
Relational Learning on Temporal

Knowledge Graphs
Zhen Han

Dissertation

an der Fakulität für Mathematik, Informatik, und Statistik

der Ludwig–Maximilians–Universität München

eingereicht von

Zhen Han

München, den Mai 19, 2022

Erstgutachter: Prof. Volker Tresp

Zweitgutachter: Prof. Dr. Sepp Hochreiter

Drittgutachter: Prof. Dr. Barbara Plank

Tag der mündlichen Prüfung: September 16, 2022

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne unerlaubte
Beihilfe angefertigt ist.

Han, Zhen
Name, Vorname

 München, Mai 16, 2022 Zhen Han
 Ort, Datum Unterschrift Doktorand/in

Formular 3.2

iv

Contents

Acknowledgement vii

Abstract viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Overview . 7

2 Background 9

2.1 Notation . 9

2.2 Knowledge Graphs . 10

2.2.1 Fundamentals of Knowledge Graphs 10

2.2.2 Relational Learning on Knowledge Graphs 12

2.3 Fundamentals of Temporal Knowledge Graphs 17

2.4 Relational Learning on Temporal KGs . 20

2.4.1 Temporal Encoding . 20

2.4.2 Temporal Knowledge Graph Models 24

2.4.3 Training Techniques and Evaluation Metrics 29

2.5 Learning Knowledge Graph Representations on Non-Euclidean Spaces . . . 32

2.5.1 Models of Non-Euclidean Spaces . 32

2.5.2 Relational Learning in Non-Euclidean Spaces 34

3 Explainable Subgraph Reasoning for Forecasting on Temporal Knowl-

edge Graphs 37

4 Learning Neural Ordinary Equations for Forecasting Future Links on

Temporal Knowledge Graphs 63

vi acknowledgement

5 Time-dependent Entity Embedding is not All You Need: A Re-Evaluation

of Temporal Knowledge Graph Completion Models under a Unified Frame-

work 77

6 DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for

Temporal Knowledge Graph Completion. 93

7 Conclusion 111

Acknowledgement

I would like to take this opportunity to thank the people who supported and motivated

me during my Ph.D. study, which is a joint program between the Ludwig Maximilian

University of Munich and Siemens AG.

First of all, I would like to express my deepest gratitude to my supervisor, Prof. Dr.

Volker Tresp, for his great support. Whenever I faced difficulties in my Ph.D. study, I

can always get helpful and friendly guidance from him. Volker gave me great freedom to

explore various research ideas and provided abundant resources to conduct the research.

I enjoy every discussion with Volker and have been motivated deeply. Without his help,

this thesis would not have come to such a good end. In addition, I am very honored that

Prof. Dr. Sepp Hochreiter and Prof. Dr. Barbara Plank agreed to be external examiners

of my thesis.

Besides, I would like to extend my gratitude to Dr. Yunpu Ma, who guided me at the

beginning of my Ph.D. study. He provided insightful comments and helpful discussions

and kept me on the right track in the research. I am also very grateful to my colleagues

Hang Li, Jindong Gu, Dr. Zhiliang, Dr. Rui Zhao, Dr. Marcel Hinderbrand, Yushan Liu.

I want to thank them for their advice and encouragement. Moreover, I would like to thank

my collaborators Peng Chen, Zifeng Ding, Gengyuan Zhang, and Ruotong Liao. Thank

you for your invaluable contribution to this thesis.

The study shown in the thesis was carried out at the Department of Artificial Intel-

ligence of Siemens Corporate Technology, which is headed by Dr. Micheal May. I would

like to thank him for providing me with the freedom and resources to realize my research

ideas.

Finally, I would like to thank my family, who accompanied me throughout my entire

Ph.D. study with ups and downs. Nobody was more important than you!

viii Abstract

Abstract

Over the last decade, there has been an increasing interest in relational machine learning

(RML), which studies methods for the statistical analysis of relational or graph-structured

data. Relational data arise naturally in many real-world applications, including social

networks, recommender systems, and computational finance. Such data can be represented

in the form of a graph consisting of nodes (entities) and labeled edges (relationships between

entities). While traditional machine learning techniques are based on feature vectors, RML

takes relations into account and permits inference among entities. Recently, performing

prediction and learning tasks on knowledge graphs has become a main topic in RML.

Knowledge graphs (KGs) are widely used resources for studying multi-relational data in

the form of a directed graph, where each labeled edge describes a factual statement, such

as (Munich, locatedIn, Germany).

Traditionally, knowledge graphs are considered to represent stationary relationships,

which do not change over time. In contrast, event-based multi-relational data exhibits

complex temporal dynamics in addition to its multi-relational nature. For example, the

political relationship between two countries would intensify because of trade fights; the

president of a country may change after an election. To represent the temporal aspect, tem-

poral knowledge graphs (tKGs) were introduced that store a temporal event as a quadruple

by extending the static triple with a timestamp describing when this event occurred, i.e.

(Barack Obama, visit, India, 2010-11-06). Thus, each edge in the graph has temporal

information associated with it and may recur or evolve over time.

Among various learning paradigms on KGs, knowledge representation learning (KRL),

also known as knowledge graph embedding, has achieved great success. KRL maps enti-

ties and relations into low-dimensional vector spaces while capturing semantic meanings.

However, KRL approaches have mostly been done for static KGs and lack the ability to

utilize rich temporal dynamics available on tKGs. In this thesis, we study state-of-the-art

representation learning techniques for temporal knowledge graphs that can capture tempo-

ral dependencies across entities in addition to their relational dependencies. We discover

x Abstract

representations for two inference tasks, i.e., tKG forecasting and completion. The former

is to forecast future events using historical observations up to the present time, while the

latter predicts missing links at observed timestamps. For tKG forecasting, we show how to

make the reasoning process interpretable while maintaining performance by employing a

sequential reasoning process over local subgraphs. Besides, we propose a continuous-depth

multi-relational graph neural network with a novel graph neural ordinary differential equa-

tion. It allows for learning continuous-time representations of tKGs, especially in cases

with observations in irregular time intervals, as encountered in online analysis. For tKG

completion, we systematically review multiple benchmark models. We thoroughly inves-

tigate the significance of the proposed temporal encoding technique in each model and

provide the first unified open-source framework, which gathers the implementations of

well-known tKG completion models. Finally, we discuss the power of geometric learning

and show that learning evolving entity representations in a product of Riemannian mani-

folds can better reflect geometric structures on tKGs and achieve better performances than

Euclidean embeddings while requiring significantly fewer model parameters.

Zusammenfassung

In den letzten zehn Jahren hat das Interesse am relationalen maschinellen Lernen (RML)

zugenommen, das Methoden zur statistischen Analyse relationaler oder graphenstrukturi-

erter Daten untersucht. Relationale Daten entstehen in vielen realen Anwendungen, ein-

schließlich soziale Netzwerke, Empfehlungssysteme, und Computational Finance. Solche

Daten können in Form eines Graphen dargestellt werden, der aus Knoten (Entitäten) und

beschrifteten Kanten (Beziehungen zwischen Entitäten) besteht. Während traditionelle

maschinelle Lerntechniken basieren auf Merkmalsvektoren, berücksichtigt RML Beziehun-

gen und erlaubt Inferenz zwischen Entitäten. Prognose und Lernen auf Wissensgraphen

sind zur Zeit zu Hauptthemen in RML geworden. Wissensgraphen sind weit verbreit-

ete Ressourcen zum Analysis multirelationaler Daten in Form eines gerichteten Graph,

bei dem jede beschriftete Kante eine Tatsachenaussage beschreibt, wie z.B. (München,

befindet sich in, Deutschland).

Traditionell werden Wissensgraphen als Darstellung stationärer Beziehungen, die sich

im Laufe der Zeit nicht ändern. Im Gegensatz dazu weisen ereignisbasierte multirelationale

Daten neben ihrer multirelationalen Natur auch eine komplexe zeitliche Dynamik auf. Zum

Beispiel, die politische Beziehung zwischen zwei Ländern kann sich beispielsweise aufgrund

vom Handelsstreit intensivieren. Ebenso kann sich der Präsident eines Landes nach einer

Wahl ändern. Zur Darstellung des temporalen Aspekt, wurden temporale Wissensgraphen

eingeführt, die ein zeitliches Ereignis als Quadrupel speichern, indem sie das statische Tripel

um einen Zeitstempel erweitern, der beschreibt, wann dieses Ereignis eingetreten ist, zum

Beispiel (Barack Obama, besucht, Indien, 06.11.2010). Somit ist jede Kante des Graphen

mit zeitlichen Informationen verknüpft und kann sich im Laufe der Zeit entwickeln.

Unter verschiedenen Lernparadigmen für Wissensgraphen hat das Knowledge Represen-

tation Learning (KRL), auch bekannt als Knowledge Graph Embedding, einen großen Er-

folg erzielt. KRL bildet Entitäten und Beziehungen in niedrigdimensionalen Vektorräumen

ab und erfasst dabei ihre semantischen Bedeutungen. Die meisten KRL-Ansätze wurden

jedoch für statische Wissensgraphen entwickelt und sind nicht in der Lage, die reichhaltige

xii Zusammenfassung

zeitliche Dynamik von temporalen Wissensgraphen zu nutzen. In dieser Arbeit unter-

suchen wir modernste Repräsentationslerntechniken für temporale Wissensgraphen, die

zusätzlich zu den relationalen Abhängigkeiten auch temporale Abhängigkeiten zwischen

Entitäten erfassen können. Wir lernen Repräsentationen für zwei Inferenzaufgaben, und

zwar temporale Wissensgraphen Vorhersage und Vervollständigung. Die vordere Aufgabe

vorhersagt zukünftiger Ereignisse anhand historischer Beobachtungen bis zur Gegenwart,

während die letzte Aufgabe fehlende Kanten zu bekannten Zeitpunkten prognostiziert. Für

die vordere Vorhersageaufgabe zeigen wir, wie der Schlussfolgerungsprozess interpretierbar

gemacht werden kann, ohne die Leistung zu beeinträchtigen, indem wir einen sequen-

tiellen Schlussfolgerungsprozess über lokale Teilgraphen vorschlagen. Außerdem schla-

gen wir ein multirelationales neuronales Netzwerk mit einer neuartigen gewöhnlichen Dif-

ferentialgleichung für Graphen vor. Es ermöglicht das Lernen von zeitkontinuierlichen

Repräsentationen von temporalen Wissensgraphen, insbesondere in Fällen mit Beobach-

tungen in unregelmäßigen Zeitintervallen, wie sie in der Online-Analyse vorkommen. Zur

Vervollständigung von temporalen Wissensgraphen machen wir eine systematische Liter-

aturrecherche mit mehrerer Benchmark-Modelle. Wir untersuchen gründlich den Beitrag

der vorgeschlagenen temporalen Kodierungstechnik in jedem Modell und stellen das erste

einheitliche Open-Source-Framework zur Verfügung, das die Implementierungen bekan-

nter temopralen Wissensgraphen Vervollständigungsmodelle zusammenfasst. Schließlich

erörtern wir die Leistungsfähigkeit des geometrischen Lernens und zeigen, dass das Lernen

von dynamischen Entitätsrepräsentationen in einem Produkt von Riemannschen Mannig-

faltigkeiten geometrische Strukturen von temporalen Wissensgraphen besser widerspiegeln

und bessere Leistungen als euklidische Einbettungen erzielen kann, während deutlich weniger

Modellparameter erforderlich sind.

List of Publications and Declaration

of Authorship

• Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. Explainable Subgraph Reason-

ing for Forecasting on Temporal Knowledge Graphs. In Proceedings of the Inter-

national Conference on Learning Representations (ICLR), Virtual Conference, May

2021. Openreview.net: pdf?id=pGIHq1m7PU.

I conceived of the original research contributions. My co-author Peng Chen and

I performed most implementations and evaluations. I wrote the initial draft of the

manuscript and did most of the subsequent corrections. I regularly discussed this work

with the co-author, Yunpu Ma, and my supervisor, Volker Tresp, who also assisted

me in improving the manuscript.

This published work serves as Chapter 3.

• Zhen Han, Zifeng Ding, Yunpu Ma, Jiayu Gu, Volker Tresp. Learning Neural Or-

dinary Equations for Forecasting Future Links on Temporal Knowledge Graphs. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), Online and in Dominican Republic, Nov. 2021. DOI: 10.18653/v1/2021.emnlp-

main.658.

My co-author Yunpu Ma and I conceived of the original research contributions and

designed the model architecture. Zifeng Ding performed most of the implementations

and experiments, with smaller contributions by Jiayu Gu. Zifeng Ding and I de-

signed the experimental protocol and analyzed the results. Zifeng Ding and I wrote

the manuscript, and all authors revised it. I regularly discussed this work with my

supervisor Volker Tresp.

This published work serves as Chapter 4.

xiv List of Publications and Declaration of Authorship

• Zhen Han, Gengyuan Zhang, Yunpu Ma, Volker Tresp. Time-dependent Entity Em-

bedding is not All You Need: A Re-Evaluation of Temporal Knowledge Graph Com-

pletion Models under a Unified Framework. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP), Online and in Do-

minican Republic, Nov. 2021. DOI: 10.18653/v1/2021c.emnlp-main.639.

I conceived of the original research contributions. My co-author Gengyuan Zhang and

I performed most implementations and evaluations. I wrote the initial draft of the

manuscript and did most of the subsequent corrections. I regularly discussed this work

with the co-author, Yunpu Ma, and my supervisor, Volker Tresp, who also assisted

me in improving the manuscript.

This published work serves as Chapter 5.

• Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. DyERNIE: Dynamic Evolution of

Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), Virtual Conference, Nov 2020. DOI: 10.18653/v1/2020.emnlp-main.593.

Yunpu and I conceived of the original research contributions. I performed all imple-

mentations and evaluations. I wrote the initial draft of the manuscript and did most

of the subsequent corrections. Yunpu Ma, Peng Chen, and my supervisor, Volker

Tresp assisted me in improving the manuscript. I regularly discussed this work with

the co-author, Yunpu Ma, and my supervisor, Volker Tresp.

This published work serves as Chapter 6.

Other Publications

• Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann, Volker Tresp. Graph

Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs. In Pro-

ceedings of the Conference on Automated Knowledge Base Construction (AKBC),

Virtual Conference, June 2020. arXiv:2003.13432.

• Zhen Han, Ruotong Liao, Beiyan Liu, Yao Zhang, Zifeng Ding, Heinz Köppl, Hinrich

Schütze, Volker Tresp. Enhanced Temporal Knowledge Embeddings with Contextu-

alized Language Representations. Under review at the Advances in Neural Informa-

tion Processing Systems (NeurIPS), 2022. arXiv:2203.09590.

List of Publications and Declaration of Authorship xv

• Jin Guo, Zhen Han, Zhou Su, Jiliang Li, Volker Tresp, Yuyi Wang. Continuous Tem-

poral Graph Networks for event-based graph data. Under review at 30th ACM In-

ternational Conference on Information and Knowledge Management (CIKM), 2022.

• Ronggui Fu, Zhao Meng, Zhen Han, Zifeng Ding, Yunpu Ma, Matthias Schubert,

Volker Tresp, Roger Wattenhofer. TempCaps: A Capsule Network-based Embedding

Model for Temporal Knowledge Graph Completion. In Proceedings of the workshop

on Structured Prediction for NLP at Annual Meeting of the Association for Compu-

tational Linguistics (ACL), 2022.

• Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, Kun He. TimeTraveler: Rein-

forcement Learning for Temporal Knowledge Graph Forecasting. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing (EMNLP), On-

line and Dominican Republic, Nov. 2021. DOI: 10.18653/v1/2021.emnlp-main.655.

• Yue Feng, Zhen Han, Mingming Sun, Ping Li. Multi-Hop Open-Domain Question

Answering over Structured and Unstructured Knowledge. In Findings of Annual

Conference of the North American Chapter of the Association for Computational

Linguistics (NAACL), 2022.

xvi List of Publications and Declaration of Authorship

Chapter 1

Introduction

1.1 Motivation

Human beings instinctively model their surrounding environment in order to understand

it and take actions to maximize the chance of achieving their goals. Artificial Intelligence

(AI) aims to develop intelligent agents that mimic the ability of human beings. In AI

research, machine learning (ML) has found the most interest in achieving these goals over

the past decades and therefore stays at the core of modern AI among different techni-

cal fields [62]. Machine Learning addresses problems in a heavily data-driven fashion,

where it models complex systems by searching through prefabricated hypothesis spaces.

Specifically, traditional machine learning algorithms learn a mapping from an input fea-

ture vector that represents an object with numeric or categorical attributes to an output

prediction, which could be class labels or regression scores [65]. However, large quantities

of data often exhibit complex structures and inter-dependencies that cannot be captured

by feature vectors. For example, billions of users view, purchase, and rate products on

online shopping stores. Users are not independent and may build friendships as well as

share favorite items. Thus, there is a need for an intuitive and concise modeling scheme

to model complex systems with relations. A prominent solution is graphs that represent

the system’s components as nodes and the relations between nodes as edges. Graphs

naturally appear in biomedical interactions (protein-protein interaction) and user-item in-

teractions. Relational (machine) learning studies methods for the statistical analysis of

relational graph-structured data [65]. While traditional machine learning techniques are

solely based on feature vectors, relational learning takes relations into account that pro-

vide valuable information and permits inference among entities. An object’s representation

in relational learning contains information about its relationships to other objects. The

2 1. Introduction

canonical tasks of relational learning include link prediction and node and graph classi-

fication, which arise in many highly relevant real-world scenarios, such as recommender

systems and social network analysis.

Knowledge graphs (KGs) are an intriguing variant of graphs to deal with multi-relational

factual data. A knowledge graph consists of a collection of triples (s, p, o), where s (sub-

ject) and o (object) correspond to nodes, each labeled edge between entities describes

a factual statement, such as (Munich, locatedIn, Germany). In recent decades, a large

amount of large-scale KGs has emerged. For example, YAGO [81] is a semantic knowledge

graph with one million entities and five million facts extracted from Wikipedia. It contains

general knowledge about individuals, such as persons, organizations, and products, with

their semantic relationships and helps build the Watson cognitive platform [22]. Similarly,

Freebase [10] is a community-oriented knowledge graph for general purpose and mainly

composed of its community members and merged into Wikidata [92] in 2016. Besides,

Himmelstein and Baranzini [41] and Walsh et al. [93] proposed biomedical knowledge

graphs, i.e., Hetionet and BioKG, to model the interactions between biomedical entities

and their effects on the biomedical system, providing direct and precise biomedical knowl-

edge. Moreover, Rotmensch et al. [75] and Gyrard et al. [28] learn health knowledge graphs

from electronic medical records for clinical decision support in medicine and self-diagnostic

symptom checker.

Common knowledge graphs epresent stationary relationships, which do not change over

time. However, the recent availability of event-based multi-relational data exhibits complex

temporal dynamics in addition to its multi-relational nature. For example, the political

relationship between two countries would intensify because of trade fights; the president

of a country may change after an election. To declaratively represent the temporal as-

pect, temporal knowledge graphs (tKGs) were introduced that store a temporal event as

a quadruple by extending the static triple with a timestamp describing when this event

occurred, i.e. (Barack Obama, visit, India, 2010-11-06). Thus, each edge in the graph has

temporal information associated with it and may recur over time. The integrated crisis

early warning system (ICEWS) [12] and the global database of events, language, and tone

(GDELT) [57] have established themselves in the research community as benchmarks of

temporal knowledge graphs that contain events across the globe connected people, organi-

zations, and news sources.

Early research on knowledge graphs focuses on manually curated or automatically

mined rules to infer new knowledge from observed facts. Such symbolic approaches suf-

fer from scalability and generalizability issues. In recent years, knowledge representation

learning (KRL), also known as knowledge graph embedding (KGE), has gained great in-

1.2 Contributions 3

terest success. KRL maps entities and relations into low-dimensional vector spaces while

capturing their semantic meanings and is feasible to generalize on large-scale knowledge

graphs with millions of entities. However, KRL approaches have mostly been done for

static KGs and cannot utilize rich temporal dynamics available on tKGs. In this thesis,

we study state-of-the-art relational representation learning techniques for temporal knowl-

edge graphs that can capture temporal dependencies across entities in addition to their

relational dependencies. Specifically, we investigate relational learning on tKGs for link

prediction with two settings, i.e., tKG forecasting and tKG completion. The tKG forecast-

ing task is to predict links in the future, given all the observations up to the present time.

Forecasting on tKGs can help many downstream applications such as decision support in

personalized health care and finance. In comparison, the tKG completion task is designed

to the inherent incompleteness of tKGs in the sense that some interactions between en-

tities are missing. Similar to the smoothing problem in traditional time series analysis

[63], the tKG completion task requires estimating missing links at past timestamps, given

all the evidence up to the current time. We developed several approaches for both tKG

forecasting and tKG completion in terms of explainability, continuous-time modeling, and

non-Euclidean embedding. Moreover, we systematically studied existing temporal knowl-

edge graph completion models and investigated the contribution of the respective temporal

encoding module.

1.2 Contributions

This section provides an overview of the contributions of included publications in this thesis

and positions them within the research area.

The first part of this thesis is concerned with the temporal knowledge graph forecasting

task, which predicts links in the future given all the observations up to the present time.

Forecasting on tKGs can help many downstream applications such as decision support in

personalized health care and finance. The use cases often require the predictions made

by the learning models to be interpretable, such that users can understand and trust the

predictions. However, existing approaches always operate in a black-box fashion and can-

not clearly show which evidence contributes to a prediction, making them less suitable

for many real-world applications. In this context, we have developed the first explainable

reasoning framework for forecasting future links on tKGs by employing a sequential rea-

soning process over local subgraphs. This part is covered in Chapter 3. Given a query in

the form of (subject, predicate, ?, timestamp), the proposed model starts from the query

4 1. Introduction

subject and iteratively samples relevant edges from the given tKG to construct a query-

dependent subgraph. After several rounds of expansion and pruning, the missing object is

predicted from entities in the subgraph. To capture the temporal aspect of tKGs, we have

proposed a temporal relational graph attention (TRGA) mechanism, which poses temporal

constraints on message passing to preserve the causal nature of the temporal data, and

learn time-dependent entity embedding. Specifically, the entity embedding concatenates a

stationary entity embedding and a functional time encoding. The temporal dynamics are

then modeled by the interactions between the functional time encoding and entity features

as well as underlying topological structures of tKGs. To understand the contribution of

the time embedding, we replace the time-dependent part from entity representations with

static embedding, resulting in significant degradation of the model’s performance. Com-

pared to existing tKG models, the proposed model has the following advantages: 1) The

extracted subgraph can visualize the reasoning process and provide an interpretable graph-

ical explanation to emphasize important evidence supporting the prediction. A survey with

53 respondents demonstrates the extracted evidence is aligned with human understanding.

2) The dynamical pruning procedure enables the model to reason on large-scale tKGs with

millions of edges. 3) Extensive experiments on benchmark datasets of tKG forecasting

show that our method outperforms state-of-the-art approaches by a large margin while

being more interpretable.

Preserving the continuous-time nature of temporal knowledge graphs is considered an-

other major challenge in the community. tKG forecasting approaches mostly model graph

dynamics in a discrete-time domain, and thus, cannot model observations in irregular time

intervals, which convey essential information for analyzing dynamics on tKGs, e.g., the

dwelling time of a user on a website becomes shorter, indicating that the user’s interest in

the website decreases. To this end, we have proposed a continuous-depth multi-relational

graph neural network in Chapter 4, which utilizes a novel graph neural ordinary differen-

tial equation (ODE) to encode the continuous dynamics on tKGs. Specifically, we integrate

the hidden representations over time using an ODE solver and output continuous-time

representations of each entity. Unlike many existing tKG models that learn the graph dy-

namics by employing discrete recurrent model structures, our model lets the time domain

coincide with the depth of the graph neural network and takes advantage of neural ODE

to steer the latent entity features between two timestamps smoothly. Thus, the model is

able to compute the probability of an event at an arbitrary timestamp, which considerably

enhances the flexibility of prediction. Additionally, we have proposed a graph transition

layer to let the model pay more attention to edge formation and dissolution of tKGs, which

leads to a significant improvement in the model’s performance. Through experiments on

1.2 Contributions 5

five benchmark tKG forecasting datasets, it is shown that the proposed model delivered

significantly better performance than baseline methods while requiring considerably less

training cost.

Similar to static KGs, tKGs usually suffer from incompleteness in the sense that they do

not include all events related to their entities and relations. To this end, the second part of

this thesis is concerned with the temporal knowledge graph completion task, which requires

estimating missing links in the past given all the evidence up to the current time. Chapter

5 systematically studied existing temporal knowledge graph completion models and classi-

fied them into two classes based on how they model the dynamics of tKGs, i.e., timestamp

embedding (TE) approaches and time-dependent entity embedding (TEE) approaches. As

a highlight contribution to the community, we empirically found out that TE approaches

perform better on sparse tKGs, which is in contrast to the results in prior studies, and

reveal the weakness of TEE approaches. Additionally, introducing new temporal embed-

ding approaches always accompanied new training strategies. Although ablation studies

were provided, the significance of the proposed temporal embedding was not thoroughly

investigated. To foster further research, we have performed an extensive benchmark study

of existing approaches and provided the first unified open-source framework. This frame-

work gathers well-known tKG completion models and enables an insightful assessment for

future research on the tKG completion task.

As the last contribution, we studied the influence of the underlying geometry on em-

bedding temporal multi-relational data and introduced non-Euclidean temporal knowledge

embedding in Chapter 6. Many entities of multi-relational data induce geometric struc-

tures. For example, organizations, e.g., public sectors, usually have a hierarchical struc-

ture, where the number of departments grows exponentially with their distance to the root

(headquarter). Embedding methods in Euclidean space have limitations and suffer from

significant distortion when representing large-scale hierarchical or cyclical-structured data.

To this end, geometric learning has been exploited in recent knowledge graph embedding

models. As a result, hierarchical data, i.e., trees, can be efficiently modeled in a two-

dimensional hyperbolic disc since the hyperbolic area grow exponentially with its radius.

However, existing non-Euclidean embedding approaches for KGs lack the ability to capture

temporal dynamics on tKGs. The difficulty with representing the evolution of tKGs lies

in finding a way to integrate temporal information into the non-Euclidean representations

of entities. To address this challenge, we have proposed a non-Euclidean representation

learning model named DyERNIE that characterizes the time-dependent representation of

each entity as movements on manifolds. For each entity, we define an initial embedding

on manifolds and a velocity vector residing in the tangent space of the initial embedding

6 1. Introduction

to generate a temporal representation at each timestamp. In particular, the initial em-

bedding captures the stationary structural dependencies across facts, while the velocity

vectors model the time-varying properties of the entity. Moreover, most graph-structured

data has a wide variety of inherent geometric structures, e.g., partially tree-like and par-

tially cyclical. Nevertheless, existing non-Euclidean KG embedding approaches model the

latent structures in a single geometry with a constant curvature, limiting the flexibility

of the model to match the hypothetical intrinsic manifold. In comparison, our proposed

method learns evolving entity representations in a product of Riemannian manifolds to

better reflect a wide variety of geometric structures on tKGs. To better capture a broad

range of structures in temporal KGs, we show how the product space can be approximately

identified from sectional curvatures of temporal KGs, e.g., how to choose the dimensionality

of component spaces and their curvatures. To understand the contribution of the prod-

uct space of Riemannian manifolds (DyERNIE-Prod), we compare the proposed model

with its Euclidean counterpart (DyERNIE-Euclid) and the variant in a manifold with a

constant curvature (DyERNIE-Sgl). Extensive experiments conclude that both DyERNIE-

Prod and DyERNIE-Sgl require five times fewer embedding dimensions to achieve similar

performance as DyERNIE-Euclid’s, demonstrating the merits of temporal non-Euclidean

embeddings. Besides, we observed that DyERNIE-Prod generally performs better than

DyERNIE-Sgl on all three tKG completion datasets. To conclude, DyERNIE is the first

method that explores the usage of the temporal evolution of geometric embedding and

opens a research direction for studying geometric embedding on temporal relational data.

In summary, this thesis is dedicated to relational learning on temporal knowledge graphs

and proposes several temporal embedding approaches in terms of different aspects, i.e.,

explainability, continuous-time modeling, and geometric learning. The proposed

approaches can potentially serve a variety of applications, e.g., time-aware recommender

systems, which take into account the evolving nature of users and temporal popularity of

items, and temporal question answering. To contribute towards reproducibility as well as

providing usable research artifacts to the community, we provide openly accessible imple-

mentations of all presented works . Overall, we believe the works would stimulate progress

in relational learning on temporal knowledge graphs, which has gained increasing attention

in recent years.

1.3 Overview 7

1.3 Overview

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of the

broader research area of relational learning on (temporal) knowledge graphs. It reviews

existing work and lays the foundations for the techniques used in the remainder of this

thesis. Concretely, we detail the notations used in this work in Section 2.1. In Section

2.2 we introduce knowledge graph fundamentals and review benchmark relational learning

techniques on KGs. Section 2.3 and 2.4 introduce temporal knowledge graphs, two link

prediction tasks on tKGs, and approaches for learning temporal representations on tKGs.

In Section 2.5 we introduce non-Euclidean embedding space and review representation

learning models that embed knowledge graphs in non-Euclidean spaces.

Chapters 3 and 4 contain our published work on the tKG forecasting task. Specifically,

Chapter 3 presents a subgraph reasoning approach for explainable forecasting on tKGs [31].

Chapter 4 introduces a continuous-depth multi-relational graph neural network for learning

continuous-time representations of tKGs [32]. Chapters 5 and 6 present our publications

on the tKG completion task. In particular, Chapter 5 provides a systematical study [35]

of existing temporal knowledge graph completion models to analyze the effectiveness of

different temporal encoding modules. Chapter 6 introduces a novel tKG completion model

[30] that learns evolving entity representations in a product of Riemannian manifolds. We

conclude in Chapter 7 and discuss directions for future works.

8 1. Introduction

Chapter 2

Background

In this chapter, we introduce the fundamentals of the thesis in greater detail than a single

paper allows. In addition, we review existing works to demonstrate the thesis’ contributions

better.

2.1 Notation

This section first defines the mathematical notation that we use throughout this chapter,

which is mostly consistent with the individual publications in the other chapters.

Sets are denoted by calligraphic letters, e.g., the vertex set of a graph is given by V and

the edge set by E . Scalars and elements of sets are given by lowercase letters, e.g., v ∈ V .

Vectors are denoted by bold lowercase letters x with elements xi. By R we denote real

numbers, and Rn indicates n-dimensional real space. If not noted otherwise, we assume

each variable to be real. Matrices are represented by bold uppercase letters X, where Xij

denotes the entry in the i-th row and j-th column.

We denote the inner product between vectors x,y ∈ Rd by x · y, which is equivalent

to xTy. xT denotes the transpose of x. By x||y ∈ Rd+d′ we denote the concatenation of

the column vectors x ∈ Rd and y ∈ Rd′ . Moreover, ||x||p denotes the p-norm of x given

by ||x||p =
(∑d

i=1 |xi|p
) 1

p
. In particular, ||x||2 denotes the Euclidean norm of x. By � we

denote the Hadamard product, i.e., the elementwise multiplication.

For some interaction models in Section 2.5, we need basic notions of non-Euclidean

geometries, particularly the hyperbolic geometry and the hypersphere space. In [88], the

vector addition ⊕K , exponential map expKx (·) at x, logarithmic map logKx (·) at x, matrix-

vector multiplication ⊗K , and distance dK are defined in the non-Euclidean geometry

10 2. Background

using:

x⊕K y =
(1− 2K 〈x,y〉2 −K||y||22)x + (1 +K||x||22)y

1− 2K 〈x,y〉2 +K2||x||22||y||22
(2.1)

expKx (v) = x⊕ (tanK(

√
|K|λKx ||v||2

2
)

v√
K||v||2

) (2.2)

logKx (v) =
2√
|K|λKx

tan−1K (
√
|K||| − x⊕K v||2)

−x⊕K v

||x⊕K v||2
(2.3)

M⊗K x = expK0 (M logK0 (x)) (2.4)

dMK
(x,y) =

2√
|K|

tan−1K (
√
|K||| − x⊕K y||2) (2.5)

, where K denotes the curvature of the geometry, tanK = tan if K > 0 and tanK = tanh

if K < 0.

2.2 Knowledge Graphs

There has long been the idea of organizing the world’s knowledge in a graphical format.

Richens [74] developed the semantic network in the 1950s to represent semantic relations

between concepts in a network for machine translation of natural languages. Other re-

searchers, such as Quillian and Collins, further contribute to the semantic network and

apply it in different projects. The term knowledge graph itself was coined in the 1970s to

discuss how to build modular instructional systems for courses [79]. Later, the distinction

between knowledge graphs and semantic networks was diluted. In 2012, Google presented

the Google Knowledge Graph [80] that achieved great success in enhancing the Google

search engine. After that, the term KG gained tremendous attention. In this section, we

provide the fundamentals of knowledge graphs and the relational learning techniques on

KGs. This section is not meant to be a survey but rather to introduce important concepts,

which will be extended for temporal knowledge graphs in later sections.

2.2.1 Fundamentals of Knowledge Graphs

A knowledge graph is a directed graph with labeled edges, where each edge corresponds to

a semantic fact. In this work, we focus on KGs with the following definition:

2.2 Knowledge Graphs 11

Figure 2.1: A fragment of a semantic knowledge graph (TBD).

Definition 1 (Knowledge Graph). Let E and R represent a finite set of entities and

relations, respectively. An entity in E may correspond to an instance or a class. A KG is

given by KG ⊂ E × R × E, which is a collection of semantic facts written as triples. A

triple q = (es, p, eo) represents a labeled edge between a subject entity es ∈ E and an object

entity eo ∈ E, where p ∈ R denotes the edge type (relation).

As specified in the above definition, the collection of triples is represented as a directed

multi-relational graph. The entities correspond to nodes, and directed edges represent the

relations between entities, where a subject entity is the source node of a directed edge and

the object entity the target node. For example, we can encode that Munich is located in

Germany as a triple (Munich, located in, Germany) with the subject entity Munich, the

relation located in, and the object entity Germany. Note that a knowledge graph may

contain multiple edges with different relation types between two entities. Fig. 2.1 shows a

small fragment of a KG, including the fact mentioned above.

Large KGs are constructed either manually by the crowd, e.g., Wikidata [92] and Free-

base [10], or automatically using information extraction methods, e.g., DBpedia [2] and

NELL [14]. However, no matter how a KG is built, it usually suffers from incompleteness

in the sense that it does not contain all golden facts but only a subset. Thus, many rela-

tional learning approaches are proposed to predict missing links based on observed facts,

also known as KG completion.

Definition 2 (Knowledge Graph Completion) Let F represent the set of all quadruples that

are facts, i.e., true triples. The knowledge graph completion is the problem of inferring F
based on a set of observed facts O ⊂ F . Specifically, the task of KG completion is to predict

entities e ∈ E given either a subject-relation-pair (es, p) ∈ E × R (object prediction) or a

relation-object-pair (p, eo) ∈ E ×R (subject prediction).

12 2. Background

Knowledge graph completion is commonly framed as a ranking task. Taking the object

prediction as an example, the relation learning algorithms consider all entities in E and

learn a score function φ : E × P × E → R. The score function assigns a score to each

triple t, which indicates the plausibility that t corresponds to a fact. Thus, the proper

object can be inferred by ranking the scores of the triple {(es, p, eoi), eoi ∈ E} that consist

of candidate entities and the given subject-predicate pair. As a real example, we consider

finding the citizenship of Angela Merkel, i.e., the task (Angela Merkel, citizen of, ?). We

would expect from relational learning model to score the triple (Angela Merkel, citizen

of, Germany) higher than others such as (Angela Merkel, citizen of, Schleswig-Holstein).

Besides extending existing KGs, a plethora of AI tasks such as recommendation [40] and

question answering [82] can be framed as predicting links in a KG.

A common practice in relational learning on knowledge graphs is to add inverse rela-

tions. For any relation p ∈ R, we denote with p−1 the corresponding inverse relation, i.e.,

(es, p, eo) is true ⇐⇒ (eo, p
−1, es) is true. Adding inverse triples doubles the number

of relations and triples and allow learning two separate representations for each original

relation, which shows a beneficial impact in recent publications [51, 26].

2.2.2 Relational Learning on Knowledge Graphs

This section provides an overview of relational learning methods of knowledge graphs.

Specifically, we focus on representation learning approaches in this thesis, which has

become the dominant paradigm for relational learning on KGs over the past years. Rep-

resentation learning aims to learn compact and numerical representations of the data that

contains useful information, such as structural properties, for training classifiers or other

predictors [6]. An embedding is a low-dimensional, learnable continuous vector represen-

tation and can be trained from scratch via backpropagation. Thus, learning embedding

does not require any features and can be applied broadly in various settings. The problem

of learning embeddings of entities E and relations R can be formulated as follows:

Definition 3 (Embedding of Entities and Relations). Given a knowledge graph KG =

(V , E ,O), the problem of learning entity embeddings and relation embeddings is concerned

with learning a mapping that provides a vector representation e ∈ Rd and p ∈ Rd for each

entity e ∈ E and relation p ∈ R, respectively, where d� |E|.

Overall, the KG representation learning approaches consist of an encoder that learns

entity and relation representations and a decoder, which passes these representations to a

2.2 Knowledge Graphs 13

score function to score triples. Usually, the representations of entities and relations are ini-

tialized randomly and optimized during training. As a preparation for the following chap-

ters, we review tensor decomposition techniques, translation-based embedding models, and

relational graph neural networks, which are essential representation learning approaches

and play an important role in our published work.

Tensor Decomposition

Figure 2.2: A visualization of the low-rank tensor decomposition performed by RESCAL

(depiction based on a figure in [39]).

A knowledge graph can be represented as a binary three-way tensor X ∈ {0, 1}Ne×Np×Ne ,

where each entry indicates the truth (1) or falseness (0) of a triple. The main idea of tensor

decomposition is to compute a low-rank decomposition of this tensor that can well capture

the global patterns in the knowledge graph. One of the first tensor factorization approaches

is Canonical Polyadic (CP) decomposition, proposed in 1927 [42]. When applied to KGs,

CP learns one embedding for each relation p ∈ R and two embeddings for each entity

e ∈ E . One captures the entity’s behavior when being the subject of a triple, and one

captures the entity’s behavior when being the object of a triple. However, CP learns the

two embeddings of each entity independently of each other, leading to poor performance

on KG completion [86].

In contrast to CP, the RESCAL model [66] associates each entity e ∈ E with a single

embedding vector e ∈ Rd no matter at what position of a triple they appear. As shown in

Figure 2.2, RESCAL employs a matrix R ∈ Rd×d for each relation p ∈ R and computes a

bi-linear form induced by the relation matrix with a subject entity es ∈ E and an object

entity eo ∈ E as follows,

φRESCAL(es, p, eo) = eTs Reo (2.6)

14 2. Background

Hence, the latent dimension of relation embeddings is quadratic to the dimensionality

of entity embeddings, such that RESCAL inherently inclines to overfit. DistMult [101]

addressed this problem by constraining the embedding matrices of relations to be diagonal

and achieved great performance. However, DistMult cannot model asymmetric relations as

the score function of DistMult is symmetric. SimplE [51] offers a solution to this limitation

by presenting a simple enhancement of CP decomposition. As mentioned previously, CP

generally performs poorly on KG completion as it learns two independent embeddings

ei,s, ei,o for each entity ei ∈ E , whereas they are tied in fact. SimplE allows these two

embeddings of each entity to be learned dependently by taking advantage of the inverse

relations. Specifically, SimplE considers two vectors p,p−1 ∈ Rd for each relation p ∈ R,

which leads to

φSimplE(ei, p, ej) =
1

2

(
(ei,s � p) · ej,o + (ej,s � p−1) · ei,o

)
(2.7)

By addressing the independence of the entity vectors using the inverse relations, SimplE

achieves superior performance on the KG completion task despite its simplicity.

Translation-based Embedding Models

Another line of work is translation-based approaches that define additive functions over

embeddings. Bordes et al. [11] proposed the first translation-based model, i.e., TransE,

which projects both entities and relations into the same vector space and interprets relations

as translations between subject entity embedding and object entity embedding. In other

words, if (es, p, eo) holds, the embedding of the object entity eo should be close to the

embedding of the subject entity es plus the embedding of the relationship p as follows,

fTransE(es, p, eo) = d2(es + p, eo), (2.8)

where es ∈ Rd and eo ∈ Rd are embedding vector for es and eo, respectively, p denotes

the embedding vector of the predicate p, d(·) is the Euclidean distance function. Note

that fTransE(es, p, eo) is expected to be lower for a golden triple and higher for a invalid

triple, which is different to a score function φ(·) that is lower for a invalid triple and

higher for a golden triple. To distinguish them, we use f(·) to denote the interaction

function of translation-based models, e.g., TransE. The motivation behind the translation-

based modeling is that relation between entity pairs manifests a common vector offset,

such as “man is to woman as king is to queen”. However, TransE is not able to deal

with symmetric as well as one-to-many/many-to-one/many-to-many relations. In other

words, the relations cannot be well parameterized if there are multiple relations between

2.2 Knowledge Graphs 15

two entities. To this end, Wang et al. [94] proposed TransH that associates each entity

with distributed representations when involved in different relations. Specifically, if there

is a relation p between subject entity es and object entity eo, the embedding of es and

eo are first projected to a relation-specific hyperplane wp (the normal vector), and then

connected by a translation vector dp on the hyperplane as follows,

fTransH(es, p, eo) = ||(es −wT
p eswp) + dp − (eo −wT

p eowp))||2. (2.9)

Thus, TransH enables different roles of an entity in different relations by introducing

relation-specific hyperplanes.

Graph Neural Network

Besides traditional graph embedding models that employ a simple embedding lookup, sub-

stantial efforts have been devoted to applying deep learning techniques to learning expres-

sive graph representations. There have been several attempts in the literature and can be

categorized into two major classes, i.e., spectral-based graph neural networks (GNNs) and

spatial-based graph neural networks. The former focuses on developing graph convolutions

based on graph Fourier transforms [13, 38, 19, 52], and the latter employs message-passing

heuristics between neighboring nodes based on spatial convolutions [77, 1, 69].

Most studies focus on modeling uni-relational graphs, and thus, cannot be directly

applied to modeling abundant relations on KGs. To transfer graph neural networks to

KGs, R-GCN [78] introduced relation-specific weight matrices into the message-passing

mechanism as follows,

hl+1
ei

= σ

∑

p∈R

∑

ej∈N p
ei

1

cei,p
Wl

ph
l
ej

+ Wl
0h

l
ei

 , (2.10)

where hl+1
ei
∈ Rdl+1

, hlei ∈ Rdl denotes the hidden representation of the entity ei in the l-th

layer and (l+1)-th layer of the neural network, respectively, with dl being the dimensionality

of the representations in this layer. N p
ei

represents the set of neighbors of the entity ei

under relation p ∈ R. hlej denotes the representation of the entity ej at the l-th layer.

Wl
p ∈ Rdl×dl+1

corresponds to a relation-specific linear transformation in terms of the

relation p, and Wl
0 ∈ Rdl×dl+1

corresponds to the self-connection, a special relation type,

to ensure that the hidden representation of an entity at the (l+ 1)-th layer is informed by

the corresponding representation at the l-th layer. cei,p is a problem-specific normalization

constant that can either be learned or chosen in advance. σ(·) denotes an element-wise

16 2. Background

activation function. Intuitively, Equation 2.10 sums up transformed representation vectors

of neighboring entities (nodes), followed by normalization. In practice, multiple layers can

be stacked to allow for receiving messages from multi-hop neighbors.

An essential issue of Equation 2.10 is the rapid growth in the number of parameters

with the number of relations in the KG, easily leading to overfitting. Schlichtkrull et

al. [78] introduced basis- and block-diagonal-decomposition to regularize the weights of

R-GCN layers. Additionally, CompGCN [89] handled the over-parameterization issue by

leveraging entity-relation composition operations inspired by knowledge graph embedding

techniques. The message passing function of CompGCN is given as

hl+1
ei

= σ

∑

p∈R

∑

ej∈N p
ei

Wl
Oφ
(
hlej ,h

l
p

)
+
∑

p∈R

∑

ej∈N p−1
ei

Wl
Iφ
(
hlej ,h

l
p−1

)
+ Wl

0φ
(
hlei ,h

l
0

)

 ,

(2.11)

where hlp ∈ Rdl denotes the hidden representation of relation p at the l-th layer. N p
ei

represents the set of neighbors of entity ei under ordinary relation p ∈ R. N p−1

ei
represents

the set of neighbors of entity ei under inverse relation p−1 ∈ Rinv. Wl
O and Wl

I are shared

among ordinary and inverse relations, respectively, making the model more parameter

efficient than R-GCN and can scale with the increasing number of relations. hl0 represents

the hidden representation of the self-loop relation at the l-th layer. φ : Rdl × Rdl → Rdl

is a non-parameterized composition operator, such as subtraction [11] and multiplication

[101].

Recently, attention mechanisms have succeeded in various tasks, e.g., language mod-

eling [20], image recognition [21], and graph learning [91]. Specifically, Veličković et al.

[91] leveraged masked self-attentional layers to enable graph neural networks to weigh the

importance of messages from different neighbors, called graph attention networks (GAT).

Xu et al. [100] extended the graph attention mechanism to knowledge graph represen-

tation learning by constructing attention-induced subgraphs. In particular, the proposed

framework, called DPMPN, consists of an inattentive GNN (IGNN) that runs full message

passing over the entire KG to acquire features from a global view, and an attentive GNN

(AGNN) runs on each input-dependent subgraph. IGNN applies a standard message

passing mechanism [25],

hl+1
ei,IGNN

=
∑

(ej ,p)∈Nei

1√
N(ei)

δIGNN(ψIGNN(hlej ,IGNN ||p||hlei,IGNN)||hlei,IGNN ||ei)+hlei,IGNN

(2.12)

where Nei is the set of immediate neighbors of ei for its outgoing edges. N(ei) represents

2.3 Fundamentals of Temporal Knowledge Graphs 17

the number of neighbors that send messages to ei. Functions δIGNN and ψIGNN are imple-

mented by a two-layer MLP. In contrast to IGNN, AGNN is input-dependent, where the

message passing is running on subgraphs, each conditioned on an input query. To construct

an input-dependent subgraph for query (eq, pq, ?), AGNN starts from the query subject

eq and uses a temporal sampling procedure to add neighbors of eq into the subgraph. The

hidden representations of entities are computed as follows,

M̃l
ei,AGNN

=
∑

(ej ,p)∈N l′
ei

1√
N l′
ei

ψAGNN

(
hlei,AGNN ||cp(ei)||hlej ,AGNN)

)
(2.13)

hl+1
ei,AGNN

= hlei,AGNN + δAGNN

(
hlei,AGNN ||M̃l

ei,AGNN
||al+1

ei
Whl+1

ei,IGNN
||eq||pq

)
, (2.14)

where M̃l
ei,AGNN

denotes the aggregated message from neighbors of ei on the subgraph

conditioned on the input query. N l′
ei

represents the number of neighbors in the sub-

graph that send messages to ei. Functions δAGNN and ψAGNN are implemented by MLPs.

cp(ei) = p||eq||pq represents a relation-specific context vector of the input query and is

defined by the query subject and relation embeddings, i.e., eq and pq. Besides, the hidden

representation passed to AGNN from IGNN is weighted by a scalar attention score al+1
ei

that guides and prunes the message passing, making it scalable for large-scale knowledge

graphs. The iteratively and selectively constructed input-dependent subgraph models a

sequential reasoning process and can be seen as a graphical interpretation of the final

prediction.

Our published works employ relational graph neural networks to perform link predic-

tion on temporal knowledge graphs. In particular, in Chapter 3, we develop an inter-

pretable subgraph reasoning approach inspired by DPMPN [100]; in Chapter 4, we extend

CompGCN [89] to modeling temporal knowledge graphs by proposing a multi-relational

graph neural ordinary differential equation.

2.3 Fundamentals of Temporal Knowledge Graphs

Common knowledge graphs assume that the relations between entities are time-invariant

and store facts in their current state. In reality, however, multi-relational data may evolve

over time, e.g., (Alice, live in, New York) becomes invalid after Alice moves to Munich.

Besides, the recent availability of a large amount of event-based interaction data exhibits

eventive relationships that are only valid at certain timestamps, i.e., the economical re-

lationship between South Korea and Japan intensified in 2019 due to political conflicts.

To accommodate such time-dependent multi-relational data, temporal knowledge graphs

18 2. Background

(tKGs) have been introduced, where a triple is extended with a timestamp or time range

indicating when the triple is valid, e.g., (South Korea, downgrades trade ties with, Japan,

2019-08-12). Figure 2.3 shows an example of tKGs. In this section, we introduce the

fundamentals of tKGs. To distinguish a knowledge graph with static facts from temporal

knowledge graphs, we refer to the former as semantic knowledge graphs.

Figure 2.3: A fragment of a temporal knowledge graph

In contrast to semantic knowledge graphs, a temporal knowledge graph is a directed

graph with timestamped labeled edges. Each edge characterizes a temporally valid relation

between two entities (nodes). In literature, temporal knowledge graphs can be modeled

in two ways, i.e., continuous-time temporal knowledge graphs and discrete-time temporal

knowledge graphs [50]. A continuous-time temporal knowledge graph consists of a static

graph Ginit representing an initial state of the multi-relational data at time t0 and an

observation set containing tuples in the form of (event type, event, timestamp), where the

event type can be an edge addition/deletion, node addition/deletion, etc. A discrete-time

temporal knowledge graph is a sequence of snapshots from time-evolving multi-relational

data sampled at regularly-spaced times. Since available event databases, e.g., Integrated

Crisis Early Warning System (ICEWS) [95] and Global Database of Events, Language,

and Tone (GDELT) [57], are collected with regularly-spaced time annotations, we focus on

the discrete-time temporal knowledge graphs with the following definition:

Definition 4 (Temporal Knowledge Graph). Let E and R represent a finite set of entities

and relations, respectively. A temporal knowledge graph is a sequence of graph snapshots,

i.e., tKG = {KG1,KG2, ...,KGt,,KGT}, where KGt ⊂ E × R × O × T }. A quadruple

2.3 Fundamentals of Temporal Knowledge Graphs 19

q = (es, p, eo, t) represents a timestamped and labeled edge between a subject entity es ∈ E
and an object entity eo ∈ E with a relation p ∈ R in graph snapshot KGt. Thus, a temporal

knowledge graph can also be represented by a collection of quadruples.

Like semantic knowledge graphs, real-world tKGs are often inherently incomplete.

Specifically, typical temporal knowledge graphs, such as GDELT and ICEWS, were built

from unstructured textual data using automated information extraction methods. A con-

siderable amount of information was lost in the extraction procedure. To this end, the task

of temporal knowledge graph completion has gained growing interest.

Definition 5 (Temporal Knowledge Graph Completion) Let F represents the set of all

quadruples that are golden facts, i.e., true quadruples. The temporal knowledge graph com-

pletion is the problem of inferring F based on a set of observed facts O ⊂ F . Specifically,

the task of tKG completion is to predict either a missing subject entity (?, p, eo, t) given the

other three components or a missing object entity (es, r, ?, t).

Besides, humans are always interested in looking into the past to predict the future.

This is aligned with the temporal knowledge graph forecasting task that aims to predict

unknown links at future timestamps based on observed past events.

Definition 6 (Temporal Knowledge Graph Forecasting). Let F represents the set of all

ground-truth quadruples, and let (eq, pq, eo, tq) ∈ F denote the target quadruple. Given

a query (eq, pq, ?, tq) derived from the target quadruple and a set of observed prior facts

O = {(ei, pk, ej, tl) ∈ F|tl < tq}, the temporal KG forecasting task is to predict the missing

object entity eo. Specifically, we consider all entities in E as candidates and rank them by

their likelihood of forming a golden quadruple together with the given subject-predicate-pair

at timestamp tq.

Similar to knowledge graph completion, temporal knowledge graph completion and

forecasting are also framed as ranking tasks. Taking the object prediction (es, p, ?, t) as an

example, the relation learning algorithms consider all entities in E and learn a score function

that assigns a plausibility score to each quadruple. Thus, the proper object can be inferred

by ranking the scores of the quadruples {(es, p, eoi , t), eoi ∈ E} consisting of a candidate

entity and the given subject-predicate-timestamp triple. As a real example, we consider

finding which country Catherine Ashton will visit on Nov. 09, 2014, i.e., (Catherine Ashton,

make a visit, ?, 2014-11-09). We expect temporal relational learning models to score the

golden quadruple (Catherine Ashton, make a visit, Oman, 2014-11-09) higher than others,

20 2. Background

such as (Catherine Ashton, make a visit, Germany, 2014-11-09). Besides tKG completion

and forecasting, tKG embedding models can power a plethora of downstream tasks, such

as time-aware recommendation [71] and temporal question answering [45], by improving

the performance of existing models using structured external knowledge.

2.4 Relational Learning on Temporal KGs

Temporal knowledge graph models can be described from an encoder-decoder framework.

The encoder produces time-dependent embeddings that capture the evolving features of

temporal knowledge graphs, while the decoder is usually a score function from canonical

semantic KG models introduced in Section 2.2.2 to examine the plausibility of a given

quadruple. In the following, we first review techniques for encoding sequential or time

information relevant to our publications and then review benchmark temporal knowledge

graph embedding models for both the completion task and forecasting task.

2.4.1 Temporal Encoding

In problems involving time, the input can be viewed as a sequence of observations sampled

at regular intervals (synchronous time-series) or irregular intervals (asynchronous time-

series). Modeling sequential data has a long history and achieved great success in many

fields, ranging from finance to traffic prediction. Classic approaches in the time-series

analysis are auto-regressive models that predict the possible future observations based on

a finite window into the past, such as ARIMA [29]. The classical approaches are not able

to model long-distance dependencies. Besides, they have difficulties dealing with multi-

dimensional data. Another line of work in modeling sequential data is so-called state-space

models, e.g., Hidden Markov Model [5], Kalman filter [48], Dynamic Bayesian Networks

[63], where the model’s output is generated from time-evolving hidden states. State-space

models have been widely used for sequence modeling in the past decades. They are superior

to classical approaches in many respects, such as handling multi-variate inputs and easily

adding prior knowledge [63].

However, state space models also have difficulties in modeling long-range dependen-

cies and complex temporal behaviors. Another popular class is recurrent neural networks

(RNNs). RNNs parameterize the distribution of each observation by a neural network,

where the hidden state at the current step is derived from both the input and the previous

hidden state at the last step. However, RNNs often suffer from the problem of vanishing

gradients when using the backpropagation through time algorithm to compute the gradient,

2.4 Relational Learning on Temporal KGs 21

and thus, lack the ability to capture long-term temporal dependencies. Long Short-Term

Memory (LSTM) [43] solved this issue by introducing three gate functions to control the

information flow and became one of the most powerful sequence models. In particular,

the gate functions consist of a linear layer and a sigmoid activation function. Thus, the

outputs are between zero and one and are used to update and control the cell state by

deciding what information to forget, input, and output. LSTMs made significant progress

in what we can accomplish with RNNs and achieved remarkable results on a plethora of

sequential tasks.

Recently, Transformer [90] achieved outstanding success in various sequence modeling

problems. It can model dependencies without regard to their distance in the input sequence

by applying the self-attention mechanism. However, either Transformer or recurrent neural

networks do not explicitly treat time itself as a feature and thus capture sequential signals

rather than temporal patterns. In the following, we introduce neural ordinary differential

equations and two time-embedding approaches that explicitly account for the time span

between data points and have been used in our publications.

Neural Ordinary Differential Equations

Most existing neural networks for time-series analysis models are entirely or partially dis-

crete, resulting in discontinuous latent states and considerable errors in modeling latent

temporal dynamics. In contrast to canonical neural networks, neural ordinary differential

equations (ODEs) [16] enable neural networks to have continuous depth by parameterizing

the derivative of the latent states instead of specifying a discrete sequence of hidden layers.

It can be considered a continuous analog of the residual neural network [36], which is an

Euler discretization of ordinary differential equations. By coinciding the depth domain of

neural ODEs with the time domain, neural ODEs can be adapted to learn the continuous

fine-grained temporal dynamics of time series such as medical records and network traffic.

In neural ODEs, the continuous dynamics of hidden states in a neural network is pa-

rameterized using an ordinary differential equation (ODE)

dh(t)

dt
= f(h(t), t,θ), (2.15)

where h(t) ∈ Rd denotes the hidden state of a dynamic system at time t, f represents

a neural network that models the derivative of the hidden state regarding time, and θ

denotes the parameters in the neural network that are gradually updated during training.

Starting from the input layer h(t = 0), the output layer h(T) is defined as the solution to

this ODE initial value problem at time T . The output can be calculated using an ordinary

22 2. Background

differential equation solver:

h(T) = h(0) +

∫ T

t=0

f(h(t), t,θ)dt = ODESolver(h(0), f, 0, T,θ). (2.16)

The essential challenge of training continuous-depth neural networks is performing back-

propagation through the ODE solver while preserving scalability and keeping low memory

costs. To address this challenge, Chen et al. [16] computed gradients using the adjoint

sensitivity method [72], which computes gradients by solving a second ODE backward in

time. An adjoint is defined as the derivative of the loss concerning the hidden state h(t),

whose dynamics is given by another ODE as follows,

da(t)

dt
= −a(t)T

∂f(h(t), t,θ)

∂h
. (2.17)

We can compute ∂L/∂h(0) by a backward ODE solver with the initial value ∂L/∂h(T).

Thus, the gradients of the loss function with respect to parameter θ can be calculated as

follows,

dL

dθ
= −

∫ 0

t=T

a(t)T
∂f(h(t), t,θ)

∂θ
dt. (2.18)

The vector-Jacobian products a(t)T ∂f
∂h

and a(t)T ∂f
∂θ

can be efficiently evaluated by auto-

matic differentiation, whose time cost is similar to that of f .

Gholami et al. [24] argued that the adjoint method might lead to catastrophic nu-

merical instabilities. To this end, they proposed ANODE, which stores input activations

at intermediate timestamps during the forward pass in memory. In the backpropagation,

the method first performs a forward pass in each interval between a pair of input activa-

tions and save intermediate results in memory. Then the results are used to compute the

derivatives backward in time. ANODE uses the discretization scheme to solve the reverse

ODEs, and thus, does not suffer from possible numerical instability by solving Equation

2.16 backward in time. Besides, Daulbaev et al. [18] proposed an interpolated reverse

dynamic method (IRDM) that approximates the hidden state h(t) through the barycen-

tric Lagrange interpolation (BLI) on a Chebyshev grid [8]. IRDM requires h(t) can be

approximated by BLI with sufficient accuracy, which can only be verified experimentally.

Our published work [32] in Chapter 4 extends neural ODEs to modeling temporal

knowledge graphs and proposes a continuous-depth multi-relational graph neural network

for forecasting future links. In contrast to canonical tKG models, neural ODEs enable the

model to deal with irregular-sampled continuous-time data and estimate the hidden state

of tKGs at any timestamp of interest in future.

2.4 Relational Learning on Temporal KGs 23

Time Embedding

Suppose time is a relevant feature; in that case, many recent studies embed time into high-

dimensional spaces and feed it into a model as additional input dimensions by concatenating

the time embeddings with the input [56, 55, 98, 49, 71]. Since time is a continuous variable,

some works discretize it into a set of timestamps and learn an embedding for each discrete

timestamp, while some other works learn encoding functions that take continuous time-

variables as input and embed them into a vector space. In the following, we introduce the

time encoding techniques of both classes.

Embedding Lookup Many works learn shallow time embeddings by employing a sim-

ple embedding lookup. The timestamps of all events build a set T . And each timestamp

t ∈ T is associated with an embedding vector t ∈ Rd that is usually learned from scratch.

Leblay et al. [56] incorporated time embedding into the KG models, i.e., TransE [11]

and RESCAL [66], and learned their representations in the same vector space as entities

and relations. Experiments show that the time embedding-based approach outperforms

approaches that use time as a coefficient (scalar) by a large margin. Lacroix et al. [55] en-

forced the smoothness of temporal embeddings by penalizing the discrete derivative of the

time embedding. Thus, neighboring timestamps have similar representations, leading to

considerable performance improvements. However, the above time embedding approaches

are inherently limited to transductive tasks since they cannot deal with unseen timestamps

at the inference time. Thus, some works embed the time interval between two data points

instead of embedding absolute time information. For example, Zhu et al. [71] embedded

time intervals between target items and selected user behaviors and incorporated tem-

poral distance information into the click-through rate prediction of the recommendation

system. Thus, the model is able to perform future predictions at unseen timestamps if the

corresponding time interval embedding has been learned in the training phase.

Time Encoding Function The embedding lookup method is suitable for sequential

data sampled at regularly-spaced times. However, for sequential data sampled at irregular-

spaced times with high sampling frequency, some timestamps are only associated with a

small number of data samples, leading that these time embeddings are hardly trained

properly. To this end, Xu et al. [98] proposed a mapping function Φ : T → Rd justified by

Bochner’s Theorem to embed continuous variables from time domain into vector spaces as

follows

Φ(t) =

√
1

d
[cos(ω1t), sin(ω1t), ..., cos(ωdt), sin(ωdt)] (2.19)

24 2. Background

, where T = [tmin, tmax] is an interval of time. In fact, the mapping function takes contin-

uous time-variables as input and generates time representations whose relative positions

reflect their temporal difference. This mapping function is tailored for the self-attention

mechanism [90] and can be seen as replacing the positional encoding. Extensive experi-

ments on real-world datasets of continuous-time event sequence prediction demonstrate the

effectiveness of the proposed mapping function. In addition, Kazemi et al. [49] developed

a model-agnostic representation for time, which is

t2v(τ)[i] =

{
ωiτ + φi if i = 0

sin(ωiτ + φi) if 1 ≤ i ≤ d,
(2.20)

where t2v(τ) ∈ Rd+1 denotes the embedding of time τ , t2v(τ)[i] is the ith element of

t2v(τ), and sin(·) is the sine function helping the time encoding to have periodicity. ωi

and φi are learnable parameters. This encoding method is similar to the Fourier transform

approach for decomposing a temporal signal into a set of frequencies. But instead of using

a fixed set of frequencies, t2v lets frequencies be learned freely.

2.4.2 Temporal Knowledge Graph Models

Temporal knowledge graphs can be seen as a sequence of graph snapshots and exhibit rich

temporal dynamics. Thus, the temporal encoding approaches introduced in Section 2.4.1

can be utilized to capture the temporal properties available on temporal knowledge graphs.

In particular, most existing temporal knowledge graph models combine the decoder, i.e., the

score function, from canonical semantic KG models with temporal encoding techniques. In

this section, we discuss specifics of temporal knowledge graph models for both completion

and forecasting.

Temporal Knowledge Graph Completion Models

To address the inherent incompleteness of temporal KGs, Tresp et al. [84] proposed the

first tKG completion model by decomposing a four-way tensor whose element is associated

with subject entity, predicate, object entity, and timestamp as shown in Figure 2.4. In

particular, each timestamp is assigned a shallow embedding from an embedding lookup.

Ma et al. [60] followed [84] and generalized several semantic KG models, e.g., Tucker [4],

RESCAL [66], to tKG models by introducing an embedding lookup for time. Similarly,

Leblay et al. [56] extended TransE [11] as follows,

fTTransE(es, p, eo, t) = −||es + p + t− eo||2, (2.21)

2.4 Relational Learning on Temporal KGs 25

Figure 2.4: The figure shows a four-way tensor representing temporal knowledge graphs

(depiction based on a figure in [84]).

where t denotes time embedding learned from a simple embedding lookup. Similarly,

Lacroix et al. [55] applied embedding lookup as the time encoder and extended ComplEx

[87] to modeling temporal knowledge graph data, which is

φTComplEx(es, p, eo, t) = Re(〈es,p, ēo, t〉) (2.22)

where es, p, eo, t ∈ Cd are complex-valued vectors, i.e., es = Re(es)+iIm(es). Re(es) ∈ Rd

and Im(es) ∈ Rd are the real and imaginary parts of es, respectively, with i2 = −1. ēo

denotes the complex conjugate of eo, which is eo = Re(eo) − iIm(eo). 〈·〉 denotes the

standard componentwise multi-linear dot product 〈a, b, c, d〉 =
∑

k akbkckdk.

Dasgupta et al. [17] associated each timestamp with a hyperplane in the same vector

space as entities and relations. For a quadruple (es, p, eo, t), the embedding of es, eo, and p

are first projected into the hyperplane of the timestamp t, and then the interaction function

of TransE [11] (Equa. 2.8) is applied as the decoder. In fact, different hyperplanes are

represented by normal vectors, where each normal vector corresponds to a timestamp and

is obtained from an embedding lookup. In particular, the interaction function is as follows

es(t) = es − (ωTt es)ωt

eo(t) = eo − (ωTt eo)ωt

p(t) = p− (ωTt p)ωt

fHyTE(es, p, eo, t) = ||es(t) + p(t)− eo(t)||2,

(2.23)

26 2. Background

where es, eo, and p ∈ Rd are the time-independent embedding of es, eo, and p, respectively.

ωt ∈ Rd denotes the normal vector of the hyperplane corresponding to timestamp t. The

translational distance fHyTE of a valid triple (es, p, eo) at time t is minimized. Similarly,

Xu et al. [96] embedded temporal knowledge graphs in the complex vector space by

defining the temporal evolution of an entity embedding as a rotation. Specifically, entities,

predicates, and timestamps are mapped to complex embeddings using a simple lookup.

The time-dependent embedding of an entity es is defined as

es(t) = es ◦ t, (2.24)

where ◦ denotes the Hermitian dot product between complex vectors, and es ∈ Cd rep-

resents the time-independent embedding of entity es. Then, the translational distance is

applied as follows

fTeRo(es, p, eo, t) = ||es(t) + p− ēo(t)||2. (2.25)

Besides, Jung et al. [47] applied a graph attention neural network on the tKG comple-

tion task with simple time embedding lookup. In contrast to the approaches mentioned

above, Jung et al. encoded the temporal displacement between the query and respective

quadruples instead of encoding the timestamps. Given a query (eq, pq, ?, tq) and an ob-

served event e = (es, p, eo, te), the temporal displacement is defined as δte = te − tq, whose

embedding is taken from an embedding lookup and is learned via gradient-based optimiza-

tion. With the help of encoding temporal displacement, the proposed model can attend to

different types of events that happened before or after the time of interest, depending on

specific relations. Taking query relation member of sports team until as an example, the

model’s attention should be slightly biased toward past events that happened s few years

before the time of interest but not too far.

While the above methods use simple time embedding lookup to capture temporal infor-

mation, there is another line of models that apply temporal encoding functions. Goel et al.

[26] proposed a diachronic function to generate entity-specific time embeddings called DE

and incorporated the time embedding into the entity embedding as additional dimensions.

In particular, the entity-specific time embedding t(ei) ∈ Rd1 is defined as

t(ei) = aei � sin(ωei + bei), (2.26)

where aei ,ωei ,bei are entity-specific amplitude vector, frequency vector, and phase-shift

vector, respectively. To obtain a time-dependent embedding of entity ei at timestamp t,

Goel et al. concatenated t(ei) ∈ Rd1 and time-independent entity embedding ei ∈ Rd2 ,

i.e., ei(t) = t(ei)||ei ∈ Rd1+d2 . This temporal encoding approach is similar to the concept

2.4 Relational Learning on Temporal KGs 27

of time2vector (t2v) [49] introduced in Section 2.4.1. Besides, it is model-agnostic and

can be combined with any score functions, such as SimplE [51], TransE [11], and DistMult

[101]. However, since the time embedding is entity-specific, the model parameters scale

with the number of entities and may suffer from the overfitting problem when applied to

sparse graph data. To this end, our published work in Chapter 5 proposed a time encoding

function called UTEE that learns a unique time embedding function for all entities, which

is

t = a� sin(ω + b), (2.27)

where a, ω and b are shared among all entities. Thus, the entity embedding at times-

tamp t is obtained by concatenating the embedding of t and the time-independent entity

embedding ei(t) = t||ei. Notably, the model parameter of DE is often more than three

times that of UTEE. However, experiments show that UTEE achieves better performance

on sparse datasets.

Inspired from additive time series decomposition, Xu et al. [97] developed time-

dependent entity embedding using a trend component vector, a seasonal component vector,

and a random component vector, which is

eATiSEi (t) = ei + αeiweit+ βei sin(2πωeit) +N (0,Σei). (2.28)

Specifically, ei + αeiωeit denotes the trend component, βei sin(2πωeit) represents the sea-

sonal component, and the Gaussian noise term N (0,Σei) denotes the random component.

By applying the multi-dimensional Gaussian distributions, this approach called ATiSE ex-

plicitly takes the uncertainty of the temporal evolution modeling. In particular, since the

status of an entity at a specific time is not entirely determined by past information, the

evolution of entity representations would have randomness. ATiSE uses the translational

distance function as the decoder. Since the embeddings are distributions instead of single

vectors, the authors used KL divergence as the similarity measure instead of the Euclidean

distance.

Temporal Knowledge Graph Forecasting Models

Approaches introduced in the last section are initially tailored for the temporal knowledge

graph completion task, which uses observed events to predict missing links at observed

timestamps. In comparison, the temporal knowledge graph forecasting task requires models

to predict future events based on historical observations, which is more challenging. Trivedi

et al. [85] proposed the first tKG forecasting model called KnowEvolve by adapting a

28 2. Background

multivariate point process. Specifically, they applied the Rayleigh process to model the

occurrence of a quadruple (es, p, eo, t) with the following intensity function

λKnowEvolve(es, p, eo, t|t̄) = exp
(
es(t

es−)TPeo(t
eo−)

)
∗ (t− t̄) , (2.29)

where tes− and teo− denote the most recent timestamp that es and eo were involved

in a quadruple prior to t, respectively, t̄ = max(tes−, teo−) is defined as the larger one

of tes− and teo−. P ∈ Rd×d denotes the weight matrix of relation p. es, eo ∈ Rd are

entity representations obtained from an RNN [76]. The intensity function λ(es, p, eo, t|t̄)
characterizes the expectation of how likely the triple (es, p, eo) would occur at timestamp

t conditional on the observations of the point process before t. Since the point process

inherently takes the time information into account, there is not necessary to apply other

time encoding techniques. At inference time, the model chooses the quadruple with the

highest intensity value from all candidates that meet the query requirement as the final

prediction.

Unlike classic time series where events happen at different timestamps, a temporal

knowledge graph is a sequence of graph slices, and all events (edges) in a graph slice

are associated with the same timestamp. However, KnowEolve does not consider such

concurrent events that share the same time information. Besides, there is a flaw in their

evaluation code [46]. In fact, KnowEvolve underperforms on the tKG forecasting task when

applying the fixed evaluation code. Han et al. [34] adapted another point process, i.e., the

Hawkes process, to the tKG forecasting task and explicitly took the concurrent events into

account. Specifically, Han et al. applied a mean aggregation module to embeddings of all

entities involved in the concurrent events and then fed the aggregated embedding into a

neural Hawkes process module. Extensive experiments show its superiority compared to

KnowEvolve.

Instead of modeling temporal information, Jin et al. [46] took the sequential information

into account and employed a recurrent neural network to encode the temporal sequence of

past graph slices. Besides, the authors applied Relational Graph Neural Network [78] to

model all concurrent events within a graph slice. With the help of a powerful graph neural

network and recurrent neural network, the proposed model, RE-Net, becomes a strong

baseline for the tKG forecasting task.

Discussion

Temporal knowledge graph models can be categorized into three classes according to the

temporal encoder they use, i.e., time embedding (TE), time-dependent entity embedding

2.4 Relational Learning on Temporal KGs 29

(TEE), and deep temporal representation (DTR). TE approaches learn a representation

for each discrete timestamp to model the temporal dynamics. In contrast, TEE approaches

assume that entities evolve over time, and thus, allow the entity embeddings to drift over

time. Additionally, DTR approaches apply various advanced deep learning approaches,

i.e., graph neural networks, recurrent neural networks, and transformers, to relational

learning on tKGs. The common belief is that TEE approaches are well motivated and more

powerful than TE approaches. Thus, many recent works [26, 97, 96] have been devoted

to this direction. However, our published work in Chapter 5 found that the primitive

TE approaches such as TTransE [56] can outperform the more recent TEE approaches

when trained with advanced learning techniques and tuned appropriately. Large-scale

empirical experiments with nearly 19000 GPU hours show that training strategies play a

significant role in the model’s performance and may account for a substantial fraction of

the effectiveness of TEE approaches. Thus, future research should raise awareness when

developing TEE approaches to ensure whether the time-dependent entity representations

are truly helping boost the model’s performance.

In the next section, we will introduce the training strategies that are often applied to

temporal knowledge graph models for reaching state-of-the-art outcomes.

2.4.3 Training Techniques and Evaluation Metrics

Negative Sampling

Temporal knowledge graphs usually only contain valid quadruples that correspond to true

events but do not explicitly incorporate negative information in the form of invalid quadru-

ples. However, learning temporal knowledge graph models requires negative samples. To

generate negative samples, the Local Closed World Assumption [7] is often applied, where

an observed quadruple (es, p, eo, t) is assumed to be false if (e′s, p, eo, t) or (e′s, p, eo, t) has

been observed. A common implementation is generating a fixed number of negative quadru-

ples by corrupting positive quadruples in a training batch. Borders et al. [11] proposed a

procedure to corrupt positive triples, which is extended to corrupt positive quadruples in

most tKG representation learning approaches. In particular, It is first randomly decided

to corrupt the subject entity or object entity of a positive quadruple (es, p, eo, t). If the

subject entity is selected, es is replaced with an entity e′s randomly selected from E and

generate a negative sample (e′s, p, eo, t). A similar strategy can be applied to the object

entity if selected.

30 2. Background

Loss Functions

Several loss functions for training tKG embedding have been introduced in the literature.

Here, we review three of them, which are most frequently applied in tKG models.

Pairwise margin ranking (MR) loss is usually used in tKG models with translation-

based interaction functions [56, 17], which is

LMR =
∑

(es,p,eo,t)∈O

∑

(e′s,p,e′o,t)∈N(es,p,eo,t)

max(γ + f(es, p, eo, t)− f(e′s, p, e
′
o, t), 0), (2.30)

whereN(es,p,eo,t) denotes the set of corrupted quadruples given a positive quadruple (es, p, eo, t),

f(·) represents the interaction function of translation-based models, and γ > 0 is a margin

hyperparameter.

The categorical cross-entropy (CE) loss and the binary cross-entropy (BCE) loss are

other two loss functions that are usually applied to bilinear models [55, 23, 30]. The cross-

entropy loss applies a softmax function [70] to the score of each quadruple and models

the difference between the softmax distribution over all entity candidates and the data

distribution, which is

LCE = −
∑

(es,p,eo,t)∈O
log

(
exp (φ (es, p, eo, t))∑
e′s∈E exp (φ (e′s, p, eo, t))

)
+ log

(
exp (φ (es, p, eo, t))∑
e′o∈E exp (φ (es, p, e′o, t))

)
,

(2.31)

where φ(·) denotes the score function, log(·) and exp(·) represent the logarithmic function

and exponential function, respectively.

The binary cross-entropy loss applies a sigmoid function to mapping the score of each

quadruple into the interval of [0, 1] and uses the cross-entropy between the resulting prob-

ability and the quadruple’s label as a loss. This is defined as follows,

LBCE = −
∑

(es,p,eo,t)∈O

log (σ (φ (es, p, eo, t))) + log

 ∑

(e′s,p,e′o,t)∈N(es,p,eo,t)

(1− σ (φ (e′s, p, e
′
o, t)))

 ,

(2.32)

where σ(·) denotes the sigmoid function.

Inverse Relations

Adding inverse relations into tKG embedding training is another training technique that

is widely applied in recent works [26, 55]. The idea of inverse relations is to associate each

relation with two different embeddings and thus, have different scores for subject entity

prediction (?, p, eo, t) and object entity prediction (es, p, ?, t). In particular, for a relation

p ∈ R, (eo, p
−1, es, t) will be true if (es, p, eo, t) holds.

2.4 Relational Learning on Temporal KGs 31

Evaluation Metrics

As introduced in Section 2.3, queries of both tKG completion task and tKG forecasting task

are in the form of subject entity prediction and object entity prediction, i.e., (?, p, eo, t) and

(es, p, ?, t). Thus, a tKG model needs to predict the subject entity or the object entity for

all quadruples in the test set given other three components by ranking all entities from E .

Given a test quadruple (es, p, eo, t), let ψes and ψeo represent the rank for subject entity es

and object entity eo, respectively. The standard evaluation metrics include mean reciprocal

rank and Hits@k(k ∈ {1, 3, 10}). MRR is defined as follows,

mean reciprocal rank(MRR) =
1

2|Gtest|
∑

q∈Gtest
(

1

ψes
+

1

ψeo
), (2.33)

where Gtest denotes the test set. Hits@k is defined as the percentage of times that the true

entity candidate appears in the top k of ranked candidates.

However, the above metrics would be flawed if multiple entity candidates hold true.

These entity candidates can be ranked above the ground truth entity from the test quadru-

ple, but this should not be seen as an error. To prevent such a misleading result, Bordes

et al. [11] proposed a filtered version of evaluation metrics for semantic knowledge graphs

that removes from the list of corrupted triples all the triples that appear either in the

training, validation, or test set. Some recent works, e.g., Trivedi et al. [85] and Jin et

al. [46], use this filtering setting for reporting their results on learning temporal knowledge

graphs. However, our published work in Chapter 3 argued that this filtering strategy is

inappropriate for evaluating temporal KG models. For example, there is a test quadruple

(Angela Merkel, visit, Turkey, 2021-10-16), and we perform the object prediction (Angela

Merkel, visit, ?, 2021-10-16). Besides, we have observed the quadruple (Angela Merkel,

visit, US, 2021-07-15) in the training set. According to the filtering strategy proposed by

[11], (Angela Merkel, visit, US) will be considered as a genuine triple and be filtered out

when computing MRR and Hits@K because the triple is included in the quadruple (Angela

Merkel, visit, US, 2021-07-15) in the training set. However, it is only temporally valid on

2021-07-15 but not on 2021-10-16. Thus, this filtering strategy is not proper for tKG mod-

els. Therefore, our work [31] proposed another filtering scheme, which is more appropriate

for temporal KG models, called time-aware filtering. In this case, the temporal information

is taken into account, which means only triples that are genuine at the timestamp of the

query will be filtered out. Continuing with the above example, since (Angela Merkel, visit,

US, 2021-07-15) does not exist in the dataset, it is considered corrupted and will be filtered

out.

32 2. Background

2.5 Learning Knowledge Graph Representations on

Non-Euclidean Spaces

Figure 2.5: The left figure shows the Poincaré disc model with three hyperbolic straight

lines (geodesics), which are orthogonal to the disc boundary. The right figure shows the

Lorentz model (the hyperboloid model), which is represented by the upper sheet of a

two-sheeted hyperboloid.

Like many other networks, knowledge graphs always exhibit power-law or scale-free

degree distributions [53], often traced back to hierarchical structures [73]. To provide

high-quality embeddings for scale-free networks, their properties have been extensively in-

vestigated. In particular, Krioukov et al. [9] showed that scale-free networks naturally

emerge in hyperbolic spaces, which was further exploited in various works [67, 27]. Thus,

hyperbolic space has the potential to naturally capture the topological information and

logical patterns of knowledge graphs. Furthermore, a considerable amount of relations

appearing in knowledge graphs exhibit hierarchical or tree-like properties [58]. It is chal-

lenging to preserve hierarchical structures in a linear embedding space [64]. In contrast,

hyperbolic spaces have shown promise for high-fidelity and parsimonious representations

for embedding such hierarchical data [15].

2.5.1 Models of Non-Euclidean Spaces

While the Euclidean geometry fulfills Euclid’s axioms [37], Non-Euclidean geometries reject

the fifth Euclid’s axioms, which states that, for a given point x and a line l1, there is a

unique line l2 parallel to l1 passing through x. The curvature of a non-Euclidean geometry

describes how much the geometry twist from being flat, where the Euclidean geometry has

constant curvature of zero. The hyperbolic geometry is a non-Euclidean geometry with

2.5 Learning Knowledge Graph Representations on Non-Euclidean Spaces 33

negative curvature. There exist multiple equivalent models of hyperbolic space, where the

Poincaré-ball model and Lorentz model are among the most widely used. We illustrate

them in Figure 2.5.

The Poincaré-ball model is a d-dimensional Riemannian manifold Pd,c = (Bd,c, gcp),
where Bd,c = {x ∈ Rd| ||x||22 < −1

c
} is a d-dimensional unit ball, || · ||2 denotes the

Euclidean norm, and gcp is a Riemannian metric tensor

gcp(x) =

(
2

1 + c||x||22

)2

gE, (2.34)

where x ∈ Bd,c and gE denote the Euclidean metric tensor [67]. The hyperbolic distance

dc(x,y) between two points x and y on Bd,c is defined as

d(x,y) = arccosh(1 + 2
||x− y||22

(1− ||x||22)(1− ||y|22|)
). (2.35)

Intuitively, the hyperbolic distance on the Poincaré-ball model has locality properties.

Specifically, the hyperbolic distance between two points grows very fast when moving

the two points from the origin to the boundary of the Poincaré ball, even though their

Euclidean distance remains unchanged. Thus, the hyperbolic space is especially suitable

for hierarchical relations and tree-like structures, where we can embed the root node near

the origin and the leaf node close to the boundary. In a tree structure, the number of child

nodes grows exponentially with their distance to the tree’s root. While a high-dimensional

Euclidean space is required to accommodate a large amount of leaf nodes, the hyperbolic

space can easily model the tree structure in two dimensions. This is because the hyperbolic

disc area and circle length grow exponentially with their radius [54].

The Poincaré ball has the conformal property, which means the angle between two

adjacent vectors is the same as that in the Euclidean space. Thus, the Poincaré-ball model

is well-suited for gradient-based optimization [68]. However, its distance function may

cause numerical instabilities, which is its main drawbacks. In comparison, the Lorentz

model avoids such issues. In particular, it defines the hyperbolic space via the Lorentz

scalar product 〈·〉L as follows,

Hd,c = {x ∈ Rd+1 : 〈x,x〉L = −(−c) 1
2 , x0 > 0}, (2.36)

where 〈x,y〉L = −x0y0+
∑d

i=1 xiyi and c > 0. Hd,c denotes the upper sheet of a two-sheeted

hyperboloid in d+1 dimensional vector space. The distance function on the Lorentz model

is then given as

dl(x,y) = arccosh(−〈x,y〉L) (2.37)

34 2. Background

2.5.2 Relational Learning in Non-Euclidean Spaces

Hyperbolic space has recently been intensively studied to model relational data. Nickel et

al. [67] proposed an approach to learning hyperbolic embeddings of unweighted undirected

graphs based on the Poincaré-ball model. Later, the authors find learning hyperbolic

embeddings based on the Lorentz model is more suited for Riemannian optimization since

the Lorentz model does not have the issue of numerical instabilities [68]. In contrast to

simple look-up embeddings learned in [67, 68], Liu et al. [59] used deep learning techniques

to learn hyperbolic embeddings by extending graph neural networks (GNN) to operate in

hyperbolic space.

Multi-relational data such as knowledge graphs often exhibit hierarchical patterns,

which should be considered by learning embeddings. To this end, Balažević et al. [3]

extended the hyperbolic representation learning to multi-relational data. The authors pro-

posed a well-suitable score function for learning hyperbolic knowledge graph embeddings by

taking both bilinear KG models and translation-based KG models into account. In parallel

to [3], Kolyvakis et al. [53] extended the translation-based models into the Poincaré-ball

model of hyperbolic space, which improves the performance of translation-based models

significantly. Chami et al. [15] argued that previous hyperbolic embedding methods cannot

well capture the logical patterns in KGs. Since RotatE [83] showed its full expressiveness to

encode relation patterns of symmetry, antisymmetry, inversion, and composition, Chami

et al. worked on extending RotatE in hyperbolic space. Specifically, they defined two

operations, i.e., rotation and reflection, in the Poincaré-ball model of hyperbolic space and

applied the attention mechanism to the representations resulted from the two operations.

The proposed ATTH model achieves new state-of-the-art on several benchmark datasets.

Nevertheless, the above non-Euclidean KG models cannot deal with time-evolving

multi-relational data, such as temporal knowledge graphs. Besides, they learn representa-

tions in hyperbolic space with a constant negative curvature. But most knowledge graphs

exhibit a wide variety of structures instead of a uniform structure. To this end, our pub-

lished work [30] in Chapter 6 proposed a novel embedding approach in a product manifold

combining multiple non-Euclidean spaces. The proposed approach simultaneously cap-

tures heterogeneous geometric structures and temporal dynamics on temporal knowledge

graphs. Following our work, Montella et al. [61] further investigated time-aware KG rep-

resentations in non-Euclidean space. They extended the static KG model, ATTH [15], to

a time-aware version by learning the curvature of a manifold depending on both relation

and time. While our work [30] treats manifold curvatures as hyperparameters, Montella et

al. assigned each relation-timestamp pair a corresponding manifold curvature that can be

2.5 Learning Knowledge Graph Representations on Non-Euclidean Spaces 35

learned via gradient-based optimization, leading to a more efficient training procedure.

This section on non-Euclidean KG representation learning methods completes the back-

ground material of this thesis. The remainder of this dissertation continues with our pub-

lications on temporal knowledge graph relational learning.

36 2. Background

Chapter 3

Explainable Subgraph Reasoning for

Forecasting on Temporal Knowledge

Graphs

This chapter contains the publication

Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs.

In Proceedings of the International Conference on Learning Representations (ICLR),

Virtual Conference, May 2021. Openreview.net: pdf?id=pGIHq1m7PU.

Published as a conference paper at ICLR 2021

EXPLAINABLE SUBGRAPH REASONING FOR FORE-
CASTING ON TEMPORAL KNOWLEDGE GRAPHS

Zhen Han∗1,2, Peng Chen∗2,3, Yunpu Ma†1 , Volker Tresp†1,2
1Institute of Informatics, LMU Munich 2 Corporate Technology, Siemens AG
3Department of Informatics, Technical University of Munich
zhen.han@campus.lmu.de, peng.chen@tum.de
cognitive.yunpu@gmail.com, volker.tresp@siemens.com

ABSTRACT

Modeling time-evolving knowledge graphs (KGs) has recently gained increasing
interest. Here, graph representation learning has become the dominant paradigm
for link prediction on temporal KGs. However, the embedding-based approaches
largely operate in a black-box fashion, lacking the ability to interpret their predic-
tions. This paper provides a link forecasting framework that reasons over query-
relevant subgraphs of temporal KGs and jointly models the structural dependen-
cies and the temporal dynamics. Especially, we propose a temporal relational at-
tention mechanism and a novel reverse representation update scheme to guide the
extraction of an enclosing subgraph around the query. The subgraph is expanded
by an iterative sampling of temporal neighbors and by attention propagation. Our
approach provides human-understandable evidence explaining the forecast. We
evaluate our model on four benchmark temporal knowledge graphs for the link
forecasting task. While being more explainable, our model obtains a relative im-
provement of up to 20 % on Hits@1 compared to the previous best temporal KG
forecasting method. We also conduct a survey with 53 respondents, and the results
show that the evidence extracted by the model for link forecasting is aligned with
human understanding.

1 INTRODUCTION

Reasoning, a process of inferring new knowledge from available facts, has long been considered an
essential topic in AI research. Recently, reasoning on knowledge graphs (KG) has gained increasing
interest (Das et al., 2017; Ren et al., 2020; Hildebrandt et al., 2020). A knowledge graph is a graph-
structured knowledge base that stores factual information in the form of triples (s, p, o), e.g., (Alice,
livesIn, Toronto). In particular, s (subject) and o (object) are expressed as nodes and p (predicate) as
an edge type. Most knowledge graph models assume that the underlying graph is static. However,
in the real world, facts and knowledge can change with time. For example, (Alice, livesIn, Toronto)
becomes invalid after Alice moves to Vancouver. To accommodate time-evolving multi-relational
data, temporal KGs have been introduced (Boschee et al., 2015), where a temporal fact is represented
as a quadruple by extending the static triple with a timestamp t indicating the triple is valid at t, i.e.
(Barack Obama, visit, India, 2010-11-06).

In this work, we focus on forecasting on temporal KGs, where we infer future events based on past
events. Forecasting on temporal KGs can improve a plethora of downstream applications such as
decision support in personalized health care and finance. The use cases often require the predic-
tions made by the learning models to be interpretable, such that users can understand and trust the
predictions. However, current machine learning approaches (Trivedi et al., 2017; Jin et al., 2019)
for temporal KG forecasting operate in a black-box fashion, where they design an embedding-based
score function to estimate the plausibility of a quadruple. These models cannot clearly show which
evidence contributes to a prediction and lack explainability to the forecast, making them less suitable
for many real-world applications.
∗Equal contribution.
†Corresponding authors.

1

Published as a conference paper at ICLR 2021

Explainable approaches can generally be categorized into post-hoc interpretable methods and inte-
grated transparent methods (Došilović et al., 2018). Post-hoc interpretable approaches (Montavon
et al., 2017; Ying et al., 2019) aim to interpret the results of a black-box model, while integrated
transparent approaches (Das et al., 2017; Qiu et al., 2019; Wang et al., 2019) have an explainable
internal mechanism. In particular, most integrated transparent (Lin et al., 2018; Hildebrandt et al.,
2020) approaches for KGs employ path-based methods to derive an explicit reasoning path and
demonstrate a transparent reasoning process. The path-based methods focus on finding the answer
to a query within a single reasoning chain. However, many complicated queries require multiple
supporting reasoning chains rather than just one reasoning path. Recent work (Xu et al., 2019;
Teru et al., 2019) has shown that reasoning over local subgraphs substantially boosts performance
while maintaining interpretability. However, these explainable models cannot be applied to temporal
graph-structured data because they do not take time information into account. This work aims to
design a transparent forecasting mechanism on temporal KGs that can generate informative expla-
nations of the predictions.

In this paper, we propose an explainable reasoning framework for forecasting future links on
temporal knowledge graphs, xERTE, which employs a sequential reasoning process over local sub-
graphs. To answer a query in the form of (subject eq , predicate pq , ?, timestamp tq), xERTE starts
from the query subject, iteratively samples relevant edges of entities included in the subgraph and
propagates attention along the sampled edges. After several rounds of expansion and pruning, the
missing object is predicted from entities in the subgraph. Thus, the extracted subgraph can be seen
as a concise and compact graphical explanation of the prediction. To guide the subgraph to expand
in the direction of the query’s interest, we propose a temporal relational graph attention (TRGA)
mechanism. We pose temporal constraints on passing messages to preserve the causal nature of the
temporal data. Specifically, we update the time-dependent hidden representation of an entity ei at a
timestamp t by attentively aggregating messages from its temporal neighbors that were linked with
ei prior to t. We call such temporal neighbors as prior neighbors of ei. Additionally, we use an em-
bedding module consisting of stationary entity embeddings and functional time encoding, enabling
the model to capture both global structural information and temporal dynamics. Besides, we develop
a novel representation update mechanism to mimic human reasoning behavior. When humans per-
form a reasoning process, their perceived profiles of observed entities will update, as new clues are
found. Thus, it is necessary to ensure that all entities in a subgraph can receive messages from prior
neighbors newly added to the subgraph. To this end, the proposed representation update mechanism
enables every entity to receive messages from its farthest prior neighbors in the subgraph.

The major contributions of this work are as follows. (1) We develop xERTE, the first explainable
model for predicting future links on temporal KGs. The model is based on a temporal relational
attention mechanisms that preserves the causal nature of the temporal multi-relational data. (2)
Unlike most black-box embedding-based models, xERTE visualizes the reasoning process and pro-
vides an interpretable inference graph to emphasize important evidence. (3) The dynamical pruning
procedure enables our model to perform reasoning on large-scale temporal knowledge graphs with
millions of edges. (4) We apply our model for forecasting future links on four benchmark temporal
knowledge graphs. The results show that our method achieves on average a better performance than
current state-of-the-art methods, thus providing a new baseline. (5) We conduct a survey with 53
respondents to evaluate whether the extracted evidence is aligned with human understanding.

2 RELATED WORK

Representation learning is an expressive and popular paradigm underlying many KG models. The
embedding-based approaches for knowledge graphs can generally be categorized into bilinear mod-
els (Nickel et al., 2011; Yang et al., 2014; Ma et al., 2018a), translational models (Bordes et al.,
2013; Lv et al., 2018; Sun et al., 2019; Hao et al., 2019), and deep-learning models (Dettmers et al.,
2017; Schlichtkrull et al., 2018). However, the above methods are not able to use rich dynamics
available on temporal knowledge graphs. To this end, several studies have been conducted for tem-
poral knowledge graph reasoning (Garcı́a-Durán et al., 2018; Ma et al., 2018b; Jin et al., 2019; Goel
et al., 2019; Lacroix et al., 2020; Han et al., 2020a;b; Zhu et al., 2020). The published approaches
are largely black-box, lacking the ability to interpret their predictions. Recently, several explainable
reasoning methods for knowledge graphs have been proposed (Das et al., 2017; Xu et al., 2019;

2

Published as a conference paper at ICLR 2021

Hildebrandt et al., 2020; Teru et al., 2019). However, the above explainable methods can only deal
with static KGs, while our model is designed for interpretable forecasting on temporal KGs.

3 PRELIMINARIES

Let E and P represent a finite set of entities and predicates, respectively. A temporal knowledge
graph is a collection of timestamped facts written as quadruples. A quadruple q = (es, p, eo, t)
represents a timestamped and labeled edge between a subject entity es ∈ E and an object entity
eo ∈ E , where p ∈ P denotes the edge type (predicate). The temporal knowledge graph forecasting
task aims to predict unknown links at future timestamps based on observed past events.

Definition 1 (Temporal KG forecasting). Let F represent the set of all ground-truth quadruples,
and let (eq, pq, eo, tq) ∈ F denote the target quadruple. Given a query (eq, pq, ?, tq) derived from
the target quadruple and a set of observed prior facts O = {(ei, pk, ej , tl) ∈ F|tl < tq}, the
temporal KG forecasting task is to predict the missing object entity eo. Specifically, we consider
all entities in the set E as candidates and rank them by their likelihood to form a true quadruple
together with the given subject-predicate-pair at timestamp tq1.

For a given query q = (eq, pq, ?, tq), we build an inference graph Ginf to visualize the reasoning
process. Unlike in temporal KGs, where a node represents an entity, each node in Ginf is an entity-
timestamp pair. The inference graph is a directed graph in which a link points from a node with an
earlier timestamp to a node with a later timestamp.

Definition 2 (Node in Inference Graph and its Temporal Neighborhood). Let E represent all enti-
ties, F denote all ground-truth quadruples, and let t represent a timestamp. A node in an inference
graph Ginf is defined as an entity-timestamp pair v = (ei, t), ei ∈ E . We define the set of one-hop
prior neighbors of v as Nv=(ei,t) = {(ej , t′)|(ei, pk, ej , t′) ∈ F ∧ (t′ < t)}2. For simplicity, we
denote one-hop prior neighbors as Nv . Similarly, we define the set of one-hop posterior neighbors
of v as N v=(ei,t) = {(ej , t′)|(ej , pk, ei, t) ∈ F ∧ (t′ > t)}. We denote them as N v for short.

We provide an example in Figure 4 in the appendix to illustrate the inference graph.

4 OUR MODEL

We describe xERTE in a top-down fashion where we provide an overview in Section 4.1 and then
explain each module from Section 4.2 to 4.6.

4.1 SUBGRAPH REASONING PROCESS

Our model conducts the reasoning process on a dynamically expanded inference graph Ginf extracted
from the temporal KG. We show a toy example in Figure 1. Given query q = (eq, pq, ?, tq), we
initialize Ginf with node vq = (eq, tq) consisting of the query subject and the query time. The
inference graph expands by sampling prior neighbors of vq . For example, suppose that (eq, pk, ej , t′)
is a valid quadruple where t′ < tq , we add the node v1 = (ej , t

′) into Ginf and link it with vq where
the link is labeled with pk and points from vq to v1. We use an embedding module to assign each
node and predicate included in Ginf a temporal embedding that is shared across queries. The main
goal of the embedding module is to let the nodes access query-independent information and get a
broad view of the graph structure since the following temporal relational graph attention (TRGA)
layer only performs query-dependent message passing locally. Next, we feed the inference graph
into the TRGA layer that takes node embeddings and predicate embeddings as the input, produces
a query-dependent representation for each node by passing messages on the small inference graph,
and computes a query-dependent attention score for each edge. As explained in Section 4.7, we
propagate the attention of each node to its prior neighbors using the edge attention scores. Then we
further expand Ginf by sampling the prior neighbors of the nodes in Ginf. The expansion will grow

1Throughout this work, we add reciprocal relations for every quadruple, i.e., we add (eo, p
−1, es, t) for

every (es, p, eo, t). Hence, the restriction to predict object entities does not lead to a loss of generality.
2Prior neighbors linked with ei as subject entity, e.g., (ej , pk, ei, t), are covered using reciprocal relations.

3

Published as a conference paper at ICLR 2021

Figure 1: Model Architecture. We take the second inference step (l = 2) as an example. Each
directed edge points from a source node to its prior neighbor. denotes nodes that have not been
sampled. ali means the attention score of node vi at the lth inference step. αli,j is the attention score
of the edge between node i and its prior neighbor j at the lth inference step. Note that all scores are
query-dependent. For simplicity, we do not show edge labels (predicates) in the figure.

rapidly and cover almost all nodes after a few steps. To prevent the inference graph from exploding,
we reduce the edge amount by pruning the edges that gain less attention. As the expansion and
pruning iterate, Ginf allocates more and more information from the temporal KG. After running L
inference steps, the model selects the entity with the highest attention score in Ginf as the prediction
of the missing query object, where the inference graph itself serves as a graphical explanation.

4.2 NEIGHBORHOOD SAMPLING

We define the set of edges between node v = (ei, t) and its prior neighbors Nv as Qv , where
qv ∈ Qv is a prior edge of v. To reduce the complexity, we sample a subset of prior edges Q̂v ∈ Qv
at each inference step. We denote the remaining prior neighbors and posterior neighbors of node
v after the sampling as N̂v and N̂v , respectively. Note that there might be multiple edges between
node v and its prior neighbor u because of multiple predicates. If there is at least one edge that
has been sampled between v and u, we add u into N̂v . The sampling can be uniform if there is no
bias, it can also be temporally biased using a non-uniform distribution. For instance, we may want
to sample more edges closer to the current time point as the events that took place long ago may
have less impact on the inference. Specifically, we propose three different sampling strategies: (1)
Uniform sampling. Each prior edge qv ∈ Qv has the same probability of being selected: P(qv) =
1/|Qv|. (2) Time-aware exponentially weighted sampling. We temporally bias the neighborhood
sampling using an exponential distribution and assign the probability P(qv = (ei, pk, ej , t

′)) =
exp(t′ − t)/∑(ei,pl,em,t′′)∈Qv

exp(t′′ − t) to each prior neighbor, which negatively correlates with
the time difference between node v and its prior neighbor (ej , t′). Note that t′ and t′′ are prior to
t. (3) Time-aware linearly weighted sampling. We use a linear function to bias the sampling.
Compared to the second strategy, the quadruples occurred in early stages have a higher probability
of being sampled. Overall, we have empirically found that the second strategy is most beneficial to
our framework and provide a detailed ablation study in Section 5.2.

4.3 EMBEDDING

In temporal knowledge graphs, graph structures are no longer static, as entities and their links evolve
over time. Thus, entity features may change and exhibit temporal patterns. In this work, the embed-
ding of an entity ei ∈ E at time t consists of a static low-dimensional vector and a functional rep-
resentation of time. The time-aware entity embedding is defined as ei(t) = [ēi||Φ(t)]T ∈ RdS+dT .
Here, ēi ∈ RdS represents the static embedding that captures time-invariant features and global
dependencies over the temporal KG. Φ(·) denotes a time encoding that captures temporal depen-
dencies between entities (Xu et al., 2020). We provide more details about Φ(·) in Appendix I. ||
denotes the concatenation operator. dS and dT represent the dimensionality of the static embedding
and the time embedding, which can be tuned according to the temporal fraction of the given dataset.
We also tried the temporal encoding presented in Goel et al. (2019), which has significantly more
parameters. But we did not see considerable improvements. Besides, we assume that predicate
features do not evolve. Thus, we learn a stationary embedding vector pk for each predicate pk.

4

Published as a conference paper at ICLR 2021

4.4 TEMPORAL RELATIONAL GRAPH ATTENTION LAYER

Here, we propose a temporal relational graph attention (TRGA) layer for identifying the relevant
evidence in the inference graph related to a given query q. The input to the TRGA layer is a set
of entity embeddings ei(t) and predicate embeddings pk in the given inference graph. The layer
produces a query-dependent attention score for each edge and a new set of hidden representations
as its output. Similar to GraphSAGE (Hamilton et al., 2017) and GAT (Veličković et al., 2017), the
TRGA layer performs a local representation aggregation. To avoid misusing future information, we
only allow message passing from prior neighbors to posterior neighbors. Specifically, for each node
v in the inference graph, the aggregation function fuses the representation of node v and the sampled
prior neighbors N̂v to output a time-aware representation for v. Since entities may play different
roles, depending on the predicate they are associated with, we incorporate the predicate embeddings
in the attention function to exploit relation information. Instead of treating all prior neighbors with
equal importance, we take the query information into account and assign varying importance levels
to each prior neighbor u ∈ N̂v by calculating a query-dependent attention score using

elvu(q, pk) = Wl
sub(h

l−1
v ||pl−1k ||hl−1eq ||pl−1q)Wl

obj(h
l−1
u ||pl−1k ||hl−1eq ||pl−1q), (1)

where elvu(q, pk) is the attention score of the edge (v, pk, u) regarding the query q = (eq, pq, ?, tq),
pk corresponds to the predicate between node u and node v, pk and pq are predicate embeddings.
hl−1v denotes the hidden representation of node v at the (l − 1)th inference step. When l = 1, i.e.,
for the first layer, h0

v = Wvei(t)+bv , where v = (ei, t). Wl
sub and Wl

obj are two weight matrices
for capturing the dependencies between query features and node features. Then, we compute the
normalized attention score αlvu(q, pk) using the softmax function as follows

αlvu(q, pk) =
exp(elvu(q, pk))∑

w∈N̂v

∑
pz∈Pvw

exp(elvw(q, pz))
, (2)

where Pvw represents the set of labels of edges that connect nodes v and w. Once obtained, we
aggregate the representations of prior neighbors and weight them using the normalized attention
scores, which is written as

h̃lv(q) =
∑

u∈N̂v

∑

pk∈Pvu

αlvu(q, pk)h
l−1
u (q). (3)

We combine the hidden representation hl−1v (q) of node v with the aggregated neighborhood repre-
sentation h̃lv(q) and feed them into a fully connected layer with a LeakyReLU activation function
σ(·), as shown below

hlv(q) = σ(Wl
h(γhl−1v (q) + (1− γ)h̃lv(q) + blh)), (4)

where hlv(q) denotes the representation of node v at the lth inference step, and γ is a hyperparameter.
Further, we use the same layer to update the relation embeddings, which is of the form plk =

Wl
hp

l−1
k + blh. Thus, the relations are projected to the same embedding space as nodes and can be

utilized in the next inference step.

4.5 ATTENTION PROPAGATION AND SUBGRAPH PRUNING

After having the edges’ attention scores in the inference graph, we compute the attention score alv,q
of node v regarding query q at the lth inference step as follows:

alv,q =
∑

u∈N̂v

∑

pz∈Puv

αluv(q, pz)a
l−1
u,q . (5)

Thus, we propagate the attention of each node to its prior neighbors. As stated in Definition 2, each
node in inference graph is an entity-timestamp pair. To assign each entity a unique attention score,
we aggregate the attention scores of nodes whose entity is the same:

alei,q = g(alv,q|v(e) = ei), for v ∈ VGinf , (6)

5

Published as a conference paper at ICLR 2021

where alei,q denotes the attention score of entity ei, VGinf is the set of nodes in inference graph
Ginf. v(e) represents the entity included in node v, and g(·) represents a score aggregation function.
We try two score aggregation functions g(·), i.e., summation and mean. We conduct an ablation
study and find that the summation aggregation performs better. To demonstrate which evidence is
important for the reasoning process, we assign each edge in the inference graph a contribution score.
Specifically, the contribution score of an edge (v, pk, u) is defined as cvu(q, pk) = αlvu(q, pk)a

l
v,q ,

where node u is a prior neighbor of node v associated with the predicate pk. We prune the inference
graph at each inference step and keep the edges with K largest contribution scores. We set the
attention score of entities, which the inference graph does not include, to zero. Finally, we rank all
entity candidates according to their attention scores and choose the entity with the highest score as
our prediction.

4.6 REVERSE REPRESENTATION UPDATE MECHANISM

When humans perform a reasoning process, the perceived profile of an entity during the inference
may change as new evidence joins the reasoning process. For example, we want to predict the
profitability of company A. We knew that A has the largest market portion, which gives us a high
expectation about A’s profitability. However, a new evidence shows that conglomerate B enters this
market as a strong competitor. Although the new evidence is not directly related to A, it indicates
that there will be a high competition between A and B, which lowers our expectation about A’s prof-
itability. To mimic human reasoning behavior, we should ensure that all existing nodes in inference
graph Ginf can receive messages from nodes newly added to Ginf. However, since Ginf expands once
at each inference step, it might include l-hop neighbors of the query subject at the lth step. The
vanilla solution is to iterate the message passing l times at the lth inference step, which means that
we need to run the message passing (1 + L) · L/2 times in total, for L inference steps. To avoid the
quadratic increase of message passing iterations, we propose a novel reverse representation update
mechanism. Recall that, to avoid violating temporal constraints, we use prior neighbors to update
nodes’ representations. And at each inference step, we expand Ginf by adding prior neighbors of
each node in Ginf. For example, assuming that we are at the fourth inference step, for a node that has
been added at the second step, we only need to aggregate messages from nodes added at the third
and fourth steps. Hence, we can update the representations of nodes in reverse order as they have
been added in Ginf. Specifically, at the lth inference step, we first update the representations of nodes
added at the (l − 1)th inference step, then the nodes added at (l − 2)th, and so forth until l = 0, as
shown in Algorithm 1 in the appendix. In this way, we compute messages along each edge in Ginf
only once and ensure that every node can receive messages from its farthest prior neighbor.

4.7 LEARNING

We split quadruples of a temporal KG into train, validation, and test sets by timestamps, ensuring
(timestamps of training set)<(timestamps of validation set)<(timestamps of test set). We use the
binary cross-entropy as the loss function, which is defined as

L = − 1

|Q|
∑

q∈Q

1

|E infq |
∑

ei∈Einf
q

(
yei,q log(

aLei,q∑
ej∈Einf

q
aLej ,q

) + (1− yei,q) log(1−
aLei,q∑

ej∈Einf
q

aLej ,q
)

)
,

where E infq represents the set of entities in the inference graph of the query q, yei,q represents
the binary label that indicates whether ei is the answer for q, and Q denotes the set of training
quadruples. aLei,q denotes the attention score of ei at the final inference step. We list all model
parameters in Table 2 in the appendix. Particularly, we jointly learn the embeddings and other
model parameters by end-to-end training.

5 EXPERIMENTS

5.1 DATASETS AND BASELINES

Integrated Crisis Early Warning System (ICEWS) (Boschee et al., 2015) and YAGO (Mahdisoltani
et al., 2013) have established themselves in the research community as benchmark datasets of tem-
poral KGs. The ICEWS dataset contains information about political events with time annotations,

6

Published as a conference paper at ICLR 2021

e.g., (Barack Obama, visit, Malaysia, 2014-02-19). We evaluate our model on three subsets of
the ICEWS dataset, i.e., ICEWS14, ICEWS18, and ICEWS05-15, that contain event facts in 2014,
2018, and the facts from 2005 to 2015, respectively. The YAGO dataset is a temporal knowledge
base that fuses information from Wikipedia with the English WordNet dataset (Miller, 1995). Fol-
lowing the experimental settings of HyTE (Dasgupta et al., 2018), we use a subset and only deal with
year level granularity by dropping the month and date information. We compare our approach and
baseline methods by performing the link prediction task on the ICEWS14, ICEWS18, ICEWS0515,
and YAGO datasets. The statistics of the datasets are provided in Appendix C.

We compare xERTE with benchmark temporal KG and static KG reasoning models. From the
temporal KG reasoning models, we compare our model with several state-of-the-art methods, in-
cluding TTransE (Leblay & Chekol, 2018), TA-DistMult/TA-TransE (Garcı́a-Durán et al., 2018),
DE-SimplE(Goel et al., 2019), TNTComplEx (Lacroix et al., 2020), CyGNet(Zhu et al., 2020), and
RE-Net (Jin et al., 2019). From the static KG reasoning models, we choose TransE (Bordes et al.,
2013), DistMult (Yang et al., 2014), and ComplEx (Trouillon et al., 2016).

5.2 EXPERIMENTAL RESULTS AND ABLATION STUDY

Datasets ICEWS14 - filtered ICEWS05-15 - filtered ICEWS18 - filtered YAGO - filtered
Model MRR HITS@1 HITS@3 HITS@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE 22.48 13.36 25.63 41.23 22.55 13.05 25.61 42.05 12.24 5.84 12.81 25.10 11.69 10.37 11.96 13.83
DistMult 27.67 18.16 31.15 46.96 28.73 19.33 32.19 47.54 10.17 4.52 10.33 21.25 11.98 10.20 12.31 14.93
ComplEx 30.84 21.51 34.48 49.58 31.69 21.44 35.74 52.04 21.01 11.87 23.47 39.87 12.07 10.42 12.36 14.82

TTransE 13.43 3.11 17.32 34.55 15.71 5.00 19.72 38.02 8.31 1.92 8.56 21.89 5.68 1.42 9.04 11.21
TA-DistMult 26.47 17.09 30.22 45.41 24.31 14.58 27.92 44.21 16.75 8.61 18.41 33.59 11.50 10.21 11.90 13.88
TA-TransE 17.41 0.00 29.19 47.41 19.37 1.81 31.34 50.33 12.59 0.01 17.92 37.38 6.74 2.13 11.01 12.28
DE-SimplE 32.67 24.43 35.69 49.11 35.02 25.91 38.99 52.75 19.30 11.53 21.86 34.80 11.73 10.70 12.10 13.51
TNTComplEx 32.12 23.35 36.03 49.13 27.54 19.52 30.80 42.86 21.23 13.28 24.02 36.91 12.00 11.12 12.13 13.57
CyGNet3 32.73 23.69 36.31 50.67 34.97 25.67 39.09 52.94 24.93 15.90 28.28 42.61 12.48 11.00 12.66 14.82
RE-Net 38.28 28.68 41.34 54.52 42.97 31.26 46.85 63.47 28.81 19.05 32.44 47.51 54.87 47.51 57.84 65.81
xERTE 40.79 32.70 45.67 57.30 46.62 37.84 52.31 63.92 29.31 21.03 33.51 46.48 53.62 48.53 58.42 60.53

Table 1: Results of future link prediction on four datasets. Compared metrics are time-aware filtered
MRR (%) and Hits@1/3/10 (%). The best results among all models are in bold.

Comparison results Table 1 summarizes the time-aware filtered results of the link prediction
task on the ICEWS and YAGO datasets4. The time-aware filtering scheme only filters out triples
that are genuine at the query time while the filtering scheme applied in prior work (Jin et al., 2019;
Zhu et al., 2020) filters all triples that occurred in history. A detailed explanation is provided in
Appendix D. Overall, xERTE outperforms all baseline models on ICEWS14/05-15/18 in MRR and
Hits@1/3/10 while being more interpretable. Compared to the strongest baseline RE-Net, xERTE
obtains a relative improvement of 5.60% and 15.15% in MRR and Hits@1, which are averaged
on ICEWS14/05-15/18. Especially, xERTE achieves more gains in Hits@1 than in Hits@10. It
confirms the assumption that subgraph reasoning helps xERTE make a sharp prediction by exploiting
local structures. On the YAGO dataset, xERTE achieves comparable results with RE-Net in terms
of MRR and Hits@1/3. To assess the importance of each component, we conduct several ablation
studies and show their results in the following.

Representation update analysis We train a model without the reverse representation update
mechanism to investigate how this mechanism contributes to our model. Since the reverse repre-
sentation update ensures that each node can receive messages from all its prior neighbors in the
inference graph, we expect this mechanism could help nodes mine available information. This up-
date mechanism should be especially important for nodes that only have been involved in a small
number of events. Since the historical information of such nodes is quite limited, it is very chal-
lenging to forecast their future behavior. In Figure 2a and 2b we show the metrics of Hits@1 and
Hits@10 against the number of nodes in the inference graph. It can be observed the model with the
reverse update mechanism performs better in general. In particular, this update mechanism signif-
icantly improves the performance if the query subject only has a small number of neighbors in the
subgraph, which meets our expectation.

3We found that CyGNet does not perform subject prediction in its evaluation code and does not report
time-aware filtered results. The performance significantly drops after fixing the code.

4Code and datasets are available at https://github.com/TemporalKGTeam/xERTE

7

Published as a conference paper at ICLR 2021

(a) (b) (c)

(d) (e) (f)

Figure 2: Ablation Study. Unlike in Table 1 that reports results on the whole test set, here we filter
out test quadruples that contain unseen entities. (a)-(b) We compare the model with/without the re-
verse representation update in terms of raw Hits@1(%) and Hits@10(%) on ICEWS14, respectively.
(c) Temporal embedding analysis on YAGO. We refer the model without temporal embeddings as
xERTE-Static. (d) Attention score aggregation function analysis on ICEWS14: raw MRR (%) and
Hits@1/3/10(%). (e) Inference time (seconds) on the test set of ICEWS14 regarding different in-
ference step settings L ∈ {1, 2, 3, 4}. (f) Raw MRR(%) on ICEWS14 regarding different inference
step settings L.

Time-aware representation analysis and node attention aggregation To verify the importance
of the time embedding, we evaluate the performance of a model without time encoding. As shown in
Figure 2c, removing the time-dependent part from entity representations sacrifices the model’s per-
formance significantly. Recall that each node in inference graph Ginf is associated with a timestamp,
the same entity might appear in several nodes in Ginf with different timestamps. To get a unified
attention score for each entity, we aggregate the attention scores of nodes whose entity is the same.
Figure 2d shows that the summation aggregator brings a considerable gain on ICEWS14.

Sampling analysis We run experiments with different sampling strategies proposed in Section 4.2.
To assess the necessity of the time-aware weighted sampling, we propose a deterministic version of
the time-aware weighted sampling, where we chronologically sort the prior edges of node v in terms
of their timestamps and select the last N edges to build the subset Q̂v . The experimental results are
provided in Table 3 in the appendix. We find that the sampling strategy has a considerable influence
on model’s performance. Sampling strategies that bias towards recent quadruples perform better.
Specifically, the exponentially time-weighted strategy performs better than the linear time-weighted
strategy and the deterministic last-N-edges strategy.

Time cost analysis The time cost of xERTE is affected not only by the scale of a dataset but also
by the number of inference steps L. Thus, we run experiments of inference time and predictive
power regarding different settings of L and show the results in Figures 2e and 2f. We see that the
model achieves the best performance with L = 3 while the training time significantly increases as
L goes up. To make the computation more efficient, we develop a series of segment operations for
subgraph reasoning. Please see Appendix G for more details.

5.3 GRAPHICAL EXPLANATION AND HUMAN EVALUATION

The extracted inference graph provides a graphical explanation for model’s prediction. As intro-
duced in 4.7, we assign each edge in the inference graph a contribution score. Thus, users can trace
back the important evidence that the prediction mainly depends on. We study a query chosen from
the test set, where we predict whom will Catherine Ashton visit on Nov. 9, 2014 and show the final

8

Published as a conference paper at ICLR 2021

Figure 3: The inference graph for the query (Catherine Ashton, Make a visit, ?, 2014-11-09) from
ICEWS14. The biggest cyan node represents the object predicted by xERTE. The cyan node with
the entity Catherine Ashton and the timestamp 2014-11-09 represents the given query subject and
the query timestamp. The node size indicates the value of the node attention score. Also, the edges’
color indicates the contribution score of the edge, where darkness increases as the contribution score
goes up. The entity at an arrow’s tail, the predicate on the arrow, the entity and the timestamp at the
arrow’s head build a true quadruple.

inference graph in Figure 3. In this case, the model’s prediction is Oman. And (Catherine Ashton,
express intent to meet or negotiate, Oman, 2014-11-04) is the most important evidence to support
this answer.

To assess whether the evidence is informative for users in an objective setting, we conduct a survey
where respondents evaluate the relevance of the extracted evidence to the prediction. More con-
cretely, we set up an online quiz consisting of 7 rounds. Each round is centered around a query
sampled from the test set of ICEWS14/ICEWS05-15. Along with the query and the ground-truth
answer, we present the human respondents with two pieces of evidence in the inference graph with
high contribution scores and two pieces of evidence with low contribution scores in a randomized
order. Specifically, each evidence is based on a chronological reasoning path that connects the query
subject with an object candidate. For example, given a query (police, arrest, ?, 2014-12-28), an
extracted clue is that police made statements to lawyers on 2014-12-08, then lawyers were criticized
by citizens on 2014-12-10. In each round, we set up three questions to ask the participants to choose
the most relevant evidence, the most irrelevant evidence, and sort the pieces of evidence according
to their relevance. Then we rank the evidence according to the contribution scores computed by our
model and check whether the relevance order classified by the respondents matches that estimated
by our models. We surveyed 53 participants, and the average accuracy of all questions is 70.5%.
Moreover, based on a majority vote, 18 out of 21 questions were answered correctly, indicating that
the extracted inference graphs are informative, and the model is aligned with human intuition. The
complete survey and a detailed evaluation are reported in Appendix H.

6 CONCLUSION

We proposed an explainable reasoning approach for forecasting links on temporal knowledge graphs.
The model extracts a query-dependent subgraph from a given temporal KG and performs an attention
propagation process to reason on it. Extensive experiments on four benchmark datasets demonstrate
the effectiveness of our method. We conducted a survey about the evidence included in the extracted
subgraph. The results indicate that the evidence is informative for humans.

9

Published as a conference paper at ICLR 2021

REFERENCES

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for knowl-
edge graph completion. arXiv preprint arXiv:1901.09590, 2019.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pp. 2787–2795, 2013.

Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James Starz, and
Michael Ward. Icews coded event data. Harvard Dataverse, 12, 2015.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement learning. arXiv preprint arXiv:1711.05851,
2017.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte: Hyperplane-based tem-
porally aware knowledge graph embedding. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2001–2011, 2018.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. arXiv preprint arXiv:1707.01476, 2017.

Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable artificial intelligence: A survey.
In 2018 41st International convention on information and communication technology, electronics
and microelectronics (MIPRO), pp. 0210–0215. IEEE, 2018.

Alberto Garcı́a-Durán, Sebastijan Dumančić, and Mathias Niepert. Learning sequence encoders for
temporal knowledge graph completion. arXiv preprint arXiv:1809.03202, 2018.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. Diachronic embedding
for temporal knowledge graph completion. arXiv preprint arXiv:1907.03143, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. DyERNIE: Dynamic Evolution of Riemannian
Manifold Embeddings for Temporal Knowledge Graph Completion. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7301–7316,
Online, November 2020a. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.593.

Zhen Han, Yuyi Wang, Yunpu Ma, Stephan Guünnemann, and Volker Tresp. The graph hawkes
network for reasoning on temporal knowledge graphs. arXiv preprint arXiv:2003.13432, 2020b.

Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun, and Wei Wang. Universal representation
learning of knowledge bases by jointly embedding instances and ontological concepts. In Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1709–1719, 2019.

Marcel Hildebrandt, Jorge Andres Quintero Serna, Yunpu Ma, Martin Ringsquandl, Mitchell Joblin,
and Volker Tresp. Reasoning on knowledge graphs with debate dynamics. arXiv preprint
arXiv:2001.00461, 2020.

Woojeong Jin, Changlin Zhang, Pedro Szekely, and Xiang Ren. Recurrent event network for rea-
soning over temporal knowledge graphs. arXiv preprint arXiv:1904.05530, 2019.

Timothee Lacroix, Guillaume Obozinski, and Nicolas Usunier. Tensor decompositions for temporal
knowledge base completion. ICLR preprint https://openreview.net/pdf?id=rke2P1BFwS, 2020.

Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference 2018, pp. 1771–1776. International World
Wide Web Conferences Steering Committee, 2018.

10

Published as a conference paper at ICLR 2021

Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop knowledge graph reasoning with
reward shaping. arXiv preprint arXiv:1808.10568, 2018.

Xin Lv, Lei Hou, Juanzi Li, and Zhiyuan Liu. Differentiating concepts and instances for knowledge
graph embedding. arXiv preprint arXiv:1811.04588, 2018.

Shiheng Ma, Jianhui Ding, Weijia Jia, Kun Wang, and Minyi Guo. Transt: Type-based multiple
embedding representations for knowledge graph completion. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 717–733. Springer, 2017.

Yunpu Ma, Marcel Hildebrandt, Volker Tresp, and Stephan Baier. Holistic representations for mem-
orization and inference. In UAI, pp. 403–413, 2018a.

Yunpu Ma, Volker Tresp, and Erik A Daxberger. Embedding models for episodic knowledge graphs.
Journal of Web Semantics, pp. 100490, 2018b.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. Yago3: A knowledge base from
multilingual wikipedias. 2013.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995.

Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert
Müller. Explaining nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222, 2017.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In Icml, volume 11, pp. 809–816, 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, pp.
8024–8035, 2019.

Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li, Weinan Zhang, and Yong Yu. Dynamically
fused graph network for multi-hop reasoning. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 6140–6150, 2019.

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. arXiv preprint arXiv:2002.05969, 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic Web
Conference, pp. 593–607. Springer, 2018.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Komal K Teru, Etienne Denis, and William L Hamilton. Inductive relation prediction by subgraph
reasoning. arXiv preprint arXiv:1911.06962, 2019.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs. In Proceedings of the 34th International Conference on Machine
Learning, volume 70, pp. 3462–3471. JMLR. org, 2017.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. International Conference on Machine Learning
(ICML), 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua. Explain-
able reasoning over knowledge graphs for recommendation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 5329–5336, 2019.

11

Published as a conference paper at ICLR 2021

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, and Zhi-Hong Deng. Dynami-
cally pruned message passing networks for large-scale knowledge graph reasoning. arXiv preprint
arXiv:1909.11334, 2019.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In Advances in neural information processing
systems, pp. 9244–9255, 2019.

Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, and Yan Zhan. Learning from
history: Modeling temporal knowledge graphs with sequential copy-generation networks, 2020.

12

Published as a conference paper at ICLR 2021

APPENDIX

Figure 4: The inference graph for the query (e0, p1, ?, t3). The entity at an ar-
row’s tail, the predicate on the arrow, the entity and the timestamp at the arrow’s head
build a true quadruple. Specifically, the true quadruples in this graph are as follows:
{(e0, p1, e1, t1), (e0, p2, e1, t2), (e0, p3, e2, t2), (e0, p1, e2, t0)}. Note that t3 is posterior to
t0, t1, t2.

Algorithm 1 Reverse Representation Update at the Lth Inference Step

Input: Inference graph Ginf, nodes in the inference graph V , nodes that have been added into Ginf at
the lth inference step V l, sampled prior neighbors N̂v , hidden representation at the (L-1)th step
hL−1v , entity embeddings ei, weight matrices WL

sub, WL
obj , and WL

h , query q = (eq, pq, ?, tq),
update ratio γ.

Output: Hidden representations hLv at the Lth inference step, ∀v ∈ V .
1: for l = L− 1, ..., 0 do
2: for v ∈ V l do
3: for u ∈ N̂v do
4: eLvu(q, pk) = WL

sub(h
L−1
v ||pk||hL−1eq ||pq)WL

obj(h
L−1
u ||pk||hL−1eq ||pq),

5: αLvu(q, pk) =
exp(eLvu(q,pk))∑

w∈N̂v

∑
pz∈Pvw

eLvw(q,pz)

6: end for
7: h̃Lv (q) =

∑
u∈N̂v

∑
oz∈Pvu

αLvu(q, pk)h
L−1
u (q),

8: hLv (q) = σ(WL
h (γhL−1v (q) + (1− γ)h̃Lv (q) + bLh))

9: end for
10: end for
11: Return hLv ,∀v ∈ V.

Parameter Symbol

static entity embeddings ēi
frequencies and phase shift of time encoding w,φ

predicate embeddings pk
weight matrices of TRGA Wl

sub,W
l
obj ,W

l
h

bias vector of TRGA blh
weight matrix and bias of node embeddings Wv,bv

Table 2: Model parameters.

13

Published as a conference paper at ICLR 2021

Sampling Strategies MRR Hits@1 Hits@3 Hits@10

Uniform 36.26 27.66 41.39 53.96
Time-aware exponentially weighted 41.56 32.49 47.27 59.63

Time-aware linearly weighted 38.21 29.25 43.77 56.07
Last-N-edges 39.84 31.31 45.04 57.40

Table 3: Comparison between model variants with different sampling strategies on ICEWS14 : raw
MRR (%) and Hits@1/3/10 (%). In this ablation study, we filter out test triples that contain unseen
entities.

A RELATED WORK

A.1 KNOWLEDGE GRAPH MODELS

Representation learning is an expressive and popular paradigm underlying many KG models. The
key idea is to embed entities and relations into a low-dimensional vector space. The embedding-
based approaches for knowledge graphs can generally be categorized into bilinear models (Nickel
et al., 2011; Balažević et al., 2019), translational models (Bordes et al., 2013; Sun et al., 2019), and
deep-learning models (Dettmers et al., 2017; Schlichtkrull et al., 2018). Besides, several studies
(Hao et al., 2019; Lv et al., 2018; Ma et al., 2017) explore the ontology of entity types and relation
types and utilize type-based semantic similarity to produce better knowledge embeddings. However,
the above methods lack the ability to use rich temporal dynamics available on temporal knowledge
graphs. To this end, several studies have been conducted for link prediction on temporal knowledge
graphs (Leblay & Chekol, 2018; Garcı́a-Durán et al., 2018; Ma et al., 2018b; Dasgupta et al., 2018;
Trivedi et al., 2017; Jin et al., 2019; Goel et al., 2019; Lacroix et al., 2020). Ma et al. (2018b)
developed extensions of static knowledge graph models by adding timestamp embeddings to their
score functions. Besides, Garcı́a-Durán et al. (2018) suggested a straight forward extension of some
existing static knowledge graph models that utilize a recurrent neural network (RNN) to encode
predicates with temporal tokens derived from given timestamps. Also, HyTE (Dasgupta et al., 2018)
embeds time information in the entity-relation space by arranging a temporal hyperplane to each
timestamp. However, these models cannot generalize to unseen timestamps because they only learn
embeddings for observed timestamps. Additionally, the methods are largely black-box, lacking the
ability to interpret their predictions while our main focus is to employ an integrated transparency
mechanism for achieving human-understandable results.

A.2 EXPLAINABLE REASONING ON KNOWLEDGE GRAPHS

Recently, several explainable reasoning methods for knowledge graphs have been proposed (Das
et al., 2017; Xu et al., 2019; Hildebrandt et al., 2020) . Das et al. (2017) proposed a reinforcement
learning-based path searching approach to display the query subject and predicate to the agents and
let them perform a policy guided walk to the correct object entity. The reasoning paths produced
by the agents can explain the prediction results to some extent. Also, Hildebrandt et al. (2020)
framed the link prediction task as a debate game between two reinforcement learning agents that
extract evidence from knowledge graphs and allow users to understand the decision made by the
agents. Besides, and more related to our work, Xu et al. (2019) models a sequential reasoning
process by dynamically constructing an input-dependent subgraph. The difference here is that these
explainable methods can only deal with static KGs, while our model is designed for forecasting on
temporal KGs.

B WORKFLOW

We show the workflow of the subgraph reasoning process in Figure 5. The model conducts the
reasoning process on a dynamically expanding inference graph Ginf extracted from the temporal KG.
This inference graph gives an interpretable graphical explanation about the final prediction. Given
a query q = (eq, pq, ?, tq), we initialize the inference graph with the query entity eq and define the
tuple of (eq, tq) as the first node in the inference graph (Figure 5a). The inference graph expands by

14

Published as a conference paper at ICLR 2021

(a) Initialization. (b) Expansion. (c) Pruning. (d) New Expansion.

Figure 5: Inference step by step illustration. Node attention scores are attached to the nodes. Gray
nodes are removed by the pruning procedure.

sample neighbors that have been linked with eq prior to tq , as shown in Figure 5b. The expansion
would go rapidly that it covers almost all nodes after a few steps. To prevent the inference graph
from exploding, we constrain the number of edge by pruning the edges that are less related to the
query (Figure 5c) . Here, we propose a query-dependent temporal relational attention mechanism
in Section 4.4 to identify the nodes’ importance in the inference graph for query q and aggregate
information from nodes’ local neighbors. Next, we sample the prior neighbors of the remaining
nodes in the inference graph to expand it further, as shown in Figure 5d. As this process iterates,
the inference graph incrementally gains more and more information from the temporal KG. After
running L inference steps, the model selects the entity with the highest attention score in Ginf as
the prediction of the missing query object, where the inference graph itself serves as a graphical
explanation.

2

C DATASET STATISTICS

Dataset Ntrain Nvalid Ntest Nent Nrel Ntimestamp Time granularity

ICEWS14 63685 13823 13222 7128 230 365 day
ICEWS18 373018 45995 49545 23033 256 304 day

ICEWS0515 322958 69224 69147 10488 251 4017 day
YAGO 51205 10973 10973 10038 10 194 year

Table 4: Dataset Statistics

Dataset |Etr| |Etr|/|E| |Etr+val| |E|
ICEWS14 6180 86.7 6710 7128
ICEWS18 21085 91.5 21995 23033

ICEWS0515 8853 84.4 9792 10488
YAGO 7904 78.7 9008 10038

Table 5: Unseen entities (new emerging entities) in the validation set and test set. |Etr| denotes the
number of entities in the training set, |Etr+val| represents the number of entities in the training set
and validation set, |E| denotes the number of entities in the whole dataset.

We provide the statistics of datasets in Table 4. Since we split each dataset into subsets by times-
tamps, ensuring (timestamps of training set) < (timestamps of validation set) < (timestamps of test
set), a considerable amount of entities in test sets is unseen. We report the number of entities in each
subset in Table 5.

15

Published as a conference paper at ICLR 2021

D EVALUATION PROTOCOL

For each quadruple q = (es, p, eo, t) in the test set Gtest, we create two queries: (es, p, ?, t) and
(eo, p

−1, ?, t), where p−1 denotes the reciprocal relation of p. For each query, the model ranks all
entities E infq in the final inference graph according to their attention scores. If the ground truth entity
does not appear in the final subgraph, we set its rank as |E| (the number of entities in the dataset).
Let ψes and ψeo represent the rank for es and eo of the two queries respectively. We evaluate our
model using standard metrics across the link prediction literature: mean reciprocal rank (MRR):

1
2·|Gtest|

∑
q∈Gtest(

1
ψes

+ 1
ψeo

) and Hits@k(k ∈ {1, 3, 10}): the percentage of times that the true
entity candidate appears in the top k of the ranked candidates.

In this paper, we consider two different filtering settings. The first one is following the ranking
technique described in Bordes et al. (2013), where we remove from the list of corrupted triples
all the triples that appear either in the training, validation, or test set. We name it static filtering.
Trivedi et al. (2017), Jin et al. (2019), and Zhu et al. (2020) use this filtering setting for reporting their
results on temporal KG forecasting. However, this filtering setting is not appropriate for evaluating
the link prediction on temporal KGs. For example, there is a test quadruple (Barack Obama, visit,
India, 2015-01-25), and we perform the object prediction (Barack Obama, visit, ?, 2015-01-25).
We have observed the quadruple (Barack Obama, visit, Germany, 2013-01-18) in the training set.
According to the static filtering, (Barack Obama, visit, Germany) will be considered as a genuine
triple at the timestamp 2015-01-25 and will be filtered out because the triple (Barack Obama, visit,
Germany) appears in the training set in the quadruple (Barack Obama, visit, Germany, 2015-01-18).
However, the triple (Barack Obama, visit, Germany) is only temporally valid on 2013-01-18 but not
on 2015-01-25. Therefore, we apply another filtering scheme, which is more appropriate for the
link forecasting task on temporal KGs. We name it time-aware filtering. In this case, we only filter
out the triples that are genuine at the timestamp of the query. In other words, if the triple (Barack
Obama, visit, Germany) does not appear at the query time of 2015-01-25, the quadruple (Barack
Obama, visit, Germany, 2015-01-25) is considered as corrupted and will be filtered out. We report
the time-aware filtered results of baselines and our model in Table 1.

E IMPLEMENTATION

We implement our model and all baselines in PyTorch (Paszke et al., 2019). We tune hyperparam-
eters of our model using a grid search. We set the learning rate to be 0.0002, the batch size to be
128, the inference step L to be 3. Please see the source code5 for detailed hyperparameter settings.
We implement TTransE, TA-TransE/TA-DistMult, and RE-Net based on the code6 provided in (Jin
et al., 2019). We use the released code to implement DE-SimplE7, TNTComplEx8, and CyGNet9.
We use the binary cross-entropy loss to train these baselines and optimize hyperparameters accord-
ing to MRR on the validation set. Besides, we use the datasets augmented with reciprocal relations
to train all baseline models.

F REVERSE REPRESENTATION UPDATE MECHANISM FOR SUBGRAPH
REASONING

In this section, we explain an additional reason why we have to update node representations along
edges selected in previous inference steps. We show our intuition by a simple query in Figure 6 with
two inference steps. For simplicity, we do not apply the pruning procedure here. First, we check
the equations without updating node representations along previously selected edges. hli denotes the

5https://github.com/TemporalKGTeam/xERTE
6https://github.com/INK-USC/RE-Net
7https://github.com/BorealisAI/de-simple
8https://github.com/facebookresearch/tkbc
9https://github.com/CunchaoZ/CyGNet

16

Published as a conference paper at ICLR 2021

hidden representation of node i at the lth inference step.

First inference step: h1
0 = f(h0

0,h
0
1,h

0
2,h

0
3)

h1
1 = f(h0

1)

h1
2 = f(h0

2)

h1
3 = f(h0

3)

Second inference step: h2
0 = f(h1

0,h
1
1,h

1
2,h

1
3)

= f(h1
0, f(h

0
1), f(h

0
2), f(h

0
3))

h2
1 = f(h1

1,h
1
4,h

1
5)

h2
2 = f(h1

2,h
1
7,h

1
8)

h2
3 = f(h1

3,h
1
6)

Note that h2
0 is updated with h0

1,h
0
2,h

0
3 and has nothing to do with h1

4,h
1
5,h

1
6,h

1
7,h

1
8, i.e., two-hop

neighbors. In comparison, if we update the node representations along previously selected edges,
the update in second layer changes to:

Second inference step part a: h2
4 = f(f(h0

4))

h2
5 = f(f(h0

5))

h2
6 = f(f(h0

6))

h2
7 = f(f(h0

7))

h2
8 = f(f(h0

8))

Second inference step part b: h2
1 = f(h1

1,h
2
4,h

2
5)

h2
2 = f(h1

2,h
2
7,h

2
8)

h2
3 = f(h1

3,h
2
6)

Second inference step part c: h2
0 = f(h1

0,h
2
1,h

2
2,h

2
3)

Thus, the node 1∼3 receive messages from their one-hop prior neighbors, i.e. h2
1 = f(h1

1,h
2
4,h

2
5).

Then they pass the information to the query subject (node 0), i.e., h2
0 = f(h1

0,h
2
1,h

2
2,h

2
3).

G SEGMENT OPERATIONS

The degree of entities in temporal KGs, i.e., ICEWS, varies from thousands to a single digit. Thus,
the size of inference graphs of each query is also different. To optimize the batch training, we define
an array to record all nodes in inference graphs for a batch of queries. Each node is represented by a
tuple of (inference graph index, entity index, timestamp, node index). The node index is the unique
index to distinguish the same node in different inference graphs.

Note that the inference graphs of two queries may overlap, which means they have the same nodes
in their inference graphs. But the query-dependent node representations would be distinct in differ-
ent inference graphs. To avoid mixing information across different queries, we need to make sure
that tensor operations can be applied separately to nodes in different inference graphs. Instead of
iterating through each inference graph, we develop a series of segment operations based on matrix
multiplication. The segment operations significantly improve time efficiency and reduce the time
cost. We report the improvement of time efficiency on ICEWS14 in Table 6. Additionally, we list
two examples of segment operations in the following.

17

Published as a conference paper at ICLR 2021

Figure 6: A simple example with two inference steps for illustrating reverse node representation
update schema. The graph is initialized with the green node. In the first step (the left figure), orange
nodes are sampled; and in the second step (the right figure), blue nodes are sampled. Each directed
edge points from a source node to its prior neighbor.

Computations Time Cost using Iterator Time Cost using Segment Operation

Aggregation of Node Score 11.75s 0.004s
Aggregation of Entity Score 3.62s 0.026s

Softmax 1.56s 0.017s
Node Score Normalization 0.000738s 0.000047s

Table 6: Reduction of time cost for a batch on ICEWS14

Segment Sum Given a vector x ∈ Rd and another vector s ∈ Rd that indicates the segment
index of each element in x, the segment sum operator returns the summation for each segment. For
example, we have x = [3, 1, 5]T and s = [0, 0, 1]T , which means the first two element of x belong
to the 0th segment and the last elements belongs to the first segment. The segment sum operator
returns [4, 5]T as the output. It is realized by creating a sparse matrix Y ∈ Rn×d, where n denotes
the number of segments. We set 1 in positions {(s[i], i), ∀i ∈ {0, ..., d}} of Y and pad other
positions with zeros. Finally, we multiply Y with x to get the sum of each segment.

Segment Softmax The standard softmax function σ : RK → RK is defined as:

σ(z)i =
exp (zi)∑K
j=1 exp(zj)

The segment softmax function has two inputs: z ∈ RK contains elements to normalize and s ∈ RK
denotes the segment index of each element. It is then defined as:

σ(z)i =
exp (zi)∑

j∈{k|sk=si,∀k∈{0,...,K}} exp (zj)

, where si denotes the segment that zi is in.

The segment softmax function can be calculated by the following steps:

1. We apply the exponential function to each element of z and then apply the segment sum
operator to get a denominator vector d. We need broadcast d such that it aligns with z,
which means d[i] is the summation of segment s[i].

2. We apply element-wise division between d and z.

18

Published as a conference paper at ICLR 2021

(a) Gender distribution. (b) Age distribution.
(c) Education level.

Figure 7: Information about the respondent population.

H SURVEY

In this section, we provide the online survey (see Section 5.3 in the main body) and the evaluation
statistics based on 53 respondents. To avoid biasing the respondents, we did not inform them about
the type of our project. Further, all questions are permuted at random.

We set up the quiz consisting of 7 rounds. In each round, we sample a query from the test set
of ICEWS14/ICEWS0515. Along with the query and the ground-truth object, we present the users
with two pieces of evidence extracted from the inference graph with high contribution scores and two
pieces of evidence with low contribution scores in randomized order. The respondents are supposed
to judge the relevance of the evidence to the query in two levels, namely relevant or less relevant.
There are three questions in each round that ask the participants to give the most relevant evidence,
the most irrelevant evidence, and rank the four pieces of evidence according to their relevance. The
answer to the first question is classified as correct if a participant gives one of the two statements with
high contribution scores as the most relevant evidence. Similarly, the answer to the second question
is classified as correct if the participant gives one of the two statements with low contribution scores
as the most irrelevant evidence. For the relevance ranking task, the answer is right if the participant
ranks the two statements with high contribution scores higher than the two statements with low
contribution scores.

H.1 POPULATION

We provide the information about gender, age, and education level of the respondents in Figure 7.

H.2 AI QUIZ

You will participate in a quiz consisting of eight rounds. Each round is centered around an interna-
tional event. Along with the event, we also show you four reasons that explain why the given event
happened. While some evidence may be informative and explain the occurrence of this event, oth-
ers may irrelevant to this event. Your task is to find the most relevant evidence and most irrelevant
evidence, and then sort all four evidence according to their relevance. Don’t worry if you feel that
you cannot make an informed decision: Guessing is part of this game!

Additional Remarks: Please don’t look for external information (e.g., Google, Wikipedia) or talk to
other respondents about the quiz. But you are allowed to use a dictionary if you need vocabulary
clarifications.

Example

Given an event, please rank the followed evidence according to the relevance to the given event.
Especially, please select the most relevant reason, the most irrelevant reason, and rank the relevance
from high to low.

Event: French government made an optimistic comment about China on 2014-11-24.

19

Published as a conference paper at ICLR 2021

A. First, on 2014-11-20, South Africa engaged in diplomatic cooperation with Morocco. Later,
on 2014-11-21, a representative of the Morocco government met a representative of the French
government.

B. First, on 2014-11-18, the Chinese government engaged in negotiation with the Iranian govern-
ment. Later, on 2014-11-21, a representative of the French government met a representative of the
Chinese government.

C. On 2014-11-23, the French hosted a visit by Abdel Fattah Al-Sisi.

D. A representative of the French government met a representative of the Chinese government on
2014-11-21.

Correct answer

Most relevant: D Most irrelevant: A Relevance ranking: D B C A

Tasks

1. Event: On 2014-12-17, the UN Security Council accused South Sudan.

A. South Africa engaged in diplomatic cooperation with South Sudan on 2014-12-11.

B. First, on 2014-11-17, Uhuru Muigai Kenyatta accused UN Security Council. Later, on 2014-11-
26, the UN Security Council provided military protection to South Sudan.

C. On 2014-12-16, UN Security Council threatened South Sudan with sanctions.

D. South Sudan hosted the visit of John Kerry on 2014-12-16.

Most relevant: Most irrelevant: Relevance ranking:

2. Event: Indonesia police arrested and retained an Indonesia citizen at 2014-12-28.

A. The Indonesia police claimed that an attorney denounced the citizen on 2014-12-10.

B. Zaini Abdullah endorsed the Indonesia citizen on 2014-12-25.

C. The Indonesia police made an optimistic comment on the citizen on 2014-12-14.

D. The Indonesia police investigated the citizen on 2014-12-08.

Most relevant: Most irrelevant: Relevance ranking:

3. Event: A citizen from Greece protested violently against the police of Greece on 2014-11-17.

A. The Greek head of government accused the political party “Coalition of the Radical Left” on
2014-05-25.

B. Greek police refused to surrender to the Greek head of government on 2014-10-15.

C. Greek citizens gathered support on behalf of John Kerry on 2014-11-17.

D. Greek police arrested and detained another Greek police officer on 2014-11-04.

Most relevant: Most irrelevant: Relevance ranking:

4. Event: Raúl Castro signed a formal agreement with Barack Obama on 2014-12-17.

A. First, on 2009-01-28, Dmitry A. Medvedev made statements to Barack Obama. Later, on 2009-
01-30, Raúl Castro negotiated with Dmitry A. Medvedev.

B. Raúl Castro visited Angola on 2009-07-22.

C. Raúl Castro hosted a visit of Evo Morales on 2011-09-19.

D. First, on 2008-11-05, Evo Morales hosted a visit of Barack Obama. Later, on 2011-09-19, Raúl
Castro appeal for de-escalation of military engagement to Evo Morales.

Most relevant: Most irrelevant: Relevance ranking:

20

Published as a conference paper at ICLR 2021

5. Event: The head of the government of Ukraine considered to make a policy option with Angela
Merkel on 2015-07-10.

A. First, on 2014-07-04, the armed rebel in Ukraine used unconventional violence to the military of
Ukraine. Later, on 2014-07-10, the head of government of Ukraine made statements to the armed
rebel in Ukraine.

B. The head of the government of Ukraine expressed intent to meet with Angela Merkel on 2014-
10-30.

C. First, on 2014-07-04, the armed rebel in Ukraine used unconventional violence to the military of
Ukraine. Later, on 2014-07-19, the head of government of Ukraine made statements to the armed
rebel in Ukraine.

D. The head of the government of Ukraine consulted with Angela Merkel on 2015-06-06.

Most relevant: Most irrelevant: Relevance ranking:

6. Event: On 2014-08-09, Ukraine police arrested a member of the Ukraine military.

A. First, on 2014-07-23, a member of Ukraine parliament consulted the head of the Ukraine govern-
ment. Later, on 2014-07-24, the head of government made a statement to the Ukraine police.

B. First, on 2014-06-25, the military of Ukraine used violence to an armed rebel that occurred in
Ukraine. Later, on 2014-07-10, the armed rebel used violence to the Ukraine police.

C. First, on 2005-02-20, the military of Ukraine made a statement to the head of the government
of Ukraine. Later, on 2005-07-18, the head of government of Ukraine appealed for a change in
leadership of the Ukraine police.

D. On 2014-07-31, the head of the Ukraine government praised the Ukraine police.

Most relevant: Most irrelevant: Relevance ranking:

7. Event: The Office of Business Affairs of Bahrain negotiated with the Labor and Employment
Ministry of Bahrain on 2015-07-16.

A. First, on 2014-07-27, the undersecretary of Bahrain made statements to the Labor and Employ-
ment Ministry of Bahrain. Later, on 2015-01-21, an officer of Business Affairs of Bahrain signed a
formal agreement with the undersecretary of Bahrain.

B. On 2012-01-21, the office of Business Affairs of Bahrain expressed intent to provide policy
support to the employees in Bahrain.

C. First, on 2006-11-01, the employees in Bahrain made statements with the special Rapporteurs of
the United Nation. Later, on 2011-05-11, the office of Business Affairs of Bahrain reduced relations
with the employees in Bahrain.

D. A representative of the Labor and Employment Ministry of Bahrain consulted with a representa-
tive of the Office of Business Affairs of Bahrain on 2014-01-31.

Most relevant: Most irrelevant: Relevance ranking:

H.3 GROUND TRUTH ANSWERS

Question 1:

Most relevant: B/C Most irrelevant: A/D

Relevance ranking: BCAD/BCDA/CBAD/CBDA

Question 2:

Most relevant: A/D Most irrelevant: B/C

Relevance ranking: ADBC/ADCB/DABC/DACB

Question 3:

Most relevant: B/D Most irrelevant: A/C

21

Published as a conference paper at ICLR 2021

Relevance ranking: BDAC/BDCA/DBAC/DBCA

Question 4:

Most relevant: A/D Most irrelevant: B/C

Relevance ranking: ADBC/ADCB/DABC/DACB

Question 5:

Most relevant: B/D Most irrelevant: A/C

Relevance ranking: BDAC/BDCA/DBAC/DBCA

Question 6:

Most relevant: B/C. Most irrelevant: A/D

Relevance ranking: BCAD/BCDA/CBAD/CBDA

Question 7:

Most relevant: A/D Most irrelevant: B/C

Relevance ranking: ADBC/ADCB/DABC/DACB

H.4 EVALUATION

The evaluation results of 53 respondents are shown in Figure 8.

22

Published as a conference paper at ICLR 2021

Figure 8: The accuracy of the survey questions.

23

Published as a conference paper at ICLR 2021

I ADDITIONAL ANALYSIS OF TIME-AWARE ENTITY REPRESENTATIONS

We use a generic time encoding (Xu et al., 2020) defined as Φ(t) =
√

1
d [cos(ω1t +

φ1),, cos(ωdt+ φd)] to generate the time-variant part of entity representations (please see Sec-
tion 4.2 for more details). Time-aware representations have considerable influence on the temporal
attention mechanism. To make our point, we conduct a case study and extract the edges’ attention
scores from the final inference graph. Specifically, we study the attention scores of the interactions
between military and student at different timestamps in terms of the query (student, criticize, ?, Nov.
17, 2014). We list the results of the model with time encoding in Table 7 and the results of the model
without time encoding in Table 8.

As shown in Table 7, by means of the time-encoding, quadruples that even have the same subject,
predicate, and object have different attention scores. Specifically, quadruples that occurred recently
tend to have higher attention scores. This makes our model more interpretable and effective. For
example, given three quadruples {(country A, accuse, country B, t1), (country A, express intent
to negotiate with, country B, t2), (country A, cooperate with, country B, t3)}, country A probably
has a good relationship with B at t if (t1 < t2 < t3 < t) holds. However, there would be a
strained relationship between A and B at t if (t > t1 > t2 > t3) holds. Thus, we can see that
the time information is crucial to the reasoning, and attention values should be time-dependent. In
comparison, Table 8 shows that the triple (military, use conventional military force, student) has
randomly different attention scores at different timestamps, which is less interpretable.

Subject Object Predicate Timestamp Attention Score

Military Student Use conventional military force Jan. 17, 2014 0.0123
Military Student Use conventional military force May 22, 2014 0.0186
Military Student Use conventional military force Aug. 18, 2014 0.0235
Military Student Use unconventional violence (reciprocal relation) Aug. 25, 2014 0.0348

Table 7: Attention scores of the interactions between military and student at different timestamps
(with time encoding).

Subject Object Predicate Timestamp Attention Score

Military Student Use conventional military force Jan. 17, 2014 0.0152
Military Student Use conventional military force May 22, 2014 0.0122
Military Student Use conventional military force Aug. 18, 2014 0.0159
Military Student Use unconventional violence (reciprocal relation) Aug. 25, 2014 0.0021

Table 8: Attention scores of the interactions between military and student at different timestamps
(without time encoding).

24

Chapter 4

Learning Neural Ordinary Equations

for Forecasting Future Links on

Temporal Knowledge Graphs

This chapter contains the publication

Zhen Han, Zifeng Ding, Yunpu Ma, Jiayu Gu, Volker Tresp. Learning Neural Or-

dinary Equations for Forecasting Future Links on Temporal Knowledge Graphs. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), Online and in Dominican Republic, Nov. 2021. DOI: 10.18653/v1/2021.emnlp-

main.658.

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8352–8364
November 7–11, 2021. c©2021 Association for Computational Linguistics

8352

Learning Neural Ordinary Equations for Forecasting Future Links on
Temporal Knowledge Graphs

Zhen Han∗1,2, Zifeng Ding∗1,2, Yunpu Ma∗1, Yujia Gu3 Volker Tresp†1,2
1Institute of Informatics, LMU Munich 2 Corporate Technology, Siemens AG

3Department of Electrical and Computer Engineering, Technical University of Munich
zhen.han@campus.lmu.de, cognitive.yunpu@gmail.com

{zifeng.ding, volker.tresp}@siemens.com, yujia.gu@tum.de

Abstract

There has been an increasing interest in in-
ferring future links on temporal knowledge
graphs (KG). While links on temporal KGs
vary continuously over time, the existing ap-
proaches model the temporal KGs in discrete
state spaces. To this end, we propose a novel
continuum model by extending the idea of neu-
ral ordinary differential equations (ODEs) to
multi-relational graph convolutional networks.
The proposed model preserves the continuous
nature of dynamic multi-relational graph data
and encodes both temporal and structural in-
formation into continuous-time dynamic em-
beddings. In addition, a novel graph transition
layer is applied to capture the transitions on the
dynamic graph, i.e., edge formation and disso-
lution. We perform extensive experiments on
five benchmark datasets for temporal KG rea-
soning, showing our model’s superior perfor-
mance on the future link forecasting task.

1 Introduction

Reasoning on relational data has long been consid-
ered an essential subject in artificial intelligence
with wide applications, including decision sup-
port and question answering. Recently, reasoning
on knowledge graphs has gained increasing inter-
est (Ren and Leskovec, 2020; Das et al., 2018).
A Knowledge Graph (KG) is a graph-structured
knowledge base to store factual information. KGs
represent facts in the form of triples (s, r, o), e.g.,
(Bob, livesIn, New York), in which s (subject) and
o (object) denote nodes (entities), and r denotes
the edge type (relation) between s and o. Knowl-
edge graphs are commonly static and store facts in
their current state. In reality, however, the relations
between entities often change over time. For exam-
ple, if Bob moves to California, the triple of (Bob,
livesIn, New York) will be invalid. To this end,
temporal knowledge graphs (tKG) were introduced.

∗Equal contribution.
†Corresponding author.

A tKG represents a temporal fact as a quadruple
(s, r, o, t) by extending a static triple with time t,
describing that this fact is valid at time t. In recent
years, several sizable temporal knowledge graphs,
such as ICEWS (Boschee et al., 2015), have been
developed that provide widespread availability of
such data and enable reasoning on temporal KGs.
While lots of work (García-Durán et al., 2018; Goel
et al., 2020; Lacroix et al., 2020) focus on the tem-
poral KG completion task and predict missing links
at observed timestamps, recent work (Jin et al.,
2019; Trivedi et al., 2017) paid attention to forecast
future links of temporal KGs. In this work, we
focus on the temporal KG forecasting task, which
is more challenging than the completion task.

Most existing work (Jin et al., 2019; Zhu et al.,
2020) models temporal KGs in a discrete-time do-
main where they take snapshots of temporal KGs
sampled at regularly-spaced timestamps. Thus,
these approaches cannot model irregular time inter-
vals, which convey essential information for analyz-
ing dynamics on temporal KGs, e.g., the dwelling
time of a user on a website becomes shorter, indicat-
ing that the user’s interest in the website decreases.
KnowEvolve (Trivedi et al., 2017) uses a neural
point process to model continuous-time temporal
KGs. However, Know-Evolve does not take the
graph’s structural information into account, thus
losing the power of modeling temporal topological
information. Also, KnowEolve is a transductive
method that cannot handle unseen nodes. In this
paper, we present a graph neural-based approach
to learn dynamic representations of entities and
relations on temporal KGs. Specifically, we pro-
pose a graph neural ordinary differential equation
to model the graph dynamics in the continuous-
time domain.

Inspired by neural ordinary differential equations
(NODEs) (Chen et al., 2018), we extend the idea
of continuum-depth models to encode the continu-
ous dynamics of temporal KGs. To apply NODEs

8353

to temporal KG reasoning, we employ a NODE
coupled with multi-relational graph convolutional
(MGCN) layers. MGCN layers are used to cap-
ture the structural information of multi-relational
graph data, while the NODE learns the evolution
of temporal KGs over time. Specifically, we in-
tegrate the hidden representations over time us-
ing an ODE solver and output the continuous-time
dynamic representations of entities and relations.
Unlike many existing temporal KG models that
learn the dynamics by employing recurrent model
structures with discrete depth, our model lets the
time domain coincide with the depth of a neural
network and takes advantage of NODE to steer
the latent entity features between two timestamps
smoothly. Besides, existing work simply uses the
adjacency tensor from previous snapshots of the
tKG to predict its linkage structure at a future time.
Usually, most edges do not change between two
observations, while only a few new edges have
formatted or dissolved since the last observation.
However, the dissolution and formation of these
small amounts of edges always contain valuable
temporal information and are more critical than
unchanged edges for learning the graph dynamics.
For example, we know an edge with the label eco-
nomicallyCooperateWith between two countries
x and y at time t, but this dissolves at t + ∆t1.
Additionally, there is another edge with the label
banTradesWith between these two countries that
are formated at t+ ∆t2 (∆t2 > ∆t1). Intuitively,
the dissolution of (x, economicallyCooperateWith,
y) is an essential indicator of the quadruple (x,
banTradesWith, y, t + ∆t2). Thus, it should get
more attention from the model. However, suppose
we only feed the adjacency tensors of different ob-
servation snapshots into the model. In that case, we
do not know whether the model can effectively cap-
ture the changes of the adjacency tensors and puts
more attention on the evolving part of the graph.
To let the model focus on the graph’s transitions,
we propose a graph transition layer that takes a
graph transition tensor containing edge formation
and dissolution information as input and uses graph
convolutions to process the transition information
explicitly.

In this work, we propose a model to perform
Temporal Knowledge Graph Forecasting with Neu-
ral Ordinary Equations (TANGO). The main
contributions are summarized as follows:

• We propose a continuous-depth multi-

relational graph neural network for forecast-
ing future links on temporal KGs by defining
a multi-relational graph neural ordinary differ-
ential equation. The ODE enables our model
to learn continuous-time representations of en-
tities and relations. We are the first to show
that the neural ODE framework can be ex-
tended to modeling dynamic multi-relational
graphs.

• We propose a graph transition layer to model
the edge formation and dissolution of tem-
poral KGs, which effectively improves our
model’s performance.

• We propose two new tasks, i.e., inductive link
prediction and long horizontal link forecast-
ing, for temporal KG models. They evaluate
a model’s potential by testing the model’s per-
formance on previously unseen entities and
predicting the links happening in the farther
future.

• We apply our model to forecast future links
on five benchmark temporal knowledge graph
datasets, showing its state-of-the-art perfor-
mance.

2 Preliminaries and Related Work

2.1 Graph Convolutional Networks

Graph convolutional networks (GCNs) have shown
great success in capturing structural dependencies
of graph data. GCNs come in two classes: i) spec-
tral methods (Kipf and Welling, 2016; Defferrard
et al., 2016) and ii) spatial methods (Niepert et al.,
2016; Gilmer et al., 2017). However, common
GCNs can only deal with homogeneous graphs.
To distinguish between different relations, R-GCN
(Schlichtkrull et al., 2017) introduces relation-
specific weight matrices for message transforma-
tions. However, the number of parameters in R-
GCN grows rapidly with the number of relations,
easily leading to overfitting. Vashishth et al. (2019)
proposed a multi-relational GCN, which is compat-
ible with KGs and leverages various entity-relation
composition operations from KG embedding tech-
niques. Additionally, some work combines GCN
with temporal graphs (Yan et al., 2018; Li et al.,
2020). However, they are designed for homoge-
neous graphs but not for multi-relational graphs.

8354

2.2 Neural Ordinary Differential Equations
Neural Ordinary Differential Equation (NODE)
(Chen et al., 2018) is a continuous-depth deep neu-
ral network model. It represents the derivative of
the hidden state with a neural network:

dz(t)

dt
= f(z(t), t, θ), (1)

where z(t) denotes the hidden state of a dynamic
system at time t, and f denotes a function parame-
terized by a neural network to describe the deriva-
tive of the hidden state regarding time. θ represents
the parameters in the neural network. The output
of a NODE framework is calculated using an ODE
solver coupled with an initial value:

z(t1) = z(t0) +

∫ t1

t0

f(z(t), t, θ)dt. (2)

Here, t0 is the initial time point, and t1 is the output
time point. z(t1) and z(t0) represent the hidden
state at t1 and t0, respectively. Thus, the NODE
can output the hidden state of a dynamic system at
any time point and deal with continuous-time data,
which is extremely useful in modeling continuous-
time dynamic systems.

Moreover, to reduce the memory cost in the back-
propagation, Chen et al. (2018) introduced the ad-
joint sensitivity method into NODEs. An adjoint
is a(t) = ∂L

∂z(t) , where L means the loss. The gradi-
ent of L with regard to network parameters θ can
be directly computed by the adjoint and an ODE
solver:

dL
dθ

= −
∫ t0

t1

a(t)T
∂f(z(t), t, θ)

∂θ
dt. (3)

In other words, the adjoint sensitivity method
solves an augmented ODE backward in time and
computes the gradients without backpropagating
through the operations of the solver.

2.3 Temporal Knowledge Graph Reasoning
Let V andR represent a finite set of entities and re-
lations, respectively. A temporal knowledge graph
(tKG) G is a multi-relational graph whose edges
evolve over time. At any time point, a snapshot
G(t) contains all valid edges at t. Note that the time
interval between neighboring snapshots may not
be regularly spaced. A quadruple q = (s, r, o, t)
describes a labeled timestamped edge at time t,
where r ∈ R represents the relation between a
subject entity s ∈ V and an object entity o ∈ V .

Formally, we define the tKG forecasting task as
follows. Let (sq, rq, oq, tq) denote a target quadru-
ple and F represent the set of all ground-truth
quadruples. Given query (sq, rq, ?, tq) derived
from the target quadruple and a set of observed
events O = {(s, r, o, ti) ∈ F|ti < tq}, the tKG
forecasting task predicts the missing object entity
oq based on observed past events. Specifically, we
consider all entities in set V as candidates and rank
them by their scores to form a true quadruple to-
gether with the given subject-relation-pair (sq, rq)
at time tq. In this work, we add reciprocal relations
for every quadruple, i.e., adding (o, r−1, s, t) for
every (s, r, o, t). Hence, the restriction to predict
object entities does not lead to a loss of generality.

Extensive studies have been done for temporal
KG completion task (Leblay and Chekol, 2018;
García-Durán et al., 2018; Goel et al., 2020; Han
et al., 2020a). Besides, a line of work (Trivedi
et al., 2017; Jin et al., 2019; Deng et al., 2020; Zhu
et al., 2020) has been proposed for the tKG fore-
casting task and can generalize to unseen times-
tamps. Specifically, Trivedi et al. (2017) and Han
et al. (2020b) take advantage of temporal point
processes to model the temporal KG as event se-
quences and learn evolving entity representations.

3 Our Model

Our model is designed to model time-evolving
multi-relational graph data by learning continuous-
time representations of entities. It consists of a
neural ODE-based encoder and a decoder based on
classic KG score functions. As shown in Figure 1b,
the input of the network will be fed into two paral-
lel modules before entering the ODE Solver. The
upper module denotes a multi-relational graph con-
volutional layer that captures the graph’s structural
information according to an observation at time t.
And the lower module denotes a graph transition
layer that explicitly takes the edge transition ten-
sor of the current observation representing which
edges have been added and removed since the last
observation. The graph transition layer focuses on
modeling the graph transition between neighbor-
ing observations for improving the prediction of
link formation and dissolution. For the decoder, we
compare two score functions, i.e., DistMult (Yang
et al., 2014) and TuckER (Balazevic et al., 2019).
In principle, the decoder can be any score function.

8355

(a) fMGCN

(b) fTANGO

Figure 1: (a) The structure of fMGCN: stacked
multi-relational graph convolutional layers (the orange
block). H(t) denotes the hidden representations of en-
tities and relations at time t. HMGCN(t) denotes the out-
put of the stacked multi-relational graph convolutional
layers. (b) The architecture of TANGO that parameter-
izes the derivatives of the hidden representations H(t).
In addition to fMGCN, a graph transition layer ftrans is
employed to model the edge formation and dissolution.

3.1 Neural ODE for Temporal KG

The temporal dynamics of a time-evolving multi-
relational graph can be characterized by the follow-
ing neural ordinary differential equation

dH(t)

dt
=fTANGO(H(t),T(t),G(t), t)

=fMGCN(H(t),G(t), t)

+ wftrans(H(t),T(t),G(t), t),

(4)

where H ∈ R(|V|+2|R|)×d denotes the hidden rep-
resentations of entities and relations. fTANGO rep-
resents the neural network that parameterizes the
derivatives of the hidden representations. Besides,
fMGCN denotes stacked multi-relational graph con-
volutional layers, ftrans represents the graph tran-
sition layer, and G(t) denotes the snapshot of the
temporal KG at time t. T(t) contains the informa-
tion on edge formation and dissolution since the
last observation. w is a hyperparameter controlling
how much the model learns from edge formation
and dissolution. We set H(t = 0) = Emb(V,R),
where Emb(V,R) denotes the learnable initial em-
beddings of entities and relations on the temporal
KG. Thus, given a time window ∆t, the repre-
sentation evolution performed by the neural ODE

assumes the following form

H(t+ ∆t)−H(t)

=

∫ t+∆t

t
fTANGO(H(τ),T(τ),G(τ), τ) dτ

=

∫ t+∆t

t
(fMGCN(H(τ),G(τ), τ)

+ wftrans(H(τ),T(τ), τ))dτ.

(5)

In this way, we use the neural ODE to learn the
dynamics of continuous-time temporal KGs.

3.2 Multi-Relational Graph Convolutional
Layer

Inspired by (Vashishth et al., 2019) and (Yang et al.,
2014), we use the entity-relation composition to
model relational information. Specifically, we pro-
pose a multi-relational graph convolutional layer
as follows. At time t, for every object entity o ∈ V
with N (o) = {(s, r)|(s, r, o, t) ∈ G(t)}, its hid-
den representation evolves as

h̃
l+1

o (t) =
1

|N (o)|
∑

(s,r)∈N (o)

Wl(hls(t) ∗ hr),

hl+1
o (t) = hlo(t) + δσ(h̃

l+1

o (t)),

(6)

where hl+1
o (t) denotes the hidden representation

of the object o at the (l + 1)th layer, Wl repre-
sents the weight matrix on the lth layer, ∗ denotes
element-wise multiplication. hls(t) means the hid-
den representation of the subject s at the lth layer.
hl=0
s (t) = hs(t) is obtained by the ODE Solver

that integrates Equation 4 until t. δ is a learnable
weight. In this work, we assume that the relation
representations do not evolve, and thus, hr is time-
invariant. We use ReLU(·) as the activation func-
tion σ(·). From the view of the whole tKG, we
use H(t) to represent the hidden representations
of all entities and relations on the tKG. Besides,
we use fMGCN to denote the network consisting of
multiple multi-relational graph convolutional lay-
ers (Equation 6).

3.3 Graph Transition Layer
To let the model focus on the graph’s transitions,
we define a transition tensor for tKGs and use graph
convolutions to capture the information of edge for-
mation and dissolution. Given two graph snapshots
G(t −∆t) and G(t) at time t −∆t and t, respec-
tively, the graph transition tensor T(t) is defined
as

T(t) = A(t)− A(t−∆t), (7)

8356

where A(t) ∈ {0, 1}|V|×|R|×|V| is a three-way ad-
jacency tensor whose entries are set such that

Asro =

{
1, if the triple (s, r, o) exists at time t,

0, otherwise.
(8)

Intuitively, T(t) ∈ {−1, 0, 1}|V|×|R|×|V| contains
the information of the edges’ formation and disso-
lution since the last observation G(t−∆t). Specif-
ically, Tsro(t) = −1 means that the triple (s, r, o)
disappears at t, and Tsro(t) = 1 means that the
triplet (s, r, o) is formatted at t. For all unchanged
edges, their values in T(t) are equal to 0. Addi-
tionally, we use graph convolutions to extract the
information provided by the graph transition tensor:

h̃
l+1

o,trans(t) = Wtrans(Tsro(t)(hls(t) ∗ hr))

hl+1
o,trans(t) = σ

 1

|NT (o)|
∑

(s,r)∈NT (o)

h̃
l+1

o,trans(t)

(9)
Here, Wtrans is a trainable diagonal weight matrix
and NT (o) = {(s, r)|Tsro(t) 6= 0)}. By employ-
ing this graph transition layer, we can better model
the dynamics of temporal KGs. We use ftrans to de-
note Equation 9. By combining the multi-relational
graph convolutional layers fMGCN with the graph
transition layer ftrans, we get our final network that
parameterizes the derivatives of the hidden repre-
sentations H(t), as shown in Figure 1b.

3.4 Learning and Inference
TANGO is an autoregressive model that fore-
casts the entity representation at time t by utilizing
the graph information before t. To answer a link
forecasting query (s, r, ?, t), TANGO takes three
steps. First, TANGO computes the hidden represen-
tations H(t) of entities and relations at the time t.
Then TANGO uses a score function to compute the
scores of all quadruples {(s, r, o, t)|o ∈ V} accom-
panied with candidate entities. Finally, TANGO
chooses the object with the highest score as its
prediction.

Representation inference The representation in-
ference procedure is done by an ODE Solver, which
is H(t) = ODESolver(H(t − ∆t), fTANGO, t −
∆t, t,ΘTANGO,G). Adaptive ODE solvers may in-
cur massive time consumption in our work. To keep
the training time tractable, we use fixed-grid ODE
solvers coupled with the Interpolated Reverse Dy-
namic Method (IRDM) proposed by Daulbaev et al.

Table 1: Score Functions. hs,hr,ho denote the entity
representations of the subject entity s, object entity o,
and the representation of the relation r, respectively. d
denotes the hidden dimension of representations. W ∈
Rd×d×d is the core tensor specified in (Balazevic et al.,
2019). As defined in (Tucker, 1964), ×1,×2,×3 are
three operators indicating the tensor product in three
different modes.

Method Score Function
Distmult (Yang et al., 2014) < hs,hr,ho > hs,hr,ho ∈ Rd

TuckER (Balazevic et al., 2019) W ×1 hs ×2 hr ×3 ho hs,hr,ho ∈ Rd

(2020). IRDM uses Barycentric Lagrange interpo-
lation (Berrut and Trefethen, 2004) on Chebyshev
grid (Tyrtyshnikov, 2012) to approximate the so-
lution of the hidden states in the reverse-mode of
NODE. Thus, IRDM can lower the time cost in the
backpropagation and maintain good learning accu-
racy. Additional information about representation
inference is provided in Appendix A.

Score function Given the entity and relation rep-
resentations at the query time tq, one can compute
the scores of every triple at tq. In our work, we take
two popular knowledge graph embedding models,
i.e., Distmult (Yang et al., 2014) and TuckER (Bal-
azevic et al., 2019). Given triple (s, r, o), its score
is computed as shown in Table 1.

Parameter Learning For parameter learning,
we employ the cross-entropy loss:

L =
∑

(s,r,o,t)∈F
−log(f(o|s, r, t,V)), (10)

where f(o|s, r, t,V) = exp(score(hs(t),hr,ho(t)))∑
e∈V

exp(score(hs(t),hr,he(t))) .

e ∈ V represents an object candidate, and score(·)
is the score function. F summarizes valid quadru-
ples of the given tKG.

4 Experiments

4.1 Experimental Setup

We evaluate our model by performing future link
prediction on five tKG datasets1. We compare
TANGO’s performance with several existing meth-
ods and evaluate its potential with inductive link
prediction and long horizontal link forecasting. Be-
sides, an ablation study is conducted to show the
effectiveness of our graph transition layer.

1Code and datasets are available at
https://github.com/TemporalKGTeam/TANGO.

8357

4.1.1 Datasets
We use five benchmark datasets to evaluate
TANGO: 1) ICEWS14 (Trivedi et al., 2017) 2)
ICEWS18 (Boschee et al., 2015) 3) ICEWS05-15
(García-Durán et al., 2018) 4) YAGO (Mahdisoltani
et al., 2013) 5) WIKI (Leblay and Chekol, 2018).
Integrated Crisis Early Warning System (ICEWS)
(Boschee et al., 2015) is a dataset consisting of
timestamped political events, e.g., (Barack Obama,
visit, India, 2015-01-25). Specifically, ICEWS14
contains events occurring in 2014, while ICEWS18
contains events from January 1, 2018, to Octo-
ber 31, 2018. ICEWS05-15 is a long-term dataset
that contains the events between 2005 and 2015.
WIKI and YAGO are two subsets extracted from
Wikipedia and YAGO3 (Mahdisoltani et al., 2013),
respectively. The details of each dataset and the
dataset split strategy are provided in Appendix D.

4.1.2 Evaluation Metrics
We use two metrics to evaluate the model per-
formance on extrapolated link prediction, namely
Mean Reciprocal Rank (MRR) and Hits@1/3/10.
MRR is the mean of the reciprocal values of the
actual missing entities’ ranks averaged by all the
queries, while Hits@1/3/10 denotes the proportion
of the actual missing entities ranked within the
top 1/3/10. The filtering settings have been imple-
mented differently by various authors. We report
results based on two common implementations: i)
time-aware (Han et al., 2021) and ii) time-unaware
filtering (Jin et al., 2019). We provide a detailed
evaluation protocol in Appendix B.

4.1.3 Baseline Methods
We compare our model performance with nine base-
lines. We take three static KG models as the static
baselines, including Distmult (Yang et al., 2014),
TuckER (Balazevic et al., 2019), and COMPGCN
(Vashishth et al., 2019). For tKG baselines, we
report the performance of TTransE (Leblay and
Chekol, 2018), TA-Distmult (García-Durán et al.,
2018), CyGNet (Zhu et al., 2020), DE-SimplE
(Goel et al., 2020), TNTComplEx (Lacroix et al.,
2020), and RE-Net (Jin et al., 2019). We provide
implementation details of baselines and TANGO
in Appendix C.

4.2 Experimental Results
4.2.1 Time-aware filtered Results
We run TANGO five times and report the averaged
results. The time-aware filtered results are pre-

sented in Table 2, where denotes TANGO. As
explained in Appendix B, we take the time-aware
filtered setting as the fairest evaluation setting. Re-
sults demonstrate that TANGO outperforms all
the static baselines on every dataset. This implies
the importance of utilizing temporal information
in tKG datasets. The comparison between Dist-
mult and TANGO-Distmult shows the superiority
of our NODE-based encoder, which can also be
observed by the comparison between TuckER and
TANGO-TuckER. Additionally, TANGO achieves
much better results than COMPGCN, indicating
our method’s strength in incorporating temporal
features into tKG representation learning.

Figure 2: Time-aware filtered MRR of TANGO with
or without the graph transition layer on subsets of
ICEWS05-15 and WIKI. We split the graph snapshots
into two groups, where the transition tensor’s norm
||T(t)||L1 of each graph snapshot in the first group is
larger than that of all graph snapshots in the second
group. Since the graph transition layer is tailored to
graph changes, we show the results of the first group
here. The corresponding result of the ablation study
on the whole test sets are presented in Figure 8 in the
appendix.

Similarly, TANGO outperforms all the tKG base-
lines as well. Unlike TTransE and TA-Distmult,
RE-Net uses a recurrent neural encoder to capture
temporal information, which shows great success
on model performance and is the strongest baseline.
Our model TANGO implements a NODE-based
encoder in the recurrent style to capture temporal
dependencies. It consistently outperforms RE-Net
on all datasets because TANGO explicitly encodes
time information into hidden representations while
RE-Net only considers the temporal order between
events. Additionally, we provide the raw and time-
unaware filtered results in Table 5 and 4 in the
appendix.

8358

Datasets ICEWS05-15 - aware filtered ICEWS14 - aware filtered ICEWS18 - aware filtered WIKI - aware filtered YAGO - aware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Distmult 24.75 16.10 27.67 42.42 14.49 8.15 15.31 27.66 16.69 9.68 18.12 31.21 49.66 46.17 52.81 54.13 54.84 47.39 59.81 68.52
TuckER 27.13 17.01 29.93 47.81 18.96 11.23 20.77 33.94 20.68 12.58 22.60 37.27 50.01 46.12 53.60 54.86 54.86 47.42 59.63 68.96
CompGCN 29.68 20.72 32.51 47.87 17.81 10.12 19.49 33.11 20.56 12.01 22.96 38.15 49.88 45.78 52.91 55.58 54.35 46.72 59.26 68.29

TTransE 21.24 4.98 31.48 49.88 9.67 1.25 12.29 28.37 8.08 1.84 8.25 21.29 29.27 21.67 34.43 42.39 31.19 18.12 40.91 51.21
TA-DistMult 24.39 14.77 27.80 44.22 10.34 4.72 10.54 21.48 11.38 5.58 12.04 22.82 44.53 39.92 48.73 51.71 54.92 48.15 59.61 66.71
CyGNet 35.79 26.09 40.18 54.48 22.83 14.28 25.36 39.97 24.93 15.90 28.28 42.61 33.89 29.06 36.10 41.86 52.07 45.36 56.12 63.77
DE-SimplE 35.57 26.33 39.41 53.97 21.58 13.77 23.68 37.15 19.30 11.53 21.86 34.80 45.43 42.6 47.71 49.55 54.91 51.64 57.30 60.17
TNTComplEx 35.88 26.92 39.55 53.43 23.81 15.58 26.27 40.12 21.23 13.28 24.02 36.91 45.03 40.04 49.31 52.03 57.98 52.92 61.33 66.69
RE-Net 40.23 30.30 44.83 59.59 25.66 16.69 28.35 43.62 27.90 18.45 31.37 46.37 49.66 46.88 51.19 53.48 58.02 53.06 61.08 66.29

-TuckER 42.86 32.72 48.14 62.34 26.25 17.30 29.07 44.18 28.97 19.51 32.61 47.51 51.60 49.61 52.45 54.87 62.50 58.77 64.73 68.63
± 0.2 ± 0.3 ± 0.2 ± 0.2 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.1 ± 0.2 ± 0.3 ± 0.3 ± 0.2 ± 0.3 ± 0.3 ± 0.5 ± 0.2 ± 0.1 ± 0.4

-Distmult 40.71 31.23 45.33 58.95 24.70 16.36 27.26 41.35 27.56 18.68 30.86 44.94 53.04 51.52 53.84 55.46 63.34 60.04 65.19 68.79
± 0.3 ± 0.4 ± 0.1 ± 0.5 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 0.3 ± 0.3 ± 0.4 ± 0.2 ± 0.1 ± 0.4 ± 0.4 ± 0.1 ± 0.2

Table 2: Extrapolated link prediction results on five datasets. Evaluation metrics are time-aware filtered MRR (%)
and Hits@1/3/10 (%). denotes TANGO. The best results are marked in bold.

4.2.2 Ablation Study
To evaluate the effectiveness of our graph transi-
tion layer, we conduct an ablation study on two
datasets, i.e., ICEWS05-15 and WIKI. We choose
these two datasets as the representative of two types
of tKG datasets. ICEWS05-15 contains events that
last shortly and happen multiple times, i.e., Obama
visited Japan. In contrast, the events in the WIKI
datasets last much longer and do not occur periodi-
cally, i.e., Eliran Danin played for Beitar Jerusalem
FC between 2003 and 2010. The improvement of
the time-aware filtered MRR brought by the graph
transition layer is illustrated in Figure 2, showing
that the graph transition layer can effectively boost
the model performance by incorporating the edge
formation and dissolution information.

Figure 3: Time cost comparison on ICEWS05-15.
Columns marked as orange denote the time consumed
by our model.

4.2.3 Time Cost Analysis
Keeping training time short while achieving a
strong performance is significant in model eval-
uation. We report in Figure 3 the total training time
of our model and the baselines on ICEWS05-15.
We see that static KG reasoning methods generally
require less training time than temporal methods.
Though the total training time for TTransE is short,
its performance is low, as reported in the former

sections. TA-Distmult consumes more time than
our model and is also beaten by TANGO in per-
formance. RE-Net is the strongest baseline in per-
formance; however, it requires almost ten times as
much as the total training time of TANGO. TANGO
ensures a short training time while maintaining the
state-of-the-art performance for future link predic-
tion, which shows its superiority.

4.3 New Evaluation Tasks

4.3.1 Long Horizontal Link Forecasting
Given a sequence of observed graph snapshots un-
til time t, the future link prediction task infers the
quadruples happening at t + ∆t. ∆t is usually
small, i.e., one day, in standard settings (Trivedi
et al., 2017; Jin et al., 2019; Zhu et al., 2020).
However, in some scenarios, the graph informa-
tion right before the query time is likely missing.
This arouses the interest in evaluating the temporal
KG models by predicting the links in the farther
future. In other words, given the same input, the
model should predict the links happening at t+∆T ,
where ∆T >> ∆t. Based on this idea, we define
a new evaluation task, e.g., long horizontal link
forecasting.

1 2 3 4 5 6 7 8
38

39

40

41

42

43

∆T (Day)

Ti
m

e-
aw

ar
e

Fi
lte

re
d

M
R

R

TANGO-TuckER
RE-Net

Figure 4: Long horizontal link forecasting: time-aware
filtered MRR (%) on ICEWS05-15 with regard to dif-
ferent ∆t.

8359

Datasets ICEWS05-15 - raw ICEWS05-15 - aware filtered ICEWS05-15 - unaware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RE-Net 4.96 2.20 5.39 10.12 5.02 2.29 5.49 10.12 5.50 2.95 5.93 10.26
-TuckER w.o.trans 5.13 2.58 5.67 9.91 5.18 2.64 5.70 9.94 5.98 3.34 6.71 10.67
-Distmult w.o.trans 3.72 2.05 3.80 6.76 3.76 2.09 3.82 6.77 4.09 2.46 4.17 6.99
-TuckER 5.74 3.07 6.48 10.74 5.81 3.16 6.52 10.78 6.75 4.11 7.60 11.54
-Distmult 5.00 2.70 5.67 9.16 5.05 2.78 5.69 9.17 5.69 3.45 6.27 9.69

Table 3: Inductive future link prediction results on ICEWS05-15. Evaluation metrics are raw, time-aware filtered,
and time-unaware filtered MRR (%), Hits@1/3/10 (%). w.o.trans means without the graph transition layer. The
best results are marked in bold.

To perform long horizontal link forecasting, we
adjust the integral length according to how far the
future we want to predict. As described in Figure
5, the integration length between the neighboring
timestamps is short for the first k steps, e.g., inte-
gration from (t − tk) to (t − tk + ∆t). However,
for the last step, e.g., integration from t to t+ ∆T ,
the integration length becomes significantly large
according to how far the future we want to predict.
The larger ∆T is, the longer the length is for the
last integration step.

Figure 5: Graphical illustration of long horizontal link
forecasting. Given a sequence of graph snapshots G =
{G(t−tk), ...,G(t)}, whose length is k, test quadruples
at t+ ∆T are to be predicted.

We report the results corresponding to different
∆T on ICEWS05-15 and compare our model with
the strongest baseline RE-Net. In Figure 4, we ob-
serve that our model outperforms RE-Net in long
horizontal link forecasting. The gap between the
performances of the two models diminishes as ∆T
increases. This trend can be explained in the fol-
lowing way. Our model employs an ODE solver to
integrate the graph’s hidden states over time. Since
TANGO takes the time information into account
and integrates the ODE in the continuous-time do-
main, its performance is better than RE-Net, which
is a discrete-time model. However, TANGO as-
sumes that the dynamics it learned at t also holds
at t + ∆T . This assumption holds when ∆T is
small. As ∆T increases, the underlying dynamics
at t+∆T would be different from the dynamics at t.
Thus, the TANGO’s performance degrades accord-
ingly, and the advancement compared to RE-Net

also vanishes.

4.3.2 Inductive Link Prediction
New graph nodes might emerge as time evolves in
many real-world applications, i.e., new users and
items. Thus, a good model requires a strong gen-
eralization power to deal with unseen nodes. We
propose a new task, e.g., inductive link prediction,
to validate the model potential in predicting the
links regarding unseen entities at a future time. A
test quadruple is selected for the inductive predic-
tion if either its subject or object or both haven’t
been observed in the training set. For example, in
the test set of ICEWS05-15, we have a quadruple
(Raheel Sharif, express intent to meet or negotiate,
Chaudhry Nisar Ali Khan, 2014-12-29). The en-
tity Raheel Sharif does not appear in the training
set, indicating that the aforementioned quadruple
contains an entity that the model does not observe
in the training set. We call the evaluation of this
kind of test quadruples the inductive link prediction
analysis.

We perform the future link prediction on these in-
ductive link prediction quadruples, and the results
are shown in Table 3. We compare our model with
the strongest baseline RE-Net on ICEWS05-15.
We also report the results achieved by TANGO
without the graph transition layer to show the per-
formance boost brought by it. As shown in Table 3,
TANGO-TuckER achieves the best results across
all metrics. Both TANGO-TuckER and TANGO-
Distmult can beat RE-Net, showing the strength
of our model in inductive link prediction. The re-
sults achieved by the TANGO models are much
better than their variants without the graph transi-
tion layers, which proves that the proposed graph
transition layer plays an essential role in inductive
link prediction.

5 Conclusions

We propose a novel representation method,
TANGO , for forecasting future links on tem-

8360

poral knowledge graphs (tKGs). We propose a
multi-relational graph convolutional layer to cap-
ture structural dependencies on tKGs and learn
continuous dynamic representations using graph
neural ordinary differential equations. Especially,
our model is the first one to show that the neural
ODE can be extended to modeling dynamic multi-
relational graphs. Besides, we couple our model
with the graph transition layer to explicitly capture
the information provided by the edge formation
and deletion. According to the experimental results,
TANGO achieves state-of-the-art performance on
five benchmark datasets for tKGs. We also pro-
pose two new tasks to evaluate the potential of link
forecasting models, namely inductive link predic-
tion and long horizontal link forecasting. TANGO
performs well in both tasks and shows its great
potential.

References
Ivana Balazevic, Carl Allen, and Timothy Hospedales.

2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Jean-Paul Berrut and Lloyd N Trefethen. 2004.
Barycentric lagrange interpolation. SIAM review,
46(3):501–517.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, page 2787–2795, Red
Hook, NY, USA. Curran Associates Inc.

Elizabeth Boschee, Jennifer Lautenschlager, Sean
O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. ICEWS Coded Event Data.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. 2018. Neural ordinary dif-
ferential equations. In Advances in neural informa-
tion processing systems, pages 6571–6583.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. 2018.
Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement
learning.

Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva,
Julia Gusak, Andrzej Cichocki, and Ivan Oseledets.

2020. Interpolated adjoint method for neural odes.
arXiv preprint arXiv:2003.05271.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In
Advances in neural information processing systems,
pages 3844–3852.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning.
2020. Dynamic knowledge graph based multi-
event forecasting. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1585–1595.

Alberto García-Durán, Sebastijan Dumančić, and
Mathias Niepert. 2018. Learning sequence encoders
for temporal knowledge graph completion. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4816–
4821, Brussels, Belgium. Association for Computa-
tional Linguistics.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neu-
ral message passing for quantum chemistry. arXiv
preprint arXiv:1704.01212.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2020. Diachronic embedding
for temporal knowledge graph completion. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 3988–3995.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2020a. Dyernie: Dynamic evolution of riemannian
manifold embeddings for temporal knowledge graph
completion. arXiv preprint arXiv:2011.03984.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2021. xerte: Explainable reasoning on temporal
knowledge graphs for forecasting future links.

Zhen Han, Yuyi Wang, Yunpu Ma, Stephan Guün-
nemann, and Volker Tresp. 2020b. The graph
hawkes network for reasoning on temporal knowl-
edge graphs. arXiv preprint arXiv:2003.13432.

Woojeong Jin, He Jiang, Meng Qu, Tong Chen,
Changlin Zhang, Pedro Szekely, and Xiang Ren.
2019. Recurrent event network: Global structure
inference over temporal knowledge graph. arXiv
preprint arXiv:1904.05530.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Timothee Lacroix, Guillaume Obozinski, and Nico-
las Usunier. 2020. Tensor decompositions for tem-
poral knowledge base completion. ICLR preprint
https://openreview.net/pdf?id=rke2P1BFwS.

8361

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference
2018, pages 1771–1776.

Jianan Li, Xuemei Xie, Zhifu Zhao, Yuhan Cao,
Qingzhe Pan, and Guangming Shi. 2020. Tempo-
ral graph modeling for skeleton-based action recog-
nition. arXiv preprint arXiv:2012.08804.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M
Suchanek. 2013. Yago3: A knowledge base from
multilingual wikipedias.

Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov. 2016. Learning convolutional neural net-
works for graphs. In International conference on
machine learning, pages 2014–2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in neural information processing systems,
pages 8026–8037.

Hongyu Ren and Jure Leskovec. 2020. Beta embed-
dings for multi-hop logical reasoning in knowledge
graphs.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2017. Modeling relational data with graph convolu-
tional networks.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and
Le Song. 2017. Know-evolve: Deep temporal rea-
soning for dynamic knowledge graphs.

L. R. Tucker. 1964. The extension of factor analysis to
three-dimensional matrices.

Eugene E Tyrtyshnikov. 2012. A brief introduction to
numerical analysis. Springer Science & Business
Media.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2019. Composition-based multi-
relational graph convolutional networks. arXiv
preprint arXiv:1911.03082.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018.
Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 32.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Cunchao Zhu, Muhao Chen, Changjun Fan,
Guangquan Cheng, and Yan Zhan. 2020. Learning
from history: Modeling temporal knowledge graphs
with sequential copy-generation networks. arXiv
preprint arXiv:2012.08492.

Appendix

A Representation Inference

Assume we want to forecast a link at t. We take
the graph histories between the timestamp (t− tk)
and the timestamp t into account, where tk indi-
cates the length of history. To infer the hidden
representations H(t), we first use the initial em-
beddings Emb(V,R) to approximate the hidden
representations H(t− tk). Then we take H(t− tk)
as the NODE input at the timestamp (t− tk), and
integrate it with an ODE solver ODESolver(H(t−
tk), fTANGO, t−tk, t,ΘTANGO,G) over time. As the
hidden state evolves with time, it learns from differ-
ent graph observations taken at different time. The
whole process is described in Figure 6 and Algo-
rithm 1. In Figure 6, set_graph and set_transition
stand for two functions used to feed graph snap-
shots and the transition tensors into the neural net-
work fTANGO. They are called at every observation
time before integration.

Figure 6: Illustration of the inference procedure. The
shaded purple area represents the whole architecture of
TANGO. It is a Neural ODE equipped with a GNN-
based module fTANGO. Dashed arrows denote the input
and the output path of the graph’s hidden state. Red
solid arrows indicate the continuous hidden state flows
learned by TANGO. Black solid lines represent that
TANGO calls the function set_graph and set_trans. The
corresponding graph snapshots G and transition tensors
T are input into fTANGO for learning temporal dynam-
ics.

B Evaluation Metrics

We report the results in three settings, namely raw,
time-unaware filtered, and time-aware filtered. For
time-unaware filtered results, we follow the fil-
tered evaluation constraint applied in (Bordes et al.,
2013; Jin et al., 2019), where we remove from
the list of corrupted triplets all the triplets that ap-
pear either in the training, validation, or test set ex-

8362

Datasets ICEWS05-15 - raw ICEWS14 - raw ICEWS18 - raw WIKI - raw YAGO - raw
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR HITS@1 HITS@3 HITS@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Distmult 24.55 15.85 27.53 42.17 14.00 7.72 14.65 27.16 16.30 9.25 17.67 30.93 42.08 34.29 48.69 53.25 47.66 36.59 55.89 67.45
TuckER 26.95 16.81 29.69 47.61 18.39 10.69 20.01 33.42 20.20 12.08 21.99 36.91 42.50 34.41 49.41 53.90 47.48 36.20 55.55 68.07
COMPGCN 29.41 20.41 32.17 47.65 17.13 9.36 18.84 32.54 19.98 11.45 22.25 37.73 42.33 34.02 48.65 54.63 47.08 65.36 66.90 68.81

TTransE 20.89 4.88 3.11 49.66 9.21 1.12 11.19 27.46 7.92 1.75 8.00 21.02 19.53 12.34 23.11 32.47 26.18 12.36 36.16 48.00
TA-DistMult 24.03 14.37 27.36 44.04 9.92 4.39 9.99 20.90 11.05 5.24 11.72 22.55 27.33 19.94 32.05 39.42 45.54 36.54 51.08 62.15
RE-Net 39.31 28.88 44.40 59.38 23.84 14.60 26.48 42.58 26.62 16.91 30.26 45.82 31.10 25.31 34.13 41.33 46.28 37.52 51.77 61.55

-TuckER 41.82 31.10 47.55 62.19 24.36 15.12 27.15 43.07 27.59 17.77 31.40 46.92 31.99 25.74 35.00 42.61 49.31 40.78 55.12 63.73
-Distmult 40.23 30.53 44.95 59.05 22.87 14.22 25.43 40.32 26.21 16.92 29.77 44.41 32.53 26.33 35.75 43.17 49.49 40.90 55.42 63.74

Table 4: Future link prediction results on benchmark datasets. Evaluation metrics are raw MRR (%) and
Hits@1/3/10 (%). denotes TANGO. The best results are marked in bold.

Datasets ICEWS05-15 - unaware filtered ICEWS14 - unaware filtered ICEWS18 - unaware filtered WIKI - unaware filtered YAGO - unaware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Distmult 48.77 43.85 51.22 57.99 33.88 27.86 36.16 45.14 40.28 36.04 41.78 48.36 53.22 52.61 53.41 54.20 67.55 66.76 67.49 69.11
TuckER 58.69 54.74 59.82 66.57 46.51 41.11 49.45 57.34 44.50 38.33 46.11 53.71 53.97 52.70 54.15 54.94 67.40 66.22 67.62 69.84
COMPGCN 49.60 43.13 52.85 61.59 38.15 31.04 41.00 51.44 35.68 27.87 39.38 49.94 53.54 52.29 53.61 55.76 66.66 65.36 66.90 68.81

TTransE 28.81 5.83 48.67 60.38 15.95 1.57 25.98 42.67 10.52 3.01 11.98 26.16 31.94 24.82 36.91 43.55 33.73 20.99 43.51 52.61
TA-DistMult 38.54 29.94 42.92 54.81 18.74 11.97 20.32 31.95 16.27 10.22 17.39 27.91 50.18 48.65 51.41 52.37 66.06 64.36 66.78 68.74
RE-Net 57.66 51.86 60.40 68.60 45.24 37.82 48.53 58.92 43.02 36.26 45.61 56.03 52.27 50.92 52.73 53.57 64.68 62.94 65.11 67.82

-TuckER 59.93 54.99 62.65 69.64 46.42 38.94 50.25 59.80 44.56 37.87 47.46 57.06 53.28 52.21 53.61 54.84 67.21 65.56 67.59 70.04
-Distmult 58.89 54.42 60.76 67.47 46.68 41.20 48.64 57.05 44.00 38.64 45.78 54.27 54.05 51.52 53.84 55.46 68.34 67.05 68.39 70.70

Table 5: Future link prediction results on benchmark datasets. Evaluation metrics are time-unaware filtered MRR
(%) and Hits@1/3/10 (%). denotes TANGO. The best results are marked in bold.

cept the triplet of interest. Time-unaware filtering
setting is inappropriate for temporal KG reason-
ing, while the time-aware filtering setting provides
fairer results. For time-aware filtered results, we
follow the setting proposed by (Han et al., 2021)
by only removing from the list of corrupted triplets
all the triplets that appear at the query time tq. The
following example illustrates the reason why the
time-aware filtered results are fairer than the time-
unaware filtered results. Assume we have a test
quadruple of interest (Xi Jinping, make a visit, New
Zealand, 2014-11-26) in the test set, and we de-
rive an object prediction query (Xi Jinping, make a
visit, ?, 2014-11-26) from this quadruple where the
query time is 2014-11-26. Additionally, we have
another quadruple (Xi Jinping, make a visit, South
Korea, 2014-07-05) in the test set. According to
the time-unaware filtering setting (Bordes et al.,
2013), (Xi Jinping, make a visit, South Korea) will
be filtered out since it appears in the test set. How-
ever, it is unreasonable because (Xi Jinping, make
a visit, South Korea) is not valid at 2014-11-26.
Therefore, we use the time-aware filtered setting,
which, in our example, will only filter the triplets
(Xi Jinping, make a visit, o) appearing at 2014-11-
26. Here, o denotes all the objects from triplets
accompanied with Xi Jinping, Make a visit, and the
date 2014-11-26.

C Implementation Details

We train TANGO with the following settings. We
tune the model across a range of hyperparameters
as shown in Table 7. We do 432 trials, and each
trial runs 20 epochs. We select the best-performing

configuration according to filtered MRR on val-
idation data. The best configuration will be fur-
ther trained until its convergence. We run the
selected configuration five times and obtain an
averaged results. Specifically, we use a fixed-
grid ODE solver, fourth-order Runge-Kutta, as the
ODE solver, and implement the interpolated re-
verse dynamic method (Daulbaev et al., 2020) with
3 Chebyshev nodes to keep training time tractable
while maintaining high precision. To improve the
ODE solver’s precision, we re-scale the time range
of each dataset from 0 to 0.01 (or 0.1). This step
restricts the length of ODE integration, preventing
the high error induced by ODE solvers. For each
query, we set the time range of the input history tk
to 4 days for the ICEWS datasets. For WIKI and
YAGO, we set tk to 4 years. Besides, we choose
different values for the transition coefficient w for
different datasets. Our model is implemented with
PyTorch (Paszke et al., 2019), and the experiments
are run on GeForce RTX 2080 Ti. A detailed report
of the best configuration is provided in Table 8.

We implement Distmult in PyTorch and use the
binary cross-entropy loss for learning parameters.
We use the official implementation of TuckER2,
COMPGCN3, and RE-Net4. For a fair comparison,
we choose to use the variant of RE-Net with ground
truth history during multi-step inference, and thus
the model knows all the interactions before the time
for testing. Besides, we set the history length of
RE-Net to 10 and use the max-pooling in the global

2https://github.com/ibalazevic/TuckER
3https://github.com/malllabiisc/CompGCN
4https://github.com/INK-USC/RE-Net

8363

Datasets ICEWS05-15 - aware filtered ICEWS18 - aware filtered WIKI - aware filtered YAGO - aware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

-TuckER 44.57 34.40 49.94 63.95 30.68 20.75 34.61 50.43 62.29 59.54 63.92 66.63 69.29 64.33 72.40 77.63
-Distmult 43.33 33.46 48.45 62.05 29.62 20.18 33.35 48.36 63.93 62.14 64.74 67.06 70.79 66.15 74.04 78.18

Table 6: Validation results on benchmark datasets regarding our model. Evaluation metrics are time-aware filtered
MRR (%) and Hits@1/3/10 (%). denotes TANGO. The best results are marked in bold. ICEWS14 has no
validation set.

model. Additionally, we use the implementation of
TTransE and TA-Distmult provided in (Jin et al.,
2019). For TA-Distmult, the vocabulary of tempo-
ral tokens consists of year, month, and day for all
the datasets. We use the released code to imple-
ment DE-SimplE5, TNTComplEx6, and CyGNet7.
All the baselines are trained with Adam Optimizer
(Kingma and Ba, 2017), and the batch size is set to
512.

Table 7: Search space of hyperparameters. w repre-
sents the weight controlling how much the model learns
from edge formation and dissolution. Scale represents
the time range re-scaling parameter as introduced in C.

Hyperparameter Search space
Embedding size {200, 300}
MGCN layer {2, 3}
Decoder {TuckER, Distmult}
Scale {0.001, 0.01, 0.1}
w {0.01, 0.1, 1}
Dropout {0.3, 0.5}
History length {4, 6, 10}

Table 8: Best hyperparameter settings on each dataset.

Datasets ICEWS14 ICEWS18 ICEWS05-15 WIKI YAGO

Hyperparameter

Embedding size 200 200 200 200 300
MGCN layer 2 2 2 2 3
Decoder TuckER TuckER TuckER Distmult Distmult
Scale 0.01 0.1 0.1 0.1 0.1
w 0.01 1 0.01 1 1
Dropout 0.3 0.3 0.3 0.3 0.3
History length 4 4 4 4 4

D Datasets

Table 9 We follow the data preprocessing method
and the dataset split strategy proposed in (Jin et al.,
2019). Specifically, we split each dataset except
ICEWS14 in chronological order into three parts,
e.g., 80%/10%/10% (training/validation/test). For
ICEWS14, we split it into the training set and test-
ing set with 50%/50% since ICEWS14 is not pro-

5https://github.com/BorealisAI/de-simple
6https://github.com/facebookresearch/tkbc
7https://github.com/CunchaoZ/CyGNet

vided with a validation set. As explained in (Jin
et al., 2019), the difference between the first type
(ICEWS) and the second type (WIKI and YAGO)
of tKG datasets is that the first type datasets are
events that often last shortly and happen multiple
times, i.e., Obama visited Japan four times. In con-
trast, the events in the second type datasets last
much longer and do not occur periodically, i.e., Eli-
ran Danin played for Beitar Jerusalem FC between
2003 and 2010.

Dataset Ntrain Nvalid Ntest |V| |R| Nobs

ICEWS14 (Trivedi et al., 2017) 323, 895 − 341, 409 12, 498 260 365
ICEWS18 (Boschee et al., 2015) 373, 018 45, 995 49, 545 23, 033 256 304

ICEWS05-15 (García-Durán et al., 2018) 369, 104 46, 188 46, 037 10, 488 251 4, 017
WIKI (Leblay and Chekol, 2018) 539, 286 67, 538 63, 110 12, 554 24 232
YAGO (Mahdisoltani et al., 2013) 161, 540 19, 523 20, 026 10, 623 10 189

Table 9: Dataset statistics. Ntrain, Nvalid, Ntest represent
the number of quadruples in the training set, validation
set, and test set, respectively. Nobs denotes the number
of observations, where we take a snapshot of the tKG
at each observation.

E Impact of Past History Length

As mentioned in A, TANGO utilizes the previous
histories between (t− tk) and t to forecast a link
at t, where tk is a hyperparameter. Figure 7 shows
the performance with various lengths of past his-
tories along with the corresponding training time.
When TANGO uses longer histories, MRR is get-
ting higher. However, a long history requires more
forwarding inferences. The choice of history length
is a trade-off between the performance and com-
putational cost. We observe that the gain of MRR
compared to the training time is not significant
when the length of history is four and over. Thus,
the history length of four is chosen in our experi-
ments.

F Analysis on Temporal KGs with
Irregular Time Intervals

Most existing tKG reasoning models cannot prop-
erly deal with temporal KGs with irregular time
intervals, while TANGO model them much bet-
ter due to the nature of Neural ODE. We verify
this via experiments on a new dataset. We call it

8364

1 2 3 4 5 6 7
39

40

41

42

43

History Length

Ti
m

e-
aw

ar
e

Fi
lte

re
d

M
R

R

0

500

1,000

1,500

2,000

2,500

Tr
ai

ni
ng

Ti
m

e/
E

po
ch

(s
)

MRR
Training Time

Figure 7: Time-aware filtered MRR (%) and Training
Time (seconds) on ICEWS05-15 corresponding to dif-
ferent history length (days).

Figure 8: Time-aware filtered MRR of TANGO with
or without the graph transition layer on the whole test
sets of ICEWS05-15 and WIKI.

ICEWS05-15_continuous. We sample the times-
tamps in ICEWS05-15 and keep the time intervals
between each two of them in a range from 1 to 4.
We only keep the temporal KG snapshots at the
sampled time and extract a new subset. ICEWS05-
15_continuous fits the setting when observations
are taken non-periodically in continuous time. The
dataset statistics of ICEWS05-15_continuous is re-
ported in Table 11. We train our model and baseline
methods on it and evaluate them with time-aware
filtered MRR. As shown in Table 10, we validate
that TANGO performs well on temporal KGs with
irregular time intervals.

G Average runtime for each approach

Table 12 show the average runtime for each model.

Datasets ICEWS05-15 continuous - aware filtered ICEWS05-15 - aware filtered
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TTransE 20.55 5.36 29.80 47.54 21.24 4.98 31.48 49.88
CyGNet 34.13 25.06 37.85 51.94 35.79 26.09 40.18 54.48
DE-SimplE 33.56 24.79 37.32 50.63 35.57 26.33 39.41 53.97
TNTComplEx 33.96 24.93 37.86 51.30 35.88 26.92 39.55 53.43

-TuckER 37.69 28.01 45.00 59.05 42.86 32.72 48.14 62.34
-Distmult 36.91 26.91 40.28 54.34 40.71 31.23 45.33 58.95

Table 10: Future link prediction results on ICEWS05-
15 continuous dataset. Evaluation metrics are time-
aware filtered MRR (%) and Hits@1/3/10 (%). de-
notes TANGO. The best results are marked in bold.

Dataset Ntrain Nvalid Ntest |V| |R| Nobs

ICEWS05-15 continuous 149, 001 17, 962 17, 902 10, 488 251 1, 589

Table 11: Dataset statistics. Ntrain, Nvalid, Ntest repre-
sent the number of quadruples in the training set, vali-
dation set, and test set, respectively. Nobs denotes the
number of observations, where we take a snapshot of
the tKG at each observation.

Table 12: Average training time (second) until conver-
gence

Datasets ICEWS14 ICEWS18 ICEWS05-15 WIKI YAGO

Model Runtime Runtime Runtime Runtime Runtime

Distmult 743 1,365 401 2,245 3,310
TuckER 730 3,147 1,626 5,093 2,795
COMPGCN 9,226 6,432 1,607 5,810 2,233
TTransE 15,840 23,894 35,520 19,337 5,395
TA-Distmult 6,232 112,188 110,460 83,999 27,833
RE-Net 33,313 46,068 190,076 42,983 27,489

-TuckER 5,796 3,786 15,301 9,218 2,355
-Distmult 3,593 2,883 11,085 15,086 5,106

Chapter 5

Time-dependent Entity Embedding is

not All You Need: A Re-Evaluation

of Temporal Knowledge Graph

Completion Models under a Unified

Framework

This chapter contains the publication

Time-dependent Entity Embedding is not All You Need: A Re-Evaluation of Tem-

poral Knowledge Graph Completion Models under a Unified Framework. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), Online and in Dominican Republic, Nov. 2021. DOI: 10.18653/v1/2021c.emnlp-

main.639.

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8104–8118
November 7–11, 2021. c©2021 Association for Computational Linguistics

8104

Time-dependent Entity Embedding is not All You Need: A Re-evaluation
of Temporal Knowledge Graph Completion Models under a Unified

Framework

Zhen Han∗1,2, Gengyuan Zhang∗1, Yunpu Ma†1, Volker Tresp†1,2
1Institute of Informatics, LMU Munich 2 Corporate Technology, Siemens AG

zhen.han@campus.lmu.de, gengyuanmax@gmail.com
cognitive.yunpu@gmail.com, volker.tresp@siemens.com

Abstract

Various temporal knowledge graph (KG) com-
pletion models have been proposed in the re-
cent literature. The models usually contain
two parts, a temporal embedding layer and a
score function derived from existing static KG
modeling approaches. Since the approaches
differ along several dimensions, including dif-
ferent score functions and training strategies,
the individual contributions of different tem-
poral embedding techniques to model perfor-
mance are not always clear. In this work, we
systematically study six temporal embedding
approaches and empirically quantify their per-
formance across a wide range of configura-
tions with about 4000 experiments and 19000
GPU hours. We classify the temporal em-
beddings into two classes: (1) timestamp em-
beddings and (2) time-dependent entity embed-
dings. Despite the common belief that the
latter is more expressive, an extensive exper-
imental study shows that timestamp embed-
dings can achieve on-par or even better per-
formance with significantly fewer parameters.
Moreover, we find that when trained appro-
priately, the relative performance differences
between various temporal embeddings often
shrink and sometimes even reverse when com-
pared to prior results. For example, TTransE
(Leblay and Chekol, 2018), one of the first
temporal KG models, can outperform more
recent architectures on ICEWS datasets. To
foster further research, we provide the first
unified open-source framework for temporal
KG completion models with full composabil-
ity, where temporal embeddings, score func-
tions, loss functions, regularizers, and the ex-
plicit modeling of reciprocal relations can be
combined arbitrarily.

1 Introduction

The Knowledge Graph (KG), a graph-structured
knowledge base, has gained increasing interest as

∗Equal contribution.
†Corresponding author.

a promising way to store factual knowledge. KGs
represent facts in the form of triples (s, r, o), e.g.,
(Bob, livesIn, New York), in which s (subject) and
o (object) denote nodes (entities) and r denotes
the edge type (relation) between s and o. Knowl-
edge graphs are commonly static and store facts
in their current state. In reality, however, the rela-
tions between entities often change over time. For
example, if Bob moves to California, the triple of
(Bob, livesIn, New York) will be invalid. To this
end, temporal knowledge graphs (tKGs) have been
introduced to capture temporal aspects of facts in
addition to their multi-relational nature. A tKG
represents a temporal fact as a quadruple (s, r, o, t)
by extending a static triple with time t, describing
that this fact is valid at time t. Figure 2 in the
appendix depicts an exemplary temporal KG. To
address the inherent incompleteness of temporal
KGs, Tresp et al. (2015) proposed the first tKG
model. Afterwards, a line of work emerged that
extends static KG completion models by adding
temporal embeddings, e.g., TTransE (Leblay and
Chekol, 2018), TA-TransE (García-Durán et al.,
2018), DE-SimplE (Goel et al., 2019), TNTCom-
plEx (Lacroix et al., 2020), ConT (Ma et al., 2018),
and many more. The models generally consist of
two parts, a temporal embedding layer to capture
the evolving features of tKGs and a score function
to examine the plausibility of a given quadruple.

Temporal embeddings are crucial in temporal
KG completion models for storing the evolving
knowledge; without them, the temporal aspect can-
not be captured. The PEs can be generally catego-
rized into three classes: (1) timestamp embeddings
(TEs): the models learn an embedding for each
discrete timestamp in the same vector space as
entities and relations (Tresp et al., 2017; Leblay
and Chekol, 2018; Dasgupta et al., 2018; Lacroix
et al., 2020). (2) time-dependent entity embeddings
(TEEs): the models define entity embedding as a
function that takes an entity and a timestamp as

8105

input and generates a time-dependent representa-
tion for the entity at that time (Goel et al., 2019;
Xu et al., 2019; Han et al., 2020a). (3) deep repre-
sentation learning (DTRs): the models incorporate
temporal information into advanced deep learning
models, e.g., Recurrent Neural Network and Graph
Neural Network, to learn time-aware representa-
tions of entities and relations (García-Durán et al.,
2018). In many cases, the introduction of new tem-
poral embedding approaches went along with new
score functions and new training methods (regu-
larization, the explicit modeling of reciprocal rela-
tions, etc.). Ablation studies were provided, but not
investigated thoroughly. Besides, some temporal
embedding papers introduced new datasets. They
commonly tune model architecture and hyperpa-
rameters of old temporal embedding approaches
on new datasets using grid search on a small grid
involving hand-crafted parameter ranges or settings
known to work well from prior studies. A grid suit-
able for one dataset may be suboptimal for another,
however. It is often difficult to attribute the incre-
mental improvements in performance reported with
each new state-of-the-art (SOTA) model to the pro-
posed temporal embeddings or other components.

In this work, we investigate the significance of
previously reported temporal embeddings with sev-
eral thousands of experiments and 19000 GPU
hours. First, we aim to study which temporal em-
bedding approach can generally outperform other
temporal embedding approaches regardless of dif-
ferent score functions and different datasets. We
choose one representative from bilinear score func-
tions, i.e., SimplE (Kazemi and Poole, 2018), and
one from translation-based score functions, i.e.,
TransE (Bordes et al., 2013). Then we benchmark
six temporal embedding approaches on two sub-
sets of ICEWS (Boschee et al., 2015) and a sub-
set of GDELT(Leetaru and Schrodt, 2013) with
the two representative score functions through an
extensive set of experiments. Second, we per-
formed an extensive benchmark study on well-
known temporal KG completion models using pop-
ular model architectures and training strategies in
a unified experimental setup. Following the work
(Ruffinelli et al., 2020), we considered many train-
ing strategies as well as a large hyperparameter
space, and we performed model selection using
a quasi-random search followed by Bayesian op-
timization, which has been shown to be able to
find good model configurations with relatively low

effort.

Regarding the first aim, we surprisingly find that
the TE proposed by Leblay and Chekol (2018) out-
performs other temporal embedding approaches
on the ICEWS subsets and achieves on-par results
on GDELT. Leblay and Chekol (2018) represent
timestamps in the same vector space as entities and
relations and learn embeddings for each discrete
timestamp. While achieving better results, the TE
models only require about half of the model pa-
rameters as much of TEEs. However, the common
belief is that the TEEs are more expressive and can
better capture the evolving knowledge. Recall that
models with TEEs learn an embedding function for
each entity that takes time as input and provides
an entity representation as output. In particular,
it has been proven that TEEs are fully expressive
for tKG completion in combination with certain
score functions (Goel et al., 2019), and thus, they
should perform better than TEs, which is in con-
trast to our findings. We argue that the sparsity
of temporal KG data may cause the undesirable
empirical performance of TEEs. Every entity has
the same dimensionality of time-dependent embed-
dings, but the majority of entities are only involved
in a small number of quadruples. As a result, the
TEEs may suffer from the overfitting problem. To
verify our assumption, we learn a unique temporal
embedding function for all entities instead of learn-
ing entity-specific embedding functions. We re-
fer to it as UTEE. Empirical study shows that the
UTEE achieves similar or even better results than
all other TEEs variants, emphasizing the overfitting
problem of TEEs.

Besides, we empirically find that the perfor-
mance of a fine-tuned baseline can by far exceed
the performance observed in all previous studies.
For example, T-TransE (Leblay and Chekol, 2018),
one of the first temporal KG completion models,
achieves superior performance metric in our study
that is more than doubled to that reported in recent
papers (García-Durán et al., 2018; Goel et al., 2019;
Lacroix et al., 2020; Xu et al., 2019). Thus, it is
competitive to or even outperforms current SOTA
models such as DE-SimplE (Goel et al., 2019) and
TComplEx (Lacroix et al., 2020). This suggests
that training strategies significantly affect the per-
formance of temporal KG models and are responsi-
ble for a substantial fraction of the progress made
in recent years. Thus, to fairly compare the effec-
tiveness of different temporal KG models, it is nec-

8106

essary to evaluate them on a unified framework. To
this end, our study realizes the first fair benchmark-
ing by investigating the interplay between temporal
KG interaction models, loss functions, regulariza-
tion methods, the use of reciprocal relations, and
other training techniques in a unified open-source
framework1. To ensure the composability of the
framework, the temporal embedding layer, score
functions, and various training strategies are im-
plemented as independent submodules. Thus, one
can easily assess the individual benefit of a novel
temporal embedding approach via our framework.
Additionally, we perform an extensive experimen-
tal study in which well-known temporal KG mod-
els are fine-tuned by popular training strategies and
a wide range of hyperparameter settings. The re-
ported results can be directly used for comparison
in future work.

2 Preliminaries and Related Work

2.1 Temporal Knowledge Graph Completion
Temporal knowledge graphs (tKGs) are multi-
relational, directed graphs with labeled times-
tamped edges between entities. Let E , R, and T
represent a finite set of entities, relations, and times-
tamps, respectively. Each fact can be denoted by
a quadruple q = (es, r, eo, t), representing a times-
tamped and labeled edge between a subject entity
es ∈ E and an object entity eo ∈ E regarding a rela-
tion r ∈ R at a timestamp t ∈ T . Let F represents
the set of all quadruples that are facts, i.e., real
events in the world, the tKG completion (tKGC)
is the problem of inferring F based on a set of
observed facts O, which is a subset of F . Specifi-
cally, the task of tKGC is to predict either a missing
subject entity (?, r, eo, t) given the other three com-
ponents or a missing object entity (es, r, ?, t).

Our study focuses solely on temporal knowledge
graph embedding models for the completion task,
which do not exploit temporal knowledge graph
embedding models for the forecasting task (Trivedi
et al., 2017; Han et al., 2020b, 2021).

2.2 Temporal KG Embedding Models
A tKG embedding (tKGE) model embeds each en-
tity e ∈ E and relation r ∈ R in a vector space.
To capture temporal aspects, each model either
embeds discrete timestamps into a vector space
or learns time-dependent representations for each
entity. Besides, each model has a score function

1https://github.com/TemporalKGTeam/A_Unified_Framework_of_Temporal_Knowledge_Graph_Models

that takes the temporal information and the em-
beddings of the subject, relation, and object as
the input and computes a score for each potential
quadruple. The higher the quadruple score, the
more plausible it is considered to be true by the
model. Taking the object prediction as an example,
we consider all entities in E and learn a score func-
tion φ(es, r, eo, t) = f(es(t), r, eo(t)), for models
with TEEs and φ(es, r, eo, t) = f(es, r, eo, t) for
models with TEs. The bold symbols denote the
embeddings of the corresponding entities, relation,
and time.

2.2.1 Temporal Embeddings
tKGE models differ in their temporal embeddings
and score functions. Temporal embedding ap-
proaches come in three categories: timestamp em-
beddings (TEs), where the models learn a represen-
tation for each discrete timestamp; time-dependent
entity embeddings (TEEs), where an entity embed-
ding function takes time and an entity as inputs
and provides a hidden representation as output;
and deep temporal representations (DTRs), where
the models incorporate time information into deep
learning frameworks.

The best known TE is the vanilla TE (abbrevi-
ated to T by its authors) proposed by Leblay and
Chekol (2018) where each timestamp is mapped
in the same vector space as entities and relations.
Later, Lacroix et al. (2020) introduced a new regu-
larization scheme to smooth the representation of
neighboring timestamps. Another well-known TE
is HyTE (Dasgupta et al., 2018), which associates
each timestamp with a corresponding hyperplane
and projects the embeddings of entities and rela-
tions onto timestamp-specific hyperplanes to incor-
porate temporal information in entity embeddings:

ei(t) = ei ⊥ ωt = ei − (ωTt ei)ωt.

ei represents the global embedding of entity ei, ⊥
represents the projection operator, and ωt repre-
sents the normal vector of the hyperplane associ-
ated with timestamp t.

A well-known variants of TEEs is the diachronic
entity embeddings (DE) proposed by Goel et al.
(2019) that defines the temporal embeddings of
entity ei at timestamp t as

eDEi (t)[n] =

{
aei [n] if 1 ≤ n ≤ γd,
aei [n] sin(ωei [n]t+ bei [n]) else.

(1)

8107

eDEi (t)[n] denotes the nth element of the embed-
dings of entity ei at time t. aei ,ωei ,bei are entity-
specific vectors with learnable parameters. The
first γd elements of the vector in Equation 1 cap-
ture static features, and the other (1−γ)d elements
capture temporal features. ATiSE (Xu et al., 2019)
is another popular TEE that adds time information
into entity/relation representations by using addi-
tive time series decomposition, where the entity
representation is defined as

eATiSEi (t) = ei + αeiweit

+ βei sin(2πωeit) +N (0,Σei).
(2)

The term ei+αeiωeit is the trend component where
the coefficient denotes the evolutionary rates, and
the vector ωei represents the corresponding evo-
lutionary direction. βei sin(2πωeit) is the corre-
sponding seasonal component, and the Gaussian
noise term N (0,Σei) denotes the random compo-
nent. In principle, other temporal embedding ap-
proaches can also be converted into a probabilistic
approach by adding Gaussian noise. Thus, to fairly
compare with other temporal embeddings and sim-
plify our study, we do not take the noise term into
account. The representation of relations in ATiSE
is also time-dependent and defined similarly to the
entity representation.

A representative of DTRs is the TA-approach
(García-Durán et al., 2018) that utilizes recurrent
neural networks to learn time-aware representa-
tions of relations. Specifically, the relation rep-
resentation is obtained by rTA(t) = LSTM(r, t),
where the timestamp (date) t is tokenized into digits
(year, month, and day). The sequence of tempo-
ral tokens and the relation r is used as input to the
LSTM. In addition to the five PEs mentioned above,
we propose a new TEE where we learn a unique
temporal embedding function for all entities to in-
vestigate the overfitting problem of DE. We refer
to it as UTEE, which is defined as follows:

eUTEEi (t)[n] =

{
a[n] if 1 ≤ n ≤ γd,
a[n] sin(ω[n]t+ b[n]) else.

where the amplitude vector a, frequency vector ω,
and bias b are identical for all entities.

2.2.2 Score Functions
A large number of score functions have been devel-
oped for the KG completion task. A class of these
models is the translation-based approaches corre-
sponding to variations of TransE (Bordes et al.,

2013; Wang et al., 2014; Nguyen et al., 2016)
that models relations as a translation of subject
to object embeddings, i.e., sTransE(es, r, eo) =
−||es + r− eo||2. Another line of work is bilinear
score functions (Nickel et al., 2011; Yang et al.,
2014; Trouillon et al., 2016; Kazemi and Poole,
2018) that define product-based functions over
embeddings, i.e., sRESCAL(es, r, eo) = eTs Reo,
where relation matrix R ∈ Rd×d contain weights
ri,j that capture the interaction between the i-th
latent factor of es and the j-th latent factor of eo.
Among the bilinear models, SimplE (Kazemi and
Poole, 2018) a simple yet fully expressive model
that represents each entity ei ∈ E by two vectors
ei,s and ei,o. Depending on whether ei partici-
pates in a triple as the subject or object entity, ei-
ther ei,s or ei,o is used. To address the indepen-
dence of the two vectors for each entity, SimplE
takes advantage of reciprocal relations and uses
1
2(〈ei,s, r, ej,o〉 + 〈ej,s, r−1, ei,o〉) as the score of
(ei, r, ej), where r−1 is the reciprocal relation of r.

In the rest of the paper, we examine the above
six temporal embeddings in terms of the two repre-
sentative score functions (TransE and SimplE) on
two benchmark tKG datasets. We refer to a specific
combination of temporal embedding approach and
score function as an interaction model.

2.3 Reciprocal Relations
Lacroix et al. (2018) and Dettmers et al. (2018) in-
troduced the use of reciprocal relation for training
knowledge graph embeddings. For every quadruple
(es, r, eo, t) in the dataset, we add (eo, r

−1, es, t),
where r−1 denotes the reciprocal relation of r. The
idea of reciprocal relations is to use separate scor-
ing functions for object prediction and subject pre-
diction. Reciprocal relations can help translation-
based approaches model symmetric patterns and
help bilinear approaches model anti-symmetric and
inverse patterns (Kazemi and Poole, 2018).

2.4 Related Work
Previous benchmarking studies (Kadlec et al.,
2017; Akrami et al., 2020; Rossi et al., 2021) only
focus on static knowledge graph models. For ex-
ample, Ruffinelli et al. (2020) and Ali et al. (2020)
realize a fair benchmarking by re-implementing
static KGE models and performing an extensive
empirical study with a massive search space. How-
ever, they do not take temporal knowledge graph
models into account. To this end, we provide a
unified framework that covers relevant tKGE mod-

8108

els and investigate the influence of temporal em-
beddings on model performance as well as other
components. To the best of our knowledge, this is
the first benchmarking study for tKGE models.

3 Experimental Study

In this section, we first introduce the design of
our unified framework that enables us to evaluate
a large set of different combinations of interac-
tion models, loss functions, regularization methods,
the usage of of explicitly modeling reciprocal rela-
tions and position-aware entity embeddings. Then
we split our experimental study into two parts. In
the first part, we examine six temporal embedding
methods combined with two representative score
functions by performing an extensive set of exper-
iments using advanced training strategies and a
wide range of hyperparameter settings via the uni-
fied framework. In the second part, we re-evaluate
various well-known tKG models from prior studies.
We provide evidence that several old tKG models
can obtain results competitive to or even better than
the SOTA when configured carefully. We present
the best configuration of each model and report its
best performance on each benchmark that future
research can directly use for comparison.

3.1 Composable Unified Framework

In the proposed framework, a tKGE model is con-
sidered as a composition of six modules that can
flexibly be combined: a temporal embedding layer,
a static embedding layer, a score function, a loss
function, a regularization method, and the usage
of reciprocal relations. In particular, the frame-
work can automatically optimize the embedding
method: the temporal embeddings can be either
combined with entity embeddings or relation em-
beddings or both; there are different ways to com-
bine static embeddings and temporal embeddings,
i.e., addition, concatenation and element-wise mul-
tiplication. The framework supports six temporal
embedding approaches as introduced in Section
2.2.1, seven score functions, i.e., TransE(Bordes
et al., 2013), SimplE(Kazemi and Poole, 2018),
DistMult(Yang et al., 2014), three loss functions
(MR, CE, and BCE), four regularization methods
(L1/L2/L3-norm , and dropout), and two initializa-
tion methods (Xavier uniform and Xavier normal).
For interaction models with TEs, a smoothness reg-
ularization for timestamp embeddings is applied,
enforcing neighboring timestamps to have close

representations (Lacroix et al., 2020). Additionally,
Kazemi and Poole (2018) distinguished an entity
between as a head or as a tail entity and learns
two embeddings for each entity, which we term
position-aware entity embedding and extend to all
interaction models. Position-aware entity embed-
dings can enhance the model’s expressiveness. For
example, it can help Distmult (Yang et al., 2014) to
model anti-symmetric relations: without it, all rela-
tions are enforced to be symmetric since 〈h, r, t, τ〉
and 〈t, r, h, τ〉 share the same score regardless of
properties of r.

3.2 Experimental Setup
Datasets Integrated Crisis Early Warning Sys-
tem (ICEWS) (Boschee et al., 2015) dataset has
established itself in the research community as rep-
resentative samples of tKGs and has been widely
applied in recent tKG studies. The ICEWS dataset
contains information about political events with
specific time annotations, e.g. (Barack Obama,
visit, India, 2010-11-06). We apply our model
on two subsets of the ICEWS dataset: ICEWS14
contains events in 2014, and ICEWS11-14 corre-
sponds to the facts between 2011 to 2014. Besides,
we also used a subset of the Global Database of
Events, Language, and Tone (GDELT) (Leetaru
and Schrodt, 2013) dataset as a benchmark. To
make the extensive configuration search feasible,
we extracted a subset named GDELT-m10 consist-
ing of factual events in October, 2015. The statis-
tics and further details are provided in Appendix
C.

Hyperparameters We used a large hyperpa-
rameter search space to ensure that suitable
hyperparameters for each model can be cov-
ered. We consider seven embedding dimensions
{64, 100, 128, 256, 512, 1024, 2048}. The learn-
ing rate can be randomly selected from (0, 0.1].
We use separate weights for regularization of em-
beddings of entities, relations, and timestamps. A
detailed report of the search space is provided in
Appendix B.

Interaction models In the first part, we evaluate
six temporal embedding methods combined with
two representative score functions. The formulas of
these twelve interaction models are listed in Table
1. Additionally, we select DE-SimplE/TransE(Goel
et al., 2019), TNTComplEx(Lacroix et al., 2020),
ATiSE(Xu et al., 2019), TTransE(Leblay and
Chekol, 2018), TA-TransE (García-Durán et al.,

8109

Table 1: Formulas of a given quadruple (ei, r, ej , t). ei,s denotes the embedding of ei when the entity is the
subject while ei,o denotes the embedding of ei when the entity is the object. In comparison, ei represents the
shared embedding of entity ei for both subject and object. t, r represent the embedding of timestamp t and relation
r, respectively. ⊥ represents the projection operator. ei(t) denotes the temporal embedding of ei at t.

Temporal Embeddings TransE SimplE

T ||ei + r + t− ej || 1
2(〈ei,s, r, t, ej,o〉+ 〈ej,s, r−1, t, ei,o〉)

DE ||eDEi (t) + r− eDEj (t)|| 1
2(〈eDEi,s (t), r, eDEj,o (t)〉+ 〈eDEj,s (t), r−1, eDEi,o (t)〉)

UTEE ‖eUTEEi (t) + r− eUTEEj (t) ‖ 1
2(〈eUTEEi,s (t), r, eUTEEj,o (t)〉+ 〈eUTEEj,s (t), r−1, eUTEEi,o (t)〉)

HyTE ‖ei ⊥ ωt + r ⊥ ωt − ej ⊥ ωt‖ 1
2(〈ei,s ⊥ ωt, r ⊥ ωt, ej,o ⊥ ωt〉+ 〈ej,s ⊥ ωt, r ⊥ ωt, ei,o ⊥ ωt〉)

ATiSE ||eATiSEi (t) + rATiSE(t)− eATiSEj (t)|| 1
2(〈eATiSEi,s (t), rATiSE(t), eATiSEj,o (t)〉+ 〈eATiSEj,s (t), r−1,AT iSE(t), eATiSEi,o (t)〉)

TA ‖ei + rTA(t)− ej‖ 1
2(〈ei,s, rTA(t), ej,o〉+ 〈ej,s, r−1,TA(t), ei,o〉)

2018), and HyTE (Dasgupta et al., 2018) for the
second part of our study, which are the most famous
tKGE models.

Evaluation All models are evaluated on link pre-
diction task. For each test quadruple (s, r, o, t), we
create a subject prediction query (?, r, o, t) and an
object prediction query (s, r, ?, t). Taking the ob-
ject prediction as an example, all entities ei ∈ E
are ranked according to the score s(s, r, ei, t). We
filter from the candidate list all the entities but the
ground truth that form a valid quadruple with s, r,
and t, i.e., the quadruple occurs either in the train-
ing, validation, or test data. We report filtered Mean
Reciprocal Ranks (MRR) and Hits@1, 3, 10 aver-
aged over subject prediction and object prediction.
For detailed definitions please see Appendix A.

Computational resources and model selection.
We perform large-scale benchmarking with about
4000 experiments and 19000 GPU hours of com-
putation time. All experiments are run on NVIDIA
Tesla T4. For each dataset and interaction model,
we first randomly generate 40 different configura-
tions from the search space using the Ax frame-
work2. After the random hyperparameter search,
we search 60 new configurations based on Bayesian
optimization to tune the numerical hyperparame-
ters further. Each trial runs for 100 epochs, and
an early stopping strategy with a patience of 30
epochs is employed. We select the best-performing
configuration according to filtered MRR on vali-
dation data. The best configuration will be further
trained until its convergence.

3.3 Examining Temporal Embeddings

Performance in prior studies vs. in our study.
Table 3 shows the filtered MRR and filtered

2https://ax.dev/

Table 2: Selected hyperparameters of best performing
configurations of selected tKG models on ICEWS14.
A full description of hyperparameters are reported in
Table 12 in the appendix.

TTransE T-SimplE DE-TransE DE-SimplE

Emb. size 512 256 256 128
lr. 7e-3 9e-3 2e-3 4e-3
loss CE CE CE BCE
Reciprocal Yes Yes Yes Yes
Position-aware ent. emb. Yes Yes Yes Yes

Hits@1/3/10 on test data of various temporal em-
beddings on ICEWS14 and ICEWS11-14 datasets.
We found that the relative performance differences
between various temporal embeddings often shrink
and sometimes even reverse compared to published
results. For example, T-TransE was first run on
ICEWS14 by (García-Durán et al., 2018), achiev-
ing a filtered MRR of 25.5%. This number is
relatively low compared to today’s standards. In
comparison, T-TransE achieves a superior MRR
of 55.3% in our study, which has been improved
significantly. Studies that report the lower per-
formance number of T-TransE (i.e., 25.5%) thus
do not fairly compare the temporal embedding ap-
proaches. Similar remarks hold for DE-TransE and
HyTE-TransE. (Goel et al., 2019) proposed DE-
TransE and report an MRR of 32.6% on ICEWS14
while it achieves an MRR of 50.8 % in our study.
Similarly, the achieved MRR of HyTE-TransE
on ICEWS14 is 42.9% in our study, which sig-
nificantly improves the reported results (29.7%)
in previous studies (Goel et al., 2019; Sadeghian
et al., 2021). The results suggest that the perfor-
mance of old temporal embedding approaches can
be largely improved by advanced training strate-
gies and hyperparameter-tuning, which may ac-
count for a large fraction of the progress made in
recent years. Figure 1 shows the distribution of

8110

Table 3: Link prediction results of six temporal embedding approaches with two representative score functions on
ICEWS datasets: MRR (%) and Hits@1/3/10 (%). The best results in group are in bold.

Dataset ICEWS14 ICEWS11-14

Score function TransE SimplE TransE SimplE

Temporal Embeddings MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

T 55.3 43.7 62.7 76.5 53.9 43.9 59.4 73.0 57.8 46.0 65.5 79.5 60.2 51.3 65.2 75.5
DE 50.8 38.7 59.0 72.4 53.9 42.5 61.2 74.6 54.1 42.1 60.9 77.1 54.2 42.3 61.0 67.8
UTEE 52.6 40.5 60.3 74.7 53.7 42.5 60.8 74.8 55.2 43.0 63.3 77.5 56.1 45.2 62.9 76.4
HyTE 47.9 35.8 54.1 71.8 52.3 41.9 58.9 71.4 48.2 36.3 54.1 72.0 54.9 43.1 61.7 77.4
ATiSE 47.1 34.7 53.8 71.2 46.6 34.7 53.4 69.7 51.0 38.8 57.7 74.5 49.3 37.5 56.1 72.2
TA 22.3 14.4 25.0 37.5 37.1 25.3 42.2 61.4 26.3 18.3 28.6 43.0 33.4 24.0 37.6 51.2

Table 4: Link prediction results of six temporal em-
bedding approaches with two representative score func-
tions on the GDELT-m10 dataset: MRR (%) and
Hits@1/3/10 (%). The best results in group are in bold.

Dataset GDELT-m10

Score function TransE SimplE

Temporal Embeddings MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

T 31.6 22.7 34.0 48.9 30.8 21.6 33.5 48.8
DE 25.9 17.1 28.1 43.0 34.4 24.9 37.5 53.0
UTEE 26.1 16.9 28.3 44.1 28.5 18.9 30.9 47.4
HyTE 30.8 21.9 33.2 48.3 27.4 17.8 29.9 46.9
ATiSE 25.3 16.7 27.3 42.1 29.6 20.6 32.2 47.3
TA 11.6 1.0 16.1 29.8 19.9 12.4 21.1 34.3

filtered MRR for each model on ICEWS14. Each
distribution consists of 100 different hyperparam-
eter configurations. We can see that some models
show a wide dispersion, and only very few configu-
rations achieve good results. Generally, the impact
of the hyperparameter choice is more pronounced
on TransE-based models (higher variance) than on
SimplE-based models. The hyperparameters of
the best performing models are reported in Table
2 (selected hyperparameters) and Table 12 in the
appendix (all parameters). Perhaps unsurprisingly,
we find that the optimum choice of hyperparame-
ters is often model- and dataset-dependent. Thus, a
grid search on a small search space is not suitable
to compare model performance because the result
may be considerably affected by the specific grid
points being used. Besides, we find that the use
of reciprocal relations (RR) and position-aware
entity embeddings (PEE) often improve model per-
formance. To investigate their impacts, we conduct
ablation studies where we do not use RR (or PEE)
and keep other hyperparameters same to the best
configuration. We report the reduction of filtered
metrics in Table 5, which confirms our findings.

TE vs. TEE Since the timestamp embeddings
(TE) are independent of entities, they can only cap-
ture global patterns at each timestamp. In com-
parison, the time-dependent entity embedding ap-
proaches (DE, ATiSE) learn entity-specific tempo-

Figure 1: Distribution of filtered MRR (%) on
ICEWS14 over the hyperparameter configurations ex-
plored in our study.

ral functions (e.g., frequency, amplitude, etc.) as
shown in Equation 1 and 2. The time-dependent
entity embeddings are expected to capture entity-
specific temporal features, and thus, being more
expressive. However, we see that the simple
timestamp embedding approach (T) proposed by
(Leblay and Chekol, 2018) achieves overall the
best performance. In particular, it outperforms
the time-dependent entity embedding approaches
(DE, ATiSE), which is in contrast to the common
belief. Table 6 provides the number of learnable
parameters of each model, showing that the inter-
action model with timestamp embeddings (T) has
significantly fewer model parameters than time-
dependent entity embeddings (DE, ATiSE). We
argue that the existing time-dependent entity em-
beddings are overfitting to temporal signals. To
this end, we propose the unique time-dependent en-
tity embeddings (UTEE), where we learn a unique
(global) entity embedding function for all entities to
investigate the overfitting problem of DE. In other
words, all entities have the same temporal embed-
ding part. Notably, the model parameter of DE is
often more than three times than UTEE. As shown

8111

Table 5: Impact of reciprocal relations and position-aware entity embeddings on ICEWS14. The number in paren-
thesis shows the performance reduction if the best configuration doesn’t use the reciprocal relation or position-
aware embeddings.

with/without reciprocal relation with/without position-aware entity embeddings

Models MRR(%) Hits@1(%) Hits@3(%) Hits@10(%) MRR(%) Hits@1(%) Hits@3(%) Hits@10(%)

T-TransE 51.7 (-3.6) 39.4(-4.3) 59.1(-3.6) 75.0(-1.5) 31.2(-24.1) 10.6(-33.1) 44.8(-17.9) 68.4(-8.1)
HyTE-TransE 40.1(-7.0) 28.4(-9.9) 44.9(-12.2) 64.3(-7.7) 27.7(-19.4) 9.6(-32.3) 38.2(-20.7) 62.2(-7.5)
HyTE-SimplE 41.2(-11.1) 28.9(-13.0) 47.3(-11.6) 65.4(-4.3) 51.2(-1.1) 40.9(-1.0) 57.7(-1.2) 70.2(-1.2)

in Table 3, the UTEE achieves competitive or even
better performance with both translation-based and
bilinear score functions on both datasets. Addi-
tionally, Table 4 shows the evaluation metrics on
the GDELT-m10 dataset. Compared to the ICEWS
datasets, the number of entities and relations on
GDELT-m10 is much fewer while the amount of
timestamped edges is about three times more than
the ICEWS14 dataset. Thus, the data sparsity is-
sue is alleviated in the GDELT-m10 dataset. Since
TEE approaches need dense data for training, their
performance has been improved on the GDELT-
m10 dataset, which is better than TEs. The results
suggest that even though DE has theoretical full
expressiveness and provides more freedom degrees
of the temporal movements of each entity represen-
tation, their performance would deteriorate signifi-
cantly on sparse data. We tried to add regularization
to entity-specific parameters, e.g., amplitude and
frequency, and adjust the portion γ of the tempo-
ral embeddings. However, there are no significant
improvements. Thus, the time-dependent entity
embeddings need to be revisited to realize their
theoretical expressiveness.

Table 6: Model parameters number: million (M).

Dataset ICEWS14 ICEWS11-14 GDELT-m10

Score function TransE SimplE TransE SimplE TransE SimplE

T 7.72M 3.86M 7.89M 3.94M 0.55M 0.55M
UTEE 7.54M 3.77M 28.57M 7.14M 0.55M 0.55M
DE 16.2M 12.01M 18.45M 14.6M 0.82M 2.11M
HyTE 3.86M 3.86M 1.54M 3.94M 0.55M 0.27M
ATiSE 18.9M 4.72M 8.94M 6.98M 0.67M 0.67M
TA 0.78M 0.78M 0.5M 0.5M 0.22M 0.22M

Findings on other temporal embeddings. Be-
sides, we find HyTE is sensitive to the choice of
score functions. With the translation-based score
function (TransE), HyTE only achieves a relatively
low number by today’s standards while it obtains
a competitive number with the bilinear score func-
tion (SimplE). This suggests that the score function
has a considerable impact on model performance
and may account for a large fraction of the progress.

Thus, if a new temporal embedding technique is
proposed, it should be evaluated on different score
functions to assess its benefits. Additionally, we see
that the TA-approach (García-Durán et al., 2018)
achieves overall relatively low numbers by today’s
standards, showing its limited capacity. Moreover,
we find that the performance of ATiSE consider-
ably deteriorates in our study compared to the prior
study. The difference is that we do not cover the
Gaussian noise component in our study. This result
suggests that taking temporal uncertainty into ac-
count would significantly improve the tKG models.
Thus, it is worth extending other deterministic KG
models into probabilistic approaches.

3.4 Benchmarking tKGE Models

Table 7: Link prediction results of well-known tKG
models on ICEWS14. The number outside the paren-
theses is the performance achieved in our study. The
number in the parentheses is the best performance
results obtained in prior studies. We list the refer-
ences indicate where the performance number was
reported: TTransE/TA-TransE (García-Durán et al.,
2018), HyTE/DE-TransE/DE-SimplE (Goel et al.,
2019), TNTComplEx (Lacroix et al., 2020), ATiSE
(Xu et al., 2019). For ATiSE and HyTE, we use the
same score function (KL divergence and TransE, re-
spectively) as reported in their original papers.

Models MRR (%) Hits@1 (%) Hits@10 (%)

TTransE 55.3(25.5) 43.7(7.4) 76.5(60.1)
HyTE 47.9(29.7) 35.8(10.8) 71.8(65.5)
DE-TransE 50.8(32.6) 38.7(12.4) 72.4(68.6)
DE-SimplE 53.9(52.6) 42.5(41.8) 74.6(72.5)
ATiSE 55.1(55.0) 42.5(43.6) 75.0(75.0)
TNTComplEx 60.6(62) 51.6(52) 77.3(76)
TA-TransE 26.3(27.5) 18.3(9.5) 43.0(62.5)

Table 7 depicts the best performance of well-
known tKGE models from prior studies (numbers
in the parentheses) and that found in our study
(numbers outside the parentheses). The configu-

8112

ration of the best performing models are reported
in Table 13 in the appendix. First, we find that
the performance of a single model can vary wildly
across studies. For example, DE-TransE, T-TransE,
and HyTE have been significantly improved using
advanced training strategies and hyperparameter-
tuning. Besides, we see that some recent models
cannot consistently outperform old models in con-
trast to the conclusion in prior studies. In particular,
T-TransE, which constitutes one of the first tKGE
models, achieves results competitive to advanced
models, i.e., ATiSE and DE-SimplE, in our study.
Even compared to TNTComplEx, which is a very
large models with 25.12 million learnable parame-
ters (3 times more than TTransE), the performance
difference is not large. We provide explanation for
the performance gap between our study and prior
study regarding TA-TransE and TNTComplEx in
Appendix D.

4 Conclusion

We assess well-known temporal embeddings of
tKGE models via an extensive experimental study.
We found that when trained appropriately, the naive
timestamp embedding approach performs simi-
larly or even outperforms the more advanced time-
dependent entity embedding (TEE) approaches,
which is in contrast to the results in prior stud-
ies. We contribute to the community in at least
two ways: i) we provide a unified framework to
enable an insightful assessment for novel temporal
embedding approaches; ii) reveal the weakness of
TEE approaches.

References
Farahnaz Akrami, Mohammed Samiul Saeef,

Qingheng Zhang, Wei Hu, and Chengkai Li.
2020. Realistic re-evaluation of knowledge graph
completion methods: An experimental study. In
Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pages
1995–2010.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-
rent Vermue, Mikhail Galkin, Sahand Sharifzadeh,
Asja Fischer, Volker Tresp, and Jens Lehmann. 2020.
Bringing light into the dark: A large-scale evaluation
of knowledge graph embedding models under a uni-
fied framework. arXiv preprint arXiv:2006.13365.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Elizabeth Boschee, Jennifer Lautenschlager, Sean
O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. Icews coded event data. Harvard Data-
verse, 12.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2001–2011.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Alberto García-Durán, Sebastijan Dumančić, and
Mathias Niepert. 2018. Learning sequence encoders
for temporal knowledge graph completion. arXiv
preprint arXiv:1809.03202.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2019. Diachronic embedding
for temporal knowledge graph completion. arXiv
preprint arXiv:1907.03143.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2021. Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In International
Conference on Learning Representations.

Zhen Han, Yunpu Ma, Peng Chen, and Volker Tresp.
2020a. Dyernie: Dynamic evolution of riemannian
manifold embeddings for temporal knowledge graph
completion. arXiv preprint arXiv:2011.03984.

Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günne-
mann, and Volker Tresp. 2020b. Graph hawkes neu-
ral network for forecasting on temporal knowledge
graphs. arXiv preprint arXiv:2003.13432.

Woojeong Jin, Changlin Zhang, Pedro Szekely, and Xi-
ang Ren. 2019. Recurrent event network for reason-
ing over temporal knowledge graphs. arXiv preprint
arXiv:1904.05530.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst.
2017. Knowledge base completion: Baselines strike
back. arXiv preprint arXiv:1705.10744.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Advances in neural information processing sys-
tems, pages 4284–4295.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Timothee Lacroix, Guillaume Obozinski, and Nico-
las Usunier. 2020. Tensor decompositions for tem-
poral knowledge base completion. ICLR preprint
https://openreview.net/pdf?id=rke2P1BFwS.

8113

Timothée Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. arXiv preprint
arXiv:1806.07297.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference
2018, pages 1771–1776. International World Wide
Web Conferences Steering Committee.

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–
2012. In ISA annual convention, volume 2, pages
1–49. Citeseer.

Yunpu Ma, Volker Tresp, and Erik A Daxberger. 2018.
Embedding models for episodic knowledge graphs.
Journal of Web Semantics, page 100490.

Sameh K Mohamed, Vít Novácek, Pierre-Yves Vanden-
bussche, and Emir Muñoz. 2019. Loss functions in
knowledge graph embedding models. In DL4KG@
ESWC, pages 1–10.

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016. Stranse: a novel embedding model
of entities and relationships in knowledge bases.
arXiv preprint arXiv:1606.08140.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Icml, vol-
ume 11, pages 809–816.

Andrea Rossi, Denilson Barbosa, Donatella Fir-
mani, Antonio Matinata, and Paolo Merialdo. 2021.
Knowledge graph embedding for link prediction: A
comparative analysis. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 15(2):1–49.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You {can} teach an old dog new
tricks! on training knowledge graph embeddings. In
International Conference on Learning Representa-
tions.

Ali Sadeghian, Mohammadreza Armandpour, Anthony
Colas, and Daisy Zhe Wang. 2021. Chronor: Ro-
tation based temporal knowledge graph embedding.
arXiv preprint arXiv:2103.10379.

Volker Tresp, Cristóbal Esteban, Yinchong Yang,
Stephan Baier, and Denis Krompaß. 2015. Learn-
ing with memory embeddings. arXiv preprint
arXiv:1511.07972.

Volker Tresp, Yunpu Ma, Stephan Baier, and Yinchong
Yang. 2017. Embedding learning for declarative
memories. In European Semantic Web Conference,
pages 202–216. Springer.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and
Le Song. 2017. Know-evolve: Deep temporal rea-
soning for dynamic knowledge graphs. In Pro-
ceedings of the 34th International Conference on

Machine Learning, volume 70, pages 3462–3471.
JMLR. org.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. International
Conference on Machine Learning (ICML).

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Twenty-Eighth AAAI con-
ference on artificial intelligence.

Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Jens
Lehmann, and Hamed Shariat Yazdi. 2019. Tem-
poral knowledge graph embedding model based on
additive time series decomposition. arXiv preprint
arXiv:1911.07893.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Cunchao Zhu, Muhao Chen, Changjun Fan,
Guangquan Cheng, and Yan Zhan. 2020. Learning
from history: Modeling temporal knowledge graphs
with sequential copy-generation networks. arXiv
preprint arXiv:2012.08492.

8114

Figure 2: Exemplary temporal KG: nodes represent
entities and edges their respective relations.

Appendix

Table 8: Link prediction results of well-known tem-
poral KG models on ICEWS11-14: MRR (%) and
Hits@1/3/10 (%).

Models MRR Hits@1 Hits@3 Hits@10

TTransE 57.8 46.0 65.5 79.5
HyTE 49.8 37.6 56.2 74.0
DE-TransE 54.1 42.1 60.9 77.1
DE-SimplE 54.2 42.3 61.0 67.8
TNTComplEx 63.5 55.4 68.5 78.8
ATiSE 53.3 40.3 61.4 77.9

A Evaluation Metrics

For each test quadruple (es, r, eo, t), we create a
subject prediction query (?, r, eo, t) and an object
prediction query (es, r, ?, t). Let ψes and ψeo rep-
resent the rank for ground truth subject es and
ground truth object eo of the subject prediction
query and object prediction query, respectively.
We evaluate our models using standard metrics
across the link prediction literature: mean recipro-
cal rank (MRR): 1

2·|Gtest|
∑

q∈Gtest(
1
ψes

+ 1
ψeo

) and
Hits@k(k ∈ {1, 3, 10}): the percentage of times
that the true entity candidate appears in the top k
of ranked candidates.

There are two common filtering settings. The
first one is following the ranking technique de-
scribed in (Bordes et al., 2013), where we remove
from the list of corrupted triples all the triples that
appear either in the training, validation, or test set.
We name it static filtering. Trivedi et al. (2017), Jin
et al. (2019), and Zhu et al. (2020) use this filtering
setting for reporting their results on temporal KG

Figure 3: Distribution of filtered MRR (%) on
ICEWS11-14 over the hyperparameter configurations
explored in our study.

forecasting. However, this filtering setting is not
appropriate for evaluating the link prediction on
temporal KGs. For example, there is a test quadru-
ple (Barack Obama, visit, India, 2015-01-25), and
we perform the object prediction (Barack Obama,
visit, ?, 2015-01-25). We have observed the quadru-
ple (Barack Obama, visit, Germany, 2013-01-18)
in training set. According to the static filtering,
(Barack Obama, visit, Germany) will be considered
as a genuine triple at the timestamp 2015-01-25
and will be filtered out because the triple (Barack
Obama, visit, Germany) appears in the training set
in the quadruple (Barack Obama, visit, Germany,
2015-01-18). However, the triple (Barack Obama,
visit, Germany) is only temporally valid on 2013-
01-18 but not on 2015-01-25. To this end, another
filtering scheme was introduced, which is more ap-
propriate for the link forecasting task on temporal
KGs. We name it time-aware filtering. In this case,
we only filter out the triples that are genuine at
the timestamp of the query. In other words, if the
triple (Barack Obama, visit, Germany) does not
appear at the query time of 2015-01-25, the quadru-
ple (Barack Obama, visit, Germany, 2015-01-25)
is considered as corrupted. In this paper, we focus
on time-aware filtering.

B Additional Information of
Hyperparameter Search Space

Loss functions Various loss functions are used
in training temporal knowledge graphs. Dasgupta
et al. (2018); Leblay and Chekol (2018) used mar-
gin ranking (MR) loss for training, where each pair
consists of a positive quadruple and one of its neg-

8115

ative quadruple. The margin η is a hyperparameter.
Goel et al. (2019); García-Durán et al. (2018) treat
the entity prediction task as a categorical classifi-
cation problem and utilize the cross entropy (CE)
loss to align the model distribution and the data dis-
tribution. Han et al. (2020a) proposed to use binary
cross entropy (BCE) loss that applies a sigmoid
function to the score of each positive or negative
quadruples and takes the cross entropy between
the resulting probability and that quadruple’s label
as the loss. It has been shown in (Ruffinelli et al.,
2020; Mohamed et al., 2019) that the loss func-
tion has a significant impact on the performance
of static KGE models. To provide additional ev-
idence on temporal KGE models, we search the
best choice of loss functions for each model on
each dataset.

Regularization methods L2 regularization is
widely used in literature (Leblay and Chekol, 2018).
Besides, (Dasgupta et al., 2018) proposed to use L1-
norm in the regularization term. And (Lacroix et al.,
2020) used L3-norm for CP-decomposition. Addi-
tionally, (Lacroix et al., 2020) proposed a smooth-
ness regularization for timestamp embeddings that
enforce neighboring timestamps to have close rep-
resentations. Moreover, (Goel et al., 2019) used
dropout in its hidden layers. AiTSE normalized the
static embeddings ei, the trend component wei to
unit norm after each update.

Other hyperparameters For models with di-
achronic entity embedding as its temporal encoding
heads, we extend the static feature ratio as an ex-
tra searchable hyperparameter. The negative sam-
ple ratio of the negative sampling policy is 500.
Namely, for each positive sample (s, p, o, t), we
corrupt the subject and object entity via uniformly
sampling from T , where T = {(s′, p, o, t)|s′ ∈
E\s} ∪ ({(s′, p, o, t)|t′ ∈ E\o}. We set our batch
size to be 512. Besides, since Adam (Kingma and
Ba, 2014) optimizer performs well for the major-
ity of the models (Ali et al., 2020), we decided to
progress only with Adam in order to reduce the
computational costs. Additionally, for translational
models, we set the margin γ to be 100 in the score
function.

C Datasets

Dataset statistics including subset split information
are described in Table 11. We follow the data pre-
processing method used in the original papers. For

Table 9: The average runtime of each training epoch:
seconds (s).

Dataset ICEWS14 ICEWS11-14 GDELT-m10

Score function TransE SimplE TransE SimplE TransE SimplE

T- 99s 64s 80s 105s 290s 321s
UTEE- 128s 75s 450s 262s 1230s 638s
DE- 196s 145s 375s 302s 438s 518s
HyTE- 208s 212s 146s 105s 360s 382s
ATiSE- 317s 75s 212s 175s 380s 390s
TA- 730s 365s 730s 365s 2696s 3751s

example, DE-SimplE (Goel et al., 2019) takes the
date (day/month/year) as timestamp input while
AiTSE (Xu et al., 2019) converts dates into consec-
utive integers.

D Reproducibility Studies

We were not able to reproduce the results of TA-
TransE on ICEWS14. A reason might be differ-
ences in the implementation details of the frame-
works used to train and evaluate the models. Since
there exists no official implementation for TA-
TransE, it is not possible to check the implementa-
tion difference. Also, García-Durán et al. (2018)
did not report the full setup, which impedes the
reproduction of results. For example, the regular-
ization method and initialization method have not
been reported, which can have a significant effect
on the results.

Lacroix et al. (2020) provides an official imple-
mentation of TNTComplEx. However, we were
not able to reproduce the same metric number as
reported in their paper. Similarly, Sadeghian et al.
(2021) also did not successfully reproduce the re-
sults of TNTComplEx. The initialization of the
embeddings might be a reason.

E Average Runtime of each Approach

Table 9 shows the average runtime of each training
epoch for each interaction model.

8116

Table 10: Hyperparameter search space used in our study.

Hyperparameter Search space
Embedding

Embedding dimension {64, 100, 128, 256, 512, 1024, 2048}
Embedding initialization {Xavier Uniform, Xavier Normal}

Training
Reciprocal relation {True, False}
Position-aware entity embeddings {True, False}
Loss function {CE, BCE, MR}
Learning rate (0.0, 0.1]

Regularization
Entity regularization type {None, L1, L2, L3}
Entity regularization weight (0.0, 0.1]
Relation regularization type {None, L1, L2, L3}
Relation regularization weight (0.0, 0.1]
Timestamp smoothness regularization weight (0.0, 0.1]
Dropout [0.0, 0.6]

Data set Ntrain Nvalid Ntest Nent Nrel Ntimestamp Time granularity

ICEWS14 72826 8941 8963 7128 230 365 day
ICEWS11-14 118766 14859 14756 6738 235 1461 day
GDELT-m10 221132 27608 27926 50 20 30 day

Table 11: Dataset Statistics

8117

Ta
bl

e
12

:B
es

tc
on

fig
ur

at
io

ns
of

si
x

te
m

po
ra

le
m

be
dd

in
gs

w
ith

tw
o

sc
or

e
fu

nc
tio

ns
on

IC
E

W
S1

4,
IC

E
W

S1
1-

14
an

d
G

D
E

LT
-m

10
.

E
m

b.
di

m
.

E
m

b.
in

it.
SE

ra
tio

R
ec

ip
.r

el
.

Po
s-

aw
ar

e
en

tit
y

L
ea

rn
in

g
ra

te
L

os
s

fu
nc

.
E

nt
.r

eg
.t

yp
e

E
nt

.r
eg

.w
ei

gh
t

R
el

.r
eg

.t
yp

e
R

el
.r

eg
.w

ei
gh

t
Te

m
p.

sm
oo

th
.w

ei
gh

t.
D

ro
po

ut

ICEWS14

T-
Tr

an
sE

51
2

X
av

ie
rU

ni
fo

rm
-

Tr
ue

Tr
ue

0.
00

75
32

4
C

E
-

-
-

-
1.

95
13

13
5e

-1
7

0.
5

U
T

E
E

-T
ra

ns
E

51
2

X
av

ie
rU

ni
fo

rm
-

Tr
ue

Tr
ue

0.
00

10
00

0
C

E
N

on
e

-
N

on
e

-
-

0.
5

D
E

-T
ra

ns
E

25
6

X
av

ie
rU

ni
fo

rm
0.

57
Tr

ue
Tr

ue
0.

00
19

25
1

C
E

N
on

e
-

N
on

e
-

-
0.

4
H

yT
E

-T
ra

ns
E

12
8

X
av

ie
rU

ni
fo

rm
-

Tr
ue

Tr
ue

0.
00

80
11

2
C

E
L

2
0.

03
68

05
6

L
2

0.
07

62
29

2
0.

03
81

66
2

0.
6

A
Ti

SE
-T

ra
ns

E
25

6
X

av
ie

rU
ni

fo
rm

-
Tr

ue
Tr

ue
0.

00
29

39
7

C
E

-
-

-
-

0.
2

T-
Si

m
pl

E
25

6
X

av
ie

rU
ni

fo
rm

-
Tr

ue
Tr

ue
0.

00
90

14
6

C
E

N
on

e
-

N
on

e
-

0.
00

00
88

1
0.

6
U

T
E

E
-S

im
pl

E
25

6
X

av
ie

rU
ni

fo
rm

-
Tr

ue
Tr

ue
0.

00
30

25
1

B
C

E
-

-
-

-
-

0.
5

D
E

-S
im

pl
E

12
8

X
av

ie
rU

ni
fo

rm
0.

42
Tr

ue
Tr

ue
0.

00
38

82
6

B
C

E
-

-
-

-
-

0.
4

H
yT

E
-S

im
pl

E
25

6
X

av
ie

rU
ni

fo
rm

-
Tr

ue
Tr

ue
0.

00
89

47
1

C
E

N
on

e
-

N
on

e
-

0.
03

15
67

3
0.

2
A

Ti
SE

-S
im

pl
E

64
X

av
ie

rU
ni

fo
rm

-
Tr

ue
Tr

ue
0.

00
06

40
7

B
C

E
L

3
0.

01
65

84
9

L
3

0.
01

48
40

0
-

0.
2

ICEWS11-14

T-
Tr

an
sE

51
2

X
av

ie
rU

ni
fo

rm
-

Fa
ls

e
Tr

ue
0.

00
18

17
3

C
E

-
-

-
-

0.
01

15
13

3
0.

4
U

T
E

E
-T

ra
ns

E
20

48
X

av
ie

rN
or

m
al

-
Tr

ue
Tr

ue
0.

00
03

23
6

C
E

N
on

e
-

L
2

0.
09

68
47

3
-

0.
0

D
E

-T
ra

ns
E

25
6

X
av

ie
rU

ni
fo

rm
0.

46
Tr

ue
Tr

ue
0.

00
26

80
1

C
E

-
-

-
-

-
0.

6
H

yT
E

-T
ra

ns
E

10
0

X
av

ie
rU

ni
fo

rm
-

Tr
ue

Tr
ue

0.
00

84
56

3
C

E
L

2
0.

05
48

56
9

L
3

0.
08

48
77

1
0.

07
18

38
3

0.
0

A
Ti

SE
-T

ra
ns

E
12

8
X

av
ie

rU
ni

fo
rm

-
Tr

ue
Tr

ue
0.

00
13

80
9

C
E

L
3

0.
00

11
40

5
L

2
0.

01
82

75
9

0.
01

15
13

3
0.

2
T-

Si
m

pl
E

25
6

X
av

ie
rU

ni
fo

rm
-

Tr
ue

Tr
ue

0.
00

15
91

0
C

E
-

-
-

-
0.

00
49

30
1

0.
4

U
T

E
E

-S
im

pl
E

51
2

X
av

ie
rN

or
m

al
-

Tr
ue

Tr
ue

0.
00

48
31

0
C

E
-

-
-

-
-

0.
6

D
E

-S
im

pl
E

12
8

X
av

ie
rN

or
m

al
0.

07
Tr

ue
Tr

ue
0.

00
40

70
8

C
E

N
on

e
-

N
on

e
-

-
0.

6
H

yT
E

-S
im

pl
E

10
0

X
av

ie
rN

or
m

al
-

Tr
ue

Tr
ue

0.
00

77
52

9
C

E
N

on
e

-
N

on
e

-
0.

07
51

26
8

0.
5

A
Ti

SE
-S

im
pl

E
10

0
X

av
ie

rU
ni

fo
rm

-
Tr

ue
Tr

ue
0.

00
06

45
4

C
E

L
2

0.
03

97
85

1
L

3
0.

02
62

54
4

-
0.

4

GDELT-m10

T-
Tr

an
sE

51
2

X
av

ie
rN

or
m

al
-

T
R

U
E

T
R

U
E

0.
00

05
20

5
C

E
N

on
e

-
L

3
0.

08
61

47
2

0.
01

23
21

4
0.

2
U

T
E

E
-T

ra
ns

E
51

2
X

av
ie

rU
ni

fo
rm

-
T

R
U

E
T

R
U

E
0.

00
18

01
8

B
C

E
N

on
e

-
N

on
e

-
-

0.
4

D
E

-T
ra

ns
E

10
0

X
av

ie
rN

or
m

al
0.

10
T

R
U

E
T

R
U

E
0.

00
21

73
9

C
E

N
on

e
-

N
on

e
-

-
0.

4
H

yT
E

-T
ra

ns
E

51
2

X
av

ie
rN

or
m

al
-

T
R

U
E

T
R

U
E

0.
00

07
65

5
C

E
L

3
0.

01
28

70
9

L
2

0.
04

40
40

0
0.

07
55

94
6

0.
2

A
Ti

SE
-T

ra
ns

E
12

8
X

av
ie

rN
or

m
al

-
T

R
U

E
T

R
U

E
0.

00
01

83
6

C
E

L
2

0.
03

22
39

7
L

2
0.

08
54

99
9

-
0.

4
T-

Si
m

pl
E

51
2

X
av

ie
rN

or
m

al
-

T
R

U
E

T
R

U
E

0.
00

86
66

7
C

E
L

3
0.

00
39

18
6

L
3

0.
04

66
82

0
0.

07
30

53
8

0.
2

U
T

E
E

-S
im

pl
E

51
2

X
av

ie
rN

or
m

al
-

T
R

U
E

T
R

U
E

0.
00

06
76

7
C

E
L

2
0.

00
35

27
5

N
on

e
-

-
0.

4
D

E
-S

im
pl

E
25

6
X

av
ie

rN
or

m
al

0.
66

T
R

U
E

T
R

U
E

0.
00

21
57

8
B

C
E

N
on

e
-

N
on

e
-

-
0.

4
H

yT
E

-S
im

pl
E

25
6

X
av

ie
rN

or
m

al
-

T
R

U
E

T
R

U
E

0.
00

46
38

4
C

E
L

3
0.

00
34

21
1

L
2

0.
09

86
17

5
0.

01
43

31
1

0.
2

A
Ti

SE
-S

im
pl

E
12

8
X

av
ie

rN
or

m
al

-
T

R
U

E
T

R
U

E
0.

00
59

19
8

C
E

L
2

0.
00

02
83

8
L

2
0.

08
19

92
9

-
0.

4

8118

Ta
bl

e
13

:B
es

tc
on

fig
ur

at
io

ns
of

w
el

l-
kn

ow
n

te
m

po
ra

lk
no

w
le

dg
e

gr
ap

h
m

od
el

s
on

IC
E

W
S1

4
an

d
IC

E
W

S1
1-

14
.

E
m

b.
di

m
.

E
m

b.
in

it.
SE

ra
tio

R
ec

ip
.r

el
.

Po
s-

aw
ar

e
en

tit
y

L
ea

rn
in

g
ra

te
L

os
s

fu
nc

.
E

nt
.r

eg
.t

yp
e

E
nt

.r
eg

.w
ei

gh
t

R
el

.r
eg

.t
yp

e
R

el
.r

eg
.w

ei
gh

t
Te

m
p.

sm
oo

th
.w

ei
gh

t.
D

ro
po

ut

ICEWS14

T-
Tr

an
sE

51
2

X
av

ie
rU

ni
fo

rm
-

Tr
ue

Tr
ue

0.
00

75
32

4
C

E
-

-
-

-
1.

95
13

13
5e

-1
7

0.
5

D
E

-T
ra

ns
E

25
6

X
av

ie
rU

ni
fo

rm
0.

57
Tr

ue
Tr

ue
0.

00
19

25
1

C
E

N
on

e
-

N
on

e
-

-
0.

4
D

E
-S

im
pl

E
12

8
X

av
ie

rU
ni

fo
rm

0.
42

Tr
ue

Tr
ue

0.
00

38
82

6
B

C
E

-
-

-
-

-
0.

4
T

N
T

C
om

pl
E

x
15

60
-

-
Tr

ue
-

0.
1

C
E

n3
0.

01
-

-
0.

01
-

A
Ti

SE
50

0
-

-
Fa

ls
e

-
0.

00
00

3
L

M
R

-
-

-
-

-
-

H
yT

E
10

0
X

av
ie

rU
ni

fo
rm

-
Tr

ue
Tr

ue
0.

00
84

56
3

C
E

L
2

0.
05

48
56

9
L

3
0.

08
48

77
1

0.
07

18
38

3
0.

0

ICEWS11-14

T
Tr

an
sE

51
2

X
av

ie
rU

ni
fo

rm
-

Fa
ls

e
Tr

ue
0.

00
18

17
3

C
E

-
-

-
-

0.
01

15
13

3
0.

4
D

E
-T

ra
ns

E
25

6
X

av
ie

rU
ni

fo
rm

0.
46

Tr
ue

Tr
ue

0.
00

26
80

1
C

E
-

-
-

-
-

0.
6

D
E

-S
im

pl
E

12
8

X
av

ie
rN

or
m

al
0.

07
Tr

ue
Tr

ue
0.

00
40

70
8

C
E

N
on

e
-

N
on

e
-

-
0.

6
T

N
T

C
om

pl
E

x
15

60
-

-
Tr

ue
-

0.
08

59
51

6
C

E
n3

0.
00

1
-

-
0.

1
-

A
Ti

SE
50

0
-

-
Fa

ls
e

-
0.

00
00

3
L

M
R

-
-

-
-

-
-

H
yT

E
10

0
X

av
ie

rN
or

m
al

-
Tr

ue
Tr

ue
0.

00
77

52
9

C
E

N
on

e
-

N
on

e
-

0.
07

51
26

8
0.

5

GDELT-m10

T
Tr

an
sE

51
2

X
av

ie
rN

or
m

al
-

T
R

U
E

T
R

U
E

0.
00

05
20

5
C

E
N

on
e

-
L

3
0.

08
61

47
2

0.
01

23
21

4
0.

2
D

E
-T

ra
ns

E
10

0
X

av
ie

rN
or

m
al

0.
10

T
R

U
E

T
R

U
E

0.
00

21
73

9
C

E
N

on
e

-
N

on
e

-
-

0.
4

D
E

-S
im

pl
E

25
6

X
av

ie
rN

or
m

al
0.

66
T

R
U

E
T

R
U

E
0.

00
21

57
8

B
C

E
N

on
e

-
N

on
e

-
-

0.
4

T
N

T
C

om
pl

E
x

15
60

-
-

Tr
ue

-
0.

14
99

99
9

C
E

n3
0.

00
1

-
-

0.
1

-
A

Ti
SE

51
2

-
-

Tr
ue

-
0.

00
00

3
L

M
R

-
-

-
-

-
-

H
yT

E
51

2
X

av
ie

rN
or

m
al

-
T

R
U

E
T

R
U

E
0.

00
07

65
5

C
E

L
3

0.
01

28
70

9
L

2
0.

04
40

40
0

0.
07

55
94

6
0.

2

Chapter 6

DyERNIE: Dynamic Evolution of

Riemannian Manifold Embeddings

for Temporal Knowledge Graph

Completion.

This chapter contains the publication

DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal

Knowledge Graph Completion. In Proceedings of the Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP), Virtual Conference, Nov 2020. DOI:

10.18653/v1/2020.emnlp-main.593.

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 7301–7316,
November 16–20, 2020. c©2020 Association for Computational Linguistics

7301

DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for
Temporal Knowledge Graph Completion

Zhen Han1,2, Peng Chen2,3, Yunpu Ma1,2 ,̊ Volker Tresp1,2˚
1Institute of Informatics, LMU Munich 2 Corporate Technology, Siemens AG

3Department of Informatics, Technical University of Munich
zhen.han@campus.lmu.de, peng.chen@tum.de

cognitive.yunpu@gmail.com, volker.tresp@siemens.com

Abstract

There has recently been increasing interest
in learning representations of temporal knowl-
edge graphs (KGs), which record the dynamic
relationships between entities over time. Tem-
poral KGs often exhibit multiple simultane-
ous non-Euclidean structures, such as hierar-
chical and cyclic structures. However, exist-
ing embedding approaches for temporal KGs
typically learn entity representations and their
dynamic evolution in the Euclidean space,
which might not capture such intrinsic struc-
tures very well. To this end, we propose Dy-
ERNIE, a non-Euclidean embedding approach
that learns evolving entity representations in a
product of Riemannian manifolds, where the
composed spaces are estimated from the sec-
tional curvatures of underlying data. Product
manifolds enable our approach to better re-
flect a wide variety of geometric structures on
temporal KGs. Besides, to capture the evo-
lutionary dynamics of temporal KGs, we let
the entity representations evolve according to
a velocity vector defined in the tangent space
at each timestamp. We analyze in detail the
contribution of geometric spaces to represen-
tation learning of temporal KGs and evaluate
our model on temporal knowledge graph com-
pletion tasks. Extensive experiments on three
real-world datasets demonstrate significantly
improved performance, indicating that the dy-
namics of multi-relational graph data can be
more properly modeled by the evolution of em-
beddings on Riemannian manifolds.

1 Introduction

Learning from relational data has long been con-
sidered as a key challenge in artificial intelligence.
In recent years, several sizable knowledge graphs
(KGs), e.g. Freebase (Bollacker et al., 2008) and
Wikidata (Vrandečić and Krötzsch, 2014), have

˚Corresponding author.

been developed that provide widespread availabil-
ity of such data and enabled improvements to a
plethora of downstream applications such as rec-
ommender systems (Hildebrandt et al., 2019) and
question answering (Zhang et al., 2018). KGs are
multi-relational, directed graphs with labeled edges,
where each edge corresponds to a fact and can be
represented as a triple, such as (John, lives in, Van-
couver). Common knowledge graphs are static and
store facts at their current state. In reality, however,
multi-relational data are often time-dependent. For
example, the political relationship between two
countries might intensify because of trade fights.
Thus, temporal knowledge graphs were introduced,
such as ICEWS (Boschee et al., 2015) and GDELT
(Leetaru and Schrodt, 2013), that capture temporal
aspects of facts in addition to their multi-relational
nature. In these datasets, temporal facts are repre-
sented as a quadruple by extending the static triplet
with a timestamp describing when these facts oc-
curred, i.e. (Barack Obama, inaugurated, as presi-
dent of the US, 2009). Since real-world temporal
KGs are usually incomplete, the task of link predic-
tion on temporal KGs has gained growing interest.
The task is to infer missing facts at specific time-
stamps based on the existing ones by answering
queries such as (US, president, ?, 2015).

Many facts in temporal knowledge graphs in-
duce geometric structures over time. For instance,
increasing trade exchanges and economic coopera-
tion between two major economies might promote
the trade exports and economic growths of a series
of countries in the downstream supply chain, which
exhibits a tree-like structure over time. Moreover,
an establishment of diplomatic relations between
two countries might lead to regular official visits
between these two countries, which produces a
cyclic structure over time. Embedding methods in
Euclidean space have limitations and suffer from
large distortion when representing large-scale hier-

7302

archical data. Recently, hyperbolic geometry has
been exploited in several works (Nickel and Kiela,
2017; Ganea et al., 2018) as an effective method
for learning representations of hierarchical data,
where the exponential growth of distance on the
boundary of the hyperbolic space naturally allows
representing hierarchical structures in a compact
form. While most graph-structured data has a wide
variety of inherent geometric structures, e.g. par-
tially tree-like and partially cyclical, the above stud-
ies model the latent structures in a single geometry
with a constant curvature, limiting the flexibility
of the model to match the hypothetical intrinsic
manifold. Thus, using a product of different con-
stant curvature spaces (Gu et al., 2018) might be
helpful to match the underlying geometries of tem-
poral knowledge graphs and provide high-quality
representations.

Existing non-Euclidean approaches for knowl-
edge graph embeddings (Balazevic et al., 2019;
Kolyvakis et al., 2019) lack the ability to cap-
ture temporal dynamics available in underlying
data represented by temporal KGs. The difficulty
with representing the evolution of temporal KGs
in non-Euclidean spaces lies in finding a way to
integrate temporal information to the geometric rep-
resentations of entities. In this work, we propose
the dynamic evolution of Riemannian manifold
embeddings (DyERNIE), a theoretically founded
approach to embed multi-relational data with dy-
namic relationships on a product of Riemannian
manifolds with different curvatures. To capture
both the stationary and dynamic characteristics of
temporal KGs, we characterize the time-dependent
representation of an entity as movements on man-
ifolds. For each entity, we define an initial em-
bedding (at t0) on each manifold and a velocity
vector residing in the tangent space of the initial
embedding to generate a temporal representation
at each timestamp. In particular, the initial embed-
dings represent the stationary structural dependen-
cies across facts, while the velocity vectors capture
the time-varying properties of entities.

Our contributions are the following: (i) We intro-
duce Riemannian manifolds as embedding spaces
to capture geometric features of temporal KGs. (ii)
We characterize the dynamics of temporal KGs as
movements of entity embeddings on Riemannian
manifolds guided by velocity vectors defined in the
tangent space. (iii) We show how the product space
can be approximately identified from sectional cur-

vatures of temporal KGs and how to choose the di-
mensionality of component spaces as well as their
curvatures accordingly. (iv) Our approach signifi-
cantly outperforms current benchmarks on a link
prediction task on temporal KGs in low- and high-
dimensional settings. (v) We analyze our model’s
properties, i.e. the influence of embedding dimen-
sionality and the correlation between node degrees
and the norm of velocity vectors.

2 Preliminaries

2.1 Riemannian Manifold

An n-dimensional Riemannian manifold Mn is a
real and smooth manifold with locally Euclidean
structure. For each point x P Mn, the metric
tensor gpxq defines a positive-definite inner product
gpxq “ x¨, ¨yx : TxMn ˆ TxMn Ñ R, where
TxMn is the tangent space of Mn at x. From
the tangent space TxMn, there exists a mapping
function expxpvq : TxMn Ñ Mn that maps a
tangent vector v at x to the manifold, also known as
the exponential map. The inverse of an exponential
map is referred to as the logarithm map logxp¨q.
2.2 Constant Curvature Spaces

The sectional curvature Kpτxq is a fine-grained no-
tion defined over a two-dimensional subspace τx in
the tangent space at the point x (Berger, 2012). If
all the sectional curvatures in a manifold Mn are
equal, the manifold then defined as a space with a
constant curvature K. Three different types of con-
stant curvature spaces can be defined depending on
the sign of the curvature: a positively curved space,
a flat space, and a negatively curved space. There
are different models for each constant curvature
space. To unify different models, in this work, we
choose the stereographically projected hypersphere
SnK for positive curvatures (K ą 0), while for neg-
ative curvatures (K ă 0) we choose the Poincaré
ball PnK , which is the stereographic projection of
the hyperboloid model:

Mn
K “

$
’&
’%

SnK “ tx P Rn : xx,xy2 ą ´1{Ku
En “ Rn, ifK “ 0

PnK “ tx P Rn : xx,xy2 ă ´1{Ku
Both of the above spaces SK and PK are equipped
with the Riemannian metric: gSKx “ gPK

x “
pλKx q2gE, which is conformal to the Euclidean met-
ric gE with the conformal factor λKx “ 2{p1 `
K||x||22q (Ganea et al., 2018). As explained in

7303

(Skopek et al., 2019), SK and PK have a suitable
property, namely the distance and the metric ten-
sors of these spaces converge to their Euclidean
counterpart as the curvature goes to 0, which makes
both spaces suitable for learning sign-agnostic cur-
vatures.

2.3 Gyrovector Spaces
An important analogy to vector spaces (vector ad-
dition and scalar multiplication) in non-Euclidean
geometry is the notion of gyrovector spaces (Un-
gar, 2008). Both the projected hypersphere and
the Poincaré ball share the following definition of
Möbius addition:

x‘K y “
p1´ 2K xx,yy2 ´K||y||22qx` p1`K||x||22qy

1´ 2K xx,yy2 `K2||x||22||y||22
where we denote the Euclidean norm and inner
product by || ¨ || and x¨, ¨y2, respectively. Skopek
et al. (2019) show that the distance between two
points in SK or PK is equivalent to their variants
in gyrovector spaces, which is defined as

dMK
px,yq “ 2a|K| tan´1K p

a|K|||´x‘Ky||2q,

where tanK “ tan if K ą 0 and tanK “ tanh
if K ă 0. The same gyrovector spaces can be
used to define the exponential and logarithmic
maps in the Poincaré ball and the projected hy-
persphere. We list these mapping functions in Ta-
ble 8 in the appendix. As Ganea et al. (2018) use
the exponential and logarithmic maps to obtain the
Möbius matrix-vector multiplication: MbK x “
expK0 pM logK0 pxqq, we reuse them in hyperbolic
space. This operation is defined similarly in pro-
jected hyperspherical space.

2.4 Product Manifold
We further generalize the embedding space of la-
tent representations from a single manifold to a
product of Riemannian manifolds with constant
curvatures. Consider a sequence of Riemannian
manifolds with constant curvatures, the product
manifold is defined as the Cartesian product of k
component manifolds Mn “ Śk

i“1Mni
Ki

, where
ni is the dimensionality of the i´th component,
andKi indicates its curvature, with choices Mni

Ki
P

tPni
Ki
,Eni ,Sni

Ki
u. We call tpni, kiquki“1 the signa-

ture of a product manifold. Note that the nota-
tion Eni is redundant in Euclidean spaces since

the Cartesian product of Euclidean spaces with dif-
ferent dimensions can be combined into a single
space, i.e. En “Śk

i“1 Eni . However, this equality
does not hold in the projected hypersphere and the
Poincaré ball. For each point x PMn on a product
manifold, we decompose its coordinates into the
corresponding coordinates in component manifolds
x “ pxp1q, ...,xpkqq, where xpiq P Mni

Ki
. The dis-

tance function decomposes based on its definition
d2Mnpx,yq “ řk

i“1 d2Mni
Ki

pxpiq,ypiqq. Similarly,

we decompose the metric tensor, exponential and
logarithmic maps on a product manifold into the
component manifolds. In particular, we split the
embedding vectors into parts xpiq, apply the desired
operation on that part fni

Ki
pxpiqq, and concatenate

the resulting parts back (Skopek et al., 2019).

2.5 Temporal Knowledge Graph Completion
Temporal knowledge graphs (KGs) are multi-
relational, directed graphs with labeled times-
tamped edges between entities. Let E , P , and T
represent a finite set of entities, predicates, and
timestamps, respectively. Each fact can be denoted
by a quadruple q “ pes, p, eo, tq, where p P P rep-
resents a timestamped and labeled edge between a
subject entity es P E and an object entity eo P E
at a timestamp t P T . Let F represents the set
of all quadruples that are facts, i.e. real events in
the world, the temporal knowledge graph comple-
tion (tKGC) is the problem of inferring F based
on a set of observed facts O, which is a subset of
F . To evaluate the proposed algorithms, the task
of tKGC is to predict either a missing subject en-
tity p?, p, eo, tq given the other three components
or a missing object entity pes, p, ?, tq. Taking the
object prediction as an example, we consider all
entities in the set E , and learn a score function
φ : E ˆP ˆ E ˆ T Ñ R. Since the score function
assigns a score to each quadruple, the proper object
can be inferred by ranking the scores of all quadru-
ples tpes, p, eoi , tq, eoi P Eu that are accompanied
with candidate entities.

3 Related work

3.1 Knowledge Graph Embedding
Static KG Embedding Embedding approaches
for static KGs can generally be categorized into
bilinear models and translational models. The bi-
linear approaches are equipped with a bilinear score
function that represents predicates as linear trans-
formations acting on entity embeddings (Nickel

7304

et al., 2011; Trouillon et al., 2016; Yang et al.,
2014; Ma et al., 2018a). Translational approaches
measure the plausibility of a triple as the distance
between the translated subject and object entity em-
beddings, including TransE (Bordes et al., 2013)
and its variations (Sun et al., 2019; Kazemi and
Poole, 2018). Additionally, several models are
based on deep learning approaches (Dettmers et al.,
2018; Schlichtkrull et al., 2018; Hildebrandt et al.,
2020) that apply (graph) convolutional layers on
top of embeddings and design a score function as
the last layer of the neural network.

Temporal KG Embedding Recently, there have
been some attempts of incorporating time informa-
tion in temporal KGs to improve the performance
of link prediction. Ma et al. (2018b) developed
extensions of static knowledge graph models by
adding a timestamp embedding to the score func-
tions. Also, Leblay and Chekol (2018) proposed
TTransE by incorporating time representations into
the score function of TransE in different ways.
HyTE (Dasgupta et al., 2018) embeds time infor-
mation in the entity-relation space by arranging a
temporal hyperplane to each timestamp. The num-
ber of parameters of these models scales with the
number of timestamps, leading to overfitting when
the number of timestamps is extremely large.

3.2 Graph Embedding Approaches in
non-Euclidean Geometries

There has been a growing interest in embedding
graph data in non-Euclidean spaces. Nickel and
Kiela (2017) first applied hyperbolic embedding
for link prediction to the lexical database WordNet.
Since then, hyperbolic analogs of several other ap-
proaches have been developed (De Sa et al., 2018;
Tifrea et al., 2018). In particular, Balazevic et al.
(2019) proposed a translational model for embed-
ding multi-relational graph data in the hyperbolic
space and demonstrated advancements over state-
over-the-art. More recently, Gu et al. (2018) gen-
eralized manifolds of constant curvature to a prod-
uct manifold combining hyperbolic, spherical, and
Euclidean components. However, these methods
consider graph data as static models and lack the
ability to capture temporally evolving dynamics.

4 Temporal Knowledge Graph
Completion in Riemannian Manifold

Entities in a temporal KG might form different ge-
ometric structures under different relations, and

these structures could evolve with time. To cap-
ture heterogeneous and time-dependent structures,
we propose the DyERNIE model to embed enti-
ties of temporal knowledge graphs on a product of
Riemannian manifolds and model time-dependent
behavior of entities with dynamic entity represen-
tations.

4.1 Entity Representation
In temporal knowledge graphs, entities might have
some features that change over time and some
features that remain fixed. Thus, we represent
the embedding of an entity ej P E at instance
t with a combination of low-dimensional vectors
ejptq “ pep1qj ptq, ..., epkqj ptqq with e

piq
j ptq P Mni

Ki
,

where Mni
Ki
P tPni

Ki
,Eni , Sni

Ki
u is the i-th compo-

nent manifold, Ki and ni denote the curvature and
the dimension of this manifold, respectively. Each
component embedding e

piq
j ptq is derived from an

initial embedding and a velocity vector to encode
both the stationary properties of the entities and
their time-varying behavior, namely

e
piq
j ptq “ expKi

0

ˆ
logKi

0 pēpiqj q ` v
e
piq
j

t

˙
, (1)

where ē
piq
j PMni

Ki
represents the initial embedding

that does not change over time. v
e
piq
j

P T0Mni
Ki

represents an entity-specific velocity vector that is
defined in the tangent space at origin 0 and cap-
tures evolutionary dynamics of the entity ej in its
vector space representations over time. As shown
in Figure 1 (a), we project the initial embedding
to the tangent space T0Mni

Ki
using the logarithmic

map logKi
0 and then use a velocity vector to obtain

the embedding of the next timestamp. Finally, we
project it back to the manifold with the exponen-
tial map expKi

0 . Note that in the case of Euclidean
space, the exponential map and the logarithmic
map are equal to the identity function. By learn-
ing both the initial embedding and velocity vector,
our model characterizes evolutionary dynamics of
entities as movements on manifolds and thus pre-
dict unseen entity interactions based on both the
stationary and time-varying entity properties.

4.2 Score Function
Bilinear models have been proved to be an effective
approach for KG completion (Nickel et al., 2011;
Lacroix et al., 2018), where the score function is a
bilinear product between subject entity, predicate,
and object entity embeddings. However, there is

7305

Figure 1: (a) Evolution of an entity embedding on the i-
th component manifold (left). For convenience in draw-
ing, the tangent space T Mni

Ki
is defined at ē

piq
j . (b)

Geodesics in the Poincaré disk (right), where red dots
represent nodes on the disk.

no clear correspondence of the Euclidean inner-
product in non-Euclidean spaces. We follow the
method suggested in Poincaré Glove (Tifrea et al.,
2018) to reformulate the inner product as a func-
tion of distance, i.e. xx,yy “ 1

2pdpx,yq2`||x||2`||y||2q and replace squared norms with biases bx
and by. In addition, to capture different hierarchical
structures under different relations simultaneously,
Balazevic et al. (2019) applied relation-specific
transformations to entities, i.e. a stretch by a diago-
nal predicate matrix P P Rnˆn to subject entities
and a translation by a vector offset p P Pn to object
entities.

Inspired by these two ideas, we define the score
function of DyERNIE as

φpes, p, eo, tq “
kÿ

i“1
´dMni

Ki

´
Ppiq bKi epiqs ptq,

epiqo ptq ‘Ki ppiq
¯2 ` bpiqs ` bpiqo

where e
piq
s ptq and e

piq
o ptq P Mni

Ki
are embed-

dings of the subject and object entities es and
eo in the i-th component manifold, respectively.
ppiq PMni

Ki
is a translation vector of predicate p,

and Ppiq P Rniˆni represents a diagonal predicate
matrix defined in the tangent space at the origin.
Since multi-relational data often has different struc-
tures under different predicate, we use predicate-
specific transformations P and p to determine the
predicate-adjusted embeddings of entities in differ-
ent predicate-dependent structures, e.g. multiple
hierarchies. The distance between the predicate-
adjusted embeddings of es and eo measures the
relatedness between them in terms of a predicate p.

4.3 Learning
The genuine quadruples in a temporal KG G are
split into train, validation, and test sets. We add

Figure 2: Histogram of sectional curvatures at each
timestamps on ICEWS14 (left), and ICEWS05-15
(right).

reciprocal relations for every quadruple, which is a
standard data augmentation technique commonly
used in literature (Balazevic et al., 2019; Goel
et al., 2019), i.e. we add peo, p´1, es, tq for every
pes, p, eo, tq. Besides, for each fact pes, p, eo, tq in
the training set, we generate n negative samples by
corrupting either the object pes, p, e1o, tq or the sub-
ject peo, p´1, e1s, tq with a randomly selected entity
from E . We use the binary cross-entropy as the loss
function, which is defined as

L “
´1

N

Nÿ

m“1
pym logppmq ` p1´ ymq logp1´ pmqq ,

where N is the number of training samples, ym
represents the binary label indicating whether a
quadruple qm is genuine or not, pm denotes the
predicted probability σpφpqmqq, and σp¨q repre-
sents the sigmoid function. Model parameters are
learned using Riemannian stochastic gradient de-
scent (RSGD) (Bonnabel, 2013), where the Rie-
mannian gradient ∆MnL is obtained by multiply-
ing the Euclidean gradient ∆E with the inverse of
the Riemannian metric tensor.

4.4 Signature Estimation
To better capture a broad range of structures in
temporal KGs, we need to choose an appropriate
signature of a product manifold Mn, including the
number of component spaces, their dimensions,
and curvatures. Although we can simultaneously
learn embeddings and the curvature of each com-
ponent during training using gradient-based opti-
mization, we have empirically found that treating
curvature as a trainable parameter interferes with

7306

the training of other model parameters. Thus, we
treat the curvature of each component and the di-
mension as hyperparameters selected a priori. In
particular, we use the parallelogram law’ deviation
(Gu et al., 2018) to estimate both the graph cur-
vature of a given temporal KG and the number of
components. Details about this algorithm can be
found in Appendix A. Figure 2 shows the curva-
ture histograms on the ICEWS14 and ICEWS05-15
datasets introduced in Section 5.1. It can be noticed
that curvatures are mostly non-Euclidean, offering
a good motivation to learn embeddings on a product
manifold. Taking the ICEWS05-15 dataset as an
example, we see that most curvatures are negative.
In this case, we can initialize the product manifold
consisting of three hyperbolic components with dif-
ferent dimensions. Then we conduct a Bayesian op-
timization around the initial value of the dimension
and the curvature of each component to fine-tune
them. Finally, we select the best-performing signa-
ture according to performance on the validation set
as the final choice.

5 Experiments

5.1 Experimental Set-up

Datasets Global Database of Events, Language,
and Tone (GDELT) (Leetaru and Schrodt, 2013)
dataset and Integrated Crisis Early Warning System
(ICEWS) (Boschee et al., 2015) dataset have estab-
lished themselves in the research community as rep-
resentative samples of temporal KGs. The GDELT
dataset is derived from an initiative database of
all the events across the globe connecting people,
organizations, and news sources. We use a sub-
set extracted by Jin et al. (2019), which contains
events occurring from 2018-01-01 to 2018-01-31.
The ICEWS dataset contains information about po-
litical events with specific time annotations, e.g.
(Barack Obama, visit, India, 2010-11-06). We ap-
ply our model on two subsets of the ICEWS dataset
generated by García-Durán et al. (2018): ICEWS14
contains events in 2014, and ICEWS05-15 corre-
sponds to the facts between 2005 to 2015. We
compare our approach and baseline methods by
performing the link prediction task on the GDELT,
ICEWS14 and ICEWS05-15 datasets. The statis-
tics of the datasets are provided in Appendix C.

Baselines Our baselines include both static and
temporal KG embedding models. From the static
KG embedding models, we use TransE (Bordes

et al., 2013), DistMult (Yang et al., 2014), and Com-
plEx (Trouillon et al., 2016) where we compress
temporal knowledge graphs into a static, cumula-
tive graph by ignoring the time information. From
the temporal KG embedding models, we compare
the performance of our model with several state-
of-the-art methods, including TTransE (Leblay and
Chekol, 2018), TDistMult/TComplEx (Ma et al.,
2018b), and HyTE (Dasgupta et al., 2018).

Evaluation protocol For each quadruple q “
pes, p, eo, tq in the test set Gtest, we create two
queries: pes, p, ?, tq and peo, p´1, ?, tq. For each
query, the model ranks all possible entities E ac-
cording to their scores. Following the commonly
filtered setting in the literature (Bordes et al., 2013),
we remove all entity candidates that correspond to
true triples1 from the candidate list apart from the
current test entity. Let ψes and ψeo represent the
rank for es and eo of the two queries respectively,
we evaluate our models using standard metrics
across the link prediction literature: mean recipro-
cal rank (MRR): 1

2¨|Gtest|
ř
qPGtest

p 1
ψes

` 1
ψeo
q and

Hits@kpk P t1, 3, 10uq: the percentage of times
that the true entity candidate appears in the top k
of ranked candidates.

Implementations We implemented our model
and all baselines in PyTorch (Paszke et al., 2019).
For fairness of comparison, we use Table 2 in sup-
plementary materials to compute the embedding
dimension for each (baseline, dataset) pair that
matches the number of parameters of our model
with an embedding dimension of 100. Taking
HyTE as an example, its embedding dimension is
193 and 151 on the ICEWS14 and GDELT dataset,
respectively. Also, we use the datasets augmented
with reciprocal relations to train all baseline mod-
els. We tune hyperparameters of our models using
the quasi-random search followed by Bayesian op-
timization (Ruffinelli et al., 2020) and report the
best configuration in Appendix E. We implement
TTransE, TComplEx, and TDistMult based on the
implementation of TransE, Distmult, and ComplEx
respectively. We use the binary cross-entropy loss
and RSGD to train these baselines and optimize hy-
perparameters by early stopping according to MRR
on the validation set. Additionally, we use the im-
plementation of HyTE2. We provide the detailed

1The triplets that appear either in the train, validation, or
test set.

2https://github.com/malllabiisc/HyTE

7307

Table 1: Link prediction results: MRR (%) and Hits@1/3/10 (%). The best results among all models are in bold.
Additionally, we underline the best results among models with the same embedding dimension.

Datasets ICEWS14 - filtered ICEWS05-15 - filtered GDELT - filtered

Rank (n) Model Manifold MRR Hits@1 Hits@3 Hits@10 Manifold MRR Hits@1 Hits@3 Hits@10 Manifold MRR Hits@1 Hits@3 Hits@10

TransE 30.0 14.8 42.7 60.1 30.4 13.3 42.4 61.1 17.7 7.9 22.9 36.8
100 DistMult E 57.5 46.9 64.2 77.9 E 47.1 33.6 55.1 72.5 E 22.6 13.9 26.1 39.2

ComplEx 49.3 36.6 56.2 74.2 39.0 22.9 49.2 68.4 18.8 10.5 22.2 34.9

TTransE 34.4 25.7 38.3 51.3 35.6 15.4 51.1 67.6 18.2 0.0 30.7 46.2
TDistMult 33.1 25.4 36.2 47.8 49.8 41.1 54.3 66.4 28.3 16.2 30.7 47.1

100 TComplEx E 31.8 12.9 45.7 63.0 E 45.1 36.3 49.2 62.0 E 30.6 21.0 34.7 48.1
HyTE 33.1 6.8 54.5 73.6 38.1 7.6 65.0 80.4 22.4 0.0 39.5 54.2

DyERNIE-Prod P3 46.2 36.0 51.1 66.3 P3 58.9 50.5 63.2 75.1 S2 36.3 29.4 38.3 49.5
10 DyERNIE-Sgl P 43.3 33.3 47.6 62.9 P 58.0 49.2 62.8 74.5 S 35.7 28.7 37.7 48.9

DyERNIE-Euclid E 39.8 30.6 43.6 58.2 E 51.9 43.4 56.1 67.9 E 30.2 23.8 31.8 42.5

DyERNIE-Prod P3 53.9 44.2 58.9 72.7 P3 64.2 56.5 68.2 79.0 S2 40.0 33.2 42.0 53.1
20 DyERNIE-Sgl P 51.3 41.4 56.1 70.3 P 63.8 55.9 67.9 78.7 S 39.2 32.6 41.1 52.1

DyERNIE-Euclid E 47.7 38.3 52.0 66.2 E 57.3 49.4 61.1 72.4 E 32.9 26.2 34.7 45.7

DyERNIE-Prod P3 58.8 49.8 63.8 76.1 P3 68.9 61.8 72.8 82.5 S2 43.0 36.3 45.1 56.0
40 DyERNIE-Sgl P 56.6 47.3 61.3 74.6 P 67.3 60.2 71.1 81.1 S 42.5 35.8 44.6 55.6

DyERNIE-Euclid E 53.7 44.2 58.6 71.9 E 60.3 52.7 64.1 74.7 E 38.4 31.8 40.4 51.1

DyERNIE-Prod P3 66.9 59.9 71.4 79.7 P3 73.9 67.9 77.3 85.5 S2 45.7 39.0 47.9 58.9
100 DyERNIE-Sgl P 65.7 58.2 70.2 79.4 P 71.2 64.8 74.6 83.4 S 45.4 38.6 47.6 58.4

DyERNIE-Euclid E 63.3 54.9 67.9 79.2 E 66.2 59.0 69.9 79.8 E 42.6 36.1 44.5 55.1

settings of hyperparameters of each baseline model
in Appendix B.

5.2 Comparative Study

Table 2: Filtered MRR for different choices of the dis-
tance function withK “ ´1 and n “ 40 on ICEWS14.

Distance function MRR

dpPb esptq, eoptq ‘ pq 55.87

coshpdpPb esptq, eoptq ‘ pqq 54.00
dpPb esptq,Pb eoptqq 52.23
dpPb esptq,Pb eoptq ‘ pq 54.55
dpPb esptq, eoptqq 47.24
dpesptq, eoptq ‘ pq 51.36

Model variants To compare the performance of
non-Euclidean embeddings with their Euclidean
counterparts, we implement the Euclidean version
of Equation 4.2 with dMpx,yq “ dEpx,yq. We
refer to it as DyERNIE-Euclid. Besides, we train
our model with a single non-Euclidean component
to compare embeddings in a product space and in
a manifold with a constant curvature. We refer
to them as DyERNIE-Prod and DyERNIE-Sgl, re-
spectively. For DyERNIE-Prod, we generate model
configurations with different manifold combina-
tions, i.e. Pˆ Sˆ E,P3. Details about the search
space are relegated to Appendix E.

Link prediction results We compare the base-
lines with three variants of our model: DyERNIE-
Prod, DyERNIE-Sgl, and DyERNIE-Euclid. We re-
port the best results on the test set among all model

configurations in Table 1. Note that the number
of parameters of all baselines matches our model’s
with an embedding dimension of 100. Thus, we see
that both DyERNIE-Prod and DyERNIE-Sgl sig-
nificantly outperform the baselines and DyERNIE-
Euclid on all three datasets with the same number
of parameters. Even at a low embedding dimension
pn “ 10q, our models still have competitive perfor-
mance, demonstrating the merits of time-dependent
non-Euclidean embeddings. Besides, DyERNIE-
Prod generally performs better than DyERNIE-
Sgl on all three datasets. On the ICEWS14 and
ICEWS05-15 datasets, we can observe that the
best performing configuration of DyERNIE-Prod
at each dimensionality only contains hyperbolic
component manifolds. This observation confirms
the curvature estimation shown in Figure 2, where
most sectional curvatures on the ICEWS14 and
ICEWS05-15 datasets are negative.

Table 3: Filtered MRR for different choices of en-
tity representations with K “ ´1 and n “ 40 on
ICEWS14, where Ai and wi represent the amplitude
vector and the frequency vector, respectively. φi de-
notes the phase shift.

Entity Representations MRR

expplogpēiq ` vitq 55.87

expplogpēiq `Ai sinpwit` φiqq 52.50
expplogpēiq ` vit`Ai sinpwit` φiqq 53.52

Ablation study We show an ablation study of
the distance function and the entity representations
in Table 2 and 3, respectively. For the distance

7308

Figure 3: Scatter plot of distances between entity em-
beddings and the manifold’s origin v.s. node degrees on
ICEWS05-15. Each point denotes an entity ej . The x-
coordinate gives its degree accumulated over all times-
tamps, and the y-coordinate represents dMpej ,0q.

Figure 4: Scatter plot of velocity norms v.s. node de-
grees on ICEWS05-15. Each point denotes an entity.

function, we use p and P to get predicate-adjusted
subject and object embeddings and compute the
distance between them. We found that any change
to distance function causes performance degrada-
tion. Especially, removing the translation vector p
most strongly decrease the performance. For the en-
tity representation function, we measure the impor-
tance of a linear trend component and a non-linear
periodic component. We attempt adding trigono-
metric functions into entity representations since a
combination of trigonometric functions can capture
more complicated non-linear dynamics (Rahimi
and Recht, 2008). However, experimental results
in Table 3 show that using only a linear transfor-
mation works the best, which indicates that finding
the correct manifold of embedding space is more
important than designing complicated non-linear
evolution functions of entity embeddings. Addi-
tionally, we found the performance degrades signif-
icantly if removing the dynamic part of the entity
embeddings. For example, on the ICEWS0515
dataset, the Hits@1 metric in the static case is only
about half of that in the dynamic case, clearly show-
ing the gain from the dynamism. Details of this
ablation study are provided in Appendix G.

Intrinsic hierarchical structures of temporal
KGs To illustrate geometric, especially the hi-
erarchical, structures of temporal KGs, we focus

Figure 5: Learned two-dimensional hyperbolic entity
embeddings of ICEWS05-15 on the first timestamp
2005-01-01 (left) and the last timestamp 2015-12-31
(right).

on the Poincaré ball model with a dimension of 20
and plot the geodesic distance dMp¨,0q of learned
entity embeddings to the origin of the Poincaré
ball versus the degree of each entity in Figure 3.
Note that the distance is averaged over all times-
tamps since entity embeddings are time-dependent.
We observe that entities with high degrees, which
means they got involved in lots of facts, are gener-
ally located close to the origin. This makes sense
because these entities often lie in the top hierarchi-
cal levels. And thus, they should stand close to the
root. Under the same settings, we plot the veloc-
ity norm of each entity versus the entity degree in
Figure 4. Similarly, we see that entities with high
degrees have a small velocity norm to stay near the
origin of the manifold.

Relative movements between a node pair Fig-
ure 5 shows two-dimensional hyperbolic entity em-
beddings of the ICEWS05-15 dataset on two times-
tamps, 2005-01-01 and 2015-12-31. Specifically,
we highlight a former US president (in orange) and
a former prime minister of Russia (in purple). We
found that the interaction between these two enti-
ties decreased between 2005 and 2015, as shown
in Figure 9 in the appendix. Accordingly, we ob-
serve that the embeddings of these two entities were
moving away from each other. More examples of
learned embeddings are relegated to Appendix F.

6 Conclusion

In this paper, we propose an embedding approach
for temporal knowledge graphs on a product of Rie-
mannian manifolds with heterogeneous curvatures.
To capture the temporal evolution of temporal KGs,
we use velocity vectors defined in tangent spaces
to learn time-dependent entity representations. We
show that our model significantly outperforms its
Euclidean counterpart and other state-of-the-art ap-

7309

proaches on three benchmark datasets of temporal
KGs, which demonstrates the significance of geo-
metrical spaces for the temporal knowledge graph
completion task.

Acknowledgement

The authors acknowledge support by the Ger-
man Federal Ministry for Education and Re-
search (BMBF), funding project MLWin (grant
01IS18050).

References
Gregor Bachmann, Gary Bécigneul, and Octavian-

Eugen Ganea. 2019. Constant curvature
graph convolutional networks. arXiv preprint
arXiv:1911.05076.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. Multi-relational poincaré graph embeddings.
In Advances in Neural Information Processing Sys-
tems, pages 4465–4475.

Marcel Berger. 2012. A panoramic view of Riemannian
geometry. Springer Science & Business Media.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250.

Silvere Bonnabel. 2013. Stochastic gradient descent on
riemannian manifolds. IEEE Transactions on Auto-
matic Control, 58(9):2217–2229.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Elizabeth Boschee, Jennifer Lautenschlager, Sean
O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. Icews coded event data. Harvard Data-
verse, 12.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2001–2011.

Christopher De Sa, Albert Gu, Christopher Ré, and
Frederic Sala. 2018. Representation tradeoffs for
hyperbolic embeddings. Proceedings of machine
learning research, 80:4460.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Octavian Ganea, Gary Bécigneul, and Thomas Hof-
mann. 2018. Hyperbolic neural networks. In Ad-
vances in neural information processing systems,
pages 5345–5355.

Alberto García-Durán, Sebastijan Dumančić, and
Mathias Niepert. 2018. Learning sequence encoders
for temporal knowledge graph completion. arXiv
preprint arXiv:1809.03202.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2019. Diachronic embedding
for temporal knowledge graph completion. arXiv
preprint arXiv:1907.03143.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher
Ré. 2018. Learning mixed-curvature representations
in product spaces.

Marcel Hildebrandt, Jorge Andres Quintero Serna,
Yunpu Ma, Martin Ringsquandl, Mitchell Joblin,
and Volker Tresp. 2020. Reasoning on knowl-
edge graphs with debate dynamics. arXiv preprint
arXiv:2001.00461.

Marcel Hildebrandt, Swathi Shyam Sunder, Serghei
Mogoreanu, Mitchell Joblin, Akhil Mehta, Ingo
Thon, and Volker Tresp. 2019. A recommender sys-
tem for complex real-world applications with non-
linear dependencies and knowledge graph context.
In European Semantic Web Conference, pages 179–
193. Springer.

Woojeong Jin, Changlin Zhang, Pedro Szekely, and Xi-
ang Ren. 2019. Recurrent event network for reason-
ing over temporal knowledge graphs. arXiv preprint
arXiv:1904.05530.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Advances in neural information processing sys-
tems, pages 4284–4295.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Prodromos Kolyvakis, Alexandros Kalousis, and Dim-
itris Kiritsis. 2019. Hyperkg: Hyperbolic knowl-
edge graph embeddings for knowledge base comple-
tion. arXiv preprint arXiv:1908.04895.

Timothée Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. arXiv preprint
arXiv:1806.07297.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference
2018, pages 1771–1776. International World Wide
Web Conferences Steering Committee.

7310

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–
2012. In ISA annual convention, volume 2, pages
1–49. Citeseer.

Yunpu Ma, Marcel Hildebrandt, Volker Tresp, and
Stephan Baier. 2018a. Holistic representations for
memorization and inference. In UAI, pages 403–
413.

Yunpu Ma, Volker Tresp, and Erik A Daxberger. 2018b.
Embedding models for episodic knowledge graphs.
Journal of Web Semantics, page 100490.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Icml, vol-
ume 11, pages 809–816.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in neural information processing
systems, pages 6338–6347.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024–8035.

Ali Rahimi and Benjamin Recht. 2008. Random fea-
tures for large-scale kernel machines. In Advances
in neural information processing systems, pages
1177–1184.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You tcanu teach an old dog new
tricks! on training knowledge graph embeddings. In
International Conference on Learning Representa-
tions.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, pages 593–607. Springer.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bé-
cigneul. 2019. Mixed-curvature variational autoen-
coders. arXiv preprint arXiv:1911.08411.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. arXiv
preprint arXiv:1902.10197.

Alexandru Tifrea, Gary Bécigneul, and Octavian-
Eugen Ganea. 2018. Poincarz’e glove: Hy-
perbolic word embeddings. arXiv preprint
arXiv:1810.06546.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. International
Conference on Machine Learning (ICML).

Abraham Albert Ungar. 2008. A gyrovector space ap-
proach to hyperbolic geometry. Synthesis Lectures
on Mathematics and Statistics, 1(1):1–194.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Appendices

A Graph Curvature Estimation
Algorithm

We use Algorithm 1 to estimate the sectional cur-
vatures of a dataset developed by Bachmann et al.
(2019).

B Implementation Details of Baselines

Note that the embedding dimension for each (base-
line, dataset) pair matches the number of parame-
ters of our models with an embedding dimension
of 100. We use Table 4 and 12 to compute the rank
for each (baselines, dataset) pair. Besides, for fair-
ness of results, we use the datasets augmented with
reciprocal relations to train all baseline models.

Static knowledge graph embedding models
We use TransE (Bordes et al., 2013), DistMult
(Yang et al., 2014), and ComplEx (Trouillon et al.,
2016) as static baselines, where we compress tem-
poral knowledge graphs into a static, cumulative
graph by ignoring the time information. We use
the cross-entropy loss and Adam optimizer with a
batch size of 128 to train the static baselines. Be-
sides, we use uniform sampling to initialize the
embeddings of entities and predicates. Other hy-
perparameters of the above baselines are shown in
Table 5.

Temporal knowledge graph embedding models
We compare our model’s performance with sev-
eral state-of-the-art temporal knowledge graph em-
bedding methods, including TTransE (Leblay and
Chekol, 2018), TDistMult/TComplEx (Ma et al.,

7311

Table 4: Number of parameters for each model consid-
ered when using reciprocal relations: d represent the
dimension of embeddings.

Model # Parameters

ComplEx p2|E | ` 4|P|q ¨ d
TransE p|E | ` 2|P|q ¨ d

DistMult p|E | ` 2|P|q ¨ d
TComplEx p2|E | ` 4|P| ` 2|T |q ¨ d
TTransE p|E | ` 2|P| ` |T |q ¨ d

TDistMult p|E | ` 2|P| ` |T |q ¨ d
HyTE p|E | ` 2|P| ` |T |q ¨ d

DyERNIE 2p|E | ` 2|P|q ¨ d` 2|E |

2018b), and HyTE (Dasgupta et al., 2018). We
use the ADAM optimizer (Kingma and Ba, 2014)
and the cross-entropy loss to train the temporal KG
models. We set learning rate = 0.001, negative sam-
ples pro fact = 500, number of epochs = 500 , batch
size = 256, and validate them every 50 epochs to
select the model giving the best validation MRR.
For the GDELT dataset, we use a similar setting but
with negative samples pro fact = 50 due to the large
size of the dataset. The embedding dimensions of
the above dynamic baselines on each dataset are
shown in Table 6.

Table 5: Hyperparameter settings of static baselines.

Model TransE DistMult ComplEx

Embedding dimension
ICEWS14 202 202 101
ICEWS05-15 202 202 101
GDELT 202 202 101

Negative Sampling 253 657 1529
Learning rate 3e-4 0.16 0.18

C Datasets

Dataset statistics are described in Table 12. Since
the timestamps in the ICEWS dataset are dates
rather than numbers, we sort them chronologically
and encode them into consecutive numbers.

Table 6: Embedding dimensions of dynamic baselines.

Model TTransE TDistMult TComplEx HyTE

Embedding dimension
ICEWS14 193 193 96 193
ICEWS05-15 148 148 74 148
GDELT 151 151 76 151

D Evaluation metrics

Let ψes and ψeo represent the rank for es and
eo of the two queries, respectively. We eval-
uate our models using standard metrics across
the link prediction literature: mean reciprocal
rank (MRR): 1

2¨|Gtest|
ř
qPGtest

p 1
ψes

` 1
ψeo
q and

Hits@kpk P t1, 3, 10uq: the percentage of times
that the true entity candidate appears in the top k
of ranked candidates.

E Implementation Details of DyERNIE

Signature search On the ICEWS subsets, we
try all manifold combinations with the number
of components of t1, 2, 3u. Due to the large size
of data samples on the GDELT dataset, we only
try manifold combinations with the number of
components of t1, 2u. Specifically, the candi-
dates are tPn,Sn,Enu for single manifolds, tPniˆ
Sni ,Pni ˆ Pni , Sni ˆ Sni ,Pni ˆ Eni ,Sni ˆ Eniu
for a product of two component manifolds, and
tPni ˆ Pni ˆ Pni ,Pni ˆ Sni ˆ Eni ,Sni ˆ Sni ˆ
Sni ,Pni ,ˆPniˆSni ,PniˆSniˆSni ,PniˆPniˆ
Eni ,Sni ˆ Sni ˆ Eniu for a product of three com-
ponent manifold. For each combination, we use
the Ax-framework3 to optimize the assignment of
dimensions to each component manifold and the
curvatures. The assignment of the best-performing
models are shown in Table 9, 10, and 11. We report
the best results on each dataset in Table 1 in the
main body.

Hyperparameter configurations for best-
performing models We select the loss function
from binary cross-entropy (BCE), margin ranking
loss, and cross-entropy (CE). BCE and CE give a
similar performance and outperform the margin
ranking loss. However, when using the BCE
loss, we could use a large learning rate (lr ą 10)
to speed up the training procedure. In contrast,
models with the CE loss incline overfitting by
large learning rates. Given the BCE loss, we
found the learning rate of 50 works the best for
all model configurations. Furthermore, increasing
negative samples can improve the performance
to some extent, while this impact is weakening
gradually as the number of negative samples
become larger. However, the number of negative
samples largely affect the runtime of the training
procedure. We empirically found that the negative
sample number of 50 is a good compromise

3https://ax.dev

7312

between the model performance and the training
speed. Besides, there is no statistically significant
difference in the model performance when using
different optimizers, such as Riemannian Adam
(RADAM) and Riemannian stochastic gradient
descent (RSGD). Thus, for the model’s simplicity,
we decide to use RSGD.

Average runtime for each approach & Number
of parameters in each model Table 13 shows
the number of parameters and the average runtime
for each model.

F Visualization

We plot the geodesic distance dMpej ,0q of learned
entity embeddings with a dimension of 20 to the
manifold’s origin versus the degree of each entity
in Figure 6, where dMpej ,0q is averaged over all
timestamps since ej is time-dependent. Also, the
degree of each entity is accumulated over all times-
tamps. Each point in the upper plot represents an
entity where the x-coordinate gives their degree,
and the y-coordinate gives their average distance
to the origin. The plot clearly shows the tendency
that entities with high degrees are more likely to
lie close to the origin. The bottom plot shows the
same content but with a sampling of 20% points.
The gray bar around each point shows the variance
of the distance between the entity embedding and
the origin over time.

Figure 7 shows two-dimensional hyperbolic en-
tity embeddings of the ICEWS05-15 dataset on
four timestamps. We highlight some entities to
show the relative movements between them. The
number of interactions between the selected entities
are depicted in Figure 8 and 9, which evolves over
time. Specifically, we highlight Nigerian citizens,
the Nigerian government, head of the Nigerian gov-
ernment, other authorities in Nigeria, and Nigerian
minister in the first row of subplots. Furthermore,
we show the relative movements between the en-
tity embeddings of Barack Obama, Xi Jinping, and
Dmitry Anatolyevich Medvedev in the second row
of subplots. We can see that two entities are get-
ting closer in the Poincare disc if the number of
interactions between them increases.

G Additional Ablation Study

To assess the contribution of the dynamic part of
entity embeddings, we remove the dynamic part
and run the model variant on static knowledge

graphs. Specifically, we compress ICEWS05-15
into a static, cumulative graph by ignoring the
time information. As shown in Table 7, the per-
formance degrades significantly if the entity em-
beddings only have the static part. For example,
on the ICEWS0515 dataset, the Hits@1 metric of
DyERNIE-Sgl in the static case is less than half of
that in the dynamic case, clearly showing the gain
from the dynamism.

Table 7: Filtered MRR for dynamic/static entity repre-
sentations with dim “ 20 on ICEWS05-15. Note that
we run the static model variant on static ICEWS05-15.

Entity Representations MRR Hits@1 Hits@3 Hits@10

With dynamic part 63.8 55.9 67.9 78.7

Without dynamic part 38.6 28.3 42.8 59.2

7313

Figure 6: Each point in the upper plot represents an entity whose x-coordinate gives their degree accumulated over
all timestamps and y-coordinate gives their distance to the origin averaged over all timestamps. The plot clearly
shows the tendency that entities with high degrees are more likely to lie close to the origin. The bottom plot shows
the same content but with a sampling of 20% points. The gray bar around each point shows the variance of the
distance over all timestamps.

(a) The first timestamp
(2005-01-01)

(b) the 1000th timestamp
(2007-09-28)

(c) the 2000th timestamp
(2010-06-24)

(d) the 3000th timestamp
(2013-03-20)

Figure 7: Evolution of entity embeddings over time. We highlight Nigerian citizens, the Nigerian government,
the head of Nigerian government, other authorities in Nigeria, and Nigerian minister in the first row; and Barack
Obama, Xi Jinping, and Dmitry Anatolyevich Medvedev in the second row.

7314

(a) Citizen (Nigeria)
Government (Nigeria)

(b) Citizen (Nigeria)
Ministry (Nigeria)

(c) Government (Nigeria)
Other Authorities (Nigeria)

(d) Government (Nigeria)
Ministry (Nigeria)

Figure 8: Interaction between Nigerian entities. Subtitles show the names of the given entity pair. Red lines give
the geodesic distance between two entities. Blue dots represent the number of interactions between two entities
(relative degree) at each timestamp, and blue lines are regression of the relative degree between two entities over
time.

(a) Obama, Medvedev (b) Obama, Xi (c) Medvedev, Xi

Figure 9: Interaction between Barack Obama, Xi Jinping, and Dmitry Anatolyevich Medvedev. Subtitles show the
names of the given entity pair. Red lines give the geodesic distance between two entities. Blue dots represent the
number of interactions between two entities (relative degree) at each timestamp, and blue lines are regression of
the relative degree between two entities over time.

7315

Algorithm 1: Curvature Estimation
Input :Number of iterations niter, number of timestamps ntime, Graph Slices tGiuntime

i“1 of a
temporal knowledge graph, Neighbor dictionary N .

Output :tKiuntime
i“1

for i “ 1 to ntime do
for m P Gi do

for j “ 1 to niter do
b, c „ UpN pmqq and a „ UpGiztmuq
ψjpm, b, c, aq “ 1

2dGi
pa,mq

`
2d2Gi

pa,mq ` d2Gi
pb, cq{4´ d2Gi

pa, bq{2` d2Gi
pa, cq{2˘

end
ψipmq “ řniter

j“1 ψjpm, b, c, aq
end
Ki “ ř

mPGi
ψipmq

end

Table 8: Exponential and logarithmic maps in Poincaré ball and projected hypersphere.

trigonometric functions tanKp¨q “ tanp¨q if K ą 0; tanhp¨q if K ă 0

Exponential map expKx pvq “ x‘ ptanKp
?
|K|λKx ||v||2

2 q v?
K||v||2 q

Logarithmic map logKx pvq “ 2?
|K|λKx

tan´1K p
a|K||| ´ x‘K v||2q ´x‘Kv

||x‘Kv||2

Table 9: Hyperparameter configurations for best-performing models on the ICEWS14 dataset.

Model DyERNIE-Sgl DyERNIE-Prod DyERNIE-Euclid

Embedding size 10 20 40 100 10 20 40 100 10 20 40 100
Curvature

Component A -0.172 -0.171 -0.171 -0.170 -0.044 -0.114 -0.177 -0.346 0 0 0 0
Component B - - - - -0.128 -0.286 -0.281 -0.137 - - - -
Component C - - - - -0.371 -0.422 -0.470 -0.855 - - - -

Dimension scale
Component A 10 20 40 100 3 14 20 20 10 20 40 100
Component B - - - - 1 4 8 21 - - - -
Component C - - - - 6 2 12 59 - - - -

Table 10: Hyperparameter configurations for best-performing models on the ICEWS05-15 dataset.

Model DyERNIE-Sgl DyERNIE-Prod DyERNIE-Euclid

Embedding size 10 20 40 100 10 20 40 100 10 20 40 100
Curvature

Component A -0.180 -0.181 -0.179 -0.178 -0.102 -0.122 -0.298 -0.453 0 0 0 0
Component B - - - - -0.135 -0.163 -1.243 -0.216 - - - -
Component C - - - - -0.214 -0.191 -1.819 -0.938 - - - -

Dimension scale
Component A 10 20 40 100 7 10 31 32 10 20 40 100
Component B - - - - 2 8 5 52 - - - -
Component C - - - - 1 2 4 16 - - - -

7316

Table 11: Hyperparameter configurations for best-performing models on the GDELT dataset.

Model DyERNIE-Sgl DyERNIE-Prod DyERNIE-Euclid

Embedding size 10 20 40 100 10 20 40 100 10 20 40 100
Curvature

Component A 0.279 0.336 0.259 0.197 0.213 0.241 0.202 0.342 0 0 0 0
Component B - - - - 0.291 0.336 0.291 0.336 - - - -

Dimension scale
Component A 10 20 40 100 8 8 10 68 10 20 40 100
Component B - - - - 2 12 30 32 - - - -

Table 12: Datasets Statistics

Dataset Name |E | |P| |T | |G| |train| |validation| |test|

ICEWS14 7,128 230 365 90,730 72,826 8,941 8,963
ICEWS05-15 10,488 251 4,017 479,329 386,962 46,275 46,092

GDELT 7,691 240 2,975 2,278,405 1,734,399 238,765 305,241

Table 13: Average runtime and parameter number for each approach: runtime is in seconds.

Datasets ICEWS14 ICEWS05-15 GDELT

Rank pdq Model Manifold Runtime Parameters Manifold Runtime Parameters Manifold Runtime Parameters

TransE 3,800 1,531,856 15,200 2,218,976 85,600 1,649,582
100 DistMult E 9,900 1,531,856 E 31,500 2,218,976 E 132,700 1,649,582

ComplEx 4,300 1,531,856 14.100 2,218,976 76,000 1,649,582

TTransE 55,000 1,531,856 430,000 2,218,976 1,500,000 1,649,582
TDistMult 85,000 1,531,856 680,000 2,218,976 2,040,000 1,649,582

100 TComplEx E 65,000 1,531,856 E 520,000 2,218,976 E 1,500,000 1,649,582
HyTE 45,000 1,531,856 360,000 2,218,976 1,100,000 1,649,582

DyERNIE-Prod P3 44,500 1,531,856 P3 343,800 2,218,900 S2 1,2 59,400 1,649,582
100 DyERNIE-Sgl P 42,000 1,531,856 P 341,900 2,218,976 S 1,208,300 1,649,582

DyERNIE-Euclid E 19,000 1,531,856 E 38,000 2,218,976 E 388,800 1,649,582

DyERNIE-Prod P3 35,500 621,296 P3 229,500 900,176 S2 800,000 669,062
40 DyERNIE-Sgl P 32,000 621,296 P 225,000 900,176 S 740,000 669,062

DyERNIE-Euclid E 11,000 621,296 E 25,000 900,176 E 262,000 669,062

DyERNIE-Prod P3 32,500 317,776 P3 225,000 460,576 S2 700,000 342,222
20 DyERNIE-Sgl P 31,500 317,776 P 220,000 460,576 S 676,000 342,222

DyERNIE-Euclid E 9,500 317,776 E 22,000 460,576 E 240,000 342,222

DyERNIE-Prod P3 20,500 166,016 P3 165,000 240,776 S2 420,000 178,802
10 DyERNIE-Sgl P 20,500 166,016 P 150,000 240,776 S 400,000 178,802

DyERNIE-Euclid E 6,500 166,016 E 15,000 240,776 E 180,000 178,802

Chapter 7

Conclusion

In this thesis, we studied relational machine learning on time-evolving multi-relational

data from the perspectives of explainability, continuous-time modeling, and non-Euclidean

embedding. The example of time-evolving multi-relational data considered here is tempo-

ral knowledge graphs (tKGs) that store temporal facts such as news and events. In the

following, we summarize our main contributions.

In Chapter 3, we presented an explainable tKG forecasting model that extracts a query-

dependent subgraph from a given tKG and applies a temporal graph attention mechanism

over it. The extracted subgraph can be considered a graphical interpretation of the model’s

prediction. By means of a survey about the evidence included in the extracted subgraph,

we found that the evidence is informative for humans. Besides, the model showed its

superiority compared to other strong baselines on four benchmark datasets.

In Chapter 4, we proposed another tKG forecasting model that is able to learn continuous-

time knowledge embedding using a novel graph neural ordinary differential equation (ODE).

In particular, the model is the first one to show that the neural ODE can be used to en-

hance relational learning on tKGs. Moreover, we showed that using a graph transition

layer can effectively boost the model’s performance by explicitly taking edge formation

and deletion into account.

In Chapter 5, we examined the individual contribution of well-known temporal encod-

ing methods through large-scale experiments with nearly 19,000 GPU hours. We found

that some early time encoding approaches achieve competitive performance as advanced

techniques when appropriately trained, suggesting the training strategies account for a

considerable fraction of the progress made in recent years. To help future research assess

whether their temporal encoding is truly helping boost performances, we proposed the

first unified open-source framework for tKG completion models with full composability of

112 7. Conclusion

different training strategies, encoding and decoding techniques.

In Chapter 6, we learned geometric embedding of tKGs on a product of Riemannian

manifolds with heterogeneous curvatures. In particular, we assigned each entity an initial

embedding in the product manifold and learned velocity vectors in tangent spaces to let

entity embedding evolve over time and thus, capture their temporal dynamics. The pro-

posed embedding approach significantly outperforms its Euclidean counterpart and other

state-of-the-art baselines on three benchmark datasets of tKG completion, demonstrating

the merit of temporal geometric knowledge embedding.

This thesis has only discussed a small portion of relational machine learning on temporal

knowledge graphs. However, machine learning for time-evolving multi-relational data is an

extensive and active research area that remains a lot to be explored for future research.

We outline exciting and challenging future research in the following directions:

• Typical temporal knowledge graphs, e.g., GDELT and ICEWS, were constructed

using information extraction techniques that extract structured information from

textual data. However, some information would be lost during the extraction pro-

cedure due to incomplete schema. Thus, introducing textual information is helpful

to enrich the temporal knowledge representations and address the sparseness and

incompleteness issues of temporal knowledge graphs. A natural question would be

how to inject knowledge from textual data into temporal knowledge embedding. For

instance, our ongoing work [33] utilizes pre-trained language representation models to

learn contextualized language representation from unstructured textual descriptions

and enhance temporal knowledge embedding using informative language represen-

tations. In particular, we align the contextualized language representations with

temporal knowledge embeddings using a novel knowledge-text prediction task, where

we pair quadruples with their textual descriptions and design the prediction task as

an extended masked language modeling task by randomly masking words in texts

and entity or predicates in quadruples.

• Since joint models often benefit both sides, another interesting research is to investi-

gate whether temporal knowledge embeddings can improve language representations

as well as some downstream tasks where time information is needed, such as temporal

question answering [44] and time-aware recommender systems [102].

• Existing large-scale temporal knowledge databases often have large noise caused by

retrieving structured knowledge from unstructured data. Thus, proposing more ad-

vanced construction methods for temporal knowledge graphs is needed in future

113

research. There is a line of work [104, 99, 103] of event extraction that can identify

arguments, including actors, locations, and time, from textual data with a pre-defined

schema. Such methods can potentially be adapted for constructing temporal knowl-

edge graphs.

• Since temporal knowledge graphs develop over time, it is natural to encounter unseen

entities at inference time. However, existing approaches for temporal knowledge

graphs do not explicitly tackle this problem, i.e., to be inductive. An interesting

research question is how to learn the representations of unseen entities and give

an uncertainty measure for queries involving such newly emerged entities, which is

crucial for safety-critical tasks, i.e., in the medical domain.

• In many industrial scenarios, both static and dynamic multi-relational data are nec-

essary to support decision-making. Taking predictive maintenance as an example, we

need to jointly consider both the static machinery structural dependencies, such as

hyponymy relations between different parts and the temporal information from the

sensors on the parts to predict which parts should be replaced. However, existing

approaches can model either static or temporal knowledge but cannot jointly model

both. For example, existing temporal KG approaches explicitly process every graph

snapshot. If we adapt them to model static facts, they will consume high compu-

tational resources for redundant information since the static facts appear in every

snapshot. Thus, further research is needed to be able to effectively model both static

and dynamic multi-relational data in a unified framework.

114 7. Conclusion

Bibliography

[1] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Ad-

vances in neural information processing systems, volume 29, 2016.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web,

pages 722–735. Springer, 2007.

[3] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré

graph embeddings. In Advances in Neural Information Processing Systems, vol-

ume 32, 2019.

[4] Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factor-

ization for knowledge graph completion. Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing, 2019.

[5] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of

finite state markov chains. The annals of mathematical statistics, 37(6):1554–1563,

1966.

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

[7] Max Berrendorf. Machine learning for managing structured and semi-structured data.

PhD thesis, lmu, 2022.

[8] Jean-Paul Berrut and Lloyd N Trefethen. Barycentric lagrange interpolation. SIAM

review, 46(3):501–517, 2004.

116 BIBLIOGRAPHY

[9] Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the

internet with hyperbolic mapping. Nature communications, 1(1):1–8, 2010.

[10] Kurt Bollacker, Robert Cook, and Patrick Tufts. Freebase: A shared database of

structured general human knowledge. In AAAI, volume 7, pages 1962–1963, 2007.

[11] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. Advances

in neural information processing systems, 26, 2013.

[12] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James

Starz, and Michael Ward. Icews coded event data. Harvard Dataverse, 12, 2015.

[13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks

and locally connected networks on graphs. In Yoshua Bengio and Yann LeCun, edi-

tors, 2nd International Conference on Learning Representations, ICLR 2014, Banff,

AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[14] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka,

and Tom M Mitchell. Toward an architecture for never-ending language learning. In

Twenty-Fourth AAAI conference on artificial intelligence, 2010.

[15] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christo-

pher Ré. Low-dimensional hyperbolic knowledge graph embeddings. arXiv preprint

arXiv:2005.00545, 2020.

[16] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural

ordinary differential equations. Advances in neural information processing systems,

31, 2018.

[17] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte:

Hyperplane-based temporally aware knowledge graph embedding. In Proceedings

of the 2018 conference on empirical methods in natural language processing, pages

2001–2011, 2018.

[18] Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva, Julia Gusak, Andrzej Ci-

chocki, and Ivan Oseledets. Interpolation technique to speed up gradients propaga-

tion in neural odes. Advances in Neural Information Processing Systems, 33:16689–

16700, 2020.

BIBLIOGRAPHY 117

[19] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural

networks on graphs with fast localized spectral filtering. Advances in neural infor-

mation processing systems, 29, 2016.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding. In Jill

Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Con-

ference of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,

June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association

for Computational Linguistics, 2019.

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, Uszkoreit Jakob, and Houlsby Neil. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[22] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,

Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager,

Nico Schlaefer, and Chris Welty. Building watson: An overview of the deepqa project.

AI magazine, 31(3):59–79, 2010.

[23] Alberto Garćıa-Durán, Sebastijan Dumancic, and Mathias Niepert. Learning se-

quence encoders for temporal knowledge graph completion. In Ellen Riloff, David

Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Con-

ference on Empirical Methods in Natural Language Processing, Brussels, Belgium,

October 31 - November 4, 2018, pages 4816–4821. Association for Computational

Linguistics, 2018.

[24] Amir Gholaminejad, Kurt Keutzer, and George Biros. ANODE: unconditionally

accurate memory-efficient gradients for neural odes. In Sarit Kraus, editor, Proceed-

ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,

IJCAI 2019, Macao, China, August 10-16, 2019, pages 730–736. ijcai.org, 2019.

[25] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. Neural message passing for quantum chemistry. In International conference

on machine learning, pages 1263–1272. PMLR, 2017.

118 BIBLIOGRAPHY

[26] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. Di-

achronic embedding for temporal knowledge graph completion. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 34, pages 3988–3995, 2020.

[27] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature

representations in product spaces. In International Conference on Learning Repre-

sentations, 2018.

[28] Amelia Gyrard, Manas Gaur, Saeedeh Shekarpour, Krishnaprasad Thirunarayan,

and Amit Sheth. Personalized health knowledge graph. 2018.

[29] James Douglas Hamilton. Time series analysis. Princeton university press, 2020.

[30] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. DyERNIE: Dynamic Evolution

of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP), pages 7301–7316, Online, November 2020. Association for Com-

putational Linguistics.

[31] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable subgraph reason-

ing for forecasting on temporal knowledge graphs. In International Conference on

Learning Representations, 2020.

[32] Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and Volker Tresp. Learning neural

ordinary equations for forecasting future links on temporal knowledge graphs. In

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 8352–8364, Online and Punta Cana, Dominican Republic, November

2021. Association for Computational Linguistics.

[33] Zhen Han, Ruotong Liao, Beiyan Liu, Yao Zhang, Zifeng Ding, Heinz Köppl, Hin-

rich Schütze, and Volker Tresp. Enhanced temporal knowledge embeddings with

contextualized language representations. arXiv preprint arXiv:2203.09590, 2022.

[34] Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann, and Volker Tresp. Graph

hawkes neural network for forecasting on temporal knowledge graphs. In Dipanjan

Das, Hannaneh Hajishirzi, Andrew McCallum, and Sameer Singh, editors, Confer-

ence on Automated Knowledge Base Construction, AKBC 2020, Virtual, June 22-24,

2020, 2020.

BIBLIOGRAPHY 119

[35] Zhen Han, Gengyuan Zhang, Yunpu Ma, and Volker Tresp. Time-dependent entity

embedding is not all you need: A re-evaluation of temporal knowledge graph com-

pletion models under a unified framework. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing, pages 8104–8118, Online and

Punta Cana, Dominican Republic, November 2021. Association for Computational

Linguistics.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[37] Thomas Little Heath. The thirteen books of Euclid’s Elements. Courier Corporation,

1956.

[38] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-

structured data. arXiv preprint arXiv:1506.05163, 2015.

[39] Marcel Hildebrandt. Reasoning on graph-structured data with deep-learning, path-

based methods, and tensor factorization. PhD thesis, lmu, 2021.

[40] Marcel Hildebrandt, Swathi Shyam Sunder, Serghei Mogoreanu, Mitchell Joblin,

Akhil Mehta, Ingo Thon, and Volker Tresp. A recommender system for complex

real-world applications with nonlinear dependencies and knowledge graph context.

In European Semantic Web Conference, pages 179–193. Springer, 2019.

[41] Daniel S Himmelstein and Sergio E Baranzini. Heterogeneous network edge pre-

diction: a data integration approach to prioritize disease-associated genes. PLoS

computational biology, 11(7):e1004259, 2015.

[42] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products.

Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[43] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[44] Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen, and Gerhard

Weikum. Tequila: Temporal question answering over knowledge bases. In Pro-

ceedings of the 27th ACM International Conference on Information and Knowledge

Management, pages 1807–1810, 2018.

120 BIBLIOGRAPHY

[45] Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy, and Gerhard Weikum. Complex

temporal question answering on knowledge graphs. In Proceedings of the 30th ACM

International Conference on Information & Knowledge Management, pages 792–802,

2021.

[46] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event network: Au-

toregressive structure inference over temporal knowledge graphs. Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),

2020.

[47] Jaehun Jung, Jinhong Jung, and U Kang. T-gap: Learning to walk across time

for temporal knowledge graph completion. The 27th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, 2021.

[48] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

1960.

[49] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet

Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus

Brubaker. Time2vec: Learning a vector representation of time. arXiv preprint

arXiv:1907.05321, 2019.

[50] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter

Forsyth, and Pascal Poupart. Representation learning for dynamic graphs: A survey.

J. Mach. Learn. Res., 21(1), jan 2020.

[51] Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in

knowledge graphs. Advances in neural information processing systems, 31, 2018.

[52] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-

volutional networks. In 5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-

Review.net, 2017.

[53] Prodromos Kolyvakis, Alexandros Kalousis, and Dimitris Kiritsis. Hyperkg: Hyper-

bolic knowledge graph embeddings for knowledge base completion. The Semantic

Web - 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May

31-June 4, 2020, Proceedings, 2020.

BIBLIOGRAPHY 121

[54] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and

Marián Boguná. Hyperbolic geometry of complex networks. Physical Review E,

82(3):036106, 2010.

[55] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. Tensor decompo-

sitions for temporal knowledge base completion. 8th International Conference on

Learning Representations, ICLR, 2020.

[56] Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge

graph. In Companion Proceedings of the The Web Conference 2018, pages 1771–1776,

2018.

[57] Kalev Leetaru and Philip A Schrodt. Gdelt: Global data on events, location, and

tone, 1979–2012. In ISA annual convention, volume 2, pages 1–49. Citeseer, 2013.

[58] Manling Li, Yantao Jia, Yuanzhuo Wang, Jingyuan Li, and Xueqi Cheng. Hierarchy-

based link prediction in knowledge graphs. In Proceedings of the 25th International

Conference Companion on World Wide Web, pages 77–78, 2016.

[59] Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks.

Advances in Neural Information Processing Systems, 32, 2019.

[60] Yunpu Ma, Volker Tresp, and Erik A Daxberger. Embedding models for episodic

knowledge graphs. Journal of Web Semantics, 59:100490, 2019.

[61] Sebastien Montella, Lina Rojas-Barahona, and Johannes Heinecke. Hyperbolic tem-

poral knowledge graph embeddings with relational and time curvatures. Findings of

the Association for Computational Linguistics: ACL/IJCNLP, 2021.

[62] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[63] Kevin Patrick Murphy. Dynamic bayesian networks: representation, inference and

learning. University of California, Berkeley, 2002.

[64] Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Reducing the rank in rela-

tional factorization models by including observable patterns. Advances in Neural

Information Processing Systems, 27, 2014.

[65] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review

of relational machine learning for knowledge graphs. Proc. IEEE, 104(1):11–33, 2016.

122 BIBLIOGRAPHY

[66] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for

collective learning on multi-relational data. In Icml, 2011.

[67] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical

representations. Advances in neural information processing systems, 30, 2017.

[68] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz

model of hyperbolic geometry. In International Conference on Machine Learning,

pages 3779–3788. PMLR, 2018.

[69] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolu-

tional neural networks for graphs. In International conference on machine learning,

pages 2014–2023. PMLR, 2016.

[70] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.

Activation functions: Comparison of trends in practice and research for deep learning.

arXiv preprint arXiv:1811.03378, 2018.

[71] Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang Zhu,

and Kun Gai. Search-based user interest modeling with lifelong sequential behavior

data for click-through rate prediction. In Proceedings of the 29th ACM International

Conference on Information & Knowledge Management, pages 2685–2692, 2020.

[72] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press,

1987.

[73] Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex

networks. Physical review E, 67(2):026112, 2003.

[74] Richard H Richens. Preprogramming for mechanical translation. Mech. Transl.

Comput. Linguistics, 3(1):20–25, 1956.

[75] Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David

Sontag. Learning a health knowledge graph from electronic medical records. Scientific

reports, 7(1):1–11, 2017.

[76] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Technical report, California Univ San Diego

La Jolla Inst for Cognitive Science, 1985.

BIBLIOGRAPHY 123

[77] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. The graph neural network model. IEEE transactions on neural networks,

20(1):61–80, 2008.

[78] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan

Titov, and Max Welling. Modeling relational data with graph convolutional networks.

In European semantic web conference, pages 593–607. Springer, 2018.

[79] Edward W Schneider. Course modularization applied: The interface system and its

implications for sequence control and data analysis. 1973.

[80] Amit Singhal. Introducing the knowledge graph: things, not strings. Official google

blog, 5:16, 2012.

[81] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic

knowledge. In Proceedings of the 16th international conference on World Wide Web,

pages 697–706, 2007.

[82] Haitian Sun, Tania Bedrax-Weiss, and William Cohen. PullNet: Open domain ques-

tion answering with iterative retrieval on knowledge bases and text. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 2380–2390, Hong Kong, China, November 2019. Association for

Computational Linguistics.

[83] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge

graph embedding by relational rotation in complex space. 7th International Confer-

ence on Learning Representations, ICLR, 2019.

[84] Volker Tresp, Cristóbal Esteban, Yinchong Yang, Stephan Baier, and Denis

Krompaß. Learning with memory embeddings. NIPS Workshop on Nonparamet-

ric Methods for Large Scale Representation Learning, 2015.

[85] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep tempo-

ral reasoning for dynamic knowledge graphs. In international conference on machine

learning, pages 3462–3471. PMLR, 2017.

[86] Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian

Riedel, and Guillaume Bouchard. Knowledge graph completion via complex tensor

factorization. J. Mach. Learn. Res., 18(1):4735–4772, jan 2017.

124 BIBLIOGRAPHY

[87] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. Complex embeddings for simple link prediction. In International confer-

ence on machine learning, pages 2071–2080. PMLR, 2016.

[88] Abraham Albert Ungar. A gyrovector space approach to hyperbolic geometry. Syn-

thesis Lectures on Mathematics and Statistics, 1(1):1–194, 2008.

[89] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Taluk-

dar. Composition-based multi-relational graph convolutional networks. CoRR,

abs/1911.03082, 2019.

[90] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[91] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,

and Yoshua Bengio. Graph attention networks. In 6th International Conference on

Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings. OpenReview.net, 2018.

[92] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-

base. Communications of the ACM, 57(10):78–85, 2014.

[93] Brian Walsh, Sameh K Mohamed, and Vı́t Nováček. Biokg: A knowledge graph for

relational learning on biological data. In Proceedings of the 29th ACM International

Conference on Information & Knowledge Management, pages 3173–3180, 2020.

[94] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph em-

bedding by translating on hyperplanes. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 28, 2014.

[95] Michael D Ward, Andreas Beger, Josh Cutler, Matthew Dickenson, Cassy Dorff, and

Ben Radford. Comparing gdelt and icews event data. Analysis, 21(1):267–297, 2013.

[96] Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, and Jens

Lehmann. Tero: A time-aware knowledge graph embedding via temporal rotation.

Proceedings of the 28th International Conference on Computational Linguistics, 2020.

[97] Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Yazdi, and Jens Lehmann.

Temporal knowledge graph completion based on time series gaussian embedding. In

BIBLIOGRAPHY 125

The Semantic Web – ISWC 2020: 19th International Semantic Web Conference,

Athens, Greece, November 2–6, 2020, Proceedings, Part I, page 654–671, Berlin,

Heidelberg, 2020. Springer-Verlag.

[98] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.

Self-attention with functional time representation learning. Advances in neural in-

formation processing systems, 32, 2019.

[99] Runxin Xu, Tianyu Liu, Lei Li, and Baobao Chang. Document-level event extrac-

tion via heterogeneous graph-based interaction model with a tracker. In Proceedings

of the 59th Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pages 3533–3546, Online, August 2021. Association for Computational

Linguistics.

[100] Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, and Zhi-Hong

Deng. Dynamically pruned message passing networks for large-scale knowledge graph

reasoning. In 8th International Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[101] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding

entities and relations for learning and inference in knowledge bases. In Yoshua Bengio

and Yann LeCun, editors, 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,

2015.

[102] Yuyue Zhao, Xiang Wang, Jiawei Chen, Wei Tang, Yashen Wang, Xiangnan He, and

Haiyong Xie. Time-aware path reasoning on knowledge graph for recommendation.

arXiv preprint arXiv:2108.02634, 2021.

[103] Shun Zheng, Wei Cao, Wei Xu, and Jiang Bian. Doc2EDAG: An end-to-end

document-level framework for Chinese financial event extraction. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 337–346, Hong Kong, China, November 2019. Association for Com-

putational Linguistics.

[104] Tong Zhu, Xiaoye Qu, Wenliang Chen, Zhefeng Wang, Baoxing Huai, Nicholas Jing

Yuan, and Min Zhang. Efficient document-level event extraction via pseudo-trigger-

126 BIBLIOGRAPHY

aware pruned complete graph. Proceedings of the Thirty-First International Joint

Conference on Artificial Intelligence, IJCAI, 2022.

	Acknowledgement
	Abstract
	Introduction
	Motivation
	Contributions
	Overview

	Background
	Notation
	Knowledge Graphs
	Fundamentals of Knowledge Graphs
	Relational Learning on Knowledge Graphs

	Fundamentals of Temporal Knowledge Graphs
	Relational Learning on Temporal KGs
	Temporal Encoding
	Temporal Knowledge Graph Models
	Training Techniques and Evaluation Metrics

	Learning Knowledge Graph Representations on Non-Euclidean Spaces
	Models of Non-Euclidean Spaces
	Relational Learning in Non-Euclidean Spaces

	Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs
	Learning Neural Ordinary Equations for Forecasting Future Links on Temporal Knowledge Graphs
	Time-dependent Entity Embedding is not All You Need: A Re-Evaluation of Temporal Knowledge Graph Completion Models under a Unified Framework
	DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion.
	Conclusion

