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Summary
The central focus of molecular electronic structure theory is to find approximate solutions
to the electronic Schrödinger equation for molecules, and as such represents an essential
part of any theoretical (in silico) study of chemical processes. However, a steep increase
of the computational cost with increasing system size often prevents the application of
accurate approximations to the molecules of interest.

The main focus of the present work is the efficient evaluation of Fock-exchange
contributions, which typically represents the computational bottleneck in Hartree-Fock
(HF) and hybrid density functional theory (DFT) calculations. This bottleneck is
addressed by means of seminumerical integration, i.e., one electronic coordinate within
the 4-center-2-electron integral tensor is represented analytically and one numerically. In
this way, an asymptotically linear scaling method for computing the exchange matrix
(denoted as sn-LinK) is developed, enabling fast and accurate ab-initio calculations on
large molecules, comprising hundreds or even thousands of atoms, even in combination
with large atomic orbital basis sets.

The novel sn-LinK method comprises improvements to the numerical integration grids,
a rigorous, batch-wise integral screening scheme, the optimal utilization of modern, highly
parallel compute architectures (e.g., graphics processing units; GPUs), and an efficient
combination of single- and double-precision arithmetic. In total, these optimizations
enable over two orders of magnitude faster evaluation of Fock-exchange contributions.
Consequently, this greatly improved performance allows to perform previously unfeasible
computations, which is also demonstrated at the example of an ab initio molecular
dynamics simulation (AIMD) study on the hydrogen bond strengths within double-
stranded DNA.

In addition to Fock-exchange, the other two computational bottlenecks in hybrid-DFT
applications – the evaluation of the Coulomb potential and the numerical integration of
the semilocal exchange-correlation functional – are also addressed. Finally, more efficient
methods to evaluate more accurate post-HF/DFT methods, namely the random-phase
approximation (RPA) and the second-order approximate coupled cluster (CC2) method,
are also put forward.

In this way, the highly efficient methods introduced in this thesis cover some of the most
substantial computational bottlenecks in electronic-structure theory – the evaluation of
the Coulomb- and the exchange-interactions, the integration of the semilocal exchange-
correlation functional, and the computation of post-Hartree-Fock correlation energies.
Consequently, computational chemistry studies on large molecules (>100 atoms) are
accelerated by multiple orders of magnitude, allowing for much more accurate and
thorough in-silico studies than ever before.
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1 Introduction

The exact solution to the Schrödinger equation[1] provides, in principle, access to all
non-relativistic properties of any physical system. However, the complexity of its solutions
– the many-particle wave-functions – scales exponentially with the number of particles
N , since the correlated movement of all N particles needs to be represented within this
3N -dimensional function. Therefore, approximations to this exact treatment are essential
to describe all but the smallest systems.

Kohn-Sham density functional theory (KS-DFT)[2] approximations, especially hybrid-
DFT methods,[3–7] are arguably the most successful approximations to date in this
regard, due to their exceptional price-performance ratio. These hybrid-DFT methods
incorporate a fraction of the exact (Fock-) exchange energy, whose evaluation poses a
significant computational bottleneck, which this thesis addresses by means of seminu-
merical integration.[8–29] That is, one electronic coordinate within the 4-center-2-electron
(4c2e) electron repulsion integral (ERI) tensor is represented analytically employing
Gaussian-type atomic orbitals (AOs) and one coordinate is represented numerically on
molecular integration grids.

The resulting seminumerical exchange method reduces the computational scaling with
respect to the size of the AO basis from O(N4

bas) to O(N2
bas), albeit at the cost of a

larger pre-factor proportional to the number of grid points. Consequently, seminumerical
integration is particularly advantageous for large molecules in combination with large basis
sets. Moreover, this formal scaling can be further reduced to asymptotically linear-scaling
with respect to the molecular size by exploiting the intrinsic locality of the exchange
interaction for non-metallic systems (i.e., significant HOMO-LUMO gap). While such
linear-scaling algorithms are now standard for the conventional (4c2e integral based)
evaluation of the Fock-Matrix,[30–38] the seminumerical 3-center-1-electron (3c1e) integral
based evaluation largely remains quadratic scaling, despite some efforts to reduce it
via the chain-of-spheres exchange (COSX) algorithm.[16,19] Therefore, Publication I
presents a LinK[34,35] and pre-LinK[36,37] inspired method to reduce the asymptotic scaling
of the seminumerical exchange evaluation to linear by combining an initial pre-screening
with a tight, density-dependent batch-wise selection scheme for the 3c1e integrals.

This method is further refined in Publication II employing very recently developed,
rigorous and position-independent integral estimates.[39] In this way, the implementation
of the 3c1e integral screening is significantly simplified, which greatly eases the transfer to
graphics processing units (GPUs) providing up to 10× improved performance compared
to central processing units (CPU). Furthermore, both the batch-wise nature of the
integral screening and the lower local storage requirements for the computation of the
3c1e integrals compared to the 4c2e integrals make this linear-scaling seminumerical
exchange method, denoted as sn-LinK [Publication II], particularly well suited for
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execution on GPUs, which provide very little low-level storage (e.g., L1, L2 cache) per
thread and require identical branching within batches of typically 32 threads.

The sn-LinK method is subsequently improved even further in Publication III by
exploring the possibility of executing most of the computation with 32-bit single precision
(fp32) arithmetic instead of the standard 64-bit double precision (fp64) arithmetic,[40]

providing up to 2× speedups on most CPUs and up to 64× speedups on some GPUs,
especially on much more affordable consumer hardware. It is shown, however, that
pure fp32 execution leads to unacceptably large numerical errors. Instead, the most
significant contributions, i.e., the most significant 3c1e integrals, have to be computed
with double-precision, whereas the vast majority (∼99 %) of less significant contributions
can be computed with reduced (fp32) precision, accelerating the integral evaluation by
nearly 2× with virtually no impact (<1 µEh) on the accuracy of the final result. In
practice, this separation between fp64- and fp32-executed integrals is a straightforward
extension of the sn-LinK integral-screening, substantiating the future value of the sn-LinK
method.

Moreover, mixed-precision execution can be combined with incremental Fock-builds,[41,42]

where, based on the linearity of the Fock-matrix with respect to the density matrix, the
Fock matrix is not fully recomputed within each self-consistent-field (SCF) step and is
instead only incremented from the previous step. Since these increments are many orders
of magnitude smaller than the full Fock-matrix, they can, as shown in Publication III,
indeed be computed with pure single precision without numerical artifacts, as long as
one full Fock matrix as well as the final energy (and forces) are computed with higher
numerical precision.

Next, the application of seminumerical integration to compute nuclear exchange-forces,
i.e., the derivative of the exchange energy with respect to the nuclear positions, is studied
in Publication IV. There, the value of seminumerical integration is especially notable,
since the exchange-forces can be obtained at virtually no overhead from a converged
SCF calculation if energy and forces are computed in one combined step. In particular,
the evaluation of 3c1e integral derivatives can be completely avoided – a substantial
advantage compared to fully analytical integration, where the necessary evaluation of
the 4c2e integral derivatives is about 3-5 times more expensive than the 4c2e integrals
themselves. The availability of such computationally affordable nuclear forces is especially
relevant for ab initio molecular dynamics (AIMD) simulations, where millions of nuclear
gradient calculations are required for a single trajectory. Therefore, the applicability
of the sn-LinK method to AIMD simulations is also investigated in Publication IV
studying the hydrogen bond strengths within double stranded DNA as an illustrative
application.

Subsequently, in Publication V sn-LinK is applied to the complementary auxiliary
basis set (CABS) singles corrections method,[43] which aims to reduce the one-particle
basis set error and is typically combined with F12-theory in order to obtain highly
accurate post-Hartree-Fock correlation energies by, e.g., second-order Møller Plesset
perturbation theory (MP2-F12)[44–46] or the coupled cluster with singles, doubles, and
perturbative triples approximation (CCSD(T)-F12).[47] For the CABS singles corrections,
a full Fock-matrix has to be constructed in a large auxiliary basis, meaning that the
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reduced (quadratic instead of quartic) basis set scaling of seminumerical integration is
even more impactful. Therefore, very impressive speedups of over 1000× can be obtained
with the sn-LinK method in this case.

Next, since seminumerical integration requires numerical integration grids, optimized
versions of the standard Becke-type[48] grids are developed in Publication VI. In
particular, it is shown that Becke’s molecular partitioning scheme – which is ubiquitously
aplied in DFT calculations worldwide – leads to problematic numerical artifacts for weak,
non-covalent interactions and a surprisingly simple adjustment is put forward, solving
this problem entirely.

Furthermore, due to the profound acceleration of the Fock-exchange evaluation with
sn-LinK, other steps in hybrid DFT calculations, namely the computation of the Coulomb
interaction and the semilocal exchange-correlation (XC) functional can now also represent
possible computational bottlenecks. Therefore, Publication VII describes the highly
efficient execution of these two other steps: The Coulomb interaction is computed using
the resolution-of-the-identity (RI) approximation[49] in combination with a variant of
the J-engine algorithm[50,51] and the semilocal XC functional is numerically integrated
employing the improved integration grids from Publication VI. Additionally exploiting
the locality of the AO basis functions as well as GPU acceleration allows for very fast
Kohn-Sham calculations, even for large molecules. E.g., the runtime for one Kohn-Sham
build for the (AT)16 DNA fragment with the def2-TZVP basis set[52] (1052 atoms, 22742
basis functions) is reduced from multiple hours to only 24 s.

Another noteworthy advantage of seminumerical integration is its natural connection
to local-hybrid functionals, where – in contrast to global hybrid functionals – the
functional incorporates a locally varying fraction of exact exchange.[53–59] Due to this
higher flexibility, local hybrid functionals often provide a better description of difficult
electronic structures, especially with regard to strong static correlation.[57–60] Inspired by
the local-hybrid functional of Johnson,[57] Publication VIII presents a functional that
accurately describes the unusual strong static correlation during covalent bond dissociation
employing fractional orbital occupation numbers to renormalize the exchange-correlation
hole for these strong-correlation structures.

In addition to these hybrid-Kohn-Sham methods, Publications IX and X study the
random-phase approximation (RPA),[61–63] a potentially more accurate post-Kohn-Sham
approximation. In Publication IX, RPA is combined with the semilocal Perdew-Burke-
Ernzerhof (PBE) correlation functional[64] by range separation of the electron-electron
interaction, i.e., short range correlation is described with PBE[65] while long-range
correlation is described with RPA.[66,67] In this way, the overall accuracy of RPA is
substantially improved, especially for smaller basis sets,[68] as shown by the extensive
benchmark (>10000 calculations) in Publication IX.

In Publication X, the high computational cost of RPA and in particular its high
memory demand is tackled by combining on-the-fly evaluation of the necessary 3-center-
2-electron (3c2e) integrals with a Lagrangian-optimized batching-scheme that determines
the best batch dimensions for any given molecule and memory configuration. In this
way, an optimal trade-off between memory utilization and program runtime is achieved,
enabling RPA calculations on large molecules (>1000 atoms) without limitations by the
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available system memory.
Finally, Publication XI applies a variant of this Lagrangian-optimized batching-

scheme combined with the Cholesky decomposition of the ground state density[69,70] to
the scaled opposite-spin second-order approximate coupled cluster singles and doubles
(SOS-CC2) method[71,72] to reduce its computational scaling scaling from O(M4) to
asymptotically O(M). Thanks to the reduced computational scaling and the reduced
memory demand, accurate CC2 calculations are now possible even for large molecules.

Below, the theoretical foundations for this thesis are outlined in chapter 2, followed
by the complete collection of Publications I-XI – the main part of this dissertation –
provided in chapter 3, finalized by some concluding remarks in chapter 4.



2 Theoretical Background

2.1 The Schrödinger Equation
Molecular electronic structure theory describes the movement of electrons and nuclei
within molecules by solving the time-dependent Schrödinger equation (TDSE)[1]

i
∂

∂t
Ψ(r1, . . . , rn, R1, . . . , RN , t) = ĤΨ(r1, . . . , rn, R1, . . . , RN , t) (2.1)

where the wave function Ψ depends on the coordinates (including spin) of all electrons
ri (1 ≤ i ≤ n), the coordinates of all nuclei RA (1 ≤ A ≤ N), and the time t. The
Hamilton operator Ĥ describes the movements and interactions of all particles and may
be summarized as:

Ĥ = T̂n + T̂e + V̂nn + V̂en + V̂ee, (2.2)

i.e., it comprises the kinetic energy of the nuclei T̂n and the electrons T̂e, the Coulomb
repulsion between nuclei V̂nn and between electrons V̂ee, as well as the Coulomb attraction
between electrons and nuclei V̂en.

The stationary solutions of eq. (2.1) may be separated into a time-independent spatial
wave function and a time-dependent phase-factor of the form

Ψ({ri}, {RA}, t) = Ψ({ri}, {RA})e−iEt (2.3)

where Ψ({ri}, {RA}) solves the time-independent Schrödinger equation

ĤΨ = EΨ. (2.4)

Since the nuclei are at least 1800 times heavier than the electrons and therefore
move significantly slower, the movement of the electrons can typically be separated
from the movement of the nuclei (Born-Oppenheimer approximation)[73] which allows
for the separation of the wave function into an electronic part Ψe and a nuclear part
Ψn. Consequently, the electronic wave function Ψe depends only parametrically on the
position of the nuclei and solves the electronic Schrödinger equation(

T̂e + V̂ee + Ven(r)
)
Ψe({ri}) = EeΨe({ri}), (2.5)

where the electron-nuclear attraction is now simplified into a stationary 3-dimensional
potential acting on each electron identically:

Ven(r) ≡
∑

i

ven(ri) (2.6)
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2.2 Hartree-Fock Theory
Since the electronic wave function of eq. (2.1) is still a 4Ne-dimensional function (three
spatial and one spin-coordinate for each electron), it quickly becomes unfeasible to handle
computationally, due to the exponential increase of the wave function domain with respect
to the electron count. Therefore, efficient approximations for Ψe({ri}) have to be found.

2.2.1 Slater Determinants
In the simplest case, the electron-electron repulsion V̂ee is completely neglected, leading
to a non-interaction (NI) differential equation of the form(

T̂e + Ven(r)
)
ΨNI

e = EeΨNI
e , (2.7)

which is solved exactly by any product (Hartree product)[74] of one-particle wave functions
(orbitals) φi(rj), e.g.,

ΨNI
e (r1, r2, . . . , rn) = φ1(r1)φ2(r2) . . . φn(rn) =

n∏
i

φi(ri), (2.8)

and any permutation thereof, e.g.,

φ1(r2)φ2(r1) . . . φn(rn). (2.9)

Moreover, it is also solved exactly by any linear combination of such permuted Hartree
products. However, only one of such linear combinations is antisymmetric with respect
to the interchange of two electronic coordinates (Pauli principle)

Ψe(r1, . . . , ri, . . . , rj , . . . , rn) = −Ψe(r1, . . . , rj , . . . , ri, . . . , rn), (2.10)

which a Fermionic wave function has to satisfy.[75] This specific linear combination of
Hartree products, which can be expressed as a matrix determinant (Slater determinant)

ΨHF ≡ Φ = 1√
n!

det


φ1(r1) φ2(r1) . . . φn(r1)
φ1(r2) φ2(r2) . . . φn(r2)

...
... . . . ...

φ1(rn) φ2(rn) . . . φn(rn)

 (2.11)

is therefore the ansatz for the wave function in Hartree-Fock theory.[76,77]

2.2.2 Hartree-Fock Energy
Inserting this ansatz into the expression for the expectation value of the energy

E = ⟨Ψe|Ĥe|Ψe⟩ ≡
∫

dr1

∫
dr2· · ·

∫
drnΨe(r1, r2, . . . , rn)ĤeΨe(r1, r2, . . . , rn) (2.12)
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results in the Hartree-Fock energy expression

EHF = ⟨Φ|Ĥe|Φ⟩ =
∑

i

⟨φi| − 1
2∇2

i + ven(ri)|φi⟩ + 1
2

∑
ij

[(ii|jj) − (ij|ji)], (2.13)

introducing the Mulliken integral notation

(ij|kl) ≡
∫∫

dr1dr2φ∗
i (r1)φj(r1) 1

|r1 − r2|
φ∗

k(r2)φl(r2). (2.14)

The last term in eq. (2.13), denoted as the exchange energy EX = 1
2

∑
ij(ij|ji), is a direct

consequence of the antisymmetry property of the Slater determinant and corresponds
to a reduction of the electron-electron repulsion due to an inherent “correlation” of
same-spin electrons (Fermi-correlation). The efficient and accurate computation of this
exact (Fock-)exchange interaction and extensions thereof represents the main focus of
this thesis, especially of Publications I-V.

2.2.3 Hartree-Fock Equations
So far, only the construction of an approximate many-body wave function (i.e., the
Slater determinant) from orthonormal one-body functions (molecular orbitals) has been
discussed. However, no equation to compute the precise form of these molecular orbitals
(MOs) has been given.

Such equations are obtained by minimizing the Hartree-Fock energy expression of
eq. (2.13) with respect to the MOs according to the variational principle and ensuring
the MO orthonormality

δEHF
δφi

!= 0 with ⟨φi|φj⟩ = δij , (2.15)

by employing Lagrange’s method of constrained optimization. This leads to the general
Hartree-Fock equations

F̂φi(r) =
∑

j

εijφj(r), (2.16)

which, due to the invariance of the Fock-Operator F̂ with respect to unitary orbital
transformations, may be simplified into the canonical Hartree-Fock equations

F̂φi(r) = εiφi(r), (2.17)

where the matrix of the Lagrange multipliers εij is diagonal.
Since the Fock operator

F̂ = −1
2∇2 + Ven(r) + J(r) + K̂ (2.18)

itself also depends on the molecular orbitals through the Coulomb potential

J(r) =
∫

dr′
∑

i |φi(r′)|2
|r − r′|

(2.19)
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and the exchange operator

K̂φi(r) =
∑

j

∫
dr′ φi(r′)φ∗

j (r′)
|r − r′|

φj(r), (2.20)

the Hartree-Fock equations can only be solved iteratively employing the self-consistent-
field (SCF) method.

2.2.4 Linear Combination of Atomic Orbitals
In order to evaluate eq. (2.17) numerically, the molecular orbitals are expanded in a
fixed, finite set of atom-centered basis functions χν (atomic orbitals, AOs) in the linear
combination of atomic orbital (LCAO) ansatz

φi(r) =
∑

ν

Cνiχν(r), (2.21)

employing the linear expansion coefficients Cνi. Inserting this ansatz into eq. (2.17) and
projecting onto one trial orbital χµ, leads to the Roothaan-Hall equations[78]

∑
ν

⟨χµ|F̂ |χν⟩Cνi =
∑

ν

⟨χµ|χν⟩Cνiεi, (2.22)

which represents a non-orthogonal matrix eigenvalue problem:

FC = SCε. (2.23)

This problem can be solved numerically using existing linear-algebra routines (matrix
diagonalization) requiring O(N3

bas) operations, which only becomes a computational
bottleneck for systems comprising multiple thousand atoms. In addition, a variety
of diagonalization alternatives exist, achieving asymptotic linear-scaling for very large
systems.[79–82]

2.2.5 The Fock Matrix
In contrast, for most systems of practical interest typically comprising a few hundred
atoms, the formally O(N4

bas) scaling formation of the Fock matrix

Fµν = ⟨χµ|F̂ |χν⟩ (2.24)

from the one-particle density matrix

Pµν =
∑

i

CµiCνi, (2.25)

requires the majority of the computation time.
In this step, the computation of the Coulomb matrix

Jµν = ⟨χµ|J(r)|χν⟩ =
∑
λσ

Pλσ(µν|λσ) (2.26)
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and the exchange matrix

Kµν = ⟨χµ|K̂|χν⟩ =
∑
λσ

Pλσ(µσ|νλ), (2.27)

are particularly expensive. Therefore, alternative quadratures for J[P] and especially
K[P], that improve on the formal O(N4

bas) time complexity, are studied within Publica-
tions I-VI and are discussed in more detail in section 2.4.

2.2.6 The Full Configuration Interaction Wave Function
Since the non-interacting wave function ansatz of eq. (2.11) cannot account for the
correlated movement of electrons, the electronic structure of molecules and consequently
their properties cannot be described exactly. Nevertheless, this ansatz provides a basis
for a principally exact representation of the electronic wave function in the form of a
linear combination of all possible excited Slater determinants:

ΨFCI = c0Φ0 +
∑
ia

ca
i Φa

i +
∑
ijab

cab
ij Φab

ij +
∑

ijkabc

cabc
ijkΦabc

ijk + . . . . (2.28)

Since the set of all possible single (Φa
i ), double (Φab

ij ), triple (Φabc
ijk), etc. excited determi-

nants spans a complete basis for the interacting wave function, this full configuration-
interaction (FCI) ansatz can, in principle, represent the interacting wave function exactly.

However, the exponential increase of the computational cost – the number of possible
determinants scales as

( Ne
Nbas

)
– limits the practical application of eq. (2.28) to very small

molecules. Therefore, efficient alternatives to this exact treatment need to be found. As
such, the most commonly employed formulations of Kohn-Sham density functional theory
(KS-DFT) provide alternatives at a similar or, if exchange interactions are not treated
exactly, even lower cost as Hartree-Fock theory, while often, albeit not always, providing
substantially more accurate results.

2.3 Kohn-Sham Density Functional Theory
The fundamental idea behind Kohn-Sham density functional theory[2] is to retain the
non-interacting wave equation of eq. (2.7) which is consequently solved exactly by a
single Slater determinant, but construct an additional potential VXC(r) in such a way,
that the resulting Slater determinant provides the same electron density

ρ(r) = ⟨Ψe|
∑

i

δ(r − ri)|Ψe⟩ = N

∫
dr2· · ·

∫
drn|Ψe(r, r2, . . . , rn)|2 (2.29)

as the exact wave function. For a single Slater determinant, the electron density is
directly available from the occupied MOs as

ρ(r) =
∑

i

|φi(r)|2, (2.30)
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or the corresponding density matrix

ρ(r) =
∑
µν

Pµνχµ(r)χν(r). (2.31)

Similar to the effective potential, which ensures the exact electron density, the exchange-
correlation energy functional EXC[ρ] ensures the exact ground state energy (cf. eq. (2.13)),
which is defined in the Kohn-Sham formalism as

E = EV[ρ] + EJ[ρ] + ET[{φi}] + EXC[ρ]. (2.32)

Here, the first two terms, namely the electron-nucleus attraction energy

EV[ρ] =
∫

drρ(r)Ven(r) (2.33)

and the electron-electron Coulomb repulsion energy

EJ[ρ] = 1
2

∫∫
drdr′ ρ(r)ρ(r′)

|r − r′|
(2.34)

are direct analytical functionals of the electron density, whereas the non-interacting
kinetic energy

ET[{φi}] = −1
2

∑
i

∫
drφ∗

i (r)∇2φi(r) (2.35)

is only known analytically as a functional of the occupied Kohn-Sham orbitals φi(r), and
the exact exchange-correlation energy functional EXC is generally unknown.

This energy expression of eq. (2.32) is minimized by the Kohn-Sham orbitals, i.e., the
solutions to the Kohn-Sham equation[2]

(
− 1

2∇2 + Ven(r) + VJ(r) + VXC(r)
)
φi(r) = εiφi(r) (2.36)

where the Coulomb potential

VJ(r) = δEJ
δρ(r) =

∫
dr′ ρ(r′)

|r − r′|
(2.37)

and the exchange-correlation potential

VXC(r) = δEXC
δρ(r) (2.38)

can be obtained as the density variations of their respective energy expressions.
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2.3.1 Jacob’s Ladder of Density Functional Theory
In practice, analytical (semi-)local expressions of the form

EXC =
∫

drε(ρ(r), ∇ρ(r), . . . ) (2.39)

that employ only (semi-)local information of the electronic structure around each reference
point, are used to approximate EXC. The specific choice of DFT “ingredients” that enter
eq. (2.39) determines the possible accuracy of an approximate functional and thus defines
a hierarchy of practical density functional approximations (DFAs) – the “Jacob’s ladder”
of DFT.[83]

In the lowest rank, only the local electron density ρ(r) enters, forming the local-density
approximation (LDA).[84–86] In the second rank, also the gradient of the electron density
∇ρ(r) is utilized, defining the generalized-gradient approximation (GGA).[64,87–89] Adding
the Laplacian of the electron density ∆ρ(r) and/or the noninteracting kinetic energy
density

τ(r) = −1
2

∑
i

φ∗
i (r)∇2φi(r) (2.40)

leads to the third rank of the “Jacob’s ladder”, denoted as meta-GGA.[90–92]

The fourth rank adds a non-local dependence with respect to the occupied Kohn-
Sham orbitals in the form of the exact exchange energy EX, denoted as global hybrid
functionals,[3–7] or the exact exchange energy density

εex
X (r) = 1

2
∑
ij

∫
dr′ φ

∗
i (r)φj(r)φi(r′)φ∗

j (r′)
|r − r′|

, (2.41)

denoted as local hybrid functionals.[53–59] The latter class of functionals represents a
promising approach to model static correlation due to the greater flexibility by incorpo-
rating exact exchange locally and is therefore studied in Publications I and VIII.

Finally, the fifth rank is defined by including information about the unoccupied
(virtual) Kohn-Sham orbitals, typically by incorporating a fraction of the second-order
Møller Plesset perturbation theory (MP2)[93] energy or the random phase approximation
(RPA)[61–63] energy.[94–97] One such RPA based double-hybrid functional, which employs
range-separation to mix a semilocal correlation functional with the RPA correlation
functional is studied in Publication IX and the (memory-)efficient evaluation of the
necessary RPA correlation energy is presented in Publication X.

2.4 Numerical Quadratures
2.4.1 Molecular Integration Grids
The integration of the exchange-correlation functional (eq. (2.39)) can, in general, not be
performed analytically and therefore numerical integration over a finite three-dimensional
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integration grid is required. That is, the integral of eq. (2.39) is transformed into a finite
sum over grid points rg with corresponding weights wg:

EXC ≈
∑

g

wgε(rg). (2.42)

In order to respect the spherical symmetry of the electronic structure around each
nucleus, these molecular integration grids are typically constructed as a linear combination
of spherical atomic grids, weighted according to Becke’s molecular partitioning scheme[48]

or variations thereof,[98] in order to account for the overlap of the individual grids and thus
to avoid double-counting in the overlapping regions. A revised version of this molecular
partitioning scheme which greatly improves the description of weakly bound complexes
is developed in Publication VI.

The necessary DFT “ingredients” are then obtainable at each grid-point from the AO
density matrix. To exemplify, the electron density ρ(rg) can be computed with a formal
O(N2

basNgrid ∼ M3) time complexity as:

ρ(rg) =
∑
µν

Pµνχµ(rg)χν(rg), (2.43)

which can be improved to asymptotically linear time complexity by exploiting the locality
of the AO basis functions, as presented in Publication VII.

2.4.2 Seminumerical Integration
Numerical integration can, however, not only be used to evaluate semilocal DFT ex-
pressions, but also to accelerate the formally O(N4

bas)-scaling evaluation of the exact
exchange matrix (eq. (2.27)) by expressing one function pair of the 4-center-2-electron
(4c2e) integral tensor (eq. (2.14)) numerically, i.e.,

(µσ|νλ) ≈ 1
2 [([µσ]num|[νλ]ana) + ([µσ]ana|[νλ]num)] , (2.44)

where
([µσ]num|[νλ]ana) ≡

∑
g

wgχµ(rg)χσ(rg)(g|νλ) (2.45)

which involves only 3-center-1-electron (3c1e) integrals of the form

(g|νλ) ≡
∫

drχν(r)χλ(r)
|r − rg|

. (2.46)

Inserting this tensor decomposition into eq. (2.27) leads to the seminumerical expression
for the exchange matrix:

Kµν = 1
2

∑
λσg

wgχµ(rg)(g|νλ)Pλσχσ(rg) + transpose, (2.47)
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where the transpose is due to the symmetrized expression of eq. (2.44) and ensures the
symmetry of the resulting approximate exchange matrix.

Equation (2.47) is best evaluated in three consecutive steps

step 1: Fλg =
∑

σ

Pλσχσ(rg) (2.48)

step 2: Gνg = wg

∑
λ

(g|νλ)Fλg (2.49)

step 3: Kµν =
∑

g

χµ(rg)Gνg (2.50)

finalized by a symmetrization of K to account for the transpose in eq. (2.47). In this
way, the time complexity of evaluating the exchange matrix is reduced from O(N4

bas) to
O(N2

basNgrid ∼ M3), which is particularly beneficial for large AO basis sets. Exploiting
the locality of the AO basis functions in combination with the locality of the exchange
interaction for non-metallic systems (i.e., significant HOMO-LUMO gap), and employing
rigorous, density-dependent integral screening techniques [Publications I-III] for the
3c1e integrals reduces the computational scaling to asymptotically linear. The develop-
ment of such linear-scaling seminumerical methods is the main focus of this thesis and
forms the basis of Publications I-V.

Another advantage of seminumerical integration is its simple and efficient extension
to exchange-forces, i.e., the derivative of the exchange energy with respect to the nu-
clear positions.[16,22] Since the contribution from the perturbed density matrix can be
substituted with the perturbed overlap matrix and the energy-weighted density matrix
(Pulay-term),[99] only the contribution from the integral derivatives remains. This term
of the form

Ex
X ≡

∑
µνλσ

PµνPλσ(µσ|νλ)x = 4
∑

µνλσ

PµνPλσ(µxσ|νλ), (2.51)

where the superscript x denotes the derivative with respect to one nuclear coordinate, can
be reformulated with a non-symmetric variant of the seminumerical tensor-decomposition
of eq. (2.44) to

Ex
X ≈ 4

∑
µνλσ

PµνPλσ([µxσ]num|[νλ]ana) (2.52)

≡ 4
∑

µνλσg

wgPµνPλσχx
µ(rg)χσ(rg)(g|νλ) (2.53)

where only the perturbed function-pair is expressed numerically in order to avoid explicit
derivatives of the 3c1e integrals. In practice, eq. (2.53) is evaluated together with the
final Fock-build to obtain the nuclear forces with only marginal computational overhead
from the intermediate quantity Gνg of eq. (2.49) as:

Zµg =
∑

ν

PµνGνg (2.54)

Ex
X = 4

∑
µg

χx
µ(rg)Zµg, (2.55)
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where the perturbed basis functions are available from the gradients of the basis functions
as:

χx
µ(rg) =

{
− ∂

∂xχµ(r) χµ centered at perturbed nucleus
0 otherwise

(2.56)

The availability of nuclear gradients without any substantial computational overhead is
particularly useful for ab-initio molecular dynamics (AIMD) simulations, where millions
of gradient calculations are necessary for the computation of a single trajectory. Therefore,
Publication IV studies the applicability of seminumerical exchange gradients within
AIMD simulations.

2.4.3 Resolution-of-the-Identity Approximation
In contrast to the exchange matrix, the Coulomb matrix can be evaluated more efficiently
by a different form of tensor decomposition – the resolution-of-the-identity (RI) method[49]

– employing Coulomb-fitting for the 4c2e tensor

(µν|λσ) ≈
∑
P Q

(µν|P )(P |Q)−1(Q|λσ), (2.57)

where P,Q denote auxiliary AO basis functions[100] and (P |Q)−1 denotes the matrix
inverse of the 2-center-2-electron (2c2e) integrals

(P |Q) =
∫∫

drdr′ χP (r)χQ(r′)
|r − r′|

. (2.58)

Thus, the Coulomb matrix can be obtained as

Jµν =
∑

λσP Q

Pλσ(µν|P )(P |Q)−1(Q|λσ) (2.59)

which can be evaluated in O(N2
basNaux ∼ M3) time complexity, a significant improvement

from the O(N4
bas) complexity of evaluating eq. (2.26) directly.

The computational bottleneck is typically the on-the-fly evaluation of the 3-center-2-
electron (3c2e) integrals

(µν|P ) =
∫∫

drdr′ χµ(r)χν(r)χP (r′)
|r − r′|

, (2.60)

which is substantially accelerated by employing a modified J-engine algorithm[50,51] in
combination with GPU acceleration, as presented in Publication VII.
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3.1 Publication I: Efficient and Linear-Scaling Seminumerical
Method for Local Hybrid Density Functionals

H. Laqua, J. Kussmann, C. Ochsenfeld
J. Chem. Theory Comput. 14, 3451 (2018).

Abstract

Local hybrid functionals, that is, functionals with local dependence on the exact
exchange energy density, generalize the popular class of global hybrid functionals and
extend the applicability of density functional theory to electronic structures that require
an accurate description of static correlation. However, the higher computational cost com-
pared to conventional Kohn-Sham density functional theory restrained their widespread
application. Here, we present a low-prefactor, linear-scaling method to evaluate the
local hybrid exchange-correlation potential as well as the corresponding nuclear forces
by employing a seminumerical integration scheme. In the seminumerical scheme, one
integration in the electron repulsion integrals is carried out analytically and the other
one is carried out numerically, employing an integration grid. A high computational
efficiency is achieved by combining the preLinK method [J. Kussmann and C. Ochsenfeld,
J. Chem. Phys. 2013 138, 134114] with explicit screening of integrals for batches of
grid points to minimize the screening overhead. This new method, denoted as preLinX,
provides an 8-fold performance increase for a DNA fragment containing four base pairs
as compared to existing S- and P-junction-based methods. In this way, our method
allows for the evaluation of local hybrid functionals at a cost similar to that of global
hybrid functionals. The linear-scaling behavior, efficiency, accuracy, and multinode
parallelization of the presented method is demonstrated for large systems containing
more than 1000 atoms.

Reprinted with permission from:

H. Laqua, J. Kussmann, C. Ochsenfeld
“Efficient and Linear-Scaling Seminumerical Method for Local Hybrid Density
Functionals”
J. Chem. Theory Comput. 14, 3451 (2018).

Copyright 2018 American Chemical Society.
https://pubs.acs.org/doi/10.1021/acs.jctc.8b00062

https://pubs.acs.org/doi/10.1021/acs.jctc.8b00062




Efficient and Linear-Scaling Seminumerical Method for Local Hybrid
Density Functionals
Henryk Laqua, Jörg Kussmann, and Christian Ochsenfeld*

Department of Chemistry and Center for Integrated Protein Science (CIPSM), University of Munich (LMU), D-81377 München,
Germany

ABSTRACT: Local hybrid functionals, that is, functionals
with local dependence on the exact exchange energy density,
generalize the popular class of global hybrid functionals and
extend the applicability of density functional theory to
electronic structures that require an accurate description of
static correlation. However, the higher computational cost
compared to conventional Kohn−Sham density functional
theory restrained their widespread application. Here, we
present a low-prefactor, linear-scaling method to evaluate the
local hybrid exchange−correlation potential as well as the
corresponding nuclear forces by employing a seminumerical integration scheme. In the seminumerical scheme, one integration in
the electron repulsion integrals is carried out analytically and the other one is carried out numerically, employing an integration
grid. A high computational efficiency is achieved by combining the preLinK method [J. Kussmann and C. Ochsenfeld, J. Chem.
Phys. 2013 138, 134114] with explicit screening of integrals for batches of grid points to minimize the screening overhead. This
new method, denoted as preLinX, provides an 8-fold performance increase for a DNA fragment containing four base pairs as
compared to existing S- and P-junction-based methods. In this way, our method allows for the evaluation of local hybrid
functionals at a cost similar to that of global hybrid functionals. The linear-scaling behavior, efficiency, accuracy, and multinode
parallelization of the presented method is demonstrated for large systems containing more than 1000 atoms.

1. INTRODUCTION

In the last decades, Kohn−Sham density functional theory (KS-
DFT)1 has become very popular in computational chemistry.
The introduction of exact (Hartree−Fock like) exchange into
DFT by Becke2 created the popular class of (global-)hybrid
functionals with numerous representatives.3−6

A more flexible approach, which incorporates exact exchange
locally instead of globally, was then suggested by Jaramillo et al.,
introducing the class of local hybrid functionals.7 Since then a
variety of functionals of this form have been developed,7−19

offering the chance of transferring the accuracy of hybrid DFT
to a wider variety of problems, especially to ones requiring an
accurate description of static correlation.
However, despite their advantages over conventional func-

tionals, local hybrids have not made their way into mainstream
applications yet because of their higher computational effort.
The initially proposed resolution of the identity (RI)
approaches20−24 require large uncontracted basis sets and
scale unfavorably as (N )3 with the system size and are
therefore limited to small molecules. Recently, seminumerical
implementations (SENEX),25−28 where one integration in the
electron repulsion integrals (ERIs) is carried out numerically on
the DFT grid and the other one is carried out analytically,
employing three-center-one-electron integrals, became more
popular.
The seminumerical evaluation of exact exchange has been

developed by Friesner and co-workers in the pseudospectral

scheme since the late 1970s and is available in the Jaguar
program package.29−34 The approach became more popular
since the development of the chains-of-spheres-exchange
(COSX) algorithm by Neese et al.35 and the SENEX
implementation of the Weigend group.36,37 However, both
the pseudospectral and the COSX approach are designed for
Hartree−Fock and global hybrid DFT computations, because
some two-electron integrals (e.g., all integrals where all four
basis-functions are centered at the same atom) are evaluated
analytically to allow for the use of quite coarse integration grids
while maintaining a reasonable accuracy. This is not possible for
local hybrid functionals, so that the use of tight integration
grids, comparable to typical DFT-integration grids, is inevitable.
In this work, we present an efficient linear-scaling method for

local hybrid functionals employing the seminumerical integra-
tion scheme. Our method is based on rigorous screening
techniques that exploit the locality of the exchange interaction
for systems with a nonvanishing highest occupied molecular
orbital−lowest unoccupied molecular orbital (HOMO−
LUMO) gap.
During the last decades, several screening algorithms for

analytical exact-exchange calculations have been devel-
oped.38−43 A transfer of these integral screening techniques
to seminumerical integration schemes is desirable to allow for
the application of local hybrid functionals to larger systems with
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hundreds or even thousands of atoms. The approach of the
present paper utilizes the preLinK scheme of ref 42 to first
preselect significant contributions to the final exchange matrix
in order to reduce the asymptotic scaling to linear. In a
subsequent step, significant three-center-one-electron-integrals
are then selected for whole batches of grid points at once to
further reduce the prefactor.
The underlying theory of the seminumerical evaluation of

local hybrid exchange-correlation (XC) potentials and nuclear
forces44 follows the approach of Kaupp et al.25,27 and is briefly
summarized in section 2.1. Subsequently, we present our new
(pre)screening method, denoted as preLinX, in section 3.
Finally, the performance, accuracy, and parallel efficiency of our
approach is assessed in section 4, employing the local hybrid
functional of Perdew, Staroverov, Tao, and Scuseria (PSTS).45

2. SEMINUMERICAL EVALUATION OF LOCAL HYBRID
FUNCTIONALS

In this section, the seminumerical scheme to evaluate the
nonlocal (exact-exchange-dependent) part of local hybrid
functionals is briefly summarized. A more detailed derivation
of the underlying equations may be found in, for example, refs
25 and 27. Moreover, our summary is restricted to the exact-
exchange-dependent part, because the evaluation of the
semilocal part is equivalent to conventional meta-generalized
gradient approximation (meta-GGA) functionals.
2.1. Local Hybrid Functional Form. Local hybrid

functionals incorporate, in addition to the usual meta-GGA
ingredients (density ρ, square of the gradient of the density
|∇ρ|2, Laplacian of the density Δρ(r), and kinetic energy

density τ φ= ∑ |∇ |r( )i i
1
2

2), the exact exchange energy density

εX
ex, yielding the hyper-GGA functional form

∫ ε ρ ρ ρ τ ε= |∇ | Δ( )E r r r r r r( ), ( ) , ( ), ( ), ( ) dlh lh
XC XC

2
X
ex

(1)

In the seminumerical scheme, the exact exchange energy
density is computed for every grid point rg as

∫∑ε χ
χ χ

χ= − ′ ′
| ′ − | ′

μνλσ
μ μν

ν λ
λσ σP Pr r

r r

r r
r r( )

1
2

( )
( ) ( )

d ( )g g
g

gX
ex

(2)

where μ, ν, λ, and σ denote indices of basis functions χ and P
denotes the one-particle density matrix representation within
the atomic orbital (AO) basis.
2.2. Evaluation of the Local Hybrid Exchange−

Correlation Potential. The expression for the exchange−
correlation potential of local hybrid functionals in the
generalized Kohn−Sham (GKS) scheme is obtained by
differentiation of the energy expression (eq 1) with respect to
a density matrix element Pμν. For local hybrid functionals, this
leads to an exact-exchange-dependent term of the form

ε
ε

ε∂
∂ × ∂

∂ μν

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥P

r r( ) ( )
lh

g g
XC

X
ex

X
ex

(3)

containing the derivative (i.e., the potential matrix) of εX
ex,

which is readily obtained by differentiation of eq 2 to yield

∫
∫

∑ε
χ

χ χ
χ

χ
χ χ

χ

∂
∂ = − ′ ′

| ′ − | ′

+ ′ ′
| ′ − | ′

μν λσ
μ

ν λ
λσ σ

ν
μ λ

λσ σ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

P
P

P

r r
r r

r r
r r

r
r r

r r
r r

( )
1
2

( )
( ) ( )

d ( )

( )
( ) ( )

d ( )

g g
g

g

g
g

g

X
ex

(4)

The potential matrix K, which corresponds to the nonlocal
part of the exchange−correlation potential, may thus be
computed as

∑ ∑ ∑χ
ε
ε

χ= − ∂
∂

+

μν μ
λ

νλ
σ

λσ σ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

K w A Pr r r
1
2

( ) ( ) ( )

transpose

g
g g

lh

g g g
XC

X
ex

(5)

where rg denotes grid points, wg denotes grid weights, and
defining the three-center-one-electron integrals

∫ χ χ= ′ ′
| ′ − | ′νλ

ν λA
r r

r r
r

( ) ( )
dg

g (6)

Similar to the approach of ref 35, eq 5 is evaluated in three
consecutive steps on a numerical integration grid as

∑ χ=λ
σ

λσ σF P r( )g g
(7)

∑ ε
ε

= − ∂
∂ν

λ
νλ λ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥G w A Fr( )g g

lh

g g g
XC

X
ex

(8)

∑ χ=μν μ νK Gr( )
g

g g
(9)

The integrals Aνλg are evaluated using the Obara−Saika
recursion scheme46,47 with automatically generated integral
kernels for the different l-quantum-number combinations.
The so obtained nonlocal GKS-matrix K is finally

symmetrized (to account for the transpose in eq 5) as

= +μν μν νμK K K
1
2

( )symm
(10)

2.3. Nuclear Forces. Expressions for nuclear forces, i.e.,
derivatives of the energy with respect to the positions of the
nuclei, are obtained in a similar fashion as the expressions for
the exchange−correlation potential and following the approach
of ref 27.
Differentiation of eq 1 with respect to the nuclear positions

(denoted as ∇A) leads to an exact-exchange-dependent term of
the form

ε
ε

ε
∂
∂ × ∇

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥r r( ) [ ( )]

lh

g A g
XC

X
ex X

ex

(11)

incorporating the derivatives of the exact exchange energy
density ∇AεX

ex. An expression for the latter is obtained by
differentiation of eq 2 to give
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∑
∑

∑

χ χ

χ χ

χ χ

∇ = − ∇

− ∇

− ∇

μνλσ
μ μν νλ λσ σ
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Similar to conventional forces calculations, the term of eq 12
contains the derivatives of the density matrix ∇APμν, which can,
however, be simplified by employing derivatives of the overlap
matrix. This term is already included in conventional forces
implementations.44

The other two terms are then evaluated seminumerically
employing an integration grid: The term of eq 13, denoted as
G1, is calculated from the quantity Gνg defined in eq 8 and the
gradient of the basis functions ∇χμ, employing two additional
steps:

∑=μ
ν

μν νZ P Gg g
(15)

∑ χ= − ∇
μ

μ μG Zr[ ( )]
g

g g1
(16)

Furthermore, the term of eq 14, denoted as G2, can be
evaluated directly from the integral derivatives as

∑ ε
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(17)

where the intermediate quantity Fνg, defined in eq 7, is
employed. The three-center-one-electron integral derivatives
∇AAνλg are obtained analogously to the integrals in eq 6 from
the Obara−Saika recursion scheme47 using our code generator
for the different l-quantum-number combinations.

3. LINEAR-SCALING CALCULATION OF THE EXACT
EXCHANGE ENERGY DENSITY: THE PRELINX
METHOD

To enable the application of local hybrid functionals to large
molecular systems, an efficient and linear-scaling screening
algorithm that removes as many insignificant integrals as
possible is necessary. Therefore, we propose the following two-
step-scheme: First, significant basis function shells are
determined for each batch of grid points using a combination
of the preLinK method42 with the S- and P-junction-based
method of Neese et al.35 Subsequently, significant integrals are
selected by direct investigation of the contribution to the total
energy.
3.1. Preselection of Significant Contributions. The

prescreening is performed using the preLinK scheme,42 which
provides a rigorous upper bound to the elements of the K
matrix of the form

∑ μλ μλ νσ νσ| | ≤ ̃ = | | | |μν μν
λσ

λσK K P( ) ( )
(18)

Equation 18 may be evaluated by two matrix multiplications

̃ = × | | ×K Q P Q (19)

where the Schwarz matrix Q is defined as

μν μν= |μνQ ( ) (20)

Note that for systems with a significant HOMO−LUMO
gap, the two matrix multiplications of eq 19 may be evaluated in
a linear-scaling fashion using sparse algebra. However, because
the step has a very small prefactor, we evaluate eq 19 using
dense matrix algebra in our current preLinX implementation. In
analogy to the S- and P-junction notation of ref 35, we denote
the sparsity pattern of K̃ as K-junction.
The significant basis function shells for the evaluation of eqs

7−9 are then obtained for batches of grid points according to
the following algorithm, which is similar to the COSX method
of Neese et al. except for the use of K-junctions instead of P-
junctions:

For large systems with a nonzero HOMO−LUMO gap, the
amount of shells in the secondary set {ν} is asymptotically
constant because of the exponential decay of the exchange
interaction. Because the amount of grid batches scales linearly
and there is an asymptotically constant workload for each
batch, the algorithm scales asymptotically linearly with the
system size.

3.2. Batchwise Integral Screening. So far the contribu-
tions from S-junctions (overlap of basis functions) and K-
junctions (sparsity of the exchange matrix) have only been used
independently from each other, leading to the incorporation of a
vast amount of insignificant integrals Aνλg. We therefore
propose a secondary screening step that directly selects
significant shell pairs for a whole batch of grid points,
employing an estimate of the maximal contribution to the
exchange energy of the form

ε = ≤ν νλ λ ν νλ λw F A F F A Fg g g g b b b
cont max max max

(21)

with

=ν ν∈
F w Fmax( )b

g b
g g

max 1/2

(22)

=νλ νλ∈
A Amax( )b

g b
g

max

(23)

and b denoting the index of a batch of grid points. Instead of
using the maximum integral for a whole batch Aνλb

max, we instead
use the integral at the center of the batch Aνλc, sacrificing the
upper bound property of eq 21 but obtaining a simple and
effective screening scheme, which can be used for both SCF
and forces calculations. This simplification is possible because
the integrals Aνλg do not vary significantly within one batch of
spatially adjacent points, because the

r
1 distance dependence is

insignificant for small batches. Moreover, for spatially large
batches the exponential decay of the exchange interaction,
which is included in Fνg, is much stronger (over orders of
magnitude) than the

r
1 -dependence of the integrals Aνλg.

Therefore, the batchwise screening does not significantly
underestimate any contribution in practice.
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Because the fineness of the integration grid is not supposed
to influence the tightness of the integral screening, the
significant contributions are determined by the condition

ϑ ≤ e
wX

cont

ave (24)

where wave is the average grid weight of all grid points and ϑX
denotes a given threshold. This batchwise integral screening is
essential for an efficient seminumerical local hybrid implemen-
tation, reducing the number of evaluated integrals and thus the
computation time for, for example, (DNA)4, by about 1 order
of magnitude (see section 4).
3.3. Generation of Grid Batches. To allow for an efficient

grid-based algorithm, the grid has to be divided into batches of
spatially adjacent points. The standard meta-GGA-part, as well
as the matrix multiplications of eqs 7, 9 (SCF), and 15 (forces)
are evaluated using our standard DFT-grid batches of typically
5 000−20 000 points, obtained from an octree algorithm.48

However, the integral evaluations of eq 8 (SCF) and eq 17
(forces) are performed on smaller sub-batches of 100 points, to
allow for a tighter batchwise integral screening. Our
preselection scheme is performed only for the larger batches,
while the batchwise integral screening of eq 24 is performed in
a hierarchic approach, first on the level of the large DFT
batches and subsequently on the level of the sub-batches.
Because our octree algorithm leads to batches with highly

varying amounts of grid points, we propose a different batching
algorithm to generate the sub-batches. For that purpose we
utilize a 3-dimensional Hilbert curve (see Figure 1 for a

schematic representation of 2D Hilbert curves).49−51 This
curve allows for the projection of any 3D point onto a 1D line,
while ensuring that points that are close to each other on the
projected 1D line are also close in 3D space, which is a
desirable property for our batchwise screening algorithm. In our
proposed sub-batching algorithm, the grid points are thus
processed into sub-batches according to their position on the
Hilbert curve, i.e., their Hilbert indices.
The Hilbert indices are obtained from the algorithm of ref

50, where the level of the Hilbert curve is chosen to be b = 21,
because the resulting index between 0 and 263 − 1 still fits into
a 64-bit unsigned integer.

4. ILLUSTRATIVE CALCULATIONS
The present local hybrid scheme was implemented in our
FermiONs++ program42,43 and is tested in terms of numerical
accuracy and performance. If not stated otherwise, all
calculations are run on an openMP52 parallelized multicore
setup employing 12 cores (2×Intel-E5645@2.40 GHz). The
code was compiled with the GNU compiler collection (GCC),
version 5.2.153 using compiler optimizations (-O3). The xyz-
structures of the systems employed in this work are available
online at http://www.cup.lmu.de/pc/ochsenfeld/download/.54

Throughout this work, the def2-basis sets of ref 55 have been
employed.
First, the effect on the performance of both the preselection

and the explicit integral screening is illustrated employing the
example of linear alkanes. Figure 2 clearly demonstrates the

(N) scaling of our preLinX method with a 25× speedup
compared to the conventional (N )2 implementation for the
largest system (C320H642). Additionally, the prefactor is further
reduced by approximately 3.5 because of the batchwise integral
screening. Moreover, because our preLinX method has virtually
no overhead, it is also efficient for small molecules.
Next, we analyze the impact of the prescreening threshold

ϑpre on the accuracy and performance of our preLinX method
in Table 1. For the following calculations, we choose the very
tight value of ϑ = −10pre

4 to ensure high accuracy, which is also
in accordance with the recommended value of ref 42, noting
that looser thresholds up to 10−2 may still yield very accurate
results. Note that, in analogy to ref 42, ϑpre may rather be
regarded as a matrix-sparsity threshold than an integral
threshold, explaining why such large threshold values still
yield accurate results.
After a reasonable prescreening threshold is chosen, we

present the influence of the batchwise integral screening
threshold ϑX on the accuracy and performance of SCF
calculations in Table 2. The results illustrate the importance
of the batchwise integral screening, with a 2−4-fold perform-
ance increase even for the tightest threshold, while introducing
an error of <1 nEh. Note that for (DNA)4, the column ϑ = 0X
in Table 2 represents the performance of the conventional
chain-of-spheres (COSX) method. Here, neither P- nor K-
junction-based preselection methods have any significant
impact (see also refs 35 and 42).
Moreover, the error introduced by the integral screening can

be rigorously controlled by the choice of the threshold. We
further notice that the coarseness of the integration grid
influences the error introduced by the screening, leading to
smaller errors for coarse grids. This behavior is best explained
by the amount of overestimation in eq 21: Employing coarse
grids leads to spatially larger grid batches (and sub-batches),
resulting in a higher overestimation of contributions in eq 21.

Figure 1. 2D Hilbert-curve of level b = 1 to b = 4 from left to right in
ascending order.

Figure 2. Wall times in seconds for one exchange−correlation−
potential calculation for a series of linear alkanes on 12 CPU-cores
(2×Intel-E5645@2.40 GHz) employing different screening techniques
and averaged over all full SCF-cycles. The values are given for PSTS/
def2-SVP, a [50/194]-grid and the screening thresholds ϑ = −10pre

4

and ϑ = −10X
11. The largest system is C320H642 containing 962 atoms.
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In essence, the batchwise screening is less tight for coarse grids.
The introduced errors, however, vary over only about 1 order
of magnitude, which may easily be overcome by choice of a
tighter threshold. Overall, a threshold of ϑ = −10X

11 represents
a good compromise between accuracy (approximately 1 μEh to

3 μEh error) and performance (up to 10-fold performance
increase) for a variety of systems, basis sets, and grids and is
therefore employed as the standard for the remaining
calculations.
Next, the effect of the integral threshold ϑX on the

performance and accuracy of nuclear forces calculations is
investigated (Table 3). Note that the same threshold has been
employed both for the preceding SCF and the forces
calculation. First, we observe that the speedup due to our
batchwise screening is significantly larger (up to 19-fold for

(H2O)142@ϑ = −10X
11) as compared to XC-potential calcu-

lations. Furthermore, the standard threshold of ϑ = −10X
11

yields a reasonable accuracy of approximately 1 μEh a0
−1 for the

tested systems, which is of the same order of magnitude as the
errors introduced by our CFMM method for the Coulomb
matrix.56

In summary, our local hybrid implementation (preLinX)
yields excellent performance and reliable accuracy for single-
point energies and nuclear forces, when employing the

thresholds ϑ = −10pre
4 and ϑ = −10X

11. Overall, the gradient

computation takes approximately 1.5−5 times longer than a
single SCF cycle, which is still considerably less than the
preceding SCF calculation, which typically requires around 10−
20 SCF steps for tight convergence thresholds.
Employing the above proposed thresholds of ϑ = −10pre

4

and ϑ = −10X
11, we now investigate the scaling behavior with

respect to the molecular system size for a variety of molecules

in Table 4. Overall, the scaling behavior is better than (N )2

for all tested systems (except for (DNA)1 to (DNA)2 which are
too small for insignificant contributions), reaching asymptotic
linear-scaling behavior for large systems like (amy)64. More-
over, the scaling behavior of the forces computation is typically
better compared to the SCF, because the integrals and integral

Table 1. Effect of the Screening Threshold ϑpre on the
Computation Time and the Final SCF-Energy for Different
Molecules, Basis Sets, and Integration Grids Given as
Molecule/Basis-Set/Grida

ϑpre

system/basis/grid 10−1 10−2 10−3 10−4 0

(DNA)4/SVP/
[50/194]

ΔE
[μEh]

−0.007 0.000 0.000 0.000 0.000

time
[s]

907 942 948 949 949

(DNA)4/SVPD/
[50/194]

ΔE
[μEh]

0.001 0.000 0.000 0.000 0.000

time
[s]

5754 5698 5686 5701 5826

(DNA)4/TZVP/
[50/194]

ΔE
[μEh]

2.524 0.000 0.000 0.000 0.000

time
[s]

3637 3616 3617 3630 3626

(H2O)142/SVP/
[50/194]

ΔE
[μEh]

−0.019 0.000 0.000 0.000 0.000

time
[s]

770 873 910 912 916

(DNA)16/SVP/
[50/194]

ΔE
[μEh]

−0.116 0.003 0.002 −0.002 0.000

time
[s]

5035 5531 5917 6011 7098

aThe deviations from the ϑ = 0pre value (ΔE) are given in μEh. The
wall times for one XC-potential calculation are given in seconds as the
average over all full SCF-cycles employing 12 CPU-cores (2×Intel-
E5645@2.40 GHz). For all calculations, a very tight threshold for the
batchwise integral screening ϑ = −10X

14 has been employed.

Table 2. Effect of the Screening Threshold ϑX on the Final SCF-Energy for Different Molecules, Basis Sets, and Integration
Grids (Molecule/Basis-Set/Grid)a

ϑX

system/basis/grid 10−8 10−9 10−10 10−11 10−12 10−13 10−14 0

(DNA)4/SVP/[50/194] ΔE [μEh] 494.6 68.05 8.495 0.961 0.102 0.011 0.001 0.000
time [s] 270 314 377 471 595 756 946 3260

(DNA)4/SVP/[99/590] ΔE [μEh] 841.1 113.3 14.77 1.732 0.187 0.020 0.002 0.000
time [s] 1146 1343 1656 2125 2768 3604 4630 18267

(DNA)4/SVP/[10/50] ΔE [μEh] 143.7 18.27 2.067 0.215 0.023 0.003 0.000 0.000
time [s] 41 45 51 59 72 85 99 233

(DNA)4/SVPD/[50/194] ΔE [μEh] −641.3 62.72 2.607 1.025 0.164 0.016 0.000 −
time [s] 1434 1702 2146 2786 3610 4518 5522 −

(DNA)4/TZVP/[50/194] ΔE [μEh] 487.0 71.36 9.406 1.013 0.116 0.012 0.000 −
time [s] 929 1055 1261 1571 2109 2612 3339 −

(H2O)142/SVP/[50/194] ΔE [μEh] 643.3 96.21 12.28 1.437 0.161 0.017 0.002 0.000
time [s] 348 365 405 470 572 717 912 4991

aThe deviations (ΔE) to the tightest threshold ϑ = −10X
14 or ϑ = 0X , respectively, are given in μEh. ϑ = 0X corresponds to no batchwise screening.

Note that for the very demanding calculations with def2-SVPD and def2-TZVP no computations without batchwise screening were performed
because of large computational cost. The wall times on 12 CPU-cores (2×Intel-E5645@2.40 GHz) for one XC-potential calculation is given in
seconds as the average over all full SCF-cycles. The SCF energy convergence threshold dE (i.e., the change in the total energy) was set to 10−9 for
(DNA)4 and to 10−10 for (H2O)142 for the tightest screening-thresholds ϑ ≤ −10X

12. When less tight screening thresholds ϑX were employed, the
SCF could not be converged so tightly. In these cases, the convergence criterion was set to be less strict, but still sufficiently tight to ensure that the
convergence error is negligible compared to the error introduced by the screening.
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derivatives, which are screened very effectively by ϑX , comprise
a larger fraction of the total computation time.
To give some further insights into the efficiency of our

seminumerical implementation, we compare its performance to

analytical global hybrid calculations (employing the LinK
method40) in Table 5. Overall, our preLinX method allows for

an evaluation of local hybrid functionals at comparable cost to
global hybrid functionals. Additionally, seminumerical methods
scale more favorable as (N )2 with the size of the basis set
compared to analytical methods, which scale as (N )4 .
Therefore, our seminumerical integration method is especially
efficient for large basis sets, e.g., SVPD and TZVP. Moreover,
the use of a coarse integration grid, i.e., the SG1-grid,57 can
considerably speed up seminumerical local hybrid calculations.
Finally, the parallel scaling of our local hybrid implementa-

tion is investigated in Table 6, employing the message-passing
interface (MPI)58 in combination with a fast interconnected
architecture.59 Due to the high parallel workload of the grid-

Table 3. Effect of the Screening Threshold ϑX on the Computation Time and Accuracy of Nuclear Forces Calculations for
Different Molecules, Basis Sets, and Integration Grids (Given as Molecule/Basis-Set/Grid)a

ϑInt

system/basis/grid 10−8 10−9 10−10 10−11 10−12 10−13 10−14 0

(DNA)4/SVP max Error 5.871 1.808 0.146 0.109 0.002 0.000 0.000 0.000
/[50/194] time [s] 385 523 738 1048 1462 1990 2624 10314
(DNA)4/SVP max Error 58.45 27.29 1.111 1.255 0.017 0.003 0.000 −
/[99/590] time [s] 1672 2325 3382 4943 7083 9866 13258 −
(DNA)4/SVP max Error 61.175 24.987 1.297 1.521 0.059 0.085 0.087 0.000
/[10/50] time [s] 48 63 85 114 151 196 249 695
(DNA)4/SVPD max Error 3074 274.8 47.44 6.748 0.430 0.047 0.000 −
/[50/194] time [s] 2946 3896 5471 7744 10641 13948 17418 −
(DNA)4/TZVP max Error 451 93.2 7.56 1.720 0.124 0.018 0.000 −
/[50/194] time [s] 1953 2818 4201 6161 8888 12219 16107 −
(H2O)142/SVP max Error 7.593 1.702 0.425 0.051 0.065 0.065 0.065 0.000
/[50/194] time [s] 392 458 581 788 1105 1559 2172 15067

aThe maximum deviations in the molecular forces (maxError) referenced to the tightest threshold ϑ = −10X
14 or ϑ = 0X , respectively, are given in

μEh a0
−1. ϑ = 0X corresponds to no batchwise screening. The preceding SCF calculation has been converged to the same convergence thresholds as

in Table 2. The wall times for the computation of the exchange−correlation contributions to the nuclear forces employing 12 CPU-cores (2×Intel-
E5645@2.40 GHz) are given in seconds.

Table 4. Scaling Behavior of the Computation Time for on
XC-Potential Build (K-time) and the Computation Time for
One XC-Forces Build (forces-time)a

fragment atoms
K-time
[s]

K-time
scaling

forces-time
[s]

forces
scaling

DNA Fragments
(DNA)1 62 21 − 55 −
(DNA)2 128 88 2.05 218 1.91
(DNA)4 260 276 1.54 619 1.40
(DNA)8 524 789 1.42 1545 1.24
(DNA)16 1052 1983 1.25 3592 1.16

Spherical Water Clusters
(H2O)68 204 80 − 155 −
(H2O)142 426 281 1.68 478 1.47
(H2O)285 855 949 1.68 1411 1.47
(H2O)569 1707 3040 1.60 3968 1.41

Amylose Chains
(amy)2 45 17 − 48 −
(amy)4 87 42 1.26 108 1.17
(amy)8 171 100 1.21 242 1.14
(amy)16 339 223 1.12 515 1.07
(amy)32 675 472 1.06 1071 1.04
(amy)48 1011 755 1.07 1645 1.03
(amy)64 1347 1046 1.04 2278 1.04

Fullerenes
C60 60 85 − 243 −
C100 100 209 1.48 607 1.50
C180 180 529 1.41 1407 1.29
C240 240 821 1.16 2098 1.12

aIn all computations, the def2-SVP basis set, the SG1 numerical
integration grid,57 and the thresholds ϑ = × −1 10pre

4 and ϑ = −10X
11

have been employed. The computation times employing 12 CPU-
cores (2×Intel-E5645@2.40 GHz) are given in seconds, and the
scaling behavior (per atom) is given compared to the respective
predecessor.

Table 5. Comparison of the Wall Times for One XC-
Potential Build for Global Hybrid Functionals (Analytically)
and Local Hybrid Functionals (Seminumerically) for a
(DNA)4 Fragmenta

basis set

functional grid
STO-
3G SV SVP SVPD TZVP

PSTS (local
hybrid)

[75/302] 364 642 978 5783 3291

PSTS (local
hybrid)

SG1 84 177 268 1529 899

TPSSh (global
hybrid)

[75/302] 56 224 511 7236 9382

TPSSh (global
hybrid)

SG1 36 176 449 6814 9051

aThe four-center-two-electron integrals for the exact-exchange part of
the global hybrid functional TPSSh are evaluated analytically using our
LinK method. The PSTS functional is evaluated seminumerically using
the preLinX method of the present work. The fine [75/302] (about
20 000 points per atom) and the coarse SG1-grid (a pruned version of
the [50/194]-grid with about 4000 points per atom) have been
employed. The wall times on 12 CPU-cores (2×Intel-E5645@2.40
GHz) for one XC-potential build (including the DFT exchange−
correlation part) are given in seconds as the average over all full SCF-
cycles.
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based implementation, even on 12 computing nodes with a
total of 96 CPU cores, a high parallel efficiency of >86% is
observed. Computing one SCF step for a (DNA)4 fragment
(260 atoms) with a fine integration grid (20 000 points per
atom) and the def2-SVP basis in 2 min is very promising with
regard to the application of local hybrid functionals for
production calculations. Finally, we notice that our implemen-
tation allows for the calculation of large systems like (DNA)16,
comprising 1052 atoms, 11 230 basis functions, and 20.8
million grid points, requiring less than 20 min for a single SCF
cycle.

5. CONCLUSION AND OUTLOOK
We presented an efficient and linear-scaling seminumerical
algorithm for local hybrid functionals, denoted as preLinX. A
high computational efficiency was conceived using preselection
and batchwise integral screening. The computational cost of
our seminumerical algorithm is comparable to that of analytical
global hybrid DFT calculations. Moreover, because of the
asymptotic linear-scaling behavior, our method allows for the
evaluation of local hybrid functionals for large systems,
comprising more than 1000 atoms. Additionally, we achieve
high parallel efficiency on multiple computing nodes within a
massively parallel setup.
In future work we plan to transfer the preLinX algorithm to

graphic processing units to further accelerate local hybrid DFT
calculations. We further note that the herein presented preLinX
method may also be used to speed up global-hybrid functional
calculations. Furthermore, an efficient seminumerical algorithm
for response properties (e.g., vibrational spectra or excited
states within TD-DFT) similar to the seminumerical TD-DFT
method of Kaupp et al.26 is crucial for mainstream applications
and will also be investigated in future work. Finally, we hope
that the availability of an efficient linear-scaling method to
evaluate local hybrid functionals will encourage further
developments in this field.
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ABSTRACT: We present a highly efficient and asymptotically linear-scaling
graphic processing unit accelerated seminumerical exact-exchange method (sn-
LinK). We go beyond our previous central processing unit-based method
(Laqua, H.; Kussmann, J.; Ochsenfeld, C. J. Chem. Theory Comput. 2018, 14,
3451−3458) by employing our recently developed integral bounds (Thompson,
T. H.; Ochsenfeld, C. J. Chem. Phys. 2019, 150, 044101) and high-accuracy
numerical integration grid (Laqua, H.; Kussmann, J.; Ochsenfeld, C. J. Chem.
Phys. 2018, 149, 204111). The accuracy is assessed for several established test
sets, providing errors significantly below 1mEh for the smallest grid. Moreover, a comprehensive performance analysis for large
molecules between 62 and 1347 atoms is provided, revealing the outstanding performance of our method, in particular, for large
basis sets such as the polarized quadruple-zeta level with diffuse functions.

1. INTRODUCTION

During the last 15 years, graphic processing units (GPUs) have
gained increasing interest within the quantum chemistry
community, focusing, in particular, on the evaluation of 4-
center-2-electron (4c-2e) integrals, which represent the major
bottleneck in most Hartree−Fock and Kohn−Sham calcu-
lations.1−15 Since, for Hartree−Fock (HF) and hybrid density
functional theory (DFT) calculations, the mandatory compu-
tation of exact (Fock-like) exchange matrices is particularly
expensive, efficient and linear-scaling implementations have
been developed since the late 1990s16−21 including recent
developments.7,9 However, for larger molecules and partic-
ularly in combination with larger basis sets (i.e., triple-ζ or
larger), resolution-of-the-identity (RI)22,23 or seminumerical
methods, that is, grid-based methods employing 3-center-1-
electron (3c-1e) integrals,24−46 are possibly more efficient due
to their superior O(Nbas

2 ) formal scaling compared to the
formal O(Nbas

4 ) scaling of the conventional 4c-2e integral-based
methods.
As we demonstrated recently,44 seminumerical exchange

methods can, in contrast to the asymptotically O(M3) scaling
RI-K method,22,23 be implemented in an asymptotically linear-
scaling fashion. This is an increasingly important property
since modern computer hardware now allows for the routine
calculation of multiple thousand atoms on conventional server
nodes or workstations. In addition, seminumerical methods
may directly be employed to compute the exact-exchange part
of local hybrid functionals, which represent a very promising
new class of functionals due to their higher variability and
therefore more general applicability.47−58 Indeed, the prospects
of these new functionals have been the major motivation for
many recently developed seminumerical methods.38−40,42−46

In this publication, we present a reformulation of our
previous method44 that allows for an efficient and highly
performant GPU implementation. These changes include the
use of our recently developed generalized integral bounds59

and our improved molecular grids.60−62 Not only were these
new techniques necessary for a performant GPU implementa-
tion but they are also applied to our existing central processing
unit (CPU) implementation, in this way, further improving its
performance as well, especially if run on modern CPUs, which
provide an ever-increasing support for single-instruction-
multiple-data (SIMD) vector instructions. Particularly, the
batch-wise integral selection, which we pioneered in our
previous work44 and refined in this work, is essential for a
highly efficient and performant implementation on SIMD
computer architectures, such as GPUs and modern CPUs.
That is, our new method exploits the superior computing
performance of SIMD computer architectures while maintain-
ing the asymptotic linear-scaling behavior of our previous
work.
The paper is organized as follows: we begin with a brief

review of the theory underlying the seminumerical method in
Section 2.1, followed by the description of our revised integral
screening in Sections 2.2 and 2.3, and our newly developed
prescreening method in Section 2.4. Subsequently, we provide
an outline of our GPU implementation for the Compute
Unified Device Architecture (CUDA)63 and the Open
Computing Language (OpenCL)64,65 frameworks in Section
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3, focusing on the particular techniques employed to maximize
performance. Finally, we assess our new accelerated semi-
numerical exchange method, denoted as sn-LinK, in terms of
the accuracy of the numerical integration in Section 5.1 and in
terms of performance in Sections 5.2.1 to 5.2.5. For simplicity,
we restrict the discussion within this paper to the computation
of Fock exchange within the Hartree−Fock theory, noting that
the application to global and local hybrid DFT is
straightforward.

2. THEORY
2.1. Seminumerical Exchange Matrix. The exchange

matrix is given in the atomic orbital (AO) basis as

∑ μσ νλ= |μν
λσ

λσK P ( )
(1)

where μ, ν, λ, and σ represent AO basis function indices, and
the 4-center-2-electron integral (μσ | νλ) is defined as

∫∫μσ νλ χ χ χ χ| = | − |μ σ ν λ d dr r
r r

r r r r( ) ( ) ( )
1

( ) ( )1 1
1 2

2 2 1 2

(2)

Within the seminumerical ansatz, the integration over one of
the coordinates (r1 or r2) is performed analytically, and the
other one is performed numerically by employing discrete grid
points with coordinates rg and weights wg. To preserve all the
symmetries within the integral tensor, this decomposition is
performed symmetrically over both coordinates r1 and r2,
leading to

∫
∫

∑

∑

μσ νλ χ χ
χ χ
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Inserting eq 3 into the definition of the exchange matrix (eq
1) yields

∫∑ ∑ χ
χ χ

χ≈ | − | +μν
λσ

μ
ν λ

λσ σ

Ä
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ÅÅÅÅÅÅÅÅÅÅÅÅ
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( )
( ) ( )

( ) transpose
g

g g
g

g

(4)

where the transpose is the result of the symmetric integral
decomposition in eq 3 in combination with the symmetry of
the ground-state density matrix Pμν = Pνμ.
The exchange matrix may thus be computed in three

consecutive steps

∑ χ=λ
σ

σ λσF Pr( )g g
(5)

∑=ν
λ

νλ λG w A Fg g g g
(6)

∑ χ=μν μ νK Gr( )
g

g g
(7)

where Aνλg denotes 3-center-1-electron integrals of the form

∫ χ χ= | − |νλ
ν λA

r r

r r
r

( ) ( )
dg

g (8)

The integrals Aνλg are evaluated on-the-fly using optimized
automatically generated Obara−Saika66,67 recursions for the
different l-quantum number combinations. The so-obtained
exchange matrix K is subsequently symmetrized as

= +μν μν νμK K K
1
2

( )symm
(9)

to account for the transpose in eq 4.
2.2. Integral Screening. The integral screening of our

previous method44 targeted only the exchange energy, that is,
significant integrals were selected solely based on their
contribution to the exchange energy

∑ε χ χ=

= | |

νλ
μσ

μ μν νλ λσ σ

ν νλ λ

w P A P

w F A w F

r r( ) ( )g
E

g g g g

g g g g g
1/2 1/2

(10)

This is a simple and symmetrical expression, which provides
the tightest screening possible if one is only interested in
energies.
However, during the self-consistent field (SCF) iterations, a

high accuracy in the exchange potential matrix is also desirable,
in particular if larger basis sets are employed. In analogy to the
conventional (4c-2e integral-based) LinK method,20 we
revised our scheme to also include contributions to the
exchange matrix K into the screening

∑

∑
∑

ε χ χ

χ χ

χ

= | | | || || || |

| || || || |

≤ | | | | | | | | | |

νλ
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( ) ( )

max ( , ) ( )

g
K

g g g g

g g g

g g g g g
(11)

In our new implementation, a 3c-1e integral Aνλg is labeled as
significant if it is significant by either eq 10 or 11, that is

ε ε≥ ϑ ∨ ≥ ϑνλ νλg
E

E g
K

K (12)

employing two different thresholds ϑE and ϑK for each
criterion. Since, during the SCF, both the exchange matrix
and the exchange energy are of interest, we employ both eqs 10
and 11 for the screening during the SCF, whereas for the final
energy calculation (which is typically performed on a larger
grid), we screen only for the energy (eq 10). A similar
optimization was also described in ref 36.
In order for the screening to be efficient, not every integral is

inspected individually; instead, a whole batch of spatially
adjacent grid points is considered at once, which reduces the
screening overhead to an insignificant amount (<5% of the
total cost of the integral evaluation). For this purpose, the
maximum contribution within a whole batch b of points has to
be estimated, that is
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and
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T h e n e c e s s a r y q u a n t i t i e s | |ν∈
w Fmax( )

g b
g g
1/2 a n d

χ| |∑ | |μ μ∈ ( )w rmax ( )
g b

g g
1/2 are trivially precomputed from F and

χμ(rg), and a rigorous upper bound for the integral | |νλ∈
Amax( )

g b
g

is obtained as a special case of our recently developed partition
bounds for many classes of electronic integrals.59 This bound is
briefly described below.
2.3. Integral Bounds for 3c-1e Integrals. In ref 59, two

different rigorous bounds result for |Aνλg|. A distance-
dependent bound that captures the Coulomb decay of far
away grid points can be formulated by calculating rigorous
centers and extents for each shell pair. The resulting bounds
are very tight but also necessarily batch-dependent.
A simpler bound that is independent of rg, and therefore also

batch-independent, is given by

∫ χ χ| | ≤ | |
| − | =νλ
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νλ∈ ∈
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3
(15)

The batch independency of 15 allows to decrease the
complexity of the screening algorithm because it only relies on
precomputable shell-pair quantities. This is particularly useful
for a high-performance GPU implementation, where algorithm
complexity should be kept to a minimum. The equation
necessary to compute νλ is given in Appendix A of ref 59. In
short, we bound νλ by simpler integrals over spherically
symmetric functions and use the fact that for any function S
that is spherically symmetric with respect to a point p, one can
show that

∫ ∫| |
| − | = | |

| − |∈
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3

(16)

i.e., the maximum is always achieved at the spherical center.
In contrast to our previous screening scheme,44 our new

screening employing (eq 15) is completely rigorous and
requires only a few multiplications for each grid batch and shell
pair instead of a full integral evaluation, which better suits the
parallel architecture of GPUs. In our sn-LinK method, this
screening is performed in a hierarchical way, that is, a set of
significant shell pairs is first selected for a large batch (typically
around 10,000 to 20,000 grid points) on the CPU and
subsequently a tighter selection for sub-batches of 64 grid
points is made on-the-fly on the GPU.
This batch-wise integral selection is essential for both an

efficient CPU and, to even greater extent, an efficient GPU

implementation since it does not interfere with single-
instruction-multiple-data (SIMD) vector instructions because
identical branching within one sub-batch is guaranteed.

2.4. Prescreening. Having determined a tight screening
for 3c-1e integrals (i.e., the shell pairs νλ involved in eq 6), we
now consider the screening of the set of indices μ/σ and ν/λ to
also guarantee the asymptotic linear-scaling evaluation of eqs 5
and 7.
For each given batch of grid points, the set containing all the

significant basis function indices μ is identical to the set
containing the indices σ. These sets, which we refer to as {μ},
are determined solely by the extent of the AO basis functions,
that is, only functions χμ with a significant basis function value
within a given batch are labeled significant. Due to the
exponential decay of Gaussian-type AO basis functions, the
size of the set {μ} is asymptotically constant for any given grid
batch.
Analogously, the sets of significant basis function indices ν

are also identical to the sets containing the indices λ. However,
these sets (denoted as {ν}) cannot be determined by the basis
function extents since they couple indirectly via {μ} and the
density matrix element Pμν or, equivalently, by the extent of the
exchange hole. Therefore, depending on the electronic
structure of the system, a variable amount of basis function
shells need to be considered in {ν}.
For this preselection, we simply select all the significant shell

pairs νλ by eq 13 or 14 and subsequently select the set of all
shells that contribute to at least one of these shell pairs since all
other shells do not contribute to the exchange matrix at all
because all of their contributions would be screened out by the
integral screening later anyhow. This method thus introduces
no additional error and is sufficient to ensure asymptotic linear
scaling (and constant memory scaling) since only a constant
amount of shell pairs νλ are significant for each batch. That is,
all batch-wise quantities are of asymptotically constant size,
resulting in a constant workload per batch and therefore in an
overall linear scaling since the amount of grid batches scales
linearly with the system size.
One complication arises from the fact that the intermediate

quantity F is required for the preselection, while the set {ν}
needs to be known prior to the computation of F, since {ν} is
just the set of significant entries in F. Therefore, an upper
bound for the absolute value of F that can be computed at low
cost prior to the computation of F is required. For this
quantity, we choose the batch-wise maximum of F, that is
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Therefore, an upper bound for F can be obtained by only
one matrix-vector multiplication of |P| with χ| |σ∈

w rmax( ( ) )
g b

g g
1/2

for each batch.

3. IMPLEMENTATION
We implemented the above described sn-LinK method within
our C++-based FermiONs++ program,7,9 revising our CPU-
based local hybrid implementation described in ref 44. Our
implementation for the AMD GPUs is based on OpenCL,64

whereas our NVIDIA GPU implementation employs CUDA63
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since we found OpenCL to be less performant on NVIDIA
GPUs. All steps are performed exclusively with double
precision (fp64) to obtain reliable results and to allow for
tight convergence even with large basis sets.
In contrast to the analytical integral-direct method, which

consists of only one compute-intensive step, the seminumerical
implementation contains multiple bottlenecks, that is, the three
steps of eqs 5−7 and the evaluation of the basis function values
χμ(rg). Therefore, all these steps have to be performed on the
GPU to minimize bottlenecks from the CPU and the CPU-
GPU data transfer. Additionally, we decided to use multiple
concurrent streams of instructions on each GPU, which allows
for the data transfer of one stream to be performed
concurrently with GPU kernel execution of another stream,
maximizing the utilization of the available hardware in this way.
3.1. GPU Implementation. The sn-LinK algorithm

operates on grid batches of typically 10 000 to 20 000 grid
points on GPUs and typically 512 points per batch on CPUs.
We found 256 points per AMD compute unit (CU) or
NVIDIA streaming multiprocessor (SM) to be optimal,
totaling 15,360 points for the AMD Radeon VII GPU and
20,480 points for the NVIDIA GV100. In contrast to our
previous implementation,44 we adapted our Hilbert curve-
based sub-batching scheme (see Section 3.3 of ref 44) to also
generate the large grid batches. The main advantage of the new
approach is the fixed size of grid points per batch, that is, every
grid batch except the very last one contains exactly the same
amount of points, which ensures optimal utilization of the
parallel compute capabilities of the GPUs.

In our GPU implementation (see Algorithm 1), we primarily
parallelize over these large grid batches, employing multiple
parallel host threads, each of which maps to one device stream,
which we implemented using CUDA streams and OpenCL
command queues. For maximum performance, we found two
or three parallel streams per device to be optimal (see also
Section 5.2.3), allowing for concurrent CPU execution, GPU
execution, and CPU-GPU data transfer, maximizing hardware
utilization in this way. This strategy requires the pre-allocation
of GPU memory since allocation of device memory forces
stream synchronization.
For a small system (up to ∼200 atoms), the evaluation of

the 3c-1e integrals in eq 6 is by far the slowest step, amounting
to over 90% of the computation time, whereas for larger
systems, the matrix multiplications of eqs 5 and 7 become
comparatively more expensive, for example, for the system over
1000 atoms, the integral evaluation amounts to less than 50%
of the total computation time. In contrast to the Intel Xeon Phi
implementation presented in ref 43, we therefore decided to
implement all four compute-intensive steps, that is, the

computation of the basis functions χμ(r) and the evaluation
of eqs 5−7 on the GPU, thereby also reducing the amount of
CPU-GPU memory transfer.
To achieve asymptotic linear scaling of the implementation

while still utilizing the high performance of dense matrix
algebra routines provided by basic linear algebra subroutines
(BLAS-3) libraries (i.e., Intel MKL for CPUs, cuBLAS for
NVIDIA GPUs, and clBLAS for AMD GPUs), we employ
dense batch-local submatrices of asymptotically constant size
for P and K, containing only entries for the significant basis
functions within the current batch, determined by the
preselection algorithm outlined in Section 2.4, thereby also
guaranteeing asymptotically constant GPU memory require-
ments.

3.2. Implementation of the 3c-1e Integrals. The
prescreening of Section 2.4 also provides an asymptotically
constant-sized set of shell pairs for each batch, which is further
refined on the CPU using the integral selection methods
described in Sections 2.2 and 2.3. The shell-pair data is then
copied to the GPU, where all the significant 3c-1e integrals Aνλg
for the respective batch are subsequently computed and
directly multiplied with Fλg to form Gνg according to eq 6 (see
Algorithm 2), performing on-the-fly integral screening on the
sub-batch level.
The performance of GPUs relies heavily on single-

instruction-mutliple-data (SIMD) vector operations, that is,
32 or 64 parallel threads are collected within one “warp”
(NVIDIA) or “wavefront” (AMD), respectively. Since
branching within a warp necessitates the evaluation of both
branches, such warp-level branching has to be avoided for a
highly performant code, which is particularly problematic if
combined with integral screening. However, our sub-batch
implementation of ref 44 provides spatially local sub-batches
with exactly the same number of grid points. Therefore, we
choose sub-batches of exactly 64 points, which perfectly maps
to the warp/wavefront size of current GPUs. We thus perform
the tightest level of integral screening (employing eqs 13 and
14) for 64 points at once, thereby minimizing the screening
overhead and ensuring identical branching within each warp/
wavefront.

For our GPU implementation, we employ the same
computer-optimized Obara−Saika66,67 recursions as for the
CPU code, that is, our CUDA, OpenCL, and CPU
implementations share the same input file for the integral
kernels. This reuse of the 3c-1e integral code simplifies the
GPU implementation significantly, an important advantage
compared to the analytical 4c-2e integral-based methods (see,
e.g., refs7,11), where considerable modifications have to be
made to obtain an efficient and performant code. Since the
integral kernels are parallelized solely over the grid point
within each batch, there is no need for communication
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between different threads. This also considerably simplifies the
GPU implementation because neither shared memory nor
explicit synchronization have to be utilized.
The optimized recurrence relations were generated by

application of common sub-expression elimination (CSE)
(implemented in the SymPy Python package68) to the unrolled
Obara−Saika recursions for each specific l-quantum number
combination. Moreover, we found that for most practical
applications, Head-Gordon−Pople-like (HGP)69 shifts on the
contracted level do not provide speedups for 3c-1e integrals in
practice since the recursions are only relevant for larger l-
quantum number combinations, but basis functions with l-
quantum numbers larger than 1 (d functions or higher) rarely
contain more than one primitive Gaussian. Therefore, we
decided not to perform any HGP-like contracted recursion
steps.
To avoid the transformation between pure and Cartesian

integrals, we perform the whole sn-LinK algorithm with
Cartesian basis functions, that is, we initially transform the
density matrix into the Cartesian basis, then perform the whole
sn-LinK algorithm in the Cartesian basis, and finally transform
the exchange matrix back to the pure basis. Analogously, we
also multiply the non-axial normalization factors, which are
needed to ensure normalization of the non-axial basis functions
(e.g., dxy), onto the initial density matrix and onto the final
exchange matrix, thereby avoiding the necessity to multiply
these factors within the integral code.

4. COMPUTATIONAL DETAILS
To provide a fair comparison between GPU and CPU codes,
all possible optimization options were enabled for both the
CPU and GPU integral codes. The CPU kernels are compiled
with the Intel C++ compiler (ICPC) version 19.0.170 with the
“-Ofast”, “-march = native”, options, to enable autovectoriza-
tion of our integral code using the AVX2 instruction set
extensions. We have also tested GCC71 and Clang72 but found
that the Intel C++ compiler provides significantly better
performance (up to a factor of two) due to better optimization
heuristics, more aggressive autovectorization, and more
advanced instruction reordering. The 3c-1e CPU integral
kernels benefit particularly from these optimization because
parallelization over the grid index is well suited for SIMD
vectorization, whereas for the 4c-2e integral kernels, vectoriza-
tion is hindered by the heterogeneity of the shell pairs (i.e.,
different amounts of primitive Gaussians), the branching
associated with LinK,20 and the need for more local storage.
The CUDA kernels were compiled with NVCC-10.0

(CUDA-10.0)63 with “-O3” and “-use_fast_math” using
GCC-7.1 as the host compiler. The OpenCL kernels were
precompiled with amdgpu-pro-19.2065 employing the “-O3”,
“-cl-mad-enable”, “-cl-finite-math-only”, and “-cl-no-signed-
zeros” options. The CPU timings are performed on one server
node with 2 Intel Xeon Silver 4216 CPUs comprising 32 cores
at 2.1 GHz providing a performance of 1.075 × 1012 floating-
point operations (FLOPs) per second (1.075 TFLOPs/s). The
GPU timings are performed on the NVIDIA-GV100 GPU
(8.33 TFLOPs/s) and the Radeon VII (3.36 TFLOPs/s). The
geometries of the molecules73 employed in this work are
available online at http://www.cup.lmu.de/pc/ochsenfeld/
download/.
Throughout this work, we employ our recently developed

grids defined in the appendix of ref 62 and briefly summarized
in Table 1. All presented timings are given for one full

exchange matrix build employing a converged density matrix
and the smaller (SCF) grid of the multigrids defined in Table
1, in this way, representing a typical SCF step without
incremental Fock builds. Note that molecular grids typically
contain about 10 to 30% less grid points than the atomic grids
defined in Table 1 due to the erasure of grid points with zero
weights, a consequence of our modification to Becke’s
molecular partitioning scheme60 (see also discussion in ref 62).
The timings of the conventional (4c-2e integral-based) code

exclude the preLinK7 preselection, since in the current version
of our FermiONs++ program,7,9 the two matrix multiplications
within the preLinK algorithm are performed on the CPU using
dense matrix algebra, adding a significant overhead for large
systems. However, the sn-LinK timings comprise every step
needed for exchange matrix formation, including the
preselection.
For all sn-LinK calculations, we choose the screening

thresholds ϑK = 1.0 × 10−7 and ϑE = 1.0 × 10−10 during the
SCF and ϑE = 1.0 × 10−11 for final energy calculation. These
thresholds provide screening errors smaller than 1nEh per basis
function for all tested systems, which is consistent with our
default threshold for the analytical 4c-2e integrals (10−10).
Although significantly looser thresholds could probably be
used for most applications, we wanted to provide a very safe
default in terms of numerical stability and encourage the user
to fine tune these parameters for the specific system of interest
to obtain even better performance than presented here.

5. RESULTS AND DISCUSSION
5.1. Accuracy of the Numerical Integration Grids. We

begin the analysis of the sn-LinK method by investigating the
errors caused by the numerical integration. In Table 2, we
investigate the grid-induced errors in the Hartree−Fock energy
and the indirectly induced errors in the MP2 energy, caused by
the errors in the converged density matrix and serving as a
measure for the accuracy of the density matrix. We employ the
G2 test set74 (atomization energies of small molecules), the
S22x5 test set75 (noncovalently bound small dimers), and the
L7 test set76 (7 noncovalently bound dimers with up to 101
atoms) in combination with the def2-TZVP basis set.77

Even for our smallest grid “gm3”, all errors are significantly
below 1mEh and are therefore considered insignificant
compared to typical errors from methods and basis sets.
Moreover, these errors rapidly decrease with larger grids, and
the “gm5” grid provides numerical accuracy up to a few μEh.
Interestingly, the Hartree−Fock errors agree well with the
observation we made in ref 62 about the grid errors of the
Perdew−Burke−Ernzerhof (PBE)78 functional despite the use
of a very different energy functional.
If only single-point energies are of interest, “gm3” should be

the best choice for maximum efficiency, whereas if energy

Table 1. Specification of the Grids Employed in the Present
Work Given as “nrad/nang (Number of Points per C Atom)”a

grid SCF grid final grid

“gm3” 35/110 (2586) 50/302 (9564)
“gm4” 40/194 (5056) 55/434 (15526)
“gm5” 50/302 (9564) 60/590 (21330)

aWithin the SCF, a coarser grid (denoted as SCF grid) was employed
and a finer grid was used for the final energy calculation (denoted as
final grid). Grids have been pruned, that is, less angular points are
employed for the inner radial shells of each atom.
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derivatives (forces and vibrational frequencies) are inves-
tigated, we recommend to default to the finer “gm5” grid for
the higher numerical stability. Note that much smaller grids
have been recommended in the works of Neese et al.36 and
Friesner and co-workers.27,28,33,79 However, we advise caution
for the use of small grid especially when computing molecular
properties and recommend to carefully test the influence of the
grid on the specific quantity of interest prior to any application.
In contrast to our method, analytical corrections to the

seminumerical exchange matrix are added within the approach
of ref 36 and to even greater extent within the approach of
refs,27,28,33,79 that is, some selected 4c-2e integrals are
computed analytically to reduce the grid error. In particular,
Neese et al.36 proposed to only employ one-center corrections,
that is, all integrals where all four basis functions reside at the
same atom are computed analytically. We tested this approach
but found no improvement at all since our grids integrate every
atom-centered function pair virtually exactly. The grid errors
thus arise solely from non atom-centered function pairs, where
the two different functions reside on different atoms and are
therefore not considered within the one-center corrections.
5.2. Performance Analysis. In the following, the

performance of sn-LinK is assessed in terms of asymptotic
scaling behavior (Section 5.2.1), floating-point performance
(Section 5.2.2), multistream GPU performance (Section
5.2.3), and multi-GPU performance (Section 5.2.4). Finally,
we give a comparison with the 4c-2e-based preLinK
method7,20 on both CPUs and GPUs in Section 5.2.5.
5.2.1. Scaling with Respect to the System Size. Although

the evaluation of eqs 5 to 7 formally scales as O(M3) with
respect to the system size (more specifically O(NgridNbas

2 )),
exploitation of the locality of the Gaussian basis functions and
of the locality of the exchange interaction for systems with
nonzero HOMO−LUMO gaps should result in an asymptotic
O(M) scaling, if the screening techniques described in Sections

2.2 to 2.4 are employed. That is, sn-LinK is asymptotically
linear scaling by construction. For most practical systems,
however, the observed scaling lies somewhere between the
formal O(M3) and the asymptotic O(M) scaling.
In Figure 1, we investigate the scaling behavior for linear

alkanes, separated into the 3c-1e integral part required for the
evaluation of eq 6 and the matrix multiplication (BLAS-3)
steps of eqs 5 and 7.
In all cases, almost linear scaling is reached for the largest

fragments. Unsurprisingly, with larger and more diffuse basis
sets, linear scaling is reached later (i.e., for larger fragments)
since the selection schemes of Sections 2.2 and 2.4 exploit the
locality of the Gaussian basis functions. Interestingly, the 3c-1e
integral part reaches linear scaling faster than the BLAS-3 steps.
This is a consequence of different screening techniques
employed for these two steps, that is, the preselection scheme
of Section 2.4 compared to the integral selection scheme of
Section 2.4, where the latter is tighter (individual contributions
are overestimated to a lesser extent).
Although linear alkane chains are a valuable model system to

analyze the asymptotic scaling behavior, more globular systems
are of interest for many practical applications. Therefore, a
more detailed efficiency analysis of our sn-LinK method is
given for adenine-thymine DNA fragments in Figure 2 and for
spherical water clusters in Figure 3.
Here, all the observations discussed above for linear alkanes

are still valid. That is, the integrals reach linear scaling faster
than the BLAS-3 steps, and the asymptotically linear scaling is
reached later for larger basis sets. Indeed, the linear-scaling
onset for def2-TZVP is so late that even the largest fragment of
(DNA)16 still scales quadratically. Such a late onset of linear
scaling has also been observed by ref 36. In contrast to our
previous work,44 sn-LinK (present work) selects significant
shells and shell pairs according to their contributions to the
exchange potential matrix instead of the exchange energy. This
results in a later onset of linear scaling but provides better SCF
convergence, particularly for larger basis sets.
Moreover, due to the heterogeneity of GPU computing, the

total execution time within sn-LinK also contains a
considerable amount of noncompute steps, for example,
CPU-GPU data transfer and memory management, as
illustrated for (DNA)16/TZVP in Figure 4. The performance
impact of these other steps can, however, be significantly
reduced by employing multiple streams per GPU since the
different steps do not compete for the same computational
resources (see also Section 5.2.3). Moreover, the high cost of
these other steps necessitates the use of rather large grid
batches and prohibits the use of block-sparse matrix multi-
plications to accelerate the BLAS-3 steps since the manage-
ment steps would dominate the computation time otherwise.
The larger grid batches also contribute to a later onset of linear
scaling within the BLAS-3 steps.
In summary, although sn-LinK scales linearly by con-

struction, perfect O(M) scaling is only archived for the largest
systems and smaller basis sets. This is the expected behavior
since the selection schemes within sn-LinK exploit the locality
of the basis functions and of the electronic structure.

5.2.2. FLOP Utilization of the 3c-1e Integral Kernels. Since
the 3c-1e integrals still represent the most time-consuming
step in the seminumerical exchange build, we put significant
effort into its optimization. In particular, the batch-wise
integral screening described in Section 2.2 allows for SIMD
parallelization resulting in comparatively high utilization of the

Table 2. Grid-Induced Errors in the Absolute Hartree−Fock
(HF) Energy and the Absolute MP2 Correlation Energy
(G2 Test Set) or the Respective Interaction Energies (S22x5
and L7 Test Sets) Referenced to the Analytical (4c-2e
Integral-Based) Method Employing the def2-TZVP Basis
Seta

HF MP2

test set deviation gm3 gm4 gm5 gm3 gm4 gm5

G2 MaxD 20.0 7.0 2.0 69.1 12.2 2.1
MAD 2.3 0.7 0.2 6.0 1.2 0.1

S22
(0.9x)

MaxD 84.5 20.2 5.9 178.2 39.6 5.2
MAD 18.8 4.5 1.3 31.4 9.6 1.9

S22
(1.0x)

MaxD 47.8 17.0 7.1 176.8 43.2 3.7
MAD 15.1 3.7 1.3 31.9 9.9 1.5

S22
(1.2x)

MaxD 57.4 13.8 4.9 66.2 46.7 3.4
MAD 16.6 4.6 1.2 32.5 9.7 1.1

S22
(1.5x)

MaxD 63.0 18.9 4.1 154.6 49.3 4.5
MAD 12.7 3.8 0.9 34.8 10.5 1.2

S22
(2.0x)

MaxD 80.3 16.9 3.0 117.6 51.0 5.2
MAD 13.6 3.7 0.8 30.8 10.9 1.2

L7 MaxD 165.3 42.4 21.3 489.9 119.1 25.2
MAD 20.2 24.3 5.0 147.7 28.6 7.4

aThe errors in the MP2 energy are only due to the errors in the
converged density matrix. The seminumerical integration was only
used for the exchange matrix formation within the SCF but not within
the MP2 calculation.
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theoretical floating-point performance, as presented in Table 3.
An outline how the FLOP counts were obtained is contained
within the Supporting Information.
To provide some context, the best dense linear algebra

libraries achieve about 70 to 80% FLOP utilization, the
GAMESS program package80,81 was reported13 to provide 0.51
to 1.4 GFLOPs/s (6 to 17.5% utilization) on CPUs, and GPU
implementations for 4c-2e integrals were reported to provide
10 to 30 GFLOPs/s (13 to 39% utilization)13 in double
precision and up to 80 GFLOPs/s (6% utilization)6 in single
precision. Although the theoretical FLOP performance of
processors grows exponentially due to ongoing developments
in microarchitectures, it becomes increasingly difficult to utilize
their full potential since other bottlenecks (cache, memory
latency, and bandwidth) dominate in many cases. In this
context, the FLOP performance of our 3c-1e integral kernels
(230 to 330 GFLOPs/s; 22 to 32% utilization on CPUs and up
to 1040 GFLOPs/s; 11 to 16% utilization on GPUs) is very
promising.
5.2.3. Multiple Streams on One GPU. In all of the above

performance analysis, only one stream per GPU was utilized to
time the different steps separately. However, employing more
than one stream per GPU should provide some additional
speedup since CPU workloads, GPU workloads, and CPU-

GPU data transfer allocate different resources and can
therefore be performed concurrently. That is, one stream
can, for example, transfer data to the GPU, while another
stream performs GPU calculations at the same time, thus
optimizing the total device utilization (see also discussion in
Section 3). The performance gains of this optimization are
presented in Table 4.
Compared to the single-streamed evaluation, speedups of up

to 50% can be achieved with multiple streams, where the
majority of this speedup is already achieved with two streams
per GPU. However, the memory use of each GPU scales
proportionally with the amount of employed streams, and we
therefore decided to employ three streams per GPU as a
sensible compromise between performance and GPU memory
usage.

5.2.4. Multi-GPU Scaling. Since many high-performance-
computing (HPC) servers or workstation are available with up
to 16 GPUs per node, the parallel scaling with an increasing
amount of GPUs is also of high interest, particularly if
employing comparatively inexpensive GPUs like the AMD
Radeon VII. We therefore present the multi-GPU scaling of
our sn-LinK code in Table 5, activating one, two, or four AMD
Radeon VII GPUs.

Figure 1. (a−c) Total program execution time and individual execution times for 3c-1e integrals (eq 6) and for the two BLAS-3 steps (eqs 5 and 7)
within one exchange build for linear alkanes on one NVIDIA GV100 GPU with one CUDA stream given as a double logarithmic plot. The colored
numbers correspond to the scaling with respect to the preceding fragment.
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We indeed observe very favorable parallel scaling (3.5× to
4.4× speedups for 4 GPUs), particularly considering that the
available CPU resources and memory bandwidth need to be
shared between four devices. The over 100% parallel efficiency
for (DNA)4/TZVP/“gm5” is a consequence of a particular
fortunate workload distribution, that is, all 12 streams finished
at very similar times. Such timing fluctuations are typical within
such a highly parallel setup because the number of work
batches per stream is very small, for example, for (DNA)4/
“gm3”, there are only 40 grid batches in total, which needs to
be split between a total of 12 streams if all four GPUs are
utilized.
5.2.5. Comparison with PreLinK. In Table 6, we compare

the CPU and GPU performance of the 3c-1e integral-based sn-
LinK method of the present work with the analytical (4c-2e
integral-based) preLinK method7 employing 32 CPU cores, 4
Radeon VII GPUs, or 1 NVIDIA GV100 GPU. In this
comparison, preLinK typifies all other 4c-2e integral-based
methods for Fock exchange, as implemented in most quantum
chemistry programs, and allows for a consistent comparison
within the same program on both CPUs and GPUs.
The sn-LinK method outperforms the analytical method in

most tested applications on CPUs and, to even greater extent,
on GPUs. The performance gains from sn-LinK compared to

the analytical method are most significant for larger systems
and larger basis sets (e.g., factor 17 (14.7 s vs 252 s) for
(DNA)4/def2-TZVP/“gm3”) due to the superior basis set
scaling (O(Nbas

2 )) of sn-LinK compared to preLinK (O(Nbas
4 )).

Moreover, the seminumerical code provides better CPU →
GPU speedups (up to a factor of 9.5 on four AMD Radeon VII
GPUs and a factor of 5.5 on one NVIDIA GV100 GPU) than
the analytical code (up to 4.6 on four Radeon VII and 3.8 on
one GV100). The better speedups are a direct consequence of
the reduced local storage requirements of the 3c-1e integral
code compared to the 4c-2e code, resulting in a significantly
better utilization of the GPU’s floating-point compute units.
In summary, the sn-LinK methods transfer particularly well

to GPUs and therefore enable the routine computation of large
molecules containing hundreds of atoms and large basis sets.
This represents a substantial improvement over existing
seminumerical methods, for example, for the fullerene C240/
cc-PVTZ, our sn-LinK method is close to 100 times faster than
the seminumerical Intel Xeon Phi-based implementation of ref
43 (30.5 s vs 2970 s). In addition, our sn-LinK method allows
for routine calculation for hundreds of atoms and augmented
quadruple-ζ basis sets, (e.g., one exchange build for (DNA)4/
def2-QZVPPD/“gm3” takes only 257 s), which is of particular
interest in combination with post-Hartree−Fock correlation

Figure 2. (a−c) Total program execution time and individual execution times for 3c-1e integrals (eq 6) and for the two BLAS-3 steps (eqs. 5 and
7) within one exchange build for adenine-thymine DNA fragments on one NVIDIA GV100 GPU with one CUDA stream given as a double
logarithmic plot. The colored numbers correspond to the scaling with respect to the preceding fragment.
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methods, which typically require large basis set for accurate
results.
Furthermore, calculations employing basis functions with

very high angular momentum (e.g., g-functions) are very
challenging for 4c-2e-based GPU implementations since the
high complexity of the high-l-quantum number kernels (e.g.,
our (gg|gg) kernel contains over 100,000 lines of code) can
lead to numerical instabilities of our present GPU code. The
extent of this problem depends on the specific GPU in use and
has also been reported by other groups.6 Our sn-LinK method,
however, does not suffer from these issues because the 3c-1e
integrals are much simpler to evaluate.

6. CONCLUSIONS AND OUTLOOK

Within the present work, we described a new, highly efficient
seminumerical exchange method, denoted as sn-LinK, and
outlined its implementation for graphic processing units. After
validating the accuracy of the numerical integration, we
compared the performance of this new method with our
conventional (4c-2e integral-based) preLinK method7 and
found outstanding performance improvements, especially for
larger basis sets. Moreover, we showed that the sn-LinK
algorithm benefits particularly well from GPU acceleration due
to the lower local storage requirements of the 3c-1e integral

Figure 3. (a−c) Total program execution time and individual execution times for 3c-1e integrals (eq 6) and for the two BLAS-3 steps (eqs. 5 and
7) within one exchange build for spherical water clusters on one NVIDIA GV100 GPU with one CUDA stream given as a double logarithmic plot.
The colored numbers correspond to the scaling with respect to the preceding fragment.

Figure 4. Breakdown of the total execution time of one exchange
build for (DNA)16/TZVP into different lines of Algorithm 1.

Table 3. Number of Floating-Point Operations Necessary
for the Evaluation of All 3c-1e Integrals (with Batch-Wise
Integral Selection Activated) for One Exchange Build for
(DNA)4 and Floating-Point Performance of the Integral
Code Given as GFLOPs/s (Utilization of the Theoretical
FLOP Performance in Parentheses)

basis #GFLOPs CPU GV100 R. VII

STO-3G 700 330 (30.7%) 1040 (15.5%) 426 (12.8%)
def2-SVP 2780 239 (22.2%) 750 (11.2%) 429 (12.9%)
def2-TZVP 16,100 234 (21.8%) 932 (13.9%) 470 (14.1%)
def2-
QZVPPD

199,000 257 (23.9%) 797 (11.9%)
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kernels compared to the 4c-2e kernels that are required within
conventional implementations. Furthermore, we could verify
the asymptotic linear-scaling behavior of our implementation
for linear alkanes, DNA fragments, and spherical water clusters
for small basis sets. For the larger def2-TZVP basis sets, the
onset for linear scaling is so late that it was only observed for
large linear alkanes and water clusters.
Although the focus of the present work was solely on single-

point calculations, seminumerical methods are particularly
efficient for computing molecular forces since no integral

derivatives need to be evaluated.29,36 Moreover, the extension
of the sn-LinK algorithm to local hybrid functionals is
straightforward in principle, however, requiring quite some
additional implementation effort to merge the CPU-based
DFT code with the GPU-based sn-LinK code. Thus, our,
herein, presented sn-LinK algorithm also facilitates future
developments of local hybrid functionals, which used to be
restrained by their high computational cost. These two
extensions are currently under development and will be
discussed in future work.
Finally, we want to emphasize the applicability of the

seminumerical/pseudospectral method to other molecular
properties31,32,82,83 and post-Hartree−Fock correlation meth-
ods84 as well as the conceptional similarities to the tensor
hypercontraction (THC) framework.85

■ ASSOCIATED CONTENT
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Evaluation of 3c-1e integral FLOP counts (PDF)

Table 4. Time in Seconds for One Exchange Build Using One to Four Streams on One GPU Employing the “gm3” Grid

GV100 R. VII

system basis streams 1 2 3 4 1 2 3 4

(DNA)1 def2-SVP 0.36 0.29 0.26 0.27 0.85 0.68 0.79 0.98
(DNA)1 def2-TZVP 1.36 1.11 0.98 1.10 3.01 2.73 2.38 2.85
(DNA)4 def2-SVP 7.4 5.5 5.3 5.0 15.1 11.3 10.9 10.5
(DNA)4 def2-TZVP 33.8 27.4 25.4 25.2 64.3 52.9 50.7 49.8

Table 5. Multi-GPU Scaling Employing One, Two, and Four
Radeon VII GPUs within One Nodea

system basis grid 1 GPU 2 GPUs 4 GPUs

(DNA)4 def2-SVP “gm3” 10.9 5.4 (2.0) 3.0 (3.6)
(DNA)4 def2-TZVP “gm3” 50.7 26.0 (1.9) 14.7 (3.5)
(DNA)4 def2-SVP “gm5” 27.3 13.9 (1.9) 6.3 (4.4)
(DNA)4 def2-TZVP “gm5” 143.3 73.2 (2.0) 37.9 (3.8)

aTimings are given in seconds for one exchange matrix build,
employing a converged density matrix using the smaller (SCF) grid
from Table 1. Speedup compared to 1 GPU in parentheses.

Table 6. Timings in Seconds for CPU (32 Cores/64 Threads@2.10 GHz) and GPU Codes Run on either Four AMD Radeon
VII (4× R. VII) or One NVIDIA GV100 (GV100) Using sn-LinK (Denoted as “sn-LinK@gm3”/“sn-LinK@gm5”) as
Compared to the preLinK Method of Ref 7 (Denoted as “preLinK”)a

system basis method #BFs CPU 4× R. VII GV100

(DNA)1 def2-SVP “sn-LinK@gm3” 660 0.8 0.3 (2.4) 0.4 (2.0)
(DNA)1 def2-SVP “sn-LinK@gm5” 660 2.5 0.6 (4.2) 0.8 (3.2)
(DNA)1 def2-SVP “preLinK” 660 1.7 1.0 (1.8) 1.2 (1.5)
(DNA)1 def2-TZVP “sn-LinK@gm3” 1422 3.6 1.0 (3.7) 1.2 (3.0)
(DNA)1 def2-TZVP “sn-LinK@gm5” 1422 11.0 2.4 (4.7) 3.1 (3.6)
(DNA)1 def2-TZVP “preLinK” 1422 29.6 10.4 (2.8) 15.6 (1.9)
(DNA)1 def2-QZVPPD “sn-LinK@gm3” 3815 30.0 8.1 (3.7) 10.5 (2.9)
(DNA)1 def2-QZVPPD “sn-LinK@gm5” 3815 99.6 21.5 (4.6) 32.5 (3.1)
(DNA)1 def2-QZVPPD “preLinK” 3815 2035 − −
(DNA)4 def2-SVP “sn-LinK@gm3” 2904 17.6 3.0 (5.9) 5.8 (3.1)
(DNA)4 def2-SVP “sn-LinK@gm5” 2904 59.3 6.3 (9.5) 14.4 (4.1)
(DNA)4 def2-SVP “preLinK” 2904 54.2 18.5 (2.9) 23.2 (2.3)
(DNA)4 def2-TZVP “sn-LinK@gm3” 6336 139.5 14.7 (9.5) 27.2 (5.1)
(DNA)4 def2-TZVP “sn-LinK@gm5” 6336 316.3 37.9 (8.3) 75.3 (4.2)
(DNA)4 def2-TZVP “preLinK” 6336 1038.8 252.2 (4.1) 419.9 (2.5)
(DNA)4 def2-QZVPPD “sn-LinK@gm3” 16,574 1334 257.4 (5.2) 307.8 (4.3)
(DNA)4 def2-QZVPPD “sn-LinK@gm5” 16,574 5119 814.6 (6.3) 924.2 (5.5)
(DNA)4 def2-QZVPPD “preLinK” 16,574 101,250 − −
C240 cc-pVDZ “sn-LinK@gm3” 3600 49.9 6.6 (7.6) 12.2 (4.1)
C240 cc-pVDZ “sn-LinK@gm5” 3600 168.8 19.4 (8.7) 38.6 (4.4)
C240 cc-pVDZ “preLinK” 3600 411.4 162.1 (2.5) 215.6 (1.9)
C240 cc-pVTZ “sn-LinK@gm3” 8400 207.0 30.5 (6.8) 55.0 (3.8)
C240 cc-pVTZ “sn-LinK@gm5” 8400 678.6 86.8 (7.8) 170.4 (4.0)
C240 cc-pVTZ “preLinK” 8400 6294 1365 (4.6) 1660 (3.8)

aTimings are given for one exchange matrix build, employing a converged density matrix using the smaller (SCF) grid from Table 1. For context,
the number of Cartesian basis functions (#BFs) is given for each system, and the CPU → GPU speedups are given in parentheses.
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Study of Selected Wave Function and Density Functional Methods
for Noncovalent Interaction Energy Calculations Using the Extended
S22 Data Set. J. Chem. Theory Comput. 2010, 6, 2365−2376.
(76) Sedlak, R.; Janowski, T.; Pitoňaḱ, M.; Řezać,̌ J.; Pulay, P.;
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1 Evaluation of floating point operation (FLOP) counts

For a dense matrix-matrix multiplications of the form

Cij =
∑

k

AikBkj (1)

the FLOP count is simply given as

NBLAS-3
FLOPs = 2NiNjNk, (2)

conventionally counting fused-multiply-add operations as two FLOPs.

For completeness, we repeat eq. (6) of the main manuscript, involving the integral eval-

1



uation, here:

Gνg =
∑

λ

wgAνλgFλg. (3)

The FLOP counts for the evaluation of the set of 3-center-1-electron integrals required for

eq. (3) are computed for one shell-pair as

N3c-1e
FLOPs = NFLOPs for primitive integrals +NFLOPs for primitive contractions + NFLOPs for forming Gνg

,

(4)

where

NFLOPs for primitive integrals = Nprimitive shellpairsNFLOPs per primitive shellpair (5)

denotes the amount of floating-point operations needed to compute the primitive integrals,

NFLOPs for primitive contractions = Nprimitive shellpairsNCartesian integrals (6)

denotes the floating-point operation needed to sum all primitive integrals to form the con-

tracted integrals,

NCartesian integrals =
(l1 + 1)(l1 + 2)

2

(l2 + 1)(l2 + 2)

2
(7)

denotes the amount of contracted Cartesian integrals, and

NFLOPs for forming Gνg = 4NCartesian Integrals (8)

denotes the amount of floating point operations needed to multiply Fλg with Gνg. The

pre-factor of 4 in eq. (8) is due to the exploitation of the integral-symmetry Aνλg = Aλνg,

requiring two multiplications and two additions for each contracted integral.

The amount of FLOPs needed to form the primitive integrals was obtained by counting all

additions, multiplications, subtractions and square-roots (the latter counted as four FLOPs)

2



within the primitive loop. The result of that counting is given in Table S1.

Table S1: Number of FLOPs required to form the full set of primitive Cartesian integrals
for a given l-quantum number combination (l1, l2).

l1/l2 0 (s) 1 (p) 2 (d) 3(f) 4 (g)
0 (s) 22 44 82 171 330
1 (p) 44 91 237 589 1271
2 (d) 82 237 547 1420 3147
3 (f) 171 589 1420 2714 6107
4 (g) 330 1271 3147 6107 10280

3
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We investigate the applicability of single-precision (fp32) floating point operations within
our linear-scaling, seminumerical exchange method sn-LinK [Laqua et al., J. Chem. Theory
Comput. 16, 1456 (2020)] and find that the vast majority of the three-center-one-electron
(3c1e) integrals can be computed with reduced numerical precision with virtually no loss in
overall accuracy. This leads to a near doubling in performance on central processing units
(CPUs) compared to pure fp64 evaluation. Since the cost of evaluating the 3c1e integrals
is less significant on graphic processing units (GPUs) compared to CPU, the performance
gains from accelerating 3c1e integrals alone is less impressive on GPUs. Therefore,
we also investigate the possibility of employing only fp32 operations to evaluate the
exchange matrix within the self-consistent-field (SCF) followed by an accurate one-shot
evaluation of the exchange energy using mixed fp32/fp64 precision. This still provides
very accurate (1.8 µEh maximal error) results while providing a sevenfold speedup on a
typical “gaming” GPU (GTX 1080Ti). We also propose the use of incremental exchange-
builds to further reduce these errors. The proposed SCF scheme (i-sn-LinK) requires only
one mixed-precision exchange matrix calculation, while all other exchange-matrix builds
are performed with only fp32 operations. Compared to pure fp64 evaluation, this leads
to 4-7× speedups for the whole SCF procedure without any significant deterioration of
the results or the convergence behavior.
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ABSTRACT

We investigate the applicability of single-precision (fp32) floating point operations within our linear-scaling, seminumerical exchange method
sn-LinK [Laqua et al., J. Chem. Theory Comput. 16, 1456 (2020)] and find that the vast majority of the three-center-one-electron (3c1e)
integrals can be computed with reduced numerical precision with virtually no loss in overall accuracy. This leads to a near doubling in perfor-
mance on central processing units (CPUs) compared to pure fp64 evaluation. Since the cost of evaluating the 3c1e integrals is less significant on
graphic processing units (GPUs) compared to CPU, the performance gains from accelerating 3c1e integrals alone is less impressive on GPUs.
Therefore, we also investigate the possibility of employing only fp32 operations to evaluate the exchange matrix within the self-consistent-
field (SCF) followed by an accurate one-shot evaluation of the exchange energy using mixed fp32/fp64 precision. This still provides very
accurate (1.8 μEh maximal error) results while providing a sevenfold speedup on a typical “gaming” GPU (GTX 1080Ti). We also propose the
use of incremental exchange-builds to further reduce these errors. The proposed SCF scheme (i-sn-LinK) requires only one mixed-precision
exchange matrix calculation, while all other exchange-matrix builds are performed with only fp32 operations. Compared to pure fp64 eval-
uation, this leads to 4–7× speedups for the whole SCF procedure without any significant deterioration of the results or the convergence
behavior.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0045084

I. INTRODUCTION

The evaluation of the exact (Fock)-exchange matrix usually
represents the major computational bottleneck (typically >80% of
the computation time) within Hartree–Fock or hybrid-density func-
tional theory (DFT) calculations. Traditionally, this requires the
computation of the four-center-two-electron (4c2e) integral-tensor
leading to a formal O(N4) scaling, which is particularly problematic
when combined with larger atomic-orbital (AO) basis sets, even if
efficient screening techniques1–10 are employed.

Therefore, seminumerical integration techniques, e.g., the
pseudospectral method of Friesner et al.,11–16 the chain-of-spheres-
exchange (COS-X) method of Neese et al.,17 the seminumer-
ical methods of Plessow and Weigend,18 Liu et al.,19–21 and
Kaupp and co-workers (the latter focusing more on local-hybrid

functionals),22–26 the semi-JK algorithm of Holzer,27 and our sn-
LinK method28,29 are more efficient for large basis sets due to their
superior O(M3) formal scaling and their O(N2

bas) scaling with the
basis set size. Moreover, as shown in Refs. 27 and 29, seminumerical
integration is perfectly suited for modern, highly parallel hardware,
where performance relies heavily on the use of single-instruction-
multiple-data (SIMD) instructions, which applies to both modern
central processing units (CPUs) and even to a greater extent to
graphic processing units (GPUs).

By default, most quantum chemistry programs execute the
necessary floating point operations with double numeric preci-
sion (fp64) due to its reliable accuracy (about 10−16 relative preci-
sion).30 However, since most “gaming grade” GPUs typically provide
significantly less computational performance for fp64 operations
compared to single-precision floating point (fp32) operations (e.g.,
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the fp32:fp64 ratio for the GTX 1080Ti is 32:1), the possibility of
executing as many of the necessary computation using fp32 oper-
ations needs to be explored, despite its lower numerical precision
of about 10−7. In addition, the possibility of twofold speedups on
CPUs also justifies the need for such a study even for pure CPU
code. Investigations of pure fp32 or mixed fp32/fp64 execution
have indeed already been carried out for the traditional 4c2e inte-
gral based Fock-exchange evaluation31–36 and post-HF correlation
methods,32,37–39 but, to our knowledge, the applicability of reduced
numerical precision within seminumerical integration has not yet
been studied.

Therefore, we provide such a study in this work, which is orga-
nized as follows: First, we briefly review our seminumerical integra-
tion method sn-LinK from Ref. 29 in Sec. II. After reporting on the
computational details in Sec. III, we explore the applicability of fp32
operations regarding performance and numerical stability in Sec. IV.
This exploration is partitioned into three parts: In part 1 (Sec. IV A),
we explore mixed fp32/fp64 evaluation of the three-center-one-
electron (3c1e) integral tensor. In part 2 (Sec. IV B), we then explore
the possibility of pure fp32 evaluation in all steps instead of only the
3c1e integral evaluation. Finally, in part 3 (Sec. IV C), we propose
a specific self-consistent-field (SCF) method, denoted as i-sn-LinK,
that employs incremental exchange-builds to reduce the numerical
error from pure fp32 execution. Afterward, we illustrate the perfor-
mance and accuracy of the so developed mixed-precision methods
for a wide variety of molecules and basis sets in Sec. V and finally
summarize our results in Sec. VI.

II. THEORY: SN-LINK REVIEWED
A. The seminumerical exchange method

Seminumerical integration decomposes the 4c2e integral tensor

(μσ∣νλ) = ∫ dr1 ∫ dr2χμ(r1)χσ(r1) 1∣r1 − r2∣χν(r2)χλ(r2) (1)

symmetrically as

(μσ∣νλ) ≈ 1
2

⎡⎢⎢⎢⎢⎣∑g wgχμ(rg)χσ(rg)∫ dr
χν(r)χλ(r)∣rg − r∣

+∑
g
wg ∫ dr

χμ(r)χσ(r)∣rg − r∣ χν(rg)χλ(rg)⎤⎥⎥⎥⎥⎦, (2)

employing numeric integration grids with grid points rg and corre-
sponding weights wg .

Inserting this decomposition into the atomic orbital (AO)
representation of the exact-exchange matrix leads to

Kμν =∑
λσ

Pλσ(μσ∣νλ) (3)

≈ 1
2

⎡⎢⎢⎢⎢⎣∑g wg∑
λσ

χμ(rg)∫ χν(r)χλ(r)∣r − rg ∣ drPλσχσ(rg) + transpose
⎤⎥⎥⎥⎥⎦,

(4)

which is evaluated in three consecutive steps:

Fλg =∑
σ

χσ(rg)Pλσ , (5)

Gνg =∑
λ
wgAνλgFλg , (6)

Kμν =∑
g

χμ(rg)Gνg . (7)

The so-obtained exchange-matrix is finally symmetrized to account
for the transpose in Eq. (3).

If only the exchange energy

EX = ∑
μνλσ

PμνPλσ(μσ∣νλ) = tr(PK) (8)

is of interest (e.g., to compute the final energy after converging the
SCF), the evaluation of Eq. (7) can be avoided and EX can instead be
obtained as

EX =∑
νg

GνgFνg . (9)

Equations (5) and (7) are evaluated with dense matrix–matrix multi-
plications employing batch-local matrices of asymptotically constant
size (see Sec. 2.4 of Ref. 29 for details) utilizing highly optimized
BLAS-3 libraries.

In contrast, evaluation of Eq. (6) requires the computation of
the 3c-1e integral tensor

Aνλg = ∫ χν(r)χλ(r)∣rg − r∣ dr, (10)

which usually represents the most expensive step. Effective inte-
gral screening techniques are therefore essential for an efficient
implementation.

B. Screening for 3c1e-integrals reviewed
In order to assess the significance of a 3c1e-integral Aνλg , we

consider its contribution to the total exchange energy

εE
νλg = RRRRRRRRRRRwg∑

μσ
χμ(rg)PμνAνλgPλσχσ(rg)RRRRRRRRRRR

= ∣w 1
2
g FνgAνλgw

1
2
g Fλg ∣ (11)

and to the final exchange matrix

εK
νλg = ∣wg ∣max

⎛⎝∑μσ
∣χμ(rg)∥Pμν∥Aνλg ∣∣χσ(rg)∣,

×∑
μσ
∣χμ(rg)∣∣Aνλg∥Pλσ∥χσ(rg)∣⎞⎠

≤ ∣wg ∣max(∣Fνg ∣, ∣Fλg ∣)∣Aνλg ∣∑
μ
∣χμ(rg)∣. (12)
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An integral is then labeled as significant if either of the contri-
butions is larger than a given threshold, i.e.,

εE
νλg ≥ ϑE or εK

νλg ≥ ϑK . (13)

For optimal performance, this selection is performed for whole
batches of grid points at once, employing distance-independent (and
therefore grid-point independent) integral bounds for Aνλg ,10 as
detailed in Secs. 2.2 and 3 of Ref. 29.

III. COMPUTATIONAL DETAILS

Unless stated otherwise, all calculations are performed with
our FermiONs++ quantum chemistry program,7,8 employing the
“Karlsruhe” (“def2-”) basis sets40 (the prefix “def2-” is omitted for
simplicity) and the “gm4” multi-grid41 (∼5000 points per atom
within the SCF and ∼15 000 points per atom for the final energy cal-
culation). For yttrium, the respective effective core potential (ECP)40

was employed to replace core electrons. For the evaluation of the
Coulomb-interaction, the resolution-of-the-identity (RI-J) approx-
imation42–44 in combination with the RI-J-optimized basis set of
Ref. 45 was used throughout this work. These settings are chosen
to represent typical applications.

Since the computation of the exact-exchange contributions is
usually the most expensive step within hybrid-DFT calculations, the
discussion for Hartree–Fock calculations within this work is equally
meaningful for hybrid-DFT calculations. Indeed, since only a frac-
tion of exact Fock-exchange is employed in hybrid-DFT methods,
the numerical errors from single-precision execution are pro-
portionally lower in this case. We provide analogous results to
Tables IX and XI using the PBE0 hybrid functional46 instead of the
Hartree–Fock method within the supplementary material.

For optimal performance, the CPU code was compiled with
the Intel C++ compiler (ICPC) version 19.1.047 with all compiler-
optimization enabled (“-Ofast,” “-march = native”), which is nec-
essary to fully utilize SIMD-vector-instructions within the 3c1e
integral kernels. The GPU code was compiled with NVCC-10.1
(CUDA-10.1),48 also employing all possible compiler-optimizations
(“-O3” and “-use fast math”). To provide sufficient parallel work-
load for each device, grid-batches of 512 grid points on CPUs,
20 480 points on the NVIDIA GV100 GPU, and 10 240 points on
the 1080Ti GPU are employed.

SCF convergence is always measured by the root mean square
of the DIIS error matrices (SPF–FPS).49,50 Unless stated otherwise,
all timings are given for one full exchange-matrix build averaged
over all but the very first SCF cycles, since the very first Fock-build
is considerably faster due to the sparsity of the superposition-of-
atomic-densities (SAD) guess density matrix. For rigorous com-
parisons, errors in the converged energy (denoted ΔE), the root
mean square deviation (RMSD) of the converged density matrix
(denoted as ΔP), and the root mean square deviation of the con-
verged nuclear forces (denoted as ΔForces) are always referenced to
pure fp64-execution with all other settings being identical.

The test geometries51,52 in this work are chosen to rep-
resent typical applications. In particular, A–T DNA-fragments
[(DNA)x] exemplify biochemistry applications, spherical water balls
[(H2O)68], explicit solvent environments, LiF cutouts [(LiF)36],

materials science applications, and Y2C5H20N20O13 inorganic com-
plex chemistry. All geometries employed in this work are provided
in the supplementary material.

IV. THE MIXED FP32/FP64 PRECISION
SN-LINK METHOD

In this section, the possibility of employing single-precision
algebra is systematically studied, focusing on the speedups and accu-
racy. The total execution times corresponding to the here presented
speedups are given in Sec. 2 of the supplementary material.

A. Part 1: Mixed precision evaluation of the 3c1e
integral tensor

The evaluation and contraction of the 3c1e-integral tensor
[Eq. (6)] usually represents the most time-consuming step within
sn-LinK, particularly on CPUs and for smaller systems. There-
fore, we first investigate the applicability of fp32 operations for this
step.

We can assign each 3c1e-integral (or batch of integrals) an
upper bound to its contribution to the final exchange-energy
[Eq. (11)] and exchange-potential [Eq. (12)]. These upper bounds
not only enable the linear-scaling evaluation of the 3c1e integrals via
computing only the significant subset of the tensor but also enable
a finer-grained partitioning of the 3c1e tensor into three instead of
only two categories:

● Category one contains the most significant 3c1e integrals
(εE/K

νλg ≥ ϑfp64
E/K ). These are computed with fp64 operations.● Category two contains all 3c1e integrals that are too signif-

icant to be completely neglected, but not so significant that
they require fp64 evaluation (ϑfp64

E/K > εE/K
νλg ≥ ϑfp32

E/K ). These are
computed and accumulated with fp32 operations.● Category three contains all the insignificant integrals
(εE/K

νλg < ϑfp32
E/K ). These are not computed at all, even with pure

fp64-execution.

Compared to the original sn-LinK from Ref. 29, we just split the
set of significant integrals into two subsets (category one and two),
resulting in only a slight adjustment of the pseudocode for the
3c1e-integral evaluation, which is given in Fig. 1.

The complete discarding of all category three integrals (line 3 of
Fig. 1) is just standard integral screening, so we can employ the same
“parent” thresholds as in the original sn-LinK, i.e., ϑfp32

K = ϑK = 10−8,
ϑfp32

E = ϑE = 10−11 within the SCF, and ϑfp32
E = ϑE = 10−12 in the final

energy calculation. The screening-errors from these thresholds are
usually well below 1 μEh. This integral screening is not altered within
this work, and instead, the speedups presented here are solely caused
by a more efficient handling of the category two integrals by using a
lower precision arithmetic.

We decided to choose our second set of thresholds, which dis-
tinguish between fp32- and fp64-execution (l.5 and 8 of Fig. 1) ϑfp64

E/K
dynamically, based on the original thresholds ϑE/K . Indeed, since
the relative numerical precision of fp32 numbers is about 10−7,
one would naturally choose ϑfp64

E/K = 107ϑE/K . In Table I, we test a
variety of threshold-multipliers and find that we can employ even
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FIG. 1. Evaluation of Eq. (6) (3c1e integral evaluation).

tighter fp64-thresholds, since still only a very small fraction of 3c1e-
integrals need to be computed with fp64 operations. Therefore, we
decided to use a fp64 threshold multiplier of 105 for all further cal-
culations, providing virtually perfect accuracy regarding both the
converged energy and the converged density matrix, while over 97%
of all integrals are computed using fp32 instructions. As expected,
this results in nearly 2× speedup for the evaluation of the 3c1e
integrals.

We further evaluate the robustness and possible speedups
of mixed fp32/fp64 3c1e-integral evaluation for different molec-
ular systems and basis sets in Table II. Mixed precision
evaluation provides essentially error-free results for both the

converged energy and the density matrix and converges within
exactly the same amount of SCF cycles. That is, mixed-precision
evaluation of the 3c1e integrals is essentially error-free while pro-
viding close to 2× speedups (1.73–1.97×) for the 3c1e integral
evaluation, in line with the expected 2× performance gains for
CPUs.

As presented in Sec. 1 of the supplementary material, this
speedup is only achieved if vector-instructions (AVX2 in this work)
are utilized. This matches our expectations, since one 256-bit vec-
tor instruction processes four fp64 but eight fp32 values, whereas
one scalar instruction always processes 1 number, regardless of the
precision.

TABLE I. Impact of the fp64 multiplier on the accuracy and performance for (DNA)4/HF/SVP. Speedups are given for two Intel
Xeon E5-2630 CPUs (20 cores@2.20 GHz) using AVX-2 instructions. The corresponding thresholds for switching between
fp32- and fp64 evaluation ϑfp64

E/K derived from the “parent” screening-thresholds ϑE = 10−11 and ϑK = 10−8 are given for

context.

fp64-multiplier 1012 1010 108 107 106 105 104

ϑfp64
K 104 102 1 10−1 10−2 10−3 10−4

ϑfp64
E 101 10−1 10−3 10−4 10−5 10−6 10−7

Energy error (μEh) 34.19 0.55 0.08 0.01 <0.01 <0.01 <0.01
ΔP (10−6) 0.20 0.20 0.15 0.04 0.01 <0.01 <0.01
% of integrals fp64 0.000 0.001 0.083 0.37 1.2 3.0 7.9
Speedup (only integrals) 1.99× 1.98× 1.96× 1.95× 1.94× 1.89× 1.79×
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TABLE II. Comparison of mixed fp32/fp64 3c1e integral evaluation and pure fp64 evaluation. Speedups for only the 3c1e
integrals and one whole exchange build are given for two Intel E5-2630 CPUs (20 cores @2.20 GHz) using AVX-2 instructions.
The number of SCF cycles is given for a convergence threshold of ϑconv = 10−8 for the DIIS-error.

System/Basis Speedup 3c1e Speedup (K) Error (μEh) ΔP (10−6) niter (fp64) niter (mp)

(DNA)1/SVP 1.73× 1.55× <0.01 <0.01 15 15(DNA)4/SVP 1.86× 1.62× <0.01 <0.01 14 14(H2O)68/SVP 1.92× 1.61× <0.01 <0.01 11 11(LiF)36/SVP 1.90× 1.73× <0.01 0.19 11 11
Y2C5H20N20O13/SVP 1.79× 1.62× <0.01 <0.01 15 15(DNA)1/TZVP 1.87× 1.69× <0.01 0.03 14 14(DNA)4/TZVP 1.87× 1.68× <0.01 0.04 14 14(H2O)68/TZVP 1.88× 1.58× <0.01 <0.01 11 11(LiF)36/TZVP 1.97× 1.74× <0.01 0.18 10 10
Y2C5H20N20O13/TZVP 1.91× 1.72× <0.01 0.01 14 14(DNA)1/QZVP 1.80× 1.65× <0.01 0.07 14 14(H2O)68/QZVP 1.78× 1.53× <0.01 <0.01 10 10

However, the 2×-speedup for the 3c1e integral evaluation does
not perfectly translate to the full K-build, since the other two steps
[Eqs. (5) and (7)] have not been accelerated. As depicted in Table III,
this effect is even more pronounced with GPU evaluation because
the 3c1e integral evaluation contributes less to the total runtime on
GPUs (compare also with the discussion in Sec. 5.2.1 of Ref. 29). For
this reason, only minor speedups from employing the mixed pre-
cision evaluation of the 3c1e integrals are obtained for the GV100
GPU (0.96–1.79×) and the speedups on the GTX 1080Ti (1.6× to
2.5×) are far away from the theoretical value of 32×.

To summarize part 1, the 3c1e integral tensor is partitioned so
that only the most significant contributions are evaluated with fp64
operations. The introduced errors are negligible while providing
nearly 2× speedups in the integral-evaluation part. However, when
employing GPUs with low fp64-performance, the BLAS-3 steps
[Eqs. (5) and (7)] also need to be performed with fp32 operations
to achieve optimal performance.

TABLE III. Speedups for one full K-build from employing mixed-precision kernels
for 3c1e-integral evaluation on two Intel E5-2630 CPUs (20 cores@2.20 GHz) using
AVX-2 instructions on one NVIDIA GV100 GPU (fp32:fp64 ratio 2:1) and one GTX
1080Ti GPU (fp32:fp64 ratio 32:1).

System/Basis CPU GV100 1080Ti

(DNA)4/SVP 1.55× 1.01× 1.61×(DNA)1/SVP 1.62× 1.21× 1.95×(H2O)68/SVP 1.61× 0.96× 1.83×(LiF)36/SVP 1.73× 1.03× 2.51×
Y2C5H20N20O13/SVP 1.62× 0.97× 1.94×(DNA)1/TZVP 1.69× 1.22× 2.19×(DNA)4/TZVP 1.68× 1.42× 2.05×(H2O)68/TZVP 1.58× 1.22× 1.70×(LiF)36/TZVP 1.74× 1.21× 2.04×
Y2C5H20N20O13/TZVP 1.72× 1.34× 2.00×(DNA)1/QZVP 1.65× 1.79× 2.14×(H2O)68/QZVP 1.53× 1.44× 1.73×

B. Part 2: Pure fp32 evaluation
In contrast to the integral evaluation, computing the BLAS-

3 steps [Eqs. (5) and (7)] with mixed precision instruction is not
straightforward because they are best evaluated with a single call of
a highly optimized dense linear algebra routine for optimal perfor-
mance. Although algorithms for mixed precision linear-algebra have
been proposed in the literature,53 we prefer to, if possible, avoid them
for the sake of simplicity.

Therefore, the possibility of pure fp32 evaluation, i.e., evalua-
tion of Eqs. (5)–(7) with only fp32 operations and accumulation of
the batch-local fp32-K-matrices into a global fp64-K-matrix, needs
to be explored. Note that in the final energy calculation, Eqs. (5)
and (6) are evaluated with single-precision, but the accumulation in
Eq. (9) is performed with double-precision.54

As depicted in Table IV, pure fp32 evaluation results in up to
7.4× speedups compared to pure fp64 execution. This speedup is
still significantly less than the theoretically possible 32× speedups
because the code is not purely limited by the floating point
throughput alone and the demand for memory bandwidth and local
storage (cache) is only reduced by a factor of two.

More important, however, is the fact that pure fp32 execu-
tion leads to a significant deterioration of the accuracy, with errors
up to 90 μEh. In contrast, the exchange matrix from pure fp32
evaluation is much more accurate than the errors in the energy
indicate. That is, even though converging the SCF using fp32 only
can lead to quite significant errors in the converged density matrix
of up to 4 × 10−5 a.u., computing the final energy from this
inaccurate matrix employing mixed precision integral evaluation
instead of pure fp32-execution (denoted as “fp32∗”) leads to signif-
icantly smaller errors (1.8 μEh at most) while providing the per-
formance of full fp32 execution (i.e., up to 7× speedups) within
the SCF.

The situation is analogous to adaptive integration grids, i.e.,
employing three times coarser grids within the SCF than for the
final energy calculation provides virtually the same result as per-
forming the whole calculation with the large grid.41 That is, the
exchange energy is generally more sensitive to numeric errors than
the exchange matrix.
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TABLE IV. Speedups (averaged over all but the very first K-builds) of mixed precision integral evaluation (mp) and full fp32
evaluation (fp32) on GTX 1080Ti compared to pure fp64-execution. Errors of the converged energy from pure fp32-evaluation
(ΔEfp32) and from fp32-evaluation in the SCF followed by a post-SCF mixed precision energy evaluation (ΔEfp32∗ ) and the
root-mean-square error of the converged density matrix (ΔP) are given referenced to pure fp64 execution.

System/Basis Speedup (mp) Speedup (fp32) ΔEfp32 (μEh) ΔEfp32∗ (μEh) ΔP (10−6)

(DNA)1/SVP 1.61× 5.14× 14.2 <0.01 0.40(DNA)4/SVP 1.95× 6.38× 68.3 0.08 2.56(H2O)68/SVP 1.83× 5.78× 20.1 <0.01 0.05(LiF)36/SVP 2.51× 5.45× 89.3 <0.01 6.26
Y2C5H20N20O13/SVP 1.94× 6.39× 15.8 <0.01 0.18(DNA)1/TZVP 2.19× 7.12× 12.2 0.17 39.44(DNA)4/TZVP 2.05× 7.42× 85.4 1.82 26.79(H2O)68/TZVP 1.70× 6.49× 27.9 0.01 0.24(LiF)36/TZVP 2.04× 5.65× 19.8 0.09 15.94
Y2C5H20N20O13/TZVP 2.00× 6.94× 19.9 0.08 5.52(DNA)1/QZVP 2.14× 6.27× 5.3 1.32 31.83(H2O)68/QZVP 1.73× 7.32× 14.5 0.33 1.89

However, as presented in Table V, executing all K-builds within
the SCF with pure fp32 arithmetic deteriorates the SCF conver-
gence behavior measurably, meaning that very tight convergence,
e.g., to 10−8, is impossible due to the increase in numerical fluc-
tuations. Although the level of precision is sufficient for many
applications (e.g., ab initio molecular dynamics), a truly error-free
method similar to part 1 (i.e., no measurable change in the SCF con-
vergence behavior and as little change in the converged energy and
density matrix as possible) is our goal in the following.

C. Part 3: Incremental K-builds (i-sn-LinK)
The idea of incremental Fock/exchange-builds, i.e., comput-

ing K[ΔP] and then incrementally updating K instead of always
recomputing the full exchange matrix, was initially proposed by
Almloef et al.55 and later improved by Haeser and Ahlrichs56

to allow for tighter density-matrix-based screening of the 4c2e-
integrals within the SCF. However, because only small incre-
ments to K are computed, incremental Fock-builds have also
been shown to reduce the numerical error introduced by fp32-
evaluation, since the absolute error is proportional to the magni-
tude of the contribution.31 In part 2 (Sec. IV B), we showed that
pure fp32 exchange-builds are already quite accurate and allow for
unproblematic convergence to about 10−6. Therefore, the possibil-
ity to perform the last exchange-builds incrementally should be
explored.

We thus propose i-sn-LinK, a special SCF scheme given in
Fig. 2. First, the SCF is converged to a relative loose threshold with
non-incremental fp32 K-builds. Since the difference density is com-
paratively large for these early SCF steps, there are no significant
performance gains from incremental updates in these steps. In this
work, we choose a convergence criterion of 10−5 to ensure that
convergence to this point is always reached.

Then, one full K-build is performed with mixed fp32/fp64 pre-
cision (i.e., employing part 1) and the SCF is subsequently converged
further with incremental fp32 K-builds. These incremental K-builds
are always built from the difference density matrix ΔP referenced to

TABLE V. Number of SCF steps to achieve a given SCF convergence ϑconv quantified
by the DIIS error. “n.c.” denotes non-converged SCF.

System/Basis ϑconv fp64 mp fp32

(DNA)1/SVP 10−6 9 9 9
10−8 15 15 n.c.

(DNA)4/SVP 10−6 9 9 9
10−8 14 14 n.c.

(H2O)68/SVP 10−6 7 7 7
10−8 11 11 11

(LiF)36/SVP 10−6 7 7 7
10−8 10 11 n.c.

Y2C5H20N20O13/SVP 10−6 9 9 9
10−8 15 15 n.c.

(DNA)1/TZVP 10−6 9 9 9
10−8 15 15 n.c.

(DNA)4/TZVP 10−6 9 9 9
10−8 14 14 n.c.

(H2O)68/TZVP 10−6 7 7 7
10−8 12 12 12

(LiF)36/TZVP 10−6 7 7 7
10−8 10 10 n.c.

Y2C5H20N20O13/TZVP 10−6 9 9 9
10−8 14 14 n.c.

(DNA)1/QZVP 10−6 8 8 8
10−8 13 13 n.c.

(H2O)68/QZVP 10−6 7 7 7
10−8 10 10 n.c.
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FIG. 2. Self-consistent field algorithm in i-sn-LinK.

the last full K-build, not to the previous density matrix. This removes
the possibility of incremental error accumulation, further improving
the numerical stability in this way.57 In order to reduce errors from
the density-matrix including integral screening when operating on
incremental matrices, we employ two orders of magnitude tighter
screening thresholds ϑE/K for these incremental builds, which, due
to the elements of ΔP being much smaller than P, leads to a sim-
ilar performance as full K-builds with looser thresholds. The final
energy (also optionally nuclear forces) is then computed using mixed
fp32/fp64 precision, analogous to part 2.

In contrast to the works of Almloef et al.55 and Haeser
and Ahlrichs,56 the aim of our incremental scheme i-sn-LinK is
only to improve the convergence behavior while using as many
fp32 K-builds as possible, not to improve the tightness of the
integral-selection.

The performance, accuracy, and SCF convergence of i-sn-
LinK are presented in Table VI. Overall, we obtain virtually
the same accuracy and numerical stability as for pure fp64

execution while obtaining up to 5.2× speedups (averaged over
the whole calculation). As expected, the speedups are higher if
more SCF cycles need to be performed because the cost of the
two remaining mixed-precision K-builds, which comprise 36%–47%
of the computation time, is comparatively less impactful in this
situation.

However, the most significant result of Table VI is the fact that
i-sn-LinK nearly always converges within the same amount of SCF
cycles as pure fp64 execution, proving the numerical stability of the
method.

D. Parts 1, 2, and 3 in comparison
In order to compare the different approaches discussed in Secs.

IV A–IV C, a brief summary of them is given in Table VII. In this
context, the mixed-precision 3c1e integral method (“mp”) of part
1 represents the simplest introduction of reduced numerical pre-
cision; that is, only the 3c1e integral evaluation part [Eq. (6)] is

TABLE VI. Comparison of i-sn-LinK compared to non-incremental pure fp64 evaluation. Speedups on the GTX 1080Ti are
given for the sum of all exchange-builds including the final exchange energy calculation. The percentage of the two mixed-
precision K-builds to the total time for all exchange-builds (%fp64), the error of the converged energy of i-sn-LinK ΔE, and
the RMSD of the converged density matrix ΔP are referenced to full fp64 evaluation, and the number of SCF cycles for
ϑconv = 10−8 is given for reference.

System/Basis Speedup %fp64 (%) ΔE (μEh) ΔP (10−6) niter (fp64) niter (i-sn-LinK)

(DNA)1/SVP 4.81× 42 <0.01 0.01 15 15(DNA)4/SVP 5.03× 40 <0.01 0.01 14 14(H2O)68/SVP 4.59× 46 <0.01 0.00 11 11(LiF)36/SVP 4.27× 45 <0.01 0.65 10 10
Y2C5H20N20O13/SVP 4.93× 45 <0.01 0.00 15 15(DNA)1/TZVP 4.97× 42 <0.01 0.15 15 15(DNA)4/TZVP 5.19× 39 0.03 0.29 14 14(H2O)68/TZVP 4.67× 47 <0.01 0.00 11 11(LiF)36/TZVP 4.40× 42 0.01 0.37 10 10
Y2C5H20N20O13/TZVP 4.99× 45 <0.01 0.02 14 14(DNA)1/QZVP 4.42× 36 0.01 0.29 13 14(H2O)68/QZVP 4.62× 47 <0.01 0.01 10 10
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TABLE VII. Comparison of the methods in parts 1, 2, and 3 within the SCF and for final energy-build (final). “3c1e” denotes
numerical precision in the evaluation of Eq. (6), “BLAS-3” denotes precision in the evaluation of Eqs. (5) and (7).

Method 3c1e (SCF) 3c1e (final) BLAS-3 (SCF) BLAS-3 (final)

fp64 fp64 fp64 fp64 fp64
mp (part1) fp32 + fp64 fp32 + fp64 fp64 fp64
fp32 (part2) fp32 fp32 fp32 fp32
fp32∗ (part2) fp32 fp32 + fp64 fp32 fp64
i-sn-LinK (part3) fp32 (fp32 + fp64)a fp32 + fp64 fp32 (fp64)a fp64
aHigher precision in one non-incremental Fock-build.

adjusted. This approach has virtually no impact on the SCF con-
vergence behavior or the accuracy of the final result. Since the 3c1e
integral evaluation is by far the most significant bottleneck for CPU
execution, accelerating the other steps cannot provide significant
speedups. Hence, we recommend to only employ the “mp” approach
on CPUs.

On GPUs, however, the BLAS-3 steps with fp64 execution can
become significant. Therefore, we investigated the possibility of pure
fp32-execution in Sec. IV B (part 2) and found that the so-converged
SCF can yield surprisingly accurate energies, if the final energy was
evaluated with higher precision. However, the convergence behav-
ior and the quality of the converged density matrix were measurably
deteriorated.

These shortcomings were then addressed in Sec. IV C (i-sn-
LinK; part 3) by introducing incremental K-builds, which update
a once-computed high-precision K-matrix. This recovers the accu-
racy and stable convergence behavior of the “mp” approach, but
only one non-fp32 K-build has to be performed within the SCF. The
final energy is, of course, never computed with pure single-precision,
since this leads to unacceptably large errors (cf. “fp32” in Table IV).
Because the i-sn-LinK scheme represents the best trade-off between
accuracy and performance on GPUs, i.e., close to pure-fp32 per-
formance and essentially pure-fp64 accuracy, we recommend the
i-sn-LinK method for GPUs.

V. ILLUSTRATIVE CALCULATIONS
A. SCF convergence for difficult electronic structures

Since deterioration in SCF convergence stability was the main
reason to develop the i-sn-LinK method of part 3 (Sec. IV C) and
since it was also shown to be problematic in other works on single-
precision execution,31–36 we provide a more detailed investigation
on difficult molecules regarding SCF stability in Table VIII. In order
to exemplify the worst-case scenario, we selected the ten molecules
with the worst convergence behavior of the ASCDB benchmark
set58 and employ the def-TZVPPD basis set, which, due to the
additional diffuse basis-functions, requires even higher numerical
precision.

The results verify that both the mixed precision 3c1e evaluation
and i-sn-LinK have no impact on the stability of the SCF conver-
gence, even when considering very difficult electronic structures.
Furthermore, the largest error of 0.83 μEh occurs for the most diffi-
cult structure (cisHO3) and is still smaller than the SCF convergence
criterion of 10−6.

B. Performance for large systems and large basis sets
To illustrate the practical applicability of the mixed-precision

methods developed in this work, a range of systems are tested with
up to quadruple-ζ basis sets in Table IX.

TABLE VIII. Number of SCF steps (Niter) and error in the converged SCF energy of full-fp64 execution, mixed-precision
integral evaluation (mp), and i-sn-LinK for the ten most difficult molecules of the ASCDB database.

fp64 mp i-sn-LinK

Molecule ϑconv N iter N iter ΔE (μEh) N iter ΔE(μEh)

cisHO3 10−6 32 32 0.06 32a 0.83
CrCl2 10−6 11 11 0.02 11a 0.10
H6LiB3OMg2AlSi2 10−7 28 28 <0.01 28a 0.04
VO 10−7 25 25 <0.01 25b <0.01
C2H5N4O2MgS2 10−7 23 23 <0.01 23a <0.01
transHO3 10−7 23 23 <0.01 23a <0.01
ClOO 10−7 23 23 <0.01 23a <0.01
C3H6B3NAlSi2 10−7 22 22 0.01 22a 0.08
FOO 10−7 22 22 <0.01 22a <0.01
OHCl 10−7 20 20 <0.01 20a <0.01

aIncremental K-builds starting at 10−4 .
bIncremental K-builds starting at 10−3 .
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TABLE IX. Comparison of mixed-precision 3c1e integral evaluation (mp) and i-sn-LinK in terms of the speed of convergence [number of SCF steps to reach
RMSD(FPS − SPF) > 10−7] and in terms of the accuracy of the converged energy (ΔE), the root mean square deviation of the converged density matrix (ΔP), and the
root mean square deviation of the nuclear forces (ΔForces).

N iter(10−7) ΔE (μEh) ΔP (10−6) ΔForces (μEh a0
−1)

Molecule Basis fp64 mp i-sn-LinK mp i-sn-LinK mp i-sn-LinK mp i-sn-LinK

Taxol 6-31G∗ 12 12 12 <0.01 <0.01 <0.01 <0.01 <0.01 0.03
Valinomycin 6-31G∗ 12 12 12 <0.01 <0.01 <0.01 <0.01 <0.01 0.06
Olestra 6-31G∗ 11 11 11 <0.01 <0.01 <0.01 <0.01 <0.01 0.05
Fullerene C60 TZVP 10 10 11 <0.01 <0.01 0.48 10.36 0.03 0.20
Fullerene C60 QZVP 10 10 10 −0.01 0.01 0.34 8.00 0.04 0.67(S8)20 TZVP 10 10 10 <0.01 <0.01 <0.01 0.01 <0.01 0.20
Crambin TZVP 10 10 10 0.01 0.05 0.09 0.31 0.01 0.20(DNA)1 SVP 12 12 12 <0.01 <0.01 <0.01 0.01 <0.01 0.10(DNA)4 SVP 12 12 12 <0.01 <0.01 <0.01 0.03 <0.01 0.13(DNA)16 SVP 11 11 11 <0.01 −0.02 <0.01 0.03 0.05 0.14(DNA)1 TZVP 12 12 12 <0.01 <0.01 0.01 0.25 <0.01 0.20(DNA)4 TZVP 11 11 11 <0.01 0.05 0.02 0.39 <0.01 0.15(DNA)1 QZVP 11 11 11 <0.01 <0.01 0.03 0.32 <0.01 0.12(DNA)4 QZVP 10 10 10 <0.01 −0.03 0.05 0.60 0.01 0.40
Y2C5H20N20O13 TZVP 11 11 12 <0.01 <0.01 <0.01 0.04 <0.01 0.15
Y4C10H42N40O27 TZVP 12 12 12 <0.01 <0.01 <0.01 0.02 <0.01 0.26

First, the reliability and accuracy of the two methods is proven
again, i.e., nearly all molecules converge within the same amount of
SCF steps (10–12 steps) regardless of the method used for the Fock-
exchange. Furthermore, the converged energies match the fp64
results to <0.1 μEh even in the case of heavy elements (e.g., yttrium-
complexes in Table XI), the nuclear forces are accurate within 0.7
μEh a0

−1, and the converged density matrices are accurate within
10−6 a.u. except for C60.

For the C60-Fullerene, larger deviations (∼ 10−5 a.u.) are, how-
ever, not directly due to fp32-execution but are instead caused
by the slightly different integral screening in i-sn-link, where ΔP
is employed instead of P within the incremental updates. This is
supported by Table X, where tighter thresholds are employed for
both the fp64-reference and the i-sn-LinK calculations in order to
remove the effect of the integral screening. The remaining devia-
tions are then only caused by the reduced numerical precision in
i-sn-LinK. These remaining errors are significantly smaller for the
most challenging molecules such as C60 or (DNA)4/QZVP, prov-
ing that those larger deviations in Table IX were indeed caused by
the altered integral screening and not by the reduced numerical
precision.

Summarizing the accuracy comparisons, the two tested mixed-
precision methods “mp” and i-sn-LinK lead to essentially neg-
ligible errors (ΔE < 0.1 μEh, ΔP ≤ 10−6, ΔForces <1 μEh a0

−1),
which are multiple orders of magnitude smaller than “chemical
accuracy”(∼1000 μEh).

Meanwhile, the methods lead to considerable speedups
compared to pure fp64-execution, as presented in Table XI:
1.4–1.8× speedups are obtained from the mixed-precision
method on CPUs, around 2× speedups are obtained from the

mixed-precision method on GPUs, and up to 6.9× speedups are
obtained with the incremental i-sn-LinK method on GPUs. The
speedups of i-sn-LinK are typically larger for more expensive com-
putations (larger molecules and larger basis sets) because the BLAS-3
steps [Eqs. (5) and (7)] are comparatively more expensive in these
situations.

Comparing the CPU and GPU performance, we note that our
incremental i-sn-LinK method is essential for an effective GPU
acceleration with gaming GPUs. That is, pure fp64 execution is
about as fast on the GPU as on CPUs,59 but i-sn-LinK is up
to 4.4× faster on the GPU [333 vs 1475 s for (S8)20] than on
CPUs.

TABLE X. Comparison of the root mean square deviation of the converged density
matrix (ΔP) from i-sn-LinK with the original thresholds ϑK = 10−8/ϑE = 10−11 (same
values as in Table IX) and with very tight thresholds ϑK = 10−10/ϑE = 10−13.

Molecule Basis
ΔP (default thresh)

(10−6)
ΔP (tight thresh)

(10−6)

Fullerene C60 TZVP 10.36 0.63
Fullerene C60 QZVP 8.00 1.00
Crambin TZVP 0.31 0.12(DNA)1 TZVP 0.25 0.16(DNA)4 TZVP 0.39 0.26(DNA)1 QZVP 0.32 0.17(DNA)4 QZVP 0.60 0.21
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TABLE XI. Performance-comparison of pure fp64 execution (fp64), mixed-precision 3c1e integral evaluation (mp), and i-sn-
LinK on GTX 1080Ti GPU and two Xeon E5-2630 CPUs (CPU). Timings are given in seconds as the cumulative time for
all exchange-builds, including the final exchange-energy calculation. The speedups compared to the respective pure fp64
implementation are given in parenthesis.

K-time (s) GPU K-time (s) CPU

Molecule Basis Nbfc fp64 mp i-sn-LinK fp64 mp

Taxol 6-31G∗ 1 013 194 92 (2.1×) 40 (4.8×) 187 107 (1.7×)
Valinomycin 6-31G∗ 1 350 385 180 (2.1×) 77 (5.0×) 353 203 (1.7×)
Olestra 6-31G∗ 3 181 698 421 (1.7×) 147 (4.7×) 567 376 (1.5×)
Fullerene C60 TZVP 2 160 718 343 (2.1×) 167 (4.3×) 771 436 (1.8×)
Fullerene C60 QZVP 4 320 2 690 1 220 (2.2×) 622 (4.3×) 2 780 1 590 (1.7×)(S8)20 TZVP 6 720 2 290 1 220 (1.9×) 333 (6.9×) 2 470 1 480 (1.7×)
Crambina TZVP 13 698 22 400 11 200 (2.0×) 5260 (4.3×) 28 800 16 800 (1.7×)(DNA)1 SVP 660 48 27 (1.8×) 12 (4.0×) 52 32 (1.6×)(DNA)4 SVP 2 904 1 240 627 (2.0×) 256 (4.8×) 1 120 678 (1.6×)(DNA)16 SVP 11 880 9 600 6 200 (1.5×) 1890 (5.1×) 8 800 6 390 (1.4×)(DNA)1 TZVP 1 422 205 105 (2.0×) 45 (4.6×) 176 102 (1.7×)(DNA)4 TZVP 6 336 5 070 2 480 (2.0×) 1000 (5.0×) 5 200 3 060 (1.7×)(DNA)1 QZVP 3 465 975 450 (2.2×) 212 (4.6×) 920 550 (1.7×)(DNA)4

a QZVP 15 030 19 700 9 490 (2.1×) 3700 (5.3×) 19 952 12 349 (1.6×)
Y2C5H20N20O13 TZVP 1 580 237 120 (2.0×) 53 (4.5×) 248 143 (1.7×)
Y4C10H42N40O27 TZVP 3 208 1 060 514 (1.7×) 202 (5.2×) 1 060 614 (1.7×)
aReduced grid-batch size due to limited GPU memory.

VI. CONCLUSION AND OUTLOOK

This work presents a systematic study of the applicability of
single-precision instructions to evaluate the Fock-exchange matrix
within seminumerical integration schemes. First, we demonstrated
that only a very small fraction of the 3c1e integrals needs to be
evaluated with fp64 instructions to still provide virtually the same
result while providing nearly 2× speedups for this step on CPUs. We
then demonstrated that pure fp32 execution still leads to surprisingly
accurate results, as long as the final energy is computed at higher
accuracy, although the SCF convergence behavior is somewhat dete-
riorated. Finally, we proposed the i-sn-LinK method, where incre-
mental exchange-builds are employed for the last SCF steps, which
removes all instabilities and inaccuracies from pure fp32 execu-
tion while requiring only a single high precision K-matrix build.
This method provides up to 7× speedups for the whole SCF on
typical “gaming” GPUs (1080Ti) without any significant impact
on the numerical stability or accuracy and is therefore essential
for an effective GPU acceleration using more affordable “gaming”
GPUs.

Finally, we note that the present study on single-precision exe-
cution within seminumerical integration is also relevant for the eval-
uation of local-hybrid functionals, where the most time consuming
step, i.e., the evaluation of the local exchange contributions, is iden-
tical to the seminumerical expression for the exchange matrix. Thus,
we expect the performance benefits presented in this work to also
translate to this novel and exciting class of functionals.

SUPPLEMENTARY MATERIAL

See the supplementary material for the effect of vector-
instructions on the timings in Table II, absolute timings associated

with the speedups of Tables II–IV and VI, analogous results to
Tables IX and XI for the PBE0-functional, and all xyz-structures
employed in this work.
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I. IMPACT OF VECTOR INSTRUCTIONS ON FP32 ACCELERATION

To show the importance of vector-instruction for improved floating point throughput, the

code was recompiled with an additional “-no-vec” specifier (all other options were identical)

to suppress vectorization by the compiler and present analogous timings to table 2 of the

main document in table S1. As expected, execution without the use of SIMD instructions

TABLE S1. The speedups within the evaluation of the 3c1e integrals from employing SIMD instruc-

tions in the pure fp64 code (vec/novec (fp64)) and in the mixed-precision code (vec/novec (mp))

and speedup from mixed precision evaluation compared to fp64 evaluation employing no vector-

instructions (mp/fp64 (novec)) are given for 2 Intel Xeon E5-2630 CPUs (20 cores@2.20 GHz).

.

System/Basis vec/novec (fp64) vec/novec (mp) mp/fp64 (novec)

(DNA)1/SVP 2.06x 3.22x 1.11x

(DNA)4/SVP 1.84x 2.95x 1.16x

(H2O)68/SVP 1.68x 2.73x 1.18x

(LiF)36/SVP 1.87x 3.14x 1.13x

Y2C5H20N20O13/SVP 2.22x 3.60x 1.10x

(DNA)1/TZVP 2.22x 3.68x 1.13x

(DNA)4/TZVP 1.85x 3.00x 1.15x

(H2O)68/TZVP 1.75x 2.81x 1.17x

(LiF)36/TZVP 1.97x 3.32x 1.17x

Y2C5H20N20O13/TZVP 2.26x 3.80x 1.14x

(DNA)1/QZVP 2.19x 3.49x 1.13x

(H2O)68/QZVP 1.78x 2.84x 1.12x

is significantly slower, i.e., up to 2.2x times slower with pure fp64 execution and up to 3.8x

times slower with mixed-precision execution. Furthermore, the speedups from employing

mixed precision in an otherwise completely identical setting are only 1.1 - 1.2x.

ii



II. ABSOLUTE EXECUTION TIMES CORRESPONDING TO

SECTION IV

In table S2 we provide the CPU-timings corresponding to the speedups in table II of

the main document and table S1. Moreover, we provide the GPU timings corresponding to

table III and table IV of the main document in table S3. Finally we provide the cumulative

GPU timings for the i-sn-LinK method corresponding to table 6 of the main document in

table S4.

TABLE S2. Time [s] for one exchange-build (K) and for the 3c1e integral evaluation (3c1e) averaged

over all but the very first SCF cycle for pure fp64 execution (fp64) and mixed-precision execution

(mp) employing vector instructions (first 4 columns) or no vector instructions (last 4 columns),

respectively. Calculations were performed on 2 Intel Xeon E5-2630 CPUs (20 cores@2.20 GHz).

.

System/Basis
fp64 [s] mp [s] fp64 novec [s] mp novec [s]

3c1e K 3c1e K 3c1e K 3c1e K

(DNA)1/SVP 3.06 3.51 1.77 2.26 6.29 6.76 5.68 6.19

(DNA)4/SVP 69.62 81.94 37.44 50.45 128.17 140.05 110.33 122.59

(H2O)68/SVP 17.27 21.05 8.97 13.07 28.95 32.66 24.52 28.44

(LiF)36/SVP 8.99 9.98 4.72 5.78 16.78 17.75 14.81 15.83

Y2C5H20N20O13/SVP 4.92 5.54 2.76 3.43 10.91 11.52 9.94 10.62

(DNA)1/TZVP 13.07 14.79 6.97 8.75 29.00 30.78 25.69 27.51

(H2O)68/TZVP 52.08 63.30 27.74 39.98 91.08 101.92 77.89 89.26

(DNA)4/TZVP 363.41 413.57 194.77 246.73 672.18 719.98 584.46 633.13

(LiF)36/TZVP 17.47 20.17 8.85 11.58 34.48 37.30 29.40 32.27

Y2C5H20N20O13/TZVP 16.28 18.36 8.53 10.69 36.78 38.87 32.39 34.52

(DNA)1/QZVP 63.75 71.08 35.43 43.00 139.54 147.04 123.72 131.30

(H2O)68/QZVP 360.32 426.71 202.95 278.37 643.00 704.93 576.58 639.76
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TABLE S3. Time [s] for one exchange-build averaged over all but the very first SCF cycle for

pure fp64 execution (fp64), mixed-precision 3c1e integral evaluation execution (mp), and pure

fp32-execution (fp32; only 1080Ti) on the GV100 and the GTX1080Ti.

.

System/Basis
1080Ti [s] GV100 [s]

fp64 mp fp32 fp64 mp

(DNA)1/SVP 3.2 2.0 0.6 1.0 1.0

(DNA)4/SVP 86.1 44.1 13.5 11.7 9.6

(H2O)68/SVP 24.6 13.4 4.2 3.9 4.0

(LiF)36/SVP 10.2 4.1 1.9 1.7 1.6

Y2C5H20N20O13/SVP 5.6 2.9 0.9 1.2 1.2

(DNA)1/TZVP 15.0 6.9 2.1 2.4 2.0

(H2O)68/TZVP 380.5 185.2 51.3 51.7 36.5

(DNA)4/TZVP 68.7 40.4 10.6 10.1 8.2

(LiF)36/TZVP 20.4 10.0 3.6 3.2 2.7

Y2C5H20N20O13/TZVP 17.6 8.8 2.5 2.9 2.2

(DNA)1/QZVP 71.0 33.1 11.3 15.5 8.7

(H2O)68/QZVP 457.4 265.0 62.5 74.1 51.3

III. RESULTS FOR THE PBE0 FUNCTIONAL

Analogous results to table IX of Section IV-B assessing the errors from reduced precision

execution, but employing the PBE0 hybrid density functional instead of Hartree-Fock, are

given in table S5.

Since only 25 % of exact-exchange is employed in this hybrid-functional, the errors are

expected to be proportionally lower than the corresponding Hartree-Fock results. This fact

is indeed supported by the results of table S5, where the errors for ∆P are always smaller

than the respective Hartree-Fock errors of the main manuscript. Therefore, the presented

mixed-precision methods can just as well be employed for hybrid-DFT as for Hartree-Fock

calculations without any additional considerations regarding the accuracy.

Moreover, the speedups for exact-exchange evaluation within the PBE0-functional given
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TABLE S4. Cumulative time [s] for all exchange-builds within the SCF and the final exchange-

energy build for pure fp64 execution (fp64) and i-sn-LinK on the GTX1080Ti. In addition, the

individual timings within i-sn-LinK are given: time for one mixed-precision K-build (mp-K) and

for the final energy calculation (final K).

.

System/Basis fp64 [s] i-sn-LinK [s] mp-K [s] final K [s]

(DNA)1/SVP 63.9 13.3 1.8 3.8

(DNA)4/SVP 1358.4 270.1 43.7 64.7

(H2O)68/SVP 313.5 68.3 13.3 18.1

(LiF)36/SVP 127.4 29.8 4.0 9.4

Y2C5H20N20O13/SVP 101.4 20.6 2.7 6.5

(DNA)1/TZVP 257.4 51.8 7.6 14.4

(H2O)68/TZVP 5987.1 1153.4 184.6 263.0

(DNA)4/TZVP 889.8 190.5 40.0 49.8

(LiF)36/TZVP 259.6 59.0 9.4 15.7

Y2C5H20N20O13/TZVP 296.4 59.4 8.9 17.7

(DNA)1/QZVP 1082.3 244.7 32.0 56.5

(H2O)68/QZVP 5348.6 1158.0 263.3 281.9

in table S6 are very similar to the Hartree-Fock results presented in the main manuscript.
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TABLE S5. Analogous results to table IX of main manuscript for the PBEH-functional.

Molecule Basis
Niter(10−7) ∆E [µEh] ∆P [10−6] ∆Forces [µEh a0

−1]

fp64 mp i-sn-LinK mp i-sn-LinK mp i-sn-LinK mp i-sn-LinK

Taxol 6-31G* 12 12 12 <0.01 <0.01 <0.01 <0.01 <0.01 0.02

Valinomycin 6-31G* 12 12 12 <0.01 <0.01 <0.01 <0.01 <0.01 0.03

Olestra 6-31G* 12 12 12 <0.01 <0.01 <0.01 <0.01 <0.01 0.04

Fullerene C60 TZVP 11 11 12 <0.01 <0.01 0.04 1.34 0.01 0.10

Fullerene C60 QZVP 10 10 12 -0.01 <0.01 0.09 0.65 0.02 0.04

(S8)20 TZVP 11 11 11 <0.01 <0.01 <0.01 <0.01 <0.01 0.17

Crambin TZVP 16 16 16 <0.01 0.02 0.01 0.27 <0.01 0.10

(DNA)1 SVP 11 11 11 <0.01 <0.01 <0.01 <0.01 <0.01 0.03

(DNA)4 SVP 12 12 12 <0.01 <0.01 <0.01 0.01 <0.01 0.07

(DNA)16 SVP 14 14 14 <0.01 <0.01 <0.01 0.02 <0.01 0.28

(DNA)1 TZVP 11 11 12 <0.01 <0.01 <0.01 0.06 <0.01 0.04

(DNA)4 TZVP 11 11 12 <0.01 <0.01 <0.01 0.05 <0.01 0.11

(DNA)1 QZVP 11 11 11 <0.01 <0.01 0.01 0.06 <0.01 0.07

(DNA)4 QZVP 11 11 11 0.02 0.02 0.01 0.08 0.01 0.24

Y2C5H20N20O13 TZVP 12 12 12 <0.01 <0.01 <0.01 0.01 <0.01 0.02

Y4C10H42N40O27 TZVP 11 11 12 <0.01 <0.01 <0.01 0.06 <0.01 0.07
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TABLE S6. Analogous results to table XI of main manuscript for the PBEH-functional.

Molecule Basis Nbfc

K-Time [s] GPU K-Time [s] CPU

fp64 mp i-sn-LinK fp64 mp

Taxol 6-31G* 1013 198 93 (2.1x) 42 (4.8x) 193 112 (1.7x)

Valinomycin 6-31G* 1350 388 183 (2.1x) 78 (4.9x) 371 211 (1.8x)

Olestra 6-31G* 3181 759 451 (1.7x) 157 (4.8x) 653 431 (1.5x)

Fullerene C60 TZVP 2160 765 366 (2.1x) 169 (4.5x) 831 474 (1.8x)

Fullerene C60 QZVP 4320 2659 1238 (2.1x) 686 (3.9x) 2808 1634 (1.7x)

(S8)20 TZVP 6720 2966 1523 (1.9x) 529 (5.6x) 2792 1657 (1.7x)

Crambina TZVP 13698 33085 16326 (2.0x) 6940 (4.8x) 37066 24293 (1.5x)

(DNA)1 SVP 660 49 27 (1.8x) 13 (3.9x) 49 31 (1.6x)

(DNA)4 SVP 2904 1185 603 (2.0x) 254 (4.7x) 1187 727 (1.6x)

(DNA)16 SVP 11880 12822 8262 (1.6x) 2690 (4.8x) 11293 7938 (1.4x)

(DNA)1 TZVP 1422 192 97 (2.0x) 30 (6.4x) 199 117 (1.7x)

(DNA)4 TZVP 6336 4841 2412 (2.0x) 1030 (4.7x) 5373 3147 (1.7x)

(DNA)1 QZVP 3465 957 459 (2.1x) 213 (4.5x) 941 560 (1.7x)

(DNA)4
a QZVP 15030 21305 9673 (2.2x) 5277 (4.0x) 22589 13931 (1.6x)

Y2C5H20N20O13 TZVP 1580 278 138 (2.0x) 57 (4.9x) 272 156 (1.7x)

Y4C10H42N40O27 TZVP 3208 1014 491 (2.1x) 207 (4.9x) 1014 587 (1.7x)

aReduced grid-batch size due to limited GPU memory.
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3.4 Publication IV: Accelerating Hybrid Density Functional
Theory Molecular Dynamic Simulations by Seminumerical
Integration, Resolution-of-the-Identity Approximation, and
Graphics Processing Units

H. Laqua, J. C. B. Dietschreit, J. Kussmann, C. Ochsenfeld
J. Chem. Theory Comput. 18, 6010 (2022).

Abstract

The computationally very demanding evaluation of the 4-center-2-electron (4c2e) integrals
and their respective integral derivatives typically represents the major bottleneck within
hybrid Kohn-Sham density functional theory molecular dynamics simulations. Building
upon our previous works on seminumerical exact-exchange (sn-LinK) [Kussmann J.,
Laqua H., Ochsenfeld C., J. Chem. Theory Comput. 2021, 17, 1512], and resolution-of-
the-identity Coulomb (RI-J) [Kussmann J., Laqua H., Ochsenfeld C., J. Chem. Theory
Comput. 2021, 17, 1512], the expensive 4c2e integral evaluation can be avoided entirely,
resulting in a highly efficient electronic structure theory method, allowing for fast ab
initio molecular dynamics (AIMD) simulations even with large basis sets. Moreover, we
propose to combine the final self-consistent field (SCF) step with the subsequent nuclear
forces evaluation, providing the forces at virtually no additional cost after a converged
SCF calculation, reducing the total runtime of an AIMD simulation by about another
25 %. In addition, multiple independent MD trajectories can be computed concurrently
on a single node, leading to a greatly increased utilization of the available hardware –
especially when combined with graphics processing unit acceleration – improving the
overall throughput by up to another 5 times in this way. With all of those optimizations
combined, our proposed method provides nearly 3 orders of magnitude faster execution
times than traditional 4c2e integral-based methods. To demonstrate the practical utility
of the approach, quantum-mechanical/molecular-mechanical dynamics simulations on
double-stranded DNA were performed, investigating the relative hydrogen bond strength
between adenine-thymine and guanine-cytosine base pairs. In addition, this illustrative
application also contains a general accuracy assessment of the introduced approximations
(integration grids, resolution-of-the-identity) within AIMD simulations, serving as a
protocol on how to apply these new methods to practical problems.

Reprinted with permission from:

H. Laqua, J. C. B. Dietschreit, J. Kussmann, C. Ochsenfeld
“Accelerating Hybrid Density Functional Theory Molecular Dynamic Simulations by
Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics
Processing Units”
J. Chem. Theory Comput. 18, 6010 (2022).

Copyright 2022 American Chemical Society.
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ABSTRACT: The computationally very demanding evaluation of
the 4-center-2-electron (4c2e) integrals and their respective integral
derivatives typically represents the major bottleneck within hybrid
Kohn−Sham density functional theory molecular dynamics
simulations. Building upon our previous works on seminumerical
exact-exchange (sn-LinK) [Laqua, H., Thompsons, T. H.,
Kussmann, J., Ochsenfeld, C., J. Chem. Theory Comput. 2020, 16,
1465] and resolution-of-the-identity Coulomb (RI-J) [Kussmann,
J., Laqua, H., Ochsenfeld, C., J. Chem. Theory Comput. 2021, 17,
1512], the expensive 4c2e integral evaluation can be avoided
entirely, resulting in a highly efficient electronic structure theory
method, allowing for fast ab initio molecular dynamics (AIMD)
simulations even with large basis sets. Moreover, we propose to combine the final self-consistent field (SCF) step with the
subsequent nuclear forces evaluation, providing the forces at virtually no additional cost after a converged SCF calculation, reducing
the total runtime of an AIMD simulation by about another 25%. In addition, multiple independent MD trajectories can be computed
concurrently on a single node, leading to a greatly increased utilization of the available hardware�especially when combined with
graphics processing unit acceleration�improving the overall throughput by up to another 5 times in this way. With all of those
optimizations combined, our proposed method provides nearly 3 orders of magnitude faster execution times than traditional 4c2e
integral-based methods. To demonstrate the practical utility of the approach, quantum-mechanical/molecular-mechanical dynamics
simulations on double-stranded DNA were performed, investigating the relative hydrogen bond strength between adenine−thymine
and guanine−cytosine base pairs. In addition, this illustrative application also contains a general accuracy assessment of the
introduced approximations (integration grids, resolution-of-the-identity) within AIMD simulations, serving as a protocol on how to
apply these new methods to practical problems.

1. INTRODUCTION
Hybrid density functional theory (hybrid-DFT) has become
the de facto standard for many quantum chemistry applications
due to its excellent cost-performance ratio. However, the
evaluation of the 4-center-2-electron (4c2e) integrals, which
are necessary for the Coulomb and exact-exchange inter-
actions, as well as the numerical integration to evaluate the
semi-local exchange-correlation (XC) functional, represents
significant computational bottlenecks.
For the evaluation of the Coulomb-interaction, the explicit

computation of the 4c2e integrals can be avoided using the
resolution-of-the-identity approximation (RI-J),1 which can be
further accelerated by a modified2 J-engine algorithm2−5 and
the use of graphic processing units (GPUs). Similarly, for the
exact-exchange interaction, the computation of the 4c2e
integrals can be avoided using seminumerical integration,6−14

for which we recently developed the linear-scaling, GPU-
accelerated sn-LinK method.15,16 Finally, the slowest steps of
the numerical integration of the semi-local XC functional can

be formulated as matrix−matrix multiplications, for which
highly optimized linear algebra libraries can be employed. In
combination with batch-wise screening and GPU acceleration,
this integration can therefore also be performed very
efficiently.2

In addition, within seminumerical integration the nuclear
forces, that is, the derivative of the energy with respect to the
nuclear coordinates, are obtainable without computing the
corresponding integral derivatives.8,9 Moreover, when com-
bined with the final self-consistent-field (SCF) step, the exact-
exchange gradient can be obtained at only marginal overhead
after a converged SCF calculation, leading to another
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substantial efficiency gain compared to analytical integration.
To our knowledge, such a combination of seminumerical
exchange energy and forces has so far not been exploited and is
the prime motivation for our present work.
Because similar combinations of energy and forces

computations can also be applied to the resolution-of-the-
identity-Coulomb (RI-J) approximation and the numerical
integration of the semi-local XC functional (cf. Sections 2.2
and 2.3 of ref 2), nuclear gradients are obtainable at virtually
no overhead from a converged hybrid-DFT calculation. These
savings are especially relevant within ab initio molecular
dynamics (AIMD) simulations, where, due to the use of the
extended-Lagrangian (xl) extrapolation of the density
matrix,17−21 only a few SCF-cycles have to be performed in
each MD step, so that the reduced computation time for the
nuclear forces is even more impactful.
Therefore, we present the applicability of these low-

overhead nuclear forces to AIMD simulations and discuss
the practical impact of the introduced approximations (RI,
numerical integration, finite time steps) on the quality of the
MD trajectories and the associated performance gains. As an
example, we investigate the different hydrogen-bond strengths
of the two Watson−Crick pairs in double-stranded (DS) DNA.
We especially focus on the corresponding markers in
vibrational spectra, that is, the red or blue shift of the
respective modes. In this way, we aim to provide a protocol
regarding, for example, grids, thresholds etc., outlining how to
apply our sn-LinK method to practical quantum-chemical
simulations.
The paper is structured as follows: first, we briefly

summarize the theory of the RI-J contributions (matrix,
energy, and forces) and of the seminumerical exchange method
sn-LinK and subsequently derive the corresponding integral-
derivative-free exchange forces in Section 2. We report on the
computational setup in Section 3 and then assess the accuracy
of the introduced approximations (RI, finite integration grids,
and finite time steps) by looking at the vibrational density of
state (VDoS) spectra of DNA bases obtained from Fourier
analysis22 of AIMD trajectories in Section 4. Subsequently, we
compare the performance to conventional 4c2e integral-based
methods (LinK23,24 for exchange, J-engine3−5 for Coulomb
contributions) for different basis sets in Section 5.
Finally, we utilize the significantly improved efficiency to

perform AIMD simulations of DS-DNA in order to quantify
the hydrogen-bond strength between the base pairs by analysis
of the vibrational free energies22,25,26 of the corresponding
hydrogen atoms in Section 6. This application illustrates the
practical importance of our method for low-cost evaluation of
nuclear gradients because the required AIMD trajectories,
which comprise over 2 million nuclear gradient calculations in
total, would otherwise come at a prohibitively high computa-
tional cost.

2. THEORY
2.1. Resolution-of-the-identity Approximation for

Coulomb Interactions (RI-J). The resolution-of-the-identity
(RI) approximation employing Coulomb-fitting decomposes
the 4-center-2-electron (4c2e) integral tensor as

|
| |

| | |P P Q Q

r r r r
r r

r r( ) d d ( ) ( )
1

( ) ( )

( )( ) ( )
PQ

1 2 1 1
1 2

2 2

1

(1)

where μ, ν, λ, σ denote atomic orbital (AO) basis functions, P,
Q, R, S denote auxiliary AO-type basis functions, and (P|Q)−1

denotes the matrix inverse of the 2-center-2-electron (2c2e)
integrals (P|Q).
This decomposition is particularly useful for Coulomb-like

interactions, for example, the Coulomb matrix can be obtained
as

= | | | |J P P P Q Q P( ) ( )( ) ( )
PQ

1

(2)

where Pλσ denotes elements of the density matrix. Equation 2 is
evaluated in three consecutive steps

= |B Q Pstep 1: ( )Q
(3)

= |B P Q Bstep 2: ( )P
Q

Q
1

(4)

= |J P Bstep 3: ( )
P

P
(5)

where steps 1 and 3 require on-the-fly computation of the 3-
center-2-electron (3c2e) integrals (Q|λσ) and thus represent
the computational bottleneck. In order to overcome this
bottleneck, a modified J-engine algorithm is employed to
evaluate both steps very efficiently.1−5

Note that, if only the Coulomb energy

= | | |
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needs to be calculated (e.g., after the final SCF step), the
evaluation of step 3 (eq 5) can be omitted.
By differentiation of eq 6 with respect to the nuclear

coordinates (cf. Section 2.2 of ref 2), the expression for the
nuclear forces within the RI-J approximation is obtained as
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where the superscript x denotes the derivative of the respective
quantity with respect to one nuclear coordinate. All three
terms can be evaluated from the intermediate quantity BP of
step 2 (eq 4) as

= [ ] |E P B( ) )J
x

P

x
P,1

(8)
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Consequently, combining the final (post-SCF) energy and
forces builds avoids the repeated evaluation of steps 1 and 2,
which are necessary in both cases. The slowest steps within the
application of the RI-J approximation are the ones involving
3c2e integrals or their respective derivatives, eqs 3, 5, 8, and 9,
all of which scale formally as N N M( )AO

2
aux

3 (NAO =
number of AO basis functions, Naux = number of auxiliary basis
functions, M = number of atoms) which reduces to
asymptotically M( )2 due to the fast exponential distance
decay of the AO overlap distributions [μν].
2.2. Seminumerical Integration. In contrast to the RI

approximation, seminumerical integration decomposes the
4c2e integral tensor as
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| |
w r r r

r r
r r

( ) ( )

( ) ( ) d
( ) ( )

g
g g g

g

num ana

(11)

where rg denotes grid-points with corresponding weights wg.
Depending on the specific use case, eq 11 may also be
symmetrized as
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Inserting the symmetric decomposition into the AO
representation of the exchange matrix leads to

= |

[ [ ] |[ ] + [ ] |[ ] ]

K P

P

( )

1
2

( ) ( )num ana ana num

(13)
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
=

| |
+w Pr r

r r

r r
r

1
2

( ) d
( ) ( )

( ) transpose
g

g g
g

g

(14)

where the transpose is due to the symmetrization in eq 12.
Equation 13 is best evaluated in three steps

=F Prstep 1: ( )g g
(15)

=G w A Fstep 2: g g gg
(16)

=K Grstep 3: ( )
g

g g
(17)

and finally symmetrized to account for the transpose. Here, the
evaluation of step 2 (eq 16) typically represents the slowest
step due to the 3-center-1-electron (3c1e) integrals

=
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r r

r r
d

( ) ( )
,g
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which are on-the-fly evaluated using machine-optimized
[common sub-expression elimination (CSE) using SymPy27]
Obara−Saika28,29 recurrence relations.
2.3. Seminumerical Exact-Exchange Gradients. Insert-

ing the asymmetric tensor decomposition (eq 11) into the AO
expression for the exchange-gradients
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In this way, the computation of any integral-derivatives is
avoided completely�a significant advantage compared to the
analytical exchange gradients of eq 19. However, the so
obtained gradients are, contrary to the RI-J gradients, not the
exact derivative of the semi-numerical exchange energy when
using incomplete grids. Instead, they utilize a slightly different
approximation to the exact (analytical) gradient than the
seminumerical approximation of Section 2.2. The practical
impact of this finite-grid effect, which vanishes rapidly for
sufficiently large integration grids, is further investigated in
Sections 4 and in S2 of the Supporting Information.
Equation 20 can be evaluated with little overhead from the

intermediate quantity Gνg of eq 16, employing two additional
steps

=Z P Gg g
(21)

=E Zr4 ( )K
x

g

x
g g

(22)

The perturbed basis-function values are readily available
from the gradient of the basis functions

l
m
oooo
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oooo

= xr
r
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( ) centered at perturbed nucleus
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x
g

(23)

Because the intermediate quantity Gνg is required for the
exchange matrix, exchange energy, and the exchange forces, all
three quantities are best evaluated in one combined step. That
is, the exchange-forces are best evaluated together with the
final Fock-build, which adds only a very small overhead
(dominated by the evaluation of eq 21) because the evaluation
of the 3c1e integrals necessary for the evaluation of Gνg (eq 16)
is usually the computational bottleneck due to its formal

N N M( )AO
2

g
3 (Ng = number of grid points) time

complexity. This scaling can be reduced to asymptotically
M( ), exploiting both the locality of the AO basis functions

and the sparsity of the density matrix employing tight batch-
wise integral screening, representing the fundamental principle
of our sn-LinK method.15,16

For details regarding the implementation of sn-LinK, we
refer the reader to ref 15 and within this work focus instead
more on the practical implications regarding the application of
seminumerical exchange methods within AIMD simulations,
for example, which grid to choose, what errors and artifacts to
expect, and what level of performance can be achieved.
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3. COMPUTATIONAL DETAILS
All calculations were performed with our Fermions++
program.30,31 The exchange gradients were implemented on
top of our existing GPU-accelerated seminumerical exact-
exchange method sn-LinK,15,16,32 employing mixed-precision
floating point execution in combination with incremental
Fock-builds (cf. ref 16). That is, all incremental exchange-
builds were evaluated with pure single-precision (fp32),
whereas the very first (nonincremental) exchange-matrix
build as well as the final energy/forces build were evaluated
with mixed single/double precision (fp32/fp64).
For both, the seminumerical integration as well as the

numerical integration of the semi-local exchange−correlation
functional, the integration grids defined in ref 33 have been
employed. Throughout this work, we use the multi-grids
“gm[2−5]”, that is, the SCF was converged with smaller grids
(e.g., “g1” for “gm3”) than the final energy and forces
computation, providing a significant efficiency improvement
with virtually no deterioration of the overall accuracy (cf.
discussion in ref 33). Furthermore, because only a fraction
(e.g., 42% for PBEh-3c34) of exact-exchange is employed in
hybrid-DFT and the grid-errors of the exact-exchange part are
typically smaller than for the semi-local exchange−correlation
part, we employ smaller grids for the exact-exchange
contributions (e.g., “gm2” for “gm3” parent grid). For the
RI-J approximation, the universal-J-fit basis of Weigend35 has
been used throughout this work.
In order to accelerate the SCF convergence in each MD

simulation step, accurate guess densities were obtained from
the previous nine density matrices according to the extended-
Lagrangian extrapolation method17−21 so that SCF conver-
gence to within 10−6 for the DIIS-error RMS(FPS − SPF) was
achieved within 4−5 SCF cycles. Moreover, the dissipative
force term in the extended-Lagrangian extrapolation of the
density matrix prevents a cumulative build-up of numerical
errors from incomplete SCF convergence and ensures time-
reversibility.
The VDoS were obtained from the Fourier transformation

of the velocity autocorrelation function +v t v( ) ( )A A for
each nucleus A (cf. Section 2.2 of ref 22) as

=

= +

S S
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A

A
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0
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(24)

All VDoS spectra presented in this work are averaged over
10 MD trajectories of 20 ps length each, where (unless stated
otherwise) the temperature was kept at 300 K employing the
Bussi−Donadio−Parinello thermostat.36 The quantum-me-

chanical (QM) vibrational free energy was obtained from the
VDoS spectra according to ref 37 as
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All further details regarding the setup of the AIMD
simulations can be found in Section S1 of the Supporting
Information.

4. ACCURACY OF THE NUMERICAL QUADRATURES
The numerical integration on a finite set of grid points leads to
small numerical errors in the potential energy surface (PES),
which quickly vanish with an increase in grid resolution. In
practice, this manifests as tiny waves in the PES, that are on the
order of a few μEh, which is usually insignificant for chemical
energy differences, but can become relevant for very low-
frequency harmonic vibrational modes.
In contrast, high-frequency vibrations are instead mostly

affected by the finite-time step errors in an MD simulation
because a sufficient amount of sampling points per oscillation
is required to properly resolve the vibration. To illustrate the
effects of these two numerical artifacts, we investigate the
influence of the numerical integration grid and the MD time
step size on the very high-frequency N−H bond stretch modes
and the very low-frequency CNH2 out-of-plane wagging modes
of adenine, as shown in Figure 1.
First, the effect of numerical integration and the RI

approximation on single-point harmonic frequencies is
investigated in Table 1, confirming that the low-frequency

wagging mode is indeed substantially more sensitive to the RI
and the numerical integration exhibiting errors in excess of 5
cm−1, compared to the high-frequency modes with errors
below 1 cm−1. In any case, the results can always be converged
to the analytical results with tighter grids and larger RI basis
sets.
After the investigation of single-point harmonic frequencies,

we examine the respective peaks in the VDoS spectra (cf. eq

Figure 1. Vibrational modes of the NH2-group investigated in this section. Left: out-of-plane wagging. Middle: symmetric bond-stretching. Right:
asymmetric bond stretching.

Table 1. Vibrational Frequencies [cm−1] of Selected
Harmonic Modes of Adenine for Different Numerical
Quadratures (Grid, RI-J) Employing PBEh-3c

method NH2-wagging sym. NH2 stretch asym. NH2 stretch

analytical 110.1 3706.2 3836.7
gm5 no RI-J 110.2 3706.2 3836.6
gm3 no RI-J 116.9 3706.0 3836.2
gm5 with RI-J 103.2 3706.1 3835.9
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24) of adenine in Figures 2 and 3. In contrast to the harmonic
frequencies, these spectra are not substantially affected by
either RI or numerical integration even with the smallest
(gm3) grid, neither at low nor at high frequencies. The RI-J
approximation has a minor impact on the shape of the high-
frequency peaks given on the right side of Figure 2, whereas
the effect of the integration grid is completely insignificant
(smaller than the MD sampling error).
In contrast, the high-frequency modes are instead much

more substantially affected by the size of the simulation time-
step (left side of Figure 3), requiring about 0.2 fs per step to be
sufficiently converged. Furthermore, the results for the low-
frequency wagging mode (right side of Figure 3) are
particularly surprising because this mode is completely absent
from the VDoS spectrum at 300 K and only appears at
extremely low temperatures (1 K; right side of Figure 3).
This temperature effect is best explained by a scan of the

wagging mode, as presented in Figure 4: the mode is
substantially anharmonic within the thermally accessible region
of the energy surface. Thus, the harmonic approximation
provides a qualitatively wrong result at 300 K and the actual
vibration, which is only properly captured within the MD
simulation, appears at much higher frequencies and overlaps
with other molecular vibrations, explaining its apparent
absence.
This result that the harmonic approximation is inapplicable

for ultralow-frequency modes at finite temperatures is
completely general. To illustrate, because the thermally
accessible region within a low-frequency mode is always
large, truncation of the Taylor series expansion around the
minimum after the quadratic term generally incurs a large
error. Consequently, proper sampling of the PES (e.g., via
MD) in a large region around the minimum is necessary
instead. Therefore, we argue that numerical errors of low-

frequency harmonic vibrations (as presented in Table 1) are
only a symptom of the underlying problem within the
harmonic approximation, which disappears when employing
proper MD-based sampling as shown on the right side of
Figure 3.

5. PERFORMANCE
For a practical illustration, we compare the performance for
three increasingly demanding exact-exchange including elec-
tronic structure methods, that is, PBEh-3c34 (reparametrized
PBE0-functional38−41 with modified def2-SVP42 basis set),
ωB97M-V/def2-TZVP, and ωB97M-V/def2-QZVPPD (the
def2-prefix is omitted in the following for brevity).43,44 We
decided to test the performance on the main system of interest
of this work, namely, an adenine−thymine DNA DS employing
quantum-mechanical/molecular-mechanical (QM/MM) elec-
trostatic embedding45 with a total of 90 atoms (three DNA-

Figure 2. VDoS spectrum of the adenine amino-H in vacuo (colored red; H61 see Figure 5) employing different numerical quadratures. The solid
line represents the mean over all 10 trajectories and the lightly shaded regions correspond to the standard error of the mean (SEM). Left: whole
spectrum. Right: zoom-in at 3600−3900 cm−1.

Figure 3. VDoS spectrum of the adenine amino-H in vacuo (colored red; H61 see Figure 5). Solid lines represent the mean over 10 trajectories and
shaded regions the SEM. Left plot: zoom-in on N−H stretch mode at 300 K and gm5 w/o RI-J for simulations with different time steps. Right plot:
zoom-in on NH2-wagging mode with a time step of 0.2 fs.

Figure 4. Relaxed scan (PBEh-3c) of the N−C−H−H dihedral angle
(NH2-wagging mode).
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base pairs) treated with QM and ∼9000 atoms treated with
MM. Although the overall computational efficiency is mostly
determined by the QM part, we provide the details of the MM
treatment and the QM/MM embedding in Section S1 of the
Supporting Information.
All timings are given for one full MD step averaged over 10

steps, where each MD step consists of a fully converged SCF
calculation and a subsequent energy and forces calculation,
either separately or one combined computation as described in
Section 2. The SCF calculation typically requires ∼3 SCF steps
to achieve sufficient convergence [DIIS error RMS(FPS −
SPF) < 10−6]. This fast SCF convergence is due to the
extended-Lagrangian extrapolation method17−21 which pro-
vides a very accurate initial guess by linear-combination of the
previous nine density matrices.
As apparent from the timings in Table 2, RI-J and sn-LinK

always outperform conventional, 4c2e integral-based methods
for Coulomb and exchange builds, especially with regards to
larger basis sets, for example, they yield speedups of 5.7× (2.5 s
instead of 14.2 s) for the exchange matrix builds (K-Pot.) using
PBEh-3c/mSVP or 130× (257.3 s instead of 34,261.0 s) for
ωB97M-V/QZVPPD. The better speedups for larger basis sets
are a direct consequence of the lower N( )bas

2 scaling with
respect to the AO basis set of RI-J and sn-LinK compared to
the formal N( )bas

4 scaling of conventional methods.
Moreover, the overall time spent on exact-exchange

contributions is generally much larger than on Coulomb
contributions so that the absolute saving from RI-J compared
to the conventional J-engine3 method are less significant.
Nevertheless, the use of the RI-J approximation is still essential
for large basis sets: to illustrate, the 1624.2 s required for the
Coulomb-potential builds for ωB97M-V/QZVPPD�albeit

small compared to 34,261.0 s for the conventional
computation of the exchange matrix�is still very substantial
when contrasted with the total step-time of RI-J/sn-LinK of
only 793.4 s. Using the RI-J approximation removes this
bottleneck entirely, that is, reducing the computation time over
200-fold from 1624.2 to 7.6 s.
In addition, the advantage of combining energy and force

builds becomes apparent: the cost of exact-exchange energy
and forces is reduced by about 50%, for example, 190.7 s
instead of 373.4 s for ωB97M-V/QZVPPD, reflecting the fact
that the combination of energy and forces is obtained at
essentially the same cost as each separate energy and forces
computation individually. The so-obtained time savings are
quite significant, roughly equaling the time of all SCF steps
combined (e.g., 22.1 s instead of 41.0 s equaling 18.9 s
reduction for ωB97M-V/TZVP), ultimately leading to a 25%
reduction of the total MD step time (e.g., 69.5 s instead of 92.4
s for ωB97M-V/TZVP).
Similarly, the semilocal XC energy and forces can be

obtained up to 1.8× faster (17.2 s instead of 30.6 s for ωB97M-
V/QZVPPD). The speedups from combining RI-J energy and
forces, however, are considerably smaller, for example, only
1.3× speedups (4.9 s instead of 6.1 s) for ωB97M-V/
QZVPPD, because the evaluation of the RI-J forces requires
additional compute-expensive steps, particularly the steps
involving the perturbed 3c−2e integrals (eqs 8 and 9).
This already quite impressive performance is even further

improved with GPU acceleration, especially for the larger
basis-sets TZVP and QZVPPD, which provide more parallel
workload, for example, another 5.9× acceleration (43.7 s
instead of 256.6 s) is achieved for the K-potential builds for
ωB97M-V/QZVPPD. Similar levels of GPU acceleration are
also observed for the semilocal XC contribution, for example,

Table 2. Cumulative Time in Seconds for All Exchange (K), Coulomb (J), and Exchange−Correlation (XC) Contributions for
One QM/MM AIMD Step of One AT DNA Double Strand in Aqueous Solution (90 QM, 9239 MM Atoms) Averaged over 10
MD Steps, Decomposed into the Respective Potential Matrix Builds within the SCF (Pot.) and the Final Energy and Gradient
Builds (E + G)a

K [s] J [s] XC [s]

method hardware Pot. E + G Pot. E + G Pot. E + G other total

PBEh-3c/mSVP
conv. J/K (sep. grad.) CPU 14.2 13.5 2.0 2.1 0.8 1.8 4.8 39.3
RI-J/sn-LinK (sep. grad.) CPU 2.5 5.5 0.4 0.4 0.7 1.6 3.1 16.5
RI-J/sn-LinK (comb. grad.) CPU 2.5 2.9 0.4 0.2 0.7 1.3 4.8 12.8
RI-J/sn-LinK (comb. grad.) GPU 1.7 1.7 0.4 0.2 0.2 0.2 5.8 10.4
RI-J/sn-LinK 16 instancesb GPU 2.1

ωB97M-V/TZVP
conv. J/K (sep. grad.) CPU 300.8 410.7 37.6 38.8 6.3 9.0 16.7 820.0
RI-J/sn-LinK (sep. grad.) CPU 18.9 41.0 1.3 1.0 6.2 6.9 17.1 92.4
RI-J/sn-LinK (comb. grad.) CPU 19.4 22.1 1.3 0.8 6.0 4.3 15.6 69.5
RI-J/sn-LinK (comb. grad.) GPU 5.2 3.9 1.2 0.8 1.6 0.9 15.9 29.5
RI-J/sn-LinK 8 instancesb GPU 10.7

ωB97M-V/QZVPPD
conv. J/K (sep. grad.) CPU 34261.0 29470.7 1624.2 1289.0 31.7 39.8 60.6 66777.0
RI-J/sn-LinK (sep. grad.) CPU 257.3 373.4 7.6 6.1 35.2 30.6 83.2 793.4
RI-J/sn-LinK (comb. grad.) CPU 256.6 190.7 7.7 4.9 34.9 17.2 80.0 591.9
RI-J/sn-LinK (comb. grad.) GPU 43.7 22.9 9.0 4.7 7.2 2.2 86.2 176.0
RI-J/sn-LinK 4 instancesb GPU 90.2

aTimings are given for pure CPU execution (2 Intel Xeon Silver 4216 CPUs; 32 cores, 64 threads@2.1 GHz) and with GPU acceleration (4
Radeon VII GPUs) employing conventional (4c2e integral based) Coulomb/exchange builds (conv. J/K) or RI-J and sn-LinK. The latter is given
for separate (sep. grad.) and combined energy and gradient builds (comb. grad). bEffective step time as measured by total MD throughput by
running multiple program instances concurrently on one compute node (see also text for explanation).
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4.8× (7.2 s instead of 34.9 s) and 7.8× (2.2 s instead of 17.2 s)
for the ωB97M-V/QZVPPD XC potential and forces,
respectively. Note that the RI-J part was exclusively computed
with CPUs because the simulated system size of 90 QM atoms
is not large enough to provide sufficient parallel workload for
efficient GPU acceleration (cf. discussion in Section 4.1 of ref
2). However, given the comparatively low cost of the RI-J
steps, this does not result in a significant performance loss in
practice.
To summarize, compared to conventional 4c2e integral-

based evaluation, the application of sn-LinK in combination
with GPUs accelerates the computation of the exact-exchange
potential by up to 780× (43.7 s instead of 34,261.0 s for
ωB97M-V/QZVPPD) and the exact-exchange energy and
forces by up to 1300× (22.9 s instead of 29,470.7 s for
ωB97M-V/QZVPPD). Due to this immense acceleration of
the typical computational bottlenecks, that is, the computation
of the Coulomb-, the exact-exchange, and the semilocal
exchange−correlation contributions, these steps only comprise
about 50% of the total computation time. The other 50% of
the computation time (denoted by the “other” column in
Table 2) is split between dozens of other necessary steps, for
example, the preparation of the shell-pair data, the generation
of the integration grids, the diagonalization of the Kohn−Sham
matrix, the evaluation of one-electron terms, QM/MM
interactions, the MM-forces, and many more.
Because many of these other steps run exclusively on CPUs,

we expect substantial speedups (increased total throughput) by
running multiple independent program instances concurrently
on a single node, as indicated by results presented in Table 3
and the last rows of Table 2. Addtional data to multi-instance
performance is also provided in Section S3 of the Supporting
Information.

The program instances run completely independently
without any synchronization and each process has access to
all four GPUs but only their proportional share of the total 64
CPU threads (e.g., 4 threads per instance at 16 program
instances). In this way, the available hardware is better utilized
because some instances can perform GPU-accelerated work-
loads (e.g., exact-exchange calculations with sn-LinK), while

another instance computes CPU intensive workloads (e.g.,
generation of shell-pair data). Consequently, substantial
speedups from this approach are only obtained in combination
with GPU execution, for example, 5.0× speedup (2.1 s instead
of 10.4 s) for PBEh-3c/mSVP and 16 instances with GPU
acceleration, but only 1.5× (8.6 s instead of 12.8 s) for PBEh-
3c/mSVP and 8 instances without GPUs.
In practice, each individual MD trajectory runs somewhat

slower, but the overall throughput is greatly improved because
multiple trajectories can be computed concurrently on the
same node, thus improving the utilization of limited hardware
resources. Because each process operates on private memory,
this multi-instance approach results in proportionally increased
overall memory demand, restricting the amount of possible
instances, particularly for the more demanding calculation
employing larger basis sets. Nevertheless, we consider this
multi-instance approach very worthwhile considering possible
speedups of up to 5-fold on top of the already impressive
speedups from sn-LinK, RI-J, and GPU acceleration.
Overall, the performance that can be achieved with RI-J and

sn-LinK together with GPU acceleration and multi-instancing
is very impressive, for example, 2.1 s for PBEh-3c/mSVP (921
basis functions), 10.7 s for ωB97M-V/TZVP (1965 basis
functions), and 90.2 s for ωB97M-V/QZVPPD (4698 basis
functions), the latter improving the runtime per MD step 740-
fold from 66,777.0 to 90.2 s.

6. ILLUSTRATIVE APPLICATION: HYDROGEN-BOND
STRENGTH IN DS DNA

In the following, we illustrate a practical application of the fast
AIMD method presented above (RI-J + sn-LinK), investigating
the hydrogen bond strength in DS DNA as indicated by red
and blue shifts of the corresponding covalent NH-bond
vibrations. In the following, the atoms of the nucleobases are
referenced by their IUPAC-numbering, represented in
Figure 5.
In order to incorporate the influence of the surrounding

DNA-bases and the aqueous solvent environment, the two
model systems contain nine DNA base pairs including the
sugar-phosphate backbone embedded in a water cube, where
the central three pairs (excluding the sugar phosphate
backbone) are treated quantum mechanically. The DS-DNA
consists only of alternating AT- or CG-pairs. Details regarding
the setup are given in Section S1 of the Supporting
Information.
As an example for a strong hydrogen-bond, we present the

VDoS spectrum of thymine-H3 in Figure 6. The spectra of the
other bridging H-atoms are given in Section S4 of the
Supporting Information.
The near perfect similarity (i.e., within the statistically

significance of the sampling error) between the two outer (at
the edge of the QM region) base pairs and the inner DNA base
pair proves the validity of the chosen QM/MM approach.
Moreover, a very strong red-shift of over 500 cm−1 for the
thymine−N3−H3 stretch vibration between the isolated
monomer in vacuum (around 3600 cm−1) and the double-
helix indicates a very strong H-bond between thymine−H3 and
adenine−N1. This red shift is a consequence of the weakened
covalent thymine−N3−H3-bond, which is generally associated
with hydrogen-bonding. On the other hand, the two thymine−
N3−H3 deformation modes at ∼800 and ∼1500 cm−1,
respectively, are significantly blue-shifted compared to the
monomer. This blue shift is due to the thymine−H3−

Table 3. Performance Comparison for Multiple Concurrent
Program Instances on a Single Compute-Node (2 Intel
Xeon Silver 4216 CPUs; 32 Cores, 64 threads@2.1 GHz),
Each Instance Using All Four Available Radeon VII GPUs,
but Only a Proportional Share of the Total 64 CPU Threads
(See Also Text for Technical Details)a

hardware #instances
individual step

time [s]
effective step time

[s]

32 CPU cores 1 12.8 12.8
2 20.0 10.0
4 36.0 9.0
8 68.7 8.6
16 160.1 10.0

32 CPU
cores + 4 GPUs

1 10.4 10.4

2 10.5 5.2
4 12.6 3.1
8 20.3 2.5
16 32.9 2.1

aAll calculations employed PBEh-3c/mSVP with sn-LinK and RI-J.
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adenine−N1 H-bond getting partially broken by this vibra-
tional mode, which leads to a steeper PES for this particular
movement.
Thus, a H-bond is generally characterized by a red shift of

the covalent X−H bond stretch vibration in the high-frequency
region (>2500 cm−1) and a blue shift in the respective bond
deformation mode in the low-frequency region (<2500 cm−1).
Therefore, we decided to analyze these two regions separately
to avoid these two effects canceling each other out. Because
there are no peaks located between 2000 and 2800 cm−1, the
precise choice of this threshold is irrelevant for this analysis.
In order to measure these red/blue shifts with a single

number, we compute the difference of the QM vibrational free
energy (eq 25) between isolated monomer and DS complex,
analogously to ref 26, but separated into a high- and low-
frequency region at 2500 cm−1. In contrast to the whole VDoS
spectrum, which is always normalized to three (given the three
degrees of freedom per atom), each individual part of the
spectrum is not necessarily normalized. However, a consistent
normalization is essential for the vibrational free energy
analysis. Therefore, we decided to normalize each sub-
spectrum to the mean norm of the respective monomeric
sub-spectrum. Note, however, that the specific value of the
normalization constant has no impact on the resulting ΔA

Figure 5. IUPAC-numbering of nucleobases in DNA base pairs. Left is an AT-pair and on the right is a GC-pair.

Figure 6. VDoS spectrum of thymine-H3 in solvated DS DNA
compared to the isolated monomer in vacuum. “Inner base” denotes
the base-pair in the middle of the QM region, whereas “outer base 1”
and “outer base 2” denote the two base pairs above and below at the
edge of the QM region. The solid line represents the mean over 10
trajectories and the shaded regions the SEM.

Figure 7. ΔAvib
QM [kJ/mol] for the adenine−thymine dimer in DNA. The QM/MM-link-position (black) is removed from the analysis. Left:

analysis for ν ̃ < 2500 cm−1. Right: analysis for ν ̃ > 2500 cm−1.
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values other than a constant proportionality factor, as long as it
is employed consistently.
The results ΔAvib

QM of this vibrational free-energy analysis
are depicted in Figures 7 and 8 for adenine−thymine and
guanine−cytosine, respectively.
In general, most atoms are red-shifted compared to the

monomer in the low-frequency region due to the addition of
extra low-frequency lattice-vibrations that are absent in the
isolated monomer, cf. ref 26. Moreover, this analysis clearly
identifies the strong hydrogen-bonds in DS DNA: in particular,
the two non-amino N−H−N-bonds (T−H3−N1−A and G−
H1−N3−C) are exceptionally strong, as characterized by a very
strong red shift in the high-frequency part and a significant
blue-shift in the low-frequency part. The three amino-
hydrogen-bonds (A−H61−O4−T, G−H21−O2−C, and C−
H41−O6−G) show less significant red/blue shifts, indicating
that these contribute comparatively less to the stability of the
DNA DS.
Due to the ability to clearly identify important hydrogen

bonds in complex aggregates, we anticipate many other useful
applications from the above hydrogen bond analysis, for
example, solvent effects, supramolecular host−guest com-
plexes, enzyme catalysis, or protein−drug binding. Hence,
our illustrative example employing accelerated AIMD to study
the H-bonds in DS DNA is also supposed to represent a
protocol for other AIMD applications.

7. CONCLUSIONS AND OUTLOOK
We presented a highly efficient method to calculate the
Coulomb energy and the exact-exchange energy together with
the corresponding nuclear forces in one combined computa-
tion employing the RI approximation and seminumerical
integration, respectively (RI-J + sn-LinK), and demonstrate its
accuracy and performance in the context of QM/MM AIMD
simulations. We found that�in stark contrast to single-point
harmonic frequency analysis�accurate vibrational spectra
obtained from such AIMD simulations can be obtained with
comparatively coarse real-space integration grids. The impact

of the simulation time step was found (as expected) to be more
impactful, especially for the fastest vibrational modes.
The presented RI-J + sn-LinK combination allows for a

significant improvement in the computational performance per
MD time-step as compared to the conventional approach,
particularly when using large basis sets because the expensive
evaluation of the 4c2e integrals and their derivatives is
completely avoided. In addition, computing energy and forces
in one combined step instead of separately results in another
25% faster MD step time because many computationally
expensive intermediates are required for both parts and thus do
not have to be computed twice in this way. Further
acceleration of AIMD simulations was achieved by running
multiple program instances concurrently on a single node
resulting in better utilization of the computational resources
(especially GPUs) leading to an up to fivefold additional
increase in overall MD throughput. With all of those
optimization combined, AIMD simulations were accelerated
between 19 and 740 times as compared to conventional
methods.
Only with these significant performance gains at hand and

having thoroughly accessed the accuracy of our methodology,
the illustrative application, namely, quantifying the hydrogen
bond strength within DS DNA, could be tackled. This study
identified the two non-amino H-atoms thymine−H3 and
guanine−H1 as the dominant hydrogen bonds in DS DNA.
To conclude, fast ab initio MD methods are a necessary

requirement for such studies of dynamic behavior in a complex
environment. Consequently, the development of highly
efficient AIMD propagation methods, such as the semi-
numerical exchange gradients presented in this work, is
essential to the advancement of the field.

■ DATA AVAILABILITY
The data that support the findings of this study are available
upon request. In addition, we plan to release our FermiONs++
program in the future.

Figure 8. ΔAvib
QM [kJ/mol] for the guanine−cytosine dimer in DNA. The QM/MM-link-position (black) is removed from the analysis. Left:

analysis for ν ̃ < 2500 cm−1. Right: analysis for ν ̃ > 2500 cm−1.
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S1 Details on Molecular Dynamics

This section reports on the specific MD settings and the generation of start structures. Re-

garding the AIMD simulations, the temperature was maintained at 300 K (unless stated

otherwise) with the Bussi-Donadio-Parinello thermostat.1 For every simulation setting ten

i



simulations of 20 ps length were carried out to allow for error statistics. Monomeric simula-

tions in vacuum were initialized from the global minimum structure using different random

number seeds which affects the initial vectors drawn from the Maxwell-Boltzmann distribu-

tion as well as the thermostat. The QM/MM simulations of the double stranded DNA were

(other than the monomers) initialized from different starting geometries and velocities.

The QM/MM simulations for the AT and CG pairs contained a single double strand

with 9 base pairs with either sequence ATATATATA or CGCGCGCGC, respectively. The

double-strands were generated in an ideal Z-DNA configuration. Each DS was then solvated

in a cube water with 40 Å side length and neutralized with sodium ions using tleap from

the Ambertools.2 The water molecules were described with the TIP3P3 force field; the DNA

with the OL15 force-field.4 The resulting model systems contain 9293 and 9074 atoms for

adenine-thymine and guanine-cytosine systems, respectively.

To generate initial configurations for the QM/MM simulations, the simulation engine

NAMD 2.105 was used: First, the solvated DS-DNA systems were minimized, for the first

10,000 steps only the water molecules, followed by the full system for another 10,000 steps.

The two obtained structures (AT and GC) were gradually heated to 300K over a period

of 30 ps and subsequently equilibrated for 200 ps. Then, a single force-field MD run of

100 ns was carried out for both systems (AT and GC) under periodic boundary conditions,

employing Langevin dynamics for temperature control with a friction constant of 1 ps−1,

and the Langevin piston Nosé-Hoover method for pressure control. For this simulation

we chose a time step of 2.0 fs, while constraining covalent bond-length using RATTLE.6

Periodic electrostatic interactions were computed with the particle mesh Ewald summation

method, with a 6th order interpolation, a cut-off radius of 12 Å and a smooth switching

function damping long-range interaction between 10 and 12 Å. Furthermore, a Verlet nearest

neighbour list with a radius of 13.5 Å was used. The QM/MM AIMD start structures were

then taken out of this force-field MD run, where each start frame was spaced exactly 10 ns

apart.
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In the QM/MM AIMD simulations, the central three base pairs were treated quantum-

mechanically, where only the base of each nucleotide (i.e., not the sugar-phosphate backbone)

was included in the QM region. The glycosidic bond between sugar and base contained the

link atom, resulting in a total of 90 and 87 QM atoms for AT and GC, respectively. The

interactions between QM and MM were treated with electrostatic embedding.7

S2 Impact of Integration Grids on Conservation of En-

ergy

Since the semi-numerical exact-exchange forces are only the exact derivatives of the energy

with respect to the nuclear position in the limit of infinite integration grids, energy con-

servation in a microcanonical MD simulation is slightly violated, which, of course, depends

strongly on the grid size. As demonstrated in Figure S1, the total energy drifts randomly

by up to 100µEh for the smallest (gm3) grid.

Figure S1: Change of total energy during a 2 ps MD simulation of adenine in vacuo employ-
ing no thermostat (microcanonical ensemble) for different numerical integration grids (gm3,
gm4, gm5).

With increased grid size, however, this numerical artifact quickly vanishes, e.g., for the

gm5 grid, this energy fluctuation is decreased to only a few micro-Hartrees. Moreover,

this effect is only problematic for microcanonical MD simulations, since within canonical
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simulations the total energy within the system is, of course, never conserved in the first

place due to the influence of the thermostat.

S3 Performance Gains fromMultiple Program Instances

In Tables S1 to S3 we provide more details on the AIMD throughput improvements from

running multiple program processes concurrently on the same compute node, c.f. Section 5

of the main manuscript.

Table S1: Performance comparison for multiple concurrent program instances on a single
compute-node (2 Intel Xeon Silver 4216 CPUs; 32 cores, 64 threads@2.1GHz), each instance
using all four available Radeon VII GPUs, but only a proportional share of the total 64 CPU
threads The results are given for PBEh-3c/def2-mSVP employing RI-J/sn-LinK (same as
Table 3 of the main manuscript).

Hardware # instances individual step time [s] effective step time [s]

32 CPU cores

1 12.8 12.8
2 20.0 10.0
4 36.0 9.0
8 68.7 8.6
16 160.1 10.0

32 CPU cores + 4 GPUs

1 10.4 10.4
2 10.5 5.2
4 12.6 3.1
8 20.3 2.5
16 32.9 2.1

In particular, we want to emphasize that GPU accelerated computations benefit most

from this form of concurrent execution, since the available hardware is better utilized if, e.g.,

one instance performs a GPU intensive task (e.g., Fock-build), whereas another instance

performs a CPU intensive workload (e.g., diagonalization of the Fock-matrix).
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Table S2: Same as Table S1 but for ωB97M-V/def2-TZVP.

Hardware # instances individual step time [s] effective step time [s]

32 CPU cores
1 69.5 69.5
2 118 58.8
4 221 55.3
8 461 57.6

32 CPU cores + 4 GPUs
1 29.4 29.4
2 37.9 19.0
4 51.1 12.8
8 86.0 10.7

Table S3: Same as Table S1 but for ωB97M-V/def2-QZVPPD.

Hardware # instances individual step time [s] effective step time [s]

32 CPU cores
1 592 592
2 1060 532
4 2040 509

32 CPU cores + 4 GPUs
1 176 176
2 232 116
4 361 90.2
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S4 Velocity Density of State Spectra for all bridging

H-Atoms in DNA

In Figures S2 to S6 we present the vibrational density of state (VDoS) spectra of the bridging

hydrogen atoms in DNA analogously to Figure 7 of the main manuscript. The high-frequency

red-shifts and the low-frequency blue-shifts are – in accordance with the discussion of Sec-

tion 6 of the main article – particularly strong for the two non-amino H-atoms thymine-H3

and guanine-H1, while the effect is substantially weaker for the three amino-H atoms A-H61,

C-H41, and G-H21, indicating that these contribute less to the stability of the DNA double-

strand.

Figure S2: VDoS spectrum of thymine-H3 in solvated double-stranded DNA compared to
the isolated monomer in vacuum (same as Figure 7 of the main manuscript).
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Figure S3: Same as Figure S2 but for adenine-H61.

Figure S4: Same as Figure S2 but for cytosine-H41 within the cytosine-guanine dimer.
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Figure S5: Same as Figure S4 but for guanine-H1.

Figure S6: Same as Figure S4 but for guanine-H21.
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3.5 Publication V: Highly Efficient and Accurate Computation
of Multiple Orbital Spaces Spanning Fock Matrix Elements
on Central and Graphics Processing Units for Application in
F12 Theory

L. Urban, H. Laqua, C. Ochsenfeld
J. Chem. Theory Comput. 18, 4218 (2022).

Abstract

We employ our recently published highly efficient seminumerical exchange (sn-LinK)
[Laqua, H.; Thompson, T. H.; Kussmann, J.; Ochsenfeld, C. J. Chem. Theory Comput.
2020, 16, 1456–1468] and integral-direct resolution of the identity Coulomb (RI-J)
[Kussmann, J.; Laqua, H.; Ochsenfeld, C. J. Chem. Theory Comput. 2021, 17, 1512–
1521] methods to significantly accelerate the computation of the demanding multiple
orbital spaces spanning Fock matrix elements present in R12/F12 theory on central
and graphics processing units. The errors introduced by RI-J and sn-LinK into the
RI-MP2-F12 energy are thoroughly assessed for a variety of basis sets and integration
grids. We find that these numerical errors are always below “chemical accuracy” (∼1 mH)
even for the coarsest settings and can easily be reduced below 1 µH by employing only
moderately large integration grids and RI-J basis sets. Since the number of basis functions
of the multiple orbital spaces is notably larger compared with conventional Hartree-Fock
theory, the efficiency gains from the superior basis scaling of RI-J and sn-LinK (O(N2

bas)
instead of O(N4

bas) for both) are even more significant, with maximum speedup factors
of 37000 for RI-J and 4500 for sn-LinK. In total, the multiple orbital spaces spanning
Fock matrix evaluation of the largest tested structure using a triple-ζ F12 basis set (5058
AO basis functions, 9267 CABS basis functions) is accelerated over 1575×× using CPUs
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ABSTRACT: We employ our recently published highly efficient
seminumerical exchange (sn-LinK) [Laqua, H.; Thompson, T. H.;
Kussmann, J.; Ochsenfeld, C. J. Chem. Theory Comput. 2020, 16,
1456−1468] and integral-direct resolution of the identity Coulomb
(RI-J) [Kussmann, J.; Laqua, H.; Ochsenfeld, C. J. Chem. Theory
Comput. 2021, 17, 1512−1521] methods to significantly accelerate
the computation of the demanding multiple orbital spaces spanning
Fock matrix elements present in R12/F12 theory on central and
graphics processing units. The errors introduced by RI-J and sn-
LinK into the RI-MP2-F12 energy are thoroughly assessed for a
variety of basis sets and integration grids. We find that these numerical errors are always below “chemical accuracy” (∼1 mH) even
for the coarsest settings and can easily be reduced below 1 μH by employing only moderately large integration grids and RI-J basis
sets. Since the number of basis functions of the multiple orbital spaces is notably larger compared with conventional Hartree−Fock
theory, the efficiency gains from the superior basis scaling of RI-J and sn-LinK (O(Nbas

2) instead of O(Nbas
4) for both) are even more

significant, with maximum speedup factors of 37 000 for RI-J and 4500 for sn-LinK. In total, the multiple orbital spaces spanning
Fock matrix evaluation of the largest tested structure using a triple-ζ F12 basis set (5058 AO basis functions, 9267 CABS basis
functions) is accelerated over 1575× using CPUs and over 4155× employing GPUs.

1. INTRODUCTION

Over the last decades, considerable efforts1 have been devoted
to accelerate the computation and contraction of direct- and
exchange-type four-center−two-electron (4c-2e) integrals
present in Hartree−Fock2−5 (HF) and Kohn−Sham6 (KS)
theory, which in their conventional formulation show an
unfavorable scaling of N( )bas

4 with the number atomic orbital
(AO) basis functions Nbas. Among these aspirations are
methods focusing on the efficient contraction of 4c-2e
integrals7−9 and attempts like the resolution of the identity
(RI) approximation,10−12 a frequently used approach to reduce
the computational prefactor substantially. Especially the
application of the RI technique for Coulomb contributions
(RI-J)13,14 yields significant speedups, which are additionally
improved when RI-J is combined with the J-engine
algorithm.15−17 Here, our recently published18 integral-direct
RI-J version additionally accelerates the evaluation of the
occurring three-center−two-electron (3c-2e) integrals, reduc-
ing the number of floating-point operations (FLOPs) and
required local memory, which makes the method more
efficient for both central processing units (CPUs) as well as
graphics processing units (GPUs).
However, the relative RI efficiency for exchange contribu-

tions (RI-K)12,19−21 succumbs to advanced RI-J algorithms due

to the comparable formal N N N( )occ aux bas
2 scaling as the

conventional evaluation when not combined with local
approximations.22,23 Here, seminumerical integration,24−35

where one electronic coordinate of the 4c-2e integrals is
represented numerically on real-space integration grids while
the other one remains in its analytical representation, provides
a promising alternative. For maximal performance, the number
of grid points Ngrid has to be as small as possible, and the
computationally demanding evaluation of the necessary three-
center−one-electron (3c-1e) integrals needs to be as efficient
as possible. Recent efforts by our group systematically refined
both of these aspects by introducing revised molecular
integration grids36−38 and a more effective batchwise integral
screening method (sn-LinK).39−41 Moreover, the possibility to
parallelize over the grid index within the numerical integration
combined with the reduced demand for local storage (e.g., L1
cache) to evaluate the 3c-1e integrals compared with the 4c‑2e
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integrals makes this method for computing exchange
contributions particularly well suited for GPU acceleration.
Besides HF and KS theory, the computation of Fock matrix

elements is essential for R12/F12 methods,42−47 which are
powerful tools to overcome the basis set incompleteness error
(BSIE). These elements, denoted in the following as F12-type
Fock matrix elements, need to be evaluated for multiple orbital
spaces introduced by the strong orthogonality operator Q̂12,
which notably increases the number of required basis
functions. In general, the formally quartic-scaling evaluation
of the direct and exchange contributions to F12-type Fock
matrices is thus substantially more demanding than the
evaluation of normal Fock matrices and frequently represents
an extremely expensive step in applications of F12
theory.44,48,49 Efficient evaluation is thus highly beneficial
since a series of theories require these elements, among them
the complementary auxiliary basis set (CABS) singles
correction,48,50 explicitly correlated second-order Møller−
Plesset perturbation theory (MP2-R12/F12),43,44,49,51−57

coupled cluster-F12 (CC-F12),48,50,58−64 multireference-F12
(MR-F12),65−72 and other explicitly correlated ap-
proaches.73−75 Previous works applied RI49,51,53,54,72 and
seminumerical integral76 approaches but focused primarily on
other aspects of F12 theory, not the investigation of their
influence on accuracy and efficiency. Motivated by these
circumstances, we transferred our recently introduced RI-J and
sn-LinK methods to F12 theory. Both of these are well-suited
because of the improved formal N( )bas

2 scaling with respect
to the AO basis set size compared with the conventional

N( )bas
4 scaling, which is particularly relevant in view of the

substantially larger size of the combined CABS (NCABS) and
AO basis.
The paper is structured as follows: We present the necessary

underlying formulas for extending RI-J and sn-LinK to F12
theory in section 2, followed by the most important findings
regarding accuracy in section 4.1 and efficiency in section 4.2
(additional data are provided in the Supporting Information).

2. THEORY

2.1. Approximation-Free Evaluation of F12-Type
Fock Matrix Elements. In contrast to HF theory, Fock
matrix elements in explicitly correlated F12 theory span the
additional orbital spaces given in Table 1. The AO
representation of the F12-type Fock matrix, visualized in
Figure 1a, differs from the standard HF/KS approach by
evaluation of {μ′}, the union of the atomic orbitals {μ} and the
CABS atomic orbitals {μ″}, as given by

F H J K
1
2

core= + −μ ν μ ν μ ν μ ν′ ′ ′ ′ ′ ′ ′ ′ (1)

where Hμ′ν′
core, Jμ′ν′, and Kμ′ν′ are elements of the core-

Hamiltonian matrix, Coulomb matrix, and exchange matrix
of the combined orbital space, respectively. While Hμ′ν′

core

contributions are trivial to evaluate with insignificant computa-
tional cost, the Jμ′ν′ and Kμ′ν′ elements are calculated via

J P ( )∑ μ ν λσ= ′ ′μ ν
λσ

λσ′ ′
(2)

K P ( )∑ μ σ λν= ′ ′μ ν
λσ

λσ′ ′
(3)

where Pλσ are the elements of the density matrix of the final
SCF iteration in the AO space, and the computationally
demanding 4c-2e integrals are given by

r r r r
r r

r r( ) d d ( ) ( )
1

( ) ( )1 2 1 1
1 2

2 2∫ ∫μ ν λσ χ χ χ χ′ ′ = | − |μ ν λ σ′ ′
(4)

After construction of the AO F12-type Fock matrix, the
transformation into the molecular orbital (MO) space is
achieved by contraction with the MO coefficients from the
final SCF iteration and precomputed CABS coefficients.46

Figure 1b visualizes the different MO spaces present in F12
theory and the resulting F12-type Fock matrix elements. The
MO transformation and the determination of the required
CABS coefficients require only minor computational effort. In
contrast, the evaluations of the J and K matrices are
computationally intensive procedures. The usually large
CABS space further increases the cost of the direct- and
exchange-type matrix element evaluation, leading to about an
order of magnitude longer runtimes for computations using the
F12-type Fock matrix compared with the standard SCF Fock
matrix. Increasing the angular momentum quantum number
(l) amplifies this effect, making more efficient methods having
reduced time complexity with respect to the basis set size
highly desirable.

2.2. An Integral-Direct J-Engine-Based Resolution of
the Identity Coulomb Method. In this section, we briefly
summarize the necessary theory for the integral-direct RI-J
method that we employ for the F12-type Fock matrix element
evaluation. For more insights and illustrative calculations, we
refer the reader to the original literature.17,18 Applying the RI
approximation to the Coulomb potential leads to

J P

P P P Q Q

( )

( )( ) ( )
PQ

1

∑
∑ ∑

μ ν λσ

μ ν λσ

= ′ ′

≈ ′ ′
μ ν

λσ
λσ

λσ
λσ

′ ′

−
(5)

where for an integral-direct algorithm three consecutive steps
are executed:

J P Pstep 1: ( )P ∑ λσ=
λσ

λσ
(6)

J Q P Jstep 2: ( )Q
P

P
1∑′ = −

(7)

J Q Jstep 3: ( )
Q

Q∑ μ ν= ′ ′ ′μ ν′ ′
(8)

Table 1. Summary of Orbital Spaces and Indexing
Conventions

orbital space indices

AO space μ, ν, λ, σ
AO complementary auxiliary space μ″, ν′′, λ′′, σ′′
combined AO space ({μ} ∪ {μ″}) μ′, ν′, λ′, σ′
MO occupied space i, j, k, l
MO virtual space a, b, c, d
MO occupied + virtual space ({i} ∪ {a}) p, q, r, s
MO complementary auxiliary space p″, q″, r″, s″
combined MO CABS/HF space ({p} ∪ {p″}) p′, q′, r′, s′
RI-J auxiliary space P, Q
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Several techniques allow the efficient evaluation of these
formulas. For step 2, the well-known Coulomb fitting method
of Mintmire and Dunlap77 avoids the matrix inversion step for
the two-center integrals by a direct evaluation of the Coulomb
metric (Q|P)x = JP, leading to x = (Q|P)−1JP = JQ′ , for which we
employ a Cholesky decomposition of (Q|P). The typically rate-
determining steps 1 and 3 requiring 3c-2e integrals are
accelerated by a J-engine15,16 algorithm: First, the AO (step 1)
and auxiliary (step 3) density(-like) matrices are transformed
in a preprocessing computation into the Hermite basis.
Subsequently, the resulting intermediates are contracted with
the 3c-2e integrals to form the Coulomb potential in the
Hermite basis, representing by far the most expensive step
within the J-engine algorithm due to its asymptotic quadratic
scaling. In the final postprocessing, the Coulomb potential is
back-transformed into the AO (step 3) or auxiliary (step 1)
basis, respectively.
Since some intermediate Hermite factors (i.e., all odd l

quantum numbers) are not necessary for the representation of
the auxiliary basis functions, these contributions can be
omitted, leading to further efficiency gains (cf. section 2.1 of
ref 18). Combining all of these aspects results in a highly
efficient evaluation of the J matrix, especially when the
massively parallel behavior of GPUs is utilized to compute the
expensive Coulomb potential in the Hermite basis.
2.3. Seminumerical Exchange: sn-LinK. The general

integration scheme for seminumerical integral evaluation39,41,78

results in the symmetrical decomposition of the 4c-2e integrals
as

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

w

w

r r r
r r

r r

r
r r

r r
r r

( )
1
2

(( ) ( ) ) (( ) ( ) )

1
2

( ) ( ) d
( ) ( )

d
( ) ( )

( ) ( )

g
g g g

g

g
g

g
g g

num ana ana num

∫
∫

∑

∑

μσ λν μσ νλ μσ νλ

χ χ
χ χ

χ χ
χ χ

≈ [ + ]

≡ | − |

+ | − |

μ σ
λ ν

μ σ
λ ν

(9)

where Becke-type molecular integration grids36−38 with grid
points rg and associated weights wg are employed. Application
of this ansatz to the AO representation of the approximation-
free F12-type exchange matrix results in

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

K P

w Pr r
r r

r r
r

( )

1
2

( ) d
( ) ( )

( )

transpose

g
g g

g
g∫

∑

∑ ∑

μ σ λν

χ
χ χ

χ

= ′ ′

≈ | − |

+

μ ν
λσ

λσ

λσ
μ

λ ν
σ λσ

′ ′

′
′

(10)

which is computed in three consecutive steps:

F Prstep 1: ( )g g∑ χ=λ
σ

σ λσ
(11)

G w A Fstep 2: g g g g∑=ν
λ

λν λ′ ′
(12)

K Grstep 3: ( )
g

g g∑ χ̅ =μ ν μ ν′ ′ ′ ′
(13)

where Aλν′g are mixed-basis 3c-1e integrals, given by

A
r r

r r
r

( ) ( )
dg

g
∫ χ χ= | − |λν

λ ν
′

′
(14)

Finally, the F12-type exchange matrix is obtained via the
symmetrization

K K K
1
2

( )= ̅ + ̅μ ν μ ν ν μ′ ′ ′ ′ ′ ′ (15)

to take care of the transpose in eq 10. Steps 1 (eq 11) and 3
(eq 13) are implemented as dense matrix−matrix multi-
plications, whereas step 2 (eq 12) requires on-the-fly
evaluation of the 3c-1e integrals (eq 14). The matrix−matrix
multiplications in steps 1 and 3 utilize batch-local matrices
with asymptotically constant size computed via BLAS-3
libraries to achieve the best performance, as described in
detail in ref 41. However, the evaluation of the 3c-1e integrals
in step 2 is generally the most computationally demanding part
in the seminumerical integral evaluation, requiring an efficient
integral screening procedure for optimal performance. Practical
approaches to determine the significance of a 3c-1e integral
Aλν′g are screening for the F12-type exchange energy ϵλν′g

E and
the final F12-type exchange matrix contributions ϵλν′g

K , given by

Figure 1. Representations of (a) the AO and (b) the MO spaces present in F12 theory covered by F12-type Fock matrix elements.
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w P A P w F A w Fr r( ) ( )g
E

g g g g g g g g g
1/2 1/2∑ χ χϵ = =λν

μσ
μ μν λν λσ σ ν λν λ′ ′ ′

(16)

i

k

jjjjjjj
y

{

zzzzzzz

w P A

A P

w F F A

r r

r r

r

max ( ) ( ) ,

( ) ( )

max( , ) ( )

g
K

g g g g

g

g g g g g

g g

∑

∑
∑

χ χ

χ χ

χ

ϵ = | | | | | | | | | |

| | | | | | | |

≤ | | | | | | | | | |

λν
μσ

μ μν λν σ

μ σ
μ λν λσ σ

ν λ λν
μ

μ

′
′

′ ′

′
′ ′

′
′

′
(17)

In accordance with ref 41, integrals are considered to be
significant if either one or both of these values are above a
given threshold, i.e.,

or/andE
E

K
Kg gϵ ≥ ϑ ϵ ≥ ϑλν λν′ ′ (18)

Details regarding the evaluation of the required integral
bounds

i

k
jjjjjj

y

{
zzzzzz

r r

r r
rmax

( ) ( )
d

grg
3
∫ χ χ≤ | ′ |

| − |ν λ
ν λ

′ ∈ (19)

are provided in ref 40.
2.4. Adoption of RI-J/sn-LinK for F12-Type Fock

Matrices. Our previous approximation-free reference imple-
mentation for the F12-type Fock matrix is based on the
blockwise computation represented in Figure 2a, where
elements of the different AO spaces are calculated via separate
integral routines. The evaluation of the Fμ″ν and Fμ″ν″ blocks
requires additional implementational work, e.g., support for
mixed shell-pairs.
In this present study, however, we avoid this extra effort by

merging the AO basis and the CABS basis into one combined
basis according to atom and angular momentum quantum
numbers, represented by zeros and ones in Figure 2b.
Capitalizing on this computationally inexpensive transforma-
tion from two separate basis sets to one combined basis set
allows the direct use of standard integral routines as well as RI-
J and sn-LinK. Back-transformation of the resulting F12-type
Fock matrix (Figure 2c) to a blockwise representation is easily
possible.

Since only the AO elements of the density matrix Pλσ are
nonzero, a large number of irrelevant contributions are
included within the combined basis set, which could in
principle lead to substantial inefficiencies. However, all of those
zero elements in Pλ′σ′ are excluded early on by the density-
including integral screening techniques within both RI-J and
sn-LinK, resulting in virtually no overhead in practice. In this
way, our advanced RI-J18 and sn-LinK41 methods with all of
their benefits (e.g., GPU acceleration) are directly applicable to
the evaluation of F12-type Fock matrix elements.

3. COMPUTATIONAL DETAILS
All of the reported calculations were performed with our
FermiONs++ program package,79−82 where the grids38

summarized in Table 2 and the cc-pVYZ-JKfit12 (Y = D, T,

Q, 5) RI-J basis sets were employed for sn-LinK and RI-J,
respectively. As proposed in ref 38, SCF- and F12-type
exchange matrices were computed using the smaller gX grid,
whereas the final energy evaluation utilized a larger gX+2 grid
(compressed in a shorthand multigrid gm[X+2/X] notation).
As a reference we set our approximation-free code using the
Obara−Saika recursion scheme83 for the 4c-2e integrals.
Throughout the following, the F12 correction refers to the
explicitly correlated F12 energy correction to second-order
Møller-Plesset perturbation theory in the 3*C variant,51 where
we employed Ten-no’s fixed-amplitude ansatz84 in combina-
tion with the extended Brillouin condition (EBC).44 A fixed
Slater-type geminal (STG) correlation factor45,65 of the form
F r1 exp( )12

1
12γ̂ = [ − − ]

γ with γ = 1.3 was used together with

Figure 2. (a) Standard representation of the orbital spaces leading to separate blocks. (b) Construction of new shell-pair data. (c) Mixed pattern of
the resulting orbital spaces.

Table 2. Definition of the Employed Grids with Separation
into Inner, Medium, and Outer Regions for the Example of
the C Atom

grid nrad nang(inner/medium/outer) ntot,C

g0 30 14/38/74 1654
g1 35 14/50/110 2586
g2 40 26/74/194 5056
g3 50 38/110/302 9564
g4 55 50/194/434 15526
g5 60 50/194/590 21330
g6 70 86/302/974 40838
g7 80 110/434/1454 68770
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the cc-pVXZ-F1285−87 basis set family and corresponding
CABS cc-pVXZ-F12/OptRI+88 and density fitting (DF)
cc‑pVXZ-F12/MP2fit89 basis sets (X = D, T, Q).
For optimal performance, the integral kernels were compiled

with the Intel Compiler 19.1.090 (flags: -Ofast
-march=cascadelake) and the OpenCL GPU kernels with
ROCm‑3.8.091 (flags: -O3 -cl-mad-enable -cl-finite-math-only
-cl-no‑signed‑zeros). The performance was assessed on two
Intel Xeon Silver 4216 processors (32 cores/64 threads; 2.1
GHz) and 4 AMD Radeon VII cards to ensure a fair
comparison between CPU and GPU (roughly equal acquis-
ition cost of hardware). For the conventionel 4c-2e and RI-J
3c-2e integrals, we set a threshold of 10−13, and for sn-LinK we
chose ϑK = 10−10 and ϑE = 10−13, employing mixed single- and
double-precision 3c-1e integral evaluation78 on CPUs. The
SCF was converged to within 10−7 of the DIIS commutator

norm (∥FPS − SPF∥),92,93 and interaction energies were
counterpoise-corrected94 to take the basis set superposition
error (BSSE) into account.

4. RESULTS
In the following, we summarize the most essential and
representative findings of a benchmark study on the accuracy
and efficiency of the F12-type Fock matrix element evaluation
using varying sn-LinK and RI-J settings for prominent test
sets.95−98 Since the results are qualitatively identical among the
test sets, here we focus on the L7 non-covalent interaction
(NCI) energies98 and refer the reader to the Supporting
Information (SI) for more insights and detailed data on the
remaining systems (the S22, S66, and ISO34 test sets),
including deviations in isomerization and absolute energies as
well as conventional RI-JK results.

Figure 3. Visualization of HF, CABS singles, MP2, F12 correction, and total sn-LinK NCI MAEs (numbers in parentheses) in dependence on the
grid size for the L7 test set, employing a cc-pVDZ-F12 AO basis and a cc-pVDZ-F12/OptRI+ CABS basis.

Figure 4. Visualization of L7 HF, CABS singles, MP2, F12 correction, and total NCI MAEs (numbers in parentheses) for (a) RI-J and (b) RI-J/sn-
LinK, employing a cc-pVDZ-F12 AO basis set, a cc-pVDZ-F12/OptRI+ CABS basis set, and two different cc-pVYZ-JKfit (Y = D, T) RI-J basis sets.
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4.1. Accuracy. Starting with the main bottleneck of
computing the F12-type Fock matrix elements, the evaluation
of the exchange-type matrix Kμ′ν′, we explore the behavior of
sn-LinK for different gm[X+2/X] multigrids for the cc-pVDZ-
F12 AO basis set, with qualitatively identical results for triple-
and quadruple-ζ F12 calculations given in the SI. We
investigate the accuracy of HF, CABS singles, MP2, F12
correction, and total energies for counterpoise-corrected NCI
of the L7 test set compared with an approximation-free
reference code visualized in Figure 3. As expected, higher

accuracy is achieved with increasing grid size, with total mean
absolute errors (MAEs) ranging from 100 to 0.2 μH from the
smallest to the largest multigrid, which is always substantially
below the MP2 method error (>10 mH). With regard to the
individual error contributions, the MP2 deviations dominate
the total MAE, matching observations in ref 41. This error is
only caused by a slight imperfection in the self-consistently
converged Fock and density matrices due to the finite grid
error in the SCF.

Table 3. RI-J/sn-LinK (cc-pVYZ-JKt/gm[2/0]; Y = X) Speedups on CPUs (SCPU) and GPUs (SGPU) for the Full F12-Type Fock
Build for Each Member of the L7 Test Set (cc-pVXZ-F12; X = D, T, Q); Additional RI-JK (cc-pVDZ-JKfit) Results (SCPU

RI‑JK) Are
Given for a cc-pVDZ-F12 Basis

cc-pVDZ-F12 cc-pVTZ-F12 cc-pVQZ-F12

L7 structurea Nbas NCABS SCPU
RI‑JK SCPU SGPU Nbas NCABS SCPU SGPU Nbas NCABS SCPU

b

L1 1836 5288 19 209 528 3676 7804 639 1627 6996 9700 1551
L2 1191 3426 29 251 469 2331 4311 733 1550 4281 5229 1488
L3 2255 6486 41 517 1340 4405 8044 1423 3403 8065 9733 2761
L4 2588 7444 47 584 1635 5058 9267 1575 4155 9268 11220 2710
L5 1818 5232 31 316 742 3588 6999 976 2017 6678 8574 2024
L6 1752 5044 48 446 1072 3432 6384 1308 2884 6312 7752 2548
L7 1396 4016 33 331 682 2736 5106 939 1880 5036 6204 1918

aL7 test set structures: L1, octadecane dimer; L2, guanine trimer; L3, circumcoronene−adenine dimer; L4, circumcoronene−guanine−cytosine
trimer; L5, phenylalanine residues trimer; L6, coronene dimer; L7, guanine−cytosine−guanine−cytosine tetramer. bReference extrapolated from
double- and triple-ζ F12 timings.

Figure 5. Log−log plot of the wall times for the L7 circumcoronene−guanine−cytosine trimer Jμ′ν′ and Kμ′ν′ matrix element evaluation employing
an approximation-free reference code, RI-J, and sn-LinK for a cc-pVXZ-F12 AO basis set and a cc-pVXZ-F12/OptRI+ CABS basis set (X = D, T,
Q) on CPUs and GPUs. sn-LinK and RI-J timings are reported for various gm[X+2/X] multigrid sizes and a cc-pVYZ-JKfit RI-J basis set (Y = X).
Scaling coefficients are given within the lines. *1 extrapolated from double- and triple-ζ timings.
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To investigate the accuracy of RI-J for the L7 system, we
utilized the cc-pVYZ-JKfit (Y = D, T) RI-J basis set family
together with an AO cc-pVDZ-F12 basis set for both the SCF
cycle and the F12-type Fock matrix evaluation. Following the
same pattern as for sn-LinK, the MAEs show excellent accuracy
with negligible deviations of roughly 4 μH even for a double-ζ
RI-J basis set (Figure 4a). With a triple-ζ auxiliary basis set,
even more precise values are possible, reducing the errors by a
factor of approximately 2 compared with the double-ζ
evaluation. For the combination of sn-LinK and RI-J, we
employed the gm[5/3] multigrid because of the comparable
errors of the two methods (Figure 4b). The actual RI-J/sn-
LinK combination experiences some form of error cancellation
with a MAE close to the RI-J errors and less than the sum of
the individual-method MAEs. In practice, the errors of only 3−
4 μH for RI-J/sn-LinK relative to the exact analytical treatment
are virtually irrelevant.
4.2. Peformance Comparison. To demonstrate the full

potential of our sn-LinK and RI-J methods, we focus on
timings for the largest and consequently computationally most
expensive member of the L7 test set (L4 in Table 3): a
circumcoronene−guanine−cytosine trimer with 102 atoms.
Figure 5 compares the performance of sn-LinK and RI-J for
increasing AO and CABS basis sets employing the correspond-
ing (DZ/TZ/QZ) RI-J basis sets and a variety of multigrids
with the exact analytical treatment for increasing AO and
CABS basis sets on CPUs and GPUs.
Because of the decreasing Nbas to NCABS ratio for larger

cardinal numbers X, we decided to plot the geometric mean
[Nbas(Nbas + NCABS)]

1/2 against the required time to ensure a
fair comparison between the different AO basis set sizes and
the formal Nbas+CABS

2Nbas
2 scaling of the reference. Quadruple-

zeta F12 reference values were extrapolated from double- and
triple-ζ results. GPU calculations for quadruple-ζ F12
calculations are currently not feasible due to numerical
problems regarding the GPU execution of some integrals for
h (l = 5) functions.
The observed time complexity with respect to the basis set

size roughly matches the theoretical N( )bas
4 or N( )bas

2

scaling for the analytical or sn-LinK/RI-J treatment,
respectively. The observed variations around these theoretical
values, i.e, N( )bas

3.10 to N( )bas
3.46 instead of N( )bas

4 for

the exact treatment and N( )bas
1.30 to N( )bas

2.40 instead of

N( )bas
2 for RI-J/sn-LinK, are expected given that the average

cost of evaluating one integral and the effectiveness of integral
screening methods vary substantially among the basis sets
because of, e.g., different l quantum numbers or the addition of
diffuse functions. Moreover, the amount of parallel workload,
which significantly affects GPU performance, also increases
with larger basis sets. The choice of the multigrid contributes
approximately as a constant prefactor (largely independent of
the basis set). As a result of this reduced basis set scaling in
combination with the large size of the CABS basis sets,
tremendous speedups are achieved. For example, using only
CPUs, sn-LinK with a gm[2/0] multigrid provides speedups
ranging from 500× to 1800× (DZ-F12 to QZ-F12,
respectively), and RI-J gives speedups ranging from 8700×
to 37000×. Employing GPUs improves the performance of sn-
LinK even further, with accelerations ranging from 3200× to
4500× (DZ-F12 to TZ-F12, respectively). In contrast, RI-J
does not benefit from GPU acceleration due to a lack of
parallel workload in this case (cf. discussion in ref 18).
However, this is not a concern in practice because of the
comparatively low cost of the RI-J part regardless.
To further illustrate the profound efficiency improvement of

sn-LinK and RI-J, in Table 3 we summarize the total speedups
for the full F12-type Fock build (J, K, core Hamiltonian, and
ordering algorithm) for each member of the L7 benchmark set
for a gm[2/0] integration grid (results for larger multigrids are
given in the SI) alongside RI-JK double-ζ results (see details of
our RI-K implementation in the SI).
While RI-JK yields good accelerations with, on average, 35×

faster computations compared with our conventional imple-
mentation, double- and triple-ζ results were not feasible
because of the vast memory demand of the required three-
center integrals in RI-K. Generally, the steep N N N( )occ aux bas

2

scaling of RI-K makes it unfavorable for medium- to large-sized
structures compared with the alternative of sn-LinK.
Our RI-J/sn-LinK methods proposed in this work result in

excellent speedups, surpassing RI-JK with on average 379×
faster computation for a double-ζ basis, with the performance
gains over all basis sets (DZ−QZ) ranging between 209× and
4155×. For example, the total runtime for one triple-ζ F12-
type Fock build for the circumcoronene−guanine−cytosine
complex (L4) is reduced by a factor of 4155 from ∼6 days
(analytically) to only ∼2 min (RI-J/sn-LinK).
To illustrate the importance of a fast F12-type Fock matrix

evaluation, in Table 4 we compare timings for our conven-
tional reference, RI-JK, and RI-J/sn-LinK for the L7 test set

Table 4. Absolute Timings for the F12-Type Fock Build Using Our Original Implementation, RI-JK (cc-pVDZ-JKfit), RI-J/sn-
LinK (cc-pVDZ-JKt/gm[2/0]), and the Total MP2-F12 Correlation Calculation Excluding the F12-Type Fock Build (tcorr) for
Each Member of the L7 Test Set (cc-pVDZ-F12) with the Corresponding Ratios of Fock Build Time to Remaining Correlation
Time

L7 structurea tF12‑Fock
ref [s] tF12‑Fock

RI‑JK [s] tF12‑Fock
RI‑J/sn‑LinK [s] tcorr [s]

R ref
corr

[%]

R RI JK
corr

‐

[%]

R RI J/sn LinK
corr

‐ ‐

[%]

L1 13894 715 66 12854 108.1 5.6 0.5
L2 6584 225 26 2606 252.6 8.6 1.0
L3 61013 1459 118 29729 205.2 4.9 0.4
L4 96379 2044 165 57095 168.8 3.5 0.3
L5 22381 701 71 13568 164.9 5.2 0.5
L6 34536 725 77 9930 347.8 7.3 0.8
L7 12412 372 40 4925 252.0 7.6 0.8

aL7 test set structures: L1, octadecane dimer; L2, guanine trimer; L3, circumcoronene−adenine dimer; L4, circumcoronene−guanine−cytosine
trimer; L5, phenylalanine residues trimer; L6, coronene dimer; L7, guanine−cytosine−guanine−cytosine tetramer.
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(cc-pVDZ-F12) with our RI-MP2-F12 implementation exclud-
ing the F12-type Fock build. Our reference represents by far
the most expensive step in the total correlation calculations for
all L7 members, requiring on average 214.2% more time than
the remaining terms, including the standard MP2 correction.
For RI-JK, this ratio continues to be significant at 6.1%,
whereas RI-J/sn-LinK lowers this ratio to a desirable 0.6%.
Finally, to demonstrate the behavior for a fixed basis set and

increasing molecule sizes, we examined systematically increas-
ing amylose chain lengths99 using our reference code, RI-JK,
RI-J/sn-LinK (CPU), and RI-J/sn-LinK (GPU) in combina-
tion with a double-ζ F12 basis. The results are shown in Figure
6. RI-JK decreases the required time by a factor of roughly 20,
where memory limitations restrict the computation to a chain
length of four D-glucose subunits, e.g., the 3c-2e RI-K integrals
for eight subunits require 538 GB of storage, which increases
to 4.21 TB for 16 subunits, matching its M( )3.0 memory
scaling with the molecule size (M). RI-J/sn-LinK leads once
again to excellent speedups with scaling coefficients between

N( )glucose
2 and N( )glucose

1.5 , matching the asymptotic M( )2

and M( ) scalings of RI-J and sn-LinK with the molecule size
for systems with local electronic structure. For the largest chain
length (16 D-glucose subunits), we observed 768× faster
evaluation using our GPUs, reducing the required time from
∼2.6 days to less than 5 min.

5. CONCLUSION

We employed our recently published highly efficient RI-J18 and
sn-LinK41 methods to overcome the two major bottlenecks of
the J and K matrix computation in the evaluation of F12-type
Fock matrices. We tested the accuracy of the methods for
multiple benchmark sets covering non-covalent interactions
and isomerization energies (also see the Supporting
Information). Even for the smallest grids and RI-J basis sets,
the mean absolute errors are always below 0.43 mH and are
easily reducible to below 5 μH for slightly larger integration
grids.
Moreover, since both methods lower the formal scaling with

respect to the basis set size from N( )bas
4 to N( )bas

2 ,

impressive performance improvements of up to 37000× for the
direct (Coulomb) contribution and 1800× for the exchange
contribution were achieved, and the latter could be improved
even further to over 4500× faster execution when GPU
acceleration was employed. In total, RI-J/sn-LinK combines
remarkable efficiency with high accuracy for evaluation of the
F12-type Fock matrix, leading to tremendous time savings with
over 3 orders of magnitude faster computations. We therefore
expect wide applicability in F12 theories.
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1 Non-Covalent Interaction Energy MAEs/ Isomerization Energy MAEs

Table 1: Detailed MAEs of the HF, CABS singles, MP2, F12, and total non-covalent interaction energies for the S22+S66
test set using our sn-LinK, RI-J, and RI-K methods with different grid combinations and RI basis sets. ∗1RI-J values. ∗2RI-JK
values.

Test Set(s) Basis Set(s) Grid SCF [µH] CABS [µH] MP2 [µH] F12 [µH] tot. MAE [µH] tot. MAE [kJ·mol−1]

gm[2/0] 1.06 4.47 9.09 0.76 9.61 0.0252

gm[3/1] 0.19 0.65 2.30 0.22 2.56 0.0067

cc-pVDZ-F12 gm[4/2] 0.08 0.14 0.45 0.04 0.55 0.0014

gm[5/3] 0.03 0.03 0.14 0.01 0.16 0.0004

gm[6/4] 0.01 0.01 0.05 0.01 0.05 0.0001

gm[7/5] 0.00 0.00 0.03 0.00 0.03 0.0001

+ cc-pVDZ-JKfit∗1 - 0.88 0.57 0.75 0.06 1.09 0.0029

+ cc-pVTZ-JKfit∗1 - 0.45 0.36 0.37 0.04 0.74 0.0019

+ cc-pVDZ-JKfit∗2 - 11.42 2.40 2.47 1.30 13.85 0.0364

+ cc-pVTZ-JKfit∗2 - 9.89 0.73 1.82 0.45 12.04 0.0316

+ cc-pVDZ-JKfit gm[5/3] 0.89 0.57 0.76 0.06 1.12 0.0029

+ cc-pVTZ-JKfit gm[5/3] 0.44 0.36 0.43 0.04 0.79 0.0021

gm[2/0] 1.44 3.87 10.87 0.40 12.09 0.0317

gm[3/1] 0.21 0.34 2.59 0.12 2.66 0.0070

S22 + S66 cc-pVDTZ-F12 gm[4/2] 0.08 0.07 0.52 0.02 0.58 0.0015

(NCI) gm[5/3] 0.03 0.01 0.16 0.01 0.17 0.0004

gm[6/4] 0.01 0.00 0.05 0.00 0.06 0.0001

gm[7/5] 0.00 0.00 0.03 0.00 0.03 0.0001

+ cc-pVTZ-JKfit∗1 - 0.72 0.11 0.45 0.03 0.79 0.0021

+ cc-pVQZ-JKfit∗1 - 0.21 0.04 0.23 0.02 0.37 0.0009

+ cc-pVTZ-JKfit∗2 - 9.97 0.33 2.27 0.34 12.64 0.0332

+ cc-pVQZ-JKfit∗2 - 2.97 0.14 0.50 0.11 3.56 0.0093

+ cc-pVTZ-JKfit gm[5/3] 0.73 0.11 0.50 0.03 0.84 0.0022

+ cc-pVQZ-JKfit gm[5/3] 0.22 0.05 0.31 0.02 0.44 0.0011

gm[2/0] 2.63 7.12 11.13 0.17 12.56 0.0330

gm[3/1] 0.22 0.40 2.72 0.05 2.69 0.0071

cc-pVQZ-F12 gm[4/2] 0.09 0.07 0.56 0.01 0.57 0.0015

gm[5/3] 0.03 0.01 0.17 0.00 0.18 0.0004

gm[6/4] 0.00 0.01 0.06 0.00 0.06 0.0002

gm[7/5] 0.00 0.00 0.03 0.00 0.03 0.0001

+ cc-pVQZ-JKfit∗1 - 0.23 0.43 0.26 0.02 0.81 0.0021

+ cc-pV5Z-JKfit∗1 - 0.15 0.37 0.14 0.02 0.60 0.0015

+ cc-pVQZ-JKfit∗2 - 2.91 0.14 0.57 0.10 3.56 0.0093

+ cc-pV5Z-JKfit∗2 - 6.66 0.01 0.07 0.07 6.66 0.0175

+ cc-pVQZ-JKfit gm[5/3] 0.21 0.29 0.33 0.02 0.68 0.0018

+ cc-pV5Z-JKfit gm[5/3] 0.12 0.23 0.24 0.02 0.47 0.0012
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Table 2: Detailed MAEs of the HF, CABS singles, MP2, F12, and total non-covalent interaction energies for the L7 test set
using our sn-LinK, RI-J, and RI-K methods with different grid combinations. ∗1RI-J values. ∗2RI-JK values.

Test Set(s) Basis Set(s) Grid SCF [µH] CABS [µH] MP2 [µH] F12 [µH] tot. MAE [µH] tot. MAE [kJ·mol−1]

gm[2/0] 8.47 12.53 88.78 3.36 98.65 0.2590

gm[3/1] 1.76 2.83 49.87 1.87 47.96 0.1259

L7 cc-pVDZ-F12 gm[4/2] 0.58 0.23 8.21 0.35 8.75 0.0230

(NCI) gm[5/3] 0.15 0.10 1.98 0.05 1.87 0.0049

gm[6/4] 0.05 0.06 0.70 0.03 0.70 0.0018

gm[7/5] 0.01 0.01 0.13 0.06 0.20 0.0005

+ cc-pVDZ-JKfit∗1 - 6.37 3.10 5.03 0.39 4.11 0.0108

+ cc-pVTZ-JKfit∗1 - 1.64 0.70 0.88 0.09 2.15 0.0056

+ cc-pVDZ-JKfit∗2 - 129.27 6.61 10.88 4.78 136.03 0.3571

+ cc-pVTZ-JKfit∗2 - 187.68 3.41 8.41 1.73 196.05 0.5147

+ cc-pVDZ-JKfit gm[5/3] 6.23 3.11 5.89 0.44 4.08 0.0100

+ cc-pVTZ-JKfit gm[5/3] 1.69 0.66 2.27 0.12 3.28 0.0086
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Table 3: Detailed MAEs of the HF, CABS singles, MP2, F12, and total isomerization energies for the ISO34 test set using
our sn-LinK, RI-J, and RI-K methods with different grid combinations. ∗1RI-J values. ∗2RI-JK values.

Test Set(s) Basis Set(s) Grid SCF [µH] CABS [µH] MP2 [µH] F12 [µH] tot. MAE [µH] tot. MAE [kJ·mol−1]

gm[2/0] 52.93 357.44 157.42 13.64 424.36 1.1138

gm[3/1] 14.45 33.36 31.50 2.45 57.11 0.1499

cc-pVDZ-F12 gm[4/2] 5.08 8.94 5.58 0.65 12.31 0.0323

gm[5/3] 1.27 1.59 1.53 0.18 2.91 0.0076

gm[6/4] 0.23 0.32 0.33 0.04 0.70 0.0018

gm[7/5] 0.03 0.08 0.11 0.01 0.18 0.0004

+ cc-pVDZ-JKfit∗1 - 38.88 14.78 9.03 0.60 44.82 0.1177

+ cc-pVTZ-JKfit∗1 - 5.08 2.84 1.45 0.16 6.48 0.0170

+ cc-pVDZ-JKfit∗2 - 28.53 21.08 11.03 2.68 45.97 0.1207

+ cc-pVTZ-JKfit∗2 - 8.43 4.56 1.27 0.77 12.98 0.0341

+ cc-pVDZ-JKfit gm[5/3] 38.63 14.98 9.65 0.65 45.62 0.1198

+ cc-pVTZ-JKfit gm[5/3] 5.47 3.27 2.51 0.28 7.53 0.0198

gm[2/0] 71.97 38.24 148.44 8.10 156.11 0.4099

gm[3/1] 15.61 1.20 32.72 1.39 36.43 0.0956

ISO34 cc-pVDTZ-F12 gm[4/2] 5.21 0.25 5.57 0.33 7.05 0.0185

(Isomerization) gm[5/3] 1.31 0.09 1.52 0.09 2.11 0.0055

gm[6/4] 0.24 0.10 0.32 0.03 0.57 0.0015

gm[7/5] 0.03 0.11 0.11 0.01 0.20 0.0005

+ cc-pVTZ-JKfit∗1 - 7.23 1.03 1.75 0.10 6.82 0.0179

+ cc-pVQZ-JKfit∗1 - 0.69 0.22 0.25 0.02 0.75 0.0020

+ cc-pVTZ-JKfit∗2 - 11.77 1.58 1.90 0.55 13.95 0.0366

+ cc-pVQZ-JKfit∗2 - 1.62 0.26 0.39 0.15 1.91 0.0050

+ cc-pVTZ-JKfit gm[5/3] 7.51 1.23 2.71 0.16 7.31 0.0192

+ cc-pVQZ-JKfit gm[5/3] 1.76 0.55 1.59 0.10 2.44 0.0064

gm[2/0] 105.84 207.81 153.53 4.60 277.10 0.7275

gm[3/1] 15.31 28.48 31.10 0.73 44.38 0.1165

cc-pVQZ-F12 gm[4/2] 5.15 3.79 5.26 0.16 9.17 0.0241

gm[5/3] 1.29 0.96 1.46 0.04 2.37 0.0062

gm[6/4] 0.24 0.53 0.31 0.01 0.80 0.0021

gm[7/5] 0.00 0.45 0.11 0.00 0.47 0.0012

+ cc-pVQZ-JKfit∗1 - 0.69 0.55 0.27 0.01 0.79 0.0021

+ cc-pV5Z-JKfit∗1 - 0.21 0.25 0.12 0.01 0.31 0.0008

+ cc-pVQZ-JKfit∗2 - 1.58 0.09 0.49 0.17 1.73 0.0046

+ cc-pV5Z-JKfit∗2 - 2.36 0.05 0.32 0.08 2.47 0.0065

+ cc-pVQZ-JKfit gm[5/3] 1.80 1.04 1.53 0.05 2.78 0.0072

+ cc-pV5Z-JKfit gm[5/3] 1.45 0.93 1.48 0.05 2.41 0.0063
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2 Absolute Energy MAEs

Table 4: Detailed MAEs of the HF, CABS singles, MP2, F12, and total absolute energies for the S22+S66 test set using
our sn-LinK, RI-J, and RI-K methods with different grid combinations and RI basis sets. ∗1RI-J values. ∗2RI-JK values.

Test Set(s) Basis Set(s) Grid SCF [µH] CABS [µH] MP2 [µH] F12 [µH] tot. MAE [µH] tot. MAE [kJ·mol−1]

gm[2/0] 89.51 735.12 147.07 17.83 735.35 1.9307

gm[3/1] 10.17 22.05 22.08 3.06 39.86 0.1047

cc-pVDZ-F12 gm[4/2] 3.15 6.37 5.81 0.53 11.04 0.0290

gm[5/3] 1.01 1.08 0.74 0.14 1.83 0.0048

gm[6/4] 0.12 0.25 0.26 0.04 0.44 0.0011

gm[7/5] 0.03 0.09 0.07 0.02 0.13 0.0004

+ cc-pVDZ-JKfit∗1 - 218.57 62.03 34.70 2.24 247.67 0.6503

+ cc-pVTZ-JKfit∗1 - 108.12 29.57 15.42 0.73 122.56 0.3218

+ cc-pVDZ-JKfit∗2 - 561.69 364.40 188.87 398.08 1511.93 3.9696

+ cc-pVTZ-JKfit∗2 - 138.20 72.02 88.84 177.73 476.20 1.2503

+ cc-pVDZ-JKfit gm[5/3] 218.71 61.79 34.96 2.24 247.29 0.6493

+ cc-pVTZ-JKfit gm[5/3] 108.26 29.37 15.67 0.73 122.18 0.3208

gm[2/0] 210.78 1327.61 147.08 8.91 1185.88 3.1135

gm[3/1] 11.42 28.67 22.90 1.54 34.21 0.0898

S22 + S66 cc-pVDTZ-F12 gm[4/2] 3.29 2.76 5.88 0.27 6.13 0.0161

(Absolute) gm[5/3] 1.06 0.51 0.79 0.07 1.53 0.0040

gm[6/4] 0.12 0.10 0.26 0.02 0.27 0.0007

gm[7/5] 0.03 0.03 0.08 0.01 0.09 0.0002

+ cc-pVTZ-JKfit∗1 - 156.26 3.44 23.75 0.78 136.60 0.3586

+ cc-pVQZ-JKfit∗1 - 32.44 4.03 1.12 0.06 27.75 0.0729

+ cc-pVTZ-JKfit∗2 - 174.18 33.96 245.93 110.17 563.92 1.4806

+ cc-pVQZ-JKfit∗2 - 26.04 8.55 28.36 32.25 95.20 0.2499

+ cc-pVTZ-JKfit gm[5/3] 156.34 3.61 24.02 0.78 136.56 0.3585

+ cc-pVQZ-JKfit gm[5/3] 32.52 3.88 1.54 0.10 27.72 0.0728

gm[2/0] 523.49 2631.00 141.18 5.16 2157.07 5.6634

gm[3/1] 14.93 59.18 22.55 0.78 52.78 0.1386

cc-pVQZ-F12 gm[4/2] 3.25 3.58 5.67 0.14 5.82 0.0153

gm[5/3] 1.07 0.58 0.80 0.04 1.59 0.0042

gm[6/4] 0.13 0.23 0.26 0.01 0.32 0.0008

gm[7/5] 0.00 0.07 0.08 0.00 0.11 0.0003

+ cc-pVQZ-JKfit∗1 - 29.94 2.88 1.51 0.06 31.70 0.0832

+ cc-pV5Z-JKfit∗1 - 21.23 1.79 0.63 0.03 23.53 0.0618

+ cc-pVQZ-JKfit∗2 - 32.95 1.22 49.60 16.88 100.66 0.2643

+ cc-pV5Z-JKfit∗2 - 11.71 0.97 13.14 8.96 33.47 0.0879

+ cc-pVQZ-JKfit gm[5/3] 30.04 1.73 1.88 0.06 30.29 0.0795

+ cc-pV5Z-JKfit gm[5/3] 21.33 0.82 1.07 0.05 22.13 0.0581
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Table 5: Detailed MAEs of the HF, CABS singles, MP2, F12, and total absolute energies for the L7 test set using our
sn-LinK, RI-J, and RI-K methods with different grid combinations. ∗1RI-J values. ∗2RI-JK values.

Test Set(s) Basis Set(s) Grid SCF [µH] CABS [µH] MP2 [µH] F12 [µH] tot. MAE [µH] tot. MAE [kJ·mol−1]

gm[2/0] 706.17 4519.68 1440.70 187.91 5558.74 14.5945

gm[3/1] 99.35 94.74 137.98 40.27 297.76 0.7818

L7 cc-pVDZ-F12 gm[4/2] 32.90 52.02 66.39 5.81 126.71 0.3327

(Absolute) gm[5/3] 6.53 11.55 10.07 1.91 18.13 0.0476

gm[6/4] 1.55 2.10 2.65 0.48 5.29 0.0139

gm[7/5] 0.30 0.82 0.85 0.13 1.83 0.0048

+ cc-pVDZ-JKfit∗1 - 962.58 315.08 183.61 7.80 1101.85 2.8929

+ cc-pVTZ-JKfit∗1 - 539.44 146.05 90.33 3.19 598.34 1.5710

+ cc-pVDZ-JKfit∗2 - 3414.55 2193.01 1076.44 1901.82 8585.82 22.5421

+ cc-pVTZ-JKfit∗2 - 1070.82 434.30 491.17 842.63 2838.92 7.4536

+ cc-pVDZ-JKfit gm[5/3] 968.18 322.63 178.57 7.99 1119.24 2.9386

+ cc-pVTZ-JKfit gm[5/3] 545.03 153.59 85.29 3.35 615.72 1.6166
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Table 6: Detailed MAEs of the HF, CABS singles, MP2, F12, and total absolute energies for the ISO34 test set using our
sn-LinK, RI-J, and RI-K methods with different grid combinations. ∗1RI-J values. ∗2RI-JK values.

Test Set(s) Basis Set(s) Grid SCF [µH] CABS [µH] MP2 [µH] F12 [µH] tot. MAE [µH] tot. MAE [kJ·mol−1]

gm[2/0] 68.75 483.70 146.12 13.75 481.03 1.2629

gm[3/1] 9.48 25.01 21.57 2.36 39.66 0.1041

cc-pVDZ-F12 gm[4/2] 2.90 6.83 4.63 0.43 10.45 0.0274

gm[5/3] 0.73 0.98 0.87 0.11 1.69 0.0044

gm[6/4] 0.12 0.22 0.22 0.03 0.44 0.0012

gm[7/5] 0.02 0.06 0.07 0.01 0.11 0.0003

+ cc-pVDZ-JKfit∗1 - 175.58 55.91 30.90 2.26 202.85 0.5326

+ cc-pVTZ-JKfit∗1 - 66.61 21.87 10.24 0.68 78.92 0.2072

+ cc-pVDZ-JKfit∗2 - 226.04 147.22 115.97 199.94 689.17 1.8094

+ cc-pVTZ-JKfit∗2 - 61.81 27.01 49.09 88.92 226.76 0.5954

+ cc-pVDZ-JKfit gm[5/3] 175.81 56.09 30.74 2.21 203.37 0.5339

+ cc-pVTZ-JKfit gm[5/3] 66.84 22.06 10.13 0.65 79.44 0.2086

gm[2/0] 139.56 717.20 141.14 8.02 653.14 1.7148

gm[3/1] 9.73 20.49 23.14 1.29 28.36 0.0745

ISO34 cc-pVDTZ-F12 gm[4/2] 2.90 2.50 4.61 0.22 6.22 0.0163

(Absolute) gm[5/3] 0.73 0.40 0.85 0.06 1.27 0.0033

gm[6/4] 0.13 0.11 0.22 0.02 0.34 0.0009

gm[7/5] 0.02 0.02 0.07 0.00 0.07 0.0002

+ cc-pVTZ-JKfit∗1 - 98.99 3.18 15.10 0.58 87.58 0.2299

+ cc-pVQZ-JKfit∗1 - 19.56 2.18 0.64 0.04 16.91 0.0444

+ cc-pVTZ-JKfit∗2 - 69.17 15.86 129.67 55.81 270.52 0.7102

+ cc-pVQZ-JKfit∗2 - 12.14 4.63 14.85 16.27 47.89 0.1257

+ cc-pVTZ-JKfit gm[5/3] 99.15 3.33 14.95 0.56 88.01 0.2311

+ cc-pVQZ-JKfit gm[5/3] 19.72 2.04 1.07 0.07 17.33 0.0455

gm[2/0] 325.47 1386.96 140.29 4.87 1128.47 2.9628

gm[3/1] 10.47 37.83 22.00 0.67 34.73 0.0912

cc-pVQZ-F12 gm[4/2] 2.86 2.50 4.33 0.11 6.39 0.0168

gm[5/3] 0.73 0.42 0.82 0.03 1.37 0.0036

gm[6/4] 0.13 0.11 0.21 0.01 0.36 0.0010

gm[7/5] 0.00 0.04 0.06 0.00 0.08 0.0002

+ cc-pVQZ-JKfit∗1 - 18.06 1.47 0.89 0.04 18.71 0.0491

+ cc-pV5Z-JKfit∗1 - 13.18 1.04 0.22 0.01 14.33 0.0376

+ cc-pVQZ-JKfit∗2 - 16.10 0.56 25.61 8.88 51.16 0.1343

+ cc-pV5Z-JKfit∗2 - 5.43 0.47 6.73 4.73 17.28 0.0454

+ cc-pVQZ-JKfit gm[5/3] 18.24 0.87 1.20 0.05 18.32 0.0481

+ cc-pV5Z-JKfit gm[5/3] 13.36 0.51 0.89 0.03 13.94 0.0366
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3 RI-J/sn-LinK Speedups

Table 7: RI-J/sn-LinK (cc-pVYZ-JKfit/gm[X+2/X]; Y = D, T Q) speedups on CPUs (SCPU) and GPUs (SGPU) for the full F12-type Fock build for each member of the
L7 test (cc-pVXZ-F12; X = D, T, Q).∗1 Reference extrapolated from double- and triple-zeta F12 timings.

gm[2/0] gm[3/1] gm[4/2] gm[5/3] gm[6/4] gm[7/5]

Basis Set L7 Structure Nbas NCABS SCPU SGPU SCPU SGPU SCPU SGPU SCPU SGPU SCPU SGPU SCPU SGPU

L1 1836 5288 209 528 153 442 89 339 52 246 34 184 25 148

L2 1191 3426 251 469 196 454 123 357 72 284 48 226 35 182

L3 2255 6486 517 1340 367 1071 214 877 123 627 82 458 60 358

cc-pVDZ-F12 L4 2588 7444 584 1635 419 1311 240 1060 138 715 91 535 67 422

+ cc-pVDZ-JKfit L5 1818 5232 316 742 232 723 134 530 79 382 52 294 38 233

L6 1752 5044 446 1072 327 1037 190 778 109 561 72 409 53 323

L7 1396 4016 311 682 228 630 137 495 82 371 53 281 39 224

L1 3676 7804 693 1627 496 1353 289 963 169 623 111 475 82 363

L2 2331 4311 733 1550 554 1295 351 955 208 668 138 502 102 382

L3 4405 8044 1423 3403 1007 2718 589 2050 342 1345 223 949 154 706

cc-pVTZ-F12 L4 5058 9267 1575 4155 1137 3318 645 2276 346 1551 212 1058 172 795

+ cc-pVTZ-JKfit L5 3588 6999 976 2017 695 1845 410 1334 240 928 157 646 116 507

L6 3432 6384 1308 2884 971 2715 554 1811 322 1192 211 864 154 650

L7 2736 5106 939 1880 686 1688 412 1237 239 847 156 637 117 491

L1 6996 9700 1551 - 1113 - 637 - 325 - 229 - 163 -

L2 4281 5229 1488 - 1140 - 668 - 358 - 247 - 185 -

L3 8065 9733 2761 - 1978 - 1045 - 613 - 413 - 297 -

cc-pVQZ-F12∗1 L4 9268 11220 2710 - 2053 - 1230 - 704 - 449 - 333 -

+ cc-pVQZ-JKfit L5 6678 8574 2024 - 1497 - 787 - 453 - 300 - 221 -

L6 6312 7752 2548 - 1897 - 986 - 578 - 374 - 268 -

L7 5036 6204 1918 - 1404 - 731 - 442 - 288 - 207 -

8



4 RI-K

Following the approach of Weigend in Ref 1 (reference 12 in article), the 4-center-2-electron

repulsion integral tensor is approximated as

(µν|λσ) ≈
∑

PQ

(µν|P )(P |Q)−1(Q|λσ), (1)

where (P |Q)−1 denotes the matrix inverse of the auxiliary basis 2-center-2-electron repulsion

integrals (P |Q), and which becomes exact in the limit of complete auxiliary basis sets.

Inserting Eq. 1 into the atomic orbital expression for the exchange matrix

Kµν =
∑

λσ

(µσ|λν)Pλσ, (2)

decomposing

(P |Q)−1 =
∑

R

(P |R)−
1
2 (R|Q)−

1
2 , (3)

and the density matrix

Pλσ =
∑

i

CλiCσi, (4)

where Cλi denotes occupied MO coefficients (or, equivalently, Cholesky factors of P), leads

to the RI-K expression (cf. Eq. 4 of ref. 1)

Kµν =
∑

λσiPQR

(µσ|P )(P |R)−
1
2 (R|Q)−

1
2 (Q|λν)CλiCσi . (5)

9



There are multiple viable approaches to evaluate Eq. 5: In the original implementation of

Weigend, only (P |Q)−
1
2 is initially precomputed and the exchange matrix is then formed in

each self-consistent field (SCF) iteration as:

(iµ|P ) =
∑

ν

Cνi(νµ|P ) (6)

BQ
iµ =

∑

P

(iµ|P )(P |Q)−
1
2 (7)

Kµν =
∑

iQ

BQ
iµB

Q
iν . (8)

In an alternative approach, the untransformed 3-center-1-electron integrals (µν|P ) are trans-

formed with (P |Q)−
1
2 in an additional precomputation step

BQ
νµ =

∑

P

(νµ|P )(P |Q)−
1
2 (9)

and the exchange matrix is then obtained in each SCF iteration as

BQ
iµ =

∑

ν

CνiB
Q
νµ (10)

Kµν =
∑

iQ

BQ
iµB

Q
iν (same as Eq. 8). (11)

This approach avoids the second transformation step (Eq. 7) within each SCF cycle at the

cost of an additional preparatory step and a higher memory demand (storage of BQ
νµ).

In practice, the second approach is highly beneficial for iterative procedures like the SCF

method, where the cost of the preparation is overall less significant. For F12-type-Fock builds,

however, only a single K-build needs to be performed, so the cost of the precomputation in

Eq. 9 outweighs the savings from avoiding the evaluation of Eq. 7. Therefore, we decided

to use the precomputation RI-K method (second approach) for the SCF calculation and the

integral-direct variant (first approach) for the F12-type Fock build.
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are demonstrated for large molecular systems with up to 1707 atoms. Published by AIP Publishing.
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I. INTRODUCTION

During the last decades, density functional theory (DFT),1

in particular, in combination with empirical dispersion cor-
rections (see, e.g., Ref. 2), has become the de facto standard
for electronic structure theory calculations due to its excel-
lent cost-performance ratio. However, the evaluation of typical
density functionals requires the integration of the exchange-
correlation (XC) energy density over the whole 3D-space of the
molecule. Since there exists no general analytical integration
scheme for this purpose, a numerical grid-based quadrature
is typically employed. Although the use of evenly spaced
Cartesian grids is possible in principle, specifically designed
atom-centered integration grids are more effective due to the
high variance of the XC energy density, in particular, near the
nuclei.

The atomic grids are typically constructed as the prod-
uct of an angular and a radial grid. For the former, the
schemes of Lebedev and Laikov3 are ubiquitously employed,
whereas for the latter, a variety of different schemes have been
proposed.4–8

Finally, the individual atomic grids need to be merged into
the molecular grid requiring a molecular partitioning scheme
to account for the overlap of the atomic grids. For this pur-
pose, Becke4 proposed a weighting scheme employing smooth
Voronoi polyhedrons to partition the molecule into regions for
each atom and scaling the corresponding atomic grids accord-
ingly. This approach has later been adjusted by Stratmann
et al.9 to allow for a more efficient and asymptotically linear
scaling construction of the grid.

However, both partitioning schemes lead to artificial
oscillations in the energy surface at larger interatomic dis-
tances (see Sec. II) which we trace back to an insufficient
sharpness of the partitioning profile in these situations (see
Sec. III B). Therefore, we propose a simple modification

a)Electronic mail: christian.ochsenfeld@uni-muenchen.de

to Becke’s partitioning function, adjusting the sharpness
at large (and only at large) distances, in this way com-
pletely removing the above-mentioned artifacts. Moreover,
this adjustment introduces a locality into the weighting
scheme that allows for a very efficient and linear scaling
generation of the grid without the introduction of a cutoff
error.

The paper is organized as follows: First, we motivate the
development of our new partitioning scheme at the example
of the argon-dimer dissociation in Sec. II. Subsequently, we
briefly review and benchmark Becke’s partitioning scheme4

in Secs. III A and III B, respectively, describe our modified
scheme in Sec. III C, and present a linear-scaling algorithm
for the generation of the molecular partitioning weights in
Sec. III D. Finally, we compare the accuracy of our mod-
ified scheme with the existing schemes of Becke4 and
Stratmann et al.9 for a selection of test sets (G2,10,11 L7,12

S22 × 513) in Sec. IV A and present the computational
efficiency of our grid generation in Sec. IV B. More-
over, the full specification of the numerical integration grids
employed in our FermiONs++ program14–16 is given in the
Appendix.

II. MOTIVATION: Ar–Ar DISSOCIATION CURVE

We compare the existing partitioning schemes of Becke4

(denoted as “Becke”) and Stratmann, Scuseria, and Frisch9

(denoted as “SSF”) with the modified scheme of the present
work (denoted as “mod. Becke”) for the argon-dimer disso-
ciation curve, exemplifying a typical van der Waals complex.
The functional of Perdew, Burke, and Ernzerhof (PBE)17 and
the def2-TZVP basis set18 have been employed in all calcula-
tions as they are widely used today (see Sec. IV A for more
computational details).

Figure 1 illustrates the shortcomings of existing parti-
tioning schemes, exhibiting unphysical energy oscillations
at large interatomic distances (considerably outside of the
experimental van der Waals minimum at 3.76 Å19). This

0021-9606/2018/149(20)/204111/8/$30.00 149, 204111-1 Published by AIP Publishing.



204111-2 Laqua, Kussmann, and Ochsenfeld J. Chem. Phys. 149, 204111 (2018)

FIG. 1. Comparison of different partitioning schemes for the dissociation
curve of the argon-dimer employing the FermiONs++ program with the “g5”-
grid, the def2-TZVP basis set, and the PBE functional.

artifact is caused by the partitioning function not being sharp
enough at larger distances. Therefore, grid points originat-
ing from one center but appearing close to another cen-
ter have a non-zero weight and thus interfere with the
atomic grid of the other center, resulting in a substantially
increased grid error. Since the SSF partitioning scheme is
sharper than the Becke scheme (see also discussions below),
the effect is less pronounced for the SSF scheme. This
observation motivated the development of our new weight-
ing scheme, described in Secs. III A and III C, where
the “smoothness” is capped at some given interatomic dis-
tance Rcutoff, in this way providing an excellent dissociation
curve.

Since both the Becke and the SSF partitioning scheme
are ubiquitously used throughout quantum chemistry (QC),
we expect this artifact to also be present in other commonly
used QC-programs. Therefore we compare our FermiONs++
program with the QChem,20 Turbomole,21 and ORCA22 pro-
gram packages in Fig. 2, employing default settings if not
stated otherwise. To allow for a fair comparison, we choose
grids of comparable sizes (about 20 000 points per atom),
except for QChem where we use the unpruned [99/590]-
grid since a comparable pruned grid is not available in our
version. From Fig. 2, we note that energy oscillations at
large interatomic distances are indeed ubiquitously present
in commonly used quantum chemistry programs, which can,
however, be removed completely by employing the new par-
titioning scheme of our present paper, which we describe
below.

FIG. 2. Comparison of different program packages for the dissociation curve
of the argon-dimer employing the def2-TZVP basis set and the PBE functional.
The following grids have been employed: FermiONs++: “g5”; Turbomole:
gridsize “5”; QChem: “99/590”; Orca: “GRID6.”

III. THEORY
A. Becke’s molecular partitioning scheme

For the molecular weighting scheme, the molecule is
partitioned into smooth Voronoi polyhedrons (Dirichlet par-
titioning). We begin with the construction of the confocal
elliptical coordinate µ defined as

µij =
ri − rj

Rij
, (1)

where ri denotes the distance of the reference-point (i.e., the
grid-point of interest) to the i-th atom and Rij denotes the
distance between atom i and atom j. Then, we apply the
polynomial smoothing function given as

g(µij) = h
(
. . . h

(
︸   ︷︷   ︸

k times

µij
)
. . .

)
, (2)

with

h(x) =
3
2

x − 1
2

x3, (3)

resulting in a smoothly varying value of g(µ) in the interval
g ∈ [−1, 1]. The result is then mapped linearly into the interval
s ∈ [0, 1] as

s(µij) =
1
2

[1 − g(µij)]. (4)

As pictured in Fig. 3, the sharpness of the partition is
controlled by the integer parameter k in Eq. (2), where higher
values for k result in a sharper partitioning. Becke4 recom-
mended the value of k = 3, which has been adopted in the
studies of Refs. 5 and 6.

The unnormalized Voronoi polyhedron functions are
subsequently constructed as

Pi(r) =
∏

i,j

s(µij) (5)

and are finally normalized to yield the molecular partitioning
weights

pi(r) =
Pi(r)∑
j Pj(r)

. (6)

The molecular grid is then constructed from the individual
atomic grids weighted by the corresponding partitioning func-
tion pp(rg) for each grid point rg, where p denotes the parent
atom of the respective grid point (i.e., the center of the atomic
grid the point originated from).

FIG. 3. Partitioning functions g(µij) for different values of k.
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FIG. 4. Influence of different k values on the dissociation curve of the argon
dimer with the “g5”-grid, the def2-TZVP basis set, and the PBE functional.
Note that the curves for k = 4 and k = 5 are virtually identical in the represented
region.

B. Accuracy benchmark of Becke’s molecular
partitioning scheme

Considering the shortcomings of the original Becke
weighting scheme with k = 3 as discussed in Sec. II, the
sharpness parameter k of Eq. (2) represents an obvious tar-
get for adjustments. First, we revisit the argon dimer disso-
ciation curve in Fig. 4 and note that a sharper partitioning
(k ≥ 4) indeed provides substantially better (i.e., virtually per-
fect) results. Thus, only considering dissociation curves, one
would question Becke’s4 initial choice of k = 3 and instead
prefer to use a sharper partitioning profile with k ≥ 4.

However, considering tightly bound molecules, e.g., the
G2 test as represented in Fig. 5, leads to a different conclusion:
here, the scheme with k = 3 outperforms all other schemes,
particularly for coarser grids. This observation thus confirms
Becke’s4 initial choice of k = 3.

Taking both of the above observations into account, we
therefore conclude that at small distances the recommended
value of k = 3 is indeed optimal, whereas at large inter-
atomic separations a sharper partitioning profile is necessary
for optimal results. Ideally, in the case of, e.g., supermolec-
ular systems, one would choose a partitioning scheme with
k = 3 for intramolecular atom pairs and k = 4 for intermolecu-
lar pairs. However, since a continuous transition between k = 3
and k = 4 for intermediate distances is not possible (k needs to
be an integer), such a scheme would be impractical for general
applications. Therefore, we propose a modified Becke scheme,

FIG. 5. Grid-induced mean absolute errors for the G2 test (atomization ener-
gies of small molecules) for different grids and sharpness parameters k at
the PBE/def2-TZVP level compared to the very tight [150/2030]-reference
grid (using the modified partitioning scheme of the present work). See also
Sec. IV A for more computational details.

FIG. 6. Modified (new Becke) vs. unmodified (old Becke) µij (continuous
line) and gij (dashed line) along the nucleus-nucleus connection line for two
atoms at 10 bohr distance.

which provides a continuous transition between both cases,
below.

C. Modification to the molecular partitioning scheme

The rationale behind our modified scheme is to leave the
original partitioning profile with k = 3 unchanged at short
distances Rij, in this way preserving the superior accuracy for
tightly bound molecules, and to choose a sharper profile for
large interatomic separations, in this way providing smooth
dissociation curves.

For this purpose, µij of Eq. (1) is modified according to
(see also Fig. 6 for a graphical representation)

µmod
ij =

ri − rj

min
(
Rcutoff, Rij

) , (7)

µmod, cutoff
ij =


−1, µmod

ij ≤ −1

1, µmod
ij ≥ 1

µmod
ij , otherwise

. (8)

Note that the partitioning profile remains unchanged for
Rij ≤ Rcutoff.

By testing different values for Rcutoff, we found that
Rcutoff = 5 bohrs provides optimal results in all our test cases
and minor variations (±1 bohr) have virtually no influence on
the accuracy of the weighting scheme. Furthermore, we want
to emphasize that the modifications in Eqs. (7) and (8) require
very little change to existing grid generation codes.

D. Efficient and linear scaling generation
of the grid-weights

In addition to a superior accuracy, our new partitioning
function allows for an efficient and linear-scaling generation
of the molecular weight adjustments. Since the construction
of the molecular grid scales formally as O(NgridN2

at), this step
represents a computational bottleneck for the existing parti-
tioning schemes, in particular, for periodic systems.23–25 In
previous work,23–25 cutoff radii for significant atoms have
been proposed, requiring a careful control of the so-introduced
error.

However, our new partitioning function allows for a linear-
scaling grid generation without such considerations due to
the intrinsic locality of the new partitioning function given
in Eqs. (7) and (8). Below, we present our linear-scaling grid
generation algorithm in combination with the formal scaling
behavior of each step:
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1: for all parent atoms p do
2: calculate distances to all other atoms Rpi O(N2

at)
3: sort {Rpi} (in ascending order) O(N2

at log(Nat))
4: for all grid points g ∈ atomic grid of p do
5: calculate rgp O(Ngrid )
6: initialize distance to nearest atom rgn = rgp O(Ngrid )
7: for all atoms i sorted by Rpi do
8: if (Rpi > rgn + rgp + 2Rcutoff) break
9: calculate rgi O(NatNgrid )

10: update rgn = min
(
rgn, rgi

)
O(NatNgrid )

11: end for
12: if (rgn > rgn + Rcutoff) continue
13: sort {rgi} (in ascending order) O(Nat log(Nat)Ngrid )
14: for all atoms i sorted by rgi do
15: if (rgi > rgn + Rcutoff) break
16: for all atoms j > i sorted by rgj do
17: if (rgj > rgi + Rcutoff) break
18: calculate s(µij) according to Eqs. (1)–(4) O(N2

atNgrid )
19: calculate s(µji) = 1 � s(µij) [utilize symmetry of s(µij)]

O(N2
atNgrid )

20: calculate Pi, Pj according to Eq. (5) O(N2
atNgrid )

21: end for
22: end for
23: calculate molecular weight adjustment pp according

to Eq. (6) O(NatNgrid )
24: end for
25: end for

Lines 18-20 typically represent the computational bottleneck
in the grid generation due to their formal O(N2

atNgrid) scaling.
However, due to pre-sorting of the list of adjacent nuclei (line
13) and the loop-breaking in lines 15 and 17, only a constant
number of nuclei need to be considered in these steps, which
reduces the computational cost substantially and ensures an
asymptotic linear-scaling behavior.

IV. ILLUSTRATIVE CALCULATIONS
A. Accuracy for benchmark test sets

Here, we compare the accuracy of the conventional par-
titioning schemes (Becke, SSF) with our modified Becke
scheme for three different test sets, namely, the G2 test set
(atomization energies of small molecules),10,11 the S22× 5 test
set (weak interactions of small and medium sized molecules
at five different distances),13 and the L7 test set (weak inter-
actions of seven larger dimers up to 101 atoms),12 covering
a variety of different cases commonly encountered in appli-
cations. All calculations are referenced toward a very tight
[150/2030]-grid, where we employ the new weighting scheme
of the present work.

We decided to use the PBE functional17 for our bench-
marks since it is widely used within the quantum chem-
istry community, particularly in the form of the PBE hybrid
functional (PBEH),26,27 and in combination with empirical
dispersion correction (e.g., the DFT-D3 method by Grimme
and co-workers2). We have also tested other functional and
observed fully analogous behavior. Note that some highly
fitted functionals exhibit significantly larger grid errors due
to the high spatial variance of the energy density probably

FIG. 7. Grid-induced absolute errors for the G2 test (small molecules) for
different grids at the PBE/def2-TZVP level compared to the very tight
[150/2030]-reference grid (using the modified partitioning scheme of the
present work).

due to “overfitting” (see also the discussions in Refs. 28
and 29).

We note that for the small molecules of the G2-test set
(Fig. 7), the original and the modified Becke scheme provide
virtually identical results since the cutoff-condition of Eq. (7)
is essentially never fulfilled for the small interatomic distances
present in the G2 test set. As discussed in Sec. III B, this is
indeed the desired behavior since a smooth partitioning func-
tion provides better results for tightly bound molecules. This
explains the inferior accuracy of the sharper SSF weighting
scheme in this test set.

However, for weak interaction and especially for stretched
dimers, a sharper partitioning function is mandatory to avoid
the energy oscillations pictured in Figs. 1, 2, and 4. There-
fore, the original Becke scheme provides quite poor results
for the weak interactions of both the L7 test set (Fig. 8) and
the S22 × 5 test set (Fig. 9). This is particularly problematic
since the results of the Becke scheme converge very slowly
with the grid size. This observation matches our results for the
argon dimer dissociation curve, where the oscillations appear
even when employing quite large grids. Although the effect
is supposed to disappear for infinitely fine grids in principle,
sufficiently tight grids are substantially too large for practical
calculations.

The SSF scheme performs much better for weak interac-
tion, especially for larger grids, due to the above-mentioned
higher sharpness. However, the modified Becke scheme of

FIG. 8. Grid-induced errors in the interaction energies of the L7 test set (weak
interactions of large dimers up to 101 atoms) at the PBE/def2-TZVP level
referenced to the very tight [150/2030] grid (using the modified partitioning
scheme of the present work). The average interaction energy [QCISD(T)/CBS
results from Ref. 12] is given as 29 000 µEh.
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FIG. 9. Grid-induced errors in the interaction energies of the S22 × 5 test set (weak interactions of small and medium sized molecules at five shortened/stretched
distances) at the PBE/def2-TZVP level referenced to the very tight [150/2030] grid (using the modified partitioning scheme of the present work). The average
interaction energies [CISD(T)/CBS results from Ref. 13] are given as 9470 µEh (0.9 × distance), 11 700 µEh (1.0 × distance), 9200 µEh (1.2 × distance),
4920 µEh (1.5 × distance), 1860 µEh (2.0 × distance).

the present work performs equally well or better than both
of the other two schemes in any tested case, and we thus
consider it to always be the better choice for DFT calcula-
tions. Moreover, the molecular grids from the new weighting
scheme contain about 10%–30% less grid points, depending
on the packing density of the specific system (higher sav-
ings for more densely packed systems), due to the higher
locality of the partitioning function, in this way providing
proportional savings of 10%–30% in the numeric evalua-
tion of the density functional. Although the purpose of our
modified Becke scheme is to improve energy surfaces, these
savings in computational cost represent another additional
benefit.

Note that even for the coarsest grids, none of the above
presented errors are significant (≤1% of the investigated
interaction energy) compared to typical functional or basis
set errors (commonly ≥10%). However, the less system-
atic nature of the grid errors, in particular, when leading
to oscillating energy surfaces, requires a considerable stricter

error control. Since our new scheme yields overall smoother
energy surfaces, we expect even more pronounced gains
for geometry optimizations, which have been known to
require larger grids for robust results and tight conver-
gence. A further investigation of this and related topics
(e.g., for vibrational frequencies) will be included in future
work.

Overall, when employing the new weighting scheme, the
smallest “gm3”-grid (ca. 2500 points/atom for the SCF and
9500 points/atom for the final energy) already provides an
acceptable accuracy with the largest error being 102 µEh for
the coronene-dimer of the L7-test set, which only corresponds
to 0.26% of the absolute interaction energy for this exam-
ple. This is particularly promising with regard to local-hybrid
functionals, where the exact-exchange energy density has to be
evaluated for every grid-point, resulting in the numerical (grid-
based) integration to represent the computational bottleneck,
in contrast to conventional functionals, where the evaluation
of the 4-center-2-electron integrals is typically the most time
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FIG. 10. Scaling behavior of the molecular partitioning scheme of the present
work for linear alkanes employing the “g5” grid.

consuming step. Thus, the new weighting scheme is a valu-
able augmentation to our recently published semi-numerical
local-hybrid scheme preLinX.30

B. Performance analysis of the grid generation

Having discussed the accuracy of our newly developed
modified Becke scheme above, we now assess the effi-
ciency and scaling behavior of our grid generation algorithm,
described in Sec. III D. We present the results in Fig. 10 and
Table I. All timings are given for the “g5” grid and employing
an openMP31 parallelized setup employing 12 cores (2× Intel-
E5645 at 2.40 GHz), where the parallelization is performed
at the level of the parent atoms (line 1 in the pseudocode of

TABLE I. Timing comparisons for the molecular partitioning scheme of the
present work employing the “g5” grid. The scaling behaviors are given with
respect to the respective predecessing molecule.

System No. of atoms Time (s) Scaling

DNA fragments
(DNA)1 62 0.7 . . .

(DNA)2 128 2.3 1.59
(DNA)4 260 5.95 1.27
(DNA)8 524 13.06 1.09
(DNA)16 1052 27.57 1.05

Fullerenes
C60 60 1.13 . . .

C100 100 2.17 1.15
C180 180 4.88 1.25
C240 240 6.99 1.07

Spherical water clusters
(H2O)68 204 4.39 . . .

(H2O)142 426 11.83 1.29
(H2O)285 855 27.87 1.17
(H2O)569 1707 62.77 1.13

LiF cutouts
(LiF)16 32 0.26 . . .

(LiF)36 72 1.02 1.74
(LiF)144 288 8.75 2.14
(LiF)256 512 22.69 1.46

Saturated diamond cutouts
C42H60 102 3.44 . . .

C252H218 470 33.67 2.12

Sec. III D). The code was compiled with the GNU compiler
collection (GCC)32 using compiler optimizations (-O3).

The asymptotic linear-scaling of our scheme is clearly
demonstrated for both linear alkanes in Fig. 10 and a variety
of different systems in Table I, and the grid generation does
not represent a computational bottleneck in any of the test
cases. We note that, in principle, Becke’s partitioning scheme
can also be implemented in an asymptotically linear-scaling
fashion, by neglecting the contributions of distant nuclei (see,
e.g., Ref. 23). However, as discussed in Sec. III D and in con-
trast to our modified partitioning function of the present work,
this leads to an additional cutoff error which needs to be care-
fully controlled. Indeed, the disadvantageous O(N3)-scaling
of Becke’s weighting scheme motivated the development of
the weighting scheme of Ref. 9 (SSF), whereas our new parti-
tioning scheme completely removes the computational bottle-
neck of grid generation without any additional considerations
regarding cutoff errors.

V. CONCLUSION AND OUTLOOK

We presented a modification to Becke’s molecular parti-
tioning scheme, which completely removes the shortcomings
of existing schemes for weakly bound van der Waals com-
plexes and allows for an efficient and linear-scaling generation
of the molecular grid. The modified scheme of the present work
provides superior accuracy compared to the existing schemes
of Becke4 and Stratmann et al.9 in any test case and, in con-
trast to the existing schemes, leads to considerably smoother
energy surfaces.

This superior cost-performance ratio is particularly sig-
nificant for local-hybrid functionals30 where the grid based
integration of the exchange-correlation functional represents
the major computational bottleneck. Furthermore, due to the
linear-scaling algorithm presented in Sec. III D, the computa-
tion time for the grid generation can be reduced to virtually
negligible cost, which is also promising regarding periodic
boundary condition (PBC) calculations.
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APPENDIX: SPECIFICATION OF GRIDS
USED IN THE PRESENT WORK

The grids employed in the present work are inspired by
the approach of Treutler and Ahlrichs6 as employed in the
Turbomole program.21 The molecular grids are constructed as
a combination of the individual atomic grids, adjusted by the
partitioning scheme described in Secs. III A and III C. The
atomic grids are given as a product of radial (τ) and angular
(σ) grids of the form
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TABLE II. Optimal atomic radii R for the (M4) quadrature [Eqs. (A2)–(A4)] taken from Ref. 6 for all elements
up to Kr. For all heavier elements, R = 1.0 is employed.

H 0.8 He 0.9 Li 1.8 Be 1.4 B 1.3 C 1.1 N 0.9 O 0.9 F 0.9 Ne 0.9
Na 1.4 Mg 1.3 Al 1.3 Si 1.2 P 1.1 S 1.0 Cl 1.0 Ar 1.0
K 1.5 Ca 1.4 Ga 1.1 Ge 1.0 As 0.9 Se 0.9 Br 0.9 Kr 0.9

Sc 1.3 Ti 1.2 V 1.2 Cr 1.2 Mn 1.2 Fe 1.2 Co 1.2 Ni 1.1 Cu 1.1 Zn 1.1

ratomic = rτrσ , watomic = wτwσ , (A1)

where rτ denotes the radius of the radial shell, rσ denotes
the position of the angular grid point on a unit sphere, wτ
denotes the radial grid weight, and wσ denotes the angular grid
weight.

The Lebedev-Laikov grids3 are employed for the angular
grid (rσ , wσ), and the (M4) quadrature of Ref. 6 is employed
for the radial quadrature (rτ , wτ). The radial points of the (M4)
quadrature are obtained as given in Eqs. (23)–(25) of Ref. 8
as

rτ = −R
(1 + xτ)α

ln(2)
ln

(
1 − xτ

2

)
, (A2)

wτ = R3 π

nrad + 1
(1 + xτ)3α

ln3(2)


√

1 + xτ
1 − xτ

ln2
(

1 − xτ
2

)

− α
√

1 − xτ
1 + xτ

ln3
(

1 − xτ
2

) , (A3)

xτ = cos

(
π

τ

nrad + 1

)
, (A4)

where nrad denotes the total amount of radial points and the
optimal values for α = 0.6 and the atomic radii R (given in
Table II) have been taken from Ref. 6.

Since the electronic structure is typically more isotropic
near the nuclei, a lower amount of angular points can be
employed for the inner radial shells, saving a substantial
amount of grid points with virtually no sacrifice in accuracy.
For this purpose and analogous to Ref. 6, we partition the
atomic grid into three regions by the conditions

inner: τ ≤ nrad

3
, medium:

nrad

3
< τ ≤ nrad

2
,

outer: τ >
nrad

2
.

(A5)

The number of radial points and the number of angu-
lar points nang for each region (inner/medium/outer) for the
grids “g1”–“g7” employed in the present work are given in

TABLE III. Specification of the grids employed in the present work.

Grid nrad nang (inner/medium/outer) Points per C-atom

“g1” 35 14/50/110 2 586
“g2” 40 26/74/194 5 056
“g3” 50 38/110/302 9 564
“g4” 55 50/194/434 15 526
“g5” 60 50/194/590 21 330
“g6” 70 86/302/974 40 838
“g7” 80 110/434/1454 68 770

Table III. Furthermore, to account for their larger sizes, the
numbers of radial points nrad are increased by

nrad, extra =



5 Li–Ne

10 Na–Ar

20 K–Kr

25 Rb–Xe

30 Cs–Og

(A6)

for heavier elements.
In analogy to Ref. 6, we employ multi-grids (“gm3” to

“gm7”), where the grid-size is reduced by two orders (e.g.,
“g3” for “gm5”) during the SCF and the tighter final grid
(e.g., “g5” for “gm5”) is only employed for the calculation of
the final energy and properties, saving a significant amount of
computational effort during the SCF in this way.
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ABSTRACT: We present an efficient method to evaluate
Coulomb potential matrices using the resolution of identity
approximation and semilocal exchange-correlation potentials on
central (CPU) and graphics processing units (GPU). The new
GPU-based RI-algorithm shows a high performance and ensures
the favorable scaling with increasing basis set size as the
conventional CPU-based method. Furthermore, our method is
based on the J-engine algorithm [White, Head-Gordon, J. Chem.
Phys. 1996, 7, 2620], which allows for further optimizations that
also provide a significant improvement of the corresponding CPU-
based algorithm. Due to the increased performance for the Coulomb evaluation, the calculation of the exchange-correlation potential
of density functional theory on CPUs quickly becomes a bottleneck to the overall computational time. Hence, we also present a
GPU-based algorithm to evaluate the exchange-correlation terms, which results in an overall high-performance method for density
functional calculations. The algorithms to evaluate the potential and nuclear derivative terms are discussed, and their performance on
CPUs and GPUs is demonstrated for illustrative calculations.

1. INTRODUCTION

In the past decade, it has been shown that graphic processing
units (GPUs) can significantly accelerate ab initio calcu-
lations.1−14 While first implementations for GPUs were limited
to smaller basis sets due to tight memory limitations, recent
works extended the applicability of GPUs to calculations with
basis sets containing higher l-quantum numbers for Coulomb-
type terms9 as well as exact-exchange terms using a
seminumerical approach (sn-LinK11). The evaluation of
exact-exchange terms in general remains the bottleneck of
Hartree−Fock or hybrid density functional theory (DFT)
calculations. However, the sn-LinK method11 shows a
favorable scaling with respect to increasing basis set sizes,
while the GPU-based Coulomb calculations scale as N4 with
the size of the underlying basis set. To overcome this
unfavorable scaling behavior, the resolution-of-identity approx-
imation15−19 (RI) is widely applied and provided by most
program packages.
In this work, we present a J-engine based, integral-direct RI

method to evaluate the Coulomb potential and the nuclear
derivate of the Coulomb energy. Here, it should be stressed
that Neese proposed a CPU-based improved RI Coulomb
method (IRI)20 that is also based on the J-engine algorithm. In
contrast to the latter, however, we propose improvements to
the 3-center (3c) and 2-center (2c) integral evaluation steps to
reduce the computational workload. Our method reduces not
only the number of floating-point operations (FLOPs), which

additionally results in a better performance on CPUs, but also
the amount of required local memory in GPU kernels.
As the performance of the Coulomb evaluation step is

strongly improved, the evaluation of the semilocal exchange-
correlation terms (XC) quickly becomes a bottleneck in GPU-
based DFT calculations. Thus, we also discuss efficient, linearly
scaling algorithms on both CPUs and GPUs for the
computation of XC potentials and nuclear derivatives. With
the proposed methods at hand, we show the significant
performance improvements of RI-DFT calculations using large
basis sets on both CPUs and GPUs. The scaling and
performance of our methods are demonstrated at first
illustrative calculations.
The theory and algorithmic considerations of our proposed

methods are discussed in section 2. The performance analysis
at first illustrative calculations is discussed in section 3.

2. THEORY

In this section, we present algorithms to evaluate the RI-based
Coulomb and exchange-correlation contributions to the
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Kohn−Sham matrix, as well as the corresponding nuclear
derivatives. Specific considerations for an efficient execution of
the algorithm on GPUs are discussed.
2.1. J-Engine Based Resolution-of-Identity Coulomb

Potential Evaluation. The Coulomb potential using the RI
approximation is given as

∑ ∑ρ μν λσ ρ μν λσ= | ≈ | | |μν
λσ

λσ
λσ

λσ
−J P P Q Q( ) ( )( ) ( )

PQ

1

(1)

where the integral-direct algorithm consists of three steps:

Step 1:

∑ λσ ρ= |
λσ

λσB P( )P
(2)

Step 2:

∑′ = | −B Q P B( )Q
P

P
1

(3)

Step 3:

∑ μν= | ′μνJ Q B( )
Q

Q
(4)

with μ, ν, λ, and σ representing regular and P and Q auxiliary
basis functions, respectively, and ρλσ being an element of the
matrix representation of the one-electron density.
Our algorithm improves the first and third step of the

calculation, while we use the Coulomb fitting method by
Mintmire and Dunlap21 in step 2. By default, the explicit
inversion of the Coulomb metric is avoided by directly solving
(Q|P)x = BP to obtain x = (Q|P)−1BP = B′Q for step 2, which
only requires a Cholesky decomposition of (Q|P).
For the two rate-determining steps that involve the

evaluation of 3-center integrals, we propose to use the J-
engine,22−24 which is based on the McMurchie−Davidson
algorithm25 and delivers a high-performing algorithm on both
CPUs and GPUs. In order to exploit all benefits of this
approach, in particular on GPUs, different strategies have to be
followed for steps 1 and 3.
2.1.1. Step 1: Evaluation of BP. Following the notation in

ref 25, the first step in eq 2 is given by

∑
∑ ∑ ∑
∑ ∑

∑

ρ λσ

ρ

ρ

= |

= −

= −

=

λσ
λσ

λσ
λσ λσ

= = ′ ′ ′
+ +

+ ′ + ′ + ′

= = ′ ′ ′
+ +

+ ′ + ′ + ′

J P

D D R

D R

D J

( )

( 1)

( 1)

P

k NML
P
k

l N M L

l N M L
N N M M L L

kl

k NML
P
k

l N M L

l N M L
N N M M L L

kl

k
P
k

k

( )( )( )

( )( )( )

(5)

with the Hermite factors D representing the product of
expansion factors for the angular momentum information in
the basis of Hermite polynomials (see eq 2.27 in ref 25); Rkl

are the auxiliary integrals (section 4 in ref 25), and k and l
represent combined indices for the angular information on the
bra and ket terms, respectively.
The central point of the J-engine algorithm24 is the

preprocessing of the ket data to yield the factors ρl. For
GPU-based calculations, the preprocessing step is done on
CPUs, while the evaluation of the auxiliary integrals Rkl and
their contraction with the Hermite factors are done on GPUs.
The final postprocessing step = ∑J D J( )P k P

k
k is done on CPUs

again:

@CPU:

∑ρ ρ=
λσ

λσ λσDl l

(6)

@GPU:

∑ ρ= −
= ′ ′ ′

+ +
+ ′ + ′ + ′J R( 1)k

l N M L

l N M L
N N M M L L

kl
( )( )( )

(7)

@CPU:

∑=J D JP
k

P
k

k
(8)

where the CPU-based algorithm follows the same scheme.
Note that the Hermite factors Dλσ

l also shift angular
information from the shell-pair center RQ to the centers of
the individual basis functions Rλ and Rσ, respectively. In eq 5,
however, the bra side represents a single auxiliary function
instead of a shell-pair, so that many of the corresponding
factors DP

k are zero, which in turn also reduces the number of
required elements Jp. While for the regular elements Jμν all
integrals Jk

lqn with lqn = lqnμ+ν, lqnμ+ν − 1, ..., 0 have to be
evaluated, here, we only have to evaluate every second batch,
that is, Jk

lqn with lqn = lqnP, lqnP − 2, etc. For an h-shell (lqn =

Table 1. FLOP-Count of Selected Coulomb-type Integral Kernels for Regular and RI-based Evaluationa

lbra lket regular (μν|λσ) RI (step 1) [eqs 2, 14] (P|λσ) RI (step 3) [eqs 4, 16] (μν|Q) RI (step5) [eq 18] (P|Q)

0 1 49 49 100.0% 46 93.9% 47 95.9%
0 2 79 79 100.0% 69 87.3% 70 88.6%
0 3 131 131 100.0% 107 81.7% 108 82.4%
0 4 214 214 100.0% 167 78.0% 168 78.5%
1 0 52 49 94.2% 48 92.3% 49 94.2%
2 0 88 76 86.4% 78 88.6% 76 86.4%
3 0 150 120 80.0% 130 86.7% 120 80.0%
4 0 302 189 62.6% 213 70.5% 189 62.6%
5 0 524 288 55.0% 336 64.1% 288 55.0%
4 4 3673 2290 62.3% 2268 61.7% 1578 43.0%
5 6 13676 7647 55.9%
6 4 9834 5102 51.9%

aThe percentage is given with respect to the regular integral kernel.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article
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5), for example, one only has to evaluate 34 out of the regular
56 integrals. Using a recursive algorithm in the integral
generator, one can further reduce the number of intermediate
integrals Rkl and therefore significantly reduce the overall
number of floating point operations (FLOPs). Table 1 shows
this reduction of FLOPs for a number of selected integral
kernels for all types of 3c- and 2c-integrals in comparison to
the regular, non-RI kernels. While both CPU- and GPU-based
algorithms profit from the reduced number of FLOPs, the
reduced number of integrals Jk also significantly reduces the
amount of required local memory, especially shared memory,
on GPUs. Considering the strict local memory limitations on
GPUs,9,10 this reduced shared memory requirement leads to
less memory spills and no splitting of shell-pairs for functions
with higher l-quantum numbers.
To ensure an efficient use of GPUs, a further optimization

regarding the arrangement of computing threads is required.
For the conventional non-RI algorithm, it has been shown that
the use of 8 × 8 thread blocks is most efficient.4,9 For the
processing of eq 7, the number of auxiliary bra terms is
significantly smaller than the number of regular shell-pair ket
terms. Therefore, we use 1 × 64 thread blocks, that is, the
parallelization within a block is over the ket data only. Finally,
we can also reduce the size of the output vector Jk by executing
the final transformation ∑ D Jk P

k
k (eq 8) on GPUs. As a result,

we only have to store (lqnbra + 1)(lqnbra + 2)/2 elements of JP
for a primitive shell, while the postprocessing step on CPUs is
reduced to a simple sum over the primitives.
2.1.2. Step 3: Evaluation of Jμν. The equations to evaluate

step 3 in eq 4 are

∑
∑ ∑ ∑
∑ ∑

∑

μν

ρ

= ′ |

= ′ −

= −

=

μν

μν

μν

μν

= = ′ ′ ′
+ +

+ ′ + ′ + ′

= = ′ ′ ′
+ +

+ ′ + ′ + ′

J B Q

B D D R

D R

D J

( )

( 1)

( 1)

Q
Q

Q
Q

k NML

k

l N M L
Q
l N M L

N N M M L L
kl

k NML

k

l N M L

l N M L
N N M M L L

kl

k

k
k

( )( )( )

( )( )( )

(9)

with ρ = ∑ ′B Dl
Q Q Q

l . The J-engine scheme is similar to eqs

6−8. As for the evaluation of the 3-center integrals in part 1,
the overall number of FLOPs can be reduced. While we need
all integrals Jp to form the final Coulomb integrals Jμν, many
elements DQ

l , and therefore ρl, are zero, which can be exploited
again by reducing the number of intermediate integrals Rkl as
shown in Table 1.
In contrast to step 1, however, the postprocessing is done

the conventional way, that is, the contraction ∑ μνD Jk
k

k is done
on CPUs and all integrals Jp are required. For the GPU-based
algorithm, we again have to consider the fact of a far larger
number of shell-pairs μν as compared to the number of
auxiliary functions. Therefore, we found it most efficient to
employ 64 × 1 thread blocks, that is, a parallelization over the
bra data only within a block. This has the further advantage
that we can completely avoid the use of shared memory in the
GPU kernels, which again allows us to write kernels for shells
with high l-quantum numbers without splitting the shell-pair
data into multiple kernels.
2.2. J-Engine Based Resolution-of-Identity Coulomb

Nuclear Gradients. For the evaluation of nuclear gradients of
the Coulomb energy, the derivatives of the auxiliary basis

functions also have to be considered since the employed basis
sets are usually far from complete. The Coulomb integral
contributions to the nuclear derivatives are given as

∑ ∑
∑ ∑

ρ ρ μν λσ μν λσ
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= [ ] |
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(10)

where Ax represent the x-coordinate of nucleus A. With the RI
approximation, the gradient is
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The derivative of the inverse Coulomb metric can be evaluated
from ∑R(P|R)(R|Q)

−1 = δPQ as

[ | ] = − | [ | ] |− − −P Q P R R S S Q( ) ( ) ( ) ( )A A1 1 1x x (12)

leading to
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Therefore, the resulting algorithm is given as

Step 1:

∑ λσ ρ= |
λσ

λσB P( )P
(14)

Step 2:

∑′ = | −B Q P B( )Q
P

P
1

(15)

Step 3:

∑ ∑ρ μν
∂
∂ = [ ] | ′

μν
μν

E

A
Q B2 ( )J

x Q

A
Q

x

(16)

Step 4:

∑ ∑ρ μν
∂
∂ += | ′

μν
μν

E

A
Q B2 ( )J

x Q

A
Q

x

(17)

Step 5:

∑∂
∂ += ′ [ | ] ′E

A
B P Q B( )J

x PQ
P

A
Q

x

(18)

While steps 1 and 2 are equivalent to the Coulomb potential
algorithm, step 3 can be evaluated with the same integral
kernel as in the potential case by evaluating the integrals Jk up
to lqnbra + 1 and employing a postprocessing step on CPUs to
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evaluate the gradient contributions.5 Step 4 can be processed
in a similar fashion by employing the integral kernel used for
step 1.
The final contribution in step 5 could also be evaluated with

the kernels used for step 1. However, since both bra and ket
terms stem from auxiliary basis functions, we can further
reduce the FLOP count by exploiting the sparsity of both sets
{Dk} and {Dl} (see Table 1):

@CPU:

∑ρ = ′B Dl

Q
Q Q

l

(20)

@GPU:

∑ ρ= −
= ′ ′ ′

+ +
+ ′ + ′ + ′J R( 1)k

l N M L

l N M L
N N M M L L

kl
( )( )( )

(21)

@CPU:

∑∂
∂ + = ′ [ ]E

A
B D JJ

x Bk
P

k
P
A

k
x

(22)

Note that the execution of step 5 is significantly faster than the
other steps since both bra and ket data are constructed from
auxiliary functions.
It should be mentioned that all integral as well as pre- and

postprocessing kernels are automatically generated, that is, no
further manual optimizations of specific compute kernels were
undertaken. The generator recursively determines the sig-
nificant intermediates based on the required final quantities
necessary for the objective integral type.
2.3. Evaluation of Exchange-Correlation Potential

and Nuclear Forces on GPUs.While an efficient CPU-based
algorithm for the evaluation of the DFT exchange-correlation
potential (XC) can compete with the regular GPU-based
Coulomb evaluation, especially for larger basis sets, the RI-
Coulomb evaluation on GPUs exposes the XC evaluation as
the new bottleneck in the calculation. Thus, we discuss in this
section our GPU-based algorithm to evaluate the XC potential
and nuclear gradients of the XC energy.
For simplicity, we restrict ourselves here to the local density

approximation (LDA) and provide the theory for the
generalized gradient approximation (GGA) and the meta-
generalized gradient approximation (mGGA) in the appendix,
since their implementation is analogous. Moreover, we only
discuss restricted closed shell calculations and note that the
extension to open-shell calculations simply requires the
evaluation for both spin channels.
2.3.1. Exchange-Correlation Potential. The LDA ex-

change-correlation (XC) energy is defined as the 3-dimen-
sional integral

∫ ε ρ=E r r( ( )) dXC xc (23)

where the XC energy density, εxc, only depends on the electron
density ρ(r) at position r. In practice, eq 23 is evaluated on a
numerical integration grid26,27 with grid points rg and
corresponding weights wg:

∑ ε ρ=E w r( ( ))
g

g gXC xc
(24)

The electron density ρ(rg) can be obtained from the 1-particle
reduced density matrix in the atomic orbital basis ρμν as

∑ρ ρ χ χ=
μν

μν μ νr r r( ) ( ) ( )g g g
(25)

where χμ(rg) is the value of the basis function χμ evaluated at
the grid point rg. Equation 25 is evaluated in two steps:

∑ ρ χ=ν
μ

μν μF r( )g g
(26)

∑ρ χ=
ν

ν νFr r( ) ( )g g g
(27)

The evaluation of eq 26 formally scales as (n n )grid bas
2 and

therefore typically represents the most time-consuming step.
Since it can be evaluated by a single matrix−matrix
multiplication, highly optimized linear-algebra libraries can be
employed for this step, providing optimal performance without
much implementation effort.
Within the Kohn−Sham DFT method, the XC potential

matrix VXC, which can be defined as

ρ
= ∂

∂μν
μν

E
VXC XC

(28)

is also required. Using the derivative chain rule, a grid-based
expression for the LDA XC potential matrix is readily derived
as

∑ ε
ρ

χ χ= ∂
∂μν μ νwV r r r( ) ( ) ( )

g
g g g g

XC xc

(29)

which is also evaluated in two steps:

ε
ρ

χ= ∂
∂ν νG w (r ) (r )g g g g

xc

(30)

∑ χ=μν μ νGV (r )
g

g g
XC

(31)

Here, the slowest step is the evaluation of eq 31 with an
identical computational cost as eq 26, which is again
implemented as a matrix−matrix multiplication.
The algorithms for CPUs and GPUs are outlined in

Algorithm 1 and 2, respectively, with the scaling for each
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step in terms of the number of significant basis functions n{μ}
for a given batch of grid points ng. Note that the overall scaling
behavior is asymptotically linear, that is, for even-sized grid
batches (constant number of grid points), we have an on-
average constant number of significant basis functions and a
linearly increasing number of batches.
All rate-determining steps that scale cubically [ ]μ{ }(n n )g

2

with the constant dimension (n{μ}
2,ng) of the batch, are

implemented using efficient matrix−matrix multiplications
(GEMM) employing highly optimized linear algebra libraries
(Intel Math Kernel Library (MKL) on CPUs,28 cuBLAS,29 or
clBLAST30) for GPUs using CUDA or OpenCL, respectively.
The evaluation of the XC functional is in both cases done on

CPU using the libXC library.31 However, this step scales with
(n )g only and is therefore computationally far less significant.

Furthermore, only the density values (ρ, σ, τ) and the resulting
functional value derivatives for the given batch of grid points
have to be copied between the host and the GPU device,
which amounts to a few megabytes at most. Thus, the impact
of the data transfer is insignificant for the overall computa-
tional effort.
The parallelization is done in a straightforward fashion over

even-sized batches of adjacent grid points using Hilbert curves
as described in ref 32. For the GPU-based algorithm, the
density ρ and XC potential matrices VXC are stored, where
each GPU stream holds a private potential matrix to prevent
data races. Note that the XC potential is local, that is, only a
vector of the elements from significantly overlapping shell-pairs
have to be stored. Considering that we use local Gaussian-type
basis functions, the size of these vectors scales linearly with
increasing system size and are significantly smaller than NBF

2

(e.g., for (AT)16/TZVP, 108 MB instead of 3945 MB).
The algorithm for GGA and mGGA functionals is analogous

to the scheme outlined in Algorithms 1 and 2 with additional
terms arising from the gradient and Laplacian of the one-
particle density ρ, which can be evaluated with the same
subroutines. These additional steps increase the overall
computational effort from LDA to mGGA. As mentioned
before, the cubically scaling steps, that is, matrix multi-
plications, are rate-determining, so the performance for the
different functional types are closely linked to the number of
matrix multiplications; see Table 2.

The additional terms required for GGA and mGGA
functionals can be found in the Appendix.
2.3.2. Nuclear Gradient of Exchange-Correlation Energy.

The LDA contribution to nuclear forces is given as

∑ ε
ρ

ρ= ∂
∂E w (r ) (r )A

g
g g

A
gXC

xcx x

(32)

where

∑ρ ρ χ χ=
μν

μν μ ν(r ) 2 (r ) (r )A
g g

A
g

x x

(33)

is the infinitesimal change of ρ(rg) when changing a nuclear
coordinate Ax. Note that the contribution from the relaxation
of the electron density (ρμv

Ax) is considered in the Pulay term.33

The quantity ρAx (rg) is evaluated from the intermediate
quantity Fνg without significant overhead as

∑ρ χ=
ν

ν νF(r ) 2 (r )A
g g

A
g

x x

(34)

The perturbed basis functions χν
Ax(rg) can be obtained from the

gradient of the basis function as

l
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ooooo
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ooooo

χ
χ
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x
Ar r( ) ( ) if
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A
g

gx

(35)

The algorithm for the CPU-implementation is shown in
Algorithm 3, while the corresponding GPU-based algorithm is
straightforward; that is, similar to the potential term the
corresponding steps are evaluated on GPUs.

3. COMPUTATIONAL SETUP
All presented methods have been implemented in our
FermiONs++ program package.9,34,35 The binary has been
compiled with the Intel Compiler 19.128 (flags: -Ofast
-march=native [skylake-avx512]), CUDA kernels with CUDA
10.129 (flags: -O3, -use_fast_math), and OpenCL kernels with
ROCm-3.8.036 (flags: -O3 -cl-mad-enable -cl-finite-math-only
-cl-no-signed-zeros). CPU calculations were executed on 2
Intel Xeon Silver 4216 (32 cores/64 threads; 2.1 GHz); the
GPU-calculations were executed on either a single NVIDIA
GV100 or up to four AMD Radeon VII cards.
For the numerical evaluation of XC terms, we employ

multigrids defined in ref 27, that is, a smaller grid within the
SCF optimization and a larger grid for the final energy
evaluation, generated with the modified Becke weighting
scheme.27 If not stated otherwise, all calculations employ the
B97M-V functional.37 The extent threshold to determine
significant basis functions for a given grid batch38 is set to ϵ =
10−9. The target batch size is 512 for CPU-based and 2048 for
GPU-based calculations to ensure optimal performance on the
respective architectures. Note that larger batches lead to a less
tight screening, that is, more basis functions per grid batch. On
the other hand, larger matrices result in better performance of
the rate-determining linear algebra operations, especially on
GPUs. All exchange-correlation evaluations employ four
streams per GPU in order to maximize GPU utilization.
For all RI-Coulomb calculations the universal auxiliary basis

“def2-universal-jfit” by Weigend39 is used. In order to generate
enough parallel workload, especially for GPUs, no further
batching of the integrals is employed for a given l-quantum
number combination (e.g., (ss|s)). If not stated otherwise, an

Table 2. Comparison of the Number of Matrix
Multiplications for LDA, GGA, and MGGA Functionals for
Evaluation of the Energy, the XC Potential, and the XC
Gradient

functional type energy XC potential XC gradient

LDA 1 2 1
GGA 1 2 4
MGGA 4 8 4
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integral screening threshold of 10−10 is used, and SCF
convergence is set to 10−7 for the norm of the commutator
∥FPS − SPF∥. No incremental Kohn−Sham-builds were used
throughout this work. All geometries are available for
download online.40,41

4. ILLUSTRATIVE CALCULATIONS

We discuss the performance and scaling behavior of our
presented methods with the example of a series of double-
stranded DNA fragments of adenosine−thymine base pairs
((AT)x). The scaling behavior with respect to the system as
well as the basis set and DFT grid size is analyzed.
Furthermore, the performance of CPU- and GPU-based
calculations is shown.
Note that we restrict the discussion to the evaluation of the

potential matrices only; the scaling behavior of the nuclear
forces evaluation is virtually identical.
4.1. Scaling with Respect to the System Size. While

the scaling of the XC evaluation is expected to be linear, the
scaling for RI-J computation should be quadratic with
increasing system size. The wall times for a series of DNA
fragments is shown in Figure 1 for both CPU- and GPU-based
calculations, where the largest system contains 16 base pairs
and 1052 atoms.
While the expected scaling is obtained for the CPU-based

calculations, the scaling of RI-J on GPUs is clearly
subquadratic on GPUs. This results from a lack of parallel
workload for smaller systems, that is, larger systems show a
better utilization of the GPU resources.
As shown in Figure 1, our CPU-based method is highly

efficient and only takes 78 s to build the complete Kohn−
Sham matrix for the largest system (AT)16 with 1052 atoms
and 22742 pure basis functions on a single compute node. On
the GPU, this calculation takes 24 s, showing a speedup factor
of 2.7 and 4.2 for RI-J and the XC evaluation, respectively. In
contrast, the diagonalization step takes 316 s on CPUs or 135 s
on the GPU, respectively, and is therefore by far the rate-
determining step in the SCF calculation.
4.2. Scaling with Respect to the Basis Set Size. The

scaling with respect to an increasing size of the general basis set
is shown in Figure 2 for an (AT)4 fragment with increasing
basis set size. In comparison to the unfavorable N4 scaling of
the conventional Coulomb integral evaluation without RI, the
RI-J algorithm scales only quadratically [N2] with increasing

basis set size, same as the XC evaluation. Note that usually the
basis size scaling for RI-J is N3. This holds true if one not only
increases the size of general basis set, but also the auxiliary
basis. However, as mentioned before, we always use the
universal J-fit basis,39 thereby obtaining an N2 scaling.
For the largest basis set (def2-QZVP42), the speedup from

conventional to RI-Coulomb evaluation is about 260-fold for
(AT)4.
As can be seen in Figure 2, the basis set scaling on GPUs for

both RI-J and DFT is clearly subquadratic. For the RI-J
evaluation, this might again be explained by an increasing
workload, especially on GPUs. Furthermore, the second step in
the algorithm (eq 3) only depends on the size of the auxiliary
basis. In case of the DFT part, the reason might be larger
numbers of significant basis functions n{μ} for the given ngrid
batches. Since the performance of the rate-determining matrix
multiplications is usually better for larger matrices, the overall
scaling is reduced. Furthermore, the terms scaling as μ{ }(n n )g ,
that is, linear with the basis set size, also contribute
significantly to the overall computational time.

4.3. Comparison of Different Functional Types. The
performance of the three types of XC functionals is examined

Figure 1. Program execution time for one Coulomb- or XC potential build averaged over all but the very first SCF cycles for AT-DNA-Fragments
(B97M-V/TZVP/gm3; left). The timings for the evaluation of the nuclear gradient are shown on the right. The colored numbers denote the scaling
to the respective predecessor. CPUs: 2 Intel Xeon Silver 4216 (32 cores @ 2.1 GHz). GPU: 1 NVIDIA GV100.

Figure 2. Program execution time for one Coulomb- (with and
without RI) and XC potential build averaged over all but the very first
SCF cycles for DNA4/gm3 with different “def2-’ basis sets. Double-
logarithmic plot. Colored numbers denote scaling with respect to
predecessor. CPUs: 2 Intel Xeon Silver 4216 (32 cores @ 2.1 GHz).
GPU: 1 NVIDIA GV100.
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at (AT)4/TZVP calculations of the potential and nuclear forces
using Slater-Exchange/VWN-Correlation43 (LDA), PBE44

(GGA), and B97M-V37 (mGGA). The results in Table 3

reconfirm that matrix multiplications are the rate-determining
step, as the computational times directly correlate with the
number of multiplications in Table 2 for both CPU- and GPU-
based calculations.
As expected the CPU to GPU speedups are highest for

meta-GGAs due to the higher number of matrix multi-
plications. Note again that multigrids have been employed, that
is, the grid for the final energy build is about 3.7 times larger
than that for the potential evaluation. Thus, the final energy
build takes longer than the potential evaluation although more
matrix multiplications are involved for the latter.
4.4. Scaling with Respect to Grid Size. The gm3 grid

employed so far in our calculations provides a grid error <1 μH
(micro Hartree) per atom for the systems under investigation.
For more accurate results, for example, accurate nuclear forces
for structure optimizations, larger grids might be necessary. To
analyze the increase in computational effort, timings for
different grid sizes are shown in Figure 3. For a benchmark on
the accuracy of the different grids, see ref 27. Note that the

scaling is again better than the expected (N) scaling. This is
due to a more efficient screening if constant batch sizes are
used, that is, the spatial extent of the grid batches decreases
with increasing grid sizes, which results in a reduced number of
significant basis functions n{μ}. Furthermore, the increasing
number of grid batches results in a higher parallel workload.

4.5. Multi-GPU Parallel Scaling. The scaling with the
number of GPU devices is tested for a single compute node
with one to four AMD Radeon VII GPUs for (AT)4 and (AT)8
using B97M-V/TZVP, shown in Figure 4. The numerical
integration of the XC terms scales almost ideally with a high
parallel efficiency. In contrast, the RI-J evaluation shows a
poorer parallel efficiency due to the lack of parallel workload,
where the computation with four GPUs for the smaller
fragment is even slower than the calculation with only three
GPUs. In comparison, the larger fragment (AT)8 generates
enough workload to at least ensure a steady speedup with up to
four GPUs.

4.6. FLOP Utilization. The FLOP utilization as compared
to the theoretical peak FLOP/s (TPF) of the corresponding
CPU and GPU is shown in Figure 5 with the example of DNA
base pairs (AT)x using B97M-V/TZVP. As discussed before,
the rate-determining steps in the evaluation of the exchange-
correlation terms are matrix multiplications, so that a high flop
utilization of 58% of TPF can be obtained. From our
experience, well optimized libraries (Intel MKL,28 cuBLAS29)
achieve for matrix multiplications roughly 75% of theoretical
peak performance on both CPU and GPU, confirming again
the dominance of the linear algebra steps within the exchange-
correlation algorithm. Figure 5 also shows that the smaller
systems show a lesser performance due to an overall smaller
workload, while the saturation level is reached for the medium-
sized (AT)4 fragment on both CPU and GPU.
In contrast, the RI Coulomb evaluation on GPUs shows a

rather poor FLOP utilization, which steadily increases with the
system size up to (AT)16. As mentioned before, this results
from an insufficient workload for the GPUs even for larger
systems, particularly for step 1 (eq 2). As an upside to this
shortcoming, one should stress that the RI-Coulomb algorithm
will show only slightly reduced performance on “gaming”
GPUs with a comparably poor double-precision performance.
On CPUs, however, we see a similar saturation in FLOP
utilization as in case of the exchange-correlation evaluation
with about 40% as compared to TPF. A similar picture results
for the conventional analytical Coulomb algorithm on CPUs.
Note that for both algorithms (RI and analytical) the J-engine
is employed, which results in similar utilization numbers.
Finally, the analytical Coulomb evaluation on GPU shows a far
better FLOP utilization as compared to the RI algorithm as a
result of a significantly higher workload.

5. CONCLUSION

We have presented a new improved RI-Coulomb algorithm
that significantly reduces the computational workload by
reducing the overall number of floating-point operations in the
integral kernels of the J-engine algorithm for both CPU- and
GPU-architectures. Furthermore, the reduced local memory
necessary in GPU kernels allows for high performance
evaluation on GPUs, shown with examples including basis
sets up to quadruple-ζ quality. Thus, the evaluation of the XC
potential became the bottleneck in nonhybrid DFT calcu-
lations, which required the development of an efficient GPU-

Table 3. Program Execution Time [s] for One XC energy,
One XC Potential, and One XC Gradient (Nuclear Forces)
Calculation for DNA4/TZVP/gm3a

functional type energy XC potential XC gradient

CPU
LDA 2.9 2.1 3.8
GGA 3.7 2.5 12.4
MGGA 10.4 7.3 14.9

GPU
LDA 0.7 (4.2×) 0.5 (3.9×) 0.9 (4.4×)
GGA 1.0 (3.7×) 0.8 (3.2×) 2.7 (4.6×)
MGGA 2.0 (5.2×) 1.7 (4.3×) 3.2 (4.7×)

aThe XC potential time is averaged over all but the very first SCF
cycles. CPUs: 2 Intel Xeon Silver 4216 (32 cores @ 2.1 GHz). GPU:
1 NVIDIA GV100. CPU → GPU speedups are given in parentheses.

Figure 3. Program execution times for one XC potential build
averaged over all but the very first SCF cycles for DNA4/TZVP for
different grids. The colored numbers denote the scaling to the
respective predecessor. CPUs: 2 Intel Xeon Silver 4216 (32 cores @
2.1 GHz). GPU: 1 NVIDIA GV100.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01252
J. Chem. Theory Comput. 2021, 17, 1512−1521

1518



based algorithm to evaluate XC contributions strictly in terms
of highly efficient linear algebra operations.
For first test calculation, we have analyzed the overall

performance and scaling behavior of the presented methods.
Apart from an efficient GPU algorithm for nonhybrid DFT
calculations, which allows a single Kohn−Sham matrix build
for a DNA fragment with 1052 atoms and using a triple-ζ basis
(22742 pure basis functions) in 24 s on a single GPU, our RI-
DFT method also results in a highly efficient CPU code.
Employing a single compute node with 32 cores, the
calculation requires only 78 s for a complete Kohn−Sham
matrix construction. This also enables, for example, ab initio
molecular dynamics on regular CPU nodes without additional
accelerator cards.
While this work ensures efficient calculations employing

nonhybrid DFT, the most popular functionals nowadays
remain hybrid or range-corrected functionals that also include
exact-exchange contributions. Thus, the now by far rate-
determining step in these calculations is the evaluation of the
exact-exchange potential, even if the efficient GPU-accelerated
sn-LinK method11 is employed.

■ APPENDIX

A. Additional Terms for GGA and Meta-GGA
A.1. Additional Terms for GGA XC Potential. GGA

functionals also depend on the gradient of the density ∇ρ,
which is obtained with only small overhead from the
intermediate quantity Fνg as

∑ ∑ρ ρ χ χ χ∇ = ∇ = ∇
μν

μν μ ν
ν

ν νFr r r r( ) 2 ( ) ( ) 2 ( )g g g g g
(36)

Therefore, an additional contribution to the XC potential
arises as

∑ ε
ρ

χ χ χ χ= ∂
∂∇ ·[ ∇ + ∇ ]μν

ρ
μ ν μ ν

∇V w r r r r r( ) ( ) ( ) ( ) ( )
g

g g g g g g
xc

(37)

This term may best be evaluated by addition of another
intermediate quantity Gνg

GGA to Gνg

ε
ρ

χ= ∂
∂∇ ·∇ν νG w r r( ) ( )g g g g

GGA xc

(38)

and evaluating eq 31 with the modified Gνg and finally
symmetrizing to account for the transpose in eq 37. Therefore,
the GGA XC potential can be obtained at nearly the same cost
(i.e., two (N )3 matrix multiplications) as the LDA XC
potential.

A.2. Additional Terms for GGA XC Forces. The GGA part
for XC forces is evaluated similarly to the LDA forces (eq 32)
as

∑ ε
ρ

ρ= ∂
∂∇ ∇ρ∇E w r r( )( ( ))A

g
g g g

Axcx x

(39)

where, analogously to eq 33,

∑ρ ρ χ χ χ

χ

∇ = [ ∇ +

∇ ]
μν

μν μ ν μ

ν

r r r r

r

( ( )) 2 ( ) ( ) ( )

( ( ))

g
A

g
A

g g

g
A

x x

x
(40)

is the infinitesimal change of ∇ρ(rg) when changing a nuclear
coordinate Ax. The first term of eq 40 necessitates the
computation of

Figure 4. Program execution time (inverse plot) for one Coulomb or XC potential build averaged over all but the very first SCF cycles for DNA
fragments with four ((AT)4, left) and eight ((AT)8, right) base pairs at B97M-V/TZVP using 1, 2, 3, or 4 AMD Radeon VII GPUs. The values in
the graph denote the parallel efficiency compared to one GPU.

Figure 5. FLOP-utilization as percentage of theoretical peak
performance of the employed CPU and GPU for one full Kohn−
Sham build of AT-DNA-Fragments (B97M-V/TZVP/gm3). CPUs: 2
Intel Xeon Silver 4216 (32 cores @ 2.1 GHz, TPF = 1.075 TFLOP/
s). GPU: 1 NVIDIA GV100 (TPF = 8.330 TFLOP/s).
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∑ ρ χ∇ = ∇ν
μ

μν μF r( )g g
(41)

requiring three additional (N )3 steps (x, y, and z components
of gradient). The second term of eq 40, however, is available
directly from Fνg and only requires the perturbed gradient of
the basis functions, available from the second basis function
derivatives:
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A.3. Additional Terms for Meta-GGA XC Potential. Meta-
GGA functionals additionally depend on the kinetic energy
density

∑ ∑τ φ ρ χ χ= |∇ | = ∇ ·∇
μν

μν μ νr r r r( ) ( ) ( ) ( )
i

i
2

(43)

For the evaluation of eq 43, the computation of ∇Fνg (eq 41)
cannot be avoided, resulting in three additional (N )3 steps
for the meta-GGA XC energy.
The meta-GGA XC potential also contains another

additional term of the form:

∑ ε
τ

χ χ= ∂
∂ ∇ ·∇μν

τ
μ νV w r r r( ) ( ) ( )

g
g g g g

xc

(44)

which necessitates the computation of

ε
τ

χ∇ = ∂
∂ ∇ν νG w r r( ) ( )g g g g

xc
(45)

and leads to three additional (N )3 steps for the computation
of Vμv

τ :

∑ χ= ∇ ·∇μν
τ

μ νV Gr( )
g

g g
(46)

A.4. Additional Terms for Meta-GGA XC Forces. The τ-
dependent term of meta-GGA XC forces is evaluated
analogously to eqs 32 and 39, requiring

∑τ ρ χ χ= ∇ · ∇
μν

μν μ νr r r( ) 2 ( ) ( ( ))A
g g g

Ax x

(47)

It can be directly computed from ∇Fνg (eq 41) and (∇χv(rg))Ax

(eq 42) without addition of another (N )3 step.
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The correct description of multi-reference electronic ground states within Kohn-Sham density func-
tional theory (DFT) requires an ensemble-state representation, employing fractionally occupied
orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange
holes, resulting in large fractional-spin errors for conventional approximative density functionals. In
this communication, we present a simple approach to directly include the exact-exchange-hole normal-
ization into DFT. Compared to conventional functionals, our model strongly improves the description
for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze
the performance of our proposed method at the example of spin-averaged atoms and spin-restricted
bond dissociation energy surfaces. Published by AIP Publishing. https://doi.org/10.1063/1.5025334

I. INTRODUCTION

The correct description of multi-reference electronic
ground states is a major challenge within Kohn-Sham den-
sity functional theory (KS-DFT).1,2 A formally exact solu-
tion exists in the form of ensemble-density-functional-theory
(eDFT) employing fractionally occupied orbitals.3,4

One practical approach to eDFT is the thermally assisted
occupation DFT (TAO-DFT).5–7 An alternative solution is
the representation of the ensemble-density by a linear-
combination of multiple determinants in the spin-restricted-
ensemble-referenced-Kohn-Sham (REKS)-method.8–12

Furthermore, designated strong-correlation functionals
based on Becke’s real-space correlation model13–15 have
been proposed.16–19 Here, an effective exchange-hole normal-
ization is obtained from a combination of semilocal DFT-
ingredients and the exact-exchange potential. Subsequently,
a model of static correlation is constructed using these hole-
normalizations.

Fractionally occupied orbitals lead to local, but non-
normalized exact-exchange holes. Therefore, the exact-
exchange hole normalization can directly be used to model
static correlation. Our present work is based on the strong-
correlation model by Johnson,18 but instead of the effec-
tive Becke-Roussel normalization13–15 we employ the exact-
exchange hole normalization. We briefly outline the method-
ology of Johnson’s strong-correlation model18 and present our
method to obtain exchange-hole normalizations in Sec. II. Sub-
sequently, we test our approach, denoted as exchange-hole-
normalization DFT (xhn-DFT), on selected strong-correlation
problems in Sec. III.

II. THEORY

Johnson proposed a non-empirical functional designed to
deal with the fractional spin-error in spin-averaged atoms.18 It

a)Electronic mail: christian.ochsenfeld@uni-muenchen.de

defines a sum of spin-densities

ρs = ρα + foppρβ , (1)

assuming the α-spin to be the majority spin in the spin
polarized case. The strong correlation factor f opp was first
introduced in Ref. 14 and is obtained from effective hole
normalizations Nα, Nβ as

fopp = min

(
1 − Nα

Nβ
,

1 − Nβ
Nα

, 1

)
, (2)

where the effective hole normalizations are obtained from the
reversed Becke-Roussel machinery.13–15

The final energy expression of the most sophisticated
NDC2-scheme from Ref. 18 reads

ENDC2
XC = Esl

X[ρs] + (1− fopp)Esl
X[ρβ]

+ (1− fopp)Edyn,opp
C [ρs, ρβ]

+ Edyn,par
C [ρs] + (1− fopp)Edyn,par

C [ρβ], (3)

where any semilocal exchange functional Esl
X[ρ] and correla-

tion functional Edyn
C [ρ] may be used in principle.

In the present work, we utilize the aforementioned NDC2-
model of Eqs. (1)–(3), but employ the exact-exchange hole
normalizations instead of the Becke-Roussel normalizations
in Eq. (2).

A. Exact-exchange hole normalization
for fractionally occupied orbitals

The exact-exchange hole is given in terms of fractionally
occupied spin-orbitals ϕiσ as

hex
Xσ (r1, r2) =

∑
ij fiσfjσϕ∗iσ (r1) ϕjσ (r1) ϕiσ (r2) ϕ∗jσ (r2)

ρσ (r1)
,

(4)

0021-9606/2018/148(12)/121101/4/$30.00 148, 121101-1 Published by AIP Publishing.
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with spin-orbital occupation numbers 0 ≤ f iσ ≤ 1 and the one-
particle density ρσ of spin σ = α, β. In the case of non-integer
orbital occupations, the exact-exchange hole normalization

Nex
Xσ(r1) =

∫
hex

X,σ(r1, r2)d3r2 (5)

is in general not 1 anymore.
Expanding Eqs. (4) and (5) with a linear-combination of

atomic orbitals (LCAO) and assuming real molecular orbitals
yields

Nex
X,σ(r1) =

∑

µνκλij

fiσfjσCσ
µiC

σ
νiC

σ
κjC

σ
λj χµ(r1)χλ(r1)

×
[∫

χν(r2)χκ(r2)dr2

]
ρσ(r1)−1 (6)

=
∑

µνκλ

χµ(r1)PσµνSνκPσκλ χλ(r1)ρσ(r1)−1, (7)

where Cσ
µi are the MO coefficients. In Eq. (7), the definition of

the (spin-resolved) one-particle density matrix

Pσµν =
∑

i

fiσCσ
µiC

σ
νi (8)

has been inserted. Eq. (7) may be evaluated on a numerical
integration grid as

NXσ(rg) =
∑

µλ

χµ(rg) (PSP)σµλ χλ(rg)ρσ(rg)−1, (9)

where rg denotes a grid point.
Our proposition to use exact exchange hole normaliza-

tions instead of the effective Becke-Roussel normalizations
leads to a number of advantages:

1. No evaluation of the exact exchange-energy density at
every grid point is necessary, saving a significant amount
of computational effort.

2. The computation of the complicated reverse Becke-
Roussel machinery is avoided.

3. In the single-reference case, i.e., if no fractional orbital
occupations are employed, the result is unchanged.
Therefore, the well-appreciated performance of semilo-
cal DFT in these cases is preserved, avoiding possible
double-counting of static-correlation.

B. Treatment of semilocal DFT ingredients

For simplicity, only the spin-restricted closed-shell for-
malism will be discussed below, noting that the extension to
open-shell problems is straightforward. In this case, Eq. (2)
reduces to

fopp = min

(
1
N
− 1, 1

)
= min

(
ρ

ρ̃
, 2

)
− 1, (10)

defining

ρ̃(rg) =
∑

µλ

χµ(rg) (PSP)µλ χλ(rg). (11)

The sum of densities from Eq. (1) is then given as

ρs =
1
2

(1 + fopp)ρ =
1
2

min

(
ρ

ρ̃
, 2

)
× ρ. (12)

If a generalized gradient approximation (GGA)- or meta-
GGA is used for Esl

XC[ρ], the semilocal DFT ingredients, which

correspond to the sum of densities ρs, are also required. The
gradient of the sum of densities is obtained as

∇ρs =


0, fopp ≥ 1

ρ

ρ̃
∇ρ − 1

2
ρ2

ρ̃2
∇ ρ̃, fopp < 1

. (13)

In the case of meta-GGA functionals, the kinetic energy
density τs is obtained analogously to ρs as

τs =
1
2

(1 + fopp)τ. (14)

To summarize, we introduce exact-exchange hole nor-
malizations obtained by Eq. (9) into the NDC2-scheme
of Ref. 18 to account for static-correlation in the multi-
reference limit. The so-derived method, denoted as exchange-
hole-normalization-DFT (xhn-DFT), is assessed for selected
multi-reference problems below.

III. RESULTS
A. Spin-averaged atoms

Spin-averaged atoms represent the spin-restricted homo-
nuclear bond dissociation limit. Therefore, the energy of
spin-polarized and spin-averaged atoms should be equal. This
condition has been successfully employed to fit and assess
the strong-correlation functionals of Refs. 16–19. To illus-
trate, consider the orbital occupation of the spin-polarized
carbon-atom

(2pαx )1(2pαy )1(2pαz )0(2pβx )0(2pβy )0(2pβz )0. (15)

The corresponding spin-depolarized (spin-averaged) configu-
ration is obtained by averaging α- and β-occupation numbers,
leading to

(2pαx )
1
2 (2pαy )

1
2 (2pαz )0(2pβx )

1
2 (2pβy )

1
2 (2pβz )0. (16)

We test our xhn-DFT scheme on spin-averaged main
group atoms in Table I, employing the local-density approx-
imation (LDA) with VWN-parametrization,20 the GGA-
functional PBE,21 and the meta-GGA functional TPSS.22

The calculations are performed with our FermiONs++ pro-
gram23–25 employing orbitals from restricted open-shell-KS
calculations with the def2-TZVP basis set.26

Conventional density functionals and especially Hartree-
Fock cannot describe spin-averaged atoms correctly, due to
their inherent multi-reference character, leading to large frac-
tional spin errors. However, our xhn-DFT-scheme corrects
for the largest part of the errors, only slightly overestimat-
ing strong correlation in most cases. Furthermore, the errors
decrease when better functionals are employed [MAE(xhn-
LDA) > MAE(xhn-PBE) > MAE(xhn-TPSS)]. The accuracy
of the xhn-TPSS-method is similar to the NDC2-scheme of
Ref. 18 and superior to the empirically fitted functionals
B1316,17 and KP16.19 Note also that all xhn-DFT methods are
exact (exhibit no fractional spin error) for the spin-averaged
hydrogen atom.

B. Homo-nuclear bond dissociation

We investigate the transition from a single-reference
to a multi-reference problem employing the example of
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TABLE I. Fractional spin errors for spin-averaged main group atoms from
H to Br and H to Cl in kcal mol�1. ME = mean error; MAE = mean abso-
lute error. Spin-polarized results are from self-consistent restricted open-shell
calculations. The spin-depolarized results are obtained from the same set of
orbitals as the spin-polarized results but with spin-averaged density matrices.
If not stated otherwise, the results have been obtained using the def2-TZVP-
basis and a [99/590]-grid. Errors for the individual atoms are provided in the
supplementary material.

H to Cl H to Br

Method ME MAE ME MAE

HFa 139.8 139.8 127.9 127.9
LDA 22.9 22.9 20.1 20.1
PBE 26.3 26.3 23.4 23.4
TPSS 30.0 30.0 26.6 26.6
xhn-LDA �8.7 8.7 �9.2 9.2
xhn-PBE �4.1 4.1 �4.3 4.3
xhn-TPSS �2.5 2.6 �3.0 3.1
J13 (NDC2)a

�0.2 1.5 �2.6 3.5
B13b 3.9 5.0 �0.8 6.9
KP16 (PMF3)c (�8.0) (8.1)

aPost-LDA (complete basis set-limit; NUMOL) from Ref. 18.
bPost-LDA (complete basis set-limit; NUMOL) from Ref. 17.
cSelf-consistent values (G3-large basis; QChem) from Ref. 19. Only values for H, N, O,
F, Si, and Cl are available.

spin-restricted bond dissociation energy surfaces. Here,
fractional occupation numbers are obtained from Fermi-
smearing,27 i.e., the occupation numbers are obtained from
the Fermi-Dirac distribution as

fi =
1

1 + exp( εi−µ
kBT )

, (17)

where f i is the occupation of the ith molecular orbital (MO),
kB is the Boltzmann constant, T is the temperature (in Kelvin),
εi is the energy of the ith MO, and µ is the Fermi level. Note
that Fermi-smearing is only used to model static-correlation28

and should not be confused with a thermodynamical treatment
at finite-temperatures.

First the bond dissociation of H2 is investigated using
our xhn-TPSS scheme for different temperatures in Fig. 1.
Note that the xhn-TPSS approach predicts the correct disso-
ciation limit for any non-zero temperature since both orbitals
are half-occupied in the case of a vanishing HOMO-LUMO
gap. However, the dissociation curves exhibit an unphysical
maximum at intermediate bond distances if low temperatures

FIG. 1. H2-dissociation-curve from xhn-TPSS for different temperatures
compared to a full-CI reference and employing the def2-TZVP basis. The
0 K-curve is identical to the conventional TPSS-curve.

FIG. 2. Fractional occupation numbers at different H–H distances and various
temperatures compared to the natural orbital occupation numbers (NOONs)
from the full-CI reference.

are employed. This is due to non-optimal occupation numbers.
Nevertheless, T = 10 000 K yields a greatly improved dissoci-
ation curve compared to the conventional TPSS-curve (which
is identical to the 0 K-curve) without significantly altering the
results for the minimum structure.

Moreover, Fig. 2 shows that the occupation numbers
at 10 000 K match the natural orbital occupation numbers
(NOONs) from the full-CI reference best. Overall, our xhn-
TPSS approach predicts the correct spin-restricted dissoci-
ation limit. However, the correct description at intermedi-
ate distances, although significantly improved compared to
conventional DFT, remains challenging.

Regarding the temperature-dependence, it would be more
desirable to directly determine the optimal occupation num-
bers within a variational scheme. Preliminary tests of such an
optimization scheme have been performed for the xhn-LDA
method; however, multiple local minima of the energy with
respect to occupation numbers complicate a straightforward
application of this approach. We are currently investigating
improvements to such optimization schemes.

Furthermore, we show that the xhn-TPSS method of the
present work is also capable of describing breaking of mul-
tiple bonds at the example of N2 in Fig. 3. We compare our
results to the full-CI/6-31G∗ reference29 and find our results
to be in good agreement at intermediate and long distances for
T = 10 000 K. Note that for the equilibrium geometry the
full-CI energy is too high due to the importance of dynamic

FIG. 3. N2-dissociation-curve from xhn-TPSS with different temperatures
and employing the def2-TZVP basis compared to a full-CI/6-31G∗ refer-
ence.29 The relative energies are referenced to the energies of the spin-
polarized atoms.
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FIG. 4. Relative energies for ethylene at different torsional angels employing
our xhn-TPSS-method at various temperatures in comparison to the MR-
ccCA30,31 reference values from Ref. 32. The xhn-TPSS calculations employ
the def2-TZVP-basis and are referenced to the value at 0 K in the minimum
(0◦ torsional angle). The geometries of Ref. 32 have been employed.

correlation effects that cannot be accurately described with the
small 6-31G∗ basis within full-CI.

C. Rotational barrier of ethylene

Finally, the breaking of the C–C π-bond during rota-
tion around the C–C-bond axis in ethylene is investigated
in Fig. 4. Conventional DFT methods, as represented in the
0 K-curve, exhibit a discontinuity at the transition state
(90◦ torsion) due to the inability to properly describe the multi-
reference character of the wave-function in this case. This
also leads to a significantly overestimated rotational barrier.
In contrast, our xhn-TPSS method yields a smooth curve for
sufficiently large temperatures (≥5000 K). Similar to the bond
dissociation curves of H2 and N2, an unphysical maximum
at intermediate torsional angles is observed for low temper-
atures due to the non-optimal orbital occupations. Overall,
our xhn-TPSS method strongly improves the description of
the rotation-energy profile and is in good agreement with the
multi-reference calculation in Refs. 30–32.

IV. CONCLUSION AND OUTLOOK

In the present work, we proposed the use of the exact-
exchange hole normalization as a DFT ingredient. Our xhn-
DFT method allows for a significantly improved description
of multi-reference problems at a similar cost as conventional
semilocal KS-DFT and without employing empirically fit-
ted parameters. A smooth transition from the single- to the
multi-reference limit is obtained when Fermi-smearing with
T = 5000–10 000 K is applied, which is in accordance with
the proposed temperatures of Ref. 28.

A reliable optimization scheme for orbital occupation
numbers and a generalization of our xhn-DFT method to

(local-)hybrid-functionals are currently under investigation.
Finally, we hope that our work encourages further development
of density functionals for strongly correlated systems.

SUPPLEMENTARY MATERIAL

See supplementary material for the fractional spin errors
of the individual atoms.

ACKNOWLEDGMENTS

The authors acknowledge the financial support by the
Deutsche Forschungsgemeinschaft (DFG) in the SFB 749
“Dynamik und Intermediate molekularer Transformationen”
and the DFG cluster of excellence (EXC114) “Center for
Integrative Protein Science Munich” (CIPSM). C.O. further
acknowledges financial support as Max-Planck-Fellow at the
MPI-FKF Stuttgart.

1W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
2D. Cremer, M. Filatov, V. Polo, E. Kraka, and S. Shaik, Int. J. Mol. Sci. 3,
604 (2002).

3S. M. Valone, J. Chem. Phys. 73, 4653 (1980).
4E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
5J.-D. Chai, J. Chem. Phys. 136, 154104-1 (2012).
6J.-D. Chai, J. Chem. Phys. 140, 18A521-1 (2014).
7J.-D. Chai, J. Chem. Phys. 146, 044102-1 (2017).
8M. Filatov and S. Shaik, Chem. Phys. Lett. 288, 689 (1998).
9M. Filatov and S. Shaik, Chem. Phys. Lett. 304, 429 (1999).

10M. Filatov and S. Shaik, J. Chem. Phys. 110, 116 (1999).
11M. Filatov, M. Huix-Rotllant, and I. Burghardt, J. Chem. Phys. 142, 184104-

1 (2015).
12M. Filatov, F. Liu, K. S. Kim, and T. J. Martinez, J. Chem. Phys. 145,

244104-1 (2016).
13A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).
14A. D. Becke, J. Chem. Phys. 119, 2972 (2003).
15A. D. Becke, J. Chem. Phys. 122, 064101-1 (2005).
16A. D. Becke, J. Chem. Phys. 138, 074109-1 (2013).
17A. D. Becke, J. Chem. Phys. 138, 161101-1 (2013).
18E. R. Johnson, J. Chem. Phys. 139, 074110-1 (2013).
19J. Kong and E. Proynov, J. Chem. Theory Comput. 12, 133 (2016).
20S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
21J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
22J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett.

91, 146401-1 (2003).
23J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114-1 (2013).
24J. Kussmann and C. Ochsenfeld, J. Chem. Theory Comput. 11, 918

(2015).
25J. Kussmann and C. Ochsenfeld, J. Chem. Theory Comput. 13, 3153 (2017).
26F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
27N. D. Mermin, Phys. Rev. 137, A1441 (1965).
28S. Grimme and A. Hansen, Angew. Chem., Int. Ed. 54, 12308 (2015).
29D. Robinson, J. Comput. Chem. 34, 2625 (2013).
30B. Mintz, T. G. Williams, L. Howard, and A. K. Wilson, J. Chem. Phys.

130, 234104-1 (2009).
31G. A. Oyedepo and A. K. Wilson, J. Phys. Chem. A 114, 8806 (2010).
32W. Jiang, C. C. Jeffrey, and A. K. Wilson, J. Phys. Chem. A 116, 9969

(2012).



Supporting information to the paper: Density functional theory model for

multi-reference systems based on the exact-exchange hole normalization

Henryk Laqua,1 Jörg Kussmann,1 and Christian Ochsenfeld1, a)

Department of Chemistry and Center for Integrated Protein Science (CIPSM),

University of Munich (LMU), D-81377 München, Germany

(Dated: 8 February 2018)

a)Electronic mail: christian.ochsenfeld@uni-muenchen.de

1



TABLE S1. Fractional spin errors for spin-averaged main group atoms in kcalmol−1 employing

the def2-TZVP basis and a [99/590]-grid. ME = mean error; MAE = mean absolute error. Spin

polarized results are from self-consistent restricted open shell calculations. The spin depolarized

results are obtained from the same set of orbitals as the spin polarized results, but with spin-

averaged spin densities.

atom LDA PBE TPSS xhn-LDA xhn-PBE xhn-TPSS

H 21.5 26.7 27.1 0.0 0.0 0.0

Li 5.6 6.9 6.3 -0.8 -1.2 -0.9

B 9.3 11.2 14.5 -4.1 -2.0 0.4

C 31.6 34.1 40.5 -8.53 -3.9 -0.7

N 70.9 72.9 83.8 -12.6 -4.3 -0.5

O 43.6 49.7 59.0 -18.0 -6.4 -2.2

F 18.2 23.1 27.3 -15.1 -6.9 -5.4

Na 4.8 5.0 4.7 -1.4 -1.2 -0.6

Al 5.5 7.4 8.5 -3.6 -1.8 -0.9

Si 17.5 21.4 24.1 -8.4 -4.1 -2.7

P 37.8 43.6 48.5 -13.9 -6.4 -4.9

S 22.6 27.6 31.5 -15.4 -8.5 -7.6

Cl 9.3 12.1 14.1 -11.3 -7.2 -7.0

K 3.4 3.5 3.2 -1.6 -1.2 -0.7

Ga 5.3 7.1 7.9 -4.5 -1.9 -1.3

Ge 16.2 20.0 22.3 -10.3 -3.9 -2.8

As 33.0 39.3 43.5 -17.0 -5.8 -4.7

Se 19.1 23.8 26.6 -16.5 -8.2 -8.0

Br 7.6 10.1 11.4 -11.4 -6.9 -7.1

ME (H-Cl) 22.9 26.3 30.0 -8.7 -4.1 -2.5

MAE (H-Cl) 22.9 26.3 30.0 8.7 4.1 2.6

ME (H-Br) 20.1 23.4 26.6 -9.2 -4.3 -3.0

MAE (H-Br) 20.1 23.4 26.6 9.2 4.3 3.1

2
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ABSTRACT: A formulation of range-separated random phase approx-
imation (RPA) based on our efficient ω-CDGD-RI-RPA [J. Chem.
Theory Comput. 2018, 14, 2505] method and a large scale benchmark
study are presented. By application to the GMTKN55 data set, we
obtain a comprehensive picture of the performance of range-separated
RPA in general main group thermochemistry, kinetics, and noncovalent
interactions. The results show that range-separated RPA performs stably
over the broad range of molecular chemistry included in the GMTKN55
set. It improves significantly over semilocal DFT but it is still less
accurate than modern dispersion corrected double-hybrid functionals.
Furthermore, range-separated RPA shows a faster basis set convergence compared to standard full-range RPA making it a promising
applicable approach with only one empirical parameter.

1. INTRODUCTION
The random phase approximation (RPA)1−6 has become an
increasingly popular post-Kohn−Sham (KS)7 approach. RPA
can be considered as a parameter-free density functional and it
stands on the fifth and highest rung of the Jacob’s ladder of
density-functional theory (DFT).8 RPA overcomes several
failures of semilocal density functionals, among which one of
the most important issues are the poorly described long-range
van der Waals interactions.9 This means that RPA gives more
accurate interaction and cohesion energies.10−14 Even though
the long-range part of the dispersion interactions is described
well, RPA gives a poor approximation for small interelectronic
distances.3,15−17

For this reason the idea of treating the short-range
interactions with semilocal DFT arose some time ago.16,18−20

Recently, a scheme that combines the long-range part of the
RPA correlation energy with the short-range part of a density
functional via the error function has been established.21−23

This range-separated RPA approach has been shown to
improve the RPA correlation energy in various cases. One
example is the improvement of dissociation curves for rare-gas
dimers and alkaline-earth dimers compared to full-range
RPA.22,23 It also has been shown that the range-separation
approach provides accurate interaction energies for a range of
noncovalent complexes.24,25 Furthermore, the range-separation
scheme improves atomization energies and barrier heights of
small test sets.26

Here, we present a range-separated RPA method which is
based on our efficient linear-scaling ω-CDGD-RI-RPA
method27−30 in the local atomic orbital space that uses a
Cholesky decomposed ground state density (CDGD) and
makes use of the resolution-of-the-identity (RI) with the

attenuated ω-Coulomb metric.31 The use of our efficient
ω-CDGD-RI-RPA algorithm within the range-separation
approach enables us to test range-separated RPA on a large
scale and to provide a comprehensive picture of the
performance of range-separated RPA. Hence, we compare
range-separated RPA to full-range RPA for the GMTKN55
data set.32 This large benchmark set comprises 1505 relative
energies based on 2462 single-point calculations on molecules
with up to 72 atoms and gives a broad overview of general
main group thermochemistry, kinetics, and noncovalent
interactions.

2. THEORY

Several schemes for range-separated RPA have been proposed
so far.22,23,23 The formalism of the range-separation scheme
used in this work is described by Toulouse et al. in detail in ref
23. Here, we give a brief overview and rather focus on the
description of the long-range formulation of our
ω-CDGD-RI-RPA method.28 In the subsequent description
μ, ν, λ, σ refer to atomic orbitals (AOs) i, j and a, b refer to
occupied and virtual molecular orbitals (MOs), respectively,
and i j,̲ ̲ refer to Cholesky orbitals. M, N, P, Q denote auxiliary
RI functions. Moreover, Einstein’s sum convention34 is used.
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2.1. Range Separation. The separation of the electron−
electron interaction into long-range (lr) and short-range (sr)
contributions can be achieved by dividing the electron−
electron operator vee into a long-range electron−electron
operator vee

lr and a short-range electron−electron operator vee
sr

using the error function and its complementary function as

v v v
r

r
r

r
erf( ) erfc( )

ee ee
lr

ee
sr 12

12

12

12

μ μ= + = +
(1)

where the adjustable range-separation parameter μ defines the
range of the separation.
Until now, multiple formulations of short-range PBE were

presented in the literature.35−37 In this work the range-
separated hybrid PBE functional (RSHPBE) of Goll et al.38 is
used, which utilizes the range-separation scheme in eq 1. A
detailed description of this functional is given in ref 38. Its
energy

E E E E ERSHPBE
H x

PBE,sr
x
HF,lr

c
PBE,sr= + + + (2)

is composed of the Hartree energy EH, the short-range
exchange Ex

PBE,sr, and correlation energy Ec
PBE,sr given by the

short-range PBE-like functional and the long-range exact
exchange energy Ex

HF,lr. ERSHPBE lacks long-range correlation
effects and thus can be corrected with the long-range part of
the RPA correlation energy Ec

RPA,lr in a post-KS calculation:

E E ERSHPBE lrRPA RSHPBE
c
RPA,lr= ++

(3)

2.2. Long-Range Formulation of the RPA Correlation
Energy. The standard full-range RPA total energy within the
adiabatic connection formalism39 is given by

E E ERPA HF
c
RPA= + (4)

where EHF is the Hartree−Fock energy evaluated non-self-
consistently on the reference orbitals and Ec

RPA is the RPA
correlation energy. Using the fluctuation−dissipation theorem
together with the RI approximation, the RPA correlation
energy can be expressed after coupling-strength integration
as4−6

E X V X V
1

2
d Tr ln(1 (i ) ) (i )c

RPA

0
0 0∫π

ω ω ω= [ − + ]+∞

(5)

where

V VC C( ) ( )MN MP PQ QN
1 1= ̃− −

(6)

represents the Coulomb operator in the auxiliary basis with

C M m N( )MN 12= | | (7)

V M v r N( ( ) )MN ee 12̃ = | | (8)

and the RI metric m12. In the presented method the attenuated
Coulomb metric

m
r

r
erfc( )

12
att 12

12

ω=
(9)

with ωatt = 0.1 a0
−1 is used, since it has been shown to

constitute a good trade-off between accuracy and locality for
fitting the full-range Coulomb operator.31 X0 denotes the
noninteracting density−density response function in the zero-
temperature case, also represented in the auxiliary basis. For

the sake of efficiency, X0 is calculated in the imaginary time
domain

X G B G B(i ) ( i ) (i )MN
M N

0, 0, 0,τ τ τ= −μν νλ λσ σμ (10)

where G0(iτ) is the one-particle Green’s function

G G G(i ) ( i ) (i ) (i ) (i )0 0 0τ τ τ τ τΘ Θ= − + ̅ (11)

G C C(i ) exp( ( ) )i i i0, Fτ ε ε τ̲ = − −μν μ ν

G C C(i ) exp( ( ) )a a a0, Fτ ε ε τ̅ = − − −μν μ ν

with the Heaviside step function Θ(iτ), the MO coefficients
Cμi and Cμa, as well as the MO energies εi and εa of the
occupied and unoccupied MOs, respectively, and the Fermi
level εF. The three-center integrals Bμν

M are given in Mulliken
notation by

B m M( )M
12μν= | |μν (12)

The response function of eq 10 is then transformed into the
imaginary frequency domain by a contracted double Laplace27

or, equivalently, cosine40 transform according to

X X(i ) d cos( ) (i )0 0∫ω τ ωτ τ=
−∞

+∞
(13)

to perform the final frequency integration.
The main drawback of pure AO formulations is the

unfavorable scaling with the size of the basis set compared
to MO formulations. To address this problem, pivoted
Cholesky decomposition41−43 can be applied to density-type
matrices28,31 in order to obtain local Cholesky vectors/orbitals
which can then be used to transform important quantities in
the time-determining steps. In the following, pivoted Cholesky
decomposition of a given matrix A is abbreviated by A = LLT.
Since the one-particle Green’s function in the negative

imaginary time domain is invariant with respect to projection
onto the occupied space, eq 10 can equivalently be expressed
as

X PSG SPB G B(i ) Tr( ( i ) (i ) )MN
M N

0, 0 0τ τ τ= − (14)

Cholesky decomposition of the ground state density matrix P
and cyclic permutation within the trace result in

X L SG SLL B G B L(i ) Tr( ( i ) (i ) )MN
T T M N

0, 0 0τ τ τ= − (15)

and allow the dimensions of the important quantities to be
reduced yielding

X G B G B(i ) ( i ) (i )MN j i i
M

j
N

0, 0, 0,τ τ τ= − ν νμ μ̲ ̲ ̲ ̲ (16)

where we defined

G GL S SL( i ) ( ) ( i )( )j i
T

j i0, 0,τ τ− = −μ μν ν̲ ̲ ̲ ̲ (17)

B BL( )i
M T

i
M=ν μ μν̲ ̲ (18)

The final and most expensive step in the calculation of the
response function is then given by

X B B(i ) (i )MN j
M

j
N

0, τ τ= μ μ̲ ̲ (19)

with

B G B G(i ) ( i ) (i )j
M

j i i
M

0, 0,τ τ τ= −μ ν νμ̲ ̲ ̲ ̲ (20)
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The evaluation of eq 19 formally scales as N N N( )aux
2

basis occ but
can be implemented in an asymptotically linear-scaling fashion
using sparse matrix algebra.
To account for the long-range part of the RPA correlation

energy only, as required by the presented range-separated
functional, the standard Coulomb operator in eq 8 is
substituted by the long-range electron−electron operator
defined in eq 1 to obtain

V M v r N( ( ) )MN
lr

ee
lr

12̃ = | | (21)

and hence

V VC C( ) ( )MN MP PQ QN
lr 1 lr 1= ̃− −

(22)

This long-range Coulomb operator in the auxiliary basis Vlr

is then used in the final expression for the long-range RPA
correlation energy according to

E X V X V
1

2
d Tr ln(1 (i ) )c

RPA,lr

0
0

lr
0

lr∫π
ω ω= [ − + ]+∞

(23)

In our standard full-range RPA algorithm, the trace of the
matrix logarithm is evaluated using Cholesky decomposition of
V in combination with the Mercator series for ln(1 + x)
according to

L

X V L X LTr ln(1 (i ) ) Tr ln(1 (i ) ) (24)

2 ln (25)

T

n
nn

0 0

∏
ω ω[ + ] = [ + ]

= ′i

k
jjjjjj

y

{
zzzzzz

where we absorbed the minus sign into the response function
and abbreviated the Cholesky decomposit ion of
1 + LTX0(iω)L by L′. In the presented range-separated RPA
algorithm, Cholesky decomposition of the long-range
Coulomb operator Vlr has turned out to be problematic in
some cases due to very small negative eigenvalues occurring as
a reason for numerical inaccuracies. Therefore, Cholesky
decomposition of Vlr is avoided by evaluating the trace of the
matrix logarithm according to

L

X V
V X V

Tr ln(1 (i ) )
Tr ln(1 ( ) (i )( ) )

(26)

2 ln (27)
n

nn

0
lr

lr 1/2
0

lr 1/2

∏

ω
ω

[ + ]
= [ + ]

=
i

k
jjjjjj

y

{
zzzzzz

where this time L stems from Cholesky-decomposing
V X V1 ( ) (i )( )lr 1/2

0
lr 1/2ω+ . Another alternative avoiding

Cholesky decomposition of Vlr is, of course, to simply evaluate
the matrix logarithm via diagonalization, which works in any
case but comes along with an increased computational cost.

3. COMPUTATIONAL DETAILS
All calculations were performed using the FermiONs++
program package.44−46 The self-consistent range-separated
hybrid DFT calculations were performed using the short-
range PBE functional of ref 38, which was implemented in a
development-version of libxc,47 and long-range exact exchange.
This approach is referred to as “RSHPBE” in the following.
The long-range RPA correlation correction to the RSHPBE
energy was calculated based on these RSHPBE reference

orbitals using the long-range formulation of the ω-CDGD-RI-
RPA method as described above. This range-separated RPA
approach is termed “RSHPBE+lrRPA”. For all range-separated
calculations a range-separation parameter of μ = 0.5 a0

−1 was
used (see also discussion below), unless stated otherwise. Full-
range RPA calculations performed on PBE48,49 reference
orbitals are simply named “RPA” in the following.
All calculations on the GMTKN55 were performed with the

Ahlrichs-type split-valence triple-ζ basis set def2-TZVP50 and
the corresponding auxiliary basis set.51 The basis set was
augmented by diffuse functions for the WATER27, G21EA,
AHB21, and IL16 subsets in the same way as for the original
calculations on the GMTKN5532 to ensure best possible
comparability to already existing results of other density
functionals. In the WATER27 test set, Dunning’s diffuse s and
p functions were applied to oxygen; diffuse s and p functions
were applied to non-hydrogen atoms and diffuse s functions to
hydrogen in the G21EA, AHB21, and IL16 sets.
Effective-core potentials50 were used to replace the core

electrons of heavy elements in the HEAVYSB11, HEAVY28,
and HAL59 subsets.
For all molecules in the singlet state, closed-shell calculations

were performed.

4. RESULTS AND DISCUSSION
4.1. Choice of the Basis Set. Several investigations on the

basis set dependence of RSHPBE+lrRPA indicated that within
the range-separated framework a smaller number of basis
functions is required for convergence of the RPA energy with
respect to the basis set size.22,23,26,52 This convergence
behavior is caused by the expected exponential convergence
of the long-range part of the RPA correlation energy53 and the
replacement of the relatively slowly converging short-range
part of the RPA correlation by faster converging PBE. As the
studies concerning basis set behavior of range-separated RPA
rely on a small number of molecular systems, we investigate
here the basis set convergence of range-separated RPA energies
compared to full-range RPA energies using a larger set of
molecules.
We compared RSHPBE+lrRPA to full-range RPA on the

BH76 (barrier heights), BH76RC (reaction energies), and S22
(noncovalent interactions) test sets for different basis sets
(detailed results can be found in the Supporting Information).
For full-range RPA a rather pronounced basis set dependence
can be observed (Figure 1) as the MAD decreases significantly
for each of the three subsets going from the triple- to
quadruple-ζ basis. The MADs for RSHPBE+lrRPA, in contrast,
vary at most in a range of 0.17 kcal/mol going from def2-
TZVP to the larger quadruple-ζ basis set and thus can be
considered as sufficiently converged with the def2-TZVP basis
set. Further, we want to note that the introduced error by
fitting the long-range Coulomb operator with the short-range
Coulomb metric is, like for fitting the full-range Coulomb
operator, orders of magnitude below the orbital basis set error
and the intrinsic error of RPA (see Table S2, Supporting
Information). Therefore, the dependence of the results on the
quality of the auxiliary basis is assumed to be similar to that of
standard RI-RPA which was investigated in ref 5.
Even though the results of full-range RPA are clearly not yet

converged with the triple-ζ basis sets, we compare both
methods using def2-TZVP as we want to have a fair
comparison for practical usage. This means using a basis set
that is affordable for many applications. For the performance of
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full-range RPA with larger basis sets we refer the interested
reader to already existing benchmarks.6,54−57

4.2. Choice of the Range-Separation Parameter. Prior
studies investigating the range-separation parameter μ in
range-separated methods revealed that its optimal value lies
around 0.5 a0

−1. These prior studies comprise the investigation
of the enthalpies of formation for a series of molecules with a
combination of srLDA and lrHF exchange58 and calculations
on atomization energy and barrier height data sets with range-
separated RPA.26

It is worth noting here that in the limit μ → ∞ the results of
RSHPBE+lrRPA do not converge to the results of conven-
tional full-range RPA based on PBE reference orbitals. In fact,
the lrRPAμ→∞ correlation energy formally corresponds to the
full-range formulation, but the RSHPBE (see eq 2) reference
orbitals converge to HF orbitals rather than PBE orbitals for
μ → ∞. This means that RSHPBE+lrRPAμ→∞ is equal to full-
range RPA using HF reference orbitals (RPA@HF, see Figure
2). In the limit of μ → 0 the lrRPA correlation energy
approaches 0. Thus, RSHPBE+lrRPAμ→0 approaches the
energy of the RSHPBE reference orbitals, which are identical
to those of full-range PBE in the case of μ → 0.
To investigate whether a range-separation parameter of

0.5 a0
−1 is indeed an appropriate choice for a broader range of

molecules and properties of molecular systems, we comple-
mented these studies by calculations on the BH76RC, BH76,
and S22 data sets with varying range-separation parameter in
RSHPBE+lrRPA. The results (Figure 2, detailed results can be
found in the Supporting Information) reveal that the optimal
value for μ slightly varies depending on the examined property
or system. While for the BH76 and S22 test sets the optimum

of μ lies at 0.5 a0
−1, it is shifted to a slightly higher value of

0.8 a0
−1 for the BH76RC test set. A shift of the optimal value of

the range-separation parameter to a larger value has also been
observed for calculations on reaction energies with a range-
separated RPA variant.59

Since the results show a quite distinct dependence of the
optimal range-separation parameter on the molecular system,
we decided to investigate the parameter for an even broader
range of molecular systems. We therefore created the set
“RAND2x55” which contains two randomly chosen items of
each subset of the GMTKN55. The detailed list of contained
relative energies can be found in the Supporting Information
(Table S1). The absolute values of the relative energies |ΔE|
contained in this test set vary significantly as these describe
completely different chemical properties. Items with larger
|ΔE| are expected to give a larger absolute deviation, which in
turn leads to a larger change between different μ values. In
order to consider each item of the RAND2x55 in the same way
for obtaining an optimal range-separation parameter, the
absolute deviations of every item are weighted using the
weighting factors of weighting scheme 1 of ref 32 for the
respective subset. The weighted MADs of the RAND2x55
subset show that there is a broad minimum around
μ = 0.45 a0

−1 (see Figure 3) with a deviation of maximally
0.1 kcal/mol in the MADs over the range μ = 0.4 a0

−1 to
μ = 0.55 a0

−1. On average, RSHPBE+lrRPA seems to be quite
robust with respect to the choice of μ, reassuring us that the

Figure 1. Basis set dependence of the mean absolute deviation
(MAD) in kcal/mol for the BH76, BH76RC, and S22 data sets of
range-separated RSHPBE+lrRPA (red) and full-range RPA (blue).

Figure 2. Mean absolute deviation (MAD) for the BH76, BH76RC,
and S22 data sets as a function of the range-separation parameter μ
for range-separated RSHPBE+lrRPA calculations using the def2-
TZVP basis set. In the limit of μ → ∞ RSHPBE+lrRPA converges to
standard RPA evaluated on HF reference orbitals (RPA@HF) and for
μ → 0 it corresponds to PBE.
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choice of μ = 0.5 a0
−1 in previous studies23,25,26,58 is reasonable.

For this reason a range-separation parameter of 0.5 a0
−1 was

used in the following.
4.3. Results of the GMTKN55 Data Set. The subsets

included in the GMTKN55 data set can be grouped into five
categories. The first category “basic + small” targets basic
properties and reaction energies for small systems. The subsets
of the second category “iso + large” comprise reaction energies
for large systems and isomerizations. In the third category
“barrier”, barrier height test sets are united. The last two
subcategories “intermol. NCIs” and “intramol. NCIs” focus on
inter- and intramolecular noncovalent interactions, respec-
tively.
As shown in Table 1, RSHPBE+lrRPA yields a weighted

mean absolute deviation according to weighting scheme 1 of

ref 32 (WTMAD-1) of 3.86 kcal/mol for the total GMTKN55
data set. With this result RSHPBE+lrRPA is among the 15%
best density functionals tested in ref 32 using the def2-QZVP
basis set (see Figure 4) and can be ranked in between the
average hybrid and average double-hybrid density functional
(see Table 1). It has to be further stressed that the compared
(MP2-based) double-hybrid functionals are, due to the
inclusion of exchange terms, computationally more expensive
than the here presented RPA methods.
The results grouped by category (see Table 2 and Figure 5)

show that RSHPBE+lrRPA is not as good as the average
double-hybrid density functional for “basic + small” and
“barriers” but is significantly better for NCIs. However, the
deficiencies of double-hybrid density functionals in describing
noncovalent interactions can be compensated by the inclusion
of the empirical “D3” dispersion correction of Grimme.60,61

RSHPBE+lrRPA gives a slightly better result than full-range
RPA (WTMAD-1 of 3.86 kcal/mol vs 4.72 kcal/mol) for the
complete GMTKN55 test set. Furthermore, RSHPBE+lrRPA

performs more stably over all categories. The WTMAD-1 of
RSHPBE+lrRPA is for all categories about the same and does
not show as high fluctuations as the full-range variant. In both
cases, range-separated and full-range, the RPA correlation
energy on average improves the results of the respective
Kohn−Sham reference calculations, RSHPBE and PBE.
The improvement of the RPA approaches over the

respective Kohn−Sham reference is most prominent for the
categories concerning noncovalent interactions. Within the
subsets of “intermol. NCIs” and “intramol. NCIs” the
improvement is most obvious for the IDISP subset which
targets intermolecular dispersion interactions (see Table 3).
This is not surprising, as RSHPBE and PBE do not account for
any dispersion interactions. Moreover, the remarkably high
MAD of RSHPBE+lrRPA for the WATER27 (hydrogen
bonds) subset has to be noted. Apparently, this test set is
quite sensitive to the basis set size as all tested methods have a
significant deviation in the MAD between the def2-TZVP and
def2-QZVP results (see Table 3, values in brackets). This
means that for this test set the results of all studied methods,
including the references RSHPBE and PBE, are not sufficiently

Figure 3. Weighted mean absolute deviation (MAD) for the
RAND2×55 data set as a function of the range-separation parameter
μ for range-separated RSHPBE+lrRPA calculations using the def2-
TZVP basis set.

Table 1. Comparison of the WTMAD-1 for the GMTKN55
obtained by RSHPBE+lrRPA and Full-Range RPA to
Density Functionals Grouped by the Rank of the Jacob's
Ladder

RSHPBE+lrRPA 3.86a

RPA 4.72a

GGA 10.70b

meta-GGA 7.31b

hybrid 6.56b

double-hybrid 3.60b

adef-TZVP basis set, this work. bdef2-QZVP basis set and no
empirical dispersion correction. Average value taken from ref 32.

Figure 4. Histogram showing the WTMAD-1 distribution for all
tested density functionals without empirical dispersion correction
(def2-QZVP) in ref 32 on the total GMTKN55 test set. The red and
blue lines illustrate where RSHPBE+lrRPA and full-range RPA def2-
TZVP are placed among the density functionals according to the
WTMAD-1.

Table 2. WTMAD-1 Values in kcal/mol for the GMTKN55
Test Set and Its Categoriesa

average
double-hybrid

RSHPBE PBE
RSHPBE
+lrRPA RPA

no
D3 D3

GMTKN55 8.33 8.17 3.86 4.72 3.60 2.05
basic + small 4.92 5.56 3.48 5.41 2.21 1.87
iso. + large 4.97 7.38 3.76 3.10 3.40 2.50
barriers 5.72 7.64 3.56 2.63 1.43 1.59
intermol.
NCIs

13.87 10.41 4.27 6.54 5.90 2.02

intramlo.
NCIs

13.13 11.64 4.40 4.16 5.17 2.39

all NCIs 13.55 10.94 4.33 5.52 5.59 2.18
aAll calculations were performed using the def2-TZVP basis set.
Values for the average double-hybrid functional with and without
Grimme’s D3 dispersion correction60,61 were obtained using the def2-
QZVP basis set and are taken from ref 32.
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converged with respect to the basis set size at triple-ζ level and
are thus not reliable.
For all noncovalent interactions (all NCIs, Table 2),

RSHPBE+lrRPA has a slightly lower WTMAD-1 compared
to full-range RPA. This is in line with the observation of Zhu et
al.25 that range-separated RPA improves interaction energies of
weakly interacting intermolecular complexes. Also, several
studies suggest17,25,52,62 that a range-separated RPA approach
improves interaction energies in rare-gas dimers which we can
confirm by the results of the RG18 subset (Table 3).
For reaction barrier heights, varying results for RSHPBE

+lrRPA were obtained. In fact, RSHPBE+lrRPA has a slightly
lower MAD in some reaction barrier height subsets but has
also a remarkably higher MAD for the two subsets, PX13 and
WCPT18, containing reaction barriers of proton-transfer and
-exchange reactions, where water−water interactions, which
are also present in the WATER27 test set, play a crucial role.
This suggests that the results of PX13 and WCPT18 might also
be not sufficiently converged with respect to the basis set size
at the triple-ζ level. This is one of the reasons why we have not
observed a significant improvement in the description of
reaction barrier heights for RSHPBE+lrRPA over full-range
RPA, contradicting the finding of Mussard et al.26 Another
reason might be the larger test volume investigated in our
present work.
For the category “iso. + large”, a slightly inferior perform-

ance of RSHPBE+lrRPA compared to the full-range variant is
observed (3.76 kcal/mol vs 3.10 kcal/mol). In this category,
the MADs for the MB16-43 (decomposition of artificial
molecules) and DARC (Diels−Alder reaction energies)
subsets stand out in particular (Table 3). For the DARC test
set the difference in the MADs between RSHPBE+lrRPA and
full-range RPA is remarkable. It should be noted that the errors
for this rather specialized test set are mainly systematic as all
relative energies contained in this test set describe one single
property: the relative stability of a C−C σ bond vs a C−C π
bond. The low MAD of full-range RPA arises from a fortuitous
error cancellation for this very specific type of reactions. PBE
significantly underestimates the relative stability of C−C σ
bonds (signed error +6.12 kcal/mol), and the addition of the

full-range RPA correlation compensates this deficiency nearly
exactly (signed error +0.48 kcal/mol). In contrast, RSHPBE
already overestimates the relative strength of C−C σ bonds
(signed error −1.27 kcal/mol), so that the addition of the
long-range RPA correlation results in an even stronger
comparative overbinding of σ bonds (signed error −6.79
kcal/mol). However, this error is not unusually large compared
to other functionals. The average MAD for all double-hybrid
functionals tested in ref 32 without empirical dispersion
correction is 4.62 kcal/mol. We also tested the influence of the
basis set on this specific test set employing the def2-QZVP
basis set instead. The differences in the MADs of RSHPBE
+lrRPA and full-range RPA, however, were found to be smaller
than 1 kcal/mol, i.e., this test set is not dominated by basis set
incompleteness errors.
For the MB16-43 test set large MADs are not unusual due to

the large average of absolute energy differences E|Δ | of
414.73 kcal/mol. The result of RSHPBE+lrRPA for this test set
is as good as the average result of all double-hybrid functionals
tested in ref 32 with 22.91 kcal/mol (without empirical
dispersion correction). The MAD of full-range RPA, however,
is exceptionally large displaying the deficiency of standard full-
range RPA to describe the strength of covalent bonds which is
well-known concerning atomization energies.54,63−65

RSHPBE+lrPBE seems to have an improved performance in
basic properties as compared to full-range RPA (“basic +
small”, Table 2 and Figure 5). This difference in the
WTMAD-1s arises from the stable performance of RSHPBE
+lrRPA compared to the varying results of standard RPA.
Here, especially the noticeable high MADs of the W4-11
(atomization energies), SIE4x4 (self-interaction-error related
problems), and ALKBDE10 (dissociation energies of group-1
and -2 diatomics) subsets stand out. The obtained results for
the atomization energies subset W4-11 are in line with those of
Mussard et al.,26 who also observed that range-separated RPA
gives more precise atomization energies than the full-range
variant. It has to be noted that the large MADs of full-range
RPA for atomization energies and dissociation energies arise
from the systematical underbinding of standard full-range RPA
caused by deficiencies in the description of short-range
correlation.54,63,65 The poor performance of standard RPA
for the self-interaction-error related problems is also not
surprising as it is a well-known deficiency of direct RPA.
However, the range-separation approach somewhat alleviates
this problem, as indicated by the significantly better perform-
ance of RSHPBE+lrRPA in the SIE4x4 test set, confirming the
findings of previous work on range-separated RPA.33,66 In this
context, range-separated RPA may also be regarded as a cost-
effective alternative to beyond RPA methods.29,67−72

5. CONCLUSION

In this work we presented a range-separated RPA method,
RSHPBE+lrRPA, based on our efficient linear-scaling
ω-CDGD-RI-RPA algorithm.28 Investigations on the basis set
dependence revealed that energies obtained by this range-
separated method converge faster with respect to the basis set
size than full-range RPA energies. For most systems,
RSHPBE+lrRPA yields reliable results with the def2-TZVP
basis set. The weaker basis set dependence compared to full-
range RPA and the fact that the presented RSHPBE+lrRPA
method is exactly as efficient as the underlying ω-CDGD-RI-
RPA algorithm opens up the possibility for efficiently applying

Figure 5. Graphical representation of the WTMAD-1 values for the
GMTKN55 test set and its categories. The def2-TZVP basis set was
used for RSHPBE+lrRPA and full-range RPA (this work). The
average WTMAD-1s for all tested double-hybrid functionals in ref 32
with (avg. double-hybrid D3) and without (avg. double-hybrid)
Grimme’s D3 dispersion correction60,61 were obtained using the def2-
QZVP basis set and are taken from ref 32.
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Table 3. Detailed List of the Mean Absolute Deviation in kcal/mol for All Subsets of the GMTKN55 Data Basea

set description RSHPBE PBE RSHPBE+lrRPA RPA

Basic Properties and Reaction Energies for Small Systems
W4-11b total atomization energies 15.34 14.69 6.94 27.06
G21EA adiabatic electron affinities 6.43 2.80 3.66 3.39
G21IP adiabatic ionization potentials 5.09 3.91 4.29 3.41
DIPCS10 double-ionization potentials of closed-shell systems 6.15 4.59 2.94 6.32
PA26 adiabatic proton affinities (incl. of amino acids) 2.53 1.92 1.29 3.88
SIE4x4 self-interaction-error related problems 4.64 23.73 8.63 22.19
ALKBDE10 dissociation energies in group-1 and -2 diatomics 6.19 4.93 4.83 25.00
YBDE18 bond-dissociation energies in ylides 6.99 5.68 2.56 5.28
AL2x6 dimerization energies of AlXx compounds 6.27 4.04 1.79 2.82
HEAVYSB11 dissociation energies in heavy-element compounds 12.53 4.34 4.97 6.66
NBPRC oligomerizations and H2 fragmentation of NH3/BH3 systems 2.62 2.77 1.95 2.53
ALK8 dissociation and other reactions of alkaline compounds 7.09 3.05 3.69 7.79
RC21 fragmentations and rearrangements in radical cations 2.71 6.03 4.09 2.79
G2RC reaction energies of selected G2/97 systems 5.48 7.50 5.67 7.04
BH76RC reaction energies of the BH76 set 2.38 3.98 2.87 4.51
FH51 reaction energies in various (in-) organic systems 3.27 4.03 3.31 3.40
TAUT15 relative energies in tautomers 1.18 1.91 0.90 1.19
DC13 13 difficult cases for DFT methods 12.76 10.00 8.49 10.47

Reaction Energies for Large Systems and Isomerization Reactions
MB16-43 decomposition energies of artificial molecules 49.92 24.24 21.72 60.96
DARC reaction energies of Diels−Alder reactions 1.61 6.39 6.79 0.92
RSE43 radical-stabilization energies 0.46 3.16 0.53 0.48
BSR36 bond-separation reaction of satured hydrocarbons 8.43 8.15 0.90 1.88
CDIE20 double-bond isomerization energies in cyclic systems 1.00 1.90 0.69 0.46
ISO34 isomerization energies of small and medium-sized organic molecules 1.70 1.95 1.51 1.43
ISOL24 isomerization energies of large organic molecules 4.74 6.71 3.79 2.01
C60ISO relative energies between C60 isomers 23.05 10.48 7.55 7.71
PArel relative energies in protonated isomers 1.05 1.76 1.05 0.97

Reaction Barrier Heights
BH76 barrier heights of hydrogen transfer, heavy atom transfer, nucleophilic substitution,

unimolecular, and association reactions
3.17 9.82 1.67 2.84

BHPERI barrier heights of pericyclic reactions 10.74 4.18 1.85 0.73
BHDIV10 diverse reaction barrier heights 5.10 8.24 1.39 1.89
INV24 inversion/racemization barrier heights 3.39 2.95 2.11 1.21
BHROT27 barrier heights for rotation around single bonds 0.90 0.54 0.70 0.75
PX13 proton-exchange barriers in H2O, NH3, and HF clusters 5.07 13.16 7.67 2.36
WCPT18 proton-transfer barriers in uncatalyzed and water-catalyzed reactions 3.59 9.66 3.19 1.68

Intermolecular Noncovalent Interactions
RG18 interaction energies in rare-gas complexes 0.51 0.36 0.14 0.41
ADIM6 interaction energies of n-alkane dimers 4.54 3.37 1.24 0.30
S22 binding energies of noncovalently bound dimers 3.01 2.31 0.62 0.71
S66 binding energies of noncovalently bound dimers 2.57 1.94 0.72 0.42
HEAVY28 noncovalent interaction energies between heavy element hydrides 1.30 0.49 0.45 0.65
WATER27 binding energies in (H2O)n, H

+(H2O)n, and OH−(H2O)n 2.27
(5.08)

9.06
(2.84)

11.64 (5.70) 0.89
(3.86)

CARBH12 hydrogen-bonded complexes between carbene analogues and H2O, NH3, or HCl 0.63 1.45 0.59 2.07
PNICO23 interaction energies in pnicogen-containing dimers 1.77 0.86 0.53 1.43
HAL59 binding energies in halogenated dimers (incl. halogen bonds) 1.94 1.36 0.37 1.62
AHB21 interaction energies in anion-neutral dimers 1.22 1.10 1.52 1.33
CHB6 interaction energies in cation-neutral dimers 1.76 1.34 1.68 0.87
IL16 interaction energies in anion−cation dimers 4.29 1.77 0.66 0.95

Intramolecular Dispersion Interactions
IDISP intramolecular disperison interaction 10.72 10.62 2.81 2.63
ICONF relative energies in conformers of inorganic systems 0.79 0.41 0.43 0.46
ACONF Relative energies of alkane conformers 0.92 0.58 0.19 0.06
AMINO20x4 Relative energies in amino acid conformers 0.62 0.47 0.27 0.35
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range-separated RPA onto relevant systems with several
hundred atoms, as illustrated for the ω-CDGD-RI-RPA
method in ref 28 where the largest system comprised 902
atoms.
Investigations on the range-separation parameter μ revealed

a shallow minimum between 0.4 a0
−1 and 0.55 a0

−1, which is in
good agreement with previous findings of μ = 0.5 a0

−1 to be
optimal.21,23,25,26,38,62

To give a comprehensive picture of the performance of
RSHPBE+lrRPA we compared this method to standard RPA
on the GMTKN55 data set32 and placed it among previously
tested density functionals. The results for GMTKN55 show
that RSHPBE+lrRPA yields stable results for a broad range of
thermochemical and kinetic properties as well as noncovalent
interactions. Although the overall performance of RSHPBE
+lrRPA is comparable to that of full-range RPA, it shows less
variance in the WTMAD-1s of the subcategories. It was found
that the range-separation approach especially gives better
results compared to those of the full-range variant for
atomization energies (W4-11), problems that are prone to
the self-interaction-error (SIE4x4), and systems containing
group-1 and -2 elements (ALKBDE10, ALK8).
Overall, the results of RSHPBE+lrRPA are promising

considering that only one empirical parameter was employed.
In the future, the method could further be improved by
including exchange into the response function, e.g., along the
lines of the second order screened exchange (SOSEX) RPA
method.29,67,68,72 Alternatively, more empirical approaches
could be explored in a similar fashion as done by Mardirossian
and Head-Gordon,73 i.e., employing more empirical semilocal
exchange-correlation functionals (e.g., B9774), more compli-
cated range-separation schemes, or adding empirical dispersion
interaction corrections.
Due to the lower computational cost compared to standard

MP2 and the stable results of range-separated RPA over a
broad range of chemical problems, this avenue is in our
opinion worth considering for future developments.
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Table S1: Detailed list of the RAND2x55 test set. For each item its number in the original
subset (#) is given. The system names correspond to the geometry files of the corresponding
test set. The reference values are given in kcal/mol. In the last column, the weighting factor
of the corresponding test set in the WTMAD-1 scheme is given.

subset # systems stoichiometry ref. w1

W4-11 8 sih si h -1 1 1 73.921 0.1

W4-11 90 hocl h o cl -1 1 1 1 166.229 0.1

G21EA 20 EA_20n EA_20 1 -1 9.5 1

G21EA 2 EA_o EA_o- 1 -1 33.7 1

G21IP 36 IP_80 48 1 -1 261.153 0.1

G21IP 22 IP_65 IP_n65 1 -1 234.107 0.1

DIPCS10 2 c2h6 c2h6_2+ -1 1 667.1 0.1

DIPCS10 7 h2s h2s_2+ -1 1 733 0.1

PA26 15 ch3cooh ch3coohp 1 -1 190.9 0.1

PA26 10 h2s h2sp 1 -1 174.3 0.1

SIE4x4 5 he he+ he2+_1.0 1 1 -1 56.9 1

SIE4x4 8 he he+ he2+_1.75 1 1 -1 19.1 1

ALKBDE10 2 beo be o -1 1 1 106.6 0.1

ALKBDE10 7 lio li o -1 1 1 82.5 0.1

YBDE18 6 me2s-ch2 me2s ch2 -1 1 1 51.74 1

YBDE18 16 ph3-ch2 ph3 ch2 -1 1 1 60.11 1

AL2x6 4 al2me4 alme2 -1 2 38.4 1

AL2x6 3 al2cl6 alcl3 -1 2 32.5 1

HEAVYSB11 11 br br2 2 -1 53.17 1

HEAVYSB11 4 sh h2s2 2 -1 67.85 1

NBPRC 7 BH3PH3 BH3 PH3 1 -1 -1 -25.2 1

NBPRC 5 nh2-bh2 bz h2 -3 1 3 -48.9 1
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ALK8 6 li5_ch li4_c li_h -1 1 1 66.28 1

ALK8 2 na8 na2 -1 4 53.15 1

RC21 5 3e 3p1 3p2 -1 1 1 57.93 1

RC21 13 6e 6p1 ethylene -1 1 1 21.21 1

G2RC 10 58 59 57 60 -1 -1 1 1 -27.15 1

G2RC 6 128 13 126 22 -1 -1 1 1 -10.7 1

BH76RC 29 C2H6 NH2 C2H5 NH3 -1 -1 1 1 -6.52 1

BH76RC 13 hnc hcn -1 1 -15.06 1

FH51 13 2-pentyne H2 trans-2-pentene -1 -1 1 -44.82 1

FH51 4 C4H9SO2H H2O2 C4H9SO3H H2O -1 -1 1 1 -82.55 1

TAUT15 9 6a 6b -1 1 -0.17 10

TAUT15 10 6a 6c -1 1 -0.87 10

DC13 12 o3 c2h4 o3_c2h4_add -1 -1 1 -58.7 1

DC13 2 c20cage c20bowl -1 1 -7.7 1

MB16-43 13 13 H2 CH4 N2 O2 MgH2 S2 -2 -5 4 4 2 2 2 19.8751 0.1

MB16-43 32 32 H2 LiH BH3 N2 F2 AlH3 SiH4 S2 -2 -11 2 6 1 2 2 2 1 685.5818 0.1

DARC 6 ethine chdiene P6 -1 -1 1 -49 1

DARC 3 ethene cpdiene P3 -1 -1 1 -29.9 1

RSE43 42 E44 P1 E1 P44 -1 -1 1 1 -6.7 1

RSE43 13 E15 P1 E1 P15 -1 -1 1 1 -6.4 1

BSR36 26 c2h6 r11 ch4 11 -1 -12 8.93 1

BSR36 21 c2h6 r6 ch4 7 -1 -7 9.78 1

CDIE20 6 R28 P26 -1 1 4 10

CDIE20 20 R60 P60 -1 1 8.6 10

ISO34 20 E20 P20 -1 1 18.12 1

ISO34 24 E24 P24 -1 1 12.26 1
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ISOL24 24 i24e i24p -1 1 15.4 1

ISOL24 9 i9e i9p -1 1 21.09 1

C60ISO 8 1 9 -1 1 143.96 0.1

C60ISO 7 1 8 -1 1 142.18 0.1

PArel 19 c2cl43 c2cl42 -1 1 2.47 10

PArel 12 sugar0 sugar3 -1 1 3.21 10

BH76 75 C5H8 RKT22 -1 1 39.7 1

BH76 63 h H2S RKT16 -1 -1 1 3.9 1

BHPERI 15 13r_5 13_c2h4 13ts_5a -1 -1 1 6.5 1

BHPERI 26 09r 00r 09ts -1 -1 1 31.3 1

BHDIV10 1 ed1 ts1 -1 1 25.65 1

BHDIV10 5 ed5 ts5 -1 1 15.94 1

INV24 3 SO2 SO2_TS -1 1 60.6 1

INV24 12 Dibenzocycloheptene Dibenzocycloheptene_TS -1 1 10.3 1

BHROT27 24 ethylthiourea_180 ethylthiourea_TS1 -1 1 10.36 10

BHROT27 22 butadiene_strans butadiene_TS -1 1 6.3 10

PX13 6 h2o_4 h2o_4_ts -1 1 26.6 1

PX13 9 hf_2 hf_2_ts -1 1 42.3 1

WCPT18 8 reac8 ts8 -1 1 28.97 1

WCPT18 7 reac7 ts7 -1 1 32 1

RG18 15 c2h6Ne ne c2h6 -1 1 1 0.24 10

RG18 17 bzNe ne bz -1 1 1 0.4 10

ADIM6 5 AM6 AD6 2 -1 4.6 10

ADIM6 6 AM7 AD7 2 -1 5.55 10

S22 10 10 10a 10b -1 1 1 1.448 10

S22 7 7 07a 07b -1 1 1 16.66 10
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S66 2 02A 02B 2 1 1 -1 5.59 10

S66 53 53A 53B 53 1 1 -1 4.36 10

HEAVY28 21 sbh3_nh3 sbh3 nh3 -1 1 1 2.84 10

HEAVY28 11 pbh4_hcl pbh4 hcl -1 1 1 0.75 10

WATER27 20 OHmH2O OHm H2O -1 1 1 26.687 0.1

WATER27 3 H2O4 H2O -1 4 27.353 0.1

CARBH12 1 1O 1O_A 1O_B -1 1 1 5.37 10

CARBH12 10 2CL 2CL_A 2CL_B -1 1 1 10.483 10

PNICO23 5 5 5a 5b -1 1 1 2.86 10

PNICO23 1 1 1a p1b -1 1 1 1.43 10

HAL59 32 BrBr_FCCH BrBr FCCH -1 1 1 0.74 10

HAL59 38 BrBr_OCH2 BrBr OCH2 -1 1 1 4.41 10

AHB21 15 15 15A 15B 1 -1 -1 -8.62 1

AHB21 5 5 5A 5B 1 -1 -1 -15.61 1

CHB6 6 27 27A 27B 1 -1 -1 -19.9 1

CHB6 3 24 24A 24B 1 -1 -1 -17.83 1

IL16 1 008 008A 008B 1 -1 -1 -100.41 0.1

IL16 7 187 187A 187B 1 -1 -1 -114 0.1

IDISP 1 antdimer ant 1 -2 -9.15 1

IDISP 4 undecan1 undecan2 1 -1 9.1 1

ICONF 3 N4H6_1 N4H6_2 -1 1 0.13 10

ICONF 4 N4H6_1 N4H6_3 -1 1 2.33 10

ACONF 8 H_ttt H_gtg -1 1 1.178 10

ACONF 11 H_ttt H_g+x-t+ -1 1 2.632 10

AMINO20x4 59 PRO_xae PRO_xaf -1 1 4.187 10

AMINO20x4 66 THR_xaq THR_xag -1 1 3.08 10
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PCONF 15 SER_ab SER_aR -1 1 1.47 10

PCONF 7 99 412 -1 1 2.18 10

MCONF 51 1 52 -1 1 8.75 10

MCONF 41 1 42 -1 1 6.39 10

SCONF 8 C1 C9 -1 1 6.19 10

SCONF 1 C1 C2 -1 1 0.86 10

UPU23 2 2p u1b -1 1 2.97 10

UPU23 17 2p 7p -1 1 3.9 10

BUT14DIOL 45 B1 B46 -1 1 3.18 10

BUT14DIOL 21 B1 B22 -1 1 2.74 10
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Table S2: Comparison of the WTMAD-1 (kcal/mol) for the RAND2x55 test set using the
attenuated Coulomb metric (ω = 0.1) and the standard Coulomb metric to fit the long-range
Coulomb operator in the auxiliary basis for two different range-separation values.

µ ω-Coulomb Coulomb ∆

0.45 4.00618 4.00590 -2.74E-04
0.5 4.04240 4.04217 -2.37E-04
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Abstract

A highly memory-efficient integral-direct random phase approximation (RPA) method
based on our ω-CDGD-RI-RPA method [Graf, D. et al. J. Chem. Theory Comput. 2018,
14, 2505] is presented that completely alleviates the memory bottleneck of storing the
multidimensional three-center integral tensor, which severely limited the tractable system
sizes. Based on a Lagrangian formulation, we introduce an optimized batching scheme
over the auxiliary and basis-function indices, which allows to compute the optimal number
of batches for a given amount of system memory, while minimizing the batching overhead.
Thus, our optimized batching constitutes the best tradeoff between program runtime and
memory demand. Within this batching scheme, the half-transformed three-center integral
tensor BM

iµ is recomputed for each batch of auxiliary and basis functions. This allows
the computation of systems that were out of reach before. The largest system within
this work consists of a DNA fragment comprising 1052 atoms and 11 230 basis functions
calculated on a single node, which emphasizes the new possibilities of our integral-direct
RPA method.
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ABSTRACT: A highly memory-efficient integral-direct random
phase approximation (RPA) method based on our ω-CDGD-RI-
RPA method [Graf, D. et al. J. Chem. Theory Comput. 2018, 14,
2505] is presented that completely alleviates the memory
bottleneck of storing the multidimensional three-center integral
tensor, which severely limited the tractable system sizes. Based on a
Lagrangian formulation, we introduce an optimized batching
scheme over the auxiliary and basis-function indices, which allows
to compute the optimal number of batches for a given amount of
system memory, while minimizing the batching overhead. Thus,
our optimized batching constitutes the best tradeoff between
program runtime and memory demand. Within this batching scheme, the half-transformed three-center integral tensor Biμ

M is
recomputed for each batch of auxiliary and basis functions. This allows the computation of systems that were out of reach before.
The largest system within this work consists of a DNA fragment comprising 1052 atoms and 11 230 basis functions calculated on a
single node, which emphasizes the new possibilities of our integral-direct RPA method.

1. INTRODUCTION
Density-functional theory (DFT) has become one of the most
applied theoretical techniques for electronic structure calcu-
lations of molecules,1−3 surfaces,4−6 and crystals7−9 in the
fields of solid-state physics, computational chemistry, and
materials science.10 Its remarkable success can be largely
attributed to the excellent cost performance ratios and good
accuracies for various properties and compounds, which make
DFT applicable to systems containing up to several thousand
atoms.11,12 However, despite the vast benefits of DFT, it is
subject to several well-known deficiencies. The accurate
description of long-range electron correlation, particularly
including van der Waals (vdW) interactions, represents a
challenging task in the modeling of molecules and materi-
als.11,13−18 This makes the development of more broadly
applicable correlation models a necessity.
The random phase approximation (RPA) is one of the most

promising methods to obtain accurate correlation energies,19,20

which is reflected by the increased interest over the last
decades.13,21−34 It yields a good description of bonding types,
including covalent, ionic, and metallic bonding.19 Additionally,
due to its nonlocality, RPA correlation is able to describe vdW
interactions exceptionally well.35

RPA is usually implemented as a post-Kohn−Sham
method36 and was first introduced by Bohm and Pines in
1953.37 It was later formulated within the framework of DFT
using the adiabatic-connection fluctuation-dissipation theo-
rem.20,38,39 However, in its original formulation, the calculation

of RPA correlation energies scales as M( )6 with the system
size M, limiting its applicability to systems comprising only
tens of atoms. In 2010, Furche and co-workers introduced the
resolution-of-the-identity (RI) approximation to RPA, reduc-
ing the scaling to M( )4 .27,40,41 This opened the way for
applications beyond the few atoms scale. In 2016, Schurkus
and Ochsenfeld32 reformulated the RPA correlation energy in
the atomic orbital (AO) space, thus extending the applicability
of the RPA to molecules comprising thousands of atoms.
Further improvements were introduced by Luenser et al.33 and
later by Graf et al.34 by employing an attenuated Coulomb
metric, Cholesky decomposition of the ground-state density
matrix, and an improved quadrature for the cosine transform in
the framework of the ω-CDGD-RI-RPA method.
Within the ω-CDGD-RI-RPA method, the most demanding

step regarding the computational effort and memory require-
ments constitutes the calculation of the response function in
the auxiliary basis. For this step, the half-transformed three-
center integral tensor Biμ

M, whose storage requirements formally
scale as N N N( )aux basis occ with the number of auxiliary

Received: May 18, 2021
Published: August 25, 2021

Articlepubs.acs.org/JCTC

© 2021 The Authors. Published by
American Chemical Society

5623
https://doi.org/10.1021/acs.jctc.1c00494

J. Chem. Theory Comput. 2021, 17, 5623−5634

D
ow

nl
oa

de
d 

vi
a 

L
M

U
 M

U
E

N
C

H
E

N
 o

n 
Ja

nu
ar

y 
31

, 2
02

2 
at

 1
7:

47
:2

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



functions Naux, AO basis functions Nbasis, and occupied
molecular orbitals (MOs) Nocc, has to be stored in memory.
Consequently, when approaching large systems, the memory
requirement of the three-center integral tensor easily exceeds
the available system memory on a single computing node,
thereby severely limiting the tractable system sizes. This
memory bottleneck was previously addressed by Graf et al.34

utilizing a hybrid parallelization scheme, thus reducing the
memory requirements of the three-center integral tensor per
node. However, depending on the targeted system size, this
requires medium to large computing clusters. To avoid these
demanding computing requirements, a method utilizing a
single server or workstation, which is readily available in
research groups, is desirable.
In this work, we introduce a Lagrange formulation for a

minimal batching overhead and an optimal exploitation of
computing resources. The memory-efficient integral-direct
RPA method completely eliminates the storage bottleneck of
the three-center integral tensor by computing the response
function within an optimized batching scheme over both the
auxiliary and AO basis-function index at the same time. The
available system memory is utilized in the most efficient way
and with minimal overhead. The three-center integral tensor is
recomputed and transformed “on the fly” for only the
respective batch (integral-direct), thereby reducing its memory
requirement by a factor of bauxbAO, where baux denotes the
number of auxiliary function batches and bAO the number of
AO basis-function batches. This redundant on the fly
recomputation comes, however, at the cost of an increased
program runtime. Hence, a compromise between memory
demand and program runtime has to be made. In this context,
the here presented optimized batching represents, by design,
the optimal compromise requiring the smallest amount of
recomputation, and consequently the lowest runtime, for any
given amount of available system memory. In this way, our
integral-direct RPA implementation extends the applicability of
RPA to considerably larger systems.
This work is structured as follows: We begin with a brief

review of the ω-CDGD-RI-RPA method in Section 2. Next, we
derive a batching method for the calculation of the response
function in Section 3. In this regard, we begin with the trivial
approach of batching with respect to auxiliary functions in
Section 3.1 and subsequently extend this batching scheme by
additionally including batching over the AO basis functions
and Laplace quadrature points in Section 3.2, where we arrive
at the optimal batching formalism. We proceed to compare
both batching methods in Section 3.3 and present calculations
to support our considerations. In Section 4, we first establish
why integral-direct RPA is best suited to reach very large
systems by addressing two approaches typically used for the
assessment of large integral tensors such as the three-center
integrals, namely, the integral-direct approach and retrieving
the three-center integrals from disk in Section 4.1. In Section
4.2, the scaling for integral-direct RPA is analyzed and
systematically improved using shell pair and integral screening
methods, sparse matrix algebra as well as switching from the
Coulomb metric to the Coulomb metric attenuated by a
complementary error function. Furthermore, calculations are
presented to support our theoretical considerations. Computa-
tional details are given in Section 5 and the performance of our
integral-direct RPA implementation is evaluated for chemically
relevant systems in Section 6. Finally, the conclusion and
outlook are presented in Section 7.

2. ω-CDGD-RI-RPA THEORY
In this section, we intend to give a brief overview of the theory
underlying the ω-CDGD-RI-RPA method.34 For a more
detailed derivation, we refer the reader to previous
publications.27,32−34,40,41

Throughout, the following notation has been adopted: μ, ν,
λ, and σ denote atomic orbitals (AOs); i and j refer to
occupied molecular orbitals (MOs); a and b refer to virtual
MOs; i and j denote Cholesky orbitals, and M, N, P, and Q
denote auxiliary functions. The number of auxiliary functions is
represented by Naux, the number of AO basis functions by
Nbasis, the number of Laplace quadrature points by Nτ, and the
numbers of occupied and virtual MOs by Nocc and Nvirt,
respectively. For two-, three-, and four-center integrals, the
Mulliken notation is used. Furthermore, Einstein’s sum
convention42 is employed. The spin index is dropped for
convenience and matrix operations are to be taken before
indexing in this work.
The total energy of the electronic ground state can be

expressed within the adiabatic-connection formalism39 as20,38

E E E E Eh KS J KS X KS Cϕ ϕ ϕ= [{ }] + [{ }] + [{ }] + (1)

where Eh, EJ, and EX denote the one-electron, Coulomb, and
exact exchange energies, respectively. An expression for the
correlation energy24 EC can be derived by applying the zero-
temperature fluctuation-dissipation theorem and the RPA34 as
well as the RI approximation27,40,41

E 1 X V X V
1

2
d Tr ln( (i ) ) (i )C

0
0 0∫π

ω ω ω= [ − + ]+∞
(2)

with the electron−electron interaction operator in the auxiliary
basis

V M m P P r Q Q m N( ) ( )( )MN 12
1

12
1

12
1= | | | | | |− − −

(3)

where m12 denotes the RI metric and r12 the interelectronic
distance. X0 represents the noninteracting density−density
response function in the auxiliary basis in the zero-temperature
case.43 For efficiency reasons, the response function is
calculated in the imaginary time domain according to29,34

X G B G B(i ) Tr ( i ) (i )MN
M N

0, 0 0τ τ τ= [ ̲ − ̅ ] (4)

X G B G B(i ) ( i ) (i )MN
M N

0, 0, 0,τ τ τ= ̲ − ̅μν νλ λσ σμ (5)

with the one-particle Green’s function in the imaginary time
domain

G G G(i ) ( i ) (i ) (i ) (i )0 0 0τ τ τ τ τ= Θ − ̲ + Θ ̅ (6)

C CG (i ) exp( ( ) )i i i F0, τ τ̲ = − ϵ − ϵμν μ ν (7)

C CG (i ) exp( ( ) )a a a F0, τ τ̅ = − − ϵ − ϵμν μ ν (8)

where Cμi and Cμa denote the occupied and unoccupied MO
coefficients, respectively, and ϵF the Fermi level. The three-
center integral matrix BM is given by

B m M( )M
12νλ= | |νλ (9)

A drawback of AO compared to MO formulations is the
increased scaling with the size of the atom-centered basis.
However, this drawback can be addressed by utilizing pivoted
Cholesky decomposition of density-type matrices, thereby
reintroducing the occupied index.33 Furthermore, a memory-
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efficient expression for X0(iτ) can be obtained using the
idempotency relation of the ground-state density matrix P

P PSP= (10)

with the two-center overlap matrix S, and the analogous
expression for the one-particle Green’s function in the negative
imaginary time domain

G G SP( i ) ( i )0 0τ τ̲ − = ̲ − (11)

leading to34

X L SG SLL B G B L(i ) Tr ( i ) (i )MN
M N

0,
T

0
T

0τ τ τ= [ ̲ − ̅ ] (12)

X G B G B(i ) ( i ) (i )MN j i i
M

j
N

0, 0, 0,τ τ τ= ̲ − ̅ν νμ μ̲ ̲ ̲ ̲ (13)

where the pivoted Cholesky factorization of a matrix A is
abbreviated by A = LLT. Each BM is precontracted with the
Cholesky factor L of the occupied one-particle density P,
which is independent of the Laplace points. This reduces the
memory requirement for storing the three-center integrals
from (NauxNbasis

2 ) to (NauxNbasisNocc). The final expression for
X0(iτ) reads

X B B(i ) (i )MN j
M

j
N

0, τ τ= μ μ̲ ̲ (14)

with

B G B G(i ) ( i ) (i )j
M

j i i
M

0, 0,τ τ τ= ̲ − ̅μ ν νμ̲ ̲ ̲ ̲ (15)

and the transformed three-center integrals32−34

B B Lj
N N

j=μ μν ν̲ ̲ (16)

From here on, we will refer to the transformed three-center
integrals Bμj

N (eq 16) also as the three-center integrals.
After obtaining the response function in the imaginary time

domain, it is transformed into the imaginary frequency domain
with a contracted double-Laplace32,34 or cosine transform44

according to

X X(i ) d cos( ) (i )0 0∫ω τ ωτ τ=
−∞

+∞
(17)

The ω-CDGD-RI-RPA method scales formally as
N N N M( )aux

2
basis occ

4∝ ; it can, however, be implemented in
an asymptotically linear scaling fashion.34

3. MINIMAL-OVERHEAD BATCHING
Within the calculation of the RPA correlation energy, the most
demanding step in terms of memory requirements is the
calculation of the response function in the imaginary time
domain. The response function X0(iτ) is calculated within the
standard algorithm according to eq 14 for one Laplace point at
a time. Therefore, the Laplace point-dependent three-center
integrals Bjμ

M(iτ) as well as the three-center integrals Bμj
N have to

be stored in memory, which requires (2NauxNbasisNocc)
memory. Further, taking into account the memory require-
ments of the response function with dimensions (Naux × Naux ×
Nτ), it becomes apparent that for large systems the memory
requirements easily exceed the available system memory on a
workstation or server. Thus, to overcome the limiting storage
requirements within the calculation of the response function, a
batching algorithm is necessary.
In this section, we first derive a simple batching method

where only batching over the auxiliary function index is
employed. Subsequently, we increase the complexity of our

batching method by additionally batching over the AO basis-
function index as well as the Laplace quadrature points. For the
latter method, we derive an expression for the optimal number
of batches using a Lagrange formalism. Finally, we compare
both algorithms in terms of their scaling behavior and present
computational results supporting our theoretical studies. Please
note that we use the def2-SVP basis set for the calculations in
this and the subsequent section (Sections 3 and 4) for
illustration purposes only. Since our objective is to, first,
demonstrate the scaling with the system size, the completeness
of the basis set is not relevant in this context. However, for
practical applications, where the objective is to obtain high-
quality results, larger basis sets are typically required, which are
presented in Section 6.

3.1. Trivial Batching. In the following, we introduce the
approach of batching over the auxiliary function index, which
we will refer to as trivial batching. The pseudocode for this
implementation is shown in Algorithm 1.

In the context of index batching, reading from disk or
recomputing from scratch are analogous. That is, both variants
yield a given set of tensor elements at a cost that is
proportional to the amount of requested elements. Thus, the
two possible variants for accessing the three-center integrals,
namely, reading or recalculating (lines 3 and 10) both require
the same batching and can therefore be discussed separately in
Section 4.
In Algorithm 1, first, the tensor elements of the three-center

integrals Bjν
M are accessed for one auxiliary function within the

respective auxiliary batch (aux-batch) (line 3) and sub-
sequently used to compute Biμ

M(iτ) (line 5). Next, within the
second aux-batch loop (line 8), the tensor elements of the
three-center integrals Biμ

N are accessed for a second time (line
10) and subsequently contracted with Biμ

M(iτ) for each Laplace
point τ to form X0,MN(iτ) (line 15). Please note that, due to the

symmetry of the response function, only b 1
2

aux′ + aux-batches are

considered for the second aux-batch loop (line 8), where baux′
denotes the number of aux-batches. Further, for performance
reasons, the operations in line 5 as well as lines 13−17 are
implemented as matrix multiplications to utilize the high
performance of dense matrix algebra routines provided by
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basic linear algebra subroutine (BLAS) libraries. To further
reduce the memory requirements of the algorithm, the
response function is written on disk (line 22) by batching
over the first auxiliary function index. However, the storage of
the response function only becomes problematic for extremely
large systems, since the memory demand scales as M( )2

compared to the M( )3 scaling of the three-center integral
tensor.
3.2. Optimized Batching. In this section, we extend the

trivial batching algorithm: First, in addition to batching with
respect to auxiliary functions, we also incorporate batching
with respect to basis functions as well as Laplace points.
Second, we use the method of Lagrange multipliers to
minimize the number of three-center integral tensor accesses
for a given amount of available memory. This allows the
optimal utilization of the available memory with minimal
overhead. Thus, we refer to this batching algorithm as
optimized batching. The pseudocode for the optimized
batching algorithm is shown in Algorithm 2.

In this work, the following abbreviations are introduced: The
number of aux-batches is denoted by baux, the number of AO-
batches by bAO, and the number of τ-batches by bτ. Please note

that baux denotes the number of aux-batches within the
optimized batching, while baux′ represents the number of aux-
batches within the trivial batching algorithm. Further, the
following approximations are used for simplicity: The number
of auxiliary functions in an aux-batch is given by N

b
aux

aux
, the

number of basis functions in an AO-batch by N
b

basis

AO
, and the

number of Laplace points in a τ-batch is given by N
b

τ

τ
. Please

note that within this approximation, the number of functions in
the respective batches constitutes a rational number; therefore,
it needs to be rounded down to an integer for practical
applications. For large systems, however, this rounding makes
little difference.
In Algorithm 2, the most prominent changes compared to

the trivial batching in Algorithm 1 include the loop over the
basis-function batches ranging from lines 2 to 23. Accordingly,
Biμ′
M (iτ) (line 7) and Biμ′

N (line 12) show decreased memory
requirements, considering the batched aux- and basis-function
index. Further, Biμ′

M (iτ) (line 7) as well as X0,MN(iτ) (line 17)
are evaluated for one τ-batch.
In Table 1, the memory requirements for an implementation

without any batching, the trivial batching, as well as the
optimized batching scheme are compared. It follows that the
memory requirements of the largest quantities within the
response function calculation can be significantly reduced by
employing either of the batching schemes. However, the
optimized batching scheme provides a larger range of batching
configurations for the same ratio, while for the trivial batching
there is only one possibility to achieve a specific ratio.
As seen in Algorithm 1 (lines 3 and 10) and Algorithm 2

(lines 5 and 12), each element Biμ
M needs to be read/

recalculated redundantly. Therefore, the reduced memory
requirements come at the cost of a batching overhead, which is
proportional to the number of batches. Consequently, a
minimal amount of batches is required to minimize the
batching overhead for a fixed amount of the available system
memory. This can be achieved by employing the method of
Lagrange multipliers. Please note that for the rest of this
section we will refer to the amount of redundant integral reads
or recalculations more generally as redundant integral tensor
accesses.
Therefore, the rest of this section is structured as follows: At

first, an expression for the number of redundant integral tensor
element accesses is derived, followed by an expression for the
constraint function. Subsequently, the number of redundant
tensor accesses is minimized with respect to the number of

Table 1. Largest Quantities within the Response Function Calculation with Their Respective Memory Requirements for an
Implementation without Any Batching, the Trivial Batching Algorithm (Algorithm 1), and the Optimized Batching Algorithm
(Algorithm 2)a

quantity memory ratio

not batchedb trivialc optimizedd trivial optimized

Biμ
M(iτ) NoccNauxNbasis N N NN

b basis occ
aux

aux τ′ NN
b

N
b

N
b occ

aux

aux

basis

AO

τ
τ

N
baux′

τ N
b b baux AO

τ
τ

Biμ
N NauxNbasisNocc N NN

b basis occ
aux

aux′ NN
b

N
b occ

aux

aux

basis

AO b
1

aux′ b b
1

aux AO

X0,M N(iτ) NauxNauxNτ N NN
b aux

aux

aux τ′ N NN
b aux

aux

aux τ b
1

aux′ b
1

aux

aThe ratio of the memory for the trivial batching and optimized batching algorithm to an algorithm without any batching is given for each quantity.
For illustrative purposes, all tensors are represented by their tensor elements. bEvaluated according to eq 14 per Laplace point. cEvaluated
according to Algorithm 1. dEvaluated according to Algorithm 2.
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aux-, AO-, and τ-batches using the method of Lagrange
multipliers to comply with the constraint.
3.2.1. Number of Integral Tensor Accesses. According to

Algorithm 2, the number of integral tensor accesses Nacc′ (baux,
bAO, bτ) for the elements of Bjν

M (line 5) is given by

N b b b b b N N N( , , )acc aux AO AO aux basis occ′ =τ τ (18)

and the number of integral tensor accesses Nacc″ for Biμ′
N

(line 12) is given by

N b b b
b

b N N N( , , )
1

2acc aux AO
aux

aux basis occ″ = +
τ τ (19)

where the term b 1
2

aux + stems from exploiting the symmetry of

the response function in line 10. The total number of integral
tensor accesses Nacc

total(baux, bAO, bτ) can be obtained by adding
eqs 18 and 19, which leads to

i
k
jjjj

y
{
zzzzN b b b Nb

b
b( , , )

1
2acc

total
aux AO

aux
AO= ̅ + +τ τ

(20)

with

N N N Naux basis occ̅ = (21)

3.2.2. Constraint Function. The constraint function C(baux,
bAO, bτ) can be expressed as

C b b b b b b( , , ) mem mem ( , , ) 0aux AO avail req aux AO= − =τ τ
(22)

where memavail denotes the available system memory and
memreq(baux, bAO, bτ) the memory required for the algorithm.
For the latter, the relevant quantities that have to be stored in
memory during the algorithm are shown along with their
memory requirements in Table 2. Please note that the memory

requirements of the batched response function are not
considered in Table 2 since its size is not significant as
explained in Section 3.1. Using Table 2, memreq(baux, bAO, bτ)
can be written as

i
k
jjjjj

y
{
zzzzz

b b b

N
b

N
b

N
N

N N N

mem ( , , )

b
1 2

req aux AO

aux

aux

basis

AO
occ aux

2
basis
2= + + +

τ

τ

τ
τ

(23)

i
k
jjjjj

y
{
zzzzzb b b

N
b b

N
b

Nmem ( , , ) 1req aux AO
aux AO

= ̅ + +τ
τ

τ (24)

with

N N N N2aux
2

basis
2= + τ (25)

By inserting eq 24 into eq 22, the constraint function can be
expressed as

i
k
jjjjj

y
{
zzzzzC b b b

N
b b

N
b

( , , ) mem 1 0aux AO avail
aux AO

= − ̅ + =τ
τ

τ
(26)

where

Nmem memavail avail= − (27)

3.2.3. Minimizing the Number of Integral Tensor Accesses
using the Method of Lagrange Multipliers. To obtain the
optimal number of batches, the total number of integral tensor
accesses Nacc

total (eq 20) has to be minimized with respect to the
number of aux-, AO-, and τ-batches, while not exceeding the
available memory. The Lagrange function hence reads

b b b

N b b b C b b b

( , , , )

( , , ) ( , , )
aux AO

acc
total

aux AO aux AO

λ

λ= −
τ

τ τ (28)

where λ denotes the Lagrange multiplier. Inserting the
expression for Nacc

total according to eq 20 and C(baux, bAO, bτ)
according to eq 26 yields

i
k
jjjj

y
{
zzzz

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzz

b b b

Nb
b

b
N

b b

N
b

( , , , )

1
2

mem

1

aux AO

aux
AO avail

aux AO

λ

λ= ̅ + + − − ̅

+

τ

τ

τ

τ (29)

Partial differentiation of eq 29 with respect to baux, bAO, and λ
gives the first-order conditions for the minimization

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzzb

N
b

N
b b

N
b2

1 0
aux aux

2
AO

λ∂
∂ = ̅ − ̅ + =τ

τ

τ

!
(30)

i
k
jjjjj

y
{
zzzzzb

Nb
N

b b
N
b

1 0
AO aux AO

2λ∂
∂ = ̅ − ̅ + =τ

τ

τ

!
(31)

i
k
jjjjj

y
{
zzzzz

N
b b

N
b

N
b

N
b

mem 1 0avail
aux AO

aux
2

auxλ
∂
∂ = − + ̅ + + =τ

τ

τ

τ

!

(32)

To obtain a relation between baux and bAO, eq 31 can be
rewritten as

i
k
jjjjj

y
{
zzzzzNb

N
b b

N
b

1
aux AO

2λ̅ = ̅ +τ
τ

τ (33)

and inserted into eq 30, which leads to the following relation

b b
1
2AO aux=

(34)

An expression for baux can be obtained by inserting eq 34 into
eq 32 according to

i
k
jjjjj

y
{
zzzzz

N
b

N
b

mem
2

1 0avail
aux
2− ̅ + =τ

τ (35)

leading to

Table 2. Quantities That have to be Stored in Memory
during the Calculation of the Response Function with Their
Respective Memory Requirementsa

quantity memory

Biμ′
M (iτ) NN

b
N
b

N
b occ

aux

aux

basis

AO

τ
τ

Biμ′
N NN

b
N
b occ

aux

aux

basis

AO

G0,μν(−iτ) Nbasis
2 Nτ

G0,μν(iτ) Nbasis
2 Nτ

VMN Naux
2

aFor illustrative purposes, all tensors are represented by their tensor
elements. Note that Biμ′

M (iτ) and Biμ′
N are evaluated within Algorithm 2,

lines 7 and 12, respectively.
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i
k
jjjjj

y
{
zzzzzb N

N
b

2 1
1

memaux
avail

= ± ̅ +τ

τ (36)

However, eq 36 is still dependent on bτ. To derive an
expression for bτ, eq 34 can be inserted into eq 29

i
k
jjj

y
{
zzz

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzz

b b Nb b

N
b

N
b

( , , )
1
2

mem
2

1

aux aux

avail
aux
2

λ

λ

= ̅ +

− − ̅ +

τ τ

τ

τ (37)

and using eq 36 leads to

b N
N

b N b Nb( ) 2
mem

( )
1
2avail

= ̅ ̅ + + ̅τ τ τ τ τ
(38)

Equation 38 is minimized if bτ is minimal. Therefore, it follows
that

b 1=τ (39)

Inserting eq 39 into eq 36, the final expression for baux reads

b
N

N2
mem

( 1)aux
avail

= ̅ +τ
(40)

b
N N N

N M2
mem

( 1) ( )aux
aux basis occ

avail

3/2= + ∝τ
(41)

and bAO can be written using the relation in eq 34 as

b
N

N
1
2 mem

( 1)AO
avail

= ̅ +τ
(42)

b
N N N

N M
1
2 mem

( 1) ( )AO
aux basis occ

avail

3/2= + ∝τ
(43)

It follows from eqs 41 and 43 that the number of batches scales
as M( )3/2 or, equivalently, M( )1.5 with the system size and

(mem )avail
0.5− with respect to the available system memory,

since the number of Laplace points Nτ is independent of the
system size.
To summarize the results of the optimization, the optimal

setting employs one τ-batch containing all Laplace points
(eq 39), there are twice as many aux-batches as AO-batches
(eq 34), and the number of batches scales as (mem )avail

0.5− with

respect to the available system memory and M( )1.5 with
respect to the system size (eqs 41 and 43).

3.3. Comparing the Optimized Batching and the
Trivial Batching. In the following, the scaling behavior for the
number of batches as well as the number of integral tensor
accesses is analyzed for the trivial and the optimized batching.

3.3.1. Number of Batches. In the context of optimizing the
batch sizes, the previously introduced trivial batching scheme
can be regarded as a nonoptimal variant, where bAO and bτ
were set equal to 1. Thus, for the trivial batching, the number
of aux-batches baux′ can be obtained using the constraint
function in eq 26. Setting bAO and bτ equal to 1 leads to

C b
N

b
N( ) mem ( 1) 0aux avail

aux
′ = − ̅

′ + =τ
(44)

Rewriting eq 44 gives the optimal number of aux-batches baux′

b
N

N
mem

( 1)aux
avail

′ = ̅ +τ
(45)

For the trivial batching, the optimal number of batches grows
as M( )3.0 , while the optimized batching shows a more
favorable scaling of M( )1.5 (eqs 41 and 43).
To verify these theoretical considerations, we first carried

out calculations on simple linear n-alkanes of increasing size
using the def2-SVP basis set.45−47 In Figure 1, a log−log plot
of the numbers of aux- and AO-batches against the number of

Figure 1. Log−log plot of the number of aux-batches baux and AO-batches bAO for the optimized batching and number of aux-batches baux′ for the
trivial batching against the number of basis functions. In addition, the scaling fits are given. Note that for illustrative purposes, memavail = 10 GB as
well as N 0= (eq 25) was used.
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AO basis functions is shown. The obtained scaling behavior is
in very good agreement with the theoretical scaling. The
fluctuations around the optimized batching arise solely from
the rounding of the batch dimension to the nearest lower
integer.
3.3.2. Number of Integral Tensor Accesses. The scaling

behavior for both batching algorithms can be obtained using
the expression for the number of integral tensor accesses in
eq 20 and inserting the expression for the optimized number of
batches.
For the optimized batching, we insert the expressions for baux

(eq 41), bAO (eq 43), and bτ (eq 39) leading to

N b b b N
N

N
N

( , , ) 2
mem

( 1)
2acc

opt
aux AO

avail
= ̅ ̅ + + ̅

τ τ

(46)

It follows that the number of integral tensor accesses grows as
M( )4.5 .
Analogously, for the trivial batching, the number of integral

tensor accesses Nacc′ can be obtained by inserting baux′ (eq 45)
into eq 20 as well as setting bAO and bτ equal to 1, resulting in

N
N

N N
mem

( 1)
3
2acc

triv
2

avail
= ̅ + + ̅τ

(47)

For the trivial batching, the number of integral tensor accesses
thus grows as M( )6.0 .
In Figure 2, the corresponding log−log plot of the number

of integral tensor accesses against the number of AO basis

functions is shown for the trivial and the optimized batching,
which confirms the theoretical scaling of M( )4.5 for the
optimized batching (eq 46) and M( )6.0 for the trivial
batching (eq 47).

In conclusion, the optimized batching shows a more
favorable scaling with respect to the number of batches as
well as the number of integral tensor accesses compared to the
trivial batching. Since the number of integral tensor accesses is
proportional to the batching overhead, we can also conclude
that our optimized batching is more effective in reducing the
batching overhead than the trivial batching. Especially when
aiming for very large systems requiring a high number of
batches, the advantages of our optimized batching become
apparent. In essence, the optimized batching represents the
best compromise between program runtime and demand for
system memory.

4. INTEGRAL-DIRECT RPA

As mentioned in Section 3.1, there are two approaches for
accessing the elements of the three-center integral tensor Biμ

M,
namely, reading and recomputing (Algorithm 1, lines 3 and 10
and Algorithm 2, lines 5 and 12). In this section, we will first
compare both approaches and establish why integral-direct
RPA (recomputation) is best suited for the computation of
very large systems. We will then analyze the scaling behavior
for integral-direct RPA and systematically improve upon it.

4.1. Hard-Disk IO vs On the Fly Computation of the
three-center Integrals. For the first approach to access the
elements of the three-center integrals, the integrals are stored
on disk and the tensor elements Biμ

M are read into memory in
batches. Thus, the batching overhead is determined by the
amount of input/output operations on a physical disk (disk
I/O). However, since the three-center integrals with
dimensions (Naux × Nbasis × Nocc) have to be stored on disk,
the algorithm is limited by the available disk space. The storage
limitation problem can be overcome entirely using an integral-
direct scheme for the three-center integrals, which we will refer
to as integral-direct RPA.
In Table 3, both approaches as well as an implementation

without any batching are compared with regard to the feasible
system size. To this end, the memory and disk space
requirements for all methods are shown for different system
sizes using the def2-SVP basis set.45−47 Please note again that
we use this basis set for illustration purposes only. Further, to
demonstrate the scope of the methods from a practical
viewpoint, it is noted whether the respective system is
accessible on a computing node using 200 GB of memory
space and 2500 GB of disk space. As expected, when reading
the three-center integrals from disk, we are able to access much
larger system sizes than without utilizing any batching, since
this approach is not limited by the available system memory.
However, this shifts the bottleneck to the disk space
requirements such that storing the three-center integrals
becomes the limiting factor and, therefore, larger systems are
not accessible. In contrast to that, integral-direct RPA opens
the way to access all listed systems, since this method is not
limited by the disk space requirements of the three-center
integral tensor. Within integral-direct RPA, only the response
function has to be stored on disk. However, the response
function with dimensions (Naux × Naux × Nτ) is orders of
magnitude smaller than the three-center integral tensor with
dimensions (Naux × Nbasis × Nocc). Thus, it does not constitute
the limiting factor for the systems shown in Table 3.

4.2. Scaling. The calculation of the response function
comprises four major steps: The computation of the three-
center integrals in the AO basis Bμν

M and its subsequent

Figure 2. Log−log plot of the number of integral tensor accesses Nacc
for the optimized batching and the trivial batching against the number
of basis functions. In addition, the scaling fits are given. Note that for
illustrative purposes, memavail = 10 GB as well as N 0= (eq 25) was
uesd.
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transformation (eq 16) as well as the matrix multiplications to
obtain Biμ

M(iτ) (eq 15) and X0,MN(iτ) (eq 14).
4.2.1. Without Batching. When no batching is employed,

the calculation of the three-center integrals Bμν
M formally scales

as N N M( )aux basis
2 3.0∝ , while the transformation shows an

N N N M( )aux basis
2

occ
4.0∝ scaling. The matrix multiplications

both scale as M( )4.0 . As mentioned in Section 2, the
calculation of the response function can also be implemented
in an asymptotically linear scaling fashion,34 which, however,
will not be discussed further in this work.
4.2.2. Dense. When there is not enough available system

memory, batching has to be employed (integral-direct RPA).
Please note that for our integral-direct RPA implementation,
we use dense matrix algebra and hence presently do not aim
for linear scaling. Our method could also be implemented
using sparse matrix algebra; however, this would significantly
complicate the determination of optimal batch sizes since the

exact memory demand is not known a priori in case of sparse
matrices.
Within integral-direct RPA, the response function is

calculated in the batching routine (Algorithm 2), where the
three-center integral tensor is recomputed on the fly. The
recomputation (lines 5 and 12) is comprised of the
computation of the three-center integrals in the AO basis Bμν

M

and the subsequent transformation with the Cholesky factor of
the occupied one-particle density matrix (eq 16) for each batch
only. It follows that the formal scaling for the computation of
Bμν
M as well as the transformation is increased by a factor of

M( )1.5 , which accounts for the scaling with respect to the
numbers of batches (eqs 41 and 43). The scaling for the matrix
multiplications in lines 7 and 17, however, remains unchanged
since it is independent of the batching as can be deduced from
Algorithm 2. Thus, within integral-direct RPA, the integral
calculation formally scales as M( )4.5 and the transformation
as M( )5.5 . To confirm these considerations, we carried out

Table 3. Required Memory and Disk Space for Various Systems Utilizing an Implementation without any Batching (NB) and
the Reading Variant of the RPA Batching Routine (Read) as well as the Integral-Direct RPA (Int-Dir)a

memory (GB) disk space (GB) accessibilityf

system NBb,c Read/Int-Dirc Readd,e Int-Dird NB Read Int-Dir

C100H202 96.3 1.6 50.3 6.1 √ √ √
C110H222 127.1 2.0 66.2 7.3 √ √ √
C120H242 163.8 2.4 85.1 8.7 √ √ √
C130H262 207.0 2.8 107.2 10.2 × √ √
C300H602 1177.9 15.0 608.6 54.2 × √ √
C400H802 2373.3 26.6 1221.5 96.3 × √ √
C500H1002 4145.3 41.6 2127.1 150.4 × √ √
C600H1202 9123.7 59.8 4640.2 216.5 × × √
C1000H2002 62 189.4 166.1 31 312.2 601.1 × × √
(DNA)4 183.4 2.5 95.5 9.9 √ √ √
(DNA)8 1488.3 10.2 759.6 41.0 × √ √
(DNA)16 11 987.0 41.4 6056.1 166.5 × × √

aNote that the disk space requirements for an implementation without batching are not shown, since no quantities are stored on disk. Further, it is
assessed whether the respective system is accessible, employing either method on a computing node using 200 GB of memory space and 2500 GB
of disk space. bFor storing Biμ

M(iτ) per Laplace point (eq 14). cFor storing G0,μν(−iτ), G0,μν(iτ), and VMN (Table 2). dFor storing the response
function. eFor storing the three-center integrals. fMemory: 200 GB; disk space: 2500 GB.

Figure 3. Log−log plots of the number of calculated primitive integrals Nintegrals against the number of basis functions (a) and the number of FLOPs
needed for the transformation of the three-center integrals (b). In addition, the scaling fits are given. Note that for illustrative purposes,
memavail = 10 GB as well as N 0= (eq 25) was used.
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calculations on linear n-alkanes of increasing size using the
def2-SVP basis set.45−47 The results are summarized in Figure
3 in the blue graphs (denoted by “Dense”), where a log−log
plot of the number of primitive integral calculations against the
number of basis functions (a) as well as a log−log plot of the
numbers of floating point operations (FLOPs) needed for the
transformation of the three-center integrals against the number
of basis functions (b) are shown.
4.2.3. Sparse I. Due to the exponential decay of the

overlapping Gaussian-type basis functions of the charge
distribution (μν), the number of significant three-center
integrals Bμν

M scales asymptotically only as M( )3.5 with a
relatively early onset of the reduced scaling (only a few
Ångström coupling distance between the AO basis functions μ
and ν). Furthermore, the sparsity of (μν) can also be exploited
in the transformation of the three-center integrals using block-
sparse matrix multiplication. This reduces the scaling for the
calculation and transformation by a factor of M, leading to an
asymptotic scaling of M( )3.5 for the calculation and M( )4.5

for the transformation. To verify this, we edited the code of our
implementation by incorporating shell pair screening for the
integral calculation and using sparse matrix algebra for the
transformation, where we only exploit the sparsity of the
charge distribution (μν). The results are summarized in the red
graphs (denoted by “Sparse I”) in Figure 3. It can be observed
that the obtained scaling for the calculation (Figure 3a) and
the transformation (Figure 3b) are in good agreement with the
theoretical scaling.
4.2.4. Sparse II. The scaling for the calculation can be

further reduced by employing the Coulomb metric attenuated
by the complementary error function (see eq 9 with

m r
r12

erfc( )att 12

12
= ω

), which decreases the range of coupling

between the charge distribution (μν) and the auxiliary
functions. This reduces the asymptotic scaling for the
calculation of the three-center integrals Bμν

M to M( )2.5 .
Furthermore, the scaling for the transformation of the three-
center integrals can be reduced by additionally exploiting the
sparsity of the Cholesky factor, leading to an asymptotic

M( )2.5 scaling. For our implementation, we switched to the
Coulomb metric attenuated by the complementary error

function with the attenuation parameter watt = 0.1 a.u.33 and
used the approximate integral partition bounds (aIPBs)48

developed by our group for screening the three-center integral
computation. The results are shown in the black graphs
(denoted by “Sparse II”) in Figure 3.
To summarize, within integral-direct RPA, the computation

of Bμν
M scales formally as M( )4.5 , the subsequent trans-

formation as M( )5.5 , albeit with a small prefactor depending
on the available system memory, and the matrix multiplications
for obtaining Biμ

M(iτ) (line 7) and X0,MN(iτ) (line 17) scale
formally as M( )4.0 . However, the scaling for the calculation
and transformation of the three-center integral tensor can be
reduced to M( )2.5 by employing shell pair screening, a local
metric for the three-center integral tensor, and integral
screening, as well as using sparse matrix algebra for the
transformation of the three-center integrals. As a result, these
redundant on the fly recomputations of the three-center
integrals do not represent a significant bottleneck compared to
the computation of Biμ

M(iτ) (line 7) and X0,MN(iτ) (line 17) in
practice.

5. COMPUTATIONAL DETAILS
Our new integral-direct RPA method was implemented in the
FermiONs++ program package.49−51 The Kohn−Sham
orbitals used for the RPA energy calculations were obtained
by preceding DFT calculations employing the generalized
gradient approximation of Perdew, Burke, and Ernzerhof
(PBE).52,53 The atomic basis sets def2-SVP and def2-QZVP
are used.45,46 The RI approximation, which is applied to the
four-center integrals in the correlation part of the RPA energy,
employs the corresponding auxiliary basis sets47,54 with the
attenuated Coulomb metric and the attenuation parameter
ωatt = 0.1 a.u.33 For the Laplace expansion, 13−15 quadrature
points were used.34 All calculations were carried out on an
Intel Xeon E5-2667 processor using 16 threads.

6. PERFORMANCE
In the following, we investigate the performance of our
integral-direct RPA method by considering the contribution of
the batching overhead to the total computation time. In
respect thereof, we calculated DNA fragments of increasing

Figure 4. Contributions to the total time for the integral-direct calculation of the RPA correlation energy for DNA fragments using the def2-SVP
basis set. Specifically, timings for the following operations are shown: three-center integral calculation (Algorithm 2, lines 5 and 12), three-center
integral transformation (Algorithm 2, lines 5 and 12), calculation of Biμ

M(iτ) (Algorithm 2, line 7), and calculation of XMN(iτ) (Algorithm 2, line 17).
Systems that are marked with an asterisk (*) can only be computed using our integral-direct RPA method since the memory requirements for the
unbatched variant would exceed the available system memory.
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size. To obtain physically meaningful energies, we carried out
calculations using the def2-QZVP basis set, which has shown
to yield very accurate results within RPA.13,27,32−34,55−58

Furthermore, for illustration purposes, we carried out
calculations using the def2-SVP basis set to compute large
systems in a reasonable amount of time.
In Figure 4, the contributions of the most time-consuming

operations to the overall time are shown for DNA fragments
using the def2-SVP basis set. The timings for the integral
calculation and transformation as well as its contribution to the
total time are considerably lower and grow less rapidly with
increased system size as compared to the calculation of Biμ

M(iτ)
(line 7) and XMN(iτ) (line 17). It follows that the timings for
the calculation and transformation observed for the largest
systems in Figure 4 are a direct consequence of exploiting the
sparsity of the system as explained in Section 4. Thus, the
contribution of the batching overhead is relatively low and the
total computation time is dominated by the calculation of
Biμ
M(iτ) (Algorithm 2, line 7) and XMN(iτ) (Algorithm 2 line

17).
In Figure 5, the corresponding results for DNA fragments

using the def2-QZVP basis set are shown. Without batching

(integral-direct RPA), we would only be able to compute
(DNA)1, since for larger systems the memory demand for the
unbatched variant already exceeds the available system
memory. In contrast, using the def2-SVP basis (Figure 4),
systems up to (DNA)4 were accessible without batching.
Consequently, our integral-direct RPA method is of even
higher relevance for large basis set calculations (which are
required to obtain high-quality results in practice), where the
memory limitation problem (which our proposed batching
solves in an optimized fashion) already emerges for much
smaller molecules. The timings shown in Figure 5 indicate that

the calculation of the three-center integrals is considerably
more demanding compared to the def2-SVP basis set results
(Figure 4). For larger basis sets, the three-center integrals Bμν

M

show less sparsity and thus the computational cost increases
since shell pair screening and integral screening methods
cannot significantly decrease the number of significant
elements for the present systems.

7. CONCLUSIONS AND OUTLOOK

We presented a memory-efficient integral-direct RPA algo-
rithm based on our ω-CDGD-RI-RPA method by employing
an optimized batching scheme, which, by construction via a
Lagrangian formalism, allows for the most effective utilization
of the available system memory, while minimizing the number
of three-center integral tensor calculations.
We showed that our optimized batching scheme over the

auxiliary and basis functions is able to minimize the batching
overhead for a given amount of memory considerably better
than an implementation where only batching with respect to
auxiliary functions is employed by considering their scaling
behavior with the system size M. For our optimized batching,
the number of batches, which are proportional to the batching
overhead, scale only as M( )1.5 , which is a considerable
improvement compared to the M( )3.0 scaling for a simple
batching implementation over the auxiliary functions only.
Furthermore, we have shown that the utilization of an integral-
direct scheme for the three-center integral tensor, as opposed
to reading the three-center integrals from disk, completely
alleviates the storage bottleneck of the three-center integral
tensor, thereby allowing the calculation of large systems, which
were previously intractable. For the performance assessment of
our integral-direct RPA method, we calculated DNA fragments
of increasing size, showing that the batching overhead has a
relatively small contribution on the total time. In this regard,
we calculated the DNA fragment (DNA)16 comprised of 1052
atoms and 11 230 basis functions.
In the future, our method could in principle be extended to

asymptotically linear scaling schemes using sparse matrix
algebra. However, for the computation of the optimized
number of batches, the precise sparsity of the relevant matrices
has to be known beforehand, which is only determined at
program runtime, so that efficient estimates will be required.
Moreover, it has been shown that significant performance

gains can be obtained by porting computer-intensive code to
the graphics processing unit (GPU). However, special
algorithms are necessary for the optimal exploitation of the
scarce memory resources of GPUs as well as to reduce the
high-cost data transfer between the GPU and the central
processing unit (CPU). Our integral-direct RPA method is
able to address both challenges: We compute the optimal
amount of batches for a given amount of GPU memory.
Further, all quantities needed for the computation of the
response function could be computed directly on the GPU,
thereby minimizing the data transfer between the GPU and
CPU. Since the computation of the response function is the
computationally most expensive part of the total calculation,
significant performance gains are expected by porting our
integral-direct RPA algorithm to the GPU.
Lastly, we would like to emphasize the applicability of the

underlying concepts of our integral-direct RPA method (such
as the derivation of the optimized batching method using the

Figure 5. Contributions to the total time for the integral-direct
calculation of the RPA correlation energy for DNA fragments using
the def2-QZVP basis set. Specifically, timings for the following
operations are shown: three-center integral calculation (Algorithm 2,
lines 5 and 12), three-center integral transformation (Algorithm 2,
lines 5 and 12), calculation of Biμ

M(iτ) (Algorithm 2, line 7), and
calculation of XMN(iτ) (Algorithm 2, line 17). Systems that are
marked with an asterisk (*) can only be computed using our integral-
direct RPA method, since the memory requirements for the
unbatched variant would exceed the available system memory.
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method of Lagrange multipliers) to related correlation
methods such as SOS-MP2 and Coupled-Cluster variants.
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I. INTRODUCTION

Coupled cluster (CC) theory1,2 is among the most success-
ful approaches to obtain accurate correlation energies.3,4 However,
the large computational and memory demands prohibit its routine
application to large molecular systems. Among the most popular
models are, e.g., CCSD and CCSD(T), whose computational effort
scales as 𝒪(M6) and 𝒪(M7), respectively,5,6 where M is a mea-
sure for the system size. In an effort to reduce the computational
scaling associated with the accurate CCSD model, the second-order
approximate coupled cluster singles and doubles model (CC2) was
proposed by Christiansen et al.7 in 1995. The CC2 ground-state
energy is expected to be of similar quality as the MP2 energy7 and
is computed with 𝒪(M5) computational scaling (as canonical MP2).
Moreover, despite being the simplest approximation of the coupled
cluster hierarchy, the space demand and I/O effort needed for CC2
are severe bottlenecks, scaling as 𝒪(M4). While low scaling MP2

methods8–18 are now widely used to compute ground-state proper-
ties of systems with hundreds of atoms and large basis sets, CC2 is
not limited to ground-state properties, highlighting the importance
of developing efficient low scaling CC2 methods. An important step
in the CC2 progress has been the use of the resolution of the identity
(RI) approximation,19,20 largely reducing the storage requirements
needed for two-electron integrals while maintaining 𝒪(M5) com-
putational scaling.21 As an alternative, the Cholesky decomposition
of the two-electron integral matrix can be used.22–25 In 2004, a
simplified variant of Grimme’s spin-component scaled (SCS)-MP2
method26 was proposed by Jung et al.8 in order to reduce the compu-
tational complexity. The so-called scaled opposite-spin (SOS)-MP2
method8 completely neglects the calculation of the same-spin con-
tributions and scales the opposite spin part by a factor cos = 1.3,
providing an accuracy comparable to that of the unscaled models.8,9

Later, the combination of this SOS approximation8,9 employing
also the Laplace transform of the energy denominator27–29 within
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the RI-approximation led to an efficient fourth-order scaling CC2
implementation by Winter and Hättig,30 providing computational
and memory/disk space savings already for small systems. Although
the promising scaling behavior of the SOS-RI-CC2 model allows
routine calculations of energies for systems with a few hundreds of
atoms and large basis sets, it is essential to develop low or even lin-
ear scaling formulations in order to extend the CC2 applicability to
even larger systems. To that end, approaches based on local molec-
ular orbitals31–34 and natural orbitals35–37 have been used in the
context of CC2 showing reduced computational scaling. However,
to the best of our knowledge, atomic-orbital (AO) reformulations
of CC2 have not yet been considered in literature and will be pro-
posed in the present work for the ground-state energies as a first
step toward reformulating CC2 excited state energies and properties.
We reformulate the ground-state SOS-RI-CC2 equations presented
by Winter and Hättig30 in a pure atomic-orbital basis (Sec. II B),
taking as reference the previous studies on RI-MP2,14,16,18,38,39 CC,40

and CPSCF41 theory. The AO approach has the crucial advantage
of depending explicitly on the one-particle density matrix P (and
its virtual counterpart Q) that contains all the necessary informa-
tion regarding the reference determinant and becomes sparse for
growing system sizes in contrast to molecular orbitals. Such an
AO-SOS-RI-CC2 approach can be further improved by introduc-
ing the Cholesky factorization of the one-particle density matrix,
as previously shown by our group.14,18,41–44 The resulting SOS-
CDD-RI-CC2 model, described in Sec. II D, is based on so-called
Cholesky orbitals inheriting the locality from the density matrix
and whose number is equal to the number of MOs in the occu-
pied space. Consequently, the SOS-CDD-RI-CC2 implementation
features a lower prefactor and reduced memory demands14,18 with
respect to AO-SOS-RI-CC2 and shows an early crossover with
the MO formulation. Additional improvements in terms of local-
ity (and, therefore, performance) are gained by employing the RI
Coulomb metric attenuated by the complementary error function
that introduces only small errors.18,45 As a result, quadratic or
even sub-quadratic scaling is obtained by exploiting the locality of
the atomic/Cholesky orbitals and efficient sparse algebra routines,
bypassing localization procedures of any kind. This allows for a
more direct control of the accuracy, contrary to previous studies
on local CC2 implementations31,32,46 based on the Pulay and Saebø
approach,10,11 where excitations between spatially distant orbitals
are neglected if their contributions to the correlation energy are neg-
ligible. Accordingly, a priori restricted local MO (LMO) pair lists
and pair specific excitation subspaces of projected AO (PAO) are
specified and amplitudes outside these lists are neglected.31,32 The
downsides are the strong dependence on a successful localization
procedure and the larger size of the correlation domains required
for small errors.46

This article is structured as follows: First, in Sec. II A, we sum-
marize the key components of the ground-state MO-SOS-RI-CC2
model proposed by Winter and Hättig.30 Section II B describes
the reformulation of the equations in the atomic-orbital basis. In
Sec. II C, we introduce the Coulomb metric attenuated by the com-
plementary error function for the RI-approximation, which moves
the scaling toward sub-quadratic. The Cholesky decomposition of
density matrices is introduced in Sec. II D, significantly reducing
the prefactor of the AO implementation. Then, we provide an out-
line of our ω-SOS-CDD-RI-CC2 method in Sec. II E and discuss

the accuracy (Sec. IV A), scaling behavior (Sec. IV B), and per-
formance (Sec. IV C). Finally, we show the performance of our
ω-SOS-CDD-RI-CC2 method when applied to systems of chemical
interest.

II. THEORY

The CC2 model has been introduced by Christiansen et al.7 as
an approximation to the CCSD model, where the singles are treated
as zeroth-order parameters in terms of the fluctuation potential. On
the other hand, the double excitations are treated at first order in the
fluctuation potential as in the MP2 theory.7 The SOS-CC2 energy is
given by

Esos = ⟨HF∣Ĥ + cos[Ĥ, Tos
2 ]∣HF⟩, (1)

where Ĥ is the similarity-transformed Hamiltonian and Tos
2 is the

two-electron excitation operator, which acts on two electrons with
different spins.8,30 The cluster amplitudes are determined by solving
the coupled cluster equations,

Ωμ1 = ⟨μ1∣Ĥ + cos[Ĥ, Tos
2 ]∣HF⟩ = 0, (2)

Ωμ2 = ⟨μos
2 ∣Ĥ + [F, Tos

2 ]∣HF⟩ = 0, (3)

where Ωμ are the so-called coupled cluster vector functions and
F is the Fock operator. We use the same scaling factor as for
SOS-MP2,8,30 cos = 1.3. Since the CC2 singles (tμ1) and doubles (tμ2)
amplitudes depend on each other, the nonlinear Eqs. (2) and (3)
must be solved iteratively. The CC2 calculations start with an ini-
tial guess for the singles amplitudes that are usually set to zero. The
optimization scheme is based on the quasi-Newton equation for the
nth iteration,47

Δt(n)ai = −Ωai(t(n))
εa − εi

. (4)

The correction Δt(n)ai is then used to obtain the new singles
amplitudes t(n+1)

ai by

t(n+1)
ai = t(n)ai + Δt(n)ai . (5)

The convergence may be improved significantly by application of the
DIIS acceleration scheme48 and it is reached when the norm of Ωμ1

and the variation of the energy are below the given thresholds ϑoconv
(i.e., 10−5) and ϑeconv (i.e., 10−6), respectively.

A. MO-SOS-RI-CC2
In 2011, Winter and Hättig proposed an efficient fourth-order

scaling implementation to compute the SOS-RI-CC2 ground-state
energies,30 given as the sum of the HF energy (EHF) and the discon-
nected (ED) and connected (EC) double amplitudes contributions as
follows:

ESOS
CC2 = EHF + ED + EC= EHF + cos∑

aibj
taitbj(ai∣bj) + cos∑

aibj
taibj(ai∣bj). (6)
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In order to solve Eq. (6) with a fourth-order scaling, the taibj
orbital energy denominator is factorized using the Laplace transform
technique followed by a numerical quadrature according to

1
εaibj
= ∫ ∞

0
e−εaibj dt = Nτ∑

τ
wτe−εaibjtτ , (7)

where εaibj = εa − εi + εb − εj is the MO energy denominator and
wτ and the tτ are the weights and grid points of the numerical
quadrature procedure, respectively, which are optimized using, e.g.,
the minimax approximation in order to reduce the error.49,50 In
addition, the RI-approximation decomposes the four-index electron
repulsion integrals (ERIs) to bypass an expensive four-index AO to
MO transformation,20,21,30

(pq∣rs) =∑
P

BP
pqBP

rs, (8)

BP
pq = ∑

μν,Q
CμpCνq(μν∣Q)J−1/2

QP , (9)

JPQ = (P∣ 1
r12
∣Q), (10)

using the Mulliken notation for two-, three-, and four-center inte-
grals. In Eqs. (8) and (9), p, q, r, and s are MO indices, μ, ν are AO
indices, and P, Q are auxiliary functions for the RI-approximation.
C is the MO coefficient matrix. Moreover, some of the CC2
three-center integrals are modified according to

B̂P
pq =∑

μν
Λp

μpΛh
νq(μν∣P), (11)

with the transformation matrices Λp and Λh given by

Λp = C(I − tT
1 ) Λh = C(I + t1) t1 = ⎛⎜⎝

0 0

{tai} 0

⎞⎟⎠. (12)

The t1-dependent doubles amplitudes are then calculated as

tab
ij = − Nτ∑

τ
wτ∑

P
B̂P

aie
−εaitτ ⋅ B̂P

bje
−εbjtτ , (13)

and the expression for the MO-SOS-RI-CC2 correlation energy can
be rewritten as

ED = cos∑
aibj

taitbj∑
Q

BQ
aiB

Q
bj, (14)

EC = −cos∑
τ

wτ∑
aibj
∑
PQ

B̂P
aiB̂

P
bje
−εaitτ e−εbjtτ BQ

aiB
Q
bj

= −cos∑
τ

wτ∑
PQ

NQP
τ NQP

τ , (15)

where NQP
τ is given in Table I. The converged t1-amplitudes are

obtained at the end of the iterative optimization, where, in each iter-
ation, doubles amplitudes are computed “on-the-fly” by inserting

TABLE I. Explicit expressions of the singles amplitudes vector function terms for
SOS-RI-CC2 in the MO and the SOS-CDD-RI-CC2 formulation. The Einstein notation
is used.

MO-SOS-RI-CC2 SOS-CDD-RI-CC2

ΩG
ai = B̂Q

acŶQ
ci ΩG

μν = Q̂μμ′(BQ
μ′ν′ ŶQ

ν′i)Lνi

ΩH
ai = −ŶQ

akB̂Q
ki ΩH

μν = (−ŶQ
μk B̂Q

ki)Lνi

ΩI
ai = −coswτnP

τ B̂P
aie
−εaitτ ΩI

μν = (−cosñP
τ

τB̂P
μi)Lνi

ΩJ
ai = F̂ai ΩJ

μν = Q̂μμ′ F̂μ′ν′ P̂ν′ν
ŶQ

ai = −coswτB̂P
aiN

QP
τ e−εaitτ ŶQ

μi = −cos
τB̂P

μi ÑQP
τ

NQP
τ = BQ

bjB̂
P
bje
−εbjtτ NRS

τ = BR
μj

τB̂S
μj

nP
τ = B̂P

bjF̂jbe−εbjtτ nR
τ = τB̂R

μj F̂jμ

B̂P
ai = Λp

μaΛh
νiB

P
μνJ−1/2

PQ ÑQP
τ = J−1

QRNRS
τ J−1

SP
ñP

τ = J−1
PR nR

τ

Eq. (13) into the singles part of the vector function [Eq. (2)], yield-
ing the working expressions in terms of computational convenient
intermediates,

Ωai(t(n)) = ΩG
ai(t(n)) +ΩH

ai(t(n)) +ΩI
ai(t(n)) +ΩJ

ai(t(n)), (16)

whose explicit expressions are listed in Table I. The solution of
Eq. (16) requires a considerable amount of memory and disk space
for the calculation of intermediates. The memory limitations are
overcome by employing batching algorithms to evaluate the three-
center integrals and the intermediates (see the algorithm proposed
by Winter and Hättig30).

The MO-SOS-RI-CC2 equations in Table I have been imple-
mented in the FermiONs++51–53 program as proposed by Winter
and Hättig.30 In contrast, we do not batch over the Laplace
quadrature points (see the supplementary material).

B. Reformulation of the SOS-RI-CC2 method
in the AO basis

In order to extend the applicability of the SOS-RI-CC2 model
to systems with hundreds of atoms and large basis sets, we reformu-
lated the MO-expressions summarized in Table I in the AO basis.
The quasi-Newton expression for the correction of the CC2 singles
amplitudes [Eq. (4)] has an important role during this reformu-
lation. Indeed, we can back-transform Δt(n)ai [Eq. (4)] to the AO
basis [Eq. (17)] via the Laplace transform of the energy denominator(εa − εi), along the lines of Beer and Ochsenfeld41 for the Ux

ai matrix,

∑
ai

CμaΔt(n)ai Cνi = −Nα∑
α

wα∑
ai

e−εatα CμaΩaiCνieεitα. (17)

In that way, the SOS-RI-CC2 equations are rewritten in the AO basis
employing a convenient transformation that generates a formula-
tion where all integrals and excitation amplitudes are written with
AO indices. Even though this procedure allows us to completely
avoid the canonical MO basis,41 it increases the computational effort
by a factor of Nα, that is, the number of Laplace quadrature points
employed in [Eq. (17)] (generally 6–10 points). In order to overcome
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this drawback, we limited the back-transformation to the vector
function for the singles amplitudes [the numerator in Eq. (4)],

∑
ai

CμaΩai(t(n))Cνi = Ωμν(t(n))
= ΩG

μν(t(n))+ΩH
μν(t(n))+ΩI

μν(t(n))+ΩJ
μν(t(n)).

(18)

Such a strategy enables the reformulation of the intermediates in the
AO basis, while the use of canonical MOs is limited only to Eq. (4)
and does not affect the overall efficiency of the method. In the fol-
lowing, the most important steps in the reformulation of the CC2
method in the AO basis will be presented. The computational scaling
of the main SOS-RI-CC2 steps is reported in Table II. The Einstein
summation convention is used in the following equations.

The first two contributions to the vector function are reformu-
lated according to

ΩG
μν = CμaΩG

aiCνi = CμaB̂Q
acŶ

Q
ciCνi = Q̂μσBQ

σλŶQ
λν, (19)

ΩH
μν = CμaΩH

aiCνi = −CμaŶQ
akB̂Q

kiCνi = −ŶQ
μσBQ

σλP̂λν, (20)

with the CC2 virtual (Q̂) and occupied (P̂) densities given by

Q̂μν = CμdΛp
νd = Qμν −Qμμ′Sμ′σ tσλSλν′Pν′ν, (21)

P̂μν = Λh
μlCνl = Pμν +Qμμ′Sμ′σ tσλSλν′Pν′ν, (22)

where Qμν = ∑aCμaCνa and Pμν = ∑iCμiCνi are the virtual and occu-
pied ground-state densities and S is the overlap matrix. The for-
mation of the densities scales cubically with the system size, but

TABLE II. Formal and asymptotic computational scaling (with the number of orbitals
N) for key steps of ω-SOS-CDD-RI-CC2 models within the RI standard Coulomb
metric (ω = 0) and overlap metric (ω→∞).

Asymptotic scaling

Step Formal scaling ω = 0 ω→∞
Cholesky decompose P N3 𝒪(N) 𝒪(N)
Form J N2 𝒪(N2) 𝒪(N2)
Invert J N3 𝒪(N3) 𝒪(N3)
Form BP

μν N2 𝒪(N2) 𝒪(N2)
Form B̂P

μi and BP
μi N4 𝒪(N2) 𝒪(N)

Form τB̂P
μi N3 𝒪(N2) 𝒪(N)

Form NRS
τ N4 𝒪(N3) 𝒪(N)

Form nR
τ N3 𝒪(N2) 𝒪(N)

Form ÑQP
τ N3 𝒪(N3) 𝒪(N3)

Form ñP
τ N2 𝒪(N2) 𝒪(N2)

Form ΩI
μν N3 𝒪(N2) 𝒪(N)

Form ŶQ
μi N4 𝒪(N3) 𝒪(N2)

Form B̂Q
ki N4 𝒪(N2) 𝒪(N)

Form ΩG
μν N4 𝒪(N3) 𝒪(N)

Form ΩH
μν N4 𝒪(N3) 𝒪(N)

Form ΩJ
μν N3 𝒪(N3) 𝒪(N3)

its computational cost is negligible compared to other steps. The
intermediate Ŷ is computed as

ŶQ
μν = −cos

τB̂P
μνÑQP

τ , (23)

where the three-center integrals and the intermediates ÑQP
τ depend-

ing on the Laplace quadrature points τ are given by

τB̂P
μν = Q̂τ

μμ′BP
μ′ν′ P̂τ

ν′ν, (24)

ÑQP
τ = J−1

QRNRS
τ J−1

SP , (25)

NRS
τ = BR

bjB̂
S
bje
−εbjtτ = BR

μνQ̂τ
μσBS

σλP̂τ
λν = BR

μν
τB̂S

μν. (26)

The matrices Q̂ τ and P̂ τ are the CC2 virtual and occupied pseudo-
densities, respectively,

Q̂τ
μν = w

1
4
τ Cμde−εdtτ Λp

νd = Qτ
μν −Qτ

μμ′Sμ′σ tσλSλν′Pν′ν, (27)

P̂τ
μν = w

1
4
τ Λh

μle
εltτ Cνl = Pτ

μν +Qμμ′Sμ′σ tσλSλν′Pτ
ν′ν, (28)

with

Qτ
μν = w

1
4
τ Cμae−εatτ Cνa, (29)

Pτ
μν = w

1
4
τ Cμieεitτ Cνi. (30)

An example of the sparsity pattern of Q̂τ
μν for the first Laplace

quadrature point is displayed in Fig. 1 for the linear alkane C320H642.
The remaining contributions to the singles vector function are
given by

ΩI
μν = CμaΩI

aiCνi = −cosñP
τ

τB̂P
μν, (31)

ΩJ
μν = CμaΩJ

aiCνi = Q̂μμ′ F̂μ′ν′ P̂ν′ν, (32)

where

ñP
τ = nR

τ J−1
RP , (33)

nR
τ = F̂jbB̂R

bje
−εbjtτ = F̂μνQ̂τ

νσBR
σλP̂τ

λμ = F̂μν
τB̂R

μν. (34)

Moreover, the modified Fock matrix is built from the CC2 density,
showing an asymptotically quadratic scaling for the calculation of
the Coulomb contributions:

F̂μν = hμν +∑
σλ

P̂σλ[2(μν∣λσ) − (μσ∣λν)]. (35)

Due to the long-range nature of the electron–electron interaction
operator ( 1

r12
), the formation of the three- and two-center integrals

(BP
μν and JPQ) shows a quadratic scaling with system size while the

inversion of the two-center integrals scales cubically. These steps
are carried out only once and the time demands are not significant
as compared to the rest of the CC2 calculation. In order to retain
the sparsity of the three-center integrals, the multiplication with the
dense J−1

PQ matrix is delayed until the NRS
τ and nR

τ intermediates are
formed.
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FIG. 1. Sparsity patterns of occupied and
virtual CC2 pseudo-densities for the lin-
ear alkane C320H642, in the def2-svp (a)
and def-tzvp (b) basis sets with a cut-
off threshold equal to 10−10. (a.1, b.1)
P̂τ

μi from Eq. (46) and (a.2, b.2) Q̂τ
μν from

Eq. (27).

Once all the contributions to Ωμν are computed, we transform
the vector function to the MO basis according to

Ωai(t(n)) = CμaSμμ′Ωμ′ν′(t(n))Sν′νCνi, (36)

and the correction Δtai is then given as in the canonical MO imple-
mentation [Eq. (4)]. The updated CC2 single amplitudes in the AO
basis are finally given by

Δt(n)μν = CμaΔt(n)ai Cνi, (37)

t(n+1)
μν = t(n)μν + Δt(n)μν . (38)

C. Using the erfc-attenuated Coulomb metric:
ω-SOS-AO-RI-CC2

The presented reformulation in the atomic-orbital basis results
in a cubic asymptotic scaling 𝒪(M3) with molecular size, since the
auxiliary functions couple to the AO basis-function pairs with a 1

r12

decay within the standard Coulomb metric (see Table II). Density
fitting calculations are generally performed with the Coulomb met-
ric because it yields the most accurate results for the commonly
employed auxiliary basis sets.9,43,45 The slow long-range decay of this
metric has no disadvantage when transforming to the canonical MO
basis. However, in local bases (i.e., Cholesky and atomic orbitals),
no sparsity can be gained. Therefore, the overlap metric represents a
promising alternative due to the increased locality and sparsity.43,45

The drawback is the decreased accuracy. A third choice would be a
metric that combines the accuracy of the Coulomb metric and the
sparsity of the local overlap metric. The attenuated Coulomb metric
given by

g = erfc(ωr12)
r12

(39)

has this property, as described by Jung et al.45 in SOS-MP2 cal-
culations. The three-, two-, and four-center integrals are then
given by

(μν∣P) = (μν∣ erfc(ωr12)
r12

∣P), (40)

(Sω)PQ = (P∣ erfc(ωr12)
r12

∣Q), (41)

Jω = S−1
ω JS−1

ω , (42)

(μν∣σλ) = (μν∣P)JPQ
ω (Q∣σλ). (43)

As with the standard Coulomb metric, we postpone the multiplica-
tion with the two-center integrals to the step in Eq. (33) in order to
preserve locality through the previous time-determining steps. The
extent of locality is controlled by the parameter ω, recovering the
Coulomb metric at ω = 0 and approaching the overlap metric as ω
increases. If ω→∞, we recover the overlap metric. Of course, the
larger ω is, the less accurate are the results45 (at least when standard
RI basis sets are employed). In the present work, we employ the erfc-
Coulomb metric within CC2 for the first time, increasing the sparsity
of the intermediates and allowing a further reduction of the scaling
in all time-determining steps. Indeed, the effective computational
scaling of ω-SOS-CDD-RI-CC2 is sub-quadratic for ω > 0.

D. Reduction of the basis set scaling:
ω-SOS-CDD-RI-CC2

Despite the above formulation being suited for large systems
and moderate basis sets, its applicability to large basis sets is ham-
pered by the scaling with the basis set size Nbasis and auxiliary basis
set size Naux. The formal scaling is increased from 𝒪(NvirtNoccN2

aux)
to 𝒪(N2

basisN
2
aux) for a fixed molecular size. In order to reduce the

complexity and improve the performance, we employ Cholesky
decomposition of the occupied ground-state density matrix with
complete pivoting54,55 and the idempotency relation of the occu-
pied pseudo-density matrix, as proposed by Graf et al.44 and
Glasbrenner et al.,18

P = LLT Pτ = PτSP = PτSLLT. (44)

The Cholesky factorization scales formally as N3, but it has a very
low prefactor. Moreover, it can be carried out with asymptotic linear
scaling.56 The columns of L can be considered as the coefficients of
localized occupied MOs that we will call Cholesky orbitals14 and tag
with i, j, k indices. They inherit the locality from the density matrix57

and their number is equal to the number of MOs. Like the pseudo-
density matrices, the CC2 occupied density matrix is invariant with
respect to projection onto the occupied space and can now be
written as

P̂τ
μν = P̂τ

μνSνσLσi Lνi = P̂τ
μi Lνi , (45)
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P̂τ
μi = PμσSσλPτ

λi +Qμμ′Sμ′σ tσλSλν′Pν′σ′Sσ′λ′Pτ
λ′i= (Lμj +Qμμ′Sμ′σ tσλSλν′Lν′j)Lσ′j Sσ′λ′Pτ

λ′i , (46)

and its sparsity pattern is depicted in Fig. 1 for C320H642. The derived
ω-SOS-CDD-RI-CC2 expressions for the vector function contribu-
tions are given in Table I, where the three-center integrals, then,
read

BQ
μi = BQ

μνLνi , (47)

B̂Q
ki = Lμk BQ

μνP̂νi , (48)

τB̂P
μi = Q̂τ

μμ′BP
μ′ν′ P̂τ

ν′i. (49)

The introduction of Cholesky orbitals reduces the formal scaling
behavior to 𝒪(NbasisNoccN2

aux). The half-transformed three-center
integrals BQ

μi do not depend on the singles amplitudes and, hence,
can be computed only once at the beginning and stored on disk.
On the other hand, τB̂P

μi in Eq. (49) is computed for each Laplace
point and each iteration. We decided to use the idempotency rela-
tion in Eq. (44) not only to improve the efficiency but also to
reduce the memory requirements. Each BQ

μν matrix is precontracted
as shown in Eq. (50) and the resulting half-transformed B̂P

μi quantity
is independent of the Laplace points. The Laplace point-dependent
three-center integrals are then obtained from the half-transformed
integrals reducing both I/O and computational effort, as shown
in Eq. (51),

B̂P
μj = BP

μν(Lνj +Qνν′Sν′σ tσλSλν′′Lν′′j), (50)

τB̂P
μi = Q̂τ

μμ′BQ
μ′j(Lσj SσλPτ

λi). (51)

The reason why we avoided Cholesky factorization of the virtual
density matrix is twofold. First, the sparsity of the virtual density
is not well preserved and, hence, the rank reduction is often coun-
teracted by this loss of sparsity. Second, correlation methods such
as CC2 require large basis sets for accurate results, in which case,
Nbasis ≈ Nvirt and the rank reduction from factorization is negligible.

Finally, the ω-SOS-CDD-RI-CC2 ground-state energy is com-
puted as

ESOS
CC2 = ED + EC = costμi BP

μi J
PQ
ω tνj BQ

νj − cosÑQP
τ NQP

τ , (52)

with

tμi = Qμμ′Sμ′σ tσλSλν′Lν′i (53)

and ÑQP
τ and NQP

τ given by Eqs. (25) and (26).

E. Outline of the low scaling implementation:
A minimal-overhead batching

The available memory on a single computing node is eas-
ily exceeded by CC2 memory requirements in both MO and AO
basis. Therefore, we introduced batching schemes for evaluating
intermediates as three-center integrals, intermediates NQP

τ , ŶQ
μi , and

contributions to the vector function. The MO implementation is
not discussed here; its algorithms are provided in the supplementary
material.

First, we compute the BP
μν and half-transformed BP

iμ matrices
and store them on disk. These three-center integrals are computed
only once because they do not depend on the single amplitudes.
Moreover, in each iteration, the half-transformed three-center inte-
grals B̂P

μi are computed and stored on disk in order to alleviate the
memory limitation problem.

We introduce an optimized batching scheme based on a
Lagrangian formulation, where the optimal number of batches is
computed by minimizing the batching overhead.58

● As proposed in the optimal batching scheme by
Drontschenko et al.58 for the response function in
RPA, we compute the intermediates NQP

τ (and nP
τ ) as shown

FIG. 2. Algorithm for the calculation of ÑQP
τ and ñP

τ intermediates within the
ω-SOS-CDD-RI-CC2 implementation.
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in Fig. 2 by reading B̂P
μi (line 12) and BQ

iμ (line 24) by batches
of auxiliary and basis functions indices, at the cost of a
batching overhead proportional to the number of auxiliary
and basis functions batches baux and bAO, respectively. In
the optimal batching, baux and bAO are equal. Once the
intermediates are formed, we multiply them with Jω.● The intermediates ŶQ

μi and ΩI
μi are computed by batching

over auxiliary and occupied indices. The three-center inte-
grals B̂P

μj are read with an overhead proportional to the

number of occupied batches bocc, while ŶQ
μi is read baux times

(see Fig. 3). Notice that baux is generally smaller than bocc
in order to minimize the I/O effort. In addition, lines 1, 12,
and 13 are optional and limited to cases with minor spar-
sity in the three-center integrals matrices. At the end, the
contribution to the vector function is scaled by −cos.● The G and H contributions to the vector function are com-
puted in batches of auxiliary indices. In this case, the three-
center integrals BQ

ki and BQ
μν are not read redundantly, as

FIG. 3. Algorithm for the calculation of ỸQ
μi and ΩI

μi intermediates within the

ω-SOS-CDD-RI-CC2 implementation.

FIG. 4. Algorithm for the calculation of ΩG
μi and ΩH

μi intermediates within the
ω-SOS-CDD-RI-CC2 implementation.

reported in Fig. 4. At the end, the contributions to the vector
function are scaled by −cos.

As can be seen in Figs. 2 and 3, the minimal overhead is obtained if
there is only one τ-batch containing all Laplace quadrature points.58

Finally, in order to increase the efficiency, the three-center integrals
are read and simultaneously transformed in parallel using all the
available threads (i.e., line 11 in Fig. 2 and line 3 in Fig. 3).

III. COMPUTATIONAL DETAILS

Our ω-SOS-CDD-RI-CC2 method as well as the MO-SOS-
RI-CC2 equations by Winter and Hättig30 were implemented in
the FermiONs++ program.51–53 We checked our MO-SOS-RI-CC2
implementation against the implementation in Turbomole7.359 to
verify comparable performance and accuracy (error in energy in
the range of 10−4–10−5 a.u. and very similar computational times).
The underlying Hartree–Fock calculations have been converged to
a maximum element of the error matrix in the direct inversion in
the iterative subspace (DIIS) procedure below 10−7. We employed
the RI-approximated integrals by Kussmann et al.60 for the evalua-
tion of the Coulomb and the 𝒪(N) semi-numerical sn-LinK method
by Laqua et al.61,62 to compute the exchange integrals of the Fock
matrix.

Furthermore, our CC2 model does not make use of any explicit
integral screening. The reduction of the scaling and the consequent
performance improvement are based on the use of efficient sparse
matrix algebra in the steps involving the three-center integrals.
The present implementation exploits block-sparse (BS) matrices,
which divide the matrices in smaller blocks, whose maximum size
is 96 × 96. The screening is twofold: First, we employ a spar-
sity criterion (ϑa) that screens the matrices upon allocation with
a default threshold ϑa = 10−7. This means that every block with a
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L2-norm lower than ϑa is discarded. Consequently, both memory
and disk space requirements are reduced. Second, the threshold ϑm is
used to improve the performance of matrix–matrix multiplications.
In fact, if the product of the L2-norms of two multiplied matrix-
blocks is lower than a given threshold, that multiplication step is
not performed. The default value is ϑm = 10−9. Additional informa-
tion about our BS matrices and the algorithm for the matrix–matrix
multiplication are provided in the supplementary material.

The optimization of the singles cluster amplitudes is carried out
via the DIIS procedure, which terminates when the L2-norm of the
singles vector function is lower than 10−5. As atomic basis sets, the
def2-SVP and the def2-TZVP basis sets63,64 are employed. For the
resolution of identity used to approximate the four-center integrals,
the corresponding auxiliary basis sets9,45,65 are used. If nothing else
is indicated, we use optimized minimax grids with seven quadra-
ture points for the Laplace expansion. In addition, we set ω = 0.1
a.u. for the attenuated RI-metric, which has been found sufficient for
the metric43 to start being local while there is no significant loss in
accuracy. All calculations are performed using multi-core comput-
ing nodes and an OpenMP parallelized code. We used a computing
node with one Dual AMD EPYC 7302 32-Core 3.0 GHz CPUs, 1 TB
of RAM, and 5.5 TB of disk space. All runtimes given are wall times,
not CPU times.

IV. RESULTS
A. Accuracy

We performed benchmark calculations on the S22 and L7 test
sets of complexes.66,67 The interaction energies obtained with the
ω-SOS-CDD-RI-CC2 method are compared to a MO-SOS-RI-CC2
reference and the errors are summarized in Table III. The use of

sparse algebra yields results as accurate as standard dense algebra
for both test sets since the sparsity of the density matrices associated
with these systems is low. The error introduced by the attenuation
factor is negligible for the S22 set, with MAE and MAX equal to 0.002
and 0.007 kcal mol−1, respectively, and slightly increases for the
larger systems in the L7 set. In fact, the error for L7 samples is 0.02
and 0.03 kcal mol−1 in MAE and RMSD, respectively, and 0.06 kcal
mol−1 in MAX. For the C3A, C3GC (and the monomers A, GC, and
C3) systems, using the RI-approximation to compute the Coulomb
contribution to the Fock matrix caused numerical instability dur-
ing both HF and CC2 iterative procedures. Specifically, although HF

TABLE III. Root mean square deviation (RMSD), mean absolute error (MAE), and
maximum error (MAX) for interaction energies computed with ω-SOS-CDD-RI-CC2
in the def2-TZVP basis compared to MO-SOS-RI-CC2 results for the S2266 and L767

test sets with different RI-attenuation factors ω, and both sparse/dense linear algebra.

ϑa = 10−7, ϑm = 10−9 ϑa = 0.0, ϑm = 0.0

ω = 0.0 ω = 0.1 ω = 0.0 ω = 0.1

S22

RMSD (μH) 0.3 5.1 0.3 5.0
MAE (μH) 0.3 3.9 0.3 3.8
MAX (μH) 0.8 11.3 0.8 11.3

L7

RMSD (μH) 0.7 49.8 0.6 50.0
MAE (μH) 0.5 36.9 0.5 37.0
MAX (μH) 1.5 96.0 1.2 96.3

TABLE IV. Absolute energy error of ω-SOS-CDD-RI-CC2 with respect to MO-SOS-RI-CC2 results for different attenuation
factors ω, as well as for sparse and dense linear algebra. The number of basis functions is given for each system. The
structure files of the selected systems are available for download from our website.68

Error (μH) Error (μH)

No. of bf ϑa = 10−7, ϑm = 10−9 ϑa = 0.0, ϑm = 0.0

Sample def2-TZVP ω = 0.0 ω = 0.1 ω = 0.0 ω = 0.1

C40H82 1732 0.02 23.00 0.03 7.90
C80H162 3452 0.50 48.20 0.50 15.30
C100H202 4312 0.71 62.60 0.74 18.42
C160H322 6892 1.06 108.00 1.36 28.90
AT01 1247 0.57 7.25 0.60 7.30
AT02 2680 0.80 17.50 0.70 16.90
Diamond 102 1662 0.004 28.00 0.03 28.01
Water 68 2924 0.14 19.30 0.14 19.30
Angiotensin 2751 0.05 31.60 0.10 30.50
Angiotensin deprotonated 2739 0.40 51.50 0.50 50.10
Angiotensin zwitterion 2751 0.50 40.00 0.50 39.00
K2 vitamine (90○) 1263 0.60 0.50 0.57 0.56
K2 vitamine (180○) 1263 0.50 1.40 0.50 1.50
CNT (C20) 680 1.19 3.77 1.21 3.78
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calculations converged using tighter thresholds and larger auxiliary
basis set for the three-center integrals, the CC2 calculations did not
reach convergence for monomers or dimers if the RI-approximation
was used in Eq. (35). Moreover, even using the RI-approximation
only for HF calculations, and so avoiding it in Eq. (35), the CC2
calculations did not converge for monomers or dimers.

Therefore, for the mentioned systems, we did not employ the
RI-approximation during neither HF nor CC2, since the compu-
tation of the Coulomb term with J-engine is not a computational
bottleneck regardless. In addition, we used ten Laplace quadrature
points for the C3 monomer for the same reason. In order to further
investigate the behavior of ω-SOS-CDD-RI-CC2, we computed the
absolute energies for random large systems from our own bench-
mark set68 (see Table IV). In contrast to the observations for the S22
and the L7 test sets, the use of sparse linear algebra slightly decreases
the accuracy of the obtained results. Thus, the accuracy of ω-SOS-
CDD-RI-CC2 with both dense and sparse algebra is compared in
order to display the influence of the sparse linear algebra screening
and the RI-metric attenuation factor ω.

Again, it is clear from Table IV that the smaller systems are
not affected by sparse algebra and yield results similar to the dense
algebra implementation, as for the L7 and S22 sets. Moreover,
the combined use of sparse algebra and the moderately attenuated
Coulomb metric (ω = 0.1) reduces the accuracy by a maximum
of 0.1 kcal/mol. Therefore, the default screening thresholds ensure
accurate results with both metrics; hence, they will be used in all
further calculations. Of course, larger molecules are more sensi-
tive to the choice of the RI-metric and are, in general, more sparse.
For instance, the error introduced by either sparse linear algebra or
the attenuation factor increases with the system size for the linear
alkanes. Nonetheless, the accuracy of ω-SOS-CDD-RI-CC2 is under
complete control using the two screening parameters ϑa and ϑm, and
the attenuation factor ω.

B. Scaling behavior: Linear alkanes
The sparsity of the one-electron densities is closely related

to the HOMO–LUMO gap of molecular systems.69 Especially, the
asymptotic linear scaling behavior holds only for systems with
a nonvanishing HOMO–LUMO gap.69,70 Accordingly, we investi-
gated the computational and storage scaling of ω-SOS-CDD-RI-CC2
with ω = 0 and ω = 0.1 (with 1

r12
and erfc(ωr12)

r12
operators for the

RI-approximation, respectively) on electronically local systems such
as linear alkanes. Of course, they represent optimal systems for cal-
culations in a local basis (as shown by Fig. 1), but the same behavior
is transferred to three-dimensional systems that are large enough.
We carried out the analysis of the computational scaling, tak-
ing into account the number of floating-point operations (FLOPS)
during the first iteration (with tai ≠ 0). The results obtained using the
def2-TZVP basis set are summarized in Fig. 5. As can be seen,
the scaling exponents meet the expectations for both standard and
ω-Coulomb (ω = 0.1)metrics with values equal to ∼2.8 and ∼1.8 for
the largest system. In the asymptotic limit, the computational scal-
ing is cubic for ω = 0. With a moderate attenuation factor (ω = 0.1),
the asymptotic scaling of almost all steps is reduced to linear. How-
ever, the number of FLOPS scales sub-quadratically 𝒪(N1.9) for the
time-determining calculation of the ŶQ

μi intermediate [Eq. (23)]. This

FIG. 5. Plots of FLOPS (top) and wall times (bottom) against number of basis
functions showing the computational complexity of the MO and ω-SOS-CDD-RI-
CC2 formulations (ω = 0: “CDD” and ω = 0.1: “ω-CDD”) for linear alkanes in the
def2-TZVP basis. In the top plot, speedups with respect to MO calculations are
given. We used ϑa and ϑm equal to 10−7 and 10−9, respectively. Top: Log-log plot.
Bottom: Linear plot. The dashed lines and asterisks indicate that the points have
been extrapolated.

is due to the multiplications of NQP
τ matrices with Jω [Eq. (25)],

which is not sparse. Notice that there are other steps with cubic or
quadratic scaling in the algorithm (see Table II). Among these, the
quadratic calculation of all Bμν integrals is performed only once at
the beginning and does not affect the overall efficiency (see Fig. 6).
Some cubic and quadratic steps are repeated in each iteration (i.e.,
the formation of the Fock matrix and pseudo-densities). Nonethe-
less, it can be seen in Fig. 6 that these nonlinear scaling steps do
not affect the overall efficiency of our method because the time
demands are negligible if compared to steady times of one itera-
tion or the entire CC2 calculation. The same behavior appears in
the disk space requirements that are summarized in Table V. Since
the number of basis functions is close to the number of virtual
orbitals, the disk space demands of ω-SOS-CDD-RI-CC2 are for-
mally similar to MO-SOS-RI-CC2 for smaller systems. Of course, as
soon as the systems become large enough, the use of sparse matri-
ces reduces the storage requirements along with the CPU costs.
Indeed, the space needed for the matrices of the half-transformed
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FIG. 6. Plot of wall times (minutes) for each step of ω-SOS-CDD-RI-CC2 (ω = 0.1) for the linear alkane C320H642. Fully colored rectangles indicate the use of dense
matrices for that specific step. In black (1–5): Steps performed only once at the beginning. In orange (6–9): Steps performed in each iteration as preparation of the following
time-determining calculations. In light blue (10–14): Time-determining steps involved in Fig. 2 where Step 10 refers to lines 11–16. In red (15–18): Time-determining steps
involved in Fig. 3 where Step 15 refers to lines 3–8. In green (19–23): Steps involved in Fig. 4. The dashed lines indicate the timings obtained when we reduce the available
memory from ∼900 to ∼450 GB.

TABLE V. Disk space demands (GB) for MO-SOS-RI-CC2 (“MO”) and ω-SOS-CDD-RI-CC2 with ω = 0 (“CDD”) and ω = 0.1 (“ω-CDD”). We do not store the AO three-center
integrals in the MO implementation. The ∗ highlights when sparse matrices are not used to store them on disk. The sparsity thresholds ϑa and ϑm are equal to 10−7 and 10−9,
respectively.

No. of bf
BP

μν (GB) B̂P
ai/B̂

P
μi (GB) ŶQ

ai/Ŷ
Q
μi (GB)

Sample def2-SVP CDD ω-CDD MO CDD ω-CDD MO CDD ω-CDD

C40H82 970 2.5 ∗2.5 2.3 2.6 1.7 2.2 2.7 2.7
C80H162 1930 10.0 7.2 17.6 16.0 6.3 17.6 17.5 17.2
C160C322 3850 40.2 15.0 140.2 68.5 15.8 140.2 80.9 69.2

No. of bf
BP

μν (GB) B̂P
ai/B̂

P
μi (GB) ŶQ

ai/Ŷ
Q
μi (GB)

Sample def2-TZVP CDD ω-CDD MO CDD ω-CDD MO CDD ω-CDD

C40H82 1732 10.6 ∗10.6 6.1 6.4 4.0 6.1 6.7 6.7
C80H162 3452 44.5 25.0 47.8 42.7 16.8 47.8 52.7 52.7
C160C322 6892 176.3 52.0 380.6 220.0 54.4 380.6 378.0 338.3

three-center integrals (B̂P
μi) is significantly decreased and scales lin-

early in the asymptotic limit (with ω = 0.1). On the other hand, the
disk space requirements for the ŶQ

μi matrices are only reduced for
the largest system because of their decreased sparsity and scale as
𝒪(N2). The symmetric AO three-center integrals are treated dif-
ferently. For MO-SOS-RI-CC2, these integrals are computed and
transformed in each iteration. Thus, they are not stored on disk. For

ω-SOS-CDD-RI-CC2 with ω = 0.0, we store only the upper triangles
that require 1

2 NauxNbasis(Nbasis + 1) of disk space. On the other hand,
for ω = 0.1, we store the significant blocks within the upper trian-
gle of the BS matrices, showing an asymptotic linear scaling 𝒪(N).
The integral-direct transformation of the AO three-center integrals
is possible also for ω-SOS-CDD-RI-CC2, avoiding the storage of this
quantity.
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C. Timings
1. Linear alkanes

The use of sparse linear algebra reduces the number of FLOPS
carried out in one iteration and considerable runtime speedups over
MO-SOS-RI-CC2 are expected when our ω-SOS-CDD-RI-CC2 is
used. We performed the calculations in the def2-TZVP basis and the
results are summarized in Table VI and Fig. 5. Moreover, all cal-
culations were performed with the same number of batches. The
runtime speedups are always smaller than the speedups obtained
when comparing FLOPS, due to a runtime overhead of ∼1.6 associ-
ated with the use of our block-matrices. Nevertheless, the crossover
with the MO implementation is at ∼50 carbon atoms, as one can
see in Fig. 5. Indeed, our ω-SOS-CDD-RI-CC2 method (ω = 0.1) is
already twice as fast for C80H162. Doubling the size, our implementa-
tion is ∼9 times faster than the MO formulation. Whether or not the
runtime speedups meet the trend in the FLOPS speedups critically
depends on the number of batches (bao and bocc) in Figs. 2 and 3.

In fact, although efficient, in general, the formation of the Laplace
point-dependent three-center integrals (line 12, Fig. 2, and line 3,
Fig. 3) in ω-SOS-CDD-RI-CC2 is negatively affected by the batching
overhead. However, since B̂P

μj is sparse, this downside is mitigated
until bao and bocc get large, i.e., when the memory requirements
exceed the available memory of the computing node by several
times. The dashed lines in Fig. 6 display such a behavior for the linear
alkane C320H642, where the computation time for Step 15 is quadru-
pled when the available memory is halved. The AO reformulation
is ∼37 times faster with ω = 0.1 (see Table VI) and it outperforms
the MO implementation even if the number of batches is increased.
Furthermore, we want to stress that one can decrease the batch-
ing overhead (and increase the runtime speedups) either by using
a computing node with a larger memory or by performing CC2
calculations on multiple nodes, distributing both CPU and I/O
efforts. However, we did not exploit the second solution in the
present paper.

TABLE VI. Wall times (h) for the first iteration (tai ≠ 0) of MO and ω-SOS-CDD-RI-CC2 formulations (ω = 0: “CDD” and ω = 0.1: “ω-CDD”) for linear alkanes in the def2-TZVP
basis. We employ sparsity thresholds ϑa and ϑm equal to 10−7 and 10−9, respectively. Values marked with an asterisk (∗) are extrapolated conservatively.

No. of bf MO
CDD ω-CDD

Sample def2-TZVP Time (h) Time (h) Speedup Time (h) Speedup

C40H82 1 732 0.17 0.15 ×1.2 0.11 ×1.6
C80H162 3 452 1.37 1.29 ×1.1 0.57 ×2.2
C160C322 6 892 20.63 9.62 ×2.1 2.27 ×9.1
C320H642 13 772 ∗309.00 ∗85.00 ×3.6 8.38 ×36.9

FIG. 7. Test set for the performance of the ω-SOS-CDD-RI-CC2 model (ω = 0.1): (a) IPB19/N52 complex71 (its alpha-helix structure is highlighted in green), (b) beta-
endorphin,72 (c) AT08 pairs,68 (d) olestra,73 (e) metenkephalin.34 We employed MolProbity74 with default settings in order to add the missing hydrogens to the IPB19/N52
complex.
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TABLE VII. Runtime speedups for the first iteration of ω-SOS-CDD-RI-CC2 (ω = 0.1) against MO-SOS-RI-CC2 in both def2-SVP and def2-TZVP bases. We employ sparsity
thresholds ϑa and ϑm equal to 10−7 and 10−9, respectively.

No. of bf MO-SOS-RI-CC2
ω-SOS-CDD-RI-CC2

Sample No. of atoms def2-SVP Time (h) Time (h) Speed up

HDR1(N52) 746 7069 66.76 11.93 ×5.6
DNA8 524 5574 29.25 18.42 ×1.6
Beta-endorphin 495 4675 14.07 6.55 ×2.1
Olestra 453 3840 5.27 3.94 ×1.3
IPB19 441 4149 8.77 3.48 ×2.5
Metenkephalin 75 739 0.02 0.03 ×0.7

No. of bf MO-SOS-RI-CC2
ω-SOS-CDD-RI-CC2

Sample No. of atoms def2-TZVP Time (h) Time (h) Speed up

Beta-endorphin 495 9076 61.32 46.24 ×1.3
Olestra 453 7093 23.68 18.45 ×1.3
IPB19 441 8046 40.27 26.04 ×1.5
Metenkephalin 75 1456 0.08 0.09 ×0.8

2. Three-dimensional systems
The ω-SOS-CDD-RI-CC2 method has proven to be efficient

if applied to optimal systems such as linear alkanes. In fact, the
introduction of the Cholesky-decomposed density matrices resulted
in an early crossover with the MO-SOS-RI-CC2 model, as shown
in Fig. 5. A reduction of the number of FLOPS and a consequent
runtime speedup are also obtained when ω-SOS-CDD-RI-CC2 is
applied to real-life organic systems, which do not always display
sparse density matrices. We used as test set six different systems
illustrated in Fig. 7, but it was not possible to perform calculations
in the def2-TZVP basis for some systems due to disk space limita-
tions. Table VII shows the wall times and speedups (with ω = 0.1)
for the first iteration in both def2-SVP and def2-TZVP basis sets.
For HDR1(N52) in the def2-SVP basis, our ω-SOS-CDD-RI-CC2
provides a speedup of 5.6, so that one iteration is carried out in∼12 h instead of ∼67 h. The speedups for the def2-TZVP basis set
are lower due to the use of more diffuse functions. For instance, the
ω-SOS-CDD-RI-CC2 speedups for the beta-endorphin are 2.1 and
1.3 with def2-SVP and def2-TZVP basis, respectively. In general,
the ω-SOS-CDD-RI-CC2 model provides speedups that are expected
to become larger for increasing system sizes due to the reduced
scaling. On the other hand, ω-SOS-CDD-RI-CC2 timings are com-
parable to the MO-based implementation for the smaller systems
(e.g., metenkephalin).

V. SUMMARY

We presented a reformulation of the SOS-RI-CC2 method
in the AO basis that shows cubic scaling in the asymptotic limit.
We further employed an attenuated Coulomb metric for the RI-
approximation decreasing the scaling to sub-quadratic for ω = 0.1.
The Cholesky decomposition of the ground-state occupied density
matrix provides local occupied molecular orbitals that allow for the

reduction of the basis set scaling. Moreover, it leads to a reduced
prefactor and an early crossover with the MO implementation.
Our memory-efficient ω-SOS-CDD-RI-CC2 method is based on a
minimal-overhead batching scheme and on efficient sparse linear
algebra routines, providing complete control of the error via the ϑa
and ϑm thresholds while significantly speeding up the calculations.
Such control results in small errors as shown for calculations on the
S22 and L7 test sets and a selection of systems from our own bench-
mark.68 The performance of our reformulation has been assessed for
both SVP and TZVP basis sets with three-dimensional systems of up
to 700 atoms. The timings show that our method provides consid-
erable advantages if there is enough sparsity to be exploited. On the
other hand, ω-SOS-CDD-RI-CC2 timings are comparable to MO-
SOS-RI-CC2 wall times for smaller systems, whose density matrices
are not sparse.

The disk space demand will be further reduced by implement-
ing an integral-direct algorithm, which avoids the storage of some
three-dimensional tensors and will be subject of a future publica-
tion. In addition, increasing the runtime speedups may be possible
by distributing the computational and I/O efforts among multiple
nodes. Finally, we want to stress that the presented ω-SOS-CDD-RI-
CC2 approach provides the basis for the AO reformulation of the
SOS-RI-CC2 and ADC(2) equations for excited states energies. An
implementation is currently in progress in our group and will be the
subject of a forthcoming publication.

SUPPLEMENTARY MATERIAL

See the supplementary material for details about the reformu-
lation of cluster equations in the AO basis, the operation of our
block-sparse matrices, the scaling behavior, and our implementation
of MO-SOS-RI-CC2.
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I. DERIVATION OF AO-BASED EXPRESSIONS FOR THE CONTRIBUTIONS TO

THE SINGLES VECTOR FUNCTION.

In this section we provide the steps for reformulating the vector function terms of MO-SOS-

RI-CC2 in the AO basis. The explicit expressions for the ground state densities can be found in

the article.
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II. BLOCK-SPARSE MATRICES

Our block-sparse algebra are implemented to efficiently control memory demands, accuracy,

and performance when the matrices are sparsely occupied. These matrices are divided in blocks of

defined size, whose maximum is 96x96 in the present work. The allocation of each block is carried

out by employing a block allocator which stores the block in one large, and dynamically growing

memory pool, improving the performance for the allocation substantially (>20x). A memory pool

is unique for each matrix, however, in case of three-dimensional tensors T l
i j (l matrices with i rows

and k columns), we allocate the blocks from all l matrices in the same pool.

Whether or not a block is allocated depends on the allocation threshold ϑa. Thus, only the blocks

with L2-norm≥ϑa are stored. The second screening threshold ϑm is used within the matrix-matrix

multiplication routine, whose pseudo-code is summarized in Algorithm 1. Within this algorithm

we multiply only the elements of the blocks that meet the screening criterium (line 6-9). The loops

in lines 1-2 can be parallelized in a single loop over all ib- and jb indices. If the workload is not

enough, the loop over k indices (line 3) is also parallelized and each thread computes its local Z

block (line 7) according to the multiplication in line 8.

Algorithm 1 BSMat - Multiplication of two three-dimensional tensors: Ci j = ∑kAik Bk j.

nbi = number of row-blocks of A and C, nb j = number of column-blocks of B and C, nbk =

number of column- and row-blocks of A and B respectively,
1: for block jb∈ nb j do

2: for block ib ∈ nbi do

3: for block kb ∈ nbk do

4: X = A.block(ib,kb)

5: Y = B.block(kb,jb)

6: if (||X ||*||Y ||) ≥ ϑm then

7: Z = C.block(ib,jb)

8: Zpq+= ∑r XprYrq

9: end if

10: end for

11: end for

12: end for

3



III. THEORETICAL COMPUTATIONAL SCALING AND SPEEDUPS FOR LINEAR

ALKANES

TABLE I. Computational scaling of a single optimization iteration for linear alkanes. We take into ac-

count the number of FLOPS of MO-SOS-RI-CC2 and ω-SOS-CDD-RI-CC2 in the def2-TZVP basis and

two different density fitting metrics. We employ sparsity thresholds ϑa and ϑm equal to 10−7 and 10−9,

respectively. Values marked with an asterisk (*) are extrapolated conservatively.

Sample No. of bf MO-SOS-RI-CC2 ω-SOS-CDD-RI-CC2 (ω = 0) ω-SOS-CDD-RI-CC2 (ω = 0.1)

def2-TZVP FLOPS FLOPS Scaling Speed Up FLOPS Scaling Speed Up

C40H82 1732 1.2E+14 1.4E+14 — x0.9 8.98E+13 — x1.3

C80H162 3452 1.8E+15 1.5E+15 3.50 x1.2 5.67E+14 2.70 x3.2

C160C322 6892 2.9E+16 1.3E+16 3.10 x2.3 2.4E+15 2.10 x12.2

C320H642 13772 *4.8E+17 *9.5E+16 2.80 x5.1 8.6E+15 1.85 x56.0

4



IV. MO-SOS-RI-CC2 ALGORITHMS

FIG. 1. Algorithm for the calculation of NQP
τ and nP

τ intermediates within the MO-SOS-RI-CC2 implemen-

tation.

FIG. 2. Algorithm for the calculation of Y Q
ai ΩI

ai intermediates within the MO-SOS-RI-CC2 implementation.
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FIG. 3. Algorithm for the calculation of ΩG
ai and ΩH

ai contribution in the MO-SOS-RI-CC2 implementation.
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4 Conclusion

This thesis comprises various methods to accelerate electronic structure theory calcu-
lations, namely seminumerical integration, integral screening, GPU acceleration, the
resolution of the identity approximation, memory-optimized batching schemes, and the
Cholesky decomposition of the ground state density.

Since the computation of Fock-exchange contributions typically represents the major
bottleneck in Hartree-Fock and hybrid DFT calculations, the most significant contribution
of this work is introduction of the sn-LinK method, which utilizes optimized integration
grids, batch-wise integral screening, machine-optimized integral kernels, mixed precision
arithmetic, and GPU acceleration to substantially accelerate (>1000× in some cases) the
seminumerical evaluation of Fock-exchange. This facilitates the application of hybrid
DFT to much larger molecules with much larger basis sets. In particular, the combination
of the reduced (quadratic vs. quartic) formal scaling with respect to the basis set size
and the asymptotic linear-scaling with respect to the system size, makes the method
ideally suited for accurate calculations on large systems comprising hundreds or even
thousands of atoms.

In addition, the evaluation of the Coulomb interaction and the semilocal exchange-
correlation (XC) functional was also greatly accelerated: The former was treated with
the resolution of the identity approximation (RI-J) and a modified J-engine algorithm,
whereas the latter was reformulated in terms of matrix-matrix multiplications to achieve
optimal performance, especially on GPUs. In both cases, the asymptotic scaling behavior
was reduced by disregarding insignificant contributions, resulting in quadratic scaling
for RI-J and linear-scaling for the semilocal XC integration. Thus, in combination
with the sn-LinK method for the Fock-exchange, the three most expensive steps within
hybrid-DFT applications were addressed.

In addition to Kohn-Sham density functional theory, the post-Kohn-Sham RPA and the
post-Hartree-Fock SOS-CC2 method were also studied. The accuracy and the basis set
dependence of RPA was significantly improved by employing range-separation to combine
it with the semi-local PBE correlation functional. Moreover, the memory demand of RPA
calculations was greatly reduced by incorporating an optimized batching scheme leading
to an optimal memory vs. runtime trade-off. Furthermore, application of a variant of this
batching scheme together with the Cholesky decomposition of the ground state density
resulted in an efficient and asymptotically linear-scaling SOS-CC2 method.

Generally, all contributions within this thesis had one common objective: Enabling
accurate electronic structure theory calculations on large molecules at low computational
cost. In this way, more complex molecular environments, e.g., explicit solvent effects,
protein catalysis, DNA interactions, supramolecular host-guest complexes etc., can now be
tackled at higher accuracy (e.g., larger basis sets, better density functional approximations,
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more sampling of the configuration space) than before. Therefore, the present work
represents a substantial step towards the goal of solving the Schrödinger equation as
accurately as possible while also utilizing the available computing hardware as efficiently
as possible, opening the way to gain novel access into large and complex systems.



Bibliography
[1] E. Schrödinger, Phys. Rev. 1926, 28, 1049–1070.
[2] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133–A1138.
[3] A. D. Becke, J. Chem. Phys. 1993, 98, 1372–1377.
[4] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem.

1994, 98, 11623–11627.
[5] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.
[6] M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029–5036.
[7] N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 2016, 144, 214110.
[8] R. A. Friesner, Chem. Phys. Lett. 1985, 116, 39–43.
[9] R. A. Friesner, J. Chem. Phys. 1986, 85, 1462–1468.

[10] R. A. Friesner, J. Chem. Phys. 1987, 86, 3522–3531.
[11] R. A. Friesner, J. Phys. Chem. 1988, 92, 3091–3096.
[12] M. N. Ringnalda, M. Belhadj, R. A. Friesner, J. Chem. Phys. 1990, 93, 3397–3407.
[13] R. A. Friesner, J. A. Bentley, M. Menou, C. Leforestier, J. Chem. Phys. 1993, 99,

324–335.
[14] R. B. Murphy, Y. Cao, M. D. Beachy, M. N. Ringnalda, R. A. Friesner, J. Chem.

Phys. 2000, 112, 10131–10141.
[15] Y. Cao, M. D. Beachy, D. A. Braden, L. Morrill, M. N. Ringnalda, R. A. Friesner,

J. Chem. Phys. 2005, 122, 224116.
[16] F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98–109.
[17] P. Plessow, F. Weigend, J. Comput. Chem. 2012, 33, 810–816.
[18] A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden,

D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, Int. J. Quantum
Chem. 2013, 113, 2110–2142.

[19] H. Bahmann, M. Kaupp, J. Chem. Theory Comput. 2015, 11, 1540–1548.
[20] T. M. Maier, H. Bahmann, M. Kaupp, J. Chem. Theory Comput. 2015, 11,

4226–4237.
[21] Y. Cao, T. Hughes, D. Giesen, M. D. Halls, A. Goldberg, T. R. Vadicherla, M.

Sastry, B. Patel, W. Sherman, A. L. Weisman, R. A. Friesner, J. Comput. Chem.
2016, 37, 1425–1441.



208 Bibliography

[22] S. Klawohn, H. Bahmann, M. Kaupp, J. Chem. Theory Comput. 2016, 12, 4254–
4262.

[23] F. Liu, J. Kong, J. Chem. Theory Comput. 2017, 13, 2571–2580.
[24] F. Liu, J. Kong, Chem. Phys. Lett. 2018, 703, 106–111.
[25] G. L. Stoychev, A. A. Auer, R. Izsak, F. Neese, J. Chem. Theory Comput. 2018,

14, 619–637.
[26] T. M. Maier, Y. Ikabata, H. Nakai, J. Chem. Theory Comput. 2019, 15, 4745–

4763.
[27] R. Grotjahn, F. Furche, M. Kaupp, J. Chem. Theory Comput. 2019, 15, 5508–

5522.
[28] C. Holzer, J. Chem. Phys. 2020, 153, 184115.
[29] B. Helmich-Paris, B. de Souza, F. Neese, R. Izsak, J. Chem. Phys. 2021, 155,

104109.
[30] J. C. Burant, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1996, 105, 8969–8972.
[31] E. Schwegler, M. Challacombe, J. Chem. Phys. 1996, 105, 2726–2734.
[32] E. Schwegler, M. Challacombe, M. Head-Gordon, J. Chem. Phys. 1997, 106,

9708–9717.
[33] M. Challacombe, E. Schwegler, J. Chem. Phys. 1997, 106, 5526–5536.
[34] C. Ochsenfeld, C. A. White, M. Head-Gordon, J. Chem. Phys. 1998, 109, 1663–

1669.
[35] C. Ochsenfeld, Chem. Phys. Lett. 2000, 327, 216–223.
[36] J. Kussmann, C. Ochsenfeld, J. Chem. Phys. 2013, 138, 134114.
[37] J. Kussmann, C. Ochsenfeld, J Chem Theory Comput 2015, 11, 918–922.
[38] J. Kussmann, C. Ochsenfeld, J Chem Theory Comput 2017, 13, 3153–3159.
[39] T. H. Thompson, C. Ochsenfeld, J. Chem. Phys. 2019, 150, 044101.
[40] ANSI/IEEE Std 754-1985 1985, 1–20.
[41] J. Almloef, K. Faegri, Jr., K. Korsell, J. Comput. Chem. 1982, 3, 385–399.
[42] M. Haeser, R. Ahlrichs, J. Comput. Chem. 1989, 10, 104–11.
[43] J. Noga, J. Simunek, Chem. Phys. 2009, 356, 1–6.
[44] W. Klopper, W. Kutzelnigg, Chem. Phys. Lett. 1987, 134, 17–22.
[45] V. Termath, W. Klopper, W. Kutzelnigg, J. Chem. Phys. 1991, 94, 2002–2019.
[46] S. Ten-no, Chem. Phys. Lett. 2004, 398, 56–61.
[47] T. B. Adler, G. Knizia, H.-J. Werner, J. Chem. Phys. 2007, 127, 221106.
[48] A. D. Becke, J. Chem. Phys. 1988, 88, 2547–2553.
[49] J. W. Mintmire, B. I. Dunlap, Phys. Rev. A 1982, 25, 88–95.



Bibliography 209

[50] C. A. White, M. Head-Gordon, J. Chem. Phys. 1996, 104, 2620–2629.
[51] F. Neese, J. Comput. Chem. 2003, 24, 1740–1747.
[52] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
[53] V. V. Karasiev, J. Chem. Phys. 2003, 118, 8576–8583.
[54] A. D. Becke, J. Chem. Phys. 2003, 119, 2972–2977.
[55] A. D. Becke, J. Chem. Phys. 2005, 122, 064101.
[56] J. P. Perdew, V. N. Staroverov, J. Tao, G. E. Scuseria, Phys. Rev. A 2008, 78,

052513.
[57] E. R. Johnson, J. Chem. Phys. 2013, 139, 074110.
[58] A. D. Becke, J. Chem. Phys. 2013, 138, 074109.
[59] J. Kong, E. Proynov, J. Chem. Theory Comput. 2016, 12, 133–143.
[60] J. Kong, E. Proynov, J. Yu, R. Pachter, J. Phys. Chem. Lett. 2017, 8, 3142–3146.
[61] D. Bohm, D. Pines, Phys. Rev. 1953, 92, 609–625.
[62] M. Gell-Mann, K. A. Brueckner, Phys. Rev. 1957, 106, 364–368.
[63] D. C. Langreth, J. P. Perdew, Phys. Rev. B 1977, 15, 2884–2901.
[64] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
[65] J. Toulouse, F. Colonna, A. Savin, J. Chem. Phys. 2005, 122, 014110.
[66] J. Toulouse, I. C. Gerber, G. Jansen, A. Savin, J. G. Angyan, Phys. Rev. Lett.

2009, 102, 096404.
[67] J. Toulouse, W. Zhu, J. G. Angyan, A. Savin, Phys. Rev. A 2010, 82, 032502.
[68] O. Franck, B. Mussard, E. Luppi, J. Toulouse, J. Chem. Phys. 2015, 142, 074107.
[69] A. Luenser, H. F. Schurkus, C. Ochsenfeld, J. Chem. Theory Comput. 2017, 13,

1647–1655.
[70] D. Graf, M. Beuerle, H. F. Schurkus, A. Luenser, G. Savasci, C. Ochsenfeld, J.

Chem. Theory Comput. 2018, 14, 2505–2515.
[71] O. Christiansen, H. Koch, P. Jorgensen, Chem. Phys. Lett. 1995, 243, 409–418.
[72] N. O. C. Winter, C. Haettig, J. Chem. Phys. 2011, 134, 184101.
[73] M. Born, R. Oppenheimer, Ann. Phys. 1927, 389, 457–484.
[74] D. R. Hartree, Math. Proc. Cambridge Philos. Soc. 1928, 24, 89–110.
[75] W. Pauli, Z. Phys. 1925, 31, 765–783.
[76] J. C. Slater, Phys. Rev. 1929, 34, 1293–1322.
[77] V. Fock, Z. Phys. 1930, 61, 126–148.
[78] C. C. J. Roothaan, Rev. Mod. Phys. 1951, 23, 69–89.
[79] D. K. Jordan, D. A. Mazziotti, J. Chem. Phys. 2005, 122, 084114.



210

[80] A. M. N. Niklasson, V. Weber, M. Challacombe, J. Chem. Phys. 2005, 123,
044107.

[81] E. H. Rubensson, E. Rudberg, P. Salek, J. Chem. Phys. 2008, 128, 074106.
[82] P. Suryanarayana, Chem. Phys. Lett. 2013, 555, 291–295.
[83] J. P. Perdew, K. Schmidt in Density Functional Theory and its Application to

Materials, 2001, pp. 1–20.
[84] P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 1930, 26, 376–385.
[85] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211.
[86] Perdew, Wang, Phys. Rev. B 1992, 45, 13244–13249.
[87] A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100.
[88] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[89] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.

Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671–6687.
[90] A. D. Becke, M. R. Roussel, Phys. Rev. A 1989, 39, 3761–3767.
[91] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91,

146401.
[92] N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 2015, 142, 074111.
[93] C. Moller, M. S. Plesset, Phys. Rev. 1934, 46, 618–622.
[94] S. Grimme, F. Neese, J. Chem. Phys. 2007, 127, 154116.
[95] L. Goerigk, S. Grimme, J. Chem. Theory Comput. 2011, 7, 291–309.
[96] S. Grimme, M. Steinmetz, Phys. Chem. Chem. Phys. 2016, 18, 20926–20937.
[97] N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 2018, 148, 241736.
[98] R. E. Stratmann, G. E. Scuseria, M. J. Frisch, Chem. Phys. Lett. 1996, 257,

213–223.
[99] P. Pulay, Mol. Phys. 1969, 17, 197–204.

[100] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.


	Introduction
	Theoretical Background
	The Schrödinger Equation
	Hartree-Fock Theory
	Slater Determinants
	Hartree-Fock Energy
	Hartree-Fock Equations
	Linear Combination of Atomic Orbitals
	The Fock Matrix
	The Full Configuration Interaction Wave Function

	Kohn-Sham Density Functional Theory
	Jacob's Ladder of Density Functional Theory

	Numerical Quadratures
	Molecular Integration Grids
	Seminumerical Integration
	Resolution-of-the-Identity Approximation


	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI
	Publication VII
	Publication VIII
	Publication IX
	Publication X
	Publication XI

	Conclusion

