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Zusammenfassung
Die Präparation und Manipulation ultrakalter atomarer Gase hat das Feld der atomaren,
molekularen und optischen Physik revolutioniert. Unter der Annahme, dass ultrakalte
Moleküle eine ähnliche Rolle spielen werden, wurde eine große Anstrengung unternom-
men, polare Moleküle mit hoher Phasenraumdichte herzustellen. Aufgrund der vielfältigen
internen Struktur der Moleküle sind sie für Anwendungen in der Quantenchemie, Präzi-
sionsspektroskopie und Quantensimulation interessant. Die Rotations- und Vibrationsfrei-
heitsgrade, die Moleküle so interessant machen, erschweren jedoch ihre effiziente Kühlung.
Bislang führen Methoden zur direkten Kühlung von Molekülen zu Phasenraumdichten,
die sechs Größenordnungen unterhalb des quantenentarteten Bereichs liegen. Im Rahmen
dieser Doktorarbeit wird ein anderer Ansatz verwendet, bei dem Moleküle aus ultrakalten
Atomen zusammengesetzt werden, in der Hoffnung, dass das Gas seine Entartung während
der Zusammensetzung beibehält. Die Assoziation von Feshbach-Molekülen, die mit ho-
hem Verlust und Erwärmung einhergeht, stellt die größte Limitierung bei der Herstellung
entarteter Molekülgase dar.

In dieser Dissertation berichte ich über die erste Herstellung von 23Na40K-Grundzustands-
molekülen im quantenentarteten Regime. Dazu erzeugen wir eine Mischung aus einem
Bose-Einstein-Kondensat (BEC) aus 23Na-Atomen und einem entarteten Fermi-Gas aus 40K-
Atomen. Mithilfe einer speziesabhängigen Dipolfalle können wir die Dichten der beiden
Spezies angleichen, da die Falle das Fermi gas im Vergleich zum BEC stärker komprim-
ieren kann. Dank dieser Vorbereitung können wir die Atome aus dem BEC mit einer Ef-
fizienz von 80 % zu NaK∗-Feshbach-Molekülen verbinden. Wir zeigen, dass die Produktion
der Moleküle als Phasenübergang von einem polaronischen Kondensate zu einem moleku-
laren Fermi-Gas verstanden werden kann. Unsere Methode erlaubt uns große und kalte
Molekülwolken herzustellen, die hervorragende Ausgangsbedingungen für die Evaporation
von Grundzustandsmolekülen bieten.



Abstract
The production and manipulation of ultracold atomic gases have revolutionized the field
of atomic, molecular, and optical physics. Based on the premise that ultracold molecules
will have a similar impact, with exciting applications in quantum chemistry, precision spec-
troscopy, and quantum simulation, several major efforts have been undertaken to reach high
phase space densities of polar molecules. However, the rich internal structure that makes
molecules interesting also prevents their efficient cooling. To date, methods to directly cool
molecules produce molecular clouds with phase space densities that are six orders of magni-
tude below the quantum-degenerate regime. An alternative approach used in this Ph.D. work
to producing molecular samples, is by assembling molecules from ultracold atoms with the
hope that the molecules inherit the degeneracy of the atoms. However, the association of
Feshbach molecules, which is accompanied by loss and heating, represents the major limita-
tion in producing degenerate molecular samples.

In this dissertation, I report on the first production of ground-state 23Na40K molecules in
the quantum-degenerate regime. The procedure starts with creation of a mixture of a 23Na
Bose–Einstein condensate (BEC) and a degenerate Fermi gas of 40K atoms. To mitigate the
interspecies loss during the association, which is mainly caused by the excess density of
the BEC, we use a species-dependent dipole trap that confines the Fermi gas more strongly
than the BEC and matches their densities. In this density-matched Bose–Fermi mixture,
we can associate 80% of the atoms in the BEC into NaK∗ Feshbach molecules. We show
that the association process can be understood as a quantum phase transition from a polaronic
condensate to a Fermi gas of molecules. Ultimately, we can produce large and cold molecular
samples that provide excellent starting conditions for the evaporative cooling of ground-state
molecules.
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Goulven Quéméner, Tijs Karman, Arthur Christianen, Immanuel Bloch, and Xin-Yu
Luo: Collisions of ultracold molecules in bright and dark optical dipole traps. Physi-
cal Review Research 3, 033013 (2021). DOI: 10.1103/PhysRevResearch.3.033013

• Roman Bause, Akira Kamijo, Xing-Yan Chen, Marcel Duda, Andreas Schindewolf,
Immanuel Bloch, and Xin-Yu Luo: Efficient conversion of closed-channel-dominated
Feshbach molecules of 23Na40K to their absolute ground state. Physical Review A
104, 043321 (2021). DOI: 10.1103/PhysRevA.104.043321

• Xing-Yan Chen, Marcel Duda, Andreas Schindewolf, Roman Bause, Immanuel
Bloch, and Xinyu-Yu Luo: Suppression of Unitary Three-body Loss in a De-
generate Bose–Fermi Mixture. Physical Review Letters 128, 153401 (2022).
https://doi.org/10.1103/PhysRevLett.128.153401

• Marcel Duda, Xing-Yan Chen, Andreas Schindewolf, Roman Bause, Jonas von Mil-
czewski, Richard Schmidt, Immanuel Bloch, and Xin-Yu Luo: Transition from a
polaronic condensate to a degenerate Fermi gas of heteronuclear molecules. Arxiv
preprint: https://arxiv.org/abs/2111.04301

• Andreas Schindewolf, Roman Bause, Xing-Yan Chen, Marcel Duda, Tijs Karman, Im-
manuel Bloch, and Xin-Yu Luo: Evaporation of microwave-shielded polar molecules
to quantum degeneracy. Arxiv preprint: https://arxiv.org/abs/2201.05143

• Marcel Duda, Xing-Yan Chen, Roman Bause, Andreas Schindewolf, Immanuel Bloch,
and Xin-Yu Luo: Long-lived fermionic Feshbach molecules with tunable p-wave in-
teractions. Arxiv preprint: https://arxiv.org/pdf/2202.06940.pdf





Contents

1 The quest for degenerate polar molecules 1

2 Interacting Bose–Fermi mixtures 5
2.1 Atomic interactions: The Good, the Bad and the Tunable . . . . . . . . . . 5

2.1.1 Scattering in a central potential . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Scattering cross-section and rate coefficients . . . . . . . . . . . . 7
2.1.3 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Quantum gases in harmonic traps . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Degenerate quantum gases . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Trapped thermal gases . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Trapped Bose gases . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Trapped Fermi gases . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Phase separation and collapse . . . . . . . . . . . . . . . . . . . . 15

2.3 Molecule formation in Bose–Fermi mixtures . . . . . . . . . . . . . . . . . 16
2.3.1 Impurity limit: The Fermi polaron . . . . . . . . . . . . . . . . . . 18
2.3.2 Beyond the Fermi-polaron limit . . . . . . . . . . . . . . . . . . . 20

3 Experimental setup 23
3.1 Overview of the vacuum system . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Experimental sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Optical traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Atoms and molecules in an optical trap . . . . . . . . . . . . . . . 26
3.3.2 Optical transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Intensity stabilization at low powers . . . . . . . . . . . . . . . . . 31
3.3.4 Performance of the new transport trap . . . . . . . . . . . . . . . . 31

3.4 Crossed dipole traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 1550/1064-nm trap . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 785-nm trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Absorption imaging and analysis . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 Optical density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Imaging molecules . . . . . . . . . . . . . . . . . . . . . . . . . . 41



3.5.3 Atom and molecule numbers . . . . . . . . . . . . . . . . . . . . . 41
3.5.4 Thermal clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.5 Degenerate bosons . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.6 Degenerate fermions . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Characterizing the 78.3-G Feshbach resonance . . . . . . . . . . . . . . . . 45
3.6.1 RF-spectroscopy: Binding energy . . . . . . . . . . . . . . . . . . 46
3.6.2 Model for overlapping Feshbach resonances . . . . . . . . . . . . . 47

4 Collisional loss around the 78.3-G Feshbach resonance 53
4.1 Three-body loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Scattering-length dependence . . . . . . . . . . . . . . . . . . . . 54
4.1.2 Unitary three-body loss . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Suppression mechanisms . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Atom-dimer loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Tunable p-wave collisions in fermionic Feshbach molecules . . . . . . . . 67

4.3.1 Tunable Feshbach molecules: A tale of two regimes . . . . . . . . 67
4.3.2 Inelastic p-wave collisions . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 Elastic p-wave collisions . . . . . . . . . . . . . . . . . . . . . . . 74

5 Production of quantum-degenerate Feshbach molecules 79
5.1 From radio-frequency association to magnetoassociation . . . . . . . . . . 79
5.2 Feshbach association in thermal Bose–Fermi mixtures . . . . . . . . . . . . 80
5.3 Thermometric considerations for magnetoassociation in NaK . . . . . . . . 83
5.4 Magnetoassociation in degenerate Bose–Fermi mixtures . . . . . . . . . . 84

5.4.1 Feshbach association in the 1550/1064-nm trap . . . . . . . . . . . 84
5.4.2 Feshbach association in the 785-nm trap . . . . . . . . . . . . . . . 85

5.5 Transfer to the rovibronic ground state . . . . . . . . . . . . . . . . . . . . 89
5.6 Fermi-degeneracy of molecules . . . . . . . . . . . . . . . . . . . . . . . . 91
5.7 Thermometry of noninteracting Fermi gases . . . . . . . . . . . . . . . . . 93
5.8 Ground-state molecules in thermal equilibrium . . . . . . . . . . . . . . . 96

6 From weakly-interacting Bose–Fermi mixtures to a degenerate
Fermi gas of molecules 99
6.1 Simplified phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Scenario of a quantum phase transition . . . . . . . . . . . . . . . . . . . . 102

6.2.1 The measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2 Stability of the Bose–Fermi mixture . . . . . . . . . . . . . . . . . 102
6.2.3 Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . 104



6.2.4 Evidence for a quantum phase transition . . . . . . . . . . . . . . . 105
6.2.5 Determination of the transition point . . . . . . . . . . . . . . . . . 108
6.2.6 Reversal of the phase transition . . . . . . . . . . . . . . . . . . . 110

6.3 A first step in understanding the QPT . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusion and outlook 113

References 117

Acknowledgments 133





A generation of graduate students worked on these ideas but
did not reach quantum degeneracy either.

—K.-K. Ni

1 The quest for degenerate polar
molecules

From atoms to polar molecules
The first realization of Bose–Einstein condensation (BECs) in 1995 [1, 2] has started a new
chapter in atomic, molecular and optical physics. Atomic gases were cooled to temperatures
where the constituents exhibit collective properties vastly different from classical gases. Ini-
tially, the experimental effort was directed toward studying these phenomena. This includes
the observation of interference between BECs [3] and studying their spatial coherence [4].
Similarly, fermionic atoms have been cooled to quantum degeneracy leading to the obser-
vation of Fermi pressure [5–7], an effect which is known to stabilize neutron stars from
collapse [8]. Fermi pressure results from the intrinsic properties that fermions can occupy
one specific quantum state only once.

In the following decades, the toolbox to cool, trap and manipulate atomic systems has been
intensely developed. Through these technical developments, cold-atom systems have found
applications in many-body physics, quantum optics, quantum information processing, and
quantum simulation1. As a result of these advances, it has become possible to detect single
atoms with near-unity efficiency [14], assemble them into three-dimensional structures [15]
and design experiments that produce Bose–Einstein condensates on the international space
station [16].

However, the limitation of ultracold ground-state atoms is that contact interactions dom-
inate. Thus, the community has been looking for platforms that exhibit long-range interac-
tions, such as highly magnetic atoms [17–20], alkali atoms that are excited into high-lying
electronic states called Rydberg atoms [21], or polar molecules. Polar molecules are inter-
esting as they offer a compromise between the two aforementioned systems: They have a
considerably longer lifetime than Rydberg atoms and a markedly larger dipolar interaction
than the magnetic atoms.

Moreover, polar molecules offer a rich internal structure with the additional vibrational
and rotational degrees of freedom compared to atoms. Especially interesting is the dipolar
interaction which arises from the rotational structure of the molecules. Many applications
have been proposed for polar molecules to explore exotic quantum-matter phenomena such
as p-wave superfluidity [22–24], supersolidity [25] and Wigner crystallization [26, 27], to
extend Hubbard models [28], to use polar molecules for quantum information processing
[29–31] and test fundamental symmetries of Nature [32]. However, the prerequisite for

1The list of achievements is extensive. To the interested reader, please refer to the review articles in Refs. [9–
13] for more information.
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Figure 1.1 – Route towards degenerate ground-state molecules. Starting with a condensed
sample of bosonic atoms (red) and a degenerate Fermi gas (blue), Feshbach molecules are
associated by sweeping a magnetic field through a Feshbach resonance. The weakly bound
molecules are then coherently transferred into the ground state by using STIRAP. This
figure is adapted from [43].

many of these proposals is to reach the quantum-degenerate regime.

The first degenerate sample of polar molecules
First attempts to directly cool and trap molecules date back to 1998 [33, 34]. Approaches
to produce cold molecular samples are, for example, by using Stark or Zeeman decelerators
for molecular beams [35–39], buffer-gas cooling [40] and many others. Another approach is
to do laser cooling on molecules. However, since the internal structure of the molecules is
more complex than for atoms, it is also more challenging to find closed optical transitions
on which laser cooling can be performed [41]. While there has been a tremendous effort in
the past years to improve the laser-cooling methods for molecules, the largest phase-space
density that has been reported so far for yttrium monoxide is approximately 10−6 [42], still
six orders of magnitude away from reaching degeneracy.

Another approach to producing polar molecules is to associate two different species of
ultracold atoms. Whereas trapping alkali atoms and cooling them into the deeply degenerate
regimes is established, the association process into molecules is the main challenge of this
approach. In the seminal work by Ni et al. [44], the authors managed to produce a sample of
3×104 40K87Rb molecules at a temperature of T = 350 nK. The approach relies on creating
weakly bound Feshbach molecules which are then transferred into the rotational, vibrational
and electronic (rovibronic) ground state by Stimulated Raman Adiabatic Passage (STIRAP).
This tremendous success improved the phase space density by 11 orders of magnitude com-
pared to previous results. Still, due to Feshbach association efficiencies of 10−15%, one to
two orders of magnitude were still missing to enter the degenerate regime.

Stimulated by this first success and quantum degeneracy within reach, many different
groups attempted a similar route to produce bialkali molecules in the rovibronic ground
state, including species like 87Rb133Cs [45, 46], 23Na40K [47–49], 23Na87Rb [50], 23Na6Li
[51], 23Na39K [52] and 23Na133Cs [53, 54]. However, one of the bottlenecks in all of these
systems is the association of weakly bound Feshbach molecules. While reasonably efficient
for thermal gases, the association becomes considerably worse when the atoms are degen-
erate. This was particularly shown in Bose–Fermi mixtures [55]. A sort of “conventional
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wisdom”, as Kang-Kuen Ni calls it in her article [56], got established that degenerate bosons
and fermions cannot be associated, which was backed up by the experimental observations
[57, 58]. This was attributed to the fact that the overlap of Bose–Fermi mixtures in phase
space, which becomes worse when the mixture is degenerate, dictates the association ef-
ficiency. To overcome the low association efficiency accompanied by strong particle loss,
association in optical lattices [59, 60] was attempted. The hope was that inelastic collisions
would be under control by only loading one atom of each species into a lattice site. The chal-
lenge in this approach is to ensure a high filling of the lattice for both species. Ultimately,
this approach has not yet produced degenerate molecular samples.

A decade after the production of ground-state 40K87Rb molecules, the team led by Jun
Ye at JILA produced a degenerate sample of ground-state molecules [43]. Using a small
but pure BEC of Rb atoms and a Fermi gas of K atoms, the authors associated half of the
bosons into KRb∗ Feshbach molecules before transferring them into the rovibronic ground
state. Still, many questions concerning the nature of the association are not answered. What
are the limiting factors in the association? How can this procedure be adopted, given that
no other experiment succeeded in producing degenerate molecules thereafter? How can
the association from the BEC be efficient when previous experiments considered it to be
impossible?

This thesis
This thesis describes how to associate a degenerate sample of molecules from double-
degenerate Bose–Fermi mixtures. We show that the limitation of the Feshbach association
is the mismatch of the densities between the bosons and the fermions, where in particular,
the excess density of the BEC leads to strong interspecies loss. We solve this problem by
employing a dipole trap that matches the densities of the species leading to the efficient
association of Feshbach molecules. By observing the molecule-formation process, we
clearly show that atoms from the BEC can bind with the atoms from the Fermi gas to
produce molecules. Moreover, we show that this process can be understood in a quantum
many-body framework, where the bosons and the fermions mutually interact, build up
pairing correlations and form molecules. Our measurements provide strong evidence for a
quantum phase transition from a polaronic phase to a molecular phase closely related to the
polaron-to-molecule transition in the Fermi-polaron problem.

The thesis is structured as follows: Chapter 2 contains fundamental concepts of scattering
theory and explains how resonant scattering behavior leads to tunable interactions between
atoms and the emergence of molecular bound states. After introducing important quantities
for trapped Bose and Fermi gases, I will discuss mixtures of interacting bosons and fermions.
The description of the experimental setup can be found in Chapter 3, with an overview of
the experimental sequence and specific methods and upgrades relevant to this work. In par-
ticular, I will discuss the characterization of the Feshbach resonance at 78.3 G which we use
for the association of weakly bound molecules. Since inelastic collisions represent a signifi-
cant limitation to reaching quantum degeneracy in our system, the measurements of various
loss processes around the 78.3-G Feshbach resonance are presented in Chapter 4. This in-
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cludes atomic three-body loss, inelastic collisions between Feshbach molecules and atoms,
and inelastic collisions between Feshbach molecules. In addition, I will present measure-
ments of elastic collisions between Feshbach molecules, which were observed for the first
time during this Ph.D. work. In Chapter 5, I will guide the reader through the steps to suc-
cessfully associate Feshbach molecules in double-degenerate Bose–Fermi mixtures. I will
show that the Feshbach association can efficiently convert atoms into molecules in thermal
mixtures by ramping the magnetic field through a Feshbach resonance. I will then focus on
the association in double-degenerate Bose–Fermi mixtures showing that efficient creation
of NaK∗ molecules necessitates density-matched Bose–Fermi mixtures at low densities. I
will then discuss the characterization of the Fermi degeneracy of Feshbach and ground-state
molecules, especially when the molecules are noninteracting and can undergo loss. The in-
terpretation of the efficient association of Feshbach molecules in terms of a quantum phase
transition from a polaronic phase to a molecular phase, where the condensate fraction is the
order parameter, is presented in Chapter 6. Specifically, I will show how the order parame-
ter as a function of the interaction strength remarkably agrees with theoretical calculations
supporting the scenario of a quantum phase transition from a polaronic condensate to a de-
generate Fermi gas of molecules.

4



2 Interacting Bose–Fermi mixtures

2.1 Atomic interactions: The Good, the Bad and
the Tunable

Gases of neutral atoms are far more interesting than ideal gases, whose constituents are
treated as noninteracting point-like particles. Atoms interact with each other through scat-
tering processes, where the interatomic potential is often described as a Lennard–Jones-type
potential of the following form

VLJ(r) =
C12

r12 −
C6

r6 (2.1)

with the coefficients C12 and C6. The first term describes a strong repulsion at short inter-
atomic distances r, when the electronic orbitals of atoms overlap. The second term is the van
der Waals potential which comes from a small dipole moment that is mutually induced by
the approaching atoms.

Scattering processes can be elastic, leading to a redistribution of kinetic energies. These
are often considered “good” collisions because they are useful for evaporative cooling of
ultracold atomic gases. Collisions can also be inelastic where the overall kinetic energy of the
of the particles before and after the collision is altered. Inelastic collision processes require
the existence of multiple collision channels, as realized for two colliding atoms that change
their hyperfine states due to the collision. For trapped atomic gases, inelastic collisions are
typically considered “bad” as the additional kinetic energy leads to the loss of the atoms
from the trap. However, when multiple collision channels are involved, resonant scattering
is possible when the energies of the collision channels energetically approach each other.
These so-called Feshbach resonances allow to tune the interactions between the atoms and
enable the binding of the atoms into molecules. Before discussing the case of these resonant
collisions, we consider the case of two particles interacting in elastic collisions.

2.1.1 Scattering in a central potential

The problem of two scattering particles can be solved in the in the center-of-mass frame. To
this end, we consider an incoming plane wave with a relative wavevector k colliding with
the interaction potential V (r) which has a finite range. The time-independent Schrödinger
equation for the relative motion can be written as(

h̄2k2

2µ
+V (r)

)
Ψ(r) = EΨ(r), (2.2)
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where µ is the reduced mass of the colliding particles, Ψ(r) is the wavefunction and E is
the energy in the system. In the collision region, the structure of the wavefunction strongly
depends on the nature of the potential V (r), and typically the solution of this equation is
therefore examined away from the collision region. When the potential V (r) decays suffi-
ciently fast with the interatomic distance like the potential in Equation (2.1), the solution of
Ψ(r) to Equation (2.2) can be approximated as a running wave. According to this so-called
Born approximation, the scattered wavefunction can be described as a sum of a transmitted
and a scattered wave written in spherical coordinates, i.e.,

Ψ(r,θ ,φ) = eikr cos(θ)+ f (k,θ ,φ)
eikr

r
. (2.3)

Here, we assume that the incoming wave propagates in the direction z = r cos(θ). The pro-
portionality with 1/r in the second term ensures that the total flux of energy is independent
of the radius r. The scattering amplitude f (k,θ ,φ) is generally not isotropic and depends
on the wavevector. Since the scattering potentials are considered to be radially symmet-
ric, the wavefunction can be decomposed into partial waves with the spherical harmonics
Yl,m(θ ,φ). Moreover, due to the symmetry of the plane wave, we can further simplify the
angular dependence to Yl,0 =

√
(2l +1)/4π Pl(cos(θ)), where Pl(cos(θ)) are the Legendre

polynomials, and the scattering amplitude reduces to f (k,θ). We can therefore expand the
scattering wavefunction into partial waves as

Ψ(r) =
∞

∑
l=0

Ψl(r)
r

Pl(cos(θ)), (2.4)

The function Ψl(r) fulfills the radial Schrödinger equation

− h̄2

2µ

d2Ψl(r)
dr2 +

(
h̄2l(l +1)

2µr2 +V (r)
)

Ψl(r) = EΨl(r), (2.5)

where we identify an extra term containing the centrifugal barrier h̄2l(l +1)/2µr2.

For collisions in the ultracold regime (k→ 0), the dominating contribution to the collisions
comes from l = 0 (s-wave). The terms with l > 0 do not contribute to the collision process
as the particles reflect from the centrifugal barrier before they feel the presence of the van
der Waals potential. However, when the collision involves identical fermions, the wave-
function to describe them is anti-symmetric Ψ(r) =−Ψ(−r), which limits the partial wave
expansion to odd values of l. Thus, identical fermions at sufficiently small temperatures, the
dominating collision channel results from p-wave collisions (l = 1). Due to the suppressed
s-wave collisions from fermionic atoms, evaporatively cooling a single fermionic species is
not practical. Luckily, evaporative cooling of spin-polarized fermions can be realized with a
coolant. For example, in Bose–Fermi mixtures, the fermions can be sympathetically cooled
by the bosons [61]. Experiments working only with fermions need to produce mixtures with
different hyperfine states for efficient cooling [5].

For s-wave scattering, in the regime far from the collision region, the radial wavefunction
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takes the form

Ψ0(r)' A
(

sin(δ0(k))+ kr cos(δ0(k))
)
, (2.6)

where δ0(k) is the phase shift as a result of the collision which can either delay or advance
the spherical wave, and the scattering amplitude near the collisional threshold k→ 0 is given
by

f0(k)'
−a

1+ ika− reffk2a
, (2.7)

where we have introduced the scattering length a as

a =− lim
k→0

tanδ0(k)
k

. (2.8)

Equation (2.7) is called the effective-range expansion, where the term reff is the effective
range which depends on the precise nature of the interaction potential of the colliding parti-
cles. In many cases, the effective range of the potential is considered to not be significantly
contributing to the scattering process and the scattering can be described solely by scattering
length.

A similar treatment of the scattering problem can be done for p-wave collisions where
one solves the Schrödinger equation for l = 1. In this case, the Legandre polynomial
P1(cos(θ)) = cos(θ) and, thus, scattering amplitude contains a dependence on θ . It can be
shown that the scattering amplitude f (k,θ) is not radially symmetric anymore [62]. Instead
of the scattering length a, the scattering volume Vp(k) = a3

p(k) is the relevant quantity
defined as [63]

Vp(k) =− lim
k→0

tanδ1(k)
k3 . (2.9)

It might come as a surprise that in Section 4.3.2, we discuss the collisions between identical
fermionic Feshbach molecules in terms of the interspecies scattering length a instead of the
scattering volume. The reason is that the scattering length of the Feshbach molecules can be
related to the interspecies scattering length [64], making the interspecies scattering length a
convenient quantity to work with.

2.1.2 Scattering cross-section and rate coefficients
Within the framework of this thesis, we are often not concerned about the angular resolution
of the collision which we obtain from the scattering amplitude, but rather the collision rate.
To this end, we can define differential cross-section and the total cross-section given by

dσ

dΩ
=| f (k,θ)|2, (2.10)

σ =
∫
| f (k,θ)|2dΩ, (2.11)

where Ω is the solid angle. For indistinguishable particles, the scattering amplitude for
bosons should be replaced such that f (k,θ)→ f (k,θ)+ f (k,π − θ) while for fermions it
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should be replaced by f (k,θ)→ f (k,θ)− f (k,π − θ) as the scattering between two parti-
cles with the final angle θ or θ −π is equivalent. We can then write the scattering amplitude
f (k,θ) = ∑

∞
l=0(2l+1) fl(k)[Pl(cos(θ))−Pl(cos(−θ)]. The general equation for the scatter-

ing cross-section for identical bosons and fermions is respectively given by

σB(k) =
8π

k2

∞

∑
even l

(2l +1)sin2
δl(k), (2.12)

σF(k) =
8π

k2

∞

∑
odd l

(2l +1)sin2
δl(k). (2.13)

In the low temperature limit k→ 0, the scattering cross-section can be written as

σB(k) =
4gπa2

1+ k2a2 , (2.14)

where g accounts for the symmetrization requirements. If the two colliding particles are
in different internal quantum states, g = 1 and if the two particles are in the same internal
quantum state g = 2. Note that even when the scattering length diverges, Equation (2.14)
will yield a finite cross-section σB(k) = 4gπ/k2.

Note that we have limited our discussion to a single-channel model, meaning that every
scattering process is purely elastic. When several collision channels are involved, inelastic
collisions are possible. The scattering length ãα(k) = α̃α(k)− iβ̃α(k) then becomes complex
[65], and the rate coefficients of the elastic and inelastic scattering lengths are given by the
diagonal elements of the S-matrix Sαα = e2iηα for channel α [66]. Hence, the scattering
amplitude in Equation (2.7) without the effective range can be generalized to

fα(kα) =
1

1+ k2
α |ãα(kα)|2 +2kα β̃α(kα)

, (2.15)

and the scattering length in Equation (2.8) can be written as

ãα(kα) =−
tanηα(kα)

kα

=
1

ikα

1−Sαα(kα)

1+Sαα(kα)
, (2.16)

where kα is the wavevector in the collision channel with energy Eα . Then the rate coefficients
of inelastic and elastic collisions can be written as

Kel =
2ghkα

µ
|ãα(kα)|2 fα(kα), (2.17)

Kinel =
2gh
µ

β̃α(k) fα(k), (2.18)

respectively. While a precise determination of the elastic and inelastic scattering rates depend
on the interatomic scattering potential, we can write down the general scaling relations for
s-wave and p-wave collisions in the ultracold temperature regime in terms of the scattering
length [64, 66]. Here K = σ v̄ is the rate coefficient of the collisions, where σ is the cross-
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section and v̄ is the relative velocity between the particles:

Kel
l=0 ∝ ka2 (2.19)

Kel
l=1 ∝ k5a6 (2.20)

Kinel
l=0 ∝ a (2.21)

Kinel
l=1 ∝ k2a3 (2.22)

From the relation in Equations (2.19)-(2.22), we see that s-wave inelastic collisions do not
scale with k, while the elastic collisions scale with k ∼

√
T , where T is the temperature of

the sample. Moreover, p-wave collisions have a strong scaling with the temperature and the
scattering length.

2.1.3 Feshbach resonances

According to the discussion in Section 2.1.1, we might get the impression that for low tem-
peratures and s-wave dominated collisions, the scattering behavior of atoms is determined
by the interatomic potential. However, what makes the collision behavior interesting is the
coupling between different scattering states. The scattering states or scattering channels arise
from the set of internal quantum numbers associated with the collision.

In a two-channel scattering model, as shown in Figure 2.1a, we define one scattering state
as the open or entrance channel, which is populated before the scattering event. The other
is the closed channel, which is defined to host a bound state. We assume that these states
can couple to each other and that they obtain a different shift in energy when a magnetic
field is applied (Zeeman shift). The energy Ecoll is associated with the collision process and
typically much smaller than the energy scale related to the potential of the open and the
closed channel. Thus, it is possible to tune the magnetic field to the Feshbach resonance,
where the bound state is resonant with the scattering state in the entrance channel. The
coupling between the scattering states persists even when the two channels couple to each
other off-resonantly, which modifies the scattering length of the open channel in the vicinity
of the Feshbach resonance. For an isolated Feshbach resonance, the scattering length as a
function of the magnetic field is given by

a(B) = abg

(
1− ∆

B−B0

)
, (2.23)

where B0 is the resonant magnetic field, ∆ the width of the Feshbach resonance and abg is the
background scattering length (see Figure 2.1b). The behavior described by Equation (2.23)
shows that the sign and the magnitude of the scattering length can be arbitrarily changed,
and far away from the resonance the scattering length approaches the background scattering
length abg, which signifies the contribution to the scattering resulting from the interatomic
van der Waals potential.

Moreover, as a result of the existence of the bound state, it is possible to associate two
atoms into a molecule which are then called Feshbach molecules. These molecules exist
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Figure 2.1 – A magnetically tunable Feshbach resonance. (a) Two-channel model. The
open channel contains the entrance collisions channel and the energy E. The closed channel
corresponds to a different set of quantum numbers than the open channel, and it contains a
bound state. By changing the magnetic field B, the energy difference ∆E = Ebound−Ecoll
between the bound state and entrance collision channel can be tuned. (b) Scattering length
a as function of magnetic field B. When the magnetic field is on resonance B = B0, the
scattering length diverges. Far from the resonance such that |B−B0| � ∆, the scattering
length approaches the background scattering length abg.
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when the scattering length a > 0. The binding energy close to the resonance is given by
Eb = −h̄2/2µa2. A few more comments on Feshbach resonances that are relevant for the
upcoming chapters in this thesis:

• In the idealized two-channel model, the scattering length as a function of the magnetic
field in Equation (2.23) is plotted for an isolated Feshbach resonance. In typical cold-
atom systems, many scattering states can couple to the entrance channel, each resulting
in a Feshbach resonance. If two Feshbach resonances are close by, the scattering
length is typically described by a model of overlapping resonances as discussed in
Section 3.6.

• Feshbach resonances can be divided into broad and narrow. This is characterized by
sres = 0.956RvdW/R∗. Here, RvdW is the van der Waals length which is the typical
length scale for the van der Waals potential. R∗ is the intrinsic resonance length which
is given by the different magnetic moment between the open and the closed channel
[12]. It signifies how sharp the closed and the open channel intersect. We consider
the Feshbach resonance to be broad for sres � 1 and narrow for sres � 1. For broad
resonances one can safely assume that the scattering length is a good parameter to
describe the resonance, which is not the case for narrow Feshbach resonances [67].

• In most of this thesis, we assume that the scattering behavior is entirely described
by the scattering length. According to Equation (2.7), this approximation is valid if
kreff� 1. This is typically the case in the Na-K system and breaks down only when
the scattering length is close to zero. For more details on the theoretical predictions on
the scattering in Na-K and the calculation of reff, see Ref. [68].

2.2 Quantum gases in harmonic traps

2.2.1 Degenerate quantum gases

The constituents of ultracold quantum gases can be unambiguously divided into bosons and
fermions. In fact, every elementary or composite particle is either a fermion or a boson.
Elementary or composite particle possessing an integer spin are called bosons, while parti-
cles with a half-integer spin are called fermions. The symmetrization of antisymmetrization
postulate for bosons or fermions, respectively, leads to the mean occupation number of a
single-particle energy eigenstate |i〉 with energy Ei given by

〈ni〉=
1

e(Ei−µ)/kBT ∓1
≡ f (Ei), (2.24)

where µ is the chemical potential, kB is the Boltzmann constant, and T is the temperature of
the system. For (Ei− µ)� kBT , which is realized when the density of the particles is low
or when the temperature is high. In the thermal regime, the distributions in Equation (2.24)
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approach a Maxwell-Boltzmann distribution which is given by

f (Ei) = e−(Ei−µ)/kBT , (2.25)

leading to the same distribution function for the bosons and fermions is the same. However,
in the degenerate regime, which can be reached when the temperature of the gas is reduced
or the density increased, the term ∓1 in Equation (2.24) becomes relevant, and the behavior
between bosons and fermions changes. Qualitatively speaking, for degenerate bosons, the
occupation of low-energy states is expected to be enhanced compared to a classical gas. In
contrast, in gases with Fermi degeneracy, the occupation of lower energy states is suppressed
compared to a classical gas.

One typically speaks of the degenerate regime when the interparticle distance d = n−1/3

is comparable to the de Broglie wavelength of a particle with mass m given by

λdB =

√
2π h̄2

mkBT
. (2.26)

The de Broglie wavelength associates a wavelength to the particles in the context of the
wave-particle duality. When the phase space density nλ 3

dB > 1, the waves that describe the
particles overlap and interfere and the particles exhibit collective phenomena.

2.2.2 Trapped thermal gases

We consider a noninteracting Bose or Fermi gas in the thermal regime trapped in a harmonic
potential. Accordingly, the Hamiltonian of a single particle of mass m, momentum p and
position r can be written as

H(p,r) =
p2

x + p2
y + p2

z

2m
+

m
2

(
ω

2
x x2 +ω

2
y y2 +ω

2
z z2
)
. (2.27)

Here, ωi is the trapping frequency in the i-th direction. In order to calculate the thermody-
namic quantities of the bosons in the harmonic potential, it is convenient to change from the
representation of discrete energies Ei to a continuous density of energy eigenstates. This is a
good approximation if the thermal energy kBT of the system is much larger than the largest
energy spacing in the harmonic potential, i.e., when kBT/h̄�Max(ωx,ωy,ωz). Hence, we
can write the distribution of bosons according to their energy E and their chemical potential
µ as

f (E) =
1

e(E−µ)/kBT
. (2.28)

Within the approximation, we also define the density of states as a function of the energy E
[69] as

g(E) =
E2

2(h̄ω̄)3 , (2.29)
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where ω̄ = (ωxωyωz)
1/3 is the geometric-mean trapping frequency. The chemical potential

is implicitly fixed by the relation that integration over all energy states equals to the number
of atoms, i.e.,

N =
∫

g(E) f (E)dE. (2.30)

To calculate the density and momentum distribution of the thermal gas, we combine
Equation (2.27) and Equation (2.28), to rewrite the probability distribution f (E) in terms
of the momentum and position of the fermions f (r,p). To obtain the density distribution
n(x,y,z) =

∫
f (r,p)d3p, we integrate over the momenta p and obtain

n(x,y,z) = N
(

mω̄2

2πkBT

)3/2

e−
m(ω2

x x2+ω2
y y2+ω2

z z2)
2kBT . (2.31)

Similarly, we calculate the momentum distribution n(px, py, pz) =
∫

f (r,p)d3r by inte-
grating over the

n(px, py, pz) = N
(

1
2πmkBT

)3/2

e−
(p2

x+p2
y+p2

z )
2mkBT . (2.32)

2.2.3 Trapped Bose gases

We treat the system of degenerate bosons with the Hamiltonian in Equation (2.27) and the
Bose distribution

f (E) =
1

e(E−µ)/kBT −1
. (2.33)

Again, we can relate the number particles and the chemical potential according to Equa-
tion (2.30). However, this time the number of particles obtained by this procedure only
accounts for the thermal bosons. With more bosons in the system the chemical potential
increases until µ = E, where we require that µ = 0 for each additional particle that we put
into the system, otherwise, the distribution in Equation (2.33) becomes negative and thus
unphysical. Given a specific temperature, there is a critical particle number above which all
other atoms will thus occupy the lowest energy state macroscopically, leading to the phe-
nomena of Bose–Einstein condensation. The overall number of particles is then given by
N = NBEC +Nth, where Nth is the number of thermal bosons and NBEC is the number of
atoms in the BEC. Given a number of bosons N, we can also define a critical temperature for
Bose–Einstein condensation Tc. The critical temperature for Bose–Einstein condensatation
according to the geometric mean trapping frequency ω̄ and the total number of bosons N
given by [70]

kBTc ∼= 0.940 h̄ω̄ N1/3. (2.34)

For T < Tc, we relate T/Tc to the condensate fraction β = NBEC/N according to

T
Tc

= (1−β )1/3 . (2.35)
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Equation (2.35) can be used as a thermometer for partially condensed bosons. For instance,
about half of the bosons are in the ground state for T ≈ 0.8Tc.

While in absence of interactions for a pure BEC, the wavefunction of the condensate does
not depend on the number of particles in the BEC [70], it changes for an interacting BEC and
depends whether the interactions between the atoms are attractive of repulsive. We obtain
the density of the BEC from the Gross–Pitaevskii equation[

− h̄2

2m
∆+V (r)+gBB n(r)

]
ψ(r) = µψ(r), (2.36)

where V (r) is the term due to the harmonic confinement in Equation (2.27), gBB =
2π h̄2aBB/µBB is the coupling parameter, aBB is the boson-boson scattering length and µBB

the reduced mass of the bosons. Under typical experimental conditions, the kinetic energy is
much smaller the trapping potential and the boson-boson interactions. In the Thomas–Fermi
approximation, where the kinetic energy of the BEC is ignored, Equation (2.36) can be
solved and the density of the BEC can be described by

n(x,y,z) =
(

15NBEC

8πRxRyRz

)
Max

(
1− x2

R2
x
− y2

R2
y
− z2

R2
z
,0
)
, (2.37)

where Ri is the Thomas-Fermi radius in the i-th direction which is given by

Ri = aho

(
15NaBB

aho

)1/5
ω̄

ωi
, (2.38)

and aho =
√

h̄/mω̄ is the harmonic-oscillator length. Thus, the density of the BEC can be
described by an inverted parabola whose size is characterized by the Thomas-Fermi radius
Ri. Beyond Ri, the density of condensed bosons vanishes. Note that the density of the bosons
contains no information on the temperature of the sample. However, the thermal bosons still
follow a Maxwell-Boltzmann density distribution according to Equation (2.31). Thus, when
working with a partially condensed bosonic sample, one can extract the temperature from
the thermal distribution. It can be shown that the momentum distribution also takes the form
of the inverted parabola in Equation (2.38), where one rescales the Thomas–Fermi radii
according to the time of flight [71].

2.2.4 Trapped Fermi gases
We treat a trapped degenerate Fermi gas with the Fermi–Dirac distribution given by

f (E) =
1

e(E−µ)/kBT +1
. (2.39)

At zero temperature, Equation (2.39) takes the form of a step function where the distribution
probability is unity until E = µ . Once the energy is larger than the Fermi energy EF =
µ(T → 0), the occupation probability is zero. We can relate EF to the number of fermions
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N by [72]

N =
∫

∞

0
f (E)g(E)dE =

∫ EF

0
g(E)dE =

EF

6(h̄ω̄)3 , (2.40)

such that
EF = h̄ω̄(6N)1/3. (2.41)

We obtain an analogous relation to Equation (2.34) by relating the Fermi energy to the Fermi
temperature EF = kBTF , such that

kBTF ∼= 1.817 h̄ω̄ N1/3. (2.42)

The Fermi temperature sets a temperature scale when a Fermi gas deviates from the classical
behavior1. Combining Equation (2.41) and Equation (2.30), we can relate the fugacity ζ =
eµ/kBT , temperature and Fermi temperature by

Li3(−ζ ) =− 1
6(T/TF)3 , (2.43)

where Lin(x) is the polylogarithmic function of n-th order.
To calculate the density and momentum distribution, we combine Equation (2.27) and

Equation (2.39) to rewrite the probability distribution in terms of the momentum and position
of the fermions f (r,p). According, the density is given by

n(x,y,z) =−
(

mkBT
2π h̄2

)3/2

Li3/2

(
−ζ e

−m(ω2
x x2+ω2

y y2+ω2
z z2)

2kBT

)
. (2.44)

Similarly, the momentum distribution is given by

n(px, py, pz) =−
(

kBT
2πmω̄2

)3/2

Li3/2

(
−ζ e−

p2
x+p2

y+p2
z

2mkBT

)
. (2.45)

2.2.5 Phase separation and collapse
After having discussed trapped bosons and fermions individually, we look at the behavior
of degenerate Bose and Fermi gases in a harmonic trap which interact with each other. We
consider that the interactions between bosons and fermions can be tuned with the interspecies
scattering length aBF , whereas the interactions between the bosons can be described by the
boson-boson intraspecies scattering length aBB. We limit our discussion to single-component
fermionic gases where the Pauli exclusion principle suppresses the collisions between the
fermions.

Trapped atomic Bose–Fermi mixtures were discussed for the first time by K. Mølmer
in Ref. [73], where the author studied the stability of the mixture against phase separation
or collapse as a function of the interspecies interaction with a mean-field approach. Here,
phase separation refers to the spatial separation of the bosons and the fermions, whereas

1Practically, we can see the effect of Fermi pressure for T . 0.6TF

15



collapse refers to the divergence of the density of one of the species. The evolution of
the density profiles of Bose–Fermi mixtures are studied as a function of the interspecies
scattering lengths aBF , which is attractive (repulsive) when aBF < 0 (aBF > 0). At the same
time, the boson-boson interaction is considered to be repulsive, i.e., aBB > 0.

In the noninteracting case (aBF = 0), the bosons and fermions decouple from one an-
other. The densities in the mixture are given by the densities of the individual species (see
Figure 2.2a) as discussed in the previous chapters. As the interspecies interactions become
attractive, the density of both species increases in the center of the trap (see panel (b)). In
the case of strong attractive interactions aBF �−aBB, the densities of the mixture diverge
signifying collapse. In contrast, repulsive interactions cause the Fermi gas to deplete from
the center, being pushed to the peripherals of the trap (panel (c)). Once, aBF � aBB, the
bosons and fermions are spatially separated and a new stable equilibrium is realized by the
system.

Within the mean-field approximation, a criterion for instability towards collapse or spatial
separation has been established by Viverit et al. [75] given by

n1/3
F >

(6π2)2/3

12π

µ2
BFaBB

mBmFa2
BF

, (2.46)

where µBF =(mBmF)/(mF +mB) is the reduced mass for a boson of mass mB colliding with a
fermion of mass mF . Here, nF is the density of the fermions. Collapse and phase separation
have also been studied in more recent theoretical works [76, 77]. While the criterion for
instability differs between the methods, generally for |aBF | & aBB the mixtures becomes
unstable.

The phenomena of collapse and phase separation have been confirmed in experiments.
The behavior of a 40K-87Rb mixture was probed for aBF = −284a0 while aBB = 100a0
[78]. The authors observed that the attractive interaction enhances the density and results
in a substantial loss of atoms. Around the same time, another investigation in a 40K-87Rb
mixture in Florence [79] observed the collapse of the BEC. They also studied the regime of
Bose–Fermi repulsion and saw the loss of atoms and survival of the condensate. The authors
attribute the survival of the BEC to phase separation because interspecies inelastic collisions
reduce once the BEC and Fermi gas are spatially separated. While phase separation and
collapse have been investigated with quite some detail, they mask more interesting physics
expected in Bose–Fermi mixtures, such as molecule formation.

2.3 Molecule formation in Bose–Fermi mixtures
Initial studies of Bose–Fermi mixtures in solid-state physics were captured by so-called
Fröhlich or Holstein models [80, 81], where the interactions between the fermionic elec-
trons are mediated by bosonic phonons. Theoretical investigations of the Fröhlich model
predict a rich phase diagram featuring polaron formation [82–84], boson-induced superflu-
idity [85] to boson softening and phase separation [86]. These models, which are calculated
by mean-field inspired approaches, neglect the pairing of bosons and fermions into compos-
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Figure 2.2 – Density profile of a Bose–Fermi mixture at different interactions. The den-
sities of bosons (blue) and fermions (red) are shown for T = 0 for (a) a noninteracting
mixture (aBF/aBB = 0), (b) attractive interactions (aBF/aBB =−2.9), (b) repulsive interac-
tions (aBF/aBB = 2.9). This calculation is based on a full Gross–Pitaevskii equation for the
bosons and a Thomas–Fermi approximation for the fermions. The figure is adapted from
[74].
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ite fermionic particles, an important feature of atomic Bose–Fermi mixtures.
The Hamiltonian for Bose–Fermi mixtures in terms of a single-channel model, where the

molecules exist in the open channel2, is described by [87]

H = ∑
p

ε
c
pc†

pcp +∑
p

ε
d
p d†

pdp +
U
V ∑

p,p′,q
c†

p+qcpd†
p′−qdp′ , (2.47)

where c†
p and d†

p are the fermionic and bosonic annihilation operators, respectively. The first
two terms capture the kinetic energy of the mixture, where the free dispersion relation of the
fermionic and bosonic particles are respectively given by εc

p = p2/2mF and εd
p = p2/2mB.

The last term describes the contact interaction between the bosons and the fermions, where
V is the system volume and the interaction strength U is given by

U−1 = µBF/2πaBF h̄2−V−1
∑
k

1/(εc
k + ε

d
k ), (2.48)

where µBF is the reduced mass of the boson-fermion atom pair.
The existence of the bound state complicates the phase diagram of Bose–Fermi mix-

tures. The theoretical challenge is to extend the Fröhlich model to include the pairing into
molecules. Since the molecules are fermions, they evade mean-field approaches and are
more challenging to describe than bosons [88]. Thus, before considering the system of a
large sample of bosons and fermions, we simplify the discussion to a single bosonic impu-
rity interacting with its fermionic environment.

This will be important to understand the association of molecules from degenerate Bose–
Fermi mixtures. The presence of the fermionic bath dresses the single boson. As a con-
sequence, the impurity is described by the notion of quasiparticles called polarons, and the
picture of Feshbach association discussed in Section 2.1.3 is modified.

2.3.1 Impurity limit: The Fermi polaron

The idea of polarons dates back to the 1930s when Lev Landau realized that electrons moving
in a dielectric crystal will displace the atoms from their equilibrium position, which leads to
defects in the crystal [89]. While the concept of polarons was first studied in the context of
solid-state physics, ultracold atoms provide an exciting playground to investigate the physics
of polarons [90–92].

To this end, one needs to create a system of two (or more) interacting types of parti-
cles, differing in at least one quantum number. Furthermore, strong population imbalance is
needed such that the interactions between the impurities can be neglected. While this is not a
realistic situation in the experiment, we consider a single impurity of one species immersed
in a bath of the other species for the discussion below.

2For narrow Feshbach resonances, one can also use a two-channel model Hamiltonian. The two-channel Hamil-
tonian with an infinitely broad Feshbach resonance is equivalent to the single-channel Hamiltonian in Equa-
tion (2.47).
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While in the noninteracting system, the impurity can be described by its intrinsic proper-
ties, this changes as the interactions are turned on, leading to an adiabatic change compared
to the noninteracting ground state. The impurity will be dressed by the excitations of the
surrounding medium so that the impurity can be described as a quasiparticle with renormal-
ized energy, mobility and mass. While discussing the case of the Fermi polaron, we note that
fermions immersed into a bosonic bath can be described by the Bose polaron.

The physics of the Fermi polaron can be captured a by a variational wavefunction that
approximates the eigenstate of the Hamiltonian in Equation (2.47). The so-called Chevy
Ansatz [93] for the zero-momentum polaron is given by

|Pol〉= α0 d†
0 |FS(N)〉+∑

kq
αkqd†

q−kc†
kcq |FS(N)〉 (2.49)

where α0 and αkq denote the variational parameters and |FS(N)〉 denotes a Fermi sea con-
taining N fermions. Here, dq and cq are the annihilation operators for bosons and fermion
with momentum q, respectively. The first term describes the coherent part of the polaronic
wavefunction. The quasiparticle weight is defined as the square-overlap with the coherent
part of the quasiparticle wavefunction, i.e., Z = |α0|2. For Z = 1, the bosonic impurity is
fully decoupled from the Fermi gas. For Z < 1, there is a finite number of particle-hole
excitations of the Fermi sea, which originate from the finite interactions between impurity
and the Fermi sea. This is captured by the second term in Equation (2.49), where the sum-
mation is executed for all momenta fulfilling |k| > kF and |q| < kF , which assures that no
hole is generated within the Fermi sea and the corresponding particle lies outside. Here,

kF =
√

2mFEF/h̄2 is the Fermi wavevector. As illustrated in Figure 2.3, the ground state
of the system is expected to be a superposition of the unperturbed Fermi sea and a bosonic
impurity with a particle-hole excitation where a particle within the Fermi sea can be excited
from momentum q to momentum k, while the impurity carries the energy of q−k.

In a similar fashion, the molecular state can be described by an Ansatz with a variational
parameter βk

|Mol〉= ∑
k

βk c†
−kd†

k |FS(N-1)〉 , (2.50)

where a fermion is paired with the bosonic impurity to form a molecule. The summation
is executed for all momenta fulfilling |k| > kF and |q| < kF , which assures that a hole is
generated within the Fermi sea and the corresponding particle lies outside.

The minimization of the energy functionals λPol(E) = 〈Pol|H −E|Pol〉 and λMol(E) =
〈Mol|H−E|Mol〉 with respect to the variational parameters allows to determine the renor-
malized dispersion relations for the polaron and the molecule, respectively. While minimiz-
ing the functional for the molecules provides one solution, for the polaron one finds two
solutions. The lower-lying state is referred to as the attractive polaron while the higher lying
state is the repulsive polaron [94].

In Figure 2.4, one can see the spectrum of the Fermi-polaron problem with three branches
corresponding to the attractive (red) and repulsive (blue) polaron as well as the molecule
(gray). The ground state of the system is either given by the attractive polaron or by the
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Figure 2.3 – Illustration of the polaron wavefunction according to the Chevy Ansatz. The
first term shows the unperturbed Fermi sea (red) and a bosonic impurity (blue). The term
contained in the gray shaded area illustrates the sum over the various particle-hole excita-
tions for an impurity with zero momentum (p = 0). The excited particles are shown in red,
while the hole is shown in light red.

molecular state, depending on the interaction strength. In the regime of attractive interparti-
cle interaction, the bosonic impurity deforms the Fermi sea by attracting the fermionic atoms,
leading to a lower energy of the now dressed boson with respect to the energy of the bare
energy of the bosonic impurity. At some interaction, the attractive polaron is an excited state
of the system and the molecule is the ground state. Unlike the two-body picture discussed in
Section 2.1.3, where the molecular state is the ground state at unitarity 1/(kFaBF) = 0, the
polaron-to-molecule transition occurs for 1/(kFaBF)> 0. The repulsive polaron is always an
excited state of the system, where the bosonic impurity repels the fermions leading to higher
energy compared to the non-dressed case. In the weak-coupling limit 1/(kFaBF)→ ∞, the
repulsive polaron is a well-defined quasiparticle. However, when the energy of the repulsive
polaron becomes larger than the Fermi energy of the bath, the repulsive polaron decays into
the lower-lying molecular state [94].

At last, we note that already with the simple variational Ansatz considering one particle-
hole excitation captured by Equations (2.49)-(2.50), one can qualitatively reproduce the
spectrum shown in Figure 2.4. By considering more particle-hole excitations, one can im-
prove the predictions of the spectrum, which can, for example, shift the predicted polaron-
to-molecule transition point.

The Fermi-polaron problem has already been explored in experiments. In two-component
Fermi gases3, the Fermi polaron has been studied with two different hyperfine states of the
same fermionic atom with a large number imbalance. Properties of attractive and repulsive
Fermi polarons were examined, including their effective mass [95, 96], energy [96–99],
thermodynamics [100], equation of state [101], and formation dynamics [102]. Recently,
the quasiparticle weight of the Fermi polaron has been mapped out, where a phase transition
from attractive polarons to molecules has been established [103].

2.3.2 Beyond the Fermi-polaron limit
After this excursion into the limit of a single boson in a Fermi sea, we return to the problem
of Bose–Fermi mixtures where both species have a finite density. In light of our goal to
associate atoms in degenerate Bose–Fermi mixtures into molecules, we want to understand

3Note that in the limit of a single impurity, it does not matter whether the particle is a boson or a fermion.
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Figure 2.4 – Spectrum of the Fermi-polaron problem as a function of the dimensionless in-
teraction strength 1/kF aBF . Energy of the attractive (red line), repulsive (blue line) polaron
and molecule (gray line). The insets illustrate the behavior of the polaron and molecule
states in a Bose–Fermi mixture with one bosonic impurity (blue) in a large sample of
fermions (red).

whether the polaron-to-molecule transition persists for a finite density of bosons. Studies of
the energy spectrum of the repulsive Fermi polaron in Ref. [104] show that the energy of
the repulsive polaron only exhibits a negligible shift when the concentration of the bosons
compared to the fermions is changed from about 20% to 60%. This suggests that the picture
of the Fermi polaron holds even for a substantial impurity density.

Experimentally, the polaron-to-molecule transition in the equal-density regime when both
species are degenerate has been unexplored until our work in Ref. [105]. In contrast, vari-
ous theoretical works have studied the equal-density Bose–Fermi mixtures. When nB ≤ nF ,
where nB is the density of the bosons and nF is the density of the fermions, the studies iden-
tify two phases. One is a phase where the bosons are condensed and a regime where all
the bosons are bound into molecules, and the condensate is fully depleted. According to all
the theoretical investigation in Refs. [106–110] studying the phase diagram of Bose–Fermi
mixtures, the following scenarios are possible when going from the condensed phase into
the molecular phase:

• There is a second-order quantum phase transition where the depletion of the bosonic
condensate fraction is continuous until it vanishes at the critical interaction strength.

• There is a first-order quantum phase transition with a phase-separation region between
the phase featuring a condensate and the phase featuring molecules. Here, phase sep-
aration refers to a region of interaction strengths where locally the condensate fraction
discontinuously becomes zero while other regions might still have a condensate.

• A collapse occurs and there is no stable region connecting the phase featuring the
condensate and the molecular phase.
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In the works of Ludwig et al. in Ref. [108], the authors consider a two-channel model of
Bose–Fermi mixtures in the limit of an infinitely broad Feshbach resonance. In contrast to
our experiment, the authors investigate the transition behavior by starting in the molecular
phase and entering the condensate phase. Instead of tuning the scattering length, they change
the chemical potential in their calculations, thus fixing the ratio of aBF/aBB. They find that
the system is only stable for sufficiently large Bose–Bose repulsion aBB. Moreover, they find
that a large aBB favor a second-order phase transition while low aBB favor a first-order phase
transition.

In the works of Bertaina et al. in Ref. [109], the authors use Monte Carlo methods to
map out the phase diagram. They consider a boson-boson repulsion, which is about two
orders of magnitude larger than in our experiment, to ensure that collapse is not an issue.
According to their calculations, there is a first-order quantum phase transition with a phase
separation region. The phase-separation region shrink as the density ratio of the boson to
fermion density nB/nF is reduced.

The same group has also published another calculation in Ref. [110] where they character-
ize the condensed phase, irrespective of whether it represents the ground state. The authors
use Monte Carlo methods and diagrammatic approaches to map out the phase diagram. Here,
a considerably weaker boson-boson repulsion is used, which is comparable to typical mix-
ture experiments. Interestingly, the authors do not address the question of the order of the
phase transition. However, this work is very useful for us because we can compare our data
of the condensate fraction as a function of the interaction strength to the calculations.

This short overview of the literature on the phase transition in Bose–Fermi mixtures final-
izes our discussion on the problem of trapped Bose–Fermi mixtures with interactions. We
have seen that in the impurity limit, quasiparticle formation occurs and that for sufficiently
strong interactions, the quasiparticle transitions into a molecule. Theoretical studies suggest
that a polaron-to-molecule transition extends beyond the impurity limit and that the process
can be understood as a phase transition of unknown order. In the following, we discuss the
experimental setup that allows us to produce a double-degenerate Bose–Fermi mixture as a
starting point for the production of molecules.
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Great acts are made up of small deeds.

—Lao Tzu

3 Experimental setup

The NaK-machine is a dual-species experimental apparatus whose construction has started
more than a decade ago. With each generation of Ph.D. students, the experiment has been
adapted to overcome the challenges of that generation. The challenge during this Ph.D. work
was to adapt the experimental machine to produce degenerate molecules. In this chapter, I
will first give an overview of the experimental apparatus and sequence. This will give the
reader a foundation to understand the measurements presented in the upcoming chapters.
In addition, I will then describe the upgrades to the experimental machine to produce and
density-match a double-degenerate Bose–Fermi mixture before focusing on the methods to
characterize our samples.

3.1 Overview of the vacuum system
The heart of the experiment is the vacuum system shown in Figure 3.1, which was built up
by the first generation of members of this experiment, and has been almost unchanged since
its first assembly. The design considerations are discussed in detail in the Ph.D. theses of
Nikolaus Buchheim, Zhenkai Lu and Frauke Seeßelberg [111–113].

The vacuum setup consists of two oven sections, one for the Na atoms and one for the K
atoms. The Na oven is designed to minimize maintainance of the Na source. This is done
by allowing for the reflow of Na atoms into the oven when the experiment is not running.
Accordingly, we did not need to exchange the Na source since 2013 [111]. In comparison,
the team at the NaK-machine in Hannover working with bosonic NaK molecules exchanges
their Na source every year. The K oven contains a sample where the fermionic isotope 40K
has been enriched to 3%. Both oven sections have ion pumps. The setup has a 2D-MOT
section and a Zeeman slower section to precool the K and the Na atoms, respectively, which
connect with a differential tube to the main chamber. The cooling stages to the microkelvin
regime for both species are performed in the main chamber. The experiments are conducted
in the glass cell (also called “science cell”) attached to the main chamber. Inside the glass
cell are four electric field rods that can create electric fields and electric-field gradients. The
electric field can be used to polarize the molecules. Each oven can be separated from the rest
of the machine by closing vacuum valves. To keep the pressure in the experimental chambers
at∼ 10−11 mbar, this section has an additional ion and titanium-sublimation pump, however,
we have not made use of the sublimation since at least 2018.

Typical of any cold-atom or cold-molecule experiment are magnetic field coils, which
for illustration purposes, are not shown in Figure 3.1. We can apply magnetic fields and
magnetic-field gradient with magnetic field coils around the main chamber and the glass
cell. In the main chamber, the direction of the currents in the so-called main coils is chosen
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Figure 3.1 – The vacuum system of the NaK polar molecules machine. The oven sections
for Na and K are connected to the main chamber via a Zeeman slower for 23Na and a 2D-
MOT chamber for 40K. In the main chamber, the two species are loaded into a 3D-MOT.
After the evaporation in the magnetic trap, the atoms are transported into the glass cell,
where the experiments are performed. The coordinate system shown at the bottom of the
figure will be used throughout this thesis where x points in the transport direction, y in the
Zeeman-slower direction, and z in the vertical direction.

to produce magnetic-gradient fields, while the bias coils generate small offset magnetic fields
in all spatial direction. This is important to control the position of zero magnetic field for the
MOT or the magnetic trap which might be shifted by Earth’s magnetic field or stray fields
from various devices in the lab. Around the glass cell, there are two pairs of coils. The so-
called Feshbach coils produce homogeneous magnetic fields, for example, for the Feshbach
association. The auxiliary coils are used to produce magnetic-field gradients for levitation or
remove atoms from the trap by applying a strong gradient pulse.

3.2 Experimental sequence
The best way to get to know the experiment is to experience it as the atoms do. To this end,
I will describe the experimental sequence reporting the typical numbers and temperatures in
the different stages to create ground-state molecules in the quantum-degenerate regime.

After the 23Na and 40K atoms leave their respective oven section, they are precooled be-
fore entering the main chamber. The 23Na atoms are precooled in the axial direction as
they traverse the Zeeman slower, while the 40K atoms are transversely cooled in a two-
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dimensional MOT (2D-MOT) stage. In the main chamber, the atoms are then loaded into a
three-dimensional MOT. In order to avoid interspecies losses during the loading and cool-
ing stages in the MOT, we intentionally displace the two clouds from one another by slightly
misaligning the MOT beams. This is necessary to achieve a compromise between the number
of Na and K atoms.

After loading the MOT for about 6 s, the magnetic field gradient is decreased from
13 G/cm to 7 G/cm and cooling is performed in the compressed-MOT configuration
(CMOT). Typically, the compression in the MOT stage refers to a spatial compression
and is used to mode-match the atomic cloud with the following sequence. In our experiment,
we found out that the most efficient loading of the magnetic trap is achieved when reducing
the magnetic field gradient and thus compressing the sample in momentum space. Following
the CMOT stage, the gradient is turned off to perform sub-Doppler gray-molasses cooling1

on the D1-line for 23Na [114]. During the gray molasses, the 40K atoms are cooled in optical
molasses [115]. After laser-cooling, we optically pump the atoms into the their respective
low-field seeking states |F,mF〉= |2,2〉 and |F,mF〉= |9/2,9/2〉 in 23Na and 40K.

Both species are then transferred into an optically-plugged magnetic quadrupole trap
by quickly ramping the magnetic-field gradient to 60 G/cm. Since the optical pumping
is not perfect and the magnetic gradient is sufficiently large, some low-field seeking hy-
perfine states of each species can be trapped inside the magnetic trap. All states except
for the hyperfine-stretched states need to be removed to prevent loss and heating due to
spin-exchanging collisions during the evaporation. To this end, the magnetic-field gradient
is ramped from 60 G/cm to the spin-purification gradient of about 8 G/cm, such that only
the states |2,2〉 and |9/2,9/2〉 in 23Na and 40K, respectively, remain trapped. The spin-
purification gradient is maintained for 2 s during which the unwanted spin states are pulled
out of the trap due to gravity. Since the two states do not share the same magnetic moment,
we commonly select the ratio between 23Na and 40K atoms by changing the spin-purification
gradient. Note that an alternative way to change the ratio of the species comes from tuning
the duration of the MOT loading for K atoms.

After the spin purification, the magnetic-field gradient is adiabatically increased to
250 G/cm which increases the density of the sample and leads to an efficient evaporation.
As a result of the adiabatic compression, the temperature of the mixture at the start of the
evaporation is increased to 1 mK. Subsequently, radio-frequency forced evaporation takes
place, where we ramp down the magnetic-field gradient and transfer the hottest 23Na atoms
by a radio-frequency field to an untrappable hyperfine state. Since the spin-polarized 40K
atoms cannot undergo evaporative cooling, they get sympathetically cooled by the 23Na
cloud. After the evaporation, there are about 1.6×108 23Na atoms and 1.0×106 40K atoms
at a temperature of 6µK.

We load this mixture into an optical dipole trap while the residual magnetic field gradient
is ramped down. In the so-called transport trap, the Na atoms undergo the hyperfine-state

1The gray molasses cooling has been implemented into the experiment to compensate for a continuous re-
duction of the number of Na atoms in the magnetic trap from 2018 until 2021 and was crucial for the first
production of degenerate Feshbach molecules. An unexplained event in the summer of 2021 led to a sudden
increase in the number of Na atoms such that the gray molasses was not needed.
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transfer |2,2〉 → |1,1〉 in order to mitigate spin-exchanging collisions inside the trap. This
transport trap is formed by two 1064-nm laser beams that intersect at an angle of about 2.6◦.
In comparison to a single transport beam, the axial confinement is larger, which helps during
the transport as described in Section 3.3.2. Overall, 2×107 Na atoms and 6×105 K atoms
are loaded into the transport trap.

After the transport from the main chamber to the glass cell, the mixture is transferred into
a crossed optical dipole trap formed by one of the transport beams and an additional 1550-nm
beam. At the start of the optical evaporation, we have 6×106 Na atoms and 2×105 K atoms
at a temperature of about 1 µK. Optical evaporation is performed by exponentially ramping
down the beam powers of the 1064-nm and 1550-nm beam. The magnetic field during the
evaporation is 90 G.

For the experiments in which we associate the double-degenerate mixture into molecules,
an additional 785-nm optical dipole trap is ramped on during the evaporation, which confines
the 40K atoms more strongly than the 23Na atoms (see Section 3.4). After decompressing
the 1550/1064-nm crossed-optical dipole trap, the confinement is dominated by the 785-nm
optical dipole trap. As a result, a degenerate Fermi gas of 2.3× 105 40K atoms is density-
matched with more than 5×104 condensed 23Na atoms.

The density-matched degenerate Bose–Fermi mixture is the starting point for the asso-
ciation of degenerate NaK∗ Feshbach molecules as discussed in Chapter 5. In short, after
the optical evaporation, we change the hyperfine state of the K atoms with a series of radio-
frequency sweeps from |9/2,9/2〉→ |9/2,−9/2〉 before ramping the magnetic field through
an interspecies Feshbach resonance at 78.3 G which transfers the unbound atoms into Fesh-
bach molecules. We typically produce 5×104 Feshbach molecules at a temperature of about
100 nK. We then transfer the Feshbach molecules into the rovibronic ground state by Stim-
ulated Rapid Adiabatic Passage (STIRAP).

3.3 Optical traps
In this section, I will discuss the optical traps used in the setup. Both, the upgrade of the
optical trap that transports the atoms and the species-dependent trapping potential for the
Feshbach association were crucial steps towards improving the Feshbach association and
obtain degenerate samples.

3.3.1 Atoms and molecules in an optical trap
In the presence of a light field, a particle (atom or molecule) experiences a force due to the
interaction of the particle’s dipole moment with the light field. This force comes from a
gradient in the interaction potential U(x,y,z), which is given by

U(x,y,z) = α I(x,y,z), (3.1)

where α is the real part of the dipole polarizability [9] and I(x,y,z) is the light intensity.
For now, we ignore the imaginary part of the polarizability, which corresponds to particle
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absorbing photons and leads to heating of the particles. If the trap is far-detuned from any
transitions, the real part of the polarizability dominates over the imaginary one.

3.3.1.1 Circular Gaussian beam

Before discussing how we calculate the trap parameters in the experiment for real dipole
traps, we consider a simple example: a focused circular Gaussian beam propagating in the
z-direction with waist w0. Here, circular refers to the fact that the waist of the Gaussian beam
is the same in all directions perpendicular to the propagation direction. Accordingly, we can
write the intensity of the Gaussian beam I in cylindrical coordinates as

I(r,z) = I0

(
1

1+(z/zR)2

)
exp

(
−2r2

w2
0 (1+(z/zR)2)

)
, (3.2)

where I0 is the peak intensity. The Rayleigh length zR is given by zR = (πw2
0)/λ where

λ is the beam’s wavelength. We also consider that the trapping light is red-detuned to the
transition that we use for trapping, i.e., the frequency of the laser beam ν = c/λ is smaller
than the transition frequency. Then α < 0, and the Equation (3.1) describes a potential with
a minimum U0 =U(r = 0,z = 0) where U0 is the trap depth. Typically, the atoms reside in
the minimum of the trap, meaning the temperature of the particles is considerably smaller
than the trap depth, and we approximate the potential around the minimum as a harmonic
potential of the following form:

Uharm(r,z)≈−U0 +U0

(
2r2

w2
0
+

z2

z2
R

)
. (3.3)

For a particle of mass m, the equation of motion in this harmonic potential in the direction
ri = {r,z} is

mr̈i =−
dUharm

dri
. (3.4)

and the trapping frequencies are

ωr =

√
4U0

mw2
r
, (3.5)

ωz =

√
2U0

mz2
R

(3.6)

in the radial direction r and the axial direction z, respectively.

3.3.1.2 Simulation for the experiment

For the actual dipole traps we use in the experiment, we use a computer simulation to com-
pute the trapping frequency of a specific species in the dipole trap we are interested in. In
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contrast to our easy example in Section 3.3.1.1, our dipole traps are made of up to four differ-
ent laser beams of different wavelengths that are propagating in different directions and have
an elliptical beam shape. The beam waists in the simulation typically are taken from mea-
sured beam waists or calculated by Gaussian beam propagation based on the optical setup.
We then calculate the trapping potential as the sum of contributions from each individual
beam such that

U(x,y,z) = ∑
beam

αbeamIbeam(x,y,z). (3.7)

We assume that all the trapping beams are focused in the same spot. For each species we cal-
culate the trapping potential and obtain the trapping frequencies from the second derivative
of the potential around its minimum, i.e.,

ωri =
√

d2U(x,y,z)/dr2
i /m . (3.8)

Here, m is the mass of the particle we are interested in and ri = x,y,z are three spatial direc-
tions as shown in Figure 3.1. The assumption that all foci coincide is not necessarily given in
the experiment. Nevertheless, we align and calibrate the traps for each critical measurement,
and the trapping frequencies typically agree with the simulation.

We calculate the polarizabilities of alkali atoms in a light field with frequency ω with the
formula

α =−3πc2

2ω3
0

(
Γ

ω0−ω
+

Γ

ω0 +ω

)
, (3.9)

where ω0 is the nearest atomic transition frequency and Γ the natural linewidth of that tran-
sition [9]. In our experiment, the frequencies of the trapping beams are near-infrared and
the closest transitions contributing to the polarizability for both the Na and K atoms come
from the D-lines. The transition frequencies and their respective natural linewidths can be
found for Na atoms in Ref. [116] and for K atoms in Ref. [117]. All other transitions are
much further detuned to the D-lines such that their contribution to the trapping potential is
negligible.

To calculate the trapping parameters of the Feshbach molecules, we make the atom-pair
approximation that the polarizability of the Feshbach molecules equals the sum of its atomic
constituents, i.e., αNaK∗(ω) = αNa(ω)+αK(ω). A comparison between the polarizabilities,
based on the atom-pair approximation and based on a calculation for a Feshbach molecule in
the last vibrational level v = 75 of the X1Σ+-potential, shows that the discrepancy between
the polarizabilities is less than 3% for a broad range of frequencies [118]. In this case, the
trap depth is given by

UNaK∗ =UNa +UK, (3.10)

and the trapping frequency ωri,NaK∗ for the Feshbach molecules is given by

ω
2
ri,NaK∗ =

mKω2
ri,K +mNaω2

ri,Na

mK +mNa
. (3.11)

Note that Equations (3.10)-(3.11) are only valid for the case where photoassociation lines
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have no significant contribution to the polarizability. The polarizability of the ground-state
molecules needs to be calculated independently which we deduce from Ref. [118] for the
wavelengths 1064 nm and 1550 nm. The ground-state polarizabilities around 785 nm were
provided to us by Nadia Bouloufa-Maafa [119].

3.3.2 Optical transport
The NaK-machine, like many experiments that need optical or mechanical access, is built
with several experimental chambers which are separated by several tens of centimeters. One
of the limitations in the achievable phase space density of these experiments is the opti-
cal transport, and consequently, considerable experimental effort within the ultracold-atom
community has been made to optimize the atomic transport. Methods of transport include
the translation of magnetic fields [120, 121], shifting tightly-focused laser beams [122–125]
and transport via a moving lattice [126–128].

Until the beginning of 2019, one tightly focused 1064-nm beam transported the atomic
mixture of 23Na and 40K from the main chamber into the glass cell. The limitation of this
transport method boils down to a compromise between increasing the trap depth (thus the
confinement) for efficient loading and transport at the cost of increased interspecies loss.
This interspecies loss happens predominantly during the loading of the transport trap when
23Na cloud is still in the hyperfine state |F,mF〉= |2,2〉 before it gets transferred into |1,1〉.

My first project during this Ph.D. work was to improve the atom transport by decreasing
the overall confinement of the trap while increasing the confinement in the direction of the
transport. By using two optical beams intersecting at a small angle, we project the typically
strong radial confinement of the individual trapping beams onto the direction of the transport
[129]. To reduce the confinement and keep the same trap depth, we needed more optical
power compared to the previous setup.

3.3.2.1 ALS-laser powered transport trap

The previous transport trap was composed of a single transport beam with a waist of 40µm.
The optical power of 7.5 W was derived from a Innolight Mephisto MOPA 18W. In 2018,
during an upgrade to implement a two-dimensional horizontal lattice, we bought a fiber laser
from Azurlight Systems (ALS IR-1064-50), providing 50 W at a wavelength of 1064 nm.
Scott Eustice, the Master’s student who built the two-dimensional horizontal lattice, designed
the optics such that the lattice and the transport can be powered by the same laser [130].
During the upgrade of the optical transport, we then inserted a waveplate inside a rotation
mount with a stepper motor to split the power between the transport and the horizontal-lattice
beams. This is possible as the horizontal lattice beams are not needed during the transport
stages or the optical evaporation, and only small powers are required in the transport trap
when the atoms or molecules are loaded into the optical lattice.

One of the first problems that we encountered during the testing phases of the upgrade
was that we could not provide sufficient power to the transport beam. Due to the increased
beam size from 40µm×40µm to about 50µm×100µm, we required at least 21 W of optical
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power in the transport beams to maintain the trap depth compared to the previous transport
setup. When using the photonic crystal fiber AeroGUIDE POWER-15-PM from NKT Pho-
tonics with a fiber length of 5 m and a mode field diameter of 12.6µm, the transmission
efficiency reduced significantly once the transmission power exceeded 15 W. This reduction
did not result from thermal lensing, as alignment did not improve the transmitted power. We
could quickly attribute the effect to Stimulated Brillouin Scattering (SBS), a nonlinear effect
that leads to the back-reflection of the injected power favored by a small mode field diam-
eter and long fibers [131]. An indicator that SBS was limiting our transmission efficiency
was an instant increase of the back-reflected power from the fiber once the transmission effi-
ciency dropped. We measured this by inserting a glass plate before the fiber and detecting the
power-dependent back reflection. By switching to a shorter fiber, for instance, we currently
use Alphanov LMA-PM-15 with a length of 2.5 m, we get 21 W of optical power onto the
optics board to generate the crossed optical transport trap.

3.3.2.2 Optical setup

The optics to produce the crossed optical transport trap are depicted in Figure 3.2. After
beam-shaping, the beam is split using a waveplate mounted inside a rotation mount with a
stepper motor and a polarizing beamsplitter (PBS) (Thorlabs PBS12-1064-HP). While load-
ing the atoms into the transport beam and also during the transport, the position of the ro-
tation waveplate is set such that the trap is in a crossed configuration. This maximizes the
axial confinement of the trap for efficient transport. Once the transport of the mixture is com-
pleted, the stepper motor moves by 22.5◦ within 1 s to create a single beam before optically
evaporating the mixture.

The reason for rotating the waveplate before the evaporation is that the imperfect polar-
ization splitting of the PBS with an extinction ratio of 3370:1 causes a weak lattice along the
vertical direction. We noticed this problem only in November 2019, about half a year after
implementing the optical transport. When evaporating the atomic mixture into the deeply
degenerate regime, we observed that the cloud started to split in the presence of the crossed
optical transport beam, and the splitting distance of about 25µm agrees with the expected
lattice spacing for two beams with a wavelength of λ = 1064nm and an intersection angle
of θ = 2.6◦.

After the splitting cube, the transport beams propagate in parallel with a displacement of
19 mm and are focused by a lens (Newport SPX055AR.10) such that they intersect at their
common waist position. To make the trap movable for transport, we image the trap in a 4f
configuration into the vacuum system. This 4f imaging system is made of two lenses (New-
port SPX058AR.10) with focal length of 500 mm each, such that the image is created at a
distance of 2 m. By changing the distance between the object and the first lens of the 4f imag-
ing system with an air-bearing translation stage (Aerotech MTC150P), we also change the
distance between the second lens and the image. Preliminary tests showed that when placing
the two imaging lenses at a distance of twice the focal length, the beam waists changed by
about one percent for a transport distance of about 30 cm. So in the experiment, where we
transport the atoms over a distance of about 27 cm, no significant change in the beam waists
occurs.
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Figure 3.2 – Optics for creating and beam-shaping the transport trap. A collimated beam
is magnified by a telescope, followed by polarization cleaning. The beam then transmits
through a beam sampler, where a small fraction of the power is directed towards a photodi-
ode for intensity stabilization. After the beam sampler, we use a waveplate in a motorized
rotation mount and a polarizing beam splitter (PBS) to split the power into two independent
optical paths. These two beams propagate in parallel onto a lens that focuses the beams,
and a crossed transport trap forms (indicated by the red cross). In their focus, the beams
have an elliptical beam shape with waists of about 50µm and 100µm in the vertical and
the horizontal direction, respectively. This trap is imaged into the vacuum chamber using a
4f imaging system. We achieve transport by moving an Aerotech translation stage.

3.3.3 Intensity stabilization at low powers
During the optical evaporation in the glass cell, the transport power is reduced by almost four
orders of magnitude. In particular, the transport trap is decompressed before the Feshbach as-
sociation with double-degenerate Bose–Fermi to reduce the critical loss (see Section 5.4.2).
This necessitates a photodiode with almost four orders of magnitude dynamic range. Us-
ing one photodiode is typically not good enough: With a maximum voltage of about 10 V,
we would need to detect signals of about 1 mV which would be buried in the noise floor
of the photodiode. Therefore, some experiments in our group use photodiodes with differ-
ent gains, which can be switched during the sequence and allow intensity stabilization over a
large range of powers. We have instead decided to use a photodiode (Hamamatsu G8370-01)
soldered to a precision high-speed logarithmic amplifier (Texas Instruments LOG114). The
logarithmic amplification of the photocurrent allows us to change the powers of the trans-
port trap over more than three orders of magnitude from 21 W, during the transport, down to
about 5 mW, allowing us to associate the atoms into Feshbach molecules in the presence of
a shallow crossed optical dipole trap.

3.3.4 Performance of the new transport trap
To benchmark the performance of the transport trap, we image the Na and K atoms in two
different stages of the sequence. One is after loading the transport trap from the magnetic
trap, and the other after the transport into the glasscell has been completed. Prior to the
transport upgrade, we only used to look at the loading of the transport trap and did not detect
the atoms after the transport.
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Table 3.1 – Details of the transport beam. The trap parameters for the crossed transport
trap and the previously used single-beam transport trap. The crossed optical dipole trap
has an elliptical beam shape. The smaller beam waist (higher trapping frequency) refers
to the vertical direction (z-direction in Figure 3.3), and the larger beam waist (lower trap-
ping frequency) to the direction of the Zeeman slower (y-direction). We have labeled the
waists with wv and wh to represent the waists in the vertical and the horizontal direction,
respectively.

Transport trap Crossed Single-beam

Laser power (W) 21 7.5
Beam waists (µm) (wv,wh) = (48,100) (wv,wh) = (40,40)

Trap depth U/kB (µK)

U0,Na 370 200
U0,K 145 78

Trap frequencies (ωx,ωy,ωz)(Hz)

ωi,Na 2π× (34,730,1520) 2π× (8,1340,1340)
ωi,K 2π× (42,884,1840) 2π× (10,1626,1626)

In the new transport trap, we managed to increase the number of loaded Na atoms by about
50% under the condition that the number of K atoms remains the same. With the single-beam
transport trap we usually loaded 1×107 Na atoms, while with the new transport trap this was
improved to 1.5× 107 Na. Note that the numbers reported here refer to a condition where
we had about 1.2×108 Na atoms after the evaporation in the magnetic trap. We attribute the
improvement in the transport loading mainly to the increased trap depth of the new transport
at full power by a factor two compared to the single-beam transport trap (see Table 3.1).
However, since also the overall confinement has increased leading to stronger interspecies
loss in the loading stages, we do not expect that the number of atoms loaded into the trap
increases linearly with the trap depth. The performance of the transport loading could be
further improved by reducing the loading time into the transport trap. When doing this, one
should be careful that a faster loading of the transport trap does not lead to an increased
shot-to-shot fluctuations in the atom numbers and thus unstable experimental conditions.

Unfortunately, we did not produce a comparison of the transport efficiencies of the single-
beam and the crossed-beam transport trap. Instead we performed a measurement of the
round-trip efficiency which constitutes a transport to the glass cell and back. With the crossed
transport trap we measure a round-trip efficiency of 50% for the Na atoms while Niko Buch-
heim reports a one-way efficiency of 65% in his Ph.D. thesis [111].

To conclude, with the new transport trap we have managed to improve the loading into
the transport beam while the transport efficiency has only improved marginally. Still, the
improved conditions of the mixture in the glass cell was the crucial step towards producing
double-degenerate Bose–Fermi mixtures.
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Figure 3.3 – Overview of the optical traps used in this thesis. (a) 1550/1064-nm trap:
Crossed dipole trap composed of one 1064-nm beam propagating along the x-direction
with a tilt of θ = 1.3◦ in the x/z-plane, and a 1550-nm beam along the y-direction with a
tilt of θ = 18.5◦ in the x/y-plane. (b) 785-nm trap: The species-dependent compression
trap for K atoms formed by a vertical beam propagating along the z-direction and a light
sheet propagating along the y-direction.

3.4 Crossed dipole traps
In this section, I will discuss the crossed optical dipole traps used in our experiments. After
initial attempts to try the Feshbach association in a three-dimensional optical lattice similar
to the works in Ref. [60, 132], by creating a Mott insulator of Na atoms and a band insulator
of K atoms, we decided to do the molecule production in optical dipole traps. Our improved
transport trap and successful creation of a degenerate molecular KRb sample by the JILA
team [43], gave us the incentive that we would also be able to create degenerate molecules
in bulk.

3.4.1 1550/1064-nm trap

The 1550/1064-nm crossed optical dipole trap is the traditional trap used in our experiment,
composed of one of the 1064-nm transport beams and a 1550-nm crossing beam along the
y-direction. We have used this dipole trap to investigate the loss behavior of atoms and
molecules in the vicinity of the 78.3-G Feshbach resonance discussed in Chapter 4 and for
the association of thermal Bose–Fermi mixtures (see Section 5.2).

After the atomic mixture is transported into the glass cell, the 1550-nm light is ramped on
to provide stronger confinement for the atoms along the transport direction. The transport
trap is decompressed to create a trap where the confinement in both horizontal directions
becomes comparable. Afterward, the waveplate rotator directs the power into a single 1064-
nm beam. As part of the transport upgrade in Section 3.3.2, the beam parameters of the
1550-nm beam have been changed from a circular beam shape with a waist of w0 =100µm
to an elliptical beam shape to match the vertical beam size of the transport beams. The beam
parameters, polarizabilities and trapping frequencies are listed in Table 3.2.

In April 2022, we replaced the 1550-nm beam path with 1064 nm derived from the
Mephisto MOPA 18W. Historically, we used the 1550-nm light because we hoped that
the light would be red detuned from any electronic transition of ground-state molecules
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Table 3.2 – Details of the 1550/1064-nm crossed optical dipole trap. The polarizabilities
of the atoms are obtained from Equation (3.9). The polarizability for the NaK∗ Feshbach
molecules can derived from the atom-pair approximation in Equation (3.10) as no pho-
toassociation lines are expected at 1550 nm and 1064 nm. The polarizability of the NaK
ground-state molecules is taken from Ref. [118]. The tabulated trap depths and trap fre-
quencies are given for the power P1064 =0.73 W of 1064-nm and P1550 =1.5 W of 1550-nm
light, the typical trap powers before the optical evaporation. The values wv and wh are
the beams waists in the vertical and horizontal direction with reference to the propagation
direction of the beam, respectively.

Beam Transport beam (1064 nm) Crossing beam (1550 nm)

Beam waists (µm) (wv,wh) = (48,100) (wv,wh) = (52,148)
αK (Jm2/W) 1.84×10−36 1.16×10−36

αNa (Jm2/W) 7.21×10−37 5.84×10−37

αNaK (Jm2/W) 1.85×10−36 1.34×10−36

Trap depth U/kB (µK)

U0,K 23.2
U0,Na 10.2

U0,NaK∗ 33.5
U0,NaK 23.8

Trap frequencies (ωx,ωy,ωz)(Hz)

ωi,K 2π× (99.4,166.0,447.3)
ωi,Na 2π× (92.7,137.2,389.7)

ωi,NaK∗ 2π× (97.0,156.1,427.1)
ωi,NaK 2π× (82.8,132.0,362.6)
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[118, 133]. However, the 1550-nm has generally caused problems for the lifetime of the
ground-state molecules, both in the former one-dimensional vertical lattice or in the three-
dimensional lattice in the presence of the 1550-nm crossing beam. It should be noted that we
have never figured out why the 1550-nm light was reducing the lifetime of the molecules.

3.4.2 785-nm trap
The 785-nm species-dependent dipole trap was implemented into our experimental setup to
efficiently associate double-degenerate Bose–Fermi mixtures into molecules. As explained
in Section 5.4, the association in the 1550/1064-nm crossed dipole trap led to an inefficient
association of Feshbach molecules due to a bad overlap and strong collisional loss. The bad
spatial overlap arises from the different quantum statistics of the Na and K atoms. When
condensed, the size of the Na cloud decreases, and consequently the density significantly
increases. To compensate for that and improve the overlap between the K and the Na atoms,
we need to use a dipole trap that has comparably large polarizability for the K atoms.

Initially, we used the compression light to compress the Fermi gas but also to improve
its degeneracy. In this case, the compression was performed in the horizontal directions by
adiabatically compressing the fermions, which are sympathetically cooled by the Na atoms
producing degenerate Fermi gases with a temperature of T ∼ 0.15TF . However, once we
implemented a light sheet to also compress the Fermi gas along the vertical direction to
density-match it with the BEC in all spatial directions, we did not manage to reduce the
temperature below T ∼ 0.2TF . Irrespective of that, the density-matching by using a species-
dependent dipole trap allowed us to create degenerate Feshbach molecules. In this section,
I will mainly describe the 785-nm trap that was used for the degenerate Feshbach molecule
association in Ref. [105] whose properties are tabulated in Table 3.3.

3.4.2.1 Selecting the wavelength

We need to find a wavelength that strongly confines the degenerate Fermi gas of K atoms
compared to the BEC of Na atoms to match their densities. Since Na atoms have D-line
transitions at a wavelength of about 589 nm [116], it is quite natural in our system to choose
a near-infrared wavelength for the trap. Thus, we can tune the frequency of the trap to be
arbitrarily close detuned from the D-lines in K atoms while the detuning from the D-lines
of the Na atoms will always be large. At the same time, we need to ensure that the chosen
wavelength does not lead to absorptive heating of the K atoms by the trap light.

In addition, we need to consider further that near-infrared wavelengths are in a frequency
regime where both the Feshbach and ground-state molecules have optical transitions to other
states. The light can lead to photoassociation of the Feshbach molecules. Such photoasso-
ciation lines have been measured by Jee Woo Park and colleagues in Ref. [134] from the
NaK team at MIT. Similarly, for ground-state molecules one needs to be aware of optical
transitions into the A1Σ+ or b3Π manifold. To get a preliminary idea of the spectrum, we can
look at the polarizabilities of ground-state 23Na39K-molecules calculated in [118]. Using an
isotope shift of ∆λ =−11cm−1 (see Equation 3.31a in Ref. [135]), we can use the spectrum
for our fermionic molecules.
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Figure 3.4 – Polarizabilities of 23Na39K molecules. The absolute value of the real part
of the polarizabilities is shown for molecules in the absolute ground (red) and the Fesh-
bach state (blue). The gray line shows the ratio of the real-to-imaginary polarizability
for the ground-state molecules. The intersections of the red and blue lines can be re-
ferred to as magic frequencies between ground-state and Feshbach molecules. The data
has been provided to us by Nadia Bouloufa-Maafa [119] and can be adapted to 23Na40K
molecules, when shifting the data by ∆λ =−11cm−1. Note that the polarizability of Fesh-
bach molecules is plotted in absence of photassociation lines. Such photoassociation lines
have been measured in Ref. [134]. The polarizabilities are given in atomic units (a.u.)
where 1a.u.= h×4.6883572×10−2 Hz/(W/cm2).
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Ultimately, we chose to work with a frequency that produces the same potential for the
Feshbach and ground-state molecules. In this case the trap depth does not need to be adjusted
when transferring the Feshbach molecules into the rovibronic ground state. Thus, we have
measured the effect of the compression light on the Fermi degeneracy for various magic
frequencies, and only for the magic frequency at around 775 nm did we notice a heating
effect on the K atoms. Eventually, we made the choice to use a wavelength of λ = 785.45nm
for the compression which provides sufficient confinement for the K atoms to allow for the
density matching for efficient Feshbach-molecule association. The parameters for the trap
are tabulated in Table 3.3.

3.4.2.2 The optical setup

The species-dependent optical trap comprises a vertical beam and a light sheet. The light for
the trap is generated by a titanium-sapphire laser (Coherent MBR 110) pumped at 532 nm
with a Lighthouse Sprout. The wavelength can be tuned freely by tens of nanometers by
changing the birefringence filter on the laser. This was advantageous for the starting phases
of the project where we tried to find the optimal wavelength for the compression of the K
atoms.

The light sheet which provides the vertical confinement for the mixture is based on the
optical setup of the cap beams that Renhao Tao built during his Master’s thesis in our experi-
ment [136]. This setup was used during the investigation of the sticky collisions in a box trap
formed by a ring beam and two cap beams [137]. After this project had been completed, we
adapted the optical setup, in particular, we removed the mask which was used to create the
cap beams and inserted a telescope to increase the enlarge the vertical waist of the light sheet.
Using an imaging system and a Raspberry-Pi camera (Pi Camera NoIR V2), we monitor the
position of the trap and obtain the beam parameters.

The compression beam that provides the confinement in the horizontal direction propa-
gates along the vertical direction and is focused onto the atoms by a high-resolution ob-
jective. This beam propagates close to the optical axis of the imaging system such that it
hopefully only has a small angle with the vertical axis. To align the compression beam in-
dependently from the imaging path, we had to insert a D-shaped mirror into the imaging
path. The sharp edge on the left hand side in Figure 3.5a results from the D-shaped mirror
obstructing a part of the image. Due to the spatial constraints in the optical setup, our main
strategy to obtain the beam parameters is from the trapping frequencies.

3.5 Absorption imaging and analysis
After performing the experiment of interest, we destructively detect our atomic and molec-
ular samples by absorption imaging. The sample is released from the trap and illuminated
with a short light pulse after time of flight. The atoms absorb a part of the light pulse and
create a shadow that is imaged onto a CCD camera (Allied Vision Manta G-145). We have
built up different image paths for absorption imaging: The absorption images of atoms in
the main chamber are predominantly used to determine and improve the atom numbers up
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Table 3.3 – Details of the 785-nm crossed optical dipole trap. The polarizabilities of atoms
are obtained from Eq. (3.9) whereas the polarizability of the Feshbach molecules from the
atom-pair approximation. The polarizability of the ground-state molecules is assumed to
be the same as for the Feshbach molecules. The tabulated trap depths and trap frequencies
are given for a power of 20 mW in the vertical beam and 200 mW in the light sheet, the
conditions for the trap in which we associate degenerate Feshbach molecules.

Beam Vertical beam (785.45 nm) Lightsheet (785.45 nm)

Beam waists (µm) (wx,wy) = (57,45) (wz,wx) = (30,450)
αK (Jm2/W) 2.13×10−35

αNa (Jm2/W) 1.14×10−36

Trap depth U/kB (µK)

U0,K (µK) 1.5
U0,Na (µK) 0.11

U0,NaK∗ (µK) 1.4

Trap frequencies (ωx,ωy,ωz)(Hz)

ωi,K 2π× (72.0,90.1,187.2)
ωi,Na 2π× (22.8,28.8,62.1)

ωi,NaK∗ 2π× (60.0,73.8,153.5)
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until the loading of the transport beam. For the experiments performed in the glass cell, we
have imaging paths to detect the sample from the vertical and horizontal direction as shown
in Figure 3.5.

3.5.1 Optical density
To obtain the thermometric quantities of our atomic and molecular samples, we first need to
obtain the optical density. According to the Beer-Lambert law, the two-dimensional image
of the optical density OD(x,y) is given by

OD(x,y) =− ln

(
A(x,y)−D(x,y)
L(x,y)−D(x,y)

)
(3.12)

using three different images: an image with atoms in the presence of the imaging beam
A(x,y), the image without atoms in the presence of the imaging beam L(x,y), and the dark
image D(x,y) without the atoms and the imaging beam. Note that the coordinates {x,y} take
discrete values as the camera that images the cloud is discretized by its pixels. It is important
to take the dark image D(x,y) to account for the ambient light, which the atoms might not
absorb but impinges on the CCD camera. We can obtain the column-integrated averaged
density of the sample in a pixel by

n(x,y) = OD(x,y)/σ , (3.13)

where σ = σ0/(1 + δ 2) is the scattering cross-section which depends on the detuning ∆

compared to the natural linewidth Γ, specifically δ = 2∆/Γ. The scattering cross-section for
resonant light of wavelength λ0 is given by σ0 = 3λ 2

0 /(2π). These relations can be obtained
from a calculation of a two-level system and are valid in the regime where the probe intensity
is much smaller than the saturation intensity Isat = (h̄ω3Γ)/(12πc2).

However, working with low imaging intensities constitutes a problem when working with
dense atomic clouds. Most of the light then gets absorbed by the cloud and only a small
fractions of the photons impinge onto the CCD camera. In this case, we cannot reliably
obtain the optical density shot noise and readout noise. Instead, we image the sample with
light intensities I & Isat. To account for saturation effects, we rewrite Equation (3.12) [138]
as

OD(x,y) =− ln

(
A(x,y)−D(x,y)
L(x,y)−D(x,y)

)
+

(
(L(x,y)−A(x,y))Ephoton gCCD

Tlight (Isat/Apx) tpulse

)
, (3.14)

where Tlight is the ratio of the light after passing through the cloud that is transmitted to
the camera, Isat/Apx is the light power over the pixel area Apx which is determined by the
magnification M and the size of a pixel by Apx = (lpx/M)2 for a square pixel. tpulse is the
duration of the pulse, Ephoton = hν is the energy per photon with imaging frequency ν , and
gCCD is the gain of the CCD-camera at the specific wavelength used.

To obtain the optical density in the glass cell for the atoms according to Equation (3.14),
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Figure 3.5 – Example pictures of the optical density in the vertical and horizontal imaging
as shown by the image analyzer. (a) Vertical imaging of a thermal K cloud. The image
shows the optical density image OD(x,y) for a K cloud after evaporation in the crossed
optical dipole trap after a time of flight of 20 ms. The aperture of the image clipped along
the path of the imaging. The straight cut on the left-hand side results from a D-shaped
mirror which sends the vertical compression beam for K atoms into the glass cell. (b)
Horizontal imaging of Feshbach molecules and Na atoms with a small condensed fraction.
Using a Stern–Gerlach technique, molecules and atoms are separated during time of flight.
After the molecules are dissociated, the absorption image is taken, allowing us to detect
Feshbach molecules and residual atoms simultaneously. The image is taken after a time
of flight of 18 ms. The red boxes indicate the region of interest (ROI) and the green boxes
indicate the reference region. The reference region is used to get the background reading of
the optical density. The colors of the image indicate the optical density of the sample and
are displayed here in arbitrary units.

we assume Tlight = 0.92 given a 4%-reflection of the imaging power from the inner and outer
surface of the glass cell on the imaging path. The length of the imaging pulses for both
atomic species is tpulse =50µs, the saturation intensities are Isat =1.75 mW/cm2 [117] and
Isat =13.4 mW/cm2 [116] for K and Na atoms, respectively. The atoms are typically imaged
on resonance on the D2-line for the respective species. Before any important measurement,
we calibrate the imaging frequencies to maximize the atom number. For the analysis, how-
ever, we assume the imaging wavelength to be λNa = 589.16nm and λK = 766.70nm. We
also assume that the gain of both cameras is the same and that it solely depends on the
wavelength, such that gCCD(K) = 0.078 counts

photon and gCCD(Na) = 0.109 counts
photon .

We can image the K and the Na atoms in time of flight for both imaging paths. The
absorption images A(x,y) are taken for each species individually. Unless stated differently,
the image of the K atoms is taken first, and the image of the Na atoms is taken 1 ms later. We
typically specify the time of flight for the image of the K atoms. The images without atoms
L(x,y), and the dark image D(x,y) are taken once the atoms have fallen out of the view of
the imaging system and once the light has turned off, respectively. While both the vertical
and horizontal imaging directions provide complementary information on the samples, we
specifically use the horizontal imaging for the simultaneous detection of Feshbach molecules
and atoms, which is particularly important in the characterization of the Feshbach association
discussed in Chapter 5 and Chapter 6.
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3.5.2 Imaging molecules

While I previously discussed how we could infer the optical density from the atoms, I would
like to explain how we image the molecules in our experiment. To this end, it is impor-
tant to note that the Feshbach nor the ground-state molecules are directly imaged in time of
flight. As shown for ground-state molecules in Figure 3.6, we first perform the experiment
of interest given by the time after the first STIRAP pulse. We then transfer the ground-
state molecules into Feshbach molecules (second STIRAP pulse), after which the dipole
traps for confining the molecules are turned off. Shortly after turning off the trap, we pulse
on a magnetic field gradient of typically 40 G/cm, which separates the atoms from the Fesh-
bach molecules. The magnetic field during this so-called Stern–Gerlach separation, typically
between 72.3 G, is chosen such that the magnetic moment of the Feshbach molecules is con-
siderably weaker than the atoms (see Figure 3.10). After the separation in time of flight,
the magnetic-field gradient is turned off, and the magnetic field is ramped back through the
Feshbach resonance to dissociate the molecules. Afterward, the magnetic field is turned off,
and the imaging beams are pulsed for detection. The sequence shown in Figure 3.6 in the
absence of the STIRAP pulses can also be understood as the turn-off sequence to detect
Feshbach molecules.

3.5.3 Atom and molecule numbers

The two-dimensional images for the optical density OD(x,y) allow us to deduce important
quantities of the atomic and molecular clouds. We obtain the number of particles N by
summing OD(x,y) over the number of pixels i in the region of interest according to

N = ∑
i

OD(x,y)Apx

σ
, (3.15)

where σ is the scattering cross-section of the species of interest. Essentially, Equation (3.15)
assumes a uniform column-integrated density n(col) = OD(x,y)/σ for each pixel, which is
a reasonable assumption if the cloud extends over a sufficient number of pixels. Note that
using this formula, we obtain the number of K and Na atoms, and the number of Feshbach
molecules if we assume that the loss during the dissociation is negligible. For ground-state
molecules, we need to correct the number of atoms by the STIRAP efficiency, e.g., the
number of molecules from the image of K atoms is NNaK = NK/η . One downside of the
horizontal imaging system is that we cannot obtain reliable atom numbers for Na and K
atoms from the same experimental run. Given that we work with Na atoms in mF = 1 and K
atoms in mF = −9/2, we need opposite polarizations for the imaging beams to image both
atoms on their respective cycling transition. However, the imaging beams are combined in
such a way that they have the same polarization. We can choose which species we want to
image on a cycling transition by changing the direction of the horizontal bias fields. In the
vertical imaging direction this is not needed. There the polarizations are of opposite direction
and the different parity produces correct numbers for Na and K atoms.
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Figure 3.6 – Sketch of a typical sequence to image ground-state molecules. Starting with
Feshbach molecules at a magnetic field below the Feshbach resonance (B<B0) in an optical
crossed dipole trap, the Feshbach molecules get transferred into the rovibronic ground-state
by a forward STIRAP pulse. After the measurement, the molecules are transferred back into
Feshbach molecules which are released from the trap. The traps are turned off at tturn−off,
starting the time of flight. During the time of flight, we turn on a magnetic field gradient for
a short time, exerting a force on the atoms different than that on the Feshbach molecules to
separate the two samples. After some time of flight, the magnetic field is ramped above the
Feshbach resonance. Shortly after, the magnetic field gets turned off, and the K atoms are
imaged at timage. The expansion time is given by tTOF = (timage− tturn−off).
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3.5.4 Thermal clouds

The momentum distribution of thermal atoms is described by a Gaussian distribution. To
probe thermal clouds, we fit the images OD(x,y) with a Gaussian distribution of the form

ODGauss(x,y) = ODpeak exp

[
− (x− xc)

2

2σ2
x
− (y− yc)

2

2σ2
y

]
, (3.16)

where ODpeak is the amplitude of the Gaussian, (xc,yc) are coordinates of the cloud center
and (σx,σy) describe the cloud widths. In our fitting routines, we typically fit the set of
parameters (ODpeak,xc,yc,σx,σy). Using the Gaussian width σi in the direction i, we obtain
the temperature of the sample Ti with

Ti =
mω2

i σ2
i

kB(1+ω2
i t2

TOF)
, (3.17)

where m is the mass of the species of interest, tTOF the expansion time of the sample, and
kB is the Boltzmann constant. Here, ωi is the trapping frequency of the sample in the i-th
direction.

For the temperature of the molecules, it is important to note that if the molecule dissocia-
tion is slow enough, the momentum distribution is still determined by the time of the release
from the trap before the dissociation. Thus the temperature in Equation (3.17) is calculated
for a mass m = mNaK. However, the temperature might be overestimated if the dissocia-
tion of Feshbach molecules is too fast and the dissociation energy influences the momentum
distribution [139].

3.5.5 Degenerate bosons

When the temperature of a bosonic sample is below the temperature of condensation T < Tc,
the bosons follow a bimodal distribution with a thermal and condensed fraction. We fit the
images OD(x,y) with a bimodal distribution of the form

ODbimodal(x,y) = ODGauss(x,y)+ODBEC Max

[
0,

(
1−
(

x− xc

Rx

)2

−
(

y− yc

Ry

)2
)3/2]

,

(3.18)

where ODGauss(x,y) is the Gaussian distribution from Equation (3.16) for the thermal frac-
tion, ODBEC is the peak density, (xc,yc) is the center position of the condensed cloud and
(Rx,Ry) are the Thomas-Fermi radii of the condensed bosons. Our fitting ensures that the
momentum distribution of the BEC, described by an inverted parabola, is always positive.
We obtain the number of thermal bosons Nth and the number of atoms in the BEC NBEC [140]
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by

Nth = (2π)
ODpeak

σ0
σxσy, (3.19)

NBEC =

(
8π

15

)
ODBEC

σ0
RxRy, (3.20)

where σ0 is the scattering cross section of the bosons. To get the temperature of the sample,
we use the Gaussian widths to the thermal distribution and get temperature according to
Equation (3.17).

3.5.6 Degenerate fermions
Once the fermions become degenerate, typically for T . 0.6TF , their momentum distribution
deviates from a Gaussian distribution, and a fit of a degenerate Fermi gas with a Gaussian
distribution leads to an overestimation of the temperature due to Fermi pressure. To account
for Fermi statistics, we fit the fermionic samples with a Fermi–Dirac distribution

ODFD(x,y) = ODFD ·Li2 (−ζ ODGauss(x,y)) , (3.21)

where ODFD is the amplitude, Li2(x) is the dilogarithmic function, ζ the fugacity, (xc,yc)
are coordinates of the cloud center and σx,σy are the Gaussian width of the cloud. Note,
when ζ → 0, the fitting function approaches a Gaussian distribution. Thus, Equation (3.21)
can be used to fit both degenerate and thermal fermionic clouds. We fit the set of parameters
(ODFD,ζ ,xc,yc,σx,σy) and obtain the reduced temperature from the relation

(T/TF)
3 =−1/(6 ·Li3(−ζ )), (3.22)

while the absolute temperature in the direction i is extracted according to Equation (3.17).
We note the degeneracy of the Fermi gas is extracted mainly from the shape of the cloud. As
discussed in Section 5.7, particle loss, for example due to inelastic collisions of molecules,
can lead to holes in the Fermi sea. However, since the momentum distribution for nonin-
teracting Fermi gases does not change, the fitted degeneracy does not actually represent the
degeneracy of the Fermi gas.

For the microwave-shielding project discussed in Section 5.8, where we evaporate ground-
state molecules into the deeply degenerate regime, we have adapted the fitting function in
Equation (3.21) [141]. Making use of the detected numbers of fermions and the geometric-
mean trapping frequency, we calculate the Fermi temperature according to Equation (2.42)
and use the fitting function

ODFD′(x,y) = ODFD′ ·Li2

(
−ζ

(
T̄
TF

)
ODGauss(x,y)

)
, (3.23)

where ζ (T̄/TF) is the fugacity based on temperature of the sample T̄ = (TxTyTz)
1/3 and the

calculated TF , and ODGauss(x,y) is the Gaussian distribution in Equation (3.16). We fit the
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set of parameters (ODFD′ ,xc,yc,σx,σy). Note that since the trapping frequencies and the
time of flight are known, we can relate the cloud width σi and the temperature Ti in the i-th
direction by Equation (3.17).

An advantage of using this fitting function is that small aberrations in the image and shot-
to-shot fluctuations do not strongly influence the fitting. With a smaller number of fitting
parameters, the error bars in the fitting strongly reduced especially in the regime where the
number of molecules in the image was low.

Within the microwave-shielding project, we also investigated another method to fit the
wings of degenerate Fermi gases by a Gaussian distribution which has been previously used
in Ref. [142]. The idea is that while the low momentum states are dominated by Fermi pres-
sure, the high-momentum states still follow a thermal distribution. The procedure includes
fitting the image OD(x,y) with Equation (3.16) and extracting the Gaussian widths σx,σy.
We then exclude the region in image where (x− xc)

2 +(y− yc)
2 > (1.5 ·Max[σx,σy])

2, and
fit the image with the excluded region ODwings(x,y) with a Gaussian function.

Last, a word of caution: When fitting double-degenerate Bose–Fermi mixtures, it is im-
portant to perform the time of flight at a magnetic field where the interspecies interactions
are small. In our case, we perform the time of flight at the zero-crossing of the interspecies
scattering length at a magnetic field of 80.3 G. In the presence of a BEC, the attractive or
repulsive interactions strongly influence the density profile of the fermions in time of flight.
In such a case, the cloud shape of the Fermi gases are strongly influenced by the interspecies
interactions.

3.6 Characterizing the 78.3-G Feshbach
resonance

We have decided to implement magnetoassociation on the 78.3-G s-wave Feshbach reso-
nance between Na atoms in |1,1〉 and K atoms in |9/2,−9/2〉. We choose to work with
these two hyperfine states because both atoms are in their respective hyperfine stretched
state. Thus, the lifetime in this mixture is on the order of ten seconds when the mixture is
weakly interacting. The Feshbach resonances accessible with our magnetic-field coils and
with this combination of hyperfine states are at magnetic fields of 78.3 G and 89.7 G. While
we used the bound state of the 89.7 G-resonance for radio-frequency association, the Fesh-
bach resonance at 78.3 G is considerably more suitable for magnetoassociation. First, it has a
resonance width of 5.3 G compared to 9.4 G for the 89.7-G Feshbach resonance. The smaller
width allows us to ramp over the Feshbach resonance more quickly while maintaining good
control over the interactions. Second, since we need to prepare the Bose–Fermi mixture
above 78.3 G for the association, we can tune the interactions and even the sign of the inter-
actions between bosons and fermions as illustrated in Figure 3.9. Consequently, this allows
us to perform time of flight at the zero-crossing of the scattering length to obtain reliable
thermometric quantities for the atomic mixture and molecules (see discussion at the end of
the previous section). Moreover, we can do sympathetic cooling which is more efficient at
repulsive than attractive scattering lengths. This section is based on our previous publication
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[143].

3.6.1 RF-spectroscopy: Binding energy
In order to perform Feshbach association with the 78.3-G Feshbach resonance, we first need
to characterize this resonance. Many of the NaK Feshbach resonances have been previously
characterized by loss measurements [144]. Since some of the measured values significantly
deviate from the theoretical predictions in [68], we decided to characterize the resonance
by measuring the binding energy of the bound state that emerges at the 78.3-G Feshbach
resonance.

We determine the magnetic-field dependence of the interspecies scattering length by char-
acterizing the binding energy Eb via radio-frequency spectroscopy at various magnetic fields
B between 73.5 G and 78.0 G. Using radio-frequency pulses, we measure the energy differ-
ence between molecules in the state |FB〉 and the atoms in |A〉= |1,1〉Na + |9/2,−9/2〉K.

Starting with an ultracold mixture of Na atoms in |1,1〉 and K atoms in |9/2,−7/2〉 in an
optical dipole trap, we can apply a radio-frequency pulse at a given frequency ν to probe a
transfer |9/2,−7/2〉 → |9/2,−9/2〉. Afterward, we turn off the trapping light and separate
the K atoms in the state |9/2,−9/2〉 from the K atoms in |9/2,−7/2〉 with a magnetic field
gradient and detect the number of atoms in both states with absorption imaging. This is
needed to obtain the dissociation threshold νA. Moreover, we can use νA to calibrate the
magnetic field. To this end, we compare the νA to the expected transition frequency from
|9/2,−7/2〉 to |9/2,−9/2〉 which is given by the Breit-Rabi formula [145].

The radio-frequency spectroscopy of the weakly bound Feshbach-molecule state |FB〉
relies on the atom-dimer loss of Feshbach molecules and unbound atoms. By driving the
transition |9/2,−7/2〉 → |FB〉, we associate atoms into molecules that can undergo loss.
As we continuously drive this transition and associate atoms into molecules with each Rabi
cycle, the loss depletes the detected number of atoms. After that, we release the atoms from
the trap and detect the remaining number of unbound Na and K atoms. Since the association
of molecules becomes less efficient with increasing binding energy, we increase the length
of the radio-frequency pulse and ensure that the lost fraction of the Na and K atoms remains
larger than 10% to obtain a detectable signal.

From the radio-frequency spectra, we determine the binding energy of the Feshbach
molecules for each magnetic field. The example in Figure 3.7 shows a measurement of the
binding energy at 76.5 G. We assume that the number of atoms that get lost in atom-dimer
collisions scales proportionally with the number of formed molecules Nmol. In this case, the
line shape of the radio-frequency spectrum of the bound state can be modeled via Fermi’s
golden rule as [146]

Nmol(ν) ∝

∫
∞

0
dεrF(εr)h(εr)e−(hν−Eb−hνA−εr)

2/σ2
. (3.24)

Here, ν is the radio-frequency, and hνA is the atomic transition energy. The molecule number
Nmol is proportional to the product of h(εr), which is the number of colliding pairs per relative
kinetic energy interval εr, and the Franck–Condon factor F(εr) between the unbound atom
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Figure 3.7 – Radio-frequency spectrum to determine the binding energy at 76.5 G. The
remaining number of K atoms in the |9/2,−7/2〉 state from the radio-frequency transfer
(red triangles) to the |9/2,−9/2〉 state at νA and its fit (red dashed line) are shown on the
left. On the right, the remaining numbers of K atoms (red circles) and Na atoms (blue
circles) from radio-frequency loss spectroscopy of the weakly bound Feshbach state |FB〉
and their fits (red and solid blue lines) are shown. The vertical gray dashed line indicates
the transition frequency to |FB〉 extracted from Equation (3.24) for atoms at rest. The
radio-frequency spectrum of |FB〉 is given relative to the dissociation threshold νA.

pair and the bound molecular state. The product is convolved with a Gaussian distribution
with the width σ to account for the finite energy resolution. We adapt the simplified Franck–
Condon factor F(εr)∝

√
εr(1+εr/Eb)

−2 from Ref. [147]. The function h(εr) is proportional
to the Boltzmann factor e−εr/kBT , where the temperature T of the atomic cloud is obtained
from time-of-flight images. According to Equation (3.24), we fit functions to the lost number
of atoms in the radio-frequency spectra of the bound state, as demonstrated in Figure 3.7.
Note that the relative kinetic energy of the associated atoms has to be transferred into the
microwave field and therefore increases the transition frequency. The binding energies Eb
that we extract from these fits are presented in Figure 3.8 as a function of the magnetic field.

3.6.2 Model for overlapping Feshbach resonances
To determine the scattering length from the binding energy near the interspecies Feshbach
resonance, we adapt the model for overlapping Feshbach resonances from Ref. [148] to
include the resonance at 89.7 G. The binding energy is given by solving

√
2µEb

h̄
=

1
abg− ā

+
1
ā ∑

i=1,2

Γi

Eb +Ei
, (3.25)

where E1 and E2 are the energies of the bare molecular state for the resonance at 78.3 G
and 89.7 G, respectively, abg is the background scattering length, µ = mNamK/(mNa +mK)
is the reduced mass in a Na-K collision, ā = 4πΓ(1/4)−2avdW ≈ 51a0 is the mean scattering
length, where Γ(x) is the gamma function and avdW is the van der Waals length. The energy
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Figure 3.8 – Binding energy Eb of the Feshbach-molecule state |FB〉 as a function of the
magnetic field. The circles mark the fit results from the radio-frequency spectra. The solid
line shows the function of Equation (3.25) fitted to these data. Inset: Close-up for binding
energies below 200 kHz. The uncertainty of the fit function is smaller than the thickness of
the solid line in the main figure. However, it is resolved in the close-up. This uncertainty
includes statistical errors of the fit and an uncertainty of 5% of the background scattering
length abg =−619(31)a0 [68].
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Table 3.4 – Parameters of the Feshbach coupling strengths Γi, the differential magnetic
moments δ µi, and the crossing of the bare molecular states with the dissociation threshold
Bc,i which are used to fit the model for overlapping Feshbach resonances described by
Equation (3.25). Γ1 is the only free fit parameter while the others are extracted from a
coupled-channel calculation [149].

i Γi/h (MHz) δ µi (µB) Bc,i (G) B∗i (G) B0,i (G)

1 4.180(9) 1.894 73.92 73.034(4) 78.30(4)
2 1.385 2.085 80.58 80.358(1) 89.7(6)

of the bare molecular states can be tuned magnetically with Ei = δ µi(B−Bc,i), where δ µi is
the relative magnetic moment with respect to the dissociation threshold and Bc,i is the mag-
netic field at which the bare molecular state crosses the dissociation threshold. The Feshbach
coupling strengths between the open and closed channels are denoted by Γi. For an isolated
resonance, the Feshbach coupling strength Γ is related to the commonly used Feshbach res-
onance width ∆ as Γ = 2∆δ µα−1, where α = (a−abg)

2/abgā. For overlapping resonances,
Γi cannot be independently extracted without considering nearby resonances. We fit Equa-
tion (3.25) to the binding-energy data to extract the parameters for the two resonances. To
avoid overfitting, we take Γ1 as the only free fit parameter while all other parameters are
derived from a coupled-channel calculation [149]. The fitted binding energy is presented in
Figure 3.8 as function of the magnetic field. The parameters are tabulated in Table 3.4.

The scattering length a is given by solving [148]

1
a− ā

=
1

abg− ā
+

1
ā ∑

i=1,2

Γi

Ei
. (3.26)

With the parameters extracted from Equation (3.25), we can compute the scattering lengths
at different magnetic fields using Equation (3.26). We further rewrite the expression of the
scattering length as

a(B) = abg

(
B−B∗1

B−B0,1

)(
B−B∗2

B−B0,2

)
, (3.27)

where abg = −619a0 [68] is the background scattering length, B0,1 = 78.3G and B0,2 =
89.7G are the two resonance positions, and B∗1 = 73.03G and B∗2 = 80.36G are the zero-
crossings of the scattering length [143]. The interspecies scattering length as function of the
magnetic field is plotted in Figure 3.9.

As shown in Figure 3.10, we can also obtain the absolute energies of the unbound state
and the molecular state as a function of the magnetic field. From these energies, we obtain
the magnetic moment of the molecules at a specific field by taking the derivative of energy of
the bound state shown in Figure 3.10. This knowledge is important to find a magnetic field
for levitating the molecules against gravity using a magnetic field gradient. For example, at
about 72.3 G the molecules have a vanishing magnetic moment, and close to resonance, the
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Figure 3.9 – Scattering length as a function of the magnetic field. The solid line shows the
function of Equation (3.27).

magnetic moment approaches the sum of the atomic magnetic moments for Na and K atoms.
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Figure 3.10 – Energies of bare atomic state and Feshbach-molecular state. The dashed line
shows the energy of unbound atoms (|1,1〉Na+ |9/2,−9/2〉K) relative to zero magnetic field
where the hyperfine states are energetically degenerate. The energies are obtained from the
Breit-Rabi formula [116, 117, 145]. The solid gray line shows the energy of the Feshbach
molecules and is obtained by subtracting the binding energy from the bare atomic state.
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”Pain is inevitable, suffering is optional”
—Buddhist proverb

4 Collisional loss around the 78.3-G
Feshbach resonance

The resonant scattering behavior in the vicinity of Feshbach resonances leads to strong in-
elastic collisions. Hence, substantial particle loss can occur during the magnetoassociation
of atoms into molecules, where the magnetic field is ramped through the Feshbach reso-
nance. As discussed in Section 5.4, we observe that the inelastic collisions are a significant
limitation for the Feshbach association efficiency in a double-degenerate Bose–Fermi mix-
tures due to the enhanced density of bosons. Since it is not clear ab initio, which of the
collision processes (see Figure 4.1) limit the association efficiency, a considerable effort of
my Ph.D. work was directed towards understanding the collisional properties in the Na-K
system. To this end, we isolated and characterized the different loss processes close to the
78.3-G interspecies Feshbach resonance, which we use for the Feshbach association. The
loss measurements presented in this chapter have been carried out in close collaboration
with my co-worker Xingyan Chen. This chapter is based on the publications in Ref. [143,
150] for which we share the first authorship.

4.1 Three-body loss
We study the three-body loss, an inelastic collision process where two Na atoms and one
K atom recombine in the short range to form a trimer that breaks up, leading to a deeply
bound dimer and a residual Na atom. The kinetic energy of the break-up is sufficient for the
atoms to leave the optical dipole trap. In this section, I will describe the characterization of
the three-body loss as a function of the Na-K interactions described by the scattering length
a. In addition, I will discuss the scaling of the three-body loss on the temperature T of the

Figure 4.1 – Loss processes occurring during the magnetoassociation that were systemati-
cally studied in the course of this Ph.D. work. The Na atoms are shown in blue and K atoms
are shown in red. NaK∗-molecules are illustrated with a wiggly line.
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mixture and the reduced temperature of the Fermi gas T/TF in the unitary regime.

4.1.1 Scattering-length dependence
To determine the inelastic three-body collisions, we measure the loss of the atoms in a
crossed optical dipole trap as a function of the magnetic field for different hold times. The
measurement begins with a trapped mixture of 3×105 thermal Na atoms in |F,mF〉= |1,1〉
and 1.5× 105 K atoms in |9/2,−9/2〉 with T = 0.6TF . The trapping frequencies for Na
and K in the (x,y,z)-direction are 2π × (88,141,357) Hz and 2π × (97,164,410) Hz, re-
spectively. The interspecies scattering length is varied by tuning the magnetic field around
a Feshbach resonance at 78.3 G. The relation between the magnetic field and the scattering
length is given by Equation (3.27). To probe the loss for a> 0 (a< 0), we prepare the sample
at weak interactions below (above) the resonance and ramp the magnetic field to the target
value in about 100 µs. Before the ramp, a magnetic-field gradient is turned on to compen-
sate for the gravitational sag between the atomic species to ensure spatial overlap. After a
variable hold time, the magnetic field is ramped back within 100µs to a zero-crossing of
the interspecies scattering length close to the initial magnetic field. Subsequently, the atoms
are released from the trap and both species are imaged after a time of flight. We obtain the
temperature and atom number from the absorption images as described in Section 3.5.

In its simplest form the three-loss L3 can be obtained by fitting the loss rates of Na and K
atoms to the coupled differential equations

dNK

dt
=

1
2

dNNa

dt
=−L3

∫
n2

Na(x)nK(x)d3x, (4.1)

where the density of the Na atoms nNa(x) is given by a Gaussian distribution from Equa-
tion (2.31) as these measurements are performed with thermal Na clouds, and a Fermi–Dirac
distribution for nK(x) for the K atoms (see Equation (2.44)).

In addition to the model described by Equation (4.1), we account for anti-evaporative heat-
ing, secondary processes and evaporation, leaving us with the following set of differential
equations:

dNNa

dt
=−(2+δ )L3

∫
n2

Na(x)nK(x)d3x+

(
dNNa

dt

)
ev
, (4.2)

dNK

dt
=−L3

∫
n2

Na(x)nK(x)d3x, (4.3)

dT
dt

=
(3

2 −β )T + 1
3 Th

NNa +NK
L3

∫
n2

Na(x)nK(x)d3x+

(
dT
dt

)
ev
. (4.4)

Here, β describes the anti-evaporative heating due to the three-body loss, the parameter δ

describes the secondary loss, Th describes the secondary heating, and
(

dNNa
dt

)
ev

and
(dT

dt

)
ev

give the contributions from evaporative cooling.
They anti-evaporative term in Equation (4.4) accounts for fact that the three-body loss

predominantly takes place at the bottom of the trap where the density is the highest [151]
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Figure 4.2 – Secondary loss and secondary heating as a function of the magnetic field B.
(a) Additional average number of Na atoms that are lost per recombination event due to sec-
ondary collisions (black triangles). (b) Average excess energy deposited per recombination
event due to secondary collisions (black points). The solid blue line represents the kinetic
energy the Na atoms carry away from a three-body collision as given in Equation (4.6) and
the gray dashed line indicates the trap depth of the Na atoms. The vertical dashed line
marks the resonance position at 78.3 G.

and the energies of the particle are lower than the thermal average. We can account for the
anti-evaporation by calculating the averaged potential energy lost per particle which is given
by

βkBT =

∫
n2

Na(x)nK(x)(2UNa(x)+UK(x))d3x

3
∫

n2
Na(x)nK(x)d3x

, (4.5)

where UNa(x) and UK(x) are the trap depths for the respective species. The term in Equa-
tion (4.5) is smaller than the averaged thermal energy per particle (3/2)kBT . This can be
understood by considering that the integral in the nominator scales with the density of the
atoms cubed and strongly favors the center of the trap.

Secondary processes occur when the products of the three-body recombination do not
leave the trap and induce additional loss or heating. This process is allowed at scattering
lengths a > 0 where a bound state with binding energy Eb = h̄2/(2µa2) is available, and a
Na-Na-K collision leads to the formation of a weakly bound NaK∗ Feshbach molecule and
a residual Na atom. Here, µ is the reduced mass in a Na-K collision process. The release of
the binding energy is associated to the dimer formation, which is shared between the dimer
and the residual Na atom [152]. Suppose the energy of the Feshbach molecule is lower

55



than the trap depth. In that case, it can remain in the trap and undergo a collision with an
additional Na atom, forming a deeply bound dimer and a residual Na atom. This releases
sufficient energy to expel the products from the trap, leading to secondary loss. Secondary
loss predominantly affects Na atoms. The collisions between the trapped dimers and K atoms
are suppressed by Pauli blocking between the K atom and the weakly bound K atom inside
the dimer [153]. As a result of secondary losses, the loss ratio between Na and K atoms
is 3:1. We account for the secondary loss with the term δ , chosen as a fitting parameter in
the model. Secondary heating occurs when the Na atoms of the primary collision remain
in the trap. The trapped Na can thermalize with the Na or K cloud and release an average
energy of kBTh. The shallow dimers do not considerably contribute to secondary heating
as inelastic collisions dominate. The extracted parameters for the secondary processes are
shown in Figure 4.2. The effective trap depth for the Feshbach molecules in this experiment
is UNaK∗ = h×0.5MHz. For magnetic fields above 75.5 G, the binding energy is comparable
to the trap depth. As shown in Figure 4.2a, the average loss of Na atoms per recombination δ

vanishes above the Feshbach resonance while it increases below the resonance until 75.5 G.
In Figure 4.2b, the secondary heating Th is compared to the kinetic energy of the Na atom
after the recombination, which is given by

mNa +mK

2mNa +mK
Eb. (4.6)

We find that Th qualitatively follows Equation (4.6) until it equals the trap depth of the Na
atoms. For lower magnetic fields, Th decreases again since the Na atom can escape the trap
after recombination.

The evaporative cooling of Na atoms mitigates the anti-evaporative and secondary heat-
ing. Since the Na atoms experience a considerably shallower trap than the K atoms, they
sympathetically cool the mixture via evaporation. We consider the evaporation of Na atoms
initiated by both Na-Na and Na-K collisions. The evaporation of the Na atoms is then given
by (

dNNa

dt

)
ev
=−γ1

N2
Na
T
− γ2

NNaNK

T
, (4.7)(

dT
dt

)
ev
=−1

3
(ξ +κ−3)

γ1NNa + γ2NK

NNa +NK
, (4.8)

γ1 =
8
π

mNaω̄3
Na

kB
a2

BBe−ξVr, (4.9)

γ2 =
4
π

mKω̄3
K

kB(a−2 +2µUNah̄−2)
e−ξVr, (4.10)

κ =

(
1− P(5,ξ )

P(3,ξ )

)
Vr, (4.11)

Vr = ξ −4
P(4,ξ )
P(3,ξ )

, (4.12)
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where the first (second) term in Equation (4.7) accounts for evaporation induced by in-
traspecies (interspecies) collisions. Here ξ = UNa/kBT is the truncation parameter for Na,
P(a,ξ ) is the regularized incomplete Gamma function

P(a,ξ ) =
∫ ξ

0 ua−1e−udu∫
∞

0 ua−1e−udu
. (4.13)

The intraspecies evaporation rate in Equation (4.7) follows from Refs. [154, 155] and is
adapted for our case by replacing the collision cross section with σBB = 8πa2

BB. Here aBB

is the intraspecies scattering length of Na. The interspecies evaporation between Na and K
atoms (i.e., the sympathetic cooling) is obtained by using the Na-K collision cross section
σBF = 4π/(a−2 + k2) [156] and replacing the density of Na atoms with the density of the
K atoms. Since only collisions with relative kinetic energy larger than the trap depth lead
to evaporation [155], we substitute k '

√
2µUNa/h̄ to obtain the energy-independent cross

section σBF = 4π/(a−2 +2µUNah̄−2).

As shown in Figure 4.3, the loss and heating are well described by our model. Minor
discrepancies between the data and the model are obtained when neglecting the secondary
processes. However, when the evaporation term is ignored, the differences between the
model and the data are significant. Secondary loss and secondary heating mainly contribute
at short hold times where the three-body recombination rate is large. In contrast, the evapo-
ration term becomes relevant with longer hold times and compensates for heating. We note
that throughout the measurements, the loss ratio between Na atoms and K atoms is typically
2:1 or larger due to secondary processes. This strongly indicates that the Na-Na-K collisions
are the primary three-body loss process. While three-body recombination of one Na atom
and two K atoms is in principle possible, Pauli exclusion principle strongly suppresses this
process.

Figure 4.4 summarizes the results of the three-body loss coefficient L3 as a function of the
interspecies scattering length a. The rate coefficient for three-body recombination changes
by almost four orders of magnitude between the weakly interacting regime and the unitary
regime, where the loss only shows a small dependence on the scattering length. We compare
our results to the zero-range theory, which assumes contact interactions [152, 157]. The
zero-range theory including finite temperature effects requires averaging over the collision
energy distribution. We use the finite-temperature formula for a < 0 [157]:

L3(a < 0) = 4π
2 cos3

φ
h̄7

µ4(kBT )3

(
1− e−4η

)
×
∫

∞

0

1−|s11|2

|1+(kR0)−2is0e−2η s11|2
e−h̄2k2/2µkBT k dk. (4.14)

The angle φ is defined by sinφ = mF/(mB +mF) and R0 is the three-body parameter. The
parameter η characterizes the inelasticity of the collisions. In particular, (1−e−4η ) quantifies
the probability that the incoming wave of the collision is not reflected, leading to loss. For
Na-K s0 = 0.285, which is a universal constant describing the Efimov energy spectrum, and
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Figure 4.3 – Loss and heating of the atomic mixture at 77.8 G. (a) Atom number of Na
(blue circles) and K (red circles) as a function of the hold time. (b) Temperature of Na (blue
triangles) and K (red triangles) as a function of the hold time. The solid lines show a fit of
the coupled differential equations described by Equations (4.2)-(4.4) where the temperature
of the K atoms is assumed to be the temperature of the mixture. The dashed (dash-dotted)
lines represent the same solution omitting the evaporation (secondary loss and secondary
heating processes).
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Figure 4.4 – Three-body loss coefficient L3 versus interspecies scattering length a (gray
points). The solid red line shows the numerical result of the fitted zero-range theory, which
yields an inelasticity parameter η = 0.02 and a three-body parameter R0 = 70a0. The
red dashed line shows the result with η = 0.02 but without including Efimov resonances.
The error bars in the horizontal direction are a combination of the error resulting from
the magnetic field instability of 30 mG and the uncertainty of the model to determine the
interspecies scattering length from the magnetic field. The vertical error bars contain an
uncertainty of 10% in the trapping frequency and a systematic error resulting from different
temperatures of the Na and the K cloud.

s11 is a universal function that depends on the dimensionless interaction parameter ka and
the mass ratio between the species (see Ref. [157] for more details). Here, k is the three-
body collision wave vector which relates to the collision energy as Ek = h̄2k2/2µ . In the
unitary regime, the scattering length diverges and the de-Broglie wavelength determines the
scattering properties, and Eq. (4.14) saturates to

l3(E) =
8π2h̄4 cos3 φ

µ3E2 (1− e−4η), (4.15)

where E is the kinetic energy in the three-body center-of-mass frame [157, 158].
For a > 0, an analytic expression is not available and thus we use the zero-temperature

formula [152]:

L3(a > 0) =Cα

(
sin2[s0 ln(a/a+)]+ sinh2

η

sinh2(πs0 +η)+ cos2[s0 ln(a/a+)]

+
coth(πs0)cosh(η)sinh(η)

sinh2(πs0 +η)+ cos2[s0 ln(a/a+)]

)
h̄a4

mK
, (4.16)

where a+ marks the minima in L3, typically associated with an Efimov resonance. The
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regime we measured is away from any Efimov resonances so the term cos[s0 ln(a/a+)] is
set to zero and the term sin[s0 ln(a/a+)] is set to one. We find that η ≈ 0.02 and the three-
body parameter R0 = 35a0 reproduce the loss in the universal regime on both sides of the
resonance.

The fitted R0 suggests an Efimov resonance at |a| ≈ 35a0, which is comparable to the
van-der-Waals length avdW = 53.3a0, where the zero-range approximation breaks down and
the universal scattering is modified [159–161].

4.1.2 Unitary three-body loss
In the unitarity regime, the three-body loss coefficient according to Eq. (4.15) saturates
and scales as L3(T ) ∝ 1/T 2, which has been confirmed experimentally in non-degenerate
systems [155, 162]. While three-body recombinations involving identical particles are en-
hanced (suppressed) by bunching (anti-bunching) due to Bose [163–165] (Fermi [166, 167])
statistics, it remains an open question how Fermi statistics modify three-body recombination
processes that involve only one fermion. Thus, we probe the unitary three-body loss as a
function of temperature and Fermi degeneracy.

We use the same experimental sequence as in the previous section, but we fix the probe
magnetic field to the pole of the Feshbach resonance. We vary T/TF by changing the initial
number of K atoms and the temperature while keeping the mixture in thermal equilibrium.
To achieve the lowest possible T/TF , we increase TF by working with ∼ 4× 105 K atoms
and consequently ∼ 3× 104 Na atoms. Since the fraction of lost K atoms is small, T/TF

is modified by less than 10% throughout the loss measurement. In the high-T/TF regime,
we reduce the number of K atoms down to ∼ 2× 104. Here, T/TF is changing during the
loss measurement, however, a dependence of the three-body loss on T/TF is not expected in
this regime. The initial temperatures and trap parameters are chosen such that evaporation
is negligible. Accordingly, we simplify the model and neglect the effects of anti-evaporative
heating (β = 0). In addition, we consider the secondary processes to be negligible (δ = 0,
Th = 0) since we measure resonance. While there was a small but significant difference in
the initial temperature between the bosons and fermions in the previous measurements, we
now ensure that the mixture is in thermal equilibrium.

The average loss coefficient in an atomic mixture is obtained by averaging over the colli-
sion energy distributions f (E), according to

L3 =
∫

l3(E) f (E)dE. (4.17)

Here,

f (E) =
∫

δ (ε1 + ε2 + ε3−Ecm−E)× fB(k1) fB(k2) fF(k3)d3k1d3k2d3k3, (4.18)

where δ (x) is the Dirac delta distribution, fB(k) is the Maxwell–Boltzmann distribution
from Equation (2.25) for the Bose gas and fF(k) is the Fermi–Dirac distribution from Equa-
tion (2.39) for the Fermi gas. The kinetic energies of the particles involved are given by εi
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and the energy in the center of mass Ecm is given by

ε1 =
h̄2k2

1

2mB
, ε2 =

h̄2k2
2

2mB
, ε3 =

h̄2k2
3

2mF
, (4.19)

Ecm =
h̄2(k1+k2+k3)

2

2(2mB +mF)
. (4.20)

To compare the loss for different temperatures, we define a temperature-independent loss
coefficient Λ = L3/T 2. As shown in Figure 4.5a, the measured rate coefficients are insen-
sitive to changes in T/TF when T/TF & 1. However, for T/TF < 1, a reduction in T/TF

also leads to a suppression of Λ. In particular, a reduction of T/TF down to 0.4 reduces Λ

by a factor of 2.4(4) compared to the non-degenerate regime. To convince ourselves that
the reduction of Λ does not simply result from a reduced absolute temperature, we perform
the measurements by varying the temperature T of the sample and the Fermi temperature
TF . This way, we can realize the same T/TF -conditions at different temperatures and vice
versa to decouple effects from the temperature and the Fermi degeneracy. As shown in Fig-
ure 4.5b, the data for a given T/TF follow the inverse-square temperature scaling, while for a
given temperature L3 decreases with increasing TF for low T/TF . Thus, we have established
a reduction of the three-body loss with respect to the simple 1/T 2-scaling, which depends
on T/TF .

4.1.3 Suppression mechanisms
A natural explanation for the reduction of Λ according to Eq. (4.15) is to account for the
Fermi pressure. The velocity distribution of the fermions is strongly influenced by the Fermi
temperature in the degenerate regime and not solely determined by the temperature. This
is illustrated in Figure 4.6a, where the collision energy of two Fermi gases is shown where
one Fermi gas has a ten times higher Fermi temperature than the other. One can clearly see
that the average collisional energy is larger for the degenerate Fermi gas, which according
to Equation (4.15) will lead to a reduction of the three-body loss. Thus, the average unitary
three-body loss decreases as the Fermi energy increases.

We compare the data with the prediction from the zero-range theory as shown in Fig-
ure 4.5. We use the local density approximation, which treats the mixture at each spatial co-
ordinate in the trap as a homogeneous gas with temperature T and fugacity ζ . Accordingly,
we can define the temperature independent rate coefficient Λ f according to the few-body
scattering theory as

Λ f (T/TF) =

∫
n2

Na(x)nK(x)λ (ζ (x))d3x∫
n2

Na(x)nK(x)d3x
. (4.21)

Here, ζ (x) is the fugacity under local density approximation, λ (ζ ) = L3(ζ )T 2 is the local
reduced loss coefficient where L3(ζ ) =

∫
l3(E) f (E)dE. The increased collision energy by

the Fermi pressure leads to a continuous decrease of Λ f in the degenerate regime. While the
model shows a similar qualitative dependence, the experimental data exhibit a substantially
larger reduction: the few-body theory suggests considerable reduction only for T/TF . 0.4.
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Figure 4.5 – Suppression of unitary three-body loss. (a) Temperature-independent loss co-
efficient Λ as a function of T/TF . The color of the data points indicates the temperature
of each loss measurement. The dashed line represents the few-body prediction of Λ f ac-
cording to Eq. (4.21). The solid line shows the predicted rate coefficient for three-body loss
ΛRKKY which includes the RKKY effect in Equation (4.25). (b) Three-body loss coeffi-
cient as a function of temperature. The color indicates the reduced temperature T/TF of the
Fermi gas. The dashed lines show the temperature dependence of L3 = Λ/T 2 for different
T/TF . The Λ coefficients are obtained by averaging over the data where T/TF deviates less
than 15% from T/TF = 0.4 (black), 0.8 (purple), 1.2 (orange). In this measurement, T is
the average temperature for both species. The vertical error bars include the error of the
fit of L3 and a systematic error from the temperature discrepancy between the Na and K
clouds. As a result of this temperature mismatch between the K and Na cloud, we estimate
a systematic error in Λ of 30%.
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Figure 4.6 – Three-body loss coefficient and collisional energy distribution. (a) The dis-
tribution function f (E) for the collisional energy in a Bose–Fermi mixture. We show two
scenarios with the same temperature T but different TF . For a thermal mixture (solid red
line), the distribution follows the six-dimensional Boltzmann distribution with an average
collision energy of 3kBT (black dashed line). For a mixture with a degenerate Fermi gas
(solid blue line), the distribution is shifted towards larger collision energies by the Fermi
pressure. (b) Unitary three-body loss coefficient l3(E) ∝ 1/E2, as given by Equation (4.15).

In contrast, the experimental results already show a reduction for T/TF . 1. Thus, while
Fermi pressure does play a significant role in modifying the loss behavior, this effect does
not fully explain the suppression. According to the data, the suppression is expected to be
more significant at higher T/TF .

We consider the contribution to the suppression due to many-body effects in this strongly
interacting Bose–Fermi mixture. Recently, experiments have observed a modification of the
scattering potential of bosons immersed in a Fermi sea [168, 169] and explained this behavior
through so-called Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions. These RKKY
interactions originate from a coherent three-body scattering process where two bosons obtain
an effective long-range interaction by exchanging one fermion. The mediated interaction
between two bosons is described by

U(R) =−2mFg2k4
F

h̄2
sin(2kFR)−2kFRcos(2kFR)

(2kFR)4 , (4.22)

where kF is the Fermi wavevector and R is the separation between bosons [170, 171]. The
interaction strength g is given by the leading order of the contact interaction strength

g0 = (
µ

2π h̄2a
− 2µ

(2π)3

∫
d3k

1
k2 )
−1 (4.23)

via a regularization procedure [172]. In a degenerate Fermi gas, the momentum integral
starts from kF due to Pauli blocking, which gives

g = (
µ

h̄2 (
1

2πa
+

kF

π2 ))
−1. (4.24)
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Figure 4.7 – The effect of the RKKY interactions. (a) RKKY potential mediated by
fermions between two bosons at unitarity. The potential barrier Vb suppresses the tun-
neling probability into short range. (b) The suppression factor from the RKKY interactions
Λ f /ΛRKKY as a function of T/TF .

At unitarity where 1/a = 0, we obtain g = π2h̄2

µkF
, which gives Vb ≈ 3.2 h̄2k2

F
2mF

for the mass ratio
in our system.

As shown in Figure 4.7a, the RKKY interaction is attractive at short distance and is os-
cillatory with a length scale π/kF at long range. At a distance Rb = 2.8/kF , the oscillation
gives rise to a barrier of the height Vb ≈ 3.2EF ∝ TF . When the average distance between
bosons is much shorter than Rb, only the short-range attractive interaction plays a role [168,
169]. In our experiment, the bosons are still thermal with an average distance & 0.6µm
larger than Rb ≈ 0.3µm. Therefore, the potential acts in our favor and reduces the prob-
ability of two bosons approaching each other. In the low-temperature regime, the tunnel-
ing probability through the potential barrier PT is given by the Bethe–Wigner threshold law√

E/Vb ∝
√

T/TF [173], which gives rise to the additional suppression in the degenerate
regime. Again, we apply the local density approximation to obtain the local tunneling prob-
ability PT (ζ (x)) =

√
3kBT/2Vb(ζ (x)) from the potential barrier Vb(ζ (x)) and the average

kinetic energy of the bosons (3/2)kBT . Accordingly, we define the rate coefficient from
three-body loss, including the RKKY-interaction ΛRKKY as

ΛRKKY(T/TF) =

∫
n2

Na(x)nK(x)λ (ζ (x))PT (ζ (x))d3x∫
n2

Na(x)nK(x)d3x
. (4.25)

Equation (4.25) reproduces the experimental data in the Fermi-degenerate regime without
any fitting parameters, as shown in Figure 4.5a. In the deeply degenerate regime, the model
predicts more than one order of magnitude reduction such that ΛRKKY(T/TF < 0.13) <
0.1Λth where Λth is the reduced loss coefficient in a non-degenerate thermal mixture. The
suppression from the RKKY effect can be quantified by Λ f /ΛRKKY. As shown in Fig-
ure 4.7b, the suppression factor increases with the Fermi degeneracy. At T/TF = 0.13 where
we predict a reduction of Λ by one order of magnitude compared to Λth, the few-body theory
predicts a reduction by a factor of 2.6, and the RKKY effect suppresses the loss further by a
factor of Λ f /ΛRKKY ' 3.7. As T/TF increases, the form of the mediated interaction breaks
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down due to thermal fluctuations. Therefore we expect a crossover from the prediction with
the mediated interactions in the Fermi-degenerate regime to the constant loss in the thermal
regime.

4.2 Atom-dimer loss
Once molecules accumulate in the trap during the association process, the inelastic collisions
between the molecules and the residual atoms lead to the depletion of the molecules. We
characterize the collisions between the Feshbach molecules with Na atoms and K atoms,
respectively. In contrast to the three-body loss presented in the previous section, where the
Na-K-K collisions are suppressed by Pauli blocking, this assumption cannot be made for the
atom-dimer loss since the collisions occur between distinguishable fermions.

The experiment starts with an atomic Bose–Fermi mixture in an optical dipole trap at
a temperature of 250 nK. We ramp the magnetic field across the Feshbach resonance at
a rate of 3.5 G/ms to produce Feshbach molecules. Afterward, we remove the unwanted
atoms with a resonant light pulse on the D-lines of the respective species after we ramp the
magnetic field to 50 G. At this magnetic field, the bound state is detuned from the atomic
state by ∆ = Eb ≈ 2π×60MHz. While the Feshbach molecules are unaffected by removing
the K atoms, the removal of the Na atoms leads to the loss and heating of the Feshbach
molecules because the Na atoms inside the Feshbach molecules absorb some of the Na light.
This is because the Na atoms have a larger natural linewidth (Γ ≈ 2π × 10.0MHz [116])
than the K atoms (Γ ≈ 2π× 6.0MHz [117]) on the transition we use for the atom removal.
We mitigate the problem by transferring the residual Na atoms with a radio-frequency pulse
from |F,mF〉= |1,1〉 to |2,2〉 before applying the resonant clearout pulse.

For the K-NaK atom-dimer loss measurement, we typically start with 6×104 K atoms and
1.5×104 Feshbach molecules. The number of molecules is intentionally reduced to mitigate
the effect of dimer-dimer collisions. In a similar spirit, in the measurements involving Na
atoms colliding with Feshbach molecules, we typically start with 5× 104 Na atoms and
1.5× 104 Feshbach molecules. After the removal of residual atoms, we ramp the magnetic
field to 75.5 G and hold the sample for 1 ms before ramping the magnetic field to the target
value within 1.5 ms, where we hold the sample for a variable time. The remaining atoms
and molecules are detected after time-of-flight expansion in the presence of a magnetic field
gradient. Before imaging, the molecules are dissociated by ramping the magnetic field back
across the Feshbach resonance. The rate coefficient between the atomic species i = K,Na
and molecules βi+NaK∗ are extracted by the following set of differential equations differential
equation:

dNNaK∗

dt
=−βi+NaK∗

∫
ni(x)nNaK∗(x)d3x−βNaK∗+NaK∗

∫
n2

NaK∗(x)d
3x (4.26)

dNi

dt
=−βi+NaK∗

∫
ni(x)nNaK∗(x)d3x, (4.27)

respectively. We do not include a change in the temperature in the model as no significant
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Figure 4.8 – Rate coefficients for Na-NaK∗ (blue) and K-NaK∗ (red) atom-dimer loss
shown as a function of the scattering length. The solid line shows a fit of the Na-NaK∗

dimer loss to the zero-range theory with the inelasticity parameter η = 0.1 and the three-
body parameter R0 = 200a0 [174].

heating is observed throughout the measurements. The density is extracted according to
Equation (2.31) using the respective numbers, temperatures and trapping frequencies for the
atoms and the Feshbach molecules. Since, at the time of the measurement, we did not have
any knowledge about the dimer-dimer collisions, both βi+NaK∗ and βNaK∗+NaK∗ were used as
fitting parameters.

As shown in Figure 4.8, the dominating loss between Feshbach molecules results from
the inelastic collisions between the molecules and Na atoms. For most scattering lengths,
βNa+NaK∗ is at least an order of magnitude larger than βK+NaK∗ . The rate-coefficient of the
two atom-dimer loss processes becomes comparable only close to the zero crossing of the
interspecies scattering length. The rate coefficient βNa+NaK∗ is strongly influenced by the Efi-
mov resonance at a ≈ 500a0 from which we determined the inelasticity parameter η = 0.1
and three-body parameter R0 = 200a0 using the zero-range theory with temperature aver-
aging [152, 174]. Note, however, that the Efimov resonance belongs to a different Efimov
state than the resonance determined from the three-body loss. The difference between the
R0 extracted from three-body and atom-dimer loss is within a factor of 6, which is negligi-
ble compared to the ratio between the scattering lengths of neighboring Efimov resonances,
given by the Efimov scaling factor (eπ/s0 ' 6× 104). The difference between R0 on the
different sides of the Feshbach resonance could be explained by the formalism in [175].

The rate coefficient βK+NaK∗ reasonably agrees with the naive expectation that the loss
is suppressed around the resonance and increases as the Feshbach molecules become more
deeply bound. The increase of the βK+NaK∗ close to the resonance contradicts this explana-
tion. Note that in the regime a < 1000a0, the atom-dimer loss is the dominant loss process
and the extracted βK+NaK∗ is more trustworthy than for the measurement for a > 1000a0
where dimer-dimer loss is the dominant loss process. In addition, close to resonance, the
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measured loss coefficient might be influenced by thermal dissociation associated with addi-
tional loss processes.

4.3 Tunable p-wave collisions in fermionic
Feshbach molecules

Feshbach molecules are in highly excited vibrational states close to the dissociation thresh-
old. Nowadays, they mainly represent an intermediate product in the association of ground-
state molecules. However, Feshbach molecules are interesting as they exhibit a rich colli-
sional behavior near the Feshbach resonance. In contrast to collisions between bosons or
distinguishable fermions, the dominant collisional channel of our fermionic NaK∗ Feshbach
molecules is p-wave, leading to tunable inelastic and elastic collisions. This chapter de-
scribes the systematic investigation of p-wave collisions of Feshbach molecules.

4.3.1 Tunable Feshbach molecules: A tale of two regimes
Feshbach molecules feature tunable interactions in the vicinity of the Feshbach resonance
by changing the admixture of the molecular bound state. Sufficiently close to the resonance,
where coupling between the open channel and the closed channel is large, the properties
of Feshbach molecules are universal with the interatomic scattering length a. The binding
energy is given by Eb =−h̄2/(2µa2) where µ is the reduced mass of the atom pair, and the
bond length of the molecules is given by 〈r〉 = a/2. The universality results from the fact
that the wavefunction of the molecules mostly lives outside the interatomic van der Waals
potential such that the details of the potential do not influence the properties of the molecules.
Such molecules are typically called halo dimers as the size of the molecules is larger than
one would classically expect from the potential and the binding energy of the molecules.
The classical turning point is typically given by rclassical = ((2avdW)2a)1/3. Here, avdW is
the van der Waals length which characterizes the typical size related to the van der Waals
potential. An example of the wavefunction of a helium halo dimer is shown in Figure 4.9.
In contrast, the behavior of deeply bound Feshbach molecules is predominantly determined
by the van der Waals potential and insensitive to changes in the scattering length, and the
binding energy changes linearly with the magnetic field. We refer to this regime as the
non-halo regime, where the molecular wavefunction is confined within the van der Waals
potential. The size of the molecules is given by ā = 2π

(
2µC6/h̄2)1/4

/Γ(1
4)

2 = 0.956avdW
where ā is the average scattering length, C6 the van der Waals coefficient and Γ(x) the gamma
function [12, 176].

4.3.2 Inelastic p-wave collisions
When associating the degenerate Feshbach molecules presented in Section 5.4, we were
surprised about the second-long lifetimes of the sample. On the one hand, we expected
the fermionic Feshbach molecules to be long-lived as Pauli-blocking protects them from
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Figure 4.9 – Helium dimer interaction potential and (dashed curve) and the radial probabil-
ity density of a Helium dimer (solid curve). The vertical dashed line shows rclassical which
marks the classical turning point related to the van der Waals potential. For r > rclassical, the
binding energy is smaller than the potential energy and the wavefunction takes the form of
an exponential decay. This figure was adapted from Ref. [176].

reaching short range. On the other hand, previous experiments have reported lifetimes of
hundred milliseconds [177, 178] or even as short as a millisecond [179]. Moreover, it struck
us that the lifetime of the Feshbach molecules was longer than that of the NaK molecules
in the ground state, which did not fit into the naive understanding that molecules in highly
vibrational states are expected to be short-lived compared to molecules in the rovibronic
ground state. Intending to reduce collisional loss after the magnetoassociation and driven by
the interest in understanding the collisional behavior of the Feshbach molecules, we started
to investigate the inelastic collisions.

We characterize the inelastic collisions of NaK∗ Feshbach molecules in a crossed opti-
cal dipole trap as a function of the scattering length a and the temperature of the molecu-
lar sample T . The association of the molecules starts with a mixture of bosonic 23Na and
fermionic 40K atoms in their respective energetically lowest hyperfine states |F,mF〉= |1,1〉
and |9/2,−9/2〉. We ramp the magnetic field across the interspecies Feshbach resonance
at 78.3 G. After the association, we purify the molecular sample by quickly ramping the
magnetic field to 72.3 G where we remove residual atoms from the trap by applying a
magnetic-field gradient of 40 G/cm. As the Feshbach molecules have a vanishing mag-
netic moment at this magnetic field, they are unaffected by the magnetic-field gradient.
This procedure allows us to produce around 3× 104 Feshbach molecules at a temperature
of 500 nK in the 1550/1064-nm optical dipole trap with trapping frequencies (ωx,ωy,ωz) =
2π×(57,91,246)Hz at an effective trap depth of U = kB×6µK. We adiabatically change the
trap confinement by compression or decompression to change the temperature. This allows
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us to investigate the collisional loss for temperatures ranging from 300 nK to 1000 nK. We
ensure that the temperature in all spatial directions is the same by performing the compres-
sion or decompression such that the ratios of the trapping frequencies remain the same as we
change the trap confinement. After adjusting the trap parameters we ramp the magnetic field
within 15 ms from 72.3 G to 75.5 G. After a short hold time, we use a ramp with a duration
of 1.5 ms to change the magnetic field from 75.5 G to the target magnetic field B correspond-
ing to the scattering length a according to Equation (3.27). This ramping sequence has been
implemented to reduce the effects of eddy currents, especially for the measurements close to
resonance, where small magnetic field deviations result in a significant change in the scatter-
ing length. After the magnetic field B has been reached, we hold the molecules for a variable
time, after which we turn off all the dipole traps, ramp the magnetic field to 72.3 G and turn
on a magnetic-field gradient of 40 G/cm. After time of flight, during which the density of
the molecular sample has reduced, we ramp the magnetic field back through the Feshbach
resonance to dissociate the molecules with negligible loss. Finally, we detect the Feshbach
molecules with absorption imaging.

The two-body inelastic collisions Feshbach molecules can be described by:

dn
dt

=−βineln2 , (4.28)

where βinel the rate coefficient of inelastic collisions and n is the average density of the
molecular sample. We obtain the rate coefficient of inelastic collisions by measuring the
number of molecules over time. The molecule density in a harmonic trap follows a Gaussian
distribution. Given a geometric-mean trap frequency ω̄ = (ωxωyωz)

1/3 and temperature T ,
the average density of molecules n can related to the number of molecules N with mass m by

n =

(
mω̄2

2πkBT

)3/2

N , (4.29)

thus we can rewrite Equation (4.28) in terms of the change in the number of molecules as

dN
dt

=−βinelnN . (4.30)

We observe that the heating during the measurement is insignificant in comparison to the
statistical error of the temperature. We thus omit heating in the model and rewrite Equa-
tion (4.30) in terms of the number of molecules

dN
dt

=−βinel

(
mω̄2

2πkBT̄

)3/2

N2 , (4.31)

where T̄ represents the average temperature during the hold time.

In p-wave dominated collisions between fermions, the centrifugal p-wave barrier reduces
the probability of the molecules reaching the short-range regime and undergoing loss. The
rate of inelastic collisions is determined by the probability of the molecules to tunnel through
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Figure 4.10 – Temperature dependence of collisional loss coefficient βinel at a = −14a0,
554a0, 1542a0, 3000a0 (from bright to dark blue). The loss coefficient obtained from the
respective data sets are fitted with a linear fit (solid lines). The error in βinel is given by the
error of the fit. The horizontal error bars represent the statistical error of the temperature in
the measurement. A systematic error of 30% in βinel is expected from a 10% error in the
trapping frequency.

the barrier resulting in an inelastic collision. For kinetic energies considerably smaller than
the p-wave barrier, the inelastic collisions are expected to scale as βinel = KinelT . This lin-
ear dependence of the rate coefficient on the temperature has previously been observed for
fermionic ground-state molecules [137, 180]. We check whether it also applies to Feshbach
molecules. The results are summarized in Figure 4.10 showing the rate coefficient of in-
elastic collisions for different temperatures at four different scattering lengths ranging from
the non-halo regime (a =−14a0) to the halo regime (3000a0). We fit the data with a linear
function where the slope is the only fit parameter, and the y-intercept is forced to zero. The
loss coefficient is well described with a linear temperature scaling for all measured scattering
lengths.

Next, we investigate the collisional loss as a function of the interspecies scattering length
a. The results are summarized in Figure 4.11a. Since each realization of the measurement
was performed at a slightly different temperature, we make use of the linear temperature
scaling and present the rate coefficients at a temperature of 500 nK. One can see that close
to the resonance, the loss is strongest when the molecules are in the halo regime. We note
however that the measured rate coefficients below the unitarity limit βunitary = 2h̄λdB/µm,
where λdB is the de Broglie wavelength and µm = mNaK/2 is the reduced mass between two
molecules. At a temperature 500 nK the unitary rate coefficient is given by βinel = 1.77×
10−9 cm3/s. As we increase the binding energy, the rate coefficient of inelastic collisions
βinel changes by three orders of magnitude before it reaches a value of βinel = 3.3(1)×
10−12 cm3/s deep in the non-halo regime.

For the halo regime we compare our data with calculations presented in Ref. [64] predict-
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Figure 4.11 – Two-body loss coefficient βinel as a function of the scattering length a for T =
500nK. (a) Deep in the non-halo regime the loss approaches βinel = 3.3(1)×10−12 cm3/s.
The gray dashed line gives the loss coefficient of βinel = 1.65× 10−12 cm3/s predicted
by MQDT calculations. For a > 1000a0, βinel is fitted with βinel(a) = cal which yields
l = 2.58(14) (blue dashed line). The error in βinel is given by the error of the fit. The
horizontal error bars result from a 15-mG uncertainty in the magnetic field. A systematic
error of 30% in βinel is expected from a 10% error in the trapping frequency. (b),(c) The
number of Feshbach molecules as a function of the hold time for B= 72G (a=−47a0) and
B = 77.8G (a = 1300a0). The solid line shows the fitted molecule number from the from
the two-body loss model described by Equation (4.31) assuming a constant temperature.
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ing that βinel ∝ a3. In these calculations, the authors assume that the dimers are composed of
atoms with large mass imbalance and that the fermionic atom is the lighter atom. Hence, the
motion of the light fermions can be integrated out in a Born-Oppenheimer approximation.
While these assumptions are not fulfilled in our system, we check the predicted scaling by fit-
ting the two-body loss coefficient with a polynomial of the form βinel(a) = cal for scattering
lengths deep in the halo regime, a > 1000a0, and obtain l = 2.58(14).

In the non-halo regime, we compare our data with predictions from multichannel quantum
defect theory (MQDT) which have previously reproduced the loss coefficient for molecules
in rovibronic ground states [137, 181] and in high-lying vibrational states [182]. The pre-
dicted two-body loss coefficient in collisions of indistinguishable fermions [66] is given by

βinel(T ) =
Γ(1/4)6

Γ(3/4)2 ā3 kBT
h

= 1513ā3 kBT
h

. (4.32)

We calculate the van der Waals coefficient of NaK∗ Feshbach molecules by approximat-
ing the long-range interaction to be the sum of the contribution from individual atoms,
i.e., C6,FB = C6,Na +C6,K + 2C6,Na−K = 10543 where C6,Na = 1556, C6,K = 3897 [183] and
C6,Na−K = 2454 [184] in atomic units. We thus obtain ā = 88.8a0. At a temperature of
500 nK, Equation (4.32) yields 1.65× 10−12 cm3/s, which is a factor two lower than our
measured value in the non-halo regime.

We are not sure where the discrepancy between the data might be coming from. However,
I would like to remark that the value of the MQDT calculation gives the universal loss rate
where the probability of an inelastic collision once the molecules have tunneled through the
centrifugal barrier is equal to unity. Thus, apart from systematic errors in the measurements,
the discrepancy could be explained by the fact that the collisions between NaK∗ Feshbach
molecules are not universal. However, also other systems that expect universal loss have
observed a similar discrepancy from the MQDT calculations [137, 181].

In the measurement, we observe a small loss enhancement at around a = 200a0. Such
an increase in the rate coefficient could be attributed to a resonance with an Efimov trimer
state. Since we do not have a model that describes the behavior between the halo and the
non-halo regime, we cannot be sure whether this enhancement can be attributed to an Efimov
resonance and do not undertake any further attempts to clarify this.

Let us address the collision process of the molecules once they reach the short-range
regime. Works such as the ones in Ref. [185, 186] attribute their collisional loss to vibra-
tional relaxation, where two molecules collide and the collisional energy suffices to transfer
one dimer into a lower lying vibrational state while the other dimer gains sufficient energy
to dissociate. Since the vibrational spacing is on the order of ∆E ∼ h̄×1THz, the products
of a collision with vibrational relaxation in the short range will have enough kinetic energy
to leave the trap. However, we see that depending on the binding energy of the Feshbach
molecules, the dimer-dimer collisions lead to the accumulation of K atoms in the trap. Our
data suggest that the underlying loss process of two NaK Feshbach molecules colliding in
the short range results in three-body recombination. In this process, two Na atoms and one
K atom form a short-lived trimer. The remaining K atom acts as a spectator in this collision
and takes away the binding energy of the Feshbach molecule Eb = h̄2/(2µa2). The break-up
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Figure 4.12 – Three-body recombination and thermal dissociation. Number of accumulated
Na atoms (blue) and K atoms (red) during the loss measurements at various scattering
lengths a. In each measurement, we prepare the system under the same conditions and
average over the number of Na or K atoms for the respective last four holding times to
obtain the numbers shown. The error bar indicates the standard deviation. The dashed line
indicates Eb =U , where U = kB×6µK is the effective trap depth in the measurement. The
dash-dotted line indicates Eb = kBT where T = 500nK is the temperature of the molecular
sample in the measurement.

of the Na-Na-K trimer releases the binding energy on the order of Eb = h̄2/(2µa2
vdW) which

corresponds to temperatures on the order of hundred millikelvins which is larger than the
typical trap depth. Therefore, one can assume that the Na-Na-K products will immediately
leave the dipole trap. In Figure 4.12 we show the number of accumulated K atoms and Na
atoms as a function of the binding energy. We can identify three regions in this plot. Na and
K atoms do not accumulate in the trap for binding energies much larger than the trap depth.
However, once the binding energy becomes comparable to the trap depth, the K atoms start
to accumulate in the trap, and as the binding energy decreases, the number of accumulated K
atoms slightly grows. In the regime where the temperature becomes comparable to the bind-
ing energy, the thermal energy is sufficient for the molecules to break apart. This process is
called thermal dissociation.

As shown in Figure 4.8, the rate coefficient of collisions between Feshbach molecules and
K atoms is more than an order of magnitude smaller than the measured dimer-dimer rate co-
efficient. Considering that the number of K atoms is an order of magnitude smaller than the
density of Feshbach molecules, we can conclude that the K-NaK∗ atom-dimer loss is neg-
ligible. The regime of thermal dissociation is more critical. First, Feshbach molecules can
spontaneously dissociate into atoms. In addition, since the Na-NaK∗ dimer loss is compara-
ble to the measured value, the effect of Na-NaK∗ loss cannot be neglected. Given the order
of magnitude smaller density of Na atoms and the comparable atom-dimer and dimer-dimer
rate coefficients in the dissociation regime, we estimate that around 20% of the measured
rate coefficient can be attributed to the thermal dissociation and Na-NaK∗ loss.

To our initial surprise, the rate coefficient of NaK∗ Feshbach molecules in the non-halo
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regime is 20 times lower than that of the ground-state NaK molecules [137]1. Since the
rate coefficient for two-body loss in both those systems can be described by the MQDT
calculations in Idziaszek et al. [66], it is only a question of the average scattering length
ā ∝ C1/4

6 . In essence, while the electronic contribution to the C6 coefficient is similar for
Feshbach and ground-state molecules, ground-state molecules possess a molecular-frame
dipole moment which increases ā. For ground-state molecules, C6,GS = Cel,GS +Crot,GS,
where the first term is the contribution from the electronic wavefunction of the molecules
and the second term is the contribution from the rotational dipole part [188]. The second
term typically dominates and scales as d4. This also means that molecules with lower dipole
moment are expected to have a lower rate coefficient of inelastic collisions if universal loss
applies.

4.3.3 Elastic p-wave collisions
Despite the favorable scaling of the elastic-to-inelastic collisions with βel/βinel ∝ a3T 3/2

[64], no observation of elastic collisions in fermionic Feshbach molecules has been reported.
This is probably due to disappointingly short lifetimes reported for fermionic Feshbach
molecules and the prospect of more promising platforms such as ground-state molecules.

We study the elastic collisions of Feshbach molecules by observing cross-dimensional
thermalization of an out-of-equilibrium molecular sample. In contrast to the previous se-
quence for inelastic collisions, the association of Feshbach molecules takes place in the 785-
nm species dependent dipole trap. After molecule association we transfer them from the 785-
nm trap into the 1550/1064-nm trap which typically results in 1×104 Feshbach molecules.
For the measurement of the scattering-length dependence of p-wave collisions, we com-
press the dipole trap to obtain the trapping frequencies trapping frequencies (ωx,ωy,ωz) =
2π × (72,163,397)Hz, an effective trap depth of U = kB× 8µK and an initial temperature
of Tx = 350nK and Tz = Ty = 550nK. For the temperature dependence, we change the com-
pression of the trap to vary the average temperature between Tavg = (2Tz +Tx)/3 =300 nK
and 1000 nK.

We obtain the elastic and inelastic collision coefficients from the following set of differ-
ential equations

dn
dt

=−n2

3
Kinel(2Tz +Tx)−

n
2Tx

dTx

dt
− n

2Tz

dTz

dt
, (4.33)

dTz

dt
=

n
12

KinelTzTx−
Γth

3
(Tz−Tx)+ cl , (4.34)

dTx

dt
=

n
12

Kinel(2Tz−Tx)Tx +
2Γth

3
(Tz−Tx)+ cl , (4.35)

which we adopt from a model used for two-body collisions in polar molecules [180]. Here, n
is the average density of the sample and Kinel = βinel/T is the temperature-independent coef-

1While the discussion of the loss process of ground-state molecules is mentioned only briefly in this thesis,
this is currently a hot topic in the field. Our team has invested considerable time into understanding the loss
process in NaK ground state molecules. Roman Bause has covered this in his Ph.D. thesis [187].
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ficient of inelastic collisions. Tx and Tz are the effective temperatures of the molecules in the
horizontal and vertical directions, respectively. We checked that the temperature along the
direction of the imaging beam Ty is equal to Tz and assume this for all measurements. Γth is
the thermalization rate given by Γth = nσ v̄/α where σ is the cross-section of the elastic col-
lisions which is assumed to be constant for each measurement, v̄ =

√
16kB(2Tz +Tx)/(3πm)

is the average velocity of molecules and α = 4.1 is the number of collisions needed for
thermalization in p-wave collisions [5, 180]. The linear heating term cl is introduced to phe-
nomenologically account for isotropic heating that we observe in these measurements, but
were absent in the measurements presented in the previous section. We believe that the lin-
ear heating results from the damping of collective oscillation of the cloud inside the dipole
trap due to the compression. Since the heating shows a scattering length dependence, the
timescale of the damping might be determined by the rate of elastic collisions. We numer-
ically fit Eqs. (4.33)–(4.35) in the basis of the average temperature Tavg = (2Tz +Tx)/3 and
the difference in temperature ∆T = Tz−Tx to reduce the common mode fluctuation in the
temperatures.

The resulting coefficients of inelastic and elastic collisions, βinel and βel = σ v̄, are summa-
rized in Figure 4.13a as a function of the scattering length for a temperature of 500 nK. Since
the various measurements are taken at slightly different temperatures, we scale v̄ according
to the temperature while the elastic cross-section σ is not being scaled.

Deep in the non-halo regime, collisions of Feshbach molecules predominantly result in
loss such that the number of elastic collisions during the lifetime of the molecular sample
is negligible. As a result, cross-dimensional thermalization is absent (see Figure 4.13b),
and we only observe linear heating. The elastic collision rate increases notably faster for
higher scattering lengths than the inelastic collision rate. The molecular cloud exhibits cross-
dimensional thermalization, and the temperatures in the two directions approach each other
during the measurement (see Figure 4.13c).

Unfortunately, our measurement does not allow us to extract the scaling of βel with the
scattering length a in the halo regime for the following reasons: First, while we intentionally
reduced the initial molecule density to n0 = 0.4× 1011 cm−3, the elastic collision rate be-
comes comparable to the trap frequencies for a scattering length of a > 2000a0. Therefore
the system enters the hydrodynamic regime and the measured value of βel saturates near the
so-called hydrodynamic limit given by ω̄α/(2πn0) = 1.71× 10−9 cm3/s with a geometric
mean trapping frequency ω̄ = 2π×167Hz [189]. We note that the measured elastic collision
rate can exceed the hydrodynamic limit calculated for a constant density in the presence of
strong loss as the density significantly reduces during the loss measurement. Our model,
which only considers dimer-dimer elastic collisions, is only valid in deducing βel for scat-
tering lengths up to 610a0. When a > 610a0, where the binding energy of the molecules
is smaller than the trap depth, we observe an accumulation of spectator K atoms which can
contribute to the cross-thermalization. Despite these limitations, this measurement shows
that the rate coefficient of elastic collisions exhibits a stronger scaling with the scattering
length than that of inelastic collisions.

In addition, we measure the scaling of the elastic collision rate with the temperature. To
this end, we perform a compression to different trap depths that is cross-dimensionally non-
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Figure 4.13 – Elastic p-wave collisions of fermionic Feshbach molecules. (a) Elastic col-
lision coefficient βel (red) and inelastic collision coefficient βinel (blue) as a function of the
scattering length a for a temperature T = 500nK. Data points for βel are marked (open
symbols) when the number of K atoms increases during the measurement. The solid red
line marks the onset of the hydrodynamic regime (see main text). The red dashed line
shows an a6 scaling and serves as a guide to the eye. The error of the fit gives the vertical
error bars for the inelastic and elastic collision rates. The horizontal error bars result from
a 15-mG uncertainty in the magnetic field. A systematic error of 30% in the collision rate
coefficients is expected from a 10% error in the trapping frequency. The rate coefficient for
elastic collisions for a = −37a0,322a0 lie outside of the plotting range. (b), (c) Effective
temperatures Tz (dark gray) and Tx (light gray) as a function of the hold time for magnetic
fields of 72.25 G (−37a0) 77.25 G (610a0).
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Figure 4.14 – Elastic p-wave collisions in fermionic Feshbach molecules for different tem-
peratures. (a) Elastic collision coefficient βel (red) and inelastic collision coefficient βinel
(blue) as a function of the temperature T for a scattering length a = 610a0. The error of the
fit gives the vertical error bars. The horizontal error bars represent the statistical error of the
average temperature during the measurement. A systematic error of 30% in the collision
rate is expected from a 10% error in the trapping frequency. The blue and red solid lines
are the fits of the polynomial of the form cT l where l = 1.39(12) and l = 3.46(63) are the
exponent of the inelastic and the elastic collisions, respectively. (b) Number of K atoms
accumulated in the trap by averaging over the last two hold times of each measurement. To
account for a potential background reading of the number of K atoms, we subtracted the
number of K atoms from the first two hold times for each respective measurement. The
vertical error bar gives the standard error in the number of K atoms.

adiabatic while keeping the ratio between the trapping frequencies fixed. After the com-
pression, the temperatures in the various spatial directions differ. To ensure that cross-
dimensional thermalization results from elastic collisions between the Feshbach molecules,
we measure a scattering length of a = 610a0 where we checked that the number of K atoms
does not systematically change for the different temperatures. The results are summarized
in Figure 4.14. One can see that the elastic rate coefficient scales stronger with temperature
compared to the inelastic one. For temperatures around T = 300nK, the rate of elastic and
inelastic collisions are comparable, while for T = 1000nK, the elastic collision rate is larger
by almost one order of magnitude. We fit the temperature scaling with the polynomial cT l

and obtain l = 1.39(12) and l = 3.46(63) for βinel and βel, respectively. The measured tem-
perature scaling of the elastic collision rate agrees reasonably with the T 5/2 scaling expected
for p-wave collisions.
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Even in this measurement, we cannot exclude that the elastic collisions between the K
atoms and the Feshbach molecules do not affect the extracted rate coefficient. However, we
can argue that the main contribution to the cross-dimensional thermalization results from
dimer-dimer collisions. To give an upper bound to the contribution of the K-NaK atom-
dimer collisions, we note that s-wave collisions between distinguishable fermions follow a
T 1/2 scaling. If we account for the fact that the number of detected K atoms does not increase
with the temperature (see Figure 4.14b), the K-NaK collisions cannot explain the observed
temperature scaling. However, it can explain why the measured temperature dependence is
higher than the expected T 5/2-scaling.
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Here is Edward Bear, coming down the stairs now, bump,
bump, bump, on the back of his head, behind Christopher
Robin. It is, as far as he knows, the only way of coming
downstairs, but sometimes he feels that there really is
another way, if only he could stop bumping for a moment
and think of it. And then he feels that perhaps there isn’t.

—A.A. Milne (Winnie-the-Pooh)

5 Production of quantum-degenerate
Feshbach molecules

When I started my Ph.D. work on the NaK-machine in November 2018, we conducted our
experiments with thermal ground-state molecules. In her thesis, Frauke Seeßelberg reports
that the experiment produced 3× 103 ground-state molecules at a temperature of 300 nK
[113]. Around that time, the KRb team at JILA demonstrated the first degenerate molec-
ular sample by producing deeply degenerate atoms which were associated into Feshbach
molecules, followed by a transfer into the rovibronic ground state by using STIRAP [43].
As the options to evaporatively cool ground-state molecules [142, 190, 191] were not estab-
lished at that time, we decided to adopt their method to demonstrate degeneracy for NaK
molecules.

As of spring 2021, our experiment routinely produces around 5.0 × 104 Feshbach
molecules and 2.5× 104 ground-state molecules at a temperature of about 100 nK. In
this chapter, I will discuss how the production of degenerate NaK molecules is realized in
our system, which involves two main steps. First, we change the association procedure from
radio-frequency association to magnetoassociation. Second, we use a species-dependent
dipole trap to density-match the BEC of Na atoms with a degenerate Fermi gas. Here, I will
treat the production of the degenerate gas of molecules on a technical level, while in the
next chapter I will present the physical understanding of the association in terms of a phase
transition. Both chapters are based on the publication in Ref. [105].

5.1 From radio-frequency association to
magnetoassociation

The two most common methods to associate atoms into Feshbach molecules are radio-
frequency association and magnetoassociation. For radio-frequency association, a radio-
frequency π-pulse transfers the atoms from one hyperfine state directly into the molecular
bound state. This method has been used by other experiments working with 23Na40K [47,
49, 178]. Our experiment also previously used radio-frequency association, starting from Na
atoms in |F = 1,mF = 1〉 and K atoms in |9/2,−7/2〉 trapped in a crossed optical dipole trap.
Using a fast radio-frequency sweep, the atoms were transferred into the Feshbach state which
is separated by 80 kHz from the bare atomic state with Na atoms in |F = 1,mF = 1〉 and K
atoms in |9/2,−9/2〉. Since radio-frequency association happens on a much faster timescale
than the collisions between the particles, two atoms can only be associated into molecules
if they are in the ground-state of the relative motion [176, 192]. The probability of finding

79



two atoms in close proximity in phase space increases for lower temperatures, and thus the
association efficiency increases. However, since Na atoms and K atoms exhibit different
quantum statistics, their behavior is markedly different in the quantum degenerate regime.
As a result, the phase space overlap between Bose–Fermi mixtures drastically reduces once
the bosons start to condense. Therefore, the optimized phase space overlap is realized for
near-degenerate Bose–Fermi mixtures, namely when the temperature of the bosons is equal
to the critical temperature of condensation Tc [55]. Still, the best efficiencies for NaK in this
regime range from 10% to 15% when using radio-frequency association [113, 178].

In magnetoassociation, atoms are adiabatically transferred into the bound state by ramping
a magnetic field over a Feshbach resonance. This transfer happens on timescales long enough
for the atoms to change their momentum distribution during the association. In contrast
to association by a radio-frequency pulse, magnetoassociation does not rely on the phase
space distribution at the time of association as the atoms can redistribute in phase space
during the association. The process has peviously been described by a model treating the
association into the bound state as a Landau–Zener type transfer [193, 194], the magnetic-
field ramp should be slow enough that the unbound state can be adiabatically transferred
into the bound state with a probability of P = 1− e−2πδLZ . The Landau–Zener coefficient
δLZ ∝ abg∆/Ḃ scales with the width of the resonance ∆ and the background scattering length
abg and inversely with the ramp speed of the magnetic field Ḃ [58]. According to the Landau–
Zener models, unity association efficiency can be realized for infinitely slowly magnetic
field ramps. However, the strong particle loss in the unitary regime sets a lower bound on
the ramp speeds. To utilize magnetoassociation to its fullest potential, one needs a suitable
Feshbach resonance, fast and precise control over the magnetic fields, and knowledge of the
inelastic collisions that occur in the vicinity of the Feshbach resonance. In the following,
I will describe the implementation of magnetoassociation to produce NaK∗, which vastly
outperforms radio-frequency association.

5.2 Feshbach association in thermal
Bose–Fermi mixtures

We implement magnetoassociation for Bose–Fermi mixtures where the temperature of the
bosons is above but close to critical temperature for Bose–Einstein condensation while the
K atoms are already in the degenerate regime. We typically refer to these as thermal Bose–
Fermi mixtures. Since the losses in thermal Bose–Fermi mixtures are minute, it is relatively
simple to characterize the association. While we mainly use the Feshbach association of ther-
mal Bose–Fermi mixtures as a testing ground to implement magnetoassociation, this proce-
dure is used to create initial conditions for the loss measurements with Feshbach molecules
discussed in Chapter 4.

To characterize the production of Feshbach molecules, we typically start by producing
a Bose–Fermi mixture of 5× 105 K atoms and 3.5× 105 Na atoms in the 1550/1046-nm
dipole trap with trapping frequencies of 2π × (75,120,320) Hz and 2π × (70,99,285) Hz
for K atoms and Na atoms, respectively. The temperature of the mixture is T = 450 nK such
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Figure 5.1 – Magnetoassociation of Feshbach molecules in thermal Bose–Fermi mixtures.
(a) Number of Feshbach molecules as a function of the final magnetic field. (b) Number
of K atoms (red) and Na atoms (blue) as a function of the final magnetic field of the as-
sociation ramp function. The gray dashed line indicates the resonance position at 78.3 G.
The error bars in the measurement are the standard deviation of the measurement with three
repetitions.

that T/Tc = 1.1 and T/TF = 0.45. After the state preparation of K atoms from |F,mF〉 =
|9/2,9/2〉 to |9/2,−9/2〉, we associate the molecules by ramping the magnetic field over
the 78.3-G Feshbach resonance.

Our first signatures of molecule production with magnetoassociation are based on the de-
tected loss. By ramping the magnetic field through the Feshbach resonance, we see that the
number of atoms reduces as a function of the magnetic field. To distinguish the actual loss
of particles due to inelastic collisions from molecule production, we probe revival in the
number of atoms when ramping the magnetic field back through the Feshbach resonance.
While this method indicates that molecules form, we need a better method for detection,
especially if we want to perform thermometric measurements on the molecules. Thus, we
implement a technique to separate Feshbach molecules and atoms with a magnetic-field gra-
dient in time of flight before detecting the molecules and the atoms. We refer to this imaging
technique as Stern–Gerlach imaging. More details on Stern–Gerlach imaging can be found
in Section 3.5.2.

The optimized procedure for the Feshbach association is composed of a two-stage
magnetic-field ramp. After the state preparation for the K atoms, the mixture thermalizes
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Figure 5.2 – Bose–Fermi mixture in the 1550/1064-nm dipole trap. A cut of the densities in
the horizontal direction (left panel) and the vertical direction (right panel) is shown for Na
atoms (blue) and K atoms (red). The horizontal direction displayed is along the direction
of the Zeeman slower.

at a magnetic field of 81 G. Afterward, we ramp the magnetic field to 79 G, just above the
Feshbach resonance. The second ramp from 79 G to 77.8 G serves as the association ramp.
The number of associated Feshbach molecules is maximized when the association ramp is
performed with a ramp speed of 1.16 G/ms. The molecules and residual atoms are detected
by Stern–Gerlach imaging after quickly ramping the magnetic field to 72.3 G.

In Figure 5.1, we show a measurement of the number of molecules and atoms as a function
of the endpoint of the association ramp. Once the magnetic field reaches 77.8 G, we produce
around 8×104 Feshbach molecules. At even lower magnetic fields, the number of Feshbach
molecules slightly decreases, likely due to dimer-dimer and Na-dimer inelastic collisions. It
might come as a surprise that we detect around 1.5× 104 Feshbach molecules at magnetic
fields above the Feshbach resonance, where no molecules are expected. However, this fi-
nite number of detected molecules results from the fast magnetic field ramp to 72.3 G and
thus over the Feshbach resonance. Since the ramp is much faster than the typical timescale
for elastic collisions in the system, one could argue that the fast magnetic field ramp pro-
duces similar molecule numbers as one would expect from a radio-frequency transfer into
the bound state. Under this assumption and based on the radio-frequency association per-
formance [113], we conclude that magnetoassociation vastly outperforms radio-frequency
association. We also note that the measured temperature of the Feshbach molecules in this
measurement is comparable to the temperature of the atoms. We observe that the temperature
of the Feshbach molecules is about 20% higher than that of the K atoms.

Changing the association procedure from radio-frequency association to magnetoasso-
ciation boosts the number of molecules by approximately a factor of five. However, the
molecular sample is not in the Fermi-degenerate regime. From the number of molecules,
trapping frequencies, and the temperature of the sample, we estimate that T/TF ∼ 0.8. This
is not surprising as the atomic Fermi gas is already not deeply degenerate, and only a small
fraction of the K atoms are associated into Feshbach molecules.

To characterize the association efficiency, we compare the number of Feshbach molecules
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after the association to the number of atoms in minority species before the association. We
see that the conversion efficiency of the Na atoms, representing the minority species, is only
as large as 21%. From Figure 5.1b it is clear that interspecies loss is not the limiting factor
in the association, as the overall number of atoms remains unchanged during the association.
Next, we consider the spatial overlap between densities of the bosons and fermions typical
to this experiment. In Figure 5.2, one can see that in the wings, the density of the bosons
exceeds the density of the fermions, while in the center, the density of the K atoms is consid-
erably higher than the Na atoms. To figure out how many Na atoms can be associated into
molecules, we calculate the number of residual Na atoms Nres according to

Nres =
∫

nB>nF

nB(x)−nF(x)d3x. (5.1)

This tells us how many bosons are in trap regions where the density of the bosons exceeds the
density of the fermions and gives an upper bound on the conversion efficiency of the minority
species. Using the densities shown in Figure 5.2, we obtain Nres = 1.1× 105. This means
that for unity conversion efficiency, we would expect that about two-thirds of the Na atoms
can be converted, which is three times larger than what we measure. Therefore, we assume
that the phase space overlap represents the major limitation in the association and need to
understand which strategy to employ to improve the phase space density of the molecular
sample.

5.3 Thermometric considerations for
magnetoassociation in NaK

To help us understand how to produce degenerate Feshbach molecules, we consider some
simple thermodynamic relations between the atomic gases and molecular clouds. In our
simplified treatment, the discussion boils down to relating the relevant energy scales in the
system.

We consider a Na-K Bose–Fermi mixture in thermal equilibrium at a temperature T in
an optical trap where ω̄Na (ω̄K) is the geometric-mean trapping frequency for the Na (K)
atoms and NNa (NK) is the number of bosons (fermions). After Feshbach association, we
have NNaK∗ Feshbach molecules in an optical trap with a geometric-mean trapping frequency
ω̄NaK∗ . Now, we estimate the (T/TF)NaK∗ for the measurements in the previous section based
on the Equation (2.42) for the molecules. Specifically, we assume that the temperature of
the molecules is equal to the temperature of the atoms such that (T/TF)NaK∗ = (T/TF,K)×
(TF,K/TF,NaK∗), leading to(

T
TF

)
NaK∗

=

(
ω̄K

ω̄F,NaK∗

)(
NK

NF,NaK∗

)1/3

. (5.2)

Based on the ratio of the trapping frequencies in the 1550/1064-nm crossed dipole trap ac-
cording to Section 3.4 and that we can associate 8×104 molecules from 5×105 K atoms at

83



a reduced temperature of (T/TF)K = 0.45, we obtain (T/TF)NaK∗ = 0.85.
By combining Eqs. (2.34) and (2.42), we can rewrite (T/TF)NaK∗ = (T/Tc)× (Tc/TF,K)×

(TF,K/TF,NaK∗) to arrive at the following relation:(
T
TF

)
NaK∗

= 0.518(1−β )1/3
(

ω̄Na

ω̄F,NaK∗

)(
NNa

NF,NaK∗

)1/3

. (5.3)

Equation (5.3) implicitly contains the degeneracy of the K atoms due to the fact that the
trapping frequencies of the Feshbach molecules are related to the trapping frequencies of the
atoms by Equation (3.11). Using Equation (5.3), we can first treat the case of associating
Feshbach molecules from thermal bosons (T = Tc). We take the geometric-mean trapping
frequencies from Table 3.2 and make the simplification that the entirety of the bosons can be
converted into Feshbach molecules. Accordingly, the limit is (T/TF)NaK∗ = 0.47.

According to Equation (5.3), we have two possibilities to reduce (T/TF)NaK∗ . We can
work with bosons below the critical temperature. However, the dependency of the reduced
temperature T/TF on the condensed fraction scales with the third root of the fraction of
thermal bosons. Another parameter we can tune is ω̄Na/ω̄F,NaK∗ . This scales linearly, and
thus by having a trap that strongly compresses the Feshbach molecules, one can reduce
(T/TF)NaK∗ .

Working with condensed bosons or strongly compressing the K atoms will lead to a poor
spatial overlap between the bosons and the fermions and, consequently, a bad transfer effi-
ciency. The opposite problem arises when compressing the K atoms while working with a
thermal Na cloud where the number of K atoms strongly exceeds the Na cloud, effectively
reducing the degeneracy of the Feshbach molecules. This discussion is limited purely to spa-
tial overlap without considering the effect of loss. As we will see in the following section,
inelastic collisions complicate this picture.

5.4 Magnetoassociation in degenerate
Bose–Fermi mixtures

After implementing the magnetoassociation for thermal Bose–Fermi mixtures, we attempt
to produce Feshbach molecules in double-degenerate Bose–Fermi mixtures. Based on the
discussion in the previous section, the path to degeneracy constitutes creating a double-
degenerate mixture where the K atoms have a considerably stronger confinement than the
Na atoms. However, before discussing this scenario, we consider the case of a double-
degenerate mixture in a in a crossed dipole trap, where the polarizabilities for the two species
are similar (1550/1064-nm trap, see Section 3.4).

5.4.1 Feshbach association in the 1550/1064-nm trap
Starting with 1.5×105 Na atoms with a condensed fraction β ≈ 60% and a degenerate Fermi
gas of 3×105 K atoms with a T/TF = 0.25, we ramp the magnetic field over the Feshbach
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resonance and detect the number of Feshbach molecules and atoms using Stern–Gerlach
imaging. Figure 5.3a shows a scan of the final magnetic field of the Feshbach association.
The number of Feshbach molecules formed by this procedure is low, and the process is
accompanied by strong loss. Overall, the number of Na atoms drops by 1.0×105 during the
magnetic-field ramp across the resonance, whereas only 2.5× 104 Feshbach molecules are
produced.

After the association almost none of the condensed Na atoms remain. Therefore, we
believe that the bosonic condensate is quickly depleted by loss during the association ramp.
According to Figure 5.3, the loss of the Na atoms is correlated to the increase in the number
of Feshbach molecules. Given the large Na-dimer loss coefficient measured in Section 4.2,
we attribute the loss to inelastic collisions between the Na atoms in the BEC and Feshbach
molecules. In an independent measurement, we test this hypothesis by preparing a Bose–
Fermi mixture on the repulsive side of the 78.3-G Feshbach resonance and ramping the
magnetic field to the attractive side. By ramping in this direction, we probe the loss without
the contribution from Na-dimer inelastic collisions. In contrast to the measurement presented
in Figure 5.3, we observe no considerable loss.

A comparison between the densities of the Bose–Fermi mixtures in Figure 5.2 and Fig-
ure 5.3b shows that the density of the condensed Na atoms is approximately an order of mag-
nitude larger than for thermal Na atoms, while the density of the K atoms slightly reduces.
We can compute the number of residual Na atoms according to Equation (5.1). Approxi-
mately half of the bosons do not have a “partner” fermion to form Feshbach molecules but
can undergo loss. Since the rate coefficient for Na-dimer loss βNa−NaK is almost two orders
of magnitude larger than for K-dimer loss βK−NaK (see Figure 4.8), strong interspecies loss
arises when the Na atoms are the majority species. The typical timescale of the loss in the
center of the trap is considerably faster than a millisecond.

We attempt to reduce the loss by decompressing the 1550/1064-nm dipole trap. In a more
radical approach, we even try to perform the association in a crossed dipole trap formed by
the lattice beams where we can achieve even lower densities. Both attempts do not prove to
be successful. Due to the lower densities, we also need to reduce the ramping speed over the
Feshbach resonance. This timescale scales linearly with the overlap density

〈n<〉=
1

N<

∫
nB(x)nF(x)d3x , (5.4)

where N< is the number of atoms in the minority species. Both, the Na-dimer loss described
by Equation (4.27) and the overlap density scale linearly with nB(x). To exploit the scaling
relations in our favor, we need to increase the overlap density 〈n<〉, while reducing the
density of the bosons.

5.4.2 Feshbach association in the 785-nm trap
The nice feature of a species-dependent compression for K atoms is that the ratio of the
trapping frequencies ω̄NaK∗/ω̄Na increases, which according to Equation (5.3), leads to a
lower reduced temperature (T/TF)NaK∗ . In addition, the overlap integral between the K
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Figure 5.3 – Feshbach association in the 1550/1064-nm dipole trap with a double-
degenerate Bose–Fermi mixture. (a) Number of Feshbach molecules (gray) and number
of bound and unbound Na atoms (blue) as a function of the magnetic field. The error bars
are given by the standard deviation. (b) Cuts of the densities in the horizontal direction (left
panel) and the vertical direction (right panel) are shown for Na atoms (blue) and K atoms
(red). The horizontal direction displayed is along the direction of the Zeeman slower.
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atoms and the degenerate Na atoms increases such that the conversion from the minority
species is expected to increase, and loss due to excess bosons to reduce.

We realize this in a 785-nm dipole trap where the trapping frequency of the K atoms is con-
siderably larger than that of the Na atoms. It consists of a light sheet and a tightly focused
laser beam compressing the K atoms in the vertical direction and the horizontal direction,
respectively (see Section 3.4 for more details). We employ this trap during the optical evap-
oration in the 1550/1064-nm trap. After the state preparation of the K atoms, we decompress
the 1550/1064-nm trap such that the 785-nm dipole trap dominates the confinement of the K
and Na atoms. At these low trap depths, a magnetic field gradient is needed to levitate the
mixture and compensate for the gravitational sag between the species.

We produce a density-matched mixture of 2.3× 105 40K atoms at a temperature T =
80 nK (corresponding to T/TF ∼ 0.2) and 8.4× 104 23Na atoms with a condensate fraction
of about 65%. The trapping frequencies in the (x,y,z)-direction are 2π × (72,90,187)Hz
and 2π× (23,28,61)Hz for K atoms and Na atoms, respectively. For Feshbach association,
we employ a series of magnetic-field ramps. First, the magnetic field is quickly ramped to
78.6 G, followed by the association ramp across the Feshbach resonance at 78.3 G with a
ramp speed of 3.5 G/ms. This slower ramp stops at 77.8 G where the formation of Feshbach
molecules saturates as shown in Figure 5.4a. We then ramp the magnetic field to 72.3 G for
Stern–Gerlach separation before imaging.

Following our association procedure, we detect around 5×104 Feshbach molecules while
observing almost no loss during the association. As shown in Figure 5.4a, the total number
of Na atoms does not drop within the error bars of the measurement. We only observe
considerable loss due to dimer-dimer and Na-dimer inelastic collisions once the association
ramp stops at magnetic fields below 77.8 G. We attribute the improved association to an
increase in the density overlap shown in Figure 5.4b combined with a reduced loss because
of the low density of residual Na atoms present.

Overall, we can associate 60% of the Na atoms into molecules. Due to the species-
dependent trap, the K atoms are predominantly overlapped with the condensed Na atoms,
from which can convert 80% into molecules reducing the fraction of residual Na atoms in the
BEC to only 7%. If we assume that the residual Na atoms will undergo loss with Feshbach
molecules during the formation process, almost the entirety of the BEC can be converted
into molecules without such excess bosons. The previously highest conversion efficiencies
were achieved in K-Rb mixtures at JILA [43] where less than half of the minority species
was converted into molecules. In that experiment, the Bose–Fermi mixture was prepared
in a dipole trap where the polarizabilities of the two species were comparable. This means
the density-mismatch limits their conversion efficiencies. To improve the density-matching,
a fermion-to-boson ratio of 7:1 is used. Due to the ten times lower atom-dimer loss [153,
177], the atoms can be associated efficiently despite the considerably larger density of the
Rb-BEC. The high conversion efficiencies obtained in our experiment are also interesting
in the sense that they strongly contradict the historical perception that once the bosons con-
dense, the association efficiency is strongly suppressed [57, 58].

At last, I would like to quickly discuss how versatile this method is and how other ex-
periments can use it to achieve degenerate molecules. Extending the technique to other
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Figure 5.4 – Feshbach association in the 785-nm species-selective dipole trap with a
double-degenerate Bose–Fermi mixture. (a) Number of Feshbach molecules (gray) and
number of bound and unbound Na atoms (blue). The error bars are given by the standard
deviation. (b) Cuts of the densities in the horizontal direction (left panel) and the vertical di-
rection (right panel) is shown for Na atoms (blue) and K atoms (red) before the association.
The horizontal direction displayed is along the direction of the Zeeman slower.
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Bose–Fermi mixtures seems relatively straightforward. For example, in KRb one could em-
ploy a species-dependent dipole trap using a laser that is red-detuned from the D-lines of the
K atoms and blue detuned from the D-lines (or even in-between the D-lines) of Rb atoms.
Hence, a strong imbalance in the number of bosons and fermions is not needed. It is possible
to perform the association with fewer K atoms while increasing the number of Rb atoms and
the overlap density, thus increasing the number of Feshbach molecules. Since loss between
Feshbach molecules and Rb atoms does not represent a significant problem, the increase in
the overlap will lead to an improved association. While our method is particularly power-
ful in Bose–Fermi mixtures, where the density-mismatch results from the different quantum
statistics of the atoms, it can also be beneficial in other experimental setups such as the Li-Cr
Fermi–Fermi mixture in Florence. In their case, the lithium and chromium atoms are con-
fined in a bichromatic dipole trap. The laser that traps the chromium with a wavelength of
532 nm light leads to an anti-confinement of the lithium atoms. In this trap configuration,
the Fermi gas of lithium is about two to three times larger than that of chromium. Using
an additional infrared beam, they compress the lithium axially and density-match it with the
chromium [195].

5.5 Transfer to the rovibronic ground state
Once we have produced degenerate NaK∗ Fesbach molecules, we need to find a way to
transfer them into the rovibronic ground state, where the molecules exhibit a large dipole
moment. In contrast to the previous section, where we immediately turned off the dipole
traps and ramped the magnetic field to 72.3 G for Stern–Gerlach imaging, now, we need to
prepare the Feshbach molecular sample before the STIRAP, while maintaining the degener-
acy of the molecular gas. This involves a clear out of the residual atoms and compressing
the dipole trap to larger trap depths. These steps require some hold time for the Feshbach
molecules, for which the sequence needs to be carefully designed to avoid loss and heating
of the molecular sample before the transfer to the ground state.

To clear out the atoms, we need the magnetic field to be such that the magnetic moment
between the atoms and the molecules is significantly different. Since the association takes
place in a trap that is too shallow to hold the molecules without magnetic levitation, ramp-
ing to 72.3 G is not an option as the molecules do not possess a magnetic moment at this
magnetic field (see Figure 3.10). Instead, we ramp the magnetic field to 75 G where the
molecules possess a magnetic moment of h× 0.3MHz/G and increase the magnetic field
gradient to 40 G/cm. Hence, the molecules can be levitated against gravity. At the same
time, the gradient is strong enough to remove the residual atoms, which exhibit a consider-
ably stronger magnetic moment, from the trap. It should be noted that choosing a magnetic
field of 75 G is a compromise between being able to levitate the molecules and minimizing
inelastic collisions between the Feshbach molecules (see Section 4.3.2 for more details of
the dimer-dimer inelastic collisions).

We simultaneously ramp the magnetic field and the magnetic-field gradient to levitate
the Feshbach molecules at all times. However, the imperfect timing of the ramps as well
as eddy currents lead to a temporary tilt of the trap, which induces collective oscillations
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Figure 5.5 – Typical timing sequence for the association of ground-state molecules showing
ramps of the magnetic field (red), its gradient (blue) and the power of the 1550/1064-nm
trap (gray). I. Association of Feshbach molecules by three-staged magnetic field ramp.
II. Removal of unassociated atoms. III. Compression of the 1550/1064-nm trap while the
power of the 785-nm trap remains unchanged. IV. Removal of the levitation gradient for
subsequent STIRAP pulses. The black vertical solid and dashed lines separate different
stages of the sequence. The horizontal gray dashed line marks the Feshbach resonance at
78.3 G.
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of the molecular cloud. We minimize the collective oscillations by carefully programming
the magnetic field, and subsequently, the magnetic force on the molecules over the course
of approximately 25 ms as shown in Figure 5.5. We call this stage “Tai chi” because it is
similar to catching and maneuvering a flying ball with gentle movements. Once the collective
oscillations have stopped, we compress the 1550/1064-nm trap within 30 ms. Now the trap is
deep enough to hold the molecules without magnetic-field levitation, and the magnetic-field
gradient is ramped down within 30 ms followed by a magnetic-field ramp to 72.3 G at which
the magnetic moment of Feshbach molecules vanishes. After this procedure, the Feshbach
molecules are transferred into the rovibronic ground state by Stimulated Raman Adiabatic
Passage (STIRAP) with an efficiency of up to 80% [196]. We perform the STIRAP at a
magnetic field of 72.3 G, such that the STIRAP pulses are not sensitive to changes in the
magnetic field.

After STIRAP, we are left with about 3× 104 ground-state NaK molecules. Now, that
we have found a way to transfer the majority of the Feshbach molecules into the rovi-
bronic ground state, we determine the degeneracy of the molecules to see whether the Fesh-
bach molecules have inherited the degeneracy of the atoms and how the loss of Feshbach
molecules affects the degeneracy of the ground-state molecules.

5.6 Fermi-degeneracy of molecules
The quantum degeneracy of the molecular gases is determined by time-of-flight imaging. For
Feshbach molecules, we wait for 100 ms after the association to ensure that collective oscil-
lations induced during the association dampen out. During this time, the number of Feshbach
molecules reduces by 1×104 due to inelastic collisions. However, this waiting time is cru-
cial for fitting the fugacity of the molecular Fermi gas, which is characterized by a small
deviation from a Gaussian distribution, as shown in Figure 5.6. Effects on the cloud shape,
such as collective oscillations, can influence the extracted fugacity. To extract the reduced
temperature T/TF , we fit the images with the Fermi–Dirac distribution in Equation (3.21) as
described in Section 3.5.6.

In Figure 5.6a, we show the radial profile of the Feshbach molecules and ground-state
molecules after time of flight. The images are fitted with a Gaussian distribution (red) and
Fermi–Dirac distribution (blue). Compared to a Gaussian distribution, the data show a higher
occupation at larger momentum which is characteristic of the Fermi pressure in degenerate
Fermi gases. From the Fermi–Dirac fit, we obtain a reduced temperature of the Feshbach
molecules of (T/TF)NaK∗ = 0.28(1) and a reduced temperature of the ground-state molecules
of (T/TF)NaK = 0.24(4).

To the expert reader, this will immediately seem contradictory. How is it possible that the
reduced temperature of the Feshbach and ground-state molecules is the same despite a finite
STIRAP efficiency of about 80%? It can be explained as follows: As the STIRAP efficiency
does not depend on the momentum, the momentum distribution remains unchanged in the
absence of elastic collisions. Consequently, while the fugacity of the molecules seems to be
high, the system is actually not in thermal equilibrium. Therefore, the fit extracts a seeming
reduced temperature which we shall denote as (T/TF)

∗. This naturally raises the question of
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Figure 5.6 – Quantum degeneracy of molecules. (a) Velocity distribution of Feshbach
molecules and ground-state molecules. The black points (transparent triangles) show the
azimuthal integral of an average of fifteen images (six images) with a time of flight of
15 ms (12 ms) for Feshbach (ground-state) molecules. For the respective species the average
image molecules was fitted with a Fermi–Dirac (blue lines) and a Gaussian distribution
(red lines). The fit of the Fermi–Dirac distribution results in a fitted (T/TF)

∗
NaK∗ = 0.28(1)

and (T/TF)
∗
NaK = 0.24(4). The inset shows the averaged absorption image for Feshbach

molecules. (b) Azimuthal integral of the residuals for Feshbach molecules (points) and
ground-state molecules (triangles).
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whether we can even rely on the fitted reduced temperature of the Feshbach molecules, given
that these also undergo loss. The underlying assumption is that Feshbach molecules remain
in thermal equilibrium during the magnetoassociation [43]. Tobias et al. [197] estimate from
the elastic collision rate between Feshbach molecules and atomic fermions that the Feshbach
molecules are in thermal equilibrium, which also applies in our case. However, once we re-
move the residual atoms, inelastic loss will lead to the presence of holes in the Fermi sea.
If we assume that the loss does not depend on the momentum of the colliding particles, and
since the inelastic collision rate is expected to be much larger than the elastic one at 75 G
(see Figure 4.13a), the loss of Feshbach molecules should not affect the momentum distribu-
tion. Thus, our measurement of the reduced temperature (T/TF)

∗
NaK∗ = 0.28(1) which was

measured 100 ms after the association, captures the conditions right after the association.
As a sanity check, we can estimate the expected degeneracy of the Feshbach molecules by
considering that the K atoms before the association had a temperature of T ∼ 0.15 TF . Using
our experimental conditions, we can obtain (T/TF)NaK∗ ∼ 0.29 using Equation (5.2) which
reasonably agrees. In the following, we will see how we can estimate the effects of particle
loss and finite STIRAP efficiency.

5.7 Thermometry of noninteracting Fermi gases
In this section, I will elaborate on why simply fitting a Fermi–Dirac distribution to extract
the degeneracy of a noninteracting Fermi gas can lead to wrong results and which alternative
methods can be used. Let us consider a simple thought experiment shown in Figure 5.7,
where a deeply degenerate Fermi gas of Feshbach molecules in a harmonic trap is transferred
into the rovibronic ground state. For simplicity, we assume that the trap is the same for
Feshbach and ground-state molecules and that no other loss processes occur, except a finite
STIRAP efficiency η < 1. In addition, we assume that the transfer efficiency is independent
of the momentum of the fermions. Thus, whether a Feshbach molecule gets transferred
into the ground-state is simply given by the probability η . Last, we make the simplification
that no heating is associated with the transfer to the ground state. Thus, the finite transfer
efficiency will lead to holes in the Fermi sea of ground-state molecules and thus increase
T/TF .

In the published work on the first production of degenerate molecules by De Marco et
al. [43], where the authors claim a reduced temperature of T/TF = 0.33(3), the effects from
the finite STIRAP efficiency have not been accounted for. A difference between their method
and ours is that they associate the Feshbach molecules in a trap with a corrugated lattice po-
tential. The purpose is to minimize oscillations after the association and to reduce the effect
of the momentum transferred during the STIRAP sequence [43]. Consequently, the Feshbach
molecules can be instantly transferred into the ground state after the Feshbach association.
Nevertheless, the finite STIRAP efficiency produces holes in the Fermi sea, which do not
alter the momentum distribution of the Fermi gas. This means that the reduced temperature
that was reported in Ref. [43] for ground-state molecules is the reduced temperature of the
Feshbach molecules. I suspect that this issue would be evident if the authors had reported
their measured reduced temperature for Feshbach and ground-state molecules.
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Figure 5.7 – A thought experiment: A deeply degenerate Fermi gas is transferred into the
ground state with a finite STIRAP efficiency creating holes in the Fermi sea.

Indeed, in Ref. [197], the authors clarify their results in Ref. [43] by using auxiliary meth-
ods to determine the degeneracy of their molecular samples. One method involves prob-
ing the number fluctuations between different absorption images for the same experimental
condition. The number fluctuations are expected to follow a sub-Poissonian distribution
in the degenerate regime, while Poissionian number fluctuations are expected for thermal
samples. This method has been established to probe the fugacity of atomic Fermi gases
[198]. While the momentum distribution is unaffected by the finite STIRAP efficiency, the
finite STIRAP efficiency can be accounted for in the number fluctations. Based on this
method, the authors in Ref. [197] report a reduced temperature of (T/TF)KRb∗ = 0.35(2) and
(T/TF)KRb = 0.44(2).

This method is quite involved as the images need to be well calibrated to account for image
shot noise, atom shot noise, nonlinear effects, finite resolution, etc. The authors also present
a method to estimate the degeneracy from the peak fugacity. Here, one relies on the know-
ledge of the Feshbach molecules’ degeneracy and calculates the ground-state molecules’
degeneracy based on the transfer efficiency. To illustrate this, we consider the probability
distribution f (ζ ,E) in Equation (2.39). We define the lowest state in the harmonic oscillator
to have an energy E = 0, such that the peak occupancy in terms of the fugacity ζ is given by

f (ζ ,E = 0) = (ζ−1 +1)−1. (5.5)

The effect of the finite STIRAP efficiency can be considered to be a random process such
that f (ζ ′,E = 0) = η · f (ζ ,E = 0). Thus, given the occupancy probability of the lowest
excited state, one can obtain a new fugacity ζ ′ from which one can estimate an effective
reduced temperature according to Equation (3.22) which is illustrated in Figure 5.8a. Close
to the deeply degenerate regime, a small reduction in f (ζ ,E = 0) leads to a rapid increase in
(T/TF)

∗.
We have decided to estimate the degeneracy of the Fermi gas of ground-state molecules

based on the peak fugacity rather than from the number fluctuations. While both methods
seem to give similar results, the reduced temperature of the molecular sample can only be
truly determined once the sample thermalizes, and the effort associated with measuring the
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Figure 5.8 – Estimating the reduced temperature of a noninteracting Fermi gas in the pres-
ence of loss. (a) Effective reduced temprature (T/TF)

∗ with respect to the peak occupancy
according to Equation (5.5). (b) Reduced temperature T/TF of the ground-state molecules
based on reduced temperature of the Feshbach molecules according to Equation (5.5) for
an ideal transfer η = 1, the transfer efficiency in the KRb experiment [43] of η = 90% and
our experiment in Ref. [105] of η = 62% (from dark to bright red).
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number fluctuations is disproportionally more involved. In Figure 5.8b, the effective reduced
temperature as a function of the reduced temperature of the Feshbach molecules for the KRb
experiment in JILA and for our experiment. As mentioned before, the limiting factor in
Refs. [43, 197] is the STIRAP efficiency of η = 90% and 85%, respectively. Depending
on the conditions in the respective publication, the degeneracy of the ground-state ranges
between 0.37 ≤ (T/TF)KRb ≤ 0.44. In our experiment, the overall transfer efficiency is
given by η = 62% due to a 20%-loss in Feshbach molecules and a STIRAP efficiency of
78%. Given that the initial reduced temperature of the Feshbach molecules is (T/TF)NaK∗ =
0.28(1), the effective reduced temperature of the ground-state molecules is (T/TF)

∗
NaK =

0.52(2).

5.8 Ground-state molecules in thermal
equilibrium

Shortly after successfully creating a quantum-degenerate sample of ground-state molecules
with an effective reduced temperature (T/TF)

∗
NaK = 0.52(2), our lab has implemented a

technique to do efficient evaporative cooling with ground-state NaK molecules. A circularly
polarized microwave shields the inelastic collisions by coupling rotation states, effectively
creating a repulsive barrier in all directions. At the same time, the elastic collisions are
enhanced by the dipole moment induced by the microwave field. This technique was imple-
mented successfully for the first time in CaF molecules [199], where the authors demonstrate
shielding from inelastic collisions between the molecules. Andreas Schindewolf and Roman
Bause predominantly performed this work. The details of this project are summarized in
Ref. [141] and Roman Bause’s Ph.D. thesis [187]. Here, I will only focus on the thermomet-
ric analysis performed in this project.

The starting conditions for the evaporation is to produce a noninteracting sample of
ground-state molecules at an effective reduced temperature of (T/TF)

∗ ∼ 0.5, as described
in Section 5.7. After transferring to the ground state, the power of the microwave is linearly
ramped with a voltage-controlled attenuator to prepare the dressed state within 100 µs. After
the sample thermalizes, the molecules are evaporated by exponentially ramping the dipole
trap to various trap depths. Since technical noise limits the lifetime of the molecules to
600 ms, the timescale of the evaporation is chosen to be 150 ms. In contrast, the final trap
depth is varied between the experimental runs. Figure 5.9a shows the measured (T/TF) as
a function of the detected number of molecules. The condition marked with (I) shows a
measurement where the trap depth remains constant in the presence of the microwave field,
resulting in T/TF = 1.0 (Figure 5.9b). As the final trap depth is being reduced, the reduced
temperature decreases, and so does the number of molecules. At best, T/TF = 0.47 with
∼ 4× 103 molecules is reached (Figure 5.9c). The evaporation ramp producing condition
(II), followed by a plain evaporation of 150 ms leads to condition (III) where we detect
∼ 1×103 molecules with T/TF = 0.36.

Since the microwave allows for the molecular sample to thermalize, we can finally char-
acterize the degeneracy of the molecules. Note, however, that the condition (I) does not
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strictly represent the measurement where we estimated (T/TF)NaK = 0.52(2) since we hold
the molecules for 150 ms where the additional loss occurs. Suppose we account for the addi-
tional loss and consider the momentum kick of the STIRAP, which, after thermalizing, will
increase the temperature. In that case, we expect T/TF ' 0.85 from the peak occupancy
argument, which is not far from the measured value. To provide additional proof for the
conditions presented in Ref. [105], we could make use of the microwave to thermalize the
molecular sample within 10 ms and measure the sample’s degeneracy.

While the efficient molecule association can produce large and cold samples, the loss
due to the transfer into the ground-state will always remain a strong limit to reducing the
degeneracy. Using our molecule association procedure combined with microwave shielding
is our experiment’s route to obtain deeply degenerate molecular samples.
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Figure 5.9 – Evaporation of microwave-shielded ground-state molecules (a) T/TF and T
(inset) against the remaining number of molecules N after 150 ms evaporative cooling for
various final trap depths. The error bars of N are the standard error of the mean of 5–20
repetitions. The error bars of T are the standard deviation from the fit to the averaged
images. (b)–(d) Azimuthally averaged optical density of the samples after 10 ms time of
flight. The samples are prepared under the evaporation conditions I (b), II (c), and III
(d). Condition III was measured at the same trap depth as condition II followed by plain
evaporation for 150 ms The images of the samples are averages from 5 (d), 20 (e), or 6
individual images (f). The black lines show polylogarithmic fit functions, while the orange
lines are fits of a Gaussian to the thermal wings of the sample.
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As Abraham said: ”I am a stranger in a strange land”.
—Tevya (Fiddler on the Roof)

6 From weakly-interacting Bose–Fermi
mixtures to a degenerate Fermi gas of
molecules

After the first attempts to associate Feshbach molecules in Bose–Fermi mixtures, it was
believed that the association efficiency depends on the phase-space overlap between the
species. In the same publication, phenomenological models to describe the association of
Feshbach molecules based on stochastic phase-space sampling (SPSS) further supported this
interpretation and showed good agreement with the experimental data [57]. Accordingly, it
was believed that a poor phase-space overlap between a BEC and a degenerate Fermi gas
was responsible for the low association efficiency [55, 58]. However, as demonstrated for
the first time in Ref. [43], the association can be efficient. Moreover, as shown in the pre-
vious chapter, the association of Feshbach molecules from degenerate Bose–Fermi mixtures
can be highly efficient when the mixture is spatially overlapping, and when the interspecies
loss can be mitigated.

Given this strong contradiction between the idea that the phase-space overlap determines
the association efficiency and our observations, we tried to understand molecule production
from a different point of view. In light of previous theoretical investigations of the phase di-
agram of Bose–Fermi mixtures and their prediction of a phase transition in density-balanced
Bose–Fermi mixtures, we investigated this scenario of a quantum phase transition (QPT).
This chapter is based on the publication Ref. [105].

6.1 Simplified phase diagram
Since superconductivity was understood to arise from the effective attraction between elec-
trons mediated by phonons, mixtures of interacting bosons and fermions have been the sub-
ject of intense research. In solid-state materials, the coupling between electrons (fermions)
and phonons (bosons) is captured by Fröhlich or Holstein models [80, 81]. However, these
models do not include the possibility of a binding mechanism between bosons and fermions
into molecules. As observed in systems such as ultracold atoms [12] and van-der-Waals
materials [200] it is possible to realize Bose–Fermi mixtures that are governed by beyond-
Fröhlich physics, where bosons and fermions can bind to fermionic molecules [58, 201].
The competition between this novel bound-state physics and mediated interactions leads
to an enriched phase diagram potentially featuring supersolidity and charge-density-wave
phases [86, 202–204], molecular Fermi liquids [88, 106–108, 110, 205], and unconventional
boson-induced superconductivity [85, 206].
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Figure 6.1 – Quantum phase transition in a density-matched Bose–Fermi mixture. Phase
diagram of degenerate Bose–Fermi mixtures as a function of the density ratio nB/nF
and the dimensionless interaction strength (kiaBF)

−1. For nB/nF → 0, one attains the
Fermi-polaron limit featuring a polaron-to-molecule transition (black diamond), while for
nB/nF → ∞, the Bose polaron limit with a smooth crossover is reached when tuning
(kiaBF)

−1. For nB < nF , a QPT between a Polaronic and a Molecular phase of either first-
order with phase separation or second-order is expected. The long-dashed line marks the
complete depletion of the condensate (kF aBF)

−1
c and, in the case of phase separation, the

dotted line marks its onset at (kF aBF)
−1
mix. The vertical short-dashed line marks a possible

further QPT of unknown order.

A simplified phase diagram of homogeneous Bose–Fermi mixtures featuring bound-state
physics is illustrated in Figure 6.1 as a function of the boson-to-fermion density ratio nB/nF

and the dimensionless interaction strength 1/kiaBF . Here, aBF denotes the boson-fermion
scattering length and the wave vector ki is determined by the interparticle spacing of the
majority species ki = (6π2ni)

1/3 where i denotes B(F) for nB > nF (nB < nF ). We simplify
the phase diagram by considering phases at sufficiently high temperatures accessible in our
experiment. We ignore for example charge-density waves [86, 202–204] and superfluid s/p-
wave fermion pairing mediated by the bosons [85, 86, 206] or bipolaron formation [207].
Also, any phases involving bound states of more than one boson are ignored as these are
intrinsically unstable due to fast recombination loss.

Qualitatively, the phase diagram in Figure 6.1 can then be divided into two regimes. In
the limit of vanishing Bose–Fermi attraction, (kiaBF)

−1 → −∞, bosons and fermions de-
couple and form a BEC along with a Fermi sea. As attractive interactions are switched
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on, fermions and bosons modify each other’s properties, leading to quasiparticle formation.
Due to the polaronic character of this interaction, we denote the resulting phase as the Po-
laronic phase. This phase is characterized by the existence of a bosonic condensate, thus it
is also sometimes denoted as the superfluid polaronic phase [109]. Depending on the ratio
of bosons to fermions, the Polaronic phase is either dominated by Bose polarons, where the
fermionic impurities are dressed by the bosons, or Fermi polarons, where bosonic impurities
are dressed by the Fermi gas. In the limit of strong attraction1, realized at (kiaBF)

−1→ ∞,
and for nB/nF < 1, binding of all bosons to fermions leads to a Fermi sea of molecules
coexisting with an atomic Fermi sea. In the special case of equal density, only the Fermi
sea of molecules exists as all fermionic atoms are bound into molecules. We denote this
phase as the Molecular phase. In the Molecular phase, the condensate fraction which is the
order parameter of this transition has completely vanished. For nB/nF < 1, the Polaronic
and Molecular phase are predicted to be either separated by a first-order QPT with phase
separation or by a second-order QPT [76, 106–110].

When tuning the density ratio across nB/nF ≈ 1 in the regime of strong attraction, an addi-
tional phase transition, where a condensate reappears, is speculated in Ref. [106], however,
as the authors remark, it is not clear whether this phase transition exists or is an artifact of
the calculations. For nB/nF & 1, the phase featuring molecules and an excess condensate is
predicted to cross over into the Polaronic phase [106].

Most experiments have investigated the far left- or the far right-hand side of the phase
diagram. Recently, Bose polarons were observed in the limit of fermionic impurities in a
bosonic bath [208, 209], while the existence of a transition from Fermi polarons to molecules
has by now been firmly established for impurities immersed in a Fermi sea [98, 99, 103,
104]. In both cases, the density of at least one species is low enough that even for strong
interactions, the signatures of the experiments are not masked by strong particle loss. In
the case where both species are degenerate, the phase diagram has so far not been explored
outside the impurity limits. It is interesting to see how the behavior of Bose–Fermi mixtures
changes outside the impurity limits, especially in the equal-density regime where none of the
species can be regarded as a quantum impurity. Moreover, this regime is of practical interest
to produce a large and degenerate sample of molecules since in the ideal case the number of
associated molecules is limited by the number of atoms in the minority species. While the
equal-density regime has been investigated by several theoretical works, no experiment has
accessed this regime.

The challenge with trapped Bose–Fermi mixtures is that once the bosons condense, their
density strongly increases and exceeds the density of the degenerate Fermi gas. Thus, so
far, such mixtures have been restricted to the regime of nB > nF , where it is expected that
a crossover from the Polaronic phase to the Molecular phase with excess condensate will
occur, which might be accompanied by strong interspecies loss. As discussed in the previous
chapter, we can employ a species-dependent trap to change the densities of the mixture from
the regime nB > nF (indicated by the black star in Figure 6.1) to nB . nF (indicated by the

1It is a common perception that the (kiaBF )
−1 > 0 refers to repulsive interactions. However, the molecular

phase is characterized by strong attractive interactions given by the binding energy. Whether the interactions
are attractive or repulsive depends on whether one is in the attractive or repulsive branch.
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red star in Figure 6.1). This allows us to mitigate the loss during the Feshbach association,
efficiently associate molecules and study the association procedure.

6.2 Scenario of a quantum phase transition

6.2.1 The measurement
We start the experiment by producing a density-matched mixture of 1.8×105 40K atoms at
a temperature T = 80 nK (corresponding to T/TF ∼ 0.2) and 8.4× 104 23Na atoms with a
condensate fraction of about 65% in a harmonic trap. The trapping frequencies in the (x,y,z)-
direction are 2π × (72,90,187)Hz and 2π × (23,28,61)Hz for K atoms and Na atoms, re-
spectively. The corresponding density profiles are shown in Figure 5.4b.

We probe the behavior of the association by ramping the magnetic field across the reso-
nance starting from 79.0 G. To this end, we employ a single magnetic field ramp with a speed
of 3.5 G/ms that is terminated at the desired magnetic field close to a Feshbach resonance at
78.3 G [68, 143]. After the target magnetic field has been reached, we then quench the mag-
netic field to 72.3 G which projects the system onto free atoms and deeply bound molecules
to perform Stern–Gerlach separation of the atoms and molecules followed by absorption
imaging as shown in Figure 6.2a.

We describe the association process in terms of the dimensionless interaction strength
(kiaBF)

−1. In particular, we make use of the fermionic wave vector ki = kF since we work
in the regime nB ≤ nF . For the experimental conditions reported above we obtain kF =
2π × (1.5× 106)m−1. We get the interspecies scattering length aBF between bosons and
fermions from Equation (3.27). Due to the small effective-range parameter kFR∗ = 0.08 of
this broad Feshbach resonance, the Bose–Fermi interactions are well characterized by the
single parameter (kFaBF)

−1 [68]. During the association process the Bose–Bose interaction
is weakly repulsive and remains constant aBB = 53a0 [68] during the sweep of the magnetic
field.

For each measured interaction strength, we fit the images of the Na atoms and the im-
ages of the Feshbach molecules with a bimodal distribution and a Gaussian distribution,
respectively. As described in Section 3.5, from the fits, we obtain the number of condensed
bosons NBEC and the number of thermal bosons Nth as well as the number of Feshbach
molecules Nmol. As shown in Figure 6.2b, the bosonic condensate depletes when the interac-
tion strength increases, accompanied by the emergence of Feshbach molecules. In particular,
when (kFaBF)

−1 > 0, the condensate is strongly depleted until it vanishes and the number of
Feshbach molecules reaches its maximum. When further increasing the interaction strength,
the number of Feshbach molecules decreases, which we attribute to the loss of the Feshbach
molecules due to dimer-dimer and Na-dimer inelastic collisions.

6.2.2 Stability of the Bose–Fermi mixture
During the magnetic field ramp over the Feshbach resonance, we strongly change the in-
terspecies interaction aBF in magnitude and sign, while the Bose–Bose interaction aBB re-
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Figure 6.2 – Association process of degenerate Feshbach molecules. (a) Absorption im-
ages of Na atoms (Na) and Feshbach molecules (NaK∗) after 18 ms time of flight during the
association ramp from the polaronic BEC to the Molecular phase. (b) Production of Fesh-
bach molecules. Numbers of condensed Na atoms (dark blue points), thermal Na atoms
(light blue diamonds) and Feshbach molecules (gray points) are shown as a function of
(kF aBF)

−1. The red line indicates the polaron-to-molecule transition at (kF aBF)
−1 = 1.16

in the Fermi-polaron problem.
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mains weak and repulsive. As pointed out by previous theoretical and experimental works,
Bose–Fermi mixtures can undergo collapse or become immiscible in the strongly interacting
regime [73, 75–77].

When the interactions between bosons and fermions are attractive and much larger than the
stabilizing Bose–Bose repulsion, for (aBF/aBB)�−1, collapse of the Bose–Fermi mixture
is expected. As observed in 87Rb−40 K mixtures, the strong attraction leads to an enhance-
ment of the density of the mixture and an enhanced particle loss in both species [181]. How-
ever, for collapse to occur the mixture needs to undergo global mass transport which happens
on the timescale of the trapping period [79]. In our experiment, the trapping period set by the
highest trap frequency for bosons (for fermions) is 16ms (5ms), which significantly exceeds
the timescale of our magnetic-field ramp of less than 1 ms. As shown in Figure 5.4a, we
do not observe strong interspecies loss during the magnetic field ramp, which would exper-
imentally signify a collapse in our system. Thus, while collapse does in principle occur in
our system it does not represent a problem on the timescales of the experiment.

In the case where the repulsion between bosons and fermions is much larger than the
Bose–Bose repulsion, namely for (aBF/aBB)� 1, the mixture can experience immiscibility,
that is, a spatial separation into purely bosonic and fermionic phases that coexist. In contrast
to experiments where immiscibility has been observed in Bose–Fermi mixtures at aBF > 0
[79], we note that we prepare the system at 1/(kFaBF) < 0. As we ramp over the Fesh-
bach resonance, consequently we ramp the mixture along the attractive branch such that the
mixture always experiences attractive interspecies interactions. Thus, immiscibility is not
expected to pose an issue in our experiment. Moreover, a signature of immiscibility would
be that Feshbach-molecule formation is hindered by the spatial separation of the two species.
In clear contrast, we show that we can convert ≈ 80% of the BEC into Feshbach molecules,
providing direct experimental evidence to rule out immiscibility.

6.2.3 Theoretical models
As previously discussed, the behavior of the Bose–Fermi mixture changes with the inter-
action strength. A signature of these interactions is the depletion of the condensed bosons,
which can be quantified by the condensate fraction n0/nB. Here n0 is the density of the con-
densed bosons, and nB is the total density of the bosons. While several publications discuss
the association process in the equal-density regime, many of the predictions cannot be used
to compare our data with. For example, the works in Ref. [108] study the phase transition
in terms of the interaction strength (aBF/aBB) = const, while in our experiment aBB = const.
The investigations in Ref. [76, 106] consider the phase transition for a narrow Feshbach
resonance which does not apply in our experiment.

In the following, we will compare the change in the condensate fraction to two differ-
ent calculations. One is based on a non-self-consistent T-matrix (NSCT) theory approach
presented in Ref. [110]. In this approach, the authors compute the condensate fraction as a
function of (kFaBF)

−1 for different boson-to-fermion density ratios nB/nF up to the equal-
density regime where our experiment was performed. A particularly interesting result from
this calculation is that the condensate depletion as a function of the interaction strength only
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shows a weak dependence on nB/nF , and this universality with nB/nF extends even down
to the Fermi-polaron limit nB/nF → 0. Accordingly, the authors establish the relation be-
tween the condensate fraction and the quasiparticle weight Z of a single bosonic impurity
immersed in the Fermi sea. A disadvantage of the NSCT calculation is that the predicted
polaron-to-molecule transition point is not expected to be accurate. This is due to the fact
that modifications of the binding energy of the molecules inside the many-body environment
are underestimated.

In addition, we compare our data with a calculation of a single bosonic impurity from
a self-consistent functional renormalization group (fRG) approach, which accounts for an
infinite number of particle-hole excitations in the Fermi sea [94, 210]. Here, we justify com-
paring an equal-density measurement to an impurity calculation based on the universality of
the condensate depletion with nB/nF . In the fRG approach, we expect that the polaron-to-
molecule transition point is computed more precisely than that from the NSCT approach.
This can be attributed to the fact that both the molecule and the polaron are treated on equal
footing, such that the relative energies between the polaron and molecule are captured more
accurately than in an NSCT approach [94, 211]. Unfortunately, the fRG approach to Bose–
Fermi mixtures has not yet been developed at finite boson density, and, hence, we have to
rely purely on the NSCT prediction in this regime.

In Figure 6.3 we compare the NSCT approach in the impurity limit (black dashed) and
in the polaron limit (black solid) and the fRG approach (red solid). One can see that the
difference between the two calculations in the impurity limit leads to a difference in the
estimated transition point, signified by a jump in the quasiparticle weight Z. The NSCT
approach predicts the polaron-to-molecule transition to occur at (kFaBF)

−1 = 1.60 [110]
while the fRG approach yields a polaron-to-molecule transition at (kFaBF)

−1 = 1.16. While
this seems like a large difference in the predicted transition point, it is important to note
that the energies of the attractive Fermi-polaron branch and the molecular branch cross at a
rather shallow angle. As a result, the relative underestimation of the molecule energy in the
NSCT approach is the main reason for the difference in the predicted location of the polaron-
to-molecule transition. Otherwise, the predictions of the quasiparticle weight of a bosonic
impurity from both approaches yield similar results. The NSCT calculation at equal density
shows a similar depletion behavior of the condensed fraction as the impurity calculations for
most of the interaction. Instead of a discontinuity as in the impurity case, the condensed
fraction approaches zero continuously, vanishing at the transition point (kFaBF)

−1
c = 2.02.

6.2.4 Evidence for a quantum phase transition
To characterize the phase transition quantitatively, we define the normalized order parameter

φ = NBEC/(Nm +NBEC), (6.1)

which describes the depletion of the condensate fraction due to the excitation of bosons to
finite-momentum states by quantum fluctuations. These quantum fluctuations are dominated
by the build-up of pairing correlations. Said differently, the interactions of the fermions with
the bosons lead to a depletion of the bosons in the condensate to occupy finite-momentum
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Figure 6.3 – Comparison between fRG and NSCT approach. (a) The quasiparticle weight
of the bosonic impurity as a function of the interaction strength is shown as obtained from
the fRG (red, solid) and the NSCT approach (black, dashed). While both methods yield
similar results, they differ in predicting the point where the polaron-to-molecule transition
occurs, beyond which the occupied quasiparticle weight drops to zero. To indicate the effect
of finite boson density, the condensate fraction of the mixture computed in NSCT is shown
for nB/nF = 1 (black, solid). (b) Energy spectrum of the zero-momentum Fermi polaron
(red lines) and the zero-momentum molecule (gray lines) for a single bosonic impurity
obtained from the fRG (solid) and the NSCT (transparent) calculation. The energies cross
at the polaron-to-molecule transition (kF aBF)

−1
c = 1.16 (red dashed line) for the fRG and

at (kF aBF)
−1
c = 1.6 (black dashed line) for the NSCT calculation. For aBF > 0, the binding

energy Eb =−h̄2/2µa2
BF is subtracted where µ is the reduced mass.
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states, which are then projected onto the deeply bound molecular state.
In order to make a meaningful comparison between the order parameter φ according to

Equation (6.1) and the condensate fraction or the quasiparticle weight of a single bosonic
impurity, we remark that in the definition of φ we disregard thermal Na atoms whose num-
ber does not change considerably across the full interaction range and whose density is an
order of magnitude smaller than that of the BEC. Furthermore, the definition of φ is only
meaningful if the interspecies loss is small, which is true for the density-matched case as
shown in Figure 5.4a.

We have summarized the measured order parameter φ as a function of the interaction
parameter (kFaBF)

−1 for two different density ratios n̄B/n̄F in Figure 6.4a. Here, n̄B/n̄F

denotes the ratio of the average boson and fermion density in parts of the trap with a finite
condensate fraction in the weakly interacting regime. Specifically, n̄B/n̄F is given by

n̄B

n̄F
=

NF

NB

∫
n0>0 n2

B(x)d3x∫
n0>0 n2

F(x)d3x
, (6.2)

where the NF and NB are the number of fermions and bosons, respectively. The densities of
the bosons nB(x) and fermions nF(x) are calculated from the measured conditions before
the association process where nB(x) is assumed to be a bimodal distribution and nF(x) is a
Fermi–Dirac profile. The order parameter for n̄B/n̄F = 0.7 (blue) follows from the measured
atom numbers shown in Figure 6.2b. The measurement for n̄B/n̄F = 0.4 (orange) has been
performed in the same manner however with fewer Na atoms such that the density of the
BEC is reduced.

One can see that in the weakly interacting regime, when the bosons are condensed, the
order parameter is largest. As (kFaBF)

−1 is increased in the regime (kFaBF)
−1 < 0, φ only

shows a small decrease. Once the scattering length is positive, φ decreases rapidly and van-
ishes in the regime beyond (kFaBF)

−1 = 1.44(15) (n̄B/n̄F = 0.7) and (kFaBF)
−1 = 1.75(18)

(n̄B/n̄F = 0.4) where the residual condensate fraction is comparable to the uncertainty of the
measurement.

We observe that both data sets overlap within error bars, providing support for the pre-
dicted universality of the condensate depletion for varying nB/nF [110]. This universality
justifies comparing the theoretical predictions in a homogeneous system with our in-trap
experiment where the boson-to-fermion density nB/nF changes depending on the position
in the trap. Moreover, it legitimizes the comparison of the equal-density regime with the
impurity calculations if we assume that the universality does indeed extend to the impurity
limit.

Our measurements qualitatively agree well with the predicted condensate fraction from
the NSCT approach throughout the entire interaction regime and also show a remarkable
agreement with the quasiparticle weight of a single impurity from the fRG approach (solid
red line) in most of the interaction regime except close to the phase transition.

We attribute the discrepancy between the data and theoretical predictions in the weakly
interacting regime to the projective measurement when jumping the field across the Feshbach
resonance. Since it is impossible in our measurement to perform the time of flight and
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Figure 6.4 – Order parameter φ as a function of (kF aBF)
−1 for the boson-fermion average-

density ratio n̄B/n̄F = 0.4 (orange points) and n̄B/n̄F = 0.7 (blue points). The error bars
in (kF aBF)

−1 result from the magnetic field uncertainty of 15 mG and an error of 10 % in
the average trapping frequency. The vertical error bars represent the standard error. The
black solid line shows the order parameter from zero-temperature theory in Ref. [110] pre-
dicting the QPT to occur at (kF aBF)

−1
c = 2.02 for ideal bosons interacting with a Fermi

gas at nB/nF = 1. The red solid line shows the quasiparticle weight of a bosonic impu-
rity in a Fermi gas obtained from a self-consistent functional renormalization group (fRG)
calculation that predicts the polaron-to-molecule transition to occur at (kF aBF)

−1
c = 1.16.

the imaging at any specific interaction strength, we project the system onto deeply bound
Feshbach molecules. However, due to eddy currents, the jump of the magnetic field cannot be
performed infinitely fast, and as a result, we associate a finite number of Feshbach molecules.
In contrast, according to Bogoliubov theory, the condensate fraction expected to scale as
n0/n = 1− 8/3(η/π)1/2 ≈ 1 [212]. Here, η is the interaction parameter off the bosons
given by η = n̄Ba3

BB ∼ 10−7. Accordingly, φ is expected to be at unity which is reproduced
by the NSCT calculations [110].

6.2.5 Determination of the transition point
As part of investigating the quantum phase transition, we try to obtain the transition point
(kFaBF)c, namely the interaction parameter when the condensate completely vanishes. As
previously mentioned, for n̄B/n̄F = 0.7 the condensate vanishes at (kFaBF)

−1 = 1.44(15),
and for n̄B/n̄F = 0.4 at (kFaBF)

−1 = 1.75(18). However, it is quite difficult to determine
the transition point from the experimentally determined condensate fraction for two reasons:
First, this quantity only slowly approaches zero. Second, several factors such as the presence
of excess bosons or particle loss can shift the experimentally determined transition point.
While are working in the regime where n̄B/n̄F < 1, where on average the density of the
bosons is smaller than the fermions, the density of the bosons can exceed the density of
the fermions in the center of the trap. For n̄B/n̄F = 0.7, one expects the fraction of excess
bosons to be as large as 7%. These excess bosons cannot be converted into molecules and
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Figure 6.5 – Molecule production in the association process. The change in the number
of molecules is extracted from the data in Figure 6.2b. To this end, we have performed a
linear interpolation between the data points and extracted the derivative. The red dashed
line indicates the transition point in the impurity limit from the fRG calculation.

thus the experimentally determined transition point would be overestimated. On the other
hand, there is particle loss which can lead to the depletion of the condensate and might
underestimate the transition point. In addition, shot-to-shot fluctuations in the number of
Na and K atoms can lead to fluctuations in the number of condensate atoms, and when
n̄B/n̄F . 1, these fluctuations can lead to a systematic overestimation of the transition point
(kFaBF)c. In essence, the vanishing condensate fraction, we cannot judge whether our data
are in closer agreement with the transition point (kFaBF)c = 1.16 from the fRG approach or
(kFaBF)c = 2.02 from the NSCT approach in the equal-density regime.

To estimate the transition point independently from the slowly varying order parameter,
we consider the projected Feshbach molecule number shown in Figure 6.2b as a measure
of existing boson-fermion pairing correlations. As (kFaBF)

−1 increases, so do the pairing
correlations (including potential fermion-molecule mixing [106]) until they saturate when
the bosons are fully bound into molecules. We extract the transition point (kFaBF)

−1 =
1.29(14) where the number of detected molecules saturates. Moreover, the behavior in the
growth of the molecules changes abruptly, as shown in Figure 6.5. While below the transition
point, the growth rate of the molecules increases with the interaction strength, the growth rate
becomes negative once (kFaBF)

−1 = 1.29(14).
The extracted value of the transition point from the change in the number of molecules

seems to be in reasonable agreement with (kFaBF)c = 1.16 from the fRG calculations, con-
sidering that we compare a measurement at finite bosons density to the Fermi-polaron limit.
As explicitly shown in [88, 103, 110, 213] and suggested by mean-field arguments [88],
one expects the transition to shift to larger values of (kFaBF)

−1 as the boson density in-
creases. Moreover, from investigations of two-component Fermi gases (and as we see from
the NSCT calculations), it is expected that the discontinuity from the fRG calculations will
be smoothened out due to finite boson density, temperature, or combinations thereof [103,
213]. Hence, the value of (kFaBF)

−1 = 1.16 obtained from the fRG in the impurity limit
can be regarded as a lower bound on the actual location of the quantum phase transition at
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Figure 6.6 – Feshbach association at various ramp speeds. Order parameter φ as a function
of (kF aBF)

−1 at ramp speeds of 1.7 G/ms (dark red points), 3.5 G/ms (light red points) and
9 G/ms (blue points).

(kFaBF)c.
At last, I would like to remark on the adiabaticity of the association ramp. With a ramp

speed of 3.5 G/ms the timescale of the ramp is long enough to accommodate several atom-
dimer collisions in the strongly interacting regime such that the Feshbach molecules are in
thermal equilibrium with the atoms [197]. However, the time scale is too short for the system
to be in global thermal equilibrium given by the trapping period. Moreover, as shown in
Figure 6.4b, the energies of the polaron and the molecule at the transition point are gapless
such that adiabaticity is only guaranteed for an infinetly slowly magnetic field ramp. To
verify that our chosen ramp speed does not shift the transition point, we measure φ as a
function of (kFaBF)

−1 for three different ramp speeds as shown in Figure 6.6. For the ramp
speeds of 1.7 G/ms and 3.5 G/ms we observe the same behavior in the condensate depletion.
Only for the fastest ramp speed of 9 G/ms the depletion is shifted towards higher (kFaBF)

−1.

6.2.6 Reversal of the phase transition
We investigate the reversal of the phase transition. After the association ramp reaches
(kFaBF)

−1 = 1.3, the magnetic field is again ramped back over the resonance to dissociate
the molecules. The dissociation ramp is again followed by a magnetic-field quench to 72.3 G
for detection. As can be seen from the time-of-flight images in Figure 6.7a, the number of
projected Feshbach molecules decreases, while a finite BEC fraction is recovered. In par-
ticular, we show that the number of Na atoms in the BEC can be increased from 3(2)×103

to 8(1)× 103 (see Figure 6.7b). Heating after the dissociation is evident in the form of an
increase of thermal Na atoms which we attribute to the non-adiabatic nature of the magnetic
field ramps near the transition point. Due to the changing number of Na atoms in the thermal
wings, we cannot characterize the reversal of the phase transition with the order parameter
φ as done in the association ramp. Nonetheless, the partial restoration of the BEC highlights
the coherence preserved in our experiment and is a striking example of how bosons that
were bound to fermionic molecules in finite-momentum states are converted back into their
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motional ground state.

Figure 6.7 – Association process of degenerate Feshbach molecules. (a) Absorption im-
ages of Na atoms (Na) and Feshbach molecules (NaK∗) after 18 ms time of flight during the
association ramp from the polaronic BEC to the Molecular phase. (b) Production of Fesh-
bach molecules. Numbers of condensed Na atoms (dark blue points), thermal Na atoms
(light blue diamonds) and Feshbach molecules (gray points) are shown as a function of
(kF aBF)

−1 for n̄B/n̄F = 0.7. The red line indicates the polaron-to-molecule transition at
(kF aBF)

−1 = 1.16 in the Fermi-polaron problem.

6.3 A first step in understanding the QPT
We have investigated the association of Feshbach molecules in an equal-density Bose–Fermi
mixture. We see that the data agree with the scenario of a quantum phase transition. In
particular, we have seen that the condensate depletion reasonably agrees with the NSCT
calculation and even with the quasiparticle weight of a single bosonic impurity in a fermionic
bath.

The universality of the condensate depletion with the boson-to-fermion density indicates
that, despite having a large boson density, the system can be well described as a condensate
of polaronically dressed bosons. Moreover, the association in equal-density Bose–Fermi
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mixtures can be understood in the Fermi-polaron picture. A possible explanation for the
universality is, as recently observed, that the interactions between the polarons are weak
[104]. From theory and experiment, it is not clear whether or how far the universality exceeds
beyond nB/nF > 1. As a consequence of the universality, probing the condensate fraction
as a function of the dimensionless interaction represents an alternative way to obtain the
quasiparticle weight of one boson immersed into a Fermi sea. While this method might not
be as accurate as radio-frequency spectroscopy [99] or Raman spectroscopy [103], it is also
considerably less involved.

This work provides a first step toward understanding the phase diagram in the equal-
density regime. Many open questions remain to be answered, most prominently the order
of the phase transition. Theoretical investigations suggest that a first-order transition accom-
panied by phase separation is expected for weak repulsion, while for stronger repulsion a
second-order transition is expected [108]. Revealing the nature of this quantum phase tran-
sition in our experiment is complicated by the accessible observables. For instance, we can
only measure the global but not a locally resolved condensate fraction. As a result, we expect
to observe a trap-averaged and thus continuously measured condensate fraction as a function
of 1/kFaBF both for a first-order transition featuring phase separation and for a second-order
transition. While for a second-order phase transition, a continuous condensate fraction is
expected, for a first-order phase transition in a homogeneous system, the condensate fraction
would jump locally as a result of phase separation. However, since we only have access
to the globally averaged quantities, these discontinuities are smoothened out by looking at
the global condensate fraction. Probing the order of the phase transition could be done by
trying to measure hysteresis. Our data in Figure 6.2b and Figure 6.7b actually suggest such
a hysteresis. The Feshbach molecule formation and dissociation seem to be systematically
shifted. This needs to be investigated in more detail. For example, the magnetic field needs to
be precisely checked when performing the dissociation. A complementary method to iden-
tify the order of the transition is by measuring in a box trap where the density of the mixture
is homogeneous. This provides a better chance to see whether the condensate fraction shows
a discontinuous behavior.

Also, similar to the superfluid-to-Mott-insulator quantum phase transition [214], it would
be interesting to characterize the temperature dependence of the phase transition as done
in Ref. [215]. Thus, one can obtain the critical temperatures where the Polaronic or the
Molecular phase exists. Furthermore, it would be possible to obtain critical exponents for
the transition. This is an involved task as the experimental parameters need to be calibrated
for each different temperature at which the experiment is performed while ensuring that the
overlap between the species is maintained.
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7 Conclusion and outlook

In this thesis, I have described the process for creating ground-state NaK molecules in the
quantum-degenerate regime. The bottleneck and thus focus of this work lies in the associ-
ation of the Feshbach molecules in degenerate atomic Bose–Fermi mixtures. Based on the
experience from other mixture experiments and our observations, we concluded that radio-
frequency association does not allow to associate atoms into molecules with sufficiently high
efficiency, especially when the atoms are degenerate. Therefore, we implemented magne-
toassociation into our setup, which involved the characterization of the interspecies Feshbach
resonance at a magnetic field of 78.3 G. We used thermal Bose–Fermi mixtures as a testing
ground for the magnetoassociation and demonstrated that it vastly outperforms the previ-
ously used radio-frequency association and allows us to produce around 8× 104 Feshbach
molecules at a temperature close to the Fermi temperature. We also studied the various loss
processes in the proximity of the 78.3-G Feshbach resonance identifying that three-body and
Na-dimer collisions significantly contribute to particle loss close to unitarity. By associating
double-degenerate Bose–Fermi mixtures, where the density of the bosons vastly exceeded
the density of the fermions, we found a strong loss of Na atoms within the BEC during
the molecule-formation process. We developed a method to mitigate the strong interspecies
loss by density-matching the double-degenerate mixture using a species-dependent dipole
trap that predominantly confines the Fermi gas of K atoms. In density-matched Bose–Fermi
mixtures, we demonstrated an overall conversion efficiency of the Na atoms into Feshbach
molecules of 60% and negligible loss. We showed that the Feshbach molecules have a re-
duced temperature of (T/TF) ≈ 0.3 and the ground-state molecules have an effective re-
duced temperature of (T/TF) ≈ 0.5. In this context, we discussed methods to approximate
the degeneracy of noninteracting Fermi gases in the presence of loss. In the last section, we
addressed the nature of the association process. By converting around 80% of the Na atoms
in the BEC into molecules, we demonstrated that the association of condensed atoms into
Feshbach molecules is possible and highly efficient. Moreover, we showed that the produc-
tion of molecules in Bose–Fermi mixtures can be understood as a phase transition from a
phase featuring a condensate to a phase featuring a Fermi sea of Feshbach molecules.

This work provides essential insights into creating degenerate ground-state molecules
from Bose–Fermi mixtures. In contrast to previous observations doubting the possibility
of efficient association when the bosons condense [58, 177], we observe close-to-unity asso-
ciation efficiencies of the condensed bosons limited by residual density mismatch. Since our
method relies on the simple idea of density-matching the mixture with a dual-color dipole
trap, I believe that our technique will prove to be useful in reaching quantum degeneracy
in other polar-molecule experiments. Furthermore, our work provides a first step in explor-
ing strong-correlation physics in degenerate Bose–Fermi systems away from the impurity
limits and serves as a benchmark for their theoretical understanding. Our data suggest that
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the condensate depletion is accompanied by the build-up of pairing correlations between the
bosons and fermions, which ultimately leads to the formation of molecules. In particular,
the depletion of the order parameter agrees with the scenario of a quantum phase transition
which is closely linked to the polaron-to-molecule transition in the Fermi-polaron problem.
The investigation of the order of the transition through the observation hysteresis [108], or
absence thereof, is an intriguing venue for future research. Studies on the temperature de-
pendence of the critical point and on the quantum critical dynamics [216] will shed further
light on the nature of this transition. Given that the theoretical predictions of the phase tran-
sition are limited to densities nB ≤ nF , explorations of the phase diagram for nB & nF will be
very interesting to see whether the quantum phase transition persists for nB > nF , given that
a crossover is expected in the Bose-polaron limit.

Our experiment has finally reached the status of studying dipolar physics with ultracold
molecules. With the recent progress in creating degenerate molecules with the method pre-
sented here and microwave-assisted evaporation [141], we can create a thousand ground-state
molecules at a temperature of T = 0.36TF , which to date is the most degenerate sample of
interacting polar molecules in three dimensions. Upgrading the microwave system will fur-
ther improve the performance of the evaporation. We have developed additional features for
the setup in the past years, such as optical lattices and rotational-state dependent potentials.
With these tools and due to the strong intrinsic dipole moment of 2.7 Debye in NaK, we
expect a plethora of fascinating phenomena predicted in dipolar systems.

We recently observed anisotropic expansion of the polar molecules due to the dipolar in-
teractions in time of flight. To show the dipolar interactions in degenerate polar molecules,
one could study the deformation of the Fermi surface [217], which has previously been ob-
served in magnetic atoms of Erbium [218]. Our molecules exhibit a stronger dipole moment
than magnetic atoms, so we expect a substantially larger deformation. This would be the first
many-body effect observed in degenerate molecules with dipolar interactions.

A more challenging but feasible project would be the observation of a condensate of rota-
tional excitation, where the rotating molecules synchronize their rotation in an optical lattice.
This idea was predicted in Refs. [219, 220]. To observe this effect, the molecules need to
be loaded into an optical lattice and be brought into a superposition between the rotational
ground state and the first excited rotational state. If the loading in the lattice is very small,
one expects that the rotations will dephase. However, if the filling in the lattice is sufficiently
high, the molecules feel the presence of the neighboring dipoles and rotate in phase. Observ-
ing this phenomenon requires a filling of about 15% of the molecules in the lattice, which
corresponds to the filling we have achieved recently. This number can be improved with the
recent upgrades to the microwave system. To see a signature of the condensate of rotational
excitations, we would perform Ramsey spectroscopy on the ground-state molecules for dif-
ferent lattice fillings. The coherence time of the rotations should qualitatively change once
the critical lattice filling of 15% is reached.

At last, we can dream a bit: An interesting idea is to use microwaves and tune the scatter-
ing between the ground-state molecules [221]. If the microwave is strong enough, one can
modify the attractive potential of the intramolecular potential to host a bound state. In anal-
ogy to Feshbach resonances discussed in this thesis, one can modify the scattering length of
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the molecules. Moreover, one can transfer the molecules into a tetramers which condense if
the sample is sufficiently cold and long-lived.
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ley, C. L., Hutson, J. M. & Cornish, S. L. Creation of Ultracold 87Rb133Cs Molecules
in the Rovibrational Ground State. Phys. Rev. Lett. 113, 255301 (2014) (cit. on p. 2).

47. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold Dipolar Gas of Fermionic
23Na40K Molecules in Their Absolute Ground State. Phys. Rev. Lett. 114, 205302
(2015) (cit. on pp. 2, 79).

48. Seeßelberg, F., Buchheim, N., Lu, Z.-K., Schneider, T., Luo, X.-Y., Tiemann, E.,
Bloch, I. & Gohle, C. Modeling the Adiabatic Creation of Ultracold Polar 23Na40K
Molecules. Phys. Rev. A 97, 013405 (2018) (cit. on p. 2).

49. Liu, L., Zhang, D.-C., Yang, H., Liu, Y.-X., Nan, J., Rui, J., Zhao, B. & Pan, J.-W.
Observation of Interference between Resonant and Detuned Stirap in the Adiabatic
Creation of 23Na40K Molecules. Phys. Rev. Lett. 122, 253201 (2019) (cit. on pp. 2,
79).

50. Guo, M., Zhu, B., Lu, B., Ye, X., Wang, F., Vexiau, R., Bouloufa-Maafa, N.,
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139. Dürr, S., Volz, T. & Rempe, G. Dissociation of Ultracold Molecules with Feshbach
Resonances. Phys. Rev. A 70, 031601 (2004) (cit. on p. 43).

140. Szczepkowski, J., Gartman, R., Witkowski, M., Tracewski, L., Zawada, M. & Gawlik,
W. Analysis and Calibration of Absorptive Images of Bose-Einstein Condensate at
Nonzero Temperatures. Rev. Sci. Instrum. 80, 053103 (2009) (cit. on p. 43).

141. Schindewolf, A., Bause, R., Chen, X.-Y., Duda, M., Karman, T., Bloch, I. & Luo,
X.-Y. Evaporation of Microwave-Shielded Polar Molecules to Quantum Degeneracy
2022. arXiv: 2201.05143 (cit. on pp. 44, 96, 114).

142. Valtolina, G., Matsuda, K., Tobias, W. G., Li, J.-R., De Marco, L. & Ye, J. Dipo-
lar Evaporation of Reactive Molecules to below the Fermi Temperature. Nature 588,
239–243 (2020) (cit. on pp. 45, 79).

143. Chen, X.-Y., Duda, M., Schindewolf, A., Bause, R., Bloch, I. & Luo, X.-Y. Suppres-
sion of Unitary Three-Body Loss in a Degenerate Bose-Fermi Mixture. Phys. Rev.
Lett. 128, 153401 (2022) (cit. on pp. 46, 49, 53, 102).

126

http://arxiv.org/abs/2201.05143


144. Park, J. W., Wu, C.-H., Santiago, I., Tiecke, T. G., Will, S., Ahmadi, P. & Zwierlein,
M. W. Quantum Degenerate Bose-Fermi Mixture of Chemically Different Atomic
Species with Widely Tunable Interactions. Phys. Rev. A 85, 051602 (2012) (cit. on
p. 46).

145. Breit, G. & Rabi, I. I. Measurement of Nuclear Spin. Phys. Rev. 38, 2082–2083 (1931)
(cit. on pp. 46, 51).

146. Klempt, C., Henninger, T., Topic, O., Scherer, M., Kattner, L., Tiemann, E., Ertmer,
W. & Arlt, J. J. Radio-Frequency Association of Heteronuclear Feshbach Molecules.
Phys. Rev. A 78, 061602 (2008) (cit. on p. 46).

147. Chin, C. & Julienne, P. S. Radio-Frequency Transitions on Weakly Bound Ultracold
Molecules. Phys. Rev. A 71, 012713 (2005) (cit. on p. 47).

148. Lange, A. D., Pilch, K., Prantner, A., Ferlaino, F., Engeser, B., Nägerl, H.-C., Grimm,
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151. Weber, T., Herbig, J., Mark, M., Nägerl, H.-C. & Grimm, R. Three-Body Recombi-
nation at Large Scattering Lengths in an Ultracold Atomic Gas. Phys. Rev. Lett. 91,
123201 (2003) (cit. on p. 54).

152. Helfrich, K., Hammer, H.-W. & Petrov, D. S. Three-Body Problem in Heteronuclear
Mixtures with Resonant Interspecies Interaction. Phys. Rev. A 81, 042715 (2010) (cit.
on pp. 55, 57, 59, 66).

153. Bloom, R. S., Hu, M.-G., Cumby, T. D. & Jin, D. S. Tests of Universal Three-Body
Physics in an Ultracold Bose-Fermi Mixture. Phys. Rev. Lett. 111, 105301 (2013) (cit.
on pp. 56, 87).

154. Luiten, O. J., Reynolds, M. W. & Walraven, J. T. M. Kinetic Theory of the Evaporative
Cooling of a Trapped Gas. Phys. Rev. A 53, 381–389 (1996) (cit. on p. 57).

155. Eismann, U., Khaykovich, L., Laurent, S., Ferrier-Barbut, I., Rem, B. S., Grier, A. T.,
Delehaye, M., Chevy, F., Salomon, C., Ha, L. C. & Chin, C. Universal Loss Dynamics
in a Unitary Bose Gas. Phys. Rev. X 6, 021025 (2016) (cit. on pp. 57, 60).

156. Mosk, A., Kraft, S., Mudrich, M., Singer, K., Wohlleben, W., Grimm, R. & Wei-
demüller, M. Mixture of Ultracold Lithium and Cesium Atoms in an Optical Dipole
Trap. Appl. Phys. B 73, 791–799 (2001) (cit. on p. 57).

157. Petrov, D. S. & Werner, F. Three-Body Recombination in Heteronuclear Mixtures at
Finite Temperature. Phys. Rev. A 92, 022704 (2015) (cit. on pp. 57, 59).

127

http://arxiv.org/abs/2202.06940


158. Greene, C. H., Esry, B. D. & Suno, H. A Revised Formula for 3-Body Recombination
That Cannot Exceed the Unitarity Limit. Nucl. Phys. A 737, 119–124 (2004) (cit. on
p. 59).

159. Wang, Y. & Julienne, P. S. Universal van Der Waals Physics for Three Cold Atoms
near Feshbach Resonances. Nat. Phys. 10, 768–773 (2014) (cit. on p. 60).

160. Langmack, C., Schmidt, R. & Zwerger, W. Efimov States near a Feshbach Resonance
and the Limits of van Der Waals Universality at Finite Background Scattering Length.
Phys. Rev. A 97, 033623 (2018) (cit. on p. 60).

161. Pricoupenko, A. & Petrov, D. S. Three-Body Interaction near a Narrow Two-Body
Zero Crossing. Phys. Rev. A 100, 042707 (2019) (cit. on p. 60).
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