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the great moment we shared in and out of the BMS Lounge. A special thanks go to
Stephan, for being the great officemate he is, always open to talk about interesting and
controversial topics.

As an important part of my career as a Ph.D. student and as a scientist, I have also
explored the industrial applications of my field, and AngioWave Imaging has played the
most important role in this endeavor. Therefore, I want to thank Aram and Bess for
all the support through this journey. Of course, Bill is one of my great inspirations,
always open to having extensive intellectual discussions, looking solely for insight, the
kind of insight that fills your soul and reminds you why you are doing what you do. More



Applied Microlocal Analysis of DNNs for Inverse Problems Hector Andrade Loarca

recently, Dave has also been a great inspiration, his long experience on the field and deep
inside has helped me to follow the correct path on problem-solving. I am looking forward
to keeping working with these great scientists and collaborators, I am sure great things
await us.

In addition, I would like to thank my parents, Hector and Julieta, for their great
support since the beginning of my existence, they have always been there for me, teaching
me how to be a good person and a hard worker, without them none of these could happen.
I also want to thank, Cristina, Patricia, and Sara, to be always there, and be the best
family I could ever ask for. Finally, I would like to thank specially to Natasha, for the
great time we had and will have together, for her help and support, for the love and
understanding, and for all the years and adventures that await us.

vi Dissertation, LMU München, 2021



Affidavit

Hereby I declare that I wrote this thesis myself with the help of no more than the
mentioned literature and auxiliary means.

München, 15.09.2021

Hector Andrade Loarca
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signature





Abstract

Deep neural networks have recently shown state-of-the-art performance in different
imaging tasks. As an example, EfficientNet is today the best image classifier on the
ImageNet challenge [110]. They are also very powerful for image reconstruction, for
example, deep learning currently yields the best methods for CT reconstruction [3, 17].
Most imaging problems, such as CT reconstruction, are ill-posed inverse problems, which
hence require regularization techniques typically based on a-priori information. Also, due
to the human visual system, singularities such as edge-like features are the governing
structures of images. This leads to the question of how to incorporate such information
into a solver of an inverse problem in imaging and how deep neural networks operate on
singularities. The main research theme of this thesis is to introduce theoretically founded
approaches to use deep neural networks in combination with model-based methods
to solve inverse problems from imaging science. We do this by heavily exploring the
singularity structure of images as a-priori information. We then develop a comprehensive
analysis of how neural networks act on singularities using predominantly methods from
the microlocal analysis.

For analyzing the interaction of deep neural networks with singularities, we introduce
a novel technique to compute the propagation of wavefront sets through convolutional
residual neural networks (conv-ResNet). This is achieved in a two-fold manner: We first
study the continuous case where the neural network is defined in an infinite-dimensional
continuous space. This problem is tackled by using the structure of these networks as a
sequential application of continuous convolutional operators and ReLU non-linearities
and applying microlocal analysis techniques to track the propagation of the wavefront
set through the layers. This then leads to the so-called microcanonical relation that
describes the propagation of the wavefront set under the action of such a neural network.
Secondly, for studying real-world discrete problems, we digitize the necessary microlocal
analysis methods via the digital shearlet transform. The key idea is the fact that
the shearlet transform optimally represents Fourier integral operators hence such a
discretization decays rapidly, allowing a finite approximation. Fourier integral operators
play an important role in microlocal analysis, since it is well known that they preserve
singularities on functions, and, in addition, they have a closed form microcanonical
relation. Also, based on the newly developed theoretical analysis, we introduce a method
that uses digital shearlet coefficients to compute the digital wavefront set of images by a
convolutional neural network [7].

Our approach is then used for a similar analysis of the microlocal behavior of the
learned-primal dual architecture [3], which is formed by a sequence of conv-ResNet
blocks. This architecture has shown state-of-the-art performance in inverse problem
regularization, in particular, computed tomography reconstruction related to the Radon
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transform. Since the Radon operator is a Fourier integral operator, our microlocal
techniques can be applied. Therefore, we can study with high precision the singularities
propagation of this architecture.

Aiming to empirically analyze our theoretical approach, we focus on the reconstruction
of X-ray tomographic data. We approach this problem by using a task-adapted recon-
struction framework [1], in which we combine the task of reconstruction with the task of
computing the wavefront set of the original image as a-priori information. Our numerical
results show superior performance with respect to current state-of-the-art tomographic
reconstruction methods; hence we anticipate our work to also be a significant contribution
to the biomedical imaging community.
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Zusammenfassung

Tiefe neuronale Netze haben in letzter Zeit bei verschiedenen Bildverarbeitungsaufgaben
Spitzenleistungen gezeigt. Zum Beispiel ist AlexNet heute der beste Bildklassifikator bei
der ImageNet-Challenge [71]. Sie sind auch sehr leistungsfähig für die Bildrekonstruktion,
zum Beispiel liefert Deep Learning derzeit die besten Methoden für die CT-Rekonstruktion
[3, 17]. Die meisten Bildgebungsprobleme wie die CT-Rekonstruktion sind schlecht
gestellte inverse Probleme, die daher Regularisierungstechniken erfordern, die typischer-
weise auf vorherigen Informationen basieren. Auch aufgrund des menschlichen visuellen
Systems sind Singularitäten wie kantenartige Merkmale die bestimmenden Strukturen
von Bildern. Dies führt zu der Frage, wie man solche Informationen in einen Löser eines
inversen Problems in der Bildverarbeitung einbeziehen kann und wie tiefe neuronale Netze
mit Singularitäten arbeiten. Das Hauptforschungsthema dieser Arbeit ist die Einführung
theoretisch fundierter konzeptioneller Ansätze zur Verwendung von tiefen neuronalen
Netzen in Kombination mit modellbasierten Methoden zur Lösung inverser Probleme
aus der Bildwissenschaft. Wir tun dies, indem wir die Singularitätsstruktur von Bildern
als Vorinformation intensiv erforschen. Dazu entwickeln wir eine umfassende Analyse,
wie neuronale Netze auf Singularitäten wirken, indem wir vorwiegend Methoden aus der
mikrolokalen Analyse verwenden.

Um die Interaktion von tiefen neuronalen Netzen mit Singularitäten zu analysieren,
führen wir eine neuartige Technik ein, um die Ausbreitung von Wellenfrontsätzen mit
Hilfe von Convolutional Residual neuronalen Netzen (Conv-ResNet) zu berechnen. Dies
wird auf zweierlei Weise erreicht: Zunächst untersuchen wir den kontinuierlichen Fall,
bei dem das neuronale Netz in einem unendlich dimensionalen kontinuierlichen Raum
definiert ist. Dieses Problem wird angegangen, indem wir die besondere Struktur dieser
Netze als sequentielle Anwendung von kontinuierlichen Faltungsoperatoren und ReLU-
Nichtlinearitäten nutzen und mikrolokale Analyseverfahren anwenden, um die Ausbre-
itung einer Wellenfrontmenge durch die Schichten zu verfolgen. Dies führt dann zu
einer mikrokanonischen Beziehung, die die Ausbreitung der Wellenfrontmenge unter
ihrer Wirkung beschreibt. Zweitens digitalisieren wir die notwendigen mikrolokalen
Analysemethoden über die digitale Shearlet-Transformation, wobei die Digitalisierung für
die Untersuchung realer Probleme notwendig ist. Die Schlüsselidee ist die Tatsache, dass
die Shearlet-Transformation Fourier-Integraloperatoren optimal repräsentiert, so dass
eine solche Diskretisierung schnell abklingt und eine endliche Approximation ermöglicht.
Nebenbei stellen wir auch eine Methode vor, die digitale Shearlet-Koeffizienten verwendet,
um den digitalen Wellenfrontsatz von Bildern durch ein Faltungsneuronales Netzwerk [7]
zu berechnen.

Unser Ansatz wird dann für eine ähnliche Analyse für die gelernte primale-duale
Architektur [3] verwendet, die durch eine Sequenz von conv-ResNet-Blöcken gebildet
wird. Diese Architektur hat bei der Rekonstruktion inverser Probleme, insbeson-
dere bei der Rekonstruktion der Computertomographie im Zusammenhang mit der
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Radon-Transformation, Spitzenleistungen gezeigt. Da der Radon-Operator ein Fourier-
Integraloperator ist, können unsere mikrolokalen Techniken angewendet werden.

Um unseren theoretischen Ansatz numerisch zu analysieren, konzentrieren wir uns auf
die Rekonstruktion von Röntgentomographiedaten. Wir nähern uns diesem Problem mit
Hilfe eines aufgabenangepassten Rekonstruktionsrahmens [1], in dem wir die Aufgabe
der Rekonstruktion mit der Aufgabe der Berechnung der Wellenfrontmenge des Origi-
nalbildes als Vorinformation kombinieren. Unsere numerischen Ergebnisse zeigen eine
überragende Leistung, daher erwarten wir, dass dies auch ein interessanter Beitrag für
die biomedizinische Bildgebung sein wird.
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1 Introduction

In many scientific and industrial real-world applications, some level of understanding
of how model parameters (physical variables) are transformed under measurements is
normally required. The model parameters are typically represented by a function in a
Hilbert space, and the measurements by an operator between spaces. Since a significant
portion of semantic information of the function is contained in the singular (non-smooth)
part of the function, the study of how singularities are transformed under the action of
operators becomes fundamental. In the case that such function represents an image, the
singular part corresponds to edges, ridges, or ramps in the image.

Microlocal analysis is a mathematical theory that aims to precisely describe how the
singular part of a function, or more generally a distribution, is transformed when acted
upon by an operator. It was introduced in the early 1970s by Sato [103] and Hörmander
[61], originally intended to study the propagation of singularities in partial differential
equations, and it has been widely used in both pure and applied mathematical research
since then. The main premise in microlocal analysis is that the information about the
location of the singularities, also known as the singular support, needs to be complemented
with specifying the directional information of such singularities, referred as “microlocal”
information. The set that contains the location and directional information of the
singularities is named the wavefront set. The directional or microlocal information plays
a key role in elucidating the propagation of singularities by a certain class of operators, the
Fourier integral operators (FIO). Such operators are frequently encountered in analysis,
scientific computing, and physical sciences [61, 20]. One example is the computed
tomography problem, modeled by the Radon transform operator, and it will play an
important role in this thesis.

Microlocal analysis is particularly useful in inverse problems, where the goal is to
reliably recover hidden model parameters (signal) from a noisy transformed version (data),
both connected by a mapping known as forward operator. Moreover, we would also like
to recover the wavefront set of the signal given the noisy realization of a transformed
version of the signal. Such applications frequently arise when using imaging/sensing
technologies where the transform is a pseudodifferential or Fourier integral operator [70].

In this thesis, we study the extraction of oriented singularities of digital two-dimensional
images and their behavior under the action of a deep neural network feed-forward operator,
as well as other forward operators related to biomedical imaging problems. We will focus
on the use of microlocal analysis tools in the continuum setting and how this can be
faithfully discretized, and furthermore, digitized. This work is mainly driven by the
extension of its applications to inverse problems coming from biomedical imaging, but
it also gives an important insight into how neural networks approximate singularities.
In addition, when studying neural network architectures used for inverse problems (see
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Chapter 7), it is important to understand how the singularities of the data are propagated
to the output. In that sense, one is able to use this prescribed propagation to asses the
reconstruction.

1.1 Microlocal analysis of inverse problems in imaging

In this thesis, we will focus on the utilization of microlocal analysis in the context
of imaging sciences. Here, an image is represented by a real-valued function in two
dimensions describing the interior structure of the object under study. In this context,
an inverse problem aims to recover the image from noisy data, which is often not
possible, either because the transformation relating the image to data is not invertible or
because the data is incomplete. Next, the reconstruction of the image is just a part of
the entire workflow involved in real-world inverse problems, which ultimately aims at
decision-making.

A prime example is tomographic reconstruction, where a medical expert uses the
reconstructed image to decide whether a patient needs certain intervention, for example,
due to a tumor. In such a case, the location and shape of the tumor is often sufficient
for the decision-making, whereas the exact values of the tumor density may be ignored
or identified with another more specialized technique. The location and shape of the
tumor can be determined from the singular part of the image, so the estimation of the
wavefront set will be sufficient.

In the prime example above, the Radon transform, being the related forward operator,
is a Fourier integral operator [70]. Hence, tools provided by microlocal analysis allow
us to explicitly describe the relationship between the wavefront set of the functions
(image) and its transformed version (tomographic data). This relation is referred to
as microcanonical relation [61] and can also be used to identify which singularities can
be recovered from data without explicitly computing the inverse Radon transform [89].
Another observation is that recovering an image from its Radon transform is less ill-posed
if one knows the wavefront set a-priori [38] since as we discussed, it contains an important
amount of semantic information.

As mentioned before, many real-world imaging applications, which can be seen as
inverse problems, have a Fourier integral operator as their data model. This allows to use
the same microlocal analysis tools as in the computed tomography application. In this
thesis, we will extend this notion to neural networks, with the final aim to describe the
propagation of singularities by their different layers. This will also require an extension
of the microlocal analysis tools to non-smooth/non-linear operators. We are mainly
motivated by the current trend of using deep neural networks to solve inverse problems.
In this context, being able to describe the propagation of singularities the networks
will allow us to analyze how well the networks approximate the singularities of the
reconstruction. In addition, we will be able to use such singularities as a strong prior in
the context of task-adapted reconstruction (see Chapter 7).
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1.2 Basic notions of deep learning

In the last decade, machine learning has played an important role in imaging applications,
mainly due to the exponential increase in computing power given by Moore’s law and the
increase in available data. Along with the distinct methods in machine learning, deep
learning has been the state-of-the-art approach in most of the imaging applications, an
example is the ImageNet classification challenge, being best performed by the EfficientNet
architecture [110]. In inverse problems in imaging, most of the current best reconstructions
are also done by deep neural networks [17, 3]. This is the main reason they will play a
central role in this thesis.

Deep learning is based on the efficient, data-driven, training of neural networks. In
broad terms, a neural network is a sequence of simple operations, known as neurons.
These neurons are arranged in complex patterns but ordered in sequential evaluation,
also-called layers. Their name, neural network, comes from the original motivation
behind their introduction, based on how biological neural networks work. Historically,
the very first work on neural networks done by McCulloch et al. [85] had the goal to
mathematically model the human brain. The main feature transferred to neural networks
from their biological counterparts is the idea that a neuron sends out a signal when a
specific threshold of inputs is exceeded. For practical purposes, we will center on the
so-called feed-forward neural networks.

In mathematical terms, a feed-forward neural network is defined by the parameters:

• d ∈ N-input dimension.

• L ∈ N-number of layers.

• N0, . . . , NL ∈ N-number of neurons in each layer, where N0 = d.

• Al ∈ RN`×N`−1 , bl ∈ RN`- weights of the neural network, where ` = {1, . . . , L}.

• ρ : R→ R-activation function.

Then, the neural network is given by the function Φ : Rd → RNL :

Φ(x) = WL(ρ(WL−1(ρ(. . . , ρ(W1(x)))))),

where W`(x) = A`(x) + b` is an affine transform in each layer, for ` = 1, . . . , L, and ρ is
applied component wise. In this context, depth means the number of layers, and a deep
network means a network with many layers. We refer to a feed-forward neural network
as deep neural network when L ≥ 2. We also refer to Φ as a neural network architecture.
One can also represents a neural network as the diagram depicted in Figure 1.1.
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Figure 1.1: Feed-forward neural network.

In this work we will focus on the case when the matrix A` is convolutional. We first
consider the case of CNNs for signals on 1D domains. Let m1 ∈ N be the number of
feature channels, n0 ∈ N be the filter size, and {fk}m1

k=1 be a collection of filters. Here,
fk ∈ Rn0 . In addition, the matrix A` ∈ RN`×m1N` is a convolutional matrix with the
corresponding filters if A` = {aij}i,j where

{{aij}n0
i=1}

m1
j=1 = {fk}m1

k=1,

{{aij}n0+1
i=2 }

2m1
j=m1+1 = {fk}m1

k=1,

. . .

{{aij}n0+N`
i=N`

}N`m1

j=(N`−1)m1+1 = {fk}m1
k=1,

where aN`+t,j : = atj for all j ∈ {1, . . . , N`m1}. We can visualize the convolutional matrix
A`, for all ` = 1, . . . , L by Figure 1.2.

Figure 1.2: Convolutional matrix.

The neural networks generated by convolutional matrices are known as convolutional
neural networks. This is due to the matrix multiplication involved that can be written as
a convolution:

A`x[i] =

n0∑
s=1

m1∑
k=1

fk[s]x[i− s] for i = 1, . . . , n0 and ` = 1, . . . , L.
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Similarly, one can extend this notion to 2D (images) by simply having 2D filters
fk ∈ Rn0×n1 , obtaining the convolution formula

A`x[i, j] =

n0∑
s=1

n1∑
q=1

m1∑
k=1

fk[s, q]x[i−s, j−q] for i = 1, . . . n0, j = 1, . . . ,m0, ` = 1, . . . , L.

The biggest advantage of using convolutional neural networks in comparison with the
classical fully connected neural networks is the efficiency of their training. This is mainly
due the sparsity of their matrix representation. They also provide highly adaptive feature
extraction which has been used widely in tasks as image classification [71]. Feed-forward
neural networks are the backbone of modern machine learning algorithms, due to their
efficiency and adaptability. By now, we have introduced the model of deep neural
networks, but we have not yet discussed how to train them.

Training a neural network is the act of finding the optimal weights, i.e., (A`, b`)`=1,...,L,
in a way as to minimize a loss function on a training set. Let us assume that we have
a number of input images with known desirable target outputs, namely, a set of input-
output pairs. These pairs are elements of the training set, (xi, yi)i=1,...,m ⊂ Rd×d′ . In
addition, let L : Rd′×d′ → R+ be a mapping, known as loss function. One trains neural
networks by solving the optimization problem

min
Φ

m∑
i=1

L(Φ(xi), yi) (1.2.1)

over all neural networks Φ with a d−dimensional input and NL−dimensional output
under the restriction that the architecture of the network, namely, the parameters d, L,
and N0, . . . , NL are fixed.

In practice, the minimization problem is solved by stochastic gradient descent. Let
W = (ωk)

M ′
k=1 ∈ RM ′ , with M ′ =

∑L
`=1N`N`−1, be the weights of a neural network, e.g.,

(A`)
N`,N`−1

ij=1,1 and (bi)
N`
i=1, for ` = 1, . . . , L for the convolutional case. a network can also be

interpreted as the mapping

(x, ω1, . . . , ωM ′) 7→ ΦW (x), x ∈ Rd.

In this interpretation, given an estimate of the optimal weights (minimize (1.2.1)) W t ∈
RM ′ at step t of the stochastic gradient descent algorithm, we can compute the derivative
∂
∑M ′

i=1 L(Φt
W (xi), yi)/∂ω

t
k for all k = 1, . . . ,M ′ and replace ωtk by

ωt+1
k = ωtk − λ∂

M ′∑
i=1

L(Φt
W (xi), yi)/∂ω

t
k,

where λ > 0 is the step-size, also known as learning rate. Although it is clearly hard
to compute all the derivatives for all weights, there is a convenient algorithm, called
backpropagation [100], allowing very efficient computation. In short, backpropagation is
an iterative application of the chain rule. We can also refer to this training process as
data-fitting.
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The elements presented on the previous pages are the basic ingredients of deep neural
networks, which study is called “deep learning”, in the next section we will explore
a specific application of deep neural networks to solve inverse problems. Later, in
Chapters 4 and 6, we will introduce the theory behind the propagation of singularities
by deep neural networks, which will be used in Chapter 7 to design a tomographic
reconstruction algorithm.

1.3 Deep neural network architectures for inverse problems

Before we can dive into the details of our approach of applied microlocal analysis in
inverse problems, it is necessary to introduce formally, what we refer to as an inverse
problem. In mathematics, an inverse problem is the task of reconstructing (estimating) a
signal ftrue ∈ X from data g ∈ Y , having the relation

g = A(ftrue) + δg, (1.3.1)

where X (model parameter space) and Y (data space) are inner-product spaces, and
A : X −→ Y is the forward operator that models how the data is produced from the
signal in the absence of noise. Finally, δg ∈ Y is the noise, defined as a single sample of
a Y -valued random variable that represents the noise component of the data. In the case
that the forward operator A is invertible, the reconstruction of ftrue will just require a
denoising step, obtaining:

ftrue = A−1(g∗),

where g∗ is a denoised version of the data g. In general, the operator A will be more
complicated, and non-invertible. In such cases, we rely on the notion of well-posedness
and ill-posedness, initially introduced by Hadamard [53].

An inverse problem, defined by (1.3.1) is well-posed in terms of Hadamard, if:

1. a solution exists,

2. the solution is unique,

3. the solution depends continuously on the data.

If an inverse problem fails to hold any of these conditions, it is said to be ill-posed. Most
of the interesting inverse problems in the real-world, including computed tomography,
are indeed ill-posed [87].

Classically, researchers have applied optimization approaches to solve inverse problems.
In the simplest situation, one can find an approximate solution of the problem by
minimizing the data miss-fit with a loss function:

ftrue = arg min
f∈X

L(A(f), g). (1.3.2)
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The loss function L : Y × Y −→ R+ measures how well the measurements of the signal f
approximate the data g = A(f). The loss function is typically chosen to be proportional
to the negative log-likelihood [12], for example, the squared loss. In the case of ill-posed
inverse problems this approach leads to overfitting, i.e., the obtained model parameters
correspond too closely or exactly to a particular set of data and may therefore fail to fit
additional data or predict future observations reliably.

Solutions that are unstable against data, i.e., small changes in the data lead to big
changes in the solution, are known as non-stable or irregular solutions. Regularization
theory is the area in mathematics that studies ways to find regular or stable solutions.
Researchers have proposed different approaches on regularizing an inverse problem, mainly
based on the introduction of a-priori information about the physics of the problem.

1.3.0.1 Model-based regularization

Classically, the most common way to introduce a-priori information to the problem
is by the so-called regularization functional. This approach is known as variational
regularization. Let S : X −→ R be a functional that encodes a-priori information about
ftrue and penalizes unlikely solutions, also referred to as regularization functionals.

In this approach, one solves a problem alternative to (1.3.2), given by

ftrue = arg min
f∈X

[L(A(f), g) + λS(f)] , (1.3.3)

where λ ≥ 0 is a fixed regularization parameter controlling the influence of the a-priori
knowledge provided by the regularization functional against the data miss-fit term. In
the language of Bayesian estimation, a regularization functional represents a prior for
the statistical estimation problem.

As an example, to show the main idea behind variational regularization. If X =
L2(R2) ∩ L1(R2) and Y = L2(R2), we can define the data miss-fit as the L2-loss

L(A(f), g) = ||A(f)− g||22.

By using as prior information the assumption that the solution ftrue is L1-sparse, we get
the optimization problem

ftrue = arg min
f∈L2(R2)∩L1(R2)

||A(f)− g||22 + λ||f ||1.

This kind of approach, also known as sparse regularization and is used in diverse problems
in imaging, such as, denoising and inpainting [45]. Another regularization technique
widely used is the so-called Tikhonov regularization [112], where we assume that ftrue

has a small norm, i.e.

ftrue = arg min
f∈L2(R2)∩L1(R2)

||A(f)− g||22 + λ||f ||2.
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Since one uses the L2−norm to penalize the norm of the function, the solutions of
Tikhonov regularization tend to be smooth, since L2−norm serves as an averaging term.

In order to avoid this drawback, more recently, the well-known total variation regu-
larization or TV regularization was introduced. In this case, one assumes L1-sparsity
in the gradient of the solution [98], which leads to the function S(f) = ||∇f ||1. This
regularization is commonly used in denoising and computed tomography reconstruction
[117]. The use of the variational regularization approach requires the actual understand-
ing of the physics of the problem in order to define a reasonable regularization functional.
Hence one assumes a-priori knowledge of the problem, and empirical data is used just to
calibrate the model parameters, for example, the regularization parameter λ.

Besides variational regularization methods, there are other prime examples classically
used for regularization. One example is the analytic pseudo-inverse approach (e.g.
FBP) [104], where one aims to find an approximate inverse A† : Y −→ X, such that
A†(g) ≈ ftrue whenever A(ftrue) = g. One last example are the so-called iterative methods
with early stopping, where one aims to solve the linear programming problem 1.3.1 with
an iterative method [13], avoiding over-fitting by early stopping. We will refer to the set of
approaches based on first principles, as model-based regularization. On the one hand, since
they are based on first principles, they can be tested and validated independently, and such
simple concepts aid the understanding of the results. On the the other hand, having also
few parameters to calibrate, these methods will require not much data. Moreover, they
require the explicit description of causal relations between data and model-parameters,
which is not always possible, and it is also hard to account for uncertainty, the latter due
to the lack of knowledge on the data distributions.

1.3.0.2 Data-driven regularization

An alternative conceptual approach that has been recently widely used, is the so-called
data-driven regularization. This approach available uses real data, to learn most of the
parameters of a general input-output model. In the last few years, machine learning
has played an important role in mathematical modeling, in particular, its sub-field deep
learning, mostly due to the increasing parallel computing power that graphical processing
units have provided. As discussed in Section 1.2 deep learning is a powerful tool for
non-linear function approximation. One advantage of deep learning is the requirement
of weak assumptions on the input-output model, being deep neural networks, and the
available training data sets.

Data-driven regularization uses a general parametric differential model, called neural
network architecture, and an optimization algorithm, stochastic gradient descent, to learn
the parameters from available training data. It is also widely used in imaging science
and inverse problems, in particular, in medical image reconstruction [118], becoming an
important tool in computer vision, as well as other areas, nowadays. As we mentioned,
the main disadvantage of the model-based approach to regularization is the need of a
deep understanding of the problem, for example, in the case of computed tomography,
one needs to know the geometry of the sensors, and the exact physics of the phenomena
which includes the reflectance of the materials involved. Also, deep learning models can
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be used in a wide variety of problems without much understanding of the problem. Due
to the highly non-linear structure, a deep neural network when correctly trained, can
capture causal relation without making any limiting assumptions on the problem [28]. In
this thesis we will focus on the data-driven regularization methods involving deep neural
networks. It is important to know that these are not the only data-driven regularization
methods available, since the area of machine learning has plenty of other methods. We
focused on these methods, since they currently represent the state-of-the-art in inverse
problems.

Let us assume again that we want to solve problem (1.3.1). The main idea of the
data-driven regularization approach is to define a collection of non-linear parametric
mappings {A†θ}θ∈Θ. Each of these mappings is parametrized by a deep neural network,
with weights θ ∈ Θ, elements of a parameter space Θ. In order to be applied to the
inverse problem (1.3.1), one requires the pseudo-inverse property for each A†θ, meaning
that:

A†θ(g) ≈ ftrue , whenever A(ftrue) = g.

One learns an approximation solution A†θ∗(g), by finding the parameter θ∗ which mini-
mizes an appropriate loss functional L : Θ→ R+ that quantifies the dissimilarity between
A†θ(g) and ftrue. This minimization is done over some available data {(fi, gi)}Ni=1 ⊂ X×Y ,
where A(fi) = gi for all i. As in Section 1.2 the process of finding the optimal θ∗ is
known as training and the used data is known as training data. The choice of the loss
function L plays an important role in the success of the training; a prime example of the
loss is the empirical loss given by the mean squared distance:

L(θ) =
1

N

N∑
i=1

||A†(gi)− fi||2X .

This loss can be optimized using gradient descent algorithms, although typically the
data set contains too many data points, which makes the computation of the total loss
expensive. In deep learning, the standard method to solve this issue is stochastic gradient
descent (see Section 1.2), which optimizes the loss over a randomly selected subset of the
training data. If we rely completely on a fully data-driven approach, meaning that we
learn from data the entire reconstruction operator A†θ∗ , we will encounter some limitations:
it can be computationally exhaustive, having too many parameters to fit. Data-driven
approaches have no standard way to incorporate a-prior knowledge and therefore will
not provide any conceptual simplification. This leads to almost no understanding of the
resulting reconstruction.

Both the knowledge-driven and data-driven approaches have their own benefits and
shortcomings but at the same time, they are compatible. As part of the recent efforts to
introduce theoretical insight into deep learning methods, researchers have proposed to
combine both methods in order to make them benefit from each other’s potentials. We
will refer to the combined approach as hybrid methods.
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1.3.0.3 Hybrid methods

As part of the general data-driven regularization, we aim to find a (non-linear) reconstruc-

tion operator A†θ∗ from finite training data {(fi, gi)}Ni=1. In real-world applications, such
as computed tomography, many required parameters to describe the complex phenomena
from scratch will make the problem computationally intractable. It will therefore need
an incredible amount of data in order to fit those parameters. Also, we do understand
up to some level the physics of most of such problems, mainly due to the fact that
those experiments were designed with such physics in mind. Therefore, one would not
like to learn the entire reconstruction operator from scratch but instead to incorporate
the a-priori information of the problem to reduce the parameter space. This type of
approaches is known as hybrid methods and will be the main approach used in this thesis.

There are different ways to combine the data-driven and model-based methods in order
to regularize an inverse problem, but they can be summarized in the following three
approaches:

• Learned post-processing: in this approach one assumes that there is a known
approximate pseudo-inverse A† : Y → X, although such pseudo-inverse might
produce noisy solutions. One uses a deep neural network to learn a denoiser for the
reconstruction A†(g). Formally, we obtain a reconstruction operator of the form:

A†θ = Λθ ◦ A†,

where Λθ : X −→ X is a learned denoiser. There are some examples in the literature
of this approach, we refer to [26, 65, 67].

• Learned regularized: this approach is based on the use of a template of the
regularization functional and learns it from data. For example, in the case of sparse
regularization, one can learn a dictionary that sparsifies the solution. This is known
as dictionary learning [119].

• Learned iterative schemes: these methods make use of classical iterative meth-
ods for optimization to solve (1.3.1), but they learn the best update in each iteration
using a-priori information. Learned iterative schemes can learn different parameters
of the iterations, for example, the step size in a gradient descent method. In this
thesis we will explore mainly the so-called learned primal-dual algorithm which
uses a primal-dual optimization scheme and learns the proximal operators in each
iteration [3]. Due to the important role that learned iterative schemes play in this
thesis, we will explore them with more detail in Section 4.3.

1.4 Task-adapted reconstruction

In real-world applications of inverse problems, one uses measured data in order to make a
decision, where the reconstruction of the model parameters is a key part but not the final
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goal. In some sense, one recovers features from data in order to study them and make
a correct decision. For example, in computed tomography, one needs to reconstruct an
image from data in order to detect physical anomalies in a patient, e.g., a tumor. In that
sense, the reconstruction is required due to the difficulty to understand the raw data.

We will refer to the process of making correct decisions from features, as a task. A
typical pipeline in an inverse problem will start with the sampling of the data, a middle
pre-processing step to normalize the data, a reconstruction step to extract the features,
and the final task based on the extracted features. A model that delivers correct decisions
over raw data is known as a task-adapted model, and the problem of finding such a model
is known as task-adapted reconstruction. This approach was first introduced by Adler et
al. in [1], in this thesis we will follow their approach. One can formulate mathematically
the task-adapted reconstruction problem as the recovery of a true unknown decision
d∗ ∈ D from data g ∈ Y following the relation

g = A(f∗) + δg and d∗ = T (f∗), (1.4.1)

where X (reconstruction space), Y (data space) and D (decision space) are Banach
spaces, A : X −→ Y is the forward operator, and T : X −→ D is the task operator.
Finally, δg is noise in the data space.

The final aim of task-adapted reconstruction is to find a task-adapted operator B :
Y −→ D such that B(g) = d∗, whenever g and d∗ are related via (1.4.1). Notice that
the forward operator A is often highly non-injective. This implies that the trivial task-
adapted operator T ◦A−1 is not well defined. In general, one will not be able to perform
the reconstruction and the task independently, since the task itself will highly depend on
the distribution of the reconstructed features. In order to find a proper task-adapted
operator, we must define the two problems involved, reconstruction and task, in the same
mathematical framework.

As discussed, one can see the task as a decision-making on data from features (model
parameters). This type of problems forms part of the statistical decision theory [78].
In the abstract setting, a task is a non-randomized decision rule which minimizes the
Bayes risk associated with the decision space [1, Section 6.1]. The Bayes risk measures
in some sense the distance to the ground truth decision in the decision space. It is also
possible to formulate the reconstruction as a non-randomized decision rule, where the
decision is to make the correct reconstruction. In Chapter 7 we will explore in-depth the
abstract setting of both the task and the reconstruction problem, using the framework of
statistical decision theory, as well as its digital counterpart. One important requirement
that we will ask from both the task and the reconstruction is to be parametrized by a
deep neural network. This allows us to jointly train them using a convex combination of
the corresponding loss functions.

In this thesis we will focus on the task of wavefront set extraction. Under the framework
of task-adapted reconstruction, it will be possible to perform jointly a wavefront set
extraction and tomographic reconstruction. Although this approach might be interesting,
since it will be able to recover the fully sampled wavefront set for the low-dose tomographic
data, it will not be much different than simply performing edge detection as the task.
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In order to fully use the potential of the wavefront set, we must make use of the
microcanonical relation. As mentioned in Section 1.1, having in addition to the position
of the singularities in an image, their orientations, allows us to study the propagation
of such singularities under the action of Fourier integral operators, such as the Radon
transform. In this setting one can use the microcanonical relation to map the wavefront
set of the low-dose data to a low-dose wavefront set of the reconstruction. In our approach
the task consists in recovering the full-dose wavefront set of the reconstruction from the
low-dose counterpart. By jointly training this task and the reconstruction, we can make
the wavefront set of the reconstruction approximate the wavefront set of the ground
truth. We will explore this scenario with high detail in Chapter 7.

Also, in Chapter 7 we will show how to perform a task-adapted tomographic reconstruc-
tion method, that jointly recovers images from low-dose tomographic data and performs
wavefront set inpainting using the known wavefront set. This task-adapted method will
be able not just to recover the full wavefront set of an image from its low-dose sinogram,
but at the same time improve the resulted reconstruction by forcing its wavefront set to
be close to the ground truth.

1.5 Microlocal analysis of digital data

All the theory that has been mentioned so far is formulated in a continuum setting.
More importantly, formally, singularities can just be defined in that setting. If we want
to use these tools in real-world applications, we need to formulate them in a discrete
domain, and at the same time make the formulation consistent with the continuous
version. Chapter 5 will contain our approach to define the digital wavefront set of a
digital two-dimensional signal originally introduced in [8]. In this chapter, we will also
present a data-driven approach to compute the wavefront set of digital images and its
comparison with similar methods.

Our approach makes use of computational harmonic analysis, in particular, multiscale
directional systems that have well-known properties of resolution of oriented singularities,
to represent the data in a convenient form. We also express the problem of wavefront set
extraction as a problem of semantic segmentation, where we aim to find singularity points
and classify them. In this case, the class of each singularity point will correspond to its
wavefront set orientation. At the same time, in order to make use of the task-adapted
reconstruction, we study the propagation of the digital wavefront set under the action
of a certain class of deep neural networks, the convolutional residual neural networks
[56]. In this case, we are using a similar approach as in the case of the wavefront set
extraction, where we work on the theory for the continuous domain setting, presented in
Chapter 4, in order to obtain a faithful discrete version of the results.

The analysis of singularity propagation under deep neural networks is useful for task-
adapted reconstruction models that involve the wavefront set, it is a powerful tool on its
own. Such analysis allows us to study theoretically how the neural networks transform
singularities of signals, which contain already a lot of information about the signal itself.
Chapter 6 explores how this analysis is done in the discrete and digital case.
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1.6 Organization of the thesis

This thesis is structured into three parts. The first part contained in Chapters 2, 3
and 4 discusses the continuum setting of wavefront set extraction and microlocal analysis
of Fourier integral operators and deep neural networks. The second part formed by
Chapters 5 and 6 introduces the digital counterpart. Finally, the third part consisting of
Chapters 7, 8 and 9 presents real-world applications and numerical experiments, as well
as a conclusion to the thesis.

More specifically, Chapter 2 introduces the basic notions of microlocal analysis. Sec-
tions 2.1 and 2.2 present the notion of distributions and the definition of wavefront sets
as well as some examples. Sections 2.3 to 2.4 discuss the propagation of wavefront sets by
pseudodifferential and Fourier integral operators, while Section 2.5 presents the results
for the Radon transform. Chapter 3 introduces the general resolution of wavefront sets
by harmonic analysis techniques, all in the continuum setting. In particular, Sections 3.3
and 3.4 present the continuous shearlet transform, as well as the wavefront set resolu-
tion provided by it. Later, Chapter 4 introduces a novel approach for analyzing the
propagation of singularities by residual convolutional neural networks. This is done in
a non-standard way since we need to express neural networks as operators acting on
continuous spaces. In Section 4.3 we use the above-mentioned theory in a particular
architecture, the learned primal-dual architecture. This architecture will play a central
role in this thesis since it will be used for tomographic reconstruction.

In order to digitize the theory presented in the previous chapters, Chapter 5 presents
a deep learning approach for wavefront set extraction. This approach is based on the
digital shearlet transform and convolutional neural networks. Sections 5.2 and 5.4 present
a novel architecture that extracts wavefront sets of digital images by classifying local
patches of their shearlet coefficients, where each class represents a particular direction on
the wavefront set. Section 5.3 extends this notion to general semantic edge detection,
where we show that shearlets serve as a good feature extractor for edge detection
and classification. Chapter 6 introduces the notion of digital microlocal analysis of
convolutional neural networks. In Section 6.1 we introduce a discretization technique for
Fourier integral operators based on discrete shearlets. This technique profits from the fact
that shearlets sparsely represent such operators, which leads to an efficient discretization.
Section 6.2 analyzes the approximation rates of the above discretization and their ability
to faithfully digitize the Fourier integral operators. This digitization allows us to have a
digital microcanonical relation, a mapping that describes the propagation of wavefront
sets in the digital realm. In addition, Section 6.3 applies these principles to residual
convolutional neural networks and the digital Radon transform. This allows us to describe
the microlocal behavior of the learned primal-dual architecture.

In Chapter 7 we present the final contributions of the thesis, an application for
task-adapted tomographic reconstruction. This application uses the wavefront set of
tomographic data to improve state-of-the-art reconstructions algorithms, by incorporating
it in the training procedure. Sections 7.2, 7.3 and 7.3 present the basic notions of
statistical decision theory as a framework that merges the reconstruction and task.
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Section 7.5.1 presents the concept of task-adapted reconstruction and Section 7.5.1
introduces our application. In this application, we jointly train the learned primal-dual
to perform tomographic reconstruction with two different tasks, wavefront set extraction
and wavefront set inpainting, the latter improving the state-of-the-art methods. Finally,
Chapter 8 presents the numerical experiments that support the theory in the previous
chapter, and Chapter 9 concludes the work and discusses future challenges.
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2 Microlocal analysis

The study of singularities of signals has an important role in different scientific areas,
mainly due to the significant amount of information contained in them. When working
with one-dimensional signals, the singularities are points in the domain in which the
signals are non-smooth. Being points, the sole description of their location is sufficient to
fully describe them. Next, 2D signals contain anisotropic features, resulting in oriented
singularities. In this case, the location of the singularities cannot fully describe them. In
addition, one also needs to describe their orientations.

Microlocal analysis was introduced as a tool to describe oriented singularities and their
behavior under the action of a certain class of operators. It is also a theory defined
on continuous spaces, depending strongly on asymptotic analysis when taking infinitely
small scales.

This chapter is intended to present the main concepts and results in microlocal analysis,
which will allow us to further extend the theory into a digital form, in order to apply it
in the analysis of deep learning models. For that, we need to first introduce the main
concepts of distribution theory, since it is where the concept of wavefront set originates
from.

2.1 Distribution theory

Before we start, we would like to mention that this section is based on [62] and [86]. The
word “distribution” appears in physics whenever one needs to describe a “function-like”
physical concept that does not rigorously follow the definition of a classical function. The
classical example is the Dirac δ-distribution, introduced to describe the density of a point
mass.

Example 2.1.1 (Dirac δ-distribution). The definition of the Dirac δ−distribution is
motivated by the need to define a function that full-fills∫

R
δ(x− a)f(x)dx = f(a), for all f ∈ C∞(R) and a ∈ R.

In particular, we also aim the function to be non-negative, non-zero only in a single point,
and follows ∫

R
δ(x)dx = 1.

Since there is no function that full-fills those properties, one needs to introduce the notion
of distributions.
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Notice from Example 2.1.1 that no classical function has these properties. Distributions
are mappings that have similar properties. They arise naturally in the theory of partial
differential equations (PDEs) [39]. Fundamental solutions of PDEs are usually singular
distributions, the behavior of their singularities encode the behavior of the solutions. It is
also well known that distributions are extensively used in quantum mechanics to describe
the wave function. The study and the behavior of singularities of distributions can also
be applied to classical function spaces. In the following, we outline the basic parts of
distribution theory that are necessary for the understanding of microlocal analysis. Let
us first start with the notion of some relevant spaces of continuous functions.

Definition 2.1.2 ([86]). Let Ω ⊂ Rn be an open set, and E(Ω) := C∞(Ω) be the vector
space of real (or complex) valued smooth functions on Ω. In addition, the support of a
function f ∈ E(Ω) is defined by:

supp(f) = {x ∈ Ω|f(x) 6= 0}.

Therefore, one can define D(Ω) := C∞0 (Ω) as the space of smooth functions compactly
supported in Ω, i.e., functions whose support is a compact subset of Ω.

When studying a differential equation coming from physics, one sometimes assumes
that the solutions are in E(Ω) or D(Ω). Unfortunately, not every function is differentiable
and the concept of distribution is the solution for this flaw, by taking an extension of the
space of continuous functions where differentiation is always defined. In order to define
this notion formally, we need to introduce the notion of topological space and topological
dual:

Definition 2.1.3 (Topological space,[86]). Let X be a set. A set TX ⊂ 2X is a topology
of X if

(i) ∅ ∈ TX .

(ii) X ∈ TX .

(iii) The arbitrary union of elements of TX is also an element of TX .

(iv) The finite intersection of elements of TX is also an element of TX .

We refer to the tuple (X, TX) as a topological space. We call elements in the topology
TX open sets.

There are different ways to define a topology on E(Ω) and D(Ω), in this work we will
work with the so-called Whitney topologies (see [86, Definition 4.4]). These topologies
allow to define the notion of topological dual on the topological spaces (E(Ω), TE(Ω)) and
(D(Ω), TD(Ω)). For simplicity in notation, from now on we will just write E(Ω) and D(Ω)
when we are referring to their corresponding topological spaces.
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Definition 2.1.4 (Topological dual). Let (X, TX) be a topological space. In addition
let (R, TR) be the topological space generated by the norm topology TR given by union of
elements of the basis:

τR : ={Bε,||·||2(x) : x ∈ R, ε > 0},

where Bε,||·||2(x) is given by:

Bε,||·||2(x) = {y ∈ R : ||x− y||2 < ε},

where || · ||2 is the `2-norm.
We say that a function f : X → R is continuous functional with respect to the

topologies TX and TR, if for every V ∈ TR the inverse image f−1(V ) ⊂ X is an element
of TX . The topological dual of (X, TX), namely (X ′, TX′) is the topological space of
continuous functionals f : X → R with respect to the topologies TX and TR, i.e.

X ′ : ={f : X → R : f is a continuous functional}.

In this case, the dual topology TX′ is generated by union of elements in the set

τX′ : ={Bε,||·||sup
(f) : f ∈ X ′, ε > 0},

where Bε,||·||sup
is defined as

Bε,||·||sup
(f) : ={g ∈ X ′ : sup

x∈X
(|f(x)− g(x)|) < ε}.

From now on, we will refer to the topological dual space (X ′, TX′) as just X ′. We are
now ready to define the space of distributions.

Definition 2.1.5 ([62]). Let Ω ⊂ Rn be an open set. The set of distributions on Ω,
namely D′(Ω), is the topological dual of D(Ω) (see Definition 2.1.4). Similarly, one
can define the topological dual of E(Ω), namely, E ′(Ω) whose elements are also known as
compactly supported distributions on Ω.

Notice that in Definition 2.1.5, the space D′(Ω) is equipped with the dual topology
introduced in Definition 2.1.4, although this is not explicitly mentioned. In order to
define the support of a distribution we first observe that if, Ω0 ⊂ Ω is an open subset,
then D(Ω0) is a closed subspace of D(Ω). Furthermore, there is a natural restriction map
D′(Ω)→ D′(Ω0) for any open subset. Indeed, if u ∈ D′(Ω), then the restriction of u to
Ω0, namely u

∣∣
Ω0

is given by

u
∣∣
Ω0

(ψ) : =〈u, ψ〉 for every ψ ∈ D(Ω0).

This ensures that the next definition is well-defined.

Definition 2.1.6 ([62]). Let u ∈ D′(Ω). The support of u, suppu, is the smallest closed
set K such that the restriction of u to Ω \K is 0.
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Frequently distributions are considered “generalized functions”. The next example
shows the intuition behind this. Let u ∈ L1

loc(Ω) be a locally integrable function, i.e.,∫
K
|u(x)|dx < +∞ for every compact set K ⊂ Ω.

Then u is a distribution with the standard definition

u(ψ) :=

∫
Ω
u(x)ψ(x)dx, for every ψ ∈ D(Ω). (2.1.1)

From now on, we will call the smooth functions with compact support ψ ∈ D(Ω) used
in (2.1.1), test functions. The map L1

loc(Ω)→ D′(Ω) defined by (2.1.1) is injective, which
means that u is almost everywhere determined by the distribution. In particular, every
smooth function defines a distribution, and the support of a function as a distribution
coincides with its support as a function. We obtain the following inclusions

D(Ω) ⊂ E ′(Ω) ⊂ D′(Ω) and E(Ω) ⊂ D′(Ω).

In general one can define the partial derivatives of a distribution as follows:

Definition 2.1.7 ([62]). Let u ∈ D′(Ω) be a distribution on Ω. The partial derivative of
u of order α is defined by

(∂αu)(ψ) := (−1)|α|u(∂αψ) for ψ ∈ D(Ω), (2.1.2)

where ∂αψ = (−i)α1+...+αn ∂
α1ψ
∂xα1 . . .

∂αnψ
∂xαn , for the multi-index α = (α1, . . . , αn). In addi-

tion, |α| =
∑n

i=1 |αi|.

Notice now that, if P : D(Ω)→ D(Ω) is a differential operator, then for a distribution
u ∈ D′(u) one can define Pu ∈ D′(u) given by

(Pu)(ψ) : =u(Pψ), for every ψ ∈ D(Ω).

In this sense, the concept of distribution naturally arises from the extension of differential
operators to non-smooth functions. Therefore, one can think of distribution theory as
the completion of differential calculus, the same we see Lebesgue integration theory as
completion of integral calculus. Another important notion that can be naturally extended
to the distribution realm is the Fourier transform. For this, we need to introduce a third
space of distributions, the space of tempered distributions. For that, we need to first
introduce the notion of a Schwartz function.

Definition 2.1.8 (Schwartz functions). Let ψ : Rn → R for n ∈ N be a Schwartz
function if

dα,β(ψ) : = sup
x∈Rn

|xα∂βψ(x)| <∞ for any multi-indices α, β ∈ Nn0 . (2.1.3)

The Schwartz space S(Rn) is the set of all Schwartz functions in Rn.
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The notion of Schwartz function gives rise to the tempered distributions. In order to
formally define them, we need to first introduce the notion of semi-norm topology.

Definition 2.1.9 (Semi-norm). Let X be a vector space over the real numbers R. A
real-valued function d : X → R is called a semi-norm if it satisfies the following two
conditions:

1. Triangle inequality: d(f + g) ≤ d(f) + d(g) for all f, g ∈ X.

2. Absolute homogeneity: d(sf) = |s|d(f) for all f ∈ X and s ∈ R.

Notice that the function dα,β : S(Rn)→ R defined in (2.1.3) is a semi-norm.

Definition 2.1.10 (Semi-norm topology). Let X be a vector space and D = {di}i∈I a
countable family of semi-norms (see Definition 2.1.9) on X. The semi-norm topology
TX is then given by the union of elements of the set

τX : ={Bi,ε(f) : f ∈ X, i ∈ I, 0 < ε},

where
Bi,ε(f) : ={g ∈ X : di(f − g) < ε}.

We are now ready to introduce the notion of tempered distributions.

Definition 2.1.11 (Tempered distributions). Let X : =(S(Rn), TS(Rn)) be the topologi-
cal space where the topology TS(Rn) is generated by the semi-norm topology with semi-
norms (2.1.3). The space of tempered distributions S′(Rn) is the topological dual of
X.

Now, since S(Rn) ⊂ L2(Rn) we can define the Fourier transform as

ψ̂(ξ) :=

∫
Rn
ψ(x)e−2πi〈x,ξ〉dx for ξ ∈ Rn,

meaning that the Fourier transform of a tempered distribution u ∈ S ′(Rn) be define as

û(ψ) := u(ψ̂) for every ψ ∈ S(Rn). (2.1.4)

Using Plancharel’s formula, one can show that the Fourier transform with the above
definition extends to a weak-* continuous linear map from S ′(Rn) to S ′(Rn), see [99].
Since this class of distributions will play a central role in this thesis, we would like to
also introduce the notion of Schwartz functions and tempered distributions for open
sub-domains of Rn.

Definition 2.1.12. Let Ω ⊂ Rn be an open domain of Rn. The space of Schwartz
functions over Ω, S(Ω), is defined as the set of functions on Ω such that their extension
by 0 to all of Rn is a Schwartz function. Furthermore, the space of tempered distributions
over Ω, S ′(Ω) is defined as the topological dual of the space (S(Ω), TS(Ω)). Here the
topology TS(Ω) is semi-norm topology given by the semi-norms

dα,β(ψ) : = sup
x∈Ω
|xα∂βψ(x)| <∞.
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Remark 2.1.13. Following Definition 2.1.12, we can now think of the Fourier transform
as mapping from S(Ω) to S(Rn). Let ψ ∈ S(Ω), then by Definition 2.1.12 there is a
extension by 0 to all Rn, namely ψ̃ ∈ S(Rn). The Fourier transform of ψ, ψ̂ ∈ S(Rn), is
given by

ψ(ξ) : =

∫
Rn

̂̃
ψ(x)e−2πi〈x,ξ〉dx =

∫
Ω
ψ(x)e−2πi〈x,ξ〉dx for all ξ ∈ Rn.

Since later in Section 2.3 and 2.4 we are going to associate the frequencies ξ ∈ Rn to
orientations, the Fourier transform applied to Schwartz functions is considered from now
on as a mapping from S(Ω)→ S(Rn \ {0}). Similarly as in (2.1.4) we can also define the
Fourier transform as a mapping from S ′(Ω) to S(Rn \ {0}) given by

û(ψ) : =u(ψ̂) for every ψ ∈ S(Ω).

We will use this type of extension, based on duality, extensively in the rest of the thesis,
mainly to define operators in tempered distributions.

Finally, the Fourier transform in S(Ω) relates the regularity of a function ψ at point x
to the asymptotic decay rate of its Fourier transform locally. More specifically, if C |α|(Ω)
is the space of |α|−times differentiable functions, and ψ ∈ S(Ω) ∩ C |α|(Ω), then

∂̂αψ(ξ) = ξαψ̂(ξ).

This means that if ψ̂ decays as O(|ξ|−α) then ψ is α-differentiable. Microlocal analysis
extends this notion to define singularities in distributions. The next section will explore
this direction in detail.

2.2 The wavefront set

The main motivation to study singularities of distributions has its origins in the history
of modern physics, namely, in the formalization of quantum mechanics. Feynman
propagators are distributions, and Stueckelberg realized very early that renormalization
was essentially the problem of defining a product of distributions [109]. Renormalization
can be understood as the change of metric function that makes important physical
quantities finite, and it plays a fundamental role in the formal construction of quantum
field theory.

In [76], it was shown that distributions cannot in general be multiplied. The first
reason is that, while distributions generalize the concept of functions, there is no way
to define the evaluation of general distribution at points in Ω. For example, we cannot
evaluate the δ−function at 0. Hence, the multiplication of distributions cannot be defined
value-wise.

One can illustrate the fact above by studying the family of characteristic functions
χε : R→ R defined by

χε(x) : =

{
1
ε if |x| ≤ ε/2,
0 otherwise.
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For any ψ ∈ D(R), we have∫
R
χε(x)ψ(x)dx = ε−1

∫ ε/2

−ε/2
ψ(x)dx = ε−1(εψ(0) +O(ε3)),

which leads to the limit convergence limε→0 χε = δ. However, the square of χε does not
converge to a distribution, since∫

R
χ2
ε (x)ψ(x)dx = ε−2

∫ ε/2

ε/2
f(x)dx = ε−2(εf(0) +O(ε3))

diverges for ε→ 0.
It is natural to ask ourselves, in which cases we can multiply distributions. The simplest

case is when one of the two distributions is a smooth function. Indeed, consider the
distribution u ∈ D′(Rn) and a smooth function φ ∈ E(Rn). Then, for all test function
ψ ∈ D(Rn) we can define the product uφ by 〈uφ, ψ〉 = 〈u, φψ〉. This idea can be extended
even further. For this, we need to understand the notion of singular support.

Notice that, on the one hand, from the definition of the support of a function (Def-
inition 2.1.2), a function ψ ∈ D(Rn) can vanish at isolated points of its support. On
the other hand, one cannot define the support of a distribution u ∈ D′(Rn) in the same
fashion, since the value of a distribution at a point is generally not defined. In distribution
theory, one needs to make use of the notion of duality to define the support. In that sense,
if u ∈ D′(Rn), a point x ∈ Rn is on supp(u) if and only if there is no open neighborhood
U 3 x such that u = 0 on U . More accurately, there is no neighborhood U 3 x such that

〈u, ψ〉 = 0 for all ψ ∈ D(Rn) with supp(ψ) ⊆ U.
Similarly, one can define the singular support, as the set where the distribution is not

smooth.

Definition 2.2.1 (Singular support). Let u ∈ D′(Rn) be a distribution, then the singular
support of u is the set

sing supp(u) := {x ∈ Rn : there is a neighborhood U of x, s.t. u|U is smooth}c;

In other words, x ∈ sing supp(u) if and only if for every neighborhood U 3 x there is no
smooth function φ ∈ E(U) such that

〈u, ψ〉 = 〈φ, ψ〉 =

∫
U
φ(x)ψ(x)dx for all ψ ∈ D(Rn) with supp(ψ) ⊆ U.

Having defined the notion of the support and singular support of a distribution, we
are able to define the product of distributions with weaker assumptions tha smoothness.

Theorem 2.2.2 ([16, Section 2.1]). If u and v are two distributions in D′(Rn) such that
sing supp(u) ∩ sing supp(v) = ∅, then the product uv, given by

uv(ψ) : =

∫
Rn
u(x)v(x)ψ(x)dxfor every ψ ∈ D(Rn) (2.2.1)

is well-defined.
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Generally, just knowing whether the product of two distributions exists is not sufficient,
since we would like to compute it. For this purpose we can use of the properties of the
Fourier transform of a product in order to define uv, in particular

〈û, v〉 = 〈u, v̂〉, and ψ̂φ = ψ̂ ∗ φ̂,

where ∗ represents the convolution defined by

ψ̂ ∗ φ̂(ξ) =

∫
Rn
ψ̂(η)φ̂(ξ − η)dη ψ, φ ∈ D′(Rn).

Definition 2.2.3 ([16, Section 2.2]). Let u, v ∈ D′(Rn) be distributions. We say that
w ∈ D′(Rn) is the product of u and v if and only if, for each x ∈ Rn, there exists some
test function ψ ∈ D(Rn), with ψ = 1 in a neighborhood of x, so that for each ω ∈ Rn the
integral

ψ̂2w(ω) = (ψ̂u ∗ ψ̂v)(ω) : =

∫
Rn
ψ̂u(ξ)ψ̂v(ω − ξ)dξ (2.2.2)

converges absolutely. In addition, under these conditions, we can define w by the left-hand
side term in (2.2.1).

Notice that the right-hand side in (2.2.2) is well-defined. This is due to the fact that
ψu and ψv are compactly supported distributions. Therefore, due to the Paley-Wiener-
Schwartz theorem (see [61]) their Fourier transform is a smooth function in a classical
way. Also notice that Theorem 2.2.2 presents a sufficient condition for the well-defined
notion of the product of two distributions, with assumptions on the singular support.
The singular support of the distribution contains the location of its singularities. But
this is not enough information to define the product in general cases. Indeed, according
to Definition 2.2.3, one also needs to study the Fourier transform of each distribution,
when multiplied by a test function.

The wavefront set was introduced by Hörmander [62] to find a sufficient condition by
which the product of two distributions is well-defined. In that sense, we would like to
find conditions, so that the integral (2.2.2) is absolutely convergent. Now, if ψ ∈ D(Rn)
is a test function, then ψv is compactly supported. Thus, there is a constant C > 0 and
an integer m ∈ Z such that

|ψ̂v(ξ − ω)] ≤ C(1 + |ξ − ω|)m for all ξ, ω ∈ Rn.

The smallest integer m for which this is satisfied is called the order of the distribution
ψv. The integral in (2.2.2) would be absolutely convergent if there is a constant C ′ > 0
such that

|ψ̂u(ξ)| ≤ C ′(1 + |ξ|)−m−n−1 for some n ∈ N.

Next, we would also like the product of distributions to follow the Leibniz rule under
derivation

∂(uv) = (∂u)v + u(∂v).
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But, since the derivative of order n decreases the order of regularity of u by n, what we
really need is that

|ψ̂u(ξ)| ≤ C ′(1 + |ξ|)−N for every N ∈ N.

This required condition motivates the introduction of the wavefront set as a tool to
determine when the product of distributions is well-defined.

As we did with the singular support, we are going to define the wavefront set by its
complement, which is the set of points where the estimates above are attained, and
therefore, where the multiplication of the distributions is defined. The definition of the
wavefront set of a distribution u ∈ D′(Rn) involves two localization processes. The first is
done in the spatial domain, by the multiplication with a smooth test function ψ supported
on a neighborhood of a point. The second is done in the Fourier domain in order to
analyze the decay rate of the function ψ̂u. This localization is done in the directional
sense, meaning, one restricts the frequency directions ξ ∈ Rn \ {0} to a neighborhood of
directions. The directional localization is referred to as microlocalization. This is the
reason why the study of oriented singularities is known as microlocal analysis. In order
to faithfully localize the directions, we need to define the notion of fast decreasing in a
conical neighborhood.

Definition 2.2.4 (Conical neighborhood). A conical neighborhood of ξ ∈ Rn is a set
V ⊂ Rn such that for any ν ∈ V and α > 0, αν ∈ V and V contains the ball

B(ξ, ε): ={ω ∈ Rn : |ω − ξ| < ε},

where ε > 0 is the radius of B(ξ, ε).

Definition 2.2.5 ([16, Section 3.1]). A smooth function φ ∈ D(Rn) is said to be fast
decreasing on a conical neighborhood V ⊂ Rn if, for any integer N , there is a constant
CN > 0 such that

|φ(ξ)| ≤ CN (1 + |ξ|)−N for all ξ ∈ V .

Spatial-frequency points holding the property of fast decreasing in the conical neigh-
borhood are known as directed smooth points. Points that are not directed smooth are
part of the wavefront set. This notion is defined in the following

Definition 2.2.6 (Wavefront set, [62, Section 8.1]). Let u ∈ D′(Rn) a distribution and
N ∈ N. A point (x; ξ) ∈ Rn × Rn \ {0} is an N -regular directed point of u if there exist
an open neighborhood of x, namely Ux, and a conical neighborhood of ξ, namely Vξ, and
a smooth cut-off function ψ ∈ D(Rn) with suppψ ⊂ Ux and ψ(x) = 1 such that

|ψ̂u(ξ)| ≤ CN (1 + |ξ|)−N for all ξ ∈ Rn with ξ/|ξ| ∈ Vξ
holds for some CN > 0. The N -wavefront set WFN (u) is the set given by

WFN (u) : ={(x; ξ) ∈ Rn × Rn \ {0} : (x; ξ) is an N−regular directed point}c
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Finally, the wavefront set WF(u) is defined as

WF(u) :=
⋃
N∈N

WFN (u).

Notice that the singular support of u can be characterized in terms of the wavefront
set as

sing supp(u) : ={x ∈ Rn : (x; ξ) ∈WF(u) for some ξ ∈ Rn}.

In other words, for each point in sing supp(u), the wavefront set of u, WF(u) is composed
of the directions where the Fourier transform of ψu is not fast decreasing, with ψ a cut-off
function with sufficiently small support.

Definition 2.2.6 assumes that u ∈ D′(Rn) and WF (u) ∈ Rn \ {0}. This holds when
u ∈ D′(X) with X an open subset of Rn which is the case for many of the distributions
considered in this thesis. However, this is not the case when X is a C∞ manifold. For
instance, the distributions on the Radon transform data (Definition 2.3.1) are distributions
on manifolds. In order to introduce the general definition of wavefront set we need to
first present the notion of a C∞ structure on a manifold X.

Definition 2.2.7 ([61, Definition 6.3.1]). Let X be an n−dimentional manifold. A C∞

structure on a manifold X is a family F of homeomorphisms κ of open sets Xκ ⊂ X on
open sets X̃κ ⊂ Rn, called local coordinate systems, such that it holds

(i) If κ, κ′ ∈ F , then the map

κ′κ−1 : κ(Xκ ∩Xκ′)→ κ′(Xκ ∩Xκ′) (2.2.3)

(between open sets in Rn) is infinitely differentiable. The same holds for the inverse
map.

(ii)
⋃
Xκ = X.

(iii) If κ0 is a homeomorphism of an open set X0 ⊂ X on an open set in Rn and the
map

κκ−1
0 : κ0(X0 ∩Xκ)→ κ(X0 ∩Xκ)

as well as its inverse is infinitely differentiable for every κ ∈ F , it follows that
κ0 ∈ F .

A manifold with C∞ structure is called a C∞ manifold. The sets Xκ are called
coordinates patches and the cartesian coordinates of κ(x), x ∈ Xκ, are called local
coordinates in Xκ. Since the wavefront set is contained in the co-tangent bundle of the
space X we will introduce some preliminary notions before the general definition of the
wavefront set.

Definition 2.2.8 (Topological vector bundle). Let (X, T ) be a topological space. Then
a topological vector bundle over X consists of:

1. A topological space E.
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2. A continuous function π : E → X.

3. For each x ∈ X, the structure of a finite-dimensional k-vector space on the pre-image

Ex : =π−1({x}) ⊂ E

such that there exists:

• An open cover {Ui ⊂ X}i∈I .
• For each i ∈ I and ni ∈ N and a homeomorphism

φi : Ui × kni → π−1(Ui) ⊂ E

such that φi({x} × kni) ⊂ π−1({x}) and φi is a linear map in each fiber with

φi(x) : kni → Ex = π−1({x}) for all x ∈ Ui.

Definition 2.2.9 (Tangent bundle and cotangent bundle). The tangent bundle over a
space X is a topological vector bundle whose fiber over a point x ∈ X is the tangent
space at that point. The cotangent bundle T ∗(X) is the dual vector bundle of T (X), that
is, each fiber is the dual vector space of the corresponding fiber on T (X).

Definition 2.2.10 (Wavefront set in manifolds). Let X be a C∞ manifold and u ∈ D′(X)
a distribution on X. Moreover, let T ∗(X) be the cotangent bundle of X. The wavefront
set WF (u) ⊂ T ∗(X) \ {0} is defined so that the restriction to a coordinate patch of X,
Xκ is equal to the pullback κ∗WF(u ◦ κ−1).

With this definition WF(u) is a closed subset of T ∗(X) \ {0} which is conic in the
sense that the intersection with the vector space given by the fiber T ∗x (X) is a cone for
every x ∈ X.

The name wavefront set is inspired by the fact that the singularities of the solutions of
the wave equation move within it (see [62]), meaning that the wavefront set describes
the evolution of the wavefront. We are now ready to introduce a sufficient condition to
have a well-defined product between distributions, i.e., the distribution w ∈ D′(Rn) from
Definition 2.2.3 exists and is unique. This condition is also known as the Hörmander
condition, since it was first introduced by Hörmander.

Theorem 2.2.11 (Product theorem/Hörmander condition, [16, Section 3.2]). Let u and
v be distributions in D′(U). Suppose that there is no point (x; ξ) ∈ WF(u), such that
(x;−ξ) ∈WF(v), then the product uv is uniquely and well-defined by w of Definition 2.2.3
(left-hand side term in (2.2.1)). Moreover, in this case

WF(uv) ⊂ S+ ∪ Su ∪ Sv,

where S+ := {(x; ξ + ω) : (x; ξ) ∈WF(u) and (x;ω) ∈WF(v)}, Su := {(x; ξ) : (x; ξ) ∈
WF(u) and x ∈ supp(v)} and Sv := {(x; ξ) : (x; ξ) ∈WF(v) and x ∈ supp(u)}.
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This theorem provides a criterion, from which we can prove that a product of distribu-
tions exists. This criterion holds even if we cannot compute their Fourier transforms ψ̂u
and ψ̂v, and do not know the explicit form of the distributions. The product theorem
has been widely applied in quantum field theory, for example in the definition of the
Feynman propagator. In addition, it is also fundamental for the theory of renormalization
in curved space-times.

In the following remark we extend the notion of wavefront set and the product theorem
to S ′(Ω).

Remark 2.2.12. Let us first notice that the notion of singular support (Definition 2.2.1)
and wavefront set (Definition 2.2.6) is easily extended to the space D′(Ω). In addition,
since S ′(Ω) ⊂ D′(Ω), both notions can also be extended to the space of tempered distribu-
tions.

Now, the wavefront set can play an important role in inverse problems. One, for
example, could aim to recover the wavefront set of the signal under study which in
some cases is easier than recovering the signal itself. The interest behind recovering the
wavefront set comes from the importance of directed singularities in mathematical image
processing, where they carry most of the information of the image to which they belong
to. Microlocal analysis provides the tools to analyze the transformation of the wavefront
set under a certain class of operators, namely, the Fourier integral operators, by the
so-called micro-canonical relations. Fourier integral operators arise naturally in many
real-world applications, for example, computed tomography (CT) reconstruction [116]
and partial differential equations [18]. The micro-canonical relation allows us to have
partial access to the wavefront set of an image, from its X-ray measurements, without
the need for any reconstruction. It is also used to analyze the singularities propagation in
the time evolution of a PDE. We will explore this concept in more depth on Section 2.3
and extend this notion to certain kind of neural network architectures in Section 4.

In order to bring a bit of light in Definition 2.2.6, we would like to introduce in the
following some examples, in which we compute the wavefront set of certain distributions.

Example 2.2.13. The simplest example is the Dirac delta distribution δ ∈ D′(Rn) (see
Definition 2.1.1). The singular support of δ(x) is {0} and for ψ ∈ D′(Rn) and ξ ∈ Rn,
we have that

ψ̂δ(ξ) = ψ(0) for all ξ ∈ Rn,
which is not fast decreasing if ψ(0) 6= 0. This shows that {(0; ξ) : ξ ∈ Rn} ⊂ WF(δ).
Now, if one considers any directed point (0; ξ) ∈ WF(δ), then (0;−ξ) ∈ WF(δ). This
means that the Hörmander condition (Theorem 2.2.11) is not satisfied when trying to
define δ2 and thus the powers of δ cannot be defined.

We would also like to compute the wavefront set for a more general class of distributions.
In imaging science, distributions representing characteristic functions of general domains
are fundamental. The characteristic function of a domain Ω ⊂ Rn is the function:

χΩ :=

{
1 if x ∈ Ω,

0 otherwise.
(2.2.4)
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The characteristic function corresponds to the distribution uΩ defined by 〈χΩ, f〉 =∫
Ω f(x)dx. In the case where the domain Ω ⊂ Rn is bounded by a smooth surface δΩ,

we can compute WF(uΩ) with the following proposition.

Proposition 2.2.14. Let Ω ⊂ Rn be a region with smooth boundary ∂Ω, and let χΩ be
the characteristic distribution of Ω. Then

WF(uΩ) = {(x; ξ) : x ∈ ∂Ω, and ξ normal to ∂Ω in x}.

Figure 2.1: Domain Ω with smooth boundary, and normal vector to the boundary

The proof of the above proposition can be found in detail in [111, p. 129]. The set
of vectors ξ which are normal to all tangent vectors to ∂Ω is known as the co-normal
bundle, defined as follows.

Definition 2.2.15. Let Ω ⊂ Rn be an open domain in Rn. The co-normal bundle of the
boundary ∂(Ω) is defined as

C : ={(x; ξ) ∈ ∂Ω× Rn \ {0} : ξ ∈ Cx},

where the set Cx, known as the co-normal fiber in x, is the set

Cx : ={ξ ∈ Rn \ {0} : ξ is normal to all tangent vectors to ∂Ω at x}.

Figure 2.1 depicts an example of an element of the fiber Cx at x. Proposition 2.2.14
states that the wavefront set of uΩ is the conormal bundle of ∂Ω.

Besides some simple examples, the wavefront set is difficult to compute in practice.
This is mainly due to the asymptotic criteria involved in its definition, which means
computing the wavefront set requires computing the “full” Fourier transform at every
point. Continuous transforms associated with certain directional multiscale systems offer
a convenient remedy. We describe this situation in Chapter 3.
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2.3 Pseudodifferential operators

So far we know that the singularities in a distribution contain an important amount of
information. In addition, the knowledge of the orientations of the singularities becomes
important in certain cases, in which one would like to understand how the singularities
are transformed under the application of certain operators.

One would like to characterize the singularities that are preserved by these operators.
The most common examples of operators that preserve singularities are the so-called
pseudodifferential operators (also written by ΨDO). One can prove that if P is a pseudod-
ifferential operator, any singularity in P(f) corresponds to a singularity in f ∈ S(R2). In
some sense, the action P will not introduce new singularities to the function. In general,
there is an explicit transformation rule from WF(f) to WF(P(f)).

In the case the forward operator of an inverse problem is modeled as a ΨDO P , having
at hand a way to find the singularities of a function f , by knowing the singularities of its
measured data P(f), becomes handy in real-world applications, modeled by an inverse
problem. We will motivate the notion of a pseudodifferential operator with the Radon
transform. The Radon transform is the forward operator that is commonly used in the
problems of parallel X-ray tomography. We can define it as follows.

Definition 2.3.1 (Radon transform). Let Ω ⊂ R2 be an open domain and f ∈ S(Ω) be
a Schwartz function. The Radon transform of a planar function f : R2 → R is the linear
operator given by

Rf(s, ϕ) :=

∫
x∈L(s,ϕ)∩Ω

f(x)dx =

∫ ∞
−∞

f(sω(ϕ) + tω⊥(ϕ))χΩ(sω(ϕ) + tω⊥(ϕ))dt

for all (s, ϕ) ∈ R× (0, π),
(2.3.1)

where ω(ϕ) := (cosϕ, sinϕ) is the unitary vector with orientation described by the angle
ϕ with respect to the x1-axis, ω⊥(ϕ) := (− sinϕ, cosϕ) and

L(s, ϕ) := {x ∈ R2 : x · ω(ϕ) = s}

is the line with distance s to the origin and normal vector ω(ϕ). Finally, χΩ : R2 → {0, 1}
is the characteristic function of Ω (see (2.2.4)).

The Radon transform Rf(s, ϕ) will measure a signal f : R2 → R by its line integrals.
These measurement samples are referred to as the sinogram. In the physical model,
the line integrals model the absorption rate of the measured body with respect to the
X-ray [90]. Another relevant notion in computed tomography is the adjoint of the Radon
transform, also known as back-projection

Definition 2.3.2 (Back-projection). Let Ω ⊂ R2 be an open domain. The back-
projection of a function g : R× (0, π)→ Ω is given by

R∗(g)(x) : =

∫ π

0
g(x · ω(θ), θ) dθ for x ∈ Ω. (2.3.2)
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The back-projection maps a function g : R × (0, π) → Ω defined on lines in Ω to a
function f : Ω→ R defined on points in x ∈ Ω by simply averaging g over all lines that
go through x.

Remark 2.3.3. In this thesis we will consider the Radon transform of Schwartz functions
S(R2) (Definition 2.1.8). Following [59, Theorem 2.4]), we have that the Radon transform
R maps the space S(R2) onto S(R× (0, π)), i.e., R : S(R2)→ S(R× (0, π)). Following
the same result we also have that the back-projection maps the space S(R× (0, π)) onto
S(R2).

A simple calculation shows that the back-projection is the dual to the Radon transform
[82, Theorem 2.75], i.e.,〈

R(f), g
〉

=
〈
f,R∗(g)

〉
for all f ∈ S(Ω) and g ∈ S(R× (0, π)). (2.3.3)

The inner product in the right-hand side above refers to the natural inner product on
L1(R2), whereas the inner product in the left-hand side is the natural inner product on
L1
(
R× (0, π)

)
.

Similarly, as we did with the Fourier transform we can extend the notion of the Radon
transform to tempered distributions u ∈ S ′(Ω). This can be done using the duality
in (2.3.3).

Remark 2.3.4. The duality in (2.3.3) can be used to extend the Radon transform to
various classes of distributions, like compactly supported distributions [59] and tempered
distributions [44, 80]. One can define the Radon transform on a tempered distribution
f ∈ S ′(Ω) as

R(f)(φ) : = f
(
R∗(φ)

)
for all φ ∈ S

(
R× (0, π)

)
.

Similarly, for a tempered distribution g ∈ S ′(R× (0, π)) we have that

R∗(g)(ψ) : = g(R(ψ)) for all ψ ∈ S(Ω).

The extension of R∗ to S
(
R× (0, π)

)
is defined analogously and one can in addition

show that [82, Sections 2.9.3.2 and 4.3.1],

R : S ′(R2)→ S ′
(
R× (0, π)

)
is a topological isomorphism,

R∗ : S ′
(
R× (0, π)

)
→ S ′(R2) is surjective.

(2.3.4)

Next, in limited-angle tomography, the data is given on lines contained in some open
set Ξ ⊂ R× (0, π). The partial Radon transform can be defined as follows.

Definition 2.3.5 (Partial Radon transform). Let Ω ⊂ R2 and Ξ ⊂ (0, π) be open
domains. The partial Radon transform RΞ : S ′(Ω)→ S ′(Ξ) is then defined as

RΞ : =PS′(Ξ) ◦ R,

where PS′(Ξ) is the restriction of S ′(R2) to S ′(Ξ).
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Note that the restriction of a tempered distribution S ′(Ω) to S(Ξ) where Ξ ⊂ R2

is open is well defined and it corresponds to a tempered distribution in S ′(Ξ). The
corresponding partial back-projection is simply defined as in (2.3.2) but by setting g to 0
on lines not contained in Ξ.

Definition 2.3.6 (Partial back-projection). Let Ω ⊂ R2 and Ξ ⊂ (0, π) be open domains.
In particular, let us assume Ξ : =R× I ⊂ R× (0, π) for some open interval I ⊂ (0, π),
then the partial back-projection operator R∗Ξ : S(Ξ)→ S(Ω) is given by

R∗Ξ(g)(x) =

∫
I
g(x · ω(θ), θ) dθ for x ∈ Ω and g ∈ S(Ξ).

This can be extended to S ′(Ξ) in a similar fashion as we did for the full back-projection
R∗.

From now on we will simply write R and R∗ to refer to the partial operators, specifying
explicitly the domains Ω and Ξ.

The problem of estimating f from incomplete measurements of RΞf , known as limited-
angle tomographic reconstruction, is severely ill-posed. Specifying the wavefront set is a
strong prior for the reconstruction [38]. For this reason, one would like to understand in
detail how the wavefront set of a function is transformed under the Radon transform.
Let us first introduce some results to motivate such analysis.

Theorem 2.3.7 ([70, Section 1.4.2]). Let f ∈ S(Ω) and R be the Radon transform given
by (2.3.1). Then

R∗Rf(x) =

∫
Ω
eix·ξ

2

||ξ||
f̂(ξ)dξ =

1

π

∫
R2\{0}

∫
Ω
ei(x−y)·ξ 1

||ξ||
f(y)dydξ. (2.3.5)

This theorem introduces a way to express the operator R∗R with the integral repre-
sentation

Pf(x) : =R∗Rf(x) =
1

4π2

∫
R2

∫
R2

ei(x−y)·ξp(x, y, ξ)u(y)dydξ, x ∈ R2. (2.3.6)

The representation of an operator given by (2.3.6), in addition to certain estimates on
the amplitude function p allows one to prove that no new singularities will be introduced
under the action of P, in other words

WF(Pf) ⊂WF(f). (2.3.7)

Operators of the form (2.3.6) are known as pseudodifferential operators also referred to
as ΨDOs. The precise definition of ΨDOs will follow. Before we study (2.3.7) in detail,
let us first study the simplest case, a linear partial differential operator. Consider a linear
partial differential operator P given by
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P(x,D) =
∑
|ν|≤m

aν(x)Dν
x for x ∈ R2 and D : S(R2)→ S(R2),

where ν = (ν1, . . . , νn) is a multi-index and

Dν
x = (−i)(ν1+...+νn) ∂

ν1

∂xν1
1

. . .
∂νn

∂xνnn
.

Applying the Fourier transform, we have

D̂ν
xf(ξ) =

1

2π

∫
R2

e−ix·ξDν
xf(x)dx, ξ ∈ R2 \ {0}.

Using this form we obtain

P(x,D)f(x) =
1

4π2

∫
R2

ei(x−y)·ξp(x, ξ)f(y)dydξ, (2.3.8)

where the corresponding amplitude is given by

p(x, ξ) =
∑
ν

aν(x)ξν , x ∈ R2 and ξ ∈ R2 \ {0}.

Notice that the function p satisfies the following property: Let α, β be any multi-indices,
and K ⊂ R2 a compact set, there is a constant C such that

|∂αξ ∂βxp(x, ξ)| ≤ C(1 + ||ξ||)m−|α| for all x ∈ R2 and ξ ∈ R2 \ {0}. (2.3.9)

In other words, the differentiating with respect to ξ raises the order of decay of p. We
can extend this notion to operators other than differential operators. An operator that
has the form (2.3.8) where p holds the estimate (2.3.9) is pseudodifferential operator. We
present the precise definition in the following.

Definition 2.3.8 (Amplitude function, [70, Section 1.4.2]). Let Ω,Ξ ⊂ R2 be open
domains. An amplitude of order m is a function p : Ξ× Ω× R2 \ {0} → R that satisfies
the following properties

1. p(y, x, ξ) ∈ C∞(Ξ× Ω× R2 \ {0}),

2. For every compact K ⊂ Ω and for multi-indices α, β, γ,

a) there is a constant C = C(K,α, β, γ) such that

|Dα
ξD

β
xD

γ
yp(y, x, ξ)| ≤ C(1 + ||ξ||)m−|α|,

for x, y ∈ K and ||ξ|| > 1, and

b) p(y, x, ξ) is locally integrable for x and y in K and ||ξ|| ≤ 1.

Dissertation, LMU München, 2021 31



Applied Microlocal Analysis of DNNs for Inverse Problems Hector Andrade Loarca

The amplitude is also referred to as symbol. The term with the highest degree of a symbol
p is known as the principal symbol.

Notice that in Definition 2.3.8, the amplitude p does not necessarily need to be a
polynomial in ξ, it just needs to follow the same estimates as a polynomial.

Definition 2.3.9 (Definition 5, [70, Section 1.4.2]). Let Ω ⊂ R2 be an open domain. In
addition, let P : S(Ω)→ S(Ω) be an operator. Then, P is a pseudodifferential operator
(ΨDO) of order m if for all f ∈ S(Ω)

Pf(x) =
1

4π2

∫
R2

∫
R2

ei(x−y)·ξp(y, x, ξ)f(y)dydξ,

where p is an amplitude of order m. If in addition, for each compact set K ⊂ Ω, there is
a constant CK > 0 such that,

|p(y, x, ξ)| ≥ Ck(1 + ||ξ||)m, (2.3.10)

we say that P is an elliptic ΨDO of order m.

Again, by duality, we can think of the operator P as an operator acting in S ′(Ω). The
estimates imposed on the amplitude function p in Definition 2.3.8 give pseudodifferential
operators the property of not introducing new singularities to the functions it acts upon.
This is also known as the pseudolocal property.

Theorem 2.3.10 (Pseudolocal property, [114, Chapter 6]). If P : S ′(Ω)→ S ′(Ω) is a
pseudodifferential operator, then P satisfies the pseudolocal property. Namely, for all
f ∈ S ′(Ω),

sing supp(Pf) ⊂ sing supp(f) and WF(Pf) ⊂WF(f).

If in addition, P is elliptic, then

sing supp(Pf) = sing supp(f) and WF(Pf) ⊂WF(f).

The proof of Theorem 2.3.10 can be found in [114]. It is worth to notice that this
theorem implies that, although a pseudodifferential operator can spread out the support
of a function, it does not spread out the singular support of the function. In the case of
the operator P = R∗R, we have

R∗Rf(x) =
1

π

∫
Rn
ei(x−y)·ξ 1

||ξ||
f(y)dydξ.

Since p(x, y, ξ) = 4π
||ξ|| satisfies the estimates in Definition 2.3.8 for the order m = −1, and

satisfies the estimate of Equation (2.3.10), R∗R is an elliptic pseudodifferential operator
of order m = −1. Applying Theorem 2.3.10, we have that WF(R∗Rf) = WF(f), this
becomes very useful when performing tomographic reconstruction on incomplete data,
where one is able to use the pseudolocal property to find the singularities of the signal
that are preserved in the data. We will later explore this approach in more detail in
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Chapter 8. Notice that a pseudodifferential operator, by definition, shares the same
domain and codomain. This is not the case for the Radon transform R. The need to
have a similar theory for these kind of more general operators gives rise to the concept of
a Fourier integral operator.

2.4 Fourier integral operators

One useful property of the Radon transform is the so-called projection slice theorem. This
will help us to later relate the Fourier transform of a function with its Radon transform.

Theorem 2.4.1 (Projection slice theorem, [70, Theorem 1]). Let Ω,Ξ ⊂ R2 be open
domains. In addition, let f ∈ L1(R2), h ∈ L∞(R) and ω : [0, 2π)→ R, given by

ω(ϕ) : =(cosϕ, sinϕ) for all ϕ ∈ [0, 2π].

Then the Radon transform of f , Rf(s, ϕ) (Definition 2.3.1) follows∫
x∈R2

f(x)h(x · ω(ϕ))dx =

∫ ∞
s=−∞

Rf(s, ϕ)h(s)ds.

Proof. Let ϕ ∈ (0, π). First, note that the function x 7→ f(x)h(x ·ω(ϕ)) is in L1(Ω) since
h is bounded and measurable. For the same reason, the function

(s, t) 7→ f(sω(ϕ) + tω⊥(ϕ))h(s)

is in L1(Ω). We have that∫
x∈R2

f(x)h(x · ω(ϕ)) =

∫ ∞
s=−∞

∫ ∞
t=−∞

f(sω(ϕ) + tω⊥(ϕ))h(s)dtds

=

∫ ∞
s=−∞

Rf(s, ϕ)h(s)ds,

where the first equality holds by rotation invariance of the Lebesgue integral [99], Fubini’s
theorem and the fact that s = ω(ϕ) · (sω(ϕ) + tω⊥(ϕ)). The second equality holds by
definition of R.

For simplicity, let us next introduce the Fourier slice theorem of the Radon transform,
a special case of Theorem 2.4.1:

Theorem 2.4.2 (Fourier slice theorem, [70, Theorem 2]). Let Ω ⊂ R2 and Ξ ⊂ R× (0, π)
be open domains, and f ∈ L1(R2). Then, for (ξ, ϕ) ∈ Ξ, we have that

f̂(ξω(ϕ)) =
1

(2π)1/2
FsRf(ξ, ϕ),

where ω(ϕ) = (cosϕ, sinϕ) ∈ S1, ξ ∈ R \ {0}, and FsRf is the Fourier transform of
Rf(s, ϕ) in the s coordinate (Definition 2.3.1).
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Proof. Let f ∈ S(Ω). By the projection slice theorem (Theorem 2.4.1), we have that∫
x∈R2

f(x)h(x · ω(ϕ))dx =

∫
R
Rf(s, ϕ)h(s)ds,

where ω(ϕ) = (cosϕ, sinϕ) ∈ S1 and h ∈ L∞(R). By taking h(s) = e−isξ, we finally
obtain

f̂(ξω(ϕ)) =

∫
x∈R2

f(x)e−i(x·ω(ϕ))ξdx =

∫
R
Rf(s, ϕ)e−isξds =

1

(2π)1/2
FsRf(ξ, ϕ).

By making use of Theorem 2.4.2, we get a special Fourier representation of the Radon
transform given by

Rf(s, ϕ) =
1

(2π)1/2

∫
ξ∈R

eisξFs(Rf)(ξ, ϕ)dξ

=

∫
R
eisξ f̂(ξω(ϕ))dξ

=
1

2π

∫
ξ∈R

∫
x∈R2

ei(s−(x·ω(ϕ)))ξf(x)dxdξ,

(2.4.1)

where ω(ϕ) = (cosϕ, sinϕ). The expression in Equation (2.4.1) looks like a pseudodiffer-
ential operator, except that the exponential term has the phase function φ((s, ϕ), x, ξ) :=
(s− (x · ω(ϕ)))ξ as argument. In addition, f and Rf are defined over different domains.
Similar to the case of a pseudodifferential operator, if we impose certain estimates on the
phase function φ, we are able to describe the way the operator acts on the singularities
of f . These operators are known as Fourier integral operators, and we have the necessary
concepts to introduce them.

Definition 2.4.3 (Phase function, [70, Definition 6]). Let Ω,Ξ ⊂ R2 be open subsets. A
real valued functions φ ∈ C∞(Ξ× Ω× R2 \ {0}) is called a phase function if

1. φ is positive homogeneous of degree 1 in ξ; that is, φ(y, x, rξ) = rφ(y, x, ξ) for all
r > 0.

2. (∂yφ, ∂ξφ) and (∂xφ, ∂ξφ) do not vanish for all (y, x, ξ) ∈ Ξ× Ω× R2 \ {0}.

Definition 2.4.4 (Fourier Integral Operator, [70, Definition 7]). Let Ω,Ξ ⊂ R2 be open
subsets. A Fourier integral operator (FIO) P : S(Ω) −→ S(Ξ) is an operator of the form

Pf(y) =

∫
ξ∈R2\{0}

∫
x∈X

eiφ(y,x,ξ)p(y, x, ξ)f(x)dxdξ for all y ∈ Ξ and f ∈ S(Ω),

where φ is a phase function that follows the estimates of Definition 2.4.3. In addition,
p ∈ C∞(Ξ × Ω × R2 \ {0}) is an amplitude function. Following that, for all compact
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K ⊂ Ξ × Ω and for all multi-index α, β, γ, there is a constant C = C(K,α, β, γ) such
that

|Dα
ξD

β
xD

γ
yp(y, x, ξ)| ≤ C(1 + ||ξ||)m−|α| for all x, y ∈ K and ξ ∈ R2 \ {0},

for some m ∈ R, the degree of the operator.

We will also define the operator P : S ′(Ω)→ S ′(Ξ) using the extension by duality, that
is, for u ∈ S ′(Ω)

P(u)(g) : =u(P∗g) for all g ∈ S(Ξ),

where P ∗ is the adjoint of P . In the case of a Fourier integral operator, since the domain
and co-domain are different, the transformation formula for the wavefront set does not
have the trivial form as for the pseudodifferential operator. In this case, the phase
function spreads out the singularities. We will define the microcanonical relation that
considers the spreading of singularities by φ.

Definition 2.4.5 (Microcanonical relation). Let P : S ′(Ω)→ S ′(Ξ) be a Fourier integral
operator with a phase φ ∈ C∞(Ξ× Ω× R2 \ {0}). Let us define

Σφ := {(y, x, ξ) ∈ Ξ× Ω× R2 \ {0}|∂ξφ(y, x, ξ) = 0}, (2.4.2)

and
Cφ := {

(
(y; ∂yφ(y, x, ξ)

)
,
(
x;−∂xφ(y, x, ξ))

)
|(y, x, ξ) ∈ Σφ}. (2.4.3)

We call the set Cφ the microcanonical relation of φ.

The microcanonical relation helps us to find the singularities of Pf from the singularities
of f . We will present this result in the next theorem, originally introduced by Hörmander
[63].

Theorem 2.4.6 ([63]). Let P : S ′(Ω) → S ′(Ξ) be a Fourier integral operator with an
associated microcanonical relation Cφ. Then for f ∈ S ′(Ω) we have that

WF (Pf) ⊂ Cφ ◦WF (f), (2.4.4)

where
Cφ ◦WF (f) := {(y;µ)|∃(x;λ) ∈WF (f) with ((y;µ), (x;λ)) ∈ Cφ}.

The microcanonical relations allow us to find the wavefront set of a function f from the
measurements Pf . Such a subset of the wavefront set is contained, according to (2.4.4),
in Cφ ◦WF(f), where Cφ is the microcanonical relation of P (Definition 2.4.5). In many
cases, the forward operator modelling real-world inverse problems in imaging are in
fact Fourier integral operators. This fact makes it possible to use the microcanonical
relation in order to compute a subset of the wavefront set of the target function without
the need of a reconstruction. Being the main example to motivate the definition of
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pseudodifferential and Fourier integral operator, the Radon transform is generally the
standard example for the use of the microcanonical relation.

Researchers use the microcanonical relation to find singularities in images that can be
faithfully reconstructed from their Radon transform. We will explore this in more detail
in the next section.

2.5 Microlocal analysis of the Radon transform

In this section we will explore in depth the microlocal properties of the Radon transform.
In Section 2.4 we showed that the Radon transform can be represented in the integral
form

Rf(s, ϕ) =
1

2π

∫
ξ∈R

∫
x∈R2

ei(s−(x·ω(ϕ)))ξf(x)dxdξ. (2.5.1)

This implies that R is a Fourier integral operator with phase function φ((s, ϕ), x, ξ) =
(s − (x · ω(ϕ)))ξ, with ω(ϕ) = (cosϕ, sinϕ) and amplitude p(y, x, ξ) = 1

2π . Using
Definition 2.4.5 we can find the microcanonical relation of R given by

WF(Rf) ⊂ Cφ ◦WF(f),

where

Σφ := {(y, x, ξ) ∈ Y ×X × R2 \ {0}|∂ξφ(y, x, ξ) = 0},
and

Cφ := {((y; ∂yφ(y, x, ξ)), (x;−∂xφ(y, x, ξ))) : (y, x, ξ) ∈ Σφ}.
In the case of R, we have φ((s, ϕ), x, ξ) = ξ(s− x · ω(ϕ)). Let us compute the exact form
of Cφ by computing the derivatives of φ:

∂xφ((s, ϕ), x, ξ) = −ξω(ϕ),

∂(s,ϕ)φ((s, ϕ), x, ξ) = ξ(1,−x · ω⊥(ϕ)),

∂ξφ((s, ϕ), x, ξ) = (p− x · ω(ϕ), 0),

(2.5.2)

where · : R2 × R2 → R is the dot product. Notice that ∂xφ and ∂(s,ϕ)φ are not zero for
ξ 6= 0, which means that the phase function is non-degenerate. This confirms that R is a
Fourier integral operator. Since the amplitude function of R, p((s, ϕ), x, ξ) = 1/2π, is
homogeneous of degree zero, and has order m = −1/2, this also implies that R is elliptic.
Using the derivatives (2.5.2), Σφ is given by:

Σφ = {((s, ϕ), x, ξ) ∈ (R× [0, 2π))× R2 × R \ {0}|s− x · ω(ϕ) = 0}.
Therefore, the microcanonical relation can be represented by the mapping:(

(s, ϕ), x, ξ
)
7→
(
(((x · ω(ϕ), ϕ); ∂(s,ϕ)φ), (x;−∂xϕ)

)
=
(
(((x · ω(ϕ), ϕ); ξ(1,−x · ω⊥(ϕ))), (x; ξω(ϕ))

)
.

(2.5.3)
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We can then characterize the propagation of singularities of R.

Theorem 2.5.1 (Propagation of singularities of R, [91, Theorem A.6]). Let f ∈ S(Ω),
then

a) Let (x0;λ0) ∈ Ω× S1, and let ϕ0 ∈ (0, π) such that λ0 = ω(ϕ0) = (cosϕ0, sinϕ0).
If (x0;λ0) ∈WF(f), then ((x0 · λ0, ϕ0); (1,−x0 · λ⊥0 )) ∈WF(Rf).

b) Let (s0, ϕ0) ∈ R×(0, π) and assume ((s0, ϕ0); (1,−A)) ∈WF(Rf). Then, (s0ω(ϕ0)+
Aω⊥(ϕ0);ω(ϕ0)) ∈WF(f).

Proof. Since R is an elliptic Fourier integral operator, we have

WF(Rf) = Cφ ◦WF(f), (2.5.4)

where Cφ is given by Definition 2.4.5. Therefore

WF(Rf) = {((s, ϕ);µ)|∃(x;λ) ∈WF (f) with (((s, ϕ);µ), (x, ξ)) ∈ Cφ}
Using Equation (2.5.3) we finally get the results in part a) and b).

Part a) in Theorem 2.5.1 implies that R detects singularities perpendicular to the line of
integration, since by definition λ0 = ω(ϕ0) is perpendicular to the line L(x0 ·ω(ϕ0), ω(ϕ0)).
Part b) implies that if (s0, ϕ0) ∈ sing supp(Rf) it must come from a singular directed
point of f in the line L(s0, ω(ϕ0)) and in a direction perpendicular to such line.

For a more convenient representation, the microcanonical relation for the Radon
transform in Definition 2.3.1 at tempered distribution f ∈ S ′(R2) is a precise relationship
between WF(R(f)) and WF(f). If P denotes taking the power set, then this can be
expressed as a map

K : P
((

R× (0, π)
)
× S1

)
→ P(R2 × S1), (2.5.5)

where K WF((R(f))) = WF(f) for f ∈ S ′(R2). In limited-angle tomography we only
have access to the Radon transform on an open subset Ξ ⊂ R×(0, π). The microcanonical
relation then holds for the so-called visible wavefront set of a function/distribution f
that is given by

WFvis(f) : = WF(f) ∩K(Ξ). (2.5.6)

Following [70], we next provide a more precise characterization of the microcanonical
relation in terms of a mapping between wavefront sets in image and sinogram, respectively.

Theorem 2.5.2. The microcanonical relation for the Radon transform R : S ′(R2) →
S ′
(
R× (0, π)

)
at f ∈ S ′(R2) can be represented by the mapping

CanR(f) : WF(f)→WF
(
R(f)

)
defined as

CanR(f)

(
x;ω(θ)

)
: =
((
x·ω⊥(θ), θ+π/2

)
;ω
(

arctan
(
−x·ω(θ)

)))
for

(
x;ω(θ)

)
∈WF(f),

(2.5.7)
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with ω(θ) : =(cos θ, sin θ) and ω(θ)⊥ : =(− sin θ, cos θ). This means,(
x;ω(θ)

)
∈WF(f) ⇐⇒ CanR(f)

(
x;ω(θ)

)
∈WF

(
R(f)

)
.

Proof. The Radon transform in (2.3.1) is a Fourier integral operator with phase function
φ((s, θ), x, ξ) : =

(
s −

(
x · ω(θ)

))
ξ and amplitude p(y, x, ξ) : = 1/(2π). Thus, the micro-

canonical relation of R : S ′(R2)→ S ′(R× (0, π)) is given by (2.5.4).
We then derive the exact form of Cφ by computing the derivatives of φ, which are

∂xφ
(
(s, θ), x, ξ

)
= −ξω(θ),

∂(s,θ)φ
(
(s, θ), x, ξ

)
= ξ
(
1,−x · ω⊥(θ)

)
,

∂ξφ
(
(s, θ), x, ξ

)
=
(
s− x · ω(θ), 0

)
.

(2.5.8)

Notice that ∂xφ and ∂(s,θ)φ are not zero for ξ 6= 0, which means that the phase function
is non-degenerate. This confirms that R is a Fourier integral operator.

Next, R is of order m = −1/2 with an amplitude function p((s, θ), x, ξ) = 1/(2π) that
is homogeneous of degree zero, implying that R is elliptic. Using the derivatives (2.5.8),
Σφ is given by

Σφ =
{(

(s, θ), x, ξ
)
∈
(
R× [0, 2π)

)
× R2 × R \ {0} : s− x · ω(θ) = 0

}
.

Therefore, the microcanonical relation can be represented by the coordinate mapping(
(s, θ), x, ξ

)
7→
(((

x · ω(θ), θ
)
; ∂(s,θ)φ

)
, (x,−∂xθ)

)
=
(((

x · ω(θ), θ
)
; ξ
(
1,−x · ω(θ)⊥

))
,
(
x, ξω(θ)

))
.

(2.5.9)

Now, let
(
x;ω(θ)

)
∈ WF(f) be an oriented singular point of f . By (2.5.9), we obtain

that(
x;ω(θ)

)
∈WF(f)=⇒

((
x · ω(θ)⊥, θ + π/2

)
;ω
(

arctan
(
−x · ω(θ)

)))
∈WF

(
R(f)

)
.

Finally, [91, Theorem 6.3] gives(
x;ω(θ)

)
∈WF(f) ⇐⇒

((
x · ω(θ)⊥, θ + π/2

)
;ω
(

arctan
(
−x · ω(θ)

)))
∈WF

(
R(f)

)
.

(2.5.10)
This concludes the proof.

We next focus on the propagation of singularities performed by the adjoint of the
Fréchet derivative of the Radon transform, which is the back-projections operator R∗ in
Definition 2.3.2. In the next proposition, we use (2.3.5) to introduce the corresponding
mapping associated with the microcanonical relation for R∗ in a similar fashion to
Theorem 2.5.2.
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Proposition 2.5.3. The microcanonical relation for the back-projection operator
R∗ : S ′

(
R× (0, π)

)
→ S ′(R2) in (2.3.2) at g ∈ S ′

(
R× (0, π)

)
can be represented by the

mapping
CanR∗(g) : WF(g)→WF

(
R∗(g)

)
,

which is defined at
(
(s, θ);ω(ϑ)

)
∈WF(g) as

CanR∗(g)
(
(s, θ);ω(ϑ)

)
: =
(
(s cos θ − tanϑ sin θ, s sin θ + tanϑ cos θ); θ − π/2

)
, (2.5.11)

where ω(θ) : =(cos θ, sin θ). This means,(
(s, θ);ω(ϑ)

)
∈WF(g)⇔ CanR∗(g)

(
(s, θ);ω(ϑ)

)
∈WF

(
R(f)

)
.

Proof. Note first that (2.3.5) implies that the operatorR∗R : S(R2)→ S(R2) is an elliptic
pseudodifferential operator with amplitude function p(y, x, ξ) : = 1/‖ξ‖. By duality we
can extend this to a mapping R∗R : S ′(R2) → S ′(R2). In addition, the pseudolocal
property of pseudodifferential operators (see Theorem 2.3.10) implies that R∗R will
preserve the wavefront set of functions in S(R2), i.e., WF(R∗R(f)) = WF(f). This
allows us to represent the microcanonical relation for the inverse mapping in terms of
the microcanonical relation mapping for R. Finally, by inverting the mapping implicit in
(2.5.10), for g ∈ S ′

(
R× (0, π)

)
, we obtain that(

(s, θ);ω(ϑ)
)
∈WF(g)⇔

(
(s cos θ−tanϑ sin θ, s sin θ+tanϑ cos θ); θ−π

2

)
∈WF

(
R∗(g)

)
.

(2.5.12)

Notice that every ΨDO is also a FIO with the phase function φ(y, x, ξ) := (y − x) · ξ.
These types of operators appear in various imaging applications in the natural sciences,
in particular, computed tomography (CT), magnetic resonance imaging (MRI), and
electroencephalography (EEG). This suggests a great potential for microlocal analysis in
such fields. The first thing that stops people to directly apply microlocal analysis theory to
real-world problems, is the continuous nature of the theory. It is important to understand
that singularities in signals formally exist just in the continuous setting. Indeed, the
wavefront sets are defined based on asymptotic analysis of the Fourier transform.

In reality, we have just access to a finite number of Fourier coefficients, therefore,
such asymptotic analysis will be technically impossible to perform on the computer.
Another challenge that one will encounter trying to design an algorithm that resolves
the wavefront set is related to the localization procedures presented in Definition 2.2.6.
In short, one needs to localize the singular directed points in space and orientation,
but such localization is unspecified by the definition. One way to alleviate the last
challenge is by the introduction of multiscale directional systems. These systems, coming
from applied harmonic analysis, are able to resolve the wavefront set by analyzing
the asymptotic behavior of the corresponding coefficients for specific localization and
orientation. Chapter 3 will introduce in detail the notion of multiscale directional systems,
and in particular, shearlet systems. These systems allow us to resolve the wavefront
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set reliably. In addition, the faithful discretization of the shearlet transform allows us
to implement a digital wavefront set extractor. This extractor is based on the digital
shearlet transform and a deep convolutional neural network classifier. We will present
this algorithm in Chapter 5.
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3 Continuous wavefront set resolution via
harmonic analysis

The area of harmonic analysis was originally introduced as the study of representations of
functions or signals as the linear combination of basic waves. In some sense, it generalizes
the notion of Fourier analysis. As part of this aim, in the last decades, applied harmonic
analysis has developed multiscale systems for efficient representations as well as the
analysis of regularity and detection of features such as singularities. This approach is
motivated by a paradigm shift, recently observed in distinct scientific disciplines, namely,
sparse approximation. The novel paradigm of sparse approximations has enabled the
highly efficient encoding of signals, and various of new image processing methodologies,
such as missing data recovery and morphological separation, see [45]. We will discuss
these methodologies in Sections 3.2, 3.3 and 3.4, but first we will motivate the notion of
wavefront set extraction in the context of real-world applications.

3.1 Motivation

In many scientific and industrial real-world applications, one requires a precise under-
standing how model parameters, are transformed under some measuring process that is
described by an operator. This analysis is generally very challenging, and one attempt
to simplify it consists of treating the singular (non-smooth) and smooth parts of the
function separately. In fact, as already discussed in Chapter 2, a significant portion of
the useful information is often contained in the singular part. In our particular case, for
images, the singular part can be understood as edges, ridges, or ramps in the image. In
this context, microlocal analysis is very useful, since it aims to precisely describe how
the singular part of a function, or more generally a distribution, is transformed under
the action of an operator. The most important observation in microlocal analysis is
that information about the location of the singularities (singular support) needs to be
complemented by directional information, known as microlocalization.

In Section 2.4, we discussed how this extra (“microlocal”) information is key in
understanding the propagation of singularities by Fourier integral operators, including
differential and pseudodifferential operators, as well as many integral operators arising
in integral geometry. Such operators are frequently encountered in scientific computing,
physical science, and many biomedical imaging problems such as X-ray tomography
[61, 20]. Furthermore, microlocal analysis is also particularly useful in inverse problems,
where the goal is to reliably recover a hidden model parameter (signal) from a noisy
transformed version. The goal here is to recover the wavefront set of the signal (image)
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given the noisy realization of a transformed version of it. Such applications frequently
arise when using imaging/sensing technologies, where the transform is a Fourier integral
operator [70].

The idea that edges are often sufficient to semantically understand an image is also
based on neurophysiology. As presented by Field et al. in [42], the complex cells in the
human visual cortex respond primarily to oriented edges and gratings, making humans
very sensitive to oriented edge-like structures. More specifically, it has been discussed in
[84] that the human visual cortex performs multiple operations of image processing, the
first of which is rough sketching involving edge detection (for more information on the
role of singularities in the visual cortex we refer to [113, 14, 15]). For the aforementioned
and additional reasons, there exists a rich set of applications of microlocal analysis to
tomographic imaging. In these applications, the transformation relating the image to
data is the Radon transform (Definition 2.3.1) which can be regarded as a Fourier integral
operator. We discussed Section 2.5 the microlocal analysis of this operator. Similar
principles hold for transforms integrating along with other types of curves, for example,
ellipses with foci on the x-axis and geodesics [115]. Another observation is that recovering
a signal from its ray transform is less ill-posed if one knows the wavefront set a priori.
This was demonstrated in [38], where the severely ill-posed reconstruction problem in
limited angle tomography becomes mildly ill-posed if the wavefront set of the solution
is provided as prior information. We refer to [91] for an application of this principle to
cryo-electron tomography.

3.2 Multiscale systems

Multiscale systems are formed by functions resulting from transformations applied to a
set of generating functions in a specific space. These transformations need to include
a scaling action, leading to different resolutions. The scaling of a generating function
enables the system to extract features of different sizes, allowing it to detect persistent
properties along scales, including singularities, or edges, in multiple dimensions. The
first celebrated multiscale system was the wavelet system [81]. The wavelet system is the
best-known example of an isotropic multiscale system, and we will discuss it in detail in
the next section.

Although we study first multiscale systems defined on L2(R2), later we present the
main results on wavefront set resolution for tempered distributions S ′(Ω).

3.2.1 Isotropic multiscale systems

Let us first introduce the definition of the 2D wavelet transform [30].

Definition 3.2.1 (Two-dimensional wavelet transform). Let ψ ∈ L2(R) be a function,
we refer to ψ as a wavelet function if it follows

Cψ :=

∫
ξ∈R2

|ψ̂(ξ)|2

|ξ|
dξ <∞,
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where ψ̂ is the Fourier transform of ψ (see Section 2.1) . Then, the associate two-
dimensional wavelet transform of f ∈ L2(R2) is given by

Wψf(a, b) :=

∫
R2

f(x1, x2)ψa,b(x1, x2)dx,

where a > 0 and b ∈ R2, and ψa,b is defined as

ψa,b(x1, x2) := a−1/2ψ(ax1 − b1, ax2 − b2).

The function ψa,b is also refered to as wavelets.

The main reasons for the success of wavelets is their ability to optimally approximate
1D signals [81]. They are able to represent singularities much more efficiently than
Fourier methods. the wavelet transform also have fast algorithmic implementations which
precisely digitize the continuous domain transform. In addition, the wavelet system has a
rich mathematical structure, which allows one to design families of wavelets with various
desirable properties expressed in terms of regularity, decay, and vanishing moments. These
properties set off a revolution in image and signal processing, including the introduction
of the algorithm JPEG2000, a commonly used algorithm for image compression.

Although wavelets have shown to be optimal for extraction of point-wise singularities
in 1D functions, in more than one dimension, representing functions solely by scaling
and translation is not enough to efficiently represent singularities along curves. In the
case of 2D, one needs to encode not just the position of the singularities, but also the
orientation, i.e., the wavefront set. Because of this, wavelets are not able to sparsely
represent 2D functions, like images. In fact, wavelets are deficient in describing edge
singularities due to their isotropic nature. This was formally proven in 2004 by Candès
and Donoho [22]. At the same time, they introduced a new multiscale system called
curvelets to overcome such limitations. The curvelet system uses parabolic scaling
and rotation to efficiently represent curvilinear singularities. More generally, systems
that make use of transformations to change the orientation of a function are known as
geometric multiscale systems.

3.2.2 Multiscale directional systems

As discussed above, the curvelet system was introduced by Candès and Donoho for
overcoming the lack of directional representation of the already existing multiresolution
systems, such as wavelets. The curvelet system can be regarded as a breakthrough in the
optimal representation of such curvilinear singularities, formalized with the concept of
cartoon-like functions.

The class of cartoon-like functions is of special interest in imaging sciences. It was
introduced by Donoho in [34] to provide a simplified model of natural images, which
emphasizes anisotropic features, such as edges, and is consistent with many models of
the human visual system. A natural image basically consists of smooth regions separated
by edges. Based on this, one could consider piecewise regular functions. An example of
this is depicted in Figure 3.1. This concept is formalized by Defintion 3.2.2
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Definition 3.2.2 (Cartoon-like images class [73, Definition 1]). The class E2(R2) of
cartoon-like images is the set of functions f : R2 → C of the form

f = f0 + f1χB,

where B ⊂ [0, 1]2 is a set with boundary ∂B a closed C2-curve with bounded curvatures and
fi ∈ C2(R2) (two times continuously differentiable) are functions with supp(fi) ⊂ [0, 1]2

and ||fi||C2 ≤ 1 for each i = 0, 1. In this context the C2−norm || · ||2 is given by

||f ||C2 = max
x

(|f(x)|+ |f ′(x)|+ |f ′′(x)|)

Figure 3.1: Visual representation of a cartoon-like function.

Before we can talk about the approximation power of wavelet and curvelet systems, it
is important to discuss the notion of a frame. Frame theory was introduced due to the
need for redundant systems in functional analysis. It was originally developed by Duffin
and Schaeffer in [35], with the intention of having stability even when the decomposition
is nonunique. A general definition is presented below.

Definition 3.2.3. Let H be a Hilbert space, a sequence {ψi}i∈I ⊂ H is called a frame
for H, if there exist constants 0 < A ≤ B <∞ such that

A||f ||2 ≤
∑
i∈I
|〈f, ψi〉|2 ≤ B||f ||2 for all f ∈ H.

The constants A and B are called lower and upper frame bounds. Furthermore, if A
and B can be chosen to be equal, we call the frame a (A−) tight frame. If the choice
A = B = 1 is possible, {ψi}i∈I is called a Parseval frame.

An important consequence of the above definition is that a frame in a Hilbert space
H spans H, i.e. span{ψi : i ∈ I} = H. According to this, one can characterize the
approximation power of a frame and even a general collection of vectors over the Hilbert
space with the concept of best N−term approximation.
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Definition 3.2.4. Let H be a Hilbert space and Ψ = {ψi}i∈I ⊂ H be a collection of
vectors, e.g., a frame. The set

ΣN (Ψ) :=

{∑
i∈I

ciψi : #{i : ci 6= 0} ≤ N

}
⊆ H

is called the non-linear N -term approximation manifold. Then, the best N -term approxi-
mation error of f ∈ H is defined as

σN (f,Ψ) := inf
g∈ΣN (Ψ)

||f − g||.

In the realm of sparse representation, the optimal N -term approximation in the sense
that minimizes σN (f,Ψ) for f ∈ H plays an important role. In this case, optimality
means that σN (f,Ψ) is as small as possible. For cartoon-like functions E2(R2), one is
able to find the explicit optimal approximation rate, i.e., the rate of decay of σN (f,Ψ)
with respect to N , as expressed in the next theorem.

Theorem 3.2.5 ([34]). Let {ψi}i∈I ⊂ L2(R2) be a frame for L2(R2). Then the optimal
best N−term approximation rate for any f ∈ E2(R2) is

σN (f, {ψi}i) = O(N−1), as N →∞.

The proof of this result is quite long and technical. To not distract our main goal, we
will refer to [34] for the reader with an interest in a detailed explanation.

We can now present a heuristic argument, which highlights the limitations of traditional
wavelet systems with respect to more sophisticated multiscale directional systems when
aiming to sparsely approximate cartoon-like images optimally. For this, let f ∈ E2(R2) be
a cartoon-like image containing a singularity along a smooth curve, and {ψaj ,b} ⊂ L2(R2)
the two dimensional wavelet system (Definition 3.2.1). For scale aj = 2−j (j ∈ N)
sufficiently small, the only significant wavelet coefficients 〈f, ψaj ,b〉 are those located near
the singularity. Since at scale aj = 2−j , each wavelet ψaj ,b is supported, or essentially
supported, inside a box of size 2−j×2−j , there exist about 2j elements of the wavelet basis
overlapping the singularity curve. The associated wavelet coefficients can be controlled
by

|〈f, ψaj ,b〉| ≤ ||f ||∞||ψaj ,b||L1 ≤ C2−j ,

where ||f ||∞ = maxx∈R2 |f(x)|. It follows that the N th largest wavelet coefficients in
magnitude, which we denote by 〈f, ψj,b〉(N), is bounded by O(N−1). Thus, if f is
approximated by its best N−term approximation fN , the L2 error obeys

||f − fN ||2L2 ≤
∑
`≥N
|〈f, ψaj ,b〉(`)|

2 ≤ CN−1.

Therefore,

ψN (f, {ψaj ,b}) = O(N−1/2), as N →∞. (3.2.1)
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This approximation rate is clearly slower than the optimal approximation rate of the
cartoon-like functions given by Theorem 3.2.5.

In order to gain more intuition on the reason for the poor representation power of
wavelet systems in two dimensions, we will introduce an alternative form of Theorem 3.2.5.

Theorem 3.2.6 ([73]). Let f ∈ E2(R2) be a cartoon-like image. There exists a constant
C such that, for any N , a triangulation of [0, 1]2 with N triangles can be constructed
so that the piecewise linear interpolation -according to the triangulation- fN of these
triangles satisfies

||f − fN ||L2 ≤ CN−1, N →∞.

The proof of this theorem, given by Donoho [34], makes extensive use of adapted
triangulations. This suggests that analyzing elements with elongated and oriented
supports are useful to achieve optimally sparse approximations of piece-wise smooth
functions in 2D. Indeed, the isotropic scaling of wavelets is the main reason for its
suboptimal approximation rate on cartoon-like images, being suboptimal for representing
elongated, oriented singularities. In addition, one also needs to be able to modify the
orientation of the support. Figure 3.2 shows this fact.

Figure 3.2: Elongated, and oriented singularities representations. Left: Using isotropic
scaling. Right: Using anisotropic scaling and orientation.

The need for anisotropic scaling and orientation sensitivity is at the core of the
construction of curvelets. This system is explicitly defined in the following.

Definition 3.2.7 (Continuous curvelet transform, [21]). Let us denote by x = (x1, x2)ᵀ

the spatial variable, and ξ = (ξ1, ξ2)ᵀ the variable in frequency domain. Further, let
r =

√
ξ2

1 + ξ2
2, ω = arctan(ξ1/ξ2) be the polar coordinates in frequency domain.

Moreover, let V,W ∈ C∞c (R2) be smooth window functions with compact support
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satisfying the admissibility conditions

∞∑
l=−∞

V 2(t− l) = 1, t ∈ R,

∞∑
j=−∞

W 2(2jr) = 1, r > 0.

(3.2.2)

In addition, let (a, b, θ) ∈ (0, 1]×R2 × [0, 2π) be the set of parameters, representing scale,
location, and orientation, respectively. Using the polar coordinates (r, ω) in frequency
domain, we now define the a−scaled window

Ua(r, ω) := a3/4W (ar)V

(
ω√
a

)
.

The window Ua is then applied for building curvelet functions as follows. Let ϕa,0,0 ∈
L2(R2) be defined by its Fourier transform

ψ̂a,0,0(ξ) := Ua(ξ).

Finally, the curvelet system is generated by translation and rotation of the basic element
ψa,0,0 as

ψa,b,θ := ψa,0,0(Rθ(x− b)), (3.2.3)

with translation b ∈ R2, and the 2×2 rotation matrix Rθ with orientation angle θ ∈ [0, 2π)
is given by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. (3.2.4)

The curvelet transform of a function f ∈ L2(R2) is then defined by

CLψf(a, b, θ) =

∫
R2

f(x1, x2)ψa,b,θ(x1, x2)dx. (3.2.5)

The curvelets in Equation (3.2.5) attain wedge-shaped oriented support on the Fourier
domain depicted in Figure 3.3.

It was shown in [21] that curvelets attain the optimal best N−term approximation
rate of Theorem 3.2.5 up to some log factor, confirming that the parabolic scaling and
orientation sensibility was the key to sparsely represent cartoon-like images.

This type of sparse representation typically aimed to be used in real-world applications,
such as denoising or inpainting, but curvelets have no unified continuous-to-digital theory.
In general terms, the rotation matrix is hard to faithfully digitize [19]. It is in fact easy to
see that the discrete grid is not rotation invariant, compare Figure 3.4. This flaw implies
that the implementation would not be consistent with the theory for the continuous
setting.
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Figure 3.3: Support of different curvelets in the Fourier domain.

Figure 3.4: Rotation of the discrete grid.

To address the issue of faithful digitization, different new multiscale systems were
introduced. One example are the contourlets proposed by Do and Vetterli in 2005 [32],
which is basically a filter bank approach to the curvelet transform. This system has the
main advantage of having faithful digitalization but still has some disadvantages with
respect to wavelets. Both curvelets and contourlets do not have a unified treatment of
the continuum and digital situation, and a theory for compactly supported systems to
guarantee high spatial localization. This makes it very hard to compute approximation
bounds in practical applications. Finally, as an attempt to overcome the main limitations
of wavelets as well as curvelets, the shearlet system was developed by Kutyniok, Labate,
and Guo in 2006 [50]. This will be introduced in the next section.
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3.3 The continuous shearlet transform

The flaws of the wavelet system in representing 2D oriented curve-like singularities, as
seen in the last section, lead to the slow decay rate of the best N−term approximation in
Equation (3.2.1). The main problem of wavelets is that there are too many relevant wavelet
coefficients, which worsen the decay rate significantly. One possibility to circumvent this
problem is the use of parabolic scaling (see Figure 3.5), defined by

Aa :=

(
a 0
a
√
a

)
.

In the particular case where a = aj := 2−j (j ∈ N), with Aj := Aaj , one obtains elements

of the type ψ̃aj ,b(x) = 2
3j
4 ψ(Ajx−b). In Figure 3.6, it is visually clear that the use of such

scaling reduces the number of relevant coefficients by a significant amount. Indeed, for
each scale aj , there exist only O(2j/2) many coefficients intersecting the line singularity,
leading to

|〈f, ψaj ,b〉| ≤ ||f ||∞||ψaj ,b||L1 . 2
−3j

4 .

On the one hand, this result implies that parabolic scaling allows more efficient approxi-
mation than its uniform counterpart. On the other hand, as one can see in Figure 3.5,
parabolic scaling also produces anisotropic functions, in the sense that the shape of their
(essential) supports are highly directional.

Figure 3.5: Parabolic scaling for a = 2j

As we saw with curvelets that have highly anisotropic elements, for general directional
systems, we require an operation that changes their orientation. We also know that
the orientation changing operator used by curvelets, namely the rotation, cannot be
faithfully digitized, creating a problem with the numerical implementation. In 2005,
Kutyniok, Labate, and Guo [50] noticed that a much better choice is the shearing matrix.
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Figure 3.6: Efficient covering of a curved line singularity by anisotropic functions.

Unlike the rotation operator, the shear operator maintains consistent properties with
the digital lattice. This makes the continuum and digital settings able to be treated
uniformly, resulting in a faithful discretization, where most of the theoretical properties
of the continuous shearlet transform are maintained in the discrete transform. The notion
of shearing allows us to introduce the continuous shearlet system [50].

Definition 3.3.1 ([73]). For a > 0, let

Aa : =

(
a 0
0
√
a

)
be the parabolic scaling matrix, and for s ∈ R

Ss : =

(
1 s
0 1

)
be the shearing matrix. Given ψ ∈ L2(R2), the shearlet system associated with ψ is
defined as

SHψ : ={a
3
4ψ(SsAax− b) : a > 0, s ∈ R, b ∈ R2}.

As in the case of wavelets and curvelets, the shearlet parameters have a direct geometric
interpretation. The scale a represents the size of the elements to capture, the shearing s
represents the orientation, and the location b represents the position of the elements.
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Figure 3.7: Shearlet system. Left: Geometry of shearlets with a = 2−j , Right: The effect
of shearing.

One can notice that in Definition 3.3.1 the function ψ referred to as generating function,
is not explicitly defined. On the one hand, the choice of the specific generating function
depends strongly on the properties the system shall have. On the other hand, there are
weak assumptions on ψ that allow us to obtain a frame of L2(R2). In the following, we
will introduce different forms to define the shearlet generating function with their own
properties.

3.3.1 Classical shearlets

In general, for transformation associated to a shearlet system to be well-defined we
require it to be an isometry up to isometric embeddings to L2(R+ × R× R2), similar to
the admissibility condition of wavelets (compare Definition 3.2.1).

Definition 3.3.2 (Admissible shearlets [48, Section 1]). A function ψ ∈ L2(R2) is called
an admissible shearlet, if

Cψ : =

∫
R2

|ψ̂(ξ)|
|ξ1|2

dξ =

∫
R

∫
R+

| ̂ψ(SsAa·)(ξ)|2a−3/2dads <∞. (3.3.1)

One obtains equality of the second and third term in Equation (3.3.1) by using the
substitution ω(a, s) = SsAaξ. The reason why the integral (3.3.1) converges is the
structure of the shearlet group and the fact that the Haar measure is given by a−3dadsdb.
An extension of this notion of convergence is the concept of vanishing gradients:

Definition 3.3.3. Let f ∈ L2(R2), we say that f has n−vanishing moments in x1−direction
if ∫

R2

|ψ̂(ξ)|2

|ξ1|
dξ <∞. (3.3.2)

The term vanishing moments comes from the fact that if we assume sufficient spatial
decay of ψ, Condition (3.3.2) is equivalent to
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∫
R
xk1ψ(x1, x2)dx1 = 0 for all x2 ∈ R, k < n.

Finally, Fourier analysis allows to prove that the shearlet system presents stable
representation; in other words, it preserves the norms, analogous to the Plancherel’s
identity.

Theorem 3.3.4 ([48]). If ψ ∈ L2(R2) is an admissible shearlet, then for all f ∈ L2(R2)
we have the orthogonality relation

||f ||22 =

∫
(a,s,b)∈R+×R×R2

|SHψ(f)(a, s, b)|2a−3dadsdb,

where SHψ(f)(a, s, b) =
∫
R2 a

−3/4ψ(SsAax− b)f(x)dx.

Now we know shearlets can be regarded as stable representation systems. The first
question one might ask is whether it is possible to sample a frame from this continuous
system. The first shearlet generator introduced in [50] is the so-called classical shearlet,
composed of a wavelet and a bump function. These functions are compactly supported
in the Fourier domain, also known as band-limited functions. Choosing the system to be
band-limited or compactly supported depends on the need to have high resolution in the
spatial domain or in the Fourier domain. The uncertainty principle does not allow us to
have both.

Definition 3.3.5 (Classical shearlets [50]). Let ψ ∈ L2(R2) be defined by

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2/ξ1),

where ψ1, ψ2 ∈ L2(R) satisfy the following properties:

(a)
∑

j∈Z |ψ̂1(2−jξ)|2 = 1 for almost every ξ ∈ R (”wavelet-like”).

(b) supp(ψ̂1) ⊆
[
−1

2 ,−
1
16

]
∪
[

1
16 ,

1
2

]
.

(c) ψ̂1 ∈ C∞(R).

(d)
∑

k=−1,0,1 |ψ̂2(ξ + k)|2 = 1 for almost every ξ ∈ [−1, 1] (”bump-like”).

(e) supp(ψ̂2) ⊆ [−1, 1].

(f) ψ̂1 ∈ C∞(R).

Then, we call ψ a classical shearlet.

The classical shearlets lead to a Parseval frame, as it is shown next.

Theorem 3.3.6 ([50]). Let ψ be a classical shearlet. Then the shearlet system SHψ
forms a Parseval frame for L2(R2).
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Proof. Let aj : = 2−j and Aj : =Aaj . By the properties of ψ1 and ψ2 from Definition 3.3.5,
we have∑

j∈Z

∑
k∈Z
|ψ̂(Sᵀ−kA−jξ)|

2 =
∑
k∈Z
|ψ̂1(2−jξ1)|2

∑
k∈Z
|ψ̂2(2j/2ξ2/ξ1 − k)|2

=
∑
j∈Z
|ψ̂1(2−jξ1)|2 = 1 for almost every ξ ∈ R2.

Using Plancherel’s and Parseval’s identity [99], we conclude that SHψ indeed forms a
Parseval frame for L2(R2).

We refer as frequency tiling to the set of Fourier essential supports of each function
in a representation system. The frequency tiling that is produced by classical shearlets
(see Figure 3.8) is biased towards the ξ2−axis. This leads to problems when analyzing
singularities that are aligned with the x1−axis, with the need to perform an infinite
number of shearings. Of course, this is not possible in the digital realm and we need to
address it.

Figure 3.8: Frequency tiling of the classical shearlets system.

3.3.2 Cone-adapted shearlets

The standard approach for fixing the bias problem of classical shearlets are the so-called,
cone-adapted shearlets [73]. This approach splits the Fourier domain into cones, and
allows us to have a significantly more balanced frequency tiling, covering the frequency
domain optimally with wedge-shaped supports. Figure 3.9 shows the shearlet cones and
tiling of frequency domain.
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Figure 3.9: Frequency tiling of the cone-adapted shearlet system. Left: Cones, Right:
Frequency tiling.

Formally, the cones of the frequency plane divisions, shown at Figure 3.9 are given by

Ch : ={ξ : |ξ1| ≥ 1, |ξ2/ξ1| ≤ 1},
Cv : ={ξ : |ξ2| ≥ 1, |ξ1/ξ2| ≤ 1},
R : =[−1, 1]2.

In addition, one also needs to modify the scaling procedure by introducing a new scaling
matix. The cone-adapted shearlet system makes use of the following three matrices:

Aa : =

(
a 0
0
√
a

)
, Ãa : =

(√
a 0

0 a

)
, and Ss : =

(
1 s
0 1

)
for a > 0 and s ∈ R.

Next, given (a, s, t) ∈ R+ × R× R2, ψ, ψ̃, ϕ ∈ L2(R2), and x ∈ R2, we define

ψa,s,b(x) : = a
3
4ψ (SsAa(x− b)) ,

ψ̃a,s,b(x) : = a
3
4 ψ̃
(
Sᵀs Ãa(x− t)

)
,

ϕb(x) : =ϕ(x− b).

(3.3.3)

Following [48], we then define the cone-adapted continuous shearlet transform [73] as
follows.

Definition 3.3.7 (Cone-adapted continuous shearlet transform, [73]). Let ψ, ψ̃, ϕ ∈
L2(R2). The cone-adapted shearlet system associated with ψ, ψ̃, ϕ is defined by

SHψ,ψ̃,ϕ : =PChΨ(ψ) ∪ PCvΨ̃(ψ̃) ∪ PRΦ(ϕ),

where PCh ,PCv ,PR are the projection operators and

Ψ(ψ) : ={ψa,s,b : a ∈ R+, s ∈ R, b ∈ R2},
Ψ̃(ψ̃) : ={ψ̃a,s,b : a ∈ R+, s ∈ R, b ∈ R2},
Φ(ϕ) : ={ϕb : b ∈ R2},
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with ψa,s,b, ψ̃a,s,b and ϕb are given by Equations (3.3.3).

In the above definition, the functions ψ, ψ̃, ϕ ∈ L2(R2) are not specified. A first
approach would be to use classical shearlets. Fortunately, cone-adapted shearlets form
also a Parseval frame as classical shearlets (see Theorem 3.3.6).

Theorem 3.3.8 ([73]). Let ψ ∈ L2(R2) be a classical shearlet and Aj = Aaj where
aj = 2−j. Then

Ψ(ψ) := {a−
3
4

j ψ(SkAj(x− t)) : j ∈ Z+, k ∈ Z, t ∈ Z2}
forms a Parseval frame for

{f ∈ L2(R2) : supp f̂ ⊂ {ξ ∈ R2 : |ξ1| ≥ 1, |ξ2/ξ1| ≤ 1}}.

The proof of Theorem 3.3.8 is done using the same arguments as in Theorem 3.3.6.
Fortunately, we can extend this result to the entire space L2(R2) as follows. Let us
consider

PChΨ(ψ) ∪ PCv ∪ PRΦ(ϕ),

where PCh , PCv and PR are the projections in the Fourier domain, see Figure 3.9. This
form changes the Plancherel formula given by Theorem 3.3.4, obtaining the cone-adapted
version

||f ||22 =

∫
b∈R2

|〈PRf, Tbϕ〉|2db+

∫
b∈R2

∫ 1

−1

∫ 1

0
|SHψ(PChf)(a, s, b)|2a−3dadsdb

+

∫
b∈R2

∫ 1

−1

∫ 1

0
|SHψ̃(PCvf)(a, s, b)|2a−3dadsdb,

for all f ∈ L2(R2),

(3.3.4)

where PR, PCh and PCv are the projection operators on the Fourier domain.
In this thesis, we are interested in spatial localization, but as discussed before, a

band-limited function cannot have compact support due to the uncertainty principle.
To also allow compactly supported functions, we need to give up on the Parseval frame
property. The good news is that we can still control the frame bounds in this situation.
The following result shows this fact.

Theorem 3.3.9 ([73]). For α > γ > 3, q > q′ > 0 and r > 0, let

|ψ̂(ξ1, ξ2)| ≤ C1(α, γ, q, q′, r) min{1, |qξ1|α}min{1, |q′ξ1|−γ}min{1, |rξ2|−γ}, (3.3.5)

and assume that∑
j,k∈Z

|ψ̂(Sᵀ−kA2jξ)|2 ≥ C2(α, γ, q, q′, r) > 0 for almost every ξ ∈ R2.

For ψ̃, we assume the same conditions. Then, for a scaling function ϕ (see [73]), the cone-
adapted shearlet system SHψ,ψ̃,ϕ forms a frame for L2(R2) with frame bounds following
the estimate

C1(α, γ, q, q′, r) ≤ A ≤ B ≤ C2(α, γ, q, q′, r).
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Proof. See [73].

It is also important to study the approximation properties of shearlets. Similarly
to curvelets, shearlet systems, under certain assumptions, meet the optimal N−term
approximation for E2(R2) rate up to a log-factor, which is regarded as negligible. The
next theorem, states the exact conditions.

Theorem 3.3.10 ([73]). Let ψ ∈ L2(R2) be compactly supported. For α > 5, γ ≥ 4, and
some h ∈ L1(R), assume that Equation (3.3.2) is satisfied as well as∣∣∣∣ ∂∂ξ2

ψ̂(ξ)

∣∣∣∣ ≤ |h(ξ1)|(1 + |ξ2/ξ1|)−γ

and the same conditions for ψ̃. If SHψ,ψ̃,ϕ forms a frame for L2(R2), there there exists

as constant C > 0 such that for all f ∈ E(R2), we have

σN (f,SHψ,ψ̃,ϕ) ≤ CN−1(logN)3/2 as N →∞.

The approximation properties of the shearlet system makes them capable to optimally
approximate oriented singularities in two dimensions. By using this principle, we will
later be able to use shearlets to resolve the wavefront set of a function. This notion
was first introduced by Kutyniok and Labate [72] for the band limited case, and later
extended to the compactly supported case by Grohs [48]. In the next section, we will
introduce the main assumptions that make this possible. From now on, we will refer to
the systems that attain an approximation rate given in Theorem 3.2.6 (possibly up to
log factors) as having optimal representation, such as shearlets and curvelets.

3.4 Continuous shearlet system for wavefront set extraction

Before we are able to discuss the capabilities of shearlet systems to resolve the wavefront
set, we need to introduce the notion of Sobolev spaces. From the shearlet admissibility
condition (Definition 3.3.2) and the notion of vanishing moments (Definition 3.3.3), one
can see that a lot of functions are suitable to be shearlets. In particular, all they need to
satisfy is to have one vanishing moment in the x1−direction. This is equivalent to be
a partial derivative in x1−direction of a square-integrable function. The need to define
derivatives in functional spaces introduces the idea of Sobolev spaces.

We denote by H(n1,n2) the Sobolev space defined by

H(n1,n2)(R2) : =

{
f ∈ L2(R2) :

(
∂

∂x1

)n1
(

∂

∂x2

)n2

f ∈ L2(R2)

}
.

The norm of H(n1,n2)(R2), || · ||H(n1,n2)(R2) is defined as:

||f ||H(n1,n2)(R2) : =

∣∣∣∣∣∣∣∣ ( ∂

∂x1

)n1
(

∂

∂x2

)n2

f

∣∣∣∣∣∣∣∣
L2(R2)
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This definition allows us to write the vanishing moments in terms of the Sobolev deriva-
tives.

Theorem 3.4.1. Let ϕ ∈ H(n,0)(R2) with ϕ̂(0) 6= 0. Then the function

ψ(x) = (−1)n
(

∂

∂x1

)n
ϕ(x) (3.4.1)

is a continuous shearlet with n vanishing directional moments in x1−direction. Conversely,
if ψ is a continuous shearlet with n vanishing moments in x1−direction. Then ψ can be
written in the form given by Equation (3.4.1) with a function ϕ ∈ H(n,0)(R2).

Now, if f ∈ L2(R2), since R∪ Ch ∪ Cv covers the Fourier domain, we can decompose
f = PRf + PCh ∪ PCvf , where PR is the projection upon R, similarly PCh and PCv . A
classical result from microlocal analysis states that directional singularities with slope ≥
1 manifest themselves as slow decay in Ch and singularities with slope ≤ 1 as slow decay
in Cv, see [72]. Therefore, PChf can be seen as the part of f containing singularities with
slope ≥ 1. Also, PCvf is therefore the part of f containing singularities with slope ≤ 1
and PRf as a smooth low-pass approximation of f .

Using the aforementioned notion of microlocal analysis jointly with the cone-adapted
construction of the shearlet system, Kutyniok and Labate have shown in [72] that the
shearlet coefficients in the norm equation (3.3.4) characterize the wavefront set WF(f)
of a tempered distribution f . Before we introduce such a result, in order to be consistent
with the notation of the singular directed points of Section 2.2, we need to parametrize
the wavefront set orientations given by a directional vector ξ ∈ R2 with the shearing
parameter s. Since normal vectors fully describe their orientations, we can further assume
that ξ ∈ S1.

Now, in the horizontal cone, shearing changes the orientation of shearlets by an angle
θ : = θ(s) = arctan(s). On the vertical cone, we have θ : = θ(s) = arctan(1/s). Therefore,
we can parametrize the directional vector ξ with the shearing parameter

ξh(s) =(cos(arctan(s)), sin(arctan(s))),

ξv(s) =(cos(arctan(1/s)), sin(arctan(1/s))).
(3.4.2)

Finally, the result reads as follows.

Theorem 3.4.2 (Resolution of the Wavefront Set I,[72]). Let ψ, ψ̃ ∈ L2(R2) be classical
shearlet generators, f be a tempered distribution and let us assume that orientations
ξ ∈ S1 are parametrized by the shearing parameter s according to (3.4.2). Let us further
define the shearlet transforms corresponding to the horizontal and vertical cones:

SHhψ(f) = SHψ(PChf),

SHv
ψ̃

(f) = SHψ̃(PCvf).
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(i) Let F ⊂ R2 be defined by

F : ={b0 ∈ R2 : there exists a neighborhood U of b0, such that for every b ∈ U,
|SHhψf(a, s, b)| = O(a−k) and |SHv

ψ̃
f(a, s, b)| = O(a−k) as a→ 0, for all k ∈ N,

with the O(·)-terms uniform over (b, s) ∈ U × [−1, 1]}.

Then
sing supp(f)c = F .

(ii) Let D : =D1 ∪ D2, where

D1 : ={(b0, ξ(s0)) : there exists a neighborhood U of (b0, s0) ∈ R2 × [−1, 1], such that,

for every (b, s) ∈ U , |SHv
ψ̃
f(a, s, b)| = O(a−k) as a→ 0, for all k ∈ N,

with the O(·)-terms uniform over (b, s) ∈ U},

and

D2 : ={(b0, ξ(s0)) : there exists a neighborhood U of (b0, s0) ∈ R2 × [1,∞], such that,

for every (b, 1/s) ∈ U , |SHhψf(a, s, b)| = O(a−k) as a→ 0, for all k ∈ N,

with the O(·)-terms uniform over (b, 1/s) ∈ U}.

Then the wavefront set WF(f) is given by

WF(f)c = D.

On the one hand, the statement (ii) of Theorem 3.4.2 shows that the continuous
shearlet transform on the horizontal cone SHhψf(a, s, b) identifies the wavefront set for

directions ξ(s) such that |s| = | ξ2ξ1 | ≤ 1 (in the frequency domain). On the other hand,
the continuous shearlet SHv

ψ̃
f(a, s, b) identifies the wavefront set for directions ξ(s) such

that |s| = | ξ1ξ2 | ≤ 1, i.e. | ξ2ξ1 | ≥ 1. This allows us to separate the wavefront set in different
orientations.

Similar to the original work [72], the proof of Theorem 3.4.2 requires the introduction
of some lemmata, originally inspired by the work [23]; a similar result was shown for
curvelets. In this work, we will include some of these propositions while referring to [72]
for the rest.

Lemma 3.4.3 ([72]). Let f ∈ L2(R2) with ||f ||∞ < ∞ and ψ, ψ̃ ∈ L2(R2) classical
shearlet generators and ϕ ∈ L2(R2) a scaling function. If supp(f) ⊂ B ⊂ R2, then for all
k > 1 there is a constant Ck > 0 such that

|SHhψf(a, s, b)| = |〈f, ψa,s,b〉| ≤ CkC(s)2||f ||∞a
1
4 (1 + C(s)−1a−1d(b,B)2)−k,

where C(s) =

(
1 + s2

2 +
(
s2 + s2

4

) 1
2

) 1
2

and d(b,B) is the distance from b to the set B.
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Proposition 3.4.4 ([72]). Let F and D be defined as in Theorem 3.4.2 and f ∈ L2(R2).
Then:

(i) sing supp(f)c ⊆ F .

(ii) WF(f)c ⊆ D.

Proof. (i) Let b0 be a regular point of f . Then there exists φ ∈ C∞0 (R2) with φ(b0) = 1
on B(b0, δ), i.e., the ball centered at b0 with radius δ, such that φf ∈ C∞(R2). We
will show that b0 ∈ F . For this, we decompose SHψf(a, s, b) as

SHhψf(a, s, b) = 〈ψa,s,b, φf〉+ 〈ψa,s,b, (1− φ)f〉. (3.4.3)

Observe that, since ψ is a classical shearlet, we have

|〈ψa,s,b, φf〉| ≤ a
3
4

∫
R2

|ψ̂1(aξ1)||ψ̂2

(
1√
a

(
ξ2

ξ1
− s
))
||φ̂f(ξ)|dξ.

Let us now estimate this integral for ξ1 > 0. The case ξ1 ≤ 0 is analogous. Since
φ ∈ C∞0 (R2), for each k ∈ N, there exists a constant Ck with |φ̂f(ξ)| ≤ Ck|ξ|−2k.
In addition, since ψ is a classical shearlet, supp(ψ̂1) j [−1

2 ,−
1
16 ] ∪ [ 1

16 ,
1
2 ] and

supp(ψ̂2) ⊆ [−1, 1]. Using these arguments, for k > 2, the first term on the right
hand side of Equation (3.4.3) can be estimated as follows:

a
3
4

∫
R+×R

|ψ̂1(aξ1)||ψ̂2(
1√
a

(
ξ2

ξ1
− s))||φ̂f(ξ)|dξ.

≤ Ck||ψ̂||∞a
3
4

∫ 2/a

1/2a

∫ (s+
√
a)ξ1

(s−
√
a)ξ1

|ξ|−2kdξ2dξ1

≤ Ck2−k||ψ̂||∞a
3
4

∫ 2/a

1/2a

∫ (s+
√
a)ξ1

(s−
√
a)ξ1

ξ−k2 dξ2dξ1

=
Ck2

−k||ψ̂||∞a
3
4

1− k
((s+

√
a)1−k − (s−

√
a)1−k)

∫ 2/a

1/2a
ξ1−2k

1 dξ1

≤ Ck2
−k||ψ̂||∞a

3
4

1− k
((
√
a− s)1−k − (−

√
a− s)1−k)

1

1− 2k
((2/a)2−2k − (1/a)2−2k)

≤ Ck2
−k||ψ̂||∞a

3
4

k(2k − 1)
(
√
a− s)1−k(2/a)2−2k

Thus, the above integral behaves as O(ak) as a → 0, uniformly over (b, s) ∈
B(t0, δ/2)×R. Finally, using Lemma 3.4.3 of [74], we can estimate the second term
of the RHS of Equation (3.4.3):

|〈ψa,s,b, (1− φ)f〉| ≤ CkC(s)2||(1− φ)f ||∞a
1
4 (1 + C(s)−1a−1d(b, B(b0, δ)

c)2)−k,
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where k ∈ N is arbitrary. Since ||(1− φ)f ||∞ <∞, this yields

|〈ψa,s,b, (1− b)f〉| = O(ak), as a→ 0,

uniformly over (b, s) ∈ B(b0, δ/2)× [−1, 1]. In analogy, a similar estimate holds for
SHvψf(a, s, t), proving (i).

(ii) Let (b0, ξ(s0)) be a regular directed point of f , with s0 ∈ [−1, 1]. Then there is
some φ ∈ C∞0 (R2) with φ(b0) = 1 on a ball B(b0, δ1) such that, for each k ∈ N we

have |φ̂f(ξ)| = O((1 + |ξ|)−k) for all ξ ∈ S1 satisfying s = ξ2/ξ1 ∈ B(s0, δ2). We
will now show that (b0, ξ(s0)) ∈ D.

Let us first decompose SHvψf(a, s, b) as in (3.4.3). The second term on the RHS
of (3.4.3) can be estimated as in the case (i). For the first term of (3.4.3), we only
need to show that

supp(ψ̂a,s,b) ⊂ {ξ ∈ S1 : ξ2/ξ1 ∈ B(s0, δ2)} for all (b, s) ∈ B(b0, δ1)×B(s0, δ2).

This holds since in the horizontal cone Ch φ̂f decays rapidly. However, so far we
have only considered the case ξ1 > 0; the case ξ1 ≤ 0 is analogous. The support of
ψ̂a,s,b in this half plane is given by

{(ξ1, ξ2) : ξ1 ∈ [1/2a, 2/a], ξ2 ∈ ξ1[s−
√
a, s+

√
a]}.

Let (b, s) ∈ B(b0, δ1)×B(s0, δ2). The cone {ξ ∈ R2 : ξ2/ξ1 ∈ B(s0, δ2)} is bounded
by the lines ξ2 = (s0 − δ2)ξ1 and ξ2 = (s0 + δ2)ξ. Now let (ξ1, ξ2) ∈ supp ψ̂a,s,b.
Then for a sufficiently small, we have

|ξ2/ξ1 − s0| ≤
√
a ≤ δ2,

finishing the proof for |s0| < 1. In the case when |s0| ≥ 1 (this corresponds to
|ξ2/ξ1| ≤ 1), the proof is analogous, using the transform SHv

ψ̃
(a, s, b) instead of

SHψh(a, s, b)

Now we just need to show the converse inclusions. For this, we need additional
preliminary results. We will introduce the results, but we refer to [72] for the proofs.

Lemma 3.4.5 ([72]). Let S ⊂ R be a compact set and f ∈ L2(R2) with ||f ||∞ ≤ ∞.
Suppose that supp f ⊂ B for some B ⊂ R2 and define (Bη)c = {x ∈ R2 : d(x,B) > η}.
Further let ψa,s,b be a classical shearlet and define h ∈ L2(R) by

ĥ(ξ) =

∫ ∞
0

∫
(Bη)c

∫
S
SHhψf(a, s, b)ψ̂a,s,b(ξ)dsdb

da

a3
.

Then ĥ(ξ) decays rapidly as |ξ| → ∞ with constants dependent only on ||f ||∞ and η.
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Lemma 3.4.6 ([72]). Let S ⊂ R and B ⊂ R2 be compact sets. Suppose that G(a, s, b)
decays rapidly as a→ 0 uniformly for (b, s) ∈ S × B. Define h ∈ L2(R2) by

ĥ(ξ) =

∫ ∞
0

∫
B

∫
S
G(a, s, b)ψ̂a,s,b(ξ)dsdt

da

a3
.

Then ĥ(ξ) decays rapidly as |ξ| → ∞.

Lemma 3.4.7 ([72]). Suppose 0 ≤ a0 ≤ a1 and |s| ≤ s0. Then for K > 1, there is a
constant CK , dependent on K only, such that:

|〈ψa0,s,b, ψa1,s′,b′〉| ≤ CK
(

1 +
a1

a0

)−K (
1 +
|s− s′|2

a1

)−K (
1 +
||(t− t′)||2

a1

)−K
.

Lemma 3.4.8. Let φ1 ∈ C∞(R2) be supported in B(0, 1) (the unitary ball centered at
0), aψ ∈ R+ be a positive constant and define φ(x) : =φ1(a−1

φ (x− b)).

(i) Suppose 0 ≤ √a0 ≤
√
a1 ≤ aφ < 1. Then for K > 0,

|〈φψa0,s,b, ψa1,s′,b′〉| ≤ CK
(

1 +
a1

a0

)−K (
1 +
|s− s′|2

a1

)−K (
1 +
||(t− t′)||2

a1

)−K
.

(ii) Suppose 0 ≤ √a0 ≤ aφ ≤
√
a1 < 1, a1 ≤ aφ. Then for K > 0,

|〈φψa0,s,b, ψa1,s′,b′〉| ≤ CK
(

1 +
a1

a0

)−K (
1 +
|s− s′|2

a2
φ

)−K (
1 +
||(t− t′)||2

a1

)−K
.

(iii) Suppose 0 ≤ √a0 ≤ aφ ≤ a1 ≤
√
a1 < 1, a1 ≤ aφ. Then for K > 0,

|〈φψa0,s,b, ψa1,s′,b′〉| ≤ CK
(

1 +
aφ
a0

)−K (
1 +
||(t− t′)||2

a2
φ

)−K
.

Using the results presented on Lemmas 3.4.5 3.4.5, we can now prove our main theorem:

Proof of Theorem 3.4.2, [72]:
We know by Proposition 3.4.4 that sing supp(f)c ⊆ F and WF(f)c ⊆ D. Hence, we

can prove the following two claims:

(i) F ⊆ sing supp(f)c.

(ii) D ⊆WF(f)c.

Le us first prove (i). Let b0 ∈ F , then there is a δ such that for all b ∈ B(b0, δ), we
have that SHhψf(a, s, b) = O(ak) as a→ 0, for all k ∈ N with O(·)−term uniform over
(b, s) ∈ B(b0, δ)× [−1, 1]. An analogous estimate holds for SHv

ψ̃
f(a, s, b).
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Let φ ∈ C∞(R2) which is supported in a ball B(b0, ν) with ν � δ and let η = δ
2 . Set

g = φf and consider the decomposition

φ̂f(ξ) = ĝ0(ξ) + ĝ1(ξ) + ĝ2(ξ) + ĝ4(ξ),

where ĝ0(ξ) = (φ̂P (f))(ξ). In addition, P (f) =
∫
R〈f, TbW 〉TbWdb, with W being a

window function such that Ŵ ∈ C∞(R2) and

|Ŵ (ξ)|2 + χC1(ξ)

∫ 1

0
|ψ̂1(aξ1)|2da

a
+ χC2(ξ)

∫ 1

0
|ψ̂1(aξ2)|2da

a
= 1 for a.e. ξ ∈ R2,

where C1 = {(ξ1, ξ2) ∈ R2 : |ξ2/ξ1| ≤ 1}, and C2 = {(ξ1, ξ2) ∈ R2 : |ξ2/ξ1| > 1}.
Moreover, for i = 1, 2 we have

ĝi(ξ) = χC1(ξ)

∫
Qi
ψ̂a,s,b(ξ)SHhg(a, s, b)dµ(a, s, b),

ĝi+2(ξ) = χC2(ξ)

∫
Qi
ψ̂a,s,b(ξ)SHvg(a, s, b)dµ(a, s, b),

where dµ(a, s, b) = da
a3 dsdb, Q1 = [0, 1] × [−1, 1] × B(b0, ν) and Q2 = [0, 1] × [−1, 1] ×

B(b0, ν)c.
The term ĝ0(ξ) decays rapidly as |ξ| → ∞ since φ, P (f) ∈ C∞(R2). Moreover, the term

ĝ1(ξ) decays rapidly as |ξ| → ∞ by Lemma 3.4.5. In addition, Lemma 3.4.6 shows that
ĝ1(ξ) decays rapidly as |ξ| → ∞ provided that SHhψg decays rapidly as a→ 0 uniformly
over (b, s) ∈ B(b0, ν) × [−1, 1]. We will consider only the analysis of the terms ĝi, for
i = 1, 2; the cases i = 3, 4 are analogous.

We will show that SHhψg indeed decays rapidly as a→ 0 uniformly over B(b0, ν)×[−1, 1].

In order to prove this, we decompose f as f = P (f) + PC1f + PC2f , where P̂C1f = f̂χC1

and P̂C2f = f̂χC2 . It is clear that SHhφP (f) decays rapidly by the smoothness of φ and
P (f). Next, we examine the term PC1f . The analysis of PC2f is very similar and will be
omitted. We use the decomposition PC1f = f1 + f2 where

fi(x) =

∫
Qi
ψa,s,b(x)SHhψfi(a, s, b)dµ(a, s, b), i = 1, 2.

Let us start by considering the term corresponding to f1. We have

SHhψ(φf1)(a, s, b) = 〈φf1, ψa,s,b〉 =

∫
Q1

〈φψa,s,b, ψa′,s′,b′SHhψf1(a′, s′, b′)〉dµ(a′, s′, b′).

(3.4.4)
We will decompose Q1 = Q10 ∪ Q11 ∪ Q12, corresponding to a′ > δ′, a′ ≤ δ

√
a′ and√

a′ ≤ δ, respectively. In case
√
a,
√
a′ ≤ δ, by Lemma 3.4.8 we have that

|〈φψa,s,b, ψa′,s′,b′〉| ≤ CK
(

1 +
a1

a0

)−K (
1 +
||(b− b′)||2

a1

)−K
. (3.4.5)
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We claim that, for m > 4 and K ≥ m− 1∫ δ

0

(
1 +

a1

a0

)−K
(a′)m

da′

(a′)3
≤ Cm,Kam−2, 0 < a < δ. (3.4.6)

Indeed, for a′ = a0 ≤ a = a1,∫ a

0

(
1 +

a

a′

)−K
(a′)m

da′

(a′)3
= am−2

∫ 1

0
(1 + x)−Kdx = CKa

m−2.

For a = a0 ≤ a′ = a1,∫ δ

0

(
1 +

a′

a

)−K
(a′)m

da′

(a′)3
= am−2

∫ δ/a

1
xm−3(1 + x)−Kdx

≤ am−2

∫ ∞
1

xm−3(1 + x)−Kdx = CK,ma
m−2.

Thus (3.4.6) follows from the last two estimates. Using (3.4.6) it follows that∫
Q12

〈φψa,s,b, ψa′,s′,b′〉SHhψf(a′, s′, b′)dµ(a′, s′, b′)

≤ C ′
∫ 2

−2

∫
B(b0,ν0)

∫ δ

0

(
1 +

a1

a0

)−K
(a′)m

da′

(a′)3
db′ds′

for all m > 4. Using the other cases of Lemma 3.4.8 one can show similar estimates for
the integrals over the set Q10 and Q11. This shows that SHhψφf1(a, s, b) decays rapidly
for a→ 0 uniformly over B(b0, η)× [−1, 1].

Let us consider now the term corresponding to f2:

SHhψφf2(a, s, b) = 〈φf2, ψa,s,b〉 =

∫
Q1

〈φψa,s,b, ψa′,s′,b′〉SHhψf2(a′, s′, b′)〉dµ(a′, s′, b′).

We will decompose Q2 = Q21 ∪Q22, corresponding to ||(t− t′)|| > η and ||(t− t′)|| ≤ η,
respectively. Observe that, for ||(b− b′)|| > η and K > 1,

∫
B(b0,η)c

(
1 +
||(b− b′)||2

a1

)−K
db′ ≤

∫ ∞
η

(
1 +

r2

a1

)−K
rdr ≤ C ′a1

(
1 +

η

a1

)−K+2

.

In addition, on the region Q21, the function SHhψf2(a′, s′, b′) is bounded by C ′(a′)3/4

since f is bounded. Thus∫
Q21

〈φψa,s,b, ψa′,s′,b′〉SHhψf2(a′, s′, b′)dµ(a′, s′, b′)

≤ C ′
∫ 2

−2

∫ δ

0

∫
B(b0,η)c

(
1 +
||(b− b′)||2

a1

)−K
db′
(

1 +
a1

a0

)−K
(a′)3/4 da′

(a′)3
db′

≤ C ′
∫ η

0
a1

(
1 +

η

a1

)(
1 +

a1

a0

)−K da′

(a′)9/4
.
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The above term decays rapidly as a→ 0, uniformly over Q21. As for the region Q22, if
b ∈ B(b0, η) and ||(b− b′)|| > η, then b′ ∈ B(b0, δ) and thus the function SHhf decays
rapidly, for a→ 0, over this region. Repeating the analysis as in the case Q12, we can
prove that

∫
Q22
〈φψa,s,b,SHhf(a′, s′, b′)dµ(a′, s′, b′)〉 is of rapid decay, as a→ 0 uniformly

over Q22. Combining these observations, we conclude that SHhψf2(a, s, b) decays rapidly
as a→ 0 uniformly over B(b0, η)× [−1, 1].

It follows that SHhψg(a, s, b) decays rapidly as a→ 0 uniformly for all (b, s) ∈ B(b0, η)×
[−1, 1] and, thus, by Lemma 3.4.6 ĝ1(ξ) decays rapidly as |ξ| → ∞. We can now conclude
that ĝ decays rapidly as |ξ| → ∞, hence completing the proof of (i).

In order to show part (ii), we only sketch the idea of the proof, since it is very similar
to part (i). Let (b0, s0) ∈ D. We consider separately the case |s0| ≤ 1 and |s0| ≥ 1. In
the first case, for all b ∈ B(b0, δ) and s ∈ B(s0, δ), we have that |SHhψf(a, s, b)| = O(ak),
as a→ 0, for all k ∈ N with O(·)−term uniform over (b, s) ∈ B(b0, δ)×B(s0, δ).

Choose φ ∈ L2(R2) which is supported in ball B(b0, ν) with ν � δ and let η = δ
2 . Then

the proof proceeds as in part (i), replacing B(b0, δ) × [−1, 1] with B(b0, δ) × B(s0, δ).
Also, for the estimates involving inner products of ψa,s,b and ψa′,s′,b′ we will now use

Lemma 3.4.8 including the directionally sensitive term. For example, when
√
a,
√
a′ ≤ δ,

by Lemma 3.4.8 we will use the estimate

|〈φψa,s,b, ψa′,s′,b′〉| ≤ CK
(

1 +
a1

a0

)−K (
1 +
|s− s′|2

a1

−K)(
1 +
||(b− b′)||2

a1

)−K
instead than (3.4.5). We can proceed similarly for the other estimates. The proof
for the case |s0| ≥ 1 is exactly the same, with the transform SHv

ψ̃
f(a, s, b) replacing

SHhψf(a, s, b). This finishes our proof. �

This result shows how (cone-adapted) classical shearlets are capable to resolve the
wavefront set. This eases the computation of the wavefront set over its original definition
(Definition 2.2.6). In particular, Theorem 3.4.2 establishes a rule for the localization and
microlocalization procedure, which was originally unspecified. As we can see, the proof
of this important result is strongly based on the optimal representation quality of the
shearlet system (see Theorem 3.3.10). Similarly, curvelets and other optimal multiscale
directional systems satisfy similar estimates for wavefront set resolution. In this case, our
choice in the shearlet system is based on its faithful discretization, i.e., it has a uniform
treatment of the continuous and digital realm.

We can observe that Theorem 3.4.2 requires the shearlet system to be generated by
classical shearlets and the target function to be a tempered distribution. In 2011, Grohs
[48] showed that the same result can be attained with weaker assumptions, namely, the
generator functions need only sufficiently many anisotropic vanishing moments. In these
two cases, the shearlets are band-limited, i.e., compactly supported in the Fourier domain.

In this thesis, we aim to combine these results on shearlet based wavefront set resolution
with image reconstruction methods. This is motivated by the amount of information
contained in the wavefront set of an image, which can be used as a prior in a reconstruction
method. Due to the uncertainty principle, band-limited shearlets, lack of good resolution
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in the spatial domain. For this reason, we are choosing compactly supported shearlets as
our main system. We can choose this setting since Grohs and Kereta [49] extended the
results on wavefront set resolution to compactly supported shearlets. Later in Chapter 6
we make use a special case of band-limited shearlets to digitize Fourier Integral Operators.
In the following, we will present the results for weaker assumptions which include the
compactly supported case.

3.4.1 Beyond classical shearlets

Since we are working from now on in the cone-adapted setting, where we need two shearlet
generators ψ and ψ̃, we will assume from now on that ψ = ψ̃. This will reduce the notation
by just introducing ψ with the premise that we are still talking about the cone-adapted
system. The possibility for weaker assumptions in shearlet-based wavefront set resolution
is mainly based on the fact that shearlets that hold the estimate of Theorem 3.4.1 exist in
abundance, but the cone-adapted construction is very specific. This motivates us to ask,
what is needed for generating functions ψ so a shearlet system results in a representation
like (3.3.4) and at the same time holds the properties of Theorem 3.4.2. Grohs showed in
[48] that the only restriction on ψ to have these two properties is the vanishing moments
in x1−directions, as shown in the next theorem. In our work, the main advantage of this
approach is that it can be also applied to tempered distributions.

Theorem 3.4.9 ([48]). Let ψ be a Schwartz function with infinitely many vanishing
moments in x1−direction. In addition, let f be a tempered distribution and D = D1 ∪D2,
where

D1 : ={(b0, ξ(s0)) : there exists a neighborhood U of (b0, s0) ∈ R2 × [−1, 1], such that,

for every (b, s) ∈ U , |SHvψf(a, s, b)| = O(a−k) as a→ 0, for all k ∈ N,

with the O(·)-terms uniform over (b, s) ∈ U},

and

D2 : ={(b0, ξ(s0)) : there exists a neighborhood U of (b0, s0) ∈ R2 × [1,∞], such that,

for every (b, 1/s) ∈ U , |SHhψf(a, s, b)| = O(a−k) as a→ 0, for all k ∈ N,

with the O(·)-terms uniform over (b, 1/s) ∈ U}.

Then
WF(f)c = D.

This result also holds when ψ has finitely many vanishing moments. As in the case
of classical shearlets, we need to first introduce some preliminary results in order to
fully prove Theorem 3.4.9. We will follow the steps presented in [48], divided into two
parts, corresponding to the set inclusions. In this sense, we will first show that for an
N−regular directed point (b0, ξ(s0)) of a function f ∈ L2(R2) the shearlet coefficients
with respect to any generating function ψ with sufficiently many vanishing moments in
the x1−direction decay quickly around b = b0 and ξ(s) = ξ(s0).
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Theorem 3.4.10 (Direct Theorem, [48]). Assume that f ∈ L2(R2) and that (b0, ξ(s0)) ∈
R2 × S1 is an N−regular directed point of f . Let ψ ∈ H(0,L)(R2) (see Theorem 3.4.1),

ψ̂ ∈ L1(R2) be a shearlet with M moments which satisfies a decay rate of the form

ψ(x) = O((1 + |x|)−P ). (3.4.7)

Then there exists a neighborhood U(b0) of b0 and V (s0) of s such that for any 1/2 < α < 1,
t ∈ U(b0) and s ∈ V (s0) we have the decay estimate

SHhf(a, s, b) = O(a−3/4+P/2 + a(1−α)M + a−3/4+αN + a(α−1/2)L), as a→ 0. (3.4.8)

Proof. We will first show that we can assume that f is already localized around b0 without
loss of generality, i.e. f = Ψf where Ψ is the cutoff function from Definition 2.2.6. To
prove this, we will show that

〈(1−Ψ)f, ψa,s,b〉 = O(a−3/4+P/2). (3.4.9)

By definition, we have that

ψa,s,b(x1, x2) = a−3/4ψ

(
(x1 − b1) + s(s2 − b2)

a
,
x2 − b2
a1/2

)
. (3.4.10)

Now we note that in computing the inner product (3.4.9) we can assume that |x−b| > δ
for some δ > 0 and b in a small neighborhood U(b0) of b0 since by definition of the cut-off
function (1−Ψ)f = 0 around b0. Using Equation (3.4.7) we have

|ψa,s,b(x)| ≤ Ca−3/4

(
1 +

∣∣ (a−1 sa−1

0 a−1/2

)
(x− b)

∣∣)−P
≤ Ca−3/4

(
1 +

∣∣∣∣∣∣∣∣ (a−1 sa−1

0 a−1/2

) ∣∣∣∣∣∣∣∣−1

|x− b|

)−P
≤ Ca−3/4(1 + C(s)a−1/2|x− b|)−P

= O(a−3/4+P/2|x− b|−P )

for |x− b| > δ and C(s) = (1 + s2

2 + (s2 + s2

4 )1/2)1/2. We can now estimate

〈(1−Ψ)f, ψa,s,b〉 ≤ Ca−3/4+P/2

∫
|x−b|≥δ

|x− b|−P |1−Ψ(x)||f(x)|dx

= O(a−3/2+P/2)

(3.4.11)

for b ∈ U(b0) implying (3.4.9). Now, let us assume that f = Ψf is localized, and let us
estimate the shearlet coefficients |〈f, ψa,s,b〉|. First note that the Fourier transform of
ψa,s,b is given by

ψ̂a,s,b(ξ) = a3/4e−2πitξψ̂(aξ1, a
1/2(ξ2 − sξ1)).

66 Dissertation, LMU München, 2021



Hector Andrade Loarca Applied Microlocal Analysis of DNNs for Inverse Problems

Now pick 1
2 < α < 1 and write

|〈f, ψa,s,b〉| =|〈f̂ , ψ̂a,s,b〉| ≤ a3/4

∫
R2

|f̂(ξ1, ξ2)||ψ̂(aξ1, a
1/2(ξ2 − sξ1))dξ

= a3/4

∫
|ξ1|<a−α

|f̂(ξ1, ξ2)||ψ̂(aξ1, a
1/2(ξ2 − sξ1))dξ︸ ︷︷ ︸

A

+ a3/4

∫
|ξ1|>a−α

|f̂(ξ1, ξ2)||ψ̂(aξ1, a
1/2(ξ2 − sξ1))dξ︸ ︷︷ ︸

B

Since ψ possesses M moments in the x1−direction which means that ψ̂(ξ1, ξ2) =
ξM1 θ̂(ξ1, ξ2) with some θ ∈ L2(R2), we can estimate A as

A = a3/4

∫
|ξ1|<a−α

|f̂(ξ1, ξ2)||ψ̂(aξ1, a
1/2(ξ2 − sξ1))|dξ

= a3/4

∫
|ξ1|<a−α

aM |ξ1|M |f̂(ξ1, ξ2)||θ̂(aξ1, a
1/2(ξ2 − sξ1))|dξ

≤ aM(1−α)a3/4

∫
|ξ1|<a−α

|f̂(ξ1, ξ2)||θ̂(aξ1, a
1/2(ξ2 − sξ1))|dξ

≤ a(1−α)M 〈|f̂ |, |θ̂a,s,b|〉 ≤ a(1−α)M ||f̂ ||2||θ̂a,s,b||2 = a(1−α)M ||f ||2||θ||2.

(3.4.12)

To estimate B we will make the following substitution:(
a 0

−a1/2 a1/2

)(
ξ1

ξ2

)
=

(
ξ̃1

ξ̃2

)
, dξ1dξ2 = a−3/2dξ̃1dξ̃2.

Therefore

B = a−3/4

∫
|ξ̃1|
a
>a−α

|f̂(
ξ̃1

a
,
s

a
ξ̃1 + a−1/2ξ̃2)||ψ̂(ξ̃1, ξ̃2)|dξ. (3.4.13)

Now we can use the fact that (b0, ξ(s0)) is a regular directed point of f . This means that
there is a neighborhood (s0 − ε, s0 + ε) such that

f̂(η1, η2) ≤ C(1 + |η|)−N for all
η2

η1
∈ (s0 − ε, s0 + ε). (3.4.14)

By using Equation 3.4.13 and considering η2

η1
with η1 : = ξ̃1

a , η2 : = s
a ξ̃1 + a−1/2ξ̃2 and

ξ̃1
a > a−α we have that

s− aa−1/2ξ̃2 ≤
η2

η1
= s+ a−1/2ξ̃2

a

ξ̃1

≤ s+ aα−1/2ξ̃2. (3.4.15)
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Equation (3.4.14) implies that∣∣∣∣f̂
(
ξ̃1

a
,
s

a
ξ̃1 + a−1/2ξ̃2

)∣∣∣∣ ≤ C
(

1 +
|ξ̃1|
a

)−N
. (3.4.16)

for s in a neighborhood V (s0) of s0, |ξ̃1|a > a−α and |ξ̃2| < ε′a1/2−α for some ε′ < ε. Now
we first split the integral B according to

B =a−3/4

∫
|ξ̃1|/a≥a−α

∣∣∣∣f̂
(
ξ̃1

a
,
s

a
ξ̃1 + a−1/2ξ̃2

)∣∣∣∣|ψ̂(ξ̃1, ξ̃2)dξ̃1dξ̃2|

= a−3/4

∫
|ξ̃1|/a≥a−α,|ξ̃2|<ε′a1/2−α

(
ξ̃1

a
,
s

a
ξ̃1 + a−1/2ξ̃2

)∣∣∣∣|ψ̂(ξ̃1, ξ̃2)dξ̃1dξ̃2|︸ ︷︷ ︸
B1

+ a−3/4

∫
|ξ̃1|/a≥a−α,|ξ̃2|>ε′a1/2−α

(
ξ̃1

a
,
s

a
ξ̃1 + a−1/2ξ̃2

)∣∣∣∣|ψ̂(ξ̃1, ξ̃2)dξ̃1dξ̃2|︸ ︷︷ ︸
B2

(3.4.17)

By (3.4.16) we can estimate B1 according to

B1 ≤ CaaN−3/4||ψ̂||1. (3.4.18)

It only remains to compute B2. For this we will use the fact that ∂L

∂xL2
ψ ∈ L2(R2). This

implies finally that

B2 ≤ a−3/4

∫
|ξ̃1|/a≥a−α,||ξ̃2|>ε′a1/2−α

|f̂(ξ̃1/a,
a

s
ξ̃1 + a−1/2ξ̃2)ψ̂(ξ̃1, ξ̃2)|dξ̃1dξ̃2

= a−3/4

∫
|ξ̃1|/a≥a−α,||ξ̃2|>ε′a1/2−α

|f̂(ξ̃1/a,
a

s
ξ̃1 + a−1/2ξ̃2)ξ̃−L2

̂
(
∂L

∂xL2
ψ)(ξ̃1, ξ̃2)|dξ̃1dξ̃2

≤ (ε′)−La−3/4+(α−1/2)L

∫
R2

|f̂(ξ̃1/a,
a

s
ξ̃1 + a−1/2ξ̃2)||

̂
(
∂L

∂xL2
ψ)(ξ̃1, ξ̃2)|dξ̃1dξ̃2

= (ε′)−La(α−1/2)L|〈|f̂ |, |
̂

(
∂L

∂xL2
ψa,s,b)|〉| ≤ (ε′)−La(α−1/2)L||f ||2||

∂L

∂xL2
ψ||.

(3.4.19)
Combining the estimates (3.4.11), (3.4.12), (3.4.18) and (3.4.19) we get the desired
estimate (3.4.8).

This shows one of the directions of the inclusions of Theorem 3.4.9, i.e. D ⊆WF(f)c.
To prove the other direction of the inclusion, the inverse theorem, we need to show that
if the shearlet coefficients of a function around (b0, ξ(s0)) ∈ R2 × S1 decay sufficiently
fast when a→ 0, then (b0, ξ(s0)) is a regular directed point.
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Following the procedure presented in [48] we need to introduce some preliminary
localization results. Let us first show that a frequency projection on a conical set Cu,v
preserves the wavefront set, where

Cu,v : ={ξ ∈ R2 : |ξ1| ≥ u, |ξ2| ≤ v|ξ1|}.

Theorem 3.4.11 ([48]). Let s0 < v, then the next two statements are equivalent:

(i) The point (b0, ξ(s0)) ∈ R2 × S1 is an N−regular directed point of g ∈ L2(R2).

(ii) (b0, ξ(s0)) is an N−regular directed point of PCu,v .

Proof. Let us first show the (i) ⇐ (ii) part. Write PCg = g −PCcu,vg, where PCcu,v is the
orthogonal projection onto the (closure of the) complement of Cu,v. By assumption there
exists a cutoff function function Ψ supported around b0 such that

(̂Ψg)(ξ) = O(|ξ|−N ) for all ξ2/ξ1 ∈ (s0 − δ, s0 + δ)

for some δ > 0. Clearly, since s0 ∈ (−v, v) the point (b0, ξ(s0)) is an N−regular point

of PCcu,vg. Therefore the same estimate as above also holds for ̂(PCcu,vg). Using Lemma 2.2

of [48] the same estimate holds also for ̂(ΨPCcu,vg), and therefore an analogous estimate

holds for ̂(ΨPCu,vg). This proves the (⇐) part.

To prove the (i)⇒(ii) part we estimate ̂(ΨPCcu,vg) using the method presented in the
proof of Lemma 2.2 of [48] and notice that it is negligible for the decay properties of

(̂Ψg) restricted to a small cone around the line with slope s0.

For the next result, let us recall the definition of the N−th fractional derivative of a
function f ∈ L4∞(R) given by

f (N)(x) : =

(
∂

∂x

)N
f(x) : =(ωN Î(ω))∨(u) for N ∈ R.

The next lemma states some well-known results for fractional derivatives with N /∈ N.

Lemma 3.4.12 ([48]). Let f ∈ L4(R), then

(f(·/a))(N)(x) = a−Nf (N)(x/a) (3.4.20)

and

||(fg)(N)||2 ≤ C(||f (N)||4||g||4 + ||f ||4||g(N)||4) N < 1. (3.4.21)

In the next lemma, we show that when studying the regularity of f around b0 only the
shearlet coefficients of f around b0 are relevant.
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Lemma 3.4.13 ([48]). Let f ∈ L2(R2), Ψ be a smooth bump function supported in a
small neighborhood V (b0) of some b0 ∈ R2 and let U(b0) be another neighborhood of b0
with V (b0) + δB ⊂ U(b0) for some δ > 0. Here, B denotes the unit disc in R2 and +
denotes the Minkowki sum of two sets, i.e.

A+B = {a+ b : for a ∈ A and b ∈ B}.

Consider the function g : R2 → R, given by

g(x) =

∫
b∈U(b0)c,s∈[−Ξ,Ξ],a∈[0,Γ]

〈f, ψ̃a,s,b〉Ψ(x)ψa,s,b(x)a−3dadsdt (3.4.22)

Then for all u, v
ĝ(ξ) = O(|ξ|−N ), |ξ| <∞, for ξ ∈ Cu,v (3.4.23)

provided that

θj(x) : =

(
∂

∂x1

)j
ψ(x) = O(|x|−Pj ) with Pj/2− 3/4 > j + 2, j = 0, . . . , N. (3.4.24)

Proof. Consider the Radon transform in the special form:

I(u) : =

∫
R
g(u− sx2, x2)dx2, |s| ≤ v.

We will show that I(N) ∈ L1(R) which implies that

(̂I(N))(ω) = ωN Î(ω), Î ∈ L∞(R),

where ω ∈ R is in the frequency space. Using the projection slice theorem (Theorem 2.4.1)
with ξ = ω(1, s) we obtain

|ĝ(ξ)| = |Î(ω)| ≤ ||I(N)||L1(R)|ω|−N ≤ ||I(N)||L1(R)

√
1 + s2|ξ|−N ,

which proves the statement. Now, let us show that I(N) ∈ L1(R). Since I is of compact
support, for this, we only need to show that I(N) is bounded. We have

I(N)(u) =

∫
R2

∫
R

∫
R+

〈f, ψ̃a,s,b〉(
∂

∂u
)N
∫
R

Ψ(u− sx, x)ψa,s,b(u− sx, x)dxdµ(a, s, b)

=

N∑
j=0

(
N
j

)∫
R2

∫
R

∫
R+

〈f, ψ̃a,s,b〉
∫
R

(
∂

∂u
)N−jΨ(u− sx, x)(

∂

∂u
)jψa,s,b(u− sx, x)dxdµ(a, s, b)

=
N∑
j=0

(
N
j

)∫
R2

∫
R

∫
R+

〈f, ψ̃a,s,b〉a−j
∫
R

(
∂

∂x1
)N−jΨ(u− sx, x)θja,s,b(u− sx, x)dxdµ(a, s, b),

(3.4.25)
where θj = ( ∂

∂x1
)jψ. Using a similar argument as in the localization part at the beginning

of the proof of Theorem 3.4.10, we obtain
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|θja,s,b(x)| = O(a−3/4+Pj/2|x− b|−Pj ), as a→ 0.

Since ( ∂
∂x1

)N−jψθj has small support around b0 and the parameter b varies in a set far

away from the support of V (b0) and ( ∂
∂x1

)N−jΨθj , we can estimate

∣∣∣∣ ( ∂

∂x1

)N−h
Ψ(x)θja,s,b(x)

∣∣∣∣ = O

(∣∣∣∣ ( ∂

∂x1

)N−j
Ψ(x)

∣∣∣∣a−3/4+Pj/2|b− b0|−Pj
)
, as a→ 0

for b ∈ U(b0)c. By plugging the estimate above in (3.4.25) and using (3.4.23) we obtain
the desired result.

We still need to introduce two important results before introducing the inverse theorem.
The first result describes how smoothness and the vanishing moments conditions have to
interact with the shearlet transform to get fast decay rates. The second result describes
the conditions needed for the shearlet system to form a tight frame for L2(Cu,v)∨, where

L2(Cu,v)∨ : ={f ∈ L2(R2) : supp(f) ⊂ Cu,v}. (3.4.26)

Lemma 3.4.14 ([48]). Let W : R2 → R be given by

∆u,v(ψ)(ξ) + |Ŵ (ξ)|2 = CψχCu,v(ξ) (3.4.27)

where ∆u,v(ψ)(ξ) = ∂2
ξ1
ψ(ξ) + ∂2

ξ2
ψ(ξ). Assume that Ξ > v, u ≥ 0 and that ψ = ∂M

∂xM1
θ

has M vanishing moments, Fourier decay of order L1 in the first variable (the Fourier
transform on the x1−direction decays accordingly) and that θ has Fourier decay of order
L2 in the second variable such that

2M − 1/2 > L2 > M > 1/2. (3.4.28)

Then
|Ŵ (ξ)|2 = O(|ξ|−2 min(L1,L2−M)), as ξ →∞.

In particular, if ψ is sufficiently smooth and has sufficiently many vanishing, moments
then W is a smooth function.

We can now prove the next theorem:

Theorem 3.4.15 ([48]). With the assumptions of Lemma 3.4.14 and W defined as in
(3.4.27), the system

(PCu,vψa,s,b)a∈[0,Γ],s∈[−Ξ,Ξ],b∈R2 ∪ (TbPCu,vW )b∈R2
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constitutes a tight frame for L2(Cu,v)∨ with frame constant Cψ. We have the representation

f(x) =
1

Cψ

∫
R2

〈f, TbW 〉TbPCu,vWdb

+
1

Cψ

∫
b∈R2

∫
s∈[−Ξ,Ξ]

∫
a∈[0,Γ]

SHhψf(a, s, b)PCu,vψa,s,b(x)a−3dadsdb
(3.4.29)

for x ∈ R2. The window function W satisfies the Fourier decay estimates from Lemma 3.4.14.

Proof. The frame operator is given as the Fourier multiplier with the function ∆u,v(ψ)(ξ)+
ξCu,v(ξ)|Ŵ |2 = χCu,v(ξ)Cψ. A Fourier multiplier is an operator that alters the Fourier
transform of a function by multiplying it against another function, the multiplier or
symbol. Let Id be the identity mapping, then it follows that the frame operator is given
by CψPCu,v = CψId on L2(Cu,v) (where Id is the identity).

We have now all the needed preliminary results to prove the inverse theorem. As in
Lemma 3.4.13, we are going to prove the result for N ∈ N, the generalization for N ∈ R
is achieved via Lemma 3.4.12.

Theorem 3.4.16 (Inverse theorem, [48]). Let f ∈ L2(R2) be such that f̂ ∈ L2(Cu,v),
with 0 < u, v < ∞. Assume that there exist neighborhoods U(b0) ⊂ R2 of b0 and
(s0 − ε, s0 + ε) ⊂ [−s0, s0] of s0 such that

SHhψf(a, s, t) = O(aK) for all (b, s) ∈ U(b0)× [−s0, s0], as a→ 0 (3.4.30)

with the implied constant uniform over b and s. Then (b0, ξ(s0)) is an N−regular directed

point of f for all N with (3.4.24) such that ψ ∈ H(N,L)(R2), and θ̂j , ω−M1 ψ̂(ω),
̂

( ∂L

∂xL2
θj) ∈

L1(R2), j = 0, . . . , N , and for some 1/2 < α < 1,

N + 2 < min(K − 3/4, (1− α)(M +N)− 3

4
, (α− 1/2)L− 3

4
, 2(L2 −M + 1), 2(L1 + 1)),

(3.4.31)
where M > 1 is the number of vanishing moments of ψ, L is the Fourier decay of ψ in

the second coordinate and L1, L2 are defined as in Lemma 3.4.14 such that (3.4.28) holds.

Proof. Let us choose Γ,Ξ such that the system

(PCu,v+κψa,s,b)a∈[0,Γ],s∈[−Ξ,Ξ],b∈R2 ∪ (TbPCu,v+κW )b∈R2

is a tight frame (see Definition 3.2.3) for L2(Cu,v+κ) and v + κ > s0, with W chosen
according to Lemma 3.4.14. We are going to prove that for a localized version of f̃ of

g =

∫
b∈R2,s∈(−Ξ,Ξ),a∈(0,Γ)

〈f, ψa,s,b〉ψa,s,ba−3dadsdb (3.4.32)
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around b0 the Fourier transform of the I(u) : =Rf̃(u, b0) decays with order |ω|−N for
|ω| → ∞. By the projection slice theorem this would prove that (b0, ξ(s0)) is a regular
directed point of g. To show that this already implies that (b0, ξ(s0)) is a regular directed
point of f , we argue as follows: By Theorem 3.4.15 we have the representation

f =
1

Cψ
PCu,v+κ(g +

∫
b∈R2

〈f, TbW 〉TbWdb).

It follows from Theorem 3.4.11 that (b0, ξ(s0)) is a N−regular directed point of f if it is
an N−regular directed point of g+

∫
b∈R2〈f, TbW 〉TbWfb. By Lemma 3.4.14 and (3.4.31),

(b0, ξ(s0)) is a N−regular point of
∫
b∈R2〈f, TbW 〉TbWdb, and therefore we only need to

verify regularity for g, which we will now do.
First note that by Lemma 3.4.13 we can without loss of generality restrict the parameter

b in the integral (3.4.32) to U(b0) if we multiply by a suitable cutoff function Ψ. Therefore
we need to study the regularity properties of

f̃ =

∫
b∈U(b0),s∈(−Ξ,Ξ),a∈(0,Γ)

〈f, ψa,s,b〉Ψψa,s,ba−3dadsdb,

where Ψ is supported in a small neighborhood V0(s0) ⊂ U(b0) around b0. Let us denote
by I(u) the function

I(u) : = R̃f̃(u, s0)

with

R̃f̃(u, s0) =

∫
b∈U(b0),s∈(−Ξ,Ξ),a∈(0,Γ)

〈f, ψa,s,b〉R̃Ψψa,s,b(u, s0)a−3dadsdb,

and

R̃Ψψa,s,b(u, s0) = a−3/4

∫
R

Ψ(u− s0x2, x2)ψ(
u− s0x2 − b1 + s0(x2 − t2)

a
,
x2

a1/2
)dx2.

To prove our goal that Î(ω) = O(|ω|−N ) we need to show that ωN Î(ω) ∈ L∞(R) or
the stronger statement, that the fractional derivative I(N) of I defined by

I(N)(u) : =(
∂

∂u
)NI(u) : =(ωN Î(ω))∨(u)

is in L1(R).
Unless stated otherwise in what follows the variables a, s, b are allowed to vary over

the sets [0,Γ], [−Ξ,Ξ] and U(b0), respectively. Using the product rule and the definition
of R̃ the quantity ||I(N)||1 can be estimated by

C max
j=0,...,N

∫
R

∫
a,s,b
|〈f, ψa,s,b〉|a−jR̃(

∂N−j

∂xN−j1

Ψ
∂j

∂xj1
ψa,s,b)(u, s0)|dµ(a, s, b)du.

We only treat the case j = N , the other cases can be done analogously.
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Assume first that the function Ψ is zero outside a cube of sidelength η around b0. Then
the support of IN is contained in the interval IU = [(b0)1−s0(b0)2−2η, (b0)1−s0(b0)2−2η]
and the integration variable x2 from the definition of R̃ can be restricted to the interval
IX = [(b0)2 − η, (b0)2 + η], where b0 = ((b0)1, (b0)2). We now separate the integral as
follows

A+B : =

∫
IU

∫
R2

∫
R

∫
R+

|〈f, ψa,s,b〉|a−N |R̃(Ψ
∂N

∂xN1
ψa,s,b)(u, s0)|dµ(a, s, b)du

where

A =

∫
IU

∫
R2

∫ s0+ε

s0−ε

∫
R+

|〈f, ψa,s,b〉|a−N |R̃(ψ
∂N

∂xN1
ψa,s,b)(u, s0)|dµ(a, s, b)du

and

B =

∫
IU

∫
R2

∫
\(s0−ε,s0+ε),b

∫
R+

|〈f, ψa,s,b〉|a−N |R̃(Ψ
∂N

∂xn1
ψa,s,b)(u, s0)|dµ(a, s, b)du

In order to estimate B we note that

R̃
(

Ψ
∂N

∂xN1
ψa,s,b

)
(u, s0) =

∫
IX

Ψ
∂N

∂xN1
ψa, s, b(u−s0x2, x2)dx2 = SHhθΨδx1+s0x2−u(a, s, b).

It is well known and easy to show that for s ∈ (−Ξ,Ξ) \ [s0 − ε, s0 + ε], the point (b, ξ(s))
is and R− regular directed point of δx1+s0x2−u, therefore it is also an R−regular directed
point of the localized version Ψδx1+s0x2−u. By using the same arguments as in the proof
of the Theorem 3.4.10 we see that for any 1/2 < α < 1 the estimate

SHhθΨδx1+s0x2−u(a, s, b) = O(a(1−α)(M+N)−3/4 + a−3/4+(α−1/2)L) (3.4.33)

holds with the implied constant uniform over b ∈ U(b0), s ∈ (−Ξ,Ξ) \ [s0− ε, s0 + ε]. The
details of these can be found in the appendix of [48]. Since by assumption there exists
1/2 < α < 1 such that

N + 2 < min((1− α)(M +N)− 3/4, (α− 1/2)L− 3/4),

the expression B is bounded. In order to estimate A we use the fast decay of the shearlet
coefficients of f around (b0, s0). By our assumptions on N,K, the coefficients 〈f, ψa,s,b〉
decay of order greater than aN+2+3/4, and therefore A is bounded. This finishes with
the proof of the inverse theorem.

Due to the technicality of Theorem 3.4.16, in order to get some intuition we are
motivated to present a more informal version in the following:
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Corollary 3.4.17 (Inverse theorem, informal version). Assume that ψ has sufficiently
many vanishing moments in the x1−direction, is sufficiently smooth and sufficiently
well-localized in space. Assume further that (3.4.30) holds for some f . Then (b0, s0) is
an N−regular directed point of f for all N < K − 11/4.

Having the direct and inverse theorem, we are ready to combine them and introduce
our extended version of the shearlet-based resolution of the wavefront set.

Theorem 3.4.18 (Resolution of the Wavefront set II, [48]). Let f ∈ L2(R2), N ∈ R and
ε > 0. Then there exist P,M,L,L1, L2 such that for all functions ψ ∈ H(N,0)(R2) with M

vanishing moments in x1−direction, decay of order P towards infinity, CL regularity in
the second coordinate and L1, L2 as in Lemma 3.4.14 the following holds: Set D = D1∪D2,
where

D1 : ={(b0, ξ(s0)) : (b0, s0) ∈ R2 × [−1, 1] and (b, s) in a neighborhood U of (b0, s0),

|SHvψf(a, s, b)| = O(ak) as a→ 0, for all k ∈ N, with the O(·)-terms uniform

over (b, s) ∈ U}.

and

D2 : ={(b0, ξ(s0)) : (b0, s0) ∈ R2 × [1,∞] and (b, 1/s) in a neighborhood U of (b0, s0),

|SHhψf(a, s, b)| = O(ak) as a→ 0, for all k ∈ N, with the O(·)-terms uniform

over (b, 1/s) ∈ U}.

Then
WFN+3/4+ε(f)c ⊆ D ⊆WFN−11/4−ε(f)c. (3.4.34)

The precise values of P,M,L,L1, L2 are given in Theorems 3.4.10 and 3.4.16.

Proof. First, we need to show that if

|SHhψf(a, s, b)| = O(aN ), as a→ 0

for |s| ≤ 1, then

|SHhψf(a, s, b)| = O(aN ), as a→ 0

with some suitable cone with v > 1 and P,L,M large enough. For this, we can estimate
the integral ∫

Ccu,v
f̂(ξ)ψ̂a,s,b(ξ)dξ = O(aN )

using the same estimates (3.4.14) to (3.4.16) in the proof of Theorem 3.4.10. This shows
that |SHhψPCu,vf(a, s, b)| = O(aN ). The reverse implication can also be shown using the
same argument. We then obtain:
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|SHhψf(a, s, b)| = O(aN ) for |s| ≤ 1⇐⇒ |SHhψPCu,vf(a, s, b)| = O(aN )

as a→ 0, for a cone Cu,v with v > 1 and P,L,M large enough. The case s > 1 is similar.
We also need the fact that for s ≤ 1 the point (b, ξ(s)) is an N−regular directed point of
PCu,vf if and only if (b, ξ(s)) is an N−regular directed point of f (see Theorem 3.4.11).
Finally, the statement follows directly from Theorems 3.4.10 and 3.4.16.

As one can observe, the results presented in Theorem 3.4.18 are applied to the wavefront
set of finite degree N , WFN (f). The results also hold for the full wavefront set, given by

WF(f) =
∞⋃
N=1

WFN (f).

In order to finish this chapter with the full wavefront set resolution in the desired form
we will present two last theorems. For the next results we will extend the notion of the
shearlet base wavefront set resolution from L2(R2) to the space of tempered distributions
S ′(R2).

Remark 3.4.19. We can extend the results from L2(R2) to the space of tempered
distributions S ′(R2) by simply taking shearlet generating functions in S(R2) and using
duality as we did with the Radon transform (see Remark 2.3.4).

Theorem 3.4.20 ([48]). Assume that ψ ∈ S(R2) is a Schwartz test function (see
Section 2.1) with infinitely many vanishing moments in x1−direction. Then

WF(f) = {(b, ξ(s)) ⊂ R2 × S1 : SHhψf(a, s, b) does not decay rapidly around (b, s)}

for any tempered distribution f ∈ S ′(R2) (see Section 2.1) with frequency support in Cu,v
for u, v > 0.

Proof. We have already proven this result for f ∈ L2(Cu,v)∨. Since ψ is a test function, the
generalization to tempered distributions follows easily by just using the same arguments.

Finally, the following theorem is an extension of Theorem 3.4.2 for weaker assumptions
over ψ.

Theorem 3.4.21 (Resolution of the Wavefront set III, [48]). Let ψ ∈ S(R2) be a Schwartz
function with infinitely many vanishing moments in x1−direction. Let f ∈ S ′(R2) be a
tempered distribution and D = D1 ∪ D2, where

D1 : ={(b0, ξ(s0)) : (b0, s0) ∈ R2 × [−1, 1] and (b, s) in a neighborhood U of (b0, s0),

|SHvψf(a, s, b)| = O(ak) as a→ 0, for all k ∈ N, with the O(·)-terms uniform

over (b, s) ∈ U}

and
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D2 : ={(b0, ξ(s0)) : (b0, s0) ∈ R2 × [1,∞] and (b, 1/s) in a neighborhood U of (b0, s0),

|SHhψf(a, s, b)| = O(ak) as a→ 0, for all k ∈ N, with the O(·)-terms uniform

over (b, 1/s) ∈ U}.

Then

WF(f)c = D. (3.4.35)

Proof. This is an immediate consequence of Theorems 3.4.10 and 3.4.16 making the usual
adaptations to handle general tempered distributions.

We have now introduced the basic assumptions for the shearlet generators, in order to
be able to perform the wavefront set resolution of tempered distributions. This allows
us to have a specified procedure to localize and microlocalize functions. In addition,
the weaker assumptions presented in Theorem 3.4.21 make it possible to use compactly
supported shearlets as our generators.

As mentioned before, compactly supported shearlets have high-resolution properties
in the spatial domain, making them suitable for tomographic reconstruction problems
as well as other inverse problems. If we want to use the shearlet-based wavefront set
resolution in real-world problems, we still need to translate the estimate 3.4.35 to the
digital realm. This is not trivial, mainly due to the lack of notion of oriented singularities
in the digital domain.

Remark 3.4.22. Since we are working with compactly supported shearlets, we can restrict
our attention to tempered distributions over a open domain Ω ⊂ R2. This can be done
using the same principle as in Definition 2.1.12, where Schwartz functions over Ω can be
extended by 0 to all R2 resulting on a function in S(R2).

Remark 3.4.22 we can modify Theorem 3.4.21 to detect wavefront sets in S ′(Ω).

Theorem 3.4.23 (Resolution of the Wavefront set IV). Let Ω ⊂ R2 be an open domain.
In addition, let ψ ∈ S(Ω) (see Definition 2.1.12) be a Schwartz function with infinitely
many vanishing moments in x1−direction. Let f ∈ S ′(Ω) be a tempered distribution and
D = D1 ∪ D2, where

D1 : ={(b0, ξ(s0)) : (b0, s0) ∈ R2 × [−1, 1] and (b, s) in a neighborhood U of (b0, s0),

|SHvψf(a, s, b)| = O(ak) as a→ 0, for all k ∈ N, with the O(·)-terms uniform

over (b, s) ∈ U}

and

D2 : ={(b0, ξ(s0)) : (b0, s0) ∈ R2 × [1,∞] and (b, 1/s) in a neighborhood U of (b0, s0),

|SHhψf(a, s, b)| = O(ak) as a→ 0, for all k ∈ N, with the O(·)-terms uniform

over (b, 1/s) ∈ U}.

Dissertation, LMU München, 2021 77



Applied Microlocal Analysis of DNNs for Inverse Problems Hector Andrade Loarca

Then

WF(f)c = D. (3.4.36)

Proof. This is an immediate consequence of Theorems 3.4.10 and 3.4.16 making the usual
adaptations to handle general tempered distributions.

In Chapter 5 we will propose a novel method to use the wavefront set resolution
capabilities of the compactly supported shearlet systems, combined with convolutional
neural networks in order to perform digital wavefront set extraction. But before, we
need to work in the continuous setting to study the microlocal behavior of continuous
convolutional neural networks, this will allow us to use microlocal analysis to perform
inverse problem regularization in tomographic reconstruction (Chapter 8) using the
rich information provided by the wavefront set. For this, in the next chapter, we will
introduce a novel approach to studying deep convolutional neural networks in the context
of microlocal analysis by introducing the notion of continuous convolutional neural
networks as non-linear operators on functional spaces.
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4 Microlocal analysis of continuum
convolutional residual neural networks

In this chapter we present the theory of microlocal analysis for deep convolutional neural
networks in the continuum setting. In this setting, the neural network architecture is seen
as an operator between functional (or distributional) spaces. Although this theory can
be extended from Fourier integral operators to a variety of convolutional neural networks,
we will focus on convolutional residual neural networks (conv-ResNets), due to their
extensive applications to real-world problems and their simple and elegant mathematical
structure.

In the context of the continuum setting, a convolutional neural network is interpreted
as an operator between Hilbert spaces. In the following we will analyze the different
components of residual convolutional neural networks separately, in particular, we will
study the microlocal behavior of the convolutional operator, the residual layer and the
pointwise ReLU operator. We refer as microlocal behavior of an operator to its action
upon the singularities of functions (distributions). In the case of Fourier integral operators,
such action is described by the microcanonical relation [70]. As we will show in the
following sections, the continuum convolutional layers are pseudodifferential operators
(see Definition 2.3.9), where the amplitude, also known as the symbol, can be explicitly
computed, therefore the standard microlocal analysis presented in Chapter 2 can be
applied. In the case of the ReLU activation function, which is a nonlinear operator, a
nonstandard approach needs to be taken.

My own contribution: This chapter results from numerous discussions with my su-
pervisor, Gitta Kutyniok, and collaborators Ozan Öktem and Philipp Petersen which
were later published as [9]. The main ideas were developed by me but formalized and
corrected with the help of my co-authors. In particular, Philipp Petersen was extremely
helpful on the formalization of the notion of ReLU and the Heaviside function on tempered
distributions. In addition, Ozan Öktem helped with the extension of the Radon transform
and back-projection operators to tempered distributions. This work was the final result
of my research throughout my PhD studies. The actual writing was moslty done by
myself with the help of Philipp Petersen for the main results in form of theorems and
lemmas.

4.1 Continuum convolutional residual neural networks

Before we discuss residual neural networks, we would like to refer the reader to Section 1.2
for the basic concepts of deep learning and deep convolutional neural networks. Residual
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neural networks have shown state-of-the-art performance in image classification, achieving
first place on the ImageNet challenge first in [71], and more recently in [110]. The residual
neural network architecture was first introduced in 2015 by He et al. [56] with the goal to
ease the training of general convolutional neural networks. This architecture allows one to
increase the depth of the networks without a significant computational cost in the training.
He et al. explicitly reformulated the layers as learning residual functions with reference
to the layer inputs, instead of learning unreferenced functions. This action is reflected in
a skip connection of a residual block which combines the input and the output. On the
inner weight layers, the Residual Linear Unit (ReLU) activation function is applied. This
function is given by the element-wise application of the ReLU(x) = max{0, x} function.
Figure 4.1 depicts the basic block of a ResNet.

Figure 4.1: Illustration of the principal block in ResNet, namely the skip connection from
the input to the output is the main characteristic of this architectures.

There are different reasons why residual representations are relevant in image regression
and classification. Let us consider H : S(R2) → S(R2) where H(f) is regarded as an
underlying mapping to be learned by a few stacked layers, with f ∈ S(R2) denoting the
input of the first of these layers. Later, in Equation (4.1.1) we will show an explicit example
of such mapping. Let us hypothesize that multiple nonlinear layers can asymptotically
approximate the complicated function f 7→ H(f). Thus, the layers can asymptotically
approximate the residual functions, H(f) − f , if the input f and output H(f) are of
the same dimension (see [56]). This means that rather than expecting stacked layers to
approximate H(f), we explicitly let these layers approximate a residual function
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F(f) : =H(f)− f.
The original input function f thus becomes F(f) + f . In their original work, He et al.

[56] showed that if we have a shallow network and add layers, which can be constructed
as identity mappings, a deeper model requires to have a training error not greater than its
shallower version. The so-called degradation problem [56] suggests that the solvers might
have difficulties in approximating identity mappings by multiple nonlinear layers. The
ResNet formulation is also known as residual learning, if identity mappings are optimal,
i.e., the solution is close to the identity, the residual is trained to be zero.

Although, it is unlikely that identity mappings are optimal, the residual reformulation
might help to precondition the problem. If the optimal function is closer to an identity
mapping than to a zero mapping, it should be easier for the optimizer to find the
perturbations with reference to an identity mapping, than to learn the function as a new
one. In other words, in each training step one does not need to learn the entire update,
but only a small offset from the identity.

The aforementioned argument plays an important role in the design of architectures
intended to solve inverse problems. A relevant example for our own purposes is the case
of the learned primal-dual architecture introduced by Öktem and Adler in 2017 [3]. This
architecture is based on a primal-dual iterative method [25] where the proximal operators
(see Section 4.3) are learned. In this case, the proximal operators are typically close to
the identity, therefore residual blocks are well suited to approximate them.

When working with images, as in our case, a common choice for the inner layers of
the residual block (see Figure 4.1) are the convolutional layers. This architecture is
traditionally expressed in the discrete setting, defined as follows.

Definition 4.1.1 (Discrete two-dimensional convolutional ResNet, [9, Definition 2.1]).
Consider matrices in Rn1×n2 representing functions on R2 that are discretized at n1 × n2

sample points. Next, let k0, k1, k2, k3, k4 ∈ N denote the numbers of channels per layer
with where k4 = 1. Furthermore, let

θj : =(θl,kj )
nj−1,nj
l=1,k=1 ∈ (R3×3)nj−1×nj−1 for j = 1, . . . , 4

denote a set of set of filters and bj ∈ (Rn1×n2)kj the channel-wise bias. We define the
convolutional affine operator Wθj :

(
RN1×N2

)nj−1 →
(
RN1×N2

)nj as

Wθj ,bj (f)(i1, i2, k) = bkj (i1, i2)+

nj−1∑
l=1

(θl,kj ∗f)(i1, i2) for k ∈ {1, . . . , nj} and f ∈
(
RN1×N2

)nj−1
.

(4.1.1)
The ResNet operator ResNet : (RN1×N2)n0 → RN1×N2 is given by

ResNet(f1, . . . ,fn0) = f1 + F(f1, . . . ,fn0) for f1, . . . ,fn0 ∈ RN1×N2 ,

where F : (RN1×N2)n0 → RN1×N2 is the operator

F(f1, . . . ,fn0) =
(
Wθ4,b4 ◦ ReLU ◦Wθ3,b3 ◦ ReLU ◦Wθ2,b2 ◦ ReLU ◦Wθ1,b1

)
(f1, . . . ,fn0)

for f1, . . . ,fn0 ∈ RN1×N2. Here ReLU(x) : = max{x, 0} is applied coordinate-wise.
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Notice that in Definition 4.1.1 we have three inner weight layers instead of two as in
the original architecture (see Figure 4.1). We depict this scenario in Figure 4.2.

Figure 4.2: Principal ResNet block used in this thesis, with three convolutional inner
layers.

The ResNet architecture has been used in many image classification applications
(see [71]), but it has also be used in image reconstruction tasks. In particular, convolutional
ResNets are the main ingredient of the learned primal-dual architecture, used for image
reconstruction in inverse problems [3]. In Section 4.3 we explore the learned primal-dual
architecture in more detail.

Since we would like to analyze the wavefront set propagation performed by the ResNet
architecture, we need to introduce the notion of the ResNet architecture in the continuum
setting. For that purpose, we will rewrite each layer in ResNet as an operator between
functional (distributional) space. In Sections 4.1.1, 4.1.2 and 4.2.5 we introduce the
continuum setting of the three main components of convolutional residual neural networks,
that is, the convolutional, residual and ReLU layers. This allows us to define the operator
given by the ResNet architecture. In addition, we also analyze the microlocal behavior of
each component individually. In other words, we compute the microcanonical relation of
such operators. In this case, we are extending the notion of microcanonical relation as
a mapping describing the wavefront set propagation when an operator is applied. We
will later use this analysis to characterize the singularity propagation within the learned
primal-dual architecture.

4.1.1 The continuum convolutional operator

In general, in the continuum setting, the operator defined by the convolution of a function
with a smooth filter will be pseudodifferential. The main problem with this approach
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is that the convolution with a smooth kernel will vanish all the singularities of the
functions it acts upon. Since this does not happen in practice when working with discrete
convolutions, this suggests that we need to find another interpretation for the continuum
counterpart of the convolution in (4.1.1).

To find an appropriate representation in the continuum setting to the discrete convolu-
tion step in (4.1.1), and inspired by [101], we can interpret the discrete convolution as a
discretization of a differential operator. Consider a continuum image f ∈ L2(R2) with
discretization f ∈ RN×N , namely

f =

 f11 . . . f1N
...

. . .
...

fN1 . . . fNN

 .

Moreover, let Kθ be a 3× 3 convolutional operator parametrized by the filter

θ =

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

 , (4.1.2)

where θij ∈ R. Thus, applying such an operator is given by the discrete convolution

Kdθf := θ ∗ f , (4.1.3)

where

θ ∗ f [i, j] =
3∑
l=1

3∑
k=1

θ[l, k]f [i− l, j − k], for i, j ∈ {1, . . . , N}.

Next, note that the filter θ can be expressed in terms of a basis of R3×3 as follows

θ = θ(β) = β11∆11 +
β12

2h
∆12 +

β21

2h
∆21 +

β22

4h2
∆22 +

β13

h2
∆13

+
β31

h2
∆31 +

β32

2h3
∆32 +

β23

2h3
∆23 +

β33

h4
∆33,

(4.1.4)

where ∆ij ∈ R3×3 are the basis elements of R3×3, given by

∆11 =

0 0 0
0 1 0
0 0 0

 , ∆12 =

0 1 0
0 0 0
0 −1 0

 , ∆13 =

0 −1 0
0 2 0
0 −1 0

 ,

∆21 =

0 0 0
1 0 −1
0 0 0

 , ∆22 =

 1 0 −1
0 0 0
−1 0 1

 , ∆23 =

 1 −2 1
0 0 0
−1 2 −1

 ,

∆31 =

0 0 0
1 −2 1
0 0 0

 , ∆32 =

 1 0 −1
−2 0 2
1 0 −1

 , ∆33 =

−1 2 −1
2 −4 2
−1 2 −1

 .

(4.1.5)
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Note that the 3×3 matrices ∆ij represent the matrix form of finite difference discretization
of the partial derivatives, when the grid spacing is h = 1 in (4.1.4) around a central point
in f . For a smooth function f , we derive that if the discretization h goes to zero, then

θ ∗ f(i, j)→
(
β11f + β12∂2f + β21∂1f + β22∂1∂2f + β13∂

2
2f

+ β31∂
2
1f + β23∂

2
2∂1f + β32∂

2
1∂2f + β33∂

2
1∂

2
2f
)

((xi, yj)),

where (xi, yj)
N
i,j=1 are the points on the corresponding discretization grid. For an open

set Ω ⊂ R2, we obtain the operator Kθ in (4.1.3) defined on S(Ω).

Definition 4.1.2. Let θ = {θi,j}3i,j=1 ∈ R3×3 be a discrete convolutional kernel. In

addition, let Ω ⊂ R2 be an open domain. The continuum convolutional operator,
Kθ : S(Ω)→ S(Ω), is then given by

Kθ(f) =β11f + β12∂2f + β21∂1f + β22∂1∂2f + β13∂
2
2f

+ β31∂
2
1f + β23∂

2
2∂1f + β32∂

2
1∂2f + β33∂

2
1∂

2
2f.

(4.1.6)

and {βij}3i,j=1 are the corresponding coefficients of the base expansion (4.1.4). By duality,
we can extend Kθ to tempered distributions S ′(Ω).

In addition, when applying convolutions in neural networks, one typically works with
multiple channels. In our analysis above, we are simply using a filter with one channel.
This analysis can be easily extended to multiple channels by simply applying the operator
Kθ in (4.1.6) to each channel, individually.

Finally, the convolution operator Kθ in (4.1.3) with a 3 × 3 kernel θ can be seen
as a discretization of a 2nd order linear differential operator, defined in (4.1.6). The
coefficients {βi,j}1≤i,j≤3 of this linear differential operator are defined by the values of
the filter θ using the change of basis in (4.1.4).

Remark 4.1.3. Since every linear differential operator is a pseudodifferential operator.
From Equation (4.1.6), we write the operator Kθ : S(R2)→ S(R2) in its pseudodifferential
form as

Kθf(x) =
1

4π2

∫
R2

∫
R2

ei(x−y)·ξpθ(ξ)f(y)dydξ,

where the amplitude function or symbol p is given by the polynomial:

pθ(ξ) =β11 + β12ξ2 + β21ξ1 + β22ξ1ξ2

+ β13ξ
2
2 + β31ξ

2
1 + β23ξ

2
2ξ1 + β32ξ

2
1ξ2 + β33ξ

2
1ξ

2
2 .

(4.1.7)

This also holds since the symbol is of order m.

Notice that, the interpretation of a discrete convolutional operator, which takes non-
smooth images as inputs, needs to be define in the continuum in a distributional sense.
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This means that also all the other operations will need to be applicable to tempered
distributions. In Section 4.2.1 we study the wavefront set propagation done by Kθ. In
addition, Section 4.2.1 discusses the microlocal analysis of the operator Kθ.

As stated in (4.1.1), after applying the convolutional layer on the input of the conv-
ResNet block we have to pass the output to the ReLU non-linearity. In the following
section we will introduce the continuum version of the pointwise ReLU application, this
is defined in form of an operator acting on the space S ′(Ω).

4.1.2 The ReLU operator on tempered distributions

As discussed in Section 1.2 non-linear activation functions play an important role on
the design of deep neural networks. In this thesis we will focus in the rectified linear
unit (ReLU). This non-linearity is used in many neural networks, in particular residual
neural networks. ReLU is defined as the pointwise application of the following real-valued
function.

Definition 4.1.4. The ReLU activation function is the function ReLU : R→ R given
by

ReLU(x) : = max{0, x} for all x ∈ R2.

In addition if y ∈ RN×M is an array, where N,M ∈ N the entry-wise application of the
ReLU activation function is the array ReLU(y) ∈ RN×M given by

ReLU(y)[i, j] : = max{0, y[i, j]} for all 1 ≤ i ≤ N , and 1 ≤ j ≤M

where y[i, j] is the entry i, j of y.

Our aim is to extend the ReLU to an operator that acts on tempered distributions
in order to study its microlocal behavior. For that, we will use the next remark on the
classical ReLU.

Remark 4.1.5. Let ReLU : R → R be the classical ReLU function (Definition 4.1.4)
and H : R→ R be the Heaviside step function given by

H(x) :=

{
1, if x > 0,

0, if x ≤ 0.

Hence we can write the ReLU function as

ReLU(x) = H(x)x,

The above remark can be used to extend ReLU to f ∈ C∞(Ω), by simply defining

ReLU(f)(x) : = ReLU
(
f(x)

)
= H

(
f(x)

)
f(x) =

{
f(x), if f(x) > 0,

0, if f(x) ≤ 0.
(4.1.8)

We only know that ReLU : S(Ω)→ L∞(Ω) and in fact ReLU(f) may not be smooth for
f ∈ S(Ω). Thus, ReLU does not necessarily map S(Ω) to S(Ω), i.e., we cannot use duality
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to define ReLU on distributions, as we did previously with the convolutional operator.
Using the characterization in (4.1.8) to extend ReLU to distributions involves extending
the Heaviside function to tempered distributions and to make sure the consequent
multiplication is well-defined. For that purpose, we first need to introduce the notion of
essential, positive, and negative support of a tempered distribution.

Definition 4.1.6 (Essential support [99]). Let Ω ⊂ Rn be a domain. The essential
support of f ∈ S ′(Ω) is defined as the set

ess supp(f) : =Rn \
⋃
U∈U

U,

where U : =
{
U ⊂ Ω : U is open and f

∣∣
U

= 0
}

with f
∣∣
U

denoting the restriction of f to
U ⊂ Ω.

Note that if f ∈ C(Ω), then ess supp(f) = supp(f), i.e., the essential support coincides
with the classical notion of support. We also introduce the notion of positive and negative
supports of a distribution.

Definition 4.1.7 (Positive support, [99]). Let Ω ⊂ Rn be a domain. The positive
support of f ∈ S ′(Ω) is defined as the set

supp+(f) : =
⋃
U∈U

U,

where U : =
{
U ⊂ Ω : f(φ) > 0 for all φ ∈ S(Ω) \ {0}, suppφ ⊂ U, φ ≥ 0

}
. Finally, the

negative support of f is defined as supp−(f) : =(supp+(f))c.

We can now define the Heaviside operator acting on tempered distributions.

Definition 4.1.8. Let Ω ⊂ be open. The Heaviside operator H : S ′(Ω) → L∞(Ω) is
defined as

H(f) : =1supp+(f), for f ∈ S ′(Ω), (4.1.9)

where supp+(f) ⊂ Ω is the positive support of f (Definition 4.1.7) and 1supp+(f) denotes
the characteristic function of supp+(f).

Before proceeding with the extension of the ReLU operator to tempered distributions,
we would like to list a set of desirable properties. In particular, ReLU : S ′(Ω) → S ′(Ω)
should preferably have the following properties.

Remark 4.1.9. 1. Negative support is mapped to zero: ess suppReLU(f) ⊂
supp+(f) (see Definition 4.1.7 for a definition of the essential support ess supp),

2. Positive support does not change: ReLU(f)(φ) = f(φ) for all test functions
φ ∈ S(Ω) supported in supp+(h),

3. Relation with the Heaviside operator: ReLU(f) = H(f) f whenever f ∈ S ′(Ω).
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Having extended the Heaviside function to distributions as in (4.1.9), we need to make
sure that the multiplication between the distribution f ∈ S ′(Ω) and H(f) ∈ L∞(Ω) is
well-defined. By Definition 2.2.3 and the Hörmander condition (Theorem 2.2.11), this is
indeed the case if (x,−λ) 6∈WF(f) for all (x, λ) ∈WF

(
H(f)

)
, i.e., we can define ReLU(f)

by (4.1.8) for any f ∈ S ′(Ω) that satisfies this criteria. However, the multiplication is
not necessarily well-defined, if there exists (x, λ) ∈WF

(
H(f)

)
, where (x,−λ) ∈WF(f).

The next remark shows a particular case when it is well defined.

Remark 4.1.10. If u, v ∈ L2
loc(R) and we define uv(x) = u(x)v(x) almost everywhere,

then the multiplication of u and v defined in (2.2.2) coincides with uv almost everywhere.
This holds even if there exist (x, λ) ∈WF(u) such that (x,−λ) ∈WF(v).

To see this, let x ∈ R2 and ψ be as in Definition 2.2.3. Then

ψ̂2(uv)(ξ) =

∫
R2

ψ̂u(ξ)ψ̂v(ν − ξ)dξ

holds in an L2 sense. Moreover, by Plancherel’s identity, we have that ψ̂u, ψ̂v ∈ L2(R2),
which yields with the Cauchy-Schwarz identity, that∫

R2

∣∣ψ̂u(ξ)ψ̂v(ν − ξ)
∣∣dξ ≤ ‖ψ̂u‖2 ∥∥ψ̂v(ν − ·)

∥∥
2

= ‖ψ̂u‖2 ‖ψ̂v‖2 <∞.

This yields absolute convergence in (2.2.2).

Thus, all we know is that the multiplication of H(f) and f is well-defined whenever
f ∈ S ′loc(Ω) (Remark 4.1.10). Since we aim to compute WF(ReLU(f)), one idea is
therefore to locally smooth-out f close to points, where we cannot define the multiplication
of f with H(f). The next notion will play an important role in the definition of ReLU on
distributions.

Definition 4.1.11 ([9, Definition A.6]). Let f ∈ S ′(Ω) be a tempered distribution. Then,
the L2-support of f is defined as the largest open set on Ω where f is given by an
L2-function:

suppL2(h) : =
⋃{

U ⊂ Ω open : f
∣∣
U
∈ S ′(U)

}
.

This means that if x ∈ suppL2(h) then there is an open set x ∈ U ⊂ Ω and fU ∈ L2(U)
such that f(φ) =

∫
U fU (x)φ(x)dx for all φ ∈ S(U).

This leads to the following definition of ReLU on distributions.

Definition 4.1.12 ([9, Definition 4.1]). Let Ω ⊂ R2 be open, κ > 0, and φκ ∈ S(R2) be
a function that integrates to 1, is positive and is supported on a compact subset of Bκ(0).
Then define

ReLUκ,φκ(f) : =H(f)f s, for f ∈ S ′(Ω), (4.1.10)

where fs : =(1− θκ)f . Here θκ : =1X ∗ φκ with

X : =
{
x ∈ R2 \ suppL2(f) : (x, λ) ∈WF(H(h)), (x,−λ) ∈WF(h) for a λ ∈ S1

}
+Bκ(0).

In the above, suppL2(f) ⊂ Ω denotes the L2-support of f (Definition 4.1.11).
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We next show that Definition 4.1.12 could be used to extend the ReLU function to
distributions.

Proposition 4.1.13 ([9, Proposition 4.2]). Let Ω ⊂ R2 be open. Consider ReLUκ,φκ
defined in (4.1.10) for some κ > 0 and φκ ∈ S(R2) that integrates to 1, is positive, and
is supported on a compact subset of Bκ(0). Then ReLUκ,φκ : S ′(Ω)→ S ′(Ω).

Proof. We need to show that ReLUκ,φκ(f) ∈ S ′(Ω), whenever f ∈ S ′(Ω). To see this, note
first that 1− θκ is smooth and vanishes on a neighborhood of every x ∈ Ω \ suppL2(f),
where

(x, λ) ∈WF
(
H(f)

)
and (x,−λ) ∈WF(f) for some λ ∈ S1.

Hence, the product (1− θκ)f is well-defined and by Theorem 2.2.11, there does not exist
an x ∈ Ω \ suppL2(f) such that

(x, λ) ∈WF
(
H(f)

)
and (x,−λ) ∈WF((1− θκ)f).

Theorem 2.2.11 and Remark 4.1.10 now imply that ReLUκ,φκ(f) ∈ S ′(Ω) whenever
f ∈ S ′(Ω), which concludes the proof.

Remark 4.1.14. The set X in Definition 4.1.12 is a neighborhood of the set on which
the definition of ReLU(h) via the multiplication H(h)h is not well defined. To understand
the nature of this set, we consider three examples:

1. f ∈ S ′(Ω). Then X = ∅, and hence ReLUκ,φκ(f) = ReLU(f). In particular, if
f = H(h) for some h ∈ S ′(Ω), then ReLUκ,φκ(f) = ReLU(f) = f .

2. f = P (1B) for some domain B ⊂ Ω and P is an elliptic linear pseudodifferential
operator of order at least one. Then ess supp(f) ⊂ ∂B, so H(f) = 0 which in turn
implies that X = ∅ and ReLUκ,φκ(f) = 0.

3. f = P (1B + h) for some domain B ⊂ Ω and P is an elliptic linear differential
operator. Assume furthermore that h ∈ C∞(Ω) is such that P (h) is positive on B.
Then X = ∂B + Bκ(0), since f is not a function at ∂B and H(f) = 1B. Thus
WF

(
H(f)

)
= WF(f).

Finally, notice that ReLUκ,φκ : S ′(Ω)→ S ′(Ω) in Definition 4.1.12 fulfills the first and
third properties from Remark 4.1.9. Furthermore, in relation with the second property,
ReLUκ,φκ(f)(φ) = f(φ) holds for all φ ∈ S(Ω) with a support that has a distance of more
than 2κ from WF

(
H(f)

)
⊂ ∂ supp+(f).

In Section 4.2.2 we will explore the computation of WF(H(f)) and WF(ReLUκ,φκ(f)).
In contrast to the convolutional operator, we are note able to precisely compute the
wavefront set of WF(ReLUκ,φκ(f)). This means that, for the rest of points where such
wavefront set cannot be computed we will need to make use of the DeNSE wavefront set
extraction [8].
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4.1.3 The continuum convolutional residual operator

Finally, following Definitions 4.1.2 and 4.1.12 we can define the continuum convolutional
ResNet operator as follows.

Definition 4.1.15 (Continuum two-dimensional convolutional ResNet, [9, Definition 4.4]).
Let Ω ⊂ R2 be open and let N ∈ N, j ∈ {1, 2, 3, 4}, where n4 = 1 be the numbers of

channels per layer. Further, for j = 1, . . . , 4, let θj : =(θl,kj )
nj−1,nj
l=1,k=1 ⊂ (R3×3)nj−1×nj−1 be

a set of coefficients. Let κ > 0 and let φκ ∈ S(Ω) be a function that integrates to 1, is
positive and is supported on a compact subset of Bκ(0).

We define the continuum convolutional affine operator W c
θj

: (S ′(Ω))nj−1 → (S ′(Ω))nj

as

Wθj (f)k =

nj−1∑
l=1

K
θl,kj

(f) for k ∈ {1, . . . , nj} and f ∈ (S ′(Ω))nj−1 . (4.1.11)

The continuum ResNet operator ResNetκ,φκ : (S ′(Ω))n0 → S ′(Ω) is then given by

ResNetκ,φκ(f1, . . . , fn0) : = f1 + G(f1, . . . , fn0) for f1, . . . , fn0 ∈ S ′(Ω),

where G : (S ′(Ω))n0 → S ′(Ω) is the operator

G(f1, . . . , fn0) =
(
Wθ4 ◦ReLUκ,φκ ◦Wθ3 ◦ReLUκ,φκ ◦Wθ2 ◦ReLUκ,φκ ◦Wθ1

)
(f1, . . . , fn0)

for f1, . . . , fn0 ∈ S ′(Ω).

Remark 4.1.16. 1. In contrast with Definition 4.1.1, we do not include a bias term
in the definition of the continuum ResNet above, since no such term will appear in
our implementation. We also show that the absence of the bias term does not have
negative impact in the performance of the algorithm.

2. Note that besides the previously defined operators K
θl,kj

and ReLUκ,φκ , only addition

is applied in the continuum ResNet. Since the set of distributions is a linear space,
we conclude that ResNetκ,φκ is a well-defined operator from S ′(Ω) to S ′(Ω).

In the next section we explore the microlocal analysis of the ResNetκ,φκ operator,
for that, we first analyze the microlocal behavior of each of its components, i.e., Kθ,
ReLUκ,φκ and the residual layer.

4.2 Microlocal analysis of continuum convolutional residual
neural networks

Now that we have defined the residual network architecture in the continuum setting,
in form of the operator ResNetκ,φκ , we aim to study the propagation of singularities
that such operator performs on its input. For that purpose, in this section we study the
propagation of singularities performed by each of its components, separately.
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4.2.1 Differential operator

The pseudodifferential nature of the convolutional operator, Kθ, acting on S ′(Ω) (Defi-
nition 4.1.2) allows us study its microlocal behavior using standard microlocal analysis
techniques [70]. In particular, the pseudo-local property (Theorem 2.3.10) can be used to
prove the next proposition.

Proposition 4.2.1. Let θ ∈ R3×3 be a discrete convolutional kernel and Ω ⊂ R2 and
Ξ ⊂ R × (0, π) be open sets. In addition, let Kθ : S ′(Ω) → S ′(Ω) be the convolutional
kernel from Definition 4.1.2. Then the microcanonical relation of Kθ is given by

WF(Kθf) ⊂WF(f). (4.2.1)

This means that Kθ will not introduce new singularities. In addition, let pθ be the
amplitude of Kθ defined in (4.1.7). If pθ satisfies

0 < |pθ(ξ)| for all ||ξ|| 6= 0,

then Kθ preserves the wavefront set, i.e., we have

WF(Kθf) = WF(f).

Proof. Following Remark 4.1.3 we know that Kθ is a pseudodifferential operator with
amplitude pθ given by (4.1.7). By Theorem 2.3.10, we have that

WF(Kθf) ⊂WF(f).

In addition, if
0 < |pθ(ξ)| for all ||ξ|| 6= 0

then Kθ is an elliptic pseudodifferential operator, which means it preserves the wavefront
set.

Proposition 4.2.1 allows us to propagate the wavefront set of a tempered distribution
f ∈ S ′(Ω) through the convolutional layer of the continuum ResNet architecture. In the
following section we will explore the other related operators.

4.2.2 ReLU application

In this section we will explore the microlocal behavior of ReLUκ,φκ : S ′(Ω) → S ′(Ω)
defined in (4.1.10). The strategy for this analysis is based on the Hörmander condition,
also known as the product theorem (Theorem 2.2.11).
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4.2.3 The wavefront set of H(f)

For a function g ∈ S(Ω), the wavefront set of H(g) is determined through the following
factors: A point x, with a neighborhood where g is almost always positive will be
mapped to a constant by the Heaviside function. Since constant functions are smooth,
this operation deletes the wavefront set associated to a neighborhood of x. The same
argument applies on neighborhoods where g is negative almost everywhere. Points x′

in which g vanishes have the potential to create new singularities since the Heaviside
function has a jump in 0. If g is smooth in x′ and also has non-vanishing gradient, then
the implicit function theorem tells us the form of the discontinuity of H(g). Following
these statements, we have the next proposition.

Proposition 4.2.2 ([9, Proposition 4.8]). Let g ∈ L2(R2). Let further

Rg : ={x ∈ R2 : x ∈ ∂(supp+(g)), x 6∈ sing supp(g),∇g(x) 6= 0},
Cg : ={x ∈ R2 : x ∈ ∂(supp+(g)), x 6∈ sing supp(g),∇g(x) = 0},
Sg : ={x ∈ R2 : x ∈ ∂(supp+(g)), x ∈ sing supp(g)}.

If for an α 6= 0

x ∈ Rg and λ = α∇x(g) (4.2.2)

then, (x, λ) ∈ WF(H(g)). Moreover, (x, λ) ∈ WF(H(g)) only if (4.2.2) holds or x ∈
Cg ∪ Sg.

Proof. We start with the ”only if” part. The statement is clear if WF(H(g)) = ∅.
Otherwise, we choose (x, λ) ∈ WF(H(g)). Assume first that x ∈ ∂(supp+(g))c. Then
either x ∈ supp−,0(g) or x ∈ supp+(f)◦. Since both supp−,0(g) and supp+(g)◦ are open
sets, we have that there exists an open neighborhood U of x such that U ⊂ supp−,0(g)
or U ⊂ supp+(g)◦. As a result, H(g) is constant on U . Therefore, (x, λ) cannot be in
WF(H(g)), which yields a contradiction.

Hence, we can assume that (x, λ) ∈WF(H(g)) and x ∈ ∂(supp+(g)). In addition, we
assume that x 6∈ Cg ∪Sg. Then, x 6∈ sing supp(g). Therefore, there exists a neighborhood
U ′ of x, where g is smooth and ∇g does not vanish.

We wish to show now that on U ′ the set {g = 0} is a smooth curve with normal ∇xg
at x. For this, we invoke a smooth version of the implicit function theorem [77, Theorem
2.1]. In this form, the theorem considers a smooth function g : Ω→ R such that

0 = g(x∗1, x
∗
2),

for (x∗1, x
∗
2) ∈ Ω. If

∂g

∂x2
6= 0 then there exists a smooth κ defined on a neighborhood of

x∗1 such that locally, i.e., for x1 in an open neighborhood of x∗1,

g(x1, κ(x1)) = 0

also κ′(x1) =
∂g

∂x1
(x1)/

∂g

∂x2
(x1). Moreover, in an open neighborhood of x∗1, x

∗
2 every (x1, x2)

such that g(x1, x2) = 0 is of the form (x1, κ(x1)). Applying the implicit function theorem
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to g if ∂g
∂x2
6= 0 yields that ηx = ∇g(x)/‖∇g‖ is a normal at the zero-level set of g at

x. By swapping variables, the same argument can be made if ∂g
∂x1
6= 0. We obtain that

locally H(g) = 1Ω with ∂Ω being a smooth curve that has normal ηx at x. By arguments
in [72], this implies that (x, λ) ∈WF(1Ω) if λ = αηx for an α 6= 0. This concludes the
proof of the “only if” part.

For the ”if” part, we notice again that if x ∈ Rg, then x ∈ ∂(supp+(g)). Thus, x 6∈ Sg
which implies that x 6∈ sing supp(g). Therefore, and since x 6∈ Cg, the implicit function
theorem is applicable. The same argument as before yields that (4.2.2) holds.

Remark 4.2.3. It is important to ask whether Proposition 4.2.2 is tight. To improve
our intuition, we show an example for each of the cases of Proposition 4.2.2 that may
lead to the creation of wavefront set. Here we mean by creation of wavefront set the
introduction of new oriented singularities to the function where the operator acts upon.

1. Creation of wavefront set according to (4.2.2).

Let g(x) = 1− ‖x‖2. The squared Euclidean norm is a smooth function. It holds
that

{g = 0} = {x : ‖x‖ = 1}

is the unit circle. Moreover, H(g) = 1B1 is the indicator of the unit ball. It is not
hard to see that the wavefront set of this function is {(x, x) : x ∈ S1}. Also

∇x(1− ‖x‖2) =

(
2x1

2x2

)
= 2x.

2. x ∈ Cg and x ∈ sing supp(H(g)).

Let g1 be a positive C∞ function, supported on a set Ω1 that contains (0, 0). Let g2

be another such function, however, with Ω1 ∩ Ω2 = {(0, 0)}. If Ω1 ∪ Ω2 is not an
open neighborhood of (0, 0), which is possible, then H(g1 + g2) is discontinuum at
(0, 0) implying that (0, 0) is a singular point of H(g1 + g2). One concrete example
would be given by Ω1 = [−1, 0]2, Ω2 = [0, 1]2. In this case, ∂(supp+(g1 + g2)) is not
given by a single curve in the neighborhood of (0, 0). Note that, necessarily by the
smoothness of g1, g2 it holds that ∇x(g1 + g2) = 0 for x = (0, 0).

3. x ∈ Cg and x 6∈ sing supp(H(g)). Let g be a smooth compactly supported positive
function. Then every x ∈ ∂ supp(g) satisfies that x ∈ Cg and x 6∈ sing supp(H(g)) =
sing supp(g).

4. x ∈ Sg and x ∈ sing supp(H(g)).

Let g(x) = 1/|x|α, with α such that g ∈ L2. Then we have that h = g1R+×R is
square-integrable and also (0, 0)× (S1 ∩R+ ×R) ⊂WF(h) = WF(H(h)), where the
last equality holds since g and hence h are non-negative.

5. x ∈ Sg and x 6∈ sing supp(H(g)).
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Let φ : R → R be a C∞ function with compact support on R+. The function
g(x) = φ(x1)+1R−(x1)x3

1 is not smooth since it has a jump in its third derivative at
the x1 = 0 axis. At the same time {(x1, x2) ∈ R2 : x1 = 0} = ∂(supp+(g)). Finally,
we observe that H(g)(x) = φ(x) and hence the wavefront set of H(g) is empty.

Notice that Proposition 4.2.2 is not yet a precise characterization of the wavefront set
of H(f). It implies that all singularities must be in one of the sets Rg, Cg or Sg but there
is a closed-form of the orientations of the singularities only if x ∈ Rg. In the next section
we explore the microlocal behavior of the ReLU operator expressed as the product H(·)·.

4.2.4 Wavefront set of ReLU(f) = H(f)f

In this subsection, we choose a fixed κ > 0 and φκ ∈ S(R2) that integrates to 1, is
positive, and is supported on a compact subset of Bκ(0). To reduce the computation of
WF(ReLUκ,φκ(f)) to that of WF(H(f)), we will make use of the following version of the
product theorem.

Theorem 4.2.4 ([16, Theorem 13]). Let u and v be distributions in S ′(U) for an open
domain U . Assume that for no point (x, λ) in WF(u) we have (x,−λ) ∈WF(v). Then,
uv ∈ S ′(U) and

WF(uv) = S+ ∪ Su ∪ Sv,

where
S+ : ={(x, λ+ µ) : (x, λ) ∈WF(u), (x, µ) ∈WF(v)},
Su : ={(x, λ) : (x, λ) ∈WF(u), x ∈ ess supp(v)},
Sv : ={(x, λ) : (x, λ) ∈WF(v), x ∈ ess supp(u)}.

In particular, for g ∈ S ′(R2) and f ∈ C∞(R2) where supp(f) is compact, we have that
WF(fg) ⊂WF(g) ∩ (supp(f)× R2).

Let Ω ⊂ R2, f ∈ S ′(Ω), and let us assume that WF(f) is known. In addition, using
the results of Subsection 4.2.3 we have also access to WF(H(f)). We denote as in
Definition 4.1.12

Xh : ={x ∈ R2 \ suppL2(h) : (x, λ) ∈WF(H(h)), (x,−λ) ∈WF(h) for λ ∈ S1}+Bκ(0)
(4.2.3)

and

X3κ
h : ={x ∈ R2 \ suppL2(h) : (x, λ) ∈WF(H(h)), (x,−λ) ∈WF(h) for λ ∈ S1}+B3κ(0).

(4.2.4)

Note that by Definition 4.1.12 we have that θκ = 0 on (X3κ
h )c and hence hs = h on

(X3κ
h )c.
Now we have collected all necessary ingredients to be able to compute the wavefront

set of ReLUκ,φκ(f) = H(f)f , which is expressed in the form of the following theorem.
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Theorem 4.2.5 ([9, Theorem 4.11]). Let Ω ⊂ R2 be open and let f ∈ S ′(Ω). In addition,
let

Af : = WF(f) ∩ (supp+(f)o × S1), (4.2.5)

Rf : ={(x, λ) ∈ Rf × S1 : (x, λ) follows (4.2.2)}, (4.2.6)

where Rf is defined as in Proposition 4.2.2. Moreover, CSf is given by

CSf : ={(x, ξ) ∈ (Sf ∪ Cf )× S1 : (x, ξ) ∈WF(ReLUκ,φκ(f))}, (4.2.7)

where Cf and Sf are defined as in Proposition 4.2.2. Then WF(ReLUκ,φκ(f)) is given by

WF(ReLUκ,φκ(f)) ∩ (X3κ
h × S1)c = (Af ∪Rf ∪ CSf ) ∩ (X3κ

h × S1)c, (4.2.8)

WF(ReLUκ,φκ(f)) ∩ (X3κ
h × S1) ⊂ (Af ∪Rf ∪ CSf ) ∩ (X3κ

h × S1), (4.2.9)

In particular, we have

WF(ReLUκ,φκ(f)) ⊂ Af ∪Rf ∪
(
(Cf ∪ Sf )× S1

)
. (4.2.10)

Proof. Since R2 can be decomposed as

R2 = supp+(f)o ∪ ∂(supp+(f)) ∪ supp−,0(f),

we have that WF(ReLUκ,φκ(f)) can be decomposed as

WF(ReLUκ,φκ(f)) = Af,κ ∪ Bf,κ ∪Df,κ, (4.2.11)

where

Af,κ : = WF(ReLUκ,φκ(f)) ∩ (supp+(f)o × S1),

Bf,κ : = WF(ReLUκ,φκ(f)) ∩ (supp−,0(f)× S1),

Df,κ : = WF(ReLUκ,φκ(f)) ∩ (∂(supp+(f))× S1).

Notice in addition that Af,κ, Bf,κ and Df,κ are disjoint. Now, since supp+(f)o is open,
we find for every x ∈ supp+(f)o with x 6∈ X3κ

h an open neighborhood U of x such that
ReLUκ,φκ(f)|U = H(f)|Uf s|U = f |U , since H(f)(x) = 1 for every x ∈ U and hs = h on
(X3κ

h )c. Thus

Af,κ ∩ (X3κ
h × S1)c = WF(f) ∩ (supp+(f)o × S1) ∩ (X3κ

h × S1)c = Af ∩ (X3κ
h × S1)c,

(4.2.12)

where Af is as in the statement of the proposition. Moreover, for every x ∈ supp+(f)o

with x ∈ X3κ
h there is an open neighborhood U ′ of x such that ReLUκ,φκ(f)|U ′ =

H(f)|U ′fs|U ′ = fs|U ′ . Therefore,

Af,κ ∩ (X3κ
h × S1) = WF(fs) ∩ (supp+(f)o × S1) ∩ (X3κ

h × S1)

⊂WF(f) ∩ (X3κ
h × S1) = Af ∩ (X3κ

h × S1).
(4.2.13)
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Next, since ess supp(H(f)) = supp+(f), by Theorem 4.2.4, we can conclude that

supp−,0(f) ⊂ (sing supp(H(f)fs))c = (sing supp(ReLUκ,φκ(f)))c.

Then, we have

Bf,κ = WF(ReLUκ,φκ(f)) ∩ (supp−,0(f)× S1) = ∅. (4.2.14)

Let us now study the set Df,κ : = WF(ReLUκ,φκ(f)) ∩ (∂(supp+(f))× S1). Following the
notation of Proposition 4.2.2, we can decompose the set ∂(supp+(f)) as

∂(supp+(f)) = Rf ∪ Cf ∪ Sf . (4.2.15)

Using this decomposition, we can write Df,κ as

Df,κ = Rf,κ ∪ CSf,κ,

where

Rf,κ : = WF(ReLUκ,φκ(f)) ∩ (Rf × S1),

CSf,κ : = WF(ReLUκ,φκ(f)) ∩ ((Cf ∪ Sf )× S1).

Next, we would like to show that

Rf,κ ∩ (X3κ
h × S1)c = {(x, λ) ∈ Rf × S1 : (x, λ) follows (4.2.2)} ∩ (X3κ

h × S1)c

= Rf ∩ (X3κ
h × S1)c,

(4.2.16)

Rf,κ ∩ (X3κ
h × S1) ⊂ {(x, λ) ∈ Rf × S1 : (x, λ) follows (4.2.2)} ∩ (X3κ

h × S1)

= Rf ∩ (X3κ
h × S1).

(4.2.17)

Let us start with (4.2.16). Consider first (x, λ) ∈ Rf , x 6∈ X3κ
h . Then, x ∈ Rf and thus

x 6∈ sing supp f . In particular, x 6∈ sing supp fs. Moreover, since ∇xf 6= 0, we conclude
that x ∈ ess supp(f) and therefore x ∈ ess supp(fs). Using Theorem 4.2.4, we conclude
that (x, λ) ∈WF(ReLUκ,φκ(f)) = WF(fsH(f)) if and only if (x, λ) ∈WF(H(f)). Since
x 6∈ Cf ∪Sf , we conclude from Proposition 4.2.2 that (x, λ) satisfies (4.2.2). To show the
converse embedding, assume that (x, λ) is such that x ∈ Rf and (x, λ) satisfies (4.2.2).
By Proposition 4.2.2, we have that (x, λ) ∈ WF(H(f)). Furthermore, x 6∈ sing supp f
and ∇xf 6= 0, which implies that x ∈ ess suppf . We conclude by Theorem 4.2.4 that
(x, λ) ∈WF(fsH(f)) = WF(ReLUκ,φκ(f)). This shows (4.2.16).

To show (4.2.17) it suffices to observe that x ∈ Rf implies that x 6∈ sing supp f and
hence x 6∈ sing supp(1− θκ)f . Therefore, we conclude that

Rf,κ ∩ (X3κ
h × S1) ⊂WF(H(f)) ∩ (Rf × S1) ∩ (X3κ

h × S1) = Rf ∩ (X3κ
h × S1),

where the last equality follows from Proposition 4.2.2. These yields (4.2.17).
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The full result now follows by considering the decomposition (4.2.11). The part
associated with Af,κ is estimated via (4.2.12) and (4.2.13). The part associated with
Bf,κ vanishes due to (4.2.14). Finally, the part associated with Dκ,φκ is estimated via the
decomposition (4.2.15), where the Rf,κ part is estimated via (4.2.16) and (4.2.17) and
CSf = CSf,κ holds per definition.

Remark 4.2.6. Theorem 4.2.5 only presents an estimate for the wavefront set associated
with the set (Xκ

h )c. In the sequel, since we are using the continuum relations to obtain
certain properties of digital relations, we will assume that κ is chosen very small and Xκ

h

is not seen by the discretization. In other words, in practice, we compute the wavefront
set only via (4.2.8).

Although on (Xκ
h )c, Theorem 4.2.5 does not entirely free us from computing WF(ReLUκ,φκ(f)),

it restricts the necessity for such a computation to the cases where x ∈ Sf ∪ Cf . The set
CSf can also be further split up: For x ∈ R2 \Xκ

h , we denote by WF(f)x the x-slice of the
wavefront set of f defined as Λ ⊂ R2 such that (x, λ) ∈ {x} × Λ for all (x, λ) ∈WF(f).

Proposition 4.2.7 ([9, Proposition 4.13]). Let Ω ∈ R2 be open, f ∈ S ′(Ω) be a distribu-
tion and CSf be as in Theorem 4.2.5. Then

CSf
⋂

(Xκ
h × S1)c =

{
(x, λ) : x ∈ Cg \Xκ

h and (x, λ) ∈WF
(
H(f)

)}
⋃{

(x, λ) : x ∈ Sg \Xκ
h ,WF(f)x ∩ −WF

(
H(f)

)
x

= ∅, λ ∈ (WF(f)x + WF
(
H(f)

)
x
) \ {0}

}
⋃{

(x, λ) : x ∈ Sg \Xκ
h ,WF(f)x ∩ −WF

(
H(f)

)
x
6= ∅, (x, λ) ∈WF

(
ReLUκ,φκ(f)

)}
.

(4.2.18)

Proof. The result follows immediately from Theorem 4.2.4.

Theorem 4.2.5 presents two ways to estimate the wavefront set of ReLUκ,φκ(f) on
(Xκ

h )c. On the one hand, it can be precisely computed by (4.2.8). This, however, may
require us to compute CSf via Proposition 4.2.7. This computation could be performed
according to (4.2.18), by using a method such as DeNSE to find WF(ReLUκ,φκ(f)) if
required.

Next, the wavefront set on (Xκ
h )c can be estimated using (4.2.10). Since we expect

that it is not problematic to overestimate the wavefront set slightly, we decided to make
use of the second option and cast this wavefront set extraction algorithm as Algorithm 1.

4.2.5 Microlocal analysis of the residual layer and sum-taking

In the continuum setting, residual neural networks are operators H : S ′(Ω)→ S ′(Ω) of
the form

H(f) = f + F(f), (4.2.19)

where F : S ′(Ω)→ S ′(Ω) is continuum two-dimensional convolutional ResNet according
to Definition 4.1.15. In addition, in Subsection 4.1.3, we allow summing over the channels
of a convolutional block.
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Algorithm 1: Wavefront set classifier of ReLUκ,φκ(f).

Input: Distribution f ∈ S ′(Ω), WF(f), x ∈ Ω.
Output: Estimate WF(ReLUκ,φκ(f))x ⊂ Ω.
initialisation;
if x ∈ supp+(f)o then

return Λx = WF(f)x;
end
if x ∈ Rf then

return Λx = {±∇x(f)/‖∇x(f)‖};
end
if x ∈ Cf ∪ Sf then

return Λx = Ω;
end

Because of this, we would like to identify WF(f + g) for two distributions with known
wavefront set. The following two results yield a complete description thereof.

Theorem 4.2.8 ([92, Page 93]). Let Ω ⊂ R2 be open, let f, g ∈ S ′(Ω) and (x;λ) be a
regular directed point of f and g, then (x;λ) is a regular directed point of f + g. In
particular, if (x, λ) ∈ WF(f) and (x;λ) is a regular directed point of g, then (x, λ) ∈
WF(f + g).

Corollary 4.2.9 ([9, Corollary 4.15]). Let Ω ⊂ R2 be open and let f, g ∈ S ′(Ω), then
WF(f + g) is given by

WF(f + g) = Af ∪ Ag ∪ Af+g, (4.2.20)

where

Af : ={(x;λ) ∈WF(f) : x 6∈WF(g)}, Af+g : =((WF(f) ∩WF(g))) ∩WF(f + g),

Ag : ={(x;λ) ∈WF(g) : x 6∈WF(f)}

In particular, we have that

Af+g ⊂WF(f) ∩WF(g). (4.2.21)

Proof. The result follows immediately from Theorem 4.2.8.

In a similar fashion as we did for the wavefront set of ReLU(f), using Corollary 4.2.9
we can find two ways to extract the wavefront set of f + g via Corollary 4.2.9. We express
the one that yields a superset of the wavefront set of f + g via (4.2.21) in the form of
Algorithm 2.
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Algorithm 2: Wavefront set classifier of f + g.

Input: Distribution f, g ∈ S ′(Ω), WF(f),WF(g), x ∈ Ω.
Output: Estimate WF(f + g)x ⊂ Ω.
initialisation;
if x ∈WF(f) ∩WF(g)c then

return Λx = WF(f)x;
end
if x ∈WF(f)c ∩WF(g) then

return Λx = WF(g)x;
end
if x ∈WF(f) ∩WF(g) then

return Λx = WF(g)x ∪WF(f)x;
end

4.2.6 Microlocal analysis of continuum residual neural network

Let us first notice that the continuum residual neural network operator as presented in
Definition 4.1.15 has four basic components, (1) the differential (convolutional) layers, (2)
summation over channels, (3) application of the ReLU, and (4) the residual connection.
We have seen in Section 4.2.5 that the effect on the wavefront set through summation
over channels and the residual connection can be described as the output of Algorithm 2.
In addition, the effect of the differential layers is described by (4.2.1) and the wavefront
set after an application of the ReLU can be found through an application of Algorithm 1.
Overall, there is an algorithm that produces for every continuum convolutional ResNet
and every input distribution of which the wavefront set is known, an estimate of the
wavefront set of the output.

In the next section we will study the microlocal behavior of a neural network architec-
ture which uses convolutional ResNet blocks as its backbone. The learned primal-dual
architecture was introduced by Adler and Öktem in [3] and is mainly used for image
reconstruction tasks associated to inverse problems in particular tomographic reconstruc-
tion. Later in Chapter 7 we present a method that makes use of the learned primal-dual
architecture to performs tomographic reconstruction, and in addition uses the wavefront
set of its input is used as a strong-prior.

4.3 Continuum learned primal-dual architecture

In Section 1.3 we introduced the notion of hybrid methods for inverse problems, which
are designed to solve a problem of the form

g = A(ftrue) + δg, (4.3.1)

aims to recover the ground truth ftrue ∈ X from data measurements g ∈ Y . Both X
(reconstruction space) and Y (data space) are Hilbert spaces. Moreover, A : X → Y
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is the forward operator and δg ∈ Y is the noise. As we know these methods combine
model-based and data-driven approaches, where the data-part can be regarded as a deep
neural network.

In this thesis we will focus on a specific type of hybrid method, namely learned
iterative schemes, and in particular, the learned primal-dual algorithm based on the
learned primal-dual architecture [3]. The learned primal-dual architecture is based on
primal-dual optimization schemes coming from non-linear programming [25]. In this
section we introduce the learned primal-dual architecture for inverse problems, in the
continuum setting. In addition, we also discuss how the analysis from Section 4.1 can
be used to study the microlocal behavior of this architecture. In our context, the use of
this architecture is motivated by two main reasons, the state-of-the-art performance in
tomographic reconstruction and its simple construction based on ResNet blocks. The fact
that the main backbone of this architecture is based on the ResNet architecture allows us
to directly extract its microlocal behavior using the techniques presented in Section 4.1.

The learned primal-dual algorithm is a hybrid method, since it combines ideas from
model-based and data-driven regularization. Let us start with the model-based part of
the algorithm. A classical model-based technique for solving (4.3.1) is the variational
regularization approach. In this approach one seeks to minimize a regularized objective
functional by solving

min
f∈X

(L(A(f), g) + λS(f)) for a fixed λ ≥ 0, (4.3.2)

where S : X → R is the regularization functional, L : Y × Y → R is the loss function,
and λ is the regularization parameter. On the one hand, the regularization functional
encodes a priori information about the ground truth ftrue (e.g. sparsity or regularity).
On the other hand, λ controls the influence of the a-priori knowledge. In this context,
L : Y × Y → R is a suitable affine transformation of the data log-likelihood [13].

In imaging, the minimization in (4.3.2) is a large-scale optimization problem, tradition-
ally solved using gradient-based methods such as gradient descent. In gradient descent
one uses the fact that the gradient of a function defines the direction of maximum growth
to minimize 4.3.2 by updating the function in the direction of the negative gradient, i.e.,

Algorithm 3: Gradient descent algorithm

Input: Function f0 ∈ X, WF(f) and learning rate h > 0.
Output: Minimizing function fI .
for i = 1, . . . , I − 1 do

fi+1 ←− fi − h∇ (L(A(fi), g) + λS(fi))
end

The main issue with Algorithm 3 is not just that sometimes a-priori information is
hard to encode in terms of a functional, but that many regularizers of interest result
in a non-differentiable objective functional. This issue does not allow us to compute
∇ (L(A(fi), g) + λS(fi)). As an alternative approach to this problem, there exist different
methods coming from non-smooth convex optimization, of particular importance are
proximal methods, which have been introduced in order to work with non-smooth
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objective functionals.
In proximal methods, a proximal step replaces the gradient step. Let us first define a

proximal operator.

Definition 4.3.1. Let X be a Hilbert space and G : X → R a potentially non-smooth
functional, and τ ∈ R+ a step size. Then, the proximal operator of G given the step size
τ is defined as

proxτG(f) = arg min
f ′∈X

(
G(f ′) +

1

2τ
||f ′ − f ||2X

)
, for every f ∈ X. (4.3.3)

Notice that Equation (4.3.3) is well-defined even for non-smooth functionals G. There-
fore, one can think of the proximal operator as an approximation to the gradient update
step for the non-smooth case. A classical application of Definition 4.3.1 is the proximal
point algorithm [25] for minimizing an objective functional G : X → R, where the
iterations are given by

fi+1 = proxτG(fi). (4.3.4)

Although one could use this algorithm directly to solve (4.3.2), this is generally impractical,
since (4.3.3) does not have a closed-form solution [25]. Proximal primal-dual schemes
were introduced as a solution for this issue. To discuss this notion, let us first introduce
the concept of dual space and operator adjoint in the context of Hilbert spaces.

Definition 4.3.2. Let X be a Hilbert space with norm || · ||X . Then, the dual space of
X, namely, X∗ is given by

X∗ : ={F : X → R : F is bounded and linear}.

In addition, the dual space is equipped with the norm || · ||X′ : X ′ ×X ′ → R defined as

||F ||X′ : = sup
f∈X
{|F (f) : ||f ||X = 1}.

Definition 4.3.3. Let X and Y be two Hilbert spaces with inner products 〈·, ·〉X :
X × X → R and 〈·, ·〉Y : Y × Y → R respectively. In addition, let A : X → Y be a
linear operator. Therefore, the adjoint of A, namely, A∗ : Y → X is the linear operator
fulfilling

〈A(f), g〉X = 〈f,A∗(g)〉Y , for every f ∈ X and g ∈ Y .

In primal-dual schemes, an auxiliary dual variable in the range of the forward operator
is introduced and the primal (f ∈ X) and dual variables are updated in an alternating
manner. This is mainly motivated by the equivalence between the minimization of a
functional (the primal problem) and the maximization of its adjoint (the dual problem).
By moving towards the negative gradient direction of the primal and the positive gradient
of the dual, one can converge to the desired minimum faster [25].
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One of the most used primal-dual schemes is the primal-dual hybrid gradient (PDHG)
algorithm [25], also known as the Chambolle-Pock algorithm, named after the authors.
The scheme is adapted for minimization problems with the following structure:

min
f∈X

(F(T (f)) + G(f)) , (4.3.5)

where T : X → Y is an operator, which can be non-linear. Here, the primal space X
and the dual space Y are Hilbert spaces. In addition, F : Y → R and G : X → R are
functionals on the dual/primal spaces. Notice that (4.3.2) is an special case of (4.3.5) if
we set F : =L(·, g), T = A and G : =S. This scheme is given by Algorithm 4.

Algorithm 4: Non-linear primal-dual algorithm [3]

Input: Constants σ, τ > 0 s.t. στ ||A|| < 1, γ ∈ [0, 1] and functions f0 ∈ X,
h0 ∈ Y .

Output: Primal solution fI ∈ X and dual solution hI ∈ Y .
for i = 1, . . . , I − 1 do

hi+1 ←− proxσL∗(hi + σA(f i));
fi+1 ←− proxτS(fi − τ [∂A(fi)]

∗(hi+1));
f i+1 ←− fi+1 + γ(fi+1 − fi);

end

In Algorithm 4, L∗ : X ′ → R is the convex conjugate of L(·, g) : X → R defined as

L∗(F ) = sup{F (f)− L(f, g) : f ∈ X}, for every F ∈ X ′.

In addition, fi ∈ X and hi ∈ Y are the dual and primal variable at step i, respectively.
Finally, [∂A(fi)]

∗ : Y → X is the adjoint of the derivative of A at the point fi (see
Definition 4.3.3). Knowing the advantages of the primal-dual algorithm over other
standard methods, one would like to make use of its structure but at the same time boost
its performance by a data-driven approach. In addition, one would like to introduce
a-priori information based on the physics of the problem. Also, the update steps present
in Algorithm 4 are based on predefined steps σ and τ . If such steps are too small, the
algorithm will take a lot of iterations to converge, but if they are too large, the algorithm
will oscillate around the optimal points.

In [3], Öktem and Adler derived a learned reconstruction scheme inspired by PDHG
depicted in Algorithm 4, obtaining the learned primal-dual algorithm (see Algorithm 5).
For that purpose, they followed the observation in [57, 96], that proximal operators
can be replaced by other operators that are not necessarily proximal operators. In the
learned primal-dual algorithm, the proximal operators of the PDHG are replaced by
operators parametrized by a neural network so the parameters are learned from training
data, resulting in a learned reconstruction operator. In this approach the authors use
convolutional residual neural networks to learn the primal and dual updates, avoiding the
complication of choosing right steps σ and τ . They also make use of the forward operator
A which is the most powerful prior we have. In addition, this algorithm separates the
problem in data update (dual) and image update (primal), so the neural networks that

Dissertation, LMU München, 2021 101



Applied Microlocal Analysis of DNNs for Inverse Problems Hector Andrade Loarca

define each step just need to learn local information, while the forward operator and its
adjoint cover the global aspect of the problem

The learned primal-dual algorithm depicted in Algorithm 5 can be seen as a neural
network realization of the classical PDHG algorithm with a few modifications, guided by
recent advances in machine learning. More precisely, we observe the following

• Instead of working on the primal space X, extend the primal space to allow the
algorithm some memory between the iterations

f = [f (1), f (2), . . . , f (Nprimal)] ∈ XNprimal , where Nprimal ∈ N.

Similarly, one extends the dual space U to UNprimal .

• Instead of explicitly enforcing updates of the form hi+σK(f i), allow the network to
learn how to combine the previous update with the result of the operator evaluation.

• Instead of hard-coding the over-relaxation f i+1 ← fi+1 + θ(fi+1 − fi), let the
network freely learn in what point the forward operator should be evaluated.

• Instead of using the same learned proximal operators in each iteration allow them
to differ.

Algorithm 5: Learned primal-dual algorithm [3]

Input: Functions f0 ∈ X, g, h0 ∈ Y .
Output: Primal solution fI ∈ X and dual solution hI ∈ Y .
for i = 1, . . . , I − 1 do

hi+1 ←− Γθdi+1
(hi,A(fi), g);

fi+1 ←− Λθpi+1
(fi, [∂A(fi)]

∗(hi+1));

end

In Algorithm 5 the primal (Λθpi ) and dual (Γθdi
) proximal operators are parametrized

by convolutional residual operators of the form (4.1.11). Notice that the associated
proximal operators Λθpi and dual Γθdi

as well as the forward operator A are defined in X.
Moreover, in the original work by Adler et al. they used biases for the operators Wθj

and parametric ReLU (PReLU) as non-linearities in (4.1.11). For our purposes, we make
use of unbiased operators and ReLU since we have found that they will perform like the
original architecture, this is shown in Chapter 8.

Based on Definition 4.1.15 for the continuum ResNet, we can now define the continuum
Learned Primal-Dual network as in Algorithm 5 with operators Λθpi

and Γθdi
given by

continuum ResNets. Hence, continuum Learned Primal-Dual network is a mapping

A†θ : S ′(Ξ)→ S ′(Ω) where A†θ(g) : = fN and

with fN ∈ S ′(Ω) given by the N -step iterative scheme in Algorithm 6 in which Λi and
Γi are continuum two-dimensional convolutional ResNets as in Definition 4.1.15 and θ
represents the weighst of the neural network.
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Algorithm 6: Continuum Learned Primal-Dual network

Input: Ω ⊂ R2, Ξ ⊂ R× (0, π), f0 ∈ S ′(Ω), h0 ∈ S ′(Ξ) and g ∈ S ′(Ξ).
Output: Primal solution fN ∈ S ′(R2) and dual solution hN ∈ S ′(Ξ).
for i = 1, . . . , N − 1 do

hi+1 ←− Γi(hi,A(fi), g);
fi+1 ←− Λi(fi, [∂A(fi)]

∗(hi+1));
end

Figure 4.3 depicts the learn primal-dual with iterations I = 10.

Figure 4.3: Learned primal-dual architecture from Algorithm 5.

Both the primal residual blocks (Figure 4.4) and the dual residual blocks (Figure 4.5)
are of the form (4.1.11), involving solely convolutional operators K

θl,kj
(f (k)), the residual

layer and the ReLU operator. In addition the dual and primal blocks are connected
by the Radon transform A and its adjoint A∗, in this thesis the forward operator is
given by the Radon transform R : S ′(Ω)→ S ′(Ξ) (Definition 2.3.1) and its adjoint, the
back-projection R∗ : S ′(Ξ)→ S ′(Ω) (Definition 2.3.2). Therefore, the microlocal behavior
of each individual component (convolutional layers, residual layers and non-linearities)
can be analyzed by the results presented in Sections 4.1.1, 4.2.5 and 4.1.2. In addition,
the microlocal behavior of the Radon transform and its adjoint is discussed in Section 2.5
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Figure 4.4: Primal convResNet block of learned primal dual architecture.

Figure 4.5: Dual convResNet block of learned primal dual architecture.

The microcanonical relation of the convolutional operators, ReLU, the residual layer, the
Radon transform and its adjoint are given by (4.2.1), (4.2.8), (4.2.20), (2.5.7), and (2.5.11),
respectively. This allows us to have a microcanonical relation for the entire learned primal-
dual architecture in the continuum case, given by the composition of the microcanonical
relations across the dual and primal blocks. We will present the explicit form for the
digital case in Chapter 6.

Naturally, we would like to apply this theory to real-world problems. For this, in
Chapter 6 we introduce a novel technique to digitize the analysis presented in this
chapter. This is then applied in the context of task-adapted reconstruction for computed
tomography in Chapter 7. Finally, the numerical experiments of the task-adapted
reconstruction method is presented in Chapter 8. In Chapter 8 we will also present the
numerical experiments regarding the digital wavefront set extraction (Chapter 5) and
the digital wavefront set propagation in convolutional ResNets (Chapter 6). Before can
to digitize the microlocal analysis of convolutional residual neural networks, we need to
introduce the concept of a digital wavefront set and how to compute it. This is the goal
of the next chapter.
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5 Digital wavefront set extraction with
shearlets and convolutional neural
networks

In Chapter 3 we introduced the mathematical machinery of microlocal analysis and
its relation with multiscale directional systems coming from harmonic analysis. In
addition, we also discussed the main role of microlocal analysis in the understanding of
the propagation of singularities under the action of Fourier integral operators, such as
the Radon transform or convolutional operators. This machinery will allow us later in
Chapter 6 to understand how wavefront sets are propagated in convolutional residual
neural networks used for real-world applications, such as tomographic reconstruction.
Before we can do that, in this chapter we will introduce the notion of digital wavefront
set extraction. In addition we will also present an algorithm that combines the digital
shearlet transform and a convolutional neural network architecture to extract wavefront
set of a digital image. Moreover, we will introduce a general setting of shearlet-based
semantic edge detection algorithms on which wavefront set extraction is a particular
example. We will show that the introduction of shearlets as a feature extraction performs
heavy lifting on general edge detection and classification.

As we know, large amounts of information are necessary to describe a signal is contained
in the wavefront set. This makes the wavefront set suitable as a-priori information for
any inverse problem reconstruction, as long as such inverse problems have a Fourier
integral operator as forward model. In particular, in modern methods for regularization
of inverse problems, one makes use of neural networks to define a subset of the model
parameters. In Chapter 8 we will present a set of methods that use the wavefront set to
regularize an inverse problem method for tomographic reconstruction. This is done by
propagating the wavefront set of the data, through a neural network, in order to perform
a task on the output, improving the reconstruction.

Before we proceed, we should notice that all the theory presented so far corresponds to
the continuous setting, where the signals live in an infinite-dimensional space. Moreover,
the definition of wavefront set, as well as the shearlet-based wavefront set resolution,
involves the computation of an infinite number of Fourier and shearlet coefficients,
respectively, whereas, in reality, we have access just to a limited (mostly small and
finite) number of coefficients. Although the wavefront set cannot be naturally defined for
digital signals, this does not imply that one is not able to describe the projection of the
singularities to a discrete grid. For example, edge detection plays an important role in
computer vision, where digital images, and where edges (discontinuity between objects)
can be regarded as singularities. In the case of wavefront sets, we need to describe not
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just the location of such edges, but also their orientations.
In this chapter, we introduce the concept of a digital wavefront set for digital images.

Using the ideas presented in Chapter 3, we also introduce an algorithm that makes use
of the digital shearlet coefficients of an image to extract its digital wavefront set using
a deep convolutional neural network. In addition, Section 5.3 presents the concept of
the distracted supervision paradox, which can be applied to digital wavefront sets in the
context of semantic edge detection.

My own contributions: This chapter is the product of lengthy discussions with my
supervisor Gitta Kutyniok, and my collaborators Ozan Öktem and Phlipp Petersen. This
ideas were mainly developed at the beginning on my PhD when we asked ourselves about
the possibility of approximating the wavefront set of a distribution when digitized. The
idea of using deep neural network classifier where the inputs are given by the digital
shearlet coefficients was developed by me. These ideas were publish in our joint papers
[8, 6]. The actual writing was mostly done by myself..

5.1 Wavefront set extraction

A necessary first step before applying techniques from microlocal analysis in real-world
applications is to extract the wavefront set of functions. The wavefront set is the set
of singularities and their orientations. Microlocal analysis studies how wavefront sets
are transformed under the action of operators. In particular, if the operator is Fourier
integral (Definition 2.4.4), it will not create new singularities, but just transformed them
with a prescribed mapping (Definition 2.4.5). This gives you access to the singularities of
Pf without computing it, providing an useful tool in inverse problems involving FIOs.
By the definition of the wavefront set, this involves the asymptotic analysis of the Fourier
transform of the localized function in question (Definition 2.2.6).

5.1.1 Image space: distributions and functions

In Chapter 4 we have introduced a set of tools that allows us to propagate the wavefront
set through the continuum convolutional residual neural network and the continuum
learned primal-dual architecture. In our theory, we have assumed that the input of
such architectures in the continuum setting are either Schwartz functions or tempered
distributions. Since S(R2) is the dualspace of S ′(R2), the wavefront set propagation
results in both spaces are connected via duality. The main reason that we choose these
spaces instead of the classical choice L2(R2) is the use of the differential operator Kθ

(Definition 4.1.2) associated to the convolutional layers. Since such operator is interpreted
as a differential operator, there is a need to compute derivatives of its input.

In this chapter we aim to digitize the notion of wavefront set extraction presented in
Chapter 3, where we presented the shearlet based extraction for L2(R2) and S ′(R2). For
that purpose we need to define the image space, where the digitization acts upon. Defini-
tion 4.1.15 suggests that the image space in this case should be S ′(R2). Unfortunately,
the digitization of tempered distributions represents a key challenge that will significantly
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add computational complexity to our problem. For this reason, we have chosen L2(R2).
The next remark shows that our results from Chapter 4 are still compatible with this
choice.

Remark 5.1.1. By Definiton 4.1.15, the continuum convolutional ResNet acts on the
space of tempered distributions, S ′(Ω), where the differential operator Kθ is well-defined.
Furthermore, notice that the rest of the related operators, namely, ReLU and the residual
layers are well-defined in L2(R2). In the case of the continuum learned primal-dual
architecture (Algorithm 6), the Radon transform and the back-projection are also well-
defined in L2(R2) (Definitions 2.3.1 and 2.3.2).

In the discrete case, the discrete convolutional operator Kdθ (see (4.1.3)). This operator
is also well-defined in some discretization of functions in L2(Ω), in particular `2(Ωd),
where Ωd is the discrete grid associated to the domain Ω. This allows us to choose the
space L2(Ω) as the image space where our discretization acts upon.

5.1.2 Extraction from finitely many samples.

In applications, where only finitely many point samples of the underlying function are
known, estimating the asymptotic behavior of the Fourier transform, required for the
computation of the wavefront set, is usually not possible. Indeed, we show in Section 5.2
that every method that seeks to approximately and explicitly extract the wavefront from
discrete samples of functions from a function class C ⊂ L2(R2) fails on a dense subset of
C. This happens whenever C contains at least all k−times differentiable functions for
arbitrary k ∈ N, see Theorem 5.2.4.

The problem of extracting the wavefront set of functions from a function class C
certainly becomes easier the smaller C gets. Indeed, in applications where, for example,
C models a class of images, it is reasonable to assume that C is a very small subset of
L2(R2) and does not contain all k−times differentiable functions for any k ∈ N. Hence,
in this situation, wavefront set extraction from point samples explicitly designed for the
class of images could be feasible. In fact, if the set C is so small that every function in
C is uniquely determined through its samples on the grid, then wavefront set detection
could, in principle, be performed through a large database, which could be learned from
C. From the above, it is clear that a useful wavefront set extractor needs to be closely
adapted to the underlying function class C. This strong adaptation to C is referred to as
our guiding principle.

5.1.3 Classification with applied harmonic analysis.

As presented in Chapter 3, certain transforms from applied harmonic analysis, like the
curvelet and shearlet transform, offer an alternative possibility to identify the wavefront
set. In particular, the connection between the behavior of these transforms and the
wavefront set has been analyzed in [23, 72], with edge detection as a particular application
in [120]. These approaches characterize the wavefront set through the rate of decay of
the respective transforms (Theorems 3.4.2 and 3.4.9). In this way, one can transform
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the problem of extracting the wavefront set of a function to a classification problem on
the decay of another function. While this point of view certainly makes the wavefront
set more accessible, especially since it does not depend on an unspecified localization
procedure, it still presents some limitations presented at the beginning of this section.
In particular, it cannot produce a successful explicit wavefront set extractor acting
on sampled functions, since evaluating the decay rate requires an infinite sequence of
coefficients.

The task of detecting edges and classifying them is known as semantic edge detection
[79] and has a considerable impact on computer vision. We will present this approach in
detail in Section 5.5. Furthermore, we will also formalize semantic edge detection in the
context of statistical decision theory in Section 5.5.

5.1.4 Data driven wavefront set extraction.

Having in mind the aforementioned guiding principle, a successful wavefront set extractor
needs to be adapted to the function class of interest. The relevant function classes in
applications are, however, difficult to characterize analytically. An alternative is therefore
to adopt a data-driven model where the function class of interest is given empirically
through examples.

Based on the above, we propose the following algorithm named Deep Network Shearlet
Edge Extractor (DeNSE) [8]. First, we assemble a supervised training set consisting of
images with their associated ground truth wavefront set, or a suitable surrogate. Second,
we train a classifier—in our case a deep neural network—to predict the wavefront set from
the shearlet coefficients of the training data. Finally, we apply the resulting classifier to
unseen data. In this way, the algorithm combines two crucial elements. On the one hand,
as mentioned previously, the interaction of the shearlet transform with the wavefront set
is theoretically well understood and presents the microlocal information of a function in a
more accessible way. On the other hand, the trained classifier allows a strong adaptation
to the underlying function class, thereby complying with our guiding principle.

In Section 5.4, we present the construction of the algorithm as well as the training data
that is used. In this context, we analyze the detection of edges and orientations in images
as well as higher-order wavefront set detection in sinogram data. We will later show in
Section 7.3, that our proposed method outperforms all conventional edge-orientation
estimators as well as alternative data-driven methods including the current state-of-the-
art. Moreover, we are unaware of any wavefront set extractor in the literature that goes
beyond edge or ramp detection, so that the following analysis can be seen as the first
advance in this direction.

5.2 Wavefront set of sampled functions

In this section we analyze whether it is possible to explicitly construct an operator that
maps a finitely sampled function f to an estimate of its wavefront set. This typically
arises in practical applications, e.g., images are only given as pixels representing point
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samples of a real-valued function. It is natural to use Shannon’s sampling theorem to
make the connection between a sampled function and its wavefront set more precise. The
theorem is stated in Section 5.2.1 and –based on it– Section 5.2.2 introduces the notion
of an approximate wavefront set extractor. Finally, in Section 5.2.3 we show that any
approximate wavefront set extractor on a function class C ⊂ L2(R2) that predicts the
wavefront set of functions f ∈ C from a finite number of sample values fails on a dense
subset of C if C contains at least all Ck(R2) ∩ L2(R2) functions for any arbitrary k ∈ N.
This result holds even if the sampling density is allowed to depend on the function f .

5.2.1 Sampling theorem and Paley-Wiener spaces

The sampling theorem states that every band-limited function f can be written as a
sum of shifted cardinal sine functions weighted by point samples of f . In other words,
a band-limited function is fully determined by its values on a discrete grid. To give a
precise statement, we introduce Paley-Wiener spaces.

Definition 5.2.1. Given Λ > 0, the Paley-Wiener space PWΛ ⊂ L2(Rd) is defined as

PWΛ : =
{
f ∈ L2(Rd) : supp(f̂) ⊂ [−Λ,Λ]d

}
.

We also define the d−dimensional sinc-function as

sincd(x) : =
d∏
i=1

sin(πxi)

πxi
, where x = (x1, . . . , xd) ∈ Rd.

Having in mind the above notation, we now state the sampling theorem, see, e.g. [83].

Theorem 5.2.2 (Sampling theorem, [8]). Let d ∈ N, f ∈ L2(Rd) ∩ C(Rd) and Λ > 0.
Then

f ∈ PWΛ ⇐⇒ f(x) =
∑
n∈Zd

f
(n

Λ

)
sincd(Λ · x− k), for x ∈ Rd.

Notice that by Theorem 5.2.2, if f ∈ PWΛ then it is band-limited. Furthermore since
sinc2(m−n) vanishes for every m,n ∈ Z2 such that m 6= n, we observe that f(m/Λ) = ym
for all m ∈ Z2, where ym is a sequence on the grid. In other words, every sequence on
a grid defines an associated interpolating band-limited function and conversely, every
band-limited function is uniquely determined by its values on a discrete grid.

As a consequence, the problem of extracting the wavefront set of a function f ∈
L2(R2) ∩ C(R2) from its discrete sampled values {f(m/Λ)}m∈Z2 can be re-stated as
extracting the wavefront set of f from its projection onto a Paley-Wiener space, i.e.
PΛ(f) : =PPWΛ

(f). Now, for functions f ∈ L2(R2), which are only defined almost
everywhere, we can even use the sampling theorem as a definition of a point evaluation.
For f ∈ L2(R2), we have that PΛ(f) ∈ C(R2). Hence, we set f(m/Λ) : =PΛ(f)(m/Λ).
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5.2.2 Wavefront set extractors

As already stated, the problem of extracting the wavefront set from samples on a grid
is equivalent to extracting the wavefront set given the projection onto a Paley-Wiener
space. There are multiple conceivable notions of a wavefront set extractor. First, for
Λ > 0, we could ask for a map

DWFΛ : PWΛ → 2R
2×S1

such that DWF(PΛf) = WF(f) for all f ∈ L2(R2), (5.2.1)

where 2R
2×S1

denotes the power set of R2 × S1. Essentially, this map requests to extract
the wavefront set of a function f from its samples on a fixed grid. It is clear that such a
map, DWFΛ, cannot exist, since it fails for functions f that have fine structures which
cannot be detected by coarse sampling. For example, a function that vanishes on every
grid point of Z/Λ while having a non-trivial wavefront set would be classified the same
as the zero function.

A more reasonable model for a wavefront set extractor should give an approximate
prediction of the wavefront set that eventually improves as the sampling density increases.
To weaken this statement even further, we might only ask for approximate extraction
of the wavefront set at one point and only for functions from a fixed-function class
C ⊂ L2(R2). For a fixed set W ⊂ R2 × S1 and a point x ∈ R2, we define

Wx : =
{
ξ ∈ S1 : (x; ξ) ∈W

}
.

We can now model the approximation described above by considering a sequence of
wavefront set extractors given by

DWFj : PWj → 2(R2×S1) for j ∈ N (5.2.2)

such that, for fixed x ∈ R2, and all f ∈ C,

dH(DWFj(Pj(f))x,WF(f)x) −→ 0, (5.2.3)

where Pj(f) is the projection of f into the Paley-Wiener space PWj . Here dH denotes
the Hausdorff distance with the convention dH(X,∅) = dH(∅, X) := 1 for any non-empty
compact subset X ⊂ S1 and dH(∅,∅) := 0. Recall that with this definition dH is a
metric on compact subsets of S1 (including the empty set). A sequence as in (5.2.2)
satisfying (5.2.3) results in an approximate extraction of the wavefront set of f ∈ L2(R2)
at x ∈ R2 from point samples of f where the sampling density may depend on f . This
observation motivates the following definition.

Definition 5.2.3. Let C ⊂ L2(R2). A sequence {DWFj}j∈N of mappings as in (5.2.2)
is called an approximate wavefront set extractor. We say that an approximate wavefront
set extractor is

• clairvoyant at x ∈ R2 if the sequence satisfies (5.2.2) at x for all f ∈ C, and

• ignorant to f ∈ C at x ∈ R2 if dH(DWFj(Pj(f))x,WF(f)x) 6→ 0 as j →∞.
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5.2.3 Non-existence of clairvoyant approximate wavefront set extractors

In the following we observe that, for every x ∈ R2, there is no clairvoyant approximate
wavefront set extractor if C contains at least all k-times differentiable functions, for some
k ∈ N. Furthermore, in this situation, every approximate wavefront set extractor is
ignorant to a dense subset of C at x.

Theorem 5.2.4. Let k ∈ N and C ⊂ L2(R2) be such that C ⊃ Ck(R2) ∩ L2(R2). For
every x ∈ R2 we have that, for every approximate wavefront extractor {DWFj}j∈N, there
exists a dense subset M ⊂ C such that {DWFj}j∈N is ignorant to all f ∈ M at x. In
particular, no approximate wavefront set extractor is clairvoyant at x.

Proof. The proof proceeds in two steps. First, for a given approximate wavefront set
extractor, (DWFj)j∈N, and a point x ∈ R2, we construct a function q ∈ C such that
(DWFj)j∈N is ignorant to q at x. Second, we show that the set of such functions is dense
in C. Step 1: Notice that Definition 2.2.6 implies

WF(f1 + f2) = WF(f1) for every f1 ∈ L2(R2) and f2 ∈ C∞(R2) ∩ L2(R2). (5.2.4)

For x ∈ R2, we now choose a function g ∈ Ck ∩ L2(R2) such that for a non-empty set
V we have that WF(g) ⊃ {x} × V . Since k < ∞, such a function always exists. We
can also assume hat ‖(1 + | · |2)k/2ĝ‖L1(R2) <∞. Then, by (5.2.4), we can conclude that
WF(g − Pjg) ⊃ {x} × V holds for every j ∈ N. Moreover, by construction, we have

dH(WF(g)x,∅) = 1. To define the desired function q, we first set

q0 : =P1g,

qn : =

qn−1 + (Png − Pn−1g) if DWFj−1(Pn−1qn−1)x = ∅,

qn−1 otherwise,
(5.2.5)

for all n ≥ 1. By the Riemann-Lebesgue Lemma [99], we conclude that for every N ∈ N
we conclude that∑
n≤N
‖qn−qn−1‖Ck .

∑
n≤N

∥∥∥(1 + | · |2)
k
2 (q̂n − q̂n−1)

∥∥∥
L1
≤
∥∥∥(1 + | · |2)

k
2 ĝ
∥∥∥
L1
<∞. (5.2.6)

Moreover, by definition,

(Png − Pn−1g) ⊥ (Pmg − Pm−1g) for all n 6= m.

Hence, by the Pythagorean theorem, for every N ∈ N,∑
n≤N
‖Png − Pn−1g‖22 ≤ ‖g‖22 <∞. (5.2.7)

It now follows from (5.2.7), (5.2.6) and (5.2.5) that qn is a Cauchy sequence in Ck(R2)
and L2(R2). Therefore qn converges to a limit q ∈ L2(R2) ∩ Ck(R2) ⊂ C. Furthermore,
one of the following statements holds:
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(1) DWFj(Pjqj)x does not converge for j →∞;

(2) DWFj(Pjqj)x converges to a limit W such that dH(W,WF(q)x) ≥ 1/2;

(3) DWFj(Pjqj)x converges to a limit W such that dH(W,WF(q)x) < 1/2.

In cases (1) and (2), we directly obtain that DWFj is ignorant to q at x. In case (3), we
obtain that there exists some j0 such that

dH
(
DWFj(Pjqj)x,WF(q)x

)
< 1 for all j ≥ j0. (5.2.8)

We now consider the cases WF(q)x = ∅ and WF(q)x 6= ∅ separately. If WF(q)x = ∅,
then (5.2.8) implies that DWFj(Pjqj)x = ∅ for all j ≥ j0, since no subset of P (S1) \ {∅}
has a distance less than 1 to the empty set. Therefore,

q − Pj0q =
∑
j>j0

(Pjg − Pj−1g) = g − Pj0g. (5.2.9)

We obtain from (5.2.9) that ∅ = WF(q)x = WF(g)x 6= ∅ which is a contradiction. If
WF(q)x 6= ∅, then dH(WF(q)x,∅) = 1. By the triangle inequality, this yields that there
exists some j0 such that DWFj(Pjqj)x 6= ∅ for all j ≥ j0. Therefore, q = qj0 ∈ PWj0

by definition, which implies that W (q)x = ∅. Hence, Case (3) does not occur, i.e.,
(DWFj)j∈N is ignorant to q at x.

Step 2: For an arbitrary f ∈ C, there exists some j1 ∈ N such that

‖f − Pj1f‖2 ≤
ε

2
and ‖g − Pj1g‖2 ≤

ε

2
.

Define qj1 = Pj1f and, for every n ≥ j1, define qn as in (5.2.5). It is clear that qn
converges to a limit qf ∈ Ck(R2) ∩ L2(R2). Also, it is straightforward to show that
‖qf − f‖2 ≤ ε. Now using the same arguments as in Step 1, it follows that (DWFj)j∈N is
ignorant to qf .

Remark 5.2.5. (1) Theorem 5.2.4 and its proof also hold when “wavefront set” is
replaced by “(k + 1)-wavefront set” or “singular support”.

(2) The arguments in the proof of Theorem 5.2.4 are independent from the domain R2.
Indeed, the same result holds for functions defined on an open domain Ω ⊂ R2 and
x ∈ Ω. Here we define the wavefront set of f ∈ L2(Ω) as{

(x, ξ) ∈ Ω× S1 : (x, ξ) ∈WF
(
f̃
)

where f̃ = f on Ω and f̃ = 0 elsewhere
}
.

(3) Theorem 5.2.4 demonstrates that there does not exist any clairvoyant approximate
wavefront set extractor for sufficiently large function classes. Even more severely,
for every k ∈ N, every approximate wavefront set extractor fails on a dense subset
of L2(R2) ∩ Ck(R2). Also, if the function class is so small that every function is
uniquely determined by its values on the grid, then one can construct a wavefront
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set extractor by storing the wavefront set for each function in a database. This
shows that for most classical function classes it is impossible to analytically derive a
wavefront set extractor. For function classes in applications, such as sets of images,
wavefront set extractors could exist but are potentially highly sensitive to the choice
of C.

In order to formalize the cases where one is able to perform digital wavefront set
extraction, we are going to present an alternative form of digital wavefront set extraction
as the task of semantic edge detection (Section 5.3). This allows us formalize the task as
a non-randomized decision rule in the context of statistical decision theorem. The idea
of introducing the task in the picture is driven by our goal to use the wavefront set as
some type of regularizer in tomographic reconstruction, this is going to be explored later
in Chapter 7.

5.3 Semantic edge detection

The characterization of the wavefront set of a characteristic function f = χΩ presented
in Proposition 2.2.14 implies that detecting the wavefront set of a piece-wise smooth
function with singularities along a smooth curve is equivalent to detecting edges and
their normal directions. Edge detection, which is one of the most well-studied problems
in image processing, is therefore a sub-problem of wavefront set extraction, which one
could call singular support extraction. In the case where we want to detect orientations
in a discrete set, for example, a set of different disjoint intervals of angles, the task of
wavefront set extraction is equivalent to detect edges in images and classify them. In this
setting, the classes corresponds to the orientations of the particular edge points. This is
known in computer vision as semantic edge detection.

In short, semantic edge detection is the task of detecting edges and object boundaries
in natural images and classifying the points in those edges from a finite set of classes.
These classes could represent, for instance, the objects the edges belong to [121] or the
orientation of the edge at that particular point [5]. The recent interest from the research
community in semantic edge detection is mainly driven by its far-reaching applications
in imaging-related tasks such as object recognition, semantic segmentation, and image
reconstruction. Semantic edge detection combines two different classification tasks. The
first is classical category-agnostic edge detection, which can be viewed as a pixel-wise
binary classification for determining whether a pixel belong to an edge or not. The second
is the recognition of the classes of pixels in an image that belongs to edges. One can
perform semantic edge detection using a model-based or a data-driven approach; each
comes with its strengths and shortcomings. Due to our guiding principle, we are going to
introduce a method that combines both approaches.

In this subsection, we review some of the existing semantic edge detection methods,
both model-based and data-driven, as well as a fundamental limitation of this task,
namely, the distracted supervision paradox.
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5.3.1 Model-based semantic edge detection

Many existing approaches to identify singularities in images are model-based. These
methods usually involve two steps: a filtering step to enhance edge-like features and a
classification step to identify pixels belonging to edges. The aforementioned features are
extracted using simple rules and heuristics, e.g., convolution with local difference filters
correspond to operating on the image with Roberts [95], Sobel [107], and Prewitt [88]
operators. In a similar manner, the well-known Canny edge detector [24] corresponds to
convolving the image with a Gaussian kernel to further identify those pixels where the
gradient is high.

There have been attempts in the past to also model the semantic information of
detected edges as in [54]. This work was in fact among the first publications to propose a
principled way to combine generic object detectors with bottom-up contours for semantic
edge detection. Determining the orientation of an edge is particularly important in inverse
problems, since this information is essential in relating edges in data to those in the signal
[70]. Wavefront set extraction refers to semantic edge detection, where the classification of
the edges is based on their orientation. The continuous theory of wavefront set resolution
via multiscale directional systems (e.g., shearlets [72]) allows one to design model-based
approaches for wavefront set extraction. These are essentially a digital implementation
of the continuous theory, which filters the images before performing the corresponding
classification.

An example of such an approach is the shearlet-based algorithm in [120], which uses
digital shearlets to filter an image in order to highlight the features corresponding to
different orientations and scales. One then performs a simple clustering classification
algorithm to classify the corresponding directions. A more recent approach is [93, 94],
where a general directional system, known as symmetric molecules, is used to filter the
directional features of images to then classify them to be edge, ridge, or blob.

On the one hand, these model-based approaches for semantic edge detection rely on
‘first principles’ from approximation theory and are easy to interpret, hence it can also
be easier to improve upon. On the other hand, the use of rigid heuristics regarding the
characterization of singularities makes it difficult to utilize these methods in real-world
applications, where the data represents empirically defined function classes.

5.3.2 Data-driven semantic edge detection

More recently, as part of the success stories of machine learning and its successes
in addressing various tasks in modern computer vision, a set of deep neural network
architectures for semantic edge detection [121, 11, 79, 122] have appeared. One needs to
stress that these have set a new state-of-the-art of semantic edge detection.

In broad terms, these methods use similar principles as the model-based ones, i.e.,
learning filters using convolutional layers and subsequently classifying the corresponding
edge pixels by sigmoid or softmax classifiers. Since each convolutional layer represents a
level of abstraction of the features in the target images, the initial layers represent ‘simple’
edges, whereas deeper layers represent more ‘complex’ features, corresponding to high-

114 Dissertation, LMU München, 2021



Hector Andrade Loarca Applied Microlocal Analysis of DNNs for Inverse Problems

level semantics. In that sense, the two steps involved in semantic edge detection, which
are semantic-agnostic edge detection followed by edge classification, are conceptually far
from each other. Therefore, there is no straightforward way of jointly learning how to
extract and classify the edges. This limitation in semantic edge detection is known as the
distracted supervision paradox [79].

5.3.2.1 A typical deep model for general SED

To introduce previous attempts for using deep supervision in SED, we take the typical
deep model as an example, the CASENet [121]. The CASENet architecture is based
on the already known Residual Neural Network architecture, also referred to as ResNet
(see Figure 5.1) [56]. This architecture has shown tremendous success in different image
processing tasks, including image classification. It in fact won the ImageNet challenge in
2015. CASENet receives as input the image and it produces as output a two-dimensional
array of the same size with the classified edges represented as pixels with the value given
by the corresponding category.

Figure 5.1: Illustration of the principal block in ResNet, namely the skip connection from
the input to the output is the main characteristic of this architecture.

We next explain the CASENet architecture, which is displayed in Figure 5.2, in more
detail. The input image is connected to a 1 − channel convolutional layer (conv1),
which is followed by four stacked ResNet subnetworks; res2c, res3b, res4b22, and res5c
correspondingly. Each of those sub-networks is a block of the network ResNet-101, where
res(N)(M) represents the M-th layer (represented by the letter ”a”, ”b” and ”c”) of the
N-th stage of ResNet-101 [56].

The first three stages of CASENet (i.e. conv1, res2c, res3b) produce a single channel
feature map F (m), which is used to perform the edge detection part. The last stage,
res5c, is connected to a 1× 1 convolutional layer to produce a K-channel class activation

map A(5) = {A(5)
1 , A

(5)
2 , . . . , A

(5)
K }, where K is the total number of categories. In order to

combine the edge information coming from the first stages, at the end of the network,
one replicates the bottom features F (m), by concatenating them in each channel of the
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class activation map at the last stage, namely:

Af = {F (1), F (2), F (3), A
(5)
1 , . . . , F (1), F (2), F (3), A

(5)
K }.

At the end, a K-grouped 1× 1 convolutional layer is applied to Af , generating a semantic
edge map with K channels, where the k-th channel represents the edge map for the
k-th category. Summarizing, the first four stages of CASENet produce category-agnostic
edge feature maps with different levels of refinement. This depth becomes necessary to
produce edges fine enough to be classified by the last stage.

Figure 5.2: Illustration of the CASENet architecture.

After the introduction of CASENet, there have been other methods to perform general
SED with deep supervision, e.g. [64, 122, 79], but all with similar network design. These
methods have been typically performed on datasets with semantic classes corresponding
to the object that the edges belong to. Specialized methods have been also introduced
by the authors in [6, 8], where the semantic classes correspond to the orientations of the
boundaries at each edge. We will further discuss this in Section 5.4 but before presenting
our method, we will shortly discuss a particular challenge when performing semantic
edge detection, namely the distracted supervision paradox.

5.3.2.2 The distracted supervision paradox

In the early deep supervised SED models ([64, 121, 122]), the authors only imposed
supervision on Side 5 (see Figure 5.2) and the final fused activation. In [121] the authors
have tried several deeply supervised architectures. They first used all of Side 1 to Side 5
for SED separately, with each side connected with a classification loss. In this situation,
the evaluation results were found to be even worse than the basic architecture that
directly applies 1× 1 convolutions at Side 5 to obtain semantic edges.

It is widely accepted that the lower levels of neural networks contain low-level, less-
semantic features such as local edges, which are unsuitable for semantic classification
because semantic category recognition needs abstracted high-level features that appear
in the top layers of neural networks. Thus, they would obtain poor classification results
at the bottom sides. Unsurprisingly, simply connecting each low-level feature layer and
high-level feature layer with a classification loss and deep supervision for SED task results
in a clear performance drop. In their original work, Yu et al. [121] also attempted to
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impose deep supervision of binary edges at Side 1 Side 3 in CASENet but observed
divergence in the semantic classification at Side 5. With the top supervision of semantic
edges, the top layers of the network are supervised to learn abstracted high-level semantics
that can summarize different appearances of the target categories.

Since the bottom layers are the bases of the top layers for the representation power
of the deep convolutional neural networks, the bottom layers are supervised in order
to help the top layers to obtain high-level semantics through backpropagation. Also,
with bottom supervision of category-agnostic edges, the bottom layers are taught to
focus on the distinction between edges and non-edges, rather than visual representations
for semantic classification, which require higher relational abstractions. These two
fundamentally distinct tasks cause conflicts in the bottom layers and therefore fail to
provide discriminative gradient signals for weight updating.

Note that Side 4 is not used in CASENet. We believe it is a naive way to alleviate
the information conflicts by regarding the whole res4 block as a buffer unit between
the bottom and top sides, in order to store useful latent information. Indeed, when
adding Side 4 to CASENet, the model achieves a 70.9% mean F-measure compared
with the 71.4% of the original CASENet (see [79, Section 5.2]). Moreover, the classical
1× 1 convolutional layer after each side is too weak to buffer the conflicts. There have
been recent approaches to use an architecture similar to CASENet but at the same time
avoid the distracted supervision paradox, see [79]. We will discuss this approach in the
next subsection. The main drawback of these approaches lies in the complexity of the
related deep neural network architectures, which represents an elaborate way to avoid the
distracted supervision paradox. Furthermore, the large number of network parameters
makes those methods slow and difficult to train.

Later, the authors introduced in [6] a method that uses the powerful singularity
representation given by the shearlet transform, already discussed in Chapter 3. This
method uses the main backbone of the CASENet, without the buffer block, in order to
achieved higher accuracy in SED with fewer parameters. In the next subsection, we will
briefly introduce these alternative approaches. The latter method was directly inspired
by our proposed digital wavefront set extraction DeNSE, introduced in Section 5.4.3,
which performs a specialized SED task while avoiding the distracted supervision paradox.

5.3.2.3 Diverse deep supervision

The fundamental challenge introduced by the distracted supervision paradox has forced
researchers who are interested in semantic edge detection to find smart ways to avoid
it. The developers of the CASENet architecture later introduced the Simultaneous
Edge Alignment and Learning (SEAL, [122]), which is a new training approach for the
CASENet architecture. It simultaneously aligns the ground truth edges and learns the
corresponding classifier, with the downside of being time-consuming due to the necessary
CPU usage by the alignment step.

Recently Liu et al. introduced a novel way to train CASENet [79], also known as the
deep diverse supervision. This approach makes use of an information converter based
on a convolutional residual block (see Figure 5.1), where the output of each stage of
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CASENet is fused in a final shared concatenation. Figure 5.3 depicts this architecture, it
is worth noticing that in this case, stage four is not anymore a buffer, but it is already
used in the supervision.

Figure 5.3: Illustration of the classical Diverse Deep Supervision architecture.

The information converters help to assist low-level feature learning (Side 1-4) in order
to generate consistent gradient signals from the higher levels (Side 5). This produces a
highly discriminative feature map for high-performance semantic edge detection. Having
the category-agnostic edge maps obtained from the information converter applied to each
of the first four stages, namely E = E(4) ◦E(3) ◦E(2) ◦E(1). The final map is then given
by the information conversion of the fifth stage and the shared concatenation, i.e.,

Ef = A
(5)
K ◦ E ◦A

(5)
K−1 ◦ E ◦ . . . ◦A

(5)
1 ◦ E.

This network is trained with a multi-task loss, meaning, two different losses, corresponding
to category-agnostic and category-aware edge detection. These two losses are then
optimized jointly. Both losses are based on reweighted sigmoid cross-entropy loss, which
is typically used for multi-label classification. For further details, we refer to [79].

5.3.2.4 Shearlet feature extraction for SED

In [6] the authors presented an alternative method inspired in CASENet and DDS, using
as input the discrete shearlet coefficients of the target image. In addition, the authors
also deleted the buffer block (Side 4) and adapted the channels of the layers to the
corresponding shearlet channels. The main motivation behind CASENet and DDS comes
from the fact that the classifiers based on convolutional neural networks use convolutional
kernels as feature extractors. Those feature extractors transform the input image into
a suitable representation system for the particular classification task. We know, as
discussed in Chapter 3 that the shearlet transform can represent optimally the oriented
singularities of a two-dimensional image. This suggests that it is a suitable representation
system for semantic edge detection.

Based on this fact, we propose an alternative to the CASENet and DDS architectures,
which take as input the shearlet coefficients. These proposed architectures are able to
reduce the number of necessary parameters to achieve better accuracy than the original
architectures, mainly due to the heavy lifting performed by the shearlet transform. In
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Figures 5.4 and 5.5 we depict the alternative, shearlet-based architectures, shear-CASENet
and shear-DDS. Furthermore, in Section 7.4 we present the numerical results obtained
with these architectures, with benchmarks for comparison with other relevant methods.

Figure 5.4: Illustration of the Shear-CASENet architecture.

Figure 5.5: Illustration of the shearlet Diverse Deep Supervision architecture.

As we have mentioned before, wavefront set extraction is a particular case of semantic
edge detection. Thus, one can use similar ideas to motivate the design of a particular
algorithm that performs this task. We cover this approach in Section 5.4 where we
introduce the digital wavefront set extraction method performed by deep neural networks
on the shearlet domain. This method was introduced by the authors in [8] coined Deep
Network Shearlet Edge Extractor, or DeNSE.

5.4 Computing the digital wavefront set with shearlets and
deep learning

We will now propose an algorithm that replaces the heuristic approach of the shearlet-
based edge detection and classification algorithm of [120] by a data-driven approach. In
other words, instead of hand-crafted heuristics, we train a deep neural network using a
variety of training data, adapted to the particular classification procedure. Although this
might also involve some heuristics, the data-driven approach assumes less conditions on
the solutions, making it more general. The neural network takes as input the shearlet
coefficients of an image and produces a set of point-direction pairs that are classified as
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elements of the wavefront set. We will describe the construction of the classifier below
and then present the computational realization of our algorithm in Section 5.4.3 at the
end of this section. This algorithm was first introduced in [8].

5.4.1 Digital shearlet transform

The classifier that we will construct below is based on the shearlet transform of a digital
image. Therefore, we need to work with a digitized shearlet transform, defined on a
digital domain of pixel images. The digital shearlet transform was introduced in [75] and
is defined as follows:

Definition 5.4.1. Let M ∈ N be the number of pixels, J ⊂ N \ {∞} be the set of
scales, kj ⊂ N be the shearing parameter for all j ∈ J and Kj : =[−kj , . . . , kj ]. We pick

2
∑

j∈J Kj + 1 matrices in RM×M . We denote these matrices by φdig and ψdigj,k,ι for j ∈
J, k ∈ Kj , ι ∈ {−1, 1}. To make the connection to the classical shearlet transform, we

can think of ψdigj,k,ι as a digitized version of ψ2−j ,2−j/2k,0,ι and of φdig as a digitized version

of a low frequency filter. A concrete construction of the matrices φdig and ψdigj,k,ι can be

found in [75]. Then, we define the digital shearlet transform of an image I ∈ RM×M by

DSH(I)(j, k,m, ι) : =


〈
I, Tmψ

dig
j,k,ι

〉
if ι ∈ {−1, 1},〈

I, Tmφ
dig
〉

if ι = 0,

where j ∈ J, k ∈ Kj, m ∈ {1, . . . ,M}2, and Tm : RM×M → RM×M circularly shifts the
entries of the elements of a matrix by m ∈ N× N, i.e.

(TmI)[i, j] = I[(i+m1)%M, (j +m2)%M ],

where (i+m1)%M is i+m1 modulo M .

Thus the digital shearlet transform of an image I ∈ RM×M is a stack of 2
∑

j∈J(Kj−1)+
1 matrices of dimension M ×M . In all our numerical experiments presented in Chapter 8,
we fixed the number of scales J = 4 and the shearing parameter kj = 2dj/2+1e + 1 so
2
∑

j∈J(kj − 1) + 1 = 49. The computation of the digital shearlet transform is performed
by using the Julia implementation of ShearLab [74] (www.shearlab.org/software). In
the next section we will introduce the digital wavefront set extractor on the shearlet
coefficients, defined as a deep convolutional neural network.

5.4.2 Network architecture for wavefront set extraction

In order to compute the digital wavefront set, we have introduced in [8] a deep convolu-
tional neural network. The input of the network are the digital shearlet coefficients of a
digital image and the network outputs an estimation to the wavefront set of the image.
The network architecture consists of four convolutional layers, with 2× 2 max pooling,
ReLU activation, and batch normalization, followed by a fully-connected layer with
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1024 neurons, softmax activation function, and a one-dimensional output. The network
architecture is depicted in Figure 5.6. We chose this architecture, since it performed well
in a series of tests while being of moderate size. Here we focused on networks with only
a few layers because we expect that the shearlet transform already acts as the correct
feature extractor of the problem. Therefore, the classifier does not need to learn the
correct data representation. Nonetheless, it is conceivable that a deeper and larger neural
network architecture could potentially lead to improvements for the classification results
below, on account of efficiency.

We train the neural network on spatial patches of the shearlet coefficients of a function.
This network produces a prediction of which directions belong to the wavefront set of the
function at the position associated with this patch. These patches are of size 21× 21× 49
voxels. We pick 180 values (θi)

180
i=1 ∈ {0, 1} that the network will output, representing

each direction in the wavefront set. For each θi, we then train a network Φi with the
described architecture by passing to the network patches of shearlet coefficients of images
I ∈ RM×M of the form

(DSH(I)(j, k,m, ι))j∈J,k∈Kj ,ι∈{−1,0,1},m∈[m∗1−10,m∗1+10]×[m∗2−10,m∗2+10], (5.4.1)

where m∗ ∈ {11, . . . ,M − 10}2, to the network. The associated label to a patch of (5.4.1)
is 1, if and only if the image I has a singularity centered on that patch with direction
i ∈ {0, . . . , 180} at m∗, and 0 else. In total, this procedure yields 180 digital classifiers.
We train one more network with the same data, but the label is 1 if I has no singularity
at m∗ and 0 else. This additional classifier is used in test (unseen) cases, where all
competing algorithms only perform edge detection and not edge-orientation detection.

The final classifier is constructed by putting all these 181 networks in parallel, producing
one large network with 181 outputs. For every 21× 21× 49 patch of shearlet coefficients,
this classifier generates a vector of length 181, indicating if the underlying function is
smooth at the center point of the patch and listing all directions of edges present at the
center point.
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Figure 5.6: Illustration of the network architecture forming the foundation of the classifier.
This network consists of four convolutional layers and one fully-connected
layer. The colored block in the middle represents a stack of the output of the
last convolutional layer. The colors correspond to the different channels.

5.4.3 DeNSE: Deep Network Shearlet Edge Extractor

Now we present our algorithm for extracting the wavefront set of a digital image. For M ∈
N, and a digital image I ∈ RM×M , this algorithm produces, for every m∗ ∈ [11,M − 10]2

a prediction of the wavefront set of I at m∗. The algorithm proceeds along with the
following three steps.

Algorithm 7: DeNSE algorithm, [8]

1: Train the network classifier on a set of labeled training data.
2: For a given test image I ∈ RM×M , compute the digital shearlet transform of I

with 49 shearlet generators: the digital shearlet transform of I is given by
(DSH(I)(j, k,m, ι))j∈J,k∈Kj ,ι∈{−1,0,1},m∈[1,M ]2 .

3: For every m∗ = (m∗1,m
∗
2) ∈ [11,M − 10]2, pass the patch(

DSH(I)(j, k,m, ι)
)
j∈J,k∈Kj ,ι∈{−1,0,1},m∈[m∗1−10,m∗1+10]×[m∗2−10,m∗2+10]

(5.4.2)

The network in Step 1 of Algorithm 7 is then trained to classify a set of labeled training
data. We refer to the above method as Deep Network Shearlet Edge Extractor (DeNSE,
[8]). In Section 7.3 we present the results obtained on different training sets, including ideal
phantoms with analytical wavefront set and natural images with approximate wavefront
set. Before we conclude this chapter dedicated to digital wavefront set extraction, we will
discuss shortly the distracted supervision paradox in the case of the DenSE architecture.
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After this discussion we will proceed to the analysis of digital wavefront set propagation
in convolutional neural networks,

5.4.3.1 Distracted Supervision Paradox for DeNSEE

As we have discussed in Section 5.3.2, semantic edge detection represents a challenge for
deep supervision in form of the distracted supervision paradox. Deep supervised digital
wavefront set extraction, being a particular case of SED, also suffers from this challenge,
but hopefully our method DeNSE is able to overcome such limitation. Indeed, the key to
the Deep Network Shearlet Edge Extractor (DeNSE) lies in the splitting of the multi-label
classification task into individual binary classifiers inspired by the performance increment.
In addition, DeNSE separates the category-agnostic edge detection and the semantic edge
classification, which already avoids the distracted supervision paradox. This is easily
shown, since this separation avoids the joint supervised training of the edge detector and
the edge classifiers, by training them individually.

In the design process of DeNSE, we have also observed that the joint supervision of all
the classes (multi-label classification) did not present a satisfactory performance, and
based on that we split the classifiers, at the beginning without noticing that we were
avoiding the distracted supervision paradox. The latter is one of the reasons for the high
accuracy achieved by our method; we present these results in Section 8.1. Furthermore,
in Chapter 6 we will use the notion of digital wavefront set and the theory presented in
Chapter 4 to characterize the digital wavefront set propagation across certain class of
convolutional neural networks, in particular the ones that have residual structure. These
results allow us to characterize the digital wavefront set of the output of the learned
primal-dual reconstruction architecture by knowing the wavefront set of the input, and
then use it as a-priori information in the context of task-adapted reconstruction. In order
to formalize the notion of digital wavefront set and digital wavefront set extractor, we
will use the notion of semantic edge detection in the context of statistical estimation
theory, a detailed discussion is presented in Section 5.5.

5.5 Wavefront set extraction as statistical estimation

In this section we interpret the wavefront set extraction as a statistical estimation problem.
This is a way to formally define a digital wavefront set extraction even in the realm
of Theorem 5.2.4, i.e., when there is no clairvoyant wavefront set extraction. Define
2 : =(0, 1)2 and the operator w : L2(2)→ 22×S1

given by

w(f) : = WF(f), (5.5.1)

where 22×S1
denotes the power set of 2× S1 and WF(f) is the wavefront set of f in the

continuous sense. The operator w maps a function to its wavefront set. In the following
we introduce some relevant definitions from measure theory.

Definition 5.5.1 (σ-algebra). Let X be a set. Then a σ-algebra F is a nonempty
collection of subsets of X such that the following hold:
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1. X is in F .

2. If B is in F , then Ac is also in F .

3. If {Bn}∞n=1 is a sequence of elements of F , then
⋃∞
n=1An is also in F .

We refer to the tuple (X,F) as sample space.

Definition 5.5.2 (Probability measure). Let (X,F) be a sample space, i.e., F is a
σ−algebra of X. A probability measure is a real valued function on F , namely P : F → R
that satisfies the following three conditions.

1. P(B) ≥ 0 for every element of B ∈ F .

2. P(X) = 1.

3. If {Bn}∞n=1 is a sequence of pairwise disjoint elements of F

P

( ∞⋃
n=1

Bn

)
=
∞∑
n=1

P(Bn).

We refer to the tuple (X,F ,P) as measurable space, or probability space.

Definition 5.5.3. A set I ⊂ L2(2) is called an image class. For a σ-algebra F over I
and an associated probability measure P, we call the measurable space (I,F ,P) an image
model.

In the following, we introduce the notion of digitization operator for wavefront sets,
which will be used later to digitize the wavefront set extractor.

Definition 5.5.4. Let n ∈ N be a resolution and I = Qn be a discrete grid, where Q ⊂ R
is a discrete set. For an image model (I,F ,P), we call the map

D : I → I× {0, 1}181n

for n ∈ N a digitization operator for wavefront sets.

In Definition 5.5.4 I = Qn is a discrete grid on the spatial domain of the image.
Therefore, D will map a continuous image in I to the discrete grid where each pixel has
values on {0, 1}181n representing the wavefront set orientation at the location of the pixel.

According to Definition 5.5.3, a digitization operator induces a distribution PJ on
I× {0, 1}181n. Since I× {0, 1}181n is a discrete space, the distribution PJ is a discrete
probability distribution. In addition, such map will be also measurable.

Definition 5.5.5. Let (I,F ,P) be an image model. Let n ∈ N and I = Qn be as
in Definition 5.5.4. Further, let D be an associated digitization operator and PJ the
corresponding discrete probability distribution. We define

dwf : I→ {0, 1}181n (5.5.2)

f 7→ argmaxx∈{0,1}181nPJ (x|f). (5.5.3)

Intuitively, dwf outputs an estimation to a set of directions of the wavefront set for each
location of the discrete image.
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In statistical terms, dwf is the maximum likelihood estimator for the estimation
problem associated to the statistical model

(
I, 2I, (P(·|f))f∈({0,1}181)n

)
, where 2I is the

power set of I. A natural question is if it would make sense to replace (5.5.3) by

f 7→
∑

x∈{0,1}181n

xPJ (x|f),

i.e., the conditional expected value of x given f .
To fully formalize the task of digital wavefront set extraction, we now need to specify

the digital wavefront set extractor D. The most natural choice is when D operates as
follows. Let (τi)

n
i=1 be a partition of 2 then we define

D(f) = (f , q) ∈ I× {0, 1}181n, (5.5.4)

where fi is the closest point inQ to 1
|τi|
∫
τi
f(x)dx and for r = 0, . . . , n−1 and t = 1, . . . , 180

we set q181r+t = 1 if the angular part of wf(f) is at some point in τr+1 between t− 1/2
and t+ 1/2 degrees. Otherwise, q181r+t = 0. Also q181r = 0 if f is smooth in τr and 1 if
not.

From this section we can conclude that although digital wavefront set extraction cannot
be defined in closed-form, one can define it as the solution of an statistical estimation
problem. The big question here is whether this concept of digital wavefront set will
also have the classical properties of the continuous version, namely, the microcanonical
relation. In Chapter 6 we will answer this question by introducing the notion of digital
microcanonical relation which describes the propagation of digital wavefront set under
digital Fourier integral operators.
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6 Digital wavefront set propagation in
convolutional neural networks

The main goal of this chapter is to transfer the microlocal behavior of Fourier integral
operators and convolutional neural networks in the continuous setting presented in
Chapters 2 and 4 to the digital case. In other words, we aim to find the digital
microcanonical relation that characterizes the propagation of digital wavefront sets under
the application of digital Fourier integral operators and convolutional neural networks.

The first step towards the analysis of the propagation of the digital wavefront set under
the application of a particular Fourier integral operator (FIO) is the faithful optimal
discretization of such operator. The idea of discretizing a Fourier integral operator has
been explored widely in the last years [51, 52, 4, 20, 31], using different approaches, from
finite element methods to directional multiscale systems.

In the following we are going to focus our attention on the directional multiscale system
approach. In particular, in Section 6.1 we are going to present a faithful discretization
of Fourier integral operators using discrete shearlets, in which case error bounds can
be established. In this section we will also define the dicrete microcanonical relation as
a mapping between shearlet coefficients. The discretization error bounds will be later
used in Section 6.2 to digitize Fourier integral operators as well as their action on digital
wavefront sets in the form of a digital microcanonical relation. The bound is then written
in terms of shearlet parameters. In Section 6.3 we will use this digitization procedure to
digitize the microcanonical relation of the conv-ResNet blocks and the Radon transform
discussed in Chapter 4. This digitization allows us to propagate the digital wavefront
set of a sinogram through the learned primal-dual architecture. In Chapter 7 we will
make use of this tool to define a tomographic reconstruction method in the framework of
task-adapted reconstruction [1].

My contribution: This chapter was developed fully by myself, extending the notion
of digital microlocal analysis originally introduced by Maarten de Hoop in [116] for the
case of curvelets, to shearlets. The actual writing was done fully by myself, with the
corresponding references of the work by Maarten de Hoop. The content of this chapter
has not been published in form of a paper yet.

6.1 Discretization of Fourier integral operators via shearlets

Similar to our argument in Section 5.1.1, in this chapter we will work with the discretiza-
tion of L2(Ω) functions instead of tempered distributions. In particular, Remark 5.1.1
allows us to choose X = L2(Ω) and Y = L2(Ξ) as the image and data space, respectively,
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where Ω,Ξ ⊂ R2 are open. Next, recall from Chapter 2 that a Fourier integral operator
(FIO) P : X −→ Y , where X = L2(Ω) and Y = L2(Ξ), with Ω,Ξ ⊂ R2 open domains, is
an operator of the form

Pf(y) =

∫
ξ∈Rq

∫
x∈Rq

eiφ(y,x,ξ)p(y, x, ξ)f(x)dxdξ, for every f ∈ X and y ∈ Ξ,

where φ is a phase function (see Definition 2.4.3) and p is the amplitude function (see
Definition 2.3.8), also known as the symbol. For this chapter we would like to write the
Fourier integral operator in the next form also known as generalized Radon transform
[116]

Pf(y) =

∫
ξ∈Rq

eiφ(y,ξ)p(y, ξ)f̂(ξ)dξ, for every f ∈ X and y ∈ Ξ. (6.1.1)

Assume furthermore that φ and p satisfy the following properties.

(i) φ ∈ C∞(Ξ×R2 \ {0}) is real-valued and positive homogeneous in ξ, i.e., φ(y, kξ) =
kφ(y, ξ), for all k > 0.

(ii) p ∈ C∞(Ξ × R2 \ {0}) is a standard amplitude of order m as in Definition 2.3.8,
that is

|∂αξ ∂βxp(y, ξ)| ≤ Cαβ(1 + |ξ|)m−|α| (6.1.2)

for multi-indices α = (α1, α2) and β = (β1, β2). In addition, we assume that
y 7→ p(y, ξ) has compact support in Ξ× R2 \ {0}.

In the continuous setting, one can then characterize the propagation of singularities
under the action of a FIO by the microcanonical relation [70] (Definition 2.4.5). More
precisely, one can prove that

WF(Pf) ⊂ Cφ ◦WF(f), (6.1.3)

where Cϕ is given by (2.4.3). Moreover, we can express the microcanonical relation
in (6.1.3) in terms of coordinate transformations as follows.

Remark 6.1.1 (Classical microcanonical relation mapping). Let P : L2(Ω) → L2(Ξ)
be a Fourier integral operator of the form (6.1.1), where φ ∈ C∞(Ξ × R2 \ {0}) is the
phase function. The microcanonical relation (6.1.3) can be represented by the mapping
χ : Ξ× R2 \ {0} → Ω× R2 \ {0} given by

χ(−∂ξφ(y, ξ), ξ) = (y; ∂yφ(y, ξ)), for all (y; ξ) ∈ Ξ× Rq \ {0}. (6.1.4)

In other words, we have

Cφ ◦WF(f) =
{

(y;µ) : (y;µ) = χ(x;λ) for some (x, λ) ∈WF(f)
}
.

We call the mapping χ the classical microcanonical mapping.
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Having the definition of the digital wavefront set (Definition 5.5.5), it is natural to ask
if the digital wavefront set satisfies some form of microcanonical relation with respect
to a particular digitization of a Fourier integral operator. We here essentially follow
the approach taken in [4]. The digitization of a Fourier integral operator requires a
discretization step. We would like such discretization to be efficient. In order to achieve
that, it is natural to seek expansions of the amplitude and the complex exponential in
terms products in the space Ξ× R2 \ {0}, also known as the phase space. Notice that
elements of the phase space are of the form (y, ξ) ∈ Ξ× R2 \ {0}, where y ∈ Ξ represent
the spatial coordinate and ξ ∈ Ξ the frequency coordinate. In the next section, we focus
on a specific discretization method based on multiscale systems.

6.1.1 The discrete shearlet system

In the last decades, researchers have tried to use classical discretization methods to
discretize FIOs, e.g., differences and finite element methods, however, discretizations
based on expansion using multiscale systems on the time-frequency domain have shown
better estimates. Moreover, traditional methods for time-frequency and multiscale
analysis have proven to be very effective in the study of a large class of operators, such
as pseudodifferential operators [47]. However, traditional time-frequency methods do
not apply directly to the study of Fourier integral operators. For instance, in general, a
Fourier integral operator P does not have a sparse matrix representation with respect to
the frame of wavelets [20].

In 2005, E. Candès and his collaborators showed that the curvelet frames (see Defini-
tion 3.2.7) are able to represent Fourier integral operators sparsely [20]. This happens
mainly, as discussed in Section 3.2.2, since the frequency tilling generated by the curvelet
system efficiently covers the Fourier domain, resulting in an optimal representation with
high-frequency behavior (see Theorem 3.2.5). Furthermore, such optimal tilling allows
curvelets to be used to compute the wavefront set of a function [22]. This type of
frequency tilling, based on a dyadic parabolic decomposition of the phase space, with
curvelets supported on a wedge-like tile, is also present in other multiscale directional
systems coming from applied harmonic analysis, such as shearlets (Definition 3.3.1).

In this chapter, we focus on the approach presented by Guo and Labate [51, 52], where
the shearlet system is used to sparsely represent FIOs. The sparse representation is later
used to establish an error bound, similar to the one already done in the curvelet case by
Hoop et al. (see [116]). This can be then applied to digitize such discretization with a
known precision. In this section we introduce the discrete shearlet transform and present
some relevant results.

Remark 6.1.2. Based on the continuum shearlet system given by (3.3.3), we can define
discrete sheralets by discretizing the parameter spaces, namely

SHψ : ={ψj,k,m(·) = | detAj |1/2ψ(SkAj · −m) : j, k ∈ Z,m ∈ Z2}, (6.1.5)
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where the scaling matrix Aj ∈ R2×2 and the shearing matrix Sk ∈ R2×2 are given by

Aj : =

(
2j 0

0 2j/2

)
, Sk : =

(
1 k
0 1

)
, for all j, k ∈ Z. (6.1.6)

In addition, ψ ∈ L2(R2) in an special case can defined by its Fourier transform as

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(
ξ2

ξ1

)
(6.1.7)

where ψ̂1, ψ̂2 ∈ C∞(R̂), supp ψ̂1 ⊂ [−1/2,−1/16] ∪ [1/16, 1/2] and supp ψ̂2 ⊂ [−1, 1].

Similar to the continuum case, under some assumptions we can prove that the discrete
shearlet system SHψ defined in (6.1.5) is a tight frame. We present this result in the
following proposition.

Proposition 6.1.3. Let ψ ∈ L2(R2) be a shearlet function given by (6.1.7), where
ψ̂1, ψ̂2 ∈ C∞(R̂) follow the estimates∑

j≥0

|ψ̂1(2−jω)|2 = 1 for |ω| ≥ 1/8, (6.1.8)

and, for any j ≥ 0
2j∑

k=−2j

|ψ̂2(2jω + k)|2 = 1 for |ω| ≤ 1. (6.1.9)

Then, the shearlet system

SHψ : ={ψj,k,m(·) = |detAj |1/2ψ(SkAj · −m) : j, k ∈ Z,m ∈ Z2}, (6.1.10)

is a tight frame of L2(Ch)∨ = {f ∈ L2(R2) : supp f̂ ⊂ C1}.

Proof. Notice that (ξ1, ξ2)A−1
j S−1

k = (2−jξ1,−k2−j/2ξ1+2−j/2ξ2). Thus, in the frequency
domain, the elements of the shearlet system ψj,k,m have the form

ψ̂j,k,m(ξ) = |detA|−j/2ψ(ξA−1
j S−1

k )e2πiξA−1
j S−1

k m

= 3−3j/4ψ̂1(2−jξ1)|ψ̂2(2j/2ξ2/ξ1 − k)|e2πiξA−1
j S−1

k m,

and, as a result, the elements ψ̂j,k,m are supported in the sets

Wj,k = {(ξ1, ξ2) : ξ1 ∈ [−2j−1/2,−2j−2] ∪ [2j−2, 2j−1/2], |ξ2/ξ1 − k2−j/2| ≤ 2−j/2},
(6.1.11)

where j ≥ 0, |k| ≤ 2j/2. Using Equations (6.1.8) and (6.1.8) we obtain

∑
j≥0

2j/2∑
k=−2j/2

|ψ̂(ξA−1
j S−1

k )| = 1 for (ξ1, ξ2) ∈ Ch,
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where Ch is the horizontal cone given by

Ch : ={(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 1, |ξ2/ξ1| ≤ 1}.

This result, together with the fact that supp ψ̂ ⊂ [−1/2, 1/2]2, implies that the collection

Ψ(ψ) : ={ψj,k,m(y) = 23j/4ψ(SkAjy − k) : j ≥ 0,−2j/2 ≤ k ≤ 2j/2,m ∈ Z2}

is a tight frame for L2(Ch)∨ = {f ∈ L2(R2) : supp f̂ ⊂ C1}.

In order to obtain a Parseval frame for L2(R2), one can easily construct a similar
system of shearlets {ψ̃j,k,m}j,k,m for the vertical cone

Cv : ={(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 1, |ξ1/ξ2| ≤ 1}.

Finally, one can construct a Parseval frame for L2([−1
2 ,

1
2 ]2). Therefore any function

f ∈ L2(R2) can be written as a sum of three components, i.e.,

f = PChf + PCvf + PRf, (6.1.12)

corresponding to the orthogonal projection of f into the three subspaces of L2(R2). The
resulted tiling of the frequency plane R̂2 is depicted in Figure 6.1 (left). As one can see in
Figure 6.1, for each j, k, the set Wj,k is a symmetric pair of trapezoids centered around
±ξj,k, where ξk,m = 2−j(2j , k2j/2). These trapezoids are normally referred to as wedges.
Each wedge is contained in a box of size 2j × 2j/2 in the frequency domain as shown in
Figure 6.1 (right), oriented along the line ξ2 = k2−j/2ξ1. Thus, the frequency support
of the shearlets satisfies a parabolic scaling, and becomes increasingly elongated as the
scale j increases. This fact is crucial to optimally discretize Fourier integral operators.
In order to simplify the notation, from now on we will denote by {ψµ : µ ∈ M} and
{ψ̃µ : µ ∈M}, the horizontal and vertical shearlet systems, where

M : ={µ = (j, k,m) : j ≥ 0, 2−j/2 ≤ k ≤ 2j/2, k ∈ Z2}. (6.1.13)
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Figure 6.1: Right: Fourier tiling of the shearlets. Left: Frequency support of the shearlet
ψj,k,m, for ξ1 > 0.

6.1.2 Sparse shearlet representation of Fourier integral operators

If one has an orthonormal system {φν}ν∈N ⊂ L2(R2), it is easy to expand a function in
terms of the system as a weighted sum by taking the coefficients as the inner products of
the function and the elements of the system, i.e.,

f =
∑
ν∈N
〈f, φν〉φν .

However, shearlets do not form an orthonormal family. Following the approach of Guo
and Labate [51], one can define an appropriate inner product in the parameter space N
such that distinct shearlet parameters are almost orthonormal with respect to the inner
product, i.e., the inner product of two distinct shearlets decays almost exponentially
asymptotically in the scale. The distance defined by the inner product is also known as
dyadic parabolic pseudo-distance and will later allow us to bound the elements of the
shearlet representation matrix of any Fourier integral operator. We will also prove that
this bound decays exponentially outside the diagonal of the representation matrix making
the representation optimal. Let us now define the dyadic parabolic pseudo-distance as
follows.

Definition 6.1.4. Let µ, µ′ ∈ M two shearlet indices, where µ = (j, k,m) and µ′ =
(j′, k′,m′). We define the dyadic parabolic pseudo-distance between two indices µ and µ
as the function ω :M2 → R given by:

ω(µ, µ′) = 2|j−j
′|/2
(

1 + 2min(j,j′)d(µ, µ′)
)
,

where

d(µ, µ′) = |k2−j/2 − k′2−j′/2|2 + |mj,k −m′j′,k′ |2 + |〈eµ,mj,k −m′j′,k′〉|2,
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for eµ = (cos θµ, sin θµ) and θµ = arctan(k2−j/2), and mj,k (m′j′,k′ correspondingly) the
spatial centers of the wedges Wj,k from Equation (6.1.11).

From Definition 6.1.4 we have that ω increases as the difference between the scales,
the shearings, and the positions increases. This definition is an adaptation of the original
pseudo-distance in Candès and Demanet [20] to the shearlet realm, provided by Guo
and Labate [52]. Before we present the main theorem of this section, we need to further
introduce the notion of shearlet representation matrix of a Fourier integral operator.

Definition 6.1.5. Let P : X → Y be a Fourier integral operator of the form (6.1.1),
where X = L2(Ω), and Y = L2(Ξ) with Ω,Ξ ⊂ R2 open. Moreover, let

SHψ = {ψµ : µ ∈M} ∪ {ψ̃µ : µ ∈M}

be a discrete shearlet parseval frame from Proposition 6.1.3. The shearlet representation
matrix is given by {P(µ, µ′)}µ,µ′∈M, whose elements P(µ, µ′) ∈ R are defined as

P(µ, µ′) = 〈Pψµ, ψµ′〉 for all µ, µ′ ∈M. (6.1.14)

The main theorem in [51] states the sparse representation of Fourier integral operators
given by shearlets. The precise result reads as follows.

Theorem 6.1.6 ([51, Theorem 3.1]). Let P : X → Y be a Fourier integral operator of
the form (6.1.1) of order m = 0 (see (6.1.2)), where X = L2(Ω), and Y = L2(Ξ) with
Ω,Ξ ⊂ R2 open. In addition, suppose that the phase of P, φ ∈ C∞(Ξ×R2 \ {0}) satisfies
the non-degeneracy condition, i.e., there is a constant c > 0 such that

|det ∂y∂ξφ(y, ξ)| ≥ c for all (y, ξ) ∈ Ξ× R2 \ {0} uniformly.

Furthermore, let P (µ, µ′) ∈ R be an element of the shearlet representation matrix of P
(see Definition 6.1.5). Then, for each N > 0, there is a constant CN > 0 such that

|P(µ, µ′)| ≤ CNω(µ, hµ′(µ
′))−N for all µ, µ′ ∈M,

where hµ :M→M is the index mapping induced by the microcanonical relation of P
(the map hµ is constructed within the proof, see (6.1.30)).

In Theorem 6.1.6 the Fourier integral, operator P is represented in the shearlets frame
by the matrix with elements P(µ, µ′) (see Definition 6.1.5). This theorem states that
the elements can be bounded by an estimate that decays exponentially outside the
diagonal [P(µ, µ)]µ∈M. This result establishes an optimal representation estimate for the
shearlet representation of Fourier integral operators. The fact that shearlet optimally
represent Fourier integral operators allows us to establish a digitization procedure with
fast decaying errors (see Section 6.2). For the sake of completeness, we present the proof
of Theorem 6.1.6 from [51]. As the first step towards the proof, we need to introduce a
convenient representation of the Fourier integral operator P with respect to the Parseval
frame of shearlets, this construction is based on the curvelet case [20].
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Definition 6.1.7. The shearing and scaling matrices Sj,k ∈ R2×2 is defined by

Sj,k = A−1
j S−1

k Aj =

(
1 −k2−j/2

0 1

)
for all j ≥ 0 and |k| ≤ 2j .

In addition, let Wj ⊂ R2 \ {0} be the set in the Fourier domain given by

Wj = Wj,0 = Wj,kSj,k

= {(ξ1, ξ2) : ξ1 ∈ [−2j−1/2,−2j−2] ∪ [2j−2, 2j−1/2], |ξ2/ξ1| ≤ 2−j/2}.

Remark 6.1.8. Observe from Definition 6.1.7 that Sj,k maps Wj,k into another pair of
symmetric wedges oriented along the ξ1−axis. For µ ∈M, let ψµ be a shearlet centered
at ξµ in the Fourier space. Then, using the change of variables ξ = ηS−1

j,k , we have

Pψµ(y) =

∫
R2\{0}

eiφ(y,ξ)p(y, ξ)ψ̂µ(ξ)dξ

= 2−3j/4

∫
Wj

ei(φ(y,ηS−1
j,k )−ηA−1

j m)p(y, ηS−1
j,k )ψ̂(ηA−1

j )dη.

(6.1.15)

Following the form (6.1.15), it is convenient to locally linearize the phase φ(y, ξ) to
separate the nonlinearities in ξ from those in y. This is a standard procedure also done by
Hoop in [4] for the case of prolate spheroidal wave functions and is in general a standard
approach in the study of Fourier integral operators (see [108, Chapter 9]) as well as Guo
and Labate for the shearlet case [51]. In order to do this, let us introduce the following
proposition

Proposition 6.1.9. Let P : X → Y be a Fourier integral operator of the form (6.1.1)
with amplitude p ∈ C∞(Ξ× R2 \ {0}) and phase φ ∈ C∞(Ξ× R2 \ {0}). In addition, let
W+
j and W−j be the negative and positive parts of Wj ⊂ R2 \ {0} given by

W+
j : =Wj ∩ {(ξ1, ξ2) : ξ ≥ 0}, W−j : =Wj ∩ {(ξ1, ξ2) : ξ < 0}.

In addition, for j ≥ 0 and |k| ≤ 2j let δj,k : Rn ×Wj → R be the function given by as

δj,k(y, η) : =

{
φ(y, ηS−1

j,k )− ηS−1
j,k · ∂ξφ(y, (1, 0)S−1

j,k ), for η ∈W+
j ,

φ(y, ηS−1
j,k )− ηS−1

j,k · ∂ξφ(y, (−1, 0)S−1
j,k ), for η ∈W−j .

For fixed index µ ∈ M, we can decompose P with the operators P(1)
µ : X → Y and

P(2) : Y → Y as
P = P(2)

µ P(1)
µ ,

where

P(1)
µ f(y) =

∫
Wj

eiηS
−1
j,kyβµ(y, η)f̂(ηS−1

j,k )dη for all y ∈ Ξ, (6.1.16)

with
βµ(y, η) = eiδj,k(ϕ−1

µ (y),η)p(ϕ−1
µ (y), ηS−1

j,k ) for all (y, η) ∈ Ξ×Wj ,
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and
P(2)
µ f(y) = f(ϕµ(y)) for all y ∈ Ξ, (6.1.17)

for
ϕµ(y) = ∂ξφ(y, (1, 0)S−1

j,k ) for all y ∈ Ξ.

Proof. Notice that by definition of P(2)
µ and P(1) we have

P(2)
µ P(1)

µ f(y) = P(2)

(∫
Wj

eiηS
−1
j,kyβµ(y, η)f̂(ηS−1

j,k )dη

)

=

∫
Wj

eiηS
−1
j,kϕµ(y)βµ(ϕµ(y), η)f̂(ηS−1

j,k )dη.

By plugging the explicit form of βµ we obtain

P(2)
µ P(1)

µ f(y) =

∫
Wj

eiαµ(y,η)p(y, ηS−1
j,k )f̂(ηS−1

j,k )dη,

where the exponent αµ ∈ C∞(Rn ×Wj) is given by

αµ(y, η) = ηS−1
j,kϕµ(y) + δj,k(y, η) for all (y, η) ∈ Ξ× {0}.

Now, assuming that η ∈W+
j and plugging the explicit form of ϕµ and δj,k we get

αµ(y, η) = ηS−1
j,k · δξφ(y, (1, 0)S−1

j,k ) + φ(y, ηS−1
j,k )− ηS−1

j,k · δξφ(y, (1, 0)S−1
j,k )

= φ(y, ηS−1
j,k ) for all (y, η) ∈ Ξ× R2 \ {0}.

Similarly if η ∈W−j we have αµ(y, η) = φ(y, ηS−1
j,k ), obtaining finally

P(2)
µ P(1)

µ f(y) =

∫
Wj

eiαµ(y,η)p(y, ηS−1
j,k )f̂(ηS−1

j,k )dη

=

∫
Wj

eiφ(y,ηS−1
j,k )p(y, ηS−1

j,k )f̂(ηS−1
j,k )dη

= Pf(y) for all (y, η) ∈ Ξ× R2 \ {0}.

Following [51], we are going to analyze the operators P(1)
µ and P(2)

µ in the next two
sections.
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6.1.2.1 Analysis of operator P(1)
µ

Let us first notice that the operator P(1)
µ : X → Y defined in (6.1.16), has a linear

phase φ̃(y, η) = ηS−1
j,k y. We should also notice that it is not strictly a pseudo-differential

operator, since the amplitude βµ ∈ C∞(Ξ×R2\{0}) is not a standard amplitude function
in the sense of Definition 2.3.8. In particular, it is an amplitude function multiplied by a
complex exponential.

Let φ be the phase function of P , defined in (6.1.1). Let us explore the particular case
when φ(ξ) = |ξ|, for ξ = (ξ1, ξ2) ∈ R2 \ {0}, and ξµ = 2j/2eµ for eµ = (cos θµ, sin θµ) and
θµ = arctan(k2−j/2). This means that

∂ξφ(ξµ) =
ξµ
|ξµ|

= eµ,

and
δj,k(y, Sj,kξ) =: δµ(y, ξ) = φ(ξ)− ∂ξφ(ξµ)ξ = φ(ξ)− eµξ.

For θµ = 0, we have that eµ = (1, 0) and

δµ(y, ξ) = |ξ| − ξ1 =
√
ξ2

1 + ξ2
2 − ξ1.

This implies that the derivatives of δµ(ξ) are homogeneous of degree 0 in ξ, hence, they
present no decay in ξ. Thus, βµ(y, ξ) : =βµ(y, Sj,kξ) does not satisfy the condition (6.1.2)
unless δµ(y, ξ) = 0. In addition, notice that δj,k(y, ξ) is generally unbounded since the

phase φ is unbounded, with the exception when ξ ∈ supp(ψ̂µ), due to the parabolic
scaling nature of shearlets (see [51]). This is a key point on why shearlets and other

similar systems are effective in dealing with the operator P(1)
µ [4], in other words, they

can be used to sparsely represent it.
In the following, based on the technique presented in [51], we prove that the operator

P(1)
µ maps a shearlet ψµ into a shearlet-like function mµ, with the same phase space

location. Such function is coined a shearlet molecule, defined as follows.

Definition 6.1.10 (Shearlet molecules, [51, Definition 3.2]). For µ = (j, k,m) ∈M, let
aµ ∈ C∞(Ξ) be a smooth function. Then, the function bµ ∈ C∞(Ξ) given by

bµ(y) = 23j/4aµ(SkAjy −m) for all y ∈ Ξ (6.1.18)

is a horizontal shearlet molecule with regularity R ∈ R+ if aµ satisfies the following
properties:

(i) For each γ = (γ1, γ2) ∈ N × N and each N ≥ 0 there is a constant CN > 0
independent of µ such that

|∂γy aµ(y)| ≤ CN (1 + |y|)−N . (6.1.19)
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(ii) For each M ≤ R and each N ≥ 0 there is a constant CN,M > 0 independent of µ
such that

|âµ(ξ)| ≤ CN,M (1 + |ξ|)−N (2−j + |ξ1|)M . (6.1.20)

Vertical shearlet molecules are similarly defined.

One can associate the second factor in the inequality (6.1.20) with almost vanishing
moments. This implies, that the frequency support of a shearlet molecule bµ is mostly
concentrated around |ξ| ≈ 2j (see [51]). Coarse-scale molecules are defined as elements of
the form

{aµ(y −m) : m ∈ Z2},

where aµ satisfies (6.1.19). Let us explore some implications of Definition 6.1.10.

Remark 6.1.11. If mµ(y) is a horizontal shearlet molecule with regularity R, then from
Equation (6.1.19) it follows that

|(iξ)γ âµ(ξ)| ≤ ||∂γaµ||L1 ≤ Cγ .

Therefore, for all N ≥ 0 there is a constant CN such that

|âµ(ξ)| ≤ CN (1 + |ξ|)−N .

From these results it follows that, for all N ≥ 0, there is a constant CN such that

|b̂µ(ξ)| ≤ CN2−3j/4(1 + |ξA−1
j S−1

k |)
−N . (6.1.21)

In addition, from Equation (6.1.20) it follow that, for each M ≤ R and N ≥ 0, there
is a constant CN,M > 0 such that

|b̂µ(ξ)| = |âµ(ξA−1
j S−1

k )| ≤ CN,M2−3j/4 min{1, 2−j(1 + |ξ1|)}M (1 + |ξA−1
j S−1

k |)
−N .

(6.1.22)
We have therefore the following theorem

Theorem 6.1.12 ([51, Thm. 3.3]). Let {ψµ : µ ∈M} be a Parseval frame of shearlets

(see (6.1.10)). For each index µ ∈M the operator P(1)
µ maps ψµ into a shearlet molecule

bµ = P(1)
µ ψµ with arbitrary regularity R, uniformly in µ. That is, the constant in

Definition 6.1.10 is independent of µ. The same result holds also for the vertical shearlets
ψ̃µ.

Finally, we also have that the shearlet molecules from Definition 6.1.10 form an almost
orthogonal family with respect to the dyadic parabolic pseudo-distance ω.
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Proposition 6.1.13 ([51, Proposition 3.4]). Let bµ and bµ′ be two shearlet molecules
(see (6.1.18)) with regularity R. Let j, j′ ≥ 0. For every N ≤ C(R), there is a constant
CN > 0 such that

|〈bµ, bµ′〉| ≤ CNω(µ, µ′)−N for µ, µ′ ∈M.

The number C(R) increases with R and goes to infinity as R goes to infinity. This result
extends to the case when both bµ and b′µ are vertical shearlets. It also extends to the case
when one molecule is vertical and the other horizontal.

For the proofs of Theorem 6.1.12 and Proposition 6.1.13 we refer to [52]. Let us now

study the operator P(2)
µ .

6.1.2.2 Analysis of operator P(2)
µ

As one can observe, in the analysis the operator P(1)
µ , we made extensive use of the fact

that the shearlets {ψµ : µ ∈M} have compact support in the frequency domain (in other
words, they are band-limited). As the singularities of a function, which are propagated by
the Fourier integral operator, have not just a frequency component (the orientation) but
a spatial component (the position), we would like to also have a high spatial resolution.

The operator P(2)
µ allows us to introduce a family of shearlet-like functions with compact

support in the spatial domain, known as shearlet atoms.
This family of functions let us introduce an atomic decomposition of the form

f(y) =
∑
µ

νµρµ(y) for f ∈ L2(Ξ),

where the shearlet atoms ρµ ∈ L2(Ξ) have compact support and satisfy certain regularity
and vanishing moments conditions. In addition, νµ ∈ R are the coefficients.

Following the construction in [51], we introduce the family of shearlet-like functions
with compact support of the form

ψast(y) = |detAa|−1/2ψ(A−1
a S−1

s (y − t)),

where

Aa =

(
a 0
0
√
a

)
, Ss =

(
1 s
0 1

)
,

and a, s, t are continuous parameters, such that, 0 < a ≤ 1, |s| ≤ 2 and t ∈ R. Now, let
us introduce the notion of vanishing moments.

Definition 6.1.14 (Vanishing moments). Let ϕ ∈ S(Ξ) be a Schwartz function. Such
function has k−vanishing moments in the y1−direction if there exists ϕ̃ ∈ S(Ξ) such that

ϕ(y) = ∂ky1
ϕ̃(y) for all y ∈ Ξ.
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Remark 6.1.15. Notice that if ϕ has a certain number of vanishing moments in the y1

direction, then

ϕ̂(ξ) = (iξ1)k ̂̃ϕ(ξ),

and therefore, ϕ̂(0, ξ2) = 0. This implies that ϕ̂(ξ) is concentrated along the ξ1−axis,
meaning that ϕ̂(ξSsAa) is concentrated in elongated regions (increasingly elongated as
a → 0). Moreover, this regions are symmetric with respect to the origin, along the
direction ξ1 = sξ1.

Before presenting the prove of Theorem 6.1.6, we introduce two proposition whose
proofs can be found in [51].

Proposition 6.1.16 ([51, Proposition 3.5]). Let ψ be a Schwartz function such that
ψ̂(±1, 0) 6= 0 and having at least one vanishing moment in the y1 direction. Therefore,
there is a function q(ξ) such that we have

q(ξ)

∫
|s|≤2

∫
a≤1

a3/2|ψ̂(ξSsAa)|2
da

a3
ds = 1, for ξ ∈ Γ.

In addition, q(ξ) is a smooth function satisfying |∂αq(ξ)| ≤ C|ξ|−|α|/2 on Γ, where

Γ = {(ξ1, ξ2) ∈ R2 : |ξ1| ≥ 1, |ξ2/ξ1| ≤ 1}. (6.1.23)

Since there are plenty of ways to choose a Schwartz function ψ which satisfies the
assumptions of Proposition 6.1.16, we then choose a separable one, i.e., of the form

ψ(y1, y2) = ψ1(y1)ψ2(y2),

where ψ1, ψ2 ∈ C∞c (R) with suppψ1, suppψ2 ⊂ [0, 1]. We also assume that ψ1 has
vanishing moments up to order R, that is,∫

R
ψ1(y)ykdy = 0, k = 0, 1, . . . , R.

This lets us obtain the reproducing formula on the next proposition.

Proposition 6.1.17 ([51, Proposition 3.6]). Let Γ be as Equation (6.1.23) and suppose
that f̂ vanishes outside the set Γ. Then we have the reproducing formula

f(y) =

∫ 2

R

∫
|s|≤2

∫
a≤1
〈q(D)f, ψast〉ψast(y)

da

a3
dsdt for y ∈ Ξ, (6.1.24)

where q ∈ L2(R2) is defined by ̂(q(D)f)(ξ) = q(ξ)f̂(ξ), and

ψast(y) = a−3/4ψ(A−1
a S−1

s (y − t)).
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The reproducing formula (6.1.24) can be written as an atomic decomposition where
the integral is broken into several components associated with distinct regions. For
µ = (j, k,m), let

Qµ = {(a, s, t) :2−(j+1) ≤ a < 2−j , k2−j ≤ s < (k + 1)2−j ,

A−1
j S−1

k t ∈ [m1,m1 + 1)× [m2,m2 + 1)}.

Notice that each of the regions Qµ are disjoint and that

⋃
j≥0

2(j+1)/2−1⋃
k=−2(j+1)/2

⋃
(m1,m2)∈Z2

Qµ = {(a, s, t) : a ≤ 1, |s| ≤ 2, t ∈ R2}.

By splitting the integral (6.1.24) into components corresponding to different cells Qµ, we
finally get

f(y) =
∑
j≥0

2(j+1)/2−1∑
k=−2(j+1)/2

∑
(m1,m2)∈Z2

νµρµ(y), (6.1.25)

where

ρµ(y) =
1

νµ

∫ ∫ ∫
Qµ

〈q(D)f, ψast〉ψast(y)
da

a3
dsdt,

νµ =

(∫ ∫ ∫
Qµ

|〈q(D)f, ψast〉|2
da

a3
dsdt

)1/2

.

(6.1.26)

We can now define the handle functions known as atoms and shearlet atoms as follows

Definition 6.1.18. Let µ ∈M a shearlet index and let ψ̃µ ∈ L2(Ω). Let us now define
the functions αµ given by

αµ(y) = 2−3j/4ψ̃µ(A−1
j B−1

k (y+m)) = 2−3j/4ψ̃µ(Sj,kA
−1
j (y+m)), µ ∈M, y ∈ Ξ, j ≥ 0, |k| ≤ 2j/2.

We refer to the elements αm as atoms with regularity R. Also, the shearlet-like functions
ρµ, given by

ρµ(y) = 23j/4αµ(SkAjy −m), µ ∈M, y ∈ Ξ, j ≥ 0, (6.1.27)

are referred to as shearlet atoms with regularity R, we also refer to them as shearlet-like
functions.

Remark 6.1.19. Notice that αµ have the following properties

(i) Compact support: suppαµ ⊂ C[−1, 1]2, where C is independent of µ and f .

(ii) Regularity: for each β = (β1, β2), there is a constant Cβ independent of µ and f
such that

|∂βyαµ(y)| ≤ Cβ.
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(iii) Vanishing moments on the y1 direction: for all n = 0, 1, . . . , R,∫
R
αµ(y1, y2)yn1 dy1 = 0,

with R ∈ R as in Proposition 6.1.16.

Observe that, by definition, both αµ and ρµ are compactly supported in the spatial
domain. We introduce a final preliminary result in the form of a theorem, so we can
prove Theorem 6.1.6.

Theorem 6.1.20 ([51, Theorem 3.7]). Let {ρµ′ : µ′ ∈M} be a family of shearlet atoms

with regularity R. For each µ′ ∈ M, the operator P(2)
µ maps ρµ′ into a shearlet atoms

mhµ(µ′) with the same regularity R, uniformly over µ′ ∈M .

Now, if φ(y, ξ) is the phase associated with the Fourier integral operator P , it induces
a change of variables in terms of the microcanonical relation (see Definition 2.4.5), also
represented given by the classical microcanonical relation mapping χ : Ω× R2 \ {0} →
Ξ× R2 \ {0} (see Remark 6.1.1). Let bµ′ and ξµ′ be the space and frequency locations of
ρµ′ , and define

φµ(yµ,µ′) : =mµ′ ,

where φµ(y) = ∂ξφ(y, ξµ). Since φ(y, ξ) is homogeneous of degree one in ξ, then
∂yφ(y, ξ) = ξ∂y∂ξφ(y, ξ).

In Theorem 6.1.20, likewise in Theorem 6.1.6, one makes use of the bijective mapping
hµ acting on M induced by the microcanonical relation in terms of the transforma-
tion (6.1.4). We refer to this mapping as the discrete micro-canonical relation and is
formally intorduced in Definition 6.1.21. Using these observations, we have that

∂ξφ(mµ′ , ξµ) = φµ(yµ,µ′) =: mµ′ ,

∂yφ(mµ′ , ξµ) = ξµ∂y∂ξφ(mµ′ , ξµ) =: ηµ,µ′ .
(6.1.28)

These two relations allow us to describe the action of the operator P(2)
µ on the phase space

coordinates of the shearlet atoms ρµ′ . This results in a change of shearlet parameters
described by the discrete microcanonical relation. We define this mapping precisely in
the following.

Definition 6.1.21 (Discrete microcanonical relation). Let φ(y, ξ) be the phase function
of the Fourier integral operator P with an associated classical microcanonical relation
χ (see Remark 6.1.1). Let mµ′ and ξµ′ be the space and frequency locations of ρµ′,
defined by Equation (6.1.26). Moreover, by Equation (6.1.25) the action of the operator
P(2) on the phase space coordinates of the shearlet atom ρµ′ is given by the mapping
χµ : Ω× R2 \ {0} → Ξ× R2 \ {0} defined as

χµ(mµ′ , ξµ′) = (yµ,µ′ ; ηµ,µ′), µ, µ′ ∈M, (6.1.29)
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where ηµ,µ′ and yµ,µ′ are given by Equation (6.1.28). This induces the index mapping
hµ :M→M, referred to as the discrete microcanonical relation, given by

hµ(µ′) = hµ(jµ′ , kµ′ ,mµ′) : =(jµ,µ′ , kµ,µ′ ,mµ,µ′) (6.1.30)

induced by the microcanonical relation (6.1.29), where jµ,µ′ , kµ,µ′ ,mµ,µ′) are the shearlet
indices corresponding to the shearlet centered at (yµ,µ′ ; νµ,µ′) in the phase space.

Before the proof of Theorem 6.1.6, we need to introduce one last proposition with
some useful properties of the pseudo-distance ω.

Proposition 6.1.22 ([51, Proposition 3.8]). Let µ, µ′, µ′′, µ0 ∈M be shearlet parameters.
The dyadic parabolic pseudo-distance ω (Definition 6.1.4) satisfies the following properties:

(i) Symmetry: ω(µ, µ′) ∼ ω(µ′, µ).

(ii) Triangle inequality: there is a constant C > 0 such that d(µ, µ′) ≤ Cd(µ, µ′) +
d(µ′′, µ′).

(iii) Composition: for every N > 0, there is a constant CN > 0 such that∑
µ′′

ω(µ, µ′′)−Nω(µ′′, µ′)−N ≤ CNω(µ, µ′)−N+1.

(iv) Invariance under the bijective index mappping hµ0 induced by the mi-
crocanonical relation: ω(µ, µ′) ∼ ω(hµ0(µ), hµ0(µ′)), uniformly over µ0 ∈ M,
where hµ is given by (6.1.30).

Now we are ready to prove Theorem 6.1.6 taken from [51], this proof is an adaptation
of the proof in [51] to the shearlets realm.

Proof. Let ψµ0 and ψµ1 be two fixed shearlets, and for simplicity, let us assume that both

are horizontal. Using Theorem 6.1.12, we have that bµ0 = P(1)
µ0 ψµ0 is a shearlet molecule.

In addition, by using the atomic decomposition (6.1.29), we can expand the shearlet ψµ1

as the linear combination of the shearlet atoms ρµ′ :

ψµ1 =
∑
µ′

cµ′,µ1ρµ′ ,

where

cµ′,µ1 =

(∫ ∫ ∫
Qµ′

|〈q(D)ψµ1 , ψast〉|2
da

a3
dsdt

)1/2

. (6.1.31)

Thus, using these observations and Equation (6.1.21), we have that

〈ψµ1 ,Pψµ0〉 = 〈ψµ1 ,P(2)
µ0
P(1)
µ0
ψµ0〉 = 〈(P(2)

µ0
)∗ψµ1 ,P(1)

µ0
ψµ0〉

=
∑
µ′

cµ′,µ1〈(P(2)
µ0

)∗ρµ′ , bµ0〉

=
∑
µ′

cµ′,µ1〈bh̃µ0 (µ′), bµ0〉,
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where bh̃µ0 (µ′) is a shearlet molecule and h̃µ0 = h−1
µ0

is the inverse of the discrete canonical

relation mapping hµ0 .
Now, let us observe that for every N > 0, there is a constant CN such that

|cµ′,µ1 | ≤ CNω(µ′, µ1)−N .

This can be shown by discretizing the integral (6.1.31) and using Proposition 6.1.13.
By using Propositions 6.1.13 and 6.1.22, we finally get that for every N > 0, there is a
constant CN such that:

|〈ψµ1 ,Pψµ0〉| ≤
∑
µ′

|cµ′,µ1 |
∣∣〈bh̃µ0 (µ′), bµ0〉

∣∣
≤ CN

∑
µ′

ω(µ′, µ1)−Nω(h̃µ0(µ′), µ0)−N

≤ CN
∑
µ′

ω(h̃µ0(µ′), h̃µ0(µ1))−Nω(h̃µ0(µ′), µ0)−N

≤ CN
∑
µ′

ω(h̃µ0(µ1), h̃µ0(µ′))−Nω(h̃µ0(µ′), µ0)−N

≤ CNω(h̃µ0(µ1), µ0)−N+1

∼ CNω(µ1, hµ0(µ0))−N+1.

(6.1.32)

Since we have proved that the Fourier integral operators are sparsely represented by
discrete shearlets, it is natural to think that such discretization has error bounds with
fast decay along the scale. In the next section, we use Theorem 6.1.6 to digitize Fourier
integral operators and their action on singularities of function.

6.2 Digitization step

The last section introduced the theory behind the sparse shearlet representation of general
Fourier integral operators. Although by using the discrete shearlet coefficients, we can
consider the shearlet approach as faithful, i.e., it have similar properties as the continuum
counterpart, we would like to establish error bounds on this approximation. Having
approximation bounds allows us to know the precision of our discretization. By having
such error bounds, we are able to know the extent of precision of our digital shearlet
coefficients, which should increase with the number of discrete scales.

Such approximation error results were established for the curvelet transform in [4, 116].
In the case of curvelets, V. de Hoop et al. [4] used the sparsity of FIOs represented by
curvelets and the parabolic dyadic nature of such decomposition to define a discretization
with rapidly decaying error bound. Having that shearlets possess these two properties
(sparse representation and parabolic dyadic nature), we can adapt the curvelets results
to our framework. Following V. de Hoop’s procedure we are going to first compute error
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bounds for the case of a pseudodifferential operator, to later extend such results to all
Fourier integral operators.

6.2.1 Infinite matrices and operators

In order to proceed with the digitization step, we are going to introduce some matrix
classes and operators related to an alternative definition of the dyadic parabolic pseudo-
distance. This is known as the weighted dyadic pseudo-distance.

Definition 6.2.1. For weight δ > 0 and shearlet parameters µ, µ′ ∈ M we define the
weighted dyadic pseudo-distance ωδ :M×M→ R by:

ωδ(µ, µ
′) = 2|j−j

′|(1+δ)(1 + 2(2+δ) min(j,j′)d(µ, µ′)),

where d is the distance function defined in Section 6.1.2.

Let δ, r > 0 be constants and hµ :M→M an index mapping for µ ∈ M, e.g., the
discrete microcanonical relation of a FIO defined in (6.1.30). Following [106], we define
the matrix class M r

δ (χ) as follows.

Definition 6.2.2. Let δ, r > 0 be constants and hµ : M → M an index mapping for
some µ ∈M. The infinite matrix M whose elements are Mµµ′, where µ, µ′ ∈M, is an
element of the class Mr

δ(hµ) if and only if there is a constant Cδ such that

|Mµµ′ | ≤ Cδ2rωδ(µ′, hµ(µ′)), for every µ, µ′ ∈M.

where ωδ is the weighted dyadic pseudo-distance from Definition 6.2.1. Moreover, we
define

Mr = ∩δ>0Mr
δ(hµ). (6.2.1)

Finally, we introduce the matrix notation SH for the shearlet transform (analysis
operator).

Definition 6.2.3. Let SHψ ⊂ L2(Ω) be a discrete shearlet system with generating
functions ψ ∈ L2(Ω) defined in (6.1.5). We know by Proposition 6.1.3 that SHψ is a
Parseval frame. In addition, let `2µ be the space of sequences {cµ}µ∈M ⊂ R such that∑

µ∈M
|cµ|2 <∞.

The shearlet analysis operator SH : L2(Ω)→ `2µ is given by

SH(f) = {cµ}µ∈M : ={〈f, ψµ〉}µ∈M for f ∈ L2(Ω),

which maps L2(Ω) functions to its shearlet coefficients cµ. Moreover, let SH−1 : `2µ →
L2(Ω) be the shearlet synthesis operator given by

SH−1{cµ}µ∈M =
∑
µ∈M

cµψµ for all {cµ}µ∈M ∈ `2µ

which maps shearlet coefficients to its shearlet rteconstructions.
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We observe that SH−1SH = I (the identity operator on L2(R2)), and that SHSH−1 =:
Π is an orthogonal projection operator of `2µ onto the range of the analysis operator SH.
Furthermore, observe that as a matrix operator on `2µ the elements of Π are given by

Πµ′µ = 〈ψµ′ , ψµ〉, for every µ, µ′ ∈M.

Next we state a useful remark.

Remark 6.2.4. If A : L2(Ω)→ L2(Ω), then the matrix [A] : =SHASH−1 has the same
range of SH, since SH−1Π = SH−1, and ΠSH = SH. In particular, [A]Π = Π[A] = [A].
Here, and when convenient, we identify bounded operators on `2µ with matrices. Finally,
let us note that the projection map Π belongs to M0 (see [106, Lemma 2.4]).

6.2.2 Pseudodifferential operators, diagonalization, and symbol classes

Now, let us remember from Definition 2.3.9 that a pseudodifferential operator (ΨDO)
acting on L2(R2) is an operator A : L2(Ω)→ L2(Ω) of the form

Af(x) =
1

4π2

∫
ξ∈R2\{0}

∫
y∈Ω

ei(x−y)·ξp(x, y, ξ)f(y)dydξ, for every f ∈ L2(Ω) and x ∈ Ω,

where p is the amplitude function (see Definition 2.3.8), also known as the symbol. As
we did for the Fourier integral operator, in this chapter we will use the alternative form
given by

Af(x) = p(x,D)f(x) =

∫
ξ∈R2\{0}

ei〈x,ξ〉p(x, ξ)f̂(ξ)dξ, for every f ∈ L2(Ω) and x ∈ Ω.

In addition, we assume that the symbol or amplitude p has order l ∈ N, i.e.,

|〈ξ, ∂ξ〉l∂αξ ∂βxp(x, ξ)| ≤ Cl,α,β(1 + ||ξ||)
|β|−|α|

2 , (6.2.2)

for every multi-indices α and β, where 〈ξ, ∂ξ〉 is the differential operator

〈ξ, ∂ξ〉(·) = ξ1∂ξ1(·) + ξ2∂ξ2(·).

In addition, we have that

〈ξ, ∂ξ〉l∂αξ ∂βxp(x, ξ) : = ξl∂αξ ∂
β
xp(x, ξ) + ∂lξ∂

α
ξ ∂

β
xp(x, ξ),

for every multi-indices α and β. Depending on the exact estimate that a symbol follows,
we can define different symbol classes. These classes are characterized by the order of
regularity in space and frequency.

Definition 6.2.5 (Symbol classes, [61]). Let r, δ, ρ ∈ R+ be positive constants and
Ω ⊂ R2 be a domain. The symbol class Srδ,ρ ⊂ C∞(Ω× R2 \ {0}) is defined by the set

Srρ,δ : =Srρ,δ(Ω) = {p ∈ C∞(Ω× R2) : ∀α, β, ∃Cα,β > 0 s.t.

|∂αx ∂
β
ξ p(x, ξ)| < Cα,β(1 + ||ξ||)r−δ|α|−ρ|β|}.
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The simplest symbol classes are solely defined by their regularity r, with δ = 0 and ρ = 1,

Sr : =Sr1,0(Ω) = {p ∈ C∞(Ω× R2) : ∀α, β, ∃Cα,β > 0 s.t.

|∂αx ∂
β
ξ p(x, ξ)| < Cα,β(1 + ||ξ||)r−|β|}.

In addition, we define the symbol class Sr1/2,rad ⊂ C
∞(Ω× R2) as

Sr1/2,rad : =Sr1/2,rad(Ω) = {p ∈ C∞(Ω× R2) : 〈ξ, ∂ξ〉lp ∈ Sr1/2,1/2 for all l ∈ N}.

The symbol class Sr1/2,rad contains symbols of generalized Radon transforms (see [116]),
and is relevant for this chapter.

Remark 6.2.6. From Definition 6.2.5 we can see that a symbol that follows the esti-
mate (6.2.2) can be regarded as an element of the symbol class S0

1/2,rad. Thus, we have

that p ∈ S0
1/2,rad when 〈ξ, ∂ξ〉lp ∈ S0

1/2,1/2 for all l ∈ N. Therefore, p ∈ Sr1/2,rad when

〈ξ, ∂ξ〉lp ∈ Sr1/2,1/2 for all l ∈ N.

Pseudodifferential operators of order r, are the most important example of operators
with representation matrices of class Mr (see (6.2.1)). A stationary phase analysis from
[116] shows that for a shearlet ψµ we have that

Aψµ = 2jrfµ,

where fµ ∈ L2(Ω) is given by

f̂µ(ξ) = 2−3j/4ĝj,k(ξ)e
−i〈xj,km ,ξ〉, (6.2.3)

and there exists a constant Cl,α,N > 0 such that ĝj,k satisfies

|〈νj,k, ∂ξ〉l∂αξ ĝj,k| ≤ Cl,α,N2−j(l+
|α|
2

)(1+2−j |〈νj,k, ξ〉|+2−j/2||ξ−Wj,k||)−N for all N ∈ N.
(6.2.4)

Here, ||ξ − Wj,k|| denotes the distance of ξ to the wedge Wj,k supporting ψ̂j,k(ξ) =

ψ̂(ξA−1
j S−1

k ), and νj,k is the center point of the wedge Wj,k in the frequency domain.
Following (6.1.27), such fµ is a “shearlet-like function” centered at µ.

Since a pseudodifferential operator is a special case of Fourier integral operators, using
Theorem 6.1.6 we also have a sparse representation of A using shearlets leading to the
estimate

|〈ψµ′ , fµ〉| ≤ C(δ)ωδ(µ
′, µ) for all δ > 0 s.t. 〈ψµ′ , fµ〉 ∈ M0(I),

where M0(I) is the infinite matrix class of order r = 0 given by Definition 6.2.2.
Notice that, if the symbol p is elliptic of order m, then by definition the degree of the

principal symbol, namely p0 (see Definition 2.3.8), is m. Next, if p0 is homogeneous of
order 0, then p0(x, ξ) = p0(x, ξ/||ξ||). Therefore, we have the following diagonalization
result, which is an adaptation of the phase-linearization of V. de Hoop [116, Lemma 3.1]
to the shearlet case.
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Lemma 6.2.7 ([116, Lemma 3.1]). Suppose that A : L2(Ω)→ L2(Ω) is a pseudodifferen-
tial operator with homogeneous principle symbol p0(x, ξ) of order 0. Then we can express
A as

Aψµ = p0(xj,km , νj,k)ψµ + 2−j/2fµ for all µ ∈M, (6.2.5)

where fµ is a shearlet-like function centered at (xj,km , νj,k) (see Definition 6.1.18).

The proof of Lemma 6.2.7 can be easily adapted to shearlets using [116].

Remark 6.2.8. If we write in Equation (6.2.5) rµ = 2−j/2fµ, by taking inner products
with ψ′µ we obtain that the elements of the matrix representation of A are given by

[A]µ′µ = p0(xj,km , νj,k)Πµ′µ + 〈ψµ′ , rµ〉. (6.2.6)

In addition, if A is elliptic (see Definition 2.3.9), we can obtain uniform upper and
lower bounds for the symbol p0(x, ξ). This means C−1 ≤ |p0(x, ξ)| ≤ C for some positive
constant C. By (6.2.6), we have

p0(xj,km , νj,k)
−1[A]µ′µ −Πµ′µ ∈M−1/2(I). (6.2.7)

Next, also by (6.2.6) we obtain

|p0(xj,km , νj,k)− 〈ψµ, ψµ〉−1[A]µµ| ≤ C2−j/2.

It follows that (6.2.7) holds with p0(xj,km , νj,k) replaced by the normalized diagonal

Dµ = Π−1
µµ [A]µµ,

Finally, by Theorem 6.1.6 we have that the elements of [A] outside the diagonal decays
fast for large scale j. This diagonalization property due to the sparse representation is very
useful for inverse problems. In fact, it allows us to have optimal digital representations
of such operators, in the sense that their error bounds decay fast. In addition, it also
allows us to invert the operator matrix [A] on the range of SH restricted to a finite scale
j sufficiently large.

In the next section we extend this approximation theoretical results to general Fourier
integral operators. In addition, in Section 6.2.4 we will use the decay estimates of the
shearlet discretization to develop a faithful digitization method with fast decaying error
bounds. Our approach is again strongly based on the theory presented by Hoop et al. in
[116].

6.2.3 Matrix approximation of Fourier integral operators

Let P : L2(Ω)→ L2(Ξ) be a Fourier integral operator given by (6.1.1). In addition, let
φ(y, ξ), p ∈ C∞(Ξ×R2 \ {0}) be the phase and symbol of P . Given the phase ψ we know
that the microcanonical relation of P is given by the mapping χ defined in (6.1.4).

Dissertation, LMU München, 2021 147



Applied Microlocal Analysis of DNNs for Inverse Problems Hector Andrade Loarca

As explored previously on Section 6.1, the action of P in the shearlet ψµ is given by

Pψµ(y) = 2−3j/4

∫
p(y, ξ)ψ̂j,k(ξ)e

i(φ(y,ξ)−〈ξ,xj,km 〉)dξ. (6.2.8)

Therefore, we can associate a kernel Pj,k defined by

Pj,k(y, xj,km ) : =(Pψµ)(y). (6.2.9)

Using this kernel we can write the infinite Fourier integral operator matrix as

[P]µ′µ =

∫
ψ′µ(y)Pψµ(y)dy =

∫
ψ′µ(y)Pj,k(y, xj,km )dy. (6.2.10)

Now, by Remark 6.2.4 we have that SHPSH−1 is represented by the matrix operator
[P]. By abuse of notation, we simply denote P = SH−1[P]SH. Following the approach
in [116], we now aim for an approximation of Pψµ via expansions of the phase φ(y, ξ)
and the symbol p(y, ξ) near the microlocal support of ψµ, i.e., near the wavefront set.
Before we present the main result of this section we will introduce the definition of the
spatial microcanonical relations of a Fourier integral operator associated to a shearlet
index (j, k).

Definition 6.2.9 (Spatial microcanonical relation). Let P : L2(Ω)→ L2(Ξ) be a Fourier
integral operator with phase φ and j, k ∈ Z. The spatial microcanonical relation of P
associated to j, k is the mapping Tj,k : Ξ→ Ω given by

Tj,k(y) = −∂φ
∂ξ

(y, νj,k) for all y ∈ Ξ and j, k ∈ Z, (6.2.11)

where νj,k is the center of the wedge Wj,k in the frequency domain.

The next theorem presents the main result on optimal shearlet representation of
pseudodifferential operators.

Theorem 6.2.10. Let P : L2(Ω)→ L2(Ξ) be a Fourier integral operator with phase φ,
and let Tj,k be given by (6.2.11), where j, k ∈ Z. Moreover, let 1j,k be a smooth cutoff

function to the wedge Wj,k, centered in νj,k, supporting ψ̂j,k. Then, there exist functions

α
(r)
j,k : Ξ→ R and ϑ̂

(r)
j,k : R2 \ {0} → R with

ei
1
2
ξ−1
1 ξ2

2∂
2
ξφ(y,νj,k)1j,k(ξ) =

R∑
r=1

α
(r)
j,k(y)ϑ̂

(r)
j,k(ξ) for all (y, ξ) ∈ Ξ× R2 \ {0} and j, k ∈ Z,

(6.2.12)
so that for a shearlet ψµ, one can express Pψµ as

(Pψµ)(y) = p(y, νj,k)
R∑
r=1

α
(r)
j,k(y)(ϑ̂

(r)
j,k ∗ψµ)(Tj,k(y))+2−j/2fµ for all y ∈ Ξ and µ ∈M,

(6.2.13)
with R ∼ O(j/ log j), where fµ is a shearlet-like function centered at (y, νj,k) in the phase
space (see Definition 6.1.18).
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Proof. Let νj,k be the center of the shearlet wedge Wj,k in the Fourier domain. Then
ρµ for µ ∈M given by (6.1.27) is a shearlet-like function centered in the phase space at

(xj,km , νj,k). By homogeneity in ξ the first-order Taylor expansion of φ(y, ξ) along the νj,k
axis, is given by

φ(y, ξ)− 〈ξ, xj,km 〉 ≈ 〈ξ,
∂φ

∂ξ
(y, νj,k)− xj,km 〉+ h2(y, ξ), (6.2.14)

where the error h2(y, ξ) follows the estimate (6.2.2) on Wj,k. A consequence of this is
that eih2(y,ξ) is a symbol of class S0

1/2,rad if ξ is localized to Wj,k (see Definition 6.2.5).

Let Tj,k : Ξ→ Ω be given by (6.2.11). If bj,k(y, ξ) is the symbol of order 0, i.e.,

bj,k(y, ξ) = (p(y, ξ)eih2(y,ξ))|y=T−1
j,k (x), (6.2.15)

then, by Equation (6.2.14) we can write Pψµ(y) as

Pψµ(y) = [bj,k(y,D)ψµ]x=Tj,k(y). (6.2.16)

Such decomposition rewrites the Fourier integral operator P depending on the shearlet
parameters j, k ∈ Z, followed by a change of coordinates. Next, the decomposition of
P by shearlets in (6.2.16) can be used to show that the matrix [P], given by (6.2.10),
belongs to the class M0(χ), where χ is given by (6.1.4).

Now, we approximate the matrix elements [P ]µ′µ with an expansion of the symbol and
phase. This approximation has an error of at most 2−j/2. More precisely, the matrix
errors are of class M−1/2(χ). Also, the principal part of the symbol p(y, ξ), namely
p0(y, ξ), is homogeneous of order 0. Following Lemma 6.2.7, we can replace p0(y, ξ) by

either p0(y, νj,k) or p0(yj,km ), where yj,km ∈ Ξ is given by

yj,km = T−1
j,k (xj,km ).

This allows us to modify the Fourier integral operator matrix by a matrix of class
M−1/2(χ). Also, the symbol h2(y, ξ) is homogeneous of order 1 and class S0

1/2,rad on the

support of ψ̂j,k(ξ). This means that we need to take into account the second-order terms
in its Taylor expansion to obtain an approximation of order −1/2. Similar to [116] we do
Taylor expansion in the ξ−component in direction perpendicular to νj,k. This has the
advantage of preserving the homogeneity of order 1 in the radial direction. The latter is
mainly due to the non-isotropic nature of the parabolic decomposition, resulting on the
wedge tilling of the Fourier domain. To simplify the notation, we consider the case when
the vector νj,k is aligned with the ξ1-axis. This results on the expansion

φ(y, (ξ1, ξ2)) = ξ1φ(y, (1, ξ2/ξ1)) = ξ · ∂φ
∂ξ

(y, νj,k) +
1

2
∂ξ2

2ξ1 ·
∂2φ

∂ξ2
2

(y, νj,k) + h3(y, ξ).

(6.2.17)

We also have that if ξ lies on the support of the shearlet ψ̂j,k then h3(y, ξ) ∈ S−1/2
1/2,rad. This

allows us to replace eih3(y,ξ) by 1 changing the matrix [P ] by terms in the classM−1/2(χ)
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(see proof of Lemma 3.1 in [116]). Therefore we can replace the symbol p(y, ξ)eih2(y,ξ) on
Wj,k , up to errors of order −1/2, by

p(y, νj,k)e
i 1
2
ξ−1
1 ξ2

2 ·∂2
ξφ(y,νj,k)1j,k(ξ), (6.2.18)

where 1j,k is a smooth cutoff function to the wedge Wj,k supporting ψ̂j,k. Now, one can
see that the exponent in (6.2.18) separates the variables y and ξ. In addition, by (6.2.17),
it is bounded by a constant C which does not depend on the parameters (j, k). As
in [116], we have that this decomposition of the complex exponential with arguments
uniformly bounded by a polynomial allows us to have the tensor-product representation
of the symbol as follows:

ei
1
2
ξ−1
1 ξ2

2∂
2
ξφ(y,νj,k)1j,k(ξ) ≈

R∑
r=1

α
(r)
j,k(y)ϑ̂

(r)
j,k(ξ). (6.2.19)

In order to obtain an error of size 2−j/2 we require that CR/R! ≤ 2−j/2, or
R ∼ O(j/ log j).

In Theorem 6.2.10 we approximate the Fourier integral operator in (6.1.1) with a sum

of R modified shearlets with symbols ψ̃r;µ(x) = (ϑ
(r)
j,k ∗ ψµ)(x) to order p(y, νj,k)α

(r)
j,k(y).

As we can notice in (6.2.13) this approximation has an error of order O(2−j/2) as j →∞.
This means that the error decreases exponentially with the number of scales that we used.
In this approximation we have also made use of the coordinate transforms {Tj,k}j,k∈Z
coming from the microcanonical relation of P . Now, the approximation in Theorem 6.2.10
allows us to discretize and later digitize the application of the operator P, where the
evaluations are done in a discrete set of directions in the Fourier domain {νj,k}j,k. In the
next section, similar to the curvelet case [4], we take a step forward and also evaluate
such approximations on discrete grids of the domain and co-domain of P. Such further
discretization is needed for the implementation of our algorithms.

6.2.3.1 Further approximations of Fourier integral operators

For the digitization of P we will first introduce a specific notion of discrete grid associated
to a shearlet system {ψµ}µ∈M.

Definition 6.2.11. Let SHψ = {ψµ}µ∈M be a discrete shearlet system defined by (6.1.10).
Moreover, let P : L2(Ω)→ L2(Ξ) be a pseudodifferential operator of the form 6.1.1. The

Ω−grid for the shearlet based discretization is given by {xj,km }(j,k,m)=µ∈M, where xj,km is
the center point of supp(ψµ=(j,k,m)) in the spatial domain. In addition, let Tj,k : Ξ→ Ω
be the mapping defined by (6.2.11). The Ξ−grid for the sharlet based discritization is

defined by {yj,km }(j,k,m)=µ∈M, where yj,km : =T−1
j,k (xj,km ).

As one can observe in Definition 6.2.11, the discrete points {yj,km }(j,k,m)∈M are obtained

by mapping the grid {xj,km }(j,k,m)∈M under the spatial component microcanonical relation

150 Dissertation, LMU München, 2021



Hector Andrade Loarca Applied Microlocal Analysis of DNNs for Inverse Problems

T−1
j,k . Under these assumptions, we are able to approximate the functions p(y, νj,k),
∂φ
∂ξ (y, νj,k), and ∂2φ

∂ξ2
2
(y, νj,k), in (6.2.17) by p(yj,km , νj,k),

∂φ
∂ξ (yj,km , νj,k), and ∂2φ

∂ξ2
2
(yj,km , νj,k),

respectively. Also, by Theorem 6.2.10, such approximations lead to an error of order
O(2−j/2) as j →∞.

Now, by using Theorem 6.2.10 and the aforementioned approximations we get the form

(Pψµ)(y) = p(yj,km , νj,k)(ϑµ ∗ ψµ)(Tj,k(y)) + 2−j/2fµ, (6.2.20)

where fµ is a shearlet-like function centered at (yj,km , νj,k) (see Definition 6.1.21), and
ϑµ : R2 → R2 is defined by

ϑ̂µ(ξ) = ei
1
2
ξ−1
1 ξ2

2∂
2
ξφ(yj,km ,νj,k)1j,k. (6.2.21)

Furthermore, we can approximate the change of coordinates Tj,k by a Taylor expansion

of φ(y, νj,k) around (yj,km , νj,k), obtaining

(Pψµ)(y) = p(yj,km , νj,k)(ϑµ ∗ ψµ)(DTµ(y − yj,km ) +Mµ · (y − yj,km )2) + 2−j/2fµ, (6.2.22)

where

DTµ =
∂Tj,k
∂y

(yj,km ) =
∂2φ

∂ξ∂y
(yj,km , νj,k),

Mµ =
1

2

∂2φ

∂y2
(yj,km , νj,k)νj,k,

On the one hand, following the interpretation in [4], in this approximation, Mµ describes
the curvature of a localized plane wave attached to ψµ under the corresponding mi-
crocanonical relation. On the other hand, DTµ describes a rigid motion, shear along
the wavefront and dilations along and perpendicular to the wavefront. Now that we
have a shearlet-based approximation of the Fourier integral operator P with controlled
error bounds, and since such bounds decay exponentially with the scale, we are able to
faithfully digitize the action of such operator, as well as the microcanonical relation. We
are exploring this situation in the next section.

6.2.4 Digital approximation of Fourier integral operators

The final digital approximation is based on the expansion presented in Theorem 6.2.10.
This theorem is used for the evaluation of the approximate action of P on a function f
discretized by the spatial and frequency sample points yn and ξl, respectively. Following
the approach of V. de Hoop et al in [4], the digitization is chosen to match the structure
of the digital shearlet transform. This enables us to switch from the coefficients of the
shearlet transform to data in the frequency domain efficiently through standard Fast
Fourier Transform (FFT). Here, we assume in our analysis that the partial derivatives
∂2φ
∂ξ2

2
(y, νj,k) and the functions Tj,k(y) and T−1

j,k (x) are known a-priori. Let us first introduce

a new notion of discrete grids for the further digitization of P.
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Definition 6.2.12. Let SHψ = {ψµ}µ∈M be a discrete shearlet system defined by (6.1.10).
Moreover, let P : L2(Ω)→ L2(Ξ) be a pseudodifferential operator of the form 6.1.1. In
addition, let N ∈ N and {xi}i∈I ⊂ Ω be a grid in Ω, where xi = N−12πi for i ∈ I where
I ⊂ N(2π)−1Ω discrete. In addition, for j ∈ Z let Ξj ⊂ Z2 be given by

Ξ̃j =

{
l ∈ Z2

∣∣∣∣− N ′j
2
≤ l1 <

N ′j
2
,−

N ′′j
2
≤ l2 <

N ′′j
2

}
. (6.2.23)

Next, let us denote the points in Ξ̃j by Ξ̃jl and let Nj , N
′′
j ∈ N be even natural numbers

with N ′j > 2j and N ′′j > 2j/2. The frequency grid {ξj,kl }(j,k,l)∈S ⊂ R2 \ {0}, for S ⊂
Z× Z× ∪j∈ZΞj, is defined by

ξj,kl = S−1
j,k (AjD

−1
j Ξ̃jl + 2j−2e1), (6.2.24)

where Sj,k was defined in Definition 6.1.7 and Dj = diag(N ′j , N
′′
j ). Finally let {yi}i∈I a

discrete Ξ−grid, where yi = T−1
j,k (xi) and Tj,k is the mapping defined by (6.2.11).

Let us start the digitization of Theorem 6.2.10 from the discrete adjoint shearlet

transform. For that we start by writing the convolutions (ϑ
(r)
j,k ∗ ψµ)(Tj,k(y)) in (6.2.22)

in the Fourier domain, namely

ψ̃µ(y) = (Pψµ)(y) ≈ p(y, νj,k)2−3j/4

Rj,k∑
r=1

α
(r)
j,k(y)

∑
ξ∈1j,k

ei〈Tj,k(y),ξ〉ϑ̂
(r)
j,k(ξ)ψ̂j,k(ξ). (6.2.25)

Therefore, since

(Pf)(y) =
∑
µ

cµ(Pψµ)(y),

where cµ are the discrete shearlet coefficients of f , we obtain the action of such expansion
on a function f ∈ L2(R2):

(Pf)(y) ≈
∑
µ

cµψ̃µ(y)

=
∑
j,k

p(y, νj,k)

Rj,k∑
r=1

α
(r)
j,k(y)

∑
ξ∈1j,k

ei〈Tj,k(y),ξ〉f̂(ξ)ψ̂2
j,k(ξ)ϑ̂

(r)
j,k(ξ).

(6.2.26)

In the following the amplitudes p(y, νj,k) are absorbed by the functions α
(r)
j,k(y). Notice

that the form of (6.2.26) is similar to the adjoint shearlet transform,

f(x) =
∑
µ

cµψµ(x) =
∑
ξ

∑
j,k

ei〈x,ξ〉f̂(ξ)ψ̂2
j,k(ξ). (6.2.27)

The next theorem introduces the digitization of the representation presented in (6.2.26)
and (6.2.27).
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Theorem 6.2.13. Let SHψ = {ψµ}µ∈M be a discrete shearlet system defined by (6.1.10).
Moreover, let P : L2(Ω)→ L2(Ξ) be a pseudodifferential operator of the form 6.1.1. Let

{xi}i∈I , {yi}i∈I and {ξj,kl }(j,k,l)∈S be the discrete grids introduced in Definition 6.2.12.
Then, the complete the digitization of (6.2.27) with the discrete adjoint transform, given
by

f(xi) =
∑
j,k

∑
l∈Ξj

ei〈xi,ξ
j,k
l 〉f̂(ξj,kl )ψ̂2

j,k(ξ
j,k
l ). (6.2.28)

Finally, the digitization of (6.2.26) is given by

(Pf)(yi) =
∑
j,k

Rj,k∑
r=1

α
(r)
j,k(yi)

∑
l∈Ξj

e2πi〈xi,ξj,kl 〉f̂(ξj,kl )ψ̂2
j,k(ξ

j,k
l )ϑ̂

(r)
j,k(ξj,kl ). (6.2.29)

Proof. Let us assume first that {xj,km }(j,k,m)=µ∈M ⊂ Ω is the shearlet Ω−grid introduced

in Definition 6.2.11. In addition, let {ξj,kl }(j,k,l)∈S ⊂ R2 \ {0} be the frequency grid from
Definition 6.2.12. Then, the digitization of the forward transform is given by

f̃j,k,m =
2−3j/8

(2π)2σ′jσ
′′
j

∑
l

f̂(ξj,kl )ψ̂j,k(ξ
j,k
l )ei〈x

j,k
m ,ξj,kl 〉 ≈ fµ. (6.2.30)

Also, the discretization of the adjoint transform f̂(ξ)ψ̂2
j,k(ξ) =

∑
µ′:j′=j,k′=k fµ′ψ̂j,k(ξ)

results on

f̂(ξj,kl )ψ̂2
j,k(ξ

j,k
l ) = 2−3j/8

(∑
m

f̃j,k,me
−i〈xj,km ,ξj,kl 〉

)
ψ̂j,k(ξ

j,k
l ). (6.2.31)

Let us notice that by construction, the inner product in the phase of the complex
exponential in (6.2.31) becomes

〈xj,km , ξj,kl 〉 = (AjD
−1
j Ξjl + 2j−2e1)ᵀA−1

j m =
πm1

2
+ 2π

(
m1l1

2j
+
m2l2

2j/2

)
. (6.2.32)

This implies that the specific choice of frequency points ξj,kl can be fast evaluated by

f̂(ξj,kl )ψ̂j,k(ξ
j,k
l ) from the data shearlet coefficients f̃j,k,m for l ∈ Ξj ,

f̂(ξj,kl )ψ̂j,k(ξ
j,k
l )eπim1/2 = 2−3j/8N ′jN

′′
j

∑
m

f̃j,k,me
−1〈xj,km ,ξl〉, (6.2.33)

where ξl = l and xj,km = D−1
j m with m ∈ Ξj , and N ′jN

′′
j = (2π)2 detDj . If the values of

f̃j,k,m are known we can make us of the 2−dimensional FFT for the evaluation of f̂(ξj,kl )

and ψ̂j,k(ξ
j,k
l ) in (6.2.33).

Now, we complete the digitization of (6.2.27) with the discrete adjoint transform, given
by:

f(xi) ≈
∑
j,k

∑
l∈Ξj

ei〈xi,ξ
j,k
l 〉f̂(ξj,kl )ψ̂2

j,k(ξ
j,k
l ).
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Next, since yi = T−1
j,k (xi), the dot product in the phase of the complex exponential

in (6.2.26) results in the equality

〈Tj,k(yi), ξj,kl 〉 = 〈xi, ξj,kl 〉 (6.2.34)

and we obtain the digitization of (6.2.26) given by

(Pf)(yi) ≈
∑
j,k

Rj,k∑
r=1

α
(r)
j,k(yi)

∑
l∈Ξj

e2πi〈xi,ξj,kl 〉f̂(ξj,kl )ψ̂2
j,k(ξ

j,k
l )ϑ̂

(r)
j,k(ξj,kl ).

Remark 6.2.14. Since S(Ω) is a dense subspace of L2(Ω), Theorem 6.2.13 also holds
for Fourier integral operators acting on Schwartz functions, i.e., P : S(Ω) → S(Ξ).
This means, we can also apply such results to the continuum convolutional operator
Kθ : S(Ω)→ S(Ω) in order to digitize it as well as its microcanonical relation.

Notice that for fast implementation, the terms in (6.2.28) can be evaluated USFFT

(unequally spaced fast Fourier transform) [37] from the irregularly spaced set of points ξj,kl
to xi. In a similar fashion, in order to evaluate the terms in (6.2.29), one can make use

of the 2−dimension FFT in the fast evaluation of f̂(ξj,kl ) and ψ̂j,k(ξj,kl ) from the shearlet

transform of the data. In contrast to (6.2.28), the transform USFFT ξj,kl → xi has to
be evaluated for each wedge Wj,k separately. This happens, since the functions Tj,k(y),

α
(r)
j,k(y) are different for each wedge. Let fj,k be the data component corresponding to

the wedge Wj,k given by

fj,k(xi) =
∑

µ′:j′=j,k′=k

fµ′ψµ′(xi) (6.2.35)

This form shows the organization by wedges of (6.2.29), (Pf)(yi) ≈
∑

j,k(Pfj,k)(yi). This
finalizes the digitization of Fourier integral operators by shearlet-based discretization.
We are now ready to introduce in the next section the digital microcanonical relation.

6.2.5 Digital microcanonical relation

In our analysis we have a parametrized change of coordinates induced by the microcanon-
ical relation Tj,k(y) = ∂φ

∂ξ (y, νj,k). Furthermore, we also showed how it is easy to derive

this notion on the digital realm, where the grid points xi are mapped to points yi by T−1
j.k .

One should notice, however, that the complete microcanonical relation maps elements
between phase spaces, namely (x, ξ) to (y, λ). In this setting, we can define the frequency
component of the microcanonical relation by

ξ → T̃i(ξ) =
∂φ

∂y
(yi, ξ).
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This function maps digital frequency points ξj,kl to digital frequency points λj,kl = T̃i(ξ
j,k
l ),

defining the frequency part of the digital microcanonical relation. Finally, the complete
digital microcanonical relation is defined as follows.

Definition 6.2.15 (Digitial microcanonical relation). Let P a Fourier integral operator

with phase φ, and {xi} and {ξj,kl } discrete samples of the spatial and frequency domain as
described in Section 6.2.4. Let Tj,k be the spatial component of the discrete microcanonical
relation given by

Tj,k(y) =
∂φ

∂ξ
(y, νj,k).

Furthermore, let yi = T−1
j,k (xi) and T̃i be the frequency part given by

T̃i(ξ) =
∂φ

∂y
(yi, ξ).

Let λj,ki,l = T̃i(ξ
j,k
l ) be the image of the frequency ξj,kl under T̃i(ξ

j,k
l ). The digital micro-

canonical relation associated with the operator P is given by the map

χd : (xi; ξ
j,k
l )→ (yi;λ

j,k
i,l ). (6.2.36)

This completes our digitization of the Fourier integral operator P and its microcanonical
relation χ. This digital microcanonical relation acts as a coordinate transformation on
the digital grid of the phase space where the digital wavefront set is defined. With that
in mind, we are now able to translate the results on the microlocal behavior of the Radon
transform and the residual convolutional neural networks presented in Chapters 2 and 4,
from the continuous case to the digital case.

6.3 Digital microlocal analysis of conv-ResNets and the learned
primal-dual

In this section, we explore the microlocal behavior of the convolutional residual neural
networks (Definition 4.1.1) and the learned primal-dual architecture (Algorithm 5) in
the context of the digital microcanonical relation of Definition 6.2.15. We study this
particular architecture since we aim to apply our results to the learned primal-dual
architecture, but our method can be also easily extended to other architectures and
Fourier integral operators. We also assume this architecture to be a discretization of the
continuum counterparts from Definition 4.1.15 and Algorithm 6.

In the case of the Radon transform and the convolutional operator, being Fourier integral
operators, we compute the digital microcanonical relation following the shearlet-based
digitization of FIOs (Theorem 6.2.13). In the case of the ReLU activation nonlinearity,
and the residual layer, since they are applied pointwise, the microcanonical relation can
be directly digitized from the continuous case to the corresponding digital grid.
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Following the approach presented in Section 4.1, we study the basic elements of the
conv-ResNets, meaning, the convolutional layer, the ReLU activation function, and the
residual layer. In addition, for the learned primal-dual architecture we also study the
microlocal behavior of the Radon transform.

6.3.1 Convolutional layers

Following Remark 4.1.3, we know that the continuum convolutional operator Kθ given
by (4.1.6) is a pseudodifferential operator. In particular, Kθ is also a Fourier integral
operator with phase φ(y, ξ) : = 1. By using the pseudo-local property (Theorem 2.3.10)
we have that for f ∈ L2(Ω) the wavefront set WF(Kθ(f)) follows

WF(Kθ(f)) ⊂WF(f).

Meaning, Kθ does not introduce new singularities to f . Moreover, if the coefficients βn,m
are such that the amplitude function pθ given by (4.1.7) follows

0 < |pθ(ξ)| for all ||ξ|| 6= 0,

then the operator operator Kθ is elliptic and preserve the singularities, i.e.,

WF(Kθ(f)) = WF(f).

Following the shearlet approximation (6.2.29) we can digitize Kθ by the digital operator
Kdθ : `2(Ωd)→ `2(Ωd) given by

(Kθf)(yi) = (Kdθfd)(yi) : =
∑
j,k

Rj,k∑
r=1

α
(r)
j,k(yi)

∑
l∈Ξj

e2πi〈xi,ξj,kl 〉f̂(ξj,kl )ψ̂2
j,k(ξ

j,k
l )ϑ̂

(r)
j,k(ξj,kl )

where Ωd is the digital grids on Ω,yi ∈ Ωd , and ξj,kl are the frequency points in the
discrete wedge tiling from Definiton 6.2.12. In addition, fd ∈ `2(Ωd) is the discretization
of f ∈ L2(Ω).

In addition, we have that the digital wavefront set WF(Kθ(fd)) also satisfies

WFd(Kdθ(fd)) ⊂WFd(fd).

Moreover, if he coefficients βn,m are such that

0 < |pθ(ξj,kl )| for all ||ξj,kl || 6= 0,

then the digital operator Kdθ preserve the singularities, i.e.,

WFd(Kdθ(fd)) = WFd(fd).

This implies that the digital microcanonical relation is given by the identity mapping

χd : (xi; ξ
j,k
l ) 7→ (xi; ξ

j,k
l ) for i, j, k, l ∈ Z (6.3.1)
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for spatial points in the digital spatial grid xi and frequency points in the discrete wedge
tiling ξj,kl .

We present the numerical results of this digital microlocal behavior in Section 8.3,
presenting how the convolutional layers in the learned primal-dual architecture propagate
digital singularities on simulated data. In this section, we also present an implementation
of an “ellipticity” measure, which indicates “how elliptic” the particular convolution is
by analyzing the values of the pθ evaluated on the digital frequency grid points. This
allows us to find out the singularities that are more likely to be preserved or not.

6.3.2 The ReLU activation function

Let ReLUκ,φκ : L2(Ω)→ L2(Ω) given by (4.1.10) be the ReLU operator in the continuum
setting. Following the strategy of Section 4.2.4 we chose a fixed κ > 0 and ψκ ∈ S(R2)
that integrates to 1, and let us rename ReLU : =ReLUκ,φκ for such fixed parameter .

Since in this case the ReLU operator acts pointwise on the input function f ∈ L2(Ω),
then the digitization becomes simpler, since it also acts pointwise on the points of the
digital grid. The digital ReLUd : `2(Ωd)→ `2(Ωd) operator is defined then as

(ReLUd fd)(xi) : =(ReLU f)(xi)

for xi points of the digital spatial grid Ωd (Definition 6.2.12) and fd`2(Ωd) is the
digitization of f . Since the digitization is defined pointwise, we can compute the digital
wavefront set of WFd(ReLUd(fd)) from the known WFd(fd) by rewritting Algorithm 1
in the digital grid.

Algorithm 8: Digital wavefront set classifier of ReLUd(fd).

Input: Digital image fd ∈ `2(Ωd), WFd(fd), xi ∈ Ωd.
Output: Estimate WFd(ReLUd(f))xi ⊂ Ωd.
initialisation;

if xi ∈ supp+(fd)
o

then
return Λdx = WF(fd)xi ;

end
if xi ∈ Rfd then

return Λdxi = {±∇dxi(f
d)/‖∇dxi(f

d)‖};
end
if xi ∈ Cfd ∪ Sfd then

return Λdxi = Ωd;
end

In Algoritm 8, ∇d is the digital gradient operator given by finite differences and
supp+(fd)

o
is the projection of supp+(f)o to the digital grid Ωd. In addition, the set

Rfd , Cfd and Sfd are the projection of the corresponding sets in Proposition 4.2.2 to the

digital grid Ωd. The final numerical results are depicted in Section 8.3.
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6.3.3 The residual layer

Similar to the digital ReLU, since the continuum residual operator + : L2(Ω)× L2(Ω)→
L2(Ω) is also applied pointwise, we can simply digitize it with the operator +d : `2(Ωd)×
`2(Ωd)→ `2(Ωd), which is defined then as

(fd +d gd)(xi) : =(f + g)(xi)

for xi points of the digital spatial grid Ωd (Definition 6.2.12) and fd, gd ∈ `2(Ωd) the
digitization of f and g.

We can also digitze the computation of the digital wavefront set WFd(Pdfd) by
rewriting Algorithm 2 in the digital grid.

Algorithm 9: Digital wavefront set classifier of fd + gd.

Input: Digital images fd, gd ∈ `2(Ωd), WFd(fd),WFd(gd), xi ∈ Ωd.
Output: Estimate WFd(fd +d gd)xi ⊂ Ωd.
initialisation;

if xi ∈WFd(fd) ∩WFd(gd)c then

return Λdxi = WFd(fd)xi ;
end

if xi ∈WFd(fd)c ∩WFd(gd) then

return Λdxi = WFd(gd)xi ;
end

if xi ∈WFd(fd) ∩WFd(gd) then

return Λdxi = WFd(gd)xi ∪WFd(fd)xi ;
end

6.3.4 The Radon transform

In Section 2.5 we explored the microlocal analysis of the Radon transform in the continuous
setting R : L2(Ω)→ L2(Ξ) given by

Rf(s, ϕ) =
1

2π

∫
ξ∈R

∫
x∈R2

ei(s−(x·ω(ϕ)))ξf(x)dxdξ. (6.3.2)

Although (6.3.2) is the classical form to study the Radon transform, in order to digitize
its canonical relation, following Section 6.2.4 and 6.2.5, we need to rewrite it in the
oscillatory integral form (6.1.1). The next proposition takes care of this.

Proposition 6.3.1. Let R : L2(Ω) → L2(Ξ) be the Radon transform given by (6.3.2),
then it can also be written in the oscillatory integral form (6.1.1) given by

(Rf)(s, ϕ) =
1

(2π)2

∫
ξ∈R2

ei(ω(ϕ)·ξ)sf̂(ξ)dξ for all (s, ϕ) ∈ Ξ and f ∈ L2(Ω). (6.3.3)
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Proof. Following [116], in general, a Fourier integral operator can be written as

(Pf)(y) =

∫
x∈R2

A(y, x)f(x)dx, (6.3.4)

where the kernel A(y, x) admits an oscillatory integral representation

A(y, x) =

∫
ξ∈R2

p(y, ξ)eiφ(y,x,ξ)dξ (6.3.5)

with the non-degenerate phase function,

φ(y, x, ξ) = x · ξ − S(y, ξ), (6.3.6)

and amplitude p = p(y, ξ) an standard symbols of order 0, with principle part homogeneous
in ξ of order 0. By applying (6.3.6) to (6.3.4)-(6.3.5), we obtain the original representation

(Pf)(y) =

∫
ξ∈R2

eiS(y,ξ)f̂(ξ)dξ.

Next, let us first notice that we can rewrite (6.3.2) as

(Rf)(s, ϕ) =

∫
x∈R2

f(x)δ(s− x · ω(ϕ))dx,

where δ is the Dirac delta distribution and ω(ϕ) = (cosϕ, sinϕ). Following the integral
form in (6.3.4), we get that R is represented by the kernel

A((s, ϕ), x) = δ(s− x · ω(ϕ)).

Taking the Fourier transform with respect to x of A we get

Fx(A((s, ϕ), x))(ξ) =
1

2π

∫
x∈R2

e−ix·ξδ(s− x · ω(ϕ))dx

=
1

2π
e−i(ξ·ω(ϕ))s.

(6.3.7)

Now, computing the inverse Fourier transform with respect to ξ of (6.3.7) we get

A((s, ϕ), x) = F−1
x (Fx(A((s, ϕ), x)))

=
1

2π

∫
ξ∈R2

eix·ξFx(A((s, ϕ), x))(ξ)dξ

=
1

(2π)2

∫
ξ∈R2

eix·ξe−i(ξ·ω(ϕ))sdξ

=

∫
ξ∈R2

p((s, ϕ), ξ)eiφ((s,ϕ),x,ξ)dξ,

(6.3.8)
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where the amplitude is p((s, ϕ), ξ) = 1
(2π)2 and the phase is given by

φ((s, ϕ), x, ξ) = (ξ · ω(ϕ))s− x · ξ.

Therefore, the Radon transform R can be written in the oscillatory integral form as

(Rf)(s, ϕ) =
1

(2π)2

∫
ξ∈R2

ei(ω(ϕ)·ξ)sf̂(ξ)dξ.

Having the integral oscillatory form (6.3.3) allows us to use Theorem 6.2.13 to digitize
the Radon transform R. We can also use Remark 6.1.1 to obtain the microcanonical
relation mapping of the Radon transform as well as its digital counterpart.

Proposition 6.3.2. Let R : L2(Ω) → L2(Ξ) be the Radon transform given by (6.3.3).
Let SHψ = {ψµ}µ∈M be a discrete shearlet system defined by (6.1.10). Moreover, let

{yi}i∈I = {(si, ϕi)}i∈I ⊂ L2(Ξ) and {ξj,kl }(j,k,l)∈S ⊂ R2 \ {0} ⊂ R2 \ {0} be digital grids

as in Proposition 6.2.13. Then, the digital Radon transform Rd is given by

(Rf)(yi) = (Rdfd)(yi) : =
∑
j,k

Rj,k∑
r=1

α
(r)
j,k(yi)

∑
l∈Ξj

e2πi〈xi,ξj,kl 〉f̂(ξj,kl )ψ̂2
j,k(ξ

j,k
l )ϑ̂

(r)
j,k(ξj,kl ),

(6.3.9)

where θ̂
(r)
j,k and α

(r)
j,k are given by (6.2.12) and ψj,k is the shearlet filter for the scale j and

shearing k. In addition, the spatial component of the digital microcanonical relation of
Rd, Tj,k : Ξ→ Ω, is given by

Tj,k(yi) = Tj,k((si, ϕi)) =
∂S

∂ξ
(yi, νj,k) = ω(ϕi)si =: xi for all i ∈ I. (6.3.10)

Also, the frequency component of the digital microcanonical relation of Rd, T̃i : R2\{0} →
R2 \ {0} is given by

λj,ki,l : = T̃i(ξ
j,k
l ) =

∂S

∂y
(yi, ξ) =

∂S

∂(s, ϕ)
((si, ϕi), ξ) = (ω(ϕi) · ξ, (ω⊥(ϕi) · ξ)si). (6.3.11)

Given (6.3.10) and (6.3.10) the digital microcanonical transform mapping of Rd, χd is
defined by

χd(xi; ξ
j,k
l ) : =(T−1

j,k (xi); T̃i(ξ
j,k
l ) = (yi, λ

j,k
l,i ). (6.3.12)

Proof. We know by Remark 6.1.1 that the microcanonical mapping of the Radon trans-
form, χ : Ω× R2 \ {0} → Ξ× R2 \ {0}, is given by

χ :

(
∂S

∂ξ
; ξ

)
7→
(
y;
∂S

∂y

)
,
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where S(y, ξ) = S((s, ϕ), ξ) = (ω(ϕ) · ξ)s (see (6.3.3)) and y = (s, ϕ). Then

∂(s,ϕ)S((s, ϕ), ξ) = (ω(ϕ) · ξ, (ω⊥(ϕ) · ξ)s),
∂ξS((s, ϕ), ξ) = ω(ϕ)s.

With the oscillatory matrix form of R in (6.3.3) we are able to digitize the operator and
its microcanonical relation χ with shearlets in the fashion of Section 6.2. Namely, given
{yi}i∈I = {(si, ϕi)}i∈I ⊂ L2(Ξ) and {ξj,kl }(j,k,l)∈S ⊂ R2 \ {0} ⊂ R2 \ {0} the digital grids

from Proposition 6.2.13, the digital Radon transform Rd is given by (6.2.29)

(Rf)(yi) ≈ (Rdf)(yi) : =
∑
j,k

Rj,k∑
r=1

α
(r)
j,k(yi)

∑
l∈Ξj

e2πi〈xi,ξj,kl 〉f̂(ξj,kl )ψ̂2
j,k(ξ

j,k
l )ϑ̂

(r)
j,k(ξj,kl ),

where θ̂
(r)
j,k and α

(r)
j,k are given by (6.2.12) and ψj,k is the shearlet filter for the scale j and

shearing k. In this case, by construction yi = T−1
j,k (xi) (see Proposition 6.2.13), where

Tj,k is the spatial component of the digital microcanonical relation of Rd, given by

Tj,k(yi) = Tj,k((si, ϕi)) =
∂S

∂ξ
(yi, νj,k) = ω(ϕi)si =: xi for all i ∈ I.

where νj,k = (cos θj,k, sin θj,k), θj,k = arctan(−k/2j−1).

Finally, following (6.2.36) we have that λj,ki,l = T̃i(ξ
j,k
l ) with T̃i is the frequency part of

the digital microcanonical relation of Rd given by

T̃i =
∂S

∂y
(yi, ξ) =

∂S

∂(s, ϕ)
((si, ϕi), ξ) = (ω(ϕi) · ξ, (ω⊥(ϕi) · ξ)si).

This implies that the digital microcanonical transform mapping of Rd, χd is given by

χd(xi; ξ
j,k
l ) : =(T−1

j,k (xi); T̃i(ξ
j,k
l ) = (yi, λ

j,k
l,i ).

Notice that the same procedure can be done for the back-projection operator R∗ given
by (2.3.2), whose digital microcanonical relation is the inverse of the digital microcanonical
relation of Rd given by (6.3.12).

The digital microcanonical relation of Rd can be used to compute the digital wavefront
set of the sinogram WFd(Rdf) by the application of χd to the digital wavefront set of
the image WFd(f). These results also hold for the adjoint Radon transform R∗ where
the microcanonical relation in the continuous setting χ is the inverse mapping of the
microcanonical relation of R. We have used this approach to compute the microcanonical
relation for the digital Radon transform to analyze the digital microlocal behavior of the
learned primal-dual. The results are presented in Section 8.3.
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Remark 6.3.3. The digital microcanonical relation of the convolutional ResNet (Defini-
tion 4.1.1) and the learned primal-dual algorithm (Algorithm 5) is the iterative application
of the digital microcanonical relation of each of their components. In particular, the digital
microcanonical relation of the convolutional operator in (6.3.1), the ReLU non-linearity
in Algorithm 8, the residual layer in Algorithm 9, the Radon transform and its adjoint
in 6.3.12.

In the next chapter, we will explore a particular application of this analysis, namely,
the task-adapted reconstruction. In this application, we use the digital wavefront set
propagation under the action of the learned primal-dual architecture as a strong prior to
improve tomographic reconstruction in the low-dose and limited angle cases.
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7 Application of digital wavefront sets to
task-adapted reconstruction

In this chapter, we explore a particular application of task-adapted reconstruction using
digital wavefront sets and their propagation via the learned primal-dual architecture. This
chapter will also be an opportunity to analyze the impact of microlocal analysis on inverse
problems and formalize the notion of wavefront set extraction in the context of statistical
decision theory. We will also present a task of particular interest, namely, wavefront set
inpainting. The goal here is to recover oriented singularities on the unknown part of
the low-dose and limited-angle tomography (the invisible part, see [17]) from the known
part (the visible part) using deep neural networks. Finally, in this chapter, we adapt
our approach of digital microlocal analysis of the learned primal-dual architecture to the
task-adatped reconstruction introduced by Adler et al. [1]. The goal is to improve the
reconstruction procedure using a-priori information provided by the digital microcanonical
relation.

My own contribution: As in Chapter 6 this chapter results from numerous discussions
with my supervisor, Gitta Kutyniok, and my collaborators Ozan Öktem and Philipp
Petersen which was later published as [9]. The main ideas in this case were mine inspired
by the work of Adler et.al. [1] on task-adapted reconstruction. This work together with
Chapter 6 was the final result of my research throughout my PhD studies. The actual
writing was mostly done by myself.

7.1 Motivation

As discussed extensively throughout this thesis, inverse problems play a fundamental role
in various real-world applications. This is due to the fact that most problems in physics
and medicine which involve measurements of signal parameters (e.g. X-ray tomography,
seismic imaging, MRI) can be stated as an inverse problem. As we know, in an inverse
problem, we aim to recover (reconstruct) model parameters characterizing a system under
investigation from measurements. Formally, we can formulate an inverse problem as
follows.

Definition 7.1.1 (Classical inverse problems). Let X and Y be separable Banach spaces,
known as model parameter space and data space respectively. In addition, let A : X → Y
be a forward operator. An inverse problem aims to recover a ground truth unknown
signal f∗ ∈ X from noisy measurements described by the equation

g = A(f∗) + δg, (7.1.1)
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where δg ∈ Y is the noise, defined as a single sample of a Y − valued random variable.
In this setting, the forward operator A models how the data is measured from signal in
the absence of noise.

The most prominent example of an inverse problem for this thesis is the problem of
tomographic reconstruction, which involves the Radon transform (Definition 2.3.1) as the
forward operator.

Definition 7.1.2. Let Ω ⊂ R2 and Ξ ⊂ R× (0, π) be open. The tomographic reconstruc-
tion problem aims to recover an unknown ground truth image f∗ ∈ L2(Ω) from noisy
measurements g ∈ L2(Ξ) modeled by

g = R(f∗) + δg,

where R : L2(Ω)→ L2(Ξ) is the Radon transform (Definition 2.3.1) and δg is the noise
in the data space L2(Ξ).

As discussed in Section 1.3, there are different approaches to solving inverse problems.
Reconstruction methods for ill-posed inverse problems can be classified in three groups:

• Model-based methods: use first principles to incorporate a-priori information
and find solutions adequate to the physical problem (e.g. iterative methods [25],
variational regularization[112]).

• Data-driven methods: use parameterized models to learn solutions from training
data (e.g. deep convolutional neural networks [13]).

• Hybrid methods: incorporate model-based first principles to parametrize models,
in order to find the solution from training data, and reduce the parameter space by
the use of a-priori information (e.g. learned primal-dual reconstruction [3]).

In Section 4.3 we discussed the learned primal-dual architecture, a hybrid method
originally introduced by Adler and Öktem [3]. Such a method makes use of a primal-dual
iterative scheme to design a deep convolutional neural network capable to perform image
reconstruction in imaging inverse problems. This method uses as a-priori information the
forward operator and its adjoint. This allows convolutional residual neural networks to
learn the local properties of the solution, while the operators handle the global properties.
Moreover, in Sections 1.1 and 3.1 we have discussed the important role that microlocal
analysis and wavefront sets play in inverse problems. Since oriented edges contain a large
amount of information on an image, they can be used as a-priori in regularization methods.
In addition, microlocal analysis allows us to understand how oriented singularities are
propagated under Fourier integral operators, via the microcanonical relation. A significant
number of inverse problems in real-world applications are modeled by forward operators
that are in fact, Fourier integral, such as the Radon transform [70]. Based on this fact,
the microcanonical relation allows us to obtain a subset of the wavefront set of the
solution f∗ using the wavefront set of the data g without the need for any reconstruction.
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In [17] Bubba et al. introduced a method for limited-angle tomographic reconstruction
that uses the microcanonical relation to extract the singularities that can be faithfully
reconstructed from the data. Such singularities are obtained by propagating the wavefront
set of the measured sinogram through the adjoint of the radon transform, via the
microcanonical relation. These singularities, also known as the visible part, are then
used to reconstruct the rest of the singularities (the invisible part). Bubba et al. used a
deep neural network architecture to find the invisible part and the shearlet transform
to perform orientation separation in the reconstructed images. In Section 4.3 we have
presented a microlocal analysis of the learned primal-dual architecture in the continuous
setting, where we are able to describe the propagation of singularities from the input
data through the architecture. This allowed us to obtain singularities of the output
reconstruction. In addition, Chapter 6 introduced the digital counterpart of the microlocal
analysis discussed in Chapter 4, using the concept of digital wavefront set introduced in
Chaptar 5 in addition to a discretization based on shearlets.

Being able to describe singularities and their propagation in deep neural networks for
inverse problems is a powerful tool, in particular, it allows us to use the wavefront sets
as a-priori information for the reconstruction. In that sense, we would like to develop
a reconstruction method that is able to well approximate the ground truth wavefront
set. An appropriate framework for this is the framework of task-adapted reconstruction.
In the next sections, we will present a novel method that jointly performs tomographic
reconstruction and adapts it so that its wavefront set is close to the wavefront set of the
ground truth, the last being the task of interest. We will present two different tasks,
namely wavefront set reconstruction and wavefront set inpainting. For this purpose, we
need to formulate the tomographic reconstruction and the tasks in the same statistical
framework –the statistical decision theory–. This is the purpose of the next two sections.

7.2 Inverse problems as statistical estimations

In this section, we study the statistical setting of inverse problems, also known as
statistical inverse problems. This is not a new contribution, since it has been extensively
discussed in the past, for example in [40]. The approach presented in this section, and
throughout most of this chapter, is highly based on the theory presented by Adler et al.
in [1]. For this purpose, we are going to revisit shortly the basic concepts of probability
theory also presented in Section 5.5.

Let us assume we have an inverse problem described by the forward operatorA : X → Y
as in (7.1.1). In [40] Evans et al. introduced the notion of a statistical inverse problem,
which reads as follows.

Definition 7.2.1. Let X and Y be separable Banach spaces. In addition, let SX and SY

be σ−algebras of X and Y , respectively (Definition 5.5.1). Thus, (X,SX) and (Y,SY )
are measurable spaces. Furthermore, let PX and PY be probability measure spaces on
X and Y (Definition 5.5.2). A statistical inverse problem aims to reconstruct f∗ ∈ X
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from measurements g ∈ Y drawn from a Y − valued random variable g, i.e.

g ∼M(f∗), (7.2.1)

and M : X →PY is a known data model.

This kind of reconstruction is also known as statistical estimation. Functions in the
model parameter space X are potential reconstructions and data in Y are potential
measurements. In tomography, being our main interest, functions in X are defined
on a fixed domain Ω ⊂ R2, which represent gray-scale images, see [70]. In addition,
measurements in Y are real-valued functions defined on a manifold M, also known as
sinograms. This manifold is given by the sensor geometry related to the measurements.
From now on, we will use bold-face notation to denote random variables, for instance,
whereas g is an element in Y , g is a Y−valued random variable.

Remark 7.2.2. As in the case of the classical (non-statistical) setting, it is often the
case that statistical inverse problems are ill-posed. In particular, they do not have a
unique solution. A commonly used data model include noise in the data

g = A(f∗) + δg. (7.2.2)

In this case, δg ∼ Pnoise is the noise for some known Pnoise ∈PY and A is the classical
forward operator from (7.1.1). If the noise δg does not depend on the ground-truth f∗,
then the inverse problem (7.2.2) has the data model

M(f) = Pnoise(· − A(f)) ∀f ∈ X.

A standard approach to solve the statistical estimation problem (7.2.1) is the so-called
Bayesian inversion. In this method, in addition to estimating the solution f∗ ∈ X, one
also aims to take uncertainty into account.

Let us first introduce an X−valued random variable f ∼ π∗, where its probability
distribution π∗ generates f∗. The challenge here is that π∗ is assumed to be unknown.
Therefore, one can reformulate the inverse problem (7.2.1) as the problem of recovering
the probability measure π∗ ∈PX while the data g ∈ Y , generated by g, is known. In
this context g is related to f∗ via the data model (7.2.1). In the particular case where
we know explicitly how π∗ depends on the ground-truth f∗ ∈ X, the inverse problem
becomes the task of estimating f∗ ∈ X.

Remark 7.2.3. In the Bayesian formulation, we aim to find the posterior distribution
of f given g = g. The last equality means that the given data g is drawn from the random
variable g. In such case, following Bayes’ theorem, one has that the joint law (f , g) ∼ µ
can be written in terms of the conditional probabilities, i.e.

µ = π0(f∗)⊗ π(g|f = f∗) = π0(f∗)⊗M(f∗), (7.2.3)

where π0 is a prior. Equation (7.2.3) is obtained from the definition of the data model as
the conditional distribution of g given f = f∗.
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The main contribution of the Bayesian setting is the possibility to explore the posterior
distribution of f given g = g. This can be done when both the prior x 7→ π0 ∈PX and
the data model f 7→ M(f) are known, but the reconstruction f∗ ∈ X is unknown. In
addition we also assume that we can define a density L associated to the data model.
Such density is also known as the data-likelihood. Generally, the data-likelihood L is
known up to sufficient degree of accuracy, where dM(f)(g) = L(g|f)dy.

So far, we have introduced the setting for statistical inverse problems based on the
approach followed in [1]. In this setting the statistical model ((Y,SY ), {M(f)}f∈X) is
parametrized by the model parameter space X, where (Y,SY ) is a measurable space
from Definition 7.2.1. In such context, a reconstruction method can be represented by a
mapping A† : Y → X, also referred to as point estimator. We refer to [60] for a more
detailed exploration of statistical estimation theory. Although generally in an inverse
problem we aim to compute a reconstruction, the final goal in real-world application is to
take a decision on the reconstruction. For example, to decide whether an image coming
from a tomographic reconstruction depicts a tumor. The area of statistics that formally
studies the way decisions are made is known as statistical decision theory, which is the
focus of the next section.

7.3 Reconstruction as a statistical decision

There is a natural connection between statistical estimation and statistical decision theory.
The purpose of statistical estimation (or inference) is to make a conclusion on the true
but unknown distribution π∗ ∈PX of f after the experiment has been carried out and
the observation f is available. Such a conclusion can be interpreted also as a decision
taken over the observation f . In the next section we will introduce the basic concepts
and notions of statistical decision theory so we can later proceed with the task-adapted
reconstruction framework.

7.3.1 Statistical decision theory

Statistical decision theory is the area of statistics that study how to make conclusions
based on data. In this context, we choose a separable Banach space D known as the
decision space. As in the case of the model parameters and data spaces, we assume that
D is equipped with a σ−algebra SD. The simplest case of a decision-making procedure
is to choose a point d ∈ D after f ∈ X has been observed. This decision-making
procedure is known as non-randomized decision. Formally, a non-randomized decision is
a measurable mapping T : X → D, where T (f) is a decision made after f is observed.
We denote the space of measurable mappings from X into D by D. This chapter focuses
on non-randomized decisions, although for some problems this approach is not sufficient,
with the need of the so-called randomized decisions [78], and we will also present this
notion for sake of completeness. An appropriate mathematical structure for representing
randomized decisions is the notion of stochastic kernel.
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Definition 7.3.1. Let X and D be a separable Banach spaces and SD be a σ−algebra
of D. A stochastic kernel is a mapping K : SD ×X → [0, 1] which has the following two
properties.

(i) For every fixed f ∈ X, the object K(·|f) is a probability distribution on the measur-
able space (D,SD) (Definition 7.2.1).

(ii) For every fixed d ∈ SD, the mapping f 7→ K(d|f) from X into [0, 1] is measurable.

We refer to every stochastic kernel K : SD ×X → [0, 1] as a randomized decision rule or
simply a decision.

The interpretation of K(d|f) on Definition 7.3.1 is that after f ∈ X has been observed
K(d|f) is the probability of a point in d ∈ SD to be chosen. Next, non-randomized
decision rules are a particular case of the randomized decision rules, where the stochastic
kernel is defined by the Dirac delta K(·|f) = δT (f)(·) for every decision operator T : X →
D. This gives us two representations of a non-randomized decision rules, given by either
K or T . For convenience, we keep using T throughout this work. In the following, we
introduce some key definitions coming from statistical decision theory.

Definition 7.3.2 ([78, Definition 3.1]). Let ((X,SX), {Pz}z∈∆) be a statistical model
where the model parameter space (X,SX) is a measurable space and {Pz}z∈∆ ⊂ PX

is some family of probability measures on X parametrized by the set ∆. Moreover, let
(D,SD) be a decision space and K a stochastic kernel K : D ×X → [0, 1]. The class of
all decisions K is denoted by D. A decision K is called a non-randomized decision if
K(·|f) = δT (f) for some T : X → D.

Now, we know that by construction the solutions of statistical inverse problems result
in a point estimator. In the context of statistical decision theory, this can be seen as a
non-randomized decision for a statistical decision problem. Here the model parameter
space X not only parametrizes the underlying statistical model ((Y,SY ), {M(x)}x∈X)
but also at the same time the decision space (D : =X).

If the inverse problem is ill-posed, in particular, if it does not have a unique solution,
there will be many possible reconstruction methods. Therefore, we need a way to find an
optimal decision. In statistical decision theory, the notion of optimal decision comes in
the form of the risk to a decision rule. In a general sense, the risk measures how good a
particular reconstruction method performs. In order to introduce the concept of risk, we
need to first discuss the notion of the loss function.

Remark 7.3.3. The process of first observing the data and then making a decision can
also be described by means of a random vector (d,f) that is defined on some probability
space ((Ω,SΩ), {Pz}z∈∆) , z ∈ ∆. Here the random variable f : Ω→ X is the observation,
and d : Ω→ D is the statistician’s action after observing X. From now on, we will focus
on the non-randomized decisions case.
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In the non-randomized setting, it is clear that the decision operator T depends on the
outcome of f = f , where f is a random variable, and is defined as the decision K(·|f),
f ∈ X. More precisely, D(·|f) is the conditional distribution of T given f = f , and
L(z,f) : =Pz ◦ f−1 =: Pz, z ∈ ∆, is the marginal distribution of f . This means that by
the definition of the conditional distribution, for every set C ∈ SD ⊗SX it holds

L(z,d,f) : =Pz ◦ (d,f)−1,

(K ⊗ Pz)(C) =
x

χC(d, f)T (d|f)Pz(df), C ∈ SD ⊗SX ,
(7.3.1)

where χC is the indicator function over C and L is the likelihood function. For a more
detailed explanation on this, we refer to [78].

Remark 7.3.4. Following the standard extension technique (see [78, Section 3.2]), we
can use a linear combinations of indicator functions and the approximation of nonnegative
measurable functions by increasing sequences of such linear combinations [40], obtaining

Ezh(d,f) =
x

h(d, f)K(d|f)Pz(df), (7.3.2)

for every h : D ×X → R+.

In order to introduce the notion of risk (or Bayesian risk) we need the definition of a
loss function, which measures the quality of the decision. We assume that the loss of
a decision is given by some values LD(z, d), z ∈ ∆ and d ∈ D. Here L(z, d) is the loss
when a decision is made in favor of d and the true parameter is z.

Definition 7.3.5 ([78, Definition 3.2], Decision loss). A decision loss function LD is
a function LD : ∆ × D → R such that for every fixed z ∈ ∆ the function LD(z, ·) is
measurable and it holds

−∞ < inf
d∈D

LD(z, d), z ∈ ∆. (7.3.3)

Remark 7.3.6. The condition in Equation (7.3.3) ensures that for any probability
measure µ the integral

∫
LD(z, d)µ(d) is well defined. If we assume there exists a

mapping τ : ∆→ D and a distance in D, `D : D ×D → R (decision distance), the loss
function LD : ∆×D → R given by

LD(z, d) := `D(τ(z), d) (7.3.4)

is a well-defined decision loss function.

From now on we will refer to ∆ as the feature space. Under a decision T , after f has
been observed, the statistician’s action in order to take a final decision is the random
variable d, where the joint distribution of f and d is given by (7.3.1). Thus the loss
under T is a random variable LD(z,d). This allows us to define the risk of a decision as
its expected loss.
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Definition 7.3.7 ([78, Definition 3.3], Decision risk). Let ((X,SX), {Pz}z∈∆) be a
statistical model and LD : ∆ ×D → R a decision loss function. The risk function (or
risk) of a decision T ∈ D is given by the expected value

Rz(T ) = Ez [LD(z,d)] , z ∈ ∆, (7.3.5)

where L((d,f)|Pz) = T ⊗ Pz, z ∈ ∆.

With all these ingredients we can define a statistical decision problem as the triple
(M, (D,SD), LD), consisting of a statistical model M, a decision space (D,SD), and
a decision loss function LD. An optimal non-randomized decision rule is a decision T
that minimizes the risk Rz(T ) from (7.3.5). Following the motivation of the Bayesian
inversion, we would like to be able to account for uncertainty on the decision problem. For
this, we can assume that we have a probability distribution η0 ∈P∆ and a non-randomize
decision rule T ∈ D. We can then define the Bayes decision risk as follows.

Definition 7.3.8 (Bayes decision risk, [40]). Let us assume we that have a statistical
decision problem (M, (D,SD), LD), where the statistical model is parametrized by the
model parameter space, M = ((X,SX), {Pz}z∈∆) with {Pz}z∈∆ ⊂P∆. In addition we
assume that the decision loss function L : ∆×D → R is given by

LD(z, d) = `D(τ(z), d), for every z ∈ ∆ and d ∈ D,

where the feature mapping τ : ∆ → D maps features z ∈ ∆ to decisions d ∈ D, and
`D : D ×D → R is the decision distance. Given a fixed probability measure η0 ∈ P∆,
the Bayes decision risk associated to the non-randomized decision T ∈ D (T : X → D) is
defined by the expected loss

Rη0(T ) : =Eη⊗Pz [`D(τ(z), T (f))] where (z,f) ∼ η0 ⊗ Pz. (7.3.6)

An optimal Bayes non-randomized decision rule is one that optimizes (7.3.6) and is called
decision operator.

As one can observe, the framework of statistical decision theory allows us to connect the
decision-making procedures with the statistical estimation involved on inverse problems.
This connection will be discussed in detail in the following.

7.3.2 Bayesian inversion as optimal decision rule

The concept of Bayes decision risk can be extended to the framework of Bayesian inversion.
Following [1], we can interpret a statistical inversion problem (Definition 7.2.1) as a
statistical decision problem (Definition 7.3.8) as follows.

Definition 7.3.9 (Reconstruction Bayes risk,[1]). Let ((Y,SY ), {M(f)}f∈X) be a sta-
tistical model (Definition 7.2.1) and D : =X be a decision space. In addition let `X :
X ×X → R be the corresponding decision distance, given by the distance function in X.
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Given a prior π0 as in (7.2.3) and following (7.3.6), we can compute the reconstruction
Bayes risk of a potential reconstruction operator A† : Y → X by

Rπ0(A†) = Eπ0⊗M(f)

[
`X(f ,A†(g))

]
. (7.3.7)

Following the theory presented in Section 7.3.1, similar to the notion of “optimal
decision”, we have that a “good” reconstruction method (estimator) is given by a
reconstruction operator A† that minimizes the Bayes risk (7.3.7). As presented in [1], if
we are working on finite dimensions and the loss function is given by the L2−distance,
minimizing the Bayes risk is equivalent to estimating the conditional mean.

We recall that in Bayesian inversion, the ground truth function f∗ ∈ X and the
measured data g ∈ Y are generated by random variables, namely f and g. In this case,
one aims to recover the conditional probability of the model parameter f∗ while the data
g and the prior π0 are given. In other words, one aims to recover the posterior distribution.
In contrast, in the classical case, an inverse problem is given by the equation (7.1.1).
In this equation, just the data g is generated by a random variable g, and the data is
generated by a random variable, while the model parameters are simply functions in X,
also known as deterministic approach. This limits the statistical understanding of the
problem, resulting in the lack of the possibility for uncertainty quantification. Thus, we
will not be able to compute relevant statistical parameters like mean or standard deviation,
which become handy when assessing our results. Therefore, this approach represents a
better analysis in comparison with the deterministic case since the posterior f contains
all the possible solutions. In this context, one can obtain different reconstructions from
different estimators. Also, as discussed in [1], small changes in the data will result in
small changes in the posterior distribution [29, Theorem 16]. This can be interpreted
as that this approach stabilizes an ill-posed inverse problem when one chooses a correct
prior π0.

Although the Bayesian approach has a lot of upsides, it also presents two important
challenges. The first challenge is the fact that normally the posterior is very hard to be
written in closed form. Thus, most of the modern approaches deal with the Bayesian
inversion without an explicit form of the posterior. We then need to consider the design of
a “good” prior π0 ∈PX . The second challenge is related to the computational feasibility
of the exploration for the posterior. In the following, we discuss how to address these
two challenges.

A “good” prior π0 should be able to make use of first principles to capture the relevant
a-priori information. It should also lead to Bayesian inference methods with desirable
asymptotic properties. These properties are usually regarded as consistency and good
contraction rates [40]. As seen in [1], there are examples of handcrafted priors coming from
Bayesian non-parametric theory, such as [46, 66, 29]. The main issue with handcrafted
priors is that they can only describe a fraction of the a-priori information that is available.
This fraction corresponds to the part of the physics that can be written in closed-form.
A remarkable example in biomedical imaging comes from the fact that the human body,
being the object on the images, is impossible to be analytically encoded as a prior.
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In the introduction of this section, we discussed the different approaches in classical
inverse problems, namely, model-based, data-driven, and hybrid. In Bayesian inverse
problems, the handcrafted prior corresponds to the model-based approaches. Similar
to the data-driven and hybrid approaches, one can also consider a prior that is learned
from training examples in X. In the following sections, we will present, on the one
hand, an example of this approach for computed tomography. On the other hand, the
exploration of the posterior, when minimizing the Bayes risk, involves sampling from
a high-dimensional probability distribution. As one would expect, this sampling is
impossible to be implemented, therefore, one needs to discretize the model parameters in
finite-dimensional components. This scenario is computationally exhausting for large-scale
problems, such as tomographic reconstruction and almost any imaging problem.

In order to tackle this challenge, researchers have made us of Markov chain Monte
Carlo methods techniques (see [29, Section 5] and [2]). Unfortunately, these approaches
have two main downsides. Some of them need access to the closed-form handcrafted
prior resulting in poor performance. The second challenge is that these approaches are
hardly scalable for large-scale inverse problems, involving integration over the whole
model parameter space, which as we discussed is computationally unfeasible.

7.3.3 Learned iterative methods for Bayesian inversion

In Section 1.1 we discussed the particular case of data-driven/hybrid approaches known
as learned iterative methods. These methods combine techniques coming from classical
iterative reconstruction approaches with deep neural networks. They can overcome the
challenges associated with Bayesian inversion (selecting a good prior and making it
computationally feasible). The idea behind the effectiveness of learned iterative methods
is the flexibility of highly parameterized non-linear models which can be adapted at hand
to specific loss criteria, like (7.3.7), when trained against data.

In particular, learned iterative methods use a deep neural network (Section 1.2) to
define a set of reconstruction methods, parametrized by weights. In the context of
Bayesian inversion, the training of learned iterative methods against data results on an
estimator. This estimator minimizes the Bayes risk and at the same time takes into
account a-prior information about how data is generated.

Remark 7.3.10. In order to illustrate the last statement, let us consider the joint
law µ = π0 ⊗ M(x) in (7.3.7) which is used to define the Bayes risk. Although in
most of the times, this joint law is not explicitly known, one may have access to the
corresponding empirical measure defined by the training data {(xi, yi)}mi=1 ⊂ X × Y
generated by (f , g) ∼ µ. Therefore, it will not be necessary to introduce any handcrafted
(model-based) prior π0 ∈PX .

As we know, the search over all non-randomized decisions is computationally exhaustive.
By using a learned iterative method, we restrict our attention to the decisions given
by a deep neural network architecture, which is computationally feasible and has large
capacity. In this setting, we have a family of reconstruction operators A†θ : Y → X
parametrized by a parameter set Θ given by weights of a deep neural network, which are
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also finite-dimensional. The optimal operator is given by training the network against
data, i.e.,

θ∗ ∈ arg min
θ∈Θ

{
1

m

m∑
i=1

`X(fi,A†θ(gi))

}
. (7.3.8)

Since in this approach, neither the prior nor the data model are handcrafted, we can
regard it as being fully data-driven. All this information is learned from the training
data, without the knowledge of how the data is generated (data model).

The absence of knowledge on the data generation is an issue when the number of
independent samples in the training data set are low compared to the number of weights.
This happens frequently in imaging problems due to the high dimension of the model
parameter space-. Since in many inverse problems the data model x 7→ M(x) which
describes the data generation is known, one could use this information to alleviate the
above-mentioned issue. In this thesis we will follow this principle by using the learned
primal-dual architecture (Section 4.3) to parametrize the reconstruction Aθ∗ such as the
learned primal-dual architecture does. Such architecture incorporates the information
provided by the data model, by using the forward operator A (and its adjoint A∗) as a
layer. We would like to use this method to perform tomographic reconstruction, but at
the same time, we would also like to perform a task (decision) on the model parameters.
The next section introduces the notion of task-adapted reconstruction based on statistical
decision theory.

7.4 Task-adapted reconstruction

As we know, the inverse problem of reconstructing the model parameters from data is
typically only one step in real-world applications. In these applications, the final aim is
to use the recovered model parameters for decision-making, also known as a task. The
reconstructed model parameters are often analyzed by an expert or an algorithm. Such
analysis results in task-dependent features that are finally used in decision-making. Based
on [1] Figure 7.1 depicts the typical pipeline of real-world problems involving inverse
problem reconstruction and decision-making.

Although performing the various parts of the pipeline in Figure 7.1 independently
could seem feasible, this approach has several issues. In particular, each individual step
introduces approximation errors and uncertainties, which are not taken into account
by the subsequent steps. For example, the reconstruction may not consider the final
task. Therefore, we need to adapt the reconstruction method for the specific task. Task-
adapted reconstruction, introduced by Adler et al. [1], refers to methods that integrate
the reconstruction procedure with the decision-making procedure associated with the
task. For that, both reconstruction and task need to be compatible, in the sense that they
need to be described by the same theoretical framework. In this case, that framework is
statistical decision theory.

The introduction of this framework coincides with the recent effort to incorporate
signal processing steps associated with the performance of a task into the reconstruction.
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Figure 7.1: Pipeline of decision-making procedure based on inverse problem reconstruction
and decision-making.

In computed tomography, the most common tasks correspond to feature extraction.
A relevant example of this situation is the extraction of features coming from sparse
representations, often done using compressed sensing, for example, the computation of
shearlet coefficients for image inpainting [45].

The classical approach to task-adapted reconstruction is similar to the classical approach
to inverse problems (Definition 7.1.1), in the sense that it is achieved by solving an
operator equation (see (7.2.2)). We introduce a formal definition in the following.

Definition 7.4.1. Let X,Y,D be separable Banach spaces, refer to as model parameter,
data and decision space, respectively. A task-adapted reconstruction problem in the
classical setting aims to recover a ground truth unknown decision d∗ ∈ D from data g ∈ Y
given the operator equation

g = A(f∗) + δg and d∗ = T (f∗), (7.4.1)

where A : X → Y is the forward operator associated with the inverse problemd, the task
operator T : X → D represents the decision extraction, both known. As in the classical
inverse problem, we have δg ∼ Pnoise for some known Pnoise ∈PY is the noise.
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An illustrative way to represent the task-adapted reconstruction problem from Defini-
tion 1.4.1 is shown in Diagram (7.4.2)

X Y

D

T

A

?
(7.4.2)

Remark 7.4.2. It is important to notice that the task operator T : X → D is typically
highly non-injective. Most likely T −1 is not defined and therefore, also A◦ T −1 : D → Y .
Similarly, real-world problems are ill-posed so normally T ◦ A−1 does not exists.

In computed tomography, there are different examples of interesting tasks such as edge
recovery, segmentation, and image registration. In the next sections, we will introduce
new tasks that are of particular interest to this thesis. We are also going to introduce
what we consider the most relevant application of our analysis in Chapter 6, the wavefront
set extraction and wavefront set inpainting.

A suitable approach for solving (7.4.1) highly depends on the specific task, and its
practical application is limited by similar issues as in the Bayesian inversion presented
in Section 7.3.2. The first issue is the need for an explicit handcrafted task operator
T : X → D. Access to a closed form of the task operator is extremely difficult for
most of the tasks in imaging. The second issue is connected to computational feasibility.
Evaluating the task operator is computationally exhaustive and involves the fine-tuning of
extra parameters. Moreover, most state-of-the-art model-based methods for solving (7.4.1)
make use of variational methods. These methods take high computational complexity in
large-scale image problems [98].

More recently, many tasks in imaging have been successfully addressed using deep
neural networks [36, 8, 121]. Therefore, it is worth to think whether or not such techniques
can be used in the context of task-adapted reconstruction. For that, we first need to
explore the tasks on model parameters in its natural framework, the statistical decision
theory. Being able to implement the task as a deep neural network training allows us to
jointly perform the training with the reconstruction step when suitable training data is
available.

7.4.1 Tasks on model parameters

A task in the model parameter space X is an optimal non-randomized decision of the
statistical decision problem (M, (D,SD), LD), where M is the model parameter space

M = ((X,SX), {Pz}z∈∆) with {Pz}z∈∆ ⊂P∆,

and LD is the decision loss function given by (7.3.4). The operator T : X → D
associated with the optimal decision rule is known as the task operator. As we know
from Equation (7.3.6), the task operator is found by minimizing the Bayes risk defined
by the expected value
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Rη0(T ) = Eη0⊗Pz [`D(τ(z), T (f))] ,

where (z,f) ∼ η0 ⊗ Pz. We refer to the probability measure η0 ∈P∆ as the task prior.
As in the case of the Bayesian inversion, finding a “good” task prior is hard. Also,
Pz ∈PX is normally unknown. Then, the joint law η : = η0 ⊗ Pz is considered unknown,
unlike the reconstruction case, where the joint law is known, or at least its data likelihood.

Remark 7.4.3. In order to resolve the lack of knowledge on the joint law, and similar
to the Bayesian inversion setting, we can replace the measure η0 ⊗ Pz with the empirical
measure given by the training data {(zi,fi)}mi=1 ⊂ ∆×X. In this dataset one has i.i.d.
(independent and identically distributed) samples generated by a (∆×X)− valued random
variable (z,f) ∼ η. At the same time, to ensure the computational feasibility we can
parametrize the potential task operators by a family of decision rules Tϑ : X → D, with
ϑ ∈ Ξ given by a deep neural network architecture.

The task operator is a decision rule Tϑ∗ : X → D parametrized by a finite dimensional
parameter in Ξ. Therefore, the optimal task operator ϑ∗ ∈ Ξ is given by the empirical
decision risk minimization

ϑ∗ ∈ arg min
ϑ∈Ξ

{
1

m

m∑
i=1

`D(τ(zi), Tϑ(fi))

}
, (7.4.3)

where τ : ∆→ D is the feature mapping, and `D : D×D → R is the decision distance
(see Definition 7.3.5). Let us explore a classical example to illustrate how tasks on model
parameters work, the problem of image classification.

Task on model parameter 7.4.4 (Image classification). Let X : =L2(Ω,R) be the
space of gray-scale images on Ω ⊂ R2 (open). The image classification task is formed by
the following elements.

• Task. Classify an image into one of k distinct labels (classes), more precisely,
assign to an image a probability distribution over all k labels.

• Model parameter space. The space of gray-scale images defined on a fixed
domain Ω ⊂ R2, that is,

X : =L2(Ω).

• Feature space. The space defined by the finite cyclic group

∆ : =Zk = Z/kZ,

representing the k labels.

• Decision space. The space of probability distributions over the k labels, i.e.

D : = P∆.
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• Decision loss. The task-adapted loss function is given by (7.3.4), where

`D(d, d′) : =−
∑
z∈∆

d(z) log d′(z) for d, d′ ∈ D.

• Feature map. Dirac delta function for each class

τ(z) : = δz for z ∈ ∆.

• Task operator. Given a prior distribution η0 ∈ P∆, the Bayes risk in (7.3.6)
associated with a decision rule T : X → D becomes

Rη0(T ) : =Eη0⊗Pz [`D(τ(z), T (f))] =

∫
X

∫
∆

[− log[T (x)(z)]] dη0(z)dPz(x).

The task operator is then parametrized by a continuous neural network Tϑ : X →
D for ϑ ∈ Ξ. The optimal task operator Tϑ∗ : X → D is obtained from the
corresponding empirical risk minimization in (7.4.3), namely,

ϑ∗ ∈ arg min
ϑ∈Ξ

{
1

m

m∑
i=1

[− log[Tϑ(di)(zi)]]

}
for training data (zi, fi) ∈ ∆×X.

(7.4.4)

There are already several approaches using deep neural network architectures for the
set of decision rules D = {Tϑ}ϑ∈Ξ, and solving (7.4.4) corresponds to training a classifier.
EfficientNet [110] and ResNet [56] are the most relevant examples of deep learning-based
image classifiers. This example illustrates the main idea of tasks on model parameters
for a real-world application. We are now ready to explain how to adapt reconstruction
coming from an inverse problem to a particular task on its model parameters.

7.4.2 Abstract setting of task-adapted reconstruction

We refer to methods that integrate the reconstructions with the decision-making procedure
as task-adapted reconstruction, since we are in some sense adapting the reconstruction
method to a task at hand. Following [1] we introduce a framework for task-adapted
reconstruction. This framework is at the same time computationally feasible and adaptable
to specific inverse problems and tasks. The key idea in this integration is the formalization
of both the reconstruction and tasks as non-randomized decision rules within a statistical
estimation problem.

Let us start with an inverse problem, where the data model M in (7.2.1) is known.
As in Section 7.3, the reconstruction can be understood as a decision rule in a statistical
estimation problem. This is defined by the statistical model ((Y,SY ), {M(f)}f∈X),
decision space (X,SX), and loss `X : X × X → R. If π0 ∈ PX is a prior, one can
define a reconstruction method as an optimal non-randomized decision rule obtained by
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minimizing the Bayes risk corresponding to the prior. This will then be a mapping that
solves

Â† ∈ arg min
A†∈M (Y,X)

{
Eπ0⊗M(f)

[
`X(f ,A†(g))

]}
, where (f , g) ∼ π0 ⊗M(f), (7.4.5)

where M (Y,X) is the space of measurable mappings from the measure spaces (X,SX)
to (Y,SY ). Next, as seen in Section 7.4.1, we know that a task is a decision rule in
a statistical estimation problem defined by the statistical model ((X,SX), {Pz}z∈∆),
decision space (D,SD), and loss given by (7.3.4) with known feature extraction map
τ : ∆ → D and decision distance `D : D × D → R. Similar to the reconstruction, if
η0 ∈P∆ is a task prior, we can define the task operator as the non-randomized decision
rule that minimizes the Bayes risk corresponding to the prior η0, i.e.,

T̂ ∈ arg min
T ∈M (X,D)

{Eη0⊗Pz [`D(τ(z, T (f))]} , where (z,f) ∼ η0 ⊗ Pz, (7.4.6)

where M(X,D) is the set of measurable mappings from (X,SX) to (D,SD). There are
three main approaches to combine the involved optimizations.

• Sequential approach: in the sequential approach one first computes the recon-
struction operator, and then uses it to define the task operator. In this approach,
one assumes that the joint laws (z,f) ∼ η0 ⊗ Pz and (f , g) ∼ π0 ⊗M(f) are
consistent. For example, the Pz is the push forward of M(f) through the recon-
struction operator. Another possible assumption is that π0 ∈PX can be obtained
by marginalizing the measure η0 ⊗ Pz over ∆ using η0 ∈P∆. In this approach the
task-adapted reconstruction operator is given by

T̂ ◦ Â† : Y → D, (7.4.7)

where Â† ∈M (Y,X) solves (7.4.5) and T̂ ∈M (X,D) solves (7.4.6).

• End-to-end approach: this approach ignores the distinction between the recon-
struction and the task. Assuming a joint low (z, g) ∼ ν for some measure ν ∈P∆×Y ,
the task-adapted reconstruction is then given as the operator B̂ : Y → D that
solves

B̂ ∈ arg min
B∈M (Y,D)

{Eη0⊗Pz [`D(τ(z),B(g))]} where (z,f) ∼ ν. (7.4.8)

• Joint approach: this approach is a mid-way between the sequential and the
end-to-end-approaches. In such approach one assumes that there is a joint law
(z,f , g) ∼ σ, which by the chain rule in probability can be written in terms of
conditional probabilities

dσ(z, f, g) = dπ(g|z, f)dπ(f |z)dπ(z).
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One also assumes that f is a sufficient statistic for g, i.e., dπ(g|z, f) = dπ(g|f).
This, combined with (z,f) ∼ η0 ⊗ Pz and (f , g) ∼ π0 ⊗M(f), results on

dσ(z, f, g) = dM(g)dPz(f)dη0(z).

We then introduce the joint loss that interpolates between the sequential case and
the end-to-end approaches. In particular, we let `joint : (X ×D)× (X ×D)→ R
be given as

`joint((f, d), (f ′, d′)) : =(1−C)`X(f, f ′)+C`D(d, d′) for fixed C ∈ [0, 1]. (7.4.9)

task-adapted reconstruction is then given by (7.4.7), where the operators jointly
solve the equation

(Â†, T̂ ) ∈ arg min
T ∈M (X,D)

A†∈M (Y,X)

Eσ
[
`joint

(
(f , τ(z)), (A†(g), T ◦ A†(g))

)]
. (7.4.10)

Remark 7.4.5. Notice that when C → 0, the joint and sequential approach are the
same. One may think that it is sufficient to only consider the loss `D in (7.4.10), i.e., to
set C = 1 in (7.4.9), which results in the end-to-end approach. The main problem with
this approach is that one obtains non-uniqueness since if (Â†, T̂ ) solves (7.4.10), then
(B−1 ◦ Â†, T̂ ◦ B) solves (7.4.10) for any invertible B : X → X. This problem does not
happen when C < 1, hence adding a loss term associated with the reconstruction acts as
a regularizer. This also tells us that the limit C → 1 does not necessarily coincide with
the case C = 1.

In the next section we will explore the computational implementation of these three
approaches.

7.4.3 Computational implementation of task-adapted reconstruction

We have discussed already, on the one hand, the difficulty in finding an appropriate prior
π0 ∈PX for the Bayesian inversion, although the measure M(f) ∈PY is known by the
data model. On the other hand, both measures η0 ∈P∆ and Pz ∈PX are considered
unknown for most tasks. Therefore, we consider the joint law (f , g, z) ∼ σ as unknown.
In order to implement the task-adapted reconstruction, we have to replace such (f , g, z)
with their empirical counterparts, where the latter is given by suitable training data.

Another issue that needs to be tackled for the implementation is computational feasi-
bility. In the minimization involved in (7.4.5), (7.4.6), (7.4.8), and (7.4.10) one needs to
explore all measurable mappings between relevant spaces. This is clearly computationally
unfeasible. As we did before, this problem can be tackled by parametrizing sets of
measurable mappings with deep neural networks.

Following [1] we make use of the learned iterative scheme given by the learned primal-

dual architecture (Section 5) to parametrize a family of reconstruction methods A†θ :
Y → X, since this parametrization already contained knowledge about the data model.
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Similarly, the decision rules associated with the task are given by a parametrized family of
mappings Tϑ : X → D. These parametrizations allow us to rewrite (7.4.5), (7.4.6), (7.4.8),
and (7.4.10) as a training procedure for adequate training data. This procedure uses
stochastic gradient descent for finding appropriate parameters is done by approximately
solving the empirical versions of such optimization problems. In order to apply such
methods, we require the above parametrizations to be differentiable, which requires a
differentiable loss function.

The three approaches of task-adapted reconstruction in the empirical case can be
reformulated as follows.

• Sequential approach: in this case we have two coupled sets of training data

(fi, gi) ∈ X × Y generated by (f , g) ∼ π0 ⊗M(f) for i = 1, . . . ,m,

(zi, fi) ∈ ∆×X generated by (z,f) ∼ η0 ⊗ Pz for i = 1, . . . ,m.
(7.4.11)

The coupling resides in the fact that fi’s in the second data set are reconstructions
obtained from gi’s in the first data set, which ensures consistency with the statistical
assumptions of the sequential approach. Therefore, the task-adapted reconstruction
operator is given by the mapping

Tϑ∗ ◦ A†θ∗ : Y → D, (7.4.12)

where θ∗ ∈ Θ solves (7.3.8) and ϑ∗ ∈ Ξ̃ solves (7.4.3), meaning

θ∗ ∈ arg min
θ∈Θ

{
1

m

m∑
i=1

`X(fi,A†θ(gi))

}
, and

ϑ∗ ∈ arg min
ϑ∈Ξ̃

{
1

m

m∑
i=1

`D(τ(zi), Tϑ(fi))

}
.

(7.4.13)

Thus, in the empirical case, the problems (7.4.5) and (7.4.6) are replaced by (7.4.13).
The learned task operator related to ϑ∗ in (7.4.13) is well defined just for inputs
taken from the support of its training data. So, it may fail when applied to data
that it has never seen (out of distribution). Hence, it is important to make sure that
the range of the reconstruction operator is a subset of the support of the elements
f ∈ X used to train the task. Usually, this can be ensured by letting fi’s in (zi, fi)

in (7.4.11) be the output of the learned reconstruction operator A†θ∗ : X → Y .

• End-to-end approach: the training data in this case is of the form

(zi, gi) ∈ ∆×X generated by (z, g) ∼ η0 ⊗ Pz for i = 1, . . . ,m. (7.4.14)

Then, the task-adapted reconstruction operator is given by Bϑ : Y → D, with
ϑ∗ ∈ Ξ̃ the solution of

ϑ∗ ∈ arg min
ϑ∈Ξ̃

{
1

m

m∑
i=1

`D(τ(zi),Bϑ(gi))

}
. (7.4.15)
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This replaces (7.4.8) for the empirical case.

• Joint approach: in this approach we need training data that jointly contains
elements related to the reconstruction and the task

(zi, fi, gi) ∈ ∆×X×Y generated by (z,f , g) ∼ σ for i = 1, . . . ,m. (7.4.16)

Therefore, the corresponding task-adapted reconstruction operator can be defined
as in (7.4.12) with (θ∗, ϑ∗) ∈ Θ × Ξ̃ solving the following joint empirical loss
minimization

(θ∗, ϑ∗) ∈ arg min
(θ,ϑ)∈Θ×Ξ̃

{
1

m

m∑
i=1

`joint((fi, τ(zi)), (A†θ(gi), Tϑ ◦ A
†
θ(gi)))

}
, (7.4.17)

where `joint : (X × D) × (X × D) → R is the joint loss in (7.4.9). Therefore,
Problem (7.4.17) replaces (7.4.10) in the empirical case.

In the next sections, we will present an application that incorporates the ideas of
microlocal analysis of conv-ResNets and the learned primal-dual architecture (Chapter 4)
and tomographic reconstruction in the context of task-adapted reconstruction.

7.5 Task-adapted tomographic reconstruction and wavefront
sets

In this section, we introduce two particular applications of task-adapted reconstruc-
tion (Definition 7.4.1). In these applications, we combine tomographic reconstruction
(Definition 7.1.2) with the relevant information provided by the wavefront set. The
first application, task-adapted tomographic reconstruction and wavefront set extraction
(Section 7.5.1), jointly performs tomographic reconstruction and extracts the wavefront
set directly from the data. The second and more relevant applicaton, task-adapted
tomographic reconstruction and wavefront set inpainting (Section 7.5.2), makes use of
the microcanonical relation of conv-ResNets presented in this thesis (Section 4.2.6) to
propagate the undersampled wavefront set from the data to the reconstruction. This
information is then used to reconstruct the fully sampled wavefront set. Jointly recon-
structing the image and its wavefront set allows us to improve the resolution of the
object boundaries, avoiding unusual artifacts. Let us start with the task introduced in
Chapter 5, i.e., wavefront set extraction.

7.5.1 Task-adapted tomographic reconstruction and wavefront extraction

In this section we revisit the task of wavefront set extraction of digital images (Chapter 5),
in addition, we also reformulate it in the context of statistical decision theory. This
allows us to incorporate to the method the framework of task-adapted reconstruction, in
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the particular case where the inverse problem corresponds to tomographic reconstruction
(Definition 7.1.2). Due to the discussed advantages of the joint approach, we focus solely
on this setting. For that, let us first recall from Section 7.4 the main assumptions in the
task-adapted reconstruction framework.

(i) Both measures P∆ on the feature space ∆ and Pz on the model parameter space X
are unknown. Therefore, also the prior (z,f , g) ∼ σ can be regarded as unknown.

(ii) The minimization of the joint Bayes risk (Equation (7.4.10)) is done over all
measurable mappings T ∈M (X,D) (task) and A† ∈M (Y,X) (reconstruction).
This is computationally unfeasible.

As presented in Section 7.4.3, we can tackle both problems with tools of supervised
learning. The challenge (i) is solved when replacing the original measures with their
empirical counterparts given by suitable supervised data

{(zi, fi, gi)}i=1,...,N ,

where (zi, fi, gi) ∈ ∆×X × Y are generated by (z,f , g) ∼ σ. We can overcome (ii) by

parametrizing a collection of task-adapted reconstruction operators Tϑ ◦ A†θ in the search
space with deep neural networks

D : ={Tϑ}ϑ∈Ξ̃ and D̃ : ={A†θ}θ∈Θ, where Tϑ and A†θ are deep neural networks.

The learned task-adapted reconstruction operator is then given by Tϑ∗ ◦ A†θ∗ : Y → D,

where (θ∗, ϑ∗) ∈ Θ× Ξ̃ is given by

(θ∗, ϑ∗) ∈ arg min
(θ,ϑ)∈Θ×Ξ̃

{
1

m

m∑
i=1

`joint((fi, τ(zi)), (A†θ(gi), Tϑ ◦ A
†
θ(gi)))

}
,

for `joint : (X ×D)× (X ×D)→ R a suitable joint loss, see (7.4.9). In this case we focus
on computed tomography as the inverse problem, and on wavefront set extraction as the
task.

In addition for the reconstruction operator, we use the parametrization of the recon-
struction operatorRθ given by the learned-primal dual architecture from Algorithm 5. We
use the task operator for digital wavefront set extraction given by the DeNSE architecture
presented in Algorithm 7.

7.5.1.1 Abstract setting

In the following, we present a detailed description of our problem.

Task adapted reconstruction 7.5.1 (Tomgraphic reconstruction and wavefront set
extraction). Let us assume that Ωd is an N ×N grid in R2 as in Definition 6.2.12, also
known as the digital image domain. The task-adapted tomographic reconstruction and
wavefront set extraction is defined as follows.
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• Task. Find the point-wise probability distribution for the 180 binary labels associated
to each point in an image. Since the probability for each label is a number in [0, 1],
we may identify this point-wise probability distribution with a 180-channel grey-scale
image. The task of extracting the wavefront set is then a mapping that reads the
discrete shearlet coefficients of an image and outputs a continuous 180-channel
gray-scale image.

• Data. Elements in Y are real-valued functions defined on lines representing samples
of sinograms coming from noisy measurements of the parallel beam radon transform,
defined on (2.5.1). These measurements can come either from a low-dose setting
(sparsely sampled angles, equally distanced) or a limited-angle setting (densely
sampled angles with an unmeasured wedge).

• Model parameter space. The model parameter is here the space of 2D gray-
scale digital images represented by a real-valued `2-function on the image domain
Ωd ⊂ R2. Hence, the model parameter space becomes

X : = `2(Ωd).

• Model parameter loss. A natural loss on X is the channel-wise `2-distance,
which is defined as `X : X ×X → R where

`X(x, x′) = ‖x− x′‖22 for x, x′ ∈ X.

• Feature space. The feature space ∆ is here the space of {0, 1}180-valued measurable
mappings on Ω. This space can be identified with the 180-product space of {0, 1}-
valued measurable mappings on Ωd, i.e.,

∆ : =M(Ωd, {0, 1})180

• Decision space. Elements in D represent digital wavefront sets. The idea is to
encode a digital wavefront set of an image by associating a 180-array of binary
probability distributions at each point in Ω. Hence, D is a space of measurable
mappings that maps a point in Ω to a 180-array of probability distributions on 0, 1.
Each such binary probability distribution can be identified with a scalar in [0, 1], so
the decision space can be written as measurable mappings from Ω to a 180-array of
scalars in [0, 1], which is

D : =M(Ωd, [0, 1])180

• Decision loss. The decision loss is the sum of cross-entropies (classification loss)
corresponding to each category

`D(d, d′) : =

∫
Ω

(
−

180∑
i=1

di(t) log
(
d′i(t)

))
dt for d, d′ ∈M(Ω, [0, 1])180.

Note here that d, d′ represent two probability distributions on {0, 1}180 and di refers
to the entry of d corresponding to the i:th class, i.e., it is the marginal distribution
corresponding to the i:th class.
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• Feature map. The Kronecker (digital) delta function for each class

τ(z)(t) : = δz(t) for z : Ωd → {0, 1}180 and t ∈ Ωd.

• Task-adapted reconstruction operator. The task-adapted operator is given by
Tϑ∗ ◦ R†θ∗ : Y → D, where

(θ∗, ϑ∗) ∈ arg min
(θ,ϑ)∈Θ×Ξ̃

{
1

m

m∑
i=1

`joint((fi, τ(zi)), (R†θ(gi), Tϑ ◦ R
†
θ(gi)))

}
,

where {Tϑ}ϑ∈Ξ : X → D is the task operator parametrization given by DeNSE [8]

and R†θ : Y → X is the reconstruction operator parametrization given by the learned
primal-dual architecture [3]. In addition, {(zi, fi, gi)}i ∈ ∆×X × Y is a supervised
training set of digital wavefront sets, digital images and digital sinograms. The
joint loss `joint : (X ×D)× (X ×D) → R is given by the convex combination of
the model-parameter loss and the decision loss, i.e.

`joint((f, d), (f̃ , d̃)) : =λ`x(f, f̃) + (1− λ)`d(d, d̃),

for all ((f, d), (f̃ , d̃)) ∈ (X × D) × (X × D), where λ ∈ [0, 1] is a constant that
modulates the influence of the task and the reconstruction.

The approach presented above formalizes the concept of task-adapted tomographic
reconstruction and digital wavefront set extraction. In Section 8.4.2, we present a
collection of numerical experiments for this setting. We also show that this approach
performs poorly in general. The poor performance is mainly due to the fundamental
limitation imposed by the distracted supervision paradox discussed in Section 5.3. The
joint training of the tomographic reconstruction and the wavefront set extraction forces
us to simultaneously supervise the classification all of the wavefront set orientations,
distracting them from converging to good minima. In addition, we are not using the
digital microlocal analysis, introduced in Chapter 6, in its full potential. Instead of using
the digital microcanonical relation to map the measured singularities in the sinogram
to singularities in the image, we are computing the full wavefront set of the image
from scratch. In the next section, we will introduce a novel task, the wavefront set
inpainting, which tackles these two limitations, resulting in a significant improvement in
the tomographic reconstruction.

7.5.2 Task-adapted tomographic reconstruction and wavefront set
inpainting

Now, we are going to study the task-adapted tomographic reconstruction in the context
of a new task, namely wavefront set inpainting. Wavefront set inpainting is the task of
estimating a densely sampled wavefront set from a sparsely sampled one. The sparse
sampling can come either from a low-dose [3] or a limited angle sinogram [17] via the
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microcanonical relation. As mentioned before, in the low-dose scenario, one measures a
sparse set of line integrals along lines with equally spaced orientations. Meanwhile, in the
limited-angle case, one has in addition, a wedge of angles that are not measured. Now,
unlike wavefront set extraction, in this case, the task does not act directly on the model
parameter space, but on the space of sparse digital wavefront sets. The sparse wavefront
set on the image domain Ωd is obtained from the propagation of the wavefront set from
the sinogram domain Ξd (Definition 6.2.12). This propagation is done due to the digital
microcanonical relation of the learned primal-dual architecture (see Remark 6.3.3).

7.5.2.1 Data preprocessing

Before the wavefront set inpainting can be performed, a pre-process on the sinogram is
required. For that, we first map the sparsely sampled sinogram to its digital wavefront
set, via DeNSE (Section 5.4). The latter is regarded as an element of the space
M(Y, [0, 1])|K|, where K is the set of measured orientations. The digital wavefront set
of the sinogram is then mapped to the sparse digital wavefront set of the image, via
the digital microcanonical relation, the later mapping singularities in the sinogram to
singularities in the image. The sparse digital wavefront set of the image is an element of the
space M(Ωd, [0, 1])|K|. Notice that this pre-processing step is done with a deterministic
formula, the composition of the pretrained DeNSE on the sinograms, and the digital
microcanonical relation of the learned-primal dual architecture (Remark 6.3.3). This
formula also involves the weights of the learned-primal dual architecture, which are used
to determine the exact microcanonical relation.

In order to perform wavefront set inpainting, we represent the sparse digital wavefront
set of the image, obtained from the preprocessing by another image, where each pixel has
as the value the class where this pixel corresponds in M(Ωd, [0, 1])|K|. For example, if a
pixel [i, j] belongs to the class ki, where ki is either an angle of the wavefront set, then
the value of that pixel will be ki, or −1 when the pixel is not an edge point. Figure 7.3
depicts the image representation of the sparse wavefront set in both the low-dose and
limited angle setting, and the fully sampled wavefront set. In this representation, we
perform the task using a standard image-to-image translation architecture, known as
U-Net [97]. This architecture, when trained, allows us to approximate the fully sampled
wavefront set from its sparsely sampled version. In addition, UNets are well known to be
state-of-the-art in classical image processing tasks, such as segmentation [97], denoising
[58] and inpainting [68]. The loss used for the U-Net training is the previously presented
decision loss on the wavefront set space, given by the classification loss (cross-entropy)
on each pixel. Figure 7.3 depicts the U-Net architecture used for this task.
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Figure 7.2: Wavefront set coming from brain-CT. Right: Full-dose wavefront set. Middle:
Low-dose wavefront set. Right: Limited-angle wavefront set

Figure 7.3: U-Net architecture used for wavefront set inpainting.

7.5.2.2 Abstract setting

By jointly training the tomographic reconstruction, via the learned primal-dual architec-
ture, and the wavefront set inpainting, via the U-Net architecture, we force the wavefront
set of the reconstruction to closely approximate the wavefront set of the ground truth.
Using wavefront set inpainting also solves the challenges of the task-adapted reconstruc-
tion and wavefront set extraction presented in Section 7.5.1. On the one hand, we are
making use of the a-priori information provided by the wavefront set of the sinogram and
the digital microcanonical relation. On the other hand, we are avoiding the distracting
supervision paradox, since the wavefront set extraction is trained previously using DeNSE,
which already avoids it, as seen in Section 5.4. In the following we present this setting in
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detail.

Task adapted reconstruction 7.5.2 (Tomographic reconstruction + WF set inpaint-
ing). Let us assume that Ωd is a N ×N grid in R2, also known as the image domain.
The task-adapted tomographic reconstruction and wavefront set inpainting is defined as
follows.

• Task. Find the point-wise probability distribution for the 180 binary labels associated
to each point in an image, corresponding to the fully sampled wavefront set, from
the sparsely sampled wavefront set, corresponding to |K| measured angles.

• Data. Elements in Y are real-valued functions defined on lines representing samples
of sinograms coming from noisy measurements of the parallel beam radon transform,
defined on (2.5.1). These measurements can come either from a low-dose setting
(sparsely sampled angles, equally distanced) or a limited-angle setting (densely
sampled angles with an unmeasured wedge).

• Model parameter space. The model parameter is here the space 2D gray-scale
digital images, represented by a real-valued `2-function on the image domain Ωd ⊂
R2, i.e.

X : = `2(Ωd).

• Model parameter loss. A natural loss on X is the L2-distance, which is defined
as `X : X ×X → R where

`X(x, x′) = ‖x− x′‖22 for x, x′ ∈ X.

• Feature space. The feature space, ∆, is here the space of {0, 1}180-valued mea-
surable mappings on Ω. This space can be identified with the 180-product space of
{0, 1}-valued measurable mappings on Ωd:

∆ : =M(Ωd, {0, 1})180

• Decision space. Elements in D represent digital wavefront sets. The idea is to
encode a digital wavefront set of an image by associating a 180-array of binary
probability distributions at each point in Ω. Hence, D is a space of measurable
mappings that maps a point in Ω to a 180-array of probability distributions on 0, 1.
Each such binary probability distribution can be identified with a scalar in [0, 1], so
the decision space can be written as measurable mappings from Ω to a 180-array of
scalars in [0, 1]:

D : =M(Ωd, [0, 1])180

• Decision loss. The decision loss is the sum of cross-entropies (classification loss)
corresponding to each category:

`D(d, d′) : =

∫
Ω

(
−

180∑
i=1

di(t) log
(
d′i(t)

))
dt for d, d′ ∈M(Ω, [0, 1])180.
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Note here that d, d′ represent two probability distributions on {0, 1}180 and di refers
to the entry of d corresponding to the i:th class, i.e., it is the marginal distribution
corresponding to the i:th class.

• Feature map: The Kronecker (digital) delta function for each class:

τ(z)(t) : = δz(t) for z : Ωd → {0, 1}180 and t ∈ Ωd.

• Task-adapted reconstruction operator: The task-adapted operator is given by
Tϑ∗ ◦ R†θ∗ : Y → D, where

(θ∗, ϑ∗) ∈ arg min
(θ,ϑ)∈Θ×Ξ

{
1

m

m∑
i=1

`joint((fi, τ(zi)), (R†θ(gi), Tϑ ◦ R
†
θ(gi)))

}
,

where and R†θ : Y → X is the reconstruction operator parametrization given by
the learned primal-dual architecture [3]. Also, {Tϑ}ϑ∈Ξ : X → D is the task
operator parametrization given by the composition of the U-Net applied to the
preprocessed data (see Section 7.5.2.1). In addition, {(zi, fi, gi)}i ∈ ∆×X × Y is
a supervised training set of digital wavefront sets, digital shearlet coefficients and
digital sinograms. The joint loss ljoint : (X ×D) × (X ×D) → R is given by the
convex combination of the model-parameter loss and the decision loss, i.e.:

`joint((f, d), (f̃ , d̃)) : =λ`x(f, f̃) + (1− λ)`d(d, d̃),

for all ((f, d), (f̃ , d̃)) ∈ (X × D) × (X × D), where λ ∈ [0, 1] is a constant that
modulates the influence of the task and the reconstruction.

Figure 7.4 depicts the outline of the joint tomographic reconstruction and wavefront
set inpainting.

Figure 7.4: Outline of the joint reconstruction and wavefront set inpainting algorithm.
The input is partial sinogram data. In the top row first a learned primal-dual
architecture is applied. In the bottom row we first apply DeNSE to extract
the wavefront set, then we apply the canonical relation of the learned primal-
dual architecture (Remark 6.3.3). To the output thereof we apply the U-Net
for inpainting. This together with the output from the Learned primal-dual
is then input into the joint loss function.
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Remark 7.5.3. Notice that setting of the task adapted tomographic wavefront set ex-
traction and wavefront set coincide in almost all the elements, but the task and the task
operator. On the one hand, in the case of wavefront set extraction the task operator is
parametrized by DeNSE. On the other hand, in the case of wavefront set inpainting,
the task operator is the composition of DeNSE applied on the sinogram and the digital
microcanonical relation of the learned primal-dual architecture (Remark 6.3.3).

Notice that this algorithm combines all of the elements previously presented in this
thesis, from digital microlocal analysis of deep neural networks to learned iterative
methods for image reconstruction, going through digital wavefront set extraction. In
Section 8.4.3, we present a set of numerical experiments, showing that, effectively, the
task-adapted tomographic reconstruction and wavefront set inpainting improve the
performance of the reconstruction. As expected, the approach reduces the unusual
artifacts normally present in low-dose and limited-angle tomographic reconstruction.
Finally, in the next chapter, we will present numerical experiments for both cases of
task-adapted reconstruction, as well as the other algorithms presented in this thesis.
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8 Numerical experiments and further
applications

In this chapter, we present various numerical experiments of the theory presented in
this thesis, showing its utility in real-world problems. Section 8.1 presents the results
on wavefront set extraction on a variety of datasets, based on the material introduced
in Chapters 3 and 5. Moreover, Section 8.2 presents the results on general semantic
edge detection based in the algorithms shear-CASENet and shear-DDS presented in
Section 5.3.

In Section 8.3, we present the results on the wavefront propagation via the convolutional
ResNets, as well as the learned primal-dual architecture. This is an implementation
of the theory presented in Chapters 4 and 6. Finally, Section 8.4 presents the results
corresponding to the task-adapted reconstructions methods of Chapter 7. In addition,
results corresponding to wavefront set inpainting solely are also presented.

Our main goal for this chapter is to back up our main statements regarding the high
performance and precision of the methods presented in this thesis. In addition, we also
want to show that one can also apply these methods to real-world data, even in the
absence of ground-truth. This is done by simulating close-to-real phantoms based on
splines. We hope that this convinces the reader that our methods are worth trying in
real-world applications, and maybe in the future, an actual human patient will benefit
from them.

My own contribution: This chapter presents the numerical results and implementation
ideas of Chapters 5, 6 and 7. The implementations and writing in this chapter was fully
done by myself. The code is also publicly available for replication purposes.

8.1 Digital wavefront set extraction

Let us first explore the implementations and performance of our proposed wavefront
set extraction method presented in Section 5.4, also known as DeNSE. This method
was trained on different data sets, and outperformed a variety of model and data-driven
methods significantly, including recent methods that represented current state-of-the-art.

8.1.1 DeNSE training procedure

We trained the network as described in Section 5.4.2 using stochastic gradient descent to
minimize the loss function over a variety of training sets. For the loss function we have
used the standard classification loss function, known as cross-entropy. Let us assume
we are classifying pixels in an image of size N × N , with number of classes given by
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M ∈ N. Let yc ∈ RN×N be a binary indicator representing the ground truth of the
class c, therefore yc[i, j] = 1 if the pixel [i, j] belongs to class c. Similarly let pc be the
probability of each pixel to belong to class c obtained by the architecture, meaning the
pixel [i, j] has probability pc[i, j] to be of class c. Thus, the cross-entropy loss is given by

N∑
i=1,j=1

M∑
c=1

yc[i, j] log(pc[i, j])

We used five different data sets to train our classifier and test our algorithm:

1) The first data set consists of patches of the shearlet transform of images made of
random ellipses and parallelograms of different contrasts, sizes, and orientations.

2) The second data set contains ellipses and parallelograms convolved with a kernel
to generate functions with a higher-order wavefront set.

3) The third data set is the Berkeley Segmentation data set (BSDS500, https://
www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/) provided by
the Computer Vision Group of UC Berkeley. It comprises 503 natural images
of different types.

4) The fourth data set is the Semantic Boundaries data set (SBD, http://home.

bharathh.info/pubs/codes/SBD/download.html) with 11355 natural images,
again provided by the Computer Vision Group of UC Berkeley.

We depict examples of functions from each of the data sets in Figures 8.1, 8.2, 8.3 and 8.4.
To make these data sets suitable for our purposes, we need to equip each image of the
data sets with an associated set of labels indicating the associated wavefront set or the
set of edges. For the first two and the last data set, standard theoretical results on the
wavefront sets of characteristic functions allow us to compute the associated wavefront
sets analytically (see Theorem 2.2.11 and Proposition 2.2.14). The segmentation and
semantic boundaries data sets, on the other hand, are natural images where such an
approach is not possible. These data sets are used to assess the quality of segmentation
and contour detection applications, see [54] and [10]. Therefore, every image in these
data sets was annotated and has a set of ground truth edges. However, we should point
out that this annotated ground truth does not contain all edges of the images, but
only those between semantically different parts of the images. We depict the annotated
edges in Figures 8.1, 8.2, 8.3, 8.4, and 8.4. In the following subsections, we describe the
computation of the associated wavefront sets in detail.

8.1.1.1 Ellipses and parallelograms

The wavefront sets of characteristic functions of ellipses and parallelograms can be
identified by Proposition 2.2.14. We also use the fact that if x ∈ R2 is a vertex of a

192 Dissertation, LMU München, 2021

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://home.bharathh.info/pubs/codes/SBD/download.html
http://home.bharathh.info/pubs/codes/SBD/download.html


Hector Andrade Loarca Applied Microlocal Analysis of DNNs for Inverse Problems

parallelogram P then {x} × S1 ⊂ WF(χP ). For sums of these functions, we have, by
basic properties of the Fourier transform, that

WF(χP1 + χP2) ⊂WF(χP1) ∪WF(χP2).

Note that in this relation we do not have equality in general. Indeed, if WF(χP1) ∩
WF(χP2) 6= ∅ then cancellations can occur. We shall neglect this technicality as the
probability of cancellations is sufficiently small and assume that the wavefront set of
characteristic functions as described above is the union of the respective wavefront sets.

We build this data set by randomly choosing a number of parallelograms and ellipses
with random positions and computing the associated ground truth of the wavefront set
as described above. The number of parallelograms and ellipses is picked with a random
number generator with uniform distribution in the interval [0, 20). The random ellipses
are characterized by the center coordinates, the angle of the major axis with respect to
the x1−axis and the size of the major and minor axis. These parameters are randomized
also with a random number generator with uniform distribution. The parallelograms are
characterized by the length the base and height, the inner angle and the angle of the
base with respect to the x1−axis, these parameters are also randomized using uniformly
distributed random numbers. We generated a set of 10,000 patches of shearlet coefficients
with size 21× 21× 49 of the random ellipses and parallelograms images. We use 7,000
patches for training, 1,000 for validation and 2,000 for testing.

8.1.1.2 Higher-order wavefront data set

The ellipses/parallelograms data set contains images with jump singularities only. To
test our method on functions with higher-order singularities, such as ramp singularities,
we computed the convolution of the elements of the ellipses/parallelograms data set with
a filter h. The filter h is defined by its Fourier transform given by

ĥ(ξ) =
1

1 + |ξ|
, for ξ ∈ R2.

It is not hard to see that P : f 7→ h ∗ f is an elliptic pseudo-differential operator and
hence WF(h ∗ g) = WF(g) for all g ∈ L2(R2), see [43, Chapter 8 G] for details. Thus,
the convolutions of the elements of the ellipses/parallelograms data set with h have the
same wavefront set as the associated ellipses or parallelograms, but of a higher order.

This dataset was generated in the same way the dataset of random ellipses and
parallelograms, where in addition we blur each image via the convolution with h before
computing the shearlet coefficients. For this case, we have also generated 39,000 patches,
with 30,000 for training, 3,000 for validation and 6,000 for testing.

8.1.1.3 Segmentation and semantic boundaries data sets

In the BSDS500 (https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/resources.html) and the SBD (http://home.bharathh.info/pubs/codes/
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SBD/download.html) data sets, the ground truth of the edges is given in form of binary
images with 0’s at positions where the image is smooth and 1’s at locations associated to
edges. This annotated edge set is depicted in Figure 8.3.

To compute the orientation of the edges, we used a five-point stencil derivative on the
edges to approximate the normal vectors. To detect corners and assign the appropriate
orientations we used the Harris corner detector [55]. From these images, we produce
patches for the training of the network classifier. However, since the annotated image
does not contain all edges we only use patches that are close to these edges for training,
validation, and testing.

On the one hand, the BSDS500 dataset consists in 5000 natural images with annotated
boundaries, we generated from this images 39,000 patches of shearlet coefficients of
size 21× 21× 49. We used 30,000 patches for training, 6,000 for testing and 3,000 for
validation. On the other hand, the SBD dataset consists of 5623 images with annotated
semantic edges. In this data set we also generated 39,000 patches of shearlet coefficients
of size 21× 21× 49, with the same distribution for training, testing and validation as in
the BSDS500 case.

8.1.2 DeNSE performance on datasets

We implemented the training as described in the previous section using the GPU version
of Tensorflow. To evaluate the classification quality, we use two quality measures, a
mini-batch test average accuracy taken over all mini-batches and the so-called MF-score.
The MF-score is computed as the mean of the F-score defined as

F : =
2PR

R+ P
, (8.1.1)

where P is the precision, i.e., the number of true positives divided by the sum of true and
false positives, and R is the recall, i.e., the number of true positives divided by the sum
of true positives and false negatives, [102]. The MF-score is often used for evaluating
classification performance when the distribution of classes is uneven. This is, for example,
the case in edge detection, since there usually are significantly fewer edge points than
smooth points in an image. Moreover, these performance measures (test average accuracy
and MF-score) enable us to compare with the state-of-the-art [122] on the respective
data sets. In addition, the required code to reproduce the results is publicly available in
http://www.shearlab.org/applications.

The implementations of the other methods that were used to compare the perfor-
mance of DeNSE were taken from the publicly available github repositories provided
by the authors of the methods (all available in the topic: http://github.com/topics/
edge-detection), with exception of the Canny, Sobel algorithms that were taken from
the python library OpenCV (http://opencv.org/). The data-driven methods were
trained using the hyper-parameters proposed by the authors for the given data set
(Berkeley segmentation set and SBD) without further tuning.
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8.1.2.1 Results for ellipses/parallelograms

We trained each of the 181 subnetworks as of Section 5.4.2 using 10,000 images as training
data, 1,000 images as validation data, and 2,000 images as test data. For each direction
θi we trained the associated subnetworks using a mini-batch procedure with 86 examples
per batch and 3,000 training steps for each. We obtained an average test accuracy of
96.2% (taking the average overall 181 classifiers) and an MF-score of 97.1%. We also
notice that the test accuracy of the individual classifiers was higher when classifying
angles aligned to the discrete orientations of the underlying shearlet system.

We compared our method on the data set of the shearlet coefficients patches to other
classifiers commonly used in machine learning, namely, logistic regression, decision trees,
K-nearest neighbors, linear SVM, and random forest, using their implementations in the
python library scikit-learn (http://scikit-learn.org/). We report the performances
of these classifiers in Table 8.1.

Method Test accuracy MF-score

Logistic regression 45.7 48.9

Decision trees 75.2 75.8

Linear SVM 46.5 50.3

K-nearest neighbors 72.7 73.2

Random forest 86.0 86.7

DeNSE 96.2 97.1

Table 8.1: Ellipses/parallelograms data set performance metrics in percentage.

By construction, the last of the 181 subnetworks corresponds to an edge-detector,
where the achieved average test accuracy was 97.5%, and the MF-score was 97.9%, the
performance benchmarks with other classical edge classifiers can be found in Table 8.2.
Figure 8.1 shows the results on an example of the ellipses/parallelograms data set.

We depict the classification for one instance of the test set of the parallelograms/ellipses
data set in Figure 8.2 and compare the results with the classification by the heuristic
approach by Yi-Labate-Easley-Krim [120]. We observe that our method performs sig-
nificantly better in low contrast regions. Moreover, our algorithm appears to be more
precise when differentiating between corners and edges. Here, we classify a point as a
corner point if the classifiers predict at least two different orientations that differ by more
than 10 degrees. In Figures 8.1, 8.2, 8.3 and 8.4, we indicate corners by white dots.

Dissertation, LMU München, 2021 195

http://scikit-learn.org/


Applied Microlocal Analysis of DNNs for Inverse Problems Hector Andrade Loarca

Method MF-score

Canny [24] 49.1

Sobel [107] 40.0

BEL [33] 63.3

Yi-Labate-Easley-Krim [120] 70.3

CoShREM [93] 90.6

DeNSE 97.5

Table 8.2: Edge detection performances of edge detection algorithms on the Ellipses/par-
allelograms data set. The MF-Score is in percentage.

Method MF-score

gPb-owt-ucm [10] 73.7

gPb [10] 71.5

Mean Shift [27] 64.0

Normalized Cuts [105] 64.2

Felzenszwalb, Huttenlocher [41] 61.0

Canny 60.3

CoShREM [93] 75.7

DeepEdge [11] 75.3

DeNSE 95.4

Table 8.3: BSDS500 (Berkeley) data set performance metrics in percentage.

8.1.2.2 Higher-order wavefront set data set

We performed wavefront set detection for the higher-order wavefront set data set, using
the same procedure as in the ellipses/parallelograms classification. In this case, we used
30,000 patches as training data, 3,000 patches as validation data, and 6,000 patches as
test data. We trained on 86-sized mini-batches, with 200,000 training steps. We obtained
an average test accuracy of 93.4% and an MF-score of 94.6%. We are not aware of any
algorithms specifically build for higher-order wavefront set detection, which is why we
do not provide a comprehensive list of results of alternative algorithms in this case. For
completeness, we added Figure 8.3 showing an example of the obtained results. We also
add two predictions by the algorithm of Yi-Labate-Easley-Krim [120] and the method
CoShREM [93].

It is important to mention that the algorithm of Yi-Labate-Easley-Krim is constructed
to detect jump singularities and not higher-order singularities. Hence this algorithm
is expected to fail on this data set. Indeed, the performance of the algorithm achieves
only an MF-score of 30.5%. CoShREM, on the other hand, is built to detect edges and
ridges. The performance was significantly better than that of Yi-Labate-Easley-Krim
and resulted in an MF-score of 65.4%.
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8.1.2.3 Berkeley segmentation set

In the Berkeley segmentation data set, the complexity of the images is considerably higher
compared to the images from the ellipses/parallelogram data set. Therefore, we use a
significantly larger training set to train the associated classifier. For the classification
of each angle, we used 30,000 patches as training data (around 600 patches per image),
3,000 patches as validation data, and 6,000 patches as test data. As in the case of the
ellipses/parallelograms, we trained using a mini-batch procedure, with 86 examples per
batch, but in this case, using 30,000 training steps for each. We obtained an average test
accuracy of 93.1% and MF-score of 95.4%, which is lower than the one obtained in the
ellipses/parallelogram. This is likely due to the higher complexity of the patches. One
advantage of this and the SBD data set is the existence of several benchmarks including
state-of-the-art deep learning-based algorithms.

We compared our method using the available benchmarks on this data set provided by
the UC Berkeley Computer Vision Group, we refer to [10] for a more detailed explanation
of these methods. In [10], just the MF-score of the competing algorithms was reported.
We give the results in Table 8.3. We present one example of the results obtained on the
BSDS500 data set in Figure 8.3.

8.1.2.4 Semantic boundary dataset (SBD)

The SBD data set contains significantly more images than the BSDS500 which, as we
observe below, improves the overall classification performance slightly. In this case, we
used 100,000 patches as training data, 10,000 patches as validation data, and 20,000
patches as test data. We trained on 86-sized mini-batches, with 100,000 training steps.
We obtained average test accuracy of 95.3% and MF-score of 96.8%.

This data set has recently been widely used for image segmentation tasks, in particular,
it was used on the two deep learning-based image segmentation frameworks proposed
by Z. Yu et al., namely the SEAL (Simultaneous Edge Alignment and Learning) [122]
and the CASENet (Category-Aware Semantic Edge Detection Network) [121]. We also
compared them with the deep learning image boundary detector and classifier proposed
(OBDC) by J. Y. Koh et al. [69]. The results can be found in Table 8.4. In addition,
Figure 8.4 depicts the results in an example of the SBD dataset.

Figure 8.4 shows the results obtained by DeNSE on an example image of the SBD data
set, as in the case of the BSDS500 data set, the obtained result admits more edges than
the ground truth due to the batch-based approach. Nonetheless, the method outperforms
even the specialized algorithms for segmentation over the given data sets.
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Method MF-score

OBDC 62.5

CASENet 71.8

CASENet-S 75.8

CASENet-C 80.4

CoShREM 69.7

SEAL 81.1

DeNSE 96.8

Table 8.4: Performance on the SBD data set. All values are in percentage.
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Figure 8.1: Computed edges and orientations of an example of the ellipses/parallelo-
grams data set. Top-left: Input image. Top-right: Orientations, human
annotation. Middle-left: Orientations predicted by Yi-Labate-Easley-Krim
algorithm. Middle-right: Orientations predicted by CoShREM. Bottom-left:
Orientations predicted by DeNSE algorithm. Bottom-right: Color code for
normal-directions.
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Figure 8.2: Computed edges and orientations of an example of the higher-order ellipses/-
parallelograms data set. Top-left: Input image. Top-right: Orientations,
human annotation. Middle-left: Orientations predicted by Yi-Labate-Easley-
Krim algorithm. Middle-right: Orientations predicted by CoShREM. Bottom-
left: Orientations predicted by DeNSE algorithm. Bottom-right: Color code
for normal-directions.
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Figure 8.3: Computed edges and orientations of an example of the BSDS500 (Berkeley)
data set. Top-left: Input image. Top-right: Orientations, human annotation.
Middle-left: Orientations predicted by gPb-owt-ucm. Middle-right: Orienta-
tions predicted by CoShREM. Bottom-left: Orientations predicted by DeNSE
algorithm. Bottom-right: Color code for normal-directions.
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Figure 8.4: Computed edges and orientations of an example of the SBD data set.Top-
left: Input image. Top-right: Orientations, human annotation. Middle-
left: Orientations predicted by SEAL. Middle-right: Orientations predicted
by CoShREM. Bottom-left: Orientations predicted by DeNSE algorithm.
Bottom-right: Color code for normal-directions.
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8.2 General semantic edge detection

In this section we present the results for numerical experiments of the general case of
semantic edge detection. These results are based on the methods presented in Section 5.3.
For the case of general semantic edge detection, we trained the shear-CASENet (Figure 5.4)
and shear-DDS (Figure 5.5) architectures on the Semantic Boundaries Dataset (SBD).
As we know, this database consists of 11,355 images, from which we used 9,035 images
for training, 1,050 for evaluation, and 1,050 for testing. Each image has a human-
annotated array of edge-pixels with the intensity value as the category number of
the object, where this edge belongs to. The SBD dataset consists of a total of 20
categories, including vehicles, animals, and plants. One can download the dataset
in http://home.bharathh.info/pubs/codes/SBD/download.html, in addition to our
code can be found in http://shearlab.org/applications, making the experiments
fully reproducible.

Both shear-CASENet and shear-DDS were trained on the full shearlet coefficients.
Similar to the case of the wavefront set extraction, we use the digital shearlet transform [75]
implemented on julia (http://shearlab.math.lmu.de/software), with a total of four
scales. This produces a shearlet coefficients volume of 49 slices, which was then fed to the
proposed architectures. We used the publicly available implementation of the CASENet
architecture (https://github.com/lijiaman/CASENet). This implementation makes
use of the deep learning framework pytorch, making it compatible with our shearlet
implementation. Based on this code, we implemented the deep diverse supervision
architecture by introducing the information converters and the proposed multi-task loss
(see Section 5.3). Also based on this code, we implemented the Shear-CASENet and
Shear-DDS architectures by extending the first convolutional layer with the corresponding
shearlet channels (see Figures 5.4 and 5.5) and removing the fourth stage of the original
architectures.

In addition to CASENet and DDS, we also compared the performance of shear-
CASENet and shear-DDS against the deep supervised version of CASENet [121] and
SEAL [122]. The performance benchmarks presented in Table 8.5 are done in terms of
the mean F-score, in a similar fashion as with the wavefront set extraction benchmarks,
by computing the mean of the F-score over all the categories, see Equation (8.1.1). It is
visible that the mean-F value is slightly better on the shear-CASENet and Shear-DDS
than on the other architectures. The improvement is not as significant as in the case
of the wavefront set extraction, since DeNSE was specifically designed for wavefront set
extraction and the existing models have general semantic edge detection applications. It
is though worth stressing that shear-CASENet and Shear-DDS have significantly fewer
parameters than their non-shearlet counterparts.

In Figure 8.5, we depict the results obtained using an example of the SBD dataset.
It shows the semantic edges obtained by both CASENet and DDS and their respective
shearlet extension. In all the cases the airplane in the picture was correctly classified, but
the refinement of the obtained edges is improved in the shearlet version. This strongly
suggests that the use of shearlets is well-suited for high performance in semantic edge
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detection.

Method MF-score

DSN[121] 65.2

SEAL[122] 75.3

Classical CASENet[121] 71.4

Classical DDS[79] 78.6

Shear-CASENet 75.7

Shear-DDS 80.1

Table 8.5: Semantic edge detection performance on the SBD dataset. All values are in
percentage.

Figure 8.5: Computed semantic edges of an example of the semantic boundaries dataset
(SBD). The color blue represents the category of airplane. Top-left: Input
image. Top-middle: Semantic edges, human annotation. Top-right: Semantic
edges predicted by the classical CASENet architectures. Bottom-left: Se-
mantic edges predicted by the classical DDS architecture. Bottom-middle:
Semantic edges predicted by the Shear-CASENet architecture. Bottom-right:
Semantic edges predicted by the Shear-DDS architecture.
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8.3 Digital microlocal analysis of the learned primal dual

We have implemented the deterministic rules described in Section 6.3, in order to
propagate the singularities of the input along the learned primal-dual layers. This also
allows us to show the gain in running time with respect of the plain computation of the
wavefront set of the output with DeNSE. For the experiments we have trained a modified
version of the learned primal-dual algorithm, where we are using as activation function
the ReLU non-linearity and no bias in the convolutional layer. Figure 8.6 shows the
architecture.

The particular learned-primal dual architecture that we used has ten iterations and
dual and primal inputs of five channels each. We trained the network on a set of phantoms
composed of random cartoon-like images. Each cartoon-like image is composed of smooth
shapes with piece-wise smooth boundaries. In these images, each smooth piece is a spline
with the order at most three. Splines are smooth curves or certain order that intersect
specific points in the plane, also known as knots and we can define them as follows.

Definition 8.3.1. Let n ∈ N be the order of the spline, and m be the number of knots,
namely t0 ≤ t1 ≤ . . . ≤ tm−1, a B − spline of order n is the parametric curve

S : [t0, tm=1]→ R2

composed by a linear combination of basic B−splines bi,n of order n

S(t) =

m−n−2∑
i=1

Pibi,n(t), t ∈ [tn−1, tm−n],

where Pi are the control points. There are m− (n+ 1) control points that form the convex
haul. The m− (n+ 1) basic B-splines of order n can be defined by the formula

bj,0(t) : =

{
1 if tj ≤ t < tj+1,

0 otherwise,

bj,n(t) : =
t− tj

tj+n − tj
bj,n−1(t) +

tj+n=1 − t
tj+n+1 − tj+1

bj+1,n−1(t).

Since we know the analytical expression of each boundary, this gives us access to its
analytical wavefront set.

Dissertation, LMU München, 2021 205



Applied Microlocal Analysis of DNNs for Inverse Problems Hector Andrade Loarca

Figure 8.6: Learned primal-dual architecture with sinogram and reconstruction.

Using the digital canonical relation on the wavefront set we can also find the analytical
wavefront set of its fully sampled sinogram. Although in the practical case, the data
consists of low sampled sinograms, where the visible angles can also be obtained via the
digital canonical relation. We depict an example of this image and its wavefront set in
Figure 8.8. In addition, one can obtain a subset of the wavefront set of the image by
using the microcanonical relation in the wavefront set of the low sampled sinogram. In
this context, we refer as a low sampled sinogram to either the low dose setting, with 40
measured angles equally spaced, or the limited-angle setting with a wedge of 80 degrees.
This can be done with no need for any reconstruction and represents a strong prior for
the reconstruction, this is depicted in Figure 8.7.

Figure 8.7: Low-dose wavefront set of the image (left) obtained with the digital canonical
relation acting on the wavefront set of the low-dose sinogram (left).
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Figure 8.8: Example of cartoon-like image in training set (top-left), its analytical wave-
front set (top-right), and the fully sampled sinogram (middle-left) with the
corresponding wavefront set (middle-right) computed via the digital micro-
canonical relation. We also depict the low-dose sinogram (bottom-left), with a
dose of 40 measured degrees and its low sampled wavefront set (botom-right).

We compute the ellipticity level of the convolutional operators with the next formula

E(Kθ) = min
i,j∈{1,...,N}

|pθk [i, j]|

where pθk [i, j] is the amplitude of the operator given by Equation (2.3.9). In other words,
we evaluate the absolute value of the amplitude in the Fourier grid and we take the
minimum. Therefore, if E(Kθk) > 0, the convolutional operator associated to the layer
is elliptic and preserves the singularities (see Figure 8.9). In the next sections, we will
present the results on the wavefront set propagation obtained on the distinct primal and
dual iterations of the learned-primal dual architecture.
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Figure 8.9: Learned primal-dual architecture with the corresponding wavefront sets.

8.3.1 Primal and dual iterations

In Figure 8.10, 8.11 and 8.12, we present the output of the first, sixth, and tenth iteration
of the trained primal-dual reconstruction and their wavefront sets obtained with the
canonical relation of the layers discussed in Section 4.3. These figures are relevant to
present since they are evidence that the theory of digital wavefront set propagation in
Section 6.3 holds in real-world applications. One can notice by comparing with the
output images of each layer, that the propagated wavefront set is accurate. In addition,
these results will be later used on Section 8.4 in the context of task-adapted tomographic
reconstruction and wavefront set inpainting, in order to recover the invisible part of
the wavefront set from the propagated visible part, just as presented theoretically in
Section 7.5.2.

Figure 8.10: Output of the 1st iteration of the primal (upper-left) and dual (upper-right)
subnetworks and its wavefront set obtained from the canonical relations
presented above. Their wavefront sets are depicted on the right side of each
image.
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Figure 8.11: Output of the 6th iteration of the primal (upper-left) and dual (upper-right)
subnetworks and its wavefront set obtained from the canonical relations
presented above. Their wavefront sets are depicted on the right side of each
image.

Figure 8.12: Output of the 10th iteration of the primal (upper-left) and dual (upper-right)
subnetworks and its wavefront set obtained from the canonical relations
presented above. Their wavefront sets are depicted on the right side of each
image.

8.3.2 Inner loop of dual and primal iterations

In this section we present the results obtained on the inner loop in the tenth layer of
the trained learned primal-dual reconstruction, in both the primal and dual step, this
corresponds to the theory presented in Section 6.3. Figure 8.13 shows the output of
the first, second, and third convolution on the primal and dual inner loop. Figure 8.14
shows the wavefront set of the output in the first convolutional layer of the primal an
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dual iteration. In Figures 8.15 and 8.16 we present the output of the Heaviside function
applied to the first and second convolutional layer, and its wavefront set obtained with the
microcanonical relation of the Heaviside function, correspondingly. Finally, Figures 8.15
and 8.16 show the same results, but for the ReLU function. Notice in addition that
the images corresponding to the sinogram and dual steps and their wavefront set are
small. This is due to the small number of measured angles, 40 degrees to be exact. The
size makes them hard to interpret, but on the other hand, the lowest dose is always the
best for the potential human patient. The figures show an accurate propagation of the
wavefront set through the inner-loop layers.

Figure 8.13: Output of the first, second and third convolutional layers (from left to right)
of the primal and dual inner loops (from up to bottom) of the 10th iteration
layer of the LPD.

Figure 8.14: The wavefront set of the output of the output of first convolutional layer on
the 10th iteration.
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Figure 8.15: Output and wavefront set of the Heaviside function applied to the first and
second convolution layer of the primal 10th iteration (up). The wavefront sets
(bottom) were computed using the microcanonical relation of the Heaviside
function.

Figure 8.16: Output and wavefront set of the Heaviside function applied to the first and
second convolution layer of the dual 10th iteration (up). The wavefront sets
(bottom) were computed using the microcanonical relation of the Heaviside
function.
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Figure 8.17: Output and wavefront set of the ReLU function applied to the first and
second convolution layer of the primal 10th iteration (up). The wavefront
sets (bottom) were computed using the microcanonical relation of the ReLU
function.

Figure 8.18: Output and wavefront set of the ReLU function applied to the first and
second convolution layer of the dual 10th iteration. The wavefront set was
computed using the microcanonical relation of the ReLU function.

8.4 Task-adapted reconstruction using digital wavefront sets

In Chapter 7 we explored the framework of task-adapted reconstruction. Our contribution
to this framework is based on the use of the wavefront set as a-priori information. In
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this context, we introduced the tasks of wavefront set extraction (Section 7.5.1) and
wavefront set inpainting (Section 7.5.2), the latter being the best of them. In this section,
we present the results on both approaches, as well as the results concerning the novel
task of wavefront set inpainting.

8.4.1 Wavefront set inpainting

As discussed in Section 7.5.2, we used a U-Net architecture (see Figure 1.1) to inpaint
the low dose wavefront set, training on different datasets, one formed by random ellipses
and other formed by more realistic phantoms. The realistic phantoms are formed by
piece-wise smooth functions with piece-wise smooth boundaries defined with splines
with order at most four (as shown in the last section). In the following, we present the
results, in every experiment we used a low dose of 40 measured angles (equally spaced).
Figure 8.19 shows the results obtained when trained on random ellipses. Figure 8.22
shows the results with a training set formed by realistic ellipses. Finally, Figure 8.23
shows how both models predict an unseen example, the Shepp-Logan phantom, it is clear
that the model trained on realistic phantoms performs the best.

Figure 8.19: An training example of the random ellipses phantom dataset. Top-left:
Phantom. Top-left: Ground truth low-dose wavefront set. Bottom-left:
Ground truth full-dose wavefront set. Bottom-right: Predicted wavefront
set with U-Net.
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8.4.2 Task-adapted tomographic reconstruction and wavefront set
extraction

As presented in Section 7.5.1, we jointly trained the learned primal-dual reconstruction
and the wavefront set extractor architectures, using different constants in the sense of
task-adapted reconstruction. We trained the task-adapted architecture training set with
random ellipses and with realistic phantoms, individually. Figure 8.20 depicts the results
when the constant C = 0.1, which emphasizes the task of wavefront set extraction, rather
than the reconstruction. In the results, one can see that the reconstruction is poor, but
the extracted wavefront set is better. Figure 8.21 depicts the results when C = 0.9, which
emphasizes reconstruction, resulting in a better reconstruction. In all these cases we
generated a total of 10,000 images with random phantoms, where 7,000 were used for
training, 1,000 for validating and 2,000 for testing.

Figure 8.20: Results on the joint CT reconstruction and WFset extraction for constant
C = 0.1. Top-left: Phantom. Top-left: Ground truth wavefront set. Bottom-
left: Reconstruction results. Bottom-right: Wavefront set results.
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Figure 8.21: Results on the joint CT reconstruction and WFset extraction for constant
C = 0.9. Top-left: Phantom. Top-left: Ground truth wavefront set. Bottom-
left: Reconstruction results. Bottom-right: Wavefront set results.

8.4.3 Task-adapted reconstruction and wavefront set inpainting

We jointly trained the learned primal-dual reconstruction and wavefront set inpainting
architecture in the sense of task-adapted reconstruction. As discussed in Section 7.5.2, the
wavefront inpainting step involves the wavefront set propagation given by the microlocal
analysis of the learned primal-dual presented in this work. Figures 8.24, 8.25, present
the results for the case of low dose (40 measured angles) and limited angle (wedge of
40 degrees) in a validation example, respectively. In both cases, the joint approach
outperforms the learned primal-dual, being clearer in the limited angle case. In this case,
we have trained the model on the ellipses dataset. In addition, we have also trained the
models in the realistic dataset based on splines and evaluate them in a real brain CT
scan, depicting the results on Figures 8.28 and 8.29.

Figures 8.26 and 8.27 depict general classical benchmarks for the limited angle and
low dose tomography, including filtered back projection, Tikhonov, and total variation,
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Figure 8.22: An training example of the realistic phantom dataset. Top-left: Phantom.
Top-left: Ground truth low-dose wavefront set. Bottom-left: Ground truth
full-dose wavefront set. Bottom-right: Predicted wavefront set with U-Net.

both trained on the ellipses dataset. We also present the results of the limited angle
case using the Phantom Net architecture (Bubba et al. [17]). In addition, we have also
performed reconstructions using as regularization functional both the L2 and L1 norm
of the shearlet coefficients. We have coined the two methods Shearlet-L2 sparse and
Shearlet-L1 sparse, respectively. In all cases, the joint approach outperforms the other
methods. Tables 8.6 and 8.7 respectively present the performance measure in terms of
self-similarity (SSIM) and peak signal-to-noise ratio (PSNR). In addition, we have also
evaluated the methods on the brain CT scan, where the deep learning approaches were
trained on the realistic dataset based on splines. These results are shown in Figures 8.30
and 8.31. Similarly, Tables 8.8 and 8.9 present the performance measure for the realistic
dataset evaluation.
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Figure 8.23: Prediction on an unseen example (Shepp-Logan phantom). Top-left: Phan-
tom. Top-left: Ground truth low-dose wavefront set. Bottom-left: Prediction
from network trained with realistic phantoms. Bottom-right: Prediction
from network trained with random ellipses phantoms.

Method SSIM PSNR

FBP 0.58 20.15

Tikhonov 0.75 26.66

TV 0.90 27.90

Shearlet-L2 sparse 0.76 25.88

Shearlet-L1 sparse 0.83 26.31

LPD 0.91 28.45

Joint approach 0.98 31.12

Table 8.6: Ellipses dataset performance for general benchmarks for low dose CT.
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Figure 8.24: Ellipse dataset results on the joint CT reconstruction and WFset inpainting
for low dose case, lowd = 40. Top-left: Reconstruction LPD (PSNR 28.51).
Top-right: Reconstruction Joint approach (PSNR 32.15). Bottom-left: Low-
dose wavefront set. Bottom-right: Inpainted wavefront set.

Method SSIM PSNR

FBP 0.50 17.30

Tikhonov 0.79 21.72

TV 0.83 24.15

Shearlet-L2 sparse 0.80 20.12

Shearlet-L1 sparse 0.82 23.50

PhantomNet [17] 0.92 26.55

LPD 0.90 27.65

Joint approach 0.97 30.33

Table 8.7: Ellipses dataset performance for general benchmarks for limited angle CT.
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Figure 8.25: Ellipse dataset results on the joint CT reconstruction and WFset inpainting
for limited angle case, wedge = 40. Top-left: Reconstruction LPD (PSNR
27.45). Top-right: Reconstruction Joint approach (PSNR 30.24). Bottom-
left: Wedge wavefront set. Bottom-right: Inpainted wavefrontset.

Method SSIM PSNR

FBP 0.51 19.90

Tikhonov 0.73 24.77

TV 0.88 26.59

Shearlet-L2 sparse 0.73 24.69

Shearlet-L1 sparse 0.78 25.42

LPD 0.89 27.55

Joint approach 0.92 31.46

Table 8.8: Realistic dataset performance for general benchmarks for low dose CT.
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Figure 8.26: Ellipse dataset results for general benchmarks for low dose CT, lowd = 40.
1st row: Ground truth (left), FBP (right). 2nd row: Tikhonov (left), TV
(right). 3rd row: Shearlet-L2 sparse (left), Shearlet-L1 sparse (right). 4th
row: LPD (left), Joint approach (right).

Method SSIM PSNR

FBP 0.44 14.53

Tikhonov 0.73 22.62

TV 0.83 23.09

Shearlet-L2 sparse 0.70 22.20

Shearlet-L1 sparse 0.76 22.29

PhantomNet [17] 0.87 25.50

LPD 0.86 25.55

Joint approach 0.95 29.80

Table 8.9: Realistic dataset performance for general benchmarks for limited angle CT.
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Figure 8.27: Ellipse dataset results for general benchmarks for limited angle CT, wedge =
40. 1st row: FBP (left), Tikhonov (right). 2nd row: TV (left), Shearlet-L2
sparse (right). 3rd row: Shearlet-L1 sparse (left), PhantomNet [17] (left).
4th row: LPD (right), Joint approach (right).

As one can observe, the results presented in Figures 8.26 and 8.27 represent a significant
improvement on the reconstruction in comparison with the other methods. In particular,
the addition of the wavefront set inpainting improves significantly the performance of the
learned primal-dual architecture. We can also see that the improvement of performance
extends to the real-data (Figures 8.30 and 8.31). This tells us that the potential of our
method to be applied in real case scenarios is very promising. We are going to discuss
this and other final remarks and conclusions in the next and final chapter.
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Figure 8.28: Realistic dataset results on the joint CT reconstruction and WFset inpaint-
ing for low dose case, lowd = 40. Top left: Ground truth. Top middle:
Reconstruction using the learned primal dual algorithm without using the
wavefront set information as prior (PSNR 26.91). Top right: Reconstruction
using the joint approach introduced in this work (PSNR 30.22). Bottom
left: Visible wavefront set of the ground truth extracted by DeNSE. Bottom
middle: Wavefront set inpainted using U-Net. Bottom right: Reconstructed
wavefront set using our joint approach.
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Figure 8.29: Realistic dataset results on the joint CT reconstruction and WFset inpainting
for limited angle case, wedge = 40. Top left: Ground truth. Top middle:
Reconstruction using the learned primal dual algorithm without using the
wavefront set information as prior (PSNR 24.90). Top right: Reconstruction
using the joint approach introduced in this work (PSNR 30.20). Bottom
left: Visible wavefront set of the ground truth extracted by DeNSE. Bottom
middle: Wavefront set inpainted using U-Net. Bottom right: Reconstructed
wavefront set using our joint approach.
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Figure 8.30: Realistic data set results for general benchmarks for low dose CT, lowd =
40. 1st row: Ground truth (left), FBP (right). 2nd row: Tikhonov (left),
TV (right). 3rd row: Shearlet-L2 sparse (left), Shearlet-L1 sparse (right).
4th row: LPD (left), Joint approach (right).
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Figure 8.31: Realistic dataset results for general benchmarks for limited angle CT, wedge
= 40. 1st row: FBP (left), Tikhonov (right). 2nd row: TV (left), Shearlet-L2
sparse (right). 3rd row: Shearlet-L1 sparse (left), PhantomNet [17] (left).
4th row: LPD (right), Joint approach (right).
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9 Conclusion and Outlook

In this final chapter, we present the summary of the thesis as well as a conclusion.
In addition, we also want to discuss future promising advances and applications that
can take advantage of the framework presented in this thesis. We have introduced in
Chapter 1 the basic notions of microlocal analysis, deep learning, and inverse problems.
In particular, Section 1.1 discusses the impact of microlocal analysis in inverse problems
in imaging, where the microcanonical relation plays an important role – it characterizes
the wavefront set of reconstructions. In addition, Section 1.3 presents a diverse set of
deep neural network architectures designed to solve inverse problems, from which the
learned primal-dual algorithm [3] is the most relevant in our application. These two
ingredients in addition to the task-adapted reconstruction form the backbone of our work.

The main contribution of microlocal analysis to the realm of inverse problems is the
wavefront set, which characterizes oriented singularities of distributions. Throughout the
thesis, we have learned that the wavefront set plays a central role in the morphological
formation of images. In addition, for Fourier integral operators, which are abundant in
inverse problems, one can characterize the microcanonical relation in an explicit form, as
seen in Section 2.4.

In order to use the wavefront set in real-world scenarios, we first need to have a way
to extract it explicitly. The continuous shearlet system presented in Section 3.4 is useful
for this purpose. Continuous shearlets allow us to characterize the wavefront set in
terms of the decay rate of shearlet coefficients. This characterization still depends on the
asymptotic analysis of such decay rate, which cannot be achieved in the digital realm.
This happens since in digital domains one just have access to finitely many (rather a
small number of) coefficients. In this case, the use of deep learning to find patterns
on digital shearlet coefficients, and therefore approximate the wavefront set, is almost
necessary. In Section 5.4, we introduced the DeNSE algorithm that performs this task
with high accuracy.

Although the concept of wavefront set is interesting on its own, it is useful in practice
when used to boost the performance on methods for inverse problem regularization.
Since recently most inverse problems are solve, at least partially, by the use of neural
networks, it is important to study how neural networks act on wavefront sets. In the
case of convolutional ResNets, this analysis arises naturally, since these architectures
can be regarded as operators that act on spaces of the same dimension. Chapter 4 is
dedicated to the study of the microlocal analysis of convolutional ResNets, aiming at
characterizing their microcanonical relation. For this purpose, we needed to extend
the notion of microcanonical relation to the nonlinear case in order to use activation
functions. We have also rewritten ResNets as operators acting on continuous spaces. The
main reason for this is the fact that a wavefront set is uniquely defined in the continuous
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setting. Later on, we have also discretized this analysis in Chapter 6 using the shearlet
transform to first obtain a sparse representation of Fourier integral operators and then
digitize them while ensuring fast convergence of such digitization. This allowed us to
explicitly define the microcanonical relation in the digital case, and to use it for real-world
applications. This also allows us to characterize the propagation of singularities under
the action of convolutional ResNets. In particular, in Section 6.3 we have presented
the microcanonical relation of the different layers present in the learned primal-dual
algorithm.

The microcanonical relation of the learned primal-dual algorithm is handy when we
are trying to use the wavefront set as prior for tomographic reconstruction. The most
natural framework where this arises is the framework of task-adapted reconstruction. In
task-adapted reconstruction, one aims to jointly perform an image reconstruction from
an inverse problem and adapt it to a decision-making procedure. This is important in
the context of biomedical imaging, since the ultimate goal in applications in medicine is
making a decision that affects the patient’s health. On the other hand, the framework of
task-adapted reconstruction can be used as a method to jointly train a reconstruction and
a task, where the task is not directly applied in the decision making for medical purposes.
The task can also be a way to improve the reconstruction, in other words, a regularizer.
In that context, the final product of the microlocal analysis of neural networks, presented
in this thesis, is its application to tomographic reconstruction. This application uses the
learned primal-dual architecture as a reconstruction operator, and a U-Net architecture
to inpaint the wavefront set as a task architecture.

In Section 7.5.2, we presented the general setting of this approach. In this setting, we
make use of the microcanonical relation of the learned primal-dual presented in Section 6.3
to propagate the sparsely sampled wavefront set of the tomographic data through the
network. The product of this propagation is a sparse wavefront set on the image domain,
with no reconstruction needed. Later this sparse wavefront set is inpainted via the U-Net
to a densely sampled wavefront set. The joint training of the U-Net and the learned
primal-dual allows us to force the reconstruction to have a wavefront set close to its
ground-truth. This improves the original reconstruction provided by the classical learned
primal-dual architecture, which is the previous state-of-the-art. Our method outperforms
widely used model and data-driven reconstruction methods. The numerical experiments
that back this statement were presented in Chapter 8.

Finally, we believe that our framework, as general as it is, has great potential in distinct
applications of biomedical imaging. In the near future, we aim to apply our method
to different real-world problems including MRI and EEG. We also think that general
task-adapted reconstruction will very soon become common in medical applications. In
addition, the lack of commercial software based on wavefront set extractors demonstrates
that the area of applied microlocal analysis is still unexplored.

Being able to characterize the propagation of singularities performed by deep neural
networks has a clear impact on the theoretical understanding of the field. In this context,
one possible research direction is the study of singularities approximation under deep
conv-ResNets, in order to characterize the approximation capabilities of the network
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itself. In addition, we also have encountered some challenges along our journey, which
are planned to be addressed soon. The first of these challenges is the difficulty to
analyse the microlocal behavior of non-residual neural networks. This is mainly due
to the change in the dimension between the input and output spaces of such networks.
This does not allow us to interpret neural networks as operators in the continuous
setting. In addition, convolutions are pseudodifferential operators, which makes the
microlocal analysis simpler. More general neural networks, such as fully connected
networks, transformers and recurrent neural networks lack this property. Therefore, the
analysis of these architectures needs to be done with a different approach.

In biomedical imaging, the lack of annotated real-data available is a significant problem.
In our case, this lack is mainly due to the fact that it is humanly impossible to annotate
the wavefront set of natural images. We have tackled this issue by designing a data
simulation procedure, that generates realistic phantoms formed by splines of degree at
most four. In this phantom one is able to define the wavefront set analytically, but it is far
from being a simulation of real-world images. This impacts our results in the sense that
our reconstruction has a cartoon-ish look, which is of course not ideal. We plan to work
on the simulation of more realistic datasets in the future, using tools provided by modern
computer graphics techniques. Sophisticated rendering techniques will allow us to obtain
close to realistic imagery with a normal map explicitly defined. This normal map will be
handy for defining the corresponding wavefront set, which will allow supervised learning.
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