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1. Authors contribution to the publications 

1.1 Contribution to publication I 

 

Tigges J, Eggerbauer F, Worek F, Thiermann H, Rauen U, Wille T (2021). Optimiza-
tion of long-term cold storage of rat precision cut lung slices (PCLS) with a tissue 
preservation solution. American Journal of Physiology - Lung Cellular and Molecular 
Physiology, 321:6, L1023-L1035; DOI:10.1152/ajplung.00076.2021. 
 
Journal listing in „Web of Science“ of the Thomson Reuter Institute for Scientific Infor-
mation (2020): American Journal of Physiology-Lung Cellular and Molecular Physiolo-
gy: Category Rank 11 of 81 in the category “Physiology” 
 
I investigated the effects of long-term (3-28 days) cold storage of PCLS in optimized 

tissue preservation solutions to improve the applicability of PCLS in lung toxicology 

research, to extend the cold storage duration of PCLS and to enable the transport of 

these slices between different cooperating laboratories. The results from this investiga-

tion were published in the American Journal of Physiology - Lung Cellular and Molecu-

lar Physiology. During these investigations, a broad spectrum of biochemical and func-

tional assays was applied to investigate the effects of cold storage on multiple relevant 

endpoints studied in PCLS. Hereinafter, I list my contributions to the publication in the 

American Journal of Physiology - Lung Cellular and Molecular Physiology:  

 

- Literature research  

- PCLS preparation  

- Cold storage experiments (base solutions with or without (experimental) iron 

chelators etc.) 

- Performance of all biochemical assays after PCLS cold storage (Alamar Blue 

assay and live/dead staining for evaluation of cytotoxic effects, tetramethyl rho-

damine methyl ester (TMRM) staining for detection of mitochondrial membrane 

potential, lipopolysaccharide (LPS) stimulation and enzyme-linked immuno-

sorbent assay (ELISA) to evaluate the inflammatory response, preparation of 

single cell suspensions and fluorescence activated cell sorting (FACS) analysis 

to study specific cell-populations and analysis of bronchoconstriction to deter-

mine the functional response) 

- Data analysis (data visualization and statistical analysis using the software 

GraphPad Prism) 

- Preparation of the manuscript draft 
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- Planning of additional experiments including the selection of suitable endpoints 

and methods to address the reviewers’ comments 

- Preparation of the revised manuscript and response to reviewers’ comments  

 

The following contributions to the publication Tigges et al. in American Journal of Phys-

iology - Lung Cellular and Molecular Physiology (2021) were made by the co-authors: 

 

Author Eggerbauer F:  

- Pre-evaluation of cold storage durations and rewarming periods  

- Pre-evaluations for bronchoconstriction experiments 

 

Authors Worek F and Thiermann H: 

- Scientific advice  

 

Author Rauen U: 

- Preparation of cold storage solutions and provision of iron chelators  

- Scientific advice  

 

Author Wille, T: 

- Project supervision and scientific advice 

- Data discussion and preparation of the manuscript 
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1.2 Contribution to publication II 

Tigges J, Worek F, Thiermann H, Wille T (2022). Organophosphorus pesticides exhibit 
compound specific effects in rat precision cut lung slices (PCLS): mechanisms involved 
in airway response, cytotoxicity, inflammatory activation and antioxidative defense. 
Archives of Toxicology; 96, 321–334; DOI: https://doi.org/10.1007/s00204-021-03186-x 
 
Journal listing in „Web of Science“ of the Thomson Reuter Institute for Scientific Infor-
mation (2020): Archives of Toxicology: Category Rank 16 of 93 in the category “Toxi-
cology” 

 

In the present study, PCLS were used to evaluate multiple effects of organophosphate 

exposure in a complex ex-vivo lung tissue model. Therefore, rat PCLS were exposed to 

different organophosphorus pesticides and their biotransformation products (oxon-

form) and effects on viability as well as functional response were investigated. The re-

sults of these investigations are published in Archives of Toxicology. Hereinafter, I list 

my contributions to the publication in Archives of Toxicology: 

- Literature research 

- Study design of the organophosphorus compound (OP) pesticides exposure 

experiments including the selection of suitable endpoints and methods for eval-

uation  

- PCLS preparation 

- Performance of all biochemical assays after OP exposure (Alamar Blue assay 

and lactate-dehydrogenase (LDH) activity for evaluation of cytotoxic effects, 

multiplex immunoassay and ELISA to evaluate the inflammatory response, glu-

tathione (GSH) and glutathione disulfide (GSSG) detection, glutathione-S-

transferase activity (GST), superoxide dismutase (SOD) activity assays and 

hemeoxigenase-1 (HO-1) ELISA to evaluate antioxidative response, multiplex 

immunoassay for evaluation of signaling pathway activation and analysis of 

bronchoconstriction to determine the functional response) 

- Data analysis (data visualization and statistical analysis using the software 

GraphPad Prism) 

- Preparation of the manuscript draft 

- Preparation of the revised manuscript and response to reviewers’ comments  
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The following contributions to the publication Tigges et al. in Archives of Toxicology 

(2022) were made by the co-authors: 

 

Author Worek F  

- Project supervision and scientific advice  

 

Author Thiermann H: 

- Scientific advice  

 

Author Wille, T: 

- Project supervision and scientific advice 

- Data discussion and preparation of the manuscript  
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2. Introductory summary  

2.1 Organophosphorus compounds  

Within the group of plant protection products, insecticides are of fundamental im-

portance for pest control in agricultural farming. Besides carbamates and neonico-

tinoids, organophosphorus compounds (OP) such as chlorpyrifos or malathion are 

used. These so-called “organophosphates” are characterized by a central phosphate 

molecule with alkyl or aromatic substituents. In addition to their application as insecti-

cides, highly toxic OP are also used as nerve agents, e.g. sarin since 2013 in Syria 

(John et al. 2018). Since an extensive pesticide development program by Gerhard 

Schrader in the 1930s, a wide range of structurally diverse pesticides and highly toxic 

nerve agents has been developed (Costa 2006). Although the use of some highly toxic 

OP in pesticides has been strictly regulated, and self-poisoning is comparably rare in 

Europe (Hrabetz et al. 2013), OP intoxication is a very common poisoning worldwide, 

with accidental, but also deliberate poisonings occurring especially in rural South East 

Asia. Widespread use due to low-costs and easy access to large quantities of OP pes-

ticides, lead to a conservatively estimated ~ 100.000 cases of self-poisoning with fatal 

outcome each year, posing a major burden for the local health systems (Jeyaratnam 

1990; van der Hoek et al. 1998; Mew et al. 2017; Gunnell and Eddleston 2003). Hospi-

tals in rural regions of developing countries, where these substances are increasingly 

used, are often poorly equipped, which makes efficient treatment of patients difficult, 

resulting in a case fatality rate of 15-30% (Eddleston et al. 2008).   

2.1.1 Toxicokinetic and toxicodynamic of OP  

Following absorption via inhalation, ingestion or via the skin, the fate of an OP is de-

pendent on distribution, metabolism and excretion. As especially the parent phos-

phorothioates like parathion or malathion are lipophilic, accumulation occurs mainly in 

fat tissue, as well as in kidney, lung and brain (Timchalk 2010). The toxicity of OP after 

absorption is on the one hand dependent on spontaneous hydrolysis and bio-

transforming enzymes leading to detoxification (Buratti et al. 2007) and on the other 

hand on cytochrome P450 (CYP) mediated bioactivation, resulting in the formation of 

the significantly more potent oxon forms (Timchalk 2010) (Figure 1).  



2 Introductory summary 14 

 

 

Figure 1: Human enzymatic biotransformation of phosphorothioate pesticides (modified from 

Wille et al. (2020)) 

After bioactivation, OP covalently bind to the active serine hydroxyl residue 203 of ace-

tylcholinesterase (AChE), forming an enzyme intermediate and subsequently inhibiting 

the degradation of the neurotransmitter acetylcholine (ACh) in the synaptic clefts 

(Worek et al. 2020; Chambers and Oppenheimer 2004). The excess of ACh in the syn-

aptic clefts and the neuromuscular junction leads to permanent excitation and over-

stimulation at nicotinic and muscarinic ACh receptors, inducing a cholinergic crisis that 

may ultimately result in respiratory arrest and death if left untreated. Although a stable, 

covalent bond between OP and AChE is formed, secondary side reactions such as 

spontaneous reactivation may restore the enzyme activity in mild OP poisoning. On the 

other hand, dealkylation of R1 or R2 (so called “aging”) with enhanced binding stability 

may occur, which impairs AChE reactivation by oximes (Worek et al. 2004) (Figure 1). 

Symptoms of cholinergic crisis include hypersecretion of glands, smooth muscle con-

traction, urination, diarrhea, abdominal cramps and emesis with respiratory arrest being 

the most common cause of death (Wille et al. 2020; Okumura et al. 1996). The devel-

opment and progression of symptoms is highly dependent on the type of OP, route of 

exposure and decontamination efficiency (Eyer et al. 2003). 
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Standard therapy for OP poisoning consists of repeated administration of atropine as a 

muscarinic receptor antagonist and an oxime to reactivate the inhibited AChE. Howev-

er, the efficacy of oxime therapy is controversially discussed and depends on the spe-

cific type of OP, body load and start of oxime administration after OP intake (Worek et 

al. 2020). Recently introduced experimental therapeutic approaches also focus on the 

development of bio-scavengers, that degrade circulating OP before they reach their 

physiological target, as well as on scavenging cyclodextrins and receptor-active sub-

stances (Wille et al. 2016; Letort et al. 2016; Amend et al. 2020; Stigler et al. 2021). 

2.1.2 Respiratory complications after OP exposure 

In deliberate poisoning, the primary route of exposure is oral ingestion of OP, with sub-

sequent absorption primarily in the gastrointestinal tract. However, aspiration of stom-

ach content may occur, leading to direct lung cell contact with high OP concentrations 

(Hulse et al. 2014). In many cases of OP exposure, respiratory complications are ob-

served, whose underlying mechanisms are not well understood. In an autopsy case 

series of 85 patients with OP poisoning, pulmonary interstitial edema was found in 75% 

of the patients who died within 24 h after OP exposure (Kamat et al. 1989). In addition, 

disruption of the endothelial-epithelial barrier after exposure to the nerve agent VX has 

been observed in animal studies and aspirated dimethoate has been shown to damage 

the alveoli (Hulse et al. 2014). Epidemiological data from workers involved in organo-

phosphate production also suggest an immunomodulatory effect as they showed in-

creased incidence for upper respiratory infections and reduced neutrophil function 

(Hermanowicz and Kossman 1984). After inhalational exposure to the OP nerve agent 

VX, acute lung injury with increased bronchioalveolar lavage protein, neutrophil infiltra-

tion and alveolar inflammation was observed in guinea pigs (Wright et al. 2006) and 

baboons exposed to the OP nerve agent sarin showed pulmonary neutrophilia 

(Anzueto 1990). Observations from in vitro cell culture studies furthermore suggest 

cytotoxic and immunomodulatory effects of OP in bronchial epithelial cells (Oostingh et 

al. 2009) and differentiated macrophages (Proskocil et al. 2019).  

2.1.3 Non-AChE inhibition related toxicity of OP  

While the acute effects and underlying mechanisms of AChE inhibition are well studied, 

the secondary effects that occur in the further course of treatment after OP exposure 

are not well understood and there is increasing evidence, that mechanisms other than 

AChE inhibition are involved in the chronic adverse health effects of OP (Costa 2006). 

For example, 55 different proteins were identified as binding targets of OP in the 

mouse brain, which can impair protein function. The investigated OP bound to different 
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proteins, which could be an explanation for the variable adverse health effects of OP 

(Lockridge et al. 2005). Furthermore, an impairment of various metabolizing enzymes 

has been demonstrated, which can likewise lead to adverse health effects (Richards et 

al. 2000).      

These studies provide evidence that OP can react directly with cells and induce dam-

age and inflammatory activation independent from the primary mechanism of AChE 

inhibition. However, many studies have been carried out either in vivo or in cell culture 

experiments, whereby either the high complexity of the system allows only limited con-

clusions about direct substance effects and their mechanisms, or the use of single se-

lected cell types is limited in reflecting the cellular interaction and composition of the 

real lung.  

2.1.4 Modell systems to study lung toxicology 

The respiratory system is a complex organ system, and constantly exposed to envi-

ronmental compounds. Recently, more than 50 different cell types have been identified 

in the human lung, each with their own task and biochemical function, which underlines 

the complexity of this pivotal organ (Travaglini et al. 2020). The exactly balanced inter-

play between different cell types involved in breathing mechanics, oxygen supply and 

immune response enables reliable organ function under challenging conditions, espe-

cially the continuous exposure towards environmental pollutants. However, ongoing 

exposure towards polluted air or other chemical substances can disrupt this balance, 

leading to impaired lung function and development of numerous lung diseases. To 

study effects of compounds on the lung, different experimental models are used.  

In vivo models are still the gold standard for the detection of adverse effects in drug 

discovery. As of today, performing studies in living organisms remains the only way to 

comprehensively assess pharmacodynamics, pharmacokinetics, and safety of a drug 

candidate or chemical substance before initiating clinical trials in humans. However, 

they are very complex, which makes the analysis of underlying mechanisms difficult. In 

addition, they are expensive, time-consuming, labor-intensive and are hardly in agree-

ment with modern animal ethics standards. In vitro experiments use lung cell lines or 

primary cells and represent the characteristics of specific lung cell types like epithelial 

cells or alveolar macrophages. Cell cultures are well suited to investigate the underly-

ing mechanisms of toxic effects on certain lung cell types but have their limitations 

when cell-cell interactions or physiological functions need to be analyzed. However, the 

natural lung tissue with all its different cell types and important cellular sub-units (e.g., 

blood vessels or airways) cannot be reproduced in vitro in its full complexity (Sakagami 
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2006). As an intermediate approach, complex tissue cultures are used ex vivo to fill the 

gap between in vivo animal experiments and in vitro cell culture investigations.  

2.2 Precision cut lung slices (PCLS) and their use in lung 

toxicology research 

In general, tissue cultures can be generated from many different organs of either hu-

man or animal origin, such as liver, kidney, intestine, brain, or lung (Majorova et al. 

2021). The PCLS technique combines primary cells in their natural composition and 

structure with the easy-to-handle procedures and standardized exposure possibilities of 

cell culture experiments, providing unique insights into toxic effects and their mecha-

nisms in complex tissue. The lung tissue samples can be gained either from laboratory 

animals, or from human donors with pre-existing diseases allowing the evaluation of 

therapeutic approaches for specific conditions. As > 150 PCLS can be generated from 

one rat lung, the ex vivo use of this tissues samples can therefore contribute to the 

reduction and refinement of animal experiments according to the 3Rs principle (reduce, 

refine and replace animal experiments) (Russell and Burch 1959).  

Although precision cut lung slices have already been used for several decades in lung 

research (Fisher et al. 1994), the use of PCLS has been steeply rising in the last years 

due to continuous improvements in slicing technique and culture conditions with the 

rational to reduce animal experiments.  

As the lung has no solid consistence, instillation with liquid agarose and solidification 

after cooling is necessary to prepare the lung tissue slices.  After PCLS preparation, 

the obtained living lung tissue can be exposed to a wide variety of substances and can 

be evaluated using a broad spectrum of biochemical assays. Cytotoxic effects of chem-

icals can be determined using metabolic activity assays, where the enzymatic activity is 

representative for the cellular viability. In addition, viability can be investigated using 

live/dead staining and confocal microscopy or the release of LDH into the supernatant 

of PCLS as an indirect indicator of induced cell damage. Recently, these assays have 

been used to study the cell-damaging effects of nanoparticles or low-molecular-weight 

chemicals for pre-validation in toxicological risk assessments (Neuhaus et al. 2018; 

Hirn et al. 2014; Sauer et al. 2014). Although cytotoxic effects can be tested easily by 

analysis of the overall viability in PCLS, evaluation of the underlying mechanisms is 

limited, since a large quantity of the cells must be considered as damaged per se due 

to the slicing procedure. In contrast to immortalized tumor cell lines, all cells in lung 

tissue undergo cell degradation and finally death over time and are only capable of 

limited proliferation.  
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Complex three-dimensional lung tissue allows analysis of airway responsiveness and 

beating frequency of cilia. By adding neurotransmitters such as ACh, bronchocon-

striction of airways can be induced. The neurotransmitter is afterwards degraded by 

tissue resident AChE, leading to smooth muscle relaxation and subsequent reopening 

of the airway. Using this technique for analysis of airway response, PCLS can be used 

as a model to test new therapy options for respiratory diseases such as chronic ob-

structive pulmonary disease (COPD) or asthma as well as for OP poisoning (Wohlsen 

et al. 2003; Herbert et al. 2017, 2019).  

The inflammatory response, which is predominantly dependent on tissue-resident alve-

olar macrophages, is another important functional marker to study the effects of an 

exposure towards chemicals in PCLS. Tissue resident immunologically active cells are 

characterized by the presence of CD45 surface markers and are equally distributed in 

high numbers throughout the slices (Misharin et al. 2013) (Figure 2).  

 

Figure 2: Widefield microscopical image of PCLS (left) and CD45 immunostaining (right). PCLS 

were stained with mouse anti rat CD45 (FITC) antibody, fixed in 4% paraformaldehyde and 

mounted on a glass slide. Images were taken by confocal microscopy (Leica DMi-8; Leica Mi-

crosystems, Wetzlar, Germany) using a 10x objective and are afterwards digitally combined to 

obtain a complete PCLS image. Scale bar = 1 mm   

To study inflammatory activation in PCLS, the expression of proinflammatory cytokines 

such as tumor necrosis factor-α (TNF-α) or interleukin-6 (IL-6), that are either concen-

trated intracellularly or released into the PCLS supernatant, can be detected following 

exposure to test compounds (Temann et al. 2017). It is important to note that a re-

cruitment of lung external immune cells such as neutrophils is not possible and only the 

inflammatory response of resident cells is assessed. In recent years, this system has 

been widely used to test the effects of asthma therapeutics, allergens and irritants or 
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antiviral drugs on inflammatory cells in the lung, with is a useful approach to reduce in 

vivo experiments (Banerjee et al. 2012; Lauenstein et al. 2014; Danov et al. 2019).  

However, regional differences in lung tissue might result in a different cell composition 

in the PCLS, which may complicate interpretation of the results.  

Cell damage and inflammatory activation after chemical exposure result in an imbal-

ance of the cellular redox system, which leads to an increased formation of reactive 

oxygen species. These effects can be detected in PCLS by analyzing key players in 

the antioxidant defense such as glutathione or the activity of antioxidant enzymes 

(Sauer et al. 2014).  

Cultivation time of PCLS in a standard laboratory incubator is limited. Even with regular 

medium changes, a decrease of metabolic activity as well as a loss of cells is observed 

with ongoing incubation time and inflammatory response is highly decreased already 

after one week (Preuß et al. 2021; Temann et al. 2017). Furthermore, the number of 

PCLS that can be prepared from a tissue sample, particularly from humans, often ex-

ceeds the number of slices that can be used immediately for experimental investiga-

tions, making storage of PCLS for a longer period desirable.  

2.3 Conservation and storage of PCLS (Publication I) 

An extended storage duration enables the transport of PCLS between cooperating in-

stitutions, which could significantly increase the usability especially of human tissues. 

Therefore, various attempts have been made in recent years to extend the cultivation 

time of PCLS. There are several approaches to extend the lifespan of PCLS by warm 

storage at 37°C, 5% CO2 in the incubator. For example, embedding the tissue in a hy-

drogel biomaterial has shown to be effective in extending viability to at least 21 days 

(Bailey et al. 2020). Addition of insulin can also significantly prolong airway smooth 

muscle contraction, although no protective effect on overall viability is observed (Li et 

al. 2020). However, both approaches require regular medium exchange, which can be 

very labor-intensive for a large quantity of PCLS. The cryopreservation method, where 

PCLS are stored at -80°C, does not require much time and effort and allows the estab-

lishment of tissue-banks with samples derived from patients suffering from various lung 

diseases. To prevent damage of cell membranes resulting from intracellular ice crystal 

formation, a comparatively high amount of dimethyl sulfoxide (10%) is used, which can 

have adverse effects in the lung tissue. Although this process does not seem to lead to 

alterations in airway responsiveness, it does reduce the metabolic activity of the cells 

(Rosner et al. 2014; Watson et al. 2016). A more gentle way of preservation can be 

storage at 4°C, as this has already been used for liver and kidney slices with good out-
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comes (Fisher et al. 1996). By reducing the ambient temperature, the metabolic activity 

of the cells can be substantially decreased, which also reduces the energy required for 

maintenance of cellular functions and therefore can be expected to preserve viability 

over a longer period of time (Guibert et al. 2011). Storage at 4°C also simplifies PCLS 

transport, as incubators for transport at 37°C and 5% CO2 are expensive and not easy 

to handle. In Publication I, I therefore investigated how storage at 4°C for up to 28 days 

in standard culture medium (DMEM/F-12) as well as in two optimized tissue preserva-

tion solutions affects various endpoints in PCLS compared to freshly prepared slices. 

Both storage solutions contain several protective ingredients that act on different 

mechanisms to maintain the viability and functionality of the tissue during cold storage. 

These include for example stabilization of cell membranes (tryptophan), optimized en-

ergy supply (α-ketoglutarate, aspartate) and prevention of osmotic swelling (sucrose). 

While chloride was added to solution 1 for maintenance of ion balance, it was largely 

replaced by the organic anion lactobionate in solution 2. I was able to show that espe-

cially solution 1, with a high chloride concentration, has significant protective effects on 

viability, inflammatory activation, mitochondrial membrane potential and bronchocon-

striction compared to cell culture medium in rat PCLS up to 28 days. In addition, I was 

able to show that the cell composition of PCLS is preserved, with only the proportion of 

CD45+ immune cells decreasing faster than EpCAM+ epithelial cells, CD35+ endothe-

lial cells or CD90+ mesenchymal cells. These data are in good correlation with the in-

flammatory activity and are in line with data from storage of PCLS at 37°C (Neuhaus et 

al. 2017). Substitution of chloride by lactobionate did not prove to have an additional 

protective effect. For all endpoints investigated, solution 1, containing chloride, showed 

a greater protective effect after up to 28 days of cold storage than solution 2, containing 

lactobionate. However, both solutions showed better tissue preservation than DMEM/F-

12. The use of optimized tissue preservation solutions for long-term cold storage of 

PCLS is therefore a promising approach to prolong the viability and functionality of 

PCLS and to allow transport at 4°C between cooperating laboratories, thus ensuring an 

optimal use of these valuable samples and reducing the number of required laboratory 

animals. 

2.4 Use of PCLS in OP research (Publication II) 

Although PCLS have been used in lung research for several decades, only few re-

search groups evaluated potential therapeutic improvements in OP poisoning using 

lung slices in recent years. In particular, the primary toxic effect of AChE inhibition has 

been therapeutically addressed by investigating effects on airway constriction and sub-

sequent relaxation. The focus of these studies was set on the nerve agents VX and 
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cyclosarin, while the effects of the widely used pesticides such as malathion were only 

marginally investigated. Therapeutic approaches were limited to established substanc-

es such as atropine and scopolamine (Herbert et al. 2017; Wigenstam et al. 2021) or 

substances for symptomatic therapy such as formoterol, salbutamol or ipratropium, 

which are predominantly used for the treatment of COPD or asthma (Herbert et al. 

2019). So far, however, only the immediate, acute effects of OP poisoning, resulting in 

airway constriction, have been investigated in PCLS, while the delayed cell-damaging 

or inflammatory effects have only been studied in in vitro cell culture or in vivo experi-

ments. 

In Paper II I therefore used PCLS as a realistic model system of the lung to investigate 

the effects of OP on different endpoints that may play a role in the toxicity of these sub-

stances and to gain a better understanding of the underlying mechanisms. The well-

studied OP pesticides parathion and malathion as well as their more potent biotrans-

formation products paraoxon and malaoxon were used as test compounds to analyze 

the effect of different inhibitory potency (world health organization (WHO) class I pesti-

cide parathion vs. class III pesticide malathion) and bioactivation (thion vs. oxon). The 

acute effects on AChE inhibition were assessed by measuring airway relaxation after 

OP exposure and ACh stimulation. It was found that only the bio-transformed com-

pounds paraoxon and malaoxon exhibited inhibitory potency, which was stronger for 

paraoxon than for malaoxon. These results are in line with the inhibitory potency in 

isolated AChE of rat erythrocyte membranes and illustrate the necessity of bioactiva-

tion for substantial AChE inhibition (Worek et al. 2020). A direct cytotoxic effect (de-

tected by metabolic activity and LDH release) could be demonstrated at significantly 

higher concentrations, with both thion and oxon forms causing cellular damage. The 

effect of malaoxon was stronger than that of paraoxon, which is contrary to the inhibito-

ry potency. This indicates that i) bioactivation is not essential for the induction of cyto-

toxic tissue damage and that ii) the underlying mechanism is probably not dependent 

on AChE inhibition. A similar conclusion can be drawn from the analysis of inflammato-

ry cytokine expression (IL-6, granulocyte-macrophage colony-stimulating factor (GM-

CSF), vascular endothelial growth factor (VEGF), macrophage inflammatory protein 

(MIP-1a)), which was strongest after thion exposure and was not affected by malaoxon. 

Further investigations using parathion as OP with the highest inflammatory potential 

revealed, that inflammatory activation is dependent on the nuclear factor 'kappa-light-

chain-enhancer' of activated B-cells (NFκB) signaling pathway. Malaoxon showed the 

strongest effects on the antioxidative system, reducing intracellular glutathione, and, in 

contrast to the other substances, also increasing glutathione disulfide. In combination 

with an increased expression of HO-1, that is expressed in response to oxidative 
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stress, it can therefore be concluded that malaoxon has stronger effects on the antioxi-

dative system than the other investigated compounds. These findings are also sup-

ported by the effects of preincubation with the glutathione precursor N-acetylcysteine, 

which significantly reduced malaoxon-induced, but not paraoxon-induced cytotoxicity. 

Overall, the findings of this study reflect the diverse picture of effects induced by differ-

ent OP and provide further evidence that mechanisms other than AChE inhibition play 

a crucial role in lung injury by OP poisoning. The lung model system PCLS provides 

promising opportunities to test the efficacy of new therapeutics against direct lung inju-

ry to improve clinical treatment after OP exposure.    

2.5 Concluding remarks 

The improved cold storage in the optimized tissue preservation solution 1 compared to 

the standard medium DMEM/F-12 leads to a superior usability of PCLS and allows the 

transport of tissue slices between cooperating working groups. The present work pro-

vides the basis for further investigation of therapeutic approaches to improve the thera-

py after OP poisoning, especially for the poorly studied effects of lung damage. Thera-

peutic approaches arise in particular around the inflammatory activation and antioxida-

tive defense. There is potential for assessment of substances that have already been 

evaluated in vivo for OP therapy, such as cyclooxygenase-2 (COX II) inhibitors 

(Chapman et al. 2019). Additional approaches may arise by addressing the NFκB sig-

naling pathway using anti-inflammatory drugs. For example, flurbiprofen derivatives 

can inhibit the NFκB signaling pathway and may have the potential to reduce OP in-

duced inflammatory activation (Tegeder et al. 2001). In addition, antioxidant com-

pounds such as vitamin C have the potential to prevent malaoxon induced alterations 

in the antioxidative defense (Guaiquil et al. 2001). Taken together, this work shows up 

promising ways to improve the usability and transport of PCLS in terms of the 3R ap-

proach and illustrates that the PCLS model system is suitable for testing potential ther-

apeutics against different mechanisms induced by OP exposure.   
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4.1 Supplementary information publication II 

Supplementary Materials: 

 

 

 

 

 

 

 

S1: Viability of PCLS after 8 h OP exposure (A) and corresponding protein content (B). To determine 

optimal concentrations of the OP substances for analysis of cytokine release and induction of oxidative 

stress, PCLS were treated for 8 h with either paraoxon, parathion, malaoxon, malathion (10 – 2000 

µmol/L) or the solvent control acetonitrile. Viability was analyzed by Alamar Blue assay and protein content 

was measured by BCA assay. Results are shown as % of the solvent control acetonitrile (A) or total pro-

tein content (B). Data are shown as mean ± SEM. Asterisk indicate significant differences to the solvent 

control (*p<0.05; n=3). 

 

 

S2: Effects of the positive control LPS on cytokine expression in PCLS. To verify that PCLS are suit-

able for the investigation of cytokine expression, PCLS were exposed for 8 h with 100 ng/ml LPS and 

cytokine expression was detected by a multiplex assay. Results are shown as % of the untreated control. 

Data are shown as mean ± SEM. Asterisk indicate significant differences to the solvent control (*p<0.05; 

n=3). 
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