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I. Introduction     1 

I.  INTRODUCTION 

Bovine respiratory disease (BRD) is one of the most important health problems in 

bovine medicine worldwide and leads to economic losses in both beef production 

and dairy farms (SNOWDER et al., 2006; HILTON, 2014; DUBROVSKY et al., 2019). 

The etiology of the BRD complex is described as multifactorial, as both non-

infectious factors and infectious agents are involved in the development of the 

disease (SANDERSON et al., 2008; GRISSETT et al., 2015). Viral pathogens impair 

the immune system and favour a secondary bacterial infection (LOPEZ et al., 1976; 

GERSHWIN et al., 2008). Bacterial pathogens from the Pasteurellaceae family such 

as Pasteurella multocida and Mannheimia haemolytica are of particular 

importance, because they have been detected most frequently in cattle with BRD 

(ANHOLT et al., 2017; HOLSCHBACH et al., 2020). Several virulence factors enable 

these bacteria to evade the immune system and trigger various forms of 

pneumonia, especially fibrinous pleuropneumonia, and suppurative 

bronchopneumonia (CONFER, 2009; PANCIERA & CONFER, 2010). For the therapy 

and control of those bacterial infections, the administration of antibiotics 

therefore plays a decisive role in dairy and fattening farms (EDWARDS, 2010). 

However, studies from around the world show that there is a trend towards 

increased antimicrobial resistance (AMR) and multidrug-resistance (MDR) to 

certain antimicrobial agents in bacterial BRD causing pathogens (EL GARCH et al., 

2016; KLIMA et al., 2020). To ensure that infectious diseases can continuously and 

effectively be treated with antibiotics in the future, surveillance programmes as 

the German Resistance Monitoring "GERM-Vet" are essential (WHO, 2015; BVL, 

2020b). 

The aim of this work was to complement existing resistance studies by recording 

current trends in the development of AMR in bacterial pathogens of BRD in Bavaria 

over the five-year period between July 2015 and June 2020 and to investigate the 

influence of animal- and farm-specific epidemiological parameters on the 

resistance pattern. In addition, virulence was investigated from a subset of 

Pasteurella multocida isolates by determining the capsular type by polymerase 

chain reaction (PCR). 
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II.  LITERATURE OVERWIEW 

1. Etiology of bovine respiratory disease (BRD) 

1.1. Predisposing factors  

Insufficient colostrum intake after birth is one risk factor for the development of 

BRD. Calves with low postcolostral serum immunoglobulin G (IgG) levels have a 

two-times higher risk of developing pneumonia than calves with higher levels 

(VIRTALA et al., 1999)(Figure 1). Holstein calves should consume at least 153 grams 

IgG in the first two hours after birth. This corresponds to an intake of at least three 

litres of colostrum (CHIGERWE et al., 2008). In addition, colostrum from cows that 

have signs of mastitis at the first milking should not be used (VIRTALA et al., 1999). 

Inadequate hygienic conditions in the keeping of calves also favour BRD. 

Therefore, young calves should have enough bedding material to nestle in. Ideally, 

the animal nests so deeply that its legs are no longer visible. This protects against 

drafts and chilling at temperatures below the thermoneutral zone (LAGO et al., 

2006). Also, there should be good drainage under the bedding. It ensures that 

urine, spilled milk, and water are drained out, so the straw does not get soaked 

but stays dry (NORDLUND & HALBACH, 2019). Additionally associated with BRD 

are an increasing number of animals kept within a group. A study from Sweden 

showed that in groups with 12 to 18 calves the incidence of BRD was higher than 

in groups with six to nine calves. The recommendation is therefore to keep calves 

in groups with ten or less animals (SVENSSON & LIBERG, 2006). Increasing herd 

size is also associated with an increasing risk of BRD in older cattle (MURRAY et al., 

2016). Another critical phase is the transport of calves from the farm of origin to 

the fattening farm. Long-distance transports are associated with temporary 

dehydration and stress (CERNICCHIARO et al., 2012)(Figure 1). Studies have shown 

that the stress mediator plasma cortisol is elevated during transport (ISHIZAKI & 

KARIYA, 2010). Long-distance transports are often associated with the 

commingling of cattle from different farms, which also increases the risk of 

developing BRD (SANDERSON et al., 2008). Another predisposing factor is 

insufficient ventilation of the barns. Adequate air exchange improves air quality 
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and reduces the number of bacteria in the air, resulting in a lower prevalence of 

BRD (LAGO et al., 2006). For housing cattle in barns a combined system of natural 

ventilation based on an eaves ridge system and a positive pressure tube system is 

recommended (NORDLUND & HALBACH, 2019). Finally, it should be mentioned 

that the season and climate conditions also had an influence on the incidence of 

BRD. In the summer months June to August, BRD occurs less frequently than in 

months with lower average temperatures (SELBITZ et al., 2015; MURRAY et al., 

2016)(Figure 1). 

1.2. Viral pathogens  

The viral pathogens of the BRD complex include bovine coronavirus (BCoV), bovine 

viral diarrhea virus (BVDV), bovine herpes virus type 1 (BHV-1), bovine respiratory 

syncytial virus (BRSV), and bovine parainfluenza virus type 3 (PI-3) (GRISSETT et 

al., 2015; HEADLEY et al., 2018)(Figure 1). Since both BVDV and BHV-1 are 

notifiable animal diseases in Germany and are thus controlled by the authorities, 

these two pathogens are not expected to play a role in the etiology of BRD in 

Germany (BMEL, 2021). PI-3 and BRSV belong to the Paramyxoviridae family and 

are single-stranded enveloped RNA viruses. The viruses are widespread in German 

cattle herds with a seroprevalence of 60-80 %. Transmission occurs via droplet 

infection by virus-contaminated nasal secretions and aerosols. These viruses are 

very contagious and spread very quickly in the cattle population (SELBITZ et al., 

2015). BRSV attaches to respiratory epithelium, replicates in ciliated epithelial cells 

and type two pneumocytes. The virus induces proinflammatory chemokines and 

cytokines that cause neutrophilic granylocytes, macrophages, and lymphocytes to 

migrate into the airways, leading to respiratory disease (VALARCHER & TAYLOR, 

2007). Damage to the ciliated epithelium due to PI-3 and BRSV infection limits the 

mucociliary clearance (LOPEZ et al., 1976; GERSHWIN et al., 2008; SELBITZ et al., 

2015). BRSV and PI-3 are therefore classified as primary infectious agents and, in 

combination with the predisposing factors of BRD, lead to stress and 

immunosuppression in cattle (GRISSETT et al., 2015; MEHINAGIC et al., 2019). 

Therefore, certain bacteria that colonise the nasopharynx as commensals, 

proliferate and cause secondary bacterial inflammation of the lungs (CONFER, 

2009). Because predisposing factors as well as viral and bacterial pathogens are 
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involved in the etiology of BRD, it is referred to as a multifactorial disease 

(GRISSETT et al., 2015)(Figure 1).  

Figure 1. Overview of the multifactorial etiology (predisposing factors, viral 

pathogens, bacterial pathogens) of BRD. 

 

1.3. Bacterial pathogens 

1.3.1. Pasteurellaceae 

The most important bacterial pathogens of BRD are members of the 

Pasteurellaceae family, namely Pasteurella multocida, Mannheimia haemolytica, 

Bibersteinia trehalosi, and Histophilus somni (GRISSETT et al., 2015; HOLSCHBACH 

et al., 2020)(Figure 2). These are non-sporulating bacteria; they are oxidase- and 
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catalase-positive (Histophilus spp. only oxidase-positive), immotile, predominantly 

encapsulated, facultative anaerobic rods (SELBITZ et al., 2015). They live as 

commensals in the mucous membranes and infect the lungs of calves and cattle 

after exposure to various stressors and viral pathogens (CONFER, 2009)(Figure 1). 

In Mannheimia haemolytica, exposure to those factors leads to a shift in 

serotypes. While serotype A:2 is predominantly isolated from the respiratory 

mucous membranes in healthy animals, the two serotypes A:1 and A:6 dominate 

in cases of disease (KLIMA et al., 2014). In the case of Pasteurella multocida 

isolates, serotype A:3 is the most important serotype (DABO et al., 2007). 

Figure 2. Taxonomy of the family Pasteurellaceae including the bacterial species 

investigated in the present study. Own illustration based on (SCHOCH et al., 2020). 

 

The pathogens of the Pasteurellaceae family mainly cause fibrinous 

pleuropneumonia and suppurative bronchopneumonia with acute, subacute, and 

chronic courses (ANDREWS & KENNEDY, 1997; PANCIERA & CONFER, 2010; 

PRAVEENA et al., 2014). Suppurative pleuropneumonia is often diagnosed in 

young calves on dairy farms, while fibrinous pleuropneumonia is often an acute 

pneumonia in stressed beef cattle (PANCIERA & CONFER, 2010). 

1.3.2. Mycoplasma bovis 

Mycoplasma bovis is another bacterial pathogen involved in the BRD complex 
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(GRISSETT et al., 2015). The bacterium belongs to the class of Mollicutes that 

implies a lack of a true cell wall and pleomorphic phenotype (SELBITZ et al., 2015). 

This bacterium colonises the nasopharynx as a commensal, is therefore also 

detected in healthy animals and may infect the lungs after various stressors 

(GAGEA et al., 2006; CONFER, 2009)(Figure 1). In Mycoplasma bovis infections of 

calves – in case of Mycoplasma bovis often caseonecrotic bronchopneumonia – 

arthritis is diagnosed in some cases at the same time as pneumonia (GAGEA et al., 

2006). This pathogen is also involved in ear infections (DUDEK et al., 2020). A 

special feature of this bacterium is the limited effectiveness of ß-lactam 

antibiotics, with resistance rates of over 98 % for penicillin and ceftiofur due to the 

lack of a cell wall (BTK, 2015; ANHOLT et al., 2017). 

1.3.3. Truperella pyogenes 

Bacteria of the species Truperella pyogenes belong to the Actinomycetaceae 

family and are facultative anaerobic gram-positive pleomorphic rods (SCHOTT et 

al., 2014; SELBITZ et al., 2015). They are ubiquitous pyogenic pathogens that 

colonise the surfaces of mucous membranes in the nasopharynx. As a pathogen 

within the BRD complex, they develop their virulent effect when pneumonia has 

already been caused by other pathogens (CONFER, 2009). Truperella pyogenes is 

therefore associated with chronic abscessing pneumonia (PANCIERA & CONFER, 

2010; RISSETI et al., 2017). 

 

2. Virulence factors of Pasteurella multocida 

Because the bacterial pathogens of the BRD complex live as commensals on the 

mucous membranes of the respiratory tract but also have the potential to cause 

pneumonia, it is crucial to understand the virulence factors that give the bacteria 

their pathogenicity (CONFER, 2009). Of particular importance are those of 

Pasteurella multocida, because this pathogen is the most frequently isolated from 

animals suffering from BRD (PORTIS et al., 2012; HOLSCHBACH et al., 2020). 
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2.1. Polysaccharide capsule 

2.1.1. Impact of capsule type on the clinical picture 

As an infectious agent, Pasteurella multocida causes different clinical pictures 

depending on the serotype and capsule type. According to the Carter-Heddlestone 

scheme, Pasteurella multocida isolates can be classified into 16 somatic serotypes 

(serotype 1 to 16) and five capsular serogroups A, B, D, E and F (TOWNSEND et al., 

2001; SELBITZ et al., 2015). The main components of the capsule are 

glycosaminoglycans and polysaccharides, which consist of repeating disaccharide 

units. The disaccharide units contain an amino sugar. The most important capsule 

material of type A is hyaluronan (hyaluron acid), of type D unmodified heparin (N-

acetylheparosan), and of type F unmodified chondroitin (DEANGELIS et al., 2002). 

A monosaccharide analysis of a serogroup B strain showed a composition of 

arabinose, mannose, and galactose in a ratio of 0.5 : 2.0 : 0.8, which indicates that 

the capsule is formed by a polymer containing these monosaccharides 

(MUNIANDY, 1992). In BRD, Pasteurella multocida isolates of capsule type A 

dominate, the most important serotype being serotype A:3. However, isolates 

with capsule types B, D, and F were also detected in cattle with BRD in various 

publications (EWERS et al., 2006; DABO et al., 2007; ARUMUGAM et al., 2011). 

Besides BRD, haemorrhagic septicaemia (HS) is another important disease in 

cattle, buffalo, and wild ruminants. HS is a highly fatal and acute septicaemia with 

high morbidity and mortality. Geographically, it occurs in some areas of Africa, 

Asia, the Middle East and southern Europe. However, this disease is not caused by 

type A strains, but by serotypes B:2 (Asian type) and E:2 (African type) (DE ALWIS, 

1992; OIE, 2018). 

2.1.2. Protection from the immune system 

Components of the capsule, such as hyaluronic acid in type A, also occur in the 

host in epithelial and neuronal tissue. This protects against a strong antibody 

reaction against capsular polysaccharides (PETRUZZI et al., 2017)(Figure 3). 

Furthermore, the presence of a capsule with its polysaccharides, such as 

hyaluronic acid in type A, impairs the phagocytosis capability of macrophages 

(PRUIMBOOM et al., 1996; BOYCE & ADLER, 2000). In experiments with 
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Pasteurella multocida strains of serogroup A, it was seen that depolymerisation of 

the capsule component hyaluronic acid by a hyaluronidase increases the 

phagocytosis of bacteria by macrophages (PRUIMBOOM et al., 1996). Further 

studies have shown that capsule-deficient mutants of Pasteurella multocida type 

B strains were more readily taken up by macrophages than encapsulated wild-type 

strains (BOYCE & ADLER, 2000). Encapsulation also appears to provide protection 

against the bactericidal activity of the complement system (Figure 3). It is 

hypothesised that the capsule does not prevent the formation of the membrane 

attack complex, but rather shields the outer membrane (HANSEN & HIRSH, 1989). 

The extent to which the capsule mediates increased adherence to host tissue does 

not appear to be clear. While one study demonstrated that components of the 

capsule, particularly hyaluronic acid, mediate increased adherence to alveolar 

macrophages, other studies have found no association between the presence of a 

capsule and increased binding to cells of the respiratory tract and mucus (JACQUES 

et al., 1993; PRUIMBOOM et al., 1996; BOYCE et al., 2000). 

2.2. Biofilm formation 

It is known that there is a correlation between the encapsulation of Pasteurella 

multocida A strains and the formation of a biofilm. Biofilm development is 

significantly stronger in Pasteurella multocida isolates that are less encapsulated 

with polysaccharides. At the same time, biofilm formation increases when 

capsular polysaccharides are degraded by the addition of hyaluronidase (PETRUZZI 

et al., 2017). When biofilm is exposed to the stress-related substances 

noradrenaline and epinephrine, it has been seen in in vitro-models that the biofilm 

disperses with bacteria within it. The virulence factor biofilm could thus play a 

crucial role in the spread of bacteria that colonise the nasopharynx as commensals 

and cause inflammation as pathogens in the lower respiratory tract (PILLAI et al., 

2018). In addition, biofilm offers protection against the action of antimicrobial 

substances. The biofilm matrix, which is mainly composed of glycogenic 

exopolysaccharides in Pasteurella multocida Serogroup A, physically shields the 

bacterial cells from antimicrobial substances (BOUKAHIL & CZUPRYNSKI, 2016; 

PETRUZZI et al., 2017). In an in vitro experiment with Mannheimia haemolytica 

isolates, the minimum inhibitory concentrations (MICs) in biofilms on bovine 
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bronchial epithelial cells were twice as high for the antibiotic agent tulathromycin, 

four times as high for the antibiotic agent gentamicin and eight times as high for 

the antibiotic agent chlortetracycline than in biofilms on polystyrene (BOUKAHIL 

& CZUPRYNSKI, 2016). 

2.3. Lipopolysaccharides   

Together with the capsular polysaccharides, the lipopolysaccharides (LPS) form 

the main portion of the bacterial cell surface (HARPER et al., 2012) (Figure 3). As 

outlined above, Pasteurella multocida strains can be grouped into 16 LPS serovars 

according to the Carter-Heddlestone scheme. The LPS consist of a highly 

conserved internal structure and a variable external structure (HARPER et al., 

2015). The effect of LPS on bovine leukocytes is summarised in Figure 3. 

Pasteurella multocida LPS induces cell proliferation of bovine leukocytes and the 

expression of cytokine genes TNF-, IL-1, IL-6, IL-8, IL-12 and INF- (PERIASAMY 

et al., 2018). IL-8 has a strong chemotactic effect on neutrophil granulocytes and 

mediates the transmigration of neutrophils through alveolar endothelial cells. 

Neutrophils are important mediators of tissue damage. Other cytokines such as 

TNF- activate the epithelial cells, increase the transition of further immune cells 

into the airways and thus also have a proinflammatory effect (CASWELL et al., 

1998; GALDIERO et al., 2000; SNYDER & CREDILLE, 2020). Pneumonia with 

congestion of pulmonary blood vessels, haemorrhages in alveolar spaces, 

thickened alveolar septa, and oedematous changes in the alveolar and bronchial 

lumen are the result (PRAVEENA et al., 2014; SNYDER & CREDILLE, 2020). At higher 

concentrations, Pasteurella multocida LPS induce apoptotic cell death of bovine 

leukocytes mediated by caspases and mitochondrial dysfunction (Figure 3). 

Apoptotic changes in leukocytes such as membrane blebs, condensed/fragmented 

nuclei, cellular fragmentation, and mitochondrial swelling may be observed 

(PERIASAMY et al., 2018). 

2.4. Adherence factors 

Pasteurella multocida has different adhesins for attachment and colonisation of 

the respiratory epithelium. These include filamentous hemagglutinin A, type IV 

fimbriae and outer membrane proteins (Omp), such as OmpA and OmpB. OmpA 
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is thought to mediate attachment to host cells by bridging with heparin and 

fibronectin (RUFFOLO et al., 1997; DABO et al., 2003; EWERS et al., 2006). 

2.5. Extracellular enzymes 

Important representative of Pasteurella multocida secreted enzyme are, on the 

one hand, neuraminidases, which have a nutritional function and participate in the 

colonisation of the respiratory epithelium (WHITE et al., 1995; MIZAN et al., 2000). 

On the other hand, the bacterium has the ability to produce proteases that can 

degrade IgG antibodies(NEGRETE-ABASCAL et al., 1999). 

2.6. Mechanisms for iron uptake 

Iron is an essential element for the survival and establishment of an infection. Iron 

plays an important role as a biocatalyst and electron carrier. Because freely 

available iron is limited in the host organism and is bound to carrier proteins such 

as haemoglobin or transferrin, Pasteurella multocida has numerous proteins for 

iron uptake. Proteins involved in iron uptake include hemoglobin receptors, 

hemoglobin-binding proteins A and B, and transferrin binding protein A (PAYNE, 

1993; BOSCH et al., 2002; ANDREWS et al., 2003; EWERS et al., 2006; 

JATUPONWIPHAT et al., 2019). 
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Figure 3. Simplified illustration of virulence originating from the cell surface of 

Pasteurella multocida.  

 

3. Antimicrobial resistance 

3.1. Control and therapy of BRD in context of increasing AMR 

Vaccines and antibiotics are still the main components for controlling and treating 

BRD (EDWARDS, 2010). Vaccination against bacterial and viral pathogens can 

improve animal health and thus also economic losses caused by BRD (SCHUNICHT 

et al., 2003; WILDMAN et al., 2008). In Germany, 13 vaccine preparations are 

currently approved by the Paul Ehrlich Institute (PAUL EHRLICH INSTITUTE, 2021). 

The Standing Committee on Veterinarian Vaccination (StIKo Vet) at the Friedrich-

Loeffler Institute suggests vaccination for both beef cattle farms and dairy farms. 

For dairy farms, it recommends vaccination, if the pathogen in herd is enzootic 

and endemic in region; for beef cattle farms, the StIKo Vet recommends 

vaccination regardless of age and regardless of the farm situation (STIKO VET, 

2018). Nevertheless, it must be mentioned that systematic reviews and meta-
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analyses have shown that there is an inconsistency in the effectiveness of vaccines 

for BRD prophylaxis. Vaccinations are thus only one part of the control and therapy 

(EDWARDS, 2010; LARSON & STEP, 2012; THEURER et al., 2015). For the treatment 

of bacterial pneumonia, antibiotics of eight antibiotic classes (ß-lactams, 

fluoroquinolones, phenicols, tetracyclines, sulphonamides, aminoglycosides, 

lincosamides and macrolides) are approved in Germany and available as 

corresponding preparations (UNIVERSITÄT LEIPZIG, 2020). When selecting an 

antibiotic for therapy of BRD, bactericidal agents should be preferred to 

bacteriostatic agents that only inhibit bacterial growth and replication. It could be 

shown that initial treatments with bactericidal antibiotics were associated with 

lower odds of further treatments than initial treatment with a bacteriostatic agent 

(COETZEE et al., 2020). Furthermore, it is important to make a well-founded 

diagnosis, which include a clinical examination and pathogen determination with 

a constant evaluation of the resistance situation (BTK, 2015). Studies from the late 

1980s and 1990s already saw that the susceptibility of certain antibiotics to 

bacteria of the BRD complex decreases and changes (WATTS et al., 1994; WELSH 

et al., 2004). Of particular concern is the increase in MDR isolates from bacteria of 

the BRD complex. In recent publications from North America, the proportions of 

MDR Pasteurella multocida isolates in feedlot cattles were over 90 % and those of 

MDR Mannheimia haemolytica isolates over 80 % in the study period 2015-

2016(LUBBERS & HANZLICEK, 2013; KLIMA et al., 2020). 

3.2. Definition of antimicrobial resistance  

The term antibiotic resistance is limited to the resistance of bacteria, while 

antimicrobial resistance (AMR) describes the resistanc of bacteria, viruses, 

parasites, and fungi to antimicrobials (ROBERT KOCH INSTITUTE, 2020). 

3.3. Definition of clinical resistance 

Clinical resistance is based on clinically derived breakpoints set by the Clinical and 

Laboratory Standards Institute (CLSI). Breakpoints are defined MIC values used to 

categorise a bacterial isolate as susceptible (S), intermediate (I), or resistant (R). 

The MIC values determined in the susceptibility test with the microbroth dilution 

method can therefore be interpreted on the basis of the defined breakpoints (CLSI, 
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2020) (Table 1). 

Table 1. Overview of MIC breakpoints and the interpretive criteria susceptible, 

intermediate, and resistant of the two antibiotic agents florfenicol and 

enrofloxacin for Mannheimia haemolytica isolates in case of respiratory disease in 

cattle (CLSI, 2020). 

antimicrobial 

agent 

antimicrobial 

class 

interpretive categories and MIC 

breakpoints µg/ml 

susceptible intermediate resistant 

florfenicol phenicols ≤  4 ≥  

enrofloxacin fluoroquinolones ≤   5 0.5-1 ≥  

 

An isolate categorised as susceptible with an MIC value at or below the susceptible 

breakpoint is expected to be inhibited by the antimicrobial agent when the dosage 

recommended to treat the infection is used. For an isolate categorised as resistant 

with an MIC value at or above the resistant breakpoint, it can be expected that it 

will not be inhibited by the concentration of the antibiotic agent achieved at the 

normal dosage. Treatment of infections with antibiotic agents tested as 

susceptible implies a higher probability of therapeutic success compared to 

antibiotic agent tested as resistant. However, it needs to be mentioned that the 

MICs determined in vitro are objective laboratory values. The antibacterial activity 

of the antibiotic agent could also be affected by the immune status of the diseased 

animal or altered pharmacokinetic in the inflamed tissue, so that the result of a 

susceptibility test does not always correspond to the clinical outcome (CLSI, 2018, 

2020; SNYDER & CREDILLE, 2020). 

3.4. Spread of antibiotic resistance through horizontal gene transfer 

In addition to vertical gene transfer, a transfer of genetic material to the offspring, 

horizontal gene transfer (HGT) is associated with the spread and acquisition of 

antibiotic resistance between bacteria. In HGT, genetic material is not exchanged 
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via the clonal lineage but between strains and also across species and genera 

(LERMINIAUX & CAMERON, 2019). Transformation, in which extracellular DNA is 

taken up by bacteria and incorporated into the genome, is one way of HGT. Some 

members of the Pasteurellaceae family are known to be competent for 

transformation (WANG et al., 2002; LERMINIAUX & CAMERON, 2019). The second 

possibility of HGT is transduction, in which bacteriophages – viruses that infects 

bacteria – transfer antibiotic resistance genes to recipient bacterial strains 

(BLAHOVÁ et al., 2000; LERMINIAUX & CAMERON, 2019). Conjugation is the third 

possibility of HGT. In this case, resistance genes are exchanged via mobile genetic 

elements such as conjugative plasmids or integrated conjugative elements (ICEs), 

which also have the relevant genes for their own transfer. In contrast to 

transformation and transduction, cell-to-cell contact is necessary. Plasmids and 

ICEs establish the connection by using a pilus to transfer themselves to the 

recipient cell (FROST et al., 2005; LERMINIAUX & CAMERON, 2019). In the spread 

of resistance genes between bacteria of the BRD complex, conjugation by plasmids 

and ICEs seems to play a crucial role (KEHRENBERG et al., 2003; KLIMA et al., 2020; 

STANFORD et al., 2020). It is important to note that in presence of antibiotic 

agents, all three pathways of HGT are induced. As a result of this, selection 

pressure for the transfer of antibiotic resistance between bacterial species is 

increased (PRUDHOMME et al., 2006; MODI et al., 2013; ZHANG et al., 2013). 

3.5. Resistance mechanisms and resistance genes in Pasteurellaceae 

3.5.1. Resistance against antibiotics of the ß-lactam group 

The target site of ß-lactam antibiotics is the cell wall and the mechanism of action 

is that they bind to penicillin-binding proteins, which are key enzymes in the 

biosynthesis of the cell wall component peptidoglycan, thus inhibiting cell wall 

synthesis (MIYACHIRO et al., 2019). The resistance genes blaoxa-2, blaROB-1 and 

blaROB-2 are responsible for resistance of ß-lactam antibiotics. While blaoxa2 

encodes a narrow-spectrum ß-lactamase, the product of blaROB-2 is an extended 

spectrum ß-lactamase, which hydrolyse in addition to penicillins also third and 

fourth generation cephalosporins (MICHAEL et al., 2012b, 2012a; KADLEC et al., 

2019)(Table 2). 
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3.5.2. Resistance against antibiotics of the phenicol group 

The resistance gene floR encodes an efflux pump that is specific for 

cloramphenicol, florfenicol, and thiamphenicol. The efflux pump actively 

transports these substances out of the bacterial cell. Active efflux is driven by the 

proton motive force (BRAIBANT et al., 2005; KEHRENBERG & SCHWARZ, 2005; 

KEHRENBERG et al., 2008)(Table 2). 

3.5.3. Resistance against antibiotics of the sulphonamide group 

Unlike mammalian cells, which have uptake systems for folic acid, most 

prokaryotes are dependent on folic acid synthesis. The point of attack of 

sulphonamides is the inhibition of synthesis of folic acid compounds by competing 

as a substrate analogue with p-aminobenzoic acid for dihydropteroate synthase. 

The sul2 resistance gene encodes a dihydropteroade synthase which binds to 

p-aminobenzoic acid despite its structural similarity to the sulfonamides (BROWN, 

1962; SKÖLD, 2000; MICHAEL et al., 2012a; EIDAM et al., 2015) (Table 2). 

3.5.4. Resistance against antibiotics of the fluorochinolon group 

Little is known about resistance of fluoroquinolones in Pasteurellaceae (MICHAEL 

et al., 2012a). The main mechanisms of action of fluoroquinolones are the 

inhibition of DNA gyrase and topoisomerase IV. Both enzymes are involved in 

chromosomal supercoiling, which is important for DNA synthesis, transcription, 

and cell division. One possibility for the development of fluoroquinolone 

resistance are mutations in the quinolone resistance determining regions 

(QRDRS). Mutations in the gyrA and parC genes for topoisomerase IV, lead to the 

substitution of amino acids. As a result, target proteins of antibiotic drugs are 

altered and they can no longer bind (CORREIA et al., 2017). In studies with bovine 

Mannheimia haemolytica and Pasteurella multocida strains, it was found that 

mutations in the QRDRS causes resistant phenotypes with increased MICs 

(KATSUDA et al., 2009; KONG et al., 2014). The expression of efflux pump genes 

was also detected in Pasteurella multocida (KONG et al., 2014; CORREIA et al., 

2017) . 

 



II. Literature overwiew     17 

3.5.5. Resistance against antibiotics of the macrolide group 

Macrolides bind to the exit tunnel of the newly formed peptide on the ribosomes 

and as a result of this the protein biosynthesis was blocked (VÁZQUEZ-LASLOP & 

MANKIN, 2018). One resistance mechanism is that nucleotide A2058 on the 

23S rRNA is methylated, preventing macrolide binding to ribosomes. Antibiotic 

resistance gene erm(42) encodes such a rRNA monomethyltransferase, which 

attaches a methyl group to nucleotide A2058 of the 23S rRNA mediating resistance 

to macrolides and lincosamides (DESMOLAIZE et al., 2011a). Resistance gene 

mph(E) encodes a phosphotransferase that inactivates macrolides and resistance 

gene msr(E) encode a macrolide efflux pump (DESMOLAIZE et al., 2011b) (Table 2). 

3.5.6. Resistance against antibiotics of the tetracycline group 

In bovine Pasteurella multocida and Mannheimia haemolytica strains, the tetB, 

tetG, tetL, and tetH resistance genes are known (KEHRENBERG et al., 2001; 

KEHRENBERG et al., 2005). They encode an efflux pump that transports 

tetracycline out of cell (HANSEN et al., 1993; KEHRENBERG et al., 2005). Moreover, 

in addition to tetH, the supressor gene tetR has also been shown to regulate efflux 

activity in response to tetracycline concentration (HANSEN et al., 1993) (Table 2). 

3.5.7. Resistance against antibiotics of the aminoglycoside group 

Aminoglycosides bind to bacterial ribosomes and interfere with protein synthesis 

(STERN et al., 2018). Aminoglycoside-resistant strains possess genes of enzymes, 

which modify the antimicrobial drug so that it is inactive. Genes strA, strB and 

apH1 encode aminoglycoside phosphotransferases that phosphorylate the 

antibiotics. Gene products of aadB and aadA25 modify aminoglycosides through 

adenyltransferases (DAVIES & WRIGHT, 1997; WHITE & RAWLINSON, 2001; 

MICHAEL et al., 2012a) (Table 2). 
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Table 2. Overview of resistance mechanisms and resistance genes in Pasteurellaceae 

              
      

           
      

                        
          

R          

ß         blaoxa-2, 
blaROB-1, 
blaROB-2 

ß            yd   y           ß 
        

(MICHAEL et al., 
2012a, 2012b; 
KADLEC et al., 2019; 
MIYACHIRO et al., 
2019) 

          floR      x          v               
                      

(BRAIBANT et al., 
2005; KEHRENBERG & 
SCHWARZ, 2005; 
KEHRENBERG et al., 
2008) 

          d   sul2 d  yd           
 y       

 y           
d  yd           

(BROWN, 1962; 
SKÖLD, 2000; 
MICHAEL et al., 
2012b; EIDAM et al., 
2015) 

       d   erm(42)      
        y       
       

    y           3  
     

(DESMOLAIZE et al., 
2011a; DESMOLAIZE 
et al., 2011b; 
VÁZQUEZ-LASLOP & 
MANKIN, 2018) 

mph(E)                            y          
       d   

msr(E)      x          v               
       d          
     

      y       tet(H), 
tet(R), 
tet(B), 
tet(G), 
tet(L) 

     x          v               
      y              
     

(HANSEN et al., 1993; 
KEHRENBERG et al., 
2001; KEHRENBERG et 
al., 2005) 

       y    d   strA, strB, 
apH1 

                           y          
       y    d   

(DAVIES & WRIGHT, 
1997; WHITE & 
RAWLINSON, 2001; 
MICHAEL et al., 
2012a; STERN et al., 
2018) 

aadB, 
aadA25 

 d  y y              d  y          
       y    d   

 

3.6. Antimicrobial resistance as a global health problem 

The decreasing susceptibility of antibiotics to certain pathogens and the 

associated treatment failure is not only a problem in the treatment of BRD 

(LUBBERS & HANZLICEK, 2013; ANHOLT et al., 2017; KLIMA et al., 2020). In all parts 

of the world, the prevalence of resistant microorganisms is increasing in both 

human and veterinary medicine. At the same time, there are currently few 

replacement products under development. Increasing AMR is attributed to the 

greater use, overuse, and misuse of antibiotics in recent decades, which has 

exerted selection pressure on susceptible bacteria with possible survival of 

resistant bacteria (BELL et al., 2014; WHO, 2015). AMR can spread between 
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bacterial strains through HGT. In addition, drug-resistant bacteria can circulate 

between humans and animals via direct human-animal contact, contaminated 

food or wastewater that pollutes the environment (BERENDONK et al., 2015; 

WHO, 2015). Also due to the fact that in human and veterinary medicine the same 

infectious agents are partly treated with the same antibiotic substances, the World 

Health Organisation (WHO) is calling for a global cross-sector strategy to prevent 

this impending worldwide health crisis. In cooperation with other organisations 

                        W    d    d     “G  b                  antimicrobial 

resistance”       5            y                                   d            

effectively treated and cured with safe and effective drugs in the future. All 

member states committed to implementing this global plan with national 

measures (WHO, 2015, 2019). 

3.7. Main measures of the German antibiotic resistance strategy  

The German authorities implemented the requirements of the WHO's "global 

action plan on antimicrobial resistance" with the German antibiotic resistance 

strategy (DARTS), which has been in place since 2008 and has since been adapted 

and expanded. A central component was the establishment and continuous 

improvement of surveillance programmes (Figure 4). In human medicine, the 

            y     “    b    k -Resistenz-Surveillance (ARS)”             

collection and evaluation of resistance data from the outpatient and inpatient 

areas was established. In veterinary medicine, two surveillance systems have been 

established that collect pathogens for resistance testing in a representative 

manner according to coordinated sampling plans (BMG, 2015). The first is zoonosis 

monitoring, in which the antibiotic resistance of zoonotic pathogens and animal 

commensals, for example Salmonella spp., Campylobacter spp. or Shiga toxin-

producing E. coli, are determined by sampling from farm, slaughterhouse and 

retail (BVL, 2020a). In the second monitoring programme "German Resistance 

Monitoring" (GERM-Vet), the resistance situation of clinically important animal 

pathogenic bacteria is monitored. This includes samples from both food-producing 

and non-food-producing animals (BVL, 2020b). Other measures taken by DARTS 

were mainly changes in legislation (Figure 4). In the course of the 16th amendment 

to the German Medicines Act, all farmers of fattening farms with more than 
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20 beef cattle are obliged to report any use of antibiotics to the authorities since 

July 2014. From the number of animals treated, the treatment days and the 

average of the total number of animals kept, a farm therapy frequency is 

calculated for each half year. This frequency of treatment on the farm is compared 

with nationwide benchmarks. If these benchmarks are exceeded by the respective 

farm, the farmer is obliged to implement measures to reduce the use of antibiotics 

(BVL, 2021). Another measure is the documentation of antibiotic consumption 

levels. Pharmaceutical companies and wholesalers have had to report the 

quantities of antibiotics dispensed to veterinarians to the Federal Institute for 

Drugs and Medical Devices since 2011 (BMJ, 2021). In addition, since 2018, the 

    d            “    ä z                  k  v    d    ” requires 

veterinarians to determine pathogens with antibiotic resistance testing when 

fluoroquinolones and third and fourth generation cephalosporins are used. 

Furthermore, resistance testing must be carried out if the antibiotic is changed 

during treatment or if the antibiotic is used more frequently than once in a certain 

production and age period (BMJ, 2018). 

 

 

Figure 4. Summary of important measures taken by DARTS to reduce antibiotic 

use and AMR 
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IV. ADDITIONAL ANALYSES 

1.  Material and Methods 

1.1. Objective of the examination 

A subset of Pasteurella multocida isolates was investigated molecularly with 

regard to their capsule types (A, B, D, E, and F) and the potential presence of the 

hemorrhagic septicemia (HS)-specific sequence by PCR. 

1.2. Bacterial isolates  

The bacterial isolates were collected as part of the state veterinary laboratory 

diagnostic service at the Bavarian Health and Food Safety Authority. The samples, 

here nasal swabs, bronchoalveolar lavage fluids and lung tissue samples, were 

obtained from calves, cattle or dairy cows with clinical signs of BRD from Bavaria 

between July 2015 and June 2020. The incubation conditions of the samples as 

well as the identification of the bacterial species have already been described in 

(MELCHNER et al., 2021). 

1.3. Extraction of nucleic acid 

The extraction of nucleic acid was carried out by thermolysis of a bacterial colony 

suspended in 100 µl PCR grade water. For this the suspension was heated for 

10 minutes at 95 °C and subsequently centrifuged at 15,000 g for 10 minutes. The 

supernatant was used as template in the PCR. 

1.4. PCR analysis and gel electrophoresis 

Capsule type determination of samples were carried out according to the 

published OIE protocol (OIE Terrestrial Manual 2018, Chapter 3.4.10) (OIE, 2018). 

The corresponding primer sequences are summarised in (Table 3). PCR master mix 

contained the primer mix (Eurofins, Ebersberg, Germany), the Multiplex PCR Kit 

(Qiagen, Hilden, Germany) and distilled water. Three microliters of template DNA 

were added to 22 µl master mix, so the total volume was 25 µl in each reaction 

vessel. The samples were subjected to 35 cycles of amplification in a thermal cycler 

(Biometra TOne, Analytik Jena, Jena, Germany). The thermal profile of the PCR 
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consisted of an initial denaturation step at 95 °C for 15 minutes. This was followed 

by 35 cycles consisting of denaturation (95 °C for 30 seconds), annealing (55 °C for 

30 seconds) and elongation (72 °C for 90 seconds). The final elongation lasted 

5 minutes at 72 °C. A 2-% agarose e-gel with SYBR Safe DNA Gel stain was used for 

electrophoresis and jpeg files were generated by a UV gel documentation system 

(Invitrogen, ThermoFisher SCIENTIFIC, Waltham, USA). 

Subsequent detection of potential HS-specific sequence of type B strains was also 

carried out according to the published OIE protocol (OIE, 2018). Primer sequences 

for HS-causing serotype B:2 were used as published (Table 3). PCR was carried out 

as described above. 

 

Table 3. Sequences of primers used in the Pasteurella multocida multiplex capsular 

and HS PCR 

sero-

group 

gene name sequence (5’ to 3’) amplimer 

size (bp) 

reference 

All KMT1 KMT1T7 ATCCGCTATTTACCCAGTGG 460 (TOWNSEND et 
al., 1998; OIE, 
2018) KMT1SP6 GCTGTAAACGAACTCGCCAC 

A hyaD

-hyaC 

CAPA-FWD TGCCAAAATCGCAGTCAG 1044 (TOWNSEND et 
al., 2001; OIE, 
2018) 

 

CAPA-REV TTGCCATCATTGTCAGTG 

B bcbD CAPB-FWD CATTTATCCAAGCTCCACC 760 

CAPB-REV GCCCGAGAGTTTCAATCC 

D dcbF CAPD-FWD TTACAAAAGAAAGACTAGGAGCCC 657 

CAPD-REV CATCTACCCACTCAACCATATCAG 

E ecbJ CAPE-FWD TCCGCAGAAAATTATTGACTC 511 

CAPE-REV GCTTGCTGCTTGATTTTGTC 

F fcbD CAPF-FWD AATCGGAGAACGCAGAAATCAG 851 

CAPF-REV TTCCGCCGTCAATTACTCTG 

B:2 HS KTT72 AGGCTCGTTTGGATTATGAAG 590 (TOWNSEND et 
al., 1998; OIE, 
2018) KTSP61 ATCCGCTAACACACTCTC 

 

2. Results 

In total, capsule-type PCR was performed on a subset of 227 Pasteurella multocida 

isolates from calves, cattle, and dairy cows from Bavaria, which were sent to the 

State Veterinary Diagnostic Laboratory of the Bavarian Health and Food Safety 
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Authority between July 2015 and June 2020 for pathogen identification and testing 

for antimicrobial resistance. Of the 227 isolates, 215 (94.7 %) were typed as 

capsule type A because the multiplex PCR detected the product of KMT1 (460bp) 

specific for Pasteurella multocida and the product of hyaD-hyaC (1,044 bp) specific 

for capsule type A (Table 4 and Figure 5). In two isolates (0.9 %), the gene product 

of hyaD-hyaC (1,044 bp) was detected, but not the corresponding KMT1 gene, 

which is why these were categorised as atypical isolates with capsule type A (Table 

4). Five isolates (2.2 %) were identified as capsule type B, as both the gene product 

of KMT1 (460 bp) and the bcbD product (760 bp) specific for capsule type B were 

detected (Table 4 and Figure 5). In other five isolates (2.2 %), none of the five 

specific capsule genes for types A, B, D, E and F, but only the KMT1 gene specific 

for all capsule types, were detected (Table 4). 

 

Table 4. Results of the capsular multiplex PCR 

capsule 

Type 
type A 

atypical 

isolate of 

type A 

type B not typeable total 

number of 

isolates 
215 2 5 5 227 

% 94.7 0.9 2.2 2.2 100 

 

 

In a subsequent PCR, it was tested whether the five Pasteurella multocida isolates 

characterised as capsular type B were the HS representing serotype B:2. No gene 

sequence with the corresponding gene product (590 bp) was detected for the HS 

representing serotype B:2. 
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Figure 5. Agarose gel electrophoresis of products from the capsular multiplex PCR. 

Lane M: 100-bp DNA ladder; Lanes 1, 2, 3, 4, 5, 7, 8 and 9: Pasteurella multocida-

isolates of capsule type A with the KMT1 gene product (460 bp) specific for 

Pasteurella multocida and the hyaD-hyaC gene product (1,044 bp) specific for 

capsule type A; Lane 6: Pasteurella multocida-isolate of capsule type B with the 

KMT1 gene product (460 bp) specific for Pasteurella multocida and the bcbD gene 

product (760 bp) specific for capsule typ B; Lane 10: negative control. 
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V.  DISCUSSION 

1. Current trends in AMR of pathogens of the BRD complex  

In the present study, data on antimicrobial susceptibility of bacterial pathogens of 

the BRD complex from bovine isolates from the period July 2015 to June 2020 from 

Bavaria were evaluated retrospectively, taking into account epidemiological 

parameters. The aim of this study was to complement existing resistance 

monitoring programmes, such as the German Resistance Monitoring GERM-Vet, 

and to record current trends and developments in AMR (MELCHNER et al., 2021). 

In order to discuss current trends in the development of AMR in bacterial 

pathogens of BRD complex in Germany, our study results from Bavaria were 

compared with the national resistance monitoring GERM-Vet (BVL, 2020b). It 

needs to be mentioned that the Pasteurella multocida- and Mannheimia 

haemolytica-isolates examined in the GERM-Vet study were collected and 

evaluated by state and private laboratories according to a defined sampling plan 

(BVL, 2020b). In our analysis, however, the isolates were not collected according 

to a defined sampling plan. All isolates obtained from samples sent in by 

veterinarians were included in the analysis (MELCHNER et al., 2021). However, to 

prevent overrepresentation and bias due to clonal isolates, only one isolate per 

species and per farm and per quarter year was included in the analysis following 

previous publications (WATTS et al., 1994; PORTIS et al., 2012). This also explains 

why the number of bacterial isolates in our analysis is lower than in the GERM-Vet 

study. For example, for the study period 2018/2019, 73 Mannheimia haemolytica- 

and 91 Pasteurella multocida-isolates were considered in our analysis, while in 

GERM-Vet there were 82 Mannheimia haemolytica- and 149 Pasteurella 

multocida-isolates (BVL, 2020b; MELCHNER et al., 2021). There were differences, 

but also similarities between our Bavarian study and GERM-Vet in the 

susceptibilities of antibiotic agents to the pathogens. One major difference is that 

in the national resistance monitoring in study year 2018/2019, 42.7 % of 

Mannheimia haemolytica-isolates were not susceptible (resistant and 

intermediate) to penicillin and there was even an increase compared to the same 

period of the previous year (BVL, 2020b). In our study, only 5.48 % were not 
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susceptible in 2018/2019 (MELCHNER et al., 2021). Furthermore, in the GERM-Vet 

study, 15.9 % of Mannheimia haemolytica-isolates were not susceptible to 

enrofloxacin in the study year 2018/2019, while in our study all 73 Mannheimia 

haemolytica-isolates were susceptible to enrofloxacin (BVL, 2020b; MELCHNER et 

al., 2021). Since our study only contain isolates from Bavaria and GERM-Vet 

contains isolates from all over Germany, this could possibly be explained by 

geographical clustering as already described in previous publications (PORTIS et 

al., 2012; LUBBERS & HANZLICEK, 2013; KLIMA et al., 2020). Nevertheless, the 

main findings of the GERM-Vet program can also be found in our Bavaria study. 

The national resistance monitoring reports an increase in florfenicol-resistant 

Mannheimia haemolytica-isolates since 2017 (BVL, 2020b). A trend towards higher 

numbers of not susceptible Pasteurella multocida-isolates to florfenicol is also 

beginning to emerge as seen in our study, as nine of the total 14 not susceptible 

isolates were detected from the last study period 2019/2020 (MELCHNER et al., 

2021). The same is true for the macrolide antibiotic tulathromycin. In national 

resistance monitoring, 3 % of Pasteurella multocida-isolates were resistant to 

tulathromycin in 2016/2017, 11 % in 2017/2018 and 14 % in 2018/2019 (BVL, 

2020b). In our study, a significant increase in not susceptible Pasteurella 

multocida-isolates to tulathromycin from 5.56 % in 2015/2016 to 26.44 % in 

2019/2020 was observed (MELCHNER et al., 2021). It is therefore appropriate to 

continue monitoring for susceptibility of florfenicol and tulathromycin. In the 

GERM-Vet program, a 23.5 % proportion of not susceptible Pasteurella multocida-

isolates to tetracycline was found in 2018/2019 (BVL, 2020b). In our analysis, this 

was even exceeded with a proportion of 48.35 % in 2018/2019, which is why 

tetracycline can no longer be recommended for the treatment of BRD (MELCHNER 

et al., 2021). In both our study and GERM-Vet, the MIC values of the isolates were 

classified as resistant, intermediate and susceptible according to species-specific 

veterinary breakpoints published by the Clinical and Laboratory Standards 

Institute (CLSI, 2020)(Table 1). Unfortunately, species-specific breakpoints for 

veterinary medicine do not exist for all antibiotic agents approved for the 

treatment of BRD. For example, amoxicillin-clavulanic acid or sulphonamides 

could not be included in the analysis, although preparations for both agents are 

approved for the treatment of BRD in Germany (CLSI, 2020; UNIVERSITÄT LEIPZIG, 
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2020). Another major problem is that for the bacterial pathogens Truperella 

pyogenes and Bibersteinia trehalosi there are no breakpoints at all to classify these 

isolates into resistant, intermediate and susceptible on the basis of MIC values 

(CLSI, 2020). Consequently, for almost 20 % of the isolates in our analysis 

[Truperella pyogenes (15.78 %), Bibersteinia trehalosi (2.26 %)] only the 

distribution of the MIC values could be given (MELCHNER et al., 2021). The use of 

non-species-specific breakpoints, for example breakpoints from human medicine, 

is not recommended. On the one hand, they do not reflect potential differences 

in pharmacokinetics, on the other hand, they make it difficult to compare the 

results with those from other studies. In order to increase the quality of resistance 

studies, it would be advantageous if there were further breakpoints specific to 

veterinary medicine (SWEENEY et al., 2018). 

 

2. Importance of epidemiological investigations  

In previous studies investigating AMR in pathogens of the BRD complex, further 

epidemiological investigations have not played a relevant role. They mostly 

examined only the proportions of resistant/not susceptible isolates to certain 

antibiotic agents, and later also the proportions of MDR isolates that were 

resistant/not susceptible to three or more antibiotic classes (WATTS et al., 1994; 

WELSH et al., 2004; PORTIS et al., 2012; LUBBERS & HANZLICEK, 2013; 

HOLSCHBACH et al., 2020). In recent studies investigating AMR in feedlots in USA 

and Canada, associations between MDR profiles and certain epidemiological 

parameters were determined, which gave us the idea to conduct such 

investigations as well (ANHOLT et al., 2017; KLIMA et al., 2020; MELCHNER et al., 

2021). For example, no associations were found between the number of antibiotic 

treatments each cattle received and MDR isolates in North American feedlots 

(KLIMA et al., 2020). Also, in our study from Bavaria, no association was observed 

between the antibiotic treatment frequency on farm and the occurrence of MDR 

isolates (MELCHNER et al., 2021). In contrast, there are other studies that show 

associations between the use of antibiotic drugs and the increased odds of 

isolating MDR isolates (NOYES et al., 2015; WOOLUMS et al., 2018). For this 
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reason, the frequency of drug use and the impact of the resistance pattern should 

therefore be included in future resistance studies. In addition, the epidemiological 

investigations in the North American studies revealed that there are associations 

between the MDR profile and the corresponding feedlots from which the tested 

isolates originated (ANHOLT et al., 2017; KLIMA et al., 2020). This is also reflected 

in our Bavarian study, because not animal-specific characteristics such as sex, age, 

disease outcome (deceased vs. diseased) or the detection of further pathogens 

(PI-3, BRSV, Mycoplasma spp.), but farm-specific characteristics were associated 

with lower/higher odds for the occurrence of MDR isolates in the multivariable 

regression analysis. The occurrence of MDR isolates was more likely on farms with 

more than 300 animals than on farms with 100 or less animals, and more likely on 

fattening farms than on mixed farms or dairy farms in our study (MELCHNER et al., 

2021). As already recommended by other authors, it is therefore important to 

consider epidemiological information, here farm size and farm type, in resistance 

surveillance in order to develop strategies to reduce the spread of AMR (ANHOLT 

et al., 2017; MELCHNER et al., 2021). 

 

3. Molecular detection of resistance genes  

Regarding the spread of antibiotic resistance genes (ARGs) in bacterial pathogens 

of the BRD complex, one pathway of HGT, namely conjugation by plasmids and 

integrated conjugative elements (ICEs), seems to play an important role 

(KEHRENBERG et al., 2008; KLIMA et al., 2020). It is known that ICEs consist, on the 

one hand of core genes that encode proteins for their own excision, conjugative 

transfer, and integration into the genome of the recipient cell. On the other hand, 

they also contain entire cassettes with more than ten different resistance genes, 

which can be exchanged between strains, species and furthermore between 

different bacterial genera within a single HGT event (MICHAEL et al., 2012a, 

2012b; EIDAM et al., 2015). As published recently, large numbers of ARGs and core 

genes were detected in MDR Pasteurella multocida- and Mannheimia 

haemolytica-isolates from bovines with BRD. In these studies, ICEs are therefore 

considered to play a major role in the spread of MDR (KLIMA et al., 2020; 
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STANFORD et al., 2020). However, it was also found that the presence of ARGs was 

not completely correlated with the AMR phenotype. This might imply that certain 

ARGs were inactive, or that the breakpoints used for susceptibility testing need to 

be reassessed (KLIMA et al., 2020). In conclusion, both approaches, the phenotypic 

susceptibility testing, as well as molecular ARG screening should be carried out in 

parallel. This would help to better understand the role of ICEs in the spread of AMR 

and potentially identify certain genotype-phenotype relationships (CLSI, 2011; 

SWEENEY et al., 2018). 

 

4. Capsule types of Pasteurella multocida-isolates  

Capsular multiplex PCR of a subset of 227 Pasteurella multocida-isolates collected 

from Bavaria between July 2015 and June 2020 revealed that capsular type A was 

the predominant type with 215 isolates (94.7 %) in calves, cattle and dairy cows 

with putative clinical signs of BRD (Table 4). This result is consistent with a study 

from Germany in which 92.3 % of all Pasteurella multocida-isolates from healthy 

and diseased bovines were classified as capsular type A (EWERS et al., 2006). 

Another study from Malaysia also detected capsule type A most frequently in 

cattle with 53 % (ARUMUGAM et al., 2011). Two isolates (0.9 %) were classified as 

atypical isolates of capsule type A, because the signal specific for capsule type A 

with 1,044 bp was visible in the electrophoresis gel, but not the signal specific for 

all Pasteurella multocida-isolates with 460 bp. Instead, a second larger band, only 

a few bp larger than the 1,044-bp signal specific to capsule type A, was visible in 

the electrophoresis gel. The previous pathogen identification by MALDI-TOF 

showed that these isolates were Pasteurella multocida-strains. It can therefore be 

assumed that these two isolates can be also assigned to capsule type A. With five 

isolates (2.2 %), capsule type B was the second most frequently detected (Table 

4). In the Malaysian study, capsule type B was also the second most frequently 

found in cattle, although with a proportion of 32 %, which is clearly higher than in 

our study (ARUMUGAM et al., 2011). Not consistent with these results is the 

German study, which did not detect a single type B isolate from bovines in the 

capsular multiplex PCR (EWERS et al., 2006). Pasteurella multocida-isolates of 
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capsular type D are mainly isolated from pigs, so it is not surprising that no isolate 

with capsular type D was detected in our examinations. Type D strains with the 

dermonecrotic toxin encoding tox A gene are mainly associated with progressive 

rhinitis atrophicans in porcines (DAVIES et al., 2003b; EWERS et al., 2006). Capsule 

types E and F were not detected in our study and are thus in line with other studies 

in which they were not detected or only in proportions below 2.5 % from bovine 

isolates (EWERS et al., 2006; ARUMUGAM et al., 2011). Five isolates (2.2 %) were 

classified as untypeable, because no specific signals for a capsule type were visible 

in the electrophoresis gel (Table 4). Such untypeable strains were also seen in the 

aforementioned comparative studies with proportions of 11.0 % and 2.2 % 

(EWERS et al., 2006; ARUMUGAM et al., 2011). One may expect that the non-

typeable isolates are not encapsulated, because microscopic examinations of 

those isolates originating from avian hosts using capsule specific stains, India ink, 

showed that they were not encapsulated (DAVIES et al., 2003a). In summary, 

Pasteurella multocida types A and B dominate in bovines with BRD. It is interesting 

in this context that isolates with detected gene tbpa, which encodes transferrin 

binding protein A involved in iron acquisition, are significantly associated with 

disease status in bovines. The tbpA gene, in turn, is mainly found in Pasteurella 

multocida-isolates of capsule type A and B (EWERS et al., 2006). This underlines 

that already with the knowledge of the capsule type, statements can be made 

about the virulence of Pasteurella multocida-isolates. For the determination of 

capsular types, the multiplex PCR assays performed in our study have major 

advantages over conventional serological methods, such as the classification of 

Pasteurella multocida-isolates into the five serogroups A, B, D, E and F based on 

capsular antigens using a passive haemagglutination test according to Carter 

(CARTER, 1952, 1972; RIMLER & RHOADES, 1987). Typing by PCR is more 

discriminative because more isolates can be typed by PCR compared to 

conventional serotyping methods(ARUMUGAM et al., 2011). Besides, colonies 

from primary isolation plates can be used so that they do not have to be 

transferred to pure culture. The fact that there are only a few laboratories 

worldwide that produce and maintain the antisera required for conventional 

serotyping also speaks clearly in favour of the PCR method (TOWNSEND et al., 

2001). 
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5. Haemorrhagic septicaemia in bovines caused by Pasteurella 

multocida-serotypes B:2 and E:2 

In addition to BRD complex, haemorrhagic septicaemia (HS) caused by serotypes 

B:2 and E:2 is another important disease in bovines (DE ALWIS, 1992; OIE, 2018). 

The last official case of HS in Germany was reported in 1986 (DE ALWIS, 1999). In 

2010, cases of fallow deer, pigs and cattle with HS were detected at the border of 

Saxony-Anhalt and Brandenburg for the first time since 1986 (SOIKE et al., 2012). 

In Bavaria, HS was also detected in dead wild boar and wild ruminants (fallow deer, 

red deer) and shortly afterwards in a neighbouring cattle herd in 2017. Four young 

cattle were ill showing respiratory clinical signs. A post-mortem examination of 

one of the two deceased cattle revealed purulent inflammation in the throat area 

with bleeding and swelling of surrounding cervical and head lymph nodes and a 

pulpy swelling of the spleen. Detection of Pasteurella multocida type B with HS 

specific gene sequence was obtained after they were cultured after isolation from 

the phlegmonous area (MÜLLER & LOCHNER, 2017). Among the five Pasteurella 

multocida-isolates classified as capsular type B in our analysis (one isolate from 

2016, three from 2018 and one from 2020) the 590-bp gene product specific for 

HS causing serotype B:2 was not detected in any of them. The results confirm that 

HS occurs only sporadically in domestic and wild animals in Bavaria and is not an 

endemic disease as in regions of Africa, Southeast Asia, and the Near and Middle 

East (MÜLLER & LOCHNER, 2017). 
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VI. ZUSAMMENFASSUNG 

Zwischen Juli 2015 und Juni 2020 wurden insgesamt 662 Tiere aus 519 Betrieben 

mit vermeintlichem bovinem respiratorischem Syndrom (BRD), kurz 

Rindergrippekomplex, in Bayern, Deutschland, untersucht. Die 754 gewonnenen 

Bakterienisolate wurden auf antimikrobielle Resistenz mittels der 

Mikrodilutionsmethode analysiert. Pasteurella multocida war das am häufigsten 

isolierte pathogene Bakterium mit 345 (45.76 %) Isolaten. Weiterhin wurden 

273 Mannheimia-haemolytica- (36.20 %), 119 Truperella-pyogenes- (15.78 %) 

sowie 17 Bibersteinia-trehalosi-Isolate (2.26 %) gewonnen. Der Anteil an 

Pasteurella-multocida-Isolaten, der in der Resistenztestung über den fünf- 

Jahreszeitraum als nicht-sensibel (resistent und intermediär) ermittelt wurde, 

ergab für Ceftiofur 0,87 %, für Penicillin G 3,84 %, für Florfenicol 4,06 %, für 

Enrofloxacin 0,29 %, für Tulathromycin 15,65 %, für Tetrazyklin 39,42 % und für 

Spectinomycin 78,84 %. Für Mannheimia haemolytica war die Rate an nicht-

sensiblen Isolaten für Ceftiofur 0 %, für Penicillin G 4,76 %, für Florfenicol 1,10 %, 

für Enrofloxacin 2,93 %, für Tilmicosin 6,59 %, für Tulathromycin 2,93 %, für 

Tetrazyklin 21,25 % und für Spectinomycin 80,95 %. Als Folgerung unserer 

Ergebnisse können die beiden antibiotischen Medikamente Tetrazyklin und 

Spectinomycin aufgrund der ungünstigen Resistenzsituation nicht weiter für die 

Therapie des BRD-Komplexes empfohlen werden. Spectinomycin war der einzige 

antibiotische Wirkstoff mit einer signifikanten Abnahme in Bezug auf nicht 

sensible Isolate innerhalb des Studienzeitraums 2015 bis 2020. Diese verliefen für 

Pasteurella multocida von 88,89 % auf 67,82 % und für Mannheimia haemolytica 

von 90,24 % auf 68,00 % rückläufig. Ein signifikanter Anstieg der nicht-sensiblen 

Isolate wurde für die antibiotischen Wirkstoffe Tulathromycin (5,56 % auf 26,44 

%) und Tetrazyklin (18,52 % auf 57,47 %) bei Pasteurella-multocida-Isolaten 

gefunden. Der Anteil an MDR-Isolaten, die nicht sensibel gegenüber mindestens 

einem Wirkstoff in mindestens drei antimikrobiellen Klassen waren, betrug für 

Pasteurella multocida 13,91 % und für Mannheimia haemolytica 5,13 %. Der Anteil 

von MDR Pasteurella-multocida-Isolaten stieg signifikant von 3,70 % (erstes 

Studienjahr) auf 22,90 % (letztes Studienjahr). Die epidemiologischen 
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Untersuchungen ergaben, dass in Betrieben mit mehr als 300 Tieren die 

Wahrscheinlichkeiten für das Isolieren von MDR-Isolaten signifikant höher war als 

in Betrieben mit 100 oder weniger Tieren. Zusätzlich waren die 

Wahrscheinlichkeiten für das Isolieren von MDR-Isolaten in Milchviehbetrieben 

und Gemischtbetrieben signifikant niedriger als in Mastbetrieben. Die besondere 

Bedeutung von epidemiologischen Parametern wie Betriebsgröße und 

Betriebstyp, wie sie in unserer Studie gezeigt wurden, sollten deshalb auch in 

zukünftigen Resistenzstudien berücksichtigt werden. 

In einem zweiten Teil der hier vorgestellten Arbeit wurde für 227 der insgesamt 

345 Pasteurella-multocida-Isolate der Kapseltyp mittels PCR bestimmt. Die 

Ergebnisse zeigten, dass Kapseltyp A mit 215 Isolaten (92,14 %) der dominierende 

Typ war. Weiterhin wurden fünf Typ B (2,26 %) und fünf nicht typisierbare 

(2,26 %), vermutlich nicht gekapselte Isolate, detektiert. Zwei weitere Isolate (0,88 

%) konnten nicht eindeutig dem Typ A zugeordnet werden. In der Nukleinsäure 

von fünf Pasteurella-multocida-Isolaten des Typ B konnte keine spezifische 

Gensequenz der Hämorrhagischen Septikämie (HS) nachgewiesen werden. Dieses 

Ergebnis bekräftigt, dass die HS nur sporadisch bei Haus- und Wildtieren in Bayern 

auftritt. 
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VII. SUMMARY 

In a 5-year study, from July 2015 to June 2020, a total of 754 isolates originating 

from 662 animals with putative BRD syndrome, stemming from 519 farms in 

Bavaria, Germany, were analysed for antimicrobial resistance via microbroth 

dilution method. Pasteurella multocida was the most frequently isolated pathogen 

with 345 isolates (45.76 %), followed by 273 Mannheimia haemolytica isolates 

(36.20 %), 119 Truperella pyogenes isolates (15.78 %), and 17 Bibersteinia trehalosi 

isolates (2.26 %). The five-year not susceptibility rates of Pasteurella multocida 

isolates were 0.87 % for ceftiofur, 3.48 % for penicillin G, 4.06 % for florfenicol, 

0.29 % for enrofloxacin, 15.65 % for tulathromycin, 39.42 % for tetracycline and 

78.84 % for spectinomycin. For Mannheimia haemolytica isolates, the five-year 

not susceptibility rates for ceftiofur were 0 %, for penicillin G 4.76 %, for florfenicol 

1.10 %, for enrofloxacin 2.93 %, for tilmicosin 6.59 %, for tulathromycin 2.93 %, for 

tetracycline 21.25 % and for spectinomycin 80.95 %. Thus, due to the unfavourable 

resistance situation, the two antimicrobials tetracycline and spectinomycin cannot 

be recommended for the therapy of BRD. Spectinomycin was the only antibiotic 

agent with a significant decrease regarding not susceptible isolates within the 

study period from 2015 to 2020 (Pasteurella. multocida 88.89 % to 67.82 %, 

Mannheimia haemolytica 90.24 % to 68.00 %). Significant rate of increase of not 

susceptible isolates were found for the antibiotic agents tulathromycin (5.56 % to 

26.44 %) and tetracycline (18.52 % to 57.47 %) in Pasteurella multocida isolates. 

The proportion of MDR isolates that were not susceptible to at least one agent in 

at least three antimicrobial classes was 13.91 % for Pasteurella multocida and 

5.13 % for Mannheimia haemolytica. The proportion of MDR Pasteurella 

multocida isolates increased significantly from 3.70 % (first study year) to 22.90 % 

(last study year). The epidemiological investigations revealed that on farms with 

more than 300 animals, the odds for isolating MDR isolates were significantly 

higher than in farms with 100 or less animals. In addition, the odds for isolating 

MDR isolates were significantly lower in dairy and mixed farms compared to 

fattening farms. The particular importance of epidemiological parameters such as 

farm size and farm type, as outlined in this study, should therefore also be taken 
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into account in future resistance studies. 

In a second part of the dissertation work, the capsule type of Pasteurella multocida 

was determined by PCR for a subset of 227 isolates. The results showed that 

capsule type A was the predominant type with 215 isolates (94.17 %). Five type B 

(2.26 %) and five untypeable (2.26 %), presumably non-encapsulated isolates were 

detected. Two further isolates (0.9 %) could not be clearly classified as type A. In 

the five Pasteurella multocida isolates of type B, a hemorrhagic septicemia- (HS) 

specific gene was not detected. This result confirms that HS occurs only 

sporadically in domestic and wild animals in Bavaria. 
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