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I. ABBREVIATIONS 

ACE2 Angiotensin-converting enzyme 2 

Ad26 Adenovirus type 26 
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FIPV Feline infectious peritonitis virus 
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HR Heptad repeat 

IB Infectious bronchitis 

IBV Infectious bronchitis virus 

ICTV International Committee of Taxonomy of Viruses 

IgA Immunoglobulin A 

IgG Immunoglobulin G 
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UTR Untranslated region 
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II. INTRODUCTION 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative 

agent of coronavirus infectious disease 2019 (COVID-19), was first detected 

in December 2019 in Wuhan (China) (Sun et al. 2020). Due to an efficient 

human-to-human transmission, SARS-CoV-2 spread throughout the world by 

travelers and community-based contacts (Q. Li et al. 2020), leading to a global 

pandemic within a few months. Most infections with SARS-CoV-2 will show 

asymptomatic or mild symptoms in the respiratory system. However, some 

patients will become seriously ill and require medical attention. For the better 

understanding of immunity directed against this new virus, the study for 

expression of SARS-CoV-2 antigens and the analysis of antibody responses 

directed against these antigens are crucial. 

Modified Vaccinia virus Ankara (MVA), a highly attenuated vaccinia virus 

strain, has been developed as a safe and efficient vector system delivering 

bacterial and viral antigens. MVA-T7pol is a recombinant MVA containing the 

bacteriophage T7 RNA polymerase gene under the control of the natural 

vaccinia virus early/late promoter P7.5 in deletion II of the MVA genome 

(Sutter et al. 1995). MVA-T7pol is capable of producing high amounts of 

heterologous target proteins when used as an expression system, and in 

contrast to MVA vector viruses, there is no need for time-requiring 

constructions and isolations of recombinant viruses (Hebben et al. 2007; 

Pradeau-Aubreton et al. 2010). 
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This study describes the successful and efficient expression of selected SARS-

CoV-2 proteins using the MVA-T7pol system to allow for a sophisticated 

immunoblot analysis of the humoral immune response against those antigens 

in COVID-19 patients. 
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III. LITERATURE REVIEW 

1. A global pandemic—COVID-19 

At the end of 2019, cases of pneumonia with unknown etiology were reported 

in Wuhan, China (Q. Li et al. 2020). At that time, it was not known that this 

disease would develop into a pandemic in the future and thus have a huge 

impact on human life worldwide. As more and more cases were reported 

worldwide, the World Health Organization (WHO) declared a Public Health 

Emergency of International Concern on Jan 30, 2020, and announced “COVID-

19” as the official name of this new disease. The causative agent which causes 

the ongoing global pandemic is severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). This name was given by the International 

Committee on Taxonomy of Viruses (ICTV) because the virus is genetically 

related to the coronavirus that caused the 2003 SARS outbreak. As of March 

2022, more than two years after the first outbreak of COVID-19, about 445 

million global cases were confirmed, including 5 million deaths, making it one 

of the deadliest in history (JHU 2022). 

1.1 History of coronavirus-related diseases  

The COVID-19 pandemic has made a profound impact on various aspects of 

human life around the world. Prior to the COVID-19 outbreak, infections 

caused by other members of coronaviruses have historically posed challenges 

to veterinary medicine as well as human medicine. The history of coronavirus 

starts with the report of infectious bronchitis virus (IBV), which was 
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recognized as the causative agent of infectious bronchitis (IB) in 1937 

(Beaudette 1937). It is notoriously difficult to control and has become one of 

the most important respiratory diseases in chickens. Nowadays, the disease 

is endemic in almost all regions of the world, especially the country that 

possesses a developed commercial poultry industry (Wit et al. 2011). For 

decades, new coronaviruses have been discovered continuously, and many of 

them are highly pathogenic and constantly affect the health of animals 

throughout the world, such as transmissible gastroenteritis virus (TGEV) and 

porcine epidemic diarrhea virus (PEDV). In 1946, an outbreak of infectious 

gastroenteritis in swine was reported (DOYLE & HUTCHINGS 1946). The 

causative virus was identified as TGEV and spread worldwide, causing 

diarrhea and vomiting in pigs of all ages (Valkó et al. 2018). PEDV was first 

isolated in Belgium in 1978 and is clinically similar to TGEV (Pensaert & Bouck 

1978). 

The first human coronavirus (HCoV), HCoV-229E, was identified in the 1960s 

from the nasal specimen of a patient with the common cold (Hamre & 

Procknow 1966). Later, a coronavirus isolated from the nasopharyngeal wash 

of a patient was found to be serologically distinct from HCoV-229E. It was 

reported in a publication in 1967 and named HCoV-OC43 (McIntosh et al. 

1967). These two viruses, known to be circulating in the human population, 

were the focus of HCoV research in subsequent years until the outbreak of 

the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-

CoV-1) in 2002.  
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The first epidemic of the 21st century began with the emergence of a severe 

and readily transmissible disease: severe acute respiratory syndrome (SARS). 

It was first emerged in Guangdong Province of China in November 2002 and 

rapidly spread to 26 countries, resulting in more than 8000 cases and 774 

deaths by July 2003 (Skowronski et al. 2005). Asian area was strongly affected 

and approximately 60% of the cases and 40% of the deaths were reported 

from mainland China (Feng et al. 2009). Major clinical manifestations include 

persistent fever, chills, dry cough, muscle aches, headache and occasionally 

diarrhea (HUI et al. 2003). The etiological agent was identified by cell culture 

in March 2003 and was namely SARS-CoV by WHO (Drosten et al. 2003). As 

many of the early cases of SARS in Guangdong took animal-related positions, 

it is thought to be a virus of animal origin with the genetic ability to cross 

species barriers and spread to humans through unknown intermediate hosts 

(He et al. 2003). 

A decade later, Middle East respiratory syndrome (MERS), another highly 

contagious infectious respiratory syndrome in humans, emerged in Jiddah, 

Saudi Arabia (Zaki et al. 2012). It is an acute illness caused by a coronavirus 

called MERS-CoV, which attacks the respiratory system, especially the lung 

tissue and airways (Mackay & Arden 2015). Serological and nucleic acid-based 

evidence suggests that camels were direct sources of human infection and 

important for MERS-CoV transmission(Haagmans et al. 2014; Han et al. 2016; 

Hemida et al. 2013; Perera et al. 2013). While bats are suspected to be the 

evolutionary source of the virus (Anthony et al. 2017). By December 2021, 

more than 2580 confirmed MERS-CoV cases, including about 940 deaths, 
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have been detected in 27 countries since the disease was first identified 

(WHO 2021a). 

1.2 Genomic and protein features of SARS-CoV-2 

The word “corona” in coronaviruses (CoVs) is derived from the Latin word, 

meaning crown or halo, due to their wreath-like appearance when viewed 

under an electron microscope (Helmy et al. 2020). CoVs belong to the 

subfamily Orthocoronavirinae of the family Coronaviridae, the largest group 

in the order Nidovirales, according to the latest International Committee of 

Taxonomy of Viruses (ICTV) classification. The subfamily Orthocoronavirinae 

is further divided into four genera: alpha, beta, gamma, and delta. As shown 

in Table 1, SARS-CoV-2 belongs to the genus Betacoronavirus (βCoV). 

SARS-CoV-2 is an enveloped, positive-sense, non-segmented, single-stranded 

RNA virus with a diameter of 50-200 nm and a genome size of about 30 kb (X. 

Xu et al. 2020). The virus genome consists of 5’ and 3’ untranslated regions 

(UTRs) and 15 open reading frames (ORFs) encoding probably 29 proteins 

(Figure 1) (Al-Qaaneh et al. 2021). The ORF1a and ORF1b gene are located at 

5’ terminus of the viral genomic RNA, spanning about two-thirds of the virus 

genome, encoding for highly conserved polyproteins pp1a and pp1ab, which 

is proteolytically cleaved into 16 non-structural proteins (NSPs) (Malone et al. 

2022; Simabuco et al. 2020). The remaining third of the genome encodes 4 

structural proteins (spike, envelope, membrane, and nucleocapsid) and 9 

accessory proteins (ORF 3a, 3b, 6, 7a, 7b, 8a, 8b, 9b, and 10), as shown in 

Figure 1. 
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The spike (S) protein is a large glycoprotein with 1273 amino acids in length 

and shares about 76% identify with SARS-CoV-1 (H. Xu et al. 2020). It is 

proteolytically cleaved into two subunits, S1 and S2, which are responsible for 

binding to the cell receptor and virus-cell fusion. A unique furin-like cleavage 

site was found to be involved in this process, which is absent in CoVs of the 

same clade (Coutard et al. 2020). However, it was recently reported that S 

proteins of some variants were predominantly in the un-cleaved form 

because of mutations in the furin cleavage site (Meng et al. 2021). A second 

cleavage site in S protein is located 130 residues from the N terminus of the 

S2 subunit (Segreto et al. 2021). The S1 subunit consists of two independent 

domains: the N-terminal domain (S1-NTD) and the C-terminal domain (S1-

CTD), composing the receptor binding domains (RBD) which can directly 

interact with the host cell receptor angiotensin-converting enzyme 2 (ACE2) 

(J. Lan et al. 2020). The S2 subunit contains two heptad repeat domains (HR1 

and HR2), mediating the virus-cell membrane fusion (Xia et al. 2020). The 

mechanism of SARS-CoV-2 replication is described in Figure 2. 

The SARS-CoV-2 nucleocapsid (N) protein is the most abundant viral protein 

which interacts with the viral genome by capsulating the genomic material 

within the viral particles (Yoshimoto 2020). It is estimated that there are 1000 

copies of N into each virion compared to only 100 copies of S (Bar-On et al. 

2020). Given its abundant expression and genomic conservation, N has been 

commonly used as a serological marker of infection. A key function of N is to 

wrap the viral genome to protect coronaviruses from immune identification 

and degradation by host factors. A previous study has demonstrated that 
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SARS-CoV-2 N protein can significantly suppress INF-β production due to its 

ability to bind the retinoic-acid inducible gene-I (RIG-I), which could be one of 

the factors affecting the innate immune of the host (Oh & Shin 2021). 

Envelope (E) and membrane (M) proteins, two other structural proteins of 

SARS-CoV-2, were reported to be conserved across members of the genus 

βCoV (Bianchi et al. 2020). Previous studies pointed out that E and M proteins 

of coronaviruses could be critical for viral entry, assembly and pathogenicity 

(Alsaadi & Jones 2019). M protein is regarded as a scaffolding platform to 

recruit other structural proteins (N, S, E proteins) and mediates their 

interactions (Schoeman & Fielding 2019). The SARS-CoV-2 E protein is a 

potential ion channel that was also demonstrated in other coronaviruses and 

blocking this channel can significantly reduce the pathogenicity of the virus, 

suggesting that the E protein could be an antiviral target (Tomar & Arkin 2020).  
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Figure 1 Schematic diagrams of the SARS-CoV-2. (A) Viral RNA and four structural proteins of SARS-CoV-2, 

including S, E, M, and N protein. The S protein is proteolytically cleaved into two subunits: S1 and S2. The S1 

subunit consists of S1-NTD and S1-CTD, composing the RBD which can directly interact with the host cell 

receptor ACE2; (B) Genomic organization of SARS-CoV-2, including coding sequences for the non-structural 

proteins (ORF1a and ORF1b), the structural proteins (S, E, M, N) and 9 accessory proteins (ORF 3a, 3b, 6, 7a, 

7b, 8a, 8b, 9b, and 10). The figure was created with BioRender.com. 

The SARS-CoV-2 genome also contains some ORFs encoding accessory 

proteins that are less important in replication but have a role in pathogenesis. 

Their properties and mechanisms are not well explained until now. ORF3a is 

the largest accessory protein with 275 amino acids in length. Functionally, 

ORF3a acts as a crucial immune modulator and is responsible for the 

pathogenesis of SARS-CoV-2 via inducing apoptosis in cells (Ren et al. 2020). 

It was reported that ORF3a could self-assemble into oligomers and generate 
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ion channels to promote virus release, like SARS-CoV-1 (Kern et al. 2021). 

Anti-ORF3a antibodies are frequently observed in SARS-CoV-1 patient plasma 

(W. Lu et al. 2009). ORF3b, ORF6, ORF7a, ORF8 and ORF9b are potent factors 

to suppress interferon secreted by host cells (Redondo et al. 2021). The 

possible roles of ORF7b and ORF10 remain to be investigated. 
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Table 1 Classification of Coronaviridae based on the latest ICTV (October 2020).  

HCoVs are in bold.

Family Subfamily Genus Subgenus No. of species Type species 
Reservoir Host (Fan et al. 
2019) 

C
o

ro
n

a
vi

ri
d

a
e 

Letovirinae Alphaletovirus Milecovirus 1 Microhyla letovirus 1 Amphibians 
O

rt
h

o
co

ro
n

a
vi

ri
n

a
e 

Alphacoronavirus 

Colacovirus 1 Bat coronavirus CDPHE15 Bats 

Decacovirus 2 Bat coronavirus HKU10 Bats 

Duvinacovirus 1 Human coronavirus 229E Humans 

Luchacovirus 1 Lucheng Rn rat coronavirus Rats 

Minacovirus 1 Mink coronavirus 1 Minks 

Minunacovirus 2 Miniopetrus batcoronavirus 1 Bats 

Mytacovirus 1 Myotis ricketti alphacoronavirus Sax-2011 Bats 

Nyctacovirus 2 Pipistrellus kuhlii coronavirus 3398 Bats 

Pedacovirus 2 Porcine epidemic diarrhea virus Pigs 

Rhinacovirus 1 Rhinolophus bat coronavirus HKU2 Bats and pigs 

Setracovirus 2 Human coronavirus NL63 Humans 

Soracovirus 1 Sorex 20raneus coronavirus T14 Sorex araneus 

Sunacovirus 1 Suncus murinus coronavirus X74 Suncus murinus 

Tegacovirus 1 Alphacoronavirus 1 Porcines, canines 

Betacoronavirus 

Embecovirus 5 
Human coronavirus HKU1 
Human coronavirus OC43 

Humans 

Hibecovirus 1 Bat Hp-betacoronavirus Zhejiang2013 Bats 

Merbecovirus 4 
Middle East respiratory syndrome-related 
coronavirus 

Humans, camels, 
and bats 

Nobecovirus 3 Rousettus bat coronavirus HKU9 Bats 

Sarbecovirus 1 
Severe acute respiratory syndrome-related 
coronavirus-1 and 2 

Humans, bats 

Deltacoronavirus 

Andecovirus 1 Wigeon coronavirus HKU20 Birds 

Buldecovirus 5 Bulbul coronavirus HKU11 Birds 

Herdecovirus 1 Night heron coronavirus HKU19 Birds 

Gammacoronavirus 

Brangacovirus 1 Goose coronavirus CB17 Birds 

Cegacovirus 1 Beluga whale coronavirus SW1 Whale 

Igacovirus 3 Avian coronavirus Birds 
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Figure 2 The replication of SARS-CoV-2 in host cells. The infection begins with the interaction between the viral 

S protein and the cellular receptor. The S1 subunit binds the ACE2 receptor and the S2 subunit is responsible 

for anchoring the S protein to the cell surface to promote membrane fusion. After fusion occurs, the RNA 

genome (ssRNA+) is released into the cytoplasm and used as the template to produce pp1a and pp1b 

polyproteins that are cleaved into 16 NSPs by viral proteases. Subsequently, RNA-dependent RNA polymerase 

(RdRp) is formed by NSP12 and drives the transcription of subgenomic mRNAs and viral genomic RNA 

replication. The RNAs are surrounded by a protective microenvironment created with double membrane 

vesicles (DMVs) to prevent them from being attacked by the host’s immunity. Then the subgenomic mRNAs 

are translated into structural and accessory proteins at endoplasmic reticulum (ER) membranes, and 

translocated to the ER-Golgi intermediate compartment (ERGIC) where the positive-stranded genomic RNA 

binds the N protein and is assembled into the virion along with the S, E, and M proteins. Finally, the packed 

virion is secreted from the infected cell membrane by the exocytosis process (Simabuco et al. 2020; V’kovski 

et al. 2020). The figure was created with BioRender.com. 
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1.3 Clinical presentation and epidemiology of COVID-19 

SARS-CoV-2 is an elusive virus that can affect most organ systems and cause 

different clinical manifestations in individuals. Usually, it has an estimated 

incubation period of 2 to 14 days. However, cases with an incubation period 

of 21, 24 or 27 days have been reported (Bai et al. 2020). The respiratory 

system is most commonly affected, inducing flu-like symptoms in patients: 

fever, wheeze, cough, fatigue, headache and chest pain, etc. Due to a 

compromised respiratory system, hypoxia and respiratory failure may 

aggravate the burden on the cardiovascular system (Clerkin et al. 2020). 

Diarrhea and vomiting are common gastrointestinal symptoms and have even 

been found in some cases without accompanying respiratory symptoms 

during disease progression (An et al. 2020). Other symptoms are manifested 

in the renal system (proteinuria and acute kidney injury) and neurological 

system (hyposmia, confusion and ageusia) (Cheng et al. 2020; Mao et al. 

2020). The infection damages the organs and even develops into long-term 

sequelae (Logue et al. 2021). However, as large-scale testing has become 

available, there is growing evidence that many people infected with SARS-

CoV-2 are asymptomatic but still transmit the virus to others (Gao et al. 2021). 

COVID-19 was first reported in Wuhan and quickly spread to other provinces 

in China due to the Chinese New Year vacation in January 2020. Successively, 

the first cases of SARS-CoV-2 infection were confirmed in Thailand and Japan 

in mid-January 2020. By Jan 25, 2020, the number of confirmed cases had 

risen to 1320 in 10 countries (Australia, Japan, Singapore, France, the US, Viet 

Nam, South Korea, Thailand, Nepal, and China), as reported by WHO. After 
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only 2 months, more than 150 countries/territories have been affected, with 

about 16 thousand confirmed cases and 6 thousand deaths in total, at which 

point the WHO urgently declared SARS-CoV-2 as a pandemic. There have 

been at least 445 million reported infections and 5 million reported deaths 

caused by SARS-CoV-2 by March 2022 (JHU 2022). However, the situations 

varied in different countries/territories, with more than 100 million 

confirmed cases in the United States and the European Union, 30 million in 

India, 10 million in Russia, and less than 3 million in Australia and China 

(Figure 3). 

 

Figure 3 Cumulative confirmed COVID-19 cases by Jan 4, 2022 (Source: Our World; https://ourworldindata. 

Org/ covid-cases; with permission). 

https://ourworldindata/
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During the worldwide spread of SARS-CoV-2, new variants of the virus are 

constantly emerging. The definition of variants of concern (VOC) is proposed 

to describe those showing increased transmissibility, higher virulence, or 

failure in detecting by existing diagnostics. Among them, Alpha (B.1.1.7) was 

first isolated in the UK and drove the UK’s second wave of COVID-19. Since 

then, Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) have been reported 

around the world, with clear evidence indicating a significant impact on 

transmissibility, severity and/or immunity during the course of the disease 

(Ramesh et al. 2021). SARS-CoV-2 Omicron (BA.1), the new variant emerging 

in late 2021, has been spread internationally. It can largely evade immunity 

from past infection or two vaccine doses, and the impact on pathogenicity 

and transmissibility remains unknown (Meng et al. 2021). 

1.4 Diagnosis of SARS-CoV-2 Infection 

The clinical manifestation of COVID-19 patients is multi-systemic and 

heterogeneous. Therefore, it is difficult to distinguish this disease from other 

infections only based on symptoms. Technologies and techniques play an 

important role in the diagnosis of COVID-19 diagnosis. The major diagnosis 

tools available so far were based on a) molecular tests, b) immunoassays, and 

c) radiological diagnosis. 

1.4.1 Molecular tests 

The method recommended by WHO for routine confirmation of infected 

cases and detection of SARS-CoV-2 is reverse transcription-polymerase chain 

reaction (RT-PCR). It has been considered as a gold standard for the diagnostic 



III. LITERATURE REVIEW  25 

of COVID-19, which has the ability to measure the genomic sequences of the 

specific virus directly. Two conserved regions in the SARS-CoV-2 genome are 

the targets of the most detections: the RdRP gene, located in the open 

reading frame ORF1ab, and the E gene (Udugama et al. 2020). Samples for 

testing can be collected at various sites of infection in the body, including the 

upper and lower respiratory tract aspirates, oropharyngeal, nasopharyngeal 

or nasal swabs, and bronchoalveolar lavage. Among them, Oropharyngeal 

and nasopharyngeal swabs were the most commonly used samples and some 

studies have found that the results of nasopharyngeal swabs are more 

reliable than those of oropharyngeal swabs (Wang et al. 2020). In a study 

conducted in China (Y. Xu et al. 2020), rectal swab samples from 8 infected 

children are positive, even though their nasopharyngeal swab samples tested 

negative.  

1.4.2 Immunoassays 

Immunoassays are based on the affinity reaction between the target antigen 

and a specific antibody (Born 1998). One set of immunoassays developed for 

the diagnosis of COVID-19 is the antigen test. Antigen tests allow for direct 

detection of viral components, such as viral structural proteins (N, S, E, M), 

without the requirement of special laboratory equipment (Yüce et al. 2021). 

It can be operated in enzyme-linked immunosorbent type assays (ELISA) 

format for better sensitivity, or on lateral flow assay (LFA) strips for rapid 

detection purposes which could return results in 15–20 min (Taleghani & 

Taghipour 2021). Antigen test detects the presence of viral antigens and 

therefore, like the PCR-based methods, reveals the patient’s current infection, 
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not the past infection or recovery situation. Antigen tests usually are less 

sensitive compared to molecular tests according to a few studies (Ciotti et al. 

2021; Mak et al. 2020a, 2020b). 

Unlike molecular tests and antigen tests, serology tests look for the presence 

of antibodies produced by the immune system to detect viral infection 

indirectly. Two types of antibodies are commonly detected: immunoglobulin 

M (IgM) and immunoglobulin G (IgG). As IgM appears early in the course of 

infection, it is considered a marker of recent SARS-CoV-2 infection, after 

which IgG gradually becomes the most common and abundant in the serum 

as the disease progresses (Vidarsson et al. 2014).  

Many companies have developed ELISA kits intended for the qualitative 

detection of IgG or IgM against the S protein in human serum or plasma (Yüce 

et al. 2021). The neutralization assay is a serological test utilized to detect the 

presence of antibodies responsible for defending cells from pathogens. As an 

alternative to cell-based neutralizing assays, the SARS-CoV-2 neutralizing 

antibody (nAb) ELISA kit is designed to measure the neutralizing antibodies 

against SARS-CoV-2 RBD (Sholukh et al. 2021). In addition, Abbott has 

launched an advancing serological test of COVID-19 named AdviseDx SARS-

CoV-2 IgG II, which is based on a high throughput chemiluminescent 

microparticle immunoassay (CMIA) measuring the amount of IgG antibody 

against the S protein of SARS-CoV-2 in human serum or plasma (Bradley et al. 

2021). It has been reported that the measurement of immunoglobulin A (IgA) 

also plays an important role in serological assessments of SARS-CoV-2, as the 

first interactions between the virus and immune system occur primarily on 
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the mucous membranes such as the nasopharynx and respiratory tracts 

(Russell et al. 2020). Euroimmun has developed an ELISA kit that provides 

semi-quantitative in vitro determination of IgA against S protein, with high 

specificity and sensitivity (Beavis et al. 2020). 

1.4.3 Radiological diagnosis 

A chest CT scan is a detailed specific chest X-ray that plays an important role 

in the clinical diagnosis of pneumonia and other respiratory diseases. The 

typical CT imaging presentation of COVID-19 is multifocal bilateral ground-

glass opacities (GGO), with a peripheral and subpleural distribution (Y. Li et al. 

2020). However, CT scans may have the disadvantage of low specificity 

because the manifestations of COVID-19 patients are similar to other viral 

pneumonia (Ai et al. 2020). They can be used as a complement to RT-PCR for 

the diagnosis of COVID-19 in order to make the results more accurate (Fang 

et al. 2020). 

1.5 The control of COVID-19 

1.5.1. Antiviral drugs 

At the end of 2021, the Food and Drug Administration (FDA) has firstly 

authorized two oral antiviral drugs, Paxlovid and Molnupiravir, for the 

treatment of mild to moderate COVID-19 (WHO 2021b). Both showed a 

significant reduction in the risk of hospitalization and death associated with 

COVID-19, according to the study results released by their manufacturer 

(Mahase 2021a, 2021b). Paxlovid is a protease inhibitor antiviral therapy 

developed by Pfizer, made up of medicine called nirmatrelvir and the HIV drug 
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ritonavir. Molnupiravir was developed by Ridgeback Biotherapeutics and 

Merck, which can interfere with the replication of SARS-CoV-2 through the 

introduction of copying errors. Beyond that, some medications are 

recommended for patients who have been hospitalized with COVID-19, 

including dexamethasone (anti-inflammatory drugs), tocilizumab (a 

monoclonal antibody), remdesivir (an antiviral drug), and baricitinib (a 

rheumatoid arthritis drug) (Eastman et al. 2020; Favalli et al. 2020; Lammers 

et al. 2020; S.-H. Lan et al. 2020). 

1.5.2 Vaccines 

Soon after the emergence of the COVID-19 pandemic, multiple labs started 

the process of creating effective vaccines in order to achieve herd immunity 

worldwide. According to the COVID-19 vaccine tracker reported by WHO, to 

date, there are 140 vaccines under development in clinical phase trials while 

194 in pre-clinical development, which are developed with different 

platforms such as protein subunit, inactivated virus, viral vector, DNA, RNA, 

and live attenuated virus (WHO 2022). The COVID-19 vaccines available in the 

market currently have been described in Table 2. Data from multiple studies 

showed a significant decrease in risk of infection of COVID-19 after two doses 

of the vaccines, with the efficacy of 67%-95%. As of March 2022, billions of 

doses of vaccines have been administered throughout the world. However, 

current vaccines may be less effective against infection of SARS-CoV-2 since 

Omicron was identified in South Africa and has been circulating around the 

world (Buchan et al. 2022). 
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Table 2 COVID-19 vaccines against SARS-CoV-2 available for use by March 2022 (Ahmad & Shabbiri 2022; Fiolet 

et al. 2021). 

Name Platform Developer 
Dose 
schedule 

Comirnaty mRNA Pfizer/BioNTech Day 0 + 21 

Spikevax mRNA Moderna Day 0 + 28 

Nuvaxovid Protein subunit Novavax Day 0 + 21 

CoronaVac Inactivated virus Sinovac Day 0 + 21 

Convidecia Viral vector ( Ad5) CanSino Day 0 

Vaxzevria Viral vector( ChAdOx1) AstraZeneca/ Oxford Day 0 + 28 

Janssen COVID-19 
vaccine 

Viral vector ( Ad26) Janssen Pharmaceuticals Day 0 

Sputnik V Viral vector ( Ad5, Ad26) Gamaleya Research Institute Day 0 + 21 

Ad5, Adenovirus type 5; Ad26, Adenovirus type 26; ChAdOx1, Chimpanzee Adenovirus Oxford 1. 

2. Modified Vaccinia virus Ankara (MVA) as an expression vector 

2.1 MVA generation 

MVA is an attenuated virus derived from the Chorioallantois Vaccinia Ankara 

(CVA) strain of the vaccinia virus. The attenuated strain was renamed MVA in 

1968 after the 516th serial passage of CVA strain on primary chicken embryo 

fibroblasts (CEF) (Stickl & Hochstein-Mintzel 1971). It was tested as a vaccine 

candidate against smallpox and authorized in Germany in 1977 due to the 

data from clinical trials (Stickl et al. 1974). Until 1980, this first licensed MVA 

vaccine against smallpox was administered to more than 120,000 people 

without documentation of severe complications (Mahnel & Mayr 1994). 

Analysis of MVA genome revealed that, the long-term serial passages of CVA 

in CEF resulted in a genomic loss of approximately 30 kb (Meyer et al. 1991). 

Six large genomic deletions, totaling more than 24 kb in length, have been 
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identified, which are located in the left and right terminal regions of the 

genome (Figure 4). In addition, a multitude of shorter deletions, point 

mutations and insertions have occurred in the MVA genome, leading to gene 

truncation, fragmentation, or deletions of ORFs (Antoine et al. 1998). Genes 

affected by the genomic changes include host range gene K1L, genes 

encoding functional receptors for TNF, IFN-γ, etc., and genes encoding A-type 

inclusion body protein, and so on (Blanchard et al. 1998; Hermanson et al. 

2012; Meyer et al. 1991). 

 

Figure 4 Major genomic change of MVA compared to CVA. The long-term serial passages of CVA in CEF resulted 

in a genomic loss of approximately 30kb. The locations of six major deletions (I–VI) of MVA relative to the CVA 

genome were described. The figure was created with biorender.com. 

2.2 Viral morphology and life cycle 

MVA, a large and complex enveloped virus, is a member of the Orthopoxvirus 

genus within the subfamily Chordopoxvirinae and the family Poxviridae. 

Orthopoxviruses illustrate the largest genus, including variola virus (now 

eradicated), vaccinia virus, monkeypox virus, camelpox virus and a range of 

other mammalian orthopoxviruses (Gubser et al. 2004). Within the same 
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genus, the viruses show genetical, antigenic, host range and morphologic 

similarity (Condit et al. 2006; Hatcher et al. 2015).  

Poxviruses are brick-shaped, around 250 nm long and 360 nm wide, 

enveloped by at least one membrane. The core is biconcave in shape and 

associates with lateral bodies which fill the space between the core and outer 

membrane (Laliberte et al. 2011). The core encloses a linear, double-stranded 

DNA with 130-300 kb in length. Two distinct infectious virus particles exist: 

the mature virion (MV) which is the most abundant form with a single outer 

membrane, and the enveloped virion (EV) which is essentially an MV but 

additionally possesses a further outer lipid membrane and is antigenically 

distinct from MV (Hatcher et al. 2015; Senkevich et al. 2004). 

 

Figure 5 Poxvirus morphology (source: https://viralzone.expasy.org/149, SIB Swiss Institute of Bioinformatics, 

with permission). 
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Untypical for DNA viruses, MVA as well as all other members of the Poxviridae 

family, replicates in the cytoplasmic compartment of the cell (Minnigan & 

Moyer 1985). The replication cycle starts with the attachment of virus 

particles to the cell membrane, followed by the fusion or entry of the virus to 

deliver the core into the cellular cytoplasm (Laliberte & Moss 2010). Within 

this core, about 100 mRNAs are transcribed by the viral ‘early’ transcription 

machinery and extrude into the cytoplasm through pores for translation. 

Poxviral proteins translated from these early mRNAs are required for core 

uncoating, genome release, initiation of DNA replication and intermediate 

transcription (Jones et al. 1987; Mercer et al. 2012; Schramm & Locker 2005). 

After the initiation of DNA replication, the transcription and translation of 

intermediate and late stages occur. Virion assembly begins with the 

formation of crescent membranes which enlarge within the factories to form 

immature virions (IVs), and then condense into brick-shaped MVs. MVs can 

be transported through microtubules mediated trafficking and wrapped by 

an additional membrane derived from Golgi to form EVs (Moss 2015; Sodeik 

& Krijnse-Locker 2002). Then, the virions are released by cell lysis, exposed on 

the cell surface by exocytosis, or propelled into surrounding cells via actin tails 

(Smith & Law 2004). 
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Figure 6 Poxvirus replication cycle (source: https://viralzone.expasy.org/4399, SIB Swiss Institute of 

Bioinformatics, with permission). 

2.3 MVA as an expression vector 
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The first recombinant MVA was published in 1992. The sequences coding for 

the E.coli enzymes β-galactosidase and guanine phosphoribosyl transferase 

were inserted at the deletion III site of the MVA genome as the first 

heterologous genes, and were successfully expressed (Sutter & Moss 1992). 

The ability to efficiently express viral and recombinant genes encouraged the 

evaluation of MVA as an expression system. It has been studied as a viral 

vector for the construction of vaccines against various infections, including 

influenza (Altenburg et al. 2014), MERS (Song et al. 2013), SARS (Chen et al. 

2005) and COVID-19 (Tscherne et al. 2021).  

In contrast to these recombinant MVAs with stably inserted foreign genes 

which can be used as vaccine candidates, the MVA-T7pol expression system 

is a very suitable tool for transient expression of genes of interest (GOI) in cell 

culture. MVA-T7pol is a recombinant MVA containing the bacteriophage T7 

RNA polymerase gene under the control of the natural vaccinia virus 

early/late promoter P7.5 in deletion II of the MVA genome. The plasmid pUCII 

LZ T7pol was constructed as a transfer vector to deliver the genes encoding 

T7 polymerase with promoter P7.5 and LacZ (a common reporter in E.coli) 

with promoter P11 to the MVA genome (Fig. 7). Flank 1 and flank 2 are 

homologous sequences required to integrate the genes into the site of 

deletion II of MVA genome. Following the generation of MVA-T7pol, synthesis 

of the T7 RNA polymerase in the cytoplasm of the MVA infected eukaryotic 

cells can be observed (Sutter et al. 1995). 

Introduction of plasmids containing the GOI under the control of the T7 

promoter into the cytoplasm of the cell and simultaneous infection with the 
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MVA-T7pol result in the transient expression of the GOI without the need of 

producing new recombinant viruses. The high efficiency of this expression 

system has been demonstrated (Sutter et al. 1995). The vaccinia virus/T7 RNA 

polymerase system has been used successfully to analyze the structure or 

function of viral proteins (Haß et al. 2014; Higuchi et al. 2016; Mu et al. 2021) 

and recently, the MVA-T7pol system was used to generate a recombinant 

vesicular stomatitis virus (VSV) in which the glycoprotein of VSV was replaced 

by the spike protein of SARS-CoV-2 (Yahalom-Ronen et al. 2020). 

Figure 7 Schematic map of MVA-T7pol generation. Features of MVA with the major deletion sites I-VI are 

depicted in the diagram. Cassettes for the expression of the genes of T7 RNA polymerase and E.coli lacZ were 

inserted between the MVA flanks via homologous recombination. T7 RNA polymerase gene will be transcribed 

under the control of vaccinia virus early/late promoter P7.5. E.coli lacZ will be transcribed under the control of 

vaccinia virus late promoter P11. The figure was created with BioRender.com. 

  



IV. MATERIALS AND METHODS  36 

IV. MATERIALS AND METHODS 

1. Sera samples 

Human sera used in this study were kindly provided by the Bundeswehr 

Institute of Microbiology. The human sera panel included post-infection 

samples from individuals confirmed positive for SARS-CoV-2 infection in 2020. 

Negative control sera were obtained from individuals initially suspected for a 

COVID-19 infection, but negatively tested for SARS-CoV-2. Before use, all 

human sera were heat-inactivated for 15 min at 56°C.  

2. Cells and viruses 

CEF cells were isolated from 10-days-old chicken embryos (SPF eggs, VALO, 

Cuxhaven, Germany) and cultured in Minimum Essential Medium (MEM) 

supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich, Taufkirchen, 

Germany), 1% MEM non-essential amino acid solution (Sigma-Aldrich, 

Taufkirchen, Germany) and 1% Penicillin–Streptomycin (Sigma-Aldrich, 

Taufkirchen, Germany). CEF cells were kept at 37 °C in a humidified 5% CO2 

atmosphere. 

The recombinant MVA expressing the T7 polymerase (MVA-T7pol) (Figure 8A) 

and a recombinant MVA expressing the SARS-CoV-2 spike protein (MVA-

SARS-2-S) were generated as described previously (Sutter et al. 1995; 

Tscherne et al. 2021). 
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3. Plasmid constructions 

According to the manufacturer’s recommendations, viral RNA of a SARS-CoV-

2 isolate (strain MUC IMB-1) was purified using the QiaAmp Viral RNA 

extraction kit (Qiagen, Hilden, Germany). Complementary DNA (cDNA) was 

generated by the SuperScript VILO kit (Life Technologies, Darmstadt, 

Germany) and was used as a template to amplify the encoding sequence of 7 

SARS-CoV-2 target proteins (N, M, E, ORF3a, ORF6, ORF7a, ORF8). A C-

terminal hemagglutinin (HA) tag and restriction enzyme recognition 

sequences were added to each sequence by PCR (Table 3). The PCR products 

were purified and cloned into pOS6 (Sutter et al. 1995) under the control of 

the T7 promoter (Figure 8B). The colonies were numbered, picked and 

analyzed with PCR by the primers shown in Table 3. The PCR products were 

loaded on an agarose gel to determine their size. The positive colonies were 

cultured in the liquid medium. The plasmids were isolated and submitted for 

Sanger sequencing to confirm the sequence of the inserts. 
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Table 3 The sequence of oligonucleotides used for cloning the defined target regions. 

The restriction enzyme sites are boxed (NcoI: CCATGG; SalI: GTCGAC; XhoI: CTCGAG; BamHI: GGATCC). The HA sequences are underlined. 

Oligonucleotides Sequence (5 →́ 3 )́ Amplicon size (bp) Target protein 

N-HA Forward CAGCCCATGGGGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACG 
1311 N-HA 

N-HA Reverse CTGCTGGTCGACTTATCAAGCGTAATCTGGAACATCGTATGGGTAGGCCTGAGTTGAGT 

E-HA Forward CAGCCCATGGGGTACTCATTCGTTTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTA 
273 E-HA 

E-HA Reverse CTCGAGTTATCAAGCGTAATCTGGAACATCGTATGGGTAGACCAGAAGATCAGGAACTCT 

M-HA Forward CGACGAGGATCCATGGCAGATTCCAACGGTACTATTACCGTTGAAGAGCTTAAAAAGCTC 
717 M-HA 

M-HA Reverse CTCGAGTTATCAAGCGTAATCTGGAACATCGTATGGGTACTGTACAAGCAAAGCAATATT 

ORF3a-HA Forward CAGCCCATGGATTTGTTTATGAGAATCTTCACAATTGGAACTGTAACTTTGAAGCAAGGA 
870 ORF3a-HA 

ORF3a-HA Reverse CTCGAGTTATCAAGCGTAATCTGGAACATCGTATGGGTACAAAGGCACGCTAGTAGTCGT 

ORF6-HA Forward CAGCCCATGGGGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAGATATTACTAATT 
231 ORF6-HA 

ORF6-HA Reverse CTCGAGTTATCAAGCGTAATCTGGAACATCGTATGGGTAATCAATCTCCATTGGTTGCTC 

ORF7a-HA Forward CAGCCCATGGGGAAAATTATTCTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTT 
411 ORF7a-HA 

ORF7a-HA Reverse CTCGAGTTATCAAGCGTAATCTGGAACATCGTATGGGTATTCTGTCTTTCTTTTGAGTGTG 

ORF8-HA Forward CAGCCCATGGGGAAATTTCTTGTTTTCTTAGGAATCATCACAACTGTAGCTGCATTTCAC 
411 ORF8-HA 

ORF8-HA Reverse CTCGAGTTATCAAGCGTAATCTGGAACATCGTATGGGTAGATGAAATCTAAAACAACACG 
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Figure 8 Schematic representation of the transient expression of SARS- CoV-2 proteins using recombinant 

MVA-T7pol. (A) The T7 polymerase gene under the control of the P7.5 early/late promoter was inserted into 

MVA deletion site II. (B) The plasmid vector pOS6 is designed to express proteins under the control of T7 

promoter. SARS-CoV-2 gene sequences of N-HA, E-HA, M-HA, ORF3a-HA, ORF6-HA, ORF7a-HA and ORF8-HA, 

were cloned into pOS6. The transient protein expression of SARS-CoV-2 targets occurred when MVA-T7pol 

infected CEF cells were transfected with a recombinant pOS6. The transcription was initiated at the T7 

promoter and stopped at the T7 terminator. PT7 , T7 promoter; TT7, T7 terminator. 

4. Recombinant protein expression 

HA-tagged SARS-CoV-2 spike protein (S-HA) was obtained by infecting 80-90% 

confluent CEF cells with recombinant MVA-SARS-2-S at a multiplicity of 

infection (MOI) of 10. After 24h incubation, cells were harvested and lysed 

with 50 μl lysis buffer/well (1% Triton X-100, 25mM Tris, 1M NaCl) to extract 

the proteins.  
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To obtain the other 7 proteins, 6-well tissue culture plates with 80-90% 

confluent CEF cells were infected with MVA-T7pol at a MOI of 10 and 

transfected with 1 μg of recombinant pOS6 plasmid using X-tremeGENE HP 

DNA Transfection Reagent according to the manufacturer’s 

recommendations (Roche Diagnostics, Penzberg, Germany). The lysates were 

quantified by BCA assay (Thermo Fisher Scientific, Planegg, Germany), 

aliquoted and stored at -80°C. 

5. Immunoblot analysis of recombinant proteins 

Successful expression of the eight SARS-CoV-2 target proteins was 

demonstrated by immunoblot analysis targeting the HA tag. Cell lysates were 

carefully thawed on ice, mixed with Laemmli sample buffer (Bio-Rad, 

Feldkirchen, Germany) and subsequently boiled for 5 min, with the exception 

of M-HA lysate (Lee et al., 2005). Samples were separated by SDS-PAGE and 

transferred onto nitrocellulose membranes (GE Healthcare, Freiburg, 

Germany) using a wet transfer system (Bio-Rad, Feldkirchen, Germany). The 

membranes were blocked with blocking buffer (5 % milk in PBST) for 1 h at 

room temperature. The membranes were probed with a monoclonal 

antibody directed against the HA-tag (1:8000 in blocking buffer; HA Tag mAb 

2-2.2.14, Thermo Fisher Scientific, Germany) for 1 h at room temperature. 

The membranes were washed 3 times with PBST and incubated with a goat 

anti-mouse IgG/HRP (Agilent Dako, Glostrup, Denmark, 1:5000 in blocking 

buffer) for 1 h at room temperature. After washing 3 times with PBST, the 

membranes were covered by TrueBlue™ Peroxidase Substrate (SeraCare Life 

Sciences, Milford, USA). 
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6. SARS-CoV-2 antibody detection in patient sera by a systematic 

immunoblot analysis 

Western blot analysis was performed to detect SARS-CoV-2 antibodies in 

different patient sera. Cell lysates were mixed with 4× Laemmli sample buffer 

and were boiled for 5 min at 95 °C. Electrophoresis of 35 μg protein/lane was 

performed at 80 V through the stacking gel, followed by separation of the 

proteins at 120 V for 70 min. The proteins were transferred onto a 4.5 cm×5 

cm nitrocellulose membrane (GE Healthcare, Freiburg, Germany) at 100 V for 

100 min at 4 °C using a wet transfer system (Bio-Rad, Feldkirchen, Germany). 

The membranes were blocked with blocking buffer (5 % milk in PBST) for 1 h 

at room temperature and incubated with human sera (1:200 dilution in 5 ml 

blocking buffer) at 4 °C for 16 h. After washing 3 times with PBST, the 

membranes were incubated with rabbit anti-human IgG/HRP (Agilent Dako, 

Glostrup, Denmark, 1:2000 in blocking buffer) for 1 h at room temperature. 

Membranes were washed with PBST and covered by 1 ml of TrueBlue™ 

Peroxidase Substrate (SeraCare Life Sciences, Milford, USA) for 5 min. The 

membranes were rinsed with dH2O to stop the reaction. 

7. Sera neutralization test (SNT) 

NAb titers were determined at the Bundeswehr Institute of Microbiology as 

previously described (Haselmann et al. 2020). Briefly, SARS-CoV-2 (strain 

MUC IMB-1) was cultured in Vero E6 cells. Sera samples (duplicates), 

including positive and negative control samples, were serially diluted in 96-

well tissue culture plates (Greiner bio-one, Frickenhausen, Germany) in 
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Minimal Essential Medium (MEM, plus Non-Essential Amino Acids Solution 

and Antibiotic-Antimycotic Solution; all Invitrogen, Thermo Fisher Scientific, 

Darmstadt, Germany) starting at 1:5 to a maximum of 1:640. 100 TCID50 of 

the virus was pre-incubated with diluted sera samples for 1 h at 37 °C (5% CO2) 

before Vero E6 cells (1x104 cells/50µl) were added to each well. After 72 h 

supernatants were discarded, cells were fixed (3% formalin/PBS) and stained 

with crystal violet (0.1%). The nAb titer corresponded to the reciprocal of the 

highest sera dilution showing complete inhibition of cytopathic effect (CPE). 

The result was considered invalid if the variation between duplicates was 

greater than one titer value. A virus retitration was performed on every plate. 

8. ELISA 

Anti-SARS-CoV-2 IgG and IgA ELISAs were performed at the Bundeswehr 

Institute of Microbiology according to the manufacturer’s instructions 

(Euroimmun, Lübeck, Germany), and ratios were calculated correspondingly. 

Samples were evaluated as either not elevated (Ratio <0.8), indeterminate 

(0.8 ≤ Ration ≤ 1.1), or elevated (Ratio > 1.1) for both IgA and IgG, respectively, 

as suggested by the manufacturer. 
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V. OBJECTIVES 

The worldwide spread of SARS-CoV-2 has a great impact in all aspects. The 

study for expression of SARS-CoV-2 antigens and the analysis of antibody 

responses directed against these antigens are crucial for the better 

understanding of immunity directed against this new virus. Therefore, using 

the expression potential of MVA vectors for COVID-19 proteins and the 

analysis of antibodies mounted against these proteins in patients, this work 

describes the following: 

(i) Generation of recombinant proteins of SARS-CoV-2 by MVA-T7pol 

expression system 

(ii) Detection and characterization of antibody responses against these SARS-

CoV-2 proteins 
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VI. RESULTS 

1. Construction of the transient T7pol expression vectors 

Plasmid construction was performed to obtain the recombinant plasmids 

carrying gene sequences of SARS-CoV-2 proteins. Complementary DNA 

synthesized from viral RNA (strain MUC IMB-1) was used as the template to 

amplify the target genes of SARS-CoV-2 with an HA-tag sequence at 3’-end 

(N-HA, M-HA, E-HA, ORF3a-HA, ORF6-HA, ORF7a-HA and ORF8-HA). As shown 

in Figure 9, agarose gel electrophoresis showed the target bands with the 

expected size. The target gene was purified and inserted into pOS6 (Moss et 

al. 1990) under the control of T7 promoter (Fig. 8B). The resistance gene 

AmpR on pOS6 was used for the selection of positive clones. Thymidine kinase 

(tk) gene, encephalomyocarditis (EMC) gene shown on the pOS6 map are not 

involved in this study. 
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Figure 9 Amplification of SARS-CoV-2 target sequences by PCR. cDNA was generated by reverse transcription 

of total viral RNA and was used as a template to amplify the encoding sequence of 7 SARS-CoV-2 target proteins. 

A C-terminal HA tag and restriction enzyme recognition sequences were added to each sequence by PCR. The 

PCR products were then purified and inserted into MCS of pOS6. NC, non-template control; AmpR, ampicillin 

resistant gene; tkL (left) and tkR (right), vaccinia virus TK gene segments; PT7, T7 promoter; EMC, 

encephalomyocarditis virus untranslated leader sequence; TT7, T7 terminator; MCS, multiple cloning site. 
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Following the ligation of each insert into the linearized pOS6 vector, 

competent cells were transformed with ligation products. Colonies containing 

target constructs were identified by PCR with the specific primers shown in 

Table 3. A positive colony showed a band with expected size, while a negative 

colony showed no band or a band with unexpected size. The positive colonies 

showed in Figure 10 were cultured in the liquid medium, including pOS6-E-

HA-2, pOS6-M-HA-1, pOS6-M-HA-2, pOS6-M-HA-3, pOS6-ORF3-HA-2, pOS6-

ORF3-HA-3, pOS6-ORF6-HA-1, pOS6-ORF7-HA-1, pOS6-ORF8-HA-1, pOS6-N-

HA-1. By Sanger sequencing, all inserts were confirmed with correct sequence 

and orientation (data not shown). 

 

Figure 10 Positive colonies screening with PCR. The colonies were numbered, picked and analyzed with PCR by 

the primers shown in Table 3. The PCR products were loaded on an agarose gel to determine their size. A 

positive colony showed a band with expected size, while a negative colony showed no band or a band with 

unexpected size. The positive colonies were cultured in the liquid medium. The plasmids were isolated and 

submitted for Sanger sequencing to confirm the sequence of the inserts. –, negative colony; +, positive colony; 

NC, negative control without any colony. 
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2. Characterization of recombinant SARS-CoV-2 proteins 

The transcription was initiated at the T7 promoter and stopped at the T7 

terminator when MVA-T7 pol infected cells were transfected with 

recombinant plasmids carrying target genes of SARS-CoV-2. Transient 

expression of SARS-CoV-2 proteins was examined by western blot analysis 

using standard procedures. However, for the M protein, the method had to 

be modified, because it always showed a weak signal using standard 

procedures. The bands of M-HA (~25kDa) without boiling are always sharper 

than boiled ones, regardless of whether adding β-ME or not (Figure 11). It 

may imply that the boiling of the samples negatively affected the sensitive 

detection of the protein, independent of the use of a reducing agent. 

HA-tagged SARS-CoV2 S protein was obtained by collecting the lysates from 

MVA-SARS-2-S infected cells. MVA-SARS-2-S was isolated in repetitive 

purification using fluorescent marker protein and showed genetic stability 

(Tscherne et al. 2021). 
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Figure 11 The conditions of sample treatment were explored for enhancing the signal of SARS-CoV-2 M protein. 

Cell lysates were harvested by lysis buffer and mixed with Laemmli sample buffer supplemented with or 

without β-ME. The samples were treated at 95°C or room temperature for 5 min. After electrophoresis and 

transfer, the specific proteins were identified by anti-HA tag antibody. The bands of M-HA (~25kDa) without 

boiling are always sharper than boiled ones, regardless of whether adding β-ME or not. The arrows may 

indicate the aggregates of M protein. +: the sample was incubated at 95°C; -: the sample was incubated at 

room temperature. 

In the anti-HA immunoblot, specific bands with the expected size (N-HA ~47 

kDa, E-HA ~12 kDa, M-HA ~25 kDa, ORF3a-HA ~34 kDa, ORF6-HA ~11 kDa, 

ORF7a-HA ~13 kDa and ORF8-HA ~17 kDa) of the SARS-CoV-2 proteins were 

detected (Figure 12A), indicating the efficient expression of the target 

proteins using the MVA-T7pol system. Moreover, the spike protein showed 

two prominent bands with molecular masses of about 190 kDa and 90~100 

kDa, which is speculated to represent the glycosylated spike protein and the 

S2 cleavage product, respectively (Tscherne et al. 2021). The cleavage 

product seemed to be more prominent compared to full-length spike protein. 
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Figure 12 Analysis of SARS-CoV-2 proteins obtained by MVA T7pol expression system. (A) Lysates of N-HA (lane 

1), E-HA (lane 2), M-HA (lane 3), S-HA (lane 4), ORF3a-HA (lane 5), ORF6-HA (lane 6), ORF7a-HA (lane 7) and 

ORF8-HA (lane 8) were separated by SDS-PAGE and analyzed by the western bot using the antibody against 

HA-tag. Lysates of non-recombinant MVA infected CEF cells (lane 9) and uninfected CEF cells (lane 10) served 

as control. (B) The lysates were analyzed by western blot using the patient sera (No. 1). Red arrow: N protein; 

black arrows: S protein and cleavage; blue arrow: ORF3a protein. 

Next, human sera from a COVID-19 patient (No. 1, Table 4) with high titers of 

SARS-CoV-2 specific antibodies was used as the primary antibody for western 
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blot analysis (Figure 12B). Prominent bands in the samples of N and S proteins 

corresponded to the molecular masses shown in Figure 12A. The glycosylated 

full-length spike protein as well as the cleavage product were detected, 

respectively. Interestingly, also the ORF3a protein was detected. However, 

when sera of other COVID-19 patients were used, the ORF3a protein could 

not be detected (data not shown). No specific antibodies against the SARS-

CoV-2 proteins M, E, ORF6, ORF7a and ORF8 could be detected in any patient 

sera. 

Table 4 Comparison of western blot analysis with ELISA and SNT for the detection of SARS-CoV-2 specific 

antibody response.   

Patient No. Western blota  IgG-ELISA  IgA-ELISA  SNT 

1 N(++) S(++) ORF3a(+)  positive positive >80 

2 N(++) S(++) positive positive >80 

3 N(++) S(+) positive positive >80 

4 N(+) S(+) positive positive 40 

5 N(+) S(+) positive positive 40 

6 N(+) S(+) positive positive 40 

7 N(+) S(-) negative negative negative 

8 N(+) S(-) negative positive negative 

9 N(-) S(-) negative negative negative 

a -, negative signal; +, weak positive signal; ++, strong positive signal. 
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3. Detection of the humoral immune response against SARS-CoV-2 

Next, sera were investigated with varying amounts of SARS-CoV-2 nAb, 

focusing on the presence of S and N specific antibodies in the western blot 

analysis. We classified 3 groups depending on the sera neutralization titer: 

group 1 (patient 1-3) >1:80, group 2 (patient 4-6) 1:40 and group 3 (patient 7-

9) with negative SNT results (Table 4). Sera from groups 1 and 2 showed 

positive results in anti-SARS-CoV-2 IgG and IgA ELISAs as well. In group 3 

samples were negative in both anti-SARS-CoV-2 ELISAs, except sample 8, 

which resulted positive in the anti-SARS-CoV-2 IgA ELISA. 

As expected in all patients’ sera from group 1 and 2, N and S specific 

antibodies could be detected by demonstrating corresponding specific bands. 

However, differences in the thickness and color saturation of the bands 

indicated that the used western blot system might be also useful for semi 

quantitative analysis, because signals induced by group 1 sera were more 

prominent compared to group 2 (Figure 13 and 14). 
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Figure 13 Analysis of SARS-CoV-2 IgG in patient sera using a systematic western blot. Cell lysates of N-HA (lane 

1), S-HA (lane 2), non-recombinant MVA (lane 3), and uninfected cells (lane 4) were separated by SDS-PAGE 

followed by western blot analysis with patient sera. Red arrow: N protein; black arrows: S protein and cleavage. 

(A) Membrane incubated with sera from patient No.1, N(++) S(++); (B) Membrane incubated with sera from 

patient No.4, N(+) S(+); (C) Membrane incubated with sera from patient No.8, N(+) S(-). ++: strong positive 

signal; +: weak positive signal; -: negative signal. 
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Figure 14 SARS-CoV-2 antibody detection in patient sera by a systematic western blot. Cell lysates of N-HA 

(lane 1), S-HA (lane 2), non-recombinant MVA (lane 3), and uninfected cells (lane 4) were separated by SDS-

PAGE followed by western blot analysis with patient sera. The bands representing the presence of antibodies 

against N are marked by red arrows; the bands representing the presence of antibodies against S are marked 

by black arrows. (A) Patient No.1; (B) Patient No.2; (C) Patient No.3; (D) Patient No.4; (E) Patient No.5; (F) 

Patient No.6; (G) Patient No.7; (H) Patient No.8; (I) Patient No.9. 
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In sera from group 3, which were tested negative by SNT, no S specific 

antibodies could be detected. However, in two (patients 7 and 8) of the three 

samples, a weak but specific N signal was obtained (Table 4, Figures 13 and 

14).   
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VII. DISCUSSION  

1. COVID-19 proteins expression with MVA-T7pol system 

The replication-deficient virus MVA-T7pol represents a powerful expression 

system for functional analysis of recombinant genes in the eukaryotic 

environment. In contrast to existing vaccinia virus/T7pol systems, the lack of 

viral replication in mammalian cells is an important safety advantage. 

Moreover, the MVA-T7pol system is able to produce high amounts of target 

proteins, and in contrast to recombinant MVAs, there is no need for time 

requiring construction and isolation of virus recombinants (Hebben et al. 

2007; Pradeau-Aubreton et al. 2010). 

The plasmid, pOS6, used for expressing COVID-19 genes under T7 promoter, 

is derived from pTM1 (Moss et al. 1990) which is a pUC derived plasmid 

containing T7 promoter, EMCV UTR, MCS, T7 terminator and tk genes leading 

to homologous recombination. A previous study reported that 

chloramphenicol acetyltransferase (CAT) gene cloned into pOS6 can be 

expressed efficiently in HeLa cells (Sutter et al. 1995). The promoters P7.5, 

PmH5, and P11 are very frequently used in recombinant MVA vectors. In 

MVA-T7pol system, we used the early and late P7.5 promoter which is able 

to express antigens during both the early and late stages of vaccinia virus 

(Alharbi 2018). Under the control of P7.5, transcription of T7 RNA polymerase 

is induced after viral entry and maintained during the complete cycle of MVA 

gene expression. Subsequently, T7 polymerase is synthesized and 

immediately identifies T7 promoter when recombinant plasmids were 
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transfected into cells (Sutter et al. 1995). These are beneficial for the rapid 

and efficient expression of foreign proteins. 

In the present study, MVA-T7pol system was used for the generation of SARS-

CoV-2 proteins. Besides the structural proteins of the coronavirus (N, E, M, S), 

the non-structural proteins encoded by ORF3a, ORF6, ORF7 and ORF8 were 

also investigated. To verify the correct expression of the virus proteins and 

because antibodies were not available for most of the investigated proteins, 

we used HA-tags added at the C-terminal part of proteins. Additionally, this 

allowed balancing the amount of used protein preparation in order to obtain 

comparable signals in the immune blot analysis. After 24 hours of 

infection/transfection, the target proteins could be successfully and easily 

detected by western blot. These results indicate that the recombinant vector 

MVA-T7pol can be used very efficiently for the expression of COVID-19 target 

proteins in CEF cells.  

When analyzing the antigens expressed in this study, M protein always 

showed a weak signal when detected by western blot with boiling treatment. 

This may indicate that SARS-CoV-2 M protein represents a similar thermal 

aggregation characteristic as described for the SARS-CoV-1 M protein (Lee et 

al. 2005). For S protein, two detected bands migrating at molecular masses of 

about 190 kDa and 90~100 kDa were identified as full-length spike protein 

and cleavage, and their glycosylation was confirmed and demonstrated in the 

study (Tscherne et al. 2021). 
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2. Detection of the humoral immune response against SARS-CoV-2 

Major targets of the anti-coronavirus immune response are the spike protein 

as well as the nucleocapsid protein. This has been shown also for SARS-CoV-

1 (Meyer et al. 2014; Tan et al. 2004; Woo et al. 2004) as well as for SARS-

CoV-2 (Brouwer et al. 2020; Camerini et al. 2021; Guo et al. 2020; Long et al. 

2020). 

In our experiments, N specific signals were always clearly visualized faster 

than other proteins when incubating with patient sera (data not shown). 

Moreover, in two of the sera (patients 7 and 8) N specific antibodies were 

detectable, but not S specific antibodies. This may indicate a higher sensitivity 

of N-based serological assays as others discussed it for SARS-CoV-1 (Leung et 

al. 2004) and SARS-CoV-2 (Burbelo et al. 2020) previously. For SARS-CoV-1 

and other HCoVs it has been shown that anti-N antibodies appear earlier than 

anti-S antibodies (Meyer et al. 2014; Tan et al. 2004; Wu et al. 2004). The 

same has been described for COVID-19 patients (Alfego et al. 2021; Elslande 

et al. 2020). Some earlier studies pointed out that serological assays using the 

full-length N protein might demonstrate a higher rate of false-positive results, 

because SARS-CoV-2 N contains conserved regions similar to other human 

coronavirus N proteins (Okba et al. 2020; Yamaoka et al. 2020). In contrast, 

in a study performed by Elslande and colleagues, assays detecting anti-N 

antibodies demonstrated higher specificity (Elslande et al. 2020). However, 

because of the limited number of tested SNT negative sera, a conclusion 

regarding the specificity of our test system is not possible.    
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Results from SNT, quantifying neutralizing antibodies, correlated well with 

the ELISA results (S specific IgA and IgG) as well as with the results from the S 

specific western blot analysis. Therefore, detection of S-binding antibodies by 

immunoblot might have potential value as an indicator of a neutralizing Ab 

response, as discussed by others before (Dispinseri et al. 2021). Secretory IgA 

plays a crucial role in the immune defense of mucosal surfaces, which is the 

first point of entry of SARS-CoV-2 (Chao et al. 2020). The No. 8 sample with 

positive anti-S IgA and negative anti-S IgG may be due to the earlier 

appearance or lower specificity of SARS-CoV-2 IgA antibody (Jääskeläinen et 

al. 2020). 

For SARS-CoV-1 as well as for SARS-CoV-2, it has been demonstrated that 

apart from the four structural proteins, accessory proteins might be 

incorporated into virions, inducing a specific immune response in patients 

(Hachim et al. 2020; Leung et al. 2004; Meyer et al. 2014; Neuman et al. 2008). 

Zeng and colleagues reported that SARS-CoV-1 patients possess antibodies 

against ORF3a (Zeng et al. 2004), indicating that ORF3a is a minor structural 

protein on the surface of the viral envelope, and others considered here a 

potential target for vaccines or therapeutics (B. Lu et al. 2009). For SARS-CoV-

2, it has been recently shown that the ORF3a promotes lysosomal exocytosis 

by promoting lysosomal targeting of the BORC-ARL8b complex and 

exocytosis-related SNARE proteins (Chen et al. 2021). Furthermore, Wang 

and colleagues demonstrated that ORF3a dampens IFN signaling via 

upregulating suppressor of cytokine signaling 1 (Wang et al. 2021). In our 

study, one COVID-19 patient clearly demonstrated ORF3a specific antibodies, 
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confirming the results of Camerini and colleagues, who detected SARS-CoV-2 

ORF3a specific antibodies using a multi-coronavirus protein microarray 

(Camerini et al. 2021). However, because the antibodies were only detectable 

in a sera sample with the highest SNT titers, the value of this finding has to 

emerge.    

3. The use of western blot for COVID-19 serology 

Since the outbreak of COVID-19 pandemic, more and more assays have been 

developed for the diagnosis of SARS-CoV-2 infection in humans. This study 

describes the serological diagnosis of COVID-19 by western blot with 

recombinant proteins expressed with MVA-T7pol system. Serological assays 

based on recombinant antigens are widely used in laboratory diagnostics, 

especially for BSL3 viruses as SARS-CoV-1 and SARS-CoV-2. This has the 

advantage that no BSL3 containment is needed as it is for virus-based 

serological assays (Meyer et al. 2014). However, technologies for antibody 

detection like immunofluorescence assay (IFA) need to be processed in a BSL-

3 laboratory and well-trained technicians. 

Western blot is based on antigen-antibody response. Antibodies in the 

patient's sera will bind to specific viral proteins on the membrane, thus 

showing discrete bands depending on their molecular weight. When 

analyzing humoral immune responses in COVID-19 patients, the western blot 

technique helps to identify immunogenic antigens that may be used in 

vaccine development and serologic testing (Haveri et al. 2020).  
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In addition to many in-house-developed western blot systems, several 

companies are producing commercial kits for serological diagnosis of 

different infectious diseases. The important application area is that western 

blot was used in serological test to ensure the accuracy of an initial screening 

test for HIV infection and Lyme disease (Pavia & Wormser 2020). Due to its 

high level of sensitivity in identifying the key antigens, the value of this 

approach for COVID-19 diagnosis could also be the confirmation of a positive 

or a borderline-positive result from a screening test like ELISA and IFA. As 

most of the current vaccines are based on S antigen, simultaneous detection 

of antibodies against N and S protein may greatly help identify SARS-CoV-2 

natural infection in vaccinated people. This also demonstrated the possibility 

of developing a chip for testing antibodies against multi-antigens based on 

western blot technology. 
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VIII. SUMMARY 

SARS-CoV-2, the causative agent of COVID-19, was first detected in December 

2019 in Wuhan (China) and spread throughout the world by travelers and 

community-based contacts, leading to a global pandemic within a few months. 

The research for the expression of the antigens and the analysis of humoral 

immunity is crucial for preventing the virus. 

Within this study, the MVA-T7pol system was utilized for the generation and 

characterization of SARS-CoV-2 proteins. MVA-T7pol infected cells were 

transfected with the recombinant plasmids carrying target genes of SARS-

CoV-2 with an HA-tag sequence at 3’-end (N-HA, M-HA, E-HA, ORF3a-HA, 

ORF6-HA, ORF7a-HA and ORF8-HA). In this process, T7 polymerase can be 

synthesized during MVA-T7 replicating in the host cell and binds the T7 

promoter on the plasmids to start the transcription of SARS-CoV-2 target 

genes. The expression of SARS-CoV-2 proteins was examined by western blot 

analysis using standard procedures, and specific bands with the expected size 

of the SARS-CoV-2 proteins were detected clearly. The result indicated that 

the MVA-T7pol system may serve as a highly efficient and safe tool for COVID-

19 protein expression.  

Next, sera were investigated with varying amounts of SARS-CoV-2 nAb, 

focusing on the presence of S and N specific antibodies in the western blot 

analysis. For S specific humoral response, results from SNT, quantifying 

neutralizing antibodies, correlated well with the ELISA results (S specific IgG) 

and S specific western blot analysis. Therefore, detection of S-binding 
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antibodies by immunoblot might have potential value as an indicator of a 

neutralizing Ab response. N specific antibodies were detectable in two of the 

sera, but not S specific antibodies. This may indicate higher sensitivity of N-

based serological assays. 

This study initiated in response to COVID-19 may serve as an example for the 

rapid and efficient expression of antigens from an emerging virus, and the use 

of these antigens to analyze pathogen-specific immune responses. 
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IX. ZUSAMMENFASSUNG 

SARS-CoV-2, der Erreger von COVID-19, wurde erstmals im Dezember 2019 in 

Wuhan (China) nachgewiesen. Durch die Infrastrukturen der globalisierten 

Welt verbreitete sich der Erreger schnell und effizient, was innerhalb weniger 

Monate zu einer Pandemie bisher unbekannter Dimension führte. Zur 

Bekämpfung von COVID-19, insbesondere zur Entwicklung effizienter 

Strategien zur Therapie- und Prophylaxe, ist die Erforschung der 

antigenetischen Strukturen von SARS-CoV-2 und die Analyse der durch das 

Virus induzierten Immunität von besonderer Bedeutung.  

In dieser Arbeit wurde das MVA-T7pol-System für die Herstellung von SARS-

CoV-2-Proteinen verwendet. Hierbei werden MVA-T7pol-infizierte Zellen mit 

rekombinanten Plasmiden transfiziert, die die HA-getaggten Zielgene von 

SARS-CoV-2 (N-HA, M-HA, E-HA, ORF3a-HA, ORF6-HA, ORF7a-HA und ORF8-

HA) beinhalten. Während der Transkription und Replikation des MVA-T7pol 

in der Wirtszelle wird effizient die T7-Polymerase synthetisiert, welche den 

T7-Promotor vor den Zielgenen in der Plasmidsequenz erkennt, und somit die 

Transkription der SARS-CoV-2-Zielgene induziert. Die Expression von SARS-

CoV-2-Proteinen wurde mittels standardisierten Western-Blot-Analysen 

untersucht. Spezifische Banden mit der erwarteten Größe der SARS-CoV-2-

Proteine konnten in allen Fällen nachgewiesen, was die effiziente und sichere 

Expression von SARS-CoV-2-Proteinen durch das MVA-T7pol-System zeigte.  

Anschließend wurden die exprimierten SARS-CoV-2-Antigene verwendet, um 

COVID-19-Patientenseren zu untersuchen. Diese Seren wurden zunächst 
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mittels Serumneutralisationstest und Antikörper-ELISA charakterisiert, dann 

die Immunantwort gegen die MVA-T7pol exprimierten SARS-CoV-2-Antigene 

mittels Immunoblot-Analyse untersucht. Hiermit konnten Antikörper gegen 

das Spikeprotein, das Nukleokapsidprotein und das ORF3a-Protein 

nachgewiesen werden, wobei S- und N-spezifischen Antikörper dominierten. 

Bei der S-spezifischen Immunantwort korrelierten die Ergebnisse des SNT gut 

mit den ELISA-Ergebnissen (S-spezifisches IgG) und der S-spezifischen 

Western-Blot-Analyse. Daher könnte der Nachweis von S-bindenden 

Antikörpern durch Immunoblot oder ELISA einen potenziellen Wert als 

Indikator für eine neutralisierende Antikörperreaktion haben. In zwei der 

Seren waren N-spezifische Antikörper nachweisbar, aber keine S-spezifischen 

Antikörper. Dies könnte auf eine höhere Empfindlichkeit von N-basierten 

serologischen Tests hinweisen. 

In dieser Arbeit konnte ein effizientes Werkzeug (MVA-T7pol) zur heterologen 

Expression von SARS-CoV-2-Antigene genutzt werden, welche erste Einblicke 

in humorale Immunantwort gegen das SARS-CoV-2 ermöglichte. Die im 

Rahmen der COVID-19 Pandemie initiierte Studie kann als Beispiel dienen für 

die schnelle und effiziente Expression von Antigenen eines bisher 

unbekannten Virus und die Verwendung dieser Antigene zur Analyse 

erregerspezifischer Immunantworten. 
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1. Consumables, reagents, chemicals 

Description Supplier 

10x Tris/Glycine/SDS Bio-Rad, Feldkirchen, Germany 

4×Laemmli sample buffer Bio-Rad, Feldkirchen, Germany 

6-well flat bottom plate Sarstedt, Nümbrecht, Germany 

96-well tissue culture plates Greiner bio-one, Frickenhausen, 
Germany 

Cell culture flask (25/75/175 cm2) Sarstedt, Nümbrecht, Germany 

Crystal violet Sigma-Aldrich, Taufkirchen, Germany 

GelRed  Biozol GmbH, Eching, Germany 

Goat anti-mouse IgG/HRP Agilent Dako, Glostrup, Denmark 

MEM Sigma-Aldrich, Taufkirchen, Germany 

MEM non-essential amino acid 
solution 

Sigma-Aldrich, Taufkirchen, Germany 

Micro tubes 1,5ml Sarstedt, Nümbrecht, Germany 

NaCl PanReac AppliChem, Darmstadt, 
Germany 

Nitrocellulose membrane GE Healthcare, Freiburg, Germany 

Nonfat dried milk powder PanReac AppliChem, Darmstadt, 
Germany 

OneShot™Top10 Fisher Scientific, Waltham, USA 

PBS Thermo Fisher Scientific, Planegg, 
Germany 
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Penicillin–Streptomycin Sigma-Aldrich, Taufkirchen, Germany 

Rabbit anti-human IgG/HRP Agilent Dako, Glostrup, Denmark 

Serological pipette (5/10/25 ml) Sarstedt, Nümbrecht, Germany 

SFP eggs VALO BioMedia GmbH, Cuxhaven, 
Germany 

TAE buffer 50X Fisher Scientific, Waltham, USA 

Towbin buffer Bio-Rad, Feldkirchen, Germany 

Tris-Ultrapure PanReac AppliChem, Darmstadt, 
Germany 

Triton-X100 Sigma-Aldrich, Taufkirchen, Germany 

TrueBlue™ Peroxidase Substrate SeraCare Life Sciences, Milford, USA 

Tween20 Sigma-Aldrich, Taufkirchen, Germany 

X-tremeGENE HP DNA 
Transfection Reagent 

Roche Diagnostics, Penzberg, 
Germany 

2. Laboratory equipment and software 

Description Supplier 

Adobe Reader Adobe Systems, San Jose, USA 

BioRender BioRender, Toronto, USA 

ChemiDocTMMP, Imaging System Bio-Rad, Munich, Germany 

DNASTAR Lasergene DNASTAR, Inc., Madison, Wisconsin, 
USA 

Eppendorf centrifuge 5810R Eppendorf AG, Hamburg, Germany 

Galaxy 170S incubator New Brunswick (Eppendorf), 
Hamburg, Germany 

Hanna Checker® pH meter SIGMA-ALDRICH, St. Louis, USA 
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Image Lab 5.0 Software Bio-Rad, Feldkirchen, Germany 

Microplate reader Sunrise Tecan Trading AG, Männedorf, 
Switzerland 

Mini Protean Tetra cell SDS-Page 
System 

Bio-Rad, Feldkirchen, Germany 

Mini Vortex Mixer Fisher Scientific, Waltham, USA 

NanoDrop® ND-1000 PEQLAB Biotechnology GmbH, 
Erlangen, Germany 

Trans Blot® Turbo™ Transfer 
System 

Bio-Rad, Feldkirchen, Germany 

Wet/Tank blotting system Bio-Rad, Feldkirchen, Germany 

3. Commercial kits 

Description Supplier 

Anti-SARS-CoV-2 IgA ELISAs Euroimmun, Lübeck, Germany 

Anti-SARS-CoV-2 IgG ELISAs Euroimmun, Lübeck, Germany 

QiaAmp Viral RNA extraction kit Qiagen, Hilden, Germany 

SuperScript VILO kit Life Technologies, Darmstadt, 
Germany 
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