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1 Abstract
In this thesis, we study mathematical aspects of information dissemination. The four collected
works investigate randomized rumor spreading with regard to its robustness and asymptotic run-
time as well as adversarial effects on opinion forming.

In the first contribution, Robustness of Randomized Rumor Spreading, we investigate the pop-
ular randomized rumor spreading algorithms push, pull and push&pull . These are used to spread
information quickly through large networks, typically modelled by graphs. Starting with one in-
formed vertex and depending on the used algorithm the information is spread in a round based
manner. Using push, every informed vertex chooses a random neighbour and passes the informa-
tion forward. With pull , each vertex yet uninformed connects to a randomly chosen neighbor and
receives the information, if the vertex it connected to is informed. push&pull is a combination
of push and pull . Every vertex chooses a random neighbour, if one of them is informed then the
other will be informed as well. Their advantages over deterministic algorithms are, that they are
easy to implement, fast and very robust against failures. However, there is only sporadic informa-
tion available to substantiate the claimed robustness. The aim of this work is to close this gap.
To that end, three orthogonal properties and their effects on the speed of the dissemination are
studied. First, we show that the density of the graph does not play an important role. For fast
dissemination it is not relevant how many edges there are, but how evenly they are distributed
in the graph. Thus, a network could have many faulty connections, but as long as the remaining
ones are spread evenly the speed of the dissemination is not significantly impacted. This begs
the question how evenly the remaining edges need to be spread to guarantee a fast dissemination.
Surprisingly, the answer to this question is not the same for all three rumor spreading algorithms.
pull and push&pull are very robust. Starting from a graph with evenly distributed edges and
thus fast dissemination one may introduce irregularities by deleting up to one half of all edges at
each node and the dissemination remains fast. However, for push the dissemination already slows
down significantly if only few irregularities are introduced. Lastly, we additionally consider ran-
dom message transmission failures. From previous works, we know that on “nice” graphs all three
algorithms only slow down proportionally to the failure probability. However, when considering
the effect of density and irregularities together with transmission failures, the picture changes once
more. pull alone retains its fast dissemination. With a suitable choice of parameters, push&pull
similar to push can be slowed down significantly. Thus, we can not unconditionally confirm the
claimed robustness for all three rumor spreading algorithms, only pull proved to be robust against
all introduced challenges, push and push&pull , however, did not.

In the second contribution, Asymptotics for Push on the Complete Graph, we move from the
general approach of quantifying the robustness of all three randomized rumor spreading algorithms
on a broad range of networks to very precisely describing the runtime of push on complete graphs
only. Thereby, the runtime is defined as the time until the information is disseminated to all
vertices in the graph. In this work, we completely describe the limiting distribution of the runtime
of push on the complete graph in terms of a Gumbel distributed random variable. We made a
surprising observation, the asymptotic distribution does not converge everywhere, only on suitable
subsequences. These subsequences (ni)i∈N are characterised by having converging rational part of
(log2 ni)i∈N as well as (lnni)i∈N. This results in the phenomena, that the expected runtime is not
constant either but infimum and supremum over all n differ by ≈ 10−4.

After successfully solving push on the complete graph, a natural question is to ask whether
the same can be achieved for other rumor spreading algorithms. The third contribution, Asymp-
totics for Pull on the Complete Graph, answers this question for pull , describing the asymptotic
distribution of the runtime of pull on the complete graph in terms of a martingale limit. Again
we observed that the limiting distribution only exists on suitable subsequences (ni)i∈N, those with
convergent rational part of (log2 ni + log2 lnni)i∈N. We study the expected runtime numerically,
finding strong evidence that it is not constant either.

The last contribution, The Effect of Iterativity on Adversarial Opinion Forming, deviates from
the previously considered model and introduces a second competing piece of information. We
interpret them as opinions and assume one to be the truth and the other one to be a falsehood. The
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opinions are spread through the network by a simple majority rule, i.e. uninformed vertices take
the majority opinion of their informed neighbours. Known properties that guarantee robustness
are the degree being sufficiently bounded or the edges being evenly distributed. The question
considered in this contribution is whether an alternative iterative dissemination process influences
robustness. Alon et al. conjecture that iterativity is always beneficial for the adversary. We refute
that conjecture by giving a graph where iterativity benefits robustness.
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2 Zusammenfassung
In dieser Arbeit beschäftigen wir uns mit mathematischen Aspekten der Informationsverbreitung in
Netzwerken. Die vier gesammelten Beiträge untersuchen randomisierte Gerüchteverbreitungsalgo-
rithmen hinsichtlich ihrer Robustheit und asymptotischen Laufzeit, sowie gegnerische Auswirkun-
gen auf die Meinungsbildung.

Der erste Beitrag, Robustness of Randomized Rumor Spreading, befasst sich mit den populären
randomisierten Gerüchteverbreitungsalgorithmen push, pull und push&pull . Diese werden dazu
verwendet, um Informationen schnell durch große, als Graphen modellierte Netzwerke zu verteilen.
Beginnend mit einem informierten Knoten und in Runden verfahrend, werden die Informationen
abhängig vom verwendeten Algorithmus verteilt. Wird push benutzt, so wählt jeder informierte
Knoten einen zufälligen Nachbarn und gibt die Information weiter. Mit pull wählen uninformierte
Knoten zufällige Nachbarn und werden informiert, falls der gewählte Nachbar informiert ist.
push&pull ist eine Kombination aus push und pull . Jeder Knoten wählt einen zufälligen Nachbarn
aus, ist einer der beiden informiert, so wird auch der andere informiert. Mit einer einfachen Imple-
mentierung, hohen Geschwindigkeit und einer starken Robustheit heben sich die randomisierten
Gerüchteverbreitungsalgorithmen positiv von deterministischen Algorithmen ab. Bisher liegen
jedoch nur sporadische Informationen vor, um die beobachtete Robustheit auch rigoros zu bele-
gen. Ziel dieser Arbeit ist es, diese Lücke zu schließen. Dafür betrachten wir drei verschiedene,
strukturelle Eigenschaften der Graphen, um deren Auswirkungen auf die Geschwindigkeit der Ver-
breitung zu studieren. Als erstes Ergebnis zeigen wir, dass die Dichte des Netzwerks keinen nen-
nenswerten Einfluss hat. Für eine schnelle Verbreitung der Informationen ist nicht die Anzahl der
Kanten relevant, sondern deren gleichmäßige Verteilung. Ein Netzwerk könnte folglich viele fehler-
hafte Verbindungen haben, aber solange die verbleibenden Verbindungen gleichmäßig verteilt sind,
wird die Verbreitung nicht wesentlich verlangsamt. Dies regt die Untersuchung an, wie gleichmäßig
die verbleibenden Kanten sein müssen, um eine schnelle Verbreitung zu gewährleisten. Wider Er-
warten konnten wir Unterschiede in Abhängigkeit des gewählten Gerüchteverbreitungsalgorithmus
aufzeigen. pull und push&pull sind sehr widerstandsfähig. Denn ausgehend von einem „schönen“
Graph mit gleichmäßig verteilten Kanten können durch Löschen von Kanten Unregelmäßigkeiten
eingebracht werden durch die sich die Geschwindigkeit der Gerüchteverbreitung nicht nenneswert
verändert. Im Gegensatz dazu verlangsamt sich die Verbreitung mit push bereits erheblich, wenn
nur wenige Unregelmäßigkeiten auftreten. Abschließend befassen wir uns ergänzend mit zufäl-
lig auftretenden Übertragungsfehlern. Aus früheren Arbeiten wissen wir, dass sich bei „schönen“
Graphen alle drei Algorithmen nur proportional zur Ausfallswahrscheinlichkeit verlangsamen. Be-
trachten wir hingegen die Auswirkungen der Dichte und der Unregelmäßigkeiten mit Übertragungs-
fehlern zusammen, entsteht eine neue Sachlage. Dabei behält nur pull seine schnelle Verbreitung
bei, push&pull kann bei einer entsprechenden Wahl der Parameter ähnlich wie push verlangsamt
werden. Somit ist eine Bestätigung der behaupteten Robustheit der drei Gerüchteverbreitungsal-
gorithmen nicht bedingungslos möglich. Lediglich pull erwies sich als widerstandsfähig gegenüber
allen betrachteten Problemen, push und push&pull jedoch nicht.

Im zweiten Beitrag, Asymptotics for Push on the Complete Graph, gehen wir vom allgemeinen
Ansatz der Beschreibung der Robustheit aller drei randomisierten Gerüchteverbreitungsalgorith-
men auf einem breiten Spektrum von Netzwerken zu einer sehr präzise Beschreibung der Laufzeit
von push auf vollständigen Graphen über. Dabei definiert sich die Laufzeit als die Zeit, in der
die Information an alle Knoten im Graph verteilt wird. In dieser Arbeit beschreiben wir die
Grenzverteilung der Laufzeit von push auf dem vollständigen Graph. Dabei haben wir eine über-
raschende Beobachtung gemacht, denn die asymptotische Verteilung konvergiert nicht überall,
sondern nur auf geeigneten Teilfolgen. Diese Folgen (ni)i∈N zeichnen sich dadurch aus, dass sowohl
die Nachkommastellen von (log2 ni)i∈N als auch die von (lnni)i∈N konvergieren. Dies resultiert
in dem Phänomen, dass die erwartete Laufzeit nicht konstant ist, vielmehr unterscheiden sich
Supremum und Infimum über alle n um ungefähr 10−4.

Nach dieser erkenntnisreichen Arbeit stellt sich die natürliche Frage, ob dasselbe für die anderen
Gerüchteverbreitungsalgorithmen gilt. Die daran anschließende Arbeit Asymptotics for Pull on the
Complete Graph bejaht die aufgeworfene Frage für pull , indem die asymptotische Verteilung der
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Laufzeit von pull auf vollständigen Graph mit Hilfe eines Martingalgrenzwertes beschrieben wird.
Ferner wird beobachtet, dass die Grenzverteilung nur auf geeigneten Teilfolgen existiert, nämlich
solche Folgen (ni)i∈N bei denen die Nachkommastellen von (log2 ni + log2 lnni) konvergieren. Die
erwartete Laufzeit wird mit Hilfe dieser Beschreibungen empirisch untersucht, wobei es eine starke
Evidenz gibt, dass auch diese nicht konstant ist.

Der letzte Beitrag, The Effect of Iterativity on Adversarial Opinion Forming, weicht vom bisher
betrachteten Modell ab und führt eine zweite, konkurrierende Information ein. Diese interpretieren
wir als Meinungen und nehmen eine davon als wahr an. Die Meinungen werden durch eine einfache
Mehrheitsregel im Netzwerk verbreitet, d. h. uninformierte Knoten nehmen die Mehrheitsmein-
ung ihrer informierten Nachbarn an. Dabei sehen wir ein Netzwerk als robust an, wenn selbst ein
Kontrahent die anfangs informierten Knoten nur so wählen kann, dass am Ende der Verbreitung
stets die Mehrheit der Knoten von der Wahrheit überzeugt ist. Bekannte Beispiele robuster Net-
zwerke sind solche mit hinreichend beschränkten Knotengraden oder mit ausreichend gleichmäßig
verteilten Kanten. In unserem Beitrag betrachten wir die Frage, inwiefern Robustheit durch einen
alternativen, iterativen Verbreitungsprozess beeinflusst wird. Alon et al. vermuten eine negative
Auswirkung von Iteration auf Robustheit. Wir widerlegen diese Vermutung durch Konstruktion
eines Graphen, auf welchem ein iterativer Prozess die Verbreitung der Wahrheit begünstigt.
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4 Introduction
Randomized rumor spreading is used to disseminate information trough a network. It is simple,
fast and robust and therefore has a plethora of applications in replicated databases, wireless senor
networks and even blockchains. This work, which is structured as follows, looks at the attributed
properties ’fast’ and ’robust’ in more detail. First we review the related literature, giving an
overview of the latest results, some applications and core ideas that arise. Afterwards we interpret
our new results and highlight where we extend the state of the art. Finally all four collected works
are appended in full with details of the author’s contribution to each article.

4.1 Related Literature
Let G be an undirected graph on a vertex set V and edge set E. Furthermore, set one vertex
v ∈ V to be informed. Consider the following round-based protocols with the goal of spreading
the information from v to all other vertices in V \{v}. Until all vertices are informed, every round
the following steps are performed:

• push: In every round, every informed vertex v independently and uniformly at random
chooses a neighbour u (u, v ∈ V are neighbours if (u, v) ∈ E). If u is not informed, we say
uninformed, then it becomes informed otherwise nothing happens. This was first introduced
in [39].

• pull : In every round, every uninformed vertex v independently and uniformly at random
chooses a neighbour u, if u is informed, than v becomes informed otherwise nothing happens.
This was first introduced in [19].

• push&pull : Both informed or uninformed vertices v choose a neighbour u independently and
uniformly at random. If either v or u is informed then both of them are, otherwise nothing
happens. This was first introduced in [47]. In the following we abbreviate push&pull by pp.

These three protocols are known as randomized rumor spreading and the main property under
investigation is the runtime, i.e. the random variable Xp(G, v) that counts the rounds required
for the protocol p ∈ {push, pull, pp} to spread the information introduced at v to all vertices of G.
If the initial vertex does not matter we may omit it, in particular we denote Xp(G, v) by Xp

n for
all v ∈ V and p ∈ {push, pull, pp} if G = Kn is the complete graph on n vertices.

Early works. The study of randomized rumor spreading has first been introduced by Alan Frieze
and Geoffrey Grimmett in 1985 [39]. They introduced the telephone call problem that corresponds
to Xpush

n in our notation and they found the first asymptotic expression of Xpush
n ,

Xpush
n = log2 n+ lnn+ o(lnn) in probability as n→∞

where ln denotes the natural logarithm. Furthermore, they found a large deviation bound, for all
ε > 0 and γ > 0,

P
(
Xpush
n > (1 + ε)

(
log2 n+ (1 + γ) lnn

))
= o(n−γ).

Following the work of Frieze and Grimmett the asymptotic expression of Xpush
n has been more

thoroughly studied by Boris Pittel in 1987 [56]. He narrowed the error in the asymptotic expression
down to constant order,

Xpush
n = log2 n+ lnn+O(1) in probability as n→∞.

In addition Boris Pittel made an important observation. He defined It to be the set of informed
vertices before round t of push and recognized that |It| can be described by a deterministic sequence
for most t, that is

|It+1| ≈ n−
(
n− |It|

)
e|It|/n. (1)
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This approach will play a major part in later works and in this thesis as well.
In the same year, Demers et al. [19] introduced randomized rumor spreading into practical

applications. They faced the problem of distributed databases and how to propagate updates that
originate at one specific site to all participants in the network. Typical approaches were either
very specific to the underlying network and did not scale well to lager networks or were not reliable
to successfully transmit the update if errors occurred. To overcome these problems they proposed
two probabilistic algorithms that are based on randomized rumor spreading.

• Anti-entropy : All nodes regularly choose a random neighbour, compare their databases and
resolve differences. This is extremely reliable but comparisons can not be made with high
frequencies as comparing databases is costly, thus, it might be slower than deterministic
algorithms.

• Rumor mongering : All nodes that contain the “latest” update periodically choose a random
neighbour and pass the update along. After some time they stop and regard the update as
“old”. This allows for much higher frequencies as Anti-Entropy as less data is exchanged in
each call, but there is a risk of not passing the update to all nodes. This can be implemented
as either push or pull depending on the frequency of expected updates.

Applications based on Anti-entropy and Rumor mongering turned out to be highly effective and
greatly reduced the workload while being both robust and scalabe. These so-called gossip protocols
and variations of them have garnered much attention, they are applied in wireless sensor networks
[48], multicast [10], blockchains [55] like Bitcoin [51] and Ripple [4] as well as many more. Moreover,
Demers et al. introduced pull as an alternative to push.

The successful application of randomized rumor spreading prompted more theoretical work.
In 1990 Feige et al. [32] studied Xpush(G) for several types of graphs G on n vertices. They first
showed the general bound

lnn ≤ Xpush(G) ≤ 12n lnn for all graphs G.

Additionally, they showed that these bounds are asymptotically tight, in the sense that both
Xpush(G) = O(lnn) and Xpush(G′) = O(n lnn) are achieved by some graphs G,G′. Additionally
they described Xpush(G) depending only on two graph parameters: the maximal degree ∆(G) and
the diameter diam(G)

Xpush(G) = O
(
∆(G)(diam(G) + lnn)

)
with high probability.

With high probability means probability tending to 1 as n tends to infinity, we occasionally
abbreviate it as whp. Furthermore, they showed the first theoretical robustness result. Let G be
a graph derived from the complete graph Kn by deleting up to n/3 edges. Then

Xpush(G) = O(lnn) with high probability.

Lastly they showed that if G is a hypercube or an Erdős-Rényi random graph with edge probability
at least (1 + ε)(lnn)/n, then

Xpush(G) = Θ(lnn).

This nicely demonstrates the different research directions taken when studying randomized rumor
spreading. These are either finding general bounds that only depend on some graph parameters or
finding sharper bounds for specific graph classes. The remainder of this subsection is structured
accordingly. First we explore results for graph classes like complete graphs or random graphs,
then we look at the more general results using notions of conductance and expansion. Finally we
will state some results concerning robustness and conclude with popular variations of randomized
rumor spreading.
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Complete graphs. The first specific graph class that was investigated and the class that is best
understood are complete graphs. Pittel [56] showed that asymptotically Xpush

n = log2 n + lnn +
O(1). This bound was improved by Benjamin Doerr and Marvin Künnemann in 2014 [26], they
proved that

blog2 nc+ lnn− 1.116 ≤ E[Xpush
n ] ≤ dlog2 ne+ lnn+ 2.765 + o(1) (2)

and, furthermore, for large deviations

P
(
Xpush
n > dlog2 ne+ lnn+ 2.188 + r) ≤ 2e−r.

The new insight that allowed them to achieve this precise bound is that push on complete graphs
can be closely described by log2 n plus 1/n times the number of draws it takes to collect n distinct
coupons. This is the so-called coupon collector’s problem (CCP). The CCP is very well understood,
for example it is known that in expectation it takes n ·Hn draws, where Hn is the nth harmonic
number, and the deviation from it can be described by Gumbel distributed random variables, see
[30].

In 2000, Karp et al. [47] first introduced push&pull as a faster alternative to push or pull and
showed that

Xpp
n = log3 n+O(ln lnn) with high probability.

The most precise results for pull and push&pull on complete graphs to date are given by Benjamin
Doerr and Anatolii Kostrygin in 2017 [25]. They developed a general framework to study a very
broad range of randomized rumor spreading models that allows to derive sharp bounds for them.
In particular, applied to complete graphs, they found that

E[Xpull
n ] = log2 n+ log2 lnn+O(1), and E[Xpp

n ] = log3 n+ log2 lnn+O(1)

together with large deviation bounds

P
(∣∣Xp

n − E[Xp
n]
∣∣ ≥ r

)
≤ Ae−αr for all r > 0, some A,α > 0 and all p ∈ {pull, push, pp}.

We see that both pull and push&pull are quite a bit faster than push. This is due to the last phase
of the protocol. Assume that there are ε·n vertices left to inform. Then push will inform about e−1
of them in the next round, on the other hand pull and push&pull will inform all but an ε fraction
which translates into the double logarithmic term. Furthermore, Doerr and Kostrygin derived
some results concerning robustness, this will be discussed in the later part about robustness.

Random graphs. The next result on Erdős-Rényi random graphs is by Fountoulakis et al.
in 2010 [35]. They studied push on Erdős-Rényi random graphs Gn,p on n vertices with edge
probability p asymptotically larger than the connectivity threshold lnn/n. Improving on the
results in [32], they found that despite these graphs being much sparser than complete graphs
they admit the same asymptotic runtime as was found in [39], i.e.

Xpush(Gn,p) = log2 n+ lnn+ o(lnn) whp. for all p = ω(lnn/n).

To consider random graphs that are even sparser one has to consider a different random graph
model, as Erdős-Rényi random graphs are typically disconnected for all p ≤ lnn/n. Thus, Foun-
toulakis and Panagiotou in 2010 [36] considered push on random d−regular graphs Gn,d for d ≥ 3
which are known to be connected with high probability. They showed that

Xpush(Gn.d) =

(
1

ln(2(1− 1/d))
− 1

d ln(1− 1/d)

)
lnn+ o(log n) for all d ≥ 3 whp.

This gives a good understanding of the influence of the degree on the runtime of push.
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Building on these the two previous results Panagiotou et al. in 2015 [52] computed Xpush(Gn,p)
for the wider range of p = c lnn/n. For constant c these graphs are no longer as regular and the
runtime becomes significantly slower,

Xpush(Gn,p) = log2 n+ c ln

(
c

c− 1

)
lnn+ o(lnn) for all p = c lnn/n whp.

Furthermore, they studied push on expander graphs, these are (almost) regular graphs that have
a large spectral gap. Expander graphs are popular in computer science as well as mathematics,
e.g. the survey [45]. In particular, they have a pseudorandom property in that the number of
edges between two disjoint vertex sets U, V is approximated by d|U ||V |/n, the expected number
of edges in a random graph with edge probability d/n. We denote these expander graphs as
(n, δ,∆, λ)-graphs where n is the number of vertices, δ/∆ are minimal/maximal degree and λ is
the second largest eigenvalue of the adjacency matrix. Improving a result from [36] they showed
that for all (n, δ,∆, λ)-graphs G with λ = o(∆) and ∆/δ = 1 + o(1)

Xpush(G) = log2 n+ lnn+ o(lnn) with high probability. (3)

This supports that density is not an important factor for push to be fast, it is more important
that the edges are spread evenly and the graph is well connected. However, it is still necessary
that the degree is not too small as we saw a larger runtime of constant degree random-regular
graphs in [52].

Conductance and Expansion. In addition to these results on specific graph classes, there
are results using general graph parameters to describe the runtime. Three parameters proved to
be suitable; graph conductance, edge/vertex expansion and mixing time. A series of papers by
Chierichetti et al. in 2010 [15, 14] and George Giakkoupis in 2011 [40] investigated the connection
between conductance and randomized rumor spreading. Defining the conductance of a graph G
by

φ = min
S⊆V, vol(S)≤|E|

e(S, V \ S)

vol(S)
where G = (V,E) and vol(S) =

∑

v∈S
d(v)

they then showed that

Xpp(G) = O(φ−1 log n) with high probability.

This result is tight, as there are graphs of conductance φ and diameter φ−1 lnn, which is a trivial
lower bound for the runtime. For push or pull this bound does not hold in general. However, if
minimal and maximal degree only differ by a constant factor then this bound applies as well.

Prompted by Chierichetti et al. [15], a second series of papers by Thomas Sauerwald and
Alexandre Staufler in 2011 [60], Giakkoupis and Sauerwald in 2012 [43] and Giakkoupis in 2014
[41] took a deeper look at the effect of vertex expansion on randomized rumor spreading. Let the
boundary of S ⊆ V be ∂S = {v ∈ V \ S : v ∈ N(S)} and define the vertex expansion of G by

α = min
S⊆V, |S|≤n/2

|∂S|
|S| .

They showed that

Xpp(G) = O

(
log ∆

α
lnn

)
for all graph G with vertex expansion α whp.

A third graph parameter that is closely related to conductance and expansion, is the notion of
mixing time. The mixing time Tmix(G) of a graph G is the number of steps needed for a random
walk starting at some vertex to converge to the stationary distribution. Improving a result form
Robert Elsässer and Thomas Sauerwald [28] in 2007, Sauerwald found in 2012 [59], that whp

Xpush(G) = O(Tmix(G) + lnn).
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These results using conductance, vertex expansion and mixing time support the impression
gained from random or expander graphs that it is not important how many edges there are but
how nicely they are distributed.

Robustness. When randomized rumor spreading was first introduced one of its main proposed
advantages was its robustness. However, apart from the result in [32] discussed above, there are
not that many theoretical results. The most popular notion of robustness that is investigated
are random message transmission failures. That is, each message fails independently with some
probability p > 0. Elsässer and Sauerwald showed in 2009 [29] that these failures can slow down
push on any graph by a factor of at most 6/p. More precise results are available for complete
graphs and random graphs. In 2017 Doerr and Kostrygin [25] computed the runtime on complete
graphs with independent message transmission failures. They found that

E
[
Xpush
n

]
= log1+p n+

1

p
lnn+O(1)

E
[
Xpull
n

]
= log1+p n−

1

ln(1− p) lnn+O(1)

E
[
Xpp
n

]
= log1+2p n+

1

p− ln(1− p) lnn+O(1).

(4)

We see a dichotomy; push slows down proportional to p, but pull and push&pull are affected
more significantly. That is, in the presence of constant message transmission failures pull and
push&pull loose their speed advantage. The same bound that Doerr and Kostrygin showed for
complete graphs is shown by Fountoulakis et al. [35] for Erdős-Rényi random graphs with edge
probabilities asymptotically larger than the connectivity threshold.

Social graphs. There are several different ways to model social network graphs. One such way
are random geometric graphs Gr, that are created by uniformly distributing n vertices in [0,

√
n]2

and connecting all vertices with euclidean distance less then r > 0. In 2010, Bradonjic et al. [13]
showed that with high probability push informs all vertices in the largest connected component of
Gr within O(

√
n/r + lnn) rounds. Moreover, Friedrich et al. in 2012 [38] generalized this result

to random geometric graphs in d-dimensions to find a runtime of O(n1/d/r + lnn).
A different graph class, that got a lot of attention in this context are power-law or so-called

scale-free graphs. They share a number of characteristics with social networks, like the small-world
phenomena or the occurrence of hubs, i.e. vertices with degrees greatly exceeding the average.
In 2011 first Chierichetti et al. [16] and then Doerr et al. [20] studied push&pull on preferential
attachment graphs. They showed that push&pull informs all vertices in O(log n) rounds and if
push&pull is modified such that no vertex contacts the same neighbour twice in a row than the
runtime reduces to O(lnn/ ln lnn). However, push and pull are much slower, they need Ω(nα)
with positive probability for some α > 0.

One year later, Fountoulakis et al. [37] studied push&pull on Chung-Lu random graphs with an
underlying power-law distribution with exponent 2 < β < 3 and showed that push&pull informs
all but εn of all vertices in its giant component in O(ln lnn) rounds.

On the other hand, as shown by Abbas Mehrabian and Ali Pourmiri in 2016 [50], on random
k-trees push&pull performs much worse, needing O

(
ln1+2/k n · ln lnn · f(n)

)
rounds to inform

all but o(n) vertices for an arbitrary function f ∈ ω(1). To inform all vertices there are at least
Ω
(
n1/(k+3)

)
rounds needed.

Asynchronous Rumor Spreading. The most popular version of randomized rumor spreading
and a more practical one is asynchronous rumor spreading. The key difference to “synchronous”
rumor spreading is, that the protocol is no longer performed in synchronous rounds, but vertices
are equipped with independent rate-1 Poisson processes at which ticks push or pull operations
are performed. Asynchronous rumor spreading was first introduced by Boyd et al. in 2006 [12]
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in the context of distributed averaging. We denote the asynchronous runtime by Y p(G, v) for
p ∈ {push, pull, pp}, any graph G = (V,E) and initially informed vertex v ∈ V. A series of papers
relates asynchronous rumor spreading to synchronous rumor spreading. Acan et al. in 2015 [1]
showed that asynchronous rumor spreading is at most a factor of O(lnn) slower than synchronous
rumor spreading and

O(ln−1 n) · Y p(G, v) ≤ Xp(G, v) ≤ O(n2/3) · Y p(G, v) for all G, v, p.

The bound on the right hand side was sharpened by Giakkoupis et al. in 2016 [42] and finally by
Angel et al. in 2017 [6] to O(n1/3 ln2/3 n). This is tight (up to a factor of order lnn) as shown by
the string of diamonds in [1].

Furthermore, asynchronous rumor spreading has been studied on several graph classes. In
2017 Konstantinos Panagiotou and Leo Speidel [54] studied asynchronous push&pull on random
graphs. They showed that both whp and in expectation

Y push(Gn,p) = lnn+ o(lnn) for all p = ω(lnn/n).

Furthermore, on these random graphs they studied independent message transmission failures
with failure probability q > 0 and found that the runtime is slowed down by a factor of 1/q.
Additionally, they considered node failures, where they marked a set of vertices B as faulty, that
will not perform any push operations nor respond to pull requests. They found that the runtime
to inform all non-faulty vertices is asymptotically not affected assuming that B has sublinear
cardinality and the initially informed vertex is not faulty.

On scale-free networks, asynchronous push&pull has been studied as well. Fountoulakis et al.
[37] showed in 2012 a constant time to inform almost all vertices on Chung-Lu random graphs
and Doerr et al. in 2012 [21] showed a runtime of O(

√
log n) to inform all but o(n) vertices on

preferential attachment graphs.
The most relevant result on asynchronous rumor spreading in the context of this thesis is

by Svante Janson in 1999 [46]. He studied minimal paths on complete graphs with random
edge weights. For Exp(1) distributed weights and scaled by n, this problem is equivalent to
asynchronous push (and pull). Among other results, Janson derived the asymptotic distribution
of Yn, showing that in distribution

Yn − 2 lnn→ G1 +G2

where G1, G2 are independent Gumbel-distributed random variables, see Section 7 for a definition.
Furthermore, this implies that

E[Yn] = 2 lnn+ 2γ + o(1)

where γ denotes the Euler-Mascheroni constant. This is to date the only result that precisely
describes the limiting distribution of any randomized rumor spreading protocol.

Other variants. A second popular variant of (synchronous) randomized rumor spreading is
Quasirandom Rumor Spreading introduced by Doerr et al. in 2008 [22]. This variant reduces
randomness in that vertices no longer choose neighbours independently at random, but each vertex
is equipped with a cyclic list of its neighbours. Neighbours are then contacted in the order of the
list, starting form a random position. Reducing randomness is desirable from a computational
perspective, as producing random bits is a costly operation. Doerr et al. ([22] and [23]) showed that
quasirandom rumor spreading performs as well as (fully) randomized rumor spreading on complete,
random, random regular and Ramanujan graphs. Furthermore, they showed that quasirandom
rumor spreading can be faster on very sparse graphs like random graphs with edge probability
only slightly higher than the connectivity threshold or hypercubes. Intuitively one might assume
that this reduction in randomness comes at the cost of robustness, however, Doerr et al. in 2013
[24] showed that on complete graphs the robustness of (fully random) push is the same as that of
quasirandom push.
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On complete graphs quasirandom push has been studied more thoroughly by Angelopoulos et
al. in 2009 [7] as well as by Nikolaos Fountoulakis and Anna Huber in 2010 [34]. They showed
a runtime of log2 n + lnn + Θ(ln lnn) to inform all vertices, which almost matches the bound of
Pittel [56] log2 n+ lnn+O(1) for (fully random) push.

There are two more interesting variants worth mentioning. First Daum et al. in 2018 [18]
considered pull where nodes are restricted to answering one call only. If the answered call is
chosen randomly than they find a runtime of O(ψ(G) lnn) with ψ(G) ≤ ∆/δ. Going in the other
direction Panagiotou et al. in 2015 [53] considered push and push&pull where nodes are allowed
to make multiple calls per round. If the number of calls is power-law distributed with exponent
β ∈ (2, 3), then the runtime of push&pull is Θ(ln lnn) and if β = 3 then push has a runtime of
O(lnn/ ln lnn).

Other Information Spreading Protocols. So far, we only considered the setting, when there
is one piece of information present in the network. Now we will loosen that assumption and allow
for additional (contradicting) pieces of information. We look at this from the context of opinion
forming, each piece of information is an opinion and a vertex being informed means that it formed
its opinion. Furthermore, we will not start with only one vertex having an opinion, but with a set,
the so-called experts or early-adopters, in which each vertex has some opinion. This is motivated
by an influential work of Everett Rogers in 2003 [58]. He studied the diffusion of innovations
through a network and his key insight is, that there is a group of early-adopters forming a first
hand experience about said innovation and all other participant in the network form their opinion
according to those of the early-adopters.

There are countless theoretical as well as empirical results on opinion forming, so we will only
focus on a small sample that is far from an exhaustive list.

In 1992 and 1998 Bikhchandani et al. [8, 9] introduced the theory of informational cascades to
explain fragile “mood swings” of the populace. Each member has an intrinsic preference between
some binary choice, but also values being part of the majority. When voting is done sequentially
(and publicly), participants have to decide whether to vote their personal preference or to conform
to the majority. This gives rise to so called informational cascades, where one opinion rapidly
spreads through the network. They study the question of when cascades occur and which opinion
dominates.

This so-called binary decision making with externalities was also studied by Watts in [62]. He
computed the probability of cascades occurring when the underlying network is given as a random
graph.

In 2012, Alon et al. [2] showed that when considering binary decision making with external-
ities, sequential voting is strictly better than simultaneous voting, in the sense that with higher
probability the most preferred alternative will dominate.

Feldman et al. in 2014 [33] also studied binary decision making with externalities, where
there is some ground truth that people are more likely to favor. Voting is no longer sequential,
but asynchronous and the vote may be updated at any time. They looked at the question of
consensus, where the process converges to one opinion only. They showed that on sparse expander
graphs consensus on the ground truth is very likely, but they also give graphs where no consensus
occurs or it converges to the falsehood.

A different approach is the study of so-called group recommendation. Starting from some
opinionated experts, the goal is to find a suggestion for all uninformed participant, based on the
opinions of their nearest experts. This was studied by Anderson et al. in 2008 [5], where they
took an axiomatic approach to these recommendation systems. Furthermore, they examined how
adversarial influences can affect the recommendations. A similar question, from the view-point of
bribery, is raised by Umberto Grandi and Paolo Turrini in 2016 [44]. They analysed the effect of
bribery and found conditions that make a group recommendation system bribery-proof. See also
the survey of Faliszewski et al. in 2016 [31] for more details.

Alon et al. in 2015 [3] combined the adversarial approach of Andersen et al. and Grandi et
al. and the study of binary decision making. There is a binary opinion, either the truth (“1”)
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or a falsehood (“0”) and each expert is initially labelled “1” or “0”. However, which vertices are
the experts and what opinions they have is determined by an adversary. Setting the number of
experts µn, 0 < µ < 1/2 and the number of “1” labeled experts (1/2 + δ)µn, 0 < δ < 1/2 as fixed,
the strong-adversary is allowed to choose the experts and their opinions. The weak-adversary is
allowed to choose the experts, but their opinions are distributed randomly, i.e. with probability
(1/2 + δ) label “1” and “0” otherwise.

Starting with the experts as the only vertices having an option, the opinions are then dissem-
inated through the network by a simple majority rule, where each vertex without opinion takes
the opinion of the majority of its opinionated neighbours (ties are broken uniformly at random,
this includes vertices without expert neighbours)

The key question Alon et al. answered, is given some graph, whether an adversary can influence
the experts in such a way that after the dissemination the majority of all vertices believes the
falsehood. Conversely they say that a graph G is robust if for any distribution of the experts after
the dissemination more than half of all vertices know the truth.

Alon et al. showed that most random-graphs and expander graphs are robust against the
strong-adversary. Furthermore, if the maximal degree is sufficiently bounded than the graph is
robust against the weak adversary.

Additionally, they proposed a modified dissemination process. Instead of all vertices breaking
their ties uniformly at random, only vertices with at least one opinionated neighbour do so.
All vertices without expert neighbours stay uninformed. Considering all opinionated vertices as
experts, this process is then repeated until all possible vertices have formed an opinion. Alon et al.
finally considered the question, whether iterativity harms or helps the adversary. For both types
of adversary, they provided examples where it helps the adversary. Additionally, they provided an
example where iterativity hinders the weak adversary. Finally, they conjectured that there is no
graph that is robust against the iterative strong adversary but not robust against the non-iterative
strong adversary.

There has been further research in that precise model. In his PhD-thesis Rami Daknama [17]
studied the local resilience of being robust against the strong adversary on random graphs. He
showed that Erdős-Rényi random graphs with edge probability of ω(lnn/n) remain robust even if
one is allowed to delete up to an 2(1− µ+ 2δµ)δ/(1 + 2δ) fraction of edges at each vertex.

4.2 Contribution
In this subsection we detail the individual contributions of the works included in this thesis.

4.2.1 Robustness of Randomized Rumor Spreading

We saw that there are several different types of robustness results in the literature. Random
message transmission failures [29, 35, 25], edge failures [32] and the non-dependence on the density
[52]. The goal of this contribution is to study the question of robustness more thoroughly. If we
modify a graph, we say it is robust, if push/pull/push&pull has asymptotically the same runtime
as on the complete graph, up to terms of order o(lnn). The first part of this paper extends the
validity of (3) shown in [52] to pull and push&pull , as well as incorporating random message
transmission failures with probability q > 0. We set Xp(G, q) as the runtime of the algorithm
p ∈ {push, pull, push&pull} on the graph G with message transmission failure probability q. We
find that all three algorithms are robust in terms of non-dependence on the density, as we recover
the runtimes on complete graphs (4) found in [25]. That is, one can delete a vast amount of edges
as long as the remaining edges are distributed regularly. We quantify this by studying expander
sequences Gn, which are sequences of (n, δn,∆n, λ)-graphs as defined in (3). We find that

Xp(Gn, q) = cp(q) lnn+ o(lnn), p ∈ {push, pull, push&pull} whp,

where we set for q ∈ (0, 1)

cpush(q) =
1

ln(1 + q)
+

1

q
, cpull(q) =

1

ln(1 + q)
− 1

ln(1− q) , cpp(q) =
1

ln(1 + 2q)
+

1

q − ln(1− q) .
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For q = 1 this can be continuously extended to be consistent with the model without random
message transmission failures. Thus, density is not important, but good expansion properties are.
However, how important are they? Can we also reduce expansion and still retain robustness? To
answer this question we introduce the notion of local resilience. Local resilience of a graph with
respect to a property quantifies the maximal fraction of edges that can be deleted at each vertex
such that the property remains. This was first introduced by Sudakov and Vu in [61], where
they studied the resilience of random graphs with respect to hamiltonicity, chromatic number and
perfect matchings.

Applying this definition to our setting, we find that there is a mixed bag. Let ε > 0 and Gn(ε)
be a graph that is obtained by deleting up to 1/2 − ε of all edges at any node starting with an
expander graph Gn. Then on the one hand pull and push&pull remain robust, that is

Xpull(Gn(ε)
)

= cpull(1) lnn+ o(lnn)

and even

Xpp
(
Gn(ε)

)
≤ cpp(1) lnn+ o(lnn).

This might come as a surprise, that push&pull is not slowed down, but might even speed up when
deleting edges. However, we think this is expected, as for example on the star graph push&pull
deterministically has a runtime of at most 2. On the other hand push is already slowed down
when only a small fraction is deleted, i.e

for every ε > 0 there is η > 0 such that Xpush(Gn(ε)
)
> (1 + η)cpush(1) lnn.

Going one step further, we look at the local resilience when random transmission failures are added.
This changes the picture once more. pull keeps its local resilience of 1/2, however, push&pull does
not,

Xpull(Gn(ε), q
)

= cp(q) lnn+ o(lnn)

but

Xpp
(
Gn(ε), q

)
=
(
cpp(q) + f(ε, q)

)
lnn+ o(lnn).

See Figure 1 for a plot of f(ε, q).
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Figure 1: Plotted values of f(ε, q) in Tpp(G(n, ε), q)− cpp(q) log n = f(ε, q) log n+
o(log n), for 0.9 < q < 1 and 0 < ε < 1/2.

We utilize three very different approaches to study each of these algorithms that differ from
typical approaches. For push we show that in the beginning it behaves the same way as on a
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graph without deleted edges by giving a suitable coupling, then we prove that in the end it may
be slowed down by giving an example for all ε > 0. For pull instead of analysing the growth
of informed vertices, we look at the growth of edges between informed and uninformed vertices
and then relating these quantities gives the desired result. The study of push&pull is the most
involved one. We give a suitable partition such that pairwise most parts behave like random
regular bipartite graphs. On these pairs, we analyse the growth of informed vertices, which yields
a linear recursion. We solve that recursion by computing the largest eigenvalue of the underlying
matrix.

Apart from these results, enhancing all existing results on robustness, we introduce two novel
methods to the study of randomized rumor spreading. Usually, one analyses the expected growth
of the number of informed vertices after performing one round of the algorithm. To translate this
to a statement about the actual number of informed vertices one needs to show concentration
around the expectation. Usually this is done by bounding the variance, which can be rather
involved. Moreover, this approach only works if the expected growth only depends on the number
of informed vertices and not on the precise vertices being informed, which is the case for graphs
with significant irregularities. To facilitate the general approach and overcome the problem of
missing regularity, we employ to very strong results.

First, consider so-called self-bounding functions [49]. A function f : Xm → R is self-bounding
if there are functions fi : Xm−1 → R such that for all x ∈ Xm

0 ≤ f(x)− fi(x(i)) ≤ 1

and
m∑

i=1

(
f(x)− fi(x(i))

)
≤ f(x)

where x(i) = (x1, . . . , xi−1, xi+1, . . . , xm) ∈ Xm−1 is obtained by dropping the i-th entry of x.
These functions have the striking property that, for independent random variables X1, . . . Xm, the
variance is uniformly bounded by its expectation

Var[f(X1, . . . , Xm)] ≤ E[f(X1, . . . , Xm)].

We show that the number of informed vertices after performing one round of push/ pull/ push&pull
can be described as a self-bounding function of independent random variables. This immediately
yields that its expectation is bounded by its variance, allowing an easy application of Cheby-
chev’s inequality. Furthermore, an even stronger result holds true, self-bounding functions admit
exponential concentration bounds [11], but in our cases the simpler ones are sufficient. As the
characterization of being self-bounding is independent of the underlying graph, this approach is
applicable in a wide range of settings. We are positive that this will facilitate further research in
this area.

Secondly, in order to handle the irregularities introduced by deleting edges, we employ one
more very powerful tool. This time from a quite unexpected field, namely extremal graph theory.
Szemerédis regularity lemma [57] guarantees that for any graph with sufficiently many vertices
(here sufficiently many is a very large constant) there is a partition, such that pairwise almost all
parts behave like bipartite random regular graphs. On these pairs we have all the nice properties
we need in order to study our protocols in the round-based manner that we usually do. This
results in a linear recursion (with dimension equal to the cardinality of the partition), which we
can asymptotically solve by analysing the maximal eigenvalue of the underlying matrix. There
is one drawback, however, this is only true for dense graph, where the degree is linear in the
number of vertices. However, we are certain that it also holds true in the sparse case, as there is
an extension of the regularity lemma to that case.

4.2.2 Asymptotics for Push on the Complete Graph

There have been substantial efforts to characterise the runtime of rumor spreading protocols as
precisely as possible. So far, complete characterisation of the runtime (its distribution and related
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quantities) has only been achieved for asynchronous push on complete graphs by studying the
equivalent problem of minimal paths with exponentially distributed random edge weights. In
1999 Janson [46] solved this problem, giving both its asymptotic distribution Yn

Yn − 2 lnn→ G1 +G2

where G1, G2 are Gumbel distributed random variables, as well as derived quantities like the
expectation

E[Yn] = 2 lnn+ 2γ + o(1).

γ denotes the Euler-Mascheroni constant. For synchronous push, first Pittel [56] then Doerr and
Künnemann [26] characterised the distribution and expectation of its runtime up to constant
errors. The goal of this work is to close the remaining gap, that is we completely characterise the
asymptotic distribution and derived properties like the limiting distribution and its expectation.
Will synchronous push behave the same same way as asynchronous push or are there fundamental
differences between these variants?

We answer that question in a surprising way. Let Xpush
n be the runtime of push on the

complete graph. Then there is a continuous and periodic function c and a Gumbel distributed
random variable G such that asymptotically and in distribution Xpush

n is given by
⌈
G+ log2 n+ lnn+ γ + c(log2 n− blog2 nc)

⌉
. (5)

This result is interesting in several ways. First of all it implies that the asymptotic distribution
Xn only converges on subsequences (ni)i∈N where the rational parts of (log2 ni)i∈N and (lnni)i∈N
converge to constants. Furthermore, c is a continuous, 1-periodic function with amplitude ≈ 10−9,
see Figure 2. If we want to give the limiting distribution, we need to restrict ourselves to the
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Figure 2: The function c(x)− c(0), c(0) ≈ 0.105, plotted for values of x between 0 and 2.
The periodic nature of the function and its small amplitude are evident.

aforementioned subsequences, i.e. for x, y ∈ [0, 1) subsequences ni such that log2 ni−blog2 nic → x
and lnni − blnnic → y. Such subsequences exist and on them the limiting distribution is

Xpush
ni
− (blog2 nic+ blnnic)→ dGum(−x− y − c(x)),
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where we write dGum for a discretised Gumbel distribution. From this we can derive (sharp)
bounds on the expectation, improving (2) best possible,

log2 n+ lnn+ 1.18242 ≤ E[Xpush
n ] ≤ log2 n+ lnn+ 1.18263

as the non-constant part in the expectation is of order 10−4.
The proof is based on ideas introduced by Pittel [56] as well as Doerr and Künnemann [26].

On the complete graph, push behaves differently depending on the number of informed vertices.
At first, the number of informed vertices perfectly doubles every round, as the probability of any
informed vertex to choose a previousy chosen vertex is small as long as there are ≤ √n informed
vertices. This is also observed in the well known birthday paradox. Once there are ≈ √n informed
vertices, we can again use the notion of self-bounding functions, see Section 4.2.1, to find that
the number of informed vertices is closely concentrated around its expected value in all following
rounds. This allows us to describe the behaviour of push by a deterministic recurrence relation,
see (1), given by iteratively taking expected values.

Once there is only a small linear fraction of uninformed vertices left, the behaviour changes
once more, the deterministic recurrence relation breakes down and a different phenomena takes
over. Instead of vertices choosing random neighbours, we can also view it as independent sampling
from (almost) all vertices and once a vertex is sampled we set it as informed. This point of view
has the advantage, that we know how often we have to sample in order to draw each vertex at least
once, as that is described by the Coupon Collector’s Problem. This problem is solved and we know
all desired quantities, like the expectation or the limiting distribution. So far, this was also utilized
by Doerr and Künnemann [26], however, we are not directly interested in the number of samples
or “pushes” but in the number of rounds. As we only have a small number of uninformed vertices
left, a sensible approach is to rescale by n and that is exactly what Doerr and Künnemann did in
their work. Unfortunately this is not precise enough, but finding the right relation of “pushes” to
rounds is the last building block that allowed us to precisely characterise the limiting distribution.

Summarizing, this work concludes the search for the asymptotic distribution of push on the
complete graph. Furthermore, on all sequences with convergent distribution we additionally give
the limiting distribution as well as its moments.

4.2.3 Asymptotics for Pull on the Complete Graph

After characterising the asymptotic distribution of push on the complete graph, a natural question
is to ask whether the same can be done with pull . This has attracted much less attention though,
the best result in this direction is by Doerr and Kostrygin in 2017 [25].They showed that for the
runtime of pull on the complete graph Xpull

n

Xpull
n = log2 n+ log2 lnn+O(1) with high probability and in expectation.

Compared to push, pull behaves quite a bit differently. push had its randomness at the end of
the process; i.e at first the number of informed vertices perfectly doubles every round, then they
follow a deterministic recurrence relation and at the end they behave like the Coupon Collector’s
Problem. Another benefit is, that the Coupon Collector’s Problem is very well understood as we
know its limiting distribution and related properties. In total, this allowed for a nice description
of the asymptotic distribution. In contrast, pull has its randomness at the start of the process.
Looking at the informed vertices It before some round t we have

|It+1| = |It|+ Bin
(
n− |It|, |It|/n

)
.

That is, every uninformed vertex gets informed independently with probability |It|/n. As long as
|It| = o(n), this binomial distribution can be approximated by a Poisson one, i.e.

|It+1| ≈ |It|+ Po(|It|)
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Figure 3: The left plot shows an estimate of the density of the random variable X. The
right plot shows, as a function of x ∈ [0, 1], the estimated expectation and variance of the
random variable (X + x)|Z.

which behaves like 2t in expectation. Appropriately normalized (by 2−t), we show that this
sequence is a convergent martingale, thus, there is a random variable H such that almost surely
(and in L2)

2−t|It| → H for t→∞.

Compared to push we have 2tH informed vertices for t ≈ (1/3) log2 n instead of 2t for some random
variable H. Next, pull can also be described by a deterministic recurrence relation, until there are
≈ √n uninformed vertices remaining. Then there occurs an interesting phenomena, once there
are less then ≈ √n uninformed vertices for the first time the algorithm will terminate with high
probability in the next round.

In this paper we show that there is a continuous random variable X = − log2H such that in
distribution Xpull

n is given by

blog2 n+ log2 lnn+X + 1c (6)

Set (X + x)|Z as X discretized and translated by x, that is

P
(
(X + x)|Z ≤ k

)
:= P (X ≤ k − x), k ∈ Z.

Again, (6) only converges on suitable subsequences (ni)i∈N, where log2 ni + log2 lnni − blog2 ni +
log2 lnnic → x for some x ∈ [0, 1). Thus, on these subsequences we can give the limiting distribu-
tion

Xpull
ni
− blog2 ni + log2 lnnic → (X + x)|Z for i→∞ in distribution

and all of its moments

E
[(
Xpull
ni
− blog2 ni + log2 lnnic

)k]→ E
[(

(X + x)|Z
)k] ∀ k ∈ N.

To give more detailed statements requires further knowledge about the distribution/ moments of
X that we do not have. However, we have some numerically results, see Figure 3. To get these
numbers, we have drawn one million instances of − log2H28 as a substitute for X and with these
approximated its density, as well as first and second moments of its discretized version (X + x)|Z.

There is one unexpected similarity between push and pull . Consider the following function

g = g(1) : [0, 1]→ [0, 1], x 7→ xex−1

and its iterations

g(i) : [0, 1]→ [0, 1], g(i) = g ◦ g(i−1), i ≥ 2.
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This function plays a fundamental role in the distributions of the runtime of push and pull on the
complete graph. The function c in (5), shown in Figure 2, is defined as

c(x) = −x+ lim
a→∞,a∈N

lim
b→∞,b∈N

−a+ b+ ln
(
g(b)(1− 2−a−x)

)
,

and the random variable X in (6) is given by X = − log2H and H has characteristic function

ϕ(x) = lim
t→∞

g(t)
(
eix2

−t)
.

To be able to state our results in a nicer way, expressing g(t) in a closed form would be helpful.
However, it appears to have no closed form, at least we were not able to find one. We leave it as
an open problem to further study g(t), t ∈ N.

4.2.4 The Effect of Iterativity on Adversarial Opinion Forming

We want to model the spread of opinions through a network using the theory of early-adopters,
introduced by Rogers in 2003 [58]. His insight was, that new information is introduced into the
network by so-called early-adopters, or experts, that form a first hand experience. The other
participants in the network, however, do not form a first hand experience themselves, but form
their opinion according to those of the experts they know.

Unfortunately, these experts are a prime target for any adversary that would like to influence
the opinion of the network. It might only take a few key experts to spread a falsehood, to
successfully sway the majority of the network from true to false opinion. Two real world examples
are:

The common practice of online vendors to buy positive reviews for their products by either di-
rectly giving monetary incentives to reviewers or providing them with free products. In particular,
on Amazon in certain product categories, like Bluetooth speakers and headphones, ReviewMeta
finds more than 50% of reviews to be fake, see [27].

The second example is a newly opened restaurant, that in its opening phase invites food critics
to try and rate the restaurant. However, when those critics dine at the restaurant, the restaurant
puts in more effort than it would when catering to a regular customer, e.g. by providing better
quality food and service.

In these two examples we saw different sorts of adversaries: The seller that bought his reviews
could select the reviewers as well as their opinion, the restaurant owner could choose the critics
but could only influence their opinion to some degree.

Alon et al. in 2015 [3] proposed a model that implements the above ideas. Let 0 < µ, δ < 1/2
and G = (V,E) be a graph on n vertices. The set of experts is given by E ⊆ V, |E| = µn.
Moreover, E is partitioned into E1 ∪ E0, the set of experts knowing the truth that are labelled “1”
as well as the set of experts believing a falsehood, labelled “0”. How E1 and E0 are chosen depends
on the type of adversary.

Like in the first example, the strong-adversary is allowed to choose E as well as the partition
E = E1 ∪ E0 as long as |E1| = (1/2 + δ)µn and consequently |E0| = (1/2− δ)µn.

The weak-adversary models the second example. The adversary is allowed to choose E , but the
partition E = E1 ∪ E0 is chosen randomly. Each vertex is added to E1 with probability (1/2 + δ)
and to E0 otherwise.

There are two different ways the experts can disseminate their opinions. In the non-iterative
setting, every vertex in V \ E takes the majority of its expert neighbours. That is, it is labelled
“1” if it has more neighbours in E1 than in E0. Vertices with an equal number of neighbours in E1
and E0 are labelled “1” with probability 1/2 and “0” otherwise.

In the iterative setting, vertices also take the majority opinion, however, ties are only broken,
if there is at least one expert vertex involved. Vertices that don’t have any expert neighbours stay
uninformed. This process is than iterated by considering all vertices labelled “1” as E1 and vertices
labelled “0” as E0. The process stops once all possible vertices are labelled.

14



The main question that Alon et al. posed in this context is whether iterativity helps the
adversary. Are graphs less robust, if the dissemination process is iterated compared to a single-
round dissemination?

For the weak-adversary Alon et al. answered this question by giving two examples. First,
they showed that for suitable parameters µ and δ a path is robust against the non-iterative weak
adversary but not robust against the iterative weak adversary. Secondly, they considered the union
of a star graph with a suitable expander. They found that in the non-iterative setting, putting
one “0” labelled vertex in the center of the star graph can swing the majority, as most vertices in
the expander will be decided uniformly at random, however, in the iterative setting, the expander
will be deterministically decided, resulting in a clear majority for “1”s.

The path that we just saw, is also an example where iterativity helps the strong adversary.
However, Alon et al. did not provide a second example for the strong-adversary, they rather
conjectured that there is no such example, that is they conjectured that iterativity always helps
the strong adversary.

In this work, we refute that conjecture. For µ = δ = 1/5 the graph G in Figure 4 is robust
against the iterative strong adversary but not against the non-iterative strong adversary.

I
1○

J
1○

P
1○

O
1○

D
0○

pIJ pJP

pIP

1

1

1

1 : 1

Figure 4: This figure shows the graph G. We set |I| = (719/2000)n, |P | =
(879/2000)n, |D| = 10−4n, |I| = (7/50)n and |O| = (3/50)n. Furthermore, let
pIJ = pJP = 3/7 + 10−4 and pIP = 3/7 − 10−6. The numbers on the edges and in
the nodes give the probability that each edge is present between the components and in
the components respectively. For example any edge with one node in I and one in J exists
independently with probability pIJ . Every node in D has exactly one distinct neighbour
in J and no other neighbours, i.e. every node in D has degree 1 and no two nodes in D
have a common neighbour.
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5 Robustness of Randomized Rumor Spreading
This chapter is the published version of

Daknama, R., Panagiotou, K., & Reisser, S. (2021). Robustness of randomized
rumour spreading. Combinatorics, Probability and Computing, 30(1), 37-78.

The published version is online at https://doi.org/10.1017/S0963548320000310.

My own contribution. This paper is joint work with fellow PhD student Rami Daknama
and my supervisor Konstantinos Panagiotou. We developed all results in joint discussion. Rami
Daknama wrote down Theorem 1.6 a) as well as Theorem 1.7 a), which take up about 1/8th of
the paper. His part is also included in his thesis [17]. All other parts of this paper are written by
me, in particular Theorem 1.4, Theorem 1.5, Theorem 1.6 b), Theorem 1.7 b) and their proofs as
well as the final editing. All of it includes continual improvements by Konstantinos Panagiotou.
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Abstract
In this work we consider three well-studied broadcast protocols: push, pull and push&pull. A key prop-
erty of all these models, which is also an important reason for their popularity, is that they are presumed
to be very robust, since they are simple, randomized and, crucially, do not utilize explicitly the global
structure of the underlying graph. While sporadic results exist, there has been no systematic theoretical
treatment quantifying the robustness of these models. Here we investigate this question with respect to
two orthogonal aspects: (adversarial) modifications of the underlying graph and message transmission
failures.

We explore in particular the following notion of local resilience: beginning with a graph, we investigate
up to which fraction of the edges an adversary may delete at each vertex, so that the protocols need sig-
nificantly more rounds to broadcast the information. Our main findings establish a separation among the
three models. On one hand, pull is robust with respect to all parameters that we consider. On the other
hand, pushmay slow down significantly, even if the adversary may modify the degrees of the vertices by an
arbitrarily small positive fraction only. Finally, push&pull is robust when no message transmission failures
are considered, otherwise it may be slowed down.

On the technical side, we develop two novel methods for the analysis of randomized rumour-spreading
protocols. First, we exploit the notion of self-bounding functions to facilitate significantly the round-based
analysis: we show that for any graph the variance of the growth of informed vertices is bounded by its
expectation, so that concentration results follow immediately. Second, in order to control adversarial
modifications of the graph wemake use of a powerful tool from extremal graph theory, namely Szemerédi’s
Regularity Lemma.

2020 MSC Codes: Primary 05C85; Secondary 68R10

1. Introduction
Randomized broadcast protocols are highly relevant for data distribution in large networks of
various kinds, including technological, social and biological networks. Among many others there
are three basic models in the literature, introduced in [9], [19] and [27], namely push, pull and
push&pull (or pp for short). Consider a connected graph in which some vertex holds a piece of
information; we call this vertex (initially) informed. All three models have the common charac-
teristic that they proceed in rounds. In the push model, in every round every informed vertex
chooses a neighbour independently and uniformly at random and informs it; this of course only

1An extended abstract of this paper was published in the Proceedings of the European Symposium on Algorithms 2019
(ESA ’19).
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has an effect if the target vertex was previously uninformed. Conversely, in the pull model every
round every uninformed vertex chooses a neighbour independently and uniformly at random and
asks for the information. If the asked vertex has the information, then the asking vertex becomes
informed as well. The third model, push&pull, combines both worlds: in each round, each ver-
tex chooses a neighbour independently and uniformly at random, and if one of two vertices is
informed, then afterwards both become so. We additionally assume that each message transmis-
sion succeeds independently with probability q ∈ (0, 1]. For these algorithms, the main parameter
that we consider is the random variable that counts howmany rounds are needed until all vertices
are informed, and we call these quantities the runtimes of the respective algorithms.

In the remainder we will denote the runtime of push by Tpush(G, v, q), whereG is the underlying
graph, initially the vertex v is informed, and we have a transmission success probability of q ∈
(0, 1]. Analogously we denote the runtimes of pull and push&pull by Tpull(G, v, q) and Tpp(G, v, q)
respectively. If the choice of v does not matter we will omit it in our notation. The most basic case
is when G is the complete graph Kn with n vertices. Then (see e.g. Doerr and Kostrygin [11]) it is
known that, for P ∈ {push, pull, pp} and q ∈ (0, 1] in expectation and with probability tending to
1 as n→ ∞,

TP (Kn, q)= cP (q) log n+ o( log n),
where, for q ∈ (0, 1),

cpush(q) := 1
log (1+ q)

+ 1
q
,

cpull(q) := 1
log (1+ q)

− 1
log (1− q)

,

cpp(q) := 1
log (1+ 2q)

+ 1
q− log (1− q)

,

and where we set cP (1) := limq→1 cP (q). If q is clear from the context, we write cP instead of
cP (q). In fact, the results in [11] and also [12] are much more precise, but the stated forms will be
sufficient for what follows.

Contribution and related work. In this article our focus is on quantifying the robustness of all
three models. Indeed, robustness is a key property that is often attributed to them, since they are
simple, randomized and, crucially, do not exploit explicitly the structure of the underlying graph
(apart from considering the neighbourhoods of the vertices, of course). Clearly the runtime can
vary tremendously between different graphs with the same number of vertices. Hence it is essential
to understand the impact of structural graph characteristics on the runtime of rumour-spreading
algorithms.

One result in this spirit for the pushmodel was shown in [28]. Roughly speaking, in that paper it
is shown that even on graphs with low density, if the edges are distributed rather uniformly, then
push is as fast as on the complete graph. This can be interpreted as a robustness result: starting
with a complete graph, one can delete a vast amount of edges, and as long as this is done rather
uniformly, the runtime of push is affected insignificantly. To state the result more precisely, we
need the following notion.

Definition 1.1 ((n, δ,�, λ)-graph). Let G be a connected graph with n vertices that has minimum
degree δ and maximum degree �. Let μ1 �μ2 � · · ·�μn be the eigenvalues of the adjacency
matrix of G, and set

λ = max
2�i�n

|μi| =max{|μ2|, |μn|}.
We will call G an (n, δ,�, λ)-graph.
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In this paper we are interested in the case where G gets large, that is, when n→ ∞. Hence
all asymptotic notation in this paper is with respect to n; in particular, ‘with high probability’, or
w.h.p. for short, means with probability 1− o(1) when n→ ∞.

Definition 1.2 (expander sequence). Let G = (Gn)n∈N be a sequence of graphs, where Gn is a
(n, δn,�n, λn)-graph for each n ∈N. We say that G is an expander sequence if �n/δn = 1+ o(1)
and λn = o(�n).

Note that if we consider any sequence G = (Gn)n∈N of graphs this always implicitly defines
δn,�n and λn as in Definition 1.2. Expander graphs have found numerous applications in com-
puter science and mathematics; see e.g. the survey [25]. If G is an expander sequence, then
intuitively this means that for n large enough, the edges ofGn are rather uniformly distributed. For
amore formal statement see Lemma 2.7. Moreover, note that our definition of expander sequences
excludes the case when �n is bounded. This is actually a necessary condition for our robustness
results to hold; see [13]. With all these definitions at hand we can state the result from [28] that
quantifies the robustness of push with respect to the network topology, that is, the runtime is
asymptotically the same as on the complete graph Kn.

Theorem 1.1. Let G = (Gn)n∈N be an expander sequence. Then w.h.p.

Tpush(Gn)= cpush(1) log n+ o( log n).

Apart from expander sequences, results in the form of Theorem 1.1 (where the asymptotic
runtimes of one or more of these algorithms are determined) were also shown for sufficiently
dense Erdős–Rényi random graphs [16], random regular graphs [15] as well as hypercubes [28].
Moreover, the order of the runtime on various models that describe social networks was investi-
gated. The Chung–Lu model was studied in [17], preferential attachment graphs were explored
in [10], and geometric graphs were examined in [18]. A somewhat different approach is to derive
general runtime bounds that hold for all graphs and depend only on some graph parameter, e.g.
conductance [6, 20], vertex expansion [21] or diameter [5, 14, 23]. Furthermore, several variants
of push, pull and push&pull were studied. These include vertices being restricted to answer only
one pull request per round [7], vertices being allowed to contact multiple neighbours per round
[11, 28], vertices not calling the same neighbour twice [10] and asynchronous versions [1, 2, 4, 29].
Finally, besides [11], robustness of these rumour-spreading algorithms with respect to message
transmission failures was also studied by Elsässer and Sauerwald in [13]. It was shown for any
graph that if a message fails with probability 1− p, then the runtime of push increases at most by
a factor of 6/p.

In this work our focus is on three subjects concerning the robustness of rumour spreading.
Our first (and not unexpected) result extends Theorem 1.1 to the runtimes of pull and push&pull.
In particular, we show that none of the three protocols slows down or speeds up on graphs with
good expansion properties compared to its runtime on the complete graph. This motivates us to
investigate how severely a graph with good expansion properties has to be modified to increase
the respective runtimes.

In our second contribution, which is also the main result and which differs from what was
treated in previous works, we propose and study a novel approach to quantifying robustness. In
particular, we investigate the impact of adversarial edge deletions, where we use the well-known
concept of local resilience; see e.g. [8, 31]. To be specific, we explore up to which fraction of edges
an adversary needs to be allowed to delete at each vertex to slow down the process by a significant
amount of time, i.e. by�( log n) rounds. Here we discover a surprising dichotomy in the following
sense. On the one hand, we show that neither pull and push&pull can be slowed down by such
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adversarial edge deletions – in essentially all but trivial cases, where the fraction is so large that the
graph may become (almost) disconnected. On the other hand, we demonstrate that even a small
number of edge deletions is sufficient to slow down push by �( log n) rounds. In other words,
we find that in contrast to pull and push&pull, the push protocol is not resilient to adversarial
deletions and lacks (in this specific sense) the robustness of the other two protocols.

As our third subject, we generalize the previous results by additionally considering message
transmission failures that occur independently with probability 1− q ∈ [0, 1). On the positive side,
we show that for arbitrary q ∈ (0, 1], all three algorithms inform almost all vertices at least as fast
as in an expander sequence in spite of adversarial edge deletions. However, if we want to inform
all vertices, only pull is not slowed down by adversarial edge deletions for all values of q; push can
be slowed down as before, and push&pull is a mixed bag, in that for q= 1 it cannot be slowed
down whereas for q< 1 it can. Furthermore, in general it is also possible to speed up push&pull
by deleting edges, which is however not surprising as the star-graph deterministically finishes in
at most two rounds.

Summarizing, this work enhances previous (robustness) results, particularly the ones concern-
ing precise asymptotic runtimes and random transmission failures. Crucially, we introduce and
study the concept of local resilience as a method to investigate robustness. However, apart from
that, in this paper we develop two new general methods for the analysis of rumour-spreading
algorithms.

• The most common approach in the current literature for the study of the runtime is to deter-
mine the expected number of newly informed vertices in one or more rounds and to show
concentration, for example by bounding the variance. Achieving this, however, is often quite
complex and makes laborious and lengthy technical arguments necessary. Here we use the
theory of self-bounding functions (see Section 2), which allows us to cleanly upper-bound the
variance by the expected value. The argument works for all three investigated algorithms and
the bound is valid for all graphs. We are certain that this method will also facilitate future
work on the analysis of rumour-spreading algorithms.

• Studying the robustness of the protocols is a challenging task, as the adversary (as described
previously) has various options to modify the graph, for example by introducing a high vari-
ance in the degrees of the vertices; this turns out to be particularly problematic in the case of
push&pull. Here we demonstrate that such types of irregularities can be handled universally
by applying a powerful tool from a completely different area, namely extremal graph theory.
In particular, we use Szemerédi’s Regularity Lemma (see e.g. [30]), which allows us to parti-
tion the vertex set of a graph such that nearly all pairs of sets in the partition behave nearly
like perfect regular bipartite graphs. This allows us to apply our methods on these regular
pairs; eventually we obtain a linear recursion that can be solved by analysing the maximal
eigenvalue of the underlying matrix.

1.1 Results
Our first result addresses the question about how fast rumours spread on expander graphs; in
order to obtain a concise statement, the occurrence of independent message transmission failures
is also considered.

Theorem 1.2. Let G = (Gn)n∈N be an expander sequence and let q ∈ (0, 1]. Then w.h.p.

(a) Tpush(Gn, q)= cpush(q) log n+ o( log (n)),
(b) Tpull(Gn, q)= cpull(q) log n+ o( log (n)),
(c) Tpp(Gn, q)= cpp(q) log n+ o( log (n)).
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The first statement is an extension of Theorem 1.1 and its proof is a straightforward adaptation
of the proof in [28]. We omit it. The contribution here is the proof of (b) and (c). Next we consider
the case with edge deletions in addition to the message transmission failures.

Theorem 1.3. Let 0< ε < 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let G̃ =
(G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex keeps at
least a (1/2+ ε) fraction of its edges. Then w.h.p.

(a) Tpull(G̃n, q)= cpull(q) log n+ o( log n),
(b) Tpp(G̃n, 1)� cpp(1) log n+ o( log n), when additionally assuming that δ(Gn)� αn for some

constant 0< α � 1.

This result demonstrates unconditionally the robustness of pull, and conditionally on q= 1
the robustness of push&pull on dense graphs, in the case of edge deletions, that is, the runtime is
asymptotically the same as in the complete graph. Moreover, we even show that push&pull may
profit from edge deletions in contrast to being slowed down; see Subsection 3.6 for an example.
The proof of this result, especially the statement about push&pull, is rather involved, since the
original graph may become quite irregular after the edge deletions. Here we use, among many
other ingredients, the aforementioned decomposition of the graph given by Szemerédi’s Regularity
Lemma.

Note that Theorem 1.3 does not consider push and push&pull (when q �= 1) at all. Indeed, our
next result states that in these cases the behaviour is rather different and that the algorithms may
be slowed down.

Theorem 1.4. Let ε > 0 and q ∈ (0, 1]. Then there is an expander sequence G = (Gn)n∈N and a
sequence of graphs G̃ = (G̃n)n∈N with the following properties. Each G̃n is obtained by deleting edges
of Gn such that each vertex keeps at least a (1− ε) fraction of its edges. Moreover, w.h.p.

(a) Tpush(G̃n, q)� cpush(q) log n+ ε/(2q) log n+ o( log n),
(b) Tpp(G̃n, q)� cpp(q) log n+ (ε/(8q)− εq3/5) log n+ o( log n).

Nevertheless, not all hope is lost. On the positive side, the next result states that push and
push&pull are able to inform almost all vertices as fast as on the complete graph in spite of
adversarial edge deletions. In this sense, we obtain an almost-robustness result for these cases.

Theorem 1.5. Let 0< ε < 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let G̃ =
(G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex keeps at least
a (1/2+ ε) fraction of its edges. For P ∈ {push, pp}, let T̃P denote the number of rounds needed to
inform at least n− n/ log n vertices. Then w.h.p.

(a) T̃push(G̃n, q)= log1+q (n)+ o( log n),
(b) T̃pp(G̃n, q)� log1+2q (n)+ o( log n), when additionally assuming that δ(Gn)� αn for some

0< α � 1.

We conjecture that there is also a version of Theorem 1.5(b) that is true for push&pull on sparse
graphs; to be precise we conjecture that in the setting of Theorem 1.5(b), T̃pp(G̃n)� log1+2q(n)+
o(log n), without further restrictions on Gn, that is, push&pull cannot be slowed down, informing
almost all vertices.

As a final remark, note that Theorems 1.3 and 1.5 are tight in the sense that if an adversary
may delete up to half of the edges at each vertex, then there are expander graphs that become
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disconnected such that their components have linear size. On those graphs a linear fraction of the
vertices will remain uninformed forever.

Outline. The rest of this paper is structured as follows. In Section 2 we collect and prove several
important facts; this part of the paper also contains our technical contribution concerning
the analysis through self-bounding functions. In Section 3.1 we show that pull is as fast on
expanders with (or without) deleted edges as it is on the complete graph. Section 3.2 treats
push&pull on expanders without deleted edges. In the remaining subsections we focus on the
cases that may be slowed down by edge deletions. In Section 3.3 we show that adversarial edge
deletions cannot slow down the time until push has informed almost all vertices, by giving a
coupling to the case without edge deletions. Conversely, in Section 3.4 we show that the time
until push has informed all vertices can be slowed down by edge deletions, even if only a few
edges are deleted. Then in Section 3.5 we show that push&pull informs almost all vertices of
dense graphs fast in spite of adversarial edge deletions. We utilize a version of Szemerédi’s
Regularity Lemma to get a well-behaved partition of the vertex set that is suitable for performing a
round-based analysis. However, if q< 1, adversarial edge deletions can slow down or speed up the
time until push&pull has informed all vertices for nearly all values of q; we show this in Section 3.6.

Further notation. Let G= (V , E) denote a graph with vertex set V and edge set E⊆ (V
2
)
. We

will denote the set of neighbours of any vertex v ∈V by NG(v) or by N(v), and we will denote
its degree by dG(v) := |NG(v)| or by d(v); δG or δ and �G or � denote the minimum and
maximum degree of G. Similarly the neighbourhood of any set of vertices S⊆V is defined by
NG(S) := ∪v∈SNG(v). Furthermore, letU,W ⊆V withU ∩W = ∅ be two disjoint vertex sets; then
E(U,W)= EG(U,W) denotes the set of edges with one vertex in U and one vertex in W and let
e(U,W)= eG(U,W) := |EG(U,W)|. With EG(U) we denote the set of edges with both vertices in
U; eG(U) := |EG(U)|. For any round t ∈N and P ∈ {push, pull, pp}, we let I(P)

t (G) denote the set
of vertices of G informed by push, pull and push&pull respectively at the beginning of round t
and |I(P)

1 | = 1; if the underlying graph is clear from the context we will omit it; if we consider a
sequence of graphs G = (Gn)n∈N and a sequence of times t = (t(n))n∈N, then

I(P)
t (G)= (I(P)

t(n)(Gn))n∈N

is also a sequence. Similarly, U(P)
t :=V\I(P)

t denotes the set of uninformed vertices. By log we
refer to the natural logarithm. For any event A we will write Et[A] instead of E[A|It] for the
conditional expectation and Pt[A] instead of P[A|It] for the conditional probability. Finally we
want to clarify our use of Landau symbols. Let a, b ∈R and f be a function. The terms a� b+ o(f )
and a� b− o(f ) mean that there exist positive functions g, h ∈ o(f ) such that a� b+ g and a�
b− h. Consequently a= b+ o(f ) means that there exists a positive function g ∈ o(f ) such that
a ∈ [b− g, b+ g].

2. Tools and techniques
In this section we collect and prove statements about our protocols and properties of expander
sequences. We begin by applying the previously mentioned notion of self-bounding functions
to derive universal and simple-to-apply concentration results for our random variables, i.e. the
number of informed vertices after a particular round. Then we extend the concentration results
to more than one round. In the last part we recall the well-known Expander Mixing Lemma and
utilize it to derive properties (weak expansion, path enumeration) for the case where we delete
edges from our graphs.
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Self-bounding functions. Our main technical new result in this section is the following bound
on the variance for the number of informed vertices in any given round; it is true for any graph
and any set of informed vertices.

Lemma 2.1. Let G be a graph, t ∈N and It = I(P)
t (G) for P ∈ {push, pull, pp}. Then

Var[|It+1| |It]�E[|It+1| |It].

Lemma 2.1 follows directly from Lemmas 2.2 and 2.3. Before stating them we introduce the
notion of self-bounding functions.

Definition 2.1 (self-bounding function). Let X be a set and m ∈N. A non-negative function
f :Xm →R is self-bounding if there exist functions fi :Xm−1 →R such that, for all x1, . . . , xm ∈ X
and all i= 1, . . . ,m,

0� f (x1, . . . , xm)− fi(x1, . . . , xi−1, xi+1, . . . , xm)� 1

and ∑
1�i�m

(f (x1, . . . , xm)− fi(x1, . . . , xi−1, xi+1, . . . , xm))� f (x1, . . . , xm).

A striking property of self-bounding functions is the following bound on the variance.

Lemma 2.2 ([3]). For a self-bounding function f and independent random variables X1, . . . , Xm,
m ∈N,

Var[f (X1, . . . , Xm)]�E[f (X1, . . . , Xm)].

Lemma 2.3. Let G be a graph, t ∈N, and let It = I(P)
t (G) forP ∈ {push, pull, pp}. Then, conditional

on It, there exists m ∈N, independent random variables X1, . . . , Xm and a self-bounding function
f = f (P) such that |It+1| = f (X1, . . . , Xm).

Proof. We will prove in detail the result for push, and then we show what needs to be modified
in order to obtain the statement in the case of pull and push&pull. Let It = I(push)t , n ∈N be the
number of vertices of G, i.e. V = [n], and f : [n]|It | →R with

(x1, . . . , x|It |) �→ |It| +
∑

1�k�|It |
1[xk ∈Ut]1[∀ � < k : xk �= x�].

Moreover, let (Xi)1�i�|It | be independent random variables, where Xi is a uniformly ran-
dom neighbour of the ith vertex – according to an arbitrary ordering – in It . We argue that
f (X1, . . . , X|It |)= |It+1|. Consider v ∈ It ; then v is counted by the |It| term in f . For v ∈ It+1\It ,
let v1, . . . , vs ∈ It , s ∈N be the informed vertices with random neighbour v in round t, i.e. Xv1 =
· · · = Xvs = v andXu �= v for all other u ∈ It . Assume further that v1 < v2 < · · · < vs. For k= v1 the
term1[Xk ∈Ut]1[∀ � < k : xk �= x�]= 1 asXv1 = v ∈Ut and for all i� v1 it holds thatXi �= Xvi . For
k= vr , 2� r� s the term 1[∀ � < k : xk �= x�]= 0 as v1 < vr and Xv1 = Xvr = v. Thus every vertex
v ∈ It+1\It is counted exactly once by f . Further, set

fi(x1, . . . , xi−1, xi+1, . . . , x|It |)= |It| +
|It |∑

k=1,k�=i
1[xk ∈Ut]1[∀ j< k, j �= i : xj �= xk], 1� i� |It|.
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The function fi arises from f by leaving the ith variable out of consideration, that is, the push of
the ith vertex has no effect. Then by definition f − fi ∈ {0, 1} for all 1� i� |It|, and in fact we have

f − fi = 1[xi ∈Ut]1[∀ j �= i : xi �= xj].

This quantity is precisely the difference in informed vertices after round t, assuming the ith vertex
did not push. Furthermore∑

1�i�|It |
(f − fi)�

∑
1�i�|It |

1[xi ∈Ut]1[∀ j �= i : xi �= xj]� f .

Thus f has the self-bounding property, which establishes the claim in the case of push. The proof
for pull is completely analogous, where we use

f (pull) : [n]|Ut | →R, (x1, . . . , x|Ut |) �→ |It| +
∑
k∈Ut

1[xk ∈ It]

and, similarly, for push&pull we use f (pp) : [n]n →R with

(x1, . . . , xn) �→ |It| +
∑

1�k�n
1[k ∈ It]1[xk ∈Ut]1[∀ j ∈ {1, . . . , k} ∩ It : xk �= xj]

+
∑

1�k�n
1[k ∈Ut]1[xk ∈ It]1[∀ w ∈ It : xw �= k].

Here it is useful to see that the two sums in f (pp) are complementary, that is, only one of the
summands for index k can be 1. Thus the functions f (pull)i and f (pp)i are obtained analogously to
the push case.

Remark 2.1. Let G= (V , E) be a graph. Lemma 2.3 also applies to subsets of It+1, that is, for any
U ⊂V and conditioned on It we have that |It+1 ∩U| and |(It+1 ∩U) \ It| are self-bounding.

The following proposition gives a tool that we will use in order to extend our round-wise
analysis to longer phases.

Proposition 2.4. Let (Ai)i∈N0 be a sequence of events, 0< c< 1, δ > 0 and t1 � t0 � 1, such that

P[At |At0 , . . . ,At−1,A0]� 1− ct−t0δ for all t0 � t� t1.

Then

P
[ t1⋂
t=t0

At |A0

]
� 1− δ/(1− c).

Proof. Using the definition of conditional probability we obtain, as c< 1,

P
[ t1⋂
t=t0

At |A0

]
=

t1∏
t=t0

P[At |At0 , . . . ,At−1,A0]

�
t1∏

t=t0

(1− ct−t0δ)

� 1−
t1∑

t=t0

(ct−t0δ)
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= 1− δ

t1−t0∑
t=0

ct

� 1− δ/(1− c).

We give two typical applications of the previous lemmas, similar to what we will encounter
several times later in the paper. The first lemma addresses the case where we have a lower bound
for the expected number of informed vertices after one round.

Lemma 2.5. LetP ∈ {push, pull, pp} and It = I(P)
t . Assume that there is c> 1 such thatEt[|It+1|]�

c|It| for all t as long as n/f (n)� |It|� n/g(n) for some functions 1� f (n)� g(n)� n, f = o(n).
Assuming |It0 |� n/f (n), then there is τ = logc (f (n)/g(n))+ o( log n) such that w.h.p.

|It0+τ |� n/g(n).

Proof. Let t� t0 and n/f (n)� |It|� n/g(n). Lemma 2.1 guarantees that Vart[|It+1|]�Et[|It+1|],
and applying Chebyshev’s inequality gives

Pt[| |It+1| −Et[|It+1|]|�Et[|It+1|]2/3]� 1−Et[|It+1|]−1/3 � 1− |It|−1/3. (2.1)

Consider the events

At = |It|�Et−1[|It|]−Et−1[|It|]2/3 or |It|� n/g(n).

The intersection ofAt0+1, . . . ,At implies inductively that either |It|� n/g(n) or

|It|� (1−Et−1[|It|]−1/3)Et−1[|It|]
� (1− (c|It−1|)−1/3)c|It−1|
� ((1− (c|It0 |)−1/3)c)t−t0 |It0 |. (2.2)

We obtain with (2.1)

Pt0 [At+1 |At0+1, . . . ,At , |It| < n/g(n)]� 1− ((1− (c|It0 |)−1/3)c)−(t−t0)/3|It0 |−1/3,

and otherwise

Pt0 [At+1 |At0+1, . . . ,At , |It|� n/g(n)]= 1.

Choose

τ := t − t0 = logc (f (n)/g(n))+ o( log n)

as small as possible such that the lower bound for |It+1| in (2.2) is � n/g(n), that is, the lower
bound in (2.2) is < n/g(n) for t = t0 + τ . Combining the two conditional probabilities we obtain
for all t0 � t� t0 + τ
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Pt0 [At+1 |At0+1, . . . ,At]� 1− ((1− (c|It0 |)−1/3)c)−(t−t0)/3|It0 |−1/3.
Applying Proposition 2.4 then yields the claim.

In the second lemma we make the stronger assumption that we can determine asymptotically
the expected number of informed vertices after one round. Here we assume that we begin with a
‘small’ set of informed vertices, say of size

√
log n, and want to reach a set of size nearly linear in n.

Lemma 2.6. Assume that there is some c> 1 such that Et[|It+1|]= (1+ o(1))c|It| for all t as
long as

√
log n� |It|� n/log n. Assume furthermore that |It0 |�

√
log n. Then there are τ1, τ2 =

logc (n/|It0 |)+ o( log n) such that w.h.p.

|It0+τ1 |�
n

log n
� |It0+τ2 |.

Proof. Lemma 2.5, setting f = n/
√
log n and g = log n directly implies the existence of τ1. To

find τ2, let At be the event ||It| −Et−1[|It|]|�Et−1[|It|]2/3. There is h(n) ∈ o(1) such that, for
c− := (1− h(n))c and c+ := (1+ h(n))c, we have that Et[|It+1|]� c+|It| and Et[|It+1|]� c−|It|.
Using this notation, the eventsAt0+1, . . . ,At+1 together imply inductively that

|It+1|� (1+Et[|It+1|]−1/3)Et[|It+1|]
� (1+ (c−|It|)−1/3)c+|It|
� ((1+ (c−|It0 |)−1/3)c+)t−t0 |It0 |

for all t such that the right-hand side is bounded by n/ log n. Moreover, for all such t,

|It+1|� (1−Et[|It+1|]−1/3)Et[|It+1|]
� (1− (c−|It|)−1/3)c−|It|
� ((1− (c−|It0 |)−1/3)c−)t−t0 |It0 |.

Thus, asAt only depends on It , it follows with (2.1) that

Pt0 [At+1 |At0+1, . . . ,At]� 1− ((1− (c−|It0 |)−1/3)c−)−(t−t0)/3|It0 |−1/3.
Applying Proposition 2.4 yields the existence of τ2.

Expander sequences. In this section we collect some important properties of expander sequences
that we are going to use later. We start by stating a version of the well-known Expander Mixing
Lemma applied to our setting of expander sequences.

Lemma 2.7 ([28, Corollary 2.4]). Let G = (Gn)n∈N = ((Vn, En))n∈N be an expander sequence.
Then, for Sn ⊆Vn such that 1� |Sn|� n/2, it is∣∣∣∣e(Sn,Vn\Sn)− �n|Sn|(n− |Sn|)

n

∣∣∣∣ = o(�n)|Sn|.

The following result is a consequence of the Expander Mixing Lemma that applies to graphs in
which some edges were removed. It seems very simple but it turns out to be surprisingly useful.

Lemma 2.8. Let G = (Gn)n∈N = ((Vn, En))n∈N be an expander sequence. Let ε > 0 and set G̃ =
(G̃n)n∈N, where each G̃n is obtained from Gn by deleting edges such that each vertex keeps at least
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a (1/2+ ε) fraction of its edges. For each n ∈N let Sn ⊆Vn. Then there is n0 ∈N such that, for all
n� n0,

eG̃n
(Sn,Vn\Sn)� εeGn(Sn,Vn\Sn).

Proof. Without loss of generality we assume that |Sn|� n/2. Since at most (1/2− ε)�n edges are
deleted at each vertex, we immediately obtain that

eG̃n
(Sn,Vn\Sn)� eGn(Sn,Vn\Sn)− �n(1/2− ε)|Sn|.

Using Lemma 2.7 and choosing n0 large enough such that
o(�n)
�n

n
n− |Sn| < ε for all n� n0,

we obtain that
(1− ε)eGn(Sn,VN\Sn)− �n(1/2− ε)|Sn|

� (1− ε)
�n|Sn|(n− |Sn|)

n
− o(�n)|Sn| − �n(1/2− ε)|Sn|

= �n|Sn|(n− |Sn|)
n

(
1− ε − o(�n)

�n

n
n− |Sn| − n(1/2− ε)

n− |Sn|
)
.

As n− |Sn|� n/2, the last expression is > 0. Hence
eG̃n

(Sn,Vn\Sn)� εeG(Sn,Vn\Sn)+ (1− ε)eG(Sn,Vn\Sn)− �n(1/2− ε)|Sn|
� εeGn(Sn,Vn\Sn).

Next we give a lemma that counts the number of paths between two arbitrary vertices of a dense
graph satisfying a weak expander property (as for example guaranteed by Lemma 2.8). This will
later be used to give a lower bound on the probability of any vertex being informed after a given
constant number of rounds.

Lemma 2.9. Let G= (V , E), |V| = n. Assume that there is α > 0 such that d(v)� αn for all v ∈V
and e(W,V\W)� α|W| |V\W| for all W ⊆V. Then, for all u,w ∈V, there is 1� d� 8/α2 + 2
such that there are at least (α4/64)d+1nd−1 paths of length d from u to w.

Proof. Assume α � 1/2, as otherwise the claim is trivial (with d ∈ {1, 2}). We define sequences
(Si)i∈N and (Hi)i∈N ⊆V as follows. Set S1 = {u} ∪N(u),W = {w} ∪N(w) and H1 =V\(S1 ∪W)
and proceed for i� 1 as follows. Let S̃i+1 ⊆Hi be the set of vertices v ∈Hi with |N(v)∩ Si|�
α2n/8. Set Si+1 = Si ∪ S̃i+1 and Hi+1 =Hi\S̃i+1. Then we claim that, for all i� 1,

e(Si,W)� α3n2/2 or |Si+1|� |Si| + α2n/8. (2.3)
To see this, assume that e(Si,W)� α3n2/2. Since |Si|, |W|� αn, the weak expansion property
guarantees that

e(Si,Hi)= e(Si,Hi ∪W)− e(Si,W)� α|Si| |Hi ∪W| − α3n2/2� α2(1− α)n2 − α3n2/2,
and using α � 1/2 we obtain that e(Si,Hi)� α2n2/4. To complete the proof of (2.3) we compute
the size of S̃i+1. As |N(v)∩ Si|� α2n/8 for all v ∈Hi\S̃i+1 and |N(v)∩ Si|� n, we get

α2n2

4
� e(Si,Hi)� |S̃i+1|n+ |Hi|α

2n
8

.
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Since |Hi|� n we immediately get that |S̃i+1|� α2n/8, which shows (2.3). We next show that
there are (sufficiently) many paths for each vertex in Si to u. More precisely, let 1� j� 8/α2 be
such that e(Si,W)< α3n2/2 for all 1� i� j. For those i we have by (2.3) that |Si|� i · α2n/8.
We claim that for all v ∈ Si \ {u} there is d� i such that v has at least (α4/64)d · nd−1 paths of
length d with endpoint u. We show the claim by induction on i. The base case v ∈ S1 \ {u} is
clear, as 1� α4/64. For the induction step assume that v ∈ Si+1\Si, v �= u. Then by construction
|N(v)∩ Si|� α2n/8. Thus, by induction hypothesis, there is d� i such that v has at least α2n/(8i)
neighbours with at least (α4/64)dnd−1 paths with endpoint u. As i� 8/α2 this gives that v has at
least α2n/(8i) · (α4/64)dnd−1 � (α4/64)d+1nd paths of length d + 1� i+ 1 with endpoint u, and
this accomplishes the induction step. With all these facts at hand we finally show the claim of the
lemma. Let j� 8/α2 be the first index such that e(Sj,W)� α3n2/2, and let W′ ⊆W be such that
|N(v)∩ Sj|� α3n/4 for all v ∈W′. Thus

α3n2

2
� e(Sj,W)� |W′|n+ |W|α

3n
4

,

and thus |W′|� α3n/4. Then there is d� j andW′′ ⊆W′ such that |W′′|� |W′|/j and every v in
W′′ has at least α3n/(4j) neighbours with at least (α4/64)dnd−1 paths of length d with endpoint u.
Therefore every v ∈W′′ has at least

(α4/64)dnd−1 · α3n/(4j)� (α4/64)d+1nd/j

paths of length d + 1 with endpoint u. This in turn gives that there are at least

|W′|/j · (α4/64)d+1nd/j� α3/4 · (α4/64)d+2nd+1

paths of length d + 2 from w to u, and the proof is completed.

Next comes a technical lemma that, given a small set, quantifies the number of vertices for
which only a small fraction of their neighbourhood intersects that given set.

Lemma 2.10. Let G = (Gn)n∈N = ((Vn, En))n∈N be an expander sequence. Let ε > 0 and let G̃ =
(G̃n)n∈N, where each G̃n it is obtained from Gn by deleting edges such that each vertex keeps at least
a (1/2+ ε) fraction of its edges. Let An ⊆Vn with |An| = o(n).

(a) There is Bn ⊆An with |Bn| = (1− o(1))|An| such that, for all u ∈ Bn,

|NG̃n
(u)∩An|

|NG̃n
(u)| = o(1).

(b) There is Bn ⊆Vn \An with |Vn \ (An ∪ Bn)| = o(|An|) such that, for all v ∈ Bn,

|NG̃n
(v)∩An|

|NG̃n
(v)| = o(1).

Proof. Let δn,�n denote the minimum and maximum degree of Gn. Lemma 2.7 yields that

eGn(An,Vn \An)= �n|An| |Vn \An|
n

+ o(�n)|An| = (1+ o(1))�n|An|.
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As there are a maximum of �n|An| edges with at least one point in An, we get that eGn(An)=
o(�n)|An|. Since we obtain G̃n from Gn by deleting edges,

eG̃n
(An)= o(�n)|An|. (2.4)

With this fact at hand we show (a). Let η > 0 and call a vertex u ∈An bad if |NG̃n
(u)∩An|�

η|NG̃n
(u)|. Since NG̃n

(u)� δn/2, we obtain for any bad u that |NG̃n
(u)∩An|� ηδn/2. As δn =

(1− o(1))�n, we infer from (2.4) that the number of bad vertices is o(|An|).
To see (b), again let η > 0 and this time call a vertex v ∈Vn \An bad if |NG̃n

(v)∩An|�
η|NG̃n

(v)|. Then, for any such bad v, we know that |NG̃n
(v)∩An|� ηδn/2. As before, using (2.4)

we readily get that the number of bad v is o(|An|).

We conclude our preliminary section by giving a lemma that crudely bounds the time needed
until at least ω(1) vertices are informed.

Lemma 2.11. Let 0< ε � 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let G̃ =
(G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex keeps at least a
(1/2+ ε) fraction of its edges. Let P ∈ {push, pull, pp} and suppose that |I(P)

t | < √
log n. Then there

is τ = o( log n) such that w.h.p. |I(P)
t+τ |�

√
log n.

Proof. Recall that the probability that v ∈Ut gets informed by pull is q|N(v)∩ It|/|N(v)|. Thus

Pt[|I(pull)t+1 \It| = 0]=
∏

u∈N(It)∩Ut

(
1− q|N(u)∩ It)|

|N(u)|
)
� e−qe(Ut ,It)/�n .

Similarly we obtain for push

Pt[|I(push)t+1 \It| = 0]=
∏
v∈It

|N(v)∩ It|
|N(v)| =

∏
v∈It

(
1− |N(v)∩Ut|

|N(v)|
)
� e−qe(It ,Ut)/�n .

The same bound is obviously also true for push&pull. Thus, for all P ∈ {push, pull, pp},
Pt[|I(P)

t+1\It|� 1]� 1− e−qe(Ut ,It)/�n .

As Lemmas 2.7 and 2.8 imply that e(Ut , It)� (1+ o(1))ε�n|It|, there is c ∈ (0, 1) such that
P[|I(P)

t+1\It|� 1]> c. Define τ := �(2/c)√log n� and X = Bin(τ , c) with E[X]= cτ and Var[X]=
τ (1− c)c. Then, using Chebyshev,

Pt[|I(P)
t+τ |�

√
log n]� Pt[X �

√
log n]� Pt[|X −E[X]|�E[X]/2]� 4Var[X]/E[X]2 = o(1).

3. Proofs
3.1 Proof of Theorems 1.2(b) and 1.3(a) – edge deletions do not slow down pull
Let 0< ε � 1/2. In this section we study the runtime of pull in the case in which the input graph is
an expander, and where at each vertex at most a (1/2− ε) fraction of the edges is deleted. The run-
time on expander sequences without edge deletions, i.e. the setting in Theorem 1.2(b), is included
as the special case where we set ε = 1/2. In contrast to previous proofs, in the analysis of pull the
‘standard’ approach that consists of showing, for example, that Et[|It+1 \ It|]≈ |It| fails. The main
reason is that the graph between It and Ut might be quite irregular, so that, depending on the
actual state, Et[|It+1 \ It|]≈ c|It| for some c< 1. However, we discover a different invariant that
is preserved, namely that the number of edges between It and Ut behaves in an exponential way.
With Lemmas 2.7 and 2.8 we can then relate this to the number of informed vertices.
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Lemma 3.1. Consider the setting of Theorem 1.3(a) and let It = I(pull)t .

(a) Let
√
log n� |It|� n/ log n. Then

|e(Ut+1, It+1)− (1+ q)e(Ut , It)|� |It|−1/3e(Ut , It)

with probability at least 1−O(|It|−1/3).
(b) Let |Ut|� n/ log n. Then Et[|Ut+1|]= (1− q+ o(1))|Ut|.

Proof. We start with (a). Let Dt = e(Ut+1, It+1)− e(Ut , It) and for u ∈Ut let Xu be the random
variable that indicates whether u gets informed in round t + 1. Then

Et[Dt]=
∑
u∈Ut

∑
v∈N(u)∩Ut

Et[Xu(1− Xv)]−
∑
u∈Ut

Et[Xu] · |N(u)∩ It|

=
∑
u∈Ut

q
|N(u)∩ It|

|N(u)|
(( ∑

v∈N(u)∩Ut

1− q
|N(v)∩ It|

|N(v)|
)

− |N(u)∩ It|
)
.

The second sum is at most |N(u)|, so obviously Et[Dt]� qe(Ut , It). To get a lower bound consider
a largest set Ũ ⊆Ut such that |N(u)∩ It|/|N(u)| = o(1) for all u ∈ Ũ. From Lemma 2.10(b) we
obtain that |Ut \ Ũ| = o(|It|), and so

Et[Dt]�
∑
u∈Ut

q|N(u)∩ It|
(( ∑

v∈N(u)∩Ũ

1
|N(u)| − o

(
1

|N(u)|
))

− |N(u)∩ It|
|N(u)|

)
.

Consider furthermore Û ⊆ Ũ such that |N(u)∩ Ũ|/|N(u)| = 1− o(1) and thus also |N(u)∩
It|/|N(u)| = o(1) for all u ∈ Û. Lemma 2.10(b) again yields that we can choose Û such that
|Ut\Û| = o(|It|), and thus

Et[Dt]� (1− o(1))
∑
u∈Û

q|N(u)∩ It|
( |N(u)∩ Ũ|

|N(u)| − |N(u)∩ It|
|N(u)|

)
−

∑
u∈Ut\Û

|N(u)∩ It|

� (q− o(1))e(Ut , It)− 2e(Ut\Û, It).

According to Lemmas 2.7 and 2.8 we have that e(Ut , It)= �(|It|�n). But

e(Ut\Ũ, It)� |Ut\Ũ|�n = o(|It|�n).

Thus Et[e(Ut+1, It+1)]= (1+ q− o(1))e(Ut , It). In the next step we bound the variance. For each
edge e let Xe be the indicator random variable that denotes the events that e ∈ E(Ut+1, It+1). Thus

e(Ut+1, It+1)=
∑
e∈E

Xe = 1
2

∑
u∈V

∑
v∈N(u)

X{u,v}.

Using the fact that Xe and Xe′ are independent for all e, e′ ∈ E with e∩ e′ = ∅,

Var[e(Ut+1, It+1)]=Var
[∑
e∈E

Xe

]

=
∑
e,e′∈E

E[XeXe′]−E[Xe]E[Xe′]

�
∑
u∈V

∑
v,v′∈N(u)

E[X{u,v}X{u,v′}]
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��n
∑
u∈V

∑
v∈N(u)

E[X{u,v}]

= 2�nE[e(Ut+1, It+1)].
Since

Et[e(Ut+1, It+1)]= (1+ q− o(1))e(Ut , It)= �(�n|It|),
by Lemmas 2.7 and 2.8 and

Var[e(Ut+1, It+1)]� 2�nEt[e(Ut+1, It+1)]
we immediately obtain for |It|�

√
log n with Chebyshev’s inequality that

P[|e(Ut+1, It+1)−Et[e(Ut+1, It+1)]|� e(Ut , It)|It|−1/3]�O(|It|−1/3).
Next we show (b). We bound the expected number of uninformed vertices after one additional
round. Lemma 2.10(a) asserts that there is a set Ũ ⊆Ut such that |Ũ| = (1− o(1))|Ut| and |N(u)∩
It|/|N(u)| = 1− o(1) for all u ∈ Ũ. Thus

Et[|Ut+1|]=
∑
u∈Ut

1− q
|N(u)∩ It|

|N(u)|

� |Ut| − q
∑
u∈Ũ

|N(u)∩ It|
|N(u)|

= |Ut| − q(1− o(1))|Ũ|
= (1− q− o(1))|Ut|.

As |N(u)∩ It|� |N(u)| we also have
Et[|Ut+1|]=

∑
u∈Ut

1− q
|N(u)∩ It|

|N(u)| �
∑
u∈Ut

(1− q)= (1− q)|Ut|.

Lemmas 3.2 and 2.11 give lower bounds which, together with an upper bound provided by
Lemma 3.3, imply Theorems 1.2(b) and 1.3(a).

Lemma 3.2. (upper bound in Theorem 1.3(a)). Consider the setting of Theorem 1.3(a) and let
It = I(pull)t . Then the following statements hold w.h.p.

(a) Let
√
log n� |It|� n/ log n. Then there are τ1, τ2 = log1+q (n/|It|)+ o( log n) such that

|It+τ2 | < n/ log n< |It+τ1 |.
(b) Let n/ log n� |It|� n− n/ log n. Then there is τ = o( log n) such that |It+τ | > n− n/ log n.
(c) Let |It| � n− n/ log n.

(i) Case q= 1. Then there is τ = o( log n) such that |It+τ | = n.
(ii) Case q �= 1. Then there is τ �− log n/ log (1− q)+ o( log n) such that |It+τ | = n.

Proof. We start with (a). Let |It| ∈ [
√
log n, n/ log n]. First note that any bound on e(Ut , It)

translates to a bound for |It|, as with Lemmas 2.7 and 2.8 we obtain
(1− o(1))ε�n|It|� e(Ut , It)��n|It|. (3.1)

In particular, up to constant factors, |It| is e(Ut , It)/�n and vice versa. From Lemma 3.1(a) we
obtain that e(Ut+1, It+1)= (1+ q± |It|−1/3)e(Ut , It) with probability 1−O(|It|−1/3). Proceeding
as in Lemmas 2.5 and 2.6 and their proofs, where we replace the events

|It|�Et−1[|It|]−Et−1[|It|]2/3 or |It|� n/g(n)
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and

||It| −Et−1[|It|]|�Et−1[|It|]2/3
with

e(Ut , It)� (1+ q− |It−1|−1/3)e(Ut−1, It−1) or |It|� n/ log n

and

e(Ut+1, It+1)= (1+ q± |It|−1/3)e(Ut , It),

we obtain the statement.
We continue with (b). Consider first the case |It| ∈ [n/ log n, n/2]. Using Lemmas 2.7 and 2.8,

i.e. e(Ut , It)� ε|Ut| |It|�n/n+ o(�n)|It|, together with |Ut|� n/2 implies

Et[|It+1\It|]=
∑
u∈Ut

q
|N(u)∩ It|

|N(u)|

� q · e(Ut , It)
�n

� qε|Ut| |It|�n/n+ o(�n)|It|
�n(1+ o(1))

�
(
qε
2

+ o(1)
)

|It|.

Applying Lemma 2.5, where we set g = 2, f = log n and c= qε/2+ o(1), we are finished with
this part as well. Now let |It| ∈ [n/2, n− n/ log n]. We switch our focus to the set of uninformed
vertices. Using again the fact that e(Ut , It)� ε|Ut| |It|�n/n+ o(�n)|Ut|, we have

Et[|Ut+1|]=
∑
u∈Ut

1− q
|N(u)∩ It|

|N(u)|

=
∑
u∈Ut

1− q
|N(u)∩ It|

�n(1+ o(1))

= |Ut| − q · e(Ut , It)
�(1+ o(1))

= |Ut| − qε|Ut| |It|�n/n+ o(�n)|Ut|
�n(1+ o(1))

�
(
1− qε

2
+ o(1)

)
|Ut|.

Inductively we obtain for any integer τ � 1 the bound Et[|Ut+τ |]� (1− qε/2+ o(1))τ |Ut|, and
so for some τ := 2 log log n/ log (1/(1− qε/2+ o(1)))= o( log n) we have

Et[|Ut+τ |]� |Ut|/ log2 n= o(n/ log n).

Hence, by Markov’s inequality, Pt[|Ut+τ |� n/ log n]= o(1).
In order to show (c), let |It| ∈ [n− n/ log n, n]. As for q= 1 the term 1− q in Lemma 3.1(b)

vanishes, we distinguish the cases q= 1 and q �= 1. We start with q= 1. By induction, it follows
that for any round τ > 0 and suitable f = o(1),

Et[|Ut+τ |]� (f (n))τ |Ut|.
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We choose τ = log1/f (n) (n)= o(logn) as 1/f = ω(1). Hence we obtain Et[|Ut+τ |]� |Ut|/n�
1/log n. Therefore we have Pt[|Ut+τ |� 1]� o(1) by Markov’s inequality. For q �= 1 we have by
induction, for any number of rounds τ � 1,

Et[|Ut+τ |]� (1− q+ o(1))τ |Ut|.
We choose

τ = log1/(1−q+o(1)) (n)= − log n/ log (1− q)+ o( log n).

Thus, using Markov’s inequality, analogously to the case q= 1, we obtain the desired upper
bound.

Note that for q= 1 this already implies Theorems 1.2(b) and 1.3(a). This leaves the case for
q �= 1.

Lemma 3.3. Let 0< ε � 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let G̃ =
(G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn, such that each vertex keeps at
least a (1/2+ ε) fraction of its edges and abbreviate It = I(pull)t . Let q ∈ (0, 1) and |It| � n/2. Then,
for τ = − log n/ log (1− q) and all c< 1, w.h.p. |It+cτ | < n.

Proof. We consider amodified process in which vertices have a higher chance of getting informed.
In particular, note that the probability that u ∈Ut gets informed is at most q|N(u)∩ It|/|N(u)|� q
and that all these events are independent; now we assume that each such u gets independently
informed with probability exactly q. Then the runtime in this modified model constitutes a lower
bound for the runtime in the original model.

Let c< 1, u ∈Ut and Eu be the event that u does not get informed in cτ rounds in this
model. Thus

P[Eu]= (1− q)cτ = (1− q)−c log n/ log (1−q) = n−c = ω(1/n),

and as the events Eu are independent and |Ut| = �(n),

P
[ ∧
u∈Ut

Eu
]
�

∏
u∈Ut

P[Eu]� exp
(

−
∑
u∈Ut

P[Eu]
)

= o(1).

3.2 Proof of Theorem 1.2(c) – push&pull is fast on expanders
As we are now in the case without edge deletions, we begin with a lemma that determines the
expected number of informed vertices in one round. Intuitively we will show that push and pull
do not interact badly, and therefore push&pull is given as a straightforward combination of push
and pull.

Lemma 3.4. Let G be an expander sequence and abbreviate It = I(pp)t .

(a) Let |It|� n/ log n. Then Et[|It+1 \ It|]= (2q+ o(1))|It|.
(b) Let |Ut|� n/ log n. Then Et[|Ut+1|]= (1+ o(1))e−q(1− q)|Ut|.
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Proof. We begin with (a). The probability that v ∈Ut gets informed by pull is q|N(v)∩ It|/|N(v)|.
Thus, using Lemma 2.7,

Et[|I(pull)t+1 \It|]=
∑
u∈Ut

q
|N(u)∩ It|

|N(u)|

= q
∑
u∈Ut

|N(u)∩ It|
�n(1+ o(1))

= (q+ o(1))
e(Ut , It)

�n

= (q+ o(1))
|Ut| |It|�n/n+ o(�n)|It|

�n
. (3.2)

Since |It| = o(n) we obtain that |Ut| = (1− o(1))n, and this expression simplifies to
(q+ o(1))|It|.

Before we switch our attention to push we make a simple observation. Let a1, . . . , ak, k ∈N be
real numbers. Then, using the fact that for any a= o(1) it is e−a+o(a) = 1− a and e−a = 1− a+
o(a), we have∏

1�i�k
(1− ai)= exp

(
−(1+ o(1))

∑
1�i�k

ai
)

= 1− (1+ o(1))
∑

1�i�k
ai if

∑
1�i�k

ai = o(1).

(3.3)

The probability that v ∈Ut gets informed by push is

1−
∏

i∈N(v)∩It
(1− q/|N(v)|).

According to Lemma 2.10(b) there is Bt ⊆Ut such that |N(u)∩ It| = o(|N(u)|) for all u ∈ Bt and
|Ut \ Bt| = o(|It|). Thus (3.3) is applicable, and in a similar fashion to (3.2) we get

Et[|I(push)t+1 \ It|]=
∑
u∈Ut

1−
∏

i∈N(u)∩It

(
1− q

|N(i)|
)

= q
∑
u∈Bt

|N(u)∩ It|
�n(1+ o(1))

+ o(|It|)

= (q+ o(1))|It|. (3.4)

We express the expected number of vertices informed by push&pull after one additional round in
terms of the expected values we just calculated ((3.2) and (3.4)):

Et[|It+1\It|]=Et
[|I(pull)t+1 \It| + |I(push)t+1 \It| − |(I(push)t+1 \It)∩ (I(pull)t+1 \It)|

]
= (2q− o(1))|It| −Et

[|(I(push)t+1 \It)∩ (I(pull)t+1 \It)|
]
. (3.5)

Lemma 2.10(a) gives a set

At ⊆ I(push)t+1 , |At| = (1− o(1))|I(push)t+1 |,
such that

|N(u)∩ I(push)t+1 | = o(1)|N(u)| for all u ∈At .
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Since push and pull happen independently,

Et
[|(I(pull)t+1 \It)∩ (I(push)t+1 \It)| | I(push)t+1

] =
∑

u∈I(push)t+1 \It
Pt[u ∈ I(pull)t+1 \It]

=
∑

u∈I(push)t+1 \It
q
|N(u)∩ It|

|N(u)|

�
∑
u∈At

q
|N(u)∩ It|

|N(u)| +
∑

u∈I(push)t+1 \At

q
|N(u)∩ It|

|N(u)| .

Using the fact that |N(u)∩ It| = o(|N(u)|) for all u ∈At , we obtain

Et
[|(I(pull)t+1 \It)∩ (I(push)t+1 \It)|

]
�Et

[
o(|At|)+ |I(push)t+1 \At|

] = o(|It|),
as

|At|� |I(push)t+1 |� 2|It| and |I(push)t+1 \At| = o(|I(push)t+1 |)= o(|It|).
Combining this with (3.5) we get Et[|It+1 \ It|]= (2q+ o(1))|It|, as claimed.

Next we show (b). Let Au be the event that an uninformed vertex u does not get informed by
the push algorithm, let Bu be the corresponding event for pull. Then Au and Bu are independent
and Au ∩ Bu is the event that u does not get informed in the current round. We obtain

Pt[Au]=
∏

i∈N(u)∩It

(
1− q

|N(i)|
)

�
(
1− q

�n

)|N(u)∩It |

� exp
(

−q
|N(u)∩ It|

�n

)

= exp
( −q|N(u)∩ It|
(1+ o(1))|N(u)|

)

and

Pt[Bu]= 1− q|N(u)∩ It|
|N(u)| .

According to Lemma 2.10(a) there is a set Ct ⊆Ut , |Ct| = (1− o(1))|Ut| such that |N(u)∩ It| =
(1− o(1))|N(u)| for all u ∈ Ct . As Pt[Au ∩ Bu]� 1, we therefore get

Et[|Ut+1|]=
∑
u∈Ut

Pt[Au ∩ Bu]�
∑
u∈Ct

Pt[Au] · Pt[Bu]+ |Ut \ Ct|� (1+ o(1))e−q(1− q)|Ut|.

For the lower bound we need to find a lower bound on the probability of a single uninformed
vertex not getting informed in one round by push. Indeed, for any u ∈Ut and sufficiently large n,

Pt[Au]=
∏

v∈N(u)∩It

(
1− q

|N(v)|
)
�

(
1− q

δn

)|N(u)∩It |
� e−q�n/δn . (3.6)
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Combining this inequality with the trivial bound P[Bu]� 1− q, we get a lower bound on the
expected number of uninformed vertices after one round using push&pull:

Et[|Ut+1|]=
∑
u∈Ut

Pt[Au ∩ Bu]

=
∑
u∈Ut

Pt[Au] · Pt[Bu]

� e−q�n/δn(1− q)|Ut|
= (1+ o(1))e−q(1− q)|Ut|.

Next we show upper and lower bounds that together with Lemma 2.11 imply Theorem 1.2(c).

Lemma 3.5. Let G be an expander sequence and abbreviate It = I(pp)t . Let q ∈ (0, 1]. Then the
following statements hold w.h.p.

(a) Let
√
log n� |It|� n/ log n. Then there are τ1, τ2 = log1+2q (n/|It|)+ o( log n) such that

|It+τ2 | < n/ log n< |It+τ1 |.
(b) Let n/ log n� |It|� n− n/ log n. Then there is τ = o( log n) such that |It+τ | > n− n/ log n.
(c) Let |It|� n− n/ log n.

(i) Case q= 1. Then there is τ = o( log n) such that |It+τ | = n.
(ii) Case q �= 1. Then there is τ � log n/(q− log (1− q))+ o( log n) such that |It+τ | = n.

Proof. Since |It|� |I(pull)t |, statements (b) and (c) for q= 1 follow immediately from Lemma 3.2.
To see (a), note that by using Lemma 3.4 we get Et[|It+1\It|]= (2q+ o(1))|It|, and applying
Lemma 2.6 implies the claim.

Finally we show (c) for q �= 1. Let |It| � n− n/ log n. By Lemma 3.4, we obtain that, for any
τ ∈N,

Et[|Ut+τ |]= ((1+ o(1))e−q(1− q))τ |Ut|.

Thus we may choose τ = log n/(q− log (1− q))+ o( log n) such that, say, Et[|Ut+τ |]� |Ut|/n�
1/log n. Thus Pt[|Ut+τ |� 1]� o(1) by Markov’s inequality.

Note that for q= 1 this already implies Theorem 1.2(c). This leaves the case for q �= 1.

Lemma 3.6. Let G be an expander sequence and abbreviate It = I(pp)t , let q ∈ (0, 1) and |It| � n/2.
Then for τ = log n/(q− log (1− q)) and all c< 1 w.h.p. |It+cτ | < n.

Proof. We consider a modified process in which vertices have a higher chance of getting
informed. In particular, note that the probability that u ∈Ut gets informed by pull is at most
q|N(u)∩ It|/|N(u)|� q and that all these events are independent; according to (3.6) the proba-
bility that u ∈Ut gets informed by push is at most 1− e−q�n/δn . Now we assume that each such
u gets independently informed with probability exactly 1− e−q�n/δn(1− q). Then the runtime in
this modified model constitutes a lower bound for the runtime in the original model. Let u ∈Ut
and Eu be the event that u does not get informed in this modified model in cτ rounds. Thus, for
c< 1,

P[Eu]� ((1− q)e−q�n/δn)cτ = ω(n−1),
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and as the events Eu are independent and |Ut| = �(n),

P
[ ∧
u∈Ut

Eu
]
�

∏
u∈Ut

P[Eu]� exp
(

−
∑
u∈Ut

P[Eu]
)

= o(1).

3.3 Proof of Theorem 1.5(a) – push informs almost all vertices fast in spite of edge deletions
To shorten the notation, let us call the setting with deleted edges the ‘new model’ and the setting
without deleted edges the ‘old model’, that is, the term ‘newmodel’ corresponds to the graphs in G̃
while ‘old model’ refers to the (original) graphs in G. We prove Lemma 3.7, which directly implies
Theorem 1.5(a). We write It = I(push)t throughout.

Lemma 3.7. Under the assumptions of Theorem 1.5(a), the following holds for the new model:

(a) There are τ , τ̃ = log1+q (n)+ o( log n) such that w.h.p. |Iτ̃ | < n/ log n< |Iτ |.
(b) Assume |It|� n/ log n. Then there is a τ = o( log n) such that w.h.p. |It+τ |� n− n/ log n.

For the proof of Lemma 3.7 we will need the following statements, the first one taken from [28].

Lemma 3.8 (proof of Lemma 2.5 in [28]). Consider the old model. Assume |It| < n/ log n and
q= 1. Then

Pt[|It+1| = |It| + (1− o(1))|It|]= 1− o(1). (3.7)

Lemma 3.9. Consider push on a sequence of graphs (Gn)n∈N, where Gn has n vertices. Assume that
|It| = ω(1) and that (3.7) holds for q= 1, that is, assume that

Pt[|It+1| = |It| + (1− o(1))|It|]= 1− o(1) for q= 1.

Then, for q ∈ (0, 1],

Pt[|It+1| = |It| + (q− o(1))|It|]= 1− o(1). (3.8)

Moreover, assume that whenever |It| < n/ log n, for q= 1, (3.7) holds. Then there are τ , τ̃ =
log1+q (n)+ o( log n) such that w.h.p.

|Iτ̃ | < n/ log n< |Iτ |. (3.9)

Proof. For a graph G and for v ∈ It , let Xv(G) denote the vertex to which v pushes in round t. Let

Nt+1 := {Xv(Gn) | v ∈ It} ∩Ut .

Note that whenever |It| < n/ log n, w.h.p. |Nt+1| = (1− o(1))|It| from (3.7). For q ∈ (0, 1] each
vertex in Nt+1 has a probability at least q of being informed and all these events are independent;
thus (3.8) follows directly by applying the Chernoff bounds whenever |It| = ω(1).

In order to prove the second statement we call a round t that does not satisfy (3.8) a failed
round. Note that we just argued that the probability that a round fails is o(1) whenever |It| =
ω(1) and |It| < n/ log n, and the events that distinct rounds fail are independent. In particular,
the number of failed rounds among the next R rounds, assuming that |It| stays below n/ log n, is
w.h.p. o(R). Moreover, if a round does not fail, the number of informed vertices increases by a
factor of (1+ q+ o(1)) and otherwise it may increase by an arbitrary factor in the interval [1, 2].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548320000310
Downloaded from https://www.cambridge.org/core. IP address: 87.149.228.128, on 23 May 2021 at 12:57:34, subject to the Cambridge Core terms of use, available at
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Finally, Lemma 2.11 yields that there is t∗ = o( log n) such that w.h.p. |It∗ | = ω(1), which implies
that after R+ t∗ rounds, the number of informed vertices is w.h.p. in the interval

[(1+ q+ o(1))R−o(R), (1+ q+ o(1))R−o(R) · 2o(R)],
and choosing R= log1+q (n)+ o( log n) in two ways establishes (3.9).

In the subsequent proof of Lemma 3.7 we will use the simple observations that, for any n ∈N0,

P[Bin(n, 1/2)� n/2]� 1/2 and P[Bin(n, 1/4)� n/4]� 1/4 (3.10)

(see e.g. [22] when n> 4), and the other cases are checked easily.

Proof of Lemma 3.7. We first show (a). We assume q= 1 and prove that, for |It| < n/ log n, (3.7)
also holds in the new model; then claim (a) follows directly from Lemma 3.9. Let G= (V , E) be a
graph. For v ∈ It let Xv(G) denote the vertex to which v pushes in round t. For u ∈V let cu(G) :=
|{v ∈ It | Xv(G)= u}| denote the number of times u is pushed in round t. Let

Yt(G) := {v ∈ It | cv(G)= 1} and Ht(G) := {v ∈ It | cv(G)� 1}
denote the set of informed vertices that are being pushed exactly once in round t and the set of
informed vertices that are being pushed at least once in round t respectively. Let

Zt(G) := {v ∈V | cv(G)� 2}
denote the set of vertices that are being pushed more than once in round t. Let Yt(G) := |Yt(G)|
and Ht(G) := |Ht(G)| and, in a slight abuse of notation, let

Zt(G) :=
∑
k�2

(k− 1) · |{v ∈V | cv(G)= k}|

denote the number of vertices that are being pushed multiple times in round t counted with mul-
tiplicity. Note that the quantity Y + Z denotes the number of pushes that have no effect in the
respective round, that is, there are Y + Z pushes that are useless in the sense that even with-
out them, the same number of vertices would become informed in the respective round. In the
following paragraphs we condition on It implicitly, that is, we write P[. . .] instead of Pt[. . .],
etc., to lighten the notation. We want to show that (3.7) does hold in the new model; for con-
tradiction we assume that this is not the case. Hence we can infer that there is a constant c> 0
such that

lim sup
n→∞

P[Yt(G̃n)� c|It|]> 0 or lim sup
n→∞

P[Zt(G̃n)� c|It|]> 0.

Thus, without loss of generality, we can assume that there is f ∗ > 0 and n0 ∈N such that

P[Yt(G̃n)� c|It|]> f ∗ for all n� n0 or P[Zt(G̃n)� c|It|]> f ∗ for all n� n0.

If this is not the case we can restrict ourselves to a suitable subsequence of (n)n∈N on which it is
true. Next, we describe an explicit coupling between the new and the old model. For any vertex
v consider Xv(Gn). If Xv(Gn) ∈NG̃n

(v), then set Xv(G̃n) := Xv(Gn) and otherwise choose Xv(G̃n)
uniformly at random from NG̃n

(v). Note that Xv(Gn), Xv(G̃n) have by construction the correct
marginal distribution. Moreover, note that by construction, the family

(Xv(Gn) | (Xu(G̃n))u∈Vn)v∈Vn (3.11)

of random variables is independent, since Xv(Gn) depends only on Xv(G̃n) for all v ∈Vn.
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We begin with the case that P[Yt(G̃n)� c|It|]> f ∗. We will show

P[Ht(Gn)� Yt(G̃n)/2 |Yt(G̃n)]� 1/2

and then, since by assumption P[Yt(G̃n)� c|It|]> f ∗, we can infer P[Ht(Gn)� c|It|/2]� f ∗/2,
which contradicts Lemma 3.8. Let Yt(G̃n)= {y1, . . . , yYt(G̃n)}. Then there are distinct vertices
v1, . . . , vYt(G̃n) ∈ It such that Xvi(G̃n)= yi for all i ∈ {1, . . . , Yt(G̃n)}. Due to (3.11) the events
({Xvi(Gn)= Xvi(G̃n)})1�i�Yt are independent. Moreover, for all i ∈ {1, . . . , Yt(G̃n)},

P[Xvi(Gn)= Xvi(G̃n) |Yt(G̃n)]=
dG̃n

(vi)
dGn(vi)

� 1/2+ ε

and therefore, given Yt(G̃n), Ht(Gn) dominates a binomially distributed random variable
Bin(Yt(G̃n), 1/2). In particular, this implies with (3.10) that

P[Ht(Gn)� Yt(G̃n)/2 |Yt(G̃n)]� 1/2,

as claimed.
We continue with the case P[Zt(G̃n)� c|It|]> f ∗. Let Zt(G̃n)= {z1, . . . , z|Zt(G̃n)|}. Then, for

any i ∈ {1, . . . , |Zt(G̃n)|} let ni := czi(G̃n)� 2, that is, there are distinct vertices vi,1, . . . , vi,ni such
that Xv(G̃n)= zi for all v ∈ {vi,1, . . . , vi,ni}. We will show that

P[Zt(Gn)� Zt(G̃n)/8 |Zt(G̃n), n1, . . . , n|Zt(G̃n)|]� 1/8 (3.12)

and then, since by assumption P[Zt(G̃n)� c|It|]> f ∗, we obtain P[Zt(Gn)� c/8|It|]� f ∗/8,
which contradicts Lemma 3.8. Due to (3.11) the events

({Xvi,j(Gn)= Xvi,j(G̃n)})1�i�|Zt(G̃n)|,1�j�ni (3.13)

are independent. Moreover, for all 1� i� |Zt(G̃n)|, 1� j� ni,

P
[
Xvi,j(Gn)= Xvi,j(G̃n) |Zt(G̃n), n1, . . . , n|Zt(G̃n)|

] = dG̃n
(vi,j)

dGn(vi,j)
� 1/2+ ε. (3.14)

For 1� i� |Zt(G̃n)| let Bi ∼ Bin(ni, 1/2) be independent random variables. Moreover, let M1 :=
{i | 1� i� |Zt(G̃n)|, ni = 2} andM2 := {i | 1� i� |Zt(G̃n)|, ni > 2}. Using (3.13) and (3.14), given
Zt(G̃n), n1, . . . , n|Zt(G̃n)|, we infer that Zt(Gn) dominates

|Zt(G̃n)|∑
i=1

max{Bi − 1, 0}�
∑
i∈M1

max{Bi − 1, 0} +
∑
i∈M2

Bi − |M2|.

We treat the two sums individually. Note that
∑

i∈M1 max{Bi − 1, 0} ∼ Bin(|M1|, 1/4); in
particular,

P
[∑
i∈M1

max{Bi − 1, 0}� |M1|/4
]
� 1/4

by (3.10). Regarding the second sum, since
∑

i∈M2 Bi ∼ Bin(
∑

i∈M2 ni, 1/2), we obtain

P
[∑
i∈M2

Bi � 1/2
∑
i∈M2

ni
]
� 1/2.
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Thus, givenZt(G̃n), n1, . . . , n|Zt(G̃n)| and using 2|M1| = ∑
i∈M1 ni and

∑
i∈M2 ni � 3|M2|, we infer

that with probability at least 1/4 · 1/2= 1/8

Zt(Gn)�
1
4
|M1| + 1

2
∑
i∈M2

ni − |M2|

= 1
8

∑
i∈M1

ni + 1
2

∑
i∈M2

ni − |M2|

� 1
8

∑
i∈M1

ni + 1
6

∑
i∈M2

ni

� 1
8

|Zt(G̃n)|∑
i=1

ni

= 1
8
(Zt(G̃n)+ |Zt(G̃n)|)

� 1
8
Zt(G̃n).

This establishes (3.12). All in all, for q= 1 we have shown that (3.7) also holds in the new model.
Hence claim (a) follows directly from Lemma 3.9.

Next we prove claim (b). We write �n := �(Gn), �̃n := �(G̃n), δn := δ(Gn) and δ̃n := δ(G̃n);
moreover, we write Ñ(·) instead of NG̃n

(·). We assume that |It| ∈ [n/ log n, n− n/ log n]. We fur-
ther distinguish two cases, namely |It| ∈ [n/ log n, n/2] and |It| ∈ [n/2, n− n/ log n]. We start
with the case |It| ∈ [n/ log n, n/2]. Using Lemmas 2.7 and 2.8 and the assumption that �n/δn =
1+ o(1) we obtain, for any 0< ε̄ < ε/2, for n sufficiently large,

e(It ,Ut)> ε̄δn|It|. (3.15)

Using the fact that ex � (1+ x/n)n for n ∈N and |x|� n, we obtain

Et[|It+1\It|]�
∑

u∈Ñ(It)\It

[
1−

∏
v∈Ñ(u)∩It

(
1− q

�̃n

)]
�

∑
u∈Ñ(It)\It

1− e−|Ñ(u)∩It |q/�̃n .

Further, using the fact that e−x � 1− x/2 for any x ∈ (0, 1) and (3.15) yields the bound

Et[|It+1\It|]�
∑

u∈Ñ(It)\It

q|Ñ(u)∩ It|
2�̃n

= qe(It ,Ut)
2�̃n

� ε̄qδn
2�n

|It|.

For this case the claim follows by Lemma 2.5, when setting f = n/ log n, g = log n and c=
ε̄qδn/(2�n).

Finally we consider the case |It| ∈ [n/2, n− n/ log n]; here we examine the shrinking of Ut .
Using Lemmas 2.7 and 2.8 we obtain, for any 0< ε̄ < ε/2, for n sufficiently large, e(It ,Ut)>
ε̄δn|Ut|. Hence, again using the fact that for any x ∈ (0, 1) it holds that e−x � 1− x/2, and that
for n ∈N and |x|� n it is ex � (1+ x/n)n, we obtain

Et[|Ut+1|]=
∑
u∈Ut

∏
v∈Ñ(u)∩It

(
1− q

dG̃n
(v)

)

�
∑
u∈Ut

e−|Ñ(u)∩It |q/�̃n
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�
∑
u∈Ut

1− q|Ñ(u)∩ It|
2�̃n

� |Ut| − ε̄qδn
2�̃n

|Ut|

�
(
1− ε̄qδn

2�n

)
|Ut|.

Using the tower property of conditional expectation, we immediately get

Et[|Ut+τ |]�
(
1− ε̄qδn

2�n

)τ

|Ut|, τ ∈N.

Thus, for

τ := −2 log log (n)/ log (1− ε̄qδn/(2�n))= o( log n),

we have Et[|Ut+τ |]= o(n/ log n). Hence by Markov’s inequality, P[|Ut+τ |� n/ log n]= o(1).

3.4 Proof of Theorem 1.4(a) – edge deletions slow down push
Let I(push)t := It . In order to show the claim we construct an explicit sequence of graphs that has the
desired property. More precisely, for any ε > 0, each q ∈ (0, 1] and n ∈N we will define a graph
Gn(ε) that is obtained by deleting edges from the complete graph on n vertices such that each
vertex keeps at least a (1− ε) fraction of its edges and such that push slows down significantly.

We define Gn(ε)= (V1 ∪V2, E) with vertex set V =V1 ∪V2, where V1 := {1, . . . , �n/2�} and
V2 := {�n/2� + 1, . . . , n}, as follows. We include in E all pairs of vertices that intersect V1 and,
moreover, we add edges (that now have endpoints only in V2) such that all vertices in V2 have
degree �(1− ε)n� + 1± 1. According to Lemma 3.7(a) there is a t = log1+q (n)+ o( log n) such
that w.h.p. |It| < n/ log n. It thus suffices to show that it takes w.h.p. at least (1+ ε/2)q−1 log n
more rounds to inform all remaining vertices.

LetU ′
t :=U(push)

t ∩V2. As |It| < n/ log nwe have |U ′
t |� n/4with plenty of room to spare. In the

remainder of this proof we will consider a modified process in which vertices have a higher chance
of getting informed; in particular we assume that in each round, all vertices choose a neighbour
independently and uniformly at random and after this round the chosen vertices are informed.
Let Eu denote the event that u ∈U ′

t does not get informed within the next τ := (1+ ε/2)q−1 log n
rounds in this modifiedmodel. Each vertex u ∈U ′

t has �n/2� neighbours that have degree n− 1, at
most �(1− ε)n� + 1± 1− �n/2�� (1/2− ε)n+ 4 neighbours that have at least degree (1− ε)n
and no further neighbours. Therefore, using the fact that for any a ∈R we have (1+ a/n)n =
ea +O(1/n), we obtain for each u ∈U ′

t

Pt[Eu]�
((

1− q
n− 1

)n/2(
1− q

(1− ε)n

)(1/2−ε)n+4)τ

= (1+ o(1))(e−q(1/2+(1/2−ε)/(1−ε)))τ

= (1+ o(1)) exp
(

−4− 4ε − 3ε2

4− 4ε
log n

)

= ω(n−1).

In this modified model the events {Eu | u ∈U ′
t} also satisfy Pt[Eu | {Ev : v ∈U}]� 1− p for all

u ∈V2 and U ⊆V \ {u} and for some p= ω(n−1). This follows immediately from the previous
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calculation, as conditioning on an event like {Ev : v ∈U} only decreases the number of vertices
that can push to u. Thus, as |U ′

t| = �(n),

Pt

[ ∧
u∈U ′

t

Eu
]
�

∏
u∈U ′

t

(1− p)� exp
(

−
∑
u∈U ′

t

p
)

= o(1).

3.5 Proof of Theorems 1.3(b) and 1.5(a) – push&pull informs almost all vertices fast in spite of
edge deletions

Before we show the actual proof we will first present an informal argument that contains all
relevant ideas and important observations. Let

√
log n� |It|� n/ log n and assume q= 1. In

Section 3.3 we proved that for push the informed vertices nearly double in every round for an
arbitrary expander sequence with edge deletions and an otherwise arbitrary set It . For pull this
is not true; however, we proved in Section 3.1 that the number of edges between the informed
and the uninformed vertices nearly doubles in every round. The first attempt towards the proof
of Theorems 1.3(b) and 1.5(b) then seems obvious: one would try to show that either the vertices
triple every round, or the the edges do so, or for example that the product of the two quantities
increases by a factor of 9. As it turns out, this is in general not the case; indeed, it is possible to
choose an expander sequence, to delete edges such that each vertex keeps at least an (1/2+ ε)-
fraction of its neighbours, and to choose a (large) set of informed vertices It such that after one
round w.h.p. either |It+1| < c|It| or e(It+1,Ut+1)< ce(It ,Ut) or |It+1|e(It+1,Ut+1)< c2|It|e(It ,Ut)
for some c< 3. On the other hand, and although we have no explicit description of these ‘mali-
cious’ sets, it seems rather unlikely that such sets will occur several times during the execution of
push&pull.

In order to show the claimed running time of push&pull we will impose some additional struc-
ture. Let ε > 0. In the subsequent exposition we assume that our graph G – obtained from an
expander by deleting edges such that each vertex keeps at least a (1/2+ ε) fraction of the edges –
has a very special structure. In particular, we assume that there is a partition  = (Vi)i∈[k] of the
vertex set of G into a bounded number k of equal parts such that EG(Vi)= ∅ for all 1� i� k
and such that the induced subgraph (Vi,Vj) looks like a random regular bipartite graph for
all 1� i< j� k. Of course, not every relevant G admits such a partition; however, Szemerédi’s
Regularity Lemma guarantees that every sufficiently large graph has a partition that is in a well-
defined sense almost like the one described previously, and a substantial part of our proof is
concerned with showing that being ‘almost special’ does not hurt significantly.

Assuming thatG is very special, let us collect some easy facts. Denote the degree of u ∈Vi in the
induced subgraph (Vi,Vj) by dij; this immediately gives dG(u)= ∑k

�=1 di�, and note that dii = 0 as
there are no edges in Vi. Moreover, regular bipartite random graphs satisfy an expander property,
that is,

e(Wi,Wj)= di,j|Wi| |Wj|/|Vj| + o(di,j)|Wi|
≈ |Wi| |Wj|dijk/n for allWi ⊆Vi,Wj ⊆Vj, 1� i< j� k,

where we used the fact that all |Vi| are of equal size. This is quite similar to the property that we
used in our preceding analysis on expander sequences; see Lemma 2.7. As a pair in behaves like a
bipartite expander sequence, we can easily compute the expected number of informed vertices like
we did in Section 3.2. We do so now for pull. Let |Ii,jt+1| be the number of vertices in Vi informed
after round t + 1 by pull from vertices only in Vj and set Iit := It ∩Vi,Ui

t :=Ut ∩Vi for all
1� i� k. Thus, as long as Iit is much smaller than Vi (and thus also Ui

t ≈ |Vi| = n/k), we get
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Et[|I(pull),i,jt+1 \It|]=
∑
u∈Ui

t

|N(u)∩ Ijt|
d(u)

= e(Ui
t , I

j
t)∑

1���k di�
≈ dij∑

1���k di�
|Ijt|.

A similar calculation, which we do not perform in detail, yields for push

Et[|I(push),i,jt+1 \It|]≈ dij∑
1���k d�j

|Ijt|.

Moreover, as in previous proofs it turns out that the number of vertices informed simultaneously
by push as well as pull is negligible; compare with the proof of Lemma 3.4. Thus we obtain that
more or less

Et[|I(pp),i,jt+1 |]≈ |Iit| +
( dij∑

1���k di�
+ dij∑

1���k d�j

)
|Ijt|,

and by linearity of expectation

Et[|I(pp),it+1 |]≈ |Iit| +
∑

1�j�k

( dij∑
1���k di�

+ dij∑
1���k d�j

)
|Ijt|.

Set Xt = (|Iit|)i∈[k] and A= (Aij)1�i,j�k, the matrix with entries

Aij = dij∑
1���k di�

+ dij∑
1���k d�j

for 1� i �= j� k

and Aii = 1 for 1� i� k. With this notation we obtain the recursive relation

Et[Xt+1]≈A · Xt , (3.16)

that is, we may expect that Xt ≈Et[Xt]≈AtX0. If we then let λmax denote the greatest eigenvalue
of A, then we obtain that to leading order

|It| ≈ λtmax.

Our aim is to show that push&pull is (at least) as fast as on the complete graph, that is, |It|� 3t ,
so we take a closer look at the eigenvalues of A. By construction A is symmetric, so the largest
eigenvalue equals sup‖x‖=1 ‖xTAx‖, and the simple choice x= k−1/21 yields

λmax �
∑

(i,j) Ai,j

k
=

∑k
j=1 1+ ∑k

i=1
∑k

j=1 dij/(
∑k

�=1 di�)+
∑k

j=1
∑k

i=1 dij/(
∑k

�=1 d�j)
k

= 3.

This neat property leads us to the expected result

Tpp(G)= (1+ o(1)) logλmax
n� (1+ o(1)) log3 n,

and it also completes the informal argument that justifies the claim made in Theorems 1.3(b)
and 1.5(b). In the rest of this section we will turn this argument step by step into a formal proof
by filling in all missing pieces.

Obtaining an appropriate regular partition. An important ingredient in the previous sketch
was the assumption that the given graph has a partition into a bounded number of equal parts,
such that the bipartite graph induced by any two different parts looks like a random regular graph.
This assumption is quite strong and very much not true in general. However, restricting ourselves
to dense graphs we can actually come quite close to that. Let us begin with some definitions; the
statements are taken from [30].
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Definition 3.1 (density). Given a graph G= (V , E) and two disjoint non-empty sets of vertices
X, Y ⊆V , we define the density of the pair (X, Y) as

dG(X, Y)= eG(X, Y)
|X| |Y| .

As usual, if the graph is clear from the context the index will be omitted. The next defini-
tion gives a partition that is close to the previously described properties; all sets in the partition
have nearly the same size and nearly all pairs behave in a well-defined sense like regular bipartite
random graphs.

Definition 3.2 ((ε, k0,K0)-Szemerédi partition). Let G= (V , E) and k ∈N. We call  = {Vi}i∈[k]
an (ε, k0,K0)-Szemerédi partition of G if the following conditions are fulfilled.

(a) V1∪̇ · · · ∪̇Vk =V .
(b) k0 � k�K0.
(c) |V1|� · · ·� |Vk|� |V1| + 1.
(d) For all but at most εk2 pairs (Vi,Vj) ofwith i< j, we have that for all subsetsUi ⊆Vi and

Uj ⊆Vj with |Ui|� ε|Vi| and |Uj|� ε|Vj|,
|d(Ui,Uj)− d(Vi,Vj)|� ε.

A pair (Vi,Vj) satisfying the last condition is called ε-regular. For pairs (Vi,Vj) in  we will
abbreviate d(Vi,Vj) to dij.

Next we state Szemerédi’s Regularity Lemma. It guarantees that we will have a Szemerédi
partition if the underlying graph is large enough.

Lemma 3.10 ([30], The Regularity Lemma). For every ε > 0 and every k0 ∈N there exist K0 =
K0(ε, k0) and n0 such that every graph G= (V , E) with at least |V| = n� n0 vertices admits an
(ε, k0,K0)-Szemerédi partition.

The next lemma gives a useful property of regular pairs. In particular, with the exception of a
small set only, all other vertices have a degree that is close to dN, where d is the density of the pair
and N is the number of vertices in each part. In fact the statement also is true for arbitrary but not
too small subsets of the parts.

Lemma 3.11. Let G= (V , E) be a graph, ε > 0 and U,U ′ ⊆V. Suppose that (U,U ′) is an ε-
regular pair, and let W ⊆U ′, |W|� ε|U ′|. Furthermore, let E(U,W)⊆U be the largest set such
that |d(u,W)− d(U,U ′)|� ε for all u ∈ E(U,W). Then |E(U,W)|� 2ε|U|.

Proof. We will prove this by contradiction. Assume that |E(U,W)|� 2ε|U|. Let us write
E(U,W)= S∪ L, where

S= {u ∈ E(U,W) : d(u,W)< d(U,U ′)− ε}, L= {u ∈ E(U,W) : d(u,W)> d(U,U ′)+ ε}.
Then |S|� ε|U| or |L|� ε|U|. In the former case

d(S,W)=
∑

u∈S e(u,W)
|S| |W| =

∑
u∈S d(u,W)

|S| < d(U,U ′)− ε.

As |S|� ε|U|, |W|� ε|U ′|, this contradicts the assumption that (U,U ′) is an ε-regular pair. The
case |L|� ε|U| follows analogously by showing that d(L,W)> d(U,U ′)+ ε.
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We call the set E(U,W) in Lemma 3.11 the exceptional set ofU with respect toW. In particular,
Lemma 3.11 implies that for every ε-regular pair (U,U ′) and all W ⊆U ′, |W|� (1− cε)|U ′|, c> 0
we have

|d(u,W)− d(U,U ′)|� |d(u,W)− d(u,U ′)| + |d(u,U ′)− d(U,U ′)|
� (c+ 1)ε for all u ∈U\E(U,U ′). (3.17)

Having done these preparations we can now determine a partition that comes close to the initially
described properties.

Lemma 3.12. Let Gn = (V , E) be a graph on n vertices such that δGn � αn for some α > 0. Then
for all η > 0 and k0 > 1/√η there exists n0,K0 ∈N such that for all Gn with n� n0 there is an
(η, k0,K0)-Szemerédi partition = {Vi}i∈[k] of Gn with the following property. There is F ⊆  with
|F|� ηk such that, for all Vi ∈ \F,

• there are at most ηk non-η-regular pairs (Vi,Vj), j ∈ [k], and
• there exists an exceptional set Ni, |Ni|� η|Vi| such that

d(u)� (1+ η)
n
k

∑
1�j�k

d(Vi,Vj) for all u ∈Vi\Ni.

Proof. According to Lemma 3.10, for all ξ > 0 and k0 > 1/
√

ξ , there are n0,K0 ∈N such that for
all Gn with n� n0 there is a k ∈N and a (ξ , k0,K0)-Szemerédi partition  = {Vi}i∈[k] of Gn. Let
F ⊆  contain the parts Vi ∈  such that there are at least

√
ξk other parts Vj ∈  such that the

pair (Vi,Vj) is not ξ -regular. As there are at most ξk2 non-ξ -regular pairs, we infer that |F|�√
ξk.

Let Vi ∈  \ F. Further, let Ai ⊆  be such that (Vi,Vj) is a ξ -regular pair for all Vj ∈  \Ai and
(Vi,Vj) is not ξ -regular for all Vj ∈Ai. The definition of F implies that |Ai|�√

ξk. For these
Vj ∈  \Ai let Ei(Vj)= E(Vi,Vj) be the exceptional set of Vi with respect to Vj. On top of that let
Ni ⊆Vi be the set of points in Vi that are in at least

√
ξk exceptional sets with respect to parts in

 \Ai. As there are at most k exceptional sets and by Lemma 3.11 each exceptional set has at most
2ξ |Vi| vertices, we get that |Ni|� 2

√
ξ |Vi|. Let Vi ∈ \F, u ∈Vi\Ni and let B(u)⊆ \Ai be the

set of parts such that u ∈ Ei(Vj) for all Vj ∈ B. Then |B|�√
ξk and

d(u)=
∑

1�j�k
|Vj|d(u,Vj)

=
( ∑
Vj∈Ai∪B

|Vj|d(u,Vj)+
∑

Vj∈\(Ai∪B)
|Vj|d(u,Vj)

)

�
∣∣∣∣N(u)∩

( ⋃
Vj∈Ai∪B∪{Vi}

Vj

)∣∣∣∣ +
∑

1�j�k
|Vj|(d(Vi,Vj)+ ξ ).

By the definition of F and as u ∈Vi\Ni, we get that∣∣∣∣ ⋃
Vj∈Ai∪B∪{Vi}

Vj

∣∣∣∣� (
√

ξk+ √
ξk+ 1)(n/k+ 1)� 3

√
ξn.

With that at hand and by using d(u)� αn and the fact that the sizes of the parts in  differ by at
most one, we obtain

d(u)� 3
√

ξn+ n
k

∑
1�j�k

d(Vi,Vj)+ 2ξn� n
k

∑
1�j�k

d(Vi,Vj)+ 5
√

ξd(u)/α.
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Let η > 0. Choosing ξ small enough such that

max{ξ , 2√ξ , 1/(1− 5
√

ξ/α)− 1}� η

implies the claim.

The recursion relation. In this section we exploit the properties of the partition to study the
expected number of informed vertices after one additional round; our aim is to establish a precise
version of (3.16). In the remainder let ‖A‖F = (

∑
1�i�n

∑
1�j�n |ai,j|2)1/2 denote the Frobenius

norm of a matrix A ∈Rn×n.
For the next lemma consider the setting of Theorems 1.3(b) and 1.5(b), that is, we are given an

expander sequence (Gn)n∈N with minimal degree δn � αn for some α > 0 and an ε > 0.We obtain
a sequence of graphs (G̃n)n∈N by deleting up to a 1/2− ε fraction of the edges at each vertex inGn.
Further, let η > 0, k0 ∈N and = {Vi}i∈[k] be the (η, k0,K0)-Szemerédi partition of G̃n as given by
Lemma 3.12. For that partition define Ei,j := E(Vi,Vj) as the exceptional set of Vi with respect to
Vj given by Lemma 3.11, i �= j ∈ [k], F and Ni as the exceptional sets from Lemma 3.12, i ∈  \ F.
Moreover, let i = {Vj ∈  \ F : (Vi,Vj) is η-regular} and note that

|i|� (1− 2η)k, |Ni|� η|Vi| and |Ei,j|� 2η|Vi| for all i ∈  \ F, j ∈ i. (3.18)

Finally, define

Hi,j′ =Ni ∪ Ei,j′ , i ∈  \ F and j ∈ i

and

Xt,i,j = |I(pp)t ∩ (Vi \ (Ni ∪ Ei,j))|, i ∈  \ F and j ∈ i

as well as

Xt,i =min
j∈i

Xt,i,j, i ∈  \ F.

This definition guarantees that |I(pp)t |� ‖Xt‖1. The cornerstone of our proof is the following
lemma, which bounds the growth of Xt = (Xt,i)i∈\F after one round.

Lemma 3.13. Consider the situation as described above and assume additionally that |Xt,i|�
log log n for all i ∈  \ F and that |I(pp)t |� n/ log n. Then, for all ν > 0 and n large enough, there
exists a symmetric matrix A with biggest eigenvalue λmax � 1+ 2q− ν and an error matrix �A
with ‖�A‖F � ν such that w.h.p.

Xt+1 � (A+ �A)Xt .

Proof. We set IP ,i
t = IPt ∩Vi, UP ,i

t =UP
t ∩Vi for P ∈ {push, pull, pp} and let

IP ,i,j
t+1 \It = {u ∈Ut ∩Vi | there is v ∈ It ∩Vj such that u gets informed by v using P}

be the vertices in Vi newly informed in round t + 1 by operations involving only vertices from Vi
andVj. Let (i, j) ∈  \ F. For all u ∈Ui

t we know that d(u)� αn/2. Moreover, |Iit|� |It|� n/ log n.
Thus the probability of u ∈Ui

t being informed by vertices in Ijt via pull is q|N(u)∩ Ijt|/|N(u)| =
o(1). As the events of u being informed by push and pull are independent,

P[u ∈ I(push),i,jt+1 ∩ I(pull),i,jt+1 ]= o(1)P[u ∈ I(push),i,jt+1 ].

Thus, for any set S ∈V ,

E[|(I(pp),i,jt+1 \ It)∩ S|]= (1− o(1))(E[|(I(pull),i,jt+1 \ It)∩ S|]+E[|(I(push),i,jt+1 \ It)∩ S|]). (3.19)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548320000310
Downloaded from https://www.cambridge.org/core. IP address: 87.149.228.128, on 23 May 2021 at 12:57:34, subject to the Cambridge Core terms of use, available at



Combinatorics, Probability and Computing 67

Let i ∈ \F and j ∈ i. We start by determining the expected number of vertices informed by pull.
Further, set

Di = (1+ η)
n
k

∑
1���k

di�.

According to Lemma 3.12, all v ∈Ui
t \Ni have degree less than Di. Let j′ ∈ i. Then

Et[|I(pull),i,jt+1 \(It ∪Hi,j′)|]=
∑

u∈Ui
t\Hi,j′

q
|N(u)∩ Ijt|

|N(u)| � q
e(Ui

t \Hi,j′ , I
j
t)

Di
.

Since |Iit|� |It|� n/ log n, we get with room to spare that |Ui
t \Hi,j′ |� (1− 5η)n/k for n large

enough and all j′ ∈ i. Applying (3.17), where we chooseW =Ui
t \Hi,j′ , yields |d(Ui

t \Hi,j′ , u)−
dij|� 6η for all u ∈Vj \ Ej,i. Thus

Et[|I(pull),i,jt+1 \(It ∪Hi,j′)|]� q
(dij − 6η)|Ui

t \Hi,j′ | |Ijt\Ej,i|
Di

� (1− 5η)q
(dij − 6η)|Ijt\(Ej,i ∪Nj)|

Dik/n
.

As Di = (1+ η)n/k
∑

1���k di�, we get for

c1 := (1− 6η)(1+ η)−1

with Xt,j,i = |Ijt\(Ej,i ∪Nj)| that

Et[|I(pull),i,jt+1 \(It ∪Hi,j′)|]� c1 · q (dij − 6η)Xt,j,i∑
1���k di�

for all i ∈  \ F and j, j′ ∈ i. (3.20)

We continue with push. Let i ∈ \F and j, j′ ∈ i, and set (as before)

Dj = (1+ η)
n
k

∑
1���k

d�j.

Then

Et[|I(push),i,jt+1 \(It ∪Hi,j′)|]=
∑

u∈Ui
t\Hi,j′

(
1−

∏
v∈N(u)∩Ijt

(
1− q

|N(v)|
))

.

According to Lemma 3.12 all v ∈ Ijt\Nj have degree less than Dj and furthermore |It| = o(n)=
o(Dj). Thus (3.3) yields the estimate

Et[|I(push),i,jt+1 \(It ∪Hi,j′)|]�
∑

u∈Ui
t\Hi,j′

(
1−

(
1− q

Dj

)|N(u)∩(Ijt\Nj)|)

� (1− o(1))
∑

u∈Ui
t\Hi,j′

q
|N(u)∩ (Ijt\Nj)|

Dj
. (3.21)

The remaining steps are similar to the previously considered case of pull. By assumption we have
that |Ijt\Hj,i| = Xt,j,i and as |Iit|� |It|� n/ log n we obtain that |Ui

t\Hi,j′ |� (1− 5η)n/k for n large
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enough and all j′ ∈ i. Using (3.17) we obtain that |d(Ui
t \Hi,j′ , u)− dij|� 6η for all u ∈Vj \ Ej,i.

Thus

Et[|I(push),i,jt+1 \(It ∪Hi,j′)|]� (q− o(1))
e(Ui

t \Hi,j′ , I
j
t\(Nj ∪ Ej,i))

Dj

� (q− o(1))
(dij − 6η)|Ui

t \Hi,j′ |Xt,j,i

Dj
.

Using the fact that Dj = (1+ η)n/k
∑

1���k d�j, we get for the same constant c1 as in (3.20) and
n large enough

Et[|I(push),i,jt+1 \(It ∪Hi,j′)|]� c1 · q (dij − 6η)Xt,j,i∑
1���k d�j

for all i ∈  \ F and j, j′ ∈ i. (3.22)

With (3.19), we can combine the results for pull, (3.20), and push, (3.22), to get for c2 := c1 − η

Et[|I(pp),i,jt+1 \(Iit ∪Hi,j′)|]� c2 · q
( dij − 6η∑

1���k di�
+ dij − 6η∑

1���k d�j

)
Xt,j,i for all i ∈  \ F, j, j′ ∈ i.

(3.23)

Next we will show how we can exploit (3.23) to obtain (a lower bound for) Et[|(I(pp),it+1 \ It)|]. Let
i ∈  \ F and u ∈Ui

t . Using |It| = o(n) and (3.3) we obtain

Pt[u ∈ I(push),it+1 \ It]= 1−
∏

i∈N(u)∩It

(
1− 1

|N(i)|
)

= (1− o(1))
∑

i∈N(u)∩It

1
|N(i)| .

LetW ⊆V . Using (3.19), the previous equation and that  is a partition, we get

Et[|(I(pp),it+1 \ It)∩W|]= (1− o(1))
∑

u∈Ui
t∩W

( |N(u)∩ It|
|N(u)| +

∑
i∈N(u)∩It

1
|N(i)|

)

= (1− o(1))
∑

u∈Ui
t∩W

(∑
j∈[k]

( |N(u)∩ It ∩Vj|
|N(u)| +

∑
i∈N(u)∩It∩Vj

1
|N(i)|

))

= (1− o(1))
∑
j∈[k]

Et[|(I(pp),i,jt+1 \ It)∩W|].

ChooseW =V \Hi,j′ . Then the previous equation implies

Et[|I(pp),it+1 \(It ∪Hi,j′)|]� (1− o(1))
∑
j∈\F

Et[|I(pp),i,jt+1 \(It ∪Hi,j′)|] for all i ∈  \ F, j′ ∈ i,

which in turn, using (3.23) and Xt,j,i � Xt,j for all j ∈  \ F and i ∈ j, implies for c := c2 − η

Et[Xt+1,i,j′]� Xt,i + c · q
∑
j∈i

( dij − 6η∑
1���k di�

+ dij − 6η∑
1���k d�j

)
Xt,j for all i ∈  \ F, j′ ∈ i.

(3.24)
Assume that (3.24) holds not only in expectation but also for a slightly smaller c, say c− η, with
high probability. We are going to show this at the end of the proof. Using this assumption and a
union bound over j′ ∈ i gives w.h.p.

Xt+1,i = min
j′∈i

Xt+1,i,j′ � 〈ai, (Xt,j)j∈i〉 for all i ∈  \ F, (3.25)
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where for i ∈  \ F and j ∈ i we have

aij = 1[i= j]+ c · q
( dij − 6η∑

1���k di�
+ dij − 6η∑

1���k d�j

)
. (3.26)

Let A be the | \ F| × | \ F| matrix with entries as in the previous equation, that is, A=
(aij)(i,j)∈(\F)2 is given by (3.26) for all (i, j) ∈ ( \ F)2. Note that A is symmetric. Then we obtain
from (3.25)

Xt+1 � B · Xt ,
with B=A+ �A, where

(�A)ij =
{
0 i ∈ \F and j ∈ i,
−aij i ∈ \F and j ∈  \ (F ∪ i).

Set
F′ := {(i, j) ∈ ( \ F)2 | j ∈  \ (F ∪ i)}.

As d(u)� αn/2 for all u ∈V and some α > 0, we also know that
∑

1���k d�j � kα/2. Together
with 0� di,j � 1 for all (i, j) ∈ [k]2, we get that∣∣∣∣ dij − 6η∑

1���k di�

∣∣∣∣� 2
αk

.

Using the fact that |F′|� 2ηk2 (see (3.18)), we obtain

‖�A‖2F =
∑

(i,j)∈F′
a2ij �

∑
(i,j)∈F′

(
4
αk

)2
� 2ηk2

(
4
αk

)2
= 42 · 2 · η

α2

and thus ‖�A‖F � 4
√
2η/α. This leaves us with bounding the biggest eigenvalue λmax of A. Using

the well-known inequality for symmetric matrices,

λmax �
∑

(i,j)∈(\F)2
Aij/| \ F|,

we obtain

λmax �
1

| \ F|
∑

(i,j)∈(\F)2
aij

� 1
| \ F|

( ∑
(i,i)∈(\F)2

1+
∑

(i,j)∈[k]2

cq(dij − 6η)∑
1���k di�

+
∑

(i,j)∈[k]2

cq(dij − 6η)∑
1���k d�j

− 2
∑

i∈[k]\(\F)

∑
j∈[k]

cq∑
1���k d�j

)
.

Note that | \ F|� (1− η)k, |[k] \ ( \ F)|� ηk. Moreover,
∑

1���k d�j � αk/2 for all
j ∈ [k]. Thus

λmax � 1+ 1
k

(
cqk+ cqk− 12cq

∑
(i,j)∈[k]2

η∑
1���k d�j

− 2cq
ηk2

αk/2

)
� 1+ 2cq(1− 8η/α).

Choosing η small enough such that 2q(1− c(1− 8η/α)), 4
√
2η/α � ν implies the claim of this

lemma.
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This leaves us with proving that (3.24) also holds with high probability. As |I(pp)t+1 | conditioned
on It is a self-bounding function, so is |I(pp),it+1 \ Iit| for all i ∈  \ F and therefore also |I(pp),it+1 \(It ∪
Hi,j′)| =: Yt+1,i,j′ for all i ∈  \ F and j′ ∈ i. Note thatYt+1,i,j′ = Xt+1,i,j′ − Xt,i,j′ . Lemma 2.2 yields
that

Pt[Yt+1,i,j′ � (1−Et[Yt+1,i,j′]−1/3)Et[Yt+1,i,j′]]� 1−Et[Yt+1,i,j′]−1/3

and therefore, setting

Zt,i = c · q
∑
j∈i

( dij − 6η∑
1���k di�

+ dij − 6η∑
1���k d�j

)
Xt,j for all i ∈  \ F,

and using (3.24), i.e. Et[Yt+1,i,j′]� Zt,i for all i ∈  \ F and j′ ∈ i, we get with probability at least
1− k3Z−1/3

t,i

Yt+1,i,j′ � (1− Z−1/3
t,i )Zt,i for all i ∈  \ F and j′ ∈ i.

This and |Iit|� Xt,i for all i ∈  \ F implies that (3.24) also holds with high probability for a
marginally smaller c, as claimed.

Extension. We now solve the linear recurrence relation above and extend it to more than one
round to get an upper bound on the runtime of push&pull. We first state a Chernoff bound that
will be very useful in the next lemma.

Lemma 3.14 ([26]). Let ε, δ > 0. Suppose that X1, . . . , Xn are independent geometric random
variables with parameter δ, so E[Xi]= 1/δ for each i. Let X := ∑

1�i�n Xi,μ =E[X]= n/δ. Then

P[X � (1+ ε)μ]� e−n(ε−log (1+ε)) � e−ε2n/2(1+ε)

Together with Lemma 2.11 the following lemma implies Theorems 1.3(b) and 1.5(b).

Lemma 3.15. Consider the setting of Theorems 1.3(b) and 1.5(b) and let It = I(pp)t . The following
statements hold w.h.p.

(a) Let S⊆Vn, |S| = �(n). Then there is t = �(log log n) such that w.h.p. |It|� |It ∩ S|�
log log n.

(b) Let log log n� |It|� n/ log n. Then there is τ � log1+2q (n/|It|)+ o(log n) such that
|It+τ | > n/ log n.

(c) Let n/ log n� |It|� n− n/ log n. Then there is τ = o( log n) such that |It+τ | > n− n/ log n.
(d) Let |It|� n− n/ log n and q= 1. Then there is τ = o( log n) such that |It+τ | = n.

Proof. As |I(pp)t |� |I(pull)t | clearly (c) and (d) follow from Lemma 3.2.We show (a) by determining
a lower bound for the probability that an arbitrary vertex gets informed after a constant number
of rounds. Set β =min{α, ε}, let S0 = {u} and choose w ∈V ,w �= u. By Lemma 2.9 there is d�
8/β2 + 2 and c= (β4/64)8/β2+3 ∈ (0, 1) such that there are at least cnd−1 paths of (edge) length d
from u to w. Let γ = (u, v1, . . . , vd−1,w) be such a path from u to w, and let Aγ denote the event
that w is informed via γ after exactly d rounds performing only push operations, that is, Aγ is the
event that in the first round the randomly selected neighbour of u is v1, in the second round the
randomly selected neighbour of v1 is v2 and so forth, until in the dth round the randomly selected
neighbour of vd−1 is w. Obviously, the probability of Aγ is bounded from below by n−d. Further,
let γ ′ �= γ be another path from u to w with length d. As γ and γ ′ differ by at least one edge we
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readily obtain that P[Aγ ∩Aγ ′]= 0. Let � denote the set of all paths with length d from u to w.
Having done these preparations we use them to conclude for all w ∈V and t� 0

Pt[w ∈ It+d]� Pt

[⋃
γ∈�

Aγ

]
�

∑
γ∈�

Pt[Aγ ]�
∑
γ∈�

n−d � c
n
. (3.27)

We define a modified protocol as follows.Wait d := �8/β2 + 2� rounds, after that with probability
c choose one uninformed vertex uniformly at random and set it as informed. Repeat. Call the
vertices informed by this algorithm I�t . Then the probability of any vertex being informed after d
rounds is

Pt[v ∈ I�t+d|v /∈ I�t ]= c/n.
Thus, for any t� 0,

Pt[v ∈ It+d|v ∈Ut]� Pt[v ∈ I�t+d|v /∈ I�t ]= c/n.
Note that for any s ∈N the set I�sd is generated by a very simple procedure: s times independently,
with probability c, we choose a random vertex and put it into I�sd. Thus |I�sd ∩ S| is binomially
distributed with s trials, where each one has success probability c|S|/n= �(c); it follows readily
that |I�sd ∩ S| concentrates around a multiple of s for large s, and the claim follows by choosing
s= �( log log n).

This leaves (b) to be shown. Part (a) implies that there is some t0 = o( log n) such that Xt0,i =
�( log log n) for all i ∈  \ F by choosing S=Vi \ (Ni ∪ Ei,j), j ∈ i and applying a union bound
over i and j. Thus we can apply Lemma 3.13. It gives w.h.p., say with probability 1− g(n)= 1−
o(1), that Xt+1 � (A+ �A)Xt , A has maximal eigenvalue λmax(A)� 1+ 2q− ν and ‖�A‖F � ν.
Then B :=A+ �A has maximal eigenvalue

λmax(B)� λmax(A)− ‖�A‖F � 1+ 2q− 2ν
(Theorem of Wielandt and Hoffmann; see e.g. [24]).

Set f (n) := ( log (n/ log n))2/3. Our assumptions guarantee that f (n)= ω(1) and f (n)=
o( log n). Moreover, set

τ := 1
1− g(n)

· log (n/ log n)
log (λmax(B))

+ f (n)= log n
log (λmax(B))

+ o( log n).

Let (Xi)i∈N be independent and identically distributed geometric random variables with expecta-
tion 1− g(n). Set X = X1 + X2 + · · · + XT with T = log (n/ log n)/ log (λmax(B)). We show that
P[X � τ ]= 1− o(1). To see this, note first that by linearity of expectation E[X]= τ − f (n). Then,
by Lemma 3.14,

P[X � τ ]= P
[
X�

(
1+ f (n)

τ + f (n)

)
E[X]

]
� 1− exp

(
−�

(
f (n)2

τ

))
= 1− o(1).

Thus we have w.h.p.

|It+τ |� ‖Xt+τ‖1 � ‖BT Xt0‖1.
Let v be an eigenvector of B to λmax(B). As v �= 0 there is an index � such that v� �= 0. Without loss
of generality we can assume that v� = 1, as v/v� is also an eigenvector to λmax(B). Thus (BT v)� =
λmax(B)T , (BT (Xt0 − v))i � 0 for all 1� i� k and therefore

|It+τ |� (BT Xt0 )� � (BT (v+ Xt0 − v))� = (BT v)� + (BT (Xt0 − v))� � (BT v)� � λmax(B)T .

Our choice of T yields w.h.p. |It+τ |� λmax(B)T � n/log n. Note that, since ν > 0 was chosen
arbitrarily, we in fact have that τ � log1+2q (n)+ o( log n), and the proof is completed.
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Figure 1. Plotted values of� in Tpp(Gn(ε), q)− cpp log n= � log n+ o( log n), for 0.9< q< 1 and 0< ε < 1/2.

3.6 Proof of Theorem 1.4(b) – edge deletions may slow down push&pull
For any 0< ε < 1/2, q ∈ (0, 1) we consider a sequence of graphs (Gn(ε))n∈N = ((Vn, En))n∈N
that is similar to the one studied in the proof of Theorem 1.4(a). Let Vn =An ∪ Bn with An :=
{1, . . . , �n/2�}, Bn := {�n/2� + 1, . . . , n} and deg(v)= n− 1 for all v ∈An. Let the induced sub-
graph of Bn be a random graph in which each edge is included independently with probability
p= 1− 2ε. We know and it is easy to show (see e.g. [15, Section IV]) that w.h.p. this subgraph is
almost regular, that is,

dBn(v)= (1+ o(1))(1− 2ε)n/2 for all v ∈ Bn, (3.28)

and is an expander, which means that for every Sn ⊆ Bn, 1� |Sn|� n/4 and dBn := (1− 2ε)n/2
we have

e(Sn, Bn\Sn)= (1+ o(1))
dBn |Sn| |Bn \ Sn|

|Bn| = (1− 2ε + o(1))|Sn| |Bn \ Sn|. (3.29)

First we give a statement that describes the expected number of informed vertices after performing
one round of push&pull.

Lemma 3.16. Let Gn(ε)= (An ∪ Bn, En) be as above.

(a) Let
√
log n� |It|� n/ log n and set

Xt = (|I(pp),(A)t |, |I(pp),(B)t |) := (|I(pp)t ∩An|, |I(pp)t ∩ Bn|).
Then Et[Xt+1]= (1+ o(1))MXt, where

M =
⎛
⎝ 1+ q q

(
1+ ε/(2− 2ε)

)
q
(
1+ ε/(2− 2ε)

)
1+ q

(
1− 2ε/(2− 2ε)

)
⎞
⎠.

(b) Let |U(pp)
t |� n/ log n. Then

Et[|U(pp)
t+1 |]� (1+ o(1))e−q(1/2+(1/2−ε)/(1−ε))(1− q)|Ut|.

Proof. For J ∈ {A, B}, Jn ∈ {An, Bn} set U(J)
t :=Ut ∩ Jn, I(J)t := It ∩ Jn and I(pp),(J)t+1 = I(pp)t+1 ∩ Jn. We

first prove (a) by computing the expected number of informed vertices after a single round. Since
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d(u)= �(n) for all u ∈Vn and |It|� n/ log n, the probability of u ∈Ut being informed by pull is

Pt[u ∈ I(pull)t+1 \ It]= q|N(u)∩ It|
|N(u)| = o(1).

As the events of u being informed by push and pull are independent, we have

Pt[u ∈ (I(push)t+1 ∩ I(pull)t+1 ) \ It]= o(1)Pt[u ∈ I(push)t+1 \ It].
Thus

Et[|I(pp)t+1 \ It|]= (1+ o(1))(Et[|I(push)t+1 \ It|]+Et[|I(pull)t+1 \ It|]).
We look at pull in detail first. Recall that

deg (v)= n− 1 for all v ∈An and deg (v)= (1+ o(1))(1− ε)n for all v ∈ Bn.
Moreover, using (3.29), we obtain

Et[|I(pull)t+1 \ It|]=
∑
u∈Ut

q
|N(u)∩ It|

|N(u)|

=
∑

u∈U(A)
t

q
|N(u)∩ It|

|N(u)| +
∑

u∈U(B)
t

q
|N(u)∩ It|

|N(u)|

= (q+ o(1))
n
2

( |I(A)t | + |I(B)t |
n

+ |I(A)t | + (1− 2ε)|I(B)t |
(1− ε)n

)
and thus

Et[|I(pull),(A)t+1 \ It|]= (q+ o(1))
|I(A)t | + |I(B)t |

2
,

Et[|I(pull),(B)t+1 \ It|]= (q+ o(1))
|I(A)t | + (1− 2ε)|I(B)t |

2(1− ε)
.

Next we consider push. By using |It| = o(n)= o(δGn(ε)) and (3.3), we obtain

Et[|I(push)t+1 \ It|]=
∑
u∈Ut

1−
∏

i∈N(u)∩It

(
1− q

|N(i)|
)

=
∑
u∈Ut

(1+ o(1))
∑

i∈N(u)∩It

q
|N(i)|

= (q+ o(1))
∑
u∈Ut

( |I(A)t |
n

+ 1[u ∈U(A)
t ]|I(B)t | + 1[u ∈U(B)

t ]|N(u)∩ I(B)t |
(1− ε)n

)

and thus, with |U(A)
t |, |U(B)

t | = (1− o(1))n/2 and (3.29),

Et[|I(push),(A)t+1 \ It|]= (q+ o(1))
( |I(A)t |

2
+ |I(B)t |

2
+ ε|I(B)t |

2(1− ε)

)
,

Et[|I(push),(B)t+1 \ It|]= (q+ o(1))
( |I(A)t |

2
+ |I(B)t |

2
− ε|I(B)t |

2(1− ε)

)
.

Accumulating the calculated expectations for pull and push yields the claim.
Next we show (b). The assumption implies that |It| = (1− o(1))n and therefore |I(A)t | = |I(B)t | =

(1− o(1))n/2. Let Du be the event that an uninformed vertex u does not get informed by the
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push algorithm; let Eu be the corresponding event for pull. Then Du and Eu are independent and
Du ∩ Eu is the event that u does not get informed in the current round. Let u ∈U(A)

t , and then

Pt[Du]=
∏
v∈I(A)t

(
1− q

|N(v)|
) ∏

v∈I(B)t

(
1− q

|N(v)|
)

= (1− o(1))
(
1− q

n

)|I(A)t |(
1− q

(1− ε)n

)|I(B)t |

= e−q(1/2+1/(2(1−ε))) + o(1)
� e−q(1/2+(1−2ε)/(2(1−ε))) + o(1)

and

Pt[Eu]= 1− q|N(u)∩ |It| |
|N(u)| = 1− q|It|

n− 1
= 1− q+ o(1).

Now consider u ∈U(B)
t ; then according to (3.28) we have

|N(u)∩ I(B)t | = |N(u)∩ Bn| − |N(u)∩U(B)
t | = (1+ o(1))(1− 2ε)n/2.

Therefore

Pt[Du]=
∏
v∈I(A)t

(
1− q

|N(v)|
) ∏

v∈N(u)∩I(B)t

(
1− q

|N(v)|
)

= (1− o(1))e−q/2
(
1− q

(1− ε)n

)|N(u)∩I(B)t |

= e−q(1/2+(1−2ε)/(2(1−ε))) + o(1)

and

Pt[Eu]= 1− q|N(u)∩ |It| |
|N(u)| = 1− (1+ o(1))

q(|I(A)t | + |N(u)∩ I(B)t |)
(1− ε)n

= 1− q+ o(1).

Combining the results for u ∈U(A)
t and u ∈U(B)

t , we get

Et[|Ut+1|]=
∑
u∈Ut

Pt[Du]Pt[Eu]� (1+ o(1))e−q(1/2+(1/2−ε)/(1−ε))(1− q)|Ut|.

Remark 3.1. Let λmax be the greatest eigenvalue ofM as defined in Lemma 3.16(a). Then

λmax = 1+ 2q+
(
2q

(√
(ε2/2− ε + 1)− 1

)
+ qε

)
/(2− 2ε)> 1+ 2q.

Next comes a lemma that bounds the runtime of push&pull on Gn(ε). In particular, (a) and (c)
of Lemma 3.17 provide a lower bound on the runtime, and (a), (b) and (d) of Lemma 3.17 together
with Lemma 3.15(a) provide an upper bound.

Lemma 3.17. Let It = I(pp)t , ε > 0 and λ = λmax(M) be the greatest eigenvalue of M as given in
Lemma 3.16(a). Consider Gn(ε).

(a) Let
√
log n� |It|� n/ log n. Then there are τ1, τ2 = logλ (n/|It|)+ o( log n) such that

|It+τ1 | < n/ log n< |It+τ1 |.
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(b) Let n/ log n� |It|� n− n/ log n. Then there is τ = o( log n) such that |It+τ | > n− n/ log n.
(c) Let |It|� n/ log n. Then there is

τ � log n/ log ((1− q)−1 exp (q(1/2+ (1/2− ε)/(1− ε))))− o( log n)
such that |It+τ | < n.

(d) Let |It|� n− n/ log n and q ∈ (0, 1). Then there is

τ � log n/ log ((1− q)−1 exp (q(1/2+ (1/2− ε)/(1− ε))))+ o( log n)
such that |It+τ | = n.

Proof. We do not give a proof for (b) as it follows immediately from Lemma 3.15(a). For
J ∈ {A, B} set U(J)

t :=Ut ∩ Jn, I(J)t := It ∩ Jn. We prove (a) first. Let t0 > 0 be the first round such
that |It0 |� log log n and set Xt and M as in Lemma 3.16(a); note that Lemma 3.15(a) also gives
that (Xt0 )i � log log n/2 for i ∈ {1, 2}. Then, for all t� t0 such that |It|� n/ log n, we obtain
from Lemma 3.16(a) that Et[Xt+1]= (1+ o(1))MXt and, in particular, Et[(Xt+1)i]= �(|It|) for
i ∈ {1, 2}. As every component of Xt is self-bounding, Lemma 2.1 applies and we get for i ∈ {1, 2}

Pt[|(Xt+1)i −Et[(Xt+1)i]|�Et[(Xt+1)i]2/3]=O(|It|−1/3)
and by the union bound, provided that |It|� n/ log n,

Pt

[ ⋂
i∈{1,2}

(|(Xt+1)i −Et[(Xt+1)i]|�Et[(Xt+1)i]2/3)
]

= 1−O(|It|−1/3). (3.30)

Using (3.30) we want to find a bound on |It+1|. As long as |It|� n/ log n, we get

((1−O(|It0 |−1/3))M)t+1−t0Xt0 � Xt+1 � ((1+O(|It0 |−1/3))M)t+1−t0Xt0 .
As seen in Remark 3.1,M has maximal eigenvalue λmax > 1, and asM is a positive matrix there is
a positive eigenvector v to λmax; see [32]. This gives constants c1, c2 > 0 such that c1v log log n�
Xt0 � c2v log log n, and for t large enough

c1
c2
((1−O(|It0 |−1/3))λmax)t+1−t0Xt0 � Xt+1 �

c2
c1
((1+O(|It0 |−1/3))λmax)t+1−t0Xt0 ,

and therefore

|It+1|� c1
c2
((1+ o(1))λmax)t−t0 |It0 |,

as long as the right-hand side is bounded by n/ log n. For all these t we also get

|It+1|� c2
c1
((1− o(1))λmax)t−t0 |It0 |.

Proceeding as in Lemmas 2.5 and 2.6 and their proofs, where we replace the events

|It|�Et−1[|It|]−Et−1[|It|]2/3 or |It|� n/g(n)
and

||It| −Et−1[|It|]|�Et−1[|It|]2/3
with ⋂

i∈{1,2}
((Xt+1)i � (1−Et[(Xt+1)i]−1/3)Et[(Xt+1)i]) or |It|� n/ log n

and ⋂
i∈{1,2}

(|(Xt+1)i −Et[(Xt+1)i]|�Et[(Xt+1)i]2/3)
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we obtain the statement. Next we show (c). The assumption guarantees that less than n/ log n
vertices are informed. Thus |U(B)

t |� n/2− |It|� (1/2− 1/log n)n. We consider a modified dis-
semination process, where in each round, each uninformed vertex always chooses an informed
neighbour (but does not necessarily get informed as the message transmission may fail), and
additionally each vertex chooses a neighbour independently and uniformly at random and after
this round the chosen vertex is informed with probability q; in other words, we assume that
uninformed vertices can inform other vertices. In this modified process the probability of an unin-
formed vertex u ∈U(B)

t staying uninformed after performing one round is given by the product of
the probabilities of not being informed by pull or via push by a vertex in An or Bn. Using (3.29)
and (1− 1/n)n = e−1+o(1), we get g(n)= o(1) such that

Pt[u ∈U(B)
t+1]= (1− q)

(
1− q

n

)n/2(
1− q

(1− ε)n

)|N(u)∩Bn|

= (1− q) exp
(

−q
(
1
2

+ 1/2− ε

1− ε

)
+ g(n)

)
.

As we have seen in the proof of Lemma 3.16(b), the probability of being informed by push&pull
is greater for a vertex in An than for a vertex in Bn. Therefore it is sensible to expect that some
vertices in Bn will be the last to be informed. Consequently let Eu denote the event that a currently
uninformed vertex u ∈U(B)

t does not get informed in this modified version within the next

τ := 1
log ((1− q)−1 exp (q(1/2+ (1/2− ε)/(1− ε)− g(n))))

log (n)− h(n)

rounds, where h= o( log n) and h= ω(1). Therefore we have

Pt[Eu]=
(
(1− q) exp

(
−q

(
1
2

+ 1/2− ε

1− ε

)
+ g(n)

))τ

= 1
n
eω(1).

In this modified model the events {Eu | u ∈U(B)
t } satisfy that there is p= ω(n−1) such that

Pt[Eu | {Ev : v ∈U}]� p for all u ∈ Bn and U ⊆V \ {u}.
This follows immediately by the above calculations. Thus, as |U(B)

t | = �(n),

Pt

[ ∧
u∈U(B)

t

Eu
]
�

∏
u∈U(B)

t

(1− p)� exp
(

−
∑

u∈U(B)
t

p
)

= o(1).

Finally we show (d). By Lemma 3.16(b), we obtain that for any τ ∈N,

Et[|Ut+τ |]� ((1+ o(1))e−q(1/2+(1/2−ε)/(1−ε))(1− q))τ |Ut|.
Then, for some

τ := log (n)
log ((1− q)−1 exp (q(1/2+ (1/2− ε)/(1− ε))))

+ o( log n),

we obtain that, say, Et[|Ut+τ |]� |Ut|/n� 1/log n. Thus Pt[|Ut+τ |� 1]� o(1) by Markov’s
inequality.

Lemma 3.17 together with Lemma 2.11 gives that

Tpp(Gn(ε), q)= logλ n+ 1
q(1− 1.5ε)/(1− ε)− log (1− q)

log n+ o( log n),
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where

λ = 1+ 2q+
(
2q

(√
(ε2/2− ε + 1)− 1

)
+ qε

)
/(2− 2ε)> 1+ 2q.

To see whether push&pull actually slowed down (in terms of order log n) one has to compare the
runtime on this sequence of graphs to cpp log n, the runtime on expander sequences. In Figure 1 we
can see that it slows down for nearly all values of ε and q in question; however, there are admissible
values of ε and q such that the process even speeds up.
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6 Asymptotics for Pull on the Complete Graph
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Abstract
We study the randomized rumor spreading algorithm pull on complete graphs with n ver-

tices. Starting with one informed vertex and proceeding in rounds, each vertex yet uninformed
connects to a neighbor chosen uniformly at random and receives the information, if the vertex
it connected to is informed. The goal is to study the number of rounds needed to spread the
information to everybody, also known as the runtime.

In our main result we provide a description, as n gets large, for the distribution of the
runtime that involves a martingale limit. This allows us to establish that in general there is
no limiting distribution and that convergence occurs only on suitably chosen subsequences
(ni)i∈N of N, namely when the fractional part of (log2 ni + log2 lnni)i∈N converges.

1 Introduction
Randomized rumour spreading has applications in replicated databases [7], mobile networks [16],
epidemic modelling [1] and even crypto-currency [20]. Given a graph, the algorithm/protocol pull
works as follows. We start by selecting a vertex and equipping it with some piece of information.
Then we proceed in rounds, in which every vertex yet uninformed connects to a neighbor chosen
uniformly at random and receives the information, if the vertex it connected to is informed. We
will study the number of rounds needed to spread the information to all vertices, also known as
runtime. For a graph G = (V,E) and any vertex v ∈ V we denote the (random) runtime of pull
on G with starting vertex v by X(G, v). The most basic case, and the one studied here, is to
set G = Kn, the complete graph on n vertices. In that case specifying the initial vertex is not
necessary; we therefore just write Xn for the runtime of pull on Kn.

Related Work Randomized rumour spreading has been researched intensively since its intro-
duction and popularization in [13, 18]. One direction of research describes the runtime of ran-
domized rumour spreading protocols using only general graph parameters like conductance [2],
diameter [11] or expansion [14]. A different direction is to obtain ever more precise bounds on the
runtime on specific graph classes [12, 3, 5]. One major step in that direction was achieved in [8],
where the authors studied the runtime of pull on the complete graph. They showed that

E[Xn] = log2 n+ log2 lnn+O(1),

as well as the related large deviation bound

P
(
|Xn − E[Xn]| ≥ r

)
≤ Ae−αr for suitable A,α > 0 and all r ∈ N. (1.1)

Actually, in [8] qualitatively similar results for several other rumor spreading protocols were shown.
In particular they studied the protocol push, which differs from pull in the way the information is
spread from vertex to vertex: in push, each informed vertex chooses a uniformly random vertex
and passes the information forward if the targeted vertex is uninformed.

Regarding push we have by now a much more precise picture. In [6] the distribution of the
runtime was described for large n. Let Xpush

n be the runtime of push on the complete graph, γ the



Euler-Mascheroni constant, G a Gumble distributed random variable with parameter γ and c a
specific 1-periodic function with amplitude about 10−9. Then in [6] it was shown that, as n→∞,

sup
k∈N

∣∣P (Xpush
n ≥ k)− P

(
dlog2 n+ lnn+G+ γ + c(log2 n− blog2 nc)e ≥ k

)∣∣ = o(1).

This result implies, see [6], that there is a limiting distribution only on suitable subsequences, that
is on sequences (ni)i∈N such that for some x, y ∈ [0, 1) log2 ni−blog2 nic → x and lnni−blnnic → y.
Moreover, it shows that the expected runtime of push converges only on such sequences as well,
with the consequence that

log2 + lnn+ 1.18242 ≤ E[Xpush
n ] ≤ log2 + lnn+ 1.18263, n ∈ N,

where both bounds are (essentially) achieved for appropriate subsequences of natural numbers.
This improved upon a longish list of previous papers [13, 21, 9, 8], where sharper and sharper
results for the runtime of push were derived.

All randomized rumor spreading protocols described here proceed in rounds. In [17] minimal
path lengths on graphs with random edge weights were studied. If the weights are exponentially
distributed, this problem is equivalent to the so-called asynchronous pull , where instead of having
rounds each uninformed vertex chooses independently neighbours according to a rate-1 Poisson
process. In [17] it was shown that, after appropriate normalization, the limiting distribution of
the runtime of asynchronous pull on complete graphs converges and the limit is the sum of two
independent Gumbel distributed random variables. Some more recent results on asynchronous
rumor spreading are [15, 19, 22].

Results Our main result describes the distribution of the runtime of pull on complete graphs.

Theorem 1.1. There is a continuous random variable X such that, as n→∞,

sup
k∈N

∣∣P (Xn ≥ k)− P (dlog2 n+ log2 lnn+Xe ≥ k)
∣∣ = o(1).

Actually, we can provide some information about X. To this end, let us write It for the set of
informed vertices at the start of round t. In particular, |I0| = 1. By definition of the protocol,
every uninformed vertex becomes informed in round t independently with probability |It|/n. That
is, in distribution

|It+1| = |It|+ Bin
(
n− |It|, |It|/n

)
.

If |It| = o(n), then the binomial distribution is very close to being Poisson, and we thus may
approximate |It| by the sequence of random variables given by

J0 = 1, and Jt+1 = Jt + Po(Jt), t ∈ N0.

This sequence doubles every round in expectation, E[Jt] = 2t. Moreover, it is fairly easy to
establish that (Ht)t∈N0 with Ht = 2−tJt is a martingale and uniformly integrable. Thus, the
Martingale Convergence Theorem guarantees the existence of a random variable H such that Ht

converges almost surely to H. In essence, 2−t|It| is ’close’ to H for large t (and n); we formalize
this statement in Lemma 2.1 below. The random variable X is then given as X = − log2H.

From this construction of H we may obtain further information about its distribution. For
example, the characteristic function ϕ of H has the property ϕ = limt→∞ ϕt, where ϕt is the
characteristic function of Ht, by Levy’s Continuity Theorem. Using this we establish in Section 2.1
that H is continuous and almost surely positive, two main ingredients in the proof of Theorem 1.1.
However, finding more properties of H, like a handy expression for its density or expressions for
its moments, turned out to be a tough challenge that we leave as an open problem.

Let us denote with (X + x)|Z the distribution of X translated by x and restricted to integers
only, that is, (X + x)|Z is the random variable with domain Z and distribution

P
(
(X + x)|Z ≤ k

)
:= P (X ≤ k − x), k ∈ Z.

2
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Figure 1: The left plot shows an estimate of the density of the random variable X from
Theorem 1.1. The right plot shows, as a function of x ∈ [0, 1], the estimated expectation
and variance of the random variable (X + x)|Z defined in Corollary 1.2.

With this definition at hand and by choosing a suitable subsequence we can derive a limiting
distribution from Theorem 1.1.

Corollary 1.2. Let x ∈ [0, 1) and let ni be a strictly increasing sequence of natural numbers such
that log2 ni + log2 lnni − blog2 ni + log2 lnnic → x. Then, as i→∞, in distribution

Xni
− blog2 ni + log2 lnnic → (X + x)|Z .

This corollary warrants some further remarks. First of all, it is not immediately clear that a
sequence with the required properties exists, at least it was not to us. Luckily it requires only
moderate effort to find a suitable one. For example, we may choose

ni =
⌊

exp(W (2i+x))
⌋
, i ∈ N,

where W is the principal branch of the Lambert W function (or product logarithm). A key
property of W is that W (x)eW (x) = x for all x > −1/e. As W (z) = (1 + o(1)) ln z for large z, see
for example [4], the sequence (ni)i∈N is strictly increasing. Thus, as i gets large,

2log2 ni+log2 lnni = ni lnni =
(
1 + o(1)

)
· exp

(
W (2i+x)

)
W (2i+x) = 2i+x+o(1).

Secondly, we can actually say more. Large deviation bounds for pull, see (1.1), yield that (Xn)k is
absolutely integrable for all k ∈ N and thus convergence in distribution also implies convergence
of all moments. In particular, for sequences as in Corollary 1.2

E
[(
Xni − blog2 ni + log2 lnnic

)k]→ E
[(

(X + x)|Z
)k] ∀ k ∈ N.

However, as already mentioned, extracting more information from this statement requires more
detailed knowledge about the moments/the distribution of X that we do not have. On a positive
side, we can provide some preliminary numerical results, see Fig. 1. To get these numbers, we have
drawn 106 instances of the random variable − log2H28 as a substitute for the random variable
X = − log2H. To approximate the density we used the gaussian_kde function of Pythons Scipy
package. To estimate first and second moments of (X + x)|Z we used the formulas

E
[
(X + x)|Z

]
=
∑

k≥1

(
P (X ≥ k − x− 1)− P (X ≤ −k − x)

)

and

E
[(

(X + x)|Z
)2

+ (X + x)|Z
]

= 2 ·
∑

k≥1
k
(
P (X ≥ k − x− 1)− P (X ≤ −k − x)

)
,

where we again substituted X by − log2H28.
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Outline The paper is structured as follows. In the next section we give the proof of the main
results, which is based on three key lemmas characterising the different phases of pull. At first,
as long as less than n1/3 vertices are informed, pull is best described by a branching process,
which, suitably normalized, has limiting distribution H, see Lemma 2.1. After that, the protocol
follows essentially a deterministic recurrence relation as described in Lemma 2.2. Once there are
only o

(√
n
)
uninformed vertices remaining the behaviour changes once more, in that all these

vertices will be informed in one additional round, see Lemma 2.3. The proof of Theorem 1.1,
based on these lemmas as outlined, is given in Subsection 2.1. After that, we give the short proof
for Corollary 1.2 in Subsection 2.2. The proofs of Lemmas 2.1-2.3 can be found in Subsections
2.3-2.5.

2 Proofs

2.1 Proof of Theorem 1.1
Our first auxiliary lemma establishes that initially – as long as there are not too many informed
vertices – the number of informed vertices essentially doubles in each round and the deviation
from perfect doubling can be described in terms of a non-trivial random variable.

Lemma 2.1. There is a continuous and almost surely positive random variable H such that for
all ε > 0 there are constants n0, t0 ∈ N such that for all n ≥ n0 and t0 ≤ t ≤ log2(n1/3)

sup
x∈R

∣∣P
(
2−t|It| ≥ x

)
− P (H ≥ x)

∣∣ ≤ ε.

The proof is in Section 2.3. From now on we fix some ε > 0 and set for the remainder

t1 := blog2(n1/3)c,

where n ≥ n0 is given by the previous lemma. For rounds t ≥ t1 it turns out that the behaviour
of pull can be best described by a (deterministic) recurrence relation. We have roughly 2t1 ≈ n1/3
informed vertices, enough so that it is reasonable to assume that the number of newly informed
vertices in the following rounds is strongly concentrated around its expectation.

Denote by Ut the set of uniformed vertices at the start of round t. Then it is easy to see that
E[|Ut+1|

∣∣ It] = (|Ut|/n)2n, see also Lem. 2.14 below, and thus we expect |Ut1+t|, given |Ut1 |, to be
close to (|Ut1 |/n)2

t

n. The only thing that we have to take care of is that (small) deviations from
the expectation are not blown out of proportions when considering multiple rounds. The next
lemma, that we prove in Subsection 2.4, does exactly that. With high probability, or abbreviated
as whp, means with probability tending to 1 as n tends to infinity.

Lemma 2.2. With high probability
⋂

t≥0

{∣∣∣|Ut1+t| −
(
|Ut1 |/n

)2t
n
∣∣∣ ≤ |Ut1+t| · n−1/50 + n1/4

}
.

This lemma will enable us to track the process all the way until there are fewer than
√
n uniformed

vertices remaining. Indeed, as we will argue shortly,
√
n is an important threshold in the following

sense. On the one hand, if there are substantially more than
√
n uninformed vertices, very likely

the process will not terminate in the next round. In contrast, if there are much less than
√
n

uninformed vertices, the process will likely terminate in the next round. Furthermore, we will see
that it is very unlikely that |Ut| = Θ

(√
n
)
for some t, where the process terminates only with

constant probability. The next lemma summarizes our findings.

Lemma 2.3. Let T = min
{
t ∈ N : |Ut| <

√
n
}
, then with high probability

|UT−1| = ω
(√
n
)
, |UT | = o

(√
n
)
, |UT | > 0 and |UT+1| = 0.
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The last statement implies immediately that whp Xn = T + 1 and it thus provides a handy way
to compute Xn. To that end we utilize Lemma 2.2 that guarantees whp for all t ∈ N

|Ut1+t| =
(
1 + o(1)

)(
|Ut1 |/n

)2t
n+O

(
n1/4

)
.

Together with Lemma 2.3 this implies whp

(
|Ut1 |/n

)2T−t1−1

n = ω
(√
n
)

and
(
|Ut1 |/n

)2T−t1

n = o
(√
n
)

and therefore also whp

T = min
{
t ∈ N :

(
|Ut1 |/n

)2t−t1

n <
√
n
}

= min
{
t ∈ N : (1− |It1 |/n)2

t−t1
n <
√
n
}
.

Let T ′ be the real number such that
(
1 − |It1 |/n

)2T ′
n =

√
n. Then T =

⌊
T ′ + t1 + 1

⌋
and it is

straightforward to verify that

T ′ = log2 n− log2 |It1 |+ log2 lnn− 1 + o(1).

Therefore, as Lemma 2.3 yields whp Xn = T + 1 = bT ′ + t1 + 2
⌋
,

sup
k∈N

∣∣∣P (Xn ≥ k)− P
(⌊

log2 n+ log2 lnn− log2

(
2−t1 |It1 |

)
+ 1 + o(1)

⌋
≥ k

)∣∣∣ = o(1).

In Lemma 2.1 we showed that 2−t1 |It1 | converges in distribution to a random variable H; since H
is continuous so is X = − log2H and the claim in Theorem 1.1 follows readily.

2.2 Proof of Corollary 1.2
Theorem 1.1 states that there is a continuous random variable X such that for all x ∈ [0, 1) and
strictly increasing sequences ni such that log2 ni + log2 lnni − blog2 ni + log2 lnnic → x

sup
k∈N

∣∣∣P
(
Xni ≥ k

)
− P

(
log2 ni + log2 lnni +X + 1 ≥ k

)∣∣∣ = o(1).

Setting {y} = y − byc for all y ∈ R and substituting k = blog2 ni + log2 lnnic+ t+ 1 we obtain

sup
t∈Z

∣∣∣P
(
Xni ≥ blog2 ni + log2 lnnic+ t+ 1

)
− P

(
{log2 ni + log2 lnni}+X ≥ t

)∣∣∣ = o(1).

Thus X being a continuous random variable

sup
t∈Z

∣∣P
(
Xni
≥ blog2 ni + log2 lnnic+ 1 + t

)
− P (x+X ≥ t)

∣∣ = o(1).

Thus P (Xni
− blog2 ni + log2 lnnic ≤ t) i→∞−→ P (X ≤ t− x), as claimed.

2.3 Proof of Lemma 2.1
To prove Lemma 2.1 first recall that

J0 = 1 and Jt+1 = Jt + Po(Jt), Ht = 2−tJt, t ∈ N0.

We show three claims in order to prove Lemma 2.1, namely that |It| is close to Jt, then that
(Ht)t∈N0 is a martingale that converges (to H) and finally that the limit is absolutely continuous.
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|It| and Jt are close. We begin with a simple lemma that determines the first and second
moment of Jt.

Lemma 2.4. For all t ∈ N0 and Jt as defined above

E[Jt] = 2t and E[J2
t ] = 2t−1(3 · 2t − 1).

Proof. We compute both moments inductively, starting with the base case

E[J0] = 1 and E[J2
0 ] = 1.

Moreover, using the tower property of the expectation and that E[Po(λ)] = λ for any λ > 0 we
obtain by induction

E[Jt+1] = E[Jt + Po(Jt)] = E
[
E
[
Jt + Po(Jt)

∣∣ Jt
]]

= 2 · E[Jt] = 2t+1.

We compute the second moment similarly. Since E[Po(λ)2] = λ+ λ2 we obtain that

E[J2
t+1] = E

[(
Jt + Po(Jt)

)2]
= E

[
J2
t + 2 · JtPo(Jt) + Po(Jt)

2
]

= 4 · E[J2
t ] + E[Jt]

= 4 · 2t−1(3 · 2t − 1) + 2t = 2t(3 · 2t+1 − 1).

The next (well-known) statement bounds the distance between two Poisson distributed random
variables and furthermore quantifies the distance in the Poisson limit theorem. Recall that the
total variation distance for two integer valued random variables X,Y can be defined as

d(X,Y ) :=
1

2

∑

k∈Z

∣∣P (X = k)− P (Y = k)
∣∣. (2.1)

Lemma 2.5 ([23], Eq. 3.6 and Thm. 4.1).

a) Let λ1, λ2 ∈ N and X ∼ Po(λ1) and Y ∼ Po(λ2) be independent Poisson-distributed random
variables. Then d(X,Y ) ≤ |λ1 − λ2|.

b) Let X ∼ Bin(n, p) and Y ∼ Po(np). Then d(X,Y ) ≤ np2.
With these ingredients at hand we can give a bound on the distance of |It| and Jt that is quite
strong as long as t is not too large.

Lemma 2.6. For all t ∈ N

dt := d
(
|It|, Jt

)
≤ 2 · 4t/n.

Proof. Note that it suffices to consider only the case t ≤ log4 n, as otherwise the claimed bound
is greater than one and consequently trivially true. There are |It| informed vertices in round t.
Then the probability of any vertex v ∈ Ut to be informed in that round is |It|/n and furthermore
it is independent of all other uninformed vertices, that is, the number of newly informed vertices
is binomially distributed with |Ut| tries and success probability |It|/n. Thus, in distribution,

|It+1| = |It|+ Bin
(
|Ut|, |It|/n

)
, (2.2)

an equation that we have already encountered in the introduction. We prove the statement of the
lemma by induction over t. The base case is obvious as |I0| = 1 = J0. For the induction step, we
use (2.1) together with |It| and Jt only taking values on the positive integers, to get

2 · dt+1 =
∑

k≥1

∣∣P
(
|It+1| = k

)
− P (Jt+1 = k)

∣∣

=
n∑

k=1

∣∣∣∣∣
k∑

`=1

P
(
|It+1| = k

∣∣ |It| = `
)
P
(
|It| = `

)
− P

(
Jt+1 = k

∣∣ Jt = `
)
P (Jt = `)

∣∣∣∣∣+ P (Jt+1 > n).
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To simplify this expression we consider the auxiliary calculation

n∑

k=1

∣∣∣
k∑

`=1

P
(
|It+1| = k

∣∣ |It| = `
)(
P
(
|It| = `

)
− P (Jt = `)

)∣∣∣

≤
n∑

`=1

∣∣∣P
(
|It| = `

)
− P (Jt = `)

∣∣∣
n∑

k=`

P
(
|It+1| = k

∣∣ |It| = `
)

≤
n∑

`=1

∣∣∣P
(
|It| = `

)
− P (Jt = `)

∣∣∣ ≤ 2 · dt.

In order to obtain a bound for the tail probability of Jt+1 we use Lemma 2.4 as well as the
assumption t ≤ log4 n so that by Chebyshev’s inequality and plenty of room to spare

P (Jt+1 > n) ≤ P
(
|Jt+1 − E[Jt+1]| > n− E[Jt+1]

)
≤ Var[Jt+1]

(n− E[Jt+1])2
≤ 4t/n.

Applying these bounds to dt+1 we get

2 · dt+1 ≤
n∑

k=1

k∑

`=1

P (Jt = `)
∣∣∣P
(
|It+1| = k

∣∣ |It| = `
)
− P

(
Jt+1 = k

∣∣ Jt = `
)∣∣∣+ 2 · dt + 4t/n.

Next we plug in the distributions for |It+1| − |It| (binomial) and Jt+1 (Poisson) to get

2 · dt+1 ≤
n∑

k=1

k∑

`=1

P (Jt = `)
∣∣∣P
(
Bin(n− `, `/n) = k − `

)
− P

(
Po(`) = k − `

)∣∣∣+ 2 · dt + 4t/n

and shifting indices yields

2 · dt+1 ≤
n∑

`=1

P (Jt = `)
n∑

k=1

∣∣∣
(
P (Bin(n− `, `/n) = k

)
− P

(
Po(`) = k

)∣∣∣+ 2 · dt + 4t/n

≤
n∑

`=1

P (Jt = `) · 2 · d
(
Bin(n− `, `/n),Po(`)

)
+ 2 · dt + 4t/n.

As d is a metric we can use the triangle inequality and with Lemma 2.5 we get for all 0 ≤ ` ≤ n

d
(
Bin(n− `, `/n),Po(`)

)
≤ d

(
Bin(n− `, `/n),Po((n− `)`/n)

)
+ d
(
Po((n− `)`/n),Po(`)

)

≤ (n− `)(`/n)2 +
∣∣(n− `)`/n− `

∣∣,

which is at most 2`2/n. By plugging this into the previous inequality we get

dt+1 ≤
n∑

`=1

P (Jt = `)
2`2

n
+ dt + 4t/n ≤ 2 · E[J2

t ]

n
+ dt + 4t/n.

Lemma 2.4 determines the second moment of Jt. By using the induction hypothesis we conclude

dt+1 ≤ 3 · 4t/n+ 2 · 4t/n+ 4t/n ≤ 2 · 4t+1/n.

(Ht)t∈N0 is a martingale that converges to H. Next we show that the sequence (Ht)t∈N0 is
a martingale and converges almost surely and in L2 to the random variable H.

Lemma 2.7. There is a random variable H such that Ht → H almost surely and in L2. Further-
more H has mean 1 and variance 1/2.
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Proof. First we show that Ht is a martingale. Let Ft be the filtration induced by the random
variables Jt, then

E
[
Ht+1

∣∣ Ft
]

= E
[
2−t−1

(
Jt + Po(Jt)

) ∣∣ Ft
]

= 2−tJt = Ht.

Next, we show that Ht ∈ L2. Therefore we compute

E
[
|Ht|2

]
= 2−2tE

[
J2
t

]
= 2−2t · 2t(3 · 2t+1 − 1) ≤ 6

using Lemma 2.4 and consequently

sup
t∈N0

E
[
|Ht|2

]
<∞. (2.3)

This yields the integrability ofHt and asHt is obviously measurable with respect to Ft we conclude
that it is indeed a martingale. Thus (2.3) and Lp convergence of martingales implies the first claim,
see e.g. [10, Thm. 4.4.6]. The values for the expectation and the variance follow immediately from
Lemma 2.4 by scaling with 2−t and 2−2t respectively and then taking the limit.

An even stronger version of this lemma could be shown, i.e., the martingale converges in Lp for
all p > 1. In any case, the version stated here suffices for our purposes.

In order to show the properties ofH claimed in Lemma 2.1 we need to describe its characteristic
function. The next lemma does exactly that, but we need a definition first. Let

h(x) = h(1)(x) = xex−1, h(t+1) = h(t) ◦ h, t ∈ N. (2.4)

This function is not new in the context of rumor spreading, it plays an important role in the closely
related context of [6], where it describes the evolution of the number of uninformed vertices of
push on complete graphs.

Lemma 2.8. The characteristic functions ϕt of Ht and ϕ of H satisfy

ϕt(x) = h(t)
(
eix2

−t
)

and ϕ(x) = lim
t→∞

ϕt(x).

Proof. To prove the claim we first compute the probability generating function J̃t(x) of Jt. Note
that J̃0(x) = x, as P (J0 = 1) = 1. For t ∈ N0 and |x| ≤ 1 we get

J̃t+1(x) =
∑

k≥0
P (Jt+1 = k)xk =

∑

k≥0
P
(
Jt + Po(Jt) = k

)
xk

=
∑

k≥0

∑

0≤`≤k
P
(
Po(`) = k − `

)
P (Jt = `)xk

=
∑

`≥0
P (Jt = `)

∑

k≥0

`k

k!
e−`xk+`

=
∑

`≥0
P (Jt = `)e−`+x`x`

=
∑

`≥0
P (Jt = `)

(
xex−1

)`
= J̃t

(
xex−1

)
=
(
J̃t ◦ h

)
(x).

Thus Jt has characteristic function x 7→ h(t)
(
eix
)
and as Ht = 2−tJt we immediately obtain

that Ht has characteristic function x 7→ h(t)
(
eix2

−t)
. With Levy’s continuity theorem we infer

that the characteristic function of Ht converges to the characteristic function of H, as Lemma 2.7
guarantees that Ht converges to H almost surely and therefore also in distribution.
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Properties of H. In the last part of this section we show that H is absolutely continuous and
almost surely positive. To show absolute continuity, we will argue that the characteristic function
of H is integrable. To achieve this we first find a recurrence relation for real and imaginary parts
of ϕt, the characteristic function of Ht. We then use this description to find a second order
approximation of ϕt that eventually allows us to uniformly bound the absolute value of ϕt by an
integrable function.

The mapping that we will use to describe the real and imaginary parts of ϕt is given by

F = F (1) : R2 → R2, F

((
R

I

))
= e−1+R

(
cos I − sin I
sin I cos I

)(
R

I

)
, and F (t+1) = F (t) ◦ F, t ∈ N.

Moreover, we set F (0) to be the identity on R2.

Lemma 2.9. Let ϕt be the characteristic function of Ht. Set It(x) = Im
(
ϕt(x)

)
(the imaginary

part), Rt(x) = Re
(
ϕt(x)

)
(the real part) and at(x) = |ϕt(x)|. Then for all t ∈ N0

(
Rt(x)

It(x)

)
= F (t)

((
cos(x2−t)
sin(x2−t)

))
.

and

at+1(x) = at(x/2) exp
(
− 1 +Rt(x/2)

)
.

Proof. Using Lemma 2.8 we obtain for t ∈ N0

ϕt+1(x) = h(t+1)
(
eix2

−t−1
)

= h
(
h(t)

(
ei(x/2)2

−t
))

= h
(
ϕt(x/2)

)
. (2.5)

We continue with a simple observation. For two complex numbers z, w the imaginary and real
parts of their product satisfy

Re(z · w) = Re(z)Re(w)− Im(z)Im(w) and Im(z · w) = Re(z)Im(w) + Im(z)Re(w).

Using this observation and (2.5) we obtain

It+1(x) = Im
(
ϕt+1(x)

)
= Im

(
ϕt(x/2) exp

(
− 1 + ϕt(x/2)

))

= Rt(x/2)Im
(

exp
(
− 1 + ϕt(x/2)

))
+ It(x/2)Re

(
exp

(
− 1 + ϕt(x/2)

))

=
(
Rt(x/2) sin

(
It(x/2)

)
+ It(x/2) cos

(
It(x/2)

))
exp

(
− 1 +Rt(x/2)

)

and similarly for the real part

Rt+1(x) = Re
(
ϕt+1(x)

)
= Re

(
ϕt(x/2) exp

(
− 1 + ϕt(x/2)

))

= Rt(x/2)Re
(

exp
(
− 1 + ϕt(x/2)

))
− It(x/2)Im

(
exp

(
− 1 + ϕt(x/2)

))

=
(
Rt(x/2) cos

(
It(x/2)

)
− It(x/2) sin

(
It(x/2)

))
exp

(
− 1 +Rt(x/2)

)
.

Applying these two equations repeatedly and remembering that ϕ0(x) = eix and therefore R0(x) =
cos(x) as well as I0(x) = sin(x) implies the first claim. To show the second claim in the lemma
(about at+1) we use again (2.5) and |ez| = eRe(z) for all z ∈ C

at+1(x) =
∣∣ϕt(x/2) · exp

(
ϕ(x/2)− 1

)∣∣ = at(x/2) · exp
(
− 1 +Rt(x/2)

)
.

With that recursive description at hand we can derive a (first) handy approximation for ϕt.
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Lemma 2.10. Let t ∈ N0 and x ∈ R. For all 0 ≤ j ≤ max{j ∈ N0 : |x2−t+j | ≤ 1/16}
∣∣∣∣F (j)

((
cos(x2−t)
sin(x2−t)

))
−
(

1− x22−2t+j−2(3 · 2j + 1)

x2−t+j

)∣∣∣∣ ≤
(|x3|23(−t+j)
|x2|22(−t+j)

)
.

Proof. If
{
j ∈ N0 : |x2−t+j | ≤ 1/16

}
= ∅ we have nothing to show, thus we assume that jmax :=

max
{
j ∈ N0 : |x2−t+j | ≤ 1/16

}
≥ 0. We will show the claim by induction over all 0 ≤ j ≤ jmax.

Very important ingredients in the forthcoming arguments are the following estimates for smallish x
that are rather easy to show:

∣∣∣∣cos(x)−
(

1− x2

2

)∣∣∣∣ ≤
x4

24
for all |x| ≤ 7 (2.6)

and

∣∣ sin(x)− x
∣∣ ≤ x3

5
for all |x| ≤ 2. (2.7)

These estimates yield (with quite some room to spare) immediately the induction start (j = 0), as
by convention F (0) is the identity on R2. We proceed with the induction step. For the following
computations abbreviate

αj = 2−2t+j−2(3 · 2j + 1), βj = 2−t+j and ∆j =

(
∆j,1

∆j,2

)
=

(|x3|2−3t+3j

|x2|2−2t+2j

)
.

In the remainder of this proof we use the following notation. For real numbers a, b we write a± b
to denote some real number c that satisfies |a − c| ≤ b. In particular, if we apply a function,
e.g., F , to a ± b we understand that as F applied to some number c in the designated interval.
This notation is useful as we are only interested in upper and lower bounds on F (a ± b) that we
can deduce from a and b only.

Let 0 ≤ j ≤ jmax − 1. By applying the induction hypothesis we get

F (j+1)

((
cos(x2−t

sin(x2−t

))
= F

((
1− x2αj
xβj

)
±∆j

)
=:

(
F1

F2

)
. (2.8)

Using the definition of F we obtain for the first component

F1 = (F11 − F12)F13,

where we abbreviated

F11 =
(
1− x2αj ±∆j,1

)
cos
(
xβj ±∆j,2

)

F12 =
(
xβj ±∆j,2

)
sin
(
xβj ±∆j,2

)

F13 = exp
(
− x2αj ±∆j,1

)
.

To study these expressions we look at three recurring components first. Note that, as (∆j,2)2 ≤
∆j,1/16 by our assumption on j ≤ jmax,

(
xβj ±∆j,2

)2
= (xβj)

2 ± 2|x|βj∆j,2 ± (∆j,2)2 = (xβj)
2 ± 33

16
∆j,1. (2.9)

Furthermore, using again |x|2−t+j ≤ 1/16 guaranteed by j ≤ jmax,

∣∣(xβj ±∆j,2

)3∣∣ ≤
3∑

i=0

(
3

i

)
(|x|βj)i(∆j,2)3−i ≤ ∆j,1

(
1 +

3

16
+

3

162
+

1

163

)
≤ 6

5
∆j,1 (2.10)
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and similarly

∣∣(xβj ±∆j,2

)4∣∣ ≤
4∑

i=0

(
4

i

)
(|x|βj)i(∆j,2)4−i ≤ 4

50
∆j,1. (2.11)

Lastly, we use again |x|2−t+j ≤ 1/16 and x4a2j ≤ ∆j,1/16 to bound

∣∣(x2αj ±∆j,1

)2∣∣ ≤ |x|4α2
j + |x|2αj∆j,1 + ∆2

j,1 ≤ ∆j,1

(
1

16
+

1

162
+

1

163

)
≤ 1

8
∆j,1. (2.12)

Combining these bounds with (2.6) and (2.7) we will obtain estimates for the sin and cos terms
in F11 and F12. By (2.6)

cos
(
xβj ±∆j,2

)
= 1− (xβj ±∆j,2)2

2
± (xβj ±∆j,2)4

24

and by combining this with (2.9) and (2.11) we obtain that

cos
(
xβj ±∆j,2

)
= 1− (xβj)

2

2
± 17

16
∆j,1. (2.13)

In the same way, using (2.7) and (2.10),

sin
(
xβj ±∆j,2

)
= (xβj ±∆j,2)±

(
xβj ±∆j,2

)3

5
= xβj ±∆j,2 ±

∆j,1

4
. (2.14)

Having done these preparations we proceed with deriving bounds for F11, F12, F13. We begin
with F11 and using (2.13) as well as |x|2−x+j ≤ 1/16 we obtain that

F11 =
(
1− x2αj ±∆j,1

)(
1− (xβj)

2

2
± 17

16
∆j,1

)
= 1− x2

(
αj +

β2
j

2

)
± 17∆j,1

8
.

Furthermore, by making use of (2.14) and |x|2−x+j ≤ 1/16 we obtain

F12 = (xβj ±∆j,2)

(
xβj ±∆j,2 ±

∆j,1

4

)
= (xβj)

2 ± 17∆j,1

8

and using the estimate | exp(x)− (1 + x)| ≤ x2, valid for all |x| ≤ 1, as well as (2.12), we get

F13 = 1− x2αj ±∆j,1 ±
(
x2αj ±∆j,1

)2
= 1− x2αj ±

9∆j,1

8
.

Thus, putting F11, F12 and F13 together and using oce more |x|2−t+j ≤ 1/16, we get that

F1 =

(
1− x2

(
αj +

3β2
j

2

)
± 34∆j,1

8

)(
1− x2αj ±

9∆j,1

8

)

= 1− x2
(

2αj +
3β2

j

2

)
± 6∆j,1 = 1− x2αj+1 ±∆j+1,1

confirming the induction step on the first component in (2.8). Going forward we switch our
attention to the second component, which we again split into three parts

F2 = (F21 − F22)F13,

where

F21 =
(
1− x2αj ±∆j,1

)
sin
(
xβj ±∆j,2

)

F22 =
(
xβj ±∆j,2

)
cos
(
xβj ±∆j,2

)
.
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Similarly, as above using (2.14), (2.13) and |x|2−t+j ≤ 1/16 we extend these expressions. We start
with F21

F21 =
(
1− x2αj ±∆j,1

)(
xβj ±∆j,2 ±

∆j,1

4

)
= xβj ±

9∆j,2

8
.

Continuing with F22, again applying (2.13) and |x|2−t+j ≤ 1/16,

F22 = (xβj ±∆j,2)

(
1− (xβj)

2

2
± 17∆j,1

16

)
= xβj ±

17∆j,2

16
.

Finally, we combine F21, F22 and F13 and with |x|2−t+j ≤ 1/16 we get

F2 =

(
2xβj ±

33∆j,2

16

)(
1− x2αj ±

9∆j,1

8

)
= 2xβj ± 3∆j,2 = xβj+1 ±∆j+1,2.

Thus we confirmed the induction step and conclude the proof.

The next lemma bounds the absolute value of ϕt(x) for large values of x and t implying that ϕ is
integrable, a sufficient condition for the absolute continuity of H. We did not make any effort to
optimize the involved constants.

Lemma 2.11. For all x ∈ R, |x| ≥ 22
17

and t ∈ N, t ≥ log2(16|x|),

|ϕt(x)| = at(x) ≤ |x|−1.2.

Proof. Let δ = 1/32. As |x| ≥ 1 there is some t0 ≥ 0 such that x2−t0 ∈ [δ, 2δ]. To be completely
explicit,

t0 := dlog2(16|x|)e.
Thus t ≥ t0 and set j? = t− t0 ≥ 0. Then with Lemma 2.10 and σ(x) denoting the sign of x

(
F1

F2

)
:= F (j?)

((
cos(x2−t)
sin(x2−t)

))
≤
(

1− 5δ2/8

σ(x) · 2δ

)
+

(
(2δ)3

(2δ)2

)
≤
(

1− δ2/2
σ(x) · 2δ + (2δ)2

)
. (2.15)

Furthermore observe that by the definition of F and the facts that 0 ≤ cos i ≤ 1 and 0 ≤ i sin i for
all i ∈ [−π/2, π/2]

F

((
r

i

))
= e−1+r

(
r cos i− i sin i

r sin i+ i cos i

)
≤
(
re−1+r

π/2

)
for all r ∈ [0, 1], i ∈ [−π/2, π/2]. (2.16)

Moreover, recall from Lemma 2.9 that
(
Ri(x2−t+i)
Ii(x2−t+i)

)
= F (i)

((
cos(x2−t)
sin(x2−t)

))
for Rt(x) = Re(ϕt(x)) and It(x) = Im(ϕt(x)).

Thus we can bound Ri(x2−t+i), i ≥ j? by using (2.16) for the first i − j? applications of F
and (2.15) for the remaining j? to infer that

(
Ri(x2−t+i)
Ii(x2−t+i)

)
≤
(
F1 · e(i−j

?)·(−1+F1)

π/2

)
≤
(

(1− δ2/2) · e−(i−j?)·δ2/2
π/2

)
, i ≥ j?.

In particular

Ri(x2−t+i) ≤ 1 and Ri?
(
x2−t+i

?) ≤ e−2 for all i ≥ 0 and i? ≥ j? + 4/δ2. (2.17)

12



Now we switch our focus to at(x). By applying Lemma 2.9 and (2.17)

at(x) = at−1(x/2) · e−1+Rt−1(x/2) ≤ exp

(
t−1∑

i=0

(
− 1 +Ri(x2−t+i)

)
)

≤ exp




t−1∑

i=j?+4/δ2

(
− 1 +Ri(x2−t+i)

)

 ≤ exp




t−1∑

i=j?+4/δ2

(
− 1 + e−2

)

 .

Note that the sum in the exponential is non-empty, as the definition of t0 implies that j? ≤
t− log2

(
|x|/(2δ)

)
and as |x| > 22

17

we have log2

(
|x|/(2δ)

)
> 4/δ2 + 1. Thus

at+1(x) ≤ exp
((

log2(|x|/(2δ))− 4/δ2
)(
− 1 + e−2

))

≤ exp
(
−
(
4/δ2 − log2(2δ)

)(
− 1 + e−2

))
· |x|(−1+e−2)/ ln 2.

This implies that at(x) ≤ |x|−1.2, since numerically (−1 + e−2)/ ln 2 ≤ −1.24 and for all x with
|x| > 22

17

additionally exp(−(4/δ2 − log2(2δ))(−1 + e−2)) · |x|−0.04 ≤ 1.

A close inspection of the previous proof suggests that actually at(x) ∼ |x|−c with c = 1/ ln 2 ≈ 1.44.
This would be interesting (and it is harder) to prove and it may have important consequences,
but we will not need that; for our purpose it is enough to know that |ϕ| is integrable. Next we
prove the last remaining claim in Lemma 2.1.

Lemma 2.12. H is absolute continuous and almost surely positive.

Proof. ϕ is a characteristic function and therefore bounded by 1. Thus by Lemma 2.11 it is
integrable and this implies the absolute continuity of H. Next we argue that H is almost surely
positive. We have shown thatHt ≥ 0 for all t and asHt

t→∞−→ H it follows thatH ≥ 0. Furthermore
we have just shown that H is indeed a continuous random variable and therefore P (H = 0) = 0
and consequently H > 0 almost surely.

Conclusion. We have shown that 2−t|It| is close to Ht, which is a martingale that converges
to H, a continuous random variable. Concluding this subsection we infer Lemma 2.1 from these
statements.

Proof of Lemma 2.1. In Lemma 2.6 we have shown that for all t ∈ N

d(|It|, Jt) = d(2−t|It|, 2−tJt) ≤ 2 · 4t/n.

Moreover in Lemma 2.12 we have shown convergence of 2−tJt to H in L2 and therefore also in
distribution. Thus for all ε > 0

sup
x∈R

∣∣P
(
2−t|It| ≥ x

)
− P

(
2−tJt ≥ x

)∣∣ ≤ ε/2

as well as
sup
x∈R

∣∣P
(
2−tJt ≥ x

)
− P (H ≥ x)

∣∣ ≤ ε/2.

and therefore the claimed convergence follows by the triangle inequality. Lemma 2.12 shows the
final claim: H is continuous and almost surely positive.

Now that we have proven Lemma 2.1, we state and prove a simple corollary for later reference.

Corollary 2.13. Let t1 = b(1/3) log2 nc. Then with high probability |It1 | = Θ
(
n1/3

)
.
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Proof. Lemma 2.1 yields that

P
(
|It1 | = o(n1/3)

)
≤ P

(
H = 2−t1o(n1/3)

)
+ o(1) = P

(
H = o(1)

)
+ o(1).

Since H has a density this is o(1). Moreover, by applying again Lemma 2.1

P
(
|It1 | = ω(n1/3)

)
≤ P

(
H = 2−t1ω(n1/3)

)
+ o(1) = P

(
H = ω(1)

)
+ o(1).

However, since P (H ≥ h)→ 0 when h→∞ the proof is completed.

2.4 Proof of Lemma 2.2
We begin with a simple lemma that determines the expected number of informed and uninformed
vertices after a given round.

Lemma 2.14. For any t ∈ N0

E
[
|Ut+1|

∣∣ It
]

=
(
|Ut|/n

)2
n and E

[
|It+1|

∣∣ It
]

= 2|It| − |It|2/n.

Proof. From the definition of pull we know |It+1| = |It|+Bin
(
n− |It|, |It|/n

)
, see also (2.2), thus

E
[
|It+1|

∣∣ It
]

= |It|+
(
n− |It|

)
· |It|
n

= 2|It| −
|It|2
n

.

Using the relation |It| = n− |Ut| yields directly the second claim.

A key property that simplifies greatly the computations in this section is the following observation,
in a similar form introduced in [5] and also applied in [6].

Lemma 2.15. For any t ∈ N0

Var
[
|It+1|

∣∣ It
]
≤ min

{
E
[
|It+1|

∣∣ It
]
,E
[
|Ut+1|

∣∣ It
]}
.

Proof. As |It+1| = |It|+ Bin
(
|Ut|, |It|/n

)
and |Ut| = n− |It|,

Var
[
|It+1|

∣∣ It
]

= Var
[
|It|+ Bin(|Ut|, |It|/n)

∣∣ It
]

= Var
[
Bin(|Ut|, |It|/n)

∣∣ It
]

=
|Ut|2 · |It|

n2
.

This is obviously bounded from above by E
[
|Ut+1|

∣∣ It
]

= |Ut|2/n as well as by E
[
|It+1|

∣∣ It
]

=
|It|+ |Ut| · |It|/n.

Lemma 2.15 and Chebychev’s inequality ensure that the number of informed vertices is highly
concentrated around its expectation as soon as enough vertices are informed. Compare the next
lemma to [6, Lem. 3.4] for a similar statement for push.

Lemma 2.16. Let t1 = blog2(n1/3)c. For t ∈ N, 0 < ε < 1/4 let Ct denote the event
∣∣∣|It+1| − E

[
|It+1|

∣∣ It
]∣∣∣ ≤M(It)

1/2+ε + nε, where M(It) = min
{
E
[
|It+1|

∣∣ It
]
,E
[
|Ut+1|

∣∣ It
]}
.

Then

P


⋂

t≥t1
Ct
∣∣ It1


 = 1− o(1).
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Proof. Observe that Corollary 2.13 implies whp

E
[
|It+1| | It

]
≥ |It| ≥ |It1 | ≥ n1/4 for all t ≥ t1. (2.18)

Set n′ := n− n1/2+ε/3. Then

P
(
Ct
∣∣ It
)

= P
(
Ct1|It|>n′

∣∣ It
)

+ P
(
Ct1|It|≤n′

∣∣ It
)
.

If |It| > n′, then |Ut| < n1/2+ε/3 and so M(It) ≤ E[|Ut+1| | It] = |Ut|2/n ≤ n2ε/3. In that case Ct
thus implies that |Ut+1| ≥ nε ≥ nε/3E[|Ut+1| | It]. By Markov’s inequality

P
(
Ct1|It|>n′

∣∣ It
)
≤ P

(
|Ut+1 ≥ nε/3E[|Ut+1| | It]

∣∣ It
)
≤ n−ε/3.

If |It| ≤ n′, then |Ut| ≥ n1/2+ε/3 and using (2.18) also M(It) ≥ min{n1/4, |Ut|2/n} ≥ n2ε/3. In
this case, using Lemma 2.15, Ct implies that

∣∣∣|It+1| − E
[
|It+1|

∣∣ It
]∣∣∣ > M(It)

1/2+ε ≥ n2ε2/3Var
[
|It+1|

∣∣ It
]1/2

.

By Chebychev’s inequality

P
(
Ct1|It|≤n′

∣∣ It
)
≤ P

(∣∣∣|It+1| − E
[
|It+1|

∣∣ It
]∣∣∣ > n2ε

2/3Var
[
|It+1|

∣∣ It
]1/2 ∣∣∣ It

)
≤ n−ε2 .

By combining both cases we get the very crude bound

P
(
Ct
∣∣ It
)
≤ n−ε2 for all t ≥ t1. (2.19)

The large deviation bounds (1.1) give us that Xn ≥ 2 log2 n has exponentially small probability.
Thus

P


 ⋃

t≥2 log2 n

Ct | It1


 = o(1).

A union bound and (2.19), applied to O(log n) many t1 ≤ t ≤ t2, then yield the claim.

Lemma 2.16 shows that |It| is closely concentrated around its (conditional) expectation in all
rounds. This translates directly to concentration of |Ut+1| around (|Ut|/n)2n = E[|Ut+1|

∣∣ Ut] for
all t ≥ t1. Using this, we are now ready to prove Lemma 2.2, that is, |Ut1+t| is close to (|Ut1 |/n)2

t

n
for all t ∈ N with high probability.

Proof of Lemma 2.2. We assume that |Ut1 | = Θ
(
n1/3

)
, which we know from Corollary 2.13 has

high probability. Consequently we can apply Lemma 2.16 with ε = 1/10 and thus we get with
high probability for all t ≥ t1

∣∣|It+1| − E
[
|It+1|

∣∣ It
]∣∣ ≤

(
min

{
E
[
|It+1|

∣∣ It
]
,E
[
|Ut+1|

∣∣ It
]})3/5

+ n1/10. (2.20)

For the rest of this proof we assume in addition (2.20), that is, we assume that (|It|)t≥t1 (and
thus also (|Ut|)t≥t1 and (E[|It+1|

∣∣ It])t≥t1) are sequences of numbers with the aforementioned
properties. In particular, (2.20) implies for all δ > 0 that

∣∣2|It| − |It+1|
∣∣ ≤ δ|It| for all t ≥ t1 and

n > δ−15, where t1 = blog2(n1/3)c. Therefore

|It1+s| ≤ (2 + δ)s|It1 | for all s ∈ N0, δ > 0 and n > δ−15. (2.21)

Set
βt1+s :=

(
|Ut1 |/n

)2s
, s ∈ N0.

Note that t1+s is just a different way to parameterize t ≥ t1, which simplifies the notation when t1
is involved. In particular t1 is always fixed to the aforementioned value.
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We will next argue that for all t ≥ t1, abbreviating ∆t :=
∣∣|Ut| − βtn

∣∣,

∆t+1 ≤
(

min
{

2|It|, |Ut|2/n
})3/5

+ n1/10 +
(

2|Ut|/n+ ∆t/n
)

∆t. (2.22)

To see this, note first that by using (2.20) and Lemma 2.14,

∣∣|Ut+1| − (|Ut|/n)2n
∣∣ =

∣∣|It+1| − E
[
|It+1|

∣∣ It
]∣∣ ≤

(
min

{
2|It|, |Ut|2/n

})3/5
+ n1/10.

Secondly, applying the triangle inequality, i.e., |x+ y| ≤ 2|x|+ |x− y| for all x, y ∈ R, yields
∣∣(|Ut|/n)2n− βt+1n

∣∣ =
∣∣|Ut|2/n− β2

t n
∣∣ =

∣∣|Ut|/n+ βt
∣∣ ·
∣∣|Ut| − βtn

∣∣

≤
(

2|Ut|/n+
∣∣|Ut|/n− βt

∣∣
)∣∣|Ut| − βtn

∣∣.

The triangle inequality then implies (2.22).
In the remainder of this proof we will look at the bound of ∆t in (2.22) in three different ways

to distinguish in each case a different behaviour. Just to wit, at first ∆t doubles as long as the
number of informed vertices doubles. However, as soon as the doubly exponential shrinking of
the uninformed vertices takes over, also the error ∆t shrinks rapidly, so that ∆t always remains
o
(
|Ut|

)
. In end we just make sure that ∆t stays small and does not increase any more.

We will make this outline more precise by formulating matching claims, which we then use to
infer the statement of this lemma. We prove the claims afterwards. Our first claim is that for
δ = 1/100 and d = 400

∆t1+s ≤ d(2 + δ)s|It1 |3/5 for all 0 ≤ s ≤ (14/15) log2 n− t1 and n > δ−15. (Claim 1)

By using that |It1 | = Θ(n1/3 and that 14/15 − 1/3 + 1/5 = 4/5 < 0.85, (Claim 1) implies for
sufficiently large n that for t2 = b(14/15) log2 nc

∆t1+s ≤ d (2 + δ)
s+1 |It1 |3/5 ≤ n0.85 for all 0 ≤ s ≤ t2 − t1. (2.23)

Moreover, (2.21) yields

|It1+s| ≤ (2 + δ)
s+1 |It1 | = o(n) for all 0 ≤ s ≤ t2 − t1,

and therefore, as |Ut1+s| = n− |It1+s| = Θ(n),

∆t1+s ≤ |Ut1+s| · n−1/10 for all 0 ≤ s ≤ t2 − t1. (2.24)

From (1.1) we know that whp Xn ≤ log2 n+ 2 log2 lnn, thus we need to bound ∆t for at most an
additional (1/15) log2 n + 2 log2 lnn steps. For these steps we will need a different bound, as the
bound in (Claim 1) is only useful as long as t1 + s < log2 n; otherwise the term (2 + δ)s blows up.
Our next claim is

∆t2+s ≤ |Ut2+s| · (2 + δ)s · n−1/11 for all s ∈ N with |Ut2+s| ≥ n1/4 and n ≥ δ−111. (Claim 2)

We saw that it suffices to apply (Claim 2) for at most s ≤ (1/15) log2 n + 2 log2 lnn additional
steps. For such s we obtain that (2 + δ)s+1n−1/11 ≤ n−1/50 for sufficiently large n and therefore
we conclude from (2.24) for all t ≤ t2 and (Claim 2) for all t > t2

∆t ≤ |Ut| · n−1/50 for all t ≥ t1 as long as |Ut| ≥ n1/4.

For t ≥ t1 such that |Ut| ≤ n1/4 the claim of the Lemma follows trivially.
Now we show (Claim 1) and (Claim 2), starting with (Claim 1), which we are going to do by

induction. The base case follows directly from (2.22). Let t ≥ t1, from (2.22) and using that
|It| = Ω

(
n1/3

)
we get that

∆t+1 ≤ 2|It|3/5 +
(
2 + ∆t/n

)
∆t.
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Observe that by using the induction hypothesis, we obtain that

∆t1+s ≤ |Ut1+s| · n−1/10

and thus using (2.21), the induction hypothesis, and n ≥ δ−15 gives us

∆t1+s+1 ≤ 2
(
(2 + δ)s|It1 |

)3/5
+ (2 + δ/2)

(
d(2 + δ)s|It1 |3/5

)

≤
(

2

d
(2 + δ)−2s/5 + 2 +

δ

2

)
d(2 + δ)s|It1 |3/5.

Our choice of d and δ guarantees that (2/d)(2 + δ)(−2/5)s ≤ (2/d)(2 + δ)(−2/5) ≤ δ/2 for all s ∈ N
and (Claim 1) follows.

We continue with (Claim 2) that we we will prove by induction, too. To that end, we observe
that (2.20) also implies that as long as |Ut+1| ≥ n1/4 and n ≥ δ−6

∣∣|Ut|2/n− |Ut+1|
∣∣ ≤ δ|Ut+1|/4. (2.25)

The base case of (Claim 2) follows directly from (2.24). For the induction step we apply (2.22)
together with the induction hypothesis and get

∆t2+s+1 ≤
( |Ut2+s|2

n

)3/5

+

(
2
|Ut2+s|
n

+ ∆t2+s/n

)
∆t2+s

≤
( |Ut2+s|2

n

)3/5

+ (2 + δ/2)
|Ut2+s|
n

∆t2+s

≤
( |Ut2+s|2

n

)3/5

+ (2 + δ/2)(2 + δ)s · |Ut2+s|
2

n
· n−1/11.

Using the assumption that |Ut2+s+1| ≥ n1/4 we get, as (1/4) · (2/5)− 1/11 = 1/110, that

(
|Ut2+s|2/n

)3/5
/
(
|Ut2+s|2/n · n−1/11

)
≤ δ/4 for all s ∈ N0 and n > δ−111.

This and (2.25) implies (Claim 2).

2.5 Proof of Lemma 2.3
We will prove this lemma in two steps, first we start with a simple lemma showing that, if there are
much more than

√
n uninformed vertices remaining, pull will not end in the next round. Moreover

if there are substantially less than
√
n uninformed the protocol will end in the next round.

Lemma 2.17. Let t, t′ ∈ N such that |Ut| ≤
√
n/ lnn and |Ut′ | ≥

√
n lnn. Then

P (|Ut+1| = 0 | It) = o(1) and P (|Ut′+1| > 0 | It′) = o(1).

Proof. Note that

E
[
|Ut+1|

∣∣ It
]

=
|Ut|2
n
≤ ln−2 n.

This yields with Markov’s inequality the claim for t. To see the claim for t′ we observe first that
the probability of one uninformed vertex v ∈ Ut′ being informed in the next round is

P
(
u ∈ It′+1

∣∣ u ∈ Ut′
)

=
|It′ |
n

=

(
1− |Ut′ |

n

)
.

If |Ut′+1| = 0, then all |Ut′ | uninformed vertices need to be informed in the next round, and as
that happens independently, we get

P
(
|Ut′+1| = 0

∣∣ It′
)

=

(
1− |Ut′ |

n

)|Ut′ |
≤ e−|Ut′ |2/n ≤ e− ln2 n.
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Besides the two cases that we considered in the previous lemma a third case is also possible.
Indeed, if there are about

√
n uninformed vertices, the process ending in the next round may

happen with some non-trivial probability. The next lemma shows that, however, that this is very
unlikely to happen. This means that once the process crosses the threshold of

√
n it will terminate

in the next round with high probability.

Lemma 2.18. With high probability for all t ∈ N,

|Ut| /∈
[√

n/ lnn,
√
n lnn

]
.

Proof. Let t1 = blog2(n1/3)c and consider the events
{
|It1 | = Θ

(
n1/3

)}
, (Event 1)

and with η = η(n) = log2 n+ log2 lnn− blog2 n+ log2 lnnc,
{

log2

(
2−t1 |It1 |

)
/∈
⋃

k∈Z

[
k + η − 3 log2 ln(n2)

lnn
, k + η +

3 log2 ln(n2)

lnn

]}
, (Event 2)

as well as
⋂

t≥0

{∣∣∣|Ut1+t| −
(
|Ut1 |/n

)2t
n
∣∣∣ ≤ |Ut1+t| · n−1/50 + n1/4

}
. (Event 3)

All these events occur with high probability. For (Event 1) this was already established in Corol-
lary 2.13. To see the claim for (Event 2) we observe that log2

(
2−t1 |It1 |

)
converges to the contin-

uous random variable log2H, see Lemma 2.1, and that the right side in (Event 2) converges to a
log2H null-set. (Event 3) was handled in Lemma 2.2.

In the remainder of this proof we condition on these events, that is, we assume that (|It|)t≥t1
(and thus also (|Ut|)t≥t1) are sequences of numbers with the aforementioned properties.

Observe that for n1/3 < a < b < n − n1/3, (Event 1) and (Event 3) imply for t ≥ t1 and n
large enough

(|Ut1 |/n)2
t−t1

n /∈ [a/2, 2b] =⇒ |Ut| /∈ [a, b];

to see this, note that by assumption |Ut| = (1 + o(1))(|Ut1 |/n)2
t−t1

n and so for large enough n if
|Ut| ∈ [a, b], then with room to spare (|Ut1 |/n)2

t−t1
n ∈ [a/2, 2b].

Set ut = (1−|It1 |/n)2
t−t1

n and define Tu = min{t ∈ N : ut < 2
√
n lnn} as well as T` = min{t ∈

N : ut <
√
n/(2 lnn)}. With these definitions we can apply the implication we just derived to the

event in the statement of the lemma and obtain that

Tu = T` =⇒ |Ut| /∈
[√
n/ lnn,

√
n lnn

]
. (2.26)

Observe that (Event 1) implies that

ub(4/3) log2 ncn =
(
|Ut1 |/n

)2b(4/3) log2 nc−t1

n = o(1),

thus Tu, T` < (4/3) log2 n and consequently we need to study ut for that range of t only. Therefore,
using 1− x = e−x+O(x2) for small x and 0 ≤ t < (4/3) log2 n

ut = n
(
1− |It1 |/n

)2t−t1

= n · exp
(
− 2t−t1 |It1 |/n+O(2t−t1 |It1 |2/n2)

)

=
(
1 +O(n−2/3)

)
· n · exp

(
−2t−t1 |It1 |/n

)
.

To determine Tu and T` it suffices to solve the equations

exp
(
−2t−t1 |It1 |/n

)
=
(
1 +O(n−2/3)

)
cnn
−1/2, for cn ∈

{
2 lnn, 1/2 lnn

}
.
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Applying logarithms twice and using the first order expansion ln(1 + x) = x + O(x2), |x| < 1/2,
we readily obtain that

Tu =
⌊

log2 n− log2(2−t1 |It1 |) + log2 lnn− 1− 2 log2 ln(n2)

lnn
+O(1/ lnn)

⌋

and

T` =
⌊

log2 n− log2(2−t1 |It1 |) + log2 lnn− 1 +
2 log2 ln(n2)

lnn
+O(1/ lnn)

⌋
.

Observe that for any x, y, z ∈ [0, 1] with x ≤ y it holds that bx + zc 6= by + zc if and only
if z ∈ [1 − y, 1 − x); to see this just note that if z < 1 − y, then both terms are equal to 0,
if z ≥ 1 − x then both terms are equal to 1 and otherwise just one of them is 0. Thus for
η = log2 n+ log2 lnn− blog2 n+ log2 lnnc and n large enough

log2

(
2−t1 |It1 |

)
/∈
⋃

k∈Z

[
k + η − 3 log2 ln(n2)

lnn
, k + η +

3 log2 ln(n2)

lnn

]
=⇒ Tu = T`.

Since we have assumed (Event 2) we have just established that Tu = T`, and together with (2.26)
the proof is completed.
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7 Asymptotics for Push on the Complete Graph
This chapter is the published version of

Daknama, R., Panagiotou, K., & Reisser, S. (2021). Asymptotics for push on the
complete graph. Stochastic Processes and their Applications, Volume 137, 35-61.

The published version is online at https://doi.org/10.1016/j.spa.2021.03.008.

My own contribution. This paper is joint work with Rami Daknama and my supervisor Kon-
stantinos Panagiotou. We developed the results in joint discussion and I contributed substantially
to all results. Theorem 1.1. and its proof is already included in the thesis of Rami Daknama [17].
Theorem 1.2 and Theorem 1.3, as well as the simulations were done by me. Moreover, the final
presentation of all results of this paper is written by me, in particular I substantially reworked
and improved all parts that Rami Daknama included in his thesis. This work is based on constant
discussions with and continual improvements by Konstantinos Panagiotou.
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Abstract

We study the classical randomized rumour spreading protocol push. Initially, a node in a graph
possesses some information, which is then spread in a round based manner. In each round, each informed
node chooses uniformly at random one of its neighbours and passes the information to it. The central
quantity of interest is the runtime, that is, the number of rounds needed until every node has received
the information.

The push protocol and variations of it have been studied extensively. Here we study the case where
the underlying graph is complete with n nodes. Even in this most basic setting, specifying the limiting
distribution and statistics of it have remained open problems since the protocol was introduced. In our
main result we describe the limiting distribution of the runtime. We show that it does not converge,
and that it becomes, after the appropriate normalization, asymptotically periodic both on the log2 n as
well as on the ln n scale. Additionally, on suitable subsequences we determine the expected runtime and
higher moments of it.
c⃝ 2021 Elsevier B.V. All rights reserved.

MSC: 05C85; 68R10

Keywords: Randomized rumour spreading; Complete graph; Asymptotic

1. Introduction

We consider the well-known and well-studied rumour spreading protocol Push. It has
applications in replicated databases [6], multicast [1] and blockchain technology [22]. Push
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operates on graphs and proceeds in rounds as follows. In the beginning, one node has a piece
of information. In subsequent rounds each informed node chooses a neighbour independently
and uniformly at random and informs it. For a graph G = (V, E) with |V | = n and a node
v ∈ V we denote by X (G, v) the (random) number of rounds needed to inform all nodes, where
at the beginning of the first round only v knows the information. We call X (G, v) the runtime
(on G with start node v). The most basic case, and the one that we study here, is when G is
the complete graph Kn . Since in that case the initially informed node makes no difference, we
will abbreviate X (Kn, v) = Xn for any starting node v.

Related work. There are several works studying the runtime of push on the complete graph.
The first paper considering this protocol is by Frieze and Grimmett [12], who showed that with
high probability (whp), that is, with probability 1 − o(1) as n → ∞, that

Xn = log2 n + ln n + o(ln n).

Moreover, they obtained bounds for (very) large deviations of Xn from its expectation. In [23],
Pittel improved upon the results in [12], in particular, he showed that for any f : N → R+

with f = ω(1), whp,

|Xn − log2 n − ln n| ≤ f (n).

The currently most precise result in this context was obtained by Doerr and Künnemann [7],
who considered in great detail the distribution of Xn . They showed that Xn can be stochastically
bounded (from both sides) by coupon collector type problems. This gives a lot of control
regarding the distribution of Xn , and it allowed them to derive, for example, very sharp bounds
for tail probabilities. Apart from that, it enabled them to consider related quantities, as for
example the expectation of Xn . Among other results, their bounds on the distribution of Xn
imply that

⌊log2 n⌋ + ln n − 1.116 ≤ E[Xn] ≤ ⌈log2 n⌉ + ln n + 2.765, (1)

which pins down the expectation up to a constant additive term. Besides on complete graphs,
push has been extensively studied on several other graph classes. For example, Erdős–Rényi
random graphs [9,10], random regular graphs and expander graphs [5,11,20]. More general
bounds that only depend on some graph parameter have also been derived, e.g. the diameter [9],
graph conductance [3,4,13,19] and node expansion [4,14,16,26].

A very much related and significantly better understood variation is the so-called asyn-
chronous rumour spreading. The key difference is that the communication is no longer
synchronized; instead, each node is equipped with an independent rate-1 Poisson process, at
whose ticks push operations are performed, see e.g. [15,21,25]. Let us denote by Yn the runtime
in this setting, which is defined as the earliest point in time at which all nodes are informed. By
considering the equivalent question about shortest paths on complete graphs with random edge
weights (in this case exponentially distributed random variables scaled by n) we can actually
derive the limiting distribution of Yn . In [18] Janson does just exactly that (and much more),
and his results imply that as n → ∞, in distribution

Yn − 2 log2 n → W1 + W2,

where W1, W2 are independent random variables that follow the Gumbel distribution, see also
below. Moreover, we obtain that

E[Yn] = 2 log n + 2γ + o(1)

where γ denotes the Euler–Mascheroni constant. Our main aim here is to obtain a similar fine
grained understanding of the runtime Xn of the (synchronous) push protocol.
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Results. In order to state our main result we need some definitions first. Set

g = g(1)
: [0, 1] → [0, 1], x ↦→ xex−1

and

g(i)
: [0, 1] → [0, 1], g(i)

= g ◦ g(i−1), i ≥ 2.

As we will see later, the function g describes, for a wide range of the parameters, the evolution
of the number of uninformed nodes; in particular, if at the beginning of some round there are xn
uninformed nodes, then at the end of the same round there will be (roughly) g(x)n uninformed
nodes, and after i rounds there will be (roughly) g(i)(x)n uninformed nodes. This fact is not
new – at least for bounded i – and has been observed long ago, see for example [23, Lem. 2].
For x ∈ R define the function

c(x) = −x + lim
a→∞,a∈N

lim
b→∞,b∈N

−a + b + ln
(
g(b)(1 − 2−a−x )

)
, (2)

whose actual meaning will become clear later. We will show that the double limit exists, so
that this indeed defines a function c : R → R. Moreover, we will show that c is continuous
and periodic with period 1, that is, if we write {x} = x − ⌊x⌋ then c(x) = c({x}), and that
(numerically) | sup c − inf c| ≈ 10−9, cf. Fig. 1. The Gumbel distribution will play a prominent
role in our considerations. We say that a real valued random variable G follows a Gum(α)
distribution with parameter α ∈ R, G ∼ Gum(α), if for all x ∈ R

P[G ≤ x] = e−e−x−α
, x ∈ R.

With all these ingredients we can now state our main result, which specifies – see also below
– the distribution of the runtime of push on the complete graph.

Theorem 1.1. Let G ∼ Gum(γ ). Then, as n → ∞

sup
k∈N

⏐⏐⏐P[Xn ≥ k] − P
[
⌈G + log2 n + ln n + γ + c({log2 n})⌉ ≥ k

]⏐⏐⏐ = o(1).

This theorem does not look completely innocent, and it actually has striking consequences.
It readily implies the following result, which establishes that the limiting distribution Xn is
periodic both on the log2 n and on the ln n scale. In order to formulate it, we need a version of
the Gumbel distribution where we restrict ourselves to integers only. More specifically, we say
that a random variable G follows a discrete Gumbel distribution, G ∼ dGum(α), if the domain
of G is Z and

P[G ≤ k] = e−e−k−α
, k ∈ Z.

Theorem 1.2. Let x, y ∈ [0, 1) and (ni )i∈N be a strictly increasing sequence of natural nu-
mbers, such that log2 ni − ⌊log2 ni⌋ → x and ln ni − ⌊ln ni⌋ → y as i → ∞. Then in
distribution, as i → ∞

Xni −
(
⌊log2 ni⌋ + ⌊ln ni⌋

)
→ dGum(−x − y − c(x)).

Some remarks are in place. First, it is a priori not obvious (at least it was not to us) that
subsequences as required in the theorem indeed exist. They do, and the fundamental reason for
this is that real numbers can be approximated arbitrarily well by rational numbers; we include
a short proof of the existence in the Appendix. Second, it is a priori not clear that x + c(x)
is not constant for x ∈ [0, 1). If it was constant, Theorem 1.2 would imply that the limiting
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Fig. 1. The function c(x) − c(0), c(0) ≈ 0.105, plotted for values of x between 0 and 2. The periodic nature of the
function and its small amplitude are evident.

distribution of Xn is periodic on the ln n scale only. Although we did not manage to prove that
x+c(x) is not constant, we have strong numerical evidence that it indeed is not so. In particular,
as we shall also see later, the double limit in the definition of c converges exponentially fast
and thus it is not difficult to obtain accurate estimates for it and explicit error bounds. We leave
it as an open problem to study the behaviour of c more accurately.

Our next result addresses moments of Xn . Bounds given in previous works, for example
in [7], guarantee that Xn − log2 n − ln n and all integer powers of it are uniformly integrable.
This allows us to conclude that the expectation and all of its moments also converge.

Theorem 1.3. Let x, y ∈ [0, 1) and (ni )i∈N be a strictly increasing sequence of natural
numbers, such that log2 ni − ⌊log2 ni⌋ → x and ln ni − ⌊ln ni⌋ → y as i → ∞. Then for all
k ∈ N, as i → ∞

E
[(

Xni − (⌊log2 ni⌋ + ⌊ln ni⌋)
)k
]

→ E
[(

dGum(−x − y − c(x))
)k
]
.

For x, y ∈ [0, 1) and a strictly increasing sequence of natural numbers (ni )i∈N such that
{log2 ni } → x and {ln ni } → y Theorem 1.3 immediately implies that, as i → ∞,

E
[
Xni

]
= log2 ni + ln ni + h(x, y) + o(1),

where we abbreviated h(x, y) = E
[
dGum(−x − y−c(x))

]
−x − y, cf. Fig. 2 for a visualization

of h. Similarly, to obtain an expression for the variance of the runtime, see that

Var[Xni ] = Var
[
Xni − (⌊log2 ni⌋ + ⌊ln ni⌋)

]
= E

[(
Xni − (⌊log2 ni⌋ + ⌊ln ni⌋)

)2
]

− E
[
Xni − (⌊log2 ni⌋ + ⌊ln ni⌋)

]2

and using Theorem 1.3, consequently

Var[Xni ] = E
[
dGum(−x − y − c(x))2]

− E
[
dGum(−x − y − c(x))

]2
+ o(1).
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Fig. 2. Let (ni )i∈N be a sequence of natural numbers such that {log2 ni } → x and {ln ni } → y for x, y ∈ [0, 1).
The left figure shows the function h(x, y) (appearing in the expectation of Xni ) for values of x and y between 0
and 1. The right figure shows Var[Xni ] as a function of x, y.

To determine the expectation and variance of the runtime we need to consider various moments
of the discrete Gumbel distribution. To this end, let X be an integer valued random variable
with finite kth moment, then

E
[
X k]

=

∑
ℓ∈Z

ℓk P[X = ℓ] =

∑
ℓ∈Z

ℓk(P[X ≤ ℓ] − P[X ≤ ℓ − 1]
)
,

and therefore, for all α ∈ R and k ∈ N,

E
[
dGum(α)k]

=

∑
ℓ∈Z

ℓk
(

e−e−ℓ−α
− e−e−ℓ−α+1

)
.

This sum converges exponentially fast, both for ℓ → ∞ and ℓ → −∞, and thus allows for
effective numerical treatment. In summary, improving (1), we get for all n ∈ N the numerical
bounds

log2 n + ln n + 1.18242 ≤ E[Xn] ≤ log2 n + ln n + 1.18263,

as inf0≤x,y≤1 h(x, y) = 1.18242 . . . , sup0≤x,y≤1 h(x, y) = 1.18262 . . . and

1.7277 ≤ Var[Xn] ≤ 1.7289.

These numerical bounds are (essentially) best possible, see also Fig. 2. Higher moments can
be estimated similarly. Let us close this section with a final remark on the function c defined in
(2), as this might be helpful in future works. This function is defined as the limit of a sequence
in two parameters a, b; the main reason for this is its combinatorial origin, which will become
apparent in the proofs. However, all that is actually important is that b is large enough, in the
sense that the difference b − a → ∞ as a → ∞. So, if we write h for an integer function that
diverges to infinity, then we could define

d(x) = −x + lim
a→∞,a∈N

h(a) + ln
(
g(a+h(a))(1 − 2−a−x )

)
.

Then c(x) = d(x) (which we state without proof, as we do not need it here), and c can be
represented as a limit of an (one-dimensional) sequence.

Outline. In the next section we give an outline of the proof of our main results. At the
beginning of the rumour spreading process push is dominated by an exponential growth of
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the informed nodes (Lemma 2.2). For the main part, where most nodes get informed, it closely
follows a deterministic recursion (Lemma 2.1) and at the end it is described by a coupon
collector type problem (Lemma 2.3). Based on these lemmas we give the rigorous proof of
our claims in Section 3. The proof to these three important lemmas can also be found there,
in Sections 3.3–3.5. Sections 3.6 and 3.7 contain all other proofs.

Further notation. Unless stated otherwise, all asymptotic behaviour in this paper is for n →

∞. Consider a graph G = (V, E). For t ∈ N0 (= N ∪ {0}) we denote by It ⊆ V the set of
informed nodes at the end of round t ; in particular |I0| = 1. Analogously we write Ut = V \It

for the set of uninformed nodes. For an event A, we sometimes write PA[·] instead of P[· | A]
to denote the conditional probability and we write EA[·] = E[· | A]. If we condition on It ,
then we also abbreviate P[· | It ] = Pt [·] and E[· | It ] = Et [·].

2. Proof overview

Let us start the proof of Theorem 1.1 about the distribution of the runtime of push on Kn

with a simple observation, that is more or less explicit also in previous works. Note that as
long as the total number of pushes performed is o(

√
n), then whp no node will be informed

twice – this is a simple consequence of the famous birthday paradox. That is, whp as long as
|It | = o(

√
n), every node in It will inform a currently uninformed node and thus |It+1| = 2|It |.

In particular, whp

|It0 | = 2t0 , where t0 := ⌊0.49 · log2 n⌋. (3)

Soon after round t0 things get more complicated. We continue with a definition. Apart from
the functions g(i) defined in the previous section, we will also need the following functions.
Set

f = f (1)
: [0, 1] → [0, 1], x ↦→ 1 − e−x (1 − x)

and

f (i)
: [0, 1] → [0, 1], f (i)

= f ◦ f (i−1), i ≥ 2.

Some elementary properties of f are: f is strictly increasing and concave, and f (b)(x) → 1
as b → ∞ for all x ∈ (0, 1]. Moreover, f (i)(x) = 1 − g(i)(1 − x) for all x ∈ [0, 1] and i ∈ N.
It is also not difficult to establish, see also [23] and Lemma 3.5, that f captures the behaviour
of the expected number of informed nodes after one round of the protocol. Moreover, |It+1| is
typically close to f (|It |/n)n. Here we will need a more explicit qualitative control of how |It |

behaves, since our aim is to specify the limiting distribution. We show the following statement,
which implies that if we start in round t0 (set T = t0 in that lemma) then whp for all succeeding
rounds t0 + t the number of informed nodes is close to f (t)(|It0/n|)n.

Lemma 2.1. Let 0 < c < 0.49 and T ≥ c log2 n. Then

PT

⎡⎣⋂
t∈N0

{⏐⏐|IT +t | − f (t) (|IT |/n) n
⏐⏐ ≤ n1−c/4}⎤⎦ = 1 − O(n−c2/10).

Thus, the key to understanding |It | is to understand how f behaves when iterated very many
times. Note that when the number of informed nodes is xn for some very small x , then the e−x

term in the definition of f can be approximated by 1−x and therefore f (x) ≈ 1−(1−x)2
≈ 2x .
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This crude estimate suggests that the number of informed nodes doubles every round as long
as there are only few informed nodes, and we know already that the doubling is perfect if
xn = o(

√
n). Our next lemma actually shows that the doubling continues to be almost perfect,

as long as the total number of nodes is not close to n.

Lemma 2.2. Let a, T ∈ N be such that 2−a < 0.1 and T ≤ ⌊0.49 · log2 n⌋. Set t1 :=

⌊log2 n⌋ − a. Then⏐⏐2t1 − f (t1−T ) (2T /n
)

n
⏐⏐ ≤ 2−2a+1n.

Combining the previous lemmas we have thus established that for any a ∈ N with 2−a < 0.1
whp

(1 − 2−a+2) · 2t1 ≤ |It1 | ≤ 2t1 , t1 := ⌊log2 n⌋ − a. (4)

Here we can think of a being very large (but fixed) and then the two bounds are very close
to each other; in particular, |It1 | ≈ 2⌊log2 n⌋−a and thus It contains a linear number of nodes.
Up to that point we have studied the behaviour of the process up to time t1. Next we perform
another b steps, where again b is fixed. Applying Lemma 2.1 once more and using that f (b)(x)
is increasing and is less than 1 for x < 1 yields with room to spare that for t2 = t1 + b whp(

1 − n−1/6
)

f (b)((1 − 2−a+2)2t1/n
)

≤ n−1
⏐⏐It2

⏐⏐ ≤
(
1 + n−1/6

)
f (b)(2t1/n

)
. (5)

In essence, this says that if we write x = log2 n − ⌊log2 n⌋ = {log2 n}, then (we begin getting
informal and obtain that)

|It2 | ≈ f (b)(2t1/n
)
n = f (b)(2−a−x)n, where t2 = ⌊log2 n⌋ − a + b.

In particular, choosing a priori b large enough makes the fraction |It2 |/n arbitrarily close to
1, that is, almost all nodes except for a tiny fraction are informed. All in all, up to time t2
we have very fine control of the number of informed nodes, and we also see how the quantity
{log2 n} slowly sneaks in.

After time t2 the behaviour changes once more. In this regime there is an interesting
connection to the well-known Coupon Collector Problem (CCP), which was also exploited
in [7]. In order to formulate the connection, note that the number of pushes that are needed
to inform one uninformed node, having N informed nodes, is (in distribution) equal to the
number of coupons needed to draw the (N + 1)st distinct coupon out of n. The CCP is very
well understood, and it is a classic result that, appropriately normalized, the total number of
coupons drawn (until all are collected) tends to a Gumbel distribution. However, translating the
number of required pushes to the number of rounds – the quantity we are interested in – is not
straightforward. In particular, the number of pushes in one round depends on the current number
of informed nodes. On the other hand, after round t2 there are n −o(n) informed nodes, so that
we may hope to approximate the remaining number of rounds with n−1 times the number of
coupons in the CCP. The next lemma establishes the precise bridge between the two problems.
There, for two sequences of random variables (Xn)n∈N and (Yn)n∈N we write Xn ≾ Yn if there
is a function h : N → R+ with h = o(1) such that P[Xn ≥ x] ≤ P[Yn ≥ x] + h(n) for all
n ∈ N, x ∈ R; Xn ≿ Yn is defined with “≥” instead of “≤”.

Lemma 2.3. Let G ∼ Gum(γ ), b > 2a ∈ N and assume that ℓ · n ≤ |I⌊log2 n⌋−a+b| ≤ u · n for
some ℓ, u ∈ [0, 1). Then

Xn − ⌊log2 n⌋ + a − b ≿
⌈

ln n + ln
(

1
u

− 1
)

+ γ

⌉
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and

Xn − ⌊log2 n⌋ + a − b ≾
⌈

ln n + ln
(

1
ℓ

− 1
)

+ ln
(

ℓ

eℓ − e + 1

)
+ γ + G

⌉
.

Note that the previous discussion guarantees that ℓ, u in Lemma 2.3 are very close to 1 and
very close to each other. So, the term ln(ℓ/(eℓ − e + 1)) is very close to 0. We obtain that in
distribution

Xn − ⌊log2 n⌋ + a − b ≈

⌈
ln n + ln

(
1
u

− 1
)

+ γ + G
⌉

, where u = f (b)(2−a−x).
and equivalently with x = log2 n − ⌊log2 n⌋

Xn ≈
⌈

log2 n + ln n − a + b + ln
(
g(b)(2−a−x )

)
− x + γ + G

⌉
. (6)

Here we now encounter the mysterious function c from (2). The next lemma collects some
important properties of it that will turn out to be very helpful.

Lemma 2.4. The function

c(x) = lim
a→∞,a∈N

lim
b→∞,b∈N

−a + b + ln
(
g(b)(1 − 2−a−x )

)
− x

is well-defined, continuous and periodic with period 1.

With all these facts at hand, the proof of Theorem 1.1 is completed by considering the
random variable on the right-hand side of (6); in particular, the dependence on y = ln n−⌊ln n⌋

arises naturally. The complete details of the proof, which is based on Lemmas 2.1–2.3 and
follows the strategy outlined here can be found in Section 3 (together with the proofs of the
lemmas).

As described in the introduction, apart from the limiting distribution we are interested in the
asymptotic expectation of the runtime. A key ingredient towards the proof of Theorem 1.3 is
uniform integrability, which can be shown by using the distributional bounds from [7]. Uniform
integrability is a sufficient condition that convergence in distribution also implies convergence
of the means.

Lemma 2.5 (Uniform Integrability). Let k ∈ N and set Yn := Xn − ⌊log2 n⌋ − ⌊ln n⌋. Then Y k
n

is uniformly integrable, that is

lim
N→∞

sup
n∈N

E
[
|Yn|

k
⏐⏐⏐ 1[|Yn|

k > N
]]

= 0.

3. Proof of the main result

In this section we complete the proof of Theorem 1.1 outlined in Section 2. Afterwards we
give the (short) proofs for Theorems 1.2 and 1.3.

3.1. Proof of Theorem 1.1

As the outline was indeed rigorous until (5) we take the proof up from there. Choose the
quantities a, b ∈ N such that 2a < b and recall that t1 = ⌊log2 n⌋ − a. Set furthermore for
brevity

ℓ =
(
1 − n−1/6

)
f (b)((1 − 2−a+2)2t1/n

)
and u =

(
1 + n−1/6

)
f (b)(2t1/n

)
.
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Then (5) states that, for t2 = ⌊log2 n⌋ − a + b,

ℓ ≤ n−1
⏐⏐It2

⏐⏐ ≤ u,

and Lemma 2.3 yields, for Yn = Xn − ⌊log2 n⌋ + a − b, that

Yn ≾
⌈

ln n + ln
(

1
ℓ

− 1
)

+ ln
(

ℓ

eℓ − e + 1

)
+ γ + G

⌉
and

Yn ≿
⌈

ln n + ln
(

1
u

− 1
)

+ γ + G
⌉
.

The next lemma establishes that both ℓ, u tend to 1 as a gets large, and moreover that the
difference ln (1/ℓ − 1) − ln (1/u − 1) can be made arbitrarily small. Its proof can be found in
Section 3.7.

Lemma 3.1. For ℓ, u defined as above, where b > 2a

lim
a→∞

sup
n∈N

| ln ℓ| = lim
a→∞

sup
n∈N

| ln u| = lim
a→∞

sup
n∈N

⏐⏐⏐⏐ln( ℓ

eℓ − e + 1

)⏐⏐⏐⏐ = 0.

Furthermore,

lim
a→∞

sup
n∈N

| ln(1 − ℓ) − ln(1 − u)| = 0.

Thus, as n → ∞,

ln(1 − u) = ln
(
1 − f (b) (2t1/n

))
+ o(1) = ln

(
g(b) (1 − 2−a−{log2 n}

))
+ o(1).

Let ε > 0. Lemma 3.1 readily implies that there are a0, n0 ∈ N such that for all a > a0 and
n > n0,

Yn ≿ ⌈ln n + ln
(
g(b) (1 − 2−a−{log2 n}

))
+ γ + G − ε⌉

and similarly also

Yn ≾ ⌈ln n + ln
(
g(b) (1 − 2−a−{log2 n}

))
+ γ + G + ε⌉.

Lemma 2.4 guarantees that there is an a1 ≥ a0 such that for all a ≥ a1⏐⏐ln (g(b) (1 − 2−a−{log2 n}
))

− a + b − (c({log2 n}) + {log2 n})
⏐⏐ ≤ ε.

Thus for all a > a1 and n > n0

Xn ≿ ⌈log2 n + ln n + c({log2 n}) + γ + G − 2ε⌉,

as well as

Xn ≾ ⌈log2 n + ln n + c({log2 n}) + γ + G + 2ε⌉.

Thus we are left with getting rid of the ε terms in the previous equations. The following lemma
accomplishes exactly that and therefore implies the claim of Theorem 1.1. Its proof can be
found in Section 3.7.

Lemma 3.2. Let h : N → R+ and G ∼ Gum(γ ). Then

∀ε > 0 : Xn ≾ ⌈h(n) + G + ε⌉ H⇒ Xn ≾ ⌈h(n) + G⌉.

The respective statement also holds for “≿”.
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3.2. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. Recall that {z} = z − ⌊z⌋, z ∈ R. Let (ni )i∈N be a strictly increasing
subsequence of N such that {log2 ni } → x and {ln ni } → y. Substituting k = ⌊log2 ni⌋ +

⌊ln ni⌋ + 1 + t for any t ∈ Z we get that

P
[
⌈G + log2 ni + ln ni + γ + c({log2 ni })⌉ ≥ k

]
= P

[
⌈G + log2 ni + ln ni + γ + c({log2 ni })⌉ ≥ ⌊log2 ni⌋ + ⌊ln ni⌋ + 1 + t

]
= P

[
⌈G + {log2 ni } + {ln ni } + γ + c({log2 ni })⌉ > t

]
= P

[
G + {log2 ni } + {ln ni } + γ + c({log2 ni }) > t

]
.

Thus using Theorem 1.1, Lemma 2.4 and Lemma 3.2 we get that, as i → ∞,

sup
t∈Z

⏐⏐⏐P[Xni ≥ ⌊log2 ni⌋ + ⌊ln ni⌋ + 1 + t
]
− P

[
G + x + y + γ + c(x) > t

]⏐⏐⏐ = o(1).

Using the distribution function of G ∼ Gum(γ ) we get

P
[
Xni ≥ ⌊log2 ni⌋ + ⌊ln ni⌋ + 1 + t

] i→∞
−→ 1 − exp

(
− exp (−t + x + y + c(x))

)
,

that is,

P
[
Xni ≤ ⌊log2 ni⌋ + ⌊ln ni⌋ + t

] i→∞
−→ P(dGum(−x − y − c(x)) ≤ t). □

Next we prove Theorem 1.3.

Proof of Theorem 1.3. Lemma 2.5 states that
(
Xn −⌊log2 n⌋−⌊ln n⌋

)k is uniformly integrable
and Theorem 1.2 established its convergence in distribution to

(
dGum(−x − y − c(x))

)k .
Together this implies

E
[(

Xn − ⌊log2 n⌋ − ⌊ln n⌋
)k
]

→ E
[(

dGum(−x − y − c(x))
)k
]
. □

3.3. Proof of Lemma 2.1

The number of informed nodes, |It |, fulfils a so-called self-bounding property, for reference
see [2]. One striking consequence thereof is the following bound.

Lemma 3.3 ([5]). For any t ∈ N,

Var
[
|It+1| | It

]
≤ E

[
|It+1| | It

]
.

This bound on the variance and Chebychev’s inequality ensure that the number of informed
nodes is highly concentrated around its expectation as soon as enough nodes are informed.
Moreover, even stronger concentration results are possible, as self-bounding functions admit
exponential concentration inequalities, see e.g. [2]. Here, Chebyshev is sufficient for our
application.

Lemma 3.4. Let 0 < c ≤ 1, let t0 ∈ N and assume that |It0 | ≥ nc. For t ∈ N and ε > 0 let
Ct denote the event that⏐⏐|It+1| − Et [|It+1|]

⏐⏐ ≤ (Et [|It+1|])1/2+ε.
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Then

Pt0

⎡⎣⋂
t≥t0

Ct

⎤⎦ = 1 − O
(
n−cε) .

Proof. From [7, Corollary 3.2] it is known that for any r > 0

P
[
Xn ≥ ⌈log2 n⌉ + ln n + 2.188 + r

]
≤ 2e−r .

Thus it suffices (with lots of room to spare) to show

Pt0

⎡⎣ ⋃
t0≤t≤log2 n

Ct

⎤⎦ = O
(
n−3cε/2) . (7)

By using Chebychev’s inequality and Lemma 3.3,

Pt
[
Ct
]

= Pt
[⏐⏐|It+1| − Et [|It+1|]

⏐⏐ > Et [|It+1|]1/2+ε
]

≤
Var[|It+1|]

Et [|It+1|]1+2ε

≤ Et [|It+1|]−2ε.

Since Et [|It+1|] ≥ |It+1| ≥ |It0 | the claim follows from (7) and the union bound. □
Lemma 3.5 establishes a connection between the expected value of |It+1| and our previously

defined function f , see below Eq. (3). This has also been observed (though not so precise)
in [23] and we include a quick proof for completeness.

Lemma 3.5. Let t ∈ N and n ≥ 3. Then

f (|It |/n)n ≤ Et |It+1| ≤ f (|It |/n)n + 5.

Proof. Each uninformed node u ∈ Ut remains uninformed if all |It | informed nodes do not
push to u. Since all these events are independent, we obtain that the probability that u remains
uninformed is (1 − 1/(n − 1))|It |. Thus by linearity of expectation

Et [|It+1|] = |It | +
(
n − |It |

) (
1 −

(
1 −

1
n − 1

)|It |
)

= n −
(
n − |It |

) (
1 −

1
n − 1

)|It |

.

For a lower bound we use 1 − x ≤ e−x and get

Et [|It+1|] ≥ n −
(
n − |It |

)
e−|It |/(n−1)

≥ n −
(
n − |It |

)
e−|It |/n

= f (|It |/n)n.

For an upper bound we use 1 − x ≥ e−x−x2
for all x ≤ 1/2

Et [|It+1|] ≤ n −
(
n − |It |

)
e−|It |/(n−1)−|It |/(n−1)2

≤ n −
(
n − |It |

)
e−|It |/n exp

(
−

2|It |

(n − 1)2

)
and again using 1 − x ≤ e−x

Et [|It+1|] ≤ n −
(
n − |It |

)
e−|It |/n

(
1 −

2|It |

(n − 1)2

)
≤ f (|It |/n)n + 5. □
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Lemma 3.6 is an auxiliary result that we use in the proof of Lemma 2.1. It shows that f
is concave and has decreasing derivative on the interval [0, 1], the stated property is a direct
consequence.

Lemma 3.6. Let 0 < x1 ≤ x2 < 1. Then | f (x2) − f (x1)| ≤ (2 − x1)e−x1 (x2 − x1).

Proof. It is f ′(x) = (2 − x)e−x and f ′′(x) = (x − 3)e−x ; in particular, f ′ is monotonically
decreasing and takes only positive values on [x1, x2]. Furthermore

max
x∈[x1,x2]

f ′(x) = (2 − x1)e−x1

and therefore, as a direct consequence of the mean value theorem, we have

| f (x2) − f (x1)| ≤ (x2 − x1) max
x∈[x1,x2]

f ′(x) = (2 − x1)e−x1 (x2 − x1). □

We state a simple corollary for later reference.

Corollary 3.1. Let i ∈ N and r, s ∈ [0, 1/2]. Then f (i)(r + s) ≤ f (i)(r ) + 2i s.

Having these lemmas as ingredients we can prove the main result of this subsection.
Lemma 3.5 shows that the expectation of |It+1| is given by f (|It |/n)n and Lemma 3.4 shows
that |It+1| is closely concentrated around its expectation in (nearly) all rounds. To then prove
that |It+τ | is close to f (τ )(|It |/)n for any τ ∈ N we need to make sure that the errors in
the concentration and the approximation of the expectation are not blown up by repeated
applications of f . We will show that f can indeed increase the error in each step by a factor
that can be as large as

√
2, but luckily this only happens when |It+τ | = o(n) and thus the

accumulated error will remain small (as |It | nearly doubles in this regime).

Proof of Lemma 2.1. Let 0 < ε < c/10, and assume, with foresight, that n ≥ n0, where n0
satisfies the inequalities

√
2 + 10n−ε

0 <
√

2 + ε and nc
0 ≥ 25.

As T ≥ c log2 n and because of (3), that is, |It | = 2t for all t ≤ ⌊0.49 log2 n⌋, we have
|IT | ≥ nc. Consequently we can apply Lemma 3.4 and thus get with probability 1 − O(n−cε)⏐⏐|It+1| − Et [|It+1|]

⏐⏐ ≤ Et [|It+1|]1/2+ε, for all t ≥ T . (8)

For the rest of this proof we assume that (8) holds. Set

αT +t = f (t)(|IT |/n), t ∈ N0.

We will first argue that⏐⏐|It | − αt n
⏐⏐ ≤ α

1/2+ε
t n1/2+2ε

√
2 + ε

t−T
=: dt . (9)

for all t ≥ T such that dt ≤ n1−ε. Note that this is obviously true for t = T . For the induction
step we argue that⏐⏐|It+1| − αt+1n

⏐⏐ ≤ α
1/2+ε

t+1 n1/2+2ε
√

2 + ε
t+1−T

= dt+1. (10)

To see this, we use Lemma 3.5, (8) and the fact that |It+1| ≤ 2|It | (in this order) to obtain the
bound⏐⏐|It+1| − f (|It |/n)n

⏐⏐ ≤
⏐⏐|It+1| − Et [|It+1|]

⏐⏐+ 5 ≤ (2|It |)1/2+ε
+ 5.
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Then we apply Lemma 3.6 to estimate the difference of f (|It |/n) and αt+1 = f (αt ), and infer
from (9), using ex

≤ 1 + 2x for all 0 ≤ x ≤ 1, that⏐⏐ f (|It |/n)n − αt+1n
⏐⏐ ≤

⏐⏐|It | − αt n
⏐⏐(2 − min{αt , |It |/n}

)
e− min{αt ,|It |/n}

≤ dt
(
2 − αt + dt/n

)
e− min{αt ,|It |/n}

≤ dt
(
2 − αt

)
e−αt +dt /n

+ d2
t /n ≤ dt (2 − αt )e−αt + 5d2

t /n.

All in all we have argued that for all t such that dt ≤ n1−ε⏐⏐|It+1| − αt+1n
⏐⏐ ≤

⏐⏐|It+1| − f (|It |/n)n
⏐⏐+ ⏐⏐ f (|It |/n)n − αt+1n

⏐⏐
≤ (2|It |)1/2+ε

+ 5 + dt (2 − αt )e−αt + 5d2
t /n

≤ 2(αt n + dt )1/2+ε
+ 5 + dt (2 − αt )e−αt + 5dt n−ε.

Our assumptions on ε and n imply that d1/2+ε
t ≤ dt n−ε. Moreover, αT n ≥ nc

≥ 25, and thus⏐⏐|It+1| − αt+1n
⏐⏐ ≤ 3(αt n)1/2+ε

+ dt (2 − αt )e−αt + 7dt n−ε

≤ dt (2 − αt )e−αt + 10dt n−ε.
(11)

To understand (11) consider the auxiliary function

H (x) =

√
f (x)
x

−
f ′(x)
√

2
=

√
1 − (1 − x)e−x

x
−

(2 − x)e−x

√
2

.

As (1 − x)e−x
= 1 − 2x + O(x2) as x → 0 we have that limx→0(1 − (1 − x)e−x )/x = 2 and

thus limx→0 H (x) = 0. Furthermore is H an increasing function on the interval [0, 1] as,

H ′
=

1
2

(
2(1 − x)e−x

x2

)−1/2

+
(3 − x)e−x

√
2

≥ 0 for x ≤ 1.

Therefore H (x) ≥ 0 for all 0 ≤ x ≤ 1 and consequently, using αt+1 > αt ,(
αt+1

αt

)1/2+ε

≥

(
αt+1

αt

)1/2

≥
(2 − αt )e−αt

√
2

.

Since dt = α
1/2+ε
t n1/2+2ε

√
2 + ε

t−T
, applying the previous bound to (11) implies (10) for all

n ≥ n0, that is, all n such that
√

2 + 10n−ε <
√

2 + ε. This completes the induction step and
the proof of (9) is completed.

Actually our arguments yield also the following statement, which is stronger than (9) when
there are “many” informed nodes. In particular, for all t ′

∈ N such that (2 − αt ′ )e−αt ′ < 1 − ε

Eq. (11) also yields for all n ≥ n0⏐⏐|IT +t ′ | − αT +t ′n
⏐⏐ ≤ dt ′ ⇒

⏐⏐|IT +t ′+1| − αT +t ′+1n
⏐⏐ ≤ dt ′ ,

meaning that the absolute error does not increase any more after round t ′. (Actually the error
decreases by a factor of at least ε after that round, but we do not need this.) To complete the
proof we show that we can choose t ′ such that dt ′ ≤ n1−c/4 and (2 − αt ′ )e−αt ′ < 1 − ε. To this
end, consider

T ′
= ⌊log2 n⌋ − 4 − T

and applying Lemma 2.2 to αT ′ yields

αT +T ′ = f (T ′)(|IT |/n) ≥ f (⌊log2 n⌋−4−T ) (2T /n
)

≥ 2−4(1 − 2−8+1)
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and furthermore, a simple computation yields that αT +T ′+5 ≥ 3/4. Thus

(2 − αT +T ′+5)e−αT +T ′+5 ≤ (2 − 3/4)e−3/4 < 1 − ε

and we set t ′
:= T ′

+ 5. Moreover,

dt ′ ≤ n1/2+2ε
√

2 + ε
t ′

≤ (2 + ε)n1/2+2ε+(1−c) log2(2+ε)/2.

Note that log2(2 + ε) ≤ 1 + ε. Plugging this into the exponent yields that if ε < c/10 and n is
large enough then dt ′ ≤ n1−c/4(≤ n1−ε), as claimed. □

3.4. Proof of Lemma 2.2

We begin with showing the basic inequality

2x(1 − x) ≤ f (x) ≤ 2x . (12)

To see this, note that e−x
≤ 1 − x + x2/2 for x ∈ [0, 1] and so

f (x) = 1 − e−x (1 − x) ≥ 1 −

(
1 − x +

x2

2

)
(1 − x) ≥ x

(
2 −

3
2

x
)

≥ 2x − 2x2,

which establishes the first inequality in (12). The other inequality follows directly from the
simple bound e−x

≥ 1 − x .
Let us write z0 = 2t0/n and zi = f (zi−1) = f (i)(z0); we want to bound zt1−t0 , where

t1 = ⌊log2 n⌋ − a and t0 ≤ ⌊0.49 log2 n⌋. Clearly zi ≤ 2i z0, which shows the upper bound in
Lemma 2.2. Using (12) we obtain by induction

zi ≥ 2i z0 ·

i−1∏
j=0

(1 − 2 j z0), i ∈ N.

Further, using the bound 1 − x ≥ e−x−x2/2(1−x), valid for any x ∈ [0, 1) we obtain

zi ≥ 2i z0 · exp

⎧⎨⎩−z0

∑
0≤ j<i

2 j
− z2

0

∑
0≤ j<i

4 j

2(1 − 2 j z0)

⎫⎬⎭
Note that our assumptions guarantee that 2t1−t0 z0 = 2−a < 0.1, and so for any 1 ≤ i ≤ t1 − t0

zi ≥ 2i z0 · exp
{
−2i z0 − (2i z0)2}

≥ 2i z0 · (1 − 2−a
− 2−2a).

Finally note that 1 − y − y2
≥ 1 − 2y for any y ∈ [0, 1], and so the last term is bounded by

2i z0 · (1 − 2−2a+1), which coincides with the lower bound claimed in Lemma 2.2.

Corollary 3.2. For all x ∈ [0, 1] and i ∈ N

2i x
(
1 − 2i x − 22i x2)

≤ f (i)(x) ≤ 2i x .

3.5. Proof of Lemma 2.3

A main tool in the forthcoming proof is the following result, which states that a sum of
normalized independent geometric random variables converges to a Gumbel distributed random
variable.
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Theorem 3.7 ([8]). Let T1, . . . , Tn−1 be independent random variables such that Ti ∼

Geo((n − i)/(n − 1)) for 1 ≤ i < n. Then, in distribution

n−1
∑

1≤i<n

(
Ti − E[Ti ]

)
→ Gum(γ ).

Unfortunately we cannot apply directly Theorem 3.7 to our setting, as we will have to
deal with a sum of independent geometric random variables that are not normalized with the
‘correct’ factor n−1. However, the next well-known statement assures that if the error is small
enough we will still converge to the same limiting distribution.

Theorem 3.8 (Slutsky’s Theorem, See, e.g., [27, p. 19]). Let (Xn)n∈N, (Yn)n∈N and (Zn)n∈N be
sequences of real-valued random variables. Suppose that Xn → X in distribution and that there
are constants a, b ∈ R such that Yn → a and Zn → b in probability. Then Yn Xn+Zn → a X+b
in distribution.

We now show a more general version of Theorem 3.7 that is applicable to our setting.

Lemma 3.9. Let T1, . . . , Tn−1 be independent random variables such that Ti ∼ Geo((n −

i)/(n − 1)) for 1 ≤ i < n. Let furthermore ε > 0 and s : N → [1, n] be a function such that
s(n − i) ≥

(
1 − o(1)

)
(n − c · i) for any positive integer i < εn. Then, in distribution∑

(1−ε)n≤i<n

Ti − E[Ti ]
s(i)

→ Gum(γ ).

Proof. Let Di = Ti − E[Ti ] be the centralized version of Ti . Then∑
(1−ε)n≤i<n

Di

s(i)
=

∑
1≤i<n

Di

n
−

∑
1≤i<(1−ε)n

Di

n
+

∑
(1−ε)n≤i<n

(
Di

s(i)
−

Di

n

)
.

A direct application of Theorem 3.7 guarantees that the first sum converges to Gum(γ ) in
distribution. To complete the proof it is sufficient to argue that in probability∑

1≤i<(1−ε)n

Di

n
→ 0 and

∑
(1−ε)n≤i<n

(
Di

s(i)
−

Di

n

)
→ 0, (13)

from which the claim in the lemma follows immediately from Theorem 3.8. Since the Di ’s are
centralized

E

⎡⎣ ∑
1≤i<(1−ε)n

Di

n

⎤⎦ = 0,

and using that Var[Ti ] =
(
(n − 1)(i − 1)

)
/(n − i)2 for all i < n

Var

⎡⎣ ∑
1≤i<(1−ε)n

Di

n

⎤⎦ =

∑
1≤i<(1−ε)n

Var[Ti ]
n2 =

∑
1≤i<(1−ε)n

1
n2

(n − 1)(i − 1)
(n − i)2

≤

∑
1≤i<(1−ε)n

1
(εn)2 = o(1).
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Thus Chebychev’s inequality directly implies that∑
1≤i<(1−ε)n

Di

n
→ 0 in probability.

It remains to treat the second term in (13). We compute the variance as before

Var

⎡⎣ ∑
(1−ε)n≤i<n

Di

s(i)
−

Di

n

⎤⎦ =

∑
(1−ε)n≤i<n

( 1
s(i)

−
1
n

)2 (n − 1)(i − 1)
(n − i)2

≤

∑
1≤i≤εn

( 1
s(n − i)

−
1
n

)2 n2

i2 .

However, this is also o(1), as s(n − i) ≥
(
1 − o(1)

)
(n − c · i) for all integers i ≤ εn by

assumption, and therefore

0 ≤
1

s(i)
−

1
n

≤
1

(1 + o(1))(n − c · i)
−

1
n

= (1 + o(1))
c · i + o(n)

n2 , i ≤ εn.

In summary we have shown that

Var

⎡⎣ ∑
(1−ε)n≤i<n

(
Di

s(i)
−

Di

n

)⎤⎦ = o(1)

and clearly

E

⎡⎣ ∑
(1−ε)n≤i<n

(
Di

s(i)
−

Di

n

)⎤⎦ = 0.

Thus Chebychev’s inequality implies also the second statement in (13) and the proof is
complete. □

A further ingredient that we shall exploit is the following fact. If a sequence of random
variables Xn → X in distribution with distribution functions Fn → F and if F is continuous
everywhere, then the convergence of Fn to F is even uniform.

Theorem 3.10 (Polya’s Theorem, [24, Theorem 1]). For each n ∈ N let Xn be a real-valued
random variable with distribution function Fn . Assume that Xn → X in distribution. If X has
continuous distribution function F, then

lim
n→∞

sup
x∈R

|Fn(x) − F(x)| = 0.

We need one more auxiliary lemma that gives an upper bound on the informed nodes when
going one round backwards in order to later convert the number of Coupons into the number
of rounds that are needed to finish the protocol. Appropriately, Lemma 3.4 assures that in all
rounds the number of informed nodes is tightly concentrated around its expectation, which in
turn is described by f , thus applying f −1 will give a good bound.

Lemma 3.11. Let t0 ∈ N and 0 < ε < 1/6. Let Ct be the event that
⏐⏐|It+1| − Et [|It+1|]

⏐⏐ ≤

(Et [|It+1|])1/2+ε, as given in Lemma 3.4. Then for n large enough the event
⋂

t≥t0
Ct implies
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for all t ≥ t0

|It | ≥
(
1 − n−1/3)

· e ·
(
|It+1| − (1 − 1/e)n

)
.

Proof. Lemma 3.5 and Ct together give that

|It+1| ≤ Et [|It+1|]| + (Et [|It+1|])1/2+ε
= f (|It |/n)n + o

(
n2/3).

Using the definition of f (x) = 1 − (1 − x)e−x and that |It | ≤ n for all t we get that

|It+1| ≤ n − e−|It |/n(n − |It |) + o
(
n2/3)

≤ (1 − 1/e)n + |It |/e + o
(
n2/3).

Rearranging yields the claimed statement. □
Let us briefly outline the proof of Lemma 2.3. We have already shown bounds for the number

of informed nodes after ⌊log2 n⌋−a + b rounds in (5). Starting from these bounds we will use
the Coupon Collector Problem to compute the number of pushes that are needed to inform all
remaining uninformed nodes. This will yield sums of independent geometric random variables
(one summand for each uninformed node). Using Lemma 3.11 we will translate these numbers
of pushes into numbers of rounds, which results in an almost correctly normalized sum of
geometric random variables that Lemma 3.9 assures to converge to a Gumbel distribution. We
will end up with upper and lower bounds to the distribution function of push.

Proof of Lemma 2.3. In this proof we will establish a connection between the Coupon
Collector Problem and the behaviour of push. Let v ∈ V be the node that was initially informed.
Instead of every informed node choosing one of its neighbours uniformly at random, we now
assume that it samples one node in V \ {v} uniformly at random. This defines an equivalent
model, as for all u ∈ V the probability to choose any specific node in V \ {u, v} does not
change (it equals 1/(n − 1) in both models) and choosing u or v makes no difference for the
distribution of the set of informed nodes. Thus push is the same as drawing coupons out of a
pool of n − 1 different coupons, but doing so in batches with size being the number of distinct
coupons already collected plus one, the ‘plus one’ representing the initially informed node v.
It is widely known and easy to see that assuming 1 ≤ i ≤ n − 1 coupons (including v) have
already been collected, then

Ti ∼ Geo
(

n − i
n − 1

)
, 1 ≤ i ≤ n − 1. (14)

describes the number of coupons one needs to draw in order to draw the next, (i + 1)st new,
distinct coupon. Thus in order to collect all n coupons one needs to draw

∑n−1
i=1 Ti coupons,

where the summands are independent random variables. However, we are not particularly
interested in the total number of coupons drawn, but in the number of batches needed. If a
batch has size s ≤ n −1, then this batch is worth s coupons, or vice versa, each coupon drawn
in this batch is worth 1/s batches. Thus we need to estimate the size of the batch that contained
all coupons that were needed to draw the (i + 1)st distinct coupon, or if these coupons were
contained in multiple batches, then we bound all those involved — we call these batches the
batches that are linked to i +1. Let L i be the smallest and Ui the largest size of a batch linked
to the (i + 1)st coupon. Then certainly Ui ≤ i , as at the time that the (i + 1)st distinct coupon
gets collected there are obviously at most i distinct collected coupons. Using our assumption
ℓ · n ≤ |I⌊log2 n⌋−a+b| ≤ u · n we thus obtain⌈ n−1∑

i=⌊un⌋

Ti

Ui

⌉
≤ Xn −

(
⌊log2 n⌋ − a + b

)
≤

⌈ n−1∑
i=⌈ℓn⌉

Ti

L i

⌉
. (15)
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Abbreviating Yn = Xn − (⌊log2 n⌋ − a + b) and recalling that Ui ≤ i yields

Yn ≥

⌈ n−1∑
i=⌊un⌋

Ti

Ui

⌉
=

⌈ n−1∑
i=⌊un⌋

Ti

i

⌉
.

As the Ti are independent and geometrically distributed, we can apply Lemma 3.9 and for
G ∼ Gum(γ ) we obtain with Theorem 3.10

sup
k∈Z

⏐⏐⏐⏐⏐⏐P
[ n−1∑

i=⌊un⌋

Ti − E[Ti ]
i

≥ k
]

− P [G ≥ k]

⏐⏐⏐⏐⏐⏐ = o(1)

and therefore⌈ n−1∑
i=⌊un⌋

Ti

i

⌉
=

⌈ n−1∑
i=⌊un⌋

E[Ti ]
i

+

n−1∑
i=⌊un⌋

Ti − E[Ti ]
i

⌉
≿
⌈ n−1∑

i=⌊un⌋

1
i(1 − i/n)

+ G
⌉
.

The partial fraction decomposition
(
i(1 − i/n)

)−1
= (n − i)−1

+ i−1 allows us to simplify⌈ n−1∑
i=⌊un⌋

1
i(1 − i/n)

+ G
⌉

=

⌈ n−1∑
i=⌊un⌋

1
n − i

+

n−1∑
i=⌊un⌋

1
i

+ G
⌉

=

⌈ n−⌊un⌋∑
i=1

1
i

+

n−1∑
i=⌊un⌋

1
i

+ G
⌉
.

Expressing these partial harmonic sums using the asymptotic expansion for the nth harmonic
number∑

1≤k≤n

k−1
= Hn = ln n + γ + O(1/n) (16)

we get, using Lemma 3.2,

Yn ≿ ⌈ln(n − un) + γ + ln n + γ − ln(un) − γ + G + O(1/n)⌉

=

⌈
ln n + ln

(
n(1 − u)

un

)
+ γ + G + O(1/n)

⌉
≿
⌈

ln n + ln(1/u − 1) + γ + G
⌉
.

We now look at the upper bound in (15). For all ⌊ℓn⌋ ≤ i ≤ n − 1 we specify an appropriate
bound for L i . To obtain it, assume that t is the round in which the i th vertex was informed.
Then all batches that are linked to the (i + 1)st coupon have size at least |It |, i.e. L i ≥ |It |, as
the (i + 1)st distinct coupon is drawn after the i th distinct coupon, i.e., it cannot be drawn in
any round t ′ < t . However, we do not know |It |, but we certainly can say that |It+1| ≥ i . So,
Lemma 3.11, guarantees that whp

|It | ≥
(
1 − n−1/3)

· e ·
(
i − (1 − 1/e)n

)
for all i ∈ {⌊ℓn⌋, . . . , n − 1}.

(Note that t = t(i) in that statement.) In particular, whp

L i ≥ |It | ≥
(
1 − n−1/3)

· (n − e · (n − i)) for all i ∈ {⌊ℓn⌋, . . . , n − 1}.
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Let C be the event that Lemma 3.11 conditions on, that is that |It | (for all t ∈ N) is closely
concentrated around its expectation. Let k ∈ N and

B =

⎧⎨⎩
⌈ n−1∑

i=⌈ℓn⌉

Ti

L i

⌉
≥ k

⎫⎬⎭ .

Then P(B) = P(C ∩ B) + o(1) and as

{C ∩ B ≥ k} ⇒

⎧⎨⎩
⌈ n−1∑

i=⌈ℓn⌉

Ti

(1 − n−1/3)(n − e · (n − i))

⌉
≥ k

⎫⎬⎭
we get, recalling Yn = Xn − (⌊log2 n⌋ − a + b), that

Yn ≤

⌈ n−1∑
i=⌈ℓn⌉

Ti

L i

⌉
≾
⌈ n−1∑

i=⌈ℓn⌉

Ti

(1 − n−1/3)(n − e · (n − i))

⌉
.

Again applying Lemma 3.9 and Theorem 3.10, for G ∼ Gum(γ ) and c = e, we obtain

Yn ≾
⌈ n−1∑

i=⌈ℓn⌉

E[Ti ]
(1 − n−1/3)(n − e · (n − i))

+

n−1∑
i=⌈ℓn⌉

Ti − E[Ti ]
(1 − n−1/3)(n − e · (n − i))

⌉

≾
⌈(

1 + O(n−1/3)
) n−1∑

i=⌈ℓn⌉

1
(n − e · (n − i))(1 − i/n)

+ G
⌉
.

Let c = 1 − 1/e. Using that
(
(n − e · (n − i))(1 − i/n)

)−1
= (n − i)−1

+ (i − cn)−1 gives

Yn ≾
⌈(

1 + O(n−1/3)
)⎛⎝ n−1∑

i=⌈ℓn⌉

1
n − i

+

n−1∑
i=⌈ℓn⌉

1
i − cn

⎞⎠+ G
⌉
.

Using index shifts, the asymptotic expansion for the harmonic number (16) and Lemma 3.2
yields

Yn ≾
⌈(

1 + O(n−1/3)
)
⎛⎜⎜⎜⎜⎜⎜⎝

n−

⌈
ℓn

⌉
∑
i=1

1
i

+

n−1−⌊cn⌋∑
i=⌈ℓn⌉−⌊cn⌋

1
i

⎞⎟⎟⎟⎟⎟⎟⎠+ G + o(1)
⌉

≾
⌈

ln n + ln(1/ℓ − 1) − ln(1/ℓ) + γ + ln
(

1 − c
ℓ − c

)
+ G

⌉
.

□

3.6. Proof of Lemma 2.4

In this subsection we investigate the double limit

lim
a→∞,a∈N

lim
b→∞,b∈N

−a + b + ln
(
g(b)(1 − 2−a−x )

)
− x
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where g(x) = xex−1. We will show that this limit exists and defines a continuous function
c(x). It being periodic with period 1 is an immediate consequence of substituting a → a + 1
in the limit. A similar proof would also yield that c is continuously differentiable, but we only
need continuity in the proof of our main theorem.

Before we actually prove Lemma 2.4 let us state two auxiliary statements first. In
Definition 3.12, we quantify “exponentially fast convergence” and in Lemma 3.13 we state
some simple properties.

Definition 3.12 (Exponentially Fast Convergence). Let (an)n∈N be a real-valued sequence and
let c ∈ (0, 1). If there is an n0 ∈ N such that for all n ≥ n0 we have |an+1| < c|an|, then we
say that an converges exponentially fast to zero at rate c with start number n0.

Lemma 3.13.

(a) Let c ∈ (0, 1) and let (an)n∈N be a real-valued sequence that converges exponentially fast
to zero at rate c. Then

∑
n≥1 an converges absolutely.

(b) Let c ∈ (0, 1), n0 ∈ N and let (hn)n∈N denote a sequence of functions with hn : [0, 1] → R
such that for any x ∈ [0, 1] the sequence (hn(x))n∈N converges exponentially fast to zero
at rate c with start number at most n0. Define h : [0, 1] → R by h(x) :=

∑
n≥1 hn(x).

Then the sequence of functions (
∑n

j=1 h j )n∈N converges uniformly to h, i.e.

lim
n→∞

sup
x∈[0,1]

⏐⏐⏐⏐⏐⏐h(x) −

n∑
j=1

h j (x)

⏐⏐⏐⏐⏐⏐ = 0.

Proof. (a) is elementary. We prove (b). Let ε > 0. We show that there is an n1 ∈ N such that
for all n ≥ n1 and for all x ∈ [0, 1] it holds

⏐⏐⏐∑n
j=1 h j (x) − h(x)

⏐⏐⏐ < ε. For n ≥ n0 it is⏐⏐⏐⏐⏐⏐
n∑

j=1

h j (x) − h(x)

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐ ∞∑
j=n+1

hn(x)
⏐⏐⏐⏐ ≤

∞∑
j=n+1

|hn(x)| ≤ |an0 |

∞∑
j=n+1

c j
= |an0 |

cn+1

1 − c

which implies that an n1 as required exists. □

Proof of Lemma 2.4. We show first, that for a fixed and any x ∈ [0, 1] the limit

lim
b→∞,b∈N

b + ln
(
g(b) (1 − 2−a−x))

exists and the convergence is uniform. Inductively we get

b + ln
(
g(b) (1 − 2−a−x))

= b + ln
(
g(b−1) (1 − 2−a−x))

+ g(b−1) (1 − 2−a−x)
− 1

= 1 + ln
(
1 − 2−a−x)

− 2−a−x
+

b−1∑
j=1

g( j) (1 − 2−a−x) (17)

which, according to Lemma 3.13(a), converges for b → ∞ because g( j)
(
1 − 2−a−x

)
converges

exponentially fast to zero at rate at most exp(−2−a−1) < 1 and start number 1 for j → ∞ in
the sense of Definition 3.12. For x ∈ [0, 1], according to Lemma 3.13(b), the convergence is
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even uniform with respect to x . By the Uniform Limit Theorem we thus showed that

γa(x) = −a +

∑
j≥1

g( j)(1 − 2−a−x ) is continuous for a ∈ N. (18)

To complete the proof we show that the sequence of continuous functions (γa)a∈N converges
uniformly. But first we make an observation. Let a′ > a ∈ N and x ∈ [0, 1], then, using
g(x) = 1 − f (1 − x),

γa′ (x) = −a′
+

∑
j≥1

g( j)(1 − 2−a′
−x )

= −a′
+

a′
−a∑

j=1

g( j)(1 − 2−a′
−x)

+

∞∑
j≥1

g( j)
(

g(a′
−a)(1 − 2−a′

−x))

= −a −

a′
−a∑

j=1

f ( j)(2−a′
−x)

+

∑
j≥1

g( j)
(

1 − f (a′
−a)(2−a′

−x)) .

Furthermore, we can bound the repeated application of f using Corollary 3.2 and therefore

0 ≤

a′
−a∑

j=1

f ( j)(2−a′
−x)

≤ 2−a−x+1

and

2−a−x(1 − 2−a−x
− 2−2a−2x)

≤ f (a′
−a)(2−a′

−x)
≤ 2−a−x .

Thus there is x ′
∈ [0, 1] such that |x − x ′

| ≤ 2−a and γa′ (x) = γa(x ′) + O
(
2−a

)
.

With this at hand we show uniform convergence of (γa)a∈N. In particular, for any 0 < ε <

1/8 we will show that there is some N ∈ N such that supx∈[0,1] |γa(x) − γa′ (x)| ≤ ε for all
a′ > a > N . To achieve this we use our previous observation and obtain that

sup
x∈[0,1]

|γa(x) − γa′ (x)| ≤ sup
x∈[0,1],|x−x ′|≤2−a

|γa(x) − γa(x ′)| + O
(
2−a)

= sup
x∈[0,1],|x−x ′|≤2−a

⏐⏐⏐⏐⏐⏐
∑
j≥1

(
g( j)(1 − 2−a−x ′)

− g( j)(1 − 2−a−x))⏐⏐⏐⏐⏐⏐+ O
(
2−a).

We bound this sum by splitting it into three parts. There is M1 ∈ N such that for any a > M1

there is N1 ∈ N (N1 depending on a and ε) such that

ε ≤ f (N1)(2−a−1)
≤ f (N1+1)(2−a)

≤ 8ε. (19)

That is, N1 is the number of iterations such that f (N1)
(
2−a

)
≈ ε, in particular N1 ≤ a, as

f (a)
(
2−a−1

)
≥ 1/8 by Corollary 3.2 and the fact that f is increasing. Furthermore, using again

that g( j)
(
1 − 2−a−x

)
converges exponentially fast to zero with rate at most exp(−2−a−1) < 1

for j → ∞, there is c ∈ N depending only on ε such that for N2 := N1 + c

0 ≤ sup
x∈[0,1]

∑
j≥N2

g( j)(1 − 2−a−x)
≤ ε for all a > M1. (20)
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Then, abbreviating h( j)
= g( j)

(
1 − 2−a−x ′)

− g( j)
(
1 − 2−a−x

)
, we can write

∞∑
j=1

(
g( j)(1 − 2−a−x ′)

− g( j)(1 − 2−a−x))
=

N1∑
j=1

h( j)
+

N2∑
j=N1+1

h( j)
+

∑
j>N2

h( j). (21)

In the rest of the proof estimate these sums individually, starting with the first one. Again using
(17) and f (x) = 1 − g(1 − x) we have as a → ∞

N1∑
j=1

g( j)(1 − 2−a−x ′)
− g( j)(1 − 2−a−x)

= ln g(N1)(1 − 2−a−x ′)
− ln g(N1)(1 − 2−a−x)

+ O(2−a)

= ln
(

1 − f (N1)(2−a−x ′))
− ln

(
1 − f (N1)(2−a−x))

+ O(2−a).

By our choice of N1, see (19), and the elementary inequalities z/(1 + z) ≤ ln(1 + z) ≤ z for
all z > −1 this yields the upper bound

sup
x∈[0,1]

⏐⏐⏐⏐⏐⏐
N1∑
j=1

h( j)

⏐⏐⏐⏐⏐⏐ ≤ ε +
8ε

1 + 8ε
+ O(2−a) for all a > M1. (22)

We continue with the second sum in (21). Corollary 3.1 yields⏐⏐⏐⏐⏐⏐
N2∑

j=N1+1

h( j)

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
N2∑

j=N1+1

(
f ( j)(2−a−x)

− f ( j)(2−a−x ′))⏐⏐⏐⏐⏐⏐
≤

(
2−a−x

− 2−a−x ′
) N2∑

j=N1+1

2 j .

Thus, as N1 ≤ a and N2 = N1 + c, where c depends on ε only, and our assumption |x −

x ′
| ≤ 2−a there is M2 ≥ M1 such that for all a > M2⏐⏐⏐⏐⏐⏐

N2∑
j=N1+1

h( j)

⏐⏐⏐⏐⏐⏐ ≤

(
22−a

− 1
)

· 2−a
·

N2∑
j=N1+1

2 j
≤

(
22−a

− 1
)

· 2c+1
≤ ε. (23)

In summary, (21) gives

sup
x∈[0,1]

⏐⏐γa(x) − γa′ (x)
⏐⏐

≤ sup
x∈[0,1],|x−x ′|≤2−a

⏐⏐⏐⏐⏐⏐
N1∑
j=1

h( j)
+

N2∑
j=N1+1

h( j)
+

∑
j>N2

h( j)

⏐⏐⏐⏐⏐⏐+ O
(
2−a).

and for a > M2 > M1, applying (22), (23) and (20) yields the uniform convergence of
(γa)a∈N. □

3.7. Other proofs

In this subsection we complete the rigorous treatment of our main theorems and give the
last two remaining proofs. First we prove Lemma 2.5, which states that Xn −⌊log2 n⌋−⌊ln n⌋

is uniformly integrable.
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Proof of Lemma 2.5. Doerr and Künnemann show in [7, Cor. 3.2 and Thm. 4.1] that for all
r ∈ N

P
[
Xn ≥ ⌊log2 n⌋ + ln n + 2.188 + r

]
≤ 2e−r and

P
[
Xn ≤ r

]
≤ P

⎡⎢⎢⎢⎣⌊log2 n⌋ − 1 +

Cn(
⌈

n/2
⌉

)

n
≤ r

⎤⎥⎥⎥⎦ ,

where Cn(⌈n/2⌉) is the number of rounds a coupon collector needs to draw the last n/2 out of
n coupons. These two bounds together with common deviation bounds for the coupon collector
problem imply, see e.g. [8], that

P[Yn /∈ ⌊log2 n⌋ + ⌊ln n⌋ ± (r + 5)] ≤ 4e−r .

Using this inequality we get that for any N ∈ N

E
[
|Yn|

k
⏐⏐⏐ 1[|Yn|

k > N
]]

≤

∑
t≥ k√N

(t + 5)k4e−t ,

which implies the claim. □
We close the section with the proof of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. First we observe that the (1−n−1/6) error term in the definition of ℓ, u is
negligible as is factors out as a small additional term. Thus it suffices to consider ℓ = f (b)(L)
and u = f (b)(U ) where L =

(
1 − 2−a+2

)
2−a−x and U = 2−a−x for some x ∈ (0, 1]. We

assume that a ≥ 3.
We start by showing an analogue to Corollary 3.1 but concerning g. For all r ≥ s ∈ [0, 1],

using 1 − x ≤ e−x ,

g(r − s) = (r − s)er−s−1
≥ rer−s−1

− ser−1
≥ g(r ) − s(1 + r )er−1

and consequently

g(i)(r − s) ≥ g(i)(r ) − s
(
(1 + r )er−1)i for all r ≥ s ∈ [0, 1) and i ∈ N. (24)

This completes our preparations. In order to show that (1 − ℓ)/(1 − u) → 1 as a → ∞ we
argue that ℓ and u are very close together and approach 1 as a (and b > 2a) gets big. We start
by bounding the distance between ℓ and u. Applying Corollary 3.1 to U = L + 2−2a−x+2 we
get that

f (a) (U ) = f (a) (L + 2−2a−x+2)
≤ f (a) (L) + 2−a−x+2 (25)

and Corollary 3.2 bounds f (a−1)(U ) from below with 2−x−1
(
1 − 2−x−1

− 2−2x−2
)

≥ 1/8, thus
f (a+2)(U ) ≥ 1/2, and therefore we get using the monotonicity of f

1
2

≤ f (a+2)(U ) ≤ f (a+3) (L) ≤ f (a+3) (U )
(25)
≤ f (a+3) (L) + 2−a−x+5. (26)

We switch our focus to g. Observe that z := 3e−1/2/2 < 1 and, using (24),

g(b−a−3) (1 − f (a+3) (L) − 2−a−x+5)
≥ g(b−a−3) (1 − f (a+3) (L)

)
− 2−a−x+5

· zb−a−3.
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This implies, using (26) and the previous equation, that

g(b−a−3) (1 − f (a+3) (U )
)

≥ g(b−a−3) (1 − f (a+3) (L)
)
− 2−a−x+5

· zb−a−3,

and therefore, as 1 − f (b)(L) ≥ 1 − f (b)(U ) = g(b−a−3)
(
1 − f (a+3) (U )

)
,

|u − ℓ| = | f (b)(U ) − f (b)(L)| ≤ 2−a−x+5zb−a−3
→ 0 as a → ∞, b − a → ∞. (27)

Next we show that u, ℓ approach 1. Using g(x) = 1 − f (1 − x), (26), g being increasing and
g(x) ≤ xe−1/2 for all x ≤ 1/2 (in that order), we get for all b > a + 3

g(b)(1 − L) = g(b−a−3) (1 − f (a+3) (L)
)

≤ g(b−a−3)
(

1
2

)
≤

1
2

e−(b−a−3)/2.

Moreover, using that f (x) ≤ 2x and g(x) ≥ x/e,

g(b)(1 − U ) = g(b−a) (1 − f (a) (U )
)

≥
(
1 − 2−x)e−(b−a).

Thus, these two bounds together give for all b > a + 3

1 −
1
2

e−(b−a−3)/2
≤ f (b) (L) ≤ f (b) (U ) ≤ 1 −

(
1 − 2−x)e−(b−a). (28)

We just showed that u, ℓ → 1 as a (and b) tends to infinity. This yields that ln u, ln ℓ and
ln
(
ℓ/(eℓ − e + 1)

)
tend to 0, leaving us with the term ln

(
(1 − ℓ)/(1 − u)

)
. The fact U ≤ f (L)

(and so f (b−2)(U ) ≤ f (b−1)(L)) implies that

1 − ℓ

1 − u
=

g(b)
(
1 − L

)
g(b)

(
1 − U

)
=

exp
(
g(b−1)(1 − L) − 1

)
· exp

(
g(b−2)(1 − L) − 1

)
exp

(
g(b−1)(1 − U ) − 1

)
· exp

(
g(b−2)(1 − U ) − 1

) ·
g(b−2)

(
1 − L

)
g(b−2)

(
1 − U

)
≤

exp
(
g(b−2)(1 − L) − 1

)
exp

(
g(b−1)(1 − U ) − 1

) ·
g(b−2)

(
1 − L

)
g(b−2)

(
1 − U

) .
Applying the same estimate to the latter fraction inductively we get for any c ∈ N

1 − ℓ

1 − u
≤

exp
(
g(c)(1 − L) − 1

)
exp

(
g(b−1)(1 − U ) − 1

) ·
g(c)
(
1 − L

)
g(c)
(
1 − U

) ≤ exp
(
g(c)(1 − L)

)
·

g(c)
(
1 − L

)
g(c)
(
1 − U

) .
Set c = ⌈a(1 + ln 2)⌉. Using (27) and (28), where we set b = c, we obtain (for large enough
a) that

⏐⏐g(c)(1 − L) − g(c)(1 − U )
⏐⏐ ≤ 2−a−x+5zc−a−3 as well as f (c)

(
U
)

≤ 1 −
(
1 − 2−x

)
e−(c−a)

and f (c)(L) ≥ 1 − e−(c−a−3)/2/2. Thus

1 − ℓ

1 − u
≤ exp

(
1 − f (c)(L)

) (
1 +

2−a−x+5zc−a−3

1 − f (c)
(
U
) )

≤ exp
(

1
2

e−(c−a−3)/2
)(

1 +
2−a−x+5zc−a−3

(1 − 2−x )e−c+a

)
.

Using ex
≤ 1 + 2x, x ∈ [0, 1] this yields the bounds

1 ≤
1 − ℓ

1 − u
≤

(
1 +

√
2

−a+4)(
1 +

2−x+5e
1 − 2−x

· za ln 2−2
)

for all a ∈ N.

Therefore, as 0 < z < 1 we obtain 1−ℓ
1−u → 1, and consequently ln

(
(1 − ℓ)/(1 − u)

)
→ 0, as

a → ∞. □
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Lemma 3.2 states that disturbing a Gumbel distributed random variable by a small amount
does not significantly alter its distribution.

Proof of Lemma 3.2. Observe that ⌈h(n) + G ± ε⌉ ̸= ⌈h(n) + G⌉ is equivalent to

G ∈
[

j − h(n) − ε, j − h(n) + ε
]

for some j ∈ Z.

But as G is absolutely continuous, for any δ > 0 we can choose ε small enough such that

P

⎡⎣G ∈

⋃
j∈Z

[
j − h(n) − ε, j − h(n) + ε

]⎤⎦ ≤ δ. □
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Appendix. Existence of subsequence

Let x, y ∈ [0, 1]. In this section we show that there is an unbounded sequence of natural
numbers (ni )i∈N such that log2 ni − ⌊log2 ni⌋ → x and ln ni − ⌊ln ni⌋ → y as i → ∞. To this
end, set z = y − x ln 2. According to a Theorem of Kronecker, see e.g. [17, Thm. 440], for all
i ∈ N, there are pi , qi ∈ N such that⏐⏐qi ln 2 − pi − z

⏐⏐ ≤ i−1. (A.1)

Actually even more is true: there are infinitely many pi , qi ∈ N that solve (A.1). To see this,
assume that there are only finitely many, then there is k, ℓ ∈ N such that k ln 2 = ℓ + z,
otherwise there would be some i ∈ N where (A.1) has no solution. However, according to a
Theorem of Hurwitz, see e.g. [17, Thm. 193], there are infinitely many r j , s j ∈ N such that⏐⏐r j ln 2 − s j

⏐⏐ ≤ r−2
j .

But then⏐⏐r j ln 2 − s j
⏐⏐ =

⏐⏐(r j + k) ln 2 − (s j + ℓ) − z
⏐⏐ ≤ r−2

j ,

a contradiction, thus there are infinitely many solutions to (A.1). We continue with that
equation, which we can restate, as i → ∞,

qi ln 2 + x ln 2 = pi + y + O
(
i−1) .

Taking the exponential on both sides thus yields, as i → ∞,

2qi +x
= epi +y+O(i−1).

Set ni = ⌊2qi +x
⌋ for all i ∈ N, where we choose qi such that qi ≥ i from the infinitely many

solutions to (A.1). Then ni ∈ N for all i ∈ N and

log2 ni − ⌊log2 ni⌋ = x + O
(
2−i) as well as ln ni − ⌊ln ni⌋ = y + O

(
i−1) .

Thus the subsequence of natural numbers that is induced by log2 ni − ⌊log2 ni⌋ → x and
ln ni − ⌊ln ni⌋ → y is non-empty and unbounded.
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The Effect of Iterativity on Adversarial Opinion Forming

Konstantinos Panagiotou Simon Reisser
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Abstract

Consider the following model to study adversarial effects on opinion forming. A set of
initially selected experts form their binary opinion while being influenced by an adversary,
who may convince some of them of the falsehood. All other participants in the network then
take the opinion of the majority of their neighbouring experts. Can the adversary influence
the experts in such a way that the majority of the network believes the falsehood? Alon
et al. [2] conjectured that in this context an iterative dissemination process will always be
beneficial to the adversary. This work provides a counterexample to that conjecture.

1 Introduction
Understanding how opinions are formed is as important as ever, as the spread of misinformation
becomes more prevalent every day. Assume there is some new innovation being either good or
bad that is introduced to a group of people who want to form their (binary) opinion about it.
Following a key insight by Rogers [22], the opining forming process can be modelled as follows.
At first, a small set of so-called early adopters, or experts, forms their opinion about the newly
introduced innovation. Afterwards, they disseminate their opinion to all other non-experts in the
network.

When looking at that network from the outside an observer wants to infer the quality of the
new innovation by observing the opinion of all individuals, but without taking the actual structure
of the network into consideration (maybe by doing a poll). One popular method to achieve this
is using the wisdom of the crowd. In this case that corresponds to a simple majority rule, that is,
the observer takes the majority of opinions as an estimate. Wisdom of the crowd has been shown
to have a plethora of useful applications in decision making, see e.g. [9, 19, 21, 5, 8, 18].

Assume furthermore that there is an adversary who can influence the opinion of some early
adopters so as to falsely convince the observer of the new innovation’s quality. Let us look at some
examples. Consider the so-called Black-Hat ASIN Piggybacking on Amazons Marketplace [17].
This is the method of hijacking the listing of an Amazon vendor to sell counterfeit products under
the (dis-)guise of a genuine listing. Some customers then buy the real product and some buy the
fake one. This results in the vendor to lose profit as well as him getting negative reviews that do
not correspond to the actual product. The second example is a newly opened restaurant, that in
its opening phase invites food critics to try and rate the restaurant. However, when those critics
dine at the restaurant, the restaurant puts in more effort than it would when catering to a regular
customer, e.g., by providing better quality food and service. Lastly, consider the common practice
of online vendors to buy positive reviews for their products by either giving directly monetary
incentives to reviewers or providing them with free products. In particular, on Amazon in certain
product categories, like Bluetooth speakers and headphones, ReviewMeta [20] finds more than half
of reviews to be fake [11].

A Model for Opinion Forming In the previous examples we saw three different sorts of ad-
versaries: the hijacking seller influenced negatively the opinions of some customers; the restaurant
owner could actively choose which critics to influence; finally, the seller that bought his reviews



could select the reviewers as well as guarantee their opinion. Alon et al. [2] introduced a model
that implements the ideas outlined above. Given a graph G = (V,E) on n vertices and parameters
0 ≤ µ < 1/2, 0 < δ ≤ 1/2 we define the set of experts as a set E ⊆ V with the property that
|E| = µ|V | = µn. Let E be furthermore divided into two subsets: the experts that know the
truth E1 ⊆ E and the experts that are convinced of the falsehood E0 = E \ E1. The sets E1, E0 are
chosen in three different ways that correspond to the various adversaries described in the previous
paragraphs.

The random adversary has actually no choice. He chooses the expert set E uniformly at
random among all sets of size µ|V |. Then E is in turn partitioned into E1 and E0 by adding
each vertex in E to E1 independently with probability 1/2 + δ and to E0 otherwise. The weak
adversary is allowed to choose the expert set with the restriction that |E| = µ|V |; the selected
set is then partitioned into E1 and E0 like in the random adversary. Finally, the strong adversary
chooses E , E1 and E0 = E \E1 arbitrarily such that |E| = µ|V |, |E1| = (1/2 + δ)|E| and consequently
|E0| = (1/2− δ)|E|. We will ignore rounding issues througout to facilitate the presentation.

All vertices that know the truth in a graph are assigned the label ‘1’, including all vertices
in E1, and all vertices that believe a falsehood are labeled ‘0’. Vertices without an opinion bear
no label. The experts disseminate their opinions to the non-experts V \ E by a majority rule,
that is, every vertex in V \ E takes the opinion of the majority of its neighbouring experts. To be
completely explicit, a non-expert is labeled ‘1’/’0’ if more that half of its neighbouring experts are
labeled ‘1’/’0’. Vertices at which there is no majority – because of a tie of ‘1’s and ‘0’s or because
they have no expert neighbours – decide upon their opinion uniformly at random, i.e., each of
these vertices is independently labeled ‘1’ with probability 1/2 and ‘0’ otherwise.

We say that a graph is robust against the random/ weak/ strong adversary if with high proba-
bility, for any choice of the expert set, after the dissemination process more than half of the vertices
are labeled ‘1’. ’With high probability’ means with probability approaching 1 as n approaches
infinity, which we sometimes abbreviate with whp. In [2] the authors studied which properties of
a graph make it robust. They discovered that all graphs with maximal degree being sub-linear in
n are robust against the weak adversary. Furthermore, they showed that certain well-connected
networks are robust against the strong adversary. In particular, such networks are either Erdős-
Rényi random graphs having edge probability p greater than c/n for a suitable constant c > 0,
or expander graphs, with d, λ2 being the largest and second largest eigenvalue of its adjacency
matrix, satisfying d ≥ λ2/(δ

√
µ(1− µ+ 2δµ)).

Iterative Dissemination In [2] the authors also introduced an iterative version of the model
with a more dynamic dissemination process. The iterative model also starts with labeled experts
and all non-experts are labeled according to the majority of their neighbouring experts. Ties that
involve at least one expert are broken uniformly at random. All non-experts without any expert
neighbours, however, do not form their opinion right away, but remain unlabeled. This process
is then iterated by considering all vertices with label ‘1’ and all vertices with label ‘0’, until all
vertices are labeled.

Figure 1: This figure shows an example from [2]. The colors red/blue correspond to the
experts labeled ‘1’/’0’. The dotted vertices indicate their label after the dissemination process,
the unmarked vertices are decided randomly. In the first line graph we consider the iterative
strong adversary, where only the rightmost blue vertex determines the label of all remaining
vertices. In the second line we consider the non-iterative setting, each blue expert can at
most convince two non-experts. If 1/2+ δ > 3(1/2− δ) and n is large, the adversary can not
hope to convince more that half of all vertices.
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A natural question is whether iterativity helps or hinders the adversary. Intuitively, iterativity
ought to be beneficial for the adversary. If a graph is not robust against a non-iterative adversary,
then there is a choice of expert sets such that after one round of dissemination there are more
vertices that are labeled ’0’ than ’1’. The remaining vertices without expert neighbours are then
either decided randomly (non-iterative) or there are subsequent rounds of dissemination (iterative).
As there now are more ’0’ labeled vertices that ’1’ labeled vertices, deciding the label of the
remaining vertices by dissemination should be beneficial for the adversary. Indeed, the authors of
[2] provided examples where this is the case. For example, they showed that for suitable values of µ
and δ, a line graph is robust against the non-iterative strong/weak adversaries, but not against
their iterative versions, see Fig. 1.

However, in [2] an additional example, where for the weak adversary the opposite is true, was
constructed. Consider a graph that is a disjoint union of a star and a d-regular expander graph.
Place one expert in the center of the star and distribute the other experts as evenly as possible
on the expander. In the non-iterative setting, each expert in the expander will spread its label to
d many non-experts. If the expert in the center of the star is labeled ‘0’, all vertices in the star
are labeled ‘0’ as well, outweighing the difference between ‘1’s and ‘0’s in the expander. In the
iterative setting however, each expert does not only spread its label to d many other vertices, but
all vertices in the expander will be labeled at the end of the dissemination, roughly in the same
ratio as that of the experts in the beginning. Now the difference in ‘1’s and ‘0’s is so large that
even if all vertices in the star were labeled with ‘0’ can sway the majority.

Guided by the intuition described previously, it seems that no such construction can work for
a strong adversary. In the previous example of the graph consisting of an expander and a star the
adversary can place all ’1’-labeled experts on the star and all others in the expander. Then, all
vertices in the expander will be labeled ’0’ resulting in a clear majority. Consequently, in [2] the
following conjecture concerning the effect of iterativity in that case was made.

Conjecture 1.1 ([2]). In the case of a strong adversary an iterative propagation can never harm
the adversary.

Equivalently, the conjecture states that there is no graph that is robust against the iterative strong
adversary and simulaneously not robust against the non-iterative version – in this precise sense
iterativity does not harm/can only help the adversary.

Related Results Besides of [2], where this model for opinion formation was introduced, there
is one more work that studies questions in this precise framework. In his doctoral thesis [10],
Daknama studied resilience properties of random graphs. ’Local resilience’ in this context refers
to the largest number of edges, which are adjacent to any vertex, that can be removed so that the
graph still is robust against the strong adversary. In [10] it was shown that one can delete up to
a fraction of 2(1− µ+ 2δµ)δ/(1 + 2δ) of all edges at each vertex without affecting robustness.

There are also other directly related studies in opinion forming, which, however, do not use
the exact model presented here. These papers include studies on word of mouth [24], group
recommendation [3, 15, 16, 12] and informational cascades [6, 7, 23, 1, 13]. For further references
see also [2].

Result The contribution of this paper is to refute Conjecture 1.1. The idea is to consider a
graph that has non-robustness against the non-iterative strong adversary in a very weak way.
More concretely, the majority for ’0’ labeled vertices is only achieved if a majority of vertices
without expert neighbours is labeled ’0’. If we consider iterativity, then the adversary has no
clear advantage in a subsequent round of the dissemination, as there are roughly equally many ’1’-
and ’0’-labeled vertices. Additionally, we can construct the graph in a way such that the vertices
without expert neighbours are connected to vertices that are labeled ’1’ in the first round of the
dissemination, so that the adversary gets harmed.

Consider the following graph that implements these ideas. Let 0 < µ, δ < 1/2 and 0 < ε1 <
2δ/(1/2 + δ), 0 < ε2 < (1/2 − δ)/(1/2 + δ) as well as 0 < d < (1 − µ − 2δµ)/3. Then the graph

3



I
1○

J
1○

P
1○

O
1○

D
0○

pIJ pJP

pIP

1

1

1

1 : 1

Figure 2: This figure shows the graph G. The numbers on the edges and in the vertices
give the probability that an edge is present between/in the components. For example, any
edge with one vertex in I and one in J exists independently with probability pIJ . Every
vertex in D has exactly one distinct neighbour in J and no other neighbours, i.e., every
vertex in D has degree 1 and no two vertices in D have a common neighbour.

G = (V,E), |V | = n is given by V = I ∪̇ J ∪̇ O ∪̇ P ∪̇ D such that

|I ∪ J | = |O ∪ P | = (1− d)
n

2
, |D| = dn, |I| = µ

(
1

2
+ δ

)
n and |O| = µ

(
1

2
− δ
)
n.

The subset D forms an independent set. In contrast, I, J,O and P each form a clique. Every
vertex in O is connected to all other vertices except to those in D. Between I and J , I and P
and J and P are random bipartite graphs with edge-probabilities pIJ , pIP and pJP respectively.
Every vertex in D has degree one, with the unique neighbor being in J ; moreover, no two vertices
in D have the same neighbour. There are no more edges. Set

pIJ = pJP =
1/2− δ
1/2 + δ

+ ε1 and pIP =
1/2− δ
1/2 + δ

− ε2.

See Fig. 2 for a depiction of G.
Assume for now that the adversary chooses E1 = I and E0 = O. Then whp all vertices in P

will have ≈ ε2|I| more neighbours in O than in I by choice of pIP , thus they will be labeled ’0’
independently of iterativity. In contrast, vertices in J have ≈ ε1|I| more neighbours in I than
in O and will consequently be labeled ’1’. Summarizing, we have that all vertices in I ∪ J are
labeled ’1’ and all vertices in O ∪ P are labeled ’0’. As both unions have by construction the
same size, the labels of vertices in D decide whether the adversary succeeds or not. This is where
(non-)iterativity comes into play. In the non-iterative setting, vertices in D will choose uniformly
at random, as they have no neighbours in I ∪O. So, with positive probability there will be more
vertices labeled ’0’ than ’1’ in D, consequently granting a majority of ’0’-labeled vertices. In the
iterative setting however, all vertices in D will be labeled ’1’, as they are exclusively connected
to vertices in J . Thus, when choosing E1 = I and E0 = O the iterative adversary fails, while
the non-iterative adversary succeeds. Choosing the proportions of I,O, J and P and the edges
between them suitably, we can make sure that choosing E1 and E0 differently is not advantageous
for the adversary and therefore G is indeed robust against the iterative strong adversary. The
main result of this paper is to show that the graph G has indeed the properties outlined above.

4



Theorem 1.2. For all 0 < µ < 1/2 and 1/6 < δ < 1/2 there are ε1, ε2, d > 0 such that G is whp
robust against the iterative strong adversary, but not against the non-iterative strong adversary.

Note that δ > 1/6 is a necessary constraint for our construction, but we are certain that there is
an example for smaller δ as well. Permissible values in Theorem 1.2 are, e.g. µ = δ = 1/5, ε1 =
10−2, d = 10−4 and ε2 = 10−6. The remainder of this paper will consist of the proof of Theorem 1.2.
We first state and prove a well known description of the edge distribution of random graphs and
then show the claimed (non-) robustness.

2 Proof
For a graph G = (V,E) let N(v) = {w ∈ V | (v, w) ∈ E} be the set of neighbours of v. We begin
with a statement about the distribution of edges in random graphs.

Lemma 2.1. Let ε > 0. The Erdős-Rényi random graph G(n, p) with vertex set V and p ≥ ε has
whp the following property. For any set S ⊆ V of size |S| ≥ εn there is a set XS ⊂ V \ S of size
at most 4ε−3(ln ε−1 + 2) such that

∀v ∈ (V \ S) \XS :
∣∣|N(v) ∩ S| − p|S|

∣∣ ≤ εp|S|.

Similar versions of Lemma 2.1 with (somehow) different bounds exist in the literature, see for
example [14, Lem. IV.1 and IV.3]. However, as we did not find the exact statement we will need
in the literature we include a proof. We will utilize the following Chernoff bound.

Theorem 2.2 ([4], Cor 7.11). Let X be a binomially distributed random variable. Then

P
(
|X − E[X]| > δE[X]

)
≤ 2 exp

(
−min{δ2, δ}E[X]/4

)
, δ > 0.

Proof of Lemma 2.1. Let S ⊆ V, |S| ≥ εn and let

XS =
{
v ∈ V \ S

∣∣ ∣∣|N(v) ∩ S| − p|S|
∣∣ > εp|S|

}

be the set of vertices not satisfying the claim of the lemma. The number of neighbours of any
vertex v ∈ V \ S is a binomially distributed random variable, |N(v) ∩ S| = Bin(|S|, p), and the
expected number of neighbours of v in S is p|S|. Thus the probability of v ∈ XS can be bounded
with Theorem 2.2 by

P
(∣∣|N(v) ∩ S| − p|S|

∣∣ > εp|S|
)
≤ exp

(
−ε2p|S|/4

)
.

Let furthermore t ∈ N; the probability that t distinct vertices are inXS is at most exp(−ε2p|S|/4·t)
as the events of vertices being elements of XS are independent. There are

(
n
k

)
≤
(
en
k

)k possibilities
to choose S, a set of size k ≥ εn. Hence the probability that for fixed k ≥ εn there is a set S, |S| = k
such that |XS | = t is by union bound at most

exp

(
k ln(en/k)− ε2pk

4
· t
)
≤ exp

(
k

(
− ln ε+ 1− ε3

4
· t
))

,

where we used the assumption that p ≥ ε. Thus, if t ≥ 4ε−3(ln ε−1 + 2) this expression is ≤ e−k

and summing over k ≥ εn yields the claim.

This concludes the preparations. Next we prove the main theorem, by proving the two claims
separately. We show the robustness of G against the iterative strong adversary first.

Lemma 2.3. For all 0 < µ < 1/2 and 1/6 < δ < 1/2 there are values ε1, ε2, d > 0 such that G
is whp robust against the iterative strong adversary.
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Proof. Let 0 < µ < 1/2, 1/6 < δ < 1/2 and ε1, ε2, d > 0 such that

ε1 < min

{
δµ

2
,

4δ

1/2 + δ
− 1

}
(2.1)

and furthermore

d < min

{
ε1δ

1/2 + δ
,
ε1δµ

4
,

1− µ− 2δµ

3

}
(2.2)

as well as

ε2 < min

{
d

6

(
4δ

1/2 + δ
− 1− ε1

)
,

1/2− δ
1 + 2δ

}
. (2.3)

We will show that for any choice of experts, at the end of the dissemination the majority will be
labeled ’1’ thus proving robustness. Let therefore E = E1 ∪ E0 be any set of experts as chosen by
the iterative strong adversary and define

i1 := |I ∩ E1|, j1 := |J ∩ E1|, o1 := |O ∩ E1|, p1 := |P ∩ E1|, d1 := |D ∩ E1|

as well as

i0 := |I ∩ E0|, j0 := |J ∩ E0|, o0 := |O ∩ E0|, p0 := |P ∩ E0|, d0 := |D ∩ E0|.

By definition of the model we have that |E1| = (1/2 + δ)µn as well as |E0| = (1/2− δ)µn and
therefore

i1 + j1 + o1 + p1 + d1 =

(
1

2
+ δ

)
µn and i0 + j0 + o0 + p0 + d0 =

(
1

2
− δ
)
µn, (2.4)

which readily implies that

2δµn =
2δ

1/2 + δ
(i1 + j1 + p1 + o1 + d1). (2.5)

We will see that the iterative dissemination will be finished after two rounds only. We start
by determining the label of each vertex in the different components after the first round of dis-
semination. This is decided by the difference in ‘0’/‘1’ labeled expert neighbours. Consider the
difference

∆(v) := |N(v) ∩ E1| − |N(v) ∩ E0|, v ∈ V.
In particular, ∆(v) > 0 means that v ∈ V \ (E1 ∪ E0) will be labeled ‘1’ and ∆(v) < 0 means it
will be labeled ‘0’. Note that vertices v with ∆(v) = 0 could be either labeled randomly (if they
have the same positive number of ’0’/’1’ labeled neighbours) or not at all in this round.

We begin with a vertex v ∈ O. Using the construction of G and (2.4) we get

|N(v) ∩ E1| = i1 + j1 + p1 + o1 =

(
1

2
+ δ

)
µn− d1

and similarly

|N(v) ∩ E0| = i0 + j0 + p0 + o0 =

(
1

2
− δ
)
µn− d0.

Combining these two equations, d < ε1 < δµ/2 given by (2.2) and (2.1) implies

∆(v) = 2δµn− (d1 − d0) > 0 ∀ v ∈ O.
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We continue with v ∈ J . Using Lemma 2.1, we get that for all ε > 0 whp there is JP ⊂ J, |JP | ≤
4ε−3(ln ε−1 + 2) such that

∣∣|N(v) ∩ P ∩ E1| − pJP · p1
∣∣ ≤ ε · pJP · p1 + εn for all v ∈ J \ JP .

As ε > 0 is arbitrary we infer that

|N(v) ∩ P ∩ E1| = pJP · p1 + o(n) for all v ∈ J \ JP .

Completely analogous calculations for I and E0 yield that whp there is J ′ ⊂ J, |J ′| = o(n) such
that for all v ∈ J \ J ′

|N(v) ∩ E1| = pIJ · i1 + j1 + pJP · p1 + o1 + o(n)

=

(
1

2
+ δ

)
µn− (1− pIJ)i1 − (1− pJP )p1 − d1 + o(n)

and

|N(v) ∩ E0| = pIJ · i0 + j0 + pJP · p0 + o0 + o(n)

=

(
1

2
− δ
)
µn− (1− pIJ)i0 − (1− pJP )p0 − d0 + o(n).

Computing the difference of the above expressions we get for all v ∈ J \ J ′

∆(v) = 2δµn− (1− pIJ)(i1 − i0)− (1− pJP )(p1 − p0)− (d1 − d0) + o(n)

= 2δµn−
(

2δ

1/2 + δ
− ε1

)(
(i1 − i0) + (p1 − p0)

)
− (d1 − d0) + o(n)

= 2δµn− 2δ

1/2 + δ

(
(i1 − i0) + (p1 − p0)

)
+ ε1

(
(i1 − i0) + (p1 − p0)

)
− (d1 − d0) + o(n).

Applying (2.5) and (2.4) we can obtain a lower bound for ∆(v), v ∈ J \ J ′

∆(v) ≥ 2δ

1/2 + δ
(j1 + o1 + d1 + i0 + p0) + ε1

(
(i1 − i0) + (p1 − p0)

)
− d1 + o(n)

≥ ε1(i1 + j1 + p1 + o1 + d1) +

(
2δ

1/2 + δ
− ε1

)
(i0 + p0)− d1.

According to (2.1) and (2.2) we have ε1 < 2δ/(1/2 + δ) as well as d < ε1δµ/4 and therefore

∆(v) ≥ ε1 · 2δµn− dn > 0 ∀ v ∈ J \ J ′.

Next we look at v ∈ I. Using again Lemma 2.1 and (2.4) we infer that whp there is I ′ ⊂ I, |I ′| =
o(n) such that for all v ∈ I \ I ′

|N(v) ∩ E1| = i1 + pIJ · j1 + pIP · p1 + o1 + o(n)

=

(
1

2
+ δ

)
µn− (1− pIJ) j1 − (1− pIP ) p1 − d1 + o(n)

and

|N(v) ∩ E0| = i0 + pIJ · j0 + pIP · p0 + o0 + o(n)

=

(
1

2
− δ
)
µn− (1− pIJ) j0 − (1− pIP ) p0 − d0 + o(n).
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By combining those bounds we obtain for all v ∈ I \ I ′

∆(v) = 2δµn− (1− pIJ) (j1 − j0)− (1− pIP ) (p1 − p0)− (d1 − d0) + o(n)

= 2δµn− 2δ

1/2 + δ

(
(j1 − j0) + (p1 − p0)

)
− (d1 − d0) + ε1(j1 − j0)− ε2(p1 − p0) + o(n).

(2.6)

Before we conclusively determine ∆(v) for v ∈ I \ I ′ we look at vertices v ∈ P . Using once more
Lemma 2.1 and (2.4) we infer that whp there is P ′ ⊂ P, |P ′| = o(n) such that for all v ∈ P \ P ′

|N(v) ∩ E1| = pIP · i1 + pJP · j1 + p1 + o1 + o(n)

=

(
1

2
+ δ

)
µn− (1− pIP ) i1 − (1− pJP ) j1 − d1 + o(n)

and

|N(v) ∩ E0| = pIP · i0 + pJP · j0 + p0 + o0 + o(n)

=

(
1

2
− δ
)
µn− (1− pIP ) i0 − (1− pJP ) j0 − d0 + o(n).

Together these two expressions yield for all v ∈ P \ P ′

∆(v) = 2δµn− 2δ

1/2 + δ

(
(i1 − i0) + (j1 − j0)

)
− (d1 − d0) + ε1(j1 − j0)− ε2(i1 − i0) + o(n).

(2.7)

We argue next, that either “∆(v) < 0 for some v ∈ I \ I ′ ” or “∆(v) < 0 for some v ∈ P \ P ′ ” but
never both. To see this, observe that

“∆(v) < 0 for some v ∈ I \ I ′ and ∆(v) < 0 for some v ∈ P \ P ”

implies that

(i1 − i0) + (j1 − j0) and (j1 − j0) + (p1 − p0) are both ≥ ((1/2 + δ)µ− ε1)n. (2.8)

Otherwise assumptions (2.2) and (2.3) give that ε2 < d/6 as well as d < ε1δ/(1/2+δ) and therefore
either by (2.6)

∆(v) ≥ 2δ

1/2 + δ
ε1n− dn− ε2n > 0, for all v ∈ I \ I ′

or by (2.7)

∆(v) ≥ 2δ

1/2 + δ
ε1n− dn− ε2n > 0, for all v ∈ P \ P ′.

However, as (i1 − i0) + (p1 − p0) ≤ (1/2 + δ)µn equation (2.8) implies that j1 − j0 ≥ (δµ− ε1)n.
Again (2.1),(2.2) and (2.3) give that ε1 < δµ/2, d < ε1δµ/ and ε2 < d/6 and thus (2.6) yields

∆(v) ≥ ε1 · (δµ− ε1)n− dn− ε2n > 0, for all v ∈ I \ I ′.

Summarizing, we have shown that ∆(v) > 0 for all v ∈ (J \ J ′) ∪ O and either ∆(v) > 0 for all
v ∈ I \ I ′ or ∆(v) > 0 for all v ∈ P \ P ′.

In the rest of the proof we consider the second round of the iterative dissemination process. We
will distinguish two cases. Assume first that j0 + d0 < (d/2− ε2)n. As ∆(v) > 0 for all v ∈ J \ J ′
we infer that at most (d/2 − ε2)n + o(n) vertices in D will be labeled ‘0’ after the second round
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of the dissemination process, all other vertices in D will be labeled ‘1’. Thus counting the total
number of vertices labeled ‘1’ after the process, we get in this case for n large enough

#(vertices labeled ‘1’) > |I \ I ′| + |J \ J ′| + |O| +

(
d

2
+ ε2 − o(1)

)
n− |E0|

= (1− d)
n

2
+
dn

2
+ ε2n− o(n) >

n

2
.

We are left with the case j0 + d0 ≥ (d/2− ε2)n. Observe that d1 < (d/2 + ε2)n as otherwise the
conclusion of the previous case applies. We revisit ∆(v), v ∈ P \ P ′ using (2.7) and (2.5)

∆(v) =
2δ

1/2 + δ
(p1 + o1 + d1 + i0 + j0)− (d1 − d0) + ε1(j1 − j0)− ε2(i1 − i0) + o(n)

≥
(

2δ

1/2 + δ
− ε1

)
j0 + d0 −

(
1− 2δ

1/2 + δ

)
d1 − ε2i1 + o(n).

Using the assumptions j0 + d0 ≥ (d/2− ε2)n and d1 < (d/2 + ε2)n, this simplifies to

∆(v) >

(
4δ

1/2 + δ
− 1− ε1

)
dn/2− 3ε2n+ o(n).

Assumption (2.3) guarantees that ∆(v) > 0, v ∈ P \ P ′ and thus in this case for n large enough

#(vertices labeled ’1’) > |I \ I ′| + |J \ J ′| + |O| + |P \ P ′| − |E0|

= (1− d)n−
(

1

2
− δ
)
µn− o(n) >

n

2
,

and the proof is completed.

The next lemma together with Lemma 2.3 implies Theorem 1.2.

Lemma 2.4. For all 0 < µ < 1/2 and 1/6 < δ < 1/2 there are values ε1, ε2, d > 0 such that whp
G is not robust against the non-iterative strong adversary.

Proof. Let 0 < µ < 1/2 and 1/6 < δ < 1/2 and ε1, ε2, d > 0 as given in (2.1) to (2.3). We
show that G is indeed not robust by giving a suitable choice of the expert set. Set E = E1 ∪ E0
with E1 = I and E0 = O. By definition, these sets have matching cardinalities. We compute the
quantity

∆(v) = |N(v) ∩ E1| − |N(v) ∩ E2|
for vertices v ∈ P to find their labels. Using ε2 < (1/2− δ)/(1 + 2δ) by (2.3) and Theorem 2.2 we
readily obtain that whp for all v ∈ P

∆(v) ≤ (pIP + o(1))|E1| − |E0| =
(

1/2− δ
1/2 + δ

− ε2 + o(1)

)
|E1| − |E0| = −(ε2 + o(1))|E1| < 0.

Therefore the set of vertices labeled ‘0’ contains O ∪ P which has cardinality (1− d)n
2 . However,

vertices in D do not have any expert neighbours and as we are in the non-iterative setting, those
vertices will be decided uniformly at random. Hence with probability 1/2 there will be at least
dn/2 + 1 vertices labeled ‘0’ in D and therefore G is not robust against the non-iterative strong
adversary.
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