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Contribution to the publications

1.1 Contribution to paper |

The candidate carried out computational biologic analyses, including downloading, filtering and
analyzing gene expression data of the cancer genome atlas (TCGA) malignant pleural
mesothelioma (MPM) patients. She additionally performed heatmap and clustering visualization
of the findings and compiled graphs and figures thereof. Furthermore, she retrieved mutations
information for these patients and carried out pathway analyses as well as gene set enrichment
(GSEA) analysis. She additionally participated in designing and performing in vivo experiments,
including intrapleural or intraperitoneal transgene delivery in mice, bioluminescence imaging,
pleural lavage isolation, pleural effusion aspiration and lungs harvesting, as well as culturing and
performing subcutaneous injections of primary mesothelioma cell lines. She generated portions
of the paper draft and provided critical intellectual scientific input on the conceivement and
implementation of the main hypothesis. The shared first authorship among Marazioti, A., Krontira,
A. C., Behrend, S. J., Ntaliarda, G. and the candidate is based on their cooperation in conducting
in vivo experiments, as well as on their equal and major contribution on giving intellectual input
regarding computational analyses. Furthermore, all first co-authors contributed equivalently in
generating portions of the manuscript.

1.2 Contribution to paper Il

The candidate performed analyses of publically available gene expression data of human LUAD
from smokers and never smokers compared with normal lung tissue (GEO dataset GSE43458;
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43458), as well as of human LUAD

from KRAS- and EGFR- mutant patients compared with normal lung tissue (GEO dataset
GSE31852; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31852). She analyzed
microarrays data from murine mast cells (MCs) populations and performed gene set enrichment
analyses (GSEA) to determine the enrichment of MCs signatures to the human phenotypes of
lung adenocarcinoma (LUAD) according to the smoking status and mutational profile of the
patients.

1.3 Contribution to paper Ill (Appendix)

The candidate conducted literature research, wrote the first draft of the manuscript, created all
figures and corresponded with Adv Exp Med Biol.
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2. Introductory summary

Can the pattern of accumulation of mutations in thoracic malignancies unravel molecular clusters
of patients? How do the signaling pathways affected by specific mutations in driver genes reshape
the immune contexture of tumor microenvironment and determine the progress of thoracic
malignancies in distinct molecular subgroups of individuals? With our studies, we address these
questions with a broader aim to revise the clinical scenery of thoracic malignancies through the
evolution of personalized diagnostic, prognostic and therapeutic modalities and the discovery of
new addiction partners as therapeutic targets.

Among all thoracic malignancies, lung cancer is the most dominant, constituting the most common
cause of cancer-related mortality worldwide, with lung adenocarcinoma (LUAD) representing the
most frequent histologic subtype of the disease. Molecular heterogeneity of LUAD in the
interpatient, intratumor and intertumor level represents a crucial challenge in the light of the
efficiency of current therapeutic approaches, yet the underlying origins and mechanisms of
actions of this diversity remain obscure.

Except for the molecular heterogeneity of malignant cells, there is also heterogeneity of the tumor
microenvironment (TME) which consists of several immune cells populations that infiltrate the
stroma in response to inflammatory signaling. We studied the role of the mast cells (MC) in the
progression of KRAS-mutant LUAD, most commonly featured in ever-smoking individuals that
also show increased risk for smoking-related chronic inflammation. We employed two murine
models of MC deficiency, dependent or independent on the KIT signaling blockade, and three
models of KRAS-mutant LUAD models. We observed that both populations of MCs infiltrate both
human and murine LUAD and we discovered a KIT-dependent mechanism enabling MCs to
display pro-tumorigenic functions through the regulation of IL-13 secretion. MC-associated
transcriptional imprints are enriched in human LUAD and related with poor survival, while KIT+
MC signature is up-regulated in KRAS-mutant human LUAD.

We further broadened our studies of KRAS-mutant cluster of patients on malignant pleural
mesothelioma (MPM), a highly lethal malignancy, emerging from neoplastic transformation of
mesothelial cells lining the pleural cavities of the interior chest wall. We employed the catalog of
somatic mutations in cancer (Forbes et al., 2015), ten large molecular studies of human MPM
(Bott et al., 2011; Bueno et al., 2016; De Rienzo et al., 2016; Enomoto et al., 2012; Guo et al.,
2015; Hmeljak et al., 2018; Kato et al., 2016; Lo lacono et al., 2015; Mezzapelle et al., 2013;
Shukuya et al., 2014), as well as clinical cohorts (Gueugnon et al., 2011; Klotz, Courty, et al.,
2019; Klotz, Lindner, et al., 2019; Smeele et al., 2018) to detect a distinct -in terms of histology,
survival and molecular features- cluster of patients harboring KRAS alterations, alone or in
accomplish with TP53 loss-of function alterations. We established novel high penetrance
conditional MPM mouse models of both epithelioid and biphasic subtype, featuring pleural
effusion accumulation facilitated by Trp53 deletion in KRAS-mutant cells. We additionally
developed three MPM cell lines carrying the driver KRAS®™2P mutation as well as Bap1?
inactivating alterations, and featuring a molecular profile enriched to the human disease, and we
identified KRAS as an actionable target in MPM.
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2.1 Molecular landscape of environmentally-induced lung
cancer

Lung cancer is a dominant malignancy, constituting the most common cause of global cancer-
related mortality and leading to 1,796,144 deaths during the year 2020 (Siegel et al., 2021; Sung
et al., 2021). Lung cancer is divided in two histological subtypes: non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC), with NSCLC including lung adenocarcinoma
(LUAD), squamous cell carcinoma (LUSQ) as well as large cell carcinoma and accounting for
approximately 85% of all lung cancer incidences. LUAD is the most commonly occurring
histological subtype of lung cancer.

Next to genetic susceptibility and replication errors during stem cell divisions, environmental
exposures present a fundamental causative factor of LUAD. Tobacco smoking, consisting of
chemical carcinogens and emitting radiation, is the predominant environmental cause of LUAD
(Thun et al., 2012), however the incidence of the disease is increasing in never- and former-
smokers worldwide, accounting for 10-25% of the cases (Couraud et al., 2012; Sun et al., 2007;
Wakelee et al., 2007). Other established environmental risk factors are exposure to second-hand
tobacco smoke (Whitrow et al., 2003), diet and food supplements, occupational lung carcinogens
such as radioactive particulate mass (Boffetta, 2004), indoor and outdoor air pollution including
emissions of polycyclic aromatic hydrocarbon compounds or nanoparticles (Vineis & Husgafvel-
Pursiainen, 2005), as well as other than tobacco-source high-energy transfer radiation (Alberg et
al., 2013; Furukawa et al., 2010; Preston et al., 2007).

Genomic instability presents one of the hallmarks of human cancer (Hanahan & Weinberg, 2011;
Negrini et al., 2010). Molecular profiling of LUAD has revealed that it harbors high mutational
burden among all studied cancer types, with thousands of genetic alterations per cancer cell
genome, including single nucleotide variants (SNV), copy number alterations (CNA),
dysregulation of alternative splicing (exon skipping), balanced inversions resulting in gene
fusions, with ALK, ROS1 (receptor tyrosine kinase) and RET, being the most commonly affected
genes, epigenetic alterations leading to overexpression of proto-oncogenes such as KRAS,
EGFR and PIK3CA and silencing of tumor suppressor genes, such as TP53, STK11 and PTEN,
as well as major chromosomal events like kataegis and chromothripsis (Campbell et al., 2016;
Chatterjee et al., 2018; "Comprehensive molecular profiling of lung adenocarcinoma," 2014;
Devarakonda et al., 2015; Imielinski et al., 2012; Kandoth et al.,, 2013). LUAD harbors
homologous coding mutational burden, represented by transcriptional strand bias for cytosine to
adenine transversions (Alexandrov et al., 2013; Kandoth et al., 2013).

Heterogeneity of the molecular profile in the interpatient, intratumor and intertumor level,
represents one of the most challenging issues in LUAD, in the light of the effectiveness of current
therapeutic approaches (Ramoén et al., 2020; Zhang et al., 2014; Zito Marino et al., 2019), yet the
mechanisms underlying the development of tumor diversity remain poorly understood. Molecular
heterogeneity of LUAD is temporal-dependent, as described by the clonal tumor evolution, with
driver mutations arising in the initial clone of tumor cells and passenger mutations acquired later
and characterizing the molecular events during the progress of tumor establishment (de Bruin et
al., 2014). The involvement of the cancer stem cell hypothesis providing distinct subclonal
lineages dynamically maintained in different tumors, as well as of the immune contexture of the
microenvironment to the emergence of tumor heterogeneity have been previously described
(Kreso & Dick, 2014; Pietras, 2011; Zito Marino et al., 2017). However, the molecular diversity of
LUAD is also contingent on the cause of the disease. The implications of exogenous mutagenic
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factors, such as tobacco carcinogens and radiation, to which a stem cell niche is exposed years
prior to tumor establishment, are sufficient to reveal distinct mutational imprints in LUAD patients
(Lawrence et al., 2013).

In particular, the genomic signature of ionizing radiation in thoracic malignancies is composed by
redundancy of deletions, as well as enrichment of chromosomal rearrangements, in specific
balanced inversions (Behjati et al., 2016). Furthermore, LUAD is molecularly distinct according to
the patients’ smoking status (Subramanian & Govindan, 2007; Sun et al., 2007), with tumors from
smokers displaying higher mutation burden and being predominantly represented by cytosine to
adenine transversions (C:G—A:T), whereas cytosine to thymidine (C:G—T:A) transitions are the
most enriched type of point mutations in never-smokers (Govindan et al., 2012; Imielinski et al.,
2012). Accordingly, different types of base substitutions in the trinucleotide level reflect the
causative exogenous exposures of the disease (Alexandrov et al., 2016). More specifically,
Alexandrov et al. defined mutational signatures on the trinucleotide context, by determining the
bases that flank the 5’ and 3’ end of the mutated base, and correlated them with clinical exposure
data across more than 20 cancer types and 10000 patients, identifying the smoking signature
(C>A transversion) (Alexandrov et al., 2016; Alexandrov et al., 2013). KRAS mutations appear in
higher frequency in smoking individuals, are detected in codons 12, 13 and 61 and are mutually
exclusive with EGFR mutations ("Comprehensive molecular profiling of lung adenocarcinoma,"
2014). Except for the mutational heterogeneity, smokers and non-smokers LUAD patients display
distinct tumor microenvironment composition and inflammatory imprints (Giotopoulou &
Stathopoulos, 2020; Li et al.,, 2018), as well as different epigenetic alterations and DNA
methylation profiles (Belinsky, 2004; Gao et al., 2016).

Comprehending the pattern of accumulation of mutations inflicted by distinct environmental
exposures during oncogenesis, as well as discriminating thoracic malignancies according to the
driver oncogene and mutational status of the patients, present an unmet clinical need that benefits
from correlation studies, but most importantly necessitates functional studies ("Comprehensive
molecular profiling of lung adenocarcinoma," 2014). Our studies focus on a specific molecular
cluster of LUAD and malignant pleural mesothelioma (MPM) patients, the ones harboring KRAS-
mutations, often associated with smoking ("Comprehensive molecular profiling of lung
adenocarcinoma," 2014). With our findings we seek to address the molecular diversity of thoracic
malignancies, to reshape the clinical landscape by the evolution of personalized diagnostic,
prognostic and therapeutic modalities and to enhance the discovery of new addiction partners as
therapeutic targets.
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2.2 Effects of environmental carcinogens on the respiratory
tumor microenvironment

Giotopoulou, G. A., & Stathopoulos, G. T. (2020). Effects of Inhaled Tobacco Smoke on the Pulmonary
Tumor Microenvironment. Adv Exp Med Biol, 1225, 53-69. https://doi.org/10.1007/978-3-030-35727-6_4

While tumor initiation is mediated by mutations in oncogenic driver genes, the progression is
affected by the interaction between cancer cells and their microenvironment, which is established
through the infiltration of various immune cellular populations to the stroma, mainly in response
to chemokine secretion by malignant cells (Allavena et al., 2011; Balkwill, 2004; Balkwill, 2012;
Balkwill et al., 2012; Bronte et al., 2006; Mantovani et al., 2008). Upon environmental carcinogenic
exposures, the microenvironment of the respiratory tract acquires pro-tumorigenic features,
enhancing chronic inflammation and favoring the survival, sustained proliferation and migration
of mutated malignant respiratory epithelial cells. The tumor microenvironment contexture, as well
as the inflammatory signatures harbor high heterogeneity (Balkwill et al., 2012; Chen et al., 2014)
and appear to be distinct according to the smoking status of lung cancer patients (Li et al., 2018).
Furthermore, ever-smokers LUAD patients show increased risk for smoking-associated chronic
inflammation, evident as chronic airflow obstruction (Houghton, 2013; Houghton et al., 2008;
Vestbo et al., 2013), in accordance to their higher response to immune checkpoint inhibitors (Rizvi
et al., 2015). The mechanisms underlying the environmentally-mediated pro-tumorigenic effects
in the tumor microenvironment involve deregulation of the physical and biochemical properties of
the extracellular matrix (ECM) (Lu et al., 2012), formation of new vessels (neoangiogenesis) and
increase of capillary density (Gazdar, 2003; Heeschen et al., 2001; Heeschen et al., 2003),
acquirement of a mesenchymal phenotype by polarized epithelial cells (epithelial-mesenchymal
transition- EMT) through reactive oxygen species (ROS) production, increase of the migration
capacity and cellular invasion potential (Di Cello et al., 2013; Milara et al., 2013; Sohal et al.,
2010; Zhang et al., 2012; Zhang et al., 2001). Furthermore, additional processes enhancing the
tumor initiating potential of environmental carcinogenic factors include metabolic alterations
resulting in aging acceleration (Pavlides et al., 2009; Salem et al., 2013), immunomodulatory
processes with acute (van der Vaart et al.,, 2004) or chronic pro- inflammatory effects
accompanied by diminished responsiveness to infections (Coussens et al., 2013; Crusz &
Balkwill, 2015; Herr et al., 2009; Houghton, 2013) as well as epigenetic alterations (Belinsky,
2004; Clark & Molloy, 2017; Liu et al., 2010; Vaz et al., 2017). Unravelling the complexity and the
mechanisms of recruitment of the immune cells’ populations consisting the tumor
microenvironment, as well as their roles in tumorigenesis holds promise for the development of
effective immune checkpoint inhibitors therapies for thoracic malignancies.


https://doi.org/10.1007/978-3-030-35727-6_4
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2.3 Mast cells in KRAS-mutant LUAD

Lilis, 1., Ntaliarda, G., Papaleonidopoulos, V., Giotopoulou, G. A., Oplopoiou, M., Marazioti, A., Spella, M.,
Marwitz, S., Goldmann, T., Bravou, V., Giopanou, |., & Stathopoulos, G. T. (2019). Interleukin-1 provided
by KIT-competent mast cells is required for KRAS-mutant lung adenocarcinoma. Oncoimmunology, 8(7),
1593802. https://doi.org/10.1080/2162402x.2019.1593802

Mast cells (MCs) are bone marrow-derived tissue-resident immune cells that play key roles in
inflammatory responses, acute allergic reactions, tissue homeostasis, as well as angiogenesis
(Galli & Tsai, 2012; Marone et al., 2002; Marone et al., 2016; Metcalfe et al., 1997). MCs represent
a crucial component of the tumor microenvironment, reshaping its contexture by establishing
interactions with other tumor-infiltrating cell populations, promoting invasiveness and metastasis
(Aponte-Loépez & Mufioz-Cruz, 2020). Their peritumoral and/or intratumoral density is increased
in various cancer types (Aponte-Lopez & Mufoz-Cruz, 2020; Beer et al., 2008; Franco et al.,
2014; Giannou et al., 2015; Johansson et al., 2010; Ma et al., 2013; Melillo et al., 2010; Pittoni et
al., 2011; Ribatti et al., 1999; Soucek et al., 2007; Theoharides, 2008; Vyzoukaki et al., 2015) and
is related to either good or poor prognosis depending on the cancer type and stage, rendering
their role in cancer progression ambiguous (Varricchi et al., 2017). Inflammation is a hallmark of
cancer (Hanahan & Weinberg, 2011) and in LUAD it has been featured in ever-smoking
individuals harboring mutations in KRAS proto-oncogene ("Comprehensive molecular profiling of
lung adenocarcinoma," 2014), increasing the risk for chronic obstructive pulmonary disease
(Houghton, 2013; Houghton et al., 2008; Vestbo et al., 2013). MCs promote an inflammatory
chemokine signaling network in malignant cells harboring KRAS mutations enabling malignant
pleural effusion formation (Giannou et al., 2015), however their role in LUAD remained obscure.

In our study, we employed two models of MC deficiency, based on KIT signaling blockade or
genetic ablation, cKitVs" (Giannou et al., 2015; Tono et al., 1992) and Cpa3.Cre (Feyerabend et
al., 2011; Giannou et al., 2015) respectively, in three KRAS-mutant LUAD models; chemically-
induced using exposure to the tobacco carcinogen urethane (ethyl carbamate, EC; stand-alone
mutagen and tumor promoter) (Stathopoulos et al., 2007), genetically-induced transient Ad-
mediated KRASC'?P transgene expression in the respiratory epithelium (Vreka et al., 2018) and
heterotopic subcutaneous installation of KRASC'2P mutation harboring Lewis lung carcinoma LLC
cancer cells followed by their spontaneous dissemination to the pulmonary areas. Therefore, our
studies enabled us to study two different MC populations, KIT+ and KIT-. We observed that both
MCs populations infiltrate murine and human LUAD in response to factors secreted by the
malignant cells, where they exert pro-tumorigenic functions. KIT+ MCs are required for tumor
initiation, progression and metastasis and reshape the contexture of tumor microenvironment
enabling the recruitment of other immune cells populations through the KIT-dependent regulation
of IL-1B secretion. We identified MC-relevant transcriptional signatures, significantly over-
represented in human LUAD and related with shorter survival, with KIT+ signature being enriched
in KRAS-mutant LUAD induced by tobacco smoking, in accordance with the findings from our in
vivo KRAS-mutant-driven LUAD murine models. Therefore, among the controversial role of MCs
according to the type of malignancy (Varricchi et al., 2017), our study supports that KIT+ cells are
required for KRAS-mutant LUAD, through IL-1B secretion which has been previously found to
promote tumor progression by mediating nuclear factor-kB (NF-kB) transcriptional activity in other
thoracic malignancies (Giannou et al., 2015; Marazioti et al., 2018).
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Figure 1: Schematic representation of the role of KIT+ mast cells in KRAS-mutant lung

adenocarcinoma
KIT+ mast cells infilirate KRAS-mutant LUAD in response to factors secreted by the malignant
cells, and are required for tumor growth and metastasis through an IL-13- mediated mechanism.
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2.4 KRAS signaling in malignant pleural mesothelioma

Marazioti, A.*, Krontira, A. C.*, Behrend, S. J.*, Giotopoulou, G. A.*, Ntaliarda, G.*, Blanquart, C., Bayram,
H., lliopoulou, M., Vreka, M., Trassl, L., Pepe, M. A. A., Hackl, C. M., Klotz, L. V., Weiss, S. A. |, Koch, .,
Lindner, M., Hatz, R. A., Behr, J., Wagner, D. E., Papadaki, H., Antimisiaris, S. G., Jean, D., Deshayes, S.,
Grégoire, M., Kayalar, O., Mortazavi, D., Dilege, S., Tanju, S., Erus, S., Yavuz, O., Bulutay, P., Firat, P.,
Psallidas, I., Spella, M., Giopanou, |., Lilis, I., Lamort, A. S., & Stathopoulos, G. T. (2021). KRAS signaling
in malignant pleural mesothelioma. EMBO Mol Med, e13631. https://doi.org/10.15252/emmm.202013631

Malignant pleural mesothelioma (MPM) is a highly lethal cancer, with a median overall survival of
9 to 17 months (Tsao et al., 2009), arising from neoplastic transformation of the mesothelial cells
lining the pleural cavities (visceral pleura), as well as the interior chest wall (parietal pleura) (Bibby
et al., 2016; Bueno, 2005; Mutti et al., 2018). MPM is broadly classified into three histological
subtypes: epithelioid, sarcomatoid and biphasic (or mixed), with epithelioid presenting the most
propitious prognosis and sarcomatoid showing particularly impaired survival outcomes (Galateau-
Salle et al., 2016; Scherpereel et al., 2010; Tischoff et al., 2011). The major cause of MPM
accounting for >80% of the cases, is asbestos exposure that evokes DNA and chromosomal
impairment following phagocytosis of asbestos fibers, ROS production, direct cytotoxicity, mitotic
spindle damage consistent with widespread loss of heterozygosity, cytokine and growth factor
dysregulation, abnormalities of mitotic process, macrophage recruitment and persistent
inflammation, often associated with effusion i.e., exudative fluid accumulation that causes chest
pain and dyspnea (Galani et al., 2019; Hmeljak et al., 2018; Huang et al., 2011; Jaurand & Fleury-
Feith, 2005; Wagner et al., 1960). Additional risk factors are heredity, prior therapeutic chest
radiation exposure, non-asbestos mineral fibers, chronic pleural inflammation, germline genetic
mutations as well as spontaneous events (Attanoos et al., 2018; Hofmann et al., 1994; Melaiu et
al., 2018; Nagai et al., 2011; Wagner et al., 1960). Although the decrease and strict regulations
regarding asbestos use have diminished new incidences in Western countries, its long latency
period (10-40 years) between exposure and onset of the disease (Sun et al.,, 2017) and its
continued mining in less developed countries (Frank & Joshi, 2014), combined with the limited
advances on the effectiveness of treatment options (Remon et al., 2015), with the first line therapy
strategy in the form of combination cisplatin/pemetrexed-based chemotherapy remaining
unchanged for decades (Vogelzang et al., 2003), render MPM an ongoing global area of concern
(Courtiol et al., 2019; Scherpereel et al., 2018; Yap et al., 2017).

The molecular landscape of MPM reveals high heterogeneity both among patients and within
individual tumors, with intratumor diversity emerging as a combination of spatial and longitudinal
(Blum et al., 2019; Bueno et al., 2016; Oehl et al., 2018; Wadowski et al., 2020; Yap et al., 2017).
Comprehensive characterization of MPM tumors by multiple studies identified the molecular
mechanisms underlying MPM tumorigenicity, including gene fusions, splice alterations, aberrant
chromosomal alterations, epigenetic modifications, as well as genetic mutations, characterized
by loss-of-function mutations in tumor-suppressor genes TP53 and CDKNZ2A being connected
with poor overall survival, as well as BAP1, NF2, TSC1, DDX3X, STK11 and SETD2, along with
gain-of-function mutations in proto oncogenes EGFR, MYC, PIK3CA, BRAF, NRAS, HRAS and
KRAS (Bianchi et al., 1995; Bott et al., 2011; Bueno et al., 2016; Cheng et al., 1994; Enomoto et
al., 2012; Gao et al., 2013; Guo et al., 2015; Guo et al., 2014; Kato et al., 2016; Lo lacono et al.,
2015; Mezzapelle et al., 2013; Wadowski et al., 2020). Interestingly, the frequency of KRAS
mutations in all studied human cohorts above is detected with targeted as opposed to next-
generation sequencing approaches (Shukuya et al., 2014).
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There is an unfulfilled urge for the development of relevant animal models, as preclinical tools
that recapitulate the mutation landscape as well as the clinicopathological features of the human
MPM. Although several tumor-suppressor genes appear to underlie the pathogenesis of MPM
(Bottetal.,2011; Bueno et al., 2016; Gao et al., 2013; Guo et al., 2014), their standalone exclusive
conditional deletion does not induce MPM in rodents in the absence of carcinogenic exposure to
asbestos (Jongsma et al., 2008; Kukuyan et al., 2019). Two elegant studies developed mouse
models for MPM and showed that tumor suppressor genes cooperate to drive the disease, with
Jongsma et al targeting CDKN2A, NF2, and TP53 and Sementino et al TP53 and PTEN deletions
in the pleural mesothelium (Jongsma et al., 2008; Sementino et al., 2018). The mutational
diversity of MPM rises the need for the development of such mouse models with high penetrance
and rapid evolution, which would genetically and histopathologically represent specific molecular
clusters of patients and pave the path for more personalized therapeutic interventions.

KRAS mutations in tumor cells drive malignant pleural effusion (MPE) formation, through a CCL2-
dependent signaling cascade and non-canonical NF-kB oncogenic signaling addiction, enabling
host to tumor interaction with the recruitment of myeloid cells to the pleural cavity, and are
actionable (Agalioti et al., 2017; Marazioti et al., 2018). RAS/MAPK signaling is activated in human
MPM cell lines (Patel et al., 2007) and is upregulated in the TCGA cohort of MPM patients
(Hmeljak et al., 2018). Furthermore, the GTPase KRAS interacts with TP53 signaling (Yang et
al., 2020). Accordingly, we hypothesized that KRAS mutations drive MPM formation, possibly in
cooperation with TP53 alterations.

We employed the catalog of somatic mutations in cancer (Forbes et al., 2015), ten large molecular
studies of human MPM (Bott et al., 2011; Bueno et al., 2016; De Rienzo et al., 2016; Enomoto et
al., 2012; Guo et al., 2015; Hmeljak et al., 2018; Kato et al., 2016; Lo lacono et al., 2015;
Mezzapelle et al., 2013; Shukuya et al., 2014), as well as clinical cohorts (Gueugnon et al., 2011;
Klotz, Courty, et al., 2019; Klotz, Lindner, et al., 2019; Smeele et al., 2018) and we identified a
subgroup of MPM patients harboring KRAS point mutations, copy number alterations and
overexpression, alone or in accomplish with Trp53 loss-of function alterations. KRAS alterations
were found in low allelic frequency, explained by their heterozygous nature, as well as by the
polyclonal disposition of MPM, in accordance to their sporadic occurrence in studies employing
massive parallel sequencing approaches that lack sensitivity for low allelic frequency or read
depth, compared with ddPCR or maximal depth sequencing (Guo et al., 2015; Jongsma et al.,
2008; Kato et al., 2016; Li et al., 2020; Menges et al., 2014; Shukuya et al., 2014). This molecular
subset of KRAS- driven MPM patients is distinct in terms of gene expression imprints, mutational
signatures, histology and survival. We additionally established conditional MPM mouse models
by ectopic expression of KRAS®'2D in the pleural mesothelium alone, showing histological
features of the epithelioid subtype, or in combination with Trp53 deletion, leading to a more
aggressive progression of the disease, with biphasic histological characteristics and pleural
effusion accumulation. Although Trp53 deletions have been ubiquitously observed in human MPM
and are connected with poor survival (Bueno et al., 2016; Gao et al., 2013; Guo et al., 2014; Yap
et al., 2017), its standalone conditional deletion in mouse models is not sufficient to induce MPM,
suggesting that other addiction partners are required (Jongsma et al., 2008; Kukuyan et al., 2019).
Our findings, in accordance with our previous studies supporting the inflammatory-promoting
effects of KRAS in MPE (Agalioti et al., 2017; Marazioti et al., 2018), provide evidence that KRAS
necessitates Trp53 to facilitate effusion accumulation, a clinical characteristic of the human
disease that had not previously been reproduced in animal models. MPM cell lines derived thereof
from these MPM tumors carry the driver KRAS®'™?P mutation, harbor possibly secondarily-
triggered Bap1 inactivating alterations, with Bap?1 being the most commonly altered gene in
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human MPM (Bott et al., 2011; Bueno et al., 2016), show enrichment in the molecular and gene
expression profile of the human disease, induce MPM upon pleural transplantation in mice and
are actionable by inhibition of KRAS.

Therefore, our study proves the presence of a distinct molecular subset of KRAS-driven MPM
patients, establishes novel conditional mouse models of both epithelioid and biphasic subtype
with accompanying effusion for further interrogation of KRAS implications in MPM pathogenesis,
develops three novel MPM cell lines and identifies KRAS as an actionable target that warrants
application in clinical trials for the development of more personalized treatment approaches for
this previously underestimated molecular group of patients.

Asbestos fiber

Lung alveolus

Asbestos —exposed
mesothelium

Late invasive MPM

@} wild-type
@) RAS mutant
@)} TP53 mutant
¢ )} BAP1 mutant

@)} NF2 mutant Diagnosed &
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Tissue sample | Pleural mesothelial cells

Figure 2: Schematic representation of scenarios for missing of KRAS pathway alterations
by next generation sequencing studies via sampling and allelic frequency bias.

KRAS alterations, alone or in accomplice with TP53 alterations, potentially have an essential but
underestimated tumor initiating role in MPM. The low allelic frequency of KRAS alterations due to
their heterozygotic nature, in combination with their persistence at a subclonal level, with the
accumulation of various secondary non-driver mutations like Bap1 or Nf2, justifies the sampling
bias and the insensitivity of next generation sequencing studies for their detection.
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Abstract

Malignant pleural mesothelioma (MPM) arises from mesothelial
cells lining the pleural cavity of asbestos-exposed individuals and
rapidly leads to death. MPM harbors loss-of-function mutations in
BAP1, NF2, CDKN2A, and TP53, but isolated deletion of these genes
alone in mice does not cause MPM and mouse models of the
disease are sparse. Here, we show that a proportion of human
MPM harbor point mutations, copy number alterations, and over-
expression of KRAS with or without TP53 changes. These are likely
pathogenic, since ectopic expression of mutant KRASS*?® in the
pleural mesothelium of conditional mice causes epithelioid MPM
and cooperates with TP53 deletion to drive a more aggressive
disease form with biphasic features and pleural effusions. Murine
MPM cell lines derived from these tumors carry the initiating
KRAS®™?® |esions, secondary Bap1 alterations, and human MPM-like
gene expression profiles. Moreover, they are transplantable and
actionable by KRAS inhibition. Our results indicate that KRAS alter-
ations alone or in accomplice with TP53 alterations likely play an
important and underestimated role in a proportion of patients
with MPM, which warrants further exploration.
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Introduction

Malignant mesothelioma annually kills up to forty persons per
million population worldwide (Liu et al, 2017; Carbone et al, 2019).
It most commonly arises from the mesothelium of the pleural cavi-
ties that line the lungs (visceral pleura) and the interior chest wall
(parietal pleura) and only occasionally from the peritoneal mesothe-
lium (Bibby et al, 2016; Mutti et al, 2018). Human malignant pleural
mesothelioma (MPM) is mainly caused by inhaled asbestos, which
caused 145,235 deaths in 1990 increasing by 51 % to 218,827 deaths
in 2016, most of them in high-income countries (GBD 2016 Occupa-
tional Carcinogens Collaborators, 2020). However, other bioactive
materials such as nanofibers can also cause mesothelioma in
rodents and possibly in humans (Ryman-Rasmussen et al, 2009;
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Nagai et al, 2011). MPM manifests with or without a malignant
pleural effusion (MPE), that is, exudative fluid accumulation that
causes chest pain and dyspnea, and is histologically classified into
epithelioid, sarcomatoid, or biphasic subtypes (Scherpereel et al,
2010; Galateau-Salle et al, 2016; Thomas et al, 2017; Paajanen et al,
2018). The disease progresses relentlessly despite contemporary
combination therapies, with a median survival of mere 9-18 months

Antonia Marazioti et al

(Zalcman et al, 2016; Yap et al, 2017; Scherpereel et al, 2018; Cour-
tiol et al, 2019). The clinicopathologic manifestation of MPM at
diagnosis impacts patient survival, with advanced stage, sarcoma-
toid histologic subtype, poor physical performance status, elevated
numbers of peripheral blood leucocytes, male sex, uncontrolled
pleural effusion, and other factors portending dismal prognosis
(Fennell et al, 2005; Tsao et al, 2009; Pass et al, 2016; Rusch et al,
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Figure 1. KRAS alterations in human MPM from published datasets and the cancer genome atlas (TCGA) pan-cancer MPM cohort.

A KRAS and TP53 mutation frequencies in MPM from the catalogue of somatic mutations in cancer (COSMIC) stratified by histologic subtype (n = 775 patients).

B Top 25 mutated genes from 10 molecular studies of human MPM (n = 838 patients).

C-E KRAS and TP53 alterations in the cancer genome atlas (TCGA) pan-cancer MPM dataset (n = 86 patients). Shown are clinical and molecular data plot with
alteration frequencies (C) and patients reclassified as KRAS- or TP53-altered (asterisks), copy number variation data summary (D), and segments of the KRAS and

TP53 loci (E).

Data information: In (A), data are presented as cumulative percentages of patients tested mutant respective to patients tested for every gene. P, overall probability, two-
way ANOVA. In (B), data are presented as cumulative numbers (n; numbers above bars) and percentages (%) of patients with KRAS (red bar), TP53 (blue bar), and other
(gray bars) mutations. In (C), each column represents one patient and each row one clinical or molecular feature. Asterisks indicate KRAS and TP53 alterations not
identified by the TCGA, but reclassified as altered in this study due to 12p gain, 17p loss, KRAS locus gain (z > 0.3), and/or TP53 locus loss (z < -0.3). In (D), data are
presented as raw data points (circles), rotated kernel density distributions (violins), and patient numbers (n) between thresholds of normal (solid black line at z = 0), low
amplification (dotted red line at z = 0.1), low loss (dotted blue line at z = -0.1), high amplification (solid red line at z = 0.3), and deep loss (solid blue line at z = -0.3).

P, probability, paired Wilcoxon rank sum test. In (E), KRAS (red line) and 7P53 (blue line) loci segments of all 87 patients are shown. Each horizontal segment represents
one patient. White and shades of red and blue indicate no change and magnitude of gain and loss, respectively.

Source data are available online for this figure.

2016; Cheah et al, 2017; Thomas et al, 2017; Kindler et al, 2018;
Hassan et al, 2019).

Multiple comprehensive analyses of MPM genomes identified a
mosaic mutational landscape characterized by widespread loss-of-
function of tumor suppressor genes (BAPI, NF2, CDKN2A, TP53,
TSCI, etc), sporadic gain-of-function of proto-oncogenes (PIK3CA,
EGFR, KRAS, NRAS, HRAS, BRAF, etc), and inconclusive addiction/
exclusion patterns thereof (Bott et al, 2011; Enomoto et al, 2012;
Mezzapelle et al, 2013; Shukuya et al; 2014; Guo et al, 2015; Lo
lacono et al, 2015; Bueno et al, 2016; De Rienzo et al, 2016; Kato
et al, 2016; Hmeljak et al, 2018). Interestingly, KRAS proto-
oncogene GTPase (KRAS) alterations were detected more frequently
using targeted compared with massive parallel sequencing
approaches by the studies above. In addition, NF2 mutations that
cause persistent KRAS signaling (Tikoo et al, 1994), as well as BAPI
and CDKN2A mutations that are functionally related with TP53 loss-
of-function (Stott et al, 1998; Arizti et al, 2000; Bi et al, 2016), are
very common in MPM. KRAS mutations have also been shown to

activate the TP53 cell cycle checkpoint (Matallanas et al, 2011). In
addition to clinicopathologic presentation, MPM mutations also
impact prognosis, with TP53 and CDKNZ2A loss-of-function occurring
more frequently in non-epithelioid MPM and portending poor
survival (Bott et al, 2011; Yap et al, 2017).

There is an unmet clinical need for mouse models that recapitu-
late the mutation spectrum and clinicopathologic manifestations of
human MPM. In this regard, MPM cell lines for transplantable
models, asbestos-induced mouse models, and genetic models of the
disease are characterized by scarcity, limited availability, and signif-
icant difficulty of implementation (Tkediobi et al, 2006; Fridlender
et al, 2009; Forbes et al, 2015; Agalioti et al, 2017). Interestingly,
standalone mesothelial loss-of-function of BAPI, NF2, CDKN2A,
TP53, and TSC1 is not sufficient to cause MPM in mice, rendering
the drivers of the disease resistant to functional validation (Jongsma
et al, 2008; Guo et al, 2014; Menges et al, 2014; Xu et al, 2014;
Kukuyan et al, 2019). Moreover, faithful models of MPM are
urgently needed, as most existing studies have focused on the rare

Figure 2. KRAS pathway activation in MPM from the cancer genome atlas (TCGA) pan-cancer MPM dataset.

© 2021 The Authors

A-F Molecular and clinical features of the cancer genome atlas (TCGA) pan-cancer MPM patients (n = 87) stratified by the presence of KRAS standalone (n = 10) and
combined KRAS/TP53 (n = 7) alterations. Shown are unsupervised hierarchical clustering of n = 86 patients (gene expression data were not available for one patient)
by 40 genes significantly overexpressed in KRAS/TP53-altered over KRAS-altered over KRAS/TP53-normal patients (A) and data summaries of mononucleotide change
signatures (B), of indices of genomic instability and mutation burden (C), of clinical features and KRAS/TP53/NF2 co-mutation frequency (D, E), and of overall
survival (F).

G KRAS/TPS3 pathway adapted from Matallanas et al (2011) and Tikoo et al (1994). Color-coded genes were identified by TCGA and PANTHER pathway analyses.

H,| PANTHER and Reactome KRAS and TP53 pathways significantly altered in the cancer genome atlas (TCGA) pan-cancer MPM patients. Shown are volcano plot of
fold-enrichment versus —log;o(probability) (H), and data summary of fold-enrichment of KRAS and TP53 versus all other pathways with fold-enrichment > 0.5 (I).

Data information: In (A), data are presented as heatmap of 40 differentially expressed genes (rows) in 86 individual patients (columns), color code of unsupervised
hierarchical clusters, KRAS/TP53 status, and heatmap (legend), and probabilities (P) for enrichment of KRAS- and KRAS/TP53-altered patients in cluster 1. The scale bar
represents the color-coded z-scores. In (B), data are presented as heatmap of six different possible mononucleotide changes (rows) in patients grouped by KRAS/TP53
status (columns) and color code of mean mutation number (legend). ****, FDR q < 2 x 1077 compared with all other mononucleotide changes, 2-way ANOVA with
Benjamini, Krieger, and Yekutieli two-stage linear step-up procedure. In (C) and (I), data are presented as raw data points (circles), rotated kernel density distributions
(violins), medians (solid lines), and quartiles (dotted lines). P, overall probability, Kruskal-Wallis test. (C): * and **: P < 0.05 and P < 0.01, respectively, compared with
KRAS/TP53-normal patients, Dunn’s post-tests. (I): ** and ****: P < 0.01 and P < 0.0001, respectively, compared with other pathways, Dunn’s post-tests. In (D) and (E),
data are presented as patient numbers (n) and overall prabability (P) t:y,y2 or Kruskal-Wallis tests (D) or hypergeometric test for enrichment of KRAS mutations in TP53-
altered or biphasic MPM (E). In (F), data are presented as sample size (n), Kaplan-Meier survival estimates (lines), censored observations (line marks), log-rank P value,
and hazard ratio (HR) with 95% confidence interval (95% Cl). In (H), data are presented as color-coded individual pathways (circles), threshold of significance (horizantal
dotted line), no enrichment baseline reference (vertical dotted line), and selected pathway names and codes. P and R initials in pathway codes denote PANTHER and
Reactome pathways, respectively. n, sample size; FDR g, probability, false discovery rate; AGE, differential gene expression.

Source data are available online for this figure.
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Figure 2.

peritoneal disease and only one elegant study targeted NF2/
CDKN2A/TP53 deletions to the pleural mesothelium (Jongsma et al,
2008). Such mouse models would represent different molecular
subtypes of MPM, would have high penetrance, and would also be
specific for MPM with or without MPE development.

Based on our previous observation of a Kras®'*¢ mutation (Kras,
Mus musculus Kirsten rat sarcoma viral oncogene homolog) in an
asbestos-induced murine MPM cell line (Agalioti et al, 2017; Marazi-
oti et al, 2018), on published work that showed RAS pathway acti-
vation in MPM (Patel et al, 2007), and on the functional
interconnection between mutant KRAS and TP53 signaling (Matal-
lanas et al, 2011), we hypothesized that KRAS alterations are
involved in MPM development, alone or in accomplice with TP53

4 of 22 EMBO Molecular Medicine 13631 | 2021
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alterations. Indeed, here we query the TCGA MPM dataset and
employ sensitive methods in our own clinical cohorts to discover
KRAS and TP53 alterations in a subset of patients with MPM. We
further show that targeting oncogenic KRAS“'P alone to the murine
pleural mesothelium causes MPM and, when combined with Trp53
deletion, triggers aggressive MPM with MPE. Murine MPM is shown
to carry the initiating KRAS®'?P mutations, to harbor Bap! inactivat-
ing mutations, to be transmissible to naive mice, and to resemble
the molecular signatures of human MPM. Hence, KRAS mutations
are implicated in MPM pathobiology, the contributions of TP53 in
shaping the disease’s manifestations are described, and new mouse
models are provided for the study of the biology and therapy of a
molecular subclass of MPM that is driven by KRAS signaling.
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Results
KRAS and TP53 alterations in human MPM

In MPM from the catalogue of somatic mutations in cancer (COSMIC;
Forbes et al, 2015), KRAS and TP53 mutation frequencies of 1-3%
and 10-20%, respectively, were evident (Fig 1A; dataset available at
https://cancer.sanger.ac.uk/cosmic/browse/tissue?wgs = off&sn = pleura
&ss = all&hn = mesothelioma&sh = &in = t&src = tissue&all_data=n).
KRAS and TP53 mutations comprised, respectively, 2 and 18% of all
mutated genes in a dataset composed of 10 large MPM studies (Bott
et al, 2011; Enomoto et al, 2012; Mezzapelle et al, 2013; Shukuya
et al, 2014; Guo et al, 2015; Lo Iacono et al, 2015; Bueno et al, 2016;
De Rienzo et al, 2016; Kato et al, 2016; Hmeljak et al, 2018) (Fig
1B). The aforementioned analysis consisted of manual curation of
the main and supplementary data, while the latter study, the cancer
genome atlas (TCGA) pan-cancer MPM dataset (n = 86 patients;
Hmeljak et al, 2018) available at https://www.cbioportal.org/study/
summary?id = meso_tcga_pan_can_atlas_2018 (Cerami et al, 2012),
was analyzed in detail, via a systematic query of mutations, copy
number alterations, and mRNA and protein expression of KRAS and
TP53. According to TCGA criteria, eight patients showed alterations
in KRAS two of which had dual KRAS/TPS53 changes. However,
when copy number alterations (CNA) at the KRAS12p12.1 (position
chr12:25,357,180-25,404,863) and TPS3 17pl13.1  (position
chr17:7,570,720-7,591,868) loci were scrutinized using integrative
genomics viewer (Robinson et al, 2011), additional high KRAS gains
were discovered in nine and deep TP53 losses in 13 patients, with
five patients harboring changes in both genes (Fig 1C-E). For this,
KRAS locus gain (z > 0.3) and/or TP53 locus loss (z < —0.3), as well
as chromosome 12p gains and 17p losses, were taken into account
(Smith & Sheltzer, 2018). Hence, a KRAS alteration alone was deter-
mined in n = 10 patients (12%) and a combined KRAS/TP53 alter-
ationinn = 7 (8%), for a total KRAS alteration rate of 20%.

We subsequently examined the transcriptomes of TCGA MPMs
(available at https://xenabrowser.net/datapages/?dataset = TCGA-
MESO.htseq_fpkm-uq.tsv&host = https % 3A % 2F % 2Fgdc.xenahubs.

EMBO Molecular Medicine

net&removeHub = https % 3A % 2F % 2Fxena.treehouse.gi.ucsc.edu%3
A443) stratified by the presence of a KRAS alteration alone (n =
10), a combined KRAS/TP53 alteration (n = 7), or none of the
above (n = 69). Forty genes were biologically and statistically
significantly overrepresented in KRAS/TPS53-altered over KRAS-
altered over normal patients, which were able to cluster patients by
genetic alteration in an unsupervised hierarchical fashion (Fig 2A).
KRAS/TP53-altered patients showed loss of a C>T mononucleotide
signature that preponderated in KRAS/TP53-normal patients and
displayed higher aneuploidy and genome alteration indices (Figs 2B
and C). KRAS and TPS3 alterations were co-occurring at a rate
expected by chance, while KRAS-altered patients displayed a non-
significant repulsion of NF2 mutations, a statistically significant
preponderance of biphasic histology, and significantly worse prog-
nosis (Figs 2D-F). Interestingly, when all mutated genes from this
cohort were entered into the Protein Analysis Through Evolutionary
Relationships System (PANTHER; http://www.pantherdb.org/),
multiple KRAS and TP53 signaling pathways were biologically and
statistically significantly enriched in MPM, which, together with the
KRAS-NF2 repulsion described above, aligned along a biological
KRAS-TP53 pathway proposed elsewhere (Tikoo et al, 1994; Matal-
lanas et al, 2011) (Fig 2G-1). Our results were concordant with the
TCGA pan-cancer pathway analysis that reported 9 and 21% alter-
ation frequencies of the RTK/RAS and p53 pathways in MPM
(Sanchez-Vega et al, 2018). Hence, we describe a molecular subclass
of MPM patients in the TCGA dataset that involves ~ 20% of
patients, which harbor KRAS gain-of-function with or without TP53
loss-of-function. This molecular MPM subset features KRAS path-
way activation, different mutation spectra, gene expression profiles,
histology, and survival compared to other MPMs.

To further test this, we interrogated KRAS and TPS53 in our
MPM patients, whose clinical characteristics are given in
Appendix Table S1. We employed digital droplet polymerase chain
reaction (ddPCR) in order to detect KRAS codon 12/13 and 61 muta-
tions, as well as TP53 CNA in pleural fluid and cell pellets of 45
patients with pleural effusions from our cohorts in Munich,
Germany (Klotz et al, 2019a, 2019b). The effusions were caused

Figure 3. KRAS and TP53 alterations in human MPM from Germany and human MPM cell lines from France.

A-D Pleural fluid cell pellets and supernatants from 45 patients (called ASK #) with pleural effusion from Munich, Germany (Klotz et al, 2019a, 2019b), were subjected
to digital droplet polymerase chain reaction (ddPCR) for the detection of mutant (V") copies of KRAS codon 12/13 (KRAS“'%*3) and KRAS codon 61 (KRAS<®Y), as well
as copies of TP53 and TERT. Diagnoses were benign pleural effusion (n = 5), lung adenocarcinoma (LUAD; n = 16), MPM (n = 12), and other extrathoracic cancers
(n = 12). The assays were designed for detection of down to 1:20,000 copies using EKVX (KRAS"TTP53%61%T), A549 (KRASS'2°TP53"T), NCI-H460 (KRASHTP53MT),
NCI-H3122 (KRASYTTP5355%), and NCI-H3255 (KRASVTTP535%591% human LUAD cells as contrals. Shown are individual patient (KRAS plot) and individual sample
(TP53 plot) allelic frequencies with color code and limits of normal TP53 allelic frequency as vertical dashed lines in the TP53 plot (A), representative gated dotplots
of codon 12/13 KRAS ddPCR (B) and TP53/TERT (C), and results summary table (D). Any number of KRAS-mutant droplets detected in any sample (KRAS plot in A) and
any patient that failed to achieve normal TP53 ploidy by any sample (TP53 plot in A) was deemed altered.

E-G Results summary (E), representative KRAS CNA segments (F), and data summary of individual cell line CNA z-score (G) from Affymetrix CytoScanHD Arrays of 33
primary MPM cell lines (called MESO #) from Nantes, France (GEO dataset GSE134349). Red lines denote the KRAS locus on chromosome 12p12.1.

H Data summary of mutant allelic frequency of KRAS compared with NF2 and BAP1 in all mutated samples from (A-G).

Data information: In (A), data are presented as data summary of the highest mutant copy percentage detected per individual sample (KRAS plot) or of all individual
samples assessed (TP53 plot). In (D), data are presented as number of patients (n). P, probability, hypergeometric test for enrichment of KRAS mutations in MPM versus
other tumors. In (E), data are presented as individual cell lines (columns), genes (rows), legend, and number of patients (n in table). £, probability, hypergeometric test for
enrichment of KRAS mutations in TP53-mutant MPM. In (C), data are presented as raw data points (circles), rotated kernel density distribution (violins), and cell line
numbers (n) outside thresholds of amplification (dotted red line at 2.3) and loss (solid blue line at 1.7). P, probability, paired Wilcoxon rank sum test. In (H), data are
presented as raw data points (circles), rotated kernel density distributions (violins), and medians (lines). P, overall probability, one-way ANOVA. * and **: P < 0.05 and

P < 0.01, respectively, compared with KRAS, Tukey's post-test.
Source data are available online for this figure.

© 2021 The Authors
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Figure 3.

from benign etiologies (n = 5), MPM (n = 12), metastatic lung
adenocarcinoma (LUAD; n = 16), or metastatic other bodily tumors
(n = 12). The assays were designed for the detection of down to
1:20,000 mutant (MYT) or wild-type (V") copies. We detected
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standalone KRAS mutations and combined KRAS/TPS53 alterations
in three and two of our 12 patients with MPM, respectively (Fig 3A—
C). KRAS and TP53 alterations co-occurred at a rate expected by
chance (Fig 3D). We next used sensitive Affymetrix CytoScanHD
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Figure 4. KRAS and TP53 alterations in MPM patients from France and

Turkey.

A B Pleural fluid cell pellets and supernatants from 10 patients (called
CRCINA #) with pleural effusion from Nantes, France (Gueugnon et al,
2011; Smeele et al, 2018), and pleural tumor samples from 17 patients
(called TR#) with MPM from Istanbul, Turkey, were subjected to digital
droplet polymerase chain reaction (ddPCR) for the detection of mutant
(MYTy copies of KRAS codon 12/13 (KRAS®***3) and KRAS codon 61
(KRAS?Y), as well as copies of TP53 and TERT. Diagnoses were lung
adenocarcinoma (LUAD; n = 4) and MPM (n = 23). The assays were
designed for detection of down to 1:20,000 copies using EKVX
(KRAS™TTP53°51°T), AS49 (KRAS“***TP53™T), NCI-H460 (KRAS®®*TP53"T),
NCI-H3122 (KRAS™TTP535%5%Y) and NCI-H3255 (KRAS™TTP53%%0 M hyman
LUAD cells as controls. Shown are individual patient (KRAS plot) and
individual sample (TP53 plot) allelic frequencies with color code and
limits of normal TP53 allelic frequency as vertical dashed lines in the
TP53 plot (A) and results summary table (B). Any number of KRAS-mutant
droplets detected in any sample (KRAS plot in A) and any patient that
failed to achieve normal TP53 ploidy by any sample (TP53 plot in A) was
deemed altered.

Data information: In (A), data are presented as data summary of the highest
mutant copy percentage detected per individual sample (KRAS plot) or of all

individual samples assessed (TP53 plot). In (B), data are presented as number
of patients (n). P, probability, y* test.

Source data are available online for this figure.

© 2021 The Authors
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Arrays utilizing 2.67 million markers and targeted next-generation
sequencing to identify KRAS and TP53 alterations in a cohort of 33
primary MPM cell lines from Nantes, France (GEO dataset
GSE134349; Gueugnon et al, 2011; Data ref: Blanquart et al, 2019;
Delaunay et al, 2020; Quetel et al, 2020) The clinical characteristics of
the cell line donors are given in Appendix Table S2. We detected
standalone KRAS and combined KRAS/TP53 alterations in nine and
five cell lines, respectively, and KRAS and TP53 alterations again co-
occurred at a rate expected by chance (Fig 3E). In addition, the KRAS
and TP53 loci were statistically significantly amplified and deleted,
respectively, across all cell lines irrespective of genotype (Fig 3F and
G). Interestingly, 80% of the samples with KRASMYT copies from both
studies displayed low mutant copy numbers (< 10%) that would be
likely missed by other techniques with lower read depths or stringent
detection thresholds (Fig 3H). We also tested a patient with MPM
from the Malignancy of Pleural Effusions in the Emergency Depart-
ment (MAPED; ClinicalTrials.gov # NCT03319472) Study (preprint:
Marazioti et al, 2021) for KRAS and TPS3 status by Sanger sequenc-
ing, RT-PCR, and qPCR. We found four different KRAS point muta-
tions in this patient, as well as discrepant TP53 expression levels by
RT-PCR and qPCR, strongly indicative of a TP53 mutation (Fig EV1).
To obtain definitive validation, we finally examined by ddPCR for
KRAS codon 12/13 and 61 mutations, as well as TP53 CNA, addi-
tional six MPM-associated MPE samples from Nantes (Gueugnon
et al, 2011; Smeele et al, 2018) and 17 MPM tumor samples from
Istanbul, Turkey (patients’ clinical characteristics are given in
Appendix Table S3). Indeed, we found that nine patients had stan-
dalone KRAS mutations, whereas another three had combined KRAS/
TP53 alterations (Fig 4A and B). Taken together, we examined 36
human tumor/effusion samples from four countries to find stan-
dalone KRAS alterations in 12 (33%) and combined KRAS/TPS3 alter-
ations in 6 (17%) patients. These results indicate that a molecular
subset of MPM that is driven by KRAS with/without TP53 alterations
indeed exists outside the TCGA cohort.

MPM in mice expressing mesothelial-targeted KRAS®*??

To functionally validate KRAS mutations in MPM, we targeted trans-
genes to mesothelial surfaces using type 5 adenoviral vectors (Ad).
For this, mT/mG CRE-reporter mice that switch from somatic cell
membranous tomato (mT) to green fluorescent protein (mG) expres-
sion upon Cre-mediated recombination (Muzumdar et al, 2007)
received 5 x 10° plaque-forming units (PFU) intrapleural Ad encoding
Melanotus luciferase (Ad-Luc) or Cre recombinase (Ad-Cre) followed
by serial bioluminescence imaging. Ad-Luc-treated mice developed
intense bilateral chest light emission (mice lack mediastinal separa-
tions; Stathopoulos et al, 2006) that peaked at 4-7 and subsided by 14
days post-injection (Fig EV2A). At this time point, when transient Ad-
Luc expression ceased and therefore maximal Ad-Cre-mediated
recombination was achieved, Ad-Cre-treated mice displayed wide-
spread recombination of the pleural mesothelium even in contralat-
eral pleural fissures, but not of the lungs, chest wall, or pleural
immune cells (Fig EV2B-E). Similar results were obtained from
intraperitoneal 5 x 10® PFU Ad-Cre-treated mT/mG mice after 2 weeks
(Fig EV2F). Importantly, Ad-Cre did not cause inflammation in wild-
type (Wt) mice, as evident by imaging and cellular analyses of lumi-
nescent bone marrow chimeras used as real-time myeloid tracers

EMBO Molecular Medicine e13631]2021 7 of 22



Paper |

27

EMBO Molecular Medicine

(Cao et al, 2004; Giannou et al, 2015; Agalioti et al, 2017; Fig EV3).
These results show that intraserosal Ad-Cre treatment efficiently and
specifically recombines mesothelial surfaces in vivo.

To test whether oncogenic KRAS can cause MPM, Wt mice and
mice carrying conditional KRASC'P and/or Trps3f/f alleles
expressed or deleted, respectively, upon Cre-mediated recombina-
tion (Marino et al, 2000; Jackson et al, 2001; Meylan et al, 2009)
received 5 x 10° PFU intrapleural Ad-Cre and were longitudinally
followed and sampled (Fig SA-F). Wt, TrpS3f/Wt, and TrpS3f/f
mice survived up to 16 months post-Ad without clinical or patho-
logic disease manifestations (median survival undefined). In

Antonia Marazioti et al

contrast, KRAS®'?" mice developed cachexia and succumbed by
6-12 months post-injection (median [95% CI] survival = 339 [285—
379] days; P = 0.005 compared with controls, log-rank test). At
necropsy, no pleural fluid or inflammatory cell accumulation was
evident, but diffuse visceral and parietal pleural nodular and peel-
like lesions were found in all mice. These lesions expressed prolifer-
ating cell nuclear antigen (PCNA) unlike the normal pleura and
were diagnosed by a board-certified pathologist as epithelioid MPM
(Fig 5G). In addition, chimeric KRASS"*P recipients adoptively trans-
planted with luminescent bone marrow revealed an early pleural
inflammatory infiltrate composed of CD11b*Gr1* myeloid cells at
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Figure 5. Human-like

pleural mesotheli and effi

of mice with pleural mesothelial-targeted oncogenic KR,
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ASS12° and/or Trp53 deletion.

Wild-type (Wt), KRAS®*2°, and Trp53f/f mice (all C57BL/6) were intercrossed and all possible offspring genotypes received 5 x 10% PFU intrapleural Ad-Cre (n is given in

survival table in [C]).

A Representative photographs of the thorax before (top) and after (bottom) chest opening (t, tumors; |, lungs; cw, chest wall; h, heart; dashed lines, effusion; ppt,

parietal pleural tumors).
Kaplan—Meier survival plot.
Survival table.

Incidence of pleural tumors and effusions.

nTmonNw

Data summary of pleural effusion volume and nucleated cells (n is given in table in [C]).

Representative May—Gruenwald—Giemsa-stained pleural fluid cytocentrifugal specimen from a KRAS®*?P;Trp5 3f/f mouse showing macrophages (M®, black arrow),

lymphocytes (L®, purple arrow), and neutrophils (N®, green arrow) and summary of cellular and biochemical features of effusions of KRAS“*2%;Trp53f/f mice (n = 10).
G Gross macroscopic and microscopic images of visceral and parietal tumors stained with hematoxylin and eosin or PCNA (n is given in table in [E]).

Data information: In (B) and (C), data are presented as Kaplan-Meier survival estimates (lines), censored observations (line marks) 95% confidence interval (shaded areas)
and number of mice at risk. P, overall probability, log-rank test. ** and ***: P < 0.01 and P < 0.001, respectively, for the comparisons indicated, log-rank test. In (D), data
are presented as raw data points (circles), rotated kernel density distribution (violins), and medians (lines). P, overall probability, one-way ANOVA. ****: P < 0.0001, for
comparison with all other groups, Bonferroni post-tests. In (E), data are presented as number of mice (n). P, prabability for comparison with the top-three groups,
Fischer’s exact test. In (F), data are presented as mean + 95% confidence interval. Wt, wild-type; KRAS®*?®, Lox-STOP-Lox.KRAS®**%; Trp53f/f, conditional Trp53-deleted;
Ad, adenovirus type 5; PFU, plague-forming units; Cre, CRE recombinase gene; PCNA, proliferating cell nuclear antigen; LDH, lactate dehydrogenase; ANOVA, analysis of

variance; VEGF, vascular endothelial growth factor.
Source data are available online for this figure.

7-14 days post-Ad-Cre (Fig EV3), emulating the inflammatory
response observed after pleural asbestos instillation (Nagai et al,
2011) that is thought to drive MPM development (Fridlender et al,
2009; Patil et al, 2018; Courtiol et al, 2019).

The phenotype of intrapleural Ad-Cre-injected KRASS*P; Trps3f/f
mice was fulminant, with respiratory and locomotor distress and
retracted body posture culminating in death by 3-6 weeks post-Ad-
Cre (median [95% CI] survival = 41 [38-73] days; P < 0.001
compared with any other genotype, log-rank test). Examination of
the thorax revealed massive MPE in most and visceral/parietal pleu-
ral tumors in all mice, which invaded the lungs, chest wall, and medi-
astinum and uniformly presented as PCNA™ biphasic MPM with
mixed sarcomatoid/epithelioid features. Effusions were bloody but
non-coagulating, contained abundant cancer and inflammatory cells,
and had low pH and glucose and high protein, VEGF, and lactate
dehydrogenase levels, resembling effusions of human advanced MPM
(Robinson et al, 2005; Patil et al, 2018) and of C57BL/6 mice injected
with KRAS“"*“mutant AE17 mesothelioma cells (Agalioti et al,
2017). KRASS'2P;Trps3f/Wt mice displayed an intermediate pheno-
type (median [95% CI] survival = 118 [97-160] days; P < 0.003
compared with any other genotype, log-rank test), biphasic histology,
and a single MPE occurrence. Wt, TrpS3f/f, and KRAS®'*"; TrpS3f/f
mice also received 5 x 10° PFU intraperitoneal Ad-Cre (Fig EVA4).
Again, Wt and Trp53f/f mice displayed unlimited survival without
signs of disease (median survival undefined), but KRAS®'*”; TrpS3f/f

Figure 6. Molecular phenotyping of murine mesothelioma.

mice developed abdominal swelling and succumbed by 2-5 months
post-Ad-Cre (median [95% CI] survival = 95 [60-123] days; P <
0.001 compared with controls, log-rank test). At necropsy, nodular
and diffuse tumors throughout the abdominal cavity and loculated
ascites with features similar to MPM with MPE were detected.

To corroborate that our mice had mesothelioma and not pleural
spread of LUAD (Jackson et al, 2001), immunostaining for specific
markers of both tumor types was performed based on expert guideli-
nes for distinguishing human MPM from LUAD (Scherpereel et al,
2010; Galateau-Salle et al, 2016; Courtiol et al, 2019) and on previ-
ous published experience from mouse models (Jongsma et al,
2008). In parallel, LUAD of intratracheal Ad-Cre-treated (5 x 10°
PFU) KRAS®'?P and of urethane-treated mice were examined
(Mason et al, 2000; Spella et al, 2019). Our murine MPM displayed
ubiquitous strong Wilms’ tumor 1, patchy moderate vimentin, ubig-
uitous moderate mesothelin, ubiquitous strong calretinin/podo-
planin/osteopontin, and patchy moderate cytokeratin 5/6
expression, but no evidence of surfactant protein C expression, in
contrast with LUAD that expressed some of these markers and
SFTPC (Fig 6), supporting that our tumors are indeed MPM of the
biphasic subtype. These results show that pleural mesothelial-
targeted KRAS®'*P causes epithelioid MPM in mice. Furthermore,
that standalone TP53 loss does not trigger MPM, but cooperates
with mutant KRAS to accelerate MPM development, to promote
biphasic histology, and to precipitate effusion formation.

Wild-type (Wt), KRAS®**°, and Trp53f/f mice were intercrossed, and all possible offspring genotypes received 5 x 10° PFU intrapleural or intratracheal Ad-Cre and were
sacrificed when maoribund. In parallel, C57BL/6 mice received 10 cansecutive weekly intraperitoneal injections of 1 g/kg urethane and were sacrificed after 6 months.
Data summary (heatmap) and representative images of immunoreactivity of tissue sections of pleural and pulmanary tissues and tumors from these mice for different
markers of human malignant pleural mesothelioma (MPM) and lung adenocarcinoma (LUAD). n = 10 mice/group were analyzed for each marker. Brown color indicates
immunoreactivity and blue color nuclear hematoxylin counterstaining. Note the ubiquitous strong expression of Wilms' tumor 1 (WT1), patchy moderate expression of
vimentin (VIM), ubiguitous moderate expression of mesothelin (MSLN), ubiquitous strong expression of calretinin (CALB2), podoplanin (PDPN), and osteopontin (SPP1),
patchy moderate expression of cytokeratin 5/6 (CK5/6), and the absence of expression of surfactant protein C (SFTPC) in murine KRAS-driven mesotheliomas. Note also
the ubiquitous strong expression of WT1, the patchy moderate expression of VIM, the ubiquitous low-level expression of MSLN, the ubiquitous strong expression of
CALB2 and SPP1, the ubiguitous low-level expression of PDPN, the variable moderate expression of CK5/6, and the ubiguitous moderate expression of SFTPC in murine

KRAS®°-driven and urethane-induced LUAD.

© 2021 The Authors
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Figure 7. Transplantable KRAS/TP53-mutant murine mesothelioma (KPM) cell lines.

KRAS®2":Trp53f/f pleural mesothelioma (KPM), pleural mesothelial (PMC), and asbestos-induced AE17 mesothelioma cells (all from C57BL/6 mice) were analyzed.
A KPM cell culture showing anoikis (white arrows) and spindle-shaped morphology (black arrows).
B Representative colonies of KPML cells (7.5 x 10° cells/vessel) seeded on a soft agar-containing 60-mm petri dish and stained with crystal violet after a3 month

(n = 3/group).

= Data summaries from in vitro MTT reduction (top; 2 x 10 cells/well; n = 6 independent experiments) and in vivo subcutaneous tumor growth after injection of 10°

cells per C57BL/6 mouse (bottom; n = 5/group).

D  KRAS/Kras mRNA Sanger sequencing shows wild-type Kras (kras"'") of PMC and mutant murine Kras/human KRAS alleles (KRASS'*® and Kras®**) of KPM and AE17

cells (arrows).

E,F RT-PCR (E) and qPCR (F) of KPM cells and parental tumors show Trp53f/f allele deletion (4) and Bapl and Cdkn2a overexpression compared with PMC.

Data information: In (C), data are presented as mean (circles) and 95% confidence interval (bars). P, overall probability, two-way ANOVA. ****: P < 0.0001 for AE17 cells
(top) or for KPM cells (bottom) compared with all other groups, Bonferroni post-tests. In (F), data are presented as raw data points (circles), rotated kernel density
distribution (violins), and medians (lines). P, overall probability, two-way ANOVA. * ** and **** P < 0.05, P < 0.01, and P < 0.0001, respectively, for comparison with

PMC, Bonferroni post-tests.
Source data are available online for this figure.

Transplantable and actionable murine MPM cell lines
with KRASS*?®, Trp53, and Bapl mutations, and a
human-like transcriptome

We subsequently isolated three different MPM cell lines from Ad-
Cre-treated KRASS'2®;TrpS3f/f mice (called KPM1-3) using long-
term tumor culture (Pauli et al, 2017; Kanellakis et al, 2019, 2020).
KPM cells displayed anchorage-independent growth (anoikis),

®© 2021 The Authors

spindle-shaped morphology, and rapid growth in minimal-
supplemented media and in soft agar. In addition, KPM cells were
tumorigenic when injected subcutaneously into the flank of C57BL/
6 mice and carried the original KRAS®'*P/Trp53 lesions (Fig 7A-E,
and Appendix Fig S1). KPM cells and their parental tumors featured
enhanced Bapl and Cdkn2a, but not Nf2 expression (Fig 7E and F,
and Appendix Fig S1), consistent with previous work that identified
TP53-mediated repression of BRCA1 and CDKN2A expression (Stott

EMBO Molecular Medicine e13631 12021 11 of 22



Paper |

31

EMBO Molecular Medicine

Antonia Marazioti et al

P<0.0001 Ly us
A 10 B 197 ex  as E NI® (%)]78(69-87)
_ 08 ke LD (%)]|11(1-21)
L ¢ i A S 2 os (%)|11(4-18)
E S 04 (%)|1(0-2)
06 i BE ., pH|7.35(7.15-7.55)
g§ ’ Protein (g/dL)[4.52(3.66-5.88)
g o O > oo LDH (U/L)|627(448-805)
© = PMC £ KPMI Glucose (g/dL)|4.32(0.75-7.88)
5 o2 & e El AE17 @3 KPM2
g 1 KPM3 F
85 ]p<o000i g F=0.0002 57 p=00014 _ "7 P=0.0001
0.0 v A X .S Y ¢ - 76% ) - 76%
” - 73 101 .10
Mice at risk () Survival (days) g o * S E | i) 1
== PMC 10 10 10 1 2& = 3
—— AE17 19 6 0 [T £ 0% s
—— KPM1 15 12 0 [ 3= ul
——— KPM2 15 13 2 o 37 & o 2 ood s
—— KPM3 15 15 4 0 @O S
c G
w
o
=
j
o
E
2
DMSO Deltarasin
Figure 8. Tr lantable and actionable murine mesotheli dels using KPM cells.

€57BL/6 mice received 2 x 10° intrapleural KRAS™°;Trp53f/f pleural mesothelioma cells (KPM), pleural mesothelial cells (PMC), or asbestos-induced AE17 MPM cells.

A Kaplan—Meier survival plot with survival table.

B Data summary of pleural effusion volume and total cells (n = 10, 12, 10, 9, and 9 mice/group, respectively, from left to right).
(2 Images of the chest before and after opening, showing effusion (dashed lines), visceral (vpt), and parietal (ppt) pleural tumars on the costophrenic angle (ca), the

diaphragm (d), and the chest wall (cw, arrows). t, tumors; |, lungs; h, heart.

D May-Gruenwald-Giemsa-stained pleural cells (macrophages, M®: black arrow; lymphocytes, L®: purple arrow; neutrophils, N®: green arrow; eosinophils, Ed:

orange arrow).

E  Effusion cytology and biochemistry data summary (total n = 10 mice; n = 4, 3, and 3 effusions from mice injected with KPM1, KPM2, and KPM3 cells, respectively,

were analyzed and shown are pooled data).

F, G C57BL/6 mice received pleural KPM1 cells followed by a single intrapleural injection of liposomes containing 1% DMSO or 15 mg/kg deltarasin in 1% DMSQ at day
9 post-tumar cells. Shown are data summaries of MPE volume (n = 8 and 7 DMSO and deltarasin-treated mice/group, respectively) and pleural fluid nucleated cells
at day 19 post-KPM1 cells (F), as well as representative images of pleural effusions (dashed lines) and tumors (t in [G]).

Data information: In (A), data are presented as Kaplan—Meier survival estimates (lines), 95% confidence interval (shaded areas), and number of mice at risk (n). P,
probability of overall comparison and of any comparison to PMC, log-rank test. In (B) and (F), data are presented as raw data points (circles), rotated kernel density
distribution (violins), and medians (lines). Numbers in red font and arrows in (F) indicate end-point reduction by deltarasin effect. P, probability, one-way ANOVA (B) or
Student's t-test (F). *, **, *** and **** P < 0.05, P < 0.01, P < 0.001, and P < 0.0001, respectively, for comparison with PMC, Bonferroni post-tests. In (E), data are

presented as mean = 95% confidence interval. LDH, lactate dehydrogenase.
Source data are available online for this figure.

et al, 1998; Arizti et al, 2000). RNA sequencing of KPM cells (GEO
dataset GSE94415; Data ref: Stathopoulos et al, 2017) revealed that
they carry the pathogenic KRAS®'??/Trps3 lesions, but also multiple
stochastic single nucleotide variants in exon 6 and insertions in
exon 11 of Bapl, all validated by Sanger sequencing, although
immunohistochemistry revealed persistent nuclear BAP1 expression
rendering these Bapl mutations of uncertain functional significance
(Nasu et al, 2015) (Fig EVS5). Finally, 2 x 10° pleural-delivered KPM
cells could inflict to naive C57BL/6 mice secondary disease identical
to primary MPM of KRAS®"“P;Trp53f/f mice in terms of

12 of 22 EMBO Molecular Medicine 13631 | 2021

manifestation, pathology, cytology, and biochemistry (Fig 8A-E),
fulfilling modified Koch’s postulates (Byrd & Segre, 2016).

To determine the potential efficacy of KRAS inhibition against
murine KRAS/TP53-driven MPM, C57BL/6 mice received pleural
KPM1 cells, followed by a single intrapleural injection of liposomal-
encapsulated KRAS inhibitor deltarasin (15 mg/kg; Zimmermann
et al, 2013) or empty liposomes on day nine post-tumor cells, in
order to allow initial tumor implantation in the pleural space (Agali-
oti et al, 2017). At day 19 after pleural injection of KPMIL cells,
deltarasin-treated C57BL/6 mice developed fewer and smaller MPE

®© 2021 The Authors
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with decreased cellularity compared with controls (Fig 8F and G).
These results collectively show that our murine MPM is indeed malig-
nant, originate from recombined mesothelial cells, and cause trans-
plantable disease that can be used for hypothesis and drug testing.

Finally, RNA sequencing of KPM cells comparative to normal
pleural mesothelial cells revealed a distinctive transcriptomic signa-
ture that included classic mesothelioma markers (Msin, Sppl, Efem-
pl, Pdpn, Wtl1) as well as new candidate mesothelioma genes (Fig
9A-C and Appendix Table S4). A human 150-gene mesothelioma
signature derived from a cohort of 113 patients via comparison of
MPM against multiple other malignancies (GSE42977; De Rienzo
et al, 2013; Data ref: De Rienzo et al, 2012) was highly enriched in
our KPM cell line signature (Fig 9D). These data indicate that
murine KRAS/TP53-driven MPM present Bapl mutations, a gene
expression profile that is highly similar to human MPM, and can be
used for transplantable and druggable MPM models in syngeneic
mice. Collectively, the murine and human findings support the exis-
tence of a KRAS-driven subset of MPM patients or clones that are
likely missed during sequencing and/or sampling (Comertpay et al,
2014; Li et al, 2020).

Discussion

Our results demonstrate that, alone or in combination with TP53,
KRAS is perturbed in a proportion of human MPM and can poten-
tially drive the murine mesothelium toward MPM development.
KRAS mutations, amplifications, and overexpression, as well as
chromosome 12p gains, are shown to exist in 20% of patients from
the TCGA MPM dataset and low allelic frequency KRAS mutations
are discovered in 50% of MPM samples from our own human
cohorts using sensitive techniques. Furthermore, KRAS mutations
are shown to occasionally co-exist with TP53 mutations, to repulse
NF2 mutations, and to be associated with biphasic MPM histology.
Targeting of oncogenic KRASS'?P alone to the pleural mesothelium
caused epithelioid MPM in mice and together with Trp53 deletion
resulted in biphasic MPM with MPE. We further show that murine
MPM carry the initiating KRASS'?®/TrpS3 mutations and multiple
secondary Bapl mutations, are transplantable and druggable, and
highly similar to human MPM in terms of molecular markers and
gene expression. Collectively, the data support a pathogenic role for
KRAS mutations in a fraction of MPMs and provide new models to
study this patient group.

Our striking findings can be reconciled with the sporadic nature
of KRAS mutations in human MPM sequencing studies (Bott et al,
2011; Guo et al, 2015; Bueno et al, 2016; Hmeljak et al, 2018) and
the incomplete penetrance of standalone Bapl, Cdkn2a, Nf2, or
TrpS3 deletions in causing MPM in mice (Jongsma et al, 2008; Guo
et al, 2014; Menges et al, 2014; Xu et al, 2014; Kukuyan et al, 2019).
To this end, mesothelial KRAS mutations may initiate MPM in some
patients, but may be lost during sampling and sequencing, as has
been shown for other mutations in LUAD that persist at a subclonal
level (Abbosh et al, 2017; Jamal-Hanjani et al, 2017). The low allelic
frequency of KRAS mutations is explicable by their heterozygous
nature and the robust inflammatory responses KRAS-mutant tumors
generate (Agalioti et al, 2017; Marazioti et al, 2018) and is not limit-
ing their driver capabilities in other tumor types (Abbosh et al,
2017; Jamal-Hanjani et al, 2017; Li et al, 2020). The fact that these

®© 2021 The Authors
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mutations were not detected by most next-generation sequencing
studies of MPM can be explained by the relative low sensitivity of
these methods compared with ddPCR, as well as the low allelic
frequency of KRAS mutations. To this end, typical read depths of 50—
100 are employed in most next-generation sequencing studies yield-
ing a sensitivity of 1-2%, compared with the theoretical 0.005% or
actual 0.1% of ddPCR (Demuth et al, 2018). In addition, most next-
generation sequencing studies set discovery cutoffs of 25% allelic
frequency, likely rendering many KRAS mutations undiscovered. Our
findings are plausible, since MPM is likely polyclonal (Comertpay
et al, 2014), cell lines display KRAS activation and mutations (Patel
et al, 2007; Agalioti et al, 2017), NF2 is a KRAS suppressor (Tikoo
et al, 1994), and KRAS signaling is interconnected with the TP53 cell
cycle checkpoint (Matallanas et al, 2011). The postulation that KRAS
mutations in MPM might be early events can be tested in the future
by genome doubling analyses. Taken together, our data and the liter-
ature support that, in a subset of patients, low allelic frequency KRAS
alterations conditionally accomplice with TP53 to drive mesothelial
cells toward MPM. These tumors may be selectively responsive to
KRAS blockade and detectable by sensitive methods like ddPCR or
maximal depth sequencing (Li et al, 2020).

We also corroborate the critical role of TP53 in MPM progres-
sion, since TP53 mutations are frequent in MPM. Although stan-
dalone Trp53 deletion did not induce MPM in mice, it promoted
KRASS"*P_driven MPM progression and biphasic histology, as was
also observed in combination with Nf2 and Tscl deletion (Jongsma
et al, 2008; Guo et al, 2014), suggesting that TrpS3 loss may condi-
tionally cooperate with other oncogenes in MPM. In addition,
Trps3-deleted KRASC'?® MPM was accompanied by effusions, a
human MPM phenotype that likely affects survival (Ryu et al, 2014)
and that was previously not reproducible in mice. Again, Trp53 loss
was not causative, but likely potentiated the effusion-promoting
effects of KRAS, which we recently identified in metastatic effusions
(Agalioti et al, 2017). Taken together with published work, our find-
ings functionally validate the role of TP53 mutations in human
MPM in driving biphasic histology, tumor progression and metasta-
sis, and poor survival (Bueno et al, 2016; Yap et al, 2017). Hence,
TP53-targeted therapies may be prioritized for biphasic MPM when
available (Brown et al, 2009).

Another surprising finding was the multiple and different Bapl
mutations of our MPM cell lines, since they originated from tumors
inflicted by KRASS'?P and Trp53 loss. Frequent copy number loss
and recurrent somatic mutations in BAPI have been identified in
MPM (Bott et al, 2011; Guo et al, 2015; Nasu et al, 2015). Based on
the multiplicity and variety of the Bapl mutations we observed, we
postulate that they were secondarily triggered by the genomic insta-
bility caused from combined KRAS mutation and TP53 loss. What-
ever their cause may be, their presence strengthens our findings of
an involvement of KRAS signaling in MPM pathobiology, as well as
the relevance of the novel mouse models we developed, since Bapl
is the single most commonly mutated gene in human MPM.

Research on MPM is hampered by the paucity of mouse models
(Blanquart et al, 2020). We provide multiple new mouse models
with defined phenotype, histology, and latency: (i) a genetic mouse
model of pleural epithelioid MPM; (ii) genetic and transplantable
models of pleural and peritoneal biphasic MPM with accompanying
effusion; and (iii) three new MPM cell lines of defined genotype,
transcriptome, and phenotype that are syngeneic to C57BL/6 mice.

EMBO Molecular Medicine e13631]2021 13 of 22
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Figure 9. The molecular signature of KPM cells is enriched in human mesothelioma.

RNA sequencing results (GEO dataset GSE94415) of KRAS“'*°.Trp53f/f mesothelioma (KPM) cells (n = 3) compared with pleural mesothelial cells (PMC; n = 1 pooled
triplicate). n denotes biological replicates, since pooled triplicate technical replicates from each cell line were sequenced.
A Unsupervised hierarchical clustering shows distinctive gene expression of KPM versus PMC.

Volcano plot showing some top KPM versus PMC differentially expressed genes.

B

C KPM and PMC expression of classic mesothelioma markers (top) and top KPM versus PMC overexpressed genes (bottom).

D Gene set enrichment analysis, including enrichment score and neminal probability value of the 150 gene-signature specifically over-represented in human
mesothelioma compared with other thoracic malignancies derived from 113 patients (GSE42977) within the transcriptome of KPM cells versus PMC shows significant

enrichment of the human mesothelioma signature in KPM cells.

Data information: In (C), data are presented as mean (columns) and 95% confidence interval (bars). P: probability, two-way ANOVA. ns, *, **, and ***: P > 0.05, P < 0.05,

P < 0.01, and P < 0.001, respectively, compared with PMC, Bonferroni post-tests.
Source data are available online for this figure.

These are positioned to enhance MPM research by overcoming the
need for immune compromise providing intact immune responses
critical for MPM pathogenesis (Burt et al, 2012; Westbom et al,
2014; Kadariya et al, 2016; Patil et al, 2018), by widening the
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repertoire of existing cell lines, by recapitulating MPM with effusion,
and by addressing pleural MPM.

In conclusion, our findings support that oncogenic KRAS signal-
ing causes MPM in a proportion of humans and in mice. As some

®© 2021 The Authors
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mutations along this signaling pathway are currently druggable or
are likely to become such in the near future (Herbst et al, 2002;
Brown et al, 2009; Flaherty et al, 2010; Stephen et al, 2014), our
findings may facilitate therapeutic innovation. Pending validation of
our human findings in larger cohorts, we provide novel tools for the
study of a molecular subclass of MPM that will hopefully aid in drug
discovery and personalized treatment of patients with MPM driven
by KRAS signaling.

Materials and Methods

Computational biologic analyses

The dataset for Fig 1A was generated by manual curation of
COSMIC data (https://cancer.sanger.ac.uk/cosmic/browse/tissue?
wgs = off&sn = pleura&ss = all&hn = mesothelioma&sh = &in = t&src =
tissue&all_data=n). The dataset for Fig 1B was generated by
manual curation of the main text and supplementary data of publi-
cations (Bott et al, 2011; Enomoto et al, 2012; Mezzapelle et al,
2013; Shukuya et al; 2014; Guo et al, 2015; Lo lacono et al, 2015;
Bueno et al, 2016; De Rienzo et al, 2016; Kato et al, 2016; Hmeljak
et al, 2018). Raw data from 86 human TCGA MPM patients were
retrieved from the cBioPortal for Cancer Genomics (www.
cbioportal.org/) using inputs “mesothelioma”, “Mesothelioma
(TCGA, PanCancer Atlas)”, “Query by Gene KRAS and TPS53”,
“Mutations”, “Putative copy-number alterations from GISTIC”,
“mRNA expression z-scores”, and “Protein expression z-scores”
were downloaded and analyzed. Gene expression data from these
patients, normalized with the log,(fpkm-uq + 1) method, were
downloaded (https://xenabrowser.net/datapages/?dataset = TCGA-
MESO.htseq_fpkm-ug.tsv&host = https%3A % 2F % 2Fgdc.xenahubs.
net&removeHub = https % 3A % 2F % 2Fxena.treehouse.gi.ucsc.edu%3
A443), ENSEMBL gene IDs were converted to gene symbols using
https://www.biotools.fr/mouse/ensembl_symbol_converter, the
data were filtered, differential gene expression (AGE) was analyzed,
and heatmap visualization was performed using R* and packages
limma R version 3.42.2 (https://bioconductor.org/packages/
release/bioc/html/limma.html) and edgeR (https://bioconductor.
org/packages/release/bioc/html/edgeR.html). Both rows and
columns were clustered using Pearson correlation and complete
linkage. All mutations (n = 2,150) of all patients (n = 86) with
MPM from the TCGA pan-cancer dataset were retrieved from www.
cbioportal.org/ and were fed into the protein analysis through
evolutionary relationships (PANTHER) Classification System (www.
pantherdb.org/) using parameters: organism, Homo Sapiens; analy-
sis, statistical overrepresentation test > PANTHER pathways or reac-
tome pathways (both analyses were done); whole-genome reference
list: Homo Sapiens; test type: binomial; and correction: false discov-
ery rate. All raw data from the two independent PANTHER and reac-
tome pathway analyses were retrieved, merged, and analyzed. Gene
set enrichment analysis (GSEA) was performed with the Broad Insti-
tute pre-ranked GSEA module software (http://software.
broadinstitute.org/gsea/index.jsp;Subramanian et al, 2005). All
aforementioned raw data were downloaded from the sources refer-
enced above in *.csv format, are provided as source data files with
this publication, and were reanalyzed using R*, Prism v8.0
(GraphPad, La Jolla, CA), and Excel (Microsoft, Redmont, WA).

®© 2021 The Authors
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Reagents

Adenoviruses type 5 (Ad) encoding Melanotus luciferase (Luc) or
CRE-recombinase (Cre) were from the Vector Development Labora-
tory, Baylor College of (Houston, TX); 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
from Sigma-Aldrich (St. Louis, MO), and D-luciferin from Gold
Biotechnology (St. Louis, MO). Primers and antibodies are listed in
Appendix Tables S5 and S6. All cell culture reagents were from
Thermo Fisher Scientific.

Medicine

Human studies

All human experiments conformed to the principles set out in the
WMA Declaration of Helsinki and the Department of Health and
Human Services Belmont Report. The Munich clinical study was
prospectively approved by the Ludwig-Maximilians-University
Munich Ethics Committee (approvals #623-15 and #711-16). All
patients gave written informed consent a priori. Diagnoses were
made according to current standards by a board-certified pathologist
at the Asklepios Fachkliniken Gauting, Munich, Germany. Pleural
fluid was centrifuged at 300 g for 10 min at 4°C, genomic DNA was
extracted from cell pellets, supernatants, and pleural tumor tissues
using TRIzol (Thermo Fisher) and purified using GenElute Mamma-
lian Genomic DNA Miniprep (Sigma Aldrich), and 200 ng DNA were
used to analyze KRAS codons 12/13 and 61, and TPS3 copies with
ddPCR KRAS G12/G13, KRAS G61, TP53 CNV, and TERT CNV Kits
and QuantaSoft Analysis Pro software (BioRad, Hercules, CA) as
described elsewhere (Poole et al, 2019). Thresholds for KRAS™T,
KRASMYT, TP53, and TERT droplet amplitude gates were, respec-
tively, 6,000, 10,000, 5,500, and 7,000. Data were normalized by
accepted droplet numbers to yield absolute mutant (M"") and wild-
type (VT) droplet percentages, which were determined using thresh-
olds derived from cell line controls and from LUAD patient samples
clinically confirmed to have KRAS mutations and TP53 copy number
changes, according to the formula:

KRAS mutant copies % =
Mpositive mutant droplets 100

(npositive mutant droplets + Tpositive wild type droplets)

TP53 copies % = TUTPS3 positive droplets #100.
TITERT positive droplets

In the Nantes Study, MPM cell lines, as well as pleural fluid cells
and supernatants, were derived from pleural fluid aspirates obtained
for diagnostic and therapeutic purposes. The study was approved by
the French Ministry of Research (DC-2011-1399), and all patients
gave written informed consent a priori for their excess pleural fluid
to be used for the establishment of cell lines. MPE samples from
over 120 patients with MPM were used to generate the 33 cell lines,
since the success rate is < 30%, as described elsewhere (Gueugnon
et al, 2011; Delaunay et al, 2020). Diagnoses were established by
both fluid cytology and immunohistochemical staining of pleural
biopsies performed by the pathology department at Laénnec Hospi-
tal (St-Herblain, France) and then externally confirmed by MESO-
PATH, the French panel of pathology experts for the diagnosis of
mesothelioma. All recruited patients had received no prior
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anticancer therapy. All cell lines were maintained in RPMI-1640
medium supplemented with 2 mM r-glutamine, 100 TU/ml peni-
cillin, 0.1 mg/ml streptomycin, and 10% heat-inactivated fetal calf
serum and cultured at 37°C in 5% C0,-95% air. Genomic DNA from
33 MPM cell lines was extracted with Nucleospin Blood kit
(Macherey-Nagel, Diiren, Germany) and 500 ng were hybridized to
Affymetrix CytoScanHD Arrays (Thermo Fisher). Detection, quan-
tification, and visualization of single nucleotide variations (SNV)
and copy number alterations (CNA) were performed using Affyme-
trix Chromosome Analysis Suite v3.1.1.27 (Thermo Fisher) and data
are available at GEO datasets (GSE134349; Data ref: Blanquart et al,
2019). The cell lines were also sequenced in a targeted fashion
focusing on 21 genes and the TERT promoter on a MiSeq system
(INlumina, San Diego, CA) (Quetel et al, 2020). The MAPED (Clinical
identification of malignant pleural effusions in the emergency
department) study entailed a few samples from patients enrolled in
a prospective clinical trial (preprint: Marazioti et al, 2021). MAPED
was registered with ClinicalTrials.gov (#NCT03319472), and written
informed consent was obtained from all patients a priori. MAPED
was approved by the University of Patras Ethics Committee (ap-
proval #22699/21.11.2013). Pleural fluid was centrifuged at 300 g
for 10 min at 4°C, RNA and DNA were extracted from cell pellets
using TRIzol (Thermo Fisher) and purified using GenElute Mamma-
lian Genomic DNA Miniprep (Sigma-Aldrich), and 200 ng RNA/
DNA were used for RT-PCR, qPCR, and Sanger sequencing. The
Istanbul study was approved by the Kog¢ University Ethics Commit-
tee on Human Research (approval #2021.223.1RB2.042/06.05.2021).
Both Nantes pleural fluid and Istanbul pleural tumor specimens
were processed and analyzed identical to the Munich study.

Mice

C57BL/6 (#000664), B6.129(Cg)-Gt(ROSA) 26807 ™ (ACTHdTomato LGI)Luo ; y
(mT/mG; #007676; Muzumdar et al, 2007), FVB-Tg(CAG-luc,-GFP)
L2G85Chco/] (CAG.Luc.eGFP; #008450; Cao et al, 2004)%, B6.12954-
Kras™ ™y (KRASS'?®; #008179; Jackson et al, 2001), and
B6.129P2-TrpS3"™ 5™ /1 (TrpS3f/f; #008462; Meylan et al, 2009)
mice were obtained from Jackson Laboratories (Bar Harbor, ME)
and bred on the C57BL/6 background at the University of Patras
Center for Animal Models of Disease. Experiments were approved
by the Prefecture of Western Greece’s Veterinary Administration
(approval 118018/578-30.04.2014) and were conducted according to
Directive 2010/63/EU (http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX %3A32010L0063). Sex-, weight (20-25 g)-, and
age (6-12 week)-matched experimental mice were used, and their
numbers (total n = 432) are detailed in Appendix Table S7.

Mesothelial transgene delivery

Isoflurane-anesthetized C57BL/6 and mT/mG mice received 5 x 10°
PFU intrapleural or intraperitoneal Ad-Cre or Ad-Luc in 100 pl PBS
and were serially imaged for bioluminescence on a Xenogen Lumina
IT (Perkin-Elmer, Waltham, MA) after receiving 1 mg retro-orbital D-
luciferin under isoflurane anesthesia, and data were analyzed using
Living Image v.4.2 (Perkin-Elmer; Stathopoulos et al, 2006; Spella
et al, 2019), or were euthanized and pleural lavage was performed,
lungs were explanted, and parietal pleura was stripped. For pleural
lavage, 1 ml PBS was injected, was withdrawn after 30 s, and was
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cytocentrifuged onto glass slides (5 x 10* cells, 300 g, 10 min) using
CellSpin (Tharmac, Marburg, Germany). Lungs were embedded in
optimal cutting temperature (OCT; Sakura, Tokyo, Japan) and
sectioned into 10-um cryosections. The parietal pleura was placed
apical side up onto glass slides. Samples were stained with Hoechst
55238 and were examined on AxioObserver D1 (Zeiss, Jena,
Germany) or TCS SP5 (Leica, Heidelberg, Germany) microscopes.

Primary MPM models

Wild-type (Wt), KRASS'?P, and Trp53f/f mice were intercrossed and
all possible offspring genotypes received isoflurane anesthesia and 5
x 10% PFU intrapleural or intraperitoneal Ad-Cre. Mice were moni-
tored daily and sacrificed when moribund or prematurely for pathol-
ogy. Mice with pleural fluid volume > 100 ul were judged to have
effusions that were aspirated. Animals with pleural fluid volume <
100 pl were judged not to have effusions and underwent pleural
lavage. For isolation of primary murine pleural mesothelial cells
(PMC), pleural myeloid and lymphoid cells were removed by pleu-
ral lavage followed by pleural instillation of 1 ml DMEM, 2% trypsin
EDTA, aspiration after 1 min, and culture.

Bone marrow transfer

For adoptive BMT, C57BL/6 mice received 107 bone marrow cells
obtained from CAG.Luc.eGFP donors i.v. 12 h after total-body irradi-
ation (1,100 Rad). Full bone marrow reconstitution was completed
after one month, as described elsewhere (Agalioti et al, 2017).

Transplantable mesothelioma cell lines

Murine KRAS®'?P; Trps3f/f pleural mesotheliomas were minced and
cultured in DMEM 10% FBS for > 30 passages, vielding three
KRAS®"*P:Trps3f/f mesothelioma (KPM1-3) cell lines, which were
compared to AE17 cells (Kras“’*“-mutant asbestos-induced murine
mesothelioma) and PMC (Agalioti et al, 2017). PMC were generated
in our laboratory as primary cultures of murine pleural lavage with
DMEM 2% trypsin, whereas AE17 cells were donated by Dr. YC
Gary Lee (University of Western Australia, Perth, Australia) and
have been both extensively described elsewhere (Giannou et al,
2015, 2017; Agalioti et al, 2017; Marazioti et al, 2018). For this, 2 x
10° cells in 100 pl PBS were delivered intrapleurally to isoflurane-
anesthetized C57BL/6 mice that were followed as above. For solid
tumor formation, C57BL/6 mice received 10° subcutaneous PMC,
KPM, or AE17 cells in the rear flank, three vertical tumor dimen-
sions (', 8%, 6°) were monitored serially, and the formula 76'8%6%/6
was used to calculate tumor volume. RNA sequencing was done on
an lonTorrent sequencer (Thermo Fisher); data were deposited at
GEO datasets (GSE94415) and were analyzed using Bioconductor
(Data ref: Stathopoulos et al, 2017). Gene set enrichment was done
with the Broad Institute pre-ranked GSEA module (Subramanian
et al, 2005).

PCR and Sanger sequencing
Cellular RNA was isolated using TRIzol (Thermo Fisher Scientific,

Waltham, MA) followed by RNAeasy purification and genomic DNA
removal (Qiagen, Hilden, Germany). For tumor RNA, tissues were
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passed through 70-pm strainers (BD Biosciences, San Jose, CA) and
107 cells were subjected to RNA extraction. One pg RNA was
reverse-transcribed using Oligo(dT),s and Superscript III (Thermo
Fisher). c¢DNAs were amplified using specific primers
(Appendix Table S5) and Phusion Hot Start Flex polymerase (New
England Biolabs, Ipswich, MA). DNA fragments were run on 2%
agarose gels or were purified with NucleoSpin gel and PCR clean-up
columns (Macherey-Nagel, Diiren, Germany) and were sequenced
using their primers by VBC Biotech (Vienna, Austria). qPCR was
performed using specific primers (Appendix Table 55) and SYBR
FAST PCR Kit (Kapa Biosystems, Wilmington, MA) in a StepOne
cycler (Applied Biosystems, Carlsbad, CA). Ct values from triplicate
reactions were analyzed with the 2727 method (Pfaffl, 2001).
mRNA abundance was determined relative to glycuronidase beta
(Gusb) and is given as 2 ACT _ - (Ct of transcript) [Cmqush)_ The Sanger
sequencing trace files were further analyzed for double peak parser
using Bioconductor (https://www.bioconductor.org/) with a thresh-
old of 25 Phred quality core (Ewing et al, 1998). The mismatch base-
calls in respect to the wild-type samples were grouped by sample
and used as template to generate the lollipop plot per each KPM cell
line for a visual representation of all the mutations detected (Jay &
Brouwer, 2016). Lollipop plots were generated using MutationMap-
per (https://www.cbioportal.org/mutation_mapper; Cerami et al,
2012).

RNA sequencing

RNA sequencing was done on an lonTorrent sequencer (Thermo
Fisher), and data were analyzed using Bioconductor (https://www.
bioconductor.org/). File alignments were performed with Tmap
(https://github.com/iontorrent/TMAP). Coverage and alignments
plot from sequencing were generated using Integrative genome
viewer (Robinson et al, 2011). Alignments are represented as gray
polygons with reads mismatching the reference indicated by color.
Loci with a large percentage of mismatches relative to the reference
are flagged in the coverage plot as color-coded bars. Alignments
with inferred small insertion or small deletion are represented with
vertical or horizontal bars, respectively. Gene set enrichment analy-
sis (GSEA) was performed with the Broad Institute pre-ranked GSEA
module software (http://software.broadinstitute.org/gsea/index.jsp;
Subramanian et al, 2005). The raw *.bam files, one for each RNA-
Seq sample, were summarized to a gene read counts table, using the
Bioconductor package GenomicRanges. In the final read counts
table, each row represented one gene, each column one RNAseq
sample, and each cell the corresponding read counts associated with
each row and column. The gene counts table was normalized for
inherent systematic or experimental biases (e.g., sequencing depth,
gene length, and GC content bias) using the Bioconductor package
DESeq after removing genes that had zero counts over all RNASeq
samples (20,007 genes). The output of the normalization algorithm
was a table with normalized counts, which can be used for differen-
tial expression analysis with statistical algorithms developed specifi-
cally for count data. Prior to the statistical testing procedure, the
gene read counts were filtered for possible artifacts that could affect
the subsequent statistical testing procedures. Genes presenting any
of the following were excluded from further analysis: (i) genes with
length less than 500 bp (2,051 genes), (ii) genes whose average
reads per 100 bp was less than the 25" percentile of the total
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normalized distribution of average reads per 100 bp (0 genes with
cutoff value 0.02248 average reads per 100 bp), (iii) genes with read
counts below the median read counts of the total normalized count
distribution (11,358 genes with cutoff value 16 normalized read
counts). The total number of genes excluded due to the application
of gene filters was 5,298. The total (unified) number of genes
excluded due to the application of all filters was 32,595. The result-
ing gene counts table was subjected to differential expression analy-
sis for the contrast KPM versus PMC using the Bioconductor
package DESeq. The final numbers of statistically significant dif-
ferentially expressed genes were 2,344 genes and of these, 650 were
up-regulated and 1,694 were down-regulated according to an abso-
lute fold-change cutoff value of 2.

Cell culture

All KPM cell lines are available upon request. Cells were cultured
at 37°C in 5% CO0,-95% air using DMEM 10% FBS, 2 mM L-
glutamine, 1 mM pyruvate, 100 U/ml penicillin, and 100 mg/ml
streptomycin and were tested biannually for identity (by short
tandem repeats) and Mycoplasma Spp. (by PCR). In vitro cell
proliferation was determined using 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. For in vivo injec-
tions, cells were harvested with trypsin, incubated with Trypan
blue, counted on a hemocytometer, and > 95% viable cells were
injected into the pleural space (2 x 10°) or into the skin (10°) as
described elsewhere (Agalioti et al, 2017). Mouse numbers used
are detailed in Appendix Table S7.

Cell and tissue analyses

MPE fluid was diluted in 10-fold excess red blood cells lysis buffer
(155 mM NH,CI, 12 mM NaHCOQj3, 0.1 mM EDTA). Total pleural cell
counts were determined microscopically in a hemocytometer and
cytocentrifugal specimens (5 x 10? cells each) of pleural fluid cells
were fixed with methanol for 2 min. Cells were stained with May—
Griinwald stain in 1 mM Na,HPOQ,, 2.5 mM KH,PO,4, pH = 6.4 for 6
min and Giemsa stain in 2 mM Na,HPO,, 5 mM KH,PO,, pH = 6.4
for 40 min, washed with H,0, and dried. Slides were mounted with
Entellan (Merck Millipore, Darmstadt, Germany), coverslipped, and
analyzed. For flow cytometry, 10° nucleated pleural fluid cells
suspended in 50 pl PBS supplemented with 2% FBS and 0.1% NaN;
were stained with the indicated antibodies according to manufac-
turer’s instructions (Appendix Table S6) for 20 min in the dark,
washed, and resuspended in buffer for further analysis. Lungs, visc-
eral pleural tumors, parietal pleural tumors, and chest walls were
fixed in 4% paraformaldehyde overnight, embedded in paraffin or
optimal cutting temperature (OCT) and were stored at room temper-
ature or —80°C, respectively. Five-pym paraffin or 10-um cryosections
were mounted on glass slides. Sections were labeled using the indi-
cated antibodies (Appendix Table S6), counterstained with Envision
(Dako, Carpinteria, CA) or Hoechst 33258 (Sigma-Aldrich, St. Louis,
MO0), and mounted with Entellan new (Merck Millipore) or Mowiol
4-88 (Calbiochem, Gibbstown, NJ). For isotype control, primary
antibody was omitted. Bright-field and fluorescent microscopy were
done on AxioLab.Al (Zeiss), AxioObserver.D1 (Zeiss), or TCS SP5
(Leica) microscopes and digital images were processed with Fiji
(Schindelin et al, 2012).

EMBO Molecular Medicine 13631 (2021 17 of 22



Paper |

37

EMBO Molecular Medicine

The paper explained

Problem

In a proportion of patients with human malignant pleural mesothe-
lioma (MPM), a dreadful disease most commonly inflicted by occupa-
tional asbestos inhalation but also possibly by smoking, sporadic
mutations of KRAS is observed. However, their functional impact and
significance have not been addressed and experimental model
systems suitable for the study of this molecular subclass of MPM are
not available,

Results

We systematically interrogate KRAS alterations in the TCGA pan-
cancer dataset of human MPM and in MPM patients from our centers
employing sensitive techniques. 20% of TCGA and 50% of our patients
show activating mutations or amplification of KRAS, in 30% of the
cases accompanied by TP53 mutations or loss. These changes are
associated with enhanced signaling downstream of KRAS. KRAS and
TP53 are shown to cooperate for MPM development in conditional
mouse models, Three new MPM cell lines are developed that are
highly similar to the human disease, and these experimental MPM
models are shown to be actionable by a novel KRAS inhibitor.

Impact

Multiple new tools for investigations on MPM biology are provided
together with proof-of-concept data that support involvement of KRAS
signaling in MPM pathogenesis. The findings can be rapidly translated
to clinical trials of KRAS pathway inhibition in a molecular subset of
MPM patients.

Liposomal deltarasin preparation and treatment

Deltarasin-encapsulating liposomes were prepared as described else-
where (Markoutsa et al, 2014; Marazioti et al, 2019), by freeze-
drying 30 mg of empty DSPC/PG/Chol (9:1:5 mol/mol/mol) unil-
amelar sonicated vesicles with 1 ml of deltarasin solution (5 mg/ml)
in PBS, or plain PBS (for empty liposomes), followed by controlled
rehydration. Liposome size was decreased by extrusion though
Lipo-so-fast extruder polycarbonate membranes (Avestin Europe,
Mannheim, Germany) with 400-nm pore diameter. Liposome lipid
concentration, size distribution, surface charge (zeta-sizer, Malvern
Panalytical Ltd, Malvern, United Kingdom), and drug encapsulation
efficiency were estimated by measuring non-liposomal drug absorp-
tion at 284 nm as reported elsewhere (Markoutsa et al, 2014,
Marazioti et al, 2019). Deltarasin-encapsulating liposomes were
delivered intrapleurally into CS7BL/6 mice 9 days post-intrapleural
KPM1 cells, when the first pleural tumors were already established
(Agalioti et al, 2017).

Statistics

Sample size was estimated using G*power (Faul et al, 2007)
assuming a = 0.05, g = 0.05, and effect size d or ¢ = 1.5.
Animals were allocated to treatments by alternation and transgenic
animals case-control-wise. Data acquisition was blinded and no
data were excluded from analyses. Data were tested for normality
of distribution by Kolmogorov-Smirnov test and are given as mean
+ 95% confidence interval (CI). Sample size (n) refers to biological
replicates. Differences in means or medians were examined by
t-test, Mann-Whitney test, Wilcoxon matched-pairs signed rank
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test, one-way analysis of variance (ANOVA) with Tukey’s or
Bonferroni’s post-tests, or Kruskal-Wallis test with Dunn’s post-
tests, as indicated and appropriate. Differences in frequencies were
tested by Fischer’s exact or y* tests. Molecular and longitudinal (bi-
oluminescence, MTT, tumor growth) data were analyzed by two-
way ANOVA with Bonferroni’s, Sidak’s, Dunnett’s, or Tukey’s
post-tests, or with two-stage linear step-up procedure of Benjamini,
Krieger, and Yekutieli. Survival was analyzed using Kaplan-Meier
estimates, log-rank (Mantel-Cox) test for probability, and Mantel—
Haenszel estimates of hazard ratio. Probability (P) values are two-
tailed and P < 0.05 was considered significant. Analyses and plots
were done on Prism v8.0 (GraphPad, La Jolla, CA) and Excel
(Microsoft, Redmont, WA).

Data availability

Affymetrix CytoScanHD Microarray data: GEO dataset GSE134349
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE1343
49).

TonTorrent RNA sequencing data: GEO dataset GSE94415 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc = GSE94415).

Expanded View for this article is available online.
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https%3A%2F %2Fgdc.xenahubs.net&removeHub=https%3A%2F %2Fxena.
treehouse.gi.ucsc.edu%3A443
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https://cancer.sanger.ac.uk/cosmic/browse/tissue?wgs=off&sn=pleura&ss=
all&hn=mesothelioma&sh=&in=t&src=tissue&all_data=n

Human MPM datasets at Gene Expression Omnibus: https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSES1024, https://www.ncbi.nim.nih.gov/geo/query/
acc.cgiracc=GSE134349, https://www.ncbi.nim.nih.gov/geo/queryfacc.cgi?acc=
CSE42977

Novel mouse MPM cell line and normal mesothelial cell RNA sequencing
dataset at Gene Expression Omnibus: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?&acc=GSE94415

Using Pleural Effusions to Diagnose Cancer (MAPED) study page at
ClinicalTrials.gov: https://www clinicaltrials.gov/ct2/show/NCT03319472term=
maped&draw=2&rank=1

Links to patient support, advocate, and charity organizations: https://www.
mesotheliomagroup.com/, https://www.mesothelioma.com/, https://www.
mesotheliomahelp.org/, https://www.asbestos.com/support/, https://
mesothelioma.net/mesothelioma-support/, https://www.curemeso.org/, https://
www.mesotheliomahope.com/resources/cancer-foundations/, https://www.
mesothelioma.uk.com/.
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ABSTRACT ARTICLE HISTORY
Mast cells (MC) have been identified in human lung adenocarcinoma (LADC) tissues, but their functional Received 1 August 2018
role has not been investigated in vivo. For this, we applied three mouse models of KRAS-mutant LADC to ~ Revised 23 February 2019
two different MC-deficient mouse strains (cKit™™" and Cpa3.Cre). Moreover, we derived MC gene  Accepted 28 February 2019
signatures from murine bone marrow-derived MC and used them to interrogate five human cohorts KEYWORDS

of LADC patients. Tumor-free cKit"*" and Cpa3.Cre mice were deficient in alveolar and skin KIT- Carboxypeptidase
dependent (KIT+) MC, but cKit"Y*" mice retained normal KIT-independent (KIT-) MC in the airways. 3/mutation/IL; 1B/lung
Both KIT+ and KIT- MC infiltrated murine LADC to varying degrees, but KIT+ MC were more abundant cancer/urethane

and promoted LADC initiation and progression through interleukin-1p secretion. KIT+ MC and their

transcriptional signature were significantly enriched in human LADC compared to adjacent normal

tissue, especially in the subset of patients with KRAS mutations. Importantly, MC density increased

with tumor stage and high overall expression of the KIT+ MC signature portended poor survival.

Collectively, our results indicate that KIT+ MC foster LADC development and represent marked ther-

apeutic targets.

Introduction Although MC are well-recognized initiators of acute allergic
reactions, it is now apparent that these multifarious cells infil-

trate a wide spectrum of malignancies and execute various
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infla tion: Hhat: iy elinieslly evideny ¢ donie gidlow gent MC functions in cancer remain elusive, new models of MC

T ; 5 : ablation lend promise to solve this riddle but have not been
obstruction.*”” It is generally believed that this inflammation P

. i X widely employed in cancer models.***”
alters the microenvironment of tobacco carcinogen-mutated I .
; L . . . MC have been identified in human and murine LADC, and
respiratory epithelial cells, fostering their survival and sus-

) . . RPTY have been found to promote lung adenocarcinoma cell growth
tained growth instead of their eradication.™ This pulmonary . = ° . . . 28031
X . . in vitro and to be associated with poor patient survival. We
inflamed microenvironment of smokers encompasses com- .
; y e - - recently showed that KRAS mutations in tumor cells and host
plex interactions between tumor-initiated respiratory epithe-
] : co-opted MC cooperate to promote the development of an
lial cells and host immune cells and has been only poorly . S Al ; ;
e e inflammatory chemokine signaling network that culminates in
charted. . . 5 32-34
metastatic malignant pleural effusions. However, the func-
Mast cells (MC) are bone marrow-derived inflammatory & P

. . . tional role of MC in KRAS-mutant LADC development
leukocytes which can secrete upon activation a battery of biolo- . "0 L Tl rated various types of KRAS-
gically active products.">'> MC are distributed in all vascular- ' 8

il ; i tant LADC in two different dels of MC ablati
ized tissues and are particularly abundant at the bodily interfaces m .avl\lrsh 10 two Gitierent mouse mode’s o7 ahon
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elimination of KIT-dependent MC and complete ablation of all
MC. Interestingly, KIT-dependent MC were more abundant and
were found to promote experimental KRAS-mutant LADC
initiated by the tobacco carcinogen urethane, by oncogenic
KRAS®"P expression in the lungs, and by transplanted LADC
cells. KIT-dependent MC and their transcriptome signatures
were evident in different human LADC cohorts and correlated
with poor survival, indicating a potential actionable role for these
cells in human disease progression.

Results
Mast cells infiltrate murine lung adenocarcinomas

To identify whether MC infiltrate experimental LADC, we
used three different mouse models of the disease arising in
distinct anatomical compartments. In a first line of experi-
ments, C57BL/6 mice received 10 consecutive weekly intra-
peritoneal injections of the tobacco-contained carcinogen
urethane (1g/Kg) and were sacrificed after six months,
a model that results in stochastic chemical mutagenesis of
the airway epithelium (Figure 1A, D). Alternatively,
C57BL/6 mice carrying a conditional loxP-STOP-loxP.
KRASC1P gllele (KRASC'?P mice) received 5 x 10° intratra-
cheal plaque-forming units (pfu) Ad-Cre and were killed after
four months. In this model, progressive lesions carrying the
inciting KRASS'?P mutation are inflicted in alveolar epithelial
cells infected by Ad-Cre via excision of the STOP codon that
hinders expression of the mutant transgene (Figures 1B,
E).*** In a third line of experiments, C57BL/6 mice received
10° LLC cells into the rear flank dermis, a model of estab-
lished LADC heterotopic growth and spontaneous pulmonary
metastasis (Figures 1C, F).*1="3 We labeled with the metachro-
matic stain toluidine blue (TB) that distinctively stains MC
violet on a blue background and systematically evaluated MC
abundance on randomly sampled sections of lungs from the
former two models, and primary tumors and lungs with
metastases from the latter model, as well as tumor-free lungs
of C57BL/6 mice (n = 10/group). MC were identified in
LADC of all three models examined, preferentially located in
early lesions, at the tumor front, at subbronchial and sub-
pleural sites, or within alveolar inflammatory infiltrates fre-
quently observed in juxtatumoral areas (Figures 1G-N).
Importantly, alveoli were less MC-dense, and MC infiltrates
of urethane-induced tumors were less prominent compared
with the KRAS®"” and LLC models (Figure 10). Overall, MC
infiltrates accounted for approximately 1 in 50 tumor cells.
These findings are in accord with a previous report from the
urethane model,” and indicate that MC are present in experi-
mental LADC developing in the airways, alveoli, and skin.

Compartmentalized mast cell deficiency of cKit"*" and
Cpa3.cre mice

We next assessed lung and skin MC density in two different
strains of genetically MC-deficient mice that either lack func-
tional KIT receptors required for mastopoiesis (cKit™™"
mice),”** or express CRE recombinase exclusively in MC lead-
ing to tumor-related protein 53 (TRP53)-mediated spontaneous

apoptosis of these cells (Cpa3.Cre mice).*”** For this, the air-
ways, alveoli, and skin of mice on a pure C57BL/6 background
carrying one or two cKit""™" alleles (designated cKit™*™™* and
cKit WsMWsh. respectively) or one Cpa3.Cre allele, as well as
littermate controls of both strains (collectively designated
C57BL/6; n = 10/group; total n = 40) were sectioned and stained
with toluidine blue. In more detail, the control C57BL/6 group
consisted of eKit"""V* littermates of cKit" ™Vt and cKif™V Wt
mice, wild-type (Wt) littermates of Cpa3.Cre mice, as well as
Lyz2.Cre mice that express CRE recombinase under the control
of the endogenous Lyz2 promoter as additional controls for
Cpa3.Cre mice.*” Surprisingly, MC were identified throughout
the airways of C57BL/6, but also of cKit"V*™™' and cKif™h/Wsh
mice and were absent from the airways of Cpa3.Cre mice. In
contrast, MC were present in the alveolar regions, pulmonary
vasculature, mediastinal organs, and the skin of C57BL/6 mice,
but were significantly decreased in these compartments of
cKitWsWE RS Wsh - and Cpa3.Cre mice (Figures 2A-G).
These results are consistent with the initial descriptions of
these mice,””** as well as with our previous study of pleural
MC,” and indicate that cKit"V™™*® and Cpa3.Cre mice can
serve as compartmentalized mouse models of MC deficiency of
the alveoli/skin and of the airways/alveoli/skin, respectively
(Figure 2H).

Mast cells are required for lung adenocarcinoma
formation and progression

To determine whether MC are functionally involved in LADC
development, we reproduced all three mouse models of airway,
alveolar, and cutaneous LADC described above in C57BL/6 (Wt
littermates and Lyz2.Cre heterozygotes), cKit"' "™, cKitW=/Weh
and Cpa3.Cre mice. In a first line of experiments, C57BL/6,
cKit W WE g WshiWsh g Cpa3.Cre mice received 10 conse-
cutive weekly intraperitoneal urethane (1g/Kg) injections (total
n = 143; Figure 3A). Thirty-eight mice succumbed to repeat
carcinogen treatment (14 of 58 C57BL/6, 2 of 21 cKitV*"™', 21
of 55 cKitVWsh and 1 of 9 Cpa3.Cre mice; f P = 0.0419,
Fisher’s exact P = 0.0236 for comparison of cKit"*™"! with
cKit WshvWsh mice), while the remaining 105 mice were sacrificed
after six months for lung tumor evaluation (Figure 3B). Cpa3.Cre
mice were markedly protected from urethane-induced bronchial
carcinomas in terms of tumor multiplicity, size, and cellular
proliferation rate, suggesting an important role for MC in
tumor initiation and progression, whereas cKit""™™' and
cKit VMW mice were susceptible to the carcinogen to
a degree similar to C57BL/6 mice, a result consistent with their
sufficiency in MC of the airways, the site of tumor initiation
induced by wurethane (Figure 3C-E). In a second
line of experiments, KRAS,GIZD KRAS;GIZD etV w:) and
KRAS;SPcKiVsWsh mice (C57BL/6 background) received
5 x 10° intratracheal pfu Ad-Cre and were killed after four
months. KRASS'?P x Cpa3.Cre intercrosses failed to generate
double heterozygote offspring suggesting fetal lethality (n = three
intercrosses; 11 litters; 53 off-springs; P = 0.0001 for 0/53 geno-
type frequencies obtained compared to 13/40 expected by
Fischer’s exact test). KRAS; S22 it Wsh/Wsh 1ice were signifi-
cantly protected from KRAS-driven alveolar carcinomas com-
pared with KRASS?P mice, with KRAS;GchKitWShWVt mice

»
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Figure 1. Mast cells in murine lung adenocarcinomas.

A-F Schematics depicting tumors (red) of the airways, alveoli, and skin (A-C) and representative microscopic images of hematoxylin/eosin-stained sections (D-F) of
airway-originated lung adenocarcinomas (LADC) induced in C57BL/6 mice by 10 weekly consecutive intraperitoneal injections of 1 g/Kg urethane (six months latency;
A and D; arrow in D denotes originating bronchus), of alveolar-derived LADC induced in KRASS'?°-transgenic mice by intratracheal injection of 5 x 10° pfu Ad-Cre
(four months latency; B and E; arrow in E denotes originating alveolar region), and of skin heterotopic LADC spontaneously metastasizing to the alveolar regions
induced by subcutaneous delivery of 10° LLC cells (one month latency; C and F; arrows in F denote alveolar regions involved by metastases). G-N Toluidine blue-
stained lung and tumor sections from the above-described three mouse models of LADC showing metachromatic (purple) mast cells (arrows) in early urethane-
induced atypical alveolar hyperplasias (dashed lines in G and H), in tumor-adjacent alveolar inflammatory infiltrates (I), in and adjacent to urethane-induced LADC
(dashed lines in J and K), entering alveolar KRAS®'2®-transgenic tumors from the airway lumen and the pleural space (dashed lines, L and M), and in subcutaneous
LLC tumor (dashed line in N). a, alveoli; al, airway lumen; ps, pleural space; pv, pulmonary vein. O Mast cell abundance of urethane- and KRASS'?®-primary tumors
and LLC primary tumors and metastases compared with airways and alveoli of naive C57BL/6 mice (n = 10/group). Data are presented as median with Tukey's
whiskers (boxes: interquartile range; bars: 50% extreme quartiles), raw data points (dots),and Kruskal-Wallis analysis of variance (ANOVA) probability (P) value.* and
**: P< 0.05 and P< 0.01, respectively, for the indicated comparisons by Dunn’s post-tests. Only statistically significant differences are indicated.
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Figure 2. Thoracic and skin mast cells in two different mouse models of mast
cell deficiency.
Wsh

The airways, alveoli, and skin of mice carrying one or two cKit"*" alleles
(designated cKit"*"™* and ckitY*""*", respectively) or one Cpa3.Cre allele on
a pure C57BL/6 background, and C57BL/6 littermate or Lyz2.Cre heterozygous
control mice (n = 10/group) were sectioned and stained with toluidine blue.
Representative microscopic images of toluidine blue-stained tissue sections
(A-F), summary of data from n = 10 mice/group (G), and schematics of mast
cell competence (colored mast cells) and deficiency (grey mast cell shadows) (H).
A-F Arrows indicate mast cells in the submucosa of a large airway (A; inlay
shows tracheal cartilage as positive control of metachromatic purple staining), in
a large pulmonary vein (B), in the vagus nerve (C), in the thymus of a 6-week-old
(D) and a 20-week-old (E) mouse, and in the esophageal submucosa (F) of
C57BL/6 controls. a, alveoli; pv, pulmonary vein; al, airway lumen; vn, vagus
nerve; ct, cellular thymus; ft, fatty thymus; el, esophagus lumen. G Airwax,
alveolar, and skin mast cell density of C57BL/6 control, cKit™""Wt, cKitVshWsh,
and Cpa3.Cre mice (summary of data from n = 10 mice/group). Shown are
median with Tukey’s whiskers (boxes: interquartile range; bars: 50% extreme
quartiles), raw data points (dots), and Kruskal-Wallis analysis of variance
(ANOVA) probability (P) value. **, and ***: P< 0.01 and P< 0.001, respectively,
for comparisons with C57BL/6 controls by Dunn’s post-tests. Only statistically
significant differences are indicated. Note the airway mast cell competence of
ckit" "™t and cKit*"™s" mice, and the complete mast cell deficiency of Cpa3.
Cre mice. H Schematics depictir\ldq mast cells (purple) of the airways, alveoli, and
skin of C578L/6, cKit" "™, ckit*MWsh and Cpa3.Cre mice. Grey mast cell fade-
outs indicate mast cell deficiency of the given anatomic compartment.

displaying an intermediate phenotype, indicating a significant
tumor-promoting role of MC in the disease (Figure 4). Finally,
separate cohorts of C57BL/6, cKitWeBWE i WeRWeh and Cpa3.
Cre mice, all on the C57BL/6 background, received 10° subcuta-
neous LLC cells and were followed for one month. cKif"Vsh/Wsh
and Cpa3.Cre mice displayed significantly delayed primary
tumor growth, as well as decreased spontaneous metastasis to
the lungs compared with controls; interestingly, cKit"*""* mice
displayed sustained primary tumor growth, but significantly
decreased metastasis (Figure 5A-C). Co-labeling of MC and

proliferating cells in primary tumors from these mice using

toluidine blue and anti-proliferating cell nuclear antigen
(PCNA) antibody revealed that MC directly contacted PCNA+
tumor cells (Figures 5D-J), that LLC tumors of Cpa3.Cre mice
had decreased numbers of proliferating tumor cells and were
devoid of MC, while cKit"V*"*"* and cKit"*""V*" mice displayed
intermediate phenotypes, and that PCNA+ tumor cells were
significantly increased in MC hotspots of LLC tumors of control
mice (Figures 5K-N). Collectively, these data indicate that MC
are important for LADC development, growth, and metastasis.

Mast cells respond to lung adenocarcinoma-secreted
factors

To identify MC-derived mediators that drive LADC, we isolated
MC from C57BL/6 mouse bone marrow (bone marrow-derived
MC, BMMC) using one month’s incubation with 100 ng/mL
interleukin (IL)-3 alone or 100 ng/mL IL-3 plus 100 ng/mL KIT
ligand (KITL), a method that yields > 95% pure BMMC, as
described  elsewhere.” KIT-dependent (KIT+) and KIT-
independent (KIT-) BMMC were then exposed to cell-free LLC-
conditioned media (CM) for 24 h and their RNA was examined
for changes in gene expression compared with non-CM-exposed
counterparts by microarray [Gene Expression Omnibus (GEO)
identifier GSE58189; https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE58189]. This experiment revealed distinct gene
sets that are differentially regulated in KIT+ and KIT- BMMC or
both upon LADC cell encounter (Figure 6A, B). The human
orthologues of the top transcripts of these three sets were used to
compile KIT+, KIT-, and common MC signatures and included
Il1b (Figure 6C), which we previously identified to promote
LADC-induced malignant pleural effusion.”> Ex-vivo generated
KIT+ BMMC displayed marked increases in IL-1 production
and caspase-1 (CASP1) expression upon LADC cell encounter
(Figure 6D-F), consistent with the role of CASP1 in IL-1f
processing.*® IL-1p also promoted subcutaneous LADC growth,
since I11b-deficient mice displayed significantly delayed tumor
growth after subcutaneous LLC injection (Figure 6H). These
results indicate that both KIT+ and KIT- MC respond transcrip-
tionally to LADC-secreted factors and identify candidate gene
sets of MC-derived LADC promoters for future research. In
addition, the data support that MC can develop and respond
to tumor cells in the absence of functional KIT (i.e., in cKifVehwt
and cKit VWb mice),

Mast cells impact the microenvironment of lung
adenocarcinoma

We next evaluated the abundance of other immune cells in our
experimental LADC models on backgrounds of MC-competence
and -deficiency. While mononuclear and lymphoid cells were
equally abundant in LADC from MC-competent and - deficient
mice, we observed a statistically significant increase in polymor-
phonuclear cells in cKit™ VW mice (Figure 7A-F), in accord
with a previous report.” Interleukin-1p immunoreactivity was
statistically significantly decreased in LADC from MC-deficient
mice, indicating that MC are a cardinal source of the cytokine in
LADC (Figure 7G). We next co-labeled MC with anti-KIT anti-
body and toluidine blue in LADC of MC-competent mice, to
observe that KIT+ MC were more abundant compared with
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Figure 3. Mast cell deficiency protects mice from urethane-induced lung adenocarcinoma of the airways.

C57BL/6 controls (cKit""™ and Cpa3.Cre” littermate controls, as well as Lyz2.Cre mice), kit keSS and Cpa3.Cre mice received ten consecutive weekly
intraperitoneal urethane (1g/Kg) injections (n = 58, 21, 55, and 9, respectively) and were followed for survival and lung tumor analyses at six months post-urethane
start. A Schematic time-course of the experiment with boxes representing one month. B Kaplan-Meier survival curves and log-rank P value. C Frequency distribution
of tumor number and size with n and"iP values. a: P< 0.05 for Cpa3.Cre mice compared with cKit"*™™ and cKit"*"Wsh mice by Fischer's exact test. b: P< 0.05 for
Cpa3.Cre mice compared with cKit"*""* mice and P< 0.001 for Cpa3.Cre mice compared with C57BL/6 control and cKit"*""¥" mice by Fischer’s exact test. D Data
summary of tumor number, size, mean volume, and burden per lung shown as median with Tukey's whiskers (boxes: interquartile range; bars: 50% extreme
quartiles), raw data points (dots), and Kruskal-Wallis analysis of variance (ANOVA) probability (P) value. *, and **: P< 0.05, and P< 0.01, respectively, for the indicated
comparisons by Dunn’s post-tests. Only statistically significant differences are indicated. E Representative images of gross lungs and hematoxylin/eosin (H&E)- and

proliferating cell nuclear antigen (PCNA)-stained lung sections. Arrows and dashed lines denote lung adenocarcinomas.

KIT- MC (Figure 7H, I). Collectively, these findings indicate that
KIT+ MC are the predominant MC population in LADC that
regulate the recruitment of other immune cells and that contri-
bute to IL-1f secretion.

Interleukin-1f provided by KIT+ mast cells is required for
KRAS-mutant LADC

Based on the in vivo results obtained from the different mouse
models of LADC, we hypothesized that KIT+ and KIT- MC may
possess different LADC-promoting properties. To test this, as
well as to determine the impact of IL-1p on LADC growth,
BMMC were cultured from WT and I11b-/- mice,*® as described
above and elsewhere.” After 30 days in culture on 100 ng/mL

IL-3 alone or 100 ng/mL IL-3 plus 100 ng/mL KITL, more than
95% of BMMC from both WT and Il1b-/- mice differentiated
into MC of various maturation stages displaying metachromasia,
ie. purple staining with toluidine blue (Figure 8A), as well as
MC-specific molecular markers. We next co-cultured LLC cells
with DMEM control or with KIT+ or KIT- BMMC from WT or
Il1b-/- mice at a physiologically relevant 50:1 ratio identified
from in vivo LADC (Figures 10, 8A). Co-cultures were assessed
for in vitro cellular proliferation by 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) reduction, for in vitro
cell migration by scratch assay, and for in vivo tumor growth
after subcutaneous injection of a million cells into syngeneic
Ccr2 gene-deficient mice (n = 5-6/group), selected to prevent
confounding chemorecruitment of endogenous host mouse
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Figure 4. Mast cell deficiency protects mice from KRAS®'?®-induced lung ade-
nocarcinoma of the alveoli.

KRAS,S'2° KRASS2Pckit ™™™, and KRASS'Pckit" ™" mice (C57BL/6 back-
ground) received 5 x 10% intratracheal plaque-forming units (pfu) Ad-Cre and
were killed after four months (n = 17, 9, and 14, respectively). A Schematic time-
course of the experiment with boxes representing one month. B Frequency
distribution of relative lung tumor fraction and absolute lung tumor volume
(burden) with n and x* P values. ** and ***: P< 0.01 and P< 0.001, respectively,
for comparisons with KRAS®'2° controls by Fischer’s exact test. C Data summary
of relative lung tumor fraction and absolute lung tumor volume (burden) per
lung, as well as percentage of proliferating cell nuclear antigen (PCNA)+ tumor
cells with Tukey's whiskers (boxes: interquartile range; bars: 50% extreme
quartiles), raw data points (dots), and Kruskal-Wallis ANOVA P values. *, *¥,
and *** P< 0,05, P< 0.01, and P< 0.001, respectively, for comparison with
KRAS®'?® controls by Dunn's post-tests. Only statistically significant differences
are indicated. D Representative images of gross lungs and hematoxylin/eosin (H
& E)- and PCNA-stained lung sections. Arrows and dashed lines denote lung
adenocarcinomas.

MC.*** These experiments clearly showed that exclusively
KIT+ MC competent in IL-1p can promote LADC cell prolifera-
tion and migration in vitro and in vivo (Figure 8B-D).

Mast cells in human lung adenocarcinoma

To determine whether our findings are relevant to human LADC,
we analyzed MC infiltrates in 37 patients with histologically
documented LADC from one of our previous studies from

Greece.”® MC preferentially accumulated in tumor tissue com-
pared with adjacent normal-appearing lung tissue (Figure 9A;
Table 1). In addition, the human orthologue of the murine
KIT+ MC signature above, generated at http://lighthouse.ucsf.
edu/orthoretriever/,” was significantly over-represented in
tumor tissue compared with adjacent lung tissues of 10 patients
with histologically documented LADC from one of our previous
studies from Germany (Figure 9B; Table 2).”* Individual tran-
scripts from all three MC signatures, including TNFRSF9 and
CD72 from the common, NLRP6 from the KIT-, as well as
SLC43A3, TRAFI, and HSPAIB from the KIT+ MC signature
were significantly over-represented in tumor tissue compared
with adjacent lung tissue (Figure 9C). In addition, MC density
significantly increased with T, N, and TNM stage in the former
series of patients (Figure 9D-I). These results are in line with the
increased tumor cell proliferation indices of LADC from MC-
competent mice compared with MC-deficient counterparts and
suggest that MC infiltrate human LADC, where they exert pro-
tumor functions. Moreover, the data suggest that primarily KIT+
MC infiltrate human LADC. We further interrogated the presence
of MC transcriptional signatures in human LADC, employing
published transcriptomes of normal lung tissues from never smo-
kers and LADC tissues from never- and current smokers from the
Biomarker-integrated Approaches of Targeted Therapy for Lung
Cancer Elimination (BATTLE) study (GEO dataset GSE43458;
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE43458).>® Unsupervised clustering of this patient cohort by
our humanized transcriptional signatures of KIT+ and KIT- MC
accurately discriminated normal from LADC tissues and several
genes of these MC signatures were overrepresented in tumor
versus normal tissues, but also in smokers’ versus never-
smokers’ LADC, validating the results from our small cohort
from Germany (Figure 10A, B).*> Although all MC signatures
could discern LADC tissues from normal lungs, the KIT+ signa-
ture emerges to be functionally important in LADC, since LADC
patients with high expression of exclusively this footprint dis-
played significantly shorter survival (http://kmplot.com/analysis/
index.php?p=service&cancer=lung; Figure 10C).** Finally, gene
set enrichment analyses (GSEA) of humanized KIT+ and KIT-
MC signatures were done in LADC from smokers and never
smokers compared with normal lung tissue (GEO dataset
GSE43458; https://www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=
GSE43458) and in KRAS- and EGFR-mutant LADC compared
with normal lung tissue (GEO dataset GSE31852; https://www.
ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE31852).%*>>* Using
stringent cut-offs of false discovery rate (FDR) g values <0.05 and
family-wise error rate (FWER) probability (P) values <0.05, we
found that exclusively the KIT+ MC signature was focally
enriched in KRAS-mutant LADC, while missing significance
levels by a margin in smokers’ LADC (Figure 11). These results
connect KIT+ MC with KRAS-mutant LADC caused by tobacco
smoking, in line with the results from the animal models of KRAS-
mutant LADC employed (Figures 1-5). Collectively, these results
from five human cohorts of LADC indicated that both KIT+ and
KIT- MC and their transcriptional signatures are present in
human LADC, and suggested that KIT+ MC are specifically
important for disease progression of KRAS-mutant LADC.
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Figure 5. Mast cell deficiency protects mice from Lewis lung adenocarcinoma growth in the skin and its metastasis to the alveolar regions.

€57BL/6 controls (cKit"Y"™! and Cpa3.Cre™ littermate controls, as well as Lyz2.Cre mice), ckit™*™™*, cKit"*Wsh and Cpa3.Cre mice, all on the C57BL/6 background (n =
13, 7, 7, and 6, respectively), received 10° subcutaneous Lewis lung carcinoma cells (LLC), were followed for one month by weekly measurement of three vertical
primary tumor diameters () and calculation of primary flank tumor volume (V = n6°/6) and were sacrificed for primary tumor and spontaneous lung metastasis
analyses at one month post-LLC cells. A Schematic time-course of the experiment with boxes representing one week. B Data summary of primary subcutaneous
tumor volume expressed as percentage of C57BL/6 controls (mean+SEM) with two-way ANOVA P value. * and ***: P< 0.05 and P< 0.001, respectively, for comparison
with C57BL/6 controls by Bonferroni post-tests. C Data summary of absolute lung metastasis volume (burden) per lung. D-J Toluidine blue-counterstained primary LLC
tumor sections of C57BL/6 control mice (n = 10) labeled for proliferating cell nuclear antigen (PCNA), a technique that allows simultaneous visualization and
quantification of proliferating cells (brown), mast cells (purple), and nuclei (blue). Shown are representative mast cell hotspot (D; dashed line) and areas of such
hotspots featuring mast cells in close association/contact with proliferating tumor cells (E-J; arrows). K-N Data summary of percentage of PCNA+ primary tumar cells
(K), primary tumor mast cell density (L), percentage of PCNA+ cells in mast cell hotspots versus mast cell-devoid areas of primary tumors of C57BL/6 mice (M), and
correlation of these two parameters in mast cell hatspots of primary tumors of C578L/6 mice (N). (K, L) n =10, 7, 7, and 6, respectively. (M) n = 10 C57BL/6 mice. (N)
n = 2 hotspots from each of 10 C57BL/6 mice. Data information: (C, K, L, M) Data are shown as Tukey's whiskers (boxes: interquartile range; bars: 50% extreme
quartiles), raw data points (dots), and Kruskal-Wallis ANOVA (C, K, L) and Mann-Whitney u-test (M) P values. *, **, and ***: P< 0,05, P< 0.01, and P< 0.001,
respectively, for comparison with C57BL/6 controls or as indicated by Dunn’s post-tests. Only statistically significant differences are indicated. (N) Shown are data
points, Pearson correlation P value and coefficient, and linear regression line and formula.
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Discussion LADC, since each MC-deficient strain was markedly protected
from tumorigenesis in at least two models of LADC: cKit"'™"
mice from KRAS®'*"- and LLC-induced tumors, and Cpa3.Cre
mice from urethane and LLC-induced tumors. Albeit both MC
populations infiltrate experimental and human LADC, we show
how KIT+ MC foster LADC progression conditional on their
competence for IL-1 secretion, while KIT- MC appear to have
a neutral role. Moreover, we identify MC gene sets that are
differentially regulated upon LADC cell encounter, facilitating
the future discovery of MC-derived effectors that foster LADC.
Human results from five different patient cohorts lend support
to our experimental findings of an LADC promoting role for

This is the first in vivo study on the role of mast cells in lung
adenocarcinoma. We show that KIT+ MC possess potent biolo-
gical activity fostering disease progression in three different
mouse models of KRAS-mutant LADC either endogenously
arising from the airways or the alveoli, or heterotopically
implanted in the skin and spontaneously disseminating to the
alveolar areas. For this, we used two divergent genetic models of
MC deficiency, one resting on defective KIT signaling (cKif"'™"
mice) and another relying on genetic MC ablation (Cpa3.Cre
mice). The results indicate that KIT+ MC are required for
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Figure 6. Response of bone marrow-derived mast cells to lung adenocarcinoma cells and lung adenocarcinoma growth in interleukin-1p-deficient mice.

A Genes differentially expressed (39 genes, AGE > 2) between KIT-dependent (KIT+) and KIT-independent (KIT-) bone marrow-derived mast cells (BMMC). B Venn
diagram of differentially expressed genes (AGE > 2) of BMMC pre-cultured for one month with interleukin (IL-3) plus cKIT ligand (KITL) (KIT+ BMMC) or with IL-3 only

(KIT- BMMC) upon 24-h incubation with cell-free Lewis lung carcinoma-conditioned

media (LLC-CM) by Affymetrix Mouse Gene ST2.0 microarrays. Top 10 transcripts

from each gene set are listed. Note the 55 genes selectively up-regulated in KIT+ BMMC (blue signature), the 76 genes selectively up-regulated in KIT- BMMC (green
signature), and the 34 genes up-regulated in both BMMC (turquoise signature) featuring i/7b (red font). C Normalized microarray expression values of top genes with
human orthologues from each signature compared with Gusb control (n = 2/data point). D qPCR data summary of //7b normalized to Gusb expression of KIT+ and
KIT- BMMC upon 24-h incubation with cell-free LLC-CM (n = 3). Data are shown as Tukey's whiskers (boxes: interquartile range; bars: 50% extreme quartiles). ***: P <
0.001 for LLC-CM-treated KIT+ BMMC compared with all other groups by two-way ANOVA with Bonferroni post-tests. Only statistically significant differences are
indicated. E KIT+ and KIT- BMMC were assessed for caspase-1 (CASP1) and B-actin (ACTB) immunoreactivity by Western immunoblot upon 24-h incubation with
DMEM (-) or cell-free LLC-CM (+). F Representative cytocentrifugal specimens of IL-1B immunostained and toluidine blue counter-stained KIT+ and KIT- BMMC upon
24-h incubation with DMEM or cell-free LLC-CM. G Data summary from n = 5 samples from (F). Data are shown as Tukey's whiskers (boxes: interquartile range; bars:
50% extreme quartiles). ***: P < 0.001 for LLC-CM-treated KIT+ BMMC compared with all other groups by two-way ANOVA with Bonferroni post-tests. Only
statistically significant differences are indicated. H C57BL/6 and li1b gene-deficient (//1b-/-) mice on the C57BL/6 background (n = 5/group), received 10° subcutaneous
Lewis lung carcinoma cells (LLC) and were followed for one month by weekly measurement of three vertical primary tumor diameters (&) and calculation of primary
flank tumor volume (V = n&%/6). Data summary of primary subcutaneous tumor volume expressed as percentage of C57BL/6 controls (mean+SEM) with two-way

ANOVA P value.

KIT+ MC. Hence, this report presents the first direct evidence
for a requirement for KIT+, IL-1p-competent mast cells in
KRAS-mutant LADC, identifying new targets for therapy.

The results favor an important role for MC during the whole
spectrum of LADC formation, progression, and metastasis.’”
To this end, MC-deficient mice were protected from direct
tumor initiation of the airway and alveolar epithelium using

- : G12D
the tobacco carcinogen urethane and oncogenic KRAS,

respectively, and were also resistant to the heterotopic growth
of established LADC in the skin, as well as to its spontaneous
metastasis back to the lungs. MC are known to heavily colonize
the airways of mice and men,'*>"'**? where tumor initiation by
environmental carcinogens occurs,"”” and were shown here to
progressively infiltrate LADC of increasing stage, positioning
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Figure 7. Lung adenocarcinoma microenvironment of mast cell-competent and incompetent mice.

A Representative images of lung adenocarcinomas from Figures 3-5 (n = 10 mice/group randomly chosen from the urethane, KRAS,%'?° and heterotopic models)
stained with hematoxylin and eosin (H & E) or immunostained with anti-CD68, anti-LYZ2, and anti-IL-1p antibodies and counterstained with toluidine blue. B-G Data
summary from (A). Data are shown as Tukey's whiskers (boxes: interquartile range; bars: 50% extreme quartiles), raw data points (dots), and Kruskal-Wallis ANOVA
P values. Comparisons shown are. *: P< 0.05 for comparisons with C57BL/6 controls or as indicated by Dunn’s post-tests. Only statistically significant differences are
indicated. H Representative lung adenocarcinomas from Figures 3-5 (n = 10 mice/group randomly chosen from the urethane, KRAS, 5120 and heterotopic models)
were immunostained with anti-KIT antibody and counterstained with toluidine blue. Data summary shown as Tukey’s whiskers (boxes: interquartile range; bars: 50%
extreme quartiles), raw data points (dots), and Mann-Whitney u-test P value. | Representative images of LADC-infiltrating KIT+ (left) and KIT- (right) MC and their co-
localization in tumors (middle).
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Figure 8. KIT-dependent mast cells competent in interleukin-1p are required for lung adenocarcinoma.

A Left: Representative cytocentrifugal specimens of toluidine blue-stained bone marrow-derived cells from WT and i/1b-/- mice before (top) and after one-month
incubation with 100 pg/mL interleukin (IL)-3 and 100 pg/mL KIT ligand (KITL) or with 100 pg/mL IL-3 alone (bottom). Note the >95% metachromasia of bone
marrow-derived mast cells (BMMC) of different maturation stages after treatment. Right: Representative cytocentrifugal specimen of toluidine blue-stained BMMC
mixed with LLC cells at 1:50 ratio before experiments. B, C LLC cells alone or co-cultured with BMMC from (A) were assessed for in vitro cellular proliferation by MTT
reduction and for in vitro cell migration by scratch assay. (B) Representative scratch assay images at experiment start and conclusion. (C) Summary of data from n =
5-6 independent experiments expressed as mean+SEM with two-way ANOVA P values. ns, *, and ***: P> 0.05, P< 0.05, and P< 0.001, respectively, for comparison
with DMEM control (c) by Bonferroni post-tests. D Ccr2 gene-deficient mice (n = 6/group) received 10° subcutaneous LLC cells alone or mixed with BMMC at 50:1
ratio and were followed for a month by weekly measurements of three vertical primary tumor diameters and calculation of flank tumor volume. Summary of data
from n = 6 mice/group expressed as mean+SEM with two-way ANOVA P value. ns and ***: P> 0.05 and P< 0.001, respectively, for comparison with DMEM control (c)

by Bonferroni post-tests.

MC as plausible effectors of LADC development and progres-
sion. The results also favor a ubiquitous LADC-promoting role
for MC across anatomical compartments of the lungs, since
MC-deficient mice were protected from both airway- and
alveolar-inflicted LADC.**** This is important given the diver-
sity of the cellular origin of LADC in mice and humans if MC-
based therapy is ever contemplated.” >

But how can the divergent results from urethane-treated
cKit™™ and Cpa3.Cre mice be explained? We believe that the
results do not contradict the proposed tumor-promoting role
for MC in LADC and can be explained on several counts. First,

cKit"*" mice were not completely devoid of airway MC, and we
recently showed urethane-induced tumors to stem from the
airways‘% Second, urethane-caused LADC were less infiltrated
by MC compared with KRAS®"*P and LLC tumors, likely
reflecting their more early nature compared with the other
models,””*** and probably dictating their lesser dependence
from MC. This assumption is in line with the increasing MC
infiltrates of advanced human LADC, as well as the more
profound impact of MC deficiency in mouse models of more
advanced disease like the KRAS®'*" and LLC model shown here
and the malignant pleural effusion models shown elsewhere.
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Figure 9. Mast cells and mast cell signatures in human lung adenocarcinoma.

A Data summary of mast cell (MC) density of 37 patients with lung adenocarcinoma.” Data are shown as Tukey's whiskers (boxes: interquartile range; bars: 50%
extreme quartiles), raw data points (dots), and paired Student’s t-test P value. Full patient data are provided in Table 1. B Data summary of gene expression (GE)
levels of the human orthologues of the murine MC signatures identified in Figure 6 relative to GUSB and HPRT (control) of tumor and adjacent normal-appearing lung
tissues of 10 patients with lung adenocarcinoma.*” Blue: KIT-dependent MC signature; green: KIT-independent MC signature; turquoise: common MC signature. Data
are shown as Tukey's whiskers (boxes: interquartile range; bars: 50% extreme quartiles), raw data points (dots), and repeated measures ANOVA P value. ***: P< 0.001
for comparison with all other groups by repeated measures ANOVA with Bonferroni post-tests. Full patient data are provided in Table 2. C Select transcripts from the
three signatures from (B) significantly over-represented in tumor versus adjacent normal-appearing lung tissues with GE versus GUSB, differential GE (AGE) of tumor
tissue versus normal lung, and P values by paired Student’s t-test. D The human orthologues of the three murine MC signatures identified in Figure 6. E-G
Representative toluidine blue-stained tissue sections showing purple mast cells (arrows) in primary lung adenocarcinomas of a 68-year-old female with stage T,NoM,
disease featuring 3.6 mast cells/mm?, a 51-year-old male with T,N,M, disease displaying 11.2 mast cells/mm?, and a 64-year-old male with T,N,M, disease exhibiting
16.6 mast cells/mm? H-J Data summary (graphs) and frequency distribution (tables) of mast cell density of 37 patients with lung adenocarcinoma,® dlassified by T, N,
and TNM6 stage according to the sixth edition of the TNM staging system.%> Data are shown as Tukey's whiskers (boxes: interquartile range; bars: 50% extreme
quartiles), raw data points (dots), n (tables), and Mann-Whitney u-test (graphs) and Fischer’s exact (tables) P values. Full patient data are provided in Table 1.

Third, rebound immune responses are at play in cKit"*® mice,

such as myeloid suppressor and regulatory T cell expansion,*””’
cell types we have previously shown to promote early urethane-
induced and advanced LADC.***® Finally, as the founders of
Cpa3.Cre mice and our group previously showed,””* these
mice represent truly and exclusively MC-deficient models that
behave differently compared with cKif'"'*" mice in response to
various challenges,”” rendering the results from this strain more
closely related to MC function and not to KIT signaling. To this
end, Cpa3.Cre mice were ubiquitously protected from urethane,
as well as from LLC tumors and their metastases, corroborating
the requirement for MC in LADC.

The data presented here are novel and unprecedented and
explain previous clinical and preclinical observations and

in vitro functional findings.** ' Our in vivo results are impor-
tant additions to the field, since MC play divergent tumor-
promoting or gate-keeping roles in different cancers.?*~>**
The reasons for this may be multiple, including the different
tumor models employed and the multifaceted phenotypes of
MC in the various bodily anatomic compartments.'*"*73344
Whatever the impact of these cells in other tumor types, the
results shown here establish for the first time KIT+ MC as
culprits of KRAS-mutant LADC promotion and as candidate
therapeutic targets against a disease that presents a current
pandemic.' In addition to identifying their role and to provide
mechanistic insights, we describe gene sets that may mediate
LADC promotion by MC for future research. These signatures
include IL1B, TNFRSF9, CD72, NLRP6, SLC43A3, TRAFI,
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Table 1. Clinical data and mast cell density of 37 patients with lung adenocar-
cinoma from Patras, Greece.”® No patient had metastasis (M, for all).

Age Histologic Grade Mast cells/
# Gender (years) subtype(s) (1-3) T N TNM mm?
1 M 60 Solid 1 4 1 b 54
2 M 73 Acinar 2 20 1b 2,8
3 M 56 Solid/papillary 3 31 lla 56
4 M 68 Micropapillary 3 10 la 2
5 M 63 Acinar 2 20 1b 04
6 M 63 Acinar/papillary 2 20 1b 0
7 M 63 Solid 3 21 b 2,2
8 M 67 Acinar 3 10 Ia 0
(cribriform)
9 M 62 Acinar 2 21 lb 46
10 M 72 Acinar/solid 3 21 lb 0
1 M 66 Acinar/solid 3 4 1 b 14
12 F 55 Acinar 1 21 b 44
13 M 64 Acinar 3 21 b 4
14 M 53 Acinar 1 10 la 0.2
15 M 64 Lepidic/acinar/ 3 4 0 b 16,6
micropapillary
16 M 70 Acinar 2 11 la 1,2
7 M 50 Solid 3 21 b 0
18 M 51 Acinar/ 3 21 b 1,2
micropapillary
19 M 68 Solid 3 31 lla 58
20 M 69 Micropapillary/ 2 31 lla 6,6
acinar
21 M 53 Acinar 2 10 la 04
22 M 49 Acinar 2 10 la 1,8
23 M 72 Solid 2 10 la 08
24 M 60 Solid 2 20 1Ib 0
25 M 58 Acinar 3 20 1Ib 18
26 M 71 Acinar 3 20 Ib 1
27 F 53 Solid 2 30 b 3
28 M 59 Colloid 1 31 lia 8,2
29 M 72 Acinar 2 21 b 6
30 M 54 Acinar 3 30 lb 8.2
31 M 62 Solid 2 10 la 0
32 F 67 Solid 3 21 lb 08
33 M 58 Solid 3 31 lla 6,2
34 M 54 Acinar/solid 2 10 la 08
35 M 69 Solid 3 31 lla 12,2
36 F 68 Colloid 2 20 Ib 36
37 M 65 Papillary/acinar 2 10 la 14

HSPAIB, and other genes of the KIT+ MC signature, genes
likely important for MC expansion in tumor tissues, MC signal
transduction upon tumor cell encounter, inflammasome activa-
tion, transmembrane transport, and telomere maintenance, and
may promote further research on tumor-associated MC func-
tions in the future. To this end, MC-derived IL-1p can fuel
transcriptional activity of nuclear factor-kB in tumor cells.****
Our results may explain the findings of the Canakinumab Anti-
inflammatory Thrombosis Outcomes Study (CANTOS) aiming
at prevention of cardiovascular events using the IL-1B-
neutralizing antibody canakinumab.*®® After three years of

intervention, CANTOS investigators detected biologically and
statistically significant reductions in overall and lung cancer
incidence, findings consistent with the protumorigenic role of
IL-1P reported here and elsewhere.***

In conclusion, KIT-dependent mast cells were found here
to fuel KRAS-mutant lung adenocarcinoma formation,
growth, and metastasis in mice by secreting IL-1f and to be
associated with lung adenocarcinoma progression in humans,
setting a rational framework for further study of mast cell
functions in lung tumors.

Materials and methods
Cells

Lewis lung carcinoma (LLC; NCI Tumor Repository, Frederick,
MD) cells were cultured at 37°C in 5% CO,-95% air using
DMEM supplemented with 10% FBS, 2 mM L-glutamine,
1 mM pyruvate, 100 U/ml penicillin, and 100 mg/ml strepto-
mycin. Cells were tested biannually for identity (by the short
tandem repeat method) and for Mycoplasmaspp. (by PCR). For
in vivo injections, cells were harvested using trypsin, incubated
with Trypan blue, and counted.*® Only 95% viable cells were
used in vivo. BMMC were derived from bone marrow cells
flushed from mouse femurs and tibias using full DMEM after
one month of culture in full culture media, supplemented with
100 ng/mL IL-3 alone or 100 ng/mL IL-3 plus 100 ng/mL
KITL.* LLC cells alone or co-cultured with BMMC at a ratio
of 50:1 were assessed for cellular proliferation by MTT reduc-
tion and cell migration in vitro with scratch assay for 48 and 32
h respectively. This LLC:BMMC ratio was selected as physiolo-
gically relevant based on in vivo MC densities observed in all
three tumor models employed herein.

Mouse models

C57BL/6 (#000664), B6.129P2-Lyz2"™rfe/j(#004781),*°
B6.129S4-Cer2™ e /1(#004999),”  B6.12954-Kras™T/]
(KRAS;S™P £008179),"° and B6.Cg-Kit"*"/HNihrJaeBs
mGlli] (cKit"W®"; #012861)** mice were from Jackson
Laboratory (Bar Harbor, MN), Cpa3.Cre mice were a gift
from Dr. HR Rodewald, University of Heidelberg,
Germany,2 and Il1b-deficient mice from Dr. Y Iwakura,
Tokyo University of Science, Tokyo, Japan.*® All mice
were bred at the Center for Animal Models of Disease
of the Department of Physiology at the Faculty of

7

Table 2. Clinical data and mast cell signature gene expression data of 10 patients with lung adenocarcinoma from Borstel, Germany.>*

Normalized expression of mast cell signature genes in lung adenocarcinoma compared with adjacent
normal-appearing lung tissue (fold control genes GUSB/HPRT)

# Gender Age (years) Grade (1-3) T N M TNM control common cKIT- cKIT+
1 F 61 3 31 0 la 1,44 0,89 0,99 2,12
2 M 69 3 33 0 b 1,1 0,79 1,22 1,77
3 F 66 3 300 1Ib 0,82 0,55 1.28 6,59
4 F 58 3 221 WV 1,77 0,90 0,92 2,02
5 F 7 3 4 2 0 b 1,23 0,92 1,10 3,05
6 M 74 3 320 Ma 0,72 0,71 1,21 4,67
7 F 54 3 4 3 0 b 1,19 1,53 0,72 4,81
8 F 53 3 300 b 0,69 2,06 0,80 348
9 F 74 2 22 0 Wa 1,20 143 1,31 2,68
10 F 57 2-3 100 la 1,13 1,97 1,25 4,12
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Figure 10. Mast cell signatures in human lung adenocarcinoma.

A Unsupervised clustering of 30 normal lung tissues from never-smokers (orange), 40 lung adenocarcinoma (LADC) tissues from never-smokers (green), and 40 LADC
tissues from smokers (yellow) from the Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) study [Gene Expression Omnibus
(GEO) dataset GSE43458; freely available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc:GSE434SB]5‘ by the humanized KIT-independent (left) and KIT-
dependent (right) mast cell (MC) signatures from Figure 9D. Both signatures could accurately discriminate normal lung from LADC tissues. P, exact x* probability
values calculated at http://courses.atlas.illinois.edu/spring2016/STAT/STAT200/pchisq.html. B Data summary of gene expression of the transcripts from Figure 9C
normalized to ACTB expression in the BATTLE study validates five of the six genes. Color code is as in Figure 10A. Data are shown as Tukey’s whiskers (boxes:
interquartile range; bars: 50% extreme quartiles), raw data points (dots), and Kruskal-Wallis ANOVA P values. ns, ¥, **, and ***: P> 0.05, P< 0.05, P< 0.01, and P<
0.001, respectively, for the indicated comparisons by Dunn’s post-tests. C Overall survival of patients with LADC stratified by low (black lines) or high (red lines)
average expression of MC signatures from Figure 9D. Data from http://kmplot.com/analysis/index.php?p=service&cancer=lung.”* Note that exclusively high
expression of the KIT-dependent MC signature correlates with poor survival (A). Shown are Kaplan-Meier survival estimates with hazard ratios (HR) for high
compared with low signature expression with their 95% confidence intervals, as well as log-rank test P values.
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Figure 11. The KIT-dependent mast cell signature is focally enriched in KRAS-
mutant lung adenocarcinoma.

Pre-ranked gene set enrichment analysis of the humanized KIT-independent
(left) and KIT-dependent (right) mast cell (MC) signatures from Figure 9D
against 40 lung adenocarcinoma (LADC) tissues from never-smokers, 40 LADC
tissues from smokers, 15 EGFR-mutant LADC, and 22 KRAS-mutant LADC from
the Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer
Elimination (BATTLE) study [Gene Expression Omnibus (GEQO) datasets
GSE43458 and GSE31852; freely available at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE43458 and https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgilacc=GSE31852].°*°>%° GSEA was performed with the Broad Institute
pre-ranked GSEA module software (http://software.broadinstitute.org/gsea/
indexjsp).5° Normal lung tissue from 40 never smokers were used as controls
(GSE31852). Note that using stringent cut-offs of both false discovery rate
(FDR) g values <0.05 and family-wise error rate (FWER) probability (P) values
<0.05 the KIT-dependent MC signature is focally enriched in the molecular
signature of KRAS-mutant LADC (red fonts). Shown are enrichment plots,
normalized enrichment scores (NES), FDR, and FWER values.

Medicine of University of Patras, Greece. Experiments
were approved by the Veterinary Administration of the
Prefecture of Western Greece (#118018/578/30.04.2014)

and were conducted according to Directive 2010/63/EU
(http://eurlex.europa.eu/legal-content/EN/TXT/?uri=
CELEX%3A32010L0063). Male and female mice were sex-,
weight (20-25 g)-, and age (6-12 week)-matched. For
LADC induction using the pulmonary carcinogen
urethane (ethyl carbamate, EC; CAS #51-79-6; Sigma,
St. Louis, MO), mice on the C57BL/6 background
received 10 weekly intraperitoneal injections (1g/Kg per
100yl saline prepared on the same day) and were sacri-
ficed 6 months after the first injection.”” For mutant
KRASS"*P_driven LADC, C57BL/6 mice heterozygous for
the loxP-STOP-loxP.KRAS®'?" transgene (KRASS'?P
mice), which express mutant KRASS'™P in all somatic
cells upon CRE-mediated recombination, received 5 x
10° intratracheal plaque-forming units (pfu) adenovirus
encoding CRE recombinase (Ad-Cre; Baylor College of
Medicine, Houston, TX) and were killed after four
months.” Control mice (designated C57BL/6) were
a mixture of littermates negative for the transgenes of
interest, including cKit"™""" mice as appropriate controls
for cKit"*" mice and Lyz2.Cre mice as appropriate con-
trols for Cpa3.Cre mice.*> C57BL/6 mice were anesthe-
tized by isoflurane and received 10° LLC cells alone or
combined with 2 x 10* BMMC subcutaneously into the
rear flank. The 50:1 ratio of co-injected LLC and BMMC
cells was chosen in order to replicate the number of MC
in LADC MC hotspots. Three vertical tumor diameters
(8) were measured weekly, tumor volume (V) was calcu-
lated as V = mx(81x 82x 83)/6, and mice were killed after
one month.*”> Lungs were exsanguinated, inflated at 20 cm
H,O with 10% neutral-buffered formalin, and fixed over-
night. Lung tumor number and § were measured under
a Stemi DV4 stereoscope (Zeiss; Jena, Germany) and
V was calculated as n8°/6 and averaged/summed. Lung
volume was measured by saline immersion, lungs were
embedded in paraffin, randomly sampled by 5 pm-thick
sections (n = 10/lung), mounted on glass slides, and
stained with hematoxylin and eosin (H&E). A 100-point-
grid was superimposed on =5 random non-overlapping
fields of =10 sections/lung using Fiji (https://fiji.sc/) and
lung tumor burden was determined by extrapolating
tumor-to-lung point counts to lung volume.*"**

Quantification of lung tumors

Specimens were examined by two blinded participants of this
study and the results obtained by each investigator were com-
pared and re-evaluated if deviant by >20%. In the urethane and
lung metastasis models, tumors are approximately spherical with
well-defined borders. Lungs and lung tumors were thus inspected
macroscopically under a Stemi DV4 stereoscope equipped with
a micrometric scale incorporated into one eyepiece and an
Axiocam ERc5s camera (Zeiss, Jena, Germany) in trans-
illumination mode, allowing for visualization of both superficial
and deeply located lung tumors.”” Tumor location was charted
and 8 was measured. Tumor number (multiplicity) per mouse
was counted and mean tumor § per mouse was calculated as the
average of individual § of all tumors found in a given mouse lung.
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Individual tumor volume was calculated as 78*/6. Mean tumor
volume per mouse was calculated as the average of individual
volumes of all tumors found in a given mouse lung, and total
lung tumor burden per mouse as their sum. In the KRASS'*®
model, lung tumors are irregularly shaped with ill-defined bor-
ders. Hence, lung volume was measured by saline immersion,
and lungs were embedded in paraffin, randomly sampled by
cutting 5 pm-thick lung sections, mounted on glass slides, and
stained with hematoxylin and eosin for morphometry. For this,
a digital grid of 100 intersections of vertical lines (points) was
superimposed on multiple digital images of all lung sections from
lung tissue of a given mouse using Fiji® Total lung tumor
burden was determined by point counting of the ratio of the
area occupied by neoplastic lesions versus total lung area and by
extrapolating the average ratio per mouse to total lung volume >
The results of this stereologic approach were compared with the
macroscopic method detailed above and were scrutinized if devi-
ant by >20%. All quantifications were done by counting at least
five random non-overlapping fields of view of at least 10 sections
per lung.

Human samples

Matched tumor and normal lung tissue of 37 previously
reported patients with LADC treated at the Faculty of
Medicine of the University of Patras, Greece were used for
MC counts,”® and of 10 previously reported patients with
LADC treated at the Research Center Borstel of the Airway
Research Center North, Germany for microarray.”® Patients
were staged according to the sixth edition of the tumor-node-
metastasis system for lung cancer.”

Histology

Five um-thick tissue sections were stained with H&E or with
toluidine blue (pH = 2.0; 10 min; RT; Sigma, St. Louis, MO) or
were incubated with primary antibodies (Table 3) overnight at 4
°C followed by Envision/diaminobenzidine detection (Dako,
Glostrup, Denmark) and hematoxylin or toluidine blue coun-
terstaining/mounting (Entellan; Merck, Darmstadt, Germany).
Nuclear PCNA immunoreactivity was defined as the percentage
of positive cells in tumor areas. Sections were counted at high
power (x 400) and 5-8 fields were assessed randomly for tumor
cells. One thousand cell nuclei were counted and the number of
cells showing positive nuclear staining was recorded. KIT,
CD68, and LYZ2 immunoreactivity were defined as the

Table 3. Antibodies used for immunohistochemistry.

Host

Product name/Target species Provider Catalog# Dilution

Anti-proliferating cell Rabbit ~ Abcam, London, UK ab2426  1:2000
nuclear antigen
antibody (PCNA)

Anti-CD68 antibody Mouse  Abcam, London, UK ab955 1:200
(CD68)

Anti-Lysozyme antibody ~ Rabbit  Abcam, London, UK ab10850 1:250
(LYZ2)

Anti-Interleukin-1p Rabbit  Abcam, London, UK ab9722  1:200
antibody (IL-1pB)

Anti ¢-KIT (c-Kit) Mouse  Santa Cruz sc- 1:100

Biotechnology, INC 365504
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percentage of positive cells. IL-1p immunostaining intensity
was defined semiquantitatively (0: negative; 1: weak; 2: moder-
ate; 3: strong). To assess the number of MC, slides were scanned
at low power (x 20) to identify the 10 fields with the greatest
number of MC (hotspots) separately in control lung tissue and
in LADC. MC number was counted at high power (x 200) in
every hotspot and the average was determined. Perivascular
areas, where mast cells naturally accumulate, were excluded.
Mononuclear, polymorphonuclear, and lymphocytic infiltrates
were identified morphologically from H&E staining in 10 fields
at a magnification of x 400 and the average was determined.
Images were captured with an AxioLab.A1 upright microscope
(Zeiss, Jena, Germany). Staining was evaluated by two blinded
readers (IG, IL) and was verified by a certified pathologist (VB).

qPCR

RNA was isolated using Trizol (Invitrogen, Carlsbad, CA) fol-
lowed by RNAeasy (Qiagen, Hilden, Germany), was reverse
transcribed using Superscript III (Invitrogen), and qPCR was
performed using SYBR Green Master Mix and specific primers
for Ilib (IlIbF: TTTGACAGTGATGAGAATGACC; Il1bR:
AATGAGTGATACTGCCTGCC; GusbF: TTACTTTAAGAC
GCTGATCACC; GusbR: ACCTCCAAATGCCCATAGTC) in
a StepOne Plus thermocycler (Applied Biosystems, Carlsbad,
CA). Ct values from triplicate gPCR reactions were analyzed
by the 27T method relative to Gusb mRNA levels.**

Immunoblotting

Total protein extracts from BMMC were extracted using
Radioimmunoprecipitation assay buffer (Thermo Fisher
Scientific, Waltham, MA), were separated by 12% SDS polya-
crylamide gel electrophoresis, and were electroblotted to poly-
vinylidene difluoride membranes (Merck Millipore, Darmstadt,
Germany). Membranes were probed with anti-CASP1 and anti-
B-Actin (ACTB) antibodies (Table 3) and were visualized by
film exposure after incubation with enhanced chemilumines-
cence substrate (Merck Millipore, Darmstadt, Germany).

Transcriptome analyses

Microatray data were analyzed with Gene Expression and
Transcriptome Analysis Consoles using as cut-off differential
gene expression > 2 (Affymetrix, Santa Clara, CA). Murine
BMMC microarrays were reported elsewhere (GEO series
GSE58189; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE58189).* Humanized MC signatures were derived
from mouse BMMC signatures using Orthoretriever (http://light
house.ucsf.edu/orthoretriever/).”! Hierarchical clustering of
BATTLE study patients by MC signatures was performed
using GEO series GSE43458.”> Human LADC patient survival
analyses were done using Kaplan-Meier Plotter (http://kmplot.
com/analysis/index.php?p=service&cancer=lung) and para-
meters auto-select best cutoff, compute median survival, censor
at threshold, and histologic subtype lung adenocarcinoma.”
GSEA was performed with the Broad Institute pre-ranked
GSEA module (http://software.broadinstitute.org/gsea/index.
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jsp) using BATTLE study transcriptomes from GEO series
GSE43458 and GSE31852.%°

Statistics

Sample size (n; always biological) was determined using
G*power,(’(’ assuming « = 0.05, 8 = 0.05, and Cohen’s d =
1.5. Data were acquired by two blinded readers, reevaluated if
>20% deviant (no data were excluded), examined for normal-
ity by Kolmogorov-Smirnov test, and presented as median
(interquartile range) or mean+SEM. Differences in frequen-
cies were examined by Fischer’s exact or * tests, in means of
normally distributed variables by t-test or one-way ANOVA/
Bonferroni post-tests, and in medians of non-normally dis-
tributed variables by Mann-Whitney test or Kruskal-Wallis/
Dunn’s posttests. Survival and flank tumor volume were
examined by Kaplan-Meier estimates/log-rank tests and two-
way ANOVA/Bonferroni post-tests. Probability (P) is two-
tailed and P< 0.05 was considered significant. Statistics and
plots were done on Prism v5.0 (GraphPad, La Jolla, CA).

Study approval

All animal experiments were approved a priori by the
Veterinary Administration of the Prefecture of Western
Greece according to a full and detailed protocol (approval
number 118018/578/30.04.2014) and were conducted according
to Directive 2010/63/EU (http://eurlex.europa.eu/legal-content
/EN/TXT/?uri=CELEX%3A32010L0063). Human studies were
approved a priori by the Ethics Committee of the University of
Liibeck, Germany (approval # AZ 12—220),52 and by the ethics
committee of the University Hospital of Patras, Greece.”® The
study’s protocols were conducted according to the Declaration
of Helsinki and all patients gave written informed consent.
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Abstract

Tobacco smoke is a multicomponent mixture of
chemical, organic, and inorganic compounds,
as well as additive substances and radioactive
materials. Many studies have proved the carci-
nogenicity of various of these compounds
through the induction of DNA adducts, muta-
tional potential, epigenetic changes, gene
fusions, and chromosomal events. The tumor
microenvironment plays an important role in
malignant tumor formation and progression
through the regulation of expression of key
molecules which mediate the recruitment of
immune cells to the tumor site and subse-
quently regulate tumor growth and metastasis.
In this chapter, we discuss the effects of inhaled
tobacco smoke in the tumor microenvironment
of the respiratory tract. The mechanisms under-
lying these effects as well as their link with
tumor progression are analyzed.
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4.1 Tobacco Smoke

4.1.1 Composition of Tobacco
Smoke

4.1.1.1 Nicotine

Nicotine, composing 0.2-0.6% of the particulate
phase of tobacco smoke, is the main addictive
compound of tobacco smoke and, while it is a
weak carcinogen, is responsible for tobacco
addiction and continued smoking. Nicotine exerts
its addictive functions by its interaction with neu-
ronal nicotinergic acetylcholine receptors in the
brain [1]. As soon as it is inhaled, smoke reaches
the airways and alveoli, and nicotine is absorbed
by the lungs. Pulmonary absorption of nicotine is
mediated by the alkaline pH of cigarettes, which
converts nicotine to its nonionized form.
Following absorption, nicotine enters the blood-
stream and is distributed to the various bodily
organs. Nicotine is metabolized in the liver by the
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enzymes cytochrome P450 2A6 (CYP2A6), uri-
dine  diphosphate  glucuronosyltransferase
(UGT), and flavin-containing monooxygenase
(FMO) to a number of metabolites, the most
important of which is cotinine. Cotinine is the
most well-known biomarker for detecting nico-
tine levels, measured in blood, saliva, urine, hair,
and nails [2].

4.1.1.2 Chemical Carcinogens

Polycyclic Aromatic Hydrocarbons (PAH)

PAH have been linked with the induction of
tumors in the skin and lungs [3, 4]. The mem-
bers of this compound family that are proven to
be carcinogenic are benzo[b]fluoranthene,
benzo[j]fluoranthene, benzo[k]fluoranthene,
dibenzo[a,i]pyrene, indeno[1,2,3-cd]pyrene,
dibenz[a,h]anthracene, and S5-methylchrysene
[5]. Smokers present higher metabolic activa-
tion of dibenzo[a,i]pyrene (BaP), mediated by
aryl hydrocarbon hydroxylase (AHH) activity
[6, 7], which is connected with higher cancer
risk [8]. Furthermore, PAH are responsible for
the induction of DNA adduct formation in the
TP53 gene [9].

Nitrosamines

N-Nitrosodimethylamine was found in 1956 to
induce liver tumors in rats [10]. Since then,
increasing interest on the carcinogenic potential
of nitrosamines aroused. Metabolism of nico-
tine  produces  nitrosamines, with  N'-
nitrosonornicotine(NNN),4-(methyInitrosamino)
-1-(3-pyridyl)-1-butanone (NNK), and
4-(methylnitrosamino)-1-(3-pyridyl)butanal
(NNAL) being the most carcinogenic [11, 12],
mainly causing adenomas and adenocarcinomas

[13].

Butadiene

Exposure of mice to inhalation of 1,3-butadiene
induced alveolar and bronchiolar carcinomas, as
well as lymphoma and forestomach papilloma
[14]. Butadiene is metabolized to carcinogenic
epoxybutene, diepoxides, and diol epoxide.

Ethyl Carbamate (Urethane)

Urethane, also known as ethyl carbamate, or car-
bamic acid ethyl ester, is an ester of carbamic
acid. Many studies in experimental animals sup-
port the carcinogenic role of urethane in various
tissues and through different routes of adminis-
tration. Urethane-induced tumors of the lung
(adenocarcinomas and squamous cell carcino-
mas), as well as of the liver (hepatocellular carci-
nomas), and blood vessels (hemangiomas or
hemangiosarcomas of the liver, spleen, uterus, or
unspecified site) have been observed in many
studies [15-18]. Since then, urethane has been
used for induction of tumors in mice models
[19-21].

4.1.1.3 Radioactive Materials

Except for chemicals, tobacco smoke also con-
tains radioactive elements, including uranium
and thorium isotopes (3*U, **U, **Th, *'Th,
*2Th), as well as products of their decay (e.g.
22%Ra, ?'“Pb, *'°Po) [22, 23]. Radioactive materials
enter the tobacco plant through the soil and phos-
phate fertilizers, or through direct deposition of
airborne ”Rn products. Smoking results in their
absorption by the respiratory system and the sub-
sequent increased risk for lung cancer [24, 25].

4.1.1.4 Reactive Oxygen Species (ROS)

ROS are a family of oxygen-derived small mole-
cules that contain oxygen radicals such as super-
oxide (O,), hydroxyl (OH), peroxyl (RO,), and
alkoxyl (RO), as well as non-radicals such as
hypochlorous acid (HOCI), ozone (0Os;), and
hydrogen peroxide (H,0,). ROS play key roles in
homeostasis and intracellular signaling. However,
the disruption of the balance between antioxidant
defense mechanisms and ROS production leads
to DNA damage, mediates oxidative stress, and is
implicated in cancer progression. ROS are
directly synthesized by the enzymes nicotin-
amide adenine dinucleotide phosphate (NADPH)
oxidase and myeloperoxidase (MPO). ROS are
produced endogenously as a product of cellular
respiration, although there are also exogenous
factors driving their production, such as ionizing
radiation and tobacco smoking [26]. ROS dam-
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age airway epithelial cells through lipid peroxi-
dation of the cell membrane, activation of
oxidative-sensitive cellular pathways, and DNA
damage [27].

4.1.1.5 Tobacco Additives

The word additive is used for compounds “...the
intended use of which results or may reasonably
be expected to result, directly or indirectly, in its
becoming a component or otherwise affecting the
characteristic of any tobacco product ...” [28].
Tobacco additives are used in order to reduce its
alkaloid bitterness resulting in easier nicotine
delivery to the user. Levulinic acid decreases the
sensitivity of the upper respiratory tract, resulting
in deeper inhalation in the respiratory system,
while at the same time it mediates the binding of
nicotine to neurons [29]. Pyrazines enhance
product appeal, mediate easier initiation of smok-
ing, and promote relapse [30]. Menthol increases
the smoothness of the smoke and subsequently
enhances deeper inhaling due to its cooling
effect. Therefore, tobacco additives increase the
attractiveness and addictiveness of tobacco
increasing smokers’ exposure (o toxic com-
pounds contained in smoke and resulting to
health risks. However, there are no sufficient
studies regarding the toxicity of the additives
alone, since tobacco smoke is a multicomponent
mixture, with the different compounds interact-
ing with each other [31].

4.1.1.6 Other

Tobacco smoke contains inorganic compounds—
metals, such as arsenic, cadmium, chromium,
and nickel, all of them related to high risk of dif-
ferent types of cancer [32]. Other agents con-
tained in tobacco smoke and also related to
increased risk for lung cancer are isoprene, ben-
zene, acetaldehyde, and formaldehyde [5].

4.1.2 Carcinogenicity of Tobacco
Smoke

4.1.2.1 Epidemiologic Evidence
Tobacco smoke constitutes the largest exposure
of humans to chemical carcinogens. It causes one

out of five cancer-related deaths in the world and
1.4 million deaths per year. The largest effect of
tobacco smoke is on lung cancer, constituting the
cause for 80% and 50% of global lung cancer
deaths for men and women, respectively [33].
However, tobacco smoke has also been linked
with a variety of cancers other than lung cancer
types, such as cancers of the oral cavity, pharynx,
larynx, esophagus, pancreas, bladder, stomach,
liver, kidney, ureter, cervix, and nasal cavity, as
well as myeloid leukemia [32, 34].

4.1.2.2 Molecular Evidence

The Cancer Genome Atlas (TCGA) project aims
to collect and analyze human tissues in order to
generate comprehensive multidimensional maps
of the key genomic changes in 33 types of cancer
[35]. Lung cancer is a dominant malignancy,
resulting in the largest number of cancer-related
deaths worldwide [36] and lung adenocarcinoma
(LADC) is its most frequent histologic subtype
[37,38]. LADC is mainly caused by environmen-
tal exposures such as tobacco smoke (TS) and
high-energy transfer irradiation (IR) [39-42]. TS
is the predominant cause of lung cancer [43];
however, there is a worldwide increase in the
number of lung cancers in nonsmokers [44, 45].
Molecular profiling of lung cancers has revealed
a heterogeneous disease that harbors thousands
of mutations per cancer genome, including single
nucleotide variants (SNV), copy number altera-
tions (CNA), dysregulation of alternative splicing
(exon skipping, EXS), balanced inversions result-
ing in gene fusions, and major chromosomal
events like kataegis and chromothripsis [35, 46,
47]. LADC mutations lead to activation of proto-
oncogenes such as KRAS, EGFR, and PIK3CA
and inactivation of tumor suppressors such as
TP53, STK11, and PTEN [48]. Interestingly, the
genomic profiles of LADC differs between smok-
ers and nonsmokers, with smokers displaying
higher mutation burdens [35].

4.1.2.3 Experimental Evidence

The carcinogenicity of some compounds of
tobacco smoke has been proven in vivo. Using
single-hit models, LADC development was
achieved in carcinogen-sensitive FVB mice
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6-9 months posttreatment with intraperitoneal
injection of urethane and diethylnitrosamine [21,
49], Moreover, metabolically  activated
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
(NNK) and N'-nitrosonornicotine (NNN) are
implicated in carcinogenesis by inducing muta-
tions which result in the formation of DNA
adducts, promoting tumor growth, cancer cell
survival, and migration [50]. In vivo studies have
shown that NNN causes esophageal and nasal
tumors in rats and respiratory tract tumors in
mice and hamsters [51-53]. Furthermore,
Westcott et al. showed that the mutational signa-
tures of LADC differ according to the causative
chemical: genome, exome, and transcriptome
sequencing of genetic- and chemical-induced
KRAS-driven murine LADC revealed that the
chemical carcinogens urethane and N-nitroso-N-
methylurea (MNU) caused humanlike SNV and
distinct KRAS mutations (Q61R for urethane and
G12C for MNU) [54].

4.1.2.4 Signatures of Tobacco Smoke
Alexandrov et al. defined mutational signatures
in the trinucleotide context (i.e., the bases
immediately 5’ and 3’ to each mutated base) and
correlated these with clinical exposure data
across more than 20 cancer types and 10,000
patients, identifying the smoking signature 4
(C>A transversion) [34, 55]. Lung tumors of
smokers and nonsmokers do not only display
distinct mutational signatures and gene expres-
sion profiles [34, 55], but also different inflam-
matory signatures [56]. In comparison with
never-smokers, the tumor microenvironment of
smokers includes fewer resting mast cells and
CD4+ memory T cells, both linked with favor-
able survival [56]. Furthermore, tobacco smok-
ing induces pro-inflammatory changes in the
tumor microenvironment of squamous cell lung
carcinomas, as determined by interferon-c sig-
naling, cytosolic activity, and immune infiltra-
tion [57]. These data are in line with clinical
studies that show that smokers with LADC have
a higher response to immune checkpoint inhibi-
tors [58]. Moreover, lung tumors of smokers and
nonsmokers exhibit distinct DNA methylation
profiles [59, 60].

4.2 The Tumor
Microenvironment

The Role

of the Microenvironment
in Tumor Formation

and Progression

4.2.1

In addition to the molecular heterogeneity of
tumor cells, there is also cellular heterogeneity of
the tumor microenvironment with which tumor
cells interact [61, 62]. While tumor initiation is
mediated by mutations in oncogenic driver genes,
tumor progression is rather affected by interac-
tions between cancer cells and their microenvi-
ronment. Oncogenic changes of tumor cells
establish complex inflammatory signaling net-
works through suppression of homeostatic che-
mokines and de novo production of cytokines,
chemokines, and their receptors by both cancer
and stromal cells [63—66]. This complex network
results in the migration and infiltration of various
cellular populations, including tumor-associated
macrophages (TAMs), mast cells, lymphocytes,
and other cells to the stoma in response to che-
mokine gradients created by stromal and malig-
nant cells of a tumor, which results in the
establishment of an inflammatory microenviron-
ment [67].

4.2.1.1 Tumor-Associated
Macrophages (TAMs)

TAMs are the most abundant inflammatory cell
type in tumors, represent a crucial component of
the tumor microenvironment, and have a key role
in cancer progression as indicated by several
studies which describe a slower tumor growth
after the depletion of macrophages, as well as by
the association of TAM with poor disease out-
come [68, 69]. The expression of growth factors
such as colony stimulating factor (CSF)-1 and
chemokines in cancers results in the recruitment
of circulating monocytes which differentiate to
macrophages. In addition to their physiological
roles in immune response, phagocytosis, antigen-
presentation, and pathogen killing, macrophages
are implicated in tumor promotion via immu-
noediting [64, 70], although there is also evi-
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dence of their antitumor functions, dependent on
the cytokine microenvironment of the tumor [70].
Macrophages enable angiogenesis through secre-
tion of proangiogenic mediators like vascular
endothelial growth factor (VEGF) and angiopoi-
etins (ANG)-1 and ANG-2 and mediate invasion
and metastasis by producing growth factors and
matrix metalloproteases (MMP). In order for
TAM to acquire protumorigenic functions, they
polarize from a pro-inflammatory (M1) to an
“alternatively activated” anti-inflammatory (M2)
phenotype.

4.2,1.2 T Lymphocytes

T cell populations infiltrate tumors and play key
roles in the establishment of an inflammatory
microenvironment which favors cancer progres-
sion. CD8 memory T cells are antigen-presenting
cells with tumor suppressor activity and are
related with good prognosis in human tumors
[71]. The interplay between CD8 and CD4 T
cells is important for tumor immunity. CD4 T
helper 1 (Th1) cells enable recruitment and pro-
liferation of CD8 T cells through an interferon
(IFN)-y- and IL-2-dependent mechanism [72].
CD4 cells’ presence in the tumor microenviron-
ment has also been linked with good prognosis
[71]. Th2 CD4 cells have ambiguous roles in
tumor progression, as Fridman et al. reported that
they promote tumor growth [71], although other
studies link them with favorable outcome in
breast cancer patients [160, 161]. T regulatory
cells (Treg) function as immune suppressors,
which, through the secretion of [L-10 and trans-
forming growth factor (TGF)-p, prevent the
clearance of cancer cells by the immune system
[73, 74].

4.2.1.3 B Lymphocytes

B lymphocytes are recruited to tumor sites in
response to T helper cell-secreted C-X-C-motif
chemokine ligand (CXCL) 13 [75]. Tumor-
infiltrating B cells activate nuclear factor (NF)-kB
canonical and noncanonical pathways through the
secretion of lymphotoxin, mediating tumor growth
and cell proliferation, as well as angiogenesis [76—
78]. Furthermore, B cells promote metastasis by
inducing increased expression of IL-8 [79].

4.2.1.4 Cancer-Associated Fibroblasts
(CAFs)

CAFs are an important cell population within the
tumor microenvironment that promotes cancer
progression and invasion [80, 81]. As a compo-
nent of the stroma, fibroblasts are responsible for
the production of collagens and fibronectin and
the subsequent synthesis of the extracellular
matrix (ECM) [82] and the basement membrane
[83]. During carcinogenesis, normal stromal
fibroblasts undergo several changes including
their morphological characteristics, their expres-
sion of cell surface markers [81], and their
metabolism via the reverse Warburg effect [84].
The causes for transformation of fibroblasts to
CAF are unknown, but mutations appear to occur
in these cells, too, such as inactivation of TP53
and PTEN [85] and loss of heterozygosity (LOH)
[86]. Furthermore, CAF production can be
induced by epithelial-to-mesenchymal transition
(EMT) and endothelial-to-mesenchymal transi-
tion (EndMT) [81]. CAFs have been associated
with enhanced tumor growth [87, 88], cell migra-
tion and invasion [89], and a pro-inflammatory
microenvironment that facilitates metastasis
[90-92].

4.2.1.5 The ECM of the Tumor
Microenvironment

The ECM is a complex network of macromole-
cules with different physical and biochemical
properties, and its deregulation is one of the hall-
marks of cancer [93]. The deposition of different
collagens is increased during tumor formation
and progression [94]. Furthermore, breast cancer
ECM appears to be stiffer than normal breast
ECM, mediating tumor cell invasion and progres-
sion via a lysyl oxidase (LOX)-dependent mech-
anism [95]. ECM changes potentiate the
deregulation of cellular behavior and enable
malignant transformation [96]. Moreover, tumor
ECM has a key role in angiogenesis, as many
ECM compounds interact with VEGF regulating
the formation of new vascular branchings [97].
Tumor cells, TAM, and CAF secrete MMP that
remodel the ECM of tumors [61] and mediate
angiogenesis [96]. ECM can also mediate the dif-
ferentiation and maturation of immune cells and
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the promotion of an inflammatory tumor micro-
environment [96].

4.3 Impact of Tobacco Smoke
on the Tumor
Microenvironment

Acute Effects of Continued
Smoking

4.3.1

4.3.1.1 Angiogenesis

Exposure to tobacco smoke has been linked to
the formation of new vessels (neoangiogenesis)
[98], with nicotine being the most well-studied
compound responsible for this [99]. Angiogenic
dysplasia lesions were more frequent in the bron-
chi of smokers compared with nonsmokers and
were related to higher risk for lung cancer [100].
Furthermore, exposure to environmental tobacco
smoke induced tumor growth and enhanced ves-
sel density in a murine model of lung cancer and
stimulated circulating endothelial cell precursors
[101], in accord with data that demonstrate that
tobacco smoke exposure of murine lung tissues
increases angiogenesis and circulating leuko-
cytes [102]. When Lewis lung cancer cells were
injected in mice, systemic nicotine administra-
tion enhanced tumor growth by increasing capil-
lary density [103]. The mechanism of tobacco
smoke-mediated angiogenesis includes stimula-
tion of endothelial nicotinergic acetylcholine
receptors (nAchR) of the «7 homodimeric type
by nicotine with subsequent interactions between
nAchR and angiogenic growth factor receptors
[104].

4.3,1.2 Tobacco-Triggered EMT

During carcinogenesis, polarized epithelial cells
undergo EMT and acquire a mesenchymal phe-
notype. EMT has been linked with molecular,
biochemical, and morphological cellular changes
that lead to detachment from the basolateral
membrane, loss of cell adhesion, cytoskeletal
reorganization, changes in the interaction with
the ECM, and angiogenesis. Cells that undergo
EMT acquire higher migration capacity and inva-
sion potential, both required for conversion of

benign cells to invasive cancer cells [105].
Furthermore, EMT can give birth to CAF in the
tumor microenvironment that, in turn, contribute
to cancer progression [81]. Tobacco smoke has
been linked with EMT: MCF7 breast cancer cells
acquired mesenchymal phenotypes upon long-
term aqueous tobacco smoke exposure in vitro,
which enhanced their potential for growth, migra-
tion, and invasion, as well as their metastatic
potential in vivo [106]. Endobronchial biopsies
of COPD patients revealed that smokers had a
hyperfragmented basement membrane with
increased expression of MMPY, the fibroblast
protein S100A4, and the mesenchymal marker
vimentin compared to nonsmokers [107].
Tobacco smoke induces the expression of mesen-
chymal markers a-smooth muscle actin (e-SMA),
vimentin, and type I collagen in human bronchial
epithelial cells (HBEC) derived from nonsmok-
ers [108]. These data together indicate that
tobacco smoke contains a variety of active com-
pounds that trigger EMT via different signaling
pathways.

ROS and EMT

Milara et al. reported that tobacco smoke-
induced EMT is mediated by ROS [108].
Increased ROS production results in NF-xB acti-
vation [109], as well as Racl-mediated MMP3
expression [110]. The subsequent Rac1/MMP3-
mediated binding of NF-kB subunits p65 and
cRel to the Snail promoter, a key transcription
factor for EMT [111], which inhibits the expres-
sion of epithelial junction proteins while induc-
ing the expression of cytoskeleton proteins
[112]. Another mechanism which underlies the
potential of ROS to induce EMT includes activa-
tion of tumor necrosis factor (TNF) converting
enzyme (TACE) [113] which subsequently acti-
vates epidermal growth factor receptor (EGFR)
signaling via the Ras/Raf/MAPK, PI3K/Akt, and
Src pathways, thereby enhancing cell prolifera-
tion and migration [114]. Src signaling, a key for
EMT, is directly activated by ROS family mem-
bers peroxynitrite and H,O; resulting in increased
expression of mesenchymal proteins, cytoskele-
tal reorganization, and disruption of cell matrix
adhesion [115]. Along other lines, tobacco
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smoke-induced ROS decreased Na,K-ATPase
activity and NaK-al levels, resulting in disrup-
tion of tight junctions, alterations in cell polarity,
and early EMT [116]. In conclusion, ROS medi-
ate EMT by increasing cellular invasion poten-
tial into the ECM, by mediating ECM
remodeling, by decreasing cellular adhesion,
and by increasing cell motility (Fig. 4.1) [117].

Nicotine in EMT

The role of nicotine in inducing tumor growth
and metastasis has been described in mouse mod-
els of LADC in vivo [118]. Nicotine mediates
EMT through nAchR-dependent and nAchR-
independent  mechanisms [119]. nAchR-
independent nicotine-induced EMT primarily

T

ROS — TACE —* EGFR —Ras/Raf/MAPK ——»

\ peroxynitrite

rests on activation of TGFp signaling [108, 120-
123], which results in disassembly of epithelial
tight junctions, cytoskeletal changes, downregu-
lation of E-cadherin, and nuclear translocation of
p-Catenin. Wnt signaling is also activated by
nicotine and promotes EMT [124]. Moreover,
Whnt enhances expression of Snail, a key to EMT
[125]. nAchR-independent nicotine-induced
EMT is also mediated by periostin, which is
upregulated by nicotine, subsequently increasing
Snail expression, cell proliferation, and invasion
[119, 126]. Nicotine also mediates EMT via
nAchR binding with subsequent recruitment of
B-arrestin and Src and activation of MAPK [119,
127, 128]. In addition, nicotine increases mucin
MUC4 production in pancreatic cancer through

cell-matrix adhesion
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Fig. 4.1 ROS mediate tobacco smoke-induced EMT. The
molecular mechanisms implicated in the induction of
EMT driven by ROS include the activation of NF-kB sig-
naling pathway, which in combination with the Racl-
mediated MMP3 expression regulates the transcriptional
activation of Snail, resulting in the inhibition of the expres-

sion of epithelial junction proteins and the induction of the
expression of cytoskeleton proteins. The cascade of TACE
activation, EGFR signaling, Ras/Raf/MAPK, PI3K/Akt,
and Src pathways regulate cell-matrix adhesion and
enhance cell motility. ROS- mediated inhibition of Na,K-
ATPase activity further contributes in EMT
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Fig. 4.2 Nicotine mediates tobacco smoke-induced
EMT. The nA-chR-independent molecular mechanisms
of nicotine-mediated EMT include TGFp signaling, Wnt
signaling and periostin-mediated Snail activation. The
nAchR-dependent mechanisms include the recruit-ment

of B-arrestin and Src to nicotinic receptors, the activation
of MAPK cascade as well as the activation of activation of
a7nAchR/JAK2/STAT3 signaling. The subsequent altera-
tions in epithelial tight junctions, cytoskeletal changes,
enhancement of cell motility and invasion enhance EMT
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Fig. 4.3 Tobacco smoke-induces metabolic alterations
through two-compartment tumor metabolism. Autophagy,
mitophagy, DNA damage and premature aging convert
immortalized human stromal fibroblasts in CAFs which

activation of a7nAchR/JAK2/STAT3 signaling,
thereby inducing metastasis (Fig. 4.2) [129].

PAH in EMT

PAH are organic compounds which consist of
two or more fused aromatic rings. BaP, a com-
pound of tobacco smoke that belongs to the PAH
family, is connected with increased expression of
EMT-related genes such as fibronectin, TWIST,
and TGF-f2 [130]. Furthermore, PAH mediate
activation of arylhydrocarbon receptors (AhR),
which subsequently activate the transcription fac-
tor Slug, thereby enhancing EMT [I31].
AhR-induced c-Jun N-terminal kinase (JNK)
activation results in cytoskeletal remodeling and
increased cellular migration [132].

4.3.1.3 Tobacco-Induced Metabolic
Alterations

Tobacco smoke metabolically mediates cancer
progression via autophagy and premature aging
in the tumor microenvironment [133]. Tobacco
smoke induces autophagy, mitophagy, DNA
damage, and premature aging of immortalized
human stromal fibroblasts, resulting in the pro-
duction of CAF that mediate tumor growth [80,
133, 134]. CAFs undergo myofibroblast differen-
tiation and mitochondrial dysfunction, resulting
in secretion of high-energy mitochondrial fuels,
such as L-lactate, pyruvate, and ketone bodies.
These metabolites are subsequently used by epi-
thelial cancer cells, thereby enhancing ATP gen-
eration via oxidative phosphorylation and
promotion of tumor growth. This energy shut-
tling has been coined two-compartment tumor

undergo myofibroblast differentiation and mitochondrial
dysfunction, resulting in secretion of high-energy mito-
chondrial fuels. The epithelial cancer cells use these
metabolites enhancing tumor growth

metabolism [134]. Tobacco smoke can also
induce the reverse Warburg effect [84], by accel-
erating aging in the host microenvironment,
which through a paracrine mechanism leads to
cancer promotion (Fig. 4.3).

4.3.1.4 Tobacco Smoke-Induced Acute
Inflammation of the Tumor
Microenvironment

Acute effects of tobacco smoke have been stud-
ied in both in vitro and in vivo systems. In all
models, neutrophils were found to be recruited
immediately after acute smoke exposure, fol-
lowed by alveolar macrophages. Eosinophils
also increase in response to acute smoke expo-
sure. Fibroblasts are implicated in the respira-
tory inflammatory signature induced by acute
smoke exposure, through their inhibition and
subsequent abnormalities in the repair mecha-
nisms of the lung [135]. Except for the regula-
tion of the recruitment of immune cells, tobacco
smoke acute effects on inflammatory processes
are also mediated via regulation of expression
of various inflammatory mediators, such as
neutrophil elastase, leukotrienes, and IL-6
[135].

4.3.2 Perpetual Impact of Past
Smoke Exposure

4.3.2.1 Tobacco Smoke-Induced

Chronic Inflammation
Chronic inflammation is the result of the failure
of inflammatory cells to eliminate pathogens and
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it involves both the adaptive and innate immune
systems. The lungs are continuously exposed to
environmental agents that can cause injury and
have been strongly linked to chronic obstructive
pulmonary disease (COPD) and lung cancer
[136-138]. Tobacco smoke contains many com-
ponents with immunomodulatory function, such
as nicotine, ROS, nitrogen oxide, acrolein, car-
bon monoxide, and toxins [139, 140]. These
components induce inflammatory —mediator
release (IL-8 and TNF-a) and chemokine secre-
tion by airway epithelial cells [141, 142], through
induction of epithelial intracellular cascades,
such as Ras [143], MAPK, NF-kB, STAT, AP/1,
and ERK [144-146]. These result in regulation of
the inflammatory cell cycle, but also altered regu-
lation of cell death [146], culminating tobacco
smoke-induced airway inflammation. Another
mechanism that has been suggested to mediate
tobacco smoke-induced inflammation of the air-
ways involves thymic stromal lymphopoietin
(TSLP) secreted by both epithelial [147] and air-
way smooth muscle cells [148], which induces
dendritic cell activation resulting in Th2 polariza-
tion [149] and subsequent allergic airway inflam-
mation. Except for the induction of
pro-inflammatory responses, tobacco smoke also
diminishes the responsiveness to infections, with
both mechanisms synergistically leading to
chronic inflammation. Tobacco smoke downreg-
ulates the expression of the endogenous secreted
antimicrobial peptide human beta defensin-2
compromising immune responses [150].
Furthermore, tobacco smoke suppresses the
phagocytic function of alveolar macrophages
[151], as well as the functions of circulating NK
cells by downregulating IFN-y and TNF-a in
smokers [ 152]. Moreover, tobacco smoke induces
mucus hypersecretion, resulting in diminished
clearance of infections [153]. In conclusion,
tobacco smoke triggers airway inflammation and
impairs defense against infections and patho-
gens, all together leading to chronic inflamma-
tion (Fig. 4.4).

4.3.2.2 Epigenetic Changes
Smokers and nonsmokers show distinct profiles
of DNA methylation [59, 60]. In vitro studies

demonstrated that exposure of respiratory epi-
thelial cells to tobacco smoke induces epigene-
tic changes [154]. Vaz et al. exposed HBEC
cells to tobacco smoke for 10-15 months and
observed changes in colony formation potential,
EMT properties, MEK, RAS, EGFR, and WNT
signaling and malignant phenotype after induc-
tion of KRASY'? mutations. However, whole
exome sequencing did not reveal any driver
mutations underlying the effects of tobacco
smoke exposure. Changes in the DNA methyla-
tion pattern of the cells exposed to tobacco
smoke were observed in genes which are fre-
quently methylated in lung adenocarcinoma and
squamous cell carcinoma, such as SFRP2,
SFRP5 and WIF1, implicated in WNT signal-
ing; MSXI1, mediating the p53 function; and
BMP3, WIF1 and GATA4, important for the
RAS/MAPK signaling cascade. [155]. The
mechanism underlying the effects of tobacco
smoke on DNA methylation pattern might
include AhR, which is a transcription factor
mediating downstream histone modification
related to risk of cancer [ 156, 157]. Thus tobacco
smoke causes epigenetic changes, driven by
mutations such as single KRASY'? mutation,
which synergistically lead to oncogenic trans-
formation of respiratory epithelial cells [158].

4.4 Future Trends and Directions

The pattern of accumulation of mutations
inflicted by tobacco smoke during oncogenesis,
the cell types of origin of lung adenocarcinoma,
and the molecular mechanisms implicated during
the progress of the disease have not been com-
pletely determined [35, 54, 159]. Understanding
the cellular and molecular base of different caus-
ative factor-induced LADC through physiologi-
cally relevant mouse models of environmentally
induced LADC, high-throughput sequencing,
and carefully phenotyped and molecularly char-
acterized human cohorts could lead to the
discovery of new therapeutic targets, contribute
to personalized medicine, and help for integra-
tion of exposure/molecular data into mechanistic
risk prediction models.
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Fig. 4.4 Tobacco smoke favors chronic inflammation.
The immunomodulatory compounds of tobacco smoke
induce the secretion of TSLP from the epithelial and air-
way smooth muscle cells, with the subsequent activation
of dendritic cells and Th2 polarization, re-sulting in aller-
gic inflammation. Ras, MAPK, NF-kB, STAT, AP/1, and
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