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Summary

The amount of available data in climate science is increasing rapidly. In addition

to satellite and observational data, climate modeling with increasingly complex and

high-resolution models is a major contributor to this development. In particular,

model ensembles consisting of multiple climate simulations are driving the amount of

modeled climate data sharply upward. This includes the research branch of Single-

Model Initial-Condition Large Ensembles (SMILEs). These ensembles consist of sev-

eral model runs of the same climate model driven by the same greenhouse gas concen-

tration scenario, differing only in the slight variation of initial conditions. This makes

it possible to represent the natural variations of the climate system due to internal

climate variability, an important source of uncertainty in climate modeling. Due to

their typically high number of model runs, SMILEs introduce new challenges with

respect to efficient data analysis. Techniques from the field of Big Data and machine

learning are favorable for this task. Neural networks and deep neural networks from

the field of deep learning have recently been increasingly used in climate science to

analyze large data sets and to detect non-linear relationships in the data. One field

in synoptic climatology for which neural networks have already yielded promising re-

sults is the identification and classification of atmospheric patterns involved in the

generation of extreme events. Applications of this type fall into the domain of pattern

or image recognition and can help to screen large climate model ensembles for the

dynamic drivers of extreme events. Examples of such atmospheric drivers include

hurricanes, tropical cyclones, and large-scale circulation patterns with high and low

pressure systems in the mid-latitudes.

This PhD thesis is dedicated to the classification and analysis of atmospheric drivers

of regional hydro-meteorological extreme events such as heavy precipitation, floods,

and droughts using machine learning techniques. In the course of four scientific pub-

lications, three different atmospheric drivers or groups of drivers are investigated: the

Vb-cyclone over Europe, which is often related to heavy precipitation and floods in
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the Bavarian region, freezing rain in Montréal (Canada), which is mostly caused by

a pressure-driven wind flow along the St. Lawrence River, and finally different circu-

lation patterns over Europe, which are associated with various hydro-meteorological

extreme events including drought in Central Europe. In each case, the method opti-

mized for the respective application is presented, an accuracy analysis is performed,

and the code is published, which allows the methodology to be applied to other cli-

mate data sets. In all cases, meteorological knowledge is integrated into the machine

learning based approach. For Vb-cyclones (paper I) and freezing rain (paper II),

this is implemented in the form of a two-staged procedure in which neural networks

are used to identify circulation patterns before a downstream meteorological analy-

sis is performed. The studies on circulation patterns (papers III and IV) are based

on a subjective catalog of historical examples used for training, which incorporates

expert meteorological knowledge. In the case of the Vb-cyclones (paper I) and the

European circulation patterns (paper IV), a climate change study is conducted to

analyze the effects of anthropogenic climate change on the frequency and seasonality

of occurrence of these dynamic drivers of extreme events. In each case, a SMILE is

used to account for internal climate variability. Using the Canadian Regional Climate

Model version 5 (CRCM5) and the Representative Concentration Pathway (RCP)8.5

scenario, there is no significant change in the number of Vb-cyclones per year be-

tween the far future (2070-2099) and the reference period (1980-2009). In seasonality,

however, a significant shift is projected, from summer - the season with the highest

occurrence of Vb-cyclones in the reference period - to spring. This climate trend is

significant and exceeds the noise of internal climate variability. The warm summer

months are associated with the highest precipitation sums compared to the other sea-

sons. In the far future, increases in absolute precipitation sums related to Vb-cyclones

are projected in all seasons. The European circulation patterns are analyzed in the

SMILE of the Swedish Meteorological and Hydrological Institute (SMHI-LENS) under

the Shared Socioeconomic Pathway SSP37.0 scenario. Here, small absolute changes

in the frequency of occurrence of ± 5 days per year between the far future (2071-2100)



V

and a reference period (1991-2020) are shown. For rare circulation patterns, this cor-

responds in some cases to a high relative change of ± 50 %. Overall, a significant

frequency change is shown for 20 of 29 circulation patterns under the consideration

of internal climate variability.

Three general recommendations are made for further applications of machine learning

in spatial pattern recognition of atmospheric circulation patterns. The first is the in-

tegration of meteorological expertise into the study design. This is especially relevant

if deeper process understanding is to be generated. Furthermore, it is recommended

to pay attention to a balanced test set and to make the test set composition trans-

parent in the course of publication. Especially in climate science and the analysis of

extreme events, there are often time series structures and imbalanced class distribu-

tions that have to be taken into account. Finally, the third recommendation refers to

the scientific work process. While a fully trained neural network allows for efficient,

fast data analysis, the work steps to finalize the trained model can be time-consuming

and potentially require multiple, manual optimization attempts. Therefore, it is ad-

vantageous to train a neural network that allows the identification of several different

atmospheric drivers of hydro-meteorological extreme events. As in the case of circu-

lation patterns, such a trained network can be used for several research projects.
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Zusammenfassung

Die Menge an verfügbaren Daten in den Klimawissenschaften nimmt rasant zu. Zu die-

ser Entwicklung trägt, neben Satelliten- und Beobachtungsdaten, vor allem die Klima-

modellierung mit immer komplexeren und hochaufgelösteren Modellen bei. Vor allem

Modellensembles, die aus mehreren Klimasimulationen bestehen, treiben die Menge

an modellierten Klimadaten stark nach oben. Dazu zählt der Forschungszweig, der

mit Single-Model Initial-Condition Large Ensembles (SMILEs) arbeitet. Diese Ensem-

bles bestehen aus mehreren Modellläufen des gleichen Klimamodells, die mit demsel-

ben Treibhausgaskonzentrationsszenario angetrieben werden und sich lediglich in der

leichten Variierung der Startbedingungen unterscheiden. Dadurch ist es möglich die

natürlichen Schwankungen im Klimasystem aufgrund der internen Klimavariabilität

abzubilden, einer wichtigen Unsicherheitsquelle in der Klimamodellierung. Durch ihre

typischerweise hohe Anzahl an Modellläufen bringen SMILEs neue Herausfoderungen

bezüglich einer effizienten Datenanalyse mit sich. Hierfür bieten sich Techniken aus

den Bereichen des Big Data und des maschinellen Lernens an. Neuronale Netze und

tiefe neuronale Netze aus dem Bereich des Deep Learnings werden in jüngerer Zeit

verstärkt in den Klimawissenschaften eingesetzt, um große Datensätze auszuwerten

und nicht-lineare Zusammenhängen in den Daten aufzuspüren. Ein Bereich der syn-

optischen Klimatologie, für den neuronale Netze bereits vielversprechende Ergebnisse

geliefert haben, ist die Identifikation und Klassifikation von atmosphärischen Mustern,

die an der Entstehung von Extremereignissen beteiligt sind. Anwendungen dieser Art

fallen in den Bereich der Muster- bzw. Bilderkennung und können dazu beitragen

große Klimamodellensembles auf die dynamischen Treibern von Extremereignissen

hin zu durchforsten. Beispiele für solche atmosphärischen Treiber sind Wirbelstürme,

tropische Zyklone, sowie größräumige Zirkulationsmuster mit Hoch- und Tiefdruck-

systemen in den mittleren Breiten.

Diese Doktorarbeit widmet sich der Klassifikation und Analyse der atmosphärischen

Treibern von regionalen hydro-meteorologischen Extremereignissen wie Starknieder-
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schläge, Hochwasser und Dürre mithilfe von Techniken des maschinellen Lernens. Im

Zuge von vier wissenschaftlichen Publikationen werden drei verschiedene atmosphä-

rische Treiber bzw. Gruppen von Treibern untersucht: die Vb-Zugbahn über Europa,

die mit häufigen Starkniederschlägen und Hochwassern im bayerischem Raum zusam-

menhängt, gefrierender Regen in Montréal (Kanada), der meist durch eine druckbe-

dingte Windströmung entlang des St. Lorenz-Stroms verursacht wird und schließlich

verschiedene Großwetterlagen in Europa, die mit diversen hydro-meteorologischen

Extremereignissen in Verbindung stehen, u. a. mit Dürre in Zentraleuropa. In den

Publikationen wird jeweils die, auf die jeweilige Anwendung optimierte, Methode

vorgestellt, eine Genauigkeitsanalyse durchgeführt und der Code publiziert, der ei-

ne Anwendung der Methodik auf weitere Klimadaten ermöglicht. In allen Fällen wird

meteorologisches Wissen in den, auf maschinellem Lernen basierenden, Ansatz inte-

griert. Für Vb-Zugbahnen (paper I) und gefrierenden Regen (paper II) wird das in

Form eines zweistufigen Verfahrens umgesetzt, bei der neuronale Netze zur Identifi-

kation der Zirkulationsmuster eingesetzt werden, bevor diese einer nachgeschalteten

meteorologischen Analyse unterzogen werden. Die Studien zu Großwetterlagen (paper

III und IV) beruhen auf einem subjektiven Katalog an historischen Beispielen, der

für das Training verwendet wird und bei dessen Erstellung meteorologisches Exper-

tenwissen eingeflossen ist. Im Fall der Vb-Zugbahnen (paper I) und der europäischen

Großwetterlagen (paper IV) wird zudem eine Klimawandelstudie durchgeführt, die Ef-

fekte des anthropogen verursachten Klimawandels auf die Häufigkeit und Saisonalität

des Auftretens dieser dynamischen Treiber von Extremereignissen analysiert. Dabei

wird jeweils ein SMILE verwendet, um die interne Klimavariabilität zu berücksichti-

gen. Unter Verwendung des Canadian Regional Climate Model version 5 (CRCM5)

und des Representative Concentration Pathway RCP8.5 -Szenarios zeigt sich keine si-

gnifikante Veränderung der Anzahl von Vb-Zugbahnen pro Jahr zwischen der fernen

Zukunft (2070-2099) und der Referenzperiode (1980-2009). In der Saisonalität hinge-

gen wird eine deutliche Verschiebung projiziert, vom Sommer - als der Jahreszeit mit

dem höchsten Vorkommen von Vb-Zugbahnen in der Referenzperiode - ins Frühjahr.
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Dieser Klimatrend ist signifikant und übertrifft das Rauschen aufgrund der internen

Klimavariabilität. Die warmen Sommermonate gehen im Vergleich zu den anderen

Jahreszeiten mit den höchsten Niederschlägen einher. In der fernen Zukunft werden

Zunahmen der absoluten Niederschläge während Vb-Zugbahnen in allen Jahreszeiten

projiziert. Die europäischen Großwetterlagen werden im SMILE des Swedish Meteo-

rological and Hydrological Institute (SMHI-LENS) unter dem Shared Socioeconomic

Pathway SSP37.0 -Szenario analysiert. Hier zeigen sich kleine absolute Veränderungen

in der Häufigkeit des Auftretens von ± 5 Tagen pro Jahr zwischen der fernen Zukunft

(2071-2100) und einer Referenzperiode (1991-2020). Bei seltenen Großwetterlagen ent-

spricht das teilweise einer hohen relativen Änderung von ± 50 %. Insgesamt zeigt sich

für 20 von 29 Großwetterlagen eine signifikante Häufigkeitsveränderung unter Berück-

sichtigung der internen Klimavariabilität.

Für weitere Anwendungen von maschinellem Lernen im Bereich der räumlichen Mus-

tererkennung von atmosphärischen Zirkulationsmustern werden drei grundsätzliche

Empfehlungen ausgesprochen. Zum Einen die Integration von meteorologischem Fach-

wissen in den Studienaufbau. Das ist vor allem relevant, wenn eine Generierung von

tieferem Prozessverständnis erzielt werden soll. Darüberhinaus wird empfohlen auf

ein balanciertes Testset zu achten und die Zusammensetzung dessen im Zuge der

Publikation transparent zu machen. Besonders in den Klimawissenschaften und bei

der Analyse von Extremereignissen bestehen häufig Zeitreihenstrukturen und unaus-

gewogene Klassenverteilungen, die zu berücksichtigen sind. Die dritte Empfehlung

bezieht sich schließlich auf den wissenschaftlichen Arbeitsprozess. Während ein fertig

trainiertes neuronales Netzwerk eine effiziente, schnelle Datenanalyse ermöglicht, kön-

nen die Arbeitsschritte bis zur Fertigstellung des trainierten Modells zeitaufwändig

sein und potentiell mehrere, manuelle Optimierungsversuche erfordern. Von Vorteil

ist deshalb das Training eines neuronalen Netzwerkes, das die Identifikation mehrere

verschiedener atmosphärischer Treiber von hydro-meteorologischen Extremereignis-

sen ermöglicht. Wie im Falle der Großwetterlagen ist ein solches trainiertes Netzwerk

für mehrere Forschungsvorhaben einsetzbar.
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1 Introduction

Climate science has become rich of data; data collected by looking back into the

past, by observing presently ongoing developments, and by projecting into possible

futures. This is illustrated by the fact that the amount of data in climate science is

increasing at an unprecedented rate (Schnase et al. 2016). Besides a growing amount

of observational, satellite and reanalysis data, especially the tremendous increase in

complexity and size of numerical climate simulations has led to what is described as an

"explosion" in climate data (Overpeck et al. 2011). For the future, a further increase

in volume and complexity of climate data is to be expected (Overpeck et al. 2011;

Knüsel et al. 2019). In part, complex earth system models and a high spatial and

temporal resolution contribute to this. But also the employment of ensemble tech-

niques largely increases the volume of climate data, as it is the case for the emerging

research field of Single-Model Initial-Condition Large Ensemble (SMILEs). SMILEs

are an experimental setup in climate modeling with the goal of studying the inter-

nal climate variability of the climate system by keeping the external forcing stable

while slightly varying the initial conditions. They usually consist of dozens of simu-

lations of a single climate model and thus produce a particularly large data volume.

Working with large ensembles introduces new challenges to the climate and impact

research community and missing tools for handling such data volumes can lead to a

phenomenon called ensemble fatigue (Benestad et al. 2017). This term describes the

situation when huge volumes of climate data from ensembles are available, but only

a small fraction of it is being analyzed due to limited capacities. This leads to missed

scientific opportunities as the potential for further insights contained in the data re-

mains unexploited. However, the knowledge gain in climate research largely depends

on the quality of the assimilation and analysis of the vast amount of produced data

(Schnase et al. 2016).

This calls for the employment of powerful methods for climate data analysis. For

this reason, typical methods from Big Data analysis are now being used in climate
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science and high hopes are being set in this regard on machine learning techniques

(Knüsel et al. 2019; Rolnick et al. 2019; Huntingford et al. 2019). They generally

benefit from large training data sets and, once trained, their application on new data

takes little computing time. For example, the machine learning technique of neural

networks is capable of learning complex non-linear relationships in the data (Liu et al.

2016; Molina et al. 2021). For these reasons, neural networks are considered to have a

high potential for solving challenging tasks in climate science including the detection

and classification of extreme weather and climate features in spatio-temporal data

(Grotjahn et al. 2016; Rolnick et al. 2019; Molina et al. 2021).

Research in the field of synoptic climatology investigates the relation between weather

conditions or extreme events and large-scale atmospheric features that are prevailing

at this time (Barry 2005), e.g., circulation patterns or cyclones triggering heavy pre-

cipitation or atmospheric blocking associated with heat waves and dry periods. At-

mospheric, synoptic features are important drivers of extreme events (Sillmann et al.

2017). Here, neural networks can help to identify and classify these synoptic drivers

of extreme events in climate data.

Hydro-meteorological extreme events like heavy precipitation, floods, and droughts

pose a high risk to the affected society (Farinosi et al. 2020). Understanding how

climate change influences the occurrence of their atmospheric drivers is of high so-

cietal relevance. Especially on the regional scale, climate and extreme events are

- in addition to thermodynamic processes - strongly influenced by atmospheric dy-

namics (Shepherd 2014; Seneviratne et al. 2021). For example, Europe is under the

atmospheric influence of the jet stream with its related (anti-)cyclones (Huguenin

et al. 2020). However, the dynamic component of climate change (dealing with the

atmospheric circulation) is highly variable (Shepherd 2014; Seneviratne et al. 2021).

There is a lack of knowledge about the key characteristics, precursors, and changes

of dynamic drivers of extreme events (Chattopadhyay et al. 2020). This brings along

a high uncertainty in climate projections on regional extreme events (Horton et al.

2015; Pfahl et al. 2017; Chen et al. 2018). A better understanding of the dynamic
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drivers of regional hydro-meteorological extreme events remains an open research chal-

lenge. One important source of uncertainty in dynamic aspects of regional climate

change is internal climate variability (Shepherd 2014; Pfahl et al. 2017). Therefore,

SMILEs can play an important part in separating climate change induced changes in

the occurrence of dynamic drivers of extreme events from the noise of internal climate

variability. Given the large data volumes that come along with SMILEs, the benefits

of neural networks come into play at this point for efficient data analysis. Neural

networks have successfully been applied for pattern recognition tasks in climate sci-

ences (Racah et al. 2017; Chattopadhyay et al. 2020). They can help to classify and

identify regional extreme events according to their dynamic drivers in SMILEs and

thus enable one step towards a better understanding of the dynamic component of

climate change effects on regional hydro-meteorological extreme events.

Linking this together, this thesis addresses the challenging research topic of inves-

tigating climate change effects on regional hydro-meteorological extreme events by

looking at the dynamic component. The thesis focuses on detecting, classifying and

investigating synoptic phenomena of the atmospheric circulation that are associated

with these extreme events in large climate ensembles by means of the machine learning

technique of neural networks.
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1.1 Single-Model Initial-Condition Large Ensembles (SMILEs)

An emerging research branch in climate modeling, which tremendously increases the

amount of climate data being produced, is the field of Single-Model Initial-Condition

Large Ensembles (SMILEs). A SMILE consists of several simulations of a single

climate model starting with different initial conditions, but using the same forcing

scenario. The simulations (ensemble members) are physically equally likely represen-

tations of the climate system. The spread among the ensemble members is interpreted

as a representation of internal climate variability. SMILEs are valuable tools to sepa-

rate the climate signal, which is the mean response to external forcing in the ensem-

ble, from the noise of internal climate variability (Maher et al. 2021). The number of

necessary climate simulations largely depends on the research question, but usually

SMILEs consist of dozens of realizations. As a consequence, the data amount goes

far beyond what is typical for multi-model ensembles and quickly reaches the scale of

hundreds of Terabytes in total.

1.1.1 Uncertainty Source of Internal Climate Variability

The great benefit of SMILEs lies in the possibility to assess the internal climate

variability of the climate system. This is one of following three major sources of un-

certainties in climate modeling (Hawkins & Sutton 2011; Deser et al. 2012):

1. forcing (scenario uncertainty), 2. model response (model uncertainty), 3. internal

climate variability.

The first uncertainty source of forcing comes from unknown future anthropogenic

behavior with regard to greenhouse gas emissions. This leads to uncertainties about

the scale of future anthropogenic forcing and is usually addressed by using different

scenarios, e.g., the Representative Concentration Pathways (RCPs) by the Intergov-

ernmental Panel on Climate Change (IPCC). When the same external forcing is pre-

sumed, different climate models may still project different changes resulting from that

forcing. This is, for example, due to different numerical formulations in the models
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and is described by the second uncertainty source of model response. This uncertainty

source is analyzed by using multi-model ensembles with different climate models. In-

ternal climate variability, on the other hand, denotes natural random fluctuation of

the climate system. This variability arises from non-linear dynamic processes in the

atmosphere and ocean and is intrinsic to the climate system (Hawkins & Sutton

2011; Deser et al. 2012). Internal climate variability is usually highest for projections

on shorter time scales for the next decades ahead (Hawkins & Sutton 2011; Lehner

et al. 2020). Figure 1 shows the spread of 24 members of a SMILE, the Canadian

Regional Climate Model version 5 Large Ensemble (CRCM5-LE), for short-term pro-

jected changes of December precipitation and illustrates the partly strong deviations

in the regional patterns between single members (Leduc et al. 2019). The ensemble

members are equally likely and the deviations are entirely due to natural fluctuations.

Figure 1: 24 Members of the CRCM5-LE over Europe, which illustrate the spread
due to internal climate variability for short-term climate change projections of mean
December precipitation (2020–39 vs 2000–19; adapted from Leduc et al. 2019).
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1.1.2 Regional SMILEs

SMILEs exist for General Circulation Models (GCMs) and Earth System Models

(ESMs) as well as Regional Climate Models (RCMs). RCM simulations are carried

out on a higher spatial resolution and allow a better representation of geographical

features such as mountains or land-sea contrasts. They are produced by dynamically

downscaling a GCM or ESM. For this, boundary conditions from a global climate

model are used over a certain regional domain to drive a RCM, which then evolves its

own dynamic and subgrid processes over this limited area in high resolution (Giorgi

& Gutowski 2015). Leduc et al. (2019) found that a RCM SMILE better represents

local extreme temperature and precipitation than its driving GCM SMILE due to its

higher spatial resolution (Maher et al. 2021). Furthermore, internal climate variabil-

ity increases at smaller spatio-temporal scales (Aalbers et al. 2018; Wood & Ludwig

2020). This underpins the importance of using a RCM SMILE that can resolve finer

scales and processes when working on regional phenomena.

Besides the possibility to assess the uncertainty of internal climate variability, an-

other advantage of SMILEs is that they allow a robust sampling of rarely occurring

extreme events (Maher et al. 2021). With this, regional SMILEs are an ideal tool for

the investigation of regional hydro-meteorological extreme events like heavy precipi-

tation, floods and droughts. However, the large data amount of SMILEs introduces

challenges (as mentioned in chapter 1) that call for suitable methods for the handling

of scientific Big Data.
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1.2 Neural Networks and Deep Learning

The term machine learning in general describes algorithms that enable computers to

undergo a learning process without explicitly programming them for the task (Silva &

Zhao 2016). Various types of algorithm exist for diverse application options. Machine

learning algorithms are categorized in two major groups: supervised and unsupervised

learning, depending on whether or not a training data set is used to accomplish the

learning task. Supervised learning is the most common form in machine learning (Le-

Cun et al. 2015). In the case of supervised learning, linkages in the data are derived

from external training data, while in the case of unsupervised learning the structures

intrinsic to the data are unveiled (Silva & Zhao 2016).

Artificial neural networks are a type of machine learning algorithm that were inspired

by the biological structure and functionality of the brain of mammals. Key to the

brilliant performance of the biological brain is the enormous number of roughly 1011

highly interconnected neurons with approximately 104 connections per neuron. In a

complex chemical process, these neurons pass information to the next neurons. While

some of the neuronal structure in the brain is defined at birth, other connections are

variable and built through the process of learning as connections are made or broken

(Hagen et al. 2014). Inspired by these processes in the biological brain - even though

much less complex -, artificial neural networks consist likewise of several layers of

nodes (representing the neurons) that are highly interconnected and whose structure

determines the function of the network. This structure is called architecture. Each

neuron forwards information to the next layer of neurons with differing intensities.

This corresponds to neurons in the brain, which fire in case they are activated (Mc-

Culloch & Pitts 1943).

Artificial neural networks (in the following named shortly: neural networks) are a

powerful machine learning tool for various applications, especially for image-like data

in the field of computer vision. Here, neural networks are often used for image or

pattern recognition in form of a classification task. One common example is face

recognition on photographs. In earth- and climate sciences neural networks for pat-
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tern recognition are frequently being applied to spatial data sets, e.g., satellite or

climate model data.

The term deep learning describes various different architectures of neural networks

having in common that they consist of a multi-layer stack of modules (LeCun et al.

2015). There are several different architectures for deep neural networks. For ex-

ample, the architecture of a Convolutional Neural Network (CNN) consists of the

modules of convolutional, pooling and fully-connected layers. On the other hand, a

Recurrent Neural Network (RNN) is aimed for sequential data like in speech recogni-

tion and uses, in its basic configuration, a deep architecture of many fully-connected

layers with feed-back loops for memory (LeCun et al. 2015). CNNs will be further

introduced in chapter 1.2.1.

1.2.1 Fundamentals of Neural Networks and Deep Learning

The fundamentals of basic feed-forward neural network are explained in the following

for the common supervised learning task in computer vision of classifying pictures

(here: circulation patterns). Therefore, a training data set is required, which consists

of training images X (e.g., photographs or here circulation patterns at a certain time

step) in conjunction with the corresponding class labels y (e.g., class 1: circulation

type 1, class 2: circulation type 2). The learning procedure consists of three steps:

Forward propagation, calculation of the loss function and optimization with back-

propagation. These three steps are explained in the following and the full learning

procedure is illustrated in Figure 2.

Forward Propagation

During training, each training example (X, y) is shown to the network and the network

makes a hypothesis h on the predicted class affiliation. This is being done through

a procedure called forward propagation. Forward propagation involves two steps: 1.

matrix multiplication between the nodes of the layers and weight parameters Θ (see

equation 1; Goodfellow et al. 2016), and 2. the application of an activation function,
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Figure 2: Training cycle of a fully-connected neural network with forward propagation,
calculation of loss function and optimization with backpropagation. The training cycle
is repeated until a local or global minimum is found. The loss function is derived from
Gardner & Dorling (1998).

e.g., the sigmoid function (see equation 2; Hagen et al. 2014). The nodes in the input

layer correspond to the pixels of the image. The weights are internal parameters that

are randomly initialized at the beginning. In the case of a simple linear model, the

weights Θ consist of w and b. A typical activation function for the output layer is the

sigmoid function, which gives a binary output into 0 or 1 (Goodfellow et al. 2016).

h = XTw + b (1) f(h) =
1

1 + e−h
(2)

Loss Function

The class affiliation predicted by the network is then compared with the true class label

of the training example by applying a loss function. The loss function depends on the
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weights and its output indicates the error the network makes on the training example

(see equation 3, with i being a single training example; adjusted based on Goodfellow

et al. 2016). Next, the loss function is minimized by means of an optimization

algorithm, e.g., gradient descent with backpropagation.

J(Θ) ≈ (yi − hi)
2 (3)

Optimization with Backpropagation

During gradient descent, the partial derivatives of the loss function J(Θ) with respect

to the weights Θ are calculated. The gradients of the partial derivatives are then de-

termined during backpropagation. The name backpropagation refers to the backward

flow through the network (Rumelhart et al. 1986). Using the gradients, the weights

Θ of the network are updated. Then, the next training example is given as input

to the network and the cycle of forward propagation, loss function and optimization

with backward propagation is repeated. One cycle corresponds to one step of gradient

descent towards a local minimum. The cycles are repeated iteratively until a local or

global minimum is found. Once a minimum is found, the final weights Θ are deter-

mined and the training process of the network is completed. In the case of stochastic

gradient descent, one cycle is being done per training example as explained above. Of-

ten, mini-batch gradient descent is used for batches sizes of 2n, where one mini-batch

is used for one cycle (Goodfellow et al. 2016). Once the training is completed, the

network is ready to be applied to unseen data in order to carry out the classification

task. An independent test set, with examples that were not used during the training

process, is used to evaluate the accuracy of the trained network and its capability to

generalize on new, unseen data (Lones 2021). Several different metrics exist. Besides

the overall accuracy, which measures the percentage of correct classifications in the

test set, typical measures are the F1-score and the Matthews correlation coefficient

(Matthews 1995), which both consider precision and recall and with this false positive

and false negative classifications. For this reason they are more suitable in the case

of imbalanced class distributions than overall accuracy.
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Convolutional Neural Networks (CNN)

In the 1980s, LeCun (1989) developed a special type of neural networks, called Convo-

lutional Neural Networks (CNN). CNNs use in some of their layers a linear operation

called convolution instead of a normal matrix multiplication. A second type of layer

that is essential for CNNs is pooling. These two layer types are located in the up-

per part of the network before one or several fully-connected layers (see Figure 3).

CNNs are mainly used for pattern recognition tasks on image-like data (O’Shea &

Nash 2015). They are designed for multi-array inputs, e.g., a colored picture with

three 2D-arrays containing the pixel values of the red, green and blue (RGB) channels

(LeCun et al. 2015). The input to a CNN therefore typically has the size (nH, nW ,

nC) with nH and nW being the height and width of the image in pixels and nC

being the number of channels (for RGB: 3). In the convolutional layer, a number of k

filters (kernels) are applied to the input image. These filters run over the image like

a moving window and detect lines and edges and extract features in the input image.

They also break down the complexity of the pattern. The output of the convolutional

layer are k feature maps with a smaller number of pixels (nH, nW ) than the input.

The number of channels nC stays constant. Next, in the pooling layer the complexity

of the feature maps is further reduced by applying filters within which, the maximum

values in case of max pooling are calculated. Before the feature maps are passed to

the subsequent fully connected layers they are flattened to a vector.

Figure 3: Simple architecture of a CNN with a convolutional, a pooling and fully-
connected layers for a binary classification task. The image shows an exemplary
circulation type with a high pressure ridge over Europe.
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1.2.2 Applications in Climate Sciences: State-of-the-art

Climate science can benefit from the employment of machine learning techniques in

numerous ways, especially when combining these techniques with physical domain

knowledge (McGovern et al. 2017). One example is the improvement of physically

based climate models through machine learning, e.g., by replacing the parameteriza-

tion of clouds by a deep neural network that is trained on a physical model. The deep

neural network is then capable of considering small-scale processes like cloud convec-

tion but it is far less computationally expensive than the physically based model and

can thus be implemented in a GCM (Gentine et al. 2018). Other examples are the

improvement of bias correction through machine learning or the detection of extreme

events and the tracking of storms in observational, satellite, forecast or climate model

data (Rolnick et al. 2019). Here, machine learning techniques enhance the ability to

sift through the vast amount of data (e.g., of large ensembles) in order to extract

patterns and insights (McGovern et al. 2017).

Already in the 1990s, there was a wave of machine learning applications in the atmo-

spheric sciences. Gardner & Dorling (1998) report in their review paper about ap-

plications for the goal of prediction, function approximation and pattern recognition

of satellite images, land cover classifications and atmospheric circulation patterns.

Cawley & Dorling (1996) for example reproduced the LAMB catalog, a subjective

circulation type classification over the British Islands, using neural networks and

achieved a better performance than rule-based classification approaches. Gardner &

Dorling (1998) stated that the ability to automate circulation type classifications and

to apply them to climate model data using machine learning could improve climate

sciences in various ways. Verdecchia et al. (1996) furthermore used neural networks

for the detection of winter atmospheric blocking in climate models.

Reasons for the recent breakthrough of machine learning are the tremendous rise of

(scientific) data in the last years, the development of more complex machine learn-

ing architectures and the more powerful computational environment (Al-Jarrah et al.

2015; LeCun et al. 2015). Kurth et al. (2017), for example, presented the first deep
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learning system that was specifically aimed for scientific pattern recognition on Big

Data and High Performance Computing (HPC) systems, among others the detection

of tropical cyclones. Machine learning methods are considered to have a high po-

tential for solving previously challenging tasks in climate sciences including extreme

weather classification problems (Rolnick et al. 2019; Huntingford et al. 2019). For

such spatio-temporal pattern recognition tasks progress in future research is expected

(Grotjahn et al. 2016). The ability of neural networks to capture non-linear infor-

mation in the data is a key reason for their suitability for such weather and climate

detection tasks (Molina et al. 2021). In recent years, few research groups have been

focusing on this field (e.g., Racah et al. 2016; Liu et al. 2016; Racah et al. 2017; Chat-

topadhyay et al. 2018; Lagerquist et al. 2019; Muszynski et al. 2019; Chattopadhyay

et al. 2020; Molina et al. 2021). They analyze atmospheric features like synoptic-scale

fronts, circulation patterns causing extreme weather, tropical cyclones, extra-tropical

cyclones, atmospheric rivers and convective storms. The research goals in analyzing

these atmospheric features span from extreme event forecasting, early warning and

risk management (e.g., Chattopadhyay et al. 2020; Racah et al. 2017) over climate

change studies on future extreme events (e.g., Molina et al. 2021; Muszynski et al.

2019) to create a better understanding about the atmospheric processes leading to

an extreme event (e.g., Chattopadhyay et al. 2020). With this, the research topics

addressed by employing machine learning techniques for the identification and inves-

tigation of atmospheric circulation patterns span a broad range of relevant tasks in

studying extreme events.
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1.3 Climate Change Impacts on Regional Hydro-Meteorological
Extreme Events

Hydro-meteorological extreme events like heavy precipitation, floods and droughts

are potential high-impact events that pose a high risk to the affected society (Fari-

nosi et al. 2020). As chapter 11 of the sixth Assessment Report (AR) by the IPCC

(Seneviratne et al. 2021) states, changes in extreme events have been observable in

recent decades. Under climate change conditions, the frequency and intensity of

hydro-meteorological extreme events is projected to increase in many regions on the

globe. While there is high certainty about projected changes on a global scale, large

uncertainties remain regarding regional trends. This is due to the dynamic drivers

of hydro-meteorological extreme events, which are highly complex, spatially very in-

homogeneous and remain an uncertain aspect of regional climate change projections

(Pfahl et al. 2017; Seneviratne et al. 2021). Changes in regional extremes are further-

more modified by regional forcing and feedbacks like land cover and land use change

or aerosol emissions (Seneviratne et al. 2021).

1.3.1 Observed and Projected Changes

Heavy precipitation in terms of the annual maximum daily precipitation (RX1day)

has significantly increased since the 1950s in wet but also in dry regions (Dunn et al.

2020; Seneviratne et al. 2021). Floods and droughts are regionally highly variable and

the interplay of the driving mechanisms is complex. While there is an observed in-

crease in flood frequency in some regions, it decreases in others. Droughts in the form

of precipitation deficits have been observed in hot-spot regions such as Australia, Cal-

ifornia and the Amazon (Seneviratne et al. 2021). There is medium confidence that

not only anthropogenic forcing in the form of greenhouse gases but also anthropogenic

aerosol emissions, land use changes, and land cover changes influence precipitation

and hydro-meteorological extreme events (Seneviratne et al. 2021; medium confidence

relates to categories by the IPCC).
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With progressing climate change extreme precipitation events will very likely get more

intense and more frequent over most of the mid-latitude land masses and wet tropics

(Seneviratne et al. 2021). While the picture is clear with respect to extreme precipita-

tion, the hydrological response in terms of flooding is much more uncertain (Brunner

et al. 2021). For floods, there is medium confidence on global trends but low confidence

in regional projections. Generally, floods are projected to increase over half of the

globe. Decreasing trends are found for central and eastern Europe and the Mediter-

ranean (Seneviratne et al. 2021). The study by Brunner et al. (2021) introduces a

locally-defined extremeness threshold, which determines the flood response to changes

in rainfall extremes for the study area of Hydrological Bavaria in southern Germany,

which captures the entire catchments of Bavarian rivers and is also partly analyzed in

this thesis. The study underlines the variability of the hydrological response depend-

ing on the characteristics of the catchment, the season and the event type. The study

furthermore confirms the general finding that the more extreme a precipitation event,

the greater and more consistent is the response in terms of flood magnitude (Bertola

et al. 2020; Brunner et al. 2021). For droughts, there is high confidence on a projected

increase in drought frequency and intensity in several regions of the globe (Seneviratne

et al. 2021). Droughts are classified into several sub-types: meteorological droughts

described by a deficit of precipitation, agricultural and ecological droughts consider-

ing biological aspects (e.g., soil water deficits), and hydrological droughts associated

with reduced water supply. Particularly strong increasing trends in the frequency of

meteorological droughts are projected for the regions of the Mediterranean, Southern

Africa, Australia, Central-America and parts of South-America (Seneviratne et al.

2021). For Europe, the results by Böhnisch & Mittermeier et al. (2021; shared first-

authorship) suggest to consider the Mediterranean, the Iberian Peninsula, the Alps

and France as hot-spot regions in Europe using the regional SMILE of the CRCM5

under the RCP8.5 scenario.

If humanity manages to comply with the Paris Climate Protection Agreement of lim-

iting global warming to well below 2 ◦C, the percentage of the global population



16 1 INTRODUCTION

affected by hydro-meteorological extreme events would be > 50 % less in Africa, Asia

and America and 40 % less in Europe and Oceania compared to a 3 ◦C scenario

(Farinosi et al. 2020).

1.3.2 Thermodynamic and Dynamic Drivers

Projected changes in extreme events caused by anthropogenic global warming un-

derlie a certain variability and uncertainty. Separating thermodynamic and dynamic

processes can help to distinguish and better understand the different processes con-

tributing to the generation of an extreme event (Sillmann et al. 2017; Seneviratne

et al. 2021). Thermodynamic processes are associated with atmospheric water vapor

and are temperature induced, while dynamic processes are related to the atmospheric

circulation (Sillmann et al. 2017; Oueslati et al. 2019). Even though the separation

helps to generate process understanding, thermodynamic and dynamic processes are

highly interconnected and influence each other (Sillmann et al. 2017; Seneviratne et al.

2021).

Synoptic climatology is a research branch that investigates the dynamic component

of the climate system and studies the connections between atmospheric circulation

patterns and the weather conditions or extreme events associated with these patterns

(Barry 2005). On the global scale, there is high confidence in the change of extremes -

be it in theory, observations or models (Shepherd 2014; IPCC 2013). This is because

global changes in extremes are mainly driven by thermodynamic processes and are di-

rectly linked to changes in surface temperature. For example, the atmospheric water-

holding capacity of air increases with temperature following the Clausius-Clapeyron

relation with an increase of 7 % K−1. Analogously, extreme precipitation on the

global scale increases with the same rate (Shepherd 2014; Seneviratne et al. 2021).

The study by Wood et al. (2021) has quantified the global mean of the average increase

in extreme precipitation (99.9th percentile of daily precipitation) in a multi-SMILE

ensemble of six SMILES of the Coupled Model Intercomparison Project version 5

(CMIP5) with 7.2 % K−1 for annual to decadal time scales. Figure 4 shows the
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Figure 4: Thermodynamic and dynamic contribution to changes in annual maxi-
mum precipitation (RX1day) in 22 CMIP5 models using a physical scaling diagnostic
(adapted from Pfahl et al. 2017). a. The thermodynamic contribution shows a homo-
geneous pattern with positive values mainly between 4− 8 % K−1. b. The dynamic
contribution shows regions where the forced response of RX1day cannot be explained
by thermodynamics alone, especially in the subtropics, tropics and over oceans.

thermodynamic and dynamic contribution to the change in the RX1day for the entire

globe. The thermodynamic processes show a spatially homogeneous picture with an

increase in the RX1day that is consistent across climate models. The dynamic con-

tribution, however, is spatially highly inconsistent and partly modifies the regional

signals in which it reinforces or counteracts the thermodynamic trend (Pfahl et al.

2017). As a result, the increase in extreme precipitation on the regional scale can

show super-Clausius-Clapeyron scaling with increases of > 7 % K−1 (Wood & Lud-

wig 2020). On a regional scale, climate and extreme events are strongly controlled

by dynamic processes related to the atmospheric circulation (Shepherd 2014; Pfahl

et al. 2017; Seneviratne et al. 2021). For example, in Europe the westerly jet stream

of the mid-latitude circulation and the constellation of its cyclones and anticyclones

are important drivers of extreme events (Huguenin et al. 2020), e.g., through storm

tracks leading to heavy precipitation or atmospheric blocking leading to heat waves or

droughts. Such synoptic phenomena (scales of ≥ 1000 km; Barry 2005) are relevant
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mechanism contributing to the generation of extreme events (Sillmann et al. 2017).

It is critical to understand how climate change influences the occurrence of these

synoptic drivers of extreme events (Chen et al. 2018). Changes in the atmospheric

dynamics, however, are highly complex. They are not robust in observations and re-

main an uncertain aspect of climate change projections on circulation-related impacts

(Shepherd 2014; Pfahl et al. 2017; Seneviratne et al. 2021). Because precipitation is

controlled by both thermodynamic and dynamic aspects, regional projections on pre-

cipitation related extreme events like floods and droughts have a high uncertainty

(Shepherd 2014; Pfahl et al. 2017; Oueslati et al. 2019; Seneviratne et al. 2021).

There is a knowledge gap in climate sciences regarding the understanding of climate

change impacts on the atmospheric circulation (Shepherd 2014; Horton et al. 2015;

Chen et al. 2018). One of the uncertainty sources for this dynamic component is

model error. Especially, insufficient parameterizations of unresolved processes on the

sub-grid scale, e.g., clouds and convection, lead to differences in model projections

from different climate models and systematic uncertainties in circulation-related pro-

jections. Another important source of uncertainty in dynamic aspects of climate

change is the internal climate variability (Shepherd 2014; Pfahl et al. 2017). Here,

SMILEs can help to statistically distinguish climate change signals from the noise

of internal climate variability. The study by Suarez-Gutierrez et al. (2020) for ex-

ample disentangles the dynamic and local thermodynamic contribution to extreme

temperature variability in Europe using the Max Planck Institute Grand Ensemble

(MPI-GE). Even though climate change impacts are more robust for climate indica-

tors related to thermodynamics (e.g., surface air temperature) a significant change in

risk of circulation-related extremes can still be quantified using SMILEs (Shepherd

2014). Furthermore, there is a research gap on the connection between changes in

atmospheric circulation and the resulting consequences on extremes. Since the IPCC

AR5 more studies have been focusing on filling this research gap and are addressing

the direct connection between changes in extreme-causing circulation patterns and

trends in the extremes they are triggering (Chen et al. 2018).
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1.4 Research Questions

This thesis addresses the research question of how climate change influences the dy-

namic drivers of regional hydro-meteorological extreme events by classifying synoptic

features (e.g., circulation patterns) that trigger extreme events in large ensembles by

employing neural networks.

The scope of this thesis can be categorized into two overarching research questions -

one with a focus on the employment of neural networks in climate sciences, the other

one with a focus on climate change impacts:

Q1: Can neural networks facilitate the investigation of atmospheric drivers of re-

gional hydro-meteorological extreme events by identifying them in large climate model

ensembles?

Q2: How does climate change influence the occurrence of atmospheric drivers of re-

gional hydro-meteorological extreme events? What role does internal climate variabil-

ity play?

These questions will be addressed on the basis of three synoptic features that are

associated with regional hydro-meteorological extreme events:

1. Vb-cyclones over Central Europe, which are a specific type of extra-tropical

cyclones whose characteristic pathway makes them an important atmospheric

driver of extreme precipitation and floods in the northern Alpine foreland in-

cluding the study area of hydrological Bavaria.

The respective research questions are the following:

• Q1.1: Can neural networks for pattern recognition detect cut-off low related

Vb-cyclones in regional climate model data sets? Can this machine learn-

ing approach be combined with the established meteorological procedure of

cyclone tracking?
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• Q2.1: How does climate change under the RCP8.5 scenario affect the fre-

quency, seasonality and precipitation intensity of cut-off low related Vb-

cyclones? What role does internal climate variability play?

2. Mixed Precipitation (freezing rain and/or ice pellets) in the study area of Mon-

tréal, Canada. Montréal is prone to mixed precipitation due to its location

at the St. Lawrence river valley, where under certain circumstances winds get

channeled down in the direction towards Montréal and lead to the characteristic

air layering that favors the occurrence of mixed precipitation. Freezing rain is

one of the costliest high-impact events in Montréal.

The respective research question is the following:

• Q1.2: Can deep learning help to identify the large-scale atmospheric driver

of mixed precipitation in Montréal in regional and global climate models?

How can this deep learning approach be combined with meteorological do-

main knowledge?

3. The circulation types by Hess & Brezowsky over Europe are called Großwetter-

lagen and classify the large-scale atmospheric circulation throughout the year

over Europe and parts of the North Atlantic into 29 classes. Six of these 29

circulation types are specifically related to the occurrence of drought and heat.

The respective research questions are the following:

• Q1.3: Can deep learning help to study important atmospheric drivers of

heat and drought in large climate ensembles?

• Q1.4: Can deep learning provide a more accurate classification method of

Hess & Brezowsky’s circulation types over Europe than the state-of-the-art?

What uncertainties are involved in the deep learning approach?

• Q2.2: How does climate change affect the frequency distribution of Hess & Bre-

zowsky’s circulation types over Europe in the Swedish Meteorological and

Hydrological Institute - Large Ensemble (SMHI-LENS), a SMILE from the

CMIP6 generation? What is the role of internal climate variability?
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2 Scientific Publications

This cumulative thesis consists of four publications - three articles in peer-reviewed

journals and one workshop paper. The latter was published as preprint in the course

of a workshop of the conference on Neural Information Processing Systems (NeurIPS).

Two of the peer-reviewed articles have already been published, one has the status of

being submitted. The papers are presented in the following. Each is introduced by

a concise overview page. This overview page leads from one paper to the next and

gives information about the journal, the impact factor, the status of the paper, and

the contribution of the authors. The papers are presented in chronological order as

this follows the thread of this thesis. All papers deal with dynamic drivers of differ-

ent regional hydro-meteorological extreme events. They employ large ensembles of

climate models either in their methodological design or in the usage of SMILEs to

discriminate between climate change effects and internal climate variability. Machine

learning techniques are used to deal with the large volumes of climate data involved.

This thesis is based on interdisciplinary work in the research field between climatol-

ogy, meteorology, and computer science. It takes advantage of modern geography’s

perspective on the research topics covered. From the author’s point of view, this

primarily consists of the components: interdisciplinarity, interconnectedness, and the

regional context of global change. Interdisciplinarity, because it is a skill that geog-

raphers are explicitly being trained for (Bracken & Oughton 2009) and that has been

used throughout this thesis in form of close collaboration with meteorologists, statis-

ticians, and computer scientists. Interconnectedness due to the complexity of climate

change impacts on regional extremes, which are not only driven by thermodynamic

but also dynamic factors, which are again subject to a complex nature. An example

for this is the influence of Arctic warming on mid-latitude circulation, which is subject

to current scientific debates with contrasting hypotheses (Sandu et al. 2016). Finally,

regional context of global change contains the regional embeddedness from the core

definition of geography (Liu et al. 2022). The thesis addresses the impacts of global
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climate change in the form of regional extremes, focusing on the regional context

while considering the global perspective in formulating the research questions. Fig-

ure 5 illustrates the arrangement of publications in the interdisciplinary research field

touched upon in this thesis and in modern geography. While the three geographical

components are equally important for the entire thesis, publications I and IV deal

more with climatology than papers II and III. Paper II has a strong methodologi-

cal focus and deals with a regional, meteorological phenomenon, which is why two

co-authors from meteorology have been involved. Paper I and IV emphasize climate

impacts, whereby paper I is closer to meteorology by including a tracking procedure,

while paper IV focuses on the uncertainty assessment of the deep learning method.

Figure 5: Localization of publications in the interdisciplinary research field of clima-
tology, meteorology and computer sciences and in modern geography. The black-lined
triangle representing this PhD thesis is located in the middle of the geography triangle
as the three outer components are equally important for this thesis. The papers are
located closest to the discipline that was most important for the article.
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2.1 Paper I: Detecting Climate Change Effects on Vb Cy-
clones in a 50-Member Single-Model Ensemble Using Ma-
chine Learning

Reference: Mittermeier, M., Braun, M., Hofstätter, M., Wang, Y. & Ludwig, R.

(2019): Detecting Climate Change Effects on Vb Cyclones in a 50-Member Single-

Model Ensemble Using Machine Learning. Geophysical Research Letters. 46 (24),

14653–14661. DOI: 10.1029/2019GL084969.

Transition to paper I: Paper I focuses on the atmospheric feature of a certain

type of extra-tropical cyclone, called Vb-cyclone (Van Bebber 1891). Vb-cyclones

are important dynamic drivers of the hydro-meteorological extreme event of heavy

precipitation and floods in the study area of Bavaria. Paper I uses the machine learn-

ing technique of neural networks to detect Vb-cyclones in the regional SMILE of the

CRCM5-LE from the ClimEx-project (www.climex-project.org). Employing the re-

gional SMILE, the study analyses internal climate variability and forced change on

Vb-cyclones. The novelty of the study lies in the accounting for internal variability

in the context of Vb-cyclones. The study furthermore combines a machine learning

technique with an established meteorological procedure. While the neural network is

used to filter the large ensemble with 50 members, cyclone-tracking is applied after
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Abstract Vb cyclones are major drivers of extreme precipitation and floods in the study area of
hydrological Bavaria (Germany). When assessing climate change impacts on Vb cyclones, internal
variability of the climate system is an important underlying uncertainty. Here, we employ a 50-member
single-model initial-condition large ensemble of a regional climate model to study climate variability and
forced change on Vb cyclones. An artificial neural network detects cutoff lows over central Europe, which
are associated with extreme precipitation Vb cyclones. Thus, machine learning filters the large ensemble
prior to cyclone tracking. Our results show a striking change in Vb seasonality with a strong decrease of Vb
cyclones in summer (−52%) and a large increase in spring (+73%) under the Representative Concentration
Pathway 8.5. This change exceeds the noise of internal variability and leads to a peak shift from summer to
spring. Additionally, we show significant increases in the daily precipitation intensity during Vb cyclones
in all seasons.

Plain Language Summary Bavaria, a state in the southeast of Germany, has been hit by several
devastating floods in recent decades triggered by a storm type called Vb. For future flood risk in Bavaria
it is crucial to understand how climate change affects Vb storms. This study uses high-resolution climate
simulations over Europe to study changes in the frequency of Vb storms, their seasonal occurrence, and
their rainfall intensity under a high greenhouse gas concentration scenario. However, Vb storms are rare
events and a single simulation may not provide enough events to distinguish between climate change and
random, natural variations. Therefore, we employ a large database of 50 climate simulations with the same
settings and greenhouse gas concentration scenario, but slightly different starting conditions, in order to
robustly estimate climate change effects on Vb storms. The drawback of using 50 simulations is the high
amount of data. Therefore, we apply machine learning for pattern recognition to detect the low-pressure
systems related to extreme precipitation Vb storms in the climate simulations. Our results show that
climate change considerably affects the seasonal occurrence of Vb storms with a shift from summer to
spring. Furthermore, the daily rainfall intensity in Bavaria increases during Vb storms significantly with
climate change.

1. Introduction
Climate projections indicate changes in precipitation patterns and an increase in river flood risk in many
parts of the world with progressing climate change (Dore, 2005; IPCC, 2012; Willner et al., 2018). Floods
count as one of the most devastating natural hazards with a high impact on society (IPCC, 2012; Willner
et al., 2018). Midlatitude extreme precipitation and floods are often triggered by certain weather patterns and
extratropical cyclones that act as large-scale drivers of intense rainfall (Hofstätter et al., 2016; Messmer et al.,
2015). In central Europe, one specific cyclone type, known as Vb-cyclone (Van Bebber, 1891), is especially
associated with extreme precipitation and a high risk of river flooding (Kundzewicz et al., 2005; Nissen et al.,
2013). Vb cyclones develop in the Mediterranean Basin (Gulf of Genoa or northern Adriatic Sea; Muskulus
& Jacob, 2005) and propagate to the northeast around the Eastern Alps, leading to orographic precipitation
in the northern alpine foreland (Hofstätter et al., 2016; Messmer et al., 2015). One of the regions especially
hit by Vb cyclones is the study area of hydrological Bavaria in the southeast of Germany (see Figure 1).
Although Vb cyclones occur rarely with 2.3 (Messmer et al., 2015) to 4.8 (Hofstätter et al., 2018) events per
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Figure 1. (a) Synoptic pattern at 700 hPa averaged over the 265 Class 1 training examples containing absolute JRA-55 values. A cutoff low over central Europe
is visible. The study area of hydrological Bavaria is outlined in red. Additionally, the boxes for the Vb pathway definition are delineated: the tracking zone (T),
the cyclogenesis region (C), the end area (E), the mandatory area (M), and the restrictive box (R). (b) State borders (black), federal states of Germany (gray) and
position of hydrological Bavaria (red).

year, at least 30% of all summer floods in Bavaria have been related to Vb cyclones (Stahl & Hofstätter, 2018).
Vb cyclones that trigger extreme precipitation account for 23% (Messmer et al., 2015) to 41% (Nissen et al.,
2013) of all cyclones on a Vb track. Messmer et al. (2015) found the main difference between heavy and weak
precipitation Vb cyclones in the corresponding geopotential height field and identified the existence of a
cutoff low during heavy precipitation Vb cyclones. Hofstätter et al. (2018) furthermore show that strong Vb
cyclones (cyclone intensity >85th percentile) are related to a cutoff low located over central Europe. Climate
change is expected to alter the dynamic (e.g., frequency) and thermodynamic factors (moisture transport and
related precipitation) of Vb cyclones (Volosciuk et al., 2016). The studies of Volosciuk et al. (2016), Nissen
et al. (2013) and Kundzewicz et al. (2005) suggest more intense summer precipitation related to Vb cyclones
in a warmer climate. Nissen et al. (2013) further identify a decrease in Vb frequency in summer.

Scientific knowledge on the role of internal variability on changes in Vb cyclone activity is still limited.
Internal variability is one of the three major sources of uncertainty in climate change projections, besides
model response and external forcing (Deser et al., 2012). It is tied to the intrinsic chaotic character of the
climate system due to nonlinear dynamical processes in atmosphere and ocean (Deser et al., 2012). Internal
variability affects climate projections, particularly at the regional scale and regarding extremes (Kay et al.,
2015; Perkins & Fischer, 2013). This is why the range of internal variability for regional projections regarding
rare Vb cyclones is an important open research question. In order to study internal variability, single-model
ensembles are employed, which consist of several simulations of the same climate model using slightly dif-
ferent initial conditions (Deser et al., 2012). This paper examines cutoff low-related Vb cyclones using a large
single-model ensemble with 50 members of high-resolution climate simulations, the Canadian Regional
Climate Model Large Ensemble (CRCM5-LE; Leduc et al., 2019; von Trentini et al., 2019). The drawback of
such a large single-model ensemble, however, is the concomitant data amount, which is overall 400 TB for
the CRCM5-LE, with several terabytes per variable (Leduc et al., 2018).

This study addresses challenges in identifying Vb cyclones in large climate ensembles by employing machine
learning as an efficient data-handling technique. Machine learning proves to be a powerful tool for pat-
tern recognition and seems promising for high-performance analysis of spatiotemporal climate data sets
(Grotjahn et al., 2016). Here, a supervised machine learning algorithm for pattern recognition, an artificial
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neural network (ANN), is employed. Using the ANN, it is possible to scan the CRCM5-LE for the synoptic
pattern of a cutoff low over central Europe, which is associated with the initial state of extreme precipitation
Vb cyclones (Hofstätter et al., 2018; Messmer et al., 2015). Thus, the large ensemble is specifically filtered
for potential cutoff low-related Vb cyclones, before a detailed tracking of their cyclone centers and an anal-
ysis of their pathways is conducted. First, cyclones following the Vb pathway are identified, then climate
change effects on their occurrence and precipitation intensity over the study area of hydrological Bavaria
are studied.

This study addresses the following research question: How does climate change under the Representative
Concentration Pathway 8.5 (RCP8.5; Meinshausen et al., 2011) affect the frequency and seasonality of cutoff
low-related Vb cyclones and their precipitation intensity while considering the noise of internal variability?

2. Methods
To address this research question on how climate change and internal variability affect cutoff low-related Vb
cyclones, a large single-model ensemble with 50 members, the CRCM5-LE, is examined. The CRCM5-LE
was created as part of the ClimEx project (Climate Change and hydrological Extremes; Leduc et al., 2019;
www.climex-project.org; von Trentini et al., 2019). The CRCM5-LE was generated by dynamically downscal-
ing the 50-member initial-condition ensemble of the Canadian Earth System Model version 2 (CanESM2-LE;
Fyfe et al., 2017) using the Canadian Regional Climate Model version 5 (CRCM5; Martynov et al., 2013;
Separovic et al., 2013). The dynamical downscaling was performed for two domains (Europe and north-
eastern North America) to a high spatial resolution of 0.11◦. The time series cover the period from 1950 to
2099. Up to the year 2005 the model is forced with historic greenhouse gas and aerosol emissions, while
from 2006 on the RCP 8.5 forcing scenario is used (Leduc et al., 2019). The variables examined here are
geopotential height at 700 hPa (z700; 3-hourly) and precipitation (pr; hourly; for hydrological Bavaria only).
One CRCM5 run was driven by the boundary conditions of the ERA-Interim (Dee et al., 2011) reanalysis
(ERA-Interim-CRCM5) and covers the period of 1979 to 2013. It is used to validate the model's capability of
reproducing historic Vb cyclones.

The training set for the machine learning algorithm is based on reanalysis data of historic cutoff lows over
central Europe and their related Vb cyclones. The Japanese 55-year Reanalysis (JRA-55; Harada et al., 2016;
Kobayashi et al., 2015) is used. Dates of historic Vb cyclones are derived from a JRA-55 based catalog of his-
toric cyclone tracks over central Europe from Hofstätter et al. (2018). The catalog identifies 296 Vb cyclones
in the period from 1959 to 2015. In the catalog 23% of Vb cyclones occur with associated cutoff lows at 700
hPa, but these account for 75% of extreme precipitation events over hydrological Bavaria associated with
Vb cyclones (minimum distance to other cyclones: 500 km). The 69 Vb cyclones with a distinct cutoff low,
which consist in total of 265 time steps (training examples), are manually extracted. The JRA-55 reanalysis
has a temporal resolution of 6 hr and a spatial resolution of 1.25◦ on a uniform latitude-longitude grid. The
variable used to identify Vb cyclones is z700.

Cutoff low related Vb cyclones in the CRCM5-LE are identified as follows:

1. training an ANN on the detection of historic synoptic patterns of cutoff lows over central Europe with
JRA-55 data,

2. applying the trained ANN on the entire ensemble to extract the beginning stage of potential Vb cyclones
from the CRCM5-LE,

3. tracking the cyclone centers of potential Vb cyclones, and
4. testing the tracked pathways for fulfilling the definition of Vb.

The following methodology is graphically illustrated in the supporting information (see Figure S2).

First, the training set for the ANN is built based on JRA-55 and the catalog by Hofstätter et al. (2018). The
ANN is trained to separate two classes: Class 1 showing a cutoff low over central Europe (positives), and
Class 0 showing no cutoff low over central Europe (negatives). For Class 1, the 265 time steps are used that
contain a historic cutoff low over central Europe in combination with a Vb cyclone. Figure 1 shows the
synoptic pattern at z700 averaged over all positive training examples in JRA-55 reanalysis data. For Class
0 (negatives) 62,955 counterexamples without Vb cyclones are employed. The training data set suffers of
a skewed class distribution as historic situations with Vb related cutoff lows over central Europe (posi-
tives) are much scarcer than counterexamples (negatives). To account for inaccuracies resulting from such
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an imbalanced data set, error-weighting, respectively, cost-sensitive learning (Zhou et al., 2018) is applied
during training with a weighting factor of 0.025 on Class 0. Preprocessing of JRA-55 data consists of extract-
ing the CRCM5-LE-domain and interpolating the data to the rotated latitude-longitude CRCM5-LE grid
(see Figure 1). The original, fine RCM resolution of 0.11◦ is not necessary for the detection and tracking of
large-scale synoptic patterns, thereby data is aggregated to 1.1◦.

Second, a two-layered ANN for pattern recognition is employed (input layer: 784 nodes, hidden layer: 25
nodes, output layer: 2 nodes) using MATLAB's Neural Network Toolbox (nntool). The settings of the ANN
are the hyperbolic tangent sigmoid function as activation function in the hidden layer (LeCun et al., 2015)
and the softmax function in the output layer (Zhou et al., 2018). Cross-entropy (Kline & Berardi, 2005) serves
as cost function and is minimized by scaled conjugate gradient backpropagation (Møller et al., 1993). In
order to evaluate the performance of the training setup a k fold stratified cross validation is conducted with
a number of 10 subsamples (k = 10) and a setup division of 90% for training and 5% each for validation and
independent test set. As performance indices a confusion matrix with precision and recall is calculated (see
Table S1 and Text S1).

Third, the detected events of possible Vb cyclones undergo a tracking procedure. The cyclone centers are
tracked based on Murray & Simmonds (1991) without consideration of splitting and merging of tracks. The
position of a cyclone center is defined as local minimum in z700 and is tracked during the consecutive
time steps of the cyclone's lifetime. For each time step the current cyclone position is identified by first
calculating the absolute minimum within a defined distance and, second, comparing this value to its eight
neighbor pixels. The distance measure is a constant value of 3 pixels. The tracking ends as soon as the cyclone
leaves the tracking area (T) in Figure 1. With this approach, open cyclones that have no clear local pressure
minimum and are rather identifiable by local vorticity maxima (Hofstätter et al., 2018) are not detectable.
As tracking results also depend on the chosen method (Neu et al., 2013), related uncertainties cannot be
resolved in this study.

As the fourth step, the tracked pathways are tested for a set of criteria, which define the characteristics of Vb
pathways using four boxes (see Figure 1 Hofstätter et al., 2016; Messmer et al., 2015). Cyclones are classified
as Vb if all of the following statements apply: (1) the cyclone track is within the cyclogenesis region (C) for
at least one time step, (2) at any later time step the track appears in the end area (E), (3) the cyclone appears
within the mandatory area (M) between C and E, (4) the track moves from west to east between C and E,
(5) the cyclone does not appear in the restrictive zone (R) any time before it has moved to E and 6. the track
lasts for at least 24 hr.

To analyze climate change effects the frequency of Vb cyclones is compared between three 30-year periods:
the reference period 1961–1990 (past), 2021–2050 (near future), and 2070–2099 (far future). Significance is
tested with a ks test, which is applied to the distribution of the pooled members using a 5% significance level.
Additionally, the signal-to-noise ratio (SNR) is calculated according to Aalbers et al. (2018). It describes the
ratio between climate change signal and internal variability by dividing the averaged difference between far
future and reference (past) by the standard deviation of the CRCM5-LE. |SNR| > 1 indicates that the signal
has emerged from internal variability and confidence on the sign of change is very high. However, even given
a SNR of 1, single members may yield largely deviating changes. At the same time, for an ensemble as large
as the one used here, the forced climate response can be robustly estimated even for a SNR smaller than 1.

In order to assess the capability of the CRCM5 to capture the characteristics of Vb cyclones, the CRCM5-LE
is compared to the ERA-Interim driven CRCM5 run and ERA-5 reanalysis. ERA-5, the fifth generation
of ECMWF atmospheric reanalysis products, is chosen in place of ERA-Interim, because it is available in
3-hourly temporal resolution. The lower temporal resolution of ERA-Interim (6 hr) leads to a noticeably
lower accuracy during tracking. The fact that ERA-Interim-CRCM5 is not directly compared to its driving
data might, however, be a potential source of inaccuracies in the evaluation.

Additionally, the maximum daily precipitation falling over hydrological Bavaria during a Vb event is ana-
lyzed. The maximum daily precipitation values of all Vb events in the ensemble are compared to the 95th
percentile of all daily precipitation values (averaged over hydrological Bavaria) in the entire ensemble and
the reference period 1980 to 2009 in order to identify the quantity and change of extreme events. The drizzle
effect is eliminated by a threshold of <1 mm/day (Kjellström et al., 2010). The value of the 95th percentile is
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Figure 2. Number of identified cutoff low-related Vb cyclones per year and season (a) respectively per year and month (b) averaged over 30-year periods in the
past (1980–2009; green), near future (2020–2049; blue), and far future (2070–2099; orange). The boxplots show the spread between the 50 members of the
CRCM5-LE. The line indicates the median, the box stretches from the 25th to the 75th percentiles, and the whiskers extend to the minimum and maximum
values. The dark gray triangle (light gray circle) depicts the identified Vb cyclones in ERA-5 reanalysis (ERA-Interim-CRCM5 simulation).

12.7 mm daily precipitation over hydrological Bavaria. According to the seasonality, the precipitation results
of the CRCM5-LE are compared to the time series of ERA-Interim-CRCM5 and ERA-5 reanalysis.

3. Results
Vb cyclones connected to a cutoff low over central Europe are identified in the CRCM5-LE with high accu-
racy indicated by the recall of 94.6% (test set). Table S2 shows the averaged confusion matrices over all
cross-validation iterations (see Table S3 for the network used for inference). Due to the skewed class dis-
tribution between Class 0 and Class 1, the overall accuracy of 99.2% (test set, Figure S2) is not a reliable
indicator for the performance of the ANN in respect of the minority class. The false positives lead to a low
precision of 33.2%, but they are minimized in the subsequent step of tracking during which all possible Vb
cyclones undergo further tests.

The analysis of cutoff low-related Vb cyclones in the CRCM5-LE under the RCP8.5 scenario indicates a
slight, but nonsignificant increase in the absolute number of Vb cyclones per year using the ks test and a 5%
significance level (see Figure S3). The mean values in events per year are 2.26 (past), 2.27 (near future), and
2.37 (far future). The spread between the 50 members, which represents internal variability, is considerable.
The value of SNR between past and far future is 0.32, which indicates that internal variability is larger than
the climate change signal.

Figure 2a shows the number of Vb cyclones per season and year (respectively, Figure 2b per month and
year) for three periods of the 50 members of the CRCM5-LE (boxplots) and for the reference period of the
single time series of ERA-Interim-CRCM5 and ERA-5 reanalysis (circles and triangles). For the reference
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Figure 3. Maximum daily precipitation sum (mm) averaged over hydrological Bavaria during Vb events.The boxplots illustrate the spread of Vb events. For the
reference period (1980–2009) ERA-Interim-CRCM5, ERA-5, and the CRCM5-LE are illustrated. The near (2020–2049) and far future (2070–2099) are only
covered by the CRCM5-LE. For ERA-Interim-CRCM5 and ERA-5 the underlying database is only a single time series, whereas the CRCM5-LE provides 50
time series.

period the comparison of ERA-Interim-CRCM5 with ERA-5 shows that the frequency of Vb cyclones in the
CRCM5 model run, which is driven by ERA-Interim boundary conditions, differs from the frequency of Vb
cyclones in the ERA-5 reanalysis product for on-average 0.06 events per month and year. In most months,
the frequency of Vb cyclones in the ERA-Interim-CRCM5 time series is higher than in the ERA-5 reanalysis.
Here, the CRCM5 model might tend to overestimate the frequency of Vb cyclones. Distinct differences occur
especially in spring (May). In two cases in spring, the number of Vb cyclones in the ERA-Interim-CRCM5
run furthermore lies outside of the distribution of the CRCM5-LE (March and April). In most cases, however,
the CRCM5-LE covers the time series of both ERA-Interim-CRCM5 and ERA-5.

Looking at the climate change signal between the three 30-year periods of the CRCM5-LE a remarkable
impact on the seasonal distribution of Vb cyclones is visible. Whereas in the past, the peak of Vb frequency
used to be in summer (June), it transitions to spring (May) with progressing climate change. In the far future,
the number of Vb cyclones in summer decreases strongly by −51.8% (mean: −0.47 events/year; changes are
calculated between 2070–2099 and the reference period 1980–2009). In the past, one Vb cyclone occurred
almost every summer, but in the far future a summer Vb cyclone appears only every 830 days. At the same
time the number of Vb cyclones increases considerably in spring by +73.4% (mean: +0.40) to about one Vb
cyclone every spring. The changes in spring and summer are significant on a 5% significance level. The SNR
values for spring (1.25) and summer (2.86) are clearly larger than 1, consequently the climate change signal
exceeds internal variability and confidence in the sign of change is high. The strongest increase happens
in the months March and April, the strongest decrease in July and August. Furthermore, Vb frequency
significantly increases in winter by +220.7% (mean: +0.32). The change is consistent throughout all winter
months. In the far future, the number of winter Vb cyclones even exceeds the frequency in summer. The
SNR is 0.82 and therefore noise is larger than the signal. For autumn, the signal is mixed, with a decrease in
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September and October and an increase in November. Still, there is a slight but significant decrease in Vb
frequency in autumn by −20.6% (mean: −0.14). The SNR has a value of 0.67 and thus, as in winter, internal
variability is larger than the climate change signal.

Figure 3 shows the seasonality of the maximum daily precipitation averaged over hydrological Bavaria
during Vb events. When comparing ERA-Interim-CRCM5 and ERA-5, some differences are clearly visi-
ble. For one thing, ERA-Interim-CRCM5 produces lower maximum daily precipitation sums in summer
than ERA-5. This is true for both the median values (influence from June) and extreme values (influence
from August) and might indicate that the CRCM5 underestimates the maximum precipitation related to
Vb cyclones in summer. In autumn (September), however, the ERA-Interim-CRCM5 run contains more
extreme values than ERA-5, which implies that the CRCM5 might slightly overestimate the maximum Vb
related precipitation in autumn. However, when comparing the single time series of ERA-Interim-CRCM5
and ERA-5 to the reference period of the CRCM5-LE, both distributions are well covered by the large data
base of Vb events resulting from the 50 members of the ensemble. The threshold considered for extreme
precipitation over hydrological Bavaria (solid red line) is the 95th percentile of all days in the CRCM5-LE
reference period. In the past as well as in the future, Vb cyclones mainly exceed this threshold in the warmer
months of the summer half year (April to September). In summer the median of all data sets lies above the
threshold. For the CRCM5-LE the peak of median values lies in July for both the reference period (15.0 mm)
and the far future (15.9 mm). In combination with the results from Figure 2a, this means that the absolute
number of Vb cyclones in the season of the highest daily precipitation values (summer) decreases with pro-
gressing climate change. At the same time climate change leads to a rise in the maximum daily precipitation
sum over hydrological Bavaria in all seasons. Consequently, the percentage of Vb cyclones exceeding the
threshold increases in all seasons. The strongest increase in median values between reference and far future
occurs in winter with +2.8 mm (spring: +2.4 mm, summer: +1.2 mm, autumn: +2.0 mm). The changes in
all seasons are statistically significant on a 5% significance level. It is worth noting that the spread between
the Vb events is considerable. Especially on a monthly basis the single time series of ERA-Interim-CRCM5
and ERA-5 do not, in contrast to the CRCM5-LE, provide a statistically reliable distribution of Vb cyclones
(e.g. January and February).

4. Discussion and Conclusion
The CRCM5-LE shows that climate change under the RCP8.5 scenario affects the seasonal distribution and
rainfall intensity of cutoff low-related Vb cyclones. The absolute frequency of Vb cyclones does not change
significantly, but summer Vb cyclones decrease strongly. With this, our results reinforce the findings by
Nissen et al. (2013), although we use a large single-model ensemble and examine only one GCM-RCM
combination and one scenario. Climate change projections using the CRCM5-LE do not account for uncer-
tainties regarding model or scenario choice, but for the first time allow an in-depth analysis of internal
variability regarding Vb cyclones. This shows that the climate change signal of a decrease in summer Vb
cyclones exceeds the noise of internal variability. Furthermore, we detected a robust increase in Vb frequency
in spring with a SNR larger than 1. In the light of a possible tendency of the CRCM5-LE to overestimate the
number of Vb cyclones in certain months, the absolute numbers of Vb events might differ in other model
ensembles. The climate change signal between the three periods of the CRCM5-LE, however, is unaffected
by a potential model bias. Regarding precipitation intensity related to Vb cyclones, our study shows that cli-
mate change leads in all seasons to an increase in the maximum daily precipitation sums over hydrological
Bavaria during Vb events. Vb cyclones occur less often in the warm season (summer), which is associated
with the highest rainfall intensities. The 50 members of the CRCM5-LE beneficially support the analysis of
precipitation related to Vb cyclones, because they provide a larger and thus more reliable database for the
analysis of extreme events.

The decrease in summer Vb activity might be due to a shift in the cyclone pathway to the east as suggested
by Nissen et al. (2013). Another explanation is a change in Rossby-waves and jet streams due to the Arc-
tic Amplification, which is discussed in the general context of decreasing summer storm activity in the
Northern Hemisphere (Mann et al., 2017). The increase in the percentage of Vb cyclones leading to extreme
precipitation could be explained by an increased saturation vapor pressure of warmer air following the
Clausius-Clapeyron rate and by increased sea surface temperatures of the Mediterranean Sea leading to an
enhanced moisture transport by cyclones emerging there (Volosciuk et al., 2016).
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With a recall of 94.6% Vb cyclones related to a cutoff low over central Europe are successfully detected in
the CRCM5-LE using machine learning. Our approach is specifically designed for Vb cyclones that develop
during the synoptic situation of a cutoff low over central Europe, because such a cutoff low is an indicator
for extreme precipitation Vb cyclones (Hofstätter et al., 2018) and occurred during historic Vb related floods
in hydrological Bavaria. With 2.3 Vb cyclones per year identified in the reference period in the CRCM5-LE,
the number agrees with the number of Vb cyclones identified by Messmer et al. (2015), though methods and
data differ. The number is about half of the Vb cyclones identified by Hofstätter et al. (2018) in JRA-55 data.
Hofstätter et al. (2018) also considered open Vb cyclones, which make up to about 50% of all identified Vb
cyclones. Limitations of the tracking procedure lie in the incapability of distinguishing splitting tracks or
simultaneous cyclones. The choice of 700 hPa as tracking variable has the disadvantage that not all geopo-
tential height minima on a Vb track necessarily extend to the surface or the other way round (Nissen et al.,
2013). In contrast, the main advantage of 700 hPa lies in less disturbances due to orography, which leads to
less ambiguous cases during tracking (Hofstätter et al., 2018).

Our study provides the novelty of accounting for internal variability in the context of analyzing cutoff low
related Vb cyclones with a large single-model ensemble of 50 members. Furthermore, Vb cyclones are sim-
ulated by a RCM with 0.11◦ resolution. This ensures a better representation of orography, a finer delineation
of atmospheric processes and of the land-sea contrast (Akhtar et al., 2019; Lucas-Picher et al., 2017), which
is important in the development of Vb cyclones. By employing machine learning for cyclone identification
an efficient data analysis strategy is ensured in addressing the Big Data scale of the CRCM5-LE.
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ABSTRACT Long-duration mixed-precipitation events (freezing rain and/or ice pellets) are important cold-
season hazards and understanding how climate change alters their occurrence is of high societal interest, particu-
larly in urban areas. This study introduces a two-staged approach that employs deep learning to identify long-
duration mixed precipitation over the Montréal area (Quebec, Canada) in archived climate model data using
large-scale pressure patterns. The dominant dynamic mechanism leading to mixed precipitation in Montréal is
pressure-driven channelling of winds along the St. Lawrence River Valley. A convolutional neural network
(CNN) identifies the corresponding synoptic pattern by using a large training database derived from an ensemble
of the Canadian Regional Climate Model, version 5 (CRCM5). The CRCM5 uses the diagnostic method of Bour-
gouin (2000) to simulate mixed precipitation and delivers training examples and corresponding class affiliations
(labels) for this supervised classification task. The CNN correctly identifies more than 80% of the Bourgouin
mixed-precipitation cases. In the next stage, the CNN is combined with temperature and precipitation conditions,
which consider important preconditions for mixed precipitation and improve the performance of the approach.
The evaluation of a CRCM5 run driven by ERA-Interim reanalysis data gives a Matthews correlation coefficient
of 0.50. The deep learning approach can be applied to ensembles of regional climate models on the North Amer-
ican grid of the Coordinated Regional Downscaling Experiment (CORDEX-NA).

RÉSUMÉ [Traduit par la redaction] Les événements de précipitations mixtes de longue durée (pluie verglaçante et/
ou grésil) sont des dangers importants de la saison froide et comprendre comment le changement climatique modifie
leur occurrence est d’un grand intérêt sociétal, notamment dans les zones urbaines. Cette étude présente une
approche en deux étapes qui utilise l’apprentissage profond pour identifier les précipitations mixtes de longue
durée sur la région de Montréal (Québec, Canada) dans des données de modèles climatiques archivées en utilisant
des modèles de pression à grande échelle. Le mécanisme dynamique dominant menant aux précipitations mixtes à
Montréal est la canalisation des vents par la pression le long de la vallée du fleuve Saint-Laurent. Un réseau neur-
onal convolutif (RNC) désigne le modèle synoptique correspondant en utilisant une grande base de données d’en-
traînement dérivée d’un ensemble du Modèle régional canadien du climat, version 5 (MRCC5). Le MRCC5 emploie
la méthode de diagnostic de Bourgouin (2000) pour simuler les précipitations mixtes et fournit des exemples d’en-
traînement et les affiliations de classe correspondantes (étiquettes) pour cette tâche de classification supervisée. Le
RNC identifie correctement plus que 80% des cas de précipitations mixtes de Bourgouin. Dans l’étape suivante, le
RNC est combiné avec les conditions de température et de précipitation, qui constituent des conditions préalables
importantes pour les précipitations mixtes et améliorent le rendement de l’approche. L’évaluation d’une exécution
du CRCM5 pilotée par les données de réanalyse ERA-Interim donne un coefficient de corrélation de Matthews de
0,50. L’approche d’apprentissage profond peut être appliquée à des ensembles de modèles climatiques régionaux
sur la grille nord-américaine de la Coordinated Regional Downscaling Experiment (CORDEX-NA).

KEYWORDS mixed precipitation; freezing rain; deep learning; climate pattern recognition; pressure-driven chan-
nelling; Montréal; extreme events detection

1 Introduction

Mixed precipitation in the form of freezing rain and/or ice pellets
is a significant cold-season hazard in eastern North America and
notably in southern Quebec, Canada. This hydrometeorological

extreme event poses a great potential risk to road traffic, electri-
cal infrastructure, and human security, particularly if it persists
for several hours (McCray et al., 2019). Even though high-
impact, long-duration (≥6 h) mixed-precipitation events
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happen rarely, they count as one of the costliest hydrometeoro-
logical events in Canada (Dore, 2003; Ressler et al., 2012).
During the extreme ice storm in 1998 in the northeastern
United States and southeastern Canada, power lines were
destroyed and the power supply of millions of people affected,
which caused US$4 billion in damages and 47 fatalities
(Cheng et al., 2004; Gyakum & Roebber, 2001; Henson et al.,
2011; Milton & Bourque, 1999; Roebber & Gyakum, 2003).
Mixed precipitation occurs when a particular type of verti-

cal temperature layering forms, where cold air (T < 0°C) at the
surface is superposed by a relatively warm above-freezing
layer (T > 0°C), and a cold layer (T < 0°C) at higher altitude.
Under such circumstances freezing rain, ice pellets, or a com-
bination of both (mixed precipitation) may form (Matte et al.,
2019). Freezing rain develops through a microphysical
process known as the melting process. On its way to the
ground an ice crystal falls first through the warm-air layer,
which is sufficiently thick that the ice crystal melts comple-
tely. The liquid drop then reaches the cold-air layer above
the ground, where it becomes supercooled, which means its
temperature drops below zero degrees. The supercooled
liquid droplet then reaches the ground and freezes instan-
taneously on contact with the cold surface (T < 0°C; Ressler
et al., 2012; Bourgouin, 2000). In contrast, the formation
process of ice pellets requires a thinner warm-air layer. In
this case, the droplet does not melt completely before reach-
ing the cold-air layer. The remaining ice core facilitates
rapid freezing before the droplet reaches the ground in solid
form (Czys et al., 1996). Depending on the droplet size both
processes can occur concurrently as mixed precipitation.
The St. Lawrence River Valley (SLRV) is a region that is

especially prone to mixed precipitation because of a mechan-
ism known as pressure-driven channelling (Ressler et al.,
2012). Our study region, Montréal (see Fig. 1), is located
about half-way along the SLRV, which extends from Lake
Ontario to the Gulf of St. Lawrence. Under a synoptic-scale
pressure pattern (≥1000 km) with higher pressure in the
lower part of the SLRV (to the northeast of Montréal) and
lower pressure in the upper part of the SLRV (to the south-
west), cold winds from the north are channelled directly
along the valley toward Montréal. These cold winds facilitate
the vertical temperature structure needed for mixed precipi-
tation by generating a cold-air layer on the surface superposed
by warmer air (Ressler et al., 2012). As well as the vertical
temperature structure, another necessary component for the
formation of mixed precipitation is the potential for meso-
or synoptic-scale ascent, which is needed for precipitation
to be observed (Ressler et al., 2012). Nearly all freezing
rain events in the city of Montréal are attributable to
pressure-driven channelling with synoptic pressure fields
being the large-scale driver (Ressler et al., 2012 Roebber &
Gyakum, 2003; Stuart & Isaac, 1999;).
Understanding how climate change affects cold-season

hazards, such as mixed precipitation, is an important research
challenge, which can be addressed using climate models. The
temporally high-resolution microphysics schemes from high-

resolution numerical weather forecasts (NWP) are too costly
for global and regional climate model (RCM) simulations
and can be used in convection-permitting simulations only.
Therefore, several different methods that have been devel-
oped to diagnose mixed precipitation in medium resolution
NWPs (e.g., Baldwin & Contorno, 1993; Cantin & Bachand,
1993; Czys et al., 1996; Ramer, 1993) are also used with
RCM data, which have a resolution sufficiently high to ade-
quately represent the necessary environmental conditions
(Bresson et al., 2017; Matte et al., 2019; St-Pierre et al.,
2019). The scheme of Bourgouin (2000) and its revised
version (Birk et al., 2021) use the area method, which
focuses on the vertical temperature profile of a layer of air
and its cross-section with the 0°C isotherm. An in-line
implementation of this diagnostic method is employed in
the Canadian Regional Climate Model, version 5 (CRCM5;
Šeparović et al., 2013; Martynov et al., 2013), which delivers
the two components of mixed precipitation, freezing rain
(prfr) and ice pellets (prrp), as output variables. These
above-mentioned diagnostic methods require a high number
of vertical pressure levels as input. By contrast, the study
by Ressler et al. (2012) relates the occurrence of mixed pre-
cipitation to certain types of synoptic-scale pressure fields
based on observed mixed-precipitation data analysis. A diag-
nostic method primarily based on the synoptic-scale dynamic
drivers of mixed-precipitation events would reduce the
number of input variables and levels drastically and thus
allow an application on commonly available variables (e.g.,
from the CORDEX framework).

Artificial neural networks from the field of machine learn-
ing provide a powerful tool for visual pattern recognition and
have, in some cases, successfully been applied to extreme
climate pattern detection problems (Liu et al., 2016;

Fig. 1 Orography over Quebec at 0.11° resolution and the study area (red)
covering 5 × 5 pixels centred over the city of Montréal. The Saint
Lawrence River Valley (SLRV) is an important orographic feature
in the process of mixed-precipitation generation.
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Mittermeier et al., 2019; Racah et al., 2017; Reichstein et al.,
2019). One of the benefits of machine learning algorithms is
their quick application on large datasets once they are
trained. Therefore, approaches in climate sciences based on
machine learning are destined for utilization with large
multi-model or initial-condition ensembles (Maher et al.,
2021; Mittermeier et al., 2019). The synoptic-scale pressure
field related to mixed-precipitation occurrence in the SLRV
due to pressure-driven channelling is an appropriate case for
pattern recognition using deep learning because of the particu-
larly well-studied connection between large-scale drivers and
local extremes. In this paper, we present a new data-driven,
deep learning approach to derive long-duration mixed-pre-
cipitation events over the Montréal area from large-scale
pressure patterns. We describe the pressure fields according
to Ressler et al. (2012) by geopotential height at 500 hPa
(z500) and sea level pressure (slp) and cover a fixed domain
over North America. In this case, the pattern recognition
task is a binary classification task of sorting unseen synoptic
patterns into two classes—mixed precipitation (class 1) or
no mixed precipitation (class 0). The network is trained
through a supervised training process with a training database
containing training examples (image patches of the two con-
tinuous spatial variables z500 and slp at specific archived time
steps) and their labels (1 or 0), both derived from CRCM5
simulations. The trained network draws inferences from the
training process about the class affiliation of unseen synoptic
patterns. With this, the deep neural network filters out propi-
tious synoptic conditions for mixed precipitation.
The deep learning step (first stage) is combined with a

second stage, which considers the temperature at the surface
and the formation of precipitation as important preconditions
for the formation of mixed precipitation (Matte et al., 2019;
Ressler et al., 2012). Because the first stage is solely based
on synoptic-scale dynamic drivers, the second stage ensures
that important local factors are considered. As a result, the
second stage enables an improvement in the precision of the
deep learning approach. High-resolution temperature and
total precipitation data from the CRCM5 are used to check
whether the air temperature and the precipitation rate at the
surface lie below and above a certain threshold, respectively.
Besides the low number of required input variables and

levels, an additional benefit of this method is its quick compu-
tation because deep learning is designed to be used with large
datasets. Thus, this deep learning approach can be utilized
with large multi-model or initial-condition large ensembles.
This study introduces a two-staged approach that uses deep

learning for the identification of long-duration mixed precipi-
tation in archived climate model data for the Montréal study
area. Our work is based on Ressler et al. (2012) and
Roebber and Gyakum (2003), who relate the mesoscale
process of channelling along the SLRV to synoptic-scale
pressure fields. Thus, this study focuses on the large-scale
drivers of an extreme event and captures them through
pressure fields over North America. Using this case study,
we highlight a challenge of deep learning for spatiotemporal

pattern recognition regarding the test set choice and suggest
a best practice for such applications in climate science.

2 Data

In order to train a deep neural network (DNN) on the identi-
fication of the synoptic-scale pressure pattern related to long-
duration mixed precipitation in the Montréal area, a large
training database is required. Acquiring a large number of
labelled training examples with known class affiliations is a
common challenge in deep learning applications in earth
system sciences (Reichstein et al., 2019). We employ an
ensemble of CRCM5 simulations, which provides 1437
years of labelled data (see Table 1), archived at a three
hourly temporal resolution for the variables slp, z500, prfr,
and prrp. The variables slp and z500 are chosen to describe
the synoptic-scale pressure patterns because their relation to
the occurrence of mixed precipitation in Montréal has been
well studied (Ressler et al., 2012). The CRCM5 simulations
cover the North American domain of the Coordinated
Regional Downscaling Experiment (CORDEX-NA; Mearns
et al., 2017) on a rotated-pole grid and have a spatial resol-
ution of 0.22 (CORDEX domain name: NAM-22)

The CRCM5 simulations are driven by four different
general circulation models (GCMs): the second generation
Canadian Earth System Model (CanESM2; Arora et al.,
2011), the Centre National de Recherches Météorologiques
Coupled Global Climate Model, version 5 (CNRM-CM5;
Voldoire et al., 2013), the Max Planck Institute for Meteorol-
ogy-Earth System Model-Low Resolution (MPI-ESM-LR;
Stevens et al., 2013), and the Geophysical Fluid Dynamics
Laboratory-Earth System Model, version 2M (GFDL-
ESM2M; Dunne et al., 2012). Observed greenhouse gas

TABLE 1. Overview of the CRCM5 ensemble used as a training database.
The CRCM5 simulations are driven by four different GCMs and
three different GHG concentration scenarios. One simulation is
driven by the ERA-Interim reanalysis (ID 19). In case several
members of a model exist, the number is indicated by -m plus
member number.

ID RCM GCM Time series GHG concentrations

1 CRCM5 CanESM2 -m1 1950–2005 observed
2 2006–2100 RCP8.5
3 RCP4.5
4 CRCM5 CanESM2 -m3 1950–2005 observed
5 2006–2100 RCP8.5
6 CRCM5 CanESM2 -m4 1950–2005 observed
7 2006–2100 RCP8.5
8 CRCM5 CanESM2 -m5 1950–2005 observed
9 2006–2100 RCP8.5
10 CRCM5 CNRM-CM5 -m1 1950–2005 observed
11 2006–2100 RCP8.5
12 RCP4.5
13 CRCM5 MPI-ESM-LR -m1 1950–2005 observed
14 2006–2100 RCP8.5
15 RCP4.5
16 CRCM5 GFDL-ESM2M -m1 1950–2005 observed
17 2006–2100 RCP8.5
18 RCP4.5
19 CRCM5 ERA-Interim 1979–2017 observed
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(GHG) concentrations are used from 1950 to 2005 (seven
simulations). From 2006 on the representative concentration
pathways (RCP8.5: seven simulations; RCP4.5: four simu-
lations; see Table 1) are used as future projection scenarios.
Because synoptic-scale patterns are in large part dominated
by the driving GCM, using only one GCM would result in
an unwanted specific bias. Using historic periods as well as
scenarios with high GHG concentrations means that the train-
ing set covers simulations with a range of different severities
of climate change. For CanESM2, four members are available
with RCP8.5, for which the initial conditions were slightly
altered in order to simulate internal variability. Even though
only one RCM is used, we provide a good variety of training
examples with this ensemble of different GCMs, different
scenarios, and different initial-condition members.
One additional simulation is driven by the ERA-Interim

reanalysis (CRCM5–ERA-Interim run; Dee et al., 2011) and
is used for evaluation purposes.

3 Methodology

This section describes the two stages of our deep learning
approach: the first stage, in which the convolutional neural
network (CNN) is employed, and the second stage, which
covers further processing of the CNN output with a tempera-
ture condition and a precipitation condition.

a A First Stage: Convolutional Neural Network (CNN)
The workflow of the training set preparation is illustrated in
Fig. 2.

1 EVENT DEFINITION FOR LABEL PREPARATION

Every archived cold-season time step of the CRCM5 ensem-
ble is a potential training example for the supervised deep
learning approach, either for class 1 (mixed precipitation) or
class 0 (no mixed precipitation). To derive the label infor-
mation for a certain archived time step from CRCM5 Bour-
gouin in-line, mixed-precipitation events are defined as
follows: mixed precipitation occurs whenever the sum of
freezing rain and ice pellets at any pixel in the study area
exceeds a threshold of 0.125 mm per three hours (with refer-
ence to 1 mm per day) (prfr + prrp > 0.125 mm; Lambert &
Hansen, 2011; Matte et al., 2019). St-Pierre et al. (2019)
state that the Bourgouin (2000) scheme implemented in-line
in the CRCM5 reproduces freezing rain in Montréal best at
a spatial model resolution of 0.22°, which is the resolution
of the CRCM5 ensemble used in this study. Only the cold
season of October to April is considered (Henson &
Stewart, 2007). The study area covers a 5 × 5 grid over the
Montréal area (42.6° to 43.3°N, −108.3° to –107.3°E) and
is illustrated in Fig. 1. In accordance with Ressler et al.
(2012) the relationship between large-scale drivers and
mixed-precipitation occurrence is only applied to long-dur-
ation events. Short-duration events, which last less than six
hours (Matte et al., 2019; Ressler et al., 2012), are neglected.
The long-duration events (≥ 6 h) also include near-continuous

events, which may include fewer than six hours of non-mixed
precipitation within the course of the event as long as the con-
dition of at least six hours of continuous precipitation is ful-
filled (Ressler et al., 2012). In the next step, synoptically
dependent events are removed. Synoptical independence is
defined as at least three days of non-mixed precipitation
between two mixed-precipitation events (Ressler et al., 2012).

2 SETUP DIVISION

The cold-season, long-duration mixed-precipitation events
resulting from the event definition provide training examples
for class 1. The class 1 training examples are split into three
subsamples: 90% of events are used for training, 5% for
development, and 5% for testing (see Fig. 2). The training
subset is used to train the DNN. The development set is
employed during the training process to tune the hyperpara-
meters within the network. This subset is also used to
monitor the issue of overfitting (e.g., through learning
curves). The test set is used solely to evaluate the network per-
formance after the training process has been completed and
remains untouched before that. The events, which have differ-
ing durations (on average 9.3 h) are treated as entities for the
setup division in order to avoid single time steps of one and
the same event so that similar synoptic-scale pressure patterns
are distributed over all three training subsamples. The pro-
portion of 90%, 5%, 5% for the setup division is chosen
because of our high number of class 1 training examples
(65,970), which allows us to use a higher percentage for the
training subset. Additionally, the higher ratios of class 1:
class 0 in the development and test subsets compared with
the training subset (see Section 3.a.3) influenced the setup
division because this leads to a high number of counter-
examples in the development and test subsets. In summary,
the training subset covers 661,200 training examples with
415,261 in the training subset, 121,064 in the developement
set, and 124,875 in the test set.

3 RESOLVING THE IMBALANCED CLASS DISTRIBUTION

A crucial point in building up the training set is dealing with
the imbalanced class distribution, a challenge intrinsic to all
classification tasks dealing with extreme events. Mixed-pre-
cipitation time steps in class 1 make up only 2.7% of all
cold-season time steps averaged over the 18 simulations of
the CRCM5 ensemble. This corresponds to a ratio of 1:36
between positive examples (class 1) and negative examples
(class 0). The CRCM5-ERA-Interim run used for evaluation
purposes has a ratio of 1:31. To avoid the network overlook-
ing the minority class during training, undersampling is used.
Therefore, the ratio in the training set is set to 1:6, while in the
development and test sets a target ratio of 1:36 is used. From
all potential counter-examples in the CRCM5 ensemble as
many class 0 training examples are selected as match with
the corresponding ratio. The choice of counter-examples is
carried out randomly in order to ensure high diversity. A
rule for synoptic independence from mixed-precipitation
events is introduced, which means that a three-day buffer is
set around all mixed-precipitation events, so that no
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counter-examples are chosen from the period shortly before or
shortly after a mixed-precipitation event. This avoids the
network being trained on arbitrary transition phases. A
buffer between counter-examples, though, is not possible
because 25% of all non-mixed-precipitation cold-season
time steps in the CRCM5 ensemble are already used in the
training database. Putting a buffer of, for example, three
days around every counter-example would by far exceed the
number of available time steps. As a consequence, one
counter-example in the test set might be the following
archived time step to a counter-example in the training subset.
In the end, classes 1 and 0 are combined and shuffled so that

the training examples are in no particular chronological order.

4 AGGREGATION TO A COARSER RESOLUTION

The atmospheric pressure information (z500 and slp) is pre-
processed for every training example. This pre-processing
includes an aggregation of the original resolution of the
CRCM5 simulations of 0.22° (300 × 340 pixels over
CORDEX-NA) to a coarser resolution. Because of the
smooth character of the synoptic fields, a high spatial resol-
ution is not necessary to describe the characteristics of the
pressure patterns, whereas a high spatial resolution is
needed in the second stage when using the temperature and
precipitation conditions (St-Pierre et al., 2019). However, a
high number of pixels, and thus nodes, makes the neural
network more complex and more vulnerable to overfitting.
For this reason, the training data are aggregated to a spatial

resolution of 1.1° (60 × 68 pixels over CORDEX-NA) by cal-
culating the mean of windows of 5 × 5 pixels.

5 STANDARDIZATION

The training data are standardized using a z-transformation. A
z-transformation is carried out by subtracting the mean of the
training subset from each training example and dividing it by
the variance of the training subset. This corresponds to
pressure anomalies. Figure 3 shows the pressure anomaly pat-
terns averaged over all training examples of class 1 (training,
development, and test sets). For both variables (slp and z500)
a distinct low-pressure system in the northern part of the
SLRV and a high-pressure system in the southern part is
visible, which is slightly shifted away from the SLRV axis
at higher altitudes (z500).

6 DESCRIPTION OF A CNN
In the era of deep learning, CNNs are a widespread state-of-
the-art network type in the field of computer vision and
visual pattern recognition (LeCun et al., 2015). The deep
architecture of CNNs includes several convolutional and
pooling layers before one or more fully connected layers.
The inputs to a CNN are the number of training examples
(m). Each training example is an image of the shape (nH,
nW, nC) with nH and nW being the height and width of the
image in pixels and nC the number of channels (Liu et al.,
2016). Here, there are two channels, one for each variable
(z500 and slp). As output, the CNN gives a vector of shape
(m, nY) with nY being the number of classes. The output

Fig. 2 Workflow graphic showing the training set preparation including event definition and setup division.
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indicates the predicted class affiliation for every training
example and every class category, in this case two (1,0). In
the convolutional layers a number of k filters (kernels) are
applied to the input image or the input feature map (output
of a convolutional layer). Such filters are designed for edge
detection and feature extraction and break down the complex-
ity of the input pattern into more and smaller features (LeCun
et al., 2015). During this step, the image size (nH, nW) is
reduced while the number of channels (nC) remains the
same. The output of the convolutional layer is k feature
maps. In a subsequent pooling layer further filters are
applied to the feature maps. Within each filter the maximum
or mean value (max or mean pooling) of the feature map’s
pixel values are calculated. During this step, the size of the
feature maps is further reduced. In the first fully connected
layer the shape of the feature maps is flattened to a vector
of nodes with length (nH, xn, Wx, nCx, k; Liu et al., 2016).
In the following fully connected layers each node is connected
with all nodes in the previous layer until in the output layer the
final class predictions are generated. The learning process of a
CNN is typically conducted using a backpropagation algor-
ithm (LeCun et al., 2015). During backpropagation, a cost
function, which compares the predicted class scores to the
correct label information, is gradually minimized through a
process known as gradient descent. The error of the cost func-
tion is backpropagated through the entire network for each

iteration; the internal weight parameters of the network are
adjusted, and the entire processing of the network (feed-
forward propagation) is then repeated until a local minimum
of the cost function is found (Liu et al., 2016).

7 NETWORK CONFIGURATION

A binary cross entropy function is chosen as the cost function
because it is optimized for binary classification tasks (Kline &
Berardi, 2005). The backpropagation is carried out for batches
of 64 training examples instead of for all 661,200 training
examples at once (batch gradient descent). The number of
epochs chosen is 20, which means that the iterations are con-
tinued until all training examples are shown to the network 20
times. A rectified linear units function (RELU) is applied as
an activation function in all layers except the output layer,
where the sigmoid activation generates class scores in the
range of [0,1].

8 NETWORK ARCHITECTURE

Table 2 shows the network architecture of the CNN. The
architecture is chosen according to Liu et al. (2016), who
designed it for similar image sizes. The shallow architecture
with only seven layers has the advantage of reducing the
risk of overfitting. Furthermore, the large kernel (filter)
sizes are adapted for climate patterns with relatively simple
patterns compared with applications on pictures, where
smaller kernel sizes are common (Liu et al., 2016). The
network architecture consists of two sequences of a convolu-
tional layer (Conv2D) and a subsequent max-pooling layer
(MaxPooling2D). In the convolutional layer, kernels (filters)
of 5 × 5 pixels are applied to the input image or feature
map. The number of filters is eight in the first convolutional
layer and 16 in the second convolutional layer. The stride is
one for both cases, which means the kernels are shifted by
one pixel while they slide over the input image or feature
map. Subsequent to the second MaxPooling2D layer a fully
connected, dense neural network layer with 50 nodes
follows. Afterwards, a dropout layer is incorporated for

Fig. 3 Mean pressure anomaly patterns during long-duration mixed-precipitation events in the Montréal area for the variables (a) slp and (b) z500. The plots are
generated by calculating the average of all standardized training examples of class 1. The colours visualize the values indicated for the contours with a
colour range from blue (low values) to red (high values).

TABLE 2. CNN architecture with seven layers and their layer specifications
based on Liu et al. (2016).

Layer Type Layer Specifications

Conv2D window size: 5 × 5, #filters = 8, stride = 1
MaxPooling2D window size: 2 × 2, stride = 2
Conv2D window size: 5 × 5, #filters = 16, stride = 1
MaxPooling2D window size: 2 × 2, stride = 2
Dense 50 nodes
Dropout r-term: 0.9
Dense nodes: 2
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regularization purposes. With dropout, some neurons are
deactivated during training in order to avoid the risk of over-
fitting. The rate of the dropout layer (r-term = 0.9), as well as
the learning rate for backpropagation (α = 0.001) are deter-
mined by hyperparameter tuning using a random search of
the Keras-Tuner library. With random search, different com-
binations of the hyperparameters are tested and the combi-
nation with the highest accuracy on the development set is
determined. The output layer is a second dense layer with
two nodes for the binary classification task.
In addition to the undersampling strategy in dealing with

the imbalanced class distribution, error-weighting with a
factor of six (corresponding to the ratio in the training set)
is applied during training. This way, an error the network
makes on the minority class is weighted more strongly than
an error on the majority class.

9 POST-PROCESSING: REMOVING SHORT-DURATION EVENTS

The CNN is exclusively trained on long-duration events with
durations of at least six hours. The network, however, affili-
ates every individual input pattern of a time series with one
of the two classes, independent of the class affiliation of the
previous archived time step. This is why the direct output of
the network also contains single short-duration events.
These events are modified to belong to class 0 in a post-pro-
cessing step because the network is not designed for the
identification of short-duration mixed-precipitation events.
Therefore, the timeline of the test set is sorted in chronologi-
cal order. Single positive network predictions are removed if
both archived (3-hourly) time steps before and after the ana-
lyzed time step are classified as negative. This way, near-con-
tinuous events with a single time step of non-mixed
precipitation in between are still considered.

b Second Stage: Temperature and Precipitation Conditions
1 TEMPERATURE CONDITION

In the second stage, after applying the CNN to a target time
series, the positive network predictions undergo an additional
procedure and are checked for fulfilling the temperature con-
dition. This step checks whether the temperature, as an impor-
tant thermodynamic condition for the occurrence of mixed
precipitation, is below a certain threshold associated with
the formation of mixed precipitation and thereby corrects
some false positives. The temperature condition is passed
whenever at least one pixel in the study area has a temperature
below 0°C (Bourgouin, 2000; Liang & Sushama, 2019;
McCray et al., 2020; St-Pierre et al., 2019).
The temperature criterion is applied to the 2 m air tempera-

ture (tas) of the high-resolution RCM data over the study area
of Montréal.

2 PRECIPITATION CONDITION

So far, our method identifies the synoptic drivers of mixed
precipitation in Montréal and considers an important
thermal condition for the formation of mixed precipitation
through the temperature condition. In the next and last step

of the second stage, all positive network predictions are
further investigated with respect to the occurrence of any
kind of precipitation (liquid, mixed, or solid). Only if the
variable total precipitation (pr) indicates a positive value
do the positive network predictions pass. The precipitation
condition is fulfilled whenever the maximum total precipi-
tation of the pixels in the study area is greater than
0.125 mm per three hours, which is the same threshold
used for the event definition in Section 3.a.1. In the same
manner as with the temperature criterion, the precipitation
condition is applied to the high-resolution RCM data. In
the case of CRCM5 the spatial resolution is 0.22°,
summing up to 25 pixels over the study area. For an appli-
cation of the deep learning approach to other RCMs the
spatial resolution available for the temperature and precipi-
tation conditions might differ.

4 Results

The performance results of the deep learning approach are
presented in two sections. In the first part the classification
results on the training database, the CRCM5 ensemble, are
presented in comparison with the method in Bourgouin
(2000). In the second part an evaluation is carried out on an
additional, unseen time series, the CRCM5–ERA-Interim
run, to illustrate the robustness of the approach under refer-
ence conditions.

a Classification Results on the Training Database
1 NETWORK PERFORMANCE

The CNN correctly classifies 93.3% of all cases in the test set.
This means the network affiliates 93.3% of all archived time
steps in the CRCM5 ensemble to the same class as the labels
derived from the Bourgouin scheme implemented in-line in
the CRCM5. On the training subset it performs with an
overall accuracy of 93.9% and on the development set with
an accuracy of 93.5%. The small differences between the
subsets indicate that the network generalizes well from the
training subset to the other two subsets and does not overfit
to the training subset. After removing the short-duration
events from the network predictions, the overall accuracy
on the test set improves to 95.7%.

The learning curves in Fig. 4 denote the development of the
loss (Fig. 4a) and accuracy (Fig. 4b) on the training and the
development set during the 20 training epochs. At the end
of the training process the two graphs are close to overlap-
ping. Although the accuracy increases steadily for the training
subset, there are more fluctuations for the development set,
which tends to decrease toward the end of the training
process. This is why the training is stopped at 20 epochs.

2 CLASSIFICATION RESULTS OF THE CNN (FIRST STAGE)
The overall accuracy does not consider the imbalanced class dis-
tribution of the target data and thus neglects the accuracy
paradox (Chicco & Jurman, 2020; Valverde-Albacete &
Peláez-Moreno, 2014). Because of this, further performance
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measures are chosen: confusion matrices with recall and pre-
cision; the F1 score, which is a single-number metric that com-
bines precision and recall and has a range of [0,1]; and the
Matthews correlation coefficient (MCC; Chicco & Jurman,
2020; Matthews, 1975). An advantage of the MCC over the
F1 score is that it considers the true negatives and additionally
assesses the network performance compared with random gues-
sing. The range of the MCC index is [-1,1] with values close to
zero showing no improvement compared with random guessing
(Chicco & Jurman, 2020).
The confusion matrix in Table 3 shows the classification

results of the CNN after removing short-duration events.
The recall indicates that the CNN correctly identifies 89.9%
of all mixed-precipitation time steps that are also identified
by the Bourgouin (2000) scheme, which is used as a baseline
in this study. The precision denotes that 36.6% of all ident-
ified mixed-precipitation time steps are indeed classified as
mixed precipitation according to Bourgouin. The F1 score
has a value of 0.52. The confusion matrix further shows the
number of true and false predictions. The number of false
positives, also referred to as a type I error, is 5058. The

number of type II errors, false negatives, is 327. The MCC
index has a value of 0.56.

3 CLASSIFICATION RESULTS AFTER APPLYING THE TEMP-

ERATURE AND PRECIPITATION CONDITIONS (SECOND

STAGE)
The overall accuracy after applying the temperature and pre-
cipitation conditions (the second stage of the two-staged
approach) is 98.8% on the test set (see Table 4). The recall
is slightly affected by the second stage and decreases,
mainly due to the temperature condition, to 83.8%. The pre-
cision, on the other hand, improves significantly by 35.8%
to a value of 72.4% because 4020 false positives are corrected
to true negatives by the temperature and precipitation con-
ditions. As a result, the F1 score and MCC both improve to
0.78, which is an increase of 21% in case of the MCC.

b Evaluation on the CRCM5–ERA-Interim Run
1 CLASSIFICATION RESULTS ON THE CRCM5–ERA-

INTERIM RUN (FIRST STAGE)

The classification results on the additional time series of the
CRCM5–ERA-Interim run are significantly lower than the
classification results on the test set (see Table 5). The
overall accuracy is 87.5%, the recall 87.2%, and the precision
18.6%. The F1 score has a value of 0.31. The MCC is 0.37.

Fig. 4 Learning curves with the (a) loss and (b) accuracies of the training and the development set during the 20 training epochs.

TABLE 3. Confusion matrix with archived time steps (3-hourly) of the test
set (first stage). The columns show the labels derived from the
CRCM5 run (Bourgouin, 2000), and the rows show the network
predictions. The right column shows the precision (P) and the
negative predictive value (NPV). The last row shows the recall
(R) and the false positive rate (FPR). The lowest right cell
displays the overall accuracy (A).

Labels (%)

Predictions
Class 1 Class 0

Class 1 2922 5058 P = 36.6
Class 0 327 116568 NPV = 99.7

(%) R = 89.9 100-FPR = 95.8 A = 95.7

TABLE 4. Confusion matrix of the test set after applying the temperature
and precipitation conditions (second stage). See Table 3 for a full
description.

Labels (%)

Predictions
Class 1 Class 0

Class 1 2721 1038 P = 72.4
Class 0 528 120588 NPV = 99.6

(%) R = 83.8 100-FPR = 99.2 A = 98.8
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2 CLASSIFICATION RESULTS ON CRCM5–ERA-INTERIM

RUN AFTER APPLYING THE TEMPERATURE AND PRE-

CIPITATION CONDITIONS (SECOND STAGE)
The overall accuracy improves to 94.0% after applying the
temperature and precipitation conditions (second stage). The
recall decreases to 82.6% (see Table 6). The precision
increases to 32.4%. Therefore, the second stage of the deep
learning approach increases the precision by only 13.8% for
the CRCM5–ERA-Interim run. This is a considerably low
increase compared with the improvement of 35.8% in the
test set. The F1 score is 0.47, and the MCC 0.50.

5 Discussion

This study introduces a two-staged approach that combines
deep learning techniques with traditional conditions for the
identification of the synoptic pattern related to pressure-
driven channelling at the SLRV, the dominant dynamic mech-
anism leading to long-duration mixed precipitation in the
study area of Montréal. Our approach takes the mixed-pre-
cipitation events simulated by CRCM5 using the Bourgouin
(2000) in-line diagnostic method as the baseline and thus as
“ground truth.” This ground truth has been evaluated with
observations by Bresson et al. (2017) and St-Pierre et al.
(2019). The CRCM5 using the Bourgouin in-line implemen-
tation was chosen as the baseline in order to have a large
amount of training data for the CNN. The evaluation of the
Bourgouin scheme and of its use in the CRCM5 (Bresson
et al., 2017; St-Pierre et al., 2019) is not within the scope of
this study.

a A Summary of Performance on Test Set
A deep CNN is trained on a large training database derived
from an ensemble of CRCM5 simulations driven by different
GCMs following observed and two GHG concentration scen-
arios and includes internal variability experiments. The result-
ing algorithm (first stage of the approach) has a good recall of
90% on the test set. The drawback is the low precision of
37%. In order to consider important preconditions for the for-
mation of mixed precipitation, a temperature condition and a
precipitation condition are applied to the high-resolution input
data in the second stage of the approach. This reduces the type
I error significantly and increases the precision by 35.8%,
while the recall is only slightly affected. The final MCC
value on the test set is 0.77.

b Discrepancy in Performance Between Test Set and
CRCM5–ERA-Interim
The evaluation of the deep learning approach on an unseen
time series, the CRCM5–ERA-Interim run, shows that the
temperature and precipitation conditions have a lower effect
than on the test set. The difference is largest for the tempera-
ture condition, with an improvement in the precision of +5.7%
for the evaluation set compared with +19.7% for the test set.
This means that a higher percentage of false positives is cor-
rected in the case of the test set from CRCM5 simulations than
for the CRCM5–ERA-Interim runs. This is probably because
an absolute temperature threshold (0°C) is used, which is
exceeded more often as global warming progresses. Conse-
quently, the criterion is correctly violated more often in the
simulations of a future climate with strong temperature
increases than in the CRCM5–ERA-Interim runs, which
covers the historical period 1979–2017. The dependence of
the temperature criterion on a single absolute threshold
could be reduced by considering the entire vertical tempera-
ture profile, which we discuss in Section 5.d

Also, the evaluation with CRCM5–ERA-Interim exhibits
lower performance measures compared with the test set.
The MCC after the second stage is 0.50 while it is 0.77
for the test set. This discrepancy likely stems from the
choice of test set because the counter-examples in the test
set are not entirely independent of the counter-examples in
the training subset. However, the setup division does not
allow an implementation of a buffer between counter-
examples, which would ensure independence among them.
This raises doubts about the reliability of the precision
measurement on the test set. For precision, the F1 score
and MCC, it is assumed that the performance values of the
evaluation are more reliable than the ones of the test set.
The performance measure of class 1 is not affected by this
issue, and the recall is with 82.6% (CRCM5–ERA-Interim)
and 83.8% (test set) very stable between the different
datasets.

c Recommendations for Test Set Choice
For future work it is recommended that an entire time series
be separated from the training process in order to use it for
the development and test set (see e.g., Racah et al., 2017).
In our approach one of the CRCM5–CanESM2 members
could be used for evaluation purposes only. While doing so,
it is important to ensure that the ratio in the development

TABLE 5. Confusion matrix on the CRCM5–ERA-Interim run (first stage).
See Table 3 for a full description.

Labels (%)

Predictions
Class 1 Class 0

Class 1 1787 7798 P = 18.6
Class 0 262 54681 NPV = 99.5

(%) R = 87.2 100-FPR = 87.5 A = 87.5

TABLE 6. Confusion matrix on the CRCM5–ERA-Interim run after
applying the temperature and precipitation conditions (second
stage). See Table 3 for a full description.

Labels (%)

Predictions
Class 1 Class 0

Class 1 1693 3526 P = 32.4
Class 0 356 58953 NPV = 99.4

(%) R = 82.6 100-FPR = 94.4 A = 94.0
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and test set corresponds to the expected ratio in the target data,
the data the CNN is meant to be applied to in the end.
It must be stated that the issue of choosing a test set is criti-

cal for climate extreme event detection tasks that deal with
time series of climate data and strongly imbalanced datasets.
Presenting the test set composition and examining the
reliability of the test set is a key point for high transparency
in machine learning applications and it should be best practice
to present the test set composition, especially when dealing
with spatiotemporal data as is common in climate sciences.

d Benefits and Limitations of the Two-Staged Approach
Using Deep Learning
The two-staged approach introduced in this study can be
applied to archived climate model data of different RCMs
as long as they can reasonably be aggregated to a resolution
of 1.1° on the CORDEX-NA domain. For the second stage
a high resolution of 0.22° is recommended.
The main constraint of using deep learning is the moderate

precision of 32.4% for CRCM5–ERA-Interim. One strategy
for future work would be to focus performance improvement
efforts on the choice of the input variables and to compare the
use of different geopotential height fields as predictors at the
beginning of the deep learning loop because these are essen-
tial for the entire approach. For example, the vertically inte-
grated variable slp could be replaced or complemented by
geopotential height at, for example, 850 or 925 hPa, the
major benefit of which would be the inclusion of information
about the vertical structure. The variable choice in this study
was influenced by the goal of making our approach applicable
to commonly available variables (e.g., from the CORDEX
framework). Future datasets that have more available vari-
ables will allow different predictor choices in future work
while still ensuring the broad transferability of the approach.
In line with this, a further strategy for potential performance
improvement is the inclusion of the entire local vertical temp-
erature profile over the study area of Montréal. This would
allow a better representation of the local physical processes
that are needed for the generation of mixed precipitation.
With future datasets that provide more vertical temperature
levels, the temperature criterion in the second stage could
be expanded and improved so that it not only considers the
near-surface temperature (tas) but also utilizes more tempera-
ture levels for a better description of the vertical temperature
profile.

Further constraints of our approach are its limitation to
long-duration events (≥6 h) and its spatial limitation to the
Montréal area.

One of the major benefits of the deep learning approach is
that it is based on physical, dynamic mechanisms because the
synoptic-scale pressure field is used, which leads to pressure-
driven channelling of winds over the SLRV and mixed pre-
cipitation in the study area; therefore, results remain explain-
able. The diagnostic scheme of Bourgouin (2000), employed
for the training dataset, is also physically based. Furthermore,
the deep learning approach only needs slp, z500, tas, and pr as
input variables. Despite pre-processing of the data, which
includes a potentially necessary transformation to the
desired grid and the z-transformation, the application of the
DNN takes little computing time (41 seconds for the
CRCM5–ERA-Interim run corresponding to 1.1 seconds per
year; 1 node, 48 cores) and is appropriate for application to
large RCM ensembles.
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Abstract

Europe was hit by several, disastrous heat and drought events in recent summers.
Besides thermodynamic influences, such hot and dry extremes are driven by certain
atmospheric situations including anticyclonic conditions. Effects of climate change
on atmospheric circulations are complex and many open research questions remain
in this context, e.g., on future trends of anticyclonic conditions. Based on the
combination of a catalog of labeled circulation patterns and spatial atmospheric
variables, we propose a smoothed convolutional neural network classifier for six
types of anticyclonic circulations that are associated with drought and heat. Our
work can help to identify important drivers of hot and dry extremes in climate
simulations, which allows to unveil the impact of climate change on these drivers.
We address various challenges inherent to circulation pattern classification that
are also present in other climate patterns, e.g., subjective labels and unambiguous
transition periods.

1 Introduction

In recent summers such as those of 2003, 2010 and 2018, Europe has been subject to particularly
outstanding summer drought and heat events, which caused large economic and societal damage
including heat-related deaths [1, 2]. The frequency and intensity of hot and dry extremes has
recently increased and is projected to further increase due to climate change and rising global mean
temperatures [3, 4].

Drivers of hot and dry extremes There are two key processes leading to drought and heat events:
thermodynamic and dynamic factors. Thermodynamic factors involve, e.g., evaporation and the
feedback between soil moisture and air temperature. Dynamic factors on the other hand describe
the atmospheric drivers of heat and drought, which are mainly anticyclonic conditions and blocking
[3]. While anticyclonic conditions go along with various high-pressure systems, blocking describes
a particular, persistent high-pressure situation that is associated with the displacement of westerly
winds and their accompanying weather systems [3, 5]. These atmospheric drivers of hot and dry
extremes are part of the large-scale atmospheric circulation in the mid-latitudes, which control the
weather and climate over Europe [6, 7]. Changes in the atmospheric circulation are complex with
opposing processes and thus many open research questions remain [5, 8].
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Classification of circulation patterns Objectively classifying the circulation patterns that are
associated with hot and dry extremes is an important step towards a better understanding of how
climate change affects the atmospheric drivers of potentially disastrous extreme events. Previous
studies, e.g., [9, 10] have shown that deep learning approaches are powerful tools for the detection of
extreme weather in climate simulations. In this study, we use a subjective catalog of circulation type
classifications over Europe by Hess & Brezowsky [11, 12]. Our goal is to learn the categorization of
six circulation types with anticyclonic conditions over Europe, which are associated with dry and hot
summer conditions in Central Europe [13]. The classification of circulation types comes with various
challenges that need to be addressed with appropriate modeling strategies. Challenges include noisy
labels due to subjective expert choices in ambiguous climate situations [14], an imbalanced class
distribution of labels, undefined transition days between successive circulation patterns, and a fixed
dwell time of a circulation pattern of at least three consecutive days by its definition [12].

Our contribution In this work we propose a novel modeling procedure to address existing chal-
lenges in classifying anticyclonic circulation patterns. Especially in times of large ensembles of
climate simulations that consist of dozens of model runs and thousands of model years, our study
can help to efficiently analyse large climate simulations and be another piece of the puzzle to better
understand changes in the atmospheric drivers of drought and heat. We will make our model and the
prepared data available upon publication.

2 Data

The Hess & Brezowsky catalog contains a subjective categorization of circulation patterns created by
experts manually labelling air pressure patterns over Europe into 29 classes. In this way, daily air
pressure constellations are retrospectively assigned to one of these classes. A circulation pattern is,
by definition, required to last at least three days. The six circulation patterns associated with heat
and drought are (abbreviations originate from German): Zonal ridge across Central Europe (BM),
Norwegian Sea-Iceland high, anticyclonic (HNA), North-easterly anticyclonic (NEA), Fennoscandian
high, anticyclonic (HFA), Norwegian Sea-Fennoscandian high, anticyclonic (HNFA), and South-
easterly anticyclonic (SEA) [15, 13]. The mean air pressure patterns for the six circulation patterns
of interest are given in Figure 1 for the variables sea level pressure and geopotential height at 500
hPa (average values at 5500 meters height). For the analysis of heat and drought, the remaining 23
circulation types are assigned to a residual class. The frequencies of the six anticyclonic patterns are
between 8.5% (BM) and 1.4% (HNFA), whereas the residual class comprises about 80% of the days.

Figure 1: Mean air pressure patterns of the six anticyclonic circulation types BM, HNA, NEA, HFA,
HNFA, and SEA (columns) averaged over all days in the period between 1900 and 2010. The plots
are shown for the variables (rows) sea level pressure [hPa] and geopotential height at 500 hPa [m].

2
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Next to the catalog by Hess & Brezowsky, we supplement our data base with the ERA-20C reanalysis
data by the European Centre for Medium-Range Weather Forecasts [16]. The long record ERA-20C
data set contains global spatial information on various climate parameters from 1900 to 2010. In
accordance with the definition by [12], we use the two atmospheric variables, sea level pressure
and geopotential height at 500 hPa as predictors for circulation patterns. The spatial domain of our
data set is defined over a region covering Europe and the North Atlantic [12] (see Figure 1) with a
spatial resolution of 5°x 5° resulting in a grid of 16 x 29 pixels. The resulting data set contains daily
information over 111 years, i.e., T = 40541 observations.

3 Methods

Model definition, training, tuning and evaluation To account for the spatial information and
the specific characteristics of circulation patterns, we use a convolutional neural network (CNN)
following [17], who propose a network architecture for climate pattern detection problems. Since air
pressure patterns of atmospheric features are comparatively simple, our chosen architecture consists
of only two convolutional layers with larger kernels (5x5-8 and 5x5-16), a dropout layer and two
fully-connected layers as well as individual channels for both climate parameters. The two different
atmospheric variables are included as individual channels in the CNN as in [2, 9]. While there
is reason to believe that accounting for the temporal structure of our data improves the model, a
previous study [18] showed no improvement in the classification of circulation patterns when using
a temporal-aware architecture. As explained in the next paragraph, our approach instead smoothes
predicted labels to account for their temporal nature.

The model is trained using Adam with a batch size of 128 for 35 epochs and early stopping based on
a validation set of size 3650 with patience of 6 epochs. Hyperparameter tuning for learning rate and
dropout rate is performed using Bayesian optimization [19]. We evaluate the model using overall
accuracy and macro F1-score. For class-specific evaluations, we consider recall and precision. To
obtain performance estimates that are as unbiased as possible, a nested cross-validation with ten inner
and eleven outer folds is used. In order to not leak intra-year information, observations within the
same year are required to belong to the same fold.

Modeling challenges Our approach takes into account several data-specific characteristics for
circulation pattern data. First, we employ a loss-weighting scheme to account for imbalanced classes
by weighting the classes with their inverse frequencies. Moreover, the assigned categories in the
Hess & Brezowsky catalog can be noisy, in particular for transition days between two subsequent
circulation patterns. This is due to the continuous movement of pressure systems while circulation
types are discrete by definition and in-between states do not fit in one or the other class. We solve
this problem by using label smoothing [20] for the first and last day of each occurrence of a specific
circulation pattern. Finally, our target variable must adhere to the aforementioned definition of
a circulation pattern, implying a pattern to last at least three days. A transition-smoothing step
ensures that this three day rule is respected. In this step, the final predicted class ỹt at time point
t = 2, ..., T − 2, is given by

ỹt =





ŷt−1 if ŷt−1 = ŷt+1 (Neighborhood Consistency),
ŷt−1 if ŷt = ŷt+1 ∧ ŷt−1 = ŷt+2 (2-days Consistency),
m(π̂t−1, π̂t+1) if ŷt = ŷt+1 ∧ ŷt−1 6= ŷt+1 (Transition Membership),
m(π̂t−1, π̂t+2) else,

where π̂t denotes the predicted probability vector at time t, ŷt = argmax π̂t the predicted class prior
to the transition-smoothing step, and

m(πs,πt) = argmax{πu∗} with u∗ = argmax
u∈{s,t}

{max(πu)}.

This guarantees consistency with the required three day rule and systematically replaces isolated
single or two day-type predictions.

4 Results

Taking into account the aforementioned subjectivity of the circulation pattern catalog and the noisy
labels, the overall performance of the proposed model is satisfactory and our proposed smoothing
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approaches consistently improve the model across all classes. Our smoothed convolutional neural
network classifier achieves an macro F1-score of 39.2% and an overall accuracy of 60.7% averaged
over the test sets during nested cross-validation. Table 1 shows the corresponding confusion matrix
together with the precision and recall. The best performance in terms of recall is achieved for
the circulation patterns HNA and BM, the lowest performance for NEA. In absolute numbers,
misclassifications mainly occur for residual class observations. Due to the proposed error weighting
technique, we obtain larger recall than precision values except for the residual class.

Table 1: Confusion matrix of our proposed approach, averaged over the test sets in the nested
cross-validation. Correctly classified classes are highlighted in bold.

LABELS

BM HNA HFA NEA SEA HNFA Residual
∑

Precision

O
U

T
PU

T
S

BM 208.8 4.0 7.7 6.5 1.7 43.3 477.4 711.2 0.29

HNA 11.9 75.8 3.7 4.5 7.1 3.7 204.9 311.5 0.24

HFA 22.9 3.5 41.9 14.6 3.6 1.5 138.6 226.6 0.19

NEA 10.4 2.8 10.4 61.5 6.3 11.7 85.9 188.9 0.33

SEA 3.2 11.6 3.6 15.0 25.2 5.5 78.4 142.5 0.18

HNFA 9.1 3.8 2.4 20.5 5.5 44.7 185.7 271.7 0.17

Residual 43.3 7.0 6.6 5.2 2.7 5.3 1729.9 1800 0.96

∑
309.6 108.6 76.2 127.7 52.1 77.4 2900.7 3652.4 –

Recall 0.67 0.70 0.55 0.48 0.48 0.58 0.60 – –

Table 2 shows an ablation study of our modeling procedure. Including the three day transition-
smoothing step improves the overall accuracy by 4 percentage points and the macro F1-score by
3 percentage points. The class specific F1-scores also considerably increase for all patterns. A
model without label- and transition-smoothing results in similar performance to the model without
transition-smoothing, indicating that the proposed transition-smoothing is the key to our observed
performance gains.

Table 2: Comparison of class-specific F1-scores (first 7 columns), accuracy and macro F1-Score (last
two columns) for the final proposed model (Final), a model without transition-smoothing (No TS)
and a model without label-smoothing (No LS and TS). Best results are highlighted in bold.

BM HNA HFA NEA SEA HNFA Residual Accuracy F1-score

M
O

D
E

L Final 0.41 0.36 0.28 0.39 0.26 0.26 0.74 0.60 0.38
No TS 0.39 0.33 0.25 0.36 0.23 0.23 0.70 0.56 0.36

No LS and TS 0.39 0.33 0.25 0.40 0.26 0.23 0.69 0.56 0.36

5 Conclusion and Outlook

Our results indicate the high potential of deep learning-based methods in classifying the atmospheric
drivers of drought and heat. We also demonstrate the effectiveness of our approaches to deal with
typical challenges in circulation type classifications, e.g., label-smoothing for transition days and
additional transition-smoothing for historical dwell time definitions. To the best of our knowledge,
we are the first to use air pressure patterns over Europe to classify circulation patterns associated
with drought and heat as given in the Hess & Brezowsky catalog. While the proposed approach
can potentially also be used for other circulation patterns associated with different kinds of extreme
climate events, our goal was to establish a baseline model for this specific and highly relevant
circulation pattern categorization. Although our architecture follows a common standard in the field
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of climatology, there is room for improvement in modeling the analyzed patterns. A possible future
research direction is to evaluate further and more complex network structures, e.g., a ConvLSTM also
taking into account the temporal dependence structure of the target. An overview of potential network
architectures for spatio-temporal data settings is given by [21]. A more elaborate future approach is
to investigate a deep hidden Markov model accounting for the state dwell times by assuming a latent
process that emulates the three day rule inherent in this type of data.

5
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A Deep Learning based Classification of Atmospheric
Circulation Types over Europe: Projection of Future
Changes in a CMIP6 Large Ensemble

Abstract. High- and low pressure systems of the large-scale atmospheric circulation
in the mid-latitudes drive European weather and climate. Potential future changes
in the occurrence of circulation types are highly relevant for society. Classifying the
highly dynamic atmospheric circulation into discrete classes of circulation types helps to
categorize the linkages between atmospheric forcing and surface conditions (e.g. extreme
events). Previous studies have revealed a high internal variability of projected changes
of circulation types. This requires the employment of a single-model initial-condition
large ensemble and an automated classification method, which can be applied to large
climate data sets. One of the most established classifications in Europe are the 29
subjective circulation types called Großwetterlagen by Hess & Brezowsky. We developed,
in the first analysis of its kind, an automated version of this subjective classification
using deep learning. Our classifier reaches an overall accuracy of 41.1 % on the test
sets of nested cross-validation. It outperforms the state-of-the-art automatization of
the HB circulation types in 22 of the 29 classes. We apply the deep learning classifier
to the SMHI-LENS, a SMILE of the Coupled Model Intercomparison Project phase 6
(CMIP6), composed of 50 members of the EC-Earth3 model under the SSP37.0 scenario.
For the analysis of future frequency changes of the 29 circulation patterns, we use the
signal-to-noise ratio to discriminate the climate change signal from the noise of internal
variability. Using a 5 %-significance level, we find significant frequency changes in 69 %
of the circulation types when comparing the future (2071 to 2100) to a reference period
(1991 to 2020).

Submitted to: Environ. Res. Lett.

1. Introduction

Large-scale atmospheric circulation in the mid-latitudes drives European weather and
climate through the westerly jet stream and high- and low pressure systems originating
from it (Huguenin et al., 2020; Woollings et al., 2010). Classifying the highly dynamic
atmospheric circulation into discrete classes has been a key effort in synoptic climatology
to gain a better understanding of the linkages between atmospheric forcing and surface
conditions. Various different circulation type classifications exist. These can be
categorized as subjective (manual), hybrid (mixed) or objective (automated/computer-
assisted). Every classification consists of two steps: the class definition and the allocation
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of pressure fields to these classes. For subjective classifications, the classes are manually
defined by experts a priori to the assignment step, which is then also carried out manually.
Hybrid methods are based on subjective class definitions with automized assignment
steps. For objective methods, in contrast, the entire procedure is carried out in a
numerical, automated way (Huth et al., 2008).
One of the most established classification schemes in Europe comprises 29 circulation
types called Großwetterlagen by Hess & Brezowsky (HB circulation types; Hess and
Brezowsky, 1952). Werner and Gerstengarbe (2010) published a revised catalog that
covers the period from 1881-2009 and provides daily information on the HB circulation
types. The catalog is constantly updated by the German Weather Service (DWD). Even
though the subjectiveness of the HB circulation types involves considerable disadvantages
in terms of inconsistencies and ambiguous class assignments, the main advantages of
this classification are its intuitive naming convention and its high quality, e.g. for the
description of climate elements especially over Central Europe (Sýkorová and Huth, 2020).
The main benefits compared to an automated classification (e.g. through cluster analysis)
are the abilities to describe real synoptic features and to also capture rare but relevant
synoptic types (e.g. a specific type of blocking anticyclones; James, 2006b).
Due to these reasons the HB circulation types have been widely used for applications
that study the connection between atmospheric circulation and extreme events (Sýkorová
and Huth, 2020); this includes heavy rainfall (Minářová et al., 2017), floods (Petrow
et al., 2009), extreme temperatures (Sulikowska and Wypych, 2020) and heat waves
(Hoy et al., 2020). The impact of the HB circulation types on weather exposed sectors
like renewable energies has also been investigated (Drücke et al., 2021). Sulikowska and
Wypych (2020) discovered that most of the hot days of the exceptionally hot summer of
2019 in Europe occurred in connection with only four dominant HB circulation types.
Petrow et al. (2009) identified a few circulation types that trigger the majority of flood
events in Germany and found that some of these types significantly increased during
the period from 1952 to 2002. Through analyzing historic trends, Hoffmann and Spekat
(2021) found that wet- and dry HB circulation types have significantly changed in
frequency and duration from 1961 to 2018, and suggest that changes in European rainfall
patterns are largely caused by dynamical changes of circulation types.
Because of the connections between extreme events or climate variables of interest
and driving circulation types, it is highly relevant to understand future changes in the
occurrence of circulation types in the context of climate change. Huguenin et al. (2020)
studied dynamic changes of large-scale atmospheric circulation types that are based on
the HB circulation types and summarized them in ten groups of atmospheric flow (Beck
et al., 2007). Using a multi-model ensemble, they found no clear future trend in frequency
or persistence of the circulation types, and explained this with the large influence of
both internal variability and model spread between different climate models (Huguenin
et al., 2020). Due to its dynamic nature, the large-scale atmospheric circulation is highly
variable. For the detection of future changes in circulation patterns, it is therefore
essential to consider the range of internal variability of the climate system (Vautard
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et al., 2016). While HB circulation types have been widely used in conjunction with
historic data, only James (2006a) and Ringer et al. (2006) have examined future changes
of all 29 HB circulation types in climate models. They use an automated (hybrid) version
of the HB circulation types developed by James (2006b). This automated version uses
climate mean composite plots (separately for winter and summer) of all 29 circulation
types based on daily mean fields of sea level pressure (slp) and geopotential height at
500 hPa (z500). A specific day in the climate model is assigned to the HB circulation
type whose composite field has the highest correlation coefficient to the smoothed mean
pressure field of the given day. Using this method, James (2006a) found no clear trends
for future circulation changes in HadGEM1 climate model runs and attributed this to
the high interannual variability. James (2006a) states that a large database is needed in
order to derive robust statements about changes in the European circulation patterns.
In summary, this shows the relevance of the HB circulation types for extreme events
and weather exposed sectors in Europe, but also the lack of knowledge regarding future
changes of these circulation types due to the high uncertainty of internal variability.
In this paper, we introduce a new automated (hybrid) version of the classification
of Großwetterlagen by Hess and Brezowsky (1952) using deep learning. The code of
this classification method is published open-source (see Data availability statement)
and enables the classification of large climate ensembles. The application to a single-
model initial-condition large ensemble (SMILE) allows us to investigate changes in
the occurrence of the 29 HB circulation types under climate change conditions while
considering the highly relevant influence of internal variability. A SMILE contains several
simulations (members) of one climate model that only differ in their initialization. Thus,
the members are equally likely realizations of the future climate and span the uncertainty
range of internal variability (Deser et al., 2012; Maher et al., 2021). Deep learning is
the state of the art method for visual pattern recognition, which has been applied to
different climate pattern classification and detection problems (Racah et al., 2016; Liu
et al., 2016; Kurth et al., 2017; Mittermeier et al., 2019; Huntingford et al., 2019). It can
help to utilize the expert knowledge contained in the long historic record of subjective
classifications and provide an automated version that is appropriate for handling large
data sets.

2. Data & Methods

2.1. Training data set

We train our deep learning classifier on historic examples of HB circulation types for
the period from 1900 to 1980. The supervised training process is based on two data
components. First, the catalog of Grosswetterlagen over Europe by Hess & Brezowsky
(Werner and Gerstengarbe, 2010) contains a list of daily class affiliations for the 29 HB
circulation types since 1900 derived from a manual classification of observed atmospheric
pressure constellations. We use the catalog’s class affiliations as labels for the training of
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our deep neural network. Table 1 lists the 29 circulation patterns with their acronyms
and definitions. The second data component is the ERA-20C reanalysis by the European
Centre for Medium-Range Weather Forecasts (Poli et al., 2016) covering the period
from 1900 to 2010. This data contains the spatial atmospheric pressure patterns that
match to the labels from the catalog and are interpreted as images due to their pixelwise
structure. We use the variables slp and z500 in a 5° spatial resolution over a domain
covering Europe and parts of the North Atlantic (30-75°N, -65-45°O) based on Werner
and Gerstengarbe (2010). Due to an implausible sudden discontinuity of the labels of
the catalog that starts around the mid-1980s with an artificial increase in circulation
type persistence (Kučerová et al., 2017), the time period from the year 1980 on is ex-
cluded and only the consistent data from 1900 to 1980 is used for training. The training
database contains 29585 training examples of daily, historic HB circulation types. Figure 1
illustrates the typical air pressure constellations for each of the 29 classes for slp and z500.

Figure 1: Typical air pressure constellations of the 29 circulation types averaged over all
training examples (1900-1980) for sea level pressure (left) and geopotential height at 500
hPa (left). For slp we show the mean absolute pattern. In the case of z500, we show
deviations from the mean, which give a more informative picture.
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Table 1: List of the 29 circulation patterns with their acronyms, original German name
and translated English name due to James (2006b).

Acronym Original name (german) Translated name (english)

WA Westlage, antizyklonal Anticyclonic Westerly

WZ Westlage, zyklonal Cyclonic Westerly

WS Südliche Westlage South-Shifted Westerly

WW Winkelförmige Westlage Maritime Westerly (Block E. Europe)

SWA Südwestlage, antizyklonal Anticyclonic North-Westerly

SWZ Südwestlage, zyklonal Cyclonic South-Westerly

NWA Nordwestlage, antizyklonal Anticyclonic North-Westerly

NWZ Nordwestlage, zyklonal Cyclonic North-Westerly

HM Hoch Mitteleuropa High over Central Europe

BM Hochdruckbrücke (Rücken) Mitteleuropa Zonal Ridge across Central Europe

TM Tief Mitteleuropa Low (Cut-Off) over Central Europe

NA Nordlage, antizyklonal Anticyclonic Northerly

NZ Nordlage, zyklonal Cyclonic Northerly

HNA Hoch Nordmeer-Island, antizyklonal Icelandic High, Ridge C. Europe

HNZ Hoch Nordmeer-Island, zyklonal Icelandic High, Trough C. Europe

HB Hoch Britische Inseln High over the British Isles

TRM Trog Mitteleuropa Trough over Central Europe

NEA Nordostlage, antizyklonal Anticyclonic North-Easterly

NEZ Nordostlage, zyklonal Cyclonic North-Easterly

HFA Hoch Fennoskandien, antizyklonal Scandinavian High, Ridge C. Europe

HFZ Hoch Fennoskandien, zyklonal Scandinavian High, Trough C. Europe

HNFA Hoch Nordmeer-Fennoskandien, antizykl. High Scandinavia-Iceland, Ridge C. Europe

HNFZ Hoch Nordmeer-Fennoskandien, zyklonal High Scandinavia-Iceland, Trough C. Europe

SEA Südostlage, antizyklonal Anticyclonic South-Easterly

SEZ Südostlage, zyklonal Cyclonic Southerly

SA Südlage, antizyklonal Anticylonic Southerly

SZ Südlage, zyklonal Cyclonic Southerly

TB Tief Britische Inseln Low over the British Isles

TRW Trog Westeuropa Trough over Western Europe
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2.2. Network architecture and configuration

Our classification approach builds upon the image-like structure of the circulation pat-
terns and uses a convolutional neural network (CNN). The architecture is an adaptation
of the model provided by Liu et al. (2016) in the context of weather pattern detection
and consists of two convolutional layers, a dropout layer and two-fully connected layers.
In the convolutions, we use two individual channels for the climate parameters (slp and
z500). Based on the original definition by Hess and Brezowsky (1952), the circulation
types have to last for at least three days. That is why we apply transition smoothing
as a post-processing step and smooth out class predictions that last for less than three
days (details in the Appendix). The model is trained using Adam optimization (Kingma
and Ba, 2014) with a batch size of 128, for 35 epochs and early stopping with a patience
of six epochs. Hyperparameter tuning for learning rate and dropout rate is performed
using Bayesian optimization (Snoek et al., 2012). The performance of the model is
evaluated using the overall accuracy and the macro F1-Score, which takes the average
of the class-specific F1-Scores and has a value range from 0 to 1 (Lewis et al., 1996).
To obtain reliable and robust performance estimates, we apply nested cross-validation
(Cawley and Talbot, 2010) with eight outer folds (test sets) and seven inner folds (model
tuning). For each inner fold and its best hyperparameter set, we train five networks with
different random weight initializations. The performance measures are then averaged
over the eight outer test sets and five networks. To account for the time series nature
of circulation patterns, training examples from the same year are required to be in the
same cross-validation fold. The nested cross-validation is repeated for the final network
applicable to new data. It is trained on the entire data set from 1900 to 1980 using the
best hyperparameter configuration of all inner folds.

2.3. Uncertainty assessment

Due to their complexity, neural network training and their prediction are subject to
uncertainty. In order to quantify our model’s uncertainty, we use a deep ensemble
(Lakshminarayanan et al., 2017) by generating a large number of 30 networks based on
different random weight initializations. Using this approach, we can quantify the variance
of predictions and generate more robust class affiliations by applying all 30 networks to
the data and calculating a weighted average prediction. The importance weighting of
each of the 30 predictions is proportional to the F1-score of each network. We apply this
step to the ERA-40 reanalysis from September 1957 to August 2002 (Uppala et al., 2005)
for evaluation purposes in comparison to the method by James (2006b), which is the
state-of-the-art for an objective classification of the HB circulation patterns.
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2.4. Climate ensemble: SMHI-LENS

The deep ensemble is furthermore applied to the climate ensemble SMHI-LENS (Wyser
et al., 2021). SMHI-LENS is a SMILE of the Swedish Meteorological and Hydrological
Institute, with the EC-Earth model (version 3.3.1) and 50 members. The SMHI-LENS
follows the protocol of the Coupled Model Intercomparison Project phase 6 (CMIP6).
We chose the SMHI-LENS due to its high number of members and the high perfor-
mance of the EC-Earth3 model in reproducing daily sea-level pressure circulations types.
Cannon (2020) compared 15 general circulation models with two reanalysis data sets.
The EC-Earth3 was found to be one of the best performing CMIP6 models in terms of
reproduction of frequency and persistence of circulation types under the consideration of
internal variability, especially over Europe (Cannon, 2020). The SMHI-LENS is available
for the period from 1970 to 2100 for four different scenarios in a 0.7° spatial resolution.
It uses the macro initialization method for the generation of its ensemble members. We
use the strong climate scenario SSP37.0 and a daily resolution on the 5° grid over the
Europe-North-Atlantic domain (see Chapter 2.1). Frequencies of occurrence of circulation
patterns are compared for two 30-year periods, a far future horizon from 2071 to 2100,
and the reference period from 1991 to 2020. The signal-to-noise ratio (S/N-ratio) and
its significance is calculated based on Aalbers et al. (2018) using a two-sided t-test. The
S/N-ratio states, if the forced response (ensemble averaged frequency change) exceeds
the noise (standard deviation of the ensemble). To globally control the significance level
of 5 % over all 29 circulation types, the method by Benjamini and Hochberg (1995) is
used to adjust for multiple testing based on the false discovery rate.

3. Results

3.1. Method Evaluation

To evaluate the performance of our method, the daily class affiliations from the original
HB circulation type catalog (Werner and Gerstengarbe, 2010) are compared to the
class predictions of the deep learning classifier. On the outer folds of the nested cross-
validation, we obtain a macro F1-score of 39.3 and an overall accuracy of 41.1 %. The
class-specific F1-scores are given in the first column of Table 2. Table 2 further shows
the performance measures when applying our deep learning classifier to the ERA-40
reanalysis as analyzed by James (2006b). The deep learning classifier outperforms the
method by James (2006b) in 22 of the 29 classes. For the circulation patterns HM, NA
and SZ, the performance is more than 10 % higher, while the approach by James (2006b)
works especially well for NWA, TRM or HNFA. The overall accuracy of the deep learning
method on ERA-40 is 43.04 % and 39.1 % for James (2006b). However, these results
can be overly optimistic as the ERA-40 reanalysis data set has 24 years overlap with
the training data set. A conservative performance measure of our method is given by
the nested cross-validation results, while ERA-40 is only used to compare with James
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(2006b). The confusion matrix showing the average classifications on the test sets during
cross-validation is shown in Table A1 in the Appendix. Most of the misclassifications
occur between pairs of anticyclonic- and cyclonic circulation.
The deep learning classifications are compared with the HB circulation type catalog in
respect of the frequency distribution of the classes (see Appendix, Figure A1a). The
network reproduces the relative order of the classes well, but clearly underestimates the
class WZ. Also the classes HM and BM are underestimated by the network, while it
overestimates the class WS. The climate ensemble SMHI-LENS reproduces the circu-
lation types well (see Appendix, Figure A1b). Except for BM, for which the climate
model overestimates the frequency, all boxplots cover or intersect with the frequencies in
ERA-20C reanalysis data.

Figure 2 evaluates the "synoptic performance" of our deep learning classifier for each
class (Verdecchia et al., 1996). The signature plots are derived by taking the average field
of a certain class and subtracting the average field of all other situations from it. This
shows, which synoptic characteristics distinguish a single class from the other classes.
Signature plots are given for four different cases: labels, predictions, false positives and
false negatives. When columns 1 and 2 are very similar, the average signature of the
deep learning prediction agrees well with the average signature of the labels as derived
from the original HB catalog. A further noteworthy insight is given when there is large
agreement between column 1 and 3, which can indicate a misclassification in the catalog.
In this case, the deep learning method might correctly classify the situation, while the
labels disagree. Apart from slight differences for some classes, column 3 agrees generally
very well with column 1. Exceptions for which the CNN does not correctly identify the
patterns are for example: SEZ, for which the extent of the low pressure ridge in the
North is too large; TRW, because its high pressure system is too pronounced and TB
for which the extent of the low pressure system is too small. In other cases (marked by
green class names), the signature plots are an indication to question the choice in the
subjective catalog. Although the deep learning classifier only considers the information
provided in the data, and subjective reasons for the label classification are not available,
a certain level of arbitrariness in the catalog has already been recognized before by
James (2006b). Column 4 reveals the false negatives of the deep learning classifier. In
some cases (e.g. WA, WS, WW, NWZ and SEZ), the false negatives clearly differ from
the signature pattern of the labels in column 1. In these cases, the catalog labels may
be questioned and predictions of our approach seem plausible – at least based on the
objective slp and z500 data.

Figure 3 depicts the uncertainty obtained through the deep ensemble (30 members)
compared to the internal climate variability (50 members) as percentage of the total
uncertainty. The network’s uncertainty range lies at 11-33 % for the entire year. It is
larger in winter and smaller in summer. Note that for the deep learning part this does
not take the variability of hyperparameter tuning into account. In respect to typical
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Figure 2: Signature plots of the 29 circulation patterns at slp. Each circulation type
(CT) is shown in the respective row for four cases: column 1) labels: labels showing the
indicated CT, column 2) predictions: deep ensemble predictions showing the indicated
CT, column 3) false positives: signature pattern, when the deep ensemble predicts the
indicated CT while labels state differently, column 4) false negatives: labels stating the
indicated CT while deep ensemble predicts differently. The signature plots are derived
by calculating the average of all days for which the conditions for this CT are met and
subtracting the average of all other CTs. Thus, the composite plots show patterns that
distinguish a certain CT from the other types. The green class labels indicate CT for
which there is a good agreement between column 1 and 3.

2.4 Paper IV: Circulation Types over Europe 63



A Deep Learning based Classification of Circulation Types over Europe 10

climate modeling uncertainties (Hawkins and Sutton, 2011), the influence of climate
model choice and scenario choice is not considered.
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Figure 3: Stacked barplots illustrating the contribution of the two sources of uncertainty:
deep model initialization and internal climate variability in [%] of the entire spread.
The uncertainty sources are investigated for the projected frequency changes of the 29
circulation types between the far future (2071-2100) and the reference period (1991-2020)
for the entire year, the winter half-year (ONDJFM) and the summer half-year (AMJJAS).
The entire variance is based on 1500 values (50 climate models times 30 deep model
predictions).
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Table 2: Comparison of class-specific F1-scores of our Deep Learning classifier (DL)
evaluated on nested cross-validation (CV), on ERA-40 reanalysis data and comparison
to the classification method of James (2006b) on ERA-40. The best result on ERA-40 is
highlighted in bold in order to facilitate the comparison of the two methods. The overall
accuracy and macro F1-Scores are given in the last two rows.

Circulation type F1-score DL CV F1-score DL ERA-40 F1-score James

WA 44.6 49.31 40.04

WZ 47.08 54.73 52.5

WS 45.39 42.27 34.89

WW 37.7 39.66 29.91

SWA 35.36 44.14 36.44

SWZ 30.86 41.24 39.44

NWA 38.88 26.0 33.51

NWZ 37.07 41.1 43.28

HM 51.24 56.74 43.07

BM 47.29 40.21 37.88

TM 37.23 37.4 36.96

NA 24.85 30.77 15.82

NZ 44.32 43.56 41.31

HNA 45.57 45.87 45.55

HNZ 27.11 33.02 36.53

HB 50.99 47.65 44.78

TRM 27.86 31.32 39.35

NEA 41.44 33.29 29.74

NEZ 33.12 33.22 27.12

HFA 45.32 46.89 40.94

HFZ 24.81 31.56 32.85

HNFA 33.35 35.89 43.21

HNFZ 34.02 39.38 33.06

SEA 38.09 32.2 27.25

SEZ 37.93 38.81 31.01

SA 39.84 43.73 33.89

SZ 38.19 41.31 26.57

TB 42.11 46.67 37.7

TRW 29.34 35.57 37.64

Macro F1-score 38.3 40.12 36.28

Overall Accuracy 41.1 43.04 39.1
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3.2. Future changes

We apply the weighted deep ensemble to the SMHI-LENS with its 50 members to
quantify the spread of internal variability for absolute future frequency changes of the
29 circulation patterns between 2071 to 2100 and the reference period (1991-2020).
Figure 4 shows the spread of internal variability for all circulation types for the entire
year as well as the winter and summer half-year illustrated by boxplots. Significant
changes in terms of the S/N-ratio are indicated with bold class names. Tables with the
complete S/N-ratio values are given in the Appendix (Table A2 and Table A3). For
most circulation types, the boxplots intersect with the horizontal line at zero and the
members disagree in the sign of the trend. Overall, absolute changes are small and
lie within a range of ± 5 days for most circulation types. This finding is in line with
Huguenin et al. (2020), who find small changes of ± 4 days per season in a multi-model
ensemble for 10 groups of circulation patterns that are based on the 29 HB circulation
types. Note that for the circulation types TM-TRW (in the presented order), which have
small absolute frequencies, changes of ± 5 days can still mean high relative changes of
around ±50 % (see Apendix, Figure A2). For some circulation types, single members
outside the interquartile range show relative changes of >50 %, especially in the winter
half-year. Different to the studies by James (2006a) and Ringer et al. (2006), who
analyzed all 29 circulation types in the climate model HadGEM1 and have not found
significant frequency changes, our analysis of a SMILE allows to identify significant
frequency changes due to climate change despite the high spread of internal variability.
In Figure 4 d-f, we plot the class-specific F1-scores of our deep learning classifier and
their range throughout the deep ensemble. This allows to take into account the quality of
predictions for each class. Reliable statements can be made for the circulation patterns
WA, WZ, WS, HM, HNA, HB, HFA, SA, and TB throughout the entire year. The
clearest absolute climate trend is found for the anticyclonic westerly circulation (WA),
which shows an increasing trend for the entire year (and the summer half-year) with a
median of 6.6 days per year (summer: 5.4 days per year) and a S/N-ratio of 1.5 (summer:
1.7). For WA, the climate change signal clearly exceeds the noise of internal variability.
The increasing winter trends of HFA and TB are also significant, as well as decreasing
summer trends of WS, HB and SA and the increasing summer trend for HM.
In general, we find a decreasing trend for south-easterly circulations (SEA and SEZ) in
both summer and winter (trends are significant except for SEA in winter), although their
reliability based on F1-scores fluctuates seasonally. For winter, this goes in line with the
findings by Herrera-Lormendez et al. (2021), who have detected a decreasing trend for
south-easterly circulations from the Jenkinson-Collison classification using four members
of EC-Earth3 under SSP58.5. The classification by Jenkinson and Collison (1977) is
an automated version of the subjective Lamb catalog developed for the British Isles.
Herrera-Lormendez et al. (2021) applied this classification to Europe and distinguished 11
circulation types. Our results also support the findings of Herrera-Lormendez et al. (2021)
for the increasing summer trend of north-easterly circulations (in our case significant for
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NEA) and the decreasing summer trend for Northerlies (in our case significant for NZ
and HB).

Our results make clear that the spread of internal variability is tremendous and it
is difficult to derive systematic changes of circulation patterns grouped by their wind
directions. Despite the high internal variability, the results of the S/N-ratio are very
clear, showing a significant change in 69 % of the classes for the total year, 34 % for the
winter and 69 % for the summer half-year.
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Figure 4: Upper plots a-c: Boxplots showing the absolute change in the frequency of
occurrence [days per year] of the 29 circulation patterns between the far future 2071-2100
under the SSP37.0 scenario and the reference period 1991-2020 for the entire year, the
winter half-year (ONDJFM) and the summer half-year (AMJJAS). The boxplots cover
the distribution of the 50 members of the climate model ensemble SMHI-LENS. Bold
class name on the x-axis indicate a significant S/N-ratio based on multiple testing with
a significance level of 5 %. Lower plots d-f: Boxplots illustrating the spread of F1-scores
of the 30 models of the deep ensemble trained on the entire training data set. Outliers
outside of the boxplots’ whiskers are not shown. The colors indicate groups of wind
directions (Hoy et al., 2013). Pastel colors in the legend indicated by an "a" stand for
anticyclonic, dark colors indicated with a "c" for cyclonic circulation.
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4. Conclusion

In this study, we introduced a new automated classification method for the 29 circu-
lation types defined by Hess and Brezowsky (1952) using deep learning. Our method
shows the potential of deep learning in circulation type classification and outperforms
the state-of-the-art method by James (2006b) in 22 of the 29 classes. We applied the
deep learning classifier to a SMILE of the CMIP6 generation, the SMHI-LENS, which
comprises 50 members of the EC-Earth3 general circulation model. Our study is the first
one that analyzes future frequency changes of all 29 circulation patterns in a SMILE.
Thus, other than previous studies on climate change impacts on the HB circulation types
(James, 2006b; Ringer et al., 2006), we can identify significant frequency changes despite
the high range of internal variability.
A better understanding of climate change impacts on the European circulation patterns is
of high societal relevance due to their direct influence on our daily weather and the strong
relation to extreme events like heavy rainfall (Minářová et al., 2017), floods (Petrow
et al., 2009), hot days (Sulikowska and Wypych, 2020) and heat waves (Hoy et al., 2020).
Our results show an immense spread of internal variability when investigating future
frequency changes of the circulation patterns in the SMHI-LENS under the SSP37.0
scenario. Despite the high spread of internal variability, our results of the S/N-ratio show
significant (alpha = 5 %) absolute frequency changes for a high number of classes (69 %
of the classes for the entire year, 34 % for the winter half-year and 69 % for the summer
half-year). This underlines the great benefit in using a SMILE when analyzing climate
change effects on the highly dynamic large-scale atmospheric circulation over Europe. In
absolute numbers, the frequency changes lie in a range of ± 5 days for most circulation
types, which is in line with the findings by Huguenin et al. (2020). For the circulation
types TM-TRW (in the presented order), which occur only on a few days per year, small
absolute changes can still mean high relative changes (for some circulation types around
±50 %, for some members even >50 %). The most distinct absolute change is found
for Anticyclonic Westerlies (WA) with an increasing trend for the entire year with a
median of 6.6 days per year and a S/N-ratio of 1.5. Here, the climate change signal
clearly exceeds the noise of internal variability.
The classification results show that our deep learning classifier can yield good predictions
at low computational costs. This makes our method advantageous for application to
large climate data sets such as multi-model ensembles or SMILEs. Towards the goal of
reproducing the original subjective HB circulation types, it achieves higher performance
measures as the method by James (2006b). For some classes, a larger part of the misclas-
sifications of our deep learning classifier seem to be synoptically correct. The labels from
the HB circulation type catalog (Werner and Gerstengarbe, 2010) are subjective and hold
inconsistencies and ambiguous class affiliations (James, 2006b; Kučerová et al., 2017).
This means that the labels taken as ground truth hold a certain, unquantified human
level error. Our findings suggest that this human level error might be substantial for
some classes.
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The deep learning classifier is designed for the application to climate models, as this
requires an automated version of the HB circulation type classification. It is not meant to
replace a subjective continuation of the HB catalog and it is not suitable for this as long
as the human level error is unquantified and there is potential to improve the performance
of the classifier. A disadvantage of the deep learning approach is its potentially high
variability, which can be caused by model uncertainty or too noisy data. Our evaluation
shows that the variability of the deep learning method contributes up to 32.5 % of
the entire variance when applying our method to the SMHI-LENS. To deal with this
uncertainty, we use a deep ensemble of 30 networks with different initializations and
calculate a performance-weighted mean of this deep ensemble when applying the classifier
on new data.
Besides quantifying the human level error in the labels, possible future research could
evaluate further network architectures for an improvement of the deep learning per-
formance. Considering the temporal development of circulation patterns by using a
temporal-aware ConvLSTM architecture might improve the classification accuracy. Fur-
thermore, a deep hidden Markov model could improve the performance by including the
three-day-definition of HB circulation types directly in the training process. In order to
evaluate the uncertainties in frequency changes coming from different climate models
and forcing scenarios, a combination of multi-model as well as single-model ensembles
under different forcing scenarios is desirable. The deep learning classifier introduced in
this study can serve as valuable tool for the analysis of such a comprehensive data set.

Data availability statement

The code for the application of our deep learning classifier will be published upon
publication via zenodo (with a doi) and a GitHub-repository. The code is based on
python (version 3.6). The ERA-40 and ERA-20C reanalysis are derived from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF): http://www.ecmwf.int/.
The SMHI-LENS is publicly available from the data portal of the Earth System Grid
Federation (ESGF): https://esgf-data.dkrz.de/.
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Appendix

Transition smoothing Our classifications must adhere to the definition that a circulation
type lasts for at least three days. A transition-smoothing step ensures that this rule
is respected by post-processing the time series of the network classifications. First,
circulation types that last for less than three days are identified. Next, these transitions
are tested for neighborhood consistency and transition membership. Neighborhood
consistency describes the situation when before and after the transition the same
circulation type occurs. The transition days are then smoothed by assigning this
type to it. In case of transition membership different circulation types occur before and
after the transition. Here, the transition days obtain the class affiliation of the circulation
type before or after, depending on which class has the higher predicted probability.

Table A1: Confusion matrix of our proposed smoothed approach, averaged over the test
sets in the nested cross-validation. Correctly classified classes are highlighted in bold.

LABELS

W
A

W
Z

W
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W
W

SW
A

SW
Z

N
W

A

N
W
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H
M
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M
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A

N
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H
N

A

H
N

Z

H
B

T
R

M

N
E

A

N
E

Z

H
FA

H
F
Z

H
N

FA

H
N

F
Z

SE
A

SE
Z

SA SZ T
B

T
RW ∑ P
re

ci
si

on

O
U

T
P

U
T

S

WA 102 62 1 3 4 2 10 8 22 26 0 1 1 0 0 1 3 1 1 0 0 0 0 0 0 0 0 1 3 253 0,40

WZ 13 195 12 5 2 6 1 11 4 2 0 1 2 1 0 0 6 1 0 0 0 0 0 0 0 0 0 2 5 272 0,72

WS 1 51 67 3 0 8 0 4 1 1 4 0 0 1 3 0 6 0 0 0 0 0 1 0 3 0 1 6 5 170 0,40

WW 4 24 3 42 2 4 1 3 6 6 1 0 0 0 0 0 3 2 3 2 1 0 0 2 2 3 2 2 6 125 0,33

SWA 14 18 1 4 34 11 0 0 25 7 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 4 0 1 2 125 0,27

SWZ 4 36 9 5 8 30 0 1 4 1 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 2 1 4 5 115 0,26

NWA 14 8 0 1 0 0 58 18 12 20 0 1 4 2 1 12 3 2 2 0 0 0 0 0 0 0 0 0 1 159 0,37

NWZ 10 56 2 2 0 0 15 67 2 4 2 1 7 1 0 1 21 1 1 0 1 0 0 0 1 0 0 1 3 198 0,34

HM 8 4 1 1 4 1 5 1 142 23 0 1 0 2 0 4 0 2 1 7 1 1 0 2 0 3 0 0 1 216 0,66

BM 15 5 0 3 1 0 7 2 25 104 0 0 1 1 0 2 3 3 3 3 0 1 0 1 0 2 0 0 2 187 0,56

TM 0 8 4 1 0 0 0 3 0 1 34 1 6 0 4 0 10 1 3 1 1 1 5 0 1 0 1 4 6 95 0,36

NA 2 4 0 0 0 0 3 1 4 1 0 12 7 12 3 3 1 2 2 1 0 1 1 0 0 0 0 0 0 59 0,20

NZ 2 7 0 0 0 0 6 12 1 2 6 4 52 4 5 3 15 1 2 0 0 0 1 0 0 0 0 0 1 125 0,42

HNA 1 4 1 0 0 0 2 0 11 3 1 6 3 54 5 10 1 1 1 2 0 3 2 2 0 0 0 1 0 116 0,47

HNZ 0 5 3 0 0 1 1 0 1 1 7 2 7 10 17 1 3 0 1 0 0 1 7 1 0 0 0 1 2 72 0,23

HB 1 1 0 0 0 0 19 4 13 11 0 2 2 8 0 65 2 5 2 2 0 1 0 0 0 0 0 0 0 141 0,46

TRM 3 14 2 1 0 1 1 17 1 4 6 0 9 1 0 0 35 1 2 0 0 0 0 0 1 0 0 1 8 109 0,32

NEA 1 2 0 2 0 0 4 1 10 10 1 1 1 3 0 5 1 43 13 10 2 2 1 1 0 1 0 0 1 114 0,38

NEZ 1 2 1 1 0 0 5 1 1 5 4 0 2 1 1 2 5 10 26 2 2 1 2 0 1 0 0 0 1 79 0,33

HFA 1 1 0 1 1 0 0 0 21 5 0 0 0 3 0 1 1 9 2 63 5 4 1 9 2 4 0 0 1 135 0,47

HFZ 0 1 1 2 0 0 0 1 1 1 3 0 0 0 0 0 1 3 8 12 12 1 4 2 5 1 0 1 1 61 0,20

HNFA 0 1 0 0 0 0 0 0 2 3 1 1 2 11 1 2 1 3 3 12 1 21 8 3 1 0 0 1 1 79 0,27

HNFZ 0 3 1 0 0 0 0 0 1 1 7 0 2 4 7 0 1 0 2 4 2 6 24 3 2 0 0 1 2 74 0,32

SEA 0 1 1 1 1 0 0 0 7 2 0 0 0 3 0 0 0 0 1 12 2 2 3 32 9 8 1 1 1 87 0,36

SEZ 0 2 3 4 0 0 0 1 0 1 2 0 0 0 0 0 2 1 2 1 4 0 3 6 24 2 3 2 3 68 0,35

SA 1 2 0 3 4 3 0 0 16 5 0 0 0 1 0 0 0 0 0 6 0 0 0 7 1 34 4 1 3 94 0,36

SZ 0 1 5 4 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 8 19 7 5 63 0,30

TB 2 20 7 4 2 5 0 3 3 1 3 0 0 0 1 0 3 0 0 1 0 0 1 1 2 2 2 44 12 120 0,37

TRW 4 18 3 3 1 3 1 4 2 4 2 0 1 0 0 0 12 0 1 0 1 0 0 1 1 1 1 7 32 104 0,31

∑
205 557 126 97 68 81 140 164 340 255 88 35 111 123 51 115 140 94 79 143 36 49 67 78 59 76 36 89 116 3616 –

Recall 0,50 0,35 0,53 0,43 0,50 0,37 0,42 0,41 0,42 0,41 0,39 0,34 0,47 0,44 0,33 0,57 0,25 0,46 0,33 0,44 0,33 0,44 0,36 0,40 0,41 0,45 0,53 0,49 0,28 0,41 –
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Figure A1: Frequency distribution of the 29 circulation types in number of days per year.
Left: for the training period 1900-1980 in the HB circulation type catalog (labels) and
in predictions of our deep learning classifier on ERA-20C reanalysis (network). Right:
predictions of the deep learning classifier for the period 1991-2020 in ERA-20C reanalysis
(blue) and in the 50 members of the SMHI-LENS (boxplots).

Table A2: S/N-ratios for the 15 circulation types WA-HNZ for the total year, winter
half-year and summer half-year.

S/N-ratio W
A

W
Z

W
S

W
W

SW
A

SW
Z

N
W

A

N
W

Z

H
M

B
M

T
M

N
A

N
Z

H
N

A

H
N

Z

total 1.51 0.05 -0.31 0.53 0.15 -0.36 0.6 -0.7 0.31 0.76 -0.65 0.09 -0.36 -0.14 -0.65

winter half-year 0.23 -0.01 -0.11 0.69 0.53 0.16 -0.11 -0.68 0.13 0.05 -0.33 0.16 -0.03 0.19 -0.11

summer half-year 1.71 0.09 -0.57 -0.02 -0.39 -1.22 0.8 -0.43 0.34 0.86 -0.67 0.03 -0.39 -0.28 -0.73

Table A3: S/N-ratios for the 14 circulation types HB-TRW for the total year, winter
half-year and summer half-year.

S/N-ratio H
B

T
R

M

N
E

A

N
E

Z

H
FA

H
F
Z

H
N

FA

H
N

F
Z

SE
A

SE
Z

SA SZ T
B

T
RW

total -0.71 -0.93 0.68 0.23 0.34 0.01 -0.37 -1.62 -0.67 -1.09 -0.02 -0.66 0.29 0.24

winter half-year -0.18 -0.85 0.08 0.22 0.4 0.05 0.06 -0.83 0.29 -0.81 0.42 -0.47 0.55 0.11

summer half-year -0.73 -0.5 0.78 0.14 0.04 -0.04 -0.46 -1.71 -0.77 -0.9 -0.78 -0.6 -0.02 0.2
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Figure A2: Upper plots a-c: Boxplots showing the change in the relative frequency of
occurrence [%] of the 29 circulation patterns between the far future 2071-2100 under
the SSP37.0 scenario and the reference period 1990-2020 for the entire year, the winter
half-year (ONDJFM) and the summer half-year (AMJJAS). The boxplots cover the
distribution of the 50 members of the climate model ensemble SMHI-LENS. Lower plots
d-f: Boxplots illustrating the spread of F1-scores of the 30 models of the deep ensemble
trained on the entire training dataset. Outliers outside of the boxplots’ whiskers are
not shown. The colors indicate groups of wind directions. Pastel colors in the legend
indicated by an "a" stand for anticyclonic, dark colors indicated with a "c" for cyclonic
circulation. Bold class name on the x-axis indicate a significant signal-to-noise ratios
based on multiple testing with a significance level of 5 %.
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3 Conclusion

This thesis investigates dynamic drivers of different regional hydro-meteorological ex-

treme events by classifying them in large climate model ensembles using machine

learning techniques. The conclusion of this dissertation consists of two parts: firstly,

the answers to the research questions raised in chapter 1.4, and secondly, recommen-

dations for machine learning applications in climate pattern recognition tasks, which

originate from experiences throughout the work on this thesis.

3.1 Answers to the Research Questions

In the following, the key findings of the four presented publications are summarized by

answering the research questions posed in chapter 1.4. The research questions are re-

lated to two overarching research questions, which cover all four publications and span

over the entire thesis. The overarching research questions are addressed at the end.

The subordinated research questions are divided into three sections, with each sec-

tion relating to one atmospheric feature or set of atmospheric features: Vb-cyclones,

pressure-driven channeling, and the 29 circulation types called Großwetterlagen. The

case of circulation types is covered by two publications, whereby publication III is

a preliminary study for paper IV and focuses on six selected circulation types that

drive European heat and drought extremes.

Vb-Cyclones

Q1.1: Can neural networks for pattern recognition detect cut-off low related Vb-

cyclones in regional climate model data sets? Can this machine learning approach

be combined with the established meteorological procedure of cyclone tracking?

Paper I shows that the machine learning technique of neural networks can be a useful

tool for the detection of cut-off low related Vb-cyclones in climate models, especially

for analyzing large ensembles. In combination with a tracking procedure, neural
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networks can help to efficiently filter large data sets for the atmospheric situations

of interest. The detailed tracking procedure post-processes the network output and

ensures that the detected Vb-cyclones fulfill the meteorological criteria for their defini-

tion. This two-step procedure with a combination of machine learning and a classical

meteorological approach ensures a high accuracy in Vb-cyclone detection. The clas-

sification results of paper I state that 94.6 % of them are correctly identified.

Q2.1: How does climate change under the RCP8.5 scenario affect the frequency, sea-

sonality and precipitation intensity of cut-off low related Vb-cyclones? What role does

internal climate variability play?

The findings of paper I reveal that in the CRCM5-LE, which is driven by the boundary

conditions of the Canadian Earth System Model version 2 Large Ensemble (CanESM2-

LE) and the RCP8.5 scenario as external forcing, the absolute frequency of Vb-

cyclones per year does not change significantly. The seasonality of Vb occurrence,

however, is subject to strong changes. Summer Vb-cyclones decrease by -51.8 % (me-

dian) when comparing the far future (2070-2099) to the reference period (1980-2009).

This supports the findings by Nissen et al. (2013), who find a decrease in Vb-cyclone

occurrence throughout the summer half-year even though using a different model and

a less strong forcing scenario. Spring Vb-cyclones, on the contrary, occur considerably

more often with a median of +73.4 %. This leads to a shift of the peak of maximum

Vb-cyclone occurrence throughout the year from summer, the season associated with

the highest precipitation intensities, to spring. The spread of internal variability in

Vb-cyclone occurrence is large (at its highest in spring in future it is one event per

year, while having an average probability of occurrence of also one event per year).

Still, the seasonal frequency changes exceed the noise of internal variability and have

signal-to-noise ratios larger than 1. With progressing climate change in the CRCM5-

LE, the precipitation intensities of Vb-cyclones increase in all seasons, but remain

highest in the warm season of summer.
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Pressure Driven Channeling

Q1.2: Can deep learning help to identify the large-scale atmospheric driver of mixed

precipitation in Montréal in regional and global climate models? How can this deep

learning approach be combined with meteorological domain knowledge?

The findings of paper II illustrate that deep learning can achieve decent accuracy in

classifying the large-scale atmospheric driver of mixed precipitation in the Montréal

area. The combination of the CNN with a temperature and precipitation condition

in a two-staged approach allows to include meteorological domain knowledge about

a thermodynamic precondition for mixed precipitation occurrence. This notably in-

creases the classification accuracy of the approach by improving the Matthews corre-

lation coefficient by + 21 %. In the end, the trained CNN reaches a recall of 83.8 %

and a precision of 72.4 % on the test set. The Matthews correlation coefficient of 0.77

indicates an overall decent performance.

Circulation Types

Q1.3: Can deep learning help to study important atmospheric drivers of heat and

drought in large climate ensembles?

The workshop paper of publication III introduces a deep learning classifier that iden-

tifies six selected circulation types that trigger European heat and drought events. On

these selected circulation types, the classifier reaches an overall accuracy of 60 % and a

macro F1-score of 0.38. This deep learning classifier based on a CNN architecture can

help to detect important atmospheric circulation patterns that are associated with

these extreme events in large ensembles of climate models. Thus it can be one helpful

step towards a better understanding of the dynamic drivers of heat and drought in

Europe.

Q1.4: Can deep learning provide a more accurate classification method of Hess & Bre-

zowsky’s circulation types over Europe than the state-of-the-art? What uncertainties

are involved in the deep learning approach?

The introduced deep learning classifier of paper IV is capable of classifying all 29 cir-
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culation types from the subjective catalog by Hess & Brezowsky. It reaches an overall

accuracy of 41.1 % on the test set during nested cross-validation. The comparison

with the state-of-the-art method by James (2007) on ERA-40 reanalysis reveals that

the deep learning based method reaches higher classification accuracies for 22 of 29

classes and thus has a higher performance in reproducing the original catalog. Due

to its complexity, the deep learning procedure itself is subject to uncertainties. Paper

IV quantifies the network’s uncertainty due to weight initializations by generating a

large deep ensemble of 30 networks with different random weight initializations in the

beginning of the learning process. The network’s uncertainty is addressed by using

the weighted average of the deep ensemble to make class predictions during inference

on new data.

Q2.2: How does climate change affect the frequency distribution of Hess & Brezowsky’s

circulation types over Europe in the Swedish Meteorological and Hydrological Institute

- Large Ensemble (SMHI-LENS), a SMILE from the CMIP6 generation? What is the

role of internal climate variability?

Employing the SMHI-LENS ensemble under the SSP37.0 scenario, the findings of

paper IV reveal overall small absolute frequency changes of ± 5 days for most cir-

culation types when comparing the far future (2071-2100) with a reference period

(1991-2020). This is in line with the findings by Huguenin et al. (2020). For circula-

tion types that occur only rarely, this can still mean high relative frequency changes

of around ± 50 %. Generally speaking, south-easterly circulations are decreasing in

both summer and winter; northerlies are decreasing in summer, while north-easterly

circulations show a summer increasing trend. The spread of internal variability is con-

siderable (with up to 18 days per year for the most frequent circulation type). The

study uses the SMILE of the SMHI-LENS and the signal-to-noise ratio to discriminate

between climate change and the noise of internal variability. Using a 5 %-significance

level, the results show significant frequency changes for 20 out of the 29 circulation

types (69 %), despite the high spread of internal climate variability.
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Overarching Research Questions

Q1: Can neural networks facilitate the investigation of atmospheric drivers of re-

gional hydro-meteorological extreme events by identifying them in large climate model

ensembles?

This thesis illustrates with four publications on three atmospheric features or set of

features that the machine learning technique of neural networks can reach adequate

accuracies in classifying atmospheric patterns and can thus help to detect the atmo-

spheric drivers of various different regional hydro-meteorological extreme events in

climate model data. With this, neural networks can support the investigation of the

dynamic component of climate change impacts on regional extremes. The benefit of

neural networks comes to bear especially when working with large data sets and using

neural networks as efficient filtering tool. This is especially important in the era of

large ensembles and ever-growing volume of climate model data sets.

Q2: How does climate change influence the occurrence of atmospheric drivers of re-

gional hydro-meteorological extreme events? What role does internal climate variabil-

ity play?

As the results of the climate change studies in paper I and IV of this thesis show,

internal climate variability is an important source of uncertainty for the atmospheric

drivers of regional hydro-meteorological extreme events. The spread of internal cli-

mate variability is illustrated in form of boxplots in Figure 2 and 3 of paper I and

Figure 4 of paper IV and is considerable for Vb-cyclones and circulation types. Using

SMILES, climate trends can be separated from the noise of internal climate variability.

This reveals effects of climate change on the frequency with which the atmospheric

drivers occur. In the case of Vb-cyclones this primarily includes a shift in seasonality,

while for circulation types 20 of 29 classes (69 %) show significant absolute frequency

changes for the entire year.
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3.2 Recommendations for machine learning applications in cli-
mate pattern recognition

There are three main recommendations for best practices in machine learning ap-

plications in the area of climate pattern recognition that are set up based on the

experiences and the orientation of this thesis.

Integrating meteorological domain knowledge

The first recommendation is targeted at the integration of meteorological domain

knowledge into the design of machine learning approaches. This idea was pursued

throughout this thesis. For paper I and II this was implemented in form of a two-

staged approach, in which neural networks were combined with a meteorological pro-

cessing step, e.g., cyclone tracking (paper I) or post-processing with a temperature

and precipitation criterion (paper II). For paper III and IV a subjective catalog of

circulation types was taken as ground-truth, which was generated by experts based

on their synoptic domain knowledge. From a computer science perspective, the ideal

state often aimed for is the integration of domain knowledge into an end-to-end learn-

ing (Glasmachers 2017), where the entire learning process is captured by one machine

learning model without the need for post-processing. An example in the case of circu-

lation types is given: the transition smoothing step, which insures that a circulation

type fulfills its meteorological definition in that it lasts for at least three days, could

be realized directly during classification by a deep hidden Markov model (Mittermeier

et al. 2021b). This would be an end-to-end learning process without the need for post-

processing. However, it is important not to carry out an end-to-end learning at the

expense of domain knowledge. In case of the tracking procedure applied in paper I, for

example, there are good arguments for doing an extra post-processing step: this way

an well-established procedure can be applied, which is comparable with other research

studies, and follows a physically-based approach. A promising approach of combining

neural networks with climate domain knowledge differing from the strategy followed

in this thesis, is the integration of machine learning in existing climate models, e.g.,
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by replacing the parameterization of clouds in climate models by a machine learning

model as mentioned in chapter 1.2.2 (Rolnick et al. 2019).

Choosing a balanced and transparent test set

The second recommendation is about choosing a balanced test set and making the

test set choice transparent. A test requires to be representative of the wider popu-

lation (Lones 2021). For climate pattern recognition tasks there are often challenges

introduced by the time series structure of the data and strongly imbalanced class

distributions in the case of extreme event detection. These special features are to be

be taken into account when selecting the test set. It is highly recommended to make

the test set choice transparent by presenting how the test set is derived and composed

(Mittermeier et al. 2021a).

Acknowledging the elaborative data processing and training process

The third recommendation is to acknowledge that the elaborative and time consum-

ing part in classifying atmospheric patterns using machine learning lies in the step

of designing the approach, processing the data and training the network. This is

especially the case when the number of training examples is particularly high (as in

paper II). The argument of efficiency in terms of machine learning is related to the

application of the final product - the trained network - to new data. This step is

quick and of low computational cost. The step of establishing the procedure and

enhancing the network performance, however, can be time consuming and potentially

requires hands-on work in analyzing the weak points and testing different strategies

for possible performance achievement. If the trained network is used only for one

specific research scope, this raises the question of efficiency in respect to the research

workflow. A solution can be to design a deep learning classifier for the identification

of several different atmospheric features at once. This way, the dynamic drivers of

different extreme events can be analyzed and one deep learning classifier can be used

to address various research questions. This is a major benefit of paper III and IV as

they focus on a set of circulation types with 29 different classes that are associated

with several different extreme events.
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