
low energy regime, yet with the ferromagnetic regime in close
proximity (both, the blue and red lines move downward with
increasing φ for N � 4). Eventually, for φ > π when also
the two-site exchange couplings J1 and J2 turn negative, the
ferromagnetic state takes over.

APPENDIX B: GENERALIZED EXCLUSION PRINCIPLE
FOR ABELIAN SU(N) CSL

We provide here complementary details about the heuris-
tics on the content (degeneracy, quantum numbers, etc.) of the
GS manifold within the CSL phase on small periodic clusters
(of torus geometry).

As realized already for N = 3 in Ref. [47], it is possible
to obtain, for arbitrary N , the exact momenta of the various
states in the GS manifold expected for an Abelian SU(N )1

CSL. This can be inferred from a simple generalized exclu-
sion principle (GEP) known for FQH states [55] or fractional
Chern insulators [56] with clustering properties.

For our SU(N) model in the fundamental representation,
there are N states per site which can be viewed as a color
degree of freedom. The mapping to a bosonic FQH requires
to treat them separately: one (arbitrarily chosen) color will
correspond to a hole while the remaining C = N − 1 will
correspond to spinful SU(C) bosons. Hence, Abelian bosonic
FQH states can be constructed at a filling νFQH = C/(C +
1) = (N − 1)/N , corresponding to Halperin states [87–89].
In this terminology, the ground states and quasihole states
is given by the number of dressed partitions (1, 2)C , see
Ref. [56]. Moreover, the respective momenta can be obtained
from the mapping between Ns orbitals obtained when folding
the Brillouin zone [90,91].

To be more specific, let us consider for instance N =
3 which maps onto C = 2 bosons, i.e., spin-1/2 particles.
Then, the generalized exclusion principle for the ground-
states (for Ns = kN) enforces the occupations (↓,↑, 0, . . .)
and its translations, i.e., 3 states. This (1, 2)2 exclusion rule
simply enforces that identical particles cannot be neighbors
but a ↓ particle can be followed by a ↑ particle. Such rules
can be rephrased in terms of follow-up rules in the string of
states, e.g., 0 → (0,↓,↑), ↑→ 0, ↓→ (0,↑), which defines
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a “transfer matrix,”

T (N=3) =
⎡⎣1 1 1

1 0 1
1 0 0

⎤⎦, (B1)

for N = 3.
The transfer matrix above is easy to generalize to any N ,

with 1’s in the first column and above the diagonal and zeros
otherwise. For example, one gets

T (N=5) =

⎡⎢⎢⎢⎣
1 1 1 1 1
1 0 1 1 1
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0

⎤⎥⎥⎥⎦, (B2)

for N = 5. Note that, in addition to the rules encoded in the
transfer matrix (which alone produce a large number of irrele-
vant configurations), one should also simultaneously enforce a
global property relating the total appearance of all colors such
that the GS belong to the SU(N) IRREP of smallest possi-
ble dimension compatible with system size. More precisely,
defining the integer r0 = mod(Ns, N ), the smallest possible
IRREP corresponds to the antisymmetric IRREP with a Young
diagram of r0 vertical boxes (labeled in the text aIRN (r0)),
and, heuristically, is to be associated to the GS manifold. For
instance for Ns = kN , all colors should appear exactly k times,
i.e., c1 = c2 = · · · = cN = k, as the singlet character of the
GS manifold implies.

For Ns = kN − 1, k ∈ N, we expect the low-energy states
to represent the quasihole excitations, similar to the quasihole
Laughlin states when inserting a flux in a fractional quantum
Hall state on a torus. In particular, the quasihole counting on a
finite cluster should be the same as in the thermodynamic limit
and is given by a generalized Haldane exclusion principle
[90,91]. Moreover, the lattice momenta at which these (quasi)
degenerate states sit can be obtained using a heuristic rule
by folding the two-dimensional Brillouin zone into a one-
dimensional lattice of orbitals [90]. For instance, for all the
quasihole examples shown in Fig. 4, since GCD(N, Ns)=1,
we expect to find one low-energy SU(N) multiplet at each
momentum (i.e., a total number of quasihole states equal to
NNs), which is exactly what is found numerically.

When Ns = kN , we expect N-fold quasidegenerate ground
states on a torus. The momenta are given using a similar
heuristic rule and are nontrivial. For completeness, here are
the predictions corresponding to the values shown in Fig. 4
(see the Brillouin zones as insets for the momenta notations):
(i) N = 4 and Ns = 20: one state at momentum 	, M and
twofold degenerate X; (ii) N = 5 and Ns = 15: one state at
momentum 	, ±�0, ±�2; (iii) N = 6 and Ns = 12: one state
at momentum 	, Z1, ±�, Z0, �; and (iv) N = 7 and Ns = 14:
one state at momentum 	, ±0, ±2, ±5. All these predictions
are verified numerically, and the low-energy states are always
well separated from the higher excited ones as expected in this
topological incompressible gapped phase.

APPENDIX C: WZW SU(N)1 CHIRAL TOWERS OF STATES

We provide here an almost self-contained explanation of
the Hilbert-space structure of the SU(N) WZW CFT and

derive the SU(N )1 WZW towers of states for N = 2 to 8,
which are to be compared with the ED results for SU(N)
open clusters investigated and discussed in the main text.
This Appendix is organized as follow. In the first part, we
recall some basic facts on su(N ) Lie algebra and its repre-
sentation theory (see Ref. [92] for a readable introduction to
Lie algebras and their representation). In a second part, we
briefly present the affine extension of SU(N) and introduce the
primary states on which the Hilbert space is constructed. Most
of the equations presented in the first two parts are relevant to
any (affine) Lie algebras unless otherwise stated. In the last
part, we explain how WZW SU(N )1 chiral towers of states
for open clusters can be computed using this formalism. The
Appendix closes with the tables showing the explicit form
of the towers of states relevant for the present study, up to
SU(8). This Appendix in not intended to give a mathematical
presentation of the field but rather to introduce, without any
mathematical proof, the basic tools needed to identify the
expected representations in WZW SU(N )1 chiral towers of
states.

1. su(N) Lie algebra

Group, Generators. The special unitary group SU(N) is
the Lie group of N × N unitary matrices with determinant 1.
The Lie algebra su(N ) associated to the Lie group SU(N) is
determined by a set of N2 − 1 traceless hermitian generators
Jα satisfying the commutation relations,

[Jα, Jβ ] = i fαβγ Jγ , (C1)

where the real fully antisymmetric tensor f encodes the struc-
ture constants. Equation (C1) is a direct consequence of the
group structure of SU(N) and the fact that the Lie group and
the Lie algebra are related by the exponential map which
associate to any element J of su(N ) an element exp(itJ ) of
SU(N).

Cartan Weyl basis, Adjoint representation, roots. The
maximal subset {Hi}i=1,...,r of su(N ) composed of commut-
ing generators [Hi, H j] = 0 forms the Cartan subalgebra of
su(N ) and plays the role of Sz in su(2). Obviously, since all
Hi can be diagonalized simultaneously, the rank r of su(N )
is N − 1, which is equal to the maximal number of traceless
diagonal N × N matrices. As {Hi} can be simultaneously di-
agonalized, we can choose the basis vectors in any irreducible
representation to be the eigenstates |μ〉 of Hi:

Hi|μ〉 = μi|μ〉. (C2)

The (N − 1)-dimensional vector μ = (μ1, . . . , μN−1) is
called the weight. The remaining N (N − 1) off-diagonal gen-
erators will be denoted as Eα.

To each generator Jα , we can associate a linear map adJ

from su(N ) to itself defined as adJ (X ) = [J, X ] for any X in
su(N ). This defines the adjoint representation which can be
used to classify the generators Eα as eigenvectors of adHi :

adHi (Eα) = [Hi, Eα] = αiE
α (i = 1, . . . , N − 1). (C3)

The (N − 1)-dimensional vectors α = (α1, . . . , αN−1) are
called the roots and Eα, which play the role of S±, the lad-
der operators. The Cartan-Weyl basis is {Hi, Eα}i∈{ 1,...,r},α∈�

where � denotes the set of all N (N − 1) roots. Obviously,
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only r = N − 1 roots are linearly independent. An important
remark is the nondegeneracy of roots. Indeed, the existence of
a degenerate root would contradict the definition of the Cartan
subalgebra (maximal set of commuting generators).

It is clear from Eq. (C3) that there is some arbitrariness in
the determination of Eα and α as both depend on the choice
of a particular basis for the Cartan subalgebra. Nevertheless,
some general properties can be established. Once the basis of
r = N − 1 linearly independent roots is fixed, one can expand
any root in this basis. Roots with positive coefficients in this
expansion are called positive and form the set �+. A root α(i)

(i = 1, . . . , r) that cannot be expressed as an integer sum of
two positive roots is by definition a simple root.

The central role of such r = N − 1 simple roots not only
lies in the fact they provide a convenient basis for roots but
also because the (N − 1) × (N − 1) matrix A of the scalar
products of simple roots (the Cartan matrix) completely en-
code the Lie algebra:

Ai j = 2α(i).α( j)

α( j).α( j)
= α(i).α( j)∨, (C4)

with α(i)∨ = 2α(i)/|α(i)|2 (coroots). The entries of this matrix
are always integers and, in the su(N ) case, A is symmetric
and take the form Ai j = 2δi j − δ|i− j|,1. For su(N ) in which all
the N (N − 1) roots have equal length (i.e., simply laced), it
is convenient to choose |α(i)| = √

2 so that we do not need
to distinguish between the roots and the coroots. The lattice
spanned by the r = N − 1 basis vectors α(i) (α(i)∨) is called
the root lattice �r(su(N )) [the coroot lattice �∨

r (su(N ))].
Fundamental weights. From the set of simple roots {α(i)},

we can introduce its dual, i.e., the fundamental weights ω(i)

satisfying

α(i)∨·ω( j) = δi
j, (C5)

which can be used as the basis of the weights (Dynkin basis):

μ =
N−1∑
i=1

d (μ)i ω( j). (C6)

The coordinates d (μ)i in this basis is called Dynkin labels.
The lattice spanned by the basis {ω(i)} is called the weight
lattice�w(su(N )) (see Fig. 15). The relation between the co-
root lattice �∨

r (su(N )) and the weight lattice �w(su(N )) is
analogous to that between the lattices in the real space and the
reciprocal space. Any irreducible representation R of su(N )
is specified by its highest weight λR or its Dynkin labels
{d (R)i}

λR =
r∑

i=1

d (R)iω( j) (di ∈ Z, di � 0) (C7)

and, by applying the lowering operators E−α (α ∈ �+), we
can construct the corresponding irreducible representation
[see Fig. 16 for su(3) examples]. In su(N ), the representation
specified by (d1, d2, · · · , dN−1) has a Young diagram with
d1 columns with length 1, d2 columns with length 2, · · · ,
and dN−1 columns with length N − 1. For example, the fun-
damental representations are always specified by the Dynkin

FIG. 15. The (co)root lattice �r(g) (black circles) and and the
weight lattice �w(g) (red circles) of g = su(3). The root (weight)
lattice is an integer span of two simple (co)roots α(1) and α(2) (two
fundamental weights ω(1) and ω(2)). In su(3), ω(1) and ω(2) respec-
tively correspond to the highest weights of 3 and 3̄.

labels {d (R)i} in which only one of di is 1 and the others are
zero.

2. Affine Lie Algebras and Wess-Zumino-Witten model

The affine Lie algebras are characterized by the following
commutation relations which generalize (C1):[

Jα
n , Jβ

m

] = i fαβγ Jγ
n+m + k̃nδm+n,0δ

αβ (C8)

hws

hws

FIG. 16. Weights of 6 and 10-dimensional representations of
su(3). The representations 6 and 10 have highest weights (shown as
“hws”) with Dynkin labels (d1, d2) = (2, 0) and (3,0), respectively.
Red (blue) arrows show the action of the roots (“lowering operators”)
−α(1) (−α(2)) to the weights (see Fig. 15 for the definitions of α(1,2)).
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(see, e.g., Refs. [46,93] for physicist-friendly reviews of affine
Lie algebras). Physically, (C8) is the algebra of the Fourier
modes of the local SU(N) currents {Jα (x)} satisfying:

[Jα (x), Jβ (y)] = i f αβγ Jγ (y)δ(x − y) + i

2π
k̃ δαβ ∂xδ(x − y),

Jα (x) = 1

L

∑
n∈Z

e−i 2π
L nx Jα

n . (C9)

The above are anomalous in that the right-hand side contains
the central term [which is proportional to δ′(x)] on top of the
term expected from the Lie algebra. Obviously, the coefficient
k̃ of the central term depends on the normalization of Jα

n and
it is convenient to introduce the normalization-independent
integer k called the level of the affine Lie algebra by

k̃ = |θ|2
2

k,

where |θ| is the length of the highest root (the quantization
of k follows, e.g., from the consistency of the path-integral
representation of the WZW model). The |θ| depends on the
normalization of the generators and, in su(N ), a convenient
choice is to normalize the N-dimensional hermitian generators
{Jα} as Tr(JαJβ ) = δαβ which amounts to setting |θ| = √

2.
Then, we do not have to distinguish between the coefficient
k̃ of the central term and the level k (∈ Z). The special case
m = n = 0 of (C8) reduces to (C1), which means that the
zero modes {Jα

0 } form the usual su(N ) Lie algebra (called the
horizontal subalgebra).

As a class of CFT with Lie-algebra symmetry, the WZW
CFT has the Virasoro generators {Ln} which are bilinear in Jα

n
(Sugawara form) [93,94]:

Ln = 1

|θ|2(g∨ + k)

∑
α

∑
m∈Z

: Jα
mJα

n−m :, (C10)

where the normal-ordering : · · · : is defined by

:Jα
mJα

n : =
{

Jα
mJα

n when m < 0

Jα
n Jα

m when m � 0
.

The number g∨ (the dual Coxter number), which is peculiar
to a given Lie algebra, is given by the structure constants as
− f αβμ f αμγ = |θ|2g∨δβγ and is equal to N in su(N ). By a
direct calculation, we can show that the above {Ln} satisfy the
Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + 1
12 c(g, k)m(m2 − 1)δm+n,0

(C11)
with the central charge given by

c(g, k) = k dim(g)

k + g∨ (k = 1, 2, . . .), (C12)

which, for su(N ), reads

c(su(N ), k) = k(N2 − 1)

N + k
. (C13)

On top of Eq. (C11), {Ln} satisfy the following commutation
relations with the generators {Jα

n }:[
Lm, Jα

n

] = −nJα
m+n. (C14)

In particular, [
L0, Jα

n

] = −nJα
n ,

[
L0, Jα

0

] = 0 (C15)

implies that not only L−n (n > 0) but also Jα
−n increase the

eigenvalue of L0 and that for each eigenvalue of L0 (i.e., for
each level of conformal towers) we have a reducible represen-
tation of su(N ) (formed by {Jα

0 }).
In CFTs with extended symmetries, it is convenient to

define the primary states |φ〉 as those annihilated by all Jα
n

with positive n:

Jα
n |φ〉 = 0 (n > 0). (C16)

Then, from (C10), |φ〉 automatically satisfy the primary con-
dition with respect to the Virasoro algebra [the converse is not
true; in that sense, (C16) is stronger than (C17)]:

Ln|φ〉 = 0 (n > 0),

L0|φ〉 = 1

|θ|2(g∨ + k)

∑
α

Jα
0 Jα

0 |φ〉

= 1

|θ|2(g∨ + k)
C2|φ〉 = hφ|φ〉, (C17)

where Jα
φ is a matrix representation of Jα and C2 is the

quadratic Casimir of su(N ). All these mean that the primary
states of the WZW model transform under the irreducible
representations R of the ordinary su(N ) spanned by the subset
{Jα

0 }:

|φ〉 = |R; μ(R)〉 (μ(R) : weights of R),

Jα
0 |R; μ(R)〉 = −Jα (R)|R; μ(R)〉

× [Jα (R) : Jα in representation R], (C18)

and that the conformal weights hφ are given essentially by the
quadratic Casimir C2 of R:

h(R) = C2(R)

|θ|2(g∨ + k)
(g∨ = N for su(N )). (C19)

As in other CFTs, these are the lowest states in a given R-
sector and the higher-lying states are generated by applying
Jα
−n (n > 0).

There is a selection rule about the allowed R for a given
level k, which, in terms of the Dynkin labels (d1, . . . , dr ) [see
Eq. (C7)], reads for su(N )

N−1∑
i=1

d (R)i � k. (C20)

In the level-1 (k = 1) SU(N) WZW model which is rel-
evant in this paper, only the vacuum [1; SU(N)-singlet
with d = (0, . . . , 0)] and the N − 1 antisymmetric repre-
sentations aIRN (r0) [rank-r0 antisymmetric tensor with d =
(0, . . . , 0, 1︸︷︷︸

r0

, 0, . . . , 0); r0 = 1, . . . , N − 1] in Sec. II C are

235104-20



ABELIAN SU(N )1 CHIRAL SPIN LIQUIDS ON THE … PHYSICAL REVIEW B 104, 235104 (2021)

allowed for primary states:

C2

⎛⎝r0

⎧⎨⎩
⎞⎠ = N + 1

2N
r0(N − r0)|θ|2,

h

⎛⎝r0

⎧⎨⎩
⎞⎠ = 1

2N
r0(N − r0) (r0 = 0, . . . , N − 1).

(C21)

These N different primary states (fields) correspond to N
topologically degenerate ground states of SU(N )1 CSL on a
torus. For the selection rule for general g, see, e.g., Sec. 3.4 of
Ref. [93].

3. Finite-size spectrum

For the clarity of the explanation, we assume g = su(N )
and normalize the generator as |θ| = √

2 in this section. In this
normalization, the coefficient k̃ of the central term is equal to
the level k, and C2 is given simply by

C2(R) =
N−1∑
i, j=1

(d(R) + e)i(A
−1)i j (d(R) + e) j − 1

12
N (N2− 1),

e ≡ (1, 1, . . . , 1)︸ ︷︷ ︸
N−1

, (C22)

where the matrix A is the Cartan matrix defined in (C4)
and d(R) is the Dynkin labels that characterizes the highest
weight λR of the representation R by Eq. (C7). When we
normalize the N-dimensional generators as Tr(JαJβ ) = κδαβ ,
we need to multiply the right-hand side by κ .

The Hamiltonian of the chiral CFT is given by [46,95]

Hchiral = 2π

l
v
(

L0 − c

24

)
(l : system size), (C23)

where v is the velocity parameter of the system. As L0 and c in
the level-k SU(N) WZW CFT are given respectively by (C10)
and (C13), we obtain

Hsu(N )
chiral = 2πv

l

1

2(N + k)

∑
α∈SU(N)

{
Jα

0 Jα
0 + 2

∞∑
n=1

Jα
−nJα

n

}

− πv

12l

(N2 − 1)k

N + k
. (C24)

The results in the previous section show that the Hilbert space
in the sector specified by an irreducible representation R
of su(N ) [R obeys the selection rule (C20)] consists of the
ground (lowest) states with energy

2πv

l

C2(R)

2(N + k)
− πv

12l

(N2 − 1)k

N + k

and the equally spaced excited states (with the level spacing
2π/l). All these states are labeled by the eigenvalues of L0

(energy) and {H1
0 , . . . , HN−1

0 } (weight μ of horizontal subal-
gebra {Jα

0 }). As the action of the su(N )-generators Jα
0 does

not change the value of L0 (i.e., energy) [see Eq. (C15)],
each excited level decomposes into a direct sum of several
irreducible representations of su(N ) (Tables IV–XXV shown
below give such decompositions).

TABLE IV. SU(2)1 WZW model-tower of states starting from
1•.

There is a compact way of encoding the information on
the structure (i..e., energy, degeneracy, and the Lie-algebraic
structure) of the Hilbert space of the WZW CFT. Consider the
finite-temperature (T ) partition function of the system:

Z = TrR e− 2π
T l v(L0− c

24 ) = q− c
24 TrR qL0 ≡ ZR(q)

× (q ≡ e− 2π
T l v ), (C25)

where the subscript R means that the trace is taken over all
the excited states within the R-sector. Since L0 takes values
h(R) + N (with N being non-negative integers), if we expand
ZR(q) in a power-series

ZR(q) = qh(R)− c
24

∞∑
N=0

D(N )qN , (C26)

it immediately gives the degeneracy D(N ) of the N th excited
state.

In order to know the Lie-algebraic structure, it is conve-
nient to introduce the “fugacities” {zi} for the weight and

TABLE V. SU(2)1 WZW model-tower of states starting from
2

.

235104-21



JI-YAO CHEN et al. PHYSICAL REVIEW B 104, 235104 (2021)

TABLE VI. SU(3)1 WZW model-tower of states starting from
1•.

consider the following generalized partition function:

Z̃R(q; {zi}) = q− c
24 TrR

{
qL0

N−1∏
i=1

z
Hi

0
i

}
, (C27)

where
∏

i is over all the N − 1 Cartan generators {Hi
0} of the

su(N ) subalgebra {Jα
0 }. Now the coefficient of qN+h(R)− c

24 is
a polynomial of zμ1

1 zμ2
2 · · · zμN−1

N−1 that gives the multiplicity of

TABLE VII. SU(3)1 WZW model—tower of states starting from
3

(respectively

3̄

by conjugation of all IRREPs).
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TABLE VIII. SU(4)1 WZW model—tower of states starting

from
1•.

the weight μ in the N th excited level. In fact, the generalized
partition function Z̃R(T, L) is nothing but the character of the
affine Lie algebra and its expression using the generalized
theta function is known explicitly (see, e.g., section 14.4 of
Ref. [46] for more details). Tables IV–XXV, which show
the contents of irreducible representations appearing at the
excited levels of a given R sector, are obtained in this manner.
For example, Tables V shows the structure of the Hilbert space
of the level-1 SU(2) WZW CFT in the sector of spin-1/2
representation [h( j = 1/2) = 1/4] and “Order” denotes qL0 .
The degeneracy 2 of the first entry (q1/4) is a direct conse-
quence of the doublet level (primary states) constitutes the
j = 1/2 representation of su(2). The third entry from the top
implies that the second excited level (q9/4 = q1/4+2) is sixfold

degenerate and decomposes into one j = 1/2 ( ) and one

TABLE IX. SU(4)1 WZW model—tower of states starting from

4

(respectively

4

by conjugation of all IRREPs).

TABLE X. SU(4)1 WZW model—tower of states starting from

6

.

TABLE XI. SU(5)1 WZW model—tower of states starting from
1•.

TABLE XII. SU(5)1 WZW model—tower of states starting from

5

(respectively

5

by conjugation of all IRREPs).
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TABLE XIII. SU(5)1 WZW model—tower of states starting

from

10

(respectively

10

by conjugation of all IRREPs).

j = 3/2 ( ) representations:

2( ) ⊕ 4( ).

For level-1 su(N ) WZW CFT (for level-1 simply laced g,
in general), there is a simple way of constructing the Hilbert
space in terms of N − 1 (i.e., rank-g) free bosons (Frenkel-
Kac construction). First we note that the central charge (C13)
of level-1 (k = 1) su(N ) WZW CFT is c = N − 1, which
clearly suggests its close relation to a system of N − 1 free
bosons. Below, we quickly sketch how we derive the partition
function of the SU(N )1 WZW CFT. To begin with, we prepare
a set of N − 1 bosons φi(z) (i = 1, . . . , N − 1) which are
normalized as

〈φi(z)φ j (w)〉 ∼ −δi j ln(z − w). (C28)

TABLE XIV. SU(6)1 WZW model—tower of states starting from
1•.

TABLE XV. SU(6)1 WZW model—tower of states starting from

6

(respectively

6

by conjugation of all IRREPs.

The key properties of these bosons are the following operator-
product expansions (OPE) [46,95]:

∂zφi(z)∂wφ j (w) ∼ −δi j

(z − w)2
,

∂zφi(z):eiv·φ(w): = ∂zφi(z):ei
∑

j v jφ j (w): ∼ −ivi

z − w
:eiv·φ(w):,

T (z):eiv·φ(w): = −1

2

N−1∑
i=1

: (∂zφi(z))2:eiv·φ(w):

TABLE XVI. SU(6)1 WZW model—tower of states starting

from

15

(respectively

15

by conjugation of all IRREPs).
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TABLE XVII. SU(7)1 WZW model—tower of states starting

from
1•.

∼ v2/2

(z − w)2
:eiv·φ(w):

+ 1

z − w
∂w:eiv·φ(w): + · · · , (C29)

where v = (v1, . . . , vN−1) and φ = (φ1, . . . , φN−1). There-
fore, if we identify

Hi(z) = i∂zφi(z), Eα(z) = :eiα·φ(w): (C30)

TABLE XVIII. SU(7)1 WZW model—tower of states starting

from
7

(respectively

7

by conjugation of all IRREPs).

TABLE XIX. SU(7)1 WZW model—tower of states starting

from

21

(respectively

21

by conjugation of all IRREPs).

(all the roots α have the length |α| = √
2), they satisfy the

OPEs expected for the generators of k = 1 su(N ) (with
scaling dimension 1) [46,93]:

Hi(z)H j (w) ∼ δi j

(z − w)2
,

Hi(z)Eα(w) ∼ αi

z − w
Eα(w),

Eα(z)Eβ(w) ∼ (z − w)α·βEα+β(w)

+ i(z − w)α·β+1α·∂wφ(w)Eα+β(w) (C31)

[in su(N ) with |α| = √
2, α·β = −1 when α + β is a root and

α �= −β, and α·β = −2 when α = −β]. This suggests that
we can construct the Hilbert space of the k = 1 SU(N) WZW
CFT by applying Hi(z) = i∂zφi(z) (i = 1, . . . , N − 1) repeat-
edly to the bosonic primary states |μ〉 ≡ |μ1, . . . , μN−1〉 =:
eiμ·φ(0) : |0〉 [with μ being the weights of su(N ) ], that has
the eigenvalue L0|μ〉 = μ2/2|μ〉. The summation over all the
possible excited states (with the mode En = (2π/l )n being
occupied with Nn bosons) of the ith linearly dispersive boson
above the primary state |μ〉 yields the partial partition function

e− 2πv
T l

1
2 μ2

i zμi
i

∞∏
n=1

{ ∞∑
Nn=0

e− 2πv
T l nNn

}
= q

1
2 μ2

i zμi
i /

∞∏
n=1

(1 − qn),

which is to be combined together for all N − 1 bosons yield-
ing q

1
2 μ2 ∏N−1

i=1 zμi
i

∏∞
n=1(1 − qn)N−1. As the application of the

other generators Eα(z) changes the “weight” of the primary
states as |μ〉 → |μ + α〉, all these bosonic conformal towers
specified by weights μ that are related to each other by trans-
lation by α must be regarded as belonging to the same WZW
conformal tower. In su(3), for instance, the weights μ on the
root lattice all together constitute a single WZW tower of the
identity representation 1 (see Fig. 15). Summing up the partial
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TABLE XX. SU(7)1 WZW model—tower of states starting from

35

(respectively

35

by conjugation of all IRREPs).

partition functions for those “equivalent” μ, we obtain the
partition function of k = 1 SU(N) WZW CFT (see Sec. 15.6
of Ref. [46] for more details):

Z̃R(q; {zi}) ≡ q− N−1
24∏∞

n=1(1 − qn)N−1

TABLE XXI. SU(8)1 WZW model—tower of states starting

from
1•.

×
{ ∑

μ∈λR+�r

q
1
2 μ2

(
N−1∏
i=1

zμi
i

)}
, (C32)

where λR is the highest weight of the representation R and
the summation is taken over all the points μ of the weight
lattice �w which are equivalent to λR modulo the root lattice

TABLE XXII. SU(8)1 WZW model—tower of states starting

from
8

(respectively

8̄

by conjugation of all IRREPs).
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TABLE XXIII. SU(8)1 WZW model—tower of states starting

from

28

(respectively

28

by conjugation of all IRREPs).

�r spanned by the simple roots {α(i)}. Since such μ are given
explicitly as

μ = λR +
N−1∑
i=1

niα
(i), (C33)

we can trade the sum over μ ∈ λR + �r with that over the
N − 1 integers {ni}. By construction, the representations R
allowed as primary in the SU(N )1 WZW CFT, which is

TABLE XXIV. SU(8)1 WZW model—tower of states starting

from

56

(respectively

56

by conjugation of all IRREPs).

TABLE XXV. SU(8)1 WZW model—tower of states starting

from

70

.

relevant in this paper, are restricted to the points of �w within
the unit cell of �r. As all those R have the Dynkin labels∑N−1

i=1 d (R)i = 0, 1, this selection rule is consistent with the
general one (C20). For instance, in order to obtain the partition

function for R = 3 ( ) of su(3), we sum over all the red
points in Fig. 15 connected to the point ω(1) (i.e., the highest
weight of 3) by the translation generated by two simple roots
α(1) and α(2) (red and blue arrows, respectively); the three
inequivalent points in the hatched “unit cell” correspond to the
three primary fields φ1 (singlet vacuum), φ3, and φ3 allowed
in level-1 su(3).

APPENDIX D: NOTES ON FINITE SIZE EFFECTS
IN ED OF PERIODIC CLUSTERS

1. Antisymmetric vs completely symmetric IRREPS

In the range φ ∈ [0, π ], both J1 and J2 couplings are
antiferromagnetic but the amplitude JR of the (real) three-
site permutation changes sign, from positive to negative,
at φ = π/2. Although a negative JR equally favors both,
the completely symmetric multiplet (ferromagnetic) as well
as the completely antisymmetric multiplet on any triangle
(see Appendix A), on finite (periodic) clusters (with Ns >

N), it strongly favors the ferromagnetic state with respect
to the antisymmetric (antiferromagnetic) states of aIRN (r0).
In fact, a three-site permutation on a triangle with JR < 0
cannot accommodate the complicated sign structure of an-
tiferromagnetic states. Note also that the energy difference
is macroscopic, in the sense that it scales with the number
of sites Ns. At φ = π/2 where JR vanishes and the antifer-
romagnetic couplings J1 and J2 are finite, we observe the
reverse, namely, a macroscopic energy penalty for the fer-
romagnetic state with respect to the antiferromagnetic states.
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TABLE XXVI. SU(3)1 WZW model—the direct product of the conformal tower of the
3

primary (left: see Table VII in Appendix C)

with

3̄

gives a new tower (right) with a tripling of the number of states in each Virasoro level indexed by L0.

This is clearly evidenced in Fig. 17, showing the energy dif-
ference Ea(Ns) − EF (Ns) versus Ns, for θ = π/4, and N =
4 and N = 8. Then, one can argue that a transition from
a spin liquid phase (or several spin liquid phases) and the
ferromagnetic phase should occur between φ = π/2 and
φ = π .

2. Finite size effects in low-energy spectra

As seen in Appendix A, for a given system size Ns (mul-
tiple of N), the spectrum of the SU(N) model includes all
SU(N ′) spectra, N ′ < N . In the frustrated antiferromagnetic
regime where a SU(N) chiral spin liquid (or a singlet cluster
state) is expected, SU(M) singlets (forming a higher quadratic

TABLE XXVII. SU(4)1 WZW model—the direct product of the conformal tower of the
4

primary (left: see Table IX in Appendix C)

with

4̄

gives a new tower (right) with a quadrupling of the number of states in each Virasoro level indexed by L0.
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TABLE XXVIII. SU(4)1 WZW model—the direct product of the conformal tower of the

6

primary (left: see Table X in Appendix C)

with

6

gives a new tower (right) with a multiplicative factor 6 of the number of states in each Virasoro level indexed by m.

Casimir SU(N) IRREP), M < N also divider of Ns, may com-
pete with the expected SU(N) singlet GS of the SU(N) model.
We have observed this effect in Fig. 2 for N = 8, 9, 10 (with
Ns = 16, 18, 20 and M = 4, 6, 5, respectively) for θ = π/4
and small φ. For instance, for Ns = 16 and N = 8, the high
Casimir IRREP [44440000] has energy given by Fig. 2(c)
which is smaller at φ = 0 than the one of the SU(8) singlet
subspace in Fig. 2(g).

Here we argue that such a behavior is in fact a finite size
effect occuring when Ns < N2. To illustrate it we compare
in Fig. 18 the low-energy spectra of the N = 4 model at
θ = π/4, versus φ, on 8-site and 16-site clusters. For Ns = 8,
we observe that the lowest energies of the SU(4) singlets
and those of the higher Casimir IRREP [4400] (also SU(2)
singlets) are comparable. In contrast, for Ns = 16, a clear

FIG. 17. Energy difference between the ground state of the
antisymmetric IRREP aIRN (r0) and the completely symmetric (fer-
romagnetic) state for θ = π/4, N = 4 (red) and N = 8 (blue), φ =
π/2 (filled symbols) and φ = π (open symbols). In all cases, the
energy difference scales approximately linearly with Ns, revealing a
macroscopic energy difference.

energy separation is seen between the lowest energy states of
the higher Casimir [8800] IRREP (also SU(2) singlets) and
the lowest SU(4) singlets.

APPENDIX E: DETAILS ON MPO-MPS
IMPLEMENTATION

This section describes how to cast a Slater determinant,
|�〉 = ∏

k,σ d†
kσ

|0〉, into an MPS with conserved spin sym-
metry. We elaborate our implementation for N = 2; the
generalization to larger N is straightforward. For spin-1/2
fermions, the standard approach to express a single-particle

FIG. 18. Low-energy spectra of the SU(4) model computed on
8-site (a) and 16-site (b) periodic clusters at θ = π/4, plotted vs φ.
A few of the lowest energies of the SU(4) singlet subspace are shown
(in blue) on both panels as well as the lowest energy (in red) within
the subspace of the higher Casimir [4400] (or 105) (a) and [8800] (or
825’) (b) IRREPs, which can also be viewed as SU(2) singlets. Other
lowest-energy excitations are also shown for completeness.
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(-1/2,0,1/2)

(-1/2,0,1/2)

(0)(0)

(-1/2,0,1/2)

(-1/2,0,1/2)

(1/2,-1/2)(1/2,-1/2)

(1/2)

(0)

(0)(-1/2)

(-1/2)

(0)

(0)(1/2)

FIG. 19. Graphical representation of MPO matrix elements with
U(1) spin symmetry for spin-1/2 fermions. Numbers in brackets
indicate the possible values of Sz quantum numbers, 0, −1/2 and
1/2 representing the |〉, |↓〉 and |↑〉 at each physical site, respectively.
Double occupancy, |↑↓〉, is excluded.

operator d†
kσ

is to map the L-site spinful fermions onto a
2L-site pseudospin-1/2 chain using the Jordan–Wigner trans-
formation [63,96,97], namely,

c†
�,↑ → σ z

1 · · · σ z
2�−2σ

+
2�−1,

c†
�,↓ → σ z

1 · · · σ z
2�−2σ

z
2�−1σ

+
2�. (E1)

And, d†
kσ

= ∑
m,n Am,n(k)c†

m,n,σ = ∑
� Ãkσ,�c†

�σ can be read as
an MPO acting on the spin-1/2 chain

d†
kσ

= (0 1)

[
2L∏
�=1

(
1� 0

Ãkσ,�σ
+
� σ z

�

)](
1
0

)
. (E2)

For our purpose, we would like to block 2� − 1 and 2� sites
together, which leads to

d†
kσ

= (0 1)

[
L∏

j=1

(
12 j−1 ⊗ 12 j 0

Ãkσ,2 j−1σ
+
2 j−1 ⊗ 12 j + Ãkσ,2 jσ

z
2 j−1 ⊗ σ+

2 j σ z
2 j−1 ⊗ σ z

2 j

)](
1
0

)
. (E3)

We can identify σ+
2 j−1 ⊗ 12 j with c†

j,↑, σ z
2 j−1 ⊗ σ+

2 j with c†
j,↓,

and Fj = σ z
2 j−1 ⊗ σ z

2 j with the parity operator to account for
anticommutation of different sites. In fact, we can always
write the MPO in this spinful fermion basis, regardless of the
number of fermion species, i.e.,

d†
kσ

= (0 1)

[
L∏

j=1

(
I 0

Ãkσ, jc†
σ F

)](
1
0

)
. (E4)

This facilitates working with U(1) or SU(N ) spin symmetry as
each tensor index can be associated with a specific quantum
number (see Fig. 19). With U(1) spin symmetry, one can
fuse the virtual indices at boundaries of each pair of MPOs
to be Sz = 0 (see Fig. 20), the resulting MPS |�〉 also has
Sz = 0. In the same way, one can easily impose SU(2) spin
symmetry to target spin-singlet states, provided an efficient
tensor network implementation to handle Clebsch-Gordan
coefficients [76,98–100]. We use QSpace for this purpose
[76,77].

In Figs. 21(b) and 21(c), we plot the ESs obtained from
the parton construction on a 4 × 12 cylinder. This demon-
strates the efficacy of our parton approach, as we are able
to prepare trial states in distinct topological sectors for
iDMRG using a relatively small size cylinder. Additionally,

(0)

(0)

(1/2)

(-1/2)

(0)(0)

FIG. 20. Graphical representation of fusing edge virtual indices
of two MPOs, d†

k↑ and d†
k↓.

imposing SU(2) symmetry constraint leads to an intriguing
consequence: if the state is in the topologically nontrivial
sector, there are multiple degenerate branches in the ES [see
Fig. 21(c)]. This has also been observed in the SU(2) iPEPS
simulations previously [44,49,83], and was attributed to the

FIG. 21. (a) Illustration of the parton Hamiltonian of the SU(2)
CSL. The phase of nearest neighbor hopping is 0 (π ) along the solid
(dashed) edges. The phase of next-nearest-neighbor hopping is π/2
(−π/2) along the green (red) arrows. [(b) and (c)] The entanglement
spectra on a 4 × 12 cylinder for the parton wave function.
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so-called “dressed mirror symmetry” within the virtual de-
grees of freedom [83]. The parton approach offers a more
direct understanding—the degeneracy equals to the number
of parton states required to form a singlet superposition
state.

APPENDIX F: MODIFIED WZW SU(N)1 CHIRAL
TOWERS OF STATES

We list here, for N = 3 and 4, the predicted ToS cor-
responding to the SU(N) DMRG cylinders investigated and
discussed in the main text.

[1] G. Misguich and C. Lhuillier, Two-dimensional quantum anti-
ferromagnets, in Frustrated Spin Systems, edited by H. T. Diep
(World Scientific, Singapore, 2005), pp. 229–306.

[2] L. Savary and L. Balents, Quantum spin liquids: A review,
Rep. Prog. Phys. 80, 016502 (2016).

[3] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states,
Rev. Mod. Phys. 89, 025003 (2017).

[4] X. G. Wen, Topological orders in rigid states, Int. J. Mod.
Phys. B 04, 239 (1990).

[5] D. Poilblanc, N. Schuch, D. Pérez-García, and J. I. Cirac,
Topological and entanglement properties of resonating valence
bond wave functions, Phys. Rev. B 86, 014404 (2012).

[6] V. Kalmeyer and R. B. Laughlin, Equivalence of the
Resonating-Valence-Bond and Fractional Quantum Hall
States, Phys. Rev. Lett. 59, 2095 (1987).

[7] V. Kalmeyer and R. B. Laughlin, Theory of the spin liquid state
of the heisenberg antiferromagnet, Phys. Rev. B 39, 11879
(1989).

[8] R. B. Laughlin, Spin hamiltonian for which quantum hall
wavefunction is exact, Ann. Phys. 191, 163 (1989).

[9] X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and
superconductivity, Phys. Rev. B 39, 11413 (1989).

[10] R. B. Laughlin and Z. Zou, Properties of the chiral-spin-liquid
state, Phys. Rev. B 41, 664 (1990).

[11] X.-G. Wen, Quantum orders and symmetric spin liquids, Phys.
Rev. B 65, 165113 (2002).

[12] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-
Dimensional Magnetotransport in the Extreme Quantum
Limit, Phys. Rev. Lett. 48, 1559 (1982).

[13] B. I. Halperin, Statistics of Quasiparticles and the Hierarchy
of Fractional Quantized Hall States, Phys. Rev. Lett. 52, 1583
(1984).

[14] X. G. Wen, Gapless boundary excitations in the quantum Hall
states and in the chiral spin states, Phys. Rev. B 43, 11025
(1991).

[15] D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Spin
Hamiltonian for Which the Chiral Spin Liquid is the Exact
Ground State, Phys. Rev. Lett. 99, 097202 (2007).

[16] R. Thomale, E. Kapit, D. F. Schroeter, and M. Greiter, Parent
hamiltonian for the chiral spin liquid, Phys. Rev. B 80, 104406
(2009).

[17] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Laughlin Spin-
Liquid States on Lattices Obtained from Conformal Field
Theory, Phys. Rev. Lett. 108, 257206 (2012).

[18] M. Greiter, D. F. Schroeter, and R. Thomale, Parent Hamilto-
nian for the non-Abelian chiral spin liquid, Phys. Rev. B 89,
165125 (2014).

[19] B. Bauer, L. Cincio, B. P. Keller, M. Dolfi, G. Vidal, S. Trebst,
and A. W. W. Ludwig, Chiral spin liquid and emergent anyons
in a kagome lattice Mott insulator, Nat. Commun. 5, 5137
(2014).

[20] A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Local models of
fractional quantum Hall states in lattices and physical imple-
mentation, Nat. Commun. 4, 2864 (2013).

[21] A. Wietek and A. M. Läuchli, Chiral spin liquid and quantum
criticality in extended s = 1

2 Heisenberg models on the trian-
gular lattice, Phys. Rev. B 95, 035141 (2017).

[22] S.-S. Gong, W. Zhu, J.-X. Zhu, D. N. Sheng, and K.
Yang, Global phase diagram and quantum spin liquids in a
spin- 1

2 triangular antiferromagnet, Phys. Rev. B 96, 075116
(2017).

[23] A.Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[24] A. Kitaev, Anyons in an exactly solved model and beyond,
Ann. Phys. 321, 2 (2006).

[25] H. Yao and S. A. Kivelson, Exact Chiral Spin Liquid
with Non-Abelian Anyons, Phys. Rev. Lett. 99, 247203
(2007).

[26] M. Greiter and R. Thomale, Non-Abelian Statistics in a Quan-
tum Antiferromagnet, Phys. Rev. Lett. 102, 207203 (2009).

[27] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne,
J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Two-
orbital SU(N) magnetism with ultracold alkaline-earth atoms,
Nat. Phys. 6, 289 (2010).

[28] M. Hermele, V. Gurarie, and A. M. Rey, Mott Insulators of
Ultracold Fermionic Alkaline Earth Atoms: Underconstrained
Magnetism and Chiral Spin Liquid, Phys. Rev. Lett. 103,
135301 (2009).

[29] P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, and A. M.
Läuchli, Chiral Spin Liquids in Triangular-Lattice SU(N)
Fermionic Mott Insulators with Artificial Gauge Fields, Phys.
Rev. Lett. 117, 167202 (2016).

[30] G. Chen, K. R. A. Hazzard, A. M. Rey, and M. Hermele,
Synthetic-gauge-field stabilization of the chiral-spin-liquid
phase, Phys. Rev. A 93, 061601(R) (2016).

[31] Y.-C. He, D. N. Sheng, and Y. Chen, Chiral Spin Liquid in a
Frustrated Anisotropic Kagome Heisenberg Model, Phys. Rev.
Lett. 112, 137202 (2014).

[32] S.-S. Gong, W. Zhu, and D. N. Sheng, Emergent chiral spin
liquid: Fractional quantum Hall effect in a kagome Heisenberg
model, Sci. Rep. 4, 6317 (2014).

[33] A. Wietek, A. Sterdyniak, and A. M. Läuchli, Nature of chiral
spin liquids on the kagome lattice, Phys. Rev. B 92, 125122
(2015).

[34] C. Boos, C. J. Ganahl, M. Lajkó, P. Nataf, A. M. Läuchli,
K. Penc, K. P. Schmidt, and F. Mila, Time-reversal sym-
metry breaking abelian chiral spin liquid in mott phases of
three-component fermions on the triangular lattice, Phys. Rev.
Research 2, 023098 (2020).

[35] G. Pagano, M. Mancini, G. Cappellini et al., A one-
dimensional liquid of fermions with tunable spin, Nat. Phys.
10, 198 (2014).

235104-31



JI-YAO CHEN et al. PHYSICAL REVIEW B 104, 235104 (2021)

[36] Y.-H. Zhang, D. N. Sheng, and A. Vishwanath, An su(4) chiral
spin liquid and quantized dipole hall effect in moir bilayers,
arXiv:2103.09825 [cond-mat.str-el].

[37] F. Verstraete and J. I. Cirac, Renormalization algorithms for
Quantum-Many Body Systems in two and higher dimensions,
arXiv:cond-mat/0407066 [cond-mat.str-el].

[38] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z.
Huang, B. Normand, and T. Xiang, Gapless Spin-Liquid
Ground State in the s = 1/2 Kagome Antiferromagnet, Phys.
Rev. Lett. 118, 137202 (2017).

[39] H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima, Gapless
Kitaev Spin Liquid to Classical String Gas Through Tensor
Networks, Phys. Rev. Lett. 123, 087203 (2019).

[40] W.-Y. Liu, S.-S. Gong, Y.-B. Li, D. Poilblanc, W.-Q. Chen,
and Z.-C. Gu, Gapless quantum spin liquid and global phase
diagram of the spin-1/2 J1-J2 square antiferromagnetic Heisen-
berg model, arXiv:2009.01821 [cond-mat.str-el].

[41] N. Schuch, J. I. Cirac, and D. Pérez-García, PEPS as ground
states: Degeneracy and topology, Ann. Phys. 325, 2153 (2010).

[42] N. Schuch, D. Poilblanc, J. I. Cirac, and D. Pérez-García,
Resonating valence bond states in the PEPS formalism, Phys.
Rev. B 86, 115108(R) (2012).

[43] J.-Y. Chen and D. Poilblanc, Topological Z2 resonating-
valence-bond spin liquid on the square lattice, Phys. Rev. B
97, 161107(R) (2018).

[44] D. Poilblanc, J. I. Cirac, and N. Schuch, Chiral topological
spin liquids with projected entangled pair states, Phys. Rev. B
91, 224431 (2015).

[45] J.-Y. Chen, L. Vanderstraeten, S. Capponi, and D. Poilblanc,
Non-abelian chiral spin liquid in a quantum antiferromagnet
revealed by an iPEPS study, Phys. Rev. B 98, 184409 (2018).

[46] P. Francesco, P. Mathieu, and D. Sénéchal, Conformal Field
Theory (Springer-Verlag, New York, 1997).

[47] J.-Y. Chen, S. Capponi, A. Wietek, M. Mambrini, N. Schuch,
and D. Poilblanc, SU(3)1 Chiral Spin Liquid on the Square
Lattice: A View From Symmetric Projected Entangled Pair
States, Phys. Rev. Lett. 125, 017201 (2020).

[48] D. Poilblanc, Investigation of the chiral antiferromagnetic
Heisenberg model using projected entangled pair states, Phys.
Rev. B 96, 121118(R) (2017).

[49] D. Poilblanc, N. Schuch, and I. Affleck, SU(2)1 chiral edge
modes of a critical spin liquid, Phys. Rev. B 93, 174414
(2016).

[50] P. Nataf and F. Mila, Exact Diagonalization of Heisenberg
SU(n) Models, Phys. Rev. Lett. 113, 127204 (2014).

[51] K. Wan, P. Nataf, and F. Mila, Exact diagonalization of SU(N)
Heisenberg and Affleck-Kennedy-Lieb-Tasaki chains using
the full SU(N) symmetry, Phys. Rev. B 96, 115159 (2017).

[52] A. Alex, M. Kalus, A. Huckleberry, and J. von Delft, A nu-
merical algorithm for the explicit calculation of SU(N) and
SL(n,C)sl(n,c) ClebschGordan coefficients, J. Math. Phys.
52, 023507 (2011).

[53] R. Haghshenas, W.-W. Lan, S.-S. Gong, and D. N. Sheng,
Quantum phase diagram of spin-1 J1−J2 Heisenberg model
on the square lattice: An infinite projected entangled-pair state
and density matrix renormalization group study, Phys. Rev. B
97, 184436 (2018).

[54] J.-Y. Chen, S. Capponi, and D. Poilblanc, Discrete lattice
symmetry breaking in a two-dimensional frustrated spin-1
Heisenberg model, Phys. Rev. B 98, 045106 (2018).

[55] B. Estienne and B. A. Bernevig, Spin-singlet quantum hall
states and jack polynomials with a prescribed symmetry, Nucl.
Phys. B 857, 185 (2012).

[56] A. Sterdyniak, C. Repellin, B. A. Bernevig, and N. Regnault,
Series of abelian and non-abelian states in c > 1 fractional
chern insulators, Phys. Rev. B 87, 205137 (2013).

[57] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and
A. Vishwanath, Quasiparticle statistics and braiding from
ground-state entanglement, Phys. Rev. B 85, 235151
(2012).

[58] A. A. Abrikosov, Electron scattering on magnetic impurities
in metals and anomalous resistivity effects, Phys. Phys. Fiz. 2,
5 (1965).

[59] X. G. Wen, Non-Abelian Statistics in the Fractional Quantum
Hall States, Phys. Rev. Lett. 66, 802 (1991).

[60] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer, Berlin, 1998).

[61] H.-H. Tu, Y. Zhang, and X.-L. Qi, Momentum polarization: An
entanglement measure of topological spin and chiral central
charge, Phys. Rev. B 88, 195412 (2013).

[62] J.-W. Mei and X.-G. Wen, Modular matrices from universal
wave-function overlaps in Gutzwiller-projected parton wave
functions, Phys. Rev. B 91, 125123 (2015).

[63] Y.-H. Wu, L. Wang, and H.-H. Tu, Tensor Network Repre-
sentations of Parton Wave Functions, Phys. Rev. Lett. 124,
246401 (2020).

[64] H. Li and F. D. M. Haldane, Entanglement Spectrum as
a Generalization of Entanglement Entropy: Identification
of Topological Order in Non-Abelian Fractional Quan-
tum Hall Effect States, Phys. Rev. Lett. 101, 010504
(2008).

[65] H.-K. Jin, H.-H. Tu, and Y. Zhou, Density matrix renormal-
ization group boosted by gutzwiller projected wave functions,
Phys. Rev. B 104, L020409 (2021).

[66] W. Li, A. Weichselbaum, and J. von Delft, Identifying
symmetry-protected topological order by entanglement en-
tropy, Phys. Rev. B 88, 245121 (2013).

[67] L. Cincio and G. Vidal, Characterizing Topological Order by
Studying the Ground States on an Infinite Cylinder, Phys. Rev.
Lett. 110, 067208 (2013).

[68] S. Yan, D. A. Huse, and S. R. White, Spin-liquid ground state
of the s = 1/2 kagome heisenberg antiferromagnet, Science
332, 1173 (2011).

[69] M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Topological
Characterization of Fractional Quantum Hall Ground States
from Microscopic Hamiltonians, Phys. Rev. Lett. 110, 236801
(2013).

[70] S. N. Saadatmand and I. P. McCulloch, Symmetry frac-
tionalization in the topological phase of the spin- 1

2 J1−J2

triangular Heisenberg model, Phys. Rev. B 94, 121111(R)
(2016).

[71] S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Dirac Spin Liquid on
the Spin-1/2 Triangular Heisenberg Antiferromagnet, Phys.
Rev. Lett. 123, 207203 (2019).

[72] A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Chiral
Spin Liquid Phase of the Triangular Lattice Hubbard Model:
A Density Matrix Renormalization Group Study, Phys. Rev. X
10, 021042 (2020).

[73] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

235104-32



ABELIAN SU(N )1 CHIRAL SPIN LIQUIDS ON THE … PHYSICAL REVIEW B 104, 235104 (2021)

[74] I. P. McCulloch, Infinite size density matrix renormalization
group, revisited, arXiv:0804.2509 [cond-mat.str-el].

[75] This is similar to the AKLT state with periodic boundary
conditions, which has fourfold degeneracy in the entanglement
spectrum rather than the twofold degeneracy suggested by the
D = 2 MPS representation [66].

[76] A. Weichselbaum, Non-abelian symmetries in tensor net-
works: A quantum symmetry space approach, Ann. Phys. 327,
2972 (2012).

[77] A. Weichselbaum, X-symbols for non-abelian symmetries in
tensor networks, Phys. Rev. Research 2, 023385 (2020).

[78] M. Mambrini, R. Orús, and D. Poilblanc, Systematic construc-
tion of spin liquids on the square lattice from tensor networks
with SU(2) symmetry, Phys. Rev. B 94, 205124 (2016).

[79] T. Nishino and K. Okunishi, Corner transfer matrix renormal-
ization group method, J. Phys. Soc. Jpn. 65, 891 (1996).

[80] R. Orús and G. Vidal, Simulation of two-dimensional quantum
systems on an infinite lattice revisited: Corner transfer matrix
for tensor contraction, Phys. Rev. B 80, 094403 (2009).

[81] D. Poilblanc and M. Mambrini, Quantum critical phase with
infinite projected entangled paired states, Phys. Rev. B 96,
014414 (2017).

[82] J. I. Cirac, D. Poilblanc, N. Schuch, and F. Verstraete, En-
tanglement spectrum and boundary theories with projected
entangled-pair states, Phys. Rev. B 83, 245134 (2011).

[83] A. Hackenbroich, A. Sterdyniak, and N. Schuch, Interplay of
SU(2), point group, and translational symmetry for projected
entangled pair states: Application to a chiral spin liquid, Phys.
Rev. B 98, 085151 (2018).

[84] J. Dubail and N. Read, Tensor network trial states for chiral
topological phases in two dimensions and a no-go theorem in
any dimension, Phys. Rev. B 92, 205307 (2015).

[85] O. Gauthé, S. Capponi, M. Mambrini, and D. Poilblanc,
Quantum spin liquid phases in the bilinear-biquadratic two-
SU(4)-fermion hamiltonian on the square lattice, Phys. Rev. B
101, 205144 (2020).

[86] A. Weichselbaum, S. Capponi, P. Lecheminant, A. M. Tsvelik,
and A. M. Läuchli, Unified phase diagram of antiferromag-
netic su(n) spin ladders, Phys. Rev. B 98, 085104 (2018).

[87] B. I. Halperin, Theory of the quantized hall conductance, Helv.
Phys. Acta 56, 75 (1983).

[88] H.-H. Tu, A. E. B. Nielsen, and G. Sierra, Quantum spin mod-
els for the SU(n)1 Wess-Zumino-Witten model, Nucl. Phys. B
886, 328 (2014).

[89] R. Bondesan and T. Quella, Infinite matrix product states for
long-range SU(N) spin models, Nucl. Phys. B 886, 483 (2014).

[90] N. Regnault and B. A. Bernevig, Fractional Chern Insulator,
Phys. Rev. X 1, 021014 (2011).

[91] B. A. Bernevig and N. Regnault, Emergent many-body trans-
lational symmetries of Abelian and non-Abelian fractionally
filled topological insulators, Phys. Rev. B 85, 075128 (2012).

[92] H. Georgi, Lie Algebras in Particle Physics From Isospin
to Unified Theories (Westview Press, Paris, Perseus Books
Group, 1999).

[93] P. Goddard and D. Olive, Kac-Moody and Virasoro algebras
in relation to quantum physics, Int. J. Mod. Phys. A 1, 303
(1986).

[94] V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and
Wess-Zumino model in two dimensions, Nucl. Phys. B 247, 83
(1984).

[95] P. Ginsparg, Applied conformal field theory, in Fields,
Strings and Critical Phenomena, edited by E. Brézin and J.
Zinn-Justin, Les Houches Summer School (North-Holland,
Amsterdam, 1988).

[96] H.-K. Jin, H.-H. Tu, and Y. Zhou, Efficient tensor network rep-
resentation for Gutzwiller projected states of paired fermions,
Phys. Rev. B 101, 165135 (2020).

[97] G. Petrica, B.-X. Zheng, G. K.-L. Chan, and B. K. Clark, Fi-
nite and infinite matrix product states for gutzwiller projected
mean-field wave functions, Phys. Rev. B 103, 125161 (2021).

[98] S. Singh and G. Vidal, Tensor network states and algorithms
in the presence of a global su(2) symmetry, Phys. Rev. B 86,
195114 (2012).

[99] C. Hubig, Abelian and non-abelian symmetries in infinite pro-
jected entangled pair states, SciPost Phys. 5, 047 (2018).

[100] P. Schmoll, S. Singh, M. Rizzi, and R. Ors, A programming
guide for tensor networks with global SU(2) symmetry, Ann.
Phys. 419, 168232 (2020).

235104-33



U(1)-symmetric Gaussian fermionic projected entangled paired states and their
Gutzwiller projection

Jheng-Wei Li,1 Jan von Delft,1 and Hong-Hao Tu2

1Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for
Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany

2Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
(Dated: August 12, 2022)

We develop a formalism for constructing particle-number-conserving Gaussian fermionic projected
entangled pair states [U(1)-GfPEPS] and show that these states can describe ground states of band
insulators and gapless fermions with band touching points. When using them as variational Ansätze
for two Dirac fermion systems (π-flux model on the square lattice and [0, π]-flux model on the kagome
lattice), we find that the U(1)-GfPEPS, even with a relatively small bond dimension, can accurately
approximate the Dirac Fermi sea ground states. By applying Gutzwiller projectors on top of these
U(1)-GfPEPS, we obtain PEPS representation of U(1)-Dirac spin liquid states for spin-1/2 systems.
With state-of-the-art tensor network numerics, the critical exponent in the spin-spin correlation
function of the Gutzwiller-projected π-flux state is estimated to be η ≈ 1.7.

I. INTRODUCTION

The idea of the Gutzwiller wave function plays a crucial
role in the study of strongly correlated systems. Its origi-
nal formulation considers a Slater determinant wave func-
tion for electrons and supplements that with a Gutzwiller
operator accounting for electron correlations [1, 2]. Since
its invention, the scope of the Gutzwiller wave function
has been considerably broadened. For instance, An-
derson has proposed a Gutzwiller projected BCS state
for high-Tc cuprates [3]. In the modern context, the
Gutzwiller wave function evolves into the framework of a
systematic approach called “parton construction”, which
includes three main steps: (i) the constituent particles
(fermions, bosons, or spins) of an interacting system
are split into fermionic or bosonic “partons” with en-
larged Hilbert spaces; (ii) the fermionic or bosonic par-
tons are placed into certain non-interacting (quadratic)
mean-field Hamiltonians with fermionic or bosonic Gaus-
sian ground states; (iii) the Gutzwiller projection, tak-
ing the form of a local projector, is applied to Gaussian
ground states of partons to remove unphysical states in-
troduced by the parton construction. For paradigmatic
examples like the Haldane-Shastry model [4, 5] and the
Kitaev’s honeycomb model [6], Gutzwiller wave functions
are exact ground states and provide invaluable insight
into exotic states emerging from strong correlations.

From a numerical perspective, the variational Monte
Carlo method using Gutzwiller projected fermionic wave
functions has been one of the key methods for strongly
correlated systems [7–9]. Recently, several methods have
been developed for converting fermionic Gaussian states
into matrix product states (MPSs) [10–16]. In the MPS
representation, the Gutzwiller projection can be imple-
mented easily. This provides not just a new approach for
evaluating physical quantities in Gutzwiller wave func-
tions, but also physically motivated MPSs for initializing
density matrix renormalization group (DMRG) calcula-
tions [17–20]. Such a strategy has already seen success

in accelerating DMRG calculations and, for topologically
ordered phases, targeting degenerate ground states in dif-
ferent topological sectors [21–24].

For two-dimensional (2D) systems, too, it is highly
desirable to develop a method converting Gutzwiller
projected wave functions into projected entangled pair
states (PEPSs) [25]. Similar to the benefits for DMRG,
Gutzwiller wave functions can serve as good initial inputs
in PEPS-based variational methods [26–30]. For con-
crete Hamiltonians, the comparison of Gutzwiller wave
functions with brute-force PEPS numerical results would
also become possible. Furthermore, for 2D systems, the
PEPS representation of Gutzwiller wave functions has
two advantages over its MPS counterpart: (i) infinite-size
PEPS algorithms [31–35] work directly in the thermody-
namic limit, whereas the MPS approach using a cylin-
drical boundary condition suffers from finite-size effects;
(ii) for topological systems, the local tensor of PEPS usu-
ally exhibits a symmetry [36–39], which can be used to
characterize topological properties.

In this work, we develop a systematic approach to con-
vert Gutzwiller projected Fermi sea states into PEPSs.
This is based on a specification of the Gaussian fermionic
PEPS (GfPEPS) formalism [40] to a particle-number-
conserving setting (referred to as U(1)-GfPEPS here-
after). We show that the U(1)-GfPEPS can describe
band insulators whose filled valence bands and empty
conduction bands are separated by a gap, as well
as semimetals with band-touching points (e.g., Dirac
points) between valence and conduction bands. The case
of an open Fermi surface is beyond the scope of U(1)-
GfPEPS. Furthermore, we develop a variational algo-
rithm that starts with a particle-number-conserving free
fermionic Hamiltonian and approximates its ground state
with U(1)-GfPEPS. This complements previous works fo-
cusing on analytical constructions [41–46] and a related
numerical work which does not impose particle-number
conservation [47]. For two Dirac fermion systems (π-flux
model on the square lattice and [0, π]-flux model on the
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kagome lattice), the benchmark calculations with U(1)-
GfPEPS accurately reproduce the filled band dispersions
with a relatively small bond dimension. The applica-
tion of additional Gutzwiller projectors to these U(1)-
GfPEPS provides PEPS Ansätze for U(1)-Dirac spin liq-
uids. From these we calculate their spin-spin correlation
functions with state-of-the-art tensor network algorithms
and obtain a critical exponent η ≈ 1.7 for the Gutzwiller-
projected π-flux state.

The rest of this paper is organized as follows. In Sec. II
we describe our methods, including the construction of
U(1)-GfPEPS and its correlation matrix formalism, the
variational optimization algorithm for U(1)-GfPEPS, the
implementation of Gutzwiller projection, and the con-
traction method for computing physical quantities. In
Sec. III, we apply these methods to two benchmark ex-
amples, i.e., the π-flux model on the square lattice and
the [0, π]-flux model on the kagome lattice. The U(1)-
Dirac spin liquid states obtained after Gutzwiller projec-
tion are also studied. Sec. IV provides a summary and
gives some outlook. Appendix A includes technical de-
tails on particle-number-conserving fermionic Gaussian
states.

II. METHODS

A. U(1)-symmetric Gaussian fermionic projected
entangled-paired state

We use the square lattice to illustrate the construc-
tion of U(1)-GfPEPS; the extension to other lattices is
straightforward. Each site of the lattice hosts P phys-
ical fermionic modes, with creation operators c†r,µ (µ =
1, . . . , P ), as well as 4M virtual fermionic modes, with
creation operators c†r,ν,α (ν = l, r, d, u and α = 1, . . . ,M),
where l, r, d, u denote left, right, down, and up, respec-
tively.

(a) (b)

l
u

d
r

FIG. 1. (a) Schematic of a U(1)-GfPEPS projector |Tr⟩
together with the maximally entangled virtual bonds between
neighboring sites. (b) The resulting fermionic PEPS on a
square lattice by tiling the local tensors together.

To define a U(1)-GfPEPS (see Fig. 1), virtual fermions
between every two neighboring sites form M maximally

entangled bonds,

|I⟩ =
∏

r

M∏

α=1

(c†r,r,α + c†r+x,l,α)(c
†
r,u,α + c†r+y,d,α)|0⟩v, (1)

where, for an L × L lattice with periodic or antiperi-
odic boundary conditions, virtual fermions have a fixed
particle number Nv = 2ML2. |0⟩v is the vacuum of vir-
tual fermions. A fermionic PEPS is defined by |Ψ⟩ =
⟨I|T ⟩ [40, 44], where |T ⟩ is the PEPS projector

|T ⟩ =
∏

r

Tr|0⟩p,v. (2)

Here |0⟩p,v is the shared vacuum of physical and virtual
fermions, and Tr creates a local state of physical and vir-
tual fermions at site r. For illustrating the construction,
we shall focus on the translationally invariant case and
consider the same Tr for all sites [48]. The PEPS is hence
fully characterized by the local state Tr|0⟩p,v. Generally,
Tr is parametrized as

T =
∑

{mµ},{nν,α}
T

{mµ}
{nν,α}

×
[

P∏

µ=1

(c†µ)
mµ

]
 ∏

ν=l,r,d,u

M∏

α=1

(c†ν,α)
nν,α


 , (3)

where, here and hereafter, the site index r is dropped
when we refer to a local site. mµ (nν,α) is understood as
the collection of occupation numbers of physical (virtual)
modes. The conserved fermion parity of |Ψ⟩, known as
the “fermion superselection rule”, is imposed by requiring

that T
{mµ}
{nν,α} vanishes if

∑
µmµ +

∑
ν,α nν,α is odd (or

even).
For describing the ground state of fermionic systems

with a fixed particle number, the Z2 parity conservation
of the local tensor T should be promoted to the U(1)

particle-number conservation, by imposing that T
{mµ}
{nν,α}

is nonvanishing if and only if
∑

µmµ +
∑

ν,α nν,α = Q,
where Q is the total number of physical and virtual
fermions at a single site. We henceforth restrict our-
selves to free fermionic systems (i.e., ones described
by quadratic fermionic Hamiltonians), and require the
PEPS projector in Eq. (2) to be a fermionic Gaussian
state [40]. Thus, for PEPS describing free fermionic
ground states with a fixed particle number, the PEPS
projector reduces to a local Slater determinant created
by

T =

Q∏

q=1

d†q , (4)

where the orbitals d†q are linear combinations of physical

modes c†r,µ and virtual modes c†r,ν,α at the same site.

The explicit form of d†q will be specified in Sec. II B. For
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the U(1)-GfPEPS defined as |Ψ⟩ = ⟨I|T ⟩, the number
of physical fermions that remain after contracting the
virtual modes is Np = QL2 − Nv = (Q − 2M)L2. For
a system of spin-1/2 fermions, the half-filling condition
Np = L2 is achieved by choosing Q = 2M + 1.

B. Correlation matrix formulation

As for fermionic Gaussian states, the virtual bond state
|I⟩ and PEPS projector |T ⟩ are characterized by their
correlation matrices [49, 50]. This provides an efficient
computational tool for U(1)-GfPEPS. Below we provide
key results that are relevant for U(1)-GfPEPS and leave
further details to Appendix A.

Because of translational invariance, we switch to mo-

mentum space with c†r,µ = 1
L

∑
k c

†
k,µe

−ik·r for physi-

cal modes (µ replaced by ν, α for virtual modes). k =
(kx, ky) is a point in the first Brillouin zone (FBZ)
and its allowed values depend on boundary conditions.
For instance, antiperiodic or periodic boundary condi-
tions along the x-direction allow kx = 2π

L (nx + 1/2) or

kx = 2π
L nx, respectively, with nx = 0, 1, . . . , L− 1.

For the virtual bond state |I⟩, we write its density
operator as ρin = |I⟩ ⟨I| (input of U(1)-GfPEPS) and
define its correlation matrix as

[Cin(k)](ν,α),(ν′,α′) = 2trv(ρinc
†
k,ν,αck,ν′,α′)− δν,ν′δα,α′ ,

(5)
where the trace trv is with respect to virtual modes. Such
a correlation matrix is called a complex correlation ma-
trix in Appendix A. To calculate this correlation matrix,
one may express |I⟩ in momentum space as

|I⟩ =
∏

k

M∏

α=1

(c†k,r,α+c
†
k,l,αe

−ikx)(c†k,u,α+c
†
k,d,αe

−iky )|0⟩v.

(6)
The explicit form of the 4M × 4M correlation matrix
Cin(k) is then obtained as:

Cin(k) =
(

0 eikx1M

e−ikx1M 0

)
⊕
(

0 eiky1M

e−iky1M 0

)
,

(7)
where 1M is an M ×M identity matrix.

As the PEPS projector |T ⟩ assumes a translationally
invariant onsite form [see Eq. (2)], its correlation ma-
trix is block diagonal in both real and momentum space,
and all blocks are the same. Thus, it is sufficient to pa-
rameterize this block by considering a single site r (or
momentum k):

CT =

(
A B
B† D

)
. (8)

The submatrices encode two-point correlators between
two physical modes (P ×P matrix A), two virtual modes
(4M × 4M matrix D), and one physical and one virtual

mode (P × 4M matrix B):

Aµ,µ′ = 2trp,v(ρTc
†
r,µcr,µ′)− δµ,µ′ ,

D(ν,α),(ν′,α′) = 2trp,v(ρTc
†
r,ν,αcr,ν′,α′)− δν,ν′δα,α′ ,

Bµ,(ν′,α′) = 2trp,v(ρTc
†
r,µcr,ν′,α′), (9)

where ρT is the Gaussian density operator for |T ⟩ and
trp,v is with respect to both physical and virtual modes.
It is transparent that Eq. (9) has the same form in mo-
mentum space (i.e., r replaced by k). Further important
information utilizing the results in Appendix A is as fol-
lows: As |T ⟩ is a pure state, CT is Hermitian and can be
diagonalized as

U†CTU =

(
1Q 0
0 −1P+4M−Q

)
, (10)

where the identity block 1Q corresponds to occupied
single-particle orbitals d†q [see Eq. (4)]. Their explicit
form is given by

d†q =

P∑

µ=1

U†
q,µc

†
µ +

∑

ν=l,r,d,u

M∑

α=1

U†
q,(ν,α)c

†
ν,α (11)

with q = 1, . . . , Q.
For the U(1)-GfPEPS |Ψ⟩ = ⟨I|T ⟩, its Gaussian den-

sity operator ρout is obtained from ρout ∝ trv(ρTρin) as
the output. The correlation matrix of ρout is block diag-
onal in momentum space and can be defined as

[Cout(k)]µ,µ′ = 2trp(ρoutc
†
k,µck,µ′)− δµ,µ′ . (12)

It is related to Cin(k) and CT via

Cout(k) = A−B[D + Cin(k)]−1B†, (13)

as shown in Appendix A. This expression is the main
formal result of this paper.

Before moving on to numerical optimization, we com-
ment on which systems the U(1)-GfPEPS Ansatz is suit-
able for. Eq. (6) shows that each k point in the FBZ
accommodates 2M virtual modes. These virtual modes
should be contracted with virtual modes in the U(1)-
GfPEPS projector |T ⟩, where the latter has Q phys-
ical and virtual modes at each k point. Thus, after
contracting the virtual modes, the U(1)-GfPEPS has
Q − 2M physical modes for each k point. This means
that, for U(1)-GfPEPS, the number of occupied physical
modes must be the same at each k point. While gapped
band insulators and gapless semimetals (e.g., those with
Dirac points) fulfill this requirement, the possibility of
describing a Fermi surface is ruled out. Although gap-
less fermions with a Fermi surface are known to violate
the entanglement area law [51, 52] and cannot be de-
scribed by PEPS with a fixed bond dimension in the ther-
modynamic limit, our explicit construction nevertheless
puts a stronger constraint on U(1)-GfPEPS: If transla-
tional symmetry is preserved, U(1)-GfPEPS cannot have
a Fermi surface even on finite-size systems.
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C. Optimization

Consider a quadratic Hamiltonian of fermions

H =
∑

k

P∑

µ,µ′=1

c†k,µ[H(k)]µ,µ′ck,µ′ , (14)

where H(k) is the single-particle Hamiltonian matrix.
We use the U(1)-GfPEPS as a variational ansatz to ap-
proximate its ground state. We note that the U(1)-
GfPEPS has Q− 2M occupied physical modes at each k
point, so it will approximate the Fermi sea ground state
of Eq. (14) with Q− 2M occupied bands, implying a fill-
ing factor (Q − 2M)/P . The variational energy of the
U(1)-GfPEPS with correlation matrix Cout [see Eq. (12)]
is given by

E =
1

2

∑

k

Tr[(Cout(k) + 1P )H(k)T ], (15)

where Tr is the usual matrix trace. The variational space
is the correlation matrix CT for the U(1)-GfPEPS pro-
jector (8), which relates to Cout(k) via Eq. (13) [Cin(k) is
fixed; see Eq. (7)].

For the energy minimization, we observe that the uni-
tary matrix U in Eq. (10) can be parameterized as
U = (W,W⊥), with W corresponding to the occupied
modes and W⊥, the orthogonal complement of W , to the
unoccupied ones. By that, we can express CT in terms of
W ,

CT =WW † −W⊥W
†
⊥ = 2WW † − 1P+4M . (16)

Combining Eqs. (8), (13) and (15), our task boils down
to numerically optimize W to minimize the ground-state
energy in Eq. (15) under the isometry constraintW †W =
1Q.

We obtain the optimal W by gradient based optimiza-
tion schemes developed in Refs. [53–57]. First, we com-
pute the numerical gradient g∗ = ∂E

∂W , which can be
evaluated by finite difference or auto-differentiation. The
gradients with respect to the unoccupied modes are al-
ways zero as they do not participate in the energetics.

Second, we project g onto the tangent space of U =
(W,W⊥), which yields

G = (g −Wg†W,−Wg†W⊥). (17)

Note that the equation defining tangent vectors ∆ of U
can be obtained by differentiating UU† = 1, which gives
∆U† + U∆† = 0 (i.e., ∆U† is skew-symmetric), and we
can verify that G indeed satisfies such a constraint.

Next, we minimize the energy along the geodesic de-
fined by G, i.e., E(α), with W (α) = e−αQGW , where

QG = GU† = gW † −Wg†. (18)

The isometryW is then updated according to the optimal
value of α via the Wolfe line search [58]. This procedure

is repeated until the norm of the gradient is sufficiently
small. To accelerate the convergence of such gradient
descent minimization, one can modify the line search di-
rection by combining the current gradient with the pre-
vious ones; commonly used methods include the non-
linear conjugate gradient [53, 55], the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno [57], and the direct
inversion in the iterative subspace [59]. To reduce the
numerical noise, one can anti-symmetrize QG manually
at the end, after adding up the gradients. All methods
improve the convergence rate comparing to gradient de-
scent. In this work, we adopt the nonlinear conjugate
gradient algorithm, and to reduce the numerical noise,
we manually anti-symmetrizeQG at the end, after adding
up the gradients.
Once the optimal CT and Cout have been obtained,

it is also possible to compare the exact band disper-
sions obtained by diagonalizingH(k) with the variational
ones obtained from U(1)-GfPEPS. One can diagonalize
Cout(k) to obtain

V (k)†Cout(k)V (k) =

(
1Q−2M 0

0 −1P−Q+2M

)
. (19)

Then, the occupied physical orbitals are given by f†k,q =∑P
µ=1 V (k)†q,µc

†
k,µ with q = 1, . . . , Q − 2M . The single-

particle HamiltonianH(k) is then projected into this one-
particle-occupied subspace by defining

[H(k)]q,q′ = [V (k)†H(k)V (k)]q,q′ (20)

with q, q′ = 1, . . . , Q− 2M . Its eigenvalues give the vari-
ational dispersions for the filled bands.

D. Gutzwiller projection and tensor network
contraction

The Gutzwiller projection is implemented by a prod-
uct of local operators. For simplicity, we illustrate
its implementation for spin-1/2 fermions at each site
(P = 2). The full Gutzwiller projection is defined by
PG =

∏
r(nr,↑−nr,↓)2 with nr,µ = c†r,µcr,µ (µ =↑, ↓). PG

deletes empty and doubly occupied states and keeps two
singly occupied states |µ⟩ = c†µ|0⟩ that are identified as
spin-1/2 degrees of freedom.
Once the U(1)-GfPEPS projector

∏
r Tr|0⟩p,v is ob-

tained, the Gutzwiller projection results in a (fermionic)
PEPS with projector

∏
r(nr,↑ − nr,↓)2Tr|0⟩p,v, and the

virtual bond state |I⟩ is unchanged. Utilizing this idea, it
becomes possible to convert a Gutzwiller-projected Fermi
sea state into PEPS, where the unprojected Fermi sea is
approximated by optimizing U(1)-GfPEPS with respect
to some quadratic Hamiltonians of fermions.
The remaining task is to derive the explicit tensor

form of the U(1)-GfPEPS projector. If we write the
occupied orbitals in Eq. (11) in a more compact form

d†q =
∑P+4M

ζ=1 U∗
q,ζc

†
ζ with ζ enumerating all physical
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and virtual modes, the U(1)-GfPEPS local projector in
Eq. (4) can be expressed in a Slater determinant form

T =
∑

ζ1<···<ζQ

det(U†
(1,...,Q),(ζ1,...,ζQ))c

†
ζ1
· · · c†ζQ , (21)

where local tensor coefficients [see Eq. (3)] can be read
out from the determinants. Gutzwiller projection simply
removes some configurations in Eq. (21). Other local
operators can be applied in a similar way.

(a)

p l r d u

p

l
u

d

r

(b)

FIG. 2. Schematics of (a) converting the MPS form of Tr to
a PEPS local tensor and (b) contracting Tr with entangled
bond states (in oval shapes) to obtain a PEPS represented by
a single local tensor.

Alternatively, one can also construct the U(1)-GfPEPS
projector via the MPO–MPS approach [11]. This is most
convenient when working with tensor network libraries
supporting U(1) or non-Abelian symmetries. For the lo-

cal projector T |0⟩p,v =
∏Q

q=1 d
†
q|0⟩p,v, the vacuum |0⟩p,v

is treated as an MPS with bond dimension D = 1. Each
occupied orbital d†q is then represented as an MPO with
bond dimension D = 2 (see Refs. [11, 22]). After apply-
ing all Q MPOs for occupied orbitals, T |0⟩p,v is repre-
sented as an MPS with bond dimension D = 2Q. The
local tensor in Eq. (3) is obtained by contracting all vir-
tual indices of this MPS [see Fig. 2(a)]. The advantage
of the MPO–MPS approach is that the tensor entries of
T |0⟩p,v as well as the corresponding symmetry structure,
including the quantum numbers of the symmetric tensors
and the corresponding Clebsch–Gordan coefficients, can
be automatically generated.

After the Gutzwiller projection, it is practical to con-
tract the virtual bonds in Eq. (1) into the PEPS local ten-
sors [see Fig. 2(b)]. As the optimization of U(1)-GfPEPS
is very efficient and the system size that can be reached
is quite large, we can tile up the resulting Gutzwiller-
projected U(1)-GfPEPS tensor to approximate the state
on an infinite lattice. Such infinite PEPS involves a
single tensor at each site and is ready for computing
physical quantities with fermionic tensor network con-
traction algorithms [60]. For this work, we adopt the
corner transfer matrix renormalization group (CTMRG)
method [31, 33] to perform tensor network contractions.
To achieve higher accuracy and reduce computational
cost in CTMRG calculations, we impose both the U(1)
particle-number and the SU(2) spin symmetry provided
by the QSpace libary [61, 62].

III. RESULTS

A. Dirac fermion models on square and kagome
lattices

As benchmark examples, we use U(1)-GfPEPS to ap-
proximate the Fermi sea ground states of two spinless
fermion models with a Dirac spectrum: the π-flux model
on the square lattice [63] and the [0, π]-flux model on
the kagome lattice [64, 65]. Both models have nearest-
neighbor hoppings with the Hamiltonian

H =
∑

⟨r,r′⟩
tr,r′c

†
rcr′ , (22)

where the square-lattice model has π-flux within each
plaquette, and the kagome model has zero flux through
each triangle and π-flux through each hexagon. The hop-
pings realizing these flux choices are depicted in Figs. 3(a)
and (b).

(b)

π π

ππ
ππ

π

π

π kx

ky(a) (c)

π

π
Γ X

M

k1

k2

FIG. 3. Schematics of (a) the π-flux model on the square
lattice and (b) the [0, π]-flux model on the kagome lattice.
The solid (red dashed) lines are the bonds with hopping t =
1 (t = −1). (c) The first Brillouin zone (in green) of the
effective square lattices for (a) and (b) with Γ = (0, 0), X =
(π, 0) and M = (π, π). The black dots denote two Dirac
nodes at (π,±π/2) for the π-flux model, and the black stars
at (π/2,−3π/2) and (π/2, π/2) for the [0, π]-flux model along
k1 and k2 directions, respectively.

The π-flux square-lattice ([0, π]-flux kagome) model
has a two-site (six-site) unit cell. We group all sites
in the same unit cell together and treat them as a sin-
gle site in an effective square lattice. This allows us to
use a translationally invariant U(1)-GfPEPS ansatz with
P = 2 (P = 6) for the π-flux square-lattice ([0, π]-flux
kagome) model. At half filling, both models have two
Dirac nodes in the FBZ, as shown in Fig. 3(c). For the
numerical optimization, the effective square lattice has
size L × L and the boundary condition (periodic or an-
tiperiodic) is adjusted such that exact zero-energy modes
at the Dirac nodes are avoided to ensure a unique ground
state. The optimal U(1)-GfPEPS is determined numeri-
cally for each fixed number of virtual mode M , when the
averaged norm of its energy gradient with respect to the
Hamiltonian in Eq. (22) is smaller than 10−6.
For the π-flux square-lattice model, we observe that

the relative error in the ground-state energy density δE
decreases exponentially when increasing the number of
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1 2 3 4
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-0.4
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0

FIG. 4. Results of optimized U(1)-GfPEPS for the π-flux
state on the square lattice. (a) Relative error in the energy
density of U(1)-GfPEPS versus the number of virtual modes,
M . (b) Plots of the exact band structure (solid lines) and the
variationally obtained occupied band at half filling (dashed
lines).

virtual modes M [see Fig. 4(a)]. Furthermore, the finite-
size effect in the energy density error appears to be small.
As shown in Fig. 4(b), the U(1)-GfPEPS with M = 2
(bond dimension D = 4), which is variationally opti-
mized on a 80×80 lattice, reproduces the band dispersion
in the thermodynamic limit very well.

For the [0, π]-flux kagome model, the relative error of
the ground-state energy density δE in Fig. 5(a) follows
the same trend as of the π-flux square-lattice model. At
half filling, the low-energy physics is dictated by two
Dirac nodes [Fig. 5(b)]. The band dispersions along k1
and k2 directions (cutting two Dirac nodes) are plotted
in Figs. 5(b) and (c). With that, we examine the re-
sults due to the U(1)-GfPEPS approximation at small
M . We again find a good agreement between the varia-
tional results with M = 2 and the exact solution in the
thermodynamic limit.

1 2 3 4
10-4

10-2

100

8
24
40

FIG. 5. Results of optimized U(1)-GfPEPS for the [0, π]-flux
model on the kagome lattice. (a) Relative error in the energy
density of U(1)-GfPEPS versus the number of virtual modes,
M . (b), (c) Plots of the exact band structure (solid lines)
and the variationally obtained lower occupied bands (dashed
lines), as functions of k1 and k2.

B. U(1)-Dirac spin liquids on square and kagome
lattices

The optimized U(1)-GfPEPS for Dirac Fermi sea states
in Sec. III A are then used to build PEPS represent-
ing U(1)-Dirac spin liquids. To this end, we attach a
spin index σ =↑, ↓ to the physical modes in Eq. (22)
and interpret them as fermionic partons for a spin-1/2
system. The spin-1/2 operators are written as S(r) =
1
2

∑
σσ′ c†rστσσ′crσ′ , where τ are Pauli matrices. The

single-occupancy constraint
∑

σ c
†
rσcrσ = 1 ensures the

physical spin-1/2 Hilbert space and is imposed by the
full Gutzwiller projection.

Starting from a U(1)-GfPEPS |Ψ⟩ for spinless
fermions, we just need two copies of it (with different
spins) and apply the Gutzwiller projection to obtain a
PEPS for spin-1/2 system, i.e., |Φ⟩ = PG |Ψ↑⟩⊗|Ψ↓⟩. For
|Ψ⟩ with virtual bonds and projector defined in Eqs. (1)
and (4), |Ψ↑⟩ ⊗ |Ψ↓⟩ is obtained by attaching a spin
index σ to both virtual and physical modes, e.g., the

projector with T =
∏Q

q=1

∏
σ=↑,↓ d

†
q,σ (similar for the

virtual bonds). If |Ψ⟩ has bond dimension D = 2M ,
the Gutzwiller-projected PEPS |Φ⟩ has bond dimension
D = 4M . The method for determining the local tensor
of |Φ⟩ is described in Sec. IID.

As the U(1)-GfPEPSs obtained in Sec. III A represent
Dirac Fermi sea states, it is possible to obtain U(1)-
Dirac spin liquids after the Gutzwiller projection [65, 66].
The field theory governing the large-distance behavior of
U(1)-Dirac spin liquids is quantum electrodynamics in
2+1 dimensions (QED3), with Nf -flavor Dirac fermions
coupled to a U(1) gauge field. The calculation of crit-
ical exponents in QED3 is, however, very challenging,
especially when the fermion flavor Nf is not large [67].
As our setups in Sec. III A have two Dirac nodes, the
Gutzwiller-projected U(1)-GfPEPSs should be relevant
to QED3 with Nf = 4. It is thus an interesting task to
compute their critical exponents with PEPS techniques
in the thermodynamic limit.

We focus in this work on the staggered spin-spin cor-
relation function C(r) = (−1)r ⟨S(0) · S(r)⟩, where two
spins, with distance r = |r|, are placed on the same row
of the effective square lattice. Due to the large compu-
tational cost, we have only performed calculations using
Gutzwiller-projected U(1)-GfPEPSs with D = 4 and 16
(M = 1 and 2). For a given D, we compute the environ-
ment of PEPS via CTMRG method with a fixed number
of symmetry multiplets χ∗, which roughly corresponds
to a typical bond dimension of χ = 2χ∗ if symmetries
are not used. The CTMRG environment constitutes the
bulk part of the infinite lattice, and its accuracy can be
examined by varying χ∗.

For the PEPS representing Gutzwiller projected π-flux
state, the results are plotted in Figs. 6(a) and (b). For
D = 4, C(r) has a fast exponential decay, which is al-
most unchanged when varying χ∗. However, such expo-
nential decay gets slowed down as we increase the bond
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FIG. 6. Staggered spin correlations for Gutzwiller-projected
U(1)-GfPEPS from the π-flux state on the square lattice.
Semilogarithmic plots for (a) D = 4 and (b) D = 16 with dif-
ferent environmental bond dimensions χ∗. (c) Log-log plots
with χ∗ = 400, and the blue solid line shows a powerlaw de-
cay with an exponent η = 1.7.

dimension to D = 16. We also observe an increase of the
correlation length ξR at large distance (C(r) ∼ e−r/ξR)
by increasing χ∗. Overall, our results suggest that the
spin gap imposed by the finite bond dimensions (D and
χ∗) can be further reduced. However, at this stage, we
cannot predict to which value of D one may achieve an
algebraic decay at large distance. Turning to the short
distance regime [Fig. 6(c)], we observe a buildup of a
powerlaw decay C(r) ∼ r−η with exponent η ≈ 1.7. This
is in rough agreement with previous Monte Carlo esti-
mates (η ≈ 1.6 [68] and η ≈ 2 [69]) on finite-size clusters,
but smaller than the extrapolation of the large-Nf result
η = 4 − 64/(3π2Nf) + O(1/N2

f ) [70] to Nf = 4, which
gives η ≈ 3.46.

For the kagome-lattice case, the calculation with the
Gutzwiller-projected U(1)-GfPEPS is very challenging,
since the physical index of each PEPS local tensor con-
tains six spin-1/2’s (physical dimension d = 32). This
makes it difficult to contract double layer tensors in
CTMRG. Therefore, for D = 16, we only report results
with small environmental bond dimensions χ∗ = 20 and
40. Nevertheless, in Fig. 7(a), one can still observe an in-
crease in the correlation length when going from D = 4
to 16. This entails a rather severe finite D effect, similar
to the square-lattice case. From the plot in log-log scale
[Fig. 7(b)], we see a quick deviation from the powerlaw
behavior. Thus, for the Gutzwiller projected [0, π]-flux
state, reliable conclusions cannot be made from these re-
sults. This issue, instead, should be further investigated
with even larger bond dimensions, which is beyond our
current computational capability.

10 20 30 40
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10-15
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100

1 2 4 8 16
10-8
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10-4

10-2

100

4
16

FIG. 7. Staggered spin correlations for Gutzwiller-projected
U(1)-GfPEPS from the [0, π]-flux state on the kagome lattice.
(a) Semilogarithmic plots forD = 4 andD = 16 with different
environmental bond dimension χ∗. (b) Log-log plots with the
largest possible χ∗. The blue solid line showing the powerlaw
decay with exponent η = 1.7 is a guide to the eye.

IV. SUMMARY AND OUTLOOK

To summarize, we have put forward a formalism
for constructing particle-number-conserving Gaussian
fermionic projected entangled pair states. These states
are suitable for describing the ground states of gapped
band insulators and gapless fermions with band touching
points, but incapable of describing gapless fermions with
a Fermi surface. We further develop a systematic method
using these states as variational Ansätze for approximat-
ing the Fermi sea ground states of free fermionic Hamil-
tonians. Benchmark calculations on the π-flux square-
lattice model and the [0, π]-flux kagome-lattice model
have shown excellent results. The implementation of ad-
ditional Gutzwiller projection on top of these variation-
ally obtained U(1)-GfPEPS provides PEPS representa-
tion of U(1)-Dirac spin liquid states for spin-1/2 systems.
Using the CTMRG method to calculate spin-spin corre-
lation functions in the thermodynamic limit, we have ob-
tained a critical exponent η ≈ 1.7 from the Gutzwiller-
projected U(1)-GfPEPS representing π-flux U(1)-Dirac
spin liquid state on the square lattice.
Computationally, the optimization of the U(1)-

GfPEPS using correlation matrix is efficient, as the num-
ber of parameters scales linearly with respect to the num-
ber of virtual modesM . The size of real-space PEPS ten-
sor, on the other hand, grows exponentially when increas-
ingM . This turns out to be the bottleneck for construct-
ing the Gutzwiller-projected U(1)-GfPEPS with larger
bond dimensions.
For future works, one interesting direction is to use

our method to test the quality of Gutzwiller projected
wave functions for challenging strongly correlated sys-
tems, such as the kagome Heisenberg antiferromagnet
and the t–J model. It is also a promising direction to
use them as initial Ansätze to improve the performance
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of PEPS variational algorithms.
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Appendix A: Particle-number-conserving fermionic
Gaussian states

In this Appendix, we provide further details on
particle-number-conserving fermionic Gaussian states.
The proof of Eq. (13) is also given.

To begin with, we briefly review the formalism of
fermionic Gaussian states [50]. Consider a system of n
fermionic modes with creation (annihilation) operators

c†j (cj), j = 1, . . . , n. Their linear combinations

γ2j−1 = c†j + cj , γ2j = (−i)(c†j − cj) (A1)

define 2n Majorana operators satisfying {γa, γb} = 2δab
(a, b = 1, . . . , 2n). The density operator ρ, for both pure
and mixed states, can be written as a polynomial in γa:

ρ =
1

2n

(
1+

i

2
γTGγ + · · ·

)
, (A2)

where γ = (γ1, γ2, . . . , γ2n)
T , 1 is the identity operator in

the 2n-dimensional Hilbert space, and the ellipsis stands
for terms with more than two (but even number of) Ma-
jorana operators. The real skew-symmetric matrix G en-
codes two-point correlators in ρ, i.e., Gab =

i
2 tr(ρ[γa, γb]).

This so-called correlation matrix G satisfies GTG ≤ 12n

with 12n being the 2n× 2n identity matrix, and GTG =
12n is achieved if and only if ρ describes a pure state.
An operational definition of fermionic Gaussian state is
through the Grassmann representation of ρ in Eq. (A2):
If one replaces each γa by its corresponding Grassmann
variable θa (and the identity operator I by 1), the Grass-
mann representation for a fermionic Gaussian state ρ,
denoted by ω(ρ, θ), takes the following Gaussian form:

ω(ρ, θ) =
1

2n
exp

(
i

2
θTGθ

)
, (A3)

where θ = (θ1, θ2, . . . , θ2n)
T . The expansion of the expo-

nential in Eq. (A3) gives all multipoint correlators in ρ,
which are just coefficients of the respective Grassmann
monomials and can be easily verified to be determined
by Wick’s theorem.
For our purpose, we would like to restrict ourselves to

fermionic Gaussian states with a fixed particle number.
That means, the density operator ρ in Eq. (A2), apart
from being Gaussian, should also commute with the total
fermion number operator

N =

n∑

j=1

c†jcj =
n

2
1− i

2
γTQγ (A4)

with Q = 1n⊗iσy. For [ρ,N ] = 0 to hold, the correlation
matrix G must take the following form:

G = G1 ⊗ 12 +G2 ⊗ iσy, (A5)

where the n × n matrix G1 (G2) is real and skew-
symmetric (symmetric). This structure can also be seen
by requiring that there are no pairing correlations in ρ,

i.e., tr(ρc†i c
†
j) = tr(ρcicj) = 0 ∀i, j. It is then more natu-

ral to use a n× n “complex” correlation matrix

Cij ≡ 2tr(ρc†i cj)− δij , (A6)

which relates to the “real” one in Eq. (A5) via C = −G2−
iG1. The complex correlation matrix C is Hermitian and
has eigenvalues λq ∈ [−1, 1] ∀q = 1, . . . , n. If all λq =
±1, ρ is a pure state and the complex correlation matrix
satisfies C−1 = C. The diagonalization of C with a unitary
matrix U via (U†CU)qq′ = λqδqq′ defines the eigenmodes
of ρ:

d†q =
n∑

j=1

U†
qjc

†
j . (A7)

This brings ρ into a simple form

ρ =

n∏

q=1

(
1 + λq

2
d†qdq +

1− λq
2

dqd
†
q

)
, (A8)

where d†qdq (dqd
†
q) is a projector onto an occupied

(empty) state of dq-mode. Thus, the eigenmodes d†q asso-
ciated with λq = 1 (−1) correspond to occupied (empty)
single-particle orbitals in ρ. For a pure state ρ, the num-
ber of eigenvalues with λq = 1 is equal to the total num-
ber of occupied fermions.
The Grassmann representation is a convenient tool for

fermionic Gaussian states [50]. To adjust this tool for
the particle-number-conserving case, we define n pairs of
“complex” Grassmann variables

ξ̄j =
1√
2
(θ2j−1 − iθ2j), ξj =

1√
2
(θ2j−1 + iθ2j) (A9)

with j = 1, . . . , n. After substituting them into Eq. (A3)
and using the relation between real and complex corre-
lation matrices [Eqs. (A5) and (A6)], we arrive at the
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following “complex” Grassmann representation of ρ:

ω(ρ, ξ̄, ξ) =
1

2n
exp(−ξ̄TCξ), (A10)

where ξ = (ξ1, ξ2, . . . , ξn)
T and ξ̄ is similarly defined.

For constructing GfPEPS, one needs to deal with both
physical and virtual fermionic modes. Let us consider n
physical and m virtual modes whose creation operators

are c†j (j = 1, . . . , n) and b†l (l = 1, . . . ,m), respectively.
The input is a Gaussian density operator ρin residing
solely in the virtual Hilbert space. The GfPEPS projec-
tor, formulated as another Gaussian density operator ρT,
lives in the composite Hilbert space of physical and vir-
tual modes. The Gaussian density operator of GfPEPS
is written as

ρout ∝ trv(ρTρin), (A11)

where the partial trace trv is with respect to the virtual
Hilbert space. It is shown in Ref. [71] that the correlation
matrix of ρout can be calculated by using the Grassmann
representation of trv(ρTρin). We can readily generalize
this approach to the particle-number-conserving setting
by converting “real” Grassmann variables to “complex”

ones [see Eq. (A9)] and obtain

trv(ρTρin)(ξ̄, ξ) = 2m
∫
Dη̄DηDµ̄Dµ eη̄

Tµ−µ̄T η

× ω(ρT, ξ̄, ξ, η̄, η)ω(ρin, µ̄, µ), (A12)

where ξ̄, ξ (η̄, η, µ̄, µ) are Grassmann variables for phys-
ical (virtual) modes and Dη̄Dη = dη̄1dη1 · · · dη̄mdηm
(similar for Dµ̄Dµ). By using the Grassmann represen-
tation of ρT and ρin, namely,

ω(ρT, ξ̄, ξ, η̄, η) =
1

2n+m
exp

[
−(ξ̄T η̄T )

(
A B
B† D

)(
ξ
η

)]
,

ω(ρin, µ̄, µ) =
1

2m
exp(−µ̄TCinµ),

and performing Gaussian integrations in Eq. (A12), we
obtain

trv(ρTρin)(ξ̄, ξ) =
1

2n+m
det(Cin) det(D + C−1

in )

× exp(−ξ̄TCoutξ), (A13)

where the correlation matrix of ρout reads

Cout = A−B(D + C−1
in )−1B†, (A14)

For U(1)-GfPEPS, ρin is a pure state and satisfies C−1
in =

Cin. This completes the proof of Eq. (13).
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5 Conclusion and outlook

This thesis demonstrates that while tensor network methods have been making
much progress over the past three decades, there is still room for new ideas and
methodological improvement in simulating correlated quantum many-body systems.
Here we close with a summary of what we have achieved and an outlook of future
research directions.

Matrix product states For MPS, we put forward a new approach to improve the
accuracy of one-site algorithms for both ground state search and real-time evolution.
The importance of this is that for an MPS with physical dimensions of d and virtual
bond dimensions of D, the commonly used two-site algorithms run in O(D3d2) time
with reliable accuracy, while one-site algorithms run in O(D3d) time with less control.
Nonetheless, the factor of d is crucial. To this end, we proposed a bond expansion
approach using tangent space methods to fix the accuracy problem. Now, for the
one-band Hubbard model with d = 4, a one-month calculation using the two-site
scheme can be done in one week by our modified one-site scheme that yields the
same accuracy.
Going beyond, we realize that the concept of dissecting the parameter space of

MPS via tangent space methods in a sense is very general. The conventional one-site
projector P1s that leads to the typical one-site algorithms confines the variational
space within the subspace V1s of the full Hilbert space. Extending the tangent space
construction, we can easily define the n-site projector Pns, which corresponds to an
enlarged MPS manifold Vns. We have so far devised a method to enrich V1s using a
small portion of V2s to improve the one-site algorithms. As V1s ⊆ V2s . . . ⊆ VL s is
always true and does not depend on the specifics of algorithms, we, therefore, foresee
that our idea will also be applicable for computing low energy excitations, spectral
functions and finite temperature density matrices in the future.

Projected entangled-pair states Following the technical advance on non-abelian
iPEPS by Benedikt Bruognolo, we focused on applying the existing iPEPS algorithms
to study the ground states of two-dimensional quantum systems.

We have worked on the two-dimensional t-J model, which is related to the Hubbard
model through the second order approximation in the large U/t limit. Close to
half-filling, we found a phase transition from the spin stripe order to the d-wave
superconducting order around hole doping δ ∼ 0.2. We have also studied the two-
dimensional Kitaeve-Γ model, a relevant spin model to the α-RuCl3 material. While
the Kitaeve-Γ model has been extensively studied, its magnetic properties are poorly
understood. We use iPEPS to simulate its quantum phase diagram, in which we found
evidence of an exotic magnetic ordering in line with the classical spin simulations.

Looking ahead, we would like to push forward our iPEPS research to simulate the
two-dimensional Hubbard model with next-nearest-neighbor hoppings or nearest-
neighbor repulsions [Rie89, dS89, TTR+93, WS99, ZC16, IOI18, JD19, PTIG19].
These two terms are prime candidates to introduce further frustrations that could
potentially stabilize the d-wave superconducting order at doping close to 1/8, relevant
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to the cuprate materials. Besides the ground state search problem, iPEPS simula-
tions for finite temperatures [CDC19, KREO19, CRCD21] and excitation spectra
[VMVH15, VHV19, PC20, PAC22] are also very much desirable. So far, several inter-
esting experimental observations at finite temperature on cuprate materials, such as
the pseudogap phase, the melting of charge-density-waves in La2−xBaxCuO4, and the
giant phonon anomalies in YBaxCuyO7−x, remain terra incognita for tensor network
simulations [RJRT19, Tra20]. We look forward to addressing these challenges in the
future.

Parton construction of tensor network states In this research direction, we
combine two pivotal methods, tensor network methods and parton construction, to
study quantum spin liquid in two dimensions.
First, we have used the parton construction of MPSs to study SU(N) chiral spin

liquids. We first generalized the parton fermionic model for SU(2) chiral spin liquids
to SU(N) chiral spin liquids. We then used the parton approach we developed
to construct a complete, orthonormal set of topological states as MPSs on narrow
cylinders to benchmark against the conformal field theory predictions. Lastly, we
numerically testified that the spin Hamiltonian we proposed can indeed stabilize
these MPSs as its ground states. Together with exact diagonalizations and iPEPS,
we hence put forward a new type of short-ranged Hamiltonian that supports SU(N)
chiral spin liquids from N = 2 to 4.

Second, we have developed a method to achieve the parton construction of iPEPSs.
To demonstrate its practical use, we focused on parton models that could potentially
give rise to U(1) Dirac spin liquids after the Gutzwiller projection. The two fermionic
parton models we have studied are the π-flux model on the square lattice and the
[0, π]-flux model on the kagome lattice. Using iPEPS, we show that first, we are able
to simulate the Dirac Fermi sea accurately using only small bond dimensions. And
upon applying the Gutzwiller projector, we observe an algebraic decay of spin-spin
correlations in the short-range that gives a critical exponent η ≈ 1.7.
We envision such parton construction of tensor network states will be useful for

studying correlated spin systems. An immediate application is to use these projected
parton states as initial inputs for ground-state search to accelerate the convergence of
tensor network simulations. Another potential research direction is how to represent
“gapless” parton mean-field states faithfully as tensor network states in two dimensions.
A gapless parton state with a finite Fermi surface violates the entropic area law
and cannot be simulated using MPS or PEPS. To overcome this, one could consider
other types of tensor network states, such as tree tensor networks or multi-scale
entanglement renormalization ansatz that are designed to handle gapless systems
[HSW+18, LGSF21]. We believe these ideas are also worth investigating.
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