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Zusammenfassung

ZUSAMMENFASSUNG

Die Umwandlung von Lichtenergie in chemische Energie durch Photosynthese stellt
einen der wichtigsten Prozesse auf unserem Planeten dar. Wechselnde
Lichtverhéltnisse fiihren zu einer ungleichen Beanspruchung der Photosysteme in
Pflanzen und nehmen Einfluss auf alle folgenden Prozesse in den Chloroplasten.
Standortgebundene Landpflanzen sind oftmals in der Lage, sich an diese
Veranderungen anzupassen. Dabei spielt die Proteinfamilie der Thioredoxine (TRX)
eine wichtige Rolle. Thioredoxine sind plastidare Oxidoreduktasen, die Energie in Form
von Elektronen zwischen den plastiddren Licht- und Kohlenstoffreaktionen vermitteln.
Oxidierte TRX werden iiber eine Kaskade, beginnend bei Photosystem I (PSI), tber
Ferredoxin (Fd) und letztlich von Ferredoxin-Thioredoxin-Reduktase (FTR) reduziert,
und daher als FTR System zusammengefasst. Daneben gibt es das Ferredoxin-NADPH-
abhingige System (FNR), dessen Vertreter das NAPDH-abhingige Thioredoxin C
(NTRC) darstellt, welches eine NADPH sensible Doméine und ein TRX vereint. Studien
deuten darauf hin, dass sich diese beiden Systeme wechselseitig beeinflussen und so
ihre Aktivitdt modulieren. Die Aktivitat dieser Redoxmodulatoren ist durch die Thiol-
Modifizierung von Cysteinen charakterisiert. Diese sehr schnell ablaufende Modulation
1im Sekunden- bis Minutenbereich ist mallgebend fir die Stabilitidt und Funktion von
Zielproteinen. Bekannte Aufgaben der TRX sind an erster Stelle die lichtabhéngige
Reduktion, und damit die Aktivierung von Calvin-Benson-Zyklus (CBC) Enzymen nach
langerer Dunkelheit, die Aufrechterhaltung der Redoxhomoostase und des
antioxidativen Systems, sowie der plastidaren Genexpression.

Da wenig tber die Rolle des FTR und FNR Systems in der Regulierung von
langerfristigen Antworten auf sich verandernde Lichtbedingungen bekannt ist, wurde
in vorliegender Arbeit nun mit Hochdurchsatzmethoden und dem Ansatz der reversen
Genetik untersucht, welchen Einfluss die Thioredoxine f1, m1, m2 und NTRC auf
Photosynthese, den zentralen Stoffwechsel, den CBC und auf das Proteom haben,
sobald der Pflanze unterschiedliche Lichtenergie und Belichtungszeiten zur Verfiigung
stehen. Hier konnte gezeigt werden, dass die Zellantwort, auf Ebene der Photosynthese
und des Stoffwechsels, auf kurzfristige Anderungen zwischen moderatem und
stdrkerem Licht im Bereich von Minuten bis Stunden eher wenig vom TRX/NTRC
System abhéangt. Bei schnelleren Wechseln zwischen Niedrig- und Starklicht im
Bereich von Minuten, ist die photosynthetische Anpassung in ntrc Mutanten, die aus

Kontrollbedingungen kamen, blockiert, wiahrend Wildtyppflanzen sich zunehmend
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tuber Tage an diese Bedingung akklimatisieren konnten. Daraus lasst sich eine wichtige
Rolle von NTRC in der Anpassung an rasch wechselndes, sogenanntes fluktuierendes
Licht, welches natiirlichen Bedingungen am nichsten kommt, ableiten. Bei weiterer,
langerfristiger Akklimatisierung an Starklicht, Niedriglicht und fluktuierendes Licht,
im Bereich von Tagen mit hoherer durchschnittlicher Lichtintensitat, zeigten sich
groBtenteils Uberlappungen zwischen Wildtyp und den TRX Mutanten, wobei die
meisten Anderungen im Starklicht sichtbar wurden. Im Wildtyp wurden hier der
Zentralstoffwechsel, der CBC und Proteine zur Stressantwort angekurbelt, wiahrend
Translationsprozesse heruntergefahren wurden. Die Stérung der NTRC Expression
beeintriachtige wie zuvor gesehen die Quanteneffizienz von Photosystem 11,
insbesondere in fluktuierendem Licht, aber auch in Starklicht. Durch den Vergleich
mit allen weiteren Bedingungen fiel auf, dass der ntrc Mutante jegliche dynamische
Anpassung und Stimulierung auf Ebene des Stoffwechsels und Proteoms, vor allem im
Starklicht, fehlte. Es scheint schliissig, dass NTRC fur die langfristige Umgestaltung
von zellularen Prozessen wichtig ist, die sich nicht nur auf den Chloroplasten
beschranken wund Teile des Translationsapparats steuern. Die Experimente
unterstreichen unterdies die bekannten Rollen von TRX f1 und NTRC in der
Regulierung des CBC unter Kontrollbedingungen und bei Ubergingen zwischen
Dunkelheit und Licht und haben dabei eine mégliche in vivo Rolle von den TRX m1 und
m2 im CBC und der Photosynthese unter Niedriglicht aufgedeckt.

Zusammengenommen deuten die Daten darauf hin, dass es — trotz des sehr kurzlebigen
Mechanismus von Redoxreaktionen — einen langfristigen Effekt gibt, der die Pflanze
dazu befidhigt, sich, besonders mit Hilfe von NTRC, auf wechselnde Lichtintensitaten

einzustellen, um Photosynthese und Wachstum zu optimieren.
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SUMMARY

The photosynthetic conversion of light energy into chemical energy represents one of
the most important processes on our planet. Changing light conditions lead to uneven
stress on the photosystems in plants and influence all subsequent processes in the
chloroplasts. Sessile land plants are able to adapt to these changes. The protein family
of thioredoxins (TRXs) plays an important role in these processes. Thioredoxins are
plastid oxidoreductases that mediate energy in the form of electrons between plastidial
light and carbon reactions. Oxidized TRXs are reduced on a cascade via photosystem I
(PSI), ferredoxin (Fd) and eventually by ferredoxin-thioredoxin reductase (FTR), and
therefore grouped together as the FTR system. In addition, there is the ferredoxin-
NADPH-dependent system (FNR), whose representative is NAPDH-dependent
thioredoxin C (NTRC), which combines an NADPH sensitive domain and a TRX.
Studies suggest that these two systems interact to modulate their activity. The activity
of these redox modulators is characterized by thiol modification of cysteines. This very
fast modulation in the seconds to minutes range is crucial for the stability and function
of target proteins. Known roles of TRX include, first and foremost, light-dependent
reduction, and thus activation of Calvin-Benson cycle (CBC) enzymes after prolonged
darkness, maintenance of redox homeostasis and the antioxidant system, and plastid
gene expression.

Since little is known about the role of the FTR and FNR systems in regulating longer-
term responses to changing light conditions, the present work has now used high-
throughput methods and the reverse genetics approach to investigate the influence of
the TRXs f1, m1, m2, and NTRC on photosynthesis, central metabolism, the CBC and
on the proteome once different light energy and exposure times are available to the
plant. Here it was shown that the cell response, at the level of photosynthesis and
metabolism, to short-term changes between moderate and higher light in the range of
minutes to hours depends rather little on the TRX/NTRC system. For more rapid
changes between low and high light on the order of minutes, photosynthetic adaptation
In nirc mutants originating from control conditions is blocked, while wild type plants
were increasingly able to acclimatize to this condition over days.

This suggests an important role for NTRC in adaptation to rapidly changing, so-called
fluctuating light, which is closest to natural conditions. Further, longer-term
acclimation to high light, low light, and fluctuating light, in the range of days with
higher average light intensity, showed mostly overlap between wild type and the TRX
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mutants, with most changes visible in high light. In the wild type, central metabolism,
CBC, and stress response proteins were boosted here, whereas translational processes
were down-regulated. Disruption of NTRC expression impaired the quantum efficiency
of photosystem II as seen previously, especially in fluctuating light, but also in high
light. By comparison with all other conditions, it was noticeable that the ntrc mutant
lacked any dynamic adaptation and stimulation at the level of metabolism and
proteome, especially in high light. It seems conclusive that NTRC is important for long-
term re-modeling of cellular processes, that are not restricted to the chloroplast and
control parts of the translational apparatus. Furthermore, the experiments highlight
the known roles of TRX f1 and NTRC in the regulation of the CBC under control
conditions and during transitions between darkness and light, and in the process, they
have uncovered a possible in vivo role for TRXs m1 and m2 in regulating the CBC and
photosynthesis under low light.

In summary, the presented findings suggest that, despite the very short-lived
mechanism of redox reactions, there is a long-term effect that enables the plant to adapt
to changing light intensities, especially with the help of NTRC, to optimize
photosynthesis and growth.
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Introduction

1 INTRODUCTION

1.1 Photosynthesis in higher land plants

The autotrophic lifestyle of a sessile plant requires the capability to adequately adapted
to and optimally utilize changing abiotic factors like light in order to grow, mature,
flourish and reproduce. Oxygenic photosynthesis is executed in chloroplasts to generate
chemical carriers of energy like ATP from light energy to eventually produce photo-
assimilates like amino acids and sugars to meet the standards of a stable metabolism.
Thus, the chloroplast plays a key role in various acclimation responses, acting on
cellular level, both as a sensor of environmental change and a target of acclimation

responses (Kleine et al., 2021).

111 Photosynthetic electron transport

Photosynthesis in plants involves many energy converting processes like nitrate- and
sulfate assimilation and is not limited to carbon fixation. Light quanta are captured by
thylakoid membrane bound light reactions centers of multi-protein complex
photosystem II (PSII) and green pigment chlorophyll, which then transfers electrons in
a consecutive excited state via a sophisticated serial transport system over photosystem
I (PSI) onto Ferredoxin (Fd) (Figure 1.1.1). On the stromal site, reduced Fd acts as
electron donor to assimilate sulfur and ammonium or to generate the reduction
equivalent NADPH from electron acceptor NADP*. Due to their maximal absorption at
680 nm and 700 nm, PSII and PSI are also called P680 and P700, respectively. Re-
oxidization of P680 back to ground state involves the water-splitting complex of PSII,
which produces oxygen and protons, latter ones contributing to the establishment of a
transmembrane proton gradient used for the production of the pivotal energy source
ATP. Light-harvesting complexes (LHCs) are substantially involved in energy
absorption and transfer and are associated with chlorophyll @ in the reaction centers of
the photosystems. The cytochrome bef-complex is an intermediary oxidoreductase
between PSII and PSI and further functions as a proton pump. Integral to this is the
mobile electron carrier Plastochinon (PQ); the sum of intra-membrane PQ is considered
as PQ-pool and reduced PQ (PQH32) is important for an acclimatory response to changes
in light quality (Puthiyaveetil, 2011). Apart from the above-mentioned linear electron
transport from water to NAPDH, there exists a (pseudo-)cyclic electron transport

around PSI, which re-transfers energy onto oxygen and thus only yields in ATP
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production. This cyclic electron transport is active, when the NADPH/NADP* ratio is
elevated (Kadereit et al., 2021).

Redox
regulation

Assimilation NTRC

TRX NADPH
stroma
/S
(‘% Ng H*
A ADP
H* \ + Pi 1\ ATP

I PS Il /-> PQ Cytbsf PSI synthase |

L Sg RS Ly

H-I-
H,0 2H*+ %0, - H*
lumen —

Figure 1.1.1. Overview of photosynthetic electron transport pathways in the
chloroplast.

Light captured at photosystem II (PSII) leads to water splitting and generation of electrons,
which are transferred over a cascade involving Plastoquinone (PQ), cytochrome bef and
Plastocyanin (PC) onto photosystem I (PSI), and protons, which are used for ATP synthesis.
Linear electron flow (LEF) involves energy transfer from PSI to stromal site Ferredoxin (Fd)
and further distribution to Ferredoxin-Thioredoxin-Reductase (FTR) and thioredoxin (Trx) or
Ferredoxin-NADP+-Reductase (FNR) and NADPH-dependent thioredoxin reductase C (NTRC),
which both act on multiple assimilatory and redox regulation processes. Cyclic electron flow
(CET, green arrow) around PSI shuttles energy back from Fd to cytochrome bsf and PQ.

1.1.2  Measurement of photosynthetic electron transfer

Chlorophyll a fluorescence measurements of dark-adapted leaves serve as physiological
indicator of photosynthetic performance and stress in plants and is qualitatively
correlated with changes in CO:z assimilation (Baker, 2008). The model, in which
photochemistry competes with the processes of fluorescence and heat loss for excitation
energy in the pigment antenna of PSII, is used to estimate PSII photochemistry from
fluorescence quenching, that results from both photochemical and non-photochemical
processes (Butler, 1978; Baker, 2008).

Non-photochemical quenching (NPQ) is a natural protective mechanism to dissipate
excess light energy as heat, but estimation of NPQ relaxation can also be used as a
measure for stress. A major contributor to this protection is the high energy state
quenching (qE), which responses to a change in thylakoid lumen pH (Holt et al., 2004).

Besides, plants can manage energy dissipation via state transition (qT) involving
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energy transfer from one photosystem to the other; both qE and T are acting on short
time scales. NPQ relaxation can also occur under longer-term periods, which is termed
photoinhibiton (qI) and mostly involves high light (HL) conditions and damage on the
reaction centers and LHCs of PSII (Maxwell & Johnson, 2000; Baker, 2008).

The term qL. comprises all “open” PSII reaction centers and is widely used to estimate
the oxidation state of PQ. PQ itself acts as an integrator of chloroplast redox states and
subsequent gene expression to adjust the stoichiometry of photosynthetic complexes in
response to changes in light quality (Dietzel & Pfannschmidt, 2008).

A pulse amplitude modulation (PAM) fluorometer is used to quantify chlorophyll a
fluorescence (Schreiber, 1986; Murchie & Lawson, 2013) and to estimate the above

mentioned parameters.

11.3 Carbon fixation in leaves

In the stroma, hexose is assimilated from ambient COz and water and later used for the
synthesis of starch and sucrose for energy storage. NAPDH and ATP from the light
reactions provide 4 electrons to reduce one single carbon molecule in the chloroplast
stroma. 6 mole CO2, 12 mole NAPDH and 18 mole ATP are consumed to release one
mole carbohydrate (Ce). This conversion of CO: to sugar is catalyzed by many enzymes
operating in series within a circle, which was named after its first discoverers “Calvin-
Benson-Bassham-Cycle” (CBC) (Bassham et al., 1954; Sharkey, 2019). The CBC is
divided in three parts: the fixation stage, the reduction stage and the regenerative
stage. Ribulose-1,5-bisphosphate (RuBP; Cs) is carboxylated by Ribulose-1,5-
bisphosphate carboxylase-oxygenase (RuBisCO) in the very first step. CO:z is
incorporated into RuBP, which is then converted via unstable intermediates into two
molecules 3-phosphoglycerate (3-PGA; Cs). Under low ambient CO2, RuBisCO catalyzes
the oxygenation of RuBP, yielding in 3-PGA and 2-phosphoglycolate (2-PG; C2),
therefore potentially reducing photosynthesis due to a depressed 3-PGA conversion.
However, 2-PG metabolism passes multiple cell compartments and can be ultimately
carboxylated and re-introduced into the CBC. In the next phase, 3-PGA is reduced to
dihydroxyacetone phosphate (Cs) and glyceraldehyde-3-phosphate (Cs), which are in
equilibrium. NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
is an important light-activated enzyme in this step. Other than hexose, triose-
phosphate (TP; Cs) is the main photo-assimilate, that can be exported — together with
3-PGA — from the chloroplast to the cytosol. Three full circles are needed for the net-
synthesis of one triose. Therefore, TP is the key for the subsequent synthesis of

carbohydrates and the regeneration of CO2 acceptor molecule RuBP, which comprises
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the final stage of the CBC. Here, ribulose-5-phosphate-1-kinase, fructose-1,6-
bisphosphate-1-phosphatase and  sedoheptulose-1,7-bisphosphate-1-phosphatase,
which are also light-activated via the Ferredoxin-Thioredoxin-system, are to mention

particularly (Schopfer & Brennicke, 2010; Kadereit et al., 2021).

1.1.4 Plastidial end-product synthesis

COgq-fixation and -reduction yield TP in the chloroplast. TP is exported to the cytosol,
where the main transport sugar sucrose is produced. Besides sucrose, starch constitutes
the biggest condensed and abundant form of oligosaccharides in the plant. In the
chloroplasts, daylight is used to generate transitory starch, which can be mobilized at
nighttime again and be converted into sucrose as a mobile compound to supply other
plant parts. Longer-term storage in non-photosynthetic tissues involves specialized
plastids called amyloplasts (Zeeman et al., 2010). When needed, transitory starch is
cleaved into maltose and can be re-introduced into chloroplast metabolism as glucose-
1-phosphate (G1P). Starch biosynthesis is coupled to the CBC via fructose-6-phosphate
(F6P), which gets converted into glucose-6-phosphate (G6P) and G1P and further to
ADP-Glucose (ADPG) under energy consumption. Starch synthases, branching
enzymes and debranching enzymes are important for the final production of the starch
granule (Streb & Zeeman, 2012). In this context, younger, developing tissues (sink) are
not able to produce enough assimilates for their metabolism and are dependent on the
supply and the import of assimilates from older, more developed leaf tissues (source)

(Schopfer & Brennicke, 2010; Kadereit et al., 2021).

1.2 The redox system in chloroplasts

In simplest terms, oxidation-reduction (redox) processes are chemical reactions, in
which electrons (e’) are transferred from one reactant to another, but they can also
involve combined hydrogen (proton) transfer. However, “reduction equivalents” usually
include e and/or hydrogen. In photosynthesis, carbon in its highest oxidation state
(CO2) gets reduced to sugar [CH20]n, which yields in energy release when consumed
and re-oxidized to CO:z (Schopfer & Brennicke, 2010). Therefore, redox reactions are
critical for the balance between the chloroplast light - and carbon reactions, being
interconnected by photo-reduced energy carriers (Fd, NADPH, TRX). Imbalances can
lead to harmful reactive oxygen species (ROS) at PSI (Asada, 1999; Apel & Hirt, 2004).
Hence, abiotic factors stimulating the light reactions are crucial determinants for

photosynthetic efficiency.
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1.2.1 Post-translational modification

Post-translational modifications (PTM) of cysteine residues play a prominent role in
the regulation of cell metabolism and function of chloroplast enzymes (Lindahl et al.,
2011; Michelet et al., 2013). Although cysteine residues occur less frequently, they are
highly susceptible to dynamic modification (Wiedemann et al., 2020). Inter- and
intramolecular disulfide bonds in proteins, that can undergo reversible redox
regulation, are crucial for function and structure. These modifications are facilitated by

enzymes like disulfide isomerases or thioredoxins.

1.2.2 Introduction to Thioredoxins and NTRC

The linear electron flow is addressed and depicted in Figure 1.1.1, which further
indicates energy fluxes downstream of Fd. Two well-studied (Michelet et al., 2013;
Geigenberger & Fernie, 2014) and interacting (Thormahlen et al., 2015; Ojeda et al.,
2017) regimes, the Ferredoxin-Thioredoxin-Reductase system (FTR) and Ferredoxin-
NADP+-Reductase system (FNR), are the energy acceptors and distributors for
subsequent redox regulatory processes in the chloroplast stroma, linking redox
regulation to light. Other than the FTR, the FNR relies on the creation of NADPH,
which is not only used for CO: fixation but also constitutes a reducing power for one of
the key redox regulators in the chloroplast, the NADPH-dependent thioredoxin
reductase C (NTRC; AT2G41680). NTRC is the plastid-localized isoform of the NTR
protein family (Serrato et al., 2004), is introduced as an alternative system defending
against oxidative damage, especially under low light conditions, via the oxidative
pentose phosphate way (Pérez-Ruiz et al., 2006) and exhibits both a reductase and
thioredoxin activity with redox-active cysteines (Bernal-Bayard et al., 2012). Reduced
NTRC can modify redox-sensitive cysteine residues in target proteins, thereby altering
their activity, even in the absence of light-driven electron flow. Aside from NTRC,
TRXf1 and m-type Thioredoxins (TRX), being part of the FTR system, are one of the
best-studied thiol-modifying enzymes (Michelet et al., 2013; Geigenberger et al., 2017)
(Figure 1.2.1). TRXs can be found in all kingdoms of life, first being identified in E.coli
as a hydrogen donor (Laurent et al., 1964; Lemaire et al., 2007), but they seem to be
particularly overrepresented in plants (Lindahl et al., 2011). In Arabidopsis they are
embedded in a family of small (approximately 12 kDa) oxidoreductases with a
conserved redox-active site with the sequence WC(G/P)PC (Bob B. Buchanan & Luan,
2005) and 10 plastidial isoforms (2 TRXf, 4 TRXm, 1 TRXx, 2 TRXy, 1 TRXz) (Michelet

et al., 2013). The investigation of redox regulation strongly implies the search for redox
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active targets; Montrichard et al. (2009) and Geigenberger & Fernie (2014) provide lists
of potential and confirmed targets of TRX and/or NTRC.

SOM, PR, TRGSHN  TrGeEEH)

.

W FTR,,©  TRX-S-S

Figure 1.2.1. The ferredoxin/thioredoxin system and mode of action of reversible
thiol-disulfide-based protein modification.

Fd, ferredoxin; FTR, ferredoxin thioredoxin reductase; PSI, photosystem I; ox, oxidized; red,
reduced; SHz, reduced thiol; S-S, oxidized disulfide (adapted from Michelet et al., 2013).

Target-S-S

1.2.3 Regulation of light reactions

Regarding light reactions harbored in the thylakoid membrane, an early detected,
direct redox-regulated factor is the CF:-ATP synthase (Mills et al., 1980; Schwarz et
al., 1997; Bob B. Buchanan, 2016; Carrillo et al., 2016). TRXm4 functions in down-
regulation of NDH complex during CEF (Courteille et al., 2013), TRXm1, TRXm2 and
TRXm4 function in biogenesis of PSII (Wang et al., 2013). Further, the demands of the
CBC on reducing equivalents might dictate electron flow at the level of cyt bsf complex
(Eberhard et al., 2008), underscoring the importance of coordinating light and carbon
reactions via redox mediation. Another study showed that slow NPQ relaxation is
responsible for impaired short-term CO: fixation under changing light conditions
(Kromdijjk & Long, 2016), involving redox-sensitive xanthophyll cycle enzymes (Jahns
et al., 2009; Hall et al., 2010; Naranjo et al., 2016). A stroma-thylakoid connection is
postulated where Serine/threonine-protein kinase STN7, required for photosynthetic
state transition (Bellafiore et al., 2005; Bonardi et al., 2005), is modulated via TRX
(Rintaméki et al., 2000; Puthiyaveetil, 2011; Puthiyaveetil et al., 2012; Rochaix, 2013;
Karamoko et al., 2013); evidence is supported by in vitro studies, also promoting a
trans-thylakoid energy transfer proceeding from TRXm, thereby regulating targets on
the lumen site (Motohashi & Hisabori, 2006, 2010; Hertle et al., 2013; Wunder, et al.,
2013; Shapiguzov et al., 2016); however, the exact mechanisms remain to be resolved

until now.

1.2.4 Regulation of stromal processes

The more prominent and well-investigated part of thiol-redox regulation relates to the
light-activation of the CBC (Collin et al., 2003; Marri et al., 2009; Thorméhlen et al.,
2013; Yoshida et al., 2015; Buchanan, 2016); under darkness, TRXs become oxidized
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and as a consequence the CBC turns inactive. The chloroplastic isoform of Fructose-1,6-
bisphosphatase (FBPase), compared to the cytosolic form, undergoes a light-dependent
activation upon disulfide reduction via TRXf (Buchanan et al., 1967; Buchanan et al.,
1971; Buchanan, 2016), which was shown to be highly specific (Collin et al., 2003;
Yoshida et al.,, 2015). Therefore, regulating FBPase is also important for starch
synthesis using F6P from the CBC. Additionally, TRXf is also a strong activator of ADP-
glucose pyrophosphorylase (AGPase) (Thorméhlen et al., 2013), a major hub of starch
biosynthesis (Neuhaus & Stitt, 1990; Geigenberger et al., 2005; Geigenberger & Fernie,
2014). Thioredoxin-regulated B-amylase and a-glucan, water dikinase (Mikkelsen et al.,
2005; Sparla et al., 2006) turned out to be of equal importance for plant fitness. Not
solely redox- but allosteric regulation by 3-PGA stimulates the activity too and is part
of a multilevel regulation regarding AGPase (Geigenberger, 2011). TRXm is the most
versatile and most abundant group of isoforms of plastidic TRXs and plays a conjoint
role with f-type TRX in activation of CBC enzymes as well as of NADP-dependent
malate-dehydrogenase (NADP-MDH) — the so called “malate valve” — that carries
reducing power from the chloroplast to other cell compartments (Collin et al., 2003;
Belin et al., 2015; Okegawa & Motohashi, 2015; Yoshida et al., 2015). Further, TRXs
and NTRC are responsible for chlorophyll synthesis (Ikegami et al., 2007; Richter et al.,
2013), leading to a pale phenotype in the ntrc mutant (Serrato et al., 2004; Pérez-Ruiz
et al., 2006). A broad spectrum of overlapping functions within the TRX system and
between TRX and NTRC could be observed, where NTRC is further attributed a
significant role in starch metabolism (Michalska et al.,, 2009) and the antioxidant
system by reducing 2-Cys peroxiredoxin, which acts on oxidative deactivation of

chloroplast enzymes in the dark (Pérez-Ruiz et al., 2006; Ojeda et al., 2018).
1.3 Dissecting environmental influence on plant physiology

1.3.1 Light as key factor for plant fitness

Photosynthesis and CO: fixation are limited by environmental factors (light,
temperature, water, etc.), that can turn into stress factors when their availability and
quality is suboptimal or absent. Sessile plants have to deal with and adapt to these
stressors to ensure growth and development. Strategies to cope with stress include
tolerance, repelling/avoidance or reverting; the investigation of plant responses and
acclimation strategies to changing environments is of special interest, because they
determine the cultivation boundaries of crop plants (Kadereit et al., 2021).

Environmental signals run down a cascade of perception and transduction to eventually

7
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result into a molecular response (Pfannschmidt et al., 2001). Therein, redox processes
controlled by TRXs or processes scavenging harmful ROS play a far-reaching role. In
terms of light as external factor, low light intensities do not exhaust the full capacity of
the photosynthetic apparatus to generate photo-assimilates (i.e. energy); excess light
quanta saturate photosynthesis quite swiftly, so a substantial surplus of non-useable
energy has to be quenched in order to prevent the inevitable formation of ROS, that
harbor the potential to disintegrate cellular structures like DNA or lipid bi-layers
(Kadereit et al., 2021). However, high excitation pressure can also be induced by lower
light intensities, when the dark reactions are severely impeded (Pfalz et al., 2012). An
apparent marker for light-dependent responses is the transformation of chlorophyll in
the leaves. A lot of components of the photosynthetic apparatus are encoded in both the
chloroplast and the nucleus; therefore it is almost certain that a concerted crosstalk
between compartments is occurring, thus enabling complex acclimation processes
(Walters, 2005). As mentioned earlier, the chloroplast redox state and the redox state
of PQ in particular have the potential to coordinate expression of photosynthetic genes
(Wagner et al., 2008; Brautigam et al., 2009) and act as a novel integrator of
environmental stimuli compared to cytosolic and nuclear phytochromes for instance
(Eberhard et al., 2008). A key strategy of responding to light on the long run is called
long-term response (LTR), acting on hours and days, and initially defined for changes
in light quality, describing the stoichiometric adjustments of photosystem subunits in
favor of the rate-limiting photosystem (Wagner et al., 2008). Compared to that, this
thesis is thought to complement the plethora of studies on environmental stimuli by
the factor light intensity, as suggested (Brautigam et al., 2009). Beyond that,
researchers are now becoming more and more aware of the fact that not only seasonal
or daily but also shorter events, on the scale of minutes or seconds, like rushing clouds
or mutually shading leaves in canopy levels, affect the light quality and quantity the
plants perceive. Consequently, plants need to possess molecular adaptive processes to
handle their fast-changing environments. In the course of this study, this natural
phenomenon was carried into the lab to extensively study plant physiology under
fluctuating light (FL) conditions, consisting of rapid alterations between higher and
lower light intensities, and to compare the output with conventional growth conditions

in constant light regimes.

1.3.2 Scope of -omics

Omics technologies are a broad emerging field aiming to study, identify and

characterize complex biological systems and processes or (groups of) small molecules as
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biomarkers for predicting or monitoring the current or future physiological state,
respectively (Wanichthanarak et al., 2015). These technologies simultaneously collect
and quantify large composites of molecules to describe an organism or respective tissue
in its entirety and thereby go beyond the analysis of single parts of the system (Glinski
& Weckwerth, 2006). This is particularly useful when designed as high-throughput
method to draw global metabolomic or proteomic profiles. These studies are often
exploratory fashioned and contrary, in the best case complementary, to classical
knowledge-based studies (Glinski & Weckwerth, 2006). In the following, the impact of
single and combined disciplines in the omics field, that are going to be used in this work,
will be introduced.

A functional metabolism is a central characteristic for the definition of life and is the
prime level of acclimation to a new steady state when facing stress conditions.
Metabolic state and plasticity, supported by PTM and enzyme activation, represents
the actual phenotype as a prompt response to the environment on the point, compared
to gene expression or the proteome; however, signals from gene expression are
amplified at the site of metabolites and feedback-regulated in the other direction
(Hollywood et al., 2006). Metabolomics is mostly used to study substance fluxes or
networks. Thereby, correlations and co-regulations among metabolites (and preferably
other variables) are desired to describe the system, that is more than the sum of linear
metabolic pathways (Glinski & Weckwerth, 2006). As outlined, it is hoped that
metabolic profiles can describe the current and immediate phenotypes adequately,
reveal re-adjustments in fluxes upon imbalances and therefore elucidate the prime
levels of acclimation.

The proteome defines the entire number of proteins in a single cell or organism at a
given state. Proteins come with a wide range of PTMs and other modifications
rendering the field of proteomics rather complex and profound, compared to other
disciplines. The widely used bottom-up proteomics, also called shotgun proteomics,
separates and identifies a huge number of peptides in a mixture of digested proteins in
a two-step procedure (Domon & Aebersold, 2010). However, it is useless without
aligning this output with downstream analytical tools to be translated back into biology
(Tyanova & Cox, 2018). A standard procedure of post-proteomic analysis includes data
cleansing and processing, brief exploration by correlation or PCA for instance, statistics
and finally functional analysis (Tyanova & Cox, 2018).

In conclusion, a combination of high-throughput omics approaches are expected to

explore environmental influences on plant physiology on a global level and to build



Introduction

predictive summaries of how plants adapt to environmental changes (Carrera et al.,

2018).
1.4 Background and objectives of this work

1.4.1 Background

The identification and characterization of factors (proteins) involved in photosynthesis
has come a long way in the past decades. Today the (redox-)regulatory interplay and
hierarchy between these factors gain of importance and the chloroplast as central hub
for acclimation processes moves more into scientific focus (Armbruster et al., 2011;
Michelet et al., 2013; Geigenberger & Fernie, 2014; Thorméhlen et al., 2015; Fliigge et
al., 2016; Rihle & Leister, 2016; Leister, 2019; Cejudo et al., 2019; Kleine et al., 2021).
In this work, a disruption of known genes (mutagenesis) was used to extensively
investigate the effects on the phenotype, photosynthesis, metabolome and proteome on
the model organism Arabidopsis thaliana (reverse genetics). A lot of information about
the in vivo characteristics of chloroplast thiol-redox regulators is still missing. Thus,
disruption of the genes TRXFI (Thorméhlen et al., 2013), NTRC (Pérez-Ruiz et al.,
2006) and TRXM1/TRXM?2 (Thorméhlen et al., 2017) via T-DNA insertions (O’Malley
& Ecker, 2010) should reveal the function of the corresponding proteins in WT plants
under certain environmental stresses in vivo. The role of TRXs in photosynthesis under
control conditions has been elucidated in the previous chapters, resulting in WT-like
growth phenotypes in redox-deficient mutants trxfI and trxmiIm?2 (Okegawa &
Motohashi, 2015; Yoshida et al., 2015; Thorméahlen et al., 2015, 2017) but leading to a
pale and dwarf phenotype in nirc (Serrato et al., 2004; Pérez-Ruiz et al., 2006).

1.4.2 Objectives

In this thesis, different light regimes, photoperiods and intensities were applied on
young and adult, but non-flowering, plants under controlled environments to further
elaborate the single (TRXf1; NTRC) or combined (TRXm1m2) effects of thiol-redox
regulators on growth, photosynthesis, metabolism and the proteome. In detail,
following questions should be answered:

1) What are the in vivo roles of TRXs and NTRC in response to short-term changes in
light intensity? How do TRXs and NTRC affect photosynthesis, photosynthetic state
transition and metabolism in response to short-term HL (de-)acclimation?

1) What is the time frame of photosynthetic acclimation to fluctuating light (FL) in WT?
How do thiol-modifying TRXs and NTRC influence the progressive acclimation to FL?

10
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1i1)) What are the in vivo roles of TRXs and NTRC in acclimation to long-term changes
in light intensity? How do TRXs and NTRC influence growth and regulate
photosynthesis, metabolism and the proteome in response to long-term changing light
regimes?

Regarding the double-silencing of TRXM1 and TRXM?2, the respective in vivo roles
compared to higher-order knockout mutants, displaying visible phenotypic changes,
should be further clarified (Wang et al., 2013; Okegawa & Motohashi, 2015;
Thorméhlen et al., 2017).

11



2 MATERIAL AND METHODS

2.1 Material

2.1.1  Instruments
Table 2.1.1. List of instruments.

Instrument Model

Blotting system Mini-PROTEAN

Centrifuge 5417R
Cryo-mill MM400
ECL reader Fusion Fx7

Photometer FilterMax F5

Vacuum concentration concentrator plus

2.1.2 Programs, online tools and databases

Material and methods

Vendor

Bio-Rad, USA

Eppendorf, Germany
Retsch, Germany

Vilber Lourmat, Germany
Molecular Device, USA
Eppendorf, Germany

Table 2.1.2. List of programs, tools and databases used in this thesis

Program

agriGO

agriGO v2

Imaged v.1.52a
MapMan v3.5.1
MaxQuant v1.6.10.43
Mendeley 1.19.8
MetaboAnalyst v4.0 & v5.0
MS Office

Perseus v1.6.10.43
Prism GraphPad v9.2.0
Rv1.4.1106

REVIGO

stringDB v11.5

SUBA4

TAIR

Thalemine

UniProt

Venny v2.1

Source

http://bioinfo.cau.edu.cn/agriGO
http://systemsbiology.cau.edu.cn/agriGOv2
https://imagej.nih.gov/ij
https://mapman.gabipd.org/de
https://www.maxquant.org/
https://www.mendeley.com/guides/desktop
https://www.metaboanalyst.ca/
https://www.office.com
https://maxquant.net/perseus
https://www.graphpad.com/
https://www.r-project.org
http://revigo.irb.hr/

https://string-db.org

https://suba.live/
https://www.arabidopsis.org
https://bar.utoronto.ca/thalemine/begin.do
https://www.uniprot.org

https://bioinfogp.cnb.csic.es/tools/venny/index.html

12
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Table 2.1.3. List of R packages used in this thesis.

Package
calibrate
circlize
cluster

colortools

ComplexHeatmap

corrplot
corrr
devtools
emmeans
factoextra
FactoMineR
ggextra
ggplot2
ggthemes
Hmisc
magrittr
multcomp
naniar
RemdrMisc
RColorBrewer
scales
tidyverse
visdat

yarrr

2.2 Methods

2.2.1 Plant based methods

2.2.1.1 Plant material and growth

Reference

Graffelman & van Eeuwijk, 2005
Gu et al., 2014
Maechler et al., 2021
Sanchez, 2013

Gu et al., 2016

Wei & Simko, 2021
Kuhn et al., 2020
Wickham et al., 2021
Lenth, 2022
Kassambara & Mundt, 2020
Lé et al., 2008

Attali & Baker, 2019
Wickham, 2016

Arnold, 2021

Harrell Jr, 2021

Bache & Wickham, 2022
Hothorn et al., 2008
Tierney et al., 2021

Fox, 2022

Neuwirth, 2014
Wickham & Seidel, 2020
Wickham et al., 2019
Tierney, 2017

Phillips, 2017

All seeds of the species Arabidopsis thaliana (Brassicaceae) used were genetically

tested for homozygosity (data not shown). Seeds were from AG Geigenberger's stock

(Table 2.2.1). Lines were generated in the Columbia-0 (Col-0) genetic background,

which also served as the wild type (WT) control.
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Table 2.2.1. Description of T-DNA lines.

Line

trafl

tremlm2

ntrc

Protein AGI

TRXf1 AT3G02730
TRXm1 AT1G03680
TRXm2 AT4G03520
NTRC AT2G41680

Reference
Thorméahlen et al,
2013

Thormé&hlen et al,
2017

Pérez-Ruiz et al., 2006

Material and methods

Germplasm

SALK 128365

WiseDsLox375F05
SALK_ 123570.51.10.x
SALK 012208

Arabidopsis thaliana seeds were stratified for 48 h at 4°C in the dark, to disrupt seed

dormancy. Afterwards, seeds were sown out on soil (Stender Vermehrungssubstrat

A210; Stender AG, Schermbeck, Germany), put in the growth chambers (Table 2.2.2)

and covered under a breathable cover until sprouting. The trays were moved

occasionally to avoid positioning effects. Plants were fertilized on a weekly basis with

0.2 % Wuxal Super (MANNA, Wilhelm Haug GmbH & Co. KG, Ammerbuch-Pfiffingen,

Germany).

Table 2.2.2. List of growth chambers and light sources.
ML, medium light; HL, high light; LL, low light; FL, fluctuating light; n.d., not defined. Spectra
are displayed in Supplement Figure 5.5.1.

Chamber
(Institute)

LED-Percival
(Miinchen)
LED-chamber
(Miunchen)
LED-chamber
(Golm)

Compartment
chamber

(Miinchen)

Light

source

LED

LED

LED

Mercury

lamp

Diurnal Temperature
rhythm (day/night)
(day/night)
16/8 h 22/16 °C
12/12 h 22/16 °C
12/12 h 20/16 °C
16/8 h n.d.
(cooling with fan)

Light intensity

(nmol photons m2 s1)

80 (ML)

450 (HL)

125 (ML)

500 (1 min), 50 (5 min) (FL)
250 (ML)

900 (HL)

90 (LL)

900 (1 min), 90 (4 min) (FL)
900 (HL)

14
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2.2.1.2 Determination of growth rate

The exponential growth of leaf areas of soil grown plants was documented every 2 days,
starting 3 weeks after sowing, using Image PAM (Walz, Germany) and the following
formula: growth = A X e >t A = initial state, e = Euler’s number, A = growth constant,

t = time.

2.2.1.3 Harvesting of plant material

For analysis of metabolic processes in the leaf, the leaf rosette was generally separated
from the hypocotyl under light without shading and immediately snap-frozen on liquid
nitrogen (liq. N2). Under cooling, the material was pulverized at 30 Hz (MM400, Retsch,

Germany) and then aliquoted.

2.2.1.4 Chlorophyll fluorescence measurement

Measurements of chlorophyll a fluorescence were carried out using a pulse-amplitude
modulation (Imaging PAM, Walz, Germany). Minimal fluorescence yield (Fo) of dark-
adapted (30 min) plants was measured before illumination with a short saturating
pulse (2700 pmol quanta m2 s!) to determine maximum quantum efficiency of PSII
(Fv/Fm=(Fm-Fo)/Fm). During measurement short pulses of saturating light were
applied to measure maximal fluorescence yield (Fm’), ground (Fo’) and steady state (F's’)
fluorescence in order to calculate PSII quantum yield (® II = (Fm’-Fs’)/Fm’), non-
photochemical quenching (NPQ = (Fm-Fm’)/Fm’) and reduced PQ (1-qL. = (Fm’ — Fs’) X
Fo')/(Fm’ — Fo’) x Fs)).

For electron transport rate (ETR) determination, chlorophyll absorption in dark-
adapted leaves was measured, followed by actinic light illumination in the following
series: 10 min 35 pmol photons m2 s!, 10 min 56 pmol photons m2 s!, 5 min 100 pmol

photons m2 1, 5 min 230 umol photons m2 s1, 5 min 462 umol photons m2 s

2.2.2 Protein based methods

2.2.2.1 Protein determination

Protein determination was done by Dr. Stephanie Arrivault (MPI-MP, Golm) using
desiccated pellets from LC-MS/MS extraction (cf. chapter 2.2.3.3). Dried pellets were
re-suspended in 400 pLL 0.1 M NaOH, heated for 30min and quantified according to
Bradford (Bradford, 1976) with BSA as standard.

15
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2.2.2.2 SDS-PAGE with following Immunoblotting

Extraction

20 (£2) mg of frozen leaf powder was extracted with 1mL of 16% (w/v) trichloroacetic
acid (TCA) in diethyl ether pre-cooled to -80°C, mixed 3 times by vortexing every 20
minutes with in-between and subsequent overnight storage at -20°C. The following
morning, the protein pellet was collected by centrifugation (13.000 rpm for 5 min at
4°C; Centrifuge 5417R, Eppendorf, Germany) and the TCA supernatant was carefully
removed by pipetting. The pellet was washed by adding 1mL of 100% acetone stored at
-20°C and inverting the tube 4 times by hand while working on ice. The pellet was
collected once more by centrifugation, the supernatant removed and 1mL of fresh
acetone added until the sample had been washed at least 3 times. The dried pellet was
re-suspended in 200uL of sample buffer (10% [w/v] glycerol, 244mM Tris/HCI1 pH 8.5,
2% [w/v] SDS, 0.33mM Coomassie G-250, with or without freshly added 100mM DTT)
with two @ 4mm steel balls added and gently vortexed at room temperature (RT) for 10
min. Afterwards, the steel balls were removed, and the samples were heated to 42°C at
800 rpm horizontal shaking for 5 min. The insoluble material was collected by
centrifugation at 14.000 rpm for 1 min at RT. The supernatant was used for subsequent
gel electrophoresis.

Electrophoresis

For separation of proteins regarding size and phosphorylation state, a Phos-tag (Wako
Chemicals GmbH, Neuss, Germany) was included in gel electrophoresis. A Zn2+-Phos-
Tag-PAGE based on a combination of Kinoshita et al., 2009, Kinoshita & Kinoshita-
Kikuta, 2011, Longoni et al., 2015 and the manufacturer’s instructions was used. The
gel was cast in 1.5mm BioRad Mini-PROTEAN plates (Bio-Rad Laboratories, Inc.,
Hercules, USA) and was made up of three layers. Three volumes of the bottom layer
resolving gel solution (357mM Bis-Tris-HC1 pH 6.8, 10% [w/v] acrylamide/bis-
acrylamide 37.5:1, 0.025% [w/v] ammonium persulfate [APS], 0.053% [v/v] N, N, N', N'-
tetramethylethylendiamine [TEMED]) were poured into the plates and topped with a
layer of 70% (v/v) isopropanol and left to polymerize for approximately 30 min. The
isopropanol was drained off and one volume of the top layer resolving gel solution
containing the Phos-Tag (357mM Bis-Tris-HCl1 pH 6.8, 9% [w/v] acrylamide/bis-
acrylamide 37.5:1, 80uM Phos-Tag, 160uM ZnClz, 0.025% APS, 0.053% TEMED) was
poured on top and covered with isopropanol until it polymerized. Afterwards, the
stacking gel (357mM Bis-Tris-HCI pH 6.8, 5% [w/v] acrylamide/bis-acrylamide 37.5:1,
0.025% APS, 0.053% TEMED) was cast with a 10-well comb inserted and the gel was

wrapped in wet paper and left overnight at 4°C in the dark before being used. 5 pL of
16
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sample supernatant (0.5 mg FW) was loaded. The gels were inserted into a BioRad
Mini-PROTEAN Tetra Cell tank filled with freshly prepared running buffer (50mM
Tris, 50mM 3-(N-morpholino) propanesulfonic acid [MOPS], 0.001% [w/v] SDS, freshly
added 5mM NaHSOs3). The gels were run at constant 120V for 1h. After the separation
was completed, the gels were rinsed in ddH20 and equilibrated in transfer buffer
(25mM Bicine, 25mM Bis-Tris, ImM EDTA, 10% [v/v] MeOH, freshly added 5mM
NaHSOs) for 20 min. Proteins were transferred on a PVDF membrane at constant 100V
and cooling for 65 min using a wet blot system. After transfer, membranes were briefly
washed in ddH20 and blocked with 5% (w/v) bovine serum albumin (BSA) in 10mL tris-
buffered saline plus Tween 20 (TBST; 20mM Tris-HCI pH 7.4, 150mM NaCl, 0.1% [v/v]
Tween 20) for 90 min under agitation. After blocking, membranes were incubated
overnight at 4°C while agitated with freshly prepared primary antibody solution
(polyclonal rabbit anti-LHCB2, AS01 003, Agrisera, Vannas, Sweden; 2% (w/v) BSA in
5mL TBST at a dilution of 1:5000). The following morning, the membranes were washed
4 times in TBST for 10 min. The membranes were incubated for 1h at RT while agitated
with freshly prepared secondary antibody solution (polyclonal goat anti-rabbit, HRP-
conjugated, AS09 602, Agrisera, Vannas, Sweden; 2% (w/v) BSA in 10mL TBST at a
dilution of 1:20000). Finally, the membranes were washed 3 times in TBST and 1 time
in TBS.

ECL readings

For chemiluminescent detection the membranes were analyzed using the Pierce™ ECL
Western Blotting Substrate (ThermoFisher Scientific, Waltham, USA) and Fusion Fx7
reader (Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany) with

corresponding software. Quantification was done using Imaged v.1.52a.

2.2.2.3 Proteomics

Mass spectrometric identification and quantification of peptides was performed at the
MPI-MP in Potsdam/Golm by Dr. Alex Graf and Beata Siemiatkowska. In brief,
measurements were performed on a Q Exactive Plus combined with HF mass
spectrometer coupled with a nLLC1000 nano-HPLC (both Thermofisher). Quantitative
analysis was performed with MaxQuant v1.6.10.43 (Cox & Mann, 2008). The output
was matched against the Arabidopsis proteome (UP000006548, April 2019) and
initially edited with Perseus v1.6.10.43, where missing values were imputed with the
default method (LNBio, 2014; Tyanova & Cox, 2018), to make use of downstream

methods that require a complete data set.
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2.2.3 Metabolite based methods

2.2.3.1 Quantitative detection of starch

The extraction and determination of starch was done according to Hendriks et al., 2003.
Extraction

20 mg of pulverized plant material was re-suspended in 250 uL (80% v/v) ethanol,
vortexed and incubated for 30 minutes at 90°C. After centrifugation (10 min, full speed,
RT) the supernatant was transferred into a new tube. The pellet was extracted once
more with 80% ethanol and finally with 50% ethanol. All supernatants were pooled and
frozen until further use.

Starch degradation

The pellet was first dried in a vacuum concentrator (concentrator plus, Eppendorf,
Germany) for 30 minutes at 30°C (V-AL), re-suspended in 400 mL 0.1 M NaOH and
incubated at 95°C for 1 hour while shaking. The solution was neutralized with adequate
amount of 0.5 M HCl/acetate buffer (0.5 M HCI, 0.1 M acetate-NaOH pH 4.9). Then 40
uL supernatant were mixed with 110 pL starch degradation mix (50 mM acetate-NaOH
pH 4.9, 2.8 U mL! amyloglucosidase, 4 U mL! a-amylase) and incubated o/n at 37°C.
Determination

The next day the sample was centrifuged for 5 min (full speed, RT) and 50 uL. were
mixed with 160 uL. determination mix (100 mM HEPES /KOH pH 7, 3 mM MgCl., 3
mM ATP, 1.4 mM NADP, 3.4 U mL? glucose-6-phosphate dehydrogenase). After the
reaction stabilized 0.45 U hexokinase was added an NADPH generation was measured.
The amount of NADPH generated equals the amount of starch. The optical density (OD)
was recorded using a photometer (FilterMax F5, Molecular Device, USA) at 340 nm
(umol NADPH = AOD / (2,85 X ¢); et (NAPDH) = 6.22).

2.2.3.2 GC-TOF-MS

Extraction and analysis of central metabolites by gas chromatography coupled with
mass spectrometry was performed using the same equipment set up and exact same
protocol as described in Lisec et al. (2006). Briefly, frozen ground material was
homogenized in 300 pL of methanol at 70°C for 15 min and 200 pL of chloroform
followed by 300 pL of water were added. The polar fraction was dried under vacuum,
and the residue was derivatized for 120 min at 37°C (in 40 pL of 20 mg mlL?!
methoxyamine-hydrochloride in pyridine) followed by a 30 min treatment at 37°C with

1 Extinction coefficient according to the Beer-Lambert law.
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70 uL of MSTFA (IN-Methyl-N-trimethylsilyl-trifluoracetamid). An autosampler Gerstel
Multi-Purpose system (Gerstel GmbH & Co.KG, Miilheim an der Ruhr, Germany) was
used to inject the samples to a chromatograph coupled to a time-of-flight mass
spectrometer (GC-TOF-MS) system (Leco Pegasus HT TOF-MS, LECO Corporation, St.
Joseph, MI, USA). Helium was used as carrier gas at a constant flow rate of 2 mLs!
and gas chromatography was performed on a 30 m DB-35 column. The injection
temperature was 230°C and the transfer line and ion source were set to 250°C. The
initial temperature of the oven (85°C) increased at a rate of 15°Cmin! up to a final
temperature of 360°C. After a solvent delay of 180 s, mass spectra were recorded at 20
scans s with m/z 70-600 scanning range. Chromatograms and mass spectra were
evaluated by using Chroma TOF 4.5 (Leco) and TagFinder 4.2 software. Analysis was
performed by Dr. Saleh Alseekh (at the MPI-MP in Potsdam/Golm).

2.233 LC-MS/MS

Metabolites were measured after methanol/chloroform extraction from 15 mg
pulverized fresh weight aliquots using an established reverse phase liquid
chromatography coupled with tandem mass spectrometry (LC-MS/MS) platform
(Arrivault et al., 2009). Stable Isotopic Labelled Internal Standards (SIL-IS) were
added to rule out matrix effects for a subset of metabolites (Arrivault et al., 2015).

Analysis was performed by Dr. Stephanie Arrivault (at the MPI-MP in Potsdam/Golm).

2.2.4 Ribosome profiling and RNA footprint

“Ribosome profiling” and “RNA footprint” analyses were conducted by Dr. Reimo
Zoschke and colleagues (at the MPI-MP in Potsdam/Golm) according to Trosch et al.,
2018.

2.2.5 Statistics

Assuming a normal distribution, a one-factorial or a two-factorial ANOVA was
performed as standard test for parametric data to analyze differences among means
(post hoc Tukey test). A repeated-measures t-test (reference WT or WT-ML) with a post
hoc Benjamini-Hochberg correction served to evaluate proteomics. Statistical testing

was done in R, using basic functions and the “stats”, “emmeans” and “multcomp”

packages.
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3 RESULTS

In this thesis the effects of deficiencies in stromal thioredoxins TRXf1, TRXm1, TRXm2
and NTRC on cellular metabolism and photosynthesis during acclimation in different
light intensities was elucidated. The investigation was accompanied by Chl a
fluorescence measurements, small and large profiling omics experiments, exploring
metabolic and proteomic adjustments. First, short-term responses (minutes to hours)
to elevated light intensities on photosynthesis and metabolism were investigated by
disrupting thiol-redox regulators TRXf1, TRXm1m2 or NTRC, which connect light- and
carbon reactions in the chloroplast. Then, it was attempted to determine the time frame
of photosynthetic acclimation processes to FL in the mutants’ background. Finally, the
attention was turned to the study of long-term acclimation responses (hours to days) on
photosynthesis, metabolism and whole-cell protein abundances in response to loss of
TRXf1, TRXm1m2 or NTRC.

In the following, the T-DNA mutant lines of TRXf1, TRXm1m2 and NTRC will be
abbreviated as trxf, trem and ntre (cf. chapter 3.1.1). The lines have been characterized
in previous studies (cf. chapter 1.2, 1.3, 1.4) and prior to all experiments, the lines were
tested once for homozygosity (data not shown). During the tests, the trxm1.1 turned out
to carry a T-DNA insertion polymorphism called WiscDsLox, not SALK (data not
shown) (compare Thorméhlen et al., 2017). Nevertheless, the kind of insertion is of no
particular importance for the following experiments.

As a prerequisite, the effects of a plant’s developmental state on different cellular
processes have to be considered. Inspecting the expression pattern throughout the
plant’s lifespan, the TRX isoforms in our study as well as NTRC appear to be
permanently and equally expressed in young and old rosette leaves under control
conditions (Winter et al., 2007), eventually allowing for coherent and unambiguous

conclusions.
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3.1 Photosynthetic (de-)acclimation to short-term high light

Other than investigating the short-term role of TRXs and NTRC to regulate
photosynthesis in dark-light shifts (Thormé&hlen et al., 2013, 2015), the initial interest
was based on short-term responses (minutes to hours) especially under conditions
changing from medium light (ML) to high light (HL). In general, rapid short-term
kinetics should resemble the nature of a fast redox relay system (Brautigam et al.,
2009). Therefore, plants were grown in the LED percival (CLF Plant Climatics GmbH,
Germany) for 14 days at a photoperiod of 16 h under moderate light (ML; 80 pmol
photons m2 s1) (cf. chapter 2.2.1.1) (Garcia-Molina et al., 2020). Approximately 100
seeds were sawn out on soil to form a lawn like appearance building a dense cushion of
leaves. This facilitates harvesting of a great number of plants at once and likewise
lowers the variance of the sample. After 14 days the seedlings were subjected from ML
to HL: (450 umol photons m?2 s') for 3 h starting at the middle of the photoperiod

(acclimation), following a 3 h de-acclimation under ML.

3.1.1 Deficiencies in Thioredoxin f and NTRC affect photosynthetic efficiency
during dark-light transitions rather than during short-term high light

(de-)acclimation

To study the effects of deficiencies in TRXf, TRXm or NTRC on photosynthesis,
chlorophyll fluorescence experiments were initially performed. During these
experiments, moderate and high actinic light was applied on the seedlings copying the
intensities in the growth chamber. Preliminary trial runs with wild type (WT) using
the Imaging PAM showed that a 3 h illumination could be reduced to 20 min to yet
maintain a photosynthetic steady state (data not shown).

Figure 3.1.1 shows the photosynthetic measurements including all genotypes. To begin
with, kinetics of ®@ II in dark-adapted WT plants were analyzed (Figure 3.1.1 A). After
the onset of actinic ML, starting with a strong saturating light pulse (cf. chapter
2.2.1.4), ® II transiently decreased as expected, since all photosynthetic reaction
centers were now closed, limiting photosynthesis for a short period of time. After that,
levels of @ II stabilized quickly and reached a value of 0.64 after 20 min (to = 0.83).
Following the first phase, HL. was applied for 20 min, which led to a decrease of ® II to
a stable value of 0.28, with a very short adaption process right after the shift, leading
to a temporary drop to 0.18. Hereafter, actinic light was switched to ML again, leading
to a transient rise in @ II to 0.63 after further 20 min. In the final phase, a slower

adaption to ML, following the HL phase, was noticed. In sum, ® II in WT plants,
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regarding steady state, was almost identical before and after the shift to HL. Kinetics
of PQ reduction practically followed @ II kinetics in an inverse manner; open reaction
centers cause a total oxidation of PQ in the dark. After the onset of ML, PQ reduction
increased steeply and nearly stabilized after 20 min to 0.27 (Figure 3.1.1 C). After a
shift to HL, PQ reduction became quickly stable and reached 0.70 after 20 more
minutes. Following a shift to ML, PQ reduction slowly reached a plateau at the end of
the experiment, which was slightly lower as before the HL shift (0.22). NPQ increased
as ML was switched on to almost stable values after 20 min (0.97). After HL was
switched on, NPQ first steeply and then continuously increased the following 20 min
(final value at the end of the HL phase: 2.84). Following that, NPQ decreased after ML
was turned on again; compared to the other parameters, NPQ did not reach the same
level in this last ML phase (1.22) compared to the initial ML phase.

Next, a delay in activation of photosynthesis from dark to light due to lack of TRXf1
and NTRC could be seen, which has also been shown in previous studies (Thormé&hlen
et al., 2017). However, WT-like adjustments of ®@ II and PQ reduction in all mutants
were noticed after a shift from ML to HL and from HL back to ML (Figure 3.1.1 A and
C). Also similar to earlier reports, NPQ started with a higher rate in ntre, relative to
WT, after light was switched on, and plateaued very quickly at a value of 1.30, which
indicates photo-inhibition. After the onset of HL, NPQ further increased, temporarily
higher than WT levels, but stabilized after 20 min to WT levels again (2.83). When HL
was finally switched to ML again, NPQ kinetics were then WT-like. There were no
substantial differences in NPQ between trxf and trxm found, compared to WT.

To sum up, photosynthetic yield decreased with short-term increasing light intensities,
while PQ reduction and NPQ increased with increasing intensities in all genotypes. In
this process, and beside the observed irregularities in ntrc, ®@ II levels and kinetics
before and after the HL phase were highly comparable across all genotypes; the same
applied for the HL phase as well. As no considerable dissimilarities in PQ reduction
were found, it was concluded, that under given conditions, TRXs and NTRC might — at
most — only fine-tune photosynthesis when changing from one light intensity to
another, which is unexpected to previous research focusing on the pivotal role of TRXf

and NTRC on dark-light transitions.
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Figure 3.1.1. Transient changes in
photosynthetic parameters of
photosystem II in WT, trxf, trxm
and ntrec.

(A) Yield. (B) NPQ. (C) red. PQ (1-qLy).
Plants were grown for 14 days at a
photoperiod of 16 h and 80 umol
photons m-2 s1. In the middle of the
photoperiod dark-adapted plants (30
min) were illuminated with and
measured under actinic ML (80 pmol
photons m-2s-1) for 20 min follow by 20
min HL (450 pmol photons m-2s?)
phase and a final ML phase again.
Beige bar, ML; red bar, HL. Results
are the mean values £ SE, n = 8.
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3.1.2 Deficiencies in Thioredoxin fand NTRC affect the CBC

Next, metabolites of the CBC were measured, since this pathway is directly connected
to photosynthetic light reactions, where resistances in fluxes at each of the redox-
regulated steps should be additionally revealed (Knuesting & Scheibe, 2018).
Figure 3.1.2 illustrates the experimental setup and harvest points in this project.

Regarding the CBC metabolites, the time points to, 15 min, 3 h, 3 h 15 min and 6 h were

sampled.
‘ o
0o 8 NN &
40 1 438 ¢ 4
Light HL
intensity
Time

Figure 3.1.2. Experimental setup for short-term (de-)acclimation studies.

Plants were initially grown for 2 weeks under a photoperiod of 16 h light/8 h dark and ML (80
umol photons m-2 s-1). In the middle of the photoperiod, plants were then shifted to HL (450 umol
photons m-2 1) for 3 h and returned to ML to grow for further 3 h. Particular harvest or
measurement time points as indicated are mentioned in the text.

To begin with, an unsupervised clustering to spot genotypic (dis-)similarities between
WT and the mutants was carried out. Therefore, a principal component analysis (PCA),
including samples and metabolites, from either acclimated (15 min to 3 h) or de-
acclimated (3 h to 6 h) HL treated plants, together with the respective control (ML)
group was performed. In the de-acclimation phase, the 3 h time point was included to
represent “to” for the following time points. A PCA serves to simplify complex data and
to represent (clusters of) samples on only few descriptive dimensions. The loadings
show how the original variables (metabolites) influence the explanatory components.
Further, close metabolites are positively correlated, opposite ones (from the origin [0,0])
are negatively correlated (Abdi & Williams, 2010). A clear separation of HL and control
samples could be noticed in the acclimation phase (Figure 3.1.3). Further, distinct
groups of mutant lines and WT were identified, meaning that even under control
conditions the effects of an impaired redox metabolism on the CBC were apparent.
These effects were strongest for ¢trxf and ntre, relative to WT. Strong associations of 3-
phosphoglycerate (3PGA) and RuBP with trxm and WT and sedoheptulose-1,7-
bisphosphate (SBP), ribose-5-phosphate (R5P), fructose-1,6-bisphosphate (FBP),
sedoheptulose-7-phosphate (S7P), G6P, G1P, and F6P with nirc and trxf were
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identified. In the de-acclimation phase, a very similar pattern compared to the
acclimation phase was observed (Figure 3.1.4); trem and WT were very much alike,
trxf and ntrc segregated further away, indicating a special role in CBC regulation for
these two factors; even the loadings were similar to the previous acclimation phase.
Summarized, this could mean that there might be constant perturbations of one or
several of the respective metabolites, especially of SBP and FBP. The general influence
of TRXs and NTRC on the CBC was shown to be generally strong, being highest for
NTRC, with clear differences between HL and ML.

PCA - Biplot
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Figure 3.1.3. Clustering of WT, trxf, trcm and ntrc samples for LC-MS based
metabolites during HL acclimation (to — 3h).

The variance explained by the single components is given in parentheses. Clustering was done
with the “FactoMineR” and “factoextra" packages in R. The cumulative variance explained by
PC1 and PC2 is 64.2 %. Amino acids are labelled pink; sugars are labelled blue; organic acids
are labelled green. Black, WT; yellow, trxf; blue, trxm; red, ntrc. f, trxf, m, trxm.
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PCA - Biplot
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Figure 3.1.4. Clustering of WT, trxf, trxm and ntrc samples for LC-MS based
metabolites during HL de-acclimation (3h — 6h).
The variance explained by the single components is given in parentheses. Clustering was done
with the “FactoMineR” and “factoextra" packages in R. The cumulative variance explained by
PC1 and PC2 is 69.4 %. Amino acids are labelled pink; sugars are labelled blue; organic acids
are labelled green. Black, WT; yellow, trxf; blue, trxm; red, ntrc. f, trxf, m, trxm.
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Figure 3.1.5 illustrates a simplified CBC, where statistics for each metabolite and
sample were included. First, an excessive accumulation of FBP and SBP (more than
1.5-fold) became apparent, especially in nirc. This indicates a specific bottleneck in CBC
activation via NTRC. Besides that, significant changes under HL were scarce. However,
RuBP and 3-PGA, key metabolites for fixation and subsequent reduction, were rather
down-regulated in the mutants, so a clear disbalance between the stages of the CBC is
brought to light. As outlined before, SBP and FBP have been shown to be significantly
altered in nirc and trxf. Further, these two metabolites, along with R5P were found to
be notably up-regulated under HL. Apart from that however, there were no major
effects of TRXs and NTRC under HL, as many significant changes occurred in the
control conditions as well. Descriptive analyses and detailed lists of statistics regarding
the metabolome can be found in Supplement Table 5.4.1 and Supplement Table
5.4.2.
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Figure 3.1.5. Simplified pathway of CBC under short-term HL (de-)acclimation.
Significance levels within one condition and genotype were evaluated by using a one-way
ANOVA with a post-hoc Tukey test and are labelled with different asterisks (* 0.01 < p < 0.05,
**0.001 <p<0.01, *** p <0.001). Significances for to, sampled under ML, were inscribed under
ML only. Ru5P and Xu5P were not distinguishable and not included here.

28



Results

To draw a full picture of CBC changes in the mutants (phosphorylated intermediates
only), a final cluster analysis was performed. This analysis shall complement the
preceding ones, which segmented the data into the acclimation phases, now including
all time points. The analysis corroborated that the effect of TRXf deficiency grows,
compared to WT, is smallest in trxm and biggest in nirc (Figure 3.1.6). This is most
likely due to missing CBC enzyme-activation via TRXf and NTRC (Lemaire et al., 2007,
Michelet et al., 2013; Thorméahlen et al., 2015). The hierarchical version of this PCA
revealed 3 clusters (Figure 3.1.7). Whereas the first PCA highlights the genotypic
effect, the second one not only identifies a distinct nirc cluster (cluster 2) but further
exposes the relation between control and treated samples; here it becomes apparent
that de-acclimated HL samples somewhat return to the starting value (to) (within
cluster 1) and acclimated HL samples correlate closer to each other (cluster 3), but are
clearly dissimilar to the control and de-acclimated samples.

It was concluded, that under HL there is an important short-term role of NTRC in CBC
regulation, and a smaller role of TRXf and TRXm and that over-accumulation of SBP
and FBP might lead to an impediment in the cycle that causes shortcomings elsewhere

in the cylce.
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Figure 3.1.6. Complete PCA of Calvin-Benson Cycle metabolites during HL kinetics.

The variance explained be PC1 and 2 is given in parentheses. The cumulative variance explained
is 80.3 %. Clustering was done with the “FactoMineR” and “factoextra" packages in R. A,
acclimation; D, de-acclimation; ML, medium light; HL, high light. f, trxf; m, trxm.
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Figure 3.1.7. Clustered PCA of Calvin-Benson Cycle metabolites during HL kinetics.
The variance explained be PC1 and 2 is given in parentheses. The cumulative variance explained
is 80.3 %. Cluster numbers are arbitrary. Clustering was done with the “FactoMineR” and
“factoextra" packages in R. ML, medium light; HL, high light; f, trxf; m, trem.
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3.1.3 Deficiencies in Thioredoxins and NTRC had only slight effect on global

metabolite levels

Next, to gain insight into the profile of central metabolites, including sugars, amino
acids and organic acids, we performed a gas chromatography time-of-flight mass
spectrometry (GC-TOF-MS) analysis (cf. chapter 2.2.3.2). Compared to the previous
chapter, all time points were harvested during this experiment (cf. Figure 3.1.2) First,
two separate PCAs were performed as before, including all samples from the
acclimation and de-acclimation phase, respectively. The HL acclimation relative to ML
was analyzed first. There was a clear separation between control and HL samples in
the mutants and a slight overlap in the two WT clusters in the middle and late time
points (ML 1 h & 3 h) (Figure 3.1.8). Nearly all metabolites clustered together with
HL samples. In ML a separation of genotypes according to PC2, in HL. according to PC1,
was noticed, so interpretation of PCs is ambiguous here. Compared to WT, ntrc and trxf
seemed to undergo stronger changes during the acclimation. The late HL time points
(3 h) showed to primarily involve amino acids and organic acids, the shorter time points
(15 min, 1 h) also included sugars. This might give a first hint to the role of individual
compound classes in redox-dependent HL acclimation. The de-acclimation followed a
similar pattern; the prior HL treated samples clustered along PC1 and distinguished
between the control samples (Figure 3.1.9). The genotypic differences were small due
to large overlapping of samples. However, there was some dispersion observable
regarding middle and late time points, especially between ntrc and WT and among the
mutants; this was also seen for ML, from which we concluded that natural metabolite
oscillation might be very present at this time frame and condition. For this reason, we
continued to analyze HL and ML separately. Descriptive analysis and detailed lists of
statistics regarding the metabolome can be found in Supplement Table 5.4.3 and
Supplement Table 5.4.4. However, they show that HL effects could be hardly
elaborated, as significances were found both under HL: and ML, partially overlapping.
Resuming the genotypic effect, we concluded a stronger, but moderate, role of NTRC in

regulating central metabolism in both HL. and ML compared to TRXf and TRXm.
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Figure 3.1.8. Clustering of WT, trxf, trxm and nirc samples for GC-MS based central
metabolites during HL acclimation phase (to — 3h).

Only the most important metabolites are plotted. The variance explained by the single
components is given in parentheses. The cumulative variance explained by PC1 and PC2 is 38.2
%. Clustering was done with the “FactoMineR” and “factoextra" packages in R. Amino acids are
labelled pink; sugars are labelled blue; organic acids are labelled green. Black, WT; yellow, trxf;
blue, trxm; red, ntre. f, trxf; m, trem.
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Figure 3.1.9. Clustering of WT, trxf, trxm and ntrc samples for GC-MS based central
metabolites during HL de-acclimation (3h — 6h).

Only the most important metabolites are plotted. The variance explained by the single components is
given in parentheses. The cumulative variance explained by PC1 and PC2 is 35.8 %. Clustering was
done with the “FactoMineR” and “factoextra" packages in R. Amino acids are labelled pink; sugars are
labelled blue; organic acids are labelled green. Black, WT; yellow, trxf; blue, trxm; red, ntre. f, trxf; m,
trxm.
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Starch levels were determined from the insoluble pellets from the GC-MS analysis and
are given as ratio between HL and ML (Figure 3.1.10), to herein segregate true HL.
events from circadian oscillations in the control group (Garcia-Molina et al., 2020). This
was done because of the fact, that starch is progressively synthesized in plants during
the photoperiod until night falls. We observed a rise in starch over time in all lines due
to higher light but noticed a very diverse genotypic effect. Starting the experiment from
the middle of the photoperiod, starch levels plateaued in WT after 3 h, meaning that
WT might already prepare for the night period; starch levels rose and quickly stabilized
in the de-acclimation phase only (69 % increase after 6 h). In trxf, starch peaked under
3 h HL and decreased thereafter; in trxm starch peaked shortly after HL passed and
fell thereafter as well. In both TRXs lines starch levels were increased about 44-48 %
after 6 h. In ntrc, starch levels went up after 3 h HL but peaked one hour later under
ML and even decreased after 6 h below the 15 min value. This shows that short-term
HL acclimation and de-acclimation might trigger different mechanisms for starch
production and depletion when plants lack specific thiol-redox control, although a
redundancy within the TRX/NTRC system cannot be excluded at this point. While nirc
showed lower average levels of starch (given in pmol Cs equivalents/ gFW) in both ML
(WT 9.28; trxf 8.66; trxm 9.11; nitrc 7.64) and HL (WT 16.12; trxf 15.62; tram 16.24; ntrc
13.57), there were no significant changes between ntrc (as well as ¢rxf and ¢rxm) and
WT within one light condition and time point determined.

Therefore, it is hypothesized, that at least trxf and trxm might stabilize starch levels
until dawn to have enough supplies to sufficiently feed on during the night-time.
Although a tendency of lower starch levels was apparent in ntre, probably due to
disturbed activation of starch biosynthesis, a significant role of the TRX/NTRC system

in regulating starch metabolism during HL (de-)acclimation could not be concluded.
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Figure 3.1.10. Time-resolved changes in starch content during HL (de-)acclimation in
WT, trxf, trxm and ntre.
Acclimation (red letters): 15min.— 3h; de-acclimation (black letters): 3h 15min — 6h. Results are
the ratios of mean values between HL und ML, n = 5 biological replicates. to before the treatment
is considered as 1.

After that, a more heuristic approach was pursued to further dissect the driving forces
of (de-)acclimation regarding central metabolites, since common statistical approaches
were not satisfactory. For this, the dynamics in nitrc were investigated, being the most
intriguing candidate in comparison to WT due to the strong phenotype (cf. chapter 1)
and the results so far (cf. chapter 3.1.1, 3.1.2). Following a biomarker analysis
(https://www.metaboanalyst.ca) (Chong et al., 2019; Pang et al.,, 2021) with a
significance threshold of p < 0.01, common or distinct features (metabolites) were
sought in every combination of light and phase in ntrc relative to WT (i.e. ntrc HL
acclimation, ntrc HL de-acclimation, nirc ML acclimation, nirc ML de-acclimation).
GABA, glycerate and erythritol/erythrose were found in all groups, indicating that
NTRC might regulate these metabolites during the entire time-course, independent
from light. This hypothesis is supported by GABA, glycerate and erythritol/erythrose
being significantly changed in ntrc in almost every time point under ML and HL
(Supplement Table 5.4.4). Moreover, GABA and glycerate were also determined
significant in ¢rxf and trxm in the late de-acclimation phase under HL. However, the
respective biological roles remain unclear up till now. Next urea, myo-inositol,
fumarate, asparagine, maltose, serine and galactinol were found to be of significance in
ntrc under HL de-acclimation. However, they do not appear in same or close pathways,
making a further interpretation difficult. Under control conditions, beta-alanine,

rhamnose and phosphoric acid played role in the de-acclimation phase. Using the
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biomarker analysis, there were no metabolites exclusively detected in ML or HL
acclimation; it also did not return any significances in trxf and trxm relative to WT.

Summarized, except for sugar build-up in the early minutes and hours and few
individual significant hits which cannot be classified at the current moment, abundant
and significant HL events were rather rare. Beyond that, the biomarker analysis did
not return convincing further results. Therefore, meaningful separation of real HL
events from control light due to strong oscillations of central metabolites in ML were
not possible, indicating a minor role of the TRX and NTRC system in regulating the

central metabolome in response to short-term HL (de-)acclimation.
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3.1.4 Thioredoxins and NTRC do not alter LHCB2 phosphorylation

In sessile plants in particular, light changes entail a sophisticated interplay of different
factors to cope with potential adverse environmental effects most commonly coming
from excess light. One strategy to dissipate excess energy is via regulated NPQ. Another
factor on the shorter-term scale is state transition (qT), mediated via the
Serine/threonine-protein kinase STN7 (AT1G68830), which moderates LHCII
migration between PSII and PSI to balance light-harvesting between the two
photosystems (Bonardi et al., 2005). Under HL: and PSII favoring light (Briautigam et
al., 2010; Puthiyaveetil et al., 2012), PQ is more reduced than in ML, which in turn
activates phosphorylation of LHCII via STN7 and hence migration of P-LHCII from
PSII to PSI. However, the same HL condition should also reduce TRXs, which are
attributed to inactivate STN7 (Rintaméaki et al., 2000; Lemeille et al., 2009; Rochaix,
2013; Ancin et al., 2019). Here, a possible involvement of TRXs in state transition using
immunoblot assays was proved, assuming that under HL a higher phosphorylation rate
of LHCB2 in the mutants should be seen. For this experiment, the same batch of
samples and time points were used as for the metabolomics.

Following the ground state (state 2; WT 53 %, trxf 51 %, trxm 35 %, ntrc 41 %
phosphorylated) we saw a swift decline in LHCB2 phosphorylation upon HL
1llumination in all lines (state 1; WT 23 — 31 %, trxf 24 — 28 %, tram 25 — 32 %, ntrc 16
— 22 %) (Figure 3.1.11 A). After 3 h HL. acclimation, P-LHCB2 levels increased again
(state 2; WT 62 %, trxf 84 %, trxm 66 %, ntrc 64 %). However, there was no statistically
significant difference observed in the mutants, relative to WT. After 6 h treatment, the
levels nearly normalized to the initial values (WT 40 %, trxf 44 %, trem 45 %, ntrc 36
%). A rise in P-LHCB2 after 3 h & 15 min could be seen under constant ML too, which
remains completely obscure (Figure 3.1.11 B).

In the light of PTM, it makes sense to define the basal level of proteins as well,
especially when dealing with extreme values; moreover STN7 abundance and activity
was shown to be redox-dependent (Wunder et al.,, 2013). Therefore, the PhosTag
approach (cf. chapter 2.2.2.2) allowed for additional, simultaneous determination of
total LHCB2 abundance, to better evaluate the extend of LHCB2 phosphorylation in
the background of redox regulation. Along with a strong and light-independent
fluctuation in protein level in all genotypes, it was not possible to establish any

relationship between protein abundance and PTM, though.
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Figure 3.1.11. Transient changes in LHCB2 phosphorylation and abundance in HL
(de-)acclimated WT, ¢rxf, trxm and nirc.

(A, B) LHCB2 phosphorylation given as ratio between phosphorylated and unphosphorylated
forms. (C, D) LHCB2 protein levels. Seedlings were grown for 14 days and a photoperiod of 16 h
under ML (80 umol photons m-2 s-1) and then shifted in the middle of the photoperiod to (A, C)
HL (450 umol photons m-2 s'1) or (B, D) left in ML. Significance levels within one condition were
evaluated by using a two-way ANOVA with a post-hoc Tukey test (p < 0.05) and are labelled
with different letters. Red, HL; beige, ML.

Although LHCB2 phosphorylation appeared not to be influenced by TRXs or NTRC, the
abundance of results gathered allowed for a more profound analysis. Thus, a novel
approach was pursued to connect the cellular and plastidial metabolic state with
phosphorylation states from light-harvesting protein LHCB2 in the thylakoid
membranes. For this, HL treated samples from all genotypes and time points were
pooled, to have a large and robust enough sample size and a simple correlation analysis
was performed. To compensate for (still) existing irregularities in cellular responses
due to disruption of thiol-redox regulators, the significance threshold was set to 0.01
and only medium to high correlations were considered (Figure 3.1.12, dashed lines).
Under given conditions, aspartate, benzoate and glycerol were significantly and highly
positively correlated to LHCB2 phosphorylation. Leucine and isoleucine, which are
obviously intercorrelated, were among the significantly negatively correlated variables.
CBC metabolites near RuBisCo within the cycle (RubP+Xu5P, RuBP, 2PG, DHAP)

correlated strongly negatively; intercorrelation can be assumed here, too.
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Of minor or no significant correlation to LHCB2 phosphorylation were the LHCB2

abundance, sugars and organic acids in general.

Correlation of LHCB2 Phosphorylation
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Figure 3.1.12. Correlation of metabolism and LHCB2 phosphorylation during short-
term HL (de-)acclimation.

Red bars indicate a significant correlation (p < 0.01). The x-axis represents the Pearson
correlation. Metabolites starting with capital letter were analyzed by LC-MS, otherwise with
GC-MS. Results are the mean of n = 28 independent samples.
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The correlation of LHCB phosphorylation and metabolism most strikingly revealed a
negative relationship between few CBC metabolites, mainly from the regeneration and
fixation phase (Ru5P+Xu5P, RuBP) as well as from the oxygenase reaction of RuBisCo
(2-PG), therefore connecting the CBC with photosynthetic light reactions as stated
previously. A tentative hypothesis might be that a limitation of RuBisCo could cause
LHCB2 phosphorylation to increase. A sophisticated partial correlation could be
calculated to underscore effects of single metabolites; however, this is quite a challenge
with more than 3 variables and out of the scope of this thesis. Instead, Supplement
Figure 5.1.3 visualizes simple pairwise interactions of the beforementioned
metabolites. It could be seen that there were strong and many significant correlations
detected, yet most pairs fail to build a straight line of data points, which is simple visual
evidence for a linear relationship, meaning a genuine (linear) correlation cannot be
ascertained in our case. Nevertheless, rather confident pairings included P-LHCB2 and
aspartate, aspartate and other central metabolites, leucine and isoleucine, and the CBC
intermediates among each other.

Eventually, LHCB2 phosphorylation and STN7 activity appeared not to be mediated
via the TRX and NTRC system in response to changes between ML and HL. Although
significant correlations between LHCB2 phosphorylation and CBC metabolites and
aspartate were calculated, it was concluded, that a simple correlation analysis might
not be the best model to represent this kind of sophisticated data and is thus lacking

the potential to fully elaborate the biological significance of the present results.
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3.1.5 Correlation of metabolite profiles

Figure 3.1.12 showed a correlation plot of metabolites measured by GC-MS and LC-
MS during HL (de-)acclimation against the LHCB2 phosphorylation during HL
(de-)acclimation. Figure 3.1.13 gives a pairwise correlation of the same set of
metabolites omitting the comparison with LHCB2 phosphorylation. The idea of
combining the central metabolites with CBC intermediates was to identify stable hubs
and metabolite pairs during HL (de-)acclimation. Correlation in general can be
performed under less stringent conditions compared to regression analysis for instance.
Due to the experimental design however, the mean values from all genotypes (WT, ¢rxf,
trxm and ntrc) throughout acclimation and de-acclimation were taken to have a large
enough sample size and represent the full dynamics of HL dependent metabolism.
However, as can be seen there were more blank cells than significant correlations
between metabolites. This can be interpreted as 1) there is simply a larger number of
various uncorrelated metabolite pairs or i1) the genotypic differences strongly influence
the outcome. On the other hand, pseudo- or multicollinearity might connect (groups of)
metabolites with others, where in fact no real bonding exists. To compensate for all
that, the significance threshold was lowered to p < 0.01 and a second analysis was run
without nirc (Supplement Figure 5.1.5), because lack of NTRC is supposed to have
the greatest overall influence on metabolism among the mutants, thereby potentially
lowering the genotypic influence and creating a more homogenous sample set.

In the end, besides from a few simple conclusions however, like the strong inter-
correlation of CBC intermediates or the presence of more positively than negatively
correlated pairs, the tools for an exhaustive analysis of these data are lacking up to this
moment, rendering biological interpretation difficult. Nevertheless, some observations

will be discussed in a larger context later on.
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Figure 3.1.13. Correlogram of combined central metabolism and Calvin-Benson Cycle
metabolites including WT, trxf, trxm and ntrc samples during short-term HL
(de-)acclimation.

Positive correlations are shown in white, negative correlations are shown in black. Non-
significant correlations (threshold p < 0.01) are shown in light blue/blank. Samples are ordered
according to Ward’s method (R package “corrplot”).

Summarizing, the role of TRXs in regulating photosynthesis and metabolism in

response to short-term HL (de-)acclimation was found to be largely insignificant,

whereas the influence of NTRC tended to be slightly higher, especially with respect to

CBC regulation. Here, bottlenecks at the site of FBPase and SBPase were revealed,
indicating a key role of NTRC in CBC regulation under both HL. and ML. STN7 activity

was not influenced by the TRX and NTRC system in response to light switches between

ML and HL, whereby a significant negative correlation between LHCB2

phosphorylation and the CBC should be mentioned; nevertheless, the biological

interpretation and reliability, due to the applied model, proves difficult. The findings

further suggest that the metabolite profiles of central metabolism and the CBC

essentially operate separately.
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3.2 Photosynthetic acclimation to fluctuating light

In the section above, it was shown that deficiencies in TRXf, TRXm and NTRC had little
to no substantial effects on photosynthetic efficiency during short-term HL
(de-)acclimation in the time frame of several hours. However, under natural conditions,
there are also more rapid fluctuations in light intensities in the time frame of seconds
to minutes, which is called fluctuating light (FL). In the following experiments, the
acclimation responses of WT and redox mutants in FL. were investigated. To determine
the yet unknown time frame of redox-dependent acclimation to FL, the quick, easy and
non-invasive technique of chlorophyll a fluorescence was chosen to measure
photochemistry in PSII. Therefore, 3 weeks old plants grown in ML (125 umol photons
m2 s1) were shifted up to 7 days to FL (1 min 50 pmol photons m2 s1, 5 min 500 pmol
photons m2 s1; @ 125 umol photons m2 s!) and measured repeatedly under rapid
actinic light fluctuations (1 min HL, 5 min LL), mimicking the conditions in the plant
growth chamber.

Before the shift from ML to FL (to), the photosynthetic parameter ®II decreased in the
first LL phase, while NPQ and PQ reduction inversely increased relative to the relaxed
state in dark-adapted plants (Supplement Figure 5.2.1). During the subsequent HL:
phase, the dynamics changed and PQ and NPQ further elevated, while ®II dropped.
Over the course of the experiment, the parameters stabilized with each fluctuating cycle
and changes in dynamics were found to be negligibly small towards the end of the
experiment, assuming a quasi steady state conditions 20 min after the onset of actinic
light. Regarding the mutants, a typical dark-light phenotype in the beginning of the
measurement was observed, especially in ¢rxf and ntre, which is due to attenuated
enzyme activation and has been observed earlier (cf. chapter 3.1.1; Thorméhlen et al.,
2017). Besides that, the trxf and trxm mutants showed WT-like behavior, while a strong
restriction in photosynthesis was observed in ntrc.

Next, the focus was now on each last cycle between LL and HL at the end of the
experiment under quasi steady state conditions as mentioned before, which will be the
reference for further conclusions. Here, the WT showed an average increase of ®II in
the HL phase and a decrease in the subsequent LL phase already after 3 h compared
to to (Figure 3.2.1). This pattern even intensified when plants were acclimated for
several days. Intriguingly, PQ reduction increased in the LL after 3 h to eventually drop
in both the HL and LL phase to a level lower than before the shift. NPQ levels increased
only after 3 days of acclimation, most notably in the LL phase. In trxm, we observed a

higher ®II in the beginning of the LL phase after HL, reaching 6 - 7 % after day 4,
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relative to WT. The ntrc mutant showed a decrease of ®II in both HL and LL and a
strong reduced PQ pool under LL throughout the entire experiment. Loss of NTRC
influenced on NPQ, especially under HL; the effect increased when long-term adapted.
After 3 to 4 days, all mutants showed a slight imbalance in ®II following the HL phase.
PQ reduction state was notably changed within 3 days in all genotypes, whereas little
change between long- and short-term was observed in nirc; like in WT, PQ reduction
was also decreased under the levels prior to the shift in ¢rxf and trxm after 3 to 4 days.
This observation might not be trivial, since a balanced redox poise has been suggested
to be of importance for long-term gene expression (Pfannschmidt, 2003; Briautigam et
al., 2009; Queval & Foyer, 2012).

It was concluded, that WT originating from ML increasingly adapted photosynthetic
parameters to FL acclimation, starting already 3 h after the shift from ML to FL,
whereas ntrc seemed to rapidly forfeit dynamic acclimation strategies to retain a
balanced redox poise when exposed to FL, which demonstrates that NTRC is crucial to
sustain optimal photosynthesis in acclimation to FL (Thorméhlen et al., 2017).
TRXm1m2 appeared to be negative regulators of ®II in the LL phase, supporting
results of previous studies (Thorméhlen et al., 2017), whereas there were no substantial
effects of TRXf observed. According to our evaluation, the time frame of completed

acclimation to FL took at least 4 days.
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Figure 3.2.1. Transient changes in photosynthetic parameters of

photosystem II in WT, trxf, trcm and ntrc under FL.

Top row: effective yield (®II). Middle row: NPQ. Bottom row: red. PQ (1-
qL). Plants were grown for 3 weeks in ML at a photoperiod of 12 h and 125
umol photons m-2 s-1 and grown for one further week in FL (1 min HL, 500
pmol photons m2 s1; 5 min LL, 50 pmol photons m2 s-1; @ 125 pmol photons
m-2 s1). Dark-adapted (30 min) plants were put under actinic fluctuating
light similar to the regime in the FL growth chamber and repeatedly
measured before the shift (to) up to 7 days after the shift. Shown is a scope
of the quasi-steady state after dark-adaption (~ 20 min). Results are the

mean, n = 5 biological replicates. Red, HL phase; grey, LL phase.

Results
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3.3 Long-term acclimation responses

As shown in the chapter before, effects of TRXf, TRXm or NTRC on light acclimation
responses are operating in a time frame of several days rather than a few hours. This
chapter is therefore aimed to elucidate the roles of the Fd- and NAPDH-dependent TRX
system in long-term acclimation responses using four different light regimes: ML, FL,
HL and LL. Higher light intensities were used for the HL conditions to bring the system
more to its limits. To avoid possible negative effects of this increase in light intensity,
the photoperiod was decreased from 16 h to 12 h (cf. chapter 2.2.1.1). Since growth and
photosynthetic parameters were improved in HL compared to ML in the WT (see

below), these conditions were found to be beneficial for WT plants.

3.3.1 Deficiencies in Thioredoxin m and NTRC mediate dynamic responses

under fluctuating- and high light

In the present experiment, plants were initially grown at a 12 h photoperiod for 3 weeks
under ML (control; 250 umol photons m2 s!) and shifted for up to 10 days to FL (1 min
HL, 900 pumol photons m2 s!; 4 min LL, 90 pmol photons m2 s'1; @ intensity 250 pmol
photons m2s1), HL (900 umol photons m2 s'!) or LL (90 pmol photons m2 s1) (cf. chapter
2.2.1.1) (Figure 3.3.1).

3 weeks old plants in medium light (ML)

l 1 l |
ML . - FL

Up to 10 days of acclimation

! ! ! !

harvest/measurement

Figure 3.3.1. Experimental setup for long-term acclimation studies.

Plants were initially grown for 3 weeks under a photoperiod of 12 h light/12 h dark and ML (250
umol photons m-2 s-1) and then shifted to FL (1 min HL, 900 pmol photons m-2 s-1; 4 min LL, 90
umol photons m2 s-1; @ intensity 250 pmol photons m-2 s'1), HL (900 pmol photons m-2 s-1), LL
(90 umol photons m-2 s-1) or left in ML, to further grow for up to 10 days. Harvest or measurement
time points are mentioned in the text.
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In the beginning, the phenotypes were characterized. Lack of TRXf and TRXm caused
WT-like phenotypes (Figure 3.3.2). As already known, ntrc exhibited a pale phenotype
(Pérez-Ruiz et al., 2006) under normal conditions, which was also observed under all
other light regimes. The leaf shape of all lines was altered in HL and LL relative to ML;
under HL the leaves were curled and the petiole was less developed, under LL it was
noticeably larger in comparison to the blade. FL. grown plants seemed to be similarly
shaped to ML. Regarding the growth, leaf sizes of ML grown WT, trxf and tram
increased about 20% every day during this vegetative phase (Figure 3.3.3). FL adapted
WT, trxf and trxm had a smaller growth rate (~15 %), HL adapted plants had a higher
growth rate of over 30%. LL levels were little higher than in ML; this might be due to
the fact, that the plants from this batch were smaller before the shift to LL, compared
to ML, so they might have experienced a relative increase in average growth during
acclimation. Lastly, under all conditions ntrc showed a significant growth retardation
relative to the other lines, the lowest being under FL (less than 10 %).

In summary, NTRC deficiency resulted in a severe and significant growth retardation
under ML and LL, which even exacerbated under HL: and FL, while lack of TRXf and
TRXm led to WT-like phenotypes and growth rates in all light conditions.
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WT trxf trxm ntrc

Figure 3.3.2. Phenotypes and respective sizes of fully adapted WT and redox
mutants trxf, trem and ntrc grown under different light conditions.

Pictures were taken of fully acclimated plants from different batches (initial 3 weeks of
growth under ML [250 umol photons m-2 s-1] at a 12h photoperiod plus one added week under
either ML, FL [1 min HL 900 pmol photons m-2 s-1, 4 min LL 90 pumol photons m-2 s-1; @ 250
umol photons m-2 s-1], HL [900 pmol photons m-2 s-1] or LL [90 pmol photons m-2 s-1]). Leaf
color might not be fully comparable due to slight variations in illumination during
photography. Leaf size is also subject to a certain variability. However, the nirc mutant
exhibited a pale phenotype in every light condition and HL plants were bigger in general
(see Figure 3.3.3). The black bar indicates a size of 2 cm.
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Figure 3.3.3. Growth rates of fully adapted WT, trxf, trxm and ntrc grown under
different light conditions.

Measurements were performed every 2 days for 10 days total. The rate was calculated from
curve fitting within exponential growth. Significance levels within one condition were evaluated
by using a one-way ANOVA with a post-hoc Tukey test (p < 0.05) and are labelled with different
letters.
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The maximum quantum efficiency of PSII (Fv/Fm) is frequently measured to monitor
oxidative stress, with a reference value of 0.84 in many mature leaves, meaning that
84 % of the incident photosynthetic active radiation (PAR) is absorbed (Baker, 2008).
To begin with, Fv/Fm was close to 0.83 to 0.84 in all WT batches before the shift (Figure
3.3.4). After the shift, values of ML, FL. and LL adapted plants were fluctuating but
stabilized during the time course of the whole experiment (0.85 in these conditions after
10 days). Under HL, Fv/Fm declined rapidly after 3 h (0.80), eventually to fully recover
after 10 days (0.83). The biggest overall changes were observed in HL and took place
latest 3 h after the shift from ML, which finally lasted for the remaining period. This
immediate and long-lasting effect in HL may indicate a strong and longer-term
adaption on photosynthesis level. Regarding the mutants, there were no changes in trxf
detected compared to WT. Lack of TRXm1m?2 led to a decrease in all conditions, except
in LL. This could mean that TRXm1m2 are positive regulators of Fv/Fm under non-
limiting light conditions. Further, the results point to bottlenecks in photochemistry,
especially in ntrc, where Fv/Fm significantly decreased under all conditions, which
supports findings of Pérez-Ruiz et al. (2006). Lack of NTRC not only induced an
incipient decrease before the shift, but magnified further down-regulation of Fv/Fm in
HL (to: 0.80, day 10: 0.73) and FL (to: 0.82, day 10: 0.80).

Summarized, TRXm and NTRC, but not TRXf, are indispensible of stabilizing Fv/Fm
under different light conditions, especially under HL. and FL.
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Figure 3.3.4. Changes in maximum quantum yield of photosystem II (Fv/Fm) in WT,
trxf, trxm and ntrc grown under different light conditions.

Measurements were performed prior to the shift and subsequently every 2 days after the shift
from ML to FL, HL or LL. Significance levels, relative to WT, within one condition were evaluated
by using a one-way ANOVA with a posi-hoc Tukey test (* p < 0.05). The dashed line indicates the

dark-adapted WT level in ML.
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Next, the effects of deficiencies in TRXf1, TRXm1m2 or NTRC on long-term acclimated
plants were investigated, that have been fully acclimated (7 days) to ML, FL, HL or LL,
by measuring photosynthetic performance under rapid actinic light fluctuations
(1 min HL, 4 min LL), equivalent to the FL acclimation conditions in the growth
chambers. In WT, short-term exposure (from ML) to FL led to low ®II and to high NPQ
and PQ reduction in the HL phase (Figure 3.3.5); in the LL phase, inverse effects were
observed. When pre-exposed to HL, the intensity of these photosynthetic parameters
increased, while they decreased when fully acclimated to FL. LL acclimated plants
exhibited ML like dynamics, except for NPQ, which was markedly lower during the HL
phase. Under ML, loss of TRXf and TRXm had no substantial influence on ®II, NPQ
and PQ. Most changes occurred when knocking out NTRC, leading to a reduced ®II,
while NPQ was increased both in the HL and LL phase. Plants pre-exposed to FL
instead showed clear changes in all three parameters: the NPQ was increased in the
mutants, compared to WT, at the cost of a lower ®II. This effect was overall strongest
in ntrc and was accompanied by a heavy over-reduction of PQ. Loss of TRXm on the
other side increased photosynthetic efficiency in the LL phase, presumably due to a
lower PQ redox state ensuring an efficient electron transport. Loss of NTRC and TRXs
seemed to increase the quenching capabilities under HL, compared to WT. This effect
also appeared to override the oxidation of PQ in ¢rxm, leading to a lower ®II when HL
acclimated. However, compared to FL it is obvious that other factors in the mutants
might contribute to a lowered ®II in HL. LL adapted plants reacted similar to ML
grown plants, with almost identical ®II, yet LL adaption lowered NPQ in all genotypes,
especially in the HL phase, while PQ redox states in the mutants corresponded to that
of WT.

Summarized, different acclimation environments generate different photosynthetic
outcome, where the least effects were observed in trxf, with TRXf being mainly
important for CBC enzyme activation, followed by TRXm, negatively affecting and
positively affecting ®II in FL. and HL, respectively. Most strikingly, photosynthesis
deteriorated in ntrc when exposed to FL. and HL, thus concluding that NTRC might act

as key modulator for dynamic and beneficial acclimation in FL. and HL.
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Figure 3.3.5. Changes in photosynthetic parameters of photosystem II in fully
acclimated WT, trxf, trxm and ntrc grown under different light conditions.

Top row: effective yield (®PII). Middle row: NPQ. Bottom row: red. PQ (1-qL). Dark-adapted (30
min) plants were put under actinic fluctuating light similar to the regime in the FL growth
chamber. Shown is a scope of the quasi-steady state after dark-adaption (~ 20 min). Results are
the mean + SE, n = 6-12 biological replicates. Significant changes, relative to WT, within one
condition were evaluated by using a one-way ANOVA with a post-hoc Tukey test (*p < 0.05). The
grey bar indicates the LL, the white bar the HL phase of FL.
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Measurements of electron transport rates (ETR) at progressively increasing light
Intensities was done to investigate the possible range of action, in the sense of
photosynthesis, when plants were pre-exposed to different long-term light regimes,
comparable to the experiment above. Our results showed similar dynamics of WT in
ML, FL and HL, demonstrating an increase in ETR with increasing light intensity
(Figure 3.3.6). LL adapted plants were limited in higher light intensities though; this
has been observed before (Walters, 2005; Walters & Horton, 1994) and is due to the
inability of LL acclimated plants to re-arrange their machinery to increasing light in a
rapid and timely manner. Loss of TRXf and TRXm seemed to regulate ETR slightly
positively when FL adapted, contrary to constant light regimes. NPQ in WT and TRXs
mutants was very much alike in all light conditions. In ntre, acclimation to all lights
had a significant impact on the ETR in low, and more severely, in higher light
intensities. Lack of NTRC started to limit ETR at 230 pumol photons ‘m2-s?! in FL, HL
and LL. However, a recovery to WT levels under LL was slightly noticeable, compared
to the other light conditions. NPQ coincided with changes in ETR in all genotypes,
except ntre; here an overly elevated NPQ was seen, especially distinct from WT from 35
to 100 pmol photons m2 s1. Chlorophyll content is a common marker for studying
acclimation (Walters & Horton, 1994; Bailey et al., 2004; Walters, 2005). Under short
day, chlorophyll was significantly decreased in ¢rxf and niérc (Thorméhlen et al., 2015).
We measured chlorophyll indirectly as absorption, which is an integral component of
the ETR calculation. Here we found out, that absorption levels were lowered in trxf and
trxm, respectively, under ML (-1 %; -6 %), HL (-2 %; -6 %) and LL (-7 %; -2 %) and
increased in FL (2 %; 0.4 %), relative to WT. This could explain a better ETR in these
lines under FL. In ntre, levels were — in accordance with the pale phenotype — shrinking
by 9 % (ML), 8 % (FL), 11 % (HL) and 8 % (LL), compared to WT.

Summarized, there were no substantial effects of TRXf and TRXm in regulating ETR
observed, whereas NTRC is needed to ensure full electron transport in all light

conditions tested.
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Figure 3.3.6. Changes in electron transport and NPQ as a function of light intensity
in fully acclimated WT, trxf, trxm and ntrc grown under different light conditions.
After dark-adaption (30 min) chlorophyll absorption was measured to calculate electron
transport rate (ETR= 0.5 x PAR X Abs. X ® II; top row) and NPQ (bottom row). Results are the
mean = SE, n = 5-12 biological replicates. Significant changes, relative to WT, within one time
point were evaluated by using a two-way ANOVA with a posi-hoc Tukey test

(* 0.01 <p<0.05,** 0.001 <p <0.01, *** p <0.001). PAR; photosynthetic active radiation in
pmol photons m-2 g1,
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3.3.2 Acclimation to different light regimes involves large dynamics in the

metabolome

3.3.2.1 NTRC deficiency has a significant effect on central metabolism

A targeted GC-MS analysis was performed next to establish a profile of central
metabolism. This profile is intended to provide information on how light-dependent
redox modulators affect central metabolism after 7 days of (full) acclimation in different
light conditions. This includes primarily soluble sugars, amino acids, and organic acids.
At first, a PCA showed that the samples were clearly divided by light (Figure 3.3.7 A).
ML was sandwiched between LL and HL; the latter showed the largest confidence
ellipses (95%) amongst the clusters, which is due to a strong deviation in ntrc under
HL, compared to the other genotypes. Next, the FL clusters (FHL and FLL), whose
ellipses slightly overlapped, clearly delimited from other light conditions. The most
significant metabolites clustered towards FL and HL. Organic acids and amino acids
seemingly play a major role in FL. and HL, respectively. The genotypic effect however
was little, only ntrc moved away from the cloud of points but showed the least variance
(Figure 3.3.7 B). Sugars like glucose, which were located near higher light conditions,
and pyruvic acid, a precursor for the tricarboxylic acid cycle (TCA cycle), showed in
opposite directions, which is only natural since glucose depletion yields in a rise in
pyruvic acid as part of the glycolysis. Citric acid, however, is orthogonal to glucose,

which could mean that the respective pathways are independent.
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GC-MS based central metabolites.
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Figure 3.3.8 shows a heat map of central metabolites based on GC-MS analysis. The
rows (metabolites) were clustered according to their compound class. Here, amino acids
and sugars on the one side, and organic acids, sugar alcohol and miscellaneous
metabolites on the other side showed the closest relation. For the columns (samples)
the hierarchical clustering algorithm (metric: correlation; linkage: Ward’s method)
identified 5 distinct clusters. A, D and E constitute unified clusters of the lines WT, trxf
and trxm under HL, ML and LL, respectively. C is a mixed cluster of samples from both
FHL and FLL. Here, in 3 out of 5 cases #rxf and WT were highly correlated. This
becomes apparent in other experiments too, which is why we will focus more on trxm
and ntrc in future evaluations. Cluster B exclusively included samples from ni¢rc under
every light condition examined. In this cluster there was almost no change in metabolite
levels between the single samples detectable, which indicates a dramatic loss of
metabolic plasticity when NTRC is knocked out. Regarding the expression values,
metabolites in HL samples of WT, ¢rxf and ¢rxm — but not nirc — formed an outgroup
and were increased on average compared to other light conditions. Down-regulated
metabolites in this group (pyruvic acid, lactic acid, nicotinic acid, aspartic acid, glycerol)
were up-regulated in the other light conditions. Interestingly citric acid was concertedly
up-regulated in the mutants under FHL and down-regulated in FLL compared to WT
(Supplement Figure 5.3.1).

The effects of each genotype on metabolism in all light conditions pooled is depicted in
Figure 3.3.9. This density-like summary helps to identify general bottlenecks in
metabolism that may sustain throughout all conditions. We found mostly similar or
overlapping pattern between ¢rxf and trem as well as WT. The biggest changes however
were found in nirc. Proline for instance serves as a stress marker (Verslues & Sharma,
2010) and showed no dynamic change in ntrc following a change in light intensity. In
the ntrc mutant, compounds of every category were found to have little to no change,
most notably proline, tryptophan, serine, 2-oxo-glutaric acid, glycine and fructose. To
mention are also raffinose, which serves as a signaling molecule for stress (Wienkoop
et al., 2008) and myo-inositol, which was recurrently observed to be strongly down-
regulated in redox relevant studies (Thorméihlen et al., 2015; Hou et al., 2019).
Specifically sugar and amino acids were strongly down-regulated after loss of NTRC,
while loss of TRXf and TRXm led to WT-like metabolite levels.

It is hypothesized, that the general depletion of amino acids and organic acids might be

an expression of critical carbon and nitrogen starvation in the case of ntrec.
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Figure 3.3.8. Heat map of standardized GC-MS based central metabolites in fully
acclimated WT, trxf, trxm and nirc grown under different light conditions.

AA, amino acid; S, sugar; misc, miscellaneous; OA, organic acid; SA, sugar alcohol. The heat
map was generated with R package “ComplexHeatmap”.
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Lastly, a biomarker analysis (https://www.metaboanalyst.ca/) (Chong et al., 2019)
pooling all light conditions, comparable to Figure 3.3.9, revealed a role of myo-inositol,
ornithine, serine, fucose, raffinose and an undefined sugar similar to raffinose in nirc
compared to WT, while all metabolites were down-regulated on average (FC < 0;
threshold AUC > 0.9) (Table 3.3.1). The AUC classifies metabolites according to their
values, with high values being a strong indicator of reliably separating the control (WT)
from the treated (ntrc) group. Given Figure 3.3.8, Figure 3.3.9 and Supplement
Figure 5.3.3, it is apparent that these metabolites exhibit little to zero dynamics in
response to varying light conditions in ntrc, meaning NTRC might strictly regulate

these metabolites or concomitant pathways.

Table 3.3.1. Biomarker analysis of central metabolites in ntrec relative to WT.
Analysis was performed with MetaboAnalyst (https://www.metaboanalyst.ca/) with pooled
samples across all light conditions. AUC, area under the curve; FC, log2-fold change.

Metabolite AUC p value FC

myo-inositol 0.968 3.81x10-08 -1.30
ornithine 0.950 6.43x10-08 -1.30
serine 0.916 4.67x10-07 -1.74
fucose 0.909 5.28%10-07 -0.64
raffinose 0.902 2.09%x10-06 -1.91
sugar (similar to raffinose) 0.902 2.09%x10-06 -1.91

In summary, long-term acclimation to different light intensities entails distinct
metabolic responses in WT, along with WT-like responses in trxf and trxm, while
exposing that metabolic re-adjustments are largely restrained in ntrc, especially under
HL, indicating that NTRC is substantial to ensure the full range of metabolic dynamics

1n response to long-term changing light intensities.
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3.3.2.2 Loss of Thioredoxins and NTRC affect Calvin-Benson-Cycle

To complete the metabolite profile, CBC intermediate metabolites were measured by
LC-MS/MS using metabolite standards to obtain absolute values. Similar to the central
metabolism, the analysis began with unsupervised clustering using PCA. Other than
the results concerning central metabolism, a stronger genotypic effect was detected
(Figure 3.3.10 B). Similar to the central metabolism, the light clusters segregated
between HL and FHL and between LL and FL, respectively (Figure 3.3.10 A),
indicating the prompt response of the metabolome to fast changing environments as
outlined in the introduction. The FL regime branched a little more into the two sub
conditions where FLL formed a clear outgroup to all other conditions; the other
conditions clustered more closely together. Most contrasting to the central metabolism,
HL showed here the smallest confidence ellipses of all conditions, which means, that
only little genotypic effect is to be expected here. The PCA loadings (metabolites)
concentrated on ML and HL. Strong negative correlations between FPB & SBP and
ADP & AMP & shikimate were revealed. The former pair is strongly associated with
ntrc, where regulation via NTRC has been highlighted earlier (Geigenberger et al.,
2017).
The hierarchical clustering revealed 5 clusters, of which the FL clusters (A and B)
formed two distinct but close related groups relative to the other light conditions and
are the only cluster where all genotypes were included (Figure 3.3.11). Expression
pattern of cluster A and B were very similar and differed only selectively. Especially
carbohydrate synthesis (CHS) under FHL and CBC intermediates under FLL were
down-regulated on average, whereas energy metabolites ADP and AMP and shikimate,
which serves as a proxy for Erythrose-4-phosphate, were up-regulated in the entire FL.
Strong up-regulations of 2PG in WT and ntrc under FHL were found, as well as an
evident accumulation of SBP and FBP in nirc under FLL, where all other CBC
metabolites in this group were found to be diminished. This appears to be a bottleneck
within the cycle, indicating a key role of NTRC in tight regulation of the CBC. Cluster
E consisted of LL trxf and trxm, although TRXm and TRXf seemed to have partly
opposing roles in CBC under LL. Highly correlated samples of HL. WT, ¢rxf and trxm
could be found in cluster D, where expression was above average. Cluster C included
samples of ntrc under constant light. Here, a great similarity between ML and LL was
observed with extreme increases of CBC intermediates of over 16-fold compared to
other samples (Supplement Figure 5.3.6). This underlines the role of NTRC in
regulating photosynthesis particularly under lower light conditions (Thormé&hlen et al.,
2015; Naranjo et al., 2016; Nikkanen et al., 2016).
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The heat map was generated with R package “ComplexHeatmap”. CBC, Calvin-Benson-Cycle;
CHS, carbohydrate synthesis; misc, miscellaneous.

A detailed analysis of the CBC under FL including absolute values and statistics is
shown in Figure 3.3.12. As outline before, a significant accumulation of FBP and SBP
in ntrc could be detected. Under FL HL, FBP and SBP were relatively increased 2.3-
and 3.3-fold, respectively. Further significant changes in nitrc were associated with FL
LL and scattered throughout every stage of the CBC (shikimate -56 %; SBP 1004 %;
S7P -54 %; RuBP -60 %; 3PGA - 76%). Besides that, trxf showed a change in RuBP and
3PGA under FL LL, too. A significant bottleneck at FBP/FBPase, which is a known
target for TRXf1 (Thorméhlen et al., 2015; Geigenberger et al., 2017) was also revealed.
There were no significant changes detected in ¢rxm compared to WT. Interestingly,
overall similar expression patterns were observed between the lines when pooling the
light conditions to explicitly examine the genotypic effect (Supplement Figure 5.3.5).
This is different output compared to the results gained from the central metabolism,
where a clear HL phenotype was seen due to loss of NTRC. Further, it shows that G6P,
R5P and SBP for instance, did not change in WT, irrespective the light condition. On
the other hand, some metabolites were more or less neither responding to intact (WT)
nor impaired (mutants) redox regulation in the individual conditions: S7P, G6P, F6P
and DHAP under HL;; R5P and RuBP under FLL; ADPG under FHL. This is also backed
up by statistics, depending on the model used (Supplement Table 5.4.8;

64



Results

Supplement Table 5.4.9). For R5P and SBP we could thus conclude a possible crucial
pacemaker role in the CBC (Hammel et al., 2020).

Summarized, the results showed that adjustments of CBC metabolites in response to
long-term changing light intensities were dependent on the TRX/NTRC system
especially under LL and ML, indicating different in vivo roles of TRXf, TRXm and
NTRC in the CBC regulation. Sustained accumulation of SBP and FBP in ntrc could
moreover indicate a missing reduction of respective enzymes, leading to impediments

of the whole cycle, in particular under FLL.

-

RSP [pmol / g Protein]

FLHL FLLL

w

RuBP [pmol / ug Protein]
S

e 2 owm

FLHL FLLL FLHL FLLL

shikimate [pmol / pg Protein]

S7P [pmol / pg Protein]

1]

o

= o
=
-

e

F6P [pmol / pg Protein]

2-PG [pmol / pg Protein]

b4

FLLL

FLHL FLLL

3 8 8B 8

3-PGA [pmol / pg Protein]
o

HWT
O trx f
O trxm
O ntre

MW
SBP [pmol f pg Protein]
B @

FBP [pmol / uyg Protein]

=

[

DHAP [pmiol / pg Protein]

o

FLHL FLLL
FLHL FLLL

Figure 3.3.12. Simplified pathway of Calvin-Benson Cycle under fluctuating light in
WT, trxf, trxm and ntre.

Shikimate is shown as a proxy for Erythrose-4-Phosphate. Redox regulated enzymes are
highlighted. Results are the mean + SE, n = 3 biological replicates. Significance levels within
one condition were evaluated by using a one-way ANOVA with a post-hoc Tukey test (p < 0.05)
and are labelled with different letters.
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3.3.2.3 Loss of thioredoxins has moderate effect on carbohydrate synthesis

Next, metabolite ratios were calculated to spot additional resistances in metabolic flow.
Focusing on carbohydrate synthesis, genotypic differences were rather small, however
light effects were seen (Figure 3.3.13). An up to 7-fold increase of G1P relative to ADPG
in FLL HL was detected, compared to ML (Figure 3.3.13 A). In ML and HL,, G1IP/ADPG
ratios were smaller than in LL, which might indicate a strong pulling force to keep
starch synthesis operating under constant moderate to high light intensity. This holds
true for ML and HL as starch levels were increased here (Figure 3.3.14). In FL LL,
electron pressure might be too low to fully activate the CBC. Except for ML, there were
no statistical significances within one light condition detected. G6P/G1P ratios were at
a similar and constant level in favor of G6P in every sample (Figure 3.3.13 B). In HL,,
G6P/G1P ratio was significantly higher in ntrc relative to WT. Next, the oxygenase
reaction of RuBisCo producing 2PG should be at a low rate, under HL conditions. Under
constant lights ML, HL and LL high levels of the acceptor molecule RuBP were found
compared to 2PG in all genotypes but nirc, where significantly reduced ratios were
detected (Figure 3.3.13 C). Under FL, RuBP/2PG ratios were at very low absolute
levels in all genotypes. This might be a convincing hint to a serious involvement of
photorespiration under FL conditions.

Starch levels (as pmol hexose equivalents g FW) were similar between FL and LL in
all lines (10-20 umol) (Figure 3.3.14). Under ML, starch was elevated in WT and TRXs
mutants (40-50 umol), but significantly lower in ntrc (20 pmol), indicating that FL,
which has the same average light intensity as ML, is not sufficient to fully activate
starch biosynthesis in WT. Starch was overall highest under HL in every genotype, with
a slight but significant decline in ntrc (70 pmol) compared to WT (90 pmol).

In summary, our results revealed a putative role of photorespiration under FL, which
is largely independent from redox-regulation. Moreover, FL conditions turn down
starch synthesis, in comparison to constant light with the same average light intensity,
showing similar starch levels as in LL acclimated plants. Further, TRXf and TRXm
were not important to activate and stabilize starch biosynthesis in response to varying
light conditions, while NTRC is needed regulate photorespiration and starch
biosynthesis, especially under ML and HL.
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3.3.2.4 NTRC deficiency disrupts correspondence between metabolites

By investigating the linear correlation between metabolites across all light conditions
(defined as Pearson correlation coefficient r), we found that sugars and amino acids
were strongly connected in WT (Supplement Figure 5.3.8). Positive correlations in
general outnumbered negative ones. It further appeared, that central metabolites
barely correlated with CBC metabolites, pointing to mostly distinctly operating
networks within the cell. However, the CBC intermediates Ru5P & Xu5P and FBP
indicated sugar states by showing positive correlations with the main sugars fructose
(T FBP, fructose = 0.730), sucrose (r FBP, sucrose = 0.692), maltose (r FBP, maltose = 0.736) and glucose
(r FBP, glucose = 0.732). These associations between metabolites seemed to be lost in NTRC
deficient plants (Supplement Figure 5.3.9); sugars were found to be only partly
correlating with amino- and also some organic acids. Further, Ru5P & Xu5P and RuBP
negatively correlated with some close related amino acids (r RuBP, leucine = -0.750, T RuBP,
lysine = -0.701, T RuBP, isoleucine = -0.593, ¥ RuBP, tyrosine = -0.574, T RuBP, valine = -0.615) as well as
with rhamnose (r RuBP, rhamnose = -0.777). However, since these amino acids are strongly
inter-correlated and were mostly down-regulated and very low in abundance in nirc
compared to WT, caution has to be taken in interpretation.

Summarized, we postulated that the central- and CBC metabolism might be distinctly
operating systems, tenuously connected via FBP and glycolysis. A simple linear
correlation, however, might fail to depict the real underlying ties between the two

systems and to corroborate our hypothesis.
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3.3.3 Acclimation to different light regimes involves large re-adjustments of the

proteome

3.3.3.1 Clustering revealed a strong light effect but little genotypic effect on protein abundance

Proteins directly regulate cellular functions, so measurements of single protein
abundance were performed to provide significant hints to the adjustment of cellular
functions during different environmental perturbations (Wegener et al., 2010). Plant
material was taken from the same batches as for analyzing the metabolomics. A very
important prerequisite for data processing was to have at least two valid values for each
sample in general, and in each light condition separately, to be able to perform proper
statistics. After processing the raw data, a total of 4023 peptides remained. Relative
abundances were taken from MaxQuant’s label-free quantification output. These were
translated into 2964 unique gene loci (uniport.org) to be analyzed in-depth. The most
peptides were detected in LL, followed by ML, HL and FL (Supplement Figure
5.3.10). First a PCA was performed; samples were clustered according to genotype and
light. The analysis showed little genotypic effect of trxf and trxm, but a large effect for
ntrc relative to WT (Figure 3.3.15 A). Confidence ellipses of WT, ¢rxf and trxm were
largely overlapping and extended along PC1; the ntrc cluster was almost orthogonal to
all other groups along PC2, indicating a distinct role of NTRC in the proteome
adjustment. Light clusters were more distinct, too; here, FL formed a clear outgroup
compared to other conditions (Figure 3.3.15 B). ML and LL clusters were overlapping;
HL showed the highest variance. The cumulative variance explained by PC 1 and PC 2
was 61 %, thereby representing the data quite sufficiently.

Next, a heat map was generated to illustrate general regulation pattern across all
samples and light regimes (Figure 3.3.16). The biggest and most noticeable effects
were found in WT and ¢rxf under HL, which formed an outgroup compared to other
clusters. Here, nearly each half of the proteins was either outstandingly up- or down-
regulated, respectively. Further, the change in expression here was above (below)
average, indicating that HL has a substantial effect on WT and ¢rxf, and a minor effect
on trxm and ntre. LL samples of WT, trxm and trxf were closely correlated. Under FL,
ntrc clustered with WT and t¢rxm, from which can be concluded that here no big
proteomic difference might to be expected between the mutants and WT. Further, the
ntrc mutant formed a distinct cluster within ML, HL. and LL, suggesting little to zero

dynamics in the proteome adjustment in response to changing light intensities.
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and PC2 is 61 %. Plot was generated with R package “factoextra” and “FactoMineR”.
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Cluster 1 mainly represents translation and anabolic processes around ribosomes and
the nucleus, cluster 2 represents stimuli responses and catabolism with focus on
thylakoids (Figure 3.3.17 A and B) (analysed with "agriGO" and "REVIGO") (Supek et

al., 2011; Tian et al., 2017). The two clusters and the hereby associated annotations, in

terms of gene ontology (GO), notably behave contrary.
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Figure 3.3.16. Representative heat map of standardized protein
abundances in fully acclimated WT, trxf, trxm and nitrc.

Only valid peptide hits common in all light regimes were incorporated. FL. samples
were harvested under the LL period of FL. Blue color indicates down-regulation. Red
color indicates up-regulation. The plot is separated in two clusters. The row
clustering (proteins abundance) outlines the overall adjustment, the column
clustering indicates the relation between different samples. Clustering distance:
correlation; clustering method: Ward’s method. Heat map was generated with R
package “gplots” (Warnes et al., 2016). f, trxf; m, trxm.
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Figure 3.3.17. Treemap of significant (FDR < 0.05) GO terms regarding
proteomic changes.

(A) biological process (“BP”); (B) cellular compartment (“CC”). A list of complete
GO terms was created with “agriGO” and sent to “REVIGO” to remove redundant
terms (Supek et al., 2011; Tian et al., 2017). The size of the boxes equals the -
log10(FDR). Cluster 1 and 2 are corresponding to Figure 3.3.16.
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3.3.3.2 Light acclimation involves oxidoreductases in the wild type

In the next analysis, processes only in the WT were investigated in detail. As
significance test a repeated t-test with a Benjamini-Hochberg correction was applied to
reduce the rate of type I (false positive) errors (Benjamini & Hochberg, 1995). 737
proteins were significantly (p < 0.05) regulated in HL,, 419 in LL and 133 in FL, relative
to ML (Figure 3.3.18 C). Based on FL, the distinct overlap between HL and LL,
respectively, was almost identical (28 respectively 35 proteins). We also found a greater
number of proteins overlapping in FL and LL compared to exclusively found proteins
in FL (61 > 44), already indicating that FL acclimation had a low impact on significant
changes in protein abundances in WT. However, changes took place in the plastid more
frequently under FL (45 %) than under HL (33 %) or LL (38 %) (Figure 3.3.18 A and
B).

Next, the common significant changes between FL, HL and LL (relative to ML) were
explicitly examined. Only two terms were found to be of significance regarding the
biological process (BP) in WT: oxidation-reduction process (GO:0055114; p = 0.04%) and
single-organism metabolic process (G0O:0044710; p = 1.10%). Protein changes
exceedingly involved following cellular compartments (CC): chloroplast stroma (p = 6 X
108), thylakoid membrane (p = 1.5 X 10-6) as well as the cytoplasm (p = 1.6 X 10-6). Table
3.3.2 displays a list of candidates found in the GO term oxidation-reduction process; 4
out of 9 proteins were found in the plastid, two of which are involved in photosynthesis
(PGR5-like protein 1A and NDH subunit U).

In summary, this first analysis with WT samples already underlines the idea of an
integral role of redox regulation in light acclimation processes, mainly occurring in the

chloroplast.
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Figure 3.3.18. Overview of proteomic changes in WT.

(A) Number of significantly regulated proteins. (B) Distribution of significantly changed
proteins across cell compartments. (C) Venn diagram of distinctly and conjointly changed
proteins across FL, HL and LL, relative to ML. Only valid peptide hits common in all conditions
were incorporated. Significances were tested with a repreated t-test following Benjamini-
Hochberg correctin (p < 0.05). The subcellular location was defined with SUBA4 (Hooper et al.,
2017).

Table 3.3.2. Significant and common protein changes in FL, HL and LL (relative to
ML) linked to oxidation-reduction process (G0O:0055114) in WT.

Significances on protein level were tested with a repeated t-test following Benjamini-
Hochberg correction (p < 0.05). Prior to that, GO term enrichments were evaluated
with “agriGO” (FDR < 0.05). Location (consensus) was determined with SUBA4.

Locus Protein names Location
AT1G76680 12-oxophytodienoate reductase 1 cytosol
AT3G24503 Aldehyde dehydrogenase family 2 member C4 cytosol
AT4G39330 Probable cinnamyl alcohol dehydrogenase 9 cytosol
AT1G17990 Putative 12-oxophytodienoate reductase-like protein 2A  cytosol
AT1G79440 Succinate-semialdehyde dehydrogenase mitochondrion
AT2G45770 Cell division protein FtsY homolog plastid
AT5G21430 NAD(P)H-quinone oxidoreductase subunit U plastid
AT4G22890 PGR5-like protein 1A plastid
AT1G06690 Uncharacterized oxidoreductase plastid
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3.3.3.3 Wild type plants are mostly affected by high light

MapMan offers ontology-driven analyses and was designed to cover plant-specific
pathways and processes (Usadel et al., 2009; Klie & Nikoloski, 2012). Since the biggest
effects were revealed in HL, cell functions in WT under HL (relative to WT ML) were
illustrated (Figure 3.3.19). The functional categories (MapMan bins) are of different
size; fairly normally distributed bins harbor a larger number of proteins (e.g. regulation
of transcription, protein synthesis, hormones).

A strong up-regulation could be observed in stress and redox processes. Protein synthesis
and transport was strongly down-regulated. A detailed analysis of protein synthesis &
amino acid activation can be found in Figure 3.3.20. This detailed mapping
convincingly shows that processes from RNA to protein metabolism were heavily
decreased. This is in line with the previous mentioned observations (Figure 3.3.16;

Figure 3.3.17). No striking changes in FL or LL (relative to ML) were observed
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(Supplement Figure 5.3.11).
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Figure 3.3.19. Proteomic responses in WT under HL, relative to ML.
Relative abundances are shown as log2-fold changes ranging from -2 (blue) to 2 (red). White, no
change. Graph was generated with MapMan.
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Figure 3.3.20. MapMan illustration of RNA and protein metabolism in WT under HL,
relative to ML.

1) RNA processing 2) RNA Transcription 3) Amino acid activation 4) Ribosomal protein
5) Ribosome biogenesis 6) Protein synthesis — initiation 7) Protein synthesis — elongation
8) Protein synthesis — release 9) Protein targeting 10) Posttranslational modification
11) Protein degradation. Relative abundances are shown as log2-fold changes ranging from
-2 (blue) to 2 (red). White, no change. Graph was generated with MapMan.

To potentially explain the findings from chlorophyll fluorescence measurements (cf.
chapter 3.3.1) on protein level, thereby linking the CBC via the TRX/NTRC system, the
light reactions in the thylakoids were investigated next. Figure 3.3.21 shows a heat
map of photosynthetic subunits of core proteins (PSII, PSI), light-harvesting complexes
(LHCs), electron shuttling (NDH, Cyt besf, PC) and energy production (ATPase) in WT.
In FL, relative to ML, only little change was observed in the core subunits and electron
transport, but an increase in PSII assembly and stabilizing units (PSBO, PSBP, PSBQ),
PSB27, PSB28) and a strong decrease in LHCs (LHCI, LHCII) could be detected. In HL,
core units of both photosystems as well as LHCs, NDHs and Cyt bsf complex were
strongly down-regulated. In detail, core proteins PSBA, PSBB, PSBD, PSAA. PSAD,
PSAF AND PSAL, as well as PETB and PETC, were significantly down-regulated in
HL, relative to ML. On the other side, a strong increase in almost every domain under
LL was noticed, which has been observed before (Walters & Horton, 1994), including
significant changes of PSBC, PSBH, PSBO, PSBR, PSAD, PSAE, PSAG and PSAL. This
shows that the WT takes thorough measures to adapt to different light environments
by accurately adjusting proteins vital for full photosynthetic functionality: under HL as
protective mechanism from excess light (balanced with optimal quantum yield), under

LL to fully utilize photochemistry as energy source for down-stream anabolic processes.
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Differentially increased proteins under HL down-stream the light reactions included
chloroplastic triosephosphate isomerase (AT2G21170), B-amylase (AT4G00490),
probably to increase the pool of soluble carbohydrates to cope with stress, TRXAS5
(AT1G45145), a mediator for electron transport and distribution (Vandereyken et al.,
2018), chloroplastic fructose-bisphosphate aldolase (AT4G38970), Phosphoglycerate
kinase (AT1G56190), RuBisCO activase (AT2G39730) and Mg-chelatase (AT4G18480)
for chlorophyll biosynthesis.

Taken together, redox- and stress response processes increased, while translation
decreased in WT under HL. Photosynthetic proteins were mildly affected under FL and
strongly influenced under LL and HL. The most and biggest protein changes were found
under HL, possibly influencing photosynthesis to a higher degree than in FL or LL (cf.
chapter 3.3.1).

Photosystera I
D1 D2 cpd3  cpd? cyt b559 Cytochrome b6/f corplex
PsbC | PsbE | PsbF | (B8 [ PetD | Peth | PetC | Pell | Pet | PetN | PetG |
MSP__ OEC
PsbL | Psbl | PsbK | PsbM | PsbH | Psbl | Psb@ Psb Photosynthethic electron transport
PsbR | PsbS [ PsbT | PsbU | PsbV [ PsbW | PsbX PC Fd FNR_  cytch
PsbY | Psbz |Psb27 P&28-2 mﬁ
Photosystera I F-type ATPase
PsaC Psa PsaF PE PsaH I beta Ialma ]gammalj |epsilon| c | .:']
Psal | Psal | PsaK PsaM | PsaN | PsaO | PsaX
Light-harvesting chlorophyll protein coraplex (LHC) Light Condition Log2 FC
I HC [ rho3 [ Lhiced | Lives | R[] ] 1
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Figure 3.3.21. Heat map of photosynthetic subunits in WT.

Each box represents one protein, where the log2-fold change was calculated in the following
order: FL/ML, HL/ML, LL/ML. Blue color, down-regulation; red, up-regulation; white, not
present in Arabidopsis, grey, blank. The figure was generated with R package “pathview”.
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3.3.3.4 Loss of NTRC strongly affects proteomic re-adjustment in all light regimes

The results above showed that changes in protein levels involved in redox processes are
a common feature in light acclimation responses (cf. chapter 3.3.3.2). It was therefore
interesting to address proteomic changes due to knockout of redox modulators TRXY,
TRXm or NTRC in comparison to the respective WT in each light condition.

Only few changes were observed in ¢rxf in general, with a highest of 18 exclusively,
significantly changed proteins under FL (Figure 3.3.22); however, here nearly all
proteins were down-regulated and located in the plastid. In other light conditions there
were only few changes found, predominantly in the cytosol. In trxm a similar pattern
was noticed under FL, where all 6 significant proteins were down-regulated, the plastid
ones being Glyceraldehyde-3-phosphate dehydrogenase isoforms 1 & 2 (AT1G79530 &
AT1G16300) and RNA polymerase-associated protein 3 (AT3G48500). As summarized
in chapter 3.3.3.1, the cluster analyses showed a humble change in protein abundance
in trxm under FL, which means that improved photosynthesis under LL phase of FL
(cf. chapter 3.3.1) must be explained otherwise. Interestingly, numerous and strong
changes in trxm under ML were found, which is also in line with the previous cluster
analyses; 164 and 149 proteins were significantly up- and down-regulated, respectively,
34 % of which were located in the plastid. Further, large intersections between tram
and ntrc were found under HL (40 shared compared to 7 exclusive proteins in trxm).
There were only minor changes under LL in ¢trxm. If grown under FL, HL or LL, loss of
NTRC showed a substantial alteration in protein abundance. The numerically biggest
changes occurred in HL (227; 27 % in plastid), followed by LL (145; 42 % in plastid) and
FL (41; 39 % in plastid). Under ML, a number of 65 proteins were exclusively found in
ntrc and thus much lower than in trxm (231 exclusive proteins).

Summarized, most protein changes were revealed in ntrc, particularly under HL,
indicating a different role in translation processes compared to WT, where overall

significant changes affected the cytosol noticeably more than the chloroplast.
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Figure 3.3.22. Overview of significantly (p < 0.05) up- or down-regulated proteins in
trxf, trem and nitrc, relative to WT.

Summary and distribution of significantly changed proteins across cell compartments and Venn
diagrams of commonly and exclusively changed proteins in (A) ML, (B) FL, (C) HL and (D) LL.
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A detailed list of highly significant protein changes (p < 0.001), regarding the entire
data set, i1s given by Table 3.3.3. This list contains information about the light
conditions, the subcellular location and the direction of regulation (up/down). As can be
seen, the only other significant hit, besides exclusively involving ntrc, is TRXm2 down-
regulation in trxm under HL. As outlined in the beginning of this chapter, only few
changes were detected under FL, where however all proteins were up-regulated; two of
three proteins were found in the plastid: LOW PSII ACCUMULATION 1 (AT1G02910),
which is part of PSII and Alternative NAD(P)H-ubiquinone oxidoreductase C1
(AT5G08740), which is involved in electron transport. Contrary, the majority of
proteins under HL: and LL is down-regulated. Plastid localized proteins are COLD-
REGULATED 15A (AT2G42540), Superoxide dismutase 1 (AT4G25100), important for
light response, CBS domain-containing protein 2 (AT4G34120) and 30S ribosomal
protein (AT5G24490) in HL and Photosystem I chlorophyll a/b-binding protein 3-1
(AT1G61520), a light-harvesting compound, Beta-amylase 3 (AT4G17090), for starch
processing, Protochlorophyllide reductase B (AT4G27440), crucial for photosynthesis
and chlorophyll, CBS domain-containing protein 2 (AT4G34120) and Ferredoxin-
dependent glutamate synthase 1 (AT5G04140), involved in ammonium assimilation
and glutamate biosynthesis, under LL. An intriguing TRX-activating protein — CBSX2
(cystathionine B-synthase domain), which stabilizes cellular redox homeostasis and
modulates plant development (Yoo et al., 2011), — was found significant in both HL and
LL and has been reported to interact with NTRC (Gonzalez et al.,, 2019). Brief

descriptions of each protein were taken from https://www.uniprot.org.

80



Results

Table 3.3.3. Significantly changed proteins (p < 0.001, t-test with Benjamini-Hochberg
correction) in trxm and ntrec, compared to WT.

Red, up-regulated; blue, down-regulated. Annotation
(https://www.uniprot.org/). Subcellular localization (consensus) was determined with SUBAA4.
There were no significances detected in ¢trxf below the mentioned threshold.

was taken

from  Uniprot

Light Location/ Protein name p value Expression
Genotype/ (%)
Locus
ML plastid
ntre
AT1G71500 Rieske (2Fe-2S) domain- 0.084 1
containing protein
AT4G34120 CBS domain-containing 0.035 l
protein CBSX2
AT5G04140 Ferredoxin-dependent 0.008 )
glutamate synthase 1
vacuole
ntre
AT5G22580 Stress-response A/B 0.037 l
barrel domain-containing
protein
FL endoplasmic reticulum
ntrc
AT3G09260 Beta-glucosidase 23 0.036 1
plastid
ntre
AT1G02910 Protein LOW PSII 0.032 T
ACCUMULATION 1
plastid,
mitochondrion
ntrc
AT5G08740 Alternative NAD(P)H- 0.036 1
ubiquinone
oxidoreductase C1
HL cytosol
ntre
AT2G30870 Glutathione S-transferase 0.056 l
F10
AT3G44860 Farnesoic acid carboxyl-O- 0.065 l
methyltransferase
AT3G44870 AtPP-like protein 0.065 l
mitochondrion
ntre
AT3G15020 Malate dehydrogenase 2 0.023 l
AT4G00860 ATOZI1 protein 0.038 l
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LL

Table 3.3.3 (continued)

peroxisome
ntrc
AT1G19570 Glutathione S-transferase
DHAR1
AT4G23600 Cystine lyase CORI3
plastid
ntrc
AT2G42540 Protein COLD-
REGULATED 15A
AT4G25100 Superoxide dismutase [Fe]
1
AT4G34120 CBS domain-containing
protein CBSX2
AT5G24490 30S ribosomal protein
traem
AT4G03520 Thioredoxin M2
cytosol,
plasmamembrane
ntre
AT1G20450 Dehydrin family protein
AT3G53990 Adenine nucleotide alpha

hydrolases-like
superfamily protein
endoplasmic reticulum

ntre
AT3G09260 Beta-glucosidase 23
mitochondrion
ntrc
AT2G26080 Glycine dehydrogenase
(decarboxylating) 2
nucleus
ntre
AT1G20440 Dehydrin COR47
peroxisome
ntre
AT1G35720 Annexin D1
AT1G76180 Dehydrin ERD14
plastid
ntre
AT1G61520 Photosystem I chlorophyll
a/b-binding protein 3-1
AT4G17090 Beta-amylase 3
AT4G27440 Protochlorophyllide
reductase B
AT4G34120 CBS domain-containing
protein CBSX2
AT5G04140 Ferredoxin-dependent

glutamate synthase 1

0.053

0.057

0.062

0.007

0.081

0.047

0.003

0.047
0.015

0.012

0.005

0.038

0.025
0.014

0.030

0.038
0.091

0.018

0.046
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Table 3.3.3 (continued)

LL vacuole
ntre
AT5G22580 Stress-response A/B 0.019 l
barrel domain-containing
protein

Next, specialized pathways and protein networks were analyzed more deeply.
Therefore, the cluster of photosynthesis related proteins were chosen and concisely
visualized with “pathview” (Luo et al., 2017).

First, no changes were noticed in trxf relative to WT regarding the shift from ML to
other light conditions (Figure 3.3.23 A). Indeed, most changes (down-regulation)
occurred in LHCs and PSI core subunits (PSAA, PSAB) under ML. In ¢rxm the same
down-regulation of LHCs and PSI core units was detected, beyond that PSII core units
PSBA, PSBD and Cyt bef were affected, too (Figure 3.3.23 B). Apart from very few
significant changes under ML, no significances in other conditions were detected in
trxm. Next, a strong decline in PC in nt¢rc under every condition was seen (Figure
3.3.23 C), so electron transfer from Cyt bsf to PSI might be heavily disturbed. This
potential bottleneck in electron flow might fit to the observations of over-reduced PQ
(cf. chapter 3.3.1). There were nearly no changes in PSII or PSI under ML, yet LHCBs
but not LHCAs were down-regulated. Under FL, PSI was depleted and few LHCB and
LHCA were down- and up-regulated, respectively. Moderate to strong increases in PSII
and PSI core units as well as in NDH and Cyt bsf were detected under HL. Further,
LHCs were inconsistently changed, while PC and Fd were down-regulated. However,
under HL, only PSBQ2 and PSAE were significantly down-regulated in nirc.
Eventually, little to no changes were observed under LL in ¢rxf and trxm. In ntre, a
greater number of significant down-regulations were detected, including levels of PSI
subunits (PSAC, PSAD, PSAE, PSAF, PSAL), PSII (PSBC, PSBO, PSBP, PSBQ) and
light-harvesting LHCAS.
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Figure 3.3.23. Changes of photosynthetic subunits in trxf, trxm and ntre, relative to
WT.

(A) trxf. (B) trxm. (C) ntrc. Each box represents one protein, where the log2-fold change was
calculated in the following order: ML/ FL/ HL/ LL. Blue, down-regulation; red, up-regulation;

white, not present in Arabidopsis; grey, blank. The figure was generated with R package
“pathview”.
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Summarized, light shifts from ML to FL, HL or LL result in global proteomic
adjustments and notably involve oxidation-reduction processes in the WT. The findings
further suggest a bigger role of the cytosol in acclimation responses than the
chloroplast. The overall biggest changes appeared in WT (and #¢rxf) when HL
acclimated, being connected to a decrease in translation and an increase of stress
responses. Interestingly, the relevance of these processes almost inverted in every other
light condition. Next, pre-exposure to FL did not have a great impact on the proteome.
Following this, genotypic differences between WT and TRXs mutants were rather small
across all light conditions, while NTRC deficiency resulted in frequent significant
protein changes. However, relatively little to no dynamic acclimation response to all the
different light regimes was attested in ntrc, emphasizing HL, where WT plants, but not
ntrc, appreciably reacted with strong adjustments, indicating an extensive key role of

NTRC in regulating the proteome and thus maintaining beneficial cellular processes.

3.3.4 NTRC does act upon protein abundance, but not gene expression in the

chloroplast, under high light

The results from PAM measurements and proteomics under HL were quite captivating,
because they revealed the biggest effects compared to other light conditions. Following
the previous approach, MapMan figures were generated to illustrate changes in general
cell functions, focusing on ntrc under HL, relative to WT (Figure 3.3.24 A), as striking
changes in other light conditions and genotypes were not observed (Supplement
Figure 5.3.13; Supplement Figure 5.3.14). Again, the more ponderous bins were
prioritized, containing the majority of proteins. Redox processes seemed to be slightly
decreased, while higher levels in protein abundance related to protein synthesis &
amino acid activation were noted. Figure 3.3.24 B draws a detailed picture of protein
synthesis processes; here strong increments of protein abundance in every subcategory
were seen, especially linked to ribosomes.

Taken all findings together, however, protein synthesis turned out to be not
substantially altered, as the WT heavily down-regulated these processes under HL. In
fact, a lack of NTRC is associated with an extensive restriction in dynamic acclimation
responses on protein level towards all light intensities tested, which will be further

elaborated later on.
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Figure 3.3.24. MapMan illustrations of
changes in ntrc compared to WT under
HL.

(A) Cell functions. (B) Protein synthesis.
1) RNA processing 2) RNA Transcription
3) Aminoacid activation 4) Ribosomal
protein 5) Ribosome biogenesis 6) Protein
synthesis — initiation 7) Protein synthesis —
elongation 8) Protein synthesis — release
9) Protein targeting 10) Posttranslational
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Next, to critically compare if the findings from the proteomics aligned with gene
expression, a targeted chloroplast ribosome profiling approach was wused to
quantitatively compare RNA abundance and translation output (Trosch et al., 2018).
Plant material of ntrc was scarce so a new harvest had to be taken for the following
experiment. Therefore, plants were grown for 3 weeks at a photoperiod of 16 h under
ML (250 pmol photons m2 s!) and one additional week under HL (900 pmol photons
m2 s1) (cf. chapter 2.2.1). After 4 weeks, WT and nirc plants were sampled during the
photoperiod. The day length and light-source differ from proteomics experiments but
day length is according to the mentioned reference and is anyway more relevant in
developmental- and particularly starch synthesis studies (Sulpice et al., 2009;
Mugford et al., 2014) and in addition reduces the genotypic effect of NTRC disruption,
showing a stronger phenotype under short-day conditions. Translation output and RNA
levels were almost identical in ntrc and WT (Figure 3.3.25 A and B). A detailed
analysis showed that the expression of individuals genes did not change more than 2-
fold in the mutant compared to WT (Supplement Figure 5.3.15), which is considered

insignificant.
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Figure 3.3.25. Changes in ribosome footprints and RNA levels in ntrc compared to WT

under HL.

(A) Ribosome footprints. (B) RNA levels. (C) Full annotation of the Arabidopsis chloroplast
genome aligned with (A) and (B). Plants were grown for 3 weeks at a photoperiod of 16 h under
ML (250 pmol photons m-2 s'1) and one additional week under HL (900 pmol photons m-2 1),
Values are the mean of n = 3 independent replicates. The x-axis represents the chloroplast
genome 1n base pairs. Red, ntrc. Black, WT. bp, base pairs; kb, kilo base pairs.

88



Results

Finally, network predictions of protein-protein interaction were performed. For this
purpose, a list containing highly significant (p < 0.001) proteins changed in ntrc was
created, relative to WT under HL, and NTRC itself was added as potential hub within
this network (Figure 3.3.26). 8 out of 9 proteins were down-regulated, only Ferredoxin-
dependent glutamate synthase (AT5G04140) was up-regulated, which was also
previously up-regulated under both long-day and short-day in ntre, relative to WT
(Lepisto et al., 2009). Other direct interaction partners according to this analysis were
malate dehydrogenase (AT3G15020), an important factor in the TCA cycle, and CBS
domain-containing protein (AT4G34120), the above-mentioned redox regulator (cf.
chapter 3.3.3.4) that was highly significantly down-regulated in ML, HL and LL, and
lastly superoxide dismutase (AT4G25100), important in light responses; all of them are
either found in plastids or mitochondria.

In summary, it could be seen that NTRC might be a small hub in the WT, connecting
carbon and nitrogen metabolism as well as redox- and radical-quenching enzymes in
different compartments. Moreover, NTRC might negatively regulate protein synthesis
and amino acid activation in HL, relative to WT, as a trade-off for other processes (e.g.
redox). On the whole however, the findings imply that NTRC deficiency entails complete
loss of dynamic proteomic acclimation responses to all investigated light conditions.
Furthermore, it has little to no effect on gene expression in the chloroplast, which is
underlined by Table 3.3.4, summarizing that differentially expressed ribosomal

subunits are over-represented in the cytosol (p < 0.0006, Fisher’s exact Test).

Table 3.3.4 Number of differentially expressed (at least 1.5-fold) ribosomal subunits
in different compartments in ntrc under HL, compared WT.
According to MapMan Bin 29.2.1.

chloroplast cytosol

down-regulated 9 7
up-regulated 18 102
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Figure 3.3.26. Network predictions of protein-protein interaction under HL.

The nodes represent NTRC among the significantly changed (p < 0.001, repeated t-test with
Benjamini-Hochberg correction) proteins in nire, relative to WT. Down-regulated proteins are
given in blue, up-regulated in red. Unconnected nodes were disregarded. The thickness of the
edges indicates the degree of confidence of the interaction (Szklarczyk et al., 2019, 2021). Dashed
lines indicate an interaction in the WT in the presence of NTRC. Distances are arbitrary. Trivial
names are given in capital letters. The subcellular location (SUBA4, consensus) is given in small
letters ahead the protein name. ¢, cytosol; m, mitochondrion; p, plastid; pr, peroxisome.

3.3.5 Redundancy within the Thioredoxin system plays a subordinate role

Supplement Figure 5.3.12 helps to clarify the question of redundancy within the
thioredoxin protein family. TRXm2 was strongly down-regulated in trxm. TRXm4, the
only other detected m-isoform, was mostly up-regulated, but its expression was not
significantly altered to hypothetically compensate for loss of TRXm I or TRXmZ2. TRXf1
as well as TRXf2 remained largely undetected (ML, FL. and HL); under LL, expression
of TRXf2 was not altered after loss of TRXf1, indication no compensatory role. The
cytosolic isoform TRXA5, responsible for plant immunity (Jedelska et al., 2020), was
significantly down-regulated in ¢trxm and nirc under HL. Thus, regarding the TRX
protein family, there was some extra-plastidial change and potential co-regulation
detectable, but not within the chloroplast.

In general, however, patterns of co-regulation or compensation, if any, reside within

one light condition only and are found to be of little to no significance.
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3.3.6 Total protein content is not affected by Thioredoxin and NTRC deficiencies

Lastly, total protein content according to Bradford (cf. chapter 2.2.2.1) was measured
to complement and evaluate the metabolomics and proteomics data. Protein content
was not significantly affected in the mutants compared to the respective WT in each
light condition (Figure 3.3.27). Compared to other conditions, HL acclimated plants
exhibited the highest protein contents. This shows that mechanisms regulating the
turnover of protein synthesis and degradation are still intact under given light
environments and practically independent from thiol-redox control, although a small

tendency towards a decline in ntre, compared to the other genotypes, was noticed.
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Figure 3.3.27. Changes in protein content in fully adapted WT, trxf, trxm and ntrc
grown under different light conditions.

Samples were taken in the middle of the photoperiod. Values are shown as mean + SE, n=3-5
biological replicates. Significance levels within one condition were evaluated by using a two-way
ANOVA with a post-hoc Tukey test (p < 0.05) and are labelled with different letters. FW, fresh-
weight.
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4 DISCUSSION

The objective of the present work was to investigate the in vivo roles of TRXf1, TRXm1
& m2 and NTRC in Arabidopsis thaliana in acclimation to various light regimes.
Different light stimuli were applied, including various photoperiods, light intensities,
discriminating between constant und fluctuating light regimes, and acclimation
periods. The results showed that photosynthetic performance was mostly unaffected by
TRX and NTRC deficiency when plants were shifted between ML to HL on a time scale
of hours, while in ntrc the a priori severe phenotype deteriorated when mutants were
acclimated for several days to FL or HL. Disruption of NTRC further resulted in a
detrimental loss of metabolic and proteomic plasticity, revealing a key role of NTRC in
photosynthesis and global cellular processes, especially under HL and FL, while a
subordinate role of TRXf and TRXm in the long-term adaption to various light
conditions was proposed. Moreover, the pivotal role of TRXf and NTRC in regulating
the CBC has been highlighted as well. In the following, the results will be discussed in
the context of pre-existing knowledge about thiol-redox biology, metabolism and

photosynthesis.

4.1 Thioredoxins and NTRC marginally, but disparately, regulate

cellular responses after short-term high light treatment

The kinetics experiments under HL served to elucidate the effects of TRXs and NTRC
on photosynthesis and metabolism when facing fast changing environments (minutes
to hours), thus untangling the in vivo roles of TRXs and NTRC in short-term HL
acclimation (stimulation with stress) and de-acclimation (returning from stress to
control conditions). The mode of action (i.e. enzyme activation) of the TRX system is
based on ultra-short redox reactions and should therefore reveal a significant short-
term role of TRXs and NTRC in dynamic photosynthesis, which has been demonstrated
before (Naranjo, Diaz-Espejo, et al., 2016; Naranjo, Mignée, et al., 2016; Thormé&hlen et
al., 2013, 2015, 2017).

4.1.1 Thioredoxins and NTRC fine-tune photosynthesis

Our results showed that TRXs and NTRC modulate photosynthesis in dark-adapted
plants (cf. chapter 3.1.1), thus agreeing with previous observations. TRXs and NTRC

are needed to activate enzymes in the thylakoid membrane and the CBC, explaining
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the initial retardation in photochemistry when coming from the dark (Figure 3.1.1).
However, once stable, this modulation did not occur when plants were challenged with
light-light switches between ML and HL, hence being a novel observation. This leads
to the hypothesis that under given conditions, TRXs and NTRC, if at all, regulate the
fine-tuning of photosynthesis upon light-light transitions, being in strong contrast to
the necessary and well-known light-activation of photosynthesis after prolonged

darkness.

4.1.2 Thioredoxin influence on STN7 activity is unlikely

The state transition kinase STN7, mediating the phosphorylation of LHCB2, is
especially active under LL and PSII favoring light, while reducing PQ (Bellafiore et al.,
2005). However, under HL, PQ is also reduced. This theoretically leads to a transition
from photosynthetic state 1 to photosynthetic state 2. This transition was not recorded
In our experiments; we noticed a shift to state 2 in all genotypes after the light was
switched from HL to ML again (Figure 3.1.11), confirming STN7 to be more active
under moderate levels of light. Therefore, the TRX and NTRC involvement in state
transition under given conditions is, if at all, very marginal and not significantly
different from WT. Furthermore, it was thought that under different PQ states, despite
the difference in timescale between LHCII phosphorylation and transcriptional
regulation, the latter being a long-term adjustment of photosystem complexes to
counteract excitation imbalances, there might be a coupling revealed between short-
term and long-term responses, using redox deficient mutants to modulate PQ
(Rintamaéki et al., 2000; Bonardi et al., 2005; Dietzel et al., 2008; Wagner et al., 2008;
Rochaix, 2013). Following different approaches to prove a potential thioredoxin-
dependent regulation in LHCII phosphorylation (Wunder et al., 2013; Ancin et al.,
2019), our data does not support this hypothesis in the current state.

413 NTRC is a key regulator of central- and CBC metabolism

Figure 4.1.1 gives an easy-to-follow overview of changes in both central metabolism
and CBC. It becomes evident, that starting from to, the HL treatment induces upward
changes in central metabolism. However genotypic changes are not so apparent as the
median of most curves is close to zero. On the other side the changes in the CBC after
short-term HL appear in less bell-shaped curves with more asymptotic tails skewing to
either left (down-regulation) or right (up-regulation), while a clear up-regulation has
been noticed under HL. That implies that the CBC is generally affected under HL and

redox deficiencies explicitly modulate certain metabolic responses on top. Especially
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trxm and ntrc exhibited a flattened curve after turning off HL, indicating drastic
changes in their metabolic states. It is thinkable that the central metabolism could act
as a buffer for changes in cell homeostasis (Mettler et al., 2014).
Supplement Figure 5.1.4 for ML control can be directly compared as all samples were
standardized concurrently leaving the to time point fixed. What exact metabolites might
be responsible for these adjustments is going to be discussed later on.

Instead of using predefined pathway analyses for our kinetics, which, on one hand,
would be quite challenging with a number of time points and at that uneasy to
comprehend, and on the other hand be limited by the number of metabolites detected,
one first concentrated on the effects of metabolite classes in acclimation using data-
reduction techniques (PCA) and correlation analysis; beyond that, it was attempted to
circumvent this potential bias (Wanichthanarak et al., 2015), leading to a new approach
by combining CBC — a rather exclusive analysis in the plant science field — and central
metabolism with chloroplast PTM data regarding light-harvesting proteins (LHCB2
phosphorylation). This captures the purport of an integrative (systems) biology, using
multiple measures trying to understand and predict biological phenomena.
Summarized, sugars, organic acids and the LHCB2 abundance did not correlate with
the phosphorylated form of LHCB2 (Figure 3.1.12). Intriguingly, CBC metabolites
close to RuBisCo (Ru5P+Xu5P, RuBP, 2PG, DHAP) were significantly negatively
correlated, indicating that an unprecedented relationship between chloroplast stroma
metabolites and thylakoid PTM procured in the process of state transition. This result
preliminarily indicates an inverse link between CBC/RuBisCo and LHCB2
phosphorylation. However, a TRX involvement could not be deduced from our data.
Lastly, aspartate was shown to be positively correlated with P-LHCB; being responsible
for plant nutrition and energy, stress response and as nitrogen carrier (Han et al.,
2021), the role of aspartate in the present case still remains unclear.

The PCAs showed no outstanding differences between WT and the mutants regarding
the GC-MS based central metabolite profile (Figure 3.1.8; Figure 3.1.9). The treated
samples separated from the control groups as expected. Only the acclimation phase
revealed a key role of sugars in the early time points (15 min — 1 h) in all genotypes.
This makes sense since the early buildup of sugars is the prime step for further growth-
related processes when energy is abundantly available. Regarding CBC metabolites,
the lack of TRXf and NTRC led to distinct clustering of groups, validating a key role in
regulating the CBC. This became also apparent, constructing a simplified model of the
CBC, indicating significantly regulated metabolites (Figure 3.1.5). It showed, that an

over-accumulation of intermediates in the regeneration phase might cause imbalances
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in the whole cycle leading to a down-regulation in the fixation and reductive part. What
is more, is that besides SBP, S7P and R5P are also up-regulated while RuBP is down-
regulated in nitrc, allowing to conclude, that redox-activated phosphoribulokinase,
converting R5P to RuBP, might be an additional bottleneck where the CBC is hampered
(Marri et al., 2009, 2014; Nikkanen et al., 2016). Lastly, it was determined to some
degree, if the HL treatment was reversible in the different genotypes. It turned out,
that the HL and ML samples were fairly matching after 6h in WT and ¢rxm, but not in
trxf and ntrc (Figure 3.1.7), further indicating important roles of TRXf and NTRC in
CBC regulation.

Deriving correlations within metabolites from PCA is not sufficient as i) only
metabolites explaining the most variance were included to prevent over-plotting and ii)
the genotypic effect can be ambiguous due to the dimension reduction, so additional
correlation analyses were performed with the entire data set counting in all time points
(Figure 3.1.13). The aim here was to reveal highly stable metabolic hubs and
pathways, that are not influenced by light, time or redox regulation. Moreover, pooling
samples of WT with or without mutant samples supports this approach and additionally
reveals genotypic specifics, respectively. However, sophisticated methods for a deeper
readout are still lacking to this point, so only a few observations could be made: expected
correlations of some CBC intermediates and closely linked metabolites, like leucine and
1soleucine or glucose and fructose, were detected. Furthermore, a major advantage was
derived from the fact, that GC-MS based central metabolites and LC-MS based CBC
metabolites were analyzed together, as they merged to interesting clusters. For
instance, pyruvate positively correlated with 3PGA, DHAP, 2PG and S7P, where no
inter-correlation could be determined. Phenylalanine also correlated with DHAP, S7P,
F6P and pyruvate. G1P showed the most correlations with both CBC and central
metabolites (positive: FBP, G6P, R5P, SBP, F6P, S7P, pyroglutamate and glutamine;
negative: succinate), building the bridge between the CBC and starch/sucrose synthesis
as substrate for AGPase. Aspartate was among the very few metabolites that negatively
correlated with plenty of other metabolites, including the CBC (benzoic acid, glycerol,
lysine, tyrosine, isoleucine, leucine, hydroxy proline, RusP+Xu5P, RuBP, DHAP, 2PG
and S7P). Apart from known roles in nitrogen assimilation and as precursor for several
other amino acids, the role of aspartate yet remains unclear. The correlated data have
to be handled with care though, as fewer time points were originally considered for the
CBC compared to the central metabolites. This and the fact, that LC- and GC-MS
systems might exhibit different characteristics affecting the output (Stitt & Fernie,

95



Discussion

2003), may have also led to different clustering of aspartate (LC-MS) and aspartic acid
(GC-MS), although the original expression pattern was very similar.

Performing the same analysis without ntrc samples was hoped to identify potential
NTRC-dependent targets in short-term (de-)acclimation to HL
(Supplement Figure 5.1.5). However, there were no striking differences detected,
meaning all before-mentioned observations including all genotypes were pretty much
intact. Nonetheless, taking several other analyses additionally into account
(Figure 3.1.13; Figure 3.1.8; Supplement Figure 5.1.1), a strong correlation of the
sugars fructose, glucose, maltose and sucrose in WT, ¢rxf and trmx were found over the
entire time course in both HL and control plants. This correlation is disturbed in ntrc
treated with HL, giving hints to NTRC regulating carbohydrate interconversion in
environments, where short-termed, high levels of light-energy are available. This
hypothesis is supported by measurements, showing a strong fluctuating starch
turnover in ntrc (Figure 3.1.10). This phenomenon generally seemed to be more
distinct in the mutants than in WT, latter one showing a rising, but stable level of
starch, possibly preparing for the night-time to feed on starch reserves that had been
build up during the day. However, one must say that meaningful starch studies make
particularly sense in short-day conditions (e.g. 8 h light/ 16 h dark, compared to the
present condition: 16 h light/ 8 h dark), when plants are forced to produce even more
starch during the light-period for a prolonged dark-period (Sulpice et al., 2014). This
could be the reason why no significant differences between ntrc and WT were found
within each light condition under long-day, other than under short-day (Thormé&hlen et
al., 2015). Anyway, the findings still indicate that plants lacking chloroplast thiol-redox
regulation, run another strategy than WT plants to coordinate the rate of
photosynthesis and partitioning of end-product synthesis, which is important, as
altering the allocation of amino acids, sugars and starch affects the rate of growth
(Heyneke & Fernie, 2018). This strategy could be due to a higher active carbon
metabolism in plants growing under long-day periods, including also a higher starch
degradation capacity (Seaton et al., 2018). As there i1s evidence for starch degradation
even in illuminated plants (Baslam et al., 2017), thiol-redox deficient plants might
follow this strategy to produce energy and reducing equivalents for growth (Seaton et
al., 2018); however, maltose levels do not really support this idea
(Supplement Figure 5.1.1). Another hypothesis could be that exactly under long-day
conditions, combined with HL, the regulatory properties of the key enzyme in starch
synthesis (AGPase) are differentially changed (Seaton et al., 2018). Lastly, the

phenotypic appearance of at least ¢trxf and ¢trxm did not allow the conclusion of a bigger
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impact of a fluctuating starch metabolism. If these plant lines started into the night
with a lower starch reserve, one could determine the levels and rate of starch and its
degradation by sampling throughout the night to get a fuller picture.

Lastly, alternative carbon storage compounds like fumarate increased during HL but
were also lowered in ntrc compared to WT (Supplement Figure 5.1.1), thus providing
only a limiting source of carbon for growth and recovery under HL (Chia et al., 2000;
Obata & Fernie, 2012; Garcia-Molina et al., 2020); a further observed disturbance in
compatible solutes like putrescine (Akula et al., 2019) and galactinol and myo-inositol,
that were shown to accumulate under HL (Garcia-Molina et al., 2020), might provoke
additional osmotic stress on already affected NTRC KO plants. Interestingly, levels of
glycerol were almost unchanged in ntrc compared to WT, and even increased after the
HL phase, which could suggest an increased lipid metabolism, maybe to satisfy energy

needs in sugar deprived mutant plants.
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Figure 4.1.1. Time-resolved metabolic changes and distribution during HL
acclimation (15 min - 3 h) and de-acclimation (3 h 15 min - 6 h).

HL and ML (Supplement Figure 5.1.4) samples were scaled together to directly compare
changes starting from t0 (ML). Red bar, HL (450 pmol photons m-2 s-1); orange bar, ML (85 umol
photons m2 s-1).
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4.1.4 Redox regulation affects all compound classes

Next, a comprehensive study performing analysis of variance (ANOVA) tests was
applied to ascertain significances within the large metabolomic output that was
gathered. First, single metabolites were tested for significance, relative to WT. GABA
and glycerate were found to be of importance in the de-acclimation phase in all mutants.
Little is known about the glycerate pathway (Igamberdiev & Kleczkowski, 2018),
however many glycerate derivates are connected to serine and photorespiration,
glycolysis and fermentation. Being synthesized from glutamate, GABA is an important
signaling molecule in response to various plant stresses, in modulating photosynthesis,
and acting as a bypass for the TCA cycle in the GABA shunt (Li et al., 2021). Thereby,
GABA functions as nitrogen storage, with a low abundance possibly expressing a
nitrogen crisis, especially in nirc. The biomarker analyses (cf. chapter 3.1.2) support
the available data for GABA and glycerate being striking candidates for further
research in conjunction with NTRC. Beta-alanine and threonine were significantly
changed in nirc at different time points. As a non-proteinogenic amino acid, beta-
alanine is a generic stress response molecule and plays a role in the pantothenate
(vitamin B5) pathway (Parthasarathy et al., 2019). However, since isoleucine and
valine were not significantly altered, this pathway may not be affected in nérc. The up-
regulation mostly reflects stress the plant is experiencing when NTRC is knocked out.
Threonine serves as precursor for branched-chain amino acids, that constitute
important building blocks for proteins (Joshi et al., 2010), therefore in the human diet
as well; changes in the equilibrium of these amino acids have only been reported for
abiotic stresses excluding light so far, so a deeper understanding in our case is still
missing.

The second analysis (Table 4.1.1) however, shows the summary of a linear model. This
very simple model tries to predict metabolic output (response) based on genotype and
acclimation (predictors) in an additive manner (response ~ genotype + acclimation),
assuming the predictors are independent (Gareth et al., 2014). However, variables are
seldomly independent, so that we can speak of an (additional) synergy or interaction
effect. This can be expressed by response ~ genotype X acclimation. In other words, a
change in genotype results in a change in acclimation, and vice versa. For the analysis,
metabolites within single compound classes (amino acids, organic acids and sugars for
central metabolism; phosphorylated metabolites for CBC) were pooled, as simplification
and because these classes comprise a major part of the metabolites analyzed and

thereby explain most of the variance. The creation of a formula including coefficients
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was disregarded. Instead, we focused on p values describing the significance of each
predictor. Single time points were pooled to the respective acclimation phase
(acclimation or de-acclimation), which are constituted as acclimation in Table 4.1.1.
Firstly, the statistical output revealed a constant acclimation effect under ML for every
class of metabolites. This effect seemed not much different from HL. The genotypic
effect receded under HL compared to ML, confirmed previous analyses. There was no
interaction effect (genotype X acclimation) observed. This can be interpreted as follows:
light phases were perceived be all genotypes, but responded to in mostly different ways.
The striking genotypic effect in organic acids for example could be explained by their
excessive down-regulation in ntrc. Although other models might be superior to
represent the current data, our simple model is supported by similar results performing

a 3-way ANOVA, with light as a third factor (Supplement Table 5.1.1).

Table 4.1.1 Summary of ANOVA based of linear regression model
(response ~ genotype X acclimation) involving central metabolism and Calvin-
Benson-Cycle metabolites.

Results are shown as p values. Significances (p < 0.05) are shown in bold. The analysis was done
separately for HL and ML.

HL amino acids organic acids sugar Calvin-Benson-Cycle
Genotype 5.36%10-01 3.46x10-04 1.51x10-02 8.48x10-01
Acclimation  1.36x10-03 5.77x10-09 6.24x10-02 5.05%10-03
Interaction 2.68x10-01 2.96x10-01 2.49x10-01 3.24x10-01
Genotype 3.96x10-03 1.10x10-93 7.00x10-01 3.66x10-02
Acclimation  1.95x10-02 2.03%10-02 4.64x10-02 2.45%10-04
Interaction 4.27x10-01 6.86x10-01 3.34x10-01 9.44x10-01

4.2 Acclimation to fluctuating light takes several days

Regarding photosynthetic acclimation, little was known about the time frame of light
acclimation in plants with or without thiol-redox regulation, which is an important
prerequisite for further studies dealing with acclimation to dissect the short-term and
long-term responses. In the previous chapter (cf. chapter 3.1), shorter term effects on
photosynthesis in the mutants were investigated, responding to quick dark/light
changes or changes between HL and ML in the range of minutes to hours. Fluctuating
light comprises a more natural light source, simulating sun- and light-flecks or moving
canopies shading leaves on lower leaf levels, and is nowadays a favored stimulus to test
plant physiology and acclimation responses (Alter et al., 2012; Grieco et al., 2012;
Armbruster et al., 2016; Kaiser et al., 2017; Thormé&hlen et al.,, 2017;
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Slattery et al., 2018; Schneider et al., 2019). To start simple, plants were grown in the
lab scale in a controlled environment for optimal reproducibility allowing to draw
coherent and unambiguous conclusions about acclimation mechanisms. Here we
wanted to precisely document the progressive adjustment of WT to FL, on the scale of
hours to days, and the respective roles of TRXf1, TRXm1m2 and NTRC in acclimation
to FL by measuring photosynthesis via chlorophyll fluorescence.

Thorméahlen et al. (2017) showed that TRXs m1 and m2 as well as NTRC are both
indispensable for photosynthetic acclimation in fluctuating light. However, measuring
PSII performance, this experiment was amended by 1) increasing the measuring
frequency, i1) adding frxf as novel target and iii) looking specifically at the individual
operating parameters of chlorophyll fluorescence of light adapted plants (F', Fm’, Fo’)
under rapid fluctuations, to calculate ®@ II, NPQ, which is tightly correlated to stress
(Guadagno et al., 2018), and the redox-state of PQ, that is — different to NPQ —
important for the LTR (Wagner et al., 2008; Briautigam et al., 2009). Our results
showed, that the short-term acclimation (starting-time to to 3 days) appeared to be a
sequential process, whereby an increase in @ II during the HL phase and a decrease
during LL in all genotypes was observed, except in ntrc. Regarding the transitions from
the LL to HL phase of FL, it appears that TRXf and TRXm might have overlapping yet
distinct functions in priming and stabilizing @ II in the course from to to 3 days after
the shift from ML to FL. Coming from HL to the LL phase, TRXm seemed to negatively
regulate @ II and PQ reduction (cf. chapter 3.3.1 for similar results). PQ reduction
peaked and stabilized already after 3 days in ntre, pinpointing to a premature steady
state in acclimation, compared to WT. This can be interpreted as an incipient inhibition
effect. We concluded that stunted growth and inhibition effects due to NTRC deficiency
might disrupt early acclimation responses to FL, making NTRC a compelling integrator
of cell signals governing early light acclimation. All in all, our observations in longer-
term acclimated plants (3 days to 7 days) were quite consistent with findings of
Thormahlen et al., 2017, showing a decrease in ® II in nitrc due to over-accumulation
of electrons in the photosynthetic chain (increased PQ reduction) (Figure 3.2.1). We
also saw the same increase in @ II in ¢rem during the HL subsequent LL phases.
Further, a novel short-lived fluctuation of ®@ II in all mutants during that very light
cycle was noticed, which may be due to the illumination with a lower average light
intensity. These fluctuations, however, seemed not to disrupt further quantum
efficiency. Walters & Horton (1994) showed, that following a transition from HL to LL,

changes in Fv/Fm were largely complete within 3-4 days. From our data we concluded
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that acclimation to FL takes at least 4 days in the WT and that NTRC might constitute

an early and central hub to ensure the full range of dynamic acclimation towards FL.

4.3 Thioredoxin m and NTRC are key protagonists for the long-term

response to changing light environments

In the last part of the results (cf. chapter 3.3), acclimation responses in WT and TRX
mutants were investigated, when dealing with longer-term light shifts from ML to
either HL,, LL or FL, to primarily monitor changes in photosynthesis, metabolite pools
and protein abundances and therefore infer the respective in vivo roles of TRXf, TRXm
and NTRC in response to changing light regimes. As a consequence, we would further
elicit the role of the prevailing LL intensity in FL. (Morales & Kaiser, 2020) and were
able to directly compare @ II of ML and FL grown plants, because of measuring them
under the same average light intensity. The robustness and reproducibility of the GC-
MS protocol (Lisec et al., 2006; Obata & Fernie, 2012) allows for perfect comparison of
short- (cf. chapter 3.1 & 4.1) and long-term (cf. chapter 3.3 & 4.3) effects within present
work. Moreover, light intensities were higher, compared to the previous chapters.
Although reports described a limit for beneficial photosynthetic active radiation, being
destructive or inhibitory when in excess (Bailey et al., 2004; Garcia-Molina et al., 2020),
growth and treatment lights were chosen that still guaranteed observable and
beneficial growth and acclimation responses in WT (Walters, 2005; Thorméhlen et al.,

2017).

431 Photosynthesis is affected by NTRC and Thioredoxin m,

but not Thioredoxin 7

Determining Fv/Fm as a measure of acclimation capability, Thorméahlen et al. (2017)
revealed a recovery in WT after shift from ML to FL after 10-day period, while Fv/Fm
was found to be continuously lower under HL. Acclimation of trxm was mostly WT-like
in FL. In HL, both ¢rexm and nitrc showed a from WT significant different acclimation
response. Our study revealed no potential photo-inhibition of PSII under ML, LL and
FL in all genotypes, except for nirc, which seemed to be unable to fully acclimate to FL,,
thus being in line with the above-mentioned study. All genotypes showed a lower Fv/Fm
under HL, that did not recovery to starting values after 10 days. We concluded that nirc
failed to acclimate to both FL. and HL, being more severely affected by the latter one
than previously shown. TRXf and TRXm were shown to be of minor or no importance

in stabilizing Fv/Fm.
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Comparing photosynthetic performance and quenching parameters (® II, NPQ) as well
as the PQ redox states in MLL and FL acclimated plants (Figure 3.3.5), we found out,
that 1) there is some form of LTR in FL acclimated plants, ii) this response is specific
for TRXm, but not TRXf, and iii) most profound in NTRC deficient plants. Further,
changes in the mutants after HL. adaption pointed to a similar significance of the redox
system compared to FL acclimation. As already seen, the reduction of PQ in ntrc
increased when FL adapted, leading to a severe electron accumulation within the
electron transport chain (ETC). Electrons not used for photochemistry and being
uncontrollably quenched act harmful on PSII (Eberhard et al., 2008). Although
controlled quenching (NPQ) is not involved in acclimation, it becomes more important
with increasing light intensities to fully dissipate excess energy as heat (Wagner et al.,
2008), meaning ntrc is likewise increasingly affected by photo-inhibition. In FL
acclimated plants, the HL phase of FL seemed to lead to an impaired relaxation of NPQ
in the following LL phase in all genotypes; however, NTRC seemed not to play a role in
NPQ during this HL phase. Although they showed an elevated baseline a priori, NPQ
still significantly increased in HL acclimated nirc mutant plants, supposing the need
for NTRC in fast energy-quenching under HL. In addition, NPQ kinetics, including
relaxation, generally worked as expected in HL acclimated plants, compared to FL for
example. Most considerably, all genotypes except ntrc could keep up an overall high
rate of @ II, indicating a role of NTRC in maintaining beneficial PSII photochemistry
and balanced energy-quenching especially in irradiances limiting photosynthesis (i.e.
FL and HL) (Guinea Diaz et al., 2020). PQ redox states in trxm were more oxidized in
ML, FL and HL, relative to WT, presumably leading to an efficient photosynthetic flow
as recorded, especially in FL. We concluded that TRXm might act as a negative
regulator of photosynthesis in FL, while its influence is limited to the light-reactions,
as these ostensible improvements in the mutant did not influence sugar and starch
levels (Supplement Figure 5.3.3) or growth (cf. chapter 3.3.1). Finally, levels of ® II
in the LL phase of LL grown plants were higher than of those grown under FL and even
higher when HL acclimated; @ II during the HL phases was comparable (low) among
the different conditions. Taken together, this means that constant HL acclimation
primes the plants to yield a better quantum efficiency at least under short-term
fluctuations. Lastly, since acclimation to FL, HL or LL yield different photosynthesis
phenotypes, the role of the prevailing low background light intensity cannot be
explicitly concluded (Morales & Kaiser, 2020). Regarding the differences in duration of
the HL and LL phases of FL, respectively (1 min HL, 4 or 5 min LL; cf. chapter 3.2 &
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3.3), we could not observe striking differences in acclimation responses, further
questioning the impact of the LL phase in FL. (Morales & Kaiser, 2020).

ETR measurements showed, that WT plants operate on different levels to cope with
various light stresses; a limitation at higher intensities in LL grown plants was obvious,
because the existing proteome cannot sustain high energy fluxes (Mettler et al., 2014),
most probably due to downwards adjustment of light-harvesting and -processing
mechanisms; HL plants on the other side showed an increased tolerance to both HL
and LL. The results further elucidated the distinct roles of TRXs and NTRC in
regulating accurate ETR; whereas there were only subtle changes in ¢rxf and trxm
compared to WT, NTRC is needed to fully activate proper electron flow in both low and
high actinic light when pre-exposed to either ML, FL,, HL or LL. In summary, NTRC
appears to be a key component in effective ETR in all light regimes tested, while ETR

is regulated with very little TRX involvement.

4.3.2 Thioredoxin mand NTRC modulate the metabolome and proteome

A lot of metabolic studies in plants focus on abiotic factors like salt stress or drought
and spared experiments on light as external stimulus (Carrera et al., 2021). We followed
a different research rationale by studying the long-term acclimation responses of WT
and thiol-redox-deficient plants to various light regimes, altering light intensities, and
examining the metabolome and proteome, being closest to the phenotype than the
genome or transcriptome (Hollywood et al., 2006). Moreover, specific metabolites can
control enzyme redox-states and consequently activities and therefore lead local
metabolite pools and fluxes into a newly adjusted steady state (Knuesting & Scheibe,
2018). Further, as outlined in the introduction, system-wide analyses are useful to
break down acclimation processes and to concurrently ensure that prospective, targeted
modifications, that make particularly sense in longer-term acclimated plants, occur
with minimal trade-offs (Garcia-Molina et al., 2020).

Redox signaling downstream of PSI (NAPDH, thioredoxins, sugars etc.) is considered
to transport information to the nucleus (retrograde signaling), triggering short- and
long-term cell responses; thus, it is relatively obvious to thoroughly investigate these
“primary signals” in a redox-compromised background (Dietz, 2015). Metabolic
adjustments can hereby be considered as low to moderate acclimation responses.
Greater imbalances in ROS, ascorbate or phytohormone levels could lead to more severe
consequences such as cell death. Although metabolite changes in ntrc appeared to be

quite extreme with no adverse consequences whatsoever, even under challenging light
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conditions, metabolite levels of trxm and especially trxf were nearly WT-like in all

conditions. These changes are going to be discussed in the following.

4.3.2.1 NTRC controls carbon and nitrogen metabolism

According to the above mentioned, we found large overlappings between WT and TRXf
and TRXm deficient plants, but metabolic difference increased when knocking out
NTRC (Figure 3.3.7). To begin with, nicotinic acid, which is part of the NAD(P)
biosynthesis pathway (Pollak et al., 2007), and glycerol appeared to be of more
importance in this mutant. The heat map analysis (Figure 3.3.8; Supplement Figure
5.3.1) indeed revealed elevated nicotinic acid and glycerol levels; latter could imply an
elevated lipid metabolism due to a diminished sugar metabolism. Since the levels of
both metabolites are significantly increased in almost every condition, it could also
mean that NTRC might be involved in their regulation. In fact, research on NTRC and
lipid metabolism is most widely missing.

The heat map and distribution analyses serve as representation for mean value
comparisons; together with statistics (cf. chapter 5.4) they are powerful tools to detect
important metabolic hubs in the context of light-dependent redox regulation. The
results clearly showed a profound impact of NTRC in central metabolism in every light
regime, disrupting an else sturdy carbon and nitrogen metabolism. The ponderous
overall down-regulation of amino acids in every light regime, including important
progenitor compounds and biomarkers for nitrogen like glutamine, aspartate and
asparagine (Hildebrandt et al., 2015; Han et al., 2021), uncovered a systemic failure to
build up a multitude of subsequent amino acids when NTRC is lacking. Further, 48 out
of 59 central metabolites were significantly affected in HL. It is supposed that the
metabolism already compromised in control conditions in ntrc is even exacerbated
under HL. Interestingly, but not surprisingly, protein content was not significantly
affected in ntre relative to WT (Figure 3.3.27), as this would imply serious trouble for
the plant to survive. However, we concluded, that protein turnover then might be
stabilized by depleting the remaining pool of free amino acids, which was certainly
detected (Figure 3.3.8), to satisfy the needs of a beneficial homeostasis. Although ntrc
was shown to have normal energy-state levels (Thorméhlen et al., 2015), an inter-
conversion of amino acids is more likely than costly and novel biosynthesis, also
considering the deficit in precursor compounds. At the last, comparing the role of NTRC
in leaf tissue and developing fruit metabolism, where amino acids are down- and up-

regulated, respectively, seem to be highly distinct (Hou et al., 2019).
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Regarding the CBC, which is tightly linked to the light reactions, acclimation to LL had
no deteriorating effect on ntrc, compared to ntrc under ML whereby metabolites seemed
to adapt to WT levels under FL (Supplement Table 5.4.9; Supplement Table 5.4.8).
However, it became apparent, that FBP and SBP were severely affected (accumulated)
by NTRC deficiency, which points to a massive impediment in the entire CBC
regardless of the light environment, supporting a regulatory role of NTRC on SBPase
in vivo (Geigenberger et al., 2017; Guinea Diaz et al., 2020). With respect to the other
mutant lines, we saw, apart from the known and likewise bottleneck at FBP/FBPase in
trxf, no substantial significances in trxf. Interestingly, the acceptor molecule RuBP was
significantly increased in trxm under LL, possibly leading to a blockage in COz fixation
as well. This leads to the conclusion, that CBC targets might be tackled by different
TRX systems and isoforms, depending on the light condition. Despite of the
accumulation of SBP and FBP in ntrc, however, concentrations of CBC intermediates
between WT and the mutants under FL were very much alike, suggesting that the CBC
might play a minor role in acclimation to FL than previously thought. Thereto, protein
levels of SBPase were not significantly affected. Nevertheless, SBPase was shown to
have remarkable control over the CBC, especially on the PTM level (Harrison et al.,
1997; Raines et al., 1999; Raines, 2003; Yoshida & Hisabori, 2018; Hammel et al., 2020),
that might explain performance and growth in ntrc for the most part.

Although TRX isoforms f and m operate in the chloroplast, plastidial metabolites
seemed to be concomitantly altered with cytosolic and even with mitochondrial
metabolites (e.g. citric acid, lactic acid) in TRX deficient plants (Supplement Figure
5.3.1), leading to the conclusion, that TRXs, in line with their pleiotropic trait, might
mediate a crosstalk between organelles. In this context, a recent study revealed an
important role of TRXm in maintaining the chloroplast redox poise by exporting malate
into the cytosol (Thorméhlen et al., 2017), which can be metabolized in the mitochondria
to eventually produce ATP (Yamori, 2016). Well-studied communication relays mostly
include compartment-spanning gene expression, however, other examples integrating
metabolism are conceivable (Pesaresi et al., 2007). Regarding the connection between
sink- and source tissues, an increased phloem loading with transport sugars like
sucrose towards other tissues is lastly also very unlikely to explain low leaf sugar levels
in ntrc (Hou et al., 2019).

The biomarker analysis imposingly identified metabolites, that help discriminate
between control (WT) and treated (mutant) sample. Translated from human studies,
this could mean that using Table 3.3.1 for instance, helps to identify plants “suffering”

from loss of NTRC. It further serves as a quantitative measure complementing the
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visual representations, pinpointing to several metabolites, which expressions are
completely declined after loss of NTRC, irrespective of the light condition. This could
be hypothetically further used to create lists of biomarkers, describing genetic mutants,
when no genetic tools are at hand, but moreover imposes the examination of related
pathways in future studies. Myo-inositol, that has been shown to be repeatedly
diminished in redox-deficient plants (Thormé&hlen et al., 2015; Hou et al., 2019) and is
expected to be elevated in WT under HL: though (Obata & Fernie, 2012), constitutes a
fine example of the limited use of photo-assimilates in down-stream cellular processes,
when NTRC is missing. The role of NTRC and the properties of inositol-3-phosphate
synthase, converting G6P to myo-inositol, might be worth investigating (Loewus &
Murthy, 2000), as inositol-3-phosphate synthase transcripts were further shown to
negatively correlate with biomass (Sulpice et al., 2009).

Again, it was attempted to find more general models, explaining the metabolic states
in total, grouped by different compound classes (Table 4.3.1). Compared to the previous
statistical approach (cf. chapter 4.1; Table 4.1.1) the results clearly show an overall
consistent and highly significant effect of both the genotype and light on metabolism;
the former might be prevalently attributed to NTRC (deficiency). Interestingly,
interaction effects were observed, too. On metabolite level, this indicates a strong, yet
unidentified, mutual relationship of the thiol-redox system and long-term light

adaption processes.

Table 4.3.1 Summary of ANOVA based on linear model (response ~ genotype + light +
genotype X light) involving central metabolism and Calvin-Benson-Cycle metabolites.
Results are shown as p values. Significances (p < 0.001) are given in bold letters.

Predictor amino acid organic acid sugar CBC
Genotype <2.00x10-16 2.07%x10-07 <2.00x10-16 4.82x10-%4
Light <2.00x1016 <2,00x10-16 <2,00x10-16 1.59x10-04

Interaction 1.27%10-14 7.48x10-06 < 2.00x10-1¢ 3.66x10-02

Correlation analysis in WT revealed large and stable hubs within the central
metabolism and the CBC, respectively, which seem to operate largely independently
from each other and from environmental light stimuli as well (Supplement Figure
5.3.8). We concluded, that WT does not present of lot of metabolic changes to changing
light intensities, particularly in central metabolism. NTRC deficiency however shatters

calculated correlations and thus might disrupt associated metabolites and pathways
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observed in WT, regardless of the light regime (Supplement Figure 5.3.9). This on
the other hand might also give the opportunity to study new NTRC targets.

Due to the measurement of relative abundances in GC-MS based metabolites, we could
not calculate metabolite ratios like lactate/pyruvate for example, which would help to
track the route of carbon utilization and energy production outside the chloroplast.
Succinic- and fumaric acid, however, were found to be in similar ranges in ntrc
compared to WT, probably allowing the TCA cycle to run quite consistently. Specific
enzyme activity assays could shed further light on these questions (Stitt & Gibon,
2014). However, at least sugars levels were not indicative of any perturbations in

metabolic cycles (Weiszmann et al., 2018).

4.3.2.2 Redox processes are important for light acclimation

Figure 4.3.1 summarizes the metabolome and proteome results together. It underlines
the observation, that WT barely adjusts the central metabolism to changing light
environments. Only in HL, WT (and #rxf and ¢rxm) plants activate metabolism and
synthesize the bulk of organic acids, amino acids and sugars. The figure further clearly
1llustrates and corroborates previous observations, that most protein changes occurred
in ntrc under HL, relative to WT, whereas the overall least changes happened in #rxf,
followed by trxm. In this context, any previously reported significances regarding
chaperonin 60 subunit B1 and B2 for instance could not be detected (Fernandez-
Trijueque et al., 2019). However, intriguingly, NTRC and also TRXm deficient plants
adjusted only little on protein level respecting all light conditions. Although these
mutants show a similar idle behavior adjusting protein levels even in the same
categories under HL, ntrc showed larger and more extreme changes relative to WT. The
fewest significances were calculated for TRXf deficient plants, relative to WT, guiding
further focus on the role of NTRC in protein adjustments. In summary however, despite
exhibiting the most significant changes among the mutants, disruption of NTRC
entailed a complete restriction of proteomic adjustments, especially under HL.

WT differentially expressed proteins in response to HL by up-regulating stress
responses and CBC enzymes and down-regulating translation and photosynthesis,
latter probably to save capacities being invested in other processes (e.g. stress control)
(cf. chapter 3.3.3.3). Further, most absolute significant changes occurred in HL, while
in FL. more plastidial proteins were altered compared to HL (Figure 3.3.18). Taking
LL into account as well, it was found that the key driving force of light acclimation in

WT were indeed redox processes, especially in the chloroplast (cf. chapter 3.3.3.2). This
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underscores our efforts to study plastidial thiol-redox-dependent acclimation responses

to changing light regimes.
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Figure 4.3.1. Overview of metabolic and proteomic changes in WT, trxf, trxm and nitre
in different light conditions.

In each category all variables were pooled and standardized across all light conditions to form
the ridgeline shaped curves, expressing the density of changes within one sample compared to
other samples.

4.3.2.3 NTRCis a central player to regulate protein adjustments

Significances in protein abundance calculated for ML and FL included minor changes
in photosynthesis, CBC or electron transport. As discussed before, these changes might
not substantially influence performance in nirc relative to WT. However, NTRC
appeared to be very important to counter-balance deficiencies under HL by a massive
up-regulation of anabolic and biosynthetic processes; overall 272 proteins were
significantly affected. It was found, that especially proteins involved in protein
synthesis, predominantly ribosomal proteins, were greatly enhanced, compared to WT,
at the trade-off of redox- and other processes (cf. chapter 3.3.3.4). Activation of cytosolic
ribosomes seemed to be over-represented compared to plastidial ones. A follow-up
experiment, recording little translation output in the chloroplast (cf. chapter 3.3.4),
supports the idea of the chloroplast playing a minor role in protein synthesis in NTRC
deficient plants. Although some processes on protein level might be activated under HL,

compared to WT, little change is achieved compared to other light conditions. Regarding
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this and taking previous metabolomic analyses together, we concluded, that
acclimation responses are entirely suspended in nirc, even when they would be of most
importance under HL. A functional promiscuity of NTRC (Jeffery, 2003; Chae et al.,
2013), assigning a chaperone function apart from a reductase activity under HL and
emphasizing the complexity and outreach of NTRC, might be responsible here.
Moreover, evidence was found for NTRC being a potential hub, orchestrating and
possibly regulating different enzymes all over the cell (cf. chapter 3.3.4) (Vandereyken
et al., 2018). An intriguing candidate for further studies might also be chloroplast CBS
domain-containing protein CBSX2 (AT4G34120), which was not detected under FL, but
found highly significantly down-regulated under ML, HL and LL, playing a role in cell
redox homeostasis (Yoo et al., 2011). One should also pay close attention to PETE
(AT1G76100), that was down-regulated under all conditions as well. PETE is not a good
indicator of electron flux in Arabidopsis though, compared to other plant species.
However, it was increased in WT under HL and LL, relative to ML, and might serve
some additional, yet to be determined, functions, apart from a known role as a copper
storage protein (Schottler & T6th, 2014).

Although ntrc could not draw on sufficient reserves in form of sugars or amino acids for
growth, the mutant could sustain a normal level of functional total proteins to control
all necessary cell functions in order to survive (Figure 3.3.27). In the same way, it was
surprising to find little explanation of the severe ntrc phenotype under FL on proteomic
level; here only 41 proteins were significantly affected. However, three of them were
highly significantly up-regulated: B-glucosidase (AT3G09260), chloroplastic LOW PSII
ACCUMULATION 1 (AT1G02910) and alternative NADH dehydrogenase
(AT5G08740) (Table 3.3.3), two of which were found in plastids and important in
photosynthetic electron flow, that might be worth further investigation. Nevertheless,
1t is questionable, if this retarded FL phenotype in nirc considerably relies on proteomic
changes. Under LL, ntrc exhibited a significant change in as many as 145 proteins.
Functional analyses (e.g. over-representation of GO terms) with such a low number are
meaningless though, however, a significant down-regulation of some PSI subunits was
detected. In the CBC, there were no protein changes detected. Summarized, NTRC
appears to be an important and multi-layered protagonist in light acclimation,

especially under HL.

4.3.3 Thioredoxin and NADPH-dependent thioredoxin redundancy is debatable

A biological principle known as guilt by association states that genes with related

functions tend to share functional properties (Gillis & Pavlidis, 2012). Combined with
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reverse genetics, they provide a powerful tool for elucidating chloroplast functions
(Armbruster et al., 2011). Transferred to our case, the diversity of the Fd-TRX system
suggests a functional specificity for the different isoforms present in plants (Fernandez-
Trijueque et al., 2019). Our results from chlorophyll fluorescence and total protein
changes (cf. chapter 3.3.5) in fully acclimated KO-plants corroborate this assumption
rather than that of a redundant system. We concluded that TRXs f and m have distinct
effects on single photosynthesis parameters, but still rather serve in their fine-tuning
than playing a more significant role. This is rather not surprising, since the set of
mutants used here do not represent the conventional genetic tools to dissect
photosynthesis in the scope of the light reactions. NTRC on the other hand, showed a
significant and beneficial effect in acclimation to FL earlier (Thorméhlen et al., 2017),
which could be reproduced and detect in HL. and LL as well. Nevertheless, as prime
acceptors of photo-energy, the FTR and FNR system entail a feedback-regulation to the
thylakoid reactions, with TRXs and NTRC being deleted, allowing energy to be
accumulated in alternative sinks and components with limited capacities, causing
detrimental effects on various cellular functions.

Regarding metabolites and related enzymes, the single and cooperative roles of TRXf
and NTRC in regulating FBPase have been demonstrated before (Thorméhlen et al.,
2015). Our data showed that while FBP is accumulated under all conditions in nirc,
indicating a missing activation of FBPase via NTRC, TRXf seemed to matter most in
FBPase regulation under ML and HL: (Figure 3.3.11). Further, WT and ¢rxf levels of
FBP were similar under FL, and (probable) functional TRXf seemed not to compensate
the loss of NTRC or to restore CBC flow around FBPase in ntrc, indicating a minor role
of TRXf and a bigger role of NTRC in CBC activation under FL (Figure 3.3.12) and a
limitation of compensatory roles between the TRX- and NADPH-dependent TRX-
system (cf. chapter 4.3.2.1). Also, a potential bottleneck in CO: fixation was noticed,
revealing an accumulation of RuBP under LL, affected by disruption of TRXm. Lastly,
the overview in Figure 4.3.1 underlines the role of NTRC under moderate and little
light, possibly rerouting photosynthetic electrons preferably via the FNR system into
the CBC in conditions with little photo-chemical energy.

4.4 Outlook

Our methodology was confined to the principles of basic research by exploring and
describing photosynthetic active organs and cells, where established high-throughput,
quantitative small- and larger-scale studies were conducted, measuring protein levels,
centralized metabolism, photosynthetic efficiency and specialized chloroplast
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metabolism to get in-depth insight into metabolic switch points and bottlenecks and
learn more about thiol-redox regulatory involvement in photosynthesis and cellular
carbon reactions. Whilst marginally presenting the prospect of in-field application to
potentially levering crop yields, biomass and plant resilience upwards, the results are
also qualified to be reviewed under the aspects of systems biology (Deshmukh et al.,
2014), from where new hypotheses and innovations can be derived.

Based on our results, we postulated a lower-ranking role of TRXs and NTRC in
photosynthesis when plants are challenged with moderate, short-term fluctuations
from ML to HL, but a substantial necessity for TRXm and NTRC to balance
photosynthesis during rapid fluctuations under higher light intensities. In this context,
however, a (thio)redox(in)-dependency of photosynthetic state transition guided by
STN7 kinase, managing short-term and long-term responses to FL environments, is
still one of the greater questions photosynthesis researchers try to solve. Its dissection
involves sophisticated approaches, including site-directed mutagenesis of potentially
entangled cysteine residues for instance (Shapiguzov et al.,, 2016). Latest studies
described STN7 activity under diverse physiological stresses and genetic backgrounds
by LHCII phosphorylation (Ancin et al., 2019), leaving direct interaction mechanism
still unresolved. Future research needs to determine clear mechanisms to find out how
redox signals are integrated to modulate STN7 activity and therefore photosynthetic
state transition.

Next, instead of light intensity, different light qualities could be applied to further study
acclimation programs, as well as altering the duration of the single phases in FL (Bailey
et al., 2004; Morales & Kaiser, 2020; Walters, 2005; Walters & Horton, 1994). Also,
limitations in abiotic factors can be cross-linked (Carrera et al., 2018); LED technology
does not emit heat, however a rise in NPQ produces heat within the cell, especially in
HL environments, which might be an appreciable point for future research. This study
covered short- and long-term acclimation programs such as photosynthetic energy
quenching, electron- and metabolite flows and proteomic adjustments. Although
transcript abundances should not be extrapolated to that of protein abundances, and
although the majority of acclimation processes are regulated at the PTM level
(Eberhard et al., 2008), long-term acclimation studies could be supported by
transcriptional analyses (Kolbe et al., 2006). In that respect though, redox-proteomics
may even be a superior approach to confirm existing or discover novel TRX targets, but
most importantly to understand regulatory dynamics in fluctuating environments
(Rinalducci et al., 2008; Navrot et al., 2011; Wojdyla & Rogowska-Wrzesinska, 2015;
Yang et al., 2016; Zaffagnini et al., 2019).
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Further, it will be a challenging yet illuminating task to verify our calculations of linear
correlations between selected central- and CBC metabolites and to link our data with
veritable biochemical processes (Négele, 2014). Finally, the omics data and enzyme
kinetics could be combined in perspective to most appropriately describe co-regulations
and the relationship to the underlying genotypes (Gibon et al., 2004, 2006; Glinski &
Weckwerth, 2006) and — in case of NTRC as a potential hub in photosynthesis and
cellular reactions — to increase the reliability of predicted or preliminary data on
protein-protein-interactions (Vandereyken et al., 2018). Data interpretation could be
therefore promoted by overlapping metabolites with corresponding enzymes (Wienkoop
et al., 2008). Although our evaluation of the metabolite modules might be incomplete
up to this point, we cannot exclude the presence of key factors connecting the —
according to our understanding — distinctively operating metabolic networks of central
and CBC metabolism. Further, if the FTR and FNR system are to be investigated more
thoroughly, an induced and targeted knockout or silencing of TRXs and NTRC,
augmented with flux studies and enzyme kinetics, are indicated as complementation,
due to the complex pleiotropic effects of thiol-modifying thioredoxins (Stitt & Fernie,
2003). Alternatively, plants over-expressing NTRC were shown to gain overall fitness
(Toivola et al., 2013; Nikkanen & Rintamaéiki, 2019; Guinea Diaz et al., 2020), which
could be implemented, too. Therefore, enriching central modulators like NTRC,
combined with targeted modifications (Deshmukh et al., 2014; Koéhler et al., 2017,
Kaiser et al., 2018; Slattery et al., 2018; Hammel et al., 2020) in different light regimes,

has the potential to fuel plant growth and improve crop yields.
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Supplement Figure 5.1.1. Kinetics overview of central- and CBC metabolism under
short-term HL (de-)acclimation in WT, trxf, trxm and ntre.
Metabolites with capital letters are LC/MS based and given in pmol/pg protein. Lower case
metabolites are GC/MS based and given in arbitrary units. The red area indicates the HL
acclimation phase. Values are shows as mean, n=3-5 biological replicates.
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This graph corresponds to Supplement Figure 5.1.1 and serves as a control, where samples
were grown and harvested under ML. Metabolites with capital letters are LC/MS based and
given in pmol/pg protein. Lower case metabolites are GC/MS based and given in arbitrary units.
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Supplement Figure 5.1.3. Scatter plot matrix of selected metabolites in HL (de-

)acclimated samples.

(A) Scatter plot of each pair with Pearson correlation value and significance; red, locally
estimated scatterplot smoothing; blue, linear model; significances are labelled with asterisks
(*0.01<p<0.05,*0.001 <p<0.01, *** p <0.001). (B) Scatter plot with density plots indicating
genotypic effects on each metabolite and supports additional insights into each relation. The
matrices were generated with R package “ggpairs”.
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Central Metabolism Calvin-Benson-Cycle
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Supplement Figure 5.1.4. Time-resolved metabolic changes and distribution of control
(ML) plants.

HL (Figure 4.1.1) and ML samples were scaled together to directly compare changes starting
from to.
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according to Ward’s method (R package “corrplot”).
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Supplement Table 5.1.1. Summary of ANOVA based linear model (response ~ genotype
x light X acclimation) involving central metabolism and Calvin-Benson-Cycle
metabolites.

Results are shown as p values. Significances (p < 0.01) are given in bold.

Predictor sugar organic acid amino acid CBC
Genotype 5.6x10-2 2.0x10-7 3.1x10-1 8.8x102
Light 7.8x10-12 1.3x10-3 2.0x10-16 6.5x10-10
Acclimation 3.8x10-11 2.0x10-16 2.0x10-16 1.7x10-5
Genotype x Light 2.3x101 9.5x101 7.8x101 5.5x101
Genotype X Acclimation 5.1x10-2 3.1x10-2 1.6x101 6.7x101
Light X Acclimation 2.5x10+ 1.4x10-3 6.2x10-11 4.9x10-3
Genotype x Light x 3.8x10-1 6.3x101 6.5x10-1 8.9x10-1
Acclimation
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5.2 Photosynthetic acclimation to fluctuating light
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Supplement Figure 5.2.1. Full kinetics of
chlorophyll fluorescence measurement in
FL treated WT, trxf, trxm and ntrec.

A. PSII quantum yield. B. NPQ. C. red. PQ.
Plants were grown for 3 weeks in ML at a
photoperiod of 12 h and 125 pmol photons m-2
s't and grown for one further week in FL (1 min
HL, 500 pmol photons m2 st; 5 min LL, 50
umol photons m-2 s1; @ 125 umol photons m-2 s
1). Dark-adapted (30 min) plants were put
under actinic fluctuating light similar to the
regime in the FL growth chamber and
repeatedly measured before the shift (to) up to
7 days after the shift. Light grey bar, LL (50

umol photons m-2s1). Grey bar, HL (500 pmol
Iln photons m-2s-1). Black bar, dark.
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5.3 Long-term acclimation responses
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Supplement Figure 5.3.1. Log2-fold changes of GC-MS based central metabolites in
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Supplement Figure 5.3.2. Overview of GC-MS based central metabolism in fully

acclimated WT, trxf, trxcm and ntre.
Shown are the pooled mean values across all genotypes. Values are in arbitrary units.
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Calvin-Benson-Cycle
LC-MS - All light conditions
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Supplement Figure 5.3.4. Overview of LC-MS based metabolites in fully acclimated
WT, trxf, trxm and ntre.
Shown are the pooled mean values across all genotypes.
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Supplement Figure 5.3.5. Overview of LC-MS based metabolites in fully acclimated
WT, trxf, trxm and ntre.
Shown are the pooled mean values across all light conditions.

123



Supplement

log2 FC
[ )
4 -2 0 2 4
ML FL HL FLLL HL LL

] ] ]

FBP

DHAP

R5P

F6P

G6P CBC
G1P

S7P

2PG

Ru5P+Xu5P

RuBP

UDPG

CHS
ADPG

ADP

AMP misc

shikimate

@@ & EEE S S e e

Supplement Figure 5.3.6. Log2-fold changes of LC-MS based metabolites in trxf, trxm
and ntre, relative to WT.

CBC, Calvin-Benson-Cycle; CHS, carbohydrate synthesis; misc, miscellaneous.
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Supplement Figure 5.3.7. Overview of LC-MS based metabolites in WT, ¢rxf, trem and
nitrc.

Results are shown as boxplots in pmol/pug protein, n=3-5 biological replicates.
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Supplement Figure 5.3.8. Correlogram of central metabolism and CBC metabolites in

WT.

Biological replicates were combined from ML, FL. HL, FL LL, HL and LL and analyzed with R
package “corrplot”. Positive correlations are shown in white, negative correlations are shown in
black. Non-significant correlations (threshold p < 0.01) are shown in light blue/blank. Samples
are ordered according to Ward’s method. Detailed information can be found in the text.

125



Supplement

- Py
2 ~ §
@ @ SO

3 & I e

S & > 56

o\ o & > o8 oo

§  Sow 2 o Kidiond o8

R X" Lok (GRS S L o S &0 So9S & o 2 L voy
F R SRS TOR 99, 200l SRR EE o e dIRe® & & £ sRe

S % SRRSO ESSIS N SR, NARSZES J
3 S R S S R S P N S A S R SRS T A PO ERR ¢
glycerol
FBP L]
L)
G6P
Rgp
0
u ° 000 [ )
DHAP ° 06
Ru5P+XuSSF;P ° ee o o
L L L
2PG (2 ph hShirim?tet )
phosphoglycolate). e O L]
citric acid e ©
ADPG
ADP
MP
4-hydroxy-proline (]
" raffinose
sugar (similar-raffinose )
galactonic acid.
glucuronic acid
alanine
pyruvic acid
ascorbic acid
methionine
glyceric acid (Y )
proline
fructose
glucose
glycine
sucrose.
benzoic acid
maltose
asparagine.
aspartic acid
fucose,
succinic acid_ ®
threonic acid_
malic acid
pyroglutamic acid.
glutamic acid_
fumaric acid
glutamine
ornithine
utrescine
eta-alanine
threonine
urea
arginine
myo-inositol
phenylalanine
adenine
galactingl
guanidine
lactic acid,
nicotinic acid_
2-oxo-glutaric acid
histidine
. phcs?horlc acid
sugar (similar otrehaloseL
aba
serine
tryptophan
leucine
rhamnose
tyrosine
. Ilysme
isoleucine
valine

dehydroascorbic acid
dehydroascorbic acid dimer
-acetyl-serine

-1

Supplement Figure 5.3.9. Correlogram of central metabolism and CBC metabolites in

ntrc.

Biological replicates were combined from ML, FL. HL,, FL. LL, HL and LL and analyzed with R
package “corrplot”. Positive correlations are shown in white, negative correlations are shown in
black. Non-significant correlations (threshold p < 0.01) are shown in light blue/blank. Samples

are ordered according to Ward’s method. Detailed information can be found in the text.
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Supplement Figure 5.3.10. Comparison of present and missing peptides in different
light conditions.
Generated with R package “visdat”.
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(A) LL. (B) FL. Generated with MapMan.

Cell division @ I
8 o e

e
{

RNA processing|

L Aaazasm

Requation of
Transciiption

RNA synthesis RNA synthesis [RNA processing

Regulation of
Transcription

=
—

127



Supplement

Heatmap of Thioredoxin Family
TRXY2-
TRX X -

TRX M4 -
log2.FC
3

TRX M2 - ** FEE !
2

TRXF2-
TRXF1-

TRX H5-

]
-3

TRX H3 -

TRX O1-

1 1 1 1 1 1 1 1 1 1 1 1
MLf MLm MLntrc FLf FLm FLntrc HLf HLm HLntrc LLf LLm LLntrc
Sample

Supplement Figure 5.3.12. Protein changes of the Thioredoxin family in trxf,
trxm and ntre, relative to WT.

Values are log2 fold-changes relative to the respective WT in each light condition. Blue
color indicates down-regulation. Red color indicates up-regulation. Some proteins are
left undetectable (grey color) after data processing. Significances (multiple t-test with
Benjamini-Hochberg correction) are shows as asterisks (* 0.01 < p < 0.05,
**%0.001 < p <0.01, *** p < 0.001). £, trxf; m, trxm.
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Supplement Figure 5.3.13. Changes in
cell functions in ntrc compared to WT.
(A) ML. (B) FL. (C) LL. Generated with
MapMan.
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Supplement Figure 5.3.14. Changes in
protein synthesis in n¢rc compared to WT.
(A) ML. (B) FL. (C) LL. Generated with
MapMan.
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Supplement Figure 5.3.15. Changes in RNA, ribosome footprints and translation efficiency of

chloroplast encoded genes in ntrc compared to WT under HL.
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Supplement Figure 5.3.16. Network predictions of protein-protein interaction under
ML.

The nodes represent NTRC among the significantly changed (p < 0.001, repeated t-test with
Benjamini-Hochberg correction) proteins in ntrc relative to WT. Down-regulated proteins are
given in blue, up-regulated in red. Unconnected nodes were disregarded. The thickness of the
edges indicates the degree of confidence of the interaction (Szklarczyk et al., 2019, 2021). Dashed
lines indicate an interaction in the WT in the presence of NTRC. Distances are arbitrary. Trivial
names are given in capital letters. The subcellular location (SUBA4, consensus) is given in small
letters ahead the protein name. m, mitochondrion; p, plastid.
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5.4 Lists of raw data and statistics
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contrast (rel. to WT)
Light
2-oxo-glutaric acid
4-hydroxy-proline
adenine

alanine

arginine

ascorbic acid
asparagine
aspartic acid
benzoic acid
beta-alanine
citric acid
dehydroascorbic acid
dehydroascorbic acid dimer
fructose

fucose

fumaric acid

gaba

galactinol
galactonic acid
glucose
glucuronic acid
glutamic acid
glutamine
glyceric acid
glycerol

glycine

guanidine
histidine
isoleucine

lactic acid

leucine

lysine

malic acid
maltose
methionine
myo-inositol
nicotinic acid
O-acetyl-serine
ornithine
phenylalanine
phosphoric acid
proline
putrescine
pyroglutamic acid
pyruvic acid
raffinose
rhamnose

serine

succinic acid
sucrose

sugar similar to trehalose
sugar similar to raffinose
threonic acid
threonine
trehalose
tryptophan
tyrosine

urea

valine

trxf

0.546
0.887
0.387
0.071
0.002
0.448
0.178
0.940
0.968
0.205
0.999
0.949
0.998
0.546
0.996
0.344
0.647
0.244
0.996
0.483
0.996
0.973
0.029
0.295
0.998
0.999
0.776
0.986
0.999
0.000
0.671
0.033
0.883
0.993
0.994
0.958
1.000
0.296
0.023
0.917
1.000
0.999
0.977
0.642
0.977
0.701
0.669
0.214
0.847
0.011
0.999
0.700
0.768
0.667
0.397
0.454
0.834
0.970
0.208

trxm ntrc

ML

0.219
0.943
1.000
0.884
0.990
0.982
0.992
0.958
0.139
0.068
1.000
0.786
0.766
0.907
0.019
0.999
0.443
0.091
0.950
0.347
0.955
0.987
1.000
0.198
0.971
0.043
1.000
0.984
0.988
0.000
0.997
0.766
0.879
0.915
0.999
0.998
0.748
0.415
0.374
0.860
1.000
1.000
0.001
0.986
0.927
0.654
0.452
0.992
0.774
0.341
0.879
0.653
0.074
0.831
0.709
0.767
0.997
0.986
0.970

0.000
0.042
0.998
0.328
0.580
0.993
0.791
0.987
0.010
0.739
0.993
0.905
0.837
0.755
0.000
0.065
0.963
0.005
0.942
0.002
0.947
0.214
0.895
0.000
0.001
0.000
0.000
0.997
0.955
0.000
0.020
0.198
0.643
0.000
1.000
0.002
0.536
0.658
0.216
0.152
0.998
0.988
0.058
0.952
0.970
0.499
0.763
0.003
0.113
0.000
0.235
0.498
1.000
0.992
0.393
0.154
0.202
0.820
0.001

trxf

0.990
0.659
0.992
0.761
0.993
0.868
0.998
1.000
0.593
0.854
0.885
0.994
0.999
0.999
0.884
1.000
0.862
1.000
1.000
0.971
0.999
0.999
1.000
0.129
0.854
1.000
0.964
0.846
0.937
0.501
0.960
1.000
0.999
0.664
0.997
0.933
0.999
1.000
1.000
1.000
0.995
1.000
0.999
1.000
0.152
0.999
0.992
0.975
0.318
0.742
0.197
0.999
1.000
0.921
0.924
0.729
0.905
0.803
0.916

trxm ntrc

FL_HL
0.489
0.982
0.970
1.000
0.999
0.221
1.000
0.233
0.234
0.994
0.737
0.869
0.894
1.000
0.667
1.000
0.968
0.953
0.992
0.998
0.999
0.999
1.000
0.995
0.812
0.947
0.979
0.987
0.395
0.663
1.000
0.994
0.991
0.735
0.995
0.753
0.765
0.832
1.000
0.994
0.847
1.000
0.924
1.000
0.072
0.843
0.990
0.990
0.782
0.580
0.968
0.843
0.475
0.748
1.000
0.998
0.975
0.989
0.928

0.490
1.000
0.931
0.365
0.998
0.346
0.944
0.989
0.632
0.998
0.035
0.522
0.902
1.000
0.134
0.892
0.098
0.540
0.993
0.998
0.979
0.604
0.997
0.177
1.000
0.972
0.934
0.837
0.859
0.328
0.305
0.547
0.848
0.196
0.956
0.346
0.033
0.487
0.942
0.912
0.957
0.999
0.846
0.979
0.000
0.428
0.949
0.730
0.446
0.006
0.897
0.440
0.941
0.557
0.790
0.900
0.191
0.223
0.275

trxf

0.977
0.967
0.998
0.772
0.966
0.999
0.992
0.900
1.000
0.995
0.046
0.821
0.903
1.000
0.667
1.000
0.730
0.982
0.985
1.000
0.986
0.773
1.000
0.000
0.391
1.000
0.884
0.346
0.605
0.000
0.305
0.788
0.889
0.964
0.994
1.000
1.000
0.985
0.987
0.972
0.098
0.992
1.000
0.997
0.546
0.578
0.610
0.993
0.240
0.999
0.999
0.577
0.894
0.618
0.807
0.995
0.579
0.000
1.000

trxm ntrc

FL_LL
0.999
0.211
0.967
0.038
1.000
0.447
1.000
0.551
0.773
0.979
0.067
0.995
0.895
1.000
1.000
0.992
0.010
0.514
0.517
0.997
0.545
0.673
0.999
0.002
0.688
0.991
0.941
0.993
0.412
0.000
0.510
0.912
0.566
0.976
1.000
0.844
0.812
0.957
0.994
0.969
0.020
0.984
0.919
0.962
0.827
0.830
0.690
0.946
0.520
0.883
0.357
0.829
0.115
0.930
0.859
0.999
0.132
0.001
0.945

0.004
0.038
0.089
0.000
1.000
0.878
0.949
0.063
0.898
0.023
0.009
0.792
0.857
0.988
0.038
0.983
0.020
0.274
0.495
0.844
0.524
0.062
0.980
0.000
0.051
0.907
0.816
0.992
0.834
0.000
0.964
0.767
0.684
0.000
1.000
0.166
0.000
0.833
0.966
0.831
0.031
0.953
0.949
0.728
0.000
0.015
0.000
0.929
0.000
0.000
0.670
0.018
0.373
0.004
0.881
0.981
0.812
0.000
0.849

trxf

0.405
0.612
1.000
0.552
0.964
0.972
0.466
0.760
0.919
0.001
0.898
0.000
0.000
0.000
0.841
1.000
0.545
0.284
0.325
0.159
0.354
0.005
0.289
0.000
0.686
0.000
0.999
0.468
0.939
0.998
1.000
0.861
0.864
0.001
0.153
0.000
0.997
0.000
0.482
0.032
1.000
0.999
0.996
0.059
0.998
0.131
0.263
0.775
0.999
0.000
0.022
0.130
0.149
0.874
0.055
0.023
0.823
0.955
0.117

trxm ntrc

HL

0.071
0.001
0.972
0.775
0.703
0.473
0.000
0.940
0.997
0.998
1.000
0.000
0.000
0.000
0.000
0.385
0.823
0.000
0.062
0.244
0.076
0.774
0.081
0.580
1.000
0.000
0.996
0.474
0.005
0.953
0.030
0.009
0.195
1.000
0.013
0.000
0.756
0.000
0.844
0.000
0.997
0.000
0.651
0.174
0.719
0.887
0.060
0.138
0.507
0.989
0.000
0.887
0.018
0.949
0.824
0.009
0.001
1.000
0.959

0.000
0.000
0.043
0.000
0.004
0.967
0.000
0.648
0.017
0.006
0.065
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.000
0.989
0.017
0.044
0.947
0.000
0.000
0.000
0.000
0.000
0.000
0.261
0.000
0.143
0.000
0.997
0.000
0.002
0.000
0.000
0.000
0.042
0.000
0.936
0.000
0.000
0.000
0.390
0.014
0.000
0.000
0.000
0.721
0.000

trxf

0.001
0.948
0.999
0.989
1.000
0.999
0.905
0.880
0.999
1.000
0.997
0.995
0.983
1.000
1.000
1.000
0.923
0.686
0.997
0.998
0.998
0.957
1.000
0.240
0.957
0.999
0.949
0.922
1.000
0.959
0.912
1.000
0.993
0.001
1.000
1.000
0.871
0.898
0.993
0.993
0.998
1.000
0.997
0.881
1.000
0.739
0.978
0.923
0.903
0.922
0.948
0.738
0.894
0.655
0.970
0.966
0.814
1.000
0.998

trxm ntrc

LL
0.990
0.998
0.968
0.002
0.468
0.612
0.962
0.009
0.310
1.000
0.983
0.939
0.560
0.947
0.998
0.114
0.387
0.000
0.202
0.577
0.228
0.916
0.994
0.000
0.997
0.963
0.983
0.882
0.996
0.950
0.797
0.741
0.358
0.035
0.744
0.919
0.288
0.872
0.015
1.000
0.989
0.999
0.889
0.864
0.019
0.983
0.737
0.000
0.747
0.918
0.127
0.983
0.384
0.999
1.000
0.998
0.980
0.998
0.682

0.000
0.877
0.700
0.131
0.846
0.992
0.149
0.868
0.504
0.765
0.994
0.852
0.952
0.749
0.000
0.785
1.000
0.000
0.045
0.006
0.056
0.292
0.789
0.000
0.000
0.508
0.889
1.000
1.000
0.991
0.374
0.546
0.431
0.000
0.000
0.000
0.330
0.925
0.836
0.827
0.998
0.998
0.862
0.500
0.135
0.000
0.719
0.472
0.530
0.002
0.585
0.000
0.988
0.836
0.947
0.912
0.670
1.000
0.047

Supplement Table 5.4.6. List of p value from GC-MS based metabolites
acclimated plants.
A 2-way ANOVA with post-hoc Tukey test was performed using the “emmeans” and “multcomp”
packages from R. Values are given relative to the respective WT. Significances (p < 0.05) are

given in bold.

in long-term
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Supplement

Light
2PG
3PGA
aconitate
ADP
ADPG
AMP
DHAP
F6P

FBP

G1P

Ge6P
NADP
NAD
R5P
Ru5P+XubP
RuBP
S7P

SBP
shikimate
UDPG

contrast (rel. to WT) trxf trxm ntrc trxf trxm ntrc trxf trxm ntrc trxf

ML FL HL FL LL
0.994 0.999 0.391 0.570 0.106 1.000 0.987 0.983 0.764 0.763 0.998 0.952 1.000 0.807
NA NA NA 0.961 0.979 0.993 0.007 0.113 0.000 NA NA NA NA NA
NA NA NA 0.988 1.000 0.714 1.000 1.000 0.626 NA NA NA NA NA
0.757 1.000 0.401 0.959 0.857 0.771 0.463 0.405 0.205 0.999 0.986
0.465 1.000 0.921 1.000 0.997 0.996 0.335 0.407 0.061 0.896 0.996
0.254 0.814 0.905 0.986 0.927 0.740 0.892 0.908 0.085 0.962 0.990
0.800 0.287 0.017 0.979 0.578 0.633 0.995 0.994 0.790 0.992 0.999
0.984 0.581 0.006 0.899 0.454 0.864 1.000 0.970 0.779 1.000 0.998
0.007 0.804 0.000 0.879 0.994 0.033 0.717 0.970 0.000 0.005 0.919
0.884 0.795 0.040 0.786 0.568 0.816 0.824 0.988 0.795 1.000 0.910
0.967 0.646 0.003 0.985 0.900 0.884 0.991 0.973 0.732 0.945 0.958
0.997 0.635 0785 NA NA NA NA NA NA 0.950 0.999
0.707 0.933 0326 NA NA NA NA NA NA 0.999 0.654
0.895 1.000 0.000 0.912 0.779 0.988 1.000 0.996 0.996 0.937 0.945
0.697 1.000 0.821 0.254 0.065 0.464 0.981 0.957 0.748 0.952 0.922
0.318 0.999 0.876 0.575 0.494 0.857 0.911 0.972 0.798 0.227 1.000
0.999 0.994 0.021 0.378 0.099 0.428 0.948 0.872 0.282 1.000 0.999
0.846 0.942 0.000 1.000 0.976 0.073 1.000 0.999 0.000 0.999 0.997
0.990 0.583 0.939 1.000 0.956 0.818 1.000 0.999 0.036 0.910 0.805
0.928 0.304 0.284 0.998 1.000 0.758 1.000 0.984 0.614 0.959 0.738

trxm ntrc trxf trxm

HL

0.587 0.988
0.800 0.994
0.062 0.984
0.994 0.617
1.000 0.925
0.579 0.002
0.556 0.976
0.970 0.997
0.203 0.959
0.527 0.993
0.520 0.443
0.006 0.998
0.005 0.723
0.988 0.956
0.008 0.915
0.066 0.903
0.137 0.963

LL

0.165
0.771
0.497
0.098
0.707
0.130
0.242
0.491
0.014
0.478
0.152
0.004
0.000
0.970
0.510
0.864
0.176

ntre

0.392
NA
NA

0.168

0.178

0.459

0.028

0.003

0.000

0.011

0.000

0.114

0.141

0.000

0.101

0.989

0.000

0.000

0.860

0.584

Supplement Table 5.4.8. List of p value from LC-MS based metabolites in long-term
acclimated plants.
A 2-way ANOVA with post-hoc Tukey test was performed using the “emmeans” and “multcomp”
packages from R. Values are given relative to the respective WT. Significances (p < 0.05) are
given in bold.

Contrast
trxm-trxf
ntrc-trxf
WT-trxf
ntrc-trxm
WT-trxm
WT-ntrc
trxm-trxf
ntrc-trxf
WT-trxf
ntrc-trxm
WT-trxm
WT-ntrc

Light
FL LL
FL LL
FLLL
FLLL
FL LL
FL LL
FL HL
FL HL
FL HL
FL HL
FL HL
FL HL

2PG
1.000
0.431
0.837
0.474
0.795
0.148
0.964
0.915
0.931
0.694
0.720
1.000

3PGA DHAP F6P FBP S7P SBP R5P
0.472 1.000 0.845 0.244 0.970 0.308 0.973
0.099 0.199 0.258 0.000 0.122 0.000 0.968
0.016 0.851 0.994 0.030 0.693 0.956 0.995
0.012 0.203 0.643 0.000 0.223 0.000 1.000
0.133 0.844 0.718 0.480 0.454 0.547 0911
0.001 0.065 0.185 0.000 0.026 0.000 0.901
0.831 0.816 0.750 0.322 0.947 0.882 0.961
0.997 0.441 1.000 0.022 1.000 0.014 0.941
0.964 0978 0.813 0.545 0.648 1.000 0.701
0.915 0.143 0.805 0.002 0.928 0.039 0.730
0.980 0.604 0.304 0.965 0.370 0.902 0.440
0.993 0.652 0.759 0.004 0.685 0.015 0.948

RuBP
0.627
0.546
0.028
0.116
0.156
0.005
0.998
0.925
0.428
0.863
0.354
0.759

shikimate  Ru5P+Xu5P

0.998
0.000
0.988
0.000
0.957
0.000
0.970
0.886
1.000
0.991
0.976
0.899

0.964
0.165
0.507
0.306
0.294
0.022
0.930
0.983
0.392
0.777
0.182
0.575

Supplement Table 5.4.9. List of p values from LC-MS based CBC metabolites in long-
term acclimated plants under FL.
A 1-way ANOVA with post-hoc Tukey test was performed using R (“aov”’, “TukeyHSD”).
Significances (p < 0.05) are given in bold.
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5.5 Light sources
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Supplement Figure 5.5.1. Spectra of LED lights.

(A) Medium light (Miinchen); (B) Fluctuating light (Miinchen); (C) Medium Light (Golm); (D)
Fluctuating light (Golm); (E) mercury lamp for High Light (Minchen). PPFD, photosynthetic
photo flux density in pmol photons m-2 s-1.
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