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Abstract (Deutsch)

Im Hauptteil dieser Dissertation betrachten wir einen periodisch realisierten mikro-
skopischen Supraleiter, der durch die BCS-Theorie beschrieben wird und externen
elektromagnetischen Feldern ausgesetzt ist. Wir zeigen, dass der Supraleiter im Limes
makroskopischer und schwacher Magnetfelder korrekt durch die Ginzburg–Landau-
Theorie beschrieben wird. Die wichtigste Neuerung unserer Ergebnisse besteht darin,
dass wir einen nicht verschwindenden magnetischen Fluss durch die Einheitszelle des
Periodengitters zulassen. Diese Hauptresultate werden durch verschiedene unveröf-
fentlichte Arbeiten auf dem Gebiet der BCS-Theorie ergänzt. Außerdem stellen wir
der Präsentation dieser Ergebnisse eine umfassende Einführung in die BCS-Theorie
voran, die sich für Masterstudent*innen und Doktorand*innen eignet. Damit hoffen
wir, einen Beitrag zur Schließung der Lücke der fehlenden Einführungsliteratur auf
diesem Gebiet zu leisten.

Die Dissertation umfasst ein zweites Thema, in dem wir Ideen für den Aufbau von
Quantengittersystemen liefern, um exponentielle Abschätzungen für den Adiabaten-
satz zu beweisen. Diese Notizen sind das Ergebnis eines Forschungsaufenthalts an der
University of British Columbia (UBC) in Vancouver, Kanada.

Abstract (English)

In the main part of this PhD thesis, we consider a periodically realized microscopic
superconductor described by BCS theory, which is subject to external electromagnetic
fields. We show that the superconductor is properly described by Ginzburg–Landau
theory in the macroscopic and weak magnetic field limit. The main novelty of our
results is to allow for a non-vanishing magnetic flux through the unit cell of the lattice
of periodicity. These main results are supplemented by various unpublished notes in
the field of BCS theory. Furthermore, we preface the presentation of these results
with a comprehensive introduction suitable for master’s or PhD students. Thereby,
we hope to contribute to filling the gap of missing introductory literature in the field.

The thesis comprises a second topic, in which we provide ideas for setting up
quantum lattice systems in order to prove exponential estimates for the adiabatic
theorem. These notes are the result of studies in this field, which have been conducted
during a research stay at the University of British Columbia (UBC) in Vancouver,
Canada.
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Zusammenfassung

Diese Arbeit ist auf dem Gebiet der Vielteilchen-Quantensysteme angesiedelt und umfasst
zwei Themen:

(i) BCS-Theorie der Supraleitung im Regime der schwachen magnetischen Felder,

(ii) Adiabatische Theorie im Kontext von Quantengittersystemen.

Das Thema (i) bildet den Hauptteil dieser Arbeit. In diesem Teil untersuchen wir
periodisch ausgedehnte Supraleiter, die schwachen und makroskopischen externen elek-
trischen und magnetischen Feldern ausgesetzt sind. Diese Felder sind so beschaffen, dass
sie einen nicht verschwindenden magnetischen Fluss durch die Einheitszelle induzieren, was
die hauptsächliche Herausforderung an der Aufgabenstellung dieser Arbeit darstellt. Der
Supraleiter wird mathematisch im Rahmen der BCS-Theorie der Supraleitung beschrieben.
Diese Theorie ist eine effektive Zweiteilchentheorie mit einem Paarungsmechanismus, die
nach den drei Physikern John Bardeen, Leon Neil Cooper und John Robert Schrieffer be-
nannt ist, die 1957 eine mit dem Nobelpreis ausgezeichnete attraktive Wechselwirkung im
Supraleiter postulierten. Ihr berühmter Ansatz ist Inspiration für unzählige Arbeiten und
seine rigorose Verifikation aus der Perspektive der Vielteilchenquantenmechanik fordert
die Mathematische Physik bis heute heraus.

Unser Modell wird variationell in Form eines freien Energiefunktionals, des sogenan-
nten BCS-Funktionals, beschrieben und wir untersuchen die Fluktuation dessen Mini-
mums, der sogenannten BCS-Energie, sowie die Verschiebung der kritischen Temperatur
des Systems, die durch die makroskopischen externen Felder im Grenzbereich schwacher
Feldstärken verursacht werden. Wir zeigen, dass diese Verschiebungen in diesem Regime
durch die Ginzburg–Landau-Theorie beschrieben wird und leiten geeignete asymptotische
Beschreibungen her.

Unser Hauptbeitrag sind signifikante konzeptionelle Vereinfachungen in der Analy-
sis des Funktionals auf Testzuständen im Vergleich zu den Arbeiten von Frank, Hainzl,
Seiringer und Solovej aus dem Jahr 2012 bzw. 2016 sowie ein neues Zerlegungsresultat
für die Cooper-Paar-Wellenfunktion, das den konstanten Anteil des Magnetfeldes ein-
bezieht. Dieses Zerlegungsresultat ermöglicht es uns, die genannten Resultate für Systeme
mit einem solchen konstanten Feldanteil zu beweisen. Letzterer ist für den nicht ver-
schwindenden magnetischen Fluss verantwortlich und stellt die mathematische Behand-
lung des Problems vor erhebliche Schwierigkeiten. Der wichtigste mathematische Grund
ist, dass die Komponenten des magnetischen Impulsoperators nicht kommutieren, was die
Anwendung von Fourieranalysis unmöglich macht. Die Präsentation der Resultate ist in
zwei Veröffentlichungen aufgeteilt, die in dieser Arbeit enthalten sind.

Darüber hinaus liefern wir mehrere Ergebnisse, die helfen können, das Projekt in
Zukunft voranzubringen. Das erste Ergebnis ist ein Zerlegungsresultat für magnetische
Potentiale, die im Zusammenhang mit periodischen Magnetfeldern auftreten. Diese Ergeb-
nisse werden verwendet, um zu argumentieren, dass die magnetischen Potentiale, die in den
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Arbeiten in den Kapiteln 2 und 3 behandelt werden, erschöpfend sind. Wir liefern auch
eine spektrale Zerlegung des periodischen Landau-Hamiltonians. Unser letztes Ergebnis
ist eine Störungstheorie des tiefliegenden Spektrums des Operators KT,A − V , der in der
BCS-Theorie eine wichtige Rolle spielt. Dies geschieht mit Hilfe einer Combes–Thomas-
Abschätzung für den Resolventenkern von KT − V , die von unabhängigem Interesse sein
könnte.

Ein Problem in der BCS-Theorie war schon immer das Fehlen von Einsteigerliteratur.
Wir versuchen, diese Lücke zu schließen, indem wir mit einer umfassenden Einführung
in das Thema beginnen, die für Leser*innen geschrieben ist, die zum ersten Mal mit der
BCS-Theorie in Kontakt kommen.

Im Rahmen von Punkt (ii) skizzieren wir den Beweis von exponentellen Abschätzun-
gen für den Adiabatensatz in Quantengittersystemen. Zwar ist die Arbeit noch nicht
abgeschlossen, dennoch präsentieren wir hier den aktuellen Zustand des Projekts und die
Grundlagen, die wir entwickeln mussten, um dieses Problem in Zukunft lösen zu können.
Diese Arbeit wurde während meines Forschungsaufenthalts an der University of British
Columbia in Vancouver, Kanada, im Jahr 2019 begonnen.
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Summary

This thesis is located in the field of many-body quantum systems and covers two topics:

(i) BCS theory in the weak magnetic field regime,

(ii) Adiabatic theory for quantum lattice systems.

The topic (i) constitutes the major part of this thesis. In this part, we investigate
periodically extended superconductors that are subject to weak and macroscopic external
electric and magnetic fields. These fields are such that the magnetic flux through the
unit cell is non-vanishing, which opens up the main challenge for the contributions of this
thesis. The superconductor is mathematically described in the framework of BCS theory of
superconductivity. This theory is an effective two-particle pairing theory, which is named
after the three physicists John Bardeen, Leon Neil Cooper, and John Robert Schrieffer,
who postulated a Nobel prize awarded attractive interaction inside the superconductor
in 1957. Their famous ansatz is inspiration for countless works and its verification from
first principle quantum mechanics continues to challenge mathematical physics until the
present day.

Our model is described in a variational manner in terms of a free energy functional, the
so-called BCS functional, and we investigate the fluctuation of its minimum, the so-called
BCS energy, and the critical temperature shift of the system, which are caused by the
external fields in the weak-field limit. We show that in this regime the superconductor is
described by Ginzburg–Landau theory and derive appropriate asymptotic descriptions.

We mainly contribute with significant conceptual simplifications in the trial state analy-
sis compared to the works of Frank, Hainzl, Seiringer, and Solovej from 2012 and 2016 as
well as a new decomposition result for the Cooper pair wave function which encompasses
the constant magnetic field contribution. This decomposition result enables us to prove
the aforementioned results for systems with such a constant magnetic field contribution.
The latter is responsible for the non-vanishing magnetic flux and imposes significant diffi-
culties to the mathematical treatment of the problem. The main mathematical reason is
that the components of the magnetic momentum operator do not commute, which makes
it impossible to use Fourier analysis. The work is splitted into two papers, which are
included in this thesis.

In addition, we provide several results that may be helpful in continuing the project
in the future. The first result is a decomposition result for magnetic potentials that
arise in the context of periodic magnetic fields. These results are used to argue that the
magnetic potentials covered in the works of Chapters 2 and 3 are exhaustive. We also
provide a spectral decomposition of the periodic Landau Hamiltonian. Our last result is
an asymptotic analysis of the low-lying spectrum of the operator KT,A −V , which plays a
prominent role in BCS theory. This is done with the help of a Combes–Thomas estimate
for the resolvent kernel of KT − V , which might be of independent interest.
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A problem in BCS theory has always been the lack of introductory literature. We
attempt to fill this gap by beginning with a comprehensive introduction to the subject,
written for readers coming into contact with BCS theory for the first time.

In point (ii), we outline the proof of exponential estimates for the adiabatic theorem
in extended quantum lattice systems. While the work is not yet complete, we present here
the current state of the project and the new locality setup we needed to develop for such
systems in order to solve this problem in the future. This work was started during my
research stay at the University of British Columbia in Vancouver, Canada, in 2019.
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Preface

This thesis consists of three parts. In the first part, the main part, I present the results
pertaining to BCS theory that have been obtained in collaboration with my advisor Chris-
tian Hainzl and my collaborator and predecessor Andreas Deuchert (University of Zurich).
These results comprise two papers, which constitute the main project of my PhD studies:

(i) Microscopic Derivation of Ginzburg–Landau Theory and the BCS Critical Temper-
ature Shift in a Weak Homogeneous Magnetic Field, Andreas Deuchert, Christian
Hainzl, Marcel Maier (born Schaub), submitted to Probability and Mathematical
Physics, ArXiv:2105.05623. This work will be referred to as [DHM21] in this thesis
and it is contained in Chapter 2. The content of Chapter 2 differs from that in
[DHM21] insofar as we add Section 2.8, which contains slightly alternative proofs to
some results, comprising more detailed descriptions than in [DHM21].

(ii) Microscopic Derivation of Ginzburg–Landau Theory and the BCS Critical Tempera-
ture Shift in the Presence of Weak Macroscopic External Fields, about to be uploaded
to the ArXiv. This work is the content of Chapter 3.

In Chapters 2 and 3, we have replaced references to “M. Maier’s PhD thesis” that
appear in the original works by explicit references to the corresponding passages in this
document. In the affiliation list at the end of the respective chapter, the mailing address
of myself has been removed since it becomes invalid in due time.

Chapters 2 and 3 are preceded by a comprehensive introduction to BCS theory from
my own perspective, as far as it is needed to understand the material covered in this thesis.
I have included this introduction in Chapter 1, which is written for readers, who make
their first contact with BCS theory.

Chapter 1 is used to carefully introduce all the relevant components that are needed to
study the BCS model as a mathematical model of superconductivity. We briefly explain
the historic development and give an overview over all the techniques that are fundamental
for contributing to the field. Chapter 1 also features several figures that have been designed
for a talk at the International Congress of Mathematical Physics (ICMP) 2021 in Geneva.
These aim at supporting the understanding transported by the mathematical formulas and
explanations. The end of the chapter contains an overview of the status of this project and
an outlook on possible follow-up projects. Chapter 1 is further supplemented by Chapters
A and B in the appendix, which are included for the reader’s convenience. The material
covered there is not new: all the material is contained in the references pointed out there.
However, occasionally, some additional details are found in the appendix compared to the
original references, which has been a motivation to gather the content in one source and
include it into the thesis.

Part II contains several results that did not have the place to be published within
the above mentioned works (Chapter 2 and 3) but might be useful for anybody who is
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involved in this project in the future. In Chapter 4 we introduce a useful gauge for periodic
magnetic fields, Chapter 5 consists of an analysis of the spectrum of the periodic Landau
Hamiltonian. Finally, Chapter 6 provides the weak magnetic field asymptotics for the low-
lying spectrum of the operator KT,A − V for a wide class of magnetic fields. Our method
of proof is a Combes–Thomas estimate for the resolvent kernel of KT − V , which to the
best of my knowledge does not exist in the literature. This analysis had been announced
in [DHM21] and in Chapter 3.

We remark that this thesis is, as far as BCS theory is concerned, a three-dimensional
thesis. We do not cover two dimensions, although many results are valid with similar
proofs also in this case.

Part III finally consists of the unpublished and unfinished results that have been ob-
tained in Vancouver, Canada, in collaboration with Sven Bachmann on the adiabatic
theorem for extended quantum systems. The original goal was to provide exponential
estimates for the results in the work [BDF18]. As this project did not come to a successful
conclusion to the present date, and since several people kindly asked me to write this down
somewhere, I’m happy to comply with their request and provide the corresponding results
in Chapter 7. This chapter also contains a brief introduction to the field of quantum
lattice systems.

The thesis does not contain a global introduction into its content. It is rather intended
that the introduction consists of the Chapters 1 and the introductory Section 7.1. We
note that there is no global reference list at the end of this thesis. Rather, each chapter is
followed by its own reference list.

Personal Contribution

The results of Chapter 2, 3, and 5 were obtained under the supervision of my advisor
Christian Hainzl in collaboration with Andreas Deuchert. I was responsible for central
ideas, for working out the proofs, as well as composing and formulating the manuscripts.
The elaboration on the manuscripts was shared by Andreas Deuchert and me in equal
parts.

The result of Chapter 4 is a collaboration with Tim Tzaneteas. Tzaneteas was respon-
sible for the first version of the manuscript, I contributed with the proof of Proposition
4.4.1 and a thorough revision of the manuscript.

The ideas for the results of Chapter 6 originate from an unpublished note by Andreas
Deuchert. I contributed by the elaboration on these, further ideas, and by composing and
writing the manuscript.

The content of Chapter 7 was obtained under the supervision of and collaboration with
Sven Bachmann. I was resposible for conceptualization, central ideas, as well as for the
manuscript.
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Chapter 1

Introduction to BCS Theory

Welcome to the introduction to BCS Theory. Both in content and writing, this introduc-
tion is intended for readers, who make their first contact with BCS theory, and who are in
their advanced master’s studies or beginning PhD studies — not the experienced scientist.
The style of writing in this chapter is rather informal and has the character of an overview.
This means that the content is somewhat less dense and easier to read. However, it does
not meet the scientific requirements of a paper. In this chapter, I occasionally switch
from the common academic “we” to the personal form “I” when I want a message to be
understood as a somewhat more “personal advice” and when I want to break the distance
between the author and the reader.

The chapter contains the necessary fundamentals that are needed to understand the
content of Parts I and II. When further specialized knowledge is needed, I include a
reference, where the reader can aquire this knowledge, if necessary. However, references
are rather rare and there are only a few of them. If the reader expects further literature,
they are kindly asked to consult the introductions and reference lists of Chapters 2 and 3,
where my collaborators and I have put a vast amount of literature. I also recommend a
look at the introduction of Andreas Deuchert’s PhD thesis [D16] for an introduction from
a slightly more physical point of view.

1.1 Historical Development

1.1.1 Preliminary remark

In this historical synopsis, I recommmend to be somewhat familiar with the lecture notes
[S14] by Jan Philip Solovej. In these notes, I have learned about many-body quantum
Hamiltonians, the Friedrichs’ extension, the Fock space, creation and annihilation opera-
tors, the formalism of second quantization, quadratic Hamiltonians, one- and two-particle
density matrices, generalized one-particle density matrices, quasi-free states and their uni-
tary implementation, and Bogolubov’s method of approximation.

I stress the word “somewhat” in the preceding paragraph because for the reader to
work with BCS theory only, it is strictly speaking not necessary to know all these notions.
The short explanation for this is that BCS theory is an effective two-particle theory, in
which techniques like second quantization play no role anymore. A little more elaborate
explanation is provided by the following example, which I would like to present because I
myself found this very confusing at the beginning of my PhD studies: The mathematician
working in the field of BCS theory calls a BCS state a “one-particle density matrix”, which
is a self-adjoint operator valued 2 × 2 matrix with additional properties. We will follow
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1.1. HISTORICAL DEVELOPMENT

this tradition below when we introduce the framework of BCS theory. However, as of
today, this nomenclature can be confusing: There is a precisely defined notion of “one-
particle density matrix” introduced for example in [S14], which suggests that we need to
know everything about concepts like the Fock space, second quantization, and quasi-free
states. However, to the best of my knowledge, there is no rigorously established connection
that declares the former notion as a certain limit of the latter. In this sense, the naming
“one-particle density matrix” in BCS theory is purely artificial.

This has the following advantage for the inclined reader, should they be not familiar
with the aforementioned notions. It opens up the possibility of reading this historical
section without following the mathematical aspects I introduce and refer to (I put these
mathematical terms nevertheless to make déjà vu moments possible for the reader and to
make the section somewhat more vivid). If applicable, the reader may therefore confidently
ignore their missing mathematical understanding of this section and step into the business
when I introduce the BCS functional below in Section 1.2. In this way, nothing will be
missed. Moreover, since it is pretty time consuming to work through the notes [S14] (in
particular, the problems, although thinking about these is enlightening!), it is certainly
worth the consideration. Nevertheless, I could imagine that a little more understanding
on the motivation is available if the reader has spent some time on the concepts above.

1.1.2 Phenomenological description of superconductivity

In 1911, the first experimental observation of superconductivity was achieved by Heike
Kamerlingh Onnes at Leiden University, Netherlands, who was awarded the Nobel Prize
in Physics for his discovery in 1913. He made experiments with a pure sample of mercury,
which he obtained through repeated distillation, in liquid helium at temperatures of about
3-5 Kelvin. He had developed the apparatus to produce significant amounts of liquid he-
lium himself the years before. The temperature is certainly a good above absolute zero,
even for the state of the art at the time — temperatures of as low as 0.00001 Kelvin had
been reached and it was experimentally evident that absolute zero could not be realized.
Onnes observed that the electric resistance of the mercury wire had disappeared com-
pletely. At the time, this effect had not been predictable. In fact, renowned scientists like
William Thomson, 1. Baron (Lord) Kelvin had debated beforehand whether the electric
resistance should decrease linearly as the temperature decreases to zero (which had been a
known behavior for higher temperatures), or if, as people including Onnes had envisioned,
suddenly all motion of electrons comes to a stop, the resistance being infinitely high. In
repeated experiments, Onnes’ team observed and confirmed a transition from the normal
conducting state of mercury to a state of zero electrical resistance at 4.2 Kelvin. Onnes
himself introduced the term “superconducting” for this state. Later, the team found more
sorts of metals which show similar transitions. The history of his experiments can be read
in [B97; DK10], where the content of this paragraph is taken from.

In a short notice of one page, Walther Meißner and Robert Ochsenfeld reported on a
new effect on superconductivity in 1933 [MO33]. Their experiments with the supercon-
ductors tin and lead in a weak external magnetic field induced by a coil showed that the
distribution of the magnetic field lines in the exterior of the superconductor changed in
such a way that is expected from a perfect diamagnet that has permeability zero. Mean-
while, in the center of the interior, the magnetic field remains almost unchanged, see Figure
1.1. Likewise, if the exterior field was switched off in the superconducting phase, the in-
terior field remained unchanged, while the exterior field did not vanish completely. An
important parameter in this effect is the so-called penetration depth of the exterior mag-
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CHAPTER 1. INTRODUCTION TO BCS THEORY

netic field into the superconductor. It describes the extent to which the interior “reaction
field” is able to repell the penetrating exterior field.

BB

Figure 1.1: Displacement of the magnetic field lines due to the Meißner effect.

The effect is nowadays known as the Meißner–Ochsenfeld effect (often just Meißner
effect) and it had not been explainable with the classical physics known at the time. The
authors further report on distiguished critical temperaturs (“jumping points” as they call
it) depending on whether the temperature passes the critical temperature increasingly or
decreasingly. This is a phenomenon we will have to deal with also mathematically, when
exterior fields are present. The rigorous microscopic justification of the Meißner effect
remains a challenge for mathematicians until the present day.

The Meißner effect can be visualized by a hovering piece of superconducting material
over a large electromagnet, as shown, e.g., in the video [15]. The physical picture is that
the electromagnet exposes the superconductor to a weak external magnetic field which
the superconductor is able to repel from its interior by a response field that is directed
opposite to the exterior field. It should be said that the Meißner effect persists in the
presence of a weak external magnetic field, which makes us be interested in the weak
magnetic field regime. After all, it is plausible that the penetration depth increases with
the field strength of the exterior magnetic field so that superconducting effects will be
“destroyed” when the field strength becomes too large. Below, we will define precisely
what we mean mathematically by “weak” in this context.

It took almost 40 years from the first discovery by Onnes until Vitali Ginzburg and
Lev Landau presented the first theoretical, phenomenological, and macroscopic quantum
description of superconductivity in 1950 [GL50]. The theory is based on a system of
two partial differential equations for a single complex-valued function ψ, the so-called
order parameter, and the response field, whose domains in R3 cover the dimensions of
the material. The function ψ has the property that |ψ(x)| ranges between 0 (absence
of superconductivity) and 1 (presence of superconductivity) at the respective point x.
Ginzburg–Landau theory has been highly influencial throughout the physics community
and is capable of describing various macroscopic effects of superconductors. It continues to
be a very active field of research until the present day, covering more and more complicated
effects and domains. For us, Ginzburg–Landau theory arises as a limiting macroscopic
counterpart to the microscopic BCS theory of superconductivity, which we shall discuss
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1.1. HISTORICAL DEVELOPMENT

now.

1.1.3 BCS theory in the early days of many-body quantum systems

BCS theory is a microscopic theory of superconductivity that is named after the three
physicists John Bardeen, Leon Neil Cooper, and John Robert Schrieffer. The theory was
presented in their famous 1957 paper [BCS57], which fits into a period marked by scientists
devoting themselves to the systematic analysis of many-body quantum Hamiltonians, the
latter being agreed to provide an appropriate description of microscopic physical systems.

The objective is to describe a system of N ⩾ 1 particles in a three-dimensional metallic
box QL = [0, L]3 of sidelength L > 0. The system is subject to external fields, where the

B = Be3

Figure 1.2: System of fermionic particles (green balls) in a metallic box with lattice ions
(red balls) subject to a constant external magnetic field B (orange arrow) pointing in the
e3-direction.

most relevant contribution is given by the constant magnetic field. It is modeled by a
vector B ∈ R3 having strength B := |B| > 0. Such a system is displayed in Figure 1.2. In
fact, we will cover more general fields in our mathematical description later.

A Hamiltonian operator which describes this situation reads, in suitable units,

HN :=
N∑
i=1

(−i∇i + A(xi))2 − µ−
∑

1⩽i<j⩽N
V (xi − xj). (1.1.1)

Here, A : Rd → Rd is a magnetic potential corresponding to the magnetic field curl A = B
and V : R3 → R is a two-particle interaction potential. This Hamiltonian is usually realized
self-adjointly in the Hilbert space L2(QL)⊗N , the N -fold tensor product of L2(QL) with
itself. Depending on the particle statistics, the domain may be restricted to the subspace
L2(QL)⊗sN of N -body wave functions that are symmetric with respect to exchange of
any of their coordinates (bosonic), or to the subspace L2(QL)∧N of anti-symmetric wave
functions (fermionic). For simplicity, we are neglecting spin throughout Parts I and II
of this thesis. If suitable boundary conditions are phrased, the self-adjoint realization
is obtained from the corresponding differential expression on smooth functions by the
Friedrichs’ extension method.

We are then interested in the ground state energy, the ground state, and equilibrium
properties of this Hamiltonian. Of course, these properties are given by the stationary or
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dynamic Schrödinger equation, so, for example, we are interested in the lowest eigenvalue
of the operator HN . However, it is now well known that it is extremely difficult to extract
from the full Hamiltonian HN the information needed to calculate the aforementioned
quantities. Undoubtedly, we are thus in need of powerful approximation methods, which
allow us to consider simplified models and to carry out the computations on these, while we
are able to control the errors. Unavoidably, we are then forced to restrict our predictions
to limiting regimes. The most prominent examples are the thermodynamic limit N → ∞,
L → ∞ in such a way that the particle density ρ := N/L3 is kept fixed, or the mean-
field and Gross–Pitaevskii limit N → ∞, where the interaction strength is coupled to the
interparticle distance through suitable scaling factors in the potential V . Even after this
limit has been taken, we are then forced to further restrict our statements to limiting
regimes like the “dilute”/“low-density” regime ρ ≪ 1, the “high-density” regime ρ ≫ 1,
or the “adiabatic” regime of a “slow” dependence on time of the underlying Hamiltonian,
if such a dependence is present.

In the late 1940’s, physicists were able to develop the first successful and influencial
ideas to systematically approximate these Hamiltonians. This endeavor had begun with
the 1947 seminal paper by Nikolay Nikolayevich Bogolubov [B47], which continues to
influence papers in modern mathematical quantum many-body descriptions up to the
present day. In this paper, Bogolubov introduced a method to systematically approximate
many-body Hamiltonians that are second-quantized with periodic boundary conditions,
i.e., (1.1.1) rewritten as

HN =
∑

p∈ 2π
L
Z3

hp a
∗
p ap − 1

2L3

∑
k,p,q∈ 2π

L
Z3

V̂ (k) a∗
p+k a

∗
q−k aq ap, (1.1.2)

with hp = ⟨up, Tup⟩, T := (−i∇ + A)2 − µ, and up(x) = (2πL)−3/2e−ip·x the plane wave
basis.

B = Be3

b3

b1

b2

Figure 1.3: A periodic system with a unit cell spanned by the vectors b1, b2, b3 ∈ R3.

Then, it is argued that this Hamiltonian is well-approximated by what we nowadays call
a “quadratic Hamiltonian”, namely a quadratic expression in the creation and annihilation
operators a∗

p and ap. Note that, as of (1.1.2), the interaction term is quartic in these
operators. The quadratic Hamiltonian has the feature of being explicitly diagonalizable
so its spectrum is computable as a closed formula, see [S14, Problem 11.9]. The idea
that paved the way for his procedure, the famous c-number substitution, came from the
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bosonic case. It had been known from the Albert Einstein 1925 paper [E25] that the free
(i.e., non-interacting, V ≡ 0) bosonic gas undergoes complete Bose–Einstein condensation
in the ground state. This means that every of the N particles is in its one-particle ground
state (the zero momentum, i.e., constant mode) and the many-body ground state is a
pure tensor product of these one-particle states. Of course, this assertion does not persist
when interactions are present. However, the idea was used as an assumption for the
interacting case by Bogolubov to replace the creation and annihilation operator a∗

0 and a0
by the number of particles

√
N (c-number substitution), since the occupation a∗

0a0 of the
ground state has an expectation that is almost equal to N (i.e., almost all particles are
condensed). Furthermore, he argued that every a∗

p and ap with p ̸= 0 is “small” compared
to the large fraction of condensed particles. This enabled him to view the Hamiltonian as
a “power series”, in which he could “neglect” the remaining terms of “higher order” in the
“excitation” operators a∗

p and ap for p ̸= 0. Nowadays, we know that this procedure is not
always correct to the claimed precision (that, actually, had been pointed out by Landau
soon after the publication). However, the method that modern proofs use for proving
what actually holds is, in its core, inspired by [B47].

Bogolubov’s method as he developed it was used by several people to compute the
ground state energy of bosonic as well as fermionic systems by just computing the ground
state energy densities of the respective resulting quadratic Hamiltonians. These formulas
are the very well-known Lee–Huang–Yang formula in the bosonic case, see [FS20],

eB(ρ) = 4πaρ2
[
1 + 128

15
√
π

(ρa3)1/2
]

+ o(ρa3)1/2, ρ ≪ 1, (1.1.3)

where a denotes the scattering length of the interaction potential V , and the somewhat
less-known Huang–Yang formula in the fermionic case (for spin 1/2 fermions)

eF(ρ↑, ρ↓) = 3
5(6π2)

2
3
(
ρ

5
3
↑ + ρ

5
3
↓

)
+ 8πaρ↑ρ↓ + o(ρ2), ρ := ρ↑ + ρ↓ ≪ 1, (1.1.4)

see [FGHP21]. Here, ρ↑ and ρ↓ denote the densities of spin-up and spin-down particles,
respectively. Meanwhile, these formulas have been proven in the vaccuum at temperature
absolute zero. However, at the time there was no knowledge how far these quantities
actually deviate from the true ground state energy in the respective regimes.

So far, we had a look on the ground state, that is, a zero temperature property. The
1957 paper [BCS57] analyzes what happens to fermionic systems at positive temperature
T > 0, which amounts to studying the free energy (or, pressure) functional

FT (⟨·⟩) = ⟨HN ⟩ − T S(⟨·⟩)

of the system. Here ⟨·⟩ is a state given by ⟨A⟩ = ∑
n∈N λn⟨ψn, Aψn⟩ for all observables

A, where 0 ⩽ λn ⩽ 1, ∑n∈N λn = 1, {ψn}n∈N is an orthonormal basis of the underlying
Hilbert space, and S(⟨·⟩) := −

∑
n∈N λn lnλn is the von Neumann entropy. The first

observation is that the normal state of the system at positive temperature is now the
Gibbs state at temperature T induced by the Hamiltonian HN and given by

⟨A⟩ = Tr[Ae−βHN ]
Tr e−βHN

, (1.1.5)

where β := T−1 is the inverse temperature, see [S14].
Since the authors wanted to describe superconductors or superfluids they must have

thought of appropriate substitutes to Bogolubov’s assertion at zero temperature, which
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had to be combined with a suitable mechanism that allows for a notion of “condensa-
tion” for fermions (by the Pauli exclusion principle, a condensation of fermions is a priori
impossible). Their main physical assumption, which drives the theory, is the attractive
interaction potential −V which is postulated to be present due to the phonon vibrations
caused by attraction of the lattice ions with the electrons. In this way, a scattering elec-
tron causes a slight displacement of the lattice ion which in turn drags the other electrons
in the same direction. This induces an effective attractive interaction between electrons.
With these ideas, BCS constructed a trial state for the problem that features the particles

B

b

−V

Figure 1.4: Fermions interact via an attractive two-body potential – Cooper pair formation
indicated by the colored clouds.

to undergo a pairing mechanism which would then cause the pairs of fermions to behave
like bosons that could condense again in the sense of Bogolubov. The pairs of electrons
are called Cooper pairs nowadays due to an earlier publication [C56] by Leon Neil Cooper.
The BCS trial state could be shown to introduce a superconducting phase to the system,
which means that it has strictly lower energy than the normal state. Their publication led
to the significant and ongoing interest and influence that the paper is known for. BCS did
not only compute energies but also made predictions concerning the penetration depth,
the Meißner effect and further quantities. These predictions hold on a physical level of
rigor, which means that a mathematical proof for significant parts of the theory is still
missing. In particular, we lack necessity arguments for the assumed form of the trial state.

1.1.4 Origin of the BCS functional

Nowadays, we recognize the state used by BCS as a quasi-free state. Since this class of
states is important for BCS theory, let us give a brief review of the basic ingredients. From
now on, we fix the particle statistics to be fermionic.
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A fermionic quasi-free (pure) state Ψ, which is a vector in the fermionic Fock space
F(H) := ⊕

n⩾0 H∧n built upon a one-particle Hilbert space H, can be characterized by its
generalized one-particle density matrix, the operator ΓΨ : H ⊕ H∗ → H ⊕ H∗ defined as〈

f1 + Jg1,ΓΨ(f2 + Jg2)
〉

H⊕H∗
:=
〈
Ψ,
(
a∗(f2) + a(g2)

)(
a(f1) + a∗(g1)

)
Ψ
〉

F(H)
.

Here, J : H → H∗ is the anti-linear Riesz’ isomorphism given by Jg(f) = ⟨g, f⟩, i.e.,
Jg is the linear functional “taking the scalar product with g ∈ H”. Moreover, a∗(f) is
the creation operator corresponding to the state f and a(f) is the annihilation operator
corresponding to the state f . Their definition shall not be of importance here, it is given
in [S14]. We only note that a∗(g) is linear in g whereas a(f) is anti-linear in f and the
canonical anti-commutation relations

{a(f), a(g)} = {a∗(f), a∗(g)} = 0, {a(f), a∗(g)} = ⟨f, g⟩H 1, (1.1.6)

hold. In terms of the one-particle density matrix γΨ : H → H and the offdiagonal operator
(sometimes also called the two-particle density matrix) αΨ : H∗ → H, defined by

⟨f, γΨg⟩H := ⟨Ψ, a∗(g)a(f)Ψ⟩F(H), ⟨f, αΨJg⟩H := ⟨Ψ, a(g)a(f)Ψ⟩F(H), (1.1.7)

the generalized one-particle density matrix takes the form of a 2×2 operator valued matrix
of the form

ΓΨ =
(
γΨ αΨ
α∗

Ψ 1 − JγΨJ
∗

)
, (1.1.8)

where it can be shown that α∗
Ψ = −JαΨJ due to (1.1.6) and (1.1.7). We further note that

γΨ is self-adjoint and 0 ⩽ γΨ ⩽ 1. Likewise, ΓΨ is self-adjoint as well and 0 ⩽ ΓΨ ⩽ 1.
Since

ΓΨ(1 − ΓΨ) =
(
γΨ(1 − γΨ) − αΨα

∗
Ψ αΨγΨ − γΨαΨ

γΨα
∗
Ψ − α∗

ΨγΨ γΨ(1 − γΨ) − α∗
ΨαΨ

)
, (1.1.9)

the latter implies ΓΨ(1 − ΓΨ) ⩾ 0, whence αΨ and γΨ are related through the operator
inequality

αΨα
∗
Ψ ⩽ γΨ(1 − γΨ). (1.1.10)

Moreover, if Ψ has finite particle expectation, that is, Ψ = ⊕∞
N=0 Ψ(N) with

⟨Ψ,N Ψ⟩ :=
∞∑
N=0

N ∥Ψ(N)∥2
H∧N < ∞, (1.1.11)

then γΨ is trace class and Tr γΨ = ⟨Ψ,N Ψ⟩. Consequently, αΨα
∗
Ψ : H → H is a trace class

operator by (1.1.10). For all these facts, see [S14].
With these notions at hand, it is possible to follow the somewhat lengthy calculation

given in [HS16, Sect. 2.1], which we will not repeat here and which leads in a mathe-
matically non-rigorous fashion to the BCS functional. Non-rigorous means that certain
simplifications pertaining to SU(2)-symmetry (neglection of spin) have to be made and
certain infinite-volume limits have to be taken which replace sums by integrals. To the
present day it is unclear how to rigorously do this. Furthermore, the so-called direct and
exchange terms have to be neglected, which show up due to the properties of quasi-free
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states. See [BHS14] for a detailed discussion. It is sometimes argued that this neglec-
tion actually produces more accurate experimental results, which opens up the question
if quasi-free states are the right type of state in the end.

A proper derivation of the functional would also have to clarify the correct type of state
which allows for the desired pairing mechanism in the many-body model. In particular,
we would have to understand if (and, if yes, why) quasi-free states are the appropriate
class on which the superconductivity properties of the many-body quantum system are
correctly displayed. This is very much related to the question why pairs are the appropriate
size of clusters that are formed by electrons and why there do not exist multituples of
quantum mechanically correlated particles in a significant share. In other words, a rigorous
procedure that justifies BCS theory from the perspective of first principle many-body
model as the correct effective microscopic theory has to understand the mechanism of
suppressing multituples compared to pairs. All this is not part of this thesis and to the best
of my knowledge unknown. Therefore, we will take the BCS theory of superconductivity
as a given model and analyze it — given the evidence of it arising from the many-body
setting by the procedure sketched above.

To conclude this historical upshot, I once more emphasize that the “generalized one-
particle density matrix” above is mathematically independent of what we are going to
define in the next section but the roles they play are similar, hence the naming.

1.2 The BCS Functional of Superconductivity

For the purpose of this thesis, BCS theory is given in a variational manner by an energy
functional and the physical properties of this functional are captured in the lowest energy
over all admissible states and the minimizer of this problem. As usual, the minimizer
will satisfy an Euler–Lagrange equation, which in this case is known as the Bogolubov–de-
Gennes equation. This equation, however, will not play a prominent role in this thesis,
since we will be mostly dealing with so-called low-energy states of the functional, which
are not necessarily minimizers. In order to define the functional, we first write down a
formal expression for the functional and then make sense of all quantities appearing in
there step by step in the rest of this chapter. For a state Γ of the form

Γ =
(
γ α
α 1 − γ

)
, (1.2.1)

the formal expression reads

TrΩ
[(

(−i∇ + A(x))2 +W − µ
)
γ
]

− TS(Γ) −
 

Ω
dX

�
R3

dr V (r) |α(X, r)|2. (1.2.2)

We refer to the first term as the kinetic energy, which is in analogy to the many-body
Hamiltonian. The second term will be the entropy term and the last term is the interaction
term or pairing term. The superconductivity of the system will be indicated by a non-
vanishing Cooper pair wave function α, as we will see more precisely below. In the context
of energy functionals, whose states have a matrix structure as in (1.2.1), the non-vaninshing
off-diagonal entry α is sometimes also referred to as the present off-diagonal long range
order (ODLRO) of the system in the literature. This wording results from the operator
α, discussed in (1.1.7), which models two-particle correlations in the system.

We should think of the functional in the following way. The kinetic term is the domi-
nating contribution to the energy, i.e., the BCS functional is bounded from below because
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the entropy and the interaction can by bounded by a portion of the kinetic energy. If it
was only for the kinetic energy, the state minimizing this functional would obviously be the
characteristic function γ = 1(−∞,0]((−i∇ + A)2 +W − µ), which is known to be smeared
out if the entropy is taken into account and Γ is a diagonal matrix. The minimizer is
then (1 + eβ(−i∇+A)2+W−µ))−1. The interaction term competes against these two terms in
that it “wants to choose” α as big as possible. This however, is limited by the constraint
(1.1.10) (actually rather by the requirement 0 ⩽ Γ ⩽ 1). Hence, γ and α depend on each
other in a subtle way.

Let us start with the quantities in (1.2.2) that are easily explained. First of all, µ ∈ R
is the chemical potential (or Fermi energy) that plays the role of fixing the number of
particles in a grand canonical quantum system. The region {p ∈ R3 : p2 ⩽ µ} is often
referred to as the Fermi sea. Secondly, T ⩾ 0 is the temperature of the system. We also
have built in the attractive character of the interaction potential V : R3 → R from the
beginning by writing −V . We may think of a nonnegative potential V ⩾ 0 so that −V is
indeed a negative function but for the results in this thesis to hold, this is not necessary.
The mean integral

�
Ω dX f(X) is defined as 1

|Ω|
�

Ω dX f(X) for some function f .
We further have to make sense of the following expressions that appear in (1.2.2):

• We want to set up the BCS model in a so-called gauge-periodic fashion, where
the domain Ω ⊂ R3 will be the unit cell of the lattice of periodicity. As we will
see, our notion of periodicity depends on the magnetic potential A : R3 → R3, the
gauge of the magnetic field. We will therefore call the system gauge-periodic and
the size of Ω has to be linked to certain properties of A. In particular, we need
to understand different periodicity properties of the fields: The periodic function
W : R3 → R modeling the potential corresponding to an external electric field will
be truly periodic (not gauge-periodic). The same holds for parts of the magnetic
potential A and we shall clarify why.

• The gauge-periodic state Γ in (1.2.1), which consists of the two components γ and
α (γ and α denotes complex conjugation).

• TrΩ is the trace per unit volume of the periodic operator which stands inside the
argument.

• S(Γ) should be the usual von Neumann entropy per unit volume of the state Γ defined
as S(Γ) := − TrΩ[Γ ln Γ], once TrΩ is properly defined.

• The function α(X, r) equals, per slight abuse of notation, α(x, y), which, in turn,
is the kernel of α. This kernel exists because α will be a Hilbert–Schmidt operator
per unit volume on the natural domain of the formal expression (1.2.2). The center-
of-mass coordinate X = x+y

2 and the relative coordinate r = x − y play a very
important role in the regime of weak external fields. This is the regime that we are
interested in since this is the regime in which the Meißner effect takes place.

The construction of the main items above requires substantial mathematical effort and
will occupy us for the rest of this chapter. We will approach these quantities while we
discuss the BCS functional in increasingly difficult settings. This discussion helps us to
come across all the further relevant objects that are necessary to be known when we want
to work with BCS theory. We start with the simplest situation.
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1.3 Translational Invariance

Let us first take a look at the BCS functional in the simplest situation: We look at non-
interacting particles and assume that A = 0 and W = 0. In this case, we assume that the
system is translation invariant, that is, γ and α are operators given by translation-invariant
kernels γ(x− y) and α(x− y), respectively.

This assumption is justified since the translation-invariant BCS functional defined
below in (1.3.1) does not break translational invariance in the sense that the minimizer
over all states indeed is translation invariant provided the temperature lies in a sufficiently
small interval below Tc. This result has been provided in the work [DGHL18].

Then, the trace is simply given by evaluating the kernel of the operator in question
on the diagonal x = y and integrating. We can apply the Fourier transform and express
everything in terms of two functions γ ∈ L1(R3, (1 + p2)dp) and α ∈ H1(R3,dx) with
|α̂(p)| ⩽ γ(p)(1 − γ(p)). A short calculation shows that, in this case, the BCS functional
is given by the simpler expression (up to factors of 2π depending on the convention on the
Fourier transform, see [HS16, Eq. (3.1)-(3.6)] or [HHSS08])

FBCS
ti (γ, α) :=

�
R3

dp (p2 − µ) γ(p) − TS(γ, α) −
�
R3

dx V (x) |α(x)|2, (1.3.1)

where

S(γ, α) := −
�
R3

dp
[
s+(p) ln s+(p) + s−(p) ln(s−(p))

]
(1.3.2)

and s±(p) are the eigenvalues of the matrix

Γ̂(p) =
(
γ(p) α̂(p)
α̂(p) 1 − γ(p)

)

that are determined by s(1 − s) = γ(1 − γ) − |α̂|2, which means

s±(p) = 1
2 ± 1

2

√
|α̂(p)|2 + (1 − 2γ(p))2, (1.3.3)

whence, with s(p) := s+(p), we conclude

S(γ, α) = −
�
R3

dp
[
s(p) ln s(p) + (1 − s(p)) ln(1 − s(p))

]
. (1.3.4)

1.3.1 Normal state

The normal state is the minimizer of FBCS
ti in the absence of interactions, i.e., V ≡ 0. In

this case, the functional reads

FBCS
ti (γ, α) =

�
R3

dp (p2 − µ) γ̂(p) − TS(γ, α) (1.3.5)

and the first question to answer is whether the minimizer satisfies α ≡ 0. To see that this
is indeed the case, we define

φ(x) = x ln(x) + (1 − x) ln(1 − x), 0 ⩽ x ⩽ 1. (1.3.6)
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Note that the function is defined at the endpoints via continuous extension and it is strictly
convex. Then, we need to employ the relative entropy inequality

�
R3

dp φ(s(p)) − φ(s′(p)) ⩾
�
R3

dp φ′(s′(p)) (s(p) − s′(p)), (1.3.7)

where 0 ⩽ s′(p) ⩽ 1 is arbitrary. Equality holds if and only if s = s′. This inequality
is known as Klein’s inequality and it can be proven similarly to Theorem A.1.7. We will
discuss the general case of this trace inequality when it comes to the trace per unit volume
below so we will not be detailed here.

We apply this to

s′(p) := 1
2 + 1

2 |1 − 2γ(p)| ⩽ s(p).

Since φ′(x) = ln( x
1−x), we have

φ′(s′(p)) = ln
(1 + |1 − 2γ(p)|

1 − |1 − 2γ(p)|

)
⩾ 0,

so that

S(γ, α) − S(γ, 0) ⩾ 0

and the inequality is strict unless α = 0.
This shows that it is energetically favorable for the minimizer to satisfy α = 0. An

explicit minimization of the functional

F0(γ) :=
�
R3

dp (p2 − µ)γ(p) − TS(γ, 0)

proves that the well-known Fermi–Dirac distribution

γ0(p) := 1
1 + eβ(p2−µ) (1.3.8)

minimizes (1.3.5). To see this, we differentiate with respect to γ and obtain the critical
equation

p2 − µ+ T ln
(

γ(p)
1 − γ(p)

)
= 0, (1.3.9)

whose solution is (1.3.8). By the strictness of the inequality (1.3.7), we have proven that
(1.3.8) is also the unique minimizer. This is the stable minimizer of the BCS functional
when no external fields and no interaction are present in the model. We use the critical
equation (1.3.9) to see that its BCS energy is given by

FBCS
ti (γ0, 0) = T

�
R3

dp ln(1 − γ0(p)) = T

�
R3

dp ln(1 + e−β(p2−µ)). (1.3.10)

1.3.2 Superconductivity

The interesting features of the model become visible if we allow for an interaction potential
V ̸= 0. We used suggestive notation in the interaction term and write the interaction with
a minus sign as −V .
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We shall think of this as an attractive interaction potential as was postulated by
Bardeen–Cooper–Schrieffer in their work. It is important to understand that this at-
tractiveness is our main physical assumption on the model. This assumption is certainly
satisfied if our potential is a nonnegative function V ⩾ 0, whence −V is negative. This is
a good picture to keep in mind but mathematically not necessary. We will phrase later
what we actually mean by an attractive interaction.

Mathematically, the BCS model now becomes interesting because it gives rise to tem-
perature regimes in which there are states with energies that are strictly lower than the
energy of the normal state. This goes back to a nontrivial competition between the
interaction term and the kinetic and entropic term in the BCS functional (1.3.1). A care-
ful analysis of these effects has been provided in the work [HHSS08] by Hainzl, Hamza,
Seiringer and Solovej in 2008. Since the results obtained there are very important for this
thesis, we are going to phrase and briefly discuss them here.

Theorem 1.3.1 [HHSS08, Theorem 1]. Let V ∈ L3/2(R3) and T ⩾ 0. Then the following
statements are equivalent:

(a) The normal state (γ0, 0) is instable under pair formation, i.e., there is a pair (γ, α)
with γ ∈ L1(R3, (1 + p2)dp), α ∈ H1(R3,dx), and |α̂(p)|2 ⩽ γ(p)(1 − γ(p)) such that

FBCS
ti (γ, α) < FBCS

ti (γ0, 0).

(b) The linear operator KT − V has at least one negative eigenvalue. Here, KT is the
pseudodifferential operator given by the symbol

KT (p) := p2 − µ

tanh(p2−µ
2T )

. (1.3.11)

In [HHSS08], there is a third statement about nontrivial solutions to the so-called BCS
gap equation, which we leave out here because the gap equation as such does not play a
prominent role in this thesis. Nevertheless, this is the object that had been first studied
by physicists when they investigated the BCS model.

To briefly sketch the proof of Theorem 1.3.1, this result is proven by the second vari-
ational test at the normal state in direction α, where the first derivative vanishes because
of the minimality of the normal state. The operator KT − V is the Hessian matrix, which
makes it plausible that its sign determines the stability of the normal state as a minimum
of the BCS functional. The remarkable fact is that with the interaction turned on, there is
always a direction in which we can lower the energy by perturbing with α, i.e., the normal
state becomes a saddle point. The reader should keep in mind that this is not at all an
expectable situation. It could very well happen that we have to first increase the energy,
climb over a “mountain range” around the “local minimum” (γ0, 0) to be able to enter the
“valley” in which superconductivity takes place.

The first statement (a) of Theorem 1.3.1 is our definition for superconductivity as this is
the intuitive behavior of the system lowering the energy beyond the normal state. Theorem
1.3.1 is of great significance for us since it rephrases the question of superconductivity in
terms of a spectral question, which makes it relatively comfortable to handle, since a whole
zoo of methods is available to treat these problems. Consequently, the spectrum of the
operator KT plays a central role in the mathematical description of BCS theory and in
our thesis.
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1.3.3 The spectrum of KT − V

On the one hand, the operator KT −V is a Schrödinger-type operator and as such shares a
lot of properties that are known from −∆−V . On the other hand, the peculiar dispersion
relation it has encodes both the kinetic energy of the BCS model and its entropy. Not
only for this reason is it relatively clumsy and challenging to work with KT since it
largely escapes explicit calculations due to the hyperbolic tangent. Figure 1.5 illustrates

2T

µ

KT (p) =
p2 − µ

tanh(p
2−µ
2T )

Figure 1.5: Mexican hat shape of the operator KT .

qualitatively the shape of the function KT (p) defined in (1.3.11) in the case µ > 0. First
of all, KT behaves like p2 − µ as p → ∞. We also see that the minimum of the function
KT (p) is attained on the so-called Fermi surface {p ∈ R3 : p2 = µ} and a short argument
shows that it equals 2T . If µ < 0, however, the minimum is attained at p = 0 and hence
equals |µ|/ tanh(|µ|/(2T )). It follows that the spectrum of the operator KT equals

σ(KT ) =

[2T,∞), µ ⩾ 0,
[|µ|/ tanh(|µ|/(2T )),∞), µ < 0.

(1.3.12)

When the interaction V is present, in principle, anything may change in σ(KT ). How-
ever, in practice, assumptions are made so that the essential spectrum is unchanged, e.g.,
if V ∈ L2(R3) (also if V ∈ L3/2(R3) but the proof is more complicated). For, in this
case the operator V K−1

T is Hilbert–Schmidt since KT (p)−1 is an L2(R3)-function of p.
Therefore, due to Weyl’s criterion, the essential spectrum σess(KT −V ) is preserved under
the perturbation −V and thus equals (1.3.12). In this situation, V “only” adds isolated
eigenvalues of finite multiplicity to the spectrum, which might, in fact, be embedded in
the essential spectrum. Our interest lies in isolated eigenvalues below the bottom of the
essential spectrum, i.e., below 2T . Note that in the case µ < 0 the bottom is lower than 2T
since tanh(|x|) ⩽ |x|. Since KT is strictly monotone in T , as discussed above, we have the
following picture of the spectrum as a function of T . In this picture, we assume for sim-
plicity that all these eigenvalues are simple, which in practice might not hold. Therefore,
we are in a situation similar to the following Figure 1.6.

This allows for the following definition of a critical temperature.

1.3.4 The critical temperature and attractive potentials

To find a criterion for superconductivity, we use the next important notice. The function
T 7→ KT (p) is a strictly increasing function for every p ∈ R3. This implies that the
eigenvalues below 2T are increasing functions of T as well (there might, however, be
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T

σ(KT − V )

Tc

2Tσess

Figure 1.6: The essential spectrum of KT − V (red) and the isolated eigenvalues (green)
below it. The crossing point of the lowest eigenvalue with zero marks the critical temper-
ature Tc.

crossings in general as opposed to the impression of Figure 1.6). This allows for the next
important result.

Theorem 1.3.2 [HHSS08, Theorem 2]. For any V ∈ L3/2(R3) there is a critical temper-
ature 0 ⩽ Tc < ∞ such that inf σ(KT − V ) < 0 if T < Tc and KT − V ⩾ 0 if T ⩾ Tc.

This result is important since it provides the first criterion for superconductivity and
it clarifies the common definition

Tc := inf
{
T ⩾ 0 : KT − V ⩾ 0

}
, (1.3.13)

which is widely used in the literature. Furthermore, [HHSS08] shows several sufficient
conditions under which this temperature is indeed positive. As an example, we mention
the following result.

Theorem 1.3.3 [HHSS08, Theorem 3 (i)]. Let V ∈ L3/2(R3) be not identically zero and
let µ > 0. If V ⩾ 0 then Tc > 0.

For us, this result determines the notion “attractive” for the interaction potential V .
Namely, we understand V to be attractive if Tc > 0. This is a central assumption in
the works we present in Chapters 2 and 3. The preceding theorem provides a sufficient
condition for this to be true but it is by far not necessary.

In particular, we have a critical temperature Tc > 0 at which the lowest eigenvalue
of KTc − V is given by zero. Throughout this thesis, we are going to assume that this
eigenvalue is simple1 and call the corresponding eigenfunction α∗. This function is a very
central object in BCS theory and we note its eigenvalue equation

KTcα∗ − V α∗ = 0. (1.3.14)

1We will include a note on degeneracy later in Section 1.7.1, when we discuss the results of this thesis
and the state of the project.
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This function is well-behaved in the sense that it is a smooth function with rapid decay.
For the particular case of α∗ this has been proven in [FHSS12] but will also be proven in
this thesis in Chapter 6 for all eigenfunctions of KT that belong to isolated eigenvalues
below 2T for any temperature.

To get a feeling for the critical temperature, we should mention the result of [FHNS07,
Theorem 1], which implies that the critical temperature is exponentially small in V . More
precisely, if V is replaced by λV , then

Tc(λV ) ∼ µ e− 1
λaµ(V ) , λ → 0,

where aµ(V ) > 0 is a certain parameter that is not of interest here. Physically, this means
that the critical temperature is pretty close to absolute zero since we explained above that
the attractive interaction between the electrons is fairly weak, i.e., 0 < λ ≪ 1.

1.4 External Fields

1.4.1 The Meißner Effect

With these notions at hand, we can turn our attention towards the BCS functional in the
presence of weak external fields. The reason why we want to understand this BCS model
lies in the Meißner effect that we made contact with in Section 1.1. Mathematically, this
is modeled by a BCS functional having the formal expression

TrΩ
[(

(−i∇ + A(x))2 − µ
)
γ
]

− TS(Γ) −
 

Ω
dX

�
R3

dr V (r) |α(X, r)|2

+
�

Ω
dx
∣∣∣curl A(x) −Hext(x)

∣∣∣2. (1.4.1)

Here, Hext models the externally applied magnetic field from the magnet and A is the
magnetic potential of the response field of the superconductor.

This functional is hard to define rigorously — we shall comment on this below, when
more insight is available — and there are a lot of questions to study before we would be
able to analyze this functional in the superconducting phase. Unfortunately, this thesis
will not be able to treat the functional in (1.4.1) at all. However, this is one of the
ultimate goals to understand — namely, minimize this functional both in the state Γ and
the response field A of the superconductor. This would prove the Meißner effect on the
level of BCS theory and it is one of the main motivations to study the BCS functional
with an external magnetic field.

In this thesis, we will address the minimization of the BCS functional while we are
fixing the response field and dropping the magnetic field term, i.e., the functional in
(1.2.2). We will analyze the minimization problem for the BCS functional in terms of
the state Γ only, which will be a necessary preparation for the problem described in the
preceding paragraph. Therefore, we need to understand the minimization problem with
fixed external fields in great detail and generality.

We now turn our attention to the rigorous definition of the BCS functional with ex-
ternal fields as given in (1.2.2). The first step towards this is an understanding of periodic
magnetic fields and how to model a fermionic system in the presence of these.

1.4.2 Gauge-periodic systems

We want to model a periodic system which involves periodic states and an energy func-
tional that is compatible with this periodicity. In order to set this up, we need a notion of
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translations that is compatible with the magnetic field so that the BCS functional becomes
invariant under these translations. It will become clear what we mean by this in due time.

We remark that it is not known whether the minimizer of the BCS model (over all
admissible states) is indeed periodic as opposed to the situation described in Section 1.3.
Hence, this is a considerably simplifying assumption as of today.

When we want to describe a magnetic model, the physically relevant quantity is actu-
ally the magnetic field B : R3 → R3 and not the magnetic potential A : R3 → R3, which
has the property that B = curl A. In other words, although it is the magnetic potential
that arises in the magnetic Laplacian and thus in the BCS functional, the “physical prop-
erties” of the system remain unchanged as long as A is chosen such that curl A = B holds.
This leaves us the “freedom of gauge”, which we should use when we choose the magnetic
potential.

Since we want to describe a periodic system, we should first fix a lattice of periodicity
Λ ⊆ R3. Our ansatz for this lattice is the Z-span of three linearly independent vectors
b1, b2, b3 ∈ R3 called the basis, i.e.,

Λ :=
{ 3∑
i=1

nibi ∈ R3 : ni ∈ Z, i = 1, 2, 3
}
.

The unit (or, fundamental) cell of the lattice Λ is the domain

Ω :=
{ 3∑
i=1

aibi ∈ R3 : 0 ⩽ ai < 1, i = 1, 2, 3
}
.

We are given a Λ-periodic magnetic field B : R3 → R3 and have the task to choose
a magnetic potential A such that curl A = B. Now the question is: What is the best
(i.e., most convenient for us) choice of A? There are several gauges to choose from in the
literature (Coulomb or transversal gauge, Landau gauge, ...) but it has turned out that
there is one particular choice of gauge that is most suitable for our purposes. For two
space dimensions, this gauge is widely known and has appeared in the literature. In three
dimensions, a derivation of this gauge in the “pedestrian way” (as presented in Chapter 4)
is less known so we shall explain it here in some detail. This gauge is called the Abrikosov
gauge and the claim is that there is a bounded periodic magnetic potential A : R3 → R3

with A(0) = 0 such that the potential

A := AB +A (1.4.2)

satisfies B = curl A, where AB(x) := 1
2 B ∧ x is the constant magnetic field potential and

the vector B ∈ R3 is the average magnetic field

B := 1
|Ω|

�
Ω

dx B(x). (1.4.3)

We remark that the condition A(0) = 0 can be replaced by
�

Ω dxA(x) = 0 or any other
constant shift by a simple gauge transformation.

In two dimensions, this result has been established in [TS13] and the three dimensional
case is proven in Chapter 4.

This result is important in that it limits the situations that we need to take care
of to a very explicit, yet difficult, magnetic potential and a somewhat easier (bounded)
but general magnetic potential. However, the potential AB looks very incompatible with
periodic structures (like a torus) since it grows linearly from the origin. We will see in the
following how to fix this problem.
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1.4.2.1 The magnetic flux

There are several reasons why this gauge is useful to choose. The first advantage is that
the constant magnetic field potential is a very explicit potential for which many algebraic
identities are known. The second advantage is that the periodic magnetic potential is
bounded and, more importantly, it does not contribute to the average magnetic flux ΦB
through the unit cell Ω. The reason lies in Green’s theorem:

ΦB :=
�
∂Ω

dS(x) B(x) · ν(x) =
�
∂(∂Ω)

dy A(y) · ℓ(y). (1.4.4)

Here, ν is a unit normal to the surface ∂Ω that is determined by three perpendicularly
oriented faces of Ω, while ℓ is a unit line element along the line ∂(∂Ω). Since A is periodic,
it will have the same value on two opposite edges of the cube while ℓ will point in differ-
ent directions on opposite edges. Hence, A does not contribute to ΦB, i.e., the average
magnetic flux is solely determined by the constant magnetic field part.

In 2012, the work [FHSS12] investigated the BCS functional for the periodic magnetic
potential only and obtained a description of the physical behavior in the weak magnetic
field regime, when the perturbation of the magnetic field is given on the macroscopic scale
of the system. The result of our works (Chapters 2 and 3) extends this to the general
situation of periodic magnetic fields. In this case the magnetic field has a nonzero flux
through the unit cell and this is responsible for many additional complications in the
treatment of the model.

Figure 1.7 illustrates a system with a constant magnetic field pointing in the e3-
direction. The system features a nonzero average magnetic flux through the unit cell.

B = Be3

b3

b1

b2

Figure 1.7: System with nonzero flux through the unit cell. The system is exposed to a
constant magnetic field, B(x) ≡ B.

1.4.2.2 Our choice of lattice

Now, we want to set up the BCS model in a periodic manner, which requires a notion of
translation that is compatible with the operators that appear in (1.2.2). In particular, the
translation we choose must commute with the magnetic momentum operator

πA := −i∇ + A(x). (1.4.5)
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To achieve this, we have to use the magnetic translations, which are given by

TB(v)f(x) := eix·AB(v)f(x+ v), v ∈ R3, x ∈ R3. (1.4.6)

With this definition, we claim that for every λ ∈ Λ, we have

TB(λ)∗ πA TB(λ) = πA. (1.4.7)

We call this property the gauge-periodicity of πA and this notion extends in an obvious
way to any operator in place of πA. The term “gauge” refers to the fact that we use the
magnetic translations instead of regular ones. Equation (1.4.7) is true, since the periodicity
of A implies

πA TB(λ)f(x) =
(
−i∇ + AB(x) +A(x)

)
eix·AB(λ)f(x+ λ)

= eix·AB(λ)
(
−i∇ + AB(x) +A(x+ λ) + AB(λ)

)
f(x+ λ)

= TB(λ)πAf(x).

In fact, this calculation even shows that

TB(v)∗ πAB TB(v) = πAB

for all v ∈ R3.
At this point, we see why the magnetic potential A and the electric potential W are

indeed periodic in the “classical” sense. The reason is that, as a multiplication operator,
these functions commute with the lattice translations TB(λ).

However, the translations in (1.4.6) do not form an abelian group! Hence, it makes a
difference if we translate first by a vector v and then by a vector w or in the opposite order,
which does not allow for a sensible interpretation as lattice translations. More precisely,

TB(v)TB(w) = e−iB·(v∧w) TB(w)TB(v), v, w ∈ R3, (1.4.8)

which yields an abelian translation group on a lattice Λ only if eiB·(λ1∧λ2) = 1 for all
λ1, λ2 ∈ Λ. Formally, we also have the “group law”

TB(v + w) = ei B
2 ·(v∧w) TB(v)TB(w), (1.4.9)

which is of course ill-defined since the left side is symmetric in v and w, whereas the right
side is not. In order to cure the theory from this problem as well, we must even have
ei B

2 ·(λ1∧λ2) = 1. At this point, we opt for a lattice that is spanned by multiples of the
standard basis ei in R3. Then, this imposes conditions on the basis vector bi, i = 1, 2, 3 of
Λ, namely for each i, j, k = 1, 2, 3, we must have

Bi · (bj ∧ bk) ∈ 4πZ. (1.4.10)

Let us assume for simplicity that all Bi ̸= 0, otherwise there are certain simplifications
in what follows. We choose the vectors bi to be mutually orthogonal and to satisfy the
conditions Bi |bj | |bk| = 4π, which we do by setting

bi(B) :=
√

4π
B1B2B3

Bi ei, i = 1, 2, 3. (1.4.11)
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Here, ei denotes the ith standard basis vector in R3. These basis vectors span a B-
dependent lattice, which we denote by

ΛB :=
{ 3∑
i=1

ni bi(B) : ni ∈ Z, i = 1, 2, 3
}

(1.4.12)

and the unit (or, fundamental) cell of ΛB is

QB :=
{ 3∑
i=1

ai bi(B) : 0 ⩽ ai < 1, i = 1, 2, 3
}
. (1.4.13)

As a consequence of these definitions, the group {TB(λ)}λ∈ΛB is an abelian group of
translations and a short computation shows that we have the expected group law

TB(λ1 + λ2) = TB(λ2)TB(λ2), λ1, λ2 ∈ ΛB. (1.4.14)

Finally, by our choice of basis bi, i = 1, 2, 3, we have

B · (λ1 ∧ λ2) ∈ 4πZ, λ1, λ2 ∈ ΛB. (1.4.15)

This concludes our construction of the lattice, which we build the BCS model on.
Figure 1.8 illustrates the construction in the case B = Be3 where the basis vectors are
given by bi =

√
2πB−1 ei and the box QB equals per definition QB.

QB

B = Be3

√
2πB−1

b3

b1

b2

B · (b1 ∧ b2) = 2π

Figure 1.8: The lattice with magnetic flux 2π in the case B = Be3.

The next steps are to define what we mean by a periodic BCS state and to introduce
the admissibility condition. In order to do this, we need to define the trace per unit
volume, which is our next goal.

1.4.2.3 The Meißner effect revisited

At this point, we can look a bit closer on the difficulties that arise in connection with the
Meißner effect. First of all, one problem is to even define the BCS functional in (1.4.1) in
a rigorous fashion because the unit cell of the lattice of periodicity depends — as we have
seen — on the average magnetic flux of the response field through it. One could think
of fixing a magnetic flux Φ > 0 and looking at the family of BCS functionals indexed by
Φ and so that the response field has the average flux Φ through the unit cell. Then, the

44 PhD Thesis



CHAPTER 1. INTRODUCTION TO BCS THEORY

unit cell of the lattice has to be sized according to Φ and one is inclined to carry out the
minimization problem flux-wise. However, this already spoils the reality of the model to
a large extent since the superconductor should be allowed to have a “fixed” (independent
of the flux) macroscopic size. Hence, we would have to first find a way to decouple the
magnetic flux and the size of the unit cell in a sensible manner. One way that could be
thought of would be to prove that the magnetic flux of the external and the response field
coincide a priori. However, the possibility of this is pure speculation as of now.

Moreover, even in the situation of the non-interacting functional and without external
magnetic field, we first need to prove that the normal state is the one that we already
know. However, this requires proving that the response field in this case equals zero. To
the best of our knowledge, this result is unknown to the present day. The reason for this is
the lack of suitable magnetic field estimates for the last term in (1.4.1) and leading experts
in the field hope to make progress in this direction within the next ten years. Therefore,
there is quite some work to do before the Meißner effect can be tackled.

1.4.3 Gauge-periodic operators and the Bloch–Floquet decomposition

When we say that our system be modeled periodically with respect to the lattice ΛB
defined in (1.4.12), we mean that all the operators and observables of the system are ΛB-
gauge-periodic (or simply gauge-periodic) operators with respect to the magnetic lattice
translations TB(λ) defined in (1.4.6). Per definition, this means that an operator S satisfies

TB(λ)∗ S TB(λ) = S, λ ∈ ΛB. (1.4.16)

The most prominent example of a gauge-periodic operator is the magnetic momentum
operator πA, see (1.4.7).

Gauge-periodic operators have the problem that the Hilbert space L2(R3) is somewhat
inappropriate to investigate their spectral properties and to evaluate the common energy
functionals on them. These functionals are mostly given by trace functionals, including
the BCS functional. Also, the spectrum of an operator depends heavily on the domain
on which this operator is investigated. We only need to think of the Laplacian, which
commutes with all (regular) translations, i.e., is periodic with respect to any lattice, defined
on L2(R3) versus periodic functions in L2([0, 1]3). The former has a purely continuous
spectrum while the latter has the plane waves e2πik·x as an eigenbasis.

However, a periodic operator can never be trace class in the usual sense since, loosely
speaking, its trace would equal the sum of the traces on one of the unit cells of the lattice.
This, in turn, is an infinite sum of equal terms. This makes us prefer the domain of
periodic functions over the space L2(R3). In order to describe this properly, we need a
notion of “decomposing” the operator into a family of operators. Each member of this
family, the so-called fiber, acts on a translate of the unit cell of the lattice while “storing
the information” where the translate was located in R3. A similar goal is pursued when we
develop the theory of Fourier series for periodic functions and we should keep this analogy
in mind. Here, the function f is Z3-periodic, say, and the “fiber” is the frequency (or,
momentum) p ∈ Z3 such that f(x) = ∑

p∈Z3 e2πip·xf̂p holds. As we know, we must define

f̂p =
� 1

0
dx e−2πip·xf(x) (1.4.17)

in order to achieve this. The analogue in operator theory is the so-called Bloch–Floquet
decomposition, which we discuss now.
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I recommend that the reader takes a look at the Appendix A or any other source that
provides insight into the theory of local traces. There, I review the proof of standard
inequalities like Hölder’s, Peierls’, and Klein’s inequality. Subsequently, following [RS78]
to a large extent, I introduce the theory of operator valued functions and the theory of
local traces. Finally, I provide local versions of the aforementioned inequalities. Nothing
of this is new but might be new to the reader.

To make the long story short, we follow the publication [FT16, Section 2.1] and recall
the construction of a magnetic Bloch–Floquet decomposition. To start with, we define the
space of gauge-periodic L2-functions as

HB :=
{
f ∈ L2

loc(R3) : TB(λ)f = f, λ ∈ ΛB
}

(1.4.18)

and we equip it with the scalar product

⟨f, g⟩HB :=
�
QB

dx f(x) g(x), (1.4.19)

which makes it a Hilbert space. We first note that HB is unitarily equivalent to the space
L2(QB),

HB ∼= L2(QB). (1.4.20)

For, each x ∈ R3 has a unique decomposition x = x̃ + ν, where x̃ ∈ QB and ν ∈ ΛB.
Therefore, for f ∈ L2(QB) and x ∈ R3, we set

Emagf(x) := e−ix·AB(ν)f(x̃), x = x̃+ ν, x̃ ∈ QB, ν ∈ ΛB, (1.4.21)

which defines a gauge-periodic extension Emagf ∈ HB of f . To see this, let λ ∈ ΛB and
compute

TB(λ)(Emagf)(x) = eix·AB(λ) (Emagf)(x+ λ) = eix·AB(λ) e−i(x+λ)·AB(ν+λ)f(x̃)
= eix·AB(λ) e−ix·AB(ν) e−ix·AB(λ) e−iλ·AB(ν+λ) f(x̃)
= e−iλ·AB(ν) e−ix·AB(ν)f(x̃).

By (1.4.15), we conclude that e−iλ·AB(ν) = 1, whence the right side equals Emagf(x).
This proves that Emagf ∈ HB. The inverse is given by E−1

magf = χQBf , where χQB is
the characteristic function of the box QB. Unitarity of the map Emag : L2(QB) → HB is
obvious.

Remark 1.4.1. The gauge-periodic function Emagf is of course far from smooth even if
f is smooth. In fact, I do not know any “easy to give” nontrivial gauge-periodic function,
which is smooth.

We define the gauge-periodic Sobolev space

Hm
B :=

{
f ∈ HB : (−i∇ + AB)νf ∈ HB, |ν| ⩽ m

}
(1.4.22)

for m ∈ N0. Here, we used multi-index notation for ν ∈ N3
0. It is equipped with the scalar

product

⟨f, g⟩Hm
B

:=
∑

|ν|⩽m

〈
(−i∇ + AB)νf, (−i∇ + AB)νg

〉
HB
. (1.4.23)
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In this way, Hm
B is a Hilbert space for each m ∈ N0 with the convention that H0

B := HB
and the magnetic momentum operator πA in (1.4.5) is self-adjoint on H1

B.
By Λ∗

B we denote the dual lattice of ΛB, which is the lattice spanned by the basis vectors
b∗

1(B), b∗
2(B), and b∗

3(B), uniquely determined by the condition b∗
i (B) · bj(B) = 2πδij . By

(1.4.11), this implies that

b∗
i (B) =

√
π B1B2B3

Bi
ei, i = 1, 2, 3. (1.4.24)

In particular, we thus have

ν · λ ∈ 2πZ, λ ∈ ΛB, ν ∈ Λ∗
B. (1.4.25)

We also let Q∗
B denote the unit cell of Λ∗

B, the so-called dual unit cell. On HB, the lattice
Λ∗

B possesses the unitary representation

τ : Λ∗
B → B(HB),
ν 7→ τ(ν),

(
τ(ν)φ

)
(x) := eiν·x φ(x). (1.4.26)

Here, B(HB) stands for the Banach space of bounded operators HB → HB. Finally, we
define the space of τ -equivariant HB-valued functions by

KB(τ) :=
{
φ ∈ L2(R3; HB) : φ(ϑ− ν) = (τ(ν)φ)(ϑ), ν ∈ Λ∗

B

}
. (1.4.27)

It follows from the definition that functions in KB(τ) are fully determined by their values
on Q∗

B. If f ∈ KB(τ) and ϑ ∈ R3, then the ΛB-periodic function f(ϑ) ∈ HB is called the
ϑth fiber of f (sometimes also ϑ itself is called the fiber). Since the target Hilbert space
HB is independent of ϑ, we also write KB(τ) suggestively as a so-called constant fiber
direct integral over HB:

KB(τ) =:
� ⊕

Q∗
B

dϑ HB. (1.4.28)

This notation really has the interpretation of a Hilbert space H being decomposed into a
direct sum H = U1 ⊕U2 of two subspaces U1, U2 ⊆ H. The only difference is that (1.4.28)
is a “continuous” version of this decomposition. In order to actually make it a Hilbert
space, we equip KB(τ) with the scalar product

⟨φ,ψ⟩KB(τ) := 1
|Q∗

B|

�
Q∗

B

dϑ ⟨φ(ϑ), ψ(ϑ)⟩HB . (1.4.29)

where |Q∗
B| denotes the Lebesgue measure of Q∗

B.
Now, we are in position to define the Bloch–Floquet transformation of a smooth and

compactly supported function f ∈ C∞
c (R3) ⊆ L2(R3) by

(UBFf)(ϑ)(x) :=
∑
λ∈ΛB

e−iϑ·(x−λ)
(
TB(λ)f

)
(x). (1.4.30)

This means that UBF takes an L2(R3)-function f and sorts it according to its gauge-
periodic fibers. The periodicity is accomplished by the sum over λ ∈ ΛB. If ν ∈ Λ∗

B,
then

(UBFf)(ϑ− ν)(x) = eiν·x ∑
λ∈ΛB

e−iϑ·(x−λ)e−iν·λ
(
TB(λ)f

)
(x).
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By (1.4.25), we have ν · λ ∈ 2πZ so that, indeed, UBFf ∈ KB(τ).
A straightforward computation shows that

∥UBFf∥2
KB(τ) =

∑
λ,λ′∈ΛB

�
Q∗

B

dx TB(λ)f(x)TB(λ′)f(x) 1
|Q∗

B|

�
Q∗

B

dϑ eiϑ(λ−λ′),

and the fact that
1

|Q∗
B|

�
Q∗

B

dϑ eiϑ·(λ−λ′) = δλ,λ′ , λ, λ′ ∈ ΛB,

shows that ∥UBFf∥KB(τ) = ∥f∥L2(R3). Hence, UBF extends uniquely to a unitary map
UBF : L2(R3) → KB(τ) with inverse U∗

BF : KB(τ) → L2(R3) given by

(U∗
BFφ)(x) := 1

|Q∗
B|

�
Q∗

B

dϑ eiϑ·x φ(ϑ)(x). (1.4.31)

Before we go on, we should invest a moment to understand how we should view the
Bloch–Floquet transformation UBF. This transformation accomplishes the domain switch
from L2(R3) to the space KB(τ) of “families” of ΛB-gauge-periodic functions, which we
mentioned in the beginninig of this subsection. The members (fibers) of these families are
connected according to certain rules when we pass from one translate of the unit cell to
another (τ -equivariance) and each fiber can be viewed as a function on QB as we saw in
(1.4.21). To illustrate this further, let us investigate what UBF implies for the magnetic
momentum operator πA in (1.4.5). We employ (1.4.31) and (1.4.7) to obtain

UBF πA U∗
BFφ(ϑ) = πA(ϑ)φ(ϑ), ϑ ∈ R3, (1.4.32)

where, actionwise,

πA(ϑ) := πA + ϑ. (1.4.33)

Since the equation (1.4.32) holds fiberwise without mixing, the magnetic momentum op-
erator πA is an example of an operator which we say to fiber in the direct integral decom-
position or be decomposable (we can also view this as a certain sense of block diagonality
if we have invariant subspaces in mind) and we express this in the suggestive notation

UBF πA U∗
BF =:

� ⊕

Q∗
B

dϑ πA(ϑ). (1.4.34)

Furthermore, (1.4.32) holds in an equivariant fashion in the sense that

πA(ϑ− ν) = τ(ν)πA(ϑ) τ(ν)∗, ν ∈ Λ∗
B. (1.4.35)

Here, τ(ν)∗ is the adjoint in HB. The important point is that the operator πA(ϑ) acts in
the Hilbert space HB for every ϑ ∈ Q∗

B, i.e., a space of periodic functions, whereas πA
acts in L2(R3). Moreover, (1.4.35) shows that the operator πA(ϑ) is uniquely determined
by the action on functions in L2(QB). Therefore, the fiber πA(ϑ) may be viewed as an
operator on the fundamental box QB.

We will not comment further on the actual domains of the respective operators but
they come out naturally, see [FT16]. Using the τ -equivariance (1.4.35), we also easily see
that eigenvalues of the self-adjoint operators� ⊕

Q∗
B

dϑ (πA(ϑ))2
� ⊕

Q∗
B

dϑ (πAB(ϑ))2

are ΛB-gauge-periodic functions. In fact, we show in Chapter 5 that the eigenvalues of
the latter are constant.
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1.4.4 The trace per unit volume

The objective of this section is to define the local trace of a ΛB-gauge-periodic operator
S in the sense of (1.4.16). With the knowledge of the preceding section, this is easy now.
First of all, we assume that the operator S is decomposed in the direct integral, i.e., there
are operators Sϑ, ϑ ∈ Q∗

B such that

UBF S U∗
BF =

� ⊕

Q∗
B

dϑ Sϑ. (1.4.36)

In this case, we define the local trace TrQB(S) as the number

TrQB(S) := 1
|Q∗

B|

�
Q∗

B

dϑ tr(S(ϑ)), (1.4.37)

where tr(S) is the usual trace on the space L2(QB), see (1.4.20).

Remark 1.4.2. Some sources (including the paper in Section 2) define the trace per unit
volume of S simply as the “usual trace” of χQBS. There are two possible ways to interpret
this. The first way is to utilize the unitary equivalence (1.4.20) and to identify the fiber
Sϑ with the restriction of χQBS to the space L2(QB) as we discussed above in (1.4.21).
The second way is to consult [PST09, Lemma 3], where the authors explicitly show that,
with our definition (1.4.37), we indeed obtain TrQB(S) = tr(χQBS). We elaborate on this
result in Appendix A. It is important to understand, however, that the Bloch–Floquet
transformation is not so much a transformation of the operator but rather of the space on
which the operator acts, see the beginning of this section.

With this at hand, we define the trace per unit volume of S as

Tr(S) := 1
|QB|

TrQB(S) =
�
Q∗

B

dϑ
(2π)3 tr(S(ϑ)). (1.4.38)

When we denote the kernel of S by S(x, y), then Remark 1.4.2 implies

Tr(S) = 1
|QB|

�
QB

dx S(x, x). (1.4.39)

Furthermore, for 1 ⩽ p < ∞, we may define the pth von Neumann Schatten class per
unit volume (or local von Neumann–Schatten class) Sp as the space of bounded operators
S that obey (1.4.36) and for which ∥S∥pp := Tr(|S|p) is finite. The space S∞ consists of
all bounded periodic operators and is equipped with the usual operator norm ∥ · ∥∞. In
Appendix A, we prove several results on ∥ · ∥p. From these, it follows that Sp are Banach
spaces and among these are the general Hölder inequality

∥ST∥r ⩽ ∥S∥p∥T∥q, (1.4.40)

which holds for S ∈ Sp and T ∈ Sq and all 1 ⩽ p, q, r ⩽ ∞ as long as 1
r = 1

p + 1
q . We also

have the inequality

| TrS| ⩽ ∥S∥1. (1.4.41)
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1.4.5 Admissible BCS states

Let Γ be a bounded self-adjoint matrix-valued operator on L2(R3) ⊕ L2(R3) of the form

Γ =
(
γ α
α 1 − γ

)
, (1.4.42)

where 0 ⩽ Γ ⩽ 1. Here, we set α := JαJ where the operator J : L2(R3) → L2(R3) is the
antilinear Riesz’ identification, whose role is played by the complex conjugation. In the
framework of BCS theory, we call an operator Γ of the form (1.4.42) a generalized fermionic
one-particle density matrix. The notion is inspired by (1.1.8) but the two operators do
not share any common background as explained in the beginning of Section 1.2.

Since Γ is self-adjoint, Γ = Γ∗, we infer that γ = γ∗ and α∗ = α. The latter implies
that the kernel α(x, y), satisfies

α(x, y) = α(y, x). (1.4.43)

In this way, the fermionicity of α is deleted in comparison to the generalized one-particle
density matrix introduced in (1.1.8). Physically, this corresponds to the assumption that
our system is spinless (or, in a spin singlet state), which is a simplifying assumption. The
full Cooper pair wave function is then α times an appropriate spin operator.

Furthermore, since 0 ⩽ Γ ⩽ 1, we have 0 ⩽ γ ⩽ 1 and since Γ(1 − Γ) ⩾ 0, we deduce
from (1.1.9) that α and γ are related through the operator inequality

αα∗ ⩽ γ(1 − γ). (1.4.44)

The next step is to generalize the notion of gauge-periodicity in the obvious fashion to
operator valued 2 × 2 matrices. To do this, we define the magnetic translation

TB(v) :=
(
TB(v)

TB(v)

)
, v ∈ R3, (1.4.45)

where TB(v) is the magnetic translation in (1.4.6), and we call an operator S on the space
L2(R3) ⊕ L2(R3) ΛB-gauge-periodic (or just gauge-periodic) if

TB(λ) S TB(λ)∗ = S, λ ∈ ΛB. (1.4.46)

If Γ is a gauge-periodic operator, then γ and α satisfy

TB(λ) γ TB(λ)∗ = γ, TB(λ)αTB(λ)∗ = α. (1.4.47)

A straightforward computation shows that the kernels γ(x, y) and α(x, y) then obey

γ(x, y) = ei B
2 ·(λ∧(x−y)) γ(x+ λ, y + λ),

α(x, y) = ei B
2 ·(λ∧(x+y)) α(x+ λ, y + λ). (1.4.48)

Definition 1.4.3 (BCS states). A BCS state is a gauge-periodic generalized one-particle
density matrix Γ of the form (1.4.42). A BCS state is called admissible if γ and π2

AB
γ

belong to S1.

Remark 1.4.4. In many publications (including the ones in Chapter 2 and 3), the ad-
missibility condition is phrased as

Tr
[
γ + π2

ABγ
]
< ∞. (1.4.49)
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Now, obviously, this does not make sense because π2
AB
γ need not be a nonnegative oper-

ator, whence the condition (1.4.49) does not help much. One way to understand it is to
request γ and π2

Aγ to be of trace class, as we did above. The advantage to phrase it like
in (1.4.49) is that it requires substantially less notation to be introduced (and the trace
per unit volume is expectable to be familiar to the readership of a paper). The second
way to understand (1.4.49) is the actually weaker condition

Tr
[
γ + πAB γ πAB

]
< ∞. (1.4.50)

This condition does make sense as γ is a nonnegative operator. Moreover, it is a natural
condition in the sense that Tr[|S|] + Tr[|πAB S πAB |] defines a norm on the space H1(S1)
of operators for which this expression is finite, which makes H1(S1) a Banach space and
a closed subspace of S1. However, in order to use this definition in place of our admissi-
bility condition, we would have to adjust the BCS functional (1.2.2) and replace π2

AB
γ by

πABγπAB which makes the work a bit clumsy and spoils the obvious interpretation of a
“kinetic energy” operator. It is, indeed, a matter of taste.

We investigate a bit what the admissibility of Γ implies for γ and α. First of all, we
note that γ is trace class as well. For, we know that γ =

� ⊕
Q∗

B
dϑ γ(ϑ) with nonnegative

trace class operators γ(ϑ) on L2(QB). Therefore, for some orthonormal basis {φn}n∈N ⊆
L2(QB), we have tr(γ(ϑ)) = ∑

n∈N0⟨φn, γ(ϑ)φn⟩. Since J =
� ⊕
Q∗

B
dϑJ(ϑ) with the (ϑ-

independent) complex conjugation operator J(ϑ) on L2(QB), we conclude tr(γ(ϑ)) =∑
n∈N⟨φn, γ(ϑ)φn⟩.

This has the following consequences for α. First, we note that γ ⩾ 0 and (1.4.44)
imply

αα∗ ⩽ γ. (1.4.51)

Therefore, admissibility of Γ implies that α is a local Hilbert–Schmidt operator with a
kernel α(x, y). Since the kernel of αα∗ equals

αα∗(x, y) =
�
R3

dz α(x, z)α(y, z), (1.4.52)

we conclude from (1.4.39) that the Hilbert–Schmidt norm per unit volume equals

∥α∥2
2 = 1

|QB|

�
QB×R3

dxdy |α(x, y)|2. (1.4.53)

Likewise, admissibility and (1.4.51) yield

∥(−i∇ + AB)α∥2
2 =

�
QB×R3

dxdy |(−i∇x + AB(x))α(x, y)|2 < ∞. (1.4.54)

Finally, we often additionally require that

∥(−i∇ + AB)α∥2
2 =

�
QB×R3

dxdy |(−i∇y + AB(y))α(x, y)|2 < ∞. (1.4.55)

Equations (1.4.53), (1.4.54), and (1.4.55) imply that α belongs to the Sobolev space
of Hilbert–Schmidt operators, for which the norm given by

∥α∥2
2 + ∥(−i∇ + AB)α∥2

2 + ∥(−i∇ + AB)α∥2
2 (1.4.56)
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is finite.
We close this section by the introduction of center-of-mass and relative coordinates

since these play a major role in the analysis of the BCS functional in the weak magnetic
field regime. This can already be seen from the periodicity relation of the kernel α(x, y)
in (1.4.48). When we introduce the center of mass of x and y by

X := x+ y

2 (1.4.57)

and the relative coordinate by

r := x− y, (1.4.58)

then (1.4.43) and (1.4.48) become

α(X, r) = eiB·(λ∧X) α(X + λ, r), λ ∈ ΛB; α(X, r) = α(X,−r). (1.4.59)

Here, we abused notation slightly by writing α(X, r) ≡ α(x, y). Therefore, let us introduce
the space L2(QB × R3

s ) of functions α(x, y) obeying (1.4.59), whose norm

∥α∥2
2 := 1

|QB|

�
QB×R3

dxdy |α(x, y)|2 (1.4.60)

is finite.
A straightforward computation then shows that

πx = 1
2Π + π̃, πy = 1

2Π − π̃, (1.4.61)

where Π and π̃ are the center-of-mass magnetic and relative momentum operators given
by

Π := −i∇ + 2AB, π̃ := −i∇ + 1
2AB. (1.4.62)

Therefore, we can also let H1(QB × R3
s ) be the space of functions for which the norm

∥α∥2
H1(QB×R3

s ) := ∥α∥2
2 + ∥Πα∥2

2 + ∥π̃α∥2
2 (1.4.63)

is finite.
The conclusion is that if Γ is an admissible BCS state, then the kernel of α belongs to

the Sobolev space H1(QB × R3
s ).

At this point, we can understand the expression (1.2.2) in a rigorous fashion. Before
we define the BCS functional that we will work with, we need to introduce the scaling of
the external fields and the weak field regime.

1.4.6 The scaling of weak external fields

We recall that we consider a system of fermions that is subject to external fields. The most
relevant contribution, which also causes the most severe mathematical difficulties, stems
from the constant magnetic field. It is given by a vector B ∈ R3, which in this figure and
the work presented in Chapter 2, is pointing in the e3-direction and has strength B > 0.
In this case, the box QB that we constructed in (1.4.13) is solely dependent on B and is
a cube of sidelength

√
2πB−1, as Figure 1.9 shows. This models a system with a constant
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QB

B = Be3

√
2πB−1

b3

b1

b2

B · (b1 ∧ b2) = 2π

Figure 1.9: Fermionic system with a constant nonzero magnetic flux through the unit cell.
The flux is independent of the field strength B = h2.

(that is, independent of B) but nonzero magnetic flux through the unit cell of the lattice
ΛB of periodicity.

Now, we define the magnetic field strength

B := |B|

and the unit vector pointing in the direction of the magnetic field

eB := (b1, b2, b3) := B−1 B. (1.4.64)

To introduce the scaling of the problem, we assume that the fixed external potentials A
and W are periodic with respect to the lattice ΛeB . We emphasize that we say periodic,
not gauge-periodic. This means that we have

A(x+ λ) = A(x), W (x+ λ) = W (x), λ ∈ ΛeB . (1.4.65)

We introduce a parameter h > 0, which we think of as Planck’s constant and which
shall model the ratio between the microscopic — order 1 — and macroscopic — order h−1

— scale of the system. We assume h to be small, 0 < h ≪ 1, and it will enable us to
model the external fields to be weak and of macroscopic nature. First of all, we explain the
macroscopic nature of the fields. We set the magnetic field B to be of strength B := h2.
This extends the box QB to be very large and the sidelength

|bi(B)| =
√

4π
h6 b1 b2 b3

h2bi ∼ h−1 (1.4.66)

to be of the macroscopic order h−1, see (1.4.11). Since the constant magnetic field potential
AB(x) = 1

2B ∧ x is linear, we cannot see the difference between the macroscopic scaling
and the weakness of the field, they come hand in hand. This is different, however, when it
comes to the periodic external fields. Here, we do see a difference. Namely, the potentials
that we will insert into the functional are given by

Ah(x) := hA(hx), Wh(x) := h2W (hx), (1.4.67)
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B

b

−V

Figure 1.10: Fermions interact via an attractive two-body potential – Cooper pair forma-
tion indicated by the colored clouds.

where A and W are the periodic fields from (1.4.65). Here, the macroscopic nature of
the fields results from the argument hx, which makes the fields “live” (as we say) on the
large macroscopic box QB instead of QeB . In contrast, the factors of h and h2 in front
of A and W , respectively, indicate the weakness of the field. The macroscopic scale is
complemented by the microscopic scale of order 1 on which the interaction of the particles
caused by V takes place.

Since we have to deal with a separation of scales (microscopic and macroscopic), we
also say that our problem is a two-scale problem.

The following assumptions on the external fields will guide us through the entire thesis.
In order to phrase them, we introduce the Sobolev spaces Wm,∞

per (QeB) and Wm,∞
per (QeB ;R3)

as the spaces of (vector-valued) functions f such that Dνf belongs to the space L∞
per(QeB)

or L∞
per(QeB ;R3) of bounded periodic (vector-valued) functions, respectively, ν ∈ N3

0, |ν| ⩽
m. We remark that such functions are Lipschitz continuous up to the (m− 1)st derivative
and they possess a Taylor expansion in the classical sense. This can be seen from Sobolev
space theory above the critical Sobolev exponent, which is maybe less common to be taught
in lecture courses, but which is well explained for example in [E10]. It needs knowledge on
Lebesgue’s Differentiation theorem, which is only stated but not proved in [E10]. A proof
using maximal functions can be found in [S13]. For the reader’s convenience, we gather
the relevant content in Appendix B.

Assumption 1.4.5. The magnetic potential A satisfies A ∈ W 4,∞
per (QeB ;R3) and the

electric potential satisfies W ∈ W 1,∞
per (QeB). Additionally, we have A(0) = 0.

1.4.7 Rigorous definition of the BCS functional

We can now rigorously define the BCS functional as the expression which we informally
introduced in (1.2.2). For any admissible BCS state Γ and any h > 0, we define the BCS
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free energy functional at temperature T ⩾ 0 by

FBCS
h,T (Γ) := Tr

[(
(−i∇ + Ah)2 +Wh − µ

)
γ
]

− T S(Γ) −
 
QB

dX
�
R3

dr V (r) |α(X, r)|2.

(1.4.68)

Here, S(Γ) := − Tr[Γ ln(Γ)] is the von Neumann entropy per unit volume and Ah and Wh

are as in (1.4.67).

1.4.8 Boundedness from below

The first thing that we have to convince ourselves of is the fact that the BCS functional
is bounded from below. Obviously, this is necessary to be able to properly set up the
minimization problem, which we mentioned several times by now. The proof I present
here has been conducted by Andreas Deuchert, who wrote it down in unpublished notes
on the BCS functional. For the allowance to present it here, I express my gratitude to
him.

Before we start we should mention that we use the following convention in the field
of analysis: C denotes a generic positive constant that is allowed to change from line to
line. We allow it to depend on the various fixed quantities in the theory, namely the
external fields A and W , as well as the critical temperature Tc, the chemical potential
µ, the interaction V , the ground state α∗ of KTc − V , and so on. Of course, it does not
depend on h, T , γ, etc.

The main idea is that the kinetic energy dominates both the entropy and the interac-
tion. First of all, we bound away the periodic potentials Ah and Wh. Since W is bounded,
we obviously have Tr[Whγ] ⩾ −Ch2 Tr γ. Furthermore,

(−i∇ + Ah)2 = π2
AB +Ah · πAB + πAB ·Ah + |Ah|2.

Since, for any self-adjoint operators T and S and ε > 0, we have (
√
ε T +

√
ε

−1
S)2 ⩾ 0,

whence

TS + ST ⩾ −ε T 2 − ε−1S2,

we conclude that

(−i∇ + Ah)2 ⩾ (1 − ε)π2
AB +

(
1 − ε−1

)
|Ah|2 ⩾ (1 − ε)π2

AB − C(1 + ε−1)h2.

With the choice ε = 1
2 , this implies that

Tr
[(

(−i∇ + Ah)2 +Wh − µ
)
γ
]
⩾

1
2 Tr

[
(π2

AB − C(1 + h2))γ
]
. (1.4.69)

To arrive at this inequality, we made use of the fact that γ = γ1/2γ1/2 and that we are
allowed to symmetrize the operators inside the trace by cyclicity.

The next step is to bound the entropy by a portion of the kinetic energy. We define

Γ̃ := 1
1 + e

β
8 H̃

, H̃ :=
(
π2

AB
−π2

AB

)
,

and let γ̃ be the upper left entry of Γ̃. With this, a short computation shows that

1
8 Tr[π2

ABγ] − TS(Γ) = 1
8 Tr[π2

AB γ̃] − TS(Γ̃) + T

2 Tr
[βH̃

8 (Γ − Γ̃) + φ(Γ) − φ(Γ̃)
]
,

(1.4.70)
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where the function φ is defined in (1.3.6). Since φ′(Γ̃) = −β
8 H̃, we are in position to

employ the trace version of Klein’s inequality. We already came across a simplified version
of this in Section 1.3. The inequality tells us that whenever φ : [0, 1] → R is strictly convex
and differentiable so that φ(T ), φ(S), and φ′(S) are locally trace class, then

Tr
[
φ(T ) − φ(S) − φ′(S)(T − S)

]
⩾ 0 (1.4.71)

and equality holds if and only if T = S, see Theorem A.3.4. This inequality is the most
basic trace inequality and usually the first, which one comes about. It also plays an
important role in the study of the so-called relative entropy, as we shall sketch in the next
section.

Klein’s inequality tells us that (1.4.70) is bounded from below by

1
8 Tr[π2

ABγ] − TS(Γ) ⩾ 1
8 Tr[π2

AB γ̃] − TS(Γ̃), (1.4.72)

To calculate this term, we have 1 − γ̃ = (1 + e− β
8 π

2
AB )−1, so that

Tr[Γ̃ ln(Γ̃)] = Tr[γ̃ ln(γ̃) + (1 − γ̃) ln(1 − γ̃)].

Therefore, the right side of (1.4.72) equals

T Tr
[βπ2

AB

8 γ̃ + γ̃ ln(γ̃) + (1 − γ̃) ln(1 − γ̃)
]

= T Tr
[
ln(1 + e− β

8 π
2
AB )

]
. (1.4.73)

In Chapter 5, we investigate the spectrum of the periodic Landau Hamiltonian. This
shows that the right hand side of (1.4.73) is finite.

Next, we bound the interaction by a portion of the kinetic energy. This is true even
if V ∈ L∞(R3) does not hold. For, the inequality (1.4.44) implies αα∗ ⩽ γ, whence
Tr[π2

AB
γ] ⩾ Tr[πABαα

∗πAB ] = Tr[απ2
AB
α∗]. The last inequality follows from the fact

that πABα is Hilbert–Schmidt, which we saw in Section 1.4.5. Hence, we conclude that

1
8 Tr[π2

ABγ] −
 
QB

dX
�
R3

dr V (r)|α(X, r)|2 ⩾
 
QB

dy ⟨α, (π2
AB − Vy)α⟩L2(R3,dx),

(1.4.74)

where π2
AB

− Vy acts on the first coordinate of α(x, y) and Vy is the operator acting as
(Vyψ)(x) = V (x − y)ψ(x). With modest assumptions on V , we have that π2

AB
− Vy is

bounded from below. In our case, with bounded V , this is trivial, since Vy ⩾ −∥V ∥∞ and
π2

AB
⩾ 0. The latter holds by the diamagnetic inequality

|(−i∇ + A)ψ(x)| ⩾ |∇|ψ|(x)|, (1.4.75)

which holds pointwise for almost all x ∈ R3 as long as A ∈ L2
loc(R3), see [LL01, Theorem

7.21] or [LS10, Eq. (4.4.3)]. Hence, (1.4.74) is bounded from below by −C Tr[αα∗], which
by the inequality αα∗ ⩽ γ shows that

1
8 Tr[π2

ABγ] −
 
QB

dX
�
R3

dr V (r) |α(X, r)|2 ⩾ −C Tr γ.

To sum up, we have shown that

FBCS
h,T (Γ) ⩾ 1

4 Tr
[
(π2

AB − C(1 + h2))γ
]

− C.
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Thus, it remains to show that the first term is bounded from below. Set D := C(1 + h2).
We claim that

Tr
[
(π2

AB −D)γ
]
⩾ Tr

[
(π2

AB −D)1(−∞,D](π2
AB)

]
. (1.4.76)

It is clear that the right side of this is finite since the operator π2
AB

has finitely many
eigenvalues below the threshold D, see Chapter 5. To see that (1.4.76) holds, we write

Tr
[
(π2

AB −D)γ
]

= Tr
[
(π2

AB −D)1(−∞,D](π2
AB) γ

]
+ Tr

[
(π2

AB −D)1(D,∞)(π2
AB) γ

]
. (1.4.77)

The second term is nonnegative since γ ⩾ 0 and

Tr
[
(π2

AB −D)1(D,∞)(π2
AB) γ

]
= Tr

[√
(π2

AB
−D)1(D,∞)(π2

AB
) γ

√
(π2

AB
−D)1(D,∞)(π2

AB
)
]
.

Likewise, the first term on the right side of (1.4.77) is bounded from below by

Tr
[
(π2

AB −D)1(−∞,D](π2
AB) γ

]
= − Tr

[√
(D − π2

AB
)1(−∞,D](π2

AB
) γ

√
(D − π2

AB
)1(−∞,D](π2

AB
)
]

⩾ Tr
[
(π2

AB −D)1(−∞,D](π2
AB)

]
.

This proves the claim.

1.4.9 Normal state

As in the case of the translation invariant functional, the first question that needs to be
answered is the question of the normal state and its BCS energy, i.e., the minimizer of
FBCS
h,T in the absense of interactions, V = 0. The normal state is defined as the Fermi–Dirac

distribution with external fields, that is,

Γ0 :=
(
γ0

1 − γ0

)
, γ0 := 1

1 + eβ(hA,W −µ) , hA,W := (−i∇ + Ah)2 +Wh. (1.4.78)

A short calculation shows that its BCS energy is given by

FBCS
h,T (Γ0) = T Tr

[
ln
(
1 + e−β((−i∇+A2

h)+Wh−µ)
)]

(1.4.79)

and the trace edition of Klein’s inequality (1.4.71), applied to φ as defined in (1.3.6), helps
us to prove that

FBCS
h,T (Γ) ⩾ FBCS

h,T (Γ0) (1.4.80)

with equality if and only if Γ = Γ0. This proves that Γ0 is the unique minimizer of FBCS
h,T

in the absence of interactions.
To see that (1.4.80) is true, we write the BCS functional as

FBCS
h,T (Γ) − FBCS

h,T (Γ0) = T

2 Tr
[
βH0(Γ − Γ0) + φ(Γ) + φ(Γ0)

]
, (1.4.81)
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where φ is the function in (1.3.6) and

H0 :=
(
hA,W

−hA,W

)
.

We further make use of the identity

βH0 = ln(1 − Γ0) − ln(Γ0) = φ′(Γ0). (1.4.82)

From this, the claim is provided by Klein’s inequality applied to A = Γ and B = Γ0.
Klein’s inequality falls into the category of inequalities that we also refer to as relative

entropy inequalities. This is due to the fact that it implies the relative entropy of the state
Γ and a state Γ0 of the form Γ0 = 1

1+eβH for a Hamiltonian H given by

H(Γ,Γ0) := Tr
[
Γ(ln(Γ) − ln(Γ0)) + (1 − Γ)(ln(1 − Γ) − ln(1 − Γ0))

]
(1.4.83)

to be nonnegative and equal to zero if and only if Γ = Γ0. This follows from (1.4.81) since
(if V = 0)

FBCS
h,T (Γ) − FBCS

h,T (Γ0) = H(Γ,Γ0).

1.4.10 Superconductivity and minimization problem

When interactions are present, i.e., V ̸≡ 0, we are interested in the question whether the
normal state is stable or instable in the sense that the minimization problem for the BCS
energy

FBCS(h, T ) := inf
{

FBCS
h,T (Γ) − FBCS

h,T (Γ0) : Γ admissible BCS state
}

(1.4.84)

has a minimizer which is different from the normal state Γ0 in (1.4.78) or not. We call the
system superconducting if this is the case, i.e., if

FBCS(h, T ) < 0. (1.4.85)

Otherwise, the system is said to be in the normal state. Note that a state Γ, which
lowers the BCS energy below that of the normal state necessarily has α ̸≡ 0 because Γ0
is the unique minimizer among diagonal states. This is proven with the help of Klein’s
inequality by a similar argument to the fact that Γ0 is the unique minimizer in the absence
of interactions.

1.4.11 The critical temperatures

We next define two critical temperatures, namely the upper critical temperature

Tc(h) := inf
{
T > 0 : FBCS

h,T ′ (Γ) > FBCS
h,T ′ (Γ0) for all admissible Γ ̸= Γ0 and T ′ ⩾ T

}
(1.4.86)

and the lower critical temperature

Tc(h) := sup
{
T > 0 : FBCS(h, T ) < 0 for all 0 ⩽ T ′ < T

}
. (1.4.87)

The upper critical temperature Tc(h) is the lowest temperature above which the nor-
mal state is always stable, whereas the lower critical temperature Tc(h) is the largest
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normal

superconducting

Tc(B)

Tc(B)

Tc

T

?

B

Figure 1.11: Upper and lower critical temperature in the case of the constant magnetic
field, where B = h2.

temperature below which the normal state is always instable. This situation is illustrated
for the constant magnetic field strength B = h2 in Figure 1.11, which is a hypothetic
phase diagram for the BCS model.

We saw earlier in Section 1.3 that the BCS model has a unique critical temperature
Tc in the absence of external fields. However, if fields are present then it might indeed
be the case that the superconducting phase appears and vanishes alternatingly while we
increase the temperature in between the two critical temperatures (1.4.86) and (1.4.87).
One mathematical reason for this is that the appropriate substitute for KT − V (the
operator LT,B, which will be introduced in (2.3.15) and analyzed thorougly in Chapter 2)
is not monotone in T anymore. In connection to this, recall that Meißner and Ochsenfeld
already observed such a behavior, as we discussed in Section 1.1. The question whether
these temperatures coincide is not answered in this thesis. What we do investigate is how
close these critical temperatures lie together and, via the definitions (1.4.86) and (1.4.87),
this is closely related to an analysis of the BCS functional at low energies.

1.5 The Limiting Ginzburg–Landau Theory

1.5.1 Gauge-periodic Sobolev spaces upon the center of mass

As a preparation, we need to define the function spaces which will accompany us through-
out the thesis. The functions we are interested in are ΛB-gauge-periodic with respect to
the magnetic translations TB(λ) := T2B(λ), λ ∈ ΛB, i.e.,

TB(v)f(X) := eiB·(v∧X)f(X + v), v ∈ R3. (1.5.1)

Due to our choice of lattice, the family {TB(λ)}λ∈ΛB is an abelian group of translations.
The reason for the factor of 2 in comparison to the magnetic translations TB(λ) in

(1.4.6) lies in the fact that the center of mass describes Cooper pairs which carry twice
the charge of a single electron. We should note that the term representing the magnetic
potential in the Hamiltonian is actually qA(X), where q is the charge. If our units were
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made so that q would be present, then we would have seen that q = 2e for the center of
mass.

For 1 ⩽ p ⩽ ∞, we denote the Lp-space of ΛB-periodic functions by

Lpmag(QB) :=
{

Ψ ∈ Lploc(R
3) : TB(λ)Ψ = Ψ, λ ∈ ΛB

}
(1.5.2)

and we equip it with the norm

∥Ψ∥pp :=
 
QB

dX |Ψ(X)|p := 1
|QB|

�
QB

dX |Ψ(X)|p (1.5.3)

if 1 ⩽ p < ∞ and with the usual sup-norm if p = ∞. For m ∈ N0, we further define the
gauge-periodic Sobolev space by

Hm
mag(QB) :=

{
Ψ ∈ L2

mag(QB) : (−i∇ + 2AB)ν ∈ L2
mag(QB), |ν| ⩽ m

}
(1.5.4)

and we endow it with the scalar product

⟨Φ,Ψ⟩Hm
mag(QB) :=

∑
|ν|⩽m

h−2(1+|ν|) ⟨(−i∇ + 2AB)νΦ, (−i∇ + 2AB)νΨ⟩L2
mag(QB). (1.5.5)

Note that if Ψ is a gauge-periodic function, then (−i∇+2A)Ψ is gauge-periodic, too, since
the magnetic momentum operator ΠAh

commutes with the magnetic translations TB(v),
where

ΠA := −i∇ + 2A. (1.5.6)

This follows from a similar computation to (1.4.7). Moreover, the components of ΠA are
self-adjoint in H1

mag(QB).

1.5.2 The Ginzburg–Landau scaling

We now want to comment on the peculiar scaling that we chose for the scalar product
on the space Hm

mag(QB), which we defined in (1.5.5). To explain this, let a function
ψ ∈ L2

mag(QeB) be given and let us define

Ψ(X) := hψ(hX), X ∈ R3. (1.5.7)

We will see in a moment, when we define the Ginzburg–Landau functional, that it is
invariant under this scaling, which is the reason for us to work with it. Moreover, we have

∥Ψ∥p = h ∥ψ∥p, 1 ⩽ p ⩽ ∞, (1.5.8)

as can be verified by a short calculation. If ψ ∈ Hm
mag(QB), then Ψ ∈ Hm

mag(QB) and we
have

∥Ψ∥Hm
mag(QB) = ∥ψ∥Hm

mag(QeB ). (1.5.9)

This motivates the following suggestive notation that we use throughout the thesis: ψ
is a gauge-periodic function on the unscaled box QeB (the macroscopic “outside-world”
perspective of the sample), whereas Ψ is gauge-periodic on the large box QB (macroscopic
box from the microscopic perspective). The advantage of the incorporation of the scaling
factors in the norm is that all norms can be thought of as “order one” with respect to
h. Therefore, we can phrase statements in terms of Ψ without saying anything about its
scaling properties. However, as soon as Ψ arises as a scaled version of ψ, we know that the
norm does not contain any “hidden” factors of h. Furthermore, we never see any factors
of h that appear for dimensional reasons, which is an advantage since these often are a
source of confusion.
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1.5.3 The Ginzburg–Landau functional

When we investigate the BCS functional in the weak magnetic field limit, we need a
limiting theory that describes it. Per definition, this theory is independent of h.

Our limiting theory is given by an energy functional, the Ginzburg–Landau functional,
too. It determines the subleading behavior of BCS theory in the weak external field
limit. As explained earlier, this macroscopic theory of superconductivity is older than BCS
theory. The endeavor of deriving GL theory from BCS theory has been initiated by Gor’kov
[G59], which then has been continued in the works [FHSS12], [FHSS16], among others, and
in this thesis. Ginzburg–Landau theory is defined in terms of a single order parameter, a
gauge-periodic wave function ψ with respect to the lattice ΛeB . This wave function belongs
to the magnetic Sobolev space H1

mag(QeB). For positive coefficients Λ0,Λ2,Λ3 > 0, a real
coefficient Λ1 ∈ R, and a real parameter D ∈ R the (sometimes called microscopically
derived) Ginzburg–Landau functional is defined as

EGL
D (ψ) :=

�
QeB

dX
{

Λ0 |(−i∇ + 2A)ψ(X)|2 + Λ1W (X) |ψ(X)|2

−DΛ2 |ψ(X)|2 + Λ3 |ψ(X)|4
}
. (1.5.10)

We can define the so-called Ginzburg–Landau energy for this functional which is simply
given by

EGL(D) := inf
{

EGL
D (ψ) : ψ ∈ H1

mag(QeB)
}
. (1.5.11)

Let us mention that Ginzburg–Landau theory has a phase transition which can be
demonstrated quite easily. Namely, depending on the parameter D the functional given
above can have a trivial minimizer ψ ≡ 0, in which case the energy is zero, or the energy
is strictly negative with a nontrivial minimizer. The critical parameter for this transition
is

Dc := 1
Λ2

inf spec
{

Λ0 (−i∇ + A)2 + Λ1W
}
. (1.5.12)

To see that this holds, let us assume first that D ⩽ Dc. By (1.5.12), this implies that
the operator LD := Λ0(−i∇ + A)2 + Λ1W − D is nonnegative. Therefore, we may drop
the positive quartic term for a lower bound and obtain

EGL
D (ψ) ⩾ Λ2 ⟨ψ,LDψ⟩ ⩾ 0.

This proves that EGL(D) ⩾ 0 and the test-function ψ ≡ 0 proves EGL(D) ⩽ 0. If, on
the other hand, D > Dc, then let ψ be a ground state of the problem (1.5.12). Here, we
have to use the fact that the quartic term vanishes faster than the quadratic part of the
functional as |ψ| becomes small. Therefore, for θ ∈ R, we compute

EGL
D (θψ) = Λ2 (Dc −D) θ2 ∥ψ∥2

2 + Λ3 θ
4 ∥ψ∥4

4. (1.5.13)

We minimize this function over θ. The critical point is

θc := Λ2 (D −Dc) ∥ψ∥2
2

2 Λ3 ∥ψ∥4
4

and its value is

EGL
D (θcψ) = −Λ2

2 (D −Dc)2 ∥ψ∥4
2

4 Λ3 ∥ψ∥4
4

, (1.5.14)
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which is clearly negative. This proves that the Ginzburg–Landau functional has a phase
transition at D = Dc.

As Ginzburg–Landau theory is our limiting theory, it is h-independent. However,
it is sometimes more convenient to have a scaling invariant version of the Ginzburg–
Landau functional defined on the box QB (in the microscopic perspective). Hence, for
Ψ ∈ H1

mag(QB), we set

EGL
D,h(Ψ) := 1

h4

 
QB

dX
{

Λ0 |(−i∇ + 2A)Ψ(X)|2 + Λ1Wh(X) |Ψ(X)|2

−Dh2 Λ2 |Ψ(X)|2 + Λ3 |Ψ(X)|4
}
. (1.5.15)

As promised, if ψ and Ψ are related through (1.5.7), then a short calculation shows that

EGL
D,h(Ψ) = EGL

D (ψ), (1.5.16)

whence

EGL(D) = inf
{

EGL
D,h(Ψ) : Ψ ∈ H1

mag(QB)
}
. (1.5.17)

1.5.4 Ginzburg–Landau with magnetic field term

We also note that the Ginzburg–Landau functional usually comes with an additional term
which lets it describe the Meißner effect. In terms of an external magnetic field Hext, this
functional then reads

ẼGL
D (ψ,A) :=

�
QeB

dX
{

Λ0 |(−i∇ + 2A)ψ(X)|2 + Λ1W (X) |ψ(X)|2

−DΛ2 |ψ(X)|2 + Λ3 |ψ(X)|4
}

+
�
QeB

dX
∣∣∣curl A(X) −Hext(X)

∣∣∣2.
This functional has been investigated in the literature in great detail and it describes
additional features of the superconductor like the penetration depth. In our case however,
since we do not have the corresponding term in the BCS functional, the functional we
obtain as a limiting functional is the one given in (1.5.15).

1.6 Main Results of this Thesis

1.6.1 The BCS energy

The results that are presented in this work address two questions. The first question is
the behavior of the BCS energy FBCS(h, T ) in (1.4.84) for small h and here we want to
derive a formula that describes the energy in the weak magnetic field regime. In practice,
this formula will be an asymptotic expansion in powers of h as h → 0. Here, we want to
determine the coefficients. The first coefficient we expect is already incorporated in the
definition of the BCS energy, namely the energy of the normal state.

Of course this is the external-field edition of the normal state energy since we have
defined it so. However, it will not surprise the reader that the energy of the normal state
with external fields converges to the energy of the free normal state. The proof of this fact
is not contained in this thesis but may be given with the help of Chapter 5, which allows
for an evaluation of traces of a large class of functions of the Landau Hamiltonian.
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The second order requires a precise temperature scaling in which we address the prob-
lem, namely

T = Tc(1 −Dh2) (1.6.1)

for some constant D ∈ R. In terms of the Ginzburg–Landau energy that we introduced
above, we will show that the BCS energy in (1.4.84) has the asymptotic expansion

FBCS(h, Tc(1 −Dh2)) = h4
(
EGL(D) + o(1)

)
, h → 0. (1.6.2)

Here, the coefficients Λi, i = 0, . . . , 3 for the Ginzburg–Landau functional are determined
by the translation-invariant BCS theory. More precisely, in terms of the functions

g1(x) := tanh(x/2)
x2 − 1

2x
1

cosh2(x/2)
, g2(x) := 1

2x
tanh(x/2)
cosh2(x/2)

, (1.6.3)

we have

Λ0 := β2
c

16

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|2

(
g1(βc(p2 − µ)) + 2

3βc p
2 g2(βc(p2 − µ))

)
, (1.6.4)

Λ1 := β2
c

4

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|2 g1(βc(p2 − µ)), (1.6.5)

Λ2 := βc
8

�
R3

dp
(2π)3

|(−2)V̂ α∗(p)|2

cosh2(βc
2 (p2 − µ))

, (1.6.6)

Λ3 := β2
c

16

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|4 g1(βc(p2 − µ))

p2 − µ
. (1.6.7)

Here, α∗ is the unique normalized ground state of KTc −V and we use the Fourier transform
of the “gap function” V α∗ ∈ L2(R3), which is defined by

V̂ α∗(p) :=
�
R3

dx e−ip·x V (x)α∗(x). (1.6.8)

Note that we choose a non-unitary Fourier transform here.
I announced earlier that the BCS gap equation will not play a major role in this

thesis. This is wrong insofar as the eigenvalue equation KTcα∗ = V α∗ can be viewed as
one manifestation of this gap equation and especially physicists consider the so-called gap
function −2V α∗ as the “solution” to the gap equation. Here, the minus sign stands for the
negative charge of the particles and the factor of 2 again models the Cooper pair charge.
The function V α∗ is then the microscopic wave function which models the details inside
the Cooper pair.

The coefficients Λ2 and Λ3 are easily seen to be positive just because of the signs of
the functions g1(x)/x and g2, whereas Λ1 can have either sign and the sign depends on the
sign of the derivative Tc with respect to µ, see the corresponding remark below [FHSS12,
Eq. (1.21)]. The kinetic coefficient Λ0 is also positive but the argument is somewhat
more complicated. It is given in (2.3.25) and involves calculations with the commutator of
KTc . In the work [FHSS12], this coefficient is actually a positive definite matrix, since the
authors were able to dispense with the radiality of V in the context of the fluxless model.

The result (1.6.2) should be read in the following way. If it was not for the error o(1),
then we would have a criterion for superconductivity the BCS model with external fields.
Indeed, in this case, the phase transition would be inherited from the Ginzburg–Landau
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functional, i.e., if the temperature approaches Tc in a linear fashion with a slope D that is
above Dc, D ⩾ Dc, then the BCS model would be superconducting, otherwise it would be
in the normal state. Since we do have the error in (1.6.2), this interpretation is not quite
possible and we need an additional result on the phase diagram of the BCS model.

It is noteworthy, however, that the first term that appears on the right side is of the
order h4, whereas, as we explained above, the changes in the BCS functional caused by the
external fields are of the order h2. The reason for this is difficult to explain without the
knowledge of the proof. In some sense, however, it lies in the fact that the temperature
regime we consider ranges about the critical temperature of the translation invariant model
and the state which minimizes (1.4.84) is given by the gap function V α∗ = KTcα∗ of that
model. Therefore, the contribution that appears on the order h2 cancels out.

1.6.2 The critical temperature and phase diagram

The second question we want to address is the shape of the phase diagram of BCS theory
in the weak magnetic field regime, 0 < h ≪ 1. More precisely, we want to argue for small
magnetic fields that, up to small errors, the upper and lower critical temperature Tc(h)
and Tc(h) in (1.4.86) and (1.4.87) actually coincide, namely

Dc − o(1) ⩽
Tc(h) − Tc

Tch2 ⩽
Tc(h) − Tc
Tch2 ⩽ Dc + o(1), h → 0. (1.6.9)

This means that they are confined in a small cone around a linear asymptotic expansion.
The linear expansion is given by

Tc(h) := Tc(1 −Dch
2), (1.6.10)

where Dc is the critical parameter of the Ginzburg–Landau functional, defined in (1.5.12).
For the case of a constant magnetic field, this is illustrated in the following Figure 1.12.
As expected, the first order of the expansion (1.6.9) is the critical temperature Tc of the

normal

superconducting

Tc(B)

Tc(B)

Tc

T

?

B

Tc(1 DcB)−

Figure 1.12: Phase diagram of the BCS model for an external field only consisting of the
constant magnetic field with strength B = |B|.

model without external fields. As we see, the next order in the expansion is the linear
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term given by the slope Dc. This confirms the heuristics that we sketched in the previous
section, namely that the phase transition of the BCS model is located at the temperature
regime (1.6.10), i.e., it is inherited from the Ginzburg–Landau model, although, strictly
speaking, we have two phase transitions that we cannot exclude to be distinct.

Figure 1.12 suggests that the critical temperature of the model decreases with increas-
ing strength of the external fields. This is indeed true for a purely magnetic field. When
the electric field W is present, however, the critical temperature might actually increase,
depending on the lowest eigenvalue of the problem (1.5.12).

The important point here is that the critical temperature of the BCS model only
depends on the linear part of Ginzburg–Landau theory. The quartic term only plays a
role in the energy expansion but is not present here.

The attentive reader will have noticed that our results Theorem 2.2 and 3.2 do not show
(1.6.9). The reason for this is that we are not able to deal with a small temperature regime
close to absolute zero because our expansions deteriorate as the temperature approaches
zero. I suspect that these problems are of technical nature and can be fixed in the future.

1.6.3 The structure of low-energy states

In order to understand the BCS model up to the second order, we need to understand
the structure of superconducting states. Consequently, the results (1.6.2) and (1.6.9) are
based on the following structural result that we are going to prove.

We assume that the temperature is not too far below the critical temperature Tc, i.e.

T − Tc ⩾ D0h
2 (1.6.11)

for some constant D0 > 0. Furthermore, we assume that Γ is an almost minimizer (or,
approximate minimizer) of the BCS model, that is,

FBCS
h,T (Γ) − FBCS

h,T (Γ0) ⩽ 0. (1.6.12)

We can actually allow for an energy up to D1h
4 for some D1 ⩾ 0, which is the order of

the Ginzburg–Landau functional but for the sake of simplicity, we assume that D1 = 0 for
now.

If (1.6.11) and (1.6.12) are true, then for h > 0 small enough there are Ψ ∈ H1
mag(QB)

and ξ ∈ H1(QB × R3
s ) such that the Cooper pair wave function α = Γ12 satisfies the

decomposition

α(X, r) = Ψ(X)α∗(r) + ξ(X, r), (1.6.13)

where

∥Ψ∥2
H1

mag(QB) ⩽ C, ∥ξ∥2
H1(QB×R3

s ) ⩽ Ch4 ∥Ψ∥2
H1

mag(QB), (1.6.14)

and

EGL
D,h(Ψ) ⩽ EGL(D) + o(1). (1.6.15)

The important message of (1.6.13) is that the superconducting behavior of the BCS
model is decoupling in center of mass and relative coordinate to leading order. The
microscopic behavior is displayed by the translation invariant BCS theory in the relative
coordinate whereas the macroscopic behavior is displayed by the wave function Ψ, which
only depends on the center of mass coordinate.
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Mathematically, this is expressed in the fact that the Cooper pair wave function admits
a product structure to leading order, where the center of mass part Ψ is a macroscopic
quantity, i.e. its H1

mag(QB)-norm is uniformly bounded in h. The interpretation is that
Ψ is flat throughout the sample, i.e., the Cooper pairs have a uniform distribution ap-
proximately. If Ψ showed oscillations, the gradient would be large. On top of that, since
∥α∗∥2 = 1, the modulus |Ψ|2 of this function Ψ has the interpretation of the density
of Cooper pairs in the system and (1.6.15) shows that it is an almost minimizer of the
Ginzburg–Landau model.

Furthermore, the relative coordinate is occupied by the ground state wave function of
the operator KTc − V , which represents the translation invariant BCS theory. We should
note that the L2(QB × R3

s )-norm of the leading term equals
 
QB

dX
�
R3

dr
∣∣∣Ψ(X)α∗(r)

∣∣∣2 = h2 ∥Ψ∥2
H0

mag(QB). (1.6.16)

Therefore, it is much larger than the H1(QB × R3
s )-norm of the remainder function ξ.

All this can be seen as a separation of scales, which is displayed in Figure 1.13. Again,
this picture is for the constant magnetic field only.

α∗
x+ y

2

x− y

O(
√
B−1)

ψ

O(1)

Figure 1.13: Separation of scales

1.6.4 On the proof

With this remark, we conclude our introduction into the mathematics of BCS theory
of superconductivity. The proofs of the results that appeared in this introduction are
provided in the papers that are presented in Chapters 2 and 3, as well as the additional
Chapters 4-6. With the content of this introduction at hand, the reader should be well
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prepared for the reading of this content. We close this introduction by outlining the
prospected future of this project.

1.7 State of the Project and Outlook

As we have discussed in detail above, the results of this thesis enable us to derive Ginzburg–
Landau theory in the weak magnetic field limit for any periodic magnetic field of sufficient
regularity that is applied to the BCS model. In this outlook, we want to sketch a few
possibilities for the project to be continued in the future. In this section, we assume the
reader to be familiar with the content and techniques used in Chapters 2 and 3, as opposed
to the previous sections.

1.7.1 The degenerate case

The situation we describe in this thesis is s-wave superconductivity, that is, the ground
state α∗ of the operator KT −V is unique. Since the interaction potential V is assumed to
be radial, it follows that α∗ is radial, too. The reason for this lies in the fact that KT is a
radial symbol in Fourier space, making KT − V compatible with the angular momentum
decomposition of L2(R3), which reads

L2(R3) =
∞⊕
ℓ=0

Hℓ, (1.7.1)

where

Hℓ := L2(R+, r
2dr) ⊗ span

{
Y ℓ
m : m = −ℓ, . . . , ℓ

}
(1.7.2)

and Y ℓ
m are the spherical harmonics. If the ground state α∗ is simple, then this implies

that it lies in the angular momentum sector ℓ = 0 and is thus a radial function.
It would be interesting to generalize the results of this thesis to the case of KT − V

having a degenerate ground state — let n := dim(KTc − V ) denote the degeneracy of the
ground state. In this case we expect that the gap function ∆(X, r) is of the form

∆(X, r) := −2V α∗(r) · Ψ(X) := −2
n∑
i=1

V α
(i)
∗ (r) Ψi(X), (1.7.3)

where

α∗ := (α(1)
∗ , . . . , α

(n)
∗ ) (1.7.4)

is an orthonormal basis of ker(KTc − V ) and

Ψ := (Ψ1, . . . ,Ψn). (1.7.5)

is a vector of gauge-periodic functions. Further literature on this is provided in the works
[FL16] and [DGHL18].

In the degenerate case, we have to change the point of view on Ginzburg–Landau theory
a bit, since the gap function does not decouple into α∗(r) and Ψ(X) so well anymore.
Hence, the expected Ginzburg–Landau functional reads as follows.
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1.7.1.1 The Ginzburg–Landau functional in the degenerate case

Let E : R3 → R3×3 and EW , E2, E4 : R3 → R be bounded continuous functions where
E2(p), E4(p) > 0 for all p ∈ R3. For Z ∈ Cn and Z ∈ Cn ⊗ C3, the coefficients for the
Ginzburg–Landau functional are defined by the quadratic terms

Λα∗(Z) :=
�
R3

dp
(
(−2)V̂ α∗(p)t Z

)
· E(p) ·

(
(−2)V̂ α∗(p)t Z

)
, (1.7.6)

Λα∗
W (Z) :=

�
R3

dp |(−2)V̂ α∗(p)t Z|2 EW (p), (1.7.7)

Λα∗
2 (Z) :=

�
R3

dp |(−2)V̂ α∗(p)t Z|2 E2(p), (1.7.8)

as well as the quartic term

Λα∗
4 (Z) :=

�
R3

dp |(−2)V̂ α∗(p)t Z|4 E4(p). (1.7.9)

Let Ψ: R3 → Cn be a gauge-periodic function. For h > 0 and D ∈ R, the Ginzburg–
Landau functional is defined by

EGL
D,h(α∗,Ψ) := 1

h4

 
Qh

dX
{

Λα∗
(
(−i∇ + 2Ah)Ψ(X)

)
+Wh(X) Λα∗

W

(
Ψ(X)

)
−Dh2 Λα∗

2

(
Ψ(X)

)
+ Λα∗

4

(
Ψ(X)

)}
. (1.7.10)

Furthermore, the Ginzburg–Landau energy is defined as

EGL(D) := inf
{

EGL
D,h(α∗,Ψ) : α∗ ∈ ker(KTc − V )n , Ψ ∈ H1

mag(Qh)n
}

and the critical parameter of the Ginzburg–Landau functional is given as follows. We
define the matrix E2(α∗) ∈ Cn×n by

E2(α∗) :=
�
R3

dp E2(p) V̂ α∗(p)V α∗(p)t (1.7.11)

and the Cn×n matrix-valued operator

L(α∗) :=
�
R3

dp V̂ α∗(p)
[
(−i∇ + 2A)∗ · E(p) · (−i∇ + 2A) +W EW (p)

]
V̂ α∗(p)t.

(1.7.12)

With these, we may define the critical parameter

Dc := sup
{
Dc(α∗) : α∗ ∈ ker(KTc − V )

}
(1.7.13)

where

Dc(α∗) := E2(α∗)−1 inf specL2
mag(QeB ;Cn) L(α∗) (1.7.14)

where the infimum is taken over gauge-periodic, square integrable functions. As an ex-
ample, in the case n = 2, it is easy to see that E2(α∗) is indeed a positive definite matrix
whenever its upper right entry E12(α∗) ̸= 0. For general n, we leave it to the reader to
provide conditions under which E2(α∗) is positive definite. We shall assume this in the
following.
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The definition of Dc is motivated by the fact that we again have EGL(D) < 0 if
D > Dc and EGL(D) = 0 if D ⩽ Dc. To see this, we fix h = 1 and let first D > Dc
so that D > Dc(α∗) for any α∗ ∈ ker(KTc − V ). Let ψ be a ground state of L(α∗), i.e.,
L(α∗)ψ = Dc(α∗)ψ. This implies that

EGL
D,h(α∗, ψ) = (Dc(α∗) −D)⟨ψ,E2(α∗)ψ⟩ + E4(α∗, ψ),

where

E4(α∗, ψ) :=
 
QeB

dX Λα∗
4

(
ψ(X)

)
.

By a similar argument to the one in (1.5.13)-(1.5.14), we then see that

EGL
D,h(α∗, ψ) = −(Dc(α∗) −D)2 ⟨ψ,E2(α∗)ψ⟩2

4E4(α∗, ψ) .

In particular, this implies that EGL(D) is negative. If, on the other hand, D ⩽ Dc, then
for any ε > 0 let α∗ ∈ ker(KTc − V ) be such that Dc(α∗) ⩾ Dc − ε. Thus, the operator

LD(α∗) := L(α∗) −DE2(α∗)

satisfies the bound

LD(α∗) ⩾ −εE2(α∗)

By omitting the nonnegative quartic term of the Ginzburg–Landau functional, we thus
obtain the lower bound

EGL
D,h(α∗, ψ) ⩾ −ε ⟨ψ,E2(α∗)ψ⟩.

Since this is true for all ε > 0, it follows that EGL(D) ⩾ 0. The inequality EGL(D) ⩽ 0
follows by testing with ψ ≡ 0.

1.7.1.2 The main obstacle

The degeneracy in the ground state essentially amounts to an increased difficulty in the
structural result on the low-energy states, namely Theorems 2.5.1 and 3.5.1. The point
is that we have to prove a bound on the L2(Qh × R3

s )-norm of the leading term and its
derivative 

QB

dX
�
R3

dr |α∗(r)t Ψ(X)|2,
 
QB

dX
�
R3

dr |α∗(r)t ΠΨ(X)|2.

This cannot be decoupled as an H1
mag(QB)-norm bound on Ψ anymore. For this to be

proven, we presumably have to put more assumptions on the structure of the ground
state space ker(KTc − V ). It is also advisable to start with a fluxless BCS model so that
the external fields have been removed when it comes to the delicate analysis. The main
obstacle is to find a substitute for Lemma 2.5.8.

1.7.2 Towards the treatment of the Meißner effect

When we want to set up a BCS model for the response field of a superconductor to an
external field Hext, we have to solve the following problems.
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1.7.2.1 Regularity issues on A

The derivation of Ginzburg–Landau theory has to be carried out under sufficiently low
regularity conditions, which are not satisfied in the model we consider in Chapters 2 and 3.
In order to do this, we need to introduce an energy cut-off, similar to the one we introduce
for Ψ in Corollary 2.5.2 in order to regularize it. Then, we need to perform the derivation
with the regularized part and control the errors obtained in this way. This is a project
which should be able to be solved with modest effort.

1.7.2.2 Decoupling of lattice and flux

Since the superconductor is located in a fixed spatial region (which for us is the unit cell
of the lattice of periodicity) and the magnetic response field has a magnetic flux through
the unit cell which might not be rational, we need to find a way to decouple the size of
the unit cell and the constant magnetic field part that we choose in our gauge. This is
necessary to obtain a fluxwise definition of the BCS functional. It is, however, not even
clear that this is the way to go. There might be more elegant ways to define the model.

1.7.2.3 Magnetic field estimates

We have to find a way to provide sufficiently good a priori estimates for the response fields.
In particular, we have to prove that the response field is of macroscopic nature if Hext is.
This puts up a major challenge to the business, which we do not know how to solve at the
present day.
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Chapter 2

Microscopic Derivation of
Ginzburg–Landau Theory and the
BCS Critical Temperature Shift in
a Weak Homogeneous Magnetic
Field

The content of this chapter has been published in [DHM21] and is co-authored by Andreas
Deuchert and Christian Hainzl.

Abstract

Starting from the Bardeen–Cooper–Schrieffer (BCS) free energy functional, we derive
the Ginzburg–Landau functional for the case of a weak homogeneous magnetic field.
We also provide an asymptotic formula for the BCS critical temperature as a function
of the magnetic field. This extends the previous works [FHSS12; FHSS16] of Frank,
Hainzl, Seiringer and Solovej to the case of external magnetic fields with non-vanishing
magnetic flux through the unit cell.

2.1 Introduction and Main Results

2.1.1 Introduction

In 1950 Ginzburg and Landau (GL) introduced a phenomenological theory of supercon-
ductivity that is based on a system of nonlinear partial differential equations for a complex-
valued wave function (the order parameter) and an effective magnetic field [GL50]. Their
theory is macroscopic in nature and contains no reference to a microscopic mechanism
behind the phenomenon of superconductivity. The GL equations show a rich mathemati-
cal structure, which has been investigated in great detail, see, e.g., [CSS18; CERS20; S14;
SS07; CR14; CG17; CG21b; CG21a] and references therein. They also inspired interesting
new concepts beyond the realm of their original application.

The first generally accepted microscopic theory of superconductivity was discovered
seven years later by Bardeen, Cooper and Schrieffer (BCS) in [BCS57]. In a major break-
through they realized that a pairing mechanism between the conduction electrons (forma-
tion of Cooper pairs) causes the resistance in certain materials to drop down to absolute
zero if their temperature is sufficiently low. This pairing phenomenon at low temperatures
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is induced by an effective attraction between the electrons mediated by phonons, that is,
by the quantized lattice vibrations of the crystal formed by the ion cores. In recognition
of this contribution BCS were awarded the Nobel prize in physics in 1972.

In the physics literature BCS theory is often formulated in terms of the gap equation,
which, in the absence of external fields, is a nonlinear integral equation for a complex-
valued function called the gap function (the order parameter of BCS theory). The name
of the equation is related to the fact that its solution allows to determine the spectral
gap of an effective quadratic Hamiltonian that is open only in the superconducting phase.
BCS theory also has a variational interpretation, where the gap equation arises as the
Euler–Lagrange equation of the BCS free energy functional. This free energy functional
can be obtained from a full quantum mechanical description of the system by restricting
attention to quasi-free states, a point of view that was emphasized by Leggett in [L80], see
also [G99]. In this formulation, the system is described in terms of a one-particle density
matrix and a Cooper pair wave function.

Although it was originally introduced to describe the phase transition from the normal
to the superconducting state in metals and alloys, BCS theory can also be applied to de-
scribe the phase transition to the superfluid state in cold fermionic gases. In this case, the
usual non-local phonon-induced interaction in the gap equation needs to be replaced by a
local pair potential. From a mathematical point of view, the gap equation has been stud-
ied for interaction kernels suitable to describe the physics of conduction electrons in solids
in [O64; BF68; V85; Y91; MY00; Y05]. We refer to [HHSS08; FHNS07; HS08a; HS08b;
FHS12; BHS14; FL16; DGHL18] for works that investigate the translation-invariant BCS
functional with a local pair interaction. BCS theory in the presence of external fields has
been studied in [HS12; BHS16; FLS17; D17; CS21].

A relation between the macroscopic GL theory and the microscopic BCS theory was
established by Gor’kov in 1959 [G59]. He showed that, close to the critical temperature,
where the order parameters of both models are expected to be small, GL theory arises
from BCS theory when the free energy is expanded in powers of the gap function. The
first mathematically rigorous proof of this relation was given by Frank, Hainzl, Seiringer
and Solovej in 2012 [FHSS12]. They showed that in the presence of weak and macroscopic
external fields, the macroscopic variations of the Cooper pair wave function of the system
are correctly described by GL theory if the temperature is close to the critical temperature
of the sample in an appropriate sense. The precise parameter regime is as follows: The
external electric field W and the vector potential A of the external magnetic field are
given by h2W (x) and hA(hx), respectively. Here 0 < h ≪ 1 denotes the ratio between
the microscopic and the macroscopic length scale of the system. Such external fields
change the energy by an amount of the order h2 and it is therefore natural to consider
temperatures T = Tc(1 − Dh2) with D > 0, where Tc denotes the critical temperature
of the sample in the absence of external fields. Within this setup it has been shown in
[FHSS12] that the correction to the BCS free energy on the order h4 is correctly described
by GL theory. Moreover, the Cooper pair wave function of the system is, to leading order
in h, given by

α(x, y) = hα∗(x− y)ψ
(
h(x+ y)

2

)
. (2.1.1)

Here, ψ denotes the order parameter of GL theory and α∗(x− y) is related to the Cooper
pair wave function in the absence of external fields.

External electric and magnetic fields may change the critical temperature of a super-
conductor and this shift is expected to be described by GL theory. A justification of this
claim has been provided in [FHSS16]. More precisely, it has been shown that, within
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the setup of [FHSS12] described above, the critical temperature of the sample obeys the
asymptotic expansion

Tc(h) = Tc(1 −Dch
2) + o(h2), (2.1.2)

where the constant Dc can be computed using linearized GL theory.
One crucial assumption in [FHSS12] and [FHSS16] is that the vector potential related

to the external magnetic field is periodic. In this case the magnetic flux through the unit
cell equals zero. An important step towards an extension of the results in [FHSS16] to
the case of a magnetic field with non-vanishing magnetic flux through the unit cell has
been provided by Frank, Hainzl and Langmann in [FHL19]. In this article the authors
consider the problem of computing the BCS critical temperature shift in the presence
of a weak homogeneous magnetic field within linearized BCS theory. Heuristically, this
approximation is justified by the fact that linearized GL theory is sufficient to predict the
critical temperature shift, see the discussion in the previous paragraph. In the physics
literature this approximation appears in [HW66; WHH66; L90; L91], for instance.

The aim of the present article is to extend the results in [FHSS12] and [FHSS16]
to a setting with an external magnetic field having non-zero flux through the unit cell.
More precisely, we consider a large periodic sample of fermionic particles subject to a
weak homogeneous magnetic field B ∈ R3. The temperatures T is chosen such that
(Tc − T )/Tc = D|B| with D ∈ R. We show that the correction of the BCS free energy
of the sample at the order |B|2 is given by GL theory. Moreover, to leading order in |B|
the Cooper pair wave function of the system is given by (2.1.1) with h replaced by |B|1/2.
We also show that the BCS critical temperature shift caused by the external magnetic
field is given by (2.1.2) with Dc determined by linearized GL theory. Our analysis yields
the same formula that was computed within the framework of linearized BCS theory in
[FHL19]. This can be interpreted as a justification of the approximation to use linearized
BCS theory to compute the BCS critical temperature shift. The main new ingredient of
our proof are a priori bounds for certain low-energy states of the BCS functional that
include the magnetic field.

2.1.2 Gauge-periodic samples

We consider a 3-dimensional sample of fermionic particles described by BCS theory that
is subject to an external magnetic field B := Be3 with strength B > 0, pointing in the
e3-direction. We choose the magnetic vector potential A(x) := 1

2B∧x so that curl A = B,
where B ∧ x ∈ R3 denotes the cross product of two vectors. The corresponding magnetic
momentum operator π := −i∇+A commutes with the magnetic translations T (v), defined
by

T (v)f(x) := ei B
2 ·(v∧x)f(x+ v), v ∈ R3. (2.1.3)

The family {T (v)}v∈R3 obeys the relation T (v + w) = ei B
2 ·(v∧w) T (v)T (w), that is, it is a

unitary representation of the Heisenberg group. We assume that our system is periodic
with respect to the Bravais lattice ΛB =

√
2πB−1 Z3 with fundamental cell

QB :=
[
0,

√
2πB−1

]3
⊆ R3. (2.1.4)

The magnetic flux through the unit cell QB equals B·(b1∧b2) = 2π, where bi =
√

2πB−1 ei
are the basis vectors spanning ΛB. This assures that the abelian subgroup {T (λ)}λ∈ΛB

is
a unitary representation of the lattice group.
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2.1.3 The BCS functional

In BCS theory a state is described by a generalized fermionic one-particle density matrix,
that is, by a self-adjoint operator Γ on L2(R3) ⊕ L2(R3) which satisfies 0 ⩽ Γ ⩽ 1 and is
of the form

Γ =
(
γ α
α 1 − γ

)
. (2.1.5)

Here, α = JαJ with the Riesz identification operator J : L2(R3) → L2(R3), f 7→ f ,
realized by complex conjugation. The condition Γ = Γ∗ implies that the one-particle
density matrix γ is a self-adjoint operator. It also implies that the Cooper pair wave
function α(x, y), the kernel of α, is symmetric under the exchange of its coordinates. The
symmetry of α is due to the fact that we exclude spin variables from our description and
assume that Cooper pairs are in a spin singlet state. The condition 0 ⩽ Γ ⩽ 1 implies
0 ⩽ γ ⩽ 1 as well as that γ and α are related through the operator inequality

αα∗ ⩽ γ(1 − γ). (2.1.6)

A BCS state Γ is called gauge-periodic if T(λ) Γ T(λ)∗ = Γ holds for every λ ∈ ΛB,
with the magnetic translations T(λ) on L2(R3) ⊕ L2(R3) defined by

T(v) :=
(
T (v) 0

0 T (v)

)
, v ∈ R3.

For γ and α, this implies T (λ)γT (λ)∗ = γ and T (λ)αT (λ)∗ = α or, in terms of their
kernels,

γ(x, y) = ei B
2 ·(λ∧(x−y)) γ(x+ λ, y + λ),

α(x, y) = ei B
2 ·(λ∧(x+y)) α(x+ λ, y + λ), λ ∈ ΛB. (2.1.7)

Remark 2.1.1. Since we are interested in the situation of a constant magnetic field it
seems natural to consider magnetically translation-invariant BCS states, that is, states
obeying T(v) Γ T(v)∗ = Γ for every v ∈ R3. However, in this case one obtains a trivial
model because the Cooper pair wave function α of a magnetically translation-invariant
state necessarily vanishes. To see this, we note that α satisfies T (v)αT (v)∗ = α for all v ∈
R3. Using this and the relation T (v+w)αT (v + w)∗ = eiB·(v∧w) T (v)T (w)αT (w)∗

T (v)∗,
we conclude that α = 0.

A gauge-periodic BCS state Γ is said to be admissible if

Tr
[
γ + (−i∇ + A)2γ

]
< ∞ (2.1.8)

holds. Here Tr[A] denotes the trace per unit volume of A, i.e.,

Tr[A] := 1
|QB|

TrL2(QB)[χAχ], (2.1.9)

with the characteristic function χ of the cube QB in (2.1.4). By TrL2(QB)[A] we denote
the usual trace of an operator A on L2(QB). The condition in (2.1.8) is meant to say that
γ and (−i∇ + A)2γ are locally trace class, that is, they are trace class with respect to the
trace in (2.1.9). Eq. (2.1.8), the same inequality with γ replaced by γ, and the inequality
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in (2.1.6) imply that α, (−i∇ + A)α, and (−i∇ + A)α are locally Hilbert–Schmidt. In
Section 2.2 below we will express this property in terms of H1-regularity of the kernel of
α.

For any admissible BCS state Γ, we define the Bardeen–Cooper–Schrieffer free energy
functional (in the following: BCS functional) at temperature T ⩾ 0 by

FBCS
B,T (Γ) := Tr

[(
(−i∇ + A)2 − µ

)
γ
]

− T S(Γ) − 1
|QB|

�
QB

dX
�
R3

dr V (r) |α(X, r)|2,

(2.1.10)

with the von Neumann entropy per unit volume S(Γ) = − Tr[Γ ln(Γ)] and the chemical
potential µ ∈ R. The particles interact via a two-body potential V ∈ L3/2(R3) + L∞

ε (R3).
Furthermore, we introduced center-of-mass and relative coordinates X = x+y

2 and r =
x− y. Here and in the following, we abuse notation slightly by writing α(X, r) ≡ α(x, y).

Remark 2.1.2. We opt for the above set-up because the solution of the problem for the
constant magnetic field already contains the main difficulties of the case of a general mag-
netic field. This is related to the fact that the vector potential of any magnetic field with
non-zero flux through the unit cell can be written as a sum of a vector potential of a ho-
mogeneous magnetic field and a periodic vector potential, see e.g. [TS13, Proposition 4.1].
The latter can be treated in some sense as a perturbation, see [FHSS12; FHSS16]. How-
ever, this is not true for the constant magnetic field, see Remark 2.1.6 (a) below. To solve
the general case it is therefore crucial to understand the case of a homogeneous magnetic
field. To keep the presentation to a reasonable length and to be able to convey the main
ideas more clearly, we therefore decided to present this case first. We plan to extend our
treatment to the case of a general magnetic field in a second paper. One motivation to
treat general periodic magnetic fields with non-zero flux through the unit cell stems from
the fact that it is an interesting and highly relevant problem to consider magnetic fields
that are chosen self-consistently.

The BCS functional is bounded from below and coercive on the set of admissible states.
More precisely, it can be shown that the kinetic energy dominates the entropy and the
interaction energy, i.e., there is a constant C > 0 such that for all admissible Γ, we have

FBCS
B,T (Γ) ⩾ 1

2 Tr
[
γ + (−i∇ + A)2γ

]
− C. (2.1.11)

The unique minimizer of the BCS functional among admissible states with α = 0 is
given by

Γ0 :=
(
γ0 0
0 1 − γ0

)
, γ0 := 1

1 + e((−i∇+A)2−µ)/T . (2.1.12)

Since Γ0 is also the unique minimizer of the BCS functional for sufficiently large temper-
atures T , it is called the normal state. We define the BCS free energy by

FBCS(B, T ) := inf
{

FBCS
B,T (Γ) − FBCS

B,T (Γ0) : Γ admissible
}

(2.1.13)

and say that our system is superconducting if FBCS(B, T ) < 0, that is, if the minimal
energy is strictly smaller than that of the normal state. In this work we are interested
in the regime of weak magnetic fields 0 < B ≪ 1. Our goal is to obtain an asymptotic
expansion of FBCS(B, T ) in powers of B that allows us to derive Ginzburg–Landau theory,
and to show how the BCS critical temperature depends on the magnetic field B. For our
main results to hold, we need the following assumptions concerning the regularity of the
interaction potential V .
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Assumption 2.1.3. We assume that the interaction potential V is a nonnegative, radial
function such that (1 + | · |2)V ∈ L∞(R3).

Remark 2.1.4. Our main results Theorem 2.1 and Theorem 2.2 still hold if the assump-
tion V ⩾ 0 is dropped. We only use it in Appendix 2.7 when we investigate the spectral
properties of a certain linear operator involving V . These statements still hold in the case
of potentials without a definite sign but their proof is longer. A proof of these statements
in the general setting can be found in Chapter 6. We expect our results to be true also
if V has moderate local singularities. Furthermore, it may be possible to slightly weaken
the decay assumptions of V . We choose to work with the assumptions above to keep the
presentation at a reasonable length.

2.1.4 The translation-invariant BCS functional

If no external fields are present, i.e. if B = 0, we describe the system by translation-
invariant states, that is, we assume that the kernels of γ and α are of the form γ(x − y)
and α(x− y). To define the trace per unit volume we choose a cube of side length 1. The
resulting translation-invariant BCS functional and its infimum minus the free energy of
the normal state are denoted by FBCS

ti,T and FBCS
ti (T ), respectively. This functional has

been studied in detail in [HHSS08], see also [HS16] and the references therein, where it
has been shown that there is a unique critical temperature Tc ⩾ 0 such that FBCS

ti,T has a
minimizer with α ̸= 0 if T < Tc. For T ⩾ Tc the normal state in (2.1.12) with B = 0 is
the unique minimizer. In terms of the energy, we have FBCS

ti (T ) < 0 for T < Tc, while
FBCS

ti (T ) = 0 if T ⩾ Tc.
It has also been shown in [HHSS08] that the critical temperature Tc can be character-

ized via a linear criterion. More precisely, the critical temperature is determined by the
unique value of T such that the operator

KT − V

acting on L2
sym(R3), the space of reflection-symmetric square-integrable functions, has zero

as its lowest eigenvalue. Here, KT = KT (−i∇) with the symbol

KT (p) := p2 − µ

tanh p2−µ
2T

. (2.1.14)

It should be noted that the function T 7→ KT (p) is strictly monotone increasing for fixed
p ∈ R3, and that KT (p) ⩾ 2T if µ ⩾ 0 and KT (p) ⩾ |µ|/ tanh(|µ|/(2T )) if µ < 0. Our
assumptions on V guarantee that the essential spectrum of the operator KT − V equals
[2T,∞) if µ ⩾ 0 and [|µ|/ tanh(|µ|/(2T )),∞) if µ < 0. Accordingly, an eigenvalue at zero
is necessarily isolated and of finite multiplicity.

The results in [HHSS08] have been obtained in the case where the Cooper pair wave
function α(x) is not necessarily an even function (as opposed to our setup), which means
that KTc(−i∇) − V has to be understood to act on L2(R3). The results in [HHSS08],
however, equally hold if the symmetry of α is enforced.

We are interested in the situation where (a) Tc > 0 and (b) the translation-invariant
BCS functional has a unique minimizer with a radial Cooper pair wave function (s-wave
Cooper pairs) for T close to Tc. This is implied by the following assumption. Part (b)
should be compared to [DGHL18, Theorem 2.8].

Assumption 2.1.5. (a) We assume that Tc > 0. If V ⩾ 0 and it does not vanish
identically this is automatically implied, see [HHSS08, Theorem 3]. In the case of an
interaction potential without a definite sign it is a separate assumption.
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(b) We assume that the lowest eigenvalue of KTc − V is simple.

In the following we denote by α∗ the unique ground state of the operator KTc −V , i.e.,

KTcα∗ = V α∗. (2.1.15)

We choose the normalization of α∗ such that it is real-valued and ∥α∗∥L2(R3) = 1. Since
V is a radial function and α∗ is the unique solution of (2.1.15) it follows that α∗ is radial,
too.

2.1.5 The Ginzburg–Landau functional

We call a function Ψ on QB gauge-periodic if it is left invariant by the magnetic translations
of the form

TB(λ)Ψ(X) := eiB·(λ∧X) Ψ(X + λ), λ ∈ ΛB. (2.1.16)

The operator T (λ) in (2.1.3) coincides with TB(λ) when B is replaced by 2B.
Let Λ0,Λ2,Λ3 > 0 and D ∈ R be given. For B > 0 and a gauge-periodic function Ψ,

the Ginzburg–Landau functional is defined by

EGL
D,B(Ψ) := 1

B2
1

|QB|

�
QB

dX
{

Λ0 |(−i∇ + 2A)Ψ(X)|2 −DB Λ2 |Ψ(X)|2 + Λ3 |Ψ(X)|4
}
.

(2.1.17)

We highlight the factor of 2 in front of the magnetic potential in (2.1.17) and that the
definition of the magnetic translation in (2.1.16) differs from that in (2.1.3) by a factor
2. These two factors reflect the fact that Ψ describes Cooper pairs, which carry twice the
charge of a single particle. The Ginzburg–Landau energy

EGL(D) := inf
{

EGL
D,B(Ψ) : Ψ ∈ H1

mag(QB)
}

is independent of B by scaling. More precisely, for given ψ the function

Ψ(X) :=
√
B ψ

(√
BX

)
, X ∈ R3, (2.1.18)

satisfies

EGL
D,B(Ψ) = EGL

D,1(ψ). (2.1.19)

We also define the critical parameter

Dc := Λ0
Λ2

inf specL2
mag(Q1)

(
(−i∇ + e3 ∧X)2

)
, (2.1.20)

where the infimum is taken over gauge-periodic square-integrable functions. Its definition
is motivated by the fact that EGL(D) < 0 if D > Dc and EGL(D) = 0 if D ⩽ Dc. This
should be compared to [FHSS16, Lemma 2.5]. In our situation with a constant magnetic
field the lowest eigenvalue of the Hamiltonian in (2.1.20) equals 2, see [TS13, Eq. (6.2)],
and Dc is explicit. In the situation of [FHSS16], where general external fields excluding
the constant magnetic field are present, the parameter Dc is not explicit.
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2.1.6 Main results

Our first main result concerns the asymptotics of the BCS free energy in (2.1.13) in the
regime B ≪ 1. It also contains a statement about the asymptotics of the Cooper pair
wave function of states Γ, whose energy FBCS

B,T (Γ) has the same asymptotic behavior as
the BCS free energy (approximate minimizers). The precise statement is captured in the
following theorem.

Theorem 2.1. Let Assumptions 2.1.3 and 2.1.5 hold, let D ∈ R, and let the coefficients
Λ0,Λ2,Λ3 > 0 be given by (2.3.22)-(2.3.24) below. Then there are constants C > 0 and
B0 > 0 such that for all 0 < B ⩽ B0, we have

FBCS(B, Tc(1 −DB)) = B2
(
EGL(D) +R

)
, (2.1.21)

with R satisfying the estimate

CB ⩾ R ⩾ −R := −CB1/12. (2.1.22)

Moreover, for any approximate minimizer Γ of FBCS
B,T at T = Tc(1 −DB) in the sense that

FBCS
B,T (Γ) − FBCS

B,T (Γ0) ⩽ B2
(
EGL(D) + ρ

)
(2.1.23)

holds for some ρ ⩾ 0, we have the decomposition

α(X, r) = Ψ(X)α∗(r) + σ(X, r) (2.1.24)

for the Cooper pair wave function α = Γ12. Here, σ satisfies

1
|QB|

�
QB

dX
�
R3

dr |σ(X, r)|2 ⩽ CB
11/6, (2.1.25)

α∗ is the normalized zero energy eigenstate of KTc − V , and the function Ψ obeys

EGL
D,B(Ψ) ⩽ EGL(D) + ρ+ R. (2.1.26)

Our second main result concerns the shift of the BCS critical temperature that is
caused by the external magnetic field.

Theorem 2.2. Let Assumptions 2.1.3 and 2.1.5 hold. Then there are constants C > 0
and B0 > 0 such that for all 0 < B ⩽ B0 the following holds:

(a) Let 0 < T0 < Tc. If the temperature T satisfies

T0 ⩽ T ⩽ Tc (1 −B (Dc + C B
1/2)) (2.1.27)

with Dc in (2.1.20), then we have

FBCS(B, T ) < 0.

(b) If the temperature T satisfies

T ⩾ Tc (1 −B (Dc − R)) (2.1.28)

with Dc in (2.1.20) and R in (2.1.22), then we have

FBCS
B,T (Γ) − FBCS

B,T (Γ0) > 0

unless Γ = Γ0.
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Remarks 2.1.6. (a) Theorem 2.1 and Theorem 2.2 extend similar results in [FHSS12,
Theorem 1] and [FHSS16, Theorem 2.4] to the case of a homogeneous magnetic field.
Such a magnetic field has a non-periodic vector potential and a non-zero magnetic
flux through the unit cell QB. The main reason why the problem with a homogeneous
magnetic field is more complicated is that it cannot be treated as a perturbation of the
Laplacian. More precisely, it was possible in [FHSS12; FHSS16] to work with a priori
bounds for low-energy states that only involve the Laplacian and not the external
fields. As noticed in [FHL19], see the discussion below Remark 6, this is not possible
in the case of a homogeneous magnetic field. In the proof of comparable a priori
estimates involving the homogeneous magnetic field, see Theorem 2.5.1 below, we
have to deal with the fact that the components of the magnetic momentum operator
do not commute, which leads to significant technical difficulties.

(b) If we compare Theorem 2.1 to [FHSS12, Theorem 1] or Theorem 2.2 to [FHSS16, The-
orem 2.4] we note the following technical differences: (1) The parameter h in [FHSS12;
FHSS16] equals B1/2 in our work. (2) We use microscopic coordinates while macro-
scopic coordinates are used in [FHSS12; FHSS16]. (3) Our free energy is normalized
by a volume factor, see (2.1.9) and (2.1.10). This is not the case in [FHSS12; FHSS16].
(4) The leading order of the Cooper pair wave function in [FHSS12, Theorem 1] is of
the form

1
2α∗(x− y)(Ψ(x) + Ψ(y)). (2.1.29)

This should be compared to (2.1.24), where relative and center-of-mass coordinates
are used. Using the a priori bound for the L2-norm of ∇Ψ below (5.61) in [FHSS12],
one can see that (2.1.29) equals the first term in (2.1.24) to leading order in h. The
analogue in our setup does not seem to be correct.

(c) The Ginzburg–Landau energy appears at the order B2. This should be compared to
the free energy of the normal state, which is of order 1.

(d) To appreciate the bound in (2.1.25), we note that the first term in the decomposition
of α in (2.1.24) obeys

1
|QB|

�
QB

dX
�
R3

dr |Ψ(X)α∗(r)|2 = O(B).

(e) We stated Theorem 2.1 with fixed D ∈ R. Our explicit error bounds show that D is
allowed to vary with B as long as there is a B-independent constant D0 > 0 such that
|D| ⩽ D0 holds.

(f) Theorem 2.2 gives bounds on the range of temperatures where superconductivity is
present, see (2.1.27), or absent, see (2.1.28). The interpretation of this theorem is that
for small magnetic fields B the critical temperature obeys the asymptotic expansion

Tc(B) = Tc(1 −DcB) + o(B). (2.1.30)

We highlight that Tc is determined by the translation-invariant problem, and that
Dc is given by the macroscopic (linearized) GL theory. The same result has been
obtained in [FHL19, Theorem 4] in the case of linearized BCS theory. Theorem 2.2
can therefore be interpreted as a justification of this approximation. Eq. (2.1.30)
allows us to compute the upper critical field Bc2. That is, the magnetic field, above
which, for a given temperature T , superconductivity is absent. In particular, it allows
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us to compute the derivative of Bc2 with respect to T at the critical temperature from
the BCS functional. For more details we refer to [FHL19, Appendix A].

(g) We expect that the assumption 0 < T0 ⩽ T for some arbitrary but B-independent
constant T0 in Theorem 2.2 (a) is of technical nature. We need this assumption,
which similarly appears in [FHL19, Theorem 4], because our trial state analysis in
Section 2.3 breaks down when the temperature T approaches zero. This is related
to the fact that the Fermi distribution function fT (x) = (ex/T + 1)−1 cannot be
represented by a Cauchy-integral uniformly in the temperature. We note that there is
no such restriction in Theorem 2.2 (b). It is also not needed in [FHSS16, Theorem 2.4].

2.1.7 Organization of the paper and strategy of proof

In Section 2.2 we complete the introduction of our mathematical setup. We recall several
properties of the trace per unit volume and introduce the relevant spaces of gauge-periodic
functions.

Section 2.3 is dedicated to a trial state analysis. We start by introducing a class of
Gibbs states, whose Cooper pair wave function is given by a product of the form α∗(r)Ψ(X)
to leading order in B with α∗ in (2.1.15) and with a gauge-periodic function Ψ on QB.
We state and motivate several results concerning these Gibbs states and their BCS free
energy, whose proofs are deferred to Section 2.4. Afterwards, these statements are used to
prove the upper bound on (2.1.21) as well as Theorem 2.2 (a). As will be explained below,
they are also relevant for the proofs of the lower bound in (2.1.21) and of Theorem 2.2 (b)
in Section 2.6.

Section 2.4 contains the proof of the results concerning the Gibbs states and their BCS
free energy that have been stated without proof in Section 2.3. Our analysis is based on an
extension of the phase approximation method, which has been pioneered in the framework
of linearized BCS theory in [FHL19], to our nonlinear setting. The phase approximation is
a well-known tool in the physics literature, see, e.g., [HW66], and has also been used in the
mathematical literature to study spectral properties of Schrödinger operators involving a
magnetic field, for instance in [CN98; N02]. Our approach should be compared to the trial
state analysis in [FHSS12; FHSS16], where a semi-classical expansion is used. The main
novelty of our trial state analysis is Lemma 2.4.2, where we provide an alternative way to
compute a certain trace function involving the trial state. It should be compared to the
related part in the proof of [FHSS12, Theorem 2]. While the analysis in [FHSS12] uses a
Cauchy integral representation of the function z 7→ ln(1 + e−z), our approach is based on
a product expansion of the hyperbolic cosine in terms of Matsubara frequencies. In this
way we obtain better decay properties in the subsequent resolvent expansion, which, in
our opinion, simplifies the analysis considerably.

Section 2.5 contains the proof of a priori estimates for BCS states, whose BCS free
energy is smaller than or equal to that of the normal state Γ0 in (2.1.12) plus a correction
of the order B2 (low-energy states). The result is captured in Theorem 2.5.1, which is
the main novelty of the present article. It states that the Cooper pair wave function of
any low-energy state in the above sense has a Cooper pair wave function, which is, to
leading order in B, given by a product of the form α∗(r)Ψ(X) with α∗(r) in (2.1.15)
and with a gauge-periodic function Ψ(X) on QB. Furthermore, the function Ψ(X) obeys
certain bounds, which show that it is slowly varying and small in an appropriate sense. As
explained in Remark 2.1.6 (a), the main difficulty to overcome is that our a priori bounds
involve the magnetic field. Therefore, we have to deal with the non-commutativity of the
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components of the magnetic momentum operator. The step where this problem appears
most prominently is in the proof of Proposition 2.5.7.

The proof of the lower bound on (2.1.21) and of Theorem 2.2 (b) is provided in Sec-
tion 2.6, which mostly follows the strategy in [FHSS12, Section 6] and [FHSS16, Sec-
tion 4.2]. Two main ingredients for the analysis in this section are the trial state analysis
in Section 2.3 and Section 2.4, and the a priori bounds for low-energy states in Section 2.5.
From Theorem 2.5.1 we know that the Cooper pair wave function of any low-energy state
has a product structure to leading order in B. The main idea of the proof of the lower
bound in (2.1.21) is to construct a Gibbs state, whose Cooper pair wave function has the
same asymptotics to leading order in B. The precise characterization of the Cooper pair
wave function of the Gibbs state in Section 2.3 and the a priori bounds in Theorem 2.5.1
then allow us to bound the BCS free energy of the original state from below in terms
of that of the Gibbs state. The latter has been computed with sufficient precision in
Section 2.3 and Section 2.4.

Throughout the paper, c and C denote generic positive constants that change from
line to line. We allow them to depend on the various fixed quantities like B0, µ, Tc, V ,
α∗, etc. Further dependencies are indexed.

2.2 Preliminaries

2.2.1 Schatten classes

In our proofs we frequently use Schatten norms of periodic operators, which are defined
with respect to the trace per unit volume in (2.1.9). In this section we recall some basic
facts about these norms.

A gauge-periodic operator A belongs to the pth local von-Neumann–Schatten class Sp
with 1 ⩽ p < ∞ if it has finite p-norm, that is, if ∥A∥pp := Tr(|A|p) < ∞. By S∞ we
denote the set of bounded gauge-periodic operators and ∥ · ∥∞ is the usual operator norm.
For the above norms the triangle inequality

∥A+B∥p ⩽ ∥A∥p + ∥B∥p

holds for 1 ⩽ p ⩽ ∞. Moreover, for 1 ⩽ p, q, r ⩽ ∞ with 1
r = 1

p + 1
q we have the general

Hölder inequality

∥AB∥r ⩽ ∥A∥p∥B∥q. (2.2.1)

It is important to note that the above norms are not monotone decreasing in the index p.
This should be compared to the usual Schatten norms, where such a property holds. The
familiar inequality

| TrA| ⩽ ∥A∥1

is true also in the case of local Schatten norms.
The above inequalities can be reduced to the case of the usual Schatten norms, see,

e.g., [S05], using the magnetic Bloch–Floquet decomposition. We refer to [RS78, Section
XIII.16] for an introduction to the Bloch–Floquet transformation and to [FT16] for a
particular treatment of the magnetic case. More specifically, for a gauge-periodic operator
A we use the unitary equivalence

A ∼=
� ⊕

[0,
√

2πB]3
dk Ak
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to write the trace per unit volume as

TrA =
�

[0,
√

2πB]3
dk TrL2(QB)Ak, (2.2.2)

where TrL2(QB) denotes the usual trace over L2(QB). The inequalities for the trace per
unit volume from above follow from the usual ones when we use that (AB)k = AkBk holds
for two gauge-periodic operators A and B.

2.2.2 Gauge-periodic Sobolev spaces

In this section we introduce several spaces of gauge-periodic functions, which will be used
to describe the center-of-mass part of Cooper pair wave functions.

For 1 ⩽ p < ∞, the space Lpmag(QB) consists of all Lploc(R3)-functions Ψ, which satisfy
TB(λ)Ψ = Ψ for all λ ∈ ΛB with TB(λ) in (2.1.16). The space is equipped with the usual
p-norm per unit volume

∥Ψ∥p
Lp

mag(QB) :=
 
QB

dX |Ψ(X)|p := 1
|QB|

�
QB

dX |Ψ(X)|p, (2.2.3)

and we use the conventional abbreviation ∥Ψ∥p when this does not lead to confusion.
For m ∈ N0, the corresponding gauge-periodic Sobolev space is defined by

Hm
mag(QB) :=

{
Ψ ∈ L2

mag(QB) : (−i∇ + 2A)νΨ ∈ L2
mag(QB) ∀ν ∈ N3

0, |ν|1 ⩽ m
}
,

(2.2.4)

where |ν|1 := ∑3
i=1 νi for ν ∈ N3

0. Equipped with the scalar product

⟨Φ,Ψ⟩Hm
mag(QB) :=

∑
|ν|1⩽m

B−1−|ν|1 ⟨(−i∇ + 2A)νΦ, (−i∇ + 2A)νΨ⟩L2
mag(QB), (2.2.5)

it is a Hilbert space. We note that (−i∇ + 2A)νΨ is a gauge-periodic function if Ψ is
gauge-periodic because the magnetic momentum operator

Π := −i∇ + 2A

commutes with the magnetic translations TB(λ) in (2.1.16). We also note that Π is a
self-adjoint operator on H1

mag(QB).
At this point, we shall briefly explain the scaling behavior in B of the norms introduced

in (2.2.3) and (2.2.5) in terms of the Ginzburg–Landau scaling in (2.1.18). First, we note
that if ψ ∈ Lpmag(Q1) and Ψ is as in (2.1.18), then

∥Ψ∥Lp
mag(QB) = B

1/2 ∥ψ∥Lp
mag(Q1) (2.2.6)

for every 1 ⩽ p ⩽ ∞. In contrast, the scaling of the norm in (2.2.5) is chosen such that

∥Ψ∥Hm
mag(QB) = ∥ψ∥Hm

mag(Q1).

This follows from (2.2.6) and the fact that ∥(−i∇ + 2A)νΨ∥2
2 scales as B1+|ν|1 for ν ∈ N3

0.
We also mention the following magnetic Sobolev inequality because it will be used

frequently in the course of the paper. For any B > 0 and any Ψ ∈ H1
mag(QB), we have

∥Ψ∥2
L6

mag(QB) ⩽ C B−1 ∥(−i∇ + 2A)Ψ∥2
L2

mag(QB). (2.2.7)

86 PhD Thesis



CHAPTER 2. BCS-THEORY IN A HOMOGENEOUS MAGNETIC FIELD

Proof of (2.2.7). Since Q1 satisfies the cone property, [LL01, Theorem 8.8] implies

∥ψ∥2
L6

mag(Q1) ⩽ C
(
∥ψ∥2

L2
mag(Q1) + ∥∇|ψ| ∥2

L2
mag(Q1)

)
.

From [TS13, Eq. (6.2)] we know that the bottom of the spectrum of (−i∇ + e3 ∧ X)2

equals 2. For the first term on the right side, this implies 2∥ψ∥2
2 ⩽ ∥(−i∇ + e3 ∧ X)ψ∥2

2.
To bound the second term, we apply the diamagnetic inequality |∇|ψ(X)|| ⩽ |(−i∇ +
e3 ∧X)ψ(X)|, see [LL01, Theorem 7.21]. This proves (2.2.7) for B = 1 and the scaling in
(2.1.18) yields (2.2.7) for B > 0.

As indicated below (2.1.9), the Cooper pair wave function α related to an admissible
state Γ belongs to S2, the Hilbert–Schmidt class introduced in Section 2.2.1. In terms
of the center-of-mass and relative coordinates, the gauge-periodicity and the symmetry of
the kernel of α in (2.1.7) read

α(X, r) = eiB·(λ∧X) α(X + λ, r), λ ∈ ΛB; α(X, r) = α(X,−r). (2.2.8)

That is, α(X, r) is a gauge-periodic function of the center-of-mass coordinate X and a
reflection-symmetric function of the relative coordinate r ∈ R3. We make use of the
isometric identification of S2 with the space

L2(QB × R3
s ) := L2

mag(QB) ⊗ L2
sym(R3),

the square-integrable functions obeying (2.2.8), for which the norm

∥α∥2
L2(QB×R3

s ) :=
 
QB

dX
�
R3

dr |α(X, r)|2 = 1
|QB|

�
QB

dX
�
R3

dr |α(X, r)|2

is finite. By (2.2.8), the identity ∥α∥2 = ∥α∥L2(QB×R3
s ) holds. Therefore, we do not

distinguish between the scalar products ⟨·, ·⟩ on L2(QB × R3
s ) and S2 and identify operators

in S2 with their kernels whenever this appears convenient.
Finally, the Sobolev space H1(QB×R3

s ) consists of all functions α ∈ L2(QB×R3
s ) with

finite H1-norm given by

∥α∥2
H1(QB×R3

s ) := ∥α∥2
2 + ∥ΠXα∥2

2 + ∥π̃rα∥2
2. (2.2.9)

Here, we used the magnetic momentum operators

ΠX := −i∇X + 2A(X), π̃r := −i∇r + 1
2A(r), (2.2.10)

where A(x) = 1
2B ∧ x. We note that the norm in (2.2.9) is equivalent to the norm given

by Tr[αα∗] + Tr[(−i∇ + A)αα∗(−i∇ + A)] + Tr[(−i∇ + A)α∗α(−i∇ + A)], which, in turn,
is given by ∥α∥2

2 +∥(−i∇+A)α∥2
2 +∥α(−i∇+A)∥2

2. See also the discussion below (2.1.9).

2.3 Trial States and their BCS Energy

The goal of this section is to provide the upper bound on (2.1.21) and the proof of The-
orem 2.2 (a). Both bounds are proved with a trial state argument using Gibbs states Γ∆
that are defined via a gap function ∆ in the effective Hamiltonian. In Proposition 2.3.2 we
show that the Cooper pair wave function α∆ of Γ∆ is a product function with respect to
relative and center-of-mass coordinates to leading order provided ∆ is a product function
that is small in a suitable sense. A representation formula for the BCS energy in terms of
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the energy of these states is provided in Proposition 2.3.4. Finally, in Theorem 2.3.5, we
show that certain parts of the BCS energy of the trial states Γ∆ equal the terms in the
Ginzburg–Landau functional in (2.1.17) with sufficient precision provided T = Tc(1−DB)
for some fixed D ∈ R. These results, whose proofs are deferred to Section 2.4, are com-
bined in Section 2.3.3 to give the proof of the results mentioned in the beginning of this
paragraph.

2.3.1 The Gibbs states Γ∆

For any Ψ ∈ L2
mag(QB), let us introduce the gap function ∆ ∈ L2(QB × R3

s ), given by

∆(X, r) := ∆Ψ(X, r) := −2 V α∗(r) Ψ(X). (2.3.1)

In our trial state analysis, Ψ is going to be a minimizer of the Ginzburg–Landau functional
in (2.1.17). It therefore obeys the scaling in (2.1.18), which implies that the local Hilbert-
Schmidt norm ∥∆∥2

2 is of the order B. We highlight that the L2(R3)-norm of V α∗ is of the
order 1, that is, the size of ∥∆∥2

2 is determined by Ψ. In the proof of the lower bound we
have less information on Ψ. The related difficulties are discussed in Remark 2.3.3 below.
With

hB := (−i∇ + A)2 − µ, (2.3.2)

we define the Hamiltonian

H∆ := H0 + δ :=
(
hB 0
0 −hB

)
+
(

0 ∆
∆ 0

)
=
(
hB ∆
∆ −hB

)
(2.3.3)

and the corresponding Gibbs state at inverse temperature β = T−1 > 0 as(
γ∆ α∆
α∆ 1 − γ∆

)
= Γ∆ := 1

1 + eβH∆
. (2.3.4)

We note that the normal state Γ0 in (2.1.12) corresponds to setting ∆ = 0 in (2.3.4).

Lemma 2.3.1 (Admissibility of Γ∆). Let Assumptions 2.1.3 and 2.1.5 hold. Then, for
any B > 0, any T > 0, and any Ψ ∈ H1

mag(QB), the state Γ∆ in (2.3.4) is admissible,
where ∆ ≡ ∆Ψ as in (2.3.1).

The states Γ∆ are inspired by the following observation. Via variational arguments
it is straightforward to see that any minimizer of FBCS

B,T in (2.1.10) solves the nonlinear
Bogolubov–de Gennes equation

Γ = 1
1 + eβHV α

, HV α =
(

hB −2V α
−2V α −hB

)
. (2.3.5)

Here, V α is the operator given by the kernel V (r)α(X, r). As we look for approximate
minimizers of FBCS

B,T , we choose Γ∆ in order to approximately solve (2.3.5). As far as the
leading term of α∆ is concerned this is indeed the case, as the following result shows. It
should be compared to (2.1.24).

Proposition 2.3.2 (Structure of α∆). Let Assumption 2.1.3 and 2.1.5 (a) be satisfied and
let T0 > 0 be given. Then, there is a constant B0 > 0 such that for any 0 < B ⩽ B0, any
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T ⩾ T0, and any Ψ ∈ H2
mag(QB) the function α∆ in (2.3.4) with ∆ ≡ ∆Ψ as in (2.3.1)

has the decomposition

α∆(X, r) = Ψ(X)α∗(r) − η0(∆)(X, r) − η⊥(∆)(X, r). (2.3.6)

The remainder functions η0(∆) and η⊥(∆) have the following properties:

(a) The function η0 satisfies the bound

∥η0∥2
H1(QB×R3

s ) ⩽ C
(
B3 +B |T − Tc|2

) (
∥Ψ∥6

H1
mag(QB) + ∥Ψ∥2

H1
mag(QB)

)
. (2.3.7)

(b) The function η⊥ satisfies the bound

∥η⊥∥2
H1(QB×R3

s ) + ∥|r|η⊥∥2
L2(QB×R3

s ) ⩽ C B3 ∥Ψ∥2
H2

mag(QB). (2.3.8)

(c) The function η⊥ has the explicit form

η⊥(X, r) =
�
R3

dZ
�
R3

ds kT (Z, r − s)V α∗(s)
[
cos(Z · ΠX) − 1

]
Ψ(X)

with kT (Z, r) defined in Section 2.4 below (2.4.69). For any radial f, g ∈ L2(R3) the
operator

�
R9

dZdrds f(r) kT (Z, r − s) g(s)
[
cos(Z · Π) − 1

]
commutes with Π2, and, in particular, if P and Q are two spectral projections of Π2

with PQ = 0, then η⊥ satisfies the orthogonality property〈
f(r) (PΨ)(X), η⊥(∆QΨ)

〉
= 0. (2.3.9)

Remark 2.3.3. The statement of Proposition 2.3.2 should be read in two different ways,
depending on whether we are interested in proving the upper or the lower bound for
the BCS free energy. When we prove the upper bound using trial states Γ∆, part (c) is
irrelevant. In this case the gap function ∆ ≡ ∆Ψ is defined with a minimizer Ψ of the GL
functional, whose H2

mag(QB)-norm is uniformly bounded, and all remainder terms can be
estimated using (2.3.7) and (2.3.8).

In the proof of the lower bound for the BCS free energy in Section 2.6 we are forced
to work with a trial state Γ∆, whose gap function is defined via a function Ψ that is
related to a low-energy state of the BCS functional, see Theorem 2.5.1 below. For such
functions we only have a bound on the H1

mag(QB)-norm at our disposal. To obtain a
function in H2

mag(QB), we introduce a regularized version of Ψ as in [FHSS12, Section 6],
[FHSS16, Section 6], and [FHL19, Section 7] by Ψ⩽ := 1[0,ε](Π2)Ψ for some B ≪ ε ≪ 1,
see Corollary 2.5.2. The H2

mag(QB)-norm of Ψ⩽ is not uniformly bounded in B, see (2.5.5)
below. This causes a certain error term, namely the left side of (2.6.12) below, to be large,
a priori.

To overcome this problem we use part (c) of Proposition 2.5.1. It exploits the fact
that the first term on the right side of (2.6.12) has an explicit form that satisfies the
orthogonality property in (2.3.9), which implies that the left side of (2.6.12) is indeed
small. This is the reason why we need to distinguish between η0 and η⊥.
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2.3.2 The BCS energy of the states Γ∆

This section pertains to the BCS energy of the states Γ∆, which is given by the Ginzburg–
Landau functional to leading order. We will see in Section 2.4.2 that the BCS energy of
Γ∆ can be calculated in terms of

Tr0

[
ln
(
cosh

(β
2H∆

))
− ln

(
cosh

(β
2H0

))]
. (2.3.10)

Here, Tr0 is a weaker form of trace which will be introduced later in (2.4.5). The operator
inside the trace is closely related to the relative entropy of H∆ and H0 but also incorporates
the interaction energy of α∆. We refer to (2.4.6) for more details. In the following, we
explain how the terms of the Ginzburg–Landau functional, which appear in the energy
expansion in (2.1.21), are obtained from the operator in (2.3.10).

As pointed out in Remark 2.1.6, we should think of ∆ as being small. In order to
expand the term in (2.3.10) in powers of ∆, we use the fundamental theorem to formally
write (2.3.10) as

β

2 Tr0

[� 1

0
dt tanh

(β
2Ht∆

)( 0 ∆
∆ 0

)]
. (2.3.11)

This identity is not rigorous because it ignores the subtlety that Ht∆, t ∈ [0, 1], are
unbounded operators which do not commute for distinct values of t. We present a rigorous
version of (2.3.11) in Lemma 2.4.2 below. For the sake of the following discussion it is
legitimate to assume that equality between (2.3.10) and (2.3.11) holds.

We use the Mittag-Leffler series expansion, see e.g. [FHL19, Eq. (7)], to write the
hyperbolic tangent in (2.3.11) as

tanh
(β

2 z
)

= − 2
β

∑
n∈Z

1
iωn − z

(2.3.12)

with the Matsubara frequencies

ωn := π(2n+ 1)T, n ∈ Z. (2.3.13)

The convergence of (2.3.12) becomes manifest by combining the +n and −n terms. Thus,

tanh
(β

2H∆
)

= − 2
β

∑
n∈Z

1
iωn −H∆

. (2.3.14)

We use this representation to expand the operator in (2.3.11) in powers of ∆ using the
resolvent equation. The first term obtained in this way is ⟨∆, LT,B∆⟩ with the linear
operator LT,B : L2(QB × R3

s ) → L2(QB × R3
s ), given by

LT,B∆ := − 2
β

∑
n∈Z

(iωn − hB)−1 ∆ (iωn + hB)−1. (2.3.15)

In the temperature regime we are interested in, we will obtain the quadratic terms in the
Ginzburg–Landau functional from ⟨∆, LT,B∆⟩.

The next term in the expansion of (2.3.14) is the quartic term ⟨∆, NT,B(∆)⟩ with the
nonlinear map NT,B : H1(QB × R3

s ) → L2(QB × R3
s ) defined as

NT,B(∆) := 2
β

∑
n∈Z

(iωn − hB)−1 ∆ (iωn + hB)−1 ∆ (iωn − hB)−1 ∆ (iωn + hB)−1. (2.3.16)
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The expression ⟨∆, NT,B(∆)⟩ will determine the quartic term in the Ginzburg–Landau
functional. All higher order terms in the expansion of (2.3.11) in ∆ will be summarized
in a trace-class operator called RT,B(∆), whose local trace norm is small.

With the operators LT,B and NT,B at hand, we are in position to state a representation
formula for the BCS functional. It serves as the fundamental equation, on which the proofs
of Theorems 2.1 and 2.2 are based. In particular, it will be applied in the proofs of upper
and lower bounds, and we therefore formulate the statement for a general state Γ and not
only for Gibbs states.

Proposition 2.3.4 (Representation formula for the BCS functional). Let Γ be an admis-
sible state. For any B > 0, let Ψ ∈ H1

mag(QB) and let ∆ ≡ ∆Ψ be as in (2.3.1). For T > 0
and if V α∗ ∈ L6/5(R3) ∩ L2(R3), there is an operator RT,B(∆) ∈ S1 such that

FBCS
B,T (Γ) − FBCS

B,T (Γ0)

= −1
4⟨∆, LT,B∆⟩ + 1

8⟨∆, NT,B(∆)⟩ + ∥Ψ∥2
L2

mag(QB) ⟨α∗, V α∗⟩L2(R3)

+ Tr
[
RT,B(∆)

]
+ T

2 H0(Γ,Γ∆) −
 
QB

dX
�
R3

dr V (r)
∣∣∣α(X, r) − α∗(r)Ψ(X)

∣∣∣2, (2.3.17)

where

H0(Γ,Γ∆) := Tr0
[
Γ(ln Γ − ln Γ∆) + (1 − Γ)(ln(1 − Γ) − ln(1 − Γ∆))

]
(2.3.18)

denotes the relative entropy of Γ with respect to Γ∆. Moreover, RT,B(∆) obeys the estimate

∥RT,B(∆)∥1 ⩽ C T−5 B3 ∥Ψ∥6
H1

mag(QB).

The relative entropy defined in (2.3.18) is based on the weaker form of trace Tr0, whose
introduction we postpone until (2.4.5).

The right side of (2.3.17) should be read as follows. The first line yields the Ginzburg–
Landau functional, see Theorem 2.3.5 below. The second and third line consist of re-
mainder terms. The second line is small in absolute value whereas the techniques used
to bound the third line differ for upper and lower bounds. This is responsible for the
different qualities of the upper and lower bounds in Theorems 2.1 and 2.2, see (2.1.22).
For an upper bound, when choosing Γ := Γ∆ as a trial state, the relative entropy term
H0(Γ∆,Γ∆) = 0 drops out and the last term in (2.3.17) can be estimated with the help
of Proposition 2.3.2. The last term in (2.3.17) is actually nonpositive by our assumptions
on V but we do not use this. For a lower bound, the third line needs to be bounded from
below using a relative entropy estimate that we provide in Section 2.6.

It remains to show that the first line of the right side of (2.3.17) is indeed given by the
Ginzburg–Landau functional. In order to state the result, we need the function

V̂ α∗(p) :=
�
R3

dx e−ip·x V (x)α∗(x), (2.3.19)

which fixes our convention on the Fourier transform in this paper.

Theorem 2.3.5 (Calculation of the GL energy). Let Assumptions 2.1.3 and 2.1.5 (a) hold
and let D ∈ R be given. Then, there is a constant B0 > 0 such that for any 0 < B ⩽ B0,
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any Ψ ∈ H2
mag(QB), ∆ ≡ ∆Ψ as in (2.3.1), and T = Tc(1 −DB), we have

−1
4⟨∆, LT,B∆⟩ + 1

8⟨∆, NT,B(∆)⟩ + ∥Ψ∥2
L2

mag(QB) ⟨α∗, V α∗⟩L2(R3)

= B2 EGL
D,B(Ψ) +R(B). (2.3.20)

Here,

|R(B)| ⩽ C B3 ∥Ψ∥2
H2

mag(QB)

[
1 + ∥Ψ∥2

H1
mag(QB)

]
and with the functions

g1(x) := tanh(x/2)
x2 − 1

2x
1

cosh2(x/2)
, g2(x) := 1

2x
tanh(x/2)
cosh2(x/2)

, (2.3.21)

the coefficients Λ0, Λ2, and Λ3 in EGL
D,B are given by

Λ0 := β2
c

16

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|2

(
g1(βc(p2 − µ)) + 2

3βc p
2 g2(βc(p2 − µ))

)
, (2.3.22)

Λ2 := βc
8

�
R3

dp
(2π)3

|(−2)V̂ α∗(p)|2

cosh2(βc
2 (p2 − µ))

, (2.3.23)

Λ3 := β2
c

16

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|4 g1(βc(p2 − µ))

p2 − µ
. (2.3.24)

Let us comment on the positivity of the coefficients (2.3.22)-(2.3.24). First, Λ2 is
trivially positive. Since g1(x)/x > 0 for all x ∈ R, the coefficient Λ3 is positive as well.
It cannot be immediately seen that Λ0 is positive, however. In order to prove this, we
introduce the positive function

g3(x) := 2
x2

1
cosh2(x/2)

− 1
x

1
tanh(x/2)

1
cosh2(x/2)

and compute

2 Re⟨α∗, xi(KTc − V )xiα∗⟩ = (2π)−3⟨V̂ α∗,KTc(p)−1[−i∂pi , [KTc(p),−i∂pi ]]KTc(p)−1V̂ α∗⟩

= 8 Λ0 − 2β3
c

�
R3

dp
(2π)3 |V̂ α∗(p)|2 p2

i g3(βc(p2 − µ)). (2.3.25)

Since the left side is nonnegative, this proves that Λ0 > 0. The idea for this proof is
borrowed from [FHSS12, Eq. (1.22)].

Let us comment on the connection between (2.3.20) and [FHL19]. The two-particle
Birman–Schwinger operator 1 − V 1/2LT,BV

1/2 has been intensively studied in [FHL19] to
identify temperature regimes, where the bottom of its spectrum is positive or negative.
This operator also appears in (2.3.20) because

−1
4⟨∆, LT,B∆⟩ + ∥Ψ∥2

2 ⟨α∗, V α∗⟩ =
〈
V

1/2α∗Ψ,
(
1 − V

1/2LT,BV
1/2
)
V

1/2α∗Ψ
〉
. (2.3.26)

That is, the question whether the bottom of the spectrum of 1 − V 1/2LT,BV
1/2 is positive

or negative is intimately related to the sign of (2.3.20), and thus of (2.3.17) and (2.1.13).
Accordingly, it is related to the question whether the systems displays superconductivity
or not. We highlight that the operator on the right side of (2.3.26) acts on functions in
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L2(R6) in [FHL19], while it acts on L2(QB × R3
s ) in our case. Since the lowest eigenvalue

of the operator (−i∇+2A)2 equals 2B when understood to act on L2(R3) or on L2
mag(QB),

we obtain the same asymptotic behavior of Tc(B) as in [FHL19, Theorem 4].
Theorem 2.3.5 is valid for the precise temperature scaling T = Tc(1 − DB). In order

to prove Theorem 2.2 (a), we also need to show that the system is superconducting for
temperatures that are small compared to Tc(1−DB). This is guaranteed by the following
proposition.

Proposition 2.3.6 (A priori bound on Theorem 2.2 (a)). Let Assumptions 2.1.3 and 2.1.5
(a) hold. Then, for every T0 > 0 there are constants B0 > 0 and D0 > 0 such that for all
0 < B ⩽ B0 and all temperatures T obeying

T0 ⩽ T < Tc(1 −D0B),

there is an admissible BCS state Γ with

FBCS
B,T (Γ) − FBCS

B,T (Γ0) < 0. (2.3.27)

2.3.3 The upper bound on (2.1.21) and proof of Theorem 2.2 (a)

Using the results in the previous section, we provide the proofs of the upper bound on
(2.1.21) and of Theorem 2.2 (a). The statements in the previous section, that is, Propo-
sitions 2.3.2 and 2.3.4, as well as Theorem 2.3.5 are proven in Section 2.4.

Proof of the upper bound on (2.1.21). Let D ∈ R be given, let D0 := 1+ |D|, and let Ψ be
a minimizer of the Ginzburg–Landau functional, i.e., EGL

D,B(Ψ) = EGL(D). We note that
Ψ belongs to H2

mag(QB) and has uniformly bounded H2
mag(QB)-norm. Let ∆ ≡ ∆Ψ be as

in (2.3.1) and let T = Tc(1 − DB). We apply Proposition 2.3.4 with the choice Γ = Γ∆
and find

FBCS
B,T (Γ∆) − FBCS

B,T (Γ0) ⩽ −1
4⟨∆, LT,B∆⟩ + 1

8⟨∆, NT,B(∆)⟩ + ∥Ψ∥2
2 ⟨α∗, V α∗⟩

−
�
QB

dX
�
R3

dr V (r)
∣∣∣α∆(X, r) − α∗(r)Ψ(X)

∣∣∣2 + CB3. (2.3.28)

The first term in the last line is bounded by ∥V ∥∞∥η∥2
2 and a bound for the L2-norm of

η := η0 + η⊥ is provided by (2.3.7) and (2.3.8). In fact, by Assumption 2.1.3, this term is
nonpositive but we do not need to use this here. By Theorem 2.3.5, this implies

FBCS(Tc(1 −DB), B) ⩽ B2EGL(D) + CB3,

which concludes the proof of the upper bound on (2.1.21).

Proof of Theorem 2.2 (a). Let D0 > 0 be given and let us recall the definition of Dc in
(2.1.20). We show that there is a constant D1 > 0 and appropriate trial states such that
(2.3.27) holds for all temperatures T obeying

Tc(1 −D0B) ⩽ T < Tc(1 −DcB −D1B
3/2), (2.3.29)

provided B > 0 is small enough. Since Proposition 2.3.6 covers the remaining range of T ,
this proves Theorem 2.2 (a).
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We defineD := Tc−T
BTc

and note that (2.3.29) yieldsD−Dc > D1B
1/2. Let ψ ∈ H2

mag(Q1)
be a ground state of the linear operator in (2.1.20) and let Ψ be as in (2.1.18). Accordingly,
we have (Λ0/Λ2)Π2Ψ = BDcΨ and

inf
θ∈R

EGL
D,B(θΨ) = −Λ2

2(D −Dc)2∥ψ∥4
2

4Λ3∥ψ∥4
4

,

where the optimal θc satisfies Λ2(D − Dc)∥ψ∥2
2 = 2Λ3∥ψ∥4

4 θc
2. We combine Proposi-

tion 2.3.4 and Theorem 2.3.5 applied to Γ = Γ∆ with ∆ = ∆θcΨ, to see that (2.3.28) holds
in this case as well. Let us note that (2.3.29) implies |T − Tc| ⩽ CB. Proposition 2.3.2
and (2.3.28) therefore allow us to conclude that

FBCS
B,T (Γ∆) − FBCS

B,T (Γ0) ⩽ − Λ2
2∥ψ∥4

2
4Λ3∥ψ∥4

4
(D −Dc)2 B2 + CB3. (2.3.30)

The right side is negative provided D1 > 0 is chosen large enough since D−Dc > D1B
1/2.

This shows (2.3.27) for temperatures T satisfying (2.3.29) and completes the proof of
Theorem 2.2 (a).

2.4 Proofs of the Results in Section 2.3

2.4.1 Schatten norm estimates for operators given by product kernels

In this subsection we provide estimates for several norms of gauge-periodic operators with
integral kernels given by product functions of the form τ(x − y)Ψ((x + y)/2), which will
be used frequently in our proofs.

Lemma 2.4.1. Let B > 0, let Ψ be a gauge-periodic function on QB and let τ be an even
and real-valued function on R3. Moreover, let the operator α be defined via its integral
kernel α(X, r) := τ(r)Ψ(X), i.e., α acts as

αf(x) =
�
R3

dy τ(x− y)Ψ
(x+ y

2
)
f(y), f ∈ L2(R3).

(a) Let p ∈ {2, 4, 6}. If Ψ ∈ Lpmag(QB) and τ ∈ L
p

p−1 (R3), then α ∈ Sp and

∥α∥p ⩽ C ∥τ∥ p
p−1

∥Ψ∥p.

(b) For any ν > 3, there is a Cν > 0, independent of B, such that if (1+ | · |)ντ ∈ L6/5(R3)
and Ψ ∈ L6

mag(QB), then α ∈ S∞ and

∥α∥∞ ⩽ Cν B
−1/4 max{1, Bν/2} ∥(1 + | · |)ντ∥6/5 ∥Ψ∥6.

Proof. The case p = 2 of part (a) holds trivially with equality and C = 1. Since τ is even
and real-valued, the kernel of α∗α is given by

α∗α(x, y) =
�
R3

dz τ(x− z)Ψ
(x+ z

2
)
τ(z − y)Ψ

(z + y

2
)
.

Using ∥α∥4
4 = ∥α∗α∥2

2 and the change of variables z 7→ x− z and y 7→ x− y, we see that

∥α∥4
4 = 1

|QB|

�
QB×R3

dxdy
∣∣∣∣�

R3
dz τ(z) τ(y − z) Ψ

(
x− z

2
)

Ψ
(
x− y + z

2
)∣∣∣∣2.
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By Hölder’s inequality, Young’s inequality and the fact that |Ψ| is periodic, we see that

∥α∥4
4 ⩽ ∥Ψ∥4

4

�
R3

dy
∣∣∣∣�

R3
dz |τ(z)τ(y − z)|

∣∣∣∣2 ⩽ C ∥τ∥4
4/3 ∥Ψ∥4

4

holds. This proves part (a) for p = 4. If p = 6 we use ∥α∥6
6 = ∥αα∗α∥2

2 and a similar
change of variables to write

∥αα∗α∥2
2 = 1

|QB|

�
QB×R3

dxdy
∣∣∣∣�

R3×R3
dz1dz2 τ(z1) τ(z2 − z1) τ(y − z2)

× Ψ
(
x− z1

2
)
Ψ
(
x− x1 + z2

2
)
Ψ
(
x− z2 + y

2
)∣∣∣∣2.

We thus obtain ∥α∥6
6 ⩽ ∥Ψ∥6

6 ∥τ ∗ τ ∗ τ∥2
2, which, in combination with Young’s inequality,

proves the claimed bound.
In case of part (b), we follow closely the strategy of the proof of [FHSS12, Eq. (5.51)].

Let f, g ∈ L2(R3) and let χj denote the characteristic function of the cube with side length√
2πB−1 centered at j ∈ ΛB. We estimate

|⟨f, αg⟩| ⩽
∑

j,k∈ΛB

�
R3×R3

dxdy
∣∣∣χj(x)f(x)Ψ

(x+ y

2
)
τ(x− y)χk(y)g(y)

∣∣∣. (2.4.1)

Let | · |∞ and | · | denote the maximum norm and the euclidean norm on R3, respectively.
We observe that the estimates |x − j|∞ ⩽ 1

2
√

2πB−1 and |y − k|∞ ⩽ 1
2
√

2πB−1 imply
|x+y

2 − j+k
2 |∞ ⩽ 1

2
√

2πB−1. Accordingly, if χj(x)χk(y) equals 1, so does χ j+k
2

(x+y
2 ) and

we may replace Ψ on the right side of (2.4.1) by χ j+k
2

Ψ without changing the term. The
above bounds for |x − j|∞ and |y − k|∞ also imply |j − k| ⩽ |x − y| +

√
6πB−1, which

yields the lower bound

|x− y| ⩾
[
|j − k| −

√
6πB−1

]
+
. (2.4.2)

We choose ν > 3, insert the factor (
√

2πB−1 + |x − y|)ν and its inverse in (2.4.1), use
(2.4.2) to estimate the inverse, apply Cauchy–Schwarz in the x-coordinate, and obtain

|⟨f, αg⟩| ⩽
∑

j,k∈ΛB

(√
2πB−1 +

[
|j − k| −

√
6πB−1

]
+

)−ν
∥χjf∥2

×
(�

R3
dx
∣∣∣∣�

R3
dy
∣∣∣(χ j+k

2
Ψ)
(x+ y

2
)(√

2πB−1 + |x− y|
)ν
τ(x− y)χk(y)g(y)

∣∣∣ ∣∣∣∣2)1/2

.

An application of Hölder’s inequality in the y-coordinate shows that the second line is
bounded by∥∥∥∥∣∣∣(√2πB−1 + | · |)ντ

∣∣∣6/5
∗ |χkg|6/5

∥∥∥∥5/6

5/3
⩽
∥∥∥(√

2πB−1 + | · |
)ν
τ
∥∥∥

6/5
∥χkg∥2

times |QB|1/6∥Ψ∥L6
mag(QB). We highlight that the L6

mag(QB)-norm is defined via a normal-
ized integral, whence we needed to insert the factor of |QB|−1/6. Hence,

|⟨f, αg⟩| ⩽ CB−1/4 ∥Ψ∥6
∥∥∥(√

2πB−1 + | · |
)ν
τ
∥∥∥

6/5

×
∑

j,k∈ΛB

(√
2πB−1 +

[
|j − k| −

√
6πB−1

]
+

)−ν
∥χjf∥2 ∥χkg∥2.
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For λ > 0 we estimate ∥χjf∥2∥χkg∥2 ⩽ λ
2 ∥χjf∥2

2 + 1
2λ∥χkg∥2

2. In each term, we carry out
one of the sums and optimize the resulting expression over λ. We find λ = ∥g∥2 ∥f∥−1

2 as
well as

|⟨f, αg⟩| ⩽ CB−1/4∥f∥2 ∥g∥2 ∥Ψ∥6
∥(

√
2πB−1 + | · |)ντ∥6/5

(2πB−1)ν/2

∑
j∈Z3

(
1 + [|j| −

√
3]+
)−ν

.

The fraction involving τ is bounded by Cν max{1, Bν/2}∥(1 + | · |)ντ∥6/5. This proves the
claim.

2.4.2 Proof of Proposition 2.3.4

We recall the definitions of ∆(X, r) = −2V α∗(r) Ψ(X) in (2.3.1), the Hamiltonian H∆ in
(2.3.3) and Γ∆ = (1 + eβH∆)−1 in (2.3.4). Throughout this section we assume that the
function Ψ in the definition of ∆ is in H1

mag(QB). From Lemma 2.3.1, which is proved in
Section 2.4.4 below, we know that Γ∆ is an admissible BCS state in this case. We define
the anti-unitary operator

J :=
(

0 J
−J 0

)

with J defined below (2.1.5). The operator H∆ obeys the relation JH∆J ∗ = −H∆, which
implies J Γ∆J ∗ = 1 − Γ∆. Using this and the cyclicity of the trace, we write the entropy
of Γ∆ as

S(Γ∆) = 1
2 Tr[φ(Γ∆)], (2.4.3)

where φ(x) := −[x ln(x) + (1 − x) ln(1 − x)] for 0 ⩽ x ⩽ 1.
In order to rewrite the BCS functional, it is useful to introduce a weaker notion of

trace per unit volume. More precisely, we call a gauge-periodic operator A acting on
L2(R3) ⊕ L2(R3) weakly locally trace class if P0AP0 and Q0AQ0 are locally trace class,
where

P0 =
(

1 0
0 0

)
(2.4.4)

and Q0 = 1 − P0, and we define its weak trace per unit volume by

Tr0(A) := Tr
(
P0AP0 +Q0AQ0

)
. (2.4.5)

If an operator is locally trace class then it is also weakly locally trace class but the converse
need not be true. It is true, however, in case of nonnegative operators. If an operator is
locally trace class then its weak trace per unit volume and its usual trace per unit volume
coincide.

Before their appearance in the context of BCS theory in [FHSS12; FHSS16], weak
traces of the above kind appeared in [HLS05; FLLS11]. In [HLS05, Lemma 1] it has been
shown that if two weak traces TrP and TrP ′ are defined via projections P and P ′ then
TrP (A) = TrP ′(A) holds for appropriate A if P − P ′ is a Hilbert–Schmidt operator.
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Let Γ be an admissible BCS state and recall the normal state Γ0 in (2.1.12). In terms
of the weak trace per unit volume, the BCS functional can be written as

FBCS
B,T (Γ) − FBCS

B,T (Γ0)

= 1
2 Tr

[
(H0Γ −H0Γ0) − Tφ(Γ) + Tφ(Γ0)

]
−
 
QB

dX
�
R3

dr V (r) |α(X, r)|2

= 1
2 Tr0

[
(H∆Γ∆ −H0Γ0) − Tφ(Γ∆) + Tφ(Γ0)

]
(2.4.6)

+ 1
2 Tr0

[
(H∆Γ −H∆Γ∆) − Tφ(Γ) + Tφ(Γ∆)

]
(2.4.7)

− 1
2 Tr0

(
0 ∆
∆ 0

)
Γ −

 
QB

dX
�
R3

dr V (r) |α(X, r)|2. (2.4.8)

Note that we added and subtracted the first term in (2.4.6) and that we added and
subtracted the first term in (2.4.8) to replace the Hamiltonian H0 in (2.4.7) by H∆. The
operators inside the traces in (2.4.6) and (2.4.7) are not necessarily locally trace class,
which is the reason we introduce the weak local trace. We also note that (2.4.7) equals T

2
times the relative entropy H0(Γ,Γ∆) of Γ with respect to Γ∆, defined in (2.3.18).

The first term in (2.4.8) can be written as

−1
2 Tr0

(
0 ∆
∆ 0

)
Γ = 2 Re

 
QB

dX
�
R3

dr (V α∗)(r)Ψ(X) α(X, r). (2.4.9)

The integrands in (2.4.8) and (2.4.9) are equal to

−|α(X, r)|2 + 2 Reα∗(r)Ψ(X) α(X, r) = −
∣∣∣α(X, r) − α∗(r)Ψ(X)

∣∣∣2 +
∣∣∣α∗(r)Ψ(X)

∣∣∣2.
To rewrite (2.4.6) we need the following identities, whose proofs are straightforward com-
putations:

Γ∆ = 1
2 − 1

2 tanh
(β

2H∆
)
, ln(Γ∆) = −β

2H∆ − ln
(
2 cosh

(β
2H∆

))
,

1 − Γ∆ = 1
2 + 1

2 tanh
(β

2H∆
)
, ln(1 − Γ∆) = β

2H∆ − ln
(
2 cosh

(β
2H∆

))
. (2.4.10)

Eq. (2.4.10) implies

Γ∆ ln(Γ∆) + (1 − Γ∆) ln(1 − Γ∆) = − ln
(
2 cosh

(β
2H∆

))
+ β

2H∆ tanh
(β

2H∆
))
, (2.4.11)

as well as

βH∆Γ∆ − φ(Γ∆) = β

2H∆ − ln
(
2 cosh

(β
2H∆

))
.

This allows us to rewrite (2.4.6) as

1
2β Tr0

[
(βH∆Γ∆ − βH0Γ0) − φ(Γ∆) + φ(Γ0)

]
= 1

4 Tr0
[
H∆ −H0

]
− 1

2β Tr0
[
ln
(
cosh

(β
2H∆

))
− ln

(
cosh

(β
2H0

))]
. (2.4.12)
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We note that H∆ −H0 is weakly locally trace class and that its weak trace equals 0. This,
in particular, implies that the second term on the right side of (2.4.12) is weakly locally
trace class. To summarize, our intermediate result reads

FBCS
B,T (Γ) − FBCS

B,T (Γ0)

= − 1
2β Tr0

[
ln
(
cosh

(β
2H∆

))
− ln

(
cosh

(β
2H0

))]
+ ∥Ψ∥2

L2
mag(QB) ⟨α∗, V α∗⟩L2(R3)

+ T

2 H0(Γ,Γ∆) −
 
QB

dX
�
R3

dr V (r)
∣∣∣α(X, r) − α∗(r)Ψ(X)

∣∣∣2. (2.4.13)

In order to compute the first term on the right side of (2.4.13), we need Lemma 2.4.2
below. It is the main technical novelty of our trial state analysis and should be compared
to the related part in the proof of [FHSS12, Theorem 2]. The main difference between
our proof of Lemma 2.4.2 and the relevant parts of the proof of [FHSS12, Theorem 2] is
that we use the product representation of the hyperbolic cosine in (2.4.15) below instead
of a Cauchy integral representation of the function z 7→ ln(1 + e−z). In this way we
obtain better decay properties in the subsequent resolvent expansion, which simplifies the
analysis considerably.

As already noted above, the admissibility of Γ∆ implies that the difference between
the two operators in the first term on the right side of (2.4.13) is weakly locally trace
class. We highlight that this is a nontrivial statement because each of the two operators
separately does not share this property. We also highlight that our proof of Lemma 2.4.2
does not require this as an assumption, it implies the statement independently.

In combination with (2.4.13), Lemma 2.4.2 below proves Proposition 2.3.4. Before we
state the lemma, we recall the definitions of the operators LT,B and NT,B in (2.3.15) and
(2.3.16), respectively.

Lemma 2.4.2. Let V α∗ ∈ L6/5(R3) ∩ L2(R3). For any B > 0, any Ψ ∈ H1
mag(QB), and

any T > 0, the operator

ln
(
cosh

(β
2H∆

))
− ln

(
cosh

(β
2H0

))
is weakly locally trace class and its weak local trace equals

− 1
2β Tr0

[
ln
(
cosh

(β
2H∆

))
− ln

(
cosh

(β
2H0

))]
= −1

4⟨∆, LT,B∆⟩ + 1
8⟨∆, NT,B(∆)⟩ + Tr RT,B(∆). (2.4.14)

The operator RT,B(∆) is locally trace class and its trace norm satisfies the bound

∥RT,B(∆)∥1 ⩽ C T−5 B3 ∥Ψ∥6
H1

mag(QB).

Proof of Lemma 2.4.2. We recall the Matsubara frequencies in (2.3.13) and write the hy-
perbolic cosine in terms of the following product expansion, see [AS64, Eq. (4.5.69)],

cosh
(β

2x
)

=
∞∏
k=0

(
1 + x2

ω2
k

)
. (2.4.15)
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We have

0 ⩽
∞∑
k=0

ln
(
1 + x2

ω2
k

)
= ln

(
cosh

(β
2x
))

⩽
β

2 |x|, x ∈ R,

and accordingly

ln
(
cosh

(β
2H∆

))
=

∞∑
k=0

ln
(
1 + H2

∆
ω2
k

)

holds in a strong sense on the domain of |H∆|. Since ∆ is a bounded operator by Lemma
2.4.1, the domains of |H∆| and |H0| coincide. The identity

ln
(
cosh

(β
2H∆

))
− ln

(
cosh

(β
2H0

))
=

∞∑
k=0

[
ln
(
ω2
k +H2

∆

)
− ln

(
ω2
k +H2

0

)]
(2.4.16)

therefore holds in a strong sense on the domain of |H0|. Elementary arguments show that

ln
(
ω2 +H2

∆

)
− ln

(
ω2 +H2

0

)
= − lim

R→∞

� R

ω
du
[ 2u
u2 +H2

∆
− 2u
u2 +H2

0

]
(2.4.17)

holds for ω > 0 in a strong sense on the domain of ln(1 + |H0|). Therefore, by (2.4.16)
and (2.4.17), we have

ln
(
cosh

(β
2H∆

))
− ln

(
cosh

(β
2H0

))
= −i

∞∑
k=0

� ∞

ωk

du
[ 1

iu−H∆
− 1

iu−H0
+ 1

iu+H∆
− 1

iu+H0

]
(2.4.18)

in a strong sense on the domain of |H0|. By a slight abuse of notation, we have incorporated
the limit in (2.4.17) into the integral.

In the next step we use the resolvent expansion

(z −H∆)−1 = (z −H0)−1 + (z −H0)−1 (H∆ −H0) (z −H∆)−1 (2.4.19)

to see that the right side of (2.4.18) equals

O1 + D2 + O3 + D4 + O5 − 2βRT,B(∆),

with two diagonal operators D2 and D4, three offdiagonal operators O1, O3 and O5 and
a remainder term RT,B(∆). The index of the operators reflects the number of δ matrices
appearing in their definition. The diagonal operators D2 and D4 are given by

D2 := −i
∞∑
k=0

� ∞

ωk

du
[ 1

iu−H0
δ

1
iu−H0

δ
1

iu−H0
+ 1

iu+H0
δ

1
iu+H0

δ
1

iu+H0

]
,

D4 := −i
∞∑
k=0

� ∞

ωk

du
[ 1

iu−H0
δ

1
iu−H0

δ
1

iu−H0
δ

1
iu−H0

δ
1

iu−H0

+ 1
iu+H0

δ
1

iu+H0
δ

1
iu+H0

δ
1

iu+H0
δ

1
iu+H0

]
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and the offdiagonal operators read

O1 := −i
∞∑
k=0

� ∞

ωk

du
[ 1

iu−H0
δ

1
iu−H0

+ 1
iu+H0

δ
1

iu+H0

]
,

O3 := −i
∞∑
k=0

� ∞

ωk

du
[ 1

iu−H0
δ

1
iu−H0

δ
1

iu−H0
δ

1
iu−H0

+ 1
iu+H0

δ
1

iu+H0
δ

1
iu+H0

δ
1

iu+H0

]
,

O5 := −i
∞∑
k=0

� ∞

ωk

du
[ 1

iu−H0
δ

1
iu−H0

δ
1

iu−H0
δ

1
iu−H0

δ
1

iu−H0
δ

1
iu−H0

+ 1
iu+H0

δ
1

iu+H0
δ

1
iu+H0

δ
1

iu+H0
δ

1
iu+H0

δ
1

iu+H0

]
.

Since the operators O1, O3, and O5 are offdiagonal, they are weakly locally trace class
and their weak local trace equals 0. We also note that the operator O1 is not necessarily
locally trace class, which is why we need to work with the weak local trace. The operator
RT,B(∆) is defined by

RT,B(∆)

:= i
2β

∞∑
k=0

� ∞

ωk

du
[ 1

iu−H0
δ

1
iu−H0

δ
1

iu−H0
δ

1
iu−H∆

δ
1

iu−H0
δ

1
iu−H0

δ
1

iu−H0

+ 1
iu+H0

δ
1

iu+H0
δ

1
iu+H0

δ
1

iu+H∆
δ

1
iu+H0

δ
1

iu+H0
δ

1
iu+H0

]
.

It remains to compute the traces of D2 and D4, and to estimate the trace norm of
RT,B(∆). We first consider D2 and use Hölder’s inequality in (2.2.1) to estimate∥∥∥∥ 1

iu±H0
δ

1
iu±H0

δ
1

iu±H0

∥∥∥∥
1
⩽
∥∥∥∥ 1

iu±H0

∥∥∥∥3

∞
∥δ∥2

2 = 2
u3 ∥∆∥2

2. (2.4.20)

Therefore, Lemma 2.4.1 shows that the combination of the series and the integral defining
D2 converges absolutely in local trace norm. In particular, D2 is locally trace class and
we may arbitrarily interchange the trace, the sum, and the integral to compute its trace.
We do this, use the cyclicity of the trace, and obtain

Tr D2 = −i
∞∑
k=0

� ∞

ωk

du Tr
[( 1

iu−H0

)2
δ

1
iu−H0

δ +
( 1

iu+H0

)2
δ

1
iu+H0

δ

]
. (2.4.21)

Integration by parts shows
� ∞

ωk

du
( 1

iu±H0

)2
δ

1
iu±H0

δ = −i 1
iωk ±H0

δ
1

iωk ±H0
δ

−
� ∞

ωk

du 1
iu±H0

δ

( 1
iu±H0

)2
δ,

and another application of the cyclicity of the trace yields

Tr
� ∞

ωk

du
( 1

iu±H0

)2
δ

1
iu±H0

δ = − i
2 Tr 1

iωk ±H0
δ

1
iωk ±H0

δ. (2.4.22)
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Note that

1
iωk ±H0

δ
1

iωk ±H0
δ =

 1
iωk±hB

∆ 1
iωk∓hB

∆
1

iωk∓hB
∆ 1

iωk±hB
∆

 . (2.4.23)

We combine this with (2.4.21) and (2.4.22) and summarize the cases ± into a single sum
over n ∈ Z. This yields

− 1
2β Tr D2 = 1

2β
∑
n∈Z

〈
∆, 1

iωn − hB
∆ 1

iωn + hB

〉
= −1

4⟨∆, LT,B∆⟩,

where LT,B is the operator defined in (2.3.15).
We argue as above to see that the integrand in the definition of D4 is bounded by

C∥∆∥4
4 u

−5. Moreover, we have ∥∆∥4
4 ⩽ CB2∥V α∗∥4

4/3∥Ψ∥4
H1

mag(QB) by (2.2.7) and Lemma
2.4.1. Therefore, the integral and the sum in D4 are absolutely convergent with respect
to the local trace norm. The trace of D4 is computed similar to that of D2. With NT,B

defined in (2.3.16), the result reads

− 1
2β Tr D4 = 1

8⟨∆, NT,B(∆)⟩. (2.4.24)

In case of RT,B(∆), we bound the trace norm of the operator inside the integral by
u−7∥∆∥6

6. Using (2.2.7) and Lemma 2.4.1, we estimate the second factor by a constant
times ∥V α∗∥6

6/5B
−3∥ΠΨ∥6

2 ⩽ CB3∥Ψ∥6
H1

mag(QB). Finally, integration over u yields the term
6π−6T−6(2k+ 1)−6, which is summable in k. This proves the claimed bound for the trace
norm of RT,B(∆).

2.4.3 Proof of Theorem 2.3.5

2.4.3.1 Magnetic resolvent estimates

In this preparatory subsection, we provide estimates for the magnetic resolvent kernel

GzB(x, y) := 1
z − hB

(x, y), x, y ∈ R3.

We also introduce the function

gzB(x) := GzB(x, 0), x ∈ R3. (2.4.25)

The proof of the following statement can be found in [FHL19, Lemma 8].

Lemma 2.4.3. For all B ⩾ 0, z ∈ C \ [B,∞) and x, y ∈ R3 we have

(a) gzB(−x) = gzB(x),

(b) GzB(x, y) = ei B
2 ·(x∧y) gzB(x− y).

We start our analysis by providing a decay estimate for the L1-norm of the resolvent
kernel gz0 in (2.4.25) and its gradient in the case B = 0. For gz0 such an estimate has been
provided in [FHL19, Lemma 9]. Since we additionally need an estimate for ∇gz0 , we repeat
some of the arguments here.
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Lemma 2.4.4. Let a > −2. There is a constant Ca > 0 such that for t, ω ∈ R, we have∥∥∥ | · |agiω+t
0

∥∥∥
1
⩽ Ca f(t, ω)1+ a

2 , (2.4.26)

where

f(t, ω) := |ω| + |t+ µ|
(|ω| + (t+ µ)−)2 (2.4.27)

and x− := − min{x, 0}. Furthermore, for any a > −1, there is a constant Ca > 0 with∥∥∥ | · |a∇giω+t
0

∥∥∥
1
⩽ Ca f(t, ω)

1
2 + a

2

[
1 + |ω| + |t+ µ|

|ω| + (t+ µ)−

]
. (2.4.28)

Proof. The resolvent kernel gz0 is given by

gz0(x) = − 1
4π|x|

e−
√

−(z+µ) |x|, (2.4.29)

where
√

· denotes the standard branch of the square root. As long as a > −2 we have
∥∥ | · |agz0

∥∥
1 =

�
R3

dx |x|a
∣∣∣∣ 1
4π|x|

e−|x|
√

−(z+µ)
∣∣∣∣ = Γ(a+ 2)

(Re
√

−(z + µ))a+2 . (2.4.30)

Moreover,

(Re
√

−z)2 = 1
2(|z| − Re z) ⩾

1
4

| Im z|2
Re z+| Im z| Re z ⩾ 0,

1
2 |z| Re z < 0,

and hence

(Re
√

−(t+ µ+ iω))2 ⩾
1
4

(|ω| + (t+ µ)−)2

|ω| + |t+ µ|
.

This proves (2.4.26). To prove (2.4.28), we use (2.4.29) and estimate

|∇gz0(x)| ⩽ |z + µ|1/2 |gz0(x)| + |x|−1|gz0(x)|.

This shows the second estimate for a > −1.

In the next step we prove estimates for the L1-norms of gzB and gzB−gz0 and the gradient
of these functions if B ̸= 0. Once more, some of the arguments in [FHL19, Lemma 10]
reappear in our proof below, ensuring self-consistency.

Lemma 2.4.5. For any a ⩾ 0, there are constants δa, Ca > 0 such that for all t, ω ∈ R
and for all B ⩾ 0 with f(t, ω)2B2 ⩽ δa, we have∥∥∥| · |agiω+t

B

∥∥∥
1
⩽ Ca f(t, ω)1+ a

2 ,∥∥∥| · |a∇giω+t
B

∥∥∥
1
⩽ Ca f(t, ω)

1
2 + a

2

[
1 + |ω| + |t+ µ|

|ω| + (t+ µ)−

]
, (2.4.31)

and ∥∥∥ | · |a(giω+t
B − giω+t

0 )
∥∥∥

1
⩽ CaB

2 f(t, ω)3+ a
2 ,∥∥∥ | · |a(∇giω+t

B − ∇giω+t
0 )

∥∥∥
1
⩽ CaB

2 f(t, ω)
5
2 + a

2

[
1 + |ω| + |t+ µ|

|ω| + (t+ µ)−

]
(2.4.32)

with the function f(t, ω) in (2.4.27).
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Proof. During the proof we use the notation z = iω + t. We define the function

hz(x) := 1
4 |e3 ∧ x|2 gz0(x) (2.4.33)

and choose δa such that 2δaDaC2 = 1. Here C2 denotes the constant in (2.4.26) and
Da := 1 if 0 ⩽ a ⩽ 1 and Da := 2a if a > 1. Lemma 2.4.4 and the bound ∥hz∥1 ⩽ ∥| · |2gz0∥1
imply

B2Da∥hz∥1 ⩽
1
2 (2.4.34)

for all ω, t, and B that are allowed by our assumptions. We define the operator G̃zB by
the kernel

G̃zB(x, y) := ei B
2 (x∧y)gz0(x− y)

and note that

(z − hB)G̃zB = 1 − T zB, (2.4.35)

where T zB is the operator given by the kernel

T zB(x, y) := ei B
2 (x∧y)

[
B ∧ (x− y)(−i∇x)gz0(x− y) +B2 hz(x− y)

]
.

The first term in square brackets equals 0 because gz0 is a radial function, which implies
that the vector ∇gz0(x− y) is perpendicular to B ∧ (x− y). Multiplication of (2.4.35) with
(z − hB)−1 from the left yields

GzB(x, y) − G̃zB(x, y) =
�
R3

dv GzB(x, v)T zB(v, y).

We set y = 0, change variables v 7→ x− v, and find

gzB(x) − gz0(x) = B2
�
R3

dv ei B
2 ·(v∧x) gzB(v) hz(x− v). (2.4.36)

This implies

∥gzB − gz0∥1 ⩽ B2∥|gzB| ∗ |hz|∥1 ⩽ B2 ∥gzB − gz0∥1 ∥hz∥1 +B2 ∥gz0∥1 ∥hz∥1. (2.4.37)

A straightforward calculation involving (2.4.35) and the Neumann series shows that gzB−gz0
belongs to L1(R3). Therefore, (2.4.34) and (2.4.37) imply

∥gzB − gz0∥1 ⩽ ∥gz0∥1 (2.4.38)

for all t, ω, and B that are allowed by our assumptions.
We use this estimate as a basis to prove the bounds claimed in the lemma and start

with the first bound in (2.4.32). By (2.4.36), we have

∥ | · |a(gzB − gz0)∥1 ⩽ DaB
2
[
∥ | · |agz0∥1 ∥hz∥1 + ∥ | · |a(gzB − gz0)∥1 ∥hz∥1

+ ∥gzB − gz0∥1 ∥| · |ahz∥1 + ∥gz0∥1 ∥ | · |ahz∥1
]
.
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A similar argument to the one above (2.4.38) shows that | · |a(gzB − gz0) belongs to L1(R3).
In combination with (2.4.38), we therefore obtain

∥ | · |a(gzB − gz0)∥1 ⩽ 2DaB
2
[
∥| · |agz0∥1 ∥hz∥1 + 2 ∥gz0∥1 ∥| · |ahz∥1

]
. (2.4.39)

With the help of Lemma 2.4.4 and (2.4.34), we read off the first bound in (2.4.32). More-
over, the triangle inequality, Lemma 2.4.4, the first bound in (2.4.32) and the bound
f(t, ω)2B2 ⩽ δa imply the first bound in (2.4.31).

Next, we consider the bounds in (2.4.31) and (2.4.32) involving the gradient. As a
preparation, the bound |∇hz(x)| ⩽ |x| |gz0(x)| + |x|2 |∇gz0(x)| and Lemma 2.4.4 show

∥ | · |a∇hz∥1 ⩽ Ca f(t, ω)
3
2 + a

2

[
1 + |ω| + |t+ µ|

|ω| + (t+ µ)−

]
. (2.4.40)

We use |∇ei B
2 ·(v∧x)| ⩽ B|v| and (2.4.36) to see that

|∇gzB(x) − ∇gz0(x)| ⩽ B2
�
R3

dv
[
B |v| |gzB(v)| |hz(x− v)| + |gzB(v)| |∇hz(x− v)|

]
as well as

∥ | · |a(∇gzB − ∇gz0)∥1 ⩽ DaB
2
[
B ∥ | · |a+1gzB∥1 ∥hz∥1 +B ∥ | · |gzB∥1 ∥ | · |ahz∥1

+ ∥ | · |agzB∥1 ∥∇hz∥1 + ∥gzB∥1 ∥ | · |a∇hz∥1
]
. (2.4.41)

When we combine (2.4.41), the first estimates in (2.4.31) and (2.4.32), the bound in
(2.4.40) and Lemma 2.4.4, we see that

∥ | · |a(∇gzB − ∇gz0)∥1 ⩽ CaB
2 f(t, ω)

5
2 + a

2
[
1 +Bf(t, ω)

]
.

An application of the assumption B2f(t, ω)2 ⩽ δa proves the second bound in (2.4.32).
Finally, the triangle inequality, the second bound in (2.4.32), and Lemma 2.4.4 show

∥ | · |a∇gzB∥1 ⩽ Ca f(t, ω)
1
2 + a

2

[
1 + |ω| + |t+ µ|

|ω| + (t+ µ)−

][
1 +B2f(t, ω)2

]
.

Another application of B2f(t, ω)2 ⩽ δa on the right side proves the second bound in
(2.4.31).

2.4.3.2 A representation formula for LT,B and an outlook on the quadratic
terms

In this subsection we compute the terms in (2.3.20) involving the linear operator LT,B
defined in (2.3.15). Our starting point is the representation formula for LT,B in [FHL19,
Lemma 11], which expresses the operator explicitly in terms of the relative and the center-
of-mass coordinate.

Lemma 2.4.6. The operator LT,B : L2(QB × R3
s ) → L2(QB × R3

s ) in (2.3.15) acts as

(LT,Bα)(X, r) =
�

R3×R3
dZds kT,B(Z, r, s) (cos(Z · ΠX)α)(X, s)

with

kT,B(Z, r, s) := 2
β

∑
n∈Z

knT,B(Z, r − s) e
i
4 B·(r∧s) (2.4.42)

and

knT,B(Z, r) := giωn
B

(
Z − r

2
)
g−iωn
B

(
Z + r

2
)
. (2.4.43)
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We analyze the operator LT,B in three steps. In the first two steps we introduce two
operators of increasing simplicity in their dependence on B:

LT,B = (LT,B − L̃T,B) + (L̃T,B −MT,B) +MT,B, (2.4.44)

where L̃T,B and MT,B are defined below in (2.4.45) and (2.4.69), respectively. To obtain
L̃T,B we replace the functions gzB in the definition of LT,B by gz0 . Moreover, MT,B is
obtained from L̃T,B when we replace kT,B by kT,0, i.e., when we additionally replace the
magnetic phase e i

4 B·(r∧s) by 1. In Section 2.4.3.3 we prove that the terms in the brackets
in (2.4.44) are small in a suitable sense. The third step consists of a careful analysis of
the operator MT,B, which takes place in Section 2.4.3.4. There, we expand the operator
cos(Z · ΠX) in powers of Z · ΠX up to second order and extract the quadratic terms of
the Ginzburg–Landau functional in (2.1.17) as well as a term that cancels the last term
on the left side of (2.3.20). In Section 2.4.3.5 we summarize our findings.

We remark that the operator L̃T,B is called MT,B in [FHL19] and that MT,B is called
NT,B. The reason why we did not follow the notation in [FHL19] is that NT,B is reserved
for the nonlinear term in the present paper. We note that our decomposition of LT,B in
(2.4.44) already appeared in [FHL19]. Parts of our analysis follow the analysis of LT,B in
Section 4 and Section 5 in that reference. However, we additionally need H1(QB × R3

s )-
norm bounds that are not provided in [FHL19]. It should also be noted that LT,B acts on
L2(R6) in [FHL19], while it acts on L2(QB × R3

s ) in our case.

2.4.3.3 Approximation of LT,B

The operator L̃T,B. The operator L̃T,B is defined by

L̃T,Bα(X, r) :=
�

R3×R3
dZds k̃T,B(Z, r, s) (cos(Z · ΠX)α)(X, s) (2.4.45)

with

k̃T,B(Z, r, s) := 2
β

∑
n∈Z

knT,0(Z, r − s) e
i
4 B·(r∧s) (2.4.46)

and knT,0 in (2.4.43). In the following proposition we provide an estimate that allows us to
replace LT,B by L̃T,B in our computations.

Proposition 2.4.7. For any T0 > 0 there is B0 > 0 such that for any 0 < B ⩽ B0, any
T ⩾ T0 and whenever | · |kV α∗ ∈ L2(R3) for k ∈ {0, 1}, Ψ ∈ H1

mag(QB), and ∆ ≡ ∆Ψ as
in (2.3.1), we have

∥LT,B∆ − L̃T,B∆∥2
H1(QB×R3

s ) ⩽ C B5
(
∥V α∗∥2

2 + ∥ | · |V α∗∥2
2

)
∥Ψ∥2

H1
mag(QB).

Remark 2.4.8. For the proof of Theorem 2.3.5 we only need a bound for ⟨∆, (LT,B −
L̃T,B)∆⟩, which is easier to obtain. This bound follows directly from Proposition 2.4.7,
Lemma 2.4.1 and an application of the Cauchy–Schwarz inequality. The more general
bound in Proposition 2.4.7 is needed in the proof of Proposition 2.3.2.

Before we start with the proof of Proposition 2.4.7 let a ⩾ 0 and introduce the functions

F aT,B := 2
β

∑
n∈Z

(
| · |a |giωn

B − giωn
0 |

)
∗ |g−iωn

B | + |giωn
B − giωn

0 | ∗
(
| · |a |g−iωn

B |
)

+
(
| · |a |giωn

0 |
)

∗ |g−iωn
B − g−iωn

0 | + |giωn
0 | ∗

(
| · |a |g−iωn

B − g−iωn
0 |

)
(2.4.47)
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and

GT,B := 2
β

∑
n∈Z

|∇giωn
B − ∇giωn

0 | ∗ |g−iωn
B | + |giωn

B − giωn
0 | ∗ |∇g−iωn

B |
+ |∇giωn

0 | ∗ |g−iωn
B − g−iωn

0 | + |giωn
0 | ∗ |∇g−iωn

B − ∇g−iωn
0 | (2.4.48)

with the Matsubara frequencies ωn in (2.3.13) and the resolvent kernel gzB in (2.4.25). We
claim that for any a ⩾ 0 there is a constant B0 > 0 such that for 0 ⩽ B ⩽ B0 we have

∥F aT,B∥1 + ∥GT,B∥1 ⩽ CaB
2. (2.4.49)

To prove (2.4.49) we note that the function f(t, ω) in (2.4.27) satisfies

f(0, ωn) ⩽ C (T−1 + T−2) |2n+ 1|−1 (2.4.50)

and that
|ωn| + |µ|
|ωn| + µ−

⩽ C (1 + T−1). (2.4.51)

Since T ⩾ T0 > 0, Lemmas 2.4.4 and 2.4.5 prove (2.4.49).

Proof of Proposition 2.4.7. We write

∥LT,B∆ − L̃T,B∆∥2
H1(QB×R3

s )

= ∥LT,B∆ − L̃T,B∆∥2
2 + ∥ΠX(LT,B∆ − L̃T,B∆)∥2

2 + ∥π̃r(LT,B∆ − L̃T,B∆)∥2
2

(2.4.52)

and claim that

∥LT,B∆ − L̃T,B∆∥2
2 ⩽ 4 ∥Ψ∥2

2 ∥F 0
T,B ∗ |V α∗| ∥2

2. (2.4.53)

If this is true, Young’s inequality, (2.2.5), and (2.4.49) prove

∥LT,B∆ − L̃T,B∆∥2
2 ⩽ CB5 ∥V α∗∥2

2 ∥Ψ∥2
H1

mag(QB).

To see that (2.4.53) holds, we expand the squared modulus in the Hilbert–Schmidt norm
and obtain

∥LT,B∆ − L̃T,B∆∥2
2 ⩽ 4

�
R3

dr
�

R3×R3
dZdZ ′

�
R3×R3

dsds′ |V α∗(s)| |V α∗(s′)|

× |kT,B(Z, r, s) − k̃T,B(Z, r, s)|
× |kT,B(Z ′, r, s′) − k̃T,B(Z ′, r, s′)|

×
 
QB

dX | cos(Z · ΠX)Ψ(X)| | cos(Z ′ · ΠX)Ψ(X)|. (2.4.54)

The operator cos(Z · ΠX) is bounded by 1 and we have
 
QB

dX | cos(Z · Π)Ψ(X)| | cos(Z ′ · Π)Ψ(X)| ⩽ ∥Ψ∥2
2. (2.4.55)

By (2.4.54), this implies

∥LT,B∆ − L̃T,B∆∥2
2

⩽ 4 ∥Ψ∥2
2

�
R3

dr
∣∣∣∣�

R3×R3
dZds |kT,B(Z, r, s) − k̃T,B(Z, r, s)| |V α∗(s)|

∣∣∣∣2, (2.4.56)
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where the integrand is bounded by

|kT,B(Z, r, s) − k̃T,B(Z, r, s)| ⩽ 2
β

∑
n∈Z

[
|giωn
B − giωn

0 |
(
Z − r

2
)

|g−iωn
B |

(
Z + r

2
)

+ |giωn
0 |

(
Z − r

2
)

|g−iωn
B − g−iωn

0 |
(
Z + r

2
)]
. (2.4.57)

For a ⩾ 0, we have the estimate

|Z|a ⩽
∣∣∣Z + r

2
∣∣∣a +

∣∣∣Z − r

2
∣∣∣a. (2.4.58)

This, (2.4.57), and the fact that g±iωn
B is an even function imply

�
R3

dZ |Z|a |kT,B(Z, r, s) − k̃T,B(Z, r, s)| ⩽ F aT,B(r − s), (2.4.59)

where F aT,B is the function in (2.4.47). We apply the case a = 0 to (2.4.56) and read off
(2.4.53).

We claim that the second term on the right side of (2.4.52) is bounded by

∥ΠX(LT,B∆ − L̃T,B∆)∥2
2 ⩽ CB2 ∥Ψ∥2

H1
mag(QB) ∥(F 0

T,B + F 1
T,B) ∗ |V α∗| ∥2

2. (2.4.60)

If this is true, Young’s inequality and (2.4.49) show the claimed bound for this term. To
prove (2.4.60), we use (2.4.54) with cos(Z · ΠX) replaced by ΠX cos(Z · ΠX), that is, we
need to replace (2.4.55) by
 
QB

dX |Π cos(Z · Π)Ψ(X)| |Π cos(Z ′ · Π)Ψ(X)| ⩽ ∥Π cos(Z · Π)Ψ∥2 ∥Π cos(Z ′ · Π)Ψ∥2.

In Lemma 2.5.12 in Section 2.5 we prove intertwining relations for cos(Z · Π) with various
magnetic momenta. The intertwining relation (2.5.40) therein and (2.2.5) show

∥Π cos(Z · Π)Ψ∥2 ⩽ ∥ΠΨ∥2 + 2B|Z| ∥Ψ∥2 ⩽ C B ∥Ψ∥H1
mag(QB) (1 + |Z|), (2.4.61)

which yields

∥ΠX(LT,B∆ − L̃T,B∆)∥2
2 ⩽ C B2 ∥Ψ∥2

H1
mag(QB)

×
�
R3

dr
∣∣∣∣�

R3×R3
dZds (1 + |Z|) |kT,B(Z, r, s) − k̃T,B(Z, r, s)| |V α∗(s)|

∣∣∣∣2.
(2.4.62)

We apply the cases a = 0 and a = 1 of (2.4.59) to this and obtain (2.4.60).
Concerning the third term on the right side of (2.4.52) we claim that

∥π̃r(LT,B∆ − L̃T,B∆)∥2
2 ⩽ C ∥Ψ∥2

2

∥∥∥(GT,B + F 1
T,B

)
∗ |V α∗| + F 0

T,B ∗ | · | |V α∗|
∥∥∥2

2
.

(2.4.63)

If this is true, Young’s inequality, (2.4.49), and (2.2.5) show the relevant bound for this
term. To prove (2.4.63), we estimate

∥π̃r(LT,B∆ − L̃T,B∆)∥2
2

⩽ 4 ∥Ψ∥2
2

�
R3

dr
∣∣∣∣�

R3×R3
dZds |π̃rkT,B(Z, r, s) − π̃rk̃T,B(Z, r, s)| |V α∗(s)|

∣∣∣∣2.
(2.4.64)
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Using 1
4 |B ∧ r| ⩽ B(|r− s| + |s|) we see that the integrand on the right side is bounded by

|π̃rkT,B(Z, r, s) − π̃rk̃T,B(Z, r, s)| ⩽ 2
β

∑
n∈Z

[
|∇rk

n
T,B(Z, r − s) − ∇rk

n
T,0(Z, r − s)|

+B|r − s| |knT,B(Z, r − s) − knT,0(Z, r − s)|

+B|s| |knT,B(Z, r − s) − knT,0(Z, r − s)|
]
. (2.4.65)

We also have

|∇rk
n
T,B(Z, r) − ∇rk

n
T,0(Z, r)| ⩽ |∇giωn

B − ∇giωn
0 |

(
Z + r

2
)

|g−iωn
B |

(
Z − r

2
)

+ |giωn
B − giωn

0 |
(
Z + r

2
)

|∇g−iωn
B |

(
Z − r

2
)

+ |∇giωn
0 |

(
Z + r

2
)

|g−iωn
B − g−iωn

0 |
(
Z − r

2
)

+ |giωn
0 |

(
Z + r

2
)
|∇g−iωn

B − ∇g−iωn
0 |

(
Z − r

2
)
.

Since g±iωn
B is an even function this implies

2
β

∑
n∈Z

�
R3

dZ |∇knT,B(Z, r) − ∇knT,0(Z, r)| ⩽ GT,B(r). (2.4.66)

Moreover, the estimate

|r − s| =
∣∣∣r − s

2 + Z + r − s

2 − Z
∣∣∣ ⩽ ∣∣∣Z − r − s

2
∣∣∣+ ∣∣∣Z + r − s

2
∣∣∣ (2.4.67)

shows that |r − s|F 0
T,B(r − s) ⩽ F 1

T,B(r − s). We conclude the estimate
�
R3

dZ |π̃rkT,B(Z, r, s) − π̃rk̃T,B(Z, r, s)|
⩽ GT,B(r − s) +B F 1

T,B(r − s) +B F 0
T,B(r − s) |s|. (2.4.68)

From (2.4.68) we deduce (2.4.63), which proves the claim.

The operator MT,B. The operator MT,B is defined by

MT,Bα(X, r) :=
�

R3×R3
dZds kT (Z, r − s) (cos(Z · ΠX)α)(X, s), (2.4.69)

where kT (Z, r) := kT,0(Z, r, 0) with kT,0 in (2.4.42). The following proposition allows us
to replace L̃T,B by MT,B in our computations.

Proposition 2.4.9. For any T0 > 0 there is B0 > 0 such that for any 0 < B ⩽ B0, any
T ⩾ T0, and whenever | · |kV α∗ ∈ L2(R3) for k ∈ {0, 1}, Ψ ∈ H1

mag(QB), and ∆ ≡ ∆Ψ as
in (2.3.1), we have

∥L̃T,B∆ −MT,B∆∥2
H1(QB×R3

s ) ⩽ C B3
(
∥V α∗∥2

2 + ∥ | · |V α∗∥2
2

)
∥Ψ∥2

H1
mag(QB). (2.4.70)

If instead | · |2V α∗ ∈ L2(R3) then

|⟨∆, L̃T,B∆ −MT,B∆⟩| ⩽ C B3 ∥ | · |2V α∗∥2
2 ∥Ψ∥2

H1
mag(QB). (2.4.71)
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Remark 2.4.10. The H1(QB × R3
s )-norm bound in (2.4.70) is needed for the proof of

Proposition 2.3.2 and the quadratic form bound in (2.4.71) is needed for the proof of
Theorem 2.3.5. We highlight that the bound in (2.4.70) is insufficient as far as the proof
of Theorem 2.3.5 is concerned. More precisely, if we apply Cauchy–Schwarz to the left
side of (2.4.71), and use (2.4.70) as well as the Lemma 2.4.1 to estimate ∥∆∥2 we obtain
a bound of the order B2 only. This is not good enough because B2 is the order of the
Ginzburg–Landau energy.

To obtain the desired quality for the quadratic form bound (2.4.71), we exploit the fact
that V α∗ is real-valued, which allows us to replace the magnetic phase factor exp( i

4B(r∧s))
in k̃T,B in (2.4.46) by cos(1

4B(r ∧ s)). This improves the error estimate by an additional
factor of B.

Before we start with the proof of Proposition 2.4.9, let a ∈ N0 and define the functions

F aT := 2
β

∑
n∈Z

a∑
b=0

(
a

b

) (
| · |b |giωn

0 |
)

∗
(
| · |a−b |g−iωn

0 |
)

(2.4.72)

and

GT := 2
β

∑
n∈Z

(
| · | |∇giωn

0 |
)

∗ |g−iωn
0 | + |∇giωn

0 | ∗
(
| · | |g−iωn

0 |
)

+
(
| · | |giωn

0 |
)

∗ |∇g−iωn
0 | + |giωn

0 | ∗
(
| · | |∇g−iωn

0 |
)
. (2.4.73)

For T ⩾ T0 > 0 and a ∈ N0, by Lemma 2.4.4, (2.4.50), and (2.4.51), we have

∥F aT ∥1 + ∥GT ∥1 ⩽ Ca. (2.4.74)

Proof of Proposition 2.4.9. We start with the proof of (2.4.70), which is similar to the
proof of Proposition 2.4.7. We claim that

∥L̃T,B∆ −MT,B∆∥2
2 ⩽ 4 B2 ∥Ψ∥2

2 ∥F 1
T ∗ | · | |V α∗| ∥2

2. (2.4.75)

If this is true Young’s inequality, (2.2.5), and (2.4.74) prove the claimed bound for this
term. To see that (2.4.75) holds, we argue as in (2.4.54)-(2.4.56) and find

∥L̃T,B∆ −MT,B∆∥2
2

⩽ 4∥Ψ∥2
2

�
R3

dr
∣∣∣∣ 2β ∑

n∈Z

�
R3×R3

dZds
∣∣∣knT,0(Z, r − s)

[
e

i
4 B·(r∧s) − 1

]∣∣∣ |V α∗(s)|
∣∣∣∣2.

Since |r ∧ s| ⩽ |r − s| |s|, we have |e i
4 B·(r∧s) − 1| ⩽ B |r − s| |s| as well as

|knT,0(Z, r − s)|
∣∣∣e i

4 B·(r∧s) − 1
∣∣∣ ⩽ B |giωn

0 |
(
Z − r − s

2
)

|g−iωn
0 |

(
Z + r − s

2
)

|r − s| |s|.

In combination with the estimate for |r− s| in (2.4.67) and the bound for |Z|a in (2.4.58),
this proves

2
β

∑
n∈Z

�
R3

dZ |Z|a |knT,0(Z, r − s)|
∣∣∣e i

4 B·(r∧s) − 1
∣∣∣ ⩽ B F a+1

T (r − s) |s| (2.4.76)

for a ∈ N0. The case a = 0 implies (2.4.75). A computation similar to the one leading to
(2.4.62) shows

∥ΠX(L̃T,B∆ −MT,B∆)∥2
2 ⩽ C B4 ∥Ψ∥2

H1
mag(QB) ∥(F 1

T + F 2
T ) ∗ | · | |V α∗| ∥2

2.
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To obtain the result we also used (2.4.61) and (2.4.76). We apply Young’s inequality and
use (2.4.74) to prove the claimed bound for this term. Finally, a computation similar to
the one that leads to (2.4.64) shows

∥π̃r(L̃T,B∆ −MT,B∆)∥2
2

⩽ 4 ∥Ψ∥2
2

�
R3

dr
∣∣∣∣�

R3×R3
dZds 2

β

∑
n∈Z

∣∣∣π̃rknT,0(Z, r − s)
[
e

i
4 B(r∧s) − 1

]∣∣∣ |V α∗(s)|
∣∣∣∣2.

We argue as in the proof of (2.4.68) to see that
2
β

∑
n∈Z

�
R3

dZ
∣∣∣π̃rknT,0(Z, r − s)

[
e

i
4 B(r∧s) − 1

]∣∣∣
⩽ C B

(
GT (r − s) |s| + F 1

T (r − s) + F 0
T (r − s) |s|

)
.

With the help of Young’s inequality and (2.4.74), these considerations prove (2.4.70).
It remains to prove (2.4.71). The term we need to estimate reads

⟨∆, L̃T,B∆ −MT,B∆⟩ = 4
�

R3×R3
drds

(
e

i
4 B·(r∧s) − 1

)
V α∗(r)V α∗(s)

×
�
R3

dZ 2
β

∑
n∈Z

knT,0(Z, r − s)
 
QB

dX Ψ(X) cos(Z · ΠX)Ψ(X).

(2.4.77)

Except for the factor e i
4 B(r∧s), the right side is symmetric under the exchange of the

coordinates r and s. The exponential factor acquires a minus sign in the exponent when
this transformation is applied. When we add the right side of (2.4.77) and the same term
with the roles of r and s interchanged, we get

⟨∆, L̃T,B∆ −MT,B∆⟩ = −8
�

R3×R3
drds sin2

(1
8 B · (r ∧ s)

)
V α∗(r)V α∗(s)

×
�
R3

dZ 2
β

∑
n∈Z

knT,0(Z, r − s)
 
QB

dX Ψ(X) cos(Z · ΠX)Ψ(X).

(2.4.78)

To obtain (2.4.78) we also used cos(x)−1 = −2 sin2(x2 ). The operator norm of cos(Z ·ΠX)
is bounded by 1 and we have sin2(1

8B · (r ∧ s)) ⩽ 1
8B

2|r|2|s|2. Therefore, (2.4.78) proves

|⟨∆, L̃T,B∆ −MT,B∆⟩| ⩽ B2 ∥Ψ∥2
2

∥∥∥| · |2|V α∗|
(
| · |2|V α∗| ∗ F 0

T

)∥∥∥
1
. (2.4.79)

Finally, we use Young’s inequality, (2.2.5), and (2.4.74) and obtain (2.4.71). This proves
Proposition 2.4.9.

2.4.3.4 Analysis of MT,B and calculation of the quadratic terms

We decompose MT,B = M
(1)
T +M

(2)
T,B +M

(3)
T,B, where

M
(1)
T α(X, r) :=

�
R3×R3

dZds kT (Z, r − s) α(X, s), (2.4.80)

M
(2)
T,Bα(X, r) :=

�
R3×R3

dZds kT (Z, r − s)
(
−1

2
)
(Z · ΠX)2 α(X, s), (2.4.81)

M
(3)
T,Bα(X, r) :=

�
R3×R3

dZds kT (Z, r − s) R(Z · ΠX) α(X, s), (2.4.82)

and R(x) = cos(x) − 1 + 1
2x

2.
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The operator M
(1)
T . The expression ⟨∆,M (1)

T ∆⟩ contains a term that cancels the last
term on the left side of (2.3.20) as well as the quadratic term without magnetic gradient
in the Ginzburg–Landau functional in (2.1.17). The following result allows us to extract
these terms. We recall that ∆ ≡ ∆Ψ = −2V α∗Ψ.

Proposition 2.4.11. Assume that V α∗ ∈ L2(R3) and let Ψ ∈ L2
mag(QB) and ∆ ≡ ∆Ψ as

in (2.3.1).

(a) We have M (1)
Tc

∆(X, r) = −2α∗(r)Ψ(X).

(b) For any T0 > 0 there is a constant c > 0 such that for T0 ⩽ T ⩽ Tc we have

⟨∆,M (1)
T ∆ −M

(1)
Tc

∆⟩ ⩾ c
Tc − T

Tc
∥Ψ∥2

2.

(c) Given D ∈ R there is B0 > 0 such that for 0 < B ⩽ B0, and T = Tc(1 −DB) we have

⟨∆,M (1)
T ∆ −M

(1)
Tc

∆⟩ = 4 DB Λ2 ∥Ψ∥2
2 +R(∆)

with the coefficient Λ2 in (2.3.23), and

|R(∆)| ⩽ C B2 ∥V α∗∥2
2 ∥Ψ∥2

2.

(d) Assume additionally that | · |V α∗ ∈ L2(R3). There is B0 > 0 such that for any
0 < B ⩽ B0, any Ψ ∈ H1

mag(QB), and any T ⩾ T0 > 0 we have

∥M (1)
T ∆ −M

(1)
Tc

∆∥2
H1(QB×R3

s ) ⩽ C B |T − Tc|2
(
∥V α∗∥2

2 + ∥ | · |V α∗∥2
2

)
∥Ψ∥2

H1
mag(QB).

Remark 2.4.12. The above bound for the remainder term implies

|R(∆)| ⩽ C B3 ∥V α∗∥2
2 ∥Ψ∥2

H1
mag(QB).

Part (b) in the Proposition is needed for the proof of Proposition 2.3.6. Part (d) is needed
in the proof of Proposition 2.3.2.

Before we give the proof of the above proposition, we introduce the function

FT,Tc := 2
β

∑
n∈Z

|2n+ 1|
[
|giωT

n
0 | ∗ |giωTc

n
0 | ∗ |g−iωT

n
0 | + |giωTc

n
0 | ∗ |g−iωT

n
0 | ∗ |g−iωTc

n
0 |

]
, (2.4.83)

where we indicated the T -dependence of the Matusubara frequencies in (2.3.13) because
different temperatures appear in the formula. As long as T ⩾ T0 > 0, Lemma 2.4.4 and
(2.4.50) imply the bound

∥FT,Tc∥1 ⩽ C. (2.4.84)

Proof of Proposition 2.4.11. We start with the proof of part (a). First of all, we recall
that kT (Z, r) = kT,0(Z, r, 0) with kT,B(Z, r, s) in (2.4.42). In Fourier space the convolution
operator g±iωn

0 (x − y) equals multiplication with (±iωn + µ − k2)−1. This allows us to
write

kT (Z, r) = 2
β

∑
n∈Z

�
R3×R3

dk
(2π)3

dℓ
(2π)3

eik·(Z− r
2 )

iωn + µ− k2
eiℓ·(Z+ r

2 )

−iωn + µ− ℓ2

= − 2
β

∑
n∈Z

�
R3×R3

dp
(2π)3

dq
(2π)3 eiZ·qe−ir·p 1

iωn + µ− (p+ q
2)2

1
iωn − µ+ (p− q

2)2 ,
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where we applied the change of variables q = k + ℓ and p = k−ℓ
2 . We use the partial

fraction expansion
1

E + E′

( 1
iωn − E

− 1
iωn + E′

)
= 1

iωn − E

1
iωn + E′

and the representation formula of the hyperbolic tangent in (2.3.12) to see that

kT (Z, r) =
�

R3×R3

dp
(2π)3

dq
(2π)3 eiZ·qe−ir·p LT

(
p+ q

2 , p− q

2
)
, (2.4.85)

where

LT (p, q) :=
tanh(β2 (p2 − µ)) + tanh(β2 (q2 − µ))

p2 − µ+ q2 − µ
. (2.4.86)

In particular,�
R3

dZ kT (Z, r) =
�
R3

dp
(2π)3 e−ir·pLT (p, p) =

�
R3

dp
(2π)3 e−ir·pKT (p)−1 (2.4.87)

with KT (p) in (2.1.14). Therefore, we have

M
(1)
T ∆(X, r) = K−1

T V α∗(r) Ψ(X),

which together with KTcα∗ = V α∗ proves part (a). To prove part (b), we use (2.4.87) to
write

⟨∆,M (1)
T ∆ −M

(1)
Tc

∆⟩ =
�
R3

dp
(2π)3

[
KT (p)−1 −KTc(p)−1

]
|(−2)V α∗(p)|2 ∥Ψ∥2

2. (2.4.88)

With the help of the first order Taylor expansion

KT (p)−1 −KTc(p)−1 = 1
2

� Tc

T
dT ′ 1

(T ′)2
1

cosh2(p2−µ
2T ′ )

(2.4.89)

we see that

KT (p)−1 −KTc(p)−1 ⩾
1
2
Tc − T

Tc
2

1
cosh2(p2−µ

2T0
)

holds for T0 ⩽ T ⩽ Tc. This and (2.4.88) prove part (b).
To prove part (c), we expand (2.4.89) to second order in T − Tc and find∣∣∣∣�
R3

dp
(2π)3 [KT (p)−1 −KTc(p)−1] |(−2)V̂ α∗(p)|2 − 4 Λ2

Tc − T

Tc

∣∣∣∣ ⩽ C |T − Tc|2 ∥V α∗∥2
2

with Λ2 in (2.3.23). By (2.4.88), this proves part (c).
It remains to prove part (d). We use the resolvent identity to see that

g
±iωT

n
0 − g±iωTc

n
0 = ∓i(ωTn − ωTc

n ) g±iωT
n

0 ∗ g±iωTc
n

0 . (2.4.90)

Using (2.4.90), it is straightforward to see that

∥M (1)
T ∆ −M

(1)
Tc

∆∥2
2 ⩽ C |T − Tc|2 ∥FT,Tc∥1 ∥V α∗∥2

2 ∥Ψ∥2
2

holds with FT,Tc in (2.4.83). In combination with (2.4.84) this proves the claimed bound for
this term. The estimates for the terms ∥π̃r(M (1)

T ∆−M (1)
Tc

∆)∥2
2 and ∥ΠX(M (1)

T ∆−M (1)
Tc

∆)∥2
2

are proved similarly. We omit the details.
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The operator M (2)
T,B. The term ⟨∆,M (2)

T,B∆⟩ with M (2)
T,B in (2.4.81) contains the kinetic

term in the Ginzburg–Landau functional in (2.1.17). The following proposition allows us
to compare the two.

Proposition 2.4.13. Assume that the function V α∗ is radial and belongs to L2(R3). For
any B > 0, Ψ ∈ H1

mag(QB), and ∆ ≡ ∆Ψ as in (2.3.1), we have

⟨∆,M (2)
Tc,B

∆⟩ = −4 Λ0 ∥ΠΨ∥2
2 (2.4.91)

with Λ0 in (2.3.22). Moreover, for any T ⩾ T0 > 0 we have

|⟨∆,M (2)
T,B∆ −M

(2)
Tc,B

∆⟩| ⩽ C B2 |T − Tc| ∥V α∗∥2
2 ∥Ψ∥2

H1
mag(QB). (2.4.92)

Before we give the proof of Proposition 2.4.13, let us introduce the function

F aT,Tc := 2
β

∑
n∈Z

∑
a1,a2,a3∈N0
a1+a2+a3=a

|2n+ 1|
[(

| · |a1 |giωT
n

0 |
)

∗
(
| · |a2 |giωTc

n
0 |

)
∗
(
| · |a3 |g−iωT

n
0 |

)
+
(
| · |a1 |giωTc

n
0 |

)
∗
(
| · |a2 |g−iωT

n
0 |

)
∗
(
| · |a3 |g−iωTc

n
0 |

)]
,

(2.4.93)

where a ∈ N0 and where we indicated the T -dependence of the Matusubara frequencies
in (2.3.13) because different temperatures appear in the formula. As long as T ⩾ T0 > 0,
Lemma 2.4.4 and (2.4.50) imply the bound ∥F aT,Tc∥1 ⩽ Ca.

Proof of Proposition 2.4.13. We have

⟨∆,M (2)
Tc,B

∆⟩ = −2
�

R3×R3
drds V α∗(r)V α∗(s)

�
R3

dZ kTc(Z, r − s) ⟨Ψ, (Z · ΠX)2Ψ⟩

(2.4.94)

and

⟨Ψ, (Z · Π)2Ψ⟩ =
3∑

i,j=1
ZiZj ⟨Π(i)Ψ,Π(j)Ψ⟩.

The integration over Z in (2.4.94) defines a 3 × 3 matrix with matrix elements
�
R3

dZ kTc(Z, r) ZiZj =
�

R3×R3

dp
(2π)3

dq
(2π)3

�
R3

dZ e−iZ·qe−ip·r LTc

(
p+ q

2 , p− q

2
)
ZiZj ,

which we have written in terms of the Fourier representation of kTc(Z, r) in (2.4.85). We
use ZiZje−iZ·q = −∂qi∂qj e−iZ·q, integrate by parts twice, and find

�
R3

dq
(2π)3

�
R3

dZ e−iZ·q LTc

(
p+ q

2 , p− q

2
)
ZiZj = −

[
∂

∂qi

∂

∂qj
LTc

(
p+ q

2 , p− q

2
)]

q=0
.

A tedious but straightforward computation shows that the right side of the above equation
can be written in terms of the functions g1 and g2 in (2.3.21) as

−
[
∂

∂qi

∂

∂qj
LTc

(
p+ q

2 , p− q

2
)]

q=0
= β2

c

2
[
g1(βc(p2 − µ))δij + 2βc g2(βc(p2 − µ)) pipj

]
,

and hence�
R3

dZ kTc(Z, r)ZiZj = β2
c

2

�
R3

dp
(2π)3 e−ip·r

[
g1(βc(p2 − µ))δij + 2βc g2(βc(p2 − µ)) pipj

]
.
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Let us denote the term in the bracket on the right side by Aij(p). When we insert the
above identity into (2.4.94) we find

⟨∆,M (2)
Tc,B

∆⟩ = −β2
c

4

3∑
i,j=1

⟨Π(i)Ψ,Π(j)Ψ⟩
�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|2Aij(p). (2.4.95)

We use that V α∗ is a radial function to see that the integral of the term proportional
to pipj equals zero unless i = j. Since the angular average of p2

i equals 1
3p

2 this proves
(2.4.91).

It remains to prove (2.4.92). To this end, we estimate

|⟨∆,M (2)
T,B∆ −M

(2)
Tc,B

∆⟩|

⩽ 2
�

R3×R3×R3
drdsdZ |V α∗(r)| |V α∗(s)| |kT (Z, r − s) − kTc(Z, r − s)|

× |⟨Ψ, (Z · Π)2Ψ⟩|. (2.4.96)

For general operators A,B,C, we have |A+B+C|2 ⩽ 3(|A|2 + |B|2 + |C|2). This implies

(Z · Π)2 ⩽ 3
(
Z2

1 (Π(1))2 + Z2
2 (Π(2))2 + Z2

3 (Π(3))2
)
⩽ 3 Z2 Π2, (2.4.97)

and, in particular,

|⟨Ψ, (Z · Π)2Ψ⟩| ⩽ 3 |Z|2 ∥ΠΨ∥2
2 ⩽ 3B2 |Z|2 ∥Ψ∥2

H1
mag(QB). (2.4.98)

Moreover, (2.4.90) and the estimate for |Z|2 in (2.4.58) show
�
R3

dZ |Z|2 |kT (Z, r) − kTc(Z, r)| ⩽ C |T − Tc| F 2
T,Tc(r) (2.4.99)

with F 2
T,Tc in (2.4.93). With the help of (2.4.96), (2.4.98), and (2.4.99), we deduce

|⟨∆,M (2)
T,B∆ −M

(2)
Tc,B

∆⟩| ⩽ C B2 |T − Tc| ∥Ψ∥2
H1

mag(QB)

∥∥∥|V α∗|
(
|V α∗| ∗ F 2

T,Tc

)∥∥∥
1
.

An application of Young’s inequality completes the proof.

The operator M (3)
T,B. The term ⟨∆,M (3)

T,B∆⟩ with M
(3)
T,B in (2.4.82) is the remainder of

our expansion of ⟨∆,MT,B∆⟩ in powers of B. In contrast to the previous estimates, we
need the H2

mag(QB)-norm of Ψ to control its size.

Proposition 2.4.14. For any T0 > 0 there is B0 > 0 such that for any 0 < B ⩽ B0, any
T ⩾ T0, and whenever V α∗ ∈ L2(R3), Ψ ∈ H2

mag(QB), and ∆ ≡ ∆Ψ as in (2.3.1), we
have

|⟨∆,M (3)
T,B∆⟩| ⩽ C B3 ∥V α∗∥2

2 ∥Ψ∥2
H2

mag(QB).

Before we give the proof of Proposition 2.4.14, let us introduce the function

FT (r) := 1
β

∑
n∈Z

(
| · |4|giωn

0 |
)

∗ |g−iωn
0 | + |giωn

0 | ∗
(
| · |4|g−iωn

0 |
)
. (2.4.100)

As long as T ⩾ T0 > 0, Lemma 2.4.4 and (2.4.50) imply ∥FT ∥1 ⩽ C.
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Proof of Proposition 2.4.14. We have

⟨∆,M (3)
TB

∆⟩ = 4
�

R3×R3×R3
drdsdZ V α∗(r)V α∗(s) kT (Z, r − s) ⟨Ψ,R(Z · ΠX)Ψ⟩,

(2.4.101)

where the function R(x) = cos(x) − 1 + x2

2 obeys the bound 0 ⩽ R(x) ⩽ 1
24x

4. We claim
that

|Z · Π|4 ⩽ 9 |Z|4 (Π4 + 8B2), (2.4.102)

which implies

⟨Ψ,R(Z · Π)Ψ⟩ ⩽ 9
24 |Z|4

(
∥Π2Ψ∥2

2 + 8B2∥Ψ∥2
2

)
⩽ C B3 |Z|4 ∥Ψ∥2

H2
mag(QB). (2.4.103)

To see that (2.4.102) is true, we note that [Π(1),Π(2)] = −2iB implies

Π Π2 = Π2 Π + 4iB (−Π(2),Π(1), 0)t, (2.4.104)

and hence

Π Π2 Π = Π4 + 8B2. (2.4.105)

We also have [Z · Π,Π] = −2i B ∧ Z, which implies (Z · Π)Π2(Z · Π) = Π(Z · Π)2Π.
We combine this with the operator inequality (2.4.97) for (Z · Π)2 and (2.4.105) and get
(Z · Π)Π2(Z · Π) ⩽ 3|Z|2(Π4 + 8B2). Finally, we write |Z · Π|4 = (Z · Π)(Z · Π)2(Z · Π),
apply (2.4.97) again, and obtain (2.4.102).

Using the estimate (2.4.58) on |Z|4 and (2.4.103), we argue as in the proof of (2.4.59)
to see that �

R3
dZ |Z|4 |kT (Z, r)| ⩽ FT (r) (2.4.106)

with FT in (2.4.100). The bound on the L1(R3)-norm of FT below (2.4.100), (2.4.101),
(2.4.103), and (2.4.106) prove the claim.

2.4.3.5 Summary: The quadratic terms

Let us summarize the results concerning the quadratic terms in ∆ ≡ ∆Ψ that are relevant
for the proof of Theorem 2.3.5 and provide an intermediate statement that is needed for
the proof of Proposition 2.3.6.

Proposition 2.4.15. Given T0 > 0 there is a constant B0 > 0 such that for any T0 ⩽ T ⩽
Tc, any 0 < B ⩽ B0, and whenever | · |kV α∗ ∈ L2(R3) for k ∈ {0, 1, 2}, Ψ ∈ H1

mag(QB),
and ∆ ≡ ∆Ψ as in (2.3.1), we have

−1
4⟨∆, LT,B∆⟩ + ∥Ψ∥2

2 ⟨α∗, V α∗⟩ ⩽ c
T − Tc
Tc

∥Ψ∥2
2 + CB2 ∥Ψ∥2

H1
mag(QB). (2.4.107)

Proof. By Lemma 2.4.6, the decomposition (2.4.44) of LT,B, as well as Propositions 2.4.7
and 2.4.9, we have

−1
4⟨∆, LT,B∆⟩ + ∥Ψ∥2

2 ⟨α∗, V α∗⟩

= −1
4⟨∆,M (1)

T ∆ −M
(1)
Tc

∆⟩ − 1
4⟨∆,MT,B∆ −M

(1)
T ∆⟩ +R1(∆), (2.4.108)
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where

|R1(∆)| ⩽ C B3 ∥Ψ∥2
H1

mag(QB)

and, by Proposition 2.4.11,

−1
4⟨∆,M (1)

T ∆ −M
(1)
Tc

∆⟩ ⩽ c
T − Tc
Tc

∥Ψ∥2
2.

We claim that

|⟨∆,MT,B∆ −M
(1)
T ∆⟩| ⩽ C B2 ∥V α∗∥2

2 ∥Ψ∥2
H1

mag(QB). (2.4.109)

The proof of (2.4.109) goes along the same lines as that of Proposition 2.4.9 and uses the
operator inequality (2.4.97) on (Z · Π)2 to estimate

|⟨Ψ, [cos(Z · Π) − 1]Ψ⟩| ⩽ C B2 |Z|2 ∥Ψ∥2
H1

mag(QB). (2.4.110)

We omit the details. This proves (2.4.107).

Let the assumptions of Theorem 2.3.5 hold. We combine (2.4.108) with the results of
Propositions 2.4.11, 2.4.13, and 2.4.14 to see that for T = Tc(1 − DB) with D ∈ R we
have

−1
4⟨∆, LT,B∆⟩ + ∥Ψ∥2

2 ⟨α∗, V α∗⟩ = Λ0 ∥ΠΨ∥2
2 −DB Λ2 ∥Ψ∥2

2 +R2(∆), (2.4.111)

where
|R2(∆)| ⩽ C B3 ∥Ψ∥2

H2
mag(QB).

This concludes our analysis of the operator LT,B.

2.4.3.6 A representation formula for the operator NT,B

Let us introduce the notation Z for the vector (Z1, Z2, Z3) with Z1, Z2, Z3 ∈ R3. We
also denote dZ = dZ1dZ2dZ3. Remarkably, the strategy of the analysis we used for LT,B
carries over to the nonlinear operator NT,B in (2.3.16). As in the case of LT,B, we start
with a representation formula for the operator NT,B and note the analogy to Lemma 2.4.6.

Lemma 2.4.16. The operator NT,B : H1(QB × R3
s ) → L2(QB × R3

s ) in (2.3.16) acts as

NT,B(α)(X, r) =
�

R9
dZ

�
R9

ds ℓT,B(Z, r, s) A(X,Z, s)

with

A(X,Z, s) := eiZ1·ΠXα(X, s1) eiZ2·ΠXα(X, s2) eiZ3·ΠXα(X, s3) (2.4.112)

and

ℓT,B(Z, r, s) := 2
β

∑
n∈Z

ℓnT,B(Z, r, s) ei B
2 ·Φ(Z,r,s), (2.4.113)

where

ℓnT,B(Z, r, s) := giωn
B

(
Z1 − r − s1

2
)
g−iωn
B

(
Z1 − Z2 − s1 + s2

2
)

× giωn
B

(
Z2 − Z3 − s2 + s3

2
)
g−iωn
B

(
Z3 + r − s3

2
)

(2.4.114)
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with g±iωn
B in (2.4.25) and

Φ(Z, r, s) := r

2 ∧
(
Z1 − r − s1

2
)

+ r

2 ∧
(
Z3 + r − s3

2
)

+
(
Z2 − Z3 − s2 + s3

2
)

∧
(
Z1 − Z2 − s1 + s2

2
)

+
(
Z3 + r − s3

2
)

∧
(
Z1 − Z2 − s1 + s2

2
)

+
(
s2 + s3 − r

2
)

∧
(
Z1 − Z2 − s1 + s2

2
)

+
(
Z3 + r − s3

2
)

∧
(
Z3 − Z2 + s2 + s3

2
)

+
(
s3 − r

2
)

∧
(
Z3 − Z2 + s2 + s3

2
)
. (2.4.115)

Remark 2.4.17. We highlight that the formula (2.4.115) for the phase function Φ only
involves the coordinates that appear in (2.4.114) and the relative coordinates r and s.
This structure allows us to remove the magnetic phase factor in (2.4.113) with techniques
that are similar to the ones used in the analysis of LT,B.

Proof of Lemma 2.4.16. The integral kernel of NT,B reads

NT,B(α)(X, r) = 2
β

∑
n∈Z

�
R9

du
�

R9
dv Giωn

B (ζrX , u1)α(u1, v1)G−iωn
B (u2, v1)α(u2, v2)

×Giωn
B (v2, u3)α(u3, v3)G−iωn

B (ζ−r
X , v3),

where we used the short-hand notation ζrX := X + r
2 . We also used that

1
iωn + hB

(x, y) = −G−iωn
B (y, x), (2.4.116)

which follows from A∗(x, y) = A(y, x) and

1
z − hB

=
( 1
z − hB

)∗
.

We hereby correct a typo in the analogue of (2.4.116) in the proof of [FHL19, Lemma 11].
Let us define the coordinates Z and s by

u = X + Z + s
2 , v = X + Z − s

2 ,

and note that we interpret them as relative and center-of-mass coordinates. For NT,B this
implies

NT,B(α)(X, r) =
�

R9
dZ

�
R9

ds e−iB·(X∧Z1) eiB·(X∧Z2) e−iB·(X∧Z3) A(X,Z, s)

× 2
β

∑
n∈Z

Giωn
B (ζrX , ζs1

Z1+X)G−iωn
B (ζs2

Z2+X , ζ
−s1
Z1+X)Giωn

B (ζ−s2
Z2+X , ζ

s3
Z3+X)G−iωn

B (ζ−r
X , ζ−s3

Z3+X)

with A(X,Z, s) in (2.4.112). Here, we used B · (X ∧Z) = Z · (B ∧X) and that Z · (B ∧X)
commutes with Z · (−i∇X), which implies

α(X + Z, s) = eiZ·(−i∇X) α(X, s) = e−iB·(X∧Z) eiZ·ΠXα(X, s).

A tedious but straightforward computation that uses Lemma 2.4.3 (b) shows

Giωn
B (ζrX , ζs1

Z1+X) G−iωn
B (ζs2

Z2+X , ζ
−s1
Z1+X) Giωn

B (ζ−s2
Z2+X , ζ

s3
Z3+X) G−iωn

B (ζ−r
X , ζ−s3

Z3+X)

= eiB·(X∧Z1)e−iB·(X∧Z2)eiB·(X∧Z3) ei B
2 ·Φ(Z,r,s) ℓnT,B(Z, r, s). (2.4.117)

This proves the claim.
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As in the case of LT,B, we analyze the operator NT,B by introducing several steps of
simplification. Namely, we write

NT,B = (NT,B − ÑT,B) + (ÑT,B −N
(1)
T,B) + (N (1)

T,B −N
(2)
T ) +N

(2)
T . (2.4.118)

with ÑT,B in (2.4.119), N (1)
T,B in (2.4.127), and N

(2)
T in (2.4.133). To obtain ÑT,B we

replace the functions gzB by gz0 in NT,B. When we replace ℓT,B by ℓT,0, we obtain N
(1)
T,B,

and N (2)
T is obtained from N

(1)
T,B by replacing the magnetic translations eiZi·ΠX by 1. Using

arguments that are comparable to the ones applied in the analysis of the operator LT,B,
we show in Section 2.4.3.7 below that the contributions from the terms in the parentheses
in (2.4.118) can be treated as remainders. In Section 2.4.3.8 we prove a proposition that
allows us to extract the quartic term in the Ginzburg–Landau functional from the term
⟨∆, N (2)

T (∆)⟩. Finally, we summarize our findings in Section 2.4.3.9.

2.4.3.7 Approximation of NT,B

The operator ÑT,B. The operator ÑT,B is defined by

ÑT,B(α)(X, r) :=
�

R9
dZ

�
R9

ds ℓ̃T,B(Z, r, s) A(X,Z, s) (2.4.119)

with

ℓ̃T,B(Z, r, s) := 2
β

∑
n∈Z

ℓnT,0(Z, r, s) ei B
2 ·Φ(Z,r,s),

A in (2.4.112), ℓnT,0 in (2.4.114) and Φ in (2.4.115). The following proposition quantifies
the error that we make when we replace NT,B(∆) by ÑT,B(∆) in our computations.

Proposition 2.4.18. Assume that V α∗ ∈ L4/3(R3). For every T0 > 0 there is B0 > 0
such that for any 0 < B ⩽ B0, any T ⩾ T0, any Ψ ∈ H1

mag(QB), and ∆ ≡ ∆Ψ as in
(2.3.1), we have

|⟨∆, NT,B(∆) − ÑT,B(∆)⟩| ⩽ C B4 ∥V α∗∥4
4/3 ∥Ψ∥4

H1
mag(QB).

Before we give the proof of Proposition 2.4.18, let us introduce the function

FT,B := 2
β

∑
n∈Z

|giωn
B − giωn

0 | ∗ |g−iωn
B | ∗ |giωn

B | ∗ |g−iωn
B |

+ |giωn
0 | ∗ |g−iωn

B − g−iωn
0 | ∗ |giωn

B | ∗ |g−iωn
B |

+ |giωn
0 | ∗ |g−iωn

0 | ∗ |giωn
B − giωn

0 | ∗ |g−iωn
B |

+ |giωn
0 | ∗ |g−iωn

0 | ∗ |giωn
0 | ∗ |g−iωn

B − g−iωn
0 |. (2.4.120)

By Lemmas 2.4.4 and 2.4.5 as well as (2.4.50) we have

∥FT,B∥1 ⩽ C B2 (2.4.121)

for T ⩾ T0 > 0.

Proof of Proposition 2.4.18. The function |Ψ| is periodic and (2.2.7) therefore implies

∥eiZ·ΠΨ∥2
6 = ∥Ψ∥2

6 ⩽ C B ∥Ψ∥2
H1

mag(QB). (2.4.122)

118 PhD Thesis



CHAPTER 2. BCS-THEORY IN A HOMOGENEOUS MAGNETIC FIELD

Consequently, we have
 
QB

dX |Ψ(X)|
3∏
i=1

|eiZi·ΠΨ(X)| ⩽ ∥Ψ∥2

3∏
i=1

∥eiZi·ΠΨ∥6 ⩽ C B2 ∥Ψ∥4
H1

mag(QB) (2.4.123)

as well as

|⟨∆, NT,B(∆) − ÑT,B(∆)⟩|

⩽ C B2 ∥Ψ∥4
H1

mag(QB))

�
R3

dr
�

R9
ds |V α∗(r)| |V α∗(s1)| |V α∗(s2)| |V α∗(s3)|

×
�

R9
dZ |ℓT,B(Z, r, s) − ℓ̃T,B(Z, r, s)|.

(2.4.124)

We use the change of variables

Z ′
1 − Z ′

2 := Z1 − Z2 − s1 + s2
2 , Z ′

2 − Z ′
3 := Z2 − Z3 − s2 + s3

2 , Z ′
3 := Z3 + r − s3

2 ,

(2.4.125)

whence

Z1 − r − s1
2 = Z ′

1 − (r − s1 − s2 − s3). (2.4.126)

As in the proof of (2.4.59), we conclude
�

R9
dZ |ℓT,B(Z, r, s) − ℓ̃T,B(Z, r, s)| ⩽ FT,B(r − s1 − s2 − s3)

with FT,B in (2.4.120). We insert the above bound in (2.4.124) and use∥∥∥V α∗
(
V α∗ ∗ V α∗ ∗ V α∗ ∗ FT,B

)∥∥∥
1
⩽ C ∥V α∗∥4

4/3 ∥FT,B∥1

as well as (2.4.121), which proves the claim.

The operator N (1)
T,B. The operator N (1)

T,B is defined by

N
(1)
T,B(α)(X, r) :=

�
R9

dZ
�

R9
ds ℓT,0(Z, r, s) A(X,Z, s) (2.4.127)

with A in (2.4.112) and ℓT,0 in (2.4.113). The following proposition allows us to replace
⟨∆, ÑT,B(∆)⟩ by ⟨∆, N (1)

T,B(∆)⟩ in our computations.

Proposition 2.4.19. Assume that | · |kV α∗ ∈ L4/3(R3) for k ∈ {0, 1}. For every T ⩾
T0 > 0, every B > 0, every Ψ ∈ H1

mag(QB) and ∆ ≡ ∆Ψ as in (2.3.1), we have

|⟨∆, ÑT,B(∆) −N
(1)
T,B(∆)⟩| ⩽ C B3

(
∥V α∗∥4

4/3 + ∥ | · |V α∗∥4
4/3

)
∥Ψ∥4

H1
mag(QB).

Before we start with the proof of Proposition 2.4.19, we introduce the functions

F
(1)
T := 2

β

∑
n∈Z

|giωn
0 | ∗

(
| · | |g−iωn

0 |
)

∗
(
| · | |giωn

0 |
)

∗ |g−iωn
0 |

+ |giωn
0 | ∗

(
| · | |g−iωn

0 |
)

∗ |giωn
0 | ∗

(
| · | |g−iωn

0 |
)

+ |giωn
0 | ∗ |g−iωn

0 | ∗
(
| · | |giωn

0 |
)

∗
(
| · | |g−iωn

0 |
)

(2.4.128)
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and

F
(2)
T := 2

β

∑
n∈Z

(
| · | |giωn

0 |
)

∗ |g−iωn
0 | ∗ |giωn

0 | ∗ |g−iωn
0 | + |giωn

0 | ∗
(
| · | |g−iωn

0 |
)

∗ |giωn
0 | ∗ |g−iωn

0 |

+ |giωn
0 | ∗ |g−iωn

0 | ∗
(
| · | |giωn

0 |
)

∗ |g−iωn
0 | + |giωn

0 | ∗ |g−iωn
0 | ∗ |giωn

0 | ∗
(
| · | |g−iωn

0 |
)
.

(2.4.129)

As long as T ⩾ T0 > 0, Lemma 2.4.4 and (2.4.50) imply the bound

∥F (1)
T ∥1 + ∥F (2)

T ∥1 ⩽ C. (2.4.130)

Proof of Proposition 2.4.19. We use (2.4.123) and estimate

|⟨∆, ÑT,B(∆) −N
(1)
T,B(∆)⟩|

⩽ C B2 ∥Ψ∥4
H1

mag(QB)

�
R3

dr
�

R9
ds |V α∗(r)| |V α∗(s1)| |V α∗(s2)| |V α∗(s3)|

× 2
β

∑
n∈Z

�
R9

dZ |ℓnT,0(Z, r, s)|
∣∣∣eiB Φ(Z,r,s) − 1

∣∣∣.
(2.4.131)

In terms of the coordinates in (2.4.125) and with (2.4.126), the phase function Φ in
(2.4.115) can be written as

Φ(Z, r, s) = (Z ′
2 − Z ′

3) ∧ (Z ′
1 − Z ′

2) + Z ′
3 ∧ (Z ′

1 − Z ′
2) + Z ′

3 ∧ (Z ′
3 − Z ′

2)

+ r

2 ∧
(
Z ′

1 − (r − s1 − s2 − s3)
)

+
(
s2 + s3 − r

2
)

∧ (Z ′
1 − Z ′

2)

+
(
s3 − r

2
)

∧ (Z ′
3 − Z ′

2) + r

2 ∧ Z ′
3. (2.4.132)

We use the estimate |ei B
2 ·Φ(Z,r,s) − 1| ⩽ B |Φ(Z, r, s)|, (2.4.131), and argue as in the proof

of (2.4.76) to see that

2
β

∑
n∈Z

�
R9

dZ |ℓnT,0(Z, r, s)|
∣∣∣ei B

2 ·Φ(Z,r,s) − 1
∣∣∣

⩽ CB
[
F

(1)
T (r − s1 − s2 − s3) + F

(2)
T (r − s1 − s2 − s3)

(
1 + |r| + |s1| + |s2| + |s3|

)]
with F

(1)
T in (2.4.128) and F

(2)
T in (2.4.129). Young’s inequality then implies

|⟨∆, ÑT,B(∆) −N
(1)
T,B(∆)⟩|

⩽ C B3 ∥Ψ∥4
H1

mag(QB)

(
∥V α∗∥4

4/3 + ∥ | · |V α∗∥4
4/3

)(
∥F (1)

T ∥1 + ∥F (2)
T ∥1

)
.

Finally, an application of (2.4.130) proves the claim.

The operator N (2)
T . The operator N (2)

T is defined by

N
(2)
T (α)(X, r) :=

�
R9

dZ
�

R9
ds ℓT,0(Z, r, s) A(X, 0, s) (2.4.133)

with A in (2.4.112) and ℓT,0 in (2.4.113).
The following proposition allows us to replace ⟨∆, N (1)

T,B(∆)⟩ by ⟨∆, N (2)
T (∆)⟩ in our

computations. We highlight that the H2
mag(QB)-norm of Ψ is needed to bound the differ-

ence between the two terms.
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Proposition 2.4.20. Assume that |·|kV α∗ ∈ L4/3(R3) for k ∈ {0, 2}. For any T ⩾ T0 > 0,
any B > 0, any Ψ ∈ H2

mag(QB), and ∆ ≡ ∆Ψ as in (2.3.1), we have

|⟨∆, N (1)
T,B(∆) −N

(2)
T (∆)⟩| ⩽ C B3

(
∥V α∗∥4

4/3 + ∥ | · |2V α∗∥4
4/3

)
× ∥Ψ∥3

H1
mag(QB) ∥Ψ∥H2

mag(QB).

Before we prove the above proposition, let us introduce the functions

F
(1)
T := 2

β

∑
n∈Z

|giωn
0 | ∗ |g−iωn

0 | ∗ |giωn
0 | ∗ |g−iωn

0 |

and

F
(2)
T := 2

β

∑
n∈Z

|giωn
0 | ∗

(
| · |2 |g−iωn

0 |
)

∗ |giωn
0 | ∗ |g−iωn

0 |

+ |giωn
0 | ∗ |g−iωn

0 | ∗
(
| · |2 |giωn

0 |
)

∗ |g−iωn
0 |

+ |giωn
0 | ∗ |g−iωn

0 | ∗ |giωn
0 | ∗

(
| · |2 |g−iωn

0 |
)
.

For T ⩾ T0 > 0, an application of Lemma 2.4.4 and the estimate (2.4.50) on f(t, ω) show

∥F (1)
T ∥1 + ∥F (2)

T ∥1 ⩽ C. (2.4.134)

Proof. We have

⟨∆, N (1)
T,B(∆) −N

(2)
T (∆)⟩

= 16
�
R3

dr
�

R9
ds V α∗(r)V α∗(s1)V α∗(s2)V α∗(s3)

�
R9

dZ ℓT,0(Z, r, s)

×
 
QB

dX Ψ(X)
(
eiZ1·ΠX Ψ(X) eiZ2·ΠX Ψ(X) eiZ3·ΠX Ψ(X) − Ψ(X)Ψ(X)Ψ(X)

)
.

(2.4.135)

Apart from the exponential factors, this expression is symmetric under the simultaneous
replacement of (Z1, Z2, Z3) by (−Z1,−Z2,−Z3). When we expand the magnetic transla-
tions in cosine and sine functions of Zi · ΠX , i = 1, 2, 3, the above symmetry implies that
all terms with an odd number of sine functions vanish. Accordingly, we may replace the
bracket in the last line of (2.4.135) by(

cos(Z1 · ΠX)Ψ(X) cos(Z2 · ΠX)Ψ(X) cos(Z3 · ΠX)Ψ(X) − Ψ(X)Ψ(X)Ψ(X)
)

+ cos(Z1 · ΠX)Ψ(X) i sin(Z2 · ΠX)Ψ(X) i sin(Z3 · ΠX)Ψ(X)
+ i sin(Z1 · ΠX)Ψ(X) cos(Z2 · ΠX)Ψ(X) i sin(Z3 · ΠX)Ψ(X)
+ i sin(Z1 · ΠX)Ψ(X) i sin(Z2 · ΠX)Ψ(X) cos(Z3 · ΠX)Ψ(X). (2.4.136)

Let us consider the first term in (2.4.136). We use | cos(x) − 1|2 = 4| sin4(x2 )| ⩽ 1
4 |x|4 and

the operator inequality in (2.4.102) to see that | cos(Z ·Π)−1|2 ⩽ C · |Z|4 (Π4 +B2) holds.
In particular,

∥[cos(Z · Π) − 1]Ψ∥2
2 ⩽ C B3 |Z|4 ∥Ψ∥2

H2
mag(QB). (2.4.137)
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In combination with the estimate (2.4.122) on ∥eiZ·ΠΨ∥6, this implies
 
QB

dX |Ψ(X)|
∣∣∣cos(Z1 · Π)Ψ(X) cos(Z2 · Π)Ψ(X) cos(Z3 · Π)Ψ(X) − Ψ(X)Ψ(X)Ψ(X)

∣∣∣
⩽ ∥Ψ∥6 ∥(cos(Z1 · Π) − 1)Ψ∥2 ∥ cos(Z2 · Π)Ψ∥6 ∥ cos(Z3 · Π)Ψ∥6

+ ∥Ψ∥2
6 ∥(cos(Z2 · Π) − 1)Ψ∥2 ∥ cos(Z3 · Π)Ψ∥6 + ∥Ψ∥3

6 ∥(cos(Z3 · Π) − 1)Ψ∥2

⩽ C B3 ∥Ψ∥3
H1

mag(QB) ∥Ψ∥H2
mag(QB)

(
|Z1|2 + |Z2|2 + |Z3|2

)
. (2.4.138)

To treat the other terms in (2.4.136) we use the operator inequality in (2.4.97) to see
that

∥ sin(Z · Π)Ψ∥2
2 = ⟨Ψ, sin2(Z · Π) Ψ⟩ ⩽ C B2 |Z|2 ∥Ψ∥2

H1
mag(QB),

which yields
 
QB

dX |Ψ(X)| | cos(Zi · Π)Ψ(X)| | sin(Zj · Π)Ψ(X)| | sin(Zk · Π)Ψ(X)|

⩽ C B3
(
|Zj |2 + |Zk|2

)
∥Ψ∥4

H1
mag(QB). (2.4.139)

We gather (2.4.135), (2.4.136), (2.4.138), and (2.4.139) and find

|⟨∆, N (1)
T,B(∆) −N

(2)
T (∆)⟩| ⩽ C B3 ∥Ψ∥3

H1
mag(QB) ∥Ψ∥H2

mag(QB)

×
�
R3

dr
�

R9
ds |V α∗(r)| |V α∗(s1)| |V α∗(s2)| |V α∗(s3)|

×
�

R9
dZ |ℓT,0(Z, r, s)|

(
|Z1|2 + |Z2|2 + |Z3|2

)
.

When we write the coordinates Zi, i = 1, 2, 3, in terms of the coordinates in (2.4.125) and
(2.4.126) plus linear combinations of r and si, i = 1, 2, 3, we see that

|Z1| ⩽ |Z ′
1 − Z ′

2| + |Z ′
2 − Z ′

3| + |Z ′
3| + |r| + |s1| + |s2| + |s3|,

|Z2| ⩽ |Z ′
2 − Z ′

3| + |Z ′
3| + |r| + |s2| + |s3|,

|Z3| ⩽ |Z ′
3| + |r| + |s3|.

We use this and argue as in the proof of (2.4.76), which yields
�

R9
dZ |ℓT,0(Z, r, s)|

(
|Z1|2 + |Z2|2 + |Z3|2

)
⩽ C

(
F

(1)
T (r − s1 − s2 − s3) (|r|2 + |s1|2 + |s2|2 + |s3|2) + F

(2)
T (r − s1 − s2 − s3)

)
.

In particular,

|⟨∆, N (1)
T,B(∆) −N

(2)
T (∆)⟩| ⩽ C B3 ∥Ψ∥3

H1
mag(QB) ∥Ψ∥H2

mag(QB)

×
(
∥V α∗∥4

4/3 + ∥ | · |2V α∗∥4
4/3

)(
∥F (1)

T ∥1 + ∥F (2)
T ∥1

)
.

In combination with (2.4.134), this proves the claim.
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2.4.3.8 Calculation of the quartic term in the Ginzburg–Landau functional

The following proposition allows us to extract the quartic term in the Ginzburg–Landau
functional in (2.1.17) from ⟨∆, N (2)

T (∆)⟩.

Proposition 2.4.21. Assume V α∗ ∈ L4/3(R3). For any B > 0, any Ψ ∈ H1
mag(QB), and

∆ ≡ ∆Ψ as in (2.3.1), we have

⟨∆, N (2)
Tc

(∆)⟩ = 8 Λ3 ∥Ψ∥4
4

with Λ3 in (2.3.24). Moreover, for any T ⩾ T0 > 0, we have

|⟨∆, N (2)
T (∆) −N

(2)
Tc

(∆)⟩| ⩽ C B2 |T − Tc| ∥V α∗∥4
4/3 ∥Ψ∥4

H1
mag(QB).

Before we prove the above proposition, let us introduce the function

FT,Tc := 2
β

∑
n∈Z

|2n+ 1|
[
|giωT

n
0 | ∗ |giωTc

n
0 | ∗ |g−iωT

n
0 | ∗ |giωT

n
0 | ∗ |g−iωT

n
0 |

+ |giωTc
n

0 | ∗ |g−iωT
n

0 | ∗ |g−iωTc
n

0 | ∗ |giωT
n

0 | ∗ |g−iωT
n

0 |

+ |giωTc
n

0 | ∗ |g−iωTc
n

0 | ∗ |giωT
n

0 | ∗ |giωTc
n

0 | ∗ |g−iωT
n

0 |

+ |giωTc
n

0 | ∗ |g−iωTc
n

0 | ∗ |giωTc
n

0 | ∗ |g−iωT
n

0 | ∗ |g−iωTc
n

0 |
]
, (2.4.140)

where we have included the T -dependence of the Matsubara frequencies in our notation
once more because different temperatures appear in the formula. As long as T ⩾ T0 > 0,
Lemma 2.4.4 and (2.4.50) imply

∥FT,Tc∥1 ⩽ C. (2.4.141)

Proof of Proposition 2.4.21. Set

ℓT (Z, r) := 2
β

∑
n∈Z

giωn
0 (r − Z1) g−iωn

0 (Z1 − Z2) giωn
0 (Z2 − Z3) g−iωn

0 (Z3).

Then, by the change of variables (2.4.125) and (2.4.126), we have
�

R9
dZ ℓT,0(Z, r, s) =

�
R9

dZ ℓT (Z, r − s1 − s2 − s3).

We use that (±iωn + µ− p2)−1 is the Fourier transform of g±iωn
0 (x), which yields

ℓT (Z, r) = 2
β

∑
n∈Z

�
R12

dp
(2π)12

eip1·(r−Z1)

iωn + µ− p2
1

eip2·(Z1−Z2)

−iωn + µ− p2
2

eip3·(Z2−Z3)

iωn + µ− p2
3

eip4·Z3

−iωn + µ− p2
4
.

Integration over Z gives
�

R9
dZ ℓT (Z, r) = 2

β

∑
n∈Z

�
R3

dp
(2π)3 eip·r 1

(iωn + µ− p2)2(iωn − µ+ p2)2 .

In view of the partial fraction expansion

1
(iωn − E)2(iωn + E)2 = 1

4E2

[ 1
(iωn − E)2 + 1

(iωn + E)2

]
− 1

4E3

[ 1
iωn − E

− 1
iωn + E

]
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and the identity
β

2
1

cosh2(β2 z)
= d

dz tanh
(β

2 z
)

= − 2
β

∑
n∈Z

1
(iωn − z)2 , (2.4.142)

which follows from (2.3.12), we have

2
β

∑
n∈Z

1
(iωn − E)2(iωn + E)2 = β2

2
g1(βE)
E

with the function g1 in (2.3.21). We conclude that
�

R9
dZ ℓT (Z, r) = β2

2

�
R3

dp
(2π)3 eip·r g1(β(p2 − µ))

p2 − µ
.

For the term we are interested in, this implies

⟨∆, N (2)
Tc

(∆)⟩ = 16 ∥Ψ∥4
4
β2
c

2

�
R3

dr
�

R9
ds V α∗(r)V α∗(s1)V α∗(s2)V α∗(s3)

×
�
R3

dp
(2π)3 eip·(r−s1−s2−s3) g1(βc(p2 − µ))

p2 − µ

= 8 ∥Ψ∥4
4
β2
c

16

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|4 g1(βc(p2 − µ))

p2 − µ
= 8 Λ3 ∥Ψ∥4

4

(2.4.143)

with Λ3 in (2.3.24). This proves the first claim.
To prove the second claim, we note that

⟨∆, N (2)
T (∆) −N

(2)
Tc

(∆)⟩ = 16
�
R3

dr
�

R9
ds V α∗(r)V α∗(s1)V α∗(s2)V α∗(s3)

×
�

R9
dZ

(
ℓT,0 − ℓTc,0

)
(Z, r, s)

 
QB

dX |Ψ(X)|4. (2.4.144)

Afterwards, we argue as in the proof of (2.4.92), that is, we use the resolvent equation
(2.4.90) as well as the change of variables in (2.4.125) and (2.4.126) and obtain�

R9
dZ |ℓT,0(Z, r, s) − ℓTc,0(Z, r, s)| ⩽ C |T − Tc| FT,Tc(r − s1 − s2 − s3) (2.4.145)

with the function FT,Tc in (2.4.140). Together with (2.4.144), this implies

|⟨∆, N (2)
T (∆) −N

(2)
Tc

(∆)⟩| ⩽ C |T − Tc| ∥Ψ∥3
6∥Ψ∥2

∥∥∥V α∗
(
V α∗ ∗ V α∗ ∗ V α∗ ∗ FT,Tc

)∥∥∥
1
.

Finally, an application of (2.2.7), Young’s inequality, and (2.4.141) concludes the proof.

2.4.3.9 Summary: The quartic terms and proof of Theorem 2.3.5

Let the assumptions of Theorem 2.3.5 hold. We collect the results of Lemma 2.4.16, as
well as Propositions 2.4.18, 2.4.19, 2.4.20, and 2.4.21, which yield

1
8⟨∆, NT,B(∆)⟩ = Λ3 ∥Ψ∥4

4 +R(B) (2.4.146)

with
|R(B)| ⩽ C B3 ∥Ψ∥3

H1
mag(QB) ∥Ψ∥H2

mag(QB).

Together with (2.4.111), this completes the proof of Theorem 2.3.5.
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2.4.4 Proof of Lemma 2.3.1 and Proposition 2.3.2

We start with the proof of Lemma 2.3.1 and recall the definition of Γ∆ in (2.3.4) and
that of the normal state Γ0 in (2.1.12). By definition, Γ∆ is a gauge-periodic generalized
fermionic one-particle density matrix. Therefore, we only have to check the trace class
condition (2.1.8).

To this end, we use the expansion (2.3.14) of the hyperbolic tangent in terms of the
Matsubara frequencies, the first formula in (2.4.10), and the resolvent equation (2.4.19)
to write

Γ∆ = 1
2 − 1

2 tanh
(β

2H∆
)

= 1
2 + 1

β

∑
n∈Z

1
iωn −H∆

= Γ0 + O + QT,B(∆), (2.4.147)

where

O := 1
β

∑
n∈Z

1
iωn −H0

δ
1

iωn −H0
, QT,B(∆) := 1

β

∑
n∈Z

1
iωn −H0

δ
1

iωn −H0
δ

1
iωn −H∆

(2.4.148)

with δ in (2.3.3). Since O is offdiagonal, we have [O]11 = 0 and the operator (1 +π2)[O]11
is locally trace class trivially. Using (2.4.23), we see that[

QT,B(∆)
]

11
= 1
β

∑
n∈Z

1
iωn − hB

∆ 1
iωn + hB

∆
[ 1

iωn −H∆

]
11
.

An application of Hölder’s inequality shows that (1+π2)[QT,B(∆)]11 is locally trace class.
It remains to show that (1 + π2)γ0 is locally trace class. But this follows from the bound
(1 +x)(exp(β(x−µ)) + 1)−1 ⩽ Cβ,ae− β

2 (x−µ) for x ⩾ a, the diamagnetic inequality for the
magnetic heat kernel, see e.g. [LS10, Theorem 4.4], and the explicit formula for the heat
kernel of the Laplacian. This concludes the proof of Lemma 2.3.1.

Let us continue with the proof of Proposition 2.3.2. We use α∆ = [Γ∆]12, the resolvent
equation (2.4.19) and (2.4.147) to see that

α∆ = [O]12 + [QT,B(∆)]12 = [O]12 + RT,B(∆),

with O in (2.4.148), and

RT,B(∆) := 1
β

∑
n∈Z

[ 1
iωn −H0

δ
1

iωn −H0
δ

1
iωn −H∆

δ
1

iωn −H0

]
12
.

The definition of LT,B in (2.3.15) implies [O]12 = −1
2LT,B∆, and we define

η0(∆) := 1
2
(
LT,B∆ −MT,B∆

)
+ 1

2
(
M

(1)
T ∆ −M

(1)
Tc

∆
)

+ RT,B(∆),

η⊥(∆) := 1
2
(
MT,B∆ −M

(1)
T ∆

)
, (2.4.149)

with MT,B in (2.4.69) and M
(1)
T in (2.4.80). Proposition 2.4.11 implies that −1

2M
(1)
Tc

∆ =
Ψα∗, so these definitions allow us to write α∆ as in (2.3.6). It remains to prove the
properties of η0 and η⊥ that are listed in Proposition 2.3.2.

We start with the proof of (2.3.7), and note that

RT,B(∆) = 1
β

∑
n∈Z

1
iωn − hB

∆ 1
iωn + hB

∆
[ 1

iωn −H∆

]
11

∆ 1
iωn + hB

.
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Using Hölder’s inequality, we immediately see that ∥RT,B(∆)∥2 ⩽ Cβ3∥∆∥3
6. Furthermore,

we estimate

∥πRT,B(∆)∥2 ⩽
1
β

∑
n∈Z

∥∥∥∥π 1
iωn − hB

∥∥∥∥
∞

∥∥∥∥ 1
iωn + hB

∥∥∥∥2

∞

∥∥∥∥[ 1
iωn −H∆

]
11

∥∥∥∥
∞

∥∆∥3
6.

With the help of ∥A∥2
∞ = ∥A∗A∥∞ for a general operator A, the first norm on the right

side is bounded by∥∥∥∥π 1
iωn − hB

∥∥∥∥
∞

⩽
∥∥∥∥ 1

−iωn − hB

∥∥∥∥1/2

∞

∥∥∥∥π2 1
iωn − hB

∥∥∥∥1/2

∞
⩽ C |ωn|−1/2.

Hence,
∥πRT,B(∆)∥2 ⩽ C β

5/2 ∥∆∥3
6. (2.4.150)

With a similar argument, we see that ∥RT,B(∆)π∥2 is bounded by the right side of
(2.4.150), too. An application of Lemma 2.4.1 and of (2.2.7) on the right side of (2.4.150)
finally shows

∥RT,B(∆)∥2
H1(QB×R3

s ) ⩽ C B3 ∥Ψ∥6
H1

mag(QB).

The remaining terms in η0(∆) can be estimated with the help of Propositions 2.4.7, 2.4.9,
and 2.4.11, which establishes (2.3.7).

It remains to prove (2.3.8) and (2.3.9). We start with the proof of (2.3.8) and write

η⊥(∆)(X, r) =
�

R3×R3
dZds kT (Z, r − s) [cos(Z · ΠX) − 1] ∆(X, s). (2.4.151)

Using (2.4.137) we see that

∥η⊥∥2
2 ⩽ C B3 ∥F (2)

T ∥2
1 ∥V α∗∥2

2 ∥Ψ∥2
H2

mag(QB), (2.4.152)

with the function F
(2)
T in (2.4.72). The L1(R3)-norm of this function was estimated in

(2.4.130). We use this bound and conclude the claimed bound for the L2(QB × R3
s )-norm

of η⊥. Bounds for ∥π̃rη⊥∥2 and ∥|r|η⊥∥2 can be proved similarly and we leave the details
to the reader.

To prove the claimed bound for ∥ΠXη⊥∥2, we need to replace [cos(Z · ΠX) − 1]Ψ(X)
by ΠX [cos(Z · ΠX) − 1]Ψ(X) in the proof of (2.4.152). Using the intertwining relation
(2.5.40) in Lemma 2.5.12 below, the operator inquality (2.4.97) for (Z · Π)2, and the
equality (2.4.105) for Π Π2 Π, we see that

∥Π[cos(Z · Π) − 1]Ψ∥2 ⩽ C B3 |Z|2 ∥Ψ∥2
H2

mag(QB) (2.4.153)

holds. The claimed bound for ∥ΠXη⊥∥2 follows from (2.4.151) and (2.4.153), which, in
combination with the previous considerations, proves (2.3.8).

To prove (2.3.9), we note that for any two radial functions f, g ∈ L2(R3) the function
�

R6
drds f(r) kT (Z, r − s) g(s) (2.4.154)

is radial in Z. We claim that this implies that the operator
�

R9
dZdsdr f(r)kT (Z, r − s)g(s)[cos(Z · Π) − 1] (2.4.155)

126 PhD Thesis



CHAPTER 2. BCS-THEORY IN A HOMOGENEOUS MAGNETIC FIELD

equals h(Π2) for some function h : [0,∞) → R. To prove this, let us denote by Π̃ the
same operator Π but understood to act on L2(R3) instead of L2

mag(QB). From [FHL19,
Lemma 28] we know that the above statement is true when Π is replaced by Π̃. To reduce
our claim to this case, we use the unitary Bloch–Floquet transformation

(UBFΨ)(k,X) :=
∑
λ∈ΛB

e−ik·(X−λ)(TB(λ)Ψ)(X) (2.4.156)

with TB(λ) in (2.1.16) and inverse

(U∗
BFΦ)(X) =

�
[0,

√
2πB]3

dk eik·XΦ(k,X). (2.4.157)

The magnetic momentum operator Π̃ obeys the identity

UBF Π̃ U∗
BF =

� ⊕

[0,
√

2πB]3
dk Π̃(k) (2.4.158)

with Π̃(k) = Π + k acting on L2
mag(QB). The claim follows when we conjugate both sides

of the equation
�

R9
dZdsdr f(r)kT (Z, r − s)g(s)[cos(Z · Π̃) − 1] = h(Π̃2)

with the Bloch–Floquet transformation and use that Π̃(0) = Π. Eq. (2.3.9) is a direct
consequence of the fact that the operator in (2.4.155) equals h(Π2). This proves Proposi-
tion 2.3.2.

2.4.5 Proof of Proposition 2.3.6

Let the assumptions of Proposition 2.3.6 hold. We show that there are constants D0 > 0
and B0 > 0 such that for 0 < B ⩽ B0 and temperatures T obeying

0 < T0 ⩽ T < Tc(1 −D0B)

there is a function Ψ ∈ H2
mag(QB), such that the Gibbs state Γ∆ in (2.3.4) built upon the

gap function ∆(X, r) = −2V α∗(r)Ψ(X) obeys (2.3.27).
To prove this, we choose ψ ∈ H2

mag(Q1) with ∥ψ∥H2
mag(QB) = 1 and Ψ ∈ H2

mag(QB)
as in (2.1.18). This, in particular, implies ∥Ψ∥H2

mag(QB) = 1. We collect the results of
Propositions 2.3.2, 2.3.4, 2.4.15, as well as (2.2.7) and (2.4.146), and conclude that

FBCS
B,T (Γ∆) − FBCS

B,T (Γ0) < B
(
−cD0 ∥ψ∥2

2 + C
)

holds as long as B is small enough. We remark that this argument can be carried out with-
out the assumption of H2

mag(Q1)-regularity of ψ by instead using the sign of V . Compare
this to the discussion below (2.3.28). Choosing D0 = C

c∥ψ∥2
2

ends the proof of Proposi-
tion 2.3.6.

2.5 The Structure of Low-Energy States

In Section 2.3 we use a Gibbs state to show that the BCS free energy is bounded from
above by the Ginzburg–Landau energy plus corrections of lower order. The Gibbs state
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has a Cooper pair wavefunction which is given by a product of the form α∗(r)Ψ(X) to
leading order, where Ψ is a minimizer of the Ginzburg–Landau functional in (2.1.17) and
α∗ is the unique solution of the gap equation (2.1.15). Moreover, close to the critical
temperature the Cooper pair wave function is small in an appropriate sense, which allows
us to expand the BCS functional in powers of Ψ and to obtain the terms in the Ginzburg–
Landau functional.

Our proof of a matching lower bound for the BCS free energy in Section 2.6 is based
on the fact that certain low-energy states of the BCS functional have a Cooper pair wave
function with a similar structure. The precise statement is provided in Theorem 2.5.1
below, which is the main technical novelty of this paper. This section is devoted to its
proof.

We recall the definition of the generalized one-particle density matrix Γ in (2.1.5), its
offdiagonal entry α, as well as the normal state Γ0 in (2.1.12).

Theorem 2.5.1 (Structure of low-energy states). Let Assumptions 2.1.3 and 2.1.5 hold.
For given D0, D1 ⩾ 0, there is a constant B0 > 0 such that for all 0 < B ⩽ B0 the
following holds: If T > 0 obeys T − Tc ⩾ −D0B and if Γ is a gauge-periodic state with
low energy, that is,

FBCS
B,T (Γ) − FBCS

B,T (Γ0) ⩽ D1B
2, (2.5.1)

then there are Ψ ∈ H1
mag(QB) and ξ ∈ H1(QB × R3

s ) such that

α(X, r) = Ψ(X)α∗(r) + ξ(X, r), (2.5.2)

where

sup
0<B⩽B0

∥Ψ∥2
H1

mag(QB) ⩽ C, ∥ξ∥2
H1(QB×R3

s ) ⩽ CB2
(
∥Ψ∥2

H1
mag(QB) +D1

)
. (2.5.3)

Remarks. (a) Equation (2.5.3) proves that, despite Ψ being dependent on B, it is a
macroscopic quantity in the sense that its H1

mag(QB)-norm scales as that of the func-
tion in (2.1.18).

(b) We highlight that, in contrast to the H1
mag(QB)-norm of Ψ, the H1(QB × R3

s )-norm of
ξ is not scaled with additional factors of B, see (2.2.9). The unscaled L2

mag(QB)-norm
of Ψ is of the order B1/2, whence it is much larger than that of ξ.

(c) Theorem 2.5.1 should be compared to [FHSS12, Eq. (5.1)] and [FHL19, Theorem 22].

Theorem 2.5.1 contains the natural a priori bounds for the Cooper pair wave function
α of a low-energy state Γ in the sense of (2.5.1). However, in Section 2.6 we are going to
need more regularity of Ψ than is provided by Theorem 2.5.1. More precisely, we are going
to use the function Ψ from this decomposition to construct a Gibbs state Γ∆Ψ and apply
our trial state analysis provided by Propositions 2.3.2 and 2.3.4 as well as Theorem 2.3.5 to
extract the Ginzburg–Landau energy. In order to control the errors during this analysis, we
need the H2

mag(QB)-norm of Ψ. The following corollary provides us with a decomposition
of α in terms of a center-of-mass Cooper pair wave function Ψ⩽ with H2

mag(QB)-regularity.

Corollary 2.5.2. Let the assumptions of Theorem 2.5.1 hold and let ε ∈ [B,B0]. Let Ψ
be as in (2.5.2) and define

Ψ⩽ := 1[0,ε](Π2)Ψ, Ψ> := 1(ε,∞)(Π2)Ψ. (2.5.4)
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Then, we have

∥Ψ⩽∥2
H1

mag(QB) ⩽ ∥Ψ∥2
H1

mag(QB),

∥Ψ⩽∥2
Hk

mag(QB) ⩽ C (εB−1)k−1 ∥Ψ∥2
H1

mag(QB), k ⩾ 2, (2.5.5)

as well as

∥Ψ>∥2
2 ⩽ Cε−1B2 ∥Ψ∥2

H1
mag(QB), ∥ΠΨ>∥2

2 ⩽ CB2 ∥Ψ∥2
H1

mag(QB). (2.5.6)

Furthermore,

σ0(X, r) := Ψ>(X)α∗(r) (2.5.7)

satisfies

∥σ0∥2
H1(QB×R3

s ) ⩽ Cε−1B2 ∥Ψ∥2
H1

mag(QB) (2.5.8)

and, with ξ in (2.5.2), the function

σ := ξ + σ0 (2.5.9)

obeys

∥σ∥2
H1(QB×R3

s ) ⩽ CB2
(
ε−1∥Ψ∥2

H1
mag(QB) +D1

)
. (2.5.10)

In terms of these functions, the Cooper pair wave function α of the low-energy state Γ in
(2.5.1) admits the decomposition

α(X, r) = Ψ⩽(X)α∗(r) + σ(X, r). (2.5.11)

Proof. The bounds for Ψ⩽ and Ψ> in (2.5.5) and (2.5.6) are a direct consequence of their
definition in (2.5.4). The bound (2.5.6) immediately implies (2.5.8). Moreover, σ obeys
(2.5.10) by (2.5.3) and (2.5.8). Finally, (2.5.11) follows from (2.5.2).

2.5.1 A lower bound for the BCS functional

We start the proof of Theorem 2.5.1 with the following lower bound on the BCS functional.

Lemma 2.5.3. Let Γ0 be the normal state in (2.1.12). We have the lower bound

FBCS
B,T (Γ) − FBCS

B,T (Γ0) ⩾ Tr
[
(KT,B − V )αα∗

]
+ 4T

5 Tr
[
(α∗α)2

]
, (2.5.12)

where KT,B = KT (π) and V α(x, y) = V (x− y)α(x, y).

Proof. The statement follows from Eqs. (5.3)–(5.12) in [FHSS12] with the evident replace-
ments. The argument uses the relative entropy inequality [FHSS12, Lemma 1], which is a
refinement of the bound [HLS08, Theorem 1].

In Proposition 2.7.1 in Appendix 2.7 we show that the magnetic field can lower the
lowest eigenvalue zero of KTc − V at most by a constant times B. This information is
used in the following lemma to bound KT,B − V from below by a nonnegative operator,
up to a correction of the size CB. The inequality (2.5.13) below is stated for KT,B −V as
a one-particle operator but it holds equally for the operator KT,B − V (x − y) in (2.5.12)
because V intertwines as T (y)∗V (x)T (y) = V (x− y) with the magnetic translations T (y)
in (2.1.3).
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Lemma 2.5.4. Let Assumptions 2.1.3 and 2.1.5 be true. For any D0 ⩾ 0, there are
constants B0 > 0 and T0 > 0 such that for 0 < B ⩽ B0 and T > 0 with T − Tc ⩾ −D0B,
the estimate

KT,B − V ⩾ c (1 − P )(1 + π2)(1 − P ) + c min{T0, (T − Tc)+} − CB (2.5.13)

holds. Here, P = |α∗⟩⟨α∗| is the orthogonal projection onto the ground state α∗ of KTc −V .

Proof. We prove two lower bounds on KT,B − V , which we add up to etablish (2.5.13).
Step 1. We claim that there are T0, c, C > 0 such that

KT,B − V ⩾ c min{T0, (T − Tc)+} − CB. (2.5.14)

To prove (2.5.14), we note that the derivative of the symbol KT in (2.1.14) with respect
to T equals

d
dT KT (p) = 2

(p2−µ
2T )2

sinh2(p2−µ
2T )

(2.5.15)

and is bounded from above by 2. If T ⩽ Tc, we infer KT,B − KTc,B ⩾ −2D0B as an
operator inequality, which, in combination with Proposition 2.7.1 in the appendix, proves
(2.5.14) in this case. To treat the case T ⩾ Tc, we denote by eT,B0 and eT,B1 the lowest and
the second lowest eigenvalue of the operator KT,B − V , respectively. Also let PT,B be the
spectral projection corresponding to eT,B0 and define QT,B = 1 − PT,B. We have

KT,B − V ⩾ eT,B0 PT,B + eT,B1 QT,B.

Since KT (p) − KTc(p) ⩾ 0 for all p ∈ R3, which follows from (2.5.15), we know the
lower bound eT,B1 ⩾ eTc,B

1 ⩾ κ for some κ > 0. Here, the second inequality follows from
Proposition 2.7.1. From Proposition 2.7.1 we also know that the lowest eigenvalue of
KT,B − V is simple. According to (2.5.15), the function T 7→ KT (p) is increasing and has
a non-vanishing derivative for each p ∈ R3. Analytic perturbation theory therefore implies
the lower bound eT,B0 ⩾ eTc,B

0 +c(T −Tc) for some c > 0 as long as |T −Tc| is small enough.
Since Proposition 2.7.1 shows eTc,B

0 ⩾ −CB these consideration prove (2.5.14) in the case
T ⩾ Tc.

Step 2. We claim there are c, C > 0 such that

KT,B − V ⩾ c (1 − P )(1 + π2)(1 − P ) − CB. (2.5.16)

From the arguments in Step 1 we know that we can replace T by Tc for a lower bound if
we allow for a remainder of the size −CB. To prove (2.5.16), we choose 0 < η < 1 and
write

KTc,B − V = eB0 PB + (1 − PB)[(1 − η)KTc,B − V ](1 − PB) + η(1 − PB)KTc,B(1 − PB),
(2.5.17)

where eB0 denotes the ground state energy of KTc,B −V and PB = |αB∗ ⟩⟨αB∗ | is the spectral
projection onto the corresponding unique ground state vector αB∗ . From Proposition 2.7.1
we know that the first term on the right side of (2.5.17) is bounded from below by −CB.
The lowest eigenvalue of KTc − V is simple and isolated from the rest of the spectrum.
Proposition 2.7.1 therefore implies that the second term in (2.5.17) is nonnegative as long
as η is, independently of B, chosen small enough, and can be dropped for a lower bound.
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To treat the third term, we note that the symbol KT (p) in (2.1.14) satisfies the inequality
KTc(p) ⩾ c′(1 + p2) for some constant c′, and hence KTc,B ⩾ c′(1 + π2). In combination,
the above considerations prove

KTc,B − V ⩾ c′ (1 − PB)(1 + π2)(1 − PB) − CB.

It remains to replace PB by P = |α∗⟩⟨α∗|. To this end, we write

(1 − PB)(1 + π2)(1 − PB) − (1 − P )(1 + π2)(1 − P )
= (P − PB) + (P − PB)π2(1 − PB) + (1 − P )π2(P − PB). (2.5.18)

From Proposition 2.7.1 we know that ∥PB − P∥∞ ⩽ CB and ∥π2(PB − P )∥∞ ⩽ CB.
Hence, the norm of the operator on the right side of (2.5.18) is bounded by a constant
times B. This shows (2.5.16) and concludes our proof.

We deduce two corollaries from (2.5.12) and Lemma 2.5.4. The first statement is an a
priori bound that we use in the proof of Theorem 2.2 (b).

Corollary 2.5.5. Let Assumptions 2.1.3 and 2.1.5 be true. Then, there are constants
B0 > 0 and C > 0 such that for all 0 < B ⩽ B0 and all temperatures T ⩾ Tc(1 + CB),
we have FBCS

B,T (Γ) − FBCS
B,T (Γ0) > 0 unless Γ = Γ0.

Proof. Let D0 > 0 and assume that T ⩾ Tc(1 + D0B). From (2.5.12) and Lemma 2.5.4
we know that

FBCS
B,T (Γ) − FBCS

B,T (Γ0) ⩾ (c min{T0, TcD0B} − CB) ∥α∥2
2. (2.5.19)

For the choice D0 = 2C
cTc

and B0 = T0
D0Tc

the right side of (2.5.19) is strictly positive unless
α = 0. We conclude that Γ0 is the unique minimizer of FBCS

B,T , which proves the claim.

The second corollary provides a bound for the Cooper pair wave functions of low-
energy BCS states in the sense of (2.5.1). It is based upon (2.5.12) and to state it we need
to introduce the operator

U := e−i r
2 ΠX . (2.5.20)

We highlight that it acts on both, the relative coordinate r = x−y and the center-of-mass
coordinate X = x+y

2 of a function α(x, y).

Corollary 2.5.6. Let Assumptions 2.1.3 and 2.1.5 be true. For any D0, D1 ⩾ 0, there is
a constant B0 > 0 such that if Γ satisfies (2.5.1), if 0 < B ⩽ B0, and if T is such that
T − Tc ⩾ −D0B, then α = Γ12 obeys

⟨α, [U(1 − P )(1 + π2
r )(1 − P )U∗ + U∗(1 − P )(1 + π2

r )(1 − P )U ]α⟩

+ Tr
[
(α∗α)2

]
⩽ CB∥α∥2

2 +D1B
2, (2.5.21)

where P = |α∗⟩⟨α∗| and πr = −i∇r + 1
2B ∧ r both act on the relative coordinate.

In the statement of the corollary and in the following, we refrain from equipping the
projection P = |α∗⟩⟨α∗| with an index r although it acts on the relative coordinate. This
should not lead to confusion and keeps the formulas readable.
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Proof. We recall that the operator V acts by multiplication with V (x−y) and that KT (p)
is defined in (2.1.14). Using α(x, y) = α(y, x) we write

Tr
[
(KT,B − V )αα∗

]
= 1

2

 
QB

dx
�
R3

dy α(x, y)
[
(KT (πx) − V ) + (KT (πy) − V )

]
α(x, y).

(2.5.22)

We note that πx = 1
2ΠX + π̃r = UπrU

∗ and πy = 1
2ΠX − π̃r = −U∗πrU , with π̃r and ΠX

in (2.2.10). Using the above identities we see that

KT (πx) − V (r) = U(KT (πr) − V (r))U∗,

KT (πy) − V (r) = U∗(KT (πr) − V (r))U. (2.5.23)

The result follows from a short computation or from Lemma 2.5.11 below. We combine
(2.5.1), (2.5.12), (2.5.22) and (2.5.23) to show the inequality

1
2⟨α, [U(KT (πr) − V (r))U∗ + U∗(KT (πr) − V (r))U ]α⟩ + cTr

[
(α∗α)2

]
⩽ D1B

2.

Finally, we apply Lemma 2.5.4 to the first term on the left side and obtain (2.5.21).

2.5.2 The first decomposition result

The proof of Theorem 2.5.1 is based on Corollary 2.5.6 and is given in two steps. In the first
step we drop the second term on the left side of (2.5.21) for a lower bound, and investigate
the implications of the resulting inequality for α. The result of the corresponding analysis
is summarized in Proposition 2.5.7 below. The second term on the left side of (2.5.21) is
used later in Lemma 2.5.14.

Proposition 2.5.7. Given D0, D1 ⩾ 0, there is B0 > 0 with the following properties. If,
for some 0 < B ⩽ B0, the wave function α ∈ L2(QB × R3

s ) satisfies

⟨α, [U∗(1 − P )(1 + π2
r )(1 − P )U + U(1 − P )(1 + π2

r )(1 − P )U∗]α⟩ ⩽ D0B∥α∥2
2 +D1B

2,
(2.5.24)

then there are Ψ ∈ H1
mag(QB) and ξ0 ∈ H1(QB × R3

s ) such that

α(X, r) = α∗(r) cos
(r

2 · ΠX

)
Ψ(X) + ξ0(X, r) (2.5.25)

with

⟨Ψ,Π2Ψ⟩ + ∥ξ0∥2
H1(QB×R3

s ) ⩽ C
(
B∥Ψ∥2

2 +D1B
2
)
. (2.5.26)

Before we give the proof of the a priori estimates in Proposition 2.5.7, we define
the decomposition of α, explain the idea behind it, and discuss relations to the existing
literature. For this purpose, let the operator A : L2(QB × R3

s ) → L2
mag(QB) be given by

(Aα)(X) :=
�
R3

dr α∗(r) cos
(r

2 · ΠX

)
α(X, r). (2.5.27)

A short computation shows that its adjoint A∗ : L2
mag(QB) → L2(QB × R3

s ) is given by

(A∗Ψ)(X, r) = α∗(r) cos
(r

2 · ΠX

)
Ψ(X). (2.5.28)
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We highlight that this is the form of the first term in (2.5.25). For a given Cooper pair
wave function α, we use these operators to define the two functions Ψ and ξ0 by

Ψ := (AA∗)−1Aα, ξ0 := α−A∗Ψ. (2.5.29)

Lemma 2.5.8 below guarantees that AA∗ is invertible, and we readily check that (2.5.25)
holds with these definitions. Moreover, this decomposition of α is orthogonal in the sense
that ⟨A∗Ψ, ξ0⟩ = 0 holds. The claimed orthogonality follows from

Aξ0 = 0, (2.5.30)

which is a direct consequence of (2.5.29). In the following we motivate our choice for Ψ
and ξ0 and comment on its appearance in the literature.

The decomposition of α is motivated by the minimization problem for the low-energy
operator 2−UPU∗−U∗PU , that is, the operator in (2.5.24) with π2

r replaced by zero. The
operators UPU∗ and U∗PU act as A∗A on the space L2(QB × R3

s ) of reflection symmetric
functions in the relative coordinate. If Π is replaced by PX in the definition of U then
A∗A can be written as

A∗A ∼=
� ⊕

[0,
√

2πB]3
dPX |aPX

⟩⟨aPX
|, (2.5.31)

with |aPX
⟩⟨aPX

| the orthogonal projection onto the function aPX
(r) = cos(r/2 ·PX)α∗(r).

Here the variable PX is the dual of the center-of-mass coordinate X in the sense of Fourier
transformation and r denotes the relative coordinate. That is, the function aPX

(r) min-
imizes 1 − A∗A in each fiber, whence it is the eigenfunction with respect to the lowest
eigenvalue of 1 − A∗A = 1 − (UPU∗ + U∗PU)/2. This discussion should be compared to
[FHSS12, Eq. (5.47)] and the discussion before Lemma 20 in [FH18].

If we replace PX by the magnetic momentum operator Π again the above picture
changes because the components of Π cannot be diagonalized simultaneously (they do not
commute), and hence (2.5.31) has no obvious equivalent in this case. The decomposition
of α in terms of the operators A and A∗ above has been introduced in [FHL19] in order to
study the operator 1 − V 1/2LT,BV

1/2 with LT,B in (2.3.15), see also the discussion below
Theorem 2.3.5. The situation in this work is comparable to our case with π2

r replaced by
zero in (2.5.24). Our analysis below shows that the ansatz (2.5.29) is useful even if the
full range of energies is considered, that is, if π2

r is present in (2.5.24).
In the following lemma we collect useful properties of the operator AA∗. It should be

compared to [FHL19, Lemma 27].

Lemma 2.5.8. The operators

AA∗ =
�
R3

dr α∗(r)2 cos2
(r

2 · Π
)
, 1 −AA∗ =

�
R3

dr α∗(r)2 sin2
(r

2 · Π
)

on L2
mag(QB) are both bounded nonnegative functions of Π2 and satisfy the following prop-

erties:

(a) 0 ⩽ AA∗ ⩽ 1 and 0 ⩽ 1 −AA∗ ⩽ 1.

(b) There is a constant c > 0 such that AA∗ ⩾ c and 1 −AA∗ ⩾ c Π2 (1 + Π2)−1.

In particular, AA∗ and 1 −AA∗ are boundedly invertible on L2
mag(QB).
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Proof. Part (a) is a direct consequence of the fact that ∥α∗∥2 = 1. In the following we
reduce the proof of part (b) to known results in [FHL19]. To this end, we introduce the
operator

R :=
�
R3

dr α∗(r)2 cos(r · Π) (2.5.32)

and note that

AA∗ = 1
2(1 +R), 1 −AA∗ = 1

2(1 −R).

Let us also denote by R̃ the operator in (2.5.32) but with Π replaced by Π̃, which is
the same operator but understood to act on L2(R3) instead of L2

mag(QB). In Lemma 28
in [FHL19] it has been shown that R̃ is a function of Π̃2. Moreover, the statement of
Lemma 27 in [FHL19] is equivalent to

1 − R̃2 ⩾ c
Π̃2

1 + Π̃2
(2.5.33)

for some 0 < c < 1, and Eq. (55) in the same reference implies

|R̃| ⩽ 1 − c. (2.5.34)

In combination, (2.5.33), (2.5.34), and R̃ ⩽ 1 show

1 + R̃ ⩾ c, 1 − R̃ ⩾
1 − R̃2

2 ⩾
c

2
Π̃2

1 + Π̃2
. (2.5.35)

It remains to argue that R is a function of Π2 and that a version of (2.5.35) with R̃ and
Π̃ replaced by R and Π holds.

The fact that R is a function of Π2 follows from the argument that we used to show that
the same statement is true for the operator in (2.4.155). To show that (2.5.35) with R̃ and
Π̃ replaced by R and Π holds, we conjugate both sides of the inequalities with the Bloch-
Floquet transformation in (2.4.156) and (2.4.157), and use (2.4.158). The inequalities in
(2.5.35) therefore hold equally in any fiber, that is, with Π̃ on the left and on the right
sides replaced by Π(k) = Π + k acting on L2

mag(QB). Since Π̃(0) = Π, this proves the
claim.

The remainder of this subsection is devoted to the proof of Proposition 2.5.7. We start
with a lower bound on the operator in (2.5.24) when it acts on wave functions of the form
A∗Ψ, see Lemma 2.5.9 below.

2.5.2.1 Step one – lower bound on the range of A∗

The main result of this subsection is the following lemma.

Lemma 2.5.9. For any Ψ ∈ L2
mag(QB), with A and A∗ given by (2.5.27) and (2.5.28),

with U given by (2.5.20), and P = |α∗⟩⟨α∗| with α∗ from (2.1.15) acting on the relative
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coordinate, we have
1
2⟨A∗Ψ, [U∗(1 − P )(1 + π2

r )(1 − P )U + U(1 − P )(1 + π2
r )(1 − P )U∗]A∗Ψ⟩

= ⟨Ψ, AA∗(1 −AA∗)(1 + Π2)Ψ⟩

+
 
QB

dX
�
R3

dr (1 −AA∗)Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
(1 −AA∗)Ψ(X)

+
 
QB

dX
�
R3

dr AA∗Ψ(X) |∇α∗(r)|2 sin2
(r

2ΠX

)
AA∗Ψ(X)

+ 1
4

 
QB

dX
�
R3

dr (1 −AA∗)Ψ(X) |B ∧ r|2α∗(r)2 sin2
(r

2ΠX

)
(1 −AA∗)Ψ(X)

+ 1
4

 
QB

dX
�
R3

dr AA∗Ψ(X) |B ∧ r|2α∗(r)2 cos2
(r

2ΠX

)
AA∗Ψ(X). (2.5.36)

In particular, we have the lower bound
1
2⟨A∗Ψ, [U∗(1 − P )(1 + π2

r )(1 − P )U + U(1 − P )(1 + π2
r )(1 − P )U∗]A∗Ψ⟩ ⩾ c ⟨Ψ,Π2Ψ⟩.

(2.5.37)

Remark 2.5.10. Let us replace π2
r on the left side of (2.5.36) by zero for the moment.

In this case, the substitute of (2.5.36) reads
1
2⟨A∗Ψ, [U∗(1 − P )U + U(1 − P )U∗]A∗Ψ⟩ = ⟨Ψ, AA∗(1 −AA∗)Ψ⟩. (2.5.38)

It follows from Lemma 2.5.8 that the operator AA∗(1 − AA∗) is bounded from below by
Π2 only for small values of Π2, which is not enough for the proof of Proposition 2.5.7.
This justifies the term “low-energy operator” for 1 − A∗A, which we used earlier in the
discussion below (2.5.28). The additional factor 1 + Π2 in the first term on the right side
of (2.5.36) compensates for the problematic behavior of (2.5.38) for high energies. The
expression on the right side of (2.5.38) also appears in [FHL19].

Before we give the proof of Lemma 2.5.9, we prove two technical lemmas, which pro-
vide intertwining relations for various magnetic momentum operators with U and linear
combinations of U . A part of the relations in the first lemma can be found in [FHL19,
Lemma 24].

Lemma 2.5.11. Let pr := −i∇r, πr = pr + 1
2B ∧ r and π̃r and ΠX be given by (2.2.10).

With U in (2.5.20), we have the following intertwining relations:

UΠXU
∗ = ΠX − B ∧ r,

U∗ΠXU = ΠX + B ∧ r,

UπrU
∗ = π̃r + 1

2ΠX ,

U∗πrU = π̃r − 1
2ΠX ,

Uπ̃rU
∗ = pr + 1

2ΠX ,

U∗π̃rU = pr − 1
2ΠX .

Proof. Let us denote PX := −i∇X . We use the fact that r ·PX commutes with r · (B ∧X)
to see that

U∗ = ei B
2 ·(X∧r) ei r

2PX (2.5.39)

holds. To prove the first intertwining relation with ΠX , we compute

ΠXU
∗ = (PX + B ∧X)U∗ = ei B

2 ·(X∧r)
[
PX − 1

2B ∧ r + B ∧X

]
ei r

2PX

= U∗
[
PX − 1

2B ∧ r + B ∧
(
X − r

2
)]

= U∗[ΠX − B ∧ r].

June 17, 2022 135 Marcel Maier



2.5. THE STRUCTURE OF LOW-ENERGY STATES

Here we used that f(X) ei r
2PX = ei r

2PX f(X − r
2). The second intertwining relation with

ΠX is obtained by replacing r by −r.
Next we consider the first intertwining relation with πr and compute

πrU
∗ =

(
pr + 1

2B ∧ r
)
U∗ = ei B

2 ·(X∧r)
[
pr + (−i)i12B ∧X + 1

2B ∧ r

]
ei r

2PX

= U∗
[
pr + PX

2 + 1
2B ∧

(
X − r

2
)

+ 1
2B ∧ r

]
= U∗

[
π̃r + ΠX

2

]
.

The remaining relations can be proved similarly and we skip the details.

Lemma 2.5.12. (a) We have the following intertwining relations for ΠX :

ΠX cos
(r

2ΠX

)
= cos

(r
2ΠX

)
ΠX − i sin

(r
2ΠX

)
B ∧ r, (2.5.40)

ΠX sin
(r

2ΠX

)
= sin

(r
2ΠX

)
ΠX + i cos

(r
2ΠX

)
B ∧ r. (2.5.41)

(b) The operators pr, π̃r and πr intertwine according to

π̃r cos
(r

2ΠX

)
= cos

(r
2ΠX

)
pr + i sin

(r
2ΠX

)ΠX

2 , (2.5.42)

π̃r cos
(r

2ΠX

)
= cos

(r
2ΠX

)
πr + iΠX

2 sin
(r

2ΠX

)
, (2.5.43)

and

π̃r sin
(r

2ΠX

)
= sin

(r
2ΠX

)
pr − i cos

(r
2ΠX

)ΠX

2 , (2.5.44)

π̃r sin
(r

2ΠX

)
= sin

(r
2ΠX

)
πr − iΠX

2 cos
(r

2ΠX

)
(2.5.45)

It will be useful in the proof of Lemma 2.5.9 to have displayed both, (2.5.42) and
(2.5.43) as well as (2.5.44) and (2.5.45), even though they follow trivially from each other
and (2.5.40) or (2.5.41).

Proof. The proof is a direct consequence of the representations

cos
(r

2ΠX

)
= 1

2(U∗ + U), sin
(r

2ΠX

)
= 1

2i(U
∗ − U), (2.5.46)

and the intertwining relations in Lemma 2.5.12. We omit the details.

Proof of Lemma 2.5.9. The proof is a tedious computation that is based on the intertwin-
ing relations in Lemma 2.5.12. We start by defining

T1 := U∗π2
rU + Uπ2

rU
∗ = 2 π̃2

r + 1
2 Π2

X , T2 := U∗Pπ2
rPU + UPπ2

rPU
∗,

T3 := U∗Pπ2
rU + UPπ2

rU
∗, T4 := U∗π2

rPU + Uπ2
rPU

∗. (2.5.47)

Then, (2.5.36) can be written as

⟨A∗Ψ, [U∗(1 − P )(1 + π2
r )(1 − P )U + U(1 − P )(1 + π2

r )(1 − P )U∗]A∗Ψ⟩ =
= 2⟨A∗Ψ, (1 −A∗A)A∗Ψ⟩

+ ⟨A∗Ψ, T1A
∗Ψ⟩ + ⟨A∗Ψ, T2A

∗Ψ⟩ − ⟨A∗Ψ, T3A
∗Ψ⟩ − ⟨A∗Ψ, T4A

∗Ψ⟩. (2.5.48)
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The first term on the right side equals twice the term in (2.5.38), which is in its final form.
We start by computing the Π2

X term in T1, which reads

⟨A∗Ψ,Π2
XA

∗Ψ⟩ =
 
QB

dX
�
R3

dr Ψ(X)α∗(r) cos
(r

2ΠX

)
Π2
X cos

(r
2ΠX

)
α∗(r)Ψ(X).

Our goal is to move Π2
X to the right. To that end, we apply (2.5.40) twice and obtain

Π2
X cos

(r
2ΠX

)
= cos

(r
2ΠX

)
Π2
X − i sin

(r
2ΠX

)
ΠXB ∧ r − iΠX sin

(r
2ΠX

)
B ∧ r.

We multiply this from the left with cos( r2ΠX), use (2.5.40) to commute ΠX to the left in
the last term, and find

cos
(r

2ΠX

)
Π2
X cos

(r
2ΠX

)
= cos2

(r
2ΠX

)
Π2
X + sin2

(r
2ΠX

)
|B ∧ r|2

− i
[
ΠX cos

(r
2ΠX

)
sin
(r

2ΠX

)
+ cos

(r
2ΠX

)
sin
(r

2ΠX

)
ΠX

]
B ∧ r. (2.5.49)

The operator |B ∧ r|2 in the second term on the right side commutes with sin2( r2ΠX).
The operator in square brackets is self-adjoint and commutes with B ∧ r. When we add
(2.5.49) and its own adjoint, we obtain

cos
(r

2ΠX

)
Π2
X cos

(r
2ΠX

)
= 1

2 cos2
(r

2ΠX

)
Π2
X + 1

2 Π2
X cos2

(r
2ΠX

)
+ sin2

(r
2ΠX

)
|B ∧ r|2. (2.5.50)

We evaluate (2.5.50) in the inner product with α∗Φ and α∗Ψ on the left and right side,
respectively, use the fact that AA∗ commutes with Π2, see Lemma 2.5.8, and obtain

⟨A∗Φ,Π2
XA

∗Ψ⟩ = ⟨Φ, AA∗Π2Ψ⟩

+
 
QB

dX
�
R3

dr Φ(X) |B ∧ r|2α∗(r)2 sin2
(r

2ΠX

)
Ψ(X). (2.5.51)

When we choose Φ = Ψ we obtain the result for the term proportional to Π2
X in T1.

Next, we investigate the term proportional to π̃2
r in T1. We use (2.5.43) to move the

operators π̃r from the middle to the outer positions and find

⟨A∗Ψ, π̃2
rA

∗Ψ⟩ =
 
QB

dX
�
R3

dr Ψ(X)α∗(r)
[
πr cos

(r
2ΠX

)
− i sin

(r
2ΠX

)ΠX

2

]

×
[
cos
(r

2ΠX

)
πr + iΠX

2 sin
(r

2ΠX

)]
α∗(r)Ψ(X). (2.5.52)

We multiply out the brackets and obtain four terms. The terms proportional to cos2 and
sin2 read

 
QB

dX
�
R3

dr Ψ(X) |πrα∗(r)|2 cos2
(r

2ΠX

)
Ψ(X)

+
 
QB

dX
�
R3

dr Ψ(X) α∗(r) sin
(r

2ΠX

)Π2
X

4 sin
(r

2ΠX

)
α∗(r) Ψ(X). (2.5.53)
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2.5. THE STRUCTURE OF LOW-ENERGY STATES

For the moment the second line remains untouched. It is going to be canceled by a term
in (2.5.57) below. The term in the first line equals 

QB

dX
�
R3

dr Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
Ψ(X)

+ 1
4

 
QB

dX
�
R3

dr Ψ(X) |B ∧ r|2α∗(r)2 cos2
(r

2ΠX

)
Ψ(X). (2.5.54)

To obtain this result, we used (∇α∗)(r) · B ∧ r = 0, which holds because α∗ is radial. This
term is in its final form.

Now we have a closer look at the terms proportional to sin times cos in (2.5.52). The
operator inside the relevant quadratic form is given by

iπr cos
(r

2ΠX

)ΠX

2 sin
(r

2ΠX

)
− i sin

(r
2ΠX

)ΠX

2 cos
(r

2ΠX

)
πr. (2.5.55)

We intend to interchange sin( r2ΠX) and cos( r2ΠX) in the first term. To do this, we use
(2.5.41) to move ΠX out of the center so that the first term equals

iπr cos
(r

2ΠX

)
sin
(r

2ΠX

)ΠX

2 − 1
2πr cos2

(r
2ΠX

)
B ∧ r.

In the first term we may now commute the sine and the cosine and use (2.5.40) and (2.5.45)
to bring πr and ΠX in the center again. We also move πr into the center in the second
term in (2.5.55). As a result, (2.5.55) equals

cos
(r

2ΠX

)Π2
X

4 cos
(r

2ΠX

)
− sin

(r
2ΠX

)Π2
X

4 sin
(r

2ΠX

)
+ i cos

(r
2ΠX

)ΠX

4 sin
(r

2ΠX

)
B ∧ r

− 1
2πr cos2

(r
2ΠX

)
B ∧ r − 1

2 sin
(r

2ΠX

)
π̃r sin

(r
2ΠX

)
B ∧ r. (2.5.56)

We use (2.5.45) to move π̃r to the left in the last term in (2.5.56). One of the terms we
obtain in this way cancels the third term in (2.5.56). We also use cos( r2ΠX)2+sin( r2ΠX)2 =
1 to rewrite the fourth term in (2.5.56). In combination, these considerations imply that
the terms in (2.5.56) equal

cos
(r

2ΠX

)Π2
X

4 cos
(r

2ΠX

)
− sin

(r
2ΠX

)Π2
X

4 sin
(r

2ΠX

)
− 1

2πrB ∧ r. (2.5.57)

The expectation of the second term with respect to α∗(r)Ψ(X) cancels the second term in
(2.5.53). We multiply the last term from the left and from the right with α∗(r), integrate
over r and find

1
2

�
R3

dr α∗(r)πrB ∧ rα∗(r) = 1
2

�
R3
prα∗(r)B ∧ rα∗(r) + 1

4

�
R3

dr |B ∧ r|2α∗(r)2.

(2.5.58)

The first term on the right side vanishes because α∗ is radial, see the remark below (2.5.53).
Let us summarize where we are. We combine (2.5.52)-(2.5.58) to see that

⟨A∗Ψ, π̃2
rA

∗Ψ⟩ =
 
QB

dX
�
R3

dr Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
Ψ(X)

+ 1
4

 
QB

dX
�
R3

dr Ψ(X) |B ∧ r|2α∗(r)2
(
cos2

(r
2ΠX

)
− 1

)
Ψ(X)

+ 1
4

 
QB

dX
�
R3

dr α∗(r)Ψ(X) cos
(r

2ΠX

)
Π2
X cos

(r
2ΠX

)
α∗(r)Ψ(X). (2.5.59)
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The term in the last line equals ⟨A∗Ψ,Π2
XA

∗Ψ⟩ and we use (2.5.51) to rewrite it. This
yields

⟨A∗Ψ, π̃2
rA

∗Ψ⟩ = 1
4⟨Ψ, AA∗Π2Ψ⟩ +

 
QB

dX
�
R3

dr Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
Ψ(X).

In combination with (2.5.47) and (2.5.51), this yields

⟨A∗Ψ, T1A
∗Ψ⟩ = ⟨Ψ, AA∗Π2Ψ⟩

+ 2
 
QB

dX
�
R3

dr Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
Ψ(X)

+ 1
2

 
QB

dX
�
R3

dr Ψ(X) |B ∧ r|2α∗(r)2 sin2
(r

2ΠX

)
Ψ(X) (2.5.60)

and completes our computation of the term involving T1.
A short computation shows that

⟨A∗Ψ, T2A
∗Ψ⟩ = 2 ⟨AA∗Ψ, AA∗Ψ⟩

[
∥∇α∗∥2

2 + 1
4

�
R3

dr |B ∧ r|2α∗(r)2
]
. (2.5.61)

It remains to compute the terms in (2.5.48) involving the operators T3 and T4, where
T ∗

4 = T3.
In the following we compute the term with T3. A short computation, which uses the

fact that α∗ is radial, shows

⟨A∗Ψ, T3A
∗Ψ⟩ = ⟨α∗AA

∗Ψ, π2
r (U∗ + U)A∗Ψ⟩

= 2
 
QB

dX
�
R3

dr AA∗Ψ(X) prα∗(r) pr cos2
(r

2ΠX

)
α∗(r) Ψ(X)

+ 1
2

 
QB

dX
�
R3

dr AA∗Ψ(X) |B ∧ r|2α∗(r)2 cos2
(r

2ΠX

)
Ψ(X). (2.5.62)

The second term on the right side is in its final form and will be canceled by a term below.
We continue with the first term, use (2.5.42) twice to commute pr with the squared cosine,
as well as (2.5.40) and (2.5.41) to commute ΠX to the center in the emerging terms, and
find

pr cos2
(r

2ΠX

)
= cos2

(r
2ΠX

)
pr + i sin

(r
2ΠX

)
ΠX cos

(r
2ΠX

)
− 1

2B ∧ r. (2.5.63)

We note that the last term, when inserted back into (2.5.62), vanishes because α∗ is radial.
The first term is final and its quadratic form with prα∗AA

∗Ψ and α∗Ψ reads

2
 
QB

dX
�
R3

dr AA∗Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
Ψ(X). (2.5.64)

Let us continue with the second term on the right side of (2.5.63). We multiply it with
pr from the left and use (2.5.42) and (2.5.44) to commute pr to the right. In the two
emerging terms we bring ΠX to the center and obtain

pr sin
(r

2ΠX

)
ΠX cos

(r
2ΠX

)
= sin

(r
2ΠX

)
ΠX cos

(r
2ΠX

)
pr + i sin

(r
2ΠX

)Π2
X

2 sin
(r

2ΠX

)
− i cos

(r
2ΠX

)Π2
X

2 cos
(r

2ΠX

)
.
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We plug the second term of (2.5.63), written in this form, back into (2.5.62) and obtain

2i
 
QB

dX
�
R3

dr AA∗Ψ(X) prα∗(r) sin
(r

2ΠX

)
ΠX cos

(r
2ΠX

)
α∗(r) Ψ(X)

= 2i
 
QB

dX
�
R3

dr AA∗Ψ(X) α∗(r) sin
(r

2ΠX

)
ΠX cos

(r
2ΠX

)
prα∗(r) Ψ(X)

+
 
QB

dX
�
R3

dr AA∗Ψ(X) α∗(r) cos
(r

2ΠX

)
Π2
X cos

(r
2ΠX

)
α∗(r) Ψ(X)

−
 
QB

dX
�
R3

dr AA∗Ψ(X) α∗(r) sin
(r

2ΠX

)
Π2
X sin

(r
2ΠX

)
α∗(r) Ψ(X). (2.5.65)

Notice that the first term on the right side equals (−1) times the term on the left side.
Thus, the left side equals 1

2 times the third line plus the fourth line. To compute the third
line of (2.5.65) we use (2.5.51) with the choice Φ = AA∗Ψ. A short computation shows
that (2.5.50) holds equally with cos and sin interchanged. Accordingly, (−1) times the
fourth line of (2.5.65) equals

⟨AA∗Ψ, (1 −AA∗)Π2Ψ⟩ +
 
QB

dX
�
R3

dr AA∗Ψ(X) |B ∧ r|2α∗(r)2 cos2
(r

2ΠX

)
Ψ(X).

In combination, these considerations imply that the left side of (2.5.65) is given by
1
2⟨AA∗Ψ, AA∗Π2Ψ⟩ − 1

2⟨AA∗Ψ, (1 −AA∗)Π2Ψ⟩

+ 1
2

 
QB

dX
�
R3

dr AA∗Ψ(X) |B ∧ r|2α∗(r)2 sin2
(r

2ΠX

)
Ψ(X)

− 1
2

 
QB

dX
�
R3

dr AA∗Ψ(X) |B ∧ r|2α∗(r)2 cos2
(r

2ΠX

)
Ψ(X). (2.5.66)

We note that the third term in (2.5.66) cancels the second term in (2.5.62). Adding all
this to (2.5.64), we find

⟨A∗Ψ, T3A
∗Ψ⟩ = 1

2⟨Ψ, AA∗AA∗Π2Ψ⟩ − 1
2⟨Ψ, AA∗(1 −AA∗)Π2Ψ⟩

+ 2
 
QB

dX
�
R3

dr AA∗Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
Ψ(X)

+ 1
2

 
QB

dX
�
R3

dr AA∗Ψ(X) |B ∧ r|2α∗(r)2 sin2
(r

2ΠX

)
Ψ(X). (2.5.67)

The corresponding result for ⟨A∗Ψ, T4A
∗Ψ⟩ is obtained by taking the complex conjugate

of the right side of (2.5.67), which amounts to interchanging the roles of AA∗Ψ and Ψ in
the last two lines.

We are now prepared to collect our results and to provide the final formula for (2.5.48).
We need to collect the terms in (2.5.60), (2.5.61), (2.5.67) and the complex conjugate of
(2.5.67). The terms involving |∇α∗|2 read

2
 
QB

dX
�
R3

dr Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
Ψ(X) + 2⟨AA∗Ψ, AA∗Ψ⟩∥∇α∗∥2

2

− 2
 
QB

dX
�
R3

dr AA∗Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
Ψ(X)

− 2
 
QB

dX
�
R3

dr Ψ(X) |∇α∗(r)|2 cos2
(r

2ΠX

)
AA∗Ψ(X). (2.5.68)
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When we insert the factor 1 = cos2( r2ΠX) + sin2( r2ΠX) in the second term, we obtain the
final result for the terms proportional to |∇α∗|2.

The terms proportional to α2
∗ with magnetic fields read

1
2

 
QB

dX
�
R3

dr Ψ(X) |B ∧ r|2α∗(r)2 sin2
(r

2ΠX

)
Ψ(X)

+ 1
2⟨AA∗Ψ, AA∗Ψ⟩

�
R3

dr |B ∧ r|2α∗(r)2

− 1
2

 
QB

dX
�
R3

dr AA∗Ψ(X) |B ∧ r|2α∗(r)2 sin2
(r

2ΠX

)
Ψ(X)

− 1
2

 
QB

dX
�
R3

dr Ψ(X) |B ∧ r|2α∗(r)2 sin2
(r

2ΠX

)
AA∗Ψ(X).

When we insert 1 = cos2( r2ΠX) + sin2( r2ΠX) in the second term we can bring these terms
in the claimed form.

Finally, we collect the terms proportional to α2
∗ but without magnetic field. Taking

into account the first term in (2.5.48), we find

2⟨Ψ, AA∗(1 −AA∗)Ψ⟩ + ⟨Ψ, AA∗Π2Ψ⟩ + ⟨Ψ, AA∗(1 −AA∗)Π2Ψ⟩ − ⟨Ψ, AA∗AA∗Π2Ψ⟩
= 2⟨Ψ, AA∗(1 −AA∗)(1 + Π2)Ψ⟩.

To obtain the result, we used that the terms coming from T3 and T4 are actually the same
because AA∗ and 1 −AA∗ commute with Π2, see Lemma 2.5.8. This proves (2.5.36) and
the lower bound (2.5.37) is implied by the operator bounds in Lemma 2.5.8.

2.5.2.2 Step two – estimating the cross terms

In the second step of the proof of Proposition 2.5.7 we estimate the cross terms that we
obtain when the decomposition in (2.5.25) with Ψ and ξ0 in (2.5.29) is inserted into the
left side of (2.5.24).

Lemma 2.5.13. Given D0, D1 ⩾ 0, there is B0 > 0 with the following properties. If, for
some 0 < B ⩽ B0, the wave function α ∈ L2(QB × R3

s ) satisfies

1
2⟨α, [U∗(1 − P )U + U(1 − P )U∗]α⟩ ⩽ D0B ∥α∥2

2 +D1B
2,

then Ψ and ξ0 in (2.5.29) satisfy the estimates

∥α∥2
2 ⩽ C

(
∥Ψ∥2

2 +D1B
2
)

(2.5.69)

and

⟨Ψ, AA∗(1 −AA∗)Ψ⟩ + ∥ξ0∥2
2 ⩽ C

(
B∥Ψ∥2

2 +D1B
2
)
. (2.5.70)

Furthermore, for any η > 0 we have

|⟨ξ0, [U(1 − P )(1 + π2
r )(1 − P )U∗ + U∗(1 − P )(1 + π2

r )(1 − P )U ]A∗Ψ⟩|

⩽ η ∥ΠΨ∥2
2 + C

(
1 + η−1

) (
B∥Ψ∥2

2 +D1B
2
)
. (2.5.71)
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Proof. We start by noting that Aξ0 = 0 implies ⟨ξ0, A
∗Ψ⟩ = 0, and hence

∥α∥2
2 = ∥A∗Ψ∥2

2 + ∥ξ0∥2
2 ⩽ ∥Ψ∥2

2 + ∥ξ0∥2
2. (2.5.72)

We use α ∈ L2(QB × R3
s ) and A(1 −A∗A)A∗ = AA∗(1 −AA∗) to see that

D0B∥α∥2
2 +D1B

2 ⩾
1
2⟨α, [U∗(1 − P )U + U(1 − P )U∗]α⟩ = ⟨α, (1 −A∗A)α⟩

= ⟨A∗Ψ, (1 −A∗A)A∗Ψ⟩ + ⟨ξ0, (1 −A∗A)A∗Ψ⟩ + ⟨A∗Ψ, (1 −A∗A)ξ0⟩
+ ⟨ξ0, (1 −A∗A)ξ0⟩

= ⟨Ψ, AA∗(1 −AA∗)Ψ⟩ + ∥ξ0∥2
2. (2.5.73)

From Lemma 2.5.8 we know that the first term on the right side is nonnegative and hence

∥ξ0∥2
2 ⩽ D0B∥α∥2

2 +D1B
2.

Together with (2.5.72), this also proves (1 −D0B)∥α∥2
2 ⩽ ∥Ψ∥2

2 +D1B
2, that is, (2.5.69).

Finally, (2.5.69) and (2.5.73) prove (2.5.70).
Next we prove (2.5.71). Let us define

T := U∗(1 − P )(1 + π2
r )(1 − P )U + U(1 − P )(1 + π2

r )(1 − P )U∗ (2.5.74)

and consider ⟨ξ0, T A∗Ψ⟩. We note that Aξ0 = 0 implies PUξ0 = 0 = PU∗ξ0, where the
projection P is understood to act on the relative coordinate. In combination with (2.5.47)
this allows us to see that

⟨ξ0, T A∗Ψ⟩ =
〈
ξ0,

[
2π̃2

r + Π2
X

2

]
A∗Ψ

〉
− ⟨ξ0, (U∗ + U)π2

r α∗AA
∗Ψ⟩ (2.5.75)

holds. We use (2.5.40) and (2.5.41) to commute Π2
X in the first term on the right side of

(2.5.75) to the right and find

1
2⟨ξ0,Π2

XA
∗Ψ⟩ = 1

2⟨ξ0, A
∗Π2

XΨ⟩

− i
 
QB

dX
�
R3

dr ξ0(X, r) sin
(r

2ΠX

)
B ∧ r α∗(r) ΠXΨ(X)

+ 1
2

 
QB

dX
�
R3

dr ξ0(X, r) cos
(r

2ΠX

)
|B ∧ r|2α∗(r) Ψ(X). (2.5.76)

The first term on the right side vanishes because Aξ0 = 0. Similarly, we apply (2.5.42)
and (2.5.44) to commute π̃2

r in the first term in (2.5.75) to the right and find

2⟨ξ0, π̃
2
rA

∗Ψ⟩ = 2
 
QB

dX
�
R3

dr ξ0(X, r) cos
(r

2ΠX

)
p2α∗(r) Ψ(X)

+ 2i
 
QB

dX
�
R3

dr ξ0(X, r) sin
(r

2ΠX

)
pα∗(r) ΠXΨ(X). (2.5.77)

When we combine π2
rα∗(r) = p2

rα∗(r) + 1
4 |B ∧ r|2α∗(r), which holds because α∗ is radial,

(2.5.75), (2.5.76) and (2.5.77), we obtain

⟨ξ0, T A∗Ψ⟩ = 2
 
QB

dX
�
R3

dr ξ0(X, r) cos
(r

2ΠX

)
π2
rα∗(r) (1 −AA∗)Ψ(X)

+ 2i
 
QB

dX
�
R3

dr ξ0(X, r) sin
(r

2ΠX

) [
p− 1

2B ∧ r
]
α∗(r) ΠXΨ(X).
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Using Cauchy-Schwarz, we bound the absolute value of this by

|⟨ξ0, T A∗Ψ⟩| ⩽ 2∥ξ0∥2
[
∥π2

rα∗∥2 ∥(1 −AA∗)Ψ∥2 +
(
∥∇α∗∥2 +B∥ | · |α∗∥2

)
∥ΠΨ∥2

]
,

(2.5.78)

and with the decay properties of α∗ in (2.7.1) we see that the norms of α∗ on the right
side are bounded uniformly in 0 ⩽ B ⩽ B0. Moreover, Lemma 2.5.8 and (2.5.70) imply
that there is a constant c > 0 such that

∥(1 −AA∗)Ψ∥2
2 ⩽ ⟨Ψ, (1 −AA∗)Ψ⟩ ⩽ 1

c
⟨Ψ, AA∗(1 −AA∗)Ψ⟩ ⩽ C

(
B∥Ψ∥2

2 +D1B
2
)
.

(2.5.79)
For η > 0 we thus obtain

|⟨ξ0, T A∗Ψ⟩| ⩽ C
[
η ∥ΠΨ∥2

2 + η−1 ∥ξ0∥2
2 +

(
B∥Ψ∥2

2 +D1B
2
)]

(2.5.80)

and an application of (2.5.70) proves the claim.

2.5.2.3 Proof of Proposition 2.5.7

We recall the decomposition α = A∗Ψ + ξ0 with Ψ and ξ0 in (2.5.29) as well as T in
(2.5.74). From (2.5.24) and (2.5.69) we know that

C
(
B∥Ψ∥2

2 +D1B
2
)
⩾ ⟨A∗Ψ, T A∗Ψ⟩ + 2 Re⟨ξ0, T A∗Ψ⟩ + ⟨ξ0, T ξ0⟩. (2.5.81)

With the help of Lemma 2.5.11, the identities PUξ0 = 0 = PU∗ξ0 imply

⟨ξ0, T ξ0⟩ =
〈
ξ0,
(
2 + Π2

X

2 + 2π̃2
r

)
ξ0

〉
⩾

1
2 ∥ξ0∥2

H1(QB×R3
s ). (2.5.82)

Lemma 2.5.8 guarantees the existence of a constant ρ > 0 such that

AA∗(1 −AA∗)(1 + Π2) ⩾ ρ Π2.

Therefore, (2.5.37) implies

⟨A∗Ψ, T A∗Ψ⟩ ⩾ 2 ⟨Ψ, AA∗(1 −AA∗)(1 + Π2)Ψ⟩ ⩾ 2ρ ⟨Ψ,Π2Ψ⟩. (2.5.83)

To estimate the second term on the right side of (2.5.81), we note that T is bounded
from below by U(1 − P )U∗ + U∗(1 − P )U . Therefore, we may apply Lemma 2.5.13 with
η = ρ

2 and find

2 Re⟨ξ0, T A∗Ψ⟩ ⩾ −2 |⟨ξ0, T A∗Ψ⟩| ⩾ −ρ ∥ΠΨ∥2
2 − C

(
B∥Ψ∥2

2 +D1B
2
)
.

In combination with (2.5.81), (2.5.82) and (2.5.83), we thus obtain

C
(
B∥Ψ∥2

2 +D1B
2
)
⩾ ρ ∥ΠΨ∥2

2 + 1
2 ∥ξ0∥2

H1(QB×R3
s ).

This proves (2.5.26).
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2.5.3 Uniform estimate on ∥Ψ∥2

Up to now we neglected the nonlinear term on the left side of (2.5.21). This term provides
the inequality

Tr
[
(α∗α)2

]
⩽ C

(
B∥α∥2

2 +B2
)
. (2.5.84)

In this section we will take this term and (2.5.84) into account and show that it can be
combined with Proposition 2.5.7 to obtain a bound for ∥Ψ∥2. This will afterwards allow
us to prove Theorem 2.5.1.

Lemma 2.5.14. Given D0 ⩾ 0, there is B0 > 0 such that for all 0 < B ⩽ B0 the following
holds. If the wave function α ∈ L2(QB × R3

s ) obeys (2.5.21) then Ψ in (2.5.29) satisfies

∥Ψ∥2
2 ⩽ CB. (2.5.85)

Proof. We recall the decomposition α = A∗Ψ + ξ0 with Ψ and ξ0 in (2.5.29). Eq. (2.5.84)
and an application of the triangle inequality imply

C
(
B∥Ψ∥2

2 +B2
)1/4

⩾ ∥α∥4 ⩾ ∥A∗Ψ∥4 − ∥ξ0∥4. (2.5.86)

Thus, it suffices to prove an upper bound for ∥ξ0∥4 and a lower bound for ∥A∗Ψ∥4. Our
proof follows closely the proof of [FHSS12, Eq. (5.48)].

Step 1. Let us start with the upper bound on ∥ξ0∥4. We claim the estimate

∥ξ0∥4 ⩽ C
(
B

1/4∥Ψ∥1/2
2 +B

1/8∥Ψ∥2 +B
1/2
)
. (2.5.87)

To see this, we first use Hölder’s inequality to estimate ∥ξ0∥4
4 ⩽ ∥ξ0∥2

2 ∥ξ0∥2
∞. From

Proposition 2.5.7 we know that ∥ξ0∥2
2 ⩽ C(B∥Ψ∥2

2 + B2), and it thus remains to prove a
bound for ∥ξ0∥∞. We claim that for any ν > 3

∥ξ0∥∞ ⩽ 1 + Cν B
−1/4 ∥(1 + | · |)να∗∥6/5 ∥Ψ∥6, (2.5.88)

where the right side is finite by the decay properties of α∗ in (2.7.1). To prove (2.5.88),
we first note that (2.1.6) implies ∥α∥∞ ⩽ 1, and hence ∥ξ0∥∞ ⩽ 1 + ∥A∗Ψ∥∞. We apply
Lemma 2.4.1 (b) to A∗Ψ and obtain (2.5.88). We also combine (2.2.7) with Proposition
2.5.7 and obtain ∥Ψ∥6 ⩽ C(∥Ψ∥2 + B1/2). In combination, these considerations imply
(2.5.87).

Step 2. We claim that

∥A∗Ψ∥4
4 ⩾

1
16 ∥α̂∗∥4

4 ∥Ψ∥4
4 − C

(
B

1/8∥Ψ∥2 +B
5/8
)4

(2.5.89)

holds. To prove (2.5.89), we write ∥A∗Ψ∥4
4 = tr((A∗Ψ)∗A∗Ψ)2. The fact that α∗ is real-

valued implies

∥A∗Ψ∥4
4 =

 
QB

dx
�
R3

dy
∣∣∣∣�

R3
dz α∗(x− z)

[
cos
(x− z

2 Π x+z
2

)
Ψ
(x+ z

2
)]

× α∗(z − y)
[
cos
(z − y

2 Π z+y
2

)
Ψ
(z + y

2
)]∣∣∣∣2.

We use cos(x) = 1 − 2 sin2(x2 ) twice and find

∥A∗Ψ∥4
4 ⩾

1
4T∗ − C (T1 + T2), (2.5.90)
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where

T∗ :=
 
QB

dx
�
R3

dy
∣∣∣∣�

R3
dz α∗(x− z)Ψ

(x+ z

2
)
α∗(z − y)Ψ

(z + y

2
)∣∣∣∣2

and

T1 :=
 
QB

dx
�
R3

dy
∣∣∣∣�

R3
dz α∗(x− z)Ψ

(x+ z

2
)

× α∗(z − y)
[
sin2

(z − y

4 Π z+y
2

)
Ψ
(z + y

2
)]∣∣∣∣2,

T2 :=
 
QB

dx
�
R3

dy
∣∣∣∣�

R3
dz α∗(x− z)

[
sin2

(x− z

4 Π x+z
2

)
Ψ
(x+ z

2
)]

× α∗(z − y)
[
cos
(z − y

2 Π z+y
2

)
Ψ
(z + y

2
)]∣∣∣∣2. (2.5.91)

In the following we derive a lower bound on T∗ and an upper bound on T1 and T2.
Lower bound on T∗. We change variables z 7→ z + x and y 7→ y + x and afterwards

replace x by X, which allows us to write

T∗ =
 
QB

dX
�
R3

dy
∣∣∣∣�

R3
dz α∗(z)Ψ

(
X + z

2
)
α∗(z − y)Ψ

(
X + z + y

2
)∣∣∣∣2. (2.5.92)

Next, we combine Ψ(X + z
2) = ei z

2PX Ψ(X) and the identity ei r
2PX = ei B

2 ·(r∧X)ei r
2 ΠX in

(2.5.39) to write Ψ(X + z
2) = ei B

2 ·(z∧X)ei z
2 ΠX Ψ(X). We conclude that

Ψ
(
X + z

2
)
Ψ
(
X + z + y

2
)

= ei B
2 ·(y∧X)

[
ei z

2 ΠX Ψ(X)
] [

ei z+y
2 ΠX Ψ(X)

]
,

as well as

T∗ =
 
QB

dX
�
R3

dy
∣∣∣∣�

R3
dz α∗(−z)

[
ei z

2 ΠX Ψ(X)
]
α∗(z − y)

[
ei z+y

2 ΠX Ψ(X)
]∣∣∣∣2.

This also implies

T∗ ⩾
1
4T ∗

∗ − C(T (1)
∗ + T (2)

∗ ) (2.5.93)

with

T ∗
∗ :=

 
QB

dX
�
R3

dy
∣∣∣∣�

R3
dz α∗(z)Ψ(X)α∗(z − y)Ψ(X)

∣∣∣∣2 = ∥Ψ∥4
4 ∥α∗ ∗ α∗∥2

2

and

T (1)
∗ :=

 
QB

dX
�
R3

dy
∣∣∣∣�

R3
dz α∗(z)

[
ei z

2 ΠX Ψ(X)
]
α∗(z − y)

[(
ei z+y

2 ΠX − 1
)
Ψ(X)

]∣∣∣∣2,
T (2)

∗ :=
 
QB

dX
�
R3

dy
∣∣∣∣�

R3
dz α∗(z)

[(
ei z

2 ΠX − 1
)
Ψ(X)

]
α∗(z − y)Ψ(X)

∣∣∣∣2. (2.5.94)

Upper bound on T (1)
∗ and T (2)

∗ . We start with T (1)
∗ , expand the square and estimate

T (1)
∗ ⩽

�
R3

dy
�
R3

dz
�
R3

dz′ |α∗(z)α∗(z′)α∗(z − y)α∗(z′ − y)| (2.5.95)

×
 
QB

dX
∣∣∣∣[ei z

2 ΠX Ψ(X)
][

ei z′
2 ΠX Ψ(X)

][(
ei z+y

2 ΠX − 1
)
Ψ(X)

][(
ei z′+y

2 ΠX − 1
)
Ψ(X)

]∣∣∣∣.
June 17, 2022 145 Marcel Maier



2.5. THE STRUCTURE OF LOW-ENERGY STATES

When we use Hölder’s inequality, (2.4.122), (2.4.97), and (2.2.7), we see that the integral
in the second line can be bounded by

∥ei z
2 ΠΨ∥2

6 ∥(ei z+y
2 Π − 1)Ψ∥6 ∥(ei z+y

2 Π − 1)Ψ∥2 ⩽ C
∣∣∣z + y

2
∣∣∣ B−3/2 ∥ΠΨ∥4

2. (2.5.96)

Proposition 2.5.7 provides us with a bound for ∥ΠΨ∥2. In combination with (2.5.95),
(2.5.96), Young’s inequality, and the bound |z + y| ⩽ 2|z| + |z − y|, this implies

T (1)
∗ ⩽ C B−3/2

(
B2∥Ψ∥4

2 +D1B
4
)�

R3
dy
∣∣∣∣�

R3
dz |z + y| |α∗(z)α∗(y − z)|

∣∣∣∣2
⩽ C

(
B−1/2∥Ψ∥4

2 +D1B
5/2
)

∥α∗∥4/3 ∥ | · |α∗∥4/3, (2.5.97)

where the right side is finite by (2.7.1). Similarly, we see that T (2)
∗ is bounded by the right

side of (2.5.97).
Upper bound on T1 and T2 in (2.5.91). Bounds for T1 and T2 can be obtain along the

same lines as the bound for T (1)
∗ . We apply the same change of variables as above and use

estimates similar to the ones in (2.5.95). In case of T1, the bound in (2.5.96) needs to be
replaced by

∥Ψ∥2
6

∥∥∥sin2
(z − y

2 Π
)
Ψ
∥∥∥

6

∥∥∥sin2
(z − y

2 Π
)
Ψ
∥∥∥

2
⩽ C

|z − y|
2 B−3/2 ∥ΠΨ∥4

2. (2.5.98)

Here, we used sin2(x) ⩽ |x| and the operator inequality in (2.4.97) to estimate the third
factor. For the first and the second factor, we used

sin2
(z − y

4 Π
)

= −1
4
(
2 + ei z−y

2 Π + e−i z−y
2 Π

)
and (2.2.7) or (2.4.122), respectively. A bound for T2 can be proved analogously. The final
estimate we obtain in this way reads

T1 + T2 ⩽ C
(
B−1/2∥Ψ∥4

2 +D1B
5/2
)
. (2.5.99)

In combination with (2.5.90), (2.5.93), and (2.5.97), this proves (2.5.89).
Step 3. We denote c := 1

2∥α̂∗∥4, insert (2.5.87) and (2.5.89) into (2.5.86) and obtain

CB
1
4 ∥Ψ∥1/2

2 ⩾ c∥Ψ∥4 − CB
1
8 ∥Ψ∥2 − CB

1
2 , (2.5.100)

which holds forB small enough. For η > 0 the left side is bounded from above by a constant
times η∥Ψ∥2 + η−1B

1
2 and Hölder’s inequality implies ∥Ψ∥4 ⩾ ∥Ψ∥2. Accordingly,

C
(
η∥Ψ∥2 + η−1B

1
2
)
⩾ (c− CB

1
8 )∥Ψ∥2 − CB

1
2 . (2.5.101)

When we choose η and B in (2.5.101) small enough, this proves the claim.

2.5.4 Proof of Theorem 2.5.1

The assumption (2.5.1) in Theorem 2.5.1, Corollary 2.5.6, Proposition 2.5.7, as well as
Lemma 2.5.14 imply the decomposition α = A∗Ψ + ξ0, where Ψ and ξ0 in (2.5.29) obey

∥Ψ∥2
H1

mag(QB) = B−1∥Ψ∥2
2 +B−2∥ΠΨ∥2

2 ⩽ C (2.5.102)
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and

∥ξ0∥2
H1(QB×R3

s ) ⩽ CB2
(
∥Ψ∥2

H1
mag(QB) +D1

)
. (2.5.103)

Define

ξ := ξ0 +
(
cos
(r

2ΠX

)
− 1

)
α∗(r)Ψ(X). (2.5.104)

Then, (2.5.2) holds and we claim that ξ satisfies (2.5.3). To prove this, we estimate the
second term in (2.5.104). We use 1 − cos(x) ⩽ |x| and (2.4.97) to bound∥∥∥(cos

(r
2ΠX

)
− 1

)
Ψα∗

∥∥∥2

2
⩽ C ∥| · |α∗∥2

2 ∥ΠΨ∥2
2 ⩽ CB2 ∥Ψ∥2

H1
mag(QB),

where the right side is finite by the decay properties of α∗ in (2.7.1). Using additionally
(2.5.40), we also see that∥∥∥ΠX

(
cos
(r

2ΠX

)
− 1

)
α∗Ψ

∥∥∥2

2
⩽
∥∥∥[cos

(r
2ΠX

)
− 1

]
ΠXα∗Ψ

∥∥∥2

2
+
∥∥∥sin(r2ΠX

)
B ∧ rα∗Ψ

∥∥∥2

2

⩽ C
(
∥ΠΨ∥2

2 +B2∥Ψ∥2
2

)
⩽ CB3 ∥Ψ∥2

H1
mag(QB)

holds. Finally, an application of (2.5.43) and (2.4.97) allows us to estimate∥∥∥πr(cos
(r

2ΠX

)
− 1

)
Ψα∗

∥∥∥2

2
=
∥∥∥[(cos

(r
2ΠX

)
− 1

)
π̃r + i

2 sin
(r

2ΠX

)
ΠX

]
Ψα∗

∥∥∥2

2

⩽ C
(
∥ΠΨ∥2

2 +B2∥Ψ∥2
2

)
⩽ CB2 ∥Ψ∥2

H1
mag(QB).

This proves that ξ obeys (2.5.3) and ends the proof of Theorem 2.5.1.

2.6 The Lower Bound on (2.1.21) and Proof of Theorem
2.2 (b)

2.6.1 The BCS energy of low-energy states

In this section, we provide the lower bound on (2.1.21) and the proof of Theorem 2.2 (b),
and thereby complete the proof of Theorems 2.1 and 2.2. Let D1 ⩾ 0 and D ∈ R be given
and assume that Γ is a gauge-periodic state at temperature T = Tc(1 −DB) that satisfies
(2.5.1). Corollary 2.5.2 provides us with a decomposition of the Cooper pair wave function
α = [Γ]12 in terms of Ψ⩽ in (2.5.4) and σ in (2.5.9), where ∥Ψ⩽∥H1

mag(QB) ⩽ C and where
the bound

∥Ψ⩽∥2
H2

mag(QB) ⩽ C εB−1 ∥Ψ∥2
H1

mag(QB) (2.6.1)

holds in terms of the function Ψ in Theorem 2.5.1. With the function Ψ⩽ we construct a
Gibbs state Γ∆ with the gap function ∆ ≡ ∆Ψ⩽ as in (2.3.1). Using Proposition 2.3.4, we
write the BCS free energy of Γ as

FBCS
B,T (Γ) − FBCS

B,T (Γ0) = −1
4⟨∆, LT,B∆⟩ + 1

8⟨∆, NT,B(∆)⟩ + ∥Ψ⩽∥2
2 ⟨α∗, V α∗⟩

+ Tr
[
RT,B(∆)

]
+ T

2 H0(Γ,Γ∆) −
 
QB

dX
�
R3

dr V (r) |σ(X, r)|2,
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where
∥RT,B(∆)∥1 ⩽ C B3 ∥Ψ∥6

H1
mag(QB).

We also apply Theorem 2.3.5 to compute the terms in the first line on the right side, and
find the lower bound

FBCS
B,T (Γ) − FBCS

B,T (Γ0) ⩾ B2 EGL
D,B(Ψ⩽) − C

(
B3 + εB2

)
∥Ψ∥2

H1
mag(QB)

+ T

2 H0(Γ,Γ∆) −
 
QB

dX
�
R3

dr V (r) |σ(X, r)|2. (2.6.2)

The relative entropy is nonnegative and the last term on the right side is nonpositive. In
the next section we show that their sum is negligible.

2.6.2 Estimate on the relative entropy

In this section we prove a lower bound for the second line in (2.6.2), showing that it is
negligible. We start with the following lower bound for the relative entropy.

Lemma 2.6.1. For all admissible BCS states Γ, we have

TH0(Γ,Γ∆) ⩾ Tr
[
(Γ − Γ∆) H∆

tanh(β2H∆)
(Γ − Γ∆)

]
. (2.6.3)

Proof. The proof is given in [FHSS12, Lemma 5] and uses the fact that Γ∆ is admissible,
which follows from Lemma 2.3.1.

To be able to combine the term on the right side of (2.6.3) and the last term on the right
side of (2.6.2), we first need to replace the operator H∆ in the second factor on the right
side of (2.6.3) by H0. To that end, we note that the estimate H2

∆ ⩾ (1 − δ)H2
0 − δ−1∥∆∥2

∞
holds for 0 < δ < 1 and we rewrite it as

H0 ⩽ (1 − δ)−1
(
H2

∆ + δ−1∥∆∥2
∞

)
. (2.6.4)

Furthermore, we note that the series expansion

x

tanh(x2 ) = 2 +
∞∑
k=1

(
2 − 8k2π2

x2 + 4k2π2

)
,

see [FHSS12, Eq. (5.14)], shows that the function x 7→
√
x

tanh( β
2

√
x)

is operator monotone.
We use this together with (2.6.4) and the monotonicity of the map x 7→ tanh(x), which
yields

(
KT,B 0

0 KT,B

)
= H0

tanh(β2H0)
⩽ (1 − δ)−1/2

√
H2

∆ + δ−1∥∆∥2
∞

tanh(β2
√
H2

∆ + δ−1∥∆∥2
∞)

.

When we apply a first order Taylor expansion on the right side, the above inequality can
be written as(

KT,B 0
0 KT,B

)
⩽ (1 − δ)−1/2

[
H∆

tanh(β2H∆)
+ β

4

� δ−1∥∆∥2
∞

0
dt g

(β
2

√
H2

∆ + t
)]
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with the nonnegative function

g(x) := 1
x

1
tanh(x) − 1

tanh2(x)
1

cosh2(x)
.

Using supx⩾0 g(x) ⩽ 1 and 1 ⩽ x
tanh(x) , we conclude that(

KT,B 0
0 KT,B

)
⩽ (1 − δ)−1/2

(
1 + δ−1β2

8 ∥∆∥2
∞

) H∆

tanh(β2H∆)

holds. We choose δ := ∥∆∥∞ and note that Lemma 2.4.1 and (2.2.7) imply

∥∆∥∞ ⩽ C B
1/4 ∥Ψ∥H1

mag(QB). (2.6.5)

In particular, δ < 1 as long as B > 0 is sufficiently small, and we have

H∆

tanh(β2H∆)
⩾

√
1 − ∥∆∥∞

1 + β2

8 ∥∆∥∞

(
KT,B 0

0 KT,B

)
⩾ (1 − C∥∆∥∞)

(
KT,B 0

0 KT,B

)
. (2.6.6)

In combination, (2.6.3) and (2.6.6) prove

1
2 Tr

[
(Γ − Γ∆) H∆

tanh(β2H∆)
(Γ − Γ∆)

]
⩾ (1 − C∥∆∥∞)⟨α− α∆,KT,B(α− α∆)⟩ + (1 − C∥∆∥∞) Tr[(γ − γ∆)KT,B(γ − γ∆)],

where we can drop the last term for a lower bound because it is nonnegative if B is
sufficiently small. This is the lower bound for the relative entropy of Γ with respect to Γ∆
we were looking for.

It remains to combine the first term on the right side and the interaction term on the
right side of (2.6.2). Let us define the function η := α∗Ψ⩽ − α∆. By Corollary 2.5.2 we
have α− α∆ = σ + η as well as

T

2 H0(Γ,Γ∆) −
 
QB

dX
�
R3

dr V (r)|σ(X, r)|2

⩾ (1 − C∥∆∥∞)⟨σ + η,KT,B(σ + η)⟩ − ⟨σ, V σ⟩
⩾ (1 − C∥∆∥∞)⟨σ, (KT,B − V )σ⟩ − C∥∆∥∞∥V ∥∞∥σ∥2

2 − 2 |⟨η,KT,Bσ⟩|. (2.6.7)

From (2.5.14) we know that the lowest eigenvalue of KT,B − V is bounded from below by
−CB. In combination with (2.5.10) and (2.6.5), this implies that the first two terms on
the right side of (2.6.7) are bounded from below by

−Cε−1B
9/4∥Ψ∥H1

mag(QB)
(
∥Ψ∥2

H1
mag(QB) +D1

)1/2
. (2.6.8)

To estimate the last term on the right side of (2.6.7), we use (2.5.15) to replace KT,B by
KTc,B, which yields the estimate

|⟨η, (KT,B −KTc,B)σ⟩| ⩽ 2D0B ∥σ∥2 ∥η∥2 ⩽ C B3 ∥Ψ∥H1
mag(QB)

(
∥Ψ∥2

H1
mag(QB) +D1

)1/2
.

To obtain this result we also used (2.5.10), Proposition 2.3.2 and (2.6.1). Next, we de-
compose η = η0 + η⊥ with η0(∆) and η⊥(∆) as in Proposition 2.3.2 and write

⟨η,KTc,Bσ⟩ = ⟨η0,KTc,Bσ⟩ + ⟨η⊥,KTc,B(σ − σ0)⟩ + ⟨η⊥,KTc,Bσ0⟩. (2.6.9)
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Using (2.3.7) and (2.5.10), we see that the first term on the right side of (2.6.9) is bounded
by

|⟨η0,KTc,Bσ⟩| ⩽
∥∥∥√KTc,B η0

∥∥∥
2

∥∥∥√KTc,B σ
∥∥∥

2

⩽ Cε−1/2B
5/2 ∥Ψ∥H1

mag(QB)
(
∥Ψ∥2

H1
mag(QB) +D1

)1/2
. (2.6.10)

We note that σ − σ0 = ξ and use (2.3.8), (2.5.3), and (2.6.1) to estimate

|⟨η⊥,KTc,Bξ⟩| ⩽
∥∥∥√KTc,B η⊥

∥∥∥
2

∥∥∥√KTc,B ξ
∥∥∥

2

⩽ Cε
1/2B2 ∥Ψ∥H1

mag(QB)
(
∥Ψ∥2

H1
mag(QB) +D1

)1/2
. (2.6.11)

It remains to estimate the last term on the right side of (2.6.9), which we write as

⟨η⊥,KTc,Bσ0⟩ = ⟨η⊥,K
r
Tcσ0⟩ + ⟨η⊥, [Kr

Tc,B −Kr
Tc ]σ0⟩ + ⟨η⊥, (U − 1)Kr

Tc,Bσ0⟩
+ ⟨η⊥, UK

r
Tc,B(U∗ − 1)σ0⟩.

(2.6.12)

with the unitary operator U in (2.5.20). We recall that the operators Kr
Tc,B and Kr

Tc act
on the relative coordinate r = x− y.

Since ∆(X, r) = −2V (r)α∗(r)Ψ⩽(X) and σ0(X, r) = α∗(r)Ψ>(X) we know from
Proposition 2.3.2 (c) that the first term on the right side of (2.6.12) vanishes. A bound
for the remaining terms is provided by the following lemma. Its proof will be given in
Section 2.6.4 below.

Lemma 2.6.2. We have the following estimates on the remainder terms of (2.6.12):

(a) |⟨η⊥, [Kr
Tc,B −Kr

Tc ]σ0⟩| ⩽ CB3 ∥Ψ∥2
H1

mag(QB),

(b) |⟨η⊥, (U − 1)Kr
Tc,Bσ0⟩| ⩽ Cε1/2B2 ∥Ψ∥2

H1
mag(QB),

(c) |⟨η⊥, UK
r
Tc,B(U∗ − 1)σ0⟩| ⩽ Cε1/2B2 ∥Ψ∥2

H1
mag(QB).

Accordingly, we have

|⟨σ,KT,Bη⟩| ⩽ C
(
ε−1/2B

5/2 + ε
1/2B2

)
∥Ψ∥H1

mag(QB)
(
∥Ψ∥2

H1
mag(QB) +D1

)1/2
.

We combine this with (2.6.2), (2.6.7), and (2.6.8) to see that

FBCS
B,T (Γ) − FBCS

B,T (Γ0) ⩾ B2 EGL
D,B(Ψ⩽)

− C
(
ε−1/2B

5/2 + ε
1/2B2 + ε−1B

9/4
)
∥Ψ∥H1

mag(QB)
(
∥Ψ∥H1

mag(QB) +D1
)1/2

. (2.6.13)

The optimal choice ε = B1/6 in (2.6.13) yields

FBCS
B,T (Γ) − FBCS

B,T (Γ0)

⩾ B2
(
EGL
D,B(Ψ⩽) − C B

1/12∥Ψ∥H1
mag(QB)

(
∥Ψ∥2

H1
mag(QB) +D1

)1/2)
. (2.6.14)

This proves the lower bound for the BCS free energy in Theorem 2.1.
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2.6.3 Conclusion

Using (2.6.14), we now finish the proofs of Theorem 2.1 and Theorem 2.2, and we start
with the former. Let Γ be an approximate minimizer of the BCS functional, i.e., let (2.5.1)
hold with

D1 := EGL(D) + ρ (2.6.15)

and ρ ⩾ 0. Since ∥Ψ∥H1
mag(QB) ⩽ C by (2.5.3), (2.6.14) implies

B2
(
EGL(D) + ρ

)
⩾ FBCS

B,T (Γ) − FBCS
B,T (Γ0) ⩾ B2

(
EGL
D,B(Ψ⩽) − C B

1/12
)
.

This proves the claimed bound for the Cooper pair wave function of an approximate
minimizer of the BCS functional in Theorem 2.1.

We turn to the proof of Theorem 2.2. Let the temperature T obey

Tc(1 −B(Dc −D0B
1/12)) < T ⩽ Tc(1 + CB) (2.6.16)

with Dc in (2.1.20) and D0 > 0. We claim that the normal state Γ0 minimizes the BCS
functional for such temperatures T if D0 is chosen sufficiently large. Since Corollary 2.5.5
takes care of the remaining temperature range, this implies part (b) of Theorem 2.2 and
completes its proof.

To see that the above claim is true, we start with the lower bound in (2.6.14) and
assume that (2.5.1) holds with D1 = 0. We drop the nonnegative quartic term in the
Ginzburg–Landau functional for a lower bound and obtain

EGL
D,B(Ψ⩽) ⩾ B−2⟨Ψ⩽, (Λ0 Π2 −DBΛ2)Ψ⩽⟩ ⩾ Λ2 (Dc −D) B−1∥Ψ⩽∥2

2,

with Λ0 in (2.3.22), Λ2 in (2.3.23), and with D ∈ R defined by T = Tc(1 − DB). We
combine (2.5.6) and (2.5.26) and estimate

∥Ψ⩽∥2 ⩾ ∥Ψ∥2 − ∥Ψ>∥2 ⩾ c B
1/2 ∥Ψ∥H1

mag(QB)(1 − C B
5/12).

When we insert our findings in the lower bound for the BCS energy in (2.6.14), this gives

0 ⩾ FBCS
B,T (Γ) − FBCS

B,T (Γ0) ⩾ c B2 ∥Ψ∥2
H1

mag(QB)

(
(Dc −D) − CB

1/12
)
, (2.6.17)

We note that the lower bound in (2.6.16) is equivalent to

Dc −D > D0B
1/12. (2.6.18)

When we choose D0 > C with C > 0 in (2.6.17) and use (2.6.18) to obtain a lower bound
for the right side of (2.6.17), we conclude that Ψ = 0. By (2.5.2) and (2.5.3), this implies
that α = 0 whence Γ is a diagonal state. Therefore, Γ0 is the unique minimizer of FBCS

B,T

if T satisfies (2.6.16) with our choice of D0. As explained below (2.6.16), this proves
Theorem 2.2.

2.6.4 Proof of Lemma 2.6.2

In this section we prove Lemma 2.6.2. Our proof of part (a) uses a Cauchy integral
representation for the operator KTc,B − (π2 −µ), which is provided in Lemma 2.6.4 below.
Let us start by defining the contour for the Cauchy integral.
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Definition 2.6.3 (Speaker path). Let R > 0, assume that µ ⩽ 1 and define the following
complex paths

u1(t) := πi
2βc

+ (1 + i)t

u2(t) := πi
2βc

− (µ+ 1)t

u3(t) := − πi
2βc

t− (µ+ 1)

u4(t) := − πi
2βc

− (µ+ 1)(1 − t)

u5(t) := − πi
2βc

+ (1 − i)t

t ∈ [0, R],

t ∈ [0, 1],

t ∈ [−1, 1],

t ∈ [0, 1],

t ∈ [0, R].

C

R

u1

u2

u3

u4

u5

−µ

− µ− 1

πi

2βc
+ (1 + i)R

− πi

2βc
+ (1− i)R

πi

2βc

− πi

2βc

The speaker path is defined as the union of paths ui, i = 1, . . . , 5, with u1 taken in reverse
direction, i.e.,

R := −̇u1 +̇u2 +̇u3 +̇u4 +̇u5.

If µ > 1 we choose the same path as in the case µ = 1.

This path has the property that certain norms of the resolvent kernel of π2 are uni-
formly bounded for z ∈ R and R > 0. More precisely, Lemma 2.4.5 implies

sup
0⩽B⩽B0

sup
R>0

sup
w∈R

[∥∥ | · |agwB
∥∥

1 +
∥∥ | · |a∇gwB

∥∥
1

]
< ∞. (2.6.19)

We could also choose a path parallel to the real axis in Lemma 2.6.4 below. In this case
the above norms would depend on R. Although our analysis also works in this case, we
decided to use the path R because of the more elegant bound in (2.6.19). With the above
definition at hand, we are prepared to state the following lemma.

Lemma 2.6.4. Let H : D(H) → H be a self-adjoint operator on a separable Hilbert
space H with H ⩾ −µ and let β > 0. Then, we have

H

tanh(β2H)
= H + lim

R→∞

�
R

dz
2πi

(
z

tanh(β2 z)
− z

) 1
z −H

, (2.6.20)

with the speaker path R in Definition 2.6.3. The above integral including the limit is
understood as an improper Riemann integral with respect to the uniform operator topology.

Proof. We have that the function f(z) = z

tanh( β
2 z)

− z = 2z
eβz−1 is analytic in the open

domain C \ 2πT iZ̸=0. The construction of the Riemann integral over the path R with
respect to the uniform operator topology is standard. The fact that the limit R → ∞
exists in the same topology follows from the exponential decay of the function f(z) along
the speaker path. To check the equality in (2.6.20), we evaluate both sides in the inner
product with two vectors in ran 1(−∞,K](H) for K > 0, use the functional calculus, the
Cauchy integral formula, and the fact that ⋃K>0 ran 1(−∞,K](H) is a dense subset of H.
This proves the claim.
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Henceforth, we use the symbol
�
 to denote the integral on the right side of (2.6.20)

including the limit and we denote  = ⋃
R>0 R.

Proof of Lemma 2.6.2. We apply Cauchy-Schwarz to estimate

|⟨η⊥, (Kr
Tc,B −Kr

Tc)σ0⟩| ⩽ ∥η⊥∥2 ∥(Kr
Tc,B −Kr

Tc)σ0∥2 (2.6.21)

and claim that

∥[Kr
Tc,B −Kr

Tc ]σ0∥2 ⩽ Cε−1/2B2 ∥Ψ∥H1
mag(QB) (2.6.22)

holds. To see this, we apply Lemma 2.6.4 and write

Kr
Tc,B −Kr

Tc = π2
r − p2

r +
�


dw
2πi f(w) 1

w + µ− π2
r

[π2
r − p2

r ]
1

w + µ− p2
r

, (2.6.23)

where π2
r − p2

r = i B ∧ r pr + 1
4 |B ∧ r|2. Using (2.5.6) and (2.7.1), we estimate the first

term on the right side of (2.6.23) by

∥[π2
r − p2

r ]σ0∥2 ⩽ B ∥ | · |∇α∗∥2∥Ψ>∥2 +B2∥ | · |2α∗∥2∥Ψ>∥2

⩽ Cε−1/2B2 ∥Ψ∥H1
mag(QB). (2.6.24)

To estimate the second term in (2.6.23), we use Hölder’s inequality in (2.2.1) and find∥∥∥∥�


dw
2πi f(w) 1

w + µ− π2
r

[π2
r − p2

r ]
1

w + µ− p2
r

σ0

∥∥∥∥
2

⩽
�


d|w|
2π |f(w)|

∥∥∥∥ 1
w + µ− π2

r

∥∥∥∥
∞

∥∥∥∥[π2
r − p2

r ]
1

w + µ− p2
r

σ0

∥∥∥∥
2
,

where d|w| = dt |w′(t)|. Eq. (2.6.19) implies that the operator norm of the magnetic
resolvent is uniformly bounded for w ∈ . Since the function f is exponentially decaying
along the speaker path it suffices to prove a bound on the last factor that is uniform for
w ∈ . We have

[π2
r − p2

r ]
1

w + µ− p2
r

σ0(X, r) =
�
R3

ds [π2
r − p2

r ]gw0 (r − s)α∗(s)Ψ>(X),

which implies∥∥∥∥[π2
r − p2

r ]
1

w + µ− p2
r

σ0

∥∥∥∥2

2
⩽ ∥Ψ>∥2

2

�
R3

dr
∣∣∣∣�

R3
ds |[π2

r − p2
r ]gw0 (r − s)α∗(s)|

∣∣∣∣2. (2.6.25)

Moreover,
�
R3

dr
∣∣∣∣�

R3
ds |[π2

r − p2
r ]gw0 (r − s)α∗(s)|

∣∣∣∣2
⩽ CB2

(
∥ | · |∇gw0 ∥2

1 ∥α∗∥2
2 + ∥∇gw0 ∥2

1 ∥ | · |α∗∥2
2 + ∥ | · |2gw0 ∥2

1 ∥α∗∥2
2 + ∥gw0 ∥2

1 ∥ | · |2α∗∥2
2

)
.

The right side is uniformly bounded for w ∈  by (2.6.19) and (2.7.1). In combination
with (2.5.6) and (2.6.25), this implies∥∥∥∥[π2

r − p2
r ]

1
w + µ− p2

r

σ0

∥∥∥∥2

2
⩽ CB2 ∥Ψ>∥2

2 ⩽ Cε−1B4 ∥Ψ∥2
H1

mag(QB).
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Using this and (2.6.24), we read off (2.6.22). Finally, we apply Proposition 2.3.2 to estimate
∥η⊥∥2 in (2.6.21), which proves part (a).

To prove part (b), we start by noting that

|⟨η⊥, (U − 1)Kr
Tc,Bσ0⟩| ⩽ ∥ |r|η⊥∥2 ∥ |r|−1(U − 1)Kr

Tc,B σ0∥2.

A bound for the left factor on the right side is provided by Proposition 2.3.2. To estimate
the right factor, we use (2.5.6), (2.7.1) and the operator inequality in (2.4.97), which
implies |U − 1|2 ⩽ 3r2Π2

X , and find

∥ |r|−1(U − 1)Kr
Tc,B σ0∥2 ⩽ C∥Kr

Tc,Bα∗∥2 ∥ΠΨ>∥2 ⩽ CB ∥Ψ∥H1
mag(QB).

This proves part (b).
For part (c), we estimate

|⟨η⊥, UK
r
Tc,B(U∗ − 1)σ0⟩| ⩽

∥∥∥√Kr
Tc,B

U∗η⊥
∥∥∥

2

∥∥∥√Kr
Tc,B

(U∗ − 1)σ0
∥∥∥

2
(2.6.26)

and note that Kr
Tc,B ⩽ C(1 + π2

r ) implies

∥∥∥√Kr
Tc,B

(U∗ − 1)σ0
∥∥∥2

2
= ⟨σ0, (U − 1)Kr

Tc,B(U∗ − 1)σ0⟩

⩽ C∥(U∗ − 1)σ0∥2
2 + C∥πr(U∗ − 1)σ0∥2

2. (2.6.27)

Using the bound for |U − 1|2 in part (b), (2.5.6) and (2.7.1), we see that the first term is
bounded by C∥|r|α∗ΠXΨ>∥2 ⩽ CB2. Lemma 2.5.11 allows us to write

πr(U∗ − 1) = (U∗ − 1)π̃r + 1
2U

∗ΠX − 1
4B ∧ r.

Accordingly, we have

∥πr(U∗ − 1)σ0∥2
2

⩽ C
(
∥ |r|prα∗ΠXΨ>∥2

2 +B ∥ |r|2α∗ΠXΨ>∥2
2 + ∥α∗ΠXΨ>∥2

2 +B∥ |r|α∗Ψ>∥2
2

)
⩽ C

(
B2 + ε−1B3

)
⩽ CB2 ∥Ψ∥2

H1
mag(QB).

We conclude that the right side of (2.6.27) is bounded by CB2∥Ψ∥2
H1

mag(QB).
With KT (p) ⩽ C(1 + p2) we see that the first factor on the right side of (2.6.26) is

bounded by∥∥∥√Kr
Tc,B

U∗η⊥
∥∥∥2

2
= ⟨η⊥, UK

r
Tc,BU

∗η⊥⟩ ⩽ C∥η⊥∥2
2 + C∥πrU∗η⊥∥2

2.

From Lemma 2.5.11 we know that πrU∗ = U∗[π̃r + 1
2ΠX ], and hence

∥∥∥√Kr
Tc,B

U∗η⊥
∥∥∥2

2
⩽ C

(
∥η⊥∥2

2 + ∥π̃rη⊥∥2
2 + ∥ΠXη⊥∥2

2

)
⩽ CεB2 ∥Ψ∥2

H1
mag(QB).

This proves part (c) and ends the proof of the Lemma 2.6.2.
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2.7 Estimates on Eigenvalues and Eigenfunctions of
KTc,B − V

In this section, we investigate the low lying eigenvalues of KTc,B − V and its ground state
wave function. Our analysis is carried out at T = Tc and we omit Tc from the notation
throughout the appendix. The goal is to prove the following result.

Proposition 2.7.1. Let Assumptions 2.1.3 and 2.1.5 hold. There is a constant B0 > 0
such that for any 0 ⩽ B ⩽ B0 the following holds. Let eB0 and eB1 denote the lowest and
next to lowest eigenvalue of KTc,B − V . Then:

(a) |eB0 | ⩽ CB,

(b) KTc,B − V has a uniform spectral gap above eB0 , i.e., eB1 − eB0 ⩾ κ > 0.

(c) Let α∗ be the eigenfunction in (2.1.15) and let αB∗ be an eigenfunction corresponding
to eB0 such that ⟨αB∗ , V α∗⟩ is real and nonnegative for all 0 ⩽ B ⩽ B0. Then,

∥αB∗ − α∗∥2 + ∥π2(αB∗ − α∗)∥2 ⩽ CB.

(d) With PB := |αB∗ ⟩⟨αB∗ | and P := |α∗⟩⟨α∗| and with αB∗ and α∗ as in part (c), we have

∥PB − P∥∞ + ∥π2(PB − P )∥∞ ⩽ CB.

Remark 2.7.2. We emphasize that this appendix is the only place in the paper where the
assumption V ⩾ 0 is used. It simplifies our analysis because it implies that the Birman–
Schwinger operator V 1/2[KTc,B − e]−1V 1/2 is self-adjoint. However, for the statement of
Proposition 2.7.1 to be true, it is not necessary that V has a sign. In fact, with the help
of a Combes–Thomas estimate for the resolvent kernel of KTc − V it is possible to show
that Proposition 2.7.1 also holds for potentials V without a definite sign. This approach
requires more effort, and we therefore refrain from giving a general proof here. It can be
found in Chapter 6.

Let us recall the decay properties of the eigenfunction α∗ corresponding to the lowest
eigenvalue of the operator KTc −V . Since α∗ = K−1

Tc
V α∗ and V ∈ L∞(R3), we immediately

have α∗ ∈ H2(R3). Furthermore, for any ν ∈ N3
0, by [FHSS12, Proposition 2],

�
R3

dx
[
|xνα∗(x)|2 + |xν∇α∗(x)|2

]
< ∞. (2.7.1)

In fact, more regularity of α∗ is known, see [FHSS12, Appendix A] but (2.7.1) is all we
use in this paper. Before we give the proof of Proposition 2.7.1 in Section 2.7.2 below, we
prove two preparatory statements.

Let e ∈ (−∞, 2Tc) and denote the kernel of the resolvent (e−KTc)−1 by Ge(x− y).

Lemma 2.7.3. For e ∈ (−∞, 2Tc) and k ∈ N0 the functions | · |kGe and | · |k∇Ge belong
to L1(R3).

Proof. The function (e − KTc(p))−1 and its derivatives belong to L2(R3). Therefore, we
have

∥ | · |kGe∥1 ⩽
(�

R3
dx
∣∣∣ |x|k

1 + |x|k+2

∣∣∣2)1/2

∥(1 + | · |k+2)Ge∥2 < ∞. (2.7.2)

This proves the first claim and the second follows from a similar argument.
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2.7.1 Phase approximation for KTc,B

Proposition 2.7.4. Let V and | · |2V belong to L∞(R3). There is B0 > 0 such that for
0 ⩽ B ⩽ B0 and e ∈ (−∞, 2Tc), we have∥∥∥∥[ 1

e−KTc,B
− 1
e−KTc

]
V

1/2
∥∥∥∥

∞
+
∥∥∥∥π2

[ 1
e−KTc,B

− 1
e−KTc

]
V

∥∥∥∥
∞

⩽ CeB. (2.7.3)

Proof. To prove this result, we apply a phase approximation to the operator KTc,B. We
pursue the strategy that we used in the proof of Lemma 2.4.5 and define

SeB(x, y) := ei B
2 ·(x∧y) Ge(x− y). (2.7.4)

Let SeB be the operator defined by the kernel SeB(x, y). We claim that

(e−KTc,B)SeB = 1 − T e
B (2.7.5)

with the operator T e
B defined by the kernel

T e
B(x, y) := ei B

2 ·(x∧y)
[
(KTc(πx,y) −KTc) 1

e−KTc

]
(x, y) (2.7.6)

and πx,y = −i∇x + A(x− y). To prove (2.7.5), it is sufficient to note that

KTc,B ei B
2 ·(x∧y) = ei B

2 ·(x∧y) KTc(πx,y).

Using Lemma 2.6.4 and Lemma 2.7.3, a straightforward computation shows that

∥T e
B∥∞ ⩽ CeB (2.7.7)

holds for B small enough.
With the operator SeB in (2.7.4) we write

1
e−KTc,B

− 1
e−KTc

= 1
e−KTc,B

− SeB + SeB − 1
e−KTc

(2.7.8)

For the first term (2.7.5) implies

1
e−KTc,B

− SeB = SeB
∞∑
n=1

(T e
B)n

and since SeB is a bounded operator with norm bounded by ∥Ge∥1, (2.7.7) yields∥∥∥∥ 1
e−KTc,B

− SeB
∥∥∥∥

∞
⩽ CeB.

To estimate the second term on the right side of (2.7.8), we use |ei B
2 ·(x∧y) −1| ⩽ B|x−y||y|

and bound the kernel of this term by∣∣∣[SeB − 1
e−KTc

]
V

1/2(x, y)
∣∣∣ ⩽ B |x− y||Ge(x− y)| |y||V 1/2(y)|.

We further bound |y||V 1/2(y)| ⩽ ∥ | · |2V ∥1/2
∞ , which shows that∥∥∥∥[SeB − 1

e−KTc

]
V

1/2
∥∥∥∥

∞
⩽ B ∥ | · |2V ∥1/2

∞ ∥ | · |Ge∥1 ⩽ CeB.
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This completes the proof of the first estimate in (2.7.3).
To prove the second estimate, we note that

π2
[ 1
e−KTc,B

− 1
e−KTc

]
V = π2 1

e−KTc,B
[KTc,B −KTc ] 1

e−KTc
V

1/2.

Since π2(e − KTc,B)−1 is a bounded function of π2, we know that the operator norm of
the operator in the above equation is uniformly bounded in B. Thus, it suffices to show
that [KTc,B −KTc ] 1

e−KTc
V satisfies the claimed operator norm bound. To this end, we use

(2.6.23) and obtain two terms. Since π2 − p2 = B ∧ x · p+ 1
4 |B ∧ x|2, the estimate for the

first term reads[
(π2 − p2) 1

e−KTc
V

1/2
]
(x, y) ⩽

[
B · |x||∇Ge(x− y)| +B2 |x|2|Ge(x− y)|

]
|V (y)|.

The L1(R3)-norm in x− y of the right side is bounded by

CB
[(

∥ | · |∇Ge∥1 + ∥ | · |2Ge∥1
)
∥V ∥∞ + ∥∇Ge∥1 ∥ | · |V ∥∞ + ∥Ge∥1 ∥ | · |2V ∥∞

]
,

which is finite by Lemma 2.7.3. With the help of (2.6.19) the remaining term can bounded
similarly. This proves the claim.

2.7.2 Asymptotics for eigenvalues and eigenfunctions

We are now prepared to give the proof of Proposition 2.7.1.

Proof of Proposition 2.7.1. We start with the upper bound of part (a). By the variational
principle for eB0 we have

eB0 ⩽ ⟨α∗, (KTc,B − V )α∗⟩ = ⟨α∗, (KTc − V )α∗⟩ + ⟨α∗, (KTc,B −KTc)α∗⟩, (2.7.9)

where the first term on the right side equals 0 by the definition of α∗. We use (2.6.19),
Lemma 2.6.4, and (2.7.1), and argue as in the proof of (2.6.24) to see that the second term
is bounded by CB.

In the next step, we show the lower bound of part (a) and part (b) at the same time.
Thus, for n = 0, 1 we aim to show

eBn ⩾ e0
n − CnB (2.7.10)

for the lowest and next-to-lowest eigenvalue eB0 and eB1 , respectively. For notational conve-
nience, we give the proof for general n ∈ N0 and we order the eigenvalues eBn increasingly.
Let αBn be the eigenfunction to eBn for n ⩾ 0 and note that αB∗ = αB0 .

Now, we switch to the Birman–Schwinger picture: eBn being the (n+ 1)-st to smallest
eigenvalue of KTc,B − V is equivalent to 1 being the (n+ 1)-st to largest eigenvalue of the
Birman–Schwinger operator V 1/2(KTc,B − eBn )−1V 1/2 corresponding to eBn . Accordingly,
the min-max principle, see, e.g., [LL01, Theorem 12.1 (5)], implies

1 = max
u0,...,un∈L2(R3)
ui⊥uj , i ̸=j

min
{〈

Φ, V 1/2 1
KTc,B − eBn

V
1/2Φ

〉
: Φ ∈ span{u0, . . . , un}, ∥Φ∥2 = 1

}
.

(2.7.11)
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We obtain a lower bound on (2.7.11) by choosing the functions ui, i = 0, . . . , n as the first
n+ 1 orthonormal eigenfunctions φBi satisfying

V
1/2 1
KTc,B − eBn

V
1/2φBi = ηBi φ

B
i , i = 0, . . . , n, (2.7.12)

where ηBi ⩾ 1 denote the first n eigenvalues of the Birman–Schwinger operator in (2.7.12)
ordered decreasingly. In particular, we have ηBn = 1, as well as the relations φBn = V 1/2αBn
and αBn = (KTc,B − eBn )−1V 1/2φBn .

Denote en := e0
n and apply the resolvent equations to write

V
1/2 1
KTc,B − eBn

V
1/2 = V

1/2 1
KTc − en

V
1/2 + (eBn − en) QB

n + RB
n (2.7.13)

with

QB
n := V

1/2 1
KTc,B − en

1
KTc,B − eBn

V
1/2, RB

n := V
1/2
[ 1
KTc,B − en

− 1
KTc − en

]
V

1/2.

By Proposition 2.7.4, we have ∥RB
n ∥∞ ⩽ CnB. Furthermore, we may assume without loss

of generality that eBn ⩽ en, because otherwise there is nothing to prove. We combine this
with (2.7.11) for B = 0 and (2.7.13), which yields

1 ⩾ min
{〈

Φ, V 1/2 1
KTc,B − eBn

V
1/2Φ

〉
: Φ ∈ span{φB0 , . . . , φBn }, ∥Φ∥2 = 1

}
− [eBn − en] min

{
⟨Φ,QB

nΦ⟩ : Φ ∈ span{φB0 , . . . , φBn }, ∥Φ∥2 = 1
}

− CnB. (2.7.14)

We observe that the first term on the right side equals 1. To be able to conclude, we
therefore need to show that there is a constant c > 0, independent of B, such that

min
{

⟨Φ,QB
nΦ⟩ : Φ ∈ span{φB0 , . . . , φBn }

}
⩾ c. (2.7.15)

Then, (2.7.14) implies −[eBn − en] ⩽ CnB, which proves (2.7.10).
We will prove that (2.7.15) holds with c = ∥V ∥−1

∞ . To that end, we write

⟨Φ,QB
nΦ⟩ =

〈
Φ, V 1/2 1

KTc,B − eBn
(KTc,B − eBn ) 1

KTc,B − en

1
KTc,B − eBn

V
1/2Φ

〉
,

apply −eBn ⩾ −en, and infer

⟨Φ,QB
nΦ⟩ ⩾

∥∥∥∥ 1
KTc,B − eBn

V
1/2Φ

∥∥∥∥2

2
.

Since Φ ∈ span{φB0 , . . . , φBn }, there are coefficients cBi ∈ C, i = 0, . . . , n such that we
have Φ = ∑n

i=0 c
B
i φ

B
i . We use the eigenvalue equation in (2.7.12) for φBi as well as

⟨φBi , φBj ⟩ = δi,j to see that

∥V ∥∞

∥∥∥∥ 1
KTc,B − eBn

V
1/2Φ

∥∥∥∥2

2
⩾
〈 1
KTc,B − eBn

V
1/2Φ, V 1

KTc,B − eBn
V

1/2Φ
〉

=
n∑

i,j=0
cBi c

B
j η

B
i η

B
j ⟨φBi , φBj ⟩ =

n∑
i=0

|cBi |2 (ηBi )2 ⩾ 1.
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Here, we used that ηi ⩾ 1 and ∥Φ∥2 = 1. This shows (2.7.15) and completes the proof of
(2.7.10).

The case n = 0 in (2.7.10) yields the lower bound of part (a), since e0 = 0. For n = 1,
we have e1 = κ, showing part (b) with the help of part (a).

To prove part (c), we write φ0 := φ0
0. The chosen phase of φB0 in the lemma is such that

⟨φ0, φ
B
0 ⟩ is real and nonnegative. We write φB0 = aBφ0 + bBΦ with ⟨Φ, φ0⟩ = 0, ∥Φ∥2 = 1

and |aB|2 + |bB|2 = 1. By construction, aB = ⟨φ0, φ
B
0 ⟩. Furthermore, by (2.7.13),

1 =
〈
φB0 , V

1/2 1
KTc,B − eB0

V
1/2φB0

〉
=
〈
φB0 , V

1/2 1
KTc

V
1/2φB0

〉
+ ⟨φB0 , TBφB0 ⟩ (2.7.16)

with TB := eB0 Q
B
0 + RB

0 . Thus,

1 ⩽ a2
B + |bB|2

〈
Φ, V 1/2 1

KTc
V

1/2Φ
〉

+ 2aB Re
[
bB
〈
φ0, V

1/2 1
KTc

V
1/2Φ

〉]
+ ∥TB∥∞.

By parts (a) and (b) and Proposition 2.7.4, we know that ∥TB∥∞ ⩽ CB. Furthermore,
the term in square brackets vanishes, since V 1/2K−1

Tc
V 1/2φ0 = φ0 and ⟨φ0,Φ⟩ = 0. Using

the orthogonality of Φ and φ0 once more as well as the fact that 1 is the largest eigenvalue
of V 1/2K−1

Tc
V 1/2, we see that there is an η < 1 such that ⟨Φ, V 1/2K−1

Tc
V 1/2Φ⟩ ⩽ η. It follows

that

1 ⩽ a2
B + |bB|2η + CB.

Since a2
B + |bB|2 = 1, this implies |bB|2 ⩽ CB as well as a2

B ⩾ 1 − CB. Since aB ⩾ 0, we
infer 1 − aB ⩽ CB.

The next step is to improve the estimate on bB to |bB| ⩽ CB. To this end, we combine
the two eigenvalue equations of φB0 and φ0. With TB as in (2.7.16), we find

φB0 − φ0 = V
1/2 1
KTc

V
1/2(φB0 − φ0) + TBφB0 .

Testing this against Φ, we obtain

bB = ⟨Φ, φB0 − φ0⟩ =
〈
V

1/2 1
KTc

V
1/2Φ, φB0 − φ0

〉
+ ⟨Φ, TBφ0⟩.

We apply Cauchy-Schwarz on the right side and use that ∥V 1/2K−1
Tc
V 1/2Φ∥2 ⩽ η, which

follows from the orthogonality of Φ and φ0. We also use ∥φB0 − φ0∥2 ⩽ (1 − aB) + |bB|.
This implies

|bB| ⩽ η (1 − aB) + η |bB| + CB,

from which we conclude that |bB| ⩽ CB.
It remains to use these findings to prove the claimed bounds for αB∗ − α∗. According

to the Birman–Schwinger correspondence, we have αB∗ = (KTc,B − eB0 )−1V 1/2φB0 . Thus,
since φ0 = V 1/2α∗,

αB∗ − α∗ = 1
KTc,B − eB0

V
1/2
[
aBφ0 + bBΦ

]
− 1
KTc

V
1/2φ0

= aB

[ 1
KTc,B − eB0

− 1
KTc

]
V α∗ + bB

1
KTc,B − eB0

V
1/2Φ − (1 − aB) 1

KTc
V α∗.

(2.7.17)

The proof of the norm estimates for αB∗ − α and π2(αB∗ − α∗) is obtained from Lemma
2.7.3, Proposition 2.7.4, and the estimates of part (a) on eB0 .

Part (d) follows from part (c). This ends the proof of Proposition 2.7.1.
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2.8 Addendum to the paper [DHM21]

2.8.1 An addendum to the proof of Proposition 2.4.13

The following lemma contains the computations that are necessary for the calculation of
the coefficient Λ0 in (2.3.22). These consist of representation formulas for the function L̃T
and form an addendum to Proposition 2.4.13. The result is a tedious but straightforward
calculation, whence it is not contained in the paper [DHM21]. The content of Lemma
2.8.2 is to provide integrability of these functions in the sense needed for justifying the
integration by parts in the proof of Proposition 2.4.13. Since these functions are rapidly
decaying at infinity, only their singularities have to be investigated. We leave the proof of
the following result to the reader.

Lemma 2.8.1. Let p, q ∈ R3. Recall LT (p, q) from (2.4.86) and define:

L̃T (p, q) := LT
(
p+ q

2 , p− q

2
)

=
tanh(β2 (|p+ q/2|2 − µ)) + tanh(β2 (|p− q/2|2 − µ))

(|p+ q/2|2 − µ) + (|p− q/2|2 − µ) .

Introduce the short-hand notations

HT (p, q) := cosh2
(
β

2
(∣∣∣p+ q

2
∣∣∣2 − µ

))
, JT (p, q) := tanh

(
β

2
(∣∣∣p+ q

2
∣∣∣2 − µ

))
,

and

ℓ(p, q) :=
∣∣∣p+ q

2
∣∣∣2 − µ+

∣∣∣p− q

2
∣∣∣2 − µ,

and define HT (p) := HT (p, 0), as well as JT (p) := JT (p, 0). Then, the following statements
hold.

(a) For i = 1, 2, 3, we have

∂qiL̃T (p, q) = β

2ℓµ(p, q)

[
pi + qi

2
HT (p, q) −

pi − qi
2

HT (p,−q)

]
− JT (p, q) + JT (p,−q)

ℓ(p, q)2 qi.

160 PhD Thesis

mailto: andreas.deuchert@math.uzh.ch
mailto: hainzl@math.lmu.de


CHAPTER 2. BCS-THEORY IN A HOMOGENEOUS MAGNETIC FIELD

(b) Furthermore, for i, j = 1, 2, 3, we have

∂qj∂qiL̃T (p, q) = − β qj
2ℓµ(p, q)2

[
pi + qi

2
HT (p, q) −

pi − qi
2

HT (p,−q)

]
− β qi

2ℓµ(p, q)2

[
pj + qj

2
HT (p, q) −

pj − qj

2
HT (p,−q)

]
+ β δij

4ℓµ(p, q)

[ 1
HT (p, q) + 1

HT (p,−q)

]
− β2

2ℓµ(p, q)

[(pi + qi
2 )(pj + qj

2 )JT (p, q)
HT (p, q) +

(pi − qi
2 )(pj − qj

2 )JT (p,−q)
HT (p,−q)

]
+ [JT (p, q) + JT (p,−q)]

[ 2 qiqj
ℓ(p, q)3 − δij

ℓ(p, q)2

]

(c) In particular,

∂qj∂qiL̃T (p, 0) =
[

β

4(p2 − µ)
1

HT (p) − JT (p)
2(p2 − µ)2

]
δij

− β2

2(p2 − µ)
JT (p)
HT (p) pipj .

Lemma 2.8.2. Let p ∈ R3 be fixed. Then, for every i, j = 1, 2, 3, both of the functions
q 7→ ∂qiL̃T (p, q) and q 7→ ∂qi∂qj L̃T (p, q) are elements of L1(R3).

Proof. We start by considering ∂qi f̃T (p, q). It suffices to investigate the singularity at the
set {

q ∈ R3 :
∣∣∣p+ q

2
∣∣∣2 = µ =

∣∣∣p+ q

2
∣∣∣2}. (2.8.1)

In all other regimes, the decay properties are sufficiently good for integrability. Separate
the parts with pi and qi to obtain

∂qiL̃T (p, q) = qi

[
β

4ℓµ(p, q)
[ 1
HT (p, q) + 1

HT (p,−q)
]

− JT (p, q) + JT (p,−q)
ℓ(p, q)2

]
(2.8.2)

+ βpi
2ℓµ(p, q)

[ 1
HT (p, q) − 1

HT (p,−q)
]

(2.8.3)

In the first line, we can consider the terms with (p, q) and with (p,−q) separately. Then,
we are left with investigating

ξ
(1)
T (p, q) := β

4ℓµ(p, q)
1

HT (p, q) − JT (p, q)
ℓ(p, q)2

ξ
(2)
T (p, q) := 1

ℓ(p, q)
[ 1
HT (p, q) − 1

HT (p,−q)
]

Without loss, by interchanging the order if necessary, we can take one of the limits, e.g.
|p− q/2|2 − µ → 0. As x := |p+ q/2|2 − µ → 0, we then have

β

4x
1

cosh2(β2 x)
−

tanh(β2 x)
x2 = 1

x

[
β

4
1

cosh2(β2 x)
−

tanh(β2 x)
x

]
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The term in brackets is O(1) and 1
x is integrable over the unit ball in dimensions d ⩾ 2.

Proceed analogously for the term with (p,−q). Concerning ξ
(2)
T (p, q), an application of

l’Hôpital yields

lim
x→0

1
x2

[ 1
cosh2(β2 x)

− 1
]

= −β2

4 . (2.8.4)

Hence, this term is even linear at the singularity. The decay makes it integrable as well.
Moving on to ∂qi∂qj f̃T (p, q), we rewrite accordingly

∂qi∂qj L̃T (p, q) = −β (piqj + pjqi)
2ℓµ(p, q)2

[ 1
HT (p, q) − 1

HT (p,−q)
]

(2.8.5)

− β qiqj
2ℓµ(p, q)2

[ 1
HT (p, q) + 1

HT (p,−q)
]

+ [JT (p, q) + JT (p,−q)] 2qiqj
ℓ(p, q)3 (2.8.6)

− β2

2ℓµ(p, q)

[(pi + qi
2 )(pj + qj

2 )JT (p, q)
HT (p, q) +

(pi − qi
2 )(pj − qj

2 )JT (p,−q)
HT (p,−q)

]
(2.8.7)

+ β δij
4ℓµ(p, q)

[ 1
HT (p, q) + 1

HT (p,−q)

]
− [JT (p, q) + JT (p,−q)] δij

ℓ(p, q)2 (2.8.8)

As before, it is enough to investigate the singularity (2.8.1). The first thing to notice is
that the term in line (2.8.7) is bounded. Proceeding analogously to the above, the term
(2.8.5) is bounded by (2.8.4). The term in (2.8.6) is O( 1

x2 ) by the same investigation as
for ξ(1)

T above. This is still integrable over compacts in dimensions d ⩾ 3. The remaining
term is (2.8.8) is O( 1

x) by the investigation of ξ(1)
T above.

2.8.2 An alternative proof of Lemma 2.5.4

This is an alternative proof for Lemma 2.5.4, which takes the pedestrian way without any
reference to analytic perturbation theory.

Lemma 2.8.3. Let Assumptions 2.1.3 and 2.1.5 be true. For any D0 ⩾ 0, there are
constants B0 > 0 and T0 > 0 such that for 0 < B ⩽ B0 and T > 0 with T − Tc ⩾ −D0B,
the estimate

KT,B − V ⩾ c (1 − P )(1 + π2)(1 − P ) + c min{T0, (T − Tc)+} − CB (2.8.9)

holds. Here, P = |α∗⟩⟨α∗| is the orthogonal projection onto the ground state α∗ of KTc −V .

Proof. We prove two lower bounds on KT,B − V , which we add up to etablish (2.8.9).
Step 1. We claim that there are T0 > 0 such that

KT,B − V ⩾ c min{T0, (T − Tc)+} − CB. (2.8.10)

To prove (2.8.10), we note that the derivative of the symbol KT in (2.1.14) with respect
to T equals

d
dT KT (p) = 2 KT (p)2 1

cosh2(p2−µ
2T )

(2.8.11)

and is bounded from above by 2. If T ⩽ Tc, we infer KT,B − KTc,B ⩾ −2D0B as an
operator inequality, which proves (2.8.10).
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If on the other hand T ⩾ Tc, then choose T0 := κ
3 , where κ > 0 denotes the spectral gap

of the operator KTc,B−V above its lowest eigenvalue eB0 . For B small enough, Proposition
2.7.1 ensures that κ is independent of B, whence eB0 is simple. In order to prove (2.8.10),
we may henceforth assume that T ⩽ Tc + κ

3 due to the monotonicity of KT,B in T , which
implies KT,B ⩾ Kmin{T,Tc+ κ

3 },B.
We consider the minimization problem for the operator KT,B − V , while we assume

Tc ⩽ T ⩽ Tc + κ
3 . For a normalized φ ∈ L2(R3), we split φ = aαB∗ + bζ with |a|2 + |b|2 = 1

and ⟨αB∗ , ζ⟩ = 0. Here, αB∗ is the unique normalized ground state of KTc,B − V . In fact,
a, b, and ζ are dependent on B but these dependencies play no role in what follows. Note
that for T ⩾ Tc, (2.8.11) implies the inequality of operators

KT,B −KTc,B ⩽ 2(T − Tc). (2.8.12)

Therefore, an application of uv ⩽ η
2 u

2 + 1
2η v

2 for u, v ⩾ 0 and 0 < η < 1 yields

⟨φ, (KT,B − V )φ⟩ ⩾ 1
2 |aB|2 ⟨αB∗ , (KT,B −KTc,B)αB∗ ⟩ + |bB|2 (κ− 2(T − Tc)) − |eB0 |.

(2.8.13)

In view of (2.8.11), it is easy to see that

⟨αB∗ , (KT,B −KTc,B)αB∗ ⟩ ⩾
〈
KTc,Bα

B
∗ ,

1
cosh2(π2−µ

2Tc
)
KTc,Bα

B
∗

〉
(T − Tc).

It remains to remove the magnetic field in every instance to show that〈
KTc,Bα

B
∗ ,

1
cosh2(π2−µ

2Tc
)
KTc,Bα

B
∗

〉
⩾
�
R3

dp |V̂ α∗(p)|2 1
cosh2(p2−µ

2Tc
)

− CB. (2.8.14)

The first term on the right side equals 2TcΛ2 > 0 with Λ2 from (2.3.22).
To see that (2.8.14) is true, we start with the eigenvalue equation (KTc,B − V )αB∗ =

eB0 α
B
∗ . By Proposition 2.7.1, the estimates |eB0 | ⩽ CB and ∥αB∗ − α∗∥2

2 ⩽ CB hold. Since
V and cosh(π2−µ

2Tc
)−2 are bounded operators, we may therefore replace αB∗ by α∗ and eB0

by zero in every occurrence for an error of CB, i.e.,〈
KTc,Bα

B
∗ ,

1
cosh2(π2−µ

2Tc
)
KTc,Bα

B
∗

〉
⩾
〈
V α∗,

1
cosh2(π2−µ

2Tc
)
V α∗

〉
− CB. (2.8.15)

Furthermore, we use the identity (2.4.142), which expresses cosh(β2 z)−2 in terms of the
Matsubara frequencies ωn in (2.3.13). The resolvent equation

1
(iωn − π2)2 − 1

(iωn − p2)2 = 1
(iωn − π2)2

[
iωn(π2 − p2) − (π4 − p4)

] 1
(iωn − p2)2

leads us to investigate

π4 − p4 = (π2 + p2)(π2 − p2) + [π2 − p2, p2]

=
(
2π2 − 1

4 |B ∧ x|2
)(

B ∧ x · p+ 1
4 |B ∧ x|2

)
− (B ∧ x · p)2 − 1

4 |B ∧ x|2(B ∧ x · p) +B2.

Here, we used [π2 − p2, p2] = 1
4 [|B ∧x|2, p2] = B2 as well as p2 = π2 − B ∧x · p− 1

4 |B ∧x|2
and the fact that B ∧ x · p commutes with π2 − p2. Since | · |kV α∗ ∈ L2(R3) for k ∈ N by
(2.7.1), a tedious investigation of the kernels with the techniques introduced in Section 2.4
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shows that, in (2.8.15), π2 may be replaced by p2 for an error of the size CB. This shows
(2.8.14).

We apply (2.8.14) to (2.8.13). Together with the estimates provided by Proposition
2.7.1 mentioned above and |a|2 + |b|2 = 1, we finally obtain

⟨φ, (KT,B − V )φ⟩ ⩾ min
{1

2

�
R3

dp |V̂ α∗(p)|2 1
cosh2(p2−µ

2Tc
)

(T − Tc) , κ− 2(T − Tc)
}

− CB.

Since T ⩽ Tc + κ
3 implies κ− 2(T − Tc) ⩾ T − Tc, this proves (2.8.10).

Step 2. We claim there are c, C > 0 such that

KT,B − V ⩾ c (1 − P )(1 + π2)(1 − P ) − CB. (2.8.16)

From the arguments in Step 1 we know that we can replace T by Tc for a lower bound if
we allow for a remainder of the size −CB. To prove (2.8.16), we choose 0 < η < 1 and
write

KTc,B − V = eB0 PB + (1 − PB)[(1 − η)KTc,B − V ](1 − PB) + η(1 − PB)KTc,B(1 − PB),
(2.8.17)

where eB0 denotes the ground state energy of KTc,B −V and PB = |αB∗ ⟩⟨αB∗ | is the spectral
projection onto the corresponding unique ground state vector αB∗ . From Proposition 2.7.1
we know that the first term on the right side of (2.8.17) is bounded from below by −CB.
The lowest eigenvalue of KTc − V is simple and isolated from the rest of the spectrum.
Proposition 2.7.1 therefore implies that the second term in (2.8.17) is nonnegative as long
as η is, independently of B, chosen small enough, and can be dropped for a lower bound.
To treat the third term, we note that the symbol KT (p) in (2.1.14) satisfies the inequality
KTc(p) ⩾ c′(1 + p2) for some constant c′, and hence KTc,B ⩾ c′(1 + π2). In combination,
the above considerations prove

KTc,B − V ⩾ c′ (1 − PB)(1 + π2)(1 − PB) − CB.

It remains to replace PB by P = |α∗⟩⟨α∗|. To this end, we write

(1 − PB)(1 + π2)(1 − PB) − (1 − P )(1 + π2)(1 − P )
= (P − PB) + (P − PB)π2(1 − PB) + (1 − P )π2(P − PB). (2.8.18)

From Proposition 2.7.1 we know that ∥PB − P∥∞ ⩽ CB and ∥π2(PB − P )∥∞ ⩽ CB.
Hence, the norm of the operator on the right side of (2.8.18) is bounded by a constant
times B. This shows (2.8.16) and concludes our proof.

2.8.3 An alternative proof of Lemma 2.6.4

This is an alternative proof of Lemma 2.6.4.
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Definition 2.8.4 (Speaker path). Let R > 0 and α ⩾ 0. Using the notation β := T−1,
define the following complex paths

γ1(t) := πi
2β + (1 + i)t

γ2(t) := πi
2β − (α+ 1)t

γ3(t) := − πi
2β t− (α+ 1)

γ4(t) := − πi
2β − (α+ 1)(1 − t)

γ5(t) := − πi
2β + (1 − i)t

t ∈ [0, R],

t ∈ [0, 1],

t ∈ [−1, 1],

t ∈ [0, 1],

t ∈ [0, R].

C

γ1

γ2

γ3

γ4

γ5

−α

− α− 1

R

πi

2β

− πi

2β

πi

2β
+ (1 + i)R

− πi

2β
+ (1− i)R

The speaker path is defined as the union of paths γi, i = 1, . . . , 5, with γ1 taken in reverse
direction, i.e.,

R := −̇ γ1 +̇ γ2 +̇ γ3 +̇ γ4 +̇ γ5.

We also let α := ⋃
R>0 α,R.

Lemma 2.8.5. Let α ⩾ 0 and let H : D(H) → H be a self-adjoint operator in a separable
Hilbert space H with H ⩾ −α. Then, we have

H

tanh(βH2 )
= H + lim

R→∞

�
α,R

dz
2πi

(
z

tanh(βz2 )
− z

) 1
z −H

,

where α,R is the speaker path from Definition 2.8.4. The limit exists in operator norm.

Proof. Call fT (z) = z

tanh( βz
2 )

− z = 2z
eβz−1 . Let us first prove that the limit exists and

defines a bounded operator on H. To do this, we investigate the tails of the paths γ1 and
γ5. For example, we have to investigate the operator norm of

� ∞

R

dt
2πi

2γ1(t)
eβγ1(t) − 1

1
γ1(t) −H

γ′
1(t).

The estimates

|γ1(t)| ⩽ π

2β +
√

2t ⩽ Ct, |γ′
1(t)| =

√
2, Re γ1(t) = t,

and ∥∥∥∥ 1
γ1(t) −H

∥∥∥∥
∞

⩽
1

Im γ1(t) = 1
π
2β + t

⩽
1
t
.

hold for R large enough, and imply∥∥∥∥� ∞

R

dt
2πi

2γ1(t)
eβγ1(t) − 1

1
γ1(t) −H

γ′
1(t)

∥∥∥∥
∞

⩽ C

� ∞

R

1
eβt − 1 ⩽ Ce−βR.
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The last inequality follows by taking R so large that 1 ⩽ 1
2eβt for all t ⩾ R. The contri-

bution of γ5 is estimated in a similar fashion. This proves operator norm convergence of
the limit.

We let K ⩾ 0 and choose ψ ∈ ran(1(−∞,K−1](H)). Then, we take R ⩾ K and close
the speaker path by the contour γR(t) := R+ i(R+ π

2β )t where t ∈ [−1, 1]. Then, for each
φ ∈ H, by Cauchy’s integral theorem, we have

⟨φ, fT (H)ψ⟩ =
�
α,R+̇γR

dz
2πi fT (z)⟨φ, (z −H)ψ⟩.

When we investigate the contribution from γR, we have∣∣∣∣�
γR

dz
2πi fT (z)⟨φ, (z −H)−1ψ⟩

∣∣∣∣ ⩽ � 1

−1

dt
π

|γR(t)|
|eβγR(t)| − 1

|⟨φ, (γR(t) −H)−1ψ⟩| |γ′
R(t)|.

Since Re γR(t) = R, we have that

|γR(t) − (K − 1)| ⩾ |R−K + 1| ⩾ 1.

It follows that supt∈[−1,1] ∥(γR(t) −H)−1
1(−∞,K−1](H)∥∞ ⩽ 1. Hence, we obtain

sup
∥φ∥=1

∣∣∣∣�
γR

dz
2πi fT (z)⟨φ, (z −H)−1ψ⟩

∣∣∣∣ ⩽ C
R2

eβR − 1 ∥ψ∥ R→∞−−−−→ 0.

This proves that

fT (H)ψ = lim
R→∞

�
Cα,β,R

dz
2πi fT (z) 1

z −H
ψ. (2.8.19)

Now, since t 7→ fT (t), t ⩾ −α is bounded with ∥fT ∥∞ = 2α
1−e−βα , we get that fT (H) is a

bounded operator and hence, (2.8.19) extends by density to all ψ ∈ H. Hence, the claim
holds for all ψ ∈ D(H), since, then

H

tanh(βH2 )
ψ = Hψ + fT (H)ψ.
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Chapter 3

Microscopic Derivation of
Ginzburg–Landau Theory and the
BCS Critical Temperature Shift in
the Presence of Weak Macroscopic
External Fields

Abstract

We consider the Bardeen–Cooper–Schrieffer (BCS) free energy functional with weak
and macroscopic external electric and magnetic fields and derive the Ginzburg–Landau
functional. We also provide an asymptotic formula for the BCS critical temperature
as a function of the external fields. This extends our previous results in [DHM21] for
the constant magnetic field to general magnetic fields with a nonzero magnetic flux
through the unit cell.

3.1 Introduction and Main Results

3.1.1 Introduction

Ginzburg–Landau (GL) theory has been introduced as the first macroscopic and phe-
nomenlogical description of superconductivity in 1950 [GL50]. The theory comprises a
system of partial differential equations for a complex-valued function, the order parame-
ter, and an effective magnetic field. Ginzburg–Landau theory has been highly influencial
and investigated in numerous works, among which are [CSS18; CERS20; S14; SS07; CR14;
CG17; CG21b; CG21a; AG21] and references therein.

Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity is the first commonly
accepted and Nobel prize awarded microscopic theory of superconductivity [BCS57]. As a
major breakthrough, the theory features a pairing mechanism between the electrons below
a certain critical temperature, which causes the electrical resistance in the system to drop
to zero in the superconducting phase. This effect is due to an effective attraction between
the electrons, which arises as a consequence of the phonon vibrations of the lattice ions in
the superconductor.

As Leggett pointed out [L80], BCS theory can be formulated variationally in terms
of an energy functional, see also [G99]. This free energy functonal can be obtained from
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3.1. INTRODUCTION AND MAIN RESULTS

the first principle quantum mechanical description via a restriction to quasi-free states.
Such states are determined by their one-particle density matrix and the Cooper pair wave
function. The BCS functional has be studied intensively from a mathematical point of
view in the absence of external fields [HHSS08; FHNS07; HS08a; HS08b; FHS12; BHS14;
FL16; DGHL18] and in the presence of external fields [HS12; BHS16; FLS17; D17; CS21].
The BCS gap equation arises as the Euler–Lagrange equation of the BCS functional and
its solution is used to compute the spectral gap of an effective Hamiltonian, which is open
in the superconducting phase. BCS theory from the point of view of its gap equation is
studied in [O64; BF68; V85; Y91; MY00; Y05].

The present article continues a series of works, in which the macroscopic GL theory is
derived from the microscopic BCS theory in the weak external field regime. This endeavor
has been initiated by Gor’kov in 1959 [G59]. The first mathematically rigorous deriva-
tion of the GL functional from the BCS functional has been provided by Frank, Hainzl,
Seiringer, and Solovej for periodic external electric and fluxless magnetic fields in 2012
[FHSS12]. Recently, their work has been extended to systems exposed to a homogeneous
magnetic field by Deuchert, Hainzl, and Maier [DHM21]. This extends the derivation of
GL theory to the case of a system with a nonzero magnetic flux through the unit cell
of periodicity. The present work unites these results and provides the derivation of GL
theory for general external fields. GL theory arises from BCS theory when the tempera-
ture is sufficiently close to the critical temperature. More precisely, if 0 < h ≪ 1 denotes
the ratio between the microscopic and the macroscopic length scale, then the external
electric field W and the magnetic vector potential A are given by h2W (hx) and hA(hx),
respectively. Furthermore, the temperature regime is such that T−Tc = −TcDh

2 for some
constant D > 0, where Tc is the critical temperature in absence of external fields. When
this scaling is in effect, it is shown in [FHSS12] and [DHM21] that the Cooper pair wave
function α(x, y) is given by

α(x, y) = hα∗(x− y)ψ
(h(x+ y)

2
)

(3.1.1)

to leading order in h. Here, α∗ is the microscopic Cooper pair wave function in the absence
of external fields and ψ is the GL order parameter.

Moreover, the influence of the external fields causes a shift in the critical temperature
of the BCS model, which is described by linearized GL theory in the same scaling regime.
More precisely, it has been shown in [FHSS16] and [DHM21] that the critical temperature
shift in BCS theory is given by

Tc(h) = Tc(1 −Dch
2) (3.1.2)

to leading order, where Dc denotes a critical parameter that can be computed using
linearized GL theory.

The present work is an extension of the paper [DHM21], in which we proved the ex-
pansions (3.1.1) and (3.1.2) for systems exposed to a constant magnetic field. In this
article, we incorporate general periodic electric fields W and magnetic vector potentials
A that give rise to periodic magnetic fields. We show that within the scaling introduced
above, the Ginzburg–Landau energy arises as leading order correction on the order h4.
Furthermore, we show that the Cooper pair wave function admits the leading order term
(3.1.1) and that the critical temperature shift is given by (3.1.2) to leading order. The
proof of these results relies to a large extent on a priori bounds for certain low-energy BCS
states that include the magnetic field and have been proved in [DHM21]. The main tech-
nical novelty of this article is a further development of the phase approximation method,
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which has been pioneered in the framework of BCS theory for the case of the constant
magnetic field in [FHL19] and [DHM21], which allows us to extend the trial state analysis
in [DHM21] to the situation of general external fields.

3.1.2 Gauge-periodic samples

Our objective is to study a system of three-dimensional fermionic particles that is subject
to weak and slowly varying external electromagnetic fields within the framework of BCS
theory. Let us define the magnetic field B := h2e3. It can be written in terms of the vector
potential AB(x) := 1

2B∧x, where x∧y denotes the cross product of two vectors x, y ∈ R3,
as B = curl AB. To the vector potential AB we associate the magnetic translations

T (v)f(x) := ei B
2 ·(v∧x)f(x+ v), v ∈ R3, (3.1.3)

which commute with the magnetic momentum operator

π := −i∇ + AB. (3.1.4)

The family {T (v)}v∈R3 satisfies T (v + w) = ei B
2 ·(v∧w)T (v)T (w) and is therefore a unitary

representation of the Heisenberg group. We assume that our system is periodic with
respect to the Bravais lattice Λh :=

√
2π h−1 Z3 with fundamental cell

Qh :=
[
0,

√
2π h−1

]3
⊆ R3. (3.1.5)

Let bi =
√

2π h−1 ei denote the basis vectors that span Λh. The magnetic flux through
the face of the unit cell spanned spanned by b1 and b2 equals 2π, and hence the abelian
subgroup {T (λ)}λ∈Λh

is a unitary representation of the lattice group.
Our system is subject to an external electric field Wh(x) = h2W (hx) with a fixed

function W : R3 → R, as well as a magnetic field defined in terms of the vector potential
Ah(x) = hA(hx), which admits the form A := Ae3 + A with A : R3 → R3 and Ae3 as
defined above. We assume that A and W are periodic with respect to Λ1. The total
magnetic momentum operator of the system is πAh

, where

πA := −i∇ + A. (3.1.6)

Since A is a periodic function we know that πAh
commutes with T (λ) as long as λ ∈ Λh.

The flux of the magnetic field curlAh through all faces of the unit cell Qh vanishes
because Ah is a periodic function. Accordingly, the magnetic field curl Ah has the same
fluxes through the faces of the unit cell as B.

The above representation of Ah is general in the sense that any periodic magnetic field
field B(x) that satisfies the Maxwell equation divB = 0 can be written as the curl of a
vector potential AB of the form AB(x) = 1

2b∧x+Aper(x), where b denotes the vector with
components given by the average magnetic flux of B through the faces of Qh and Aper is
a periodic vector potential. For more information concerning this decomposition we refer
to Chapter 4. For a treatment of the two-dimensional case, see [TS13].

3.1.3 The BCS functional

In BCS theory a state is conveniently described by its generalized one-particle density
matrix, that is, by a self-adjoint operator Γ on L2(R3) ⊕ L2(R3), which obeys 0 ⩽ Γ ⩽ 1
and is of the form

Γ =
(
γ α
α 1 − γ

)
. (3.1.7)
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Here, α denotes the operator α with the complex conjugate integral kernel in the position
space representation. Since Γ is self-adjoint we know that γ is self-adjoint and that α is
symmetric in the sense that its integral kernel satisfies α(x, y) = α(y, x). This symmetry
is related to the fact that we exclude spin degrees of freedom from our description and
assume that all Cooper pair wave functions are in a spin singlet state. The condition
0 ⩽ Γ ⩽ 1 implies that the one-particle density matrix γ satisfies 0 ⩽ γ ⩽ 1 and that α
and γ are related through the inequality

αα∗ ⩽ γ(1 − γ). (3.1.8)

Let us define the magnetic translations T(λ) on L2(R3) ⊕ L2(R3) by

T(v) :=
(
T (v) 0

0 T (v)

)
, v ∈ R3.

We say that a BCS state Γ is gauge-periodic provided T(λ) Γ T(λ)∗ = Γ holds for any
λ ∈ Λh. This implies the relations T (λ) γ T (λ)∗ = γ and T (λ)αT (λ)∗ = α, or, in terms
of integral kernels,

γ(x, y) = ei B
2 ·(λ∧(x−y)) γ(x+ λ, y + λ),

α(x, y) = ei B
2 ·(λ∧(x+y)) α(x+ λ, y + λ), λ ∈ Λh. (3.1.9)

We further say that a gauge-periodic BCS state Γ is admissible if

Tr
[
γ + (−i∇ + AB)2γ

]
< ∞ (3.1.10)

holds. Here Tr[R] denotes the trace per unit volume of an operator R defined by

Tr[R] := 1
|Qh|

TrL2(Qh)[χRχ], (3.1.11)

where χ denotes the characteristic function of the cube Qh in (3.1.5) and TrL2(Qh)[·] is
the usual trace over an operator on L2(Qh). By the condition in (3.1.10), we mean that
χγχ and χ(−i∇ + AB)2γχ are trace-class operators. Eq. (3.1.8), (3.1.10), and the same
inequality with γ replaced by γ imply that α, (−i∇+AB)α, and (−i∇+AB)α are locally
Hilbert–Schmidt. We will rephrase this property as a notion of H1-regularity for the kernel
of α in Section 3.2 below.

Let Γ be an admissible BCS state. We define the Bardeen–Cooper–Schrieffer free
energy functional, or BCS functional for short, at temperature T ⩾ 0 by the formula

FBCS
h,T (Γ) := Tr

[(
(−i∇ + Ah)2 − µ+Wh(x)

)
γ
]

− T S(Γ)

− 1
|Qh|

�
Qh

dX
�
R3

dr V (r) |α(X, r)|2, (3.1.12)

where S(Γ) = − Tr[Γ ln(Γ)] denotes the von Neumann entropy per unit volume and µ ∈ R
is a chemical potential. The interaction energy is written in terms of the center-of-mass
and relative coordinates X = x+y

2 and r = x − y. Throughout this paper, we write, by
a slight abuse of notation, α(x, y) ≡ α(X, r). That is, we use the same symbol for the
function depending on the original coordinates and for the one depending on X and r.

The natural space for the interaction potential guaranteeing that the BCS functional
is bounded from below is V ∈ L3/2(R3) + L∞

ε (R3). Under these assumptions it can be
shown that the BCS functional satisfies the lower bound

FBCS
h,T (Γ) ⩾ 1

2 Tr
[
γ + (−i∇ + AB)2γ

]
− C (3.1.13)
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for some constant C > 0. In other words, the BCS functional is bounded from below and
coercive on the set of admissible BCS states.

The normal state Γ0 is the unique minimizer of the BCS functional when restricted to
admissible states with α = 0 and reads

Γ0 :=
(
γ0 0
0 1 − γ0

)
, γ0 := 1

1 + e((−i∇+Ah)2+Wh−µ)/T . (3.1.14)

Its name is motivated by the fact that it is also the unique minimizer of the BCS functional
if the temperature T is chosen sufficiently large. We define the BCS free energy by

FBCS(h, T ) := inf
{

FBCS
h,T (Γ) − FBCS

h,T (Γ0) : Γ admissible
}

(3.1.15)

and say that the system is superconducting at temperature T if FBCS(h, T ) < 0. Although
it is not difficult to prove that the BCS functional has a minimizer, we refrain from giving
a proof here. If we assume that the BCS functional has a minimizer Γ then the condition
FBCS(h, T ) < 0 implies α = Γ12 ̸= 0.

The goal of this paper is to derive an asymptotic formula for FBCS(h, T ) for small
h > 0. This will allow us to derive Ginzburg–Landau theory and to show how the critical
temperature depends on the external electric and magnetic field and on h. For our main
results to hold, we need the following assumptions.

Assumption 3.1.1. We assume that the interaction potential V is a radial function that
satisfies (1+|·|2)V ∈ L2(R3)∩L∞(R3). Moreover, the electric and the magnetic potentials
W ∈ W 1,∞(R3) and A ∈ W 3,∞(R3;R3) are Λ1-periodic functions, i.e. W (x+ λ) = W (x)
and A(x+ λ) = W (x) for λ ∈ Λ1 and a.e. x ∈ R3. We also assume that A(0) = 0.

3.1.4 The translation-invariant BCS functional

In the absence of external fields we describe the system by translation-invariant states,
that is, we assume that the integral kernels of γ and α are of the form γ(x−y) and α(x−y).
The trace per unit volume is in this case defined with respect to a cube with sidelength 1.
We denote the resulting translation-invariant BCS functional by FBCS

ti,T and the difference
between its infimum and the energy of the normal state by FBCS

ti (T ). The translation-
invariant BCS functional is analyzed in detail in [HHSS08], see also the review article
[HS16]. In [HHSS08] it has been shown that there exists a unique critical temperature
Tc ⩾ 0 such that FBCS

ti,T has a minimizer with α ̸= 0 for T < Tc. The normal state in
(3.1.14) with h = 0 is the unique minimizer if T ⩾ Tc. Moreover, the critical temperature
Tc can be characterized by a linear criterion: It equals the unique temperature T such
that the linear operator

KT − V

has zero as its lowest eigenvalue. Here KT = KT (−i∇) with the symbol

KT (p) := p2 − µ

tanh p2−µ
2T

. (3.1.16)

The operator KT − V is understood to act on the space L2
sym(R3) of reflection-symmetric

square-integrable functions on R3. To be precise, the results in [HHSS08] have been proven
without the assumption α(−x) = α(x) for a.e. x ∈ R3. In this case, the operator KTc −V
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acts in the Hilbert space L2(R3) instead of L2
sym(R3). The results in [HHSS08], however,

equally hold in the case of symmetric Cooper pair wave functions.
We note that the function KT (p) satisfies the inequalities KT (p) ⩾ 2T for µ ⩾ 0,

as well as KT (p) ⩾ |µ|/ tanh(|µ|/(2T )) for µ < 0. Our assumptions on V guarantee
that the essential spectrum of KT − V equals that of KT , and hence an eigenvalue below
2T for µ ⩾ 0 or below |µ|/ tanh(|µ|/(2T )) for µ < 0 is necessarily isolated and of finite
multiplicity. This, in particular, applies to an eigenvalue of KT − V at 0.

We are interested in the situation, where Tc > 0 and where the translation-invariant
BCS functional has a unique minimizer with a radial Cooper pair wave function (s-wave
Cooper pairs) for T close to Tc. The following assumptions guarantee that we are in such
a situation. Part (b) should be compared to [DGHL18, Theorem 2.8].

Assumption 3.1.2. We assume that the interaction potential V is such that the following
holds:

(a) We have Tc > 0.

(b) The lowest eigenvalue of KTc − V is simple.

We refer to [HHSS08, Theorem 3] for a sufficient condition for V that implies our first
assumption. Throughout this paper we denote by α∗ the unique solution to the equation

KTcα∗ = V α∗. (3.1.17)

We will assume that α∗ is real-valued and satisfies ∥α∗∥L2(R3) = 1. If we write the above
equation as α∗ = K−1

Tc
V α∗, we see that V ∈ L∞(R3) implies α∗ ∈ H2(R3). Moreover, we

know from [FHSS12, Proposition 2] that
�
R3

dx
[
|xνα∗(x)|2 + |xν∇α∗(x)|2

]
< ∞ (3.1.18)

holds for ν ∈ N3
0.

3.1.5 The Ginzburg–Landau functional

We say that a function Ψ on Qh is gauge-periodic if the magnetic translations of the form

Th(λ)Ψ(X) := eiB·(λ∧X) Ψ(X + λ), λ ∈ Λh, (3.1.19)

leave Ψ invariant. We highlight that T (λ) in (3.1.3) equals Th(λ) provided we replace
B by 2B. Let Λ0,Λ2,Λ3 > 0, Λ1, D ∈ R, and let Ψ be a gauge-periodic function. The
Ginzburg–Landau functional is defined by

EGL
D,h(Ψ) := 1

h4
1

|Qh|

�
Qh

dX
{

Λ0 |(−i∇ + 2Ah)Ψ(X)|2 + Λ1Wh(X) |Ψ(X)|2

−Dh2 Λ2 |Ψ(X)|2 + Λ3 |Ψ(X)|4
}
. (3.1.20)

We emphasize the factor 2 in front of the magnetic vector potential in (3.1.20). Its ap-
pearance is due to the fact that Ψ describes the center-of-mass motion of Cooper pairs
carrying twice the charge of a single fermion.

The Ginzburg–Landau energy is defined by

EGL(D) := inf
{

EGL
D,h(Ψ) : Ψ ∈ H1

mag(Qh)
}
.
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By scaling, it is independent of h. More precisely, for given ψ the function

Ψ(X) := h ψ
(
hX

)
, X ∈ R3, (3.1.21)

obeys

EGL
D,h(Ψ) = EGL

D,1(ψ). (3.1.22)

We also define the critical parameter

Dc := 1
Λ2

inf specL2
mag(Q1)

(
Λ0 (−i∇ + A)2 + Λ1 W

)
. (3.1.23)

As has been shown in [FHSS16, Lemma 2.5], we have EGL(D) < 0 if D > Dc and
EGL(D) = 0 if D ⩽ Dc.

3.1.6 Main results

Our first main result concerns an asymptotic expansion of the BCS free energy in the
small parameter h > 0. The precise statement is captured in the following theorem.

Theorem 3.1. Let Assumptions 3.1.1 and 3.1.2 hold, let D ∈ R, and let the coefficients
Λ0,Λ1,Λ2, and Λ3 be given by (3.3.20)-(3.3.23) below. Then there are constants C > 0
and h0 > 0 such that for all 0 < h ⩽ h0, we have

FBCS(h, Tc(1 −Dh2)) = h4
(
EGL(D) +R

)
, (3.1.24)

with R satisfying the estimate

Ch ⩾ R ⩾ −R := −Ch1/6. (3.1.25)

Moreover, for any approximate minimizer Γ of FBCS
h,T at T = Tc(1−Dh2) in the sense that

FBCS
h,T (Γ) − FBCS

h,T (Γ0) ⩽ h4
(
EGL(D) + ρ

)
(3.1.26)

holds for some ρ ⩾ 0, we have the decomposition

α(X, r) = α∗(r)Ψ(X) + σ(X, r) (3.1.27)

for the Cooper pair wave function α = Γ12. Here, σ satisfies

1
|Qh|

�
Qh

dX
�
R3

dr |σ(X, r)|2 ⩽ Ch
11/3, (3.1.28)

α∗ is the normalized zero energy eigenstate of KTc − V , and the function Ψ obeys

EGL
D,h(Ψ) ⩽ EGL(D) + ρ+ R. (3.1.29)

Our second main result is a statement about the dependence of the critical temperature
of the BCS functional on h > 0 and on the external fields.

Theorem 3.2. Let Assumptions 3.1.1 and 3.1.2 hold. Then there are constants C > 0
and h0 > 0 such that for all 0 < h ⩽ h0 the following holds:
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(a) Let 0 < T0 < Tc. If the temperature T satisfies

T0 ⩽ T ⩽ Tc (1 − h2 (Dc + C h
1/2)) (3.1.30)

with Dc in (3.1.23), then we have

FBCS(h, T ) < 0.

(b) If the temperature T satisfies

T ⩾ Tc (1 − h2 (Dc − R)) (3.1.31)

with Dc in (3.1.23) and R in (3.1.25), then we have

FBCS
h,T (Γ) − FBCS

h,T (Γ0) > 0

unless Γ = Γ0.

Remarks 3.1.3. (a) Theorem 3.1 and Theorem 3.2 extend similar results in [FHSS12]
and [FHSS16] to the case of general external electric and magnetic fields. In these ref-
erences the main restriction is that the vector potential is assumed to be periodic, that
is, the corresponding magnetic field has vanishing flux through the faces of the unit
cell Qh, compare with the discussion in Section 3.1.2. Removing this restriction causes
major mathematical difficulties because the vector potential of a constant magnetic
field cannot be treated as a perturbation of the Laplacian. More precisely, it was pos-
sible in [FHSS12; FHSS16] to work with a priori bounds for low-energy states that do
not involve the externel magnetic field. As noticed in the discussion below Remark 6
in [FHL19], this is not possible if the magnetic field has nonzero flux through the faces
of the unit cell. To prove a priori bounds that involve a constant magnetic field one
has to deal with the fact that the components of the magnetic momentum operator do
not commute, which leads to significant technical difficulties. These difficulties have
been overcome in [DHM21], which allowed us to extend the results [FHSS12; FHSS16]
to the case of a system in a constant magnetic field. Our proof of Theorem 3.1 and
Theorem 3.2 uses these results, and should therefore be interpreted as an extension of
the methods in [DHM21] to the case of general external electric and magnetic fields.

(b) When we compare our result in Theorem 3.1 to the main Theorem in [FHSS12], we
notice two differences. The first is that our BCS energy is normalized by a volume
factor while this is not the case in [FHSS12]. The second difference is that the Cooper
pair wave function of an approximate minimizer of the BCS functional is decomposed
in [FHSS12] as

α(x, y) = 1
2α∗(x− y)

(
Ψ(x) + Ψ(y)

)
+ ξ(x, y)

for some function ξ, which should be compared to (3.1.27). When we use the a priori
bound for ∥∇Ψ∥2 below Eq. (5.61) in [FHSS12], we see that this decomposition equals
that in (3.1.27) to leading order in h. The analogue in our setting does not seem to
be correct.

(c) The Ginzburg–Landau energy appears at the order h4. This needs to be compared to
the energy of the normal state, which is of order 1 in h.
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(d) The size of the remainder in (3.1.28) should be compared to the L2-norm per unit
volume of the leading order part of the Cooper pair wave function in (3.1.27), which
satisfies

1
|Qh|

�
Qh

dX
�
R3

dr |α∗(x)Ψ(X)|2 = O(h2).

(e) Our bounds show that D in Theorem 3.1 can be chosen as a function of h as long as
|D| ⩽ D0 holds for some constant D0 > 0.

(f) The upper bound for the error in (3.1.25) is worse than the corresponding bound in
[DHM21] by the factor h−1. It is of the same size as the comparable error term in
[FHSS12, Theorem 1].

(g) Theorem 3.2 gives bounds on the temperature regions where superconductivity is
present or absent. The interpretation of the theorem is that the critical temperature
of the full model satisfies

Tc(h) = Tc
(
1 −Dch

2
)

+ o(h2),

with the critical temperature Tc of the translation-invariant problem. The coefficient
Dc is determined by linearized Ginzburg–Landau theory, see (3.1.19). The above equa-
tion allows us to compute the upper critical field Bc2, above which superconductivity
is absent. It also allows to to compute the derivative of Bc2 with respect to T at Tc,
see [FHL19, Appendix A].

(h) We expect that the assumption 0 < T0 < Tc in part (a) of Theorem 3.2, which also
appeared in [FHL19], is only of technical nature. We need it because our trial state
analysis breaks down as T approaches zero. We note that there is no such restriction
in part (b) of Theorem 3.2 or in Theorem 3.1.

3.1.7 Organization of the paper and strategy of proof

To a large extent, our proof relies on the same strategy as has been pursued in [DHM21]
and the numbering of the sections is identical in order to make comparison easy.

In Section 3.2, the introduction of our mathematical setup is completed. We collect
useful properties of the trace per unit volume and introduce the relevant spaces of gauge-
periodic functions.

Section 3.3 presents the extension of the trial state analysis in [DHM21]. We introduce
a class of Gibbs states having Cooper pair wave functions, which admit a product structure
of the form α∗(r)Ψ(X) to leading order in h. Here, α∗ is the ground state in (3.1.17) and
Ψ is a gauge-periodic function. We state the results that pertain to the structure and the
BCS energy of these states. With the help of these results, we provide the proofs of the
upper bound on (3.1.24) as well as Theorem 3.2 (a). We will also need these results in
Section 3.6, where we give the proofs of the lower bound on (3.1.24) and of Theorem 3.2
(b).

Section 3.4 marks the main part of this paper, in which we present the proof of the
trial state analysis in Section 3.3. Our method of proof is based on an extensive use of
the phase approximation method for general magnetic fields. In the case of a constant
magnetic field, this method has been pioneered within the framework of BCS theory in
[FHL19; DHM21], whereas the case of magnetic fields with zero flux through the unit cell
is contained in the unpublished notes [FGHT]. We extend these results to our setting
with general external fields and provide the relevant weak magnetic field estimates for the
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proof of the results in Section 3.3. Within this general framework, it should be noted that
these estimates require considerable additional effort in comparison to [DHM21], which is
also reflected in the length of the proofs. In contrast, the effect of the electric field can be
studied by straightforward perturbation theory. Some of the auxiliary results, which have
been proven in [DHM21], hold in this more general case as well and require only minimal
adjustments in the proof. Therefore, we refrain from giving these proofs a second time
and instead refer to [DHM21].

In Section 3.5, we prove a priori estimates for BCS states, whose BCS free energy is
low in the sense that it is less than or equal to that of the normal state Γ0 in (3.1.14) plus
a correction of the order h4. The proof of this result in the case of a constant magnetic
field has been the main novelty of the work [DHM21], and we adapt it to the more general
situation in this paper. Our method relies on the perturbative removal of the additional
external fields A and W and a subsequent use of the results in [DHM21]. In this way, we
obtain a decomposition result for the Cooper pair wave function of the same form as that
of the Gibbs states in Section 3.3.

The proof of the lower bound on (3.1.24) and of Theorem 3.2 (b) is provided in Sec-
tion 3.6 and follows the same lines as that presented in [DHM21]. This, in particular,
completes the proofs of Theorem 3.1 and 3.2. The a priori estimates in Section 3.5 allow
us to replace a low-energy state by a suitable Gibbs state and to compute the BCS energy
of the latter, since the leading behavior of the Cooper pair wave functions is the same.
The errors are controlled by our trial state analysis of Section 3.3. Because of the large
overlap in content with [DHM21], we will shorten the proofs to a minimal length here.

Throughout the paper, c and C denote generic positive constants that change from
line to line. We allow them to depend on the various fixed quantities like h0, D0, µ, Tc,
V , A, W , α∗, etc. Further dependencies are indexed.

3.2 Preliminaries

3.2.1 Schatten classes

The trace per unit volume in (3.1.11) gives rise to periodic Schatten classes and the
Schatten norms of periodic operators play an important role during our proofs. In the
following lines, we recall several facts about these classes.

For 1 ⩽ p < ∞, the pth local von-Neumann–Schatten class Sp consists of all gauge-
periodic operators A having finite p-norm, that is, ∥A∥pp := Tr(|A|p) < ∞. The space of
bounded gauge-periodic operators S∞ is equipped with the usual operator norm. We note
that the p-norm is not monotone decreasing in the index p. This should be compared to
the usual Schatten norms, where such a property holds, see the discussion below [FHSS12,
Eq. (3.9)].

We recall that the triangle inequality

∥A+B∥p ⩽ ∥A∥p + ∥B∥p

holds on Sp for 1 ⩽ p ⩽ ∞. We also have the generalized version of Hölder’s inequality

∥AB∥r ⩽ ∥A∥p∥B∥q, (3.2.1)

which holds for 1 ⩽ p, q, r ⩽ ∞ with 1
r = 1

p + 1
q . The familiar inequality

| TrA| ⩽ ∥A∥1

180 PhD Thesis



CHAPTER 3. BCS-THEORY IN THE PRESENCE OF WEAK EXTERNAL FIELDS

holds in the case of local Schatten norms as well.
The above inequalities can be deduced from their versions in the case of usual Schatten

norms, see, e.g., [S05], with the help of the magnetic Bloch–Floquet decomposition. We
refer to [RS78, Section XIII.16] for an introduction to the Bloch–Floquet transformation
and to [FT16] for a particular treatment of the magnetic case. To be more precise, a
gauge-periodic operator A satisfies the unitary equivalence

A ∼=
� ⊕

[0,
√

2π h]3
dk Ak,

which we use to write the trace per unit volume as

TrA =
�

[0,
√

2π h]3

dk
(2π)3 TrL2(Qh)Ak. (3.2.2)

Here, TrL2(Qh) denotes the usual trace over L2(Qh). When we use that (AB)k = AkBk
holds for operators A and B, the above mentioned inequalities for the trace per unit
volume are implied by their usual versions.

3.2.2 Gauge-periodic Sobolev spaces

The center-of-mass part of Cooper pair wave functions is described by gauge-periodic
functions. In the following we introduce the relevant spaces for these.

An Lploc(R3)-functions Ψ belongs to the space Lpmag(Qh), where 1 ⩽ p < ∞, provided
Th(λ)Ψ = Ψ holds for all λ ∈ Λh (with Th(λ) in (3.1.19)). We endow Lpmag(Qh) with the
usual p-norm per unit volume

∥Ψ∥p
Lp

mag(Qh) :=
 
Qh

dX |Ψ(X)|p := 1
|Qh|

�
Qh

dX |Ψ(X)|p. (3.2.3)

As usual, we use the abbreviation ∥Ψ∥p.
Analogously, for m ∈ N0, we define the Sobolev spaces of gauge-periodic functions

corresponding to the constant magnetic field part as

Hm
mag(Qh) :=

{
Ψ ∈ L2

mag(Qh) : (−i∇ + 2AB)νΨ ∈ L2
mag(Qh) ∀ν ∈ N3

0, |ν|1 ⩽ m
}
,

(3.2.4)

where |ν|1 := ∑3
i=1 νi for ν ∈ N3

0. It is a Hilbert space endowed with the scalar product

⟨Φ,Ψ⟩Hm
mag(Qh) :=

∑
|ν|1⩽m

h−2−2|ν|1 ⟨(−i∇ + 2AB)νΦ, (−i∇ + 2AB)νΨ⟩L2
mag(Qh). (3.2.5)

It is noteworthy that if Ψ is a gauge-periodic function then so is (−i∇ + 2AB)νΨ, since
the magnetic momentum operator

Π := −i∇ + 2AB (3.2.6)

commutes with the magnetic translations Th(λ) in (3.1.19). Furthermore, Π is a self-
adjoint operator on H1

mag(Qh). The full magnetic momentum operator reads ΠAh
with

ΠA := −i∇ + 2A.
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The norms introduced in (3.2.3) and (3.2.5) feature a scaling behavior in h, which is
motivated by the Ginzburg–Landau scaling in (3.1.21). More precisely, if ψ ∈ Lpmag(Q1)
and Ψ is as in (3.1.21), then

∥Ψ∥Lp
mag(Qh) = h ∥ψ∥Lp

mag(Q1) (3.2.7)

for every 1 ⩽ p ⩽ ∞. Meanwhile, the scaling of the norm in (3.2.5) is

∥Ψ∥Hm
mag(Qh) = ∥ψ∥Hm

mag(Q1).

This follows from (3.2.7) and the fact that ∥(−i∇+2AB)νΨ∥2
2 scales as h2+2|ν|1 for ν ∈ N3

0.
For the sake of completeness, let us record the following magnetic Sobolev inequality,

which we will make use of several times throughout the paper. For any h > 0 and any
Ψ ∈ H1

mag(Qh), we have

∥Ψ∥2
L6

mag(Qh) ⩽ C h−2 ∥(−i∇ + 2AB)Ψ∥2
L2

mag(Qh). (3.2.8)

The proof can be found in [DHM21, Eq. (2.7)].
The Cooper pair wave function α, which is the offdiagonal entry of an admissible state

Γ, belongs to the Hilbert–Schmidt class S2, defined in Section 3.2.1, see the discussion
below (3.1.11). The symmetry and the gauge-periodicity of the kernel of α in (3.1.9) can
be reformlated as

α(X, r) = eiB·(λ∧X) α(X + λ, r), λ ∈ Λh; α(X, r) = α(X,−r) (3.2.9)

in terms of center-of-mass and relative coordinates. In other words, α(X, r) is a gauge-
periodic function of the center-of-mass coordinate X and a reflection-symmetric function
of the relative coordinate r ∈ R3. We make use of the unitary equivalence of S2 to the
space

L2(Qh × R3
s ) := L2

mag(Qh) ⊗ L2
sym(R3),

which consists of the square-integrable functions satisfying (3.2.9), with finite norm given
by

∥α∥2
L2(Qh×R3

s ) :=
 
Qh

dX
�
R3

dr |α(X, r)|2 = 1
|Qh|

�
Qh

dX
�
R3

dr |α(X, r)|2.

The identity ∥α∥2 = ∥α∥L2(Qh×R3
s ) follows from (3.2.9). Therefore, we identify the scalar

products ⟨·, ·⟩ on L2(Qh × R3
s ) and S2 with each other and we do not distinguish operators

in S2 and their kernels as this does not lead to confusion.
We define the Sobolev space H1(Qh × R3

s ) of all functions α ∈ L2(Qh × R3
s ), which

have finite H1-norm defined as

∥α∥2
H1(Qh×R3

s ) := ∥α∥2
2 + ∥Πα∥2

2 + ∥π̃α∥2
2. (3.2.10)

The magnetic momentum operators used in this definition are given by

Π := −i∇X + 2AB(X), π̃ := −i∇r + 1
2AB(r). (3.2.11)

The full magnetic momentum operators are given by ΠAh,X and π̃Ah,r with

ΠA := −i∇X + 2A, π̃A := −i∇r + 1
2A(r). (3.2.12)
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We highlight that the norm in (3.2.10) is equivalent to the norm defined as

Tr[αα∗] + Tr[(−i∇ + AB)αα∗(−i∇ + AB)] + Tr[(−i∇ + AB)α∗α(−i∇ + AB)]. (3.2.13)

The latter is further equivalent to the norm defined as

∥α∥2
2 + ∥(−i∇ + AB)α∥2

2 + ∥α(−i∇ + AB)∥2
2, (3.2.14)

compare also with the discussion below (3.1.11).

3.2.3 Periodic Sobolev spaces

For our external fields A and W , we define the spaces of periodic functions

L∞
per(Q1) := {f ∈ L∞(R3) : f(x+ λ) = f(x) a.e. in R3, λ ∈ Λ1} (3.2.15)

and

L∞
per(Q1;R3) := {f ∈ L∞(R3;R3) : f(x+ λ) = f(x) a.e. in R3, λ ∈ Λ1}. (3.2.16)

Likewise, for m ∈ N, we define the periodic Sobolev spaces

Wm,∞
per (Q1) := {f ∈ L∞

per(Q1) : (−i∇)νf ∈ L∞
per(Q1), ∀ν ∈ N3

0, |ν|1 ⩽ mm} (3.2.17)

and

Wm,∞
per (Q1;R3) := {f ∈ L∞

per(Q1;R3) : (−i∇)νf ∈ L∞
per(Q1), ∀ν ∈ N3

0, |ν|1 ⩽ m}.
(3.2.18)

These spaces are endowed with their usual sup-norms over Q1.
For the external fields A and W , Assumption 3.1.1 is equivalent to A ∈ W 3,∞

per (Q1;R3),
while W ∈ W 1,∞

per (Q1).

3.3 Trial States and their BCS Energy

In this section, we extend the trial state analysis presented in [DHM21] to the case of our
general external field setting. In order to do this, we state the extensions of the results
presented in [DHM21, Section 3], which are needed to prove the upper bound on (3.1.24)
and Theorem 3.2 (a). For these proofs, we refer to [DHM21, Section 3.3].

Our trial state analysis involves the Gibbs states Γ∆. These are constructed upon a
gap function ∆ in terms of the effective Hamiltonian. Our first structural result, Propo-
sition 3.3.2, shows that, if ∆ is a product function in terms of the center-of-mass and
relative coordinates which is small in a suitable sense, then the Cooper pair wave function
α∆ of Γ∆ admits a product structure to leading order as well. This, in particular, implies
that Γ∆ approximately solves the Euler–Lagrange equation of the BCS functional in the
vicinity of the critical temperature. Therefore, Γ∆ is a good candidate for an approximate
minimizer. In order to compute the BCS energy of the trial states Γ∆, we prove a rep-
resentation formula for the BCS functional in Proposition 3.3.4. Parts of the expression
we provide are shown to equal the Ginzburg–Landau functional in (3.1.20) up to a small
error along the temperatures T = Tc(1 −Dh2) for some D ∈ R. We postpone the proof of
these results until Section 3.4.
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3.3.1 The Gibbs states Γ∆

The gap function ∆ ∈ L2(Qh × R3
s ) is defined upon a Ψ ∈ L2

mag(Qh) as

∆(X, r) := ∆Ψ(X, r) := −2 V α∗(r)Ψ(X). (3.3.1)

The gauge-periodic function Ψ is a minimizer of the Ginzburg–Landau functional in
(3.1.20) as far as the trial state analysis of this section is concerned. Since Ψ satisfies
the scaling in (3.1.21), the local Hilbert–Schmidt norm of ∆ is of the order h, while the
L2(R3)-norm of V α∗ is of the order 1. Therefore, Ψ fully determines the size of ∥∆∥2.
The notation

hA,W := hA +W := (−i∇ + Ah)2 +Wh − µ (3.3.2)

allows us to introduce the Hamiltonian

H∆ := H0 + δ :=
(
hA,W 0

0 −hA,W

)
+
(

0 ∆
∆ 0

)
=
(
hA,W ∆

∆ −hA,W

)
. (3.3.3)

This enables us to define the corresponding Gibbs state at inverse temperature β = T−1 >
0 by (

γ∆ α∆
α∆ 1 − γ∆

)
= Γ∆ := 1

1 + eβH∆
. (3.3.4)

In this way, setting ∆ = 0 yields the normal state Γ0 in (3.1.14).

Lemma 3.3.1 (Admissibility of Γ∆). Let Assumptions 3.1.1 and 3.1.2 hold. Then, for
any h > 0, any T > 0, and any Ψ ∈ H1

mag(Qh), the state Γ∆ in (3.3.4) is admissible.

The states Γ∆ are inspired by the solution Γ of the nonlinear Bogolubov–de Gennes
equation, the Euler–Lagrange equation of the BCS functional,

Γ = 1
1 + eβHV α

, HV α =
(

hA,W −2V α
−2V α −hA,W

)
. (3.3.5)

Here, V α is the operator given by the kernel V (r)α(X, r). The following result shows that
our candidate Γ∆ for an approximate solution to (3.3.5) is indeed appropriate as far as
the leading term is concerned, compare this to (3.1.27).

Proposition 3.3.2 (Structure of α∆). Let Assumption 3.1.1 and 3.1.2 (a) be satisfied
and let T0 > 0 be given. Then, there is a constant h0 > 0 such that for any 0 < h ⩽ h0,
any T ⩾ T0, and any Ψ ∈ H2

mag(Qh) the function α∆ in (3.3.4) with ∆ ≡ ∆Ψ as in (3.3.1)
has the decomposition

α∆(X, r) = Ψ(X)α∗(r) − η0(∆)(X, r) − η⊥(∆)(X, r). (3.3.6)

The remainder functions η0(∆) and η⊥(∆) have the following properties:

(a) The function η0 satisfies the bound

∥η0∥2
H1(Qh×R3

s ) ⩽ C
(
h5 + h2 |T − Tc|2

) (
∥Ψ∥6

H1
mag(Qh) + ∥Ψ∥2

H1
mag(Qh)

)
. (3.3.7)

(b) The function η⊥ satisfies the bound

∥η⊥∥2
H1(Qh×R3

s ) + ∥|r|η⊥∥2
L2(Qh×R3

s ) ⩽ C h6 ∥Ψ∥2
H2

mag(Qh). (3.3.8)
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(c) The function η⊥ has the explicit form

η⊥(X, r) =
�
R3

dZ
�
R3

ds kT (Z, r − s)V α∗(s)
[
cos(Z · Π) − 1

]
Ψ(X)

with kT (Z, r) defined in Section 3.4 below (3.4.109). For any radial f, g ∈ L2(R3) the
operator

�
R9

dZdrds f(r) kT (Z, r − s) g(s)
[
cos(Z · Π) − 1

]
commutes with Π2, and, in particular, if P and Q are two spectral projections of Π2

with PQ = 0, then η⊥ satisfies the orthogonality property〈
f(r) (PΨ)(X), η⊥(∆QΨ)

〉
= 0. (3.3.9)

Remark 3.3.3. The reason why the statement of Proposition 3.3.2 may seem somewhat
complicated lies in the different techniques of proof for the upper and lower bounds on the
BCS functional. The detailed reasoning can be found in [DHM21, Remark 3.3].

3.3.2 The BCS energy of the states Γ∆

In this section, we analyze the BCS energy of the states Γ∆, and we are going to show that
it is determined by the Ginzburg–Landau functional to leading order in the appropriate
temperature scaling. In [DHM21, Section 3.2], it has been argued that the BCS energy of
Γ∆ can be calculated in terms of the operators LT,A,W and NT,A,W , which we define in
the following lines.

With the Matsubara frequencies

ωn := π(2n+ 1)T, n ∈ Z, (3.3.10)

we define the linear operator LT,A,W : L2(Qh × R3
s ) → L2(Qh × R3

s ) given by

LT,A,W∆ := − 2
β

∑
n∈Z

1
iωn − hA,W

∆ 1
iωn + hA,W

. (3.3.11)

In the temperature regime we are interested in, we will obtain the quadratic terms in the
Ginzburg–Landau functional from ⟨∆, LT,A,W∆⟩.

We also define the nonlinear map NT,A,W : H1(Qh × R3
s ) → L2(Qh × R3

s ) as

NT,A,W (∆) := 2
β

∑
n∈Z

1
iωn − hA,W

∆ 1
iωn + hA,W

∆ 1
iωn − hA,W

∆ 1
iωn + hA,W

. (3.3.12)

The expression ⟨∆, NT,A,W (∆)⟩ will determine the quartic term in the Ginzburg–Landau
functional.

The operators LT,A,W and NT,A,W enable us to formulate a representation formula for
the BCS functional. This result is the basis for the proofs of Theorems 3.1 and 3.2. As
this result is relevant for upper and lower bounds on the BCS functional, the statement is
phrased not only for Gibbs states but for a general state Γ. The proof is given in [DHM21,
Proposition 3.4].
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Proposition 3.3.4 (Representation formula for the BCS functional). Let Γ be an admis-
sible state. For any h > 0, let Ψ ∈ H1

mag(Qh) and let ∆ ≡ ∆Ψ be as in (3.3.1). For T > 0
and if V α∗ ∈ L6/5(R3) ∩ L2(R3), there is an operator R(1)

T,A,W (∆) ∈ S1 such that

FBCS
h,T (Γ) − FBCS

h,T (Γ0)

= −1
4⟨∆, LT,A,W∆⟩ + 1

8⟨∆, NT,A,W (∆)⟩ + ∥Ψ∥L2
mag(Qh) ⟨α∗, V α∗⟩L2(R3)

+ Tr
[
R(1)
T,A,W (∆)

]
+ T

2 H0(Γ,Γ∆) −
 
Qh

dX
�
R3

dr V (r)
∣∣∣α(X, r) − α∗(r)Ψ(X)

∣∣∣2, (3.3.13)

where

H0(Γ,Γ∆) := Tr0
[
Γ(ln Γ − ln Γ∆) + (1 − Γ)(ln(1 − Γ) − ln(1 − Γ∆))

]
(3.3.14)

denotes the relative entropy of Γ with respect to Γ∆. Moreover, R(1)
T,A,W (∆) obeys the

estimate

∥R(1)
T,A,W (∆)∥1 ⩽ C T−5 h6 ∥Ψ∥6

H1
mag(Qh).

The definition (3.3.14) of relative entropy uses a weaker form of trace Tr0, which is
defined as follows. A gauge-periodic operator A, which acts on L2(R3) ⊕L2(R3), is called
weakly locally trace class if P0AP0 and Q0AQ0 are locally trace class, where

P0 =
(

1 0
0 0

)
(3.3.15)

and Q0 = 1 − P0. Its weak trace per unit volume is defined by

Tr0(A) := Tr
(
P0AP0 +Q0AQ0

)
. (3.3.16)

We remark that an operator A is weakly locally trace class provided it is locally trace
class but the converse may not hold. However, if A is nonnegative, then the converse does
hold. Moreover, the trace per unit volume and the weak trace per unit volume coincide
for operators which are locally trace class.

An explanation of the roles played by the different terms on the right side of (3.3.13)
can be found below [DHM21, Proposition 3.4]. Here, we focus on the first line and show
that, within the appropriate temperature scaling T = Tc(1 − Dh2), it is determined by
the Ginzburg–Landau functional. The statement of the result involves the function

V̂ α∗(p) :=
�
R3

dx e−ip·x V (x)α∗(x) (3.3.17)

and, hereby, we fix our convention on the Fourier transform in the present article.

Theorem 3.3.5 (Calculation of the GL energy). Let Assumptions 3.1.1 and 3.1.2 (a) hold
and let D ∈ R be given. Then, there is a constant h0 > 0 such that for any 0 < h ⩽ h0,
any Ψ ∈ H2

mag(Qh), ∆ ≡ ∆Ψ as in (3.3.1), and T = Tc(1 −Dh2), we have

−1
4⟨∆, LT,A,W∆⟩ + 1

8⟨∆, NT,A,W (∆)⟩ + ∥Ψ∥2
L2

mag(Qh) ⟨α∗, V α∗⟩L2(R3)

= h4 EGL
D,h(Ψ) +R(h). (3.3.18)
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Here,

|R(h)| ⩽ C
[
h5 ∥Ψ∥2

H1
mag(Qh) + h6 ∥Ψ∥2

H2
mag(Qh)

] [
1 + ∥Ψ∥2

H1
mag(Qh)

]
and with the functions

g1(x) := tanh(x/2)
x2 − 1

2x
1

cosh2(x/2)
, g2(x) := 1

2x
tanh(x/2)
cosh2(x/2)

, (3.3.19)

the coefficients Λ0, Λ2, and Λ3 in EGL
D,h are given by

Λ0 := β2
c

16

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|2

(
g1(βc(p2 − µ)) + 2

3βc p
2 g2(βc(p2 − µ))

)
, (3.3.20)

Λ1 := β2
c

4

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|2 g1(βc(p2 − µ)), (3.3.21)

Λ2 := βc
8

�
R3

dp
(2π)3

|(−2)V̂ α∗(p)|2

cosh2(βc

2 (p2 − µ))
, (3.3.22)

Λ3 := β2
c

16

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|4 g1(βc(p2 − µ))

p2 − µ
. (3.3.23)

It has been argued in [DHM21] that the coefficients Λ0, Λ2, and Λ3 are positive. We
note that the coefficient Λ1 can, in principle, have either sign, see also the remark below
[FHSS12, Eq. (1.21)].

Let us note that the error estimate h5 is worse than the estimate given in [DHM21,
Theorem 3.5] due to the presence of the bounded periodic potential A. However, this
does not affect the error in our main results Theorems 3.1 and 3.2 because the largest
contribution stems from the term involving the H2-norm of Ψ. This is in accordance with
the works [FHSS12] and [FHSS16].

Theorem 3.3.5 analyzes the BCS energy in the temperature scaling T = Tc(1 −Dh2).
However, we also need a preliminary result, which proves that our system is superconduct-
ing for temperatures below this regime, in order to prove Theorem 3.2 (a). The statement
reads as follows.

Proposition 3.3.6 (A priori bound on Theorem 3.2 (a)). Let Assumptions 3.1.1 and
3.1.2 (a) hold and let T0 > 0. Then, there are constants h0 > 0 and D0 > 0 such that for
all 0 < h ⩽ h0 and all temperatures T obeying

T0 ⩽ T < Tc(1 −D0h
2),

there is a BCS state Γ with

FBCS
h,T (Γ) − FBCS

h,T (Γ0) < 0. (3.3.24)

3.3.3 The upper bound on (3.1.24) and proof of Theorem 3.2 (a)

The results of the previous section enable us to give the proof of the upper bound on
(3.1.24) and of Theorem 3.2 (a). We refer to [DHM21, Section 3.3] for the detailed pre-
sentation.
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3.4 Proofs of the Results in Section 3.3

3.4.1 Schatten norm estimates for operators given by product kernels

In the following, we frequently need Schatten norm estimates for several gauge-periodic
operators, whose kernels have the product structure τ(x− y)Ψ((x+ y)/2). The following
result is proven in [DHM21, Lemma 4.1 (a)].

Lemma 3.4.1. Let h > 0, let Ψ be a gauge-periodic function on Qh and let τ be an even
and real-valued function on R3. Moreover, let the operator α be defined via its integral
kernel α(X, r) := τ(r)Ψ(X), i.e., α acts as

αf(x) =
�
R3

dy τ(x− y)Ψ
(x+ y

2
)
f(y), f ∈ L2(R3).

(a) Let p ∈ {2, 4, 6}. If Ψ ∈ Lpmag(Qh) and τ ∈ L
p

p−1 (R3), then α ∈ Sp and

∥α∥p ⩽ C ∥τ∥ p
p−1

∥Ψ∥p.

(b) For any ν > 3, there is a Cν > 0, independent of h, such that if (1 + | · |)ντ ∈ L6/5(R3)
and Ψ ∈ L6

mag(Qh), then α ∈ S∞ and

∥α∥∞ ⩽ Cν h
−1/2 max{1, hν} ∥(1 + | · |)ντ∥6/5 ∥Ψ∥6.

3.4.2 Proof of Theorem 3.3.5

3.4.2.1 Technical preparation — the phase approximation method

In this subsection, we analyze the resolvent kernel

GzA(x, y) := 1
z − (−i∇ + A)2 + µ

(x, y), x, y ∈ R3, (3.4.1)

of the magnetic Laplacian and use the phase approximation method to prove perturbative
estimates in the weak magnetic field regime. The phase approximation method presented
here follows the gauge-invariant perturbation theory in [N02, pp. 1290] and we note that
versions of several results of this section are proven in [G18, Chapter 6].

The first result, which we will frequently use in this context pertains to the free resol-
vent kernel

gz := 1
z − (−i∇)2 + µ

(3.4.2)

and its gradient. The proof of the following decay estimate on their L1-norms can be
found in [DHM21, Lemma 4.4].

Lemma 3.4.2. Let a > −2. There is a constant Ca > 0 such that for t, ω ∈ R, we have∥∥∥ | · |agiω+t
∥∥∥

1
⩽ Ca f(t, ω)1+ a

2 , (3.4.3)

where

f(t, ω) := |ω| + |t+ µ|
(|ω| + (t+ µ)−)2 (3.4.4)

and x− := − min{x, 0}. Furthermore, for any a > −1, there is a constant Ca > 0 with∥∥∥ | · |a∇giω+t
∥∥∥

1
⩽ Ca f(t, ω)

1
2 + a

2

[
1 + |ω| + |t+ µ|

|ω| + (t+ µ)−

]
. (3.4.5)
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The core of the phase approximation method is the nonintegrable phase factor, some-
times also called the Wilson line, defined by

ΦA(x, y) := −
� x

y
A(u) · du := −

� 1

0
dt A(y + t(x− y)) · (x− y). (3.4.6)

Here and in the following, in order to avoid having to write Ah in every instance, we
assume more generally that A = AB + A for a fixed but arbitrary vector B ∈ R3 and a
periodic potential A of appropriate regularity. We note that the (n − 1)st derivative of a
function in Wn,∞

per (Q1;R3) is Lipschitz continuous, whence line integrals are well defined.

Lemma 3.4.3. Let B ∈ R3 and A ∈ W 2,∞
per (Q1;R3). For A = AB +A, we have

∇xΦA(x, y) = −A(x) + Ã(x, y), (3.4.7)

where

Ã(x, y) :=
� 1

0
dt t curl A(y + t(x− y)) ∧ (x− y) (3.4.8)

is the transversal Poincaré gauge relative to y ∈ R3.

Proof. By assumption, curlA is a Lipschitz continuous function. Therefore, the line inte-
gral over curlA is well defined. We make use of the formula

∇(v · w) = (v · ∇)w + (w · ∇)v + v ∧ curlw + w ∧ curl v (3.4.9)

for arbitrary vector fields v and w. For fixed y ∈ R3, we apply this to

v(x) :=
� 1

0
dt A(y + t(x− y)), w(x) := x− y,

whence curlw = 0 so that

−∇xΦA(x, y) =
(� 1

0
dt A(y + t(x− y)) · ∇x

)
(x− y)

+
(
(x− y) · ∇x

)� 1

0
dt A(y + t(x− y)) + (x− y) ∧

� 1

0
dt t curl A(y + t(x− y)).

(3.4.10)

The first term on the right side equals

3∑
i=1

� 1

0
dt Ai(y + t(x− y)) ∂i(x− y) =

� 1

0
dt A(y + t(x− y)). (3.4.11)

For the second term on the right side of (3.4.10) we use integration by parts to get

(
(x− y) · ∇x

)� 1

0
dt A(y + t(x− y)) =

� 1

0
dt t d

dtA(y + t(x− y))

= tA(y + t(x− y))
∣∣∣∣1
0

−
� 1

0
dt A(y + t(x− y)). (3.4.12)

Therefore, the sum of (3.4.11) and (3.4.12) equals A(x). Since the last term on the right
side of (3.4.10) equals equals −Ã(x, y), this proves (3.4.7).
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We define the gauge-invariant version of the free resolvent kernel gz in (3.4.2) by

G̃zA(x, y) := eiΦA(x,y) gz(x− y). (3.4.13)

In the following lines, we investigate the intertwining relation between (−i∇ + A)2 and
the operator G̃zA associated to the kernel in (3.4.13). First of all, (3.4.7) implies

(−i∇x + A(x)) eiΦA(x,y) = eiΦA(x,y) (−i∇x + Ã(x, y)) (3.4.14)

where Ã(x, y) is the Poincaré gauge in (3.4.8). Furthermore, a short computation shows
that (3.4.14) implies the operator equation

(z − (−i∇ + A)2 + µ)G̃zA = 1 − T zA, (3.4.15)

where T zA is the operator associated to the kernel

T zA(x, y) := eiΦA(x,y)
(
2 Ã(x, y)(−i∇x) − i divx Ã(x, y) + |Ã(x, y)|2

)
gz(x− y). (3.4.16)

Since Ã(x, y) is perpendicular to x− y, the first term in brackets vanishes by the radiality
of gz. The following result shows that TA is a bounded operator, whose norm is small if
A is replaced by Ah.

Lemma 3.4.4. Let B ∈ R3, A ∈ W 3,∞
per (Q1;R3), and let A := AB + A. Introduce the

constant

MA := max
{

∥ curl(curl A)∥L∞(R3) , ∥ curl A∥3/2
L∞(R3)

}
. (3.4.17)

Then, we have

|T zA(x, y)| ⩽MA ρzA(x− y), (3.4.18)

where

ρzA(x) :=
(
|x| + ∥ curl A∥1/2

∞ |x|2
)

|gz(x)|. (3.4.19)

In particular, the operator T zA corresponding to the kernel T zA(x, y) in (3.4.16) is bounded
and

∥T zA∥∞ ⩽MA ∥ρzA∥L1(R3). (3.4.20)

Proof. To see that (3.4.18) is true, we need to compute the terms divx Ã(x, y) and |Ã(x, y)|
and show that they satisfy appropriate bounds. For general vector fields v and w, we make
use of the formula

div(v ∧ w) = curl(v) · w − curl(w) · v

and apply it to v(x) := curl A(y+ t(x−y)) and w(x) = x−y. Since curlw = 0, this shows

divx
(
curl A(y + t(x− y)) ∧ (x− y)

)
= t curl(curl A)(y + t(x− y)) · (x− y).

Therefore, since curl(curl A) is a Lipschitz continuous function, we conclude

| divx Ã(x, y)| ⩽
� 1

0
dt t2 | curl(curl A)(y + t(x− y)) · (x− y)|

⩽ ∥ curl(curl A)∥∞ |x− y|. (3.4.21)
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Furthermore, we have

|Ã(x, y)|2 =
� 1

0
dt
� 1

0
ds ts

(
curl A(y + t(x− y)) ∧ (x− y)

)
·
(
curl A(y + s(x− y)) ∧ (x− y)

)
⩽ ∥ curl A∥2

∞ |x− y|2. (3.4.22)

This proves (3.4.18). The estimate (3.4.20) follows from (3.4.18) and Young’s inequality.

In the next step, we investigate the relation between the full magnetic resolvent kernel
GzA in (3.4.1) and the gauge-invariant version of the free resolvent kernel G̃zA in (3.4.2).
We do this by analyzing the tilted resolvent kernels

Gz
B,A(x, y) := e−iΦAB (x,y)GzA(x, y) (3.4.23)

and

G̃z
B,A(x, y) := e−iΦAB (x,y) G̃zA(x, y). (3.4.24)

As long as A = AB +A, we have

G̃z
B,A(x, y) = eiΦA(x,y) gz(x− y). (3.4.25)

The reason that we analyze the kernels Gz
B,A and G̃z

B,A — and not GzA directly — lies in
the fact that our phase approximation needs to cover derivatives, which spoil the gauge
invariance if we do not correct by the leading phase of the (unbounded) constant magnetic
field potential AB. A simpler version without the constant magnetic field present has been
carried out in [G18, Chapter 6]. The following result is the analogue of [DHM21, Lemma
4.5].

Lemma 3.4.5. There is δ > 0 such that for any a ⩾ 0, any t, ω ∈ R, and for all vector
potentials A = AB +A with B ∈ R3 and A ∈ W 3,∞

per (Q1;R3), which satisfy

f(t, ω)
3
2 MA + f(t, ω) ∥ curl A∥∞ + f(t, w) ∥A∥2

∞ ⩽ δ (3.4.26)

with f(t, ω) in (3.4.4), there are even L1(R3)-functions

Giω+t
A , Giω+t

∇,A,A, Hiω+t
A , Hiω+t

∇,A,A, I iω+t
A , (3.4.27)

such that

|Giω+t
B,A (x, y)| ⩽ Giω+t

A (x− y),
|∇xGiω+t

B,A (x, y)| ⩽ Giω+t
∇,A,A(x− y),

|∇yGiω+t
B,A (x, y)| ⩽ G−iω+t

∇,A,A(x− y), (3.4.28)

as well as

|Giω+t
B,A (x, y) − G̃iω+t

B,A (x, y)| ⩽ Hiω+t
A (x− y),

|∇xGiω+t
B,A (x, y) − ∇xG̃iω+t

B,A (x, y)| ⩽ Hiω+t
∇,A,A(x− y),

|∇yGiω+t
B,A (x, y) − ∇yG̃iω+t

B,A (x, y)| ⩽ H−iω+t
∇,A,A(x− y), (3.4.29)
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and

|∇xG̃iω+t
A (x, y)| ⩽ I iω+t

A (x− y),
|∇yG̃iω+t

A (x, y)| ⩽ I−iω+t
A (x− y). (3.4.30)

Furthermore, we have the estimates

∥ | · |aGiω+t
A ∥1 ⩽ Ca f(t, ω)1+ a

2 ,

∥ | · |aGiω+t
∇,A,A∥1 ⩽ Ca f(t, ω)

1
2 + a

2

[
1 + |ω| + |t− µ|

|ω| + (t− µ)−

]
, (3.4.31)

as well as

∥ | · |aHiω+t
A ∥1 ⩽ CaMA f(t, ω)

5
2 + a

2 ,

∥ | · |aHiω+t
∇,A,A∥1 ⩽ CaMA f(t, ω)2+ a

2

[
1 + |ω| + |t− µ|

|ω| + (t− µ)−

]
, (3.4.32)

and

∥ | · |aI iω+t
A ∥1 ⩽ Ca f(t, ω)

1
2 + a

2

[
1 + |ω| + |t− µ|

|ω| + (t− µ)−

]
. (3.4.33)

Remark 3.4.6. In comparison to [DHM21, Lemma 4.5], we lose a power of h in the
estimate since the constant MAh

in (3.4.17) is of the order h3, while the estimate [DHM21,
Eq. (4.32)] is of the order h4. This is due to the second term in the bracket of (3.4.16)
and in accordance with the works [FHSS12] and [FHSS16].

Proof of Lemma 3.4.5. We use the abbreviation z = iω+ t throughout the proof. First of
all, for the function ρzA in (3.4.19), by Lemma 3.4.2 and the assumption (3.4.26), we have

∥ | · |aρzA∥1 ⩽ Ca f(t, ω)
3
2 + a

2
[
1 + ∥ curl A∥1/2

∞ f(t, ω)1/2
]
⩽ Ca f(t, ω)

3
2 + a

2 ,

which by (3.4.26) yields

MA ∥ρzA∥1 ⩽ CMA f(t, ω)
3
2 ⩽

1
2 (3.4.34)

for all t, ω and A in the lemma provided δ is chosen suitably small. Let (ρzA)∗j denote the
j-fold convolution of ρzA with itself. Then, the symmetric function

H̃z
A :=

∞∑
j=1

M j
A (ρzA)∗j , (3.4.35)

satisfies

| · |aHz
A ⩽

∞∑
j=1

M j
A

j∑
m=1

j(a−1)+ ρzA ∗ · · · ∗
(
| · |aρzA

)
∗ · · · ∗ ρzA.

Here, | · |aρzA appears in the mth slot and ja+ is the constant in the estimate

|x1 + · · · + xj |a ⩽ j(a−1)+
(
|x1|a + · · · + |xj |a

)
. (3.4.36)
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Therefore, by (3.4.34) and Young’s inequality, we have

∥ | · |aH̃z
A∥1 ⩽MA ∥ | · |aρzA∥1

∞∑
j=1

j1+(a−1)+

2j−1 ⩽ Ca MA f(t, ω)
3
2 + a

2 . (3.4.37)

Furthermore, by (3.4.15), (3.4.34) and Lemma 3.4.4, the Neumann-series

1
z − (−i∇ + A)2 + µ

= G̃zA

∞∑
j=0

(
T zA

)j
(3.4.38)

converges in terms of the operators defined by the kernels G̃zA in (3.4.13) and T zA in (3.4.16).
When we denote the kernel of ∑∞

j=1(T zA)j by SzA, this implies |SzA(x, y)| ⩽ H̃z
A(x− y) and

GzA(x, y) − G̃zA(x, y) =
�
R3

du eiΦA(x,u)gz(x− u) SzA(u, y). (3.4.39)

Therefore, the functions Hz
A := |gz| ∗ H̃z

A and GzA := Hz
A + |gz| obey the first estimates

in (3.4.28) and (3.4.29) and, by Lemma 3.4.2 and (3.4.37), we obtain the first L1-norm
estimates claimed in (3.4.31) and (3.4.32), respectively.

To proceed with the derivatives, the function

IzA := C
(
∥A∥∞ |gz| + ∥ curlA∥∞ | · | |gz| + |∇gz|

)
satisfies (3.4.33) by the assumption (3.4.26) and, by Lemma 3.4.3, we have

|∇xG̃z
B,A(x, y)| = |∇xeiΦA(x,y)gz(x− y)| ⩽ IzA(x− y),

which proves the first estimate of (3.4.30). Furthermore, (3.4.39) implies

Gz
B,A(x, y) − G̃z

B,A(x, y) =
�
R3

du G̃z
B,A(x, u) eiΦAB (x,u−y)SzA(u, y), (3.4.40)

which yields∣∣∣∇xGz
B,A(x, y) − ∇xG̃z

B,A(x, y)
∣∣∣ ⩽ IA ∗ H̃z

A(x− y) + |B| |gz| ∗
(
| · | H̃z

A

)
(x− y).

Hence, the function

Hz
∇,A,A := IA ∗ H̃z

A + ∥ curl A∥∞ |gz| ∗
(
| · | H̃z

A

)
satisfies the second estimate of (3.4.29) and obeys the second estimate of (3.4.32). If we
define Gz∇,A,A := Hz

∇,A,A + IzA, then the second estimate of (3.4.28) holds and the second
estimate of (3.4.31) follows in a straightforward manner.

Finally, since A(x, y) = A∗(y, x), we have GzA(x, y) = GzA(y, x) whence (3.4.40) is
equivalent to

Gz
B,A(x, y) − G̃z

B,A(x, y) =
�
R3

du G̃z
B,A(y, u) eiΦAB (y,u−x)SzA(u, x).

Differentiating this with respect to y proves the last estimates of (3.4.28)-(3.4.30).
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3.4.2.2 Decomposition of LT,A,W — separation of W

We use the resolvent equation

(z − T )−1 = (z − S)−1 + (z − T )−1 (S − T ) (z − S)−1 (3.4.41)

to decompose the operator LT,A,W in (3.3.11) as

LT,A,W = LT,A + LWT,A + R(2)
T,A,W (3.4.42)

with

LT,A := LT,A,0 (3.4.43)

as well as

LWT,A∆ := − 2
β

∑
n∈Z

[ 1
iωn − hA

Wh
1

iωn − hA
∆ 1

iωn + hA

− 1
iωn − hA

∆ 1
iωn + hA

Wh
1

iωn + hA

]
(3.4.44)

and

R(2)
T,A,W∆ := − 2

β

∑
n∈Z

[ 1
iωn − hA

Wh
1

iωn − hA
Wh

1
iωn − hA,W

∆ 1
iωn + hA

+ 1
iωn − hA

∆ 1
iωn + hA

Wh
1

iωn + hA,W
Wh

1
iωn + hA

− 1
iωn − hA

Wh
1

iωn − hA,W
∆ 1

iωn + hA,W
Wh

1
iωn + hA

. (3.4.45)

Lemma 3.4.7. For any A ∈ L∞
per(Q1;R3) and W ∈ L∞

per(Q1) there is h0 > 0 such that for
any T > 0, any 0 < h ⩽ h0, and whenever V α∗ ∈ L2(R3), Ψ ∈ H1

mag(Qh), and ∆ ≡ ∆Ψ
as in (3.3.1), we have

∥LWT,A∆∥2
H1(Qh×R3

s ) ⩽ C (β4 + β3)h6 ∥Ψ∥2
H1

mag(Qh)

and

∥R(2)
T,A,W∆∥2

H1(Qh×R3
s ) ⩽ C (β6 + β5)h10 ∥Ψ∥2

H1
mag(Qh).

Proof. According to (3.2.14) we need to bound three terms and we start with the first
term. Hölder’s inequality shows that the Hilbert–Schmidt norm per unit volume of the
terms in the sum in (3.4.44) is bounded by C |ωn|−3 ∥Wh∥∞ ∥∆∥2, which by Lemma 3.4.1
is bounded by a constant times β3 h3∥Ψ∥H1

mag(Qh).
For the second and third term recall the notations π and πA from (3.1.4) and (3.1.6).

We use ∥S∥2
∞ = ∥S∗S∥∞ for a general operator S and obtain∥∥∥∥π 1
iωn − hA

∥∥∥∥
∞

⩽
∥∥∥∥ 1

iωn + hA

∥∥∥∥1/2

∞

∥∥∥∥π2
A

1
iωn − hA

∥∥∥∥1/2

∞
+
∥∥∥∥Ah 1

iωn − hA

∥∥∥∥
∞

⩽ C
(
|ωn|−1/2 + ∥Ah∥∞ |ωn|−1

)
.

A similar estimate holds for (iωn +hA)−1π. This proves the claim for LWT,A. The proof for
R(2)
T,A,W is analogous.
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3.4.2.3 A representation formula for LT,A and an outlook on the quadratic
terms

This following subsections are devoted to the computation of the terms in (3.3.18), which
are given by the linear operator LT,A defined in (3.4.43). The following representation
formula expresses the operator in terms of the center-of-mass and relative coordinate and
is our starting point for the analysis.

Lemma 3.4.8. The operator LT,A : L2(Qh × R3
s ) → L2(Qh × R3

s ) in (3.4.43) acts as

(LT,Aα)(X, r) =
�

R3×R3
dZds kT,B,A(X,Z, r, s) (eiZ·Πα)(X, s)

with

kT,B,A(X,Z, r, s) := 2
β

∑
n∈Z

knT,B,A(X,Z, r, s) ei B
4 ·(r∧s) (3.4.46)

and

knT,B,A(X,Z, r, s) := Giωn
B,Ah

(
X + r

2 , X + Z + s

2
)

G−iωn
B,Ah

(
X − r

2 , X + Z − s

2
)
, (3.4.47)

where Gz
B,A is defined in (3.4.23).

This result should be compared to [DHM21, Lemma 4.6] for the operator LT,B. The
tilted resolvent kernels Gz

B,A play the role of the translation-invariant part (called gB)
of the magnetic resolvent kernel in [DHM21]. The more complicated structure of knT,B,A,
which, in particular, becomes evident in its X-dependence, stems from the periodic mag-
netic field A. Moreover, this expression is not symmetric in Z, whence the operator
cos(Z · Π) in [DHM21] is replaced by eiZ·Π. Since Π is missing the periodic magnetic
potential, we have to recover this from a hidden term in kT,B,A at a later stage.

Proof of Lemma 3.4.8. The integral kernel of LT,A reads

LT,Aα(X, r) = 2
β

∑
n∈Z

�
R3×R3

dudv Giωn
Ah

(ζrX , u)G−iωn
Ah

(ζ−r
X , v)α(u, v),

where we write ζrX := X + r
2 with X = x+y

2 and r = x− y for short. We also used the fact
that the magnetic resolvent kernel GzA in (3.4.1) satisfies

1
iωn + (−i∇ + A)2 − µ

(x, y) = −G−iωn
A (y, x), (3.4.48)

which follows from A∗(x, y) = A(y, x) and

1
z − (−i∇ + A)2 + µ

=
( 1
z − (−i∇ + A)2 + µ

)∗
.

We define the coordinates Z and s by

u = X + Z + s

2 , v = X + Z − s

2 , (3.4.49)

which implies α(u, v) = eiZ·(−i∇X)α(X, s), and we multiply and divide by the factor

eiΦAB (X+ r
2 ,X+Z+ s

2 ) eiΦAB (X− r
2 ,X+Z− s

2 ) = eiB·(X∧Z) ei B
4 ·(r∧s).

Since Z · (−i∇X) and B · (X ∧ Z) = Z · (B ∧ X) commute, this implies the claimed
formula.
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In the following, the operator LT,A in (3.4.43) is analyzed in four steps, where the
global strategy is similar to the one pursued in [DHM21]. The first three steps consist
of introducing a chain of operators of increasing simplicity in their dependence on A and
decomposing LT,A according to

LT,A = (LT,A − L̃T,B,A) + (L̃T,B,A − M̃T,A) + (M̃T,A −MT,A) +MT,A, (3.4.50)

where L̃T,B,A, M̃T,A, and MT,A are defined in (3.4.51), (3.4.81), and (3.4.109) below, re-
spectively. Due to the periodic contribution of the magnetic field, we need one additional
step in comparison to [DHM21], in which we extract the leading magnetic phase contri-
bution from the periodic magnetic field. This is an algebraic identity in [DHM21]. In this
work, it is the result of the approximation of the tilted resolvent kernels Gz

B,A in (3.4.23)
by the functions G̃z

B,A in (3.4.24), which leads to the operator L̃T,B,A. In the next step,
we separate the magnetic phase from G̃z

B,A and, by approximation, obtain the magnetic
field term that is missing in eiZ·Π. Since the resulting integral kernel is symmetric in Z,
we recover the operator cos(Z · ΠA), which leads us to the operator M̃T,A. The operator
M̃T,A is the analogue of L̃T,B in [DHM21], since it contains a similar residual magnetic
phase factor. We obtain the operator MT,A from M̃T,A by replacing this factor by 1.
The careful analysis of the operator MT,A, which takes place in Section 3.4.2.5 follows the
strategy presented in [DHM21] (see the remark below [DHM21, Lemma 4.6]) and leads
to the quadratic terms of the Ginzburg–Landau functional in (3.1.20) (except for the W -
term) as well as a term that cancels the last term on the left side of (3.3.18). We carry out
a similar analysis for the operator LWT,A in (3.4.44) in Sections 3.4.2.6-3.4.2.8 and extract
the quadratic term involving W in the Ginzburg–Landau functional. We conclude by a
summary of our results in Section 3.4.2.9.

3.4.2.4 Approximation of LT,A

The operator L̃T,B,A. We define the operator L̃T,B,A by

L̃T,B,Aα(X, r) :=
�

R3×R3
dZds k̃T,B,A(X,Z, r, s) (eiZ·Πα)(X, s) (3.4.51)

with

k̃T,B,A(X,Z, r, s) := 2
β

∑
n∈Z

knT (Z, r − s) eiΦ̃Ah
(X,Z,r,s) ei B

4 ·(r∧s), (3.4.52)

where

knT (Z, r) := giωn

(
Z − r

2
)
g−iωn

(
Z + r

2
)

(3.4.53)

and

Φ̃A(X,Z, r, s) := ΦA

(
X + r

2 , X + Z + s

2
)

+ ΦA

(
X − r

2 , X + Z − s

2
)
. (3.4.54)

Proposition 3.4.9. For any T0 > 0 and A ∈ W 3,∞
per (Q1;R3) there is h0 > 0 such that for

any 0 < h ⩽ h0, any T ⩾ T0 and whenever V α∗ ∈ L2(R3), Ψ ∈ H1
mag(Qh), and ∆ ≡ ∆Ψ

as in (3.3.1), we have

∥LT,A∆ − L̃T,B,A∆∥2
H1(Qh×R3

s ) ⩽ C h8 ∥V α∗∥2
2 ∥Ψ∥2

H1
mag(Qh).
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Remark 3.4.10. We only need to prove a bound on ⟨∆, (LT,A − L̃T,B,A)∆⟩, when we
are interested proving Theorem 3.3.5. We prove an H1(Qh × R3

s )-norm bound here in
preparation for the proof of Proposition 3.3.2 and the bound needed for Theorem 3.3.5
follows from Proposition 3.4.9, Lemma 3.4.1, and the Cauchy–Schwarz inequality.

In the proof of Proposition 3.4.9, the functions

F aT,A := 2
β

∑
n∈Z

(
| · |a Hiωn

A

)
∗ G−iωn

A + Hiωn
A ∗

(
| · |a G−iωn

A

)
+
(
| · |a |giωn |

)
∗ H−iωn

A + |giωn | ∗
(
| · |a H−iωn

A

)
, (3.4.55)

where a ⩾ 0, and

G±
T,A,A := 2

β

∑
n∈Z

H±iωn
∇,A,A ∗ G−iωn

A + Hiωn
A ∗ G∓iωn

∇,A,A + I±iωn
A ∗ H−iωn

A + |giωn | ∗ H∓iωn
∇,A,A

(3.4.56)

play a prominent role. Here, ωn are the Matsubara frequencies in (3.3.10), gz is the
resolvent kernel in (3.4.2), and we used the functions in (3.4.27). For any a ⩾ 0, we prove
momentarily that there is a constant h0 > 0 such that for 0 ⩽ h ⩽ h0 we have

∥F aT,Ah
∥1 + ∥G±

T,Ah,Ah
∥1 ⩽ CaMAh

⩽ Ca h
3, (3.4.57)

where MA is the constant in (3.4.17). To see that (3.4.57) is true we note that the function
f(t, ω) in (3.4.4) obeys the estimate

f(0, ωn) ⩽ C (T−1 + T−2) |2n+ 1|−1 (3.4.58)

and that further
|ωn| + |µ|
|ωn| + µ−

⩽ C (1 + T−1). (3.4.59)

Since T ⩾ T0 > 0, the assumption (3.4.26) in Lemma 3.4.5 is satisfied for all 0 < h ⩽ h0
provided h0 > 0 is small enough. Thus, Lemmas 3.4.2 and 3.4.5 imply (3.4.57).

Proof of Proposition 3.4.9. By definition, we have

∥LT,A∆ − L̃T,B,A∆∥2
H1(Qh×R3

s ) = ∥LT,A∆ − L̃T,B,A∆∥2
2

+ ∥Π(LT,A∆ − L̃T,B,A∆)∥2
2 + ∥π̃(LT,A∆ − L̃T,B,A∆)∥2

2 (3.4.60)

and we claim that the first term on the right side satisfies

∥LT,A∆ − L̃T,B,A∆∥2
2 ⩽ 4 ∥Ψ∥2

2 ∥F 0
T,Ah

∗ |V α∗| ∥2
2. (3.4.61)

If this holds, the desired estimate for this term follows from Young’s inequality, (3.2.5), and
(3.4.57). To prove (3.4.61), an expansion of the squared modulus in the Hilbert–Schmidt
norm yields

∥LT,A∆ − L̃T,B,A∆∥2
2 ⩽ 4

�
R3

dr
�

R3×R3
dZdZ ′

�
R3×R3

dsds′ |V α∗(s)| |V α∗(s′)|

× ess sup
X∈R3

|(kT,B,A − k̃T,B,A)(X,Z, r, s)|

× ess sup
X∈R3

|(kT,B,A − k̃T,B,A)(X,Z ′, r, s′)|

×
 
Qh

dX |eiZ·ΠΨ(X)| |eiZ′·ΠΨ(X)|. (3.4.62)
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Since the operator eiZ·Π is bounded by 1, we have 
Qh

dX |eiZ·ΠΨ(X)| |eiZ′·ΠΨ(X)| ⩽ ∥Ψ∥2
2. (3.4.63)

Consequently, (3.4.62) yields

∥LT,A∆ − L̃T,B,A∆∥2
2 ⩽ 4 ∥Ψ∥2

2

×
�
R3

dr
∣∣∣∣�

R3×R3
dZds ess sup

X∈R3
|(kT,B,A − k̃T,B,A)(X,Z, r, s)| |V α∗(s)|

∣∣∣∣2. (3.4.64)

We note that

knT (Z, r − s) eiΦ̃Ah
(X,Z,r,s) = G̃iωn

Ah

(
X + r

2 , X + Z + s

2
)
G̃−iωn
Ah

(
X − r

2 , X + Z − s

2
)

= G̃iωn
B,Ah

(
X + r

2 , X + Z + s

2
)

G̃−iωn
B,Ah

(
X − r

2 , X + Z − s

2
)

=: k̃nT,B,A(X,Z, r, s) (3.4.65)

with G̃z
B,Ah

in (3.4.24), whence

(knT,B,A − k̃nT,B,A)(X,Z, r, s)

=
(
Giωn

B,Ah
− G̃iωn

B,Ah

)(
X + r

2 , X + Z + s

2
)

G−iωn
B,Ah

(
X − r

2 , X + Z − s

2
)

+ G̃iωn
B,Ah

(
X + r

2 , X + Z + s

2
) (

G−iωn
B,Ah

− G̃−iωn
B,Ah

)(
X − r

2 , X + Z − s

2
)

(3.4.66)

so that, by Lemma 3.4.5, the integrand in (3.4.64) is bounded by∣∣∣(kT,B,A − k̃T,B,A)(X,Z, r, s)
∣∣∣ ⩽ 2

β

∑
n∈Z

[
Hiωn

Ah

(
Z − r − s

2
)

G−iωn
Ah

(
Z + r − s

2
)

+ |giωn |
(
Z − r − s

2
)

H−iωn
Ah

(
Z + r − s

2
)]
. (3.4.67)

We combine the bound

|Z|a ⩽
∣∣∣Z + r

2
∣∣∣a +

∣∣∣Z − r

2
∣∣∣a, (3.4.68)

which holds for a ⩾ 0, (3.4.67), and the fact that the functions in (3.4.67) are even (see
Lemma 3.4.5), which implies�

R3
dZ |Z|a ess sup

X∈R3
|(kT,B,A − k̃T,B,A)(X,Z, r, s)| ⩽ F aT,Ah

(r − s), (3.4.69)

where F aT,A is the function in (3.4.55). When we apply the case a = 0 to (3.4.64), we
obtain (3.4.61).

For the second term on the right side of (3.4.60), we claim that

∥Π(LT,A∆ − L̃T,B,A∆)∥2
2 ⩽ C h2 ∥Ψ∥2

H1
mag(Qh)

× ∥(F 0
T,Ah

+ F 1
T,Ah

+G+
T,Ah,Ah

+G−
T,Ah,Ah

) ∗ |V α∗| ∥2
2. (3.4.70)

If this holds, the desired estimate for this term follows from Young’s inequality and (3.4.57).
To see that (3.4.70) is true, we apply (3.4.62) with eiZ·Π replaced by Π eiZ·Π. This amounts
to replacing (3.4.63) by 

Qh

dX |Π eiZ·ΠΨ(X)| |Π eiZ′·ΠΨ(X)| ⩽ ∥Π eiZ·ΠΨ∥2 ∥Π eiZ′·ΠΨ∥2.
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From [DHM21, Lemma 5.11] or from a direct computation, we know that

Π eiZ·Π = eiZ·Π
[
Π − 2 B ∧ Z

]
. (3.4.71)

Using (3.2.5), this yields

∥Π eiZ·ΠΨ∥2 ⩽ ∥ΠΨ∥2 + |B| |Z| ∥Ψ∥2 ⩽ C h2 ∥Ψ∥H1
mag(Qh) (1 + |Z|), (3.4.72)

which subsequently proves

∥Π(LT,A∆ − L̃T,B,A∆)∥2
2 ⩽ C h2 ∥Ψ∥2

H1
mag(Qh)

×
�
R3

dr
∣∣∣∣�

R3×R3
dZds

[
h (1 + |Z|) ess sup

X∈R3
|(kT,B,A − k̃T,B,A)(X,Z, r, s)|

+ ess sup
X∈R3

|(∇XkT,B,A − ∇X k̃T,B,A)(X,Z, r, s)|
]

|V α∗(s)|
∣∣∣∣2. (3.4.73)

With the help of Lemma 3.4.5 and (3.4.66) a straightforward computation shows that�
R3

dZ ess sup
X∈R3

|(∇XkT,B,A − ∇X k̃T,B,A)(X,Z, r, s)| ⩽
(
G+
T,Ah,Ah

+G−
T,Ah,Ah

)
(r − s).

Consequently, an application of a = 0 and a = 1 in (3.4.69) to (3.4.73) shows (3.4.70).
We claim that the third term on the right side of (3.4.60) satisfies

∥π̃(LT,A∆ − L̃T,B,A∆)∥2
2 ⩽ C ∥Ψ∥2

2 ∥(F 1
T,Ah

+G+
T,Ah,Ah

) ∗ |V α∗| ∥2
2. (3.4.74)

If this holds, the desired bound for this term follows from Young’s inequality, (3.4.57), and
(3.2.5). To see that (3.4.74) is true, we estimate

∥π̃(LT,A∆ − L̃T,B,A∆)∥2
2 ⩽ 4 ∥Ψ∥2

2

×
�
R3

dr
∣∣∣∣�

R3×R3
dZds ess sup

X∈R3
|(π̃kT,B,A − π̃k̃T,B,A)(X,Z, r, s)| |V α∗(s)|

∣∣∣∣2. (3.4.75)

We use ∇rB · (r ∧ s) = −B ∧ s and

π̃ ei B
4 ·(r∧s) = ei B

4 ·(r∧s)
[
−i∇r + 1

4 B ∧ (r − s)
]
, (3.4.76)

which implies that the integrand on the right side of (3.4.75) obeys

|π̃kT,B,A − π̃k̃T,B,A| ⩽ |∇rkT,B,A − ∇rk̃T,B,A| + |B| |r − s| |kT,B,A − k̃T,B,A|. (3.4.77)

By (3.4.66) and Lemma 3.4.5, a straightforward computation shows�
R3

dZ ess sup
X∈R3

|(∇rkT,B,A − ∇rk̃T,B,A)(X,Z, r, s)| ⩽ G+
T,Ah,Ah

(r − s). (3.4.78)

Furthermore, for a ⩾ 0, we have the bound

|r − s|a =
∣∣∣r − s

2 + Z + r − s

2 − Z
∣∣∣a ⩽ 2(a−1)+

(∣∣∣Z − r − s

2
∣∣∣a +

∣∣∣Z + r − s

2
∣∣∣a), (3.4.79)

which proves that |r−s|F 0
T,A(r−s) ⩽ F 1

T,A(r−s). Therefore, (3.4.77) implies the estimate
�
R3

dZ ess sup
X∈R3

|(π̃kT,B,A − π̃k̃T,B,A)(X,Z, r, s)| ⩽
(
F 1
T,Ah

+G+
T,Ah,Ah

)
(r − s). (3.4.80)

Finally, (3.4.80) implies (3.4.74), which finishes the proof.
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The operator M̃T,A. We define M̃T,A by

M̃T,Aα(X, r) :=
�

R3×R3
dZds kT (Z, r − s) e−i r−s

4 ·DAh(X)(r+s)
(
cos(Z · ΠAh

)α
)
(X, s),

(3.4.81)

where kT (Z, r) := kT,0,0(0, Z, r, 0) with kT,0,0 in (3.4.46) and where (DA)ij := ∂jAi is the
Jacobian matrix of A. In our calculation, we may replace L̃T,B,A by M̃T,A due to the
following error bound.

Proposition 3.4.11. For any T0 > 0 and A ∈ W 2,∞
per (Q1;R3) there is h0 > 0 such that

for any 0 < h ⩽ h0, any T ⩾ T0, and whenever | · |kV α∗ ∈ L2(R3) for k ∈ {0, 1, 2},
Ψ ∈ H1

mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

∥L̃T,B,A∆ − M̃T,A∆∥2
H1(Qh×R3

s ) ⩽ C h8 max
k=0,1,2

∥ | · |kV α∗∥2
2 ∥Ψ∥2

H1
mag(Qh). (3.4.82)

For the proof, we need several preparatory lemmas. The first result extracts the
magnetic field contribution Φ2Ah

(X,X + Z), which completes the operator eiZ·ΠAh in
L̃T,B,A, see (3.4.83). In [DHM21], where only the constant magnetic field is present, many
of these approximations all hold as algebraic identities. Parts of the following result are
proven in [G18, Chapter 6].

Lemma 3.4.12. For all magnetic potentials A ∈ W 3,∞
per (Q1;R3) and all vectors Z, r, s ∈

R3, we have

ess sup
X∈R3

∣∣∣Φ̃A(X,Z, r, s) − Φ2A(X,X + Z) + 1
4(r − s) ·DA(X)(r + s)

∣∣∣
⩽ C ∥D2A∥∞

(
|Z| + |r − s|

)(
|s|2 + |r − s|2

)
, (3.4.83)

where ΦA is defined in (3.4.6) and Φ̃A is defined in (3.4.54). Furthermore, (DA)ij = ∂jAi
is the Jacobian matrix of A and (D2A)ijk = ∂k∂jAi is the Hessian of A. We also have

ess sup
X∈R3

|∇XΦ̃A(X,Z, r, s)| ⩽ C ∥DA∥∞

(∣∣∣Z + r − s

2
∣∣∣+ ∣∣∣Z − r − s

2
∣∣∣) (3.4.84)

and

ess sup
X∈R3

∣∣∣∇XΦ̃A(X,Z, r, s) − ∇XΦ2A(X,X + Z)
∣∣∣

⩽ C ∥D2A∥∞
(
|Z| + |r − s|

)(
|s| + |r − s|

)
(3.4.85)

as well as

ess sup
X∈R3

∣∣∣∇X
r − s

4 DA(X)(r + s)
∣∣∣ ⩽ C ∥D2A∥∞ |r − s|

(
|s| + |r − s|

)
(3.4.86)

and

ess sup
X∈R3

|∇rΦ̃A(X,Z, r, s)| ⩽ ∥DA∥∞
(
|Z| + |r − s|

)
+ ∥A∥∞ (3.4.87)

and

ess sup
X∈R3

∣∣∣∇rΦ̃A(X,Z, r, s) + 1
4∇r(r − s) ·DA(X)(r + s)

∣∣∣
⩽ C ∥D2A∥∞

(
|s|2 + |r − s|2 + |Z|2

)
. (3.4.88)
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Proof of Lemma 3.4.12. In this proof, we use the short-hand notation ζrX := X + r
2 . We

insert the definition, sort together the terms with Z and r−s
2 , and obtain

Φ̃A(X,Z, r, s) =
� 1

0
dt
[
A
(
ζ
s+t(r−s)
X+Z−tZ

)
+A

(
ζ

−s−t(r−s)
X+Z−tZ

)]
· Z

−
� 1

0
dt
[
A
(
ζ
s+t(r−s)
X+Z−tZ

)
−A

(
ζ

−s−t(r−s)
X+Z−tZ

)]
· r − s

2 . (3.4.89)

We consider the terms in square brackets and perform a second order Taylor expansion in
the variable ±1

2(s+ t(r − s)), that is, we have the estimate∣∣∣∣A(X + Z − tZ ± s+ t(r − s)
2

)
−A(X + Z − tZ) ∓ 1

2DA(X + Z − tZ)(s+ t(r − s))
∣∣∣∣

⩽ C ∥D2A∥∞
(
|s|2 + |r − s|2

)
. (3.4.90)

For the first term on the right side of (3.4.89), this implies∣∣∣∣� 1

0
dt
[
A
(
ζ
s+t(r−s)
X+Z−tZ

)
+A

(
ζ

−s−t(r−s)
X+Z−tZ

)]
· Z − Φ2A(X,X + Z)

∣∣∣∣
⩽ C ∥D2A∥∞ |Z|

(
|s|2 + |r − s|2

)
, (3.4.91)

while for the second term of (3.4.89), (3.4.90) implies∣∣∣∣−� 1

0
dt
[
A
(
ζ
s+t(r−s)
X+Z−tZ

)
−A

(
ζ

−s−t(r−s)
X+Z−tZ

)]
· r − s

2 + 1
4(r − s) ·DA(X)(r + s)

∣∣∣∣
⩽
∣∣∣∣−r − s

2 ·
� 1

0
dt
[
DA(X + Z − tZ) −DA(X)

]
(s+ t(r − s))

∣∣∣∣
+ C ∥D2A∥∞

(
|s|2 + |r − s|2

)
|r − s|

⩽ C ∥D2A∥∞ |r − s|
[
|s|2 + |r − s|2 +

(
|s| + |r − s|

)
|Z|
]
. (3.4.92)

Adding up (3.4.91) and (3.4.92) proves (3.4.83).
Differentiating (3.4.89) with respect to X, we infer

∇XΦ̃A(X,Z, r, s) =
� 1

0

[
DA

(
ζ
s+t(r−s)
X+Z−tZ

)t
+DA

(
ζ

−s−t(r−s)
X+Z−tZ

)t]
Z

−
� 1

0
dt
[
DA

(
ζ
s+t(r−s)
X+Z−tZ

)t
−DA

(
ζ

−s−t(r−s)
X+Z−tZ

)t]r − s

2
and deduce (3.4.84). When we approximate∣∣∣∣DA(X + Z − tZ ± s+ t(r − s)

2
)t

−DA(X + Z − tZ)t
∣∣∣∣ ⩽ ∥D2A∥∞

(
|s| + |r − s|

)
,

(3.4.93)
this further proves (3.4.85). The proof of (3.4.86) is a straightforward computation.

The estimate (3.4.87) follows from differentiating (3.4.89) with respect to r, which
reads

∇rΦ̃A(X,Z, r, s) =
� 1

0
dt t2

[
DA

(
ζ
s+t(r−s)
X+Z−tZ

)t
−DA

(
ζ

−s−t(r−s)
X+Z−tZ

)t]
Z

−
� 1

0
dt t2

[
DA

(
ζ
s+t(r−s)
X+Z−tZ

)t
+DA

(
ζ

−s−t(r−s)
X+Z−tZ

)t]r − s

2

− 1
2

� 1

0
dt
[
A
(
ζ
s+t(r−s)
X+Z−tZ

)
−A

(
ζ

−s−t(r−s)
X+Z−tZ

)]
. (3.4.94)
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It remains to prove (3.4.88). We use (3.4.93) to see that the first term of (3.4.94) is
bounded by C∥D2A∥∞(|s| + |r− s|)|Z|. For the second and third term of (3.4.94) we note

1
4∇r(r − s) ·DA(X)(r + s) = 1

4DA(X)t(r − s) + 1
4DA(X)(r + s). (3.4.95)

We use the first term of this on the second term of (3.4.94), employ (3.4.93), and obtain∣∣∣∣−� 1

0
dt t2

[
DA

(
ζ
s+t(r−s)
X+Z−tZ

)t
+DA

(
ζ

−s−t(r−s)
X+Z−tZ

)t]r − s

2 + 1
4DA(X)t(r − s)

∣∣∣
⩽
∣∣∣∣� 1

0
dt t2

[
DA(X + Z − tZ)t −DA(X)t

]
(r − s)

∣∣∣∣+ C ∥D2A∥∞
(
|s| + |r − s|

)
|r − s|

⩽ C ∥D2A∥∞
[
|r − s| |Z| +

(
|s| + |r − s|

)
|r − s|

]
. (3.4.96)

For the third term of (3.4.94), we use the second term of (3.4.95) and get∣∣∣∣−1
2

� 1

0
dt
[
A
(
ζ
s+t(r−s)
X+Z−tZ

)
−A

(
ζ

−s−t(r−s)
X+Z−tZ

)]
+ 1

4DA(X)(r + s)
∣∣∣∣ ⩽ T+ + T− + T ,

where

T± :=
∣∣∣∣−1

2

� 1

0
dt
[
A
(
ζ

±s±t(r−s)
X+Z−tZ

)
∓A(X + Z − tZ) − 1

2DA(X + Z − tZ)(s+ t(r − s))
]∣∣∣∣

and

T :=
∣∣∣∣−1

2

� 1

0
dt DA(X + Z − tZ)(s+ t(r − s)) + 1

4DA(X)(r + s)
∣∣∣∣.

By (3.4.90), we have

T± ⩽ C ∥D2A∥∞
(
|s|2 + |r − s|2

)
, T ⩽ C ∥D2A∥∞

(
|s| + |r − s|

)
|Z|.

In combination with (3.4.96), these considerations imply (3.4.88).

The next result is the substitute for the identity [DHM21, Eq. (5.39)] for the more
general magnetic field we consider here.

Lemma 3.4.13. Let Z ∈ R3, A ∈ L∞
per(Q1), and h > 0. Then, on L2

mag(Qh), we have the
operator equation

eiΦ2Ah
(X,X+Z) eiZ·Π = eiZ·ΠAh . (3.4.97)

This is a consequence of the following abstract proposition, whose proof can be found
in [HW66, p. 290] and which is included here for the sake of completeness.

Proposition 3.4.14. Let H be a Hilbert space, P : D(P ) → H self-adjoint and let Q be
bounded and self-adjoint. Assume that [eitP Q e−itP , eisP Q e−isP ] = 0 for every t, s ∈ [0, 1].
Then, we have

exp
(

i
� 1

0
dt eitP Q e−itP

)
eiP = ei(P+Q).
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Proof. For s ∈ R, set Q(s) := eisP Q e−isP and W (s) := eis(P+Q) e−isP . On D(P ), we may
differentiate W to get

−iW ′(s) = eis(P+Q)(P +Q) e−isP − eis(P+Q) P e−isP = eis(P+Q)Q e−isP = W (s)Q(s).

This equation can be extended to all of H, since both sides are continuous. Hence, W
satisfies the linear differential equation W ′(s) = iW (s)Q(s) of which the unique solution
is given by

W̃ (s) := exp
(

i
� s

0
dt Q(t)

)
.

Since [Q(t), Q(s)] = 0 by assumption, we conclude that W̃ indeed is continuously differ-
entiable and satisfies W̃ ′(s) = iW̃ (s)Q(s) for each s ∈ [0, 1]. By uniqueness, we obtain

exp
(

i
� s

0
dt Q(t)

)
= eis(P+Q)e−isP .

Setting s = 1 gives the claim.

Proof of Lemma 3.4.13. We first show that eiΦ2Ah
(X,X+Z) eiZ·(−i∇X) = eiZ·(−i∇X+2Ah). The

full statement is then clear because Z · (B ∧X) commutes with Z · (−i∇X) as well as with
Z ·Ah. We apply Proposition 3.4.14 to P = Z · (−i∇) and Q = Z · 2Ah. When we define
Q(t) := eitP Q e−itP , we have Q(t) = Z · 2Ah(X + tZ) and, in particular, [Q(s), Q(t)] = 0
for all s, t ∈ R. Furthermore, a change of variables t 7→ 1 − t shows

� 1

0
dt Q(t) = Φ2Ah

(X,X + Z).

Hence, Proposition 3.4.14 gives the claim.

We will momentarily start with the proof of Proposition 3.4.11, in which the functions

F aT := 2
β

∑
n∈Z

a∑
b=0

(
a

b

) (
| · |b |giωn |

)
∗
(
| · |a−b |g−iωn |

)
(3.4.98)

and

GaT := 2
β

∑
n∈Z

a∑
b=0

(
a

b

) (
| · |b |∇giωn |

)
∗
(
| · |a−b |g−iωn |

)
+
(
| · |b |giωn |

)
∗
(
| · |a−b |∇g−iωn |

)
(3.4.99)

play a prominent role, where a ∈ N0. An application of Lemma 3.4.2, (3.4.58), and (3.4.59)
shows that for T ⩾ T0 > 0 and a ∈ N0, we have

∥F aT ∥1 + ∥GaT ∥1 ⩽ Ca. (3.4.100)

Proof of Proposition 3.4.11. We start by claiming

∥L̃T,B,A∆ − M̃T,A∆∥2
2 ⩽ C ∥Ψ∥2

2 ∥D2Ah∥2
∞ ∥F 3

T ∗ |V α∗| + F 1
T ∗ | · |2 |V α∗| ∥2

2. (3.4.101)

If this holds, the desired bound for this term follows from (3.4.100), (3.2.5), and Young’s
inequality. To prove (3.4.101), we note that for any X, r ∈ R3 we have DAB(X) r = 1

2B∧r.
Hence, a short computation shows

−r − s

4 DAB(X) (r + s) = B
4 · (r ∧ s).
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Since the integrand of M̃T,A is symmetric in Z, by Lemma 3.4.13, we observe

M̃T,Aα(X, r) =
�

R3×R3
dZds kT (Z, r − s) eiΦ2Ah

(X,X+Z) e−i r−s
4 DAh(X)(r+s) ei B

4 ·(r∧s)

× eiZ·Πα(X, s)

so that(
L̃T,B,A∆ − M̃T,A∆

)
(X, r) = −2

�
R3×R3

dZds kT (Z, r − s)V α∗(s) ei B
4 ·(r∧s) eiZ·ΠΨ(X)

×
[
eiΦ̃Ah

(X,Z,r,s) − eiΦ2Ah
(X,X+Z)e−i r−s

4 DAh(X)(r+s)
]
. (3.4.102)

Using this as well as the techniques of the estimate on ∥eiZ·ΠΨ∥2 in (3.4.63) and of the
expansion of the squared modulus in (3.4.64), we obtain

∥L̃T,B,A∆ − M̃T,A∆∥2
2 ⩽ 4 ∥Ψ∥2

2

�
R3

dr
∣∣∣∣�

R3×R3
dZds |kT (Z, r − s)| |V α∗(s)|

× ess sup
X∈R3

∣∣∣eiΦ̃Ah
(X,Z,r,s)−iΦ2Ah

(X,X+Z)+i r−s
4 DAh(X)(r+s) − 1

∣∣∣∣∣∣∣2. (3.4.103)

Furthermore, Lemma 3.4.12, as well as the estimate (3.4.68) on |Z|a and (3.4.79) on |r−s|a
imply�

R3
dZ |Z|a |kT (Z, r − s)| ess sup

X∈R3

∣∣∣eiΦ̃A(X,Z,r,s)−iΦ2A(X,X+Z)+i r−s
4 DA(X)(r+s) − 1

∣∣∣
⩽ C ∥D2A∥∞

[
F 3+a
T (r − s) + F 1+a

T (r − s) |s|2
]

(3.4.104)

with the function F aT in (3.4.98). In combination with (3.4.103), we deduce (3.4.101).
We claim that the term involving Π is bounded by

∥Π(L̃T,B,A∆ − M̃T,A∆)∥2
2 ⩽ C h2 ∥Ψ∥2

H1
mag(Qh) ∥D2Ah∥2

∞

(
1 + ∥DAh∥2

∞

)
×
[
∥(F 2

T + F 3
T + F 4

T ) ∗ |V α∗| ∥2
2 + ∥F 1

T ∗ | · | |V α∗| ∥2
2 + ∥(F 1

T + F 2
T ) ∗ | · |2|V α∗| ∥2

2

]
.

(3.4.105)

If this holds, the desired bound for this term follows from Young’s inequality and (3.4.100).
To prove (3.4.105), we use the techniques to prove (3.4.73), combine these with (3.4.102),
and obtain

∥Π(L̃T,B,A∆ − M̃T,A∆)∥2
2 ⩽ C h2 ∥Ψ∥2

H1
mag(Qh)

�
R3

dr
∣∣∣∣�

R3×R3
dZds |V α∗(s)|

× |kT (Z, r − s)|
[
h (1 + |Z|) ess sup

X∈R3

∣∣∣eiΦ̃Ah
(X,Z,r,s)−iΦ2Ah

(X,X+Z)+i r−s
4 DAh(X)(r+s) − 1

∣∣∣
+ ess sup

X∈R3

∣∣∣∇XeiΦ̃Ah
(X,Z,r,s) − ∇XeiΦ2Ah

(X,X+Z)e−i r−s
4 DAh(X)(r+s)

∣∣∣]∣∣∣∣2.
(3.4.106)

A straightforward computation shows that∣∣∣∇XeiΦ̃A(X,Z,r,s) − ∇XeiΦ2A(X,X+Z)e−i r−s
4 DA(X)(r+s)

∣∣∣
⩽
∣∣∣eiΦ̃A(X,Z,r,s)−iΦ2A(X,X+Z)+i r−s

4 DA(X)(r+s) − 1
∣∣∣|∇XΦ̃A(X,Z, r, s)|

+
∣∣∣∇XΦ̃A(X,Z, r, s) − ∇XΦ2A(X,X + Z)

∣∣∣+ ∣∣∣∇X
r − s

4 DA(X)(r + s)
∣∣∣,
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which, by Lemma 3.4.12, is bounded by∣∣∣∇XeiΦ̃A(X,Z,r,s) − ∇XeiΦ2A(X,X+Z)e−i r−s
4 DA(X)(r+s)

∣∣∣ ⩽ C ∥D2A∥∞
(
1 + ∥DA∥∞

)
×
[(

|s|2 + |r − s|2
)(

|Z|2 + |r − s|2
)

+
(
|s| + |r − s|

)(
|Z| + |r − s|

)]
.

With the help of (3.4.104), we obtain
�
R3

dZ |kT (Z, r − s)|
[
h (1 + |Z|) ess sup

X∈R3

∣∣∣eiΦ̃A(X,Z,r,s)−iΦ2A(X,X+Z)+i r−s
4 DA(X)(r+s) − 1

∣∣∣
+ ess sup

X∈R3

∣∣∣∇XeiΦ̃A(X,Z,r,s) − ∇XeiΦ2A(X,X+Z)e−i r−s
4 DA(X)(r+s)

∣∣∣]
⩽ C ∥D2A∥∞

(
1 + ∥DA∥∞

)
×
[
(F 2

T + F 3
T + F 4

T )(r − s) + F 1
T (r − s) |s| + (F 1

T + F 2
T )(r − s) |s|2

]
,

which in combination with (3.4.106) proves (3.4.105).
We claim that the term involving π̃ is bounded by

∥π̃(L̃T,B,A∆ − M̃T,A∆)∥2
2 ⩽ C h2 ∥Ψ∥2

H1
mag(Qh) ∥D2Ah∥2

∞

(
1 + ∥Ah∥2

∞ + ∥DAh∥2
∞

)
×
∥∥∥(F 2

T + F 3
T + F 4

T +G2
T ) ∗ |V α∗| + (F 0

T + F 1
T + F 2

T +G0
T ) ∗ | · |2|V α∗|

∥∥∥2

2
. (3.4.107)

If this holds, the desired bound for this term follows from Young’s inequality and (3.4.100).
To start out, by (3.4.102), we have

∥π̃(L̃T,B,A∆ − M̃T,A∆)∥2
2 ⩽ C h2 ∥Ψ∥2

H1
mag(Qh)

�
R3

dr
∣∣∣∣�

R3×R3
dZds |V α∗(s)|

×
∣∣∣π̃kT (Z, r − s)ei B

4 ·(r∧s)
∣∣∣ ess sup
X∈R3

∣∣∣eiΦ̃Ah
(X,Z,r,s)−iΦ2Ah

(X,X+Z)+i r−s
4 DAh(X)(r+s) − 1

∣∣∣
+ |kT (Z, r − s)| ess sup

X∈R3

∣∣∣∇reiΦ̃Ah
(X,Z,r,s) − ∇reiΦ2Ah

(X,X+Z)e−i r−s
4 DAh(X)(r+s)

∣∣∣∣∣∣∣2.
By the intertwining relation (3.4.76) of π̃ with ei B

4 ·(r∧s), we have

|π̃kT (Z, r − s)ei B
4 (r∧s)| ⩽ |∇rkT (Z, r − s)| + |B| |r − s| |kT (Z, r − s)|.

Hence, a computation similar to (3.4.104) shows that
�
R3

dZ |π̃kT (Z, r − s)ei B
4 ·(r∧s)| ess sup

X∈R3

∣∣∣eiΦ̃A(X,Z,r,s)−iΦ2A(X,X+Z)+i r−s
4 DA(X)(r+s) − 1

∣∣∣
⩽ C ∥D2A∥∞

[
(F 3

T +G2
T )(r − s) + (F 1

T +G0
T )(r − s) |s|2

]
. (3.4.108)

Furthermore, we have∣∣∣∇reiΦ̃A(X,Z,r,s) − ∇reiΦ2A(X,X+Z)−i r−s
4 DA(X)(r+s)

∣∣∣
⩽
∣∣∣eiΦ̃A(X,Z,r,s)−iΦ2A(X,X+Z)+i r−s

4 DA(X)(r+s) − 1
∣∣∣|∇rΦ̃A(X,Z, r, s)|

+
∣∣∣∇rΦ̃A(X,Z, r, s) + ∇r

r − s

4 DA(X)(r + s)
∣∣∣,
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which by Lemma 3.4.12 is bounded by∣∣∣∇reiΦ̃A(X,Z,r,s) − ∇reiΦ2A(X,X+Z)e−i r−s
4 DA(X)(r+s)

∣∣∣ ⩽ C ∥D2A∥∞
(
1 + ∥A∥∞ + ∥DA∥∞

)
×
[(

|s|2 + |r − s|2
)(

|Z| + |r − s|
)(

|Z| + |r − s| + 1
)

+
(
|s|2 + |r − s|2 + |Z|2

)]
.

Therefore,
�
R3

dZ |kT (Z, r − s)| ess sup
X∈R3

∣∣∣∇reiΦ̃A(X,Z,r,s) − ∇reiΦ2A(X,X+Z)e−i r−s
4 DA(X)(r+s)

∣∣∣
⩽ C ∥D2A∥∞

(
1 + ∥A∥∞ + ∥DA∥∞

)
×
[
(F 2

T + F 3
T + F 4

T )(r − s) + (F 0
T + F 1

T + F 2
T )(r − s) |s|2

]
.

We combine this with (3.4.108) and obtain (3.4.107).

The operator MT,A. We define the operator MT,A by

MT,Aα(X, r) :=
�

R3×R3
dZds kT (Z, r − s) (cos(Z · ΠAh

)α)(X, s), (3.4.109)

where kT is defined below (3.4.81). In our calculation, we may replace M̃T,A by MT,A due
to the following error bound.

Proposition 3.4.15. For any T0 > 0 and A ∈ W 2,∞
per (Q1;R3) there is h0 > 0 such that

for any 0 < h ⩽ h0, any T ⩾ T0, and whenever | · |kV α∗ ∈ L2(R3) for k ∈ {0, 1},
Ψ ∈ H1

mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

∥M̃T,A∆ −MT,A∆∥2
H1(Qh×R3

s ) ⩽ C h6
(
∥V α∗∥2

2 + ∥ | · |V α∗∥2
2

)
∥Ψ∥2

H1
mag(Qh). (3.4.110)

If instead | · |kV α∗ ∈ L2(R3) for k ∈ {0, 2} then

|⟨∆, M̃T,A∆ −MT,A∆⟩| ⩽ C h6
(
∥V α∗∥2

2 + ∥ | · |2V α∗∥2
2

)
∥Ψ∥2

H1
mag(Qh). (3.4.111)

Remark 3.4.16. We highlight that we need the two bounds (3.4.110) and (3.4.111). The
bound (3.4.110) is insufficient for the proof of Theorem 3.3.5 but is needed for the proof
of Proposition 3.3.2. The bound (3.4.111) exploits the fact that V α∗ is real-valued, which
allows for the replacement of exp(−i r−s4 DAh(X)(r + s)) by cos( r−s4 DAh(X)(r + s)) in
M̃T,A. For a detailed explanation, we refer to [DHM21, Remark 4.10].

Proof of Proposition 3.4.15. The proof is similar to that of Proposition 3.4.9 and we begin
by proving (3.4.110). We claim that

∥M̃T,A∆ −MT,A∆∥2
2 ⩽ 4 ∥Ψ∥2

2 ∥DAh∥2
∞ ∥F 2

T ∗ |V α∗| + F 1
T ∗ | · | |V α∗| ∥2

2 (3.4.112)

with the function F aT in (3.4.98). If this holds, the desired bound for this term follows from
Young’s inequality, (3.2.5), and the L1-norm estimate (3.4.100) on F aT . To prove (3.4.112),
we repeat the arguments of (3.4.62)-(3.4.64) and obtain

∥M̃T,A∆ −MT,A∆∥2
2 ⩽ 4 ∥Ψ∥2

2

×
�
R3

dr
∣∣∣∣�

R3×R3
dZds |kT (Z, r − s)| ess sup

X∈R3

∣∣∣e−i r−s
4 DAh(X)(r+s) − 1

∣∣∣ |V α∗(s)|
∣∣∣∣2.

(3.4.113)
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We combine∣∣∣(r − s)DAh(X)(r + s)
∣∣∣ ⩽ ∥DAh∥∞ |r − s|

(
|s| + |r − s|

)
(3.4.114)

with the estimate for |r − s| in (3.4.79) and obtain
�
R3

dZ |kT (Z, r − s)| ess sup
X∈R3

∣∣∣e−i r−s
4 DAh(X)(r+s) − 1

∣∣∣
⩽ C ∥DAh∥∞

[
F 2
T (r − s) + F 1

T (r − s) |s|
]
. (3.4.115)

In combination with (3.4.113), we get (3.4.112).
We claim that the term involving Π is bounded by

∥Π(M̃T,A∆ −MT,A∆)∥2
2 ⩽ C h2 ∥Ψ∥2

H1
mag(Qh)

×
[
∥D2Ah∥2

∞ ∥F 2
T ∗ |V α∗| + F 1

T ∗ | · | |V α∗| ∥2
2

+ h2 ∥DAh∥2
∞ ∥(F 2

T + F 3
T ) ∗ |V α∗| + (F 1

T + F 2
T ) ∗ | · | |V α∗| ∥2

2

]
, (3.4.116)

which shows the desired bound for this term by Young’s inequality and (3.4.100). To prove
(3.4.116), we first claim that

∥Π cos(Z · ΠAh
)Ψ∥2 ⩽ C h2 (1 + |Z|) ∥Ψ∥H1

mag(Qh). (3.4.117)

If this holds, (3.4.116) follows from a computation similar to the one leading to (3.4.73),
using Lemma 3.4.12, (3.4.115), and (3.4.117). To see that (3.4.117) holds, we utilize
Lemma 3.4.13 to note that

e±iZ·ΠAh = e±iZ·Πe−iΦ2Ah
(X,X∓Z).

Therefore, by the intertwining relation (3.4.71) of Π with eiZ·Π,

[Π, e±iZ·ΠAh ] = e±iZ·ΠAh

[
∓2 B ∧ Z − ∇XΦ2Ah

(X,X ∓ Z)
]
.

By the definition (3.4.6), we have

Φ2A(X,X ± Z) = ±2
� 1

0
dt A(X ± tZ) · Z, (3.4.118)

whence the vector analysis identity (3.4.9) implies

∇XΦ2A(X,X ∓ Z) = 2A(X ∓ Z) − 2A(X) ± 2
� 1

0
dt curlA(X ∓ tZ) ∧ Z.

We conclude |∇XΦ2A(X,X ∓ Z)| ⩽ C ∥DA∥∞|Z|, which implies

∥[Π, cos(Z · ΠAh
)]Ψ∥2 ⩽ C (|B| + ∥DAh∥∞) |Z| ∥Ψ∥2 (3.4.119)

and (3.4.117).
Finally, we use the strategy that leads to (3.4.75) and obtain

∥π̃(M̃T,A∆ −MT,A∆)∥2
2 ⩽ 4 ∥Ψ∥2

2

×
�
R3

dr
∣∣∣∣�

R3×R3
dZds

∣∣∣π̃kT (Z, r − s)
[
e−i r−s

4 DAh(X)(r+s) − 1
]∣∣∣ |V α∗(s)|

∣∣∣∣2.
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By (3.4.95), we have∣∣∣∇r(r − s)DA(X)(r + s)
∣∣∣ ⩽ C ∥DA∥∞

(
|s| + |r − s|

)
.

Therefore, we use (3.4.114) and the estimate |B ∧ r| ⩽ |s| + |r − s| to see that
�
R3

dZ
∣∣∣π̃kT (Z, r − s)

[
e−i r−s

4 DA(X)(r+s) − 1
]∣∣∣

⩽ C ∥DA∥∞
(
(F 1

T +G2
T )(r − s) + (F 0

T +G1
T )(r − s) |s|

)
.

We apply Young’s inequality and (3.4.100) and obtain (3.4.110) from these considerations.
We are left with proving (3.4.111). The term that has to be bounded reads

⟨∆, M̃T,A∆ −MT,A∆⟩ = 4
�

R3×R3
drds

(
e−i r−s

4 DAh(X)(r+s) − 1
)
V α∗(r)V α∗(s)

×
�
R3

dZ kT (Z, r − s)
 
Qh

dX Ψ(X) cos(Z · ΠAh
)Ψ(X). (3.4.120)

When we exchange the coordinates r and s, the right side remains unchanged, except for
the factor e−i r−s

4 DAh(X)(r+s), which is complex conjugated when we apply this transfor-
mation. Thus, we may add up the right side of (3.4.120) with the transformed version,
and get

⟨∆, M̃T,A∆ −MT,A∆⟩ = −8
�

R3×R3
drds sin2

(1
8 (r − s)DAh(X)(r + s)

)
V α∗(r)V α∗(s)

×
�
R3

dZ kT (Z, r − s)
 
Qh

dX Ψ(X) cos(Z · ΠAh
)Ψ(X). (3.4.121)

Here, we used cos(x) − 1 = −2 sin2(x2 ). Since cos(Z · ΠAh
) is bounded by 1 in operator

norm, (3.4.114) implies

sin2
(1

8(r − s)DAh(X)(r + s)
)
⩽

1
8 ∥DAh∥2

∞ |r − s|2
(
|s|2 + |r − s|2

)
.

By, (3.4.121) we thus have

|⟨∆, M̃T,A∆ −MT,A∆⟩| ⩽ ∥DAh∥2
∞ ∥Ψ∥2

2

∥∥∥|V α∗|
(
F 4
T ∗ |V α∗| + F 2

T ∗ | · |2|V α∗|
)∥∥∥

1
.

The desired bound (3.4.111) now follows from Young’s inequality, (3.2.5), as well as the
L1-norm estimate (3.4.100) on F aT . The proof of Proposition 3.4.15 is thus completed.

3.4.2.5 Analysis of MT,A and calculation of two quadratic terms

We decompose MT,A = M
(1)
T +M

(2)
T,A +M

(3)
T,A, where

M
(1)
T α(X, r) :=

�
R3×R3

dZds kT (Z, r − s) α(X, s), (3.4.122)

M
(2)
T,Aα(X, r) :=

�
R3×R3

dZds kT (Z, r − s)
(
−1

2
)
(Z · ΠAh

)2 α(X, s), (3.4.123)

M
(3)
T,Aα(X, r) :=

�
R3×R3

dZds kT (Z, r − s) R(Z · ΠAh
) α(X, s), (3.4.124)

and R(x) = cos(x) − 1 + 1
2x

2.
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The operator M
(1)
T . From the quadratic form ⟨∆,M (1)

T ∆⟩, we extract the quadratic
term without magnetic gradient andW -field in the Ginzburg–Landau functional in (3.1.20).
We also extract a term which cancels the last term on the left side of (3.3.5). The result,
which performs the extraction, is proven in [DHM21, Proposition 4.11] and we repeat the
statement in the next proposition. We recall that ∆ ≡ ∆Ψ = −2V α∗Ψ as in (3.3.1).

Proposition 3.4.17. Assume that V α∗ ∈ L2(R3) and let Ψ ∈ L2
mag(Qh) and ∆ ≡ ∆Ψ as

in (3.3.1).

(a) We have M (1)
Tc

∆(X, r) = −2α∗(r)Ψ(X).

(b) For any T0 > 0 there is a constant c > 0 such that for T0 ⩽ T ⩽ Tc we have

⟨∆,M (1)
T ∆ −M

(1)
Tc

∆⟩ ⩾ c
Tc − T

Tc
∥Ψ∥2

2.

(c) Given D ∈ R there is h0 > 0 such that for 0 < h ⩽ h0, and T = Tc(1 −Dh2) we have

⟨∆,M (1)
T ∆ −M

(1)
Tc

∆⟩ = 4 Dh2 Λ2 ∥Ψ∥2
2 +R(∆)

with the coefficient Λ2 in (3.3.22), and

|R(∆)| ⩽ C h6 ∥V α∗∥2
2 ∥Ψ∥2

H1
mag(Qh).

(d) Assume additionally that | · |V α∗ ∈ L2(R3). Then, there is h0 > 0 such that for any
0 < h ⩽ h0, any Ψ ∈ H1

mag(Qh), and any T ⩾ T0 > 0 we have

∥M (1)
T ∆ −M

(1)
Tc

∆∥2
H1(Qh×R3

s ) ⩽ C h2 |T − Tc|2
(
∥V α∗∥2

2 + ∥ | · |V α∗∥2
2

)
∥Ψ∥2

H1
mag(Qh).

The operator M
(2)
T,A. The kinetic contribution in the Ginzburg–Landau functional in

(3.1.20) is contained in the term ⟨∆,M (2)
T,A∆⟩, where M (2)

T,A is defined in (3.4.123). In the
following proposition, we extract this term.

Proposition 3.4.18. Assume that the function V α∗ is radial and belongs to L2(R3). For
any A ∈ W 1,∞

per (Q1;R3), h > 0, Ψ ∈ H1
mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

⟨∆,M (2)
Tc,A∆⟩ = −4 Λ0 ∥ΠAh

Ψ∥2
2 (3.4.125)

with Λ0 in (3.3.20). Moreover, for any T ⩾ T0 > 0 we have

|⟨∆,M (2)
T,A∆ −M

(2)
Tc,A∆⟩| ⩽ C h4 |T − Tc| ∥V α∗∥2

2 ∥Ψ∥2
H1

mag(Qh). (3.4.126)

Proof. The proof is analogous to the proof of [DHM21, Proposition 4.13] with the obvious
replacements.

The operator M
(3)
T,A. The remainder of the expansion of ⟨∆,MT,A∆⟩ is given by the

term ⟨∆,M (3)
T,A∆⟩, where M

(3)
T,A is defined in (3.4.124). As in the work [DHM21], the

H2
mag(Qh)-norm of Ψ is required to bound its size.
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Proposition 3.4.19. For any T0 > 0 and A ∈ W 2,∞
per (Q1;R3) there is h0 > 0 such that for

any 0 < h ⩽ h0, any T ⩾ T0, and whenever V α∗ ∈ L2(R3), Ψ ∈ H2
mag(Qh), and ∆ ≡ ∆Ψ

as in (3.3.1), we have

|⟨∆,M (3)
T,A∆⟩| ⩽ C h6 ∥V α∗∥2

2 ∥Ψ∥2
H2

mag(Qh).

We need the following auxiliary result on the operator |Z · ΠA|4.

Lemma 3.4.20. (a) Let A ∈ W 2,∞
per (Q1;R3). For any Z ∈ R3 and any ε > 0, we have

|Z · ΠA|4 ⩽ 9 |Z|4
(
Π4

A + εΠ2
A + 2 | curl A|2 + ε−1 | curl(curl A)|2

)
. (3.4.127)

(b) There is a constant h0 > 0 such that for any 0 < h ⩽ h0, any Ψ ∈ H2
mag(Qh), and

any Z ∈ R3, we have

⟨Ψ, |Z · ΠAh
|4 Ψ⟩ ⩽ C h6 |Z|4 ∥Ψ∥2

H2
mag(Qh).

Proof. We note that

[
Π(i)

A ,Π(j)
A

]
= −i

3∑
k=1

εijk (curl A)k (3.4.128)

with the Levi–Civita symbol εijk, which is defined as 1 if (i, j, k) is a cyclic permutation of
{1, 2, 3}, as −1 if it is an anticyclic permutation, and zero if at least two indices coincide.
We claim that

ΠA Π2
A ΠA = Π4

A + 2 | curl A|2 − curl(curl A) · ΠA. (3.4.129)

In particular, since all terms except the last are self-adjoint, this implies[
curl(curl A),ΠA

]
= 0. (3.4.130)

To prove (3.4.129), we note that

ΠA Π2
A = Π2

A ΠA + 2 [ΠA,Π(1)
A ] Π(1)

A + 2 [ΠA,Π(2)
A ] Π(2)

A + 2 [ΠA,Π(3)
A ] Π(3)

A

+
[
Π(1)

A , [ΠA,Π(1)
A ]
]

+
[
Π(2)

A , [ΠA,Π(2)
A ]
]

+
[
Π(3)

A , [ΠA,Π(3)
A ]
]
. (3.4.131)

Furthermore, with the help of (3.4.128), a straightforward computation shows that

[ΠA,Π(1)
A ] Π(1)

A + [ΠA,Π(2)
A ] Π(2)

A + [ΠA,Π(3)
A ] Π(3)

A = i (curl A) ∧ ΠA (3.4.132)

and[
Π(1)

A , [ΠA,Π(1)
A ]
]

+
[
Π(2)

A , [ΠA,Π(2)
A ]
]

+
[
Π(3)

A , [ΠA,Π(3)
A ]
]

= − curl(curl A). (3.4.133)

Therefore, the combination of (3.4.131)-(3.4.133) yields

ΠA Π2
A ΠA = Π4

A + 2i
(
(curl A) ∧ ΠA

)
· ΠA − curl(curl A) · ΠA

Since i ((curl A) ∧ ΠA) · ΠA = | curl A|2, we conclude (3.4.129).
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We further claim that

(Z · ΠA) Π2
A (Z · ΠA) = ΠA (Z · ΠA)2 ΠA + (Z · curl(curl A)) (Z · ΠA), (3.4.134)

which likewise implies [
Z · curl(curl A), Z · ΠA

]
= 0. (3.4.135)

To see that (3.4.134) holds, we note that

(Z · ΠA) Π2
A (Z · ΠA) =

3∑
i,j=1

ZiZj Π(i)
A Π2

A Π(j)
A (3.4.136)

as well as

Π(i)
A Π2

A Π(j)
A = ΠA Π(i)

A Π(j)
A ΠA + ΠA Π(i)

A [ΠA,Π(j)
A ] + [Π(i)

A ,ΠA] ΠA Π(j)
A .

Since the sum in (3.4.136) is manifest symmetric with respect to the exchange of i and j,
we combine the terms as 1

2 times

Π(i)
A Π2

A Π(j)
A + Π(j)

A Π2
A Π(i)

A = ΠA Π(i)
A Π(j)

A ΠA + ΠA Π(j)
A Π(i)

A ΠA

+
[
[Π(i)

A ,ΠA],ΠA Π(j)
A

]
+
[
[Π(j)

A ,ΠA],ΠA Π(i)
A

]
.

We further use [A,BC] = [A,B]C + B [A,C] on the last two terms. For the third term,
this implies[

[Π(i)
A ,ΠA],ΠA Π(j)

A

]
=
[
[Π(i)

A ,ΠA],ΠA
]

Π(j)
A + ΠA

[
[Π(i)

A ,ΠA],Π(j)
A

]
and likewise for i and j interchanged. The last term drops out because of symmetry. It
remains to analyze the first term. A straightforward computation using (3.4.128) shows[

[Π(i)
A ,ΠA],ΠA

]
= (curl(curl A))i.

Hence,

1
2

3∑
i,j=1

ZiZj

([
[Π(i)

A ,ΠA],ΠA
]
Π(j)

A +
[
[Π(j)

A ,ΠA],ΠA
]
Π(i)

A

)
= (Z · curl(curl A)) (Z · ΠA),

which proves (3.4.134).
We turn to the proof of (3.4.127) and start by noting that for general operators A,B,C,

we have |A+B + C|2 ⩽ 3(|A|2 + |B|2 + |C|2), which implies

(Z · ΠA)2 ⩽ 3
(
Z2

1 (Π(1)
A )2 + Z2

2 (Π(2)
A )2 + Z2

3 (Π(3)
A )2

)
⩽ 3 |Z|2 Π2

A. (3.4.137)

We use (3.4.134), apply (3.4.137) to (Z · ΠA)2, and use (3.4.129) to obtain

(Z · ΠA) Π2
A (Z · ΠA) ⩽ 3 |Z|2

(
Π4

A + 2 | curl A|2 − curl(curl A) · ΠA
)

+ (Z · curl(curl A)) (Z · ΠA).

Then, we write |Z · ΠA|4 = (Z · ΠA)(Z · ΠA)2(Z · ΠA), apply (3.4.137) again, and obtain

|Z · ΠA|4 ⩽ 9 |Z|4
(
Π4

A + 2 | curl A|2 − curl(curl A) · ΠA
)

+ 3 |Z|2 (Z · curl(curl A)) (Z · ΠA).
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Finally, we use AB ⩽ ε
2 A

2 + 1
2ε B

2 for ε > 0 and commuting self-adjoint operators A
and B. By (3.4.130) and (3.4.135) as well as (3.4.137) and the regular Cauchy-Schwarz
inequality, this implies

−9 |Z|4 curl(curl A) · ΠA + 3 |Z|2 (Z · curl(curl A)) (Z · ΠA)

⩽ 9 |Z|4
(
εΠ2

A + ε−1 | curl(curl A)|2
)
,

which proves (3.4.127) and part (a). Part (b) follows from the expansion

Π4
A = Π4 + (Π2 + |A|2) (Π ·A+A · Π) + (Π ·A+A · Π) (Π2 + |A|2)

+ Π2 |A|2 + |A|2 Π2 + |A|4,

a similar expansion for Π2
A, the Cauchy-Schwarz inequality, the fact that the estimate

∥DkAh∥∞ ⩽ Chk+1 holds for k ∈ {0, 1, 2}, the choice ε = h2, and part (a). This completes
the proof.

Proof of Proposition 3.4.19. We start with the identity

⟨∆,M (3)
T,A∆⟩ = 4

�
R3×R3×R3

drdsdZ V α∗(r)V α∗(s) kT (Z, r − s) ⟨Ψ,R(Z · ΠAh
)Ψ⟩,

(3.4.138)

where the function R(x) = cos(x) − 1 + x2

2 satisfies 0 ⩽ R(x) ⩽ 1
24x

4. By Lemma 3.4.20
we infer

⟨Ψ,R(Z · ΠAh
)Ψ⟩ ⩽ C h6 |Z|4 ∥Ψ∥2

H2
mag(Qh). (3.4.139)

We use the estimate (3.4.68) on |Z|4, repeat the arguments that lead to (3.4.104), and
obtain

�
R3

dZ |Z|4 |kT (Z, r)| ⩽ F 4
T (r), (3.4.140)

where F 4
T is the function defined in (3.4.98), whose L1(R3)-norm has been bounded in

(3.4.100). The proof is finished by an application of (3.4.138), (3.4.139), and (3.4.140).

3.4.2.6 A representation formula for the operator LWT,A
As in the case of LT,A we start our analysis with a representation formula for the operator
LWT,A.

Lemma 3.4.21. The operator LWT,A : L2(Qh × R3
s ) → L2(Qh × R3

s ) in (3.4.44) acts as

LWT,Aα(X, r) =
�

R3×R3
dZds kWT,B,A(X,Z, r, s) (eiZ·Πα)(X, s), (3.4.141)

where

kWT,B,A(X,Z, r, s) := 2
β

∑
n∈Z

�
R3

dY Wh(X + Y )
[
kW,nT,B,A,+(X,Y, Z, r, s) ei B

2 ·ΦW
+ (Y,Z,r,s)

+ kW,nT,B,A,−(X,Y, Z, r, s) ei B
2 ·ΦW

− (Y,Z,r,s)
]

(3.4.142)
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as well as

kW,nT,B,A,±(X,Y, Z, r, s) := G±iωn
B,Ah

(
X ± r

2 , X + Y
)

G±iωn
B,Ah

(
X + Y,X + Z ± s

2
)

× G∓iωn
B,Ah

(
X ∓ r

2 , X + Z ∓ s

2
)
, (3.4.143)

where Gz
B,A is defined in (3.4.23), and

ΦW
± (Y, Z, r, s) := ±r

2 ∧
(
Y ∓ r

2
)

+
(
Y ∓ r

2
)

∧
(
Z − Y ± s

2
)

± r

2 ∧
(
Z − Y ± s

2
)

∓ r

2 ∧
(
Z ± r − s

2
)
. (3.4.144)

Proof. The proof is analogous to the proof of Lemma 3.4.8. We employ (3.4.48) to get

LWT,Aα(x, y) = 2
β

∑
n∈Z

�
R9

dudvdw
[
Giωn

Ah
(x, u)Wh(u)Giωn

Ah
(u, v)α(v, w)G−iωn

Ah
(y, w)

+Giωn
Ah

(x, v)α(v, w)G−iωn
Ah

(u,w)Wh(u)G−iωn
Ah

(y, u)
]
.

In terms of the coordinates X = x+y
2 and r = x− y, the change of variables

u = X + Y, v = X + Z + s

2 , w = X + Z − s

2 ,

and the multiplication and division by the factor

eiΦAB (X± r
2 ,X+Y ) eiΦAB (X+Y,X+Z± s

2 ) eiΦAB (X∓ r
2 ,X+Z∓ s

2 ) = eiB·(X∧Z) ei B
2 ·ΦW

± (Y,Z,r,s)

lead to the claimed formula.

3.4.2.7 Approximation of the operator LWT,A

We apply a similar four step analysis to the operator LWT,A and ecompose

LWT,A =
(
LWT,A − L̃WT,B,A

)
+
(
L̃WT,B,A − M̃W

T,B

)
+
(
M̃W
T,B −MW

T

)
+MW

T , (3.4.145)

where L̃WT,B,A, M̃W
T,B, and MW

T are operators of increasing simplicity in their dependence
on A. These operators are defined below in (3.4.146), (3.4.152), and (3.4.157). As in the
case of LT,A, we show that the terms in brackets are small in a suitable sense and we
extract the W -field term in the Ginzburg–Landau functional in (3.1.20) from MW

T .

The operator L̃WT,B,A. We define the operator L̃WT,B,A by

L̃WT,B,Aα(X, r) :=
�

R3×R3
dZds k̃WT,B,A(X,Z, r, s) (eiZ·Πα)(X, s), (3.4.146)

where

k̃WT,B,A(X,Z, r, s) := Wh(X) 2
β

∑
n∈Z

�
R3

dY
[
k̃W,nT,+ (Y, Z, r, s) eiΦ̃W

Ah,+(X,Y,Z,r,s) ei B
2 ·ΦW

+ (Y,Z,r,s)

+ k̃W,nT,− (Y,Z, r, s) eiΦ̃W
Ah,−(X,Y,Z,r,s) ei B

2 ·ΦW
− (Y,Z,r,s)

]
(3.4.147)
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with ΦW
± in (3.4.144),

k̃W,nT,± (Y,Z, r, s) := g±iωn

(
Y ∓ r

2
)
g±iωn

(
Z − Y ± s

2
)
g∓iωn

(
Z ± r − s

2
)
, (3.4.148)

and

Φ̃W
A,±(X,Y, Z, r, s) := ΦA

(
X ± r

2 , X + Y
)

+ ΦA

(
X + Y,X + Z ± s

2
)

+ ΦA

(
X ∓ r

2 , X + Z ∓ s

2
)
. (3.4.149)

Proposition 3.4.22. Given T0 > 0, A ∈ W 3,∞
per (Q1;R3), and W ∈ W 1,∞

per (Q1) there is
h0 > 0 such that for any 0 < h ⩽ h0, any T ⩾ T0, and whenever | · |kV α∗ ∈ L2(R3) for
k ∈ {0, 1}, Ψ ∈ H1

mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

|⟨∆, LWT,A∆ − L̃WT,B,A∆⟩| ⩽ C h5
(
∥V α∗∥2

2 + ∥ | · |V α∗∥2
2

)
∥Ψ∥2

H1
mag(Qh).

Proof. The proof is analogous to the proof of Proposition 3.4.9. Therefore, we are less
detailed in our description. We have

|⟨∆, LWT,A∆ − L̃WT,B,A∆⟩|

⩽ 4 ∥Ψ∥2
2

�
R9

dZdrds ess sup
X∈R3

|(kWT,B,A − k̃WT,B,A)(X,Z, r, s)| |V α∗(r)| |V α∗(s)|,

(3.4.150)

and since

kW,nT,± (Y,Z, r, s) eiΦ̃W
Ah,±(X,Y,Z,r,s)

= G̃±iωn
B,Ah

(
X ± r

2 , X + Y
)

G̃±iωn
B,Ah

(
X + Y,X + Z ± s

2
)

G̃∓iωn
B,Ah

(
X ∓ r

2 , X + Z ∓ s

2
)

=: k̃W,nT,B,A,±(X,Y, Z, r, s),

where G̃z
B,A is defined in (3.4.24), the integrand in (3.4.150) is bounded by

|(kWT,B,A − k̃WT,B,A)(X,Z, r, s)|

⩽
2
β

∑
n∈Z

�
R3

dY |Wh(X + Y ) −Wh(X)|
∣∣∣(kW,nT,B,A,+ + kW,nT,B,A,−

)
(X,Y, Z, r, s)

∣∣∣
+ |Wh(X)|

∣∣∣(kW,nT,B,A,+ − k̃W,nT,B,A,+

)
(X,Y, Z, r, s)

∣∣∣
+ |Wh(X)|

∣∣∣(kW,nT,B,A,− − k̃W,nT,B,A,−

)
(X,Y, Z, r, s)

∣∣∣. (3.4.151)

For the first term, we note that |W (X + Y ) −W (X)| ⩽ ∥DW∥∞ |Y | and with the bound
|Y | ⩽ |Y ± r

2 | + r, we obtain

2
β

∑
n∈Z

�
R3×R3

dY dZ |Y | ess sup
X∈R3

∣∣∣kW,nT,B,A,±(X,Y, Z, r, s)
∣∣∣

⩽ F
(a),0
T,Ah,±(r − s) |r| + F

(a),1
T,Ah,±(r − s),

where

F
(a),a
T,A,± := 2

β

∑
n∈Z

(
| · |a G±iωn

A

)
∗ G±iωn

A ∗ G∓iωn
A .
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Since ∥F (a),a
T,A,±∥1 ⩽ C by Lemma 3.4.5 and (3.4.58) and since ∥DWh∥∞ ⩽ Ch3, we conclude

the claimed estimate for this term.
For the second and third term in (3.4.151), we bound |Wh(X)| ⩽ ∥Wh∥∞ ⩽ Ch2 and

2
β

∑
n∈R3

�
R3×R3

dY dZ ess sup
X∈R3

∣∣∣(kW,nT,B,A,± − k̃W,nT,B,A,±

)
(X,Y, Z, r, s)

∣∣∣ ⩽ F
(b)
T,Ah,±(r − s)

with

F
(b)
T,A,± := 2

β

∑
n∈Z

H±iωn
A ∗ G±iωn

A ∗ G∓iωn
A + |g±iωn | ∗ H±iωn

A ∗ G∓iωn
A

+ |g±iωn | ∗ |g±iωn | ∗ H∓iωn
A .

Likewise, we have ∥F (b)
T,A,±∥1 ⩽ CMA by Lemmas 3.4.2, 3.4.5, and (3.4.58). Since MAh

⩽
Ch3, we conclude the claimed estimate for this term.

The operator M̃W
T,B. We define the operator M̃W

T,B by

M̃W
T,Bα(X, r) := Wh(X)

�
R3×R3

dZds kWT (Z, r − s)
(
cos(Z · Π)α

)
(X, s), (3.4.152)

where

kWT (Z, r) := 2
β

∑
n∈Z

knT,+(Z, r) + knT,−(Z, r) (3.4.153)

and

kW,nT,± (Z, r) := (g±iωn ∗ g±iωn)
(
Z ∓ r

2
)
g∓iωn

(
Z ± r

2
)
. (3.4.154)

Proposition 3.4.23. Given T0 > 0, A ∈ W 1,∞
per (Q1;R3), and W ∈ L∞

per(Q1) there is
h0 > 0 such that for any 0 < h ⩽ h0, any T ⩾ T0, and whenever | · |kV α∗ ∈ L2(R3) for
k ∈ {0, 1}, Ψ ∈ H1

mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

|⟨∆, L̃WT,B,A∆ − M̃W
T,B∆⟩| ⩽ C h5

(
∥V α∗∥2

2 + ∥ | · |V α∗∥2
2

)
∥Ψ∥2

H1
mag(Qh).

Proof. Since giωn is a symmetric function, we have

M̃W
T,Bα(X, r) = Wh(X)

�
R3×R3

dZds kWT (Z, r − s)
(
eiZ·Πα

)
(X, s).

It follows that

|⟨∆, L̃WT,B,A∆ − M̃W
T,B∆⟩| ⩽ 4 ∥Ψ∥2

2 ∥Wh∥∞
2
β

∑
n∈Z

�
R12

dY dZdrds |V α∗(r)| |V α∗(s)|

× ess sup
X∈R3

[∣∣∣k̃W,nT,+ (Y, Z, r, s)
∣∣∣ ∣∣∣eiΦ̃W

Ah,+(X,Y,Z,r,s) ei B
2 ·ΦW

+ (Y,Z,r,s) − 1
∣∣∣

+
∣∣∣k̃W,nT,− (Y,Z, r, s)

∣∣∣ ∣∣∣eiΦW
Ah,−(X,Y,Z,r,s) ei B

2 ·ΦW
− (Y,Z,r,s) − 1

∣∣∣],
where k̃W,nT,± is defined in (3.4.148). In view of the estimate∣∣∣eiΦ̃W

Ah,±(X,Y,Z,r,s) ei B
2 ·ΦW

± (Y,Z,r,s) − 1
∣∣∣ ⩽ |Φ̃W

Ah,±(X,Y, Z, r, s)| + |B · ΦW
± (Y, Z, r, s)|,

(3.4.155)
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it remains to bound the two terms on the right side separately. We start by the first term
and note that |ΦA(x, y)| ⩽ ∥A∥∞ |x− y|. Therefore,

|Φ̃A(X,Y, Z, r, s)| ⩽ ∥A∥∞

[∣∣∣Y ∓ r

2
∣∣∣+ ∣∣∣Z − Y ± s

2
∣∣∣+ ∣∣∣Z ± r − s

2
∣∣∣],

which implies that
2
β

∑
n∈Z

�
R3×R3

dY dZ
∣∣∣k̃W,nT,± (Y,Z, r, s)

∣∣∣ ess sup
X∈R3

∣∣∣Φ̃W
A,±(X,Y, Z, r, s)

∣∣∣
⩽ C ∥A∥∞ F

(a)
T,±(r − s),

where

F
(a)
T,± := 2

β

∑
n∈Z

(
| · | |g±iωn |

)
∗ |g±iωn | ∗ |g∓iωn | + |g±iωn | ∗

(
| · | |g±iωn |

)
∗ |g∓iωn |

+ |g±iωn | ∗ |g±iωn | ∗
(
| · | |g∓iωn |

)
. (3.4.156)

Since the L1-norm of this function is uniformly bounded, since ∥Wh∥∞ ⩽ Ch2, and since
∥Ah∥∞ ⩽ Ch this proves the claim for the first term on the right side of (3.4.155). We turn
to the second term. Using the definition (3.4.144) of ΦW

± , a straightforward computation
shows

2
β

∑
n∈Z

�
R3×R3

dY dZ ess sup
X∈R3

∣∣∣k̃W,nT,± (Y, Z, r, s)
∣∣∣ ∣∣∣B · ΦW

± (Y,Z, r, s)
∣∣∣

⩽ C |B|
(
F

(a)
T,±(r − s) |r| + F

(b)
T,±(r − s)

)
,

where F (a)
T,± is as in (3.4.156) and

F
(b)
T,± := 2

β

∑
n∈Z

(
| · | |g±iωn |

)
∗
(
| · | |g±iωn |

)
∗ |g∓iωn |.

Since ∥F (b)
T ∥1 ⩽ C as before, we conclude the claimed estimate for the second term on the

right side of (3.4.155), which finishes the proof.

The operator MW
T . We define the operator MW

T by

MW
T α(X, r) := Wh(X)

�
R3×R3

dZds kWT (Z, r − s) α(X, s) (3.4.157)

with kWT in (3.4.153).

Proposition 3.4.24. For any h > 0, any W ∈ L∞
per(Q1), any T ⩾ T0 > 0, and whenever

V α∗ ∈ L2(R3), Ψ ∈ H1
mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

|⟨∆, M̃W
T,B∆ −MW

T ∆⟩| ⩽ C h6 ∥V α∗∥2
2 ∥Ψ∥2

H1
mag(Qh).

Proof. We combine the estimate cos(x) − 1 = −2 sin2(x2 ) ⩽ 1
2 |x|2 with the operator in-

equality in (3.4.137) (for A = 0) and obtain

|⟨∆, M̃W
T,B∆ −MW

T ∆⟩|

⩽ 6 ∥Wh∥∞ ∥ΠΨ∥2
2

�
R9

dZdrds |Z|2 |kWT (Z, r − s)| |V α∗(r)| |V α∗(s)|.
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An application of the estimate on |Z|2 in (3.4.68) yields
�
R3

dZ |Z|2 |kWT (Z, r)| ⩽ C FT (r),

where FT := FT,+ + FT,− and

FT,± := 2
β

∑
n∈Z

(
| · |2 |g±iωn |

)
∗ |g±iωn | ∗ |g∓iωn | + |g±iωn | ∗

(
| · |2 |g±iωn |

)
∗ |g∓iωn |

+ |g±iωn | ∗ |g±iωn | ∗
(
| · |2 |g∓iωn |

)
.

Since ∥FT,±∥1 ⩽ C by Lemma 3.4.2, ∥ΠΨ∥2 ⩽ Ch2∥Ψ∥H1
mag(Qh), and ∥Wh∥∞ ⩽ Ch2, we

conclude the claimed estimate. This finishes the proof.

3.4.2.8 Analysis of MW
T and calculation of the quadratic W -term

Proposition 3.4.25. Assume that V α∗ ∈ L2(R3) and that W ∈ L∞
per(Q1). For any h > 0,

Ψ ∈ H1
mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

⟨∆,MW
Tc ∆⟩ = −4 Λ1 ⟨Ψ,WhΨ⟩ (3.4.158)

with Λ1 in (3.3.21). Moreover, for any T ⩾ T0 > 0 we have

|⟨∆,MW
T ∆ −MW

Tc ∆⟩| ⩽ C h4 |T − Tc| ∥V α∗∥2
2 ∥Ψ∥2

H1
mag(Qh). (3.4.159)

Proof. By the definition in (3.4.153), we have

kT (Z, r) = − 2
β

∑
n∈Z

�
R3

dp
(2π)3

�
R3

dq
(2π)3

[ eiZ·(p+q)ei r
2 ·(q−p)

(iωn + µ− p2)2(iωn − µ+ p2)

− eiZ·(p+q)ei r
2 ·(p−q)

(iωn − µ+ p2)2(iωn + µ− p2)

]
so that

�
R3

dZ kT (Z, r) = − 4
β

∑
n∈Z

�
R3

dp
(2π)3 eir·p p2 − µ

(iωn + µ− p2)2(iωn − µ+ p2)2 .

In view of the partial fraction expansion

1
(iωn − E)2(iωn + E)2 = 1

4E2

[ 1
(iωn − E)2 + 1

(iωn + E)2

]
− 1

4E3

[ 1
iωn − E

− 1
iωn + E

]
and the identity

β

2
1

cosh2(β2 z)
= d

dz tanh
(β

2 z
)

= − 2
β

∑
n∈Z

1
(iωn − z)2 , (3.4.160)

which follows from the Mittag-Leffler series expansion, see e.g. [DHM21, Eq. (3.12)] (its
convergence becomes manifest by combining the +n and −n terms)

tanh
(β

2 z
)

= − 2
β

∑
n∈Z

1
iωn − z

, (3.4.161)
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we have

4
β

∑
n∈Z

E

(iωn − E)2(iωn + E)2 = β2 g1(βE)

with the function g1 in (3.3.19). Therefore,

⟨∆,MW
Tc ∆⟩ = −β2

c

�
R3

dp
(2π)3 |(−2)V̂ α∗(p)|2 g1(βc(p2 − µ)) ⟨Ψ,WhΨ⟩

= −4 Λ1 ⟨Ψ,WhΨ⟩.

The estimate in (3.4.159) follows in a straightforward manner analogously to the proof of
(3.4.126), using [DHM21, Eq. (4.91)].

3.4.2.9 Summary: The quadratic terms

In this section, we give a summary of the results pertaining to the quadratic terms in
∆ ≡ ∆Ψ that are relevant for the proof of Theorem 3.3.5. We also prove a preparatory
result, which we will use in the proof of Proposition 3.3.6.

Proposition 3.4.26. Given T0 > 0, A ∈ W 3,∞
per (Q1;R3), and W ∈ W 1,∞

per (Q1) there is
a constant h0 > 0 such that for any T0 ⩽ T ⩽ Tc, any 0 < h ⩽ h0, and whenever
| · |kV α∗ ∈ L2(R3) for k ∈ {0, 1, 2}, Ψ ∈ H1

mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

−1
4⟨∆, LT,A,W∆⟩ + ∥Ψ∥2

2 ⟨α∗, V α∗⟩ ⩽ c
T − Tc
Tc

∥Ψ∥2
2 + Ch4 ∥Ψ∥2

H1
mag(Qh). (3.4.162)

Proof. By the decomposition (3.4.42) of LT,A,W , we have

−1
4⟨∆, LT,A,W∆⟩ = −1

4⟨∆, LT,A∆⟩ − 1
4⟨∆, LWT,A∆⟩ − 1

4⟨∆,R(2)
T,A,W∆⟩ (3.4.163)

with LWT,A and R
(2)
T,A,W in (3.4.44) and (3.4.45), respectively. By Lemma 3.4.7 as well as

Propositions 3.4.22, 3.4.23, 3.4.24, and 3.4.25, we have

|⟨∆, LWT,A∆⟩| + |⟨∆,R(2)
T,A,W∆⟩| ⩽ C h4 ∥Ψ∥2

H1
mag(Qh).

Furthermore, by Lemma 3.4.8, the decomposition (3.4.50) of LT,A, as well as Proposi-
tions 3.4.9, 3.4.11, and 3.4.15, we have

−1
4⟨∆, LT,A∆⟩ + ∥Ψ∥2

2 ⟨α∗, V α∗⟩

= −1
4⟨∆,M (1)

T ∆ −M
(1)
Tc

∆⟩ − 1
4⟨∆,MT,A∆ −M

(1)
T ∆⟩ +R1(∆), (3.4.164)

with a remainder R1(∆) obeying the bound

|R1(∆)| ⩽ C h5 ∥Ψ∥2
H1

mag(Qh),

and where Proposition 3.4.17 implies

−1
4⟨∆,M (1)

T ∆ −M
(1)
Tc

∆⟩ ⩽ c
T − Tc
Tc

∥Ψ∥2
2.
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The proof of the bound

|⟨∆,MT,A∆ −M
(1)
T ∆⟩| ⩽ C h4 ∥V α∗∥2

2 ∥Ψ∥2
H1

mag(Qh) (3.4.165)

follows the same strategy as that of Proposition 3.4.15 and it employs the operator in-
equality (3.4.137) on (Z · ΠA)2 to bound

|⟨Ψ, [cos(Z · ΠA) − 1]Ψ⟩| ⩽ C h4 |Z|2 ∥Ψ∥2
H1

mag(Qh). (3.4.166)

The details are left to the reader. This completes the proof of (3.4.162).

Under the assumptions of Theorem 3.3.5, we combine (3.4.163) and (3.4.164) with the
results of Propositions 3.4.17, 3.4.18, 3.4.19, 3.4.22, 3.4.23, 3.4.24, and 3.4.25, which shows
that, within the temperature regime T = Tc(1 −Dh2) with D ∈ R, the identity

−1
4⟨∆, LT,A,W∆⟩ + ∥Ψ∥2

2 ⟨α∗, V α∗⟩

= Λ0 ∥ΠAh
Ψ∥2

2 −Dh2 Λ2 ∥Ψ∥2
2 + Λ1 ⟨Ψ,WhΨ⟩ +R2(∆) (3.4.167)

holds. Here, the error term R2(∆) obeys the estimate

|R2(∆)| ⩽ C
(
h5 ∥Ψ∥2

H1
mag(Qh) + h6 ∥Ψ∥2

H2
mag(Qh)

)
.

This concludes the extraction of the quadratic terms in the Ginzburg–Landau functional
and finishes the analysis of the operator LT,A,W .

3.4.2.10 Decomposition of NT,A,W — perturbation of W

We use the resolvent equation (3.4.41) to decompose the operator NT,A,W in (3.3.12) as

NT,A,W = NT,A + R(3)
T,A,W (3.4.168)

with
NT,A := NT,A,0 (3.4.169)

as well as
R(3)
T,A,W (∆)

:= 2
β

∑
n∈Z

[ 1
iωn − hA

Wh
1

iωn − hA,W
∆ 1

iωn + hA,W
∆ 1

iωn − hA,W
∆ 1

iωn + hA,W

− 1
iωn − hA

∆ 1
iωn + hA

Wh
1

iωn + hA,W
∆ 1

iωn − hA,W
∆ 1

iωn + hA,W

+ 1
iωn − hA

∆ 1
iωn + hA

∆ 1
iωn − hA

Wh
1

iωn − hA,W
∆ 1

iωn + hA,W

− 1
iωn − hA

∆ 1
iωn + hA

∆ 1
iωn − hA

∆ 1
iωn + hA

Wh
1

iωn + hA,W
.

(3.4.170)

Lemma 3.4.27. Assume that V α∗ ∈ L4/3(R3). For any T > 0, any A ∈ W 1,∞
per (Q1;R3),

any W ∈ L∞
per(Q1), any h > 0, and whenever Ψ ∈ H1

mag(Qh) and ∆ ≡ ∆Ψ as in (3.3.1),
we have

∥R(3)
T,A,W (∆)∥2

L2(Qh×R3
s ) ⩽ C β8 h10 ∥Ψ∥6

H1
mag(Qh).

Proof. Hölder’s inequality shows that the Hilbert-Schmidt norm per unit volume of the
terms in the sum in (3.4.170) are bounded by C |ωn|−5 ∥Wh∥∞ ∥∆∥3

6, which by Lemma 3.4.1
and (3.2.8) is bounded by a constant times β5 h5∥Ψ∥3

H1
mag(Qh). This proves the claim.
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3.4.2.11 A representation formula for the operator NT,A

From now on in this Subsection 3.4.2, the notation Z is short for the vector (Z1, Z2, Z3)
with Z1, Z2, Z3 ∈ R3 and we abbreviate dZ = dZ1dZ2dZ3 to restrict the length of formulas.
The analysis we used for the case of LT,A applies to the nonlinear operator NT,A in
(3.4.169) as well and we start with a representation formula for NT,A.

Lemma 3.4.28. The operator NT,A : H1(Qh × R3
s ) → L2(Qh × R3

s ) in (3.3.12) acts as

NT,A(α)(X, r) =
�

R9
dZ

�
R9

ds ℓT,B,A(X,Z, r, s) A(X,Z, s)

with

A(X,Z, s) := eiZ1·Πα(X, s1) eiZ2·Πα(X, s2) eiZ3·Πα(X, s3) (3.4.171)

as well as

ℓT,B,A(X,Z, r, s) := 2
β

∑
n∈Z

ℓnT,B,A(X,Z, r, s) ei B
2 ·Φ(Z,r,s) (3.4.172)

and

ℓnT,B,A(X,Z, r, s) := Giωn
B,Ah

(
X + r

2 , X + Z1 + s1
2
)

G−iωn
B,Ah

(
X + Z2 − s2

2 , X + Z1 − s1
2
)

× Giωn
B,Ah

(
X + Z2 + s2

2 , X + Z3 + s3
2
)

G−iωn
B,Ah

(
X − r

2 , X + Z3 − s3
2
)
, (3.4.173)

where Gz
B,A is defined in (3.4.23), and

Φ(Z, r, s) := r

2 ∧
(
Z1 − r − s1

2
)

+ r

2 ∧
(
Z3 + r − s3

2
)

+
(
Z2 − Z3 − s2 + s3

2
)

∧
(
Z1 − Z2 − s1 + s2

2
)

+
(
Z3 + r − s3

2
)

∧
(
Z1 − Z2 − s1 + s2

2
)

+
(
s2 + s3 − r

2
)

∧
(
Z1 − Z2 − s1 + s2

2
)

+
(
Z3 + r − s3

2
)

∧
(
Z3 − Z2 + s2 + s3

2
)

+
(
s3 − r

2
)

∧
(
Z3 − Z2 + s2 + s3

2
)
. (3.4.174)

Proof. When we compute theintegral kernel of NT,A, we get

NT,A(α)(X, r) = 2
β

∑
n∈Z

�
R9

du
�

R9
dv Giωn

Ah
(ζrX , u1)α(u1, v1)G−iωn

Ah
(u2, v1)α(u2, v2)

×Giωn
Ah

(v2, u3)α(u3, v3)G−iωn
Ah

(ζ−r
X , v3).

Here, we denoted ζrX := X+ r
2 for short and used (3.4.48). We introduce the center-of-mass

coordinate Z and the relative coordinate s determined by

u = X + Z + s
2 , v = X + Z − s

2 .

Furthermore, we multiply and divide by the factor

eiΦAB (ζr
X ,ζ

s1
Z1+X) eiΦAB (ζs2

Z2+X ,ζ
−s1
Z1+X) eiΦAB (ζ−s2

Z2+X ,ζ
s3
Z3+X) eiΦAB (ζ−r

X ,ζ
−s3
Z3+X)

= eiB·(X∧Z1) e−iB·(X∧Z2) eiB·(X∧Z3) ei B
2 ·Φ(Z,r,s),

where the equality is a tedious but straightforward computation. Using the fact that
B · (X ∧ Z) = Z · (B ∧X) and that Z · (B ∧X) commutes with Z · (−i∇X), this implies
the claimed formula.
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We analyze the operator NT,A with the by now familiar four-step analysis, as in the
case of LT,A. In order to do this, we decompose NT,A according to

NT,A = (NT,A − ÑT,B,A) + (ÑT,B,A −N
(1)
T,B) + (N (1)

T,B −N
(2)
T ) +N

(2)
T . (3.4.175)

where ÑT,B,A is defined in (3.4.176), N (1)
T,B in (3.4.186), and N (2)

T in (3.4.193) below. After
we have proven that the terms in brackets are small in Section 3.4.2.12, the extraction
of the quartic term in the Ginzburg–Landau functional from the term ⟨∆, N (2)

T (∆)⟩ is
achieved by a result in Section 3.4.2.13. Section 3.4.2.14 summarizes and concludes the
analysis.

3.4.2.12 Approximation of NT,A

The operator ÑT,B,A. We define the operator ÑT,B,A by

ÑT,B,A(α)(X, r) :=
�

R9
dZ

�
R9

ds ℓ̃T,B,A(X,Z, r, s) A(X,Z, s) (3.4.176)

with

ℓ̃T,B,A(X,Z, r, s) := 2
β

∑
n∈Z

ℓnT (Z, r, s) eiΦ̃Ah
(X,Z,r,s) ei B

2 ·Φ(Z,r,s),

where

ℓnT (Z, r, s) := giωn

(
Z1 − r − s1

2
)
g−iωn

(
Z1 − Z2 − s1 + s2

2
)

× giωn

(
Z2 − Z3 − s2 + s3

2
)
g−iωn

(
Z3 + r − s3

2
)

(3.4.177)

and

Φ̃A(X,Z, r, s) := ΦA

(
X + r

2 , X + Z1 + s1
2
)

+ ΦA

(
X + Z2 − s2

2 , X + Z1 − s1
2
)

+ ΦA

(
X + Z2 + s2

2 , X + Z3 + s3
2
)

+ ΦA

(
X − r

2 , X + Z3 − s3
2
)
. (3.4.178)

In our calculation, we may replace NT,A(∆) by ÑT,B,A(∆) due to the following error
bound.

Proposition 3.4.29. Assume that V α∗ ∈ L4/3(R3) and that A ∈ W 3,∞
per (Q1;R3). For every

T0 > 0 there is h0 > 0 such that for any 0 < h ⩽ h0, any T ⩾ T0, any Ψ ∈ H1
mag(Qh),

and ∆ ≡ ∆Ψ as in (3.3.1), we have

|⟨∆, NT,A(∆) − ÑT,B,A(∆)⟩| ⩽ C h6 ∥V α∗∥4
4/3 ∥Ψ∥4

H1
mag(Qh).

The function

FT,A := 2
β

∑
n∈Z

Hiωn
A ∗ G−iωn

A ∗ Giωn
A ∗ G−iωn

A + |giωn | ∗ H−iωn
A ∗ Giωn

A ∗ G−iωn
A

+ |giωn | ∗ |g−iωn | ∗ Hiωn
A ∗ G−iωn

A + |giωn | ∗ |g−iωn | ∗ |giωn | ∗ H−iωn
A .
(3.4.179)

plays a prominent role in the proof of Proposition 3.4.29. For any T ⩾ T0 > 0, Lem-
mas 3.4.2 and 3.4.5 as well as (3.4.58) show that its L1(R3)-norm is bounded by

∥FT,Ah
∥1 ⩽ C h3. (3.4.180)
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Proof of Proposition 3.4.29. Since the function |Ψ| is periodic, (3.2.8) yields

∥eiZ·ΠΨ∥2
6 = ∥Ψ∥2

6 ⩽ C h2 ∥Ψ∥2
H1

mag(Qh), (3.4.181)

which further implies
 
Qh

dX |Ψ(X)|
3∏
i=1

|eiZi·ΠΨ(X)| ⩽ ∥Ψ∥2

3∏
i=1

∥eiZi·ΠΨ∥6 ⩽ C h4 ∥Ψ∥4
H1

mag(Qh) (3.4.182)

and

|⟨∆, NT,A(∆) − ÑT,B,A(∆)⟩|

⩽ C h4 ∥Ψ∥4
H1

mag(Qh))

�
R3

dr
�

R9
ds |V α∗(r)| |V α∗(s1)| |V α∗(s2)| |V α∗(s3)|

×
�

R9
dZ ess sup

X∈R3

∣∣∣(ℓT,B,A − ℓ̃T,B,A)(X,Z, r, s)
∣∣∣. (3.4.183)

Furthermore, we have

ℓ̃nT (Z, r, s) eiΦ̃A(X,Z,r,s)

= G̃iωn
B,A

(
X + r

2 , X + Z1 + s1
2
)

G̃−iωn
B,A

(
X + Z2 − s2

2 , X + Z1 − s1
2
)

× G̃iωn
B,A

(
X + Z2 + s2

2 , X + Z3 + s3
2
)

G̃−iωn
B,A

(
X − r

2 , X + Z3 − s3
2
)
,

where G̃z
B,A is defined in (3.4.24). Let us employ the change of variables

Z ′
1 − Z ′

2 := Z1 − Z2 − s1 + s2
2 , Z ′

2 − Z ′
3 := Z2 − Z3 − s2 + s3

2 , Z ′
3 := Z3 + r − s3

2 ,

(3.4.184)

which implies

Z1 − r − s1
2 = Z ′

1 − (r − s1 − s2 − s3). (3.4.185)

We repeat the argument that leads to (3.4.69), and deduce�
R9

dZ ess sup
X∈R3

∣∣∣(ℓT,B,A − ℓ̃T,B,A)(X,Z, r, s)
∣∣∣ ⩽ FT,Ah

(r − s1 − s2 − s3),

where FT,A is the function in (3.4.179). Plugging this into (3.4.183), applying the estimate∥∥∥V α∗
(
V α∗ ∗ V α∗ ∗ V α∗ ∗ FT,A

)∥∥∥
1
⩽ C ∥V α∗∥4

4/3 ∥FT,A∥1,

and using (3.4.180) finishes the proof.

The operator N (1)
T,B. We define the operator N (1)

T,B by

N
(1)
T,B(α)(X, r) :=

�
R9

dZ
�

R9
ds ℓT (Z, r, s) A(X,Z, s) (3.4.186)

with

ℓT (Z, r, s) := ℓT,0,0(0,Z, r, s) (3.4.187)

where A is defined in (3.4.171) and ℓT,0,0 in (3.4.172). In our calculations, we may replace
⟨∆, ÑT,B,A(∆)⟩ by ⟨∆, N (1)

T,B(∆)⟩ due to the following error bound.
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Proposition 3.4.30. Assume that |·|kV α∗ ∈ L4/3(R3) for k ∈ {0, 1} and A ∈ L∞
per(Q1;R3).

For every T ⩾ T0 > 0, every h > 0, every Ψ ∈ H1
mag(Qh) and ∆ ≡ ∆Ψ as in (3.3.1), we

have

|⟨∆, ÑT,B,A(∆) −N
(1)
T,B(∆)⟩| ⩽ C h5

(
∥V α∗∥4

4/3 + ∥ | · |V α∗∥4
4/3

)
∥Ψ∥4

H1
mag(Qh).

The functions

F
(1)
T := 2

β

∑
n∈Z

|giωn | ∗
(
| · | |g−iωn |

)
∗
(
| · | |giωn |

)
∗ |g−iωn |

+ |giωn | ∗
(
| · | |g−iωn |

)
∗ |giωn | ∗

(
| · | |g−iωn |

)
+ |giωn | ∗ |g−iωn | ∗

(
| · | |giωn |

)
∗
(
| · | |g−iωn |

)
(3.4.188)

and

F
(2)
T := 2

β

∑
n∈Z

(
| · | |giωn |

)
∗ |g−iωn | ∗ |giωn | ∗ |g−iωn | + |giωn | ∗

(
| · | |g−iωn |

)
∗ |giωn | ∗ |g−iωn |

+ |giωn | ∗ |g−iωn | ∗
(
| · | |giωn |

)
∗ |g−iωn | + |giωn | ∗ |g−iωn | ∗ |giωn | ∗

(
| · | |g−iωn |

)
.

(3.4.189)

play a prominent role in the proof of Proposition 3.4.30. For any T ⩾ T0 > 0, Lemma 3.4.2
and (3.4.58) show that their L1(R3)-norms are bounded by

∥F (1)
T ∥1 + ∥F (2)

T ∥1 ⩽ C. (3.4.190)

Proof of Proposition 3.4.30. The estimate (3.4.182) implies the bound

|⟨∆, ÑT,B,A(∆) −N
(1)
T,B(∆)⟩|

⩽ C h4 ∥Ψ∥4
H1

mag(Qh)

�
R3

dr
�

R9
ds |V α∗(r)| |V α∗(s1)| |V α∗(s2)| |V α∗(s3)|

× 2
β

∑
n∈Z

�
R9

dZ |ℓnT (Z, r, s)| ess sup
X∈R3

∣∣∣ei Φ̃Ah
(X,Z,r,s) ei B

2 ·Φ(Z,r,s) − 1
∣∣∣ (3.4.191)

with Φ̃A in (3.4.178) and Φ in (3.4.174). We rewrite the phase function Φ in terms of the
coordinates in (3.4.184) and (3.4.185), which yields

Φ(Z, r, s) = (Z ′
1 − Z ′

2) ∧ (Z ′
2 − Z ′

3) + (Z ′
1 − Z ′

2) ∧ Z ′
3 + (Z ′

3 − Z ′
2) ∧ Z ′

3

+ r

2 ∧
(
Z ′

1 − (r − s1 − s2 − s3)
)

+
(
s2 + s3 − r

2
)

∧ (Z ′
1 − Z ′

2)

+
(
s3 − r

2
)

∧ (Z ′
3 − Z ′

2) + r

2 ∧ Z ′
3. (3.4.192)

Furthermore, we bound

|Φ̃A(X,Z, r, s)| ⩽ ∥A∥∞
(
(Z ′

1 − (r − s1 − s2 − s3)) + (Z ′
1 − Z ′

2) + (Z ′
2 − Z ′

3) + Z ′
3

)
,

which follows from the definition (3.4.6) of ΦA. Then, we combine this with (3.4.191) and
(3.4.192), repeat the argument leading to (3.4.115), and obtain

2
β

∑
n∈Z

�
R9

dZ |ℓnT,0(Z, r, s)|
∣∣∣eiΦ̃Ah

(X,Z,r,s) ei B
2 ·Φ(Z,r,s) − 1

∣∣∣
⩽ Ch

[
F

(1)
T (r − s1 − s2 − s3) + F

(2)
T (r − s1 − s2 − s3)

(
1 + |r| + |s1| + |s2| + |s3|

)]
,
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where the functions F (1)
T and F (2)

T are defined in (3.4.188) and (3.4.189), respectively. We
apply Young’s inequality to this and conclude that

|⟨∆, ÑT,B,A(∆) −N
(1)
T,B(∆)⟩|

⩽ C h5 ∥Ψ∥4
H1

mag(Qh)

(
∥V α∗∥4

4/3 + ∥ | · |V α∗∥4
4/3

)(
∥F (1)

T ∥1 + ∥F (2)
T ∥1

)
.

Finally, the claim follows from (3.4.190).

The operator N (2)
T . We define the operator N (2)

T by

N
(2)
T (α)(X, r) :=

�
R9

dZ
�

R9
ds ℓT (Z, r, s) A(X, 0, s), (3.4.193)

where A is defined in (3.4.171) and ℓT in (3.4.187).
In our calculations, we may replace ⟨∆, N (1)

T,B(∆)⟩ by ⟨∆, N (2)
T (∆)⟩ due to the following

error bound. Its proof can be found in [DHM21, Proposition 4.20]. In order to estimate
the size of the error, the H2

mag(Qh)-norm of Ψ is needed once more.

Proposition 3.4.31. Assume that |·|kV α∗ ∈ L4/3(R3) for k ∈ {0, 2}. For any T ⩾ T0 > 0,
any h > 0, any Ψ ∈ H2

mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

|⟨∆, N (1)
T,B(∆) −N

(2)
T (∆)⟩| ⩽ C h6

(
∥V α∗∥4

4/3 + ∥ | · |2V α∗∥4
4/3

)
× ∥Ψ∥3

H1
mag(Qh) ∥Ψ∥H2

mag(Qh).

3.4.2.13 Calculation of the quartic term in the Ginzburg–Landau functional

The quartic term in the Ginzburg–Landau functional in (3.1.20) is contained in ⟨∆, N (2)
T (∆)⟩.

It is extracted by the following proposition whose proof can be found in [DHM21, Propo-
sition 4.21].

Proposition 3.4.32. Assume V α∗ ∈ L4/3(R3). For any h > 0, any Ψ ∈ H1
mag(Qh), and

∆ ≡ ∆Ψ as in (3.3.1), we have

⟨∆, N (2)
Tc

(∆)⟩ = 8 Λ3 ∥Ψ∥4
4

with Λ3 in (3.3.23). Moreover, for any T ⩾ T0 > 0, we have

|⟨∆, N (2)
T (∆) −N

(2)
Tc

(∆)⟩| ⩽ C h4 |T − Tc| ∥V α∗∥4
4/3 ∥Ψ∥4

H1
mag(Qh).

3.4.2.14 Summary: The quartic terms and proof of Theorem 3.3.5

We work under the assumptions of Theorem 3.3.5. In view of the decomposition (3.4.168)
of NT,A,W , the results of Lemmas 3.4.27 and 3.4.28, and those of Propositions 3.4.29,
3.4.30, 3.4.31, and 3.4.32, we have

1
8⟨∆, NT,A,W (∆)⟩ = Λ3 ∥Ψ∥4

4 +R(h) (3.4.194)

where the remainder R(h) is bounded by

|R(h)| ⩽ C ∥Ψ∥3
H1

mag(Qh)

(
h5 ∥Ψ∥H1

mag(Qh) + h6 ∥Ψ∥H2
mag(Qh)

)
.

Theorem 3.3.5 follows from this and (3.4.167). This finishes the proof.
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3.4.3 Proof of Lemma 3.3.1 and Proposition 3.3.2

We begin this section by proving Lemma 3.3.1. First of all, we recall the definition of Γ∆
in (3.3.4), which is a gauge-periodic generalized fermionic one-particle density matrix per
definition. Consequently, only the trace class condition (3.1.10) needs to be verified.

In terms of the expansion

tanh
(β

2H∆
)

= − 2
β

∑
n∈Z

1
iωn −H∆

, (3.4.195)

which follows from (3.4.161), the expression

Γ∆ = 1
2 − 1

2 tanh
(β

2H∆
)
, (3.4.196)

and the resolvent equation (3.4.41), Γ∆ can be rewritten as

Γ∆ = 1
2 − 1

2 tanh
(β

2H∆
)

= 1
2 + 1

β

∑
n∈Z

1
iωn −H∆

= Γ0 + O + QT,A,W (∆), (3.4.197)

where Γ0 is the normal state in (3.1.14) and, in terms of δ in (3.3.3),

O := 1
β

∑
n∈Z

1
iωn −H0

δ
1

iωn −H0
, QT,A,W (∆) := 1

β

∑
n∈Z

1
iωn −H0

δ
1

iωn −H0
δ

1
iωn −H∆

.

(3.4.198)

Since O is offdiagonal, the entry [O]11 vanishes, whence the operator (1 + π2)[O]11 is
locally trace class trivially. To see that (1+π2)[QT,A,W (∆)]11 is locally trace class, we use

1
iωn ±H0

δ
1

iωn ±H0
δ =

 1
iωn±hA,W

∆ 1
iωn∓hA,W

∆
1

iωn∓hA,W
∆ 1

iωn±hA,W
∆


and obtain[

QT,A,W (∆)
]

11
= 1
β

∑
n∈Z

1
iωn − hA,W

∆ 1
iωn + hA,W

∆
[ 1

iωn −H∆

]
11
.

By Hölder’s inequality in (3.2.1), the terms in the sum of (1 + π2)[QT,A,W (∆)]11 are
bounded in local trace norm by∥∥∥∥(1 + π2) 1

iωn − hA,W

∥∥∥∥
∞

1
|ωn|2

∥∆∥2
2.

To see that the first factor is bounded, we combine

π2 = (πA −A)2 = (π2
A +W ) + πA ·A+A · πA + |A|2 −W (3.4.199)

with the inequality

πA ·A+A · πA ⩽
1
2
(
(π2

A +W ) + |A|2 −W
)
, (3.4.200)

which proves that (1 + π2)(iωn − hA,W )−1 is uniformly bounded in n. We conclude that
(1 + π2)[QT,A,W (∆)]11 is locally trace class.

The following result completes the proof of Lemma 3.3.1.
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Lemma 3.4.33. (1 + π2)γ0 is locally trace class for h > 0 small enough.

Proof. By the diamagnetic inequality [LS10, Eq. (4.4.3)], the operator 1 + π2
Ah

+ Wh is
nonnegative for h small enough. We first show that the operator (1 + π2

Ah
+ Wh)γ0 is

locally trace class. Since this is a nonnegative function of π2
Ah

+Wh, we apply the bound
(1 + x)(exp(β(x− µ)) + 1)−1 ⩽ Cβe− β

2 (x−µ) for x ⩾ 0. Therefore, it suffices to show that
the local trace of e− β

2 (π2
Ah

+Wh−µ) is finite. Since π2
Ah

+Wh ⩾ π2
Ah

−C, the corresponding
inequality holds for the eigenvalues of the respective operators so that

Tr
[
e− β

2 (π2
Ah

+Wh−µ)]
⩽ Cβ Tr

[
e− β

2 (π2
Ah

−µ)]
.

Therefore, the diamagnetic inequality for the magnetic heat kernel, see e.g. [LS10, Theo-
rem 4.4], and the explicit formula for the heat kernel of the Laplacian prove that e− β

2 (π2
Ah

+Wh−µ)

is locally trace class. In particular, γ0 and, since W is a bounded operator, π2
Ah
γ0 are

locally trace class.
To prove the claim of the lemma, we employ (3.4.199). Since πA ·A = −i divA+A ·πA

and since divA, |A|2, and W are bounded operators, it remains to show that (Ah ·πAh
)γ0

is locally trace class. To see this, we write

(Ah · πAh
)γ0 = (Ah · πAh

) 1
1 + π2

Ah

(1 + π2
Ah

)γ0

and use (3.4.137) to conclude that∥∥∥∥(A · πA) 1
1 + π2

A
f

∥∥∥∥2

2
=
〈
f,

1
1 + π2

A
(A · πA)2 1

1 + π2
A
f

〉
⩽ C ∥A∥2

∞

∥∥∥∥ |πA|
1 + π2

A

∥∥∥∥2

∞
∥f∥2

2.

This finishes the proof.

We now proceed with proving Proposition 3.3.2. To his end, we combine the fact that
α∆ = [Γ∆]12, the resolvent equation (3.4.41), and (3.4.197), which yields

α∆ = [O]12 + [QT,A,W (∆)]12 = [O]12 + R(4)
T,A,W (∆).

Here, O is the operator in (3.4.198) and

R(4)
T,A,W (∆) := 1

β

∑
n∈Z

[ 1
iωn −H0

δ
1

iωn −H0
δ

1
iωn −H∆

δ
1

iωn −H0

]
12
. (3.4.201)

We note that [O]12 = −1
2LT,A,W∆ with LT,A,W in (3.3.11). In view of the decomposition

(3.4.42) of LT,A,W , we define

η0(∆) := 1
2
(
LT,A∆ −MT,A∆

)
+ 1

2L
W
T,A∆ + 1

2
(
M

(1)
T ∆ −M

(1)
Tc

∆
)

+ 1
2
(
MT,A∆ −MT,Ae3

∆
)

+ R(2)
T,A,W∆ + R(4)

T,A,W (∆),

η⊥(∆) := 1
2
(
MT,Ae3

∆ −M
(1)
T ∆

)
, (3.4.202)

with MT,A in (3.4.109), LWT,A in (3.4.44), and M
(1)
T in (3.4.122). The remainders R(2)

T,A,W

and R(4)
T,A,W are defined in (3.4.45) and (3.4.201), respectively. Proposition 3.4.17 implies

that −1
2M

(1)
Tc

∆ = Ψα∗, so these definitions allow us to write α∆ as in (3.3.6). The new
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operator MT,Ae3
is MT,A in (3.4.109) with the constant magnetic field potential only,

which needs to be isolated to maintain the orthogonality property (3.3.9), compare this
to [DHM21, Eq. (3.9)].

The rest of the proof is devoted to the properties, which we claim η0 and η⊥ to have
in Proposition 3.3.2. First, we prove (3.3.7). To this end, we use the definition (3.4.201)
to write

R(4)
T,A,W (∆) = 1

β

∑
n∈Z

1
iωn − hA,W

∆ 1
iωn + hA,W

∆
[ 1

iωn −H∆

]
11

∆ 1
iωn + hA,W

.

From this and Hölder’s inequality, the estimate ∥R(4)
T,A,W (∆)∥2 ⩽ Cβ3∥∆∥3

6 is immediate.
Likewise, we have the bound

∥πR(4)
T,A,W (∆)∥2 ⩽

1
β

∑
n∈Z

∥∥∥∥π 1
iωn − hA,W

∥∥∥∥
∞

∥∥∥∥ 1
iωn + hA,W

∥∥∥∥2

∞

∥∥∥∥[ 1
iωn −H∆

]
11

∥∥∥∥
∞

∥∆∥3
6.

For a general operator A, we have ∥A∥2
∞ = ∥A∗A∥∞, which enables us to bound the first

factor in the sum by∥∥∥∥π 1
iωn − hA,W

∥∥∥∥
∞

⩽ ∥Ah∥∞

∥∥∥∥ 1
iωn − hA,W

∥∥∥∥
∞

+
∥∥∥∥ 1

iωn + hA,W

∥∥∥∥1/2

∞

[∥∥∥∥ π2
Ah

+Wh

iωn − hA,W

∥∥∥∥
∞

+ ∥Wh∥∞

]1/2

⩽ C
(
|ωn|−1/2 + |ωn|−1

)
.

It follows that

∥πR(4)
T,A,W (∆)∥2 ⩽ C (β5/2 + β3) ∥∆∥3

6. (3.4.203)

In a similar manner, the right side of (3.4.203) bounds ∥R(4)
T,A,W (∆)π∥2 as well. By the

reformulation (3.2.14) of the H1(Qh × R3
s )-norm, we may therefore apply Lemma 3.4.1

and (3.2.8) on the right side of (3.4.203) to conclude that

∥R(4)
T,A,W (∆)∥2

H1(Qh×R3
s ) ⩽ C h6 ∥Ψ∥6

H1
mag(Qh).

The next result shows that the newly obtained error term MT,A∆ −MT,Ae3
∆ satisfies

an appropriate bound.

Proposition 3.4.34. For any T0 > 0 and A ∈ W 1,∞
per (Q1;R3) there is h0 > 0 such that

for any 0 < h ⩽ h0, any T ⩾ T0, and whenever | · |kV α∗ ∈ L2(R3) for k ∈ {0, 1},
Ψ ∈ H1

mag(Qh), and ∆ ≡ ∆Ψ as in (3.3.1), we have

∥MT,A∆ −MT,Ae3
∆∥2

H1(Qh×R3
s ) ⩽ C h5

(
∥V α∗∥2

2 + ∥ | · |V α∗∥2
2

)
∥Ψ∥2

H1
mag(Qh). (3.4.204)

Proof. Define the operator

QT,B,Aα(X, r) :=
�

R3×R3
dZds kT (Z, r − s) eiAh(X)·Z (eiZ·Πα)(X, s),

where kT (Z, r) := kT,0,0(0, Z, r, 0) with kT,0,0 in (3.4.46), and decompose

MT,A∆ −MT,Ae3
∆ =

(
MT,A∆ − QT,B,A∆

)
+
(
QT,B,A∆ −MT,Ae3

∆
)
. (3.4.205)
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We are going to show that both terms in brackets of the right side are bounded in
H1(Qh × R3

s )-norm by the right side of (3.4.204). Since the integrand of MT,A is symmet-
ric with respect to Z, by Lemma 3.4.13, we have

(MT,Aα− QT,B,Aα)(X, r)

=
�

R3×R3
dZds kT (Z, r − s)

[
eiΦAh

(X,X+Z) − eiAh(X)·Z
]

(eiZ·Πα)(X, s).

By (3.4.118), we have

ΦA(X,X + Z) −A(X) · Z =
� 1

0
dt
[
A(X + tZ) −A(X)

]
· Z

so that ∣∣∣eiΦA(X,X+Z) − eiA(X)·Z
∣∣∣ ⩽ ∥DA∥∞ |Z|2. (3.4.206)

It follows that

∥MT,A∆ − QT,B,A∆∥2
2 ⩽ C ∥Ψ∥2

2 ∥DAh∥2
∞ ∥F (2)

T ∥1 ∥V α∗∥2
2,

where F (2)
T is defined in (3.4.98). Since its L1-norm is uniformly bounded, see (3.4.100),

we conclude the claimed estimate for this term. In a similar manner, we bound

∥Π(MT,A∆ − QT,B,A∆)∥2
2 ⩽ C

�
R3

dr
∣∣∣∣�

R3×R3
dZds |kT (Z, r − s)| |V α∗(s)|

×
[
ess sup
X∈R3

∣∣∣∇XeiΦAh
(X,X+Z) − ∇XeiAh(X)·Z

∣∣∣ ∥Ψ∥2

+ ess sup
X∈R3

∣∣∣eiΦAh
(X,X+Z) − eiAh(X)·Z

∣∣∣ ∥ΠeiZ·ΠΨ∥2

]∣∣∣∣2.
Since∣∣∣∇XeiΦA(X,X+Z) − ∇XeiA(X)·Z

∣∣∣ ⩽ ∣∣∣∇XΦA(X,X + Z) − ∇XA(X) · Z
∣∣∣

+
∣∣∣ΦA(X,X + Z) −A(X) · Z

∣∣∣ |∇XA(X) · Z|

⩽
[
∥D2A∥∞ + ∥DA∥2

∞

][
|Z|2 + |Z|3

]
,

and since ∥D2Ah∥∞ ⩽ Ch3 and ∥DAh∥2
∞ ⩽ Ch4, we use (3.4.119) and infer

∥Π(MT,A∆ − QT,B,A∆)∥2
2 ⩽ C h5 ∥Ψ∥2

H1
mag(Qh) ∥V α∗∥2

2 ∥F (2)
T + F

(3)
T ∥2

1,

which together with (3.4.100) proves the claim for this term. Finally, we have

∥π̃(MT,A∆ − QT,B,A∆)∥2
2 ⩽ C ∥Ψ∥2

2

×
�
R3

dr
∣∣∣∣�

R3×R3
dZds |π̃kT (Z, r − s)| |V α∗(s)| ess sup

X∈R3

∣∣∣eiΦAh
(X,X+Z) − eiAh(X)·Z

∣∣∣∣∣∣∣2.
We employ 1

4 |B ∧ r| ⩽ |r − s| + |s| and the estimate (3.4.68) to see that
�
R3

dZ |π̃kT (Z, r − s)| |Z|2 ⩽ G2
T (r − s) + F 3

T (r − s) + F 2
T (r − s) |s| (3.4.207)
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with F aT and GaT in (3.4.98) and (3.4.99), respectively. The combination with (3.4.206)
proves the claim for this term and concludes the proof for the first term on the right side
of (3.4.205).

We move on to the second term on the right side of (3.4.205) and start by the identity

(QT,B,Aα−MT,Ae3
α)(X, r)

= −2
�

R3×R3
dZds kT (Z, r − s) sin2

(1
2 Ah(X) · Z

)
(cos(Z · Π)α)(X, s)

−
�
R3×R3

dZds kT (Z, r − s) sin(Ah(X) · Z) (sin(Z · Π)α)(X, s),

which follows from a straightforward expansion of the complex exponential and the identity
cos(x) − 1 = −2 sin2(x2 ). From this, it is easy to see that

∥QT,B,A∆ −MT,Ae3
∆∥2

2 ⩽ C
[
∥Ψ∥2

2 ∥Ah∥4
∞ + ∥ΠΨ∥2

2∥Ah∥2
∞

]
∥F (2)

T ∥2
1 ∥V α∗∥2

2,

which proves the claim for the first term. Secondly,

∥Π(QT,B,A∆ −MT,Ae3
∆)∥2

2 ⩽ C

�
R3

dr
∣∣∣∣�

R3×R3
dZds |kT (Z, r − s)| |V α∗(s)|

× ess sup
X∈R3

[∣∣∣∇X sin2
(1

2 Ah(X) · Z
)∣∣∣ ∥ cos(Z · Π)Ψ∥2

+
∣∣∣sin2

(1
2 Ah(X) · Z

)∣∣∣ ∥Π cos(Z · Π)Ψ∥2

+ |∇X sin(Ah(X) · Z)| ∥ sin(Z · Π)Ψ∥2 + | sin(Ah(X) · Z)| ∥Π sin(Z · Π)Ψ∥2

]∣∣∣∣2
(3.4.208)

We have

∥ sin(Z · Π)Ψ∥2 ⩽ C h2 ∥Ψ∥H1
mag(Qh) |Z|

Furthermore, from a direct computation or from [DHM21, Lemma 5.12], we know that

Π sin(Z · Π) = sin(Z · Π) Π + 2i cos(Z · Π) B ∧ Z,

which implies

∥Π sin(Z · Π)Ψ∥2 ⩽ C h2∥Ψ∥H1
mag(Qh) (1 + |Z|)

In a similar way, we have the estimate (3.4.117) for Π cos(Z · Π)Ψ. From these estimates
and (3.4.208), the claimed bound for ∥Π(QT,B,A∆ −MT,Ae3

∆)∥2
2 is easily shown by using

the functions F aT in (3.4.98). Finally, a straightforward computation shows that

∥π̃(QT,B,A∆ −MT,Ae3
∆)∥2

2 ⩽ C
[
∥Ah∥4

∞∥Ψ∥2
2 + ∥Ah∥2

∞∥ΠΨ∥2
2

]
×
�
R3

dr
∣∣∣∣�

R3×R3
dZds |π̃kT (Z, r − s)| |V α∗(s)| |Z|2

∣∣∣∣2,
whence the claimed bound follows from (3.4.207). This finishes the proof.

In order to conclude the proof of (3.3.7), we note that Lemma 3.4.7 as well as Proposi-
tions 3.4.9, 3.4.15, and 3.4.17 provide the appropriate bounds on η0(∆). Parts (b) and (c)
of Proposition 3.3.2 are proven in [DHM21, Proposition 3.2 (b)-(c)]. This ends the proof
of Proposition 3.3.2.
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3.4.4 Proof of Proposition 3.3.6

Under the assumptions of Proposition 3.3.6, we prove the existence of constants D0 > 0
and h0 > 0 such that for 0 < h ⩽ h0 the following holds. Within the temperature regime

0 < T0 ⩽ T < Tc(1 −D0h
2)

there is a function Ψ ∈ H2
mag(Qh), such that the gap function ∆(X, r) = −2V α∗(r)Ψ(X)

constitutes a Gibbs state Γ∆ as in (3.3.4), which satisfies (3.3.24).
This is proven by choosing an arbitrary ψ ∈ H2

mag(Q1) with ∥ψ∥H2
mag(Qh) = 1, whence

Ψ defined as in (3.1.21) belongs to H2
mag(Qh) and satisfies ∥Ψ∥H2

mag(Qh) = 1. Applying
Propositions 3.3.2, 3.3.4, 3.4.26, as well as (3.2.8) and (3.4.194) yields

FBCS
h,T (Γ∆) − FBCS

h,T (Γ0) < h2
(
−cD0 ∥ψ∥2

2 + C
)

as long as h is small enough. The proof of Proposition 3.3.6 is completed by the choice
D0 = C

c∥ψ∥2
2
.

3.5 The Structure of Low-Energy States

In this section we prove a priori bounds for low-energy states of the BCS functional in
the sense of (3.5.1) below. The goal is to show that their Cooper pair wave function has
a structure similar to that of the trial state we use in the proof of the upper bound in
Section 3.3. These bounds and the trial state analysis in Section 3.3 are the main technical
ingredients for the proof of the lower bound in Section 3.6. To prove the a priori bounds,
we show that Wh and Ah can be treated as a perturbation, which reduces the problem to
proving the same bounds as for the case of a constant magnetic field. A solution to this
problem has been obtained in [DHM21, Theorem 5.1] and we use it here.

We recall the definition of the generalized one-particle density matrix Γ in (3.1.7), its
Cooper pair wave function α = Γ12, as well as the normal state Γ0 in (3.1.14).

Theorem 3.5.1 (Structure of low-energy states). Let Assumptions 3.1.1 and 3.1.2 hold.
For given D0, D1 ⩾ 0, there is a constant h0 > 0 such that for all 0 < h ⩽ h0 the following
holds: If T > 0 obeys T − Tc ⩾ −D0h

2 and if Γ is a gauge-periodic state with low energy,
that is,

FBCS
h,T (Γ) − FBCS

h,T (Γ0) ⩽ D1h
4, (3.5.1)

then there are Ψ ∈ H1
mag(Qh) and ξ ∈ H1(Qh × R3

s ) such that

α(X, r) = α∗(r)Ψ(X) + ξ(X, r), (3.5.2)

where

sup
0<h⩽h0

∥Ψ∥2
H1

mag(Qh) ⩽ C, ∥ξ∥2
H1(Qh×R3

s ) ⩽ Ch4
(
∥Ψ∥2

H1
mag(Qh) +D1

)
. (3.5.3)

Remarks. (a) Equation (3.5.3) shows that Ψ is a macroscopic quantity in the sense that
its H1

mag(Qh)-norm scales as that of the function in (3.1.21). It is important to note
that this norm is scaled with h, see (3.2.5). The unscaled L2

mag(Qh)-norm of Ψ is of
the order h, and therefore much larger than that of ξ, see (3.5.3).
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(b) Theorem 3.5.1 has been proven in [DHM21, Theorem 5.1] for the case of a constant
external magnetic field, where Ah = 0 and Wh = 0. Our proof of Theorem 3.5.1 for
general external fields uses the main part of this proof.

Although Theorem 3.5.1 contains the natural a priori bounds for low-energy states,
we need a slightly different version of it in our proof of the lower bound for the BCS free
energy in Section 3.6. The main reason is that we intend to use the function Ψ from the
decomposition of the Cooper pair wave function of a low-energy state in (3.5.2) to construct
a Gibbs state Γ∆ as in (3.3.4). In order to be able to justify the relevant computations
with this state, we need Ψ ∈ H2

mag(Qh), which is not guaranteed by Theorem 3.5.1 above,
see also [DHM21, Remark 3.3]. The following corollary provides us with a decomposition
of α, where the center-of-mass wave function Ψ⩽ has the required H2

mag(Qh)-regularity.

Corollary 3.5.2. Let the assumptions of Theorem 3.5.1 hold and let ε ∈ [h2, h2
0]. Let Ψ

be as in (3.5.2) and define

Ψ⩽ := 1[0,ε](Π2)Ψ, Ψ> := 1(ε,∞)(Π2)Ψ. (3.5.4)

Then, we have

∥Ψ⩽∥2
H1

mag(Qh) ⩽ ∥Ψ∥2
H1

mag(Qh),

∥Ψ⩽∥2
Hk

mag(Qh) ⩽ C (εh−2)k−1 ∥Ψ∥2
H1

mag(Qh), k ⩾ 2, (3.5.5)

as well as

∥Ψ>∥2
2 ⩽ Cε−1h4 ∥Ψ∥2

H1
mag(Qh), ∥ΠΨ>∥2

2 ⩽ Ch4 ∥Ψ∥2
H1

mag(Qh). (3.5.6)

Furthermore,

σ0(X, r) := α∗(r)Ψ>(X) (3.5.7)

satisfies

∥σ0∥2
H1

symm(Qh×R3) ⩽ Cε−1h4 ∥Ψ∥2
H1

mag(Qh) (3.5.8)

and, with ξ in (3.5.2), the function

σ := ξ + σ0 (3.5.9)

obeys

∥σ∥2
H1

symm(Qh×R3) ⩽ Ch4
(
ε−1∥Ψ∥2

H1
mag(Qh) +D1

)
. (3.5.10)

In terms of these functions, the Cooper pair wave function α of the low-energy state Γ in
(3.5.1) admits the decomposition

α(X, r) = α∗(r)Ψ⩽(X) + σ(X, r). (3.5.11)

For a proof of the Corollary we refer to the proof of Corollary 5.2 in [DHM21].
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3.5. THE STRUCTURE OF LOW-ENERGY STATES

3.5.1 A lower bound for the BCS functional

We start the proof of Theorem 3.5.1 with the following lower bound on the BCS functional,
whose proof is literally the same as that of Lemma 5.3 in [DHM21].

Lemma 3.5.3. Let Γ0 be the normal state in (3.1.14). We have the lower bound

FBCS
h,T (Γ) − FBCS

h,T (Γ0) ⩾ Tr
[
(KT,A,W − V )αα∗

]
+ 4T

5 Tr
[
(α∗α)2

]
, (3.5.12)

where

KT,A,W = (−i∇ + Ah)2 +Wh − µ

tanh( (−i∇+Ah)2+Wh−µ
2T )

(3.5.13)

and V α(x, y) = V (x− y)α(x, y).

In Proposition 3.7.1 in Appendix 3.7 we show that the external electric and magnetic
fields can lower the lowest eigenvalue zero of KTc − V at most by a constant times h2.
We use this in the next lemma to show that KT,A,W − V is bounded from below by
a nonnegative operator, up to a correction of the size Ch2. We state the inequality
(3.5.14) below for the one-particle operator KT,A,W − V but it holds for the operator
KT,A,W − V (x− y) in (3.5.12) as well. This is due to the fact that

T (y)∗
[
KT,Ay ,Wy − V (x)

]
T (y) = KT,A,W − V (x− y),

where Wy(x) = h2W (h(x+ y)) and Ay(x) = AB(x) + hA(h(x+ y)). By T (y) we denoted
the magnetic translations in (3.1.3). We note that W (x + y) and A(x + y) are periodic
functions of x because A(x) and W (x) are.

Lemma 3.5.4. Let Assumptions 3.1.1 and 3.1.2 be true. For any D0 ⩾ 0, there are
constants h0 > 0 and T0 > 0 such that for 0 < h ⩽ h0 and T > 0 with T − Tc ⩾ −D0h

2,
the estimate

KT,A,W − V ⩾ c (1 − P )(1 + π2)(1 − P ) + c min{T0, (T − Tc)+} − Ch2 (3.5.14)

holds. Here, P = |α∗⟩⟨α∗| is the orthogonal projection onto the ground state α∗ of KTc −V .

Proof. Since W ∈ L∞(R3) we can use [DHM21, Lemma 6.4] to show that KT,A,W ⩾
KT,A,0 − Ch2 holds. The rest of the proof goes along the same lines as that of [DHM21,
Lemma 5.4] with the obvious replacements. In particular, [DHM21, Proposition A.1] needs
to be replaced by Proposition 3.7.1. We omit the details.

We deduce two corollaries from (3.5.12) and Lemma 3.5.4. The first statement is an a
priori bound that will be used in the proof of Theorem 3.2 (b). Its proof goes along the
same lines as that of [DHM21, Corollary 5.5].

Corollary 3.5.5. Let Assumptions 3.1.1 and 3.1.2 be true. Then, there are constants
h0 > 0 and C > 0 such that for all 0 < h ⩽ h0 and all temperatures T ⩾ Tc(1 + Ch2), we
have FBCS

h,T (Γ) − FBCS
h,T (Γ0) > 0 unless Γ = Γ0.

The second corollary provides us with an inequality for Cooper pair wave functions of
low-energy BCS states in the sense of (3.5.1). Before we state it, let us define the operator

U := e−i r
2 Π, (3.5.15)

with Π in (3.2.11), which acts on the relative coordinate r = x − y as well as on the
center-of-mass coordinate X = x+y

2 of a function α(x, y).
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Corollary 3.5.6. Let Assumptions 3.1.1 and 3.1.2 be true. For any D0, D1 ⩾ 0, there
is a constant h0 > 0 such that if Γ satisfies (3.5.1), if 0 < h ⩽ h0, and if T is such that
T − Tc ⩾ −D0h

2, then α = Γ12 obeys

⟨α, [U(1 − P )(1 + π2)(1 − P )U∗ + U∗(1 − P )(1 + π2)(1 − P )U ]α⟩

+ Tr
[
(α∗α)2

]
⩽ Ch2∥α∥2

2 +D1h
4, (3.5.16)

where P = |α∗⟩⟨α∗| and π = −i∇r + AB(r) both act on the relative coordinate.

In the statement of the corollary and in the following, we refrain from equipping the
operator π and the projection P = |α∗⟩⟨α∗| with an index r although it acts on the relative
coordinate. This does not lead to confusion and keeps the formulas readable.

Proof. The proof follows the same strategy as that of [DHM21, Corollary 5.6]. Let us
denote by πxA and πyA the magnetic momentum operators acting on x and y, respectively.
We claim that

πxAh
= UπrA+

h

U∗, −πyAh
= U∗πrA−

h

U, (3.5.17)

where πrA± = −i∇r + A±(r) with

A±(r) := Ae3(r) ±A(X ± r).

To obtain (3.5.17), we denote PX = −i∇X and note that [r · PX , r · (B ∧X)] = 0 implies
U = ei B

2 (X∧r)e−i r
2PX . Using this identity we conclude

U (−i∇r + AB(r))U∗ = −i∇r + 1
2AB(r) − 1

2ΠX ,

U∗(−i∇r + AB(r))U = −i∇r + 1
2AB(r) + 1

2ΠX .

Eq. (3.5.17) is a direct consequence of these two identities.
We also have

W (x) = U W+(r)U∗, W (y) = U∗W−(r)U, W±(r) := W (X ± r).

Consequently, if Kx
T,A,W and Ky

T,A,W denote the operators KT,A,W acting on the x and y
coordinate, respectively, we infer

Kx
T,A,W − V (r) = U∗(Kr

T,A+,W+ − V (r))U,
Ky
T,A,W − V (r) = U (Kr

T,A−,W− − V (r))U∗. (3.5.18)

Here Kr
T,A±,W± denotes the operator KT,A±,W± with magnetic potential A± and electric

potential W±, which depend on X, acting on the relative coordinate r.
The operator V in (3.5.12) acts as by multiplication with the function V (x − y). We

apply the symmetry α(x, y) = α(y, x) and deduce

Tr
[
(KT,A,W − V )αα∗

]
= 1

2

 
Qh

dx
�
R3

dy α(x, y)
[
(Kx

T,A,W − V ) + (Ky
T,A,W − V )

]
α(x, y). (3.5.19)

In combination, (3.5.1), (3.5.12), (3.5.18), and (3.5.19) therefore prove the bound
1
2⟨α, [U∗(Kr

T,A+,W+ − V (r))U + U (Kr
T,A−,W− − V (r))U∗]α⟩ + cTr

[
(α∗α)2

]
⩽ D1h

4.

An application of Lemma 3.5.4 on the left side establishes (3.5.16).
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3.6. THE LOWER BOUND ON (3.1.24) AND PROOF OF THEOREM 3.2 (B)

3.5.2 Proof of Theorem 3.5.1

The statement in Theorem 3.5.1 is a direct consequence of Corollary 3.5.6 above and the
results in [DHM21]. More precisely, we need to combine Corollary 3.5.6 and [DHM21,
Proposition 5.7], [DHM21, Lemma 5.14], and the arguments in [DHM21, Section 5.4].

3.6 The Lower Bound on (3.1.24) and Proof of Theorem
3.2 (b)

3.6.1 The BCS energy of low-energy states

In this section, we complete the proofs of Theorems 3.1 and 3.2, which amounts to provid-
ing the lower bound on (3.1.24), the bound in (3.1.29), and the proof of Theorem 3.2 (b).
Let D1 ⩾ 0 and D ∈ R be given, choose T = Tc(1 − Dh2), and assume that Γ is a
gauge-periodic state that satisfies (3.5.1).

Corollary 3.5.2 guarantees a decomposition of the Cooper pair wave function α = [Γ]12
in terms of Ψ⩽ in (3.5.4) and σ in (3.5.9). The function Ψ⩽ satisfies the bounds

∥Ψ⩽∥2
H1

mag(Qh) ⩽ ∥Ψ∥2
H1

mag(Qh) ⩽ C and ∥Ψ⩽∥2
H2

mag(Qh) ⩽ Cεh−2∥Ψ∥2
H1

mag(Qh), (3.6.1)

with Ψ in (3.5.2). Let us define the state Γ∆ as in (3.3.4) with ∆(X, r) = −2V α∗(r)Ψ⩽(X).
We apply Proposition 3.3.4 and Theorem 3.3.5 to obtain the following lower bound for
the BCS energy of Γ:

FBCS
h,T (Γ) − FBCS

h,T (Γ0) ⩾ h4 EGL
D,h(Ψ⩽) − C

(
h5 + εh4

)
∥Ψ∥2

H1
mag(Qh) (3.6.2)

+ T

2 H0(Γ,Γ∆) −
 
Qh

dX
�
R3

dr V (r) |σ(X, r)|2.

In the next section we prove a lower bound for the terms in the second line of (3.6.2).

3.6.2 Estimate on the relative entropy

The arguments in [DHM21, Eqs. (6.1)-(6.14)] apply in literally the same way here, too.
We obtain the correct bounds when we replace B by h2 in all formulas. This, in particular,
applies to the statement of [DHM21, Lemma 6.2]. The only difference is that [DHM21,
Eq. (6.10)] is now given by

|⟨η0,KTc,A,Wσ⟩| ⩽ Cε−1/2h
9/2∥Ψ∥H1

mag(Qh)
(
∥Ψ∥2

H1
mag(Qh) +D1

)1/2
,

which is due to the reason that the bound for the L2-norm of η0 in Proposition 3.3.2
is worse than the comparable bound we obtained in [DHM21, Proposition 3.2]. This,
however, does not change the size of the remainder in the final bound because other error
terms come with a worse rate.

With the choice ε = h1/3 we therefore obtain the bound

FBCS
h,T (Γ) − FBCS

h,T (Γ0)

⩾ h4
(
EGL
D,h(Ψ⩽) − C h

1/6∥Ψ∥H1
mag(Qh)

(
∥Ψ∥2

H1
mag(Qh) +D1

)1/2)
, (3.6.3)

which is the equivalent of [DHM21, Eq (6.14)].
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3.6.3 Conclusion

The arguments in [DHM21, Section 6.3] apply in literally the same way also here and
we obtain the correct formulas when we replace B1/2 by h. This concludes the proof of
Theorem 3.1 and Theorem 3.2.

3.6.4 Proof of the equivalent of [DHM21, Lemma 6.2] in our setting

To obtain a proof of the equivalent of [DHM21, Lemma 6.2] in our setting, we follow
the proof strategy in [DHM21]. The additional terms coming from the external electric
potential are not difficult to bound because W is a bounded function. To obtain bounds
of the correct size in h for the terms involving the periodic vector potential Ah, we need to
use that A(0) = 0, which is guaranteed by Assumption 3.1.1. This is relevant for example
when we estimate our equivalent of the term on the left side of [DHM21, Eq. (6.24)], that
is, of

∥[π2
Ah

+Wh(r) − p2
r ]σ0∥2

with pr = −i∇r and σ0 in (3.5.7). We make use of the decomposition (3.4.199). This leaves
us with bounding the term ∥[π2 − p2

r ]σ0∥2, which has been done in [DHM21, Eq. (6.24)],
and we find that it is bounded by a constant times ε−1/2h4∥Ψ∥H1

mag(Qh). We use (3.5.6) to
see that the terms involving |Ah|2 and Wh are bounded by(

∥Ah∥2
∞ + ∥Wh∥∞

)
∥σ0∥2 ⩽ Cε−1/2h4∥Ψ∥H1

mag(Qh). (3.6.4)

With the same argument we see that the contribution from the first three terms on the
right side of

πA ·A+A · πA = divA ·A+ divA · π + 2 |A|2 + 2A · π (3.6.5)

are bounded by the term on the right side of (3.6.4). To obtain a bound for the contribution
from the fourth term on the right side of (3.6.5) we write

Ah(r) = h2
� 1

0
dt (DA)(hrt) · r,

where DA denotes the Jacobian matrix of A. We conclude

∥Ah(r) · π σ0∥2 ⩽ h2∥DA∥∞ ∥ | · |πα∗∥2 ∥Ψ>∥2 ⩽ Ch4ε−1/2∥Ψ∥H1
mag(Qh)

as well as
∥[π2

Ah
+Wh(r) − p2

r ]σ0∥2 ⩽ Cε−1/2h4∥Ψ∥H1
mag(Qh).

All other bounds in the proof of the equivalent of [DHM21, Lemma 6.2] in our setting that
involve Wh or Ah can be estimated with similar ideas. We therefore omit the details.

— Appendix —
3.7 Gauge-Invariant Perturbation Theory for KTc,A − V

In this appendix, we discuss the behavior of the eigenvalues below the essential spectrum
of the operator KTc,A − V for small h > 0, where KTc,A := KTc,A,0 with KT,A,0 defined
in (3.5.13). Recall that the magnetic potential is composed of the constant magnetic field
potential Ae3(x) = 1

2e3 ∧ x and a bounded potential A ∈ W 3,∞(R3;R3), which satisfies
A(0) = 0. The full magnetic potential is then given by A := Ae3+A and Ah(x) := hA(hx).
The aim of this appendix is to prove the following proposition.
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3.7. GAUGE-INVARIANT PERTURBATION THEORY FOR KTc,A − V

Proposition 3.7.1. Assume (1 + | · |2)V ∈ L2(R3) ∩ L∞(R3). Then there is an h0 > 0
such that for 0 < h ⩽ h0 the following statements hold:

(a) Let λ be an isolated eigenvalue of multiplicity m ∈ N of the operator KTc − V with
spectral projection P . Then there are m eigenvalues λ1(h), . . . , λm(h) of the operator
KTc,Ah

− V with spectral projection P (h) such that

max
i=1,...,m

|λi(h) − λ| ⩽ Ch2 and ∥P (h) − P∥∞ ⩽ Ch2. (3.7.1)

(b) Assume that KTc −V has a simple lowest eigenvalue with eigenfunction α∗ and denote
by αAh∗ the eigenfunction to the lowest eigenvalue of KTc,A − V , which is normalized
such that ⟨α∗, α

Ah∗ ⟩ ⩾ 0 holds. Then we have the bound

∥(1 + π2)(αAh
∗ − α∗)∥2 ⩽ Ch2, (3.7.2)

where π2 is the magnetic Laplacian defined in (3.1.4).

We denote the resolvent of KT,A−V at z ∈ ρ(KT,A−V ) by Rz,V
A := (z−(KTc,A−V ))−1.

The integral kernel of Rz,V
A is denoted by Gz,VA (x, y). If A = 0, we write Rz,V for Rz,V

0
and Gz,V for Gz,V0 . Similarly, Gz stands for Gz,0. Before we give the proof of the above
proposition, we state and prove three preparatory lemmas.

3.7.1 Preparatory lemmas

The first lemma concerns the regularity of the kernel Gz.

Lemma 3.7.2. There is a continuous function a : C\[2Tc,∞) → R+ such that
�
R3

dx (1 + x2)|∇Gz(x)| ⩽ a(z). (3.7.3)

Proof. We use the resolvent identity Rz = R0 + zR0Rz to write Gz as

Gz(x) = G0(x) + z

�
R3

dv G0(x− v) Gz(v), (3.7.4)

which implies

∥(1 + | · |2)∇Gz∥1 ⩽ ∥(1 + 2| · |2)∇G0∥1
(
1 + |z| ∥(1 + | · |2)Gz∥1

)
. (3.7.5)

The second L1(R3)-norm on the right side of (3.7.5) is bounded by

∥(1 + | · |2)Gz∥1 ⩽ C ∥(1 + | · |2)2Gz∥2 = C

(�
R3

dp
∣∣∣∣(1 − ∆p)2 1

z −KTc(p)

∣∣∣∣2)1/2

, (3.7.6)

which, when multiplied with z, meets the requirements of the lemma. It therefore remains
to consider ∥(1 + | · |2)∇G0∥1.

From [FHSS12, Eq. (A.6)] and [LL01, Theorem 6.23] we know that G0(x) can be
written as

G0(x) = 2
π

∞∑
n=1

1
n− 1

2
Im gi(n− 1

2 )2πTc(x) (3.7.7)

= 1
2π2|x|

∞∑
n=1

1
n− 1

2
Im exp

(
i
√
µ+ i

(
n− 1

2

)
2πTc |x|

)
,
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where gz is the free resolvent kernel in (3.4.2) and
√

· denotes the principal square root.
We use Im eiz = sin(Re z) exp(− Im z) for z ∈ C and

√
a+ ib = 1√

2

√√
a2 + b2 + a+ i sgn(b)√

2

√√
a2 + b2 − a (3.7.8)

for a, b ∈ R to see that

Im exp
(

i
√
µ+ i

(
n− 1

2

)
2πTc |x|

)
= sin

(
|x|c+

n

)
exp

(
−|x|c−

n

)
, (3.7.9)

where

c±
n = 1√

2

√√
µ2 + ((n− 1/2)2πTc)2 ± µ. (3.7.10)

In particular,

∇G0(x) = − x

2π2|x|3
∞∑
n=1

1
n− 1

2
sin
(
|x|c+

n

)
exp

(
−|x|c−

n

)
+ x

2π2|x|2
∞∑
n=1

c+
n

n− 1
2

cos
(
|x|c+

n

)
exp

(
−|x|c−

n

)
− x

2π2|x|2
∞∑
n=1

c−
n

n− 1
2

sin
(
|x|c+

n

)
exp

(
−|x|c−

n

)
. (3.7.11)

The above formula implies the bound

∥(1 + | · |2)∇G0∥1 ⩽
∞∑
n=1

C

n

� ∞

0
dr
(
1 + r2 + (r + r3)

√
1 + n

)
exp

(
−rc−

n

)
⩽ C

∞∑
n=1

n− 3
2 .

(3.7.12)

This proves the claim of the lemma.

The second lemma concerns bounds for the operator norm of (z − (KTc − V ))−1 and
commutators of this operator with x, when viewed as maps from L2(R3) to L∞(R3).
Here and in the following we denote by ∥A∥2;∞ the norm of a bounded operator A from
L2(R3) → L∞(R3)). From [S82, Corollary A.1.2] we know that such an operator, which is
bounded also from L2(R3) to itself, has an integral kernel given by a measurable function
A(x, y), which obeys

ess sup
x∈R3

(�
R3

dy |A(x, y)|2
)1/2

< ∞. (3.7.13)

The norm ∥A∥2;∞ equals the norm of the integral kernel of A in (3.7.13).
The following Lemma 3.7.3 shows, in particular, that the resolvent kernel Gz,V satisfies

ess sup
x∈R3

(�
R3

dy
(
1 + |x− y|4

)
|Gz,V (x, y)|2

)1/2

< ∞. (3.7.14)

We remark that our assumptions on V would allow for more: it can be shown that Gz,V is
exponentially decaying in the sense that (3.7.14) holds with 1+ |x−y|4 replaced by eδ|x−y|

for some δ > 0 depending on the distance of z to the spectrum of KTc − V . Since this
result is not necessary for the proof of Proposition 3.7.1 and requires substantially more
effort, we refrain from giving the proof here. It follows from a Combes–Thomas estimate
for the operator KTc − V and can be found in Chapter 6.
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3.7. GAUGE-INVARIANT PERTURBATION THEORY FOR KTc,A − V

Lemma 3.7.3. If V belongs to the space L∞
ε (R3) of bounded functions that vanish at

infinity, then there is a continuous function a : ρ(KTc − V ) → R+ such that

∥Rz,V ∥2;∞ +
∥∥∥[x,Rz,V ]

∥∥∥
2;∞

+
∥∥∥[x, [x,Rz,V ]]

∥∥∥
2;∞

⩽ a(z). (3.7.15)

Proof. We start by proving the bound for the first term on the right side of (3.7.15). We
use the fact that (1 − ∆)−1 is a bounded linear map from L2(R3) to L∞(R3) and the
resolvent identity to estimate

∥Rz,V ∥2;∞ ⩽ C∥(1 − ∆)Rz,V ∥∞ ⩽ C∥(1 − ∆)Rz∥∞
(
1 + ∥V ∥∞∥Rz,V ∥∞

)
. (3.7.16)

Since V ∈ L∞
ε (R3), we have ρ(KTc) ⊆ ρ(KTc −V ), whence both z-dependent terms on the

right side meet the requirements of the lemma.
To obtain a bound for the second term on the right side of (3.7.15), we note that

[x,Rz,V ] = Rz,V [KTc , x]Rz,V as well as [KTc , x] = −i(∇f)(−i∇), (3.7.17)

where f(p) := KTc(p) is the symbol in (3.1.16). Using this, we estimate

∥[x,Rz,V ]∥2;∞ ⩽ ∥Rz,V ∥2;∞ ∥(∇f)(−i∇)Rz,V ∥∞. (3.7.18)

A bound for the first factor on the right side was obtained in (3.7.16). Using the resolvent
identity again, we bound the second factor by

∥(∇f)(−i∇)Rz,V ∥∞ ⩽ ∥(∇f)(−i∇)Rz∥∞
(
1 + ∥V ∥∞∥Rz,V ∥∞

)
, (3.7.19)

which proves the claim for the second term on the right side of (3.7.15). A bound for the
third term can be derived similarly, and we therefore leave the remaining details to the
reader. This proves the claim.

Lemma 3.7.4. Assume (1 + | · |2)V ∈ L2(R3) ∩ L∞(R3) and let α be an eigenfunction of
the operator KTc − V with eigenvalue λ < 2Tc. Then we have

∥ | · |∇α∥2 + ∥ | · |2α∥2 < ∞. (3.7.20)

Proof. We use the eigenvalue equation to write the Fourier transform of α as

α̂(p) = − 1
λ−KTc(p) (V̂ ∗ α̂)(p). (3.7.21)

Using Young’s inequality, we see that this implies

∥ | · |2α∥ =
(�

R3
dp
∣∣∣∣∆p

1
λ−KTc(p) (V̂ ∗ α̂)(p)

∣∣∣∣2)1/2

⩽ C
(
∥V̂ ∗ α̂∥∞ + ∥∆(V̂ ∗ α̂)∥∞

)
⩽ C ∥(1 + | · |2)V ∥∞. (3.7.22)

To prove the other bound, we use the resolvent identity to write (3.7.21) as

α̂(p) = − 1
KTc(p) (V̂ ∗ α̂)(p) + λ

KTc(p)
1

λ−KTc(p) (V̂ ∗ α̂)(p). (3.7.23)

We argue as in (3.7.22) to see that the L2(R3)-norm of ∇pp
λ

KTc (p)
1

λ−KTc (p)(V̂ ∗ α̂)(p) is
bounded by a constant times ∥ | · |V ∥∞. To treat the other term, we go back to position
space and note that(�

R3
dx
∣∣∣∣∣
�
R3

dy |x| |∇G0(x− y)| |V α(y)|
∣∣∣∣∣
2)1/2

⩽ ∥(1 + | · |)∇G0∥1 ∥(1 + | · |)V ∥∞.

(3.7.24)
In combination with Lemma 3.7.2, these considerations prove the claim.
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3.7.2 Proof of Proposition 3.7.1

The proof of Proposition 3.7.1 is based on an adaption of gauge-invariant perturbation
theory for Schrödinger operators as introduced in [N02] to our setting. The core of the
argument is contained in the following lemma.

Lemma 3.7.5. Assume that (1+|·|2)V ∈ L2(R3)∩L∞(R3). There is a continuous function
a : ρ(KTc −V ) → R+ such that the following holds: For every compact set K ⊂ ρ(KTc −V )
there is a constant h(K) > 0 such that for 0 < h < h(K) we have

Rz,V
A = Sz,VAh

+ h2 ηh(z) with ∥(1 + π2)ηh(z)∥∞ ⩽ a(z). (3.7.25)

Here Sz,VA is the operator defined by the kernel

Sz,VA (x, y) := eiΦA(x,y) Gz,V (x, y) (3.7.26)

with the phase factor ΦA(x, y) in (3.4.6).

Proof. We employ (3.4.14) and the integral representation [DHM21, Lemma 6.4] for KTc,A
to see that

Kx
Tc,A eiΦAh

(x,y) = eiΦAh
(x,y)Kx

Tc,Ay
, (3.7.27)

where Kx
Tc,A is understood to act on the x-coordinate and Ay(x) := Ã(x, y) denotes the

vector potential in transversal Poincaré gauge relative to the point y, defined in (3.4.8).
The result [DHM21, Lemma 6.4] also implies the identity

KTc,Ay −KTc =
(
−2i(Ah)y(x)∇x − i div(Ah)y(x) + |(Ah)y(x)|2

)
(3.7.28)

+
�


dz
2πi φ(z) 1

z + (−i∇ + (Ah)y)2 + µ

×
(
−2i(Ah)y(x)∇x − i div(Ah)y(x) + |(Ah)y(x)|2

) 1
z + ∆ + µ

,

where φ(z) = (z/ tanh(z/(2Tc)) − z). Let us define the operator T z,V
A via the equation(

z − (KTc,A − V )
)

Sz,VAh
= 1 − T z,V

Ah
. (3.7.29)

Using (3.7.27), (3.7.28), and (3.7.29), we write the integral kernel of T z,V
A as

T z,V
A (x, y) = eiΦA(x,y)

[ (
−2iAy(x)∇x − i div Ay(x) + |Ay(x)|2

)
Gz,V (x, y)

+
�


dζ
2πi φ(ζ)

�
R6

dvdw GζAy
(x, v)

(
−2iAy(v)∇v − i div Ay(v) + |Ay(v)|2

)
× gζ(v − w) Gz,V (v, y)

]
, (3.7.30)

where GzA is the magnetic resolvent kernel defined in (3.4.1). In the next step we use this
formula to prove a bound for the operator norm of T z,V

A .
Let us denote the first and the second term on the right side of (3.7.30) by T (1)

A (x, y)
and T (2)

A (x, y), respectively. Using (3.4.21) and (3.4.22), we see that

|T (1)
Ah

(x, y)| ⩽ Ch2
(
|x− y| |∇xGz,V (x, y)| +

(
|x− y| + |x− y|2

)
|Gz,V (x, y)|

)
. (3.7.31)
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Using the resolvent identity Rz,V = Rz + RzVRz,V , we estimate the first term on the
right side of (3.7.31) by

|x− y|
∣∣∣∇xGz,V (x, y)

∣∣∣ ⩽ |x− y|
∣∣∇Gz(x− y)

∣∣
+
�
R3

dw
∣∣∣|x− w| ∇Gz(x− w)V (w) Gz,V (w, y)

∣∣∣
+
�
R3

dw
∣∣∣∇Gz(x− w)V (w) |w − y| Gz,V (w, y)

∣∣∣ . (3.7.32)

Eq. (3.7.32) allows us to obtain the following bound for the operator norm of T (1)
A :

∥T (1)
Ah

∥∞ ⩽ Ch2
[ ∥∥| · |∇Gz

∥∥
1

(
1 + ∥V ∥2 ∥Rz,V ∥2;∞

)
+
(
1 + ∥∇Gz∥1 ∥V ∥2

)
∥[x,Rz,V ]∥2;∞ + ∥[x, [x,Rz,V ]]∥2;∞

]
. (3.7.33)

From Lemma 3.7.2 and 3.7.3, we know that there is a continuous a : ρ(KTc − V ) → R+
such that the right side of (3.7.33) is bounded by a(z). In the following we will denote by
a(z) a generic function with these properties whose precise form may change from line to
line.

To obtain a bound for the operator norm of T (2)
A (z), we first estimate its kernel by

|T (2)
Ah

(x, y)| ⩽ Ch2
(�


d|ζ|

∣∣φ(ζ)
∣∣) sup

ζ∈

�
R6

dvdw |Gζ(Ah)y
(x, v)|

×
[
|v − y| |∇gζ(v − w)| +

(
|v − y| + |v − y|2

)
|gζ(v − w)|

]
|Gz,V (w, y)|. (3.7.34)

From Lemma 3.4.5 we know that the absolute value of the resolvent kernel of the magnetic
Laplacian is bounded from above by a function only depending on x − v, whose L1(R3)-
norm is bounded by a constant times f(Re ζ, Im ζ) with f in (3.4.4). This, in particular,
implies that this L1(R3)-norm is uniformly bounded in ζ ∈  and h as long as the latter
is small enough, compare this to [DHM21, Eq. (6.19)]. We use this bound, |v − y| ⩽

|v −w| + |w − y|, and the resolvent identity for Rz,V to bound the operator norm of T (2)
A

by

∥T (2)
Ah

∥∞ ⩽ h2C
(

sup
ζ∈

∥(1 + | · |)∇gζ∥1 , sup
ζ∈

∥(1 + | · |2)gζ∥1 , ∥(1 + | · |2)Gz∥1 ,

∥V ∥2 , ∥Rz,V ∥2;∞ , ∥[x,Rz,V ]∥2,∞ , ∥[x, [x,Rz,V ]]∥2,∞
)
. (3.7.35)

The constant on the right side is an affine function of each of its arguments. From
Lemma 3.4.2 we know that the norms involving gζ are finite. With Lemmas 3.7.2 and
3.7.3, this implies that the right side of (3.7.35) is bounded by a(z). We conclude that

∥T z,V
Ah

∥∞ ⩽ a(z)h2 (3.7.36)

holds.
Let K ⊂ ρ(KTc − V ) be compact. The above bounds allow us to find h0(K) > 0 such

that for z ∈ K and as long as 0 < h < h0(K) we can write the resolvent of KTc,A − V as

1
z − (KTc,A − V ) = Sz,VAh

+ h2 ηh(z) with ηh(z) := h−2Sz,VAh

∞∑
n=1

(T z,V
Ah

)n. (3.7.37)
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To show that the operator norm of (1 + π2)ηh(z) is bounded by a(z), we use

∥(1 + π2)ηh(z)∥∞ ⩽ ∥(1 + π2)Sz,VAh
∥∞

∞∑
n=1

h2(n−1)a(z)n. (3.7.38)

With the resolvent identity for Rz,V and Lemma 3.7.2, we easily see that the operator
norm of (1 + π2)Sz,VAh

is bounded by a(z). This proves the claim.

With the resolvent estimates in Lemma 3.7.5 at hand, we turn to the proof of Propo-
sition 3.7.1. Let λ < 2Tc be an eigenvalue of the operator KTc − V . Our assumption on
V guarantees that it has finite multiplicity m ∈ N. We choose ε > 0 such that the ball
Bε(λ) ⊆ C contains no other point of the spectrum of KTc − V than λ and define

P (h) :=
�
∂Bε(λ)

dz
2πi Rz,V

A =
�
∂Bε(λ)

dz
2πi Sz,VAh

+ h2
�
∂Bε(λ)

dz
2πi ηh(z). (3.7.39)

From Lemma 3.7.5 we know that the operator norm of the second term on the right side
is bounded by a constant times h2 provided h is small enough. The integral kernel of the
first term is given by(�

∂Bε(λ)

dz
2πi Sz,VA

)
(x, y) = eiΦA(x,y)

m∑
i=1

ui(x)ui(y), (3.7.40)

where the vectors {ui}mi=1 span the eigenspace of λ. Let us denote by P the projection
onto that linear space. Using (3.7.39), (3.7.40), and |ΦAh

(x, y)| ⩽ Ch2(|x|2 + |y|2), we
obtain the bound

∥P (h) − P∥∞ ⩽ Ch2 max
i=1,...,m

∥ | · |2ui∥2. (3.7.41)

In combination with Lemma 3.7.4, this proves rankP (h) = m for h small enough as well
as the second bound in (3.7.1).

To prove the bounds for the eigenvalues we use the identity

(KTc,A − V )P (h) =
�
∂Bε(λ)

dz
2πi zRz,V

A . (3.7.42)

As long as h is small enough, the rank of this operator equals m and its eigenvalues are
given by λ1(h), . . . , λm(h). Similar arguments to the above for the spectral projections
allow us to conclude that

∥(KTc,A − V )P (h) − (KTc − V )P∥∞ ⩽ Ch2 max
i=1,...,m

∥ | · |2ui∥2 (3.7.43)

holds. This proves the claimed bound for the eigenvalues. It remains to prove (3.7.2).
Let us write αAh∗ = a(h)α∗ + b(h)ϕh with ⟨α∗, ϕh⟩ = 0 and |a(h)|2 + |b(h)|2 = 1. Our

assumptions imply a(h) = ⟨α∗, α
Ah∗ ⟩ ⩾ 0. We rewrite the equation P (h)αAh∗ = αAh∗ to see

that b(h)ϕh = (P (h) −P )αAh∗ . An application of (3.7.1) thus implies |b(h)| ⩽ Ch2. Using
this, |a(h)|2 + |b(h)|2 = 1, and the fact that a(h) ⩾ 0, we see that |a(h) − 1| ⩽ Ch2. This
allows us to conclude that

∥(1 + π2)(αAh
∗ − α∗)∥2 ⩽ |a(h) − 1| ∥(1 + π2)α∗∥2 + |b(h)| ∥(1 + π2)ϕh∥2 ⩽ Ch2.

(3.7.44)
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To obtain the result we used Lemma 3.7.4 to see that ∥(1 + π2)α∗∥2 < ∞, as well as
∥(1 + π2)ϕh∥2 ⩽ ∥(1 + π2)α∗∥2 + ∥(1 + π2)αAh∗ ∥2, and

∥(1 + π2)αAh
∗ ∥2 ⩽ C∥KTc,Aα

Ah
∗ ∥2 ⩽ C

(
|λ(h)| + ∥V αAh

∗ ∥2
)
⩽ C

(
|λ(h)| + ∥V ∥∞

)
.

(3.7.45)

This proves (3.7.2) and also finishes the proof of Proposition 3.7.1.
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Chapter 4

The Abrikosov Gauge for Periodic
Magnetic Fields

This chapter is devoted to the question whether the magnetic potentials that are covered
in the works presented in Chapters 2 and 3 are exhaustive to understand the periodic
BCS model in full generality — given that the external magnetic field is fixed. Therefore,
we have to analyze the possible choices of magnetic potentials corresponding to external
periodic magnetic fields. The answer is that, as long as the magnetic field is smooth,
the magnetic potential can always be chosen such that it admits the form discussed in
Chapter 3.

4.1 Introduction

There are a number of gauges for magnetic fields, and this note concerns a useful gauge for
periodic magnetic fields, which does not seem to appear in the literature as such, at least
in three dimensions. The key characteristic of this gauge is that the magnetic potential is
the sum of two terms, the first corresponding to a constant magnetic field whose strength
represents the average magnetic field per unit cell, and the second term being a periodic
perturbation.

In this note, we will assume, for the sake of simplicity, that all functions are smooth.
We now state our main result.

Theorem 4.1.1. Consider a magnetic potential A : Rd → Rd, d = 2, 3, such that the
corresponding magnetic field B = curlA is L-periodic, where L = rZd for some r > 0. Let
b be the average magnetic flux per unit cell, i.e.,

b = r−d
�

Ω
dx B(x), (4.1.1)

where Ω = [0, r]d is the unit cell of L.
Then A is gauge equivalent to Ab + a, where

Ab(x) =

 b
2x

⊥, d = 2,
1
2b ∧ x, d = 3,

(4.1.2)

and a : Rd → Rd is L-periodic. More precisely, there is an η : Rd → R such that

A(x) + ∇η(x) = Ab(x) + a(x). (4.1.3)
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In two dimensions this gauge is useful for the study of Abrikosov lattice solutions of
the Ginzburg-Landau equations and there are number of proofs (see [BGT92; D99; TS13]
and references therein). The proofs and details presented here are very similar to those in
[BGT92; D99], although the overall point of view is somewhat different and the results are
generalized to three dimensions. There are also many parallels with the theory of complex
line bundles over tori and Chern classes (this is a very large field but see [G76; M74] for
an introduction to this area).

It should be noted that this gauge is compatible with the Coulomb gauge, and indeed
it can be proven that a further gauge transformation allows to assume that the periodic
perturbation a is divergence-free. It is also possible to use a change of coordinates (via
translation) to assume that a has mean zero. These statements are proven in the Abrikosov
lattice papers mentioned above.

As mentioned above we assume all functions are smooth but the definitions and proofs
below can be extended to the case where less regularity is required.

4.2 Admissible families of gauge transformations

Our main focus is to study certain families of gauge transformations, which arise from
magnetic potentials A : Rd → Rd, whose magnetic field curlA is L-periodic for some
lattice L.

To begin with, the periodicity of curlA implies

curl
(
A(x+ t) −A(x)

)
= 0, (4.2.1)

for all t ∈ L, which in turn implies that there is a function gt : Rd → R such that

A(x+ t) = A(x) + ∇gt(x). (4.2.2)

Let t, s ∈ L. On the one hand, (4.2.2) implies

A(x+ t+ s) = A(x) + ∇gt+s(x),

and, on the other hand, (4.2.2) also gives

A(x+ t+ s) = A(x+ t) + ∇gs(x+ t) = A(x) + ∇gt(x) + ∇gs(x+ t),

Therefore,

∇gt+s(x) − ∇gt(x) − ∇gs(x+ t) = 0. (4.2.3)

This property of the family of maps gt is, as we shall see, very important to understanding
the properties of the magnetic field and motivates the following definition.

Definition 4.2.1. We call a family g = {gt}t∈L of gauge transformations gt : Rd → R
admissible if for all t, s ∈ L there are constants Ig(t, s) ∈ R such that for all x ∈ Rd,

gt+s(x) − gt(x) − gs(x+ t) = Ig(t, s). (4.2.4)

The set of admissible families is denoted by Gd.

As an immediate consequence of the Definition, we note that

Iαg+h(t, s) = α Ig(t, s) + Ih(t, s) (4.2.5)

for α ∈ R, g, h ∈ Gd, and t, s ∈ L.
The most important basic fact about Gd is that it admits a real vector space structure

via the usual pointwise operations. A further important property of Gd is that it is closed
under the following operation.
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Lemma 4.2.2. Let g ∈ Gd and let η : Rd → R be any function. Then the family h =
{ht}t∈L defined by ht(x) := gt(x) + η(x+ t) − η(x) belongs to Gd.

Proof. Fix t, s ∈ L and calculate

ht+s(x) − ht(x) − hs(x+ t) = gt+s(x) + η(x+ t+ s) − η(x)
− gt(x) − η(x+ t) + η(x)
− gs(x+ t) − η(x+ t+ s) + η(x+ t)

= gt+s(x) − gt(x) − gs(x+ t) = Ig(t, s).

This proves the statement.

In view of Lemma 4.2.2, we may now introduce a notion of gauge-equivalence that is
related to the gauge transformation of magnetic potentials as we shall see below.

Definition 4.2.3. We say that two admissible families g, h ∈ Gd are gauge-equivalent and
write g ∼ h if there is a function η : Rd → R and a family α = {αt}t∈L of constants αt ∈ R
such that

ht(x) = gt(x) + η(x+ t) − η(x) + αt (4.2.6)

holds for all x ∈ Rd and t ∈ L.

It is easy to verify that ∼ is an equivalence relation and that it is compatible with the
vector space structure on Gd. We can therefore study the quotient space

Γd := Gd|∼ (4.2.7)

In order to do this we study the associated bilinear form described in the following propo-
sition.

Proposition 4.2.4. (a) For any g ∈ Gd, the expression

Dg(t, s) := Ig(t, s) − Ig(s, t) (4.2.8)

defines an antisymmetric bilinear form on L × L.

(b) If g, h ∈ Gd with g ∼ h, then Dg = Dh.

Proof. It is immediate from the definition that Dg is antisymmetric. Therefore, it suffices
to show linearity in the second slot to conclude bilinearity.

To prove linearity in the second slot, we first prove

Dg(t,−s) = −Dg(t, s). (4.2.9)

To see this, we apply (4.2.4) with x = s to Ig(t,−s) and with x = t+ s to Ig(−s, t). This
implies

Dg(t,−s) = gt−s(s) − gt(s) − gt−s(t+ s) + gt(t). (4.2.10)

Furthermore, (4.2.4) with t ≡ s and s ≡ t− s implies

gt(x) − gs(x) − gt−s(x+ s) = Ig(s, t− s).
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Applying this with x = 0 and x = t yields

gt−s(s) − gt−s(t+ s) = gt(0) − gs(0) − gt(t) + gs(t).

We insert this into (4.2.10), add and subtract gt+s(0), and obtain

Dg(t,−s) = −
(
gt+s(0) − gt(0) − gs(t)

)
+ gt+s(0) − gs(0) − gt(s),

which proves (4.2.9), see (4.2.4).
In the next step, we show that

Dg(t, s+ r) = Dg(t, s) + Dg(t, r). (4.2.11)

To see this, we first note that for any x ∈ Rd, (4.2.4) implies

Dg(t, s) = gt(x+ s) − gt(x) − gs(x+ t) + gs(x). (4.2.12)

Therefore,

Dg(t, s+ r) = gt(s+ r) − gt(0) − gs+r(t) + gs+r(0) (4.2.13)

When we apply (4.2.4) once more, we obtain

gs+r(0) − gs+r(t) = gr(s) + gs(0) − gs(t) − gr(t+ s)

We insert this into (4.2.13) and add and subtract gt(s). This yields

Dg(t, s+ r) = gt(s) − gt(0) − gs(t) + gs(0)
+ gt(s+ r) − gt(s) − gr(s+ t) + gr(s),

which proves (4.2.11). An induction argument on (4.2.9) and (4.2.11) then shows that Dg

is linear in the second slot. This proves part (a).
To prove part (b), we have ht(x) = gt(x) + η(x+ t) − η(x) +αt by hypothesis for some

η : Rd → R and αt ∈ R. When we use (4.2.12) with x = 0, we see that all occurrences of α
drop out and all terms with η cancel. Therefore, Dh = Dg. This completes the proof.

We let Λd denote the vector space of real antisymmetric bilinear forms on L × L.
It is well known that Λd is isomorphic to Rn, where n =

(d
2
)

= 1
2d(d − 1). Moreover,

a straightforward computation shows that any antisymmetric bilinear form D on L × L
satisfies

D(t, s) =

d (t ∧ s), d = 2,
d · (t ∧ s), d = 3,

(4.2.14)

where

d :=

D(τ1, τ2), d = 2,
(D(τ2, τ3),D(τ3, τ1),D(τ1, τ2))t, d = 3.

(4.2.15)

Here, τi, i = 1, . . . , d are the basis vectors spanning L.
We can now prove the main tool needed for the proof of Theorem 4.1.1.
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Theorem 4.2.5. We have Γd ∼= Λd, where an isomorphism is given by the map [g] 7→ Dg,
and therefore

Γd ∼= R(d
2).

Proof. By Proposition 4.2.4 the map [g] 7→ Dg is well-defined and, by (4.2.5), it is linear.
Therefore we only need to show that it is injective and surjective. We begin with the
latter.

Let D be an antisymmetric bilinear form on L × L and define

gt(x) := 1
2 D(t, x),

where D(t, x) is understood to be defined via linear extension, see (4.2.14). Then,

gt+s(x) − gt(x) − gs(x+ t) = 1
2
(
D(t+ s, x) − D(t, x) − D(s, x+ t)

)
= 1

2 D(t, s),

which shows that g ∈ Gd with Ig(t, s) = 1
2D(t, s). It follows that Dg = D, since Dg(t, s) =

1
2D(t, s) − 1

2D(s, t) = D(t, s).
We turn to the injectivity of the map [g] 7→ Dg. Let g ∈ Gd be such that Dg = 0. We

need to show that g is gauge-equivalent to 0, i.e., that there are η : Rd → R and constants
αt ∈ R such that

η(x+ t) − η(x) + αt = gt(x), t ∈ L, x ∈ Rd. (4.2.16)

To start out with, we let L be equipped with the graph norm, i.e., if t = ∑d
i=1 niτi, then

∥t∥ := ∑d
i=1 |ni|. We prove (4.2.16) by induction in n = ∥t∥. Let first n = 0, i.e., t = 0.

In this case, (4.2.4) shows that g0 is constantly equal to Ig(0, 0), so (4.2.16) holds with
α0 := Ig(0, 0). For the case ∥t∥ = 1 we note that the functions gτ1 , . . . , gτn satisfy the
hypothesis of Proposition 4.4.1 in Section 4.4 since Dg = 0. Therefore, there is a function
η : Rd → R such that

η(x+ τi) − η(x) = gτi(x), i = 1, . . . , d, (4.2.17)

where τi = rei are the basis vectors spanning L. Hence, (4.2.16) holds with ατi = 0.
Likewise, we have

η(x− τi) − η(x) = −
(
η(x− τi + τi) − η(x− τi)

)
= −gτi(x− τi)

and, by (4.2.4) applied to t = −τi and s = τi, we obtain

−gτi(x− τi) = g−τi(x) + Ig(−τi, τi) − g0(x).

Since g0(x) = −Ig(0, 0) for all x as argued above, we see that (4.2.16) holds with

α−τi := −Ig(0, 0) − Ig(−τi, τi).

This proves (4.2.16) for all vectors t ∈ L with ∥t∥ = 1. By induction we assume that
(4.2.16) holds for all vectors t ∈ L with ∥t∥ ⩽ n. Let s ∈ L with ∥s∥ = n+ 1. Then, there
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is t ∈ L with ∥t∥ = n and i ∈ {1, . . . , d} such that s = t± τi and, by (4.2.4) and (4.2.12),
a short computation shows

η(x+ s) − η(x) + Ct,±τi = gs(x), (4.2.18)

with

Ct,τi := αt + Ig(τi, t), Ct,−τi := αt + α−τi + Ig(−τi, t).

In order to prove (4.2.16), it remains to show that Ct,±τi does not depend on the repre-
sentation s = t± τi but only on s. However, this follows from the argument above because
if s = t′ ± τj is another such decomposition, then (4.2.18) implies that Ct,±τi = Ct′,±τj

.
Hence, when we set

αs := Ct,±τi

then (4.2.16) holds and the induction is complete.

4.3 Magnetic fields and admissible families

We can now apply the previous section to magnetic fields and prove the main theorem.
We start with the following result.

Proposition 4.3.1. Suppose that A is a magnetic potential such that curlA is L-periodic.
Then there is an admissible family g ∈ Gd such that for all t ∈ L,

A(x+ t) = A(x) + ∇gt(x). (4.3.1)

Moreover, the corresponding antisymmetric bilinear form Dg satisfies (4.2.14) with d = b,
where b is the average magnetic flux defined in (4.1.1).

Proof. We have already seen the proof of (4.3.1) in (4.2.1)-(4.2.3). It remains to show
that d = b. When d = 2, we use (4.1.1) to see that br2 equals� r

0
dx1

� r

0
dx2

(
∂1A2(x1, x2) − ∂2A1(x1, x2)

)
=
� r

0
dx2

(
A2(r, x2) −A2(0, x2)

)
−
� r

0
dx1

(
A1(x1, r) −A1(x1, 0)

)
=
� r

0
dx2 ∂2gτ1(0, x2) −

� r

0
dx1 ∂1gτ2(x1, 0).

The last equality follows from (4.3.1). We integrate this and use (4.2.4) to conclude that

b r2 = gτ1(τ2) − gτ1(0) − gτ2(τ1) + gτ2(0) = Dg(τ1, τ2) = d (τ1 ∧ τ2).

Since τ1 ∧ τ2 = r2, the claim follows.
When d = 3, a similar calculation shows that b1r

3 equals� r

0
dx1

� r

0
dx2

� r

0
dx3

(
∂2A3(x1, x2, x3) − ∂3A2(x1, x2, x3)

)
= r

� 1

0
dx1

(
gτ2(x1τ1 + τ3) − gτ2(x1τ1) − gτ3(x1τ1 + τ2) + gτ3(x1τ1)

)
= r

� 1

0
dx1 Dg(τ2, τ3).

This proves that b1 = d1. The proof for b2 = d2 and b3 = d3 is analogous. This completes
the proof of the proposition.
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We are in position to prove Theorem 4.1.1. Let A be as in the theorem and let g ∈ Gd
be a corresponding admissible family. Then, we know that the bilinar form Dg satisfies
(4.2.14) with d replaced by

dg :=

Dg(τ1, τ2), d = 2,
(Dg(τ2, τ3),Dg(τ3, τ1),Dg(τ1, τ2))t, d = 3.

(4.3.2)

By Proposition 4.3.1, we have dg = b, where b is defined in (4.1.1). On the other hand,
curlAb = b, which means that the corresponding magnetic field is constant and therefore
periodic. If h ∈ Gd denotes an admissible family corresponding to Ab, then the antisym-
metric bilinear form Dh satisfies (4.2.14) with dh = b, too, because of (4.1.1). By Theorem
4.2.5, it follows that g and h are gauge-equivalent, i.e., there are a function η : Rd → R
and constants αt ∈ R and such that (4.2.6) holds. We consider the magnetic potential
Ã = A+ ∇η and see that

Ã(x+ t) = Ã(x) + ∇gt(x) + ∇η(x+ t) − ∇η(x) = Ã(x) + ∇ht(x),

which means that h is an admissible family associated to Ã. Therefore, the magnetic
potential a := Ab − Ã is L-periodic by Proposition 4.3.1 applied to Ab. This proves
Theorem 4.1.1.

4.4 Functional align

In this appendix we solve the following functional align. The idea of the proof has been
sketched in [D99].

Proposition 4.4.1. Let L = rZd and let Ω = [0, r]d. Suppose that g1, . . . , gd are smooth
functions satisfying

gi(x+ τj) − gi(x) − gj(x+ τi) − gj(x) = 0, i, j = 1, . . . , d, x ∈ Rd, (4.4.1)

where τi = rei ∈ L. Then, the problem

η(x+ τi) − η(x) = gτi(x), i = 1, . . . , d,

has a smooth solution η.

In order to prove this proposition we need the following result. For a set M ⊆ Rd and
ε > 0, we define the open ε-fattening of M as

Mε :=
{
x ∈ Rd : dist(x,M) < ε

}
. (4.4.2)

Theorem 4.4.2. Let L = rZd and let Ω = [0, r)d. Suppose that g1, . . . , gd are smooth
functions satisfying

gi(x+ τj) − gi(x) − gj(x+ τi) − gj(x) = 0, i, j = 1, . . . , d, x ∈ Rd. (4.4.3)

Assume further that there is an x0 ∈ Rd and ε > 0 such that for all i = 1, . . . , d,

gi
∣∣∣
x0+(∂Ω)ε+L

≡ 0. (4.4.4)

Then the problem

η(x+ τi) − η(x) = gi(x), i = 1, . . . , d, x ∈ Rd, (4.4.5)

has a smooth solution η.
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Proof. For n = 1, . . . , d, we set

Un := span{τi : i = 1, . . . , d, i ̸= n}

for the subspace of Rd generated by all the τi’s but τn and

Sn := Un + [0, 1)τn (4.4.6)

for the corresponding strip.
Our strategy is to define functions ηn, n = 1, . . . , d, on Rd recursively, show that we

have

ηn(x+ τi) − ηn(x) = gi(x), i = 1, . . . , n, x ∈ Rd, (4.4.7)

and prove that ηn is smooth. Then, (4.4.5) is satisfied by the function η := ηd. We prove
(4.4.7) by induction in n.

To start out with, we put

η1
∣∣∣
x0+S1

:= 0. (4.4.8)

For x ∈ Rd, we uniquely decompose x = y + ℓτ1, where y ∈ x0 + S1 and ℓ ∈ Z. Then, we
recursively define

η1(x) :=

η1(x− τ1) + g1(x− τ1), ℓ > 0,
η1(x+ τ1) − g1(x), ℓ < 0.

(4.4.9)

With these definitions, we claim that (4.4.7) holds for n = 1. To see this, decompose
x ∈ S1 uniquely as x = y + ℓτ1 with y ∈ x0 + S1 and ℓ ∈ Z. If ℓ ⩾ 0, then, by (4.4.9), we
have

η1(x+ τ1) − η1(x) = η1(y + (ℓ+ 1)τ1) − η1(x)
= η1(y + ℓτ1) + g1(y + ℓτ1) − η1(x) = g1(x). (4.4.10)

If ℓ < 0, then (4.4.9) implies

η1(x+ τ1) − η1(x) = η1(x+ τ1) − η1(y + ℓτ1)

= η1(x+ τ1) −
(
η1(y + (ℓ+ 1)τ1) − g1(y + ℓτ1)

)
= g1(x). (4.4.11)

This proves (4.4.7) for n = 1.
The next step is to show that η1 is smooth on Rd. It is clear that η1 smooth everywhere

except on x0 +U1 +τ1Z. To prove this as well, we show that for all x ∈ x0 +U1, all m ∈ N0
such that g(m)

1 exists and is continuous, and all ℓ ∈ Z, we have

lim
a↗ℓ

η
(m)
1 (x+ aτ1) = 0 = lim

a↘ℓ
η

(m)
1 (x+ aτ1). (4.4.12)

We prove this by induction in both directions and start with the direction ℓ ∈ N. Let first
ℓ = 1. By (4.4.8), we trivially have lima↗1 η

(m)
1 (x+ aτ1) = 0, since x+ aτ1 ∈ x0 + S1 for

all a ∈ [0, 1). By using (4.4.7), we also have

lim
a↘1

η
(m)
1 (x+ aτ1) = lim

a↘0
η

(m)
1 (x+ (a+ 1)τ1) = lim

a↘0
η

(m)
1 (x+ aτ1) + lim

a↘0
g

(m)
1 (x+ aτ1).

256 PhD Thesis



CHAPTER 4. THE ABRIKOSOV GAUGE FOR PERIODIC MAGNETIC FIELDS

The first limit is zero because of (4.4.8). We claim that the second limit vanishes as well.
To see this, we note that U1 ⊆ ∂Ω + L as well as (∂Ω + L)ε = (∂Ω)ε + L. It follows that

x+ (a+ k)τ1 ∈ x0 + (∂Ω)ε + L, a ∈ [−ε, ε], k ∈ Z. (4.4.13)

whence, by (4.4.4), g1(x+ aτ1) = 0 for 0 ⩽ a ⩽ ε.
By induction, we assume that (4.4.12) holds for ℓ ∈ N. Then, using (4.4.7), we have

lim
a↗ℓ+1

η
(m)
1 (x+ aτ1) = lim

a↗ℓ
η

(m)
1 (x+ (a+ 1)τ1) = lim

a↗ℓ
η

(m)
1 (x+ aτ1) + lim

a↗ℓ
g

(m)
1 (x+ aτ1)

The first limit vanishes by induction and the second vanishes because of (4.4.13) and
(4.4.4). In the same manner, we see that lima↘ℓ+1 η

(m)
1 (x + aτ1) = 0. Analogously, the

reader may prove (4.4.12) for ℓ = 0 and ℓ ∈ −N. This completes the construction of η1.
Suppose by induction that smooth functions η1, . . . , ηn−1 have been constructed on Rn

such that (4.4.7) holds for n− 1. We are going to define ηn on Rd and show (4.4.7) for n.
To do this, we first define

ηn
∣∣∣
x0+Sn

:= ηn−1
∣∣∣
x0+Sn

. (4.4.14)

Furthermore, let x ∈ Rd and decompose uniquely x = y + ℓτn, where y ∈ x0 + Sn and
ℓ ∈ Z. Then, we define recursively,

ηn(x) :=

ηn(x− τ1) + gn(x− τn), ℓ > 0,
ηn(x+ τn) − gn(x), ℓ < 0.

(4.4.15)

With these definitions, a simple computation similar to (4.4.10) and (4.4.11) shows that

ηn(x+ τn) − ηn(x) = gn(x), x ∈ Rd. (4.4.16)

We claim that this implies

ηn(x+ ℓτn) − ηn(x) =



ℓ∑
j=1

gn(x+ (j − 1)τn), ℓ ⩾ 0,

−
−ℓ∑
j=1

gn(x− jτn), ℓ < 0.
(4.4.17)

The proof of (4.4.17) is a simple induction argument using (4.4.16).
With this, we are in position to prove that

ηn(x+ τi) − ηn(x) = gi(x), i = 1, . . . , n− 1, x ∈ Rd. (4.4.18)

If this holds, then the proof of (4.4.7) is completed. To prove (4.4.18), let x ∈ Rd be given
and, once more, choose unique y ∈ x0 + Sn and ℓ ∈ Z such that x = y + ℓτn. Then, we
have y, y + τi ∈ x0 + Sn, whence ηn(y + τi) − ηn(y) = ηn−1(y + τi) − ηn−1(y) by (4.4.14).
Therefore, the induction hypothesis (4.4.7) implies ηn−1(y+ τi) − η(y) = gi(y), whence by
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(4.4.17), we obtain

ηn(x+ τi) − ηn(x) = ηn−1(y + τi) − ηn−1(y) + ηn(y + τi + ℓτn) − ηn(y + τi)

−
(
ηn(y + ℓτn) − ηn(y)

)

= gi(y) +



ℓ∑
j=1

gn(y + τi + (j − 1)τn) − gn(y + (j − 1)τn), ℓ ⩾ 0,

−ℓ∑
j=1

gn(y + τi − jτn) − gn(y − jτn + τi), ℓ < 0.

A simple induction argument using the hypothesis (4.4.3) shows that

gi(x) +
ℓ∑

j=1
gn(x+ τi + (j − 1)τn) − gn(x+ (j − 1)τn) = gi(x+ ℓτn)

for ℓ ⩾ 0, as well as

gi(x) +
−ℓ∑
j=1

gn(x− jτn) − gn(x− jτn + τi) = gi(x+ ℓτn)

for ℓ < 0. This completes the proof of (4.4.18).
It remains to show that ηn is smooth. Like in the case n = 1 it is clear that ηn is

smooth everywhere but on x0 + Un + τnZ. To prove this as well, we show that for all
x ∈ x0 + Un, all m ∈ N0 such that g(m)

n exists and is continuous, and all ℓ ∈ Z, we have

lim
a↗ℓ

η(m)
n (x+ aτ1) = lim

a↘ℓ
η(m)
n (x+ aτ1). (4.4.19)

We prove this by induction in ℓ and start with ℓ = 1. Then since x + aτn ∈ x0 + Sn for
a ∈ [0, 1), we conclude that

lim
a↗1

η(m)
n (x+ aτn) = lim

a↗1
η

(m)
n−1(x+ aτn) = lim

a↘1
η

(m)
n−1(x+ aτn) = lim

a↘1
η(m)
n (x+ aτn).

Here, we used (4.4.14) twice and that ηn−1 is smooth by induction. This proves (4.4.19)
for ℓ = 1. Similarly,

lim
a↗ℓ+1

η(m)
n (x+ aτn) = lim

a↗ℓ
η(m)
n (x+ (a+ 1)τn) = lim

a↗ℓ
η(m)
n (x+ aτn) + lim

a↗ℓ
g(m)
n (x+ aτn).

The last limit vanishes by a similar argument to the one leading to (4.4.13). Applying this
argument again, we see that the right hand side equals

lim
a↘ℓ

η(m)
n (x+ aτn) = lim

a↘ℓ
g(m)
n (x+ aτn) = lim

a↘ℓ+1
η(m)
n (x+ aτn).

The induction argument for ℓ = 0 and ℓ ∈ −N is similar and left to the reader. This
proves (4.4.19) for ℓ ∈ Z and concludes the proof of the theorem.

Proof of Proposition 4.4.1. We construct a partition of unity of Rd as follows. Choose two
r-periodic χ0, χ1 ∈ C∞(R) such that 0 ⩽ χ0, χ1 ⩽ 1, χ0 + χ1 = 1, and

χ0|[−r/8,r/8]+rZ ≡ 0, χ1|[3r/8,5r/8]+rZ ≡ 0.
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χ1 χ2

r/4 r/2 3r/4 r 5r/4 3r/2 7r/4 2r 9r/4

1

Furthermore, for each n = (n1, . . . , nd) ∈ {0, 1}d, we set

φn(x) := χn1(x1) · · ·χnd
(xd),

where ni = 1, 2 for i = 1, . . . , d. It is clear that∑
n∈{0,1}d

φn(x) = 1 (4.4.20)

holds and for every n ∈ {0, 1}d, we have that

φn
∣∣∣

r
2n+∂Ω+L

≡ 0. (4.4.21)

Fix n ∈ {0, 1}d. For every i = 1, . . . , d we define the function gni := φngi. Since φn is
L-periodic, the hypothesis (4.4.1) implies that (4.4.3) holds. Furthermore, (4.4.21) implies
that gin satisfies (4.4.4). Therefore, there is a smooth function ηi such that

ηn(x+ τi) − ηn(x) = gni (x), i = 1, . . . , d.

Then, a straightforward calculation shows that η := ∑
n∈{0,1}d ηn satisfies the statement

of the proposition.
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Chapter 5

The Eigenvalues of the Periodic
Landau Hamiltonian

In this chapter, we investigate the eigenvalues of the gauge periodic Landau Hamiltonian
and their multiplicity. The chapter is written in the setting of Chapter 2. We shall fix
an arbitrary charge q ∈ N and we consider the space Lq,2mag(QB) of L2

loc(R3)-functions Ψ,
which are gauge-perodic with respect to the magnetic translations

TB,q(v)Ψ(x) := ei qB
2 ·(v∧x)Ψ(x+ v), v ∈ R3, (5.0.1)

of the lattice ΛB defined above (2.1.4), that is, these functions satisfy TB,q(λ)Ψ = Ψ for
every λ ∈ ΛB. The magnetic translations obey TB,q(v + w) = ei qB

2 ·(v∧w)TB,q(v)TB,q(w),
whence the group {TB,q(λ)}λ∈ΛB

is abelian.
On the Sobolev space Hq,2

mag(QB) of gauge-periodic functions, where

Hq,m
mag(QB) :=

{
Ψ ∈ Lq,2mag(QB) : ΠνΨ ∈ Lq,2mag(QB) ∀ν ∈ N3

0, |ν|1 ⩽ m
}

(5.0.2)

for m ∈ N0, we consider the Landau Hamiltonian Π2
q with magnetic momentum given

by Πq := −i∇ + qA. This operator commutes with the translations in (5.0.1) and the
magnetic flux through the unit cell QB is equal to 2πq, see (2.1.4) and the discussion below
(2.1.4). In this respect, Sections 2.1.2 and 2.2.2 correspond to the special cases q = 1 and
q = 2, respectively.

We choose a Bloch–Floquet decomposition UBF (see also Section 2.2.1) such that Πq

fibers according to

UBF Πq U∗
BF =

� ⊕

[0,1)3
dϑ Πq(ϑ) (5.0.3)

with fiber momentum operators

Πq(ϑ) := −i∇ + qA +
√

2πB ϑ

acting on the magnetic Sobolev space Hq,2
mag(QB) in (5.0.2).

Proposition 5.0.1. For every B > 0, q ∈ N, and ϑ ∈ [0, 1)3, the spectrum of Πq(ϑ)2

consists of the isolated eigenvalues

Eq,B,ϑ(k, p) := q B (2k + 1) + 2π B (p+ ϑ3)2, k ∈ N0, p ∈ Z. (5.0.4)

Furthermore, their multiplicity is finite and equals

dim ker(Πq(ϑ)2 − Eq,B,ϑ(k, p)) = q. (5.0.5)
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In preparation for the proof, we first note that, by rescaling, Πq(ϑ)2 is isospectral to
B (−i∇ + q

2e3 ∧ x+
√

2π ϑ)2. We henceforth assume that B = 1.
Furthermore, we introduce the notation x = (x⊥, x3)t and define the two-dimensional

operator Π⊥,q(ϑ) := (Π(1)
q (ϑ),Π(2)

q (ϑ))t. This operator acts on functions ψ⊥ satisfying the
gauge-periodic condition T⊥,q(λ)ψ⊥ = ψ⊥ for all λ ∈

√
2π Z2 with

T⊥,q(v)ψ⊥(x) := ei q
2 (v1x2−v2x1)ψ⊥(x+ v), v ∈ R2. (5.0.6)

The following result is well known, even for more general lattices, see for example
[TS13, Proposition 6.1]. We include the proof for the sake of completeness, adding the
treatment of the perturbation by ϑ.

Lemma 5.0.2. For every q ∈ N, the spectrum of the operator Π⊥,q(ϑ)2 consists of the
isolated eigenvalues Eq(k) := (2k + 1)q, k ∈ N0. Each of Eq(k) is q-fold degenerate.

Proof. Since [Π(1)
q (ϑ),Π(2)

q (ϑ)] = −iq, the creation and annihilation operators

a(ϑ) := 1√
2q
(
Π(1)
q (ϑ) − iΠ(2)

q (ϑ)
)
, a∗(ϑ) := 1√

2q
(
Π(1)
q (ϑ) + iΠ(2)

q (ϑ)
)

(5.0.7)

satisfy [a(ϑ), a∗(ϑ)] = 1 and it is easy to show that

Πq(ϑ)2 = q (2 a∗(ϑ)a(ϑ) + 1). (5.0.8)

From this, we read off the formula for Eq(k).
The rest of the proof is devoted to the statement about the degeneracy. First, with

the help of the creation and annihilation operators, it is easy to show that the degeneracy
of Eq(k) is equal to that of Eq(0) for all k ∈ N0. Therefore, it is sufficient to determine
the degeneracy of Eq(0). By (5.0.8), ker(Π2

⊥,q(ϑ) − q) equals ker(a(ϑ)) so it suffices to
determine the latter. A straightforward calculation shows that

e
q
4 |x⊥− 2

q

√
2πJϑ|2

a(ϑ) e− q
4 |x⊥− 2

q

√
2πJϑ|2 = − i√

2q [∂x1 − i∂x2 ], J :=
( −1
1

)
.

Therefore, the property ψ⊥ ∈ ker a(ϑ) is equivalent to the function ξ := e
q
4 |x⊥− 2

q

√
2πJϑ|2

ψ⊥
satisfying ∂x1ξ− i∂x2ξ = 0. If we identify z = x1 + ix2 ∈ C, then Jϑ = i(ϑ1 + iϑ2) and this
immediately implies that the complex conjugate function ξ solves the Cauchy-Riemann
differential equations, whence it is entire. We define the entire function

Θ(z) := e−2izReϑ e− q
2π

(z− 2πi
q
ϑ)2

ξ

(√ 2
π
z

)
.

A tedious calculation shows that the gauge-periodicity of ψ⊥ is equivalent to the relations

Θ(z + π) = Θ(z), (5.0.9)
Θ(z + iπ) = e−2πϑ e−2iqz eqπ Θ(z). (5.0.10)

Therefore, it suffices to show that the space of entire functions Θ which obey (5.0.9) and
(5.0.10) is a vector space of dimension q. We claim that (5.0.9) implies that Θ has an
absolutely convergent Fourier series expansion of the form

Θ(z) =
∑
k∈Z

ck e2ikz. (5.0.11)
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To prove this, we first note that, for fixed imaginary part x2, we may expand Θ in an
absolutely convergent series Θ(z) = ∑

k∈Z ak(x2)e2ikx1 with

ak(x2) = 1
π

� π

0
dx1 e−2ikx1 Θ(x1 + ix2).

By the Cauchy-Riemann equations, it is easy to verify that a′
k = −2k ak. Therefore,

the number ck := e2kx2 ak(x2) is independent of x2 and provides the expansion (5.0.11).
Furthermore, (5.0.10) implies that ck+q = e−π(2k+q)e2πϑck. Therefore, the series (5.0.11)
is fully determined by the values of c0, . . . , cq−1 and we conclude that ker a(ϑ) is a q-
dimensional vector space.

Proof of Proposition 5.0.1. As mentioned before, it suffices to prove the proposition for
B = 1. It is easy to verify that for any ϑ ∈ [0, 1)3 the spectrum of (Πq(ϑ)(3))2 consists
of the simple eigenvalues 2π (p + ϑ3)2 with p ∈ Z. Since Πq(ϑ)(3) and Π⊥,q(ϑ) commute,
Lemma 5.0.2 implies the existence of an orthonormal basis of eigenvectors for Πq(ϑ)2 of
the form ψk,m⊥ (x⊥)ψϑ,p3 (x3) with k ∈ N0, m = 1, . . . , q and p ∈ Z, corresponding to the
eigenvalue Eq,1,ϑ(k, p). This proves the formulas (5.0.4) and (5.0.5).
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Chapter 6

The Low Lying Spectrum of
KT,A − V via a Combes–Thomas
Estimate

6.1 Introduction

In this chapter, we are going to perform a Combes–Thomas estimate for the resolvent
kernel of the operator KT −V and thereby prove that its resolvent kernel is exponentially
decaying in an integral sense. Since this analysis requires quite some effort, we should
spend a few lines discussing the purpose of this chapter.

First and foremost, this extends the analysis presented in the work [DHM21], which
is included in this thesis in Chapter 2. In Section 2.7 of that chapter (which is [DHM21,
Appendix A]), we prove asymptotic formulas for the lowest eigenvalue of the operator
KT,A − V , the corresponding eigenfunction, and the spectral gap above the ground state
in the case of the constant magnetic field potential A(x) = 1

2B ∧ x. We emphasize that
the proof of Proposition 2.7.1 presented in Chapter 2 is valid only if V has a sign. More
precisely, we assume there that V ⩾ 0. The reason is that the analysis is based on the
Birman–Schwinger correspondence for the Birman–Schwinger operator V 1/2(KT−λ)−1V 1/2

at the eigenvalue λ of KT − V . This operator is self-adjoint only if V has a sign and the
self-adjointness is essential for the proof presented there. For example, it allows for a
variational characterization of eigenvalues, which is heavily used. In Section 2.7, we state
an explicit reference to this thesis and, in fact, to this chapter, and announce that the
result of Proposition 2.7.1 does also hold if the assumption V ⩾ 0 is dropped. The proof
of this claim is the present chapter.

Secondly, the Combes–Thomas estimate enables us to prove exponential localization
of general eigenfunctions corresponding to isolated eigenvalues of KT − V , which is a
generalization of what has been proven in [FHSS12, Appendix A]. There, this result is
shown for the eigenfunction of KTc − V corresponding to the eigenvalue zero. In the
situation of dealing with a zero eigenvalue, the analysis is considerably simpler since one
can use explicit expansion formulas for the hyperbolic tangent to explicitly obtain bounds
on the resolvent kernel of KT in terms of the resolvent kernel of the Laplacian, which in
d = 3 is explicit. It should be noted that it would suffice to have an exponential bound for
the resolvent kernel of KT (without V ). However, unless this is proven with a completely
different method (other than a Combes–Thomas estimate), I don’t expect the analysis to
simplify much.

The third reason why I think this analysis is worth to be written up is that there is still
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only a poor amount of mathematical literature about the BCS theory of superconductivity
and to the best of my knowledge there is no Combes–Thomas estimate executed for the
operator KT − V anywhere in the literature. In particular, most of the Combes–Thomas
estimates one finds in the literature are proven for the (magnetic) Laplacian and in trace
ideal sense — not with kernels — so we present a technique rarely used. Of course, in
the end, KT − V is a Schrödinger-type operator like −∆ − V and many results carry
over to the case of KT “just” because of this fact. However, in practice, it turns out that
the slight difference of dividing p2 − µ by the hyperbolic tangent does cause technical
difficulties and headaches to the one having to deal with them. On top of that, we
have to face the difficulty that arises when dealing with magnetic fields, as is the case if
anybody in the future wants to come closer to proving the Meißner effect. In this chapter,
we perform a phase approximation for the resolvent of KT,A − V and thereby develop
a detailed understanding of the method that we already discussed for the Laplacian in
Sections 2.4.3.1 and 3.4.2.1 for different magnetic fields. In my opinion, this chapter is
therefore a good occasion to get familiar with this very central operator KT,A − V and
gain some confidence in

1. dealing with the (pseudo-)differential operator KT with symbol

KT (p) := p2 − µ

tanh(p2−µ
2T )

.

Recall that the spectrum of KT equals [2T,∞) if µ ⩾ 0 and [|µ|/ tanh(|µ|/(2T )),∞)
if µ < 0. Figure 1 shows the shape of the symbol KT (p) for µ > 0.

2T

µ

KT (p) =
p2 − µ

tanh(p
2−µ
2T )

Figure 6.1: The shape of the differential symbol KT (p).

2. performing magnetic field approximations with the phase approximation method in
the spirit of [N02, Section 5].

Some ideas and concepts of what will be presented here are contained in the unpub-
lished notes [D] by Andreas Deuchert, to whom I once more express my gratitude.

We work under the following assumptions:

• The chemical potential µ is an arbitrary real number, µ ∈ R.

• T is a fixed positive temperature, T > 0.

• The interaction potential V ∈ L2(R3) satisfies (1 + | · |2)V ∈ L∞(R3).
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T

σ(KT − V )

Tc

2Tσess

Figure 6.2: The spectrum of KT − V as a function of T .

We remark that such a potential in particular preserves the essential spectrum. The
spectrum of KT − V typically looks like Figure 6.1 shows.

• A satisfies:

Assumption 6.1.1. A : R3 → R3 is a measurable magnetic vector potential, which is
three times weakly differentiable and whose derivatives DkA — not A itself — belong to
L∞(R3;R3), k = 1, 2, 3. We note that such an A is Lipschitz continuous. We also assume
that A(0) = 0.

Remark 6.1.2. The situation we have in mind here is the one in Chapter 3, namely that
the magnetic potential consists of a sum of a bounded periodic potential and a potential
corresponding to the constant magnetic field. There is no assumption on periodicity since
the analysis presented here would be applied in the relative coordinate of BCS theory,
where periodicity is irrelevant. Let us comment a bit on the last assumption A(0) = 0. Of
course, this assumption is satisfied for the constant magnetic field potential A(x) = 1

2B∧x,
where B ∈ R3 is fixed. Moreover, in the periodic setting of BCS theory in Chapter 3, we
can always find a gauge such that the periodic part A has mean zero, i.e.

1
|Q|

�
Q

dy A(y) = 0.

This means that we can estimate

|A(x)| ⩽ 1
|Q|

�
Q

dy |A(x) −A(y)| ⩽ ∥DA∥∞
1

|Q|

�
Q

dy |x− y| ⩽ C ∥DA∥∞(1 + |x|).

A similar behavior of A is achieved by our assumption A(0) = 0.

In this section, we also denote the free momentum operator by p := −i∇. The magnetic
operator KT,A is then defined as KT,A := KT (−i∇ + A).

The operator KT,A −V acts in the usual magnetic Soboblev space H2
A(R3;R3), where

Hm
A (R3) :=

{
f ∈ L2(R3) : (−i∇ + A)νf ∈ L2(R3) ∀ν ∈ N3

0, |ν|1 ⩽ m
}
.
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The resolvent of KT,A − V at z ∈ ρ(KT,A − V ) is denoted by

Rz,V
T,A := 1

z − (KT,A − V ) (6.1.1)

and is a bounded operator L2(R3) → H2
A(R3). If either A = 0 or V = 0, we omit the

corresponding index, i.e., we write Rz,V
T := Rz,V

T,0 , as well as Rz
T,A := Rz,0

T,A and Rz
T := Rz,0

T,0.
We show in the next section that its kernel exists and we denote it by

Gz,VT,A(x, y) := 1
z − (KT,A − V )(x, y), x, y ∈ R3. (6.1.2)

If either A = 0 or V = 0, we likewise abbreviate Gz,VT , as well as GzT,A and GzT .
The main results we will prove in this chapter are

1. Theorem 6.2.11, which proves the exponential decay estimate on the resolvent kernel
of KT − V ,

2. Proposition 6.3.1, which provides the exponential localization of eigenfunctions cor-
responding to isolated eigenvalues of KT − V below 2T ,

3. Theorem 6.5.1, which finally proves the stability and asymptotic expansions for the
eigenvalues and spectral projections of KT,A − V .

Our strategy of proof relies on a Combes–Thomas estimate for the resolvent kernel of
KT − V , which means that we are going to prove that there is a δ > 0 such that

sup
x∈R3

(�
R3

dy eδ |x−y| |Gz,VT (x, y)|2
)1/2

< ∞. (6.1.3)

We refer to this result as exponential decay of the resolvent kernel in (2,∞)-norm sense.
Roughly speaking, the idea of such a result comes from the analogy of the Fourier transform
f̂ of a function f being exponentially decaying if f has an analytic extension to a complex
strip around the real axis. In a similar spirit, we will extend the symbol KT (p) to certain
momenta p+ λa where λ ∈ C and a ∈ R3 is a unit vector. Working through all technical
difficulties that arise, this enables us to prove (6.1.3).

On the basis of the exponential decay of the resolvent kernel, we can use the technique
that has already been used in [FHSS12] to prove exponential localizaton of an arbitrary
eigenfunction of KT − V . Furthermore, we use the exponential estimate for the resol-
vent kernel to prove an asymptotic estimate for the eigenvalues of KT,A − V and their
corresponding spectral projections.

As usual C denotes a generic positive constant that is allowed to change from line to
line. We allow it to depend on the fixed quantities like µ, V , and T . Further dependen-
cies are indexed. It is needless to say that the constants in our theory deteriorate if T
approaches zero. In particular, in this chapter, we regard A as a variable, whose influence
we shall keep track of precisely.

Remark 6.1.3. I should say that the mathematics of this chapter could (and would, in a
paper) be carried out in a smarter and more efficient way. The style in which it is written
is the “students way” so to speak. I decided against optimizing for the most efficient
presentation for the sake of clarity.
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6.2 Combes–Thomas Estimate

The Combes–Thomas estimate consists of several steps. First, we are going to prove an
estimate on the resolvent kernel of KT − V . In the second step, we want to extend this
to the analytic family Kλa

T − V for certain λ ∈ C and a ∈ R3 a unit vector. This requires
several steps of preparation. First, we need to prove a resolvent estimate for (p+λa)2 −µ.
Then, we need to make sense of the operator Kλa

T − V as an analytic family of type (A)
on H2(R3). To prove a resolvent estimate for this analytic family, we need to extend the
integral representation in Lemma 2.6.4 to non-self-adjoint operators. Using this, we finally
are able to provide the desired resolvent estimate for Kλa

T − V .
The third step is then to interpret the perturbation by λa of p as a “non-unitary

translation operator” in Fourier space, which is an exponential factor with a real exponent.
In this way, we can relate the resolvent kernel of the analytic family back to the original
resolvent kernel, which essentially amounts to an exponential tilt of the resolvent kernel.
Then, for suitably chosen λ and a the aforementioned estimate on Kλa

T − V provides us
with an exponential bound for the resolvent kernel of KT − V in the sense of (6.1.3).

6.2.1 Explicit resolvent estimates for KT − V

Our starting point is the result [S82, Corollary A.1.2], which for our case reads as follows.

Lemma 6.2.1. Let 1 ⩽ p < ∞. If A is a bounded operator on Lp(R3) and A is bounded
also from Lp(R3) to L∞(R3), then there is a measurable function KA on R3 × R3 obeying

∥A∥p,∞ := sup
x∈R3

(�
R3

dy |KA(x, y)|q
)1/q

< ∞, (6.2.1)

where q = p
p−1 is the Hölder conjugate of p, so that, for any f ∈ Lp(R3),

(Af)(x) =
�
R3

dy KA(x, y) f(y). (6.2.2)

Conversely, if A : Lp(R3) → Lp(R3) has an integral kernel KA in the sense of (6.2.2)
obeying (6.2.1), then A is a bounded map from Lp(R3) to L∞(R3)

We also point out the references given in [S82] to Korotkov as well as Dunford and
Pettis for this result. Operators satisfying Lemma 6.2.1 are also called Carleman operators.

For us, Lemma 6.2.1 and the fact that H2(R3) embeds continuously into L∞(R3) imply
the existence of the resolvent kernel Gz,VT,A in (6.1.2). This is enough at this point since all
further estimates and dependencies are computed explicitly.

Lemma 6.2.2. Let V ∈ L∞(R3). For any z ∈ ρ(KT − V ), the resolvent Rz,V
T of KT − V

at z is a bounded operator from L2(R3) to L∞(R3) with

∥Rz,V
T ∥2,∞ ⩽ C

[
1 + 1

dist(z, σ(KT − V ))

]
.

Proof. Let us write ℓ := dist(z, σ(KT − V )). By the resolvent equation, we have

Rz,V
T = Rz

T − Rz
T V Rz,V

T .
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Since ∥Rz,V
T ∥∞ = ℓ−1 and V ∈ L∞(R3), it is enough to show that Rz

T is a bounded
operator from L2(R3) to L∞(R3) with a suitable norm bound. To show this, let us utilize
the first resolvent equation for ν ∈ ρ(KT ) arbitrary but fixed, which implies

Rz
T = Rν

T + (z − ν) Rν
T Rz

T .

We note that σ(KT ) ⊆ σ(KT − V ), since the essential spectrum is preserved by our
assumptions on V , and this implies

dist(z, σ(KT )) = inf
{

|z − η| : η ∈ σ(KT )
}
⩾ dist(z, σ(KT − V )) = ℓ.

Hence, ∥Rz
T ∥∞ ⩽ ℓ−1. It remains to provide a bound on the (2,∞)-norm of Rν

T . For this,
use the resolvent equation again to get that

Rν
T = (ν − (p2 − µ))−1 + (ν − (p2 − µ))−1

[
KT − (p2 − µ)

]
Rν
T

As we already know, ∥Rν
T ∥∞ ⩽ dist(ν, σ(KT ))−1. We claim ∥KT − (p2 − µ)∥∞ = 2µ

1−e−βµ .
To see this, we show that the function f(t) = t

tanh( t
2T

) − t = 2t
et/T −1 is monotonically

decreasing on t ⩾ −µ. To see this, we calculate its derivative

f ′(t) = 2
(et/T − 1)2

[
et/T − 1 − t

T
· et/T

]
.

By l’Hôpital applied two times, we see that f ′(0) = −1 < 0. Outside t = 0, it suffices
to consider g(t) = et/T − 1 − t

T et/T and show that it is nonpositive. We have g(0) = 0
and g′(t) = − t

T 2 et/T . Hence, g′(t) > 0 if t < 0 and g′(t) < 0 if t > 0. We conclude that
g(t) ⩽ 0 and thus f ′(t) ⩾ 0 for all t ⩾ −µ. It follows that f takes its maximum at the left
boundary, proving the claim.

It remains to provide a bound on the (2,∞)-norm of (ν − (p2 − µ))−1. Since ν < µ,
we see that (ν − (p2 − µ))−1 is given by the convolution with its L2-symbol. Hence, its
(2,∞)-norm is given by∥∥∥∥ 1

ν − (p2 − µ)

∥∥∥∥2

2,∞
=
�
R3

1
|ν + µ− |p|2|2

dp < ∞.

6.2.2 Analytic extension

6.2.2.1 Explicit resolvent estimate for (p+ λa)2 − µ

Lemma 6.2.3. Let z ∈ ρ(p2), a ∈ R3 with |a| = 1 and let λ ∈ Brz (0) ⊆ C with

rz = min
{

1, 1
2

[√ 2
|z| − Re z + 1

dist(z, σ(p2))

]−1}
.

Then, z ∈ ρ((p+ λa)2) and∥∥∥∥ 1
z − (p+ λa)2

∥∥∥∥
∞

⩽
2

dist(z, σ(p2)) .

Proof. We have

z − (p+ λa)2 =
(
1 − (2λap+ λ2)(z − p2)−1

)
(z − p2)

274 PhD Thesis



CHAPTER 6. THE LOW LYING SPECTRUM OF KT,A − V

and claim that∥∥∥∥(2 ap+ λ) 1
z − p2

∥∥∥∥
∞

⩽

√
2

|z| − Re z + |λ| 1
dist(z, σ(p2)) ⩽

1
2rz

. (6.2.3)

If this is true, then |λ| ∥(2 ap+ λ)(z − p2)−1∥∞ ⩽ 1
2 so that, by the Neumann series,∥∥∥∥ 1

1 − (2 apλ+ λ2)(z − p2)−1

∥∥∥∥
∞

⩽ 2,

whence the lemma is proven. It remains to show (6.2.3). Here, the only difficulty is to
estimate, for some ψ ∈ L2(R3),

∥ap(z − p2)−1ψ∥2
2 = ⟨(z − p2), (ap)2 (z − p2)−1ψ⟩

⩽ ⟨ψ, (z − p2)−1p2(z − p2)ψ⟩ =
�
σ(p2)

dµψ(t) t

|z − t|2
.

Here, we have estimated |ap|2 ⩽ p2 by Cauchy–Schwarz for p ∈ R3 in Fourier space. We
claim that the function f(t) = t

(Re z−t)2+(Im z)2 , t ⩾ 0 has a unique maximum at t = |z|
with value

f(|z|) = |z|
(Re z − |z|)2 + (Im z)2 = 1

2(|z| − Re z) .

To see this note that f(t) → 0 as t → ∞, f(|z|) > 0 and f(0) = 0. Hence, there must
exist a maximum. Since f ′(t) = 0 if and only if t = |z|, it must be located at t = |z|. We
readily conclude

∥ap (z − p2)−1∥∞ ⩽
√
f(|z|) =

√
1

2 (|z| − Re z) . (6.2.4)

This proves (6.2.3).

6.2.2.2 Defining Kλa
T for nonreal λ

Lemma 6.2.4. Let a ∈ R3 with |a| = 1 and let

Sµ,T :=
{
z ∈ C : | Im z|2 < 1

2
[√

µ2 + (2πT )2 − µ
]}

⊆ C. (6.2.5)

Then, for each λ ∈ Sµ,T , the operator

Kλa
T := (−i∇ + λa)2 − µ

tanh
(

(−i∇+λa)2−µ
2T

) (6.2.6)

is well-defined on H2(R3) as a Fourier multiplier.

Proof. We have to verify that the hyperbolic tangent has no zero in the claimed domain
when the numerator has not. As we know, the zeros of tanh are those of sinh, namely
0 = sinh( z

2T ) = 1
2e−z/T (ez/T − 1) if and only if zn = 2πinT for some n ∈ Z. Note that

we need to exclude z = 0 since here the numerator vanishes as well and the symbol is
bounded. Hence, we have to verify that the equation

(p+ λa)2 − µ = 2πinT (6.2.7)
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has no solution λ in Sµ,T for any n ∈ Z \ {0} and any p ∈ R3. By choosing a suitable
basis on R3, we may assume that a = e1. If we assume for contradiction that (6.2.7) had
a solution, then separating real and imaginary parts yields the equations

p2 + 2xp1 + x2 − y2 − µ = 0, 2yp1 + 2xy − 2πnT = 0, (6.2.8)

where λ = x + iy. Without loss, we may assume that y ̸= 0 since otherwise the second
equation in (6.2.8) simplifies to 2πnT = 0, which has no solution at all and we have
finished. We solve the second equation in (6.2.8) for p1, insert this into the first equation,
and find [πnT

y
− x

]2
+ p2

2 + p2
3 + 2x

[πnT
y

− x
]

+ x2 − y2 = µ

or, put differently, (πnT
y

)2
+ p2

2 + p2
3 − y2 − µ = 0.

This equation cannot have any solution provided we can guarantee for(πnT
y

)2
− y2 − µ ⩾

(πT
y

)2
− y2 − µ > 0.

But this is true on Sµ,T , since here y4 + µy2 − (πT )2 < 0.

6.2.2.3 Integral representation for Kλa
T

In Lemma 2.6.4, we have proven an integral representation for the operator KT that
exploits the fact that the Laplacian is bounded from below. We need to extend this result
now to also hold for Kλa

T with nonreal λ. The path for the integral representation has
already been introduced in Definition 2.6.3. We restate it here for convenience.

Definition 6.2.5 (Speaker path). Let R > 0 and α ⩾ 0. Using the notation β := T−1,
define the following complex paths

γ1(t) := πi
2β + (1 + i)t,

γ2(t) := πi
2β − (α+ 1)t,

γ3(t) := − πi
2β t− (α+ 1),

γ4(t) := − πi
2β − (α+ 1)(1 − t),

γ5(t) := − πi
2β + (1 − i)t,

t ∈ [0, R],

t ∈ [0, 1],

t ∈ [−1, 1],

t ∈ [0, 1],

t ∈ [0, R].

C

γ1

γ2

γ3

γ4

γ5

−α

− α− 1

R

πi

2β

− πi

2β

πi

2β
+ (1 + i)R

− πi

2β
+ (1− i)R

The speaker path is defined as the union of paths γi, i = 1, . . . , 5, with γ1 taken in reverse
direction, i.e.,

α,R := −̇ γ1 +̇ γ2 +̇ γ3 +̇ γ4 +̇ γ5.

We also let α := ⋃
R>0 α,R.
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Corollary 6.2.6. Define

r := inf
z∈µ+

min
{

1, 1
2

[√ 2
|z + µ| − Re(z + µ) + 1

dist(z + µ, σ(p2))

]−1}
. (6.2.9)

Then, for any a ∈ R3 with |a| = 1 and any λ ∈ Br
(0), we have µ+ ⊆ ρ((p + λa)2 − µ)

and

sup
z∈µ+

∥∥∥∥ 1
z − (p+ λa)2

∥∥∥∥
∞

⩽ C.

Proof. By construction of the speaker path, r > 0. Hence, we have the conclusion of
Lemma 6.2.3 for every z ∈ µ+ . Furthermore, on the speaker path, we always have
Im z ⩾ πT

2 or Re z+µ+ = −1, i.e., dist(µ+ , σ(p2))−1 ⩽ C. Hence, the bound follows.

For the sake of convenience, we restate Lemma 2.6.4 here, whose extended proof we
have given in Lemma 2.8.5.

Lemma 6.2.7. Let α ⩾ 0 and let H : D(H) → H be a self-adjoint operator in a separable
Hilbert space H with H ⩾ −α. Then, we have

H

tanh(βH2 )
= H + lim

R→∞

�
α,R

dz
2πi

(
z

tanh(βz2 )
− z

) 1
z −H

,

where α,R is the speaker path from Definition 2.8.4. The limit exists in operator norm.

We now provide an analytic version of Lemma 6.2.7 The proof of the following Lemma
6.2.8 is a bit more complicated since (p+λa)2 −µ is not self-adjoint but only normal. The
drawback is that we restrict to the operator (p + λa)2 − µ instead of a general operator,
as had been the case in the results mentioned.

Lemma 6.2.8. Let λ ∈ Sµ,T ∩Br
(0) with r from (6.2.9) and Sµ,T from (6.2.5). Then,

for any a ∈ R3 with |a| = 1, the identity

(p+ λa)2 − µ

tanh( (p+λa)2−µ
2T )

− (p+ λa)2 − µ = lim
R→∞

�
µ+,R

dz
2πi

(
z

tanh( z
2T ) − z

) 1
z + µ− (p+ λa)2 ,

holds in the operator norm topology. Here µ+,R is the speaker path from Definition 6.2.5.
The limit exists in operator norm and defines a uniformly bounded operator in λ.

Proof. The function fT (z) := z
tanh( z

2T
) − z = 2z

ez/T −1 is an analytic function in the open
domain C \ 2πT iZ̸=0. Let us write Hλ := (p+ λa)2 − µ for short. We first prove that the
limit

gT (Hλ) := lim
R→∞

�
µ+,R

dz
2πi fT (z) 1

z −Hλ

exists in operator norm and defines a bounded operator.
To do this, we investigate the tails of the paths γ1 and γ5. For example, we have to

investigate the operator norm of
� ∞

R

dt
2πi

2γ1(t)
eβγ1(t) − 1

1
γ1(t) −Hλ

γ′
1(t).
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The following simple estimates

|γ1(t)| ⩽ π

2β +
√

2 t ⩽ C t, |γ′
1(t)| =

√
2, Re γ1(t) = t, (6.2.10)

hold for R large enough. Furthermore, since |λ| ⩽ r , (6.2.10) and Corollary 6.2.6 imply∥∥∥∥� ∞

R

dt
2πi

2γ1(t)
eβγ1(t) − 1

1
γ1(t) −Hλ

γ′
1(t)

∥∥∥∥
∞

⩽ C

� ∞

R
dt t

eβt − 1 ⩽ C e− β
2R.

The last inequality follows by taking R so large that 1 ⩽ 1
2eβt and te− β

2 t ⩽ 1
2 for all t ⩾ R.

The contribution of γ5 is estimated in a similar fashion. This proves operator norm
convergence of the limit and the fact that gT (Hλ) is a bounded operator with uniform
norm bound in λ.

Let K ⩾ 1 and choose ψ ∈ ran(1SK
(Hλ)), where SK := {z ∈ C : Re z ⩽ K}. Take

R ⩾ K + 1 and close the speaker path by the contour γR(t) := R + (R + π
2β )it, where

t ∈ [−1, 1]. We recall that fT is an analytic function in the open domain C \ 2πT iZ̸=0, in
particular in the interior of the closed path µ+,R+̇γR. Hence, for each φ ∈ L2(R3), by
Cauchy’s integral theorem and the spectral theorem for normal operators, we obtain

⟨φ, [Kλa
T −Hλ]ψ⟩ = ⟨φ, fT (Hλ)ψ⟩ =

�
µ+,R+̇γR

dz
2πi fT (z) ⟨φ, (z −Hλ)ψ⟩. (6.2.11)

When we investigate the contribution from γR, we have∣∣∣∣�
γR

dz
2πi fT (z)⟨φ, (z −Hλ)−1ψ⟩

∣∣∣∣ ⩽ � 1

−1

dt
π

|γR(t)|
|eβγR(t)| − 1

|⟨φ, (γR(t) −Hλ)−1ψ⟩| |γ′
R(t)|.

(6.2.12)

First of all, since ψ ∈ ran(1SK
(Hλ)), we have

|⟨φ, (γR(t) −Hλ)−1ψ⟩| ⩽
∥∥∥∥ 1
γR(t) −Hλ

1SK
(Hλ)

∥∥∥∥
∞

∥φ∥2 ∥ψ∥2.

Let us give a bound on ∥(γR(t) −Hλ)−1
1SK

(Hλ)∥∞. For η ∈ L2(R3) consider∥∥∥∥ 1
γR(t) −Hλ

1SK
(Hλ) η

∥∥∥∥2

2
=
�
σ((p+λa)2−µ)

1
|γR(t) − s|2

1SK
(s) dµη(s),

where the integral has to be understood as a Lebesgue integral on C. Now, the function
of the integrand is bounded as follows

1
|γR(t) − s|2

= 1
(R− Re s)2 + (Im γR(t) − Im s)2 ⩽

1
1 + (Im γR(t) − Im s)2 ⩽ 1.

Hence, supt∈[−1,1] ∥(γR(t) − Hλ)−1
1SK

(Hλ)∥∞ ⩽ 1. In combination with (6.2.12), we
obtain

sup
∥φ∥2=1

∣∣∣∣�
γR

dz
2πi fT (z)⟨φ, (z −Hλ)−1ψ⟩

∣∣∣∣ ⩽ C
R2

eβR − 1 ∥ψ∥2
R→∞−−−−→ 0.

This proves that (6.2.11) converges as R → ∞ uniformly in φ ∈ L2(R3) and we obtain

fT (Hλ)ψ = gT (Hλ)ψ. (6.2.13)

In particular, fT (Hλ) is a bounded operator on every subspace ran(1SK
(Hλ)) with uniform

norm bound in K.
Since 1SK

(Hλ) → 1 strongly and ⋃K>0 ran(1SK
(Hλ)) is dense in L2(R3), by standard

methods for unique continuation of bounded operators, we get (6.2.13) for all ψ ∈ L2(R3).
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6.2.2.4 KT − V extends to an analytic family

Theorem 6.2.9. Let a ∈ R3 with |a| = 1 and let V ∈ L2(R3). Then the operator family
{Kλa

T − V }λ, defined on H2(R3), is strongly continuous on Sµ,T ∩ Br
(0) and analytic

of type (A) on Sµ,T ∩ Br (0). Here, Kλa
T is given by (6.2.6), Sµ,T by (6.2.5), and r by

(6.2.9).

Note. As above in the case of (p+ λa)2, the operator Kλa
T is not self-adjoint for nonreal

λ, but only normal. However, the operator Kλa
T − V has none of these properties.

Proof. We first show that Kλa
T − V is a well-defined closed operator on H2(R3) for every

λ ∈ Sµ,T ∩ Br (0). By Lemma 6.2.4, we know that Kλa
T is a well-defined operator on

H2(R3) for every λ ∈ Sµ,T . Call fT (z) := z
tanh( z

2T
) − z = 2z

ez/T −1 . Then, we rewrite

Kλa
T = −∆ − µ+ 2λ a (−i∇) + λ2 +M(λ)

with M(λ) := fT ((−i∇+λa)2 −µ). From Lemma 6.2.8, we know that M(λ) is a uniformly
bounded operator for λ ∈ Sµ,T ∩Br

(0). Hence, when we define

W (λ) := −µ+ 2λ ap+ λ2 +M(λ) − V,

we get

Kλa
T − V = −∆ +W (λ). (6.2.14)

We claim that p and V are −∆-bounded with −∆-bound zero. This is true for V because
V (1 + p2)−1 is a Hilbert-Schmidt operator, thus compact and hence p2-bounded with p2-
bound 0. For any ε > 0 and ψ ∈ H2(R3), we also have ∥pψ∥2

2 ⩽ ε∥p2ψ∥2
2+(4ε)−1∥ψ∥2

2, since
p is self-adjoint. Hence, W (λ) is −∆-bounded with −∆-bound 0 as well. In particular,
D(Kλa

T −V ) = H2(R3). It follows that Kλa
T −V is a well-defined densely defined operator

on H2(R3).
We claim that Kλa

T − V is closed for each λ ∈ Sµ,T ∩ Br
(0). To prove this let

{ψn}n ⊆ D(Kλa
T −V ) = H2(R3) be convergent in L2(R3) to some ψ ∈ L2(R3) and assume

that there is η ∈ L2(R3) such that (Kλa
T − V )ψn → η in L2(R3). Then, for every ε > 0,

∥(−∆)(ψn − ψm)∥2 ⩽ ∥(−∆ +W (λ))(ψm − ψn)∥2 + ε ∥(−∆)(ψn − ψm)∥2

+ Cε ∥ψm − ψn∥2

Taking ε < 1, this shows that (1 − ε)∥(−∆)(ψn − ψm)∥ tends to 0 as m,n → ∞. We
conclude that {ψn}n converges in H2(R3), which implies that ψ ∈ H2(R3) = D(Kλa

T −V ).
Furthermore, using −∆-boundedness of W (λ) again, we obtain

∥η − (−∆ +W (λ))ψ∥2 = lim
n→∞

∥(−∆ +W (λ))(ψn − ψ)∥2

⩽ (1 + ε) lim
n→∞

∥(−∆)(ψn − ψ)∥2 + Cε lim
n→∞

∥ψn − ψ∥2 = 0

so that η = (−∆ +W (λ))ψ. This proves that Kλa
T − V is closed.

To prove that −∆ +W (λ) is an analytic family of type (A), we have to further prove
that (see [RS78, p.16] or [K66, p. 375])

(i) −∆ +W (λ) has non-empty resolvent set1 for each λ ∈ Sµ,T ∩Br (0),
1We remark that closedness is necessary but not sufficient for this condition.
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(ii) {−∆ +W (λ)}λ is strongly analytic on Sµ,T ∩Br (0).

To prove (i), we write, for some z ∈ C \ [0,∞):

z + ∆ −W (λ) =
(
1 −W (λ) 1

z + ∆
)
(z + ∆).

We know that z + ∆ is invertible from H2(R3) to L2(R3). Hence, it suffices to prove that
∥W (λ)(z+ ∆)−1∥∞ ⩽ 1

2 for suitably chosen z. To see this, use that W (λ) is −∆-bounded
with −∆-bound 0. This means that for all ψ ∈ H2(R3), we have

∥W (λ)ψ∥2 ⩽
1
4 ∥(−∆)ψ∥2 + C ∥ψ∥2.

Hence, ∥∥∥W (λ) 1
z + ∆

∥∥∥
∞

⩽
1
4
∥∥∥(−∆) 1

z + ∆
∥∥∥

∞
+ C

∥∥∥ 1
z + ∆

∥∥∥
∞
. (6.2.15)

The function t 7→ t
z−t on [0,∞) is bounded by 1 in absolute value provided Re z ⩽ 0. For,

the modulus function t [(Re z − t)2 + (Im z)2]−1/2 tends to 1 as t → ∞, is 0 at t = 0 and
has a maximum at t = |z|2

Re z if and only if Re z > 0. For Re z = 0, the bound is trivial.
Hence, choosing Im z ⩾ 4C ensures that ∥W (λ)(z + ∆)−1∥∞ ⩽ 1

2 . This proves (i). Part
(ii) is trivial for all terms in W (λ) except for M(λ). By [RS80, Theorem VI.4], it suffices
to prove that M(λ) is weakly analytic. The expectation value reads

⟨ψ,M(λ)ψ⟩ =
�
R3

dp fT ((p+ λa)2 − µ) |ψ̂(p)|2.

Now, the claim follows from Morera’s theorem and Fubini’s theorem provided we can show
that ⟨ψ,M(λ)ψ⟩ is continuous. Let ψ ∈ H2(R3) and let λ, λ0 ∈ Sµ,T ∩ Br (0) be given.
Then, Lemma 6.2.8 implies

⟨ψ,M(λ)ψ⟩ − ⟨ψ,M(λ0)ψ⟩ =

=
�
R3

dp
�
µ+

dz
2πi fT (z) 1

z −Hλ(p)
[
(p+ λa)2 − (p+ λ0a)2

] 1
z −Hλ0(p) |ψ̂(p)|2.

Here, we used again the notation Hλ(p) = (p+ λa)2 − µ. Since

(p+ λa)2 − (p+ λ0a)2 = 2(λ− λ0)ap+ (λ− λ0)(λ+ λ0),

and |ap| ⩽ |p| by the Cauchy-Schwarz inequality on R3, as well as |λ+λ0| ⩽ 2r , we infer

|⟨ψ,M(λ)ψ⟩ − ⟨ψ,M(λ0)ψ⟩| ⩽ 2 |λ− λ0| sup
z∈µ+

∥∥∥∥ 1
z −Hλ

∥∥∥∥
∞

sup
z∈µ+

∥∥∥∥ 1
z −Hλ0

∥∥∥∥
∞

×
�
µ+

d|z|
2π |fT (z)|

�
R3

dp (|p| + r)|ψ̂(p)|2.

Here, d|z| = dt |z′(t)|. Since ψ ∈ H2(R3), the latter integral is finite. The uniform operator
norm bounds are finite by Corollary 6.2.6, and since the contour integral converges, we
conclude continuity of λ 7→ ⟨ψ,M(λ)ψ⟩.
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6.2.2.5 Explicit resolvent estimates for Kλa
T − V

Theorem 6.2.10. Let V ∈ L∞(R3), z ∈ ρ(KT − V ). For all ν ∈ R, ν < −µ, define the
function

fν,V (z) := 1
dist(z, σ(KT − V )) + 2√

|ν + µ|

[
1 + 2µ+

1 − e−βµ+

][
1 + |ν − z|

dist(z, σ(KT − V ))

]
×
[
1 + ∥V ∥∞

dist(z, σ(KT − V ))

]
+
�
µ+

d|w|
2π |fT (w)| sup

w∈µ+

2
dist(w + µ, σ(p2))

× sup
w∈µ+

[√
2

|w + µ| − Re(w + µ) + 1
dist(w + µ, σ(p2))

]
.

Then, for any λ ∈ Sµ,T ∩Br
(0) ∩Brz (0) with r > 0 from (6.2.9) and

rz := 1
2

1
fν,V (z)

and a ∈ R3 with |a| = 1, the following statements are true:

(a) z ∈ ρ(Kλa
T − V ) holds and the resolvent Rz,V

T (λa) of Kλa
T − V at z satisfies

∥Rz,V
T (λa)∥∞ ⩽

2
dist(z, σ(KT − V )) .

(b) Rz,V
T (λa) is a bounded operator from L2(R3) to L∞(R3) with norm bound

∥Rz,V
T (λa)∥2,∞ ⩽ 2 ∥Rz,V

T ∥2,∞

Proof. We start with the identity

z − (Kλa
T − V ) = z − (KT − V ) +KT −Kλa

T

=
[
1 − (Kλa

T −KT )Rz,V
T

]
(z − (KT − V )).

(6.2.16)

Hence, to prove part (a), we need to show that∥∥∥(Kλa
T −KT )Rz,V

T

∥∥∥
∞

⩽
1
2 (6.2.17)

for all λ ∈ Sµ,T ∩Brz (0) ∩Br
(0). If this is true, then the Neumann series implies∥∥∥∥ 1
1 − (Kλa

T −KT )Rz,V
T

∥∥∥∥
∞

⩽ 2 (6.2.18)

and the claim follows. To see that (6.2.17) is true, let us employ the integral representation
Lemma 6.2.8 to infer

Kλa
T −KT = 2λ ap+ λ2 +

�
µ+

dw
2πi fT (w)

[ 1
w + µ− (p+ λa)2 (2λap+ λ2) 1

w + µ− p2

]
.
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We begin by bounding the last term. Recall equation (6.2.3) in the proof of Corollary
6.2.3. Since the speaker path stays away from σ(p2) uniformly for λ ∈ Br

(0) (in particular
|λ| ⩽ 1), we get that∥∥∥∥�

µ+

dw
2πi fT (w)

[ 1
w + µ− (p+ λa)2 (2ap+ λ) 1

w + µ− p2

]∥∥∥∥
∞

⩽
�
µ+

d|w|
2π |fT (w)| sup

w∈µ+

2
dist(w + µ, σ(p2))

× sup
w∈µ+

[√
2

|w + µ| − Re(w + µ) + 1
dist(w + µ, σ(p2))

]
.

Here, d|w| = dt |w′(t)|. It remains to bound apRz,V
T . To do this, we use the resolvent

equations multiple times to arrive at

apRz,V
T = ap (ν − p2 + µ)−1

[
1 + [KT − p2 + µ] Rν

T

][
1 + (ν − z) Rz

T

][
1 + V Rz,V

T

]
.

Recall the estimate in (6.2.4), whence, using ν + µ < 0, we read off the bound

∥apRz,V
T ∥∞ ⩽

1
2
√

|ν + µ|

[
1 + 2µ+

1 − e−βµ+

][
1 + |ν − z|

dist(z, σ(KT − V ))

]
×
[
1 + ∥V ∥∞

dist(z, σ(KT − V ))

]
.

Multiplying this by 2 and adding ∥λRz,V
T ∥∞ ⩽ dist(z, σ(KT − V ))−1, proves that

∥(Kλa
T −KT )Rz,V

T ∥∞ ⩽ |λ| fν,V (z).

Hence, for λ ∈ Brz (0), we conclude (6.2.17). This proves part (a). For part (b), we utilize
(6.2.16) to note that

Rz,V
T (λa) = Rz,V

T

[
1 − (Kλa

T −KT )Rz,V
T

]−1
.

It follows that the (2,∞)-norm of Rz,V
T (λa) is bounded by ∥Rz,V

T ∥2,∞ times 2, see (6.2.18).

6.2.3 Exponential estimate for KT − V

Theorem 6.2.11. Let V ∈ L2(R3) ∩ L∞(R3) and z ∈ ρ(KT − V ). Let

δ0(z) := sup
{
r > 0 : Br(0) ⊆ Sµ,T ∩Br (0) ∩Brz (0)

}
(6.2.19)

with r and rz from Theorem 6.2.10. Then, the resolvent kernel Gz,VT (x, y) in (6.1.2)
satisfies

∥Gz,VT ∥δ := sup
x∈R3

(�
R3

dy eδ |x−y| |Gz,VT (x, y)|2
)1/2

⩽ 12 · ∥Rz,V
T ∥2,∞.

for every 0 ⩽ δ < δ0(z).
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Proof. By Lemma 6.2.1, Rz,V
T (λa) possesses an integral kernel Gz,VT (λa;x, y), which satis-

fies

∥Rz,V
T (λa)∥2,∞ = sup

x∈R3

(�
R3

dy |Gz,VT (λa;x, y)|2
)1/2

< ∞.

As a first step, let us prove that for a.e. x, y ∈ R3 and λ ∈ Sµ,T ∩Br
(0)∩Brz (0), we have

Gz,VT (λa;x, y) = eiλa·(x−y) Gz,VT (x, y). (6.2.20)

To see this, let φ,ψ ∈ C∞
c (R3) and we claim that

⟨φ,Rz,V
T (λa)ψ⟩ = ⟨φ, eiλa · Rz,V

T e−iλa ·ψ⟩ (6.2.21)

holds for all λ ∈ Sµ,T ∩Br (0)∩Brz (0). Since Kλa
T −V is analytic of type (A), we infer that

⟨φ,Rz,V
T (λa)ψ⟩ is analytic2 in the open domain Sµ,T ∩ Br (0) ∩ Brz (0). The right-hand

side of (6.2.21) is an entire function of λ, since ψ and φ have compact support, by the
mean value theorem, and by dominated convergence. Since left and right side coincide
for λ ∈ R, we conclude by the identity theorem that equality holds in the whole domain
Sµ,T ∩Br (0) ∩Brz (0). On the level of kernels, (6.2.21) translates to

�
R3

dx
�
R3

dy Gz,VT (λa;x, y)φ(x)ψ(y) =
�
R3

dx
�
R3

dy eiλa·(x−y) Gz,VT (x, y)φ(x)ψ(y).

We apply the fundamental lemma of the calculus of variations twice and deduce (6.2.20).
Let δ0 be as in (6.2.19) and 0 < δ < δ0 (for δ = 0, the claim is Lemma 6.2.2). Let

b ∈ R3 be given with |b| = δ. Apply (6.2.20) to a := δ−1b and λ = −iδ. This implies
|a| = 1 so that (by a slight abuse of notation)

Gz,VT (b;x, y) = eb·(x−y) Gz,VT (x, y). (6.2.22)

Let us decompose R3 into six disjoint subsets. We define the top and bottom spherical
cap (cone, rather) by, respectively,

C+ :=
{
x ∈ R3 : x = r(sin θ cosφ, sin θ sinφ, cos θ) : r > 0, θ ∈ [0, π/4], φ ∈ [0, 2π)

}
,

C− :=
{
x ∈ R3 : x = r(sin θ cosφ, sin θ sinφ, cos θ) : r > 0, θ ∈ [3π/4, π], φ ∈ [0, 2π)

}
.

Furthermore, we define the sector

S1 :=
{
x ∈ R3 : x = r(sin θ cosφ, sin θ sinφ, cos θ) : r > 0, θ ∈ (π/4, 3π/4), φ ∈ [−π/4, π/4)

}
as well as the sectors S2, S3, and S4 by successive counterclockwise rotation of S1 in φ by
π/2. Now, let b1 := δe1. If x− y ∈ S1, then

b1 · (x− y) = δ |x− y| sin θ cosφ ⩾
1
2 δ |x− y|.

We have similar estimates for b2 := δe2, b3 = −δe1 and b4 := −δe2 and if x − y ∈ S2
(respectively, S3 and S4) as well as the estimates b± · (x − y) ⩾ 1√

2 δ |x − y| ⩾ 1
2δ|x − y|

for b± = ±δe3 if x− y ∈ C±.
2This follows from Theorem XII.7 together with Problem 10 of that section in [RS78].
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From (6.2.22), we therefore obtain

e
1
2 δ|x−y|

∣∣∣Gz,VT (x, y)
∣∣∣ ⩽ ∣∣∣Gz,VT (bi;x, y)

∣∣∣,
where i ∈ {1, 2, 3, 4,±} is chosen so that x−y ∈ Si or C±, respectively. We finally conclude

sup
x∈R3

(�
R3

dy eδ|x−y| |Gz,VT (x, y)|2
)1/2

⩽
∑

i∈{1,··· ,4,±}
∥Rz,V

T (bi)∥2,∞.

The bound on the last line follows from Theorem 6.2.10.

6.3 Exponential Localization of Non-Embedded
Eigenfunctions

Proposition 6.3.1. Let λ < 2T be an eigenvalue of the operator KT − V and let α be a
normalized eigenfunction corresponding to λ, i.e.,

(KT − V )α = λα.

Then, the following statements are true:

(a) There is a δ0(λ) > 0 such that for every 0 ⩽ δ ⩽ δ0(λ), we have eδ |·|√|V |α ∈ L2(R3).

(b) For any ν ∈ N3
0, we have

�
R3

dx
(
|xν ∇α|2 + |xν α(x)|2

)
< ∞.

Proof. The proof is analogous to the proof of Proposition 1 in Appendix A of [FHSS12].
Since V ∈ L∞(R3), the function ϕ :=

√
|V |α belongs to L2(R3) and satisfies

ϕ = −
√

|V | 1
λ−KT

√
V ϕ,

where
√
V := V√

|V |
. For fixed R > 0, we decompose ϕ = ϕ1 + ϕ2 with ϕ2 := χ[R,∞)(| · |)ϕ.

Then, it is clear that eδ|·|ϕ1 ∈ L2(R3) for any δ > 0. We also set U1 := χ[R,∞)(| · |)
√

|V |
and U2 := χ[R,∞)(| · |)

√
V . Then, we have

ϕ2 = −U1 (λ−KT )−1 U2ϕ2 + f, f := −U1 (λ−KT )−1 √
V ϕ1.

Let us first show that eδ|·|f ∈ L2(R3). This amounts to showing that the operator

T := −eδ|·|U1 (λ−KT )−1 √
V e−δ|·|

is bounded. To see this, let ψ ∈ L2(R3) and estimate

∥T ψ∥2
2 =

�
R3

dx
∣∣∣∣�

R3
dy χ[R,∞)(x)

√
|V (x)|

√
V (y) eδ(|x|−|y|)GλT (x− y)ψ(y)

∣∣∣∣2
⩽ ∥V ∥∞ ∥ψ∥2

2

�
R3

dx χ[R,∞)(|x|) |V (x)|
�
R3

dy e2δ(|x|−|y|) |GλT (x− y)|2.
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By Theorem 6.2.11, the last factor is bounded by ∥GλT ∥2δ as long as δ is small enough,
while the third factor is bounded by ∥(1 + | · |2)V ∥2 times(�

R3
dx
∣∣∣∣ 1
1 + |x|2

∣∣∣∣2 χ[R,∞)(|x|)
)1/2

,

which is bounded independently of R (it actually tends to zero as R → ∞). We conclude
that

∥T ∥∞ ⩽ C ∥V ∥1/2
∞ ∥(1 + | · |2)V ∥1/2

∞ ∥GλT ∥2δ.

Since eδ|·|ϕ1 ∈ L2(R3), this proves that eδ|·|f ∈ L2(R3). In a similar manner, we see that

∥eδ|·|U1 (KT − λ)−1U2e−δ|·|∥∞

⩽ ∥V ∥1/2
∞ ∥(1 + | · |2)V ∥1/2

∞ ∥GλT ∥2δ

(�
R3

dx
∣∣∣∣ 1
1 + |x|2

∣∣∣∣2 χ[R,∞)(|x|)
)1/4

⩽
1
2

for R large enough. This implies

eδ|·|ϕ2 =
(

1 + eδ|·|U1 (λ−KT )−1U2ϕ2

)−1
eδ|·|f.

Part (a) now follows from the Neumann-series. To prove part (b), we note that since
V ∈ L∞(R3), we have | · |να ∈ L2(R3). The claim for the gradient term follows from
integration by parts and the fact that α ∈ H2(R3).

6.4 The Phase Approximation Method for KT,A − V

The exponential decay estimate of Theorem 6.2.11 enables us to set up a phase approx-
imation for the resolvent of KT,A − V . This, in turn, helps us to prove the asymptotic
expansions for eigenvalues and spectral projetions.

6.4.1 Preliminary estimates

As a preparation, we need to recall following result, which is proven in Lemma 3.4.2 (or
2.4.4) for the free resolvent kernel

gz = 1
z − (−i∇)2 + µ

, (6.4.1)

see (3.4.2), and we restate it here for the readers convenience.

Lemma 6.4.1. Let a > −2. There is a constant Ca > 0 such that for t, ω ∈ R, we have∥∥∥ | · |agiω+t
∥∥∥

1
⩽ Ca f(t, ω)1+ a

2 , (6.4.2)

where

f(t, ω) := |ω| + |t+ µ|
(|ω| + (t+ µ)−)2 (6.4.3)

and x− := − min{x, 0}. Furthermore, for any a > −1, there is a constant Ca > 0 with∥∥∥ | · |a∇giω+t
∥∥∥

1
⩽ Ca f(t, ω)

1
2 + a

2

[
1 + |ω| + |t+ µ|

|ω| + (t+ µ)−

]
. (6.4.4)
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In particular, Lemma 6.4.1 implies

sup
w∈µ+

[∥∥ | · |agw
∥∥

1 +
∥∥ | · |a∇gw

∥∥
1

]
< ∞. (6.4.5)

Furthermore, we need to provide an estimate on the L1-norm of GzT and ∇GzT , which
we do now.

Lemma 6.4.2. Let z ∈ ρ(KT ). For any k ∈ N0, we have

∥ | · |kGzT ∥L1(R3) ⩽ Ck ∥GzT ∥2. (6.4.6)

Furthermore,

∥ | · |k∇GzT ∥L1(R3) ⩽ Ck,δ
(
1 + ∥GzT ∥2

)
. (6.4.7)

Proof. As long as 0 ⩽ δ < 1
2δ

′ < 1
2δ0(z) (with δ0(z) from Theorem 6.2.11), we have

�
R3

dx eδ|x||GzT (x)| =
�
R3

dx e−( 1
2 δ

′−δ)|x| · e
1
2 δ

′|x||GzT (x)|

⩽
(�

R3
dx e−(δ′−2δ)|x|

)1/2(�
R3

dx eδ′|x||GzT (x)|2
)1/2

Since ∥GzT ∥δ ⩽ C∥GzT ∥2 by Theorem 6.2.11, this proves (6.4.6).
Furthermore, Lemma 6.2.7 shows that

KT − p2 + µ =
�
µ+

dw
2πi fT (w) 1

w + µ− p2 ,

whence KT − p2 + µ has an exponentially decaying integral kernel K and, by (6.4.5), we
have ∥| · |kK∥1 < ∞ for all k ∈ N0. For suitably chosen ν ∈ ρ(p2 − µ) (for example
ν = −µ− 1), the resolvent equations therefore imply

GzT = GνT + (z − ν) GνT ∗ GzT
= gν + gν ∗ K ∗ GνT + (z − ν) gν ∗ GzT + (z − ν) gν ∗ K ∗ GνT ∗ GzT ,

where gν is the resolvent kernel of the Laplacian in (6.4.1). When we differentiate, the
derivative falls on gν . Furthermore, the factor | · |k can be distributed via the inequality
(3.4.36) among the terms in the convolution. An application of Lemma 6.4.1 and (6.4.6)
shows (6.4.7) and completes the proof.

Finally, we incorporate V into the estimates.

Theorem 6.4.3. Let V ∈ L2(R3) ∩ L∞(R3) and let z ∈ ρ(KT − V ). Then, for every
k ∈ N0, the operators Zz,V

T (k) and Zz,V
T,∇(k) associated to the kernels

Zz,V
T (k;x, y) := |x− y|k |Gz,VT (x, y)|, Zz,V

T,∇(k;x, y) := |x− y|k |∇xGz,VT (x, y)|, (6.4.8)

respectively, are bounded operators which satisfy the estimate

∥Zz,V
T (k)∥∞ ⩽ Ck ∥GzT ∥2

(
1 + ∥Gz,VT ∥2,∞

)
, (6.4.9)

∥Zz,V
T,∇(k)∥∞ ⩽ Ck

(
1 + ∥GzT ∥2

) (
1 + ∥Gz,VT ∥2,∞

)
. (6.4.10)
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Proof. By the resolvent equation

Rz,V
T = Rz

T + Rz
T V Rz,V

T ,

we have Zz,V
T (k) = Zz

T,1(k) + Zz,V
T,2 (k) with

Zz
T,1(k;x− y) := |x− y|k GzT (x− y)

Zz,V
T,2 (k;x, y) := |x− y|k

�
R3

du GzT (x− u)V (u) Gz,VT (x, y).

By Lemma 6.4.2, Zz
T,1(k, ·) is an L1-function whence, by Young’s inequality, we conclude

∥Zz
T,1(k)∥∞ ⩽ Ck∥GzT ∥2.
We claim that Zz,V

T,2 (k) is a Hilbert-Schmidt operator with a suitable norm bound. To
see this, we estimate

Zz,V
T,2 (k;x, y) ⩽ 2(k−1)+

�
R3

du |x− u|k GzT (x− u)V (u) Gz,VT (u, y)

+ 2(k−1)+

�
R3

du GzT (x− u)V (u) |u− y|k Gz,VT (u, y). (6.4.11)

The Hilbert-Schmidt norm squared of the first term is bounded as
�

R3×R3
dxdy

∣∣∣∣�
R3

du |x− u|kGzT (x− u)V (u) Gz,VT (u, y)
∣∣∣∣2 ⩽ ∥ | · |kGzT ∥2

1 ∥V ∥2
2 ∥Gz,VT ∥2

2,∞.

Since ∥GzT ∥1 ⩽ Ck∥GzT ∥2 by Lemma 6.4.2, we conclude the claimed estimate for this term.
Similarly, the Hilbert-Schmidt norm squared of the second term in (6.4.11) is bounded as
�

R3×R3
dxdy

∣∣∣∣�
R3

du GzT (x− u)V (u) |u− y|kGz,VT (u, y)
∣∣∣∣2 ⩽ ∥GzT ∥2

1 ∥V ∥2
2 ∥ | · |kGz,VT ∥2

2,∞.

Since ∥ | · |kGz,VT ∥2,∞ ⩽ CK∥Gz,VT ∥δ ⩽ Ck∥Gz,VT ∥2,∞, this term satisfies the same estimate.
The estimate for Zz,V

T,∇(k) goes along the same lines, except that we have to replace
∥ | · |kGzT ∥1 by ∥ | · |k∇GzT ∥1 ⩽ Ck(1 + ∥GzT ∥2), see Lemma 6.4.2.

6.4.2 The comprehensive phase approximation method for KT,A − V

We are now in position to set up a phase approximation for the operator KT,A −V . Recall
that Gz,VT,A(x, y) in (6.1.2) denotes the kernel of the resolvent Rz,V

T,A := (z− (KT,A − V ))−1.
The core of the phase approximation method due to [N02, pp. 1290] is the noninte-

grable phase factor, sometimes also called the Wilson line, defined by

ΦA(x, y) := −
� x

y
A(u) · du := −

� 1

0
dt A(y + t(x− y)) · (x− y). (6.4.12)

Lemma 6.4.4. Let A be a vector-valued, and weakly differentiable function such that
DA ∈ W 1,∞(R3;R3). Then, we have

∇xΦA(x, y) = −A(x) + Ã(x, y), (6.4.13)

where

Ay(x) :=
� 1

0
dt t curl A(y + t(x− y)) ∧ (x− y) (6.4.14)

is the transversal Poincaré gauge relative to y ∈ R3.
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Proof. It is easy to see that the proof of Lemma 3.4.3 is valid here.

We define the gauge-invariant version of the free resolvent kernel Gz,VT in (6.1.2) by

Sz,VT,A(x, y) := eiΦA(x,y) Gz,VT (x, y). (6.4.15)

In the following lines, we investigate the intertwining relation between KT,A and the
operator Sz,VT,A associated to the kernel (6.4.15). First of all, we recall (3.4.14), which reads

(−i∇x + A(x)) eiΦA(x,y) = eiΦA(x,y) (−i∇x + Ay(x)) (6.4.16)

and which follows from (6.4.13), where Ay(x) is the Poincaré gauge in (6.4.14). We use
the notation

πA := −i∇ + A. (6.4.17)

Since π2
A ⩾ 0 (diamagnetic inequality [LL01, Theorem 7.21] or [LS10, Eq. (4.4.3)]), we

find that the speaker path µ+ lies in the resolvent set of π2
Ay

− µ as well as π2
A − µ, see

Definition 6.2.5. Hence, for each w ∈ µ+ , we infer from (6.4.16) (by multiplying with the
respective resolvents from the left and the right) that

(w − π2
A − µ)−1 eiΦA(x,y) = eiΦA(x,y) (w − π2

Ay
− µ)−1.

Hence, by Lemma 6.2.7, we conclude that

KT,A eiΦA(x,y) = eiΦA(x,y)KT,Ay .

Thus, a straightforward computation shows that

(z − (KT,A − V )) Sz,VT,A = 1 − T z,V
T,A , (6.4.18)

where T z,V
T,A is the operator associated to the kernel

T z,V
T,A (x, y) := eiΦA(x,y)

[
(KT,Ay −KT )Rz,V

T

]
(x, y). (6.4.19)

The next result shows that this operator is bounded with a suitable norm bound.

Lemma 6.4.5. Let V ∈ L2(R3) ∩ L∞(R3) and let A satisfy Assumption 6.1.1. Define

M(A) := max
{

∥ curl A∥L∞(R3) , ∥ curl(curl A)∥L∞(R3) , ∥ curl A∥2
L∞(R3)

}
. (6.4.20)

Then, there is a continuous function

D : ρ(KT − V ) → R+ (6.4.21)

such that the operator T z,V
T,A corresponding to the kernel in (6.4.19) is bounded by

∥∥∥T z,V
T,A

∥∥∥
∞

⩽ C D(z) M(A). (6.4.22)
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Proof. By Lemma 6.2.7, we have

[KT,Ay −KT ] Rz,V
T = [π2

Ay
− p2] Rz,V

T +
�
µ+

dw
2πi fT (w)

[ 1
w − π2

Ay

− 1
w − p2

]
Rz,V
T .

Here, µ+ is the speaker path in Definition 2.8.4. We call T1 the first term and T2 the
second. Let us start by estimating the term T1. Writing it out, we obtain

T1(x, y) =
[
−i div Ay(x) − 2i Ay(x) · ∇ + |Ay(x)|2

]
Gz,VT (x, y). (6.4.23)

We use (3.4.21) and (3.4.22) so see that

|T1(x, y)| ⩽ M(A)
[(

|x− y| + |x− y|2
)
|Gz,VT (x, y)| + |x− y| |∇xGz,VT (x, y)|

]
.

Estimates for these terms have been provided in Theorem 6.4.3.
Let us move on to the term T2. It reads

T2(x, y) =
�
µ+

dw
2πi fT (w)

[(
(w − kAy )−1 − (w − k0)−1

)
Rz,V
T

]
(x, y).

Using the resolvent equation, we write this out as

(w − kAy )−1 − (w − k0)−1

= (w − kAy )−1
[
−i div Ay − 2i Ay · ∇ + |Ay|2

]
(w − k0)−1.

Hence, we obtain

|T2(x, y)| ⩽ C M(A)
�
µ+

d|w|
2π |fT (w)| ·

[
T 1

2 (x, y;w) + T 2
2 (x, y;w)

]
.

Here, d|w| = dt · |w′(t)| and

T 1
2 (x, y;w) :=

�
R3

du
�
R3

dv |GwAy
(x, u)| |u− y| |∇gw(u− v)| |Gz,VT (v, y)|

T 2
2 (x, y;w) :=

�
R3

du
�
R3

dv |GwAy
(x, u)|

(
|u− y| + |u− y|2

)
|gw(u− v)| |Gz,VT (v, y)|.

Estimates for these functions are provided in Lemmas1 3.4.5, 6.4.1, and Theorem 6.4.3.
This finishes the proof.

Corollary 6.4.6. Let V ∈ L2(R3) ∩ L∞(R3), assume that A satisfies Assumption 6.1.1.
Then, there is a continuous function M0 : ρ(KT −V ) → R+ such that the following holds.
If z ∈ ρ(KT − V ) and 0 ⩽ M(A) ⩽ M0(z), then z ∈ ρ(KT,A − V ) and there is a bounded
linear operator T̃ z,V

T,A such that

Rz,V
T,A = Sz,VT,A + T̃ z,V

T,A .

Furthermore, there is a continuous function D : ρ(KT − V ) → R+ such that T̃ z,V
T,A satisfies

the estimate ∥∥∥T̃ z,V
T,A

∥∥∥
∞

⩽ C D(z) M(A).
1We concretely use the first estimates of (3.4.37) and (3.4.34), which do hold for Gz

B,A replaced by
Gz

A and Ay being the Poincaré gauge of A satisfying Assumption 6.1.1. The reader may consult the proof
of Lemma 3.4.5 to verify this claim.
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Proof. Define the function M0 by

C D(z) M0(z) = 1
2 , (6.4.24)

where C D(z) is from (6.4.22). Then M0 is continuous. Furthermore, by hypothesis and
Lemma 6.4.5, the operator 1 + T z,V

T,A is invertible and we may solve (6.4.18) for Rz,V
T,A to

get

Rz,V
T,A = Sz,VT,A +

∞∑
n=1

Sz,VT,A
(
T z,V
T,A

)n
.

The bound on the operator norm of the second term is given by the Neumann series and
reads ∥∥∥∥ ∞∑

n=1
Sz,VT,A

(
T z,V
T,A

)n∥∥∥∥
∞

⩽ C D(z) M(A) ∥Rz,V
T ∥∞

∞∑
n=1

1
2n .

Here, we used, by a pointwise estimate on the kernel, that Sz,VT,A is a bounded operator
with norm bounded by ∥Rz,V

T ∥∞. We also used Lemma 6.4.5 and (6.4.24). This completes
the proof.

6.5 Asymptotics of Spectral Projections and Eigenvalues
of KT,A − V

The goal of this section is to prove stability of the spectral projections corresponding to
eigenvalues of finite multiplicity of KT − V under the perturbation A, as long as

M(A) := max
{

M(A) , ∥DA∥L∞(R3)
}

(6.5.1)

is small, where M(A) is from (6.4.20).

Theorem 6.5.1. Let V ∈ L2(R3) such that | · |kV ∈ L∞(R3) for k ∈ {0, 1, 2}. Let λ be an
isolated eigenvalue of finite multiplicity m ∈ N of KT −V and let PV

T be the corresponding
spectral projection. Then, the following statements are true:

(a) λ is stable in the sense of Kato [K66, Section VIII.1.4], i.e.,

(i) There is ε > 0 such that for every z ∈ B2ε(λ) \ {λ} the following holds. There is
M0(z) > 0 such that whenever 0 ⩽ M(A) ⩽ M0(z), we have z ∈ ρ(KT,A − V ).

(ii) Rz,V
T,A → Rz,V

T strongly as M(A) → 0 and as ΦA(x, y) → 0 pointwise in x, y ∈ R3

for all z ∈ B2ε(λ) \ {λ}.
(iii) There is M0 > 0 such that if 0 ⩽ M(A) ⩽ M0, we have

rank PV
T,A = m,

where

PV
T,A :=

�
∂Bε(λ)

dz
2πi Rz,V

T,A.

The integral has to be understood as a complex contour integral with a positively
oriented contour along ∂Bε(λ).
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(b) There is M0 > 0 such that if 0 ⩽ M(A) ⩽ M0, we have

∥PV
T,A − PV

T ∥∞ + ∥π2
A(PV

T,A − PV
T )∥∞ ⩽ C M(A).

(c) Let λ1(A), . . . , λm(A) be the (not necessarily distinct) eigenvalues of (KT,A −V )PV
T,A.

Then, there is M0 > 0 such that for all 0 ⩽ M(A) ⩽ M0, we have

|λi(A) − λ| ⩽ C M(A), i = 1, . . . ,m.

(d) Assume that the lowest eigenvalue ηT of KT −V is simple and denote the spectral gap
above ηT by κT > 0. Then, there is M0 > 0 such that whenever 0 ⩽ M(A) ⩽ M0 the
lowest eigenvalue of KT,A − V is simple and there is a uniform spectral gap above it.
In particular, if PV

T denotes the ground state projection corresponding to ηT , then

KT,A − V ⩾ ηT PV
T + 1

2 κT
(
1 − PV

T

)
− C M(A). (6.5.2)

For the proof, we need the following auxiliary statement.

Lemma 6.5.2. Let (Pn)n∈N be a sequence of projections in a separable Hilbert space H
and let P be a projection in H with finite rank m ∈ N. If Pn → P in operator norm, then
rankPn = m for all sufficiently large n.

Proof. Assume for contradiction that, for each k ∈ N, there is nk ⩾ k such that

(a) rankPnk
⩾ m+ 1 or

(b) rankPnk
⩽ m− 1.

Since one of the cases (a) or (b) is admitted infinitely often, we may rule out both of them
separately. Let ψi ∈ ranP , i = 1, . . . ,m form an orthonormal basis for ranP . In case (a),
let φnk

∈ ranPnk
with ∥φnk

∥ = 1 and ⟨φnk
, ψi⟩ = 0 for all i = 1, . . . ,m and all k ∈ N. It

follows that Pψnk
= 0 and thus

1 = ∥ψnk
∥ = ∥Pnk

ψnk
∥ = ∥(Pnk

− P )ψnk
∥ ⩽ ∥Pnk

− P∥ n→∞−−−→ 0,

a contradiction. In case (b), for each k ∈ N, there is an i ∈ {1, . . . ,m} such that Pnk
ψi = 0.

Hence, one of i ∈ {1, . . . ,m} is hit infinitely often. Without loss, assume that i = 1. This
means that Pnk

ψ1 = 0 for all k ∈ N. As above, we get

1 = ∥ψ1∥ = ∥Pψ1∥ = ∥(P − Pnk
)ψ1∥ ⩽ ∥P − Pnk

∥ n→∞−−−→ 0,

again a contradiction. It follows that there is N ∈ N such that for all n ⩾ N , we have
rankPn = m.

Proof of Theorem 6.5.1. Let us start by proving the three statements in (a). First of all,
since λ is an isolated eigenvalue of KT − V , we may pick ε > 0 such that z ∈ ρ(KT − V )
for all z ∈ B2ε(λ)\{λ}. Corollary 6.4.6 shows the existence if M0(z) > 0 such that such z
also belong to ρ(KT,A − V ) provided A obeys 0 ⩽ M(A) ⩽ M0(z), whence (i) is proved.
Let ψ ∈ L2(R3) be arbitrary. Then∥∥∥Rz,V

T,Aψ − Rz,V
T ψ

∥∥∥
2
⩽
∥∥∥Rz,V

T,Aψ − Sz,VT,Aψ
∥∥∥

2
+
∥∥∥Sz,VT,Aψ − Rz,V

T ψ
∥∥∥

2
.
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The first term can be bounded by C M(A) ∥ψ∥ using Corollary 6.4.6. For the second
term, we have∥∥∥Sz,VT,Aψ − Rz,V

T ψ
∥∥∥2

2
=
�
R3

dx
∣∣∣∣�

R3
dy
(
eiΦA(x,y) − 1

)
Gz,VT (x, y)ψ(y)

∣∣∣∣2.
Hence, we may bound the factor with the exponential by 2 to obtain an integrable domi-
nant. Pointwise convergence of the integrand follows from the hypothesis. The dominated
convergence theorem then yields (ii).

To show part (iii), we first prove that VRz,V
T,A → VRz,V

T and Rz,V
T,AV → Rz,V

T V in
norm as M(A) → 0 uniformly for z ∈ ∂Bε(λ). We write the proof only for the second
convergence, the first is analogous. To start out with, let M1

0 be defined by

sup
z∈∂Bε(λ)

C D(z) M1
0 = 1

2 , (6.5.3)

where C D(z) is from (6.4.24). Then, M1
0 > 0 because ∂Bε(λ) is compact and D(z) is

continuous.
We write in a similar fashion as above∥∥∥Rz,V

T,AV − Rz,V
T V

∥∥∥
∞

⩽
∥∥∥Rz,V

T,AV − Sz,VT,AV
∥∥∥

∞
+
∥∥∥Sz,VT,AV − Rz,V

T V
∥∥∥

∞
.

The first term can be bounded by C∥V ∥∞M(A), using Corollary 6.4.6. For the second
term, we investigate the kernel to get∣∣∣V (y)Sz,VT,A(x, y) − V (y)Gz,VT (x, y)

∣∣∣ ⩽ |V (y)| |eiΦA(x,y) − 1| |Gz,VT (x, y)|.

Now, we use the bound

|ΦA(x, y)| ⩽ C ∥DA∥∞
(
min{|x| , |x|} |x− y| + |x− y|2

)
, (6.5.4)

which follows from the assumption A(0) = 0, and obtain∣∣∣V (y)Sz,VT,A(x, y) − V (y)Gz,VT
∣∣∣

⩽ C ∥DA∥∞
(
∥ | · |V ∥∞ |x− y| |Gz,VT (x, y)| + ∥V ∥∞ |x− y|2 |Gz,VT (x, y)|

)
.

The estimates for these functions provided by Lemma 6.4.3 are continuous in z. Therefore,
there is M2

0 > 0 such that if 0 ⩽ ∥DA∥∞ ⩽ M2
0, we have

sup
z∈∂Bε(λ)

∥∥∥Rz,V
T,AV − Sz,VT,AV

∥∥∥
∞

⩽ C ∥DA∥∞.

We conclude that

sup
z∈∂Bε(λ)

∥∥∥Rz,V
T,AV − Rz,V

T V
∥∥∥

∞
+ sup
z∈∂Bε(λ)

∥∥∥VRz,V
T,A − VRz,V

T

∥∥∥
∞

⩽ C M(A) (6.5.5)

provided 0 ⩽ M(A) ⩽ M0 := min{M1
0 , M2

0}. In particular, uniform operator norm
convergence as M(A) → 0 follows on ∂Bε(λ).

We use (6.5.5) to prove estimates on the spectral projections. Since KT,A has no
eigenvalues, we may write

PV
T,A =

�
∂Bε(λ)

dz
2πi Rz,V

T,A =
�
∂Bε(λ)

dz
2πi Rz,V

T,A − Rz
T,A =

�
∂Bε(λ)

dz
2πi Rz,V

T,A V Rz
T,A.
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We claim that the operator in the integrand converges to Rz,V
T VRz

T as M(A) → 0. For,

Rz,V
T,A V Rz

T,A − Rz,V
T V Rz

T =
[
Rz,V
T,A V − Rz,V

T V
]
Rz
T,A + Rz,V

T

[
V Rz

T,A − V Rz
T

]
.

Since Rz
T,A is bounded uniformly in A, see Corollary 6.4.6, we conclude convergence of

the integrand in operator norm by (6.5.5). This proves the first part of (b) and (iii) of (a)
by Lemma 6.5.2.

The next part of the proof is devoted to the second part of (b). Similarly to the above,
our starting point is

π2
A(PV

T,A − PV
T ) =

�
∂Bε(λ)

dz
2πi

(
π2

A Rz,V
T,A V Rz

T,A − π2
A Rz,V

T V Rz
T

)
=
�
∂Bε(λ)

dz
2πi π

2
A Rz,V

T,A

[
V Rz

T,A − V Rz
T

]
+
�
∂Bε(λ)

dz
2πi

[
π2

A Rz,V
T,A V − π2

A Rz,V
T V

]
Rz
T . (6.5.6)

By expanding with the resolvent equation, we have

π2
ARz,V

T,A = π2
A Rz

T,A

[
1 + VRz,V

T,A

]
.

The first operator is bounded by 1 since it is a function of π2
A. Hence, the first term of

(6.5.6) is bounded of order M(A) according to (6.5.5). The delicate term is the second.
Here, we apply the resolvent equation to get

π2
A (Rz,V

T,A − Rz,V
T )V = π2

ARz,V
T,A (KT,A −KT ) Rz,V

T V.

We are going to show that

sup
z∈∂Bε(λ)

∥(KT,A −KT )Rz,V
T V ∥∞ ⩽ C M(A). (6.5.7)

To see this, apply the integral representation Lemma 6.2.7 to KT,A −KT once more. This
gives two terms, one is

π2
A − p2 = −i div A + A · p+ |A|2.

Since ∥ div A∥∞ ⩽ M(A), there is nothing left to prove for this term. For the other terms,
we use A(x) ⩽ ∥DA∥∞|x| as well as the triangle inequality |x| ⩽ |x−y|+ |y|. This implies
that we need to provide a bound on

(|y| + |x− y|) |∇Gz,VT (x, y)| |V (y)| + (|y|2 + |x− y|2) |Gz,VT (x, y)| |V (y)|

⩽
[
∥ | · |V ∥∞ + ∥ | · |2V ∥∞

] (
|∇Gz,VT (x, y)| + |Gz,VT (x, y)|

)
+ ∥V ∥∞

(
|x− y| |∇Gz,VT (x, y)| + |x− y|2 |Gz,VT (x, y)|

)
,

which gives rise to a bounded operator, whose bound is uniform on ∂Bε(λ), as can be
deduced from Theorem 6.4.3. As for the second term in the integral representation. The
resolvents in the integrand of the contour integral read

1
w + µ− π2

A
− 1
w + µ− p2 = 1

w + µ− π2
A

[π2
A − p2] 1

w + µ− p2 .
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Here, we proceed similarly. However, we need to use the triangle inequality once more to
reach V . Once we have estimated

|x| ⩽ |x− u| + |u− y| + |y| |x|2 ⩽ 2|x− u|2 + 2|u− y|2 + 2|y|2,

we are subject to showing that∣∣∣∣ 1
w + µ− π2

A
[π2

A − p2] 1
w + µ− p2 Rz,V

T V (x, y)
∣∣∣

⩽ M(A)
[
∥V ∥∞

�
R3×R3

du1du2 |GwA(x, u1)| |gw(u1 − u2)| |Gz,VT (u2, y)|

+
[
∥ | · |V ∥∞ + ∥ | · |2V ∥∞

]�
R3×R3

du1du2 |GwA(x, u1)|

×
[
|∇Gw(u1 − u2)| + |Gw(u1 − u2)|

]
|Gz,VT (u2, y)|

+ ∥V ∥∞

�
R3×R3

du1du2 |GwA(x, u1)|
[
(|u1 − u2| + |u2 − y|)|∇Gw(u1 − u2)|

+ (|u1 − u2|2 + |u2 − y|2)|Gw(u1 − u2)|
]
|Gz,VT (u2, y)|

]
gives rise to a bounded operator with uniform bound on ∂Bε(λ). The estimates for this
to be proven are provided by Lemmas 3.4.5 and Theorem 6.4.3. This proves (b).

Now, we prove part (c). By the residue theorem and Corollary 6.4.6,

(KT,A − V )PV
T,A =

�
∂Bε(λ)

dz
2πi zRz,V

T,A =
�
∂Bε(λ)

dz
2πi z Sz,VT,A +

�
∂Bε(λ)

dz
2πi z T̃ z,V

T,A .

Since the last operator is bounded of order M(A), we are left with investigating the first
term. If αi, i = 1, . . . ,m are the orthonormal eigenfunctions corresponding to λ, then it
has a kernel given by

�
∂Bε(λ)

dz
2πi z Sz,VT,A(x, y) = λ eiΦA(x,y)

m∑
i=1

αi(x)αi(y)

= λPV
T (x, y) + λ

(
eiΦA(x,y) − 1

) m∑
i=1

αi(x)αi(y).

It remains to use the estimate (6.5.4), so that |ΦA(x, y)| ⩽ C∥DA∥∞(|x|2 + |y|2) and

|eiΦA(x,y) − 1|
m∑
i=1

|αi(x)| |αi(y)| ⩽ C ∥DA∥∞

m∑
i=1

[
|x|2|αi(x)| |αi(y)| + |αi(x)| |y|2|αi(y)|

]
.

We infer that the Hilbert-Schmidt norm of this kernel is bounded by
�

R3×R3
dxdy

∣∣∣∣ m∑
i=1

|x|2 |αi(x)| |αi(y)|
∣∣∣∣2

=
m∑

i,j=1

�
R3×R3

dxdy |x|2 |αi(x)| |x|2 |αj(x)| |αi(y)| |αj(y)| ⩽
( m∑
i=1

∥ | · |2αi∥2 ∥αi∥2

)2
.

These norms are finite by Proposition 6.3.1. Hence, we have shown the asymptotics∥∥∥(KT,A − V )PV
T,A − λPV

T

∥∥∥
∞

⩽ C M(A). (6.5.8)
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By the min-max principle [S14, Theorem 4.12], if λ1(A) ⩽ · · · ⩽ λm(A) are ordered
increasingly, we have the characterization

λi(A) = inf
{

max
φ∈M,∥φ∥=1

⟨φ, (KT,A − V )PV
T,Aφ⟩ : M ⊆ L2(R3), dimM = i

}
.

From this and (6.5.7), we immediately deduce part (c).
To obtain part (d), let κ > 0 denote the spectral gap of KT − V above its lowest

eigenvalue ηT , i.e., κ = η1
T − ηT , where η1

T is the next-to-lowest eigenvalue. Also let eA
0

and eA
1 denote the lowest and next-to-lowest eigenvalue of KT,A −V . Then, part (c) shows

that, for M(A) > 0 small enough,

eA
1 − eA

0 = κ+ (eA
1 − η1

T ) − (eA
0 − ηT )

⩾ κ− |eA
1 − η1

T | − |eA
0 − ηT | ⩾ κ− C M(A) ⩾ 1

2κ.

If PV
T,A denotes the ground state projection of KT,A − V , we conclude

KT,A − V ⩾ ηT PV
T,A + 1

2 κ
(
1 − PV

T,A

)
+ (eA

0 − ηT ) PV
T,A.

An application of part (b) now shows (6.5.2).
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Chapter 7

Preparation of Exponential
Estimates on the Adiabatic
Theorem in Extended Quantum
Lattice Systems

7.1 Introduction

7.1.1 How it came to this chapter

In spring 2019, I had the opportunity to travel to the University of British Columbia
(UBC) in Vancouver, Canada, for a research visit, which lasted four months. During the
stay, my guest advisor Sven Bachmann and I started the project on proving exponential
estimates for the adiabatic theorem in [BDF18a]. Unfortunately, we could not finish the
project in due time and planned to complete it in a second visit in 2020, which was then
canceled due to the COVID-19 pandemic. Consequently, this project is still lying on my
desk waiting to be completed and the progress we made so far forms the content of this
chapter. As the time of my PhD studies is coming to an end, I feel that this thesis is a
good opportunity to present the state of the project. I am also happy to hereby comply
with a corresponding request by Stefan Teufel in Tübingen.

Since discussions on a regular basis are hard to organize between Sven and me due to
the physical distance and the time shift, I am grateful for several fruitful discussions with
the postdoc researcher Amanda Young, who is currently on the leave from Technische
Universität München.

It is needless to say that I plan to undertake another attempt to bring the project to a
successful conclusion in the remaining time after the submission of this thesis but I have
to see if time permits enough commitment.

7.1.2 Exponential estimates via optimal truncation

Mathematically, the intention has been to prove exponential error estimates for the adi-
abatic theorem that has been proved in the work [BDF18a]. We have in mind using a
similar strategy to the one presented in the paper [HJ02], namely to recursively provide
an explicit estimate for the adiabatic error in the expansion after the nth step and then
perform an optimal truncation argument. We will be somewhat more detailed below on
what we mean by an optimal truncation argument. This goal has not been reached yet

301



7.1. INTRODUCTION

but we believe that the content of the chapter is helpful to understand the problem and
needed to be applied in one way or the other by anybody in the future, who wants to
complete the work.

Let us explain a bit further why we did not yet manage to prove the aimed result.
When we began the project at the UBC, it soon became clear that the desired estimate
would not be possible to prove within the by now standard locality setup that has already
been used in [BMNS12] and has worked its way through countless publications in the busi-
ness of quantum lattice systems in the meantime. We only mention the recent publications
[BDFL21; NSY19; NWY21] and point out to the reader the references therein as examples
for communities using this framework. The reason why this setup fails in the context of
our problem are the badly behaved “continuity” estimates, as we shall call them. Namely,
when an operation like the commutator is applied to a pair of local Hamiltonians (some-
times also called quasilocal operators), the question is: What are the locality properties
of the commutator provided the corresponding properties of the initial Hamiltonians are
known and can we relate them quantitatively? In other words, if G1, G2 are the initial
Hamiltonians, such a quantitative relation would be given by an estimate of the type

∥ [G1, G2] ∥fin ⩽ Cin,fin([·, ·]) ∥G1∥in ∥G2∥in. (7.1.1)

Here, ∥ · ∥fin and ∥ · ∥in are two possibly different initial and final norms, which should best
be related in a convenient way and Cin,fin([·, ·]) > 0 is a constant independent of G1 and
G2. We shall call (7.1.1) a “continuity estimate” for the operation [·, ·] for obvious reasons.
The problem is often not to find such a constant but rather to gain precise control of it
in that we have a formula at hand which is easy to work with. Additionally, the constant
needs to behave well enough for the operation to be applied over and over again in an
iterative procedure like the adiabatic expansion.

We remark that one is tempted to choose the operator norm ∥ · ∥ for ∥ · ∥in and ∥ · ∥fin
but the reader familiar to extended quantum systems will immediately realize the problem
of the volume dependence of this choice and the necessity of a norm that measures the
“locality” of the local Hamiltonian. We will comment on this problem further below.

It turns out that the standard machinery mentioned above behaves too badly under
repeated application of such operations and the constants that are stacking on the way
grow much too fast. It is difficult to explain this phenomenon more precisely at this point
without any notation at hand but we will provide some details below in Subsection 7.1.3.3.

When we sat in front of the problem in Vancouver, we realized that before we could
even think about actually performing the adiabatic expansion in the manner of [BDF18a,
Lemma 4.3], we were forced to go back to the very beginning of the theory and tidy up the
setup of locality within our quantum lattice system. After we defined the new norm, the
first item on the list was then to provide a Lieb–Robinson bound for Hamiltonians that
have a finite local norm. We realized that, within this new setup, it is actually possible to
gain a pretty simple proof of a Lieb–Robinson bound even for tree graphs, which we shall
present in Section 7.3.

In Section 7.4 we will introduce the map I, which is the “generator of the spectral
flow”, “local inverse of the Liouvillian”, or “weighted integral operator”, depending on the
convention within the respective community. This operator is a central tool in solving
the Schrödinger equation in a locality preserving fashion and it requires the fact that the
underlying Hamiltonian has a spectral gap. Under the assumption of a gap, we show that
it provides an inverse of the map G 7→ [H,G], where H is the Hamiltonian. In order to do
this, we have to construct a new weight function which depends on the gap and satisfies an
estimate in terms of our explicit decay functions. We are aware of and will not participate
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in the debate whether the restriction of an open gap is too severe for realistic models to
be true. Instead we will just stick to this assumption and see how far we get with it. It
seems that already the (unsolved, after all) problem of this chapter in the presence of a
gap is difficult enough and I encourage the reader to provide improvements in the gapless
direction.

The continuity estimates are contained in Section 7.5, starting with the (multi-) com-
mutator. We further provide a well-behaved explicit estimate for the operation I, showing
the locality preserving property. For us, the main technical announcement is that we are
able to provide the first explicit locality estimate for arbitrary high derivatives of I(G),
provided the Hamiltonian for the underlying time evolution and G are smooth. To the
best of my knowledge, such an estimate is not known in the existing literature.

As an addendum, we also point out in Section 7.6 how an analyticity property of the
Hamiltonian H allows to transport estimates on H to higher derivatives of H.

Unfortunately, to the present day, we were not able to perform the adiabatic expansion
in its full generality in the sense of providing suitable estimates for the operators that are
constructed iteratively. However, we present a sketch of a concept that in our opinion has
the potential to provide the desired result when all ingredients are taken into account.
We demonstrate this in Section 7.7 with a toy estimate that discards the involvement of
derivatives.

The reader should keep in mind that this chapter has the character of a working note,
which means that the proofs may look a bit overdetailed sometimes. In particular, it
should be noted that, in contrast to the previous chapters on BCS theory, one of the
central interests in the endeavor here is the size and dependency of constants. For this
reason, statements are always as explicit as possible and there is no “constant C that is
allowed to change from line to line” in this chapter.

7.1.3 Basics of quantum spin systems

7.1.3.1 Lattice systems and their shape

The prototype of a lattice system is, as the name suggests, the lattice Zd with its graph
norm1 |x|1 := ∑d

i=1 |xi|. The reason why I don’t like this picture so much is that it suggests
the notion of a “dimension” describing the shape of the lattice, namely d. However, it
turns out that the dimension is not so relevant in this chapter in the sense that we never
choose a basis for any space. Furthermore, this notion is not available for tree graphs
and these are the reasons why I would rather like to think of the more general notion of
“growth relations” of the cardinality of a set in terms of its diameter. In this spirit, Zd
would be of polynomial growth with the power d and a tree graph would be of exponential
growth. We will comment on this a bit further below.

That is why, in general, a lattice system for us will be a countable metric space (Γ, d)
with the graph metric. The ball of radius n ∈ N0 about the point x ∈ Γ is denoted by

Bn(x) :=
{
z ∈ Γ : d(x, z) ⩽ n

}
(7.1.2)

and a set Z ⊂ Γ has a (possibly infinite) diameter, which we denote by

D(Z) := diam(Z) := sup
{
d(x, y) : x, y ∈ Z

}
. (7.1.3)

1A graph is the tuple (Γ, E) of Γ with a set of edges E where an element e ∈ E connects two elements
x, y ∈ Γ. The graph metric d(x, y) is then defined as the cardinality of the smallest subset of E , which
connects x and y. If Γ = Zd, the standard graph metric is given by the 1-norm | · |1.
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The set of finite and nonempty subsets

F(Γ) :=
{

Λ ⊂ Γ : 0 < |Λ| < ∞
}

(7.1.4)

plays an important role throughout this chapter, where |Λ| is the cardinality of the set Λ.
Typically, to fix the shape of the lattice to be polynomial, we make assumptions of the
following kind: There are constants κ > 0 and d ∈ N0 such that for every Z ∈ F(Γ), we
have

|Z| ⩽ κ (1 + D(Z))d. (7.1.5)

This means that Γ has a polynomial growth of degree d, or is d-dimensional. Obviously,
a tree graph violates (7.1.5).

7.1.3.2 The quantum setup

We raise a quantum system upon Γ by associating to each vertex or lattice site x ∈ Γ a
so-called on-site Hilbert space Hx. Furthermore, to any subset Λ ⊂ Γ (finite or infinite),
the Hilbert space HΛ := ⊗

x∈Λ Hx is associated. Then, we also define the algebra of
observables AΛ := B(HΛ), which consists of the bounded operators HΛ → HΛ, eqipped
with the usual operator norm ∥ · ∥. There is a canonical embedding AΛ ↪→ AΛ′ if Λ ⊂ Λ′,
which is defined by A 7→ A ⊗

⊗
x∈Λ′\Λ 1 ∈ AΛ′ and which we use without comment. We

also define the set of local observables by Aloc := ⋃
Λ∈F(Γ) AΛ. For a local observable

A ∈ Aloc, we may define its support by the smallest set X ∈ F(Γ) such that A ∈ AX , i.e.,

supp(A) :=
⋂{

X ∈ F(Γ) : A ∈ AX

}
. (7.1.6)

Interesting quantum effects start becoming visible in the infinite volume limit, that is,
when operators are considered that have an infinite support. This fact can be dealt with
in two different ways:

(1) We can try to define all objects in infinite volume as limiting objects of their finite
volume correspondents.

(2) We try to restrict to a finite volume and execute the theory in such a way that the
quantities of interest survive the infinite volume limit.

It has turned out that option (1) suffers from the fact that several central objects such
as the Hamiltonian do not possess a nice representation in the infinite volume and can
only (if at all) be abstractly extended. However, we should not overlook that several other
quantities can indeed be extended. Nevertheless, option (2) is the method we will pursue.
Therefore, all objects are introduced in finite volume and the theory is never allowed to
depend on this finite volume.

To get started, an interaction is a map Φ: F(Γ) → Aloc, which assigns Z 7→ Φ(Z) with
Φ(Z) ∈ AZ . It is easy to see that the space of interactions inherits a complex vector space
structure from the spaces of bounded operators via the canonical embedding. A sum of
local terms ∑

Z∈F(Γ)
Φ(Z) (7.1.7)

is then an operator which has infinite operator norm unless Φ is compactly supported,
meaning that there is an R > 0 such that Φ(Z) = 0 if |Z| ⩾ R (example: nearest neighbor
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interactions). This raises the need for a locality setup, since the operator norm of a term
Φ(Z) in (7.1.7) typically grows linearly in |Z|. Therefore, we need a different measure for
the “size” of such an object, which encodes the fact that realistic interactions in quantum
lattice systems merely feature nearest neighbor interactions in the most probable case and
interactions of multituples of sites are suppressed with growing number of involved sites.

7.1.3.3 Norms

Mathematically speaking, the “size” of an object like (7.1.7) is expressed in terms of a
norm. This is the point where is becomes technically delicate because the whole theory
is very sensitive to the number of symbols and notions that are used in the definition of
the norm. Therefore, there is inevitable need to keep this formula as concise as possible.
To express the suppression of terms coming from large sets in the sum (7.1.7), we need
a bounded, non-increasing, positive function ζ : [0,∞) → (0,∞) that is logarithmically
superadditive, i.e., for x, y ⩾ 0, we have

ζ(x+ y) ⩾ ζ(x) ζ(y). (7.1.8)

In practice, ζ is a rapidly decaying function. The norm that we propose then reads

∥Φ∥ζ := sup
x∈Γ

∑
Z⊂Γ
x∈Z

∥Φ(Z)∥
ζ(D(Z)) . (7.1.9)

It should be noted that a norm which needs to be uniform in the lattice Γ must have a
point x ∈ Γ which it is “attached to” and which is then suped over. Otherwise, we would
sum over all subsets in the lattice and even if we restrict to sets Z ∈ F(Γ), we immediately
realize that the number of sets of a given fixed diameter is heavily dependent on the shape
of the lattice then.

Let us compare our definition to the one in [BDF18a], which reads

∥Φ∥ζ,N := sup
x,y∈Γ

1
F (d(x, y)) ζ(d(x, y))

∑
Z⊂Γ
x,y∈Z

|Z|N ∥Φ(Z)∥, F (r) := (1 + r)−(d+1) (7.1.10)

In our opinion, (7.1.10) suffers from three facts that trigger a lot of problems:

1. The measure for locality is determined by two different parameters that are not
comparable: a natural number N ∈ N0, which indexes a volume moment |Z|N for
a finite subset Z of the lattice, as well as a rapidly decaying function ζ, which
by the factor ζ(d(x, y))−1 in the norm likewise indicates decay. It turns out that
there is need to unify these decay parameters so that the local norm would only be
determined by just one parameter. Since |Z| and d(x, y) are incomparable, however,
we decided to replace d(x, y) by the diameter D(Z). In this way, the quantities |Z|
and D(Z) become comparable — provided we make a suitable assumption on shape
of the lattice, like (7.1.5) — and we do not need the volume factor |Z|N anymore,
which had kept arising in each operation in the setup of [BDF18a]. This turns out
to cure the theory to a large extent and further makes it possible to leave away one
point of x, y ∈ Z, which even more simplifies the business.

2. The existence of the decay function F , whose shape limits the theory to polynomially
growing lattices from the very beginning, and whose so-called “convolution property”
is used to prove a Lieb–Robinson bound, is a big problem in practice. We get rid
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of this function completely. In the case of interest, the reader may have a look at
Section 7.8, where we present a continuity estimate for I in the framework of the
old norm in [BDF18a], which we obtained before we realized that iterating I with
the help of this estimate is highly problematic on its own. This illustrates very well
the problematic behavior of the function F , when it comes to precise continuity
estimates and the proof shows that it is somewhat clumsy to work with the norm in
(7.1.10).

3. The abstract class of rapidly decaying functions ζ makes it difficult to prove concise
estimates. We choose an “explicit” class of rapidly decaying functions ζ, namely
the stretched exponential decay functions e−bxs for b > 0 and 0 < s ⩽ 1. Since s
is basically fixed throughout the theory, the norm effectively becomes determined
by a single positive number b > 0, which in our opinion purges the theory further
and enables us to prove short, handy, and well-behaved continuity estimates for the
relevant operations.

7.1.3.4 Preliminary note on the adiabatic theorem and optimal truncation

So far, we have discussed locality setups for general quantum spin systems. Before we
introduce the setup we will work with in the context of the adiabatic theorem, we take a
somewhat closer look at the adiabatic theorem itself. The adiabatic theorem is a statement
about the approximation of the time evolution of a state ρ(u) given by a Hamiltonian
H(εt), where ε > 0 is the small adiabatic parameter and ρ(u) is initially given by a state
ρ0. The adiabatic parameter ε measures the “slowness” of the variation of H in time
compared to the hopping it induces on the physical space, i.e., the system has a “slow”
and a “fast” degree of freedom that are separated by the scale ε. The time evolution takes
place according to the (adiabatic) Schrödinger equation

iε d
duρ(u) = [H(u), ρ(u)], ρ(0) = ρ0. (7.1.11)

Here, we have already performed a rescaling of times u = εt. The rescaled time is thus
u ∈ [0, 1], which corresponds to the physical time t ∈ [0, ε−1]. The theorem has a long
standing history which we will not repeat here (see [BDF18a] for details), and has been
proven in various different contexts and classes of problems.

Let ρ0 = P0 be the ground state projection of H(0) and let P (u) be the ground
state projection of H(u). A type of question one would then typically like to address is
how much ρ(u) differs from P (u). In other words, are the operations “take the ground
state projection” and “evolve according to (7.1.11)” commutative? Or, if we start with an
instantaneous ground state and evolve it according to (7.1.11) for a time u, is the resulting
state equal to P (u) and, if not, how large is the error? The “classical” adiabatic theorem
usually should answer this question in the following manner: We have

sup
s∈[0,1]

∥ρ(u) − P (u)∥ ⩽ Cε. (7.1.12)

As pointed out earlier, the problem is that the constant C in (7.1.12) typically grows
linearly with the number of lattice sites involved in the support of H so (7.1.12) becomes
meaningless in the infinite volume limit, as long as ε is nonzero, even if we restrict to finite
volume initially. Therefore, to be able to prove a reasonable analogon for quantum spin
systems, we have to replace the left side of (7.1.12) by a volume independent quantity.
The revolutionary idea that has been introduced successfully in [BDF18a] is to
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1. consider a finite volume Λ and carry out the theory on the finite volume, proving
uniform estimates in |Λ|.

2. do this by relaxing the topology from the operator norm to expectation values of
observables with finite support within Λ. These do not probe the whole quantum
system but only a small region.

The reader is referred to [BDF18a] for a thorough introduction into the business of the
adiabatic theorem in the context of extended quantum systems and to [BDF18b] for further
explanations around the topic.

Let us briefly sketch what we call an optimal truncation argument. Typically, under
the assumption of a Hamiltonian that has an analytic extension to a complex strip around
the real axis, (7.1.12) can be improved to

∥ρ(1) − P (1)∥ ⩽ Cmε
m, m ∈ N, (7.1.13)

in terms of a constant Cm that depends on m as Cm ≲ mm. The function fε(x) := xxεx,
which can be written as fε(x) = exp(x log(xε)), then has a unique global minimum at
x(ε) := (eε)−1 with value

fε(x(ε)) = e− e−1
ε , (7.1.14)

which is exponentially decaying as ε → 0. When we successfully deal with the subtlety
that x(ε) is not an integer in general, we can therefore choose m ∈ N in (7.1.13) optimally
in terms of ε to improve the error to exponential decay in ε−1.

7.1.4 The setup of locality for this chapter

We assume that the dimension of the on-site Hilbert spaces Hx is uniformly bounded, that
is,

sup
x∈Γ

dim Hx < ∞.

7.1.4.1 Interactions and the new norm

We are in position to introduce the locality setup suitable for the adiabatic theorem.

Time-independent setting. An interaction on Γ is a family Φ = {ΦΛ}Λ∈F(Γ) of maps
ΦΛ : F(Λ) → AΛ, which assign Z 7→ ΦΛ(Z), where ΦΛ(Z) ∈ AZ . We denote the set of
interactions by B. An interaction Φ ∈ B is self-adjoint if ΦΛ(Z) is self-adjoint in AZ for
all Λ ∈ F(Γ) and Z ⊂ Λ.

A family of operators G = {GΛ}Λ∈F(Γ) is called a local Hamiltonian if there is an
interaction ΦG ∈ B such that for all Λ ∈ F(Γ), we have

GΛ =
∑
Z⊂Λ

ΦΛ
G(Z). (7.1.15)

The set of local Hamiltonians is denoted by L. Note that ΦG ∈ B such that (7.1.15) holds
is not unique. A local Hamiltonian H ∈ L is self-adjoint if every interaction ΦH ∈ B
such that (7.1.15) holds is self-adjoint. For the sake of readability, we will mostly omit the
dependence on Λ in the rest of this chapter, since this does not cause any confusion.
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It is easy to verify that B and L are complex vector spaces with the usual operations
that are inherited from the space of bounded operators.

With the help of the stretched exponential decay functions

χs,b(x) := e−b xs
, 0 < s ⩽ 1, b ⩾ 0, x ⩾ 0, (7.1.16)

we define the local norm of an interaction Φ ∈ B as

∥Φ∥s,b := sup
Λ∈F(Γ)

sup
x∈Λ

∑
Z⊂Λ
Z∋x

∥ΦΛ(Z)∥
χs,b(D(Z)) . (7.1.17)

Then, let us define the set of (s, b)-localized interactions by

Bs,b :=
{

Φ ∈ B, ∥Φ∥s,b < ∞
}
.

If G ∈ L such that (7.4.1) holds for some Φ ∈ Bs,b, then G is called (s, b)-localized and the
set of (s, b)-localized Hamiltonians is denoted by Ls,b. Since ΦG is not unique, the term
∥G∥s,b remains undefined but equals, per convention, ∥ΦG∥s,b provided an interaction has
been specified previously or is clear from the context.

Lemma 7.1.1. For each 0 < s ⩽ 1 and b ⩾ 0, the functional ∥ · ∥s,b is a norm on Bs,b,
and (Bs,b, ∥ · ∥s,b) is a Banach space.

Proof. Homogeneity and triangle inequality are inherited from the operator norm. Assume
that ∥Φ∥s,b = 0 for some interaction Φ. Then, for all x ∈ Λ, we have ∥ΦΛ(Z)∥ = 0 for
every set Z ⊂ Λ that contains x. If a nonempty Z ′ ⊂ Λ is given, choose an arbitrary
point x′ ∈ Z ′ and obtain ∥ΦΛ(Z ′)∥ = 0. This proves that ΦΛ(Z ′) = 0 for every Z ′ ⊂ Λ,
whence Φ = 0. The completeness property of Bs,b is inherited from the completeness of
B(HΛ).

Remark 7.1.2. Since χs,b1 > χs,b2 whenever b1 < b2, we have that b 7→ ∥Φ∥s,b is a strictly
increasing function on [0,∞) with values in R ∪ {∞}. Therefore, if there is an 0 < s ⩽ 1
and a b > 0 such that ∥Φ∥s,b < ∞ then, either there is b0 > 0 such that limb↗b0 ∥Φ∥s,b = ∞
or we have limb↗∞ ∥Φ∥s,b = ∞. In any case, we may assume without loss of generality
that

∥Φ∥s,b ⩾ 1. (7.1.18)

Let us denote the class of s-localized interactions by

Bs :=
⋃
b>0

Bs,b, 0 < s ⩽ 1, (7.1.19)

and denote the corresponding classes of local Hamiltonians by Ls. Furthermore, define
the classes of (stretched) exponentially localized interactions by

E := B1, S :=
⋃

0<s<1
Bs, (7.1.20)

respectively, and write LE and LS for the corresponding sets of local Hamiltonians.

308 PhD Thesis



CHAPTER 7. EXPONENTIAL ESTIMATES FOR THE ADIABATIC THEOREM

Time-dependent setting. Since we will be concerned with analytic interactions of
time, we consider an open subset I ⊂ C. A time-dependent interaction is a map Φ: I → B
and we denote the set of time-dependent interactions by B(I). A time-dependent local
Hamiltonian is a map G : I → L such that (7.1.15) holds for G(u) for every u ∈ I. The
set of time-dependent local Hamiltonians is denoted by L(I).

For 0 < s ⩽ 1 and b ⩾ 0, we define the local norm of an interaction Φ ∈ B(I) by

~Φ~I,s,b := sup
u∈I

∥Φ(u)∥s,b (7.1.21)

and the set of (s, b)-localized time-dependent interactions is defined by

Bs,b(I) :=
{

Φ ∈ B(I), ~Φ~I,s,b < ∞
}
.

Likewise, we conclude that ~ ·~I,s,b is a norm on Bs,b(I) and (Bs,b(I),~ ·~I,s,b) is a Banach
space. We also define the symbols Bs(I), Ls(I), E(I), S(I), LE(I), and LS(I) as the
obvious analoga to the symbols defined in (7.1.19) and (7.1.20).

An interaction Φ ∈ B(I) is called holomorphic if for every Λ ∈ F(Γ) and Z ⊂ Λ the
map

u 7−→ Φ(u)Λ(Z),

is holomorphic on I. For any set X (I) of time-dependent interactions (or local Hamilto-
nians), we write X hol(I) for the corresponding set of holomorphic interactions (or local
Hamiltonians).

7.2 Technical Preparations — growth conditions

In order to prove the adiabatic theorem, we will need a lattice system with polynomial
growth. However, there are many results which hold in higher generality. Therefore, we
present here various growth conditions on the lattice Γ that will play an important role
throughout the chapter.

7.2.1 Abstract growth conditions

Assumption 7.2.1 (Abstract volume growth). For 0 < s ⩽ 1 and b > 0, we assume that
the constant

Vs(b) := sup
Z∈F(Γ)

|Z| χs,b(D(Z)) (7.2.1)

is finite. Here, |Z| is the cardinality of Z ∈ F(Γ) and χs,b is from (7.1.16).

Let us remark several facts about the constants in (7.2.1). First of all, we have

Vs(b) ⩾ 1, (7.2.2)

since Vs(b) ⩾ |{x}|χs,b(D({x})) = 1 for every x ∈ Γ. We also have Vs(b) → ∞ as b → 0.
For k > 0, we put

Vs,k(b) := Vs
( b
k

)
= sup

Z∈F(Γ)
|Z| χs, b

k
(D(Z)). (7.2.3)
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For b > 0 and k ⩽ k′, these constants satisfy Vs,k(b) ⩽ Vs,k′(b) and, by (7.2.2),

Vk(b)k ⩽ Vk′(b)k′
. (7.2.4)

The next growth condition is somewhat similar to the summability of the function F
in [BDF18a].

Assumption 7.2.2 (Abstract F -norm growth). For 0 < s ⩽ 1 and b > 0, we assume that
the constant

Fs(b) := sup
z∈Γ

∞∑
n=0

|Bn(z)| χs,b(2n) (7.2.5)

is finite. Here, Bn(z) is the ball of radius n about z defined in (7.1.2) and χs,b is from
(7.1.16).

We note that

Fs(b) ⩾ 1, (7.2.6)

since Fs(b) dominates the term n = 0 in the sum.

7.2.2 The decay functions χs,b

Lemma 7.2.3. For any 0 < s ⩽ 1 and b ⩾ 0 the function χs,b in (7.1.16) satisfies the
following properties:

(a) (i) χs,b is bounded, positive and monotonically decreasing. If b > 0 then χs,b is
strictly decreasing.

(ii) χs,b is logarithmically superadditive, that is, we have χs,b(x+ y) ⩾ χs,b(x)χs,b(y)
for every x, y ⩾ 0.

(b) For all k ⩾ 0, b > 0 and x ⩾ 0, define fs,k,b(x) := xkχs,b(x). Then, with the convention
00 = 1, we have

∥fs,k,b∥L∞(R+) = fs,k,b
(( k
bs

) 1
s
)

=
( k

bs e
) k

s .

(c) For all k ⩾ 0, any b′ > b, and t ⩾ 0, we have
� ∞

t
dx xk χs,b′(x) ⩽ Γ

(
1 + 1

s

) ( k
se
) k

s
( 2
b′ − b

) k+1
s χs,b(t).

Here, Γ is the standard Γ-function.

(d) For every d ∈ N0, we have

sup
n∈N0

max{1, n}d χs,b(n) ⩽


( d

s e b
) d

s bs ⩽ d,

1 otherwise.

(e) For every t ⩾ 0, we have

e−bt ⩽ Es,b χs,b(t)

with Es,b := exp(b(1 − s) s
s

1−s ).
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Proof. Part (a) (i) is clear. To see logarithmic superadditivity, use that f(x) = xs is
concave. We may deduce f(x) ⩾ y

x+yf(0) + x
x+yf(x+ y) ⩾ x

x+yf(x+ y) for x+ y ⩾ 0 with
x+ y > 0 (if x = y = 0, then clear). Adding up these inequalities for x and y, we obtain
f(x) + f(y) ⩾ f(x+ y) so that superadditivity of χs,b follows. We continue with part (b).
It is easy to see that fs,k,b has a unique maximum, which, by the first derivative test, is
located at (k/bs)1/s. To prove part (c), write

� ∞

t
dx xk χs,b′(x) =

� ∞

t
dx xk χ b′−b

2
(x) χ b′−b

2
(x) χs,b(x).

We estimate as the last factor as χs,b(x) ⩽ χs,b(t). For the first two factors, we apply
part (b). We are thus left with the integral, which we carry out on [0,∞). Perform a
substitution τ(x) = axs so that dx = 1

s
1
a1/s

τ
1
s

−1dτ . Then,
� ∞

0
dx χs,a(x) = 1

s

1
a1/s

� ∞

0
dτ τ

1
s

−1e−τ = Γ(1/s)
s

1
a

1
s

= Γ
(
1 + 1

s

) 1
a

1
s

.

Apply this for a = b′−b
2 to get the claim. Part (d) follows from maximizing the function

max{1, x}dχs,b(x) for x ∈ [0,∞). For the last part (e), we write e−bx = e−b(x−xs) e−bxs and
estimate the maximum of gs(x) = e−b(x−xs). Consequently, g′

s(x) = −bgs(x)(1 − s xs−1)
so that the maximal value is gs(s

1
1−s ) = exp(b(1 − s)s

s
1−s ).

7.2.3 Concrete growth condition

Assumption 7.2.4 (Concrete polynomial growth condition). Suppose that there are κ >
0 and d ∈ N0 such that for every Z ∈ F(Γ), we have

|Z| ⩽ κ max{1,D(Z)}d.

Lemma 7.2.5 (Concrete estimate on Vs(b)). Suppose that Assumption 7.2.4 holds. Then,
Assumption 7.2.1 holds and if bs ⩽ d, we have

Vs(b) ⩽ κ
( d

s e b
) d

s .

Proof. Let Z ∈ F(Γ). By assumption, we have

|Z| χs,b(D(Z)) ⩽ κ max{1,D(Z)}d χs,b(D(Z))

We take the supremum on both sides and arrive at

Vs(b) ⩽ κ sup
n∈N0

max{1, n}d χs,b(n).

By Lemma 7.2.3, the right side is finite and if bs ⩽ d, we have

sup
n∈N0

max{1, n}d χs,b(n) ⩽
( d

s e b
) d

s .

This finishes the proof.

Lemma 7.2.6 (Concrete estimate on Fs(b)). Suppose that Assumption 7.2.4 holds. Then,
Assumption 7.2.2 is satisfied and if b < 4 and bs < 2d, then

Fs(b) ⩽ κ Γ
(
1 + 1

s

) (4
b

) 1
s
( 2d
s e b

) d
s .
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Proof. By assumption, we have

Fs(b) ⩽ κ
∞∑
n=0

χs, b
2
(2n) max{1, 2n}d χs, b

2
(2n).

Therefore, Lemma 7.2.3 implies

Fs(b) ⩽ κ
( 2d
s e b

) d
s

∞∑
n=0

χs, b
2
(2n).

Since χs,b is a monotonically decreasing function, we have
∞∑
n=0

χs, b
2
(2n) ⩽ 1 + 1

2

� ∞

0
dx χs, b

2
(x),

which in combination with Lemma 7.2.3 implies

Fs(b) ⩽ κ
[
1 + 1

2 Γ
(
1 + 1

s

) (4
b

) 1
s
] ( 2d
s e b

) d
s

since bs ⩽ 2d. Since 1 + 1/s ⩾ 2, we have Γ(1 + 1/s) ⩾ 1. By the assumption b ⩽ 4, we infer

1 ⩽
1
2 Γ
(
1 + 1

s

)(4
b

) 1
s ,

from which the claim follows.

7.3 Lieb–Robinson bound

7.3.1 Time-independent setting

The first thing we want to prove with the new norm is a Lieb–Robinson type bound for
the evolution

τt(A) = eitH A e−itH , (7.3.1)

where A ∈ AX and H ∈ L is a local Hamiltonian.

Theorem 7.3.1. Let Assumption 7.2.1 be true, let X,Y ⊂ Λ and let A ∈ AX , B ∈ AY .
Let also 0 < s ⩽ 1 and b′ > 0. Assume that H ∈ Ls,b′ is self-adjoint. Then, for any
Φ ∈ Bs,b′ such that (7.1.15) holds, any t ∈ R, and any 0 ⩽ b < b′, we have

∥ [τt(A), B] ∥ ⩽ 2 ∥A∥ ∥B∥
[
δX,Y + 1

Vs,1(b′ − b)
(
eb Vs,b,1(b′−b) |t| − 1

)
gs,b(X,Y )

]
.

Here, δX,Y = 1 if X ∩ Y ̸= ∅ and δX,Y = 0 otherwise. Furthermore, for k ∈ N and a > 0,
we set the Lieb–Robinson velocity to be

Vs,a,k(b) := 2 ∥Φ∥s,b′

a
Vs,k(b), (7.3.2)

where Vs,k(b) is defined in (7.2.3). Finally,

gs,b(X,Y ) :=



∑
x∈X

χs,b(d(x, Y )) |X| ⩽ |Y |,

∑
y∈Y

χs,b(d(X, y)) |X| > |Y |.
(7.3.3)
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Proof. The method of proof for this result is inspired by the proof of [NSY19, Theorem
3.1]. Let us agree on the decomposition H = ∑

Z⊂Λ Φ(Z) and call f(t) := [τt(A), B].
Then, we have

f ′(t) = i[τt([H,A]), B] = −i
∑
Z⊂Λ

Z∩X ̸=∅

[
B, [τt(Φ(Z)), τt(A)]

]
.

Now, make use of the Jacobi identity [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 to get

f ′(t) = −i
[
f(t),

∑
Z∩X ̸=∅

τt(Φ(Z))
]

+ i
∑

Z∩X ̸=∅

[
τt(A), [B, τt(Φ(Z))]

]
.

Solving the homogeneous equation amounts to evaluating the Dyson series for the new
time-dependent Hamiltonian K(t) := ∑

Z∩X ̸=∅ τt(Φ(Z)). This gives a unitary solution
operator U(t, s) so that with g(t) := i∑Z∩X ̸=∅[τt(A), [B, τt(Φ(Z))]] we have

f(t) − f(0) =
� t

0
ds U(t, s)∗ g(s) U(t, s).

We conclude that

∥f(t)∥ ⩽ ∥f(0)∥ +
� |t|

0
ds ∥g(s)∥

⩽ ∥ [A,B] ∥ + 2
∑

Z∩X ̸=∅
∥Φ(Z)∥

� |t|

0
ds ∥A∥ ∥ [B, τs(Φ(Z))] ∥

∥Φ(Z)∥ .

With the definition

CB(X, t) := sup
A∈AX

∥f(t)∥
∥A∥

= sup
A∈AX

∥ [τt(A), B] ∥
∥A∥

,

we obtain

CB(X, t) ⩽ CB(X, 0) + 2
∑

Z∩X ̸=∅
∥Φ(Z)∥

� |t|

0
ds CB(Z, s).

Iterating this gives the expansion

CB(X, t) ⩽ CB(X, 0) +
∞∑
k=1

(2|t|)k
k!

∑
Z1∩X ̸=∅

∑
Z2∩Z1 ̸=∅

· · ·
∑

Zk∩Zk−1 ̸=∅
CB(Zk, 0)

k∏
i=1

∥Φ(Zi)∥.

We observe

CB(X, 0) ⩽

2∥B∥ X ∩ Y ̸= ∅,
0 otherwise.

Hence, when we define

ak(X,Y ) :=
∑

Z1∩X ̸=∅

∑
Z2∩Z1 ̸=∅

· · ·
∑

Zk∩Zk−1 ̸=∅
Zk∩Y ̸=∅

k∏
i=1

∥Φ(Zi)∥,
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we obtain

CB(X, t) ⩽ 2∥B∥ δX,Y + 2∥B∥
∞∑
k=1

(2|t|)k
k! ak(X,Y ). (7.3.4)

We omit the index s from the notation in the following and claim that

ak(X,Y ) ⩽ V1(b′ − b)k−1 ∥Φ∥kb′ gb(X,Y ). (7.3.5)

To prove this, let us assume without loss that |X| ⩽ |Y | (otherwise interchange the roles
of X and Y in what follows). Then, going for induction, we bound the case k = 1 as

a1(X,Y ) =
∑

Z∩X ̸=∅
Z∩Y ̸=∅

∥Φ(Z)∥ ⩽
∑
x∈X

∑
Z⊂Λ
Z∋x

Z∩Y ̸=∅

∥Φ(Z)∥
χb(D(Z)) χb(D(Z)).

Since x ∈ Z and Z ∩ Y ̸= ∅, we conclude that D(Z) ⩾ d(x, Y ). Hence,

a1(X,Y ) ⩽
∑
x∈X

χb(d(x, Y ))
∑
Z⊂Λ
Z∋x

∥Φ(Z)∥
χb(D(Z)) ⩽ ∥Φ∥b

∑
x∈X

χb(d(x, Y )),

which is bounded by (7.3.5) since ∥Φ∥b ⩽ ∥Φ∥b′ . Furthermore, we have

ak+1(X,Y ) ⩽
∑
x∈X

∑
Z1⊂Λ
Z1∋x

∥Φ(Z1)∥
χb′(D(Z1)) χb

′(D(Z1))
∑

Z2∩Z1 ̸=∅
· · ·

∑
Zk+1∩Zk ̸=∅
Zk+1∩Y ̸=∅

k+1∏
i=2

∥Φ(Zi)∥.

Since the last factor is exactly ak(Z1, Y ), we may apply the induction hypothesis and
relabel Z1 by Z to obtain

ak+1(X,Y ) ⩽ ∥Φ∥kb′ V1(b′ − b)k−1 ∑
x∈X

∑
Z⊂Λ
Z∋x

∥Φ(Z)∥
χb′(D(Z)) χb

′−b(D(Z))

×
∑
z∈Z

χb(D(Z)) χb(d(z, Y )).

Since x, z ∈ Z, we obtain D(Z) ⩾ d(x, z) and subsequently d(x, z) + d(z, Y ) ⩾ d(x, Y )
which, by the logarithmic superadditivity, implies that

χb(D(Z)) χb(d(z, Y )) ⩽ χb(d(x, z) + d(z, Y )) ⩽ χb(d(x, Y )).

Then, the sum over z ∈ Z yields a factor of |Z|, which, together with χb′−b(D(Z)) gives
V1(b′ − b) for an upper bound. All in all, we conclude,

ak+1(X,Y ) ⩽ ∥Φ∥kb′ V1(b′ − b)k
∑
x∈X

χb(d(x, Y ))
∑
Z⊂Λ
Z∋x

∥Φ(Z)∥
χb′(D(Z)) .

Bounding the last term as the (k+1)st copy of ∥Φ∥b′ the induction is complete and (7.3.5)
is proven. Looking back at (7.3.4), we have shown that

CB(X, t) ⩽ 2∥B∥
[
δX,Y + 1

Vs,1(b′ − b)

∞∑
k=1

1
k!
[
2|t|∥Φ∥s,b′Vs,1(b′ − b)

]k
gs,b(X,Y )

]
,

which by definition of CB(X, t) yields the claim.

314 PhD Thesis



CHAPTER 7. EXPONENTIAL ESTIMATES FOR THE ADIABATIC THEOREM

Corollary 7.3.2. Let Assumption 7.2.1 be true, let X,Y ⊂ Λ with d(X,Y ) > 0 and let
A ∈ AX and B ∈ AY . Let also 0 < s ⩽ 1 and b′ > 0 and assume that H ∈ Ls,b′ is self-
adjoint. Then, for any Φ ∈ Bs,b′ such that (7.1.15) holds, any t ∈ R, and any 0 ⩽ b < b′,
we have

∥ [τt(A), B] ∥ ⩽
2

Vs,1(b′ − b) min{|X|, |Y |} ∥A∥ ∥B∥ (eb Vs,b,1(b′−b) |t| − 1) χs,b(d(X,Y )),

where Vs,b,1(b′ − b) is given in (7.3.2).

Proof. Obviously, gs,b(X,Y ) ⩽ min{|X|, |Y |} χb(d(X,Y )). Apply Theorem 7.3.1.

7.3.2 Time-dependent setting

To start out with, let I ⊂ R be an interval. For a local Hamiltonian H ∈ L(I), let U(t, s)
be the unique strong unitary solution [NSY19, Proposition 2.2] to

d
duU(u, v) = −iH(u)U(u, v), U(v, v) = 1. (7.3.6)

Consequently, we have U(u, v)−1 = U(u, v)∗ = U(v, u) for all u, v ∈ I and

d
duU(u, v)∗ = iU(u, v)∗H(u)

Let A ∈ AX . With this, we define the Heisenberg dynamics τu,v(A) as

τu,v(A) := U(u, v)∗AU(u, v).

Theorem 7.3.3. Let Assumption 7.2.1 be true, let X,Y ⊂ Λ and let A ∈ AX , B ∈ AY .
Let also 0 < s ⩽ 1 and b′ > 0. Given an interval I ⊂ R, assume that H ∈ Ls,b′(I) is
self-adjoint. Then, for any Φ ∈ Bs,b′(I) such that (7.1.15) holds, any 0 ⩽ b < b′, and any
u, v ∈ I, we have

∥ [τu,v(A), B] ∥ ⩽ 2 ∥A∥ ∥B∥
[
δX,Y + 1

Vs,1(b′ − b)
(
eb Vs,b,1(b′−b) |u−v| − 1

)
gs,b(X,Y )

]
.

Here, δX,Y = 1 if X ∩ Y ̸= ∅ and δX,Y = 0 otherwise, and gs,b is defined in (7.3.3).
Furthermore, for k ∈ N and a > 0, the Lieb–Robinson velocity is defined as

Vs,a,k(b) := 2~Φ~I,s,b′

a
Vs,k(b), (7.3.7)

where Vs,k(b) is defined in (7.2.3).

Proof. The method of proof for this result is inspired by the proof of [NSY19, Theorem 3.1].
Let Φ be a time-dependent interaction such that the decomposition H(u) = ∑

Z⊂Λ Φ(Z, u)
holds, where Φ(Z, u) := Φ(u)(Z), and for fixed v ∈ I define fv(u) := [τu,v(A), B]. Then,
by (7.3.6) and a short calculation, we have

f ′
v(u) = i[τu,v([H,A]), B] = −i

∑
Z⊂Λ

Z∩X ̸=∅

[
B, [τu,v(Φ(Z, u)), τu,v(A)]

]
.

Now, make use of the Jacobi identity [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 to get

f ′
v(u) = −i

[
fv(u),

∑
Z∩X ̸=∅

τu,v(Φ(Z, u))
]

+ i
∑

Z∩X ̸=∅

[
τu,v(A), [τu,v(Φ(Z, u)), B]

]
.
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Solving the homogeneous equation amounts to evaluating the Dyson series for the new
time-dependent Hamiltonian Kv(u) := ∑

Z∩X ̸=∅ τu,v(Φ(Z, u)). This gives a unitary solu-
tion operator Uv(u,w) so that

fv(u) − fv(w) =
� u

w
dr Uv(r, w)∗ gv(r) Uv(r, w) ∀u,w ∈ I,

with

gv(u) := i
∑
Z⊂Λ

Z∩X ̸=∅

[
τu,v(A), [τu,v(Φ(Z, u)), B]

]
.

Setting w = v, we get

∥fv(u)∥ ⩽ ∥fv(v)∥ +
� max{u,v}

min{u,v}
dr ∥gv(r)∥,

or, in other words,

∥ [τu,v(A), B] ∥ ⩽ ∥ [A,B] ∥ + 2 ∥A∥
� max{u,v}

min{u,v}
dr

∑
Z⊂Λ

Z∩X ̸=∅

∥ [B, τr,v(Φ(Z, r))] ∥.

Iterating this up to finite order n ∈ N gives the expansion

∥ [τu,v(A), B] ∥ ⩽ ∥ [A,B] ∥ + 2 ∥A∥ ∥B∥
n∑
k=1

2k ak(u, v,X, Y ) +Rn(u, v,X) (7.3.8)

with

ak(u, v,X, Y ) :=
� u∧v

u∨v
dr1 · · ·

� rk−1∧v

rk−1∨v
drk

∑
Z1⊂Λ

Z1∩X ̸=∅

∑
Z2⊂Λ

Z2∩Z1 ̸=∅

· · ·
∑
Zk⊂Λ

Zk∩Zk−1 ̸=∅
Zk∩Y ̸=∅

k∏
i=1

∥Φ(Zi, ri)∥,

where u ∧ v := max{u, v} and u ∨ v := min{u, v}, and

Rn(u, v,X) := 2n+2∥A∥
� u∧v

u∨v
dr1

� r1∧v

r1∨v
dr2 · · ·

� rn∧v

rn∨v
drn+1

×
∑
Z1⊂Λ

Z1∩X ̸=∅

∑
Z2⊂Λ

Z2∩Z1 ̸=∅

· · ·
∑
Zn⊂Λ

Zn+1∩Zn ̸=∅

∥ [τrn+1,v(Φ(Zn+1, rn+1), B] ∥
n∏
i=1

∥Φ(Zi, ri)∥.

Now, first we have the bound ∥[A,B]∥ ⩽ 2 ∥A∥ ∥B∥ δX,Y . Next, concerningRn(u, v,X),
we have

∥ [τrk+1,v(Φ(Zn+1rn+1)), B] ∥ ⩽ 2 ∥Φ(Zn+1, rn+1)∥ ∥B∥.

This allows us to bound the integrand of the error term Rn in the following way. We omit
the index s from the notation in the following and claim that

∑
Z1⊂Λ

Z1∩X ̸=∅

· · ·
∑
Zn⊂Λ

Zn+1∩Zn ̸=∅

n+1∏
i=1

∥Φ(Zi, ri)∥ ⩽ ~Φ~n+1
I,b V1(b)n |X|. (7.3.9)
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Going for induction, the case n = 1 is bounded as∑
Z1∩X ̸=∅

∑
Z2∩Z1 ̸=∅

∥Φ(Z1, r1)∥ ∥Φ(Z2, r2)∥

⩽
∑
x∈X

∑
Z1⊂Λ
Z1∋x

∥Φ(Z1, r1)∥
χb′(D(Z1)) χb′(D(Z1))

∑
z1∈Z1

∑
Z2⊂Λ
z1∈Z2

∥Φ(Z2, r2)∥
χb′(D(Z2)) .

On the right, we may take away the norm ~Φ~I,b. Then, the factor χb(D(Z1)) |Z1| is
bounded by V1(b). Evaluating the second norm, we arrive at the claim (7.3.9) in the case
n = 1. Inductively, we have

∑
Z1⊂Λ

Z1∩X ̸=∅

· · ·
∑
Zn⊂Λ

Zn+1∩Zn ̸=∅

n+1∏
i=1

∥Φ(Zi, ri)∥

⩽
∑
x∈X

∑
Z1⊂Λ
Z1∋x

∥Φ(Z1, r1)∥
χb(D(Z1)) χb(D(Z1)) ~Φ~nI,b V1(b)n−1|Z1|.

The similar strategy to the case n = 1 readily yields (7.3.9). All in all, we conclude the
bound of the remainder term to be

Rn(u, v,X) ⩽ 2
V1(b) |X| ∥A∥ ∥B∥ (2 ~Φ~I,b V1(b) |u− v|)n+1

(n+ 1)! ,

which vanishes as n → ∞. Similarly, we bound the kth coefficient ak(u, v,X, Y ). Here, the
only difference is that we have the additional constraint of Zk ∩ Y ̸= ∅. Assume without
loss that |X| ⩽ |Y |, otherwise interchange the roles of X and Y in what follows. We claim
that

ak(u, v,X, Y ) ⩽ ~Φ~kI,b′ V1(b′ − b)k−1 |u− v|k

k!
∑
x∈X

χb(d(x, Y )). (7.3.10)

We start the induction again by the case k = 1 and

a1(u, v,X, Y ) =
� u∧v

u∨v
dr

∑
Z⊂Λ

Z∩X ̸=∅
Z∩Y ̸=∅

∥Φ(Z, r)∥.

Then,

a1(u, v,X, Y ) ⩽
� u∧v

u∨v
dr
∑
x∈X

∑
Z⊂Λ
Z∋x

Z∩Y ̸=∅

∥Φ(Z, r)∥
χb(D(Z)) χb(D(Z)).

Since D(Z) ⩾ d(x, y) for any point y ∈ Y , we have D(Z) ⩾ d(x, Y ), so

a1(u, v,X, Y ) ⩽
� u∧v

u∨v
dr ~Φ~I,b

∑
x∈X

χb(d(x, Y )) ⩽ ~Φ~I,b′ |u− v|
∑
x∈X

χb(d(x, Y )).
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The case k = 1 is proven. Supposing the claim is true for k, we get that

ak+1(u, v,X, Y ) ⩽
� u∧v

u∨v
dr1

∑
x∈X

∑
Z1⊂Λ
Z1∋x

∥Φ(Z1, r1)∥

×
� r1∧v

r1∨v
dr2 · · ·

� rk∧v

rk∨v
drk+1

∑
Z2⊂Λ

Z2∩Z1 ̸=∅

· · ·
∑

Zk+1⊂Λ
Zk+1∩Zk ̸=∅

k+1∏
i=2

∥Φ(Zi, ri)∥.

Since the second row is equal to ak(r1, v, Z1, Y ), we apply the induction hypothesis and
obtain

ak+1(u, v,X, Y ) ⩽ ~Φ~kI,b′ Vs,1(b′ − b)k−1
� u∧v

u∨v
dr1

|r1 − v|k

k!

×
∑
x∈X

∑
Z1⊂Λ
Z1∋x

∥Φ(Z1, r1)∥
χb′(D(Z1)) χb′−b(D(Z1))

∑
z1∈Z1

χb(D(Z1))χb(d(z1, Y )).

Since x, z1 ∈ Z1, we get D(Z1) ⩾ d(x, z1). Then, the logarithmic superadditivity, together
with the triangle inequality d(x, z1) + d(z1, Y ) ⩾ d(x, Y ) yields

χb(D(Z1))χb(d(z1, Y )) ⩽ χb(d(x, z1) + d(z1, Y )) ⩽ χb(d(x, Y )).

The right-most sum gives a factor of |Z1|, which, together with χb′−b(D(Z1)) yields an
upper bound by a copy of V1(b′ − b). Bounding away the norm ~Φ~I,b′ , we arrive at the
bound

ak+1(u, v,X, Y ) ⩽ ~Φ~k+1
I,b′ V1(b′ − b)k

� u∧v

u∨v
dr |r − v|k

k!
∑
x∈X

χb(d(x, Y )).

Integrating out the last integral finally gives (7.3.10) for k + 1. Looking back at (7.3.8),
we have shown that

∥ [τu,v(A), B] ∥ ⩽ 2∥A∥∥B∥
[
δX,Y + 1

V1(b′ − b)

∞∑
k=1

[b Vb,1(b′ − b)|u− v|]k
k! gb(X,Y )

]
,

which yields the claim.

Corollary 7.3.4. Let Assumption 7.2.1 be true, let X,Y ⊂ Λ with d(X,Y ) > 0 and let
A ∈ AX and B ∈ AY . Let also 0 < s ⩽ 1 and b′ > 0. For an interval I ⊂ R, assume
that H ∈ Ls,b′(I) is self-adjoint. Then, for any Φ ∈ Bs,b′(I) such that (7.1.15) holds, any
0 < b < b′, and any u, v ∈ I, we have

∥ [τu,v(A), B] ∥ ⩽
2 min{|X|, |Y |}
Vs,1(b′ − b) ∥A∥ ∥B∥ (eb Vs,b,1(b′−b) |u−v| − 1) χs,b(d(X,Y )),

where Vs,b,1(b′ − b) is given in (7.3.7).

Proof. Obviously, gs,b(X,Y ) ⩽ min{|X|, |Y |} χs,b(d(X,Y )). Apply Theorem 7.3.3.
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7.4 The map I
In order to solve the adiabatic Schrödinger equation (7.1.11) given by the Hamiltonian H,
it is unavoidable to have a tool at hand which inverts the operation G 7→ [H,G] for
certain operators G. Note that such a property cannot hold for all operators G since every
function of H lies in the kernel of this map. The inverse property should be compared to
the work [HJ02], where the resolvent of H at the lowest eigenvalue was considered as a
bounded operator on a proper subspace of the underlying Hilbert space — the orthogonal
complement of the eigenfunction corresponding to the eigenvalue. The important point is
that we need to invert G 7→ [H,G] in a locality perserving manner. This is done by the
map Is,γ as we shall see now.

7.4.1 Definition of Is,γ
Let G,H ∈ L, assume that H is self-adjoint, and for 0 < s < 1 and γ > 0 let a function
Ws,γ ∈ L1(R) be given. Then, we define

Is,γ(G) :=
�
R

dt Ws,γ(t) eitH G e−itH . (7.4.1)

We claim that if G ∈ Ls and H ∈ LE , then Is,γ(G) ∈ Ls. In other words, (7.4.1) defines
a map Is,γ : Ls → Ls. We shall show this in Section 7.5.2.

For an interval I ⊂ R and time-dependent Hamiltonians G,H ∈ L(I), the map Is,γ
extends in a natural way to a map Is,γ : Ls(I) → Ls(I) via the pointwise definition by the
same formula (7.4.1).

Therefore, Is,γ is a “locality preserving” map, which is a very important property in
the business of quantum lattice systems.

7.4.2 Inverse property of Is,γ
The second important property of Is,γ is that it provides an inverse of the commutator.
This depends on the parameter γ that we did not use so far and that plays the role of the
spectral gap of H.

Definition 7.4.1 (Gapped Hamiltonian). Let I ⊂ R be an interval. Let H ∈ L(I) be a
self-adjoint time-dependent local Hamiltonian. We call H gapped if and only if for every
Λ ∈ F(Γ) and u ∈ I the spectrum σ(HΛ(u)) admits the decomposition

σ(HΛ(u)) = ΣΛ
0 (u) ∪ ΣΛ

1 (u), (7.4.2)

such that ΣΛ
0 (u) and ΣΛ

1 (u) are separated by a uniform spectral gap γ, that is,

γ := inf
{

dist
(
ΣΛ

0 (u) , ΣΛ
1 (u)

)
: Λ ∈ F(Γ), u ∈ I

}
> 0. (7.4.3)

Proposition 7.4.2. Let I ⊂ R be an interval, let G,H ∈ L(I) be two time-dependent
local Hamiltonians and assume that H is gapped with uniform spectral gap γ > 0. Let P
denote the spectral projection of H onto the spectral patch Σ0. Then, for any 0 < s < 1,
there is a function Ws,γ ∈ L1(R) such that the following statements hold pointwise for all
u ∈ I:

(a) If G satisfies the offdiagonal condition

G = P G (1 − P ) + (1 − P )GP, (7.4.4)
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then

G = −i[H, Is,γ(G) ]. (7.4.5)

(b) We have

[G,P ] − i
[
[ Is,γ(G) , H], P

]
= 0.

Proof. The proof is given in [BDF18a, Proposition 4.1 (a), (b)] and uses that Ws,γ is a
function that satisfies Ŵs,γ(ξ) = −i√

2π ξ if |ξ| ⩾ γ. We explicitly construct such a function
in the following. For the required property, see Lemma 7.4.5 (b).

7.4.3 Construction of the function Ws,γ

In a first step, we are going to construct a function ws,γ for 0 < s < 1 with rapid decay
and whose Fourier transform1

ŵs,γ(ξ) := 1√
2π

�
R

dt e−iξtws,γ(t) (7.4.6)

is compactly supported in the interval [−γ, γ]. A comprehensive method to construct
such functions with a desired bound by a given rapidly decaying function has been used
in [BMNS12, Lemma 2.3] and we utilize this method to construct such a function for
our χb,s for every 0 < s < 1. We point out to the reader that such a function cannot
exist for s = 1 since an exponentially decaying function has a Fourier transform with an
analytic continuation to a complex strip around the real axis. Since we require the Fourier
transform to have compact support as well, it thus vanishes identically by the identity
theorem.

Lemma 7.4.3. Let 0 < s < 1 and define a(s) := γ
2ζ(2−s) . Set an(s) := a(s)

n2−s for each
n ⩾ 1. Then, we have

∑
n⩾1 an(s) = γ

2 and the infinite product

ws,γ(t) := cs,γ

∞∏
n=1

(sin(an(s) t)
an(s) t

)2

defines a nonnegative, even function ws,γ ∈ L1(R). We choose cs,γ so that ∥ws,γ∥L1(R) = 1.
Furthermore, the following statements are true:

(a) Consider the function

fs(t) := exp
[
log(t)

(
2 + 2s− s2 − (1 − s)2

ζ(2 − s) t
s
)]
.

and let ξ(s) ∈ (0,∞) be the unique solution of

log(ξ(s)) = (2 + 2s− s2)ζ(2 − s)
(1 − s)2

1
ξ(s) − 1.

Then, for all t ∈ R, we have the estimate

ws,γ(t) ⩽ cs,γ Ds χs,µ0(s)(γt).

where

Ds := (4π)2−se2(2−s)

(2ζ(2 − s))4−s fs(ξ(s)
s), µ0(s) := 2 − s+ (1 − s) log(2ζ(2 − s))

ζ(2 − s) .

1Note that, in contrast to the papers on BCS theory in Chapters 2 and 3, we choose here the unitary
Fourier transform.
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(b) The support of ŵs,γ is contained in the interval [−γ, γ].

Proof. First, note that a(s)
γ = 1

2ζ(2−s) . Hence, it will be convenient to express all quantities
in terms of this ratio. The product converges pointwise (actually uniformly on compact
subsets of R) as each factor is a member of [0, 1]. Hence, the sequence of partial products
is monotone decreasing and bounded from below by 0. For every N ∈ N, we have the
estimate

ws,γ(t) ⩽ cs,γ

N∏
n=1

(sin(an(s) t)
an(s) t

)2
⩽ cs,γ

N∏
n=1

n4−2s

(a(s) t)2 = cs,γ
(N !)4−2s

(a(s) t)2N .

Employing Stirling’s formula N ! ⩽
√

4πN(Ne )N (the 4 in the square root instead of 2 is
just to get the upper bound), we get

ws,γ(t) ⩽ (4π)2−s cs,γ N
2−s N (4−2s)N e−(4−2s)N (a(s) t)−2N .

Without loss, assume that t ⩾ 0, otherwise consider |t|. Now, choose N := ⌊ a(s)t
(γt)1−s ⌋ and

use that (γt)s

2ζ(2−s) − 1 ⩽ N ⩽ (γt)s

2ζ(2−s) to get

ws,γ(t)
(4π)2−scs,γ

⩽ e(2−s) log( (γt)s

2ζ(2−s) ) e2(2−s) (γt)s

2ζ(2−s) log( (γt)s

2ζ(2−s) ) e−2(2−s)( (γt)s

2ζ(2−s) −1)

× e−2( (γt)s

2ζ(2−s) −1) log(a(s) t)
.

Multiplying and dividing the last factor by e2( (γt)s

2ζ(2−s) −1) log((γt)1−s), and rearranging the
right-hand side, we obtain

e(4−s)s log(γt) e−(4−s) log(2ζ(2−s)) e− (1−s)2
ζ(2−s) (γt)s log(γt) e− 1−s

ζ(2−s) (γt)s log(2ζ(2−s))

e− 2−s
ζ(2−s) (γt)s

e2(2−s) e2(1−s) log(γt)

= e2(2−s)

(2ζ(2 − s))4−s e[(4−s)s+2(1−s)] log(γt) e− (1−s)2
ζ(2−s) (γt)s log(γt)

× e−[ 2−s
ζ(2−s) + 1−s

ζ(2−s) log(2ζ(2−s))] (γt)s

.

From this, we conclude that

ws,γ(t)
(4π)2−scs,γ

⩽
e2(2−s)

(2ζ(2 − s))4−s fs(γt) χs,µ0(s)(γt).

It remains to estimate the maximal value of fs. Since the exponential is monotone, fs
attains its maximum at egmax where gmax is the maximal value of

gs(t) := log(t)
(
2 + 2s− s2 − (1 − s)2

ζ(2 − s) t
s
)

Since g(t) → −∞ for t → 0 as well as for t → ∞, it has a maximum ξ(s) ∈ (0,∞).
However, the critical equation

log(ξ(s)s) = (2 + 2s− s2)ζ(2 − s)
(1 − s)2

1
ξ(s)s − 1. (7.4.7)
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has at most one solution since the left-hand side is strictly increasing in ξ(s)s, whereas the
right-hand side is strictly decreasing. This proves part (a). To prove part (b), note that

1√
2π

� ∞

−∞
dx eitx

√
π

2a2 1[−a,a](x) = sin(at)
at

.

Hence, the Fourier transform of sin(ax)
ax is an amplified indicator function on the interval

[−a, a]. By the lemma below, the support of ŵs,γ is thus contained in [−2S, 2S] with
S = ∑∞

n=1 an(s) = γ
2 .

Lemma 7.4.4. Let 0 < a ⩽ b and let fb ∈ L∞(R) with supp fb ⊆ [−b, b]. Then 1[−a,a] ∗ fb
has support contained in [−(a+ b), a+ b].

Proof. Compute

(1[−a,a] ∗ fb)(x) =
� b

−b
dy 1[−a,a](x− y)fb(y).

If x < −(a+ b) and y ∈ [−b, b], then x− y < −a− b+ b = −a. Hence, 1[−a,a](x− y) = 0
for all y in the integration range. So, the convolution is 0. Likewise for x > a+ b.

The following is our version of [BMNS12, Lemma 2.6].

Lemma 7.4.5. Define

Ws,γ(t) :=



� ∞

t
dr ws,γ(r) t ⩾ 0,

−
� t

−∞
dr ws,γ(r) t < 0.

Then, the following statements hold:

(a) Ws,γ is a bounded, odd function with

∥Ws,γ∥∞ = Ws,γ(0) = 1
2 .

(b) If |ξ| ⩾ γ, then

Ŵs,γ(ξ) = − i√
2π ξ

.

(c) For every 0 < µ < µ0(s) and any t ∈ R, we have

|Ws,γ(t)| ⩽ cs,γ
γ

Ds Γ(1/s)
s

( 2
µ0(s) − µ

)1/s

χs,µ(γ |t|),

where cs,γ and Ds are from Lemma 7.4.5.

(d) For r ⩾ 0 and T ⩾ 0, define

Is,γ,r(T ) :=
� ∞

T
dt tr Ws,γ(t).

Then, for each 0 < µ < µ0(s) and T ⩾ 0, the estimate

Is,γ,r(T ) ⩽ DIs,γ,r (µ) χs,µ(γT )

holds, where

DIs,γ,r (µ) := cs,γ
γ2+r

Ds Γ(1/s)2

s2

( r
se
) r

s

( 4
µ0(s) − µ

) 2+r
s

. (7.4.8)
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Proof. Part (a) is proven by 2Ws,γ(0) = ∥ws,γ∥1 = 1. Part (b) follows from an integration-
by-parts argument. We have

Ŵs,γ(ξ) = − 1√
2π

1
iξ

[
e−iξt

� ∞

t
dr ws,γ(r)

]∞

0
+ 1√

2π
1
iξ

[
e−iξt

� t

−∞
dr ws,γ(r)

]0

−∞

+ 1√
2π

1
iξ

� ∞

0
dt e−iξt d

dt

� ∞

t
dr ws,γ(r) − 1√

2π
1
iξ

� 0

−∞
dt e−iξt d

dt

� t

−∞
dr ws,γ(r).

Since ws,γ ∈ L1(R) with ∥ws,γ∥1 = 1, we conclude that

Ŵs,γ(ξ) = − i√
2π ξ

+ i√
2π ξ

ŵs,γ(ξ).

Since ŵs,γ ≡ 0 outside [−γ, γ], see Lemma 7.4.3 (b), the claim follows.
We prove part (c). Inserting Lemma 7.4.3 (a), we obtain

|Ws,γ(t)| ⩽
� ∞

|t|
dξ ws,γ(ξ) ⩽ cs,γDs

� ∞

|t|
dξ χs,µ0(s) γs(ξ).

Applying Lemma 7.2.3 (c) with r = 0, b′ = µ0(s)γs, and b = µγs gives the claim. Likewise,
we obtain part (d) by applying part (c) to µ′ = µ+ µ0(s)−µ

2 . We get

Is,γ,r(T ) ⩽ cs,γ
γ

Ds Γ(1/s)
s

( 2
µ0(s) − µ′

)1/s
� ∞

T
dt tr χs,µ′γs(t).

Applying Lemma 7.2.3 (c) with b′ = γsµ′ and b = γsµ and evaluating the rates, we get
µ′ − µ = µ0(s)−µ

2 = µ0(s) − µ′ and the claim.

7.5 Continuity estimates for several operations

7.5.1 Commutators

Let G0, G1 ∈ L be two local Hamiltonians and let ΦGi ∈ B, i = 0, 1 be given such that
(7.1.15) holds. Then, we define an interaction for [G1, G0] on the set W ⊂ Λ by

Φ[G0,G1](W ) :=
∑

Z0,Z1⊂Λ
Z0∩Z1 ̸=∅
Z0∪Z1=W

[ΦG1(Z1),ΦG0(Z0)]. (7.5.1)

This implies Φ[G0,G1] ∈ B, whence [G1, G0] ∈ L. By induction, this implies an interaction
for multi-commutators as well. For local Hamiltonians G0, . . . , Gk ∈ L, we put

ΦadGk
··· adG1 (G0)(W ) =

∑
Z0,...,Zk⊂Λ

Zi∩
⋃i−1

ℓ=0 Zℓ ̸=∅ ∀i⩾1⋃k

i=0 Zi=W

adΦGk
(Zk) · · · adΦG1 (Z1)(ΦG0(Z0)). (7.5.2)

Analogously, we then have ΦadGk
··· adG1 (G0) ∈ B and adGk

· · · adG1(G0) ∈ L.

Remark 7.5.1. We can think of much more complicated configurations of commutators
of G0, . . . , Gk than the operator

adGk
· · · adG1(G0) (7.5.3)
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and we will, indeed, encounter and deal with them when we estimate the higher deriva-
tives of Is,γ in local norm in Subsection 7.5.4 below. However, the commutators there
appear with additional operations that have to be dealt with simultaneously so that the
commutator estimate we present here would not be applicable there. Therefore, an esti-
mate on the configurations like in (7.5.3) is sufficient for our purposes and we keep the
digression readable by restricting to such configurations. It becomes clear from the proof
that Theorem 7.5.2 also applies to every other configuration of k commutators.

Theorem 7.5.2. Let Assumption 7.2.1 be true, let k ∈ N, 0 < s ⩽ 1, and b′ > 0. Assume
that G0, . . . , Gk ∈ Ls,b′. Then, for any 0 < b < b′, we have adGk

· · · adG1(G0) ∈ Ls,b and
the interaction in (7.5.2) satisfies the estimate

∥ΦadGk
··· adG1 (G0)∥s,b ⩽ 4k Vs,k(b′ − b)k

k∏
ℓ=0

∥ΦGℓ
∥s,b′ ,

where Vs,k(b) is from (7.2.3).

Proof. We omit the index s throughout, since it does not play any role. Let b0, . . . , bk > 0
be such that 0 < bk < bk−1 < · · · < b1 < b0 ⩽ b′. We claim that

∥ΦadGk
··· adG1 (G0)∥bk

⩽ 4k ∥ΦG0∥b0

k∏
i=1

V1(bi − bi−1) ∥ΦGi∥bi−1 . (7.5.4)

If this is true, we may choose b = bk, as well as b0 = b′, and bi−bi−1 = b′−b
k . Consequently,

we have V1(bi − bi−1) = Vk(b′ − b). Using that bi−1 ⩽ b′ for all i = 1, . . . , k, we conclude
the theorem.

It remains to prove (7.5.4) per induction. We start with k = 1. Let x ∈ Λ be given
and estimate

∑
Z⊂Λ
Z∋x

∥ΦadG1 (G0)(Z)∥
χb(D(Z)) ⩽ 2

∑
Z0,Z1⊂Λ
Z0∩Z1 ̸=∅
Z0∪Z1∋x

∥ΦG1(Z1)∥ ∥ΦG0(Z0)∥
χb(D(Z1)) χb(D(Z0)) . (7.5.5)

Here, we used the logarithmic superadditivity of χb as well as D(Z) ⩽ D(Z0) + D(Z1).
Now, we get two terms, the terms with x ∈ Z0 and the ones with x ∈ Z1. For the case
x ∈ Z0, we get the upper bound

∑
Z0,Z1⊂Λ
Z0∩Z1 ̸=∅
Z0∋x

∥ΦG1(Z1)∥ ∥ΦG0(Z0)∥
χb(D(Z1)) χb(D(Z0)) ⩽

∑
Z0⊂Λ
Z0∋x

∥ΦG0(Z0)∥
χb′(D(Z0)) χb

′−b(D(Z0))
∑
z∈Z0

∑
Z1⊂Λ
Z1∋z

∥ΦG1(Z1)∥
χb(D(Z1)) .

Bounding away the norm ∥ΦG1∥b ⩽ ∥ΦG1∥b′ , we get a factor of |Z0|, which, together with
χb′−b(D(Z0)) is bounded by V1(b′ − b). We are left with the norm ∥ΦG0∥b′ . Hence, the
total bound for this case is 2V1(b′ −b)∥ΦG1∥b′∥ΦG0∥b′ . The case x ∈ Z1 produces the same
bound again. We arrive at (7.5.4) for the case k = 1 with b0 = b′ and b1 = b.

The induction argument is now straightforward. Assume that (7.5.4) is true for k − 1
and let bk < bk−1 < · · · < b1 < b0 ⩽ b′ be given. Then, by case k = 1, we get

∥ΦadGk
··· adG1 (G0)∥s,bk

⩽ 4 V1(bk − bk−1) ∥ΦGk
∥bk−1 ∥ΦadGk−1 ··· adG1 (G0)∥bk−1 .

Applying the induction hypothesis proves (7.5.4).
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7.5.2 An estimate for Is,γ
In this section, we prove the locality estimate for the map Is,γ defined in (7.4.1). We do
this in two steps, the first of which is an estimate on local observables. In the second step,
we extend this to local Hamiltonians.

7.5.2.1 The map Is,γ on local observables

For each Z ⊂ Λ and n ∈ N0, define the nth fattening of Z to be

Zn :=
{
z ∈ Λ : dist(z, Z) ⩽ n

}
. (7.5.6)

For a local observable A ∈ AX , where X ⊂ Λ, define

∆0
s,γ(A) :=

�
R

dt Ws,γ(t) EX(τt(A)) (7.5.7)

where EZ(B) = trZc (B)
dim HZ

is the normalized partial trace. Furthermore, for n ⩾ 1, set

∆n
s,γ(A) :=

�
R

dt Ws,γ(t)
(
EXn(τt(A)) − EXn−1(τt(A))

)
(7.5.8)

Then, ∆n
s,γ(A) = 0 for all n sufficiently large, since Λ is finite, and supp(∆n

s,γ(A)) ⊆ Xn∩Λ.
Also,

Is,γ(A) =
∞∑
n=0

∆n
s,γ(A), (7.5.9)

where the sum is indeed finite.

Lemma 7.5.3. Let Assumption 7.2.1 be true, let a′ > a > 0 and assume that H ∈ L1,a′.
For any X ⊂ Λ and A ∈ AX , we have

∥∆0
s,γ(A)∥ ⩽ ∥Ws,γ∥1 ∥A∥.

Let 0 < s < 1, γ > 0, and for any 0 < µ < µ0(s) (with µ0(s) from Lemma 7.4.3) define

ηs,γ(a, µ) := min
{
a

4s ,
µ γs

(4 V1,a,2(a′ − a))s
}
. (7.5.10)

Then, for any integer n ⩾ 1, we have the estimate

∥∆n
s,γ(A)∥ ⩽ C∆

s,γ(a, µ) |X| ∥A∥ χs,ηs,γ(a,µ)(2n),

where C∆ is given by

C∆
s,γ(a, µ) := 4 ea Es,a

a V1,a,2(a′ − a) + 8DIs,γ,0(µ)

with DIs,γ,0 from Lemma 7.4.5, Es,a from Lemma 7.2.3, and V1,a,2(a′ − a) from (7.3.2).

For the proof, we need the following auxiliary result, whose proof can be found in
[BMNS12, Lemma 3.1].
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Lemma 7.5.4. Let H1 and H2 be finite-dimensional Hilbert spaces and suppose ε ⩾ 0
and a bounded operator A on H1 ⊗ H2 are such that

∥[A,1 ⊗B]∥ ⩽ ε ∥B∥

for all bounded operators B on H2. Then

∥E(A) ⊗ 1 −A∥ ⩽ ε,

where E(A) := 1
dim H2

TrH2(A) is the partial trace.

Proof of Lemma 7.5.3. The estimate for ∆0
s,γ(A) is trivial. Let n ⩾ 1 and decompose

∆n
s,γ(A) = ∆̃n

s,γ(A) − ∆̃n−1
s,γ (A) (7.5.11)

with

∆̃n
s,γ(A) :=

�
R

dt Ws,γ(t)
(
EXn(τt(A)) − τt(A)

)
.

Now, for T > 0 to be chosen, we have

∥∆̃n
s,γ(A)∥ ⩽ ∥Ws,γ∥∞

� T

−T
dt
∥∥∥EXn(τt(A)) − τt(A)

∥∥∥+ 4∥A∥ Is,γ,0(T ).

For the first term – let us call it T –, we use the Lieb-Robinson bound Corollary 7.3.2
with v := V1,a,1(a′ − a). Note that dist(X,Xn) ⩾ n. Hence, by Lemma 7.5.4 (and using
∥Ws,γ∥∞ = 1

2 , Lemma 7.4.5 (a)), the first term T is bounded by

T ⩽ 2 |X| ∥A∥ e−an
� T

0
dt eavt ⩽ 2

av
|X| ∥A∥ e−a(n−vT ).

Now choose vT = n+1
2 to get

T ⩽
2e a

2

av
|X| ∥A∥ e− a

2 (n+1).

Make use of Lemma 7.2.3 (e) to obtain e−a 2(n+1)
4 ⩽ Es,a χηs,γ (2(n+1)) with ηs,γ in (7.5.10).

Finally, again by (7.5.10), we have that

Is,γ,0(T ) = Is,γ,0
(n+ 1

2v
)
⩽ DIs,γ,0 χs,µ

( γ
4v 2(n+ 1)

)
⩽ DIs,γ,0 χηs,γ (2(n+ 1)).

Putting everything together, we conclude that

∥∆̃n
s,γ(A)∥ ⩽

1
2 C∆

s,γ |X| ∥A∥ χηs,γ (2(n+ 1)).

From this and a triangle inequality, the bound on ∆n
s,γ(A) follows, see (7.5.11).

Corollary 7.5.5. Let Assumption 7.2.1 be true, let a′ > a > 0 and assume that H ∈ L1,a′.
Let 0 < s < 1, 0 < µ < µ0(s), and let γ > 0. For any X ⊂ Λ, any A ∈ AX , and any
integer n ⩾ 0, we have

∥∆n
s,γ(A)∥ ⩽ D∆

s,γ(a, µ) |X| ∥A∥ χs,ηs,γ(a,µ)(n).

Here,

D∆
s,γ(a, µ) := max

{
C∆
s,γ(a, µ) , ∥Ws,γ∥1

}
, (7.5.12)

where C∆
s,γ and ηs,γ are taken from Lemma 7.5.3.

Proof. This is unifying the estimates in Lemma 7.5.3.
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7.5.2.2 The map Is,γ on local Hamiltonians

Let G be a local Hamiltonian so that G = ∑
Y⊂Λ ΦG(Y ). To prove that Is,γ(G) is still

local, define

ΦIs,γ(G)(Z) :=
∞∑
n=0

∑
Y⊂Λ
Yn=Z

∆n
s,γ(ΦG(Y )). (7.5.13)

Then, we claim that ∑
Z⊂Λ

ΦIs,γ(G)(Z) = Is,γ(G) (7.5.14)

holds. To see this, let us use (7.5.9) so that

Is,γ(G) =
∑
Y⊂Λ

∞∑
n=0

∆n
s,γ(ΦG(Y )).

We insert 1 = ∑
Z⊂Λ 1Yn(Z) and interchange the order of sums. This is allowed since only

finitely mans terms in the sum over n are nonzero, see (7.5.9). This implies

Is,γ(G) =
∑
Z⊂Λ

∞∑
n=0

∑
Y⊂Λ

1Z(Yn) ∆n
s,γ(ΦG(Y )).

This proves (7.5.14).

Theorem 7.5.6. Let Assumptions 7.2.1 and 7.2.2 be true, let a′ > 0 and assume that
H ∈ L1,a′. Let 0 < s < 1 and b′ > 0 such that G ∈ Ls,b′. Let 0 < µ < µ0(s), γ > 0,
and 0 < a < a′. Then, for any 0 ⩽ b < min{b′, ηs,γ(a, µ)} with ηs,γ in (7.5.10), we have
Is,γ(G) ∈ Ls,b and the interaction in (7.5.13) satisfies the estimate

∥ΦIs,γ(G)∥s,b ⩽ D∆
s,γ(a, µ) Vs,1(b′ − b) Fs(ηs,γ(a, µ) − b) ∥ΦG∥s,b′ ,

where D∆
s,γ(a, µ) is from (7.5.12).

Proof. Let x ∈ Λ be given. Again, we suppress the dependence on s. The object to be
estimated is bounded by the logarithmic superadditivity and monotonicity of χb, as well
as the inequality1 D(Yn) ⩽ D(Y ) + 2n. We get

∑
Z⊂Λ
Z∋x

∥ΦIs,γ(G)(Z)∥
χb(D(Z)) ⩽

∑
Z∋x

∞∑
n=0

∑
Y⊂Λ
Yn=Z

∥∆n(ΦG(Y ))∥
χb(D(Y ) + 2n) ⩽

∞∑
n=0

1
χb(2n)

∑
Y⊂Λ
Yn∋x

∥∆n(ΦG(Y ))∥
χb(D(Y )) .

For the resummation, we fix Y and n ∈ N0. Then there is a point x̃ ∈ Bn(x) ∩ Y . Hence,
Y is hit if we sum over all x̃ ∈ Bn(x) and Y ′ ⊂ Λ containing x̃. Using Corollary 7.5.5, we
obtain the upper bound

∑
Z⊂Λ
Z∋x

∥ΦIs,γ(G)(Z)∥
χb(D(Z)) ⩽ D∆

∞∑
n=0

χη−b(2n)
∑

x̃∈Bn(x)

∑
Y⊂Λ
Y ∋x̃

|Y | ∥ΦG(Y )∥
χb′(D(Y )) χb

′−b(D(Y )).

1Let x, y ∈ Y with d(x, y) = D(Y ). For any x′ ∈ Bn(x) and y′ ∈ Bn(y), it follows that x′, y′ ∈ Yn.
Furthermore, d(x′, y′) ⩽ d(x′, x) + d(x, y) + d(y, y′) ⩽ D(Y ) + 2n. Maximizing over x′, y′ ∈ Yn shows
D(Yn) ⩽ D(Y ) + 2n.
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At this point, we estimate |Y |χb′−b(D(Y )) ⩽ V1(b′ − b). Subsequently, we can take away
the norm ∥ΦG∥b′ to conclude that

∑
Z⊂Λ
Z∋x

∥ΦIs,γ(G)(Z)∥
χb(D(Z)) ⩽ D∆ V1(b′ − b) ∥ΦG∥b′

∞∑
n=0

|Bn(x)| χη−b(2n).

The last term is bounded by F (η − b) in (7.2.5), which finishes the proof.

7.5.3 Outlook on the first derivative of Is,γ
In this section, we take a look at the derivative of the map Is,γ(G) with respect to u. For
this purpose, we need to introduce the following map. For two local Hamiltonians G1, G2,
define

Js,γ(G1, G2) := i
�
R

dt Ws,γ(t)
� t

0
dr
[
τr(G1), τt(G2)

]
. (7.5.15)

To compute the derivative, we make use of Duhamel’s formula (see [F])

d
dueitH(u) = it

� 1

0
dλ eiλtH(u) Ḣ(u) ei(1−λ)tH(u). (7.5.16)

Note that this expression carries a λ ↔ 1 − λ symmetry. With this, we compute

d
duIs,γ(G) = Is,γ(Ġ) + i

�
R

dt t Ws,γ(t)
� 1

0
dλ
[
eiλtH(u) Ḣ(u) ei(1−λ)tH(u)G(u) e−itH(u)

− eitH(u)G(u) e−i(1−λ)tHu
Ḣ(u) e−iλtH(u)

]
= Is,γ(Ġ) + Js,γ(Ḣ,G). (7.5.17)

Now, a local norm bound for Js,γ would imply that d
duIs,γ(G) is a local Hamiltonian

if G is and we would have a local norm bound in terms of G and its derivative.
To prove this, we could actually decompose Js,γ in a rather straightforward fashion and

prove a local norm bound. However, to understand higher derivatives, more is necessary.
Namely, we need to understand the nth derivative of τt(G), which is complicated in general.
With each derivative, there is a chain of integrals of derivatives of H coming into the game,
which need to be estimated. Therefore, we need a general procedure to write down the
terms that arise in the nth derivative of Is,γ(G) and we set this up the next section. This
allows us to prove that all derivatives of Is,γ(G) are local Hamiltonians and we prove a
local norm estimate.

7.5.4 The derivatives of Is,γ
When it comes to higher derivatives of Is,γ , we need a system of notation to phrase
what this derivative looks like. It should be pointed out that it is screamingly clear how
to — order by order — compute this derivative from the previous section. But for our
purpose it is necessary to develop a framework that is sufficiently close to a closed formula.
Eventually, we investigate the form of terms arising and use a rather rough upper bound
to the number of these terms to arrive at a norm estimate.
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7.5.4.1 Occurring terms in higher derivatives

In this section, we develop a notation that describes the form of the terms that arise in
the higher derivatives. This means that the order β ∈ N0 of derivative is fixed and that
we investigate one of the terms occurring in the formula for the derivative.

As a motivation, let us briefly describe how the terms that we look at below come
about. If we look closer to the computation we did in (7.5.17), it is not hard to believe the
general building strategy for the terms. Namely, either we derive the local Hamiltonian
inside or we insert a commutator with an integral over Ḣ in front of the local Hamiltonian
in question. The integral defining Is,γ plays a minor role here, it is rather the τt(G) that
is responsible for the complex structure of the terms. Hence, we have to be able to deal
with different types of integral chains, mixed with commutators.

For an interval J ⊂ R we denote the space of continuous sections J → L by SJ(L).
We will decompose the construction of a term in the derivative into small building bricks
and every operator that we define in the following can be realized as a map L → L or
SJ(L) → SJ(L). However, the way our proof is written, we cannot use the locality bounds
of the intermediate steps elegantly because we need to decompose the integral operator
with the weight function Ws,γ and the time evolution τ simultaneously. This may be
improved in the future. Therefore, we give a locality bound only for the final operator,
which encodes one term in the derivative. The decomposition into local observables and
the locality bound for the intermediate steps are left as an exercise to the reader.

Definition 7.5.7 (Primitive operator). Define the linear operator J : SJ(L) −→ SJ(L)
by

J (G)(t) :=
� t

0
dt′ G(t′).

Definition 7.5.8 (Time evolution). (a) For G,H ∈ L, we define the time evolution op-
erator τ : L → SJ(L) by

τ(G)(t) := τt(G) := eitH G e−itH .

(b) For m ∈ N, we define the pullback of the time evolution as

τ∗ :
(
SJ(L)m → SJ(L)

)
−→

(
Lm → SJ(L)

)
by

τ∗(R)(G1, . . . , Gm) := R
(
τ(G1), . . . , τ(Gm)

)
.

Example 7.5.9. τ∗(J ) : L → SJ(L) with

τ∗(J )(G) =
� •

0
dt′ τt′(G).

Note that this operator appears in the definition of Js,γ in (7.5.15).

Definition 7.5.10 (The valley operator). (a) For ℓ ∈ N0 define the “valley” operator

Vℓ : SJ(L)ℓ+1 −→ SJ(L)

by

V0(G0) := G0

and

Vℓ(G0, . . . ,Gℓ) := Vℓ−1
(
[J (G0),G1],G2, . . . ,Gℓ

)
.
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(b) For m ∈ N, 1 ⩽ p ⩽ m and ℓ ∈ N0, we define the pullback valley operator

V∗
p,ℓ :

(
SJ(L)m → SJ(L)

)
−→

(
SJ(L)m+ℓ → SJ(L)

)
by

V∗
p,ℓ(R)(G1, . . . ,Gp−1,G′

1, . . . ,G′
ℓ,Gp, . . . ,Gm)

:= R
(
G1, . . . ,Gp−1,Vℓ(G′

1, . . . ,G′
ℓ,Gp),Gp+1, . . . ,Gm

)
.

Examples 7.5.11. (a) V4 : SJ(L)5 → SJ(L) with

V4(G0,G1,G2,G3,G4) = ad� •
0 dt1 ad� t1

0 dt2 ad� t2
0 dt3 ad� t3

0 dt4 G0(t4)
G1(t3)

G2(t2)
G3(t1) G4(•)

The interpretation of the valley operator is that we have a stacking chain of commu-
tators and integrals of length 4.

(b) V∗
2,2(V2) : SJ(L)5 → SJ(L) with

(V∗
2,2 ◦ V2)(G0, . . . ,G4) = ad� •

0 dt1 ad� t1
0 dt2 G0(t2)

ad� t1
0 dt2 ad� t2

0 dt3 G1(t3)
G2(t2)

G3(t1) G4(•)

The pullback valley operator inserts a valley of depth 2 at position 2 of the valley V2.

(c) τ∗(V3) : L4 → SJ(L) with

τ∗(V3)(G0, G1, G2, G3) = ad� •
0 dt1 ad� t1

0 dt2 ad� t2
0 dt3 τt3 (G0)

τt2 (G1)
τt1 (G2) τ•(G3).

(d) τ∗(V∗
2,2 ◦ V1) : L4 → SJ(L) with

τ∗(V∗
2,2 ◦ V1)(G0, G1, G2, G3) = ad� •

0 dt1 ad� t1
0 dt2 τt2 (G0)

ad� t1
0 dt2 τt2 (G1)

τt1 (G2) τ•(G3).

Definition 7.5.12 (The mountain range operator). Let F(N0) denote the set of sequences
ℓ = (ℓm)m∈N0 with entries ℓm ∈ N0, where only finitely many entries are nonzero, and let
|ℓ| := ∑∞

m=1 ℓm denote the ℓ1-norm of ℓ ∈ F(N0). Let also

mℓ :=

−1 ℓ = 0,
max{m ∈ N : ℓm ̸= 0}, ℓ ̸= 0,

(7.5.18)

i.e., ℓ = (ℓ0, . . . , ℓmℓ
, 0, . . .) ≡ (ℓ0, . . . , ℓmℓ

).
For ℓ ∈ F(N0), we define the mountain range operator

Wℓ : SJ(L)|ℓ|+1 −→ SJ(L)

by

W0(G) := G

and

Wℓ := V∗
mℓ,ℓmℓ

(
W(ℓ1,...,ℓmℓ−1)

)
.
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Examples 7.5.13. (a) We claim that W(1,2,1) : SJ(L)5 → SJ(L) is given by

W(1,2,1)(G0, . . . ,G4) = ad� •
0 dt1 G0(t1) ad� •

0 dt1 ad� t2
0 G1(t2)

ad� t1
0 dt2 G2(t2)

G3(t1) G4(•).

We read this as follows from the left to the right. At position 0, we have a starting
chain of commutators and integrals of length ℓ0 = 1, at position 1 we have a chain
of length ℓ1 = 2, and at position 2 we have a chain of length ℓ2 = 1. The remaining
operators G3 and G4 have to be inserted into the remaining slots. Alternatively, we
can think of this as ℓ = (1, 2, 1, 0, 0) because we may always attach zeros.
The above formula is true because

W(1,2,1)(G0, . . . ,G4) = V1
(
G0,V2

(
G1,V1(G2,G3),G4

))
and

V1
(
G0,V2

(
G1,V1(G2,G3),G4

))
=
[
J (G0) , J

([
J (G1) , [J (G2),G3]

])
, G4

]
.

(b) ℓ := (2, 2, 0, 1). We have

W(2,2,0,1)(G0, . . . ,G5) = V2
(
G0,V2(G1,G2,V1(G3,G4)),G5

)
which equals [

J
([

J (G0) , J
(
[J (G1) , G2]

)
, [J (G3),G4]

])
, G5

]
.

Therefore,

W(2,2,0,1)(G0, . . . ,G5)
= ad� •

0 dt1 ad� t1
0 dt2 G0(t2)

ad� t1
0 dt2 ad� t2

0 dt3 G1(t3)
G2(t2)

ad� t1
0 dt2 G3(t1)

G4(t1) G5(•).

Definition 7.5.14 (Generalized weighted integral operator). For 0 < s < 1, γ > 0, and
ℓ ∈ F(N0), we define Iℓs,γ : L|ℓ|+1 → L by

Iℓs,γ(G0, . . . , G|ℓ|) := i|ℓ|
�
R

dt Ws,γ(t)
(
τ∗ ◦ Wℓ

)
(G0 . . . , G|ℓ|)(t).

Examples 7.5.15 (Consistency check). (a) For ℓ = 0, we have

I0
s,γ(G) =

�
R

dt Ws,γ(t) τt(G) = Is,γ(G).

(b) For ℓ = 1 = (1, 0), we have

W1(G0,G1) = V1(G0,G1) = ad� •
0 dt G0(t) G1(•).

Therefore, comparing with the definition (7.5.15) of Js,γ , we see that I1
s,γ = Js,γ . This

term appears in the first derivative of Is,γ .
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7.5.4.2 Estimating Iℓs,γ on local observables

We fix ℓ ∈ F(N0) and let Ai ∈ AXi for i = 0, . . . , |ℓ|. For n ∈ N|ℓ|+1
0 define

Ωℓ,n(A0, . . . , A|ℓ|) := i|ℓ|
�
R

dt Ws,γ(t) Wℓ
(
Θn0(A0)(t), . . . ,Θn|ℓ|(A|ℓ|)(t)

)
,

where Θ0(A) := EX(τ(A)) and

Θn(A) := EXn(τ(A)) − EXn−1(τ(A)), n ⩾ 1,

and where Xn is the nth fattening of X, as defined in (7.5.6). This implies that

τ(A) =
∞∑
n=0

Θn(A)

and this sum is finite, in fact, since each Θn(A) has support in Xn ∩ Λ. It follows that
Ωℓ,n(A0, . . . , A|ℓ|) has support in ⋃|ℓ|

i=0Xi,ni ∩ Λ and

Iℓs,γ(A0, . . . , A|ℓ|) =
∑

n∈N|ℓ|+1
0

Ωℓ,n(A0, . . . , A|ℓ|),

where in fact only finitely many terms in the sum are nonzero.

Lemma 7.5.16. Let Assumption 7.2.1 be true, let a′ > 0 and assume that H ∈ L1,a′. Let
0 < s < 1, 0 < µ < µ0(s), and γ > 0. For 0 < a < a′, we put

ηks,γ(a, µ) := min
{ a

4s ,
µ

k

( γ

4 V1,a,2(a′ − a)
)s}

, k ∈ N, (7.5.19)

where V1,a,2(a′ − a) is from (7.3.2). Let ℓ ∈ F(N0) and let Ai ∈ AXi for i = 0, . . . , |ℓ|.
Then, for every n ∈ N|ℓ|+1

0 , the estimate

∥Ωℓ,n(A0, . . . , A|ℓ|)∥ ⩽
1
ℓ! D

Ω,|ℓ|+1
s,γ (a, µ)

|ℓ|∏
i=0

|Xi| ∥Ai∥ χs,η|ℓ|+1
s,γ (a,µ)(2ni)

holds, where ℓ! := ℓ0! · · · ℓmℓ
! with mℓ from (7.5.18), and

DΩ,k
s,γ (a, µ) := 16k ea′k

a k V1,a,2(a′ − a)k
2 Eks,a

ek(a′ − a)k + 4k+1 DIs,γ,k−1 , k ∈ N. (7.5.20)

Here, Es,a is from Lemma 7.2.3, and DIs,γ,k−1 is from Lemma 7.4.5.

Proof. Let us start with an estimate on the norms of Θn for A ∈ AX and t ∈ R. We
decompose according to Θn(A) = Θ̃n(A) − Θ̃n−1(A) for n ⩾ 1 where

Θ̃n(A) := EXn(τ(A)) − τ(A).

For n = 0, we have ∥Θ0(A)∥ ⩽ ∥A∥. For n ⩾ 1, we use the fact that d(X,Xn) ⩾ n and set
a′′ := a + a′−a

2 . By the Lieb–Robinson bound Corollary 7.3.2, the hypothesis of Lemma
7.5.4 holds with

ε := 2
V1,1(a′ − a′′) |X| ∥A∥ (ea′′V1,a′′,1(a′−a′′)|t| − 1) χ1,a′′(n).

332 PhD Thesis



CHAPTER 7. EXPONENTIAL ESTIMATES FOR THE ADIABATIC THEOREM

Since V1,1(a′ − a′′) ⩾ 1, see (7.2.2), and with V1,a′′,1(a′ − a′′) ⩽ V1,a,2(a′ − a) =: v, Lemma
7.5.4 therefore implies

∥Θ̃n(A)(t)∥ ⩽ 2 ea′′ |X| ∥A∥ e−a′′((n+1)−v|t|).

Since 1 ⩽ 4ea′ , combining these estimates yields

∥Θn(A)(t)∥ ⩽ 4 ea′ |X| ∥A∥ e−a′′(n−v|t|), (7.5.21)

for any n ⩾ 0. To begin the estimate for the integral Ωℓ,n(A0, . . . , A|ℓ|), let us use Hölder
to get

∥Ωℓ,n(A0, . . . , A|ℓ|)∥ ⩽
2|ℓ|+1

ℓ!

�
R

dt |Ws,γ(t)| |t||ℓ|
|ℓ|∏
i=0

sup
r∈[−|t|,|t|]

∥Θni(Ai)(r)∥

⩽
2|ℓ|+1

ℓ!

|ℓ|∏
i=0

(�
R

dt |Ws,γ(t)| |t||ℓ|
(

sup
r∈[−|t|,|t|]

∥Θni(Ai)(r)∥
)|ℓ|+1

)1/|ℓ|+1

.

The ℓ! arises from integrating over the simplices inside Wℓ and the 2|ℓ|+1 comes from the
number of terms the commutator generates. Let i ∈ {0, . . . , |ℓ|}. Breaking the integral for
T ⩾ 0 to be chosen, we obtain the upper bound�

R
dt |Ws,γ(t)| |t||ℓ|

(
sup

r∈[−|t|,|t|]
∥Θni(Ai)(r)∥

)|ℓ|+1
⩽ T1(T ) + T2(T ),

where, with Is,γ,|ℓ|(T ) from Lemma 7.4.5,

T1(T ) := ∥Ws,γ∥∞

� T

−T
dt |t||ℓ| sup

r∈[−|t|,|t|]
∥Θni(Ai)(r)∥|ℓ|+1,

T2(T ) := 2|ℓ|+2 ∥Ai∥|ℓ|+1 Is,γ,|ℓ|(T ).

Let us start by estimating T1. Applying (7.5.21) and using ∥Ws,γ∥∞ = 1/2 by Lemma 7.4.5
(a), we obtain

T1(T ) ⩽ 4|ℓ|+1 ea′(|ℓ|+1) |Xi||ℓ|+1 ∥Ai∥|ℓ|+1
� T

0
dt t|ℓ| e−a′′(|ℓ|+1)(ni−vt).

Now, for any k ∈ N we estimate the integral to get
� T

0
dt tk e−a′′(k+1)(ni−vt) ⩽

T ke−a′′(k+1)ni

a′′(k + 1)v ea′′(k+1)vt
∣∣∣∣T
0
⩽

T k

a′′(k + 1)v e−a′′(k+1)(ni−vT ).

Choose vT := ni
2 to get that

� T

0
dt tk e−a′′(k+1)(ni−vt) ⩽

1
a′′(k + 1)vk+1

(ni
2
)k

e−a′′(k+1) ni
2

⩽
2

a′′(k + 1)vk+1

(ni
2
)(k+1)

e−a′′(k+1) ni
2 .

We consider the function f(t) := t e−εt. A short computation shows that f(ε−1) = (εe)−1

is the maximal value of f . Applying this to ε = a′′ − a = a′−a
2 , this implies that

(ni
2 e−a′′ ni

2
)k

⩽
2k

(a′ − a)kek e−a k ni
2 .
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Finally, we estimate e−a k ni
2 ⩽ Es,ka χs, ka

4s
(2ni) by Lemma 7.2.3 (d) and note that we have

Es,ka = Eks,a. By the choice of ηks,γ(a, µ), we conclude that

T1
(ni

2v
)
⩽

8|ℓ|+1 ea′(|ℓ|+1)

a (|ℓ| + 1) v|ℓ|+1
2E|ℓ|+1

s,a

(a′ − a)|ℓ|+1 e|ℓ|+1 |Xi||ℓ|+1 ∥Ai∥|ℓ|+1 χ
s,(|ℓ|+1)η|ℓ|+1

s,γ
(2ni).

Finally, apply Lemma 7.4.5 for r = |ℓ| and obtain

Is,γ,|ℓ|
(ni

2v
)
⩽ DIs,γ,|ℓ|(µ) χs,(|ℓ|+1) µ

|ℓ|+1

( γ
4v 2ni

)
⩽ DIs,γ,|ℓ|(µ) χ

s,(|ℓ|+1) η|ℓ|+1
s,γ

(2ni).

It follows that

T2
(ni

2v
)
⩽ 2|ℓ|+2 DIs,γ,|ℓ|(µ) ∥Ai∥|ℓ|+1 χ

s,(|ℓ|+1) η|ℓ|+1
s,γ

(2ni).

Collecting the two terms T1 and T2 gives the final estimate

(�
R

dt |Ws,γ(t)| |t||ℓ|
(

sup
r∈[−|t|,|t|]

∥Θni(Ai, r)∥
)|ℓ|+1

) 1
|ℓ|+1

⩽
(
DΩ,|ℓ|+1
s,γ

) 1
|ℓ|+1 |Xi| ∥Ai∥ χs,η|ℓ|+1

s,γ
(2ni).

Multiplying all the bounds completes the proof.

7.5.4.3 Estimating Iℓs,γ on local Hamiltonians

Let us agree on the following interaction for Iℓs,γ(G0, . . . , G|ℓ|), where G0, . . . , G|ℓ| ∈ L:

ΦIℓ
s,γ(G0,...,G|ℓ|)(W ) :=

∑
Z0,...,Z|ℓ|⊂Λ

Zi∩
⋃i−1

m=0 Zm ̸=∅ ∀i⩾1⋃|ℓ|
i=0 Zi=W

∑
n∈N|ℓ|+1

0

∑
Y0,...,Y|ℓ|⊂Λ
Yi,ni

=Zi

Ωℓ,n
(
ΦG0(Y0), . . . ,ΦG|ℓ|(Y|ℓ|)

)
.

(7.5.22)

As we convinced ourselves a lot of times by now, we then get∑
W⊂Λ

ΦIℓ
s,γ(G0,...,G|ℓ|)(W ) = Iℓs,γ(G0, . . . , G|ℓ|).

Theorem 7.5.17. Let Assumptions 7.2.1 and 7.2.2 be true, let a′ > 0 and H ∈ L1,a′. Let
ℓ ∈ F(N0), 0 < s < 1, and 0 < µ < µ0(s). Let γ > 0 and 0 < b′ < η

|ℓ|+1
s,γ (a, µ), where

ηks,γ(a, µ) is from (7.5.19). Assume that G0, . . . , G|ℓ| ∈ Ls,b′. Then Iℓs,γ(G0, . . . , G|ℓ|) ∈ Ls,b
for any 0 < b < b′ and the interaction in (7.5.22) obeys the estimate

∥ΦIℓ
s,γ(G0,...,G|ℓ|)∥s,b ⩽

(|ℓ| + 1)!
ℓ! DΩ,|ℓ|+1

s,γ (a, µ)

× Vs,2(|ℓ|+1)(b′ − b)2(|ℓ|+1) Fs
(
η|ℓ|+1
s,γ (a, µ) − b′

)|ℓ|+1 |ℓ|∏
i=0

∥ΦGi∥s,b′ ,

where DΩ,k
s,γ (a, µ) is from Lemma 7.5.16, Vs,2k(b) is from (7.2.3), and Fs(b) is from (7.2.5).
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Proof. We omit the index s throughout. Let x ∈ Λ. Then, we need to estimate

∑
W∋x

∥ΦIℓ(G0,...,G|ℓ|)(W )∥
χb(D(W )) ⩽

DΩ,|ℓ|+1

ℓ!
∑

Z0,...,Z|ℓ|⊂Λ
Zi∩
⋃i−1

m=0 Zm ̸=∅ ∀i⩾1⋃|ℓ|
i=0 Zi=:W∋x

1
χb(D(W ))

|ℓ|∏
i=0

∑
ni∈N0

χη|ℓ|+1(ni)

×
∑
Yi⊂Λ

Yi,ni
=Zi

|Yi| ∥ΦGi(Yi)∥. (7.5.23)

Let us explain the strategy. We are going to resum this in the following way. Since x lies
in the union of all Z’s, there is a permutation of |ℓ| + 1 elements, σ ∈ S|ℓ|+1, such that
the following holds. There is an index σ(0) ∈ {0, . . . , |ℓ|} such that x ∈ Zσ(0). Then, since
Zσ(0) has nonempty intersection with a new set Zσ(1), this set is hit by summing over all
points in Zσ(0) and all sets Zσ(1) containing that point. The next set Zσ(2) is attached to
the union Zσ(0) ∪ Zσ(1), so we sum over all points therein and sets Zσ(2) that contain this
point. Continuing this procedure and relabeling the Zσ(i) as Zi for all i, we arrive at the
following upper bound for (7.5.23), leaving out the constants in front:

∑
σ∈S|ℓ|+1

∑
n0∈N0

χη|ℓ|+1(2n0)
∑
Z0⊂Λ
Z0∋x

∑
Y0⊂Λ

Y0,n0 =Z0

|Y0| ∥ΦGσ(0)(Y0)∥

∑
z1∈Z0

∑
n1∈N0

χη|ℓ|+1(2n1)
∑
Z1⊂Λ
Z1∋z1

∑
Y1⊂Λ

Y1,n1 =Z1

|Y1| ∥ΦGσ(1)(Y1)∥

∑
z2∈Z0∪Z1

∑
n2∈N0

χη|ℓ|+1(2n2)
∑
Z2⊂Λ
Z2∋z2

∑
Y2⊂Λ

Y2,n2 =Z2

|Y2| ∥ΦGσ(2)(Y2)∥ (7.5.24)

. . .∑
z|ℓ|∈

⋃|ℓ|
j=0 Zj

∑
n|ℓ|∈N0

χη|ℓ|+1(2n|ℓ|)
∑

Z|ℓ|⊂Λ
Z|ℓ|∋z|ℓ|

∑
Y|ℓ|⊂Λ

Y|ℓ|,n|ℓ|
=Z|ℓ|

|Y|ℓ|| ∥ΦGσ(|ℓ|)(Y|ℓ|)∥
1

χb(D(⋃|ℓ|
j=0 Zj))

.

Now, we are in need of decay factors in terms of the increasing unions. These are con-
structed as follows:

1
χb(D(⋃|ℓ|

j=0 Zj))
= 1
χb′(D(⋃|ℓ|

j=0 Zj))
χ b′−b

|ℓ|+1

(
D
( |ℓ|⋃
j=0

Zj

))|ℓ|+1

⩽
|ℓ|∏
i=0

1
χb′(D(Yi))χb′(2ni)

χ b′−b
|ℓ|+1

(
D
( i⋃
j=0

Zi

))
.

Here, we used the logarithmic superadditivity and D(⋃|ℓ|
j=0 Zj) ⩽

∑|ℓ|
i=0 D(Zi) as well as

D(Zi) ⩽ D(Yi) + 2ni. For the bound on the last factor, we just omitted the sets that are
of no interest anymore.

The next step consists of resumming the fattenings. We know how to do this by just
summing over all points in the n-ball of points that lie in the fattened set and sets that
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contain this new point. This yields the following upper bound to (7.5.24)

∑
σ∈S|ℓ|+1

∑
n0∈N0

χη|ℓ|+1−b′(2n0)
∑

x̃∈Bn0 (x)

∑
Y0⊂Λ
Y0∋x̃

|Y0| ∥ΦGσ(0)(Y0)∥
χb′(D(Y0)) χ b′−b

|ℓ|+1
(D(Y0,n0))

∑
z1∈Y0,n0

∑
n1∈N0

χη|ℓ|+1−b′(2n1)
∑

z̃1∈Bn1 (z1)

∑
Y1⊂Λ
Y1∋z̃1

|Y1| ∥ΦGσ(1)(Y1)∥
χb′(D(Y1)) χ b′−b

|ℓ|+1
(D(Y0,n0 ∪ Y1,n1))

. . . (7.5.25)∑
z|ℓ|−1∈

⋃|ℓ|−1
j=0 Yj,nj

∑
n|ℓ|−1∈N0

χη|ℓ|+1−b′(2n|ℓ|−1)

×
∑

z̃|ℓ|−1∈Bn|ℓ|−1 (z|ℓ|−1)

∑
Y|ℓ|−1⊂Λ

Y|ℓ|−1∋z̃|ℓ|−1

|Y|ℓ|−1| ∥ΦGσ(|ℓ|−1)(Y|ℓ|−1)∥
χb′(D(Y|ℓ|−1)) χ b′−b

|ℓ|+1

(
D
(|ℓ|−1⋃
j=0

Yj,nj

))

∑
z|ℓ|∈

⋃|ℓ|−1
j=0 Yj,nj

∑
n|ℓ|∈N0

χη|ℓ|+1−b′(2n|ℓ|)
∑

z̃|ℓ|∈Bn|ℓ| (z|ℓ|)

∑
Y|ℓ|⊂Λ
Y|ℓ|∋z̃|ℓ|

|Y|ℓ|| ∥ΦGσ(|ℓ|)(Y|ℓ|)∥
χb′(D(Y|ℓ|))

× χ b′−b
|ℓ|+1

(
D
( |ℓ|⋃
j=0

Yj,nj

))
.

At this point, we start estimating the last row of (7.5.25). First,

|Y|ℓ|| χ b′−b
|ℓ|+1

(
D
( |ℓ|⋃
j=0

Yj,nj

))
⩽ V|ℓ|+1(b′ − b).

Also, note that V|ℓ|+1(b′ − b) ⩽ V2(|ℓ|+1)(b′ − b)2, see (7.2.4). Taking away the norm
∥ΦGσ(|ℓ|)∥b′ , the volume |Bn|ℓ|(z|ℓ|)|, together with the sum over n|ℓ| gives F (η|ℓ|+1 − b′).
The total bound for the last row of (7.5.25) is thus

∣∣∣∣|ℓ|−1⋃
j=0

Yj,nj

∣∣∣∣ F (η|ℓ|+1 − b′) V2(|ℓ|+1)(b′ − b)2 ∥Φσ(|ℓ|)∥b′ .

The first factor is passed on to the second to last row and we obtain

|Y|ℓ|−1|
∣∣∣∣|ℓ|−1⋃
j=0

Yj,nj

∣∣∣∣ χ b′−b
|ℓ|+1

(
D
(|ℓ|−1⋃
j=0

Yj,nj

))
⩽ V2(|ℓ|+1)(b′ − b)2.

Now, the procedure continues, so that the final bound for the second to last row is

∣∣∣∣|ℓ|−2⋃
j=0

Yj,nj

∣∣∣∣ F (η|ℓ|+1 − b′) ∥ΦGσ(|ℓ|−1)∥b′ V2(|ℓ|+1)(b′ − b)2.

Collapsing (7.5.25) in this way to the first line, this provides |ℓ|+1 copies of V2(|ℓ|+1)(b′−b)2,
as well as |ℓ| + 1 copies of F (η|ℓ|+1 − b′), and all the norms. The last step is to note that
|S|ℓ|+1| = (|ℓ| + 1)!. This proves the claim.
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7.5.4.4 Estimate on the derivatives of Is,γ

As a Corollary to Theorem 7.5.17, we finally obtain an estimate on the norm of the
derivatives of Is,γ . We start with a representation formula for the derivative.

Lemma 7.5.18. Let β ∈ N, 0 < s ⩽ 1, and γ > 0. Let G,H ∈ L(I) be (β − 1)-fold
differentiable time-dependent local Hamiltonians. Then

dβ−1

duβ−1 Is,γ(G)(u) =
∑

ℓ∈Mβ−1

∑
q∈N|ℓ|+1

|q|=β

Nβ,ℓ,q Iℓs,γ
(
H(q1)(u) , . . . , H(q|ℓ|)(u) , G(q0−1)(u)

)
,

(7.5.26)

where Nβ,ℓ,q ∈ N and

Mβ :=
{
ℓ ∈ F(N0) : |ℓ| ⩽ β ,

i∑
m=0

ℓm ⩾ 1 + i, i = −1, . . . ,mℓ

}
. (7.5.27)

We point out that if we wanted to give a formula for Nβ,ℓ,q, we would need to under-
stand more precisely how the terms in the derivative are built. Certainly, the multinomial
coefficient (

β − 1
q0 − 1 , q1 , . . . , q|ℓ|

)
:= (β − 1)!

(q0 − 1)! q1! · · · q|ℓ|!

plays a role but there are other mechanics that would need to be captured. We are not
capable of keeping track of this at the moment. However, we do not expect the bound on
the derivative given below to improve much by taking this into account.

Proof of Lemma 7.5.18. We prove this by induction and we note that the case β = 1
trivially holds with N0,0,1 = 1. As a preparation for the induction step, we note that
(7.5.16) implies

d
duτ(G) = τ(Ġ) + V1(τ(Ḣ), τ(G)). (7.5.28)

Furthermore, for ℓ ∈ F(N0), m = 0, . . . , |ℓ|, and G,G0, . . . , G|ℓ| ∈ L, we have

(V∗
m,1 ◦ Wℓ)(G0, . . . , Gm−1, G,Gm, . . . , G|ℓ|)

= Wℓ(G0, . . . , Gm−1 , V1(G,Gm) , Gm+1, . . . , G|ℓ|)
= Wφm(ℓ)(G0, . . . , G|ℓ|),

where

φm(ℓ) :=
(
ℓ0 , . . . , ℓm−1 , ℓm + 1 , 0 , ℓm+1 , . . . , ℓ|ℓ|

)
.

For differentiable Hamiltonians G0, . . . , G|ℓ|, (7.5.28) therefore implies

d
du(τ∗ ◦ Wℓ)(G0, . . . , G|ℓ|) =

|ℓ|∑
m=0

(τ∗ ◦ Wℓ)(G0, . . . , Ġm, . . . G|ℓ|)

+ (τ∗ ◦ Wφm(ℓ))(G1, . . . , Gm−1, Ḣ, Gm, . . . , G|ℓ|)
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and this implies

d
duIℓs,γ(G0, . . . , G|ℓ|) =

|ℓ|∑
m=0

Iℓs,γ(G0, . . . , Ġm, . . . , G|ℓ|)

+ Iφm(ℓ)
s,γ (G0, . . . , Gm−1, Ḣ, Gm, . . . , G|ℓ|). (7.5.29)

Suppose (7.5.18) holds for some β ∈ N. In view of (7.5.29), it is sufficient to show that
if ℓ ∈ Mβ, then φm(ℓ) ∈ Mβ+1 for all m = 0, . . . , |ℓ|. It is obvious that |φm(ℓ)| ⩽ β + 1.
We have to verify that

i∑
j=0

φm(ℓ)j ⩾ 1 + i, i = −1, . . . ,mφm(ℓ).

For i = 0, . . . ,m − 1, this is clear per definition of φm(ℓ). Since mφm(d) = mℓ + 1, for
i = m, . . . ,mℓ + 1, we have

i∑
j=0

φm(ℓ)j = 1 +
m∑
j=0

ℓj +
i∑

j=m+2
ℓj−1 = 1 +

i−1∑
j=0

ℓj ⩾ 1 + (i− 1) = 1 + i. (7.5.30)

Thus, φm(ℓ) ∈ Mβ+1 and this completes the proof.

We agree on the interaction for dβ−1

duβ−1 Is,γ(G) which is given by the decomposition
(7.5.26) and (7.5.22).

Theorem 7.5.19. Let Assumptions 7.2.1 and 7.2.2 be true, a′ > a > 0, and β ∈ N. For
an open interval I ⊂ R, assume that H ∈ L1,a′(I) is a (β − 1)-fold differentiable local
Hamiltonian. Let also 0 < s < 1, 0 < µ < µ0(s), γ > 0, and 0 < b′ < ηβs,γ(a, µ), where
ηβs,γ(a, µ) is from Lemma 7.5.16. Let G be a (β − 1)-fold differentiable local Hamiltonian
with G(j) ∈ Ls,b′(I) for all 0 ⩽ j ⩽ β−1 and assume that H(j) ∈ Ls,b′(I) for 1 ⩽ j ⩽ β−1.
Then, dβ−1

duβ−1 Is,γ(G) ∈ Ls,b(I) for any 0 < b < b′ and the estimate∥∥∥Φ dβ−1
duβ−1 Is,γ(G)(u)

∥∥∥
s,b

⩽ DdI,(1)
s,γ (a, µ)β DdI,(2),β

s (b′ − b) Fs(ηβ − b′)β Ns,b′,β(H,G)(u)

holds for all u ∈ I, where

DdI,(1)
s,γ (a, µ) := 2 + 64 sup

k∈N

[ ea′−1

a
1
k V1,a,2(a′ − a)

Es,a
a′ − a

+ 1
γ1+ 1

k

(
cs,γDsΓ(1/s)2

s2

) 1
k
( 4
µ0(s) − µ

) 1
s

+ 1
sk
( 1
se

) 1
s

− 1
sk
]

with V1,a,2(a′ − a) from (7.3.2), Es,a from Lemma 7.2.3, cs,γ, Ds, and µ0(s) from Lemma
7.4.3,

DdI,(2),β
s (b′ − b) := β! (β − 1)! (β − 1)

β−1
s Vs,2β(b′ − b)2β,

and

Ns,b,β(H,G)(u) := sup
0⩽j⩽β−1

sup
q∈Nj+1

|q|=β

∥G(q0−1)(u)∥s,b ∥H(q1)(u)∥s,b · · · ∥H(qj)(u)∥s,b. (7.5.31)
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Proof. The goal is to obtain an upper bound on the number of terms in the derivative in
(7.5.26) and to apply Theorem 7.5.17 in the worst possible case. Let us start by counting
the number of terms (7.5.26). If Tβ−1 symbolizes the total number of terms in (7.5.26),
the first observation is the fact that each derivative falling on a τt(G) causes two new
terms, see (7.5.28). Pretending that each term in the (β − 1)st derivative has the form
Iℓs,γ(G1, . . . , G|ℓ|+1) with |ℓ| + 1 = β (which is not the case, many ℓ’s have |ℓ| + 1 < β,
see (7.5.26)), this leads to the upper bound Tβ ⩽ Tβ−1 2β. Obviously, we have T0 = 1.
Define Sβ := 2ββ!. We claim that Tβ−1 ⩽ Sβ−1 for each β ∈ N. To see this, note that
S0 = 20 0! = 1, i.e. T0 ⩽ S0. Assume that Tβ−1 ⩽ Sβ−1 for some β ∈ N. Then,

Tβ ⩽ Tβ−1 2β ⩽ Sβ−1 2β = 2β−1 (β − 1)! 2β = 2β β! = Sβ.

It remains to apply Theorem 7.5.17 to all of the terms in (7.5.26). This gives an upper
bound of the form∥∥∥ΦIℓ

s,γ(H(q1),...,H
(q|ℓ|)

,G(q0−1))

∥∥∥
b

⩽ (|ℓ| + 1)! DΩ,|ℓ|+1
s,γ (a, µ) V2(|ℓ|+1)(b′ − b)2(|ℓ|+1) F (η|ℓ|+1

s,γ − b′)j Nb′,β(H,G).

Now, a straightforward computation using the definition of DΩ,β
s,γ , of DIs,γ,β−1 and the

subadditivity of the βth root shows that

DΩ,β
s,γ (a, µ)

1
β ⩽

1
2 (β − 1)

β−1
sβ DdI,(1)

s,γ (a, µ).

Since, by definition, DdI,(1)
s,γ ⩾ 2, we may estimate

DΩ,β
s,γ (a, µ) ⩽ 1

2β (β − 1)
β−1

s DdI,(1)
s,γ (a, µ)β.

Together with the factor 2β−1(β − 1)!, we get the total claimed bound.

7.6 Analytic time-dependent interactions

7.6.1 Derivatives of analytic Hamiltonians

In this subsection, we show how analyticity of an interaction enables us to relate local
norms of derivatives of a Hamiltonian to the norm of the Hamiltonian itself. To do this,
fix an interval I ⊂ R, let δ > 0 and we consider the complex fattening

Iδ := {u ∈ C : dist(u, I) < δ}. (7.6.1)

We recall that Bhol
s,a (Iδ) is the space of holomorphic interactions in Bs,a(Iδ) and Lhol

s,a(Iδ) is
the space of local Hamiltonians with interactions in Bhol

s,a (Iδ), where 0 < s ⩽ 1, a > 0. In
the following, we abbreviate the norm of Φ ∈ Bhol

s,a (Iδ) as

~Φ~δ,s,a := ~Φ~Iδ,s,a.

A version of the following Lemma in the one-particle case has been proven in [HJ02,
Lemma 3.1].
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Lemma 7.6.1. Define B(0) = 1 and B(k) = kk for any integer k ⩾ 1. Let 0 < s ⩽ 1 and
a > 0. For δ > 0 suppose Φ ∈ Bhol

s,a (Iδ). If there are k ∈ N0 and a constant Cs,a > 0 such
that Φ satisfies

∥Φ(u)∥s,a ⩽ Cs,a B(k) (δ − dist(u, I))−k, u ∈ Iδ,

then

∥Φ̇(u)∥s,a ⩽ Cs,a B(k + 1) (δ − dist(u, I))−k−1, u ∈ Iδ.

In particular, Φ̇ ∈ Bhol
s,a (Iδ).

Proof. We omit the index s and write Φ(Z, u) := Φ(u)(Z). First of all, for all Z ∈ F(Γ)
we have that Φ̇(Z, u) has support in Z, since by continuity of EZ , we have

EZ [Φ̇(Z, u)] = lim
h→0

EZ [Φ(Z, u+ h) − Φ(Z, u)]
h

= lim
h→0

Φ(Z, u+ h) − Φ(Z, u)
h

= Φ̇(Z, u).

Let first k ⩾ 1. By Cauchy’s integral formula, we have

Φ̇(Z, u) = 1
2πi

�
η

dv Φ(Z, v)
(u− v)2 ,

where η(t) = u + reit is the circle with center u and radius r = 1
k+1(δ − dist(u, I)). For

v ∈ η, we have

δ − dist(v, I) ⩾ δ − dist(u, I) − r = kr.

Thus, for v ∈ η,

∥Φ(v)∥a ⩽ Ca k
k (δ − dist(v, I))−k ⩽ Ca k

k (kr)−k = Ca r
−k

It follows that for x ∈ Λ

∑
Z⊂Λ
Z∋x

∥Φ̇(Z, u)∥
χa(D(Z)) ⩽

1
2π

� 2π

0
dt

∑
Z⊂Λ
Z∋x

∥Φ(Z, η(t))∥
χa(D(Z))

1
|u− u− reit|2

|ri eit|

⩽ Ca r
−k 1

r2 r = Ca r
−k−1 = Ca (k + 1)k+1 (δ − dist(u, I))−(k+1).

This proves the claim for k ⩾ 1. For k = 0, we use the same argument with radius
r = α(δ − dist(u, I)) for any α < 1. Then,

∑
Z⊂Λ
Z∋x

∥Φ̇(Z, u)∥
χa(D(Z)) ⩽

1
2πdt

� 2π

0

∥Φ(η(t))∥a
r2 r = Ca

1
α

(δ − dist(u, I))−1.

Since this is true for all α < 1, infing over α yields the claim.

Corollary 7.6.2. Let a > 0, 0 < s ⩽ 1, and δ0 > 0. Let H ∈ Lhol
s,a(Iδ0). Then, for all

k ∈ N0, we have that H(k) ∈ Lhol
s,a(Iδ0) with ΦH(k) = Φ(k)

H and, for all 0 < δ ⩽ δ0, and
u ∈ Iδ, we have

∥Φ(k)
H (u)∥s,a ⩽ ~ΦH~δ0,s,a B(k) (δ − dist(u, I))−k.
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Proof. By definition, ∥ΦH(u)∥s,a ⩽ ~ΦH~δ0,s,a. Hence, the claim holds for k = 0. The
induction is now driven by Lemma 7.6.1.

Corollary 7.6.3. Let β ∈ N, 0 < s ⩽ 1, a > 0, and let H ∈ Lhol
s,a(Iδ0). Then, for each

0 < δ ⩽ δ0 and u ∈ Iδ, we have

Ns,a,β(H, Ḣ)(u) ⩽ (δ − dist(u, I))−β B(β) ~ΦH~
β
δ0,s,a

,

where Ns,a,β(H, Ḣ) is from (7.5.31).

Proof. We have

Ns,a,β(H, Ḣ)(u) = sup
0⩽j⩽β−1

sup
q∈Nj+1

|q|=β

∥H(q0)(u)∥s,a ∥H(q1)(u)∥s,a · · · ∥H(qj)(u)∥s,a.

Without loss, we may assume that ~ΦH~δ0,s,a ⩾ 1, see (7.1.18). By Corollary 7.6.2, we
therefore obtain

Ns,a,β(H, Ḣ)(u) ⩽ sup
0⩽j⩽β−1

sup
q∈Nj+1

|q|=β

~ΦH~
j+1
δ0,s,a

(δ − dist(u, I))−|q|
j∏
i=1

B(qi).

Since B(qi) ⩽ βqi , we have ∏j
i=0B(qi) ⩽ β|q| = B(β). The bound readily follows.

7.7 Concept for the adiabatic expansion

In the following, we present the concept of the adiabatic expansion that should be good
enough for an optimal truncation.

— Warning —
In this section, the digression is mostly informal and by lacks mathematical

rigor.

7.7.1 From ε to δ

For this explanation, let us fix a local Hamiltonian H ∈ L1,a that determines our time
evolution and let us fix 0 < b < a. This is the decay parameter for the class Bb, which the
counter-diabatic driving unitary Un is aimed to belong to. Indeed, the interaction for Un
will depend on b and Un,b ∈ Ls,b is the condition that we want to be satisfied, together
with a traceable bound on the Aα’s.

The main observation is that the adiabatic expansion is dependent on the shape of
the lattice whereas the adiabatic parameter ε > 0 is not. However, in disguise, ε models
the step size that we go from order to order so that this is a problem when it comes to
error estimates. The solution is that we go from the given adiabatic parameter ε > 0 to
another parameter δ(ε) ⩾ ε, which depends on the dimensionality of the lattice, such that
δ(ε) → 0 as ε → 0 but not as fast. The adiabatic expansion will feature the new parameter
δ instead of ε.

We want to prove an optimal truncation result, i.e., we want to perform the adiabatic
expansion for arbitrary n ∈ N and then choose the optimal n depending on ε. In the
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situation of a polynomially growing lattice, we can expect the optimal truncation to be
roughly located at

nopt := 1
δ1/ℓ(d)

, (7.7.1)

where ℓ(d) depends on the dimensionality of the lattice.
Suppose ∆a−b : R+ → R+ is a sufficiently smooth and monotonically increasing func-

tion that models the shape of the lattice. Then, the quotient

δ

∆a−b(δ−1/ℓ(d))

vanishes in the limit δ → 0 and by the inverse function theorem, there is a δε > 0 such
that

δε

∆a−b(δ−1/ℓ(d)
ε )

= ε. (7.7.2)

For this reason, our goal is therefore to provide the adiabatic expansion for n ∈ N and
an arbitrary adiabatic parameter δ > 0 with the quotient

δ

∆a−b(n)

and eventually choose the optimal n so that by (7.7.2), we actually solve the adiabatic
equation.

Before we state the result, let us perform a toy calculation, which makes the concept
a little more concrete. Assuming that

∆a−b(x) ∼ Vx1/ℓ(d)(a− b) ∼ x
d

sℓ(d) ,

which holds by Lemma 7.2.5, we have

δ

∆a−b(δ−1/ℓ(d))
∼ δ

1+ d
sℓ(d) ,

which by (7.7.2) implies that

δ ∼ ε
sℓ(d)

d+sℓ(d) . (7.7.3)

This means that we lose a little bit of decay in our end result, since δ tends to 0 slower
than ε.

7.7.2 A new Ansatz for the expansion

With the decomposition (7.7.2), we formulate a new lemma, which features the constant
∆a−b in the counter-diabatic driving. We remark again that we do not solve the adiabatic
equation unless n is equal to the optimally chosen nopt in (7.7.1).

Lemma 7.7.1. Let δ > 0 and for n ∈ N let ∆(n) > 0 be given. Let I be an interval, let
H ∈ L1(I) be a gapped self-adjoint local Hamiltonian in the sense of Definition 7.4.1 and
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let P denote the spectral projection onto the spectral patch Σ0. Then, there are self-adjoint
operators Aα, 1 ⩽ α ⩽ n, such that

Πn,δ := Un,δ P U
∗
n,δ, Un,δ := exp

( i
∆(n)

n∑
α=1

δαAα

)
,

solves

i δ

∆(n) Π̇n,δ = [H +Rn,δ,Πn,δ],

where Rn,δ is of the order δn+1.

Proof. We essentially repeat the computation in [BDF18a, Lemma 4.3]. Drop δ from the
notation. Then

i δ

∆(n)Π̇n = i δ

∆(n) U̇n P U
∗
n + i δ

∆(n) UnP U̇n − δ

∆(n) Un [K,P ]Un

= [H,Πn] +
[
i δ

∆(n) U̇n U
∗
n − δ

∆(n) UnK U∗
n + (UnHU∗

n −H),Πn

]
.

Here, we used that UnU̇∗
n = −U̇nU∗

n and [UnHUn,Πn] = Un[H,P ]Un = 0 as well as
Ṗ = i[K,P ], where K := Is,γ(Ḣ). Next, we write the second commutator as[

i δ

∆(n) U̇nU
∗
n − δ

∆(n)UnKU
∗
n + (UnHU∗

n −H),Πn

]
= Un

[
i δ

∆(n)U
∗
nU̇n − δ

∆(n)K +H − U∗
nHUn, P

]
U∗
n

Let us make use of the following expansion: For self-adjoint operators S and T , λ ∈ R,
and n ∈ N0, we have

e−iλS T eiλS =
n∑
k=0

(−i)kλk
k! adkS(T )

+ (−i)n+1
� λ

0
dλ1 · · ·

� λn

0
dλn+1 e−iλn+1S adn+1

S (T ) e−iλn+1S . (7.7.4)

The proof an induction argument and left to the reader. Consequently, we have

U∗HU =
n∑
k=0

(−i)k
k! adkS(H) + hn+1(δ)

with

hn+1(δ) = (−i)n+1
� 1

0
dλ1

� λ1

0
dλ2 · · ·

� λn

0
dλn+1 e−iλn+1S adn+1

S (H) eiλn+1S . (7.7.5)

Furthermore, Duhamel’s formula (see [F]) reads

d
due−iS(u) = i

� 1

0
dλ ei(1−λ)S(u) Ṡ(u) eiλS(u),

whence

iU∗
nU̇n = −

� 1

0
dλe−iλS Ṡ eiλS
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and, by (7.7.4) applied to n− 1, we obtain

iU∗
nU̇n =

n−1∑
k=0

ik(−1)k+1

(k + 1)! adkS(Ṡ) + δ−1 qn+1(δ)

with

qn+1(δ) = −(−i)n+1δ

� 1

0
dλ1 · · ·

� λn

0
dλn+1 e−iλn+1S adnS(Ṡ) eiλn+1S (7.7.6)

Then, inserting S = 1
∆(n)

∑n
α=1 δ

αAα, we get

U∗
nHUn =

n∑
k=0

(−i)k
k! ∆(n)k

( n∑
α=1

δα adAα

)k
(H) + hn+1(δ) =:

n∑
α=0

δαHα + hn+1(δ) + h̃n+1(δ),

where hn+1(δ) is defined in (7.7.5),

Hα :=
α∑
k=0

(−i)k
k! ∆(n)k

∑
j∈Nk

|j|=α

adAjk
· · · adAj1

(H), 0 ⩽ α ⩽ n,

and

h̃n+1(δ) :=
n∑
k=0

(−i)k
k! ∆(n)k

∑
j∈Nk

|j|⩾n+1

δ|j| adAjk
· · · adAj1

(H).

In the same manner, we obtain

iU∗
nU̇n =

n−1∑
k=0

ik(−1)k+1

(k + 1)! ∆(n)k+1

( n∑
α=1

δα adAα

)k( n∑
j=1

δjȦj

)
+ δ−1 qn+1(δ)

=:
n−1∑
α=1

δαQα + δ−1 qn+1(δ) + δ−1 q̃n+1(δ),

where qn+1(δ) is defined in (7.7.6),

Qα := −i
n∑
k=1

(−i)k
k! ∆(n)k

∑
j∈Nk

|j|=α

adAjk
· · · adAj2

(Ȧj1), 1 ⩽ α ⩽ n, (7.7.7)

and

q̃n+1(δ) := −iδ
n∑
k=1

(−i)k
k! ∆(n)k

∑
j∈Nk

|j|⩾n

δ|j| adAjk
· · · adAj2

(Ȧj1).

With the definition Q0 := −K, we obtain

i δ

∆(n)U
∗
nU̇n − δ

∆(n)K +H − U∗
nHUn

=
n∑

α=1
δα
(Qα−1

∆(n) −Hα

)
− hn+1(δ) − h̃n+1(δ) + qn+1(δ) + q̃n+1(δ).
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Hence, the lemma follows if we can choose Aα in such a way that it solves the equation[
Qα−1
∆(n) −Hα, P

]
= 0,

for all α = 1, . . . , n. Let us prove this by induction. The case α = 1 reads

0 =
[
− K

∆(n) −
(
− i

∆(n) [A1, H]
)
, P

]
= − 1

∆(n)
[
K − i[A1, H], P

]
This is solved by choosing A1 := Is,γ(K) for any 0 < s < 1. Suppose now that
A1, . . . , Aα−1 have been constructed. Then, isolating the dependence on Aα, we have

Hα = i
∆(n) [Aα, H] + 1

∆(n)Lα

with

Lα :=
n∑
k=2

(−i)k
k! ∆(n)k−1

∑
j∈Nk

|j|=α

adAjk
· · · adAj1

(H). (7.7.8)

Then, we need to solve the equation

0 =
[
Qα−1
∆(n) − i

∆(n) [Aα, H] − 1
∆(n)Lα, P

]
= 1

∆(n)
[
Qα−1 − Lα − i[Aα, H], P

]
,

which is solved by choosing

Aα := Is,γ(Qα−1 − Lα).

7.7.3 Inductive estimate on Aα pretending that Qα = 0
In the preceding section, we have constructed self-adjoint operators A1, . . . , An in an in-
ductive procedure. We assume that the Hamiltonian H has an interaction ΦH that belongs
to the decay class B1,a′ for some a′ > 0 and a spectral gap γ > 0 as in Definition 7.4.1.
In the following, we want to show that this further implies that A1, . . . , An are local
Hamiltonians, which satisfy a certain decay estimate.

To do this, let us make some preparations. Fix the following parameters arbitrarily:

0 < s < 1, 0 < µ < µ0(s), 0 < a < a′. (7.7.9)

Since, by Theorem 7.5.6, Is,γ maps into the space Bs,b, where b < ηs,γ(a, µ) with ηs,γ(a, µ)
in (7.5.10), the decay classes of the Aα’s are capped at ηs,γ(a, µ).

The goal we should have in mind is to prove an estimate for An at a given decay rate
bn < ηs,γ(a, µ). In order to achieve this, we throw in points bα, α = 1, . . . , n, according to

bn < bn−1 < · · · < b2 < b1 < b0 := ηs,γ(a, µ),

see also Figure 7.1 below, where the bi are equidistantly distributed, i.e., if

Θs,γ,n(a, µ) := ηs,γ(a, µ) − bn
n

, (7.7.10)

then

bα−1 − bα = Θs,γ,n(a, µ), ηs,γ(a, µ) − bα
α

= Θs,γ,n(a, µ), α = 1, . . . , n. (7.7.11)
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Furthermore, we introduce a number q ∈ N, which is representing the number of operations
that it takes to construct Aα from Aα−1. Therefore, we insert

bα = b(0)
α < b(1)

α < b(2)
α < · · · < b(q)

α = bα−1 (7.7.12)

in an equidistant fashion, i.e., we have

b(i)
α − b(i−1)

α = bα−1 − bα
q

= Θs,γ,n(a, µ)
q

, i = 1, . . . , q. (7.7.13)

In this digression, we have q = 2 but this may change when we take Qα−1 into account in
the future. The construction is summarized in Figure 7.1. From now on, we write η and

Figure 7.1: The differently chosen bα’s.

Θn in place of (7.5.10) and (7.7.10) for the sake of readability.
For constants C1, C2, C3, C4, C5 > 0 to be chosen, we assume that bn is such that

Θn ⩽ min
{ d

s e , C2 , C4
}

(7.7.14)

and we want to show inductively that then, for all α = 1, . . . , n and 0 < b ⩽ bα, we have

∥Aα∥b ⩽ Cα+1
1

(C2 α

Θn

)C3(α+2) (C4
Θn

)C5(α+1)
. (7.7.15)

We are going to show (7.7.15) for α = 1 at the end. Let us assume that (7.7.15) holds for
every 1 ⩽ j ⩽ α−1 and we are going to show (7.7.15) for b = bα since it then trivially holds
for 0 < b ⩽ bα as well by the monotonicity of the norm ∥ · ∥b. We emphasize that we do
this under the assumption that Qα = 0, where Qα is defined in (7.7.7), so that derivatives
are not going to play any role. This amounts to the assumption Aα = −Is,γ(Lα), where
Lα is defined in (7.7.8). Furthermore, we work under the polynomial growth condition
Assumption 7.2.4 as well as the following proposition.

Proposition 7.7.2. Let p ⩾ 1. Then, there is a constant Dp > 0 such that for any α ∈ N,
we have

α∑
k=2

∑
j∈Nk

|j|=α

jpj11 · · · jpjkk ⩽ Dp α
pα.

We postpone the proof of Proposition 7.7.2 to the end of this section and start with the
induction argument. We note that Theorem 7.5.6 as well as (7.7.11) and (7.7.13) imply

∥Aα∥bα = ∥Is,γ(Lα)∥bα ⩽ D∆ F (η − bα) V1(b(1)
α − bα) ∥Lα∥

b
(1)
α

= D∆ F (αΘn) Vq(Θn) ∥Lα∥
b

(1)
α
.

346 PhD Thesis



CHAPTER 7. EXPONENTIAL ESTIMATES FOR THE ADIABATIC THEOREM

Here, D∆ is from (7.5.12). Furthermore, by the triangle inequality and Theorem 7.5.2, we
have

∥Lα∥
b

(1)
α

⩽
n∑
k=2

1
k! ∆(n)k−1

∑
j∈Nk

|j|=α

∥ adAjk
· · · adAj1

(H)∥
b

(1)
α

⩽
α∑
k=2

4k
k!
Vk(b(2)

α − b
(1)
α )k

∆(n)k−1

∑
j∈Nk

|j|=α

∥Ajk∥
b

(2)
α

· · · ∥Aj1∥
b

(2)
α

∥H∥
b

(2)
α
.

We note that Vk(b(2)
α − b

(1)
α ) = Vqk(Θn) and use ∥H∥

b
(2)
α

⩽ ∥H∥a. Then, we apply the
induction hypothesis (7.7.15) and obtain

∥Aα∥bα ⩽ D∆ F (αΘn) Vq(Θn) Cα1 ∥H∥a
α∑
k=2

4k
k!

(C1 Vqk(Θn))k
∆(n)k−1

×
∑
j∈Nk

|j|=α

(C2 j1
Θn

)C3(j1+2)
· · ·
(C2 jk

Θn

)C3(jk+2) (C4
Θn

)C5(j1+1)
· · ·
(C4

Θn

)C5(jk+1)
. (7.7.16)

The term in the sum of the second line in (7.7.16) equals(C2
Θn

)C3(α+2k)(C4
Θn

)C5(α+k)
jC3j1

1 · · · jC3jk
k (j1 · · · jk)2C3 . (7.7.17)

The last factor is bounded by α2C3k, whence (7.7.16) and (7.7.17) yield

∥Aα∥bα ⩽ D∆ F (αΘn) Vq(Θn) Cα1 ∥H∥a
(C2

Θn

)C3α (C4
Θn

)C5α

×
α∑
k=2

4k
k!

(C1 Vqk(Θn))k
∆(n)k−1

(C2 α

Θn

)2C3k(C4
Θn

)C5k ∑
j∈Nk

|j|=α

jC3j1
1 · · · jC3jk

k . (7.7.18)

Since Θn ⩽ d
s e , see (7.7.14), Lemma 7.2.5 implies

Vqk(Θn) ⩽ κ
( dq k
se Θn

) d
s ⩽ κ

(C2 k

Θn

)C3 (7.7.19)

provided that C2 and C3 are chosen such that

C2 := dq

se , C3 ⩾
d

s
⩾ 1. (7.7.20)

For ρ ⩾ 4 to be chosen, we define

∆(n) :=
(
C1 κ

(C2 n

Θn

)2C3 (C4
Θn

)C5
)ρ
. (7.7.21)

Then, a short calculation using that ρ(k − 1) ⩾ k for k ⩾ 2 shows that (7.7.19), (7.7.20),
and (7.7.21) and the hypothesis (7.7.14) imply

(C1 Vqk(Θn))k
∆(n)k−1

(C2 α

Θn

)2C3k (C4
Θn

)C5k
⩽ 1,

June 17, 2022 347 Marcel Maier



7.7. EXPANSION CONCEPT

since k ⩽ α ⩽ n. We combine (7.7.18) with Proposition 7.7.2 and obtain

∥Aα∥bα ⩽ DC3 D
∆ F (αΘn) Vq(Θn) Cα1

(
sup
k∈N

4k
k!
)

∥H∥a
(C2 α

Θn

)C3α (C4
Θn

)C5α
. (7.7.22)

We have F (αΘn) ⩽ F (Θn) and, by Lemma 7.2.6 and (7.7.14), F (Θn) is bounded by

F
(Θn

q

)
⩽ 2

d
sκ Γ

(
1 + 1

s

) ( dq

se Θn

) d
s
( 4q

Θn

) 1
s ⩽ 2

d
sκ Γ

(
1 + 1

s

) (C2
Θn

)C3 (C4
Θn

)C5 (7.7.23)

with the choice

C4 := 4q, C5 := 1
s
. (7.7.24)

When we apply (7.7.19) with k = 1, (7.7.23) implies

∥Aα∥bα ⩽ 2
d
s κ2 Γ

(
1 + 1

s

)
DC3 D

∆
(
sup
k∈N

4k
k!
)

∥H∥a Cα1

×
(C2 α

Θn

)C3(α+2) (C4
Θn

)C5(α+1)
(7.7.25)

Therefore, if C1 is chosen such that

C1 ⩾ 2
d
s κ2 Γ

(
1 + 1

s

)
DC3 D

∆
(
sup
k∈N

4k
k!
)

∥H∥a, (7.7.26)

then (7.7.25) implies (7.7.15) for α.
We close the induction by showing that (7.7.15) holds for α = 1. By Theorem 7.5.6

applied twice, we obtain

∥A1∥b1 = ∥Is,γ(K)∥b1 ⩽ D∆ V1(b(1)
1 − b1)F (η − b1) ∥K∥

b
(1)
1

as well as

∥K∥
b

(1)
1

= ∥Is,γ(Ḣ)∥
b

(1)
1

⩽ D∆ V1(b(1)
1 − b

(2)
1 )F (η − b

(1)
1 ) ∥Ḣ∥

b
(2)
1
.

Combining these estimates, we have

∥A1∥b1 ⩽ (D∆)2 ∥Ḣ∥η Vq(Θn)2 F
(Θn

q

)2

When we apply (7.7.19) with k = 1 and (7.7.23) with α = 1, we arrive at

∥A1∥b1 ⩽
(
2

d
s κ2D∆ Γ

(
1 + 1

s

))2
∥Ḣ∥η

(C2
Θn

) 4d
s
(C4

Θn

) 2
s . (7.7.27)

Thus, in light of (7.7.20) and (7.7.26), we make the choices

C1 := 2
d
s κ2 Γ

(
1 + 1

s

)
D∆ max

{√
∥Ḣ∥η , DC3

(
sup
k∈N

4k
k!
)

∥H∥a
}

and

C3 := 4d
3s ,

whence (7.7.27) implies (7.7.15) for α = 1.
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Proof of Proposition 7.7.2. Consider the function

fpα(x) := xpx (α− x)p(α−x), 0 ⩽ x ⩽ α. (7.7.28)

This function is symmetric about x = α/2 and since (fpα)′(x) = fpα(x) p [log(x)− log(α−x)]
for 0 < x < α, we conclude that fpα is strictly decreasing on [0, α/2). We claim that

α−1∑
j=1

fpα(j) ⩽ min
{

2 + 4p , α
}
fpα(1). (7.7.29)

To see this, the left side is bounded by 2 fpα(1) + (α − 3)fpα(2) due to the monotonicity
of fpα. On the one hand, we further have (α − 2)fpα(2) ⩽ 4pfpα(1), which proves the first
bound, while on the other hand, the monotonicity implies

2 fpα(1) + (α− 2)fpα(2) = α fpα(1) − (α− 2)
(
fpα(1) − fpα(2)

)
⩽ α fpα(1).

This proves (7.7.29). For 2 ⩽ k ⩽ α we claim that

Spα,k :=
∑
j∈Nk

|j|=α

jpj11 · · · jpjkk ⩽ min
{

2 + 4p, α
}
fpα(1). (7.7.30)

We prove this by induction. Since Spα,2 = ∑α−1
j=1 f

p
α(j), the case k = 2 is (7.7.29). By the

second case of the induction hypothesis (7.7.30), we further have

Spα,k+1 =
α−k∑
j=1

jpjSpk,α−j ⩽
α−k∑
j=1

jpj (α− j) fpα−j(1) ⩽
α−1∑
j=1

fpα(j).

Here, we used that (α−j)fpα−j(1) ⩽ (α−j)p(α−j). A further application of (7.7.29) proves
(7.7.30). Summing (7.7.30) over k completes the proof.

7.8 An Estimate on I with the Old Norm

In this section, we want to demonstrate a fairly sharp estimate for I on a local Hamiltonian,
while using the “old” norm defined in [BDF18a], see also (7.1.10). The estimate is based
on working out the precise constants in [BMNS12, Lemma 4.7 & Theorem 4.8], while using
the stretched exponential decay functions χ1/2,b defined in (7.1.16) (as opposed to the decay
class that had been used in [BMNS12]). This estimate is not usable for us for the business
of proving exponential estimates. However, since, to the best of my knowledge, there is
no such explicit estimate in the literature, I found it instructive to put it in. It should be
said, however, that one does not have to go as far as to estimate I to realize that, with
the norm in (7.1.10), exponential estimates are out of reach. Already the commutator
estimate presented in [BDF18a] are far from good enough. I am aware of unpublished
notes by Felix Rexze1 on commutator bounds which look somewhat better but are still
not good enough to satisfy our needs.

Warning. The notation is not streamlined to the previous section, since it refers to a
version of the notes where s = 1/2 was fixed! No proof-reading was done in this section.

1Felix Rexze used to be a Master’s student under the supervision of Stefan Teufel at the University of
Tübingen in 2018.
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We denote the Banach spaces that are defined upon the norm (7.1.10) by Bb,N or Lb,N
for the respective classes decaying according to Fb(r) = F (r)χb(r) with the decay function
F (r) = (1 + r)−(d+1).

For a local observable A ∈ AX , we define the operators ∆n
s , n ∈ N0 as in (7.5.7) and

(7.5.8), whence I(A) satisfies the decomposition (7.5.9). The interaction ΦI(G) for a local
Hamiltonian G is chosen as in (7.5.13), so that ∑Z⊂Λ ΦI(G)(Z) = I(G).

We start with estimates on the local observables ∆n and we derive them under the
assumption of a Lieb–Robinson bound.

Assumption 7.8.1 (Lieb–Robinson bound). We assume that there is an a > 0 and
Ka, va > 0 such that the following holds. For each A ∈ AX , each B ∈ AY and each t ∈ R:
If dist(X,Y ) > 0, then

∥[τt(A), B]∥ ⩽ Ka ∥F∥1 ∥A∥ |X| ea(va|t|−d(X,Y )) ∥B∥,

where

∥F∥1 := sup
x∈Γ

∑
z∈Γ

F (d(x, z)).

Lemma 7.8.2. For any X ⊂ Λ, A ∈ AX and integer n ⩾ 0, we have the estimate

∥∆n(A)∥ ⩽ C∆ ∥A∥ |X| χη(n).

Here, C∆ := max{C̃∆, ∥Wγ∥1} with

η := 1√
2

min
{
a,

3
16

√
γ

va

}
, C̃∆ := max

{2Ka∥F∥1 e 5a
4

a va
, 8CIγ

}
.

Proof. The estimate for ∆0(A) is trivial. Let n > 0 and decompose

∆n(A) = ∆̃n(A) − ∆̃n−1(A) (7.8.1)

with

∆̃n(A) :=
�
R

dt Wγ(t)
(
EXn(τt(A)) − τt(A)

)
.

Now, for T > 0 to be chosen, we have

∥∆̃n(A)∥ ⩽ ∥Wγ∥∞

� T

−T
dt
∥∥∥TrXn(τt(A)) − τt(A)

∥∥∥+ 4∥A∥ Iγ(T ).

For the first term – let us call it T –, we use the Lieb-Robinson bound Assumption 7.8.1.
Note that dist(X,Xn) ⩾ n. Hence, by Lemma 3.2 in the equivalence paper (with ε – the
finite dimensional case) (and using ∥Wγ∥∞ = 1

2 , Lemma 7.4.5 (a)), the first term T is
bounded by

T ⩽ Ka DF ∥A∥ |X| e−an
� T

0
dt eavat ⩽

Ka∥F∥1
ava

∥A∥ |X| e−a(n−vaT ).

Now choose vaT = n+1
2 to get that

T ⩽
Ka∥F∥1ea

ava
∥A∥ |X| e− a

2 (n+1).
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Utilizing Lemma 7.2.3 (d), we may bound e−a (n+1)
2 ⩽ e a

4χ a√
2
(n+ 1) and conclude that by

the choice of η

T ⩽
Ka∥F∥1 e 5a

4

ava
|X| ∥A∥ χη(n+ 1).

Finally, again by the choice of η, we have that

Iγ(T ) = Iγ
(n+ 1

2va

)
⩽ CIγ χ 3

16

( γ

2va
(n+ 1)

)
⩽ CIγ χη(n+ 1).

Putting everything together, we conclude that

∥∆̃n(A)∥ ⩽
1
2 C∆ |X| ∥A∥ χη(n+ 1).

From this and a triangle inequality, the bound on ∆n(A) follows, see (7.8.1).

Theorem 7.8.3. Let β :=
√

3 and let b ⩾ 0 such that βb < η. Let N ∈ N be given. If
there is b′ ∈ (b, b + 1) such that βb′ ⩽ η and G ∈ Lβb′,N+1, then I(G) ∈ Lb,N and the
estimate

∥ΦI(G)∥b,N ⩽ CI(d,C∆) DI(d,N, b′ − b) ∥ΦG∥βb′,N+1

holds. Here, F is the fixed function F (r) = (1 + r)−(d+1) and the two constants CI and
DI are given by

CI(d,C∆) := C∆ 66 3d+1 max{κ2, κ∥F∥1}

and

DI(d,N, b′ − b) := κN
(2

√
6 d(N + 2)

e

)2d(N+2) 1
(b′ − b)2d(N+2)+4 .

Lemma 7.8.4. For r ⩾ 0 let F (r) = (1 + r)−(d+1). Then, for any 0 < ε ⩽ 1 and r ⩾ 0,
we have the inequality

F (εr) ⩽ 1
εd+1 F (r).

Proof. We have

F (εr)
F (r) =

( 1 + r

1 + εr

)d+1
=
(1
ε

1 + r

ε−1 + r

)d+1
⩽

1
εd+1 .

Lemma 7.8.5. Let ε > 0 and ℓ ⩾ 0. For t ⩾ 0, define

fℓ,ε(t) := (1 + t)ℓ e−ε
√
t.

Then

∥fℓ,ε∥L∞([0,∞)) ⩽


( 2ℓ

e ε
)2ℓ

ℓ > ε,

1 ℓ ⩽ ε.
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Proof. The first derivative reads

f ′
ℓ,ε(t) = (1 + t)ℓ−1e−ε

√
t
[
ℓ− ε(1 + t) 1

2
√
t

]
. (7.8.2)

This has a zero at

√
t0 = ℓ

ε
+
√( ℓ

ε

)2
− 1

provided that ℓ/ε ⩾ 1. If this is violated, then one can easily check that f ′
ℓ,ε(1) < 0 so that

fℓ,ε is monotone decreasing and has its maximum at 0. On the other hand, if ℓ/ε > 1 holds
with strict inequality, we immediately see that

√
t0 > 1. Taking the derivative of the term

of f ′
ℓ,ε that stands in brackets, we get

f ′′
ℓ,ε(t0) = 1√

t0
fℓ−1,ε(t0)

[
−ε

2 + ε

4
(
1 + 1

t0

)]
< 0.

In the borderline case, the solution t0 = 1 to (7.8.2) becomes unique and inserting 4 and
4−1 into f ′

ℓ,ε shows that t0 is a saddle and that fℓ,ε is monotone decreasing. The maximum
is thus located at 0.

Assumption 7.8.6 (Abel partial sum formula). Let (an)n⩾0 be a sequence of real numbers
and for any t ∈ R define

A(t) :=
⌊t⌋∑
n=0

an.

Let x < y be real and ϕ ∈ C1[x, y]. Then
⌊y⌋∑

n=⌈x⌉
anϕ(n) = A(y)ϕ(y) −A(x)ϕ(x) −

� y

x
du A(u)ϕ′(u).

Lemma 7.8.7. Under Assumption 7.8.6, the following holds. Let k ∈ N0, b > 0 and
t ⩾ 0. Then

∞∑
n=⌊t⌋+1

nk χb(n) ⩽ 1
b2k+2 (2k + 3)! max{1, b2t}k+1 χb(t).

Proof. Let an = nk for n ⩾ 0. It follows that

0 ⩽ A(t) =
⌊t⌋∑
n=1

nk ⩽ tk+1.

Let ϕ(t) = e−b
√
t. We have ϕ′(t) = −be−b

√
t 1

2
√
t
. Then, since A(t)ϕ(t) ⩾ 0, by Assumption

7.8.6 for t < y, we get
⌊y⌋∑
n=⌈t⌉

nk e−b
√
n ⩽ yk+1 e−b√y + b

2

� y

t
du uk+ 1

2 χb(u).

Taking the limit y → ∞, we have yk+1e−b√y → 0 and applying Lemma 7.2.3 (a) yields� ∞

t
du uk+ 1

2 χb(u) ⩽ 2
b2k+3 (2k + 3)! max{1, b2t}k+1 χb(t).

Multiplying by b
2 gives the claim.
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We are now in position to give the proof of Theorem 7.8.3 and remark that this is
essentially a simplicitation of the proof of [BMNS12, Theorem 4.8], where we work out all
the constants explicitly.

Proof of Theorem 7.8.3. Let x, y ∈ Λ be given. The object to be estimated is

∑
Z⊃{x,y}

|Z|N ∥ΦI(G)(Z)∥ ⩽
∑

Z⊃{x,y}

∞∑
n=0

∑
Y⊂Λ
Yn=Z

|Yn|N ∥∆n(ΦG(Y ))∥

⩽ κN
∞∑
n=0

ndN
∑
Y⊂Λ

Yn⊃{x,y}

|Y |N ∥∆n(ΦG(Y ))∥.

Now perform the resummation. If Y and n ∈ N0 are fixed, then there are points x̃ ∈
Bn(x) ∩Y and ỹ ∈ Bn(y) ∩Y . Hence, Y is hit if we sum over all x̃ ∈ Bn(x) and ỹ ∈ Bn(y)
and Y ′ ⊂ Λ containing x̃ and ỹ. Using Lemma 7.8.2, we obtain the upper bound∑
Z⊃{x,y}

∥ΦI(G)(Z)∥ ⩽

⩽ κNC∆

∞∑
n=0

ndNχη(n)
∑

x̃∈Bn(x)
ỹ∈Bn(y)

Fβb′(d(x̃, ỹ))
∑
Y⊂Λ

Y⊃{x̃,ỹ}

|Y |N+1 ∥ΦG(Y )∥
Fβb′(d(x̃, ỹ))

⩽ κNC∆∥ΦG∥βb′,N+1

∞∑
n=0

ndNχη(n)
∑

x̃∈Bn(x)
ỹ∈Bn(y)

Fβb′(d(x̃, ỹ)). (7.8.3)

Now split the sum over n at n0 := ⌊ε d(x,y)
2 ⌋ for some 0 < ε < 1 to be chosen. Then, for

0 ⩽ n ⩽ n0 and x̃ ∈ Bn(x) and ỹ ∈ Bn(y), we have the estimate

d(x, y) ⩽ d(x, x̃) + d(x̃, ỹ) + d(ỹ, y) ⩽ εd(x, y) + d(x̃, ỹ).

Hence, d(x̃, ỹ) ⩾ (1 − ε)d(x, y). The part 0 ⩽ n ⩽ n0 in (7.8.3) is thus bounded by

κ2
n0∑
n=0

nd(N+2) Fβb′((1 − ε)d(x, y)) ⩽ κ2
(

1 + d(x, y)
2

)d(N+2)+1
Fβb′((1 − ε) d(x, y)).

Now, use Lemma 7.8.4 to bound F ((1−ε)d(x, y)) ⩽ (1−ε)−(d+1)F (d(x, y)) and decompose
χ according to χβb′((1−ε)r) = χ√

1−ε βb(r) χ√ 1−ε
2 β(b′−b)(

r
2) χ√ 1−ε

2 β(b′−b)(
r
2). Then utilize

Lemma 7.8.5 with b′ − b < 1 to estimate(
1 + r

2
)d(N+2)

χ√ 1−ε
2 (b−b′)

(r
2
)
⩽
( 2

√
2 d(N + 2)√

1 − ε e (b′ − b)

)2d(N+2)
,

as well as (
1 + r

2
)
χ√ 1−ε

2 (b−b′)

(r
2
)
⩽
( 2

√
2√

1 − ε e (b′ − b)

)2
.

It follows that the part 0 ⩽ n ⩽ n0 from (7.8.3) is bounded by

κ2

(1 − ε)d+1

( 2
√

2 d(N + 2)√
1 − ε e (b′ − b)

)2d(N+2)( 2
√

2√
1 − ε e (b′ − b)

)2
F√

1−ε βb(d(x, y)).
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For n ⩾ n0 + 1 in (7.8.3), using η ⩾ βb′, we read off the bound
∞∑

n=n0+1
χβb′(n)

∑
x̃∈Bn(x)
ỹ∈Bn(y)

Fβb′(d(x̃, ỹ)) ⩽ ∥F∥1κ
∞∑

n=n0+1
nd(N+2)+1Fβb(n)χβ(b′−b)(n). (7.8.4)

Now, we have Fβb(n) ⩽ (2/ε)d+1F√
ε
2 βb

(d(x, y)) by Lemma 7.8.4. It follows that (7.8.4) is
bounded by

(2
ε

)d+1
F√

ε
2 βb

(d(x, y))
∞∑

n=n0+1
(1 + n)d(N+2)χβ(b′−b)

3
(n) (1 + n)χβ(b′−b)

3
(n) χβ(b′−b)

3
(n)

Again, we employ Lemma 7.8.5 with b− b′ < 1 to estimate

(1 + n)d(N+2)χβ(b′−b)
3

(n) ⩽
(6d(N + 2)

eβ(b′ − b)

)2d(N+2)

and

(1 + n)χβ(b′−b)
3

(n) ⩽
( 2 3

eβ(b′ − b)

)2
.

Then, we make use of Lemma 7.8.7 with k = 0 to bound
∞∑

n=n0+1
χβ(b′−b)

3
(n) ⩽ 6

( 3
β(b′ − b)

)2(
1 +

(β(b′ − b)√n0
3

)2)
e− β(b−b′)√

n0
3 ⩽

22 33

eβ2(b′ − b)2 .

In the last step, we used that the function f(t) = (1 + t2)e−t is bounded by 2/e. Finally,
equating the two decay rates

√
ε/2 =

√
1 − ε, we obtain the optimal choice ε = 2/3.

Collecting everything, since 1
1−ε = 2

ε = 3, we obtain

∥ΦI(G)∥b,N ⩽ κNC∆3d+1∥ΦG∥βb′,N+1

[
κ2
(2

√
6 d(N + 2)
e(b′ − b)

)2d(N+2)( 2
√

6
e (b′ − b)

)2

+ ∥F∥1κ

(6d(N + 2)
eβ(b′ − b)

)2d(N+2)( 2 3
eβ(b′ − b)

)2 22 33

eβ2(b′ − b)2

]
Since 2

√
6 > β−1 6 and b′ − b < 1, we may extract DI(d,N, b′ − b) and obtain

∥ΦI(G)∥b,N ⩽ DI C∆3d+1∥ΦG∥βb′,N+1

[(2
√

6
e
)2

+
(2 3
βe
)2 2233

eβ2

]
max{κ2, ∥F∥1κ}.

Elementary estimates using e < 3 and β2 = 3 provide CI and the theorem.
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Appendix A

Local Trace Theory

In this appendix, I want to present the results and methods, which helped me to under-
stand traces per unit volume. Nothing in this appendix is new and sources are explicitly
referenced. The chapter is intended to be a source to look up elementary facts for the
reader, who is new to the topic of local traces. I expect the reader to be familiar with
basis notions of von Neumann–Schatten classes. In case of need, the reader may consult
a comprehensive course on mathematical quantum mechanics I have taken, including an
introduction to trace ideals [S16].

A.1 Standard Traces

We start by a proof of Hölder’s inequality, which is robust enough to be applied for the
local trace case as well. Furthermore, we review Klein’s inequality, which is a basic but
widely used and important relative entropy inequality.

The set of smooth and compactly supported functions is denoted by C∞
c (Rd). The

Schwartz space S(Rd) consists of all smooth functions, which, together with their deriva-
tives, decay faster than any inverse power at infinity.

Let H be a Hilbert space. The space of bounded linear operators H → H is denote
by B(H). We denote the space of compact operators by S∞(H), equipped with the usual
operator norm. For 1 ⩽ p < ∞ we define the pth von Neumann–Schatten class Sp(H) as
the space of compact operators A for which

∥A∥pp := tr(|A|p) < ∞.

Sp(H) is equipped with the norm ∥ ·∥p. It is shown in [S16, Section A.3] that any operator
which belongs to Sp(H is compact) and in [S16, Section A.4] that Sp(H) is a Banach
space. The latter is surprisingly hard to show.

We assume the reader to be familiar with basic facts on compact operators like existence
of polar decompositions and the Schmidt decomposition.

A.1.1 Hölder’s inequality

First, we prove Hadamard’s three line theorem from [RS75, Appendix to IX.4].

Lemma A.1.1 (Hadamard’s three line theorem). Let S := {z ∈ C : 0 < Re z < 1} be the
open strip and φ : S −→ C be bounded and continuous, analytic in S with

|φ(z)| ⩽M0 Re z = 0
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and

|φ(z)| ⩽M1 Re z = 1.

Then |φ(z)| ⩽M1−Re z
0 MRe z

1 for all z ∈ S.

Proof. Since φ̃(z) := φ(z)M z−1
0 M−z

1 satisfies the hypothesis with the bounds

M0 = 1 = M1. (A.1.1)

we may as well assume (A.1.1). If φ(z) → 0 as |z| → ∞, z ∈ S, we choose a compact set
K ⊆ S so that |φ| ⩽ 1

2 outside K. Then |φ| ⩽ 1 in K follows from the maximum modulus
principle. Otherwise, consider φn(z) = φ(z)e z2−1

n . Then, for Re z ∈ {0, 1},

|e
z2−1

n | =
∣∣∣exp

[ 1
n

[
(Re z)2 − 1 − (Im z)2 + 2i Im zRe z

]]∣∣∣ = e
1
n

((Re z)2−1−(Im z)2)

=

e− 1
n

(1+(Im z)2) Re z = 0
e− 1

n
(Im z) Re z = 1

⩽ 1.

Hence, |φn(z)| ⩽ 1 on ∂S and φn(z) → 0 as |z| → ∞, z ∈ S. We conclude that |φn(z)| ⩽ 1
for all z ∈ S and since e z2−1

n → 1 as n → ∞, we conclude that |φ(z)| ⩽ 1 for all z ∈ S.

Proposition A.1.2 [RS75, Appendix to IX.4, Prop. 5]. Let 1 ⩽ p, q ⩽ ∞ and p, q
be Hölder conjugate. If A ∈ Sp(H) and B ∈ Sq(H), then AB ∈ S1(H) and ∥AB∥1 ⩽
∥A∥p · ∥B∥q

Proof. Let A = U |A| and B = V |B| be the polar decompositions. Let S = {z ∈ C : 0 <
Re z < 1} and, for z ∈ S, define

F (z) := tr(U |A|pzV |B|q(1−z)).

Then, F is well-defined and bounded since

|F (z)| ⩽ ∥U∥ · ∥ |A|pz ∥ · ∥V ∥ · tr(|B|q) · ∥ |B|−qz ∥.

Now,

∥ |A|qz ∥ ⩽ ∥ |A|pRe z ∥ · ∥ |A|ip Im z ∥ ⩽ sup
0⩽s⩽1

sup
t∈[−∥A∥,∥A∥]

|tps| < ∞.

Similarly for B. Continuity and analyticity in the strip are clear. Furthermore, for y ∈ R,

|F (iy)| = | tr(U |A|ipyV |B|−iqy|B|q)| ⩽ tr(|B|q) = ∥B∥qq
and

|F (1 + iy)| = tr(U |A|ipy|A|pV |B|−iqy)| ⩽ tr(|A|p) = ∥A∥pp,

since ∥AB∥p ⩽ ∥A∥p∥B∥∞ for any 1 ⩽ p ⩽ ∞ (here used p = 1) by the min-max-principle.
By Hadamard’s three line theorem, we infer that

| tr(AB)| = |F (1/p)| ⩽ ∥A∥p∥B∥q. (A.1.2)

Finally, by cyclicity of the trace and (A.1.2),

tr(|AB|) = tr(
√
V |B|2V ∗|A|2) = tr(

√
V |B|2V ∗ · |A|)

⩽ ∥
√
V |B|2V ∗∥q∥A∥p = ∥A∥p∥B∥q.
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Corollary A.1.3 (Generalized Hölder’s inequality). Let 1 ⩽ p, q, r ⩽ ∞ such that we
have p−1 + q−1 = r−1. Let A ∈ Sp(H) and B ∈ Sq(H). Then AB ∈ Sr(H) and

∥AB∥r ⩽ ∥A∥p∥B∥q (A.1.3)
holds.

A.1.2 Peierl’s and Klein’s inequality

For an interval I ⊆ R and bounded and measurable a function f : I −→ R define
S1
f (H) := {A ∈ S∞(H) : A = A∗, σ(A) ⊆ I, f(A) ∈ S1(H)}.

Theorem A.1.4 ([C09, Theorem 2.9], Peierl’s inequality). Let I ⊆ R be an interval,
f : I → R convex and A ∈ S1

f (H). Let {un}n∈N be any ONB of H. Then
∞∑
n=1

f(⟨un, Aun⟩) ⩽ tr(f(A)) (A.1.4)

and equality holds in (A.1.4) if and only if un is an eigenvector of A for all n ∈ N. If f
is strictly convex, then equality in (A.1.4) holds only in this case.

Proof. Let A = ∑∞
n=1 λn|φn⟩⟨φn| be the Schmidt-decomposition of A. Then

tr(f(A)) =
∞∑
n=1

⟨un, f(A)un⟩ =
∞∑
n=1

∞∑
i=1

f(λi)|⟨φi, un⟩|2

⩾
∞∑
n=1

f

( ∞∑
i=1

λi|⟨φi, un⟩|2
)

=
∞∑
n=1

f

( ∞∑
i=1

⟨φi, un⟩⟨un, Aφi⟩
)

=
∞∑
n=1

f

(〈
un,

∞∑
i=1

⟨φi, un⟩Aφi
〉)

=
∞∑
n=1

f(⟨un, Aun⟩).

Moreover,
∞∑
i=1

f(⟨φi, Aφi⟩) =
∞∑
i=1

f(λi) =
∞∑
i=1

f(λi)⟨φi, φi⟩ =
∞∑
i=1

⟨φi, f(A)φi⟩ = tr(f(A)).

Suppose that f is strictly convex. Then, since λi ̸= 0 for all i, ui = φi is the only possibility
for equality.

Corollary A.1.5. Let I ⊆ R be an interval and f : I −→ R convex. Then

Φf : S1
f (H) −→ R

A 7−→ tr(f(A))
is convex and Φf is strictly convex if and only if f is strictly convex.

Proof. Let t, s ∈ [0, 1] with t + s = 1 and A,B ∈ S1
f (H). Let (φn)n be the eigenbasis

for tA + sB. Replacing f by |f | (convex!) in the following computation shows that
tA+ sB ∈ S1

f (H). By Peierl’s inequality (A.1.4), we get

tr(f(tA+ sB)) =
∞∑
n=1

f(⟨φn, (tA+ sB)φn⟩) =
∞∑
n=1

f(t⟨φn, Aφn⟩ + s⟨φn, Bφn⟩)

⩽
∞∑
n=1

tf(⟨φn, Aφn⟩) + sf(⟨φn, Bφn⟩) (A.1.5)

⩽ t tr(f(A)) + s tr(f(B)).
Furthermore, (A.1.5) is strict if and only if f is strictly convex.
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Lemma A.1.6. Let f : I −→ R be a convex function. Then for all s, t, u ∈ I with
s < t < u, we have

f(t) − f(s)
t− s

⩽
f(u) − f(s)

u− s
⩽
f(u) − f(t)

u− t
(A.1.6)

Proof. Set x = u− s and let η > 0 such that s+ ηx = t. Equivalently, t = uη + s(1 − η)
or η = t−s

u−s . Then, the definition of convexity gives

f(t) ⩽ ηf(u) + (1 − η)f(s)

so that

f(t) − f(s) ⩽ ηf(u) − ηf(s)

which, in turn, is

f(t) − f(s)
t− s

⩽
f(u) − f(s)

u− s
.

In the same manner, we obtain

f(u) − f(t) ⩾ (1 − η)f(u) − (1 − η)f(s) = u− t

u− s
[f(u) − f(s)].

Theorem A.1.7 ([C09, Theorem 2.11], Klein’s inequality). Let I ⊆ R be an interval
and f : I −→ R convex. Let A,B ∈ S1

f (H). Assume that the right-sided derivative f ′
+ is

bounded on σ(B) and that A−B ∈ S1(H). Then

tr(f(A) − f(B) − f ′
+(B)(A−B)) ⩾ 0. (A.1.7)

If f is strictly convex, then equality holds in (A.1.7) if and only if A = B.

Proof. Let C := A−B so that for 0 ⩽ t ⩽ 1, we have that

B + tC = (1 − t)B + tA.

Since |f | is convex, B + tC ∈ S1
f (H) for 0 ⩽ t ⩽ 1. Define φ(t) := tr(f(B + tC)). By

Corollary A.1.5, φ is convex. Since t = 0 · (1 − t) + 1 · t, we infer that

φ(t) ⩽ φ(0)(1 − t) + φ(1)t (A.1.8)

or, equivalently,

φ(1) − φ(0) ⩾ φ(t) − φ(0)
t

. (A.1.9)

Applying (A.1.6) with s = 0 and t < u, we see that

φ(t) − φ(0)
t

⩽
φ(u) − φ(0)

u

so that the right-hand side of (A.1.9) monotonously decreases to φ′
+(0) as t ↘ 0. But

φ′
+(0) = tr(f ′

+(B)(B − A)). Plugging in, we get (A.1.7). If f is strictly convex, then φ
is strictly convex if and only if C ̸= 0 (see Corollary A.1.5). This is equivalent to (A.1.8)
being strict for all 0 < t < 1. By the monotonicity of the right-hand side of the (A.1.9),
this, in turn, is equivalent to (A.1.9) being strict in the limit t ↘ 0. Hence, (A.1.7) is
strict if and only if A ̸= B.
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A.2 Periodic Operators and Bloch–Floquet Direct
Integrals

A.2.1 Hilbert space valued functions

In this section, we follow [RS80], Section II.1, Example 6 (p. 40, 41), as well as Problem
12 (p. 64).

Definition A.2.1. Let H′ be a separable Hilbert space and (M,µ) a measure space. A
function f : M −→ H′ is called measurable iff m 7→ ⟨y, f(m)⟩H′ is measurable for all
y ∈ H′.

Lemma A.2.2. Suppose that f, g : M −→ H′ are measurable. Then m 7→ ∥f(m)∥2
H′ and

m 7→ ⟨f(m), g(m)⟩H′ are measurable.

Proof. Let (φn)n be an ONB of H′ and for a.e. m ∈ M write

⟨f(m), g(m)⟩H′ =
∞∑
n=1

⟨f(m), φn⟩⟨φn, g(m)⟩.

For a.e. m ∈ M set

ΨN (m) :=
N∑
n=1

⟨f(m), φn⟩⟨φn, g(m)⟩.

Then ΨN is measurable M → R as usual. Furthermore, for a.e. m ∈ M , by Hölder,

|⟨f(m), g(m)⟩ − ΨN (m)| ⩽
∞∑

n=N+1
|⟨f(m), φn⟩⟨φn, g(m)⟩|

⩽
( ∞∑
n=N+1

|⟨f(m), φn⟩|2
)1/2( ∞∑

n=N+1
|⟨φn, g(m)⟩|2

)1/2

.

The expressions on the right-hand side are bounded by ∥f(m)∥H′ and ∥g(m)∥H′ , respec-
tively. These, in turn, are finite for a.e. m ∈ M since f(m), g(m) ∈ H′ for a.e. m ∈ M .
Hence, for a.e. m ∈ M , we conclude

|⟨f(m), g(m)⟩ − ΨN (m)| N→∞−−−−→ 0.

So that m 7→ ⟨f(m), g(m)⟩ is a pointwise limit of measurable functions and thus measur-
able. Set f = g to conclude for m 7→ ∥f(m)∥2

H′ .

Definition A.2.3. Let H′ be a separable Hilbert space and (M,µ) a measure space.
Then, we define H := L2(M,µ; H′) as the set of all (equivalence classes of µ-a.e. equal)
measurable functions f : M −→ H′ such that

∥f∥2
H :=

�
M

∥f(m)∥2
H′ dµ(m) < ∞.

We also write

H =
� ⊕

M
H′ dµ.
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The set H becomes a Hilbert space via

⟨f, g⟩H :=
�
M

⟨f(m), g(m)⟩H′ dµ(m).

Lemma A.2.4 [RS80, Problem 12, p. 64]. (a) Let (φk)k∈N be an ONB. Let g ∈ H. Then,

N∑
k=1

⟨φk, g(·))φk
N→∞−−−−→ g

in H and if f ∈ H is another function, then

⟨f, g⟩H =
∞∑
k=1

�
M

⟨f(m), φk⟩H′⟨φk, g(m)⟩H′ dµ(m).

In particular,

∥f∥2
H =

∞∑
k=1

∥⟨φk, f(·)⟩H′∥2
L2(M,µ). (A.2.1)

(b) If L2(M,µ) is separable, then so is H.

Proof. (a) We have that∥∥∥∥g −
N∑
k=1

⟨φk, g(·)⟩φk
∥∥∥∥2

H
=
�
M

∥∥∥∥g(m) −
N∑
k=1

⟨φk, g(m)⟩H′φk

∥∥∥∥2

H′
dµ(m).

The integrand is bounded by 4∥g(m)∥2
H′ which is integrable and since pointwise con-

vergence holds by the usual Hilbert space techniques, we conclude by dominated con-
vergence. Furthermore, we have

⟨f, g⟩H =
�
M

∞∑
k=1

⟨f(m), φk⟩⟨φk, g(m)⟩ dµ(m).

Call ΨN (m) the partial sum in the integrand for a.e. m ∈ M . We intend to apply
dominated convergence to prove that

⟨f, g⟩H =
�
M

lim
N→∞

ΨN (m) dµ(m) = lim
N→∞

�
M

ΨN (m) dµ(m).

We must provide an N -independent integrable dominant for ΨN . We have

|ΨN (m)| ⩽
( N∑
k=1

|⟨f(m), φk⟩|2
)1/2( N∑

k=1
|⟨φk, g(m)⟩|2

)1/2

⩽ ∥f(m)∥2
H′ · ∥g(m)∥2

H′ .

The right-hand side is integrable since f, g ∈ H. Thus dominated convergence applies.

(b) Let (fn)n ⊆ L2(M,µ) be an ONB and let (φk)k ⊆ H′ be an ONB. We claim that
{fnφk}(m,k)∈N2 is an ONB for H. First of all, note that for (m, k), (n, ℓ) ∈ N2, we have

⟨fmφk, fnφℓ⟩H =
�
M

⟨fm(m)φk, fn(m)φℓ⟩dµ(m) =
�
M
fm(m)fn(m)dµ(m)⟨φk, φℓ⟩

= ⟨fm, fn⟩L2(M,µ)⟨φk, φℓ⟩H′ = δ(m,k),(n,ℓ).
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Hence, {fmφk}(m,k)∈N2 is an orthonormal set. Furthermore, for any f ∈ H, we have

f(m) =
∑
k∈N

⟨φk, f(m)⟩H′φk =
∑
k∈N

∑
m∈N

〈
fn, ⟨φk, f(·)⟩H′

〉
L2(M,µ)

fn(m)φk,

i.e.,

f =
∑
k∈N

∑
m∈N

〈
fn, ⟨φk, f(·)⟩H′

〉
L2(M,µ)

fnφk.

Let’s show that the right-hand side converges in H. By (A.2.1), we have∥∥∥∥ ∞∑
k=1

∞∑
m=1

〈
fm, ⟨φk, f(·)⟩H′

〉
L2(M,µ)

fmφk

∥∥∥∥2

H
=

=
∑

k,k′∈N

∑
m,m′∈N

〈
fm, ⟨φk, f(·)⟩H′

〉
L2(M,µ)

〈
fm′ , ⟨φk′ , f(·)⟩H′

〉
L2(M,µ)

⟨fmφk, fm′φk′⟩H

=
∞∑
k=1

∞∑
m=1

|⟨fm, ⟨φk, f(·)⟩H′⟩L2(M,µ)|2 =
∞∑
k=1

∥⟨φk, f(·)⟩H′∥2
L2(M,µ) = ∥f∥2

H < ∞.

This completes the proof.

A.2.2 Different notions of measurability

We follow [RS80], Appendix to IV.5 (pp. 115).

Definition A.2.5. Let (M,A) be a measurable space and let E be a Banach space. Let
f : M −→ E be a function.

(a) f is called strongly measurable if and only if there is a sequence of functions fn : M −→
E such that fn(m) → f(m) in norm for a.e. m ∈ M and each fn takes only finitely
many values, each value being taken on a set in A.

(b) f is called Borel measurable if and only if f−1(C) ∈ A for each open set C in E (in
the metric space topology on E).

(c) f is called weakly measurable if and only if ℓ(f(m)) is a complex-valued measurable
function for each ℓ ∈ E′.

Proposition A.2.6. Let f : M −→ E be a function.

(a) Let (fn)n be a sequence of Borel measurable functions such that fn(m) → f(m) in
norm as n → ∞. Then f is Borel measurable.

(b) If f is strongly measurable, then f is Borel measurable.

(c) If f is Borel measurable, then f is weakly measurable.

Proof. (a) Let C ⊆ E be open. Define Ck := {e ∈ E : B 1
k
(e) ⊆ C} for k ∈ N. Then we

have C = ⋃
k∈NCk. Furthermore, for a.e. m ∈ M and all k ∈ N, there is Nk ∈ N such

that for all n ⩾ Nk, we have fn(m) ∈ B 1
k
(f(m)). Hence

f−1(C) =
⋃
k∈N

⋃
N∈N

⋂
n⩾N

f−1
n (Ck),

which is measurable.
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(b) The approximating sequence is Borel measurable. Then apply (a).

(c) The natural Borel σ-algebra on E (generated by open sets) makes ℓ ∈ E′ Borel mea-
surable in the above sense, since ℓ is continuous. Then, the composition of Borel
functions is a Borel function.

Lemma A.2.7. Let (M,A) be a measurable space and f : M −→ C be measurable. Then,
there is a sequence (fn)n of simple functions with |fn(m)| ⩽ |f(m)| and fn(m) → f(m)
for a.e. m ∈ M as n → ∞.

Proof. By treating real and imaginary part and positive and negative part separately,
we may assume that f is real-valued and f ⩾ 0. For given m ∈ N and ε > 0 choose
n = n(m, ε) ∈ N so large that η := m

n < ε. For i = 1, . . . , n set Ani := f−1([(i−1)η, iη)) and
αni := (i− 1)η. Define fn := ∑n

i=1 α
n
i 1An

i
. For almost every m ∈ M , there is m ∈ N such

that |f(m)| < m which means m ∈ Ani for some i = 1, . . . , n so that (i− 1)η ⩽ f(m) ⩽ iη.
Hence, fn(m) = αni = η(i− 1) ⩽ f(m). Furthermore,

|f(m) − fn(m)| = f(m) − η(i− 1) ⩽ iη − iη + η = η < ε,

which concludes pointwise convergence.

Theorem A.2.8 [RS80, Theorem IV.22]. Let H be a separable Hilbert space and (M,A)
a measurable space. Let f : M −→ H. Then the following statements are equivalent:

(a) f is strongly measurable.

(b) f is Borel measurable.

(c) f is weakly measurable.

Proof. By Proposition A.2.6, it suffices to prove that (c) implies (a). Assuming (c), fix
an ONB (ψn)n ⊆ H and define an := (ψn, f(·))H. By hypothesis, the an’s are measurable
complex-valued functions. By Lemma A.2.7, there is a sequence (an,m)m of simple func-
tions with |an,m(m)| ⩽ |an(m)| and an,m(m) → an(m) for all n ∈ N and a.e. m ∈ M .
Define fN := ∑N

n=1 an,Nψn. For given ε > 0 and n ∈ N a.e. m ∈ M choose N ∈ N so
large that |an(m) − an,N (m)|2 ⩽ ε

2n . Then, for a.e. m ∈ M , we have

∥f(m) − fN (m)∥2 =
N∑
n=1

|an(m) − an,N (m)|2 +
∞∑

n=N+1
|an(m)|2

⩽ ε
∞∑
n=1

2−n +
∞∑

n=N+1
|an(m)|2 N→∞−−−−→ ε.

A.2.3 Decomposable operators

We follow Section XIII.16 in [RS78] (pp. 279). Let (M,µ) be a measure space. A function
A : M −→ B(H′) is called measurable if and only if m 7→ ⟨φ,A(m)ψ⟩ is measurable for all
φ,ψ ∈ H′ (i.e. weakly measurable). By L∞(M,µ,B(H′)) denote the space of measurable
functions A : M −→ B(H′) with

∥A∥∞ := ess sup
m∈M

∥A(m)∥B(H′) < ∞.
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Definition A.2.9. A bounded operator A on H =
� ⊕
M H′dµ is decomposed by the direct

integral decomposition if and only if there is A ∈ L∞(M,µ,B(H)) such that

(Aψ)(m) = A(m)ψ(m)

for almost every m ∈ M and all ψ ∈ H. In this case, we call A decomposable and write

A =
� ⊕

M
A(m) dµ(m).

Theorem A.2.10 [RS78, Theorem XIII.83]. If A ∈ L∞(M,µ,B(H′)), then there is a
unique decomposable operator A ∈ B(H) such that (Aψ)(m) = A(m)ψ(m) holds for all
ψ ∈ H and a.e. m ∈ M .

Proof. For uniqueness note that if A,B ∈ B(H) are two such operators, then we have
(Aψ)(m) − (Bψ)(m) = 0 for all ψ ∈ H and a.e. m ∈ M . Thus A = B. For existence let
ψ ∈ L2(M,µ,H′) and let {ηk}k∈N be an ONB for H′. Then

A(m)ψ(m) =
∞∑
k=1

⟨ηk, ψ(m)⟩H′A(m)ηk (A.2.2)

for a.e. m ∈ M since A(m) is a bounded operator for a.e. m ∈ M . Now, A(m)ηk is weakly
measurable. Hence, for all N ∈ N,

φN (m) :=
N∑
k=1

⟨ηk, ψ(m)⟩A(m)ηk

is weakly (and hence, strongly) measurable by Theorem A.2.8. Moreover, for N,K ∈ N,
we have

�
M

∥φN (m) − φK(m)∥2 dµ =
�
M

∥∥∥∥A(m)
N∑

k=K+1
⟨ηk, ψ(m)⟩ηk

∥∥∥∥2
dµ

⩽ ∥A∥2
∞

�
M

∥∥∥∥ N∑
k=K+1

⟨ηk, ψ(m)⟩ηk
∥∥∥∥2

dµ ⩽ ∥A∥2
∞ · ∥ψ∥2

since ∥∥∥∥ N∑
k=K+1

⟨ηk, ψ(m)⟩ηk
∥∥∥∥2

=
N∑

k=K+1
|⟨ηk, ψ(m)⟩|2 ⩽ ∥ψ(m)∥2 (A.2.3)

for almost all m ∈ M and all N ∈ N by Bessel. Now, ∑N
k=K+1⟨ηk, ψ(m)⟩ηk → 0 as

K,N → ∞ by (A.2.3) and it is in L1(M,µ). Hence, by dominated convergence, we
conclude that (φN )N∈N is Cauchy and hence, converges to a limit φ ∈ H. But that limit is
equal to A(m)ψ(m) for almost all m ∈ M by (A.2.2). Hence, Aψ(m) := A(m)ψ(m) defines
an L2-function M → H′, that is, an element of H. Also, using dominated convergence
again,

∥Aψ∥2 =
�
M

lim
N→∞

∥φN (m)∥2 dµ ⩽ ∥A∥2
∞∥ψ∥2
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So, A is bounded and ∥A∥ ⩽ ∥A∥∞. To prove the converse inequality, let α, β ∈ H′ and
let f ∈ L1(M,µ). Decompose1 f as f = gh with g, h ∈ L2(M,µ) and ∥f∥2

2 = ∥h∥2
2 = ∥f∥1.

Set ψ := gα, φ = hβ. Then∣∣∣∣�
M
f(m)⟨α,A(m)β⟩ dµ

∣∣∣∣ = |⟨ψ,Aφ⟩| ⩽ ∥A∥ · ∥ψ∥H′∥φ∥H′

= ∥A∥
(�

M
∥g(m)α∥2 dµ

)1/2(�
M

∥h(m)β∥2
H′ dµ

)1/2

= ∥A∥ · ∥α∥ · ∥β∥ · ∥f∥1

Since L∞(M) is the dual of L1(M), it follows that

|⟨α,A(m)β⟩| ⩽ ∥A∥ · ∥α∥ · ∥β∥.

Theorem A.2.11 [RS78, Theorem XIII.84]. Let H =
� ⊕
M H′ dµ where (M,µ) is a σ-

finite separable measure space and H′ is a separable Hilbert space. Let A be the algebra of
decomposable operators whose fibers are all multiples of the identity. Then A ∈ B(H) is
decomposable if and only if A commutes with each operator in A.

Proof. (⇒) trivial.

(⇐) Since µ is σ-finite, we can finde a strictly positive F ∈ L1(M,µ) so that ν := Fµ
has unit mass. To see this, let (An)n ⊆ M with ⋃n∈NAn = M and 0 < µ(An) < ∞.
Define F |An := 2−nµ(An)−1. Then,

�
M

dν :=
�
M
F dµ =

∑
n∈N

�
An

2−nµ(An)−1dµ =
∑
n∈N

2−n = 1.

Let H̃ :=
�
M H′ dν. Then, the map U : H −→ H̃, Ug = F−1/2g is unitary since

�
M

∥Ug(m)∥2 dν =
�
M

|F−1/2|2 · ∥g(m)∥2 · F dµ = ∥g∥2
H

and UAU−1 = Ã. Hence, we may suppose without loss that
�
M dµ = 1. Choose an

ONB {ηk}k∈N for H′ and let Fk be the element of H with Fk(m) := ηk for almost
all m ∈ M . The Fk are orthonormal since

�
M dµ = 1. Moreover, any ψ ∈ H has

an expansion ψ = ∑∞
k=1 fkFk with fk ∈ L2(M,µ;C) and ∥ψ∥2 = ∑∞

k=1 ∥fk∥2 (see
Lemma A.2.4 (a)). Define functions akm : M −→ C by AFk(m) = ∑∞

ℓ=1 akℓ(m)Fℓ
for almost all m ∈ M . Choose a countable dense subset D in H′ of vectors φ of the
form φ = ∑N

k=1 αkηk and define Φ := ∑N
k=1 αkFk (whence ∥Φ∥H = ∥φ∥H′). Then,

for any f ∈ L∞(M,µ,C), setting A(m)φ := ∑∞
ℓ=1

∑N
k=1 αkakℓ(m)ηℓ, we obtain

A(fΦ)(m) = f(AΦ)(m) =
N∑
k=1

f(m)αkAFk(m) =
N∑
k=1

∞∑
ℓ=1

f(m)αkakℓ(m)Fℓ(m)

=
∞∑
ℓ=1

N∑
k=1

f(m)αkakℓ(m)ηℓ = f(m)A(m)φ

= f(m)A(m)Φ(m),

1For example, set g := |f |1/2 and h := f/g · 1{f ̸=0}.
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since f1H ∈ A. Moreover, we get

∥A(fφ)(m)∥2 =
∥∥∥∥ N∑
k=1

∞∑
ℓ=1

αkakℓ(m)ηℓ
∥∥∥∥2

=
�
M

|f(m)|2
∑
ℓ∈N

∣∣∣∣ N∑
k=1

αkakℓ(m)
∣∣∣∣2 dµ(m)

⩽ ∥A∥2
�
M

|f(m)|2 · ∥φ∥2
H′ dµ(m)

= ∥A∥2
�
M

|f(m)|2 dµ(m) ·
N∑
k=1

|αk|2.

Hence, by duality, using ∥Φ∥2
H = ∥φ∥2

H′ = ∑N
k=1 |αk|2, we have

∥A(m)φ∥ ⩽ ∥A∥ · ∥Φ∥ = ∥A∥ · ∥φ∥

for almost all m ∈ M . Hence, A(m) may be extended to a bounded operator on H′

for almost every m ∈ M and A ∈ L∞(M,B(H′). Then, let B be the corresponding
decomposable operator and let ψ ∈ H have the form ψ = ∑N

k=1 fkFk with fk ∈
L2(M,µ). Then

(Aψ)(m) =
N∑
k=1

fk(m)(AFk)(m) =
N∑
k=1

fk(m)A(m)ηk = A(m)
N∑
k=1

fk(m)ηk

= A(m)ψ(m) = (Bψ)(m).

Since such ψ’s are dense, B = A. To see density, let ψ ∈ H. Then, ψ(m) =∑∞
k=1 fk(m)ηk for certain fk(m) ∈ C and a.e. m ∈ M . For all ℓ ∈ N, we have

⟨ηℓ, ψ(m)⟩ = fℓ(m). Hence,

∥fℓ∥2 =
�
M

|fℓ(m)|2 dµ =
�
M

|⟨ηℓ, ψ(m)⟩|2 dµ ⩽
�
M

∥ψ(m)∥2 dµ = ∥ψ∥2.

Thus, fℓ ∈ L2(M,µ) for all ℓ ∈ N and ∑ℓ∈N ∥fℓ∥2 = ∥ψ∥2 (monotone convergence
and Parseval). Finally, for N ∈ N, we have∥∥∥∥ψ −

N∑
k=1

fkFk

∥∥∥∥2
=
�
M

∥∥∥∥ ∞∑
k=N+1

fk(m)Fk(m)
∥∥∥∥2

dµ.

Here, the integrand goes pointwise to 0 as N → ∞ and is bounded by ∥ψ(m)∥2

which is integrable. We conclude by dominated convergence.

Definition A.2.12. Let Lsa(H′) := {A : D(A) → H′ : A = A∗} denote the set of self-
adjoint operators in H′. A function A : M −→ Lsa(H′) is called measurable if and only
if the function m 7→ (A(m) + i)−1 is measurable. Given such a function, we define an
operator A on H =

� ⊕
M H′ dµ with the domain

D(A) =
{
ψ ∈ H : ψ(m) ∈ D(A(m)) a.e. &

�
M

∥A(m)ψ(m)∥2 dµ < ∞
}
.

Remark A.2.13. The foregoing definition makes the following sense. If A : M −→
Lsa(H′) is measurable and ψ(m) ∈ ran((A(m) + i)−1) for almost every m ∈ M , so that
there is an η(m) ∈ H′ with (A(m) + i)−1η(m) = ψ(m) a.e., then

A(m)ψ(m) = A(m)(A(m) + i)−1η(m)
= (A(m) + i)(A(m) + i)−1η(m) − i(A(m) + i)−1η(m)
= η(m) + i(A(m) + i)−1η(m)

is measurable. Thus, the definition of D(A) makes sense.
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Theorem A.2.14 [RS78, Theorem XIII.85 (b)]. A self-adjoint operator A on H has the
form

� ⊕
M A(m) dµ if and only if (A+ i)−1 is a bounded decomposable operator.

Proof. (⇒) By assumption, there is a function A : M −→ Lsa(H′) such that g(m) :=
(A(m) + i)−1 is measurable. We may define

G :=
� ⊕

M
g(m) dµ.

To show is that G = (A+ i)−1. Let ψ ∈ H, then (Gψ)(m) = (A(m) + i)−1ψ(m) i.e.
(Gψ)(m) ∈ D(A(m)) a.e. Furthermore, since

A(m)(Gψ)(m) = A(m)(A(m) + i)−1ψ(m) = ψ(m) − i(A(m) + i)−1ψ(m)
= ψ(m) − i(Gψ)(m),

we have that A(m)(Gψ)(m) is square integrable (since ψ ∈ H and G is bounded (by
1)) so that Gψ ∈ D(A). Since A =

� ⊕
M A(m) dµ, we obtain

((A+ i)Gψ)(m) = (A(m) + i)(A(m) + i)−1ψ(m) = ψ(m).

Thus, G is a right-sided inverse of A+ i. Furthermore, let ψ ∈ D(A) and compute

(G(A+ i)ψ)(m) = (A(m) + i)−1(A(m) + i)ψ(m) = ψ(m).

Thus, G is also a left-sided inverse and hence the inverse of A+ i.

(⇐) By assumption, there is a measurable function g ∈ L∞(M,µ; B(H′)) such that

(A+ i)−1 =
� ⊕

M
g(m) dµ.

First, we note that (A− i)−1 =
� ⊕
M g(m)∗ dµ. This follows from a standard computa-

tion. We claim that g(m) has dense range and is injective almost everywhere. To see
this, let φ ∈ H with φ(m) ∈ ker(g(m)) a.e. Then 0 = g(m)φ(m) = ((A+ i)−1φ)(m)
so that (A+i)−1φ = 0 which means φ = 0 since (A+i)−1 is injective. Hence, g(m) is
injective almost everywhere. If φ ∈ H′ with φ(m) ∈ ran(g(m))⊥ almost everywhere,
then, for all ψ ∈ H:

0 = ⟨φ(m), g(m)ψ(m)⟩ = ⟨g(m)∗φ(m), ψ(m)⟩ = ⟨(A− i)−1φ,ψ⟩(m)

so that φ ∈ ker((A− i)−1). This implies φ = 0 so that φ(m) = 0 almost everywhere.
Hence g(m) has dense range in H′. Hence, define D(A(m)) := ran(g(m)) and

A(m) := g(m)−1 − i

on D(A(m)). Then A(m) is densely defined. We claim that A(m) is self-adjoint
for almost every m ∈ M . To see this, first note that A(m) is symmetric: For a.e.
m ∈ M pick φ(m), ψ(m) ∈ D(A(m)) = ran(g(m)) so there is some η(m) ∈ H′ with
ψ(m) = g(m)η(m) = ((A+ i)−1η)(m). This implies that ψ ∈ ran(A+ i)−1 = D(A).
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Analogously, φ(m) = g(m)ξ(m) for some ξ(m) ∈ H′. Hence,

⟨φ(m),A(m)ψ(m)⟩ = ⟨ξ(m), g∗(m)[g(m)−1 − i]g(m)η(m)⟩
= ⟨ξ(m), g∗(m)[1 − ig(m)]η(m)⟩ = ⟨ξ, (A− i)−1[1 − i(A+ i)−1]η⟩(m)
= ⟨ξ, (A− i)−1[A+ i − i](A+ i)−1η⟩(m)
= ⟨ξ, (A− i)−1[A− i + i](A+ i)−1η⟩(m)
= ⟨ξ, [1 + i(A− i)−1](A+ i)−1η⟩(m) = ⟨ξ(m), [1 + ig∗(m)]ψ(m)⟩
= ⟨[1 − ig(m)]ξ(m), ψ(m)⟩ = ⟨[g(m)−1 − i]φ(m), ψ(m)⟩
= ⟨A(m)φ(m), ψ(m)⟩.

To show that A(m) is even self-adjoint for a.e. m ∈ M , let η(m) ∈ H′ and set
ψ(m) := g(m)η(m). Per definition, ψ(m) ∈ D(A(m)) and

(A(m) + i)ψ(m) = (g(m)−1 − i + i)g(m)η(m) = η(m).

Hence, ran(A(m) + i) = H′. For ran(A(m) − i), we proceed analogously, using that

(A+ i)(A− i)−1 = (A− i + 2i)(A− i)−1 = 1 + 2i(A− i)−1

implies that

g(m)∗ = g(m)[1 + 2ig(m)∗]. (A.2.4)

If ψ(m) ∈ ran(g(m)) so that ψ(m) = g(m)η(m), we have that

g(m)∗[1 − 2ig(m)]η(m) = g(m)[1 + 2ig(m)∗][1 − 2ig(m)]η(m) = ψ(m). (A.2.5)

The last equality follows from an easy computation involving the first resolvent
equation showing

[1 − 2ig(m)][1 + 2ig(m)∗] = [1 − 2i(A+ i)−1][1 + 2i(A− i)−1](m) = 1(m).

Hence, ψ(m) ∈ ran(g(m)∗). Thus, interchanging the roles of i and −i and the stars,
we obtain ran(g(m)) = ran(g(m)∗). Hence, if ξ(m) ∈ H′ and φ(m) := g(m)∗ξ(m),
we have φ(m) ∈ D(A(m)) and

(A(m) − i)φ(m) = [g(m)−1 − 2i]g(m)∗ξ(m)
= [g(m)−1 − 2i]g(m)[1 + 2ig(m)∗]ξ(m)
= [1 − 2ig(m)][1 + 2ig(m)]ξ(m) = ξ(m).

Thus, A(m) is self-adjoint for almost all m ∈ M . This now enables us to define
Ã :=

� ⊕
M A(m) dµ. Let us show that D(Ã) = D(A). To see this let ψ ∈ D(Ã). Then

ψ(m) ∈ D(A(m)) = ran(g(m)) a.e. so ψ(m) = g(m)η(m) for a certain η(m) ∈ H′.
We obtain that

A(m)ψ(m) = [g(m)−1 − i]g(m)η(m) = η(m) − iψ(m). (A.2.6)

Since ψ ∈ H and
�
M ∥A(m)ψ(m)∥2 dµ < ∞ by definition of D(Ã), we infer that η ∈

H. Hence, ψ = (A+ i)−1η ∈ D(A). Reversely, let ψ ∈ D(A) so that ψ = (A+ i)−1η
for some η ∈ H. Then ψ(m) = g(m)η(m) so that ψ(m) ∈ D(A(m)) for almost all
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m ∈ M . Furthermore, (A.2.6) says that A(m)ψ(m) is square integrable over M .
Hence, ψ ∈ D(Ã). Finally, we have that

(Aψ)(m) = (A(A+ i)−1η)(m) = (η − i(A− i)−1η)(m)
= η(m) − ig(m)η(m) = g(m)−1ψ(m) − iψ(m) = A(m)ψ(m)
= (Ãψ)(m).

Theorem A.2.15 [RS78, Theorem XIII.85]. Let A : M −→ Lsa(H′) be measurable and
assume that A =

� ⊕
M A(m) dµ. Then

(a) The operator A is self-adjoint.

(b) For any bounded Borel function F : R −→ C,

F (A) =
� ⊕

M
F (A(m)) dµ.

(c) λ ∈ σ(A) if and only if for all ε > 0,

µ({m ∈ M : σ(A(m)) ∩ (λ− ε, λ+ ε) ̸= ∅}) > 0.

(d) λ is an eigenvalue of A if and only if

µ({m ∈ M : λ is an eigenvalue of A(m)}) > 0.

(e) Suppose that B : M −→ Lsa(H′) is measurable and B =
� ⊕
M B(m) dµ. If B is A-

bounded with A-bound a, then, almost everywhere, B(m) is A(m)-bounded with A(m)-
bound a(m) ⩽ a. If a < 1, then

A+B =
� ⊕

M
(A(m) + B(m)) dµ

is self-adjoint on D(A).

Proof. (a) First, A is symmetric so it suffices to prove that ran(A± i) = H. Let g(m) :=
(A(m) + i)−1. Then g(m) is measurable and ∥g(m)∥ ⩽ 1 almost everywhere. Hence,
we may define G :=

� ⊕
M g(m) dµ by Theorem A.2.10. Let η ∈ H and set ψ := Gη.

Then ψ(m) ∈ ran(g(m)) = D(A(m)) a.e. and

∥A(m)ψ(m)∥ = ∥A(m)g(m)η(m)∥ ⩽ ∥η(m)∥

is square integrable since ∥A(m)g(m)∥ ⩽ 1 a.e. Hence, ψ ∈ D(A) and (A + i)ψ = η
whence ran(A + i) = H. Similarly, g(m)∗ = (A(m) − i)−1 is measurable (compare
(A.2.4) and (A.2.5)) and thus ran(A− i) = H.

(b) By Theorem A.2.14, we have

(A+ i)−1 =
� ⊕

M
(A(m) + i)−1 dµ.

The first goal is to extend this to resolvents at points λ ∈ C with Imλ ̸= 0. Set
gλ(m) := (A(m) − λ)−1. As a preparation, we note that

(A+ i)(A− λ)−1 = (A− λ+ (i + λ))(A− λ)−1 = 1 + (i + λ)(A− λ)−1
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and we get an analogous equation for λ and −i interchanged. We obtain

[1 + (i + λ)(A− λ)−1][1 − (i + λ)(A+ i)−1] = (A+ i)(A− λ)−1(A− λ)(A+ i)−1 = 1.

By interchanging again, we see that 1 − (i + λ)(A+ i)−1 is invertible and the inverse
is 1 + (i + λ)(A + λ)−1. Exactly the same computation holds for gλ(m) in place of
(A−λ)−1 for all λ ∈ C\R. Thus, 1−(i+λ)gi(m) is invertible. Then, a straightforward
computation using that

1 − (i + λ)(A+ i)−1 =
� ⊕

M
1 − (i + λ)gi(m) dµ

shows that

[1 − (i + λ)(A+ i)−1]−1 =
� ⊕

M
[1 + (i + λ)gi(m)]−1 dµ.

This implies that

(A− λ)−1 =
� ⊕

M
gλ(m) dµ.

for every λ ∈ C \ R. Now, for ε > 0, a, b ∈ R with a < b and t ∈ R we set

hε,a,b(t) := 1
πi

� b

a

1
t− λ− iε − 1

t− λ+ iε dλ.

A straightforward computation shows that supε>0 ∥hε,a,b∥∞ = 2 for all a, b ∈ R, a < b
and ε > 0 and that

hε,a,b(t)
ε→0−−−→ 1[a,b](t) + 1(a,b)(t)

for all t ∈ R. Together with

1[a−δ,b−δ](t)
δ→0−−−→ 1[a,b)(t) 1(a−δ,b−δ)(t)

δ→0−−−→ 1[a,b)(t) (A.2.7)

we see that, using dominated convergence, for all a, b ∈ R, a < b and all ψ ∈ H:

lim
δ→0

lim
ε→0

�
M

∥∥∥∥1[a,b)(A(m))ψ(m) − 1
2hε,a−δ,b−δ(A(m))ψ(m)

∥∥∥∥2
dµ = 0.

Hence, define Ga,b by

Ga,bψ :=
� ⊕

M
1[a,b)(A(m))ψ(m) dµ.

Then, (A.2.7) implies that

1[a,b)(A)ψ = 1
2 lim
δ→0

lim
ε→0

hε,a−δ,b−δ(A)ψ = 1
2 lim
δ→0

lim
ε→0

� ⊕

M
hε,a−δ,b−δ(A(m))ψ(m) dµ

=
� ⊕

M
1[a,b)(A(m)ψ(m) dµ = Ga,bψ

for each ψ ∈ H. Hence, 1[a,b)(A) = Ga,bψ. Since half-open intervals generate the
Borel σ-algebra B(R), this proves the claim for 1U for each U ∈ B(R). Finally, for F
bounded and measurable, choose a sequence of simple functions Fn with ∥F−Fn∥ → 0
and use dominated convergence again using that supn ∥Fn∥∞ < ∞.
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(c) We apply part (b) to 1(λ−ε,λ+ε). Then, the claim follows from the fact that we have� ⊕
M T (m) dµ = 0 if and only if T (m) = 0 a.e.

(d) This is similar to part (c) by using 1{λ}.

(e) If ∥Bψ∥ ⩽ a∥Aψ∥ + b∥ψ∥, then

∥B(A+ ik)−1∥ ⩽ a∥A(A+ ik)−1∥ + b∥(A+ ik)−1∥ = a+ bk−1.

Hence, ∥B(m)(A(m) + ik)−1∥ ⩽ a + bk−1 for a.e. m ∈ M . For given ε > 0 choose
k(m) > 0 so large that bk(m)−1 < ε. Then, for ψ ∈ D(A(m)):

∥B(m)ψ∥ = ∥B(m)(A(m) + ik)−1(A(m) + ik)ψ∥
⩽ (a+ ε)∥A(m)ψ∥ + (a+ ε)k(m)∥ψ∥.

Hence, since ε > 0 was arbitrary, B(m) is A(m)-bounded with A(m)-bound a(m) ⩽ a.
If a < 1, then Kato-Rellich implies that A(m) + B(m) is self-adjoint on D(A(m))
almost everywhere. Since

1
A(m) + B(m) + 2i = 1

A(m) + i
1

(B(m) + i)−1 + (A(m) + i)−1
1

B(m) + i (A.2.8)

we infer that m 7→ A(m) +B(m) is measurable by using part (b) for A(m) and B(m)
with f(t) = (t+ i

2)−1. Thus, we may define

G :=
� ⊕

M
A(m) + B(m) dµ.

By Kato-Rellich, we know that A + B is self-adjoint on D(A). This implies that
D(A) = D(G). Linearity of the direct integral then implies G = A+B.

A.2.4 Direct integral decomposition of L2(Rd)
In this section, we want to decompose the space L2(Rd) into a (constant fiber) direct
integral with respect to a certain lattice (the lattice of periodicity of the Hamiltonian),
where the fibers consist of the L2-space over the unit cell of the lattice. Consider a basis
{a1, . . . , ad} ⊆ Rd and let

Γ := Γ(a1, . . . , ad) :=
{ d∑
i=1

niai : ni ∈ Z, i = 1, . . . , d
}

⊆ Rd

denote the lattice spanned by the vectors a1, . . . , ad as well as its closed unit cell

C := C(a1, . . . , ad) :=
{ d∑
i=1

λiai : 0 ⩽ λi < 1, i = 1, . . . , d
}

⊆ Rd.

Introduce the corresponding dual lattice

Γ∗ = {x ∈ Rd : ⟨x, η⟩ ∈ 2πZ ∀η ∈ Γ}.

It is known that Γ∗ = Γ(a∗
1, . . . , a

∗
d) with a∗

1, . . . , a
∗
d ∈ Rd chosen in such a way that

⟨a∗
i , aj⟩ = 2πδij for all i, j = 1, . . . , d. The dual unit cell is given by C∗ := C(a∗

1, . . . , a
∗
d).
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Lemma A.2.16 [RS78, Lemma to Thm XIII.88]. Let {a1, . . . , ad} and {b1, . . . , bd} be
two bases in Rd and let Γ = Γ(a1, . . . , ad) and Λ = Γ(b1, . . . , bd) be the two lattices in Rd
generated by these bases. Denote the unit cell of Γ by C and the dual unit cell of Λ by L∗.
Let H′ = L2(C) and

H :=
� ⊕

L∗
H′ dθ

Vol(L∗) .

Then, U : L2(Rd) −→ H given, for f ∈ S(Rd), by

(Uf)θ(x) :=
∑
n∈Zd

e−i⟨θ,
∑d

i=1 nibi⟩f

(
x+

d∑
i=1

niai

)
, (A.2.9)

for θ ∈ L∗ and x ∈ C, is unitary. The inverse U∗ : H −→ L2(Rd) is given by

(U∗g)
(
x+

d∑
i=1

niai

)
=
�

L∗
ei⟨θ,

∑d

i=1 nibi⟩gθ(x) dθ
Vol(L∗) (A.2.10)

for x ∈ C and n = (n1, . . . , nd) ∈ Zd. Moreover,

U(−∆)U∗ =
� ⊕

L∗
(−∆)θ

dθ
V
.

where (−∆)θ is −∆ on L2(C) with boundary conditions

φ(x+ ai) = eiθiφ(x), ∇φ(x+ ai) = eiθi∇φ(x).

Remark A.2.17. (a) In [RS78], the authors have set Λ := Zd so that L∗ = [0, 2π)d. One
then gets the statement with bn = n for all n ∈ Zd. We wanted to stress that one
may choose both lattices independently. The fact that [0, 2π)d is the parameter set
for the decomposition has nothing to do with the periodicity of the original operator
one wants to decompose. This is only encoded in Γ.

(b) In view of the Fourier transform for periodic functions, one may also set Λ := Γ.

Proof. For n ∈ Zd set an := ∑d
i=1 niai and bn := ∑d

i=1 nibi. Since f ∈ S(Rd), we have
that supx∈Rd |x2f(x)| ⩽ C for some constant C > 0. If x ∈ Γ, then there is nx ∈ Zd with
anx + x = 0. Thus,∣∣∣∣ ∑

n∈Zd

e−i⟨θ,bn⟩f(x+ an)
∣∣∣∣ ⩽ ∑

n∈Zd\{nx}
|x+ an|−2 · |x+ an|2 · |f(x+ bn)| + |f(0)|

⩽ C
∑

n∈Zd\{nx}
|x+ an|−2. (A.2.11)

Otherwise, we have∣∣∣∣ ∑
n∈Zd

e−i⟨θ,bn⟩f(x+ an)
∣∣∣∣ ⩽ ∑

n∈Zd

|x+ an|−2 · |x+ an|2 · |f(x+ bn)|

⩽ C
∑
n∈Zd

|x+ an|−2. (A.2.12)
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Now, let x ∈ Rd and choose n ∈ Zd so that |ni| ⩾ 2|xi|. Since all norms in Rd are
equivalent, we have |x|2 ⩾ cd|x|∞ for some cd > 0. Writing x = ∑d

i=1 xiai yields:

|x+ an| =
∣∣∣∣ d∑
i=1

(xi − ni)ai
∣∣∣∣ ⩾ cd max

i=1,...,d
|xi − ni| ⩾

cd
2 max
i=1,...,d

|ni|.

Using the equivalence of norms again, we have |n|∞ ⩾ c̃d|n|2 for all n ∈ Zd and some
c̃d > 0. Hence, (A.2.11) and (A.2.12) converge. Next, we prove that U is isometric. Set
V := Vol(L∗) and compute

∥Uf∥2
H =

�
L∗

dθ
V

�
C

∣∣∣∣ ∑
n∈Zd

e−i⟨θ,bn⟩f(x+ an)
∣∣∣∣2 dx

=
∑

m,n∈Zd

�
C

dx f(x+ an)f(x+ am)
�

L∗

dθ
V

e−i⟨θ,bm−bn⟩

=
∑
n∈Zd

�
C

|f(x+ an)|2 =
�
Rd

|f(x)|2 dx.

Here, we used Fubini and the fact that
�

L∗

dθ
V

e−i⟨θ,bm−bn⟩ = δn,m,

which can be proven using the transformation rule. Let us verify that U∗ is indeed the
adjoint of U . We compute

⟨g, Uf⟩H =
�

L∗

dθ
V

⟨gθ, (Uf)θ⟩L2(C) =
�

L∗

dθ
V

�
C

dx gθ(x)
∑
n∈Zd

e−i⟨θ,bn⟩f(x+ an)

=
∑
n∈Zd

�
C

dx
�

L∗

dθ
V
gθ(x)ei⟨θ,bn⟩ · f(x+ an) = ⟨U∗g, f⟩L2(Rd).

Thus, we finish the proof by showing that also U∗ is isometric. We have

∥U∗g∥2 =
�
Rd

|U∗g(y)|2 dy =
∑
n∈Zd

�
C

|U∗g(y + an)|2 dy =
∑
n∈Zd

�
C

∣∣∣∣�
L∗

dθ
V

ei⟨θ,bn⟩gθ(y)
∣∣∣∣2 dy

=
∑
n∈Zd

�
C

dy
�

L∗

dθ
V

�
L∗

dθ′

V
ei⟨θ−θ′,bn⟩gθ(y)gθ′(y) =

�
L∗

�
C

|gθ(y)|2 dy dθ
V

= ∥g∥2
H.

Here, we used that ∑
n∈Zd

ei⟨θ−θ′,bn⟩ = Vδ(θ − θ′),

which may be verified by testing against a function. It remains to show the decomposition
of the Laplacian. Let A :=

� ⊕
L∗(−∆)θ dθ

V and let f ∈ S(Rd). Then (Uf)θ ∈ C∞(C) for all
θ ∈ L∗ and for j, k = 1, . . . , d we have

(U∂kf)θ(x+ aj) =
∑
n∈Zd

e−i⟨θ,bn⟩∂kf(x+ an + aj) =
∑
n∈Zd

e−i⟨θ,bn⟩∂ke−iθjf(x+ an)

= eiθj (U∂kf)θ(x).
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Hence, (Uf)θ ∈ D((−∆)θ) for all θ ∈ L∗ and

U(−∆f))θ(x) =
∑
n∈Zd

e−i⟨θ,bn⟩(−∆f)(x+ an) = (−∆)θ(Uf)θ(x).

In particular,
�

L∗
∥(−∆)θ(Uf)θ∥2

L2(C)
dθ
V

= ∥(−∆)f∥L2(Rd)

so that Uf ∈ D(A). Reversely, let ψ ∈ D(A), then ψθ ∈ D((−∆)θ) and

∞ >

�
L∗

∥U∗(−∆)θψθ∥2 dθ
V

=
�
Rd

|(−∆)U∗ψ|2 dx.

Hence, U∗ψ ∈ D(−∆).

A.2.4.1 Direct integral decomposition of bounded periodic operators

We follow Now let A be a bounded operator on L2(Rd) which is periodic with respect to
the lattice Γ. Per definiton, this means that ATη = TηA for all η ∈ Γ. Here, Tη denotes
the translation operator by η. Writing (A.2.9) a bit differently as

(Uf)θ =
∑
n∈Zd

e−i⟨θ,
∑d

i=1 nibi⟩T ∗
an
f

we can compute, using the periodicity of A:

(UAf)θ =
∑
n∈Zd

e−i⟨θ,bn⟩T ∗
an
Af =

∑
n∈Zd

e−i⟨θ,bn⟩AT ∗
an
f = A ·

∑
n∈Zd

e−i⟨θ,bn⟩T ∗
an
f.

Define the (θ-independent) θth fiber of A by

Aθ : L2(C) −→ L2(C)
f 7−→ A|L2(C)f.

(A.2.13)

Being a little sloppy, we obtain (UAf)θ = Aθ(Uf)θ and so the direct integral decomposi-
tion

UAU∗ =
� ⊕

L∗
Aθ

dθ
Vol(L∗) . (A.2.14)

This definition is not correct, since it suggests that one could restrict the operator A
successfully to the “invariant subspace” L2(C), which we cannot. However, the picture is
correct and in the following, we only want to give the proper proof of the Bloch-Floquet
decomposition of periodic operators. To do this, we use the Bloch-Floquet-Zac transform
instead. We use the same lattice Γ = Λ from now on. Introduce

L2
per(Rd) := {f ∈ L2

loc(Rd) : f(x− γ) = f(x) ∀γ ∈ Γ, a.e. x ∈ Rd}.

This becomes a Hilbert space via the inner product

⟨f, g⟩L2
per(Rd) :=

�
C
f(x)g(x) dx.
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We want to define “A” on L2
per(Rd). To do this, let f ∈ L2

per(Rd). Then, a simple
argument by dominated convergence shows that f = ∑

η∈Γ Tη1Cf where Tη is the notation
for translation by η. We have that 1Cf ∈ L2(Rd), since f ∈ L2

loc(Rd). Define

Aperf :=
∑
η∈Γ

TηA1Cf.

This definition is independent of the chosen cube C due to the periodicity of f and A. For
each η ∈ Γ, we immediately get that

TηAperf =
∑
ν∈Γ

TηTνA1Cf =
∑
ν∈Γ

TνA1Cf = Aperf

so that Aperf is periodic. Furthermore, Aper is bounded, since

∥Aperf∥2
L2

per
=
∥∥∥∥∑
η∈Γ

TηA1Cf

∥∥∥∥2

L2
per

=
∑
η,ν∈Γ

⟨TηA1Cf, TνA1Cf⟩L2(C)

=
∑
η,ν∈Γ

⟨ATη1Cf,ATν1Cf⟩

⩽
∑
η,ν∈Γ

∥A∥2 · ∥Tη1Cf∥L2(C) · ∥Tν1Cf∥L2(C) = ∥A∥∥f∥2
L2

per
.

The last equality follows from

∑
η∈Γ

∥Tη1Cf∥L2(C) =
∑
η∈Γ

(�
C

|Tη1Cf |2 dx
)1/2

=
∑
η∈Γ

(�
C

|1C(x− η)︸ ︷︷ ︸
=δη,0

f(x− η)|2 dx
)1/2

= ∥f∥L2
per
.

This means that Aper is bounded as an operator L2
per(Rd) −→ L2

per(Rd) with ∥Aper∥ ⩽ ∥A∥.
To prove that the Bloch-Floquet theory really decomposes A, we use a slight variant of
the decomposition above. The Zac transform has a little better periodicity behavior and
is defined on S(Rd) ⊆ L2(Rd) by

(Uf)θ(x) :=
∑
η∈Γ

eiθ(x+η)f(x+ η). (A.2.15)

Writing x = c− ν uniquely by c ∈ C and ν ∈ Γ, we obtain

(UAf)θ(x) =
∑
η∈Γ

eiθ(x+η)Af(x+ η) =
∑
η∈Γ

Aeiθ(x+η)f(x+ η) =
∑
η∈Γ

Aeiη(c−ν+η)f(c− ν + η)

=
∑
η∈Γ

AT−ηTν1C(eiθ·f)(x) =
∑
η∈Γ

T−ηA1C(eiθ·f)(x)

= Aper

(∑
η∈Γ

T−η1Ceiθ·f

)
(x) = Aper(Uf)θ(x).

Hence, setting Aθ = Aper for each θ we obtain that A is indeed decomposable by the
direct integral decomposition. In this sense, we will canonically identify L2

per(Rd) with
L2(C) and consider A as decomposable as in (A.2.14).
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A.3 Local Traces

Let (M,µ) be a measure space, H′ be a separable Hilbert space and H =
� ⊕
M H′ dµ. Let

A ∈ B(H) be decomposable. Note that the function m 7−→ tr(A(m)) is measurable as
a limit of measurable functions, see Lemma A.2.2. We say that A is locally compact,
A ∈ S∞

loc(H) if and only if A(m) ∈ S∞(H′) for almost all m ∈ M . We equip S∞
loc(H)

with the norm ∥A∥B(H) := ∥A∥∞. Let 1 ⩽ p < ∞. We say that A is locally Schatten-p,
symbolically A ∈ Sploc(H), if and only if its local Schatten-p norm

∥A∥pp,loc =
�
M

∥A(m)∥pp dµ < ∞.

If this is the case for p = 1, we say that A is locally trace-class and define the local trace
of A by

trloc(A) :=
�
M

tr(A(m)) dµ.

Theorem A.3.1. Let (M,µ) be a measure space and H =
� ⊕
M H′ dµ. Let A,B ∈ B(H) be

decomposable.

(a) Assume that AB and BA are locally trace class. Then, trloc(AB) = trloc(BA).

(b) The generalized Hölder’s inequality holds: Let 1 ⩽ p, q, r ⩽ ∞ such that p−1 + q−1 =
r−1 and assume that A ∈ Sploc(H) and B ∈ Sqloc(H). Then AB ∈ Srloc(H) and we have

∥AB∥r,loc ⩽ ∥A∥p,loc · ∥B∥q,loc.

Proof. (a) If AB is locally trace class, then tr(A(m)B(m)) < ∞ for almost all m ∈ M .
This makes the result follow from the one about standard traces.

(b) Apply (A.1.3) pointwise almost everywhere and the usual generalized Hölder’s in-
equality.

Analogously to the case of standard traces, for an interval I ⊆ R and a function
f : I −→ R, we define

S1
f,loc(H) := {A ∈ S1

loc(H) : A = A∗, σ(A) ⊆ I, f(A) ∈ S1
loc(H)}.

Theorem A.3.2 (Peierl’s inequality – local version). Let (M,µ) be a measure space and
H =

� ⊕
M H′ dµ. Let A =

� ⊕
M A(m) dµ ∈ S1

loc(H) and f : R −→ R convex. For a.e. m ∈ M
let {un(m)}n∈N be any ONB of H′. Then

�
M

∞∑
n=1

f
(
⟨un(m),A(m)un(m)⟩

)
dµ(m) ⩽ trloc(f(A)) (A.3.1)

and equality holds in (A.3.1) if and only if un(m) is an eigenvector of A(m) for all n ∈ N
and almost all m ∈ M . If f is strictly convex, then equality in (A.3.1) holds only in this
case.

Proof. Apply Theorem A.1.4 for a.e. m ∈ M and use monotonicity of the integral. If f is
strictly convex then equality holds only if equality holds pointwise for almost all m ∈ M .
By A.1.4, this is true only if un(m) is an eigenvector of A(m) for a.e. m ∈ M .
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Corollary A.3.3. Let f : R −→ R be convex. Then

Φf : S1
f,loc(H) −→ R

A 7−→ trloc(f(A))

is convex and Φf is strictly convex if and only if f is strictly convex.

Proof. Follows from the corresponding elementwise statement A.1.5.

Theorem A.3.4 (Klein’s inequality – local version). Let I ⊆ R be an interval and f : I −→
R convex. Let A,B ∈ S1

f,loc(H). Assume that the right-sided derivative f ′
+ is bounded on

σ(B) and that A−B ∈ S1
loc(H). Then

trloc(f(A) − f(B) − f ′
+(B)(A−B)) ⩾ 0. (A.3.2)

If f is strictly convex, then equality holds in (A.3.2) if and only if A = B.

Proof. Follows from the corresponding elementwise inequality A.1.7.

A.3.1 Application to periodic operators

Let us come back to the periodic operator A ∈ B(L2(Rd)) from the previous section.
Assume that it is locally trace-class. Following [PST09], we intend to compute its local
trace and claim that it is equal to tr(1CA). To do this, we need to fix an ONB of L2(Rd)
and see how it transforms under the Zac transform U from (A.2.15). Recall that the plane
wave basis gγ∗(x) := |C|−1/2·1C(x)eiγ∗x, where γ∗ ∈ Γ∗, forms an ONB of ran(1C) ⊆ L2(Rd).
For α ∈ Γ, consider

gαγ∗(x) := gγ∗(x− α) = |C|−1/2
1C+α(x)eiγ∗x

This defines an ONB {gαγ∗}γ∗∈Γ∗,α∈Γ of L2(Rd) because of the following. Suppose that
ε > 0, f ∈ L2(Rd) and for each α ∈ Γ, we find a function gα ∈ ran(1C+α) in the span
of the {gαγ∗}γ∗∈Γ∗ such that ∥1C+αf − fα∥ ⩽ ε

2|α| . If this is the case, we may define
g := ∑

α∈Γ fα. Then

∥f − g∥L2(Rd) ⩽
∑
α∈Γ

∥1C+α(f − fα)∥L2(Rd) ⩽
∑
α∈Γ

ε

2|α| ⩽ Cd · ε

The Zac transform of gαγ∗ is

(Ugαγ∗)θ(x) =
∑
η∈Γ

eiθ(x+η)gαγ∗(x+ η) = |C|−1/2
∑
η∈Γ

eiθ(x+η)
1C+α(x+ η)eiγ∗(x+η)

= |C|−1/2ei(θ+γ∗)(x+η)
1C+α(x+ η)

If x ∈ C, we obtain that Ugαγ∗ = eαγ∗ with (eαγ∗)θ(x) = |C|−1/2 · ei(θ+γ∗)(x+α). We obtain that

tr(A1C) =
∑

γ∗∈Γ∗,α∈Γ
⟨gαγ∗ , A1Cg

α
γ∗⟩L2(Rd)

Recall that 1Cg
α
γ∗ = δα,0g

0
γ∗ . This implies that

tr(A1C) =
∑
γ∗∈Γ∗

⟨g0
γ∗ , Ag0

γ∗⟩L2(Rd) = 1
|C∗|

�
C

dθ
∑
γ∗∈Γ∗

⟨(Ug0
γ∗)θ, Aθ(Ug0

γ∗)θ⟩L2(C)
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Note that, since Ug0
γ∗ = e0

γ∗ , and since (eγ∗)θ)γ∗∈Γ∗ ⊆ L2(C) forms an ONB, we obtain
that

tr(A1C) = 1
|C∗|

�
C

dθ tr(Aθ) = trloc(A)

All this is copied from [PST09]. It follows that for two periodic operators A,B, the
local trace is given by tr(1CAB). Should A and B have kernels KA(x, y) and KB(x, y),
then we obtain

trloc(AB) = tr(1CAB) =
�

C
dx

�
Rd

dy KA(x, y)KB(y, x).
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Appendix B

Differential Calculus for
W 2,∞-Functions

All we treat here is taken from [E10] and [S13].

B.1 Lebesgue’s Differentiation Theorem

Lemma B.1.1 (Vitali’s Covering lemma, [S13]). Let x1, . . . , xn ∈ Rd and r1, . . . , rn > 0
and let E ⊆ Rd be such that E ⊆

⋃n
i=1Bri(xi). Then, there is a disjoint subfamily

I ⊆ {1, . . . , n}, i.e. Bri(xi) ∩Brj (xj) = ∅ for all i, j ∈ I, i ̸= j and we have

E ⊆
⋃
i∈I

B3ri(xi)

Remark B.1.2. One can prove this in more generality, but the constant “3” does not
remain true. Often it is proved with 5 instead but possibly anything bigger than 3 would
do.

Proof. Without loss assume that r1 ⩾ r2 ⩾ · · · ⩾ rn ⩾ 0. Choose D1 := Br1(x1). Assume
recursively that D1, . . . , Dk−1 ∈ {Bri(xi)}ni=1 are already chosen. If

Ik :=
{

1 ⩽ j ⩽ n : Brj (xj) ∩
k−1⋃
i=1

Di = ∅
}

= ∅

then set m = k−1 and terminate. Otherwise, let ℓk := min Ik and choose Dk := Brℓk
(xℓk).

If Bri(xi) /∈ {Dj}mj=1 for some i ∈ {1, . . . , n}, then, by definition, there is j < i such that
Brj (xj) ∩ Bri(xi) ̸= ∅ (if not, then i would be the minimum of Ik for some k and Bri(xi)
would have been chosen). Since rj ⩾ ri, we get Bri(xi) ⊆ B3rj (xj) because for y ∈ Bri(xi)
and z ∈ Bri(xi) ∩Brj (xj) arbitrary, we have

|y − xj | ⩽ |y − xi| + |xi − z| + |z − xj | < ri + ri + rj ⩽ 3rj
Hence, we get Dk ∩Dℓ = ∅ for 1 ⩽ k, ℓ ⩽ m with k ̸= ℓ by construction and

n⋃
i=1

Bri(xi) ⊆
m⋃
j=1

B3rℓj
(xℓj )

Let f ∈ L1(Rd) and define the Hardy-Littlewood maximal function by

(Mf)(x) := sup
r>0

1
|Br(x)|

�
Br(x)

|f(y)| dy

Here, |B| denotes the Lebesgue measure of B ⊆ Rn.
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B.1. LEBESGUE’S DIFFERENTIATION THEOREM

Lemma B.1.3. If f ∈ L1(Rd), then Mf is lower semi-continuous and thus measurable.

Proof. We want to prove that for 0 < t < ∞; the set

Et := {x ∈ Rd : (Mf)(x) > t} = (Mf)−1((t,∞))

is open. For t ⩽ 0, Et = Rn so the claim there is clear. Let x ∈ Et. Then, by definition
of Mf , there is r > 0 such that

1
|Br(x)|

�
Br(x)

|f(y)| dy > t

Choose r′ > r such that still
1

|Br′(x)|

�
Br(x)

|f(y)| dy > t

Let x′ ∈ Rd with |x−x′| < r′ − r. Then Br(x) ⊆ Br′(x′) since for each y ∈ Br(x), we have

|y − x′| ⩽ |y − x| + |x′ − x| < r + r′ − r = r′

Hence, by the translational invariance of the Lebesgue measure, we get

t <
1

|Br′(x)|

�
Br(x)

|f(y)| dy = 1
|Br′(x′)|

�
Br(x)

|f(y)| dy

⩽
1

|Br′(x′)|

�
Br′ (x′)

|f(y)| dy ⩽ (Mf)(x′)

Hence, x′ ∈ Et and Br′−r(x) ⊆ Et.

Theorem B.1.4 (Weak type maximal inequality). If f ∈ L1(Rd), and t > 0, we have
that

|{x ∈ Rn : (Mf)(x) > t}| ⩽ 3n
t

· ∥f∥L1(Rn)

Proof. Let K ⊆ Et be compact and consider the trivial cover {Brx(x)}x∈Et of K. By
compactness, there is a finite subcover. By Vitali’s covering lemma B.1.1, there is a
disjoint subfamily {Bri(xi)}ki=1 so that K ⊆

⋃k
i=1B3ri(xi). For each x ∈ Et there is an

r > 0 such that
1

|Br(x)|

�
Br(x)

|f(y)| dy > t

In other words,

|Br(x)| ⩽ 1
t

�
Br(x)

|f(y)| dy

Hence,

|K| ⩽ 3n
k∑
i=1

|Bri(xi)| ⩽
3n
t

k∑
i=1

�
Bri (xi)

|f(y)| dy ⩽
3n
t

· ∥f∥L1(Rn)

By the inner regularity of the Lebesgue measure, we conclude that

|Et| = sup
K⊆Et

K compact

|K| ⩽ 3n
t

· ∥f∥L1(Rd)
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Theorem B.1.5 (Lebesgue’s Differentiation Theorem). Let 1 ⩽ p < ∞ and f ∈ Lploc(U),
where U ⊆ Rd is open. Then, for almost all x ∈ U , we have

lim sup
r↘0

 
Br(x)

|f(y) − f(x)|p dy = 0

Proof. Let g ∈ Cc(Rd). Then g is uniformly continuous. Hence, given ε > 0, there is δ > 0
such that |f(x) − f(y)| < ε1/p whenever |x− y| < δ. Fix x ∈ Rd and let r < δ. Then

1
|Br(x)|

�
Br(x)

|f(y) − f(x)|p dy < 1
|Br(x)|

�
Br(x)

dy · ε = ε

Hence,

lim sup
r↘0

 
Br(x)

|f(y) − f(x)|p dy = 0 (B.1.1)

Let f ∈ Lploc(U). By extending to all of Rd with 0, we may assume that f ∈ Lploc(Rd).
Without loss, assume that f ∈ Lp(Rd). If not, then for k ∈ N, the function fk = f1Bk(0)
is in Lp(Rd). Assume the result holds for fk except for a null set Ek ⊆ Rn. Then, it holds
for f on the complement of the null set ⋃k∈NEk. For, if x ∈ Rd \

⋃
k∈NEk, and r > 0 is

small, then there is k0 ∈ N with Br(x) ⊆ Bk0(0). Then, since x /∈ Ek0 , apply the result to
fk0 , since fk0 |Br(x) = f |Br(x). Now, for an arbitrary g ∈ Cc(Rd) and x ∈ Rd, use (B.1.1)
and convexity of t 7→ tp to get

lim sup
r↘0

 
Br(x)

|f(y) − f(x)|p dy ⩽ 2p−1 lim sup
r↘0

 
Br(x)

|g(y) − g(x)|p dy

+ 4p−1 lim sup
r↘0

 
Br(x)

|f(y) − g(y)|p dy

+ 4p−1|f(x) − g(x)|p

⩽ 4p−1 sup
r>0

 
Br(x)

|f(y) − g(y)|p + 4p−1|f(x) − g(x)|p

= 4p−1
[
M(|f − g|p)(x) + |f(x) − g(x)|p

]
Hence, if, for given ε > 0, we have

lim sup
r↘0

 
Br(x)

|f(y) − f(x)|p dy > ε

Then, M(|f − g|p)(x) > 22p−3ε or |f(x) − g(x)| > 22p−3ε. Now, using the Tshebyshev
inequality, we get

|Xε
1 | :=

∣∣∣{x ∈ Rd : |f(x) − g(x)|p > 22p−3ε
}∣∣∣ ⩽ 1

22p−3ε
· ∥f − g∥p

Lp(Rd)

and using the maximal inequality B.1.4 we obtain

|Xε
2 | :=

∣∣∣{x ∈ Rd : M(|f − g|p)(x) > 22p−3ε
}∣∣∣ ⩽ 3d

22p−3ε
· ∥f − g∥p

Lp(Rd)

Putting everything together, we see that

|Aε| :=
∣∣∣∣{x ∈ Rd : lim sup

r↘0

 
Br(x)

|f(y) − f(x)|p dy > ε

}∣∣∣∣ ⩽ |Xε
1 | + |Xε

2 |

⩽
3d + 1
22p−3ε

· ∥f − g∥p
Lp(Rd)
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B.2. TAYLOR EXPANSION

By density, we may choose a sequence (gn)n ⊆ Cc(Rd) with gn → f in Lp(Rd) as n → ∞.
It follows that Aε has zero measure for every ε > 0. Hence,

0 =
∣∣∣∣ ⋃
k∈N

A 1
k

∣∣∣∣ =
∣∣∣∣{x ∈ Rd : lim sup

r↘0

 
Br(x)

|f(y) − f(x)|p dy > 0
}∣∣∣∣

so that the claim holds for almost each x ∈ Rd.

B.2 Taylor Expansion

First, we prove the remark on [E10, p. 268] by using elements of the foregoing proof.

First, let u ∈ C1(Rd) and x ∈ Rd, r > 0. We claim that
 
Br(x)

|u(x) − u(y)| dy ⩽
1
d

�
Br(x)

|Du(y)|
|y − x|d−1 dy (B.2.1)

Proof. Fix w ∈ ∂B1(0) and let 0 < s < r. Then

|u(x+ sw) − u(x)| =
∣∣∣∣� s

0

d
dtu(x+ tw) dt

∣∣∣∣ =
∣∣∣∣� s

0
Du(x+ tw) · w dt

∣∣∣∣
⩽
� s

0
|Du(x+ tw)| dt

Hence,
�
∂B1(0)

|u(x+ sw) − u(x)| dS(w) ⩽
� s

0

�
∂B1(0)

|Du(x+ tw)| dS(w)dt

=
� s

0
td−1

�
∂B1(0)

· |Du(x+ tw)|
td−1 dS(w)dt

Letting y = x+ tw so that t = |x− y, we obtain that
�
∂B1(0)

|u(x+ sw) − u(x)| dS(w) ⩽
�
Bs(x)

|Du(y)|
|x− y|d−1 dy ⩽

�
Br(x)

|Du(y)|
|x− y|d−1 dy

On the other hand, multiplying the left hand side with sd−1 and integrating over [0, r], we
obtain

� r

0
sd−1

�
∂B1(0)

|u(x+ sw) − u(x)| dS(w)ds =
�
Br(x)

|u(y) − u(x)| dy

so that all in all, we get
�
Br(x)

|u(y) − u(x)| dy ⩽
rd

d

�
Br(x)

|Du(y)|
|x− y|d−1 dy

We are going to use this to prove a Morrey-type inequality: There is a constant C,
depending only on p and d such that for y ∈ Br(x), we have

|u(x) − u(y)| ⩽ Cr1−d/p

(�
B2r(x)

|Du(y)|p
)1/p

(B.2.2)
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Proof. Let x, y ∈ Rd, x ̸= y (otherwise there is nothing to prove) and call r := |x− y| > 0.
Then set W := Br(x) ∩Br(y). We start by noting that

|u(x) − u(y)| =
 
W

|u(x) − u(y) + u(z) − u(z)| dz

⩽
 
W

|u(x) − u(z)| dz +
 
W

|u(y) − u(z)| dz

Now, W ⊇ B r
2
(1

2(x + y)) so that |W | ⩾ 1
2d |Br(x)| by translational invariance. Hence,

applying (B.2.1) and Hölder, we obtain
 
W

|u(x) − u(z)| dz ⩽ 2d
 
Br(x)

|u(x) − u(z)| dz ⩽ 2d
d

�
Br(z)

|Du(z)|
|x− z|d−1 dz

⩽
2d
d

(�
Br(x)

|Du(z)|p dz
)1/p(�

Br(x)

1
|x− z|(d−1) p

p−1
dz
) p−1

p

An explicit calculation shows that

(�
Br(x)

1
|x− z|(d−1) p

p−1
dz
) p−1

p

= Cd,p · r1−d/p

To summarize, we have
 
W

|u(x) − u(z)| dz ⩽ Cr1−d/p

(�
Br(x)

|Du(z)| dz
)1/p

The same bound applies for y with Br(y) instead of Br(x). Now, note that Br(x)∪Br(y) ⊆
B2r(x). This implies that one may replace Br(x) (respectively Br(y)) in both estimates
by B2r(x) and we are done.

Next, we prove a variant of Theorem 5 on [E10, p. 280].

Theorem B.2.1. Assume that u ∈ W 2,p
loc (U) where U ⊆ Rd is open and d < p ⩽ ∞. Then

u is twice differentiable almost everywhere in U and its derivatives coincide with its weak
derivatives a.e.

Proof. First, assume that n < p < ∞. We note that the inequality (B.2.2) extends to all
u ∈ W 1,p(U) by interior approximation. Let x ∈ U and r > 0 small enough such that
Br(x) ⊆ U . For y ∈ Br(x), set

v(y) := u(y) − u(x) −Du(x)(y − x) − 1
2(y − x) ·D2u(x)(y − x) (B.2.3)

Note that v(x) = 0. Then, by (B.2.2), we get

|v(y)| = |v(y) − v(x)| ⩽ Cr1−d/p

(�
B2r(x)

|Dv(z)|p dz
)1/p

= Cr1−d/p

(�
B2r(x)

|Du(z) −Du(x) −D2u(x)(z − x)|p dz
)1/p
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B.3. WEAK DIFFERENTIAL CALCULUS IN Rd

For z ∈ B2r(x), let now ṽ(z) := Du(z) − Du(x) − D2u(x)(z − x). Again, ṽ(x) = 0. We
obtain by (B.2.2):

|ṽ(z)| = |ṽ(z) − ṽ(x)| ⩽ C(2r)1−d/p

(�
B4r(x)

|Dṽ(w)|p dw
)1/p

= Cr

( 
B4r(x)

|D2u(w) −D2u(x)|p
)1/p

Note that we incorporated r−d/p into the integral in cost of a constant. Inserting this
above, we get

|v(z)| ⩽ Cr

( 
B2r(x)

dz · Cr
 
B4r(x)

|D2u(w) −D2u(x)|p
)1/p

= Cr2
( 

B4r(x)
|D2u(w) −D2u(x)|p

)1/p

The last expression is o(r2) by Lebesgue’s differentiation theorem B.1.5, since |D2u| ∈
Lploc(U). This shows that u is twice differentiable at x and D2u(x) is the second derivative.
Now, it is easy to see that Du(x) is the first derivative. In the case p = ∞, note that
W 2,∞

loc (U) ⊆ W 2,p
loc (U) for all n < p ⩽ ∞. Thus, apply the reasoning above.

B.3 Weak Differential Calculus in Rd

Lemma B.3.1. Let v, w : R3 −→ R3 be differentiable a.e. Then

∇(v · w) = (v · ∇)w + (w · ∇)v + v ∧ curlw + w ∧ curl v a.e.

Proof. This is a tedious but straightforward computation. Let us call the components
v = ∑3

i=1 viei and w = ∑3
i=1wiei. The right-hand side is given by

w ∧ curl v + v ∧ curlw + (v · ∇)w + (w · ∇)v =

= w ∧

∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1

+ v ∧

∂2w3 − ∂3w2
∂3w1 − ∂1w3
∂1w2 − ∂2w1

+
3∑
i=1

vi∂iw +
3∑
i=1

wi∂iv

=

w2∂1v2 + w3∂1v3 + v2∂1w2 + v3∂1w3 + v1∂1w1 + w1∂1v1
w3∂2v3 + w1∂2v1 + v3∂2w3 + v1∂2w1 + v2∂2w2 + w2∂2v2
w1∂3v1 + w2∂3v2 + v1∂3w1 + v2∂3w2 + v3∂3w3 + w3∂3v3


=

w1∂1v1 + w2∂1v2 + w3∂1v3
w1∂2v1 + w2∂2v2 + w3∂2v3
w1∂3v1 + w2∂3v2 + w3∂3v3

+

v1∂1w1 + v2∂1w2 + v3∂1w3
v1∂2w1 + v2∂2w2 + v3∂2w3
v1∂3w1 + v2∂3w2 + v3∂3w3


=

∂1(v1w1 + v2w2 + v3w3)
∂2(v1w1 + v2w2 + v3w3)
∂3(v1w1 + v2w2 + v3w3)

 = ∇(v · w)

Proposition B.3.2 (Product rule for W 1,∞(Rd)). Let f ∈ W 1,∞(Rd) and g ∈ H1(Rd).
Then f · g ∈ H1(Rd) with weak derivative

∇(fg) = (∇f) · g + f · (∇g).
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Proof. Since f is weakly differentiable, for every v ∈ C∞
c (R3), we have

�
R3
g · ∇v dx = −

�
R3

(∇g) · v dx. (B.3.1)

By density, this extends to all v ∈ H1
0 (Rd) = H1(Rd). Now, since f ∈ W 1,∞(Rd), f is

almost everywhere classically differentiable and we have ∇(fv) = ∇f · v + f∇v almost
everywhere. Since v has compact support and f,∇f are bounded, we conclude that
fv ∈ H1(R3). Thus, fv is a valid test function in (B.3.1). Therefore, we obtain

−
�
Rd

(∇g) · fv dx =
�
Rd

g · ∇(fv) dx =
�
Rd

g · (∇f) · v dx+
�
Rd

g · f · (∇v) dx.

Thus,
�
Rd

fg · ∇v dx = −
�
Rd

(f · ∇g + ∇f · g) dx.

Hence, fg is weakly differentiable with ∇(fg) = f∇g+∇f ·g. Furthermore, since f,∇f ∈
L∞(Rd) and g,∇g ∈ L2(Rd), we have that fg,∇(fg) ∈ L2(Rd). Thus, fg ∈ H1(Rd).

Proposition B.3.3 (Chain rule for W 1,∞(Rd)). Let f ∈ W 1,∞(Rd) and g ∈ C1(R) such
that g′ ∈ L∞(R). Then g ◦ f ∈ W 1,∞(Rd) with weak derivative

∇(g ◦ f) = (g′ ◦ f) · ∇f.

Proof. Since g ∈ C1(R), for every t ∈ R, we have

g(t) = g(0) +
� t

0
g′(s) ds.

Denoting F := g ◦ f , it follows that for almost all x ∈ Rd:

|F (x)| ⩽ |g(0)| +
∣∣∣∣� f(x)

0
g′(s) ds

∣∣∣∣ ⩽ |g(0)| + ∥g′∥∞ · |f(x)| ⩽ |g(0)| + ∥g′∥∞ · ∥f∥∞

Hence, F ∈ L∞(Rd). Since f is classically differentiable almost everywhere, we obtain
∇F (x) = g′(f(x)) · ∇f(x) for a.e. x ∈ Rd by the classical chain rule. Then ∇F coincides
with the weak derivative of F a.e. Furthermore, |∇F (x)| ⩽ ∥g′∥∞ · ∥∇f∥∞ < ∞. Hence,
F ∈ W 1,∞(Rd).
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