
Computational Models of
Relations in Text and Knowledge

Graphs for Logical Reasoning
and Graph-Text Conversion

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

eingereicht von
Martin Schmitt

München, den 24. August 2021



Erstgutachter: Prof. Dr. Hinrich Schütze
Zweitgutachter: Prof. Dr. Axel-Cyrille Ngonga Ngomo
Drittgutachter: Prof. Dr. Benjamin Roth

Tag der Einreichung: 24. August 2021
Tag der mündlichen Prüfung: 02. März 2022
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Abstract
Knowledge graphs (KGs) store facts in the form of triples that contain two entities
and the relation between them. This relation is usually a standardized part of the
KG schema and could thus be denoted by any arbitrary unique identifier, e.g., an
integer. Typically, however, each relation is assigned a short phrase, such as born
in, to describe its meaning intuitively. In this way, the triple resembles a natural
language statement although it often lacks the fluency of a real sentence.

It is common to reason about facts from KGs and texts to infer new knowledge.
An important yet underexplored setting for this is relation inference in context
(RIC). Here, the validity of a triple (e1, r, e2) has to be determined based only on a
single other relation r′ that is known to hold for e1, e2. After disambiguating the
relations r, r′ with the context, this boils down to deciding relation inclusion, i.e.,
logical implication. If the relation arguments e1, e2 are not restricted to entities, i.e.,
we allow for arbitrary noun phrases, and if the relations are only sequences that lead
to wellformed sentences, then RIC is also a fundamental task for many use cases
in natural language processing, such as question answering, event coreference, and
recognizing textual entailment.

This thesis examines relations in texts and KGs in two settings: Relation
inference and text-graph conversion. The latter builds the bridge between KGs
and texts by improving KG interpretability (graph-to-text) and making textual
facts accessible to machines (text-to-graph). In the first publication, we extract
a large-scale KG from text with lemmatized dependency paths as relations and
create a human-annotated RIC benchmark from it. We evaluate and analyze
existing methods and propose several new methods based on argument-relation co-
occurrence information. The second paper explores the use of pretrained language
models (PLMs) for RIC and investigates the influence of combining them with
textual patterns expressing entailment or non-entailment. In the third paper, we
replace the textual patterns with strings of artificial tokens, i.e., tokens that do not
exist in the language model’s vocabulary and whose continuous representations
can therefore be learned freely. We find that artificial tokens improve performance
even more than natural text.

The fourth publication describes an unsupervised system for both graph-to-text
and text-to-graph conversion. In the fifth paper, we propose a new way of injecting
graph structure into the text-to-text Transformer architecture and evaluate it on
graph-to-text generation. The sixth paper investigates the use of PLMs for graph-
to-text generation and analyzes possible reasons for their success in this task. In
the seventh paper, insights from the previous chapters are used to implement a
practical text-to-graph system. Trained on image captions and scene graphs, the
automatically generated graphs from this system are used to improve few-shot
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learning of scene graph extraction from images.
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Zusammenfassung
Wissensgraphen (engl. knowledge graphs, KGs) speichern Fakten in Form von
Tripeln, die zwei Entitäten und die Relation zwischen ihnen enthalten. Diese
Relation ist normalerweise ein standardisierter Teil des KG-Schemas und könnte
daher durch einen beliebigen eindeutigen Bezeichner, z. B. eine Zahl, ausgedrückt
werden. In der Regel wird jedoch jeder Relation eine kurze Phrase zugeordnet, wie
z. B. born in, um ihre Bedeutung intuitiv zu beschreiben. Auf diese Weise ähneln
Tripel Aussagen in natürlicher Sprache, wenn sie auch meist nicht so flüssig sind
wie ein echter Satz.

Es ist üblich, durch logisches Schließen aus den Fakten in KGs und Texten
neues Wissen abzuleiten. Ein wichtiger, aber noch nicht ausreichend erforschter,
Bereich hierfür ist Relationsinferenz im Kontext (engl. relation inference in context,
RIC). Hier soll der Wahrheitswert eines gegebenen Tripels (e1, r, e2) bestimmt
werden, und zwar nur anhand einer einzigen anderen Relation r′, von der bekannt
ist, dass sie für e1, e2 gilt. Nach der Disambiguierung der Relationen r, r′ durch den
Kontext läuft dies darauf hinaus zu entscheiden, ob eine Relationsinklusion, d. h.
logische Implikation, vorliegt. Wenn die Argumente e1, e2 der Relation nicht auf
Entitäten beschränkt sind, d. h. wenn sie beliebige Substantivphrasen sein können,
und wenn für die Relationen nur Sequenzen erlaubt sind, die zu wohlgeformten
Sätzen führen, dann ist RIC auch eine grundlegende Aufgabe für viele Anwen-
dungsfälle in der natürlichen Sprachverarbeitung, wie z. B. die Beantwortung von
Fragen (engl. question answering), Koreferenz von Ereignissen und das Erkennen
logischer Konsequenz zwischen Texten.

In dieser Arbeit werden Relationen in Texten und KGs in zwei Bereichen
untersucht: Relationsinferenz und Text-Graph-Konvertierung. Letztere schlägt die
Brücke zwischen KGs und Texten, indem sie die Interpretierbarkeit von KGs ver-
bessert (Graph-zu-Text) und textuelle Fakten für Maschinen zugänglich macht
(Text-zu-Graph). In der ersten Veröffentlichung extrahieren wir einen großen KG
aus Text mit lemmatisierten Dependenzpfaden als Relationen und erstellen daraus
eine manuell annotierte RIC-Benchmark. Wir evaluieren und analysieren bestehen-
de Methoden und schlagen mehrere neue, auf Argument-Relation-Kookkurrenz
basierende Methoden vor. Der zweite Beitrag befasst sich mit der Verwendung von
vortrainierten Sprachmodellen (engl. pretrained language models, PLMs) für RIC
und untersucht den Einfluss einer Kombination von PLMs mit textuellen Mustern,
die jeweils Präsenz oder Absenz von logischer Folge ausdrücken. In der dritten
Arbeit ersetzen wir die textuellen Muster durch Zeichenketten aus künstlichen
Token, d. h. Token, die nicht im Vokabular des Sprachmodells vorhanden sind und
deren kontinuierliche Repräsentationen daher frei gelernt werden können. Wir
stellen fest, dass künstliche Token zu sogar noch besseren Ergebnissen führen als
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natürlicher Text.
Die vierte Veröffentlichung beschreibt ein unüberwachtes System für die

Umwandlung von Graphen in Text und von Text in Graphen. In der fünften
Veröffentlichung wird ein neuer Mechanismus zur Einbindung von Graphstruktur
in die Text-zu-Text-Transformer-Architektur vorgeschlagen und für seine Taug-
lichkeit zur Graph-zu-Text-Generierung evaluiert. Der sechste Beitrag untersucht
die Verwendung von PLMs für die Graph-zu-Text-Generierung und analysiert
mögliche Gründe für ihren Erfolg bei dieser Aufgabe. Im siebten Beitrag wer-
den die Erkenntnisse aus den vorherigen Kapiteln genutzt, um ein praktisches
Text-zu-Graph-System zu implementieren. Nachdem es auf Bildunterschriften und
Szenegraphen trainiert wurde, werden die automatisch generierten Graphen dieses
Systems verwendet, um die Extraktion von Szenegraphen aus Bildern mit wenig
annotierten Bilddaten (engl. few-shot scene graph extraction) zu verbessern.
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Chapter 1

Introduction

1.1 Problem Formulation

1.1.1 Motivation
Relational knowledge is considered foundational for higher cognitive processes
(Halford et al., 2010). It is therefore not surprising that relations can be found at the
core of many prominent concepts in computer science, be it organizing database
systems (Codd, 1970), designing computer programs (Booch et al., 2005; Lewis
and Loftus, 2009, section 1.6 “Object-oriented programming”), or formalizing
knowledge for artificial intelligence (Baader et al., 2007). While, of course, there
can be the need to express relationships between any number of entities or objects,
the binary relation, i.e., the relation between two entities, is enough for most appli-
cations because any n-ary relation can be modeled by reifying relation instances
and introducing n new binary relations, i.e., one per original argument slot (Hayes
and Welty, 2006).

Besides being an important building block of description logics (Borgida,
1996; Horrocks et al., 2006) and ontology languages (Antoniou and van Harmelen,
2004) and the resulting widespread use for creating knowledge bases (KBs) or
knowledge graphs (KGs), binary relations are also ubiquitous in linguistics, the
formal study of language. Syntactic dependency, for example, is defined as an
asymmetric relation between two words in a sentence (Tesnière, 1959; Hudson,
1990) and lexicographers make use of many binary relations, such as hypernymy
or antonymy, to structure lexical knowledge (Miller, 1992, inter alia). Even the
definition of basic word order in linguistic typology hinges on transitive declarative
main clauses (Comrie, 1989), such as Alice likes Bob, suggesting that they are
considered prototypical for a natural language utterance. Arguably, such a sentence
expresses a binary relation, expressed by the verb (predicate), between the verb’s
arguments (subject and object). Given its adequateness for expressing knowledge

16
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both formally (in a KG) and informally (through natural language), the focus of this
thesis is thus the computational modeling of binary relations in natural language
texts and KGs. As a general term for both a KG fact and a natural language
sentence with subject, predicate, and object, we will use SPO statement.

Despite their similar (SPO) structure, it is nontrivial to translate a KG fact to a
corresponding natural language sentence and back, let alone a collection of facts to
a coherent text or vice versa. So an obvious endeavor in the study of formally and
informally expressed knowledge is to look for means to convert one to the other.
Graph-to-text generation makes formal knowledge bases accessible to non-experts
and enhances their interpretability. The opposite direction supports machines in
understanding natural language texts, enabling them to assist humans in making
sense of a larger number of texts in shorter time.

All knowledge collections are inevitably incomplete, either because things are
left implicit in a text, because the manual curation of KGs is very time-intensive, or
simply because humanity’s knowledge as a whole is still limited in a certain domain.
One of the most useful supporting tasks in this context is therefore the discovery
of new links, the inference of new knowledge beyond what is expressed literally
in a text or KG. This link prediction or knowledge base completion (KBC) task
traditionally aims at modeling the probability of arbitrary individual KG facts given
all KG facts seen during training (Nickel et al., 2016). Focusing on the semantics
of relations, this thesis approaches the knowledge inference task from a different
angle. We are interested in all the implications a given SPO statement entails when
we abstract away from the concrete subject and object entities. Besides providing
a better idea of what kind of semantics is captured by a computational model of
relations, such a task also has the advantage of producing human-interpretable
entailment rules (see Chapter 2) and of evaluating the influence of lexical semantics
in natural language inference (NLI) applications. Only recently, lexical semantics
was detected as a blind spot of many statistical NLI models (Glockner et al., 2018).
Thus it is worthwhile to study the role of SPO statements in general NLI. Besides
its importance for analyzing NLI phenomena and KBC (e.g., Hosseini et al., 2019),
entailment detection between SPO statements has also been found useful for
automatic question answering (Schoenmackers et al., 2010) and modeling event
coreference (Shwartz et al., 2017; Meged et al., 2020).

1.1.2 Approach
We choose a data-driven approach to the computational modeling of binary re-
lations. Alleviating a lack of relevant resources, we collect and annotate data to
improve the fundamental understanding of the phenomena involved with relational
data, both in KGs and text documents. Besides delivering new insights by ana-
lyzing the data directly, a data-driven approach also allows for the application of

17
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machine learning methods and thus the creation of automatic software solutions to
the tasks of relational inference and KG-text conversion.

Regarding machine learning models, we focus on deep learning (DL) tech-
niques and artificial neural networks (NNs) (Goodfellow et al., 2016). We make this
choice because of their recent success in all parts of natural language processing
(NLP) and artificial intelligence in general, but also for their flexibility as universal
function approximators (Lu et al., 2017) and their suitability for both supervised
and unsupervised learning (Goodfellow et al., 2016).

1.1.3 Research Questions
Concretely, we aim to answer the following research questions:

(i) Data: What kind of data is adequate to train and evaluate a statistical model
of relational semantics? How can we collect such data?

(ii) Models: How can relational semantics be modeled effectively in a computer
system? How can such a model be used to detect entailment or to translate
between knowledge graphs and unstructured text?

(iii) Analysis: What modeling choices work better than others? What elements
of our models and algorithms are decisive for their performance?

(iv) Improvements: How can we improve model performance or efficiency? Can
we train models with less annotated data or no annotated data at all? Can our
insights be used to improve downstream applications?

1.1.4 Outline
In this chapter, we define the basic notions used throughout this thesis. We clarify
terminology, introduce fundamental work used in subsequent chapters, and show
commonly used evaluation methods. In Chapter 2, we describe the collection of a
new dataset and benchmark for textual relation inference in context (RIC). Using
these data, we evaluate a variety of baseline models and discover key challenges of
the task. Chapter 3 investigates the usage of contextualized embeddings provided by
a pretrained language model (PLM) for the same task. We examine the influence
of different textual patterns surrounding the actual input on the contextualized
representations and find a useful inductive bias in handcrafted entailment templates.
Revisiting the notion of such patterns, Chapter 4 defines a framework for adding
arbitrary vectors to the input, i.e., vectors that do not necessarily correspond to any
vocabulary element. We analyze when and how these continuous patterns lead to
better task performance.
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Beginning the part on KG-text conversion, Chapter 5 discusses the problem of
data scarcity as a result of the large variety of KGs and language. We propose a
solution based on unsupervised learning and exemplify its worth by creating a new
graph-text benchmark for the domain of scene graphs, i.e., KGs describing images,
and image captions, i.e., texts describing images. In Chapter 6, we introduce a new
way of injecting graph structure in the text generation architecture Transformer
(Vaswani et al., 2017) for parameter-efficient, high-performance graph-to-text
generation. Chapter 7 investigates the use of pretrained Transformer language
models on this task and analyzes how and if they make use of the input graph
structure at all. Finally in Chapter 8, we showcase an application for KG extraction
from text. We describe a practical text-to-graph model based on our insights from
the previous chapters and show how an image analysis system can benefit from
structured knowledge that was automatically generated from texts.
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1.2 Knowledge Representation

1.2.1 Knowledge Bases
The term knowledge base (KB) most commonly denotes a description logic ontol-
ogy, which consists of the following pairwise disjoint sets: O = (NI , NC , NR,A)
where NI is a set of individual names, NC a set of concept names, NR a set of
role names, and A a set of axioms, i.e., statements that must be true in the sit-
uation described by the ontology (Baader et al., 2007). Individual names refer
to specific entities in the ontology, e.g., Amazon, Bob ∈ NI . Concepts are unary
predicates, also called types or classes, e.g., COMPANY(·) ∈ NC , i.e., they refer
to (sub-)sets of entities. Roles are binary predicates (i.e., binary relations), e.g.,
works for(·, ·) ∈ NR, i.e., they refer to sets of entity pairs. Finally, the axioms A
express the actual knowledge.

There is no logical difference between different types of axioms but tradi-
tionally we distinguish assertional, terminological, and relational axioms. As-
sertional axioms state facts about individual entities, referred to by their indi-
vidual names from NI . Besides asserting (in-)equality of two entities, these
axioms mainly express facts using the available concept and role names, e.g.,
COMPANY(Amazon),works for(Bob, Amazon) etc. Terminological axioms define
a taxonomy on concept expressions where such an expression can consist of the
basic concepts from NC , the logical connectors or, and, and negation, as well
as description logic-specific operators that define concepts w.r.t. the number and
optionally the name of relations to other entities and, recursively, the logical prop-
erties of these “neighboring” entities. For instance, the description logic formula
UNEMPLOYED ≡ ∀works for .⊥ defines the concept UNEMPLOYED as all entities
without any works for connections.1 Besides equivalence (≡), the most impor-
tant building block of these taxonomies is concept inclusion, i.e., entailment (v).
Finally, relational axioms state knowledge about roles. Besides asserting various
properties of relations, such as transitivity, symmetry, or disjointness from other
relations, they can be used to define a taxonomy on roles like terminological axioms
do for concepts. For example, works for v pays− encodes the fact that working
for an organization entails being paid by it.2

1.2.2 Knowledge Graphs
A knowledge graph (KG) is commonly defined as a multi-relational graph, in other
words a directed edge-labeled graph (Hogan et al., 2021): G := (V,E, L), where

1⊥ stands for the empty concept.
2The superscript − denotes the inverse role.
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V is a set of nodes, L a set of edge labels, and E ⊆ V × L× V is a set of edges.
This definition is very flexible as it allows for several special cases, e.g., nodes that
are also edge labels or isolated nodes without any connections. While the latter can
make sense for certain applications (see Koncel-Kedziorski et al., 2019), usually
the actual knowledge is represented by the edges and thus nodes only make sense
in the presence of connections (relations) to other nodes. So often the set of edges
E is considered representative for the whole KG because we can infer V and L
under the assumption that they contain all and only those nodes and edge labels
that are used in E. As such a triple consisting of two nodes and an edge label is
often called a fact, we can also say that a KG is adequately represented by a set of
facts.

The terms knowledge base and knowledge graph are commonly used inter-
changeably and indeed a description logic ontology can be expressed as a graph,
i.e., we can express every axiom a ∈ A as a KG fact f ∈ E. Although it is possi-
ble to encode the whole flexibility of description logic formulae in such a graph
(Hogan et al., 2021; Baader et al., 2005), common knowledge graphs like Freebase
(Bollacker et al., 2008) or Wikidata (Vrandečić and Krötzsch, 2014) rarely make
use of the full spectrum. We will therefore only cover what is necessary for the
most common use cases. Given an ontology O = (NI , NC , NR,A), we define the
corresponding KG as follows:

G :=
(
NI ∪NC ∪NR ∪N−R ∪ BC ,FA, NR ∪N−R ∪ BR

)

where FA is the set of axioms translated to facts and BC ,BR contain a number of
built-in concepts and edge labels necessary for complex concept expressions and
stating certain logical relationships, such as entailment and equivalence.3

As every element of the ontology, i.e., individuals, concepts, and roles, become
nodes in the KG, we can make statements about any of them. Most of the logical
statements make use of the built-in components but notably the ontology roles
also serve as edge labels, which lets us define relations between entities in terms
of these roles. So we see at once that assertional axioms can be encoded in a
straightforward way (see Fig. 1.1 for examples).

Looking at terminological axioms, we can simply model them as edges between
concept nodes representing concept inclusion (subclass of ∈ BR) where concept
equivalence can be represented by two edges. For details on constructing complex
concepts in a graph using BC and BR, we refer to the literature (Hogan et al., 2021;
Baader et al., 2005; de Bruijn and Heymans, 2010).

Finally, a role taxonomy can be modeled in the same way (subproperty of ∈
BR), using roles as nodes. Other constraints like being a transitive relation or being
disjoint from certain other relations similarly make use of elements from BC ,BR.

3Cf. the OWL schema vocabulary: https://www.w3.org/2002/07/owl, accessed on
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COMPANY(Amazon) Amazon COMPANY
type

works for(Bob, Amazon) AmazonBob
works for

Bob 6≡ Amazon AmazonBob
different from

Bookpages ≡ Amazon 
AmazonBookpages

same as

Figure 1.1 – Example translations of assertional axioms a ∈ A to knowledge
graph facts f ∈ FA with the concept COMPANY ∈ NC , the role works for ∈
NR, and the individuals Amazon, Bob, Bookpages ∈ NI . The edge labels
type, different from, same as come from BR.

Like a description logic ontology, a KG does not distinguish between different
kinds of knowledge it encodes. Nevertheless, it is convenient to keep the traditional
categories of axioms introduced above to refer to different types of KG facts as
well. Inspired by terminology in the description logic literature and for brevity, we
will call KG facts coming from assertional axioms ABox facts, those coming from
terminological axioms TBox facts, and those encoding relational axioms RBox
facts.

Given that our main focus lies on relations, we need a few last definitions
for them. As stated above, the interpretation of a relation R ∈ NR is the set of
individual entity pairs, for which the relation holds. This is called the extension
E(R) of the relation R, the set of its arguments (subject and object). In KG
terms, we define the extension of R ∈ NR as the set of node pairs it links, i.e.,
E(R) = { (e1, e2) | e1, e2 ∈ NI ∧ (e1, R, e2) ∈ E }. So instead of considering
semantic links to real-world entities referenced by their names in NI , we keep our
definition of relation extension E(R) ⊆ NI ×NI purely on the symbolic level of
KG nodes, which is enough for our reasoning purposes.

Often a relation only makes sense if it relates certain types of entities. For
example, the semantics of the capital of relation dictate that its subject be a city
and its object a place that can have a capital, such as a country. The acceptable
types of entities for a certain relation are called its domain (subject slot) and
range (object slot). They can be defined in a KG using built-in relations, e.g.,

16th August 2021.
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(capital of , domain, CITY) ∈ F , domain ∈ BR. We call a relation with such
guarantees w.r.t. its arguments a typed relation. Given that the top4 concept
> ∈ BC , which by definition includes all entities in the KG, is always part of a
KG, one can argue that every relation is a typed relation because a relation that is
sensibly defined for any kind of entity pair would simply have > as its domain and
range.

Finally, while it is common to avoid whitespace in the definition of KB role
names and KG edge labels, typical strategies being camel case (worksFor ) or snake
case (works for ), there is no theoretical reason for this restriction. So everything
we develop for KG facts can equally be applied to SPO statements in general. So
the only condition for any natural language statement to be treated as a KG fact is
that the three parts of a triple have to be distinguishable unambiguously (see also
open information extraction, described in Section 1.5.2).

1.3 Methods

1.3.1 Deep Learning
Deep learning (DL) is a subfield of machine learning. DL models are commonly
called artificial neural networks (NNs). An NN models its input by introducing
representations that are expressed in terms of other, simpler representations (Good-
fellow et al., 2016). It learns these representations end-to-end without the need for
manual feature engineering.

Whenever we say that the parameters of a DL model are trained or learned, we
refer to some sort of gradient descent optimization (Cauchy, 1847) of an objective
function that represents the performance on the task to be learned. Nearly all
of DL is powered by some variant of stochastic gradient descent (Goodfellow
et al., 2016, Section 5.9). The particular type of optimization algorithm and the
objective function are stated for each experiment in each chapter individually. For
the purpose of this introduction, we can consider the actual learning a black box
and only focus on the modeling part.

Feedforward Networks

Fig. 1.2 shows a simple feedforward NN, also called a multilayer perceptron
(Rosenblatt, 1962). With x ∈ R4, 4 input features are put into the neural model.
This could, for example, be a word embedding of dimension 4. A word embedding
is a continuous representation of a word in a vector space assigned by a simple

4Cf. owl:Thing in OWL or rdfs:Resource in RDF Schema (https://www.w3.org/
TR/rdf-schema/, accessed on 16th August 2021).
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σ0(σ1(xW1)W0)

x ∈ R4

W0 ∈ R5×2

W1 ∈ R4×5

σ0, σ1 are non-linear activa-
tion functions. input

layer
hidden
layer

output
layer

class 2

class 1

Figure 1.2 – Example of a multilayer perceptron for binary classification. The
equation on the left describes the same model architecture as the diagram on
the right. A popular choice for σ0 is the softmax function, which normalizes
the output weights such that they sum to 1. In this way, the output can be
interpreted as a probability distribution over all (in this case 2) classes.

lookup table. See Section 1.3.2 for a discussion of pretraining approaches for word
embeddings.

The learned matrix W1 ∈ R4×5 converts this input representation to 5 hidden
features, which, in turn, are transformed to 2 output features that represent the 2
classes of some binary classification task. Each matrix multiplication is followed
by a non-linear activation function. For σ1 this could be, for instance, ReLU (x) =
max (x, 0) (with position-wise application of max ). For the output layer, it makes
sense to normalize the output features so that they sum to 1. A popular way of
achieving this is by setting σ0(x)i = exi∑d

j=1 exj
, which is known as softmax function

(Goodfellow et al., 2016).
Having shown the most basic version of a feedforward NN, it is straightforward

to extend it by adding more layers, i.e., more learned weight matrices. This very
simple DL model is rarely used on its own and over the years more complex models
have become the standard in NLP. One of these models is of particular interest to
us: the Transformer.

The Transformer Model

The Transformer is a sequence-to-sequence model that was introduced by Vaswani
et al. (2017) for machine translation. Fig. 1.3 illustrates the complete architecture.

The Transformer consists of an encoder and a decoder, each of which consists
of two types of subnetworks, multi-head attention and feedforward. An encoder
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Figure 1.3 – The complete Transformer encoder-decoder architecture. Figure
by Vaswani et al. (2017).

block features one of each whereas the decoder block has an additional multi-head
attention component that links it to the encoder. Both encoder and decoder blocks
are usually repeated and several instances are stacked one on top of the other. In
this context, one encoder (resp. decoder) block is called an encoder (resp. decoder)
layer. As we saw the feedforward NNs already in the last section, we will now
primarily focus on multi-head attention.

Having been introduced as a way of aligning an input with an output sequence
in machine translation (Bahdanau et al., 2015), attention is used mainly for contex-
tualization, i.e., sequence encoding, in Transformer. It is used to encode the input
sequence (self-attention), the partially generated output sequence (masked self-
attention), and to condition the generation on the encoder output (encoder-decoder
attention). Each of these use cases is implemented by the same basic mechanism,
called scaled dot-product attention (Fig. 1.4, left). It accepts three inputs, the query,
key, and value, and outputs a new representation of the same dimensionality as the
value. The only difference is that for self-attention all three inputs are the same
whereas encoder-decoder attention takes only the contextualized partial generation
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Figure 1.4 – Scaled dot-product attention (left) and multi-head attention with
several parallel attention layers (right). Figure by Vaswani et al. (2017).

as query while value and key come from the encoder. One instance of scaled
dot-product attention is defined as follows:

attention(Q,K,V ) = softmax (
QKᵀ√
dk

)V

where V ∈ Rn×dv , K ∈ Rn×dk , Q ∈ Rm×dk are matrices built by packing together
n (resp. m) values, keys, and queries.

Multi-head attention then runs several of these attention layers in parallel and
concatenates5 their results:

MultiHead(Q,K,V ) = (
h∥∥
i=1

attention(QWquery
i ,KWkey

i ,V Wvalue
i ))W out

where each of the h heads learns its own projection matrices for keys, values,
and queries, stored in Wkey ∈ Rh×d×dk ,Wvalue ∈ Rh×d×dv ,Wquery ∈ Rh×d×dk

respectively, and W out ∈ Rhdv×d projects the concatenation of all heads’ results
back to the overall model dimension d. Setting dk = dv = d/h is a common
choice to keep the computational cost similar to that of a single-head attention
with full dimensionality. Vaswani et al. (2017) found it beneficial to jointly attend
to information from different representation subspaces, which the multi-head
approach allows.

5We write
∥∥ to denote matrix concatenation.
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The last important component in Fig. 1.3 that we have not covered yet is
the concept of positional encodings. Multihead-attention is agnostic to position
information in a sequence (Dufter et al., 2020). Indeed, attention is more suited
to operate on a set (Lee et al., 2019). Therefore, the sequential information in a
natural language sentence has to be injected in a different manner. There are a
lot of different variants on how to do this (see the recent survey by Dufter et al.,
2021), the simplest of which is to add an embedding of the absolute token position
p ∈ {1, 2, . . . , n} to the input embeddings. Fig. 1.3 shows this approach.

The work presented in Chapter 6 introduces a new position model to incorpo-
rate the graph structure of an input KG into Transformer. In combination with
multiple heads, multiple views of the graph can be learned. The Transformer
architecture is also important for other parts of this thesis because it is the basis of
modern approaches to contextualized word embeddings and transfer learning (see
Sections 1.3.2 and 1.3.3).

1.3.2 Word Representations
A word in the context of this thesis denotes the smallest unit in the input to an
NN. In practice, these units are obtained by some tokenization algorithm and might
also be smaller than words in the linguistic sense, i.e., so-called subwords such
as provided by wordpiece (Schuster and Nakajima, 2012) or BPE (Sennrich et al.,
2016). A word embedding is a continuous vector representation of such an input
unit. As other model parameters, it can simply be learned from the task objective
after random initialization. It has been shown, however, that word vectors estimated
from co-occurrence information are beneficial for generalization in a number of
downstream tasks (Socher et al., 2011; Collobert et al., 2011; Kim, 2014). A word
unseen during training will not be represented as a random vector anymore but
its vector will be similar to the representation of other words that occur in similar
contexts. The distributional hypothesis states that these words tend to have similar
meanings (Harris, 1954; Firth, 1957).

An example how the co-occurrence of words can yield meaningful vector
representations is shown in Fig. 1.5. The figure visualizes two dimensions of a
|Σ|-dimensional space where Σ is the whole vocabulary. The matrix C ∈ N|Σ|×|Σ|
stores the number of times any pair of words from Σ occur in the same context
window.6 The ith row in C corresponds to the vector representation of the ith
word in Σ. To simplify notation, C is directly indexed with the respective words in
Fig. 1.5.

6Using a context window essentially means that two words are considered co-occurring if and
only if their distance in a text is lower than a given threshold. Sometimes sentence boundaries
are also taken into account (Mikolov et al., 2013). The specific definition of a context is generally
treated as a hyperparameter of a particular embedding model.
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rich

poor

gold

silver

society

debt

mortgage

θ

Cgold,rich = 186
Cgold,poor = 34
Cdebt,rich = 10
Cdebt,poor = 120
Csilver,rich = 135
Csilver,poor = 45
. . .

cos(θ) ∼ semantic similarity

Figure 1.5 – Example how co-occurrence information can yield meaningful
vector representations. Only the two dimensions corresponding to the words

“rich” and “poor” are shown. Figure taken from (Dufter, 2021).

Language Modeling

Collecting co-occurrence information or learning from it is deeply connected
to a task called language modeling. Traditionally, a language model assigns a
probability to a sequence of words (Jurafsky and Martin, 2020, chap. 3), i.e., it
judges how likely it is for the word sequence to occur in a language. It usually
does so by estimating the probability P (w|h) of a word w given some history h.
Such a model, of course, benefits greatly from co-occurrence information like we
saw before to distinguish high-probability words from low-probability words given
some context.

We distinguish two types of language models: Masked language models
(MLMs) and autoregressive language models (ALM). An ALM follows the tradi-
tional approach. It has access to all previous tokens and predicts the most probable
next one, i.e., it estimates P (wt|w1, w2, . . . wt−1). In a Transformer decoder (Sec-
tion 1.3.1), this is achieved by masking the self-attention such that the hidden token
representations only depend on previous tokens (Vaswani et al., 2017; Dai et al.,
2019). An MLM is sometimes also called an autoencoding language model. It sees
a corrupted version of the input tokens and tries to reconstruct the original string,
i.e., it estimates P (wt|w̃1, w̃2, . . . , w̃t, . . . , w̃n) where w̃i is most often the original
wi but – with some probability – can also be something else. For instance, the
BERT MLM (Devlin et al., 2019) is trained on text with 12% of the tokens replaced
by special [MASK] symbols and 1.5% replaced by randomly chosen tokens that
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are different from the original ones.

Pretrained Word Type Embeddings

Typical vocabularies can have thousands, if not tens of thousands, of entries, which
makes it impractical to use vocabulary-sized word vectors. For they involve a
high computational cost and their sparsity can also harm performance. Therefore
several techniques have been proposed for computing dense word embeddings of
lower dimension. Mikolov et al. (2013)’s word2vec trains a very simple NN to
predict all words in an unlabeled text given their respective neighbors in a certain
context window.7 Following the terminology in Fig. 1.2, the resulting word vectors
are taken from the input layer of this NN. The word2vec approach is therefore
akin to randomly initializing word representations and learning them from the
(downstream) task objective. The difference is that the word2vec task does not
need labeled data but operates on raw text. It is similar to language modeling in
that it estimates the probability of words given context but an important difference
is that sequence information is ignored. Levy and Goldberg (2014a) embraced
this fact by generalizing word2vec’s skip-gram model to processing arbitrary pairs
of words instead of a text corpus. In contrast, Ling et al. (2015) tried to improve
word2vec by adding support for relative position information between words. This
extension called wang2vec made the word embeddings more suitable for syntactic
tasks. While wang2vec does model sequential information to some extent, it still
boils down to modeling pairs of words (with a specific distance), i.e., word-word
co-occurrence statistics, instead of modeling a complete sentence as a language
model would.

GloVe (Pennington et al., 2014) works similarly in that it learns word vectors
from a co-occurrence signal. The difference is that GloVe first aggregates global
co-occurrence counts and then distills the embeddings from them. It has been
argued that models like word2vec or GloVe are intimately connected to low-rank
matrix approximation techniques, such as singular value decomposition (Trefethen
and Bau, 1997) because they aim to find a matrix of lower dimensionality that
expresses the same co-occurrence information as the raw counts in C (see Levy
and Goldberg, 2014b; Levy et al., 2015).

Pretrained Word Token Embeddings

The aforementioned methods all learn only one vector per word type and this
vector remains static after pretraining, i.e., it does not adapt to individual contexts
in the downstream task. An alternative to extracting the first layer, the embedding

7The difference between word2vec’s CBOW and skip-gram model is of limited importance for
this high-level characterization.
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layer, after pretraining – as word2vec does – is keeping the whole pretrained NN
and use some hidden layer representation as input to the downstream model. As
higher-level representations can depend on more than a single input word at a time,
this has the advantage that each token obtains an embedding based on its individual
context. So a word, such as bank, can have different embeddings, depending on
the appropriate sense in the sentence context (cf. river bank vs. bank as financial
institute). And even unambiguous words can benefit from different embeddings
in different contexts for purposes such as coreference resolution (Peters et al.,
2018). To illustrate, consider a model trying to distinguish the two animals in the
sentence A small dog is chased by a larger dog. This type of embedding is called
contextualized (vs. static) or word token (vs. word type) embedding because there
is a different embedding for each token based on its context instead of only one
static embedding per word type.

Similar to the word type embeddings we have seen before, co-occurrence
information is also a useful signal for training models of word token embeddings
and one that does not require annotated data. Contextualized embedding models
are therefore pretrained on language modeling (see above). The hidden states of
ALMs – like ELMo (Peters et al., 2018) or GPT (Radford et al., 2018) – or MLMs –
like BERT (Devlin et al., 2019) or BART (Lewis et al., 2020) – have been reported
to improve downstream task performance, when used as input representations.

1.3.3 Transfer Learning
In general, transfer learning studies how machine learning models can be trans-
ferred to data outside of their training distribution (Ruder, 2019). It has become
ubiquitous in NLP in the last years due to the success of contextualized word
embeddings (see Section 1.3.2).

Classification

For classification tasks, we distinguish two scenarios for the use of these embed-
dings that are computed on the fly by a PLM: (1) The PLM’s weights are frozen
during training on the downstream task. Here, the PLM only delivers the con-
textualized embeddings as input representations for a new randomly initialized
classification model with arbitrary architecture. (2) The gradient is propagated
to the PLM itself and its weights are updated during training. Here, you could
say that the PLM is more intimately part of the task-specific model and the new
randomly initialized part is only an extension. In any case, the use of a PLM for
downstream task training is notably different from the use of static word vectors
such as created by word2vec. While word2vec embeddings are only ever used
to initialize a specific layer of a new model architecture without considering the
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(arguably small) rest of the word2vec NN, the (large) PLM’s architecture is kept
as is and thus defines a substantial part of the computations of the new model. So
it makes sense to say that the use of contextualized word embeddings is a form
of transfer learning. The knowledge acquired by the PLM during training on the
language modeling task is to be transferred to the task we are actually interested
in. Ruder (2019) calls this kind of transfer learning, where two different tasks are
learned one after the other, sequential transfer learning, a type of inductive transfer
learning. Empirical results suggest that language modeling works particularly well
for boosting performance on various NLP tasks compared to other pretraining tasks
(Wang et al., 2019).

Besides the approach of putting a task-specific model extension on top of a
PLM and simply fine-tuning this extended model on target task training data, there
has also been a recent trend to associate specific words with certain classes and
thus transferring the knowledge from the language modeling task more directly to
classification by taking the most probable word in context as classification decision.
In contrast to what we have discussed so far, this approach does not need a randomly
initialized extension to the PLM. For instance, Schick and Schütze (2021a) define
a binary sentiment classification task (positive/negative) as prompting a PLM with
a template like REVIEW It was [MASK]. and comparing the probabilities for great
and bad as candidates for the masked word. The instantiated template Best pizza
ever! It was [MASK]. would then result in a higher probability for great than
for bad. If the textual template and the so-called verbalizer, i.e., the association
between classes and words, are carefully chosen, zero-shot performance can already
be quite high. Further fine-tuning increases performance further.

Although we do not use verbalizers, we show in Chapter 3 that combining
textual patterns with the standard fine-tuning approach is already beneficial on its
own for RIC. In Chapter 4, we take a look at what happens if the patterns are not
bound to elements of the natural language vocabulary, i.e., if their embeddings
contain arbitrary vectors, and analyze how to further boost the performance.

Generation

Although it is highly effective to transfer knowledge from language modeling to
classification tasks, such as RIC, the transfer to generative tasks is even more
natural – at least for language modeling objectives that include the generation
of fluent text. For ALMs, this is always the case. In contrast, MLMs often only
predict single words (Devlin et al., 2019; Liu et al., 2019; Lan et al., 2020) or small
groups of words (Raffel et al., 2019). But they can also be trained to generate the
whole corrupted passage (Lewis et al., 2020), which means their objective does
include generating fluent text in this case.

For generation, decoder-only autoregressive language models, such as Transformer-
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XL (Dai et al., 2019), or encoder-decoder models, such as T5 (Raffel et al., 2019)
or BART (Lewis et al., 2020), are simply fine-tuned on the target task without
modifying or extending the architecture at all. Their usefulness for graph-to-text
generation is investigated in Chapter 7.

1.4 Relation Inference in Context

1.4.1 Task Definition
Relation inference in context (RIC) is the task of detecting entailment between
two relations in a context defined by their arguments. These arguments can be
concrete entities (Berant, 2012), a mixture of concepts and individuals (Levy and
Dagan, 2016), or only abstract entity types (Nakashole et al., 2012). Following our
terminology from Section 1.2.2, we simply define the task over typed relations,
i.e., the domain and range of the two relations form the context. This allows for all
variants of the task because types can contain as many or few entities as necessary.
Consider the following examples with the natural language relation runs:

(1) a. Bezos runs Amazon

b. iPhone runs iOS

(2) a. PERSON runs COMPANY

b. COMPUTER runs SOFTWARE

(1) shows sentences that might be found in a corpus whereas (2) has corresponding
abstractions. It makes sense to attempt reasoning on this more abstract level
because the resulting relation taxonomy (RBox facts) will be more general and the
focus is more on the semantics of the involved relations than on the truth value of
any inferred concrete statement (ABox fact). Consider the following statements
that can be inferred from the previous examples:

(3) a. Bezos leads Amazon

b. iPhone executes iOS

(4) a. PERSON leads COMPANY

b. COMPUTER executes SOFTWARE

A model deciding whether Example (1a) entails Example (3a) or not risks being
distracted by determining the factuality of the ABox fact (3a) instead, which is the
focus of the KBC task (Demir et al., 2021). If the model has to decide whether
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Example (2a) entails Example (4a), however, it can only rely on the semantics of
the two relations in the given context.

Omitting the context completely is often not an option because of its impor-
tance for disambiguation. The examples above show that the same relation runs
can entail either leads ((2a)⇒(4a)) or executes ((2b)⇒(4b)) in different contexts.
Furthermore, it is realistic to assume the availability of domain and range informa-
tion for most relations in a knowledge graph. Chapter 2 also shows a method for
inducing these type signatures if necessary.

RIC is also often called entailment graph induction (Berant et al., 2010, 2012;
Hosseini et al., 2018, 2019). This name reflects the fact that the ultimate goal in
this task is not only to detect entailment between a few pairs of relations but rather
the induction of a whole collection of RBox facts, building a relation taxonomy.
As we have seen before, such relational axioms can be expressed as a graph. An
additional aspect in the induction of the whole entailment graph is the inclusion of
global constraints that enforce known properties of entailment, e.g., transitivity. In
this work, we only focus on the local phenomena of RIC.

When formulating this task on natural language data, RIC is an instance of the
lexical inference task because the lexical semantics of the words expressing the
two relations have to be modeled.

1.4.2 Modeling Approaches

Distributional Semantics

Distributional semantics is arguably the most prominent approach to lexical seman-
tics nowadays. We have seen in Section 1.3.2 that co-occurrence information can
yield a useful signal for determining word similarity (distributional hypothesis).
As (symmetric) similarity is not expected to be enough for RIC, which, in nature,
is an asymmetric task, the distributional inclusion hypothesis (DIH) goes one step
further: If a word w1 entails another word w2, then w2 is expected to occur in
all typical contexts of w1 (Weeds et al., 2004; Geffet and Dagan, 2005). Indeed,
given an entailment like dog⇒ animal and a sentence A dog lies on the street., it
makes perfect sense to replace dog with the more general term. It is, however, not
guaranteed that any text corpus – even a large one – accurately reflects this. It is
always possible that some words do not occur together although such a sentence
would make sense in theory. It is therefore risky to base a computational model
only on counting the overlap of sparse feature vectors.

While most of the DIH methods have been developed for nominal entailment
(hypernymy), it is interesting to evaluate their potential for RIC. We present the
results of such an evaluation and a comparison to word similarity methods based
on dense word vectors in Chapter 2 where we take the entity pairs in a relation’s
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Pattern Example

such Ys as X* such animals as dogs, cats, or hamsters
X*, or/and other Ys dogs, cats, or other animals
Y, including/especially X* all animals, including dogs or cats, . . .

Table 1.1 – Example Hearst patterns (Hearst, 1992) for the nominal entailment
X⇒ Y and example sentences instantiating them.

Pattern Example

Xed, i.e., Yed . . . transformed, i.e., integrated . . .
Yed or at least Xed . . . killed or at least wounded . . .
whether to X or Y . . . whether to open or close . . .

Table 1.2 – Example patterns from VerbOcean (Chklovski and Pantel, 2004)
detecting three different verb-verb relations, i.e., narrow similarity, strength,
and antonymy (from top to bottom) and example sentences instantiating them.

extension E as its distributional features.

Text Patterns

While there is little research on RIC itself, we again find inspiration for a line of
methods in the area of nominal entailment. Textual patterns, such as “X, such as
Y”, were one of the earliest methods to mine hypernym-hyponym pairs (Hearst,
1992). This method is based on the observation that certain phrases naturally tend
to link a class to its members in a text (see Table 1.1 for examples).

Although adapting such patterns seems like a natural fit for RIC and there has
been work on mining verb-verb relations leveraging text patterns (see Table 1.2
for examples), we have to keep in mind that we will miss a lot of valid examples
if we consider all verb pairs invalid that happen to not co-occur in a corpus. This
is similar to the problems of sparse vector methods based on the DIH, which we
discussed before. In an attempt to overcome these problems, Roller et al. (2018)
achieved large improvements for hypernymy detection, i.e., nominal entailment,
by using low-rank embeddings of Hearst pattern information. In a similar spirit,
we aim to combine patterns for verbal entailment with the generalizing abilities of
PLMs in Chapter 3.
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1.5 Graph-Text Conversion

1.5.1 Text Generation from Knowledge Graphs

Modeling

Converting a KG to a text expressing the same information is akin to machine
translation (MT) where a sentence in one language is to be converted to a sentence
in another language with the same meaning. A KG could also be seen as an
encrypted version of the corresponding text in the target language, a point of view
also proposed for MT in the past (Weaver, 1955).

The most common approach in neural MT is to model the conditional prob-
ability P (Y |X) of the target sequence Y given the source sequence X in an
encoder-decoder architecture (Sutskever et al., 2014), such as the aforementioned
Transformer (Section 1.3.1). Consequently, we adapt techniques originally de-
veloped for unsupervised MT (Lample et al., 2018) to facilitate unsupervised
graph↔text conversion in Chapter 5 and describe a way of injecting graph struc-
ture in the Transformer model in Chapter 6.

In contrast to MT, texts and KGs have a large vocabulary overlap. So bilingual
(Vulić and Moens, 2016; Artetxe et al., 2017) or multilingual word embeddings
(Dufter et al., 2018) are much less crucial for graph→text than a copy mechanism
(Gu et al., 2016) or modeling syntax on the sentence-level and content ordering
on the document-level (Wiseman et al., 2017; Zhao et al., 2020). KGs – as a
type of structured knowledge – tend to be less verbose than texts and therefore
have a smaller vocabulary. The KG entities also occur – usually verbatim – in the
corresponding texts but the relation names are generally much shorter than the
spelled out version in a text. This shows the importance of relational semantics
also for graph→text generation.

Evaluation

Compared to classification, which RIC is an instance of, the evaluation of a
language generation model is not as straightforward. While it is simple to compare
a predicted class to an annotated ground truth class and count the number of
errors, it is unclear how to rank two automatically generated translations w.r.t. their
similarity to a reference translation. This is an open question to the extent that even
regular shared tasks investigate it (Mathur et al., 2020b).

Although said shared task reports other metrics to correlate better with human
judgments and various works (Callison-Burch et al., 2006; Smith et al., 2016) have
shown its weaknesses, BLEU (Papineni et al., 2002) remains the de facto standard
for evaluating generation models (Mathur et al., 2020a). BLEU is a modified
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precision measure of the word n-grams in the generated output H compared to the
set {Ri} of references, weighted by a brevity penalty BP that punishes overly short
generations. The standard BLEU measure compares n-grams with 1 ≤ n ≤ 4.

BLEU(H, {Ri}) = BP(H, {Ri}) · exp

(
1

4

4∑

n=1

log pn(H, {Ri})
)

(1.1)

pn(H, {Ri}) =

∑
g∈T

min(rg, count(g,H))

∑
g∈ngramsn(H)

count(g , H)
(1.2)

where T = ngramsn(H) ∩
⋃

i

ngramsn(Ri)

rg = max
i

count(g , Ri)

BP(H, {Ri}) =

{
exp

(
1−min

i

|Ri|
|H|

)
if ∀i. |H| ≤ |Ri|

1 otherwise
(1.3)

where ngramsn(·) extracts all token n-grams of the given length n and count(g,X)
counts how often a particular n-gram g occurs in a sequence X .

Its complex computation makes BLEU fairly difficult to interpret intuitively –
other than the guideline that a higher number means better correspondence to the
reference texts. Two other problems also come to mind: (1) BLEU depends on the
number of references in that a higher number of references leads to higher scores
and (2) BLEU highly depends on the chosen text segmentation (tokenization). The
first problem comes from the brevity penalty (Eq. (1.3)) only looking at the shortest
reference and the overlap T (Eq. (1.2)) counting an n-gram already correct if it
occurs in any of the references. The second problem is an artifact of counting and
comparing word n-grams up to a maximum length of 4. First, word overlap will not
be correctly detected if the references and the generated output are not tokenized
in the same deterministic way. Second, the use of shorter (subword) tokens distorts
the picture in that n-grams vary in the number of “real” words (in the linguistic
sense) they capture.

So, when interpreting BLEU scores from different datasets or models, we
have to make sure that these conditions are the same. To ensure comparability
of different models on the same dataset (i.e., without modifying the number of
references between runs), generated outputs and references should be detokenized
and fed as plain text to a widely recognized reference implementation, such as
SacreBLEU (Post, 2018).
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Other evaluation metrics for language generation, such as chrF++ (Popović,
2017) or character-level (Sacre)BLEU, aim to avoid this tokenization issue by
comparing strings on the character level. Finally, other metrics aim to overcome
the limitations of simple string matching by accounting for the fact that there is
often more than one formulation of the same statement. For instance, METEOR
(Banerjee and Lavie, 2005) does not require an exact match between words but
relies on morphological stemming and a list of synonyms. Several metrics, such as
BERTScore (Zhang et al., 2020), BLEURT (Sellam et al., 2020), and MoverScore
(Zhao et al., 2019), also make use of pretrained Transformer language models to
detect paraphrases. Given the different properties of all these automatic metrics,
one should not rely on only one but rather compare several of them to judge
language generation models.

The alternative to automatic metrics is to conduct a human evaluation where,
typically, either domain experts or arbitrary crowd workers have to judge the output
of several models and human references against each other according to different
criteria, such as fluency, adequacy, etc. Although this is commonly perceived
as the most reliable form of evaluation for language generation, there is also a
number of disadvantages, such as high cost and a lack of reproducibility as well as
comparability across such studies (Howcroft et al., 2020). The topic of examining
and improving the reproducibility of human evaluation experiments has recently
gained momentum in the first shared task on this subject to be held in 2021.8

1.5.2 Knowledge Graph Extraction from Text
Just as graph→text helps people understand the structured knowledge in KGs,
text→graph makes information accessible to machines that would otherwise only
be available as text, possibly because a non-KG-expert authored it. Given the
abundance of information stored in natural language text, automatic text→graph
conversion is a big opportunity for automatic information processing. The large
variety of potentially relevant information, however, is also a challenge because
not all textual relations can be expressed reasonably in any given KG schema. In
analogy to the term database schema (Imielinski and Lipski, 1982), we use the term
KG schema to denote the available node and edge labels in a KG and their intended
semantics. We distinguish two main approaches to this challenge: (1) Discard
information that does not fit into the schema as irrelevant or (2) dynamically extend
the KG schema to put as much information from the text into the KG as possible.

The first is the traditional approach of completing an existing KB with infor-
mation extracted from text. Here, we assume that the KG schema is rich enough
to cover all possible knowledge of interest. The classic pipeline approach first

8https://reprogen.github.io/, accessed on 16th August 2021.
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detects entity mentions in the text and links them to their corresponding entities
in the KG (Kannan Ravi et al., 2021). Then, performing a task called relation
extraction, the new KG facts are built by classifying each sentence that mentions
at least two entities according to a given list of predefined relations (Nadgeri et al.,
2021). There are also attempts at jointly solving these two tasks (Nayak and Ng,
2020; Yamada et al., 2020).

The second approach is called open information extraction (OIE) (Niklaus
et al., 2018). Again, each sentence is processed separately and both entities and
relations have to be detected to form KG facts. The difference is that these fact
elements do not stem from the fixed set V of entities and the fixed inventory L
of relations in a target KG, but they are identified freely, following syntactic and
lexical heuristics (Banko et al., 2007; Fader et al., 2011). OIE can be used both
to create a KG entirely from scratch (Mitchell et al., 2015) and to extend existing
KGs (Riedel et al., 2013; Shi and Weninger, 2018). In the latter case, it can be a
challenge to identify and unify semantically similar relations and entities in order
to make full use of the additional knowledge. This research area is known under
many names, such as ontology mapping (Choi et al., 2006), KG alignment (Wang
et al., 2020), KB unification (Delli Bovi et al., 2015), or, specifically for the output
of OIE, KB canonicalization (Vashishth et al., 2018; Wu et al., 2018).

In Chapter 2, we take a hybrid approach to constructing a textual event KG
from scratch, the basis for our RIC benchmark named SherLIiC. We use entities
linked to Freebase (Bollacker et al., 2008), thus grounding SherLIiC in Freebase,
but define the relation between two entities as the lexicalized syntactic dependency
path between them (for details see Chapter 2), thus flexibly allowing for an arbitrary
number of possible relations. This flexibility is important to account for the large
variety of natural language relations.

In Chapter 5, we present yet another approach. By means of unsupervised
learning, we build a generative system that converts a text to a corresponding
KG (and vice versa) in an end-to-end fashion, i.e., without the explicit steps of
sentence boundary detection, entity detection, and relation extraction. Although the
model does not choose from a given list of predefined relations and the generation
is unconstrained, i.e., in principle, any string can be generated to represent a
relation, we still encourage the model to adapt to a target KG schema by showing a
collection of unlabeled KGs with the desired schema during unsupervised training.
In summary, our model does not use parallel text-KG pairs and is not constrained
on the entities or relations it may detect, but it still aims to mimic a given collection
of example KGs.

In Chapter 8, the same approach is used with supervised training to provide a
textual prior for scene graph classification.
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1.6 Conclusion
In this introductory chapter, we motivated the research topic of computationally
modeling binary relations and justified the two tasks, RIC and graph↔text con-
version, as application domains. We gave an overview of important concepts that
define the broader scope of this thesis and described relevant methods that are
analyzed and used in the next chapters.

1.6.1 Contributions
Referring to the research questions outlined in Section 1.1.1, this thesis presents
the following contributions:

(i) Data: We design and conduct the collection and annotation of new data
displaying the phenomena of RIC and contrasting them with distributional
similarity. In a large-scale evaluation, we demonstrate the shortcomings of
previous data collections for modeling relational semantics (Chapter 2).

(ii) Models: We present several new models for RIC and graph↔text conver-
sion and evaluate their effectiveness both quantitatively and qualitatively
throughout the thesis.

(iii) Analysis: Extensive performance evaluations and ablation studies identify
key factors of successful models. Chapter 7, in particular, gives insights into
the inner workings of a PLM.

(iv) Improvements: We improve the state of the art for our two tasks along several
axes: need for training data (Chapter 5), efficiency (Chapter 6), and task
performance (Chapters 3 and 4).

1.6.2 Future Work
Our suggestions for future work are also structured around our four research
questions:

(i) Data: The in-domain performance on existing benchmarks we report in
Chapters 3 and 4 is already quite high while out-of-domain performance is
not. So a challenge for future research will be the collection of more data to
capture a larger variety of RIC phenomena during training and evaluation to
(a) better assess the quality of RIC models and (b) improve generalization to
existing datasets. Automatic annotation of the large collection of unlabeled
inference candidates SherLIiC-InfCands described in Chapter 2 and methods
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leveraging noisy annotations (e.g., Zhang and Sabuncu, 2018) could be a
starting point for this endeavor.

(ii) Models: Despite their success in both supervised and unsupervised learning,
sequence-to-sequence models do not capture the structure of a graph directly
but only via the detour of a serialization (Zhao et al., 2020). This strongly
suggests that there is a potential gain for graph↔text conversion if we can
unify our work on PLMs (Chapter 7) or unsupervised training (Chapter 5)
with a stronger graph-structural bias. There is a recent trend for both of these
research directions (Ribeiro et al., 2021; Guo et al., 2020; Ke et al., 2021).

(iii) Analysis: Combining PLMs with text patterns or prompts has recently gained
enormous popularity (Schick and Schütze, 2021a,b; Zhong et al., 2021; Gao
et al., 2021, inter alia). Some studies (e.g., Liu et al., 2021) show that
patterns based on artificial tokens instead of real words can lead to equal or
even larger performance gains (see also Chapter 4), suggesting that there is
still a lot about the interaction of PLMs and context templates that is not
well understood. It will be a challenge for modeling relational inference in
particular but also for machine learning in general to analyze these models
and improve our understanding.

(iv) Improvements: Especially in the context of very low-resource graph↔text
conversion, the question arises how a small number of labeled samples (e.g.,
100) should ideally be used. In Chapter 5, we decide to use them for model
selection, i.e., as a development set. In light of the recent success of PLMs in
few-shot learning (Schick and Schütze, 2021b, inter alia), however, it might
be a good idea to use part of the annotations for fine-tuning or employ a
combination of unsupervised and few-shot training. It would be of practical
value to investigate these possibilities and determine best practices.
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Chapter 2

SherLIiC: A Typed Event-Focused
Lexical Inference Benchmark for
Evaluating Natural Language
Inference
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Abstract

We present SherLIiC,1 a testbed for lexical in-
ference in context (LIiC), consisting of 3985
manually annotated inference rule candidates
(InfCands), accompanied by (i) ~960k un-
labeled InfCands, and (ii) ~190k typed tex-
tual relations between Freebase entities ex-
tracted from the large entity-linked corpus
ClueWeb09. Each InfCand consists of one of
these relations, expressed as a lemmatized de-
pendency path, and two argument placehold-
ers, each linked to one or more Freebase types.
Due to our candidate selection process based
on strong distributional evidence, SherLIiC is
much harder than existing testbeds because
distributional evidence is of little utility in the
classification of InfCands. We also show that,
due to its construction, many of SherLIiC’s
correct InfCands are novel and missing from
existing rule bases. We evaluate a number of
strong baselines on SherLIiC, ranging from se-
mantic vector space models to state of the art
neural models of natural language inference
(NLI). We show that SherLIiC poses a tough
challenge to existing NLI systems.

1 Introduction

Lexical inference (LI) can be seen as a focused
variant of natural language inference (NLI), also
called recognizing textual entailment (Dagan et al.,
2013). Recently, Gururangan et al. (2018) showed
that annotation artifacts in current NLI testbeds
distort our impression of the performance of state
of the art systems, giving rise to the need for new
evaluation methods for NLI. Glockner et al. (2018)
investigated LI as a way of evaluating NLI systems
and found that even simple cases are challenging to
current systems. In this paper, we release SherLIiC,
a testbed specifically designed for evaluating a sys-
tem’s ability to solve the hard problem of modeling
lexical entailment in context.

1https://github.com/mnschmit/SherLIiC

(1) troponymy
ORGF[A] is granting to EMPL[B]
⇒ ORGF[A] is giving to EMPL[B]

(2)
synonymy + ORGF[A] is supporter of ORGF[B]
derivation ⇒ ORGF[A] is backing ORGF[B]

(3)
typical AUTH[A] is president of LOC[B]
actions ⇒ AUTH[A] is representing LOC[B]

(4)
script PER[A] is interviewing AUTH[B]
knowledge ⇒ PER[A] is asking AUTH[B]

(5)
common sense ORGF[A] claims LOC[B]
knowledge ⇒ ORGF[A] is wanting LOC[B]

Table 1: Examples of SherLIiC InfCands and NLI
challenges they cover. ORGF=organization founder,
EMPL=employer, AUTH=book author, LOC=location,
POL=politician, PER=person.

Levy and Dagan (2016) identified context-
sensitive – as opposed to “context-free” – entail-
ment as an important evaluation criterion and cre-
ated a dataset for LI in context (LIiC). In their data,
WordNet (Miller, 1995; Fellbaum, 2005) synsets
serve as context for one side of a binary relation,
but the other side is still instantiated with a sin-
gle concrete expression. We aim to improve this
setting in two ways.

First, we type our relations on both sides, thus
making them more general. Types provide a con-
text that can help in disambiguation and at the same
time allow generalization over contexts because ar-
guments of the same type are represented abstractly.
An example for the need for disambiguation is the
verb “run”. “run” entails “lead” in the context of
PERSON / COMPANY (“Bezos runs Amazon”). But
in the context of COMPUTER / SOFTWARE, “run”
entails “execute”/“use” (“my mac runs macOS”).
Here, types help find the right interpretation.

Second, we only consider relations between
named entities (NEs). Inference mining based on
non-NE types such as WordNet synsets (e.g., ANI-
MAL, PLANT LIFE) primarily discovers facts like
“parrotfish feed on algae”. In contrast, the focus
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on NEs makes it more likely that we will capture
events like “Walmart closes gap with Amazon” and
thus knowledge about event entailment like [“A
is closing gap with B”⇒ “B is having lead over
A”] that is substantially different from knowledge
about general facts.

In more detail, we create SherLIiC as follows.
First, we extract verbal relations between Freebase
(Bollacker et al., 2008) entities from the entity-
linked web corpus ClueWeb09 (Gabrilovich et al.,
2013).2 We then divide these relations into typable
subrelations based on the most frequent Freebase
types found in their extensions. We then create a
large set of inference rule candidates (InfCands),
i.e., premise-hypothesis-pairs of verbally expressed
relations. Finally, we use Amazon Mechanical Turk
to classify each InfCand in a randomly sampled
subset as entailment or non-entailment.

In summary, our contributions are the follow-
ing: (1) We create SherLIiC, a new resource for
LIiC, consisting of 3985 manually annotated Inf-
Cands. Additionally, we provide ~960k unlabeled
InfCands (SherLIiC-InfCands), and the typed event
graph SherLIiC-TEG, containing ~190k typed tex-
tual binary relations between Freebase entities.
(2) SherLIiC is harder than existing testbeds be-
cause distributional evidence is of limited utility
in the classification of InfCands. Thus, SherLIiC
is a promising and challenging resource for devel-
oping NLI systems that go beyond shallow seman-
tics. (3) Human-interpretable knowledge graph
types serve as context for both sides of InfCands.
This makes InfCands more general and boosts
the number of event-like relations in SherLIiC.
(4) SherLIiC is complementary to existing collec-
tions of inference rules as evidenced by the low
recall these resources achieve (cf. Table 3). (5) We
evaluate a large number of baselines on SherLIiC.
The best-performing baseline makes use of typing.
(6) We demonstrate that existing NLI systems do
poorly on SherLIiC.

2 Generation of InfCands

This section describes creation (§ 2.1) and typing
(§ 2.2) of the typed event graph SherLIiC-TEG and
then the generation of SherLIiC-InfCands (§ 2.3).

2.1 Relation Extraction

For each sentence s in ClueWeb09 that contains
at least two entity mentions, we use MaltParser

2http://lemurproject.org/clueweb09

(Nivre et al., 2007) to generate a dependency graph,
where nodes are labeled with their lemmas and
edges with dependency types. We take all shortest
paths between all combinations of two entities in s
and represent them by alternating edge and node la-
bels. As we want to focus on relations that express
events, we only keep paths with a nominal subject
on one end. We also apply heuristics to filter out
erroneous parses. See Appendix A for heuristics
and Table 5 for examples of relations.
Notation. Let R denote the set of extracted re-
lations. A relation R ∈ R is represented as a
set of pairs of Freebase entities (its extension):
R ⊆ E × E , with E the set of Freebase entities.
Let π1, π2 be functions that map a pair to its first
or second entry, respectively. By abuse of notation,
we also apply them to sets of pairs. Finally, let T
be the set of Freebase types and τ : E → 2T the
function that maps an entity to the set of its types.

2.2 Typing

We define a typable subrelation of R ∈ R as a
subrelation whose entities in each argument slot
share at least one type, i.e., an S ⊆ R such that:

∀i ∈ {1, 2} : ∃t ∈ T : t ∈
⋂

e∈πi(S)
τ(e)

We compute the set Typek2(R) of the (up to) k2

largest typable subrelations of R and use them in-
stead of R. First, for each argument slot i of the
binary relation R, the k types tij (with 1 ≤ j ≤ k)
are computed that occur most often in this slot:

tij := argmax
t

∣∣{ p ∈ R | t ∈ τ ij(πi(p))
}∣∣

with

τ i1(e) = τ(e)

τ ij+1(e) = τ ij(e)−
{
tij
}

Then, for each pair

(s, u) ∈
{ (
t1j , t

2
l

)
| j, l ∈ {1, . . . , k}

}

of these types, we construct a subrelation

Rs,u := { (e1, e2) ∈ R | s ∈ τ(e1), u ∈ τ(e2) }

If |Rs,u| ≥ rmin, Rs,u is included in Typek2(R).
In our experiments, we set k = rmin = 5.
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The type signature (tsg) of a typed relation T is
defined as the pair of sets of types that is common
to first (resp. second) entities in the extension:

tsg(T ) =


 ⋂

e∈π1(T )
τ(e),

⋂

e∈π2(T )
τ(e)




Incomplete type information. Like all large
knowledge bases, Freebase suffers from incom-
pleteness: Many entities have no type. To avoid
losing information about relations associated with
such entities, we introduce a special type > and
define argmaxt |∅| := >. We define the relations
Rs,>,R>,u andR>,> to have no type restriction on
entities in a > slot. This concerns approximately
17.6% of the relations in SherLIiC-TEG.

2.3 Entailment Discovery
Our discovery procedure is based on Sherlock
(Schoenmackers et al., 2010). For the InfCand
A⇒ B (A,B ∈ R), we define the relevance score
Relv, a metric expressing Sherlock’s stat. relevance
criterion P (B | A)� P (B) (cf. Salmon, 1971).

Relv(A,B) :=
P (B | A)
P (B)

=
|A ∩B| |E × E|
|A| |B|

Our significance score σ(A,B) is a scaled version
of the significance test lrs used by Sherlock:

P (B | A) lrs(A,B) =
|A ∩B| lrs(A,B)

|A|

with lrs(A,B) (likelihood ratio statistic) defined as

2 |A|
∑

H∈{B,¬B}
P (H | A) log(Relv(A,H)).

Additionally, we introduce the entity support ratio:

esr(A,B) :=

∣∣∣
⋃
i∈{1,2} πi(A ∩B)

∣∣∣
2 |A ∩B|

This score measures the diversity of entities in
A ∩ B. We found that many InfCands involve
a few frequent entities and so obtain high Relv and
σ scores even though the relations of the rule are se-
mantically unrelated. esr penalizes such InfCands.

We apply our three scores defined above to all
possible pairs of relations (A,B) ∈ R × R and
accept a rule iff all of the following criteria are met:

1. ∀i ∈ {1, 2} : πi(tsg(A⇒ B)) 6= ∅
2. |A ∩B| ≥ rmin

Fact: location[B] is annexing location[A] .
Examples for location[B]: Russia / USA / Indonesia
Examples for location[A]: Cuba / Algeria / Crimea

� fact incomprehensible

Please answer the following questions:
Is it certain that location[B] is taking control of location[A]?

yes no incomprehensible
Is it certain that location[B] is taking location[A]?

yes no incomprehensible
Is it certain that location[B] is bordered by location[A]?

yes no incomprehensible

Figure 1: Annotation Interface on Amazon MTurk

3. ∀i ∈ {1, 2} : |πi(A ∩B)| ≥ rmin

4. Relv(A,B) ≥ ϑrelv

5. σ(A,B) ≥ ϑσ
6. esr(A,B) ≥ ϑesr

where tsg(A ⇒ B) is component-wise intersec-
tion of tsg(A) and tsg(B) and ϑrelv = 1000,
ϑσ = 15, ϑesr = 0.6. We found these numbers by
randomly sampling InfCands and inspecting their
scores. Typing lets us set these thresholds higher,
benefitting the quality of SherLIiC-InfCands.

Lastly, we apply Schoenmackers et al. (2010)’s
heuristic to only accept the 100 best-scoring
premises for each hypothesis. For each hypothesis
B, we rank all possible premises A by the product
of the three scores and filter out cases where A and
B only differ in their types.

3 Crowdsourced Annotation

SherLIiC-InfCands contains ~960k InfCands. We
take a random sample of size 5267 and annotate it
using Amazon Mechanical Turk (MTurk).

3.1 Task Formulation

We are asking our workers the same kind of ques-
tions as Levy and Dagan (2016) did. We likewise
form batches of sentence pairs to reduce annota-
tion cost. Instead of framing the task as judging
the appropriateness of answers, however, we state
the premise as a fact and ask workers about its en-
tailed consequences, i.e., we ask for each candidate
hypothesis whether it is certain that it is also true.
Fig. 1 shows the annotation interface schematically.

We use a morphological lexicon (XTAG Re-
search Group, 2001) and form the present tense
of a dependency path’s predicate. If a sentence
is flagged incomprehensible (e.g., due to a parse
error), it is excluded from further evaluation.
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Annotated Subset of SherLIiC-InfCands
Validated InfCands 3985
Balance yes/no 33% / 67%
Pairs with unanimous gold label 53.0%
Pairs with 1 disagreeing annotation 27.4%
Pairs with 2 disagreeing annotations 19.6%
Individual label = gold label 86.7%

Table 2: Statistics for crowd-annotated InfCands. The
gold label is the majority label.

We put premise and hypothesis in the present
(progressive if suitable) based on the intuition that
a pair is only to be considered an entailment if the
premise makes it necessary for the hypothesis to be
true at the same time. This condition of simultane-
ity follows the tradition of datasets such as SNLI
(Bowman et al., 2015) – in contrast to more lenient
evaluation schemes that consider a rule to be cor-
rect if the hypothesis is true at any time before or
after the reference time of the premise (cf. Lin and
Pantel, 2001; Lewis and Steedman, 2013).

3.2 Annotation Quality
We imposed several qualification criteria on crowd
workers: number of previous jobs on MTurk, over-
all acceptance rate and a test that each worker had
to pass. Some workers still had frequent low agree-
ment with the majority. However, in most cases
we obtained a clear majority annotation. These
annotations were then used to automatically detect
workers with low trust, where trust is defined as
the ratio of submissions agreeing with the majority
answer and a worker’s total number of submissions.
We excluded workers with a trust of less than 0.8
and collected replacement annotations until we had
at least five annotations per InfCand.

Table 2 shows that workers agreed unanimously
for 53% and that the maximal number of two dis-
agreements only occurs for 19.6%. The high num-
ber of times an individual agrees with the gold label
suggests that humans can do the task reliably. Inter-
estingly, the number of disagreements is not evenly
distributed among the two classes entailment/non-
entailment. If the majority agrees on entailment, it
is comparatively much more likely that at least one
of the workers disagrees (cf. Fig. 2). This suggests
that our workers were strict and keen on achieving
high precision in their annotations.

4 Baselines

We split our annotated data 25:75 into SherLIiC-
dev and SherLIiC-test, stratifying on annotated la-

no yes
Class label

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f a
nn

ot
at

io
ns

 d
isa

gr
ee

in
g 

wi
th

 th
e 

m
aj

or
ity 0

1
2

Figure 2: Number of disagreements per class label on
all annotations.

bel (yes/no) and number of disagreements with the
majority (0/1/2). If unanimity of annotations marks
particularly clear cases, we figure they should be
evenly distributed on dev and test.

To establish the state of the art for SherLIiC,
we evaluate a number of baselines. Input to these
baselines are either the dependency paths or the
sentences that were presented to the crowd workers.
Baselines that require a threshold to be used as
binary classifiers are tuned on SherLIiC-dev.
Lemma baseline. Following Levy and Dagan
(2016), this baseline classifies an InfCand as valid
if the following holds true for the premise p and
hypothesis h after lemmatization: (1) p contains
all of h’s content words,3 (2) p’s and h’s predicates
are identical, and (3) the relations’ active/passive
voice matches their arguments’ alignment.
Rule collection baselines. Berant I (Berant
et al., 2011) and Berant II (Berant, 2012)4

are entailment graphs. PPDB is the largest collec-
tion (XXXL) of PPDB 2.0 (Pavlick et al., 2015).5

Patty is a collection of relational patterns, con-
sisting of ontological types, POS placeholders
and words. We use the version extracted from
Wikipedia with Freebase types (Nakashole et al.,
2012). Schoenmackers is the rule collection
released by Schoenmackers et al. (2010). Chirps
is an ever-growing6 predicate paraphrase database
extracted via event coreference in news Tweets
(Shwartz et al., 2017b). All Rules denotes the
union of all of these rule bases. For rules with type
(or POS) constraints, we ignore these constraints

3We use the stop word list of nltk (Loper and Bird, 2002).
4We use default threshold 0.
5We ignore stop words and punctuation for phrases.
6We use the version downloaded on May 28, 2019.
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to boost recall. We will see that even with these
recall-enhancing measures, the majority of our cor-
rect InfCands is not covered by existing rule bases.

Word2vec baselines. word2vec is based on
Mikolov et al. (2013b)’s pre-trained word em-
beddings of size 300. We average them to ob-
tain a vector representation of relations consist-
ing of multiple words and use cosine similar-
ity to judge a relation pair. typed rel emb
(resp. untyped rel emb) is obtained by train-
ing word2vec skip-gram (Mikolov et al., 2013a)
with vector size 300 and otherwise default param-
eters on a synthetic corpus representing the exten-
sions of typed (resp. untyped) relations. The corpus
is obtained by writing out one entity-relation-entity-
triple per line, where each entity is prefixed with
the argument slot it belongs to. w2v+typed rel
(resp. w2v+untyped rel) produces its score
by summing the scores of word2vec and
typed rel emb (resp. untyped rel emb).

Some type signatures (tsgs) benefit more
from type-informed methods than others. For
example, the correct inference [INFLUENCER

is explaining in WRITTEN WORK ⇒ INFLU-
ENCER is writing in WRITTEN WORK] is
detected by w2v+typed rel, but not by
w2v+untyped rel. We therefore combine
these two methods by using, for each tsg, the
method that works better for that tsg on dev. (For
tsgs not occurring in dev, we take the method that
works better for the individual types occurring
in the tsg. We use untyped embeddings if all
else fails.) We refer to this combination as
w2v+tsg rel emb.

Knowledge graph embedding baselines. As
SherLIiC-TEG has the structure of a knowledge
graph (KG), we also evaluate the two KG embed-
ding methods TransE (Bordes et al., 2013) and
ComplEx (Trouillon et al., 2016), as provided by
the OpenKE framework (Han et al., 2018).

Asymmetric baselines. Entailment models built
upon cosine similarity are symmetric whereas en-
tailment is not. Therefore many asymmmetric mea-
sures based on the distributional inclusion hypoth-
esis have been proposed (Kotlerman et al., 2010;
Santus et al., 2014; Shwartz et al., 2017a; Roller
et al., 2018). We consider WeedsPrec (Weeds
et al., 2004) and invCL (Lenci and Benotto, 2012),
which have strong empirical results on hypernym
detection. We use cooccurrence counts with entity
pairs as distributional representation of a relation.

Supervised NLI models. As LIiC is a special
case of NLI, our dataset can also be used to eval-
uate the generalization capabilities of supervised
models trained on large NLI datasets. We pick
ESIM (Chen et al., 2017), a state-of-the-art super-
vised NLI model, trained on MultiNLI (Williams
et al., 2018) as provided by the framework Jack
the Reader (Weissenborn et al., 2018). Input to
ESIM are the sentences from the annotation pro-
cess with placeholders instantiated by entities ran-
domly picked from the example lists that had also
been shown to the crowd workers (cf. Fig. 1). As
we want to measure ESIM’s capacity to detect en-
tailment, we map its prediction of both neutral and
contradiction to our non-entailment class.
Sherlock+ESR. We also evaluate the candidate
scoring method inspired by Schoenmackers et al.
(2010) that created the data in the first place.
We again combine the three scores described in
§ 2 by multiplication. The low performance of
Sherlock+ESR (cf. Table 3) is evidence that the
dataset is not strongly biased in its favor and thus
is promising as a general evaluation benchmark.

5 Experimental Results and Discussion

Quantitative observations. Table 3 summarizes
the performance of our baselines on predicting the
entailment class for SherLIiC-dev and -test.

Rule collections (lines 1–6) have recall between
0.119 and 0.308; the recall of their union (line 7)
is only 0.483 on dev and 0.493 on test, showing
that we found indeed new valid inferences missing
from existing rule bases.

The state-of-the-art neural model ESIM does not
generalize well from MultiNLI (its training set) to
LIiC. In fact, it hardly improves on the baseline that
always predicts entailment (Always yes). Our
dataset was specifically designed to only contain
good InfCands based on distributional features. So
it poses a challenge to models that cannot make the
fine semantic distinctions necessary for LIiC.

Turning to vector space models (lines 11–24),
dense relation representations (lines 12, 13) predict
entailment better than sparse models (lines 17–20)
although they cannot use asymmetric measures.

KG embeddings (lines 21–24) do not seem at
all appropriate for measuring the similarity of re-
lations. First, their performance is very close to
Always yes. Second, their F1-optimal thresh-
olds are very low – even negative. This suggests
that their relation vectors do not contain any helpful
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dev test

Baseline θ∗ P R F1 P R F1

1 Berant I – 0.699 0.154 0.252 0.762 0.126 0.216
2 Berant II – 0.800 0.181 0.296 0.774 0.186 0.300
3 PPDB – 0.631 0.211 0.317 0.621 0.240 0.347
4 Patty – 0.795 0.187 0.303 0.779 0.153 0.256
5 Schoenmackers – 0.780 0.139 0.236 0.849 0.119 0.208
6 Chirps – 0.370 0.308 0.336 0.341 0.295 0.316
7 All Rules – 0.418 0.483 0.448 0.404 0.493 0.444

8 Lemma – 0.900 0.109 0.194 0.907 0.089 0.161
9 Always yes – 0.332 1.000 0.499 0.333 1.000 0.499

10 ESIM – 0.391 0.831 0.532 0.390 0.833 0.531

11 word2vec 0.321 0.556 0.625 0.589 0.520 0.606 0.559
12 typed rel emb 0.864 0.561 0.568 0.565 0.532 0.486 0.508
13 untyped rel emb 0.613 0.511 0.740 0.605 0.499 0.672 0.572

14 w2v+typed rel 1.106 0.549 0.710 0.619 0.523 0.688 0.594
15 w2v+untyped rel 0.884 0.565 0.740 0.641 0.528 0.695 0.600
16 w2v+tsg rel emb 0.884 0.566 0.776 0.655 0.518 0.727 0.605

17 WeedsPrec (typed) 0.073 0.335 0.994 0.501 0.333 0.988 0.498
18 WeedsPrec (untyped) 0.057 0.403 0.807 0.538 0.386 0.783 0.517
19 invCL (typed) 0.000 0.332 1.000 0.499 0.333 1.000 0.499
20 invCL (untyped) 0.148 0.362 0.876 0.512 0.357 0.863 0.505

21 TransE (typed) −0.922 0.336 1.000 0.503 0.333 0.991 0.498
22 TransE (untyped) −0.476 0.340 0.964 0.503 0.332 0.942 0.491
23 ComplEx (typed) −0.033 0.339 0.955 0.500 0.337 0.949 0.497
24 ComplEx (untyped) −0.030 0.340 0.952 0.501 0.334 0.939 0.493

25 Sherlock+ESR 9.460 · 105 0.504 0.592 0.544 0.491 0.526 0.508

Table 3: Precision, recall and F1 score on SherLIiC-dev and -test. All baselines run on top of Lemma. Thresholds
(θ∗) are F1-optimized on dev. Best result per column is set in bold.

information for the task. These methods were not
developed to compare relations; the lack of useful
information is still surprising and thus is a promis-
ing direction for future work on KG embeddings.

General purpose dense representations
(word2vec, line 11) perform comparatively
well, showing that, in principle, they cover the
information necessary for LIiC. Embeddings
trained on our relation extensions SherLIiC-TEG
(line 13), however, can already alone achieve better
performance than word2vec embeddings alone.

In general, type-informed relation embeddings
seem to have a disadvantage compared to unre-
stricted ones (e.g., cf. lines 12 and 13) – presumably
because type-informed baselines have training sets
that are smaller (due to filtering) and sparser (since
relations are split up according to type signatures).
The combination of general word2vec and special-
ized relation embeddings (lines 14–16), however,
consistently brings gains. This indicates that distri-
butional word properties are complementary to the
relation extensions our method extracts. So using
both sources of information is promising for future
research on modeling relational semantics.

w2v+tsg rel emb is the best-performing
method. It combines typed and untyped relation
embeddings as well as general-purpose word2vec
embeddings. Even though one cannot rely on typed
extensions only, this shows that incorporating type
information is beneficial for good performance.

We use w2v+tsg rel emb to provide a noisy
annotation for SherLIiC-InfCands. This is a useful
resource because learning from noisy labels has
been well studied (Frénay and Verleysen, 2014;
Hendrycks et al., 2018) and is often beneficial.
Qualitative observations. Although SherLIiC’s
creation is based on the same method that was used
to create Schoenmackers, SherLIiC is funda-
mentally different for several reasons: (1) The rule
sets are complementary (cf. the low recall of 0.139
and 0.119 in Table 3). (2) The majority of rules
in Schoenmackers has more than one premise,
leaving only ~13k InfCands in Schoenmackers
compared to ~960k in SherLIiC-InfCands that fit
the format of NLI. (3) Schoenmackers is fil-
tered more aggressively with the goal of maximiz-
ing the number of correct rules. This, however,
makes it inadequate as a challenging benchmark be-
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(1) PERSON[A] is REGION[B]’s ruler
⇒ PERSON[A] is dictator of REGION[B]

(2) LOCATION[A] is fighting with ORGF[B]
⇒ LOCATION[A] is allied with ORGF[B]

(3) ORGF[A] is coming into LOCATION[B]
⇒ ORGF[A] is remaining in LOCATION[B]

(4) ORGF[A] is seeking from ORGF[B]
⇒ ORGF[B] is giving to ORGF[A]

(5) LOCATION[A] is winning war against LOCATION[B]
⇒ LOCATION[A] is declaring war on LOCATION[B]

Table 4: False positives for each of the three
best-performing baselines taken from SherLIiC-dev.
ORGF=organization founder.

cause the performance of Always yes would be
close to 100%. (4) SherLIiC is focused on events.
When linking the relations from SherLIiC-TEG
back to their surface forms in the corpus, 80% of
them occur at least once in the progressive, which
suggests that the large majority of our relations
indeed represent events.

Taking a closer look at SherLIiC, we see that
the data require a large variety of lexical knowl-
edge even though their creation has been entirely
automatic. Table 1 shows five positively labeled
examples from SherLIiC-dev, each highlighting
a different challenge for statistical models that is
crucial for NLI. (1) is an instance of troponymy:
“granting” is a manner or kind of “giving”. This
is the verbal equivalent to nominal hyponymy. (2)
combines synonymy (“support” ⇔ “back”) with
morph. derivation. (3) can only be classified cor-
rectly if one knows that it is one of the typical
actions of a president to represent their country.
(4) requires knowledge about the typical course
of events when interviewing someone. A typical
interview involves asking questions. (5) can only
be detected with common sense knowledge that
goes even beyond that: you generally only claim
something if you want it.

An error analysis of the three best-performing
baselines (lines 14–16 in Table 3) reveals that none
of them was able to detect the five correct InfCands
from Table 1. Explicit modeling of one of the phe-
nomena described above seems a promising direc-
tion for future research to improve recall. Table 4
shows five cases where InfCands were incorrectly
labeled as entailment. (1) shows the importance
of modeling directionality: every “dictator” is a
“ruler” but not vice versa. (2) shows a well-known
problem in representation learning from cooccur-

nsubj–X–prep–of–obj ⇔ nsubj–X–poss
A is an ally of B A is B’s ally
nsubj–X–prep–in–obj ⇔ nsubj–X–poss
A is the capital in B A is B’s capital
nsubjpass–X–prep–by–obj ⇔ obj–X–nsubj
A is followed by B B follows A
nsubj–one–prep–of–obj–X–obj ⇔ nsubj–X–obj
A is one of the countries in B A is a country in B
nsubj–capital–conj–X–obj ⇒ nsubj–X–obj
A is the capital and biggest city in B A is a city in B

nsubj–Xer–prep–of–obj ⇔ nsubj–X–obj
A is a teacher of B A teaches B
nsubj–co-Xer–prep–of–obj ⇒ nsubj–X–obj
A is a co-founder of B A founds B
nsubj–reX–obj ⇒ nsubj–X–obj
A rewrites B A writes B
nsubj–overX–obj ⇒ nsubj–X–obj
A overtakes B A takes B

nsubj–agree–xcomp–X–obj ⇒ nsubj–X–obj
A agrees to buy B A buys B
nsubjpass–force–xcomp–X–obj ⇒ nsubj–X–obj
A is forced to leave B A leaves B
nsubjpass–elect–xcomp–X–obj ⇔ nsubj–X–obj
A is elected to be governor of B A is governor of B
nsubj–go–xcomp–X–obj ⇒ nsubj–X–obj
A is going to beat B A beats B
nsubj–try–xcomp–X–obj ⇒ nsubj–X–obj
A tries to compete with B A competes with B
nsubj–decide–xcomp–X–obj ⇒ nsubj–X–obj
A decides to move to B A moves to B
nsubjpass–expect–xcomp–X–obj ⇒ nsubj–X–obj
A is expected to visit B A visits B

Table 5: Most frequent meta rules (top), character level
meta rules (middle), and implicative verb meta rules
(bottom). Bold: Words corresponding to X.

rence: antonyms tend to be close in the embed-
ding space (Mohammad et al., 2008; Mrkšić et al.,
2016). The other examples show other types of
correlation that models relying entirely on distri-
butional information will fall for: the outcome of
events like “coming into a country” or “seeking
something from someone” are in general uncertain
although possible outcomes like “remaining in said
country” (3) or “being given the object of desire”
(4) will be highly correlated with them. Finally,
better models will also take into account the simul-
taneity constraint: “winning a war” and “declaring
a war” (5) rarely happen at the same time.

6 Meta Rules and Implicative Verbs

In addition to the annotated data, we also make
available all ~960k SherLIiC-InfCands found by
our unsupervised algorithm. SherLIiC-InfCands’s
distribution is similar enough to our labeled dataset
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to be useful for domain adaptation, representation
learning and other techniques when working on
LIiC. It can also be investigated on its own in a
purely unsupervised fashion as we will show now.

We can find easily interpretable patterns by look-
ing for cases where premise and hypothesis of an
InfCand have common parts. By masking these
parts (X), we can abstract away from concrete in-
stances and interesting meta rules emerge (Table 5).
The most common patterns represent reasonable
equivalent formulations, e.g., active/passive voice
or “be Y ’sX⇔ beX of Y ” (the in-variant coming
from a lot of location-typed rule instances). The
fifth most frequent pattern could still be formulated
in an even more abstract way but shows already
that the general principle of a conjunction Y ∧X
implying one of its components X can be learned.

If we search for meta rules whose X is part of a
lemma (rather than a longer dependency path), we
discover cases of derivational morphology such as
agent nouns (e.g., ruler, leader) and sense preserv-
ing verb prefixes (e.g., re-write, over-react).

Finally, we observe several implicative verbs
(verbs that entail their complement clauses) in their
typical pattern V to X ⇒ X . A lot of these verbs
are not traditional implicatives, but are called de
facto implicatives by Pavlick and Callison-Burch
(2016) – who argue for the importance of data-
driven approaches to detecting de facto implica-
tives. The meta rule discovery method just de-
scribed is such a data-driven approach.

7 Related Work

NLI challenge datasets. A lot of work exists that
aims at uncovering weaknesses in state-of-the-art
NLI models. Several approaches are based on
modifications of popular datasets, such as SNLI
or MultiNLI. These modifications range from sim-
ple rule-based transformations (Naik et al., 2018) to
rewritings generated by genetic algorithms (Alzan-
tot et al., 2018) or adversarial neural networks
(Zhao et al., 2018). Lalor et al. (2016) constructed
an NLI test set by judging the difficulty of the sen-
tence pairs in a small SNLI subset based on crowd-
sourced human responses via Item Response The-
ory. These works are related as they, too, challenge
existing NLI models with new data but orthogonal
to ours as their goal is not to measure a model’s
knowledge about lexical inference in context.

Glockner et al. (2018) modified SNLI by replac-
ing one word from a given sentence by a synonym,

(co-)hyponym, hypernym or antonym to build a
test set that requires NLI systems to use lexical
knowledge. They rely on WordNet’s lexical taxon-
omy. This, however, is difficult for verbs because
their semantics depends more on context. Finally,
Glockner et al. (2018)’s dataset has a strong bias
for contradiction whereas our dataset is specifically
designed to contain cases of entailment.

Our work is more closely related to the dataset
by Levy and Dagan (2016), who frame relation en-
tailment as the task of judging the appropriateness
of candidate answers. Their hypothesis is that an
answer is only appropriate if it entails the predi-
cate of the question. This is often but by no means
always true; certain questions imply additional in-
formation. Consider: “Which country annexed
country[B]?” The answer candidate “country[A]
administers country[B]” might be considered valid,
given that it is unlikely that one country annexes B
and another country administers it. The inference
administer⇒ annex, however, does not hold. Be-
cause of these difficulties, we follow the more tra-
ditional approach (Zeichner et al., 2012) of asking
about consequences of a given fact (the premise).

Relation extraction. Some works (Schoenmack-
ers et al., 2010; Berant, 2012; Zeichner et al., 2012)
rely on the output from open information extrac-
tion systems (Banko et al., 2007; Fader et al., 2011).
A more flexible approach is to represent relations
as lexicalized paths in dependency graphs (Lin
and Pantel, 2001; Szpektor et al., 2004), some-
times with semantic postprocessing (Shwartz et al.,
2017b) and/or retransforming into textual patterns
(Nakashole et al., 2012). We, too, choose the latter.

Relation typing. Typing relations has become
standard in inference mining because of its use-
fulness for sense disambiguation (Schoenmackers
et al., 2010; Nakashole et al., 2012; Yao et al., 2012;
Lewis and Steedman, 2013). Still some resources
only provide types for one argument slot of their bi-
nary relations (Levy and Dagan, 2016) or no types
at all (Zeichner et al., 2012; Berant, 2012; Shwartz
et al., 2017b). Our InfCands are typed in both argu-
ment slots, which both facilitates disambiguation
and makes them more general.

Some works (Yao et al., 2012; Lewis and Steed-
man, 2013) learn distributions over latent type sig-
natures for their relations via topic modeling. A
large disadvantage of latent types is their lack of
intuitive interpretability. By design, our KG types
are meaningful and human-interpretable.
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Schoenmackers et al. (2010) type common
nouns based on cooccurrence with class nouns
identified by Hearst patterns (Hearst, 1992) and
later try to filter out unreasonable typings by us-
ing frequency thresholds and PMI. As KG entities
are manually labeled with their correct types, we
do not need this kind of heuristics. Furthermore,
in contrast to this ad-hoc type system, KG types
are the result of a KG design process. Notably,
Freebase types function as interfaces, i.e., permit
type-specific properties to be added, and are thus
inherently motivated by relations between entities.

Lexical ontologies, such as WordNet (as used
by Levy and Dagan, 2016) likewise lack this con-
nection between relations and types. Moreover,
relations between real-world entities are more of-
ten events than relations between common nouns.
Thus, in contrast to existing resources that do not
restrict relations to KG entities, SherLIiC contains
more event-like relations.

Nakashole et al. (2012) also use KG types as con-
text for their textual patterns. They simply create
a new relation for each possible type combination
for each entity occurring with a pattern and each
possible type of this entity. It is unclear how the
combinatorial explosion and the resulting sparsity
affects pattern quality. Our approach of succes-
sively splitting a typewise heterogenous relation
into its k largest homogenous subrelations aims at
finding only the most typical types for an action and
our definition of type signature as intersection of
all common types avoids unnecessary redundancy.

Entailment candidate collection. Distributional
features are a common choice for paraphrase detec-
tion and relation clustering (Lin and Pantel, 2001;
Szpektor et al., 2004; Sekine, 2005; Yao et al.,
2012; Lewis and Steedman, 2013).

The two most important alternatives are bilin-
gual pivoting (Ganitkevitch et al., 2013) – which
identifies identically translated phrases in bilingual
corpora – and event coreference in the news (Xu
et al., 2014; Zhang et al., 2015; Shwartz et al.,
2017b) – which relies on lexical variability in two
articles or headlines referring to the same event.
We specifically focus on distributional information
for our InfCand collection because current models
of lexical semantics are also mainly based on that
(e.g., Grave et al., 2017). Our goal is not to build
a resource free of typical mistakes made by distri-
butional approaches but to provide a benchmark to
study the progress on overcoming them (cf. § 5).

Another difference to aforementioned works is
that we explicitly model unidirectional entailment
as opposed to bidirectional synonymy (cf. Table 4,
(1)). Here one can distinguish a learning-based
approach (Berant, 2012), where an SVM classi-
fier with various features is trained on lexical on-
tologies like WordNet, followed by the application
of global transitivity constrains to enhance consis-
tency, and probabilistic models of noisy set inclu-
sion in the tradition of the distributional inclusion
hypothesis (Schoenmackers et al., 2010; Nakashole
et al., 2012). We adapt Sherlock, an instance of the
latter, for its simplicity and effectiveness.

8 Conclusion

We presented SherLIiC, a new challenging testbed
for LIiC and NLI, based on typed textual relations
between named entities (NEs) from a KG. The
restriction to NEs (as opposed to common nouns)
allowed us to harness more event-like relations than
previous similar collections as these naturally occur
more often with NEs. The distributional similar-
ity of both positive and negative examples makes
SherLIiC a promising benchmark to track future
NLI models’ ability to go beyond shallow seman-
tics relying primarily on distributional evidence.
We showed that existing rule bases are complemen-
tary to SherLIiC and that current semantic vector
space models as well as SOTA neural NLI mod-
els cannot achieve at the same time high precision
and high recall on SherLIiC. Although SherLIiC’s
creation is entirely data-driven, it shows a large
variety of linguistic challenges for NLI, ranging
from lexical relations like troponymy, synonymy or
morph. derivation to typical actions and common
sense knowledge (cf. Table 1). The large unlabeled
resources, SherLIiC-InfCands and SherLIiC-TEG,
are potentially useful for further linguistic analysis
(as we showed in § 6), as well as for data-driven
models of lexical semantics, e.g., techniques such
as representation learning and domain adaptation.
We hope that SherLIiC will foster better modeling
of lexical inference in context as well as progress
in NLI in general.
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son, Milica Gašić, Lina M. Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vectors to
linguistic constraints. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–148, San Diego,
California. Association for Computational Linguis-
tics.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. Patty: A taxonomy of relational
patterns with semantic types. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 1135–1145, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
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A Relation Filter Heuristics

In order to be kept as a relation, a dependency path
must fulfill all of the following criteria:

1. It starts or ends with nsubj or nsubjpass.

2. It starts or ends with one of the following
labels: nsubj, nsubjpass, iobj, dobj,
pobj, appos, poss, rcmod, infmod,
partmod.

3. It is not longer than 7 words and 8 dependency
labels.

53



914

4. At least one of the presumable lemmas con-
tains at least 3 letters.

5. It does not have the same dependency label at
both ends.

6. It does not contain any of the following la-
bels: parataxis, pcomp, csubj, advcl,
ccomp.

7. It does not contain immediate repetitions of
words or dependency labels.
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Abstract

Lexical inference in context (LIiC) is the task
of recognizing textual entailment between two
very similar sentences, i.e., sentences that only
differ in one expression. It can therefore be
seen as a variant of the natural language infer-
ence task that is focused on lexical semantics.
We formulate and evaluate the first approaches
based on pretrained language models (LMs) for
this task: (i) a few-shot NLI classifier, (ii) a re-
lation induction approach based on handcrafted
patterns expressing the semantics of lexical in-
ference, and (iii) a variant of (ii) with patterns
that were automatically extracted from a cor-
pus. All our approaches outperform the previ-
ous state of the art, showing the potential of
pretrained LMs for LIiC. In an extensive analy-
sis, we investigate factors of success and failure
of our three approaches.1

1 Introduction

Lexical inference (LI) denotes the task of deciding
whether or not an entailment relation holds between
two lexical items. It is therefore related to the de-
tection of other lexical relations like hyponymy
between nouns (Hearst, 1992), e.g., dog⇒ animal,
or troponymy between verbs (Fellbaum and Miller,
1990), e.g., to traipse⇒ to walk. Lexical inference
in context (LIiC) adds the problem of disambiguat-
ing the pair of lexical items in a given context be-
fore reasoning about the inference question. This
type of LI is particularly interesting for entailments
between verbs and verbal expressions because their
meaning – and therefore their implications – can
drastically change with different arguments. Con-
sider, e.g., run⇒ lead in a PERSON / COMPANY

context (“Bezos runs Amazon”) vs. run⇒ execute
in a COMPUTER / SOFTWARE context (“My mac
runs macOS”). LIiC is thus also closely related to

1Our code is publicly available: https://github.
com/mnschmit/lm-lexical-inference

the task of natural language inference (NLI) – also
called recognizing textual entailment (Dagan et al.,
2013) – and can be seen as a focused variant of it.
Besides the important use case of evaluating NLI
systems, this kind of predicate entailment has also
been shown useful for question answering (Schoen-
mackers et al., 2010), event coreference (Shwartz
et al., 2017; Meged et al., 2020), and link prediction
in knowledge graphs (Hosseini et al., 2019).

Despite its NLI nature, previous systems for
LIiC have primarily been models of lexical sim-
ilarity (Levy and Dagan, 2016) or models based
on verb argument inclusion (Hosseini et al., 2019).
The reason is probably that supervised NLI models
need large amounts of training data, which is un-
available for LIiC, and that systems trained on avail-
able large-scale NLI benchmarks (e.g., Williams
et al., 2018) have been reported to insufficiently
cover lexical phenomena (Glockner et al., 2018;
Schmitt and Schütze, 2019).

Recently, transfer learning has become ubiq-
uitous in NLP; Transformer (Vaswani et al.,
2017) language models (LMs) pretrained on large
amounts of textual data (Devlin et al., 2019a; Liu
et al., 2019) form the basis of a lot of current state-
of-the-art models. Besides zero- and few-shot ca-
pabilities (Radford et al., 2019; Brown et al., 2020),
pretrained LMs have also been found to acquire
factual and relational knowledge during pretraining
(Petroni et al., 2019; Bouraoui et al., 2020). The
entailment relation certainly stands out among pre-
viously explored semantic relations – such as the
relation between a country and its capital – because
it is very rarely stated explicitly and often involves
reasoning about both the meaning of verbs and ad-
ditional knowledge (Schmitt and Schütze, 2019). It
is unclear whether implicit clues during pretraining
are enough to learn about LIiC and what the best
way is to harness any such implicit knowledge.

Regarding these questions, we make the follow-
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ing contributions: (1) This work is the first to
explore the use of pretrained LMs for the LIiC
task. (2) We formulate three approaches and eval-
uate them using the publicly available pretrained
RoBERTa LM (Liu et al., 2019; Wolf et al., 2019):
(i) a few-shot NLI classifier, (ii) a relation induc-
tion approach based on handcrafted patterns ex-
pressing the semantics of lexical inference, and
(iii) a variant of (ii) with patterns that were auto-
matically extracted from a corpus. (3) We introduce
the concept of antipatterns, patterns that express
non-entailment, and evaluate their usefulness for
LIiC. (4) In our experiments on two established
LIiC benchmarks, Levy/Holt’s dataset (Levy and
Dagan, 2016; Holt, 2018) and SherLIiC (Schmitt
and Schütze, 2019), all our approaches consistently
outperform previous work, thus setting a new state
of the art for LIiC. (5) In contrast to previous work
on relation induction (Bouraoui et al., 2020), au-
tomatically retrieved patterns do not outperform
handcrafted ones for LIiC. A qualitative analysis of
patterns and errors identifies possible reasons for
this finding.

2 Related Work

Lexical inference. There has been a lot of work on
lexical inference for nouns, notably hypernymy
detection, resulting in a variety of benchmarks
(Kotlerman et al., 2010; Kiela et al., 2015) and
methods (Shwartz et al., 2015; Vulić and Mrkšić,
2018). Although there has been work on predicate
entailment before (Lin and Pantel, 2001; Lewis and
Steedman, 2013), Levy and Dagan (2016) were
the first to create a general benchmark for evaluat-
ing entailment between verbs. In their evaluation,
neither resource-based approaches (Pavlick et al.,
2015; Berant et al., 2011) nor vector space models
(Levy and Goldberg, 2014) achieved satisfying re-
sults. Holt (2018) later published a re-annotated
version, which was readily adopted by later work.
Hosseini et al. (2018) put global constraints on
top of directed local similarity scores (Weeds and
Weir, 2003; Lin, 1998; Szpektor and Dagan, 2008)
based on distributional features of the predicates.
Hosseini et al. (2019) replaced these scores by tran-
sition probabilities in a bipartite graph where edge
weights are computed by a link prediction model.

When Schmitt and Schütze (2019) created the
SherLIiC benchmark, they also mainly focused
on resource- and vector-based models for evalua-
tion. Their best model combines general-purpose

word2vec representations (Mikolov et al., 2013)
with a vector representation of the arguments that
co-occur with a predicate.

All these works (i) base the probability of en-
tailment validity on the similarity of the verbs and
(ii) compute this similarity via (expected) co-oc-
currence of verbs and their arguments. Our work
differs in that our models solely reason about the
sentence surface in an end-to-end NLI task without
access to previously observed argument pairs. This
is possible because our models have learned about
these surface forms during pretraining.

Patterns and entailment. Pattern-based ap-
proaches have long been known for hypernymy
detection (Hearst, 1992). Recent work combined
them with vector space models (Mirkin et al., 2006;
Roller and Erk, 2016; Roller et al., 2018). While
there are effective patterns, such as X is a Y , that
are indicative for entailment between nouns, there
is little work on comparable patterns for verbs.
Schwartz et al. (2015) mine symmetric patterns
for lexical similarity and achieve good results for
verbs. Entailment, however, is not symmetric.

Chklovski and Pantel (2004) handcrafted 35 pat-
terns to distinguish 6 semantic relations for pairs of
distributionally similar verbs. Some of their classes
like strength (taint :: poison) or antonymy (ban ::
allow) can be indicators of entailment and non-
entailment but are, in general, much more narrowly
defined than the patterns we use in our approach.
Another difference to our work is that verb pairs
are scored based on co-occurrence counts on the
web, while we employ an LM, which does not de-
pend on a valid entailment pair actually appearing
together in a document.

Patterns and language models. Amrami and
Goldberg (2018) were the first to manipulate LM
predictions with a simple pattern to enhance the
quality of substitute words in a given context for
word sense induction. Petroni et al. (2019) found
that large pretrained LMs can be queried for fac-
tual knowledge, when presented with appropriate
pattern-generated cloze-style sentences. This zero-
shot factual knowledge has later been shown to be
quite fragile (Kassner and Schütze, 2020). So we
rather focus on approaches that fine-tune an LM on
at least a few samples. Forbes et al. (2019) train a
binary classifier on top of a fine-tuned BERT (De-
vlin et al., 2019a) to predict the truth value of hand-
written statements about objects and their proper-
ties. While their experiments investigate BERT’s
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physical common sense reasoning, we focus on the
different phenomenon of entailment between two
actions expressed by verbs in context.

Schick and Schütze (2020) used handcrafted
patterns and LMs for few-shot text classification.
Based on manually defined label-token correspon-
dences, the predicted classification label is deter-
mined by the token an LM estimates as most prob-
able at a masked position in the cloze-style pattern.
We differentiate entailment and non-entailment via
compatibility scores for patterns and antipatterns
and not via different predicted tokens.

Addressing relation induction, Bouraoui et al.
(2020) propose an automatic way of finding, given
a relation, LM patterns that are likely to express
it. They train a binary classifier per relation on the
sentences generated by these patterns. While some
of the relations they consider are related to verbal
entailment (e.g., cook activity-goal eat), most of
them concern common sense (e.g., library location-
activity reading) or encyclopedic knowledge (e.g.,
Paris capital-of France). We adapt their method
for the automatic retrieval of promising patterns for
LIiC, but find that handcrafted patterns that capture
the generality of the entailment relation still have
an advantage over automatic patterns for LIiC. An-
other important novelty we introduce is the use of
antipatterns. While Bouraoui et al. (2020) have to
use negative samples for training their classifiers,
they only consider patterns that exemplify the de-
sired relation. In contrast, we also use antipatterns
that exemplify what the entailment relation is not.
We believe that antipatterns are particularly use-
ful for entailment detection because they can help
identify other kinds of semantic relations that often
pose a challenge to vector space models (Levy and
Dagan, 2016; Schmitt and Schütze, 2019).

3 Proposed Approaches

3.1 NLI classifier

Building an NLI classifier on top of a pretrained
LM usually means taking an aggregate sequence
representation of the concatenated premise and hy-
pothesis as input features of a neural network clas-
sifier (Devlin et al., 2019b). For RoBERTa (Liu
et al., 2019), this representation is the final hidden
state of a special 〈s〉 token that is prepended to the
input sentences, which in turn are separated by a
separator token 〈/s〉. Let Λ be the function that
maps such an input x = x1〈/s〉x2 to the aggre-
gate representation Λ(x) ∈ Rd. Following (Devlin

et al., 2019b; Liu et al., 2019), we then feed these
features to a 2-layer feed-forward neural network
with tanh activation:

h(x) = tanh(drop(Λ(x))W1 + b1)

PNLI(y | x) = σ(drop(h(x))W2 + b2)
(1)

where drop applies dropout with a probability
of 0.1, σ is the softmax function, and W1 ∈
Rd×d,W2 ∈ Rd×2, b1 ∈ Rd, b2 ∈ R2 are learn-
able parameters. Note that W1 and b1 are still part
of the LM’s pretrained parameters; so we only train
W2 and b2 from scratch.2 The actual classification
decision uses a threshold ϑ:

Dϑ
NLI(x1, x2) =

{
1, if PNLI(y = 1 |x1, x2) > ϑ

0, otherwise

The traditional choice for the threshold is ϑ = 0.5
because that means Dϑ

NLI(x1, x2) = 1 iff PNLI(y =
1 | x1, x2) > PNLI(y = 0 | x1, x2). We never-
theless keep ϑ as a hyperparameter to be tuned on
held-out development data.

We train the NLI approach by minimizing the
negative log-likelihood LNLI of the training data T :

LNLI(T ) =
∑

(x1,x2,y)∈T
− log(PNLI(y | x1, x2))

3.2 Pattern-based classifier
This approach puts the input sentences x1, x2 to-
gether in a pattern-based textual context and trains
a classifier to distinguish between felicitous and
infelicitous utterances.3 In contrast to previous
approaches (Forbes et al., 2019; Bouraoui et al.,
2020), we also consider antipatterns that exemplify
what kind of semantic relatedness we are not inter-
ested in, and combine probabilities for patterns and
antipatterns in the final classification.
Finding suitable patterns. A simple handcrafted
pattern to check for the validity of an inference
x1 ⇒ x2 is “x2 because x1.”. An analoguos an-
tipattern is “It is not sure that x2 just because x1.”.
Based on similar considerations, we manually de-
sign 5 patterns and 5 antipatterns (see Table 4). We
will refer to the approach using these handcrafted
patterns as MANPAT.

Bouraoui et al. (2020) argue that text produced
by simple, handcrafted patterns is artificial and

2We follow the official implementation; cf. Jacob Devlin’s
comment on issue 43 in the BERT GitHub repository,
https://github.com/google-research/bert/
issues/43, (accessed 19 January 2021).

3Bouraoui et al. (2020) called this natural vs. unusual.
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therefore suboptimal for LMs pretrained on natu-
rally occurring text. To adapt their setup to verbal
expressions used in LIiC, we identify suitable pat-
terns (antipatterns) by searching a large text cor-
pus4 for sentences that contain both elements of
valid (invalid) entailment pairs. In a second step,
we score each of these patterns (antipatterns) ac-
cording to the number of valid (invalid) entailment
pairs x1, x2 that can be found by querying an LM
for the k most probable completions when x1 or
x2 is inserted in the pattern and its counterpart is
masked. For example, consider the entailment pair
rule⇒ control and the pattern “Catchers prem the
field; they hypo the plays and tell everyone where
to be.” extracted from a description of softball.
Predicting rule from “Catchers 〈mask〉 the field;
they control the plays and tell everyone where to
be.” and predicting control from “Catchers rule
the field; they 〈mask〉 the plays and tell everyone
where to be.” would result in one point each. Ap-
proaches called AUTPATn use the n patterns with
the most points obtained in that manner. See §4 for
more details on our experimental setup.
Pattern-based predictions. The probability
PFEL(z | x) of sentence x to be felicitous (z=1) or
infelicitous (z=0) is estimated like PNLI in Eq. (1),
except that x is not the concatenation of two sen-
tences but a single pattern-generated utterance.

Given a set of patterns Φ and a set of antipat-
terns Ψ, the score s to judge an input x1, x2 is the
difference between the maximum probability mpos

that any pattern forms a felicitous statement and
the maximum probability mneg that any antipattern
forms a felicitous statement:

mpos = max
ϕ∈Φ

PFEL(z = 1 | ϕ(x1, x2))

mneg = max
ψ∈Ψ

PFEL(z = 1 | ψ(x1, x2))

s(x1, x2) = mpos −mneg

As in NLI, the final decision uses a threshold ϑ:

Dϑ
PAT(x1, x2) =

{
1, if s(x1, x2) > ϑ

0, otherwise

This corresponds to requiring that mpos be higher
than mneg by a margin ϑ, i.e., Dϑ

PAT(x1, x2) = 1 iff
mpos > mneg + ϑ.

As Bouraoui et al. (2020) did not use antipat-
terns, they defined mneg as the maximum probabil-
ity for any pattern to form an infelicitous statement.

4We use the Wikipedia dump from Jan 15th 2011.

Levy/Holt SherLIiC

dev1
train 4,388 797
dev2 1,098 201

test 12,921 2,990

Table 1: Data split sizes as used in our experiments.

To estimate the usefulness of antipatterns, we eval-
uate both possibilities, marking systems that use
both patterns and antipatterns with ΦΨ and those
that only use patterns with Φ.

The use of a threshold is another novel compo-
nent, i.e., Bouraoui et al. (2020) virtually set ϑ = 0.
We discuss the influence of ϑ in §5.

We train all pattern-based approaches by min-
imizing the negative log-likelihood LPAT that pat-
terns Φ produce felicitous statements for valid en-
tailments (y = 1) and infelicitous statements for
invalid entailments (y = 0) from the training data
T , and vice versa for antipatterns Ψ:

LPAT(T ,Φ,Ψ) =
∑

(x1,x2,y)∈T
LΦ(x1, x2, y) + LΨ(x1, x2, 1− y)

with

LΩ(x1, x2, y) =

− 1

|Ω|
∑

ω∈Ω

log(PFEL(z = y | ω(x1, x2)))

4 Experiments

We evaluate on two benchmarks: (i) Levy/Holt’s
dataset (Levy and Dagan, 2016; Holt, 2018) and
(ii) SherLIiC (Schmitt and Schütze, 2019). For both
filtering and classification, we employ RoBERTa-
base (Liu et al., 2019). For classification only, we
also report results for RoBERTa-large.

4.1 Data processing
For both datasets, previous work has established
a dev/test split. For Levy/Holt, it was defined in
(Hosseini et al., 2018); for SherLIiC, we use the
original one from (Schmitt and Schütze, 2019). For
comparison with previous work, we keep the test
portion as is and split the dev portion further into
80% for training and 20% for development. We
call the new, smaller dev sets dev2 and the original
dev sets dev1. See Table 1 for data split sizes.

Levy/Holt. An instance in Levy/Holt has two
sentences, each consisting of two shared noun
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Figure 1: Validation performance distribution of different datasets across different hyperparameter runs (left) and
expected validation performance per number of tested hyperparameter configurations as proposed by Dodge et al.
(2019) (right). Performance is measured as the area under the precision-recall curve for precision values ≥ 0.5.
The Boxes represent 75% of the respective data points; a black line indicates the median, whiskers extend to the
maximum value.

phrases (the arguments) and a verbal expression, in
which the two sentences differ. As the verbal ex-
pressions can contain auxiliaries or negation, they
often consist of multiple tokens. Originally, one ar-
gument is replaced with a WordNet (Miller, 1995)
type in one of the sentences to make the entail-
ment more general during annotation, but we use
a version of the dataset provided by Hosseini et al.
(2018) where both sentences have concretely in-
stantiated arguments. For example, consider Ta-
ble 6 (c). Athena was masked as the WordNet
synset deity during benchmark annotation but we
use the original sentences as shown in Table 6 for
all classifiers without further modification.

For the automatic pattern search in AUTPAT, we
look for sentences that mention verbatim the two
verbal expressions of any instance from dev1. For
the ranking, we take the last token of a verbal ex-
pression as representative for the whole. This has
the advantage that we can query the LM with a

single 〈mask〉 token and compare a single token to
the k = 100 most probable predictions. We take
the last token because it usually is the main verb.

SherLIiC. For classification, we use SherLIiC’s
automatically generated sentences that were used
for annotation during benchmark creation. The
arguments in SherLIiC are entity types from Free-
base (Bollacker et al., 2008). As such, they can
be replaced by any Freebase entity with matching
type. For example, consider Table 6 (a); the argu-
ments Germany and Côte d’Ivoire were originally
masked as location[A] and location[B] during an-
notation, but annotators also saw three randomly
chosen instantiations for both A (Germany / Syria /
USA) and B (Côte d’Ivoire / UK / Italy) for context.
From the three examples provided in SherLIiC for
each argument, we choose the first one to form
sentences with concretely instantiated arguments.

For the automatic pattern search in AUTPAT, we
make use of the greater flexibility offered by the
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AUC P R F1

baselines

Hosseini et al. (2018) 16.5 – – –
Hosseini et al. (2019) 18.7 – – –

RoBERTa-base

NLI (ϑ = 0.0052) 72.6 68.7 75.3 71.9
MANPATΦΨ

(ϑ = −0.0909) 76.9 78.7 66.4 72.0
MANPATΦ

(ϑ = 0.5793) 71.2 74.4 61.2 67.1
AUTPATΦΨ

5 (ϑ = −0.1428) 63.7 71.0 58.8 64.3
AUTPATΦ

5 (ϑ = −0.0592) 65.4 68.0 63.3 65.5

RoBERTa-large

NLI (ϑ = 0.0016) 75.5 73.5 73.7 73.6
MANPATΦΨ

(ϑ = 0.1156) 83.9 84.8 70.1 76.7
MANPATΦ

(ϑ = −0.8457) 77.8 67.9 81.5 74.1
AUTPATΦΨ

5 (ϑ = −0.0021) 70.4 75.7 60.7 67.4
AUTPATΦ

5 (ϑ = −0.9197) 66.5 61.8 74.4 67.5

Table 2: Levy/Holt test. AUC denotes the area under the
precision-recall curve for precision ≥ 0.5. All results
in %. Bold means best result per column and block.

lemmatized representations in SherLIiC. As we are
interested in statements that can be made in any
way in a text, we search for sentences that men-
tion the two predicates of a SherLIiC dev1 instance
in any inflected form. For the ranking, we again
consider the predicate representative for the whole
verbal expression. We thus use the predicate lemma
and otherwise proceed as described above.

4.2 Training details

We train all our classifiers for 5 epochs with Adam
(Kingma and Ba, 2015) and a mini-batch size of 10
(resp. 2) for RoBERTa-base (resp. -large). We ran-
domly sample 500 configurations for the remaining
hyperparameters (see Appendix A). For a fair com-
parison, we evaluate all our approaches with the
same configurations.

5 Results and Discussion

5.1 Hyperparameter robustness

Following previous work (Hosseini et al., 2018,
2019), we use the area under the precision-recall
curve (AUC) restricted to precision values ≥ 0.5 as
criterion for model selection.

Fig. 1 (left) shows the distribution of dev2 per-
formance for 500 randomly sampled runs with
RoBERTa-base. Most hyperparameters perform
poorly, suggesting that hyperparameter search is
crucial. For Levy/Holt, NLI is strong whereas for
SherLIiC handcrafted MANPATΦ patterns have a
clearer advantage. For SherLIiC, the combina-
tion of automatically generated patterns and an-

AUC P R F1

baselines

Lemma – 90.7 8.9 16.1
w2v+untyped rel – 52.8 69.5 60.0
w2v+tsg rel emb – 51.8 72.7 60.5

RoBERTa-base

NLI (ϑ = 0.3878) 65.8 67.0 66.1 66.5
MANPATΦΨ

(ϑ = −0.3324) 66.4 60.9 78.8 68.7
MANPATΦ

(ϑ = −0.4812) 69.2 62.0 81.2 70.3
AUTPATΦΨ

5 (ϑ = −0.4694) 67.4 61.8 75.6 68.0
AUTPATΦ

5 (ϑ = −0.7042) 67.3 56.6 82.6 67.2

AUTCURΦ
5 (ϑ = −0.7524) 69.5 56.3 89.6 69.2

AUTARGΦ
5 (ϑ = −0.7461) 65.2 61.9 75.6 68.1

RoBERTa-large

NLI (ϑ = 0.0025) 68.3 60.5 85.5 70.9
MANPATΦΨ

(ϑ = −0.0956) 74.4 66.0 80.8 72.6
MANPATΦ

(ϑ = −0.6641) 64.6 58.1 79.0 67.0
AUTPATΦΨ

5 (ϑ = −0.9889) 68.6 61.9 75.5 68.0
AUTPATΦ

5 (ϑ = −0.5355) 56.8 61.5 66.1 63.7

Table 3: SherLIiC test. Baseline results from (Schmitt
and Schütze, 2019). Table format: see Table 2.

tipatterns AUTPATΦΨ
5 exhibits the highest median

performance and the second-highest upper quar-
tile, making it together with MANPATΦ the most
robust to different hyperparameters, although its
top performance is lower compared to the others.
For all methods, only very few hyperparameter
sets achieve top performances. For both datasets,
however, a well-performing configuration is found
after fewer than 100 sampled runs (Fig. 1, right).
Considering that AUTPAT requires an LM to rank
thousands of patterns, these results suggest that, for
LIiC, available GPU hours should be spent on au-
tomatic hyperparameter rather than pattern search.
With its manually written patterns, MANPAT does
not need additional GPU hours for pattern search
and still, on average, performs better.

5.2 Best hyperparameter configurations

For the best found configuration for each method,
we not only report AUC, which provides a general
picture of a scoring method’s precision-recall trade-
off, but also the concrete precision, recall, and F1
for the actual classification after applying a thresh-
old ϑ. For this we tune ϑ on dev2 for optimal F1.
Tables 2 and 3 show the results.

On both datasets, our methods outperform all
previous work (sometimes by a large margin),
thus establishing a new state of the art. For
SherLIiC+RoBERTa-base, the strong but sim-
ple NLI system is consistently outperformed by
all pattern-based approaches, showing that well-
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Automatically retrieved patterns (with SherLIiC dev1) prem hypo

rank 1 In North America, where the ”atypical” forms of community-hypo pneumonia are acquired acquired
becoming more common, macrolides (such as azithromycin), and doxycycline have
displaced amoxicillin as first-line outpatient treatment for community-prem pneumonia.

rank 5 This area now consists of . . . the Yukon Territory (prem 1898) . . . and Nunavut created created in
(hypo 1999).

rank 12 For example, . . . 訪問 ”prem” is composed of 訪 ”to visit” and 問 ”to hypo”. interview ask

Handcrafted patterns

(a) PARGL prem PARGR, which means that HARGL hypo HARGR.
(b) It is not the case that HARGL hypo HARGR, let alone that PARGL prem PARGR.
(c) HARGL hypo HARGR because PARGL prem PARGR.
(d) PARGL prem-negated PARGR because HARGL hypo-negated HARGR.
(e) HARGL hypo-negated HARGR, which means that PARGL prem-negated PARGR.

Table 4: Examples of automatically retrieved and ranked AUTPAT patterns (top) and handcrafted MANPAT patterns
(bottom). prem/hypo = original fillers as found in the corpus. PARGL/HARGL = placeholder for left argument of
premise/hypothesis; PARGR/HARGR = right argument.

chosen patterns and antipatterns can be helpful for
LIiC. For SherLIiC+RoBERTa-large and also gen-
erally on Levy/Holt’s dataset, NLI is more compet-
itive, but the combination of handcrafted patterns
and antipatterns MANPATΦΨ still performs better
in these cases.

The use of antipatterns does not consistently
lead to better performance for all combinations
of dataset, LM variant (base vs. large), and pattern
set (MANPAT vs. AUTPAT). They do, however, con-
sistently bring gains for some combinations, e.g.,
MANPAT on Levy/Holt and AUTPAT on SherLIiC.
Moreover, antipatterns are essential for achieving
top performance, i.e., the new state of the art, on
both datasets.

Most of the threshold values ϑ (tuned on dev2)
are far from their traditional values, 0.5 for NLI

and 0.0 for patterns. NLI classifiers’ probability
estimates are often too confident, resulting in val-
ues close to 0 and 1. To “correct” cases where a
very small value is assigned to a valid entailment,
optimal thresholds are often close to 0 instead of
0.5. Analogously, most pattern-based approaches
opt for a negative ϑ, which means that instead of re-
quiring a margin betweenmpos andmneg (boosting
precision), they make more positive predictions and
boost recall. Low recall is a key problem in LIiC
(cf. Levy and Dagan (2016)). Tuning a threshold
increases the models’ flexibility in this aspect.

6 Analysis

6.1 Number of patterns

§5 shows that automatic patterns do not beat hand-
crafted patterns for LIiC. However, automatic pat-
terns have one major advantage: in contrast to man-

ΦΨ Φ

n AUC F1 AUC F1

5 67.4 68.0 67.3 67.2
15 70.0 68.7 73.1 69.4
25 63.5 67.3 69.0 68.7
50 66.3 65.6 67.4 67.6

Table 5: RoBERTa-base+AUTPATn results on SherLIiC
test for different n values. Hyperparameters were tuned
for the corresponding AUTPAT5 method on dev2.

ual patterns, their number can be easily increased.
We therefore investigate the impact of the hyperpa-
rameter n for AUTPATn.

Table 5 shows that too many patterns is as bad as
too few. AUTPAT15 is the sweetspot: on SherLIiC,
it outperforms all other RoBERTa-base methods
on AUC and closely approaches the otherwise best
method MANPATΦ on F1.

6.2 Pattern analysis

Handcrafted patterns mostly outperform automatic
ones (§5). A larger number n of patterns only has a
small effect (§6.1). We therefore take a closer look
at automatic and manual patterns. Table 4 shows
all handcrafted and a sample of highly ranked auto-
matic patterns.

It is striking how specific the automatically re-
trieved contexts are; especially for the highest ranks
(exemplified by ranks 1 and 5) only a narrow set
of verbs seems plausible from a human perspective.
It is only at rank 12 that we find a more general
context and it arguably even displays some seman-
tic reasoning. There certainly are verbs that are
not compatible with the meaning of visit, but this
context allows for a wide range of plausible verbs
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and even mentions composition of meaning.
The handcrafted patterns, in contrast, all capture

some general aspect of entailment, which might be
the reason they generalize better. Moreover, they
also have placeholder slots for the verb arguments,
which could be an advantage as these represent
a verb’s original context. Only accepting corpus
sentences in which the verbs occur with the same
arguments as in the dataset is too restrictive.

We therefore conduct the following experiment:
We manually go through the 100 highest-ranked
automatically created patterns and identify 5 con-
texts that could accommodate arguments without
changing the overall sentence structure. We also
try to pick patterns that are different enough from
each other to avoid redundancy. As a baseline, the
method AUTCURΦ

5 uses these manually curated pat-
terns as is. We then rewrite the patterns such that
they include placeholders for verb arguments, e.g.,
“The original aim of de Garis’ work was to prem the
field of ”brain building” (a term of his invention)
and to ”hypo a trillion dollar industry within 20
years”.” becomes “The original aim of their work
was that ”PARGL prem PARGR” and that ”HARGL

hypo HARGR within 20 years”.” with PARGL /
PARGR (HARGL / HARGR) the placeholder for the
left / right argument of the premise (hypothesis).
See Table 14 in the appendix for the complete list.
AUTARGΦ

5 is based on these rewritten patterns. We
try the same 500 hyperparameter configurations
as for the other RoBERTa-base approaches and
include results for the best configuration (chosen
on dev2) in Table 3. We find that manually cu-
rating automatically ranked patterns helps perfor-
mance. AUTCURΦ

5 outperforms AUTPATΦ
5 on AUC

and F1, reducing the gap to handcrafted patterns
(i.e., MANPATΦ). This is probably due to the vari-
ety we enforced when handpicking the patterns.

Surprisingly, adding arguments decreases per-
formance. Possibly, our modifications make the
patterns less fluent or the arguments that are filled
into the placeholders during training and evalua-
tion do not fit well into the contexts, which still are
rather specific.

6.3 Error analysis

Table 6 displays a selection of the dev2 sets of our
two benchmarks along with the predictions of all
our approaches.

The first four examples indicate how NLI differs
from pattern approaches. Example (a) involves the

(a) Germany is occupying Côte d’Ivoire
⇒ Germany is remaining in Côte d’Ivoire

Sh truth: 1 NLI: 0 MANPAT: 1 / 0 AUTPAT: 1 / 1

(b) Ford awarded him the medal
⇒ Ford was awarded a medal

L/H truth: 0 NLI: 1 MANPAT: 0 / 0 AUTPAT: 1 / 1

(c) Athena was worshiped in Athens
⇒ Athena was the goddess of Athens

L/H truth: 0 NLI: 0 MANPAT: 0 / 1 AUTPAT: 1 / 1

(d) Pyrrhus was beaten by the romans
⇒ Pyrrhus fought the romans

L/H truth: 1 NLI: 1 MANPAT: 0 / 0 AUTPAT: 0 / 1

(e) England national rugby union team is playing
against Denver Broncos
⇒ England national rugby union team is beating
Denver Broncos

Sh truth: 0 NLI: 1 MANPAT: 1 / 1 AUTPAT: 1 / 1

(f) Polk negotiated with Britain
⇒ Polk made peace with Britain

L/H truth: 0 NLI: 1 MANPAT: 1 / 1 AUTPAT: 1 / 1

Table 6: Qualitative error analysis of the RoBERTa-base
models from Tables 2 and 3 on the dev2 split of SherLIiC
(Sh) and Levy/Holt (L/H). Pattern-based predictions are
listed in the format ΦΨ / Φ. Correct predictions are
green; errors are underlined and red.

common sense knowledge that occupying a terri-
tory implies remaining there. This might be learned
from patterns more easily as these patterns might
resemble contexts – seen during pretraining – that
describe how long a military force remained dur-
ing an occupation. Putting the inference candidate
(b) into a pattern-generated context avoids being
fooled by the high similarity of the two sentences.
Only the handcrafted patterns can make sense of
the important details in this construction.

In contrast, (c) and (d) are difficult for our pat-
tern approaches whereas NLI gets them right. We
hypothesize that the problem stems from linking
the two sentences into one. An entailment pattern
ideally represents a derivation of the hypothesis
from the premise. One may wrongly conclude that
(c) Athena was the goddess of Athens only because
she was worshiped there, by neglecting the possibil-
ity that there are others that are equally worshiped.
In the same way, (d) is unlikely to be found in an
argumentative text. While it is clear that there can
be no beating without a fight, one would hardly
argue that Pyrrhus fought the romans because they
beat him. This particular reasoning calls for addi-
tional explanations like Pyrrhus must have fought
the romans because I know that they beat him. This
analysis serves as inspiration for further improve-
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ments of entailment patterns.
The last two examples (e) and (f) are difficult

for all approaches. It seems to be a particular chal-
lenge to identify open situations like a sports match
or a negotiation where multiple outcomes are pos-
sible and distinguish them from cases where one
particular outcome is inevitable.

7 Conclusion

We proposed and evaluated three approaches to the
task of lexical inference in context (LIiC) based
on pretrained language models (LMs). In particu-
lar, we found that putting an inference candidate
into a pattern-generated context mostly increases
performance compared to a standard sequence clas-
sification approach. Concrete performance, how-
ever, also depends on the particular dataset, used
LM (variant), and pattern set. We introduced the
concept of antipatterns, which express the nega-
tive class of a binary classification, and found that
they often lead to performance gains for LIiC. We
set a new state of the art for LIiC and conducted
an extensive analysis of our approaches. Notably,
we found that automatically created patterns can
perform nearly as well as handcrafted ones if we
either use the right number n of patterns or man-
ually identify the right subset of them. Promising
directions for future work are the investigation of
alternative automatic pattern generation methods
or a better modeling of the remaining challenges
we described in our error analysis (§6.3).
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ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771.

A Hyperparameters

We train all our classifiers for 5 epochs with the
Adam optimizer (Kingma and Ba, 2015) and a mini-
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batch size of 10 or 2 instances for RoBERTa-base
and -large, respectively. For AUTPATn approaches
with n > 5, we distribute the available patterns and
antipatterns into chunks of size 5 for training to
save memory. During evaluation, the predictions
are based on all the patterns and antipatterns.

We randomly sample 500 configurations for the
remaining hyperparameters, i.e., initial learning
rate lr, weight decay λ (L2 regularization), and
the number of batches c the gradient is accumu-
lated before each optimization step, which virtu-
ally increases the batch size by a factor of c. The
hyperparameters are sampled from the following
intervals: lr ∈ [10−8, 5 · 10−2], λ ∈ [10−5, 10−1],
c ∈ { 1, 2, . . . , 10 }. lr and λ are sampled uni-
formly in log-space. For a fair comparison, we use
the same 500 random configurations for all of our
approaches.

As usual for Transformer models, we apply a
learning rate schedule: lr decreases linearly such
that it reaches 0 at the end of the last epoch. We do
not employ warm-up.

The best configurations can be seen in Tables 8
and 10 for Levy/Holt’s dataset and in Tables 9
and 11 for SherLIiC.

B Results on development sets

See Tables 12 and 13.

C Varying n in training and evaluation

Another approach to make use of different values
of n in AUTPATn systems is to vary n from training
to evaluation. Figure 2 is a visualization of the
performance impact of this procedure. The base
point for the visualization (in white) is the AUC

performance of AUTPATΦ
5 . We see that training

with n = 50 almost always leads to a performance
drop (marked in blue) w.r.t. this number. It seems
generally to be catastrophic to evaluate a model
with patterns that were not seen during training,
indicating that there is no generalization from seen
patterns to unseen patterns even if they were chosen
by the same method and can thus be expected to
be – at least to some extent – similar. In general,
this evaluation suggests that modifying n after the
training always leads to a drop in performance.

D Transfer between Datasets

Table 7 shows results on the question how well a
model trained on one dataset performs on the other.
For this, we assume that the target dataset is not

available at all, i.e., we do not use it at all – neither
for finding patterns in AUTPAT nor for tuning the
threshold ϑ. We thus use the standard ϑ values, i.e.,
0.5 for NLI and 0.0 for the pattern-based methods.

5 15 25 50
eval k

5
15

25
50

tra
in

 k

67.3 62.0 61.0 61.7

72.0 73.1 66.5 66.8

65.8 67.8 69.0 68.7

65.6 65.9 66.1 67.4 62.5

65.0

67.5

70.0

72.5

Figure 2: RoBERTa-base+AUTPATΦ
k performance on

SherLIiC test for different k values during training and
evaluation. Same hyperparameters used for all models
(as in Table 5). Blue marks drops, red marks gains in
performance w.r.t. AUTPATΦ

5 .

AUC P R F1

RoBERTa-base

NLI 38.4 52.7 57.1 54.8
MANPATΦΨ 46.1 64.0 45.4 53.1
MANPATΦ 32.4 32.4 94.5 48.2
AUTPATΦΨ

5 18.7 40.5 35.0 37.6
AUTPATΦ

5 21.3 28.3 62.3 38.9

RoBERTa-large

NLI 37.8 31.0 96.4 46.9
MANPATΦΨ 70.4 39.6 95.3 56.0
MANPATΦ 38.9 25.6 98.3 40.6
AUTPATΦΨ

5 33.6 61.6 36.0 45.5
AUTPATΦ

5 9.3 30.7 76.6 43.8

(a) SherLIiC train → Levy/Holt test.

AUC P R F1

RoBERTa-base

NLI 63.3 62.8 68.4 65.5
MANPATΦΨ 69.1 80.5 42.1 55.3
MANPATΦ 68.4 80.1 24.2 37.2
AUTPATΦΨ

5 60.3 71.5 54.5 61.9
AUTPATΦ

5 58.9 68.6 55.7 61.5

RoBERTa-large

NLI 65.6 73.8 53.0 61.7
MANPATΦΨ 69.6 84.7 35.7 50.3
MANPATΦ 72.2 89.3 30.3 45.2
AUTPATΦΨ

5 62.1 68.1 57.3 62.3
AUTPATΦ

5 63.8 75.8 44.2 55.8

(b) Levy/Holt train → SherLIiC test.

Table 7: Transfer learning. Table format: see Table 2.
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NLI MANPATΦΨ MANPATΦ AUTPATΦΨ
5 AUTPATΦ

5

lr 2.72 · 10−5 2.47 · 10−5 6.68 · 10−6 3.82 · 10−5 2.11 · 10−5

λ 1.43 · 10−3 2.98 · 10−4 1.07 · 10−5 4.02 · 10−5 1.65 · 10−5

c 1 2 1 2 3

Table 8: Levy/Holt; RoBERTa-base.

NLI MANPATΦΨ MANPATΦ AUTPATΦΨ
5 AUTPATΦ

5 AUTCURΦ
5 AUTARGΦ

5

lr 6.34 · 10−6 3.87 · 10−5 2.28 · 10−5 3.92 · 10−5 2.53 · 10−5 1.28 · 10−5 2.47 · 10−5

λ 1.35 · 10−3 1.43 · 10−5 6.52 · 10−2 2.18 · 10−4 1.02 · 10−5 8.23 · 10−3 2.98 · 10−4

c 1 4 2 1 1 1 2

Table 9: SherLIiC; RoBERTa-base.

NLI MANPATΦΨ MANPATΦ AUTPATΦΨ
5 AUTPATΦ

5

lr 6.68 · 10−6 4.55 · 10−6 4.92 · 10−6 6.68 · 10−6 8.13 · 10−6

λ 1.07 · 10−5 3.90 · 10−4 3.61 · 10−4 1.07 · 10−5 6.05 · 10−2

c 1 2 3 1 2

Table 10: Levy/Holt; RoBERTa-large.

NLI MANPATΦΨ MANPATΦ AUTPATΦΨ
5 AUTPATΦ

5

lr 6.68 · 10−6 1.29 · 10−5 9.14 · 10−6 6.34 · 10−6 4.55 · 10−6

λ 1.07 · 10−5 2.49 · 10−4 6.09 · 10−5 1.35 · 10−3 3.90 · 10−4

c 1 3 4 1 2

Table 11: SherLIiC; RoBERTa-large.

dev1 dev2 test

AUC P R F1 AUC P R F1 AUC P R F1

baselines

Hosseini et al. (2018) – – – – – – – – 16.5 – – –
Hosseini et al. (2019) – – – – – – – – 18.7 – – –

RoBERTa-base

NLI (ϑ = 0.0052) 94.9 87.4 91.1 89.2 88.8 78.1 90.3 83.8 72.6 68.7 75.3 71.9
MANPATΦΨ

(ϑ = −0.0909) 96.5 87.7 96.2 91.8 89.4 81.4 88.5 84.8 76.9 78.7 66.4 72.0
MANPATΦ

(ϑ = 0.5793) 91.8 80.2 90.1 84.9 84.7 77.5 81.1 79.3 71.2 74.4 61.2 67.1
AUTPATΦΨ

5 (ϑ = −0.1428) 95.0 83.4 95.6 89.1 87.7 79.2 85.7 82.3 63.7 71.0 58.8 64.3
AUTPATΦ

5 (ϑ = −0.0592) 87.4 78.0 90.0 83.6 83.3 76.3 81.6 78.8 65.4 68.0 63.3 65.5

RoBERTa-large

NLI (ϑ = 0.0016) 96.9 90.1 97.1 93.5 87.7 82.6 87.6 85.0 75.5 73.5 73.7 73.6
MANPATΦΨ

(ϑ = 0.1156) 97.1 91.4 95.4 93.4 88.9 84.0 84.8 84.4 83.9 84.8 70.1 76.7
MANPATΦ

(ϑ = −0.8457) 92.2 76.1 97.3 85.4 84.4 72.5 91.2 80.8 77.8 67.9 81.5 74.1
AUTPATΦΨ

5 (ϑ = −0.0021) 95.0 86.0 91.9 88.8 84.7 78.9 81.1 80.0 70.4 75.7 60.7 67.4
AUTPATΦ

5 (ϑ = −0.9197) 92.4 75.5 95.3 84.2 83.5 70.6 88.5 78.5 66.5 61.8 74.4 67.5

Table 12: Full results on the Levy/Holt dataset. The dev and test sets as created by Hosseini et al. (2018) are called
dev1 and test. The portion of dev1 that serves as our validation set is called dev2. AUC denotes the area under the
precision-recall curve for precision values ≥ 0.5. All results in %.
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dev1 dev2 test

AUC P R F1 AUC P R F1 AUC P R F1

baselines

Lemma – 90.0 10.9 19.4 – – – – – 90.7 8.9 16.1
w2v+untyped rel – 56.5 74.0 64.1 – – – – – 52.8 69.5 60.0
w2v+tsg rel emb – 56.6 77.6 65.5 – – – – – 51.8 72.7 60.5

RoBERTa-base

NLI (ϑ = 0.3878) 81.3 79.1 80.1 79.6 81.5 84.2 70.6 76.8 65.8 67.0 66.1 66.5
MANPATΦΨ

(ϑ = −0.3324) 76.2 68.6 85.8 76.2 82.4 70.0 82.4 75.7 66.4 60.9 78.8 68.7
MANPATΦ

(ϑ = −0.4812) 88.4 75.5 93.1 83.4 84.1 73.0 79.4 76.1 69.2 62.0 81.2 70.3
AUTPATΦΨ

5 (ϑ = −0.4694) 87.0 77.8 88.8 82.9 71.2 68.4 76.5 72.2 67.4 61.8 75.6 68.0
AUTPATΦ

5 (ϑ = −0.7042) 86.8 64.1 91.8 75.5 74.0 65.5 83.8 73.6 67.3 56.6 82.6 67.2
AUTCURΦ

5 (ϑ = −0.7524) 82.6 61.7 92.8 74.1 75.6 60.6 88.2 71.9 69.5 56.3 89.6 69.2
AUTARGΦ

5 (ϑ = −0.7461) 77.4 69.3 84.0 76.0 73.6 68.9 75.0 71.8 65.2 61.9 75.6 68.1

AUTPATΦΨ
15 (ϑ = −0.5263) 95.3 87.0 93.1 89.9 73.0 65.4 75.0 69.9 70.0 60.4 79.7 68.7

AUTPATΦ
15 (ϑ = −0.6422) 95.4 85.3 94.6 89.7 75.8 69.2 79.4 74.0 73.1 63.0 77.4 69.4

AUTPATΦΨ
25 (ϑ = −0.0014) 95.0 92.0 93.7 92.8 66.1 70.0 72.1 71.0 63.5 62.1 73.4 67.3

AUTPATΦ
25 (ϑ = −0.6496) 88.1 72.3 90.0 80.2 73.0 67.5 79.4 73.0 69.0 60.5 79.4 68.7

AUTPATΦΨ
50 (ϑ = −0.9163) 93.2 72.8 92.8 81.5 67.1 63.0 75.0 68.5 66.3 54.3 82.8 65.6

AUTPATΦ
50 (ϑ = −0.9500) 94.2 79.1 94.9 86.3 69.3 66.3 77.9 71.6 67.4 57.3 82.5 67.6

RoBERTa-large

NLI (ϑ = 0.0025) 92.3 79.7 93.7 86.1 75.7 66.7 82.4 73.7 68.3 60.5 85.5 70.9
MANPATΦΨ

(ϑ = −0.0956) 89.3 77.3 88.5 82.5 80.8 74.7 77.9 76.3 74.4 66.0 80.8 72.6
MANPATΦ

(ϑ = −0.6641) 78.0 67.4 84.9 75.1 72.2 67.1 77.9 72.1 64.6 58.1 79.0 67.0
AUTPATΦΨ

5 (ϑ = −0.9889) 86.5 73.8 86.7 79.7 73.6 70.4 73.5 71.9 68.6 61.9 75.5 68.0
AUTPATΦ

5 (ϑ = −0.5355) 71.6 64.3 71.9 67.9 64.5 71.4 66.2 68.7 56.8 61.5 66.1 63.7

Table 13: Full results on SherLIiC. The original dev and test sets are called dev1 and test. The portion of dev1
that serves as our validation set is called dev2. AUC denotes the area under the precision-recall curve for precision
values ≥ 0.5. Baseline results from (Schmitt and Schütze, 2019). All results in %.

(1) The original aim of de Garis’ work was to prem the
field of ”brain building” (a term of his invention) and
to ”hypo a trillion dollar industry within 20 years”.

→ The original aim of their work was that ”PARGL prem
PARGR” and that ”HARGL hypo HARGR within 20
years”.

(2) Critic Roger Ebert stated that Gellar and co-star Ryan
Phillippe ”prem a convincing emotional charge” and
that Gellar is ”effective as a bright girl who knows
exactly how to hypo her act as a tramp”.

→ Critic Roger Ebert stated that PARGL and co-star Ryan
Phillippe ”prem PARGR” and that HARGL is ”effec-
tive as a bright girl who knows exactly how she hypo
HARGR as a tramp”.

(3) Well-known professional competitions in the past have
included the World Professional Championships (hypo
Landover, Maryland), the Challenge Of Champions,
the Canadian Professional Championships and the
World Professional Championships (prem in Jaca,
Spain).

→ Well-known professional competitions in the past have
included HARGL (hypo HARGR), the Challenge Of
Champions, the Canadian Professional Championships
and PARGL (prem PARGR).

(4) They also had sharpshooter Steve Kerr, whom they
hypo via free agency before the 1993–94 season, My-
ers, and centers Luc Longley (prem via trade in 1994
from the Minnesota Timberwolves) and Bill Wenning-
ton.

→ HARGL also had sharpshooter HARGR, whom they
hypo via free agency before the 1993–94 season, My-
ers, and centers PARGR (whom PARGL prem via trade
in 1994 from the Minnesota Timberwolves) and Bill
Wennington.

(5) Because the 6x86 was more efficient on an instructions-
per-cycle basis than Intel’s Pentium, and because Cyrix
sometimes hypo a faster bus speed than either Intel
or AMD, Cyrix and competitor AMD co-prem the
controversial PR system in an effort to compare its
products more favorably with Intel’s. . . .

→ Because the 6x86 was more efficient on an instructions-
per-cycle basis than Intel’s Pentium, and because
HARGL sometimes hypo HARGR, PARGL and com-
petitor AMD co-prem PARGR in an effort to compare
its products more favorably with Intel’s. . . .

Table 14: Five manually selected patterns from the 100 highest-ranked automatically extracted patterns from
SherLIiC dev1 (used in AUTCURΦ

5 ) and their rewritten counterparts (used in AUTARGΦ
5 ). PARGL (HARGL) stands

for the left argument of the premise (hypothesis); PARGR (HARGR) for the right one.
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Abstract

Combining a pretrained language model (PLM)
with textual patterns has been shown to help in
both zero- and few-shot settings. For zero-shot
performance, it makes sense to design patterns
that closely resemble the text seen during self-
supervised pretraining because the model has
never seen anything else. Supervised training
allows for more flexibility. If we allow for to-
kens outside the PLM’s vocabulary, patterns
can be adapted more flexibly to a PLM’s id-
iosyncrasies. Contrasting patterns where a “to-
ken” can be any continuous vector vs. those
where a discrete choice between vocabulary el-
ements has to be made, we call our method
CONtinuous pAtterNs (CONAN). We evaluate
CONAN on two established benchmarks for lex-
ical inference in context (LIiC) a.k.a. predicate
entailment, a challenging natural language un-
derstanding task with relatively small training
sets. In a direct comparison with discrete pat-
terns, CONAN consistently leads to improved
performance, setting a new state of the art. Our
experiments give valuable insights into the kind
of pattern that enhances a PLM’s performance
on LIiC and raise important questions regard-
ing our understanding of PLMs using text pat-
terns.1

1 Introduction

Lexical inference in context (LIiC) – also called
predicate entailment – is a variant of natural lan-
guage inference (NLI) or recognizing textual entail-
ment (Dagan et al., 2013) with focus on the lexical
semantics of verbs and verbal expressions (Levy
and Dagan, 2016; Schmitt and Schütze, 2019). Its
goal is to detect entailment between two very sim-
ilar sentences, i.e., sentences that share subject
and object and only differ in the predicate, e.g.,
PERSON(A) runs ORG(B) → PERSON(A) leads
ORG(B). NLI models that were not specifically

1Our code is publicly available: https://github.
com/mnschmit/conan

trained with lexical knowledge have been reported
to struggle with this task (Glockner et al., 2018;
Schmitt and Schütze, 2019), making LIiC an im-
portant evaluation criterion for general language
understanding. Other use cases for this kind of
lexical entailment knowledge include question an-
swering (Schoenmackers et al., 2010; McKenna
et al., 2021), event coreference (Shwartz et al.,
2017; Meged et al., 2020), and link prediction in
knowledge graphs (Hosseini et al., 2019).

Although LIiC is an inherently directional task,
symmetric cosine similarity in a vector space, such
as word2vec (an, 2013), has long been the state of
the art for this task. Only recently transfer learn-
ing with pretrained Transformer (Vaswani et al.,
2017) language models (Devlin et al., 2019), has
led to large improvements for LIiC. Schmitt and
Schütze (2021) combine natural language (NL) pat-
terns with a pretrained language model (PLM) and
not only set a new state of the art but also beat
baselines without access to such patterns.

Empirical findings suggest that a good pattern
can be worth 100s of labeled training instances
(Le Scao and Rush, 2021), making pattern ap-
proaches interesting for low-resource tasks such as
LIiC. But beyond the intuition that patterns serve as
some sort of task instruction (Schick and Schütze,
2021a), little is known about the reasons for their
success. Recent findings that (i) PLMs can fail to
follow even simple instructions (Efrat and Levy,
2020), that (ii) PLMs can behave drastically differ-
ent with paraphrases of the same pattern (Elazar
et al., 2021), and that (iii) performance increases if
we train a second model to rewrite an input pattern
with the goal of making it more comprehensible for
a target PLM (Haviv et al., 2021), strongly suggest
that patterns do not make sense to PLMs in the
same way as they do to humans.

Our work sheds light on the interaction of pat-
terns and PLMs and proposes a new method of im-
proving pattern-based models fully automatically.
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On two popular LIiC benchmarks, our model (i) es-
tablishes a new state of the art without the need for
handcrafting patterns or automatically identifying
them in a corpus and (ii) does so more efficiently
thanks to shorter patterns. Our best model only
uses 2 tokens per pattern.

2 The CONAN Model

Continuous patterns. LIiC is a binary classifica-
tion task, i.e., given a premise p = p1p2 . . . p|p|
and a hypothesis h = h1h2 . . . h|h| a model has to
decide whether p entails h (y = 1) or not (y = 0).
A template-based approach to this task surrounds p
and h with tokens t1t2 . . . tm to bias the classifier
for entailment detection, e.g., “p, which means that
h”.While in most approaches that leverage a PLM
M these tokens come from the PLM’s vocabulary,
i.e., ∀i. ti ∈ ΣM, we propose a model based on
CONtinuous pAtterNs (CONAN), i.e., surround the
embedding representation of p and h with continu-
ous vectors that may be close to but do not have to
match the embedding of any vocabulary entry.

For this, we first extend the PLM’s vocabulary by
a finite set C =

{
c1, c2, . . . , c|C|

}
of fresh tokens,

i.e., Σ = ΣM ∪ C with C ∩ ΣM = ∅. Then, we
distinguish two methods of surrounding p and h
with these special tokens: α sets them both αround
and between p and h (Eq. (1)) while β only sets
them βetween the two input sentences (Eq. (2)).

αk(p,h) = c1 . . . capca+1 . . . ca+bhca+b+1 . . . ck

with a = bk/3c , b = bk/3c+ (k mod 3) (1)

βk(p,h) = pc1 . . . ckh (2)

Note that α divides its k tokens into three parts as
equally as possible where any remaining tokens go
between p and h if k is not a multiple of 3. In
particular, this means that the same templates are
produced by α and β for k ≤ 2. We chose this be-
havior as a generalization of the standard approach
to fine-tuning a PLM for sequence classification
(such as NLI) where there is only one special token
and it separates the two input sequences. The tem-
plate produced by α1 and β1 is very similar to this.
A major difference is that the embeddings for C to-
kens are randomly initialized whereas the standard
separator token has a pretrained embedding.
Pattern-based classifier. Given γ ∈ {α, β }, we
estimate the probability distribution P (ŷ | p,h)
with a linear classifier on top of the pooled se-
quence representation produced by the PLMM:

P (ŷ | p,h) = σ(M(γ(p,h))W + b) (3)

where W ∈ Rd×2, b ∈ R2 are learnable parame-
ters, σ is the softmax function, and applying M
means encoding the whole input sequence in a sin-
gle d-dimensional vector according to the specifics
of the PLM. For BERT (Devlin et al., 2019) and its
successor RoBERTa (Liu et al., 2019), this implies
a dense pooler layer with tanh activation over the
contextualized token embeddings and picking the
first of these embeddings (i.e., [CLS] for BERT and
〈s〉 for RoBERTa).2 For training, we apply dropout
with a probability of 0.1 to the output ofM(·).
Inference with multiple patterns. Previous work
(Bouraoui et al., 2020; Schmitt and Schütze, 2021)
combined multiple patterns with the intuition that
different NL patterns can capture different aspects
of the task. This intuition makes also sense for
CONAN. We conjecture that an efficient use of the
model parameters requires different continuous pat-
terns to learn different representations, which can
detect different types of entailment. Following the
aforementioned work, we form our final score s by
combining the probability estimates from different
patterns Γ by comparing the maximum probability
for the two classes 0, 1 over all patterns:

m1(p,h) = max
γ∈Γ

P (ŷ = 1 | γ(p,h))

m0(p,h) = max
γ∈Γ

P (ŷ = 0 | γ(p,h))

s(p,h) = m1(p,h)−m0(p,h) (4)

In conclusion, a CONAN model γnk is charac-
terized by three factors: (i) The type of pattern
γ ∈ {α, β }, (ii) the number of patterns n ∈ N,
and (iii) the number of tokens k ∈ N per pattern.
Training. While multiple patterns are combined
for decision finding during inference, we treat all
patterns separately during training – as did previous
work (Schmitt and Schütze, 2021). So, given a
set of patterns Γ, we minimize the negative log-
likelihood of the training data T , i.e.,

∑

(p,h,y)∈T

∑

γ∈Γ

− log(P (ŷ = y | γ(p,h))) (5)

In practice, we apply mini-batching to both T and
Γ and thus compute this loss only for a fraction of
the available training data and patterns at a time. In

2Cf. Jacob Devlin’s comment on issue 43 in the offi-
cial BERT repository on GitHub, https://github.com/
google-research/bert/issues/43.
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train dev test total

SherLIiC 797 201 2,990 3,988
Levy/Holt 4,388 1,098 12,921 18,407

Table 1: Number of labeled instances per data split.

this case, we normalize the loss by averaging over
the training samples and patterns in the mini-batch.

3 Experiments

We conduct experiments on two established LIiC
benchmarks, SherLIiC (Schmitt and Schütze, 2019)
and Levy/Holt (Levy and Dagan, 2016; Holt, 2018),
using the data splits as defined in (Schmitt and
Schütze, 2021) for comparison. Both benchmarks
contain a majority of negative examples (SherLIiC:
67%, Levy/Holt: 81%), making the detection of
the entailment (i.e., the minority) class a particular
challenge. See Table 1 for dataset and split sizes.
Note that Levy/Holt is nearly 5 times bigger than
SherLIiC and still has less than 5k train samples.

Following (Schmitt and Schütze, 2021), we
use RoBERTa as underlying PLM and also use
the same hyperparameters whenever possible for
comparison. Also following Schmitt and Schütze
(2021), we instantiate the typed placeholders A,B
in SherLIiC with Freebase (Bollacker et al., 2008)
entities, making sure that A and B are not assigned
the same entity. See Appendix A for full training
details.

We evaluate model performance with two met-
rics: (i) The area under the precision-recall curve
for precision values ≥ 0.5 (AUC) as threshold-less
metric using only the score s defined in the previ-
ous section and (ii) the F1 score of actual classifi-
cation decisions after tuning a decision threshold
ϑ on the respective dev portion of the data. Our
implementation is based on (Wolf et al., 2019).

4 Results

Choosing n and k. The number n of patterns and
the number k of C tokens per pattern are essential
hyperparameters of a CONAN model.

Fig. 1 shows the impact on performance (mea-
sured in AUC) on SherLIiC dev for different n-k-
combinations. We observe that using too many,
too long patterns harms performance w.r.t. the base
case n = k = 1. Best results are obtained with
either a small number of patterns or tokens or both.
Comparing the α and β settings, we notice that,

Figure 1: AUC on SherLIiC dev for different CONAN
models; top = α, bottom = β; white/red/blue = similar
to/better than/worse than n = k = 1. Note that αk =
βk for k ≤ 2.

rounded to one decimal, they produce identical re-
sults for both n = 1 and n = 5 patterns, suggesting
that the particular position of the C tokens does not
matter much in these settings for SherLIiC. Even
with n = 10 patterns, the two methods only begin
to differ with k ≥ 5 tokens per pattern. Evaluation
on the Levy/Holt data (see Fig. 2 in Appendix B)
shows more variation between α and β but, other-
wise, confirms the trend that small n and k yield
better performance.

Our results offer an explanation for the empirical
finding in (Schmitt and Schütze, 2021) that patterns
retrieved from a corpus lead to worse performance
than handcrafted ones because the latter are gen-
erally shorter. CONAN models do not only yield
better performance, they also provide an automatic
way to test pattern properties, such as length, w.r.t.
effect on performance for a given task.
Test performance. On both SherLIiC (Table 2)
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AUC P R F1

RoBERTa-base

MANPATΦ
(baseline) 69.2 62.0 81.2 70.3

AUTPATΦ
15 (baseline) 73.1 63.0 77.4 69.4

CONAN5
2 (ϑ = −0.0768) 73.2 65.8 84.1 73.8

CONAN50
1 (ϑ = −0.0108) 74.0 70.1 78.0 73.8

CONAN-α1
7 (ϑ = −0.1875) 66.9 68.7 68.4 68.5

CONAN-β1
7 (ϑ = −0.1875) 66.9 68.7 68.4 68.5

RoBERTa-large

NLI (baseline) 68.3 60.5 85.5 70.9
MANPATΦΨ

(baseline) 74.4 66.0 80.8 72.6
CONAN5

2 (ϑ = −0.6838) 75.9 67.9 81.1 73.9
CONAN50

1 (ϑ = −0.9999) 73.9 64.8 81.5 72.2
CONAN-α1

7 (ϑ = −0.8797) 62.6 63.1 76.4 69.1
CONAN-β1

7 (ϑ = −0.9556) 68.6 60.8 86.0 71.2

Table 2: SherLIiC test. AUC denotes the area under the
precision-recall curve for precision ≥ 0.5. All results in
%. Bold means best result per column and block. All
baselines from (Schmitt and Schütze, 2021). For k ≤ 2,
we simply write CONANn

k because α = β.

AUC P R F1

RoBERTa-base

NLI (baseline) 72.6 68.7 75.3 71.9
MANPATΦΨ

(baseline) 76.9 78.7 66.4 72.0
CONAN5

2 (ϑ = −0.4809) 77.6 79.1 67.5 72.8
CONAN5

1 (ϑ = −0.9003) 74.9 67.1 77.5 71.9
CONAN-α5

3 (ϑ = −0.8985) 73.6 75.0 66.7 70.6
CONAN-β5

3 (ϑ = −0.9289) 76.4 76.6 69.2 72.7

RoBERTa-large

MANPATΦΨ
(baseline) 83.9 84.8 70.1 76.7

MANPATΦ
(baseline) 77.8 67.9 81.5 74.1

CONAN5
2 (ϑ = −0.1315) 85.9 81.7 78.1 79.9

CONAN5
1 (ϑ = −0.9750) 85.2 77.2 80.3 78.7

CONAN-α5
3 (ϑ = −0.9212) 84.4 82.2 74.9 78.4

CONAN-β5
3 (ϑ = −0.9585) 85.3 78.8 77.3 78.0

Table 3: Levy/Holt test. All baselines from (Schmitt
and Schütze, 2021). See Table 2 for table format.

and Levy/Holt (Table 3), and across model sizes
(base and large), CONAN5

2 (using either α or β be-
cause they are identical for k = 2) outperforms
all other models including the previous state of the
art by Schmitt and Schütze (2021), who fine-tune
RoBERTa both without patterns (NLI) and using
handcrafted (MANPAT) or automatically retrieved
corpus patterns (AUTPAT). We report their two best
systems for each benchmark.

We take the performance increase with continu-
ous patterns as a clear indicator that the flexibility
offered by separating pattern tokens from the rest
of the vocabulary allows RoBERTa to better adapt
to the task-specific data even with only few labeled
training instances in the challenging LIiC task.

AUC P R F1

SherLIiC train→ Levy/Holt test

Schm&Schü (2021) (base) 38.4 52.7 57.1 54.8
Schm&Schü (2021) (large) 70.4 39.6 95.3 56.0
CONAN5

2 (base) 54.3 38.2 89.8 53.5
CONAN5

2 (large) 61.5 34.5 96.3 50.8

Levy/Holt train→ SherLIiC test

Schm&Schü (2021) (base) 63.3 62.8 68.4 65.5
Schm&Schü (2021) (large) 62.1 68.1 57.3 62.3
CONAN5

2 (base) 64.9 63.4 68.9 66.1
CONAN5

2 (large) 70.1 69.0 69.5 69.2

Table 4: Transfer experiments (ϑ = 0). Best models
from (Schmitt and Schütze, 2021) according to F1 score.

5 Analysis and Discussion

Nearest neighbors. To further investigate how
RoBERTa makes use of the flexibility of C tokens,
we compute their nearest neighbors in the space of
original vocabulary tokens based on cosine similar-
ity for our models in Tables 2 and 3. We always
find the C tokens to be very dissimilar from any
token in the original vocabulary, the highest cosine
similarity being 0.15. And even among themselves,
C tokens are very dissimilar, nearly orthogonal,
with 0.08 being the highest cosine similarity here.
RoBERTa seems to indeed take full advantage of
the increased flexibility to put the C tokens any-
where in the embedding space. This further backs
our hypothesis that the increased flexibility is bene-
ficial for performance.
Influence of additional parameters. One might
argue that the vocabulary extension and the result-
ing new randomly initialized token embeddings
lead to an unfair advantage for CONAN models
because the parameter count increases. While
more parameters do generally lead to increased
model capacity, the number of new parameters is
so small compared to the total number of param-
eters in RoBERTa that we consider it improbable
that the new parameters are alone responsible for
the improved performance. Of all models in Ta-
bles 2 and 3, CONAN50

1 introduces the most addi-
tional model parameters, i.e., 1 · 50 · 768 = 38400
for RoBERTa-base. Given that even the smaller
RoBERTa-base model still has a total of 125M
parameters, the relative parameter increase is maxi-
mally 0.03%, which, we argue, is negligible.
Transfer between datasets. The experiments sum-
marized in Table 4 investigate the hypothesis that
CONAN’s better adaptation to the fine-tuning data
might worsen its generalization abilities to other
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LIiC benchmarks. For this, we train our best model
CONAN5

2 on SherLIiC to test it on Levy/Holt and
vice versa. In this scenario, we assume that the
target dataset is not available at all. So there is no
way to adapt to a slightly different domain other
than learning general LIiC reasoning. We thus set
ϑ = 0 in these experiments.

We find that with the very few train samples
in SherLIiC the risk of overfitting to SherLIiC is
indeed higher. When trained on Levy/Holt with
around 4.4k train samples, however, CONAN clearly
improves generalization to the SherLIiC domain.

6 Related Work

PLMs and text patterns. GPT-2 (Radford et al.,
2019) made the idea popular that a PLM can per-
form tasks without access to any training data when
prompted with the right NL task instructions. With
GPT-3, Brown et al. (2020) adapted this idea to few-
shot settings where the task prompt is extended by
a few training samples. While this kind of few-shot
adaptation with a frozen PLM only works with very
big models, Schick and Schütze (2021b) achieve
similar performance with smaller models by fine-
tuning the PLM on the available training data and
putting them into NL templates. Recently, Schmitt
and Schütze (2021) investigated the use of PLMs
for LIiC. Compared to a standard sequence classifi-
cation fine-tuning approach, they were able to im-
prove the PLM RoBERTa’s performance by putting
an entailment candidate into textual contexts that
only make sense for either a valid or invalid exam-
ple. Patterns like “y because x.” (valid) or “It does
not mean that y just because x.” (invalid) make
intuitive sense to humans and outperform standard
RoBERTa on LIiC.

A large problem with all these approaches, how-
ever, is to find well-functioning patterns, for which
numerous solutions have been proposed (Shin et al.,
2020; Haviv et al., 2021; Bouraoui et al., 2020;
Jiang et al., 2020; Gao et al., 2021; Reynolds and
McDonell, 2021). We argue that it is not optimal
to constrain pattern search to the space of NL se-
quences if the primary goal is better task perfor-
mance, and therefore abandon this constraint.
PLMs and continuous patterns. Li and Liang
(2021) and Hambardzumyan et al. (2021) contem-
poraneously introduced the idea of mixing the input
token embeddings of a PLM with other continuous
vectors that do not correspond to vocabulary ele-
ments. In the spirit of GPT-2 (see above), they keep

the PLM’s parameters frozen and only fine-tune
the embeddings of the “virtual tokens” to the target
task. While this line of research offers certain ap-
peals of its own, e.g., reusability of the frozen PLM
weights, this is not the focus of our work. In pur-
suit of the best possible performance, we instead
compare the use of continuous vs. NL patterns in
the process of fine-tuning all PLM parameters and
find that even carefully chosen NL patterns can be
outperformed by our automatically learned ones.

Contemporaneously to our work, Liu et al.
(2021) fine-tune entire PLMs with continuous pat-
terns for SuperGLUE (Wang et al., 2019). Besides
reformulating the SuperGLUE tasks as cloze tasks,
while we keep formalizing our task as classification,
Liu et al. (2021) also add more complexity by com-
puting the continuous token representations with
an LSTM (Hochreiter and Schmidhuber, 1997) and
adding certain “anchor tokens”, such as a question
mark, at manually chosen places. CONAN does not
use any manual pattern design and embeds contin-
uous tokens with a simple lookup table.

Another contemporaneous work by Lester et al.
(2021) tests the influence of model size on the per-
formance of a frozen PLM with trained continuous
prompts. Their prompt ensembling is akin to our
combining multiple patterns during inference (cf.
§2). The key difference is that, instead of making
predictions with different patterns and taking the
majority vote, we rather compare the scores for
different patterns to make our prediction.

7 Conclusion

We presented CONAN, a method that improves fine-
tuning performance of a PLM with continuous pat-
terns. CONAN does not depend on any manual
pattern design and is efficient as the shortest possi-
ble patterns with good performance can be found
automatically. It provides an automatic way of sys-
tematically testing structural properties of patterns,
such as length, w.r.t. performance changes. In our
experiments on two established LIiC benchmarks,
CONAN outperforms previous work using NL pat-
terns and sets a new state of the art.
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Figure 2: AUC on Levy/Holt dev for different CONAN
models. Same format as Fig. 1.

A Training Details

We train our model for 5 epochs on a single
GeForce RTX 2080 Ti GPU, with Adam (Kingma
and Ba, 2015) and a mini-batch size of 10 (resp.
2) training instances for RoBERTa-base (resp. -
large) and mini-batches of 5 patterns. We adopt
well-functioning values from (Schmitt and Schütze,
2021) for all non-CONAN-specific hyperparame-
ters, i.e., learning rate lr , weight decay λ, and
accumulated batches c before a gradient update:
Concretely, we set lr = 2.28 · 10−5, λ = 6.52 ·
10−2, c = 2 for evaluating RoBERTa-base on Sher-
LIiC, lr = 1.29 · 10−5, λ = 2.49 · 10−4, c = 3 for
RoBERTa-large on SherLIiC, lr = 2.72·10−5, λ =
1.43·10−3, c = 1 for RoBERTa-base on Levy/Holt,
and lr = 4.55 · 10−6, λ = 3.90 · 10−4, c = 2 for
RoBERTa-large on Levy/Holt.

B More Dev Results

See Fig. 2 for evaluation results on Levy/Holt dev.
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Abstract

Knowledge graphs (KGs) can vary greatly
from one domain to another. Therefore su-
pervised approaches to both graph-to-text gen-
eration and text-to-graph knowledge extrac-
tion (semantic parsing) will always suffer from
a shortage of domain-specific parallel graph-
text data; at the same time, adapting a model
trained on a different domain is often impos-
sible due to little or no overlap in entities and
relations. This situation calls for an approach
that (1) does not need large amounts of anno-
tated data and thus (2) does not need to rely
on domain adaptation techniques to work well
in different domains. To this end, we present
the first approach to unsupervised text gener-
ation from KGs and show simultaneously how
it can be used for unsupervised semantic pars-
ing. We evaluate our approach on WebNLG
v2.1 and a new benchmark leveraging scene
graphs from Visual Genome. Our system out-
performs strong baselines for both text↔graph
conversion tasks without any manual adapta-
tion from one dataset to the other. In additional
experiments, we investigate the impact of us-
ing different unsupervised objectives.1

1 Introduction

Knowledge graphs (KGs) are a general-purpose
approach for storing information in a structured,
machine-accessible way (Van Harmelen et al.,
2008). They are used in various fields and domains
to model knowledge about topics as different as lex-
ical semantics (Fellbaum, 2005; van Assem et al.,
2006), common sense (Speer et al., 2017; Sap et al.,
2019), biomedical research (Wishart et al., 2018)
and visual relations in images (Lu et al., 2016).

This ubiquity of KGs necessitates interpretabil-
ity because diverse users – both experts and non-
experts – work with them. Even though, in prin-

1https://github.com/mnschmit/
unsupervised-graph-text-conversion

ciple, a KG is human-interpretable, non-experts
may have difficulty making sense of it. Thus, there
is a need for methods, such as automatic natural
language generation (“graph→text”), that support
them.

Semantic parsing, i.e., the conversion of a text to
a formal meaning representation, such as a KG,
(“text→graph”) is equally important because it
makes information that only exists in text form
accessible to machines, thus assisting knowledge
base engineers in KG creation and completion.

As KGs are so flexible in expressing various
kinds of knowledge, separately created KGs vary a
lot. This unavoidably leads to a shortage of training
data for both graph↔text tasks. We therefore pro-
pose an unsupervised model that (1) easily adapts
to new KG domains and (2) only requires unla-
beled (i.e., non-parallel) texts and graphs from the
target domain, together with a few fact extraction
heuristics, but no manual annotation.

To show the effectiveness of our approach, we
conduct experiments on the latest release (v2.1)
of the WebNLG corpus (Shimorina and Gardent,
2018) and on a new benchmark we derive from
Visual Genome (Krishna et al., 2016). While both
of these datasets contain enough annotations to
train supervised models, we evaluate our unsuper-
vised approach by ignoring these annotations. The
datasets are particularly well-suited for our evalua-
tion as both graphs and texts are completely human-
generated. Thus for both our tasks, models are eval-
uated with natural, i.e., human-generated targets.

Concretely, we make the following contribu-
tions: (1) We present the first unsupervised
non-template approach to text generation from KGs
(graph→text). (2) We jointly develop a new unsu-
pervised approach to semantic parsing that automat-
ically adjusts to a target KG schema (text→graph).
(3) In contrast to prior unsupervised graph→text
and text→graph work, our model does not re-
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quire manual adaptation to new domains or graph
schemas. (4) We provide a thorough analysis of the
impact of different unsupervised objectives, espe-
cially the ones we newly introduce for text↔graph
conversion. (5) We create a new large-scale dataset
for text↔graph transformation tasks in the visual
domain.

2 Related Work

graph→ text. Our work is the first attempt at fully
unsupervised text generation from KGs. In this re-
spect it is only comparable to traditional rule- or
template-based approaches (Kukich, 1983; McRoy
et al., 2000). However, in contrast to these ap-
proaches, which need to be manually adapted to
new domains and KG schemas, our method is gen-
erally applicable to all kinds of data without modi-
fication.

There is a large body of literature about super-
vised text generation from structured data, notably
about the creation of sports game summaries from
statistical records (Robin, 1995; Tanaka-Ishii et al.,
1998). Recent efforts make use of neural encoder-
decoder mechanisms (Wiseman et al., 2017; Pudup-
pully et al., 2019). Although text creation from
relational databases is related and our unsupervised
method is, in principle, also applicable to this do-
main, in our work we specifically address text cre-
ation from graph-like structures such as KGs.

One recent work on supervised text creation
from KGs is (Bhowmik and de Melo, 2018). They
generate a short description of an entity, i.e., a sin-
gle KG node, based on a set of facts about the
entity. We, however, generate a description of the
whole KG, which involves multiple entities and
their relations. Koncel-Kedziorski et al. (2019)
generate texts from whole KGs. They, however,
do not evaluate on human-generated KGs but au-
tomatically generated ones from the scientific in-
formation extraction tool SciIE (Luan et al., 2018).
Their supervised model is based on message pass-
ing through the topology of the incidence graph of
the KG input. Such graph neural networks (Kipf
and Welling, 2017; Veličković et al., 2018) have
been widely adopted in supervised graph-to-text
tasks (Beck et al., 2018; Damonte and Cohen, 2019;
Ribeiro et al., 2019, 2020).

Even though Marcheggiani and Perez-
Beltrachini (2018) report that graph neural
networks can make better use of graph input than
RNNs for supervised learning, for our unsuper-

vised approach we follow the line of research that
uses RNN-based sequence-to-sequence models
(Cho et al., 2014; Sutskever et al., 2014) operating
on serialized triple sets (Gardent et al., 2017b;
Trisedya et al., 2018; Gehrmann et al., 2018;
Castro Ferreira et al., 2019; Fan et al., 2019). We
make this choice because learning a common
semantic space for both texts and graphs by
means of a shared encoder and decoder is a
central component of our model. It is a nontrivial,
separate research question whether and how
encoder-decoder parameters can effectively be
shared for models working on both sequential and
non-sequential data. We thus leave the adaptation
of our approach to graph neural networks for
future work.

text → graph. Converting a text into a KG rep-
resentation, our method is an alternative to prior
work on open information extraction (Niklaus
et al., 2018) with the advantage that the extractions,
though trained without labeled data, automatically
adjust to the KGs used for training. It is therefore
also related to relation extraction in the unsuper-
vised (Yao et al., 2011; Marcheggiani and Titov,
2016; Simon et al., 2019) and distantly supervised
setting (Riedel et al., 2010; Parikh et al., 2015).
However, these systems merely predict a single
relation between two given entities in a single sen-
tence, while we translate a whole text into a KG
with potentially multiple facts.

Our text→graph task is therefore most closely re-
lated to semantic parsing (Kamath and Das, 2019),
but we convert statements into KG facts whereas se-
mantic parsing typically converts a question into a
KG or database query. Poon and Domingos (2009)
proposed the first unsupervised approach. They,
however, still need an additional KG alignment
step, i.e., are not able to directly adjust to the target
KG. Other approaches overcome this limitation but
only in exchange for the inflexibility of manually
created domain-specific lexicons (Popescu et al.,
2004; Goldwasser et al., 2011). Poon (2013)’s ap-
proach is more flexible but still relies on prepro-
cessing by a dependency parser, which generally
means that language-specific annotations to train
such a parser are needed. Our approach is end-
to-end, i.e., does not need any language-specific
preprocessing during inference and only depends
on a POS tagger used in the rule-based text→graph
system to bootstrap training.

Unsupervised sequence generation. Our unsu-
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pervised training regime for both text↔graph tasks
is inspired by (Lample et al., 2018b). They used
self-supervised pretraining and backtranslation for
unsupervised translation from one language to an-
other. We adapt these principles and their noise
model to our tasks, and introduce two new noise
functions specific to text↔graph conversion.

3 Preliminaries

3.1 Data structure

We formalize a KG as a labeled directed multigraph
(V,E, s, t, l) where entities are nodes V and edges
E represent relations between entities. The lookup
functions s, t : E → V assign to each edge its
source and target node. The labeling function l
assigns labels to nodes and edges where node la-
bels are entity names and edge labels come from a
predefined setR of relation types.

An equivalent representation of a KG is the set
of its facts. A fact is a triple consisting of an edge’s
source node (the subject), the edge itself (the predi-
cate), and its target node (the object). So the set of
facts F of a KG can be obtained from its edges:

F := { (s(e), e, t(e)) | e ∈ E } .

Applying l to all triple elements and writing out
F in an arbitrary order generates a serialization
that makes the KG accessible to sequence models
otherwise used only for text. This has the advantage
that we can train a sequence encoder to embed text
and KGs in the same semantic space. Specifically,
we serialize a KG by writing out its facts separated
with end-of-fact symbols (EOF) and elements of
each fact with special SEP symbols. We thus define
our task as a sequence-to-sequence (seq2seq) task.

3.2 Scene Graphs

The Visual Genome (VG) repository is a large col-
lection of images with associated manually anno-
tated scene graphs; see Fig. 1. A scene graph for-
mally describes image objects with their attributes,
e.g., (hydrant, attr, yellow), and their relations to
other image objects, e.g., (woman, in, shorts). Each
scene graph is organized into smaller subgraphs,
known as region graphs, representing a subpart of
a more complex larger picture that is interesting
on its own. Each region graph is associated with
an English text, the region description. Texts and
graphs were not automatically produced from each
other, but were collected from crowdworkers who

Figure 1: Region graphs and textual region descriptions
in Visual Genome (VG). Image regions serve as com-
mon reference for text and graph creation but are disre-
garded in our work. We solely focus on the pairs of cor-
responding texts and graphs. Illustration adapted from
(Krishna et al., 2016).

baby

wrapped in blanket small hat

baseball hat pink

attr
attr wearing

attr attr

Figure 2: Example graph in our new VG benchmark.

were presented an image region and then gener-
ated text and graph. So although the graphs were
not specifically designed to closely resemble the
texts, they describe the same image region. This
semantic correspondence makes scene graph↔text
conversion an interesting and challenging problem
because text and graph are not simple translations
of each other.

Scene graphs are formalized in the same way
as other KGs: V here contains image objects and
their attributes, andR contains all types of visual
relationships and the special label attr for edges
between attribute and non-attribute nodes. Fig. 2
shows an example.

VG scene graphs have been used before for tra-
ditional KG tasks, such as KG completion (Wan
et al., 2018), but we are the first to use them for a
text↔graph conversion dataset.

4 Approaches

4.1 Rule-based systems

We propose a rule-based system as unsupervised
baseline for each of the text↔graph tasks. Note
that they both assume that the texts are in English.
Rgraph→text. From a KG serialization, we remove
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noise function behavior

swap applies a random permutation σ of words or facts with
∀i ∈ {1, . . . , n} , |σ(i)− i| ≤ k; k = 3 for text, k = +∞ for knowledge graphs.

drop removes each fact/word with a probability of pdrop.

blank replaces each fact/word with a probability of pblank by a special symbol blanked.

repeat inserts repetitions with a probability of prepeat in a sequence of facts/words.

rule generates a noisy translation by applying Rgraph→text to a graph or Rtext→graph to a text.

Table 1: Noise functions and their behavior on graphs and texts.

Man wearing a colorful shirt and white pants

Man SEP wearing SEP colorful EOF
shirt SEP attr SEP colorful EOF
pants SEP attr SEP white EOF
pants SEP playing SEP tennis

pants SEP attr SEP white EOF
shirt SEP attr SEP colorful EOF
blanked

pants SEP attr SEP white EOF
shirt SEP attr SEP colorful EOF
shirt SEP attr SEP colorful EOF
blanked

rule

blank ◦ drop ◦ swap

repeat

Llm

Figure 3: Example noisy training instance for the
graph→text task in the composed noise setting. The
fact highlighted in red is removed by drop, the one in
blue is replaced with blanked by blank, the one in
orange is repeated by repeat.

SEP symbols and replace EOF symbols by the
word and. The special label attr is mapped to is.
This corresponds to a template-based enumeration
of all KG facts. See Table 5 for an example.
Rtext→graph. After preprocessing a text with NLTK’s
default POS tagger (Loper and Bird, 2004) and re-
moving stop words, we apply two simple heuristics
to extract facts: (1) Each verb becomes a predi-
cate; is creates facts with predicate attr. The
content words directly before and after such a pred-
icate word become subject and object. (2) Adjec-
tives a form attributes, i.e., build facts of the form
(X,attr, a) where X is filled with the first noun
after a. These heuristics are similar in nature to a
rudimentary parser. See Table 8 for an example.

4.2 Neural seq2seq systems

Our main system is a neural seq2seq architecture.
We equip the standard encoder-decoder model with
attention (Bahdanau et al., 2014) and copy mech-
anism (Gu et al., 2016). Allowing the model to

directly copy from the source to the target side
is beneficial in data to text generation (Wiseman
et al., 2017; Puduppully et al., 2019). The encoder
(resp. decoder) is a bidirectional (resp. unidirec-
tional) LSTM (Hochreiter and Schmidhuber, 1997).
Dropout (Hinton et al., 2012) is applied at the input
of both encoder and decoder (Britz et al., 2017). We
combine this model with the following concepts:
Multi-task model. In unsupervised machine trans-
lation, systems are trained for both translation
directions (Lample et al., 2018b). In the same
way, we train our system for both conversion tasks
text↔graph, sharing encoder and decoder. To tell
the decoder which type of output should be pro-
duced (text or graph), we initialize the cell state
of the decoder with an embedding of the desired
output type. The hidden state of the decoder is ini-
tialized with the last state of the encoder as usual.
Noisy source samples. Lample et al. (2018a) in-
troduced denoising auto-encoding as pretraining
and auxiliary task to train the decoder to produce
well-formed output and make the encoder robust to
noisy input. The training examples for this task con-
sist of a noisy version of a sentence as source and
the original sentence as target. We adapt this idea
and propose the following noise functions for the
domains of graphs and texts: swap, drop, blank,
repeat, rule. Table 1 describes their behavior.
swap, drop and blank are adapted from (Lample
et al., 2018a) with facts in graphs taking the role
of words in text. As order should be irrelevant in a
set of facts, we drop the locality constraint in the
swap permutation for graphs by setting k = +∞.

Denoising samples generated by repeat re-
quires the model to learn to remove redundant in-
formation in a set of facts. In the case of text,
repeat mimics a behavior often observed with in-
sufficiently trained neural models, i.e., repeating
words considered important.

Unlike the other noise functions, rule does not
“perturb” its input, but rather noisily backtranslates
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it. We will see in Section 7 that bootstrapping with
these noisy translations is essential.

We consider two fundamentally different noise
injection regimes: (1) The composed noise setting
is an adaptation of Lample et al. (2018a)’s noise
model (blank◦drop◦swap) where our newly intro-
duced noise functions rule and repeat are added
to the start and end of the pipeline, i.e., all data sam-
ples are treated equally with the same noise func-
tionCcomp := repeat◦blank◦drop◦swap◦rule.
Figure 3 shows an example. (2) In the sampled
noise setting, we do not use all noise functions at
once but sample a single one per data instance.

4.3 Training regimes
We denote the sets of graphs and corresponding
texts by G and T . The set of available supervised
examples (x, y) ∈ G × T is called S ⊂ G × T .
Pg and Pt are probabilistic models that generate,
conditioned on any input, a graph (g) or a text (t).
Unsupervised training. We first obtain a language
model for both graphs and text by training one
epoch with the denoising auto-encoder objective:

Ldenoise = E
x∼G

[− logPg(x|C(x))] +

E
y∼T

[− logPt(y|C(y))]

where C ∈
{
Ccomp

}
for composed noise and C ∈

{swap, blank, drop, repeat, rule} for sampled
noise. In this pretraining epoch only, we use all pos-
sible noise functions individually on all available
data. As sampled noise incorporates five different
noise functions and composed noise only one, this
results in five times more pretraining samples for
sampled noise than for composed noise.

In subsequent epochs, we additionally consider
Lback as training signal:

Lback = E
x∼G

[− logPg(x|z∗(x))] +

E
y∼T

[− logPt(y|w∗(y))]

z∗(x) = argmax
z

Pt(z|x)

w∗(y) = argmax
w

Pg(w|y)

This means that, in each iteration, we apply the
current model to backtranslate a text (graph) to
obtain a potentially imperfect graph (text) that we
can use as noisy source with the clean original input
being the target. This gives us a pseudo-parallel
training instance for the next iteration – recall that

VG VGball WebNLG

train split size 2,412,253 151,790 34,338
val split size 323,478 21,541 4,313
test split size 324,664 20,569 4,222

#relation types 36,506 5,167 373
avg #facts in graph 2.7 2.5 3.0
avg #tokens in text 5.4 5.5 22.8

avg % text tokens in graph 49.3 50.6 49.4
avg % graph tokens in text 52.3 54.7 75.6

Table 2: Statistics of WebNLG v2.1 and our newly cre-
ated benchmark VG; VGball is a subset of VG represent-
ing images from ball sports events. Data split sizes are
given as number of graph-text pairs.

we address unsupervised generation, i.e., without
access to parallel data.

The total loss in these epochs is Lback +Ldenoise,
where now Ldenoise only samples one possible type
of noise independently for each data instance.
Supervised training. Our intended application is
an unsupervised scenario. For our two datasets,
however, we have labeled data (i.e., a “parallel cor-
pus”) and so can also compare our model to its
supervised variant. Although supervised perfor-
mance is generally better, it serves as a reference
point and gives us an idea of the impact of supervi-
sion as opposed to factors like model architecture
and hyperparameters. The supervised loss is simply
defined as follows:

Lsup = E
(x,y)∼S

[− logPt(y|x)− logPg(x|y)]

5 Experiments

5.1 Data
For our experiments, we randomly split the VG
images 80/10/10 into train/val/test. We then re-
move all graphs from train that also occur in one
of the images in val or test. Finally, we unify
graph serialization duplicates with different texts
to single instances with multiple references for
graph→text and proceed analogously with text du-
plicates for text→graph. For WebNLG v2.1, we
use the data splits as provided. Following (Gardent
et al., 2017a), we resolve the camel case of relation
names and remove underscores from entity names
in a preprocessing step. For both datasets, the order
of facts in graph serializations corresponds to the
order of triples in the original dataset. Because
of VG’s enormous size and limited computation
power, we additionally create a closed-domain ball
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Visual Genome WebNLG

graph→ text BLEU METEOR CHRF++ BLEU METEOR CHRF++

val test val test val test val test val test val test

Rgraph→text 5.9 5.9 28.2 28.1 43.4 43.3 18.3 18.3 33.5 33.6 55.0 55.2
Ours w/ sampled noise 19.8 19.5 31.4 31.2 50.9 50.7 39.1 37.7 35.4 35.5 61.9 62.1
Ours w/ composed noise 23.2 23.2 33.0 32.9 53.7 53.6 30.8 30.5 30.2 30.0 53.1 52.8

Ours supervised 26.5 26.4 32.3 32.2 53.7 53.6 35.1 34.4 39.6 39.5 64.1 64.0

Table 3: Results for unsupervised and supervised text generation. Note that training a supervised model on millions
of labeled samples is usually not an option. Best unsupervised models are identified by best BLEU on V100. BLEU
and METEOR are computed with scripts from (Lin et al., 2018); the CHRF++ script is from (Popović, 2017b).

sports subset of VG, called VGball, which we can
use to quickly conduct additional experiments (see
Section 7). We identify all images where at least
one region graph contains at least one fact that men-
tions an object ending with ball and take all regions
from them (keeping data splits the same). In con-
trast to alternatives like random subsampling, we
consider this domain-focused construction more
realistic.

Table 2 shows relevant statistics for all datasets.
While VG and WebNLG have similar statistics,
VG is around 70 times larger than WebNLG, which
makes it an interesting benchmark for future re-
search, both supervised and unsupervised. Apart
from size, there are two important differences:
(1) The VG graph schema has been freely defined
by crowd workers and thus features a large variety
of different relations. (2) The percentage of graph
tokens occurring in the text, a measure important
for the text→graph task, is lower for VG than for
WebNLG. Thus, VG graphs contain more details
than their corresponding texts, which is a character-
istic feature of the domain of image captions: they
mainly describe the salient image parts.

5.2 Training details

We train all models with the Adam optimizer
(Kingma and Ba, 2015) for maximally 30 epochs.
We stop supervised models early when Lsup does
not decrease on val for 10 epochs. Unsupervised
models are stopped after 5 iterations on VG be-
cause of its big size and limited computational re-
sources. All hyperparameters and more details are
described in Appendices A and B. Our implemen-
tation is based on AllenNLP (Gardner et al., 2017).

In unsupervised training, input graphs and texts
are the same as in supervised training – only the
gold target sides are ignored. While it is an arti-
ficial setup to split paired data and treat them as

sampled noise composed noise

# U V100 val test U V100 val test

1 80.4 7.8 10.1 9.9 72.2 15.9 19.8 19.7
2 50.7 7.2 9.2 9.1 41.2 14.0 15.2 15.1
3 67.6 19.5 19.4 19.2 61.0 22.7 23.5 23.4
4 56.4 21.2 19.8 19.5 51.9 22.2 21.4 21.3
5 62.9 20.0 19.6 19.4 60.5 24.5 23.2 23.2

Table 4: BLEU scores on VG for our unsupervised
models evaluated for graph→text at different iterations.
U is calculated on all unlabeled data used for training.
V100 is a 100-size random sample from val. All results
are computed with scripts from (Lin et al., 2018).

unpaired, this not only makes the supervised and
unsupervised settings more directly comparable,
but also ensures that the text data resemble the eval-
uation texts in style and domain. For the purpose
of experiments on a benchmark, this seems appro-
priate to us. For a concrete use case, it would be an
important first step to find adequate texts that show-
case the desired language style and that are about a
similar topic as the KGs that are to be textualized.
As KGs are rarely the only means of storing in-
formation, e.g., in an industrial context, such texts
should not be hard to come by in practice.

6 Results and Discussion

6.1 Text generation from graphs

Model selection. Table 4 shows how performance
of our unsupervised model changes at every back-
translation iteration, measured in BLEU (Papineni
et al., 2002), a common metric for natural language
generation. For model selection, we adopt the two
methods proposed by Lample et al. (2018b), i.e.,
a small validation set (we take a 100-size random
subset of val, called V100) and a fully unsupervised
criterion (U) where BLEU compares an unlabeled
sample with its back-and-forth translation. We con-
firm their finding that U is not reliable for neural
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(a) Reference text a baseball cap on a baby’s head

(b) Rgraph→text baby is small and baby is
wrapped in blanket and hat is
pink and hat is baseball hat and
baby wearing hat

(c) Unsuperv. neural small baby wrapped in blanket
model with pink baseball hat

(d) Superv. neural model baby wearing a pink hat

Table 5: Texts generated from graph in Fig. 2.

text generation models whereas V100 correlates bet-
ter with performance on the larger test sets. We use
V100 for model selection in the rest of this paper.
Quantitative evaluation. Table 3 shows BLEU,
METEOR (Banerjee and Lavie, 2005) and
CHRF++ (Popović, 2017a) for our unsupervised
models and the rule baseline Rgraph→text, which is
in many cases, i.e., if parallel graph-text data are
scarce, the only alternative.

First, we observe that Rgraph→text performs much
better on WebNLG than VG, indicating that our
new benchmark poses a tougher challenge. Second,
our unsupervised models consistently outperform
this baseline on all metrics and on both datasets,
showing that our method produces textual descrip-
tions much closer to human-generated ones. Third,
noise composition, the general default in unsuper-
vised machine translation, does not always per-
form better than noise sampling. Thus, it is worth-
while to try different noise settings for new tasks
or datasets.

Surprisingly, supervised and unsupervised mod-
els perform nearly on par. Real supervision does
not seem to give much better guidance in train-
ing than our unsupervised regime, as measured by
our three metrics on two different datasets. Some
metric-dataset combinations even favor one of the
unsupervised models. Our qualitative observations
provide a possible explanation for that.
Qualitative observations. Taking a look at exam-
ple generations (Table 5), we also see qualitatively
how much easier it is to grasp the content of our nat-
ural language summarization than reading through
a simple enumeration of KG facts. We find that
the unsupervised model (c) seems to output the KG
information in a more complete manner than its su-
pervised counterpart (d). The supervision probably
introduces a bias present in the training data that
image captions focus on salient image parts and
therefore the supervised model is encouraged to
omit information. As it never sees a corresponding

sampled noise composed noise

# U V100 val test U V100 val test

1 19.1 1.0 1.2 1.2 17.0 2.0 2.2 2.2
2 71.0 21.7 19.1 18.8 49.3 22.1 22.1 21.7
3 58.2 19.3 18.6 18.3 45.9 18.7 19.7 19.4
4 62.3 18.3 19.1 18.8 54.4 19.9 20.8 20.5
5 63.7 19.8 19.0 18.7 49.0 18.8 19.0 18.8

Table 6: F1 scores on VG for our models from Table 4
evaluated on text→graph at different iterations.

text→ graph
VG WebNLG

val test val test

Rtext→graph 13.4 13.1 0.0 0.0
Stanford SG Parser 19.5 19.3 0.0 0.0
Ours w/ sampled noise 19.1 18.8 38.5 39.1
Ours w/ composed noise 22.1 21.7 32.5 33.1

Ours supervised 23.5 23.0 52.8 52.8

Table 7: F1 scores of facts extracted by our unsuper-
vised semantic parsing (text→graph) systems and our
model trained with supervision.

text-graph pair together, the unsupervised model
cannot draw such a conclusion.

6.2 Graph extraction from texts

We evaluate semantic parsing (text→graph) perfor-
mance by computing the micro-averaged F1 score
of extracted facts. If there are multiple reference
graphs (cf. Section 5.1), an extracted fact is con-
sidered correct if it occurs in at least one reference
graph. For the ground truth number of facts to be
extracted from a given text, we take the maximum
number of facts of all its reference graphs.
Model selection. Table 6 shows that (compared
to text generation quality) U is more reliable for
text→graph performance. For sampled noise, it cor-
rectly identifies the best iteration, whereas for com-
posed noise it chooses second best. In both noise
settings, V100 perfectly chooses the best model.
Quantitative observations. Table 7 shows a com-
parison of our unsupervised models with two
rule-based systems, our Rtext→graph and the highly
domain-specific Stanford Scene Graph Parser
(SSGP) by Schuster et al. (2015).

We choose these two baselines to adequately
represent the state of the art in the unsupervised set-
ting. Recall from Section 2 that the only previous
unsupervised works either cannot adapt to a target
graph schema (open information extraction), which
means their precision and recall of retrieved facts
is always 0, or have been created for SQL query
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Input sentence Man wearing a colorful shirt and white
pants playing tennis

Reference (RG) (shirt, attr, colorful)
(pants, attr, white)
(man, wearing, shirt)
(man, wearing, pants)

Rtext→graph (Man, wearing, colorful)

(shirt, attr, colorful)

(pants, attr, white)

(pants, playing, tennis)

Stanford Scene (shirt, play, tennis) ,

Graph Parser (pants, play, tennis) ,

(shirt, attr, colorful) ,

(pants, attr, white)

Unsuperv. model (pants, attr, colorful)

w/ composed noise (pants, attr, white)

(man, wearing, shirt)

(man, playing, tennis)

Supervised model (shirt, attr, colorful)

(pants, attr, white)

(Man, wearing, shirt)

(Man, wearing, pants)

Table 8: Example fact extractions and evaluation wrt
reference graph (RG). Green: correct (∈ RG). Yellow:
acceptable fact, but /∈ RG. Red: incorrect (/∈ RG).

generation from natural language questions (Poon,
2013), a related task that is yet so different that
an adaptation to triple set generation from natural
language statements is nontrivial. While rule-based
systems do not automatically adapt to new graph
schemas either, Rtext→graph and SSGP were at least
designed with the scene graph domain in mind.

Although SSGP was not optimized to match the
scene graphs from VG, its rules were still engi-
neered to cover typical idiosyncrasies of textual im-
age descriptions and corresponding scene graphs.
Besides, we evaluate it with lemmatized reference
graphs because it only predicts lemmata as predi-
cates. All this gives it a major advantage over the
other presented systems but it is nonetheless out-
performed by our best unsupervised model – even
on VG. This shows that our automatic method can
beat even hand-crafted domain-specific rules.

Both Rtext→graph and SSGP fail to predict any fact
from WebNLG. The DBpedia facts from WebNLG
often contain multi-token entities while Rtext→graph

only picks single tokens from the text. Likewise,
SSGP models multi-token entities as two nodes

VGball WebNLG

g→t t→g g→t t→g
BLEU F1 BLEU F1

No noise 0.9 0.0 14.8 0.0
sample all noise funs 19.9 17.3 39.1 38.5
compose all noise funs 19.6 19.0 30.8 32.5

use only rule 19.5 18.5 37.4 31.0
use only swap 0.9 0.0 13.1 0.0
use only drop 0.9 0.0 39.9 30.1
use only blank 0.9 0.0 14.9 0.0
use only repeat 1.1 0.0 15.7 0.0

sample all but rule 0.9 0.0 14.9 0.0
sample all but swap 19.2 17.0 39.6 37.3
sample all but drop 19.5 16.0 39.2 35.3
sample all but blank 19.9 17.5 41.0 37.0
sample all but repeat 20.4 16.6 36.7 37.1

comp. all but rule 0.9 0.0 13.5 0.0
comp. all but swap 20.2 16.3 35.9 40.8
comp. all but drop 21.5 18.6 36.4 41.1
comp. all but blank 20.2 16.3 34.8 40.4
comp. all but repeat 21.1 20.1 38.5 42.3

Table 9: Ablation study of our models on val of VGball
and WebNLG v2.1. Models selected based on V100.
Bold: best performance per column and block. Under-
lined: worse than corresponding rule-based system.

with an attr relation. This illustrates the impor-
tance of automatic adaptation to the target KG. Al-
though our system uses Rtext→graph during unsuper-
vised training and is similarly not adapted to the
WebNLG dataset, it performs significantly better.

Supervision helps more on WebNLG than on VG.
The poor performance of Rtext→graph on WebNLG is
probably a handicap for unsupervised learning.
Qualitative observations. Table 8 shows exam-
ple facts extracted by different systems. Rtext→graph

and SSGP are both fooled by the proximity of the
noun pants and the verb play whereas our model
correctly identifies man as the subject. It, however,
fails to identify shirt as an entity and associates the
two attributes colorful and white to pants. Only the
supervised model produces perfect output.

6.3 Noise and translation completeness

Sampled noise only creates training pairs that either
are complete rule-based translations or reconstruc-
tion pairs from a noisy graph to a complete graph
or a noisy text to a complete text. In contrast, com-
posed noise can introduce translations from a noisy
text to a complete graph or vice versa and thus
encourage a system to omit input information (cf.
Fig. 3). This difference is mirrored nicely in the
results of our unsupervised systems for both tasks:
composed noise performs better on VG where omit-
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ted information in an image caption is common and
sampled noise works better on WebNLG where the
texts describe their graphs completely.

7 Noise Ablation Study

Our unsupervised objectives are defined by differ-
ent types of noise models. Hence, we examine
their impact in a noise ablation study. Table 9
shows results for text→graph and graph→text on
the validation splits of VGball and WebNLG.

For both datasets and tasks, introducing varia-
tion via noise functions is crucial for the success
of unsupervised learning. The model without noise
(i.e., C(x) = x) fails completely as do all models
lacking rule as type of noise, the only exception
being the only-drop system on WebNLG. Even
though drop seems to work equally well in this one
case, the simple translations delivered by our rule-
based systems clearly provide the most useful in-
formation for the unsupervised models – notably in
combination with the other noise functions: remov-
ing rule and keeping all other types of noise (cf.
“sample all but rule” and “comp. all but rule”)
performs much worse than leaving out drop.

We hypothesize that our two rule systems
provide two important pieces of information:
(1) Rgraph→text helps distinguish data format tokens
from text tokens and (2) Rtext→graph helps find prob-
able candidate words in a text that form facts for
the data output. As opposed to machine translation,
where usually every word in a sentence is trans-
lated into a fluent sentence in the target language,
identifying words that probably form a fact is more
important in data-to/from-text generation.

We moreover observe that our unsupervised
models always improve on the rule-based sys-
tems even when rule is the only type of noise:
graph→text BLEU increases from 6.2/18.3 to
19.5/37.4 on VGball/WebNLG and text→graph F1
from 14.4/0.0 to 18.5/31.0.

Finally, our ablation study makes clear that there
is no best noise model for all datasets and tasks.
We therefore recommend experimenting with both
different sets of noise functions and noise injection
regimes (sampled vs. composed) for new data.

8 Conclusion

We presented the first fully unsupervised approach
to text generation from KGs and a novel ap-
proach to unsupervised semantic parsing that au-
tomatically adapts to a target KG. We showed

the effectiveness of our approach on two datasets,
WebNLG v2.1 and a new text↔graph benchmark
in the visual domain, derived from Visual Genome.
We quantitatively and qualitatively analyzed our
method on text↔graph conversion. We explored
the impact of different unsupervised objectives in
an ablation study and found that our newly in-
troduced unsupervised objective using rule-based
translations is essential for the success of unsuper-
vised learning.
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A Hyperparameters

We use the following settings for all our experi-
ments: learning rate of 10−4, word embeddings of
size 300, an LSTM hidden size of 250, a dropout
rate of 0.2 and a batch size of 10. Following Lam-
ple et al. (2018b), we set pblank = prepeat = 0.2,
pdrop = 0.1. For inference, we decode greedily
with a maximum number of 40 decoding steps. To
speed up unsupervised learning, we increase the
batch size to 64 when creating backtranslations.

B Model details

We train with homogeneous batches of one target
output type (text or graph) at a time. We use a
single GeForce GTX 1080 GPU for training and in-
ference. In this environment, pure training takes ap-
proximately 9 ms per instance and inference, which
also means backtranslation, takes approximately 21
ms per instance. This means that unsupervised
learning approximately needs 30 ms per instance.
WebNLG models use 10.6 million parameters, VG
models have 60.7 million parameters. The differ-
ence is due to a larger vocabulary size of 70,800
for VG compared to 8,171 for WebNLG.

C Results of all iterations on WebNLG

See Table 10 for all intermediate graph→text re-
sults of unsupervised training on WebNLG and
Table 11 for text→graph. We find similar trends as
for VG (Tables 4 and 6) except for U being a less
reliable performance indicator for text→graph in
the sampled noise setting.

sampled noise composed noise

# U V100 val U V100 val

1 91.7 12.8 13.0 23.0 15.9 15.5
2 94.0 14.7 15.8 53.2 22.2 20.7
3 85.2 25.5 26.0 71.0 23.2 22.8
4 65.9 27.7 28.8 75.2 25.3 26.2
5 65.5 31.4 30.7 69.2 25.9 27.2
6 58.1 31.5 31.0 71.5 27.6 27.7
7 48.0 31.3 32.3 79.2 29.0 27.7
8 48.3 32.8 33.4 52.5 28.1 27.5
9 37.5 33.2 34.0 57.1 30.5 30.0

10 42.1 32.8 33.4 52.4 30.6 29.9
11 38.7 34.7 34.8 59.9 32.0 31.6
12 38.7 36.4 36.2 42.1 30.4 30.8
13 39.3 33.5 35.1 50.0 30.7 30.7
14 40.5 36.9 36.6 46.7 30.9 30.7
15 41.8 36.5 37.5 48.2 31.1 30.3
16 43.2 36.9 38.0 43.7 30.3 29.6
17 39.1 35.6 36.6 43.1 29.0 29.7
18 38.5 37.5 38.3 31.1 29.7 29.8
19 38.8 37.8 38.4 39.5 29.0 29.8
20 37.5 37.2 38.6 36.2 31.3 29.8
21 36.4 36.8 38.4 35.2 30.0 30.8
22 44.8 36.3 39.7 37.6 32.4 30.7
23 40.8 35.8 38.2 39.6 31.4 30.3
24 35.8 39.2 39.6 39.6 32.4 30.3
25 40.6 38.5 39.5 37.0 33.2 30.9
26 36.8 38.9 40.3 41.3 32.3 30.2
27 44.1 39.7 40.6 37.3 33.0 30.4
28 39.3 36.9 38.9 39.0 34.7 30.8
29 36.1 37.6 38.6 41.5 31.0 30.6
30 38.7 40.7 39.1 42.9 30.6 30.0

Table 10: BLEU scores on WebNLG for our unsuper-
vised models evaluated for graph→text at different it-
erations. U is calculated on all unlabeled data used for
training. V100 is a 100-size random sample from val.
All results are computed with scripts from (Lin et al.,
2018).
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sampled noise composed noise

# U V100 val U V100 val

1 69.4 0.0 0.0 0.0 0.0 0.0
2 64.0 0.0 0.1 16.2 1.2 1.6
3 35.6 0.9 0.3 7.5 3.3 3.0
4 47.8 2.6 2.3 37.5 5.5 5.5
5 39.2 5.7 3.4 35.3 7.0 6.6
6 39.2 6.2 5.6 44.9 9.7 8.0
7 45.8 9.8 7.9 58.3 8.0 10.3
8 50.0 12.6 10.0 51.1 14.0 12.8
9 54.9 13.6 12.9 53.1 12.5 14.0

10 58.3 14.9 14.3 51.1 15.9 16.8
11 62.5 19.3 17.8 53.8 15.6 17.3
12 54.2 20.3 18.2 58.3 16.7 18.0
13 57.1 23.1 20.2 47.8 19.8 20.6
14 37.5 25.5 21.4 49.0 20.6 22.1
15 48.0 25.7 22.4 54.2 23.0 22.8
16 52.0 27.9 24.3 46.2 22.5 25.4
17 50.0 26.7 25.1 35.6 26.8 26.8
18 48.0 32.1 27.7 52.2 27.8 27.7
19 56.0 32.3 28.9 58.3 26.4 28.1
20 60.0 31.0 30.1 55.3 26.4 29.2
21 51.0 32.3 30.4 59.3 27.6 30.7
22 55.3 34.9 32.0 62.5 31.7 32.0
23 44.9 34.3 32.7 54.9 34.0 32.6
24 58.8 38.4 33.7 61.2 31.5 32.4
25 46.8 39.6 34.1 58.3 33.3 33.1
26 53.8 40.6 36.3 54.2 34.4 32.5
27 62.5 41.8 36.4 50.0 33.9 33.3
28 55.3 41.0 37.4 40.8 32.6 33.7
29 56.0 40.7 37.0 58.8 29.5 33.7
30 59.6 41.9 38.5 53.8 31.6 33.4

Table 11: F1 scores on WebNLG for our unsupervised
models evaluated for text→graph at different iterations.
U is calculated on all unlabeled data used for training.
V100 is a 100-size random sample from val.
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Abstract

We present Graformer, a novel Transformer-
based encoder-decoder architecture for graph-
to-text generation. With our novel graph self-
attention, the encoding of a node relies on all
nodes in the input graph – not only direct neigh-
bors – facilitating the detection of global pat-
terns. We represent the relation between two
nodes as the length of the shortest path between
them. Graformer learns to weight these node-
node relations differently for different attention
heads, thus virtually learning differently con-
nected views of the input graph. We evaluate
Graformer on two popular graph-to-text gener-
ation benchmarks, AGENDA and WebNLG,
where it achieves strong performance while
using many fewer parameters than other ap-
proaches.1

1 Introduction

A knowledge graph (KG) is a flexible data struc-
ture commonly used to store both general world
knowledge (Auer et al., 2008) and specialized infor-
mation, e.g., in biomedicine (Wishart et al., 2018)
and computer vision (Krishna et al., 2017). Gen-
erating a natural language description of such a
graph (KG→text) makes the stored information
accessible to a broader audience of end users.
It is therefore important for KG-based question
answering (Bhowmik and de Melo, 2018), data-
to-document generation (Moryossef et al., 2019;
Koncel-Kedziorski et al., 2019) and interpretability
of KGs in general (Schmitt et al., 2020).

Recent approaches to KG→text employ encoder-
decoder architectures: the encoder first computes
vector representations of the graph’s nodes, the de-
coder then uses them to predict the text sequence.
Typical encoder choices are graph neural networks
based on message passing between direct neighbors
in the graph (Kipf and Welling, 2017; Veličković

1Our code is publicly available: https://github.
com/mnschmit/graformer

et al., 2018) or variants of Transformer (Vaswani
et al., 2017) that apply self-attention on all nodes
together, including those that are not directly con-
nected. To avoid losing information, the latter ap-
proaches use edge or node labels from the shortest
path when computing the attention between two
nodes (Zhu et al., 2019; Cai and Lam, 2020). As-
suming the existence of a path between any two
nodes is particularly problematic for KGs: a set of
KG facts often does not form a connected graph.

We propose a flexible alternative that neither
needs such an assumption nor uses label infor-
mation to model graph structure: a Transformer-
based encoder that interprets the lengths of shortest
paths in a graph as relative position information
and thus, by means of multi-head attention, dy-
namically learns different structural views of the
input graph with differently weighted connection
patterns. We call this new architecture Graformer.

Following previous work, we evaluate
Graformer on two benchmarks: (i) the AGENDA
dataset (Koncel-Kedziorski et al., 2019), i.e., the
generation of scientific abstracts from automati-
cally extracted entities and relations specific to
scientific text, and (ii) the WebNLG challenge
dataset (Gardent et al., 2017), i.e., the task of
generating text from DBPedia subgraphs. On both
datasets, Graformer achieves more than 96% of
the state-of-the-art performance while using only
about half as many parameters.

In summary, our contributions are as follows:
(1) We develop Graformer, a novel graph-to-text
architecture that interprets shortest path lengths as
relative position information in a graph self-atten-
tion network. (2) Graformer achieves competitive
performance on two popular KG-to-text genera-
tion benchmarks, showing that our architecture can
learn about graph structure without any guidance
other than its text generation objective. (3) To fur-
ther investigate what Graformer learns about graph
structure, we visualize the differently connected
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graph views it has learned and indeed find differ-
ent attention heads for more local and more global
graph information. Interestingly, direct neighbors
are considered particularly important even without
any structural bias, such as introduced by a graph
neural network. (4) Analyzing the performance
w.r.t. different input graph properties, we find evi-
dence that Graformer’s more elaborate global view
on the graph is an advantage when it is important
to distinguish between distant but connected nodes
and truly unreachable ones.

2 Related Work

Most recent approaches to graph-to-text generation
employ a graph neural network (GNN) based on
message passing through the input graph’s topology
as the encoder in their encoder-decoder architec-
tures (Marcheggiani and Perez-Beltrachini, 2018;
Koncel-Kedziorski et al., 2019; Ribeiro et al., 2019;
Guo et al., 2019). As one layer of these encoders
only considers immediate neighbors, a large num-
ber of stacked layers can be necessary to learn
about distant nodes, which in turn also increases
the risk of propagating noise (Li et al., 2018).

Other approaches (Zhu et al., 2019; Cai and Lam,
2020) base their encoder on the Transformer archi-
tecture (Vaswani et al., 2017) and thus, in each
layer, compute self-attention on all nodes, not only
direct neighbors, facilitating the information flow
between distant nodes. Like Graformer, these ap-
proaches incorporate information about the graph
topology with some variant of relative position em-
beddings (Shaw et al., 2018). They, however, as-
sume that there is always a path between any pair
of nodes, i.e., there are no unreachable nodes or
disconnected subgraphs. Thus they use an LSTM
(Hochreiter and Schmidhuber, 1997) to compute
a relation embedding from the labels along this
path. However, in contrast to the AMR2 graphs
used for their evaluation, KGs are frequently dis-
connected. Graformer is more flexible and makes
no assumption about connectivity. Furthermore,
its relative position embeddings only depend on
the lengths of shortest paths i.e., purely structural
information, not labels. It thus effectively learns
differently connected views of its input graph.

Deficiencies in modeling long-range dependen-
cies in GNNs have been considered a serious limi-
tation before. Various solutions orthogonal to our
approach have been proposed in recent work: By

2abstract meaning representation

incorporating a connectivity score into their graph
attention network, Zhang et al. (2020) manage to
increase the attention span to k-hop neighborhoods
but, finally, only experiment with k = 2. Our graph
encoder efficiently handles dependencies between
much more distant nodes. Pei et al. (2020) define
an additional neighborhood based on Euclidean
distance in a continuous node embedding space.
Similar to our work, a node can thus receive infor-
mation from distant nodes, given their embeddings
are close enough. However, Pei et al. (2020) com-
pute these embeddings only once before training
whereas in our approach node similarity is based
on the learned representation in each encoder layer.
This allows Graformer to dynamically change node
interaction patterns during training.

Recently, Ribeiro et al. (2020) use two GNN
encoders – one using the original topology and one
with a fully connected version of the graph – and
combine their output in various ways for graph-to-
text generation. This approach can only see two
extreme versions of the graph: direct neighbors and
full connection. Our approach is more flexible and
dynamically learns a different structural view per
attention head. It is also more parameter-efficient
as our multi-view encoder does not need a separate
set of parameters for each view.

3 The Graformer Model

Graformer follows the general multi-layer encoder-
decoder pattern known from the original Trans-
former (Vaswani et al., 2017). In the following, we
first describe our formalization of the KG input and
then how it is processed by Graformer.

3.1 Graph data structure

Knowledge graph. We formalize a knowledge
graph (KG) as a directed, labeled multigraph
GKG = (V,A, s, t, lV , lA, E ,R) with V a set of
vertices (the KG entities), A a set of arcs (the KG
facts), s, t : A → V functions assigning to each
arc its source/target node (the subject/object of a
KG fact), and lV : V → E , lA : A→ R providing
labels for vertices and arcs, where R is a set of
KG-specific relations and E a set of entity names.
Token graph. Entity names usually consist of
more than one token or subword unit. Hence, a
tokenizer tok : E → Σ∗T is needed that splits an
entity’s label into its components from the vocab-
ulary ΣT of text tokens. Following recent work
(Ribeiro et al., 2020), we mimic this composition-
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Figure 1: Different representations of the same KG
(types are omitted for clarity).

ality of node labels in the graph structure by split-
ting each node into as many nodes as there are
tokens in its label. We thus obtain a directed hyper-
graph GT = (VT , A, sT , tT , lT , lA,ΣT ,R, same),
where sT , tT : A → P (VT ) now assign a set of
source (resp. target) nodes to each (hyper-) arc
and all nodes are labeled with only one token, i.e.,
lT : VT → ΣT . Unlike Ribeiro et al. (2020), we

additionally keep track of all token nodes’ origins:
same : VT → P (VT × Z) assigns to each node n
all other nodes n′ stemming from the same entity to-
gether with the relative position of lT (n) and lT (n′)
in the original tokenized entity name. Fig. 1b shows
the token graph corresponding to the KG in Fig. 1a.
Incidence graph. For ease of implementation,
our final data structure for the KG is the hyper-
graph’s incidence graph, a bipartite graph where
hyper-arcs are represented as nodes and edges are
unlabeled: G = (N,E, l,Σ, { SAMEp | p ∈ Z })
where N = VT ∪ A is the set of nodes, E =
{ (n1, n2) | n1 ∈ sT (n2) ∨ n2 ∈ tT (n1) } the set
of directed edges, l : N → Σ a label function,
and Σ = ΣT ∪ R the vocabulary. We intro-
duce SAMEp edges to fully connect same clus-
ters: SAMEp = { (n1, n2) | (n2, p) ∈ same(n1) }
where p differentiates between different relative po-
sitions in the original entity string, similar to (Shaw
et al., 2018). See Fig. 1c for an example.

3.2 Graformer encoder
The initial graph representationH(0) ∈ R|N |×d is
obtained by looking up embeddings for the node la-
bels in the learned embedding matrix E ∈ R|Σ|×d,
i.e., H(0)

i = el(ni)E where el(ni) is the one-hot-
encoding of the ith node’s label.

To compute the node representation H(L) in
the Lth layer, we follow Vaswani et al. (2017),
i.e., we first normalize the input from the previ-
ous layerH(L−1) via layer normalization LN , fol-
lowed by multi-head graph self-attention SelfAttg
(see § 3.3 for details), which – after dropout reg-
ularization Dr and a residual connection – yields
the intermediate representation I (cf. Eq. (1)). A
feedforward layer FF with one hidden layer and
GeLU (Hendrycks and Gimpel, 2016) activation
computes the final layer output (cf. Eq. (2)). As
recommended by Chen et al. (2018), we apply an
additional layer normalization step to the output
H(LE) of the last encoder layer LE .

I(L) = Dr(SelfAttg(LN (H(L−1)))) +H(L−1)

(1)

H(L) = Dr(FF (LN (I(L)))) + I(L) (2)

SelfAttg computes a weighted sum ofH(L−1):

SelfAttg(H)i =

|N |∑

j=1

αgij(HjW
Vg) (3)

whereW Vg ∈ Rd×d is a learned parameter matrix.

97



13

In the next section, we derive the definition of
the graph-structure-informed attention weights αgij .

3.3 Self-attention for text and graphs with
relative position embeddings

In this section, we describe the computation of at-
tention weights for multi-head self-attention. Note
that the formulas describe the computations for one
head. The output of multiple heads is combined as
in the original Transformer (Vaswani et al., 2017).
Text self-attention. Shaw et al. (2018) intro-
duced position-aware self-attention in the Trans-
former by (i) adding a relative position embedding
AK ∈ RM×M×d toX’s key representation, when
computing the softmax-normalized attention scores
αi between Xi ∈ Rd and the complete input em-
bedding matrix X ∈ RM×d (cf. Eq. (4)), and
(ii) adding a second type of position embedding
AV ∈ RM×M×d toX’s value representation when
computing the weighted sum (cf. Eq. (5)):

αi = σ

(
XiW

Q(XWK + AK
i )>√

d

)
(4)

Vi =

n∑

j=1

αij(XjW
V + AV

ij) (5)

where σ (·) denotes the softmax function, i.e.,

σ (b)i =
exp (bi)∑J
j=1 exp (bj)

, for b ∈ RJ .

Recent work (Raffel et al., 2019) has adopted
a simplified form where value-modifying embed-
dings AV are omitted and key-modifying embed-
dings AK are replaced with learned scalar embed-
dings S ∈ RM×M that – based on relative position
– directly in- or decrease attention scores before
normalization, i.e., Eq. (4) becomes Eq. (6).

αi = σ

(
XiW

Q(XWK)>√
d

+ Si

)
(6)

Shaw et al. (2018) share their position embed-
dings across attention heads but learn separate em-
beddings for each layer as word representations
from different layers can vary a lot. Raffel et al.
(2019) learn separate S matrices for each attention
head but share them across layers. We use Raffel
et al. (2019)’s form of relative position encoding
for text self-attention in our decoder (§ 3.4).
Graph self-attention. Analogously to self-
attention on text, we define our structural graph

VT A

s v d w e l c u1 u2
s 0 4 5 2 2 2 1 1 3
v -4 0 4 2 2 2 1 1 3
d -5 -4 0 2 2 2 1 1 3
w -2 -2 -2 0 2 2 -1 ∞ 1
e -2 -2 -2 -2 0 4 -3 -1 -1
l -2 -2 -2 -2 -4 0 -3 -1 -1
c -1 -1 -1 1 3 3 0 ∞ 2
u1 -1 -1 -1 ∞ 1 1 ∞ 0 ∞
u2 -3 -3 -3 -1 1 1 -2 ∞ 0

Figure 2: R matrix for the graph in Fig. 1c (δmax = 3).

self-attention as follows:

αgi = σ

(
HiW

Qg(HWKg)>√
d

+ γ(R)i

)
(7)

WKg ,WQg ∈ Rd×d are learned matrices and γ :
Z∪{∞} → R looks up learned scalar embeddings
for the relative graph positions inR ∈ RN×N .

We define the relative graph position Rij be-
tween the nodes ni and nj with respect to two
factors: (i) the text relative position p in the orig-
inal entity name if ni and nj stem from the same
original entity, i.e., (ni, nj) ∈ SAMEp for some p
and (ii) shortest path lengths otherwise:

Rij =





∞, if δ(ni, nj) =∞
and δ(nj , ni) =∞

encode(p), if (ni, nj) ∈ SAMEp

δ(ni, nj), if δ(ni, nj) ≤ δ(nj , ni)
−δ(nj , ni), if δ(ni, nj) > δ(nj , ni)

(8)
where δ(ni, nj) is the length of the shortest path
from ni to nj , which we define to be ∞ if and
only if there is no such path. encode maps a text
relative position p ∈ Z \ {0} to an integer outside
δ’s range to avoid clashes. Concretely, we use
encode(p) := sgn(p) · δmax + p where δmax is the
maximum graph diameter, i.e., the maximum value
of δ over all graphs under consideration.

Thus, we model graph relative position as the
length of the shortest path using either only for-
ward edges (Rij > 0) or only backward edges
(Rij < 0). Additionally, two special cases are con-
sidered: (i) Nodes without any purely forward or
purely backward path between them (Rij = ∞)
and (ii) token nodes from the same entity. Here
the relative position in the original entity string p is
encoded outside the range of path length encodings
(which are always in the interval [−δmax , δmax ]).
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In practice, we use two thresholds, nδ and np.
All values of δ exceeding nδ are set to nδ and anal-
ogously for p. This limits the number of different
positions a model can distinguish.
Intuition. Our definition of relative position in
graphs combines several advantages: (i) Any node
can attend to any other node – even unreachable
ones – while learning a suitable attention bias for
different distances. (ii) SAMEp edges are treated
differently in the attention mechanism. Thus, en-
tity representations can be learned like in a reg-
ular transformer encoder, given that tokens from
the same entity are fully connected with SAMEp
edges with p providing relative position informa-
tion. (iii) The lengths of shortest paths often have
an intuitively useful interpretation in our incidence
graphs and the sign of the entries in R also cap-
tures the important distinction between incoming
and outgoing paths. In this way, Graformer can,
e.g., capture the difference between the subject and
object of a fact, which is expressed as a relative
position of −1 vs. 1. The subject and object nodes,
in turn, see each other as 2 and −2, respectively.

Fig. 2 shows theR matrix corresponding to the
graph from Fig. 1c. Note how token nodes from
the same entity, e.g., s, v, and d, form clusters as
they have the same distances to other nodes, and
how the relations inside such a cluster are encoded
outside the interval [−3, 3], i.e., the range of short-
est path lengths. It is also insightful to compare
node pairs with the same value inR. E.g., both s
and w see e at a distance of 2 because the entities
SVD and word2vec are both the subject of a fact
with embedding learning as the object. Likewise,
s sees both c and u1 at a distance of 1 because its
entity SVD is subject to both corresponding facts.

3.4 Graformer decoder

Our decoder follows closely the standard Trans-
former decoder (Vaswani et al., 2017), except for
the modifications suggested by Chen et al. (2018).
Hidden decoder representation. The initial de-
coder representation Z(0) ∈ RM×d embeds the
(partially generated) target text T ∈ RM×|Σ|, i.e.,
Z(0) = TE. A decoder layer L then obtains a
contextualized representation via self-attention as
in the encoder (§ 3.2):

C(L) = Dr(SelfAtt t(LN (Z(L−1)))) +Z(L−1)

(9)
SelfAtt t differs from SelfAttg by using different
position embeddings in Eq. (7) and, obviously, Rij

is defined in the usual way for text. C(L) is then
modified via multi-head attention MHA on the out-
putH(LE) of the last graph encoder layer LE . As
in § 3.2, we make use of residual connections, layer
normalization LN , and dropout Dr :

U (L) = Dr(MHA(LN (C(L)),H(LE))) +C(L)

(10)

Z(L) = Dr(FF (LN (U (L)))) +U (L) (11)

where

MHA(C,H)i =

|N |∑

j=1

αij(HjW
Vt) (12)

αi = σ

(
CiW

Qt(HWKt)>√
d

)
(13)

Generation probabilities. The final representa-
tion Z(LD) of the last decoder layer LD is used to
compute the probability distribution Pi ∈ [0, 1]|Σ|

over all words in the vocabulary Σ at time step i:

Pi = σ
(
Z

(LD)
i E>

)
(14)

Note that E ∈ R|Σ|×d is the same matrix that is
also used to embed node labels and text tokens.

3.5 Training
We train Graformer by minimizing the standard
negative log-likelihood loss based on the likelihood
estimations described in the previous section.

4 Experiments

4.1 Datasets
We evaluate our new architecture on two popular
benchmarks for KG-to-text generation, AGENDA
(Koncel-Kedziorski et al., 2019) and WebNLG
(Gardent et al., 2017). While the latter contains
crowd-sourced texts corresponding to subgraphs
from various DBPedia categories, the former was
automatically created by applying an information
extraction tool (Luan et al., 2018) on a corpus of
scientific abstracts (Ammar et al., 2018). As this
process is noisy, we corrected 7 train instances
where an entity name was erroneously split on a
special character and, for the same reason, deleted
1 train instance entirely. Otherwise, we use the data
as is, including the train/dev/test split.

We list the number of instances per data split,
as well as general statistics about the graphs in Ta-
ble 1. Note that the graphs in WebNLG are human-
authored subgraphs of DBpedia while the graphs
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AGENDA WebNLG

#instances in train 38,719 18,102
#instances in val 1,000 872
#instances in test 1,000 971

#relation types 7 373
avg #entities in KG 13.4 4.0
% connected graphs 0.3 99.9
avg #graph components 8.4 1.0
avg component size 1.6 3.9

avg #token nodes in graph 98.0 36.0
avg #tokens in text 157.9 31.5
avg % text tokens in graph 42.7 56.1
avg % graph tokens in text 48.6 49.0

Vocabulary size |Σ| 24,100 2,100
Character coverage in % 99.99 100.0

Table 1: Statistics of AGENDA and the dataset from the
WebNLG challenge as used in our experiments. Upper
part: data splits and original KGs. Lower part: token
graphs and BPE settings.

in AGENDA were automatically extracted. This
leads to a higher number of disconnected graph
components. Nearly all WebNLG graphs consist
of a single component, i.e., are connected graphs,
whereas for AGENDA this is practically never the
case. We also report statistics that depend on the
tokenization (cf. § 4.2) as factors like the length of
target texts and the percentage of tokens shared ver-
batim between input graph and target text largely
impact the task difficulty.

4.2 Data preprocessing
Following previous work on AGENDA (Ribeiro
et al., 2020), we put the paper title into the graph
as another entity. In contrast to Ribeiro et al.
(2020), we also link every node from a real en-
tity to every node from the title by TITLE2TXT and
TXT2TITLE edges. The type information provided
by AGENDA is, as usual for KGs, expressed with
one dedicated node per type and HAS-TYPE arcs
that link entities to their types. We keep the original
pretokenized texts but lowercase the title as both
node labels and target texts are also lowercased.

For WebNLG, we follow previous work (Gar-
dent et al., 2017) by replacing underscores in entity
names with whitespace and breaking apart camel-
cased relations. We furthermore follow the evalua-
tion protocol of the original challenge by convert-
ing all characters to lowercased ASCII and separat-
ing all punctuation from alphanumeric characters
during tokenization.

For both datasets, we train a BPE vocabulary us-
ing sentencepiece (Kudo and Richardson, 2018) on

the train set, i.e., a concatenation of node labels and
target texts. See Table 1 for vocabulary sizes. Note
that for AGENDA, only 99.99% of the characters
found in the train set are added to the vocabulary.
This excludes exotic Unicode characters that occur
in certain abstracts.

We prepend entity and relation labels with dedi-
cated 〈E〉 and 〈R〉 tags.

4.3 Hyperparameters and training details

We train Graformer with the Adafactor optimizer
(Shazeer and Stern, 2018) for 40 epochs on
AGENDA and 200 epochs on WebNLG. We re-
port test results for the model yielding the best
validation performance measured in corpus-level
BLEU (Papineni et al., 2002). For model selection,
we decode greedily. The final results are generated
by beam search. Following Ribeiro et al. (2020),
we couple beam search with a length penalty (Wu
et al., 2016) of 5.0. See Appendix A for more
details and a full list of hyperparameters.

4.4 Epoch curriculum

We apply a data loading scheme inspired by the
bucketing approach of Koncel-Kedziorski et al.
(2019) and length-based curriculum learning (Pla-
tanios et al., 2019): We sort the train set by target
text length and split it into four buckets of two times
40% and two times 10% of the data. After each
training epoch, the buckets are shuffled internally
but their global order stays the same from shorter
target texts to longer ones. This reduces padding
during batching as texts of similar lengths stay to-
gether and introduces a mini-curriculum from pre-
sumably easier examples (i.e., shorter targets) to
more difficult ones for each epoch. This enables
us to successfully train Graformer even without a
learning rate schedule.

5 Results and Discussion

5.1 Overall performance

Table 2 shows the results of our evaluation on
AGENDA in terms of BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
CHRF++ (Popović, 2017). Like the models we
compare with, we report the average and standard
deviation of 4 runs with different random seeds.

Our model outperforms previous Transformer-
based models that only consider first-order neigh-
borhoods per encoder layer (Koncel-Kedziorski
et al., 2019; An et al., 2019). Compared to the very
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BLEU METEOR CHRF++ #P

Ours 17.80 ±0.31 22.07 ±0.23 45.43 ±0.39 36.3

GT 14.30 ±1.01 18.80 ±0.28 – –
GT+RBS 15.1 ±0.97 19.5 ±0.29 – –
CGE-LW 18.01 ±0.14 22.34 ±0.07 46.69 ±0.17 69.8

Table 2: Experimental results on AGENDA. GT (Graph
Transformer) from (Koncel-Kedziorski et al., 2019);
GT+RBS from (An et al., 2019); CGE-LW from
(Ribeiro et al., 2020). Number of parameters in mil-
lions.

BLEU METEOR CHRF++ #P

Ours 61.15 ±0.22 43.38 ±0.17 75.43 ±0.19 5.3

UPF-FORGe 40.88 40.00 – –
Melbourne 54.52 41.00 70.72 –
Adapt 60.59 44.00 76.01 –

Graph Conv. 55.90 39.00 – 4.9
GTR-LSTM 58.60 40.60 – –
E2E GRU 57.20 41.00 – –

CGE-LW-LG 63.69 ±0.10 44.47 ±0.12 76.66 ±0.10 10.4

Table 3: Experimental results on the WebNLG test set
with seen categories. CGE-LW-LG from (Ribeiro et al.,
2020); Adapt, Melbourne and UPF-FORGe from (Gar-
dent et al., 2017); Graph Conv. from (Marcheggiani and
Perez-Beltrachini, 2018); GTR-LSTM from (Trisedya
et al., 2018); E2E GRU from (Castro Ferreira et al.,
2019). Number of parameters in millions.

recent models by Ribeiro et al. (2020), Graformer
performs very similarly. Using both a local and a
global graph encoder, Ribeiro et al. (2020) combine
information from very distant nodes but at the same
time need extra parameters for the second encoder.
Graformer is more efficient and still matches their
best model’s BLEU and METEOR scores within a
standard deviation.

The results on the test set of seen categories
of WebNLG (Table 3) look similar. Graformer
outperforms most original challenge participants
and more recent work. While not performing on
par with CGE-LW on WebNLG, Graformer still
achieves more than 96% of its performance while
using only about half as many parameters.

5.2 Performance on different types of graphs

We investigate whether Graformer is more suitable
for disconnected graphs by comparing its perfor-
mance on different splits of the AGENDA test set
according to two graph properties: (i) the average
number of nodes per connected component (µc)
and (ii) the largest diameter across all of a graph’s

µc BLEU METEOR CHRF++

< 1.25 Ours 15.44 20.59 43.23
(213) CGE-LW 15.34 20.64 43.56

< 1.5 Ours 17.45 22.03 45.67
(338) CGE-LW 17.29 22.32 45.88

< 2.0 Ours 18.94 22.86 46.49
(294) CGE-LW 19.46 23.76 47.78

≥ 2.0 Ours 21.72 24.22 48.79
(155) CGE-LW 20.97 24.98 49.83

(a) Average size µc of graph components.

d BLEU METEOR CHRF++

1 Ours 16.48 21.16 43.94
(368) CGE-LW 16.33 21.16 44.16

2 Ours 18.46 22.70 46.85
(414) CGE-LW 18.20 23.14 47.28

≥ 3 Ours 19.44 23.17 47.29
(218) CGE-LW 20.32 24.42 49.25

(b) Largest diameter d across all of a graph’s components.

Table 4: Performance of a single run on the test split of
AGENDA w.r.t. different input graph properties. The
number of data points in each split is indicated in paren-
theses.

components (d).
We can see in Table 4 that the performance of

both Graformer and CGE-LW (Ribeiro et al., 2020)
increases with more graph structure (larger µc and
d), i.e., more information leads to more accurate
texts. Besides, Graformer outperforms CGE-LW
on BLEU for graphs with smaller components (0 <
µc < 1.5) and smaller diameters (d<3). Although
METEOR and CHRF++ scores always favor CGE-
LW, the performance difference is also smaller for
cases where BLEU favors Graformer.

We conjecture that Graformer benefits from its
more elaborate global view, i.e., its ability to dis-
tinguish between distant but connected nodes and
unreachable ones. CGE-LW’s global encoder can-
not make this distinction because it only sees a
fully connected version of the graph.

Curiously, Graformer’s BLEU is also better for
larger components (µc ≥ 2.0). With multiple larger
components, Graformer might also better distin-
guish nodes that are part of the same component
from those that belong to a different one.

Only for 1.5 < µc < 2.0, CGE-LW clearly
outperforms Graformer in all metrics. It seems that
Graformer is most helpful for extreme cases, i.e.,
when either most components are isolated nodes or
when isolated nodes are the exception.
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Figure 3: Attention bias γ learned by Graformer on the two datasets. SAMEp edges are omitted.

Model BLEU METEOR CHRF++

Graformer 18.09 22.29 45.77

-length penalty 17.99 22.19 45.63
-beam search 17.33 21.74 44.87
-epoch curriculum 13.55 18.91 39.22

Table 5: Ablation study for a single run on the test
portion of AGENDA.

5.3 Ablation study

In a small ablation study, we examine the impact
of beam search, length penalty, and our new epoch
curriculum training. We find that beam search and
length penalty do contribute to the overall perfor-
mance but to a relatively small extent. Training
with our new epoch curriculum, however, proves
crucial for good performance. Platanios et al.
(2019) argue that curriculum learning can replace
a learning rate schedule, which is usually essential
to train a Transformer model. Indeed we success-
fully optimize Graformer without any learning rate
schedule, when applying the epoch curriculum.

6 Learned graph structure

We visualize the learned attention bias γ for dif-
ferent relative graph positions Rij (cf. § 3.3; esp.
Eq. (7)) after training on AGENDA and WebNLG
in Fig. 3. The eight attention heads (x-axis) have
learned different weights for each graph position
Rij (y-axis). Note that AGENDA has more pos-
sible Rij values because nδ = 6 whereas we set

nδ = 4 for WebNLG.
For both datasets, we notice that one attention

head primarily focuses on global information (5 for
AGENDA, 4 for WebNLG). AGENDA even dedi-
cates head 6 entirely to unreachable nodes, showing
the importance of such nodes for this dataset. In
contrast, most WebNLG heads suppress informa-
tion from unreachable nodes.

For both datasets, we also observe that nearer
nodes generally receive a high weight (focus on
local information): In Fig. 3b, e.g., head 2 concen-
trates solely on direct incoming edges and head 0
on direct outgoing ones. Graformer can learn em-
pirically based on its task where direct neighbors
are most important and where they are not, show-
ing that the strong bias from graph neural networks
is not necessary to learn about graph structure.

7 Conclusion

We presented Graformer, a novel encoder-decoder
architecture for graph-to-text generation based on
Transformer. The Graformer encoder uses a novel
type of self-attention for graphs based on shortest
path lengths between nodes, allowing it to detect
global patterns by automatically learning appro-
priate weights for higher-order neighborhoods. In
our experiments on two popular benchmarks for
text generation from knowledge graphs, Graformer
achieved competitive results while using many
fewer parameters than alternative models.
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A Hyperparameter details

For AGENDA and WebNLG, a minimum and max-
imum decoding length were set according to the

Hyperparameter WebNLG AGENDA

model dimension d 256 400
# heads 8 8
# encoder layers LE 3 4
# decoder layers LD 3 5
feedforward dimension 512 2000
attention dropout 0.3 0.1
dropout 0.1 0.1
input dropout 0.0 0.1
text self-attention range nt 25 50
graph self-attention range nδ 4 6
SAME range np 10 10
gradient accumulation 3 2
gradient clipping 1.0 1.0
label smoothing 0.25 0.3
L2 regularizer 3 · 10−3 3 · 10−4

batch size 4 8

# beams 2 2
length penalty 5.0 5.0

Table 6: Hyperparameters used to obtain final experi-
mental results on WebNLG and AGENDA.

shortest and longest target text in the train set. Ta-
ble 6 lists the hyperparameters used to obtain final
results on both datasets. Input dropout is applied
on the word embeddings directly after lookup for
node labels and target text tokens before they are
fed into encoder or decoder. Attention dropout is
applied to all attention weights computed during
multi-head (self-)attention.

For hyperparameter optimization, we only train
for the first 10 (AGENDA) or 50 (WebNLG)
epochs to save time. We use a combination of
manual tuning and a limited number of randomly
sampled runs. For the latter we apply Optuna with
default parameters (Akiba et al., 2019; Bergstra
et al., 2011) and median pruning, i.e., after each
epoch we check if the best performance so far is
worse than the median performance of previous
runs at the same epoch and if so, abort. For hyper-
parameter tuning, we decode greedily and measure
performance in corpus-level BLEU (Papineni et al.,
2002).

B Qualitative examples

Table 7 shows three example generations from
our Graformer model and the CGE-LW system by
Ribeiro et al. (2020). Often CGE-LW generations
have a high surface overlap with the reference text
while Graformer texts fluently express the same
content.
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Ref. julia morgan has designed many sig-
nificant buildings , including the los
angeles herald examiner building .

CGE-LW julia morgan has designed many sig-
nificant buildings including the los
angeles herald examiner building .

Ours one of the significant buildings de-
signed by julia morgan is the los
angeles herald examiner building .

Ref. asam pedas is a dish of fish cooked
in a sour and hot sauce that comes
from indonesia .

CGE-LW the main ingredients of asam pedas
are fish cooked in a sour and hot
sauce and comes from indonesia .

Ours the main ingredients of asam pedas
are fish cooked in sour and hot
sauce . the dish comes from indone-
sia .

Ref. banana is an ingredient in binignit
which is a dessert . a cookie is also
a dessert .

CGE-LW banana is an ingredient in binignit ,
a cookie is also a dessert .

Ours a cookie is a dessert , as is binignit ,
which contains banana as one of its
ingredients .

Table 7: Example references and texts generated by
CGE-LW (Ribeiro et al., 2020) and Graformer (marked
Ours) for samples from the WebNLG test set. In case of
multiple references, only one is shown for brevity.

106



Chapter 7

Investigating Pretrained Language
Models for Graph-to-Text
Generation

107



Proceedings of the Third Workshop on Natural Language Processing for Conversational AI, pages 211–227
November 10, 2021. ©2021 Association for Computational Linguistics

211

Investigating Pretrained Language Models for Graph-to-Text Generation

Leonardo F. R. Ribeiro†, Martin Schmitt‡, Hinrich Schütze‡ and Iryna Gurevych†

†Research Training Group AIPHES and UKP Lab, Technical University of Darmstadt
‡Center for Information and Language Processing (CIS), LMU Munich

www.ukp.tu-darmstadt.de

Abstract
Graph-to-text generation aims to generate flu-
ent texts from graph-based data. In this paper,
we investigate two recent pretrained language
models (PLMs) and analyze the impact of dif-
ferent task-adaptive pretraining strategies for
PLMs in graph-to-text generation. We present
a study across three graph domains: meaning
representations, Wikipedia knowledge graphs
(KGs) and scientific KGs. We show that
approaches based on PLMs BART and T5
achieve new state-of-the-art results and that
task-adaptive pretraining strategies improve
their performance even further. We report
new state-of-the-art BLEU scores of 49.72 on
AMR-LDC2017T10, 59.70 on WebNLG, and
25.66 on AGENDA datasets - a relative im-
provement of 31.8%, 4.5%, and 42.4%, re-
spectively, with our models generating signifi-
cantly more fluent texts than human references.
In an extensive analysis, we identify possible
reasons for the PLMs’ success on graph-to-
text tasks. Our findings suggest that the PLMs
benefit from similar facts seen during pretrain-
ing or fine-tuning, such that they perform well
even when the input graph is reduced to a sim-
ple bag of node and edge labels.1

1 Introduction

Graphs are important data structures in NLP as
they represent complex relations within a set of
objects. For example, semantic and syntactic struc-
tures of sentences can be represented using differ-
ent graph representations (e.g., AMRs, Banarescu
et al., 2013; semantic-role labeling, Surdeanu et al.,
2008; syntactic and semantic graphs, Belz et al.,
2011) and knowledge graphs (KGs) are used to
describe factual knowledge in the form of relations
between entities (Gardent et al., 2017; Vougiouklis
et al., 2018; Koncel-Kedziorski et al., 2019).

Graph-to-text generation, a subtask of data-to-
text generation (Gatt and Krahmer, 2018), aims to

1Our code is available at https://github.com/UKPLab/plms-
graph2text.

create fluent natural language text to describe an
input graph (see Figure 1). This task is important
for NLP applications such as dialogue generation
(Moon et al., 2019) and question answering (Duan
et al., 2017). Recently, it has been shown that
structured meaning representation, such as AMR
or KG, can store the internal state of a dialog sys-
tem, providing core semantic knowledge (Bonial
et al., 2020; Bai et al., 2021) or can be the result
of a database query for conversational QA (Yu
et al., 2019). Moreover, dialog states can be repre-
sented as KGs to encode compositionality and can
be shared across different domains, slot types and
dialog participators (Cheng et al., 2020).

Transfer learning has become ubiquitous in NLP
and pretrained Transformer-based architectures
(Vaswani et al., 2017) have considerably outper-
formed prior state of the art in various downstream
tasks (Devlin et al., 2019; Yang et al., 2019a; Liu
et al., 2020; Radford et al., 2019).

In this paper, we analyze the applicability of
two recent text-to-text pretrained language mod-
els (PLMs), BART (Lewis et al., 2020) and T5
(Raffel et al., 2019), for graph-to-text generation.
We choose these models because of their encoder-
decoder architecture, which makes them particu-
larly suitable for conditional text generation. Our
study comprises three graph domains (meaning rep-
resentations, Wikipedia KGs, and scientific KGs).
We further introduce task-adaptive graph-to-text
pretraining approaches for PLMs and demonstrate
that such strategies improve the state of the art by
a substantial margin.

While recent works have shown the benefit of
explicitly encoding the graph structure in graph-to-
text generation (Song et al., 2018; Ribeiro et al.,
2019, 2020; Schmitt et al., 2020; Zhao et al., 2020a,
to name a few), our approaches based on PLMs
consistently outperform these models, even though
PLMs – as sequence models – do not exhibit any
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Linearized representation: <H> Apollo 12 <R> backup pilot <T> 
Alfred Worden <H> Alan Bean <R> was a crew member of <T> 
Apollo 12 <H> Apollo 12 <R> operator <T> NASA <H> Alan Bean 
<R> occupation <T> Test pilot <H> Apollo 12 <R> commander <T> 
David Scott <H> Alan Bean <R> was selected by NASA <T> 1963 
<H> Alan Bean <R> alma Mater <T> UT Austin B.S. 1955 

Test Pilot
a)

bac
ku

pPilot
occupationAlan 

Bean
crewMember

Apollo 12

almaMater
UT Austin, B.S.


1995
Alfred Worden

Nasa

operator

David Scott

commander selection

1963

Text: Alan Bean graduated from UT Austin in 1955 with a Bachelor 
of Science degree. He was hired by NASA in 1963 and served as a 
test pilot. Apollo 12's backup pilot was Alfred Worden and was 
commanded by David Scott.

Text: As his children, we feel very terrible now.

Linearized representation: ( feel :ARG0 ( we ) :ARG1 
( terrible :degree ( very ) ) :time ( now ) :ARG1-of 
( cause :ARG0 ( have-rel-role :ARG0 we :ARG1 ( he ) :ARG2 
( child ) ) ) )

cause-01
ARG1ARG0

feel-01have-rel-role-91

child he we terrible-01 now

very

time
ARG1ARG0

degree

ARG0
ARG2 ARG1

b)

Figure 1: Examples of (a) AMR and (b) WebNLG graphs, the input for the models and the reference texts.

graph-specific structural bias.2 Simply represent-
ing the graph as a linear traversal (see Figure 1)
leads to remarkable generation performance in the
presence of a strong language model. In our analy-
sis we investigate to what extent fine-tuned PLMs
make use of the graph structure represented in the
graph linearization. We notably observe that PLMs
achieve high performance on two popular KG-to-
text benchmarks even when the KG is reduced to a
mere bag of node and edge labels.

Our contributions are the following:
• We investigate and compare two PLMs, BART

and T5, for graph-to-text generation, explor-
ing language model adaptation (LMA) and
supervised task adaptation (STA) pretraining,
employing additional task-specific data.

• Our approaches consistently outperform the
state of the art by significant margins, ranging
from 2.6 to 12.0 BLEU points, on three es-
tablished graph-to-text benchmarks from dif-
ferent domains, exceeding specialized graph
architectures (e.g., Graph Neural Networks,
GNNs, Kipf and Welling, 2017).

• In a crowdsourcing experiment, we demon-
strate that our methods generate texts with sig-
nificantly better fluency than existing works
and the human references.

• We discover that PLMs perform well even
when trained on a shuffled linearized graph
representation without any information about
connectivity (bag of node and edge labels),
which is surprising since prior studies showed
that explicitly encoding the graph structure
improves models trained from scratch (e.g.,

2The model architecture does not explicitly encode the
graph structure, i.e., which entities are connected to each
other, but has to retrieve it from a sequence that tries to encode
this information.

Zhao et al., 2020a); and investigate the possi-
ble reasons for such a good performance.

2 Related Work

Graph-to-text Learning. Various neural models
have been proposed to generate sentences from
graphs from different domains. Konstas et al.
(2017) propose the first neural approach for AMR-
to-text generation that uses a linearized input graph.
Prior approaches for KG-to-text generation train
text-to-text neural models using sequences of KG
triples as input (Trisedya et al., 2018; Moryossef
et al., 2019; Castro Ferreira et al., 2019; Ribeiro
et al., 2021a).

Recent approaches (Marcheggiani and Perez Bel-
trachini, 2018; Song et al., 2018; Beck et al., 2018;
Damonte and Cohen, 2019; Ribeiro et al., 2019;
Zhao et al., 2020a; Schmitt et al., 2021; Ribeiro
et al., 2021b) propose architectures based on GNNs
to directly encode the graph structure, whereas
other efforts (Ribeiro et al., 2020; Schmitt et al.,
2020; Yao et al., 2020; Wang et al., 2020) inject the
graph structure information into Transformer-based
architectures. The success of those approaches sug-
gests that imposing a strong relational inductive
bias into the graph-to-text model can assist the gen-
eration.

Pretrained Language Models. Pretrained
Transformer-based models, such as BERT (Devlin
et al., 2019), XLNet (Yang et al., 2019b), or
RoBERTa (Liu et al., 2020), have established a
qualitatively new level of baseline performance for
many widely used natural language understanding
(NLU) benchmarks. Generative pretrained
Transformer-based methods, such as GPT-2
(Radford et al., 2019), BART (Lewis et al., 2020),
and T5 (Raffel et al., 2019), are employed in many
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natural language generation (NLG) tasks.
Mager et al. (2020) were the first to employ

GPT-2, a decoder-only PLM, for AMR-to-text gen-
eration and use cycle consistency to improve the
adequacy. In contrast, we are the first to inves-
tigate BART and T5 models, which have both a
Transformer-based encoder and decoder, in AMR-
to-text generation. Recently, Harkous et al. (2020)
and Kale (2020) demonstrate state-of-the-art re-
sults in different data-to-text datasets, employing
GPT-2 and T5 models respectively. Radev et al.
(2020) propose DART, a new data-to-text dataset,
and train a BART model gradually augmenting the
WebNLG training data with DART data.

Hoyle et al. (2021) explore scaffolding objec-
tives in PLMs and show gains in low-resource
graph-to-text settings. Different from the above
works, we focus on a general transfer learning
strategies for graph-to-text generation, investigat-
ing task-adaptive pretraining approaches, employ-
ing additional collected task-specific data for dif-
ferent PLMs (BART and T5) and benchmarks. In
addition, we provide a detailed analysis aimed at
explaining the good performance of PLMs on KG-
to-text tasks.

Recently, Gururangan et al. (2020) explored task-
adaptive pretraining strategies for text classification.
While our LMA (see §3) is related to their DAPT as
both use a self-supervised objective on a domain-
specific corpus, they notably differ in that DAPT

operates on the model input while LMA models
the output. We are the first to show the benefits
of additional task-specific pretraining in PLMs for
graph-to-text tasks.

3 PLMs for Graph-to-Text Generation

3.1 Models in this Study

We investigate BART (Lewis et al., 2020) and T5
(Raffel et al., 2019), two PLMs based on the Trans-
former encoder-decoder architecture (Vaswani
et al., 2017), for graph-to-text generation. They
mainly differ in how they are pretrained and the
input corpora used for pretraining. We experiment
with different T5 (small - 60M parameters, base -
220M, and large - 770M) and BART (base - 140M
and large - 400M) capacity models.

We fine-tune both PLMs for a few epochs on
the supervised downstream graph-to-text datasets.
For T5, in the supervised setup, we add a prefix
“translate from Graph to Text:” before the graph
input. We add this prefix to imitate the T5 setup,

when translating between different languages.

3.2 Task-specific Adaptation

Inspired by previous work (Konstas et al., 2017;
Gururangan et al., 2020), we investigate whether
leveraging additional task-specific data can im-
prove the PLMs’ performance on graph-to-text
generation. Task-specific data refers to a pre-
training corpus that is more task-relevant and usu-
ally smaller than the text corpora used for task-
independent pretraining. In order to leverage the
task-specific data, we add an intermediate adaptive
pretraining step between the original pretraining
and fine-tuning phases for graph-to-text generation.

More precisely, we first continue pretraining
BART and T5 using language model adaptation
(LMA) or supervised task adaptation (STA) training.
In the supervised approach, we use pairs of graphs
and corresponding texts collected from the same or
similar domain as the target task. In the LMA ap-
proach, we follow BART and T5 pretraining strate-
gies for language modeling, using the reference
texts that describe the graphs. Note that we do not
use the graphs in the LMA pretraining, but only the
target text of our task-specific data collections. The
goal is to adapt the decoder to the domain of the
final task (Gururangan et al., 2020). In particular,
we randomly mask text spans, replacing 15% of
the tokens.3 Before evaluation, we finally fine-tune
the models using the original training set as usual.

4 Datasets

We evaluate the text-to-text PLMs on three
graph-to-text benchmarks: AMR (LDC2017T10),
WebNLG (Gardent et al., 2017), and AGENDA
(Koncel-Kedziorski et al., 2019). We chose those
datasets because they comprise different domains
and are widely used in prior work. Table 10 in
Appendix shows statistics for each dataset.

AMR. Abstract meaning representation (AMR)
is a semantic formalism that represents the meaning
of a sentence as a rooted directed graph expressing
“who is doing what to whom” (Banarescu et al.,
2013). In an AMR graph, nodes represent concepts
and edges represent semantic relations. An instance
in LDC2017T10 consists of a sentence annotated
with its corresponding AMR graph. Following
Mager et al. (2020), we linearize the AMR graphs

3Please, refer to Lewis et al. (2020) and Raffel et al. (2019)
for details about the self-supervised pretraining strategies.
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using the PENMAN notation (see Figure 1a).4

WebNLG. Each instance of WebNLG contains a
KG from DBPedia (Auer et al., 2007) and a target
text with one or multiple sentences that describe
the graph. The test set is divided into two par-
titions: seen, which contains only DBPedia cate-
gories present in the training set, and unseen, which
covers categories never seen during training. Their
union is called all. Following previous work (Hark-
ous et al., 2020), we prepend 〈H〉, 〈R〉, and 〈T 〉
tokens before the head entity, the relation and tail
entity of a triple (see Figure 1b).

AGENDA. In this dataset, KGs are paired with
scientific abstracts extracted from proceedings of
AI conferences. Each sample contains the paper
title, a KG, and the corresponding abstract. The
KG contains entities corresponding to scientific
terms and the edges represent relations between
these entities. This dataset has loose alignments
between the graph and the corresponding text as the
graphs were automatically generated. The input for
the models is a text containing the title, a sequence
of all KG entities, and the triples. The target text is
the paper abstract. We add special tokens into the
triples in the same way as for WebNLG.

4.1 Additional Task-specific Data
In order to evaluate the proposed task-adaptive pre-
training strategies for graph-to-text generation, we
collect task-specific data for two graph domains:
meaning representations (like AMR) and scientific
data (like AGENDA). We did not attempt collect-
ing additional data like WebNLG because the texts
in this benchmark do not stem from a corpus but
were specifically written by annotators.

AMR Silver Data. In order to generate addi-
tional data for AMR, we sample two sentence col-
lections of size 200K and 2M from the Gigaword5

corpus and use a state-of-the-art AMR parser (Cai
and Lam, 2020a) to parse them into AMR graphs.6

For supervised pretraining, we condition a model
on the AMR silver graphs to generate the corre-
sponding sentences before fine-tuning it on gold
AMR graphs. For self-supervised pretraining, we
only use the sentences.7

4Details of the preprocessing procedure of AMRs are pro-
vided in Appendix A.

5https://catalog.ldc.upenn.edu/LDC2003T05
6We filter out sentences that do not yield well-formed

AMR graphs.
7Gigaword and AMR datasets share similar data sources.

Model BLEU M BT
Ribeiro et al. (2019) 27.87 33.21 -
Zhu et al. (2019) 31.82 36.38 -
Zhao et al. (2020b) 32.46 36.78 -
Wang et al. (2020) 33.90 37.10 -
Yao et al. (2020) 34.10 38.10 -
based on PLMs
Mager et al. (2020) 33.02 37.68 -
Harkous et al. (2020) 37.70 38.90 -
BARTbase 36.71 38.64 52.47
BARTlarge 43.47 42.88 60.42
T5small 38.45 40.86 57.95
T5base 42.54 42.62 60.59
T5large 45.80 43.85 61.93
with task-adaptive pretraining

BARTlarge + LMA 43.94 42.36 58.54
T5large + LMA 46.06 44.05 62.59

BARTlarge + STA (200K) 44.72 43.65 61.03
BARTlarge + STA (2M) 47.51 44.70 62.27
T5large + STA (200K) 48.02 44.85 63.86
T5large + STA (2M) 49.72 45.43 64.24

Table 1: Results on AMR-to-text generation for the
LDC2017T10 test set. M and BT stand for METEOR
and BLEURT, respectively. Bold (Italic) indicates the
best score without (with) task-adaptive pretraining.

Semantic Scholar AI Data. We collect titles and
abstracts of around 190K scientific papers from the
Semantic Scholar (Ammar et al., 2018) taken from
the proceedings of 36 top Computer Science/AI
conferences. We construct KGs from the paper ab-
stracts employing DyGIE++ (Wadden et al., 2019),
an information extraction system for scientific texts.
Note that the AGENDA dataset was constructed
using the older SciIE system (Luan et al., 2018),
which also extracts KGs from AI scientific papers.
A second difference is that in our new dataset, the
domain is broader as we collected data from 36 con-
ferences compared to 12 from AGENDA. Further-
more, to prevent data leakage, all AGENDA sam-
ples used for performance evaluation are removed
from our dataset. We will call the new dataset
KGAIA (KGs from AI Abstracts).8 Table 11 in
Appendix shows relevant dataset statistics.

5 Experiments

We modify the BART and T5 implementations re-
leased by Hugging Face (Wolf et al., 2019) in order
to adapt them to graph-to-text generation. For the
KG datasets, we add the 〈H〉, 〈R〉, and 〈T 〉 tokens
to the models’ vocabulary. We add all edge labels
seen in the training set to the vocabulary of the

8We will release the collected additional task-specific data.
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BLEU METEOR chrF++
Model A S U A S U A S U
Castro Ferreira et al. (2019) 51.68 56.35 38.92 32.00 41.00 21.00 - - -
Moryossef et al. (2019) 47.24 53.30 34.41 39.00 44.00 37.00 - - -
Schmitt et al. (2020) - 59.39 - - 42.83 - - 74.68 -
Ribeiro et al. (2020) - 63.69 - - 44.47 - - 76.66 -
Zhao et al. (2020a) 52.78 64.42 38.23 41.00 46.00 37.00 - - -

based on PLMs
Harkous et al. (2020) 52.90 - - 42.40 - - - - -
Kale (2020) 57.10 63.90 52.80 44.00 46.00 41.00 - - -
Radev et al. (2020) 45.89 52.86 37.85 40.00 42.00 37.00 - - -

BARTbase 53.11 62.74 41.53 40.18 44.45 35.36 70.02 76.68 62.76
BARTlarge 54.72 63.45 43.97 42.23 45.49 38.61 72.29 77.57 66.53
T5small 56.34 65.05 45.37 42.78 45.94 39.29 73.31 78.46 67.69
T5base 59.17 64.64 52.55 43.19 46.02 41.49 74.82 78.40 70.92
T5large 59.70 64.71 53.67 44.18 45.85 42.26 75.40 78.29 72.25

Table 2: Results on WebNLG. A, S and U stand for all, seen, and unseen partitions of the test set, respectively.

models for AMR. Following Wolf et al. (2019), we
use the Adam optimizer (Kingma and Ba, 2015)
with an initial learning rate of 3 · 10−5. We employ
a linearly decreasing learning rate schedule without
warm-up. The batch and beam search sizes are cho-
sen from {2,4,8} and {1,3,5}, respectively, based
on the respective development set. Dev BLEU is
used for model selection.

Following previous works, we evaluate the re-
sults with BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014), and chrF++
(Popović, 2015) metrics. We also use Mover-
Score (Zhao et al., 2019), BERTScore (Zhang et al.,
2020), and BLEURT (Sellam et al., 2020) metrics,
as they employ contextual and semantic knowledge
and thus depend less on the surface symbols. Addi-
tionally, we perform a human evaluation (cf. §5.4)
quantifying the fluency, semantic adequacy and
meaning similarity of the generated texts.

5.1 Results on AMR-to-Text
Table 1 shows our results for the setting without ad-
ditional pretraining, with additional self-supervised
task-adaptive pretraining solely using the collected
Gigaword sentences (LMA), and with additional su-
pervised task adaptation (STA), before fine-tuning.
We also report several recent results on the AMR
test set. Mager et al. (2020) and Harkous et al.
(2020) employ GPT-2 in their approaches. Note
that GPT-2 only consists of a Transformer-based
decoder.

Only considering approaches without task adap-
tation, BARTlarge already achieves a considerable
improvement of 5.77 BLEU and 3.98 METEOR
scores over the previous state of the art. With a
BLEU score of 45.80, T5large performs best. The

other metrics follow similar trends. See Table 13
in Appendix for evaluation with more metrics. The
strong performance of both BART and T5 in the
AMR dataset suggests that PLMs can infer the
AMR structure by a simple linear sequence of the
graph, in contrast to GNN-based models that ex-
plicitly consider the graph structure using message-
passing between adjacent nodes (Beck et al., 2018).

Task-specific Adaptation. LMA already brings
some gains with T5 benefitting more than BART
in most metrics. It still helps less than STA even
though we only have automatically generated an-
notations. This suggests that the performance in-
creases with STA do not only come from additional
exposure to task-specific target texts and that the
models learn how to handle graphs and the graph-
text correspondence even with automatically gener-
ated AMRs. After STA, T5 achieves 49.72 BLEU
points, the new state of the art for AMR-to-text
generation. Interestingly, gains from STA with 2M
over 200K are larger in BART than in T5, suggest-
ing that large amounts of silver data may not be
required for a good performance with T5.

In general, models pretrained on the STA setup
converge faster than without task-specific adapta-
tion. For example, T5large without additional pre-
training converges after 5 epochs of fine-tuning
whereas T5large with STA already converges after 2
epochs.

5.2 Results on WebNLG

Table 2 shows the results for the WebNLG test
set. Neural pipeline models (Moryossef et al.,
2019; Castro Ferreira et al., 2019) achieve strong
performance in the unseen dataset. On the other
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Model BLEU M BT
Koncel et al. 2019 14.30 18.80 -
An (2019) 15.10 19.50 -
Schmitt et al. (2020) 17.33 21.43 -
Ribeiro et al. (2020) 18.01 22.23 -

BARTbase 22.01 23.54 -13.02
BARTlarge 23.65 25.19 -10.93
T5small 20.22 21.62 -24.10
T5base 20.73 21.88 -21.03
T5large 22.15 23.73 -13.96

with task-adaptive pretraining

BARTlarge + LMA 25.30 25.54 -08.79
T5large + LMA 22.92 24.40 -10.39

BARTlarge + STA 25.66 25.74 -08.97
T5large + STA 23.69 24.92 -08.94

Table 3: Results on AGENDA test set. Bold (Italic)
indicates best scores without (with) task-adaptive pre-
training.

hand, fully end-to-end models (Ribeiro et al., 2020;
Schmitt et al., 2020) have strong performance on
the seen dataset and usually perform poorly in un-
seen data. Models that explicitly encode the graph
structure (Ribeiro et al., 2020; Zhao et al., 2020a)
achieve the best performance among approaches
that do not employ PLMs. Note that T5 is also
used in Kale (2020). Differences in our T5 setup
include a modified model vocabulary, the use of
beam search, the learning rate schedule and the
prefix before the input graph. Our T5 approach
achieves 59.70, 65.05 and 54.69 BLEU points on
all, seen and unseen sets, the new state of the art.

We conjecture that the performance gap between
seen and unseen sets stems from the advantage ob-
tained by a model seeing examples of relation-text
pairs during fine-tuning. For example, the relation
party (political party) was never seen during train-
ing and the model is required to generate a text that
verbalizes the tuple: 〈Abdul Taib Mahmud, party,
Parti Bumiputera Sarawak〉. Interestingly, BART
performs much worse than T5 on this benchmark,
especially in the unseen partition with 9.7 BLEU
points lower compared to T5.

For lack of a suitable data source (cf. §4), we
did not explore our LMA or STA approaches for
WebNLG. However, we additionally discuss cross-
domain STA in Appendix B.

5.3 Results on AGENDA
Table 3 lists the results for the AGENDA test set.
The models also show strong performance on this

Model AMR
F MS

Mager et al. (2020) 5.69A 5.08A

Harkous et al. (2020) 5.78A 5.47AB

T5large 6.55B 6.44C

BARTlarge 6.70B 5.72BC

Reference 5.91A -

Model WebNLG
F SA

Castro Ferreira et al. (2019) 5.52A 4.77A

Harkous et al. (2020) 5.74AB 6.21B

T5large 6.71C 6.63B

BARTlarge 6.53C 6.50B

Reference 5.89B 6.47B

Table 4: Fluency (F), Meaning Similarity (MS) and Se-
mantic Adequacy (SA) obtained in the human evalua-
tion. Differences between models which have a letter in
common are not statistically significant and were deter-
mined by pairwise Mann-Whitney tests with p < 0.05.

dataset. We believe that their capacity to generate
fluent text helps when generating paper abstracts,
even though they were not pretrained in the sci-
entific domain. BARTlarge shows an impressive
performance with a BLEU score of 23.65, which is
5.6 points higher than the previous state of the art.

Task-specific Adaptation. On AGENDA,
BART benefits more from our task-adaptive
pretraining, achieving the new state of the art of
25.66 BLEU points, a further gain of 2 BLEU
points compared to its performance without task
adaptation. The improvements from task-adaptive
pretraining are not as large as for AMR. We
hypothesize that this is due to the fact that
the graphs do not completely cover the target
text (Koncel-Kedziorski et al., 2019), making
this dataset more challenging. See Table 12 in
Appendix for more automatic metrics.

5.4 Human Evaluation
To further assess the quality of the generated text,
we conduct a human evaluation on AMR and
WebNLG via crowd sourcing on Amazon Mechan-
ical Turk.9 Following previous works (Gardent
et al., 2017; Castro Ferreira et al., 2019), we assess
three quality criteria: (i) Fluency (i.e., does the text
flow in a natural, easy-to-read manner?), for AMR
and WebNLG; (ii) Meaning Similarity (i.e., how

9We exclude AGENDA because its texts are scientific in
nature and annotators are not necessarily AI experts.
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Original Input
• Arrabbiata sauce • country • Italy • Italy • demonym • 
Italians • Italy • capital • Rome • Italy • language • Italian 
language • Italy • leader Name • Sergio Mattarella

• Rome • Italy • Italy • language • capital • Italy • Italians • 
Italy • Italy • Sergio Mattarella • Arrabbiata sauce • leader 
Name • country • demonym • Italian language

Corrupted Input

Shuffle

T5

Arrabbiata sauce can be found in Italy where Sergio Mattarella 
is the leader and the capital city is Rome. Italians are the 
people who live there and the language spoken is Italian.

Italians live in Italy where the capital is Rome and the 
language is Italian. Sergio Mattarella is the leader of the 
country and arrabbiata sauce can be found there.

T5

Reference: Arrabbiata sauce is from Italy where the capital is Rome, Italian is the language spoken and Sergio Mattarella is a leader.

order shuf

Figure 2: Example graph with 5 triples, from WebNLG dev linearized with the neutral separator tag, denoted •, (top
left), its shuffled version (top right), texts generated with two fine-tuned versions of T5small and a gold reference
(bottom). Note that T5 can produce a reasonable text even when the input triples are shuffled randomly.

1 10 40 70 100
% of Training Data

10.0

20.0

30.0

40.0

50.0

60.0
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EU

WebNLG-Seen - T5
WebNLG-Seen - BART
AMR - T5
AMR - BART
AGENDA - T5
AGENDA - BART

Figure 3: Performance of BARTbase and T5base in the
dev set when experimenting with different amounts of
training data.

close in meaning is the generated text to the refer-
ence sentence?) for AMR; (ii) Semantic Adequacy
(i.e., does the text clearly express the data?) for
WebNLG. We randomly select 100 generated texts
of each model, which the annotators then rate on
a 1-7 Likert scale. For each text, we collect scores
from 3 annotators and average them.10

Table 4 shows the results. Our approaches im-
prove the fluency, meaning similarity, and semantic
adequacy on both datasets compared to other state-
of-the-art approaches with statistically significant
margins (p<0.05). Interestingly, the highest flu-
ency improvement (+0.97) is on AMR, where our
approach also has the largest BLEU improvement
(+8.10) over Harkous et al. (2020). Finally, our
models score higher than the references in fluency
with statistically significant margins, highlighting
their strong language generation abilities.11

5.5 Limiting the Training Data

In Figure 3, we investigate the PLMs’ performance,
measured with BLEU score, while varying (from
1% to 100%) the amount of training data used for

10Inter-annotator agreement for the three criteria ranged
from 0.40 to 0.79, with an average Krippendorff’s α of 0.56.

11Examples of fluent generations can be found in the Ta-
bles 15 and 16 in Appendix.

Model AMR WebNLG AGENDA

T5order 36.83 63.41 19.86
T5shuf 15.56 61.54 19.08

Table 5: Impact (measured with BLEU) of using a bag
of entities and relations (shuf ) as input for T5small.

fine-tuning. We find that, when fine-tuned with
only 40% of the data, both BART and T5 already
greatly improve the performance compared to using
the entire training data in all three benchmarks. For
example, BART fine-tuned on 40% of AMR train-
ing data achieves 91% of the BLEU score when
fine-tuned on full data.

Note that in a low-resource scenario in AMR and
WebNLG, T5 considerably outperforms BART. In
particular, with only 1% of training examples, the
difference between T5 and BART is 7.51 and 5.64
BLEU points for AMR and WebNLG, respectively.
This suggests that T5 is more data efficient when
adapting to the new task, likewise our findings in
AMR-STA (cf. §5.1).

6 Influence of the Graph Structure

We conduct further experiments to examine how
much the PLMs consider the graph structure. To
this end, we remove parentheses in AMRs and re-
place 〈H〉, 〈R〉, and 〈T 〉 tokens with neutral sep-
arator tokens, denoted •, for KGs, such that the
graph structure is only defined by the order of node
and edge labels. If we shuffle such a sequence, the
graph structure is thus completely obscured and
the input effectively becomes a bag of node and
edge labels. See Figure 2 for an example of both a
correctly ordered and a shuffled triple sequence.

6.1 Quantitative Analysis
Table 5 shows the effect on T5’s performance when
its input contains correctly ordered triples (T5order)
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T/F Input Fact T5order T5shuf

(1) S • German language • Antwerp •
Antwerp • Antwerp International Air-
port • Belgium • Belgium • Charles
Michel • city Served • leader Name •
Belgium • language • country

Antwerp International Airport serves
the city of Antwerp. German is the
language spoken in Belgium where
Charles Michel is the leader.

Antwerp International Airport serves
the city of Antwerp in Belgium where
the German language is spoken and
Charles Michel is the leader.

(2) T • California • is Part Of • US • California
• capital • Sacramento

California is part of the United States
and its capital is Sacramento.

California is part of the United States
and its capital is Sacramento.

(3) F • US • is Part Of • California • California
• capital • Sacramento

California’s capital is Sacramento and
the United States is part of California.

California is part of the United States
and its capital is Sacramento.

(4) T • Amarillo, Texas • is Part Of • United
States

Amarillo, Texas is part of the United
States.

Amarillo, Texas is part of the United
States.

(5) F • United States • is Part Of • Amarillo,
Texas

Amarillo, Texas is part of the United
States.

Amarillo, Texas is part of the United
States.

Table 6: Example generations from shuffled (S), true (T), and corrupted (F) triple facts by T5small, fine-tuned on
correctly ordered triples (order) and randomly shuffled input (shuf ).

vs. shuffled ones (T5shuf) for both training and
evaluation. We first observe that T5order only has
marginally lower performance (around 2-4%) with
the neutral separators than with the 〈H〉/〈R〉/〈T 〉
tags or parentheses.12 We see that as evidence
that the graph structure is similarly well captured
by T5order. Without the graph structure (T5shuf),
AMR-to-text performance drops significantly. Pos-
sible explanations of this drop are: (i) the relative
ordering of the AMR graph is known to correlate
with the target sentence order (Konstas et al., 2017);
(ii) in contrast to WebNLG that contains common
knowledge, the AMR dataset contains very specific
sentences with higher surprisal;13 (iii) AMRs are
much more complex graph structures than the KGs
from WebNLG and AGENDA.14

On the other hand, KG-to-text performance is
not much lower, indicating that most of the PLMs’
success in this task stems from their language mod-
eling rather than their graph encoding capabilities.
We hypothesize that a PLM can match the entities
in a shuffled input with sentences mentioning these
entities from the pretraining or fine-tuning phase. It
has recently been argued that large PLMs can recall
certain common knowledge facts from pretraining
(Petroni et al., 2019; Bosselut et al., 2019).

6.2 Qualitative Analysis

The example in Figure 2 confirms our impression.
T5shuf produces a text with the same content as

12See a more fine-grained comparison in Appendix C.
13Perplexities estimated on the dev sets of AMR and

WebNLG datasets, with GPT-2 fine-tuned on the correspond-
ing training set, are 20.9 and 7.8, respectively.

14In Appendix D, we present the graph properties of the
datasets and discuss the differences.

T5order but does not need the correct triple structure
to do so. Example (1) in Table 6 shows the output
of both models with shuffled input. Interestingly,
even T5order produces a reasonable and truthful text.
This suggests that previously seen facts serve as a
strong guide during text generation, even for mod-
els that were fine-tuned with a clearly marked graph
structure, suggesting that T5order also relies more
on language modeling than the graph structure. It
does have more difficulties covering the whole in-
put graph though. The fact that Antwerp is located
in Belgium is missing from its output.

To further test our hypothesis that PLMs make
use of previously seen facts during KG-to-text gen-
eration, we generate example true facts, corrupt
them in a controlled setting, and feed them to both
T5order and T5shuf to observe their output (examples
(2)–(5) in Table 6). The model trained on correctly
ordered input has learned a bit more to rely on the
input graph structure. The false fact in example (3)
with two triples is reliably transferred to the text by
T5order but not by T5shuf, which silently corrects it.
Also note that, in example (5), both models refuse
to generate an incorrect fact. More examples can
be found in Table 14 in the Appendix.

Our qualitative analysis illustrates that state-of-
the-art PLMs, despite their fluency capacities (cf.
§5.4), bear the risk of parroting back training sen-
tences while ignoring the input structure. This issue
can limit the practical usage of those models as, in
many cases, it is important for a generation model
to stay true to its input (Wiseman et al., 2017; Falke
et al., 2019).
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7 Conclusion

We investigated two pretrained language models
(PLMs) for graph-to-text generation and show that
the pretraining strategies, language model adapta-
tion (LMA) and supervised task adaptation (STA),
can lead to notable improvements. Our approaches
outperform the state of the art by a substantial mar-
gin on three graph-to-text benchmarks. Moreover,
in a human evaluation our generated texts are per-
ceived significantly more fluent than human refer-
ences. Examining the influence of the graph struc-
ture on the text generation process, we find that
PLMs may not always follow the graph structure
and instead use memorized facts to guide the gen-
eration. A promising direction for future work
is to explore ways of injecting a stronger graph-
structural bias into PLMs, thus possibly leveraging
their strong language modeling capabilities and
keeping the output faithful to the input graph.
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Appendices

In this supplementary material, we provide: (i)
additional information about the data used in the
experiments, and (ii) results that we could not fit
into the main body of the paper.

A AMR Input Representation

We test three variants for the representation of the
input AMR graph. Following previous work (Kon-
stas et al., 2017; Mager et al., 2020), we evaluate
(i) only node representation, where the edge in-
formation is removed from the linearization; (ii)
depth-first search (DFS) through the graph and the
(iii) PENMAN representation. An example for each
representation is illustrated below:

only nodes value interrogative commodity
true

DFS value :mode interrogative
:ARG1 commodity :ARG1-of
true

PENMAN ( value :mode interrogative
:ARG1 ( commodity ) :ARG1-of
( true ) )

In this experiment we employ T5small. Table 7
shows the results on the AMR development set.
The PENMAN representation leads to best results.
Therefore, this representation is used in the rest of
the experiments.

Input BLEU
only nodes 28.22
DFS 34.94
PENMAN 38.27

Table 7: Results on the AMR dev set using T5small for
different AMR linearizations.

B Cross-domain Adaptation

For a given task, it is not always possible to collect
closely related data – as we saw, e.g., for WebNLG.
We therefore report STA in a cross-domain set-
ting for the different KG-to-text benchmarks. Ta-
ble 8 shows the results using BARTbase and T5base.
While the texts in KGAIA and AGENDA share the
domain of scientific abstracts, texts in WebNLG
are more general. Also note that WebNLG graphs
do not share any relations with the other KGs. For
BARTbase, STA increases the performance in the
cross-domain setting in most of the cases. For

T5base, STA in KGAIA improves the performance
on WebNLG.

In general, we find that exploring additional
adaptive pretraining for graph-to-text generation
can improve the performance even if the data do
not come from the same domain.

STA on Fine-tuned & Evaluated on
WebNLG-Seen AGENDA

BARTbase

None 58.71 22.01
KGAIA 63.20 23.48
WebNLG - 21.98
AGENDA 61.25 -

T5base

None 62.93 20.73
KGAIA 63.19 22.44
WebNLG - 20.27
AGENDA 62.75 -

Table 8: Effect (measured with BLEU score) of cross-
domain STA.

C Input Graph Size

Figure 4 visualizes T5small’s performance with
respect to the number of input graph triples in
WebNLG dataset. We observe that T5order and
T5shuf perform similarly for inputs with only one
triple but that the gap between the models increases
with larger graphs. While it is obviously more dif-
ficult to reconstruct a larger graph than a smaller
one, this also suggests that the graph structure is
more taken into account for graphs with more than
2 triples. For the unseen setting, the performance
gap for these graphs is even larger, suggesting that
the PLM can make more use of the graph structure
when it has to.

1 2 3 4 5
Number of Triples

55
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85

CH
RF

++

T5order seen
T5shuf seen
T5order unseen
T5shuf unseen

Figure 4: chrF++ scores with respect to the number of
triples for WebNLG seen and unseen test sets.

D Graph Statistics

In Table 9, we present the graph properties of the
three datasets. All statistics are calculated using
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AMR WebNLG AGENDA
min, avg and max number of nodes 2 28.6 335 2 6.8 15 2 10.5 80
min, avg and max node degrees 1 2.2 21 1 1.7 7 1 1.67 15
min, avg and max number of edges 1 32.3 554 1 5.9 14 1 8.8 124
min, avg and max graph diameter 1 12.2 40 1 4.1 10 1 3.1 20
min, avg and max shortest path length 0 7.49 40 0 2.4 10 0 2.3 20

Table 9: Graph statistics of AMR, WebNLG and AGENDA datasets. The values are calculated using the training
data. Note that AMR graphs contain a more complex structure than WebNLG and AGENDA graphs.

the Levi transformation (Beck et al., 2018) of the
undirected version of the graphs, where edges are
also considered nodes in the graph. WebNLG and
AGENDA datasets contain disconnected graphs,
and we use the largest subgraph to calculate the
diameter. Note that AMR graphs have a much
more complex structure: (i) they have more nodes
and edges than WebNLG and AGENDA graphs;
(ii) the average graph diameter and the average
shortest path between nodes in AMRs are at least
three times larger than in WebNLG and AGENDA
graphs; (iii) nodes in AMRs have larger degrees
than nodes in WebNLG and AGENDA graphs.

AMR17 WebNLG AGENDA
#Train 36,521 18,102 38,720
#Dev 1,368 872 1,000
#Test 1,371 1,862 1,000
#Relations 155 373 7
Avg #Tokens 16.1 31.5 157.9

Table 10: Statistics for the graph-to-text benchmarks.

Title Abstract KG
Vocab 48K 173K 113K
Tokens 2.1M 31.7M 9.6M
Entities - - 3.7M
Avg Length 11.1 167.1 -
Avg #Nodes - - 19.9
Avg #Edges - - 9.4

Table 11: Statistics for the KGAIA dataset.

Model chrF++ BS (F1) MS
Schmitt et al. (2020) 44.53 - -
Ribeiro et al. (2020) 46.37 - -
BARTbase 48.02 89.36 34.33
BARTlarge 50.44 88.74 32.24
T5small 44.91 88.56 30.25
T5base 48.14 88.81 31.33
T5large 48.14 89.60 35.23
with task-adaptive pretraining

BARTlarge + LMA 51.33 89.12 33.42
T5large + LMA 49.37 89.75 36.13

BARTlarge + STA 51.63 89.27 34.28
T5large + STA 50.27 89.93 36.86

Table 12: Results of the chrF++, BertScore (BS)
and MoverScore (MS) scores for AGENDA test set.
Bold (Italic) indicates best scores without (with) task-
adaptive pretraining.

Model chrF++ BS (F1) MS
Guo et al. (2019) 57.30 - -
Zhu et al. (2019) 64.05 - -
Cai and Lam (2020b) 59.40 - -
Wang et al. (2020) 65.80 - -
Yao et al. (2020) 65.60 - -
based on PLMs
Mager et al. (2020) 63.89 - -
BARTbase 66.65 95.22 60.78
BARTlarge 71.06 96.08 65.74
T5small 68.78 95.62 63.70
T5base 70.81 95.99 65.63
T5large 72.57 96.27 67.37
with task-adaptive pretraining

BARTlarge + LMA 71.14 95.94 64.75
T5large + LMA 72.83 96.32 67.44

BARTlarge + STA (200K) 72.26 96.21 66.75
BARTlarge + STA (2M) 73.58 96.43 68.14
T5large + STA (200K) 74.09 96.51 68.86
T5large + STA (2M) 74.79 96.59 69.53

Table 13: Results of the chrF++, BertScore (BS) and
MoverScore (MS) scores for the LDC2017T10 test set.
Bold (Italic) indicates the best score without (with)
task-adaptive pretraining.
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T/F Input Facts T5order T5shuf

(1) S • capital • leader Name • London •
Pound sterling • United Kingdom •
leader Name • United Kingdom • Eliza-
beth II • United Kingdom • Boris John-
son • London • currency

The capital city is London, the cur-
rency is the Pound sterling and the
leader is Elizabeth II. Boris Johnson
is also a leader in the UK.

The capital of the United Kingdom
is London, the currency is the Pound
sterling and the country is lead by
Elizabeth II and Boris Johnson.

(2) T • Germany • capital • Berlin Berlin is the capital of Germany. Berlin is the capital of Germany.

(3) F • Berlin • capital • Germany Berlin’s capital is Germany. Berlin is the capital of Germany.

(4) F • Leinster • is Part Of • Dublin Leinster is part of Dublin. Leinster is part of Dublin.

(5) F • Rome • capital • Italy Rome’s capital is Italy. Rome is the capital of Italy.

(6) T • Italy • capital • Rome Italy’s capital is Rome. Rome is the capital of Italy.

(7) T • Texas • capital • Austin • Andrews
County Airport • location • Texas

Austin is the capital of Texas where
Andrews County Airport is located.

Austin is the capital of Texas where
Andrews County Airport is located.

(8) F • Austin • capital • Texas • Andrews
County Airport • location • Texas

The capital of Austin is Texas and
Andrews County Airport is located
in Texas.

Andrews County Airport is located
in Texas where Austin is the capital.

Table 14: Example generations from shuffled (S), true (T), and corrupted (F) triple facts by T5small, fine-tuned on
correctly ordered triples (order) and randomly shuffled input (shuf ).

D Model Examples

A
M

R

Reference I had to deal with verbal abuse from my dad for a long 8 years before I
came to uni and honestly, the only reason why I’m here is because it was
the only way out.

T5 I had to deal with 8 years of verbal abuse from my dad before coming to
university and honestly the only reason I’m here is because it’s the only
way out.

BART I had to deal with my dad’s verbal abuse for 8 years long before coming
to uni and honestly the only reason I’m here is because it’s the only way
out.

Mager et al. (2020) i’ve had to deal with verbal abuse from my dad for 8 years (before i came
to uni i was honestly the only reason i was here) and it’s only because of
the way it is.

W
eb

N
L

G

Reference Aaron Turner is an electric guitar player who has played with the black
metal band Twilight and with Old Man Gloom. Death metal is a musical
fusion of black metal.

T5 Aaron Turner plays the electric guitar and is associated with the band
Twilight. He is also a member of the Old Man Gloom band. Black metal
and death metal are both genres of music.

BART The black metal genre is a variation of the death metal genre. It is also
where the band, Twilight, and the alternative rock band, Old Man Gloom,
are from. One of the members of the band is Aaron Turner, who plays
the electric guitar.

Harkous et al. (2020) Aaron Turner, a.k.a. Black Metal, is a member of the Twilight (band)
and Old Man Gloom bands. He also plays electric guitar and has a strong
connection with the Death Metal genre.

Table 15: Examples of text generated by the different models. D refers to the dataset.
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Model Examples

Reference in this paper, a new array signal processing technique by using particle swarm
optimization is proposed to identify multipath channel parameters. the proposed
array signal processing technique provides estimates to the channel parameters
by finding a global minimum of an optimization problem. since the optimization
problem is formulated in the cross-ambiguity function (caf) domain of the
transmitted signal and the received array outputs, the proposed array signal
processing technique is called as particle swarm optimization. the performance
of the particle swarm optimization is compared with the space alternating
generalized expectation maximization technique and with another recently
proposed pso based technique for various snr values. simulation results indicate
the superior performance of the pso based technique over mentioned techniques
for all snr values.

T5 this paper, we propose an array signal processing technique based on particle
swarm optimization to estimate the multipath channel parameters from the
received and the transmitted signal in a cross-ambiguity domain. the proposed
array signal processing technique is formulated as an optimization problem
and particle swarm optimization is compared with the generalized expectation
maximization technique. simulation results show that the proposed particle
swarm optimization outperforms the pso based technique for a wide range of snr
values. in addition, the proposed particle swarm optimization is computationally
more efficient than the gem based technique for small snr values.

BART in this paper, a new array signal processing technique based on particle swarm
optimization is proposed. the proposed array signal processing technique is
used to estimate the multipath channel parameters from the transmitted signal.
the proposed array signal processing technique is formulated as an optimization
problem in the cross-ambiguity domain. the particle swarm optimization is
compared with the generalized expectation maximization technique. simulation
results show that the proposed particle swarm optimization outperforms the pso
based technique for all snr values. furthermore, the proposed particle swarm
optimization is able to estimate the channel parameters more accurately than
the generalized expectation maximization technique.

Ribeiro et al. (2020) in this paper, a novel array signal processing technique based on particle swarm
optimization is proposed to estimate the multipath channel parameters from the
transmitted signal. the proposed array signal processing technique uses particle
swarm optimization to estimate the multipath channel parameters. the proposed
array signal processing technique is formulated as an optimization problem.
simulation results show that the proposed array signal processing technique
outperforms the conventional generalized expectation maximization technique
and the pso based technique is robust to the snr values.

Table 16: Examples of text generated by the different models trained on the AGENDA dataset.
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Abstract

Training scene graph classification models requires a large
amount of annotated image data. Meanwhile, scene graphs
represent relational knowledge that can be modeled with sym-
bolic data from texts or knowledge graphs. While image anno-
tation demands extensive labor, collecting textual descriptions
of natural scenes requires less effort. In this work, we inves-
tigate whether textual scene descriptions can substitute for
annotated image data. To this end, we employ a scene graph
classification framework that is trained not only from anno-
tated images but also from symbolic data. In our architecture,
the symbolic entities are first mapped to their correspondent
image-grounded representations and then fed into the rela-
tional reasoning pipeline. Even though a structured form of
knowledge, such as the form in knowledge graphs, is not al-
ways available, we can generate it from unstructured texts
using a transformer-based language model. We show that by
fine-tuning the classification pipeline with the extracted knowl-
edge from texts, we can achieve ∼8x more accurate results
in scene graph classification, ∼3x in object classification, and
∼1.5x in predicate classification, compared to the supervised
baselines with only 1% of the annotated images.

Introduction
Relational reasoning is one of the essential components of
intelligence; humans explore their environment by grasping
the entire context of a scene rather than studying each item
in isolation from the others. Furthermore, we expand our
understanding of the world by educating ourselves about
novel facts through reading or listening. For example, we
might have never seen a “cow wearing a dress” but might
have read about Hindu traditions of decorating cows. While
we already have a robust visual system that can extract basic
visual features such as edges and curves from a scene, the
description of a “cow wearing a dress” refines our visual
understanding of relations on an object level and enables us
to recognize a dressed cow when seeing it.

Relational reasoning is gaining growing popularity in the
Computer Vision community and especially in the form of

*These authors contributed equally.
†S. M. Baharlou contributed to this project while he was a visit-

ing researcher at the Ludwig Maximilian University of Munich.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

scene graph (SG) classification. The goal of SG classification
is to classify objects and their relations in an image. One of
the challenges in SG classification is collecting annotated im-
age data. Most approaches in this domain rely on thousands
of manually labeled and curated images. In this paper, we
investigate whether the SG classification models can be fine-
tuned from textual scene descriptions (similar to the “dressed
cow” example above).

We consider a classification pipeline with two major parts:
a feature extraction backbone, and a relational reasoning
component (Figure 1). The backbone is typically a convolu-
tional neural network (CNN) that detects objects and extracts
an image-based representation for each. On the other hand,
the relational reasoning component can be a variant of a re-
current neural network [Xu et al. 2017, Zellers et al. 2018] or
graph convolutional networks [Yang et al. 2018, Sharifzadeh,
Baharlou, and Tresp 2021]. This component operates on an
object level by taking the latent representations of all the
objects in the image and propagating them in the graph.

Note that, unlike the feature extraction backbone that re-
quires images as input, the relational reasoning component
operates on graphs with the nodes representing objects and
the edges representing relations. The distinction between
the input to the backbone (images) and the relational rea-
soning component (graphs) is often overlooked. Instead, the
scene graph classification pipeline is treated as a network
that takes only images as inputs. However, one can also train
or fine-tune the relational reasoning component directly by
injecting it with relational knowledge. For example, Knowl-
edge Graphs (KGs) contain curated facts that indicate the
relations between a head object and a tail object in the
form of (head, predicate, tail) e.g., (Person,
Rides, Horse). The facts in KGs are represented by
symbols whereas the inputs to the relational reasoning com-
ponent are image-based embeddings. In this work, we map
the triples to image-grounded embeddings as if they are com-
ing from an image. We then use these embeddings to fine-
tune the relational reasoning component through a denoising
graph autoencoder scheme.

Note that the factual knowledge is not always available
in a well-structured form, specially in domains where the
knowledge is not stored in the machine-accessible form of
KGs. In fact, most of the collective human knowledge is only
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Figure 1: Top: we initially train a scene graph classification pipeline from images and their corresponding SGs. Bottom: we
then use a text-to-graph module to extract structured knowledge from unstructured texts. The extracted graph is embedded by
image-grounded vectors, masked, and then fed to the relational reasoning module to predict the missing relations and thus,
encourage the network to learn the new relations from texts. The lock sign indicates pre-trained and frozen parts of the network.

available in the unstructured form of texts and documents.
Exploiting this form of knowledge, in addition to structured
knowledge, can be significantly beneficial. To this end, we
employ a transformer-based model to generate structured
graphs from textual input and utilize them to improve the
relational reasoning module.

In summary, we propose Texema, a scene graph classifi-
cation pipeline that can be trained from the large corpora of
unstructured knowledge. We evaluate our approach on the
Visual Genome dataset. In particular, we show that we can
fine-tune the reasoning component using textual scene de-
scriptions instead of thousands of images. As a result, when
using as little as ∼500 images (1% of the VG training data),
we can achieve ∼3x more accurate results in object classifica-
tion, ∼8x in scene graph classification and ∼1.5x in predicate
classification compared to the supervised baselines. Addition-
ally, in our ablation studies, we evaluate the performance of
using different rule-based, LSTM-based, and transformed-
based text-to-graph models.

Related Works
Scene Graph Classification: There is an extensive body of
work on visual reasoning in general that includes different
forms of reasoning [Wu, Lenz, and Saxena 2014, Deng et al.
2014, Hu et al. 2016, 2017, Santoro et al. 2017, Zellers et al.
2019]. Here, we mainly review the works that are focused
on scene graph classification. Visual Relation Detection

(VRD) [Lu et al. 2016] and the Visual Genome [Krishna
et al. 2017] are the main datasets for this task. While the
original papers on VRD and VG provide the baselines for
scene graph classification by treating objects independently,
several follow-up works contextualize the entities before
classification. Iterative Message Passing (IMP) [Xu et al.
2017], Neural Motifs [Zellers et al. 2018] (NM), Graph
R-CNN [Yang et al. 2018], and Schemata [Sharifzadeh,
Baharlou, and Tresp 2021] proposed to propagate the image
context using basic RNNs, LSTMs, graph convolutions, and
graph transformers respectively. On the other hand, authors
of VTransE [Zhang et al. 2017] proposed to capture relations
by applying TransE [Bordes et al. 2013], a knowledge
graph embedding model, on the visual embeddings, Tang
et al. [2019] exploited dynamic tree structures to place the
object in an image into a visual context. Chen et al. [2019a]
proposed a multi-agent policy gradient method that frames
objects into cooperative agents and then directly maximizes
a graph-level metric as the reward. In tangent to those works,
Sharifzadeh et al. [2021] proposed to enrich the input domain
in scene graph classification by employing the predicted
pseudo depth maps of VG images that were released as an
extension called VG-Depth.

Commonsense in Scene Understanding: Several recent
works have proposed to employ external or internal sources
of knowledge to improve visual understanding [Wang, Ye,
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Input man standing with child on ski slope

Reference (child, on, ski slope) (man, on, ski slope)
Graph (RG) (man, standing with, child)

Rtext→graph (man, standing, child)

SSGP (standing, with, child) (standing, on, slope)

CopyNet (1%) (man, standing with, child)

T5 (1%) (man, standing with, child)

CopyNet (10%) (man, standing with, child) (child, on, slope)

T5 (10%) (man, standing with, child)
(child, on, ski slope)

Table 1: An example of extracted triples from a given text
input in VG, using different methods. Bold: correct (∈ RG).
Italic: incorrect (/∈ RG). The results are computed using the
respective official code bases of the related works.

and Gupta 2018, Jiang et al. 2018, Singh et al. 2018, Kato, Li,
and Gupta 2018]. In the scene graph classification domain,
some of the works have proposed to correct the SG predic-
tion errors by merely comparing them to the co-occurrence
statistics of internal triples as a form of commonsense knowl-
edge [Chen et al. 2019c,b, Zellers et al. 2018]. Earlier, Baier,
Ma, and Tresp [2017, 2018] proposed the first scene graph
classification model that employed prior knowledge in the
form of Knowledge Graph Embeddings (KGEs) that gen-
eralize beyond the given co-occurrence statistics. Zareian,
Karaman, and Chang [2020], Zareian et al. [2020] followed
this approach by extending it to models that are based on
graph convolutional networks. More recently, Sharifzadeh,
Baharlou, and Tresp [2021] proposed Schemata as a gener-
alized form of a KGE model that is learned directly from
the images rather than triples. In general, scene graph clas-
sification methods are closely related to the KGE models.
Therefore, we refer the interested readers to [Nickel et al.
2016, Ali et al. 2020a,b] for a review and large-scale study on
the KG models, and to [Tresp, Sharifzadeh, and Konopatzki
2019, Tresp et al. 2020] for an extensive investigation of the
connection between perception, KG models, and cognition.

Nevertheless, to the best of our knowledge, the described
methods have employed curated knowledge in the form of
triples, and none of them have directly exploited the textual
knowledge. In this direction, the closest work to ours is by Yu
et al. [2017], proposing to distill the external language knowl-
edge using a teacher-student model. However, this work does
not include a relational reasoning component and only refines
the final predictions. Also, as shown in the experiments, our
knowledge extraction module performs two times better than
the SG Parser used in that work.
Knowledge Extraction from Text: Knowledge extraction
from text has been studied for a long time [Chinchor 1991].
Previous work ranges from pattern-based approaches [Hearst
1992] to supervised neural approaches with specialized archi-
tectures [Gupta et al. 2019, Yaghoobzadeh, Adel, and Schütze
2017]. Recently, Schmitt et al. [2020] successfully applied
a general sequence-to-sequence architecture to graph↔text

Figure 2: The t-SNE representation of the eis (diamonds)
and image-based representations X s (dots) where each color
represents the ground-truth class of the dot.

conversion. With the recent rise of transfer learning in NLP,
an increasing number of approaches are based on large lan-
guage models, pre-trained in a self-supervised manner on
massive amounts of texts [Devlin et al. 2019]. Inspired from
previous work that explores transfer learning for graph-to-text
conversion [Ribeiro et al. 2020], we base our text-to-graph
model on a pre-trained T5 model [Raffel et al. 2019].

Methods
In this section, we first describe the backbone and relational
reasoning components. We then describe our approach for
fine-tuning the network from texts. We have three possible
forms of data: Images (IM), Scene Graphs (SG) and Textual
Scene Descriptions (TXT). We consider having two sets of
data: one is the parallel set, which is the set of IM with their
corresponding SG and TXT, and another is the text set which
is a set of additional TXT that come without any images or
scene graphs. These two sets have no elements in common.

We initially train our backbone and relational reasoning
component from IM and SG, and our text-to-graph model
from the TXT and SG in the parallel set. We then show that
we can fine-tune the pipeline using the text set and without
using any additional images.

Backbone (Algorithm 1.1)
The feature-extraction backbone is a convolutional neural
network (ResNet-50) that has been pre-trained in a self-
supervised manner [Grill et al. 2020] from unlabeled images
of ImageNet [Deng et al. 2009] and Visual Genome [Kr-
ishna et al. 2017]. Given an image I with several objects
in bounding boxes B = {bi}ni=1, bi = [bx

i , by
i , bw

i , bh
i ],

we apply the ResNet-50 to extract pooled object features
X o = {xo

i }ni=1, xo
i ∈ Rd. Here [bx

i , by
i ] are the coordi-

nates of bi and [bw
i , bh

i ] are its width and height, and d
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Algorithm 1: Classify objects/predicates from images

1. Extract image features (Backbone):

Input: Images and object bounding boxes (I,B : {bi}ni=1).
Output: Object embeddings X o : {xoi }ni=1 and predicate em-

beddings X p : {xpi }mi=1.
Trainable params: λ.

X o = ResNet50(I,B)

X p = {MLPλ(t(bi,bj)) | ∀bi,bj ∈ B}
2. Contextualize and Classify (Relational Reasoning):

Input: Object embeddings X o : {xoi }ni=1, Predicate embed-
dings X p : {xpi }mi=1 and ground truth classes Co and Cp.

Output: Predicted object class distribution Ĉo : {ĉoi }ni=1 and
predicted predicate class distribution Ĉp : {ĉpi }mi=1.

Trainable params: γ, Wo,Wp.

Zo,Zp = GraphTransformerγ(X o,X p)
Ĉo = {softmax(Wo · zo) | ∀zo ∈ Zo}
Ĉp = {softmax(Wp · zp) | ∀zp ∈ Zp}

3. Apply Loss (Cross-Entropy):

lo = − 1
n

∑n
i=1

∑‖co
i ‖

j=1 coi,j .log(ĉ
o
i,j)

lp = − 1
m

∑m
i=1

∑‖cp
i ‖

j=1 cpi,j .log(ĉ
p
i,j)

are the vector dimensions. Following [Zellers et al. 2018],
we define X p = {xp

i }mi=1, xp
i ∈ Rd as the relational fea-

tures between each pair of objects. Each xp
i is initialized

by applying a two layered fully connected network on the
relational position vector t between a head i and a tail
j where t = [tx, ty, tw, th], tx = (bx

i − bx
j )/bw

i j , ty =

(by
i−by

j )/bh
j , tw = log(bw

i /bw
j ), th = log(bh

i /bh
j ). The imple-

mentation and pre-training details of the layers are provided
in the Evaluation. X o and X p form a structured presentation
of the objects and predicates in the image also known as
Scene Representation Graph (SRG) [Sharifzadeh, Bahar-
lou, and Tresp 2021]. SRG is a fully connected graph with
each node representing either an object or a predicate, where
each object node is a direct neighbor to predicate nodes and
each predicate node is a direct neighbor with its head and tail
object nodes.

Relational Reasoning (Algorithm 1.2)
The relational reasoning component updates the initial SRG
representations through Graph Transformer layers [Koncel-
Kedziorski et al. 2019]. The outputs of these layers are Zo =
{zo

i }ni=1, zo
i ∈ Rd and Zp = {zp

i }mi=1, zp
i ∈ Rd with equal

dimensions as X s. From here on, we drop the superscripts
of o and p for brevity. We apply a linear classification layer
W to classify the contextualized representations Z such that
ĉ = softmax(W ·zi), with cross-entropy as the loss function.

Fine-tuning from Texts (Algorithm 2)
Let us assume that we have already trained the backbone
and relational reasoning components from IM and SG in the
parallel set. Now, we want to fine-tune the weights in the

Algorithm 2: Fine-tune the relational reasoning component
from textual triples using a denoising auto-encoder paradigm

1. Learn image-grounded representations E for each symbol
through classification (without Graph Transformer):

Input: Object embeddings X o : {xoi }ni=1, predicate embed-
dings X p : {xpi }mi=1 and their corresponding ground truth
classes Co and Cp.

Output: Predicted object class distribution Ĉo : {ĉoi }ni=1 and
predicted predicate class distribution Ĉp : {ĉpi }mi=1.

Trainable params: Eo,Ep.

Ĉo = {softmax(Eo · xo) | ∀xo ∈ X o}
Ĉp = {softmax(Ep · xp) | ∀xp ∈ X p}

2. Apply Loss (Cross Entropy):

lo = − 1
n

∑n
i=1

∑‖co
i ‖

j=1 coi,j .log(ĉ
o
i,j)

lp = − 1
m

∑m
i=1

∑‖cp
i ‖

j=1 cpi,j .log(ĉ
p
i,j)

3. Fine-tune the relational reasoning component given the ex-
tra triples (Denoising Graph Autoencoder):

Input: Symbolic triples S : {(hi, pi, ti)}ki=1 and canonical
object/predicate representations Eo/Ep.

Output: Embedded representations E : {(ehi , epi , eti)}ki=1.
Trainable params: γ,Wo,Wp.

• Build E : {(ehi , epi , eti)}ki=1 where for each (hi, pi, ti):
ehi = onehot(hi) ·Eo
epi = onehot(pi) ·Ep
eti = onehot(ti) ·Eo

• Randomly set 20% of the nodes and edges in E to zero.
• Set X o = Eh ∪ Et and X p = Ep and run Algorithm 1.2 to

fine-tune γ,Wo,Wp, with Eh, Et and Ep as the set of all
heads, tails, and predicates in E .

relational reasoning component given the additional text set.
The relational reasoning component takes graphs as input,
therefore, we first need to convert TXT to SG:

Text-to-graph: This model is trained from the SG and
TXT in the parallel set, and then used to generate SG
from the text set. Let us consider an unstructured text
such as “man standing with child on ski slope” (Ta-
ble 1 - Input). A structured form of this sentence is a
graph with unique nodes and edges for each entity or
predicate. For example, the reference graph for this sen-
tence contains the triples (child, on, ski slope),
(man, standing with, child) and (man, on,
ski slope) (Table 1 - RG).

In order to learn this mapping, we employ a transformer-
based [Vaswani et al. 2017] sequence-to-sequence T5small
model [Raffel et al. 2019] and adapt it for the task of ex-
tracting graphs from texts. T5 consists of an encoder with
several layers of self-attention (like BERT, Devlin et al. 2019)
and a decoder with autoregressive self-attention (like GPT-3,
Brown et al. 2020). In order to use a T5 model with graphs,
we need to represent the graphs as a sequence. To this end,
we serialize the graphs by writing out their facts separated
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Method
Precision Recall F1

1% 10% 1% 10% 1% 10%

Rtext→graph 1.92± 0.00 1.86± 0.01 1.87± 0.00 1.81± 0.01 1.89± 0.00 1.84± 0.01

SSGP 14.86± 0.01 14.52± 0.02 18.47± 0.01 18.05± 0.02 16.47± 0.01 16.09± 0.02

CopyNet 29.20± 0.13 30.77± 0.49 27.19± 0.28 29.79± 0.29 28.16± 0.21 30.27± 0.34

T5 33.37± 0.11 33.81± 0.08 31.06± 0.18 32.45± 0.33 32.17± 0.13 33.12± 0.16

Table 2: The mean and standard deviation of Precision, Recall, and F1 scores of the predicted facts from the texts on four random
splits. The results are computed using the respective official code bases of the related works and evaluated on VG.

by end-of-fact symbols (EOF), and separate the elements of
each fact with SEP symbols [Schmitt et al. 2020], e.g. “child
SEP on SEP ski slope EOF” (Fig. 1). To adapt the multi-task
setting from T5’s pretraining, we use the task prefix “make
graph: ” to mark our text-to-graph task. Table 1 shows an
example text and the extracted graphs using T5 and other
previous methods (see Evaluation for details).

Map to embeddings: Note that the predicted graphs are a
sequence of symbols for heads, predicates, and tails where
each symbol represents a class c ∈ C. However, the inputs to
the relational reasoning component are image-based vectors
X . Thus, before feeding the symbols to the relational rea-
soning component, we need to map them to a corresponding
embedding from the space of X as if we are feeding it with
image-based embeddings. In order to do that, we train a map-
ping from symbols to X s using the IM and SG of the parallel
set. This is simply done by training a linear classification
layer E given X s from the parallel set (Algorithm 2.1). Un-
like the classification layer in Algorithm 1, here we classify
X s instead of Zs and the goal is not to use the classification
output but to train image-grounded, canonical representations
for each class: each row ei in the classification layer becomes
a cluster center for X s from class i (Figure 2). Therefore,
instead of the extracted symbolic ci from the text set, we can
feed its canonical image-grounded representation ei to the
graph transformer (Algorithm 2.3).

Denoising Graph Autoencoder: To fine-tune the rela-
tional reasoning given this data, we treat the relational reason-
ing component as a denoising autoencoder where the input
is an incomplete (noisy) graph that comes from the text and
the output is the denoised graph. If we do not apply a denois-
ing autoencoder paradigm, the function will collapse to an
identity map. We create the noisy graph by randomly setting
some of the input nodes and edges to zero during the training
(Algorithm 2.3). The goal is to encourage the graph trans-
former to predict the missing links and therefore, learn the
relational structure.

Evaluation
We first compare the performance of different rule-based and
embedding-based text-to-graphs models on our data. We then
evaluate the performance of our entire pipeline in classifying
objects and relations in images. In particular, we show that
the extracted knowledge from the texts can largely substitute
annotated images as well as ground-truth graphs.

Dataset: We use the sanitized version [Xu et al. 2017] of
Visual Genome (VG) dataset [Krishna et al. 2017] including
images and their annotations, i.e., bounding boxes, scene
graphs, and scene descriptions. Our goal is to design an ex-
periment that evaluates whether we can substitute annotated
images with textual scene descriptions. Therefore, instead of
using external textual datasets with unbounded information,
we use Visual Genome itself by dividing it into different splits
of parallel (with IM, SG and TXT) and text data (with only
TXT). To this end, we assume only a random proportion (1%
or 10%) of training images are annotated (parallel set contain-
ing IM with corresponding SG and TXT). We consider the
remaining data (99% or 90%) as our text set and discard their
IM and SG. We aim to see whether employing TXT from the
text set, can substitute the discarded IM and SG from this set.
We use four different random splits [Sharifzadeh, Baharlou,
and Tresp 2021] to avoid a sampling bias. For more detail on
the datasets refer to the supplementary materials.

Note that the scene graphs and the scene descriptions
from the VG are collected separately and by crowd-sourcing.
Therefore, even though the graphs and the scene descriptions
refer to the same image region, they are disjoint and contain
complementary knowledge.

Graphs from Texts
The goal of this experiment is to study the effectiveness
of the text-to-graph model. We fine-tune the pre-trained T5
model on parallel TXT and SG, and apply it on the text
set to predict their corresponding SG. We also implement
the following rule-based and embedding-based baselines to
compare their performance using our splits: (1) Rtext→graph

is a simple rule-based system introduced by Schmitt et al.
[2020] for general knowledge graph generation from text.
(2) The Stanford Scene Graph Parser (SSGP) [Schuster et al.
2015] is another rule-based approach that is more adapted to
the scene graph domain. Even though this approach was not
specifically designed to match the scene graphs from the Vi-
sual Genome dataset, it was still engineered to cover typical
idiosyncrasies of textual image descriptions and correspond-
ing scene graphs. (3) CopyNet [Gu et al. 2016] is an LSTM
sequence-to-sequence model with a dedicated copy mecha-
nism, which allows copying text elements directly into the
graph output sequence. It was used for unsupervised text-to-
graph generation by Schmitt et al. [2020]. However, we train
it on the supervised data of our parallel sets. We use a vocab-
ulary of around 70k tokens extracted from the VG-graph-text
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Figure 3: Qualitative examples of improved classification results (Recall@100) before and after (from left to right) fine-tuning
the model using the knowledge in texts. Green and gray colors indicate true positives and false negatives concluded by the model.

Method
R@50 R@100

1% 10% 1% 10%

SGCls

Rtext→graph 10.90± 0.12 24.96± 0.15 11.80± 0.11 26.09± 0.15

SSGP 14.35± 0.15 26.11± 0.19 15.14± 0.17 27.12± 0.22

CopyNet 14.46± 0.31 26.05± 0.29 15.19± 0.24 27.08± 0.26

TXM - T5 14.53± 0.34 26.16± 0.32 15.28± 0.38 27.22± 0.28

GT 14.72± 0.38 26.33± 0.45 15.36± 0.38 27.37± 0.47

PredCls

Rtext→graph 23.34± 0.10 49.99± 0.12 26.83± 0.15 54.40± 0.12

SSGP 54.65± 0.14 55.65± 0.15 59.33± 0.18 59.67± 0.20

CopyNet 56.24± 0.31 59.27± 0.28 60.35± 0.20 63.28± 0.25

TXM - T5 58.64± 0.34 59.31± 0.30 63.07± 0.37 63.32± 0.24

GT 62.02± 0.10 61.71± 0.19 65.68± 0.12 65.42± 0.19

Table 3: SGCls and PredCls results using different text-to-graph modules. We have substituted the missing 99% and 90% of
annotated images with the textual knowledge extracted from their scene descriptions.

benchmark and, otherwise, also adopt the hyperparameters
from [Schmitt et al. 2020]. Table 1 shows sample predictions
from these models. Table 2 compares precision, recall, and
F1 measures. and T5 outperforms others by a large margin.

Graphs from Images
The goal of this experiment is to evaluate scene graph classifi-
cation after fine-tuning the pipeline using textual knowledge.
We evaluate our models for object classification, predicate
classification (PredCls - predicting predicate labels given a
ground truth set of object boxes and object labels) and scene
graph classification (SGCls - predicting object and predicate
labels, given the set of object boxes) on the test sets. Our
ablation study concerns the following configurations:
• SPB: In this setting, both the backbone and the relational

reasoning component are trained by supervised learning
on the IM and SGs (1% or 10%) from the parallel set.

• SCH: Here, the backbone is trained by self-supervised
learning on all VG images (without labels), and the rela-
tional reasoning component is trained on the IM and SGs
(1% or 10%) from the parallel set.

• TXM: Here, the backbone is trained by self-supervised
learning on all VG images (without labels), and the rela-
tional reasoning component is trained on the IM and SGs
(1% or 10%) from the parallel set and fine-tuned from the
SGs predicted from the text set (99% or 90%) using the
text-to-graph module.

• GT: Here, the backbone is trained by self-supervised learn-
ing on all VG images (without labels), and the relational
reasoning component is trained on the IM and SGs (1% or
10%) from the parallel set, and fine-tuned from the ground
truth graphs (99% or 90%), instead of the text-to-graph
predictions.
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Figure 4: Fine-tuning with the textual knowledge (TXM)
significantly improves the results in all settings of PredCls
(top), SGCls (middle), and object classification (bottom).

• FSPB: Here, both the backbone and the relational reason-
ing component are trained by supervised learning on 100%
of the VG annotated images. Meaning that we have rede-
fined the parallel set to include 100% of the VG training
data and we do not need to substitute the images with the
text set anymore. The goal of this setting is to compute the
maximum accuracy that our model achieves, when we have
all the annotated images with ground truth SGs, instead of
using their textual scene descriptions. The results of this
settings are written above each table so that the other bars
maintain a meaningful scale.

Figure 4 presents the results of the ablation study. We use
the Recall@K (R@K) as metric. which computes the mean
prediction accuracy in each image given the top K predic-
tions. For more results (mR@K metric and unconstrained
setups) refer to the supplementary materials. As shown, fine-
tuning with textual scene descriptions (TXM) improves the
classification results under all settings, substituting a large

Method
SGCls PredCls

R@50 R@100 R@50 R@100

VRD [Lu et al. 2016] 11.8 14.1 27.9 35.0

IMP+ [Xu et al. 2017] 34.6 35.4 59.3 61.3

SMN [Zellers et al. 2018] 35.8 36.5 65.2 67.1

KERN [Chen et al. 2019c] 36.7 37.4 65.8 67.6

VCTree [Tang et al. 2019] 38.1 38.8 66.4 68.1

CMAT [Chen et al. 2019a] 39.0 39.8 66.4 68.1

SIG [Wang et al. 2020] 36.6 37.3 66.3 68.1

GB-Net [Zareian et al. 2020] 38.0 38.8 66.6 68.2

TXM 39.0 39.9 66.7 68.3

Table 4: Comparing the general performance of the architec-
ture to some other methods under the VG test set.

proportion of the omitted images. Furthermore, the results
even outperform FSPB under PredCls (recall that the scene
descriptions are sometimes complementary to image annota-
tions and contain additional information).

Table 3 presents additional results also using different
text-to-graph baselines. We can see that fine-tuning with the
predicted graphs using T5, is as effective as fine-tuning with
the crowd-sourced ground truth graphs (GT), and in some set-
tings even better (object classification with 1%). Notice that
compared to the self-supervised baseline, we gained up to
∼5% relative improvement in object classification, more than
∼26% in scene graph classification, and ∼31% in predicate
prediction accuracy. As expected, the choice of text-to-graph
module has a larger effect on the PredCls compared to the
SGCls and ObjCls, due to the fact that SGCls and ObjCls rely
heavily on the image-based features, whereas PredCls has a
strong dependency to relational knowledge. In supplementary
materials we also provide additional results on the improve-
ments per object class after fine-tuning the model with the
textual knowledge (From SCH to TXM) and show that most
improvements occur in under-represented classes. Figure 3
provides some qualitative examples of the predicted scene
graphs before and after fine-tuning with the texts. Finally,
to provide an intuition on our general performance, Table 4
present the results of our architecture using a VGG-16 [Si-
monyan and Zisserman 2014] backbone trained with 100%
of the annotations, instead of the self-supervised BYOL.

Conclusion
In this work, we proposed the first relational image-based
classification pipeline that can be fine-tuned directly from the
large corpora of unstructured knowledge available in texts.
We generated structured graphs from textual input using dif-
ferent rule-based or embedding-based approaches. We then
fine-tuned the relational reasoning component of our classifi-
cation pipeline by employing the canonical representations of
each entity in the generated graphs. We showed that we gain
a significant improvement in all settings after employing the
inferred knowledge within the classification pipeline. In most
cases, the accuracy was similar to when using the ground
truth graphs that are manually annotated by crowd-sourcing.
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Augustin-Louis Cauchy. 1847. Méthode générale pour la résolution de systèmes
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Lucien Tesnière. 1959. Eléments de la syntaxe structurale. Paris: Klincksieck.

Lloyd N. Trefethen and David Bau, III. 1997. Numerical Linear Algebra, volume 50
of Other Titles in Applied Mathematics. Society for Industrial and Applied
Mathematics.

Shikhar Vashishth, Prince Jain, and Partha Talukdar. 2018. Cesi: Canonicalizing
open knowledge bases using embeddings and side information. In Proceedings
of the 2018 World Wide Web Conference, WWW ’18, page 1317–1327, Repub-
lic and Canton of Geneva, CHE. International World Wide Web Conferences
Steering Committee.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, page 5998–6008. Curran Associates, Inc.
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