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1 Abstract 
Cellular information flow is facilitated by sophisticated molecular networks comprised primarily of 

proteins. Biological signals are communicated by dynamic network rearrangements induced by covalent 

and frequently reversible protein modifications, as well as by interactions between various protein sets. 

While precise orchestration of these signaling networks is required for cell-type and context-specific tasks, 

their dysregulation is frequently associated with disease, as signal transmission can become inefficient, 

overshooting, or misdirected. However, the interplay of protein modification and interaction in immune 

signaling remains poorly understood. Experimental methodologies that reflect the fundamental principles 

of dynamic signaling network assembly are thus critical for establishing causal relationships between 

cellular phenotypes and developing tactics for targeted interference. Proteomics based on mass 

spectrometry has evolved into a versatile method for addressing a wide variety of problems. Apart from 

investigating the expression of proteins, mass-spectrometry can decode protein-protein interaction 

networks and detect chemical modifications of proteins. 

Throughout my Ph.D. I focused on dynamic protein-protein interactions and post-translational changes in 

immune cells. I developed and employed affinity enrichment followed by mass spectrometry (AE-LC-

MS/MS) to investigate the dynamic interaction between PPIs and PTMs of 19 bait proteins in response to 

TLR activation or drug perturbation. I was able to functionally evaluate novel PPIs and PTMs regulating 

NFkB activation. I also studied proteolysis of signal peptides in human and murine tissues by establishing 

a proteomic meta-analysis workflow. Thereby, I provide mass spectral evidences for signal-peptide 

cleavages and was able to double the currently experimentally confirmed signal peptide cleavage sites. 

Additionally, I devised a detailed step-by-step protocol for analyzing secretomes by proteomics and 

collaborated in two projects examining the secretomes of pyroptosis and TNF-induced necroptosis, 

respectively. In an additional collaboration, I investigated the influence of arginine on the metabolism and 

development of multinuclear giant cells with a multi-omics approach involving transcriptomics, 

proteomics, and metabolomics.  
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2 Introduction 
2.1 Mass Spectrometry (MS)- based proteomics  
Proteins are the ultimate executors of genetic information, orchestrating cellular processes. They are 

translated from mRNA, which is transcribed from DNA. Whole-genome sequencing efforts of the human 

genome have uncovered more than 20 000 protein-coding genes [1]. Co-transcriptional and co-

translational processes lead to the emergence of more than 6 million estimated proteoforms [2-5],  

Mass spectrometry-based proteomics investigates the proteome – the entirety of expressed proteins at 

a specific time and location. Recent breakthroughs in MS-based proteomics workflows, instrumentation 

and analyses enable the detection, identification, and relative or absolute quantification of thousands of 

proteins in a single experiment. Detailed proteomic abundance atlases of human tissues have delivered 

spectral evidence for over 13 000 proteins [6]. Approximately 90% of the human proteome has been 

discovered to date, leaving 10% of proteins unidentified [7].  

2.1.1 Bottom-up and top-down proteomics  
Two major MS-based proteomic strategies are utilized to characterize proteins comprehensively. These 

approaches are referred to as top-down or bottom-up proteomics. Bottom-up protein analysis examines 

peptides derived from proteins via experimental proteolysis - also termed shotgun proteomics [8-10]. 

Bottom-up techniques begin with the extraction of proteins from biological material (e.g., tissues or cells) 

and their proteolytic digestion into small pieces for effective fragmentation by proteases (e.g., Trypsin, 

Lys-C) [11]. The resulting complex peptide mixtures are separated by reversed phased high-pressure liquid 

chromatography (HPLC) based on hydrophobicity and coupled online to a mass spectrometer. The 

technique is widely used in many proteomic studies, and there are several bioinformatic tools for data 

interpretation, including identification and quantification [10]. Sample preparation, liquid 

chromatography, and mass spectrometry technology have evolved dramatically in recent years, enabling 

proteomic analysis of minute sample quantities and paving the way for single-cell proteomics [12].  
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Figure 1: A schematic approach for the bottom-up and top-down characterization and identification of proteins using mass 
spectrometry. Adapted from [13].  

Top-down proteomics studies proteins in their native state and is the ideal technique for delineating 

unambiguous, and proteoform resolved molecular information. Analyses can be carried out under both 

denaturing [14] and native conditions [15]. Often, pre-analysis enrichment of proteins of interest is 

conducted [16-18], however global proteoform characterizations in conjunction with high-resolution 

front-end protein separation are also being developed [19]. Top-down proteomics is currently applied for 

large biomolecule therapeutics and diagnostics like antibodies, but due to advancements in sample prep, 

protein separation and instrumentation may be a future avenue for the discovery of novel biomarkers 

and disease mechanisms [20].  
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2.1.2 Sample preparation for shotgun proteomics 
Methods for sample preparation that are robust and reproducible are critical for any shotgun proteomics 

experiment. Before LC-MS, sample preparation for label-free proteomics workflows includes cell/tissue 

lysis, protein denaturation, cysteine reduction and alkylation, proteolytic digestion and desalting, and 

removal of interferences (e.g., detergents, salts, chemicals, lipids, metabolites). Many protocols exist and 

frequently vary according to the research question. 

Fully denaturing techniques with ionic or chaotropic detergents (SDC, SDS, Urea, or Guanidinium Chloride) 

are frequently used to homogenize and extract proteins from biological samples efficiently. Native cell 

lysis (freeze-thawing, bead-milling, cell-cracking, low concentrations of non-ionic, weak detergents like 

NP-40) is used for interaction proteomics, co-fractionation studies, or spatial proteomics experiments 

when intact protein complexes are of interest. In addition, native lysis is used in conjunction with pan 

protease inhibitors to avoid proteolysis during the lysis and subsequent affinity purification processes. 

While cytosolic proteins are easily examined using native interaction proteomics processes, membrane 

proteins require specific detergents such as the non-ionic glycoside detergents DDM or DDM/CHS [21]. 

Notably, detergent-assisted lysis is frequently combined with sonication to aid in the mechanical 

solubilization of proteins, cell lysis, and shearing of genomic DNA. 

Cysteine reduction and alkylation are used in practically every proteomic experiment to disrupt disulfide 

links, facilitate protease access, and prevent disulfide bond reassembly – excluded are, e.g., studies on 

cysteine modifications [22]. Dithiothreitol (DTT) [23] and tris(2-carboxyethyl)phosphine (TCEP) [24] are 

two commonly used chemical agents for cystin reduction. Alkylating agents are iodoacetamide (IAA) or 

chloroacetamide (CAA), leading to the covalent modification of cysteine thiol groups by 

carbamidomethylation.  

Most frequently proteins are digested using endoproteinase Lys-C and trypsin resulting in basic amino 

acids (Lysine, Arginine) at the C-terminus of each peptide. Thereby, double-charged peptide species at 

both the N- and C-termini under acidic HPLC conditions are generated. On average, Trypsin-generated 

peptides are ten amino acids in length [11]. Because some of the peptides formed by Trypsin/Lys-C are 

either too short or too long for efficient MS analysis and data-analysis, additional proteases such as AspN, 

LysN, ArgC, GluC, or chymotrypsin can be used to increase sequence coverage  [25].  

Interfering chemicals such as detergents, salts, lipids, metabolites, DNA, and polysaccharides are  removed 

from samples before proteomics analysis. A milestone in the field was the development of a microcolumn 

tip-based micro purification system termed Stop and Go Extraction (StageTips), which is based on solid-
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phase extraction with reversed-phase material (octadecyl carbon chain - C18) [26]. Further developments 

and optimization of reproducibility and adaptability in sample preparation resulted in the invention of the 

'in-Stage-Tip' (iST) workflow [27], in which the entire sample preparation can be completed in a single 

vessel using the mild detergent SDC in combination with the solid-phase extraction material 

Styroldivinylbenzol – Reversed-Phase Sulfonate (SDB-RPS). Another single-vessel sample preparation 

method (SP3) that is suitable with liquid handling robots is based on carboxyl-coated paramagnetic 

nanoparticles that enable the use of powerful detergents (e.g., SDS) by allowing for washing steps with 

organic solvents[28]. MStern is another high-throughput sample preparation approach that uses 

polyvinylidene fluoride (PVDF) membranes and is suited for processing extremely dilute samples [29].  

Materials can be pre-fractionated online or offline before MS analysis, to obtain a more comprehensive 

proteome coverage. Pre-fractionation techniques include strong anion exchange (SAX) and strong cation 

exchange (SCX), both of which have a high degree of orthogonality with reversed-phase chromatography 

[9, 30, 31]. In addition, separation on polarity (HILIC) and hydrophobicity (ERLIC) are often employed for 

pre-fractionating phosphopeptides [32]. Offline high pH reversed-phase separation combined with 

fraction concatenation leads to high orthogonality of online acidic reversed-phase chromatography. While 

fractionation is time-consuming and requires a high protein starting material, a fully automated 

fractionator dubbed the "loss-less nano spider" fractionator based on high pH fractionation has been 

invented [33]. This fractionator automatically concatenates dissimilar fractions to obtain complete 

chromatograms [34]. 

2.1.3 Liquid chromatography 
Chromatographic separation of complete proteome samples, containing thousands of unique peptides, is 

required for maximum peptide identification by proteomics. The fundamental premise of the LC 

separation of peptides is their affinity for a stationary material (column) and a mobile phase (solvent 

gradient elution). Due to its high resolving power (peak capacity), reproducibility, and resilience, reversed-

phase HPLC is utilized to separate peptide mixtures in the majority of bottom-up proteomics research  

[35]. The mass spectrometer is often operated in positive mode, necessitating positively charged peptide 

species as analytes. Thus, in reverse phase chromatography, peptides are initially loaded onto the 

stationary phase (C-18 silica) using their affinity for the stationary material due to coulomb or hydrophobic 

contact at acidic pH. The solubility of peptides is gradually enhanced by increasing the amount of organic 

solvent (acetonitrile), and they are eluted from the column into the mass spectrometer. The number of 

detected peptides increases linearly with the liquid chromatography’s peak capacity and resolving power 
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[36]. Column length, column diameter, column filling, and gradient length affect the resolution of 

chromatographic separation. Significant improvements in resolution, speed and sensitivity were achieved 

by using long columns filled with small silica particles (1.7 um in diameter) and operated at extremely high 

pressures (up to 1000 bar) [37, 38]. By lowering the backpressure created by long columns and small 

particle sizes, column heating devices contribute to future advancements in chromatographic 

performance [39].  

2.1.4 MS Analysis: Instrumentation 
New high-performance instrumentation that provides both high resolution and high mass measurement 

accuracies for MS1 and MS2 levels has resulted from major developments over the last decade. A mass 

spectrometer is typically composed of an ion source, a mass analyzer, and a detector. 

Electrospray ionization (ESI) is by far the most frequently used technology for ionizing analytes (peptides 

or proteins) [40, 41]. First, the dissolved analytes eluting from the capillary column are subjected to a high 

voltage. Then, a strong electrical field is used to transfer the analytes to gas phase in the electrospray ion 

source. Another ionization technique is matrix aided laser desorption ionization (MALDI), which uses a 

laser beam to vaporize dry analytes embedded in a matrix  [42]. All measurements in this thesis were 

carried out on Thermo Fisher Scientific Orbitrap mass spectrometers, which include Q Exactive HF, Q 

Exactive HF-X and Exploris. 

2.1.4.1 Mass analyzers 
There are different kinds of mass analyzers frequently used in proteomics investigations: Quadrupole 

mass analyzers, Ion trap analyzers, time-of-flight, FT-ICR and orbitrap mass analyzers. They ensure 

sensitivity, mass resolution, mass accuracy, and high quality MS/MS spectra [43]. In my projects, orbitrap 

mass analyzers were employed. 

Quadrupole mass analyzers can differentiate between and filter ions of a certain m/z. They contain four 

cylindrical or hyperbolic rods (quadrupole) inside a vacuum chamber. A radio frequency (RF) and directed 

current (DC) allow only ions of a certain m/z to pass through the quadrupole in a stable trajectory [44].  

Ion trap analyzers accumulate or “trap” ions of a selected mass range for some time before MS or MS/MS 

analysis commences. 2D linear ion traps, and 3D ion traps are also termed Paul Trap [45]. In 3D traps, ions 

are trapped between hyperbolic ring electrodes and hyperbolic electrode plates by an oscillating RF field 

and a superimposed DC electric field. Selective ejection of specific ions is achieved by varying the RF 

potential. Linear traps are similar to quadrupoles, but a potential field is applied to the end of the rods to 
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trap the ions.  This ion trapping can lead to increased sensitivity; however, ion trap mass analyzers suffer 

from low resolving power (single unit mass resolution). 

In TOF instruments, ions are accelerated and separated based on the time to travel through a field-free 

region, correlating to their m/z [46]. Mass is strictly a function of the time between initial acceleration and 

detection (time-of-flight), as the kinetic energy and the length of the flight tube remain constant. TOF 

analyzers can analyze small and big ions (ranging from few Da- 100 kDa) due to high ion transmission 

efficiencies. 

The FT-ICR measures the cyclotron frequency of ions in a fixed magnetic field to reveal m/z [47]. Ions are 

caught in a Penning trap, similar to the 3D trap but with a magnetic instead of an electrical field. Thereby, 

the ions circle in a plane perpendicular to the magnetic field. Upon coherent excitation with a broadband 

RF field ions are raised to a higher cyclotron orbit [48].  Receiver plates detect the ions, and their intensity 

and time signal is converted into a frequency spectrum via Fourier transformation. Thus, the ion m/z is 

directly proportional to the cyclotron frequency. 

In the orbitrap mass analyzers – a type of an ion-trap mass analyzer - ions are induced by an electrical 

field to oscillate in a trap. Fourier transformation converts the signal of the oscillating ions from time to 

frequency [49, 50]. The orbitrap mass analyzer is built from an inner spindle electrode covered by two 

hollow outer concave electrodes. Between the inner and outer electrodes, a linear electric field is 

generated by a voltage potential. Ions enter the orbitrap through a hole in one of the outer electrodes 

and start axial harmonical oscillation, influenced by the conical shape of the electrodes, the electrical field, 

and the tangential velocity of the ions, which creates opposing centrifugal forces. The outer electrodes 

detect the oscillating ions, and the signal is transformed to the frequency domain (axial harmonic 

frequency) by Fourier transformation, which is proportional to m/z. Due to their high mass resolution and 

versatility, orbitrap mass analyzers are broadly employed in proteomics.    

2.1.5 Fragmentation techniques 
The mass of intact peptides as determined by the MS1 scan is insufficient to unambiguously identify 

peptides, much less to detect and locate PTMs. Therefore, the complete peptide (precursor ion) is 

fragmented into product ions (MS/MS or MS2) to determine the amino acid sequence and position. The 

target precursor ions are selected within a certain m/z range, fragmented, and the mass of the fragment 

ions is determined [51].  The following MS/MS fragmentation modes are frequently employed in 

proteomics experiments: Collision-induced dissociation (CID) and higher-energy collisional dissociation 

(HCD) fragment peptides at the peptide bonds, generating b, a, and c-ions from the peptide's N-terminus, 
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and y, x, and z-ions from the peptide's C-terminus  [52].  Fragmentation occurs when precursor ions collide 

with an inert gas (He, N2 or Ar).  

 

Figure 2: Fragmentation of peptides forms different ion species. b and y type ions are generated by CID/ HCD, while c- and z-type 
ions are generated by ETD. 

2.1.6 Acquisition methods 
Shotgun proteomics is often performed using discovery-driven data-dependent acquisition (DDA) 

techniques, in which peptides are fragmented based on their signal intensity. In my thesis, I used DDA as 

an acquisition method, predominantly. In DDA, the mass (m/z) of eluting peptides is determined using a 

survey scan (MS1, full scan), and the N most abundant precursor ions are selected for subsequent 

fragmentation (MS2), yielding fragment-ion spectra. Chromatographic elution of peptides in long 

gradients takes longer than a survey scan plus MS/MS scan, and accordingly numerous MS2 scans can 

follow a single MS survey scan to achieve sequencing of a maximum number of precursors. A dynamic 

exclusion window is set to the median elution time for the scanned peptides to prevent resequencing of 

the same peptide. Due to the semi-stochastic nature of intensity-driven precursor selection in DDA, 

identifications can be difficult to reproduce across large datasets containing highly complex mixtures, such 

as full-proteomes – typically for low abundance peptides. Match-between-runs — a MaxQuant technique 

for enhancing peptide identification and quantification – permits the transfer of MS/MS data between 

samples by aligning retention times and MS1 features. Due to increase in scan speed and resolution of 

modern mass spectrometers, data-independent acquisition (DIA) has gained appeal in recent years for 

discovery-driven proteomics [53, 54]. While DDA techniques pick a predetermined number of precursors, 

DIA simultaneously fragments all precursor ions within a given time window (broadband DIA) or mass 

window [55]. Co-eluting peptides within a particular mass window are co-fragmented, resulting in highly 

convoluted MS2 spectra [56]. Compared to DDA, higher levels of data completeness (fewer missing 

values), accuracy, and identification rates can be achieved [57, 58]. Spectral interpretations of DIA relies 

on sophisticated software solutions and pre-recorded or in silico high-quality spectrum libraries [57]. 
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2.1.7 Protein identification via database searches and de novo sequencing 
Protein identification relies on the interpretation of high resolution MS1 and MS2 spectra of the 

corresponding peptides. Peptide database search engines such as the commercial Mascot [59] and open-

source Andromeda [60] are used for automated spectra identification. An in silico digest of all proteins of 

the studied organism is used as the reference to match observed and theoretical MS2 spectra with the 

MS1 mass as a constraint. The matches are evaluated with a probability-based scoring model, assessing 

the chance of theoretical and measured matches occurring randomly [61]. In MaxQuant [62], the quality 

of peptide spectrum (PSMs) matches is further scored by the posterior error probability (PEP), which is a 

measure of peptide length, charge, number of PTMs, and missed cleavages, and the Andromeda score. 

The estimation and control of false-positive identifications are conducted on the level of peptide-

spectrum matches and protein group level in a target-decoy search strategy [63], which often employs a 

reverse database and enables calculating the false-discovery rate (FDR), which is usually set to 1%. It has 

been discussed that increasing the search space -e.g., by searching multiple genomes or PTMs - counter-

intuitively leads to lower identification rates because of the higher probability of retrieving false -positives 

[64].  As MS/MS spectra can be convoluted and contain co-eluting peptides, MaxQuant enables the search 

of signals resulting from co-fragmenting additional precursors – termed “second peptide” search [60]. 

Finally, peptides are assembled to proteins with an FDR control based on protein-level PEPs – a product 

of the individual peptide PEP [60]. Peptides can be unique for proteins or shared between different 

proteins – for example, if several protein isoforms are present in the sample. The shared non-unique 

peptides – termed “razor peptides” - are attributed to the protein with the highest number of shared 

peptides following the principle of Occam's razor. 

High-resolution spectral data from state-of-the-art MS instruments also paves the way to de novo 

sequencing, a database-independent strategy of spectrum identification [65]. The peptide amino acid 

sequences are directly inferred from MS/MS spectra. In the case of proteome analyses of less-well 

characterized model systems [66], microbial communities [67], splice-variants [68], mutations, and novel 

PTMs or multiple PTM searches [69], the prospect of de novo sequencing is alluring. The de novo 

technique is compelling for the assembly of full-length monoclonal antibodies [70, 71]. The computational 

tools for conducting de novo searches have improved significantly over the last few years. Instead of 

performing brute-force exhaustive searches [72] with all possible peptide sequences corresponding to the 

precursor mass, sub-sequencing methods [73, 74] and graph-based models [75, 76] with vertices 

corresponding to fragment ion peaks and edges to mass-differences between peaks [77] have gained in 

popularity. Even though many software solutions for de novo sequencing exist (i.e., PepNovo [78], 
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pNovo+[79], Novor [80], and the commercial PEAKS [81]), the technique has been used less than database 

searches so far. I have applied PEAKS (taggraph) to perform global PTM searches on both bait and 

interactor proteins in the MIP-MS project. In comparison to database-centric searches the de novo 

algorithms turned out to be less sensitive in identifying and quantifying specific PTMs. 

2.1.8 Protein quantification 
Unravelling function and dynamics of biological systems is catalyzed by the advent of quantitative 

proteomics experiments [82]. The main challenge is that peptide intensities measured by MS-instruments 

do not directly correlate with the peptide abundance in the biological specimen, as the molecular 

composition impacts ionization efficiency. However, both label-free and isotope-label-based quantitation 

methods have been developed to study differential protein expression within large dynamic ranges (1-105 

or 106 and up to 1010 in plasma [83]). Experiments are often designed to determine protein abundance 

differences between conditions, e.g., genotypes, and drug treatments. To quantify proteins, both relative 

and absolute quantification can be performed.  

2.1.8.1 Chemical and metabolic labeling strategies 
Metabolic labeling requires cell lines to be cultured in medium with enriched stable isotopes. Stable 

Isotope labeling by amino acids in cell culture (SILAC) leads to the incorporation of “heavy” amino acids 

(often Arginine or Lysine with 13C, 15N, 2H) into the proteome [84, 85]. Also, whole organisms - e.g., mice 

[86], flies [87], plants [88] - have been reported to be SILAC labeled. SILAC labeling leads to a specific mass 

shift of the heavy compared to the light population. The multiplexing capability of SILAC is limited to the 

comparison of 3 conditions. Due to the mass-difference introduced by the isotopes, the quantification 

occurs at the survey scan level (MS1 level), where the intensity difference between each SILAC peptide 

pair is used as a measure for protein abundance difference [89]. Differential PTM analyses have also been 

performed with SILAC strategies [90, 91]. However, increased spectral complexity at the MS1 level due to 

individual precursors for isotope and non-isotope labeled peptides leads to lower numbers of identified 

peptides. As SILAC benefits from complete metabolic incorporation of isotope-labelled amino acids,  

analysis of primary, non-dividing tissues remains challenging.  To address this issue and remove the time-

consuming labeling step, entire labeled proteomes (super SILAC, [92]) or specific SILAC-labelled protein 

epitope signature tags (PrESTs, [93]) to use as spike-in standards have been invented. Targeted 

quantification strategies for absolute quantification of specific proteins involve the synthesis of peptides 

of interest with stable isotopes (AQUA [94, 95]) or the digest of artificial proteins (QconCAT [96])  to be 

added as an internal standard. Absolute quantification can be achieved by calculating the ratio between 
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the endogenous peptide and the internal standard with a known amount, but it is still limited to few 

proteins per sample.  

Chemical labeling incorporates stable isotopes at the peptide level post digestion. Thereby, it can be 

readily used for primary cells or body fluids and tissues. Tandem Mass Tags (TMT) [97] or isobaric tags for 

relative absolute quantitation (iTRAQ) [98] are designed on the principle that isobaric labels are 

fragmented to generate so-called reporter ions in the low mass range, that can be accurately quantified. 

The labels often contain an amine-reactive NHS-group readily reacting with the N-Terminus and Lysines 

of peptides, a fragmentable chemical moiety, and a mass normalization. HCD  [99-102], ETD [103] or CID 

[104, 105] is required for inducing linker fragmentation. TMT reagents with different isotope 

incorporations (13C, 15N) allow multiplexing of six [106] and even ten [107] samples per single 

experiment. However, high precision by isobaric tagging is accompanied by imperfect accuracy due to a 

systematic underestimation of ratios by co-fragmenting ions within the isolation window of the targeted 

precursor [108, 109]. Running an additional isolation and fragmentation cycle (MS3) has been suggested 

to eliminate the ratio compression problem [110]. Other isobaric tag strategies with more labile linkers 

have shown that quantitation of the labeled peptide (complementary reporter ions) instead of the 

reporter circumvents the ratio distortion, as well [111]. 

2.1.8.2 Label free quantitative proteomics 
LFQ approaches are broadly applied and very popular and have been mainly used in my thesis. They are 

characterized by a relatively easy experimental setup and low cost compared to labeling strategies. LFQ 

has been performed by spectral counting or intensity-based methods.  Instead of being confined to 

multiplexing capabilities of chemical or metabolic strategies, LFQ approaches theoretically allow the 

comparison of unlimited number of conditions. Indeed, higher number of protein identifications are often 

observed in LFQ experiments [112]. Importantly, additional sample preparation steps that are often 

required for chemical labelling strategies can introduce variation into the samples [113] and lead to the 

loss of proteins [114].  However, as single samples are compared across different LC-MS/MS runs, data 

quality can suffer from non-robust sample preparation, LC-performance issues and the stochastic 

sequencing by data-dependent acquisition methods.  

Intensity-based label-free quantitation is grounded on the precursor signal intensity extracted from the 

extracted ion chromatogram (XIC). Similar to spectral counts, the intensity is also correlating with the 

initial protein abundance [115]. For intensity calculation either the peak height or area under the curve at 

specific retention times are employed.  
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2.2 Interaction proteomics 
Protein function is often determined by their interaction with other proteins and also post translational 

modification status. To understand how signaling networks are orchestrated, knowledge on protein 

complexes composition is critical, as “no protein is an island entire of itself” [116].  To study protein-

protein-interactions many techniques have been developed, including yeast two-hybrid (Y2H) [117, 118], 

protein-fragment complementation assay (PCA) [119], LUMIER [120] and FRET [121]. Mass spectrometry-

based methods for the characterization of protein-protein interactions have advanced considerably over 

the last two decades.  Qualitative approaches analyze the basal protein-protein interactions to elucidate 

protein-protein interaction networks, while quantitative approaches analyze interaction dynamics across 

different biological conditions [122].  

 

Figure 3: The pull-down-MS assay procedure is depicted schematically. Adapted from [123]. 

A long-standing and broadly used method to study PPIs is Affinity purification mass spectrometry (AP-

MS).  Here, proteins of interest in the soluble phase are captured by affinity matrix composed of an 

immobilized ligand on a solid support (agarose or magnetic beads). Ligands can be either antibodies raised 

against endogenous proteins of interest or against epitope tags, which requires prior expression – often 

overexpression – of tagged proteins. Purified proteins and complexes are directly subjected to LC-MS/MS 

analysis to unbiasedly identify and quantify their interactome – all interacting proteins in a protein 

complex. Due to the type of ligand, solid phase material, stringency of washes, background binding 
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proteins are co-enriched with protein complexes of interest. Historically, methods have tried to limit the 

background binding proteins to an absolute minimum by employing tandem purification strategies. 

However, newer concepts implemented the idea of affinity-enrichment MS, where quantitative MS is 

used to discriminate between background and protein complex members [124]. In my thesis, I have 

employed AE-MS to study the interactome of proteins involved in immune signaling in human immune 

cells. 

2.2.1 AP-MS with antibodies raised against endogenous proteins 
Focus on the endogenous protein is the main benefit of using antibodies directly raised against proteins 

of interest. Multiple isoforms can be studied, simultaneously, while there would be the need of individual 

experiments with epitope-tagging approaches. Both monoclonal and polyclonal antibodies have been 

used for AP-MS experiments, and also synthetic antibody-like molecules have been employed [125]. There 

are several challenges when working with protein specific antibodies: (1) High quality antibodies are often 

not available and generating specific antibodies of high quality is often associated with significant costs. 

(2) Antibodies may interrupt protein-protein interactions, if antibody epitopes are situated in protein-

regions important for interactions. (3) As antibodies have varying affinity and specificities, affinity-

purification conditions need to be adjusted with every experiment. (4) False positive interactors may be 

detected, as controls including isotype-matched antibodies against unrelated proteins or pre-immune 

serum are often lacking, especially due to the cross-reactivity of many antibodies. Reasonable controls for 

antibody specificity are knockout animals or knock-out/ knock-down cell-lines for the bait protein of 

interest [126]. Alternatively, multiple antibodies targeting different epitopes on the protein of interest 

can also reduce the number of false positives due to antibody cross-reactivity [127]. Especially for cell-

lines or tissues, but also when the same protein of interest is compared against multiple cell-types or 

conditions, antibody-based AP-MS is a powerful technique [128]. 

2.2.2 AP-MS with epitope tags 
Proteins can be fused to an epitope tag, that can be used for affinity purification. Here, the open reading 

frame (ORF) of a protein of interest is either C- or N-terminally appended by the sequence of the epitope 

tag, resulting in fusion proteins with affinity handles for subsequent affinity purification. In rare examples 

where N- or C-termini are presumably sterically hidden in bigger complexes, epitope tags have also been 

inserted in the middle of proteins [129]. One of the major advantages of epitope-based AP-MS is using 

the same epitope tag (and thereby also affinity matrix) to purify multiple proteins. This transferability of 

the enrichment strategy between different pulldowns allows for streamlined controls due to similar 

background binding proteins and opens the possibility to high-throughput interactome studies. Many 
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different tags including peptide tags (small) and protein tags (big) have been described for AP-MS 

experiments (see Table 1: Affinity tags for AP-MS experiments). Also, tandem affinity tags have been 

described: they allow the purification of proteins of interest with several rounds of purification using 

different affinity moieties. For our study, we have chosen the His-tag in conjunction with an IMAC resin, 

due to the following reasons: (1) His-Tag is a small peptide tag; (2) The affinity matrix for His-tag 

enrichments is not proteinogenic, thereby on-bead digests after affinity purification is possible. 

Proteinogenic matrices like antibodies or streptavidin might lead to masking of interactors due to their 

high abundance as matrix proteins (3); The very stable His-IMAC complex binding also allows for 

denaturing and very stringent affinity washing procedures. (4) The IMAC affinity matrix is economically 

the cheapest choice. Further, we have compared His-IMAC to gold-standard AP-MS approaches like Strep-

tag and Flag-tag and have found similar results in terms of interacting proteins identified, bait protein 

sequence coverage and total bait protein intensity. 

Table 1: Affinity tags for AP-MS experiments 

Tag Sequence/ MW Affinity resin Original reference 

Peptide tags 

c-myc EQKLISEEDL Anti-c-myc (9E10) [130] 

FLAG DYKDDDDK Anti-FLAG (M1, M2, M5) [131] 

HA YPYDVPDYA Anti-HA (12CA5) [132] 

His-Tag HHHHHH Ni2+/Co2+-NTA/CMA [133] 

Strep-tag II WSHPQFEK Streptavidin [134] 

Protein tags 

GST 26 kDa Glutathione [135] 

GFP 26.9 kDa Anti-GFP [136] 

Protein A 45 kDa IgG [137] 

Adapted from: [128] 

An important factor to consider in every epitope-tagging approach, is the required over-expression of 

exogenous fusion proteins which can be achieved either by transfection or viral transduction. Transfection 

strategies are leading to transient cell-lines and are often limited to standard model cell-lines like HEK293T 

or HeLA cell-lines. Viral transduction results in stable cell-lines and is also applicable to non-dividing 
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primary cells and non-standard cell-lines. However, in such experiments the exogenous protein expression 

is neither under the control of the endogenous promoter, nor are introns or untranscribed regions (3’ or 

5’ UTRs) involved in the expression regulation.  Accordingly, major disadvantages of exogenous protein 

overexpression are potential effects on protein folding, protein localization and protein regulation. 

Additionally, due to overexpression, proteome expression differences compared to wildtype cells have 

been observed [138]. Whenever proteins are exogenously expressed, a total proteome analysis is valuable 

to control for possible expression differences in transgenic cell-lines. Several concepts have been  devised 

in the past to limit false-positive or false-negative interactor calling in experiments involving AP-MS with 

tagged bait proteins [139-141]: (1) Weak overexpression of proteins of interest under weak promoters 

[142-145]. (2) Protein expression induction by inducible promoters (i.e., Tetracyclin inducible promoters) 

[146-148] in combination with single-genome integration of the epitope-tagged gene of interest via the 

Flp-In system [149]. (3) Bacterial artificial chromosomes (BACs) contain the native gene architecture with 

most regulatory elements to enable close to endogenous epitope-tagged protein expression [150, 151]. 

This versatile system has been used in whole proteome covering interactome studies [152]. (4) With the 

advent of gene-editing technologies like CRISPR and the recently described prime-editing methods, true 

endogenous gene epitope-tagging has been achieved with relatively little effort and high efficiency [153]: 

it consists of a prime editing guide RNA (pegRNA) and a prime editor (PE) to edit – either by inserting of 

deleting – the gene of interest employing both a Cas9 nickase and a reverse transcriptase, in concert.  

2.2.3 Interactor calling in AP-MS 

Even though affinity purification in theory only enriches protein complexes of interest, many additional 

background proteins are also co-enriched. This is due to non-specific interaction of proteins with the 

antibody, streptavidin (e.g., in vivo biotinylated proteins) or IMAC (proteins containing multiple His in 

adjacency) or also unspecific binding to the bead material (e.g., agarose, sepharose, magnetic beads). 

Additionally, background proteins are highly organism, tissue and even cell-type specific. In the past, 

different strategies to discriminate between true interactors and background proteins have been 

employed: Pre-MS-analysis reduction of background proteins (biochemical) or post-MS-analysis reduction 

of contaminants (bioinformatic).  

Biochemical reduction of contaminants: Stringent washing steps with high concentrations of salt and 

detergent can reduce the background-bound proteome, which can result in not identifying weaker and 

more transient interactions [154]. Considering shorter purification times and low amounts of affinity 
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matrix also reduces non-specific interactors [155-157]. Additionally, purifying proteins with multiple 

purification steps via tandem affinity purification (TAP, [158]) has been successfully applied in many 

organisms, including yeast [159, 160] and mammalian cells [161-163] . In TAP, the non-specifically binding 

proteins from the first AP round can be removed by a second round of AP employing different affinities 

and affinity matrices. Nevertheless, even the most stringent protocol might still lead to enrichment of 

background proteins, highlighting the use of proper controls.  

Bioinformatic reduction of contaminants post MS analysis: MS based proteomics delivers quantitative 

information on proteins in a sample. Accordingly, a true interactor will be enriched over all the bait-

specific enrichment fractions, while the background remains unchanged. Many computational 

approaches have been established both for label-free and metabolic/chemical labelling datasets, to 

distinguish between bait/ interactors and background binding proteins. The simplest, but also most 

erroro-prone solution is fixing an enrichment threshold for putative interactors. Standard statistical tests 

in combination with threshold enrichment like QUBIC [124, 151, 152],  probabilistic approaches like 

CompPASS [142, 145, 164] or SAINT [165] have been used successfully for identifying significant 

interactors. In addition, the Contaminant Repository for Affinity Purification (CRAPome) built on the SAINT 

algorithm describes common false-positive interactors in a cell-type and enrichment strategy dependent 

manner [166]. 

2.2.4 New approaches for identification of protein-protein interactions 
While static interactions can be described very reliably with AP-MS approaches, the more dynamic or 

transient interactions are harder to capture. Many factors such as PTMs, conformational changes 

influence the stability of PPIs [167]. With AP-MS as ex vivo approaches, especially time of purification 

experiment, the dilution effect during lysis procedures, stringency including salt and detergent conditions 

and temperature can influence the achieved results [123]. Time-controlled SILAC experiments have been 

employed to comprehensively describe transient versus static interactions via AP-MS: SILAC labelled and 

non-labelled samples are mixed before purification, allowing transient interactors to switch between light 

and heavy forms [168]. In my project, I have studied transient PPIs in response to TLR activation in human 

immune cells with an AP-MS method. Other strategies to study transient interactions including stabilizing 

PPIs with crosslinking approaches and proximity dependent labelling are described below. 

Cross-linking mass spectrometry (XL-MS): To stabilize transient PPIs, cross-linking approaches [169] 

either based on formaldehyde [170-172], photo-inducible amino acids [173] or NHS-chemistry (i.e., DSP) 
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[174] have been described. These crosslinkers consist of two reactive groups separated by spacer arms of 

defined length [175], which can either lead to crosslinks between two spatially close proteins, between 

reactive amino acids within the same protein. Crosslinking has been used together with AP-MS in targeted 

approaches, where interactions of a particular protein are of interest [176]. However, also in global 

interactome studies, XL-MS has been employed. The main challenge of cross-linking mass spectrometry 

(XL-MS) involves the deconvolution of the heterogenous samples, as cross-linked peptides result in  

Proximity dependent labelling (PDL): Recently, proximity dependent labeling (PDL) methods have 

emerged, identifying potential interactors dependent on spatial proximity. The main methods include: 

BioID [177], Ascorbate Peroxidase (APEX) [178] and especially for membrane proteins selective proteomic 

proximity labeling assay (SPPLAT- HRP based) [179] or enzyme mediated activation if radical sources 

(EMRAS – HRP based) [180, 181]. In PDL, a bait protein of interest is fused i.e., to a promiscuous biotin 

ligase (BirA/ BirA*) or an ascorbate peroxidase (APEX), which biotinylate neighboring proteins with 

reactive biotin species. The biotinylated proteins are captured via Streptavidin affinity purification and 

further subjected to LC-MS analysis to unbiasedly identify interacting proteins. Thereby, proximity 

labelling approaches allow a “snapshot” of PPI rearrangements in dynamic processes [182].  

2.3 Post-translational protein modifications (PTMs) 
Protein modifications after protein translation can regulate protein activity by affecting protein 

interaction, protein localization, protein folding and protein stability. PTMs occur in a time and localization 

specific manner. Reversible and also irreversible, enzymatically catalyzed and also no-catalyzed chemical 

protein modifications have been observed. Proteins can be modified by relatively small chemical groups 

(e.g., phosphorylation, methylation, Acetylation), more complex molecules (e.g., glycosylation, 

isoprenylation) or even small proteins (e.g., ubiquitinylation, sumoylation, isgylation). A special form of 

protein modification is proteolysis that can be observed during signal peptide cleavage and I studied in 

this PhD Thesis. While antibody-based approaches in combination with immunoblotting allow the study 

of specific protein modifications, MS based proteomics is so far the only appropriate method to 

comprehensively identify and quantify PTMs [183]. In the following section, I describe selected PTMs, that 

were studied in depth by targeted (phosphorylation, Isgylation) and global approaches (proteolysis by 

signal peptidases) in the course of this PhD thesis. 

2.3.1 Phosphorylation  
Many cellular processes are regulated by phosphorylation [184]. Protein phosphorylation is induced by 

kinases and reversed by phosphatases, a tightly controlled equilibrium to modulate protein activity across 
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signal transduction pathways [185, 186]. Up to 23% of intracellular adenosine-triphosphate (ATP) is used 

by protein kinases for substrate phosphorylation [187, 188]. Dysregulation of protein phosphorylation can 

be the origin of various diseases [189, 190] and deeper understanding of phosphorylation induces 

signaling pathways might herald the discovery of novel therapeutic reagents [191]. Over 50 kinase 

inhibitors - including small molecules and targeted antibodies - have been approved by clinical trials [192, 

193] and attribute to the importance of generating knowledge about protein phosphorylation.  

 

Figure 4: Reversible phosphorylation and dephosphorylation of phosphoproteins by kinases and phosphatases. 

Protein phosphorylation is catalyzed by kinases and includes the transfer of phosphate from ATP to the 

hydroxyl group of serine, threonine or tyrosine [194], leading to the covalent addition of phosphate group 

PO3. Recently, also non-canonical phosphorylation of the amino acids histidine, aspartic acid, glutamic 

acid, arginine, cysteine and lysine has been described in detail [195-197]. However, despite the 

importance of protein kinases, the majority of described phosphorylation sites have no known protein 

kinase or biological function [198]. To study the biological impact of phosphosites identified in global 

screening approaches, the site-specific mutation of phosphorylated amino acids due to chemical similarity 

has been employed in the past: to mimic constitutive phosphorylation Ser/ Thr are mutated to Asp/Glu, 

while phosphorylation deficient mutants are generated by mutating to Ala, respectively. I have applied 

this technique to further characterize phosphorylation sites identified on TRAF2. 

In the past decade, global phosphoproteomics has advanced considerably due to new highly sensitive and 

accurate MS instruments, measurement strategies, novel algorithms and software as well as progress in 

sample preparation, which altogether allows the routine identification of several thousand phosphosites 

in single DDA shotgun experiments [199]. Even higher coverage in combination with shorter gradients (> 

20 000 phosphosites in 15 min) can be achieved by DIA based measuring methods [200]. As 

phosphorylation is a substoichiometric PTM, phosphoproteomics benefits especially from robust 
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enrichment methods, which can be based either on immobilized metal affinity chromatography (IMAC: 

Fe3+) [201] or metal oxide affinity chromatography (MOAC) with enhancers [202-204] – e.g., titanium 

oxide (TiO2, [205]). Higher specificity for MOAC based enrichment of phosphopeptides in comparison to 

non-phosphorylated peptides was achieved by addition of organic acids [206, 207]. As both IMAC and 

MOAC favor serine and threonine phosphorylation, antibody dependent enrichments are employed for 

global studies of tyrosine phosphorylation [208].  

2.3.2 Isgylation 
Interferon stimulated gene 15 (ISG15) belongs to the protein family of ubiquitin-like modifiers [209] and 

is induced by interferon to execute antiviral activity [210]. Additionally, ISG15 can be induced by multiple 

other stimuli like retinoic acid, LPS and genotoxic stress [211-213]. Both intracellular and viral proteins 

can be covalently modified by ISG15, by conjugating the C-terminal glycine residue of the LRLRGG motif, 

that can also be found in ubiquitin, to a lysine of the target protein [214] – a process termed isgylation. 

Isgylation requires the sequential action of three enzymes: an E1 (UBA7), an E2 (UBE2L6) and so far three 

described E3 enzymes (HERC5/6, TRIM25, HHARI). The covalent modification with ISG15 can be reversed 

by the ISG15 specific protease termed USP18 or UBP43 [215]. Isgylation of intracellular proteins has been 

shown to affect trafficking and protein stability, by competing with ubiquitin [216, 217]. Additionally, 

ISG15 has been reported to have antiviral roles as a free intracellular molecule through non-covalent 

interactions [218, 219] and also was suggested to have extracellular functions as a cytokine [220-222]. 
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Figure 5: Schematic representation of protein isgylation and de-isgylation. Adapted from [223]. 

In typical MS-based proteomics workflows, enzymatic digestion with trypsin leads to typical peptide 

remnants of two glycine residues (di-Gly) on lysine by ubiquitin/ ubiquitin-like proteins and the release of 

conjugated ubiquitin/ ubiquitin-like proteins. The mass difference of 114 Da introduced by the di-Gly 

adduct can be readily identified and quantified. As ubiquitinylation and also isgylation are 

substoichiometric PTMs, enrichment of modified peptides is required prior to MS analysis: this is usually 

achieved by employing antibodies raised against di-Gly [224-226]. However, ubiquitin-like modifications 

like isgylation, neddylation, sumoylation are attributed only a small amount (< 6%) of all the observed di-

Gly remnant peptides [227]. Therefore, additional strategies are required to detect protein isgylation. 

Initially, isgylation target identification was achieved by expressing ectopic tagged ISG15 expression and 

affinity purification [228-230]. As we have identified ISG15 as an interaction partner of TRAF2, we have 

indirectly described TRAF2 isgylation by combining TRAF2 isgylation-deficient mutation, pulldown and 

GlyGly enrichment. Other global isgylome studies were conducted with the combination of GlyGly 
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enrichment Isg15-deficient mice in comparison to wildtype animals and additionally knock-in of inactive 

USP18 mutants, to abrogate deisgylation [231]. However, missing highly specific antibodies, global 

quantitative isgylome studies are dependent on prior genomic modification. 

2.3.3 Proteolysis  
The hydrolysis of peptide bonds by proteases is an irreversible post-translational modification process, 

that gives rise to multiple isoforms for native proteins. Proteolytic cleavage results in neo-N or neo-C 

protein termini and frequently causes change in structure and function [232]. In humans, about 3% of the 

human protein coding genes are estimated to be proteases, corresponding roughly to 560 potential 

proteases [233]. Proteases a categorized by their catalytic mechanism into metallo, serine, cysteine, 

aspartic and threonine classes [234]. Proteolysis orchestrates processes such as fertilization, tumor 

metastasis, angiogenesis, cell death, aging, maturation and growth by controlling the activity of cytokines, 

hormones, growth factors and other enzymes [reviewed in:235]. Hereditary diseases, developmental 

complications and disease manifestations are characterized by aberrant proteolysis [236-238]. To identify 

protease substrates, three major methods have been employed, including library screening (synthetic 

peptide or phage display libraries), bioinformatics and proteomics approaches. As only short peptide 

sequences are presented in library approaches, the influence of exosites and protein three-dimensional 

structure is not accounted for in library approaches [239].  

More reliable substrate identification can be achieved by proteomics approaches screening for native 

substrates in intact cellular context either by triggering the activity of proteases or artificial addition of 

the protease of interest to a cellular lysate. One of the challenges of protease substrate identification in 

intact cellular context is the possibility of multiple substrate cleavage by diverse proteases. Thereby, 

proper controls – e.g., different genotypes, specific protease inhibitors - are needed for the bona fide 

discovery of specific protease substrates. Due to the low abundance of protease cleaved peptides, 

identification of protease substrates is often coupled to enrichment of neo N-/C-termini peptides. 

 Cleavage products can be isolated either by positive [240] or negative [241] enrichment of newly formed 

N-termini. Positive enrichment directly enriches N-terminal peptides and is frequently combined with 

biotin-avidin affinity purification, e.g., by (1) enzymatic biotinylation of N-termini via subtiligase and 

engineered mutant enzymes [242, 243] or (2) chemoselective biotinylation of α-amines of proteins [244]. 

Also, TMT-tagging of α-amines in combination with prior blocking of lysine residues has been described 

[245]. Negative enrichment involves the removal of non-N or C-terminal peptides, thereby enriching the 
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terminal peptides, also allowing the analysis of modified N-termini e.g., by acetylation or N-terminal 

glutamine cyclization [246].  

2.3.3.1 Signal peptide cleavage by SPP 
Signal peptide peptidases (SPPs) and signal peptide peptidase-like protease (SPPLs) – presenilin 

homologues - are intramembrane-cleaving proteases sharing a conserved Y/FD and GxGD motif in the 

catalytic center [247, 248]. As polytopic membrane proteins, the active sites of SPPs are localized in two 

adjacent transmembrane domains and induce the peptide bond hydrolysis of substrates. Experiments 

including transition state analogue inhibitors and site-specific-mutation of the catalytic Asp corroborate 

SPP/SPPLs are aspartyl proteases [249-251]. The physiological importance of SPP/ SPPLs is emphasized by 

their conserved occurrence in eukaryotes, comprising of fungi, protozoa, plants and animals [247-249]. 

Five members (SPP, SPPL2a, SPPL2b, SPPL2c, and SPPL3) of the SPP/SPPL family are classified in mammals 

[252], but number and also specificity of SPP/SPPLs is highly organism specific. The subcellular localization 

of the individual members is differing: SPP localizes to the endoplasmic reticulum [253], SPPL3 to the Golgi 

apparatus [254], SPPL2a to the endo/lysosomal compartments [255], SPPL2b to the plasma membrane 

[254] and SPPL2C to the ER and ER-Golgi intermediate compartment (ERGIC) [254, 256].   

Typical substrates of SPP contain signal sequence-derived signal peptides [257], however also other 

substrates of SPP/ SPPLs been reported, recently: this includes type II transmembrane proteins without 

predicted signal sequences e.g., TNF-a [250] and CD74 [258, 259].  

The mechanism of co-translational signal peptide cleavage is a multistep process and has not been fully 

elucidated at the molecular level, yet [reviewed in:260]: protein translation is initiated in the cytoplasm 

and temporarily halted or slowed by the binding of the signal recognition particle (SRP) to the emerging 

signal peptide. SRP mediates the transfer of the ribosome-bound nascent protein chain to the 

endoplasmic reticulum in a SRP receptor dependent manner, which leads to the transfer of the nascent 

protein chain to the translocon, which possesses a so called lateral gate. As translation resumes, the N-

terminus of the signal peptide which first faces the ER-lumen, flips-turns to face the cytosol in a type II 

transmembrane protein reminiscent way: this step is crucial for the signal peptide to fully move into the 

lateral gate, therefore clearing the space for the elongating protein chain. At the luminal surface, the 

signal peptide is cleaved of by SPP and chain elongation resumes until the STOP codon is reached, initiating 

the ribosome dislocation from the ER.  While the structure of the translocon is conserved through all 

domains of life [261], signal peptides are comprised of variable primary structures specific for every 

protein and organism. 
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Signal peptides are localized at the N-terminus of nascent proteins (e.g., membrane proteins, secretory 

proteins). The tripartite structure of signal sequences is defined by a cationic N-terminal region, a 

hydrophobic h-region with at least six non-hydrophilic amino acids and a C-terminal region, including the 

cleavage site of signal peptidases [262]. Hereditary diseases (e.g., Classic Ehlers-Danlos Syndrome [263], 

Crigler-Najjar Disease [264], Hereditary Angioedema [265], etc.) with reduced protein expression are 

correlated with mutations in the signal sequences, in particular an insertion of a polar amino acid into the 

h-region [266]. Interestingly, signal peptide dependent control of the efficiency of protein 

compartmentalization [267] and attenuation of protein translocation in response to ER stress [268] can 

regulate protein expression. For example, an insertion of two amino acids in the h-region of the human 

lutenizing hormone receptor (LHR) – a commonly observed genetic polymorphism – enhances the 

translocation of LHR and thereby the protein abundances, which can have a negative impact on cancer 

survival rates in women [269]. 

The prediction of signal peptides and the resulting subcellular localization has been studied deeply by 

bioinformatic approaches and involves both (1) the discrimination between signal peptide containing 

proteins and non-secretory proteins and (2) prediction of the actual signal peptide cleavage position to 

determine the exact N-terminus of the protein [270]. Prediction algorithms have advanced with 

methodological developments in the field of bioinformatics, starting out from simple statistics and weight 

matrices and maturing into employing artificial neural network algorithms [271, 272],  hidden Markov 

models [273], support vector machines [274] and deep and recurrent ANNs [275].  Initially, distinguishing 

between signal peptides and N-terminal transmembrane helices was challenging and lead to false positive 

predictions from N-terminal transmembrane regions. An advanced version of SignalP [276] based on 

neural network-based methods solved this issue by including two negative control datasets of (1) 

cytosolic/ nuclear proteins and (2) proteins without signal peptides and transmembrane regions in the 

beginning of the protein [277]. To date, the occurrence of most signal peptides is mostly predicted and 

not experimentally verified (Project 2). In our project 2, we have applied meta-analysis of proteomics data 

to comprehensively describe signal peptide cleavage in human and murine tissues.   

2.4 Secretomics 
The secretome is composed of all the components secreted by cells, tissues or organs, including 

extracellular matrix proteins, enzymes, growth factors, inflammatory cytokines, exosomes, and 

microvesicles [278]. Secretory proteins are fundamental for multidirectional intercellular communication 

governing processes such as proliferation, growth, migration and metabolic regulation [279].  Secretory 
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proteins have a wide range of functions, from roles in the immune system to neurotransmitters in the 

nervous system.   

Secretomics is a subfield of proteomics studying the secretome that offers a powerful method for 

identifying and quantifying proteins secreted by a sender cell population under particular biological 

conditions [280, 281]. Secretome studies have been used, i.e., in the analysis of drug resistance [282], 

inflammation [280, 283], extracellular matrix remodeling [284], and tumor metastasis [285-288].  

Secretome research is currently dominated by unbiased label-free qualitative and quantitative proteomics 

analyses based on LC-MS/MS methods, in which secretome samples are trypsin-digested either in-gel or 

in-solution. Secretome processing can be done using a variety of methods other than MS, including DNA 

microarray, RNA sequencing, Serial Analysis of Gene Expression (SAGE), and antibody or bead array [289]. 

Next to MS, another important method for secretome analysis is analysis with antibody array. Antibody 

array-based secretome analysis has been used in the study of cardiovascular disease and liver cancer [290, 

291]. A possible drawback of antibody arrays is the quality and specificity of the antibodies (e.g., 

recognizing highly glycosylated secreted proteins) and the limitation of comprehensiveness in comparison 

to unbiased proteomics approaches. I have applied MS-based secretomics workflows in various 

collaborative projects (Project 4, Project 5) and have further written a step-by-step protocol for 

performing secretomics in immune cells (Project 3). 

The majority of secretome studies in mammalian cells are conducted in vitro, with cells of interest first 

being cultured in serum-supplemented medium to obtain a sufficient number of cells for analysis. Prior to 

the start of the experiment, serum-containing medium is depleted and exchanged for serum-free 

medium, as highly abundant proteins in serum would otherwise lead to MS interference. While secretome 

analysis in cultured serum-containing conditioned media is possible, it necessitates comprehensive 

protein or peptide fractionation [292]. Alternatively, azidohomoalanine (AHA) labeling was used for 

secretome analysis from cells grown in serum supplemented with unnatural amino acids [293].  Duration 

of the experiment in serum-free conditions – usually just normal culturing medium without addition of 

FCS - has to be carefully assessed due to decreasing cell viability in the absence of serum [294].  

Alternatively, for more challenging cells like primary cells, approaches with special serum-free medium – 

i.e., medium also used for the industrial expression of antibodies – can be applied.  

2.5 Biological rational: TLR signaling  
Toll-like receptors (TLRs) are expressed by a variety of cell types, including macrophages, monocytes, 

dendritic cells (DCs), neutrophils, natural killer cells, and fibroblasts [295, 296]. TLRs are type I 
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transmembrane proteins with leucine-rich repeats (LRRs) in their ectodomains, transmembrane domains 

and intracellular Toll–interleukin-1 (IL-1) receptor (TIR) domains. Microbe-associated molecular patterns 

(MAMPs) produced by microbes and damage-associated molecular patterns (DAMPs) produced by dying 

or wounded cells are recognized by LRRs. Adaptor molecules bind to the TIR domains to activate 

downstream signaling pathways. Numerous species, most notably mammals, express the TLR family, and 

thirteen distinct TLR forms have been identified. TLR1 to TLR9 are conserved between mice and humans. 

However, a retroviral insertion made the TLR10 molecule inactive in mice. Humans lack TLR11, -12, and -

13. Active TLRs have a distinct localization pattern. TLR1, -2, -4, -5, -6, and -10 are expressed on the surface 

of the cell, while TLR3, -7, -8, -9, -11, -12, and -13 are expressed in the endosome [297, 298]. Each TLR has 

a distinct role in terms of MAMP detection and immune responses, as shown by studies on mice defective 

in each TLR. 

TLRs on the cell surface identify a wide range of ligands including elements of microbial membranes, such 

as lipids, lipoproteins, and proteins [299]. TLR4 senses lipopolysaccharides (LPS) derived from Gram-

negative bacteria and syncytial virus envelope proteins, trypanosome glycoinositol phospholipids, and 

heat shock proteins 60 and 70, S100A8 originating from dying cells [300, 301] and free fatty acids [302, 

303]. Many transmembrane accessory molecules – such as CD14 and MD-2 - play a role in the activation 

of TLR signaling. CD14 and MD-2 molecules recognize LPS and internalize TLR4 into endosomes, activating 

the TLR4 signaling cascade via SYK and phospholipase C-2 [304]. Another member of the TLR family - TLR2 

- works in concert with TLR1 or TLR6 to identify a diverse array of MAMPs derived from Gram-positive 

bacteria, including lipoproteins, peptidoglycans, lipoteichoic acids, zymosan, and mannan. TLR2-TLR1 

heterodimers recognize triacylated lipoproteins, while the TLR2-TLR6 heterodimers recognize diacylated 

lipopeptides. We have used TLR2 activation of monocytes, to study dynamic PPIs and PTMs of several 

important players of the TLR signaling cascade via affinity purification in publication 1. 

When MAMPs and DAMPs bind to their respective TLRs, adaptor molecules - such as MyD88, TRIF, TIRAP, 

or TRAM - are recruited to the receptor. There are two major pathways downstream of TLR4: MyD88-

dependent and MyD88-independent (TRIF-dependent). 

In the MYD88-dependent pathway, TLR4 recognition of a ligand induces the formation of a complex 

between the TIR-domain-containing adaptor molecule MyD88 and an IRAK family molecule through the 

adaptors' cytoplasmic region [305]. Following complex formation, IRAK4 phosphorylates IRAK1 to release 

IRAK1 from MyD88 [306, 307]. IRAK1 forms an association with TRAF6, a RING-domain E3 ubiquitin ligase. 

Then, TRAF6, in conjunction with the ubiquitin E2-conjugating enzyme complex (UBC13 and UEV1A), 
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promotes the polyubiquitination (K63-linked) of TRAF6 and the TAK1 protein kinase complex [308, 309]. 

TAK1 interacts through ubiquitin chains with the IKK complex and activates two distinct signaling 

pathways, the IKK complex– NF-κB and the IKK complex–MAPK. The IKK complex - composed of IKKα, 

IKKβ, and NEMO (NF-κB critical modulator) - phosphorylates and then degrades the NF-κB inhibitory 

protein IB, allowing NF-κB to translocate to the nucleus. Also, TAK1 activates the MAPK signaling pathway, 

triggering the inflammatory response [295, 298]. 

In the MYD88-independent pathway, other TIR-domain-containing adaptor proteins, such as TRIF and 

TRAM, function as TLR4 adaptor proteins. When LPS binds to TLR4, TRIF is recruited to the cytosolic region 

of TLR4 and activates IRF3 and NF-κB, resulting in the expression of type I IFNs and pro-inflammatory 

cytokines. TRIF activates downstream signaling via TRAF6 and TRAF3. Interaction with TRAF6 leads to RIP-

1 binding, and this complex then cooperatively activates TAK1, activating NF-κB and inducing the 

expression of pro-inflammatory cytokines. Unlike TRAF6, TRAF3 activates the IKK-related kinases TBK1 

and IKKi, which phosphorylate IRF3 to translocate to the nucleus, resulting in the expression of type I IFNs 

[295, 298]. 
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3  Aims of the thesis 
In my thesis, I developed and applied different cellular, biochemical and MS-based quantitative 

proteomics methodologies, to investigate the protein-protein interactions and post-translational 

modifications in immune cells and established a computational workflow for the detection of the signal 

peptide peptidase induced proteolysis of signal proteins.  

First, I developed a streamlined and scalable method to simultaneously study dynamically regulated PPIs 

and PTMs, which are usually analyzed in experimentally distinct workflows. The method is based on the 

enrichment of epitope-tagged proteins with the His-IMAC affinity matrix and provides a cost-effective and 

non-proteinogenic matrix for AP-MS experiments, which we termed MIP-APMS (Modifications, 

Interactions and Phenotypes by Affinity Purification Mass Spectrometry). We evaluated and optimized all 

steps of MIP-APMS, including (1) epitope-tagging of proteins of interest and mammalian cell transduction, 

(2) affinity purification conditions for optimal interaction network and PPI enrichment, (3) followed by 

MS-based quantification and identification of PTMs and PPIs, and (4) ultimate biochemical and phenotypic 

validation of interactors and PTMs in primary human immune cells. We demonstrate the pipeline's 

discovery potential by probing dynamically assembled protein communities in human monocyte immune 

signaling using Toll-like receptor (TLR) 2 activation and MAPK14 inhibition. Our analysis of 19 protein 

complexes discovered over 50 previously unknown PTMs, including phosphorylation, acetylation, 

methylation, isgylation, and other less well documented chemical changes, as well as an interaction 

network spanning over 300 PPIs.  

Second, I studied the proteolysis of signal peptide containing proteins by signal peptide peptidase to 

elucidate the exact N-Terminus of these proteins. To this end, I developed and applied a tailored 

bioinformatics strategy to identify neo-N-terminal peptides from publicly deposited MS raw files. This 

meta-analysis identified not only the cleavage sites predicted by prediction algorithms, but also 

alternative cleavage sites in the vicinity of the predicted cleavage site.  Annotated enrichment analyses 

revealed a particular high amount of alternative cleavage sites in transmembrane proteins. 

Furthermore, I devised a step-by-step proteomics protocol for secreted proteins, wrote a Commentary on 

macrophages and contributed to collaborative research projects assessing the paracrine functions of (1) 

immune cells undergoing apoptosis and necroptosis, (2) and pyroptosis as well as (3) the influence of 

arginine on the metabolism and development of multinuclear giant cells.  
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4 Publications 

4.1 Project 1: Identification of Covalent Modifications Regulating Immune Signaling 
Complex Composition and Phenotype 

 

Protein-protein interactions and post-translational modifications are typically studied independently. In 

this project, I present a cost-effective experimental and analytical approach for simultaneously identifying 

all detectable post-translational modifications (PTMs) and protein interactions (PPIs) in relevant signal 

transduction pathways using mass spectrometry (MS)-based proteomics. This technology permits the 

interrogation of protein signaling complex composition and function at single-amino-acid resolution in 

response to receptor activation or pharmacological inhibition in nearly any cell type, including primary 

cells. The method's application to monocytes elucidates the functional relationships between numerous 

previously unknown PTMs and PPIs involved in immune signaling, including the first description of TRAF2 

isgylation.  

This method – Modifications, Interactions, and Phenotypes by Affinity Purification Mass Spectrometry 

(MIP-APMS) – entails a rapid and streamlined pathway for cloning and transduction of tagged proteins of 

interest into functionalized reporter cells, followed by affinity chromatography and MS-based 

quantification of all enriched proteins with their covalent modifications. MIP-APMS elucidates the time-

resolved interactions of over 600 proteins and over 100 modifications, including phosphorylation, 

acetylation, and methylation, as well as chemically less well-characterized covalent modifications at 

certain signal transduction phases. Due to the lack of systems-wide approaches to study protein isgylation, 

the unique discovery potential of MIP-APMS is highlighted by the identification of an activating function 

for isgylation in monocyte innate immune signaling. Our pipeline enables rapid validation of novel 

hypotheses, such as the co-regulation of various protein interactions and alterations with a distinct 

functional cellular phenotype, after CRISPR-Cas9-mediated knockout or site-specific mutation in the same 

experimental system. As a result, we established the functional significance of TRAF2 isgylation and 

phosphorylation, the interaction of ARHGEF18 with MAP3K7, and the identification of the target versus 

off-target effects of small molecule p38 inhibitors in human monocytes. 

MIP-APMS may thus enable rapid and systematic exploration of dynamic protein communities in a wide 

variety of fields of biology, and serves as a template for how innovative technology reveals a myriad of 

previously unknown functional molecular checkpoints in cellular signaling cascades.  
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The corresponding paper was published in Molecular Systems Biology [310]. 

I have performed all experiments, developed and implemented the bioinformatics methods. Together 

with Felix Meissner, I conceived the data analysis, interpreted the data and wrote the manuscript. 
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4.2 Project 2: Revisiting signal peptide cleavage by neo N-terminal peptide meta-analysis 
 

Signal peptides play a key role in protein targeting and protein translocation. They are short N-terminal 

peptide sequences targeting proteins to secretion or specific organelles. Signal peptide cleavage is 

mediated by enzymes calls signal peptide peptidases, which leads to the post-translational modification 

of the N-terminus of proteins harboring signal peptides.   

Typically, signal peptide cleavage is computationally predicted using algorithms such as SignalP, as 

experimental approaches are frequently time consuming and focused on a single protein. Enzymatic 

digest, i.e. by signal peptide peptidases, is expected to result in non-tryptic peptides that can be identified 

by semi-specific digest search algorithms. I present a proteomics meta-analysis workflow for investigating 

signal peptide cleavage in previously reported datasets by analyzing the global results of N-terminal semi-

specific search. I combined the spectral information from over 30 distinct MS-based proteomics datasets 

covering over 13000 rawfiles in order to identify signal peptide cleavage sites. In total, I found 1315 

SignalP-predicted signal peptide cleavage sites in human and murine tissues, which more than doubles 

the amount of experimental evidence now available for these two species. Notably, I identify 412 

additional cleavage sites near the expected cleavage site (-3/+7 aa). A significant challenge is 

differentiating genuine SPP cleavage sites from random sample preparation or non-SPP enzymatically 

produced neo-N-terminal peptides. Here, I show non-linear occurrence of neo-N-terminal peptides 

around the predicted cleavage site of proteins containing signal peptides. My investigation of functional 

annotations for proteins classified into several cleavage categories depending on mode and number of 

cleavages show that signal peptides from cytokines, growth factors, developmental proteins, and 

differentiation proteins are cleaved as predicted. Additionally, transmembrane proteins have either a 

single predicted cleavage site or an alternate cleavage site in the vicinity of the predicted cleavage site. I 

observed sequence motifs aligned to the predicted cleavage site varied between proteins with 

conventional and alternative signal peptide cleavage. Most notably, I show alternative cleavage for a 
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subgroup of proteins that have a glutamine in the expected cleavage site at position +1 and a proline in 

the predicted cleavage site at position -1. 

I present experimental MS evidences to retrain the SP prediction model, which is based on over 700 

proteins with novel experimentally identified SP sites that match the anticipated cleavage site. Alternative 

cleavages – which are more prevalent in transmembrane proteins – imply additional processing at unique 

consensus sequences and can be used to extend the SP prediction model. I anticipate increased prediction 

capabilities for signal peptide cleavage from the algorithms, particularly for transmembrane proteins. To 

make our signal peptide cleavage meta-analysis data easily accessible, I devised a searchable database. A 

similar meta-analysis could be conducted in the future for more species in order to obtain stronger and 

more extensive experimental evidence for signal peptide cleavage in other organisms. 

This work is currently unpublished and a manuscript is in preparation. I have conceived the project, 

designed the data-analysis and interpreted the data together with Felix Meissner. Furthermore, I have 

developed all algorithms used to study signal peptide cleavage and prepared a first draft of the 

manuscript, as well as the script for the interactive shiny app. We aim to collaborate with S. Brunak and J. 

Armenteros to integrate the results about alternative signal peptide cleavage into SignalP before 

publication. 
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Proteomics meta-analysis identifies distinct N-terminal processing 
requirements for signal peptides of functionally divergent secreted 
and transmembrane proteins 

Annika Frauenstein & Felix Meissner 
 

4.2.1 Abstract 
Proteins with cell surface or extracellular functions contain N-terminal signal-peptides that are processed 

post-translationally by signal peptide peptidases (SPPases). As experimental evidences for cleavage 

positions are incomplete, computational algorithms are commonly used to predict the neo N-termini of 

processed proteins. Here, we exploit the unexpected observation that proteolytically generated neo-N-

terminal peptides can be identified systematically in shotgun proteomics datasets through tailored mass 

spectral search algorithms.  We reanalyzed more than 13,000 human and mouse mass spectrometry (MS)-

based proteomics raw files and systematically compared MS-detected cleavage sites to predictions of 

SignalP.  Our analysis reveals SPP cleavage of more than 1300 proteins, 700 of which without prior 

experimental validation. Intriguingly, in addition to predicted canonical SPP cleavages, we identify 

alternative cleavages within +6/-4 amino acids of the canonical predicted site on more than 600 proteins. 

Proteins with canonical and alternative cleavages are functionally distinct and can be attributed diverse 

signal peptide consensus sequences. We describe canonical signal peptide cleavage for cytokines and 

proteins involved in development, whereas alternative cleavage is observed for transmembrane proteins. 

Our proteomic meta-analysis experimentally verifies and further characterizes signal peptide cleavage for 

the first time, globally, and opens novel opportunities to further explore protein N-terminal functions.   

4.2.2 Introduction 
Proteases hydrolyze peptide bonds in an irreversible post-translational process, which frequently alters 

the protein's structure and function [232]. Approximately 3% of human protein coding genes are 

predicted to encode proteases, which are categorized by their catalytic mechanism [233, 234]. Signal 

peptide peptidases (SPPs) and signal peptide peptidase-like proteases (SPPLs) belong to the aspartyl 

proteases [249-251] and are intramembrane-cleaving proteases with a conserved Y/FD and GxGD motif 

in the catalytic center [247, 248]. The physiological importance of SPP/ SPPLs is highlighted by their 

evolutionary conserved presence in eukaryotes such as fungi, protozoa, plants, and animals [247-249]. In 

mammals, five members  of the SPP/SPPL family (SPP, SPPL2a, SPPL2b, SPPL2c, and SPPL3) with different 

subcellular localizations are classified [252]. Typical SPP substrates include signal sequence-derived signal 

peptides [257], but other SPP/ SPPL substrates have recently been identified, including type II 
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transmembrane proteins without predicted signal sequences, such as TNF-a [250] and CD74 [258, 259]. 

Signal peptides are located at the N-terminus of nascent proteins (e.g. membrane proteins, secretory 

proteins) and are cleaved co-translationally in a multi-step process [260]. Signal peptides facilitate the 

ribosome nascent chain (RNC) targeting to the ER the translocation initiation across the ER membrane 

[311]. While signal peptides harbor diverse primary sequences, they are composed by a strict tripartite 

structure: (1) a cationic N-terminal region (N-domain), (2) a hydrophobic core region (H-domain) 

containing at least six non-hydrophilic amino acids, and (3) a polar C-terminal region containing the signal 

peptidase cleavage site [262]. Primary sequence variation of signal peptides can affect the efficiency of 

protein targeting, translocation, and signal sequence cleavage and thus impact protein expression and 

function [267, 268, 312]. Hereditary diseases with decreased protein expression (e.g., Classic Ehlers-

Danlos Syndrome [263], Crigler-Najjar Disease [264], Hereditary Angioedema [265]) are associated with 

mutations in the signal peptides, specifically an injection of a polar amino acid into the h-region [266].  

Bioinformatic methods have been used extensively to predict signal peptides and the subsequent protein 

subcellular localization [313]. This includes both (1) distinguishing signal peptide-containing proteins and 

non-secretory proteins and (2) predicting the apparent signal peptide cleavage location to determine the 

exact N-terminus of the protein. Prediction algorithms have evolved in tandem with methodological 

advances in bioinformatics, beginning with basic statistics and weight matrices and progressing to the use 

of artificial neural network algorithms, hidden Markov models, support vector machines, and deep and 

recurrent ANNs. To date, the majority of signal peptide cleavage sites have been predicted rather than 

experimentally confirmed. Experimental verification of signal peptide cleavage sites usually involves small 

scale single protein centered studies in combination with Edman degradation or mass spectrometry to 

elucidate the N-terminal primary structure of individual proteins [314-316].  

Tailored experimental approaches based on the negative or positive biochemical enrichment of neo-N-

terminal peptides [317, 318] have identified up to 100 signal peptide cleavage sites in single datasets [319, 

320], however comprehensive proteomics investigations have so far not been conducted. As signal 

peptide cleavage is efficient and generates up to 10% of all neo-N-terminal peptides in cells, we 

hypothesized that signal peptide cleavage sites should be readily identifiable from standard shotgun 

proteomics datasets without prior enrichment of neo-N-terminal peptides.  

Here, we devised a proteomic meta-analysis strategy, to identify signal peptide cleavage sites from 

standard label-free proteomics shotgun data deposited in the public domain. We re-analyzed more than 

47 datasets, comprising more than 13,000 raw files of human and mouse origin and systematically 
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compared the outcome to SignalP prediction.  We report spectral evidence for signal peptide cleavage 

sites in over 1300 proteins, as predicted by SignalP. This is the first experimental verification of the 

predicted canonical cleavage site for over 700 of these proteins. Proteins with canonical cleavages were 

enriched for cytokines, developmental proteins and proteins involved in differentiation. Interestingly, in 

addition to the canonical signal peptide cleavage sites, we identify novel cleavages on more than 600 

proteins within +6/-4 amino acids of the canonical site, which we term ‘alternative’ cleavages. Alternative 

cleavages predominantly appeared on membrane, transmembrane, glycoproteins, isomerases and 

hydrolases, whereas alternative cleavages occurred on proteins containing immunoglobulin regions. 

Proteins with canonical signal peptide cleavage sites are more likely to contain a Sec/SPI signal peptide 

(SignalP 5.0) than proteins with alternative cleavages. 800 of the proteins harbor more than one cleavage 

site in the analyzed cleavage window. Systematic evaluation of cleavage site probability and measured 

Neo-N-terminal peptide intensity, revealed distinct consensus sequences for predicted versus alternative 

cleavages. In summary, our meta-analysis enables previously unprecedented experimental verification of 

signal peptide cleavage from proteomic datasets and reveals intriguing insights into signal peptide 

cleavage. 

4.2.3 Results 
Currently, less than a quarter of predicted human signal peptide cleavage sites are verified experimentally 

according to Uniprot, due to the absence of systematic strategies to detect them (see Fig.1A, 

Supplementary table 1). As efficient co-translational signal peptide cleavage [321]  by SPPs generates 

proteolytic protein fragments, we hypothesized, that these might be detectable in proteomics datasets 

without prior enrichment (Fig. 1B). As a result of SPP cleavage and conventional protease-based (e.g., 

Trypsin) digestion used in shotgun proteomics, unique peptide fragments are generated, that can be 

identified by tailored database searches. Instead of a standard and specific search for tryptic proteolysis 

on both the N- and C-terminus of the peptides, we explored the a semi-specific search option on the N-

terminal and a tryptic cleavage site (e.g. Trypsin: K/R) only on the C-terminus in MaxQuant [60, 62, 322].  

We applied our strategy and analysed more than 13 000 rawfiles originating from 6 murine and 41 human 

datasets (in total: 47) deposited in the public domain.  We detect canonical signal peptide cleavage sites 

in 1300 proteins and alternative cleavage on more than 600 proteins. 

4.2.3.1 Localization of neo-N-terminal cleavage sites 
Next, we studied the localization of neo-N-terminal peptides in relation to the predicted signal peptide 

cleavage site by SignalP 5.0. Most cleavages of neo-N-terminal peptides were localized directly at the 
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predicted canonical CS. Interestingly, there was also an accumulation of cleavages in the direct vicinity of 

the predicted cleavage site.  Most of the not predicted cleavages (75% percentile of neo-N-terminal 

peptides) occurred in a window of –4 and +6 (-4/+6) amino acids of the predicted signal peptide CS (Figure 

2A).  As protease activity in cellular lysates during sample preparation may introduce stochastic proteolytic 

cleavages into proteins, we next evaluated the extend of basal proteolytic processing. Our analysis shows 

a low-level stochastic cleavage of all proteins, decreasing linearly with increasing amino acid position from 

the N-terminus (Figure 2B).  Cleavages occurred independent of the acetylation status of the N-terminus. 

Interestingly, neo-N-terminal SP peptides and transit peptides – an n-terminal signal sequence targeting 

proteins to mitochondria were detected with a likelihood distinct from stochastic occurrence at their site 

of cleavage, confirming their non-random, enzymatically-dependent appearance. Taken together, our 

analysis shows specific and proteolytic cleavage patterns at/around the predicted CS that can be 

discriminated clearly from stochastic background processing. 

4.2.3.2 Classification and prioritization of high-confidence neo-N-terminal signal peptide cleavages  
In order to prioritize high-confidence neo-N-terminal signal peptide cleavages, we filtered data based on 

(1) neo-N-terminal peptide intensity and (2) quality of mass spectral evidences (See Supplementary figures 

S2A, S2B). Based on the rationale that SPP mediated SP cleavage would give rise to higher abundant neo-

N-termini than potential sample preparation artefacts, we first excluded neo-N-terminal peptides below 

the 75th percentile of the normalized peptide intensity distribution. For this analysis, peptide intensities 

were normalized to the most abundant neo-N-terminal peptide in the allocated cleavage window.  An 

exemption was made for neo-N-terminal peptides with high intensities that were identified in more than 

one dataset. In total, 572 out of 3688 (15%) potential cleavages were excluded from further analysis (see 

Supplementary figure S2C). Then, we filtered for high spectral quality of the neo-N-terminal peptides in 

the selected cleavage window (See Supplementary figure 2D). To achieve this, we used the MaxQuant 

derived “delta score”, which describes the peptide identification score difference between the best and 

second best spectral evidences with distinct amino acid sequences. We observed slightly higher delta 

scores for neo-N-terminal peptides in proteins with signal peptides (98 +/- 57) compared to all proteins 

(82 +/- 50). As expected, we report higher quality spectra due to the benefits of multiple identifications 

of the same neo-N-terminal peptide (118 +/- 74) in multiple datasets. In summary, by classifying the neo-

N-terminal peptides by intensity and spectral quality, we exclude #572 (15%) potential stochastic peptide 

evidences and define #3116 high quality SP cleavages. 
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4.2.3.3 Characterization and categorization of neo-N-terminal peptides 
In total, we identify 3510 proteins containing signal peptides according to uniprot. For 1315 proteins we 

provide spectral evidence for the predicted SPP cleavage site. For an additional 412 proteins we detect 

alternative cleavage sites +6/-4 aa of the canonical cleavage site (see Figure 3A). On average, we identify 

82 CS per dataset and 43 CS per 100 analyzed rawfiles (Supplementary figure S3A). Comparison to 

previously verified signal peptide cleavages confirms experimental data, and illuminates the N-termini of 

SP proteins that were formerly only predicted (see Figure 3B). Interestingly, we detect proportionately 

more proteins with alternative cleavage in proteins with no previous experimental verification of the 

signal peptide cleavage site. This may suggest that the prediction algorithm does not capture alternative 

cleavages well.  

Besides this, we investigated the number of signal peptide CS detected per protein (see Figure 3C). For 

most proteins (1070 out of 1712, 62%), we identify only one neo-N-terminal peptide, either at or in close 

proximity to the predicted cleavage site. Few proteins had two (324, 19%) or more (318, 18%) cleavage 

sites, which suggests repeated processing of the respective protein by SPPase or single but distinct 

cleavages. Based on the number and type of cleavages, we categorized the proteins in Category 1 

(predicted canonical cleavages), Category 2 (single alternative cleavage), Category 3 (alternative cleavage 

on proteins with predicted cleavage), and Category 4 (multiple alternative cleavages) (see Figure 3D). 

Next, we asked whether proteins with distinct cleavage patterns differ in biological functions. Annotation 

enrichment analyses revealed that canonical cleavages (Category 1) (see Figure 3E, supplementary table 

x) are enriched on cytokines (36 of 56 total) and proteins with developmental functions (53 of 88 total).  

This may suggest, that canonical cleavage sites are conserved, presumably due to evolutionary constraints 

involving the biological functions of the N-terminus, e.g. as reported for chemokine binding to their 

receptors. In contrast, Single alternative cleavages (Category 2) are enriched for transmembrane proteins 

–Type I transmembrane proteins – and receptors. This indicates, the extracellular structure of Type I 

transmembrane proteins may have an alternative composition. Proteins with immunoglobulin domains 

(including Bence Jones proteins (9 out of 10 total)), ER localization and transport functions display 

cleavage sites alternative cleavage on proteins with a canonical cleavage (Category 3). Interestingly, also 

12 out of 14 detected isomerases are members of this group. Multiple alternative cleavages (Category 4) 

are enriched for hydrolases (19 out of 191). Examples for proteins associated with significantly changing 

annotations are depicted in Supplementary Figure S3B. 
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Taken together, these results indicate different biological functions for proteins with distinct SP cleavages. 

Interestingly, transmembrane proteins have a lower ratio of experimentally verified proteins (24%) in 

comparison to all proteins (34%) or cytokines (59%), that show cleavage sites as predicted (Supplementary 

figure S3C). This implies that additional training data, as provided by our meta-analysis, could result in 

improved prediction accuracies for proteins associated with transmembrane annotations. 

4.2.3.4 Systematic comparison of cleavage positions by MS and SignalP predictions 
Given the apparent discrepancy between experimentally detected and predicted cleavage sites, we next 

systematically compared the quantitative MS data with the SignalP 5.0 prediction scores.  The signal 

peptide prediction algorithm (1) differentiates between signal peptide-containing proteins and non-

secretory proteins; and (2) predicts the signal peptide cleavage position and thereby the protein's post-

translational N-terminus. For the first 70 aa of each signal peptide containing protein, SignalP provides 

three probability scores per position: 1) a signal peptide (SP (Sec/SPI) probability), 2) a cleavage site by 

SPP (CS probability) and 3)   the absence of a signal peptide, e.g. the region downstream of the cleavage 

site (OTHER probability). Compared to the detected canonical cleavage positions (Cat.1, 3), the detected 

alternative cleavage positions (Cat 2,4) had significantly lower cleavage site probabilities for containing a 

Sec/SPI signal peptide (Figure 4A, Supplementary figure S4A), SP(Sec/SPI) probabilities (Supplementary 

figure S4B) and higher OTHER probabilities (Supplementary figure S4C).  

We next evaluated whether peptide intensities correlate to CS probability scores from Signal P and aid in 

prioritizing high-confidence experimental n-termini. Therefore, we plotted for each n-terminus the ratios 

of actual versus predicted CS probability and peptide intensity. Our analysis detects n-termini with high 

probability cleavage sites, with both low (Quadrant 1) or high (Quadrant 2) relative abundances (Figure 

4C). Likewise, n-termini with low CS probabilities at the experimentally identified sites – for example 

alternative cleavage sites - display both lower (Quadrant 3) or similar (Quadrant 4) relative abundances 

(Figure 4D).  This analysis enables us to identify alternative cleavage sites with high relative CS probability 

scores from signal P (Quadrant 1, 2).   

Next, we asked whether proteins in the four different quadrants are enriched for functionally distinct 

classes as defined by the detected cleavage patterns (Category 1-4, Figure 3D) (See Figure 4E). Cytokines 

and proteins involved in neurogenesis, differentiation and development have canonical cleavage sites as 

predicted and these have high peptide intensities (Quadrant 2). Interestingly, for transmembrane, 

glycoproteins and receptors we detect a single cleavage, either at an alternative cleavage site with high 

intensity and  high cleavage site probability or predicted as the major cleavage site by SignalP (Quadrant 
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2). Isomerases, hydrolases and ER associated proteins display multiple high probability cleavage sites, that 

are experimentally of similar abundance as the predicted cleavage site (Quadrant 2). The multiple 

detected cleavage sites of immunoglobulins generally show low cleavage site probability and have a broad 

abundance distribution. Taken together, our analysis reveals distinct functional protein families with 

signal peptides and differentiates them by mode and amount of experimental cleavage sites in the vicinity 

of the predicted SPP cleavage site. 

4.2.3.5 Consensus sequences of the cleavage sites 
As the primary structure of the signal peptide defines the SPP cleavage position and it’s prediction, we 

analyzed the amino acid sequences around the cleavage sites. To this end, we use …. An important 

parameter to consider are the amino acids at the positions -1 and -3 of the predicted cleavage site, which 

are in case of Category 1 proteins (proteins with only one cleavage site) primarily composed of A, G, S on 

position -1 and A, G, S, C on position -3 (Figure 5A, Figure S5A). In comparison to proteins with canonical 

cleavages (Cat. 1), protein sequences with alternative cleavage in quadrant 2 are enriched for serine at 

position -1 (Cat. 2,3,4) and alanine at -3 (Cat.3,4) of the predicted cleavage site (Figure 5B). Inversely, the 

valine proportion at position -3 and glycine proportion at position -1 in the predicted sequence are 

reduced in all proteins with experimentally observed alternative cleavage in Quadrant 2 (Cat.2,3,4) (Figure 

5B). In Quadrant 4 the aminoacids are more heterogeneously distributed along the categories. Common 

to all proteins with alternative cleavage, alanine on position -3 (Cat.2,3,4) is enriched while glycine at 

position -1 (Cat.2,3,4) of the predicted cleavage site is reduced (Supplementary figure S5B). Alternative 

cleavage is also observed for proteins with increased glutamine on position +1 of the predicted cleavage 

site both in Quadrants 2 and 4 (Figure 5B, S5B).  Conversely, the experimental protein sequences aligned 

to the experimental cleavage site display weaker enrichments of amino acids at position -3 and -1 in 

comparison to the predicted cleavage sites. However, alanine is proportionally higher enriched at 

positions -3 and -1, glycine at position -1 and interestingly also proline is enriched at position -1 in Cat.2 

alternative cleavage in comparison to cleavage as (Figure 5C, Supplementary figure S5C). 

Another important parameter of signal peptide structure is the hydrophobic domain – often composed of 

leucine, alanine and valine - upstream of the cleavage site, which is involved crucially in the signal peptide 

translocation and cleavage [323, 324]. The length of the hydrophobic domain is less variable than amino 

acids on positions -3 and -1 in the predicted sequences of the proteins belonging to different categories 

and quadrants. However, apart from the alternative cleavage Type 2 proteins with high probability 

cleavage sites and intensity (Quadrant 2) the hydrophobic domain is shifted away from the cleavage site 
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for the experimentally observed cleavage sites in comparison to the predicted cleavage site and seems to 

be stretched (Figure 5A, Supplementary figure 5A). 

Next, we were also compared the protein sequences surrounding the CS of transmembrane proteins with 

predicted or alternative cleavage. Transmembrane proteins with alternative cleavage harbor higher 

probabilities for G, T, S on position -3 of the predicted cleavage site (Figure 5D). A, V and L are enriched 

on the position -3 in the consensus sequences around the cleavage site of experimentally observed 

alternative cleavage (Figure 5E, Supplementary Figure S5D).   

In summary, the consensus sequences for experimental alternative cleavage possess weaker enrichments 

of amino acids compared to the predicted sequence, which might explain, why the algorithm chooses the 

other site as the predicted cleavage site. Furthermore, the general diversity on positions -1, -3 and +1 of 

the predicted signal peptides between the different experimental protein categories pinpoints towards 

subsets of proteins with certain AA compositions harboring alternative signal peptide cleavage as opposed 

to the predicted cleavage.   

4.2.4 Discussion 
Usually, signal peptide cleavage is predicted computationally by algorithms like SignalP, as experimental 

approaches are often laborious and single protein based. Here, we introduced a proteomics meta-analysis 

workflow for dissecting signal peptide cleavage in already existing, published datasets by employing an 

innovative computational strategy to identify neo-N-terminal peptides derived from SPP cleavage. Thus, 

we integrated the spectral information from over 30 individual datasets spanning more than 13000 

rawfiles to locate signal peptide cleavage sites. In total, we identified 1315 signal peptide cleavage sites 

in human and murine tissues as predicted by SignalP. This more than doubles the currently available 

experimental evidence for these two species. Therefore, the results of our meta-analysis can serve as a 

resource for the research community, but also the advancement of prediction algorithms. Notably, our 

analysis also identifies 412 alternative cleavage sites in the vicinity of the predicted cleavage site (-3/+7 

aa).  

One of the major issues is the discrimination between bona fide cleavage sites and random sample 

preparation or non- SPP enzymatic derived neo-N-terminal peptides. Our key observation, that neo-N-

terminal peptides are increasing non-linearly around the predicted cleavage site corroborates the 

enzymatically catalyzed reaction, as we observe a linear increase for proteins with no predicted signal 

peptides. We carefully selected the cleavage window around the predicted cleavage site we consider for 

potential signal peptide cleavage.  To further limit the number of non SPP derived neo-N-terminal peptides 
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we introduced a stringent quality control including the neo-N-terminal peptide intensity, the quality of 

the spectra, and the number of replicates per dataset. This analysis lead to the exclusion of 15% of the 

potential cleavage sites. 

More 60% of the proteins with signal peptide cleavage sites harbor one cleavage site, but also multiple 

has been observed. This led to the categorization of the proteins by type and number of cleavage sites 

into four categories.  An explanation for multiple cleavages per protein may be diverse biological functions 

(e.g. immunoglobulin domains are enriched in Cat. 3), do not require an exact N-terminus, and SPPases 

cleave more often. A second explanation may be that Category 3 and 4 proteins are cut by different SPPase 

subclasses than Category 1 and 2 proteins. Accordingly, Cat. 1 and 2 proteins would be predominantly 

cleaved by SPPases that produce one bona-fide cleavage site. An indication for cleavage by different 

subclasses of SPPases is the different consensus sequences for the Cat. 1-4.  

Our analysis of functional annotations of proteins in different cleavage categories, revealed signal 

peptides of cytokines, growthfactors, developmental proteins and proteins involved in differentiation to 

be cleaved as predicted. This may indicate, that cleavage sites on these proteins are conserved, and 

SPPases produce only one N-terminus, presumably due to evolutionary constraints involving their 

biological function. Additionally, transmembrane proteins either possess one cleavage site as predicted 

or one alternative cleavage site. An alternative N-Terminus of these type I transmembrane proteins could 

lead to differences in the intracellular signal transduction cascades they are involved in. 

Our analysis of the sequence motifs aligned to the predicted cleavage site further showed differences 

between conventional and alternative cleavage of the signal peptides. Most prominently, alternative 

cleavage is observed for a subgroup of proteins, that have Q on position +1 and P on position -1 of the 

predicted cleavage site. While the sequence conservation in the vicinity of the cleavage site is weaker for 

proteins with alternative cleavage than for their predicted counter-part weaker conservation of A on 

positions -3, -1 and Glycine -1, S on -1 to -3 of the predicted cleavage sites can be observed when aligning 

by the experimental cleavage site. This weaker enrichment of these amino-acids might be the reason for 

prediction algorithms to choose another site as the highest probable cleavage site. 

In the future, a similar meta-analysis could be performed for additional species to achieve higher and 

more comprehensive experimental evidence for signal peptide cleavage also in other organisms. With our 

meta-analysis we provide the experimental MS-evidences to re-train the SP prediction model, which is 

based on more than 700 proteins with novel experimentally detected SP sites that match the predicted 
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cleavage site.   The alternative cleavages – enriched particularly in transmembrane proteins – indicate 

additional processing at distinct consensus sequences and can be used to extend the SP prediction model. 

Particularly from transmembrane proteins, we expect advanced prediction abilities of the algorithms. To 

enable easy availability of our signal peptide cleavage meta-analysis we have made the data available 

online in form of an easy searchable database. 

4.2.5 Figures and figure legends 

 

Figure 1: Meta-analysis strategy for the identification of signal peptide cleavages in shotgun proteomics 
data sets. (A) Number of human or murine proteins containing signal peptides according to Uniprot.  
Previously experimentally verified SPP cleavage sites as listed by Uniprot are shown in blue. Not 
experimentally verified SPP cleavage sites are shown in red. (B) Computational workflow including data 
download from Pride, semi-specific N-terminal spectral search to detect neo-N-terminal peptides, 
comparison to signal peptide cleavage prediction of SignalP 5.0, and alignment of the neo-N-terminal 
peptides to the predicted cleavage site. 
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Figure 2: Localization and characterization of neo-N-terminal peptides (A) Occurrence of neo-N-
terminal peptides relative to the predicted cleavage site (CS). Q3 (75th percentile) of the number of 
identified neo-N-termini was calculated for each amino acid position upstream and downstream of the 
predicted CS, respectively. Positions within the 75th percentile are colored in green. (B) Localization 
versus occurrence of Neo-N-terminal peptides within the first 100 AAs of all proteins with (fawn) or 
without acetylation (red), signal proteins with predicted (green, Categories 1 and 3) or alternative (blue, 
Categories 2 and 4) cleavage and proteins with Transit peptides with predicted (turquoise) or alternative 
(violet) cleavage. (C)  Predicted localization of Transit or Signal peptides in the protein. 



 
 

68 

 

Figure 3: Categorization and functional classification of Neo-N-terminal peptides (A) Number of proteins 
(combination of mouse and human) with MS evidence for canonical cleavages (Cat. 1, 3: green), 
alternative cleavages (Cat. 2, 4: violet) or no cleavages (grey).  (B) Number and percentage of proteins 
with MS evidence for canonical (green), alternative (violet) or no cleavage (grey) in experimentally verified 
or not verified SPs.  (C) Bar plots showing the number of proteins with MS detected Neo-N-terminal 
peptides in the cleavage window (+6/-4 aa of the predicted CS) for proteins with canonical (green, Cat. 1 
and 3) or alternative (violet, Cat. 2 and 4) cleavages. (D) Overview of possible cleavage categories: 
(Category 1) Proteins that exclusively harbor a canonical cleavage site as predicted by SignalP 5.0.; 
(Category 2) Proteins that exclusively harbor an ‘alternative’ cleavage site; (Category 3) Proteins that 
harbor a cleavage site as predicted by SignalP 5.0 plus an additional ‘alternative’ cleavage; (Category 4) 
Proteins harboring more than one ‘alternative’ cleavage. (E) Number of proteins per category. (F) 
Heatmap displaying enriched proteins of Category 1-4 based on a Fisher exact test (p-value< 0.01, 
intersection>3). Red corresponds to enrichment, blue to de-enrichment.  
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Figure 4: Systematic comparison of MS and SignalP scores and sequences (A) Probability of the protein 
harboring a signal peptide (Sec/SPI, SignalP 5.0) for all human proteins containing a signal peptide 
according to Uniprot. Dots show probabilities of individual canonical (Categories 1 and 3) or alternative 
(Categories 2 and 4) cleaved proteins. Two-sided T-test was performed between the two groups. ****: p-
value < 0.0001. (B) Comparison of the delta cutting site (CS) probability (by SignalP 5.0 for each position 
of each protein) to the delta peptide Intensity (log2). Delta Cutting site probability and delta Intensity 
(log2) were calculated by subtracting the intensity/ CS probability of predicted site from the intensity/ CS 
of each site (= normalization to cleavage as predicted). The cleavage categories are colored in the four 
quadrants (1, 2, 3, 4) of the plot: red (cleavages of proteins with canonical cleavage, Category 1), blue 
(cleavages of proteins with canonical and alternative cleavages sites, Category 3), green (Cleavages on 
proteins with single alternative cleavage, Category 2), violet (cleavages of proteins with multiple 
alternative cleavage, Category 4). (C) Cleavage site (CS), Signal peptide (SP) and protein probability 
predicted by SignalP 5.0 for Q96PX8/ SLITRK1. Predicted and experimental cleavage sites are highlighted 
by an arrow. (D) Cleavage site (CS), Signal peptide (SP) and protein probability predicted by SignalP 5.0 for 
P14207/ FOLR. Predicted and experimental cleavage sites are highlighted by an arrow.  (E) Hierarchical 
clustering displaying fisher exact test results (p-value < 0.01, intersection >3) on Uniprot Keywords for 
proteins within different quadrants from B. Red shows enrichment, blue de-enrichment. Annotations 
from proteins with caonical cleavage (Category 1, quadrant 2) and single alternative cleavage (Category 
2, quadrant 2) are clustering together.  
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Figure 5: Sequence analysis of canonical versus alternative cleavages. (A) Consensus sequence of all 
proteins with canonical cleavage only (Cat. 1, red) and single alternative cleavage (Cat. 2, green). Cleavage 
position is indicated by blank space. Motifs are sorted by quadrants (Q1, Q2) from Figure 4B. For proteins 
with alternative cleavage (Cat. 2), the motifs show the canonical and the experimental consensus 
sequence. N shows number of proteins corresponding to each sequence motif. Amino acids are colored 
by functional chemical groups. Grey boxes highlight the hydrophobic domain of the signal peptides. (B) 
Heatmap showing percentage differences of dominant amino acids of the canonical consensus sequence 
on indicated positions (-1, -3, +1) relative to the predicted cleavage site for different cleavage category of 
proteins with CS probability and intensity. Red is corresponding to higher, blue to lower percentages than 
the Cat. 1 consensus sequence. (C) Percentages of amino acids Ala, Gly, Pro for positions -1, -2, -3, -4 of 
the predicted (Cat. 1) or experimental (Cat. 2) cleavage site of all proteins. (D) Consensus sequence of 
transmembrane proteins with predicted cleavage only (Cat. 1, red) and single alternative cleavage (Cat. 2, 
green. For transmembrane proteins with alternative cleavage (Cat. 2) the motifs under predicted cleavage 
show the predicted and the experimental consensus sequence. Grey boxes highlight the hydrophobic 
domain of the signal peptides. (E) Percentages of amino acids Ala, Gly, Pro for positions -1, -2, -3, -4 of the 
predicted (Cat. 1) or experimental (Cat. 2) cleavage site of transmembrane proteins. 

 

4.2.6 Supplementary figures and figure legends 

 

Supplementary Figure 1: (A) Number of neo-N-terminal peptides for canonical and alternative cleavage 
(+6/-4 aa) by N- or C-terminal semi-specific search algorithms. (B) Number of proteins and neo-N-
terminal peptides of all proteins and proteins with neo-N-terminal peptides in the vicinity of the 
predicted CS (+6/-4 aa). 
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Supplementary figure 2: (A) Density distribution of normalized neo-N-terminal peptide intensities (log2) 
corresponding to the predicted CS (turquoise) and alternative cleavages (red) in the vicinity of the 
predicted cleavage site (-4/+6). Peptide intensities were normalized to the most abundant neo-N-terminal 
peptide in the cleavage window. Vertical lines denote the 75th percentile (Q3) of the neo-N-terminal 
peptide intensities. (D) Reproducibility of predicted (turquoise) and alternative (red) cleavage sites along 
different datasets. (C) Number of neo-N-terminal peptides with predicted or alternative cleavage 
dependent on the intensity threshold (75th percentile) and the reproducibility between datasets. Neo-N-
terminal peptides below the 75th percentile and identification in only one dataset were excluded from 
further analysis (bars with stripes). (D) Density and box plots of the MaxQuant derived delta score (Score 
difference to the second-best identified peptide with a different amino acid sequence) of identified Neo-
N-terminal peptides on all proteins (red) and proteins with predicted signal peptides (SP) (green and blue). 
Delta scores of Neo-N-terminal peptides on SP from all datasets are shown in blue, whereas the highest 
delta score of SPs across all datasets is shown in green. The latter has an increased median delta score 
(dashed lines) compared to SPs from all datasets. 
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Supplementary figure 3: (A) Overview of analyzed datasets. The number of identified signal proteins with 
either predicted (Category 1,3: turquoise) or alternative (Category 2, 4: red) cleavages are indicated. The 
number of raw files in each dataset is shown on top.   (B) Protein examples of the four main cleavage 
categories described in Figure 3D. 3 proteins per annotation are listed. (C) Ratio of experimentally verified 
and not verified signal peptide cleavage sites in proteins with Uniprot keyword annotations “Cytokine”, 
“Transmembrane” or all identified proteins. 
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Supplementary figure 4: (A) Probability of the experimental cleavage site being a cleavage site for all 
human proteins identified with our meta-analysis. (B) Probability of the experimental cleavage site being 
localized on the signal peptide (Sec/SPI, SignalP 5.0) for all human proteins identified with our meta-
analysis. (C) Probability of the experimental cleavage site being localized downstream of the predicted 
cleavage site for all human proteins identified with our meta-analysis. Dots show probabilities of individual 
experimental predicted (Categories 1 and 3) or alternative (Categories 2 and 4) cleavage sites. Two-sided 
T-test was performed between the two groups. ****: p-value < 0.0001. 
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Supplementary figure 5: (A) Consensus sequence of all proteins with single alternative cleavage (Cat. 2, 
green), alternative cleavage on proteins with predicted cleavage (Cat. 3, blue) and multiple alternative 
cleavage (Cat. 4, violet). Cleavage site position is indicated by blank space. Motifs are sorted by quadrants 
(Q1, Q2, Q3, Q4) from Figure 4B, if applicable. For proteins with alternative cleavage (Cat. 2, Cat. 3. Cat. 
4) the motifs under predicted cleavage show the predicted and under experimental the experimental 
consensus sequence. N shows number of proteins corresponding to each sequence motif. Amino acids 
are colored into chemistry groups. Grey boxes highlight the hydrophobic domain of the signal peptides. 
(B) Heatmap showing differences in percentages of dominant amino acids of the predicted consensus 
sequence on certain positions (-1, -3, +1) relative to the predicted cleavage site for different cleavage 
category in Quadrant 4 from Figure 4B. Red is corresponding to higher, blue to lower percentages than 
the Cat. 1 consensus sequence. (C) Percentages of amino acids Ser, Thr, Val for positions -1, -2, -3, -4 of 
the predicted (Cat. 1, red) or experimental (Cat. 2, green) cleavage site of all proteins. (D) Percentages of 
amino acids Gly, Thr, Val for positions -1, -2, -3, -4 of the predicted (Cat. 1, red) or experimental (Cat. 2, 
green) cleavage site of transmembrane proteins. 

4.2.7 Methods 
4.2.7.1 Download datasets from pride 
Proteomics datasets from species homo sapiens or mus musculus were selected. They were selected 
preferentially, if high number of raw files were present. Selected datasets were measured on QEPs, Q-
HF, Q-HF-X, Fusion and Exploris. Selected datasets include digest with Trypsin, LysC, Chymotrypsin, GluC, 
LysN, ArgC and AspN. They were automatically downloaded via a FTP download script in R, that needs 
the html webaddress and the number of rawfiles of each dataset as an input. 

4.2.7.2 MaxQuant analysis 
MaxQuant software was used to analyze MS raw files. MS/MS spectra were searched against the 
human or murine Uniprot FASTA database and a common contaminants database (247 entries) by the 
Andromeda search engine [62]. Cysteine carbamidomethylation was set as a fixed modification, and 
N-terminal acetylation and methionine oxidation were set as variable modifications. Enzyme specificity 
was set to semi-specific N-terminal digest (enzyme depending on the dataset analyzed), with a 
maximum of two missed cleavages and a minimum peptide length of seven amino acids. FDR of 1% 
was applied at the peptide and protein level using a reverse database for target decoy. Peptide 
identification was performed with an allowed initial precursor mass deviation of up to 7 ppm and an 
allowed fragment mass deviation of 20 ppm and hits to the reverse database [62] were excluded from 
further analysis.  

4.2.7.3 Cleavage site prediction and probabilities of signal peptides from SignalP  
All human/murine proteins with possible signal peptides were identified via Uniprot (Download 
September 2020). Their FASTA files were compiled and analyzed in batches of 200 proteins via SignalP 
5.0 (September 2020). Raw SignalP output files were compiled into one file and predicted cutting sites 
as well as cutting site probabilities of each position on all signal proteins were extracted. Cleavage site 
probabilities and the predicted cleavage site were matched to the positions of the semi-specific peptides 
of signal proteins. 

4.2.7.4 Transit peptides 
All human/ murine proteins with possible Transit peptides were identified via Uniprot (Download 
September 2020) and cleavage site predictions were matched to proteins via Uniprot IDs. If the location 
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of the semi-specific peptide was at the predicted cleavage site, the cleavage was called cleavage as 
predicted, whereas it was called alternative cleavage, if the location of the semi-specfic peptide was 
within +6/-4 AA of the predicted cleavage site. 

4.2.7.5 Identification of predicted and alternative cleavage sites and protein categorization 
Semi-specific peptides were filtered out of the dataset, while non semi-specific peptides derived from 
digests with Trypsin, LysC, Chymotrypsin, Gluc, LysN, ArgC and AspN were disregarded.  Semi-specific 
peptides from proteins containing signal peptides were first matched to their respective protein 
sequence by their Uniprot ID, before the peptide was aligned to the protein sequence to identify the 
location of the semi-specific peptide. Neo-N-terminal originating from missed cleavage events, e.g. same 
N- but different C-terminus, were summarized into one cleavage site. Cleavage sites were aligned to the 
predicted cleavage site and the positions with the highest number of cleavage sites (70th percentile, Q3) 
were identified, leading to an expanded cleavage window of -4/+6 amino acids around the predicted 
cleavage site. If the location of the semi-specific peptide was at the predicted cleavage site, the cleavage 
was called cleavage as predicted, whereas it was called alternative cleavage, if the location of the semi-
specific peptide was within +6/- 4 aa of the predicted cleavage site. 

Proteins with alternative or predicted cleavage were classified into four categories by number and type 
of cleavage:  

Category Number of 
cleavages 

Cleavage as 
predicted 

Alternative 
cleavage 

Cat.1 1 1 NA 
Cat.2 1 NA 1 
Cat.3 >1 1 >=1 
Cat.4 >1 NA >1 

 

4.2.7.6 Delta Score optimization 
MaxQuant calculates for each peptide the Score difference (Delta Score) to the second best identified 
peptide with a different amino acid sequence. The Score is the andromeda score for the best associated 
MS/MS spectrum. The Delta Score of each peptide can be found in the msms outpt table. As multiple 
datasets were analyzed and also missed cleavages or different enzymatic digests can lead to repeated 
coverage of one cleavage site, the peptide with the highest Delta Score per position +6/-4 AA to the 
cleavage site was selected for further comparisons. Also, spectra depicted in the shiny app were 
selected based on highest delta score across datasets. 

4.2.7.7 Normalization of peptide intensities and filtering by intensity  
Per potential cleavage site within the cleavage window (+6/-4 aa to the predicted cleavage site) the 
semi-specific peptide with the maximum intensity of all raw files per dataset was identified. 
Logarithmized (log2) intensity of each semi-specific peptide was then normalized to the intensity of the 
semi-specific peptide with the maximum intensity individually for each dataset (Delta Intensity). Finally, 
the highest normalized intensity across datasets was selected for each cutting site. Peptides with a delta 
Intensity larger smaller than -2 were disregarded from further analysis, if they were only identified in 
one dataset and semi-specific peptides of similar intensity remained. 
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4.2.7.8 Normalization of peptide intensities from MQ and cleavage site probabilities SignalP5.0 
Peptide within the cleavage window (+6/-4 aa to the predicted cleavage site) with maximum intensity of 
all raw files per dataset was identified.  Peptide intensity of all potential alternative cleavages and 
predicted cleavage was then normalized to the intensity of the peptide containing the predicted 
cleavage site individually for each dataset. In case, no exact cleavage site has been identified, peptide 
intensity of the exact cleavage site was set to zero. Finally, the highest normalized intensity across 
datasets was selected for each cleavage site. Similarly, cleavage site probabilities of all cleavage sites 
extracted from SignalP 5.0 were normalized to the cleavage site probability of the predicted cleavage 
site. 

4.2.7.9 Functional annotation of different cleavage categories with Fisher Exact test 
Proteins were characterized based on number and type of cleavage into four categories. Fisher Exact 
test was performed in Perseus [325] with an p-value cutoff (p-value < 0.01) and a minimum of 3 proteins 
required at the intersection. Results were exported from Perseus and differences in annotation 
enrichment were visualized in R using the “heatmaply” package, by clustering columns and rows with 
Pearson correlation. 

4.2.7.10 Analysis of the consensus sequence around the predicted or experimental cleavage sites 
Proteins were aligned either at the predicted or experimental cleavage site from position -20 to +1 of 
the predictes/ experimental cleavage site. In case of shorter proteins, relevant positions were filled with 
blank spaces. Sequence logos were created in the R-environment using the “ggseqlogo” package with 
the parameters seq_type='aa' and method='bits'. For the heatmap of the predicted sequences to 
compare aa at different positions of cleavage categories, percentages of the individual aa were 
calculated and then compared to Cat. 1 by subtraction.  
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4.3 Project 3: Quantitative Proteomics of Secreted Proteins 
Global studies of cellular secretomes are now possible due to advancements in experimental procedures, 

instrument performance, and computational analysis tools. Historically, secreted proteins have been 

quantified using antibody-based methods, such as enzyme-linked immunosorbent assays (ELISA), whose 

large-scale applicability is limited by their availability, specificity, and affordability. Our group has devised 

a first proteomics-based secretome workflow in 2013 [280]. This process allows the direct quantification 

and study of the secretome of activated immune cells by proteomic analysis. To explain all experimental 

and analytical procedures in detail and provide a universal guide for guide for experimental secretome 

investigations, I wrote a step-by-step [294] workflow for quantifying cellular protein secretion 

comprehensively using mass spectrometry-based proteomics. Briefly, in vitro or ex vivo secreted proteins 

are collected, digested by proteases, and the resultant peptide mixtures examined in single LC-MS/MS 

runs. The MaxQuant and Perseus computational environments are used for label-free quantification and 

bioinformatics analysis. This workflow enables the quantification of thousands of secreted proteins over 

a four-order-of-magnitude concentration range, allowing for the system-level analysis of secretory 

programs and the identification of proteins with unanticipated extracellular activities. The protocol 

discusses the pitfalls and alternative strategies experimental or analytical strategies the researcher can 

undertake. The entire protocol takes about two days, whereas MS measurements require less than 2h per 

sample.  

We published the detailed protocol in Methods in Molecular Biology in 2018. 
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4.4 Project 4: Quantitative and Dynamic Catalogs of Proteins Released during Apoptotic 
and Necroptotic Cell Death  

 

At the level of individual effectors, TNF-induced cell death has been intensively explored. Numerous 

studies utilizing genetic mice models established the critical role of TNF-dependent apoptosis and 

necroptosis in inflammatory illness models. While necroptosis has long been regarded as a more 

inflammatory cell death route than apoptosis, few proteins have been identified to be secreted 

particularly by necroptotic cells and to be potentially harmful. Additionally, past research on the release 

of cytokines during necroptosis has yielded inconsistent results. Other recent publications in the field 

focused on the production of extracellular vesicles as a result of endosomal exocytosis during necroptosis, 

but especially on its effect on MLKL, the necroptosis terminal executor. Our study is the first to conduct a 

complete and comparative proteomic investigation of proteins secreted by cells undergoing apoptosis 

and necroptosis triggered by TNF. 

Firstly, we achieved an unbiased perspective of the release of cytokines and other known immunogenic 

proteins following cell death using our systems-based quantitative approach. Secondly, proteins were 

identified released as a result of cell death type-specific pathways. Two mechanisms that are active during 

TNF-induced cell death were examined: (1) Shedding is occurring during necroptosis and involves the 

activation of metalloproteases called ADAMs, which then cleave receptors on the cell surface, resulting in 

the enrichment of receptor extracellular domains in supernatants. We present a systems-level picture of 

this mechanism and demonstrate that shedding occurs late in both TNF-induced necroptosis and 

apoptosis. (2) We detected an excess of lysosomal proteins in the supernatant of necroptotic cells prior 

to complete membrane permeabilization. Interestingly, we discovered mostly luminal lysosomal 

components in entire supernatants, but necroptotic cells' external vesicles included predominantly 

lysosomal membrane proteins. This observation, together with the detection of lysosomes at the plasma 

membrane, led us to conclude that necroptosis initiates lysosomal exocytosis. 

To summarize, our study provides comprehensive, quantitative, and dynamic catalogs of proteins 

secreted during apoptotic and necroptotic cell death. This provides a foundation for examining the 

intricacy of biological processes that occur as a result of or are governed by these forms of cell death. Our 

findings indicate that a surprising variety of distinct proteins are secreted during cell death. Only a few of 

these directly contribute to inflammation, while others are more likely to work in more complex pathways. 

The project was a group internal collaboration with Maria Tanzer.  
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The corresponding article was published in Cell Reports in 2020 [326]. 

I have contributed the shedding analysis providing a tailored bioinformatics workflow in the R 

environment. 
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4.5 Project 5: Proteomics reveals distinct mechanisms regulating the release of cytokines 
and alarmins during pyroptosis  

Injured cells emit danger signals, warning the host of impending cell death. Major intercellular signaling 

molecules such as cytokines and alarmins activate neighboring cells and initiate inflammatory responses. 

Pyroptosis is the most proinflammatory form of programmed cell death; yet, aside from interleukins (Il)1, 

Il18, and the alarmin Hmgb 1, little is known about the production of proinflammatory proteins during 

this process. As pyroptosis needs the activation of inflammasomes via two signals, the composition of the 

released pro-inflammatory cocktail of proteins is extremely complex. It includes conventionally and 

unconventionally secreted proteins, as well as proteins released passively as a result of cell death. Proteins 

depart cells by a variety of pathways, including the plasma membrane's Gasdermin pores, cell lysis, the 

ER-Golgi pathway, extracellular vesicles, and receptor shedding. 

Using our secretomics workflows, we developed an experimental strategy to address two long-standing 

questions: 1) which proteins are released during pyroptosis, and 2) via which cellular exit pathways are 

these proteins released. The critical conceptual contribution we make is to combine pharmacological, 

biochemical, and genetic methods with mass spectrometry-based secretomics to interrogate distinct 

phases of inflammasome activation and protein release, allowing us to deconstruct this complicated 

secretory program molecularly. 

Our global and temporal resolved research demonstrates that the majority of proteins are released 

passively as a result of cell lysis. Specifically, low molecular weight proteins such as Il1b, alarmins, 

lysosomal proteases, and mitochondrial proteins are released by Gasdermin pores regardless of cell lysis. 

For the first time, we identify the release of several cytokines and alarmins, including members of the Mif, 

Aimp1, S100, and Galectin families that have not previously been associated with pyroptosis. Our 

investigation surprisingly found a protein exit route that is ER-Golgi reliant, but not extracellular vesicle 

dependent.  

The project was a group-internal collaboration with Kshiti Phulphagar. The corresponding article was 

published in Cell Reports in 2021. I have contributed the shedding analysis. 
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4.6 Project 6: Environmental arginine controls multinuclear giant cell metabolism and 
formation  

In joint illnesses such as rheumatoid arthritis (RA), Osteoclast mediated abnormal bone resorption results 

in bone deterioration. Osteoclast formation is governed by cytokines present in the surrounding 

environment, such as receptor activator of NF-B ligand (RANKL), and may also be influenced by external 

nutrients. Our study in mice showed, that decrease of the amino acid arginine inhibits osteoclastogenesis 

and ameliorates arthritis. We evaluated the effects of a recombinant modified form of arginase 1 

(recArg1) – a previously shown activator of macrophages in autoimmunity - in vitro and in mice models of 

inflammatory arthritis to determine whether depletion of systemic arginine could alter cellular 

metabolism in bones and slow the course of inflammatory arthritis. We demonstrated that RANKL-

mediated osteoclastogenesis requires extracellular arginine by integrating arthritis mice models with 

different omics methods (transcriptomics, proteomics, and metabolomics) in the presence and absence 

of recArg1. Systemic arginine restriction enhanced results in a variety of mouse arthritic models, 

particularly when osteoclast-mediated bone degradation was considered. Arginine deficiency inhibited 

RANKL's transcriptional and metabolic activities, resulting in metabolic quiescence in osteoclast precursor 

cells. Restriction of arginine had reversible effects on osteoclast development, and arginine precursors 

could compensate for their absence.  

This paper was published in Nature communications in 2020 [327] and was a collaboration with Gernot 

Schabbauer of the Medical University of Vienna.  

I contributed the proteomics sample preparation, MS analysis and data analysis. 
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5 Discussion 
Nearly two decades ago, knowledge gained from the human genome sequencing project sparked great 

hopes and expectations for identifying disease-causing genetic elements. However, environmental 

alterations have a huge impact on post-transcriptional and post-translational regulation of the genome 

and lead to distinct phenotypes. Today, proteomics using mass spectrometry has been recognized as the 

most successful technique in proteomic research. Recent research has demonstrated that alterations in 

the proteome correlate strongly with disease symptoms and, in many cases, surpass genomic and 

transcriptomic-based techniques. Thus, proteomics is a potent method for comprehensively evaluating 

disorders by enabling the analysis of protein expression, post-translational modification and molecular 

interactions. Instrumentation and MS-based methods are dynamically evolving and allow researchers to 

continuously push new boundaries. More than 1000 proteins can be analyzed from individual cells due to 

advances in sample processing, LC performance and MS instrumentation. Advances in liquid 

chromatography allow the robust in-depth analysis of thousands of samples on a single chromatographic 

column without loss of performance.   

5.1 Interaction proteomics 
The majority of the proteome data produced in this thesis were obtained by an elaborate AE-LC-MS/MS 

study and provide significant information regarding the physical interactions and post-translational 

modifications in human immune cells. 

I described MIP-APMS, a method for interrogating functional signal transduction networks in intracellular 

signaling pathways that combines simplified cell line generation and proteomics. We quantified over 370 

PPIs and 80 PTMs in human monocytes following receptor activation or drug treatment. Our approach 

identified molecular links between PTMs and PPIs, as well as protein subnetworks that regulate cellular 

programs regulated by site-specific PTMs.  Site-specific modification of amino acids to be phosphorylated 

or isgylated on TRAF2 resulted in divergent interactomes and altered cellular physiology for mutant 

proteins. Thus, structural insights into the interfaces between protein complexes and critical PTMs for 

protein complex stabilization can be elucidated. MIP-APMS experiments with temporal resolution enable 

the clarification of co-regulations at several biochemical layers, hence increasing our understanding of the 

molecular linkages that exist between the successive processes of signal transduction. By enhancing 

temporal resolution further, it may become able to unravel the causal relationships between PTM and 

PPIS regulation in greater detail.   
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Historically, AE- and AP-LC-MS/MS investigations have required ectopic expression and affinity tags fused 

to the protein of interest in order to enrich and identify interacting proteins, as well as unravel dynamic 

processes in protein-complex formation. However, studies using AP-LC-MS/MS frequently generate a 

large number of false-positive results, which frequently results in misinterpretation of the acquired 

interaction data. Fusion of an affinity tag to the protein of interest can increase false-negative and false-

positive rates by interfering with the structure and function of the protein, mis-localizing the protein 

within the cell, destabilizing real interactions, and identifying proteins with a high affinity for the molecular 

tag utilized. Additionally, ectopic expression of the target protein can have a profound effect on the 

cellular proteome. Thus, validation and optimization of AP-LC-MS/MS procedures and statistical analysis 

are essential to ensure the highest possible quality of PPI data. In the future, CRISPR-Cas9-mediated 

genomic editing tools, like prime editing, may be used to directly introduce the affinity label into the 

genome to forego ectopic gene-expression with all it’s disadvantages. Alternatively, antibody-based 

capture techniques (CO-IP-MS/MS) and proximity-dependent approaches have been used in the past. The 

CO-IP-MS/MS technique enables the identification of protein interactions in primary cells under 

physiological circumstances. However, the antibody's availability, affinity, and specificity must be carefully 

examined. Additionally, each antibody's binding conditions require time-consuming optimization, limiting 

its application to less extensive PPI research. 

Often, cell lysis and buffer conditions have a major impact on the sensitivity and specificity of AP- and CO-

IP-MS/MS procedures, frequently resulting in the loss of transient interactions. We optimized our MIP-

APMS workflow to also capture these transient interactions. Alternatively, proximity-dependent 

techniques, such as BioID or APEX, rely on enzymes being fused to the target protein and covalently 

modify proteins in close proximity. This permits the detection of transient protein-protein interactions, 

however due to the broad labelling radius also non-direct interacting proteins are identified. A different 

approach is size-exclusion chromatography coupled to mass spectrometry (SEC-MS), which derives PPI 

information from co-eluting protein profiles without ectopic tagging of the protein. Thousands of protein 

interactions can be investigated in a single experiment. However, it is limited in resolution by the 

separation efficiency of the analytical size-exclusion chromatography.  

Alternatively, by incorporating chemical crosslinking techniques [328, 329], transient interactors could be 

further stabilized. Combining APMS with structural information about the bait protein and its interactome 

may identify different interfaces between protein complexes that are altered by site-specific covalent 

modification or pharmacological action. Integrating protein crosslinking with PTM status, e.g. of wild-type 
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vs. mutant variant proteins of interest, would be particularly fascinating since it would allow for the 

resolution of altered structural interaction surfaces in addition to differential PTM-dependent PPIs. 

Currently, high amounts of measurement time are needed for the conduction of an APMS experiment. 

Using data-independent collection methodologies and short LC gradients, the overall measuring time per 

sample at a comparable proteome depth may be further lowered in the future [57, 330]. The 

reproducibility, precision, and accuracy of quantification of changed peptides can be further enhanced by 

adopting isobaric labeling techniques rather than LFQ [111, 331]. 

5.2 Post-translational modifications 
While mass spectrometry-based proteomics has significantly advanced our understanding of specific 

PTMs like phosphorylation and ubiquitinylation, this trend has been mostly limited to modifications with 

known compositions. Due to the fact that conventional bottom-up MS relies on database searches to 

identify peptides and modified peptides, it is fundamentally incapable of detecting modifications with an 

unknown mass. I used an open search mode in my thesis, utilizing a variety of PTM search algorithms – 

MaxQuant, MS-fragger, and PEAKS-based taggraph – to enable the unbiased characterization of PTMs on 

specific target proteins in AP-MS experiments without prior enrichment. De novo sequencing speed will 

become even more critical when high-resolution and high-volume mass spectrometers become more 

commonly available. Additionally, enrichment approaches remain the ideal alternative for performing 

extremely detailed analyses of selected PTMs, although we anticipate that this requirement will 

significantly decrease as instrumentation sensitivity improves. We demonstrate in Project 1 that, given 

high quality MS/MS spectra, open search enables the measurement of otherwise un-enrichable, but 

abundant PTMs. 

Because PTMs on proteins are typically substoichiometric, their detection requires particular enrichment 

to aid in MS identification. As a result, analysis of a large number of additional extremely interesting PTMs 

has lagged much behind. PTMs can often be identified without enrichment, albeit not to the same depth, 

due to the higher scanning speed and dynamic range of contemporary MS apparatus. We have 

demonstrated this in Project 2, where we studied proteolysis by signal peptide peptidases giving rise to 

new N-termini of proteins with signal peptides in human and mice. This post-translational protein 

modification is so abundant, that it can be directly studied without further enrichment. We envision, that 

similar studies will be carried out in the future to further enlarge the landscape of experimentally verified 

signal peptide cleavage. 
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Post-translational modification is the primary source of protein variety. To obtain a better understanding 

of our organism's physiological/pathophysiological processes and to develop higher-quality and more 

efficient biopharmaceutical products and diagnostic techniques, additional knowledge in the fields of 

proteomics and PTM mapping is required. Proteomic techniques based on mass spectrometry have 

emerged as a powerful tool for screening and characterizing PTMs. Although current technology is unable 

of providing a comprehensive picture of the changed proteome, future proteomics will build on continuing 

advancements in mass spectrometry-based proteomic methods.  
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Makrophagen: Am Anfang war die Fresszelle 

Annika Frauenstein & Felix Meissner 

Makrophagen sind Zellen mit außerordentlich vielfältigen Funktionen im Organismus. Neben 
hochspezialisierten Aufgaben, wie der Immunantwort gegenüber Pathogenen, erfüllen sie auch 
generische Aufgaben bei der Gewebeentwicklung und -homöostase. In diesem Artikel stellen wir 
aktuelle Trends in der Makrophagenforschung vor. Wir diskutieren, wie das phänotypische 
Spektrum von Gewebemakrophagen durch den ontogenetischen Ursprung und die Integration 
räumlicher und zeitlicher Impulse bestimmt wird, wie akzessorische Makrophagenfunktionen zu 
Pathologien wie Krebs und Atherosklerose beitragen, und wie innovative hochauflösende 
Technologien zur Aufklärung der komplexen Makrophagenbiologie beitragen können.  

Schlüsselwörter: Makrophage, Fresszelle 

Es war einmal eine Fresszelle 
Der Vater der zellulären Immunologie, Ilya Metchnikoff, entdeckte Makrophagen im späten 
neunzehnten Jahrhundert, und nannte sie aufgrund ihrer phagozytotischen Natur 
„Riesenfresszelle“ (griechisch: μακρός groß, φαγεῖν essen, Abb. 1).  
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Abb. 1: Rasterelektronenmikroskopische Aufnahme von Makrophagen (von Volker Brinkmann).  

Mittels Intravitalmikroskopie gelang es ihm, Makrophagenschwärme in Seesternlarven und 
infizierten Wasserflöhen zu visualisieren. Er antizipierte bereits ihre Bedeutung für das 
Immunsystem als wichtige Immuneffektoren –zuständig für Pathogenbeseitigung und 
Wundheilung [1]. Seitdem wurden viele weitere Funktionen von Makrophagen beobachtet, wie 
z. B. das Entfernen apoptotischer Zellen und die Remodellierung der extrazellulären Matrix. In 
den letzten Jahren sind nun überraschende neue Aspekte über die Biologie und Funktion von 
Makrophagen im systemischen Stoffwechsel, der Gewebehomöostase und -entwicklung entdeckt 
worden [2, 3]. 
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In diesem Artikel schildern wir die wandelnde Sicht auf die Funktion von Makrophagen im 
historischen Kontext. Wir diskutieren spannende aktuelle Trends in der Makrophagenforschung, 
und wie neue und hochauflösende Techniken zu deren Aufklärung beitragen können. 

Wachposten im Gewebe 

Makrophagen wird schon sehr lange eine wichtige Rolle bei der Gewebeüberwachung 
nachgesagt. Für die Detektion sowohl von mikrobiellen Produkten (MAMPs – Mikroben-
assoziierte molekulare Muster) als auch von „Gefahrensignalen“ des Wirts, die auf 
Veränderungen der Homöostase hindeuten (DAMPs – Gefahr-assoziierte molekulare 
Strukturen), sind Makrophagen mit keimbahnkodierten Mustererkennungsrezeptoren (PRRs) 
ausgestattet. Janeway schlug vor, dass diese PRRs für die Initiierung der adaptiven Immunität 
wichtig sind [4]. Wegweisende Arbeiten von Lemaître und Hoffmann führten dann zur 
Identifizierung der ersten PRRs in Fliegen, die ohne funktionelles Toll-Protein anfällig für 
Pilzinfektionen waren [5]. Seitdem wurden viele oberflächliche und zytosolische PRRs in 
Säugetierzellen identifiziert, die unterschiedlichste molekulare Strukturen und homöostatische 
Veränderungen erkennen [6]. Die Entdeckung eines makromolekularen Komplexes von 
Tschopp, „Inflammasom“ getauft, der entzündliche Immunpathologie auslösen kann, leitete 
später eine Renaissance der Forschungsgebiete der angeborenen Immunität und des Zelltods ein 
[7, 8]. Insbesondere der PRR Nlrp3 stellte sich als Schlüsselsignalweg für die Detektion steriler 
Entzündung und metabolischen Stresses heraus. Nun wird dieser Signalweg nicht nur mit vielen 
chronisch entzündlichen und metabolischen Erkrankungen in Zusammenhang gebracht [9], 
sondern hat auch das Interesse an der Entwicklung von Therapeutika zur Behandlung diverser 
entzündlicher Erkrankungen geweckt [10]. Neben PRRs nutzen Makrophagen eine Vielzahl 
anderer Rezeptoren und Signalwege, um Veränderungen von z. B. Nährstoff-, Metabolit-, 
Sauerstoffbedingungen und der Gewebemikroumgebung zu detektieren [11–13]. Die 
Komplexität des sensorischen Systems von Makrophagen ist bis jetzt noch nicht umfassend 
aufgeklärt und ein spannendes Gebiet aktiver Forschung. 

Makrophagen-Polarisation 

Makrophagen produzieren sowohl antimikrobielle reaktive Sauerstoff- und Stickstoffspezies, um 
Krankheitserreger zu bekämpfen, als auch interzelluläre Botenstoffe, um angeborene und 
adaptive Immunantworten, bzw. den Umbau und die Reparatur von Gewebe zu koordinieren 
[14]. Ein dichotomes Konzept der Makrophagenaktivierung hat viele Jahre geholfen, 
gegensätzliche Funktionen dieser Zellen zu beschreiben. Während „klassisch aktivierte” M1-
Makrophagen durch PRR und Interferon induziert werden, um eine Immunantwort gegenüber 
Bakterien und intrazellulären Pathogenen auszulösen, werden „alternativ aktivierte“ M2-
Makrophagen vornehmlich bei Asthma, Allergien und Wurmbefall durch Th2-Antworten und 
Zytokine wie IL-4 oder IL-13 gebildet [15, 16]. Allerdings existieren z. B. auch Makrophagen, 
die M2-ähnlich polarisiert sind und die einen wichtigen, aber noch nicht genau geklärten Beitrag 
beim Heilungsprozess leisten und potenziell bei Transplantationen und Operationen relevant sein 
könnten. Dieses und viele andere Beispiele illustrieren, dass sich Makrophagenfunktionen besser 
durch komplexere Konzepte erklären lassen, die von einem kontinuierlichen Spektrum der 
Makrophagenaktivierung ausgehen. Es hat sich gezeigt, dass Makrophagen nicht nur ein 
außergewöhnlich großes Repertoire an verschiedenen Phänotypen annehmen können, sondern 
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auf unterschiedliche zeitliche und räumliche Signale dynamisch ihre physiologischen Funktionen 
wechseln [17]. Aktuelle Modelle beschreiben, wie durch ein Zusammenspiel von epigenetischen 
Zell-intrinsischen und Aktivierungs-abhängigen Netzwerken von Transkriptionsfaktoren 
spezifische Phänotypen reguliert werden [18, 19]. Unvollständig verstanden ist, wie 
unterschiedliche Signalkaskaden die Vielzahl von Eingangssignalen integrieren und den Rahmen 
funktionaler Plastizität vorgeben. In diesem Zusammenhang ist spannend, inwiefern sich die 
regulatorischen Mechanismen unterscheiden, die zur Etablierung von „angeborenem 
Gedächtnis“ im Gegensatz zu „trainierter Immunität“ führen – zwei paradigmatische 
Konsequenzen systemischer Entzündung, die sich durch Unfähigkeit versus besondere Fähigkeit 
zur erneuten zellulären Aktivierung auszeichnen [20, 21].  

Makrophagen-Ontogenese 

Ähnlich wie bei der Aktivierung von Makrophagen hat sich auch unser Wissen über die 
Ontogenese rasch weiterentwickelt. Makrophagen sind in fast allen Geweben vorhanden und 
nicht nur für die Homöostase, sondern auch für die Entwicklung essenziell [22]. Entgegen des 
initialen Modells von Van Furth, gemäß dessen Gewebe-residente Makrophagen nur aus 
Blutmonozyten rekrutiert werden (mononukleäres phagozytotisches Konzept) [23], wissen wir 
nun, dass diese aus drei unterschiedlichen Quellen stammen: nämlich aus Dottersack, fetaler 
Leber  und hämatopoetischen Stammzellen (HSC) im Knochenmark. 
Fate Mapping und Pulsmarkierungsstudien von Vorläuferzellen haben wesentlich dazu 
beigetragen, eine genetische Basis für die Makrophagenentwicklung zu etablieren. So wurde eine 
frühe hämatogene Welle im Dottersack identifiziert, die zumindest teilweise unabhängig vom 
Transkriptionsfaktor Myb ist und auch erythromyeloide Vorläuferzellen (EMP) generiert [24, 
25]. Diese Zellen führen entweder direkt zu primitiven Dottersack-Makrophagen oder wandern 
in die fetale Leber und erzeugen fetale Monozyten, die das embryonale Gewebe besiedeln und 
dort zu Makrophagen differenzieren [26]. Alternativ können Makrophagen durch eine Myb-
abhängige Hämatopoese entstehen, die in der fetalen Leber beginnt, hämatopoetische 
Stammzellen bildet und im Erwachsenenalter fortbesteht [27].  
Interessant ist, dass der Ursprung von Makrophagen im adulten Gewebe stark variiert. Während 
einige Gewebe hauptsächlich von aus EMP stammenden Makrophagen besiedelt werden (wie 
z. B. Langerhans-Zellen in der Haut und Mikroglia im Gehirn [28, 29]), werden andere Gewebe 
hauptsächlich mit aus HSC stammenden Makrophagen bevölkert (wie z. B. im Herz, Haut und 
Darm [30–32]). Die Infiltration durch von Monozyten abstammende Makrophagen könnte daher 
auf einen höheren „Verschleiß“ eines Organs hinweisen. Kurioserweise können sich in der 
gleichen Gewebeumgebung die Funktionen von aus Monozyten abstammenden und Gewebe-
residenten Makrophagen stark unterscheiden. Daher kann der Makrophagenursprung für die 
Pathogenese von Krankheiten eine wichtige Rolle spielen, wie z. B. während experimenteller 
Autoimmunenzephalitis [33]. Da sich verfügbare Studien auf Mausmodelle beschränken, bleibt 
es jedoch unklar, ob Gewebemakrophagen bei Erwachsenen tatsächlich nicht durch von adulten 
Monozyten stammende Makrophagen ersetzt werden, insbesondere während des Alterns oder 
über längere Zeiträume wiederholter Belastungen.  
Eine spannende Beobachtung ist, dass aus Dottersäcken hervorgehende Makrophagen (und 
vermutlich fetale und Leber-abgeleitete Makrophagen) durch Selbsterneuerung über die gesamte 
Lebensdauer aufrechterhalten werden können [34]. Jedoch bleibt bis jetzt ungeklärt, ob alle oder 
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einige wenige gewebsresidente Makrophagen in den Zellzyklus eintreten können, und sich selbst 
durch asymmetrische Zellteilung (ähnlich wie Stammzellen) erneuern.  

Funktionsspektrum von Makrophagen 

Trotz unterschiedlicher Ontogenität können Makrophagen im Gewebe ähnliche Funktionen 
haben. Alveolarmakrophagen aus der fetalen Leber und Mikroglia aus dem Dottersack üben z. B. 
während der Homöostase immunsuppressive Funktionen aus und regulieren durch die 
Deaktivierung autoreaktiver T-Zellen die Aktivierungsschwelle für T-Zell-vermittelte 
Immunreaktionen [35]. Lokal produzierte sogenannte „Gewebeidentitätssignale“ erklären diese 
Makrophagenfunktionen in Abhängigkeit von Stoffwechsel, Nährstoff- und 
Mikrobiotaexposition. So wird z. B. die Differenzierung von Mikroglia und 
Peritonealmakrophagen als Reaktion auf lokale Produktion von TGF-β im Gehirn bzw. 
Retinsäure im Omentum gesteuert [36, 37]. Interessant ist, dass sich Makrophagen an eine sich 
sehr stark ändernde lokale Homöostase im Laufe des Lebens anpassen können, wie z. B. 
während der Entwicklung des erwachsenen Gehirns oder des Darms vor und nach der perinatalen 
Besiedlung durch Mikroben [38, 39]. 
Makrophagen als akzessorische (Zubehörs)-Zellen zu betrachten, kann konzeptionell zum 
Verständnis der besonderen Plastizität von Phänotyp und Funktion in Geweben beitragen [11]. 
Durch zelluläre „Arbeitsteilung“ werden generische Aufgaben, wie die Entfernung apoptotischer 
Zellen, hochspezialisierte Aufgaben (wie Knochenresorption durch 
Knochenmakrophagen/Osteoklasten, Recycling von Tensiden durch 
Lungenalveolarmakrophagen oder Bereitstellung von neurotrophen Faktoren durch Mikroglia 
[40–42]), aber auch „auf Abruf“-Funktionen, wie immunologische und Reparaturprozesse an 
Gewebemakrophagen, abdelegiert. Dementsprechend können Makrophagen auch als 
akzessorische Zellen z. B. für Tumoren verstanden werden, die in diesem Fall tumorfördernde 
Prozesse unterstützen [43, 44]. Neben Krebs gilt eine entscheidende Rolle von Makrophagen in 
diversen Pathologien wie Atherosklerose [45], Osteoporose, Fettleibigkeit und Typ-2-Diabetes 
[46, 47] und Fibrose [48] als erwiesen und macht bestimmte Populationen von Makrophagen mit 
spezifischen Funktionen therapeutisch interessant. 

Hochauflösende methodische Ansätze zur Analyse von Makrophagen  

Es besteht ein wachsender Bedarf an der Entwicklung von Konzepten, die den Gesamtphänotyp 
von Makrophagen als Hierarchie aus Abstammung, Identitäts-  und „auf Abruf“-
Funktionsmodulen beschreiben (Abb. 2).   
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Abb. 2: Multidimensionale MakrophagenaktivierungDie Makrophagenphysiologie wird dynamisch von 
Ursprung, Gewebe und sowohl endogenen als auch exogenen Signalen bestimmt. Der überwiegende 
Makrophagenursprung der individuellen Gewebe ist farblich markiert: Primitive Dottersack-
Makrophagen grün, Makrophagen aus fötalen Monozyten lila und Makrophagen aus adulten Monozyten 
rot.  

Um das Zusammenspiel vielzahliger Faktoren zur Differenzierung, Erhaltung und Aktivierung 
von Gewebe-spezifischen Makrophagenpopulationen zu verstehen, sind innovative 
hochauflösende Techniken besonders gut geeignet. 
Zur Erforschung zellulärer Heterogenität wird die zukünftige Forschung von der Verwendung 
von genetischen Modellen profitieren, die präziseres genetisches und zeitliches Fate Mapping 
von unterschiedlichen Vorläuferpopulationen erlauben. In diesem Zusammenhang sind 
hochdimensionale Zelltechnologien wie mikrofluidische Genom-, Epigenom- und 
Transkriptomanalysen [49] attraktiv, da diese – im Gegensatz zu klassischen Methoden (wie der 
Durchflusszytometrie) – für jede Zelle eine große Anzahl von Genen analysieren, und eine 
unvoreingenommene Bestimmung von Zellpopulationen möglich machen. Methoden, die eine 
genaue Bestimmung des Immunphänotyps ermöglichen, so wie CyTOF, aber auch 
Durchflusszytometrie oder Immunhistochemie, werden zur Evaluation funktioneller Aspekte und 
Effektormolekülkombinationen in heterogenen Makrophagenpopulationen beitragen [50, 51]. 
Die Orchestrierung der Gewebehomöostase und entzündlicher Prozesse ist aufgrund der 
komplexen Verwendung vieler pleiotroper interzellulärer Botenstoffe noch unvollständig 
verstanden. Auf Massenspektrometrie basierende analytische Verfahren können hier einen 
wesentlichen Beitrag leisten, unterschiedliche Biomolekülklassen, wie z. B. Proteine, 
Metaboliten und Lipide, umfassend zu identifizieren. In Kombination mit funktionellen 
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pharmakologischen und genetischen Strategien können so gegenseitige phänotypische 
Abhängigkeiten von Makrophagen und Gewebe, wie z. B. „Gewebeidentitätssignale“ die 
Makrophagenphänotypen diktieren, bzw. Gewebefunktionen durch die Makrophagenphänotypen 
diktiert werden, bestimmt werden [52]. Ähnlich wie Einzelzellsequenzierungsmethoden die 
Gewebeheterogenität auf Nukleinsäureebene auflösen, werden die zu erwartenden 
Entwicklungen Massenspektrometrie-basierter Technologien in Zukunft umfassende Analysen 
vieler physiologisch relevanter Biomolekülklassen in seltenen Primärzelltypen oder sogar 
Einzelzellen ermöglichen [53, 54]. 
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