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Abstract

This thesis proposes a new research topic of how we should aggregate multiple indi-
vidual credences on logically connected issues into a collective binary belief: hetero-
geneous belief aggregation. We argue that heterogeneous belief aggregation is worth
studying because there are many situations where credences and binary beliefs are
more appropriate as inputs and outputs of aggregation procedures, respectively. The
main problem is that it is vulnerable to a dilemma like the discursive dilemma or
the lottery paradox: issue-wise independent procedures might not ensure deductive
closure and consistency. Confronting this situation, we have two main questions: how
to formulate and generalize the dilemma, and what kinds of aggregation procedures
can avoid the dilemma and obtain rational collective beliefs.

To answer the first question, we employ the axiomatic approach to deal with
general aggregation procedures as in judgment aggregation and social choice theory.
We investigate which kinds of individual and collective rationality requirements and
which properties of aggregation procedures should be imposed on heterogeneous belief
aggregation, and which of their combinations are impossible. We mainly assume
deductive closure rather than completeness, in contrast with most of the judgment
aggregation literature. Moreover, we address impossibility results without anonymity
conditions, which cannot be considered in belief binarization. This leads to three
kinds of impossibility results, and we also determine the sufficient and necessary
agenda condition for each of the results. Furthermore, we analyze similarities and
differences between our proofs and other related proofs and conclude that the problem
of heterogeneous belief aggregation is not reducible to the other related problems.
Moreover, we show that our methods can be applied to other similar impossibilities.

For the second question, we explore specific heterogeneous belief aggregation pro-
cedures and their properties. There can be two kinds of heterogeneous belief aggrega-
tion procedures: collective belief binarization combined with a probabilistic opinion
pooling method, and direct rules.

As for collective belief binarization, belief binarization theories are applicable. To
this end, we first analyze the existing threshold-based procedures, especially those
that relax the Lockean thesis and preserve rationality. We categorize them as local-
threshold rules — where thresholds depend on probability measures — and world-
threshold rules — where thresholds are applied not to an issue but to a possible
world. Their characteristics are captured by the property of local monotonicity and
world monotonicity, respectively. We compare and relate these properties with other
existing properties like being stable in the stability theory of belief and with new —
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to be introduced — properties. Whether some existing rational procedures, like the
camera shutter rule, satisfy these properties is an interesting and philosophically im-
portant question. We provide geometrical characterizations of some of the properties
to answer this question. Furthermore, we propose that convexity norms should be dis-
cussed in the context of belief binarization. We introduce various kinds of convexity
norms and examine whether the relevant procedures satisfy them.

What is more, we propose two novel kinds of belief binarization methods that
preserve rationality but are not based on thresholds: distance-based binarization and
epistemic-utility-based binarization. The first is a holistic one minimizing the distance
from a given probability measure to the resulting binary belief. The second one is
based on an accuracy norm minimizing expected inaccuracy. We devise novel ways
to measure the required distances and inaccuracies. Moreover, we study distance
minimization with Bregman divergence, utility maximization with strict proper scores,
and their relationship.

Direct heterogeneous belief aggregation rules will also be proposed and studied
regarding threshold, distance and epistemic-utility. We provide a new classification
and characterization of them. Furthermore, we investigate some norms that are
especially relevant in social contexts, such as various unanimity norms and convexity
norms interpreted in social contexts, and commutativity norms, which govern the
relationship between direct rules and combinations of probabilistic opinion pooling
and collective belief binarization.

Putting all this together, we conclude that heterogeneous belief aggregation is
an philosophically fruitful topic that deserves attention. Heterogeneous belief ag-
gregation can be seen as a general framework, where not only heterogeneous belief
aggregation but also probabilistic opinion pooling, judgment aggregation, and belief
binarization are studied in connection to each other. First, studying heterogeneous
belief aggregation is by itself interesting and cannot be reduced to other research fields:
we can deal with different rationality norms in social contexts and address properties
characteristic for heterogeneous belief aggregation. Moreover, it is not only the direct
rules but also the different possible combinations of methods from different research
areas that makes this whole endeavor to be more sum of its parts. Indeed, second,
this framework bridges independently developed research areas: first, we can apply
well-developed formal theories in formal epistemology like belief binarization theories
and epistemic decision theories to the belief aggregation problem. Second, this frame-
work enables us to add social contexts to belief binarization problems and epistemic
decision theories, which can be extended to cover also social beliefs. Our theory of
heterogeneous belief aggregation can be applied to the (collective) belief binarization
problem and epistemic (collective) decision theory. In this way, the thesis fills, or at
least narrows, the gap between individual epistemology and collective epistemology.

IV



Contents

1 Introduction 1

2 Triviality Results about Heterogeneous Belief Aggregation 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Heterogeneous Belief Aggregation . . . . . . . . . . . . . . . . . . . . 18
2.3 The Properties of Heterogeneous Aggregators . . . . . . . . . . . . . 20
2.4 The Triviality Results . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Comparison with JA, OP and Belief Binarization . . . . . . . . . . . 33
2.6 The Agenda Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 The Agenda Condition for the Oligarchy Result . . . . . . . . 38
2.6.2 The Agenda Condition for the Triviality Result . . . . . . . . 48
2.6.3 The Agenda Condition for the Impossibility Result . . . . . . 54

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Threshold-based Heterogeneous Belief Aggregation 58
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Classification and Characterizations of Threshold-based HAs . . . . . 62

3.2.1 Classification of Threshold-based HAs . . . . . . . . . . . . . 62
3.2.2 Characterizations of Threshold-based HAs . . . . . . . . . . . 66

3.3 Lockean, Coherent, Stable or Rational-likely Belief Binarization . . . 75
3.4 Threshold-based Binarization Rules . . . . . . . . . . . . . . . . . . . 88
3.5 Belief Binarization and Convexity . . . . . . . . . . . . . . . . . . . . 96
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Distance- and Utility-based Heterogeneous Belief Aggregation 114
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1.1 Setting Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.1.3 Distance- and Utility- based Rules . . . . . . . . . . . . . . . 121

4.2 The Distance Minimizing Binarization Rules . . . . . . . . . . . . . . 122
4.2.1 The DM Rules and the Suspension Principle . . . . . . . . . . 123
4.2.2 The DM Rules with Bregman Divergences . . . . . . . . . . . 129

4.3 The Expected Utility Maximizing Binarization Rules . . . . . . . . . 140
4.3.1 The EUM Rules with Strictly Proper Scores . . . . . . . . . . 140
4.3.2 The EUM Rules in General: Examples . . . . . . . . . . . . . 149

V



4.3.3 Relation between the DM Rules and the EUM Rules . . . . . 151
4.3.4 Convexity of the EUM rules and EUM-rationalizability . . . . 154

4.4 Distance- and Utility-based Heterogeneous Belief Aggregation and its
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4.1 Distance- and Utility-based Heterogeneous Belief Aggregation 158
4.4.2 Commutativity, Unanimity and C-convexity . . . . . . . . . . 160

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5 Conclusion 167

Appendix 169

Deutsche Zusammenfassung 169

References 173

VI



Chapter 1

Introduction

It is a fundamental problem in society and politics how a group of agents makes
decisions rationally and fairly. Simple aggregation methods, such as majority voting,
are used everywhere to form various kinds of collective attitudes. For example, an
expert panel of scientists aggregates beliefs about what the real world is like, and
political voting is usually concerned with aggregating voter preferences about what
the society should be like. When aggregating beliefs, we prioritize epistemic norms
such as the veritistic norm and consistency norm, while we usually emphasize fairness
norms in the case of aggregating preferences or moral judgments. This thesis focuses
on how a group should aggregate their beliefs.12

In philosophy, belief aggregation has been studied in social epistemology (Goldman
(1999), Dietrich (2021)).3 In particular, aggregating individual binary beliefs into a

1Belief aggregation is a function of individuals’ beliefs. To form a collective belief, it is not
necessary for the input to be individuals’ beliefs. If we use belief elicitation mechanisms such as
the prediction market (Wolfers & Zitzewitz (2004)), the input can be individuals’ actions, which are
supposed to reveal individuals’ beliefs.

2Belief is a thinner concept than knowledge in that it neither needs to be true nor requires jus-
tification. Therefore, our thesis will not deal with collective justified beliefs or collective knowledge.

3Outside of social epistemology, belief aggregation has been studied in political philosophy too.
According to epistemic democracy (Goodin & Spiekermann (2018)), democratic procedures can
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collective binary belief and aggregating individual credences into a collective credence
have been the main topics. This thesis presents a new belief aggregation problem:
aggregating credences into a binary belief. This problem has not been discussed in
social epistemology, although it has long been pointed out that the two types of
beliefs are distinct and governed by different norms and their bridge principles deserve
attention. An in-depth discussion of this issue can be found in formal epistemology,
which has mainly dealt with individual epistemology. Unlike traditional epistemology,
formal epistemology has emphasized credences and investigated rational relations
between binary beliefs and credences. This thesis will study the new problem in
social epistemology using existing and new results, to be developed in this thesis, in
formal epistemology. To elaborate on our research project, we first summarize how
each of the two kinds of beliefs has been studied in formal epistemology.4

Binary belief — which is also called all-or-nothing-belief/categorical belief/outright
belief/qualitative belief/full belief — allows only two options regarding a proposition,
say A: she believes that A or she does not believe that A. If we consider two propo-
sitions A and not-A5 together, three doxastic attitudes are permissible: (1) belief —
she believes that A and she does not believe that not-A; (2) disbelief — she does not
believe that A and she believes that not-A; (3) suspension — she believes neither
that A nor that not-A. Different kinds of models and norms governing binary beliefs
have been suggested: standard propositional logic can be used to represent a belief
set that collects all believed propositions; epistemic logic internalizes the belief modal
into the logical language, and therefore can represent higher-order beliefs (Hintikka
(1962)); AGM belief revision theory focuses on revision methods of a belief set, tak-
ing inconsistency management into account, in light of a newly believed proposition
(Gärdenfors (1988), Hansson (1999)).

In contrast, credence — also called degree of belief/quantitative belief/graded
belief/partial belief — usually allows infinitely many options: she believes with a de-
gree of certainty x that A, where x is a numerical value. Numerous ways of modelling

be vindicated using, e.g., Jury theorems, which state that it is more likely that democratically
aggregated beliefs from a larger group, under certain conditions, outperform the ones from smaller
groups in terms of tracking the truth (Dietrich & Spiekermann (2021)).

4We can distinguish metaphysical questions about beliefs from normative ones. Typical meta-
physical questions are as follows: do binary belief and credence refer to the same doxastic state
or distinct doxastic states? How are they related? Can a binary belief be reduced to a credence?
Although these questions are crucial, especially in cognitive science, we will not deal with them.
For a survey of metaphysical issues of beliefs, see Jackson (2020) and Chapter 1 in Leitgeb (2017a).
The other questions about beliefs are normative ones: how should we represent and organize our
beliefs rationally, and update our beliefs in light of new evidence? Which norms should we impose
on distinct doxastic states? What are rational bridge principles between distinct doxastic states or
between different representations of a doxastic state? These questions are independent of metaphys-
ical ones since normative models can be criteria when evaluating existing ones, even if they cannot
be realized. This thesis focuses on normative questions about (aggregating) beliefs, and we do not
assume any metaphysical position. We also hope that our results are compatible with any existing
positions. We also remark that the level of rationality depends on background assumptions — e.g.,
we may provide different epistemic norms depending on whether the agents are supposed to store a
finite or infinite number of propositions.

5not-A means that it is not the case that A.
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credences have been suggested: the mainstream approach employs a probability func-
tion, which is mathematically well-developed6; some approaches such as the theories
of imprecise probabilities and the Dempster-Shafer theory provide generalizations of
probability functions7; some approaches are radically different from probability func-
tions, such as Spohn’s ranking functions (Spohn (2012)). In our thesis, we accept
probabilism, and presuppose that credences should be modelled as probability func-
tions or numerical functions extendable to probability functions.

Binary beliefs and credences have their own merits and disadvantages. On the one
hand, credences are informative and sophisticated, while binary beliefs are computa-
tionally efficient and thus human-friendly. On the other hand, credences are usually
computationally demanding even for ideal reasoners, while binary beliefs are uninfor-
mative in some complex contexts, e.g., decision contexts in uncertain environments.
Because one does not dominate the other, we have a good reason to embrace them
in belief aggregation contexts. Considering two types of belief, we have the following
diagram, where all possible belief aggregation problems are depicted.8

Individuals’
probabilistic

Beliefs

Group’s
probabilistic

Belief

(1)

Individuals’
binary
Beliefs

Group’s
binary
Belief

(3)

(4)

(2)

Figure 1.1

In the cases of (1) and (2), the input and output data types are the same, while
they are different in the cases of (3) and (4). The existing research about belief
aggregation has focused on the cases of (1) and (2). In case (1), both the input
and output are credences, specifically probability functions, and this problem has
been extensively studied in probabilistic opinion pooling. In case (2), binary beliefs
are the input and output, and this problem has been investigated in the judgment
aggregation and belief merging literature. In contrast, the cases (3) and (4) have
rarely been studied. We claim that there are some situations where the case (4) is
needed. To this end, we will deal with the input and output data types separately.

6Different kinds of arguments have vindicated this approach: some invoke practical rational-
ity, such as the Dutch Book argument (Pettigrew (2020b)); epistemic rationality such as epistemic
decision theory (Joyce (1998), Pettigrew (2016)); partition invariance (Leitgeb (2021)).

7For an overview of various models of credences, see Huber & Schmidt-Petri (2009) and Halpern
(2017)

8More complex belief aggregation methods might include different dynamic processes; sequential
evidence learning (Blackwell and Dubins (1962)); deliberation processes (the consensus formation
model (DeGroot (1974), Lehrer and Wagner (1981)); higher-order evidence learning (peer disagree-
ment literature, supra Bayesianism (Morris (1974)).
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For the input data type, we claim that credences are generally better than binary
beliefs. We can treat the input data as evidence for the resulting collective belief,
and we expect that sophisticated and informational input data are more likely to
track the truth. This view supports that, if possible, probabilistic beliefs should be
provided as the input data type. In this sense, the input data in cases (2) and (3)
already include information loss.

For the output data type, we claim that there are some cases where binary beliefs
are appropriate. Although the following arguments supported by examples are not
rigorous and include exceptions, this will be enough to support our claim. First, the
output data type depends on the extent that the group can be seen as a genuine group
agent. Individual beliefs can be gathered without supposing a group agent to which
the aggregate beliefs belong. For example, consider a voting result of South Korean
women in their 30s in the last presidential election. Although some meaningful pat-
terns and information can be extracted from the statistical data, it is difficult to say
that the set of all South Korean women in their 30s is a genuine group agent.9 For
mere summaries of individual beliefs, credences would be a more appropriate output
data type rather than binary beliefs. A more complex, structured, and organized
collection of individuals can be regarded as a group agent. Indeed, some groups like
political parties and companies seem to have collective beliefs as well as consistent
plans and goals; they respect some epistemic and practical rationality norms much
like an individual agent.10 In many cases of belief aggregation, the resulting collective
beliefs are shared with other members of society, and evaluated by the society’s dom-
inant rationality norms. For example, political parties describe society’s problems
through their program, and if the program makes contradictory claims, the party will
be criticized. And in all of these processes, we see collective binary beliefs, and some
rationality norms on them, such as consistency and closure under conjunction. This is
not surprising since binary beliefs are human-friendly and appropriate for conveying
information efficiently and for communicating with other individuals.

Second, the output data type also pertains to the purpose of belief aggregation.
Indeed, group beliefs should take different types depending on whether the collective
beliefs are provided as a basis for some decision making or released to the public
through announcements. For example, consider the case where a working group of
various scientists in IPCC11 publishes an assessment report for policymakers. Since
this report is used as the background information for policymaking, probabilistic
beliefs may be appropriate. In contrast, binary collective beliefs would be appropriate
when a government announces a final position after a discussion based on the report
and communicates it to the public. Otherwise, the government’s public announcement
would not be effectively passed on to the public.

Third, the types of belief in the final judgment are pre-determined in many insti-

9List (2014) distinguished three kinds of collective beliefs: aggregate beliefs, which are mere
summaries of individuals’ beliefs; common beliefs, which each entertains with common awareness;
corporate beliefs, which can be thought of as a genuine group’s belief.

10In this thesis, we will not discuss further whether/when a group agent exists. For a more
discussion about the group agency problem, see List & Pettit (2011).

11Intergovernmental Panel on Climate Change
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tutions, whether written or customary. For example, the jury’s verdict in a criminal
case is supposed to be expressed as a binary belief: “guilty” or “not guilty”.

For this reason, it is worth studying case (4), and we call it heterogeneous be-
lief aggregation, which is the topic of this thesis. In Figure 1.2, heterogeneous belief
aggregation is illustrated in relation to other research fields. In the figure, binariza-
tion indicates rational bridge principles between credences and binary beliefs, which
can be used as a function or a correspondence taking credence and giving binary
beliefs. It is noticeable that individual belief binarization and collective belief bina-
rization can be distinguished12, which can be combined with judgment aggregation
and opinion pooling methods respectively to devise a heterogeneous belief aggregation
method. This thesis focuses on collective belief binarization rather than individual
belief binarization since the heterogeneous belief aggregation methods employing the
latter — judgment aggregation after individual belief binarization — would result in
information loss relatively prematurely.

Individuals’
probabilistic

Beliefs

Group’s
probabilistic

Belief

Opinion

Pooling

Individuals’
binary
Beliefs

Group’s
binary
Belief

Judgment

Aggregation

BinarizationBinarization

Average

Figure 1.2: Heterogeneous Belief Aggregation is depicted by the red dotted line.

In the remainder of this chapter, we will illustrate heterogeneous belief aggregation
in connection with three related research fields: judgment aggregation, probabilistic
opinion pooling, and belief binarization. The first two are similar to heterogeneous
belief aggregation because they are about aggregating beliefs. The latter addresses
two heterogeneous types of belief, which can be used for collective beliefs as well,
and thus combined with an opinion pooling procedure for heterogeneous belief aggre-
gation. Our theory of heterogeneous belief aggregation will be developed based on
many achievements and obstacles in these research areas.

12One may wonder if the relationship between group credences and group binary beliefs is fraught
with metaphysical problems. In our opinion, collective belief binarization is rather relatively free from
the metaphysical aspect. In general, an artifact does not need to presuppose human psychology. For
example, it is not a metaphysically serious problem whether a knowledge base stored in computer
memory is written in the symbolic or probabilistic language. However, it may be necessary for
social and political institutions to consider and use human psychology since group agents, albeit an
artifact, have social relationships with other individuals. Nevertheless, this is not a metaphysical
burden; it serves only a practical purpose. For example, internal reports, meetings minutes, and
press conferences constitute the corpus of the group’s beliefs, and the type of belief depends on
the purpose for which those beliefs were formed and the rationality norms that those beliefs are
supposed to respect.
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We begin by introducing a typical example of belief aggregation or belief bina-
rization problems:

A political party wants to establish its position on the basic income policy.
To this end, the party asks some experts for opinions on how artificial
intelligence will affect the labor market in the future and collects the
results in order to use as an argument for the party’s position. The experts
present their beliefs on the following logically interconnected issues.

A : “Artificial intelligence will outperform humans in all areas by 2050.”

B : “Artificial intelligence will replace humans in the labor market.”

A→ B : “If artificial intelligence outperforms humans in all areas by 2050,
then it will replace humans in the labor market.”

Judgment Aggregation Let us assume that the following profile of three experts’
beliefs is given. Here, every belief is complete (every agent holds each issue to be true
or false, and suspending is not allowed). The collective belief is formed by majority
voting for each issue.

Issues A A→ B B

Agent 1 T T T
Agent 2 T F F
Agent 3 F T F

Collective Belief T T F

Table 1.1: The Discursive Dilemma

It shows that the issue-wise majority rule on logically interconnected issues might
generate an inconsistent collective belief, even though every individual has a consis-
tent belief. This is called the discursive dilemma. Motivated by this, the judgment
aggregation theory was founded and has been extensively studied.13 The problem
can be generalized beyond majority voting, as shown in List & Pettit (2002) — there
is no anonymous, neutral, and independent procedure if the issues have some min-
imal logical interconnections. Various kinds of impossibility theorems, on the one
hand, generalize this kind of dilemma, saying that seemingly reasonable properties
and conditions cannot be jointly satisfied, like Arrow’s impossibility theorem in so-
cial choice theory. On the other hand, there have been different suggestions to avoid
impossibility theorems. To formulate impossibilities and find escape routes, we need
to understand why this dilemma arises. It is a common view that the main source
of the dilemma is the conflict between the issue-wise independence norm (a collec-
tive belief should be formed issue by issue), the logical interconnections between the
issues, and rationality requirements such as consistency (a binary belief should not

13For a survey, see List & Puppe (2009), Mongin (2012), and for a textbook, see Grossi & Pigozzi
(2014).
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entail a contradiction), deductive closure (a binary belief should contain its logical
consequences) or completeness. Let us mention each in turn:

One of the main research directions in judgment aggregation theory is to find
the exact agenda conditions under which different (im)possibility results arise. First,
Nehring & Puppe (2010) proved that path-connectedness14 is the exact agenda condi-
tion under which any independent judgment aggregator satisfying completeness and
monotonicity leads to a dictatorship. Next, Dokow & Holzman (2010a) proved that
path-connectedness and even-negatability15 is the agenda condition under which any
independent judgment aggregator satisfying completeness leads to a dictatorship.

One seemingly natural answer to the Discursive Dilemma is to weaken rationality
requirements, in particular the completeness condition.16 This route can be well sup-
ported because epistemic logic and AGM belief revision theory — the most successful
models of qualitative beliefs — do not demand the completeness condition. However,
Gärdenfors (2006) showed that relaxing completeness also results in a degenerate ag-
gregation rule, namely oligarchies.17 In contrast to the completeness condition, Briggs
et al. (2014) proved that the discursive dilemma could be avoided by weakening the
consistency condition to probabilistic coherence.

The most often mentioned way to avoid the discursive dilemma is to relax the
independence norm18. New kinds of holistic judgment aggregation methods have been
suggested, e.g., premise-based procedures (Pettit (2001), Dietrich & Monin (2010));
distance-based rules (Miller & Osherson (2008)); sequential rules (List (2004)).

Probabilistic Opinion Pooling Probabilistic opinion pooling is a research field
devoted to the question of how to aggregate the individual probabilities into a col-
lective probability.19 Let us illustrate the opinion pooling problem with an example:
This time, three experts present their credences on the same issues as before. The
collective belief is formed by issue-wise averaging of the individual credences. It is
noticeable that although the issues do not constitute an algebra, each agent’s numeri-
cal beliefs can be extended to a (finitely-additive) probability measure on the algebra
generated by the issues, and the issue-wise averaging procedure guarantees that the
group’s numerical belief also can be extended to a probability measure.

The main finding in opinion pooling is the characterization theorem of linear

14Path-connected is also called total blockedness.
15Even-negatability is also called non-affineness .
16This route is important to this thesis because we do not require the completeness condition

except for some parts in Chapter 2.
17Gärdenfors (2006) assumed a demanding condition that the agenda set should be an atomless

Boolean algebra. Dietrich & List (2008) and Dokow & Holzman (2010a) proved that given an
(in)finite agenda set — Dietrich & List (2008) deals with infinite and finite agenda sets at the same
time whereas Dokow & Holzman (2010a) assumes only the finite case —, relaxing the completeness
condition on the (input and ) output yields oligarchies, which is, strictly speaking, a stronger notion
than those in Gärdenfors (2006). Furthermore, they found the exact agenda condition — path-
connectedness and even-negatability — under which the oligarchy result arises.

18For relaxing the requirement of universal domain see List (2003).
19For a survey see Genest & Zidek (1986), Dietrich & List (2016)
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Issues A A→ B B

Agent 1 0.9 0.7 0.6
Agent 2 0.8 0.4 0.2
Agent 3 0.4 0.7 0.1

Collective Belief 0.7 0.6 0.3

Table 1.2: Linear Pooling

pooling.20 McConway (1981) proved that given a σ-algebra, the only opinion pool-
ing function that is independent and preserves zero probabilities is linear pooling
(weighted averaging by issues). Dietrich & List (2017a, 2017b) generalized this result
to general agendas that need not be a σ-algebra. However, linear pooling does not
satisfy all the requirements of probabilism or Bayesianism.21 It is well-known fact
that the linear pooling procedure creates a tension with Bayesian conditionalization
because Bayesian conditionalization after linear pooling may not coincide with linear
pooling after Bayesian conditionalization in individual beliefs, which is said to violate
the external Bayesianity.22 Geometric pooling has an advantage in this respect. Gen-
est (1984) and Genest et al. (1986) proved that geometric pooling is the only opinion
pooling function satisfying the external Bayesianity under some minor conditions.

Belief Binarization Belief binarization is a study concerning rational bridge prin-
ciples between credences and binary beliefs. In most of the literature, belief is as-
sociated with high credence, and thus principles based on some kinds of thresholds
have been considered natural. One of them is the well-known Lockean Thesis, which
states that an agent should believe an issue/a proposition iff its probability exceeds a
threshold. However, the lottery paradox shows that the Lockean thesis might result
in a contradictory belief:

Consider a fair 1,000-ticket lottery that has only one winning ticket. An
agent believes that one ticket will win. She also believes that each ticket

20It does not mean that probabilistic opinion pooling has only positive results. For example,
Lehrer & Wagner (1983) showed that the only probabilistic opinion pooling functions satisfying
independence, zero probability preservation, and preservation of probabilistic independence are dic-
tatorships.

21Probabilism usually indicates that a rational agent ought to use probability functions and
Bayesian conditionalization. In contrast, Bayesian rationality is used with various meanings. For
example, Bayesian rationality may mean that rational agents ought be an expected utility maximizer
who has preferences and beliefs simultaneously. The Bayesian social aggregation views a rational
group agent as an expected utility maximizer. However, in this research field, collective beliefs are
studied only concerning aggregation of the preferences of the individuals. Although this problem
has been extensively studied and is essential in social ethics, we will study the belief aggregation
problem independently of the preference aggregation problem. For a survey about Bayesian social
aggregation, see Mongin & Pivato (2016).

22This does not mean that linear pooling does not fit well with every update method. For
example, according to Leitgeb (2017a), combining linear pooling with probabilistic imaging can solve
the commutativity problem.
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will lose since her probabilistic belief is a uniform distribution over the
tickets, and her threshold is 0.99. Then it is deduced that no ticket will
win, which leads to a contradictory belief.

Note that unless the threshold is 1, one can find examples that shows that the
Lockean thesis does not guarantee rational — here, consistent and deductively closed
— binary beliefs. There have been many suggestions to resolve this paradox. Some
argued for relaxing closure under conjunction (Kyburg (1961), Leitgeb (2021)) or
weakening consistency to probabilistic coherence (Easwaran & Fitelson (2015)). Some
suggested giving up probabilism and using alternative models of credences such as
ranking functions (Spohn (2009)). Some proposed new bridge norms relaxing the
Lockean thesis. The stability theory of belief (Leitgeb (2017a)) provides a rational way
to relate credences and binary beliefs: they should satisfy the Humean thesis, which
says that an issue should be believed iff its probability remains above a given threshold
under conditionalization on any issue whose negation is not believed. The theory
proves that this amounts to choosing a threshold for a given probability measure so
as to preserve rationality. The camera shutter rule (Lin & Kelly (2012)) recommends
a different way to preserve rationality and probabilism. According to the rule, a belief
core whose supersets are believed should consist of the worlds whose probability ratio
to the maximal probability is above a given threshold.

The conflict between rationality and the Lockean thesis in the lottery paradox is
closely related to the one between rationality and majority voting in the discursive
dilemma. The reason is that the threshold rule of the Lockean thesis can be viewed
as a quota rule that generalizes majority voting. Let us return to the experts’ beliefs
in Table 1.1 to see this. This time, the party forms a credence based on the data
and then reduces the credence to a binary belief by applying a threshold rule with
threshold 0.6 — an issue is believed iff its probability is above 0.6 — as follows.

Issues A A→ B B
Credence 0.66 0.66 0.33

Binary belief Belief Belief Disbelief

Table 1.3: The Lottery Paradox

We see that the resulting belief satisfies neither deductive closure nor consistency.
Indeed, any anonymous independent judgment aggregation can be seen as a belief
binarization problem. The similarity and relation between the judgment aggregation
problems and belief binarization problems have firstly been observed by Douven &
Romeijn (2007). Dietrich & List (2018, 2021) showed how to relate the impossibility
theorems of judgment aggregation and the lottery paradox and found the agenda
conditions under which the impossibility results arise in the binarization problems.

Heterogeneous Belief Aggregation We propose a new research topic: heteroge-
neous belief aggregation. It is an aggregation of credences into a binary belief. On the
one hand, this topic differs from judgment aggregation and opinion pooling in that
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the input and output data types are heterogeneous, just as in belief binarization. On
the other hand, the topic is distinguished from belief binarization in that multiple
credences are taken as input.

Let us illustrate the heterogeneous belief aggregation problem with an example.
Three experts’ opinions are given in the form of credences as in Table 1.2. Suppose
that the party’s belief is generated by the following method: an issue is collectively
believed iff its average credence is above 0.6.

Issues A A→ B B

Agent 1 0.9 0.7 0.6
Agent 2 0.8 0.4 0.2
Agent 3 0.4 0.7 0.1

Collective Belief Belief Belief Disbelief

Table 1.4: A Heterogeneous Belief Aggregation Problem

This new dilemma shows that this aggregation procedure does not ensure de-
ductive closure and consistency, just as in the discursive dilemma and the lottery
paradox. Confronting this situation, we have two main questions: how to formulate
and generalize the dilemma, and what kinds of aggregation procedures can avoid the
dilemma and obtain rational collective beliefs.

To answer the first question, we will employ the axiomatic approach to deal with
general aggregation procedures as in judgment aggregation and social choice theory.
We will investigate which kinds of individual and collective rationality requirements
and which properties of aggregation procedures should be imposed on heterogeneous
belief aggregation, and which of their combinations are impossible. We will mainly
assume deductive closure rather than completeness, in contrast with most of the judg-
ment aggregation literature. Moreover, we will address impossibility results without
anonymity conditions, which cannot be considered in belief binarization. This will
lead to three kinds of impossibility results, and we will also determine the sufficient
and necessary agenda condition for each of the results.

For the second question, we will explore specific heterogeneous belief aggregation
procedures and their properties. There can be two kinds of heterogeneous belief
aggregation procedures: (1) collective belief binarization combined with an opinion
pooling method and (2) direct rules, as illustrated in Figure 1.3.

As for collective belief binarization, theories of belief binarization are applicable.
To this end, we will first analyze the existing threshold-based procedures, especially
those that relax the Lockean thesis and preserve rationality. We will categorize them
as local-threshold rules — where thresholds depend on probability measures — and
world-threshold rules — where thresholds are applied not to an issue but to a possible
world. Their characteristics will be captured by the property of local monotonicity
and world monotonicity, respectively. We will compare and relate these properties
with other existing properties like being stable in the stability theory of belief and
with new — to be introduced — properties. Whether some existing rational pro-
cedures, like the camera shutter rule, satisfy these properties will be an interesting
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Figure 1.3: Collective Belief Binarization and Direct Rules

and philosophically important question. We will provide geometrical characteriza-
tions of some of the properties to answer this question. Furthermore, we will propose
that convexity norms should be discussed in the context of belief binarization. We
will introduce various kinds of convexity norms and examine whether the relevant
procedures satisfy them.

What is more, we will propose two novel kinds of belief binarization methods
that preserve rationality but are not based on thresholds: distance-based binariza-
tion and epistemic-utility-based binarization. The first is a holistic one minimizing
the distance from a given probability measure to the resulting binary belief. The
second one is based on an accuracy norm minimizing expected inaccuracy. We will
devise novel ways to measure the required distances and inaccuracies. Moreover, we
will study distance minimization with Bregman divergence, utility maximization with
strict proper scores, and their relation.

Direct heterogeneous belief aggregation rules will also be proposed and studied
regarding threshold, distance and epistemic-utility. We will provide a new classifi-
cation and characterization of them. Furthermore, we investigate some norms that
are especially relevant in social contexts, such as various unanimity norms, convexity
norms interpreted in social contexts, and commutativity norms, which govern the
relationship between direct rules and combinations of opinion pooling and collective
belief binarization.

These novel problems we are proposing here have not been discussed in social
epistemology and formal epistemology thus far. Compared to judgment aggregation
and opinion pooling, it has been rarely the case that aggregation problems dealing
with heterogeneous belief models have been discussed. As far as we know, the only
literature to study the aggregation of credences into a qualitative belief is Ivanovska
& Slavkovik (2019). However, they mainly focused on procedures where individual
credences are first transformed into qualitative beliefs, to which judgment aggregation
methods are then applied. Thorn (2018) also dealt with both probabilities and binary
beliefs but investigated the joint aggregation of individual belief states, each of which
consists of a quantitative and a qualitative belief, into a collective belief state. Our
problem is different because we do not deal with individual belief binarization due
to the information loss problem. Instead, we focus on procedures where firstly, the
group’s credence is formed via an opinion pooling method, after which we apply
threshold- or distance-based belief binarization methods to the group’s belief state,
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which include methods from Leitgeb (2014a), Cantwell & Rott (2019) and Lin &
Kelly (2012b). We can find literature where belief binarization methods are applied
to aggregation problems, e.g., Chandler (2013) and Cariani (2016). However, they
used the methods for judgment aggregation. We will apply various belief binarization
methods to aggregate credences to a belief.

Last but not least, let us return to the example where the party writes the pro-
gram including the basic income policy based on some experts’ opinions about the
effect of artificial intelligence on the labor market. This example satisfies every reason
to use heterogeneous belief aggregation procedures. When the experts’ probabilistic
opinions are given, the program will be better supported, and when binary beliefs are
expressed in the program, the party can more effectively convey their beliefs, which
will guide the party’s and the supporters’ reasonable action. Besides this typical ex-
ample, there can also be broader applications of heterogeneous belief aggregation the-
ory. On the one hand, the theory can be applied to belief binarization of an imprecise
probability represented by a finite set of probabilistic beliefs. This shows that het-
erogeneous belief aggregation can be viewed as a generalization of belief binarization.
On the other hand, the theory can also be used for a judgment aggregation problem
given subgroups’ credences calculated anonymously and independently from the bi-
nary beliefs of the members of the subgroups.23 This indicates that heterogeneous
belief aggregation can be interpreted as a generalization of judgment aggregation.

Putting all this together, we conclude that heterogeneous belief aggregation is a
philosophically fruitful topic that deserves attention. Heterogeneous belief aggrega-
tion can be seen as a general framework, where not only heterogeneous belief aggre-
gation but also opinion pooling, judgment aggregation, and belief binarization are
studied in connection to each other. First, studying heterogeneous belief aggregation
is by itself interesting and cannot be reduced to other research fields: we can deal with
different rationality norms in social contexts and address properties characteristic for
heterogeneous belief aggregation. Moreover, it is not only the direct rules but also the
different possible combinations of methods from different research areas that makes
this whole endeavor to be more than sum of its parts. Indeed, second, this framework
bridges independently developed research areas: first, we can apply well-developed
formal theories in formal epistemology like belief binarization theories and epistemic
decision theories to the belief aggregation problem. Second, this framework enables
us to add social contexts to belief binarization problems and epistemic decision theo-
ries, which can be extended to cover also social beliefs. Our theory of heterogeneous
belief aggregation can be applied to the (collective) belief binarization problem and
epistemic (collective) decision theory. In this way, the thesis fills, or at least narrows,
the gap between individual epistemology and collective epistemology.

The thesis is organized as follows: In Chapter 2, we define basic properties of het-
erogeneous belief aggregation and agenda conditions, and prove three impossibility

23For example, consider a situation where the political party requested separate opinions of two
subgroups, e.g., machine learning programmers and labor economists, on the issues of the previous
examples, and the opinions of each subgroup were collected through an anonymous and independent
judgment aggregation. This method is appropriate when we want to collect the opinions of the
subgroups rather than the opinions of each individual.
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results. In Chapter 3, threshold rules are classified and characterized. We also ana-
lyze some properties and rules of belief binarization. Convexity norms are addressed
as well. In Chapter 4, we propose new binarization procedures minimizing distance
and maximizing expected utility, and study their relationships. Moreover, we suggest
some properties characteristic for heterogeneous belief aggregation, and investigate
the relationships between direct rules and the combination of opinion pooling and be-
lief binarization. Lastly, Chapter 5 concludes the thesis and suggests further research.
All of the chapters have one theme and are intimately connected to one another, but
each chapter is mostly self-contained and thus can be read independently.
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Chapter 2

Triviality Results about
Heterogeneous Belief Aggregation

In this chapter, following the old research tradition in social choice theory, we will sug-
gest some rational requirements on heterogeneous belief aggregation and prove several
impossibility results. Furthermore, following the relatively recent research tradition in
judgment aggregation theory, we will present characterization theorems by which we
can determine the exact agenda conditions under which the impossibility results arise.
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2.1 Introduction

This chapter aims to formally define heterogeneous belief aggregation and its prop-
erties, and investigate which combinations of properties can be satisfied or not. As
illustrated in the discursive dilemma and lottery paradox introduced in the last chap-
ter, seemingly desirable or natural properties might not be be satisfied simultaneously.
In heterogeneous belief aggregation, we might run into similar difficulties. Thus, to
begin our study, we formalize and prove exactly when impossibilities arise, which will
provide the exact boundary between possible and impossible heterogeneous belief ag-
gregation.

Heterogeneous belief aggregation is a new research area we are proposing in this
study, and, of course, no impossibilities have been established thus far. However, as
indicated in the last chapter, heterogeneous belief aggregation is similar to judgment
aggregation and opinion pooling since they deal with aggregating individual beliefs
into a collective belief. It differs from them in that the input and output types
are different, i.e., heterogeneous, which is a commonality with belief binarization.
Therefore, reviewing impossibilities in judgment aggregation, opinion pooling, and
belief binarization will give some hints for developing the theory of heterogeneous
belief aggregation.

In the center of many impossibility theorems in the three research areas lies the
norm of independence, which says that procedures to obtain the resulting belief on
an issue in the agenda should depend only on the inputs on the issue, not on other
issues. This means that the output should be determined issue-wise. However, when
issues in the agenda are logically interconnected, and the resulting belief is required
to satisfy some rationality norms like deductive closure, consistency, or completeness,
issue-wise procedures might violate the rationality norms to respect logical intercon-
nections between issues.

Starting by generalizing the problem of issue-wise majority voting in the discursive
dilemma, the axiomatic method in social choice theory, like the method employed to
obtain Arrow’s impossibility theorem, has been applied to any agenda of which issues
are logically represented and interconnected (List & Pettit (2002)). Utilizing this
method, much research in judgment aggregation has formalized and generalized the
tension mentioned above. For example, it was shown that independent aggregation
to generate complete and consistent collective judgments on a given agenda is, under
certain minimal conditions, forced to be a dictatorship — the collective judgment
is always the same as a fixed individual’s judgment — if and only if the issues in
the agenda have certain logical interconnection — which is called path-connectedness
and even-negatability (Dokow & Holzman (2010a)). If axiomatic requirements on
the aggregation are strengthened, we obtain impossibilities more easily; hence the
agenda condition can be weakened. For example, if we add anonymity, then the
agenda condition for the impossibility can be weakened to what is called blocked
(Nehring & Puppe (2010)). While completeness and consistency are usually assumed
in judgment aggregation, a few studies have weakened them to deductive closure,
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where dictatorships are replaced with oligarchies — an issue is collectively accepted if
and only if it is unanimously accepted by a fixed subgroup of individuals (oligarchs)
(Gärdenfors (2006), Dietrich & List (2008)).

In opinion pooling and belief binarization, the agenda has usually been assumed
to have the structure of a (non-trivial) algebra, because they deal with probability
measures. Under this assumption, McConway (1981) showed that independent opin-
ion pooling with a certain minor condition (certainty preservation) is restricted to
linear pooling. Recently, Dietrich & List (2017a, 2017b) relaxed the assumption of
an algebra and investigated general agendas to characterize linear pooling.

Belief binarization is not a problem of aggregating beliefs, but this can be thought
of as anonymous issue-wise judgment aggregation (Dietrich & List (2018)). There-
fore, there are also impossibilities demonstrating the tension between independence
and rationality norms, such as deductive closure, when the agenda has the structure
of an algebra, which is common in the belief binarization literature, but can also be
relaxed (Dietrich & List (2018, 2021)). It is worth pointing out that deductive closure
is the typically required rationality norm in belief binarization as well as in doxastic
logic and AGM belief revision theory.

The aforementioned impossibilities in the three research areas shed some light
on developing the theory about impossibilities on heterogeneous belief aggregation.
Accordingly, one may conjecture that if we combine the strong properties — com-
pleteness of collective beliefs and anonymity — with the strong agenda condition of
being an algebra, then we can easily obtain an impossibility of independent hetero-
geneous belief aggregation. The reason is that stronger conditions are more likely to
be incomparable with independence; thus we can obtain impossibility results more
easily. Our research will make stronger claims. Hence, we investigate not only the im-
possibility with the above combination but also other impossibilities in the following
way:

(i) we relax completeness that is usually required in the theory of judgment ag-
gregation, and assume deductive closure as in belief binarization,

(ii) we drop anonymity in anonymous issue-wise judgment aggregation, which
corresponds to the belief binarization problem, and attach social contexts — by tak-
ing multiple individuals’ beliefs as input — and epistemic contexts — by respecting
degrees of expertise — as in judgment aggregation or opinion pooling, and

(iii) we weaken the structure of an algebra commonly required in opinion pooling
and belief binarization, and characterize impossibility agendas as in judgment aggre-
gation.

Using this approach, we can contribute to sparking interest in heterogeneous belief
aggregation. On the one hand, it has its own interest in the following sense. First, we
can deal with different properties: individual rationality should be about probabilis-
tic beliefs, unlike in judgment aggregation, and collective rationality should be about
binary beliefs, unlike in opinion pooling. Also, unlike in belief binarization, we should
consider rationality norms in a social context. Second, direct procedures might exist
that cannot be reduced to a combination of opinion pooling and belief binarization
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or a combination of belief binarization and judgment aggregation. Through our ap-
proach, we can suggest new rationality norms and find impossibilities characteristic
for heterogeneous belief aggregation. On the other hand, our approach can provide
a general framework to bring together and compare different research areas dealing
with binary or probabilistic beliefs, or the aggregation of beliefs. This general frame-
work will enable one to apply our theory of heterogeneous belief aggregation to other
research areas and shed new light on them.

Considering the above, our main questions in this chapter are the following:
(Q1) what kinds of impossibility results can we formulate and prove? First, we

will determine exact combinations of properties of heterogeneous belief aggregation
to yield impossibilities, assuming enough logical interconnection between issues like
a (non-trivial) algebra. Our results will involve the cases with deductive closure or
completeness, and with or without anonymity;

(Q2) how rich should the logical interconnections be to obtain or avoid each impos-
sibility result? Put differently, what is the necessary and sufficient agenda condition
for each impossibility result established above?;

(Q3) how are our theorems and proofs compared with impossibility results in
judgment aggregation, opinion pooling and belief binarization? We will relate our
results to similar ones in other research areas and analyze similarities and differences
between our proofs and other ones.

The remainder of this chapter is organized to answer these questions as follows.
First, in Section 2.2, we illustrate our setting and formally define heterogeneous belief
aggregation. Next, in Section 2.3, we introduce and formulate some (possible) ax-
iomatic requirements on heterogeneous belief aggregation. In Section 2.4, we present
and prove our first main results under the assumption of the agenda being a non-
trivial algebra, according to which there is no heterogeneous belief aggregation rule
satisfying some presumably rational requirements except for degenerate ones. Then,
in Section 2.5, we compare our main results with results in other research areas.
Lastly, in Section 2.6, which is based on joint work with Chisu Kim, we present our
second main results: three characterization theorems of impossibility agendas.
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2.2 Heterogeneous Belief Aggregation

We begin by introducing some notation and terminology that will be maintained
throughout this chapter, as well as the formal definition of heterogeneous belief ag-
gregation.

Let W denote a non-empty set that represents a set of worlds. An agenda A on
W is a non-empty set of some subsets of W that is closed under complement, that
is, for all A ∈ A, it holds that if A ∈ A, then A ∈ A where A is the complement
of A. We call an element A of A an issue. We denote the set of n individuals by
N := {1, ..., n} and assume that n ≥ 2. For each i ∈ N , Pi denotes an individual i’s

belief that is a function from A to [0, 1] and ~P := (P1, ..., Pn) =: (Pi)i denotes a profile

of n individuals’ beliefs. We call a function F taking ~P into F (~P ) : A → [0, 1] an

aggregator, where F (~P ) represents a collective belief. For any individual or collective
belief P : A → [0, 1], if the codomain is restricted to {0, 1}, then it is called a
binary belief, and for any issue A ∈ A, P (A) = 1 means that A is believed and
P (A) = 0 means that A is not believed. We call the set of all believed issues — i.e.,
{A ∈ A| P (A) = 1} — the belief set of P and denote it by P−1(1). In contrast to
binary beliefs, P : A → [0, 1] is called a probabilistically coherent belief, or simply, a
probabilistic belief, if P is extendable to a finitely-additive probability on the algebra1

generated by A(i.e., the smallest algebra that includes A). Even though we adopt a
somewhat generalized definition of probabilistic beliefs, finitely-additive probabilities
on an algebra A are thought of as the most basic and typical probabilistic beliefs
throughout this chapter, except in Section 2.6.

Individuals’
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Beliefs

Group’s
probabilistic

Belief

Opinion

Pooling

Individuals’
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Group’s
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Figure 2.1: Heterogeneous belief aggregation is depicted by the red dotted line.

Heterogeneous belief aggregation deals with individuals’ probabilistic beliefs and
the group’s binary belief (See the figure above). Formally, it is defined as follows:

Definition 2.1 (Heterogeneous Aggregator (HA)). A heterogeneous aggregator (HA)

F is a function that takes each profile ~P of n probabilistic beliefs on A in a given
domain and returns a binary belief, which is a function F (~P ) : A → {0, 1}.

1An algebra A on a set W is a set of subsets of W such that (1) W ∈ A, (2) if A ∈ A, then
A ∈ A, and (3) if A,B ∈ A, then A∪B ∈ A. A finitely-additive probability is a function P from an
algebra A to [0, 1] such that (1) P (W ) = 1, and (2) if A ∩B = ∅, then P (A ∪B) = P (A) + P (B).
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Studying heterogeneous belief aggregation, we will also compare this with opinion
pooling, judgment aggregation, and belief binarization problems. For a start, compare
the above definition with the following formal definition of an opinion pooling function
and that of a judgment aggregator: A judgment aggregator (JA) is a function that

takes each profile ~P of n binary beliefs on A in a given domain and returns a binary
belief on it. To define an opinion pooling function we assume that A is an algebra.2

An opinion pooling function (OP) is a function that takes each profile ~P of n finitely-
additive probabilities on the algebra A in a given domain and returns a finitely-
additive probability on it.

2In most of the opinion pooling literature, the underlying agenda is assumed to be a σ-algebra.
However, whenever we talk about opinion pooling, we assume that A is an algebra, since we do
not need σ-additivity to prove the relation between certainty preservation, independence, and sys-
tematicity in opinion pooling, which we will later compare with our result (Lemma 2.4) regarding
heterogeneous belief aggregation. Note that exceptionally, in Dietrich & List (2017a, 2017b), they
explore generalized opinion pooling where A need not be even an algebra but just closed under
complement. In our research, we investigate heterogeneous belief aggregation where the definition
of an agenda is the same as the one in Dietrich & List (2017a, 2017b).
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2.3 The Properties of Heterogeneous Aggregators

In this section, we gather axiomatic requirements on heterogeneous belief aggregation.
A HA consists of inputs, outputs, and a rule, and accordingly, the requirements can
be divided into two groups. The first group concerns the inputs and outputs and
includes rationality norms that we impose on individual and collective beliefs. The
second group is related to conditions imposed on the rule.

Individual and Collective Rationality We focus on obtaining a rational collec-
tive belief given rational individual beliefs. The kinds of rational requirements that
we should demand can be different according to whether they are imposed on proba-
bilistic beliefs or on binary beliefs. For probabilistic beliefs, we require the rationality
condition that says that they should be extendable to finitely-additive probabilities,
which is already satisfied by the definition of probabilistic beliefs. For binary beliefs,
rational requirements are related to consistency, deductive closure, and completeness.
To define them, we need to first define an entailment relation in the agenda. Even
though the agenda in our setting does not need to be finite or generated from valua-
tions in some standard propositional logic, we want it to fit well with compact logic,
which can be thought of as a standard model of ‘logic’. Thus the definition of an
entailment relation is designed to include the notion of compactness.

Definition 2.2 (Entailment). Let A be an agenda on W , Y ⊆ A and A ∈ A. Y
entails A(Y � A) iff there is a finite subset X ⊆ Y such that

⋂
X ⊆ A.

In this definition, we do not exclude X = ∅ and adopt the convention that
⋂
∅ =

W . Now let us define three rationality norms imposed on binary beliefs.

Definition 2.3 (Rationality of Binary Belief). Let Bel : A → {0, 1} represent a
binary belief. (Recall that the belief set of Bel is defined by Bel−1(1) := {A ∈
A|Bel(A) = 1}.)

(1) Bel is complete iff Bel(A) = 1 or Bel(A) = 1 for all A ∈ A .

(2) Bel is consistent iff Bel−1(1) 2 ∅.

(3) Bel is deductively closed iff for all A ∈ A such that Bel−1(1) � A, Bel(A) = 1.

Completeness means that for every issue, the issue is believed or its negation is
believed. It is quite demanding in the sense that suspension on an issue — believing
neither the issue nor its negation — is not allowed.

Consistency means that the belief set should not entail a contradiction. It says,
in accordance with the definition of entailment, that every finite intersection of the
belief set Bel−1(1) should be non-empty. It is weaker than the requirement that⋂
Bel−1(1) 6= ∅, when A is infinite. There is another seemingly alternative defi-

nition of consistency: a contradiction should not be believed — i.e., Bel(∅) = 0.
Under the assumption of ∅ ∈ A, it holds that our consistency of a binary belief Bel
implies Bel(∅) = 0. The opposite direction holds under the additional assumption
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that Bel is deductively closed. Since we do not always require that ∅ ∈ A, we will
use the definition of part (2). In summary, our definition of consistency is weaker
than the consistency allowing infinitary reasoning and stronger than not believing a
contradiction.

Now consider the definition of deductive closure. If the agenda is an algebra, then
deductive closure of a binary belief means that its belief set contains W , and it is
closed under finite intersections and supersets. If we do not require that A is an al-
gebra, then, part (3) says that Bel−1(1) contains W if W ∈ A, and it is closed under
finite intersections and their supersets that are contained in the agenda A. Notice
that even if the finite intersection of some sets in the belief set is not contained in
the agenda and thus not in the belief set, a superset of it in the agenda should be
contained in the belief set to satisfy deductive closure.

Now we introduce two kinds of rationality of binary beliefs. When a binary belief
should be consistent and deductively closed, we call this requirement rationality, and
when a belief should be consistent and complete, we call it complete-rationality. Some
of our results require rationality and some others require complete-rationality. Let us
compare rationality and complete-rationality. First, a binary belief with complete-
rationality can be viewed as a probabilistic belief of which values are only in {0, 1}.
However, this does not hold for binary beliefs with rationality. Second, it is easy to
see that ‘complete-rationality’ is literally stronger than ‘rationality’, as shown in the
following.

Lemma 2.1. Deductive closure follows from consistency and completeness.

Proof. Suppose, contrary to deductive closure, that Bel−1(1) � B but Bel(B) = 0.
By the completeness of Bel, we have Bel(B) = 1. By the definition of entailment,
there is a finite subset B ⊆ Bel−1(1) such that

⋂
B ⊆ B, and thus

⋂
B ∩ B = ∅,

which contradicts that Bel is consistent.

Now, we are ready to state properties of HA that are related to individual and
collective rationality. First of all, the requirement of individual rationality is related
to the domain of an aggregation function. It can be alluded to by the requirement of
universal domain, which says that the domain should include all profiles of rational
individual beliefs.

Definition 2.4 (Universal Domain (UD)). A HA F satisfies universal domain (UD)
iff the domain of F is the set of all profiles of n probabilistic beliefs.

In opinion pooling, an OP F satisfies universal domain, given that A is an alge-
bra, iff the domain of F is the set of all profiles of n finitely-additive probabilities.
The same holds for heterogeneous belief aggregation when we assume A to be an
algebra. A JA F satisfies universal domain iff the domain of F is the set of all pro-
files of n binary beliefs that are consistent and complete. The reason why we require
complete-rationality in the definition of universal domain of a JA is that in most of
the literature regarding impossibility results, they assume completeness and consis-
tency of individual beliefs and we would like to compare our results with their results.
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Moreover, consistent and complete binary beliefs can be viewed as probabilistic be-
liefs with values of 0 and 1, which can be inputs of a HA.

Next, we will define a property that is related to outputs of aggregators, i.e.,
collective beliefs. In contrast to UD, which regulates the domain of aggregators,
collective rationality regulates their codomain.

Definition 2.5 (Collective Rationality).

(1) A HA F satisfies collective completeness(CCP) iff F (~P ) is complete for all ~P
in the domain of F .

(2) A HA F satisfies collective consistency(CCS) iff F (~P ) is consistent for all ~P in
the domain of F .

(3) A HA F satisfies collective deductive closure(CDC) iff F (~P ) is deductively closed

for all ~P in the domain of F .

In opinion pooling, collective rationality corresponds to the requirement that F (~P )
is a finitely-additive probability on a given algebra. In judgment aggregation, we
have the same definition with the domain of F understood as the universal domain
of an JA. Some research investigates judgment aggregation under the assumption
of complete-rationality3 and some under rationality.4 In our study, we will address
both assumptions (our triviality and oligarchy results hold under the assumption of
collective rationality; our impossibility result under collective complete-rationality).
To summarize, we will investigate heterogeneous belief aggregation from the set of all
profiles of individual probabilistic beliefs to the set of collective binary beliefs with
collective rationality or complete-rationality.

Unanimity, Anonymity, and Independence Now let us consider the second
group properties of HAs. Irrespective of whether F is a HA, an OP, or a JA, these
norms can be defined in the same ways, although the domain of F is interpreted
differently.

Let ~P (A) denote the vector (P1(A), ..., Pn(A))(=: (Pi(A))i∈N) for any A ∈ A. We
will also write it simply (Pi(A))i. We define a kind of unanimity such that unanimous
beliefs in an issue are respected whenever everyone has a probabilistic belief of 1 in
it or everyone has a probabilistic belief of 0 in it.

Definition 2.6 (Unanimity). Let F be an aggregator.

(1) F satisfies certainty preservation(CP) iff for all A ∈ A, if ~P (A) = ~1(:=

(1, ..., 1) ∈ [0, 1]n), then F (~P )(A) = 1 for all ~P in the domain of F .

(2) F satisfies zero preservation(ZP) iff for all A ∈ A, if ~P (A) = ~0(:= (0, ..., 0) ∈
[0, 1]n), then F (~P )(A) = 0 for all ~P in the domain of F .

3See Dokow & Holzman (2010a), Nehring & Puppe (2010).
4See Gärdenfors (2006), Dietrich & List (2008).
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CP says that if everyone is certain of an issue being true, then it should be
collectively believed; ZP says that if everyone has a probabilistic belief of 0 in an
issue, then it should not be collectively believed. In opinion pooling, CP and ZP are
equivalent. In heterogeneous belief aggregation, we have the following lemma, which
is also applicable for judgment aggregation.

Lemma 2.2. In heterogeneous belief aggregation,

(1) given CCS(collective consistency), CP implies ZP;

(2) given CCP(collective completeness), ZP implies CP;

(3) F (~P )(W ) = 1 by CP and F (~P )(∅) = 0 by ZP or CCS, when W, ∅ ∈ A.

Proof. (1) Assume ~P (A) = ~0, which is equivalent to ~P (A) = ~1 since ~P is a profile of

probabilistic beliefs. By CP, we have F (~P )(A) = 1, from which follows F (~P )(A) = 0
by CCS.
(2) Assume ~P (A) = ~1, which is equivalent to ~P (A) = ~0 since ~P is a profile of

probabilistic beliefs. By ZP, we have F (~P )(A) = 0, from which follows F (~P )(A) = 1
by CCP.
(3) It holds since ~P (W ) = ~1 and ~P (∅) = ~0. F (~P )(∅) = 0 holds by CCS as well.

This lemma shows that if we demand complete-rationality of collective beliefs,
then CP is equivalent to ZP as in opinion pooling. Under the assumption of ratio-
nality, CP implies ZP. However, if we only have the assumption of CDC, then from
CP does not follow ZP.

Next, let us introduce the anonymity norm of a HA, which requires that collec-
tive beliefs should not be inclined to some particular agent’s opinion. Although the
anonymity norm has been extensively studied in the social choice theory and judg-
ment aggregation literature, it is questionable that this kind of fairness norm should
be required in the contexts of epistemic collective decisions. Indeed, in many epistemic
collective decision contexts, it would be better to respect and prioritize some agents’
opinions who are experts on the issue. However, there may be different situations
where the anonymity norm is also required even in epistemic collective decision con-
texts. E.g., consider situations where it is not known whom the submitted opinions
belong to, it is not known which of the agents are experts on the issue, or the group
consists of epistemic peers. In the next section, we will proceed with and without
this norm to deal with a variety of situations.

Definition 2.7 (Anonymity). An aggregator F satisfies anonymity(AN) iff F ((Pπ(i))i)

= F ((Pi)i) for all ~P in the domain of F and all permutation π on N .

The last property is the most controversial. Independence between issues ensures
that the result of an issue depends only on the individual probabilistic beliefs in the
issue regardless of the ones in other issues. It means that an aggregation should be
performed issue-wise. It is of practical use that we do not need to consider all values
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of a profile if we want to focus on the result of one issue. However, this norm can
create tension when combined with the requirement of consistency, deductive closure
and the logical interconnections among issues. The tension has been pointed out
as one of the main culprits of the impossibility results in the judgment aggregation
literature. In this chapter, we assume the independence norm and study impossibility
results for heterogeneous belief aggregation, and in the succeeding chapters, we will
study heterogeneous belief aggregation without the independence norm to avoid our
impossibility results. Let us define the independence norm, and a stronger norm, the
systematicity norm.

Definition 2.8 (Independence and Systematicity). Let F be an aggregator.

(1) F satisfies propositionwise independence(IND) iff for all A ∈ A, there is a

function GA such that F (~P )(A) = GA(~P (A)) for all ~P in the domain of F .

(2) F satisfies systematicity(SYS) iff there is a function G such that F (~P )(A) =

G(~P (A)) for all ~P in the domain of F and A ∈ A

Systematicity can be thought of as the independence norm plus the neutrality
norm where a HA F is neutral iff for all A,B ∈ A if ~P (A) = ~P (B), then F (~P )(A) =

F (~P )(B) for all ~P in the domain of F . Neutrality means that each issue is believed
or not by the same rule. Combined with independence, it yields the norm of system-
aticity — i.e., the collective belief on each issue is determined by the same function
of individual probabilistic beliefs in that issue.

In opinion pooling, SYS implies CP (certainty preservation) and ZP (zero preser-
vation). In judgment aggregation, we have a lemma in the same form.

Lemma 2.3. Assume that ∅,W ∈ A. In heterogeneous belief aggregation,

(1) given CCS(collective consistency), SYS implies ZP.

(2) given CCS and CCP(collective completeness), SYS implies CP.

Proof. (1) By CCS, 0 = F (~P )(∅) = G(~P (∅)) = G(~0).

(2) By CCS, F (~P )(∅) = 0 and thus, by CCP, 1 = F (~P )(W ) = G(~P (W )) = G(~1).
Alternatively, Lemma 2.1 and (1) combined give (2).
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2.4 The Triviality Results

Now we are ready to formulate the first main results. We will prove that an issue-wise
independent HA with collective deductive closure and anonymity satisfying universal
domain and certainty- and zero-preservation yields the trivial aggregation function
— where an issue is believed iff every individual has a probabilistic belief of 1 in the
issue. Furthermore, we will drop anonymity and see that it is not so helpful in avoid-
ing degenerate procedures. In addition, we will prove that if we add the assumption
of collective consistency and collective completeness, then there is no aggregation
function satisfying the above-mentioned properties.

In this section, we assume the following complexity of the logical interconnections
in the agenda: it should be a non-trivial algebra, defined as follows.

Definition 2.9 (Non-trivial Algebra). An algebra A is non-trivial iff it has at least
3 non-empty non-intersecting elements.

The examples of a trivial algebra on a set W of possible worlds have the form
of {∅, A,A,W} for some A ⊆ W . They have only one pair of a contingent issue —
i.e., an issue that is neither ∅ nor W — and its negation. In this case, the logical
connection is so minimal that collective deductive closure is not demanding enough
for an independent HA to yield the triviality results. Thus, to prove the triviality
results, we require that the agenda is not a trivial algebra.

Algebras have quite complex logical connections. Later, we will relax this as-
sumption of being an algebra and prove all the same results in more general settings.
The reason why we first provide our main results under a restricted assumption is to
compare our results with similar results in opinion pooling where typically, finitely
additive probabilities on an algebra are dealt with. Moreover, we consider the aggre-
gation problems where individual beliefs are finitely additive probabilities on a given
algebra as the most basic ones in heterogeneous belief aggregation. Therefore, in this
section, we will provide direct proofs regarding this restricted, but the most basic
form of heterogeneous belief aggregation first.

Triviality Result To prove our main results, we will need a lemma that states
that under the assumption of universal domain (UD) and collective deductive closure
(CDC), certainty- and zero- preserving (CP, ZP) independent (IND) heterogeneous
belief aggregation satisfies systematicity (SYS). We will compare this with the cor-
responding result in opinion pooling, which says that given UD of opinion pooling,
an OP satisfies CP and IND iff it satisfies SYS.5 In judgment aggregation, there is a
lemma that can be stated in the same way as ours except that UD of heterogeneous
belief aggregation is replaced by UD of judgment aggregation.6

Lemma 2.4 (IND and SYS). Let A be a non-trivial algebra and a HA F satisfies
UD. If F satisfies CDC, ZP, CP and IND,then it satisfies SYS.

5See McConway(1981).
6See Dokow & Holzman (2010a).
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Proof. By IND, we can let F (~P )(A) = GA(~P (A)) for all ~P . We need to show that
GA = GB for all A,B ∈ A.

(Case 1) ∅ 6= A ⊆ B 6= W

By UD, ~P given as in the figure below can be an argument of F : since there
exist worlds in A and B, which are represented by dots in the figure, we can
assign the probabilities ~a and ~1− ~a to A and B, respectively. Then B has the
probabilities ~a.

B(~1− ~a)

•

B(~a)A(~a)
•

This gives the following:
(i) If GA(~a) = F (~P )(A) = 1, then F (~P )(B) = GB(~a) = 1 by CDC (closure
under superset).

(ii) Since F (~P )(A ∪ B̄) = 1 by CP, if GB(~a) = F (~P )(B) = 1, then F (~P )(A) =
GA(~a) = 1 by CDC (closure under intersection), since (A ∪ B̄) ∩B = A.

(Case 2) A−B 6= ∅ and B − A 6= ∅

v w

∆ ∆∆

∆

A B

C

∆ indicates all possible locations at one of which a world is ensured to exist so that C 6= W .

Let v ∈ A− B and w ∈ B − A as in the above figure. We can use C ∈ A such
that {v, w} ⊆ C 6= W since A is a non-trivial algebra. (Take the union of two
elements in A one of which includes v and one of which includes w. We can
find such two elements of which the union is not W because A is non-trivial. If
there were no such two elements, it means that (A − B) ∪ (B − A) = W and
thereby A = {∅, A,B,W} where B = A, which contradicts the non-triviality of
A. ) By the result of (Case 1) we have

GA = GA∩C = GC = GC∩B = GB

.

(Case 3) We can let G∅ = GA and GW = GA, for any A(6= ∅,W ) ∈ A, since
GA(~0) = 0 by ZP and GA(~1) = 1 by CP.
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This lemma shows that to obtain SYS from CP and IND, we need CDC and
ZP, neither of which are needed to get the corresponding result in opinion pooling.
First, let us focus on CDC. Recall that the requirement of collective rationality on
a probabilistic belief is that it is extendable to a finitely-additive probability. In
opinion pooling, this is not satisfied by a separate rationality condition but rather
by the definition of an opinion pooling function. Accordingly, one may expect that
we should add some rationality conditions in heterogeneous belief aggregation. This
lemma shows that we only need to add CDC without requiring CCS. Second, ZP is
used only in (Case 3) for ∅. If our agenda is not an algebra and ∅ /∈ A (to be discussed
later), ZP is not required.7 Provided ∅ ∈ A as in this section, we need ZP, which does
not follow from CP — differently from opinion pooling — since we do not assume
CCS for this lemma.

Now we prove our main results that the following two theorems state. We first
assume anonymity (AN) and prove that the conditions for obtaining SYS in the
previous lemma yield only the trivial aggregation function. Further, we will drop AN
and prove that those conditions lead to oligarchic aggregation functions such that
there are oligarchs whose unanimous certain beliefs are the necessary and sufficient
condition for the collective belief in the issue.

It is worth comparing our theorems with the corresponding ones in judgment
aggregation: if a JA F satisfies UD of JA, ZP, CP, IND and CDC, then F is oligarchic
and if AN is added, then F is trivial.8 In opinion pooling, given UD of OP, an OP
satisfies CP and IND iff it is a linear pooling function under the assumption that A
is a σ-algebra.9 In heterogeneous belief aggregation, we have the following:

Theorem 2.5 (Triviality Result). Let A be a non-trivial algebra. The only HA
satisfying UD, ZP, CP, IND, CDC and AN is the following trivial function:

F (~P )(A) =

{
1 if ~P (A) = ~1
0 otherwise

for all A ∈ A and all profiles ~P in the domain.

Proof. It is easily seen that F satisfies all mentioned properties. For the other direc-
tion, by Lemma 2.4 we have SYS and thus, we can let F (~P )(A) = G(~P (A)) where
G(~1) = 1 by CP. Now suppose that G(~a) = 1 for some ~a 6= ~1 and pick up any ai 6= 1
in ~a. To derive a contradiction, we take the following three steps.

7See Lemma 2.8 in Section 2.6
8See Dietrich & List (2008). They assumed, instead of ZP and CP, the weaker condition of

unanimity preservation such that if Pi = Pj(:= P ) for all i and j, then F ((Pi)i) = P . We call it
weak unanimity. From ZP and CP, follows weak unanimity but the converse does not hold without
any further assumptions. However, it is easily shown that if we have IND, the converse also holds.
Therefore, their result is equivalent to the above statement.

9See McConway (1981)
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[Step 1 ] To show the following:

(Fact 1) if ~a ≤ ~b and if G(~a) = 1, then G(~b) = 1

(Fact 2) if ~a+~b−~1 ≥ ~0 and if G(~a) = 1 and G(~b) = 1, then G(~a+~b−~1) = 1

•

B(~b)

•
A(~a)

• •
A(~a)

•
B(~b)
•

A ∩B(~a+~b−~1)

Since A is non-trivial, we have at least 3 non-empty elements of A that have
no intersections with each other. We represent a world of each element as a dot
in the above figures. Since A is an algebra there are A and B in A as in the
left figure and A, B and A∩B as in the right figure. Moreover, we can, by UD,
assign the probabilities ~a and ~b such that ~a ≤ ~b to A and B, respectively, in the
left figure. In the right figure, by UD we can assign the probabilities ~a, ~b and
~a+~b− ~1 to A, B and A ∩ B, respectively where ~a+~b− ~1 ≥ ~0. The left figure
gives us (Fact 1) by the closure under superset from CDC and the right figure
gives us (Fact 2) by the closure under intersection from CDC.

[Step 2 ] To show that G(~a[ai 7→ 0, al 7→ 1for alll 6= i]]) = 1
By (Fact 1), we can substitute ai and al with any higher values and by mixed
applications of (Fact 1) and (Fact 2), we can substitute ai with any lower value
using that

if G(~a) = 1 then G(~a+ ~a− 1) = 1 (2.1)

as the following shows:

e.g., ai = 0.8; G(~a[al 7→ 1 for all l 6= i]) = 1, 0.8+0.8−1 = 0.6, 0.6 ≤ 0.75,
0.75 + 0.75− 1 = 0.5, 0.5 + 0.5− 1 = 0

For example, let G(~a) = 1 where ai = 0.8 as in the above figure. By (Fact 1), we
can substitute all other components al (i.e., l 6= i) that is not 1 with 1 and so we
have G((1, ..., 1, 0.8, 1, ...., 1)) = 1 where 0.8 is the i-th component of the vector.
This process enable us to focus on i-th component of vectors in {~a′|G(~a′) = 1}
when we apply (2.1), because 1 + 1− 1 = 1. Now apply (Fact 1) and (2.1). The
above calculation shows G((1, ..., 1, 0.6, 1, ...., 1)) = G((1, ..., 1, 0.75, 1, ...., 1)) =
G((1, ..., 1, 0.5, 1, ...., 1)) = G((1, ..., 1, 0, 1, ...., 1)) = 1. This example can be
generalized so that we have G((1, ..., 1, 0, 1, ...., 1)) = 1 for any value of ai: if
we start with ai ≤ 0.75, then we can apply the last steps in the example;
otherwise, repeated application of (2.1) will lead to G((1, ..., 1, a′i, 1, ...., 1)) =
1 for some a′i ≤ 0.75. It is because after applying (2.1) k times, we have

G((1, ..., 1, a
(k)
i , 1, ...., 1)) = 1 where a

(k)
i = 1 − 2k(1 − ai) and there must be k

such that a
(k)
i ≤ 0.75.
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[Step 3 ] To show, by induction, G((0, ..., 0)) = 1 that contradicts ZP.
G((0, 1, ..., 1)) = G((1, 0, 1, ..., 1)) = ... = G((1, ..., 1, 0)) = 1 by UD, AN and
(Step 2). Let ~ak be a vector (0, ..., 0, 1, ..., 1) where the first k entries are zero
and one elsewhere. For k = 1, we have G(~a1) = 1. Assume G(~ak) = 1. Since
G((1, ..., 1, 0, 1, ..., 1)) = 1 where all entries of the input are one except for the
(k+1)th one that is zero, by (Fact 2), we have G(~ak+1) = 1. The following
figure depicts this process.

G(0, ..., 0, 1, 1, ..., 1) = 1
G(1, ..., 1, 0, 1, ..., 1) = 1
——————————–
G(0, ..., 0, 0, 1, ..., 1) = 1

This theorem shows that under certain mild conditions (UD, ZP, and CP) it is im-
possible that an anonymous (AN) issue-wise (IND) heterogeneous belief aggregation
generates deductively closed (CDC) collective beliefs, except for the trivial function.
To obtain this result, we made use of neither complete-rationality nor collective con-
sistency (CCS). CDC alone is a sufficient rationality condition on collective beliefs
that causes tension with IND.

It is of interest to see that the conditions that lead to the trivial function are
the same as the ones in the corresponding result in judgment aggregation, which we
mentioned before. One might wonder whether our result can be obtained directly
from that result, but this is not the case. We will compare our results with the ones
in judgment aggregation in the next section in detail and provide the reason why not.

It is worth understanding the structure of our proof because it will be repeatedly
applied to prove other theorems and discussed in several places throughout this chap-
ter. 10 First, from UD, CDC, ZP, CP, and IND follows SYS by Lemma 2.4, so we
have a function G with CP that assigns 0 or 1 to a vector of probabilities on any
issue. [Step 1] is to prove (Fact 1) and (Fact 2) about G using CDC and the agenda
condition of being a non-trivial algebra. (Fact 1) represents, under the assumption
of SYS, a kind of monotonicity, defined by

(MON) If ~P (A) ≤ ~P ′(A) and F (~P )(A) = 1, then F (~P ′)(A) = 1

where ≤ is applied to each component of two vectors. (Fact 1) means that if G assigns
1 to a vector, then it does the same to every greater vector than that, which we call
upward closure of G−1(1). In contrast, (Fact 2) shows that certain smaller vectors
than a vector in G−1(1) are also contained in it, which we call restricted downward
closure of G−1(1). Next, in [Step 2], we prove that any non-trivial HA —i.e., 1 is
assigned to a vector ~a with ai 6= 1 — yields ~a′ := (1, ..., 1, 0, 1, ..., 1) ∈ G−1(1) where
0 is i-th component.(i.e., a′i = 0): Upward closure of G leads to a′l = 1 for all l 6= i;

10We will apply the same method as in the proof of Theorem 2.6 to Theorem 2.10 (1) and Theorem
2.13 (1).
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both upward- and restricted downward- closure of G give a′i = 0. Finally, using AN
and (Fact 2), [Step 3] shows G((0, ..., 0)) = 1, a contradiction to ZP.

One may ask whether AN is the main culprit in the difficulty of an issue-wise HA
to get deductively closed collective beliefs. The following theorem shows that this is
not the case and dropping AN is not a sufficient mean to avoid the difficulty.

Without Anonymity: Oligarchy Now, we drop the assumption of anonymity
and show that it leads to a degenerate HA as well. To do that, we define an oligarchy
first. Recall that N denotes the set of the individuals and A denotes the agenda.

Definition 2.10 (Oligarchy). An aggregator F is an oligarchy if there is a non-empty
subset M of N such that

F (~P )(A) =

{
1 if Pi(A) = 1 for all i ∈M
0 otherwise

for all A ∈ A and all profiles ~P in the domain. When |M | = 1, we call F a dictator-
ship.

So an oligarchy means that there are oligarchs whose unanimous certain belief
on an issue is the necessary and sufficient condition for the collective belief in that
issue. This is also problematic partly because other individuals than the oligarchs are
excluded in the decision process. However, we can think of oligarchs as experts, and
to obtain true collective beliefs, relying on experts would not be irrational. Neverthe-
less, non-oligarchy is a rational requirement even in epistemic contexts where beliefs
are dealt with, because after excluding non-experts, the decision process among the
oligarchs can be viewed as the trivial aggregation among the oligarchs.

With this type of degenerate HA, we have another impossibility theorem, which
says that the same conditions as the triviality result except for AN lead to oligarchies.

Theorem 2.6 (Oligarchy Result). Let A be a non-trivial algebra. The only HAs
satisfying UD, ZP, CP, IND and CDC are oligarchies.

Proof. It is obvious that an oligarchy satisfies the properties.
For the other direction, to construct the set M of oligarchs in the Definition 2.10,
we employ [Step 1] and [Step 2] in the proof of Theorem 2.5. (By UD, ZP, CP,
IND and CDC, we have SYS by Lemma 2.4 and from UD and CDC follows [Step
1] and [Step 2]. Note that in the proof of Theorem 2.5, we did not use AN except
[Step 3].) Consider the set G−1(1) := {~a|G(~a) = 1} where G is a function satisfying

F (~P )(A) = G(~P (A)). We collect individuals i such that ai = 1 for all ~a ∈ G−1(1)
and define the set M of such individuals:

M := {i ∈ N |ai = 1 for all ~a such that G(~a) = 1}

We will show (i) and (ii) in the following:
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(i) M is non-empty.
SupposeM is empty. ThenG(0, 1, ..., 1) = G(1, 0, 1, ..., 1) = ... = G(1, ..., 1, 0) =
1 by [Step 1] and [Step 2] and we have G(0, ..., 0) = 1 using the same way of
[Step 3], which contradicts ZP.

(ii) ai = 1 for all i ∈M iff G(~a) = 1
(←) It is obvious by the construction of M . (→) Since we have (Fact 1) in
[Step 1], it is enough to show that

G((δi∈M)i) = 1

where δi∈M = 1 if i ∈ M , otherwise δi∈M = 0. For any j /∈ M , there is ~a such
that G(~a) = 1 and aj 6= 1, by definition of M . By [Step 2],

G(~a[aj 7→ 0, al 7→ 1 for all l 6= j]) = 1 (2.2)

Now we proceed by induction analogously to [Step 3]. Enumerate individuals
who are not in M , like j1, j2, ..., j|N |−|M | and let ~ak be a profile where aj1 =
0, ..., ajk = 0 and other components are all 1. For k = 1, we have G(~a1) = 1.
Assume G(~ak) = 1. Since by (2.2) we have G(1, ..., 1, 0, 1, ..., 1) = 1 where 0 is
jk+1’th component,by (Fact 2) in [Step 1], we have G(~ak+1) = 1. Therefore, we
have

G(~a|N |−|M |) = G((δi∈M)i) = 1

This theorem generalizes the triviality result and shows that dropping AN leads to
the oligarchy result. In the proof, we adopted [Step 1]— thus (Fact 1) and (Fact 2) —
and [Step 2] in the proof of the triviality result, since we have not used AN to prove
them. The two proofs are similar in spirit; but instead of deducing G((0, ..., 0)) = 1

from G(~a) = 1 where ai 6= 1 for some i ∈ N , we derived G((δi∈M)i) = 1 from G(~b) = 1
where bj 6= 1 for some j ∈ N −M . In this process, we used [Step 2] and applied
induction analogously to [Step 3] — except that induction is not on all individuals
but only on non-oligarchs — to prove that even if all non-oligarchs certainly believe
that an issue is false, the oligarchs’ unanimous certain beliefs in the issue yield the
collective belief in it.

With CCP and CCS: Impossibility Until now we assumed only CDC. If we
impose stronger collective rationality, we would get a stronger result, which we obtain
as a corollary of the oligarchy result.

In judgment aggregation, if F satisfies UD of judgment aggregation, CP, IND,
CCP, and CCS, then F is a dictatorship,11 and if we add AN then there is no such
JA. We now present a similar result in heterogeneous belief aggregation.

Corollary 2.6.1 (Impossibility Result). Let A be a non-trivial algebra. There is no
HA satisfying UD, CP, IND, CCP, and CCS.

11See Dokow & Holzman (2010a)
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Proof. Since CDC follows from CCP and CCS and ZP follows from CCS and CP, the
only possible HAs satisfying the above conditions would be oligarchies by Theorem
2.6, which do not satisfy collective completeness.

Note that to use Lemma 2.4 and the triviality result of Theorem 2.6, we need to
assume CCS since we need to get CDC from CCP and CCS. Under the assumption
of CCS and CCP, it holds that ZP iff CP. (See Lemma 2.2.)

In judgment aggregation, from the same assumptions follow dictatorships where a
dictator’s binary belief is complete. By contrast, in heterogeneous belief aggregation,
a dictator’s binary belief — an issue is believed iff a dictator gives it a probability of
1 — does not satisfy completeness. Therefore, we need neither non-dictatorship nor
anonymity to obtain the impossibility result in heterogeneous belief aggregation.

To summarize this section, we proved that given that A is a non-trivial algebra,
there is no HA satisfying one of the following:
(1) UD, ZP, CP and IND + CDC + Non-oligarchy
(2) UD, ZP, CP and IND + CDC + AN + Non-triviality
(3) UD, CP and IND + CCS and CCP
Note that from the impossibility of (1) follow that of (2) and that of (3). It is because
the only anonymous oligarchy is the trivial HA and there is no way that the resulting
opinion of the oligarchy is complete. Nevertheless, we first provided a direct proof of
the triviality result separately and then modified it to obtain the oligarchy result. It is
because the fact that the triviality result follows from the oligarchy result holds only
under certain agenda conditions12 (to be described in Section 2.6), which the agenda
A in this section, being a non-trivial algebra, satisfies. In more general settings (to
be discussed later13), the triviality result might not follow from the oligarchy result,
and to prove the triviality result, we need to apply [STEP 3] in the proof of Theorem
2.5, which is a step only for the triviality result.

12In Section 2.6, we will prove that path-connectedness and even-negatability are the necessary
and sufficient agenda conditions for the oligarchy result and thus the triviality result follows from
the oligarchy result only under that agenda condition.

13For example, if the agenda is negation connected as in Theorem 2.13 (1), the triviality result
does not follow from the oligarchy result and to prove the triviality result, we need to apply [STEP
3] in the proof of Theorem 2.5. See the proof of Theorem 2.13 (1).
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2.5 Comparison with JA, OP and Belief Binariza-

tion

HA and JA Let us compare our results with some impossibility results in judgment
aggregation. The impossibility results with (1),(2), and (3) are our results in the last
section, the ones with (1′) and(2′) from Dietrich & List (2008). The impossibility
results with (3′) and (4′) are from Dokow & Holzman (2010a) and Nehring & Puppe
(2010).

There is no HA with UD of heterogeneous belief aggregation satisfying

(1) ZP, CP and IND + CDC + Non-oligarchy

(2) ZP, CP and IND + CDC + AN + Non-triviality

(3) CP and IND + CCS and CCP

There is no JA with UD of judgment aggregation satisfying

(1′) ZP, CP and IND + CDC + Non-oligarchy

(2′) ZP, CP and IND + CDC + AN + Non-triviality

(3′) CP and IND + CCS and CCP + Non-dictatorship

(4′) CP and IND + CCS and CCP + AN

The universal domain of judgment aggregation can be viewed as a subset of the
one of heterogeneous belief aggregation since consistent and complete binary beliefs
can be viewed as probabilistic beliefs. Therefore, the restriction of a HA F with UD
to the universal domain of judgment aggregation can be regarded as a JA, denoted
by F �, and an extension of a JA F ′ to the universal domain of heterogeneous belief
aggregation can be regarded as a HA, denoted by F ′ �. So it is of interest to know
whether our results can be obtained directly from the corresponding results in judg-
ment aggregation or the other way around, through some restrictions or expansions.
In what follows, (I) and (II) will argue that these are not the case. In addition, (III)
will show the similarity and difference of the proofs in heterogeneous belief and judg-
ment aggregation. In (III), we will also explain in detail where the originality of our
proofs lies. From now on, HAs and JAs are assumed to satisfy UD of heterogeneous
belief aggregation and UD of judgment aggregation respectively, which will not affect
our argument. Our arguments will be based on the following observations.

(Observation 1) If a HA F satisfies ZP/CP/IND/CDC/AN/CCP/CCS, then so
does the JA F �.

(Observation 2) If a JA F ′ satisfies non-oligarchiy/non-triviality, then so does any
HA F ′ �.

(Observation 1) holds because each property mentioned above is stated with “for

all ~P in the domain” and the universal domain of heterogeneous belief aggregation
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P1(A)

P2(A)

P3(A)

P1(A)

P2(A)

P3(A)

The left and right figures describe an oligarchy in JA and HA, respectively where N = {1, 2, 3} and M = {1, 2}. Grey
points represent vectors assigned to 1.

includes the one of judgment aggregation. (Observation 2) holds because if a HA F
is an oligarchic/trivial function, then the JA F � is an oligarchic/trivial function.(See
the above figure.)

(I) First, consider whether our results follow directly from the results in judgment
aggregation. In (Observation 1) regarding ZP/CP/IND/CDC/AN/CCP/CCS, each
property of a HA F alone leads to that of F � in an obvious way without combin-
ing other properties or agenda conditions. As for non-oligarchy/non-triviality, this is
not so: without combining any other properties — e.g., CP, IND and CDC — and
some agenda conditions, it does not hold that if a HA F satisfies non-oligarchy/non-
triviality, then so does the JA F �, in contrast to (Observation 2). If that did hold,
then we could, together with (Observation 1), argue as follows: if there were a HA
F with UD satisfying (1)/(2)/(3), then F � would satisfy (1′)/(2′)/[(3′) and (4′)], a
contradiction, which would show that there is no such HA; thus we could obtain the
impossibility of (1)/(2)/(3) directly from the ones of (1′)/(2′)/[(3′) or (4′)]. Hence, in
this sense, we can conclude that our results do not directly follow from the result in
judgment aggregation. Indeed, in our proof of Theorem 2.5, [Step 2] is a step to show
that for any non-trivial HA F , F � is a non-trivial JA, using (Fact 1) and (Fact 2) of
[Step 1], which can be proved under the assumption of SYS and CDC and under the
agenda condition of being non-trivial algebra.

(II) Next, consider the other way — whether the results in judgment aggregation
follow directly from our results. For the sake of argument, suppose that there was
a direct and typical way to extend a JA F ′ satisfying ZP, CP, and IND together
with CDC/[AN and CDC]/[CCS and CCP] to a HA F ′ � satisfying the same prop-
erties of heterogeneous belief aggregation. Then F ′ � would [be an oligarchy]/[be
the trivial function]/[not exist], that would lead to an oligarchy/ the trivial func-
tion/nonexistence of F ′ by (Observation 2). However, there is no such direct and
typical way. We will see this in the next section.14

14Two natural ways to extend a JA to a HA would be the following:(i) assign 0 to all profiles of
probabilities that are not 0-1 probabilities — such as the counterexample of Theorem 2.10 (3) —
(ii) extend to keep monotonicity but minimally extend — such as the counterexample of Theorem
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(III) Nevertheless, following the same methods as our proofs, we can obtain the
same statement as Lemma 2.4, Theorem 2.5 and Theorem 2.6 for judgment aggrega-
tion. It is because our reasoning is not affected if we restrict every ~P in our proofs
to profiles of 0-1-valued probabilities — e.g., it is obvious that (Fact 1) and (Fact 2)
of [Step 1] in the proofs of our triviality and oligarchy results imply the restrictions
of (Fact 1) and (Fact 2) to the vectors of which components are 0 or 1, denoted by
(Fact 1)� and (Fact 2)�.15

In contrast, adopting the corresponding proofs in judgment aggregation is not
enough to get our results. First of all, even though the proofs in judgment aggregation
might give (Fact 1)� and (Fact 2)�, we need to prove that it is extended to our domain
so that we can obtain (Fact 1) and (Fact 2). On top of that, in the proofs of our
triviality and oligarchy results, ai 6= 1 (where i is any individual)/aj 6= 1(where j is
not an oligarch) does not mean that ai = 0/aj = 0 contrary to judgment aggregation.
Thus, we need to prove that G(~a[ai 7→ 0, al 7→ 1 for all l 6= i]) = 1/ G(~a[aj 7→ 0, al 7→
1 for all l 6= j]) = 1 in [Step 2], which is the step we mentioned in (I). More precisely,
this step can be divided into two sub-steps: (i) substitute every al(l 6= i/l 6= j) with
1 and prove that G still assigns 1 by (Fact 1); (ii) substitute ai/aj with 0 and prove
that G still assigns 1 by (Fact 1) and (Fact 2). (i) and thus (Fact 1) are needed
not only for heterogeneous belief aggregation but also when we use our proof to get
the results in judgment aggregation.16 (ii) is the step only for heterogeneous belief
aggregation. The following table compares the key claims to prove the triviality result
in heterogeneous belief aggregation with the ones we need when applying our proofs
to prove the triviality result in judgment aggregation.

[Step 1] [Step 2] [Step 3]

HA (Fact 1), (Fact 2) G(~a[ai 7→ 0, al 7→ 1 for all l 6= i]) = 1 G(0, ..., 0) = 1

( using (Fact 1) and (Fact 2) ) ( using (Fact 2) )

JA (Fact 1)�, (Fact 2)� G(~a[al 7→ 1 for all l 6= i]) = 1 G(0, ..., 0) = 1

( using (Fact 1)� ) ( using (Fact 2)� )

HA and OP (1) We cannot use the proofs in opinion pooling to get the Lemma and
the triviality/oligarchy result, because we do not assume CCS and CCP to get them,
thus collective beliefs cannot be regarded as 0-1-valued probabilistic beliefs. Indeed,
the crucial step in the corresponding proofs in opinion pooling is to use the additivity

2.10 (2). However, each of them does not work in a direct and typical way: the latter example
shows that (i) does not work and the former example shows that (ii) does not work. Therefore, the
counterexamples in judgment aggregation do not extend to heterogeneous belief aggregation in an
obvious way.

15(Fact 1)� corresponds to closure under superset of winning coalitions(sets of agents whose beliefs
and the other agents’ non-beliefs are the necessary and sufficient condition for the collective belief)
in judgment aggregation.

16It does not mean that (Fact 2)� is not needed for the results in judgment aggregation, because
(Fact 2)� is needed in [Step 3] that we need when we use our proof for judgment aggregation.
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axiom: F (~P )(A∪̇B) = F (~P )(A) +F (~P )(B) given A∩B = ∅. In heterogeneous belief
aggregation, this does not hold under the assumption of collective weak rationality
(i.e., CCS and CCD).

(2) On the other hand, provided A is a σ-algebra, we can employ the proofs of
McConway (1981) to get the impossibility result in heterogeneous belief aggregation
under the assumption of complete-rationality (i.e., CCP and CCS). Under this as-
sumption, our outputs - collective binary beliefs - can be thought of as 0-1-valued
probability measures, thus heterogeneous belief aggregation as opinion pooling with
the restricted co-domain. Recall that according to McConway(1981), given UD of
OP, an OP satisfies CP and IND iff it is a linear pooling. This gives the impossibility
result since a linear average might not be in the co-domain of a HA.

HA and Belief Binarization Recall that we assumed the number n of individuals
is more than 1. It is because we are investigating collective decisions dealing with
multiple people. However, in any proofs so far, we have not used the assumption
that n ≥ 2, thus our results so far can be applied to the case where n = 1 that is
the same as the problem of belief binarization. Another way to equate heterogeneous
belief aggregation with belief binarization is to restrict the domain of heterogeneous
belief aggregation to the set of profiles of probabilistic beliefs where Pi = Pj for all
i and j. Note that, as Dietrich & List (2018) indicated, issue-wise(IND) judgment
aggregation with AN is the same problem as the problem of belief binarization, to
which our results can also be applied.

Bin

OP

JA

BinHA
n=1

or ∀i,j Pi=Pj

Bin

JA

AN Bin

The left figure illustrates the relation between heterogeneous belief aggregation and belief binarization, while the right
figure depicts the relation between judgment aggregation and belief binarization.

Thus, it is not surprising that our triviality and impossibility results modified for
n = 1 recover the theorems that state that there is neither JA with AN satisfying
(2′) or (4′), nor belief binarization satisfying (2′′) or (4′′), which are the results from
Dietrich & List (2021) and Dietrich & List (2018).

There is no belief binarization rule satisfying ...

(2′′) UD, CCS17, CP and IND + CDC + Non-triviality18

(4′′) UD, CP and IND + CCS and CCP

17In Dietrich & List (2021), the stronger assumption of CCS is used rather than ZP. Later (See
the comments after Theorem 2.13.) we will show that this can be weakened to ZP.

18Note that Non-triviality here corresponds to non-looseness in Dietrich & List (2021)
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2.6 The Agenda Conditions

This section is based on joint work with Chisu Kim. In the last two sections, we
assumed the agenda to be a non-trivial algebra, which is the most typical when
dealing with probabilistic beliefs. However, when we make a collective decision, there
are more general cases where the agenda does not have the structure of an algebra.
For example, we might want to obtain a collective belief on two issues, but not on
their conjunction or disjunction. Thus, in this section, we relax the assumption about
the richness of the logical interconnections in our agenda and prove that the results in
the last sections hold in more general settings as well. Moreover, we examine under
what minimal agenda conditions we obtain the results of the last section.

While it is typical in opinion pooling and belief binarization to deal with finitely
additive probabilities on an algebra, in judgment aggregation, the agenda being an
algebra is not typically required and the minimal agenda conditions that lead to
impossibility results have been extensively explored. Recently, this approach has been
applied to opinion pooling problems (Dietrich & List (2017a, 2017b), Herzberg (2017))
and belief binarization problems (Dietrich & List (2018, 2021)). In heterogeneous
belief aggregation, it is also worthwhile to study how we can expand the classes of
agendas to ensure our impossibility results, and characterize them.

We emphasize that, as seen in Section 2.1, in our framework for heterogeneous
belief aggregation, the agenda of an HA is not assumed to be an algebra, inputs are
profiles of individual probabilistically coherent beliefs, and the properties of an HA
are all defined in this general framework. Thus, we can address the above questions
in our framework without fixing the setup. In this framework, let us reformulate our
question: what are the sufficient and necessary agenda conditions for the oligarchy,
triviality, and impossibility results?

The answer (to be proved in this section) is stated in Table 2.1: (1) path- connect-
edness and even-negatability constitute the exact agenda condition for the oligarchy
result; (2) negation-connectedness is for the triviality result; and (3) blockedness is
for the impossibility result. These new findings can be compared to the existing
characterization theorems in judgment aggregation and belief binarization. (1) has
the same agenda condition as (1′) and (3′) in judgment aggregation. (2) is similar
to (2′′) in belief binarization, except that ZP is used for (2) in the place of CCS
for (2′′). We will argue that applying our proofs can weaken CCS to ZP and thus,
the agenda condition for (2′), which has not been discussed in the literature, is also
negation-connected because an anonymous and independent JA can be viewed as a
belief binarization function. (3) is similar to (4′) in judgment aggregation and (4′′) in
belief binarization.
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There is no HA satisfying ... Sufficient and Necessary Agenda Condition

(1) UD, ZP, CP and IND + CDC + Non-oligarchy path-connected, even-negatable

(2) UD, ZP, CP and IND + CDC + AN + Non-triviality negation-connected

(3) UD, CP and IND + CCS and CCP blocked

There is no JA satisfying ... Sufficient and Necessary Agenda Condition 19

(1′) UD, ZP, CP and IND + CDC + Non-oligarchy path-connected, even-negatable (Dietrich & List (2008))

(2′) UD, ZP, CP and IND + CDC + AN + Non-triviality negation-connected

(3′) UD, CP and IND + CCS and CCP + non-dictatorship path-connected, even-negatable (Dokow & Holzman (2010a))

(4′) UD, CP and IND + CCS and CCP + AN blocked (Nehring & Puppe (2010))

There is no belief binarization rule satisfying ... Sufficient and Necessary Agenda Condition

(2′′) UD, CCS , CP and IND + CDC + Non-triviality negation-connected (Dietrich & List (2021))

(4′′) UD, CCS, CP and IND + CCP blocked (Dietrich & List (2018))

Table 2.1: Classification of agendas generating impossibility results

2.6.1 The Agenda Condition for the Oligarchy Result

We can prove the same results in the previous sections even though we reduce
the agenda richness of a nontrivial algebra to some agenda conditions, e.g., path-
connectedness and even-negatability. We now introduce them. Recall that W denotes
a non-empty set of worlds and A is an agenda on W , which is a complement-closed
non-empty set of some subsets of W . In this section, we assume that A is finite.20

By Definition 2.2, a subset Y ⊆ A entails A(∈ A )(Y � A) iff there is a finite sub-
set X ⊆ Y such that

⋂
X ⊆ A. Since we are dealing with finite agendas, Y � A

iff
⋂
Y ⊆ A. Note that we do not exclude Y = ∅ and adopt the convention that⋂

∅ = W . When Y is a singleton set, say {A}, and B ∈ A, we write A � B for
{A} � B.

How do we capture the type of complexity of the logical interconnections in the
agenda? In the judgment aggregation literature, conditional entailment has been
one of the preliminary concepts to do it. The notion of entailment only captures
logical interdependences between any antecedents and their consequents. However,
two issues that seem logically unrelated at first glance might become logically related
when some other issues are combined. Conditional entailment includes this kind
of indirect entailment as well as direct one. Furthermore, conditional entailment
relations can be thought of as a bridge from one issue to another, and we can start

19Note that in Dietrich & List (2008) they do not assume a finite agenda while in Dietrich & List
(2021), Dokow & Holzman (2010a), and Nehring & Puppe (2010) they assume a finite agenda. In
Dietrich & List (2018) for the sufficient condition they do not assume a finite agenda and for the
necessary condition, they do assume a finite agenda.

20In this section, we will use some results of previous researches where they assume finite
agenda.(e.g., Dokow & Holzman (2010a), Nehring & Puppe (2010) and Dietrich & List (2021))
Some of our results do not hold with infinite agenda and some do. To avoid confusion, we assume
finite agenda. Even when the assumption is redundant, assuming finite agenda makes our proofs
simple.
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from one issue and reach other issues via several conditional entailment relations in a
row. The notion of a path from one issue to another issue is devised to capture this
kind of even more indirect relations.

Definition 2.11 (Conditional Entailment). Let A,B ∈ A and Y ⊆ A where Y is
consistent with A and B. ( That is, Y ∪ {A} 2 ∅ and Y ∪ {B} 2 ∅ ) A entails B
conditional on Y(A �∗Y B) iff {A}∪Y � B. If Y is a singleton set, say {C}, we write
�∗C instead of �∗{C}. Moreover, A conditionally entails B(A �∗ B) iff there is a subset
Y ⊆ A such that A entails B conditional on Y . We denote the transitive closure of
�∗ by �∗∗. We read A �∗∗ B as: there is a path from A to B.

Note that Y can be an empty set where A �∗Y B becomes A � B as far as A 6= ∅
and B 6= ∅, which holds if A and B are contingent, which means that they are neither
W nor ∅. Let us mention a useful fact. If A �∗Y B, it also holds that B �∗Y A, and
thus if A �∗∗ B, then B �∗∗ A. The following examples illustrate the above notions.

Example 2.1. Let A,B ⊆ W be logically independent, i.e., A − B,B − A,A ∩
B,A ∪B 6= ∅. Consider the following agendas:
A1 = {A,B,A,B};
A2 = {A,B,A ∩B,A,B,A ∩B};
A3 = {A,B, (A ∩B) ∪ (A ∪B), A,B, (A−B) ∪ (B − A)};
A4 = {A,B,A ∩B,A ∪B,A,B,A ∩B,A ∪B}.
It can be easily seen that A1 does not include any path. In the case of A2, for some
issues, we have a conditional entailment relation such as A �∗

A∩B B whereas for some

other issues, say A and A, we do not have a path, let alone a conditional entailment
relation. In the case of A3, for some issues we have a conditional entailment relation
such as A �∗

(A∩B)∪(A∪B)
B and A �∗(A−B)∪(B−A) B, which eventually lead to the fact

that there is a path between every two issues. In the case of A4, the situation is
similar to the case of A3.

The following two agenda conditions, namely path-connectedness and even- negata-
bility have been studied a lot because they can characterize the most famous impos-
sibility agendas in judgment aggregation. Let us first define path-connectedness.

Definition 2.12 (Path-connected Agenda). An agenda A is path-connected(PC) iff
for all contingent issues A,B ∈ A it holds that A �∗∗ B.

Path-connectedness ensures that there is a path between every two issues. Next,
to define even-negatable agenda, we need to introduce one more basic notion. A
subset Y ⊆ A is called minimally inconsistent when it is inconsistent and every
proper subset of it is consistent. For any Y ,Z ⊆ A with Z ⊆ Y , Y¬Z is defined by
(Y\Z)∪{A| A ∈ Z} where A is the complement of A. Let us define an even-negatable
agenda.

Definition 2.13 (Even-negatable Agenda). An agenda A is even-negatable(EN) iff
there is a minimally inconsistent set Y ⊆ A such that Y¬Z is consistent for some
subset Z ⊆ Y of even size.
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So even-negatability means that there is a minimally inconsistent set that can be
made consistent by negating some even number of its element. Note that Z = Y is
allowed where Y¬Z = {A| A ∈ Z}. The definition of even-negatable agenda is a little
bit involved. There is an algebraic characterization of even-negatability, which helps
us decide whether a given agenda is even-negatable.21

Example 2.2 (Continued). The following facts can be easily proved: A1 is neither
path-connected nor even-negatable; A2 is not path-connected but even-negatable. In-
deed, {A,B,A ∩B} is the minimally inconsistent set, but {A,B,A ∩B} is consis-
tent. (For another abstract method, see the last footnote.); A3 is path-connected but
not even-negatable; A4 is path-connected and even-negatable.

The following lemma shows that A being a non-trivial algebra — the underlying
agenda condition for our previous results — is stronger than A being path-connected
and even-negatable.

Lemma 2.7.

(1) Every non-trivial algebra is path-connected.

(2) Every non-trivial algebra is even-negatable.

Proof. (1) Let A,B be two contingent issues in a non-trivial algebra.

(Case 1) ∅ 6= A ⊆ B 6= W .
Since (i) A 6= ∅, (ii) B 6= W and (iii) A � B we have A �∗ B. Moreover, we
have B �∗{A∪B} A, for (i) (A ∪ B) ∩ B = A 6= ∅, (ii) (A ∪ B) ∩ A = B 6= ∅ and

(iii) B ∩ (A ∩B) = A ⊆ A. Thus, A �∗ B and B �∗ A.

(Case 2) A−B 6= ∅ and B − A 6= ∅.
As in the proof of Lemma 2.4, let v ∈ A−B and w ∈ B−A. We can use C ∈ A
such that {v, w} ⊆ C 6= W since A is a non-trivial algebra.22 By the result of
(Case 1), A �∗ A ∩ C �∗ C �∗ C ∩B �∗ B. Thus, A �∗∗ B

21See Dokow & Holzman (2010a). For a given agenda A, the set of all possible binary valuations

on the agenda can be represented by a set of 0/1-vectors in {0, 1}
|A|
2 , which can be seen as a vector

space over the field {0, 1} on which componentwise addition is modulo 2. According to Proposition
2.1 and 4.2 in Dokow & Holzman (2010a), an agenda A is not even-negatable iff the set of all possible

binary valuations on the agenda is an affine subspace of {0, 1}
|A|
2 iff it is closed under addition of

odd-tuples. For example, consider the agenda A2 in our example. For (A,B,A ∩ B), all possible
valuations are (1, 1, 1), (1, 0, 0), (0, 1, 0), and (0, 0, 0). Since (0, 1, 0) + (1, 0, 0) + (0, 0, 0) = (1, 1, 0),
and (1, 1, 0) is not a possible valuation, A2 is even-negatable. In contrast, for the agenda A3 with
(A,B, (A ∩ B) ∪ (A ∪B)), the set of possible valuations on it consists of (1, 1, 1), (1, 0, 0), (0, 1, 0),
and (0, 0, 1). We can easily see that it is closed under addition of odd-tuples, thus A3 is not even-
negatable.

22Recall that we can take as C the union of two elements in A one of which includes v and one
of which includes w. We can find such two elements of which the union is not W because A is
non-trivial. If there were no such two elements, it means that (A−B) ∪ (B −A) = W and thereby
A = {∅, A,B,W} where B = A, which contradicts the non-triviality of A.
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(2) LetA be a non-trivial algebra. Then there are three non-empty issuesA,B,C ∈
A that have no intersections with each other. Set Y = {A,B}. Then Y is minimally
inconsistent set. Set Z = Y . Then Y¬Z = {A,B}. Since A ∩ B ⊇ C 6= ∅, Y¬Z is
consistent.

From now on, we add one more assumption on A that ∅ /∈ A(and thereby
W /∈ A).23 Thus, our agenda A is a complement-closed finite non-empty set of
some contingent subsets of the underlying set W of worlds.

The following lemma shows that the agenda condition of Lemma 2.4(IND and
SYS) can be weakened to path-connectedness.

Lemma 2.8 (Path-connectedness and SYS). Let A be path-connected and a HA F
satisfies UD. If F satisfies CDC, CP and IND,then it satisfies SYS.

Proof. 24 By IND, we can let F (~P )(A) = GA(~P (A)) for all ~P and A ∈ A. We need
to show that GA = GB for all A,B ∈ A. A being path-connected, it is enough to
show that if A �∗ B, then for all ~a, it holds that if GA(~a) = 1, then GB(~a) = 1.

Assume that {A}∪Y � B where Y is consistent with A and B, i.e.,A∩
⋂
Y ⊆ B,⋂

Y ∩ A 6= ∅ and
⋂
Y ∩ B 6= ∅. By UD, we can take as an input a profile of

probabilistic beliefs ~P that can be extended to a profile of probabilities ~P ′ such that
~P ′(
⋂
Y ∩ A) = ~a and ~P ′(

⋂
Y ∩B) = ~1− ~a, as illustrated in the following figure.25

23In the following, especially in Theorem 2.13(2) and Theorem 2.15(2), we will use some results
of Nehring & Puppe(2010), where the agenda consists of contingent issues. To describe our proof
more simply, we adopt that assumption.

24In opinion pooling, collective beliefs should satisfy the additivity axiom F (~P )(A∪̇B) =

F (~P )(A) + F (~P )(B), which does not hold under the assumption of collective rationality, CCS and
CDC. Thus usually we cannot use proofs in OP or generalized OP of Dietrich & List (2017a). How-
ever consider the proof of Theorem 3(a) in Dietrich & List (2017a), which corresponds to this lemma.
We can prove it using the following weaker properties than the additivity axiom:

(i) if A ⊆ B, then F (~P )(A) ≤ F (~P )(B)

(ii) if F (~P )(A) = 1 and F (~P )(B) = 1, then F (~P )(A ∩B) = 1
Since HAs with CDC also satisfy them, we can apply the proof in heterogeneous belief aggregation

as well.
25Recall

⋂
∅ = W and we include the case where Y = ∅. In this case, we have A ⊆ B, A 6= ∅ and

B 6= ∅, as illustrated in the following figure.

~a

A

B

~1− ~a
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~a ~1−~a

A

B

⋂
Y

Notice that ~P (Y ) = ~1 for all Y ∈ Y , ~P (A) = ~a and ~P (B) = ~a. By CP, F (~P )(Y ) =

1 for all Y ∈ Y . Thus, if GA(~a) = F (~P )(A) = 1, then F (~P )(B) = GB(~a) = 1 by
CDC, for {A} ∪ Y � B.

Compared to Lemma 2.4, ZP is not required in this lemma. It is just because we
assume ∅,W /∈ A throughout this section. Recall that in Lemma 2.4 ZP is used only
for ∅.

This lemma parallels the one in generalized opinion pooling of Dietrich & List
(2017a): path-connectedness characterizes that if generalized OP satisfies CP and
IND, then it satisfies SYS. In our lemma as well, its converse — if A is not path-
connected, then there is a HA F on A satisfying CDC, CP, and IND but not SYS —
also holds. The counterexample will be indicated in Theorem 2.10(2).

The following definitions and lemma will be needed to prove our succeeding main
theorem.

Definition 2.14 (Non-simple Agenda and Pair-negatable Agenda).

(1) An agenda A is non-simple(NS) iff there is a minimally inconsistent subset
Y ⊆ A with |Y| ≥ 3.

(2) An agenda A is pair-negatable iff there is a minimally inconsistent set Y ⊆ A
such that Y¬Z is consistent for some subset Z ⊆ Y with |Z| = 2.

Non-simple agenda can be used as a criterion for determining whether a given
agenda has minimal complexity. Pair-negatable agenda is a special case of even-
negatable agenda. The following lemma shows that a pair-negatable agenda is suf-
ficient to be an even-negatable agenda, and a path-connected agenda already has a
fairly complex structure.

Lemma 2.9.

(1) An agenda A is even-negatable iff A is pair-negatable.

(2) If an agenda A is path-connected, then it is non-simple.

Proof. (1) Dietrich & List (2013) Remark 1
(2) Dokow & Holzman (2010a) Claim 3.2 in Theorem 2.2
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Example 2.3 (Continued). The agendas A1 is simple while the agendas A2, A3 and
A4 are non-simple. In A3, {A,B,A ∩B} is the minimally inconsistent set including
at least three elements.

Now we prove that the agenda being path-connected and even-negatable is the
sufficient((1)) and necessary condition((2) and (3)) for the oligarchy result.

Theorem 2.10 (Agenda Condition for the Oligarchy Result). Let A be an agenda.

(1) If A is path-connected and even-negatable then the only HAs on A satisfying
UD, CDC, ZP, CP, and IND are oligarchies.

(2) If A is not path-connected, then there is a HA on A satisfying UD, CDC, ZP,
CP, IND, and non-oligarchy. It also satisfies CCS.

(3) Let |N | ≥ 3. If A is not even-negatable, then there is a HA on A satisfying
UD, CDC, ZP, CP, IND, and non-oligarchy. It also satisfies CCS.

Proof. (1) First of all, by Lemma 2.8 path-connectedness gives SYS and we can let

F (~P )(A) = G(~P (A)). Recall the following two facts about G in Theorem 2.5:

(Fact 1) if ~a ≤ ~b and if G(~a) = 1, then G(~b) = 1

(Fact 2) if ~a+~b−~1 ≥ ~0 and if G(~a) = 1 and G(~b) = 1, then G(~a+~b−~1) = 1

It is sufficient to show that if A is path-connected and even-negatable then (Fact 1)
and (Fact 2) hold. It is because once we establish (Fact 1) and (Fact 2), we can prove
the oligarchy result by exactly the same method as in Theorem 2.6.

Lemma 2.9 enables us to prove (Fact 1′) and (Fact 2′) in the following.

(Fact 1′) If A is pair-negatable, then (Fact 1) holds.
Assume that Y(⊆ A) is minimally inconsistent and Y¬{A,B} is consistent. Since⋂
Y¬{B},

⋂
Y¬{A} and

⋂
Y¬{A,B} are not empty, they can have profiles of prob-

abilities ~a, ~1 − ~b and ~b − ~a, respectively. Thus, the profile ~P of probabilistic
beliefs such that ~P (A) = ~a, ~P (B) = ~1−~b and ~P (Y ) = ~1 for all Y ∈ Y \ {A,B}
can be an input by UD where ~a ≤ ~b.(See the figure below.26)

26Recall
⋂
∅ = W , and we include the case where Y \ {A,B} = ∅. In this case, A ∩ B = ∅, and

it holds that A, B and A ∩B are not empty.

~a ~1− ~a

~b− ~a

A B
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~a ~1−~b

~b− ~a

A B

⋂
(Y \ {A,B})

Notice that, by CP, F (~P )(Y ) = 1 for all Y ∈ Y \ {A,B} and Y \ {B} � B,

because Y is inconsistent. Therefore, from F (~P )(A) = G(~a) = 1 we obtain

F (~P )(B) = G(~b) = 1 by CDC.

(Fact 2′) If A is non-simple, then (Fact 2) holds.
Let Y be minimally inconsistent with |Y| ≥ 3, say A,B,C ∈ Y . Since

⋂
Y¬{A},⋂

Y¬{B} and
⋂
Y¬{C} are not empty, there can be a profile ~P ′ of probabilities

on the algebra generated by A satisfying

~P ′(
⋂
Y¬{A}) = ~1− ~a, ~P ′(

⋂
Y¬{B}) = ~1−~b and ~P ′(

⋂
Y¬{C}) = ~a+~b−~1

where ~a+~b−~1 ≥ ~0.

~1−~b ~1−~a

~a+~b−~1

Z∩A Z∩B

Z∩C⋂
(Y\{A,B,C})(=:Z)

From this follows ~P ′(
⋂

(Y \ {A,B,C}) = 1 and we have, by UD, the profile ~P
of probabilistic beliefs on our domain such that

~P (A) = ~a, ~P (B) = ~b, ~P (C) = ~a+~b−~1 and ~P (Y ) = ~1 for all Y ∈ Y \ {A,B,C}

and hence, by CP, it follows that F (~P )(Y ) = 1 for all Y ∈ Y\{A,B,C}. Notice
that we have Y \ {C} � C, for Y is inconsistent. From this we conclude that if

G(~a) = F (~P )(A) = 1 and G(~b) = F (~P )(B) = 1, then F (~P )(C) = G(~a+~b−~1) =
1 by CDC.
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(2) Suppose that A is not path-connected. Then there are issues, say P,Q, such
that there is no path from P to Q. Now we can partition A into two subsets X1,X2 ⊆
A such that X1 = {A ∈ A| P �∗∗ A} and X2 = {B ∈ A| P 2∗∗ B}. Note that there
is no path from an issue in X1 to an issue in X2. Let us define a HA F as follows:

For every issue A ∈ X1, F (~P )(A) = 1 iff P1(A) = 1.

For every issue B ∈ X2, F (~P )(B) = 1 iff ~P (B) = ~1.

P1(A)

P2(A)

P3(A)

P1(B)

P2(B)

P3(B)

This represents the HA in (2), provided N = {1, 2, 3}. Grey points represents that 1 is assigned. The left figure is for
any A ∈ X1 and the right one for any B ∈ X2.

It is easy to check that the above F satisfies UD, ZP, CP, IND, and non-oligarchy.
Recall that we denote by F (~P )−1(1) the set {C ∈ A| F (~P )(C) = 1}. Let P−1

1 (1)

denote the set {C ∈ A| P1(C) = 1}. Since F (~P )−1(1) ⊆ P−1
1 (1) and P−1

1 (1) is
consistent, it follows that F satisfies CCS.

Now let us prove that F satisfies CDC. Suppose towards contradiction that there
is an issue, say C, such that F (~P )(C) = 0 but F (~P )−1(1) � C. Then there is a

minimal subset T ⊆ F (~P )−1(1) such that
⋂
T ⊆ C. The remaining proof will be

divided into three steps:
(i) there is an issue, say D, in T ∩ X1,
(ii) C ∈ X2,
(iii) there is a path from D to C
, which contradicts our assumption that there is no path from X1 to X2.

We first prove (i). The set T ∩ X1 is not empty since otherwise T would be

included in F (~P )−1(1) ∩ X2(= {B ∈ X2|~P (B) = ~1}), which is actually deductively

closed, and consequently F (~P )(C) = 1, a contradiction.
We now turn to (ii). It suffices to show that P1(C) = 1 for it would force C /∈ X1,

since otherwise F (~P )(C) = 1. As P−1
1 (1) includes F (~P )−1(1), we have P−1

1 (1) � C.
As P−1

1 (1) is deductively closed we obtain C ∈ P−1
1 (1).

It remains to show (iii). Since T ∪ {C} is minimally inconsistent, we see that
T \ {D} is consistent with D and C. As T � C we get D �∗T \{D} C, and hence
D �∗∗ C.

(3) Suppose that A is not even-negatable. Let us define a HA F as the following:
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For every A ∈ A, F (~P )(A) = 1 iff ~P (A) = ~1 or ~P (A) = (0, 0, 1, ..., 1).

P1(A)

P2(A)

P3(A)

This illustrates the HA in (3) provided N = 1, 2, 3. Grey points represent that 1 is assigned.

It is easily seen that F satisfies UD, ZP, CP, IND, and non-oligarchy. Note that
the above F will fail to satisfy ZP if we drop the assumption that |N | ≥ 3. We will

denote by X the set {A ∈ A| ∀i ∈ N \ {1, 2} Pi(A) = 1}. Since F (~P )−1(1) ⊆ X and
X is consistent, it follows that F satisfies CCS.

X
F (~P )−1(1)

X1 X2

Now let us prove that F satisfies CDC. Suppose that, contrary to our claim, F
does not satisfy CDC. We will prove that A is even-negatable. The remaining proof
will be divided into two steps:
(i) we will find a minimally inconsistent subset Y ⊆ A that has a subset Z ⊆ Y and
an element X ∈ Y such that Z 6= ∅, and X /∈ Z,
(ii) we will prove that both Y¬Z and Y¬(Z∪{X}) are consistent.
Then we would get the desired result since either Z or Z ∪ {X} must have even
number elements.
We first construct Y . Since F does not satisfy CDC, there is an issue, say B, such
that F (~P )(B) = 0 but F (~P )−1(1) � B. From this we see that there is a minimal

subset T ⊆ F (~P )−1(1) such that
⋂
T ⊆ B. Set

Y = T ∪ {B}

, which is minimally inconsistent. Second, let

Z = T ∩ (X2 :=){A ∈ A|~P (A) = (0, 0, 1, ..., 1)}

It is not empty set since otherwise T would be included in the set {A ∈ A|~P (A) =
~1}(=: X1) that is deductively closed, and hence includes B, a contradiction. Third,
we set

X = B.
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As Z ∪ {B} is consistent, we obtain B /∈ Z.
We now turn to (ii). To do this, we claim that ∀i ∈ N \ {1, 2} Pi(B) = 1. Since X
includes F (~P )−1(1) we have X � B. As X is deductively closed, we obtain the claim.

From this and the fact that F (~P )(B) = 0, it follows that

P1(B) 6= 0 or P2(B) 6= 0 (2.3)

and
P1(B) 6= 0 or P2(B) 6= 0 (2.4)

Now consider the set

Y¬Z = {B} ∪ {A| A ∈ T ∩ X2} ∪ (T ∩ X1)

Y¬(Z∪{X}) = {B} ∪ {A| A ∈ T ∩ X2} ∪ (T ∩ X1)

Observe that P1(A) = 1 = P2(A) for every A ∈ T ∩ X2 and P1(C) = 1 =
P2(C) for every C ∈ T ∩ X1. From (2.4) we can assert that P ′1(

⋂
Y¬Z) > 0 or

P ′2(
⋂
Y¬Z) > 0 where P ′1 and P ′2 are probability measures that are extensions of P1

and P2, respectively. Furthermore, from (2.3) we see that P ′1(
⋂
Y¬(Z∪{B})) > 0 or

P ′2(
⋂
Y¬(Z∪{B})) > 0, and consequently

⋂
Y¬Z 6= ∅, and

⋂
Y¬(Z∪{X}) 6= ∅, which is

the desired conclusion.

Part (1) of the theorem generalizes Theorem 2.6 and shows that even if the agenda
satisfies a weaker condition — path-connectedness and even-negatability — than a
non-trivial algebra, the oligarchy result holds. If we look at the proof of Theorem
2.6 in detail, then we can observe that the agenda condition was used only to show
(Fact 1) — upward closure of G−1(1) — and (Fact 2) — restricted downward closure
of G−1(1). Thus, to prove (1), it is enough to derive (Fact 1) from even-negatability
and (Fact 2) from path-connectedness. Agenda conditions are related only to (Fact
1) and (Fact 2) and once we see that they hold then we can carry over the proof of
Theorem 2.6.

To obtain our result, we assumed IND, from which follows SYS under the as-
sumption of path-connectedness (PC) by Lemma 2.8. Our proof also reveals that
if we assume not IND but the stronger property of SYS, then non-simplicity(NS) is
enough to get the oligarchy result. This shows that stronger properties of a HA lead
to weaker agenda conditions for the oligarchy result. One more example is that if we
assume MON, defined in Section 2.4, then we need not prove (Fact 1) thus, we need
not require the agenda to be even-negatable (EN). It is because (Fact 1) is implied
by SYS and MON. The following table demonstrates which agenda conditions are
sufficient to obtain the oligarchy result with what properties of an HA.

IND SYS

without MON PC, EN NS, EN

with MON PC NS
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It is of interest that the sufficient condition for our oligarchy result is the same as
the one for the dictatorship and oligarchy results in judgment aggregation(Dokow &
Holzman (2010a) and Dietrich & List (2008)). Concerning the relation between our
proof and the proofs for judgment aggregation, the same comparison can be made as
the comments in Section 2.5.

Part (2) suggests a counterexample of the oligarchy result when the agenda is not
path-connected. Notice that the counterexample does not satisfy SYS and thus, it
also serves as a counterexample of Lemma 2.8 as mentioned earlier.

In the proof, some methods in the proofs of Theorem 3 (c) in Dietrich & List
(2008) and Claim 3.6 in Dokow & Holzman (2010a) are carried over to our domain.
We extend the counterexample in Dietrich & List (2008) to our domain so that UD,
ZP, CP, IND, CDC, and CCS are satisfied. Notice that the non-oligarchy of an ex-
tension follows from the non-oligarchy of the JA. (See (Observation 2) in Section 2.5)
Our extension is a minimal extension satisfying monotonicity (MON). It is not that
any extension works. For example, if we were to extend the JA so that 0 were assigned
every input outside the domain of the JA, which violates MON, the extension would
not satisfy CDC. (Concerning (ii) in the proof of part (2), from P1(C) = 1 would not
follow C /∈ X1.) Indeed, since we do not exclude the case where A is even-negatable,
the extension should satisfy MON.

Part (3) gives a counterexample of the oligarchy result when the agenda is not
even-negatable. The counterexample is an extension of the counterexample discussed
in Theorem 3 (b) in Dietrich & List (2008). In contrary to (2), it is not an extension
satisfying MON, which is not imposed because the agenda is not even-negatable. In
contrast, we do not exclude the agenda being path-connected, which imposes the
counterexample to satisfy SYS.

The proof of part (3) is similar to the one in Dietrich & List (2008). But the
last steps in our proof include novel ideas that are needed because of the difference
between binary and probabilistic beliefs. In particular, step (ii) in the proof of part
(3) utilized our own methodology: to show the consistency of a set of issues we use the
fact that there is an agent who would assign a positive probability to the intersection
of the issues.

To summarize, we proved that our oligarchy result can be obtained in more general
settings than non-trivial algebras. Furthermore, we showed that the necessary and
sufficient agenda condition for the oligarchy result with CDC and the dictatorship
result with CCS and CCP in judgment aggregation — path-connectedness and even-
negatability — is also the one for the oligarchy result with CDC in heterogeneous
belief aggregation.

2.6.2 The Agenda Condition for the Triviality Result

As we said before, stronger properties of an HA yield weak agenda conditions. Thus,
one might ask whether the agenda condition for the oligarchy result can be weakened,
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if we add AN and seek the agenda condition for the triviality result. In this section
we will show that the agendas that yield the triviality result can be characterized by
negation-connectedness, which is introduced in Dietrich & List (2018) and defined by
the following.

Definition 2.15 (Negation-connected Agenda). An agenda A is negation-connected
(NC) iff for every contingent issue A ∈ A it holds that A �∗∗ A.

So negation-connectedness means that every issue has a path to and from its
complement. According to Proposition 1 in Dietrich & List (2018), the agenda being
negation-connected is equivalent to the agenda being partitioned into subagendas
each of which is path-connected where a non-empty subset of the agenda is called
subagenda when it is closed under complementation.27

Example 2.4 (Continued). Consider the following agenda as well as A1-A4:
A5 = {A,B,A ∩ B,A ∪ B,A,B,A ∩B,A ∪B,C,D,C ∩ D,C ∪ D,C,D,C ∩D,

C ∪D}
where every two propositions among A,B,C, and D are logically independent.

The agenda A1 and A2 are not negation-connected while A3,A4,and A5 are negation-
connected. Note that A5 is partitioned into two path-connected subagendas, namely
{A,B,A∩B,A∪B,A,B,A ∩B,A ∪B} and {C,D,C∩D,C∪D,C,D,C ∩D,C ∪D}.

The following lemma will be needed for the proof of the first part of the succeed-
ing theorem. Part (1) allows us to consider the stronger condition, namely path-
connectedness, than negation-connectedness to prove the triviality result. Part (2)
will be used when the agenda is path-connected and not even-negatable.

Lemma 2.11. (1) If the triviality results hold — i.e., the only HA on A satisfying
UD, CDC, ZP, CP, IND, and AN is the trivial one — for any path-connected agenda
A, then the same holds for any negation-connected agenda.

(2) If an agenda A is not even-negatable, then for any minimally inconsistent
subset Y ⊆ A and any even-sized subset Z ⊆ Y it holds that Y¬Z is also minimally
inconsistent.

Proof. (1) Assume that the triviality results hold for any path-connected agenda. Let
A be a negation-connected agenda. Then A can be partitioned into path-connected
subagendas, say, A1, ...,Am. Further, assume that a non-trivial HA F on A satisfies
UD, CDC, ZP, CP, IND, and AN. Then, it can be easily seen that F � Ak, treated as
a HA on Ak, satisfies UD, ZP, CP, IND, and AN for any k ≤ m. Thus, if we prove
that F � Ak satisfies CDC for any k ≤ m, then we see that F � Ak is the trivial
function for all k ≤ m, since Ak is path-connected. This implies that F is a trivial
function.

27To see the reason why a negation-connected agenda is partitioned into path-connected sub-
agendas, it is instructive to see that a path-relation in negation-connected agenda is actually an
equivalence relation. Indeed, for any issues A,B in a negation-connected agenda A if A �∗∗ B, then
B �∗∗ B �∗∗ A �∗∗ A, which implies that a path-relation in A satisfies symmetry; reflexivity and
transitivity are trivial.
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Thus, it is enough to show F � Ak satisfy CDC for any k ≤ m. Indeed, if
F � Ak(~P )−1(1) � B for any issue B ∈ A, then by CDC of F , F ( ~P ′)(B) = 1, ~P ′

being any extension of ~P to A. Thus, we only need to show that B ∈ Ak. Note that
there is a finite subset B ⊆ F � Ak(~P )−1(1)(⊆ Ak) such that B � B. If we choose
an issue B1 ∈ B(⊆ Ak), we have B1 �∗B\{B1} B, which implies B ∈ Ak since Ak is
path-connected and B1 ∈ Ak.

(2) Dokow & Holzman (2010a) Prop. 4.2., Dietrich & List (2021) Lem. 14.

The following lemma will be needed for the proof of the second part of the suc-
ceeding theorem. This lemma looks technical but it is closely related to the notion
of median point in the next section. Indeed, if H0 is the empty set, then

⋂
M is the

set of all median points where H0 and M are defined in the following lemma.

Lemma 2.12. Let H0 be the set {A ∈ A| A �∗∗ A and A �∗∗ A}. If A is not
negation-connected, then there is a non empty subset M⊆ A \H0 such that for any
minimally inconsistent set Y ⊆ A it holds that |Y ∩M| ≤ 1. Furthermore, for any
minimally inconsistent set Y ⊆ A intersecting H0 it holds that |Y ∩ M| = 0. In
addition, for B ∈ A \ H0, it holds that B ∈M iff B /∈M.

Proof. Nehring & Puppe (2010) Proposition 3.1.

Now let us prove the theorem. The first one states that negation-connectedness
is the sufficient condition for the triviality result and the second one asserts that it is
also the necessary condition.

Theorem 2.13 (Agenda Condition for the Triviality Result).

(1) If A is negation-connected, then the only HA on A satisfying UD, CDC, ZP,
CP, IND, and AN is the trivial one.

(2) If A is not negation-connected, then there is a HA on A satisfying UD, CDC,
ZP, CP, IND, AN, and non-triviality. It also satisfies CCS.

Proof. (1) It suffices to show the claim under the assumption of A being path-
connected and not even-negatable. It is because we have Lemma 2.11 (1) and we can
apply Theorem 2.10, if the agenda is even-negatable. Since A is path-connencted, by

Lemma 2.8 we can set F (~P )(A) = G(~(P )(A)). Moreover, by Lemma 2.9 (2), A is
non-simple and thus we have (Fact 2) by (Fact 2′) in Theorem 2.10.

Now we will prove the following using A being non-simple and not even-negatable:

(Fact 1′′) If G(~a) = 1, then G(~c) = 1 for all ~c ≥ |2~a−~1|.

where |~x| is defined to be (|xi|)i. By non-simplicity and Lemma 2.11 (2), it fol-
lows that there is minimally inconsistent Y that has more than three elements,
say A,B,C ∈ Y such that

⋂
Y¬{A},

⋂
Y¬{B},

⋂
Y¬{C} and

⋂
Y¬{A,B,C} are not

empty. Consider individual probabilities P ′i on the algebra generated by A satis-
fying P ′i (

⋂
(Y \ {A,B,C})) = 1 and P ′i (A) = P ′i (B) = ai.
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(Case 1) 2ai ≥ 1
P ′i (
⋂
Y¬{A}) and P ′i (

⋂
Y¬{B}) might have the value between 0 and 1− ai, from

which follows that Pi(C) = P ′i (
⋂
Y¬{C}) +P ′i (

⋂
Y¬{A,B,C}) = 1−P ′i (

⋂
Y¬{A})−

P ′i (
⋂
Y¬{B}) ∈ [2ai − 1, 1] where Pi is the probabilistic belief that can be

extended to P ′i . The left/right figure illustrates P ′i when P ′i (
⋂
Y¬{A}) and

P ′i (
⋂
Y¬{B}) have the minimun/maximum value.

0 0

ai

1−ai

Z∩A Z∩B

Z∩C⋂
(Y\{A,B,C})(=:Z)

1−ai 1−ai

2ai−1

0

Z∩A Z∩B

Z∩C⋂
(Y\{A,B,C})(=:Z)

(Case 2) 2ai < 1
P ′i (
⋂
Y¬{A}) and P ′i (

⋂
Y¬{B}) might have the value between 0 and ai, from

which follows that Pi(C) ∈ [1− 2ai, 1].

0 0

ai

1−ai

Z∩A Z∩B

Z∩C⋂
(Y\{A,B,C})(=:Z)

ai ai

0

1−2ai

Z∩A Z∩B

Z∩C⋂
(Y\{A,B,C})(=:Z)

Combining two cases we can assert that there can be probabilistic beliefs Pi
satisfying

(i) Pi(A) = Pi(B) = ai

(ii) Pi(C) ∈ [|2ai − 1|, 1]

(iii) Pi(Y ) = 1 for all Y ∈ Y \ {A,B,C}
By CP, we have F (~P )(Y ) = 1 for all Y ∈ Y \ {A,B,C}. Note that we have
Y \ {C} � C, for Y is inconsistent. From this we conclude that if G(~a) =

F (~P )(A) = F (~P )(B) = 1, then F (~P )(C) = G(~c) = 1 for all ~c ∈ [|2~a− ~1|,~1] by
CDC, which completes the proof of (Fact 1′′).

We now apply (Step 2) and (Step 3) in Theorem 2.5 again, with (Fact 1) replaced
by (Fact 1′′) to obtain the triviality result.
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(2) Suppose that A is not negation-connected. Then there is a subset M ⊆ A
satisfying properties in the above lemma. Let us define a HA F as the following:

For every issue A ∈M, F (~P )(A) = 1 iff ~P (A) 6= ~0

For every issue B /∈M, F (~P )(B) = 1 iff ~P (A) = ~1

P1(A)

P2(A)

P3(A)

P1(B)

P2(B)

P3(B)

This represents the HA in (2), provided N = {1, 2, 3}. Grey points represents that 1 is assigned. The left figure is for
any A ∈M and the right one for any B /∈M.

It is easy to check that F satisfies UD, ZP, CP, IND, AN and non-triviality.
Let us prove that F satisfies CCS. Suppose, contrary to our claim, that F (~P )−1(1)

is inconsistent. Then there is a minimally inconsistent subset, say Y ⊆ F (~P )−1(1).
By lemma 2.12 we have |Y ∩M| ≤ 1 and hence we can find an issue, say C, such that

Y\{C} has no intersection withM. This leads to ~P (Y ) = ~1 for all issues Y ∈ Y\{C}
by the definition of F . Note that Y is inconsistent and so Y \{C} � C. From this we

conclude that ~P (C) = ~1 and thus ~P (C) = ~0, which contradicts C ∈ Y ⊆ F (~P )−1(1).

It remains to show that F satisfies CDC. Suppose that F (~P )−1(1) � D. Then

there is a subset Y ⊆ F (~P )−1(1) such that Y ∪ {D}(=: Z) is minimally inconsistent.
By lemma 2.12 it holds that |Z∩M| ≤ 1. First, consider the case where |Z∩M| = 0.

Then for any Y ∈ Y it holds that ~P (Y ) = ~1, and hence ~P (D) = ~1, which implies

that F (~P )(D) = 1. Now consider the case where |Z ∩M| = 1. If Z ∩M = {D},
then similar arguments to the former case can be applied. In the case where D /∈M,
we see that D ∈ M from the last part of lemma 2.12, because |Z ∩M| = 1 implies

D /∈ H0 by the second part of lemma 2.12. Thus, we need to show that ~P (D) 6= ~0.

Since ~P (
⋂
Y) ≤ ~P (D), it is enough to show that ~0 < ~P (

⋂
Y). Denote by E the

unique element in Y ∩M. By the definition of F , we have ~P (E) > ~0 and ~P (Y ) = ~1

for all Y ∈ Y \ {E}. Thus we have ~P (
⋂
Y) > ~0.

Part (1) shows that the triviality result holds if the agenda is negation-connected,
which is a generalization of Theorem 2.5. The proof also reveals that if we assume
SYS, non-simplicity (NS) is the sufficient condition to get the triviality result and we
need neither even-negatability nor monotonicity (MON) unlike Theorem 2.10 (1).
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IND SYS

with or without MON NC NS

Compared to the generalization of the oligarchy result, adding AN, we obtain the
triviality result even under a weaker agenda condition:(i) instead of path-connectedness
(PC), negation-connectedness (NC) is enough, and (ii) we have the triviality result
even when the agenda is not even-negatable (EN). The difference indicated in (i)
fulfils no role in finding the sufficient condition by Lemma 2.11, but the necessary
condition is not path-connectedness but negation-connectedness, which will be dis-
cussed below. When the agenda is PC and EN, we can apply Theorem 2.10 since the
oligarchy satisfying AN is the trivial one. Thus, we only need to focus on the cases
where the agenda is PC and not EN.

When the agenda is assumed to be not EN, we run into the following difficulty:
to show the triviality result, we used (Fact 1) — upward closure of G−1(1) —, which
could be proved when the agenda is assumed to be EN. Our strategy here is to prove
the weaker claim of (Fact 1′′) than (Fact 1), because (Fact 1′′) is enough to prove the
triviality result. (Fact 1′′) is weaker than (Fact 1) since not all vectors greater than
~a but only vectors greater than |2~a− ~1| are mapped to 1, if G(~a) = 1. In this sense,
we call (Fact 1′′) restricted upward closure of G−1(1).

One may ask why (Fact 1), which follows from even-negatability, is required for
the oligarchy result, whereas (Fact 1′′) is enough for the triviality result to hold. (Fact
1) and (Fact 1′′) differ in the following way: for example, if (0, 1, ..., 1) is mapped to
1 then (r, 1, ..., 1) with any r > 0 is mapped to 1 by (Fact 1), but by (Fact 1′′) only
(1, 1, ..., 1) is mapped to 1, which is enough to prove the triviality result. For the oli-
garchy result, we need (Fact 1), because without it we cannot deduce the fact that if
ai = 1 for all i ∈M , M being the set of oligarchs, then G(~a) = 1 from G((δi∈M)i) = 1,
which can be proved not by (Fact 1′′) but by (Fact 1).

As indicated in Table 2.1 (2′′) at the beginning of this section, negation-connected-
ness is the same agenda condition for the triviality result on belief binarization, which
is shown in Theorem 2* in Dietrich & List (2021). Their result can be restated using
our terminology as follows: there is no belief binarization rule satisfying UD, CCS,
CP, IND, CDC, and non-triviality iff the agenda is negation-connected. One might
ask whether we can follow their proof for our theorem or the other way around. On
the one hand, we cannot use their proof because whereas they deal with probabilistic
beliefs, we are dealing with profiles of probabilistic beliefs and so their reasoning
cannot be applied. In particular, for PC and not EN agendas we proved (Fact 1′′),
which is a new idea and what has done in our own way.

On the other hand, since we have not used the fact that |N | ≥ 2 in the proof of
part (1), our proof can be applied for the case where |N | = 1 as well, which is the
same problem as belief binarization, as indicated in Section 2.5. Notice that Dietrich
& List (2021) used CCS (stronger assumption) for belief binarization while our re-
sult assumes only ZP (weaker assumption). Therefore, if we apply our proof to the
triviality result in belief binarization, then we can prove it using only ZP without
requiring CCS. Thus we have the stronger claim(the triviality result with ZP) than
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Dietrich & List (2021)’s claim (the triviality result with CCS). On top of that, we can
use this argument for judgment aggregation, since anonymous independent judgment
aggregation can be thought of as belief binarization, as indicated in Section 2.5. Thus,
we also have (2′) in Table 2.1 there is no judgment aggregation satisfying UD, ZP,
CP, IND, CDC, AN, and non-triviality iff the agenda is negation-connected. This
is a stronger claim than the one in Dietrich & List (2008). They dealt with the
agenda conditions — PC and EN — for the oligarchy result of judgment aggregation
and derive the triviality result as a corollary under those agenda conditions. Our ar-
gument shows that the agenda condition can be weakened to negation-connectedness.

Part (2) gives the counterexample of the triviality result when the agenda is not
negation-connected, which implies the agenda being not path-connected. The coun-
terexample of the latter in Theorem 2.10 (2) does not work for the former, because
it does not satisfy AN. Moreover, there will be no counterexample if we assume the
agenda just not to be path-connected. This is the reason why we need to weaken
path-connectedness to negation-connectedness even though they fulfill the same role
concerning the sufficient agenda condition for the triviality result.

Our counterexample is an extension of the belief binarization rule in Theorem 2*
in Dietrich & List (2021), which can be viewed as an anonymous JA. As said in Sec-
tion 2.5, extending a counterexample in judgment aggregation to satisfy UD, CDC,
ZP, CP, IND, AN is the key for heterogeneous belief aggregation, since non-triviality
is directly satisfied. Notice that we have not excluded even-negatable agenda, thus
MON must be satisfied and one can see that our example satisfies MON. However, it
is not minimal among such extensions, which differs from the way of the extension —
minimal extension with MON — in Theorem 2.10 (2). On the other hand, SYS is not
forced since we do not have path-connectedness and our example does not satisfy SYS.

The upshot is that negation-connectedness is the necessary and sufficient condition
not only for the triviality result in belief binarization and in judgment aggregation
but also for our triviality result in heterogeneous belief aggregation.

2.6.3 The Agenda Condition for the Impossibility Result

In this section, we will show that agendas for the previous impossibility result can be
characterized by blocked agendas. We begin by introducing this agenda condition.

Definition 2.16 (Blocked Agenda). An agenda A is blocked iff there is an issue
A ∈ A such that A �∗∗ A and A �∗∗ A.

So a blocked agenda contains an issue that has a path to and from its complement.
Recall that H0 is defined by the set {A ∈ A| A �∗∗ A and A �∗∗ A}. Then A is
negation-connected iff H0 = A, and A is blocked iff H0 6= ∅. If A is negation-
connected, then it is blocked.

Example 2.5 (Continued). The agenda A1 and A2 are unblocked while the agendas
A3,A4, and A5 are blocked.
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The following definition and lemma will be needed for the succeeding theorem.

Definition 2.17 (Median Point). Let A be an agenda on the set of worlds W . A
world m ∈ W is a median point iff for any minimally inconsistent subset Y ⊆ A, it
holds that |{A ∈ Y| m ∈ A}| ≤ 1.

So a median point is a world that is contained in at most one issue in every
minimally inconsistent set.28

Example 2.6 (Continued). In the agenda A1, every world is a median point; in A2,
any world in A ∩B is a median point.

It is well-known in judgment aggregation that if a median point is guaranteed to
exist, then we can easily construct an anonymous, complete, and consistent JA where
a median point is thought of as a default collective judgment unless everybody believes
the issue being true/false at the median point to be false/true.29 The following lemma
indicates that the agenda being unblocked is the necessary and sufficient condition
for a median point to exist.

Lemma 2.14. An agenda A is unblocked iff there is a median point.

Proof. Nehring & Puppe (2010) Proposition 3.1

Now let us formulate and prove our last theorem.

Theorem 2.15 (Agenda Condition for Impossibility Result).

(1) If A is a blocked then there is no HA on A satisfying UD, CCP, CCS, CP, and
IND.

(2) If A is not blocked, then there is a HA on A satisfying UD, CCP, CCS, CP,
and IND. It also satisfies AN and non-dictatorship.

Proof. (1) Assume that A �∗∗ A and A �∗∗ A. To obtain a contradiction, suppose
that there is a HA F satisfying UD, CCP, CCS, CP, and IND. By IND, we can let
F (~P )(A) = GA(~P (A)) for all ~P and A ∈ A. In Lemma 2.8, we made use of UD and
CCD, which can be followed from CCP and CCS, and proved that for all A,B ∈ A
if A �∗ B, then for all ~a it holds that if GA(~a) = 1, then GB(~a) = 1. Therefore, we
have GA = GA. Since every issue is contingent, A,A 6= ∅. Hence there is a profile
~P of probabilistic belief satisfying ~P (A) = ~P (A) = ~0.5 in our domain by UD, which

yields F (~P )(A) = F (~P )(A). This contradicts our assumption that F satisfies CCP

28Although this definition is a little bit involved, it has a geometrical meaning (see Nehring &
Puppe (2007, 2005)): first of all, let us define a betweenness relation on worlds and introduce a useful
notation. A world c is between a and b iff for all issues A such that a, b ∈ A, c ∈ A; [a, b] denotes
the set of all worlds between a and b. Then the geometrical definition of a median point says that
a world m is a median point iff for any worlds v, w the three worlds m, v,w admit a median where
a world m′ is a median of m, v,w iff m′ ∈ [m, v]∩ [v, w]∩ [w,m]. According to Lemma 5 in Nehring
& Puppe (2005), the geometrical definition of a median point is equivalent to definition 2.17.

29See Nehring & Puppe (2007, 2005, 2010)
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and CCS.

(2) Suppose that A is unblocked. By the above lemma, there is a median point
m. Let us define a HA F as the following:

For every issue A with m ∈ A, F (~P )(A) = 1 iff ~P (A) 6= ~0

For every issue B with m /∈ B, F (~P )(B) = 1 iff ~P (B) = ~1

It is easily seen that F satisfies UD, CP, IND, AN, and non-dictatorship.
Let us prove that F satisfies CCP. For any issue C we have m ∈ C or m ∈ C.

W.l.o.g. we can assume that m ∈ C. If ~P (C) = ~0, then ~P (C) = ~1 and hence

F (~P )(C) = 1, and if otherwise, then F (~P )(C) = 1.
It remains to show that F satisfies CCS. Suppose, contrary to our claim, that

F (~P )−1(1) is inconsistent. Then there is a minimally inconsistent subset Y ⊆ F (~P )−1(1).
Since m is a median point, we see that |{A ∈ Y| m ∈ A}| ≤ 1. Hence we can find
an issue, say D, such that none of the sets Y in Y \ {D} contains m. From the

construction of F , it follows that ~P (Y ) = 1 for any issue Y ∈ Y \ {D}, which implies

that ~P (
⋂

(Y \{D})) = 1. By the inconsistency of Y , we obtain D∩ [
⋂

(Y \{D})] = ∅.
From this we conclude that ~P (D) = 0, which implies that F (~P )(D) = 0, by the

construction of F . This contradicts F (~P )(D) = 1.

Part (1) asserts that the impossibility result holds even when the agenda is blocked.
Since CCS and CCP together are stronger than CDC, we obtain the impossibility
result more easily — without AN and non-dictatorship and with more relaxed agenda
condition. The proof shows that if we add SYS, the impossibility result holds even
without CP and even when no agenda condition is assumed — e.g., even when A =
{A,A}.

As indicated in Table 2.1 (4′) and (4′′) at the beginning of this section, blocked
agenda is also the agenda condition for the impossibility results on judgment aggre-
gation with AN (Nehring & Puppe (2010)) and belief binarization (Dietrich & List
(2018)). Concerning the relation, the same comments in Section 2.5 can be made.

Part (2) gives the counterexample that is an extension of the counterexample of
Theorem 6 in Dietrich & List (2018). It is an extension that satisfies (MON), but
not minimally so. This is the same way as the extension in Theorem 2.13 (2). The
median point m in the proof of this theorem plays the same role as M in the proof
of Theorem 2.13 (2). The only difference is that m is a world and M is a set of
issues, which comes from the difference between assuming CDC and assuming CCS
and CCP.
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2.7 Conclusion

In this chapter we first established three impossibility results when the agenda is
a non-trivial algebra, and then found the necessary and sufficient agenda condition
for each result, i.e., provided three characterizations of impossibility agendas. The
following table summarizes the results.

Properties Agenda Condition

Oligarchy Result UD, CP, ZP, IND, CDC PC, EN

Triviality Result UD, CP, ZP, IND, CDC, AN NC

Impossibility Result UD, CP, IND, CCP, CCS Blocked

We proved that when the agenda is as rich as a non-trivial algebra, indepen-
dent(IND) heterogeneous belief aggregation satisfying collective deductive closure
(CDC) yields oligarchies under certain conditions (UD, CP and ZP). Moreover, it
is shown that adding anonymity (AN) leads to the trivial aggregation and adding col-
lective completeness (CCP) and collective consistency (CCS) makes the aggregation
impossible even without requiring AN. On top of that, we proved that these three
impossibility results arise under different agenda conditions, as shown in the above
table, and compared them with some impossibilities in judgment aggregation and
belief binarization. We analyzed similarities and differences between our proofs and
other related proofs and concluded that the problem of heterogeneous belief aggre-
gation is not reduced to the other related problems. Moreover, we showed that our
methods can be applied to other similar impossibilities.
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Chapter 3

Threshold-based Heterogeneous
Belief Aggregation

Heterogeneous belief aggregation is the problem about how to aggregate individuals’
probabilistic beliefs on the logically connected issues into the group’s binary belief.
In the last chapter, we introduced the properties like collective deductive-closure and
independence, and showed that they yield trivial results under certain conditions
when the agenda is complex. Now we move toward studying specific aggregation
rules and their properties. In particular, we will mainly address rules satisfying
collective deductive-closure. We divide heterogeneous belief aggregation rules into
two categories: (1) direct rules and (2) collective belief binarization given an opinion
pooling procedure. Both will be explored in this chapter, where we address threshold-
based rules, and in the next chapter, where we investigate rules based on distance and
epistemic utility.

Individuals’
probabilistic

Beliefs ~P

Group’s
probabilistic
Belief f(~P )

Opinion

Pooling f

Group’s
binary

Belief F (~P )

(2) Binarization (Threshold Rules)

(1) Direct Threshold Rules
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3.1 Introduction

As mentioned in the last chapter, the problem of heterogeneous belief aggregation
can be seen, on the one hand, as a generalization of judgment aggregation, but on the
other hand, as a generalization of belief binarization. Indeed, there have been many
articles indicating the structural parallel between judgment aggregation and belief bi-
narization (Douven & Romeijn (2007), Dietrich & List (2018, 2021), Chandler (2013),
Cariani (2016)). Their core consists in the fact that a quota of individuals believing
an issue corresponds to the group’s probability of the issue. We advance beyond this
parallel: collective belief binarization can also be interpreted as heterogeneous belief
aggregation as well, if we presuppose an opinion pooling procedure. This is why we
treat belief binarization as the second category of heterogeneous belief aggregation
mentioned above.

In judgment aggregation (e.g., Dietrich & List (2007)) or belief binarization, many
rules associate the resulting binary belief on an issue with a high quota of individuals
believing the issue or high probability of the issue. These rules are based on some sorts
of thresholds to identify a high probability and called threshold-based approaches. The
most typical one is given by the well-known Lockean thesis (LTt), which suggests that
an agent (in heterogeneous belief aggregation, the group) should believe an issue iff its
probability exceeds a given threshold t. However, the lottery paradox, as illustrated
in the introductory chapter,1 shows that unless t = 1, LTt does not ensure rationality
(defined in the last chapter by consistency and deductive closure). There have been
the following suggestions to resolve the paradox: relaxing closure under conjunction
(Kyburg (1961), Leitgeb (2021)); relaxing probabilism (Spohn (2009)); relaxing the
Lockean thesis (Leitgeb (2017a), Lin & Kelly (2012b)).

This is the same problem as the discursive dilemma in quota rules and as the
triviality results in independent heterogeneous belief aggregation rules demonstrated
in the last chapter. Confronting this problem, we will preserve probabilism and closure
under conjunction, and relax LTt.

To find a way to relax LTt, our classification of thresholds in this chapter will
be helpful. We will classify thresholds into four groups according to two criteria.
The first criterion is whether thresholds are applied to probabilities of events (sets of
worlds) to determine the belief set (the set of believed events) — we call them event
thresholds (event ths.) —, or they are applied to probabilities of worlds to obtain
the belief core (the smallest believed event of which supersets constitute the belief
set) — we call them world thresholds (world ths.). The second criterion is whether
thresholds depend on the input — we call them local — or not — we call them global.
The thresholds t in LTt correspond to global event thresholds. Among the various
attempts to weaken LTt, we note two different threshold-based approaches. One is to

1The lottery paradox shows: Consider a fair 1,000-ticket lottery that has only one winning
ticket. An agent believes that ticket i will not win for each i since her probabilistic belief is a
uniform distribution and her Lockean threshold 0.99. She also believes that one ticket will win.
Suppose her belief is deductively closed. Then it is deduced that no ticket will win, so her belief is
inconsistent. Unless t = 1, there is an example where the Lockean thesis does not generate consistent
and deductively closed binary beliefs.
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use local thresholds — e.g., the rules that generate belief states (pairs of probability
and binary belief) satisfying the Humean thesis with a parameter r (HTr, r ∈ [1

2
, 1))

in Leitgeb’s stability theory of belief, which says that an issue is believed iff its con-
ditional probability on every issue of which complement is not believed is above r
(Leitgeb (2013, 2014, 2017a)). And the other is to use world thresholds — e.g., Lin
& Kelly’s Camera Shutter rules with a parameter s (CSs, s > 1), which collect the
worlds whose probability ratio to the maximal probability is above 1

s
as the elements

of the belief core (Lin & Kelly (2012a, 2012b).

Our study on threshold-based heterogeneous belief aggregation is found on this
basis. As mentioned at the beginning of this chapter, we create two categories of
heterogeneous belief aggregation: collective belief binarization that is combined with
a given opinion pooling procedure, and direct rules that do not go through a procedure
to form the group’s probabilistic belief. Accordingly, the classification of thresholds
is applied not only to collective belief binarization but also to the direct rules. This
will be the first part of this chapter. We will introduce criteria to classify types of
thresholds, and according to these criteria, we will classify relevant threshold-based
rules in both categories. And then, we will show that they are characterized by certain
properties, e.g., various forms of independence and monotonicity — global or local,
and event-wise or world-wise monotonicity that correspond to global or local, and
event- or world-thresholds.

In the second part of this chapter, we will narrow our scope of research and focus
only on collective belief binarization and local monotonicity. The key properties of
binarization rules here will be local event-wise monotonicity and local world-wise
monotonicity. We add non-emptiness of every belief set to the former and non-
emptiness of every belief core to the latter, and call them Lockean and coherent,
respectively. We relate these properties to other properties of binarization rules, being
stable and rational-likely (r-likely). We say that a rule is stable if every belief state

generated by the rule satisfies HT
1
2 and every resulting binary belief is consistent.

According to Leitgeb’s stability theory of belief, being stable can be shown to be
equivalent to the conjunction of being Lockean and coherent. Being r-likely means
that every resulting binary belief has a non-empty belief core with probability above
1
2
. This property is weaker than being stable but neither weaker nor stronger than

being coherent. We will review the inclusion relationship between those properties.
We not only give an overview in this particularly structured way but also deliver novel
results: we will provide geometrical characterizations of some properties — especially
coherence — using the Voronoi diagram, which enables one to check whether a rule
satisfies the properties easily.

After addressing properties of belief binarization, we will study specific rules and
identify which rules satisfy the above properties. Our focus will be on rational bi-
narization rules, of which outputs have non-empty belief cores and thereby can be
represented in a geometrical space according to our method, which will be proposed.
The rules to be examined here are: (i) the rule called HTr(S), which picks the smallest
non-empty belief core inducing a belief state satisfying HTr (Leitgeb (2013), Cari-
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ani (2016), Thorn (2018), Wright (2018)), (ii) the Camera shutter rule (CSs) (Lin &
Kelly (2012a, 2012b)), and (iii) the coherent core-threshold rule (CCTg) that picks
the smallest coherent non-empty belief core of which probability is above a given
threshold g (Cantwell & Rott (2019)). Note that all of these rules are not only ra-
tional but also coherent, and thus can be seen as local world threshold rules. We
add one more rational binarization rule, the distance minimization function with the
squared Euclidean distance (DM(SE)+), which will be discussed in full detail in the
next chapter, in order to examine whether the rule satisfies the above properties and
to compare the results with other threshold-based rules. We will study these rules
in terms of the properties, and the main question will be whether each of these rules
satisfies each of the above properties.

Last but not least, we will investigate one more property and whether each rule in
the above satisfies it: we suggest studying the notion of convexity concerning belief
binarization. Furthermore, we devise various forms of convexity and extend bina-
rization methods beyond functions to relations, correspondences and ordinalizations.
Which binarization methods satisfy which forms of convexity will also be shown.

To conclude, we will classify and characterize threshold-based heterogeneous be-
lief aggregation, which is closely related to belief binarization. We will provide a
structured framework that brings together various belief binarization properties and
rules so that they can be evaluated and compared together. In particular, we pro-
vide geometrical characterizations of some properties and utilize these to answer the
above questions. Moreover, we propose to study the property of convexity and devise
a new belief binarization rule DM(SE)+. In our framework, properties and rules are
derived from various existing binarization methods. For instance, the stability theory
of belief provides the property of being stable that is distinguished from the rule of
HTr(S). From CSs and CCTg, we abstract coherence, from CCTg r-likeliness, and
from DM(SE)+ convexity. This approach gives insights into compatibility between
binarization methods and provides interesting questions:
• Are CSs, CCTg and DM(SE)+ stable?
• Are CSs and DM(SE)+ r-likely?
• Is DM(SE)+ coherent?
• Are HTr(S), CSs and CCTg convex?
We will answer all of these questions in this chapter.

The rest of this chapter is organized as follows: In Section 3.2, we classify relevant
direct rules and collective belief binarization rules based on thresholds, and charac-
terize them by various forms of monotonicity and some other properties. In Section
3.3, we review local monotonicity and related properties of belief binarization, and
provide geometrical characterization. In Section 3.4, we introduce various binariza-
tion rules and investigate whether each rule satisfies each property. We devote a
separate section to the property of convexity in Section 3.5, based on joint work with
Chisu Kim. We formulate various kinds of convexity norms and examine whether
the binarization functions and some other binarization methods satisfy certain kinds
of convexity requirements. Finally, we conclude with some topics for future work in
Section 3.6
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3.2 Classification and Characterizations of Threshold-

based HAs

Threshold-based rules are generally characterized by some kinds of monotonicity. For
example, quota rules for judgment aggregation can be characterized using a kind of
monotonicity.2 In heterogeneous belief aggregation as well, we can consider rules
based on some thresholds. In this section we systematically introduce and classify
various kinds of threshold-based heterogeneous aggregators (HAs), and investigate
exactly which kinds of monotonicity and what other properties of HAs are needed to
characterize them. It will help evaluate and compare various kinds of threshold-based
rules in one theoretical frame.

3.2.1 Classification of Threshold-based HAs

We first set the notation and terminology that will be needed in this chapter. We
follow the ones in the last chapter except for the fact that we assume, from now on,
the set W of possible worlds to be finite, and the agenda A (the set of issues, which we
call events in this chapter) to be the powerset P(W ) of W so that the probabilities of
the singleton set of each world are well-defined, which will be used for world-threshold
rules.

Recall that N := {1, ..., n} is a set of individuals(n ≥ 2); for each individual

i ∈ N , Pi denotes i’s probability function on (W,P(W )), and we write ~P or (Pi)i for
a profile (P1, ..., Pn) of individual probability functions; an opinion pooling function

(OP) f is defined to be a function taking ~P and returning a probability function f(~P )

on (W,P(W )); a function F : ~P 7→ F (~P ) is called a heterogeneous aggregator (HA)

on (W,P(W )), with F (~P ) being a binary belief on (W,P(W )), i.e., a function from
P(W ) to {0, 1}.

Individuals’
probabilistic

Beliefs

Group’s
probabilistic

Belief

Opinion

Pooling

Group’s
binary
Belief

(2) Binarization(Threshold Rules)

(1) Direct Threshold Rules

Now we introduce and classify some relevant threshold-based heterogeneous aggre-
gators. First of all, we can categorize heterogeneous aggregators (not only threshold-
based ones but also in general) into two groups according to whether they can be
represented by a combination of an opinion pooling function (OP) and a binarization
rule, which is defined as follows.

2See Dietrich & List (2007).
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Definition 3.1 (Binarization Rule). Let W be a finite non-empty set of possible
worlds and A be an algebra on W . A function G mapping a probability function P on
(W,A) in a given domain to a binary belief G(P ) on (W,A) is called a binarization
rule(BR).

The HAs in the first group that do not go through an opinion pooling procedure
and thus do not form a group’s probability are called direct threshold rules. The
other group is called pooling + threshold-based binarization. If a HA F belongs to the
second group, then we have F = G ◦ f for some OP f and some BR G, and we write
F = f +G.

The next two criteria we are suggesting to classify threshold-based HAs pertain
to types of threshold. The first is whether the threshold is applied to probabilities of
events (in this case we call it an event-th.) or probabilities of worlds (in this case we
call it a world-th.); we might have to believe all and only the events whose probability
exceeds the event-th. or we might have to believe the set of all worlds with probability
above the world-th. and its supersets. The second is whether the threshold depends
on inputs, i.e., profiles of individual probabilities. If it depends on that, it is called a
local (event- or world-) th., and if not, a global (event- or world-) th.

On the basis of these three criteria, we introduce eight classes of threshold-based
HAs. Let us formulate the first four classes of rules precisely.

Definition 3.2 (Direct Threshold Rules). Let F be a HA on (W,P(W )) with the uni-
versal domain P(W ), which denotes the set of all probability functions on (W,P(W )).

(i) F is called a direct threshold rule with global event-th. if for each A ∈ P(W )

there exist (BA,i)i∈N ∈ {>,≥}N and (tA,i)i ∈ [0, 1]N such that for all ~P ∈ P(W )
it holds that

F (~P )(A) = 1 iff Pi(A)BA,i tA,i for all i ∈ N ;

(ii) F is called the one with global world-th. if there exist (Bw,i)(w,i)∈W×N ∈ {>,≥
}W×N and (sw,i)(w,i)∈W×N ∈ [0, 1]W×N such that for all ~P ∈ P(W ) it holds that

F (~P )(A) = 1 iff A ⊇ {w ∈ W |Pi(w)Bw,i sw,i for all i ∈ N}

for all A ∈ P(W );

(iii) F is called the one with local event-th. if for each ~P ∈ P(W ) there exist
(B~P ,i)i∈N ∈ {>,≥}N and (t~P ,i)i∈N ∈ [0, 1]N such that for all A ∈ P(W ) it
holds that

F (~P )(A) = 1 iff Pi(A)B~P ,i t~P ,i for all i ∈ N ;

(iv) F is called the one with local world-th. if for each ~P ∈ P(W ) there exist
(B~P ,i)i∈N ∈ {>,≥}N and (s~P ,i)i∈N ∈ [0, 1]N such that
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F (~P )(A) = 1 iff A ⊇ {w ∈ W |Pi(w)B~P ,i s~P ,i for all i ∈ N}

for all A ∈ P(W ).

Notice that in the definition of the rules with event-ths.(tA,i and t~P ,i), thresholds

are applied to probabilities of events and used to determine the belief set F (~P )−1(1)(:=

{A ∈ P(W )|F (~P )(A) = 1}). By contrast, world-thresholds(sA,i and s~P ,i) are applied

to obtain the belief core of the binary belief F (~P ), defined as usual as follows:

Definition 3.3 (Belief Core). Let W be a finite non-empty set and Bel : P(W ) →
{0, 1} be a binary belief. A subset B ⊆ W is called the belief core of Bel if for all
A ∈ P(W )

Bel(A) = 1 iff A ⊇ B

If there exists a belief core B of a binary belief Bel, then it is unique (B =⋂
Bel−1(1)), and we say that Bel has a (unique) belief core B or equivalently, that

B induces Bel.
Simply put, by the event-th. rules, the events with probability being above (either

greater than or not less than) the event-ths. form the belief set. And by the world-
th. rules, the worlds with probability being above the world-ths. constitute the belief
core.

Event- and world- th. can both be global or local. Local thresholds (t~P ,i or s~P ,i)

may vary with probability profiles ~P . On the contrary, global ones (tA,i or sw,i) do not
depend on probability profiles. Global ones may differ according to events A/worlds
w. We call the thresholds uniform, if all events/worlds have the same threshold.
Notice that in our definition, local thresholds are all uniform by design, since the
notion of the local threshold rule would otherwise be empty in the sense that every
rule would be seen as a local non-uniform threshold rule. It is important to notice
one more dependency of thresholds in direct threshold rules. We include the general
cases where individuals may have different values of thresholds, which is why we add
the subscript i to all kinds of thresholds for direct rules.

Now consider the inequality symbol B in each definition, which designates either
≥ or >. The distinction between the two might not so relevant when it comes to local
thresholds: consider a HA with local event-ths. and fix ~P and i. It is clear that for
each t~P ,i 6= 0 there exists t′~P ,i(6= 1), and for each t′~P ,i 6= 1 there exists t~P ,i(6= 0) such

that
{A ∈ P(W )|Pi(A) ≥ t~P ,i} = {A ∈ P(W )|Pi(A) > t′~P ,i}

because P(W ) is finite. A similar reasoning applies to the local world-th. rules
because W is finite: for each s~P ,i 6= 0 there exists s′~P ,i, and for each s′~P ,i 6= 1 there

exists s~P ,i such that

{w ∈ W |Pi(w) ≥ s~P ,i} = {w ∈ W |Pi(w) > s′~P ,i}

On the contrary, as far as global threshold rules are concerned, an inequality with
≥ and one with > cannot be represented by each other. For example, there exists
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no t′A,i satisfying {Pi ∈ P(W )|Pi(A) ≥ tA,i} = {Pi ∈ P(W )|Pi(A) > t′A,i}, with A,
i and tA,i being fixed, because P(W ) is not discrete. Therefore, to deal with global
thresholds, the distinction is not superfluous.

One more important feature regarding (strict) inequalities is that each individual

i, each event A/world w (in the case of global event-/world- th.) and each profile ~P
(in the case of local th.) can have a different kind of inequality — either strict or
not —, just as each of them can have a different value of threshold. (The subscripts
represent the dependency.) This enables us to study the most general cases.

Lastly, concerning direct threshold rules, note that the inequalities in each defini-
tion should be satisfied for all individuals. This can be generalized by relaxing “all
individuals” to certain proportion of individuals, but in this research we will focus
on the basic case of unanimously exceeding each one’s threshold, which is easy to
characterize.

Summarizing, we define direct threshold-based rules using the following inequali-
ties to determine the belief set in the case of event-th. and the belief core in the case
of world-th.

event-th. world-th.

global Pi(A)BA,i tA,i for all i Pi(w)Bw,i sw,i for all i

local Pi(A)B~P ,i t~P ,i for all i Pi(w)B~P ,i s~P ,i for all i

We next turn to pooling + threshold-based binarization. Let f be an opinion
pooling function (OP) with the universal domain P(W ). Now we first form the group’s

probability f(~P ) ∈ P(W ) and then use it as an input of a binarization rule (BR) G,
which outputs a binary belief. In this way, the composition of an OP and a BR can be
used as a method of heterogeneous belief aggregation. Since the individuals’ opinions
are collected into a group’s probability, we do not need to evaluate whether each
individual’s probability is above some threshold. Instead, we evaluate the group’s
probability f(~P ) ∈ P(W ). Thus, on substituting Pi(A) and Pi(w) with f(~P )(A) and

f(~P )(w), respectively, as shown in the table, we obtain the definition of the four
classes of pooling + threshold-based Binarization.

event-th. world-th.

global f(~P )(A)BA tA f(~P )(w)Bw sw

local f(~P )(A)B~P t~P f(~P )(w)B~P s~P

The definition can be stated in full detail as follows.

Definition 3.4 (Pooling(f) + Threshold-based Binarization). Let f be an OP on
(W,P(W )) with the universal domain P(W ) and F be a HA on (W,P(W )) with the
universal domain P(W ).

(i) F is called a pooling(f) + threshold-based binarization with global event-th. if
for each A ∈ P(W ) there exist BA ∈ {>,≥} and tA ∈ [0, 1] such that for all
~P ∈ P(W ) it holds that
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F (~P )(A) = 1 iff f(~P )(A)BA tA;

(ii) F is called the one with global world-th. if there exist (Bw)w∈W ∈ {>,≥}W and

(sw)w∈W ∈ [0, 1]W such that for all ~P ∈ P(W ) it holds that

F (~P )(A) = 1 iff A ⊇ {w ∈ W |f(~P )(w)Bw sw}

for all A ∈ P(W );

(iii) F is called the one with local event-th. if for each ~P ∈ P(W ) there exist B~P ∈
{>,≥} and t~P ∈ [0, 1] such that for all A ∈ P(W ) it holds that

F (~P )(A) = 1 iff f(~P )(A)B~P t~P ;

(iv) F is called the one with local world-th. if for each ~P ∈ P(W ) there exist B~P ∈
{>,≥} and s~P ∈ [0, 1] such that

F (~P )(A) = 1 iff A ⊇ {w ∈ W |f(~P )(w)B~P s~P}

for all A ∈ P(W ).

The contrast between event-ths. and world-ths., and the one between global and
local thresholds can be made in the same way as in the direct threshold rules: (i)
and (iii) utilize event-ths. so that the group believes the events with high group
probability, and (ii) and (iv) apply world ths. so that the belief core consists of the
worlds with high group probability. The thresholds and the types of the inequalities
might be different for each event and for each world in (i) and (ii), whereas they might
be different for each probability profile in (iii) and (iv). The point that allowing two
types of inequality is not redundant can be applied here as well.

If we focus on the relation between the group’s probability f(~P ) and the resulting
binary belief, we can see that this definition embraces many binarization methods in
the literature on belief binarization. The famous Lockean thesis combined with an OP
f is no more than the rules with global even-th. The Camera Shutter rules (CSs rules)
of Lin & Kelly (Lin & Kelly (2012b)) can be seen as a special kind of binarization
rule with local world-ths. Last but not least, the Humean Thesis(HTr) in Leitgeb’s
stability theory of belief (Leitgeb (2013, 2014, 2017a)) can generate binarization rules
with local event-ths. which can be proven to be also seen as rules with local world-ths.
We will discuss them in detail in Section 3.4.

3.2.2 Characterizations of Threshold-based HAs

Now let us characterize the eight classes of threshold-based HAs. We begin by intro-
ducing properties of HAs that we will need to characterize the classes.
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Nonskeptism and Deductive Closure The first property concerns the notion of
rationality. Recall that, in the last chapter, we introduced rationality of binary belief,
i.e., consistency and deductive closure, which can be defined, as W is finite, by the
following:

(i) Bel is consistent iff
⋂
Bel−1(1) 6= ∅ (the belief set should not entail a contra-

diction).

(ii) Bel is deductively-closed iff Bel−1(1) contains W and it is closed under inter-
section (any intersection of two sets in the belief set should also be in the belief
set) and closed under superset (any superset of a set in the belief set should
also be in the belief set).

In this chapter we add one more, the notion of non-skepticism. A non-skeptical
binary belief means that the belief set (the set of all believed events) is non-empty.
It is a plausible requirement because believing nothing implies not believing even W
(a tautology), which is absurd. Note that deductive closure entails non-skepticism.
However, considering them separately will be needed in this chapter.

Definition 3.5 (Rationality). Let W be a finite non-empty set and Bel : P(W ) →
{0, 1} be a binary belief.

(1) Bel is non-skeptical iff Bel−1(1) 6= ∅;

(2) Bel is rational iff Bel is consistent and deductively-closed.

(3) A HA F is non-skeptical(NSK)/collectively consistent(CCS)/collectively deduc-

tively-closed (CDC)/rational iff F (~P ) is non-skeptical/consistent/deductively-

closed/rational for all ~P in the domain of F .

CDC will be used especially to characterize the rules with world-ths. because
these rules presuppose that the resulting binary belief F (~P ) should have a belief
core, which is closely related to CDC, as seen in the following well-known statement:

Bel is deductively-closed iff Bel has a belief core B

which can be proven by letting B :=
⋂
Bel−1(1) (the intersection of all believed

events). This gives a 1-1 correspondence between binary beliefs with CDC and subsets
of W . To be more precise, for each binary belief Bel with CDC, there exists a unique
belief core B(:=

⋂
Bel−1(1))(⊆ W ), and each subset B ⊆ W induces a unique binary

belief function Bel with CDC, which assigns 1 to all and only the supersets of B.
Thus, assuming CDC allows us to abuse notation and represent a binary belief by its
belief core, a subset of W , if it causes no confusion. Let us mention one more relevant
point that we will use often. If we add consistency to the left side of the equivalence
statement, we obtain the following:

Bel rational iff Bel has a non-empty belief core

We can extend properties concerning binary beliefs to HAs, as (3) states, by de-
manding that the output of HAs should always have the properties.

67



Independence and Neutrality Next we turn to independence for global thresh-
old rules, and neutrality for local threshold rules. In the last chapter, we investigated
event-wise independence and event-neutrality, whose tension with CDC (collective
deductive closure) leads to the triviality results when the agenda is sufficiently com-
plex. In this section, we introduce, in addition, six different kinds of independence
and neutrality — two for the direct rules with world ths. and four for pooling +
threshold-based binarization. Roughly speaking, independence means that to decide
whether an event/a world belongs to the belief set/the belief core, the probability
assigned to only that event/world matters, regardless of the probabilities of all other
events/worlds. By contrast, neutrality means that every event/world is determined
to be believed or not believed by the same rule, and thereby all events/worlds are
considered equally. We can use this notion to characterize uniform thresholds.

Before providing the formal definition, let us mention some points needed to un-
derstand the definition: recall that world-ths. are used to determine the belief core,
and from now on, bear in mind that F (~P )(w) = 0 means that w is in the belief core

of F (~P ).
Here are the definitions of independence and neutrality to characterize the direct

rules and the ones of f-independence and f-neutrality for pooling(f) + binarization.

Definition 3.6 (Independence and Neutrality). Let F be a HA on (W,P(W )). F is
called

(i) (event-wise) independent(IND) if for every A ∈ A, there is a function GA such

that F (~P )(A) = GA(~P (A)) for all ~P in the domain of F ;

(ii) world-wise independent(INDw) if for every w ∈ W , there is a function Gw such

that F (~P )(w) = Gw(~P (w)) for all ~P in the domain of F ;

(iii) event-neutral(eNEU) if for every ~P ∈ P(W ), there is a function G~P such that

F (~P )(A) = G~P (~P (A)) for all A ∈ A;

(iv) world-neutral(wNEU) if for every ~P ∈ P(W ), there is a function G~P such that

F (~P )(w) = G~P (~P (w)) for all w ∈ W .

Definition 3.7 (f-Independence and f-Neutrality). Let f be a OP and F be a HA on
(W,P(W )). F is called

(i) f-(event-wise) independent(f-IND) if for every A ∈ A, there is a function GA

such that F (~P )(A) = GA(f(~P )(A)) for all ~P in the domain;

(ii) f-world-wise independent(f-INDw) if for every w ∈ W , there is a function Gw

such that F (~P )(w) = Gw(f(~P )(w)) for all ~P in the domain;

(iii) f-event-neutral(eNEU) if for every f(~P )(∈ P(W )), there is a function Gf(~P )

such that F (~P )(A) = Gf(~P )(f(~P )(A)) for all A ∈ A;
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(iv) f-world-neutral(wNEU) if for every f(~P )(∈ P(W )), there is a function Gf(~P )

such that F (~P )(w) = Gf(~P )(f(~P )(w)) for all w ∈ W .

Alternatively, F is defined to be IND/INDw/eNEU/wNEU iff (i′)/(ii′)/(iii′)/(iv′)
where

(i′) for every A ∈ A, if ~P (A) = ~P ′(A), then F (~P )(A) = F ( ~P ′)(A) for all ~P , ~P ′

(ii′) for every w ∈ W , if ~P (w) = ~P ′(w), then F (~P )(w) = F ( ~P ′)(w) for all ~P , ~P ′

(iii′) for every ~P , if ~P (A) = ~P (B), then F (~P )(A) = F (~P )(B) for all A,B ∈ A

(iv′) for every ~P , if ~P (w) = ~P (v), then F (~P )(w) = F (~P )(v) for all w, v ∈ W

While (i′) and(ii′) state that the same individual probabilities of an event/a world
yield the same collective belief in the event/world, (iii′) and (iv′) assert that if two
events/worlds have the same individual probabilities, then the collective belief in
them should be the same. Similarly, equivalent definitions can be formulated for be-
ing f-IND/f-INDw/f-eNEU/f-wNEU.

Monotonicity Now we formalize various kinds of monotonicity that play a central
role to characterize any threshold-based rules. Since we separately defined indepen-
dence and neutrality in the above, here we define strict monotonicity (It will be shown
that strict monotonicity taken together with independence and neutrality amounts to
monotonicity). Informally, strict monotonicity means the following: assume that an
event/a world is in the belief set/belief core of the resulting collective binary belief
of a probability profile. The first two kinds ((i) and (ii) in Definition 3.8) of strict
monotonicity say that other probability profiles with greater probability values of
the event/the world should yield the same result. In contrast, the other two ones
((iii) and (iv)) require that other events/worlds with greater probability values in the
probability profile should also be in the belief set/belief core. f-strict-monotonicity in
Definition 3.9 can be explained in the similar way if we replace a probability profile
by a collective probability, which is the output of an OP f .

Definition 3.8 (Strict-Monotonicity). Let F be a HA on (W,P(W )). F is called

(i) strict-monotone(SMON) if for every A ∈ P(W ), if for some i ∈ N , Pi(A) <

P ′i (A) and for all j 6= i Pj(A) = P ′j(A), and if F (~P )(A) = 1, then F ( ~P ′)(A) = 1

for all ~P , ~P ′ in the domain;

(ii) worldwise strict-monotone(SMONw) if for every w ∈ W , if for some i ∈ N ,

Pi(w) < P ′i (w) and for all j 6= i Pj(w) = P ′j(w), and if F (~P )(w) = 0, then

F ( ~P ′)(w) = 0 for all ~P , ~P ′ in the domain;

(iii) event-strict-monotone(eSMON) if for every ~P in the domain, for some i ∈ N ,

Pi(A) < Pi(B) and for all j 6= i Pj(A) = Pj(B), and if F (~P )(A) = 1, then

F (~P )(B) = 1 for all A,B ∈ A;
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(iv) world-strict-monotone(wSMON) if for every ~P in the domain, for some i ∈ N ,

Pi(v) < Pi(w) and for all j 6= i Pj(v) = Pj(w), and if F (~P )(v) = 0, then

F (~P )(w) = 0 for all w, v ∈ W .

Definition 3.9 (f-Strict-Monotonicity). Let f be a OP and F be a HA on (W,P(W )).
F is called

(i) f-strict-monotone(f-SMON) if for every A ∈ P(W ), f(~P )(A) < f( ~P ′)(A) and

if F (~P )(A) = 1, then F ( ~P ′)(A) = 1 for all ~P , ~P ′ in the domain;

(ii) f-world-wise strict-monotone(f-SMONw) if for every w ∈ W , f(~P )(w) < f( ~P ′)(w)

and if F (~P )(w) = 0, then F ( ~P ′)(w) = 0 for all ~P , ~P ′ in the domain;

(iii) f-event-strict-monotone(f-eSMON) if for every ~P in the domain, f(~P )(A) <

f(~P )(B) and if F (~P )(A) = 1, then F (~P )(B) = 1 for all A,B ∈ A;

(iv) f-world-strict-monotone(f-wSMON) if for every ~P in the domain, f(~P )(v) <

f(~P )(w) and if F (~P )(v) = 0, then F (~P )(w) = 0 for all w, v ∈ W .

Alternatively, in (i) of Definition 3.8 the condition that “for some i ∈ N , Pi(A) <
P ′i (A) and for all j 6= i Pj(A) = P ′j(A)” can be replaced by

“~P (A) ≤ ~P ′(A) and ~P (A) 6= ~P ′(A)”

where ≤ and 6= between two vectors are understood as component-wise comparison.
The same can be said for (ii)-(iv) of Definition 3.8 as well. This indicates that
combining independence or neutrality with strict-monotonicity yields monotonicity
— e.g., IND plus SMON amounts to the statement that for every A ∈ A,

if ~P (A) ≤ ~P ′(A), and if F (~P )(A) = 1, then F ( ~P ′)(A) = 1

for all ~P , ~P ′ in the domain, which we call monotonicity(MON). For other cases, the
same reasoning can be applied.

Conjunctiveness Finally, we now introduce conjunctiveness, which will be crucial
to characterize direct threshold rules. It basically means the following: assume that
two probability profiles (~P and ~P ′) generate beliefs in a given event (A). And consider

any probability profile ( ~P ′′) of which values of the event consists of the individual-
wise minimum probabilities of the event out of the two profiles. Then it also should
generate a belief in the event. For example, if ~P (A), ~P ′(A), ~P ′′(A) are given by Table

3.1 and F (~P )(A) = F ( ~P ′)(A) = 1, then F ( ~P ′′)(A) = 1. In the table, minR denotes
the minimum value in R for any R ⊆ R.

Similar notion can be made for a world in a belief core as well. There also can be
other kinds of conjunctiveness: if two events/worlds are believed/in the belief core,
then so are any events/worlds whose probabilities are individual-wise minimum values
out of probabilities of the first two events/worlds.
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individual ~P (A) ~P ′(A) ~P ′′(A) = (min{Pi(A), P ′i (A)})i
1 0.8 0.7 0.7

2 0.6 0.9 0.6

Table 3.1

(1) Direct Threshold Rules (2) Pooling(f)+Th.Binarization

(i) global event-th IND, SMON, Conj f-IND, f-SMON

(ii) global world-th CDC, INDw, SMONw, Conjw CDC, f-INDw, f-SMONw

(iii) local event-th eNEU, eSMON, eConj f-eNEU, f-eSMON

(iv) local world-th CDC, wNEU, wSMON, wConj CDC, f-wNEU, f-wSMON

Table 3.2: Characterizations of Threshold Rules

These notions are needed, because in the direct threshold rules, we demand
that not a part of but all of individuals’ probabilities should exceed their thresh-
olds. This can be seen as the requirement that the individual-wise minimum in
{~P (A)|F (~P )(A) = 1} should also exceed each individual’s threshold. Here is the
formal definition.

Definition 3.10 (Conjunctiveness). Let F be a HA on (W,P(W )). F is called

(i) conjunctive(Conj) if F (~P )(A) = 1 and F ( ~P ′)(A) = 1, then F ( ~P ′′)(A) = 1 for

any ~P ′′ such that P ′′i (A) = min{Pi(A), P ′i (A)} for all i;

(ii) world-wise conjunctive(Conjw) if F (~P )(w) = 0 and F ( ~P ′)(w) = 0, then F ( ~P ′′)(w)

= 0 for any ~P ′′ such that P ′′i (w) = min{Pi(w), P ′i (w)} for all i;

(iii) event-conjunctive(eConj) if F (~P )(A) = 1 and F (~P )(B) = 1, then F (~P )(C) = 1
for any C such that Pi(C) = min{Pi(A), Pi(B)} for all i;

(iv) world-conjunctive(wConj) if F (~P )(v) = 0 and F (~P )(w) = 0, then F (~P )(u) = 0
for any u such that Pi(u) = min{Pi(v), Pi(w)} for all i.

Characterizations of Threshold Rules We are now ready to characterize eight
classes of threshold rules introduced in the last section in terms of properties in this
section. Assume that F satisfies UD of HAs and f satisfies UD of OPs, that is, both
has the domain P(W ). Our results can be presented by Table 3.2.

As illustrated in the table, every threshold rule satisfies some kind of strict mono-
tonicity combined with independence in the case of global thresholds and with neu-
trality in the case of local thresholds, which we call monotonicity. For example, in

71



(2)(i), the rules are characterized by f-MON, which is defined as f-IND plus f-SMON,
and in (2)(iii) by f-eMON, which is f-eNEU plus f-eSMON. To characterize the rules
with world threshold rules we additionally need CDC because they presuppose the
existence of a belief core. Lastly, we need to add Conj to characterize direct threshold
rules. The following two theorems make this formally precise.

Theorem 3.1 (Characterization of Direct Threshold Rules). (i) The direct thresh-
old rules with global event-ths. are fully characterized by UD, IND, SMON and
CONJ;

(ii) so are the ones with global world-ths. by UD, CDC, INDw, SMONw and CONJw;

(iii) so are the ones with local event-ths. by UD, eNEU, eSMON and eCONJ;

(iv) so are the ones with local world-ths. by UD, CDC, wNEU, wSMON and wCONJ

Proof. (i) It is obvious that the rule satisfies the properties. For the other direction,
we need to find tA,i and BA,i for each i ∈ N , with A being fixed. By UD and IND,

we can let F (~P )(A) = GA(~P (A)) for all ~P ∈ P(W ). In the case of GA
−1(1) = ∅,

let tA,i := 1 and BA,i :=> for all i ∈ N . Otherwise, let tAi := inf{ai|~a ∈ GA
−1(1)}

for each i ∈ N . We divide N into two subgroups N1 and N2 where N1 is the set
of individuals j such that the set {aj|~a ∈ GA

−1(1)} has the infimum and N2 is the
set of the rest individuals. For every individual j ∈ N1, set BA,j :=≥ and for other
individuals k ∈ N2 define BA,k :=>. First observe that if for some j ∈ N1, xj < tA,j
or for some k ∈ N2, xk ≤ tA,k, then GA(~x) = 0 by the definition of infimum. What
is left is to show that GA(~y) = 1 for all ~y such that for every j ∈ N1 and k ∈ N2,
yj ≥ tA,j and yk > tA,k. Since tA,i is the infimum of the i-th components of the vectors
in GA

−1(1) and we have SMON and IND, it follows that for every i there is a vector
~ai in GA

−1(1) such that the i-th component is yi. Note that ~ai has the following form
where n := |N |:

~a1 = (y1 , a1
2 , a1

3 , ... , a1
n)

~a2 = (a2
1 , y2 , a2

3 , ... , a2
n)

...

~an = (an1 , an2 , an3 , ... , yn)

By iterated application of CONJ, we have GA((min{ail|i ∈ N})l∈N) = 1. Since we
have min{ail|i ∈ N} ≤ yl for all l ∈ N , by SMON and IND, we get GA(~y) = 1, as
desired.

(ii) We can prove this in much the same way, the only differences being (a)

F (~P )(w) = Gw(~P (w)) where F (~P )(w) = 0 iff w ∈ B by CDC, with B being the

belief core of F (~P ), (b) tA,i/BA,i/GA/G−1
A (1)/GA(~x) = 0/GA(~y) = 1 replaced by

sw,i/Bw,i/Gw/G−1
w (0)/Gw(~x) = 1/GA(~y) = 0 and (c) IND/SMON/CONJ replaced by

INDw/SMONw/CONJw.

(iii) Similarly, (a) let F (~P )(A) = G~P (~P (A)) and replace (b) tA,i/BA,i/GA/G−1
A (1)

by t~P ,i/B~P ,i/G~P/G−1
~P

(1) and (c) IND/SMON/CONJ by eIND/eSMON/eCONJ. Note
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that in this case N1 = N(thereby N2 = ∅), because given ~P , G−1
~P

(1)(⊆ {~P (A)|A ∈
P(W )}) is finite since P(W ) is finite.

(iv) Likewise, (a) let F (~P )(w) = G~P (~P (w)) and replace (b) tA,i/BA,i/GA/G−1
A (1)

/GA(~x) = 0/GA(~y) = 1 by s~P ,i/B~P ,i/G~P/G−1
~P

(0)/G~P (~x) = 1/G~P (~y) = 0 and (c)

IND/SMON/CONJ by wIND/wSMON/wCONJ. Note that in this case N1 = N as
in (iii) since W is finite.

Theorem 3.2 (Characterization of Pooling(f) + Threshold-based Binarization). Let
f be an OP with the universal domain P(W ).

(i) The Pooling(f) + Threshold Binarization rules with global event-ths. are fully
characterized by UD, f-IND and f-SMON;

(ii) so are the ones with global world-ths. by UD, CDC, f-INDw and f-SMONw;

(iii) so are the ones with local event-ths. by UD, f-eNEU and f-eSMON;

(iv) so are the ones with local world-ths. by UD, CDC, f-wNEU and f-wSMON

Proof. (i) It is clear that the rule satisfies the properties. For the other direction, by

UD and f-IND we can let F (~P )(A) = GA(f(~P )(A)) for all ~P ∈ P(W ). In the case of
GA
−1(1) = ∅, let tA := 1 and BA :=>. Otherwise, let tA := inf GA

−1(1). If GA
−1(1)

has the infimum, then let BA :=≥, and otherwise let BA :=>. Our claim follows by
f-SMON and f-IND.

(ii) This follows in the same manner with (a) F (~P )(w) := Gw(f(~P )(w)) where

F (~P )(w) = 0 iff w ∈ B by CDC, whereB is the belief core of F (~P ). (b) tA/BA/GA/G−1
A (1)

replaced by sw/Bw/Gw/G−1
w (0) and (c) f-IND/f-SMON replaced by f-INDw/f-SMONw.

(iii) Similarly, (a) let F (~P )(A) = Gf(~P )(f(~P )(A)) and replace (b) tA/BA/GA/G−1
A (1)

by t~P/B~P/Gf(~P )/G
−1

f(~P )
(1) and (c) f-IND/f-SMON by f-eIND/f-eSMON. Note that

when Gf(~P )
−1(1) 6= ∅, Gf(~P )

−1(1) always has the infimum and thereby we can set

Bf(~P ) :=≥, because given ~P , G−1

f(~P )
(1)(⊆ {f(~P )(A)|A ∈ P(W )}) is finite since P(W )

is finite.
(iv) Likewise, (a) let F (~P )(w) = Gf(~P )(f(~P )(w)) and replace (b) tA/BA/GA/G−1

A (1)

by s~P/B~P/Gf(~P )/G
−1

f(~P )
(0) and (c) f-IND/f-SMON by f-wIND/f-wSMON. when

Gf(~P )
−1(0) 6= ∅, we can set Bf(~P ) :=≥, because W is finite.

These two characterization theorems provide a useful framework to analyze and
compare the eight classes of threshold-based rules. We first turn to part (i) of Theo-
rem 3.1. It shows that the direct rules with global event-thresholds satisfy IND, which
indicates that they are vulnerable to the oligarchy result described in the last chapter:
if taken together with CDC (collective deductive closure), IND leads to the oligarchy
result under the condition of CP (certainty preservation) and ZP (zero preservation)
when the agenda is sufficiently complex. To circumvent this problem, we need to con-
sider other approaches, e.g., procedures reducing the complexity of the agenda such
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as premise-based rules, methods with some inconsistency management like minimal
change, or other kinds of threshold rules.

Global event-ths. might cause the same problem in pooling(f)+threshold-based
binarization as well. As seen in part (i) of Theorem 3.2, it satisfies f-IND. If the OP
f satisfies independence as well — e.g., linear pooling — in the sense that

for every A ∈ A, if ~P (A) = ~P ′(A), then f(~P )(A) = f( ~P ′)(A) for all ~P , ~P ′,

the whole procedure satisfies IND, which leads to the oligarchy result as above. It
is also worth pointing out that binarization with global event-ths. does not ensure
collective deductive closure (CDC) as the lottery paradox shows.

Next let us move to direct threshold rules. In this research we restrict our focus
to the simplest forms of direct threshold rules in which every individual’s probability
should unanimously exceed his/her own threshold. This requirement corresponds to
Conj. This could be justified in some situations in which every individual’s opinion
should be respected, but in many other situations it would appear not so reasonable.

Now we turn to pooling + threshold based binarization with world-ths. or local
event-ths. in part (ii)-(iv) of Theorem 3.2. As highlighted before, binarization with
local thresholds involves the rules satisfying Humean thesis (HTr) in Leitgeb (2014,
2017a) and the Camera Shutter (CSs) rules in Lin & Kelly (2012b). In contrast to
global event-ths., not only rules with world-ths. but also certain rules with local
event-ths. elude the above problem of rationality. Firstly, the rules with world-ths.
like the CSs rules guarantee CDC, as shown in part (ii) and (iv). Secondly, not every
local event-ths.-based binarization ensures rationality. However, notice that HTr can
generate a special kind of local event-ths.-based rules. If we combine our results with
the stability theory of belief, we can see that the following holds:

a HA F satisfies f-eMON (f-eNEU plus f-eSMON) and CDC
iff

(f(~P ), F (~P )) satisfies HT
1
2 for all ~P in the domain

where HT
1
2 is the Humean thesis with r = 1

2
, which we will explain in full detail in the

next section. It also deserves special mention that according to the stability theory of
belief, the rules generated by HTr can be seen as local world-threshold rules as well,
which implies that the rules satisfy f-wMON(f-wNEU plus f-wSMON). Accordingly,
the following also holds:

a HA F satisfies f-eMON, f-wMON and CDC
iff

(f(~P ), F (~P )) satisfies HT
1
2 for all ~P in the domain

Threshold-based binarization with local event/world ths. — that corresponds to
Lockean/coherent binarization in the next section, if we assume belief sets/belief cores
to be non-empty(NSK/CCS)— will be addressed in full detail in the next section.
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3.3 Lockean, Coherent, Stable or Rational-likely

Belief Binarization

Individuals’
probabilistic

Beliefs ~P

Group’s
probabilistic

Belief f(~P )(=: P )

Opinion

Pooling f

Group’s
binary

Belief F (~P )

Binarization GHA

We have studied both direct threshold rules and pooling + threshold-based binariza-
tion so far. In the remainder of this chapter, we will focus only on belief binarization,
which can be employed for heterogeneous belief aggregation if combined with opinion
pooling, and we will look more closely at threshold-based binarization. Recall that
G : P 7→ G(P ) is a binarization rule (BR) on a finite space (W,P(W )), where P is a
probability function on (W,P(W )) and G(P ) : P(W )→ {0, 1} is a binary belief.

Group’s
probabilistic Belief

P

Group’s
binary Belief

G(P )

Binarization G

In this section, we will collect some properties of belief binarization that concern
binarization with local event-ths. and local world-ths. The first aim of this section
is to investigate the interrelation between the properties and suggest geometrical
characterizations of some of them. Then, we will introduce certain threshold-based
binarization rules in the literature on belief binarization and moreover, we will pro-
pose some other binarization rules. The second aim is to examine whether each of
the binarization rules satisfy each property.

Properties of Belief Binarization The first two properties are Lockean binariza-
tion and coherent binarization that pertain to binarization with local event thresholds
and local world thresholds, respectively. Let Bel : P(W )→ {0, 1} be a binary belief
and P be a probability function on a finite space (W,P(W )). We call an ordered pair
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(P,Bel) a belief state on (W,P(W )). We first define what a Lockean/coherent belief
state means and using this, we will define Lockean/coherent binarization as follows.

Definition 3.11 (Lockean Binarization and Coherent Binarization). Let W be a
finite non-empty set. Let (P,Bel) be a belief state on (W,P(W )) and G be a BR.

(1) (P,Bel) is called Lockean if

(i) Bel has a non-empty belief set (Bel−1(1) 6= ∅), and

(ii) for all A,C ∈ P(W ), if P (A) ≤ P (C) and if Bel(A) = 1, then Bel(C) = 1.

(Equivalently, (P,Bel) is called Lockean if Bel has a non-empty belief set and
there exists a threshold tP ∈ [0, 1] such that Bel(A) = 1 iff P (A) ≥ tP for all
A ∈ P(W ).)

(2) (P,Bel) is called coherent if

(i) Bel has a non-empty belief core B, and

(ii) for all v, w ∈ W if P (v) ≤ P (w) and if v ∈ B, then w ∈ B.

(Equivalently, (P,Bel) is called coherent if Bel has a non-empty belief core B
and there exists a threshold sP ∈ [0, 1] such that w ∈ B iff P (w) ≥ sP for all
w ∈ W .)

(3) G is Lockean/coherent iff (P,G(P )) is Lockean/coherent for all P in the domain
of G.

In a Lockean belief state, high probabilities of events matter, while in a coher-
ent belief state, high probabilities of worlds matter. To be more precise, a Lock-
ean/coherent belief state means that the belief set/belief core is (i) non-empty and
(ii) contains all and only the events/worlds with probability above some thresholds.
The thresholds depend on the probability and so we call them local thresholds. So,
for a belief state to be Lockean/coherent, two conditions are required: (i) the belief
set/the belief core being non-empty and (ii) a kind of monotonicity of probabilities
of events/worlds. These two conditions can be rephrased in terms of local thresholds.
Since it is guaranteed that the belief set/belief core is non-empty and (W,P(W )) is
a finite space, we can set B =≥ ( and let tP = minG−1

P (1)/sP = minG−1
P (0) where

G(P )(A) = GP (P (A))/G(P )(w) = GP (P (w))).
A BR G being Lockean/coherent are closely related to pooling + threshold-

binarization with local event/world ths. in the last section. Let f be an OP and

G be a BR where the image of f(:= {f(~P )|~P ∈ P(W )n}) is included in the domain
of G (e.g., G has the universal domain P(W )), which we need to define f +G. Then
the following two statements hold:

G is Lockean iff (i) F satisfies NSK and (ii) F = f +G is a rule with local event-ths..

G is coherent iff (i) F satisfies CCS and (ii) F = f +G is a rule with local world-ths..
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Even though we will focus on Lockean and coherent binarization in this section,
the above two statements say that this amounts to the study of pooling + local
event/world threshold based binarization if we take NSK/CCS for granted.

One natural question would be when a binarization rule is Lockean and coherent
simultaneously. This question leads us to introduce the stability theory of belief in
Leitgeb (2013), Leitgeb (2014a) and Leitgeb (2017a). The theory will provide us with
the notion of being stable that will turn out to be equivalent to being Lockean and
coherent simultaneously. To define this notion, we will need the following definitions of
HTr and P -stabler. HTr is a joint constraint on the binary belief and the probability
function of a belief state, concerning how they should rationally relate each other.
It says that an agent should believe events of stably high probability. Here, an event
having stably high probability means that its probability is above a given threshold
r(∈ (1

2
, 1]), and it remains so high even with conditionalization on every event (with

positive probability) not excluded in light of the agent’s binary belief — i.e., every
event whose complement is not believed. It turns out that binary beliefs that together
with a probability function P satisfy HTr are deductively closed, which means that
each of them has its belief core.3 What is more, a belief core must be P -stabler to
satisfy HTr, in the sense that its conditional probability on every event (with positive
probability) that is consistent with it should exceed the threshold r. Indeed, any
P -stabler sets with no zero-world (a world with probability zero) can be a belief core
that induces a binary belief, together with P , satisfying HTr. The following definition
and lemma will make this more explicit and explain the reason for this.

Definition 3.12 (HTr and P-stabler (Leitgeb (2017a))). Let W be a finite non-empty
set and r ∈ [1

2
, 1). Let (Bel, P ) denote a belief state, where P is a probability function

on (W,P(W )) and Bel : P(W )→ {0, 1} is a binary belief. Let B be a subset of W .

(1) (P,Bel) satisfies HTr if the following holds:

for all A ∈ P(W ), Bel(A) = 1 iff for all Y ∈ P(W ) with Bel(Y ) = 0 and
P (Y ) > 0: P (A|Y ) > r.

(2) B is P-stabler if the following holds:

for all Y ∈ P(W ) with Y ∩B 6= ∅ and P (Y ) > 0: P (B|Y ) > r.

So, HTr in (1) expresses that any event is believed iff it has a stably high prob-
ability and (2) says that a P -stabler set B has a stably high probability when we

3See Definition 3.12 (1) below and the proof of Theorem 5 in Chapter 2 of Leitgeb (2017a).
For the sake of self-containment, we repeat it here. (i) According to HTr, Bel(W ) = 1. (ii) Let
A ⊆ B. If P (A|Y ) > r then P (B|Y ) ≥ P (A|Y ) > r. Thus, Bel is closed under superset. (iii) For a
contradiction with closure under conjunction, suppose Bel(A) = Bel(B) = 1 but Bel(A ∩ B) 6= 1.
Then A ∩B can be Y such that Bel(Y ) = 0 and P (Y ) > 0 (for otherwise Bel(A∩B) = 1). However,
P (A ∪B|A ∩B) = P (A|A ∩B) + P (B|A ∩B) > 2r ≥ 1, a contradiction.
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regard B as a belief core. It is because if B is a belief core, then the binary belief
Bel induced by it satisfies that Bel(Y ) = 0 iff Y ∩B 6= ∅.

Notice that the empty set ∅ is always P -stabler and so is every set of probability
1, which we call a trivial P -stabler set. This distinction between trivial and non-
trivial P -stabler sets will be needed to explicate the relation between HTr and being
P -stabler in the following lemma. And thus, it is worthwhile to discuss the following
two points here. First, it is clear that except for the smallest set of probability 1, the
other sets of probability 1 — the sets with a zero-world — cannot be the belief core of
a binary belief satisfying HT r together with any P . The reason is that the smallest
set of probability 1 is always believed by any Bel satisfying HT r, and consequently,
the greater sets cannot be the belief core, as a belief core is the smallest believed
set. Second, it is easily seen that non-trivial P -stabler sets and the smallest trivial
P -stabler set are those sets B satisfying the following4:

for all w ∈ B, P (w) > r
1−rP (B)

This formula shows that there is such a big gap between the probabilities of the worlds
in B and the probabilities of the worlds in B that each of the former probabilities is
bigger than even the sum of all the latter probabilities when r = 1

2
. The greater r is,

the bigger the gap becomes.
Now we formulate the relation between a belief state satisfying HTr and a set

being P-stabler. We need the following lemma to define binarization, and moreover,
we will use it to define a binarization rule that we will call HTr(S) later and to prove
some theorems in the next section as well.

Lemma 3.3 (HTr and P-stabler (Leitgeb (2017a))). Let W be a finite non-empty set
and (P,Bel) be a belief state on (W,P(W )). Let r ∈ [1

2
, 1). The following statements

are equivalent:

(i) (P,Bel) satisfies HTr and Bel(∅) = 0

(ii) Bel has a non-empty belief core B such that B is a non-trivial P-stabler set or
the smallest set with probability 1

(iii) Bel has a non-empty belief core B such that for all w ∈ B, P (w) > r
1−rP (B).

Proof. Theorem 5 in Chapter 2 in Leitgeb (2017a), p. 108.

Notice that Bel(∅) = 0 amounts to Bel being consistent, if Bel is deductively
closed. Even though HTr ensures deductively closed binary beliefs, it does not guar-
antee consistency: it allows for a belief core being ∅, i.e., when Bel−1(1) = P(W ), it
satisfies HTr with any P . Since we take consistency for granted and we are interested
only in consistent binary beliefs, we require consistency in our definition of being

4The proof is the following: Let v be a world with the minimum probability in B (if B is empty,

then the claim is vacuously true.) Then we have P (B|Y ) ≥ P (v)

P (v)+P (B)
for all Y ∈ P(W ) with

Y ∩B 6= ∅ and P (Y ) > 0. Since P (v)

P (v)+P (B)
> r iff P (v) > r

1−rP (B), the claim holds.

78



stable, which corresponds to the condition of a belief core being non-empty, when a
belief core is presupposed to exist.

This lemma provides a way to find a consistent binary belief satisfying HTr given
a probability function P : (i) pick one of any non-empty and non-trivial P-stabler sets
or the smallest set with probability 1 and (ii) believe all its supersets.

We not only focus on consistent beliefs but also want to allow as many binary be-
liefs satisfying the stability theory of belief together with a given probability function
as possible, and thereby we want to attain the weakest, i.e., the least demanding,
form of stability. Accordingly, we plug the smallest value 1

2
into r in the above lemma

and this leads to the following definition.

Definition 3.13 (Stable Binarization). Let W be a finite non-empty set and (P,Bel)
be a belief state on (W,P(W )). Let G be a BR.

(1) (P,Bel) is stable iff one of the following equivalent statements holds:

(i) (P,Bel) satisfies HT
1
2 and Bel(∅) = 0

(ii) Bel has a nonempty belief core B such that B is a non-trivial P-stable set
or the smallest set with probability 1

(iii) Bel has a nonempty belief core B such that for all w ∈ B, P (w) > P (B).

(2) G is stable iff (P,G(P )) is stable for all P in the domain of G.

Simply stated, part (i) expresses that being stable is defined to be consistent
and stable under conditionalization. This is equivalent to (ii), which turns out to
be equivalent to (iii) the existence of non-empty belief core that is so stable that
even a world with the minimum probability in it has a greater probability than its
complement. We will use only (iii) in this chapter.

It is important to recognize the distinction between the property of a binarization
being stable, the relation HTr between the binary belief and the probability function
of a belief state and the binarization rule HTr(S), to be defined later, which picks
the smallest non-empty P -stabler set as the belief core. The first one will serve as a
norm that binarization rules should satisfy. The second one is not only used to define
the first and third ones, but also gives a binarization relation and binarization corre-
spondence in the next section, while the third one gives a binarization rule, which is
a reduction method to specify which to believe given any probability function. They
are different notions that have a different role, but closely related by definition: each
input and its resulting output of the rule HTr(S) satisfy HTr and consistency and
thus, they are stable belief states, which implies that the rule is stable.

Next let us turn to another notion, rational likely binarization, which is less de-
manding than being stable.

Definition 3.14 (r-likely Binarization). Let W be a finite non-empty set and (P,Bel)
be a belief state on (W,P(W )). Let G be a BR.

(1) (P,Bel) is called rational-likely(r-likely) if
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(i) Bel has a nonempty belief core B, and

(ii) for all A ∈ P(W ), if Bel(A) = 1, then P (A) > P (A), i.e., P (A) > 1
2
.

(Equivalently, (P,Bel) is called r-likely if (i) Bel has a nonempty belief core B,
and (ii) P (B) > 1

2
.)

(2) G is r-likely iff (P,G(P )) is r-likely for all P in the domain of G.

This definition of a rational-likely belief state consists of two parts. Part (i)
expresses that the binary belief of a belief state should be rational, i.e., consistent, and
deductively-closed. The reason why we add this part is that we are basically interested
in binarization that generates rational binary beliefs. Moreover, the requirement
makes it simpler to compare the property of being r-likely with being coherent and
being stable, since they imply being rational. And every rule we will consider in this
section generates rational binary beliefs. Thus, the restriction of being rational will
not affect our discussion in this section.

Part (ii) is the main part of this definition. It is required to compare each event
and its complement, and then not to believe one of them that is less likely. It is
immediate that under the assumption of the existence of a non-empty belief core,
this is equivalent to the requirement that the probability of the belief core should
be greater than one-half. This second part is weaker than being Lockean with a
threshold greater than 1

2
, because it is just one direction of the requirement of being

Lockean that Bel(A) iff P (A) > 1
2

— having a probability above a half is just a nec-
essary condition for belief in the definition of being r-likely. Thus, it might elude the
problem of rationality of Lockean binary belief. Even though we cannot respect the
whole structure of the probabilities of events due to this problem, we could require
to respect at least the probability pair of each event and its complement.

The last property we will introduce is rationality of binarization, which encom-
passes being coherent, stable, and r-likely. One might notice that in all of the three
definitions of a belief state being coherent, stable, and r-likely, the existence of a non-
empty belief core is required, which is equivalent to rationality of the binary belief of
the belief state. A rational binarization is defined to be a binarization that generates
rational binary beliefs, as follows.

Definition 3.15 (Rational Binarization). Let G be a BR. G is rational iff G(P ) is
rational for all P in the domain of G.

The requirement of non-empty belief core will play a crucial role to define various
rational binarization rules.

So far, we have introduced all of properties of a belief state and binarization we
want to explore, and we are now ready to look at the relation between them. Figure
3.1 depicts the relation between the properties. Lockean and rational binarization is
exactly the same as stable binarization, which is coherent and r-likely, hence rational.
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Lockean

stable

coherent

r-likely

rational

Figure 3.1: Properties of Binarization Rules

This relation can be formulated as follows. The theorem and proof can be found
in Letigeb (2013), Leitgeb (2014a) or Leitgeb (2017a), but to make our exposition
self-contained, we offer the proof here.

Theorem 3.4 (Stability and other properties (Letigeb (2013), Leitgeb (2014a), Leit-
geb (2017a))). Let G be a BR. The following statements are equivalent.

(i) G is stable.

(ii) G is Lockean and coherent.

(iii) G is Lockean and r-likely.

(iv) G is Lockean and rational.

Lockean & r-likely Lockean & rational

stable Lockean & coherent

(b)

(a)

(c)
by definition

by definition

Figure 3.2: Equivalence among properties

Proof. It is sufficient to show the following(See the figure):
(a) if (P,Bel) is stable, then (P,Bel) is Lockean and coherent
(b) if (P,Bel) is stable, then (P,Bel) is Lockean and r-likely
(c) if (P,Bel) is Lockean and rational, then (P,Bel) is stable.

To (a) and (b): assume that (P,Bel) is stable. Thus Bel has a non-empty belief
core B such that

P (v) > P (B) (3.1)
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where v is a world with the minimum probability in B, and thereby if P (v) > P (w),
then w /∈ B. If P (u) ≥ P (v), then u /∈ B, for otherwise P (v) ≤ P (B). Thus (P,Bel)
is coherent.

Now suppose that P (B) < 1
2

and thus P (v) < 1
2

and P (B) ≥ 1
2
. This contradicts

the inequality in (3.1). Thus, (P,Bel) is r-likely.
Moreover, if Bel(A) = 1, i.e., A ⊇ B, then P (A) ≥ P (B). Now consider

the set that is not believed and has the maximal probability. This is {v}, and
P ({v}) = P (B)− P ({v}) + P (B) < P (B) because of the inequality in (3.1). There-
fore, if Bel(A) = 0, then P (A) < P (B). Hence (P,Bel) is Lockean.

To (c): assume that (P,Bel) is rational, and thereby there exists a nonempty
belief core B. Suppose that (P,Bel) is not stable. Then, P (v) ≤ P (B) where v is
a world with the minimum probability in B. From this, it follows that P ({v}) =
P (B) − P ({v}) + P (B) ≥ P (B) even though Bel({v}) = 0 and Bel(B) = 1, which
shows that (P,Bel) is not Lockean.

Geometrical Characterization Now, we will examine how the properties pre-
sented so far can be geometrically characterized. These characterizations not only
give us a geometric intuition for the properties, but also provide convenient criteria
for testing which rules satisfy each property.

For geometrical characterizations, we first introduce a typical way to represent
a probability function in Euclidean space. Let W := {w1, ..., wm} be a finite non-
empty set of possible worlds with m ≥ 1. For any probability function P ∈ P(W ) on
(W,P(W )), we will use the small letter p to denote its representation point (p1, ..., pm)
in Rm where pi = P (wi) for all i ≤ m. The probability simplex (with dimension m−1)
4m is defined as the set of the representation points of all probability functions, i.e.,

4m := {p ∈ Rm|P ∈ P(W )}

Hence it is evident that there is one-to-one correspondence between P(W ) and 4m.
In this way we can represent the input of a BR in 4m(⊆ Rm).

Our next question would be how to represent outputs of a BR, binary beliefs. We
propose a convenient way for a rational BR. Let G be a rational BR, then it enables
us to regard a binary belief G(P ) as a non-empty belief core, a non-empty subset of
W . Our main idea is to identify any non-empty belief core B with the representation
point of the uniform distribution U(B) on B. We denote the point corresponding to
a belief core B by b ∈ 4m. Let Um(⊆ 4m) be the set of such points, i.e.,

Um := {b ∈ 4m|b is the representation point of U(B) for some B ∈ P(W ) \ {∅}}

Then there is one-to-one correspondence between Um and P(W ) \ {∅}. Accordingly,
we can treat G as a function from 4m to Um. For b ∈ Um, we define

G−1(b) := {p ∈ 4m| G(P ) = B}
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(the set of the representation points of the probability functions in the preimage of
B under G). We call G−1(b) the preimage-region of b under G.

With this in place, let us start to characterize coherent binarization. We will do
it using the Voronoi diagram, which will also be useful throughout the rest of this
chapter (Later, we will introduce several distance-based binarization methods that
can be expressed by Voronoi diagrams). Here is its definition:

Definition 3.16 (Voronoi Diagram). Let R = {r1, r2, ..., rl} ⊆ Rm (l ≥ 1) and
ri ∈ R, which is called a generator. We call the set given by

V (ri|R) = {x ∈ Rm| ||x− ri|| ≤ ||x− rj|| ∀j}

the Voronoi cell of ri with respect to R where || · || is the Euclidean distance. We also
use V (ri|R)◦ to denote the set {x ∈ Rm| ||x − ri|| < ||x − rj|| ∀j 6= i}. We call the
set given by

V(R) = {V (r1|R), V (r2|R), ..., V (rl|R)}

the Voronoi diagram of R.

So, given generators in Rm, the Voronoi diagram decomposes Rm into the regions
close to each generator. More precisely, the Voronoi cell of a generator consists of all
points that have the minimum distance from that generator rather than from all other
generators, and the Voronoi diagram is the set of the Voronoi cells. Geometrically
speaking, the Voronoi cell of a generator is the intersection of the half-spaces contain-
ing the generator that are bounded by the perpendicular bisectors of the line segment
connecting the generator and one of the other generators. For example, assume that
the points in Figure 3.3 are the generators in R2. The line segments connecting two
generators are represented by blue dotted line segments and the boundaries of the
Voronoi cells are drawn with black solid line segments.

Figure 3.3: A Voronoi Diagram in R2
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Figure 3.4: Probability Simplex 43 and Belief Cores

Using the notion of the Voronoi diagram, let us first characterize coherent binariza-
tion when W = {w1, w2, w3}. Figure 3.4 represents the probability simplex 43 in R3.
The seven grey points b correspond to the seven non-empty subsets B ⊆ W , and con-
stitute U3 — i.e., U3 = {b1, b2, b3, b12, b13, b23, b123} where b1 = (1, 0, 0), b2 = (0, 1, 0),
b3 = (0, 0, 1), b12 = (1

2
, 1

2
, 0), b13 = (1

2
, 0, 1

2
), b23 = (0, 1

2
, 1

2
) and b123 = (1

3
, 1

3
, 1

3
). The

simplex is divided into the 6 smallest triangles, in which the indices of worlds are
listed, from top to bottom, in decreasing order of the probability values of the worlds:

for example, the numbers
1
2
3 in the upper left triangle indicates that p1 > p2 > p3 for

any p in that triangle that is neither on the vertical edge nor the lower left edge of
the triangle. Figure 3.4 illustrates three Voronoi diagrams as well. Let us divide U3

into three sets U3
1 = {b1, b2, b3}, U3

2 = {b12, b23, b13} and U3
3 = {b123}. Then we can

make the three Voronoi diagrams V(U3
1 ), V(U3

2 ) and V(U3
3 ) (they will be depicted in

Figure 3.5). The line segments inside of the simplex correspond to the Voronoi cell
boundaries of the three Voronoi diagrams.

Now, consider the region where p1 > p2, p3 — the upper left and right triangles.

It lies in V (b1|U3
1 )◦. And the region where p1, p2 > p3 — the triangles with

1
2
3 and

2
1
3

— lies in V (b12|U3
2 )◦. If G is coherent and G(P ) = {w1}/G(P ) = {w1, w2}, then p

lies in the region where p1 > p2, p3/p1, p2 > p3, respectively. Accordingly, for a BR G
to be coherent, it must hold that

G−1(b1) ⊆ V (b1|U3
1 )◦

and
G−1(b12) ⊆ V (b12|U3

2 )◦

Figure 3.5 shows these subset relations. The leftmost/centered/rightmost figure cor-
responds to the Voronoi diagram V(U3

1 )/V(U3
2 )/V(U3

3 ), respectively, restricted to 43.
The dotted lines show the way each Voronoi diagram divides each simplex. Each
region containing b and bounded by red line represents G−1(b) for some G. For a
rational BR to be coherent, every preimage-region should be strictly included in the
corresponding Voronoi cell and thus, the red lines should not touch the dotted lines.
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Figure 3.5: Coherence and the Voronoi Diagrams V(U3
1 )(leftmost)/V(U3

2 )(centered)/V(U3
3 )(rightmost), restricted in

43.

Now, let us generalize this reasoning to the case where |W | = m. For a repre-
sentation point p ∈ 4m, we define the support Supp(p) of p to be the same as the
support of the corresponding probability function P , i.e.,

Supp(p) = Supp(P ) = {w ∈ W |P (w) 6= 0}

Assume that a rational BR G is coherent. Let G(P ) = B (i.e., p ∈ G−1(b)). Since
G is coherent, B consists of the worlds with higher probability values of P than the
worlds in B. This implies that p lies in the region where for all i ∈ Supp(b) (i.e.,
wi ∈ B) and for all j /∈ Supp(b) (i.e., wj ∈ B)

pi > pj

which can be proven to be equivalent to

p ∈ V (b|Um
k )◦

where k = |Supp(b)| and Um
k = {b′ ∈ Um||Supp(b′)| = k}. Therefore

G−1(b) ⊆ V (b|Um
k )◦ (3.2)

Conversely, if we assume (3.2) for all b ∈ Um, we can check that G is coherent. The
following theorem and its proof shows this intuition is true.

Theorem 3.5 (Geometric Characterization of Coherence). Let |W | = m. A rational
binarization rule G is coherent iff for all k ≤ m and for all b ∈ Um

k ,

G−1(b) ⊆ V (b|Um
k )◦

where Um
k = {b′ ∈ Um| |Supp(b′)| = k}

Proof. (→) Suppose that a binarization rule G is coherent. Suppose that there are
k ≤ m, b, b′ ∈ Um

k , and p ∈ 4m such that p ∈ G−1(b), b 6= b′, and p ∈ V (b′|Um
k ). Since

B and B′ are different sets with the same cardinality, there are w and w′ such that
w ∈ B\B′ and w′ ∈ B′\B. Let us compare pw and p′w. Define B′′ = (B′\{w′})∪{w}.
Note that b′′ ∈ Um

k . Since p ∈ V (b′|Um
k ), we have

||p− b′||2 ≤ ||p− b′′||2
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Figure 3.6: stable for |W | = 3 for |W | = 3

w2 w3

w1
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w1
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w1

Figure 3.7: r-likely for |W | = 3

It follows that

(pw′ −
1

k
)2 + p2

w ≤ (pw −
1

k
)2 + p2

w′

which implies that pw′ ≥ pw. Since G is coherent, G(P ) = B, and w ∈ B, we have
w′ ∈ B, which contradicts our assumption that w′ ∈ B′ \B.
(←) Assume the RHS. And suppose that there are w,w′ ∈ W , p ∈ 4m, and b ∈ Um

k

such that p ∈ G−1(b), w ∈ B, P (w′) ≥ P (w), and w′ /∈ B. Then there is a b′ ∈ Um
k

such that B′ = (B \ {w}) ∪ {w′}. Since G−1(b) ⊆ V (b|Um
k )◦, we have

||p− b||2 < ||p− b′||2

which implies that pw′ < pw, which contradicts our assumption that P (w′) ≥ P (w).

The above theorem says that a coherent BR can be fully characterized by the
geometrical property saying that each preimage-region of the BR is strictly contained
in the respective Voronoi cell.

Next we turn to the property of being stable and being r-likely. In this research, we
provide geometrical characterization only when W = {w1, w2, w3} and leave a general-
ization for the future work. It will enable one to see whether various kinds of rational
BRs are stable or r-likely when |W | = 3. Figure 3.6 and Figure 3.7 illustrates the con-
ditions for a rational BR to be stable and to be r-likely. In both figures, the preimage-
regions are represented by red curved lines. Each leftmost/centred/rightmost figure
illustrates the preimage-regions of b1, b2 and b3/b12, b21 and b13/b123, respectively.

For a rational BR to be stable
1
2 /r-likely, each preimage-region should not cross the

dotted lines. The reason is the following. Firstly, for a singleton represented by bi
to be a belief core by a BR that is stable

1
2 , it must hold that pi > pj + pk where
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j 6= k ∈ {1, 2, 3}, i.e.,

pi >
1

2

which is the same condition for being r-likely. The dotted lines in both leftmost
figures represent the region where pi = 1

2
for i ∈ {1, 2, 3}. Secondly, as for bij, the

centred figures give the criteria. To be stable, it must hold that pi, pj > pk, which is
equivalent to the condition to be coherent. Thus the centred one in Figure 3.6 is the
same as the one in Figure 3.5. By contrast, the condition to be r-likely is that

pi + pj >
1

2

which is shown in the centred one of Figure 3.7 (We described only the case for
bij = b12. The other cases are obvious from symmetry).
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3.4 Threshold-based Binarization Rules

We now introduce several belief binarization rules, which we will examine regarding
whether the properties in this section are satisfied or not. A lot of research has been
done on the first three rules while the forth rule has been rarely studied and the fifth
rule is proposed for the first time in this thesis.

Definition 3.17 (Threshold-based Binarization Rules). Let G be a rational BR with
the domain P(W ), with G(P ) being regarded as a non-empty belief core (a non-empty
subset of W ) for all P ∈ P(W ).

(i) Let r ∈ [1
2
, 1). G is the Humean Thesis with the Smallest-stable-selection rule

(HTr(S)) if G(P ) is the smallest non-empty P-stabler set B ⊆ W for all P ∈
P(W ).5

(ii) Let s > 1. G is the Camera Shutter rule (CSs) if G(P ) = {v ∈ W |P (v) ≥
maxw∈WP (w)

s
} for all P ∈ P(W ).6

(iii) Let s > 1,
∑

w∈W mw = 1, and mw > 0 for all w ∈ W . G is the generalized

Camera Shutter rule (gCSs) if G(P ) = {v ∈ W |mvP (v) ≥ maxw∈WmwP (w)
s

} for
all P ∈ P(W ).7

(iv) Let g ∈ (0, 1]. G is the Coherent Core-Threshold rule (CCTg) if G(P ) is the
smallest coherent set satisfying P (G(P )) ≥ g for all P ∈ P(W ).8

(v) G is the Distance Minimization rule with Squared Euclidean distance (DM(SE)+)
if G(P ) ∈ argminB⊆W D(P,B) := {B ⊆ W | ||b−p||2 ≤ ||b′−p||2 ∀b′ ∈ Um} for
all P ∈ P(W ) (combined with some tie-breaking rule).

It is easy to check that every rule is well-defined and rational, i.e., for every rule
G in the above definition, for each P ∈ P(W ) there exists a unique G(P ) that is
non-empty. We now go through the rules in the above definition one by one.

Let us begin with part (i) of the definition. HTr allows, given a probability func-
tion P , multiple candidates for the non-empty belief core: non-trivial non-empty
P -stable sets and the smallest set with probability 1 (See Lemma 3.3 (ii)) From
Lemma 3.3 (iii), it is easy to check that they are in a subset relationship each
other, and thus form a system of spheres or a ranked system of sets. Then we
can devise an easily definable and justifiable selection rule HTr(S) according to
which the innermost sphere is always chosen.9 This selection function can be use-
ful when the binarization context demands the largest belief set. Figure 3.8 depicts

5See Leitgeb (2013). For the discussion about HTr(S) see Cariani (2016), Thorn (2018), and
Wright (2018).

6See Lin & Kelly (2012a, 2012b).
7See Lin & Kelly (2012b).
8See Cantwell & Rott (2019).
9Of course there can be other selection rules. For example, we can devise a new rule by measuring

distances from the point representing the given probability function to the points representing the
candidates for the non-empty belief core that are permitted by HTr. Formally, HTr equipped with
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which belief core HT
1
2 (S)(left)/HT

3
4 (S)(right) assigns to each probability function on

W = {w1, w2, w3}. In the left figure, the preimage-regions of b1,b2 and b3 are respec-
tively the upmost, leftmost, and rightmost small triangles excluding their edge inside
of the simplex. The preimage-regions of b12, b13, and b23 are respectively the left,
right, and lower quadrangles in the middle excluding the bold lines, which constitute
the preimage-region of b123. In the right figure, the simplex is divided into seven
regions. Each of them is the preimage-region of the point in it.

w2 w3

w1

w2 w3

w1

Figure 3.8: HT
1
2 (S)(left) and HT

3
4 (S)(right)

We next turn to CSs and gCSs. According to CSs, what matters is probabilities
of worlds. Contrary to HTr(S), probabilities of events play no role. Given s > 1 and
a probability function P , the way to choose the worlds with higher probabilities to
constitute a belief core G(P ) is using a world-ordering ≺P such that

w ≺P v iff sP (w) < P (v)

for all v, w ∈ W . The maximal elements with respect to the world-ordering ≺P
constitute the belief core of G(P ). Accordingly, we have

v ∈ G(P ) iff P (v) ≥ maxw∈WP (w)
s

That is, for a world to be in the belief core, the ratio of its probability to the maximum
probability must be above the threshold 1

s
. So this rule utilizes only ratios between

worlds’ probabilities, regardless of any sums of worlds’ probabilities — i.e., probabil-
ities of events. Turning to gCSs, it generalize CSg by introducing a weighting vector
(mw)w∈W to worlds and the ordering such that w ≺′P v iff smwP (w) < mvP (v). In
Figure 3.9, the left one depicts CSs when s = 3, and the right one is for gCS3, in which
the weighting vector has the effect of breaking the rotational symmetry of order-3.10

The symmetry is so broken that even b123 and b23 are not in their preimage-region.
Now let us move to CCTg. Just as CSs, a belief core of G(P ) consists of worlds

with higher probabilities. That is, all coherent sets are candidates for a belief core,
which are related each other in a subset relationship, and thus form a system of

distance minimization, denoted by HTr(D) is defined as following: G is HTr(D) if G(P ) = B where
B is the non-empty P-stabler set B ⊆W whose corresponding point b(:= (u(B)(w))w ∈ Um) is the
closest from p(:= (P (w))w ∈ 4m) with respect to Euclidean distance for all P ∈ P(W ).

10The rotational symmetry of order-n means that it looks the same after rotation by 2π
n radians.
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Figure 3.9: CS3 and gCS3 with the weighting vector (0.5, 0.4, 0.1).

spheres like the case of HTr. Confronting multiple options, CCTg chooses the inner-
most sphere B whose probability P (B) exceeds the threshold g, while HTr chooses
the innermost non-empty P -stabler sphere and CSs chooses the set of the maximal
elements with respect to ≺P . That is, the belief core should be the smallest coherent
one with probability above g, called a belief core threshold. It would be one of the
simplest way to determine a belief core among coherent sets. It is worth noting that
while CSs determines belief cores solely based on the ratio between probabilities of
worlds, CCTg obtains belief cores using a threshold applied to the probability of a
belief core, i.e., the sum of probabilities of worlds constituting a belief core. The left
simplex in Fig 3.10 illustrates CCT0.75. Note that the preimage-region of the centre
consists of the gray triangle region and three gray line segments.

w2 w3

w1

w2 w3

w1

Figure 3.10: CCT0.75 and DM(SE)+

Finally, let us get into DM(SE)+, which is a new rule we are proposing in this
research. As a belief binarization procedure, we might measure some kind of distance
between inputs and outputs, and choose the closest one to a given input. The input is
a probability function and the output is a binary belief. Thus, we need to find a way
to measure distances between them. Usually, a probability function is represented as a
point in a probability simplex, and we proposed, in this section, a new way to represent
a rational binary belief as a point (the representation point of the uniform probability
function on the belief core of a rational binary belief) in a probability simplex. Thus,
we can use any distance defined in 4m. We call this binarization procedure distance
minimization procedure, which will be the main subject of the next chapter. In this
chapter, we address the most basic distance minimization procedure, which is the one
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with the squared Euclidean distance.11 Since this distance comparison might allow
multiple options, we may have two different ways: (1) allowing multiple options and
(2) adding a tie-breaking rule. If qualitative beliefs can be seen as intrinsically vague
concepts related to credal states, (1) would not be so indecisive. In the next section,
we will address this possibility. In this section we focus only on a binarization rule, by
which we mean a function mapping each input into one binary belief. So by adding
some tie-breaking rule, we can make DM(SE)+. In Fig 3.10, the right one illustrates
DM(SE)+. The dotted lines are drawn to emphasize the place where any arbitrary
tie-breaking rule is needed. As previously mentioned, DM(SE)+ and the Voronoi
diagram are closely related. Let V(Um) be the Voronoi diagram of Um on Rm and G
be a DM(SE)+. Then for any b ∈ Um we have the following subset relation:

(V (b|Um)◦ ∩4m) ⊆ G−1(b) ⊆ (V (b|Um) ∩4m)

Exactly where G−1(b) lies between (V (b|Um)◦ ∩ 4m) and (V (b|Um) ∩ 4m) depends
on which tie-breaking rule we adopt. If we ignore the boundaries of G−1(b) and
V (b|Um) ∩4m, they are the same.12

Properties of Rational Binarization Rules Now we will check whether the
introduced BRs satisfy the properties introduced in the beginning of this section.
In what follows, to say a rule satisfies a property means that the rule satisfies the
property for all contexts embracing all numbers of possible worlds and all values of
parameters. Thus, to say a rule does not satisfy a property means that there is a
context — i.e., a probability space and a value of parameter — in which the rule does
not satisfy the property.

Let us begin with simple ones. Some positive results can be easily proved. Since
HTr(S) is, by definition, stable, by Theorem 3.4, it holds that HTr(S) is Lockean,
coherent, and r-likely. By definition, CSs and CCTg are coherent, and CCTg is r-
likely given g > 1

2
. By geometrical characterization of being coherent (Theorem 3.5)

and being r-likely, we see that gCSs is neither coherent nor r-likely, and thus neither
stable nor Lockean.

To answer the remaining questions, let us use the geometrical characterizations for
|W | = 3 to get some intuition. We put off discussing whether DM(SE)+ is coherent,
and focus on the properties of being stable and being r-likely. Comparing the figures
for CS3, CCT0.75 and DM(SE)+, and the figures for being stable and being r-likely for
|W | = 3 (Figure 3.6 and 3.7) leads one to conclude that CS3, CCT0.75, and DM(SE)+

are stable and r-likely. Are these statements still be the case in other contexts where
there are more than three possible worlds or other parameter values are used? We will

11DM(SE)+ uses the squared Euclidean distance as the distance measure, which produces the
same result as when we adopt the Euclidean distance. The reason why we utilize the squared
Euclidean distance is that this metric belongs to the Bregmann divergence contrary to the Euclidean
metric. The Bregman divergence will play a central role in the next chapter. In this chapter, the
difference between the squared Euclidean distance and the Euclidean distance has no effect.

12Later, we will introduce the notion of relative interior. Then this informal observation can be
formalized as the following: ri(G−1(b)) = ri(V (b|Um)∩4m) where ri(A) means the relative interior
of some subset A ⊆ Rm.
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HTr(S) CSs gCSs CCTg DM(SE)+

Lockean O X X X X

coherent O O X O interior

stable
1
2 O X X X X

r-likely O X X g > 1
2

O

Table 3.3: Rational BRs and Properties. In the table ′O′/′X′ means that the rule satisfies/does not always satisfy
the property. ′interior′ means that the rule is interior coherent and ′g > 1

2
′ means that the rule satisfy the property

when g > 1
2

.

answer all of these questions. The results are collected in Table 3.3 and illustrated in
Figure 3.11. In the remainder of this section, we will prove every claim.

Lockean

stable

coherent

r-likely

rational

HT r(S)
CCT g

CSs

DM(SE)+

gCSs

Figure 3.11: Properties of Rational Binarization Rules. In this figure, we assume g > 1
2

. Note that DM(SE)+ is
interior coherent.

In the following theorem, some negative results are proved. Every proof includes
a counterexample.

Theorem 3.6. (1) CSs is neither stable
1
2 nor r-likely.

(2) CCTg is not stable
1
2 .

(3) DM(SE)+ is not stable
1
2 .

Proof. (1) LetG be CS1.2. Consider a probability distribution P onW = {w1, w2, w3}.

w1 w2 w3

0.4 0.3 0.3

Since G(P ) = {w1}, and P (w1) = 0.4, it follows that G is neither stable
1
2 nor

r-likely.

(2) Let G be CT0.55. Consider the following probability distribution P on W =
{w1, w2, w3, w4, w5}:

w1 w2 w3 w4 w5

0.3 0.25 0.15 0.15 0.15
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Since G(P ) = {w1, w2}, and P (w2) < P (W \ {w1, w2}), it follows that G is not

stable
1
2 .

(3) LetG be a DM(SE)+. Consider a probability distribution P onW = {w1, w2, w3,
w4, w5}.

w1 w2 w3 w4 w5

P 0.5 0.16 0.16 0.09 0.09

b 0.2 0.2 0.2 0.2 0.2

b′ 0.25 0.25 0.25 0.25 0

b′′ 1
3

1
3

1
3

0 0

By computation, we have ||p − b||2 = 0.1174, ||p − b′||2 = 0.1124, ||p − b′′||2 =
0.10406, which implies G(P ) = {w1, w2, w3}. Since P (w3) < P (W \ G(P )), G is not

stable
1
2 .

Since CSs, CCTg, and DM(SE)+ are not stable, and all of them are rational, by
Lemma 3.4, it follows that they are not Lockean.

There remain two questions. The first one is whether DM(SE)+ is r-likely; the
second one is whether DM(SE)+ is coherent. Let us deal with the first one. The next
theorem shows a positive result.

Theorem 3.7. DM(SE)+ is r-likely.

Proof. Suppose that |W | = m,G(P ) = B = {w1, w2, ..., wk}. If k = m, then P (B) =
1. Suppose k < m. Geometrically, we set p = (p1, p2, ..., pm), u = ( 1

m
, 1
m
, ..., 1

m
), and

b = ( 1
k
, 1
k
, ..., 1

k
, 0, ..., 0) where the first k-components are 1

k
. By the definition of the

DM(SE)+, it follows:

||p− b||2 =
k∑
1

(pi −
1

k
)2 +

m∑
j=k+1

p2
j

≤
m∑
1

(pi −
1

m
)2 = ||p− u||2

By computation, we have

m∑
i=1

p2
i −

2

k

k∑
i=1

pi +
1

k
≤

m∑
i=1

p2
i −

1

m

It follows that
k∑
i=1

pi ≥ (
1

k
+

1

m
)
k

2

=
1

2
+

k

2m
>

1

2
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In the above proof, we compared the distance from a probability function to the
point representing its belief core with the distance to the centre point. This simple
comparison guarantees that a belief core selected by DM(SE)+ is more likely than its
complement.

Now we turn to the last question of whether DM(SE)+ is coherent. First, we will,
by means of a counterexample, show that it is not coherent. Then we will find a
weaker but sufficiently plausible notion of coherence that DM(SE)+ can satisfy. In
the right one in Figure 3.10, consider the point p = (2

3
, 1

6
, 1

6
). Among the elements

of U3, all of b1, b12, b13, and b123 have the minimum distance to the point p. Since
DM(SE)+ allows any tie breaking rule, we can consider a rule that assigns to P
{w1, w2}. Then, although P (w2) = P (w3), the world w2 belongs to the belief core,
but w3 does not, which violates the definition of a coherent BR. We can also check
this using geometrical characterization in Theorem 3.5: p belongs to the preimage-
region of (1

2
, 1

2
, 0) under the above tie breaking rule. However, p does not belong

to the interior of the Voronoi cell of the generator (1
2
, 1

2
, 0) with respect to U3

2 , but
located on the Voronoi cell boundary, which violates geometrical characterization of
a coherent BR.

Notice that only the three points — (2
3
, 1

6
, 1

6
), (1

6
, 2

3
, 1

6
) and (1

6
, 1

6
, 2

3
) — violate the

condition for DM(SE)+ to be coherent. This makes us expect that any point inside
the preimage-regions of DM(SE)+ satisfies the condition to be coherent. As Theorem
3.8 will show, this conjecture is true. To formulate the exact notion of “ inside”, we
need some basic topological notions.

Given any x ∈ Rn and ε > 0, we define the open ball of the centre x and radius ε:
Bε(x) = {y ∈ Rn| ||x− y|| < ε}; for A ⊆ Rn, we define the interior of A:

int(A) = {x ∈ A| ∃ε > 0Bε(x) ⊆ A};

the closure of A:
cl(A) = {x ∈ Rn| ∀ε > 0 Bε(x) ∩ A 6= ∅};

the boundary of A: bd(A) = cl(A) \ int(A). Since the dimension of the probability
simplex 4m ⊆ Rm is m− 1, int(4m) is empty. To deal with low-dimensional objects
placed in higher dimensional spaces, we need several refiner notions. A subset A of Rn
is said to be affine if l[x, y] ⊂ A for all x, y ∈ A where l[x, y] = {λx+(1−λ)y| λ ∈ R};
for A ⊆ Rn, we define the affine hull of A: aff(A) =

⋂
{C ⊆ Rm| C is affine and A ⊆

C}; We define the relative interior of A:

ri(A) = {x ∈ A| ∃ε > 0(Bε(x) ∩ aff(A)) ⊆ A};

the relative boundary of A:

rb(A) = cl(A) \ ri(A).

Using these notions, we can make the condition of being inside a preimage-region
formally precise: it refers to the condition of being in the relative interior of a
preimage-region. Accordingly, we define slightly weaker notion of coherence that
is applied only in the relative interior of every preimage-region as follows.
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Definition 3.18. A rational BR G is interior-coherent (coherent◦) if for all P in the
domain of G and B ⊂ W such that p ∈ ri(G−1(b)), if P (v) ≤ P (w), and if v ∈ B,
then w ∈ B for all v, w ∈ W .

We can formulate the relative interior of the preimage-region G−1(b) of b ∈ Um

when G is a DM(SE)+:

ri(G−1(b)) = {p ∈ ri(4m)| ||p− b|| < ||p− b′|| ∀b′( 6= b) ∈ Um}

from which follows that

ri(G−1(b)) = V (b|Um)◦ ∩ ri(4m)

as mentioned before. So, for a DM(SE)+ to be coherent◦, not all point p ∈ 4m, but
only the points in the above set for some b ∈ Um have to be mapped to a belief core
generating a coherent belief state. As one might expect, this is the case as shown in
the following theorem.

Theorem 3.8. DM(SE)+ is coherent◦.

Proof. Let |W | = m and G be a DM(SE)+. Consider the restriction G′ of G to
the union of the relative interiors of the preimage-regions of all points in Um. Ob-
viously G′ is a BR as well (it does not have the universal domain though) and
G′−1(b) = ri(G−1(b)). Since ri(G−1(b)) = V (b|Um)◦ ∩ ri(4m) ⊆ V (b|Um

k )◦ by ge-
ometrical characterization of coherence in Theorem 3.5, G′ is coherent, that is, G is
coherent◦.

For DM(SE)+, in my opinion, being interior-coherent is sufficiently strong because
this rule allows any tie-breaking rule, which presupposes that the decision at the
boundary case is not so relevant.
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3.5 Belief Binarization and Convexity

This section is based on joint work with Chisu Kim. In this section, we will investigate
how the convexity requirement can be applied in the belief binarization problem. The
notion of convexity13 has long been studied and discussed in different fields in for-
mal philosophy: according to convex Bayesianism, an epistemic state is represented
by a set of probability functions, and the set must be convex 14; according to the
conceptual spaces program, concepts can be geometrically represented as regions in
conceptual space equipped with a similarity measure (usually metric), and Gärden-
fors (2000) argued that ‘natural’ concepts have the feature of being represented by a
convex set of points, and defended it as “a principle of cognitive economy”(p.70)15;
in the probabilistic opinion pooling problem, the advocates of linear pooling methods
implicitly support the convexity property because linear pooling methods produce a
convex combination of the input probability functions. However, the notion of con-
vexity has not been studied and discussed in the belief binarization problem, although
many aspects of belief binarization are, to some extent, related to the research topics
mentioned above. In this section, we begin the first discussion of this issue.

First of all, let us think about why we should respect the convexity norm in the
binarization problem. In the following, we will present three possible arguments for
the convexity norm, which are closely related to the above-mentioned research.

(1) (convex Bayes) Consider an epistemic state that is represented by a binary belief.
Since binary beliefs are a coarser representation model of epistemic states than
probability functions in terms of information quantity, there might be multiple
probability functions all of which also represent the epistemic state together.
Which probability functions correspond to the epistemic state? A binarization
method can be viewed as a method to determine this correspondence. Accord-
ingly, the set of such multiple probability functions can be understood as the
preimage of a binary belief under a binarization method. According to convex
Bayesianism, the set of such multiple probability functions should be convex
because they represent an epistemic state.

(2) (Unanimity) Collective belief binarization might be a procedure for heteroge-
neous belief aggregation where multiple individual probability functions are ag-
gregated into a collective probability function, and then reduced to a collective
binary belief. In this context of heterogeneous belief aggregation, we suggest

13Let us remind the definition of convex set: a set R ⊆ Rm is called convex if for all r, r′ ∈ R it
holds that αr + (1− α)r′ ∈ R for all α ∈ [0, 1]. Geometrically speaking, a convex set includes every
point lying on the line segment connecting any two elements of the set. We call a linear average of
two points a convex combination of two points. A rephrasing of the definition is that a set is convex
if the set is closed under any convex combination.

14For convex Bayesianism see Levi (1980), Sterling and Morrell (1991). For critical discussion see
Kyburg and Pittarelli (1996).

15For the conceptual space program see Gärdenfors (2000), Douven and Gärdenfors (2018). For a
critical discussion about the convexity of natural concepts see Mormann (1993) and Hernandez-Code
(2017).
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the unanimity norm concerning collective belief binarization: if every individual
probability function is rationally compatible with a binary belief according to
the binarization method, then the pooled collective probability is as well. It
seems particularly plausible, if the disagreement between individual probabili-
ties does not stem from informational asymmetry between individuals. Now, we
add the claim that linear pooling methods are permissible based on the norma-
tive arguments for linear pooling. Then it follows that if individual probability
functions are compatible with a binary belief, then any convex combination of
them is as well.

We can also draw the same conclusion based on a slightly different unanimity
norm: assume that probability functions P and P ′ are compatible with a binary
belief Bel according to the binarization method. If P approaches P ′, i.e., moves
to a probability function P ′′ between P and P ′, we can say that the disagreement
between P and P ′ is decreasing. Therefore, P ′′ should also be compatible with
Bel. And we can take P ′′, a point between P and P ′, as any convex combination
of P and P ′.

(3) (Belief as a Natural Concept) The probability simplex can be viewed as the
conceptual space with some distance measure, and rational binary beliefs can
be thought of as natural concepts partitioning the probability simplex. Since
every natural concept should be convex, each rational binary belief should have
a convex region on the probability simplex.16

Although each of these arguments has some unanswered issues that deserve a
lengthy discussion, we will leave them for further research.17 For the rest of this
section, our focus will be on more concrete and practical questions: how we can
formulate convexity norms in the belief binarization context, and which binarization
methods satisfy which convexity norms.

Regarding this problem, there are some problems we should be concerned about.
First, many binarization rules do not satisfy the most straightforward convexity norm
that each preimage-region of a BR should be convex. In particular, all the binariza-
tion rules introduced in the previous section do not satisfy it. Thus, we will present
some weaker notions of convexity. Second, many binarization methods are not func-
tions. Some binarization methods such as HTr are relations between credences and

16If we adopt a typical method to generate natural concepts used in conceptual spaces program,
the probability simplex can be partitioned in the following way: we set the distance measure to
be the Euclidean metric, and for any rational binary belief, we set the uniform distribution on the
belief core of the binary belief to be the prototype of the binary belief; from the set of prototypes
we generate the Voronoi diagram consisting of the Voronoi cells that correspond to binary beliefs.
Notice that this is exactly the same way as in the case of DM(SE)+.

17To defend (convex Bayes), we should ultimately justify the convex Bayesianism. To advocate
(Unanimity), we should address the question whether there are differences between collective belief
binarization and individual belief binarization. Moreover, we need to justify linear pooling. To
vindicate (Belief as a Natural Concept), we should address how to interpret it as a normative
requirement. And we need to explain why rational binary beliefs can be interpreted as natural
concepts.
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beliefs, and at the same time they can be viewed as correspondences since we can
build a correspondence from any relation and vice versa18. Therefore, we will formu-
late convexity requirements imposed on relations and correspondences, respectively.
Third, many binarization methods involve some intermediate stage between credences
and binary beliefs. For example, HTr(S) and CSs employ a kind of ordinalization of
worlds to find belief cores. Hence, it would also be important to study the convexity
requirement on ordinalization in addition to binarization. Accordingly, this section
consists of three topics: (1) convexity of belief binarization functions, (2) convexity
of generalized belief binarization methods, and (3) convexity of ordinalization.

Before starting, let us outline the main results of this section. First, we will show
that we can make convexity norms sufficiently refined to classify different binarization
methods. We will formulate seven different types of convexity norms, and examine
which binarization methods satisfy them. Second, we will see that distance-based
binarization methods are generally better in terms of the convexity requirements.

Convexity of belief binarization functions We now present the most straight-
forward notion of convexity for a BR — preimage-convexity — and two weaker no-
tions: interior-preimage-convexity and holistic monotonicity. Interior-preimage-con-
vexity requires only the relative interior of each preimage-region to be convex.19 This
might be sufficiently strong if the BR allows arbitrary choices for the boundary cases
like DM(SE)+. Holistic monotonicity requires that if a BR assigns to a probability
function P a belief core B, then the BR should assign the same belief core B to any
convex combination of P and U(B). The reason why we call it ‘holistic’ monotonic-
ity is that it takes into account the full information of the probability function in
contrast to event-wise or world-wise monotonicity. This weaker notion of convexity
seems even more plausible than preimage-convexity, because if P is changed to a
convex combination with U(B), then it means that P moves to B and we can say
that the information of the resulting binary belief is more reflected. Let us give the
formal definition of them.

Definition 3.19. Let W be a finite non-empty set. Let G be a rational BR with the
domain P(W ) (the set of all probability functions on (W,P(W ))).

(1) G satisfies preimage-convexity if for all P, P ′ ∈ P(W ), if G(P ) = G(P ′), then

G(αP + (1− α)P ′) = G(P )(= G(P ′))

for all α ∈ [0, 1].

(2) G satisfies interior-preimage-convexity (preimage◦-convexity) if for all P, P ′ ∈
P(W ), if p, p′ ∈ ri(G−1(b)) for some b ∈ Um, then

G(αP + (1− α)P ′) = G(P )(= G(P ′))

for all α ∈ [0, 1].

18For example, Dietrich & List (2021) sees HTr as a correspondence.
19For the formal definition of relative interior and preimage-region see the previous section.
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(3) A BR G satisfies holistic-monotonicity (h-monotonicity) if for all P ∈ P(W )
and B(6= ∅) ⊆ W , if G(P ) = B, then

G(αP + (1− α)U(B)) = B

for all α ∈ [0, 1].

Note that interior-preimage-convexity and holistic monotonicity do not imply each
other: geometrically speaking, h-monotonicity implies the star-convexity of every
preimage-region.20 Since the relative interior of star-shaped regions may not be con-
vex, h-monotonicity does not imply preimage◦-convexity. For the other direction, the
counterexample will be provided when we examine CCT g later.

Now we examine whether the binarization rules in the last section satisfy each
kind of convexity. As in the previous section, to say a rule satisfies a convexity
norm means that the rule satisfies the norm for all contexts embracing all numbers
of possible worlds and all values of parameters. Thus, to say a rule does not satisfy
a norm means that there is a context — i.e., a probability space and a value of
parameter — in which the rule does not satisfy the norm.

First of all, let us check some easily obtainable results and get some geometrical
intuitions regarding preimage-convexity and preimage◦-convexity through the figures
in the previous section. For a start, let us consider HT r(S). Figure 3.8 shows that

HT r(S) and HT
1
2 (S) do not satisfy preimage-convexity. In particular, the preimage-

region of the centre is not convex in each simplex in the figure. In the left simplex,
we can see that the region where preimage-convexity is violated consists of three line
segments, and therefore whose relative interior is empty.21 This observation shows
that HT

1
2 (S) satisfies preimage◦-convexity for |W | = 3. To the question of whether

this fact generally holds for HT
1
2 (S), the counterexample in the subsequent theorem

answers negatively.22 We now turn to CSs. The left simplex in Figure 3.9 shows that

20A subset A ⊆ Rm is star-convex iff there is a p ∈ A such that for all q ∈ A it holds that
αp+ (1− α)q ∈ A for all α ∈ [0, 1].

21This shape of the preimage-region of the centre implies that HT
1
2 (S) violates what we call

the strong suspension principle, which is defined as following: a rational BR G satisfies the strong
suspension principle if for all b ∈ Um there is ε > 0 such that (Bε(b)∩4m) ⊆ G−1(b). This norm says
that we should not allow a drastic change near the belief-core-point. Although HTr(S) satisfies the
suspension principle (G(U(B)) = B for all B( 6= ∅) ⊆ W ), it does not satisfy the strong suspension
principle.

22One may wonder if HT
1
2 (D) (for the definition of HTr(D) see footnote9) satisfies preimage-

convexity. We present a counterexample here. Consider the following probability distributions on
W = {w1, w2, w3, w4, w5, w6, w7}:

w1 w2 w3 w4 w5 w6 w7

P 0.5 0.25 0.05 0.05 0.05 0.05 0.05

Q 0.05 0.25 0.5 0.05 0.05 0.05 0.05

0.5P + 0.5Q 0.275 0.25 0.275 0.05 0.05 0.05 0.05

According to the HT
1
2 (D), the belief core of P and Q should be W while the belief core of

0.5P + 0.5Q should be {w1, w2, w3}.
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CSs do not satisfy preimage-convexity: the preimage-region of the midpoint of each
side is not convex. It is also shown that CSs does not satisfy even the preimage◦-
convexity.

Next, we move to CCTg. In the left simplex in Figure 3.10, the preimage of the
centre has three line segments sticking out. Since the relative interior of the preimage-
region of the centre dose not include the three line segments, we can see that CCT0.75

satisfies preimage◦-convexity for |W | = 3.23 This makes us ask whether it can be
generalized; we will answer this question positively in the following theorem. As to
DM(SE)+, see the right simplex in Figure 3.10. Consider the case where p, p′ lie on the
line segment on which it holds that argminB⊆W D(P,B) = argminB⊆W D(P ′, B) =
{{w1}, {w1, w2}}. Since DM(SE)+ allows any tie-breaking rules, we can consider a
rule G such that G(P ) = {w1}, G(P ′) = {w1}, and G(0.5P + 0.5P ′) = {w1, w2}.
Then G does not satisfy the preimage-convexity. However, from the figure, we can
easily expect that DM(SE)+ satisfies the preimage◦-convexity, which turns out to
be true as the next theorem shows. Now let us prove all the above claims about
preimage-convexity and preimage◦-convexity.

Theorem 3.9. (1) HT r(S) does not satisfy the preimage◦-convexity.

(2) CSs does not satisfy the preimage◦-convexity.

(3) CCTg does not satisfy preimage-convexity.

(4) CCTg satisfies preimage◦-convexity.

(5) DM(SE)+ satisfies the preimage◦-convexity.

Proof. (1) Let G be HT
1
2 (S). Consider the following probability distributions on W =

{w1, w2, w3, w4}:

w1 w2 w3 w4

P 0.44 0.25 0.2 0.11

Q 0.25 0.44 0.2 0.11

0.5P + 0.5Q 0.345 0.345 0.2 0.11

For any p′ ∈ B0.0001(p) ∩ 44 and any q′ ∈ B0.0001(q) ∩ 44 it holds that G(P ′) =
G(Q′) = {w1, w2, w3}, which implies that p, q ∈ ri(G−1({w1, w2, w3})). However,
G(0.5P + 0.5Q) = {w1, w2}, which violates the preimage◦-convexity.

(2) Let G be CS1.4. Consider the following probability distributions on W =
{w1, w2, w3}:

23From this difference between the shapes of the preimage-region of HT
1
2 (S) and CCT0.75 we can

see that CCT0.75 satisfies the strong suspension principle for the case of |W | = 3. However, we will
show that it does not hold in the more general setting. See footnote26.
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w1 w2 w3

P 0.41 0.32 0.27

Q 0.32 0.41 0.27

0.5P + 0.5Q 0.365 0.365 0.27

Note that for any p′ ∈ B0.0001(p) ∩ 43 and any q′ ∈ B0.0001(q) ∩ 43 it holds
that G(P ′) = G(Q′) = {w1, w2, w3}, which implies that p, q ∈ ri(G−1({w1, w2, w3})).
However, G(0.5P + 0.5Q) = {w1, w2}, which violates the preimage◦-convexity.

(3) Let G be a CCT0.6. Consider the following probability distributions on W =
{w1, w2, w3}:

w1 w2 w3

P 0.5 0.25 0.25

Q 0.25 0.5 0.25

0.5P + 0.5Q 0.375 0.375 0.25

G(P ) = G(Q) = {w1, w2, w3} but G(0.5P + 0.5Q) = {w1, w2}, which violates the
preimage-convexity.

(4) Let G be a CCTg and P, P ′ ∈ P(W ). We will show that if G(P ) = G(P ′) = B
but G(αP + (1 − α)P ′) = B′ 6= B for some α ∈ [0, 1], then at least one of p and p′

lies on rb(G−1(b))(:= cl(G−1(b)) \ ri(G−1(b)) ).
Assume that G(P ) = G(P ′) = B but G(P ′′α) = B′ 6= B where we write P ′′α for

αP + (1 − α)P ′. Since P (B), P ′(B) ≥ g, min
w∈B

P (w) > max
w∈B

P (w), and min
w∈B

P ′(w) >

max
w∈B

P ′(w), we have P ′′α(B) ≥ g and

min
w∈B

P ′′α(w) ≥ αmin
w∈B

P (w) + (1− α) min
w∈B

P ′(w)

> αmax
w∈B

P (w) + (1− α) max
w∈B

P ′(w) ≥ max
w∈B

P ′′α(w)

This indicates that not only B′ but also B is one of the candidates (the P ′′α - coherent
sets with probability at least g) of belief cores of G(P ′′α). Since all candidates of belief
cores of G(P ′′α) are linearly ordered by subset relation, we have

B′ ( B

(for if not, it would be the case that G(P ′′α) 6= B′).
Now observe that it is not the case that P (B′) < g and P ′(B′) < g because

P ′′α(B′) ≥ g. W.l.o.g, let P (B′) ≥ g. We will show that p is on rb(G−1(b)), that is,
for any ε > 0 there exists Q ∈ Bε(p) ∩ 4m satisfying G(Q) 6= B. To see this, take
one world in argminw∈B P (w), say wB,P , and another world in B, say v, and let

Q(w) :=


P (w)− δ if w = wB,P

P (w) + δ if w = v

P (w) o/w
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where δ is a sufficiently small positive number so as to satisfy Q ∈ Bε(p) ∩4m. It is
possible because P (wB) > 0 (a belief core generated by CCTg cannot contain a world
with probability 0) and P (v) < 1 (since ∅ 6= B′ ( B, B has at least two elements
with non-zero probability). We can see that B \ {wB,P} is Q-coherent. Moreover,
since we have B′ ( B and wB,P has the minimum probability in B, it follows that

Q(B \ {wB,P}) > P (B \ {wB,P}) ≥ P (B′) ≥ g

This shows that G(Q) 6= B because B \{wB,P} is a smaller set than B and it satisfies
the conditions to become G(Q) except “the smallest” condition in the definition of
G(Q) and thus, B can never become G(Q).

(5) Let |W | = k, b ∈ Um, and G be a DM(SE)+. Then ri(G−1(b)) = {p ∈
4m| ||p− b||2 < ||p− b′||2 for all b′(6= b) ∈ Um}. For any b′ ∈ Um it holds that

||p− b||2 < ||p− b′||2 iff ||p||2 − 2〈p, b〉+ ||b||2 < ||p||2 − 2〈p, b′〉+ ||b′||2

iff 2〈p, b′ − b〉 < ||b′||2 − ||b||2.

Then we have

ri(G−1(b)) =
⋂

b′∈Um
{p ∈ 4m| 2〈p, b′ − b〉 < ||b′||2 − ||b||2} \ rb(4m)

Since the inner product is linear in the first argument, ri(G−1(b)) is closed under
convex combination.

Regarding DM(SE)+, we can also prove the above theorem using the properties
of the Voronoi diagram. Both V (b|Um) and 4m are a closed convex set24, so is their
intersection. Since ri(G−1(b)) = ri(V (b|Um) ∩ 4m), and the relative interior of a
convex set is also convex, we conclude that ri(G−1(b)) is convex.

We now move to a discussion of h-monotonicity. For a start, let us consider the
figures in the previous section. In Figure 3.8, 3.9, and 3.10, we can easily check that
all 4 binarization rules satisfy h-monotonicity for the case |W | = 3. This observation
make us expect that h-monotonicity might be very weak requirement, and the results
for the |W | = 3 will be true in the generalized setting. This conjecture turns out to
be true with one exception as the next theorem shows: except for CCTg, the rest
of the rules satisfy h-monotonicity. It is impressed that CCTg does not satisfy h-
monotonicity, which shows that preimage◦-convexity does not imply h-monotonicity.
Now let us prove all the above claims about h-monotonicity.

24It is well-known fact that every Voronoi cell is convex. Let us prove it. Let R = {r1, ..., rl} ∈ Rm.
V (ri|R) = {p ∈ Rm| ||p− ri|| ≤ ||p− rj || for all rj ∈ R}. For any j ∈ R it holds that

||p− ri|| ≤ ||p− rj || iff ||p− ri||2 ≤ ||p− rj ||2 iff 2〈p, rj − ri〉 ≤ ||rj ||2 − ||ri||2.

Then we have V (ri|R) =
⋂
r∈R{p ∈ Rm| 2〈r − ri, p〉 ≤ ||r||2 + ||ri||2}. Since the inner product is

linear in the first argument, V (ri|R) is closed under convex combination.
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Theorem 3.10.

(1) CCTg does not satisfy h-monotonicity.

(2) HTr(S) satisfies h-monotonicity.

(3) CSs satisfies h-monotonicity.

(4) DM(SE)+ satisfies h-monotonicity.

Proof. (1) Let G be a CCT0.7. Consider the following probability distributions on
W = {w1, w2, w3, w4, w5, w6, w7}:

w1 w2 w3 w4 w5 w6 w7

P 0.17 0.17 0.17 0.17 0.14 0.09 0.09

U(B) 0.2 0.2 0.2 0.2 0.2 0 0

0.5p+ 0.5U(B) 0.185 0.185 0.185 0.185 0.17 0.045 0.045

whereB = {w1, w2, w3, w4, w5}. G(P ) = B, butG(0.5P+0.5U(B)) = {w1, w2, w3, w4},
which violates h-monotonicity.

(2) Suppose p ∈ G−1(b), ŵ ∈ argminw∈B P (w), |B| = k(≤ m = |W |). Let α ∈
(0, 1). We will show that (q :=)αp+ (1− α)b ∈ G−1(b). Since ŵ ∈ argminw∈B Q(w),
We need to prove that (i)

Q(ŵ) >
r

1− r
Q(B)

and (ii) for all v(6= ŵ) ∈ B it holds that

Q(v) ≤ r

1− r
Q({w ∈ W |Q(v) < Q(w)})

To (i): Since p ∈ G−1(b), we have P (ŵ) > r
1−rP (B) which implies the following

inequality:

Q(ŵ) = αP (ŵ) +
1− α
k

>
αr

1− r
P (B) =

r

1− r
Q(B)

To (ii): Let v ∈ B with v 6= ŵ. Define B′ = {w ∈ B| Q(w) ≥ Q(v)} with |B′| = l < k.
We need to show the following inequality:

Q(v) = αP (v) +
1− α
k

≤ r

1− r
(αP (B \B′) +

1− α
k

(k − l) + P (B)) =
r

1− r
Q({w ∈ W |Q(w) < Q(v)})

Since B is the smallest P-stabler set, v(6= ŵ) ∈ B, and α ∈ (0, 1), we have the
following inequalities:

αP (v) ≤ αr

1− r
(P (B \B′) + P (B))

<
r

1− r
(αP (B \B′) + P (B)) (3.3)
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Since r > 0.5 and l < k, we have r
1−r (k − l) > 1, which implies

r

1− r
1− α
k

(k − l)− 1− α
k
≥ 0 (3.4)

Adding the LHS of 3.4 to the RHS of 3.3, we have the following inequality:

αP (v) ≤ r

1− r
(αP (B \B′) + P (B)) +

r

1− r
1− α
k

(k − l)− 1− α
k

which implies the desired result.

(3) Suppose that p ∈ G−1(b), |B| = k, ŵ ∈ argmaxw∈B P (w), and α ∈ (0, 1). We
will show that (q :=)αp + (1 − α)b ∈ G−1(b). It suffices to show that (1) for all
w ∈ B sQ(w) ≥ Q(ŵ), (2) for all w ∈ B sQ(w) < Q(ŵ). For w ∈ B let us rewrite
(1) as the following:

s(αP (w) + (1− α)
1

k
) ≥ αP (ŵ) + (1− α)

1

k

which is equivalent to the following:

sP (w) + (s− 1)
1− α
α

1

k
≥ P (ŵ)

Since s > 1, it holds that (s−1)1−α
α

1
k
≥ 0. Then it suffices to show that sP (w) ≥ P (ŵ)

which is true because w ∈ B.
Let us turn to (2). For v ∈ B we need to show the following:

sP (v) < P (ŵ) +
1− α
α

1

k

which is true because 1−α
α

1
k
≥ 0 and v /∈ B.

(4) Suppose that p ∈ G−1(b), α ∈ [0, 1). Define q = αp + (1 − α)b. Note
that (V (b|Um)◦ ∩ 4m) ⊂ G−1(b) ⊂ (V (b|Um) ∩ 4m). Consider the case where p ∈
V (b|Um)◦ ∩ 4m. Since V (b|Um)◦ ∩ 4m is convex set, we have q ∈ V (b|Um)◦ ∩ 4m.
Consider the case where p ∈ (V (b|Um) \ V (b|Um)◦)∩4m. Since V (b|Um)◦ is convex,
b ∈ V (b|Um)◦(= ri(V (b|Um)), and p ∈ V (b|Um)(= cl(V (b|Um)◦)), we can use a
well-known geometrical property of convex set: the half-open line segment (p, b] ⊂
V (b|Um)◦.25 Since q ∈ (p, b], we have q ∈ (V (b|Um)◦ ∩4m) ⊂ G−1(b).

As for CCTg, one may wonder if the counterexample in the above proof is also
applicable to the problem of preimage◦-convexity of CCTg. Although p and b generate
a non-convex case, we can notice that b lies on the relative boundary of G−1(b) since
even a small change in the coordinates of b yields a different belief core. For example,
consider the point p′ = b + (ε,−ε, 0, 0, 0, 0, 0) where ε is an arbitrary small positive
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convexity HT r(S) CSs CCT g DM(SE)+

preimage-convexity X X X X

preimage◦-convexity X X O O

h-monotonicity O O X O

Table 3.4: Convexity and Binarization Rules. In the table ’O’/’X’ means that the rule satisfies/does not always satisfy
the property.

real number. Then G(P ′) = {w1, w3, w4, w5} which is different from B.26 Therefore
this is not a counterexample to the preimage◦-convexity of CCTg.

All results so far are collected in Table 3.4. It is noteworthy that all of four
BRs do not satisfy the preimage-convexity, DM(SE)+ satisfies both weaker notions
of convexity, and the remaining three rules satisfy one of two norms. Preimage◦-
convexity is favorable to CCTg while h-monotonicity is favorable to HTr and CSs.

Convexity of generalized binarization methods We now extend bianrization
functions to more generalized binarization methods, namely relations and correspon-
dences. Contrast to functions, correspondences allow multiple outputs. When our
goal is to find a most comprehensive rational bridge principle between credences and
beliefs, rather than to make a decision to choose only one option — e.g., given a
probability function, to choose only one binary belief rationally compatible with the
probability function —, belief binarization relations can be appropriate. HTr is an
example of a belief binarization relation.

To state it formally, let us first define a binarization correspondence as the follow-
ing: a binarization correspondence (BC) on (W,P(W )) is a function that assigns to
any P ∈ P(W ) a set of some binary beliefs (a function from P(W ) to P({0, 1}P(W ))
). In this section, we will study two BCs. The first one is just the induced one by
HTr: C is the BC induced by HTr if C(P ) = {Bel ∈ {0, 1}P(W )| (P,Bel) ∈ HT r};
the second one is a new distance-based BC, called DM(SE), defined as follows

Definition 3.20. Let C be a BC on (W,P(W )). C is DM(SE) if C(P ) is the set
of all binary beliefs induced by some belief core B ∈ argminB⊆W D(P,B) := {B ⊆
W | ||p− b||2 ≤ ||p− b′||2 ∀b′ ∈ Um} for all P ∈ P(W ).

DM(SE) is just DM(SE)+ without tie-breaking rule. In our opinion, DM(SE) is the
most natural distance-based binarization method since distance-based binarization
methods always come up with boundary cases, and it is difficult to justify a specific tie-
breaking rule unless another criteria than distance minimization is given in advance.

Now let us formulate a binarization relation. A binarization relation on (W,P(W ))
is a subset of P(W ) × {0, 1}P(W ). We read “(P,Bel) ∈ R” as (P,Bel) satisfies R.
Besides HTr, we can also consider the binarization relation induced by DM(SE): R
is the binarization relation induced by DM(SE) if it holds that (P,Bel) ∈ R iff B ∈

25See Prop. 1.2 in Hug & Weil (2020).
26This behavior of b implies that CCTg does not satisfy the strong suspension principle either

although it satisfies the suspension principle (G(b) = B for all b ∈ Um).
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argminB⊆W D(P,B) where B is the belief core of Bel. Now let us define the convexity
of binarization correspondence and binarization relation.

Definition 3.21 (C-convexity and R-convexity). (1) A BC C satisfies the convex-
ity of binarization correspondence (C-convexity) iff for all P, P ′ ∈ P(W ), if
C(P ) = C(P ′), then

C(αP + (1− α)P ′) = C(P )(= C(P ′))

for all α ∈ [0, 1].

(2) A binarization relation R satisfies the convexity of binarization relation (R-
convexity) iff for all P, P ′ ∈ P(W ) and for all binary belief Bel on (W,P(W )),
if (P,Bel) and (P ′, Bel) satisfy R, then (αP + (1 − α)P ′, Bel) satisfies R for
all α ∈ [0, 1].

Note that C-convexity and R-convexity do not imply each other.27 As for DM(SE)+,
the only obstacle to satisfying preimage-convexity was the boundary cases, and thus
we expect that DM(SE) and the induced relation by it satisfy C-convexity and R-
convexity, respectively. As to HTr, let us consider two simplexes in Figure 3.8. Since
the preimage-region of the centre is not convex, and there is no belief core bigger than
the whole set W , we can see that HTr does not satisfy C-convexity. By contrast, the
following theorem shows that HTr satisfies R-convexity. Let us prove all the claims.

Theorem 3.11.

(1) HT r satisfies R-convexity.

(2) The BC induced by HT r does not satisfy C-convexity.

(3) DM(SE) satisfies C-convexity.

(4) The relation induced by DM(SE) satisfies R-convexity.

Proof. (1) We will use Lemma 3.3 in the previous section. Let P , P ′ ∈ P(W ),
α ∈ (0, 1) and P ′′α = αP + (1 − α)P ′. Consider the case where Bel(∅) = 1, which
implies that Bel−1(1) = P(W ). Then (P ′′α , Bel) vacuously satisfies HT r. Now assume
that (P,Bel) and (P ′, Bel) with ∅ 6= ∩Bel−1(1) = B satisfy HTr. Then we have

αmin
w∈B

P (w) > α
r

1− r
P (B); (1− α) min

w∈B
P ′(w) > (1− α)

r

1− r
P ′(B)

Adding two inequalities we have

αmin
w∈B

P (w) + (1− α) min
w∈B

P ′(w) >
r

1− r
P ′′α(B)

27To see that C-convexity does not imply R-convexity, consider the following case. Let W =
{w1, w2}, and P and Q be probability functions with P (w1) = 0 and Q(w1) = 1, respectively. Define
a BC C such that C(P ) = {{w2},W}, C(Q) = {{w1},W}, and C(αP + (1− α)Q) = {{w1}, {w2}}
for all α ∈ (0, 1). We can easily check that C satisfies C-convexity. Let R be the induced binarization
relation from C. We can notice that (P,W ), (Q,W ) ∈ R, but (0.5P + 0.5Q,W ) /∈ R, which violates
R-convexity. Moreover, the following theorem shows that R-convexity does not imply C-convexity.
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Since
min
w∈B

P ′′α(w) ≥ αmin
w∈B

P (w) + (1− α) min
w∈B

P ′(w)

(P ′′α , Bel) satisfies HTr.

(2) Let C be a BC induced by HT0.75. Consider the following probability distri-
butions on W = {w1, w2, w3}:

w1 w2 w3

P 0.58 0.3 0.12

Q 0.3 0.58 0.12

0.5P + 0.5Q 0.44 0.44 0.12

C(P )(= C(Q)) = {W}, but C(0.5P + 0.5Q) = {W, {w1, w2}}, which violates C-
convexity.

(3) Let C be DM(SE), and P, P ′ ∈ P(W ). Suppose that C(P ) = C(P ′) = B ⊆
P(W ). Let B = {B1, ..., Bk}. From the proof of Theorem 3.9 (5), it follows that for
any b, b′ ∈ Um it holds that for B ∈ {=, <}

||p− b||2 B ||p− b′||2 iff 2〈p, b′ − b〉B ||b′||2 − ||b||2.

Then we have the following equations:

C−1({b1, ..., bk}) = {p ∈ 4m| argmin
b∈Um

||p− b||2 = {b1, ..., bk}}

= {p ∈ 4m| ||p− b1||2 = ... = ||p− bk||2 < ||p− b||2 ∀b ∈ Um \ {b1, ..., bk}}
= {p ∈ 4m| 2〈p, bi − b1〉 = ||bi||2 − ||b1||2 for i = 1, ..., k.

and 2〈p, b− b1〉 < ||b||2 − ||b1||2 for b ∈ Um \ {b1, ..., bk}}

Since the inner product is linear in the first argument, C−1({b1, ..., bk}) is closed
under convex combination.

(4) Let |W | = m, and p ∈ 4m. A belief state (P,Bel) satisfies the relation induced
by DM(SE) iff b ∈ argminb′∈4m ||p − b′||2 iff p ∈ V (b|Um) ∩ 4m where b ∈ Um with
B =

⋂
Bel−1(1). Since V (b|Um) and 4m are convex, the intersection of them is also

convex.

The above theorem shows that HTr satisfies R-convexity while the BC induced by
HTr does not satisfy C-convexity. This may give the following lesson: when studying
HTr, how it is formalized28 may be more important than it seems. Furthermore, it
would be better to leave HTr unaltered, at least with respect to the convexity norm.
Now consider DM(SE). Geometrically speaking, the preimage-regions of DM(SE) par-
titions the probability simplex. Let us illustrate it by means of an example for the
case of W = {w1, w2, w3} as follows

28Dietrich & List (2021) sees HTr as a BC.
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convexity HT r DM(SE)

C-convexity X O

R-convexity O O

Table 3.5: convexity and generalized Binarization methods.

w2 w3

w1

In the above simplex, the preimage-regions of DM(SE) partition the triangle into
19 pieces that consist of 7 white regions, 9 blue line segments, and 3 red points. The
seven white regions are the preimage-regions of the singleton sets, the 9 blue line
segments are the preimage-regions of the sets of 2-elements, and the 3 red points are
the preimage-regions of the sets of 4-elements. Each preimage-region can be described
using the Voronoi cells as follows

C−1({b1, ..., bk}) = [
k⋂
i=1

(V (bi|Um) ∩4m)] \ [
⋃

b∈Um\{b1,...,bk}

V (b|Um) ∩4m]

Since any convex polytope without some low dimensional face is also convex,
C−1({b1, ..., bk}) is convex. We will also prove a more general version of the above
theorem in the next chapter, which provides an extension of the squared Euclidean
distance in the above theorem to any Bregman divergence.
The induced relation by DM(SE) gives us a different picture: as shown in the above
proof, for a given b ∈ Um the set of points in 4m that satisfy the relation induced
by DM(SE) is exactly the same as the Voronoi cell of b restricted to 4m. That is,
the convexity defined by the relation induced by DM(SE) is no different than the
convexity of Voronoi cells.

Every results about the convexity of HTr and DM(SE) are collected in Table
3.5. It is noteworthy that DM(SE) satisfies both norms while HTr satisfies one
of them. In contrast to the BC induced by HTr, DM(SE) satisfies C-convexity.
Strictly speaking, we can extend the above table to include all belief binarization
funtions. Since functions are also a correspondence/relation, BRs can be seen as
a correspondence/relation. Since HTr(S), CSs, CCTgand DM(SE)+ do not satisfy
preimage-convexity, they also do not satisfy C-convexity and R-convexity.

Convexity of ordinalization From many binarization methods, we can induce
an ordering of possible worlds. In the following, we recall or introduce three world
orderings formed by HTr, CSs, and CCTg, respectively. Given P ∈ P(W ),
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(1) HT r generates a unique total order -P on W such that for all v, w ∈ W

v ≺P w iff there is a B ⊆ W such that w ∈ B, v /∈ B, and

P (w′) >
r

1− r
P (B) for all w′ ∈ B

v ∼P w iff v �P w and v ⊀P w

v -P w iff v ≺P w or v ∼P w;

(2) CSs generates a unique partial order ≺P on W such that for all v, w ∈ W

v ≺P w iff sP (v) < P (w);

(3) CCT g generates a unique total order -P on W such that for all v, w ∈ W

v -P w iff P (v) ≤ P (w)

Both CSs and HTr(S) generate its own non-trivial world ordering while the world
ordering generated by CCTg copies the total order of probability values, which makes
CCTg seem natural on the one hand, and vulnerable to even small changes in prob-
abilities on the other hand. In our opinion, this ‘natural’ ordering is what caused
CCTg to fail to satisfy h-monotonicity29

Let us now introduce two different notions of the convexity of ordinalization.
The first one, called (B,wo)-convexity, aims to weaken the preimage-convexity so
that CSs and CCT g can satisfy it: (B,wo)-convexity is weaker than the preimage-
convexity norm in the sense that the condition that a BR G generates the same world-
ordering is added to the antecedent of the preimage-convexity norm. The second one
is the straightforward formulation of the convexity of ordinalization, and is called
wo-convexity. Note that (B,wo)-convexity and wo-convexity do not imply each other.

Definition 3.22. (1) A belief binarization rule G satisfies the convexity of belief
and world ordering ((B, wo)-convexity) if for all P, P ′ ∈ P(W ) if P and P ′

induce the same world-ordering by G, and G(P )(= G(P ′)) = B, then G(αP +
(1− α)P ′) = B for all α ∈ [0, 1].

(2) A belief binarization method generating a world ordering satisfies the convexity
of world ordering (wo-convexity) if for all P, P ′ ∈ P(W ) if P and P ′ induce the
same world-ordering , then αP + (1− α)P ′ induces the same world-ordering as
well for all α ∈ [0, 1].

As mentioned above, CSs and CCT g satisfy (B,wo)-convexity. Then one may
wonder if (B,wo)-convexity is so weak that it is generally satisfied. However, the
next theorem shows that HTr(S) does not satisfy it. It is also shown that the results
regarding wo-convexity are similar.

Theorem 3.12.

29It makes CCTg fail to satisfy the strong suspension principle too.
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(1) HT r(S) satisfies neither (B,wo)-convexity nor wo-convexity, and HT r does not
satisfy wo-convexity.

(2) CSs satisfies (B,wo)-convexity and wo-convexity.

(3) CCTg satisfies (B,wo)-convexity and wo-convexity.

Proof. (1) Let G be a HT0.75(S). Consider the following probability distributions on
W = {w1, w2, w3}:

w1 w2 w3 - (·)-stable0.75 sets

P 0.58 0.3 0.12 w1 ∼ w2 ∼ w3 {w1, w2, w3}
Q 0.3 0.58 0.12 w1 ∼ w2 ∼ w3 {w1, w2, w3}

0.5P + 0.5Q 0.44 0.44 0.12 w1 ∼ w2 � w3 {w1, w2}, {w1, w2, w3}

SinceG(P )(= G(Q)) = {w1, w2, w3} with-P=-Q butG(0.5P+0.5Q) = {w1, w2},
which violates (B,wo)-convexity. From ≺ column, we see that HTr(S) does not satisfy
wo-convexity.
If we apply HT0.75 to the above probability distributions, we also have the ≺ column,
which implies that HTr does not satisfy wo-convexity.

(2) Let G be a CSs, and P, P ′ ∈ P(W ). Suppose that G(P ) = G(P ′) = B, and
≺P=≺P ′ . Let α ∈ (0, 1), and P ′′α = αP + (1−α)P ′. First, we will show wo-convexity,
i.e., for all v, w ∈ W ,

v ≺P w iff v ≺P ′′α w
From our assumptions, we have

v ≺P w iff αsP (v) < αP (w)

v ≺′P w iff (1− α)sP ′(v) < (1− α)P ′(w)

Suppose that v ≺P w. Adding thw above two inequalities, we have sP ′′α(v) < P ′′α(w).
Now suppose that v ⊀P w. Similarly, we have sP ′′α(v) ≥ P ′′α(w), as desired. Since
the same world ordering gives rise to the same maximal elements, we have also
G(P ′′α) = B.

(3) Let G be a CCT s, and P, P ′ ∈ P(W ). Suppose that G(P ) = G(P ′) = B, and
-P=-P ′ . Let α ∈ (0, 1), and P ′′α = αP + (1 − α)P ′. With similar proof to the case
of CSs, it can be easily proved that P ′′α preserves the given ordering on W . It is also
easily checked that if P (B), P ′(B) ≥ g, then P ′′α(B) ≥ g. It remains to show that
P ′′α(B)−min

w∈B
P ′′α(w) < g. From our assumptions, we have

αP (B)− αmin
w∈B

P (w) < αg

(1− α)P ′(B)− (1− α) min
w∈B

P ′(w) < (1− α)g

Adding two inequalities, we have

P ′′α(B)− (αmin
w∈B

P (w) + (1− α) min
w∈B

P ′(w)) < g
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convexity HT r HT r(S) CSs CCT g

(B,wo)-convexity — X O O

wo-convexity X X O O

Table 3.6: Convexity of Ordinalization

Since -P=-P ′=-P ′′α , it also holds that

argmin
w∈B

P (w) = argmin
w∈B

P ′(w) = argmin
w∈B

P ′′α(w)

, which implies our claim.

In order to formulate a kind of convexity that CSs satisfies, why do we need the
additional antecedent saying that two probability functions induce the same world
ordering? Let us explain it by means of an example. Let G be CS4. Consider the
probability distributions onW = {1, 2, 3} used in the proof of Theorem 3.12 (1). From
those distributions, we can build the following partial orders (among two worlds with
an edge, the lower world is less than (≺) the upper world; otherwise no order):

w3

w1 w2 w1 w2

w3

w1 w2 w3

≺P ≺P ′ ≺(0.5P+0.5P ′)

Note that G assigns to P and P ′ the same belief core {w1, w2} although ≺P and
≺P ′ are different world orderings. So this case is ruled out by the antecedent and
does not work as a counterexample.

Every result about convexity of ordinalization is indicated in Table 3.6. It is
noteworthy that regarding the convexity of ordinalization, the performance of CSs

and CCTg is superior to HTr(S). How do we interpret this result? The results for
CSs and CCTg might show that the binarization is only a part of ordinalization, and
without respecting world-ordering, they are vulnerable to some mixing of probability
functions. In contrast, for HTr(S), even respecting world-ordering does not make it
satisfy the convexity norm.

Now let us collect all the results proved in this section. It is worth pointing out
that every binarization method has some convexity requirements favorable to it, which
make it possible to distinguish every binarization method from the other methods.
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convexity HT r HT r(S) CSs CCT g DM(SE)+ DM(SE)

preimage-convexity — X X X X —

preimage◦-convexity — X X O O —

h-monotonicity — O O X O —

C-convexity X X X X X O

R-convexity O X X X X O

(B,wo)-convexity — X O O — —

wo-convexity X X O O — —

Table 3.7: Convexity and Binarization methods

3.6 Conclusion

In this chapter, we introduced, in a systematic way, classes of threshold-based het-
erogeneous belief aggregation rules. To characterize them, we defined various forms
of monotonicity, and to uniquely characterize the direct rules, we devised the no-
tion of conjunctiveness. We characterized all the classes we introduced and using
the characterization we analyzed threshold-based rules. Moving on to collective be-
lief binarization, we focused on local threshold rules that yield the property of being
Lockean and coherent. We added their conjunction, being stable, and a weaker prop-
erty of being r-likely. We reviewed the inclusion relation between the properties and
provided their geometrical characterizations. With help of this, we identified which
rational rules satisfy the properties:

• CSs, CCTg and DM(SE)+ are not always stable.

• CSs is not always r-likely but DM(SE)+ is r-likely.

• DM(SE)+ is interior-coherent.

Moreover, we proposed various kinds of convexity norms and examined which of
them are satisfied by which binarization methods including not only functions but
also correspondences, relations and ordinalizations:

• HT
1
2 (S), HTr(S), CSs, CCTg and DM(SE)+ do not always satisfy preimage-

convexity.

• CCTg and DM(SE)+ satisfy preimage◦-convexity.

• CCTg does not always satisfy h-monotonicity.

• DM(SE) satisfies C-convexity.

• HTr and DM(SE) satisfy R-convexity.

• CSs and CCTg satisfy (B,wo)- and wo-convexity.
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Notice that we investigated whether each rule always satisfies each property or
not, and we suggested counterexamples when it fails. It will have to be left for future
work to study the exact conditions under which a rule fails to satisfy the properties.
Moreover, most of the analysis of collective belief binarization is not specialized for
group decision context. We need to examine how we can reflect on the difference
between individual and collective beliefs.
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Chapter 4

Distance- and Utility-based
Heterogeneous Belief Aggregation

In Chapter 1, we proposed a new research topic of aggregating multiple credences to
a binary belief: heterogeneous belief aggregation. In Chapter 2, we collected some
seemingly desirable conditions on heterogeneous belief aggregation, and proved that
only trivial rules obey those conditions. To avoid the triviality results, we relax the
independence condition and preserve rationality in Chapters 3 and 4. In Chapter
3, we studied threshold-based binarization rules and utilized them for heterogeneous
belief aggregation. In this chapter, we shall propose and investigate distance- and
utility-based rules: (1) belief binarization rules minimizing distance or maximizing
expected utility, which will be combined with opinion pooling and (2) direct rules
based on distance or utility.

Individuals’
probabilistic

Beliefs

Group’s
probabilistic

Belief

Opinion

Pooling

Group’s
binary
Belief

(1) Binarization (Dist.Min/Util.Max)

(2) Direct rules (Dist.Min/Util.Max)

Figure 4.1
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4.1 Introduction

4.1.1 Setting Out

This chapter proposes two novel belief binarization methods based on distance and
utility and applies them to the heterogeneous belief aggregation problem. Most of
the belief binarization literature has focused on threshold-based rules, as discussed
in Chapter 3. The threshold-based rules associate beliefs/disbeliefs with high/low
probabilities, respectively. We saw that global event-threshold rules — believing
all and only the events with a probability above a given threshold — lead to the
lottery paradox, which demonstrates the conflict between the independence norm and
rationality. To preserve rationality, we may choose thresholds in a way that avoids
the paradox (in local event-threshold rules) or set them for worlds’ probabilities (in
world-threshold rules). However, they are still concerned with each event’s probability
or world’s probability.

Our arguments for new binarization rules begin by criticizing these event-wise
or world-wise rules. There is no reason to determine a binary belief event-wise or
world-wise, given a probability function on logically interconnected events. Rather,
event-wise or world-wise procedures should be circumvented when the logical relation
of the events in consideration is complex. We want belief binarization methods to take
those logical relations into account. Therefore, we will not collect events/worlds with
high probabilities to obtain a belief set/belief core, respectively, but directly choose a
belief core — whose supersets constitute a belief set — among non-empty subsets of
the set of all possible worlds. Now our problem is how a belief core can be determined
given a probability function. To solve this problem, we return to the fundamental
reasons why high probabilities are associated with beliefs and find a more direct and
holistic way to obtain rational beliefs.

Probabilistic and binary beliefs aim at the truth. Thus, our purpose is to provide
belief binarization rules that track the truth well — the closer to the truth, the better
the rule. However, our perfect rational agents do not know what the truth is and just
have a subjective probability, which aims at the truth as well. So to get close to the
truth, the best ways for the agent with a probability to determine what to believe
would be (i) the ways to get close to the probability or (ii) the ways to expectedly
get close to the truth. Since probabilistic beliefs aim at the truth and are more fine-
grained than binary beliefs, rational belief binarization methods seek to find a binary
belief as close to the probabilistic belief as possible. In this sense, the former method
tracks the truth by tracking the probabilistic belief and therefore is a somewhat
implicit method to follow the aiming-at-truth norm. In contrast, we can also devise
belief binarization methods that explicitly consider the truth-tracking norm of beliefs.
Since our agent does not have access to the truth but only to a subjective probability
which encodes all internally accumulated evidence of the truth, the agent, at best,
can expect beliefs to be correct from the point of view of her own credal state. In this
sense, the latter method can be seen as an explicit method to track the truth. The
former leads to the distance minimizing belief binarization rules (DM rules) and the
latter to the expected (epistemic) utility maximizing belief binarization rules (EUM
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rules).
The DM rules determine the belief core B that minimizes the distance from a

given probability function P . How can we measure the distance from a probability
function to a belief core? We will use divergences between probability functions. To
this end, we identify a belief core B with the uniform distribution U(B) on B so
that the distance from U(B) to B is zero. This assumption leads to the suspension
principle that a belief binarization rule should map U(B) to B. When B is the
singleton set {w} of a world w, U(B) represents the probabilistically certain belief
that w is the actual world. Thus, the resulting belief core should be {w}. When B
is not a singleton, U(B) represents the probabilistically certain belief that any world
outside B is not the actual world. Therefore, we can exclude those worlds. Moreover,
since U(B) is uniformly distributed over worlds in B, it represents that the agent has
no information about which world in B is the actual world. Thus, the agent should
suspend judgment about whether the actual world is in any strict subset of B, and
thereby B should be the belief core. This is a demanding condition when suspending
judgments is allowed, i.e., when completeness of binary beliefs — every event should
be believed or disbelieved — is not required. This is so weak as to be satisfied by
most threshold-based rules in Chapter 3.

Now our problem is how we can measure the distance from a probability function
to the uniform distribution on a non-empty set of possible worlds. We will examine
Bregman divergences. They are the most commonly used distance measures between
probability functions, and thus we can adopt abundant existing research results. In
epistemic decision theory, Bregman divergences are used to provide justifications for
epistemic norms such as probabilism since Bregman divergences are related to the
expected inaccuracy of credences. We will utilize Bregman divergences more directly
as a distance measure for the DM rules, and we call the rules DM(Bregman). The most
relevant feature of Bregman divergences regarding our study is that minimizing the
Bregman divergence from P amounts to the minimization of the expected Bregman
divergence with respect to P . This means that getting close to a given probability
leads to the same result as expecting to get close to the truth with respect to the
probability. Roughly speaking, distance minimization has the same effect as expected
distance minimization. Since the distance between a world and a probability function
can be viewed as an epistemic utility (disvalue) of the probability function at the
world, DM(Bregman) can be viewed as an EUM rule. What is more, the epistemic
utility of a probability function at a world given by the Bregman divergence from
the world to the probability function is a strictly proper score, which leads to the
following binarization rule.

We call the EUM rules with a strictly proper score EUM(SP). Strictly proper
scores are the most typical inaccuracy measures in epistemic decision theory and are
the most commonly used utilities in many other areas, such as probabilistic forecast-
ing and belief elicitation contexts. Strict propriety requires that the expected utility
of a probability function with respect to P is uniquely maximized at P . So to obtain
maximal expected utility, we have to choose P when P is given, which implies the
suspension principle. This indicates that EUM(SP) rules can be regarded as DM
rules. Moreover, it is well known that expected strictly proper scores generate Breg-
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Figure 4.2: DM and EUM rules

man divergences. Thus, EUM(SP) rules are DM(Bregman) rules. This shows that
EUM(SP) rules, or equivalently DM(Bregman) rules are the way to get close to the
probability and to expectedly get close to the truth at the same time.

Although the EUM(SP) rules are the most representative EUM rules, it is worth
studying the EUM rules in general. In epistemic decision theory, minimizing the
expected inaccuracy of credences is the most common strategy to justify epistemic
norms. We, in contrast, apply the minimization of the expected inaccuracy of prob-
ability functions, as decision rules, directly to belief binarization problems. So it is
used to determine the belief core that is expected to get close to the truth. Here,
one natural question arises: when can a belief core determined in this manner mini-
mize the distance from the probability function as well? In other words, under what
conditions on utilities can EUM rules be represented by DM rules? Inversely, under
what conditions on distances can DM rules be represented by EUM rules? These
questions will generalize the relationship between DM(Bregman) and EUM(SP). The
relationships between the rules discussed so far are illustrated in Figure 4.2.

Now let us turn to the DM and EUM rules’ geometrical features. Using the
suspension principle, we can easily check whether a binarization rule is a DM rule or
not, and see that many threshold-based rules introduced in Chapter 3 (HTr(S), CSs,
CCTg, HTr) can be interpreted as DM rules. Can these rules be interpreted as EUM
rules as well? This question is related to the convexity norm discussed in Section
3.5. We will show that every EUM rule satisfies C-convexity and R-convexity, which
is derived from the linearity of the expectation operator. Since the above threshold-
based rules do not satisfy C-convexity or R-convexity, we can conclude that they are
not EUM-rationalizable, which means that they cannot be EUM rules.

Last but not least, the question is raised about how we can apply distance- and
utility-based belief binarization rules to heterogeneous belief aggregation problems.
As illustrated in Figure 4.1, the DM rules and EUM rules discussed above will be
combined with an opinion pooling procedure such as linear pooling (LP) or geomet-
ric pooling (GP). We will also suggest direct heterogeneous belief aggregation rules
based on some individual distances or utility functions. These two categories will be
compared in terms of commutativity. Moreover, we will formulate some properties
of distance- and utility-based heterogeneous belief aggregation, such as strong and
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weak unanimity and study how they relate to each other and convexity. In addition,
we will examine whether certain specific combinations of LP or GP with some EUM
or DM rules such as the DM rule with squared Euclidean distance and the one with
Kullback-Leibler divergence satisfy them.

The most challenging part of this study will be the following part. First, we
will represent probability functions not only in a probability simplex but also in De
Finetti’s coherent polytope. In the former approach, each world’s probability (we will
assume finite worlds) will be relevant, while the probabilities of some focused events
will be relevant in the latter approach. Second, we will refine the conventional defi-
nition of Bregman divergence: to employ Bregman divergence for belief binarization
problems, we want to allow infinite divergence on certain regions of boundaries of a
probability simplex or De Finetti’s coherent polytope. Third, we do not assume scor-
ing rules to be additive. The above introduced rules and claims will be explicated and
proved based on this technical setting. This will enrich the study of heterogeneous be-
lief aggregation and contribute to other research areas. For example, we could apply
this study to a justification of Bayesian conditionalization or linear pooling. More-
over, we could extend our study to a justification of probabilism with non-additive
scores. What is more, we could discuss distance- and utility-based opinion pooling,
analogously to DM rules and EUM rules.

The rest of this chapter is organized as follows: in the remainder of this section,
we will review scoring rules and Bregman divergences, and recall the formal settings
and definitions relevant to this chapter. In Section 4.2, we will explicate the DM
rules and show that the suspension principle characterizes them. Moreover, we will
suggest the refined definition of Bregman divergence and employ it to prove that
DM(Bregman) is represented by the expected distance minimization. In Section 4.3
, we formulate the EUM rules with strictly proper scores and prove that EUM(SP)
can be represented by DM(Bregman). Furthermore, we illustrate some examples of
EUM rules and find the conditions for an EUM rule to be a DM rule and for a DM
rule to be an EUM rule. In addition, we prove that every EUM rule is convex. In
Section 4.4, which is based on joint work with Chisu Kim, we will combine distance-
and utility-based binarization with opinion pooling and compare these combined rules
with direct heterogeneous belief aggregation rules. We will also investigate properties
of distance- and utility-based heterogeneous belief aggregation and examine whether
certain specific rules satisfy them. Section 4.5 concludes this chapter.

4.1.2 Related Work

Scoring Rules Suppose that a meteorologist were to make the following probabilis-
tic prediction about whether a typhoon would hit the country in a week: the typhoon
will hit the country with a probability of 0.3. Furthermore, it turns out that the
typhoon passes by the country. How can the quality of the meteorologist’s prediction
be assessed? Informally, she can be told that she was not wrong, but she was not
wholly correct, and it could be said that she predicted close to the truth. Everybody
would agree that the most crucial thing in evaluating her prediction is how accurate
her prediction was, that is, how close it was to the truth. For this purpose, scoring
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rules have been devised to evaluate not only a probability estimate of some future
event, but also any probability function over an algebra.

We now give a formal definition of scoring rules. Let W be a nonempty finite set
of possible worlds and P(W ) be a set of all probability distributions on W . A scoring
rule is a function S : W × P(W ) → R ∪ {−∞} or S : W × P(W ) → R ∪ {∞} such
that S(w,P ) is the score (reward/penalty) assigned to P when the realized outcome
is w. It is natural to introduce the expected score to relate scoring rules with not
only realized worlds but also probability functions over the set of all possible worlds:
the expected score of Q with respect to P is defined by∑

w∈W

P (w)S(w,Q)(=: Ew∼P [S(w,Q)])

One of the special cases of the expected score is called the Savage representation of a
scoring rule S for P , which is defined by Ew∼P [S(w,P )].1

Among many scoring rules, strictly proper scores have been extensively studied.
The formal definition of strict proper scores is given as follows: a scoring rule is called
strictly proper if the expected score of Q with respect to P is uniquely maximized
when Q = P . Formally, S is strictly proper iff for all P,Q ∈ P(W )

Ew∼P [S(w,Q)] ≤ Ew∼P [S(w,P )]

and the equality holds only for P = Q.
The interpretation of the ‘propriety’ depends on how P is interpreted in

Ew∼P [S(w,Q)]. In probabilistic forecasting (Brier 1950), P can be understood as an
unknown objective chance, and Q as an expert’s prediction. Then proper scoring rules
can be used to track the objective chances. In belief elicitation (Schlag et al. (2015)),
P refers to an expert’s true belief, and Q to the expert’s reported belief. Then proper
scoring rules can be used to incentivize truthful reporting; they encourage the agents
to reveal their true credal state in belief elicitation contexts.

In epistemic decision theory, proper scoring rules have been mainly utilized to
justify probabilism (Predd et al.(2009)) or other epistemic norms (Pettigrew (2016)).
To this end, the epistemic performance of probability functions needs to be com-
pared with other credence functions, and therefore, the underlying set of Qs in
Ew∼P [S(w,Q)] — P(W ) — is extended to the set of all credence functions. Then
the strict-propriety norm requires that a probabilistic belief P expects itself to have
a greater utility than the utility that it expects any other credence function to have.
Although strictly proper scores have played a pivotal role in the justification of prob-
abilism, whether the propriety is fully justified remains controversial. However, our
discussion bypasses this difficulty since we pay attention to probability functions in
the belief binarization context.

Let us introduce two mainly studied proper scoring rules: the Brier and the log
score. The Brier score is defined by

SBrier(w,P ) = 2P (w)−
∑
w∈W

P (w)2

1See Savage (1971).
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; the log score is defined by

Slog(w,P ) = logP (w)

The Savage representations of the Brier score and the log score are as follows:

Ew∼P [SBrier(w,P )] =
∑
w∈W

P (w)2

Ew∼P [Slog(w,P )] =
∑
w∈W

P (w) logP (w)

Bregman Divergences How can we measure a distance between two probability
functions? Since there are too many options2, the most general definitions would be
a good starting point. Arguably, the most general distance measures are divergences,
defined as follows: a divergence is a function D : P(W ) × P(W ) → [0,∞] such that
D(P,Q) = 0 iff P = Q. Note that it does not need to satisfy symmetry and triangle
inequality. Let us mention two different divergences: the squared Euclidean distance
is defined by

DSE(P,Q) =
∑
w∈W

(P (w)−Q(w))2

; the Kullback-Leibler divergence is defined by

DKL1(P,Q) =
∑
w∈W

P (w) log
P (w)

Q(w)

if for all w,P (w) 6= 0 implies Q(w) 6= 0, o/w ∞.
Among many divergences, Bregman divergences are one of the extensively stud-

ied ones. They are general enough to include the squared Euclidean distance and
Kullback-Leibler divergence, and have a close relationship with strictly proper scores,
as we will see later. The definition of Bregman divergence is as follows: D is a Breg-
man divergence iff there is a differentiable, bounded and strictly convex function Φ
such that

DΦ(p, q) = Φ(p)− Φ(q)−∇Φ(q) · (p− q)

for all p, q in a given convex subset X ⊆ Rm. We call Φ the generating function of
Bregman divergence DΦ.

DΦ(p, q)

q p

2For different kinds of distance measures between probability functions, see Deza & Deza (2016)
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The above figure shows a convex function and the tangent line to the convex function
at q. According to the Bregman divergence generated by the convex function, the
distance from p to q is the difference between the function value at p and its tangent
line approximation at q.

Let us see what the generating functions of DSE(P,Q) and DKL1(P,Q) are: for
DSE(P,Q),

Φ(P ) =
∑
w∈W

P (w)2

; for DKL1(P,Q),

Φ(P ) =
∑
w∈W

P (w) logP (w)

Remember that the first one is the Savage representation of the Brier scoring rule,
and the second one is the one of the log scoring rule. It is not a coincidence, since
the Savage representation of strictly proper scores can be the generating function of
a Bregman divergence.3 There are different representation theorems between proper
scoring rules and Bregman divergences (McCarthy (1956), Savage (1971), Gneiting
& Raftery (2007)).

4.1.3 Distance- and Utility- based Rules

This chapter introduces distance- and utility-based heterogeneous belief aggregation.
We begin by recalling the formal definitions of opinion pooling, belief binarization,
and heterogeneous belief aggregation. Throughout this chapter, we assume that W is
a finite non-empty set of possible worlds and denote by P(W ) the powerset of W as in
Chapter 3 so as to well-define the probability of a world. Let N := {1, ..., n}(n ≥ 2)

be a set of individuals and ~P denote a profile (P1, ..., Pn) of individual probability
functions Pi on (W , P(W )). An opinion pooling function (OP) f is a function that

takes as input the individual probabilities ~P and outputs the group’s probability f(P )
on (W ,P(W )). And a binarization rule (BR) G is a function that takes a probability
P on (W , P(W )) and returns a binary belief G(P ), which is a function from P(W )

to {0, 1}. Lastly, a heterogeneous aggregator (HA) F is a function that assigns to ~P

in a given domain a binary belief F (~P ).
As explained at the beginning of Chapter 3, we categorize heterogeneous belief ag-

gregation into two groups: (1) collective belief binarization combined with an opinion
pooling function and (2) direct rules that do not go through opinion pooling. In this
chapter, we will address each group based on distance minimization and epistemic
utility maximization. In Section 4.2 and 4.3, we restrict our attention to distance-
and utility-based belief binarization ((1)) and in Section 4.4, we will address distance-
and utility-based heterogeneous belief aggregation ((2) and the combination of (1) and
opinion pooling).

3Note that Φ(P ) = Ew∼P [S(w,P )] and DΦ(P,Q) = Ew∼P [S(w,P )]− Ew∼P [S(w,Q)].
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4.2 The Distance Minimizing Binarization Rules

In this and the next section, we focus only on belief binarization rules. As discussed
in Section 3.4, most binarization rules suggested in belief binarization literature are
based on some kinds of thresholds. We now propose novel binarization rules based
on distance and epistemic utility. First of all, we suggest distance minimizing bina-
rization rules (DM rules) and then explore the DM rules with Bregman divergence
(DM(Bregman) rules). It is well-known that Bregman divergences and strictly proper
scores are representable by each other. We will prove this fact in our framework and
show that the DM(Bregman) rules can be represented by expected utility maximiza-
tion with strictly proper scoring rules (EUM(SP) rules) and vice versa, which inspires
us to define expected utility maximizing binarization rules (EUM rules) in Section
4.3.

We begin with the following assumptions that we will use throughout this chap-
ter. First, binarization rules are presupposed to be rational as the threshold-based
binarization rules introduced in Definition 3.17 in Section 3.4. In other words, every
resulting binary belief is consistent (the belief set does not entail a contradiction) and
deductively closed (the belief set contains all its logical consequences) so that it has
a non-empty belief core whose supersets are exactly the believed events.4 Therefore,
we assume, here and subsequently, that a BR G is rational and regard G(P ) as a
non-empty subset B of the set W of possible worlds.

Second, we will address distance minimization and expected utility maximization
(or expected inaccuracy minimization) that take the following form

argmin
B

g(P,B)

where g is an extended — i.e.,∞ is allowed as the output value — real-valued function
of P and B, and argminB g(P,B) is the set of the non-empty subsets B of W that
minimize the value g(P,B). Accordingly, it is natural that we let binarization rules

4Recall Definition 3.5 in Section 3.2.2. Let Bel : P(W ) → {0, 1} be a binary belief on a finite
space (W , P(W )). Bel is rational iff Bel is consistent (

⋂
Bel−1(1) 6= ∅) and deductively closed

(Bel−1(1) contains W and it is closed under intersection and superset). See Definition 3.15 in
Section 3.3 and Definition 3.3 in Section 3.2.1 as well.
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minimizing some real-valued function be a correspondence, which allows multiple
outputs. We can later combine this with some tie-breaking rule to choose one belief
core. Formally speaking, we regard a BR G on (W , P(W )) as a correspondence from
a given domain to P(W ) \ {φ}, which is a function that takes as input a probability
function P on (W , P(W )) and outputs a set of non-empty subsets B of W . In the
case where the output set is a singleton, we abbreviate argminB g(P,B) = {B′} by
argminB g(P,B) = B′.

Third, we will assume that a BR G has the universal domain P(W ), which denotes
the set of all probability functions on (W , P(W )). Taken the above three assumptions
together, we obtain the following: a binarization rule is a correspondence from P(W )
to P(W ) \ {∅}.

4.2.1 The DM Rules and the Suspension Principle

In this section, we define distance minimizing binarization rules and characterize
them. For this purpose, we need to measure the distance between the input of a BR
G — a probability function P on (W , P(W )) — and a subset B of W . Our first main
idea is to employ a divergence on a convex subset of Rm defined as follows:

Definition 4.1 (Divergence). Let X be a convex subset of Rm. We call a function
d : X × X → [0,∞] a divergence on X in Rm when d(x, y) ≥ 0 where the equality
holds iff x = y for all x, y ∈ X.

To this end, we need to represent probability functions P and subsets B in Rm. For
probability functions, we could deploy some typical methods to represent probability
functions in Rm. However, how can we represent a subset B in Rm? Our second main
idea is to identify it with the uniform distribution U(B) on B — the probability
distribution that assigns the same probability to each world in B and 0 to other
worlds. It is plausible because when the input of a BR G is U(B), B is the most
natural belief binarization result, and thus we want to set the distance between U(B)
and B equal to 0.

Representations of Probabilities What remains in order to measure distance
is to introduce how to represent probability functions in Rm. There have been two
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approaches. In some contexts, such as judgment aggregation or epistemic utility
theories, propositions are given at the outset, and only their probabilities are relevant.
In other contexts, such as binarization theories or statistics, probabilities of worlds
are used (under the assumption that there exist finite worlds). We include both
approaches.

Recall that W is a finite non-empty set of possible worlds, and P(W ) is the
powerset-algebra, to whose elements probabilities are assigned. The first approach is
to represent a probability function P by a point p in R|W | where

p = (P (w))w∈W (4.1)

According to this representation method, we can represent an omniscient credence
function Vw at w ∈ W — assigning 1 to w — by a point vw on {0, 1}|W | where the
w′-th coordinate is the following.

(vw)w′ = Vw(w′) = 1w=w′

where 1w=w′ = 1 if w = w′, o/w 1w=w′ = 0. Then the set of the representation points
of all probability distributions, denoted by 4W , can be represented by the convex
hull5 of the representation points of all omniscient credence functions as follows:

4W = Conv({vw ∈ {0, 1}|W ||w ∈ W}) ⊆ R|W |

since p =
∑

w∈W P (w)vw. Note that4W is the same as the usual |W |−1-dimensional
probability simplex, whose vertexes are the representation points of all omniscient
credence functions. We say that p is the representation point of P in 4W if (4.1)
holds.

We now move to the second approach. We introduce a non-empty subset F of
P(W ), and call it the set of focused events. Even though input probabilities and
output binary beliefs are functions from P(W ), there can be some situations where
we are only interested in the focused events in F . In this case, we represent probability
functions R|F| and measure distances between them in this space. This approach can
be used for a generalized agenda that is not required to be an algebra, such as agendas
in judgment aggregation, epistemic decision theory and the basic setting in Chapter
2. Note that each input and output of a BR is assumed to be a function from the
general agenda in Chapter 2, while they are functions from P(W ) in this chapter.6

However, this assumption of this chapter can be relaxed later.7 8

5Let R ⊆ Rm. The convex hull of R: Conv(R) = {z ∈ Rm| z = αx + (1 − α)y for some x, y ∈
R,α ∈ [0, 1]}

6We need this condition to well define expected epistemic utility in EUM rules, where we need
to calculate a probability of a singleton world unless we have IER (Invariant expectation under the
same representation in Definition 4.9)

7The condition of IOR (Invariance under the same ouput-representation in Lemma 4.1), IIR
(Invariance under the same input-representation in Definition 4.4), IER (Invariant expectation under
the same input-representation in Definition 4.9) will play the role of relaxing this assumption.

8There can be another application of our setting: F can be interpreted as the set of the basic
events, called the premises in Dietrich & List (2017b).
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Now we are ready to formulate the second approach: we represent a probability
function P by a point p in R|F| where

p = (P (A))A∈F (4.2)

Thus, an omniscient credence function Vw at w ∈ W is represented by a point vw on
{0, 1}|F| where the A-th coordinate is the following.

(vw)A = Vw(A) = 1w∈A

where 1w∈A = 1 if w ∈ A, o/w 1w∈A = 0. Moreover, we have

4F = Conv({vw ∈ {0, 1}|F||w ∈ W}) ⊆ R|F|

since p =
∑

w∈W P (w)vw where 4F denotes the set of the representation points of all
probability distributions in this approach. Note that 4F is a 0/1 polytope in R|F| (a
polytope whose vertexes are on {0, 1}|F|). We say that p is the representation point
of P in 4F if (4.2) holds.

It is interesting to compare two approaches. In the case where F = {{w} ∈
P(W )|w ∈ W}, both ways are the same. If |F| < |W |, one point in 4F represents
several distinct probability distributions, i.e., a probability distribution is not uniquely
determined by a point: a point in 4F represents a convex set of probabilities. It
is because if P, P ′ have the same representation p, then for all A ∈ F we have
P (A) = P ′(A) = αP (A)+(1−α)P ′(A) for all α ∈ [0, 1], which means that any linear
combination of them has the same representation. Therefore, we can regard a point
in F as a convex set of probabilities.

Note that many definitions, theorems, and statements in this chapter will be
formulated using not only the representations in 4W but also the ones in 4F . To
express this, we will use4M . Hence M is considered to be W throughout this chapter
or to be F throughout this chapter.

Representations of Belief Cores Now let us turn to the representations of the
uniform distribution U(B) on a non-empty belief core B ∈ P(W ) \ {∅}. Using the
above approaches, they can also be represented in 4M . We will denote by UM the
set of the representation points b of the uniform distributions U(B) on all non-empty
belief cores B.

With this in place, we will, hereafter, let a BR G be a correspondence from P(W )
to UM . In other words, G(P ) refers to a set of points b in UM . Since we address
binarization rules based on distance minimization or expected utility maximization,
G takes the form of

argmin
b

g(P, b)

which is the set of the points b in UM that minimize g(P, b), where g is an extended
real-valued function. Note that the uniform distribution on a belief core might not
be uniquely determined by a point in 4F as explained above, which can lead to the
under-determination of a belief core. However, even if a point that represents several
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belief cores is selected as a group’s belief, we could combine it with a tie-breaking rule
later. Moreover, the following lemma shows that even though different belief cores
give us different belief sets, their belief and disbelief in any event in F are the same
if their representation points in 4F are the same. It means that the focused events
that should be believed are independent of the tie-breaking rule.

Lemma 4.1 (Invariance under the Same Ouput-representation (IOR)). Let B and
B′ be non-empty subsets of W . If the uniform distributions on them are represented
by the same point in 4F , i.e.,

b = b′

then for all A ∈ F ,

B ⊆ A iff B′ ⊆ A and B ⊆ A iff B′ ⊆ A

where A is the complement of A.

Proof. Let pA := P (A) for all A ∈ F and for all P ∈ P(W ). Let us prove the following
first:

B ⊆ A iff bA = 1 and B ⊆ A iff bA = 0 (4.3)

In 4F , w ∈ A iff (vw)A = 1 for all w ∈ W and for all A ∈ F . Thus, B ⊆ A means
that for all w′ ∈ B, (vw′)A = 1, which is equivalent to uni(B)A( =

∑
w′∈B

1
|B|(vw′)A)

= 1. Similarly, w ∈ A iff (vw)A = 0 for all w ∈ W and for all A ∈ F . Thus B ⊆ A
means that for all w′ ∈ B, (vw′)A = 0, which is equivalent to bA = 0.9 Thus, by (4.3),
since b = b′ means that for all A ∈ F , bA = b′A, the claim follows.

The statement (4.3) gives us a geometrical intuition about the binary belief cor-
responding to b ∈ UM assigned to the focused events A in F . If bA = 1, then A is
believed; if bA = 0, then A is believed; if bA 6= 0, 1, then neither A nor A is believed.
This explains why binary beliefs in the focused events in F are invariant under the
same output-representation (IOR).

Lastly, before formalizing the definition of distance minimizing binarization rules,
let us illustrate some examples of belief binarization problems.

Example 4.1 (Belief Binarization Problems). Consider the following four binariza-
tion problems where the set W of possible worlds or the pair of the set F of focused
events and W are given:

(1) W = {w1, w2, w3}

(2) F = {[a1], [a2]}, W = {w1(|= a1, a2), w2(|= a1,¬a2), w3(|= ¬a1, a2), w4(|= ¬a1,¬a2)}

(3) F = {[a1], [a1 ∧ a2]}, W = {w1(|= a1, a2), w2(|= a1,¬a2), w3(|= ¬a1, a2), w4(|=
¬a1,¬a2)}

9The following is another proof for the first part of (4.3) . If B ⊆ A, then uni(B)A = U(B)(A) =∑
w∈A U(B)(w) =

∑
w∈A∩B U(B)(w) =

∑
w∈B U(B)(w) = 1. If B * A, then

∑
w∈A∩B U(B)(w) 6=∑

w∈B U(B)(w). Thus bA 6= 1.
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w2 w3

w1

w4 |= ¬a1,¬a2

w3 |= ¬a1,a2

w2 |= a1,¬a2

w1 |= a1,a2

w3,w4 |= ¬a1,¬(a1 ∧ a2) w2 |= a1,¬(a1 ∧ a2)

w1 |= a1,a1 ∧ a2

w3 |= ¬a1,¬a2

w2 |= ¬a1,a2 w1 |= a1,a2

Figure 4.5: Belief Binarization Problems

(4) F = {[a1], [a2]}, LC = {a1 → a2}, W = {w1(|= a1, a2), w2(|= a1,¬a2), w3(|=
¬a1,¬a2)}

where a1 and a2 are atomic formulas in the standard propositional logic, and for any
formula φ, [φ] is the set of the valuations under which φ holds. We write w |= φ1, φ2

when φ1 and φ2 hold under the valuation w. In (2), (3), and (4), each set of possible
worlds is given as the set of all logically possible valuations. In the case with LC (short
for logical constraints) like (4), logically possible valuations mean the valuations under
which the formulas in LC hold.

Figure 4.5 depicts (1)/(2)/(3)/(4) in 4W/4F/4F/4F , respectively. Each point
represents the uniform distribution on a belief core. Some of them represent several
uniform distributions, e.g., the central point in the upper right figure represents three
different uniform distributions. The solid blue circles express that there are extra uni-
form distributions. Note that the points that are surrounded by a dotted red circle
give us the same beliefs/disbeliefs of the focused events in F by the statement (4.3)
in the proof of Lemma 4.1.
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The DM rules and the Suspension Principle Now we deploy a divergence d on
4M and the representation methods discussed above in order to formulate distance
minimizing binarization rules (DM rules) as follows.

Definition 4.2 (Distance Minimization rule (DM rule)). A BR G is a distance min-
imization rule (DM rule) in 4M iff there is a divergence d on 4M such that

G(P ) = argmin
b

d(p, b)

for all P ∈ P(W ) and its representation point p in 4M .

So a DM rule with a divergence d on 4M is a correspondence that takes as input
any probability function P and outputs the points b in UM that minimize the distance
from p.

The following theorem states that the DM rules are characterized by a specific
epistemic principle, what is called the suspension principle. The suspension princi-
ple requires that if there is no reason to prefer one epistemically possible world over
another — here, an epistemically possible world means a world with a non-zero prob-
ability —, we should not believe any event that excludes some epistemically possible
worlds, and we should believe any event that includes all the epistemically possible
worlds. In other words, we should suspend every strict subset of the set of all epis-
temically possible and equally likely worlds and believe all this set’s supersets. Here
is the formal definition of the suspension principle.

Definition 4.3 (Suspension Principle). A BR G satisfies the suspension principle iff
for all P ∈ P(S) and its representation point p ∈ 4M , and for all b ∈ UM ,

if p = b then G(P ) = b.

This means that if P is a uniform distribution on some worlds, then binarization
rules should result in the belief core that consists of those worlds.

For the characterization theorem, we will need the following condition, which gives
some control over the cases where points in 4M can represent several probability
distributions.

Definition 4.4 (Invariance under the same input-representation (IIR)). A BR G
satisfies the invariance under the same input-representation (IIR) in 4M iff if P, P ′ ∈
P(W ) have the same representation in 4M , i.e.,

if p = p′(∈ 4M), then G(P ) = G(P ′)

where p and p′ are the representation points of P and P ′ in 4M , respectively.

If G satisfies IIR in 4F , then the binarization results depend only on the proba-
bilities of the focused events in F . Thus the representation point p plays the role of
the input of G. This amounts to dealing with a generalized agenda and a probabilistic
belief — a function extendable to a probability function on the algebra generated by
the generalized agenda — as in Chapter 2. Let us compare this with the invariance
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under the output-representation (IOR) in Lemma 4.1. IIR means that two probabil-
ity functions with the same representation input-point give us the same output-point,
which is associated with several belief cores. On the other hand, IOR in Lemma 4.1
shows that any output-point gives us the same belief or disbelief about the focused
events in F .

The following theorem says that the suspension principle characterizes the DM
rules if G satisfies IIR.

Theorem 4.2 (Characterization of DM rule). A BR G is a DM rule in 4M iff

(i) G satisfies IIR in 4M and

(ii) G satisfies the suspension principle.

Proof. (→) Since G has the form of G(P ) = argminb d(p, b) for some divergence d, (i)
and (ii) hold.
(←) Let d be as follows:

d(p, b) :=


min

b′∈G(P )
dE(p, b′) if b ∈ G(P )

max
p′,b′

dE(p′, b′) otherwise

where dE is the Euclidean distance. It is well defined thanks to (i). Then, if p = b
then G(P ) = b by (ii) and thus d(p, b) = dE(p, b) = 0. If p 6= b, then dE(p, b) > 0 even
if b ∈ G(P ), and thus d(p, b) 6= 0 whether b ∈ G(P ) or not. Thus, d is a divergence
in 4M . Furthermore, we have G(P ) = argminb d(p, b) by the construction of d.

We remark that DM rules in 4W always satisfy IIR. Thus, a BR G is a DM rule
in 4W iff G satisfies the suspension principle. From this theorem, it can be easily
checked that the threshold rules HTr(S), CSs and CCTg, introduced in Definition
3.17 in Section 3.4, can also be seen as a DM rule in 4W , while gCSs cannot.

The most natural DM rule can be given by restricting the squared Euclidean
distance DSE to 4W . We call this rule DM(SE) rule in 4W . Let us give an example.

Example 4.2. Let W := {1, 2, 3}. Note that 4W is a 2-dimensional simplex.
DM(SE) rule in 4W is illustrated in Figure 4.6. The dotted lines divide the sim-
plex seven regions. Each region excluding the dotted lines is the preimage-region
G−1(b)(= {p ∈ 4W |G(P ) = b}) of the point inside the region under G.

In the following section, we will generalize the above example to DM rules with a
Bregman divergence.

4.2.2 The DM Rules with Bregman Divergences

This section focuses on DM rules with a Bregman divergence, called DM(Bregman)
rules. One major advantage of Bregman divergences is that they have a close rela-
tionship with proper scores. In the following, we will revise and apply the existing
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w1

Figure 4.6: DM(SE)

research on the relation between Bregman divergences and proper scores to our belief
binarization problem: firstly, we will refine the definition of Bregman divergence and
secondly, we will show that DM(Bregman) rules can be viewed as a special kind of
expected score maximization rules.

Refined Bregman Divergence First of all, we refine the definition of Bregman
divergence in order to employ it for the belief binarization problems. In the typical
definition of Bregman divergence in most of the literature, the domain of the second
argument is an open set — e.g., the (relative) interior of a probability simplex 4W

or Rm — or the value of Bregman divergence cannot be infinity. For our purposes,
however, we need to define it in a closed set 4M , because many uniform distributions
on belief cores are located on the boundary of the set. Furthermore, we should
allow infinity as a possible value of divergence, because we want to embrace some
asymptotically divergent distance measures like the Kullback-Leibler divergence. For
this reason, we need to extend the definition of Bregman divergence with infinity to
the (relative) boundary of 4M .

Considering that our definition includes infinity on the boundary, it can be com-
pared with the definitions in Adamcik (2014a) and Pettigrew (2016). In Adamcik
(2014a), Bregman divergence is defined in 4W and its value can be infinity.10 Our
definition is more general because it embraces not only Bregman divergences in 4W

but also the ones in 4F . In Pettigrew (2016), Bregman divergence is defined in 4F
and its value can be infinity. However, the additivity of Bregman divergence is sup-
posed and thus only one-dimensional Bregman divergences are addressed. We want
to develop our definitions and theorems more generally without the assumption of
additivity. In summary, our definitions and theorems work not only in a simplex
4W but also in a general 0/1-polytope 4F dealing with not only additive but also
non-additive divergence.

Let us explain the main features that we want to have in our definition in more
detail. We want to extend the definition of finite Bregman divergence in the (relative)
interior of 4M to the boundary, where we allow infinity. However, we do not want
infinite distance all over the boundary, but we want to regulate where it should be
finite and where infinite. For example, consider two points on the (relative) boundary

10In4W , our definition looks simpler, but we can easily prove that Adamcik’s definition coincides
with ours except that we have a continuity condition.
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that lie in the (relative) interior of the same lower dimensional face. We want the
divergence between them to be finite, just as the one between two points in the (rela-
tive) interior of the 0/1-polytope. Moreover, we want the divergence to be continuous
in the region where it should be finite, just as the Bregman divergence is continu-
ous in the (relative) interior. On top of that, we want to keep main properties —
e.g., the relation between distance minimization and expected score maximization11

— and well-known examples of Bregman divergence — e.g., the squared Euclidean
distance and Kullback-Leibler divergence —, which enables one to use the existing
results about Bregman divergences.

We begin by providing a way to denote lower dimensional faces not only in the
simplex 4W but also in the 0/1-polytope 4F . In 4W , we can denote by Supp(Q)(:=
{w ∈ W |Q(w) 6= 0}) the set of the worlds corresponding to all vertexes of the lowest
dimensional face on which q(∈ 4W ) lies. We need to extend this notion to indicate
the faces of 4F , where a point in 4F can represent multiple probabilities.

Definition 4.5 (Maximal Support, 4q and Fq). Let p, q ∈ 4M(⊆ Rm).

(1) The maximal support of q is defined by

MSupp(q) :=
⋃
Q

Supp(Q)

where Qs are the probability distributions represented by q, and Supp(Q) :=
{w ∈ W |Q(w) 6= 0}.

(2) The lowest dimensional face on which q lies is

4q := Conv(MSupp(q)) = {x ∈ 4M |MSupp(x) ⊆MSupp(q)}

(3) The (disjoint) union of the relative interiors of all faces that p lies on is

Fp := {x ∈ 4M |MSupp(p) ⊆MSupp(x)} = {x ∈ 4M |p ∈ 4x}

So w ∈ MSupp(q) means that there exists a probability function Q represented
by q such that Q(w) 6= 0 — i.e., a probability represented by q assigns to w a non-zero
probability. Geometrically speaking, the maximal support of q is the set of the worlds
corresponding to all vertexes of the lowest dimensional face on which q lies. In Figure
4.7, we give examples of maximal support, which will provide a geometric intuition
behind it.

Using the notion of maximal support, we can designate the lowest dimensional
face 4q on which q lies, which is the convex hull of the maximal support of q. We can
easily check that 4q is a (sub-)0/1-polytope that is the set of points whose maximal
support is a subset of q’s maximal support. In contrast, Fp is the set of points whose
maximal support is a superset of q’s maximal support. In Figure 4.8, we give examples
of the above-introduced notions. In the left figure, 4q is depicted, and in the right
figure, Fp is displayed.

11It will be shown in Theorem 4.4 below.
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p
q

Figure 4.7: In the left figure, q is the representation of Q1, Q2 and Q3 where Supp(Q1) = {w1, w2, w3},
Supp(Q2) = {w1, w2, w4}, and Supp(Q3) = {w1, w2, w3, w4}. Thus, MSupp(q) = {w1, w2, w3, w4}. In the right
figure, MSupp(p) = {w1, w3} ⊆MSupp(q) = {w1, w2, w3, w4}

q p

Figure 4.8: When 4M = [0, 1]3, 4q is the thick red line including the end points and Fp is the union of the relative
interior((0, 1)3) of 4M and the grey area excluding the dotted boundary.
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In the following remark, we gather some useful results that can be easily checked.
This will increase the understanding of the new notions. Recall that ri(X) is the
relative interior of X (⊆ Rm).12

Remark 4.1. Let q ∈ 4M and MSupp(q) = {w1, ..., wk}.

(1) There is a weighting vector (λi)i ∈ (0, 1]k such that q =
∑k

i=1 λivwi.

(2) If q ∈ ri(4M), then MSupp(q) = W and 4q = 4M .

(3) ri(4q) = {p ∈ 4M |MSupp(p) = MSupp(q)}

(4) q ∈ ri(4q).

(5) MSupp(p) ⊆MSupp(q) iff p ∈ 4q iff q ∈ Fp.

(6) If MSupp(p) ⊆MSupp(q), then Fq ⊆ Fp.

Now we are ready to formulate our definition of Bregman divergence D. We
modify its typical definition to the extent that D(p, q) is finite and continuous except
possibly that it is infinite if q /∈ Fp — i.e., if there exists a world to which a probability
represented by p assigns a non-zero value but every probability represented by q
assigns zero. In other words, D(p, q) is finite and continuous so far as

q ∈ Fp

in other words, all worlds epistemically possible according to some probability repre-
sented by p are also epistemically possible according to some probability represented
by q.

Definition 4.6 (Refined Bregman divergence). D : 4M×4M → [0,∞] is a Bregman
divergence in 4M iff there is a continuous, bounded and strictly convex function
Φ : 4M → R satisfying the following: for all p, q ∈ 4M ,

(i) if q ∈ Fp, then the directional derivative13 ∇p−qΦ(q) exists, being finite and
continuous in q, and

D(p, q) = Φ(p)− Φ(q)−∇p−qΦ(q)

(ii) otherwise,
D(p, q) = lim

x→q
:x∈Fp

D(p, x)

which exists, infinity being allowed as limits.
12For the formal definition of the relative interior, see Appendix or the definitions at the end of

Section 3.4.
13Let f : dom(f)(⊆ Rn)→ R, x ∈ int(dom(f)) and v ∈ Rn. f has a derivative in the direction v

at x if the following limit exists(finite):

lim
t→0

f(x+ tv)− f(x)

t

which is denoted by ∇vf(x).
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This definition is compared with the conventional ones of Bregman divergence
on ri(4M) as follows: The domain of D is not ri(4M) but a closed set 4M , and its
codomain includes infinity. As usual, Bregman divergence is defined in terms of a con-
vex function Φ, which is called a Bregman divergence generator. What distinguishes
our definition from the conventional ones is part (i) and (ii). In the conventional def-
inition, part (i) is applied in ri(4M), which is the whole domain in the conventional
ones, and thus (ii) is not needed. By contrast, we apply part (i) to the region where
q ∈ Fp, and we extend this continuously, infinity being allowed as limits, to the rest
of the domain.

Note that we use the directional derivative instead of the gradient in the conven-
tional definition. It is because we need to define divergence not only in the interior
but also on the boundary, where gradients are not well defined. In the interior of
the whole 0/1-polytope 4M , it holds that ∇p−qΦ(q) = ∇Φ(q) · (p − q) because Φ is
differentiable from part (i) by the convexity of Φ — in ri(4M), the differentiability
follows from the existence of the finite directional derivative since Φ is convex (see
Theorem 25.2 in Rockafellar (1970)). In the interior of any lower dimensional face
4q, we could also say that Φ � ri(4q) (the restriction of Φ to ri(4q)) is differentiable
in the sense that it is differentiable in the lower dimensional space (note that the
affine hull of 4q − q(:={x − q|x ∈ 4q} ) is a subspace of Rm). In this sense, we
could conclude that our definition of D(p, q) coincides with the conventional one not
only for p, q ∈ ri(4M) but also for p, q in the relative interior ri(4q) of any lower
dimensional face.

Now let us suggest a natural alternative way to extend the conventional definition
of Bregman divergence to the boundary and compare this with our definition. Instead
of part (i) and (ii), we could have defined Bregman divergence when q is in ri(4M)
and extend it to the boundary as follows:

(*) For all p, q ∈ 4M , if q ∈ ri(4M), then ∇p−qΦ(q) exists, being finite14, and
D(p, q) = Φ(p) − Φ(q) − ∇p−qΦ(q), otherwise D(p, q) = lim x→q

:x∈ri(4M )
D(p, x) which

exists, infinity being allowed as limits.
Even though this definition gives us one way to extend Bregman divergence, it only
follows that the divergence is finite and continuous in ri(4M). For example, it does
not guarantee finite and continuous divergence between two points in the relative
interior of the same face on the boundary. Figure 4.9 shows the cases that could
arise if we defined Bregman divergence according to (*), which we want to avoid (We
will see later that if we do not prevent this cases, then we cannot prove the relation
between Bregman divergences and proper scores in Theorem 4.4).

For this reason, we want to extend the region where Bregman divergence should
be finite and continuous — from ri(4M) to Fp. Notice that q ∈ Fp iff

MSupp(p) ⊆MSupp(q)

This means that if any world is epistemically possible according to a probability

14This is equivalent to the continuous-differentiability of Φ in ri(4M ) since Φ is convex (see
Theorem 25.2, Theorem 25.5 and Corollary 25.5.1 in Rockafellar (1970)). Therefore, ∇p−qΦ(q) is
continuous in q.

134



p

p

p
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Figure 4.9: The dashed lines including the end points in each polytope represent where D(p, ·) might be infinite and
the complement of them is where D(p, ·) is finite and continuous according to (*). We want to avoid these cases.

p

q

Figure 4.10: Each arrow represents x approaching q. The left arrow represents the case (a) and both arrows represent
the case (b). Both limits should exist and be the same as ∇p−qΦ(q).

represented by p, then the world is epistemically possible according to a probability
represented by q as well. Loosely speaking, we want Bregman divergences to be finite
as far as q does not exclude any world that p does not exclude.

Now let us comment on the continuity condition in (i) and the limit condition of
(ii). The continuity condition in (i) includes not only the case (a) where x approaches
q only through ri(4q), but also the more general case (b) where x approaches q
through all faces that include q, and thus through Fp. (See Figure 4.10.) The case
(a) means that ∇p−·Φ � ri(4q)(·) is continuous at q. This is always the case because
Φ � ri(4q) is a convex function and thus continuously differentiable.15 The case
(b) means that ∇p−·Φ � Fp(·) and thus ∇p−·Φ(·) is continuous at q ∈ Fp, which
ensures the continuity between different faces as well.16 In the limit condition of
(ii), we impose the restriction on the sequence x approaching q: x ∈ Fp, in order
to guarantee the existence of directional derivative ∇p−xΦ(x). Since we do not have
limx→qD(p, x) = D(p, q), even though D(p, q) = lim x→q

:x∈Fp
D(p, q), we might not have

the continuity of the whole space. (See Figure 4.11.) It is natural because there can
be regions where the divergence takes the value infinity. From part (i) and part (ii)
together, we have a kind of continuity in 4M to the extent that

D(p, q) = lim
x→q
:x∈Fp

D(p, x)

15See Theorem 25.5 and Corollary 25.5.1 in Rockafellar (1970).
16The continuity condition in (i) can be formulate as ∇p−qΦ(q) = limx→q∇p−xΦ(x). One may

wonder whether we need to impose a restriction on x such that ∇p−qΦ(q) = lim x→q
:x∈Fp

∇p−xΦ(x)

so that ∇p−xΦ(x) exists. The restriction is redundant because for x to approach to q, x in a
neighborhood of q should lie on the faces Fq that q belongs to. It means that MSupp(q) ⊆
MSupp(x). Since MSupp(p) ⊆ MSupp(q), we have MSupp(p) ⊆ MSupp(x). Moreover, note
that lim x→q

:x∈Fp

∇p−xΦ(x) = lim x→q
:x∈ri(4M )

∇p−xΦ(x) since the continuity in the relative interior of any

lower dimensional face follows from Φ being convex as mentioned above.
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Figure 4.11: Each arrow represents x approaching q. The left arrow satisfies MSupp(p) ⊆ MSupp(x) and D(p, q) is
defined as its limit, which might be different from the limit of the right arrow that, indeed, might not exist.

p
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p
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Figure 4.12: The dashed lines including the end points in each polytope represent where D(p, ·) might be infinite.
The complement of them is Fp where D(p, ·) is finite and continuous.

for all p, q ∈ 4M . Note that x ∈ Fp is a necessary and sufficient condition that
D(p, x) can be defined without using limits.

To summarize, we accomplished all of our aims presented at the beginning of this
section:

• D(p, ·) is finite and continuous not only in ri(4M) but also in Fp (see Figure
4.12),

while keeping main properties and well-known examples of Bregman divergence:

• the definition is the same as the conventional ones not only in ri(4M) but also
in ri(4q) for any q: if p ∈ 4q, then D(p, ·) � ri(4q) is a Bregman divergence
generated by Φ � ri(4q) and

• our definition includes the squared Euclidean distance and Kullback-Leibler
divergence etc. (all in Table 1 in Banerjee et al. (2005)) and the divergences
defined with continuous proper scores in Theorem 4.9, to be proven soon.

Representation of DM(Bregman) by Expected Distance Minimization Now
we employ our refined Bregman divergence for DM rules. A DM(Bregman) rule is
the DM rule with a Bregman divergence D in 4M , which has the following form: for
all P ∈ P(W )

G(P ) = argmin
b

D(p, b)

where p (∈ 4M) is the representation point of P .
Now we will prove that the DM(Bregman) rule can be viewed as a minimization of

the expected divergence between the two points: the point corresponding to a world
and the point corresponding to a belief core. To show this, we will need the following
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lemma, which says that the directional derivative of a convex function is linear, if it
exists and finite.

Lemma 4.3. Let Φ : 4M → R be a convex function. The following statements are
equivalent:

(i) For all p, q ∈ 4M such that q ∈ Fp, the directional derivative ∇p−qΦ(q) exists
and is finite.

(i′) For all q ∈ 4M there exists f ∈ Rm such that for all p ∈ 4q

∇p−qΦ(q) = f · (p− q)

Proof. (i′)→(i): straightforward. (i)→(i′): Suppose that f is a subgradient17 of φ
at q. As q ∈ ri(4q), the existence of a subgradient is guaranteed by the convexity
of φ and Theorem 23.4 in Rockafellar (1970). For h(> 0), from the definition of
subgradient we have that Φ(q+h(p− q)) ≥ Φ(q) + f ·h(p− q) for all p ∈ 4q, that is,

Φ(q + h(p− q))− Φ(q)

h
≥ f · (p− q)

For h(> 0) that is small enough that q−h(p−q) ∈ 4q (Such h exists since q ∈ ri(4q).),
we have that Φ(q − h(p− q)) ≥ Φ(q)− f · h(p− q) for all p ∈ 4q, that is,

Φ(q)− Φ(q − h(p− q))
h

≤ f · (p− q)

Since Φ has the finite directional derivative at q in the direction of p− q, with h→ 0,
we get ∇p−qΦ(q) = f · (p− q).18

Now, our aim is to prove that the DM(Bregman) rule can be represented by a deci-
sion rule that minimizes expected distance from the point vw ( ∈ 4M) corresponding
to a world w ∈ W , which is the representation point of the omniscient credence func-
tion Vw at w ∈ W (Recall that when 4M = 4W , (vw)w′ = Vw(w′) = 1w=w′ , and
when 4M = 4F , (vw)A = Vw(A) = 1w∈A). Although our proof runs along similar
lines as the proofs of Theorem 1 in Banerjee et al. (2005) and Theorem 2 in Adamcik
(2014a), subtle adjustments are necessary for our belief binarization problem. First,
our refined Bregman divergence is defined not only in 4W but also in 4F as well.
Second, the refined Bregman divergence is defined neither in Rm nor in an open con-
vex subset, but in a closed convex subset 4M . Third, we allow infinity as a value of
divergence.

17Let Φ : Rn → R be a convex function. f ∈ Rn is called a subgradient of Φ at y ∈ Rn if

f · (x− y) ≤ Φ(x)− Φ(y) for all x ∈ Rn

18Notice that for any subgradients f and f ′ of Φ at q, we have f · (p − q) = f ′ · (p − q) for all
p ∈ 4q. It shows the uniqueness of the subgradient of Φ � 4q at q, which indicates differentiability
at q.
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Now let us prove the following theorem, which shows that we can represent the
DM(Bregman) rule by a decision rule minimizing expected divergence, which we will
call EUM(SP). In the next section, we will explain the reason why we call it that.
Throughout, we denote the expectation of g with respect to a probability distribution
P ∈ P(W ) by Ew∼P [g(w)] where g : W → R ∪ {∞} or g : W → R ∪ {−∞}. Note
that Ew∼P [g(w)] =

∑
w∈W P (w)g(w).

Theorem 4.4 (Representation of DM(Bregman) by EUM(SP)). Let D be a Bregman
divergence in 4M . Then

argmin
b

D(p, b) = argmin
b

Ew∼P [D(vw, b)]

for all p ∈ 4M and any probability P ∈ P(W ) represented by p.

Proof. We will prove the stronger claim that

D(p, q) = Ew∼P [D(vw, q)]− Ew∼P [D(vw, p)] (4.4)

for all p, q ∈ 4M and p’s any extension P ∈ P(W ). First, assume that q ∈ Fp. Then
not only the left-hand side but also the right-hand side are finite because

Ew∼P [D(vw, q)]− Ew∼P [D(vw, p)] =
∑

w∈Supp(P )

P (w)D(vw, q)−
∑

w∈Supp(P )

P (w)D(vw, p)

and for all w ∈ Supp(P )(⊆ MSupp(p) ⊆ MSupp(q)), D(vw, q) and D(vw, p) are
finite. Let D(p, q) = Φ(p)− Φ(q)−∇p−qΦ(q). Then

Ew∼P [D(vw, q)]− Ew∼P [D(vw, p)]

= Ew∼P [Φ(vw)− Φ(q)−∇vw−qΦ(q)]− Ew∼P [Φ(vw)− Φ(p)−∇vw−pΦ(p)]

= Φ(p)− Φ(q)− Ew∼P [∇vw−qΦ(q)] + Ew∼P [∇vw−pΦ(p)]

= Φ(p)− Φ(q)−∇p−qΦ(q)

The last equality follows from the fact that

Ew∼P [∇vw−qΦ(q)] = Ew∼P [f · (vw − q)] = f · Ew∼P [(vw − q)] = f · (Ew∼P [vw]− q)

where f is a (sub)gradient at q and Ew∼P [~g(w)] = (Ew∼P [gi(w)])i≤m for ~g : W → Rm.
Since w ∈ MSupp(q) for all w ∈ Supp(P ), this holds by the linearity of expectation
and the linearity of a directional derivative of a convex function. (See Lemma 4.3, or
Theorem 25.2 in Rockafellar (1970) ) Our claim holds from

Ew∼P [vw] =
∑
w∈W

P (w)vw = p
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Next, assume that q /∈ Fp. Then

D(p, q) = lim
x→q:x∈Fp

D(p, x)

= lim
x→q:x∈Fp

(Ew∼P [D(vw, x)]− Ew∼P [D(vw, p)])

= lim
x→q:x∈Fp

∑
w

P (w)D(vw, x)− Ew∼P [D(vw, p)]

=
∑

w∈Supp(P )

P (w) lim
x→q

:MSupp(p)⊆MSupp(x)

D(vw, x)− Ew∼P [D(vw, p)]

= Ew∼P [D(vw, q)]− Ew∼P [D(vw, p)]

The forth equality holds since P (w), D(vw, x) ≥ 0. Let us explain why the last equal-
ity holds: For any w ∈ Supp(P ), thus for any w such that {w} = MSupp(vw) ⊆
MSupp(p), lim x→q

:MSupp(p)⊆MSupp(x)
D(vw, x) exists because

{x ∈ 4M |MSupp(p) ⊆MSupp(x)} ⊆ {x ∈ 4M |MSupp(vw) ⊆MSupp(x)}.19 More-
over,

lim
x→q

:MSupp(p)⊆MSupp(x)

D(vw, x) = D(vw, q)

since
lim
x→q

:MSupp(vw)⊆MSupp(x)

D(vw, x) = D(vw, q)

It is worth noting that we could not prove this theorem for our belief binarization
problem, if the definition of Bregman divergence guaranteed finiteness only in ri(4M).
Suppose that we try to prove the first part of (4.4) on the assumption that q ∈ ri(4M),
and we use a definition of Bregman divergence that might yield the cases in Figure
4.9, e.g., the definition with (*)(p.134) instead of (i) and (ii) in Definition 4.6. The
left-hand side D(p, q) is finite for q ∈ ri(4M). However, D(vw, p) might not be finite
even though w ∈ Supp(P ), and thus the right-hand side of (4.4) might not be finite.

The distance between vw and b can be thought of as a utility in epistemic decision
theory — an epistemic disvalue. Thus, DM(Bregman) rule can be seen as a decision
rule maximizing expected utility. This inspires us to define a new rule that applies
epistemic decision theory directly to binarization problems.

19For any r ∈ 4M , in the case where MSupp(r) * MSupp(q), limx→qD(r, x) might not exist
if we do not impose the condition about the sequence that MSupp(r) ⊆ MSupp(x). With this
condition we can define D(r, x) without using limit.
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4.3 The Expected Utility Maximizing Binarization

Rules

4.3.1 The EUM Rules with Strictly Proper Scores

In this paper, we assume that our perfectly rational agent’s qualitative beliefs ought
to be consistent and deductively closed. This assumption enables us to think of an
epistemic utility of a qualitative belief state at a world as a function of belief cores
and worlds. Furthermore, since belief cores, in our set-up, can be represented by
uniform distributions on them, we can make use of the scoring rules that have been
used to measure epistemic performances of credal states. With this in place, we will
propose a rule to optimize expected utility with respect to the probability function
given by the agent’s credal state, in order to select a belief core that is well matched
with the agent’s credal state. Now let us give a formal definition of expected utility
maximization rule (EUM rule).

Definition 4.7 (Expected Utility Maximization rule (EUM rule)). A BR G is an
expected utility maximization rule in 4M iff there is a utility function u : W ×UM →
R ∪ {−∞} satisfying

G(P ) = argmax
b

Ew∼P [u(w, b)]

for all P ∈ P(W ).

In this section, we restrict our focus to already well-developed epistemic utility
functions, namely proper scores (in the next section, we will consider more general
versions of utility functions). It will be useful in order to investigate the relation
between EUM rules and DM(Bregman) rules introduced in the previous section. Put
differently, we shall consider the case where

u(w, b) := −I(w, b)

for some continuous strictly proper (SP) score I : W ×4M → [0,∞], to be defined
below.

Continuous Strictly Proper Score Now we define a continuous strictly proper
score in our setting where probability distributions are represented in4M and infinity
is allowed. We include infinity as a value of scores on some region of boundary,
where we do not demand continuity. Thus, when we talk about continuity of a score
including infinity, we also need to regulate the region where it can be infinite.

Definition 4.8 (Continuous Strictly Proper (SP) Score). Let I be a function I :
W ×4M → [0,∞].

(1) I is continuous iff for all w ∈ W and q ∈ 4M ,
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vw vw

Figure 4.13: The dashed lines including the end points in each polytope represent where a continuous score I(w, ·)
might be infinite. The complement of them is Fvw where I(w, ·) is finite and continuous.

(i) if q ∈ Fvw then I(w, q) is finite and continuous in q20

(ii) otherwise, I is extended to a continuous function that might be infinite,
meaning that

I(w, q) = lim
x→q

:x∈Fvw

I(w, x)

which exists, infinity being allowed as limits.

(2) I is called a strictly proper score (SP) iff

argmin
q∈4M

Ew∼P [I(w, q)] = p

for all P ∈ P(W ) and its representation point p.

According to our definition above, continuous scores have the following features
(see Figure 4.13):

• I(w, ·) is finite not only in ri(4M) but also in Fvw

• I(w, ·) is continuous in Fvw

Notice that q ∈ Fvw , i.e., w ∈ MSupp(q) says that a probability represented by
q assigns to w a positive value. It means that w is epistemically possible from the
point of view of a probability represented by q. In this case, we demand that I(w, q)
should not receive infinite score.

However, the first feature cannot be regarded as distinct from other strict proper
scores; the following lemma shows that if I is strictly proper, then we can derive that
I(w, ·) is finite in Fvw .21

Lemma 4.5. Let I : W ×4M → [0,∞] be a strictly proper score. Then, I(w, ·) is
finite in Fvw

20This can be formulated as I(w, q) = lim x→q
:x∈Fvw

I(w, x) = limx→q I(w, x), since in the neigh-

borhood around q, we have x ∈ Fq, i.e., MSupp(q) ⊆ MSupp(x), from which follows that
w ∈ MSupp(x). Note that lim x→q

:x∈Fvw

I(w, x) = lim x→q
:w∈4M

I(w, x), since it is finite in Fvw . We

can prove this in a similar way to continuous extension theorems.
21This is the same as the notion of regular score in Definition 2 in Gneiting & Raftery (2007).
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Proof. Since Ew∼P [I(w, p)] < Ew∼P [I(w, q)] for all q 6= p, Ew∼P [I(w, p)] should be
finite for all P ∈ P(W ) and p ∈ 4M such that p is a representation point P .22 Thus,
for all w ∈ Supp(P ), I(w, p) is finite for all P represented by p. Therefore, for all
w ∈MSupp(P ), I(w, p) is finite.

Invariant Expectation under the Same Input-representation Notice that
the expectation value in the EUM rules depends not only on the point p in 4M

but also on the probability distribution P , in contrast to the divergence in DM rule.
Thus, to see the connection between the EUM rules and DM rules, we need the
following requirement, which is relevant in4F where a point p might represent several
probability distributions.

Definition 4.9 (Invariant Expectation under the Same Input-representation (IER)).
A function I : W ×4M → [0,∞] has an invariant expectation under the same input-
representation (IER) iff if P, P ′ ∈ P(W ) has the same representation in 4M , i.e.,
p = p′(∈ 4M), then

Ew∼P [I(w, q)] = Ew∼P ′ [I(w, q)]

for all q ∈ 4M .

IER has a close relationship with IIR in Definition 4.4. If a BR G is an EUM rule
with I that satisfies IER, then G is invariant under the same representation (IIR).
Although IER may seem very strong condition, it is actually a mild restriction because
a large class of scores obey IER. Every scoring function defined in 4W satisfies IER.
We can generalize this in 4F as follows.

Lemma 4.6. Let I : W × 4F → [0,∞] be a scoring function. I satisfies IER if
I is a partition-wise score, i.e., there is a partition A1, ..., Ak of W such that (i)
A1, ..., Ak ∈ F and (ii) for all w,w′ ∈ Ai, I(w, q) = I(w′, q) for all i ≤ k and q ∈ 4F .

Proof. Since Ew∼P [I(w, q)] =
∑

w∈W P (w)I(w, q) =
∑

i≤k P (Ai)I(wi, q) where wi ∈
Ai, we have Ew∼P [I(w, q)] =

∑
i≤m pAiI(wi, q) = Ew∼P ′ [I(w, q)].

There are other ways to satisfy IER. Any additive scores defined in 4F also enjoy
IER as the following lemma shows.

Lemma 4.7. If I : W ×4F → [0,∞] is additive, i.e., for all w ∈ W and p ∈ 4F

I(w, p) =
∑
A∈F

IA((vw)A, pA)

where for all A ∈ F , IA : {0, 1} × [0, 1]→ [0,∞], then it has IER.

22In 4W , this condition is the same as I being regular in Definition 1 in Gneiting & Raftery
(2007), which is assumed in order to prove the relation between Bregman divergences and proper
scores.
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Proof. First compute the following.

Ew∼P [I(w, q)] =
∑
w∈W

P (w)I(w, q) =
∑
w∈W

P (w)
∑
A∈F

IA((vw)A, qA)

=
∑
A∈F

(∑
w∈A

P (w)IA(1, qA) +
∑
w/∈A

P (w)IA(0, qA)

)
=
∑
A∈F

(
pAIA(1, qA) + (1− pA)IA(0, qA)

)
(4.5)

Thus, if p = p′, then Ew∼P [I(w, q)] = Ew∼P ′ [I(w, q)].

From (4.5) in the above proof, we can easily check the following as well.

Remark 4.2. If an additive score I is event-wise strictly proper (E-SP), i.e.,

argmin
qA∈[0,1]

(
pAIA(1, qA) + (1− pA)IA(0, qA)

)
= pA

for all A ∈ F , then I is strictly proper.

Representation of EUM(SP) by DM(Bregman) Lastly, we need the following
lemma and its corollary for the proof of the main theorem of this section. We are
dealing with continuity not only in 4W but also in 4F . The following lemma enables
one to find a continuous function assigning P ∈ P(W ) to p ∈ 4F . It is interesting in
itself, because the lemma shows a ‘continuous’ relation between a probability simplex
and De Finetti’s coherent polytope.

Lemma 4.8 (Continuous Selection). There is a continuous function taking any p ∈
4F and giving P ∈ P(W ) where P has the representation p in 4F .

Proof. Let |F| = m and |W | = n. Firstly, observe that we have a linear function
L : 4W →4F that can be represented by a m× n-binary-matrix as following:

(vw1)1 (vw2)1 · · · (vwn)1

(vw1)2 (vw2)2 · · · (vwn)2

...
...

. . .
...

(vw1)m (vw2)m · · · (vwn)m





P (w1)

P (w2)

...

P (wn)


=



p1

p2

...

pm


Our aim is to find a continuous inverse of L. (See Figure 4.14)

First of all, we can triangulate 4F in such a way that 4F is a union of simplexes
41, ... , 4k and

⋃k
i=1 V (4i) = V (4F) where V (4) denotes the set of all vertexes

of a polytope 4. It is always possible, because 4F is a polytope. For a vertex v
of 4M choose one of the omniscient probability measures Vw such that L(Vw) = v.
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vw1

vw2

vw4

vw3

f(41)

f(42)
L⇐⇒
f

vw3

vw1

vw4

vw2

41

42

4W 4F

Figure 4.14

It is always possible because for any vertex v it holds that {w|v = vw} 6= ∅. For
any p ∈ 4i we can uniquely represent p by p =

∑
v∈V (4i) λvv for some (λv)v such

that
∑

v∈V (4i) λv = 1 and λv ≥ 0. Then we can define a function fi from 4i to 4W

such that fi(p) =
∑

v∈V (4i) λvL
−1(v) where L−1(v) denotes the selected omniscient

probability measure. Observe that fi is continuous. Note that for any q ∈ 4i ∩ 4j,
fi(q) = fj(q). Now, we can construct a unique map f : ∪ki=14i → 4W by gluing
f1, f2, ..., fk such that f |4i = fi for all 1 ≤ i ≤ k.

Let us check that f is continuous. Suppose that A is a closed subset of 4W . Then
f−1(A) =

⋃k
i=1 f

−1
i (A). Since every f−1

i (A) is closed because of the continuity of fi,
and a finite union of closed sets is closed, it follows that f−1(A) is also closed.

It remains to show that L(f(p)) = p for all p ∈ 4F . First, pick a 4i such that
p ∈ 4i. Let us compute.

L(f(p)) = L(f(
∑

v∈V (4i)

λvv)) = L(
∑

v∈V (4i)

λvL
−1(v))

=
∑

v∈V (4i)

λvL(L−1(v)) =
∑

v∈V (4i)

λvv = p

where in the third equality, we used the linearity of L.

Corollary 4.8.1. Let I : W ×4M → [0,∞] be a continuous score and q ∈ 4M . Let
f be a continuous function in the above lemma when 4M = 4F . When 4M = 4W ,
let f be an identity function. Then Ef(q)[I(w, q)] is continuous at q.

Proof. Ef(q)[I(w, q)] =
∑

w f(q)(w)I(w, q) and if w ∈ Supp(f(q)), then w ∈MSupp(q).
Thus, for all w ∈ Supp(f(q)), I(w, ·) is finite and continuous at q. Moreover, f
is continuous and the projection on the w-th barycentric coordinate is continuous.
Therefore, our claim holds.

Now, let us show how EUM(SP) is related to DM(Bregman). This theorem shows
that EUM(SP) can be represented by DM(Bregman) when I is a continuous strictly
proper score with IER.
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Theorem 4.9 (Representation of EUM(SP) by DM(Bregman)). Let I : W ×4M →
[0,∞] be a continuous strictly proper (SP) score with IER. Then there is a Bregman
divergence D in 4M such that

argmin
b

Ew∼P [I(w, b)] = argmin
b

D(p, b)

for all P ∈ P(W ) and its representation p ∈ 4M .

Proof. For p, q ∈ 4M , let us define a divergence as follows:

D(p, q) := Ew∼P [I(w, q)]− Ew∼P [I(w, p)] (4.6)

Since I satisfies IER, it is well defined and since I is SP, it is a divergence. We will
show that it is a Bregman divergence with

Φ(p) = −Ew∼P [I(w, p)]

Note that Φ is well-defined since I satisfies IER.

Claim (1): Φ is continuous, bounded and strictly convex on 4M .
By IER and Corollary 4.8.1, Φ is continuous. Since I(w, p) is finite for all w ∈
MSupp(p), it is finite for all w ∈ Supp(P )(⊆ MSupp(p)), and thus Ew∼P [I(w, p)] is
finite.
Now let us prove the strict convexity. For p, q(∈ 4M) and λ(∈ [0, 1]) we have

−Φ(λp+ (1− λ)q) = Ew∼λP+(1−λ)Q[I(w, λp+ (1− λ)q)]

= λEw∼P [I(w, λp+ (1− λ)q)] + (1− λ)Ew∼Q[I(w, λp+ (1− λ)q)]

> λEw∼P [I(w, p)] + (1− λ)Ew∼Q[I(w, q)]

= −λΦ(p)− (1− λ)Φ(q)

The first equality holds by IER because λP + (1− λ)Q is one of probability distribu-
tions that are represented in 4M by λp+ (1− λ)q. The second equality comes from
the linearity of expectation and the inequality in the third line holds because I is SP.
Thus Φ(p) is strictly convex.

Claim (2): If MSupp(p) ⊆ MSupp(q), then the directional derivative ∇p−qΦ(q)
exists and is finite. Moreover ∇p−·Φ(·) is continuous at q.
We will show that

∇p−qΦ(q) = −Ew∼P [I(w, q)] + Ew∼Q[I(w, q)]

and it is finite and continuous in q. Assume that q ∈ Fp. Note that there is enough
small h such that q + h(p− q), q − h(p− q) ∈ ri(4q) because q ∈ ri(4q). For h > 0,
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let us compute.

1

h
[Φ(q + h(p− q))− Φ(q)]

=− 1

h
[
∑
w

(Q+ h(P −Q))(w)I(w, q + h(p− q))−
∑
w

Q(w)I(w, q)]

=− 1

h

∑
w

(Q(w) + h(P (w)−Q(w)))[I(w, q + h(p− q))− I(w, q)]

−
∑
w

P (w)I(w, q) +
∑
w

Q(w)I(w, q)

The first equality holds by IER. The last equality holds since every term is finite
because

Supp(P ), Supp(Q) ⊆MSupp(q + h(p− q)) = MSupp(q)

Since I is strictly proper, we know that∑
w

(Q(w) + h(P (w)−Q(w)))[I(w, q + h(p− q)− I(w, q)] ≤ 0

It implies that

1

h
[Φ(q + h(p− q))− Φ(q)] ≥ −

∑
w

P (w)I(w, q) +
∑
w

Q(w)I(w, q)

Similarly, for h > 0, we have

1

h
[Φ(q)− Φ(q − h(p− q))] ≤ −

∑
w

P (w)I(w, q) +
∑
w

Q(w)I(w, q)

Notice that
∑

w P (w)I(w, q) is continuous in q because for w such that P (w) 6= 0, we
have w ∈ Supp(P ) ⊆ MSupp(q) and thus, I(w, q) is continuous in q. By IER and
Corollary 4.8.1, we also have that

∑
wQ(w)I(w, q) is continuous in q. It implies that

∇p−qΦ(q) exists as desired. Note that

−
∑
w

P (w)I(w, q) +
∑
w

Q(w)I(w, q) = −Ew∼P [I(w, q)] + Ew∼Q[I(w, q)]

and it is finite and continuous in q as we indicated in the above.

Claim (3): For all p, q ∈ 4M , D(p, q) = Φ(p) − Φ(q) − ∇p−qΦ(q) if q ∈ Fp,
otherwise D(p, q) = lim x→q

:x∈Fp
D(p, x) which exists (infinity being allowed as limits).

First assume that q ∈ Fp. By (2) we have

D(p, q) = Ew∼P [I(w, q)]− Ew∼P [I(w, p)]

= −Ew∼P [I(w, p)] + Ew∼Q[I(w, q)] + Ew∼P [I(w, q)]− Ew∼Q[I(w, q)]

= Φ(p)− Φ(q)−∇p−qΦ(q)
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Otherwise, we need to show that

lim
x→q:x∈Fp

D(p, x) = Ew∼P [I(w, q)]− Ew∼P [I(w, p)]

Let us compute.

lim
x→q:x∈Fp

D(p, x) = lim
x→q:x∈Fp

(Ew∼P [I(w, x)]− Ew∼P [I(w, p)])

= lim
x→q:x∈Fp

∑
w

P (w)I(w, x)− Ew∼P [I(w, p)]

=
∑

w∈Supp(P )

P (w) lim
x→q

:MSupp(p)⊆MSupp(x)

I(w, x)− Ew∼P [I(w, p)]

= Ew∼P [I(w, q)]− Ew∼P [I(w, p)]

The third equality holds because P (w), I(w, x) ≥ 0. The forth equality holds since
for w ∈ Supp(P ),

lim
x→q

:MSupp(p)⊆MSupp(x)

I(w, x) = I(w, q)

since
lim
x→q

:MSupp(vw)⊆MSupp(x)

I(w, x) = I(w, q)

The next corollary follows from the above theorem.

Corollary 4.9.1. (1) Let I be a continuous SP score in 4W . Then D(p, q) :=
Ew∼P [I(w, q)]− Ew∼P [I(w, p)] is a Bregman divergence in 4W .

(2) Let I be a continuous additive E-SP score in4F . Then D(p, q) := Ew∼P [I(w, q)]−
Ew∼P [I(w, p)] is an additive Bregman divergence in 4F .

Proof. (1) IER always hold in 4W . (2) Since I is additive, by Lemma 4.7 it has IER
and since I is a E-SP score by Remark 4.2 it is SP.

Let us compare our results with similar theorems in other literature. Gneiting
& Raftery (2007) and Banerjee et al. (2005) showed similar results to Corollary
4.9.1(1). Gneiting & Raftery (2007) showed, in 4W , the relation between regular
proper scores and Bregman divergences. However, scores and divergences are not
assumed necessarily to be continuous. Hence our proof shows more because we derive
the continuity of Bregman divergence from the continuity of score. The theorem in
Banerjee et al. (2005) is similar to the above Corollary (1) except that Bregman
divergences are defined on Rm instead of 4W and they exclude infinity. By contrast,
our proof shows how to handle infinity.

The relation between additive continuous SP scores and additive Bregman diver-
gences in Predd et al. (2009) and Pettigrew (2016) is similar to Corollary 4.9.1(2).
Since they are dealing with non-probabilistic credences as well, their result is stronger
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than ours in the sense that Bregman divergences are defined on [0, 1]F instead of 4F .
However, they assume additivity and in this sense, our result is stronger.

Compared to other literature, Theorem 4.9 is more comprehensive in the sense
that it provides proofs for the cases in 4W and for additive scores in 4F at the same
time. On top of that, Theorem 4.9 gives us the way to deal with non-additive scores
in 4F , at the cost of the assumption of IER.

It is worth asking how our more complicated definition of Bregman divergence
played out in the proof of the theorem. Recall that we could not have had Theorem
4.4, if we had used (*) (being finite and continuous in ri(4M), p.134) instead of part
(i) and (ii) in Definition 4.6. On the other hand, we could have had the same form
of Theorem 4.9 with a weaker notion of Bregman divergence than ours. Theorem 4.9
tells more with our definition because we demand more in order to be our Bregman
divergence and thus we proved more.

From Theorem 4.9 and Theorem 4.4, we have the following claims, which might
be viewed as a converse of both theorems in certain conditions.

Corollary 4.9.2. (1) Let I : W ×4M → [0,∞] be a utility function. I satisfy IER
and is continuous SP iff

DI(p, q) := Ew∼P [I(w, q)]− Ew∼P [I(w, p)]

is a Bregman divergence.

(2) Let D : 4M × 4M → [0,∞] be a divergence and suppose that ID(w, q) :=
D(vw, q). D is a Bregman divergence iff

D(p, q) = Ew∼P [D(vw, q)]− Ew∼P [D(vw, p)]

and ID(w, q) satisfies IER and continuous in q.

Proof. (1) (→) We can easily check this from the proof of Theorem 4.9.
(←) Since DI is a divergence, I is SP. Let p = vw for any w ∈ W . Since DI(vw, q) =
I(w, q)− I(w, vw) and DI is continuous, I is continuous of q.
(2) (→) We can easily check this from the proof of Theorem 4.4.
(←) Since D is a divergence, D(vw, q) is SP. Thus we can apply Theorem 4.9, and
from its proof we know that there is a Bregman divergence dD that is the same as
D.

To summarize this and the last section, we proved, with our refined definitions,
that the DM(Bregman) rules and the EUM(SP) rules have the same extension under
certain conditions (IER):

• A strictly proper score I satisfying IER of an EUM rule can be extended to
a Bregman divergence DI such that DI(p, q) = Ew∼P [I(w, q)] − Ew∼P [I(w, p)],
and the DM rule with DI generates the same results with the EUM rule.

• A Bregman divergence D of a DM rule can be restricted to a strictly proper
score ID such that ID(w, q) = D(vw, q), and the EUM rule with ID generates
the same results with the DM rule.
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4.3.2 The EUM Rules in General: Examples

In the previous section, we investigated the EUM rules with strictly proper scores on
W × 4M . In this section, we deal with the EUM rules that do not presuppose the
domain of the second argument of a utility function to be the set of all probability
functions. A utility function can be defined, from the beginning, on the set of belief
cores. By way of illustration, here is an example of a general EUM rule. This example
is designed to include the EUM rule that represents DM(SE).

Example 4.3. Let W := {1, 2, 3} and G be an EUM rule in 4W with utility u.
Assume that u is neutral, which means that u(w, b) = u(π(w), bπ) where π is a per-
mutation on W and bπ := (bπ(w))w∈W . u can be given by the left part of Table 4.1.
Assume R,R′,W,W ′ ∈ R and R > R′ > 0 > −W ′ > −W . Let p = (p1, p2, p3) and
w.l.o.g assume that p1 ≥ p2 ≥ p3. We can calculate Ew∼P [u(w, b)] and conditions for
b ∈ G(P ) as below.

b u(w1, b) u(w2, b) u(w3, b) Ew∼P [u(w, b)] condition for b ∈ G(P )

(1, 0, 0) R −W −W Rp1 −W (1− p1)
p1 ≥ W

R+W and

p1 ≥ −R′+W ′

R+W p3 + R′+W
R+W

(1
2 ,

1
2 , 0) R′ R′ −W ′ R′(1− p3)−W ′p3

p3 ≤ R′

R′+W ′ and

p1 ≤ −R′+W ′

R+W p3 + R′+W
R+W

(1
3 ,

1
3 ,

1
3) 0 0 0 0 p1 ≤ W

R+W and p3 ≥ R′

R′+W ′

Table 4.1

These rules yield different results depending on the values of R, R′, W ′,and W .
In Figure 4.15, we selected some examples and illustrated where the preimage-regions
of belief cores are located. In each probability simplex, a belief core is indicated by
numbers — e.g., ‘12’ means that B = {w1, w2} — in the area where p1 > p2 > p3.
Since u is neutral, other areas are symmetrically the same . In Figure 4.15, we can
observe that the preimage-region {p ∈ 4W |G(P ) = b} of any b ∈ UW is connected
and convex, which we will prove later. Moreover, from Theorem 4.2 follows that
(a),(b),(c), and (d) are DM rules and (e), (f), and (g) are not DM rules. Note that
the above EUM rule with R

R+W
= 1

3
and R′

R′+W ′
= 1

6
(Figure 2.(b)) is the same as

DM(SE) rule in Example 4.2.
The above example can be generalized to the cases where |W | = m by the following

definition.

Definition 4.10 (Informativeness-sensitive Utility). Let |W | = m. A utility func-
tion u : W × 4W → R ∪ {−∞} is an informativeness-sensitive utility iff there are

149



(a) R
R+W

= 1
3

, R′
R′+W ′ <

1
6

(b) R
R+W

= 1
3

, R′
R′+W ′ = 1

6
(c) R

R+W
= 1

3
, R′

R′+W ′ >
1
6

(d) R
R+W

> 1
2

(e) R
R+W

> 1
2

(f) R
R+W

< 1
2

, R′
R′+W ′ >

1
3

(g) R
R+W

> 2
3

Figure 4.15: EUM rules with Informativeness-sensitive utilities (EUM(I))

R1, ..., Rl,W1, ...,Wm−1 such that R1 > R2 > ... > Rm−1 > Rm = 0 > −Wm−1 > ... >
−W2 > −W1 and

u(w, uni(B)) =


R|B| if w ∈ B

−W|B| if w /∈ B

where uni(B) is the representation point in 4W of the uniform distribution U(B) on
B.

Informativeness-sensitive utility takes cardinalities of belief cores into account, and
therefore the EUM rule with this utility function, which we call EUM(I), can evaluate
the truth-conductiveness and informativeness of belief cores simultaneously. This
utility function gives a greater reward/penalty to braver belief cores when they turn
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out to be true/false, respectively, in order to evaluate epistetmically risky behavior
in a balanced way. DM(SE) is the same as the EUM rule with the utility u(w, b) :=
DSE(vw, uni(W ))−DSE(vw, b), and thus it can be seen as a EUM(I). This observation
shows us another advantage of DM(SE), since it measures how informative binary
beliefs are as well as how close binary beliefs are to the given probability, and to the
truth.

Note that we set u(w, uni(W )) = 0 for all w ∈ W . Keeping this fixed, we may
relax the condition on Wis. For example, there can be a neutral utility satisfying
−Wm−1 = ... = −W2 = −W1. However, the EUM rules with this kind of neutral
utility cannot involve DM(SE) since it does not hold that Wi = Wj for some i,j from
u(w, b) = DSE(vw, uni(W ))−DSE(vw, b).

4.3.3 Relation between the DM Rules and the EUM Rules

Now we investigate how to extend the representation theorems between the DM(Bregman)
rules and EUM(SP) rules to general cases and under what conditions the DM rules
and the EUM rules can represent each other. First, we shall find a sufficient and
necessary condition for an EUM rule to be a DM rule, which is a generalization of
Theorem 4.9 and Corollary 4.9.2 (1). As the following example shows, it is not the
case that every EUM rule is a DM rule.

Example 4.4.

(1) Let |W | = 2 and G be an EUM rule with a utility u where u is an informativeness-
sensitive utility with R1 > R2 = 0 > −W1. If R1 > W1, then b = (1

2
, 1

2
) never maxi-

mizes expected utility (see Easwaren (2016), Pettigrew (2017)), even when P (w1) =
P (w2) = 1

2
. Thus, by Theorem 4.2, this EUM rule cannot be a DM rule.

(2) A utility function u is a simple iff there are R,W > 0 such that

u(w, uni(B)) =


R if w ∈ B

−W if w /∈ B

where uni(B) is the representation point of the uniform distribution U(B) on B.
This utility function is simple in the sense that the utilities do not depend on the
cardinalities of belief cores. We can easily see that the whole set W always maximizes
the EUM rule with a simple utility function, which implies that this rule cannot be a
DM rule by Theorem 4.2. We denote this EUM rule by EUM(S).

To see the connection between the EUM rules in general and the DM rules, we
introduce strict propriety restricted to uniform distributions on belief cores.

Definition 4.11 (U -Strictly Proper Utility (U -SP)). A utility function u : W ×U →
R ∪ {−∞} is U-strictly proper (U-SP) iff

argmax
b

Ew∼U(B′)[u(w, b)] = uni(B′)

for all B′(6= ∅) ⊆ W .
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This theorem shows under what conditions an EUM rule can be a DM rule.

Theorem 4.10 (Representation of EUM rule by DM rule). Let a BR G be an EUM
rule in 4M with utility u.

G is invariant under the same input-representation (IIR) and u is U-SP
iff

G is a DM rule in 4M .

Proof. It is clear that u is U -SP iff G(P ) = b′ for any P ∈ P(W ) such that p = b′,
which is equivalent to (ii) in Theorem 4.2. Thus, by Theorem 4.2 our claim holds.

We remark that if G is an EUM rule in 4W , IIR always holds. Thus, u is U -SP iff
G is a DM rule. This theorem raises the question: what kind of divergence can we use
for an EUM rule to be a DM rule. Let G be an EUM rule satisfying the conditions
to be a DM rule. We can construct the following divergence.

d(p, b) :=


0 p = b

Ew∼P [−u(w, b)] + maxb Ew∼P [u(w, b)] + ε otherwise

where ε > 0 is any positive real number. We need the small error ε to avoid the case
where d(p, b) = 0 when p 6= b. Note that P can be any extension of p. Even though
d(p, b) might be different depending on which extension we choose, G(P ) produces,
whatever the choice of extension, the same belief set because G satisfies IIR.

If an EUM rule can be a DM rule, this implies that the EUM rule also obeys the
suspension principle that characterizes the DM rules. This raises a question: which
kind of utility function should we use to satisfy the suspension principle? Let us give
the most simple examples.

Example 4.5. (1) In Example 4.4 (1), R1 < W1 iff u is U-SP iff G is a DM rule.

(2) Compare (1) with the case where |W | = 3 in Figure 4.15. We can easily check
the following:

(i) R < W is neither necessary nor sufficient to be a DM rule. (d) is a DM
rule although R > W and (f) is not a DM rule although R < W .

(ii) If 2R′ > W ′, then it cannot be a DM rule.(See (f).)

(iii) If R > 2W , then it cannot be a DM rule.(See (g).)

Thus what we know so far is just the necessary condition for an EUM rule to
be a DM rule such that 2R′ ≤ W ′ and R ≤ 2W . Further research is needed to
investigate the necessary and sufficient condition on informativeness-sensitive
utility for the EUM rule to be a DM rule in the case where |W | ≥ 3.

(3) In Example 4.4 (2), u is not U-SP.
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Now we shall generalize Theorem 4.4 and Corollary 4.9.2 (2) and find a necessary
and sufficient condition on d for DM rules to be represented by EUM rules, which
is a counterpart of Theorem 4.10. We note that the condition that d is a Bregman
divergence is a sufficient condition for a DM rule to be an EUM rule. (See Theorem
4.4.) However, we will show that it is not a necessary condition. Like the case of
the Euclidean distance and the squared Euclidean divergence, when two divergences
give us the same result, we call them equivalent divergences. Let us give its formal
definition.

Definition 4.12 (Equivalence of Divergences). Let d and d′ be a divergence on 4M .
d is equivalent to d′ iff

argmin
b

d(p, b) = argmin
b

d′(p, b)

for all p ∈ 4M

The following theorem shows the condition we are looking for. A DM rule can be
an EUM rule iff there is an equivalent distance such that distance minimizing is the
same as expected distance minimizing. We call such DM rules the EDM rules.

Theorem 4.11 (Representation of DM rule by EUM rule). Let a BR G be a DM
rule in 4M with divergence d. There is a divergence d′ equivalent to d such that

argmin
b

d′(p, b) = argmin
b

Ew∼P [d′(vw, b)]

for all P ∈ P(W )

iff
G is a EUM rule in 4M .

Proof. (→) Let u(w, b) := −d′(vw, b). Then, G(P ) = argminb d(p, b) = argminb d
′(p, b) =

argmaxb Ew∼P [u(w, b)].
(←) Let G be an EUM rule with a utility u and p ∈ 4M . For any b ∈ UM , define

d′(p, b) :=


Ew∼P [−u(w, b)] + maxb Ew∼P [u(w, b)] p ∈ UM

Ew∼P [−u(w, b)] + maxb Ew∼P [u(w, b)] + ε otherwise

where ε > 0 is any positive real number and we can choose P among the extensions
of p. ( d′ can be different depending on which extension we choose.) We will show
the following (i), (ii) and (iii). (i) d′ is a divergence since G is both a EUM rule
and a DM rule and thus u is U -SP. (ii) d′ is equivalent to d, since argminb d(p, b) =
argmaxb Ew∼P [u(w, b)] = argminb d

′(p, b) whether p ∈ UM or not. (iii) From the
definition of d′, we have

d′(vw, b) = −u(w, b) + maxb[u(w, b)]
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Figure 4.16: U-SP and EDM

Thus, for all P ′ ∈ P(W ) such that p′ = p,

argmin
b

Ew∼P ′ [d′(vw, b)] = argmin
b

Ew∼P ′ [−u(w, b)]

= argmin
b

Ew∼P [−u(w, b)] = argmin
b

d′(p, b)

Note that the second equality holds since G is a DM rule and thus G(P ) = G(P ′),
which follows from the fact that DM rules satisfy IIR. (See Theorem 4.2.)

To summarize this section, we proved that the EUM rules with U-SP utilities
satisfying IIR are DM rules, and the DM rules that are also EDM rules are EUM
rules.

4.3.4 Convexity of the EUM rules and EUM-rationalizability

Convexity of the EUM rules In Section 3.5, we proposed that the notion of
convexity should be studied and discussed in the context of belief binarization. When
a rational agent determines binary beliefs from probability functions, it is natural
that if two probability functions yield the same result, then so does any probability
function between them — any linear combination of them. However, explicating the
convexity norm is not straightforward and there can be various types of convexity
norms. Since the DM rules and EUM rules are defined to be binarization corre-
spondences — i.e., multiple outputs are allowed — , C-convexity and R-covexity are
relevant in this chapter. Considering that the ouput of the DM rules or EUM rules
is the set of some points b ∈ UM , we reformulate them as follows23:

(C-Convexity) A binarization correspondence G satisfies the convexity of bina-
rization correspondence (C-convexity) iff for all P, P ′ ∈ P(W ), if G(P ) = G(P ′),
then

G(αP + (1− α)P ′) = G(P )(= G(P ′))

23See Definition 3.21
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for all α ∈ [0, 1].

(R-Convexity) A binarization correspondence G satisfies the convexity of bina-
rization relation (R-convexity) iff for all P, P ′ ∈ P(W ) and b ∈ UM , if b ∈ G(P ) and
b ∈ G(P ′), then

b ∈ G(αP + (1− α)P ′)

for all α ∈ [0, 1].

We showed that the threshold-based rules introduced in Chapter 3 — HTr(S), CSS

and CCTg — satisfiy neither C-convexity nor R-convexity.24 Moreover, we proved
that HTr satisfies R-convexity but not C-convexity and that DM(SE) satisfies both
convexity norms.25 What about other DM rules and the EUM rules? Notice that
every preimage-region of the representation point of a belief core under the EUM(I)
rule — see Figure 4.15 — is convex. In this section, we prove that it holds for every
EUM rule. This is easy to prove because we can make use of the linearity of the
expectation operator.

Theorem 4.12 (Convexity of the EUM rule). Every EUM rule satisfies C-convexity
and R-convexity.

Proof. Let G be an EUM rule with G(P ) := argmaxb Ew∼P [u(w, b)]. Since

Ew∼αP+(1−α)P ′ [u(w, b)] = αEw∼P [u(w, b)] + (1− α)Ew∼P ′ [u(w, b)]

if
argmax

b
Ew∼P [u(w, b)] = argmax

b
Ew∼P ′ [u(w, b)]

then
argmax

b
Ew∼αP+(1−α)P ′ [u(w, b)] = G(P )

Thus G satisfies C-convexity.
Moreover, if

b′ ∈ argmax
b

Ew∼P [u(w, b)] and b′ ∈ argmax
b

Ew∼P ′ [u(w, b)]

then
b′ ∈ argmax

b
Ew∼αP+(1−α)P ′ [u(w, b)]

Thus G satisfies R-convexity.

Since we know that some DM rules can be considered as EUM rules, we obtain
the following corollary.

24See Table 3.7.
25See Theorem 3.11.
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Corollary 4.12.1. (1) Every DM rule with a Bregman divergence satisfies C-convex-
ity and R-convexity.

(2) Every DM rule with a divergence d such that there is a divergence d′ that is
equivalent to d and argminb d

′(p, b) = argminb Ew∼P [d′(vw, b)] for all P ∈ P(W )
satisfies C-convexity and R-convexity.

Proof. From Theorem 4.4 and Theorem 4.11, we know that the above rules are the
EUM rules.

For example, not only DM(SE) but also DM(KL1), defined in 4M as follows,
satisfies C- and R-convexity.

Example 4.6. Consider a DM rule DM(KL1) with KL1 divergence DKL1(p, b) in
4W where

DKL1(p, b) :=


∑

w∈Supp(p) pwlog
pw
bw

if Supp(p) ⊆ Supp(b)

∞ otherwise

KL1 divergence is a Bregman divergence, and thus DM(KL1) satisfies C-convexity
and R-convexity.

In addition, dE is equivalent to DSE, and therefore DM(E) is also an EUM rule.
The above theorem and corollary show that the EUM rules and the DM rules that can
also be considered as an EUM rules are more advantages than the threshold-based
rules in Chapter 3 in terms of convexity.

Convexity and EUM-rationalizability From the above theorem, it follows that
a binarization rule G is not an EUM rule if it does not satisfy C-convexity or R-
convexity. Note that if there is a b ∈ UM whose preimage-region G−1(b) := {p ∈
4M |G(P ) = b} is not convex, then G satisfies neither C-convexity nor R-convexity.
Therefore, we can easily conclude that a BR is not an EUM rule when there exists
a preimage-region that is not convex. In other words, unless all preimage-regions are
convex, we can say that the BR is not an EUM rule. For instance, we can easily
check from Figure 3.8, 3.9 and 3.10 that the threshold-based rules HTr(S), CSS and
CCTg, respectively, cannot be considered as an EUM rule. This property of not
being an EUM rule can be understood as violating an epistemic norm that we call
EUM-rationalizable. We say a binarization rule is EUM-rationalizable if there is a
utility function with which the rule can be viewed as an EUM rule. Thus, the above
rules are problematic not only because they do not satisfy convexity but also because
they are not EUM-rationalizable, i.e., we cannot interpret them as an EUM rule with
any utility function. Therefore, not only convexity but also EUM-rationalizability
can be an epistemic norm to be respected in the binarization problem. Moreover, if
we accept EUM-rationalizability, then we should also accept the convexity norm. In
this sense, EUM-rationalizability supports the convexity norm and gives it one more
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Figure 4.17: Classification of DM and EUM rules

justification. The following example shows the application of non-convexity to show
that DM(KL2) is not EUM-rationalizable.

Example 4.7. Consider a DM rule DM(KL2) with KL2 divergence DKL2(p, b) in
4W where

DKL2(p, b) :=


∑

w∈Supp(b) bwlog
bw
pw

if Supp(b) ⊆ Supp(p)

∞ otherwise

where Supp(p) := {w ∈ W : pw 6= 0}, which is called the support of p for any
p ∈ 4W . Let |W | = 3. DM(KL2) has a non-convex preimage-region, thus it cannot
be EUM-rationalizable. Note that KL2 divergence is not a Bregman divergence.

Proof. Consider the case where p1 = (0.7, 0.18, 0.12) and p2 = (0.18, 0.7, 0.12). Then
argminbDKL2(p1, b) = argminbDKL2(p2, b) = (1

3
, 1

3
, 1

3
). However argminbDKL2(p, b) =

(1
2
, 1

2
, 1

2
) where p = p1+p2

2
= (0.44, 0.44, 0.12).

We can now collect the above results and classify the EUM rules and DM rules as
illustrated in Figure 4.17. Except for DM(SE), DM(KL1) and DM(KL2), each point
represents a type of multiple binarization rules with certain parameters, and belonging
to a category — DM/EUM/DM(Bregman)/EUM(SP)/C-Convexity/R-Convexity —
means that they always belong to the category regardless of the values of parameters.
EUM(S) is introduced in Example 4.4 (1) in the previous section.

It will become clear in the next section what kind of role C-convexity of a bina-
rization rule plays for heterogeneous belief aggregation. It is closely related to some
sort of unanimity.
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4.4 Distance- and Utility-based Heterogeneous Be-

lief Aggregation and its Properties

This section is based on joint work with Chisu Kim. In this chapter, we deal with
distance- and utility-based rules. In the first section, we introduce two groups of
distance- and utility-based rules and various examples of them. In the second sec-
tion, we propose various properties of distance- and utility-based rules centering on
the interrelation between the two groups. Moreover, we examine properties of repre-
sentative distance-based rules. It is worth noting that we also explore C-convexity,
introduced in the belief binarization context, in the heterogeneous belief aggregation
context. Indeed, we will show that the C-convexity norm is related to some una-
nimity norms. This permits us to view the C-convexity norm from a broader social
perspective.

4.4.1 Distance- and Utility-based Heterogeneous Belief Ag-
gregation

Individuals’
probabilistic
Beliefs (Pi)i

Group’s
probabilistic

Belief P

Opinion

Pooling f

Group’s
binary
Belief b

Distance- and Utility-based Binarization

Direct Distance- and Utility-based rules

We introduce distance- and utility-based heterogeneous belief aggregation rules.
There are two categories of distance- and utility-based HA rules that have the follow-
ing form:

(1) Pooling + distance- and utility-based BR

F ((Pi)i) = argmin
b

g(f((Pi)i), b)

(2) Direct distance- and utility-based HA

F ((Pi)i) = argmin
b

h((g(Pi, b)i))

where f is an opinion pooling function, g is a distance/(expected) utility function,
and h is a function aggregating individual distances/(expected) utilities. Notice that
we seek the representation point b of the uniform distribution U(B), instead of the
belief core B, which causes no harm because of Lemma 4.1 in Section 4.2.1. We can
construct various kinds of distance- and utility-based rules depending on which opin-
ion pooling method is combined with which distance- and utility-based binarization
rule, and how individual distances/utilities are aggregated.
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Let us consider two kinds of pooling method: linear pooling (LP) and geometric
pooling (GP). Here is the formal definition of LP.

Definition 4.13 (Linear Pooling (LP)). (1) A pooling f is a global LP iff there is
a weighting vector (αi)i such that for all (Pi)i

f((Pi)i) =
∑
i

αiPi

(2) A pooling f is a local LP iff for all (Pi)i, there is a weighting vector (αi)i such
that f((Pi)i) =

∑
i αiPi.

Here weighting vector (αi)i — αi ∈ [0, 1] and
∑

i αi = 1 for all i — is differently
used. In global LP, (αi)i is fixed for all probability profiles while in local LP, (αi)i
depends on probability profiles.26

Now let us move to the case where f is GP. To make GP well defined, we give up
universal domain (UD) and assume that the intersection of the support of each Pi is
not empty, i.e.,

⋂
i Supp(Pi) 6= ∅, which guarantees that

∑
w

∏
i Pi(w)αi 6= 0. Here is

the formal definition of GP.

Definition 4.14 (Geometric Pooling (GP)). (1) An opinion pooling function f is
a global GP iff there is a weighting vector (αi)i such that for all (Pi)i and all w

f((Pi)i)(w) =

∏
i Pi(w)αi∑

w

∏
i Pi(w)αi

(=: GP ((Pi)i)(w))

(2) An opinion pooling function f is a local GP iff for all (Pi)i, there is a weighting

vector (αi)i such that f((Pi)i)(w) =
∏
i Pi(w)αi∑

w

∏
i Pi(w)αi

for all w.

We can build various kinds of Pooling+distance- and utility-based BR by com-
bining LP or GP with EUM, DM(SE), DM(KL1) or DM(KL2).

Another kind of distance- and utility-based rules are direct distance- and utility-
based HA rules. Here are some examples of them.

Definition 4.15 (Linear direct distance- and utility-based HA). A HA F is a linear
direct distance- and utility-based HA iff there are a function g : P(W )×UM → R and
a weighting vector (αi)i such that

F ((Pi)i) = argmin
b

n∑
i=1

αig(Pi, b)

for all probability profile (Pi)i.
26We distinguish local LP from global LP. It helps us classify various arguments for LP. For

example, Pettigrew’s arguments for LP (Pettigrew (2020a) can be divided into two types: (1) if the
pooled credence lies outside the convex hull generated by the given probability profile, there is a
credence, actually the projection onto the convex hull, which (such-and-such)-dominates the former
credence; (2) if the pooled credence lies in the convex hull generated by the given probability profile
, there is no credence (such-and-such)-dominates the pooled credence. The first type of argument
supports only local LP while the second type of argument can be used to support global LP too.
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Definition 4.16 (Geometric direct distance- and utility-based HA). A HA F is a
geometric direct distance- and utility-based HA iff there are a function g : P(W ) ×
UM → R and a weighting vector (αi)i such that

F ((Pi)i) = argmin
b

n∏
i=1

g(Pi, b)
αi

for all probability profile (Pi)i.

4.4.2 Commutativity, Unanimity and C-convexity

In this section we investigate properties of distance- and utility-based heterogeneous
belief aggregation rules. Our main concern here is properties of Pooling + distance-
and utility-based BR, but we address it focusing on the relation with direct distance-
and utility-based HA rules.

Let F be a Pooling + distance- and utility-based BR that has the form of F ((Pi)i) :=
G(f((Pi)i)) := argminb g(f((Pi)i), b). First, consider the commutativity with the min-
imization of a linear mean of individual values g(Pi, b) as follows.

(Pi)i P = f((Pi)i)
f (e.g., LP or GP)

argmin
b

g(P, b)

G (e.g., EUM or DM)
argmin

b
∑
i αig(P

i , b)

Definition 4.17 (Commutativity). Let F ((Pi)i) := argminb g(f((Pi)i), b).

(1) F satisfies global commutativity iff there is a weighting vector (αi)i such that
for all (Pi)i

F ((Pi)i) = argmin
b

∑
i

αig(Pi, b)

(2) F satisfies local commutativity iff for all (Pi)i, there is a weighting vector (αi)
such that

F ((Pi)i) = argmin
b

∑
i

αig(Pi, b)

We note that F satisfies global commutativity iff F can be considered as a linear
direct distance-based HA rule with g in Definition 4.15. In this regard, if F satisfies
global commutativity, then we can say that F is commute with some linear direct
distance-based HA rule with g.
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Apart from the minimization of the linear mean of g, consider other direct rules
that satisfy some kind of unanimity about g. To commute with those rules, the
necessary condition would be that the combination of f and G, denoted by f + G,
also satisfies the same kind of unanimity.

(Pi)i P = f((Pi)i)
f (e.g., LP or GP)

argmin
b

g(P, b)

G (e.g., EUM or DM)Unanimity

Definition 4.18 (Unanimity). Let F ((Pi)i) = argminb h(g(Pi, b)i) or F ((Pi)i) =
argminb g(f((Pi)i), b).

(1) F satisfies strong unanimity iff if there is a b∗ such that for all i g(Pi, b
∗) <

g(Pi, b
′), then b′ /∈ F ((Pi)i), for all b′ and for all (Pi)i.

(2) F satisfies weak unanimity iff if for all i and for all b g(Pi, b
∗) < g(Pi, b), then

F ((Pi)i) = b∗, for all b∗ and for all (Pi)i.

We note that linear and geometric direct distance- and utility-based HA rules in
Definition 4.15 and 4.16 satisfy strong unanimity, therefore weak unanimity as well.
Unanimity is a weaker notion than commutativity as the following lemma shows.

Lemma 4.13 (Commutativity and Unanimity). Let F ((Pi)i) := argminb g(f((Pi)i), b).
F satisfies global commutativity
⇒ F satisfies local commutativity
⇒ F satisfies strong unanimity
⇒ F satisfies weak unanimity

Proof. It is clear that from global commutativity follows local commutativity. Assume
that given any (Pi)i we have F ((Pi)i) = argminb

∑
i αig(Pi, b). If for all i, g(Pi, b

∗) <
g(Pi, b

′), then
∑

i αig(Pi, b
∗) <

∑
i αig(Pi, b

′). Therefore b′ cannot be F ((Pi)i), thus
F satisfies strong unanimity. Now assume that F satisfies strong unanimity and for
all i, argminb g(Pi, b) = b∗. Then all b′( 6= b∗) cannot be F ((Pi)i) by strong unanimity
because g(Pi, b

∗) < g(Pi, b
′) for all i. Thus, we must have F ((Pi)i) = b∗.

The above defined ‘unanimity’ has a close relationship with ‘C-convexity’ discussed
in Section 3.5 and Section 4.3.4 when f is global or local LP.

Theorem 4.14 (C-Convexity and Weak Unanimity). Let F ((Pi)i) := G(f((Pi)i)) —
i.e., F = f +G — where G(P ) := argminb g(P, b).

(1) The followings are equivalent:
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(i) G satisfies C-convexity

(ii) F (:= f +G) satisfies weak unanimity for all local LP f

(iii) F (:= f +G) satisfies weak unanimity for all global LP f

(2) Let f be global or local LP. If G satisfies C-convexity, then F satisfies weak
unanimity.

Proof. Since (2) follows from (1), it is enough to show (1).
(i) ⇒ (ii): Let f be a local LP, i.e., for all (Pi)i there is (αi)i such that f(Pi)i =∑

i αiPi. Given (Pi)i, assume that argminb g(Pi, b)(= G(Pi))= b∗ for all i. If G
satisfies C-convexity, which is equivalent to the following: if G(Pi) = b∗ for all
i, then for all weighting vectors (α′i)i, G(

∑
i α
′
iPi) = b∗, we have G(

∑
i αiPi) =

argminb g(
∑

i αiPi, b) = b∗.
(ii) ⇒ (iii): Every global LP is a local LP.
(iii) ⇒ (i): Assume that (iii) holds and G(Pi) = b∗ for all i and let (αi)i be a
weighting vector. Then G(

∑
i αiPi) = G(f((Pi)i)) where f is a global LP such that

f((P ′i )i) =
∑

i αiP
′
i for all (P ′i )i. By (iii), G(f((Pi)i)) = b∗.

In Section 4.3.4, we showed that every EUM rule satisfies C-convexity. Thus all
LP + EUM rules satisfy weak unanimity. Note that the converse of (2) does not
hold. For a given global or local LP f , C-convexity of G does not follow from weak
unanimity of f +G. We need to check all other global or all local LP as well in order
to obtain C-convexity of G.

The following theorem shows further relations between the above properties and
some EUM or DM rules, when f is LP.

Theorem 4.15 (LP+EUM/DM, commutativity and unanimity). (1) All global LP+
EUM rules satisfy global commutativity.

(2) All local LP + EUM rules satisfy local commutativity.

(3) Some LP +DM(KL2) rules do not satisfy weak unanimity.

Proof. (1)Since the pooling is a global LP, there is (αi)i such that for all (Pi)i,
F ((Pi)i) = argminb Ew∼∑i αiPi

[u(w, b)], which is the same as argminb
∑

i αiEw∼Pi [u(w, b)]
by the linearity of the expectation operator.
(2)Since the pooling function is a local LP, for all (Pi)i, there is (αi)i such that
F ((Pi)i) = argminb Ew∼∑i αiPi

[u(w, b)] = argminb
∑

i αiEw∼Pi [u(w, b)].
(3) It follows from Theorem 4.14(1) and Example 4.7(2).

The following remark shows what happens if f+G does not satisfy weak unanimity
when f is a global or local LP.

Remark 4.3. We have the following if-then chain, when f is a global or local LP.

(1) f + G does not satisfy weak unanimity ⇒ f + G does not satisfy strong una-
nimity ⇒ f + G does not satisfy global/local commutativity ⇒ G is not EUM-
rationalizable.
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(2) f +G does not satisfy weak unanimity ⇒ G does not satisfy C-convexity ⇒ G
is not EUM-rationalizable.

Now we consider the case where f is not LP . Our first question is whether
f + EUM rules can satisfy global or local commutativity. Notice that

argmin
b

∑
i

αiEw∼Pi [u(w, b)] = argmin
b

Ew∼∑i αiPi
[u(w, b)]

Thus, we can say that in order to satisfy global/local commutativity, f needs to be
equivalent to a global/local LP with regard to EUM rule with utility u, in the sense
that f +EUM rule with u gives us the same result as some LP +EUM rule with u.

Now consider GP + EUM rules. The first part of the following theorem shows
that in contrast to LP+EUM rules, not all GP+EUM rules satisfy weak unanimity.
Next, our question would be whether there is a distance-based binarization combined
with GP that satisfies strong or weak unanimity. The second part of the theorem
shows Kullback-Leibler measure goes well with GP .

Theorem 4.16 (GP+DM, commutativity and unanimity). (1) Some GP+DM(SE)
rules do not satisfy weak unanimity.

(2) All GP+DM(KL1) rules(Recall DKL1(p, b) :=
∑

w∈Supp(p) pwlog
pw
bw

if Supp(p) ⊆
Supp(b). Otherwise, := ∞) in 4W satisfy weak unanimity and some GP +
DM(KL1) rules do not satisfy strong unanimity.

(3) All GP+DM(KL2) rules(Recall DKL2(p, b) :=
∑

w∈Supp(b) bwlog
bw
pw

if Supp(b) ⊆
Supp(p). Otherwise, :=∞) in 4W satisfy global or local commutativity.

Proof. (1) Let N = {1, 2} and |W | = 3. In 43, consider the case where p1 =
(1

2
, 67

200
, 33

200
) and p2 = ( 67

200
, 1

2
, 33

200
). Then argminbDSE(p1, b) = argminbDSE(p2, b) =

(1
2
, 1

2
, 0). However argminbDSE(p, b) = (1

3
, 1

3
, 1

3
) where p is approximately (0.416, 0.416, 0.168),

which is GP of p1 and p2 with (αi)i = (0.5, 0.5).

(2) First of all, we will prove that for all p ∈ 4W ,

argmin
b

DKL1(p, b) = uni(Supp(p)) (4.7)

(Recall that uni(Supp(p))(∈ 4W ) is a point that represents the uniform distribution
on Supp(p).) Note that DKL1(p, b) <∞, i.e., Supp(p) ⊆ Supp(b), for b that minimizes
the divergence. We will compare DKL1(p, uni(Supp(p))) with DKL1(p, b) for b such
that Supp(p) ( Supp(b).

DKL1(p, b)−DKL1(p, uni(Supp(p))) =
∑

w∈Supp(p)

pwlog
pw
bw
−

∑
w∈Supp(p)

pwlog
pw

uni(Supp(p))w

=
∑

w∈Supp(p)

pwlog
uni(Supp(p))w

bw

> 0
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The inequality follows from the fact that uni(Supp(p))w > bw, which holds because

uni(Supp(p))w =
1

|Supp(uni(Supp(p)))|
=

1

|Supp(p)|
>

1

|Supp(b)|
= bw

Now to prove weak unanimity, assume that for all i, argminbDKL1(Pi, b) = b∗.
It means that Supp(Pi)s are all the same and b∗ = uni(Supp(Pi)) by equation(4.7).
Since

Supp(GP ((Pi)i)) =
⋂
i

Supp(Pi) = Supp(Pi)

we have argminbDKL1(GP ((Pi)i), b) = b∗ by equation(4.7).

Now let us suggest a counterexample to strong unanimity. Let N = {1, 2} and
|W | = 3. In 43, consider the case where p1 = (1

2
, 1

2
, 0) and p2 = (1

2
, 0, 1

2
). Then

DKL1(pi, (
1
3
, 1

3
, 1

3
))(< ∞) < DKL1(pi, (1, 0, 0))(= ∞) for i = 1, 2. However, since

GP ((Pi)i) = (1, 0, 0) and argminbDKL1(p, b) = (1, 0, 0), strong unanimity does not
hold.

(3) We need to show that

argmin
b

DKL2(GP ((Pi)i), b) = argmin
b

∑
i

αiDKL2(pi, b)

First, we will show that for all (Pi)i, there is b such that DKL2(GP ((Pi)i), b) <∞,
which is equivalent to

∑
i αiDKL2(pi, b) <∞. The equivalence holds because

DKL2(GP ((Pi)i), b) <∞ iff Supp(GP ((Pi)i)) ⊇ Supp(b)

iff
⋂
i

Supp(Pi) ⊇ Supp(b)

iff Supp(pi) ⊇ Supp(b) for all i

iff
∑
i

αiDKL2(pi, b) <∞

Furthermore for all (Pi)i there is always b such that
⋂
i Supp(Pi) ⊇ Supp(b), since

uni(
⋂
i Supp(Pi)) satisfies it.

Next, because of the first part, it is enough to show that

argmin
b:
⋂
i Supp(Pi)⊇Supp(b)

DKL2(GP ((Pi)i), b) = argmin
b:
⋂
i Supp(Pi)⊇Supp(b)

∑
i

αiDKL2(pi, b)
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Commutativity Strong Unanimity Weak Unanimity

LP(Theorem 4.15 )

DM(SE) O O O

DM(KL1) O O O

DM(KL2) X X X

GP(Theorem 4.16)

DM(SE) X X X

DM(KL1) X X O

DM(KL2) O O O

Table 4.2

Let us compute.

LHS = argmin
b

∑
w∈Supp(b)

bw

(
logbw −

∑
i

αilogPi(w) + log
∑
w

∏
i

Pi(w)αi
)

= argmin
b

∑
w∈Supp(b)

bw

(
logbw −

∑
i

αilogPi(w)
)

= argmin
b

∑
w∈Supp(b)

∑
i

αibw

(
logbw − logPi(w)

)
= RHS

The second equality follows from
∑

w∈Supp(b) bw = 1

To summarize this section, we introduced some properties of heterogeneous be-
lief aggregation and their relations: From commutativity follows strong unanimity,
from which follows weak unanimity. Moreover, we showed that for all global or local
LP , LP + G satisfies weak unanimity iff G satisfies C-convexity. Table 4.2 shows
whether LP+ or GP+DM rules with DSE, DKL1 or DKL2 satisfy commutativity or
unanimity, which we proved in this section. The combinations of global/local LP
and EUM rules, like DM rules with Bregman divergence, for example DSE or DKL1,
satisfy global/local commutativity, hence strong and weak unanimity. As for DKL2,
which is not a Bregman divergence, some LP + DM(KL2) violate weak unanimity
because the binarization does not satisfy C-convexity. Thus we conclude that strong
unanimity and commutativity do not always hold as well. As far as GP concerned,
we suggested a counterexamples in which some GP + DM(SE) violate weak una-
nimity or some GP + DM(KL1) violate strong unanimity. Furthermore, we proved
that all GP + DM(KL1) satisfy weak unanimity and all GP + DM(KL2) satisfy
commutativity, thus strong and weak unanimity.
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4.5 Conclusion

This chapter presented two rational belief binarization rules to determine a belief
core, which can be identified with the uniform distribution on it, given a probabil-
ity function. We introduced a set of focused events F(⊆ P(W )) and represented
probability functions in De Finetti’s coherent polytope 4F(⊆ R|F|) as well as in a
probability simplex 4W (⊆ R|W |). Using each representation, we formulated the DM
rules in 4W/4F . Moreover, we modified the definition of Bregman divergence D so
that D(p, q) is finite and continuous as long as q ∈ Fp, i.e., as long as q does not
exclude any world that p does not exclude. With this refined definition, we proved
that the DM(Bregman) rules with a Bregman divergence D can be represented by
the EUM(SP) rules with a strictly proper score ID such that ID(w, q) = D(vw, q). We
also proved, the other way around, that the EUM(SP) rules with a strictly proper
score I can be represented by the DM(Bregman) rules with a Bregman divergence
DI such that DI(p, q) = Ew∼P [I(w, q)]− Ew∼P [I(w, p)].

Interestingly, we proved these theorems in both settings without assuming the
additivity of scoring rules. We extended this discussion and proved that the EUM
rules with U-SP utilities satisfying IIR are DM rules, and the DM rules that are also
EDM rules are EUM rules. In addition, we proved that every EUM rule is convex
and criticized the threshold-based binarization rules in Chapter 3 because they are
not convex and therefore not EUM-rationalizable. Last but not least, we combined
EUM rules and DM rules with opinion pooling LP or GP for heterogeneous belief
aggregation problems, and compared these combined rules with direct heterogeneous
belief aggregation rules aggregating individual distances or utilities. We discussed
properties such as commutativity, strong and weak unanimity, and their interrelation:
from commutativity follows strong unanimity, from which follows weak unanimity.
Moreover, we showed that for all global or local LP , LP +G satisfies weak unanimity
iff G satisfies C-convexity. In addition, we examined whether LP+ and GP+DM rules
with DSE, DKL1 or DKL2 satisfy commutativity, strong unanimity or weak unanimity.
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Chapter 5

Conclusion

In this thesis, we proposed the heterogeneous belief aggregation problem, and system-
atically investigated it. In Chapter 2, we first established three impossibility results
when the agenda is a non-trivial algebra, and then provided three characterizations
of impossibility agendas. In Chapter 3, we classified threshold-based heterogeneous
belief aggregation rules and showed that various forms of monotonicity and conjunc-
tiveness characterize them. Moving on to collective belief binarization, we focused
on local threshold rules, reviewed the rational belief binarization rules, and identified
which rational rules satisfy which properties. Moreover, we proposed various kinds
of convexity norms and examined which of them are satisfied by which binarization
methods including not only functions but also correspondences, relations and ordi-
nalizations. In Chapter 4, we introduced two novel rational belief binarization rules,
namely the DM rules and EUM rules. We investigated their relationship and studied
them in the heterogeneous belief aggregation context as well. Among the various DM
and EUM rules, we focused on DM(Bregman) and EUM(SP) rules, and proved that
they can represent each other.

We would like to close this thesis by commenting on the topics that cross the
chapters and adding future research topics. First, we attempted to connect research
fields that have been separately studied.

• We proposed a general framework for different types of beliefs.

• We discussed heterogeneous belief aggregation in relation to judgment aggrega-
tion in Chapter 2, opinion pooling in Chapters 2 and 4, and belief binarization
literature in Chapters 3 and 4.

• We tried to fill the gap between individual and social epistemology addressing
e.g., the collective belief binarization problem in Chapters 3 and 4.

We believe that attempts to link different problem areas basically allow general-
izations and also raise new problems.

• Unanimity norms can be weakened into super-majority norms. We can study
these kinds of norms especially in relation to Chapter 3.
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• We can compare collective belief binarization with individual belief binarization.

• Heterogeneous belief aggregation can be generalized to deal with new belief
aggregation problems where different types of input data are allowed.

• Informativeness of belief and the veritistic value have not been successfully
integrated and explored so far. We think that informativeness-sensitive scoring
rules in Chapter 4 will open up new research directions.

• We can investigate diachronic norms imposed on heterogeneous belief aggrega-
tion.

• Heterogeneous belief aggregation can be generalized into a group decision prob-
lem e.g., aggregating individuals’ quantitative beliefs and utilities into a group’s
qualitative belief and preference.

Second, we emphasized looking at the belief binarization problem and the hetero-
geneous belief aggregation problem from a geometric point of view throughout this
thesis, especially in Chapters 3 and 4. The geometric point of view provided us with
different kinds of new concepts, methods, and ideas.

• We utilized the Voronoi diagram to characterize the coherent belief binarization
rules in Chapter 3.

• We employed distance measures to devise new belief binarization rules in Chap-
ters 3 and 4.

• We introduced the convexity norms to evaluate belief binarization rules in Chap-
ters 3 and 4.

We believe that this geometric approach is promising and opens up many new
research challenges for us.

• We can investigate geometrical characterizations of epistemic norms imposed
on belief binarization such as being stable and being r-likely.

• We can further address the relationship between the Voronoi diagrams and the
belief bianrization problem, which will give us a bridge between the conceptual
space program and the belief binarization problem.1

• The relationship between the linear pooling methods and the convexity norm
can be examined. More generally, our study can be extended to distance- and
utility-based opinion pooling.2

1For studies related to this question, see Decock et al. (2014) where the concept of knowledge is
modeled using conceptual space.

2For studies related to this question, see Abbas (2009), Pettigrew (2019), Adamcik (2014a),
Feldbacher-Escamill & Schurz (2020), Neyman & Roughgarden (2021).
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Mathematical Background

Definition .1 (Convex set and Convex function). Let A ⊆ Rm.

(1) A is called convex if for all x, y ∈ A it holds that αx + (1 − α)y ∈ A for all
α ∈ [0, 1].

(2) The convex hull of A: Conv(A) = {z ∈ Rm| z = αx+ (1− α)y for some x, y ∈
A,α ∈ [0, 1]}

(3) Let A be convex. A function f : A → R is convex if for all x, y ∈ A it holds
that f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all α ∈ [0, 1].

Definition .2 (Basic topological notions). Let x ∈ Rn, ε > 0, and A ⊆ Rn.

(1) The open ball of the centre x and radius ε: Bε(x) = {y ∈ Rn| ||x− y|| < ε}

(2) An element x ∈ A is called an interior point of A if ∃ε > 0Bε(x) ⊆ A

(3) The interior of A: int(A) = {x ∈ A| ∃ε > 0Bε(x) ⊆ A}

(4) A is called open if x is an interior point of A for all x ∈ A

(5) A is called closed if A is open

(6) the closure of A: cl(A) = {x ∈ Rn| ∀ε > 0 Bε(x) ∩ A 6= ∅}

(7) The boundary of A: bd(A) = cl(A) \ int(A)

(8) A is said to be affine if l[x, y] ⊂ A for all x, y ∈ A where l[x, y] = {λx + (1 −
λ)y| λ ∈ R}

(9) The affine hull of A: aff(A) =
⋂
{C ⊆ Rm| C is affine and A ⊆ C}

(10) The relative interior of A: ri(A) = {x ∈ A| ∃ε > 0(Bε(x) ∩ aff(A)) ⊂ A}

(11) The relative boundary of A: rb(A) = cl(A) \ ri(A).
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Deutsche Zusammenfassung

Diese Dissertation schlägt ein neues Forschungsthema dahingehend vor, wie wir mehre-

re individuelle probabilistische Überzeugungen in Hinblick auf logisch zusammen-

hängende Propositionen zu einer kollektiven binären Überzeugung aggregieren sollten:

heterogene Überzeugungsaggregation. Wir argumentieren, dass heterogene Überzeu-

gungsaggregation eine Untersuchung wert ist, da es viele Situationen gibt, in de-

nen probabilistische Überzeugungen und binäre Überzeugungen plausible und nahe-

liegende Inputs bzw. Outputs von Aggregationsverfahren darstellen. Das Hauptprob-

lem besteht darin, dass heterogene Überzeugungsaggregation anfällig für ein Dilemma

wie das diskursive Dilemma oder das Lotterieparadox ist: Propositionsbezogene un-

abhängige Verfahren können möglicherweise keine deduktive Abgeschlossenheit und

Konsistenz gewährleisten. Angesichts dieser Situation haben wir zwei Hauptfragen:

Wie das Dilemma präzisiert und verallgemeinert werden könnte und welche Arten von

Aggregationsverfahren das Dilemma vermeiden und rationale kollektive Überzeugun-

gen erhalten können.

Um die erste Frage zu beantworten, wenden wir den axiomatischen Ansatz an,

um allgemeine Aggregationsverfahren wie in der Urteilsaggregation und der Theo-

rie der sozialen Wahl behandeln zu können. Wir untersuchen, welche individuellen

und kollektiven Rationalitätsanforderungen und welche Eigenschaften von Aggre-

gationsverfahren der heterogenen Überzeugungsaggregation auferlegt werden sollten

und welche ihrer Kombinationen unmöglich sind. Wir gehen hauptsächlich von de-

duktiver Abgeschlossenheit und nicht von Vollständigkeit aus, anders als in der meis-
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ten Literatur zur Urteilsaggregation. Darüber hinaus adressieren wir Unmöglichkeit-

sergebnisse ohne Anonymitätsbedingungen, die bei der Überzeugungsbinarisierung

nicht berücksichtigt werden können. Dies führt zu drei Arten von Unmöglichkeit-

sergebnissen, und wir bestimmen die notwendige und hinreichende Agenda-Bedingung

für jedes der Ergebnisse. Darüber hinaus analysieren wir Ähnlichkeiten und Unter-

schiede zwischen unseren Beweisen und anderen verwandten Beweisen und kommen

zu dem Schluss, dass das Problem der heterogenen Überzeugungsaggregation nicht auf

die anderen verwandten Probleme reduziert werden kann. Schließlich zeigen wir dass

unsere Methoden auf andere ähnliche Unmöglichkeiten angewendet werden können.

Für die zweite Frage untersuchen wir spezifische heterogene Aggregationsverfahren

und deren Eigenschaften. Es gibt dabei zwei Arten von heterogenen Aggregationsver-

fahren: die kollektive Überzeugungsbinarisierung kombiniert mit einer probabilistis-

chen Meinungspooling-Methode und die direkten Regeln.

Was die kollektive Überzeugungsbinarisierung betrifft, so sind Theorien der Über-

zeugungsbinarisierung anwendbar. Dazu analysieren wir zunächst die bestehenden

schwellenwertbasierten Verfahren, insbesondere solche, die die Lockesche These lock-

ern und die Rationalität bewahren. Wir kategorisieren sie als lokale Schwellenwert-

regeln —- wobei Schwellenwerte von Wahrscheinlichkeitsmaßen abhängen —- und

Weltschwellenwertregeln – wobei Schwellenwerte nicht auf eine Proposition, sondern

auf eine mögliche Welt angewendet werden. Die nämlichen Regeln können mittels

der Eigenschaft der lokalen Monotonie bzw. der Weltmonotonie charakterisiert wer-

den. Wir vergleichen und setzen diese Eigenschaften mit anderen bestehenden Eigen-

schaften wie Stabilität in der Stabilitätstheorie von Überzeugungen und mit neuen —

noch einzuführenden — Eigenschaften in Beziehung. Ob einige bestehende rationale

Verfahren, wie die Kamera-Shutter-Regel, diese Eigenschaften erfüllen, ist eine inter-

essante und philosophisch wichtige Frage. Wir geben geometrische Charakterisierun-

gen einiger der Eigenschaften an, um diese Frage zu beantworten. Darüber hinaus
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schlagen wir vor, Konvexitätsnormen im Kontext der Überzeugungsbinarisierung zu

diskutieren. Wir führen verschiedene Arten von Konvexitätsnormen ein und unter-

suchen, ob diese nämlichen Verfahren diese erfüllen.

Weiters schlagen wir zwei neue Arten von Überzeugungsbinarisierungsmethoden

vor, die Rationalität bewahren, aber nicht auf Schwellenwerten basieren: Distanz-

basierte Binarisierung und Epistemischer-Nutzen-basierte Binarisierung. Die erste ist

eine holistische Methode, die den Abstand von einem gegebenen Wahrscheinlichkeits-

maß zu der resultierenden binären Überzeugung minimiert. Der zweite basiert auf

einer Genauigkeitsnorm, die die erwartete Unrichtigkeit (inaccuracy) minimiert. Wir

entwickeln neue Wege, um Distanz und Unrichtigkeit zu messen. Wir entwickeln

neue Wege, um Distanz und Ungenauigkeit zu messen. Darüber hinaus untersuchen

wir Distanzminimierung mit Bregman-Divergenz, Nutzenmaximierung mit strikten

“proper score” und deren Beziehung.

Direkte heterogene Überzeugungsaggregationsregeln werden ebenfalls vorgeschla-

gen und hinsichtlich Schwellenwert, Distanz und epistemischer Nützlichkeit unter-

sucht. Wir erstellen eine Klassifizierung und Charakterisierung dieser Regeln. Darüber

hinaus untersuchen wir verschiedene, besonders in sozialen Kontexten relevante Nor-

men, wie verschiedene Einstimmigkeits- und Konvexitätsnormen, die in sozialen Kon-

texten interpretiert werden, und Kommutativitätsnormen, die den Zusammenhang

zwischen direkten Regeln und Kombinationen von probabilistischem Meinungspool-

ing und kollektiver Überzeugungsbinarisierung aufzeigen.

Zusammenfassend kommen wir zu dem Schluss, dass heterogene Überzeugungsag-

gregation ein philosophisch fruchtbares Thema darstellt, das Aufmerksamkeit verdi-

ent. Heterogene Überzeugungsaggregation kann als ein allgemeiner Rahmen ange-

sehen werden, in dem nicht nur heterogene Überzeugungsaggregation, sondern auch

pobabilistisches Meinungspooling, Urteilsaggregation und Überzeugungsbinarisierung

gemeinsam untersucht werden können. Erstens ist die Untersuchung der heteroge-
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nen Überzeugungssaggregation an sich interessant und lässt sich nicht auf andere

Forschungsfelder reduzieren: Wir können uns mit unterschiedlichen Rationalitätsnor-

men in sozialen Kontexten auseinandersetzen und Eigenschaften der heterogenen

Überzeugungsaggregation charakterisieren. Darüber hinaus sind es nicht nur die di-

rekten Regeln, sondern auch die verschiedenen möglichen Kombinationen von Meth-

oden aus unterschiedlichen Forschungsgebieten, die diese Unternehmung zu mehr als

bloß der Summe ihrer Teile werden lassen. In der Tat verbindet zweitens dieser

Rahmen unabhängig entwickelte Forschungsbereiche: Einerseits können wir gut en-

twickelte formale Theorien der formalen Erkenntnistheorie wie Überzeugungsbina-

risierungstheorien und epistemische Entscheidungstheorien auf das Überzeugungsag-

gregationsproblem anwenden. Andererseits ermöglicht uns dieser Rahmen, soziale

Kontexte zu Überzeugungsbinarisierungsproblemen und epistemischen Entscheidungs-

theorien hinzuzufügen, die somit auf die Behandlung sozialer Überzeugungen aus-

gedehnt werden können. Unsere Theorie der heterogenen Überzeugungsaggregation

kann auf das (kollektive) Überzeugungsbinarisierungsproblem und die epistemische

(kollektive) Entscheidungstheorie angewendet werden. Auf diese Weise schließt diese

Arbeit die Lücke zwischen individueller Erkenntnistheorie und kollektiver Erkennt-

nistheorie oder verkleinert dieselbe zumindest.
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