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Abstract 

 

ABSTRACT 

Coordination of neural communication is ubiquitous in cognition. The alpha oscillation (8- 13 

Hz) is the predominant neural oscillation in the posterior cortex and has been associated with 

a broad range of cognitive processes. The alpha oscillation is thought to facilitate information 

processing and binding of context-relevant incoming sensory input by gating cortical 

excitability through phasic bouts of inhibition. Yet it is not well understood how information 

transfer emanates from modulations in the alpha rhythm. Spatially localizing the brain 

regions involved in alpha-mediated information processing will give further insight into the 

origin and role of the alpha oscillation. Evidence suggests that visual rhythmic stimuli can 

entrain the alpha oscillation. The entrainability of the alpha rhythm can be utilized to 

systematically study controlled alpha modulations. However, the peak alpha frequency varies 

across individuals, which has been ignored in most previous entrainment studies.    

 

In my research I investigated the spatial localization of targeted alpha modulations using 

concurrent EEG-fMRI. In my first study, I implement an entrainment paradigm targeting 

individual differences in the peak alpha frequency. I evaluate the efficacy of entrainment by 

comparing degree of synchronicity during entrainment at the individual alpha frequency to 

control frequencies. I also show that degree of synchronicity as measured by imaginary 

coherency in EEG and BOLD connectivity in fMRI serves as an appropriate proxy for 

entrainment. Increased synchronicity across the occipitoparietal cortex was observed at 

rhythmic stimulation at the IAF as compared to rhythmic stimulation of control frequency in 

both EEG and fMRI.  

 

In my second study, I implement the entrainment paradigm in a concurrent EEG-fMRI study 

and show that EEG and fMRI whole brain connectivity complement each other with each 

contributing to differently to the assessment of overall connectivity. I also show that co-

fluctuations in connectivity reveal novel insights on long-range thalamocortical connections 

involved in visual processing. My results contribute functional evidence for previously 

observed thalamo-cortical structural connectivity and show a novel application of studying 

dynamic connectivity changes during sensory stimulation. In the future, this application can 

be translated to other modalities and other neural oscillations and provide clearer insight into 

the specific roles of individual neural oscillations in cognition.
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Introduction 

 

INTRODUCTION 

1.1 Neural oscillations 

1.1.1 Neural oscillations in cognition  

The brain is regarded as a self-organizing, highly complex structure that coordinates the 

interplay between interconnected and functionally segregated processes to adapt to ever-

changing cognitive dynamics. Neural communication between distributed populations of 

neurons allows for the integration of functionally segregated information that gives rise to 

cognition and consciousness (Donner & Siegel, 2011; Lopes da Silva, 2013; Siegel et al., 

2012). However, understanding how the brain regulates coordination of activity between 

large neural assemblies has been a central question in cognitive neuroscience. Scientists have 

proposed that neural oscillations, defined as rhythmic fluctuation of neural activity in distinct 

frequency bands, may be governing neural communication by modulating synchronicity of 

brain activity across distributed regions (Fries, 2005a, 2015). Neural oscillations are the most 

prominent feature in the electroencephalogram (Berger, 1929; Hari & Salmelin, 1997) and 

can be divided into specific frequency bands thought to have distinct roles in cognition.  

 

1.1.2  EEG: Neural underpinning of oscillations 

In 1924, Hans Berger’s invention of the electroencephalogram (EEG), marked a pivotal 

moment in cognitive neuroscience, as for the first-time neural activity could be measured 

non-invasively in humans. The EEG signal is composed of the summation of local field 

potentials (LFPs) induced by synchronous post-synaptic activity of large populations of 

pyramidal cells organized radially along the cortical columns in layer V (Buzsáki et al., 2012; 

Da Silva, 2009). The excitation of post-synaptic cells creates charge differences (through the 

opening and closing of ion channels) along the dendritic membrane forming dipoles in the 

extracellular matrix, which propagate radially throughout the cortex to the scalp electrodes 

(Buzsáki et al., 2012). Over time, the counteraction between excitatory and inhibitory neural 

activity leads to fluctuations in the local field potentials that form rhythmic oscillations in the 

EEG signal (Buzsáki & Draguhn, 2004; Lopes da Silva, 2013). These neural oscillations can 

be decomposed into distinct frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-12Hz), 

beta (13-30Hz), and gamma (30-140 Hz) band (Keitel & Gross, 2016; Lopes da Silva, 2013) 

The physiological constraints of the underlying neural circuitry, such as time constants of 
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synaptic activity, give rise to specific frequencies of neural oscillations (Buzsáki et al., 2012; 

Buzsáki & Draguhn, 2004). Neural oscillations of specific frequency bands seem to play an 

important role in several cognitive processes and can act across sensory modalities (Siegel et 

al., 2012b). For example, the alpha oscillation has been associated with anticipatory attention, 

temporal attention, memory retention, and visual perception (Foxe & Snyder, 2011; 

Wolfgang Klimesch, 2012). Oscillations of different frequency bands have also been linked 

to the same cognitive process, such as the alpha and theta band in working memory 

(Klimesch, 1999; Li et al., 2017; Sauseng et al., 2002) and attention (Fiebelkorn & Kastner, 

2019; Keller et al., 2017). The non-specific and cross-modal properties of neural oscillations 

brings into question on how exactly alterations in oscillatory patterns impact cognition and 

psychiatric disorders (Başar, 2013; Uhlhaas & Singer, 2006). Developing techniques to 

localize and experimentally modulate neural oscillations is crucial to advance the 

understanding of the role of neural oscillations in neural communication.  

 

1.1.3  Features of neural oscillations as mechanisms for neural communication 

Two key features of oscillations: frequency and phase, are at the center of regulating neural 

communication. A somewhat periodic, recurring pattern, such as periods of neural firing and 

rest, leads to a cyclical pattern that repeats over time. The rate of repetition is termed the 

frequency of an oscillation. The position within a given cycle of an oscillation is defined as 

the phase. Two oscillators of the same frequency can synchronize when their phases align.  

This phase-coupling between neural assemblies allows for information flow between two 

functionally segregated brain regions during the excitatory phase of their oscillatory activity 

(Fries, 2015; Varela et al., 2001). Similarly intrinsic brain rhythms can synchronize with 

external rhythms, thus rhythmically sampling the environment (Busch & Vanrullen, 2010; 

Lakatos et al., 2019a; Landau & Fries, 2012). As more oscillators synchronize in phase, the 

amplitude of the synchronized oscillation increases, which is defined as the power of an 

oscillation (Thut, Veniero, et al., 2011). Cross-frequency coupling occurs when either the 

phase of a higher frequency and lower frequency intermittently align (phase-phase coupling) 

or when the phase of a low frequency modulates the amplitude of a higher frequency (phase-

amplitude coupling) (Canolty & Knight, 2010; Helfrich et al., 2016). In this sense the phase 

of long-range low frequency oscillations can regulate the number of cell populations recruited 

for local sensory processing at higher frequencies (Siegel et al., 2012a), thus, parcellating 

brain activity and processing of sensory input across time. This is often referred to as the 
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“communication by coherence” hypothesis (Fries, 2015).  Ongoing changes in frequency, 

phase and power of neural oscillations have been associated with working memory (Roux & 

Uhlhaas, 2014; Sauseng et al., 2002), attention (Fiebelkorn & Kastner, 2019; Landau & Fries, 

2012), and sensory processing of the external environment (Haegens & Zion Golumbic, 

2018; Rufin VanRullen, 2016).   

 

1.2  Role of the alpha oscillation  

1.2.1 Alpha oscillation in visual cognition  

The most prominent oscillation in EEG during wakeful rest is the posterior alpha oscillation 

(7-12 Hz) (Niedermeyer & Lopes da Silva, 1999). Initially alpha was thought to reflect 

cortical idling, as high alpha power observed during eyes-closed, resting wakefulness, 

diminish with cognitive demand (Pfurtscheller et al., 1996)). But evidence from visual 

working memory and spatial attention studies suggest the alpha oscillation has a more active 

role in regulating cortical excitability. Increased posterior alpha power in task-irrelevant 

regions correlated with increased memory load during working memory retention (Haegens 

et al., 2010; Sauseng et al., 2009). Increased alpha power in the unattended hemisphere 

correlated with decreased detection of distractor items in spatial attention tasks (B. F. Händel 

et al., 2011; Thut et al., 2006; Worden et al., 2000). In visual perception, high pre-stimulus 

alpha power was associated with decreased visual discrimination/detection (Ergenoglu et al., 

2004b; Lange et al., 2013; Van Dijk et al., 2008). This suggests the alpha rhythm has an 

inhibitory role that inhibits task-irrelevant brain regions (Wolfgang Klimesch et al., 2007b).  

 

However, studies investigating the phase of pre-stimulus alpha lead to further insight into the 

role of alpha. Studies looking pre-stimulus alpha phase during visual detection tasks showed 

difference in alpha phase of detected and non-detected stimuli (Busch et al., 2009; 

Mathewson et al., 2009). In a concurrent EEG-fMRI study by Scheeringa and colleagues 

(2011), a decrease in BOLD activity in V1 was correlated with stimuli presented at the peak 

of alpha phase as compared to stimuli arriving at the trough of the alpha phase. Combined 

these results show the influence of high alpha power occurs at a certain phase of the alpha 

cycle rather than over the entire cycle (Mathewson et al., 2011). The alpha rhythm therefore 

rather reflects variability in cortical excitability. Subsequently the alpha rhythm gates 

information flow across the visual processing stream by regulating the neural excitability 
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with alpha phase and neural gain, or the recruitment of synchronized neural populations, 

through alpha power.  

 

 

Figure 1.1: Gaiting by inhibition hypothesis. Graphical illustration of the gaiting by inhibition 

hypothesis coined by (Jensen et al 2011).  It is proposed that the alpha oscillation regulates 

neural activity of local sensory neural populations through both power and phase. The parts of 

the alpha cycle in red indicate inhibitory phase and the green indicates the excitatory phase of 

the alpha oscillation. As the alpha power increases, the activity of the different underlying 

neural populations (as indicated by different colors) oscillating in the gamma frequency 

becomes more synchronized. Oscillations in the figure were generated with a customized 

Matlab script and the figure was composed with BioRender.com 

 

Early studies implementing attentional cues to elicit changes in posterior alpha power already 

suggest that modulation of the alpha rhythm lies under top-down control (Hanslmayr et al., 

2007; Snyder & Foxe, 2010). More recent studies showed that expectancy of stimulus 

presentation induced through temporal cueing induced alpha phase modulations (Samaha et 

al., 2015). Furthermore, studies implementing a two-choice visual detection task and 

analyzing false alarm trials (trails in which no visual stimuli was presented but subjects 

subjectively perceived seeing a stimulus) showed alpha power correlated with subjective 

confidence or judgement rather than with visual discrimination ability (Iemi et al., 2017; 

Samaha et al., 2017). Similar findings were found in a two-choice auditory discrimination 

task (Wöstmann et al., 2019). These studies provide evidence for modulation of alpha phase 

and power in sensory areas lying under top-down control. 
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1.2.2   Cellular circuitry of alpha’s role in gaiting by inhibition 

In visual processing, the selective binding and integration of sensory input requires the 

coordination of both feedforward and feedback inputs (Felleman & Van Essen, 1991; Lamme 

et al., 1998; Spillmann & Werner, 1996), which are also known respectively as bottom-up 

and top-down processes. The dynamic relaying between higher- and lower-order areas has 

been extensively studied and is thought to occur either through direct cortico-cortical or 

indirect cortico-thalamo-cortical interactions (Sherman & Guillery, 2013; Womelsdorf et al., 

2014). In the context of neural oscillations, phase coupling of neural activity between 

frequencies is thought to reflect dynamic relaying of feedforward and feedback information 

across cortico-cortical and cortico-thalamic connections. Yet due to the spatial limitations of 

EEG, it is still not known through which pathways neural oscillations coordinate neural 

activity. The origins of alpha generators have been extensively studied in invasive 

electrophysiology studies in animals, which have found alpha oscillations to originate from 

deep, infragranular layers in sensory cortices (Buffalo et al., 2011; Spaak et al., 2012). 

Rhythmic activity from inhibitory interneurons suppresses neural excitability vertically 

across cortical columns (Spaak et al., 2012; Van Kerkoerle et al., 2014) and gait inhibition of 

cortical excitability in local sensory regions. This rhythmic inhibition correlates with local 

amplitude changes of the alpha rhythm (Haegens et al., 2015). Studies comparing thalamic 

spike rate between attended and unattended trials showed that increased thalamic spiking and 

increased cortical alpha-thalamic coherence during attended trials in primates (Bollimunta et 

al., 2011; Saalmann et al., 2012). Furthermore, bursts of thalamic firing is thought to correlate 

with the rhythmic inhibition dictated by alpha phase (Vijayan & Kopell, 2012; Womelsdorf et 

al., 2014).  Thalamic projections primarily target outputs in supragranular layer (Sherman & 

Guillery, 2005), which is in line with studies find alpha activity across cortical layers 

(Bollimunta et al., 2011; Haegens et al., 2015; Scheeringa et al., 2016). Yet measurements of 

alpha activity in cortical and subcortical layers on a microscopic level gives little information 

on the macroscopic, long-range relaying of information. Concurrent EEG-fMRI can be 

implemented to overcome the poor spatial resolution of EEG and study long-range 

connections by means of alpha phase coherency non-invasively in humans.  
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1.2.3 fMRI: alpha-correlated BOLD signal  

Mixed results have been reported correlating BOLD and the alpha oscillation. The variability 

in results partially arises from different modalities of the alpha oscillation being correlated 

with the BOLD signal during task or rest. Studies correlating high alpha power with fMRI 

seed-based connectivity during rest have shown decreased connectivity between V1 and other 

visual areas yet increased BOLD connectivity between V1 and the thalamus and prefrontal 

areas (Scheeringa et al., 2012), suggesting local inhibition in sensory areas may occur 

through long-range connectivity along thalamocortical pathways. Ongoing fluctuations in 

alpha phase correlated with connectivity in frontoparietal networks, which has been 

associated with top-down modulation of initiation and change in attentional control 

(Sadaghiani et al. 2012). During a visual attention task, trial-by-trial alpha power negatively 

correlated with the BOLD response (Scheeringa et al., 2009), whereas pre-stimulus alpha 

power did not correlate with the evoked BOLD response in occipital regions (Scheeringa et 

al., 2011a). However, stimulus arriving at the peak of the alpha phase correlated with a 

reduced BOLD signal in visual areas (Scheeringa et al., 2011b). These findings support the 

role of alpha as gaiting by inhibition. These studies used alpha measures derived from 

globally averaged or electrode signals at the scalp, which does not accurately portray spatial 

information of the alpha oscillation (Lai et al., 2018; Wirsich et al., 2020). A study examining 

source-localized alpha power during a selective attention task showed that occipital alpha 

power contralateral to the attended stimuli correlated with the BOLD response in down-

stream ventral visual areas, which the authors interpreted as gaiting of information flow 

between early and downstream visual areas for attended stimuli (Zumer et al., 2014). 

Furthermore, Zumer et al found an inverse correlation between the BOLD signal in the dorsal 

attention network and alpha power (Zumer et al., 2014). In resting state studies, spatial 

networks of phase-phase coupled source-localized alpha sources correlated with the fMRI 

default mode network (Brookes et al., 2011), somatosensory and visual network (Hipp et al., 

2012). A study analyzing the spatial distribution of transient changes in alpha power and 

phase coupling of the precuneus with other brain regions was highly correlated with occipital 

parietal regions that were associated with a dorsal higher order functional connectivity 

network in both modalities (Vidaurre et al., 2018c). However, other band-limited neural 

oscillations, such as the beta band, also correlate with fMRI functional networks including 

the default mode network (Wirsich et al., 2020), somatosensory network and visual network 

(Hipp et al., 2012). More research is needed to understand how ongoing alpha-correlated 

functional connectivity networks vary during visual perceptual tasks. 
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1.3 Studying neural oscillations with concurrent EEG-FMRI 

1.3.1 Neural underpinnings of the BOLD signal 

To understand how the BOLD signal correlates with neural oscillations in EEG signal, it is 

first important to understand how the BOLD signal reflects neural activity. The BOLD signal 

indirectly measures neural activity by measuring the ratio of deoxygenated to oxygenated 

blood within a brain region (Ogawa et al., 1992). During synaptic activity, the opening of ion 

channels and transmission of neurotransmitters uses ATP, which requires oxygen to 

regenerate (Attwell & Iadecola, 2002). At the site of neural activity, initially there is more 

deoxygenated hemoglobin, followed by an increase in local cerebral blood flow and 

oxygenated hemoglobin (Attwell & Iadecola, 2002; Logothetis, 2008). The delayed response 

of the cerebral blood flow following oxygen consumption is about six seconds and is often 

modeled with a canonical hemodynamic response function (HRF) (Friston, 2002; Lindquist et 

al., 2009). Under rest, slow fluctuations in the fMRI signal across discrete cortical regions 

oscillating with a frequency of less than 0.1 Hz are observed (Fox, Corbetta, et al., 2006; 

Lowe et al., 1998). The spatial reconfiguration of functional connectivity networks at this 

ultraslow frequency has been associated with distinct cognitive processes such as attention 

(Fox, Snyder, et al., 2006), cognitive control (Dosenbach et al., 2007; Vincent et al., 2008), 

and sensory processing (Beckmann et al., 2005; De Luca et al., 2005). It has become of 

increasing interest to understand how these connectivity dynamics relate to distinct cognitive 

processes.  

 

1.3.2 Electrophysiological brain connectomes  

Mapping the spatial configuration of neural oscillations in distinct frequency bands has been 

at the center of understanding the roles of neural oscillations.  Band-specific EEG signal 

indexes synchronous fluctuations in neural activity between excitatory and inhibitory states at 

a given frequency (Musall et al., 2014). Measures of synchronicity, such as phase coherency, 

serve as good measures for mapping the interaction between tightly coupled brain regions 

(Bowyer, 2016).  Like with fMRI time series, covariation in coherency across time between 

brain regions, can be considered a proxy for functional connectivity. However due to radial 

volume conductance of local field potentials in the brain, EEG electrodes pick up mixed 

signal from different neural sources (Buzsáki et al., 2012) preventing accurate separation of 
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neural sources. Scientists have circumvented the issue of poor spatial resolution in EEG, by 

reconstructing spatial source estimates from scalp EEG data (Schoffelen & Gross, 2009a). 

Local, inter-connected, and functionally homogenous populations of cells (over 1 cm2) show 

high degree of synchronization and subsequent local increase in signal to noise ratio 

(Murakami & Okada, 2006; P. Nunez & Srinivasan, 2006). Taken together with the geometry 

of the head and estimates of tissue conductance, the spatial location of underlying neural 

sources can be estimated (Schoffelen & Gross, 2009a).  However, the effects of field spread 

and volume conductance cannot entirely be eliminated in source space. The so-called signal 

leakage in source space can lead to artificially high phase- or amplitude-coupling between 

two sources (Lai et al., 2018; Schoffelen & Gross, 2009a). For phase coupling connectivity 

analyses, signal leakage can be corrected for by removing zero-phase lag interactions. Using 

only the imaginary part of phase coherence between two sources inherently removes zero-

phase lag interactions (Nolte et al., 2004; Sadaghiani et al., 2022). An equivalent technique 

can be applied for amplitude-coupling across sources by orthogonalizing all possible region 

pairs (Colclough et al., 2015; Hipp et al., 2012). In concurrent EEG-fMRI studies, the high 

spatial resolution of fMRI can complement electrophysiological connectomes and studies 

have shown networks derived from both modalities spatially overlap (Brookes et al., 2011; 

Hipp et al., 2012; Wirsich et al., 2020).  

 

1.3.3 Correlating EEG and fMRI in concurrent measurements  

The observation that full-band EEG (i.e. the raw EEG signal composed of all neural 

oscillations) fluctuates at infra-slow frequencies (Monto et al., 2008) and correlates with 

fluctuations in resting state networks (Hiltunen et al., 2014) lead to the hypothesis that long 

range connectivity in both faster neural oscillation and in slow fluctuating fMRI signal may 

represent similar functional dynamics (Engel et al., 2013; Mostame & Sadaghiani, 2021). 

Fluctuations within specific resting state networks have also been associated with fluctuations 

in power of band-limited neural oscillations (Jann, Kottlow, et al., 2010; Mantini et al., 

2007). The earliest studies used specific EEG features and related these with changes in 

resting state networks in fMRI (Laufs et al. 2003, Scheeringa et al 2011, de Pasquale et al 

2010). However these studies relied heavily on a priori hypotheses of the spatial relationship 

of the two modalities within a given network of interest (Huster et al 2012). Data-driven 

approaches have shown that low frequency-specific EEG networks overlap with canonical 

resting state functional connectivity networks (Brookes et al., 2011; Deligianni et al., 2014; 
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Wirsich et al., 2017). Yet static functional connectivity networks hold little information on 

how electrophysiological and fMRI networks change over time.  

 

An increasing trend in neuroscience is studying dynamic changes in brain connectomes, or 

distributed connections in the brain exhibiting coupling of neural or vascular signals, using 

multi-imaging modalities.  The coupling and uncoupling of functionally related brain regions 

organized in networks may reflect macroscopic neural activity patterns that underly cognition 

(Hutchison et al., 2013). As mentioned in section 1.5, functional coupling in fMRI occurs at 

an ultraslow frequency and remains relatively stable over time in distinct functional networks 

under rest (Bright et al., 2020). However, the vascular response in fMRI and neural response 

measured through EEG are vastly different in nature and while they share signal arising from 

the same neural origins, they also may represent different neural properties (Hermes et al., 

2017; Sepideh Sadaghiani & Wirsich, 2020). Data-driven electrophysiological connectivity 

studies have shown networks to be modulated on a fast time scale (100ms - 300ms) (Baker et 

al., 2014; Vidaurre et al., 2018c). Fast network is undetectable in fMRI. The use of source-

localized electrophysiological connectivity in combined EEG-fMRI studies, has become 

increasingly popular as EEG may add complementary information about spatial 

reorganization of network dynamics on a faster time scale (Sadaghiani et al., 2022). A few, 

but nominal studies have shown that the spatio-temporal organization of ongoing functional 

connectivity networks derived from electrophysiology correlate with fMRI-derived functional 

connectivity networks (Sadaghiani & Wirsich, 2020; Vidaurre et al., 2018; Wirsich et al., 

2020). Temporal dynamics of functional connectivity networks have shown to be frequency-

specific (Mostame & Sadaghiani, 2021), which provides evidence for frequency-specific 

information exchange. Although there is considerable overlap between frequency-specific 

connectivity networks in rest (Wirsich et al 2020) and in task (Nentwich et al., 2020). When 

putting these electrophysiological connectomes into the context of hierarchical organization 

of communication in the brain during segregation and integration, it has been proposed that 

dynamic relaying of information between higher and lower order brain areas can occur 

simultaneously through communication in and between neural oscillations (Florin & Baillet, 

2015; Fries, 2015; Sadaghiani et al., 2022). However, to what extent these neural oscillations 

play a role in either top-down or bottom-up relaying of information is not known. 

Furthermore, the type of long-range pathways, either through cortical or subcortical 

connections, remains to be elucidated.  An external stimulus can be implemented to activate 

long-range connections involved in visual processing. I propose studying concurrent 
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electrophysiological and fMRI connectivity under visual stimulation to activate connections 

involved in visual processing. 

 

1.3.4 Methodological challenges in concurrent EEG-fMRI 

The strong magnetic field in an MR scanner poses safety and data quality issues and in 

combined EEG-fMRI due to the electromagnetic induction. The biggest safety concern is 

radiofrequency-related heating of electrodes that may cause burning. Increased field of view, 

shorter TR times or scanner magnetic field strength can increase radiofrequency magnetic 

field magnitude and must be adjusted accordingly (Lemieux et al., 1997). This often poses a 

tradeoff between smaller field of view or longer acquisition times (TR) in the fMRI.  

Furthermore, the switching of the magnetic field gradients causes induces large currents in 

the EEG electrodes, which are 400 times larger than neurophysiological signal (Allen et al., 

2000). Also, any movement inside of the magnetic field including pulsatory movement of 

arterial blood vessels induce electric currents that are measured by the scalp electrodes (Yan 

et al., 2009, 2010). The gradient and the ballistocardiogram artifact can be removed using a 

sliding window approach to subtract an adaptive artifact template (Allen et al., 2000). 

However, this reduces the signal to noise ratio by smoothing out the signal. Therefore, only 

large effects in the EEG signal can be tested in concurrent EEG-fMRI. Furthermore, the 

slightest muscular movements are amplified in the EEG signal, requiring stringent 

movement-related artifact removal and many trial repetitions. In the fMRI, the scalp 

electrodes can cause field inhomogeneities and signal loss (Bonmassar et al., 2001). It is 

therefore advised to test experimental paradigms in EEG and fMRI separately before 

attempting concurrent EEG-fMRI studies to account for reduced signal to noise ratio.  

 

The synergistic benefit of concurrent EEG-fMRI to increase temporal and spatial resolution 

also poses the largest challenge in data analysis methods. Fluctuations in EEG and fMRI 

signal occur on vastly different time scales. Correlating these time scales often is requires 

averaging EEG features across fMRI acquisition times to create a comparable time course or 

deconvolving fMRI time course to the sampling rate of the EEG signal (Abreu et al., 2018). 

Averaging across fMRI acquisition times results in EEG features that correlate with fMRI 

better in low frequencies (Deligianni et al., 2014). Correspondingly, dynamic functional 

connectivity analyses using sliding window approaches have to find a window length that is 

large enough to be informative about fMRI (Leonardi & Van De Ville, 2015; Shine et al., 
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2016), yet small enough to see considerate changes in EEG (Chang et al., 2013; Wirsich et 

al., 2020). One way to overcome this is to compare variance of time varying EEG and fMRI 

connectivity under different experimental conditions. Spatially, the resolution of source-

estimated EEG features corresponds ~1-2cm3. Whereas the spatial resolution in fMRI is ~2-

3mm3. However, in connectivity studies time series are averaged across parcellated brain 

regions making spatial scales comparable between EEG and fMRI.  

 

1.4  Entrainment: Modulating the alpha oscillation 

Accumulating evidence supports that rhythmic activity and synchronization across distributed 

brain areas governs communication. Synchronization may occur either bi-directionally 

between two independent oscillators (Lakatos et al., 2019a; A. Pikovsky et al., 2001; Varela 

et al., 2001) or one oscillator may unidirectionally drive synchronization of other oscillators 

through phase resetting (Lakatos et al., 2019a; A. Pikovsky et al., 2001; Schroeder & 

Lakatos, 2009).  The latter is termed entrainment. Visual sensory sampling of external stimuli 

occur rhythmically within the theta and alpha band range (Rohenkohl & Nobre, 2011; Rufin 

VanRullen, 2016) and it has been proposed that entrainment of neural oscillators to external 

stimuli predictively prepares the brain for effective information flow and sensory binding by 

segregating regions oscillating within phase from those out of phase (Fries, 2015; Lakatos et 

al., 2019a; Ronconi et al., 2018).  Entrainment has also been shown to be supramodal with 

entrainment occurring across sensory modalities (see Bauer et al., 2020 for a review). In a 

natural setting, entrainment is thought to lie under top-down control, as increased coherency 

in frequency-specific oscillation bands have been associated with anticipatory attention and 

temporal sampling of the environment (Fiebelkorn et al., 2013; Rohenkohl & Nobre, 2011; 

VanRullen et al., 2011). By its supramodal nature of driving synchronization across brain 

regions and across modalities, entrainment has been proposed to selectively alter functional 

connectivity patterns (Helfrich et al., 2019; Lakatos et al., 2019a). Yet this remains to be 

tested.  

 

The concept of entrainment has also been employed by scientists to experimentally drive 

modulatory changes in brain activity with external rhythmic stimuli (de Graaf et al., 2013; 

Mathewson et al., 2012; Spaak et al., 2014; Thut et al., 2011) and test for the communication 

by coherency hypothesis (Lakatos et al., 2019; Van Diepen et al., 2019). Repetitive 

transcranial stimulation or rhythmic light stimulation are non-invasive tools commonly used 
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to induce neural entrainment. A 10 Hz electrical pulse administered with transcranial 

alternating current stimulation (tACS) showed entrainment of the alpha rhythm evaluated by 

increase in alpha power and phase locking between neural alpha and the external rhythm 

(Helfrich et al., 2014). Studies employing rhythmic flickering light at 10 Hz have shown 

increased alpha phase locking (de Graaf et al., 2013; Mathewson et al., 2012) and alpha 

power (Spaak et al., 2014).  These studies also showed behavioral fluctuations in response to 

entrained alpha during a visual perception.     

  

Figure 1.2: Entrainment theory of neural oscillations. A) Schematic of phase angles of a 

neural oscillation. B) Theoretic entrainment of uncoupled neural oscillators to an external 

driving force. C) Effects of entrainment over time portrayed by increased synchronization and 

increase in neural power. Figures A, B, and C were adapted with permission from Thut, et al., 

2011. D) Arnolds Tongue principle of entrainment. Strength of entrainment is thought to 

increase with intensity of light stimulus and/or decreased distance of driving frequency from 

IAF. E) Experimental phase locking index plotted for different stimulation strengths and driving 

frequencies. Figure D and E were adapted with permission from Notbohm, et. al., 2016.  

 

However, it is still debated whether rhythmic light stimulation truly drives synchronization of 

intrinsic oscillations to the external rhythm or whether rhythmic stimulation evokes the 

superposition of steady-state visually evoked potentials (SSVEPs) on intrinsic neural 

oscillations (Capilla et al., 2011; Haegens & Zion Golumbic, 2018; Keitel et al., 2014, 2019). 

The sudden increase in luminance elicits a strong visual evoked response (Regan, 1982). 
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Rhythmic presentation of flickering light thus elicits a steady-state visual evoked response 

that induces strong phase coherency within visual areas and subsequently increases 

oscillatory power (Capilla et al., 2011). In part, previous analysis methods investigating alpha 

power are insufficient in discerning between increase in amplitude of intrinsic neural 

oscillations or SSVEPs (Keitel et al., 2019; Van Diepen et al., 2019). Any rhythmic activity 

with a sinusoidal wave shape will induce an increase in spectral power (Keitel et al., 2019; 

Zoefel et al., 2018) making measures of oscillatory power insufficient for measuring degree 

of entrainment. The strong steady-state evoked response will also artificially increase phase 

locking between the external light stimulus and neural oscillations ( Van Diepen & Mazaheri, 

2018; Rufin VanRullen, 2016). Measures of phase coupling between neural sources serve as 

a better proxy for measuring degree of entrainment. Further concerns have raised that 

entrainment of neural oscillations to rhythmic stimuli in sensory areas can only occur if 

synchronization of ongoing neural oscillations is observed in the absence of external stimuli 

(Haegens & Zion Golumbic, 2018).  

 

A nominal EEG study comparing degree of entrainment, as measured by phase coherency, at 

rhythmic and arrhythmic flickering at the intrinsic alpha frequency (IAF) and neighboring 

control frequencies showed the highest degree of entrainment occurred for rhythmic 

stimulation at the IAF (Notbohm et al., 2016; Notbohm & Herrmann, 2016). Due to the 

phenomena of resonance, less energy is required to drive synchronization of two oscillatory 

sources, when the frequency of the driving force approaches the frequency of the intrinsic 

oscillation (Notbohm & Herrmann, 2016; A. Pikovsky et al., 2001). The Arnold’s Tongue 

principle can be applied in entrainment paradigms to control for transient evoked responses 

due to light stimulation that are superpositioned on ongoing neural activity by flickering at 

control frequencies near the frequency of the intrinsic neural oscillations and comparing 

degree of phase coherency to rhythmic stimulation at the intrinsic frequency. It remains to be 

clarified whether the spatial distribution of entrained alpha mimics intrinsic alpha maps. 

Comparing source-localized alpha connectivity maps under rest and under entrainment would 

clarify the effect of rhythmic light flicker on ongoing neural activity and help classify spatial 

distribution of modulated alpha.  
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1.5 Variability in alpha peak frequency  

Inter- and intra-subject variability in the peak alpha frequency have been reported 

(Barzegaran et al., 2017; Haegens et al., 2014; Klimesch et al., 1996; Notbohm & Herrmann, 

2016). Alterations in the peak alpha frequency and amplitude of the alpha band have been 

reported during aging and in neurodegenerative diseases (Klimesch, 1999; Uhlhaas & Singer, 

2006). Variability is also observed in age-matched, healthy individuals. A study localizing 

alpha sources showed some individuals present with more than one peak alpha frequency 

with lower alpha frequencies being localized in occipitoparietal regions and higher alpha 

frequencies being localized in occipitoparietal regions (Barzegaran et al., 2017). The alpha 

peak frequency also shifts with cognitive demand (Haegens et al., 2014a; Maurer et al., 2015; 

Mierau et al., 2017). Recent research suggests that brain oscillations are coupled with 

rhythms of the body, such as breathing rate and heart rate, and that the frequency of band-

limited neural oscillations may adapt to optimize cross-frequency coupling across the brain 

and body (Klimesch, 2018). It has also been proposed that shifts in the alpha peak may 

optimize temporal sampling and integration of sensory input during cognition (Mierau et al., 

2017; Samaha et al., 2015), in which areas with different alpha peak frequencies may be 

processing functionally distinct information (Barzegaran et al., 2017; Christoph S. Herrmann 

et al., 2016; Mierau et al., 2017). The alpha peak frequency has also been shown to correlate 

with amplitude of the vascular response to light stimulation in visual areas with higher alpha 

frequencies exhibiting a reduced hemodynamic response (Koch et al., 2008). However, it is 

still unclear whether there are several alpha generators or shifts in the alpha peak frequency 

measured at the scalp represent localized shifts in one alpha oscillator over time. Studying 

modulations in individual-specific alpha oscillations on a group level will take into account 

interindividual variability in the alpha oscillation and alpha-related BOLD response and will 

help clarify differential findings.  

 

1.6 Aims of the thesis 

Although many advances have been made in classifying the functional role of the alpha 

oscillation in visual perception as gaiting information flow by inhibition, it is still debated 

how modulatory changes in the alpha rhythm govern visual perception and awareness. In part 

many of these studies looked at correlational changes in the alpha rhythm and behavior. Since 

other canonical neural frequency bands, such as theta and delta (Helfrich et al., 2017, 2019; 
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Sauseng et al., 2015), have also been correlated with attention and top-down modulation of 

neural processes and may use phase to govern information flow (Landau & Fries, 2012; 

VanRullen, 2016), it proves difficult to disentangle the role of the alpha rhythm. Combined 

EEG-fMRI studies prove useful in creating spatiotemporal maps of neural oscillations. 

Combined EEG-fMRI resting state studies have mapped transient changes in the alpha 

rhythm to higher order posterior areas, frontoparietal areas and the default mode network 

(Brookes et al., 2011; Chang et al., 2013; Vidaurre et al., 2018c). However other canonical 

frequency bands also correlate with these functional connectivity networks under rest 

(Hiltunen et al., 2014; Hipp et al., 2012; Wirsich et al., 2020). It has been suggested that 

transient changes in alpha-functional connectivity maps may reflect changes in information 

processing during cognitive processes such as visual perception. This remains to be tested 

experimentally.  

 

In my PhD project I attempt to address several limitations of previous studies investigating 

the role of the alpha rhythm. Most previous observations on the alpha oscillation were 

derived from correlational findings from spontaneous changes in the alpha rhythm. I intend to 

study controlled modulations to the alpha rhythm by using rhythmic flickering light to entrain 

the ongoing neural oscillations. However, individuals present with variable peak alpha 

frequencies, which have been overlooked in most previous entrainment studies. I take 

advantage of the Arnold's tongue principle, that states entrainment should be strongest when 

the driving frequency matches the frequency of the receiving source, by targeting individual’s 

intrinsic alpha frequency. I propose rhythmic flickering light entrains ongoing neural 

oscillations by driving increased synchronization in posterior occipital and parietal alpha 

networks. In the first part of my study, I set up and test an entrainment paradigm to test neural 

synchronization in both EEG and fMRI during light entrainment of the IAF. Taking the 

methodical limitations of separating visual-evoked response from ongoing neural activity in 

the alpha rhythm into consideration, I use neighboring frequencies and arrhythmic 

stimulation to control for synchronous activity induced by SSVEPs.  Source localized alpha 

phase coherency in the EEG and fMRI-derived functional connectivity are used as a proxy 

for neural synchronization in the alpha rhythm. I hypothesize the degree of entrainment, as 

measured by increased synchronicity, should be strongest for the stimulation at the intrinsic 

alpha frequency as compared to arrhythmic stimulation and rhythmic stimulation at 

neighboring frequencies in both EEG and fMRI imaging modalities.  
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I also develop a novel application of concurrent EEG-fMRI by studying functional 

connectivity changes during visual entrainment. Recent advances in time-varying 

connectivity methods in concurrent EEG and fMRI have shown dynamic modulation of 

functional connectivity correlates across different time scales during rest. I build on these 

findings by investigating fMRI- and neurophysiology-derived functional connectivity during 

visual stimulation. I argue by externally modulating the alpha rhythm with an external light 

stimulus, alpha modulations are imposed along the visual pathway allowing us to study 

upstream connectivity changes involved in visual perception. The entrainment paradigm from 

my first study was implemented in a concurrent EEG-fMRI study to investigate whole brain 

connectivity changes involved in visual processing. I predicted stimulation at the IAF should 

increase long-range connectivity between visual and higher order areas. The novel technique 

of looking at concurrent task-based connectivity shows the potential of concurrent EEG-

fMRI connectivity in spatial localization of hierarchical brain connections during task. 
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Abstract:  

Neural oscillations in distinct frequency bands are ubiquitous in the brain and play a role in 

many cognitive processes. The “communication by coherence” hypothesis, poses that the 

synchronization of low frequency oscillations regulates information flow across long-range 

connections. Specifically, the posterior alpha frequency band (7-12 Hz) is thought to gate 

bottom-up visual information flow by inhibition during visual processing. Evidence shows 

that increased alpha phase coherency positively correlates with functional connectivity in 

resting state connectivity networks, supporting alpha mediates neural communication through 

coherency. However, these findings have mainly been derived from spontaneous changes in 

the ongoing alpha rhythm. In this study, we experimentally modulate the alpha rhythm by 

targeting individuals’ intrinsic alpha frequency with sustained rhythmic light to investigate 

alpha-mediated synchronous cortical activity in both EEG and fMRI.  We hypothesize 

increased alpha coherency and fMRI connectivity should arise from modulation of the IAF as 

opposed to control frequencies in the alpha range. Sustained rhythmic and arrhythmic 

stimulation at the IAF and at neighboring frequencies within the alpha band range (7-12 Hz) 

was implemented and assessed in a separate EEG and fMRI study. We observed increased 

cortical alpha coherency in the visual cortex during rhythmic stimulation at the IAF as in 

comparison to rhythmic stimulation of control frequencies. In the fMRI, we found increased 

functional connectivity for stimulation at the IAF in visual and parietal areas as compared to 

other rhythmic control frequencies by correlating time courses from a set of regions of 

interest for the different stimulation conditions and applying network-based statistics. This 

suggests that rhythmic stimulation at the IAF frequency induces a higher degree of 

synchronicity of neural activity across the occipital and parietal cortex, which supports the 

role of the alpha oscillation in gating information flow during visual processing.  

 

Key words: entrainment, alpha oscillation, individual alpha frequency, visual flicker, 

imaginary coherency, fMRI connectivity, EEG-fMRI, occipitoparietal cortex   
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2.1 Introduction: 

Neural oscillations play an important role in cognition by regulating neural communication 

between brain regions. Specifically, low frequency oscillations, arising from the 

synchronization of neural activity across distributed neural assemblies, are thought to serve as 

a mechanism for information flow across long-range connections.1,2 The alpha oscillations (7-

12 Hz) are the most prominent neural oscillations in EEG during wakeful rest.3,4 They are 

low-frequency oscillations thought to gate communication between local sensory processes in 

visual perception through inhibition.5,6  

 

Power of alpha oscillations has been associated to inhibition. In resting state fMRI studies, an 

inverse correlation between BOLD activity and alpha power in occipital regions has been 

reported.7–9 These findings suggest the alpha rhythm acts as an inhibitory oscillation 

dampening cortical excitability in sensory areas when alpha power is high.10–13 Evidence 

from visual detection studies support the ‘gating by inhibition’ hypothesis. Visual task 

performance correlated with pre-stimulus alpha phase14,15 suggesting neural activity gets 

enhanced then suppressed within a cycle or phase of the alpha oscillation. An increase in 

alpha power arises from the synchronization of neural activity in more neural populations, 

which subsequently gates information flow.2,5,16,17  

 

The prime source of information on neural oscillations are electrophysiological 

measurements, in particular scalp EEG. Although scalp EEG is well suited for studying 

neural oscillations with high temporal resolution, exact source reconstruction of the neural 

origin of oscillators is limited in EEG18 due to the underlying static electromagnetic inverse 

problem.19 Therefore, localization of alpha oscillation generators presents a problem, which 

limits the characterization of the distinct neural processes giving rise to the alpha oscillation.  

 

Functional MRI represents the method of choice for spatial localization at rather high 

resolution and can be used to assist source localization of electrical neural oscillations. 

However, fMRI studies on long-range connectivity associated with the alpha rhythm report 

mixed results. A study correlating alpha power  and BOLD functional connectivity found the 

primary visual cortex positively correlated with areas associated with the default mode 

network, yet negatively correlated with other visual areas.9 The strength in functional 

connectivity between the default mode network and dorsal attention network also inversely 
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correlate with spontaneous alpha power.20 Whereas, a positive correlation between 

spontaneous increase in alpha phase coherency and BOLD connectivity within the 

frontoparietal attention network 21 and a dorsal default mode network.22 Divergent findings 

may be explained by the fact that two different EEG measures, amplitude and phase 

coherency, are being compared to BOLD functional connectivity. However, neural 

communication is thought to arise from temporal coupling of neural activity across neural 

populations2,23It is therefore conducive to use statistical measures assessing temporal 

coupling of spatially distinct neural activity in both modalities, such as phase coherency in 

EEG24,25 and BOLD function connectivity.26 Furthermore, these studies investigated 

spontaneous changes in alpha rhythm in concurrent measurements. Studying experimentally 

modulated changes in the alpha rhythm in a controlled manner would be more informative in 

classifying top-down, long-range connections associated with the alpha rhythm.   

 

Several studies have shown evidence that rhythmic light stimulation can entrain ongoing 

neural oscillations in the visual pathway.27–29 Entrainment, defined as the synchronization of 

neural oscillation to an external rhythmic stimulus,27,30 allows for selective alterations in the 

alpha frequency band. One study, taking individual variability in individual peak intrinsic 

alpha frequency (IAF) into account, showed increased alpha phase synchronicity occurring 

with decreased distance of the stimulation frequency from the IAF.31,32 The study showed that 

entrainment of neural oscillators follows the Arnolds tongue principle,31,33 which states phase 

synchronicity and entrainment increases when the driving flicker frequency approaches the 

peak frequency of the neural oscillators. ,31,33 Thus showing entrainment of the intrinsic alpha 

rhythm with rhythmic light. A study by Parkes et al. (2004) reported a decreased BOLD 

response in V1 for rhythmic stimulation in the alpha range as compared to arrhythmic 

stimulation. They concluded the decreased BOLD response reflected increased inhibition due 

to entrainment of the alpha oscillation, that differed from the event-related BOLD response to 

random flicker-induced luminance changes during arrhythmic stimulation. However, the 

question still remains whether entrainment of the IAF induces similar increase in alpha-

mediated cortical synchronicity in EEG and fMRI.   

 

In line with the communication by coherency theory, we propose that entrainment of the 

alpha oscillation should increase synchronous neural activity as measured by increased alpha 

phase coherency and BOLD functional connectivity. In this study, a novel light stimulation 

tool was used that can be adjusted to sub-millisecond precision allowing for frequency steps 
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of 0.01 Hz or finer. Participants intrinsic alpha frequency was determined from eyes-closed, 

resting-state EEG measurement.  Flicker-stimulation at the IAF and neighboring frequencies 

of the alpha range were assessed during independent EEG- and fMRI experiments. Degree of 

synchronicity was assessed across stimulation conditions using source-localized imaginary 

coherency in the EEG study and correlation matrices in the fMRI study.  

 

2.2 Methods: 

2.2.1 Participants: 

All participants gave written consent before participation and had normal or corrected-to-

normal vision. Although the studies were conducted during different time periods, some of 

the participants chose to participate in both studies. The study was approved by an in-house 

ethics committee at TUM School of Medicine at the Technical University Munich. 

 

2.2.1.1 EEG study participants: 16 young, healthy individuals (10 females, mean age = 26.2 

years, SD = ± 3.0 years) participated in an EEG study. One subject was excluded from the 

analysis due to excessive noise during the testing session, resulting in 15 participants (9 

females, mean age = 26.3, SD = ± 3.0 years).  

 

2.2.1.2 fMRI study participants: 25 young, healthy participants (15 females, mean age = 28.7 

years, SD =  ± 2.7 years) were recruited for a separate fMRI study. Two subjects did not have 

a visible alpha peak frequency and the study was discontinued after the resting state EEG 

measurement. One subject exhibited rapid fatigue during the study and was subsequently 

excluded. Four more subjects were excluded for excessive head movements. The data of the 

remaining 18 subjects (12 females, mean age = 26.0 years, SD = ± 2.4 years) were subjected 

to the data analysis.  

 

2.2.2 Visual Entrainment Design:  

For clarification, the visual entrainment experiment was conducted separately for EEG and 

fMRI acquisitions. To allow for comparisons across studies, the same entrainment paradigm 

was used and subjects were lying in supine position in both experiments. The visual 

entrainment paradigm consisted of a radial flickering checkerboard, which was presented for 
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20 seconds followed by the presentation of a black blank screen with a red fixation cross for 

10 seconds in the EEG paradigm or 50 seconds in the fMRI paradigm (Figure 1A). A longer 

interstimulus interval was introduced in the fMRI experiment to account for the slower 

BOLD response and post-stimulus undershoot. The experiment was presented through 

Presentation software (Neurobehavioral Systems, http://www.neurobs.com) and projected by 

a projector onto a screen 1.5 meters behind the participants head and viewed by a mirror 

(visual angle 70°). The flickering rate of the checkerboard was controlled via a custom-built 

LCD glass placed in front of the beamer. The LCD glass darkens to a nearly opaque screen 

when voltage is applied to it, which was controlled through a microcontroller (Arduino Uno, 

Scarmagno, Italy) allowing flickering at any required frequency. Each flicker frequency was 

created with a 50% duty cycle, i.e., the LCD screen was dark for half of the cycle and 

transparent screen for the other half. A total of fourteen flicker conditions were presented, 

including the following frequencies: the individual subject’s IAF, 7, 8, 9, 10, 11, and 12 Hz, 

which were presented both rhythmically and arrhythmically. The arrhythmic frequency 

stimulation was achieved by jittering the period of the stimulation frequency up to 25% (i.e. ± 

12.5% from the flicker frequency) while maintaining the 50% duty cycle to keep the average 

luminance the same across all flicker conditions. (Figure 1B). The presentation of all 

conditions was individually randomized for each subject.  

 

In both EEG and fMRI, the fourteen flicker conditions were presented once per session. For 

the EEG experiment, three sessions lasting approximately 8 minutes were obtained, resulting 

in 3 repetitions of each flicker condition per subject. For the fMRI experiment, two sessions 

of the entrainment paradigm lasting approximately 16 minutes were obtained for each 

subject, resulting in two repetitions of the fourteen flicker conditions per subject.  

 

http://www.neurobs.com/
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Figure 2. 1: Visual Paradigm. A) Subjects were presented with a blank screen for 50 seconds 

in the fMRI study (10 seconds for the EEG only study) followed by 20 seconds flickering 

circular checkerboard. Subjects were asked to continuously fixate on the red fixation cross. The 

checkerboard flickered via a shutter glass inserted in front of the projector for 14 stimulation 

conditions (the subject’s IAF, 7 Hz, 8 Hz, 9 Hz, 10 Hz, 11 Hz, 12 Hz, rhythmic and arrhythmic 

stimulation for each frequency). B) The arrhythmic condition (black) was randomized with up 

to 25% jitter of the stimulation frequency. The rhythmic condition is presented in red. C, D) 

Boxplots indicating the distribution of the peak alpha frequency (determined from 1 minute 

resting state, eyes closed EEG recordings) across 15 participants that were recruited for the EEG 

(C) and fMRI (D) studies, respectively. Peak alpha frequencies ranged from 8.75 to 12.5 Hz 

(interquartile range: 9.31 - 10.75 Hz; red) for EEG subjects (C) with a median and mean IAF of 

10.25 Hz and 10.17 ± 0.93 Hz, respectively. The peak alpha frequency ranged from 8.75 Hz to 

12.5 Hz (interquartile range 9.5Hz – 10.5Hz; red) for fMRI subjects (D) with a median / mean 

IAF across subjects of 10 Hz and 10.1 ± 0.85 Hz, respectively.  

 

2.2.3 EEG Data: 

2.2.3.1 Data acquisition:  

EEG data were recorded for i) the entrainment paradigm using EEG in the first experimental 

group, and ii) determining the IAF frequency shortly before performing the fMRI 

entrainment experiment in the second experimental group. All EEG data was acquired from 

64 MR-compatible scalp electrodes (EASYCAP GmbH, Germany), which was placed 

according to the 10/10 system. The online reference and ground electrode were located at 

FCz and AFz respectively. Impedance was kept below 10 kΩ. Data was acquired with a 

sampling rate of 1000 Hz and a software-based high-pass filter of 10 seconds was used to 

prevent DC saturation. All recordings were performed using BrainVision Recording Software 

(Brain Products, Germany).  
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2.2.3.2 Determination of IAF by resting state EEG: 

The IAF was determined from one-minute eyes-closed resting state EEG performed shortly 

before the entrainment paradigm. Subjects were in supine position in a dark room to keep the 

body position of the subjects consistent with the fMRI scanning session. The one-minute 

resting state EEG was segmented into 4 second segments. For each of the following 

electrodes, O1, O2, Oz, P1, P2, and Pz, the EEG signal was extracted and processed as 

follows. To account for slow signal drift, each segment was baseline corrected to the average 

power of the segment, which was calculated from a fast Fourier transform with 50% overlap 

and a Hanning window taper. The maximum alpha peak frequency was determined for 

electrodes O1, O2, Oz, P1, P2, Pz with a resolution of 0.25 Hz. If a subject did not have a 

single peak frequency across all aforementioned electrodes, then the frequency of the most 

common peak was determined across the six electrodes.  

 

2.2.3.3 EEG preprocessing  

The flicker paradigm EEG data was segmented into 20 second epochs corresponding to the 

stimulation blocks and concatenated across all three sessions for all rhythmic and arrhythmic 

frequencies. Data was then down sampled to 500 Hz and band pass filtered to range from 1 to 

30 Hz. Channels that either flat lined for 5 seconds, exceeded a high-frequency noise standard 

deviation of 4, or exceeded a correlation of 0.8 with nearby channels were excluded (Clean 

RawData Plugin, EEGLAB).35 Data was re-referenced to the average and further denoised 

using an independent component analysis. All components that were not labeled as brain by 

the ICLabel toolbox (Swartz Center for Computational Neuroscience, 

https://sccn.ucsd.edu/wiki/ICLabel) were removed. Bad electrodes were re-interpolated using 

the re-referenced and ICA-denoised data. Using the Artifact Subspace Reconstruction 

algorithm in EEGLAB any data segment surpassing 20 standard deviations of calibrated 

clean data or segments in which 25% of channels exceeded 7 standard deviation of average 

channel power were removed. The 20 seconds of data for each flicker frequency condition 

were then divided into 4 second epochs with no overlap. The spectral content ranging from 

±1 Hz around the stimulation frequency was calculated for each 4 second segment using a 

Fourier transform with a DPSS taper.  

  

 

https://sccn.ucsd.edu/wiki/ICLabel
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2.2.3.4 Source localization of imaginary coherency value 

To reconstruct alpha sources from the scalp EEG, volume conductance across the head was 

calculated from a template boundary element model as implemented in Fieldtrip, 

(www.fieldtriptoolbox.org)36. The 64-electrode position files were manually aligned to the T1 

template in MNI space. The Fourier coefficients for each 4-second epoch were projected into 

source space using the partial canonical correlation (PCC) algorithm37,38 with a regularization 

parameter set at 10%. Imaginary coherence was calculated for each dipole pair for each 

flicker condition from the complex part of the Fourier-transformed data. The imaginary part 

of the coherence spectrum has been shown to be unaffected by volume conductance and thus 

eliminates spurious coherency caused by volume conductance.39 The source-localized 

coherency values were parcellated into 90 regions using the AAL atlas.40 Cerebellar regions 

were excluded as source projection into deep subcortical structure becomes less reliable. 

 

2.2.3.5 Statistical test of group coherency effects  

The parcellated coherency matrices for all flicker conditions were entered into an ANOVA 

for all subjects with flickering frequency as a factor with fourteen levels. Significance testing 

correcting for multiple comparison was performed using the Network-Based Statistical 

Toolbox (NBS)41, which implements a non-parametric clustering approach. The NBS toolbox 

uses mass univariate testing of a hypothesis of interest on each connection between all node 

pairs. The NBS toolbox then corrects for multiple comparison using a cluster-based, non-

parametric random permutation approach. Since we hypothesized that rhythmic stimulation at 

the IAF elicits higher degree of synchronization than stimulation at other rhythmic 

frequencies due to increased entrainment with the driving flicker frequency  at the IAF,30–32 

comparison rhythmic stimulation at the IAF more significant than all other rhythmic flicker 

frequencies was tested using network-based statistics  To ensure increases in cortical 

coherency was an effect of entrainment rather than measures of the underlying ongoing alpha 

oscillation, the comparison  rhythmic versus arrhythmic flicker conditions and vice versa 

were also tested.  

 

2.2.4  Experimental FMRI Data: 

2.2.4.1 Image data acquisition and processing: 
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Imaging data was acquired on a 3T Phillips Ingenia scanner with a 32-channel head coil. A 

structural scan (MPRAGE, TE 3.3 ms, TR = 7.264 ms, flip angle = 8°, TI = 1060 ms, FoV = 

240 mm x 240 mm x 170 mm, voxel size = 0.75mm³, matrix size = 320 x 320; 227 sagittal 

slices) and two functional scanning sessions were acquired. Nine hundred and eighty whole-

brain echoplanar imaging (EPI) scans (TE = 30 ms, TR = 1000 ms, flip angle =70°,  FoV = 

192mm x 192mm x 115mm, matrix 64x62, voxel size = 3mm3, 36 slices, slice thickness = 33 

mm with a 0.2mm interslice gap) were acquired with a multiband factor of 2 and a SENSE 

factor of 2.  

 

2.2.4.2 Image preprocessing for fMRI connectivity analysis   

The fMRI data was preprocessed using  the CONN toolbox.42 Anatomical and functional 

images were re-oriented to the ACPC axis. Functional images were head motion-corrected 

and co-registered to the T1-anatomical image. Four subjects showed head movement 

exceeding a threshold of 2mm/2° movement/rotation in any direction and were excluded 

from further analyses as mentioned in section 1 (participants). The anatomical data was 

segmented into six tissue probability maps and subsequentially normalized to Montreal 

Neurological Institute (MNI) standard brain space. The functional images were then also 

MNI normalized using identical transformations. The preprocessed EPI time series were 

despiked using a wavelet-based approach (BrainWavelet Toolbox),43 and further denoised 

with the CONN Toolbox by regressing out head motion effects using the Friston2444 

movement parameters. To reduce cardiac and respiratory effects, signal from white matter 

and cerebrospinal fluid (obtained from individual masks in MNI space) were removed 

through a linear regression. The residuals were high pass filtered with a temporal bandpass 

filter of 0.08 Hz to account for slow scanner drift. 

 

2.2.4.3 Network-based connectivity analysis across rhythmic flicker conditions  

The whole brain time series were parcellated into 360 regions using the Glasser Atlas.45 Time 

series were averaged within each parcel. 56 regions (Supplementary Table 2) corresponding 

to occipital parietal cortex spatially overlapping with significantly connected areas in the 

EEG study were selected for the subsequent connectivity analysis. The parcellated time series 

were extracted for each stimulation condition resulting in twenty time points per flicker 

condition per session. Cross-correlation matrices were created from the 56 regions of interest 

for each flicker condition and averaged across the two scanning sessions per subject. Cross-

correlation matrices for all flicker frequencies and subjects were entered into an ANOVA. 
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Significance testing correcting for multiple comparison was performed using the NBS 

toolbox (see Methods section 3.5 for a more detailed explanation). For each frequency 

condition (7, 8, 9, 10, 11, 12 Hz and the IAF) as well as for the comparison between rhythmic 

and arrhythmic stimulation,  significance was tested for the t-contrast rhythmic stimulation at 

a given flicker frequency against all other rhythmic flicker frequencies. 

 

2.3 Results: 

EEG connectivity during stimulation at and near the IAF: 

Individual participant’s peak alpha frequency, measured during resting-state one-minute eyes 

closed EEG, ranged between 8.75 and 12.5 Hz with a mean peak frequency of 10.17 ± 0.93 

Hz (Figure 1). To quantify the degree of entrainment at the IAF as compared to neighboring 

frequencies, connectivity in source projected EEG was measured by evaluating alpha-band 

limited phase synchrony using imaginary coherence. Rhythmic stimulation at the IAF 

resulted in increased alpha phase coherency across occipitoparietal regions and across the left 

and right hemisphere (Figure 2A, mass univariate testing at p < 0.05; 1000 random 

permutations, p < 0.05).  Increased coherency in occipitoparietal regions was also observed at 

rhythmic stimulation at 10 Hz (Figure 2B). However, across subjects the mean peak alpha 

frequency centered around 10 Hz and thus stimulation at 10 Hz may have also elicited a high 

degree of entrainment. The contrast rhythmic IAF compared to all other rhythmic frequencies 

excluding 10 Hz elicited higher interhemispheric connectivity in the visual cortex. This effect 

confirms that rhythmic stimulation at the IAF elicits higher degree of synchronicity than 

neighboring frequencies. Rhythmic stimulation elicited significantly higher alpha phase 

coherency across region pairs than arrhythmic stimulation across frequencies (Supplementary 

Figure 1). No significant phase coherence were found across region pairs for arrhythmic 

stimulation compared to rhythmic stimulation.  



Project I 

 

 
28 

 

Figure 2. 2: Significant EEG functional connectivity. Significant EEG functional 

connectivity was measured using imaginary coherency between region pairs for a given flicker 

frequency contrasted against other flicker frequencies (each connection tested at p-value of 

0.05). A non-parametric permutation test was performed on supra-threshold connections to 

account for multiple comparisons (NBS, 1000 iterations, significance at p < 0.05). Significant 

connections at contrasts: A) rhythmic IAF versus all other rhythmic flicker frequencies, B) 

rhythmic 10 Hz versus all other rhythmic flicker frequencies, and C) rhythmic IAF as compared 

to all other flickering frequencies excluding 10 Hz. All other rhythmic flicker frequencies (7, 9, 

11, 12 Hz) did not result in any significant connections. The average IAF value was 10.1 Hz, 

which may explain the strong connections seen at rhythmic 10 Hz. Brain networks were 

visualized with BrainNet Viewer.(Xia et al., 2013) 

 

BOLD connectivity analysis during visual stimulation:  

The degree of functional connectivity between nodes, as measured by cross-correlation of 

parcellated fMRI time series, was assessed using network-based statistics as a proxy for 

degree of entrainment across flicker conditions. Most notably, rhythmic stimulation at the 

IAF induced significantly more connected networks that ranged across occipital and parietal 

regions and across hemispheres as compared to rhythmic stimulation at all other frequencies 

(mass univariate testing at p < 0.001; 5000 random permutations, p < 0.001; Figure 4A). In 

the fMRI data, for rhythmic stimulation at 9Hz (Figure 4B), 11 Hz (Figure 4C), and 12 Hz 

Figure 4D) significant connections were detected between parietal and occipital regions. The 

comparison of rhythmic versus arrhythmic stimulation at the IAF resulted in increased 

occipital connectivity of BOLD signals, while the reversed comparison was not significant 

(Supplementary Figure 1C). Visual stimulation at the IAF did not show any significant 

decrease in BOLD signal amplitude as compared to arrhythmic stimulation or other control 

frequencies (see Supplementary information and Supplementary Figure 2).   
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Figure 2. 3: Significant BOLD functional Connectivity. Significant BOLD function 

connectivity for the t-contrasts A) rhythmic IAF greater than rhythmic all other flicker 

frequencies, B) rhythmic 9 Hz greater than rhythmic all other flicker frequencies, C) rhythmic 

11 Hz greater than all other rhythmic flicker frequencies, and D) rhythmic 12 Hz greater than all 

other flicker frequencies. No significant clusters were observed for rhythmic 8 Hz greater than 

all other flicker frequencies, rhythmic 10 Hz greater than all other flicker frequencies, and 

rhythmic 12 Hz greater than all other flicker frequencies. A threshold of p < 0.001 was used to 

obtain supra-threshold connectivity components. Each component was subject to family-wise 

error rate correction through permutation testing (P < 0.001, 5000 permutations).  

 

2.4 Discussion:  

This study, to our knowledge, is the first, to evaluate alpha-modulated cortical synchronicity 

changes in both an EEG and an fMRI study. A novel light stimulation tool was used to target 

individuals’ intrinsic alpha frequency. Rhythmic and arrhythmic control frequencies were 

used to ensure entrainment at the IAF independent of synchronicity changes induced by 

steady-state visually evoked potentials. Results show both an increase in synchronicity across 

occipitoparietal regions in both the EEG and fMRI study for rhythmic stimulation at the IAF 

as compared to all other rhythmic flicker frequencies from within the alpha range. These 

findings suggest that targeted entrainment at the IAF leads to enhanced synchronization of 

neural activity across neural ensembles as measured by coherency in the EEG. Increase in 

synchronous neural activity thus drives a synchronized increase in neural gain in visual and 

parietal areas, as reflected by the increase in fMRI connectivity. The higher degree of 
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synchronicity between fluctuating neural activity in the visual cortex suggests gated 

processing of incoming visual sensory input.  

 

There is still a debate in the literature whether rhythmic light stimulation truly drives 

synchronization of intrinsic oscillations to the external rhythm or whether rhythmic 

stimulation evokes the superposition of steady-state visually evoked potentials (SSVEPs) on 

intrinsic neural oscillations.30,46,47 In part, analysis methods investigating alpha power are 

insufficient in discerning between different sources oscillating within the same frequency, 

i.e., intrinsic neural oscillations or SSVEPs.17,47,48 Phase coupling between two oscillatory 

sources provides a more accurate measure of synchronicity between neural oscillations and 

external rhythms.30,49 Although it has been noted that measure of alpha phase locking to 

external stimuli are sensitive to amplitude and phase changes elicited by evoked 

potentials,50,51 we argue that comparing degree of phase coupling to control conditions with 

equal amounts of energy, or luminance, serves as an accurate measure of entrainment. In this 

study, the arrhythmic conditions were used as a control for phase changes to the ongoing 

alpha rhythm induced by evoked potentials. The arrhythmic condition mimicked the rhythmic 

condition with equal luminance and only slight phase shifts per cycle. The arrhythmic 

condition should therefore elicit a similar visually evoked response as the rhythmic 

condition.32,34,46 In our results there was no significant phase coherence neither for the 

arrhythmic condition in the EEG (Supplementary Figure 2) nor for the fMRI stimulation at 

the IAF (Supplementary Figure 3), supporting the conclusion that the observed significant 

connectivity reflects entrainment of ongoing neural oscillations.  

 

Entrainment of the alpha rhythm in part proves difficult because of inter- and intra-subject 

variability. The alpha peak frequency has been observed to shift with age, neurological 

disorders,52 and also varies across age-matched individuals.53,54 Recent studies assessing peak 

alpha frequency across experimental condition also noted a shift in the peak alpha frequency 

up to 0.2Hz per hour.55 Alpha peak frequency shifts have been associated with cognitive 

demand54,56 and spontaneous fluctuations in the resting state alpha peak frequency has been 

observed to be inversely associated with BOLD signal change in the visual cortex.57 In this 

study, the peak alpha frequency across subjects varied between 8.75 and 12.5 Hz in both the 

EEG and fMRI cohort and were centered between 10 and 10.5 Hz. A high degree of 

synchronicity was therefore observed for the 10 Hz condition in the EEG study (Figure 2) 

and the 9 Hz condition in the fMRI study (Figure 3). Notbohm et al. (2016), showed that at a 



Project I 

 

 
31 

given light intensity, stimulation at a frequency near the IAF will also elicit entrainment. This 

suggests that the alpha rhythm is adaptable and may be able to shift its peak frequency to 

match either external or intrinsic temporal rhythms,58,59 allowing for better temporal 

integration and processing of sensory information.60,61   

 

Even though rhythmic visual stimulation has been extensively used in fMRI studies of the 

visual cortex,62,63 only a few studies have investigated changes in the BOLD signal amplitude 

response in the visual cortex under rhythmic64,65 and arrhythmic visual stimulation34 across 

different flicker frequencies including the alpha range. In general, a decreased BOLD 

response was found for rhythmic flicker in the alpha range as compared to lower or higher 

flicker frequencies64,65 and in comparison to arrhythmic stimulation in the alpha range.34 

These previous studies had small sample sizes of six to seven subjects, sampled only few 

flicker frequencies in the alpha range and did not consider variability in the alpha peak 

frequency across individuals. Our results show no significant difference in the BOLD 

response amplitude between rhythmic and arrhythmic stimulation (Supplementary Figure 2). 

Although the BOLD signal amplitude was lower for rhythmic stimulation at the IAF, 10 Hz 

and 12 Hz. We are quite confident that an increase in trial number and thus power may have 

resulted in significant findings. Nevertheless, the degree of jitter in the arrhythmic condition 

may also have not been large enough to interrupt the ongoing alpha rhythm. Yet, a 

significantly higher degree of synchronicity for rhythmic stimulation at the IAF compared to 

arrhythmic stimulation (Supplementary Figure 3) suggests that a 25% jitter was sufficient to 

interrupt the intrinsic alpha oscillation. In comparison to previous studies, our study also 

specifically targeted the individually measured IAF and used a finer frequency resolution of 

1Hz intervals within the alpha range.  

 

Moreover, our findings also particularly depend on the question what signal transformation 

must be considered when interpreting EEG and fMRI results that arise from different 

neurophysiological signals. The event-related BOLD response can be considered as a 

superposition of spontaneous and task-related activity.66,67 The vascular and metabolic 

contributions to the BOLD amplitude response reflect the average level of synaptic activity in 

a local area, while EEG signal measures the summation of LFPs induced by the synchronous 

activity of neural populations.68 Taking this into consideration in the current study, the BOLD 

amplitude response in V1 may reflect the superposition of both the visual-evoked responses 

induced by the increase in luminance upon presentation of the checkerboard, which is 
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observed across all conditions as mean luminance was kept constant, and changes in BOLD 

connectivity as induced by entrainment of alpha rhythm.  Since an evoked response, and 

subsequent neural activity, will be present in V1 for all flicker conditions, the BOLD 

amplitude may not be sensitive enough in V1 to show entrained BOLD effects.  

 

When investigating the alpha-BOLD relationships, it is important to understand the neural 

basis of alpha power and alpha phase as well as the BOLD amplitude response and functional 

connectivity as these may represent different neural modalities. In the literature, mixed results 

have been reported when comparing the alpha rhythm to the BOLD signal. Studies that 

analyzed BOLD amplitude response and alpha power have shown an inverse relationship in 

visual cortex.8,69 However, another study by Scheeringa et al. (2012) investigating BOLD 

connectivity and alpha power in resting state has shown decreased connectivity across visual 

areas, yet increased connectivity between the visual cortex and default mode network. 

Variability in alpha phase has been correlated with variable BOLD amplitude response in 

V1.70 High alpha phase synchronicity correlated positively with functional connectivity in 

frontoparietal areas during rest.71 More recently, a study investigating transient changes in 

alpha power and phase coherency between the PCC and the cortex in resting state, showed 

increased alpha power as well as phase synchronicity in occipital parietal regions associated 

within a higher order cognitive network.72 In our study, visual entrainment at the IAF elicited 

increased phase synchronicity and BOLD connectivity in similar regions, suggesting that 

entrainment may induce a higher degree of coherency in top-down parietal regions and 

sensory visual areas. Yet visual stimulation may cause synchronicity changes that differ from 

spontaneous fluctuations in the alpha rhythm and BOLD connectivity under rest.  

 

We note that direct comparisons between alpha coherency and fMRI connectivity could not 

be inferred in this study as participants varied across the two studies and EEG and fMRI data 

were not acquired simultaneously and subjects varied across the study. We observed 

variability in the intrinsic alpha peak frequency across individuals and across the EEG and 

fMRI study.  Interindividual differences in peak alpha frequency has also been correlated 

with regional differences in cerebral blood flow,73which suggest a variable BOLD response 

across individuals. Despite variability across the two studies, rhythmic stimulation at the IAF 

increased connectivity across similar regions in the occipital parietal cortex.  
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In conclusion, we showed that rhythmic stimulation at the IAF results in increased alpha 

coherency and fMRI connectivity across the occipitoparietal cortex as compared to other 

rhythmic flicker frequencies due to increased entrainment with the driving external light force 

at the IAF and stronger modulation of synchronous neural activity. A replication of 

entrainment in a future concurrent EEG-fMRI studies investigating the synchronicity in the 

alpha rhythm and BOLD signal during entrainment, as well as during rest, would help clarify 

whether entrainment at the IAF activates the same neural processes as spontaneous 

fluctuations in intrinsic alpha frequency. Finally, future studies investigating behavioral 

outcomes during experimental modulations of the alpha rhythm during entrainment in 

concurrent EEG-fMRI would provide definitive evidence for the communication by 

coherence hypothesis.   
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Appendices:  

Appendix A: Supplementary methods  

To replicate previous findings from Parkes et al. (2004), the BOLD time series were extracted 

from V1 for each hemisphere separately, using probability maps obtained from Anatomy 

Toolbox(Eickhoff et al., 2005) as masks. The mean BOLD time series were extracted from 

the normalized functional images for each ROI and high-pass filtered (0.0078 Hz, 128 sec) 

for each scanning session, to account for slow scanner drift across the scanning sessions. The 

BOLD time series were segmented into the 20 second stimulation blocks for each stimulation 

condition. For each scanning session, the baseline BOLD time series was determined by 

averaging the last 20 seconds of all 50 second baseline periods that occurred in between 

stimulation blocks. Only the last 20 seconds were used to ensure that the BOLD signal had 

returned to baseline. The BOLD percent signal change (PSC) for each stimulation block was 

then calculated for each session as:  

 

𝐵𝑂𝐿𝐷 𝑃𝑆𝐶 =  
𝐵𝑂𝐿𝐷 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑚𝑒𝑎𝑛 𝐵𝑂𝐿𝐷 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒30−50 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑚𝑒𝑎𝑛 𝐵𝑂𝐿𝐷 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒30−50 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  
∗ 100 

 

The BOLD PSC was then averaged across scanning session and across subjects respectively 

for a given ROI. The averaged evoked BOLD response is visualized in SI Figure 2. Then the 

last 10 seconds of the BOLD percent signal change of each stimulation condition were 

averaged together to make our data comparable with Parkes et al (2004). No Significant 

difference was found across the last 10 seconds of stimulation data between rhythmic and 

arrhythmic stimulation for a given frequency.  
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Appendix B: Supplementary figures  

 

Supplementary Figure B.1: Significant clusters for rhythmic greater than arrhythmic 

stimulation in EEG. Significant clusters were corrected for multiple comparisons using False 

Discovery Rate. Significant clusters (pFDR < 0.05, 1000 Permutations) were found for: A) 

IAF, B) 9 Hz, C) 10 Hz, D) 11 Hz, and E) 12 Hz. No significant clusters for rhythmic greater 

than arrhythmic stimulation at 7 Hz and 8 Hz.  
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Supplementary Figure B.2: BOLD percent signal change in V1 for each flicker condition at 

rhythmic stimulation (red) and arrhythmic stimulation (blue) for each flicker condition 

averaged across A) left V1 and B) right V1. The shaded area indicated the standard error of 

the mean. No significant difference was found between rhythmic and arrhythmic stimulation 

for a given flicker frequency when averaging the last 10 seconds of each stimulation block.  

 

  

1 – L MST, 2 – L V4, 3 – L V7, 4 – L V3A, 5 – R 7PL, 6 – R LIPv, 7 – R V3A, 8 – R V7, 9 

– R V4, 10 – R V3, 11 – R MST, 12 - R PGp 

 

Supplementary Figure B.3: Significant clusters for rhythmic greater than arrhythmic 

stimulation in fMRI. Significant clusters (pNBS < 0.001, 5000 Permutations, mass univariate 

testing at P < 0.001) were found for rhythmic versus arrhythmic stimulation at the IAF. No 

significant clusters were found for the contrast arrhythmic versus rhythmic stimulation at the 

IAF.   

A 

B 
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Appendix C: Supplementary Tables  

 

Supplementary Table C.1: AAL atlas regions abbreviations  

Abbreviation AAL Region 

PCUN Precuneus 

SOG Superior Occipital Gyrus 

MOG Medial Occipital Gyrus 

IOG Inferior Occipital Gyrus 

ITG Inferior Temporal Gyrus 

CUN Cuneus 

CAL Calcarine Gyrus 

IPG Inferior Parietal Gyrus 

ANG Angular Gyrus 

MTG Medial Temporal Gyrus 

LING Lingual Gyrus 

FFG Fusiform Gyrus 

SPG Superior Parietal Gyrus 

PCG Posterior Cingulate Gyrus 

IPL Inferior Parietal Lobe 

PoCG Postcentral Gyrus 

AMYG Amygdala 

TPOmid Middle Temporal Pole 

REC Gyrus rectus 

ORBinf Inferior orbital frontal gyrus 
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Supplementary Table C.2: Glasser atlas regions of interest 

Abbreviation Glasser Region 

R, L V1 Primary Visual Cortex 

R, L MST Medial Superior Temporal Area 

R, L V6 Sixth Visual Area 

R, L V2 Second Visual Area 

R, L V3 Third Visual Area 

R, L V4 Fourth Visual Area 

R, L V8 Eighth Visual Area 

R, L V3A Area V3A 

R, L V7 Seventh Visual Area 

R, L IPS1 Intraparietal Sulcus Area 1 

R, L  V3B Area V3B 

R, L PCV Precuneus Visual Area 

R, L 7Pm Medial Area 7p 

R, L 7m Area 7m 

R, L POS1 Parieto-Occipital Sulcus Area 1 

R, L 7AL Lateral Area 7A 

R, L 7Am Medial Area 7A 

R, L 7PL Lateral Area 7P 

R, L 7PC Area 7PC 

R, L LIPv Area Lateral Intra Parietal Ventral 

R, L VIP Ventral Intra Parietal Complex 

R, L MIP Medial Intra Parietal Area 

R, L AIP Anterior Intra Parietal Area 

R, L PGp Area PGp 

R, L IP2 Area Intraparietal 2 

R, L IP1 Area Intraparietal 1 

R, L IP0 Area Intraparietal 0 

R, L PFop Area PF opercular 
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Abstract: 

Neural oscillations play a prominent role in coordinating communication across distributed 

brain regions during cognition. Specifically, the posterior alpha oscillation is thought to 

modulate visual information processing by gaiting sensory neural activity through inhibition. 

Evidence from anticipatory attention studies suggests the behavioral relevance of modulatory 

changes in the alpha rhythm. However, it is not known whether long-range modulations in 

the alpha rhythm occur through cortico-cortical or thalamo-cortical connections. This study, 

uses a novel rhythmic light stimulation paradigm, previously shown to induce entrainment of 

the intrinsic alpha frequency, to spatially localize alpha-modulated long-range connectivity in 

a concurrent EEG-fMRI study. In the EEG, increased alpha coherency for rhythmic 

stimulation at the intrinsic alpha frequency (IAF) was observed between inferior frontal 

regions and occipital and parietal regions. While the fMRI revealed strong connectivity 

between the occipital thalamus and inferior and medial frontal cortex. Most notably, an 

analysis of covariation in trial-based EEG and fMRI connectivity revealed alpha-modulated 

connectivity varies along occipital-thalamic-frontal connections with the occipital thalamus 

having the highest degree centrality. In line with structural connectivity studies and 

intracranial electrophysiology studies, these results stress the relevance of functional 

modulation of the alpha rhythm through long-range cortico-thalamic connections. This study 

also employs a novel application of concurrent EEG-fMRI data to study task-based 

connectivity.  

 

 

KEY WORDS: Visual stimulation, concurrent EEG-fMRI, alpha oscillation, functional 

connectivity, phase coherency, electrophysiological connectome  
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3.1 Introduction: 

The brain’s ability to coordinate parallel processing of sensory input and selective integration 

of context-relevant information into a continuous thought process is crucial for cognitive 

function.1,2 Neural oscillations, composed of fluctuations in excitability states, are thought to 

regulate interareal neural communication by facilitating the coupling of excitability states 

across neural assemblies.3–5 Similarly in fMRI, the statistical co-fluctuations of spatially 

distinct neurophysiological events are thought to reflect the integration of functionally 

segregated brain networks into common cognitive processes.6,7  Dynamic jointly-derived 

electrophysiologic and fMRI network analyses during rest have shown that changes in neural 

oscillations in specific frequency bands correlate with dynamic organization of functional 

networks8–10 and provide a putative framework for studying the hierarchical organization of 

the brain.5,11 Yet it remains unclear whether dynamic changes in distinct neural oscillations 

spatially correlate with BOLD functional connectivity during active processing. 

 

In vision, the posterior alpha oscillation (7-12Hz) is thought to coordinate visual information 

processing through selective inhibition of cortical excitability in local sensory areas.3,12 The 

reduction of alpha power through sensory stimulation or directed spatial attention in targeted 

sensory areas and converse enhancement of alpha power in task-unrelated brain regions 

suggests active inhibition of cortical excitability due to high alpha power.13–17 Inhibition is 

rhythmically modulated by the alpha oscillations as reflected by fluctuations in visual 

detection performance correlating with alpha phase.18,19 Evidence from concurrent EEG-

fMRI visual processing studies have also shown local occipital alpha power to correlate with 

a reduced BOLD amplitude response in the unattended hemisphere20 and pre-stimulus alpha 

phase to modulate the BOLD amplitude in the visual cortex.21 

 

Attentionally-driven modulation of alpha power and phase suggest the alpha rhythm lies 

under top-down control.15,22–24 Concurrent EEG-fMRI studies showing increased functional 

connectivity between V1 and the thalamus during high alpha power 25 and increased 

functional connectivity in frontoparietal regions during high alpha phase synchronicity26 

support that context-dependent synchronization of neural populations through the alpha 

rhythm lies under top-down control.27,28 Invasive electrophysiological recordings in animals 

have reported the correlation between thalamic spiking activity and sensory alpha phase 

coherency to increase with attention,29 suggesting modulations of the alpha rhythm in sensory 
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areas occurs through thalamic connections.  However, it remains unclear how cortical and 

thalamic interactions coordinate alpha coherence across the cortex and subsequent functional 

neural networks. Whole-brain connectivity measured from concurrent EEG-fMRI would 

elucidate the localization of long-range alpha connections and give insight into the 

modulation of long-range interactions through higher-order cognitive functions such as 

anticipatory attention.  

 

Since the phase of the alpha oscillation is thought to regulate cortical excitability and 

subsequent interareal neural communication,3,12 phase coupling provides a putative measure 

for studying long-range neural synchronization and connectivity of the alpha oscillation.11,30 

Yet only few studies have looked at the spatial localization of alpha phase coupling between 

cortical sources in EEG due to the low spatial resolution of EEG. However, the high spatial 

resolution of fMRI proves beneficial for overcoming the volume conductance problem in 

localizing EEG sources.31,32 Significant spatial and temporal overlap has been found between 

alpha phase-coherency networks and fMRI-functional derived connectivity networks. 

Spontaneous changes in alpha-phase coherency have shown to covary with connectivity 

between the visual network and somatosensory network,9 dorsal regions of the default mode 

network,8 and the frontoparietal network.26 Yet spontaneous modulations of the alpha rhythm 

in resting state studies are insufficient to study the dynamic relaying of information between 

higher order and sensory areas during visual processing as these processes are driven by 

sensory input.  

 

Previous evidence has demonstrated intrinsic alpha oscillation can be entrained by external 

rhythmic light stimulation.33–35 Furthermore, targeted entrainment of the intrinsic alpha 

frequency resulted in increased alpha phase coherency and BOLD connectivity in the 

occipitoparietal cortex.35 We propose external modulations of the intrinsic alpha oscillation 

with rhythmic light stimulation activates stimulus-driven brain networks involved in visual 

perceptual processing and provide further insight into long-range, alpha-mediated 

communication processes. In this study, a modified entrainment paradigm from Jaeger and 

colleagues (submitted) was implemented to study changes in covarying EEG-fMRI whole-

brain alpha connectivity networks during visual stimulation. We aim to show how the 

comparison of EEG-specific and fMRI-specific connectivity provide complementary findings 

in a trial-by-trial covariation analysis that gives new insight into functional role of alpha in 

mediating long range communication.  
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3.2 Methods: 

3.2.1 Subjects: 

34 (20 females, mean age 26.65, age range 19-37) healthy subjects with normal or corrected-

to-normal vision and no history of neurological or psychiatric illness were recruited for this 

study. Three subjects discontinued the study preemptively during data acquisition and were 

excluded. Six subjects that did not have a definite alpha peak (alpha band-limited power 

below a threshold of 0.8 µV) during the resting state, eyes-closed, EEG only measure (used 

to determine the IAF) were also excluded from the study. Furthermore, subjects that had 

more than 30% movement-related artifacts in the EEG recordings either during the resting 

state session or the stimulation study were excluded from the study. Five subjects were 

excluded due to excessive movement.  Data analyses was performed on 20 subjects (12 

females, mean age 27.32, age range 19 -37). All subjects provided written consent prior to 

participating. Ethical approval was granted by an in-house ethics committee at TUM School 

of Medicine at the Technical University Munich.  

 

3.2.2 Data acquisition 

One concurrent EEG-fMRI session was acquired consisting of one five-minute eyes-closed, 

resting state run, followed by four fifteen-minute stimulation runs. fMRI data was acquired 

on a 3 Tesla Phillips Ingenia scanner with a 32-channel head coil. 150 and 450 echoplanar 

imaging (EPI) scans were acquired for the rest state run and the stimulation runs respectively 

(25 slices, TR = 2.0 seconds, voxel size = 3mm3, TE = 30ms, FOV = 192mm x 192mm x 

82mm, matrix size = 64 x 62, flip angle = 70°, slice gap = 0.3mm). EEG data was acquired 

from 63 MR-compatible scalp electrodes (Easycap GmnH, Germany) with the online 

reference and ground electrode located at FCz and AFz respectively and an MR- compatible 

amplifier (BrainAmp MR, sampling rate 5kHz). One ECG electrode was placed between the 

shoulder blades. The scanner clock and amplifier clock were synchronized using a Sync Box 

(Brain Products, Germany). At the end of the study, an anatomical T1-weighted image was 

acquired (MPRAGE sequence, TE 3.3 ms, TR = 7.264 ms, flip angle = 8°, TI = 1060 ms, 

FoV = 240 mm x 240 mm x 170 mm, voxel size = 0.75mm³, matrix size = 320x320; 227 

sagittal slices).  
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3.2.3 Determining individuals’ intrinsic alpha frequency 

Before placing participants into the MR scanner, subjects’ intrinsic alpha frequency was 

determined in supine position in a separate testing room. Two minutes of resting-state, eyes-

closed and resting-state eyes-open EEG data were acquired. EEG data was segmented into 4-

second segments. Data was extracted from O1, O2, Oz, P1, P2, and Pz electrodes and 

baseline corrected to the average power of each segment. A fast-Fourier transform with 50% 

overlap between segments and a Hanning window taper was applied to calculate average 

power across segments. The most common peak frequency across all six electrodes was 

labeled as the intrinsic alpha frequency. Most previous studies used resting state, eyes-closed 

EEG measures to identify the IAF 33,36. However, the peak alpha frequency has been shown 

to shift between rest and task.37 Hence, an IAF value was determined separately for the eyes 

closed and eyes open EEG recordings to compare possible differences. If a subject’s eyes-

closed peak alpha power was less then 0.8 µV, the subject was excluded from the study. Six 

subjects were excluded from the study for having an alpha peak below the threshold.  

 

3.2.4 Stimulation paradigm  

Participants were cued to fixate on a red fixation cross and minimize blinking 2 – 6 seconds 

(randomized between trials) before presentation of a flickering radial checkerboard for 10 

seconds. Four seconds after the end of the stimulation block participants were instructed to 

relax and allowed to blink. A variable rest period (30, 32, 34 seconds randomized across 

trials) ensued to allow the BOLD signal to return to baseline before presentation of the next 

stimulation condition. Presentation software (Neurobehavioral Systems, 

http://www.neurobs.com) and projected through a beamer onto a screen 1.5 meters from the 

participants head made visible to the participant by a mirror (visual angle 70°). Seven 

conditions were presented: no stimulation, rhythmic or arrhythmic stimulation at the IAF, 2 

Hz below the IAF, and 2 Hz above the IAF. The flickering rate was determined through a 

custom-built LCD glass placed in front of a beamer. When a voltage is applied to the LCD 

glass, the glass darkens to a near opaque screen. The flickering rate was controlled through 

Arduino Microcontroller (Arduino Uno, Scarmagno, Italy) with a 50% duty cycle, denoting 

an opaque screen for half of the cycle and a transparent screen for the other half. A 25% jitter 

of the stimulation frequency was applied for the arrhythmic flicker conditions, maintaining 

the 50% duty cycle. Each stimulation condition was presented 3 times per session and 4 

sessions of the stimulation paradigm were obtained resulting in 12 repetitions of each 

http://www.neurobs.com/
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flickering condition. The order of the flicker conditions was randomized across each session. 

Each scanning session lasted 15 minutes.  

 

 

Figure 3.1: A) The stimulation paradigm consisted of seven conditions (rhythmic and arrhythmic 

stimulation at the IAF, two Hertz above the IAF and two Hertz below the IAF and a baseline 

condition. Participants were instructed to Fixate and not blink prior to stimulation onset. The 

fixation cue onset occurred randomly 2,4, ot 6 seconds to stimulation onset. Stimulation or the 

baseline condition occurred for 10 seconds followed by a clean four-second post-stimulation 

period. Participants were then instructed to relax and blink. The intertrial stimulation interval was 

either 30, 32, 34, or 36 seconds randomly assigned across trials. B) Variability in participants 

intrinsic alpha frequency. Participants eyes closed (EC) IAF ranged from 8.75 to 11.5 Hz (mean 

10.1 Hz, median 10 Hz) and eyes open (EO) IAF ranged from 8.5 to 12 Hz (mean 10.3 Hz, median 

10.5 Hz). C) Mean occipital power at the peak alpha frequency for eyes closed and eyes open 

across subjects. A paired t-test showed power at the eyes-closed IAF was significantly higher than 

the eyes-open IAF (p = 0.000632). 

 

3.2.5 Data processing 

 

3.2.5.1 Brainnetome Atlas 

T1-weighted images normalized to MNI space were used to delineate brain regions into the 

243 Brainnetome parcels.38 To remain below the permitted average effective RF magnetic 

field value required for safe concurrent EEG-fMRI measurements, a smaller fMRI field of 

view was used which did not fully cover prefrontal and subcortical areas. Signal was 
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extracted from 203 regions with at least 70% of surface area within the field of view (see 

Supplementary Table 1 for a list of regions).  

 

3.2.5.2 EEG data preprocessing  

Scanner induced gradient artifacts were removed from the data using adaptive average 

artifact subtraction (AAS)39 as implemented in BrainVision Analyzer. Cardioballistic artifacts 

were removed semi-automatically using the same method of average template subtraction. 

Further preprocessing was then carried out in EEGLAB.40 Data was down sampled to 1000 

Hz and bandpass filtered to range from 1 Hz to 30 Hz. Resting state data and the 10 seconds 

stimulation blocks from the four stimulation sessions were subsequently segmented to the 

fMRI TR time (2 second epochs). Data was re-referenced to the average. An independent 

component analysis was performed and components that were not labeled as brain by the 

ICLabel toolbox (Swartz Center for Computational Neuroscience, 

https://sccn.ucsd.edu/wiki/ICLabel) were removed. A maximum of 5 bad channels were re-

interpolated into the data. Movement artifacts were further identified and removed using the 

Artifact Subspace Reconstruction algorithm in EEGLAB (timepoints exceeding 20 standard 

deviations of calibrated clean data or 25% of channels exceeded 7 standard deviation of 

average channel power). For the resting state EEG data, spectral content for ± 1Hz around the 

eyes-closed IAF was estimated for each epoch using a Fourier transform with a DPSS taper.  

The resting state data was subjected to a time-varying jackknife analysis (see supplementary 

methods) to assess spontaneous changes in alpha coherency. For the stimulation data, the 

spectral content was estimated for ± 1Hz around the stimulation frequency of interest or the 

eyes-open IAF for the baseline condition with cutoff.  Tissue volume conductance was 

estimated from a template boundary element model as implemented in Fieldtrip.41 EEG data 

was projected into source space using the partial canonical correlation (PCC) algorithm42 

with a regularize parameter set at 10% and averaged across regions of the Brainnetome atlas 

(excluding prefrontal and subcortical regions, see section 2.5.1). For the resting state session, 

spectral content was estimated around the eyes-closed IAF with a 2 Hz resolution using a 

Fourier transform with a DPSS filter. For the stimulation sessions, the spectral content was 

centered around the stimulation frequency or eyes-open IAF for the baseline condition, again 

with a 2 Hz resolution. The imaginary coherence between each parcel-pair was calculated 

from the complex part of the Fourier-transformed data for a given set of epochs as described 

in the connectivity analysis section. The imaginary coherence eliminates field spread of 

neighboring sources by removing zero-phase lag interactions.43 

https://sccn.ucsd.edu/wiki/ICLabel
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3.2.5.3 fMRI data preprocessing  

FMRI preprocessing was performed using the CONN toolbox.44 FMRI time series were slice-

time corrected, motion-corrected through spatial realignment, and co-registered to the T1-

weighted anatomical scan. The anatomical scan was segmented into six tissue probability 

maps and normalized to MNI space. The functional images were normalized to MNI space 

using the same transformations. The time series were then despiked using a brain-wavelet 

approach (Brain Wavelet Toolbox).45 The time series were further denoised by using linear 

regression to regress out signal from white matter and cerebrospinal fluid (obtained from 

individual’s masks in MNI space) as well as the Friston 2446 movement parameters.  The 

resting state data was subjected to a time-varying connectivity analysis (see supplementary 

methods for more details). For the stimulation sessions, a canonical hemodynamic response 

function was used to model visual stimulation onset and regress out the BOLD amplitude 

response in early visual areas in the fMRI time series. We assume the onset of high 

luminance would induce a strong BOLD amplitude response across all our stimulation 

conditions in early visual areas. As we were not interested in evoked visual responses, we 

regressed out luminance-induced BOLD changes. A temporal band-pass filter from 0.008 Hz 

to 0.09 Hz then applied to the residuals to mitigate non-hemodynamic influences on the 

BOLD signal. Subsequent time series were parcellated into the 203 regions of interest of the 

Brainnetome atlas, obtaining a mean time series per region.  

 

3.2.5.4 Removal of motion artifacts 

Any two-second epoch (corresponding to the TR duration) that contained movement artifacts 

either identified in EEG or fMRI were removed from both modalities. EEG-related artifacts 

were identified as mentioned in 2.5.2. For the fMRI data, the Artifact Detection Tools (ART) 

in the CONN toolbox was used to identify TR outliers that had an absolute value of threshold 

either 2 standard deviations away from the mean global signal or greater than 0.8mm 

translation or 0.034° rotation. Subjects that had more than 30% of movement related artifacts 

across the stimulation sessions were excluded from further data analysis. Eight subjects were 

excluded for having more than 30% noisy data. 

 

3.2.6 Stimulation: connectivity analysis  

 

3.2.6.1 EEG imaginary coherency 
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Imaginary coherency was calculated from the complex part of the Fourier-transformed data 

for a given set of epochs, which was used to obtain a value of phase coupling between each 

parcel-pair. Imaginary coherence eliminates field spread of neighboring sources by removing 

zero-phase lag interactions.43 Imaginary coherence was calculated across trials for each 

stimulation condition across each region pair for each subject. For all subjects, the resulting 

seven coherency matrices [baseline, rhythmic IAF, arrhythmic IAF, rhythmic IAF +2 Hz, 

arrhythmic IAF + 2hZ, rhythmic IAF – 2Hz, arrhythmic IAF -2Hz] were Fisher Z-

transformed and incorporated into an ANOVA. T-contrasts were then set on a given 

condition such as rhythmic IAF vs rhythmic all other frequencies to test for significant 

difference at each connection. Significant connections from resulting thresholded 

connectivity matrices were corrected for multiple comparisons using network-based statistics 

(NBS).47NBS statistic uses a non-parametric cluster-based approach that corrects for family-

wise error rate (FWER) for mass univariate testing at each connection. 1000 permutations 

were performed to calculate an FWER-p-value to test for clusters of significantly connected 

nodes from the thresholded connectivity matrices. Degree centrality of resulting connectivity 

matrices was calculated by taking the sum of the number of direct connections for a given 

node to all other nodes that were above a given significance threshold.  

 

3.2.6.2 fMRI connectivity  

Pearson R correlation matrices were calculated from the denoised time series for each 

stimulation block and averaged across stimulation conditions for each subject. For all 

subjects, R-values in the resulting 7 connectivity matrices were Fischer Z-transformed and 

were subject to network-based statistics testing for significant difference in connectivity 

across stimulation conditions as described in section 3.2.6.1. Degree centrality was evaluated 

as described in section 3.2.6.1 

 

3.2.6.3 Trial-by-trial EEG-fMRI covariation correlation  

The fMRI-derived correlation matrices and EEG-coherency matrices were extracted for each 

stimulation trial. Covariation in EEG-derived and fMRI-derived connectivity was then 

assessed through R Pearson correlation of EEG coherency and fMRI connectivity matrices 

across trials for each stimulation condition. This resulted in seven covariation matrices 

corresponding to each flicker conditions. Network-based statistics was again performed to 

test for significant difference across subjects in connectivity across stimulation sections.  
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3.3 Results: 

Individual variability in intrinsic alpha frequency 

To ensure, the flicker frequency set for stimulation at the IAF conditions was within 

proximity of the true intrinsic rhythmic IAF, the IAF was determined for both eyes open and 

eyes closed. The alpha peak frequency measured from eyes-closed, resting-state, EEG only 

data varied across subjects ranging from 8.75 Hz to 11.5 Hz with mean of 10.1 Hz (Figure 

1B). The alpha peak frequency measured during eyes-open, resting-state, EEG only 

measurement was on average slightly higher across subjects (range: range = 8.5 – 12 Hz, 

mean = 10.3 Hz). A paired t-test revealed alpha power (averaged across the electrodes O1, 

O2, Oz, P1, P2, and Pz) was significantly higher during eyes closed (p = 0.000632, Figure 

1C), which suggests that more neural populations inherently synchronize at this frequency. A 

previous study also showed that stimulation at flicker frequencies within 1 Hz of the IAF 

seem drive entrainment.35 For these reasons, the eyes closed peak alpha frequency was used 

as the IAF stimulation frequency.  However, the baseline, eyes-open condition during the 

stimulation sessions was evaluated at the eyes open peak frequency. 

 

Whole-brain EEG connectivity  

Imaginary phase coherency between source pairs was used to evaluate source-reconstructed 

whole brain connectivity. Significant difference in connectivity across stimulation frequency 

was tested across subjects with network-based statistics47 (significance threshold at p < 0.05), 

correcting for family-wise error rate through random permutation testing (1000 permutations, 

p < 0.05). Significant difference in connectivity between occipital parietal regions and frontal 

regions was observed for rhythmic stimulation at the IAF as compared to rhythmic 

stimulation of all other flicker frequencies (Figure 2). Interestingly, area 45 in the right 

inferior frontal gyrus (IFG) portrayed the highest degree centrality (11 connections) and was 

significantly connected with nodes in the postcentral, parietal and occipital cortex. The 

comparison of rhythmic stimulation at the IAF as compared to arrhythmic stimulation at the 

IAF resulted in connections trending towards significance (p = 0.087) between the left 

superior parietal lobe (SPL) and left and right superior frontal gyrus (SFG) and left IFG 

(Supplementary Figure 1). No significance was found for the comparison rhythmic 

stimulation at either 2Hz above or below the IAF frequencies greater than rhythmic 

stimulation at the IAF or the comparison arrhythmic stimulation greater than rhythmic 

stimulation at the IAF.  
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Figure 3.2: A) Significant connectivity in EEG. Significant difference in EEG coherency for 

rhythmic stimulation greater than rhythmic stimulation at the control frequencies (mass 

univariate testing at each connection, p < 0.05), family-wise error-corrected through random 

permutation testing (1000 permutations, p < 0.05). The node with the highest degree of 

centrality (11 connections) was in the right inferior gyrus B) Significant connectivity in fMRI. 

Significant difference in fMRI connectivity for rhythmic stimulation greater than rhythmic 

stimulation all other flicker frequencies (mass univariate testing at each connection, p < 0.001), 

family-wise error-corrected through random permutation testing (1000 permutations, p < 0.05). 

Task-activation statistical parameter maps were calculated for luminance-induced evoked 

BOLD response across all flicker conditions compared to baseline. Significant clusters (pFWE < 

0.05) are overlayed on the connectivity networks.  

 

Whole-brain fMRI connectivity 

Significant difference in connectivity across stimulation frequency was tested across subjects 

(significant threshold at p < 0.001), correcting for family-wise error rate through random 

permutation testing (1000 permutations, p < 0.05). Significant difference in connectivity 

between rhythmic stimulation at the IAF as compared to rhythmic stimulation at control 

flanker frequencies was observed between the right thalamus and inferior and middle frontal 

gyrus. Most notably, the node representing the highest degree centrality was the right 

occipital thalamus (15 connections), which was significantly connected with the left IFG and 

middle frontal gyrus (MFG) (Figure 2). Surprisingly, no significant connections were 

observed in the occipital cortex for rhythmic stimulation at the IAF. In a previous study,35  

increased connectivity was observed in the occipital cortex during rhythmic stimulation at the 

IAF, indicating a higher degree of synchronicity modulated by the alpha rhythm.  However, 

in contrast to the previous study, the current study had shorter stimulation periods. A GLM 

analysis modeling significant activation with the canonical hemodynamic response function, 

showed significant task activation as compared to baseline for all stimulation frequencies in 
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occipital areas (Figure 1B) with no significant difference in activation between stimulation 

conditions (Supplementary Figure 2). Across all stimulation conditions, a high degree of 

synchronicity was observed in the visual network (Supplementary Figure 3). This suggests 

that the onset of the slow hemodynamic response, caused by sudden increase in luminance 

evoked by the flickering checkerboard, is similar across flicker conditions, which is further 

supported by no significant difference in BOLD amplitude between rhythmic IAF and other 

flicker frequencies (see supplementary information). The comparison greater connectivity for 

rhythmic stimulation versus arrhythmic stimulation at the IAF again yielded a trend towards 

significance (p = 0.077) within the precuneus, temporal gyrus, and pre- and post-central 

Gyrus (Supplementary Figure 1).  

 

Significant covariation between EEG- and fMRI-derived connectivity  

To spatially localize similarity in EEG- and fMRI-derived connectivity, we correlated 

variance in connectivity across trials between the two modalities for each stimulation 

condition. Significant covariation in connectivity was assessed through network-based 

statistics (significance: p < 0.05, 1000 permutations). Fluctuations in connectivity was 

significantly more correlated between EEG and fMRI during rhythmic stimulation at the IAF 

as compared to arrhythmic stimulation at IAF (p = 0.011) (Figure 3a). Interestingly, EEG-

derived and fMRI-derived connectivity co-fluctuated significantly through thalamic 

connections projecting to the mid occipital and frontal cortex (Figure 3b). The number of 

significant connections that covaried were assigned to the YEO atlas intrinsic resting state 

networks.48 A random permutation test was performed to test for significant number of 

between and within connections across the six pre-defined YEO atlas resting state networks 

(visual, default mode, somatosensory, ventral attention, dorsal attention and frontoparietal 

network) to associate the stimulation-based connectivity networks to known resting state 

networks. Connectivity significantly covaried between regions of the ventral attention and 

frontoparietal network (p-value = 0.0004, Supplementary Figure 6). Covarying connectivity 

for the comparison of rhythmic versus arrhythmic stimulation at the IAF was significantly 

greater than rhythmic versus arrhythmic stimulation at control frequencies between regions of 

the ventral attention and frontoparietal network as well as the left thalamus (Supplementary 

Figure 5A). The difference in correlation in covariance between rhythmic stimulation at the 

IAF versus rhythmic stimulation at other flicker frequencies trended toward significance (p = 

0.081) with the highest degree centrality occurring in the thalamus (Supplementary Figure 

5B).  
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Figure 3.3: Trial-by-trial covariance between EEG-derived and fMRI-derived connectivity. A) 

Significant covariance between connectivity in EEG and fMRI for the comparison rhythmic 

stimulation at the IAF as compared to arrhythmic stimulation at the IAF (mass univariate testing 

at p < 0.05, 1000 permutations, pFWER < 0.05). B) Visualizes only those significant connections 

that are directly connected with the thalamus. 

 

3.4 Discussion: 

This study implements a novel application of a visual entrainment paradigm to investigate 

covarying EEG- and fMRI-derived functional connectivity changes specific to modulations in 

the alpha oscillation. We found increased alpha phase coherency between the occipitoparietal 

cortex and frontal cortex in the EEG data during rhythmic stimulation of the IAF in 

comparison to rhythmic stimulation at neighboring frequencies. Whereas in the fMRI data, 

functional connectivity strongly correlated between the right thalamus, specifically the 

occipital thalamus, and frontal regions during rhythmic stimulation of the IAF. Interestingly 

when correlating trial-by-trial covariance between the two modalities, co-fluctuations in 

connectivity between the occipitoparietal cortex and frontal regions were mediated by 

thalamic connections during rhythmic stimulation of the IAF, suggesting alpha-mediated 

connectivity occurs through thalamocortical connections.  

 

The high degree of functional connectivity emanating from the inferior frontal gyrus 

observed in both the EEG-derived and fMRI-derived connectivity (Figure 2) is in line with 

task-based studies.  A granger causality analysis demonstrated occipital alpha modulations 

were driven by top-down influence of the right inferior frontal gyrus and the frontal eye field 
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during visual spatial attention EEG study.49 Another EEG study found increase alpha power 

in frontal and parietal areas during top-down modulations of attention.50 In the current study, 

strong alpha coherency was observed between the right IFG and parietal and occipital areas 

during rhythmic stimulation of the IAF. In the fMRI, connectivity in the IFG strongly 

connected with right thalamus during rhythmic stimulation of the IAF. Previous concurrent 

EEG-fMRI study also observed a positive correlation between alpha power and decision-

related BOLD amplitude in IFG and MFG.51 Furthermore, alpha phase correlated with BOLD 

activity in the thalamus.51 In our results, covariation in connectivity between the two 

modalities in occipitoparietal and frontal nodes strongly correlated with the thalamus (Figure 

3) and unifies previous EEG and fMRI findings.  

 

The combined covariation results also provide functional evidence for thalamic structural 

projections. The pulvinar is a high-order thalamic nucleus thought to regulate information 

flow in higher-order visual processing along structural fiber tracts projecting to the frontal 

and occipital cortex.52–54 The pulvinar relays feedforward information from layer 5 

projections to layer 4 projections in higher order cortical areas,55 whereas feedback 

projections originating in layer 6 are relayed through the pulvinar to layer 1 in lower cortical 

areas.56,57 Invasive electrophysiological recordings in animals provide evidence that increase 

in cortical synchronization of the alpha oscillation is mediated through pulvino-cortical 

projections.53,58 Together with task-based, electrophysiology, and structural findings our 

results suggest cortical alpha coherency is mediated through thalamic connections most likely 

localized in the pulvinar and involved in higher-order visual processing.53,54 We note that we 

cannot determine whether the resulting long-range functional connectivity in our study was 

driven by feedforward or feedback processes. However, most likely sensory stimulation 

activates frontal connections that also reverberate back to sensory areas. The cortico-thalamic 

connections observed in the covariation connectivity spatially mapped to regions associated 

with higher-order ventral attention and frontoparietal network (SI Figure 6).  

 

Only recently have scientist began to use dynamic multimodal functional connectivity 

analyses to explore how the temporal and spatial overlap of electrophysiology and fMRI-

derived connectomes contribute to the functional relevance of brain connectomes in 

cognition. Resting state studies investigating spontaneous changes in alpha phase coherency 

and BOLD connectivity have found functional connectivity in both modalities to correlate 

with visual network and somatosensory network9 and the posterior default mode network.59  
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Spatial correlation between increased alpha power and functional connectivity in the visual 

network60,61 and default mode network59,62,63 as well as reduced connectivity between the 

DMN and dorsal attention network.64 Electrophysiology connectomes derived from 

frequency-specific phase or power measures may dissociate and indicate different 

neurophysiological processes.65 We also analyzed time-varying co-fluctuations in 

spontaneous alpha coherency and BOLD functional connectivity during rest and found the 

strongest covariation across nodes spatially associated with the default mode network and 

visual and frontoparietal network (Supplementary Figure 7). The different distribution of 

covarying connectivity during rest and visual stimulation observed in our results support that 

frequency-specific neural oscillations inform about dynamic, state-dependent reorganization 

of functional networks.66,67 FMRI-derived functional networks are relatively stable across rest 

and task68 with only moderate task-specific, network reconfiguration occurring69–71 with the 

thalamus thought to be implicated in governing these changes.72,73 Furthermore, 

electrophysiological connectomes are spatially stable across time.74,75 Yet frequency-specific 

functional networks reorganization occur on separate time scales independent from the 

canonical resting state network reorganization75 and are thought to serve frequency-specific 

information processing.66,76 Therefore frequency-specific EEG-derived connectomes can 

provide a better mechanistic understanding of long-range information exchange in context of 

distinct cognitive processes.66,77  

 

In a previous study, rhythmic stimulation at the IAF resulted in increased occipital parietal 

phase coherency and BOLD functional connectivity as compared to rhythmic stimulation at 

other frequencies.35 In the current study, occipitoparietal regions still showed increased alpha 

coherency for rhythmic stimulation at the IAF as compared to control frequencies. However 

alpha phase coherency was stronger between the inferior frontal cortex and posterior regions. 

There was also strong BOLD connectivity between the inferior frontal cortex and the 

thalamus (Figure 2). Yet no significant connectivity was observed for rhythmic stimulation at 

the IAF in the visual cortex. This was surprising because this study implemented more trials 

and used control frequencies that were equidistant from the IAF for all subjects. However, the 

duration of stimulation was shortened in the current study to increase trial number and reduce 

eye blinking during visual stimulation, which may corroborate alpha phase coherency.78 The 

slow hemodynamic response evoked by the onset of the presentation of a visual stimulus was 

spatially similar across all flicker conditions (Supplementary Figure 2) and resulted in 

increased connectivity across visual areas across all conditions (Supplementary Figure 3). 
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This suggests on the one hand that the increased occipitoparietal connectivity observed for 

rhythmic stimulation at the IAF in the previous study occurred during the latter portion of the 

stimulation block (Supplementary Figure 4), but also that visual stimulation at the IAF 

entrains long-range alpha quickly.  

 

We also note that the comparison rhythmic stimulation at the IAF greater than rhythmic 

stimulation at other control frequencies elicited significant connectivity in the separate EEG 

and fMRI analyses, but only trended towards significance in the covariation analysis 

(Supplementary Figure 5B). When rhythmic stimulation is compared to arrhythmic 

stimulation, stimulation at the IAF still exhibits significantly more correlation in co-

fluctuating connectivity as compared to stimulation at the control frequencies (Supplementary 

Figure 5A). This suggests that although the variance only significantly correlates for 

stimulation at the IAF, rhythmic stimulation at any frequency may evoke synchronous neural 

activity that may also induce rhythmic co-fluctuations in both EEG and fMRI. However, the 

correlation in connectivity between the modalities is much weaker as the comparison 

rhythmic versus arrhythmic stimulation at a given control frequency resulted in no significant 

joint connectivity.  

 

In conclusion, we used visual stimulation to modulate individual’s alpha frequency and 

assessed subsequent electrophysiological and fMRI functional connectivity. We show that 

modulations to the alpha frequency result in increased frontal-posterior alpha coherency.  

Results from fMRI-derived connectivity and trial-by-trial correlation between the two 

modalities suggest that cortical alpha coherency are established through thalamic 

connections, suggesting alpha communication occurs through cortico-thalamic connections. 

These results are in line with electrophysiology studies that suggest sensory alpha-mediated 

modulations occur through cortico-thalamic projections. Furthermore, we show external 

sensory stimulation can be used to study frequency-specific network reorganization in 

concurrent EEG-fMRI in a brain state that more resembles task-based sensory processing. 

This application has the potential to be applied to other canonical frequency bands. Along 

with behavioral performance studies performed under entrainment and effective connectivity 

studies, this method has the potential to be applied in the future to study frequency-specific 

networks involved in distinct cognitive process.  
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Appendices: 

Appendix A: Supplementary Methods: 

Dynamic resting state functional connectivity  

To analyze the time-varying co-fluctuations in synchronicity between EEG and fMRI, a 

jackknife correlation approach was used. The jackknife correlation approach has a finer-

grained temporal resolution and more accurately detects fluctuations in signal covariance 

than more common sliding window approach (Fransson 2018, Thompson 2018). For the EEG 

data, imaginary coherency was averaged across two second epochs for each region pair, 
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iteratively leaving out one epoch each time. FMRI connectivity was calculated using Pearson 

correlations across time points again iteratively leaving out one time point. This resulted in an 

EEG and fMRI jackknife connectivity (JC) matrix of length (epochs/timepoints – 1). The 

EEG and fMRI JC matrices were Fischer Z-transformed. Pearson R correlation matrices were 

calculated per node pair between the EEG and fMRI JC matrices. We note the hemodynamic 

response to neural activity is delayed by about six seconds (Liao 2002, Soon 2003). 

Therefore, a time lag of 3 epochs, corresponding to six seconds, was incorporated into the 

EEG data. This resulted in a joint EEG-fMRI correlation matrix, in which strength of 

correlation between connectivity in EEG and fMRI data is captured.  

 

Non-parametric significance testing of resting state covariation connectivity matrix 

Statistical significance of covariation connectivity matrices for each connection was assessed 

by comparing the joint EEG-fMRI correlation matrix to a null model. Creation of the null 

model was adapted from Wirsich et al. (2020), in which the temporally phase-randomized 

fMRI time series are used to create null-model correlation matrices. The phase-randomized 

time series were created based on the method implemented by Dolan & Spano (2001). For 

each connection, the Fourier transform of the jackknife time series was taken. The phases of 

the transformed time series were then randomly shuffled before taking the inverse Fourier 

transform to obtain fMRI phase-randomized jackknife time series. FMRI correlation matrices 

were then calculated for each phase-randomized jackknife time course. Subsequent pearson R 

correlation matrices were then calculated between the real EEG coherency data and the 

phase-randomized fMRI connectivity matrices. Because we were interested in the dynamic 

connectivity between modalities, only the fMRI modality was phase randomized. The phase-

randomization of the jackknife fMRI time series and calculation of Pearson R correlation 

matrices between randomized fMRI connectivity time series and unaltered EEG coherency 

time series was carried out 50 times for each connection and each subject. To create a null 

correlation model, the phase-randomized correlation matrices were average across iterations 

for each subject. On a group level, a connection-wise pair t-test was performed across 

subjects between the actual covariation correlation matrix and the null model. The resulting 

p-values were Bonferroni-corrected for the number of connections.   

 

Intrinsic functional connectivity maps 

The top 200 significant connections for the joint EEG-fMRI resting state and stimulation 

correlation matrices were mapped to the 7 canonical ICNs defined by the Yeo Atlas (Yeo 
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2011).  Significant number of connections between and within a network was tested by 

randomly selecting 200 connections and assigning them to the corresponding networks. This 

was repeated 100,000 times. The number of times the random connections exceeded the 

actual significant value was counted and divided by number of iterations to attain a p-value. 

All connections below a p-value of 0.00025, Bonferroni-corrected for number of 

comparisons, for a given contrast of interest are shown.  

 

BOLD activation GLM Analysis  

To ensure BOLD activity increased in occipital regions during the stimulation blocks, a GLM 

analysis was performed. The normalized and preprocessed functional images were 

smoothened with an 8mm Gaussian kernel. On the subject level, a GLM was implemented 

using a canonical hemodynamic response function was used model BOLD amplitude changes 

for each flicker condition and the baseline condition. The six head motion parameters were 

also included into the design matrix as nuisance regressors. A high pass filter of 0.0078 Hz 

(128 sec) was applied to remove slow scanner drifts. Statistical parametric maps were 

calculated for each stimulation condition compared to baseline condition as well as all task 

activation (i.e., all flicker conditions) compared to baseline. The threshold of significance was 

set at pcc < 0.05, cluster-corrected for multiple comparisons on the voxel uncorrected level (pu 

< 0.001).  

 

 

Occipitoparietal fMRI connectivity varying with duration of stimulation block 

Alpha-mediated occipitoparietal functional connectivity, elicited through rhythmic 

stimulation of the IAF, was previously investigated in Jaeger and others (submitted).  The 

previous study had stimulated for 20 second duration.  The parcellated fMRI time series, 

delineated into regions from the Glasser atlas, (Glasser 2016) were taken from that study and 

segmented into two 10 second segments. fMRI Pearson R correlations were then performed 

for all occipitoparietal regions (see Jaeger et al. submitted for list of regions) either across the 

first 10 second block or the last 10 second block for each stimulation condition and averaged 

across the two scanning sessions. The resulting fourteen correlation matrices corresponding 

to rhythmic and arrhythmic stimulation at the IAF, 7, 8, 9, 10, 11 and 12 Hz were subjected 

to ANOVA. Network-based statistics (Zalesky 2010) were performed for the contrast 

rhythmic stimulation at the IAF more significant than rhythmic stimulation at all other 

frequencies. No significant connectivity was found in the first 10 second segments for 
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rhythmic stimulation at the IAF. Significant increase in fMRI connectivity was observed in 

occipitoparietal regions during the latter half of the stimulation block for rhythmic 

stimulation at the IAF.  

 

Appendix B: Supplementary Figures 

 

 

Supplementary Figure 1: A) In the EEG, the comparison of alpha coherency at rhythmic 

versus arrhythmic stimulation at the IAF trended towards significance after family-wise error 

rate correction (p = 0.087). The left superior parietal region had the largest degree centrality 

with 8 connections. B) In the fMRI data, the comparison of connectivity between rhythmic 

versus arrhythmic stimulation at the IAF trended towards significance after family-wise error 

rate correction (p = 0.07). Again, the stimulation-activation statistical parameter map of the 

evoked BOLD response averaged across all flicker conditions compared to baseline (pFWER < 

0.05) is overlayed on the connectivity network.  
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Supplementary Figure 2: Significant BOLD activation elicited by flicker frequency. 

Statistical parameter maps were thresholded for voxel-wise family error correction (pFWER < 

0.05). Significant activation for stimulation at A) rhythmic IAF, B) arrhythmic IAF, C) 

rhythmic 2Hz above the IAF, D) arrhythmic 2 Hz above the IAF, E) rhythmic 2 Hz below the 

IAF, and F) arrhythmic 2 Hz below the IAF.  

 

 

Supplementary Figure 3: Average fMRI Pearson correlation matrices for areas mapped to 

the YEO visual intrinsic connectivity network. Correlation matrices are shown for stimulation 

at A) rhythmic IAF, B) arrhythmic IAF, C) rhythmic 2Hz above the IAF, D) arrhythmic 2 Hz 

above the IAF, E) rhythmic 2 Hz below the IAF, and F) arrhythmic 2 Hz below the IAF.  
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Supplementary Figure 4: Reanalysis of significant fMRI-derived connectivity of data from 

previous study in Jaeger et al. (submitted). Data was segmented into either the first 10 

seconds of stimulation or the last 10 seconds of stimulation. The comparison of connectivity 

for rhythmic stimulation at the IAF greater than rhythmic stimulation of all other control 

frequencies resulted in no significant connectivity in the occipital parietal cortex during the 

first 10 seconds of stimulation. However, the last 10 seconds of the stimulation block resulted 

in significant connectivity (p < 0.001, 5000 iterations) for rhythmic stimulation at the IAF as 

compared to rhythmic stimulation at all other control frequencies.  

 

 

Supplementary Figure 5: Covariation between EEG-derived and fMRI-derived connectivity 

A) for the comparison rhythmic – arrhythmic stimulation at the IAF significantly correlated 

in comparison to rhythmic – arrhythmic stimulation all other flicker frequencies (p = 0.049, 

1000 iterations, p < 0.05). B) The comparison rhythmic versus arrhythmic stimulation at the 

IAF trended towards significance (p = 0.081) after correcting for family-wise error rate 

through random permutation testing (1000 iterations, p < 0.05).  
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Supplementary Figure 6: The connections showing significant covariation between EEG 

and fMRI for rhythmic stimulation at the IAF as compared to arrhythmic stimulation were 

mapped to known intrinsic connectivity networks as defined by the Yeo atlas. B) The number 

of connections per intrinsic connectivity network were then tested for significance through 

non-parametric permutation testing. Significant connections between networks (p = 3 x10-5) 

are shown in yellow. 

 

 

Supplementary Figure 7: A) Distribution of top 200 connections showing significant 

covariation between EEG and fMRI time-varying resting state connectivity within Yeo Atlas 

canonical resting state networks. B) The number of connections per intrinsic connectivity 

network were then tested for significance through non-parametric permutation testing. 

Significant connections between networks (p < 0.00025) are shown in yellow.  
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Appendix C: Supplementary Tables 

Supplementary Table 1: List of Brainnetome regions included in the brain parcellations 

L, R SFG_7_1 

L, R SFG_7_2 

L, R SFG_7_3 

L, R SFG_7_4 

L, R SFG_7_5 

L, R SFG_7_6 

L, R SFG_7_7 

L, R MFG_7_1 

L, R MFG_7_2 

L, R MFG_7_3 

L, R MFG_7_4 

L, R MFG_7_5 

L, R MFG_7_6 

L, R MFG_7_7 

L, R IFG_6_1 

L, R IFG_6_2 

L, R IFG_6_3 

L, R IFG_6_4 

L, R IFG_6_5 

L, R IFG_6_6 

L, R PrG_6_1 

L, R PrG_6_2 

L, R PrG_6_3 

L, R PrG_6_4 

L, R PrG_6_5 

L, R PrG_6_6 

L, R PCL_ 2_1 

L, R PCL_2_2 

L, R STG_ 6_1 

L, R STG_ 6_2 

L, R STG_ 6_3 

L, R STG_ 6_4 

L, R STG_ 6_5 

L, R STG_ 6_6 

L, R MTG_ 4_1 

L, R MTG_4_3 

L, R ITG_7_2 

L R ITG_7_5 

L, R ITG_7_6 

L, R, FuG_3_1 

L, R, FuG_3_2 

L, R, FuG_3_3 

L, R pSTS_2_1 

L, R pSTS_2_2 

L, R SPL_5_1 

L, R SPL_5_2 

L, R SPL_5_3 

L, R SPL_5_4 

L, R SPL_5_5 

L, R IPL_6_1 

L, R IPL_6_2 

L, R IPL_6_3 

L, R IPL_6_4 

L, R IPL_6_5 

L, R IPL_6_6 

L, R Pcun_4_1 

L, R Pcun_4_2 

L, R Pcun_4_3 

L, R Pcun_4_4 

L, R PoG_4_1 

L, R PoG_4_2 

L, R PoG_4_3 

L, R PoG_4_4 

L, R INS_6_1 

L, R INS_6_2 

L, R INS_6_3 

L, R INS_6_4 

L, R INS_6_5 

L, R INS_6_5 

L, R CG_7_1 

L, R CG_7_2 

L, R CG_7_3 

L, R CG_7_4 

L, R CG_7_5 

L, R CG_7_6 

L, R CG_7_7 

L, R MVOcC_5_1 

L, R MVOcC_5_2 

L, R MVOcC_5_3 

L, R MVOcC_5_4 

L, R MVOcC_5_5 

L, R MVOcC_5_6 

L, R LOcC_2_1 

L, R LOcC_2_2 

L, R LOcC_4_1 

L, R LOcC_4_2 

L, R LOcC_4_3 

L, R LOcC_4_4 

L, R Hipp_2_1 

L, R Hipp_2_2 

L, R BG_6_1 

L, R BG_6_2 

L, R BG_6_3 

L, R BG_6_4 

L, R BG_6_5 

L, R BG_6_6 

L, R Tha_8_1 

L, R Tha_8_2 

L, R Tha_8_3 

L, R Tha_8_4 

L, R Tha_8_5 

L, R Tha_8_6 

L, R Tha_8_7 
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Supplementary Table 2: Degree centrality for nodes in EEG coherency network for 

rhythmic stimulation at the IAF greater than rhythmic stimulation at control frequencies  

Yeo atlas Region Degree centrality 

SPL_R_5_3 11 

CG_R_7_1 4 

FuG_R_3_3 4 

IFG_L_6_2 4 

IFG_L_6_5 4 

MVOcC_L_5_1 4 

PrG_R_6_1 4 

PrG_R_6_2 4 

INS_L_6_1 3 

LOcC_R_4_3 3 

MFG_L_7_1 3 

MFG_R_7_4 3 

MVOcC_R_5_4 3 

SFG_R_7_1 3 

STG_L_6_4 3 

CG_R_7_6 2 

INS_L_6_6 2 

IPL_R_6_3 2 

LOcC_L_4_1 2 

LOcC_R_4_1 2 

MFG_L_7_3 2 

MVOcC_L_5_4 2 

MVOcC_L_5_5 2 

PCun_L_4_4 2 

PCun_R_4_1 2 

PrG_L_6_1 2 

SFG_L_7_5 2 

SFG_L_7_6 2 

SPL_R_5_2 2 

BG_L_6_5 1 

MFG_L_7_2 1 

MFG_L_7_7 1 

MVOcC_R_5_1 1 

PCL_L_2_1 1 

PoG_R_4_3 1 

PrG_L_6_3 1 
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Supplementary Table 3: Degree centrality for nodes in fMRI connectivity network for 

rhythmic stimulation at the IAF greater than rhythmic stimulation at control frequencies  

Yeo atlas region Degree Centrality 

Tha_R_8_6 15 

Tha_R_8_7 12 

IFG_L_6_5 11 

Tha_R_8_4 11 

INS_R_6_6 6 

Tha_R_8_3 5 

IFG_L_6_6 4 

INS_R_6_3 4 

IPL_L_6_6 4 

Tha_R_8_2 4 

IFG_L_6_3 3 

Tha_R_8_1 3 

IFG_L_6_2 2 

INS_L_6_6 2 

MFG_L_7_3 2 

MFG_L_7_4 2 

MFG_R_7_1 2 

MFG_R_7_3 2 

MFG_R_7_4 2 

MFG_R_7_5 2 

PrG_R_6_5 2 

IFG_L_6_4 1 

INS_R_6_5 1 

IPL_L_6_4 1 

ITG_R_7_6 1 

MFG_L_7_1 1 

PoG_L_4_2 1 

PrG_L_6_1 1 

PrG_L_6_3 1 

PrG_L_6_5 1 

STG_R_6_2 1 

STG_R_6_4 1 

STG_R_6_5 1 
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Supplementary Table 4: Degree centrality for nodes in trial-by-trial covariation analysis for 

rhythmic stimulation at the IAF greater than arrhythmic stimulation at the IAF.  

Yeo Atlas Regions Degree Centrality 

LOcC_L_2_2 6 

MFG_L_7_2 6 

Tha_L_8_6 6 

Tha_L_8_4 5 

BG_L_6_1 4 

BG_L_6_4 4 

FuG_L_3_1 4 

SFG_R_7_1 4 

Tha_L_8_5 4 

BG_L_6_3 3 

BG_L_6_5 3 

BG_R_6_3 3 

CG_L_7_6 3 

CG_R_7_5 3 

Hipp_L_2_1 3 

IPL_L_6_6 3 

IPL_R_6_6 3 

MFG_L_7_3 3 

MFG_R_7_1 3 

MVOcC_R_5_5 3 

SFG_R_7_2 3 

STG_R_6_5 3 

Tha_L_8_7 3 

pSTS_L_2_2 3 

BG_L_6_2 2 

CG_L_7_1 2 

CG_L_7_3 2 

CG_R_7_1 2 

CG_R_7_2 2 

CG_R_7_6 2 
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Discussion 

 

GENERAL DISCUSSION:  

4.1 Summary  

In summary, I established a method for analyzing alpha-specific connectivity changes in 

concurrent EEG and fMRI considering individual variability in the peak alpha frequency.  In 

my first project, I tested the efficacy of rhythmic light stimulation as a tool to drive 

entrainment and subsequent modulation of individual’s intrinsic alpha frequency. I showed 

that targeted rhythmic stimulation at the IAF increases occipitoparietal alpha coherency in 

EEG and functional connectivity in fMRI, which serve as a proxy for increased neural 

synchrony. In project two, I implemented my entrainment paradigm in concurrent EEG-fMRI 

to study how changes in alpha and BOLD connectivity covary. Interestingly, external 

stimulation at the IAF drove increased connectivity along visual connections through the 

thalamus and into frontal regions in line with findings previously only derived from structural 

connectivity and electrophysiology in primates. In the following sections, I will first discuss 

the limitations of entrainment and how to address these in future behavioral studies. I will 

then put my results in context of ongoing oscillatory research focusing on the role of cross-

frequency coupling in the hierarchical organization of neural communication during 

cognition and the impact of aberrant coupling in neuropsychiatric illness. I will end my 

discussion on advances in multimodal imaging techniques and how multimodal approaches 

can be applied to answer remaining questions.  

 

4.2 Limitations and future applications of alpha entrainment   

Although I successfully showed the intrinsic alpha frequency can be entrained, there are some 

assumptions that should be mentioned. To begin, the fMRI connectivity findings diverged in 

my two projects. Although fMRI connectivity was high in visual areas for stimulation at the 

IAF, no significant increase in connectivity was observed as compared to control frequencies 

in visual areas in the second project. The stimulation blocks were shortened to a duration of 

10 seconds in the second project. From the task-based evoked BOLD response in visual 

areas, I assume the increase in luminance at the onset of stimulation evoked a slow 

hemodynamic response that induced similar increases in visual connectivity across 

stimulation conditions. Indeed in the first project, the connectivity for the IAF differed most 
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significantly for the latter ten seconds of stimulation. However, I chose to shorten the 

stimulation block in the second study to increase trial number and reduce eye blinking during 

stimulation, as this appears to influence alpha rhythm.  Furthermore, shorter entrainment 

periods are also more plausible in study designs integrating visual stimulation with task-based 

paradigms.  

 

An increase in trial number in both studies would have helped increase statistical power. EEG 

is very artifact prone, especially during the acquisition of fMRI. Phase angles in EEG are 

very sensitive to movement artifacts and may be artificially biased. However, I tried to use 

control conditions to control for phase-related biases as these would have been present across 

all flicker conditions. Nevertheless, an increase in trial number and statistical power may 

have resulted in more robust connectivity networks.  

 

Although my results provided novel evidence that alpha-mediated information flow in visual 

processing occurs through thalamocortical connections and alludes to the top-down control of 

the alpha rhythm. It remains to be behaviorally verified whether the modulations in the alpha 

rhythm lie under top-down control. Implementing visual perception and attentional cueing 

paradigms during different visual stimulation conditions will elucidate the systematic role of 

the alpha oscillation during behavior. It is not known how long the entrainment effect lasts 

(Otero et al., 2020). Therefore, I propose implementing task-based paradigms during 

sustained visual stimulation. This poses the problem of visual stimuli being missed during 

dimming of the shutter glasses. However, this challenge can be overcome by implementing 

flicker shutters that only cover part of the visual field. For example, using flickering 

concentric circles in the outer visual field, while presenting the task paradigm in the center of 

the visual field would allow the presentation of stimuli during a given phase of the alpha 

cycle.  Furthermore, implementing an attentional cueing paradigm will further illuminate 

whether sensory driven neural modulations can be overridden by top-down processes.  

 

4.3 Cross-frequency coupling  

The alpha oscillation interacts with other neural frequencies and can be modulated by 

intrinsic rhythms. It is important to consider the spatial underpinnings of other frequencies as 

well as cross-frequency interactions with the alpha oscillation to build a cohesive 
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representation of hierarchical brain organization and the individually contributing processes 

during cognition.  Cross-frequency coupling between neural oscillations has also been 

proposed to coordinate neural communication by integrating local cortical processing and 

functional systems across multiple spatiotemporal scales. Initial research focused on phase-

amplitude coupling between low frequency oscillations and high frequency gamma 

oscillations.  Gamma amplitude has been shown to correlate with the phase of alpha in 

occipital regions (Osipova et al., 2008; Voytek & Knight, 2010). Gamma amplitude has also 

been demonstrated to be phase-locked to the delta frequency in the occipital cortex (Händel 

& Haarmeier, 2009). The phase of delta has shown to modulate the amplitude of the alpha 

rhythm in the medial frontal cortex with the differences in cross-frequency coupling strength 

correlating with performance on a decision-making task (Cohen et al., 2009). These studies 

suggest communication is organized in a hierarchy where fast oscillations are modulated by 

slow oscillations, which may be even modulated by slower ones. The cross-frequency 

coupling strength across different oscillations is therefore thought to serve as a functional 

mechanism for multi-scale integration of sensory information in a fast and computationally 

efficient manner. Specifically, information from local, segregated cortical processing occurs 

on fast time scales and gets regulated by distributed brain networks operating on a slower, 

behavioral time scale. Modulation of low frequencies in frontal areas serves as a mechanism 

for the brain to make active inferences about incoming signals. Simultaneous updating of 

internal representations with incoming sensory information in context-dependent manner 

occurs through coupled low-frequency modulations in cortical excitability in sensory areas 

(Canolty & Knight, 2010; Fries, 2015; Siegel et al., 2012). 

 

Audiovisual speech processing studies provide exemplary evidence for the complex coupling 

between oscillations during multi-sensory processing and integration. Experimental studies 

implementing the McGurk effect in which visual input of mouth movement is incongruent 

with auditory speech signals, have shown the dynamic cross-frequency coupling between 

congruent and incongruent sensory signals. Segregated, processed signal from each modality 

is integrated in higher-order areas where signal congruence is compared through 

feedforward-feedback connections (Stein et al., 1993). Propagation of gamma power has been 

shown to go from sensory areas to higher order areas, whereas phase modulations in the 

alpha-beta range propagate from higher order areas in auditory and visual processing 

(Fontolan et al., 2014; Michalareas et al., 2016; Schroeder & Lakatos, 2009; Simon et al., 

2017). Increased theta and delta coherency were observed between frontal and temporal 
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regions when participants saw the speaker’s mouth (Giordano et al., 2017). Coupling between 

the delta phase and beta-power also correlated with temporal alignment of auditory and visual 

inputs (Ohki et al., 2016). These results suggest that integration between the two modalities 

occurs through phase coherency in the theta and delta (Bauer et al., 2020; Keil & Senkowski, 

2018). The brain is thought to speed up information processing, by generating predictions 

from one modality about the other (Arnal et al., 2015). However, when incongruent 

information is processed, which violates predictions, top-down modulation redirects attention 

to incoming sensory input (Smout et al., 2019; Wills et al., 2007). Comparison of congruent 

and incongruent audiovisual speech stimuli revealed increases in temporal-parietal gamma 

and beta-band power during congruent trials and increases in alpha power during incongruent 

trials (Lange et al., 2013). In line with these findings, the alpha oscillation has been 

associated with shifts of spatial attention (Snyder & Foxe, 2010; Van Diepen & Mazaheri, 

2018) and intersensory attention (Pomper et al 2015) by inhibiting task-irrelevant areas.  

Asynchronous presentation of audiovisual stimulus has also been correlated with shifts in 

gamma activity nested within the phase of the alpha cycle, suggesting top-down phase 

resetting of the alpha oscillation can shift sensory processing of sensory stimuli (Lennert et al 

2021).  

 

Yet expectation of presentation of stimuli seems to be influenced by the phase of the delta 

rhythm. A study by Helfrich and colleagues (2017) using rhythmic and arrhythmic 

presentation of visual stimuli to entrain the alpha rhythm during a predictive coding 

experiment observed that the phase of the delta rhythm modulated posterior alpha during 

predictive trials and reduced the bottom-up alpha entrainment effect on behavioral outcome. 

Furthermore, intersensory attention paradigm studies found reduced alpha power when 

participants focused on visual stimuli (Pomper et al., 2015) and correlations between delta- 

and beta-modulations and temporal expectation (Keil et al., 2016). A novel entrainment study 

entrained both the alpha rhythm (through rhythmic or arrhythmic stimulus presentation at 

10Hz) and delta rhythm (through contextual background changes such as color, pitch, and 

motion at 2.5Hz) (Yuan et al., 2021). Yuan and colleagues (2021) observed contextual 

modulations in the delta band diminished the alpha-entrainment effect by modulating alpha 

power and behavioral performance. All in all, these studies suggest that feedforward 

processing of information occur through fast neural oscillations in the gamma, while 

simultaneous feedback modulations of sensory information processing occurs through lower 

frequencies in the alpha and beta band (Florin & Baillet, 2015; Keil & Senkowski, 2018; 
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Sedley et al., 2016).  Finally multimodal integration of sensory information and predictive 

inferences about incoming sensory information may be governed by even slower frequencies 

such as the delta oscillation (Breska & Deouell, 2017; Keil & Senkowski, 2018; Landau & 

Fries, 2012). Yet how exactly these frequencies couple across different cognitive tasks and 

with changing cognitive demand remain to be elucidated. 

 

4.4 Hierarchical architecture of neural oscillations  

Spatial evidence from concurrent EEG-fMRI studies supports the hypothesis of hierarchical 

organization of information processing through cross-frequency coupling as similar spatial 

overlap between frequency-specific functionally connectivity networks and resting state 

networks have been observed (Deligianni et al., 2014; Hipp & Siegel, 2015; Wirsich et al., 

2017, 2020). The ultraslow fluctuations in BOLD signal that are observed in resting-state 

networks have been shown to be linked with phase-amplitude coupling of faster 

electrophysiological oscillations (Hunyadi et al., 2019; Murta et al., 2017). Somatomotor 

network, auditory network, and visual network correlate with beta and alpha band (Brookes 

et al., 2011; Hacker et al., 2017; Hipp et al., 2012). Power changes in the beta band have also 

been correlated with the frontoparietal network (Brookes et al., 2011). Posterior alpha power 

has also been shown to correlate with dorsal attention network (Hacker et al., 2017) and the 

dorsal part of a higher cognitive network (Vidaurre et al., 2018). Whereas the delta and theta 

band correlate with frontal apart of a higher order cognitive network (Vidaurre et al., 2018)  

and frontoparietal network (Hacker et al., 2017). Studies looking at phase-phase coupling 

across frequency-specific bands during rest show that concurrent EEG-fMRI connectivity 

maps better predict structural connectivity from function (Engel et al., 2013; Wirsich et al., 

2017).  In line with these findings, I showed that increased phase synchronization of the alpha 

rhythm leads to increased connectivity between visual areas and frontal areas mediated 

through the occipital thalamus, which are very similar to structural connections going from 

and to the pulvinar (Leh et al., 2008). Only few other studies have examined concurrent 

functional connectivity changes during task. One study examining replay of acquired 

information showed transient bursts of activity in the alpha parietal network correlated with 

activation in the default mode network (Higgins et al., 2021).  

 

Improvements in the spatial resolution of imaging techniques, such as layer-specific fMRI, 

are giving novel insight into the cellular composition across cortical layers contributes to 
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neural activity along feedforward and feedback projections (Scheeringa & Fries, 2019). A 

study looking measuring concurrent layer-specific BOLD and EEG during a visual attention 

task found BOLD activity in the infragranular layers negatively correlated with beta and 

alpha power, while BOLD activity in the supragranular layers positively correlated with 

gamma power and negatively with alpha power during attended trials (Scheeringa et al., 

2016). Taken together with evidence from cellular electrophysiology, Scheeringa and others 

argue feedback and feedforward projections are organized in different cortical layers with 

gamma-mediate feedforward projections ending in superficial layers and feedback alpha-beta 

mediated projections ending in deep layers in the sensory cortex (Bollimunta et al., 2011; 

Buffalo et al., 2011; Scheeringa et al., 2016; Spaak et al., 2012). Concurrent EEG and layer-

specific fMRI studies may therefore also help segregate functional connectivity networks into 

feedforward- and feed-back driven networks (Scheeringa & Fries, 2019). 

 

4.5 Adaptability of oscillations  

Two aspects of neural oscillations add to the complexity of the role of neural oscillations in 

cognition: 1) the ability of oscillations to be entrained by endogenous or environmental 

rhythms and 2) shifts in the peak frequency of an oscillation. A natural example of neural 

entrainment to external rhythmic stimuli occurs during language processing. The intrinsic 

delta/theta rhythm synchronizes to the speech envelope during language processing with 

sharp speech edges correlating with phase resetting of the slow frequencies and coupled 

gamma amplitude modulations (Assaneo & Poeppel, 2018; Giraud & Poeppel, 2012; Gross et 

al., 2013; Lakatos et al., 2019a). However, this effect was attenuated when speech was 

presented backwards (Gross et al., 2013). Modulations in the neural oscillations below 7 Hz 

are thought to facilitate transmission of predictions about incoming sensory information by, 

for example, estimating syllabus presentation rate (Bourguignon et al., 2013; Kö et al., 2018). 

The alpha rhythm can also be entrained through external rhythmic stimuli, which may serve 

as a role for selective anticipation of future salient events (Clayton et al., 2018; Ronconi et 

al., 2018). Temporal expectation studies have shown that when stimuli are presented 

rhythmically, alpha power is reduced in the visual cortex even in the absence of stimulus 

presentation (Rohenkohl & Nobre, 2011). Furthermore, this only occurred during trials where 

stimuli were presented in a rhythmic sequence and the onset of a stimulus was predictable 

(Rohenkohl & Nobre, 2011). I showed in both of my studies that the alpha oscillation can be 

entrained by external visual stimuli. However, in the first study significant synchronicity was 
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also observed for the 10 Hz flicker condition in the EEG and the 9 Hz flicker in the fMRI. 

One explanation for these findings suggest that the intrinsic alpha frequency can slightly shift 

the peak frequency to adapt to environmental cues. Intraindividual shifts in the peak alpha 

frequency have been observed across the duration of a study (Babu Henry Samuel et al., 

2018; Benwell et al., 2019) and have behavioral implications (Mierau et al., 2017).  The 

speed of the IAF correlated with temporal resolution of visual perception where increase in 

the IAF frequency correlated with perceiving rapidly presented objects as two separate events 

rather than the same event (Samaha & Postle, 2015b). The alpha peak frequency has been 

observed to increase with cognitive load during an N-back task (Haegens et al., 2014b; 

Maurer et al., 2015).  

 

State-dependent shifts in the alpha peak frequency may not only help with resolution of 

temporal sampling (Cecere et al., 2015; Samaha & Postle, 2015b), but also facilitate 

integration and segregation. A study by Ronconi and others (2018) used rhythmic flickering 

light to either entrain alpha slightly below or above the IAF while participants performed a 

segregation (identifying an odd element) or integration (locating a missing element) visual 

task. They observed decrease in the alpha peak frequency correlated with better performance 

on the integration task, while increase in alpha peak correlated with better performance in the 

segregation task (Ronconi et al., 2018).  In my second study, I also observed a slight increase 

in the mean peak alpha frequency between eyes closed and eyes open resting state measures, 

which also supports that during lack of visual input the alpha frequency shifts to focus on 

more intrinsic neural processes. However, alpha peak power during eyes open was also 

significantly less.  

 

It remains to be elucidated whether shifts in alpha peak frequency and power are the 

byproduct of local desynchronization of neural activity or whether a shift in peak frequency 

occurs (Mierau et al., 2017). Implementing novel techniques, such as calculating the 

instantaneous frequency (Cohen, 2014), as well as using entrainment to experimentally 

modulate the alpha peak frequency (Ronconi et al., 2018) are needed to study subsequent 

changes in source-localized alpha peak frequency. A study observing shifts in instantaneous 

resting state IAF observed that shifts in the IAF correlated with different source-localized 

components (Benwell et al., 2019). Furthermore, the frequency of canonical neural 

oscillations, BOLD fluctuations, and even body rhythms such as respiration rate are thought 



Discussion 

 

 
87 

to be coupled by a golden ratio (Wolfgang Klimesch, 2018) providing to motivation to study 

the effect of shifts in the IAF on cross-frequency coupling.  

4.6 Clinical relevance: neural oscillations in the context of illness 

My findings and many other studies suggest neural oscillations serve as a mechanism to 

coordinate the interaction of large ensembles of neurons across distributed specialized brain 

regions. Thus, allowing for the parallel processing of sensory input and selective integration 

of context- relevant information into a continuous thought process (Engel et al., 2001; Fries, 

2005a). Aberrant patterns in synchronized activity across local and distributed brain regions 

can lead to impaired segregation and integration of sensory input and have been linked to 

many sensory and psychiatric illnesses (Uhlhaas & Singer, 2006). Disrupted balance between 

segregation and integration across functional networks has been linked to schizophrenia (Liu 

et al., 2008; Lynall et al., 2010; Wei et al., 2018) bipolar disorder (Wang et al 2016, Wei et al 

2018), attention-deficit-hyperactivity disorder (ADHD, Lenartowicz et al., 2018), autism 

(Rudie et al., 2012), and major depressive disorder (Wei et al., 2018). These studies mainly 

arise from differential functional connectivity patters found between illness groups and 

healthy controls. For example, decrease in short-range connectivity and increase in medium 

to long range connectivity has been observed in schizophrenia, bipolar disorder, and major 

depressive disorder (Xia et al., 2019). Recently, findings of aberrant patterns in neural 

oscillations in illness groups, such as increased power in low frequencies (delta and theta) 

and decreased power in higher frequencies (alpha, beta, and gamma) in ADHD, 

schizophrenia, and obsessive-compulsive disorder (Newson & Thiagarajan, 2019), has 

sparked interest in using neural oscillations as biomarkers for classification of 

neuropsychiatric illness (Newson & Thiagarajan, 2019; Sargent et al., 2021). However, 

heterogeneity in resting state EEG analyses among healthy individuals and disease groups 

(Cox et al., 2018; Demuru & Fraschini, 2020; Kumral et al., 2020) and overlap of 

characteristic oscillatory patterns across illnesses (Newson & Thiagarajan, 2019) require 

further classification and spatial localization of oscillatory features. In the following section, I 

highlight findings in schizophrenia and ADHD linking alterations in the alpha rhythm and 

functional connectivity to impaired top-down regulation and subsequent impaired integration 

of sensory input. I also argue that external rhythmic stimulation can be used to study 

alterations in functional connectivity patterns in these patient groups and may serve as a 

better biomarker of studying altered alpha-related functional connectivity than comparing 

experimental groups in resting state studies.  
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Schizophrenia is a complex and debilitating neuropsychiatric disorder that is characterized by 

impaired integration of sensory input and subsequent perception (Ross et al., 2006). 

Abnormal spontaneous alpha activity and altered resting-state functional connectivity have 

been observed in patients with schizophrenia. Resting-state eyes closed studies analyzing 

alpha-related functional connectivity using phase lag index reported decreased connectivity in 

superior parietal, right temporal and left occipital brain regions (Liu et al., 2019), but 

decreased connectivity within the right frontoparietal network (Trajkovic et al., 2021). 

Decreased alpha power in occipitoparietal regions and frontal regions was observed in 

patients with schizophrenia as compared to healthy controls during rest and task 

(Thilakavathi et al., 2019). Impaired top-down regulation (Dima et al., 2009, 2010) and  

altered thalamo-cortical connectivity between the visual cortex and thalamus (Iwabuchi & 

Palaniyappan, 2017) have been reported and may explain impaired visual-processing in 

schizophrenia. Yet how abnormal hyperconnectivity and hypoconnectivity across functional 

connectivity networks lead to impaired cognitive function in schizophrenia remains unclear.   

 

ADHD is accompanied with symptoms of ongoing inattention, hyperactivity and impulsivity 

and interferes with many cognitive functions (Barkley, 1997). Task-related studies 

implementing visuospatial attention paradigms have shown impaired lateralization of alpha 

power in response to cued and distractor items (Vollebregt et al., 2016). Increased 

suppression of alpha power in distractor areas and sensorimotor areas have also been 

observed during visuospatial attention tasks, suggesting an inability to suppress sensory 

information coming from irrelevant, distractor sources (Yordanova et al., 2013). During 

memory encoding in spatial working memory paradigm, event-related decrease in posterior 

alpha power was correlated with increased fMRI-derived activity between occipital and 

frontoparietal regions (Lenartowicz et al., 2016) in healthy controls.  Whereas participants 

with ADHD had an attenuated event-related decrease in posterior alpha power during 

memory encoding (Lenartowicz et al., 2014; Mazaheri et al., 2014). Disrupted 

communication between frontal and visual areas, leads to impaired top-down regulation of 

attention and the inability to suppress sensory processing of distractor information 

(Lenartowicz et al., 2016; Mazaheri et al., 2010). Scientists believe disruption in thalamo-

cortical circuitry (Liu et al., 2016; Saalmann & Kastner, 2011) or cortico-cortical connections 

through superior longitudinal fasciculus (Marshall et al., 2015) lead to dysregulation of top-

down attention in ADHD (Lenartowicz et al., 2016). Only few alpha connectivity studies 
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have been performed in patient populations with ADHD (Lenartowicz et al., 2018). Future 

studies are needed to understand how alterations in the alpha band and functional 

connectivity patterns may lead to dysfunctional top-down regulation of attention.  

 

Both ADHD and schizophrenia are characterized by impaired sensory integration and altered 

alpha activity mainly thought to arise from impaired long-range, top-down communication 

along thalamocortical and cortico-cortical pathways. Electrophysiological studies performed 

in animals suggest feedback loops between excitatory and inhibitory neurons in the 

thalamocortical pathway generate alpha oscillations (Jones, 2009; Steriade & Deschenes, 

1984). The alpha rhythm propagates across distributed brain areas through short- and long-

range cortico-cortical, cortico-thalamic and thalamo-cortical connections (Halgren et al., 

2019; Ito et al., 2005). In line with electrophysiological findings, our results, which analyzed 

whole-brain connectivity, showed increased synchronicity between thalamus and frontal 

areas in the fMRI as well as increased fronto-parietal synchronicity in EEG during 

entrainment of the intrinsic alpha frequency.  My findings not only support that 

communication between frontal and parietal regions along thalamo-cortical and cortico-

cortical connections arise through synchronization of the intrinsic alpha rhythm, but also 

serves as a template for comparing alpha-functional connectivity and alterations in top-down 

communication in patient populations.  I propose that modulation of the IAF, through a visual 

entrainment paradigm allows for better comparison of functional connectivity changes 

between healthy controls and groups, as it considers individual variability and compares 

changes in connectivity within an individual rather than making a composite comparison 

between two groups.  

 

4.7 Advancements in multi-modal imaging techniques  

The use of combined neuroimaging techniques is becoming increasingly more popular to gain 

a comprehensive understanding of the brain from activity in single cells to whole brain 

network level. Imaging techniques utilize specific physical principles to interact with neural 

tissue and produce a signal that serves as a proxy for neural activity. However, these signals 

have limitations in the amount of spatial and temporal information they can provide about 

neural activity. These limitations serve as the main motivation to combine neuroimaging 

techniques that spatio-temporally complement each other. The use of concurrent EEG-fMRI 
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has become increasingly popular to localize EEG features using the high spatial resolution of 

fMRI. However, discrepancies between the two modalities brings into question how the 

signals derived from these two imaging modalities complement each other on a 

biophysiological level. These discrepancies are driving scientists to reconsider the physical 

properties of neuroimaging signals and leading to novel insight and models of brain 

processes. Furthermore, the combination of trimodal imaging techniques such as the use of 

positron emission tomography with concurrent EEG-fMRI has the potential of elucidating 

unresolved questions.  

 

Studies correlating frequency-specific changes in LFPs using electrocorticography (ECoG) 

measured in visual areas, have shown broadband power to correlate with BOLD amplitude 

changes (Hermes et al., 2017; Ojemann et al., 2013).  Increase in broadband power changes 

have been correlated with increased spiking activity, which can be considered as representing 

total neural activity (Manning et al., 2009; Miller et al., 2009). In line with these findings and 

under the assumption BOLD indirectly reflects synaptic activity, changes in the BOLD 

amplitude serves as a proxy for total neural activity (Winawer et al., 2013). Whereas 

increases in amplitude of neural oscillations reflect the amount of synchronous activity. This 

interpretation brings insight into combined EEG-fMRI studies that have reported either 

correlations (Laufs et al., 2003; Scheeringa et al., 2009, 2012) or no correlations (Butler et al., 

2017; Hermes et al., 2017; Portnova et al., 2018) between BOLD amplitude changes and 

distinct neural oscillations. In context of my thesis, this model serves as an explanation for 

the observed uncoupling of the BOLD amplitude response and entrainment response seen in 

both studies. When using external flickering light to stimulate neural activity, the change in 

luminance will increase overall neural activity, which may be asynchronous or synchronous 

in nature. The BOLD response in early visual areas increases with luminance (Liang et al., 

2013; Vinke & Ling, 2018; Winawer et al., 2013). Whereas the flicker regularity, i.e. 

rhythmic or arrhythmic, will influence the degree of synchronicity of the neural activity 

(Notbohm & Herrmann, 2016). Since the mean luminance was kept constant across flicker 

conditions, no change in BOLD amplitude would be expected. Yet this interpretation of EEG 

and fMRI signal still fails to give insight into the neural composition of the visual cortex and 

how the interplay of excitatory and inhibitory synaptic activity relates to the role of neural 

oscillations. 
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The question of how the balance between excitatory and inhibitory activity affect changes in 

neural communication, neural oscillations and the BOLD signal remains unanswered. The 

combination of positron emission tomography (PET) imaging to measure metabolic energy 

consumption, and PET imaging and MR spectroscopy to measure neurotransmitter 

composition, have the potential in building a better understanding how excitatory and 

inhibitory neural activity contribute to global baseline activity and specific neural processes. 

In brief, fluorodeoxyglucose (FDG -PET) imaging measures the amount of glucose 

metabolism needed for cellular respiration during synaptic activity (Villien et al., 2014). A 

key study by Shah et al. (2017) used concurrent trimodal MR-PET-EEG imaging to relate 

metabolic demand, neuro-vascular coupling, and oscillatory neural activity to functional 

connectivity between the dorsal default mode network (DMN) and sensorimotor network 

(SMN). The study found increase in metabolic activity and mean BOLD signal intensity in 

the DMN as compared to the SMN. Although no frequency-specific oscillation correlated 

directly with the DMN, the spatial composition of the source-localized power within 

frequency bands varied between the DMN and SMN. No correlation was found between 

metabolic activity and spectral power across the two networks. In general, glucose 

metabolism is thought to correlate with BOLD amplitude and nonlinearly correlates with 

functional connectivity (Tomasi et al., 2013). Yet recent findings in concurrent PET-fMRI 

studies have revealed that energy efficiency varies across brain regions (Aiello et al., 2015; 

Bullmore & Sporns, 2012; Tomasi et al., 2013) bringing into question what causes 

differences in energy efficiency and how this changes neurovascular coupling. A different 

trimodal study using a radiotracer to study the binding availability of GABAergic and 

glutamatergic receptors found GABAergic metabolism was more tightly associated with 

spatial localization of EEG microstates and functional connectivity in the DMN than 

glutamatergic and glucose metabolism (Rajkumar et al., 2021). This study suggests that the 

composition of neural receptors leads to altered glucose metabolism and influences fMRI 

functional connectivity networks and EEG oscillations.  

 

The excitatory/inhibitory balance gives rise to functional connectivity networks in fMRI and 

EEG oscillations and is crucial for normal cognitive function. Along with PET studies, single 

voxel spectroscopy can be used to assess GABA-to-creatine ratio and glutamate-glutamine to 

creatine ratio, thus giving insight to the amount of inhibitory and excitatory neurotransmitters 

in a given brain region (Finnema et al., 2015). A study comparing functional magnetic 

resonance spectroscopy in the visual cortex during visual stimulation found the BOLD signal 
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correlated with glutamate and lactate concentrations (Boillat et al., 2020)supporting BOLD 

amplitude reflects excitatory synaptic activity.  Whereas another study found that the ratio of 

local-to-global GABAA binding potential correlated with increased functional connectivity in 

the visual cortex, suggesting GABAergic connections influence long-range synchronicity 

(Qin et al., 2012). Yet it remains to be answered how modulations in neural oscillations. Only 

few studies have correlated GABAergic concentration to neural oscillations, specifically the 

gamma oscillation (Kujala et al., 2015; Muthukumaraswamy et al., 2009). MR spectroscopy 

is not compatible with simultaneous EEG recording. However targeted modulation of neural 

oscillations would allow more direct inferences between neurotransmitter levels and neural 

oscillations.  

 

One caveat of combination of PET, fMRI, MR spectroscopy, and EEG is the vast difference 

in temporal resolution across these modalities. Nonetheless, these study shows the richness of 

multi-modal data and its potential in building a comprehensive understanding of the complex 

brain. Future improvements in study designs, such as using entrainment paradigms to 

modulate specific neural oscillations over or sensory systems will help elucidate unanswered 

questions.  

 

4.8 Conclusion and future outlook  

In conclusion, neural oscillations’ role in coordinating communication is hierarchical and 

highly complex. Neural oscillations are cross-modal, intermittently couple across frequencies, 

highly adaptable and vary across individuals making it difficult to parse apart their individual 

role in cognition. Controlled, experimental modulation of neural oscillation is crucial for 

correlating frequency-specific changes to behavior. I implemented a method for inducing and 

localizing alpha-modulated connectivity changes in concurrent EEG and fMRI. My results 

show alpha-mediated communication relays across thalamo-cortical connections between the 

visual and frontal areas and complement structural connectivity. My findings also show the 

advantage of combining EEG and fMRI to gain a more comprehensive insight on functional 

connectivity.  

 

There is a current trend towards studying the functional relevance of spatially overlapping 

electrophysiological and fMRI-derived resting state networks. I show the benefit of using 
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visual stimulation to study the functional relevance of connectomes. I have also highlighted 

the benefit of using entrainment in future studies to investigate alterations in connectivity in 

disease as well as changes in metabolic demand and neural composition.  

 

Although my experiment only investigated the effect of entrainment on the alpha band, 

entrainment can also be used to modulate oscillations in the other canonical frequency bands. 

A few studies have successfully entrained several frequencies across modalities to study the 

effect of cross-frequency coupling on behavior (Helfrich et al., 2017; Yuan et al., 2021). Yet I 

urge the scientific community to take individual differences into account and to implement 

task paradigms that entrain at targeted frequencies in future studies. Targeted modulation of 

intrinsic neural oscillations will clarify how shifts in frequency, phase coupling and power 

relate to behavioral outcomes across varied populations of individuals and will help build a 

distinguished and comprehensive picture of the role of neural oscillations in cognition.  
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