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2. Introductory summary 

2.1 Summary of the PhD project 
The PhD project entitled “Establishment of an in vitro tensile strain model and application of dif-

ferent stretching parameters to human periodontal ligament cells” was conducted at the Depart-

ment of Orthodontics and Dentofacial Orthopedics, University Hospital, Ludwig-Maximilians-Uni-

versität München, under the supervision of PD Dr. rer. nat. Uwe Baumert and Prof. Dr. med. dent. 

Andrea Wichelhaus. During this project, two studies were performed and published to fulfill the 

requirements for PhD graduation. 

 Orthodontic tooth movement (OTM) aims to align mal-positioned teeth through application of 

appropriate external forces (Wichelhaus 2017). In response to external stimuli, bone remodeling 

is activated resulting in bone resorption on the compression side and bone formation on the ten-

sion side (Krishnan and Davidovitch 2015). As the structure between teeth and alveolar bone, the 

periodontal ligament (PDL) plays an essential role during OTM. The periodontal ligament consists 

of several type of cells, including but not limited to the fibroblasts (Marchesan et al. 2011) and is 

essential in transforming mechanical stimuli into biological signals (Krishnan and Davidovitch 

2006). 

 Compression and tension are two essential forces responsible for bone resorption and bone 

formation correspondingly during OTM. While appropriate therapeutic forces are crucial for bone 

homeostasis, excessive stimuli will result in tissue destruction and adverse complications 

(Pavasant and Yongchaitrakul 2011). Therefore, it is of great importance to evaluate the effect of 

different force magnitudes on human PDL cells (hPDLC). For compression forces, systematic 

summary and analysis for in vitro models have been conducted (Janjic et al. 2018), and related 

biological regulations have been investigated by several models addressing different force mag-

nitudes (Baumert et al. 2004; Janjic Rankovic et al. 2020; Shi et al. 2019). However, for tensile 

strain forces, though many studies were published (Yang et al. 2015), there is no systematic and 

detailed analysis of relevant methodological aspects (apparatus, magnitudes and durations of 

tensile strain), as well as related biological regulation and pathways. Additionally, most published 

studies only focused on specific tensile strain magnitudes, leaving a gap in the knowledge related 

to effect of different tensile strain parameters on hPDLCs under the same experimental condition. 
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Therefore, this project aimed (1) to perform a systematic review to include all tensile strain 

related studies, and to make a quantitative summary and analysis for force parameters and re-

lated biological regulations; (2) to identify the research gaps in related areas; (3) to establish an 

in vitro static tensile strain model; (4) to investigate the effect of different stretching parameters 

on hPDLCs, focusing on bone remodelling, mechanosensing and inflammation. 

2.2 Summary of the two publications 

2.2.1  Publication 1. Effect of Tension on Human Periodontal Ligament 
Cells: Systematic Review and Network Analysis. 

This systematic review was performed to identify all published studies focusing on effect of in vitro 

tensile strain on hPDLCs, to summarize the force parameters and regulations of investigated 

gene/metabolites, and to identify biological process and pathways that might be affected by ten-

sile strain. In this study, 5,331 publications were identified using a defined search formula. After 

screening of the title and abstracts and full text reading of relevant literatures, 137 studies were 

finally included for risk of bias assessment and data extraction (i.e. characteristics of tensile strain 

and genes/protein/metabolites analyzed) (Sun et al. 2021). Based on the extracted information 

and summaries listing the investigated genes, network analysis was performed (Sun et al. 2021). 

 Type of tensile strain and apparatus used: Among the 137 included studies, 103 focused on 

dynamic and 30 applied static tensile strain (Sun et al. 2021). Both equibiaxial and uniaxial cell 

stretching were identified, with the former more frequently applied (103/137, 75%). Concerning 

the apparatuses used, Flexcell Strain Unit® and its revisions were most frequently applied for both 

dynamic and static equibiaxial tensile strain. The STB-140” system (STREX® Inc., Osaka, Japan), 

apparatuses with silicone (non Bioflex®-plate) or other elastic membrane were mostly adopted for 

dynamic uniaxial tensile strain. Static uniaxial tensile strain application was identified in two stud-

ies only (Sun et al. 2021). 

 Magnitudes, durations and frequencies of tensile strain: Dynamic equibiaxial tensile strain 

was applied with frequencies ranging from 0.005 Hz to 1 Hz, among which 0.1 Hz was most fre-

quently applied (Sun et al. 2021). Tensile strain magnitudes of 10 % and 12 % were more com-

monly used among a range of 1-24 % (Sun et al. 2021). Force application duration showed a 

large variation. However, 48h and 72h experimental durations were mostly applied. For dynamic 
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uniaxial tensile strain application, the most commonly used frequency, magnitudes and duration 

were 0.5 Hz, 10 % and 12 % magnitudes and 48 h, respectively (Sun et al. 2021). Static tensile 

strain parameters deviate much in comparison to dynamic tensile strain. Tensile magnitude of 

2.5 % and 12 h duration were most frequently used for static equibiaxial cell stretching, while 5 %, 

8 % and 10 % magnitudes and 3 h / 12 h experimental durations were commonly used in studies 

applying static uniaxial cell stretching (Sun et al. 2021). 

 Selection of force parameters: This review summarized and analyzed the tensile strain related 

parameters, including magnitudes, durations and frequencies. Selection of magnitudes was 

mostly either based on in vivo studies (Mühlemann 1954; Mühlemann and Zander 1954), or re-

sulted from finite element analysis (Dong-Xu et al. 2011; Natali et al. 2004) as well as related 

previous publications (Hao et al. 2009; Memmert et al. 2019; Nogueira et al. 2014). Considering 

the requirement of cell feeding for in vitro studies, the maximum duration was limited. For force 

frequency, selection was mostly based on previous studies or studies investigating tooth contact 

during sleep (He et al. 2004) or masticatory cycle (Tantilertanant et al. 2019). 

 Genes, proteins and metabolites investigated: Biological regulations in response to tensile 

strain application were extracted or calculated, followed by summary of the gene/protein expres-

sion patterns. Altogether, 205 genes were identified from all the included studies. The top 10 most 

frequently investigated genes/proteins/metabolites were Runt-related transcription factor 2 

(RUNX2), biomineralization associated alkaline phosphatase (ALPL), bone gamma-carboxyglu-

tamate protein (BGLAP), interleukin 1B (IL1B), prostaglandin-endoperoxide synthase 2 (PTGS2), 

tumor necrosis factor-alpha receptor super-family member 11B (TNFRSF11B), TNF superfamily 

member 11 (TNFRSF11), COL1A1, prostaglandin E2 (PGE2) and transcription factor SP7 (Sun 

et al. 2021). They were classified into the categories “osteogenesis”, “osteoclastogenesis” and 

“inflammation”, and further analyzed in relationship to force magnitudes or durations (Sun et al. 

2021). 

 Network analysis: Differentially expressed genes (DEG) were selected from the dynamic and 

static gene lists, which were extracted from corresponding type of studies (Sun et al. 2021). Using 

the dynamic and static lists of DEG, corresponding Protein-protein interaction (PPI) networks 

were generated and analyzed (Sun et al. 2021). Hub genes were identified, and regulation ten-

dency of genes was marked with different colors (Sun et al. 2021). Additionally, both “Biological 
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Process” of GeneOntology (GO) and GeneAnalytics were applied to identify the involved biologi-

cal processes and signaling pathways (Sun et al. 2021). All hub genes, enriched GO terms and 

super signaling pathways identified in this study might provide additional clues for new research-

ing topics. 

 This systematic review performed a comprehensive data extraction and analysis for both 

force and biological related information (Sun et al. 2021). The most frequently adopted apparat-

uses, magnitudes and durations of tensile strain were summarized, followed by comparison and 

discussion in relationship to clinical situations. Regulation of gene/protein/metabolites was inves-

tigated followed by comprehensive network analysis, providing more insights into the biological 

background of OTM. Some research gaps were identified, including but not limited to the effect 

of different stretching parameters on hPDLCs, which would be focus for the second part of the 

PhD project. 

2.2.2 Publication 2. Effect of different parameters of in vitro static tensile 
strain on human periodontal ligament cells simulating the tension 
side of orthodontic tooth movement. 

Based on the open questions (“further research need”) identified in the systematic review, the 

second part of PhD study aimed to investigate the effect of different stretching parameters on 

hPDLCs. For this purpose, an in vitro apparatus for static tensile strain was constructed, assessed 

and finally applied for hPDLCs. 

 Construction and assessment of the apparatus: As mentioned in the first publication, most 

apparatuses for tensile strain were based on the deformation of elastic membrane on which cells 

were attached (Sun et al. 2021). Based on previous publications (Nazet et al. 2020; Toume et al. 

2016), a 3D designed apparatus was constructed for applying different cell stretching magnitudes 

simultaneously. The apparatus contained five parts: a base plate, six 3D-printed caps with pins, 

a Bioflex® plate, a frame and screws (Sun et al. 2022). Cells were seeded on the elastic mem-

brane of the 6-well Bioflex® plate. Caps with predefined parameter were inserted into the base 

plate. By fixing the frame and the Bioflex® plate into the baseplate, cells were stretched with spe-

cific magnitudes (Sun et al. 2022). Applicability of the apparatus was tested by applying tensile 

strain of 3%, 10% and 20% to the attached hPDLCs, which covered the most frequently adopted 

range of magnitudes (Sun et al. 2021). After 1, 2 and 3 days of tensile strain, the specific set-ups 
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were unloaded. Directly afterwards, cell viability of stretched cells was assessed with live/dead 

cell staining (Sun et al. 2022). Independent of tensile strain magnitudes and durations, only a 

small number of dead cells were visible after staining. This confirmed the good applicability of the 

apparatus for tensile strain experiments. 

 Study design: To investigate the effect of different stretching parameters on hPDLCs regard-

ing bone remodeling, mechanosensing and inflammation, magnitudes of 0%, 3%, 6%, 10%, 15% 

and 20% were applied for 1, 2 and 3 days (Sun et al. 2022). Supernatants of each well were 

collected at each end point, followed by ELISA analysis of IL1B, Interleukin 6 (IL6), Interleukin 8 

(IL8), Interleukin 10 (IL10), Tumor necrosis factor α (TNF) and PGE2. Cell lysates were collected 

for further analysis. According to the MIQE guideline (Bustin et al. 2009; Bustin et al. 2010), sta-

bility of reference genes should be assessed for each specific study and more than one reference 

genes was recommended to be used. Therefore, a part of the cell lysates from the study was 

used to evaluate the stability of a panel of reference genes, followed by analysis with program of 

RefFinder (Xie et al. 2012). After assessment, the two most stable reference genes (RPL22 and 

POLR2A) were used for further analysis of target genes (Sun et al. 2022). Regulation of target 

genes was detected using RT-qPCR, focusing on bone remodeling (RUNX2, SP7, ALPL, BGLAP 

and TNFRSF11B), mechanosensing (FOS) and inflammation (IL6 and PTGS2) (Sun et al. 2022). 

 Effect of different parameters of tensile strain on hPDLCs regarding bone remodeling: For 

genes related to bone remodeling, TNFRSF11B was below detection limit (Sun et al. 2022). Du-

ration dependencies were identified for all other related target genes. Gene expression of RUNX2 

and ALPL presented a very similar tendency, both showing significant upregulation after 1 day, 

followed by downregulation after 2 days and returned to corresponding control levels after 3 days 

of stretching (Sun et al. 2022). For both genes, 3% stretching led to maximum upregulation, while 

20% resulted in the minimum expression after 1 day of tensile strain (Sun et al. 2022). Similar as 

RUNX2 and ALPL, maximum upregulation of SP7 was also detected after 1 day of cell stretching, 

with more prominent upregulation for lower magnitudes (6%, 10% and 15%) and less regulation 

for higher magnitude of 20% (Sun et al. 2022). Regulation of BGLAP was not significant after 

1 day, while downregulation was identified after 2 days followed by upregulation after 3 days of 

stretching (Sun et al. 2022). In summary, regulation of these genes was consisted with the time-

line of bone remodeling (Rutkovskiy et al. 2016), and it indicated the promoting effect of lower 

magnitudes and inhibiting effect of higher magnitudes on osteogenesis (Sun et al. 2022). 
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 Effect of different parameters of tensile strain on hPDLCs regarding mechanosensing: After 

1 and 2 days of tensile strain, expression of FOS, a mechanosensation related gene, was around 

corresponding control levels (Sun et al. 2022). Upregulation was found after 3 days of cell stretch-

ing for magnitudes of 3%, 6% and 15%. However, earlier upregulation of FOS was frequently 

reported in other studies (Kletsas et al. 2002; Papadopoulou et al. 2017; Peverali et al. 2001). 

Considering the early-responsive characteristic of FOS, more earlier detecting time points might 

be considered in further research (Sun et al. 2022). 

 Effect of different parameters of tensile strain on hPDLCs regarding inflammation: ELISA re-

sults were all below detecting limit for IL1B, IL8, IL10, TNF, while changes in both gene expression 

and secretion of IL6 and PGE2 were detected (Sun et al. 2022). IL6 gene was generally upregu-

lated after 1 day, then downregulated after 2 days and returned to the control level after 3 days 

(Sun et al. 2022). IL6 concentration in the supernatant was upregulated for all durations, with 

maximum identified after 3 days of cell stretching. Among all magnitudes, 10% of cell stretching 

resulted in minimal expression for all durations (Sun et al. 2022). PTGS2 was regulated after 

1 day and returned to the control level after 2 and 3 days of tensile strain (Sun et al. 2022). Con-

centration of PGE2 was upregulated for all durations with maximum found after 1 day of cell 

stretching (Sun et al. 2022). It showed force magnitude dependence, reaching its maximum at 

higher magnitudes (15% and 20%) and less prominent expression at lower magnitudes (3%, 6% 

and 10%). With all these molecules considered, 10% magnitude generally resulted in minimal 

level of inflammation and might be concluded as an appropriate stretching magnitude (Sun et al. 

2022). 

In summary, based on the first part of the PhD project (the systematic review), the need for 

an investigation of wide range of tensile strain magnitudes under the same experimental condi-

tions was identified. Therefore, during the second part of the PhD project, an in vitro tensile strain 

apparatus was constructed, enabling precise verification of cell stretching magnitudes using pa-

rameterized 3D printed caps. To enable more precise analysis for the expression of target genes, 

systematic assessment and selection of reference genes were also performed, followed by inves-

tigation of the stretching magnitude and duration dependence of selected target genes. The re-

sults of this study provided an overview for bone remodeling/mechanosensing/inflammation re-

lated biological regulations in hPDLC exposed to different parameters of static tensile strain, 

which might also provide some clues for OTM in clinical situations.  
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Effect of Tension on Human
Periodontal Ligament Cells:
Systematic Review and Network
Analysis
Changyun Sun1, Mila Janjic Rankovic1, Matthias Folwaczny2, Sven Otto3,
Andrea Wichelhaus1 and Uwe Baumert1*

1Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMUMunich, Munich, Germany, 2Department of
Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany, 3Department of Oral and
Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany

Orthodontic tooth movement is based on the remodeling of tooth-surrounding tissues in
response to mechanical stimuli. During this process, human periodontal ligament cells
(hPDLCs) play a central role in mechanosensing andmechanotransduction. Various in vitro
models have been introduced to investigate the effect of tension on hPDLCs. They provide
a valuable body of knowledge on how tension influences relevant genes, proteins, and
metabolites. However, no systematic review summarizing these findings has been conducted
so far. Aim of this systematic review was to identify all related in vitro studies reporting tension
application on hPDLCs and summarize their findings regarding force parameters, including
magnitude, frequency and duration. Expression data of genes, proteins, and metabolites was
extracted and summarized. Studies’ risk of bias was assessed using tailored risk of bias tools.
Signaling pathwayswere identified by protein-protein interaction (PPI) networks using STRING
and GeneAnalytics. According to our results, Flexcell Strain Unit

®
and other silicone-plate or

elastic membrane-based apparatuses were mainly adopted. Frequencies of 0.1 and 0.5 Hz
were predominantly applied for dynamic equibiaxial and uniaxial tension, respectively.
Magnitudes of 10 and 12% were mostly employed for dynamic tension and 2.5% for
static tension. The 10 most commonly investigated genes, proteins and metabolites
identified, were mainly involved in osteogenesis, osteoclastogenesis or inflammation.
Gene-set enrichment analysis and PPI networks gave deeper insight into the involved
signaling pathways. This review represents a brief summary of the massive body of
knowledge in this field, and will also provide suggestions for future researches on this topic.

Keywords: periodontal ligament fibroblasts, tension, tissue remodelling, orthodontic tooth movement, mechanical
stress

INTRODUCTION

Orthodontic treatment aims to align malpositioned teeth towards a functional optimal position by
application of an appropriate force (Wichelhaus, 2017). This force leads to bone resorption in
direction of the movement (“compressive side”) and bone formation on the opposite side (“tension
side”). Orthodontic tooth movement (OTM) is therefore based on the controlled stimulation of bone
remodeling by application of external force (“orthodontic force”). At the cellular level, OTM is based
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on remodeling processes in the periodontal ligament (PDL) and
the alveolar bone (Cho et al., 2010; Chang et al., 2017). Placed
between the teeth and the surrounding alveolar bone, the PDL is a
heterogeneous connective tissue, that is composed of several
different cell populations including but not limited to
fibroblasts, macrophages, stem cells and endothelial cells
(Marchesan et al., 2011). In the context of in vitro experiments,
the term “PDL fibroblast” should be used carefully. Cells described
as “PDL fibroblast” are commonly isolated from themiddle third of
the tooth root. For cell isolation either the “explant” or the
“digestion” technique is employed (for further details: see
discussion). Yet, both techniques will result in a heterogeneous
mixture of different cell types (Marchesan et al., 2011).

The PDL is essential for maintaining the homeostasis and
integrity of the tooth supporting tissue (Ren et al., 2015; Wu et al.,
2019b) and plays a pivotal role in coping with physiological forces
that occur during routine activities, i.e. speaking ormastication and
non-physiological external forces (Pavasant and Yongchaitrakul,
2011). Involution and atrophy of PDL is induced by lack of
recurring mechanical stimuli (Cohn, 1965), while exposure
against excessive forces will impair the subtle balance between
osteogenesis and osteoclastogenesis, ultimately leading to the
disintegration and loss of the osseous tooth support (Nogueira
et al., 2014a). Therapeutic mechanical force applied onto teeth is
mediated to the alveolar bone via the PDL thereby inducing bone
remodeling and OTM (Vansant et al., 2018). Periodontal ligament
cells (PDLCs) play a vital role in the transduction of mechanical
force to biological signals, achieving the balance between bone
formation and resorption (Kook and Lee, 2012; Li et al., 2019).
PDLCs can be activated in response to periodontal ligament injury
followed by proliferation, migration and synthesis of new matrix
components (Krishnan and Davidovitch, 2006). Potentially,
PDLCs can differentiate into cementoblasts or osteoblasts and
are involved in the repair and the regeneration of the periodontal
tissues (Pavasant and Yongchaitrakul, 2011).

Due to the complex structure of the periodontium and to
evaluate inter and intracellular signaling pathways, in vitro
models have been established to simulate the two major
mechanical stimuli occurring during OTM (Yang et al., 2015;
Janjic et al., 2018; Vansant et al., 2018): tension and compression.
The main working principles of these setups can be summarized
as approaches in which tension is applied via substrate
deformation, whereas compression is mainly applied via
weight, hydrostatic pressure, or centrifugation (Yang et al.,
2015). In vitro compression models were recently summarized
(Janjic et al., 2018) and the underlying molecular signal
transduction has been shown by numerous in vitro
experiments (Baumert et al., 2004; Shi et al., 2019a; Shi et al.,
2019b; Janjic Rankovic et al., 2020). Based on these reports various
molecular pathways involved in OTM have been identified,
including but not limited to genes and proteins which are related
to osteogenesis, osteoclastogenesis, inflammation and apoptosis
(Yang et al., 2015; Janjic et al., 2018; Vansant et al., 2018). To
study the effect of tension on PDLCs, different in vitromodels have
been designed to apply continuous (“static”) or intermitted
(“dynamic”) tension force along one principal axis (“uniaxial”) or
along all axes in all directions (“equibiaxial”) of a cell (definition

according to Lee and von Recum, 2015)(Figure 1). However, the
force parameters in terms of dynamic and static tension used show
enormous heterogeneity, depending on the specific objectives of the
experiments.

Therefore, this systematic review aimed to summarize the data on
different in vitro tensionmodels applied to human PDLCs (hPDLCs)
as well as the effect of tension on the expression of genes and proteins.
Specifically, this systematic review aimed 1) to identify all relevant
studies applying tension on hPDLCs e.g. to simulate orthodontic
force or other clinically relevant forces; 2) to make an assessment of
themethodological and reporting quality of the included studies; 3) to
summarize the biological and force parameters, and the commonly
adopted methods for detecting biological regulation; and 4) to
identify the most frequently investigated genes/proteins and their
regulation, as well as the biological processes and pathways thatmight
be affected by tension in hPDLCs.

MATERIALS AND METHODS

This systematic review was conducted following the “Preferred
Reporting Items for Systematic Reviews and Meta-Analyses”
(PRISMA) guidelines (Moher et al., 2009). The protocol of
this systematic review was finalized before data collection. A
registration in the PROSPERO database was not possible, since
only in vitro studies were included.

Eligibility Criteria
Inclusion criteria were defined in accordance with the “P.I.C.O.”
framework (Schardt et al., 2007):

• P(atient): human periodontal ligament cells (hPDLCs) or
human periodontal ligament derived stem cells (hPDLSCs);

• I(ntervention): in vitro static and dynamic tension (e.g. to
simulate orthodontic force or other clinically relevant
forces);

• C(ontrol): human periodontal ligament cells (hPDLCs) or
human periodontal ligament derived stem cells (hPDLSCs)
not subjected to mechanical force;

• O(utcome): force parameters (i.e. apparatus, force duration,
force magnitude, frequency of force exposure) and
regulation of gene, protein and/or metabolite expression
in response to tension.

The following exclusion criteria were applied:

• In vivo studies
• In vitro studies not applying tension on hPDLCs or
hPDLSCs

• Reviews
• Studies not reporting quantitative data on gene or protein
expression

• Application of force other than tension or the specific type
of force is undefined

• 3D model
• Co-culture
• Articles not published in English
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Search Strategy and Study Selection
The search strategy considered keywords concerning
the specific objectives of the studies, the force applied
and the cells exposed to experimental force and were

summarized in Table 1. PubMed search was completed
on 31-01-2020 and the results were imported into
EndNote® X9.3.1 (Clarivate Analytics, Philadelphia,
Pennsylvania, United States).

FIGURE 1 | Tension is applied to adherent cells growing on a flexible surface (e.g. a. silicon membrane; solid lines) by elongation (dotted lines) of that surface either
with equal forces acting in all directions in the same way (equibiaxial) or equal forces acting in one principle axis (uniaxial).

TABLE 1 | Final PubMed search strategy applied.

Field Force Cells

orthodont* OR AND BioFlex culture plates OR AND fibroblast* OR
tooth movement OR biomechanic* OR PDL OR
periodont* mechanical force* OR hPDLCs OR

load* OR hPDLFs OR
stretch* OR hPDLF OR
tension OR progenitor cell* OR
tensile OR stem cell* OR
dynamic structural remodeling OR human PDL-cells OR
equi-biaxial strain OR human PDL-fibroblasts OR
Flexercell OR human PDLFs OR
four-point bending OR human PDLs OR
mechanical coupling OR human periodontal ligament OR
mechanical deformation OR ligament fibroblast OR
mechano-sensitive OR periodontal tissue OR
mechanostimulation OR Periodontium
mechanotransduction OR
petri dish OR
flexible bottom OR
elastic membrane OR
silicon* OR
strength OR
stress OR
substrate strain OR
Tensile

Search phrase: (orthodont* OR tooth movement OR periodont*) AND (BioFlex culture plates OR biomechanic* OR mechanical force* OR load* OR stretch* OR tension OR tensile OR
dynamic structural remodeling OR equi-biaxial strain OR Flexercell OR four-point bending OR mechanical coupling OR mechanical deformation OR mechano-sensitive OR
mechanostimulation OR mechanotransduction OR petri dish OR flexible bottom OR elastic membrane OR silicon* OR strength OR stress OR substrate strain OR tensile) AND (fibroblast*
ORPDLOR hPDLCsOR hPDLFsOR hPDLFOR progenitor cell* OR stem cell* OR human PDL-cells OR human PDL-fibroblasts OR human PDLFsOR human PDLsOR human periodontal
ligament OR ligament fibroblast OR periodontal tissue OR periodontium).
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First, unrelated studies were excluded after reading titles
and abstracts according to the eligibility criteria defined.
Then, full texts of the remaining studies were acquired.
After full text reading, articles not fulfilling the eligibility
criteria were excluded (Supplementary Table S1), and those
in accordance with the inclusion criteria were used for data
extraction (Supplementary Table S2). Any disagreements or
uncertainties during both steps were discussed with two other
review authors (U.B. and M.J.R.) until agreement was
achieved.

Risk of Bias Assessment (Definition and
Table for Assessment)
Risk of bias of the included in vitro studies was assessed using
the methods described by Vansant et al. (2018) and Samuel
et al. (2016). Methodological risk of bias was evaluated using
15 criteria and reporting risk of bias using 10 criteria
(Supplementary Table S3). Each criterion was scored “low
risk of bias” (“+”), “high risk of bias” (“−“), “incomplete or
unclear risk of bias” (“?”) or “not applicable” (“n.a.”) based on
the low risk of bias definitions given in Supplementary Table
S3 for both, reporting and methodological quality. Low risk
of bias (“LoB”) and if necessary high risk of bias (“HoB”) of
the different criteria were defined according to the
information provided in the aforementioned publications,
citations therein and the following additional sources:
“OHAT Risk of Bias Rating Tool for Human and Animal
Studies” and “Biophysical Journal’s Guidelines for the
Reproducibility in Biophysics Research” (details in
Supplementary Table S3). To simplify data entry during
the assessment, data sheets for both risk of bias assessments
were developed (Supplementary Table S3).

All included articles were scored by two authors (C.S. and
M.J.R.). Any disagreement was discussed internally until
consensus was achieved. The results of the risk of bias
assessment were recorded and summarized in predefined
tables (Supplementary Tables S4.1, S4.2).

Data Extraction
After final selection of relevant studies, the following
information on experimental design and outcome were
extracted and summarized: reference (author, year, journal);
cells used (age/gender of donors, tooth type, isolation method,
cell culture passages and cell density used in the experiments);
force applied (“dynamic”/”static” and “equibiaxial”/”uniaxial”
force application; its duration, frequency of exposure,
magnitude, and the device used); genes analyzed (official
gene symbol if applicable) with reference to force
application and the methods applied to measure their
expression. “Gene or analyte investigated”, “Cells used” and
the details on the “Force apparatus” were extracted using the
original phrases from the studies and recorded in
Supplementary Table S2. In addition, gene expression
patterns including peak expression and the reported units
were recorded; fold changes and ratios were calculated, if
applicable.

Information Related to Genes and Proteins
Specificity of primers used in PCR reactions was verified with
Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-
blast/). All genes were reported using their official gene
symbol according to the HUGO Gene Nomenclature
Committee (HGNC; URL: https://www.genenames.org). For
protein data, antibody or ELISA specificity was verified using
information provided within the studies and the information
given by the suppliers. If possible, official gene symbols according
to HGNC were applied. If antibody specificity was not sufficient,
e.g. no discrimination between isoforms or gene variants,
antibody targets were recorded according to the manufacturer
given in that publication.

The expression patterns of genes and/or proteins were
described using specific terms (Figure 2) and numerical data
describing specific maxima and minima (stars in Figure 2) was
collected. Data was directly acquired from the publications itself
or extracted from graphs using Engauge Digitizer Software
version 10.12 (URL: https://markummitchell.github.io/engauge-
digitizer). To allow comparisons between gene or protein
expression data from different sources, ratios (experimental
condition vs control) or fold changes were calculated if not
given by the authors. Gene expression was reported as “fold
change” (FC), if its calculation was done either according to Livak
and Schmittgen (2001) or similar sources or was clearly described
as “2−ΔΔCt” or “ΔΔCt”. Gene expression was designated as “ratio”,
if the control was “defined as 1”, otherwise it was described as
“relative change” (“rel”). Results reported from more than one
donor were listed separately.

Information Related to Force
The frequency of force exposure used in all dynamic tension
studies was reported as “Hz” if possible. If frequency was reported
in other units, conversion was done according to the information
given. Any inconsistencies were resolved by discussion between
the authors. Information about the force apparatuses was either
directly collected from the publications, by searching the
manufacturer information or Google® patent search (URL:
https://patents.google.com) if applicable. Equibiaxial and
uniaxial tension (Figure 1) were distinguished depending on
the direction of the force applied in relation to the hPDLCs using
information contained in the publications and citation chaining.
The information was defined “unclear” or “incomplete”, if
insufficient information was given that was even not resolved
after communication with the manufacturer.

Summary Statistics
A summary of statistics on the force apparatuses was prepared
from a unified list based on “apparatus”, followed by sorting
according to the force type (i.e. “dynamic”/“static” and
“equibiaxial”/“uniaxial”). Afterwards, publications using the
same type of apparatus were combined into the same category
for further analysis. A summary statistic on the different force
parameters was compiled from a unified list of publications based
on tension type and tension frequency. From each publication
reporting dynamic tension application, maximum duration of
force exposure and mainly adopted magnitude were summarized
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for the same frequency. Studies utilizing static tension were
classified first by magnitude followed by maximum force
duration. Replicates derived from the same study were
removed and all analytes were ranked according to abundance.

Gene-List and Protein-Protein Interaction Network
Analysis
Based on the complete lists of examined genes, differential
expressed gene (DEG) lists were compiled according to the
following criteria: the gene was identified unequivocally and
changes in gene expression due to force application were
reported using the terms defined in Figure 2. Depending on
force application, the genes were assigned either to the “dynamic”
or to the “static” gene list. Both DEG lists were used to generate
protein-protein-interaction (PPI) networks and for gene list
enrichment (Figure 3B).

To predict potential interactions between theDEGs at the protein
level, PPI networks were constructed querying the “Search Tool for
the Retrieval of Interacting Genes/Proteins” database (STRING-DB)
(v11.0; URL: https://string-db.org) (Szklarczyk et al., 2019) using the
stringApp plugin version 1.5.1 (Doncheva et al., 2019) with
Cytoscape version 3.8.0 (Shannon et al., 2003; Su et al., 2014). A
minimum required combined score of 0.7 was applied, i.e. only high
confidence interactions were included in the predicted networks.
Cluster analysis and cluster visualization of both “dynamic” and
“static” PPI networks was done applying the “Molecular Complex
Detection” (MCODE) algorithm (Bader and Hogue, 2003) as
implemented in the clusterMaker2 app version 1.3.1 (Morris
et al., 2011) with default settings and “fluff” activated. Hub
genes, i.e. essential genes in a network, were identified with
cytoHubba version 0.1 (Chin et al., 2014) using default settings.

This plugin applies eleven different local and global topological
methods to the nodes of a given network. For each node, a total score
was calculated based on these eleven measures. A node was
considered as a hub node, if its total score was at least twofold
higher than the mean total score of all nodes of that particular
network. Networks were visualized with Cytoscape version 3.8.0.

StringApp was also applied for gene list enrichment using the
“GeneOntology/Biological Process” database (Ashburner et al.,
2000). The “SuperPaths” database was analyzed online with
“GeneAnalytics” (version 4.14 Build 1; URL: https://ga.
genecards.org) (Ben-Ari Fuchs et al., 2016). To increase
specificity, results from both databases were filtered
according to the proportion of query genes in relation to the
number of background genes of the specific database entry and
a cut-off of ≥0.05 (i.e. 5 %) was applied. In all cases the ten most
significant terms or pathways were reported. Individual gene
set enrichment was applied to 1) the two complete networks
and 2) each identified cluster, using “GeneAnalytics” and
stringApp.

RESULTS

Study Selection
The whole process of study selection was summarized in the
PRISMA flow diagram (Figure 3A) (Moher et al., 2009). The
applied search strategy identified 5,331 publications. No
additional articles were identified through reference chaining
or hand-search of specific journals. After removing 11
duplicates, 5,320 studies were left, of which 5,138
publications were excluded after title and abstract reading

FIGURE 2 | Terms used to describe the general expression patterns in hPDLCs after tension application for each gene, protein or metabolite included herein.
Numerical data describing specific maxima and minima (*) was collected and reported in Supplementary Tables S2, S7. Expression patterns labeled with a double
cross (#) were mapped on the protein-protein interaction networks constructed from gene lists shown in Figure 5.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 6950535

Sun et al. Effect of Tension on hPDLC

https://string-db.org
https://ga.genecards.org
https://ga.genecards.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


according to the defined criteria. Afterwards, 182 publications
were assessed by full-text reading, of which 45 were excluded
according to the exclusion criteria defined previously
(Figure 3A; Supplementary Table S1).

Risk of Bias
Methodological quality was assessed using 15 criteria
(Supplementary Table S3). The criteria “Randomization”,
“Blinding of researchers”, and “Blinding of outcome
assessors” were not applicable to in vitro studies. The results
of the other risk of bias criteria showed a large variability.
“Sample size determination” and “Statistical analysis” were
mostly assessed as “high risk of bias” (“HoB”). “Accounting
for confounding variables”, “Optimal time window used” and
“Test organism/system” were found to have a high level of
“incomplete or unclear risk of bias”. With reference to the
remaining criteria, most of the studies were assessed as “low
risk of bias” (“LoB”) (Figure 4; details in Supplementary
Table S4.1).

The reporting quality of the publications was higher in
comparison to the methodological quality, since more studies
were classified as “LoB” (Figure 4, Supplementary Table S4.2).
Only the criterion “Justification for model” was found to have a
large percent of “Incomplete or unclear risk of bias” (Figure 4;
details in Supplementary Table S4.2).

Tension Characteristics
In 30 out of 137 qualified studies (∼22%) static tension was
applied, whereas 103 out of 137 included studies (∼75%) focused
on the effect of dynamic tension (Supplementary Table S5).
Direct comparison between static and dynamic tension was
conducted in three studies (∼2%) (Papadopoulou et al., 2017;
Wada et al., 2017; Memmert et al., 2020). One study did not
clearly define the specific force type applied (Supplementary
Table S5).

Devices for Tension Application
Regarding the type of apparatus, all included studies were
identified as either equibiaxial or uniaxial (Figure 1). Various
apparatuses were used in these studies either for equibiaxial or
uniaxial tension (Table 2; Tables S5.1 and S5.2 in Supplementary
Table S5).

Dynamic equibiaxial tension: Fifty three studies applied
dynamic equibiaxial tension using the Flexcell Strain Unit
(Flexcell® International Corporation, Burlington, NC,
United States) and its revisions (FX-2000, FX-3000, FX-4000,
FX-5000) (Banes et al., 1985). This system employs tension to
cells seeded on elastic silicone membranes fixed in special 6-well
plates (Bioflex® plates; Flexcell® International Corporation) by
application of a vacuum below the flexible membrane. In nine
studies, Bioflex® plates were used together with individually

FIGURE 3 | Workflows applied in this systematic review. (A) PRISMA flow diagram for the whole process of study selection according to Moher et al. (2009). (B)
Gene set enrichment and network analysis of gene lists derived from the review process. Gene lists were compiled, listing the examined genes, proteins or metabolites
studied either after dynamic or static tension application (Table 3, Supplementary Table S2). From these, differential expressed gene (DEG) lists were generated
according to the specified criteria (Table 4). For each of these two DEG lists (dynamic DEG, static DEG) protein-protein interaction (PPI) networks were constructed
using STRING-DB (Szklarczyk et al., 2019) (Figures 5A,B) and pathway analysis was conducted quering “GeneOntology/Biologcal Process” (Ashburner et al., 2000)
and GeneAnalytics’ “SuperPath” databases (Ben-Ari Fuchs et al., 2016) (Supplementary Table S8). Subnetworks were identified in both PPI networks using MCODE
(Bader and Hogue, 2003) (Table 4; Figures 5C,D) and essential nodes, so called “hub genes”, using cytoHubba (Chin et al., 2014) (Table 5; Figure 5).
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constructed devices, including the “CESTRA” (Deschner et al.,
2007) and the “Cell Extender” devices (Wada et al., 2017)
(Table 2; Supplementary Table S5.1 in Supplementary Table
S5). Ten studies used different non-Bioflex®-plate based silicone
or elastic membrane-based apparatuses including the “Cell Strain
Unit (CSU)” (Hao et al., 2009), which was used in eight studies.

Dynamic uniaxial tension: Application of dynamic uniaxial
tension using the “STB-140” system (STREX® Inc., Osaka, Japan)
was described in ten publications. The Flexcell Strain Unit® in
combination with Uniflex® culture plates (Flexcell® International
Corporation) was adopted in eight studies. Non Bioflex®-plate
based silicone and other elastic membrane-based apparatus were

adopted in ten studies. Four-point bending systems were
employed in six studies (Table 2; Supplementary Table S5.2
in Supplementary Table S5).

Static tension: To apply static equibiaxial tension, the Flexcell
Strain Unit and its revisions (FX-3000™, FX-4000™, FX-5000™)
were adopted in eleven studies. Apparatuses based on the
Petriperm™ dish were used in ten studies, in which the dish
was deformed by the weight placed onto a spheroidal template.
Bioflex®-based devices were used in seven studies, Lumox®
culture dishes were adopted in two and the “tension
incubator” in one study (Table 2; Supplementary Table S5.3
in Supplementary Table S5). Static uniaxial tension was applied

FIGURE 4 | Summary of the risk of bias assessments for methodological (upper panel) and reporting quality risk of bias (lower panel). The tabulated data on the right
reported frequency and percentage [n(%)] for each item according to its scoring: “LoB” – low risk of bias, “Unclear” – unclear or incomplete, “HoB” – high risk of bias,
“N.a.” – not applicable.

TABLE 2 | Summary statistics according to tension type and apparatus. Since some publications applied two tension types, the total number given here is larger (n � 140)
than the number of studies identified (n � 137).

Tension type (n) Tension applied with (n) Fraction of Tension type
(%)

Dynamic equibiaxial (72) Flexcell Strain Unit
®
and its revisions (53) 73.6

Bioflex
®
-plate based apparatus (9) 12.5

Other silicone (not Bioflex
®
)-plate based or elastic membrane-based apparatuses (10) 13.9

Dynamic uniaxial (34) STREX
®
STB-140 (10) 29.4

Silicone (not Uniflex
®
)-plate based and other elastic membrane-based apparatuses (10) 29.4

Flexcell Strain Unit
®
and its revisions using Uniflex

®
plates (8) 23.5

Four-point bending system (6) 17.6
Static equibiaxial (31) Flexcell Strain Unit

®
and its revised version (11) 35.5

Petriperm
®
dish (10) 32.2

Bioflex
®
based apparatus (7) 22.6

Lumox
®
dish (2) 6.5

Tension incubator (1) 3.2
Static uniaxial (2) Silicone dishes (1) 50.0

STREX
®
system (1) 50.0

Not given (1) Not given (1)
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in two studies (Table 2; Supplementary Table S5.4 in
Supplementary Table S5): one with the STREX system and
the other via a “silicone dishes based in-house designed device”
with a moving clamp (Papadopoulou et al., 2017).

In summary, dynamic tension was more frequently investigated
than static tension, and equibiaxial tension was more commonly
adopted than uniaxial tension, both with a ratio ∼3:1.

Force Magnitude and Duration in Equibiaxial and
Uniaxial Tension
Dynamic equibiaxial tension was applied using frequencies
between 0.005–1 Hz, with 0.1 Hz used in the majority of the
studies. The maximum magnitude most frequently adopted
varied between 1–24% of which 10 and 12% were more
commonly applied. The mainly adopted duration of force
exposure varied from 1 h to 6 days, using 48 and 72 h in the
majority of studies (Supplementary Table S5.5).

For dynamic uniaxial tension frequencies between 0.005 –
1 Hz were used. The most frequently adopted frequency was
0.5 Hz. The magnitude varied between 0.2 and 33%, with
magnitudes of 10 and 12% being most frequently applied.
Force duration ranged from 1 h to 7 days and 48 h was the
most frequent one (Supplementary Table S5.6).

Static equibiaxial tension was applied with force magnitudes
varying between 0.28 and 35%, mimicking physiological
or pathological mechanical force. The most frequent
magnitude was 2.5%. Force duration varied between 0.5 h
and 15 days, whereby 12 h was the most commonly used one
(Supplementary Table S5.7).

For static uniaxial tension, magnitudes of 5%, 8 and 10% were
applied for a maximum of 12, 3, and 12 h, respectively
(Supplementary Table S5.8).

Genes, Proteins and Metabolites Analyzed
Relevant data on 205 genes, proteins or metabolites in relation
to dynamic tension application to hPDLCs was extracted
from 104 publications (Table 3). Static tension was applied
in 33 publications and expression profiles of 115 different
genes, proteins or metabolites related to force application were
determined (Table 3). Genes or proteins that were not clearly
assigned to a specific gene symbol due to ambiguities in the
reported PCR primers or antibodies used in western blot or
ELISA procedures were also included (e.g. “COL1A1/
COL1A2” or “MAPK3/MAPK1”).

The most commonly investigated 10 genes or metabolites in
these studies were (in descending order): runt-related
transcription factor 2 (RUNX2), alkaline phosphatase (ALPP;
also known as ALP), bone gamma-carboxy glutamic acid-
containing protein (BGLAP; also known as osteocalcin),
interleukin 1β (IL1B), prostaglandin-endoperoxide synthase 2
(PTGS2; also known as COX2), tumor necrosis factor-alpha
receptor superfamily member 11B (TNFRSF11B; also known as
osteoprotegerin, OPG), TNF superfamily member 11 (TNFSF11;
also known as RANKL), collagen Iα1 (COL1A1), prostaglandin E2
(PGE2) and Osterix (SP7; identical with OSX) (Supplementary
Table S6). Their expression profiles and the corresponding force-
related information were summarized in Supplementary
Table S7.

Gene List and Protein-Protein Interaction
Network Analysis
Gene list analysis was done as described (Figure 3B). The gene list
compiled from studies on dynamic forces contained 206 genes,
proteins or analytes, of which 147 (∼71.4%) were identified as

TABLE 3 |Genes, proteins and metabolites analyzed in the included studies. Differential expressed genes (DEGs) used for the subsequent gene list enrichment analysis are
given in bold.

Dynamic tension Static tension

ACE, ACTA2, ACTB, ACVR2B, ACY1, ADRB2, AGT, AGTR1, AGTR2, AKT1,
ALPP, AMDHD2, ARHGDIA, ATF1, ATF4, ATP, BCL2, BGLAP, BGN, BMP2,
BMP4, BMP6, BMP7, BMPR1A, BMPR1B, BMPR2, CASP1, CASP3, CASP3/
CASP7, CASP5, CASP7, CASP8, CASP9, CCDC88A, CCL2, CCL20, CCL3,
CCL5, CCN1, CCN2, CCND1, CCR5, CDC42EP2, CFL1, COL12A1, COL1A1,
COL1A1/COL1A2, COL3A1, COL4A1, COL5A1, CREB1, CSF1, CTNNB1,
CXCL8, BHLHE40, DEFB1, DEFB103B, DEFB4A, DIAPH1, DKK1, DVL2, EGFR,
EIF2AK3, ELN, FBLN5, FBN1, FBN2, FGF2, FN1, FOS, FST,GATA4,GDF2,GDF5,
GJA1, GLI2, GOSR1, GRIA3, GRIN1, GRIN2C, GRIN2D, GRIN3A, GRIN3B,
GRM2, GRM3, GRM4, GRM5, GRM6, GSDMD, Glutamate, HACD1, HIF1A,
HMOX1, HOMER1, HSPA5, IBSP, IER3, IGF1, IL10, IL11, IL12A, IL18, IL1B,
IL1RN, IL6, IL6R, ITGA1, ITGA3, ITGAV, JUN, KLF10, LATS1, LEF1, LIMD1,
LTBP2, MAPK14, MAPK3/MAPK1, MAPK7, MAPK8, MAPK8/MAPK9/MAPK10,
MCAM, MEF2C, MGP, MMP1, MMP14, MMP2, MMP3, MMP8, MSX1, MSX2,
MYH7,MYL2,MYL7,NAMPT, NFKB1, NFKBIB, NKX2-5,NLRP1,NLRP3,NOG,
NOS2, NOS3, NPPA, NPPB, Nitric oxide, P2RY1, PARP1, PFN1, PGE2, PLAT,
PLAT/PLAU, PLAU, POSTN, PTGER1, PTGER2, PTGER3, PTGER4, PTGS1,
PTGS2, PYCARD, REN, RHOA, ROCK1, ROCK1/ROCK2, RSPO2, RUNX2,
RXFP1, RXFP2, SATB2, SERPINE1, SERPINF1, SIRT1, SLC17A7, SMAD7, SP7,
SPARC, SPP1, SPRY2, SQSTM1, STMN1, TAZ, TEAD1, TEAD2, TGFB1, TGFBI,
TGFBR1, TGFBR2, TIMP1, TIMP2, TLR2, TLR4, TNF, TNFRSF11B, TNFSF11,
TNNT2, TP53BP2, TPM1, UNC50, VEGFA, WASL, WNT3A, WTIP, XBP1, YAP1

ALPP, ATG10, ATG4C, ATG7, BAD, BCL2, BGLAP, BID, cAMP, CCNA1/CCNA2,
CCND1, CCNE1, CDK2, CDK4, CDKN1A, CDKN1B, COL1A1, COL1A1/COL1A2,
CRADD, CTSB, CTSL, DAPK1, EFNB2, EPHB4, FAS, FOS, GDF15, HMGB1,
IGF1, IGF1R, IGF2, IGFBP1, IGFBP3, IGFBP5, IL1B, IL1B/IL1A, IL6, IRS1, ITGA1,
ITGA2, ITGA3, ITGA4, ITGA5, ITGA6, ITGAV, ITGB1, ITGB3, ITGB4, JUN,
MAP1LC3A, MAP4, MAPK14, MAPK3/MAPK1, MAPK8, MAPK8/MAPK9/MAPK10,
MKI67,MMP1,MMP12, MMP14,MMP2, MMP8, MMP9, MYO1C,NFKB1,NOS2,
PCNA, PGE2, PIK3CG, PLAT, PLAT/PLAU, PLAU, PLXNA1, PLXNB1, PLXNC1,
PTGS2, PTK2, RAB17, RAB3A, RAB3B, RAB6A, RHOA, RPS15,RUNX2, SEMA3A,
SEMA3C, SEMA3D, SEMA3E, SEMA4A, SEMA4C, SEMA4D, SEMA4F, SEMA5A,
SEMA5B, SEMA6B, SEMA6C, SEMA7A, SERPINE1, SLC2A1, SNCA, SPP1,
SQSTM1, TCEAL1, TIMP1, TIMP2, TIMP3, TLN1/TLN2, TNF, TNFRSF11B,
TNFSF11, TP53, TUBA1B, TUBA1C/TUBA3C/TUBA3D/TUBA4A, UVRAG, VIM,
YAP1
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differential expressed genes (DEG) as defined above. Of 115
entries from the gene list related to studies applying static
forces, 56 (∼48.7%) were identified as DEGs (Table 3).

Protein-protein interaction (PPI) networks were generated
using both gene lists with STRING-DB as described, and
network statistics for both networks were calculated
(Figure 5). For each gene node shown in Figure 5 the
number of studies (node size) and expression pattern(s) were
depicted: most of the genes included in the “dynamic” network

showed (Figure 5A) an upregulation in gene expression after
dynamic tension application. Some genes were downregulated
only (e.g. ATF1, BMPR2, TGFBR1 and TGFBR2) whereas a few
genetic loci were reported to be either up- or down regulated (e.g.
ALPP, COL1A1, CXCL8, IL1B, or IL10). In contrast, gene
expression of the majority of genes included in the “static”
PPI network was either up- or downregulated depending on
the particular study (Figure 5B). Up- and downregulation was
reported for three genes (IL6, IGF, TNFSF11) by different studies.

FIGURE 5 | Dynamic (A, C) and static (B, C) protein-protein-interaction (PPI) networks generated using differential expressed genes (DEG) lists (Table 4). (A, B)
PPI networks including basic network statistics for each were generated using STRING-DB. (C, D) show the same networks as in (A, B) but herein, the identified
subnetworks are emphasized and labeled (Table 4, Supplementary Table S8). The legend applies to all four networks: The node size corresponds to the number of
reports identified for the respective underlying gene. The edges’ line style depicts the number of STRING sources for the given connection. Additionally, hub genes
identified with cytoHubba (Chin et al., 2014) were colored red (Table 5). For the complete networks (A, B) and each of the subnetworks (C, D) pathway analysis was
applied (Supplementary Table S8).
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Interestingly, 12 genes from the “dynamic” DEG list (Figure 5A)
and 4 genes from the “static” DEG list (Figure 5B) were not
included in their particular PPI networks (Table 4) including
ALPP, which is one of the 10 most frequently investigated genes
or metabolites here.

Biological processes and signaling pathways involved in the
regulation of gene expression after dynamic and static tension
application on hPDLCs were analyzed querying the “Biological
Process” subsection of GeneOntology (GO) and GeneAnalytics’
SuperPathway database. The top 10 enriched terms from the
“dynamic” and “static” DEG lists were ranked according to
log10(FDR) for GO or the SuperPathway’s score, respectively.
Only GO terms containing at least 5% of the genes from the
particular DEG list (ratio ≥0.05) were considered
(Supplementary Table S8).

Dynamic DEG list. The most significant GO terms describing
biological processes were related to “responses to endogenous

stimuli” (ratio: 0.05/log10(FDR) � 36.16; 0.05/30.14), the action
of growth factors (0.09/30.14; 0.09/28.91), ossification (0.15/
29.10) or differentiation (0.06/27.36) and motility/movement
(0.06/27.80; 0.06/27.77; 0.06/27.54) (Supplementary Table
S8.1). SuperPathways analysis revealed high scores of the
more general ERK (ratio: 0.05/score: 115.97), Akt (0.06/96.02),
and PAK (0.06/95.94) signaling pathways (Supplementary Table
S8.2). Lower scores but higher ratios were attributed to
“Interleukin-4 and 13 signaling” (0.18/70.16) and the “Hippo
signaling pathway” (0.14/66.29). Nevertheless, “Lung Fibrosis”
SuperPathway (0.27/70.05) was also part of the “top 10 list” of
enriched terms.

Static DEG list. The most significant GO terms describing
biological processes driven by genes from the “static” DEG list
were ossification (0.06/10.08), responses to mechanical stimuli
(0.05/8.97; 0.10/8.40), regulation by glucocorticoids (0.06/8.91;
0.07/7.99), positive regulation of small molecule metabolic

TABLE 4 |Differential expressed genes (DEGs) from the “dynamic” and “static” gene lists and their affiliation to the “dynamic” and “static” protein-protein interaction networks
and one of the MCODE clusters. The corresponding networks and clusters were depicted in Figure 5.

Gene list Genes in network MCODE clusters

Cluster
number

Number of genes (n) and genes in cluster

“Dynamic“ Genes in the “dynamic” PPI network #1 (22) AGT, CCL3, CCNA2, CCR5, DEFB103B, GRM2, GRM3, GRM4,
GRM5, GRM6, HMOX1, IER3, IGF1, IL10, IL6, JUN, P2RY1, REN,
TLR2, TLR4, TNF, TNFSF11

ACE, ACTA2, ADRB2, AGT, AGTR1, ATF1, ATF4, BCL2, BGLAP,
BGN, BMP2, BMP4, BMP6, BMP7, BMPR1A, BMPR2, CASP3,
CASP5, CCL2, CCL20, CCL3, CCL5, CCNA2, CCR5, COL12A1,
COL1A1, COL3A1, COL4A1, COL5A1, CREB1, CTGF, CXCL8,
DEFB103B, DEFB4A, DKK1, DVL2, EGFR, FGF2, FOS, FST,
GATA4, GDF2, GDF5, GJA1, GLI2, GRIA3, GRIN1, GRIN2C,
GRIN2D, GRIN3A, GRIN3B, GRM2, GRM3, GRM4, GRM5, GRM6,
GSDMD, HIF1A, HMOX1, HOMER1, HSPA5, IBSP, IER3, IGF1,
IL10, IL11, IL12A, IL1B, IL1RN, IL6, IL6R, ITGA1, ITGA3, JUN,
LATS1, LIMD1, MCAM, MEF2C, MGP, MMP1, MMP14, MMP2,
MMP3, MSX1, MSX2, MYH7, MYL2, MYL7, NAMPT, NKX2-5,
NLRP1, NLRP3, NOG, NPPA, NPPB, P2RY1, PLAT, POSTN,
PTGER2, PTGER4, PTGS1, PTGS2, PYCARD, REN, RHOA,
ROCK1, RUNX2, RXFP1, SATB2, SIRT1, SLC17A7, SMAD7, SP7,
SPP1, SPRY2, SQSTM1, TEAD1, TEAD2, TGFB1, TGFBR1,
TGFBR2, TIMP1, TIMP2, TLR2, TLR4, TNF, TNFRSF11B,
TNFSF11, TNNT2, TP53BP2, TPM1, VEGFA, WTIP, XBP1, YAP1

#2 (61) ACE, ADRB2, AGTR1, ATF1, BMP2, BMP4, BMP6, BMP7,
BMPR1A, BMPR2, CASP3, CCL2, CCL20, CCL5, CREB1, CTGF,
CXCL8, DEFB4A, DKK1, EGFR, FGF2, FOS, FST, GATA4, GDF5,
GJA1, GLI2, HIF1A, IL11, IL12A, IL1B, IL1RN, IL6R, MCAM,
MEF2C, MMP1, MMP14, MMP2, MMP3, MSX1, MYL2, NAMPT,
NKX2-5, NOG, NPPA, PLAT, PTGER2, PTGER4, PTGS1, PTGS2,
ROCK1, SPRY2, SQSTM1, TGFB1, TGFBR1, TGFBR2, TIMP1,
TIMP2, TNNT2, VEGFA, XBP1

Genes outside the “dynamic” PPI network #3 (7) DVL2, LATS1, LIMD1, TEAD1, TEAD2, WTIP, YAP1
ACY1, ALPP, AMDHD2, BHLHE40, CDC42EPS, FBLN5, GOSR1,

KLF10, PTPLA, RSPO2, TAZ, UNC50
#4 (14) ATF4, BGLAP, COL1A1, GDF2, IBSP, MGP, MSX2, RUNX2,

SATB2, SIRT1, SMAD7, SP7, SPP1, TNFRSF11B
#5 (6) BCL2, CASP5, GSDMD, NLRP1, NLRP3, PYCARD
#6 (12) ACTA2, BGN, COL12A1, COL3A1, COL4A1, COL5A1, ITGA1,

ITGA3, MYL7, POSTN, RHOA, TPM1
#7 (7) GRIA3, GRIN1, GRIN2C, GRIN2D, GRIN3A, GRIN3B, SLC17A7

“Static” Genes in the “static” PPI network #1 (18) BCL2, BID, CCND1, CRADD, DAPK1, FAS, FOS, IGFBP1, IGFBP3,
IGFBP5, ITGA5, ITGB1, JUN, PCNA, PTGS2, SPP1, TNF, TP53

ATG10, ATG4C, ATG7, BAD, BCL2, BGLAP, BID, CCND1,
COL1A1, CRADD, DAPK1, EFNB2, EPHB4, FAS, FOS, GDF15,
IGF1, IGF1R, IGF2, IGFBP1, IGFBP3, IGFBP5, IL1B, IL6, IRS1,
ITGA5, ITGA6, ITGB1, JUN, MMP1, MMP12, MMP2, NFKB1,
NOS2, PCNA, PLXNA1, PLXNC1, PTGS2, RUNX2, SEMA3D,
SEMA5B, SEMA7A, SLC2A1, SNCA, SPP1, SQSTM1, TIMP1,

TIMP2, TNF, TNFRSF11B, TNFSF11, TP53, UVRAG

#2 (16) EFNB2, EPHB4, GDF15, IGF1, IL1B, IL6, MMP1, MMP12, MMP2,
NFKB1, NOS2, SLC2A1, SQSTM1, TIMP1, TIMP2, TNFSF11

#3 (4) BGLAP, COL1A1, RUNX2, TNFRSF11B
#4 (4) ATG10, ATG4C, ATG7, UVRAG

Genes outside the “static” PPI network #5 (3) IGF1R, IGF2, IRS1
ALPP, CTSB, CTSL, PLAT #6 (5) PLXNA1, PLXNC1, SEMA3D, SEMA5B, SEMA7A
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TABLE 5 | Top hub genes identified in both STRING networks derived from the “dynamic” (n � 147) and “static” (n � 57) tension DEG lists. Different score measures were calculated by cytoHubba (Chin et al., 2014). The total
score cut-off was set to ≥ 2*mean total score of each network being 361511.0 for the “dynamic” network and 1209.0 for the “static” network. In both lists the hub genes were sorted in descending order according to the
total score. These hub genes were colored red in Figure 5.

Gene
list

Gene MCODE
cluster

#

Local-based methods Global-based methods Total
score

(SUMscore)
MCC DMNC MNC Degree EPC BottleNeck EcCentricity Closeness Radiality Betweenness Stress

Dynamic IL6 1 4949248 0.44127 43 43 55.7020 5 0.22959 84.50000 5.67469 2127.04962 18,402 4970014.6
CXCL8 2 4946706 0.54262 33 33 54.6030 1 0.22959 76.00000 5.47594 1435.65143 12,426 4960771.5
IL1B 2 4880486 0.43410 36 36 54.2840 8 0.22959 77.91667 5.48964 1563.68358 12,042 4894310.0
TNF 1 4859699 0.53877 29 30 53.6020 7 0.22959 74.83333 5.44852 757.28180 5478 4866134.9
CCL2 2 4704534 0.61776 25 25 52.0030 5 0.22959 71.41667 5.37313 192.83836 1884 4706795.5
IL10 1 4544888 0.61015 23 23 51.3110 2 0.22959 69.33333 5.31145 221.65300 2056 4547340.4
VEGFA 2 4450715 0.40116 43 44 55.6160 30 0.22959 85.33333 5.69525 2581.50569 18,952 4472512.8
HMOX1 1 4357032 0.72691 16 16 47.4180 1 0.22959 65.16667 5.22921 61.59565 766 4358011.4
JUN 1 4269668 0.63037 25 27 53.6160 3 0.22959 73.58333 5.44167 750.77011 5418 4276025.3
PTGS2 2 4228086 0.63871 21 21 51.0090 5 0.22959 68.91667 5.32516 421.56904 3358 4232038.7
TLR4 1 4198470 0.67581 18 18 48.3580 1 0.22959 67.25000 5.29089 124.59022 1334 4200087.4

Static IL6 2 6008 0.44392 22 22 25.7170 7 0.23246 35.08333 5.88293 263.47537 1206 7595.8
IGF1 2 6088 0.49129 20 20 25.6770 8 0.23246 33.91667 5.82928 174.76358 868 7244.9
TP53 1 2970 0.32783 21 23 25.2950 21 0.23246 36.16667 5.97233 914.98502 2848 6866.0
TNF 1 4527 0.46144 17 18 24.7640 8 0.23246 32.83333 5.79352 304.73126 1120 6058.8
MMP2 2 1598 0.54053 14 16 24.5630 10 0.23246 32.75000 5.86505 581.49581 2310 4593.4
JUN 1 3792 0.61467 12 12 23.5690 1 0.18596 28.90000 5.52530 22.03107 146 4043.8
FOS 1 3720 0.69834 10 10 23.1720 1 0.18596 27.90000 5.48954 6.50124 60 3864.9
IL1B 2 2246 0.48461 16 16 24.8150 1 0.23246 31.41667 5.70412 109.01102 574 3024.7
MMP1 2 2286 0.60003 12 12 23.9330 1 0.23246 29.58333 5.65047 31.57875 252 2654.6
SPP1 1 1134 0.49815 13 15 23.9390 4 0.23246 31.75000 5.79352 296.75685 1106 2631.0

Abbreviations: MCC, Maximal Clique Centrality; DMNC, Density of Maximum Neighborhood Component; MNC, Maximum Neighborhood Component; EPC, Edge Percolated Component.
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processes (0.07/8.21), and apoptotic signaling pathways
(0.09/7.88; 0.19/7.54) (Supplementary Table S8.3).
SuperPathways related to apoptosis (0.15/76.37) and
autophagy (0.07/62.14; 0.03/53.00) but also to ERK
signaling (0.02/62.14), cell adhesion/ECM remodeling
(0.20/61.73) and interleukin-4 and 13 signaling (0.11/
56.77) were significantly enriched (Supplementary Table
S8.4 in Supplementary Table S8).

To identify highly connected gene clusters within each
network, MCODE clustering was performed. Seven different
clusters were identified in the dynamic PPI network
(Figure 5C; Table 4) and six clusters in the static PPI network
(Figure 5D; Table 4). Cluster #7 of the “dynamic”
network consisted of seven genes, which were included in
this DEG list based on one study only (Fujihara et al., 2010)
(Figure 5C). This cluster was not further analyzed. All other
clusters were re-analyzed concerning GO/Biological Process
terms and SuperPathway enrichment (Supplementary
Table S8). The same ordering and ratio cut-off were
applied as above.

Generally, the identified clusters showed a higher ratio of
included genes than the whole network (Supplementary Table
S8) independent of the database used. For example, cluster #1
from the dynamic network was described significantly as
“adenylate cyclase-inhibiting G protein-coupled glutamate
receptor signaling pathway”-related (0.56/8.97). Cluster #3
from the same network was described significantly by the
“ionotropic glutamate receptor signaling pathway” (0.24/14.10),
but also by “excitatory chemical synaptic transmission” (0.38/
6.97), whereas cluster #4 was dominated by terms related to
bone mineralization and remodeling, e.g. “osteoblast
differentiation” (0.10/12.50) and development (0.22/6.80), or
“regulation of bone resorption” (0.08/4.09). In general, an
increase in specificity (i.e. higher ratio) was also observed for
SuperPathways enrichment (Supplementary Tables S8.2,S8.4
in Supplementary Table S8).

Essential nodes (i.e. hub genes) in both networks were
identified with cytoHubba. Within the network derived from
the dynamic DEG list, eleven hub genes were identified
(Table 5: IL6, CXCL8, IL1B, TNF, CCL2, IL10, VEGFA,
HMOX1, JUN, PTGS2, TLR4; red labeled nodes in Figures
5A,C). Altogether, ten hub genes were identified in the
network generated from the static DEG list (Table 5: IL6,
IGF1, TP53, TNF, MMP2, JUN, FOS, IL1B, MMP1, SPP1; red
labeled nodes in Figures 5B,D). In both networks, the hub
genes were either located in cluster #1 or #2 of the particular
network.

The expression of five of eleven hub genes (VEGFA, JUN, TNF,
IL6, HMOX1) included into the “dynamic” PPI network
was upregulated by dynamic tension forces. For the
remaining six hub genes both up- and downregulation of
gene expression was reported. For eight out of ten hub genes
(SPP1, JUN, TP53, TNF, FOS, IL1B, MMP1 and MMP2)
upregulated expression was observed after exposure to
static tension forces, and for the remaining two genetic
loci (IL6 and IGF1) both up- and downregulated
expression was reported.

DISCUSSION

This systematic review aimed to identify and analyze studies
applying tension forces to human periodontal ligament cells
(hPDLCs) and to delineate the impact of different force
parameters on the expression of relevant genes. Risk of bias
assessment was conducted by application of published criteria
using clear definitions. The commonly investigated genes,
proteins, and metabolites were summarized and analyzed by
gene enrichment and pathway analysis.

Commonly Used Force Apparatuses
To apply tension type of force on hPDLCs in vitro three different
major groups of apparatuses were identified here: 1)
commercially available systems. i.e. the Flexcell® Tension
System or the STREX® Cell Stretching System, 2) self-designed
apparatuses using commercially available components (e.g.
Bioflex® or Uniflex® plates, petriPERM® or Lumox® dishes)
as a central part of a stretching device, and 3) solely self-
constructed apparatuses. Irrespective of the particular design,
cells were grown on a flexible surface undergoing cyclic (or static)
equibiaxial or uniaxial stretching in all devices.

According to this review, the Flexcell® Tension System was the
most widely adopted apparatus for equibiaxial tension using
Bioflex®, and uniaxial tension using Uniflex® cell culture
plates. In various reports the mechanical characteristics of
these elastic membranes used to apply tension to adherent
cells have been studied and limitations of this method have
been reported. Specifically, several studies reported a
heterogeneous strain distribution within the surface used for
cell cultivation and a considerable interference of other types
of force (e.g. compression and shear stress) (Gilbert et al., 1994;
Vande Geest et al., 2004; Matheson et al., 2006). In the Flexcell®
Tension system using Bioflex® plates without a biaxial loading
post, equibiaxial strain was mostly focused in the center of the
membrane, whereas almost pure uniaxial strain was found at the
rigid rim of the well (Gilbert et al., 1994). We consider this setup
to be similar to several self-designed apparatuses using Bioflex®
plates. As such, we propose, that the heterogeneous strain
distribution might also apply to these setups. In contrast, in
Flexcell Tension systems using Bioflex® plates with a “biaxial
loading post” the constant biaxial strain region was located in the
membrane area on the post, whereas off-post large radial strain
was produced (Vande Geest et al., 2004). Application of uniaxial
strain with Flexcell’s Uniflex® culture plates using an uniaxial
loading post results in almost uniform strain distribution in the
membrane area on-post (Matheson et al., 2006). Irregular strain
distribution might occur, anyhow, comparing longitudinal and
transverse orientation together with a certain amount of
compressive strain (Matheson et al., 2006). As a consequence
of the heterogenous strain distribution, only some of the cells
receive the desired mechanical stimulation (Matsuda et al., 1998)
and thus gene expression reflects the average of all cells in the
examined area. Irrespective of the not entirely standardized strain
parameters, the tension systems identified herein have proven to
be efficient models to mimic the in vivo mechanical
microenvironment to investigate the related biological
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reactions on the cellular level. In 2017, the “BioFlex® Cell Seeder”
(Flexcell Inc.) was introduced to the market to be used in
combination with the BioFlex cell culture plates. Limiting cell
growth within a defined area providing uniform strain
distribution increases the reproducibility of cell seeding and
exposure against mechanical cues. However, none of the
included studies reported the application of this device.

The PDL comprises different types of collagen, including type
I (about 80%), type III (15%), type V, type VI, and type XII
collagen (Berkovitz et al., 2009, pp. 179–180). Most frequently
BioFlex plates pre-coated with collagen type I were used, but
pronectin coating was also reported (Jacobs et al., 2013). Other
silicone-based membranes were used together with coatings of
gelatin (Tantilertanant et al., 2019a; b) or collagen type I and/or
fibronectin (Konstantonis et al., 2014; Papadopoulou et al., 2019).
Further studies did not report any coating, particularly when
using PetriPerm or Lumox dishes. Diercke et al. (2011) applied a
combination of collagen type-I and fibronectin to coat the
PetriPerm dishes. Commonly coatings were applied to increase
the biocompatibility of the membrane surface.

Most recently, three-dimensional (3D) cell culture studies
have reached increasing significance since they allow for a
better simulation of the cells’ extracellular matrix (ECM) and
in vivo microenvironment. Providing structural support and
signal transduction to the cells, ECM is involved in various
biological processes, including cell migration, proliferation,
differentiation and intercellular communication (Dieterle et al.,
2021). For simulation matrices made from collagen, polylactic-
co-glycolic acid (PLGA) and hydrophilically modified poly-L-
lactide (PLLA) are used in cytomechanics (Yang et al., 2015;
Janjic et al., 2018). Though 2D coating resembles the in vivo
situation more than tissue culture plastic alone, differences in
porosity, microarchitecture and local rigidity in comparison to
3D substrates effect cell migration (Doyle et al., 2015) and
mechanotransduction (Yang et al., 2015).

Interestingly, only two studies reported on the effects of
tension force applied to cells within 3D scaffolds (Von den
Hoff, 2003; Ku et al., 2009). The first one focused on the
assessment of tension force exerted to the substrate by the
cells (Von den Hoff, 2003). With only one qualified study (Ku
et al., 2009) a comparison between 2D and 3D cell culture setups
seemed not conclusive. Yang et al. (2015) emphasized that 3D cell
culture techniques are yet not standardized and suggested to
establish tissue specific scaffolds along with the identification of
appropriate cell densities. The insufficient knowledge on 3D
scaffolds might explain its infrequent use to study the effect of
tension force on hPDLCs.

Rationale for Force Parameters
Tension type of force was applied either statically or dynamically
on hPDLCs. As such, the selection of the relevant model
parameters (cell type, type of force and its duration,
magnitude and frequency) was mostly based on the purpose of
the specific study, being either the simulation of a clinical
situation (occlusal forces or OTM), or to investigate the force-
related expression of specific genes, group of genes or pathways.
Due to the general objectives of the studies analyzed herein, the

selection of cell type and type of force seems plausible. The
remaining parameters were selected according to: 1) in vivo
evidence from animal models simulating OTM or
measurement of bite force in human subjects (e.g. He et al.,
2004; Fujihara et al., 2010; Li et al., 2013; Li et al., 2014; Ren et al.,
2015; Tantilertanant et al., 2019a); 2) finite element analysis to
study the biomechanical behaviour of the PDL (e.g. Howard et al.,
1998; Kletsas et al., 2002; Konstantonis et al., 2014; Chen et al.,
2015); 3) in vitro studies defining an “optimal” window to study
the expression of specific genes or pathways (e.g. Basdra et al.,
1996; Hao et al., 2009; Huelter-Hassler et al., 2017; Hülter-Hassler
et al., 2017).

Force duration: Continuous exposure to a stretching force is
considered as an appropriate surrogate for in vivo forces applied
by fixed appliances during OTM (Ziegler et al., 2010; Steinberg
et al., 2011). As such, time intervals for application were chosen
reflecting different stages in OTM or other clinically relevant
conditions (Ziegler et al., 2010; Goto et al., 2011; Steinberg et al.,
2011). According to our results, the maximum force duration
varied between 0.5 h and 15 days. The most commonly used force
duration in dynamic tension experiments were either 48 h or 72
h, and static tension was most commonly applied for 12 h. Under
experimental in vitro conditions the maximum application time
is, in fact, limited by the feeding intervals of the cells and the
apparatus used. With static tension, cell proliferation should be
considered as an influencing factor – especially during long-term
force application. Cells undergoing cell division might transiently
loose contact to the stretched surface. After reattachment to the
already deformed surface they might not be further subjected to
stretching force.

Force magnitude: Similar to force duration, force magnitude is
a relevant experimental parameter for simulation of both,
dynamic and static tension forces. Based on the studies
considered herein, force magnitude selection was again mostly
related to the objective of the study: 1) expression of a specific
gene in response to tension force application allowing to define
the dynamic range along with the range of optimum forces (e.g.
Long et al., 2002; Agarwal et al., 2003), and 2) to simulate a
clinical situation (e.g. Long et al., 2002; Li et al., 2014). In most
studies, 10% dynamic tension was applied to mimic the
physiologic conditions of occlusal force or OTM (e.g. Fujihara
et al., 2010; Li et al., 2014; Ren et al., 2015). This force magnitude
was based on in vivo studies, which either focused on tissue
remodeling and tooth movement after exposure to different levels
of orthodontic force (King et al., 1991; Gonzales et al., 2008), or
studies on tooth mobility in response to different force levels
(Mühlemann, 1954; Mühlemann and Zander, 1954). Several
studies (Howard et al., 1998; Kletsas et al., 2002; Konstantonis
et al., 2014; Chen et al., 2015) took results from finite element
analysis into consideration to select the force magnitude best
corresponding with the real clinical situation (Andersen et al.,
1991; Natali et al., 2004; Dong-Xu et al., 2011).

Force frequency: To apply dynamic tension different
frequencies were adopted. Selection of appropriate force
frequencies mostly relied on two different rationales: 1)
experience from previous in vitro studies either using similar
setups or defining appropriate frequency ranges to study the
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expression of specific genes (Yamaguchi et al., 1994; Long et al.,
2002; Ma et al., 2015; e.g.; Ren et al., 2015; Memmert et al., 2020),
and 2) deduction from the real clinical situation, e.g. tooth contact
rates during sleep (He et al., 2004) or an average masticatory cycle
(Tantilertanant et al., 2019a). In this context various estimates of
contact rates were reported so far, e.g. contacts ranging from 17.2
to 104.3 contacts/h (Yamashita et al., 1993), a mean frequency of
masticatory cycle of ∼70 rpm (Pini et al., 2002), or 1.5–2 Hz
(Woda et al., 2006).

According to our review, the most commonly used frequency
was 0.1 Hz for dynamic equibiaxial tension and 0.5 Hz for
dynamic uniaxial tension. Although the real frequency of
tension applied on the PDL cells during OTM yet remains
unknown (Long et al., 2002; Padial-Molina et al., 2013; Wang
Y. et al., 2019), the clinical and technical evidence summarized in
this review will provide clues for design of related experiments.

Most Frequently Investigated Genes,
Proteins and Metabolites
To identify the most relevant mechanical responses during OTM,
we focused on the top 10 most frequently investigated genes,
proteins and metabolites: RUNX2, ALPP, BGLAP, IL1B, PTG2,
TNFRSF11B, TNFSF11, COL1A1, PGE2 and SP7 (Supplementary
Table S6). According to their functional contribution we grouped
these genes into three categories: genes related to osteogenesis
(RUNX2, SP7, ALPP, BGLAP, COL1A1), osteoclastogenesis
(TNFRSF11B, TNFSF11), and inflammation (IL1B, PTGS2,
PGE2).

Osteogenesis
RUNX2 regulation is an integral and central part in the
development and remodeling not only of osseous tissue but
also of the periodontal ligament (Ziros et al., 2008). PDL cells
are capable of differentiation into osteoblasts or cementoblasts in
response to mechanical stimulation (Ziros et al., 2002). RUNX2
upregulation was reported in 19/26 (73%) studies using either
RT-qPCR or both RT-qPCR and western blotting. Decrease,
temporary changes or other types of regulation were found in
the remaining studies (7/16, ∼27%). Although several studies
revealed partially contradictory results, it was well-supported that
RUNX2 expression increased within the first 12 h of tension
application.

Another essential transcription factor in the osteogenic
pathway acting downstream of RUNX2 is SP7 (also known as
Osterix), which belongs to the zinc finger-containing
transcription factor SP family (Tang et al., 2012; Li et al.,
2013; Li et al., 2015). Significant gene and/or protein
upregulation of SP7 in response to tension was reported in 9/
10 (90%) of the relevant studies, whereas only one study reported
downregulation of gene expression and temporary upregulation
of the corresponding protein (Li et al., 2013). The authors
concluded, that this difference might be due to complex
regulation mechanisms and modifications occurring during its
transcription and translation (Li et al., 2013).

Alkaline phosphatase (ALPP) also plays a crucial role in the
initiation of osteogenic differentiation and bone remodeling

(Chen et al., 2014). In all of the 24 relevant studies, ALPP
gene expression was determined using either semiquantitative
or quantitative PCR. ALPP protein was quantified in cell lysates
using western blots, ELISA or enzyme activity assays. Significant
upregulation in response to tension <12% was reported in 17/24
(71%) of the studies, mostly during the first 12 h of force
application.

As the most abundant non-collagenous bone-matrix protein,
bone gamma-carboxy glutamic acid-containing protein (BGLAP;
osteocalcin) is a late marker of osteoblast differentiation and
mineralization (Chen et al., 2014). Significant upregulation of
BGLAP in response to tension was reported in 16/18 (89%) of the
studies. In contrast, one study reported a slight decrease in
BGLAP gene expression and it was assumed that an enhanced
cell proliferation of young osteoblasts might be responsible
(Jacobs et al., 2013). Another study described a transient
upregulation of BGLAP following 3 h of exposure against
tension force (Qin and Hua, 2016).

The extracellular matrix (ECM) of the periodontal ligament
mainly consists of fibrillar collagens, among which type I collagen
accounts for ∼75% (Kaku and Yamauchi, 2014). The latter is
composed of alpha-1 (COL1A1) and alpha-2 (COL1A2) type I
collagen chains. COL1A1 is confirmed to be essential for bone
remodeling and osteoblastic differentiation in response to tension
during OTM (Birkedal-Hansen et al., 1977; Jacobs et al., 2013).
Significant upregulation of protein expression was found in 8/13
(62%) of related studies after exposure to ≤12% of tension.
Contradicting expression patterns have been reported, which
might be due to the heterogeneity of the PDL cells used,
digestion of COL1A1 by MMP1 (Nemoto et al., 2010), or the
inhibitory effect of IL1β and TNFα on COL1A1 gene expression
(Sun et al., 2017). Although inconsistencies were partially found,
upregulation of COL1A1 in response to tension was confirmed in
the majority of the studies considered here.

Osteoclastogenesis
Bone remodeling is primarily regulated by a closely interrelated
system of receptors and mediators including TNFSF11 (receptor
activator of nuclear factor kappa ligand; RANKL), its cellular
receptor, receptor activator of NF-kappaB (RANK), and
TNFRSF11B (osteoprotegerin, OPG) ultimately maintaining
the balance between osteogenesis and osteoclastogenesis
(Krishnan et al., 2015). As a decoy receptor for RANKL, OPG
suppresses the binding between RANKL and RANK and thus
inhibits osteoclastogenesis and bone resorption (Liao and Hua,
2013).

Upregulation of OPG gene expression and/or protein
synthesis was reported in 11/14 (79%) of the included studies.
Due to the heterogeneity of force parameters, the correlation
between gene expression, force duration and/or force magnitude
can only partly be defined. The regulation of RANKL expression
showed large variability in comparison to OPG: only 57% (8/14)
of the relevant studies reported an upregulation of both gene and
protein expression after force application, whereas the remaining
studies showed inconsistent expression patterns.

It is commonly accepted, that an increased RANKL/OPG ratio
favours osteoclastogenesis, meaning an upregulation of RANKL
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in parallel with a downregulation/lower induction of OPG
(Boyce and Xing, 2007). The RANKL/OPG ratio was reported
in three studies included into this review (Nogueira et al.,
2014b; Konstantonis et al., 2014; Jacobs et al., 2015). Two of
these studies identified a decreasing RANKL/OPG ratio
compatible with a more intensive bone formation after
exposure to minor tension forces (≤10%): a temporary
decrease of the RANKL/OPG ratio was found by Jacobs
et al. (2015) using RT-qPCR, whereas Liao and Hua (2013)
reported an increasing OPG/RANKL ratio for both, gene and
protein expression. Higher tension forces (20%) were reported
to induce an increased RANKL/OPG ratio at both gene and
protein levels indicating net bone resorption (Nogueira et al.,
2014b).

Inflammation
The response of the PDL to mechanical stress has been
characterized as an aseptic transitory inflammatory process,
which is regulated by various mediators, including cytokines
and chemokines (Lee et al., 2012). Interleukin 1β (IL1B) is an
upstream cytokine involved inmany inflammatory processes (Lee
et al., 2012) and in osteoclast formation, differentiation and
activation (Long et al., 2001). Upregulation was reported in
75% (12/16) of the relevant studies depending on the
particular duration and magnitude of force application. A
reduced expression or inconsistent expression patterns during
exposure to forces of various magnitudes and durations were
reported in the remaining 4/16 (25%) studies. These differences
have been mainly attributed to the particular magnitude of
tension: a lower magnitude attenuates the inflammatory
response, while a higher one elicits inflammation (Long et al.,
2001).

Prostaglandin-endoperoxide synthase 2 (PTGS2; also known
as COX2) is known as a key regulator enzyme of the eicosanoid
biosynthesis pathway and is thus also involved in prostaglandin
E2 (PGE2) synthesis (Nogueira et al., 2014b). Amongst others,
the activity of PTGS2 and the synthesis of PGE2 is particularly
amplified by pro-inflammatory stimuli including IL1B
(Nogueira et al., 2014b). PGE2 mediates bone resorption
under physiological and pathological conditions, and is
centrally involved in both, the response of periodontal tissue
to mechanical stress and the pathogenesis of periodontitis
(Shimizu et al., 1998). Herein, PTGS2 gene expression and
PGE2 synthesis were reported in 14 and 12 of the included
studies, respectively. Of these studies, 9 focused on PTGS2 and
PGE2, among which 8/9 studies (∼89%) found an increasing
transcription of the PTGS2 gene and/or PGE2 concentration
after mechanical stimulation correlating with force duration
and force magnitude. The data of the remaining studies revealed
mixed expression patterns of PTGS2 and PGE2 activity after
force exposure, which might be attributable to anti-
inflammatory effects of lower tension forces (Long et al.,
2002). Taken together PTGS2 expression and PGE2
production is induced by the exposure of cell cultures to
tensions forces and it is positively correlated to force
duration and force magnitude.

Reasons for Heterogeneity of Genes/Proteins/
Metabolites Regulation
Considering the list of the most commonly considered genes,
inconsistencies between gene and protein expression were found
in several reports. The observed non-proportional relationship
between gene expression and protein activity can be attributed to
the time lag between transcription and translation. This time lag
might be prolonged by post-transcriptional processing and
degradation of the transcripts, as well as post-translational
modifications like phosphorylations (e.g. Li et al., 2013; Ren
et al., 2015) or proteolytic cleavage (e.g. Wang et al., 2013;
Zhuang et al., 2019). The experimental heterogeneity identified
among different studies reporting force-related expression of the
same genes can be attributed to: 1) donor-related issues (e.g. age
of donor), 2) hPDLC isolation-related issues, 3) cell culture of
hPDLCs (e.g. cell culture medium, passage number), 4) reference
gene selection in (s)qPCR experiments, and 5) heterogeneity of
force parameters. In addition, the pooling of cells from different
donors (Stoddart et al., 2012), the seeding density of cells and thus
the amount of confluency and the different cell culture media
used might have caused heterogeneity of results.

All studies included herein isolated hPDLCs from teeth that
have been removed due to orthodontic reasons. When
considering all studies the age of donors ranged from 8 to
40 years, but within each study the donors had the same age.
This is even more important, since the phenotype of hPDLCs,
specifically the proliferation rate, osteogenic potential or in vitro
life span clearly depends on the age of the donor (Marchesan
et al., 2011). Moreover, force-related gene expression has been
reported to be significantly dependent on the age of the donor
(Mayahara et al., 2007). Accordingly, many studies reported
considerable functional inconsistencies between different cell
samples most likely caused by the biological heterogeneity
among different donors (Monnouchi et al., 2011; Yuda et al.,
2015; Papadopoulou et al., 2017; Arima et al., 2019). For
experimental simulation of the age, several studies focusing on
cellular senescence simply used different passage numbers,
supposing a correlation between the passage number and the
age. Thus, they designated passage numbers ranging from 3 to 7
as “young” and those ranging from 18 to 24 as “old” or “senescent”
(Shimizu et al., 1997; Abiko et al., 1998; Ohzeki et al., 1999; Miura
et al., 2000; Konstantonis et al., 2014). Generally, passage
numbers of hPDLCs used in the included studies ranged
between 2 and 15 (Supplementary Table S2). A maximum
passage number of 20 was reported in a study using limited
dilution cloning (Long et al., 2001). Differences in morphology
and biological activity between early and late passages were
reported, with the early passages resembling fibroblasts
characteristic of original tissue more closely (Marchesan et al.,
2011). Therefore, the use of early passage (passage ≤7) of primary
culture is recommended to maintain most of the original cell
phenotype (Marchesan et al., 2011).

Exclusively all studies analyzed herein applied tension force to
human periodontal ligament cells (hPDLCs). These cells were
commonly isolated from the middle third of the roots from teeth
removed due to mostly orthodontic reasons using two different
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cell isolation techniques, i.e. the “explant” (Brunette et al., 1976;
Somerman et al., 1988) or the “digestion” technique (Brunette
et al., 1976; Seo et al., 2004). Different terms and abbreviations
were used to identify these cells, including “hPDLF”, hPDL-
fibroblasts”, “hPDL fibroblasts”, “hPDLC”, “hPDLCs”, “hPDL
cells”, “hPDLSCs” and “hPDLS cells”. In order to identify and
include all relevant studies on this topic into this review, the
search strategy considered all terms and abbreviations identified.
In all cases, PDL tissue derived from premolars or third molars.
Both isolation techniques unequivocally result in a heterogeneous
mixture of different cell types (Yamaguchi et al., 2002; Marchesan
et al., 2011), though the “digestion” technique was shown to result
in a cell population enriched with mesenchymal stem cells (Seo
et al., 2004). Therefore, hPDLCs should be regarded as a
heterogeneous cell population consisting of cells originating
from different lineages. Most recently, in-vitro cell type
verification was increasingly used including several studies on
hPDLCs (Marchesan et al., 2011), that were also reported in some
of the included studies herein, i.e. flow cytometric analysis of cell
surface markers (Wang H. et al., 2019; Wu et al., 2019a),
osteogenic potential as reflected by ALP staining and/or Ca2+

deposition (Jacobs et al., 2018; Wang H. et al., 2019), cell type
specific gene expression pattern (Memmert et al., 2019), and
immunohistochemical staining of vimentin and cytokeratin (Sun
et al., 2017; Yu et al., 2018; Wang Y. et al., 2019).

Careful reference gene selection is essential to overcome
variations in RT-qPCR experiments and to enhance
comparability between various studies. In order to reduce the
risk of bias in qPCR experiments, the “Minimum Information for
Publication of Quantitative Real-Time PCR Experiments (MIQE)”
guidelines were established, with reference gene selection being
one of the most crucial steps in RT-qPCR establishment (Bustin
et al., 2009). As such, the MIQE guidelines cover some of the
reporting and methodology-related risk of bias criteria
considered in the present review, directly or indirectly related
to RT-qPCR. According to the present systematic review,
GAPDH or ACTB were the most frequently adopted reference
genes for qPCR experiments. The rationale for reference gene
selection was only rarely stated. Only recently, MIQE reporting
gained more attention (Janjic Rankovic et al., 2020). Several
studies evaluated reference gene selection specifically focusing
on hPDLCs in different areas of dentistry (Kirschneck et al., 2017;
Setiawan et al., 2019; Nazet et al., 2020).

The heterogeneity of force parameters and the limitations of
several experimental set-ups as discussed previously might also
have considerable impact on the consistency and comparability
between studies as included herein. Additionally, optimal force
duration, magnitude and frequency mainly depend on the
experimental design and the specific objectives of the study.

In Silico Analysis of Gene Lists
To gain additional insights into the biological processes and
pathways regulated by dynamic or static tension forces, gene-
set enrichment analysis and protein-protein interaction (PPI)
network construction were applied. Moreover, the most
influential genes and sub-networks were identified in both PPI
networks. The gene lists were created from the studies identified

in this systematic review. To increase specificity, only those genes
showing clear force-dependent expression were included.

Gene-set enrichment analysis: In general, gene-set enrichment
analysis is applied to expression data of individual genes obtained
by techniques like microarrays, next-generation sequencing or
proteomics (Hutchins, 2014; Mooney and Wilmot, 2015). As
such, the gene list contains ranking data (e.g. confidence scores,
fold changes or similar quantitative information) or is unranked
(Hung, 2013; Haw et al., 2020). Both types are then used for over-
representation and/or gene-set enrichment analysis to identify
relevant signaling and/or regulation pathways. To increase
specificity of the gene lists, gene expression data was restricted
to the criteria specified in Materials and Method. Additionally,
protein expression data was excluded due to the heterogeneity of
the methods used for quantification (quantification via western
blotting or ELISA vs enzyme activities) and the specificity of some
of the antibodies used in the immunoassays. The results of gene
enrichment and the pathway analysis showed a close relationship
with osteogenesis, osteoclastogenesis and apoptosis. These
findings were consistent with the reporting of the relevant
studies identified.

The search strategy used herein identified 18 reports applying
tension to hPDLCs with subsequent microarray or RNA-seq
analysis: 15 studies applied dynamic tension and 3 static
tension. All studies reported the most significantly up- and
down-regulated genes applying different cut-offs. A re-analysis
was not possible, since full (raw) data was publicly not available.
Nevertheless, data from these studies was included if qualified
reanalysis using (s)qPCR or protein expression was reported
additionally.

Protein-Protein Interaction Networks
Complementary to pathway enrichment analysis, protein-protein
interaction networks were generated for dynamic and static
tension gene sets using the “Search Tool for the Retrieval of
Interacting Genes/Proteins” database (STRING-DB), which
incorporates regularly updated data from different biological
pathway and scientific literature databases (Szklarczyk et al.,
2019). As such, STRING-DB not only contains data on
experimental derived PPI, but also functional annotation from
literature and computational predictions. For each individual PPI
pair a confidence score is given (range: 0–1), with higher scores
are “meant to express an approximate confidence, [. . .], of the
association being true, given all the available evidence” (Szklarczyk
et al., 2019; p. D608). Both networks were analyzed regarding
subclusters and most-influential nodes (i.e. hub genes) and 7
(dynamic) and 6 (static) subclusters were identified. Subsequent
pathway enrichment analysis showed a more specific enrichment
of GO/Biological Process terms and GeneAnalytics
SuperPathways.

We applied a confidence score cut-off ≥ 0.700, thus only high
confidence interactions were included. Interestingly, in both
networks several differentially expressed genes were not
integrated, including alkaline phosphatase (ALPP), being one
of the most frequently analyzed genes/proteins identified herein.
With the application of a confidence score cut-off of ≥0.400, thus
including medium confidence interactions, ALPP was integrated
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into dynamic network due to co-mentioning in PubMed abstracts
with bone sialoprotein 2 (IBSP; score: 0.407), osteopontin (SPP1;
0.438), bone morphogenetic protein 2 (BMP2; 0.434), RUNX2
(0.495), and osteocalcin (BGLAP; 0.627). GOSR1, CDC42EP2,
UNC50, ACY1, and AMDHD2 were still not integrated.
Application of the same threshold to the static network would
integrate all nodes including ALPP (ALPP – RUNX2: 0.495;
ALPP – BGLAP: 0.627; ALPP – SPP1: 0.438).

Interestingly, cluster #7 of the dynamic network consisted of
nodes, that were contributed to the gene list based on one study
(Fujihara et al., 2010). This finding demonstrates the limits of the
approach applied: both lists of differentially expressed genes were
compiled based on publications identified in our search strategy.
The more specific an individual study deals with a specific aspect,
the more specific it will be described by gene-list enrichment
analysis and network cluster analysis. As such, measures were
taken, to reduce this impact: 1) the genes included in our gene
lists were those only with reports on changes in gene expression
due to mechanical stimulation. 2) Additionally, cut-offs were
applied to GO, pathway enrichment and PPI network
construction, to exclude incorporation of data too general, that
means very general biological processes with thousands of genes
involved.

Meta-Analysis
Initially, a meta-analysis of the ten most frequently analyzed
genes or metabolites was intended to supplement the findings.
Unfortunately, due to heterogeneity of the experimental
conditions, including force parameters, cell culture, reference
gene selection in RT-qPCR experiments and incomplete
reporting especially concerning the statistical unit, this was not
further considered.

Several identified studies showed that not only gene and
protein expression is regulated by tension application, but also
post-translational modifications like proteolytic cleavage,
activation by GTP-binding, phosphorylations and protein
translocation between nucleus and cytoplasm, or cytoplasm
and extracellular space. Regulation of second messengers like
cAMP (Ngan et al., 1990) and metabolites like glutamate
(Fujihara et al., 2010), NOx (Pelaez et al., 2017) and ATP
(Tantilertanant et al., 2019a) are also effected by tension
application, as well as microRNA and long non-coding RNAs
(Chen et al., 2016). Epigenetic effects on gene expression also
should be taken into account, since several genes discussed herein
like COL1A1 (Kaku and Yamauchi, 2014) and RUNX2
(Montecino et al., 2015) are known to be under epigenetic
control (Francis et al., 2019).

Summary
In this systematic review we summarized relevant information
about tension application on hPDLCs in vitro and assessed
potential reporting and methodology-associated risk of bias
related to this issue. Due to the enormous variety of apparatus

in both, dynamic and static tension experiments, it is not possible
to universally define optimum force parameters including force
magnitude, duration and frequency. However, clinically relevant
parameters were identified, that can be used as a reference for
in vitro studies. Taken together, quantitative and qualitative
information on mechanical stimulated gene and protein
regulation and a comprehensive network analysis have
provided more clear insights into the mechanisms involved in
the OTM.

Future studies should focus on the comparison of dynamic
and static tension. There is also a need to elucidate the differences
between the application of equibiaxial and uniaxial tension in
more detail, to develop an optimal in vitro model for the
simulation of orthodontic force, and to provide more reliable
evidence for clinical treatment.
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GLOSSARY

ALP Alkaline phosphatase

BGLAP Bone gamma-carboxy glutamic acid-containing protein

BMPs Bone morphogenetic proteins

COL I Collagen type I

DEG Differential expressed gene

ECM Extracellular matrix

FC Fold change

FGFs Fibroblast growth factors

GO GeneOntology

HoB High risk of bias

hPDLFs Human periodontal ligament fibroblasts

IL6 Interleukin 6

IL8 Interleukin 8

KEGG Kyoto Encyclopedia of Genes and Genomes

LoB Low risk of bias

MAPK Mitogen-activated protein kinase

MCODE Molecular Complex Detection

MIQE Minimum Information for Publication of Quantitative Real-Time
PCR Experiments

n. a. Not applicable

OPG Osteoprotegerin

OTM Orthodontic tooth movement

PCR Polymerase chain reaction

PDL Periodontal ligament

PDLFs Periodontal ligament fibroblasts

PDLSCs Periodontal ligament stem cells

PGE2 Prostaglandin E2

PPI Protein-protein interaction

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-
Analyses

qPCR Quantitative polymerase chain reaction

RANK Receptor activator of NF-kappa B

RANKL Receptor activator of the nuclear factor kappa ligand

RT-qPCR Reverse transcriptase quantitative polymerase chain reaction

RT-sqPCR Reverse transcriptase semi-quantitative polymerase chain
reaction

RUNX2 Runt-related transcription factor 2 (identical with CBFA1)

STRING-DB “Search Tool for the Retrieval of Interacting Genes/
Proteins” database

TNFRSF11B Tumor necrosis factor-alpha receptor superfamily
member 11B

TNFSF11 TNF superfamily member 11

WB Western blotting
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Supplement 1: Reason for Exclusion 
 
After full text reading, articles not fulfilling the eligibility criteria were excluded. In line 
with the quantitative report given in the PRISMA workflow (Figure 3A) the reasoning is 
reported here with references. 
 

Table S1: Reasons for exclusion after full text reading 
 
Total number of excluded publications: n = 45 
 
Reason for exclusion (N) Study 
i. In vivo loading (2) Anastasi et al. (2008); Xu et al. (2017) 
ii. Force application in vitro on 

extracted teeth only (1) 
Atkinson and Ralph (1977) 

iii. Review (4) Pavasant and Yongchaitrakul (2011); Yamaguchi and Kasai 
(2005); Yang et al. (2015); Li et al. (2019a) 

iv. No quantitative information on 
gene or protein expression (7) 

Basdra (1997); Norton et al. (1995); Norton et al. (1990); 
Pender and McCulloch (1991); Kletsas et al. (1998); Zhong et 
al. (2008); Wan et al. (2019) 

v. Another type of force applied (10) Wongkhantee et al. (2008); Wolf et al. (2013), Saminathan et 
al. (2015); Marciniak et al. (2019); Liu et al. (2017); Kaku et 
al. (2016); Huang et al. (2013); Feng et al. (2017); Berendsen 
et al. (2009); Li et al. (2019b) 

vi. 3D model (2) Von den Hoff (2003), (Ku et al., 2009) 
vii. Results not related to hPDL (1) Rosselli-Murai et al. (2013) 
viii. No information on force type (1) Wang et al. (2016) 
ix. Co-culture (1) Xu et al. (2014) 
x. Only the apparatus (1) Andersen and Norton (1991) 
xi. Other cell types or not of human 

origin (14) 
Duarte et al. (1999); Bellows et al. (1982); Chen et al. (2013); 
Glogauer et al. (1995); Zhao et al. (2008); Takimoto et al. 
(2015); Pavlin and Gluhak-Heinrich (2001); Loesberg et al. 
(2005); Lew et al. (1999); Gadhari et al. (2013); Fu et al. 
(2016); Duncan et al. (1984); Andrade et al. (2009); Carano 
and Siciliani (1996) 

xii. Not directly related to mechanical 
force (conditioned medium) (1) 

Wang et al. (2019) 
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a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Supplement	2:	Extracted	data	from	included	studies	
 

Tabulated were the study citation and extracted information on the cells use (age/gender of donors, tooth type, isolation method, passages and cell density used in the experiments), force-related information (“dynamic”/”static” and “equibiaxial”/”uniaxial”; its duration, 
frequency of exposure, magnitude, and the device used), and the genes, proteins and/or metaoblites analyzed includng the official gene symbol, methods applied to measure their expression and data on the expression pattern (Figure 2) and the peak expression data. 
 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Abiko et al. (1998) COX1 PTGS1 HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial no change (sqPCR, GAPDH) only day 3 reported (no quantitative 
information is given) 

n.g. n.g. 

Abiko et al. (1998) COX2 PTGS2 HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial increase (sqPCR, GAPDH) only day 3 reported (no quantitative 
information is given) 

n.g. n.g. 

Abiko et al. (1998) ICE CASP1 HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial no change (sqPCR, GAPDH) only day 3 reported (no quantitative 
information is given) 

n.g. n.g. 

Abiko et al. (1998) IL-1β IL1B HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial n.g. n.g. “young cells” (P5-6): increase followed by plateau 
(ELISA) 
“old cells” (P18-20): increase (ELISA) 

“young cells” @ 3d…5d: 40.15 (ng/106 cellls ) / 2.1 (ratio-
calc) 
“old cells” @ 5d: 58.10 (ng/106 cellls ) / 2.8 (ratio-calc) 

Abiko et al. (1998) PA PLAT; PLAU HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial n.g. n.g. “young cells” (P5-6): increase (ELISA) 
“old cells” (P18-20): increase (ELISA) 

“young cells” @ 5d: 7.90 (ng/106 cellls ) / 2.1 (ratio-calc) 
“old cells” @ 5d: 11.75 (ng/106 cellls ) / 3.1 (ratio-calc) 

Abiko et al. (1998) PAI-1 SERPINE1 HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial no change (sqPCR, GAPDH) only day 3 reported (no quantitative 
information is given) 

n.g. n.g. 

Abiko et al. (1998) PGE2 PGE2 HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial n.a. n.a. “young cells” (P5-6): increase (ELISA) 
“old cells” (P18-20): increase (ELISA) 

“young cells” @ 5d: 8.20 (ng/106 cellls ) / 14.9 (ratio-calc) 
“old cells” @ 5d: 12.25 (ng/106 cellls ) / 18 (ratio-calc) 

Abiko et al. (1998) tPA PLAT HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial increase (sqPCR, GAPDH) only day 3 reported (no quantitative 
information is given) 

n.g. n.g. 

Abiko et al. (1998) uPA PLAU HPDLF (18/n.g., 19/n.g., 23/n.g., 
PM, exp, P5-6, P18-20, 5×103) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + Flexcell Corp. 
plate + vacuum (Yamaguchi et al, 1997) 

equibiaxial no change (sqPCR, GAPDH) only day 3 reported (no quantitative 
information is given) 

n.g. n.g. 

Agarwal et al. (2003) COX2 PTGS2 HPDLF (18/F, 18/F, 22/M, M, exp, 
P6-12, 80% confluence) 

dynamic 0.005Hz for 
4h 

3%, 6%, 8% Flexercell Strain Unit + collagen type I-
coated Bioflex II, six-well plates + 
vacuum 

equibiaxial increase (sqPCR; GAPDH) 6%: 7.6 (rel)†/ 2.2 (ratio-calc) n.g. n.g. 

Agarwal et al. (2003) COX2 PTGS2 HPDLF (18/F, 18/F, 22/M, M, exp, 
P6-12, 80% confluence) 

dynamic 0.005Hz for 
4h, 24h, 48h 

15% Flexercell Strain Unit + collagen type I-
coated Bioflex II, six-well plates + 
vacuum 

equibiaxial increase (sqPCR; GAPDH) 48h: 116.8 (rel)† / 31.8 (ratio-calc) n.g. n.g. 

Agarwal et al. (2003) I-kBb NFKBIB HPDLF (18/F, 18/F, 22/M, M, exp, 
P6-12, 80% confluence) 

dynamic 0.005Hz for 
30min 

6% Flexercell Strain Unit + collagen type I-
coated Bioflex II, six-well plates + 
vacuum 

equibiaxial n.g. n.g. n.g. n.g. 

Agarwal et al. (2003) I-kBb NFKBIB HPDLF (18/F, 18/F, 22/M, M, exp, 
P6-12, 80% confluence) 

dynamic 0.005Hz for 
30min 

15% Flexercell Strain Unit + collagen type I-
coated Bioflex II, six-well plates + 
vacuum 

equibiaxial n.g. n.g. n.g. n.g. 

Agarwal et al. (2003) NF-kB NFKB1 HPDLF (18/F, 18/F, 22/M, M, exp, 
P6-12, 80% confluence) 

dynamic 0.005Hz for 
30min, 
60min, 
90min, 
120min 

6% Flexercell Strain Unit + collagen type I-
coated Bioflex II, six-well plates + 
vacuum 

equibiaxial n.g. n.g. n.g. n.g. 

Agarwal et al. (2003) NF-kB NFKB1 HPDLF (18/F, 18/F, 22/M, M, exp, 
P6-12, 80% confluence) 

dynamic 0.005Hz for 
30min, 
60min, 
120min 

15% Flexercell Strain Unit + collagen type I-
coated Bioflex II, six-well plates + 
vacuum 

equibiaxial n.g. n.g. n.g. n.g. 

Agarwal et al. (2003) PGE2 PGE2 HPDLF (18/F, 18/F, 22/M, M, exp, 
P6-12, 80% confluence) 

dynamic 0.005Hz for 
24h 

1%, 2%, 3%, 4%, 
5%, 6%, 7%, 8%, 
10%, 12.5%, 
15%, 18% 

Flexercell Strain Unit + collagen type I-
coated Bioflex II, six-well plates + 
vacuum 

equibiaxial n.a. n.a. 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%: no expression 
(RIA) 
10%, 12.5%, 15%, 18%: increase (RIA) 

18%: 135 (ng/106 cells)* / control n.g. 

Agarwal et al. (2003) PGE2 PGE2 HPDLF (18/F, 18/F, 22/M, M, exp, 
P6-12, 80% confluence) 

dynamic 0.005Hz for 
12h, 24h, 48h 

15% Flexercell Strain Unit + collagen type I-
coated Bioflex II, six-well plates + 
vacuum 

equibiaxial n.a. n.a. increase followed by plateau (RIA) 24h…48h: 75.1† (?) / 15.6 (ratio-calc) 

Arima et al. (2019) DKK1 DKK1 HPDLC (3 donors: 22/F, 23/M, 25/F, 
M, exp, P4-P6, Subconfluence) 

dynamic 0.5Hz for 24h 10% STREX STB-140 + culture chambers 
(STREX Co., Osaka, Japan) coated 
with type-I collagen (Cell matrix I-P, 
Nitta Gelatin Inc., Osaka, Japan) + 
motor 

uniaxial donor 3D: increase (qPCR, β-actin) 
donor 3S: increase (qPCR, β-actin) 
donor 3U: increase (qPCR, β-actin) 

donor 3D: 11.7 (FC)* 
donor 3S: 1.7 (FC)* 
donor 3U: 1.6 (FC)* 

n.g. n.g. 

Arima et al. (2019) RSPO2 RSPO2 HPDLC (3 donors: 22/F, 23/M, 25/F, 
M, exp, P4-P6, Subconfluence) 

dynamic 0.5Hz for 24h 10% STREX STB-140 + culture chambers 
(STREX Co., Osaka, Japan) coated 
with type-I collagen (Cell matrix I-P, 
Nitta Gelatin Inc., Osaka, Japan) + 
motor 

uniaxial donor 3D: increase (qPCR, β-actin) 
donor 3S: increase (qPCR, β-actin) 
donor 3U: increase (qPCR, β-actin) 

donor 3D: 5.2 (FC)* 
donor 3S: 2 (FC)* 
donor 3U: 1.6 (FC)* 

n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Basdra et al. (1995) Rab17 RAB17 HPDL-fibroblasts outgrowth 
(n.g./n.g., M, exp, P n.g., 4×105) 

static 1h 2.5% Petriperm dish + brass spheroidal 
convex template + brass weight 

equibiaxial n.g. n.g. increase (WB) no quantitative information is given 

Basdra et al. (1995) rab3a RAB3A HPDL-fibroblasts outgrowth 
(n.g./n.g., M, exp, P n.g., 4×105) 

static 1h 2.5% Petriperm dish + brass spheroidal 
convex template + brass weight 

equibiaxial n.g. n.g. increase (WB) no quantitative information is given 

Basdra et al. (1995) rab3b RAB3B HPDL-fibroblasts outgrowth 
(n.g./n.g., M, exp, P n.g., 4×105) 

static 1h 2.5% Petriperm dish + brass spheroidal 
convex template + brass weight 

equibiaxial n.g. n.g. increase (WB) no quantitative information is given 

Basdra et al. (1995) rab6 RAB6A HPDL-fibroblasts outgrowth 
(n.g./n.g., M, exp, P n.g., 4×105) 

static 1h 2.5% Petriperm dish + brass spheroidal 
convex template + brass weight 

equibiaxial n.g. n.g. increase (WB) no quantitative information is given 

Basdra et al. (1995) rhoA RHOA HPDL-fibroblasts outgrowth 
(n.g./n.g., M, exp, P n.g., 4×105) 

static 1h 2.5% Petriperm dish + brass spheroidal 
convex template + brass weight 

equibiaxial n.g. n.g. decrease (WB) no quantitative information is given 

Basdra et al. (1996) Vimentin VIM HPDL-fibroblasts outgrowth 
(n.g./n.g., M, exp, P n.g., 3×105) 

static 12h 2.5% Petriperm dish + spheroidal copper 
template + weight 

equibiaxial n.g. n.g. no change (WB) no quantitative information is given 

Basdra et al. (1996) α-tubulin TUBA1C; 
TUBA3C; 
TUBA3D; 
TUBA4A 

HPDL-fibroblasts outgrowth 
(n.g./n.g., M, exp, P n.g., 3×105) 

static 12h 2.5% Petriperm dish + spheroidal copper 
template + weight 

equibiaxial n.g. n.g. no change (WB) no quantitative information is given 

Basdra et al. (1996) β-tubulin TUBA1B HPDL-fibroblasts outgrowth 
(n.g./n.g., M, exp, P n.g., 3×105) 

static 12h 2.5% Petriperm dish + spheroidal copper 
template + weight 

equibiaxial n.g. n.g. no change (WB) no quantitative information is given 

Bolcato-Bellemin et al. (2000) integrin α1 ITGA1 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Bolcato-Bellemin et al. (2000) integrin α2 ITGA2 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Bolcato-Bellemin et al. (2000) Integrin α3 ITGA3 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Bolcato-Bellemin et al. (2000) Integrin α4 ITGA4 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Bolcato-Bellemin et al. (2000) Integrin α5 ITGA5 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial decrease (sqPCR, β-actin) 0.283 (rel) / 0.5 (ratio-calc) n.g. n.g. 

Bolcato-Bellemin et al. (2000) Integrin α6 ITGA6 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial increase (sqPCR, β-actin) 0.247 (rel) / 2.2 (ratio-calc) n.g. n.g. 

Bolcato-Bellemin et al. (2000) Integrin αv ITGAV HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Bolcato-Bellemin et al. (2000) Integrin β1 ITGB1 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial increase (sqPCR, β-actin) 0.360 (rel) / 3.3 (ratio-calc) n.g. n.g. 

Bolcato-Bellemin et al. (2000) Integrin β3 ITGB3 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Bolcato-Bellemin et al. (2000) Integrin β4 ITGB4 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Bolcato-Bellemin et al. (2000) MMP-1 MMP1 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial increase (sqPCR, β-actin) 0.250 (rel) / 5 (ratio-calc) n.g. n.g. 

Bolcato-Bellemin et al. (2000) MMP-2 MMP2 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial increase (sqPCR, β-actin) 0.210 (rel) / 2.1 (ratio-calc) n.g. n.g. 

Bolcato-Bellemin et al. (2000) MMP-9 MMP9 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no expression (sqPCR, β-actin) no expression n.g. n.g. 

Bolcato-Bellemin et al. (2000) MT1-MMP MMP14 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Bolcato-Bellemin et al. (2000) TIMP-1 TIMP1 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial increase (sqPCR, β-actin) 0.075 (rel) / 1.5 (ratio-calc) n.g. n.g. 

Bolcato-Bellemin et al. (2000) TIMP-2 TIMP2 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial increase (sqPCR, β-actin) 0.291 (rel) / 5 (ratio-calc) n.g. n.g. 

Bolcato-Bellemin et al. (2000) TIMP-3 TIMP3 HPDL fibroblasts (n.g./F, M, exp, 
P4, 4×105) 

static 12h 20kPa Flexercell Strain Unit + Bioflex Culture 
Plate + vacuum (Carvalho et al 1996) 

equibiaxial no change (sqPCR, β-actin) no change n.g. n.g. 

Chang et al. (2015) ALP ALPP HPDLCs (n.g./n.g., PM, exp, P3, 
1.0×106) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off) 
for 6h, 12h, 
24h, 48h, 72h 

12% Flexercell FX-4000 Strain Unit + 6-well 
BioFlex plates coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 72h: 5.3 (ratio)* n.g. n.g. 

Chang et al. (2015) ARRAY ARRAY HPDLCs (n.g./n.g., PM, exp, P3, 
1.0×106) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off) 
for 6h, 12h, 
24h, 48h, 72h 

12% Flexercell FX-4000 Strain Unit + 6-well 
BioFlex plates coated with type I 
collagen + vacuum 

equibiaxial mRNA: Agilent Whole Genome Oligo 
Microarrays (Agilent, Santa Clara, CA) 
miRNA: Exiqon miRNA Array (Exiqon, 
Vedbaek, Denmark) 

 n.g. n.g. 

Chang et al. (2015) CREB1 CREB1 HPDLCs (n.g./n.g., PM, exp, P3, 
1.0×106) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5 s 
off) for 72h 

12% Flexercell FX-4000 Strain Unit + 6-well 
BioFlex plates coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 72h: 1.8 (ratio)* n.g. n.g. 

Chang et al. (2015) FGF2 FGF2 HPDLCs (n.g./n.g., PM, exp, P3, 
1.0×106) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off) 
for 72h 

12% Flexercell FX-4000 Strain Unit + 6-well 
BioFlex plates coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 72h: 2.2 (ratio)* n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Chang et al. (2015) miR-424-5p 
miR-1297 
miR-3607-5p 
miR-145-5p 
miR-4328 
miR-224-5p 
miR-195-5p 

MIR424 
MIR1297 
miR-3607-5p 
MIR145 
MIR4328 
MIR224 
MIR195 

HPDLCs (n.g./n.g., PM, exp, P3, 
1.0×106) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off 
) for 72h 

12% Flexercell FX-4000 Strain Unit + 6-well 
BioFlex plates coated with type I 
collagen + vacuum 

equibiaxial decrease (qPCR, U6 SnRNA) 
decrease (qPCR, U6 SnRNA) 
decrease (qPCR, U6 SnRNA) 
decrease (qPCR, U6 SnRNA) 
decrease (qPCR, U6 SnRNA) 
decrease (qPCR, U6 SnRNA) 
decrease (qPCR, U6 SnRNA) 

miR-424-5p: 0.4 (ratio)* 
miR-1297: 0.6 (ratio)* 
miR-3607-5p: 0.2 (ratio)* 
miR-145-5p: 0.3 (ratio)* 
miR-4328: 0.8 (ratio)* 
miR-224-5p: 0.4 (ratio)* 
miR-195-5p: 0.6 (ratio)* 

n.g. n.g. 

Chang et al. (2015) OCN BGLAP HPDLCs (n.g./n.g., PM, exp, P3, 
1.0×106) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off) 
for 6h, 12h, 
24h, 48h, 72h 

12% Flexercell FX-4000 Strain Unit + 6-well 
BioFlex plates coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 72h: 2 (ratio)* n.g. n.g. 

Chang et al. (2017) ALP ALPP HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 
24h, 48h, 72h 

12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial n.g. n.g. increase (PNPP) 72h: 0.8 (U/mg)* / 2.7 (ratio-calc) 

Chang et al. (2017) BMPR1A BMPR1A HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 72h 12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial n.g. n.g. increase (WB, β-actin) 72h: 3.3 (ratio)* 

Chang et al. (2017) FGF2 FGF2 HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 72h 12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial n.g. n.g. increase (WB, β-actin) 72h: 3.1 (ratio)* 

Chang et al. (2017) miR-195-5p MIR195 HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 
24h, 48h, 72h 

12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial decrease (qPCR, U6 snRNA) 24h: 0.5 (FC)* n.g. n.g. 

Chang et al. (2017) OCN BGLAP HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 72h 12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial n.g. n.g. increase (WB, β-actin) 72h: 1.8 (ratio)* 

Chang et al. (2017) OPN SPP1 HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 72h 12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial n.g. n.g. increase (WB, β-actin) 72h: 2.4 (ratio)* 

Chang et al. (2017) OSX SP7 HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 72h 12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial n.g. n.g. increase (WB, β-actin) 72h: 26 (ratio)* 

Chang et al. (2017) Runx2 RUNX2 HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 
24h, 48h, 72h 

12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial increase (qPCR, GAPDH) 72h: 3 (FC)* n.g. n.g. 

Chang et al. (2017) WNT3A WNT3A HPDLCs (14-20/n.g., PM, dig, P<5, 
80% confluence) 

dynamic 0.1Hz for 72h 12% Custom-made strain device Tension 
Plus System (Chang et al 2015; 
Wescott et al 2007) + flexible-bottomed 
culture plates (Flexcell) 

equibiaxial n.g. n.g. increase (WB, β-actin) 72h: 51 (ratio)* 

Chen et al. (2014) ALP ALPP HPDLs (n.g./n.g., M, dig, P3-9, 104 
cells/mL) 

static sqPCR for 
1d, 3d, 7d, 
15d 
ELISA for 3d, 
7d, 15d 

-100 kPa 
(1Pa=1/100,000kg/c
m2, equal to a 
negative force of 
101g/mm2) 

“a tension incubator” (TI, Model 3618P; 
LabLine Instrument, Thermolyne Co., 
IL, USA) + 24-well plate + vacuum 

equibiaxial increase (?, actin) 7d: 0.5 (?)* / 2.1 (ratio-calc) increase (ELISA) 15d: 0.2 (µM/µg DNA)* / 1.2 (ratio-calc) 

Chen et al. (2014) Collagen-1 COL1A1; 
COL1A2 

HPDLs (n.g./n.g., M, dig, P3-9, 104 
cells/mL) 

static 1d, 3d, 7d, 
15d 

-100 kPa 
(1Pa=1/100,000kg/c
m2, equal to a 
negative force of 
101g/mm2) 

“a tension incubator” (TI, Model 3618P; 
LabLine Instrument, Thermolyne Co., 
IL, USA) + 24-well plate + vacuum 

equibiaxial no change (?, actin)  n.g. n.g. 

Chen et al. (2014) ERK/p-ERK MAPK3; 
MAPK1 

HPDLs (n.g./n.g., M, dig, P3-9, 104 
cells/mL) 

static 3h, 6h, 12h, 
24h 

-100 kPa 
(1Pa=1/100,000kg/c
m2, equal to a 
negative force of 
101g/mm2) 

“a tension incubator” (TI, Model 3618P; 
LabLine Instrument, Thermolyne Co., 
IL, USA) + 24-well plate + vacuum 

equibiaxial n.g. n.g. p-ERK/ERK: increase (WB) p-ERK/ERK: 24h: 0.6 (ratio)* / 2 (ratio-calc) 

Chen et al. (2014) FAK/p-FAK PTK2 HPDLs (n.g./n.g., M, dig, P3-9, 104 
cells/mL) 

static 3h, 6h, 12h, 
24h 

-100 kPa 
(1Pa=1/100,000kg/c
m2, equal to a 
negative force of 
101g/mm2) 

“a tension incubator” (TI, Model 3618P; 
LabLine Instrument, Thermolyne Co., 
IL, USA) + 24-well plate + vacuum 

equibiaxial n.g. n.g. p-FAK/FAK: increase (WB) p-FAK/FAK: 24h: 0.7 (ratio)* / 1.3 (ratio-calc) 

Chen et al. (2014) IL-1 IL1B; IL1A HPDLs (n.g./n.g., M, dig, P3-9, 104 
cells/mL) 

static 1d, 3d, 7d, 
15d 

-100 kPa 
(1Pa=1/100,000kg/c
m2, equal to a 
negative force of 
101g/mm2) 

“a tension incubator” (TI, Model 3618P; 
LabLine Instrument, Thermolyne Co., 
IL, USA) + 24-well plate + vacuum 

equibiaxial increase (?, actin) 7d: 1.2 (?)* / 2.8 (ratio-calc) n.g. n.g. 

Chen et al. (2014) iNOS NOS2 HPDLs (n.g./n.g., M, dig, P3-9, 104 
cells/mL) 

static 1d, 3d, 7d, 
15d 

-100 kPa 
(1Pa=1/100,000kg/c
m2, equal to a 
negative force of 
101g/mm2) 

“a tension incubator” (TI, Model 3618P; 
LabLine Instrument, Thermolyne Co., 
IL, USA) + 24-well plate + vacuum 

equibiaxial increase (?, actin) 7d: 1.2 (?)* / 2.4 (ratio-calc) n.g. n.g. 

Chen et al. (2014) OC BGLAP HPDLs (n.g./n.g., M, dig, P3-9, 104 
cells/mL) 

static sqPCR for 
1d, 3d, 7d, 
15d 
ELISA for 7d, 
15d 

-100 kPa 
(1Pa=1/100,000kg/c
m2, equal to a 
negative force of 
101g/mm2) 

“a tension incubator” (TI, Model 3618P; 
LabLine Instrument, Thermolyne Co., 
IL, USA) + 24-well plate + vacuum 

equibiaxial increase (?, actin) 15d: 0.3 (?)* / 2.8 (ratio-calc) increase (ELISA) 15d: 31.4 (pg/ml/cell)* / 1.3 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Chen et al. (2014) TNFα TNF HPDLs (n.g./n.g., M, dig, P3-9, 104 
cells/mL) 

static 1d, 3d, 7d, 
15d 

-100 kPa 
(1Pa=1/100,000kg/c
m2, equal to a 
negative force of 
101g/mm2) 

“a tension incubator” (TI, Model 3618P; 
LabLine Instrument, Thermolyne Co., 
IL, USA) + 24-well plate + vacuum 

equibiaxial increase (?, actin) 7d: 0.6 (?)* / 2.6 (ratio-calc) n.g. n.g. 

Chen et al. (2015) ARRAY ARRAY HPDLCs (18-25/n.g., M, exp, P3-5, 
2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX-4000 strain unit + six-well 
flexible-bottomed uniflex-plates + 
vacuum 

uniaxial miRCURY LNA microRNA Array 7th 
generation (Exiqon A/S, Vedbaek, Denmark) 

 n.g. n.g. 

Chen et al. (2015) COL1A1 COL1A1 HPDLCs (18-25/n.g., M, exp, P3-5, 
2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX-4000 strain unit + six-well 
flexible-bottomed uniflex-plates + 
vacuum 

uniaxial increase (qPCR, β actin) 1.2 (FC)* n.g. n.g. 

Chen et al. (2015) COL3A1 COL3A1 HPDLCs (18-25/n.g., M, exp, P3-5, 
2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX-4000 strain unit + six-well 
flexible-bottomed uniflex-plates + 
vacuum 

uniaxial increase (qPCR, β actin) 1.4 (FC)* n.g. n.g. 

Chen et al. (2015) COL5A1 COL5A1 HPDLCs (18-25/n.g., M, exp, P3-5, 
2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX-4000 strain unit + six-well 
flexible-bottomed uniflex-plates + 
vacuum 

uniaxial increase (qPCR, β actin) 1.5 (FC)* n.g. n.g. 

Chen et al. (2015) miR-29a 
miR-29b 
miR-29c 

MIR29A 
MIR29B1 
MIR29C 

HPDLCs (18-25/n.g., M, exp, P3-5, 
2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX-4000 strain unit + six-well 
flexible-bottomed uniflex-plates + 
vacuum 

uniaxial miR-29a: decrease (qPCR, U6snNA) 
miR-29b: decrease (qPCR, U6snNA) 
miR-29c: decrease (qPCR, U6snNA) 

miR-29a: 0.6 (FC)* 
miR-29b: 0.5 (FC)* 
miR-29c: 0.6 (FC)* 

n.g. n.g. 

Chen et al. (2015) POSTN POSTN HPDLCs (18-25/n.g., M, exp, P3-5, 
2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX-4000 strain unit + six-well 
flexible-bottomed uniflex-plates + 
vacuum 

uniaxial no change (qPCR, β actin)  n.g. n.g. 

Chiba and Mitani (2004) ALP ALPP Human PDL cells (n.g./n.g., n.g., 
exp, P4-6, n.g.) 

dynamic 0.5Hz 
(30cyc/min: 
1s stretch 
and 1s 
relaxation) for 
2d, 5d 

15% Flexercell strain unit + Bioflex plates + 
vacuum 

equibiaxial n.g. n.g. decrease (ALP activity, colorimetric assay) 5d: 0.8 (ratio)* 

Cho et al. (2010) BMP-2 BMP2 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial increase (sqPCR, GAPDH) 48h: 6.2 (ratio)† n.g. n.g. 

Cho et al. (2010) BMP-2 BMP2 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
48h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial increase (sqPCR, GAPDH) 15%: 2 (ratio)* n.g. n.g. 

Cho et al. (2010) BMP-7 BMP7 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial increase (sqPCR, GAPDH) 48h: 3.5 (ratio)† n.g. n.g. 

Cho et al. (2010) BMP-7 BMP7 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
48h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial increase (sqPCR, GAPDH) 15%: 7.1 (ratio)† n.g. n.g. 

Cho et al. (2010) HO-1 HMOX1 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial increase (sqPCR, GAPDH) 24h: 2.4 (ratio)† increase (WB, β-actin) 48h: 2.3 (ratio)† 

Cho et al. (2010) HO-1 HMOX1 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
48h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial increase followed by decrease (sqPCR, 
GAPDH) 

12%: 3.7 (ratio)† 
15%: 0.6 (ratio)† 

increase (WB, β-actin) 12%: 4.6 (ratio)† 

Cho et al. (2010) Noggin NOG Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
48h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial decrease followed by plateau (sqPCR, 
GAPDH) 

12h…24h: 0.3 (ratio)† n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Cho et al. (2010) Noggin NOG Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial decrease (sqPCR, GAPDH) 15%: 0.2 (ratio)† n.g. n.g. 

Cho et al. (2010) Runx2 RUNX2 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
0h, 3h, 6h, 
12h, 24h, 48h 

12% Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial decrease followed by plateau then 
increase (sqPCR, GAPDH) 

3h…6h: 0.5 (ratio)† 
48h: 3 (ratio)† 

n.g. n.g. 

Cho et al. (2010) Runx2 RUNX2 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 3×105) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s, 2.5s of 
relaxation) for 
48h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates with a centrally located 
rectangular portion (15.25mm × 
24.18mm) coated with type I collagen + 
vacuum 

uniaxial decrease followed by increase (sqPCR, 
GAPDH) 

12%: 0.8 (ratio)† 
15%: 1.5 (ratio)† 

n.g. n.g. 

Deschner et al. (2012) ARRAY ARRAY hPDL cells (n.g./n.g., n.g., exp, P4, 
5×104) 

dynamic 0.05Hz for 
24h 

3% CESTRA cell strain device + BioFlex 
plates (silicone membranes) coated 
with collagen type I + stepping motor 
(Nokhbehsaim, 2010) 

equibiaxial PCR array (RT2 PCR array)  n.g. n.g. 

Diercke et al. (2011) Eph-B4 EPHB4 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

static 1h, 4h, 24h, 
48h, 72h 

2.5% flexible bottomed dishes (Greiner Bio-
One) coated with collagen type-I and 
fibronectin (Hasegawa,1985) Petriperm 
dish placed + template with a convex 
surface + weight 

equibiaxial temporary decrease (qPCR, GAPDH) 4h: 0.6 (FC)* 
48h: 0.7 (FC)* 

n.g. n.g. 

Diercke et al. (2011) Ephrin-B2 EFNB2 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

static 1h, 4h, 24h, 
48h, 72h 

2.5% flexible bottomed dishes (Greiner Bio-
One) coated with collagen type-I and 
fibronectin (Hasegawa,1985) Petriperm 
dish placed + template with a convex 
surface + weight 

equibiaxial increase (qPCR, GAPDH) 24h: 1.9 (FC)* n.g. n.g. 

Diercke et al. (2011) FAK / p-
FAK(Tyr576) 

PTK2 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

static 5min, 15min, 
30min, 
60min, 4h, 
24h, 48h, 72h 

2.5% flexible bottomed dishes (Greiner Bio-
One) coated with collagen type-I and 
fibronectin (Hasegawa,1985) Petriperm 
dish placed + template with a convex 
surface + weight 

equibiaxial n.g. n.g. t-FAK: no change (WB, β-actin) 
p-FAK: increase (WB,β-actin) 

t-FAK: no quantitative information is given 
p-FAK @ 72h: 1.6 (ratio)* 

Doi et al. (2003) RGD-CAP TGFBI hPDL cells (n.g./n.g., PM, exp, P4-
5, 5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h 

7.2 kPa, 15.4 kPa Flexercell strain unit + Flexercell plate 
dish + vacuum 

equibiaxial 7.2 kPa: no change (qPCR, GAPDH) 
15.4 kPa: increase (qPCR, GAPDH) 

15.4 kPa @ 48h:1.7 (ratio)* n.g. n.g. 

Fujihara et al. (2010) ALP ALPP hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (qPCR, HPRT) 0.12 (rel)* / 3 (ratio-calc) n.g. n.g. 

Fujihara et al. (2010) ARRAY ARRAY hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial Oligo-DNA Chip Analysis: AceGene 
Human Oligo Chip 30K (Hitachi 
Software Eng. Co., Ibaraki, Japan) 

   

Fujihara et al. (2010) c-FOS FOS hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (qPCR, HPRT) 2.6 (rel)* / 2.9 (ratio-calc) n.g. n.g. 

Fujihara et al. (2010) CREB/p-
CREB 

CREB1 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial n.g. n.g. p-CREB/CREB increase (WB, CREB) 48h: 1.5 (p-CREB/CREB)* / 1.5 (ratio stretch/control)* 

Fujihara et al. (2010) Glutamate Glutamate hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 12h, 24h, 
48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial n.a. n.a. increase (ELISA) 48h: 114.6 (nmol/µg)† / 3.5 (ratio-calc) 

Fujihara et al. (2010) GRIA3 GRIA3 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 0.9 (rel)† / 1.4 (ratio-calc) n.g. n.g. 

Fujihara et al. (2010) GRIN1 GRIN1 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 0.6 (rel)†/ control n.g. n.g. n.g. 

Fujihara et al. (2010) GRIN2C GRIN2C hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 2.1 (rel)† / 2.2 (ratio-calc) n.g. n.g. 

Fujihara et al. (2010) GRIN2D GRIN2D hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 7.6 (rel)† / 1.2 (ratio-calc) n.g. n.g. 

Fujihara et al. (2010) GRIN3A GRIN3A hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (qPCR, HPRT) 48h: 3 (ratio)* n.g. n.g. 

Fujihara et al. (2010) GRIN3A GRIN3A hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (qPCR, HPRT) 0.3 (rel)* / 3.8 (ratio-calc) n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Fujihara et al. (2010) GRIN3B GRIN3B hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 0.6 (rel)† / control n.g. n.g. n.g. 

Fujihara et al. (2010) HOMER1 HOMER1 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (qPCR, HPRT) 48h: 3.3 (ratio)* n.g. n.g. 

Fujihara et al. (2010) HOMER1 HOMER1 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (qPCR, HPRT) 0.8 (rel)* / 2 (ratio-calc) n.g. n.g. 

Fujihara et al. (2010) mGluR2 GRM2 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 2.3 (rel)† / control n.g. n.g. n.g. 

Fujihara et al. (2010) mGluR3 GRM3 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 4.4 (rel)† / control n.g. n.g. n.g. 

Fujihara et al. (2010) mGluR4 GRM4 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 4.3 (rel)†/ 2.5 (ratio-calc) n.g. n.g. 

Fujihara et al. (2010) mGluR5 GRM5 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 1.3 (rel)† / control n.g. n.g. n.g. 

Fujihara et al. (2010) mGluR6 GRM6 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 2.8 (rel)† / control n.g. n.g. n.g. 

Fujihara et al. (2010) RUNX2 RUNX2 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 48h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (qPCR, HPRT) 0.7 (rel)* / 1.6 (ratio-calc) n.g. n.g. 

Fujihara et al. (2010) VGLUT1 SLC17A7 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1.5×104) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% (110%) Scholertec NS-350 (Scholertec) + 
10cm2 silicon membrane chambers 
(Scholertec, Osaka, Japan) 

uniaxial increase (sqPCR, HPRT) 2.1 (rel)† / control n.g. n.g. n.g. 

Goto et al. (2011) ARRAY ARRAY hPDLCs (n.g./n.g., M., dig, P4-8, 5 x 
105 cells/cm2) 

dynamic 0.017Hz 
(1/60Hz) 
(conditions: 
60s/returns; 
resting time: 
29s) for 48h 

5% (105%) STB-140 (Strex Co) + silicon chamber uniaxial GeneChip Human Genome U133 plus 
2.0 arrays (Agilent Technologies, Santa 
Clara, CA, USA) 

too many n.a. n.a. 

Goto et al. (2011) CCL2 CCL2 hPDLCs (n.g./n.g., M., dig, P4-8, 5 x 
105 cells/cm2) 

dynamic 0.017Hz 
(1/60Hz) 
(conditions: 
60s/returns; 
resting time: 
29s) sqPCR 
for 1d, 2d, 3d, 
5d, 7d; qPCR 
for 1d,3d,5d, 
7d; ELISA for 
1d, 2d, 3d, 
5d; WB for 
1d, 2d, 3d, 
5d, 7d 

5% (105%) STB-140 (Strex Co) + silicon chamber uniaxial increase (sqPCR, β-actin) 
decrease followed by increase (qPCR, 
β-actin) 

sqPCR: no quantitative information is given 
qPCR lowest @ 1d: 0.3 (ratio)†  
qPCR highest @ 7d: 27.3 (ratio)† 

increase followed by plateau (ELISA) 3d...5d: 3.3 (ng/ml)* / ratio can not be calculated 

Goto et al. (2011) CCL3 CCL3 hPDLCs (n.g./n.g., M., dig, P4-8, 5 x 
105 cells/cm2) 

dynamic 0.017Hz 
(1/60Hz) 
(conditions: 
60s/returns; 
resting time: 
29s) sqPCR 
for 1d, 2d, 3d, 
5d, 7d; qPCR 
for 1d, 3d, 5d, 
7d; WB for 
1d, 2d, 3d, 
5d, 7d 

5% (105%) STB-140 (Strex Co) + silicon chamber uniaxial temporary increase (sqPCR, β-actin) 
increase (qPCR, β-actin) 

sqPCR: no quantitative information is given 
qPCR: 7d: 16.2 (ratio)† 

increase (WB, β-actin) no quantitative information is given 

Goto et al. (2011) CCL5 CCL5 hPDLCs (n.g./n.g., M., dig, P4-8, 5 x 
105 cells/cm2) 

dynamic 0.017Hz 
(1/60Hz) 
(conditions: 
60s/returns; 
resting time: 
29s) sqPCR 
for 1d, 2d, 3d, 
5d, 7d; qPCR 
for 1d, 3d, 5d, 
7d; WB for 
1d, 2d, 3d, 
5d, 7d 

5% (105%) STB-140 (Strex Co) + silicon chamber uniaxial temporary increase (sqPCR, β-actin) 
decrease followed by increase (qPCR, 
β-actin) 

sqPCR: no quantitative information is given 
qPCR lowest @ 3d: 0.8 (ratio)† 
qPCR highest @ 7d: 7.0 (ratio)† 

increase (WB, β-actin) no quantitative information is given 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Hao et al. (2009) Caspase-3 CASP3 hPDL cells (13/F, 15/M, PM, exp, P 
3-5, n.g.) 

dynamic 0.1Hz 
(6cyc/min: 
Spherical cap 
ascended 
from the 
initial point to 
the highest 
point for 1s, 
kept at the 
highest point 
for 4s, 
descended to 
the initial 
point for 1s, 
and then kept 
at the initial 
point for 4s) 
for 6h, 12h, 
24h, 48h 

1%, 10%, 20% “Cell Strain Unit (CSU)” + elastic silicon 
rubber membrane + spherical cap (step 
motor) 

equibiaxial n.g. n.g. 1%: increase (Caspase-3 colorimetric assay) 
10%: increase (Caspase-3 colorimetric assay) 
20%: increase (Caspase-3 colorimetric assay) 

1% @ 24h: 2.6 (ratio)*  
10% @ 24h: 3 (ratio)* 
20% @ 24h: 3.8 (ratio)* 

He et al. (2004) COL1A1 COL1A1 hPDL cells (n.g./n.g., M, dig, P3-12, 
105 cells/cm2) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% plastic culture cylinder + elastic silicone 
membrane + movable plate 

equibiaxial increase (qPCR, GAPDH) 5.695 (rel) / 4.4 (ratio-calc) increase (ELISA) 4.1 (pg/cell)* / 3.5 (ratio-calc) 

He et al. (2004) Fibronectin FN1 hPDL cells (n.g./n.g., M, dig, P3-12, 
105 cells/cm2) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% plastic culture cylinder + elastic silicone 
membrane + movable plate 

equibiaxial n.g. n.g. increase (ELISA) 10.5 (pg/cell)* / 1.4 (ratio-calc) 

He et al. (2004) MMP2 MMP2 hPDL cells (n.g./n.g., M, dig, P3-12, 
105 cells/cm2) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% plastic culture cylinder + elastic silicone 
membrane + movable plate 

equibiaxial increase (Northern, GAPDH) 0.241 (rel) / 1.4 (ratio-calc) decrease (zymography) 7.6 (rel) / 0.9 (ratio-calc) 

He et al. (2004) TIMP2 TIMP2 hPDL cells (n.g./n.g., M, dig, P3-12, 
105 cells/cm2) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% plastic culture cylinder + elastic silicone 
membrane + movable plate 

equibiaxial increase (Northern, GAPDH) 0.118 (rel) / 1.6 (ratio-calc) n.g. n.g. 

He et al. (2019) RhoA RHOA hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 3h n. g. a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial increase (qPCR, β-actin) 40.2 (rel)† / 28.9 (ratio-calc) n.g. n.g. 

He et al. (2019) ROCK ROCK1 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 3h n. g. a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial increase (qPCR, β-actin) 10.7 (rel)† / 10.8 (ratio-calc) n.g. n.g. 

He et al. (2019) RUNX2 RUNX2 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 3h n. g. a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial increase (qPCR, β-actin) 10.1 (rel)† / 10.6 (ratio-calc) n.g. n.g. 

He et al. (2019) TGF-β1 TGFB1 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 3h n. g. a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial increase (qPCR, β-actin) 12.7 (rel)† / 12.8 (ratio-calc) n.g. n.g. 

He et al. (2019) YAP YAP1 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 1h, 
3h, 6h, 12h, 
18h 

0.2% 
(2000µstrain) 

a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial temporary increase (qPCR, β-actin) 3h: 10.3 (FC)† n.g. n.g. 

He et al. (2019) YAP YAP1 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 3h 0.4% 
(4000µstrain) 

a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial increase (qPCR, β-actin) 16.3 (FC)† n.g. n.g. 

He et al. (2019) YAP YAP1 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 3h n. g. a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial increase (qPCR, β-actin) 9.1 (rel)† / 8.8 (ratio-calc) whole protein: increase (GAPDH) 
nucleo-protein: increase (GAPDH) 

no quantitative information is given 

He et al. (2019) α-SMA ACTA2 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 1h, 
3h, 6h, 12h, 
18h 

0.2% 
(2000µstrain) 

a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial temporary increase (qPCR, β-actin) 6h: 13.4 (FC)† n.g. n.g. 

He et al. (2019) α-SMA ACTA2 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 3h 0.4% 
(4000µstrain) 

a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial increase (qPCR, β-actin) 12.6 (FC)† n.g. n.g. 

He et al. (2019) α-SMA ACTA2 hPDLCs ($) (n.g./n.g., n.g., n.g., P 
n.g., 80-90 confluence) 

dynamic 0.5Hz for 3h n. g. a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial increase (qPCR, β-actin) 21.5 (rel)† / 21.8 (ratio-calc) whole protein: increase (GAPDH) no quantitative information is given 

Howard et al. (1998) Fibronectin FN1 hPDL cells (n.g./n.g., PM, dig, P3-8, 
Confluent) 

dynamic 0.5Hz 
(30times/min) 
for 24h 

5%, 10% circularly clamped compliant membrane 
+ spherical cap + vacuum 

equibiaxial n.g. n.g. increase (ELISA) 5%: 11.6 (pg/cell)* / 2.9 (ratio-calc) 
10%: 3.7 (pg/cell)* / 5.1 (ratio-calc) 

Howard et al. (1998) Tropoelastin ELN hPDL cells (n.g./n.g., PM, dig, P3-8, 
Confluent) 

dynamic 0.5Hz 
(30times/min) 
for 24h 

5%, 10% circularly clamped compliant membrane 
+ spherical cap + vacuum 

equibiaxial n.g. n.g. 5% (ELISA): decrease 
10% (ELISA): decrease 

5%: 0.02 (pg/cell)* / 0.4 (ratio-calc) 
10%: 0.006 (pg/cell)* / 0.4 (ratio-calc) 

Howard et al. (1998) Type I 
Collagen 

COL1A1; 
COL1A2 

hPDL cells (n.g./n.g., PM, dig, P3-8, 
Confluent) 

dynamic 0.5Hz 
(30times/min) 
for 24h 

5%, 10% circularly clamped compliant membrane 
+ spherical cap + vacuum 

equibiaxial n.g. n.g. 5% (ELISA): increase 
10% (ELISA): no change 

5%: 0.3 (pg/cell)* / 1.7 (ratio-calc) 

Huelter-Hassler et al. (2017) ERK1/2 / p-
ERK1/2(T202,2
04) 

MAPK3; 
MAPK1 

hPDL cells (14/M, M, dig, P5-8, 
1×104 cells/cm2,) 

static equiaxial 
strain for 
15min, 1h, 
6h, 24h 

2.5% Flexercell Strain Unit FX5000-T + 
silicone bottomed six-well plates coated 
with collagen type I (Flexcell Int. Corp.) 
+ vacuum 

equibiaxial n.g. n.g. ERK1/2 (WB): decrease followed by increase 
p-ERK1/2 (WB): decrease 

ERK1/2: lowest @15min: 0.5 (ratio)* 
ERK1/2: highest @ 24h: 1.5 (ratio)* 
p-ERK1/2: 1h: 0.4 (ratio)* 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Huelter-Hassler et al. (2017) KI-67 MKI67 hPDL cells (14/M, M, dig, P5-8, 
1×104 cells/cm2,) 

static equiaxial 
strain for 
15min, 1h, 
6h, 24h 

2.5% Flexercell Strain Unit FX5000-T + 
silicone bottomed six-well plates coated 
with collagen type I (Flexcell Int. Corp.) 
+ vacuum 

equibiaxial n.g. n.g. Increase followed by decrease (WB) highest @ 15min: 1.8 (ratio)* 
lowest @ 24h: 0.3 (ratio)* 

Huelter-Hassler et al. (2017) YAP YAP1 hPDL cells (14/M, M, dig, P5-8, 
1×104 cells/cm2,) 

static equiaxial 
strain for 
15min, 1h, 
6h, 24h 

2.5% Flexercell Strain Unit FX5000-T + 
silicone bottomed six-well plates coated 
with collagen type I (Flexcell Int. Corp.) 
+ vacuum 

equibiaxial n.g. n.g. cytoplasmic YAP (WB): no change 
nuclear YAP (WB): increase followed by decrease 

nuclear YAP: highest @ 1h: 1.3 (ratio)* 
nucelar YAP: lowest @ 24h: 0.6 (ratio)* 

Hülter-Hassler et al. (2017) ERK1/2 / p-
ERK1/2(T202,2
04) 

MAPK3; 
MAPK1 

hPDL cells (14/M, M, dig, P5-8, 
1×104 cells/cm2,) 

static equiaxial 
mechanical 
strain for 
15min, 1h, 
6h, 24h 

2.5% Flexercell Strain Unit FX5000-T + 
silicone bottomed six-well plates coated 
with collagen type I (Flexcell Int. Corp.) 
+ vacuum 

equibiaxial n.g. n.g. ERK1/2 (WB): decrease followed by increase 
p-ERK1/2 (WB): decrease 

ERK1/2: lowest @ 15min: 0.6 (ratio)* 
ERK1/2: highest @ 24h: 1.5 (ratio)* 
p-ERK1/2 (WB): 1h: 0.4 (ratio)* 

Hülter-Hassler et al. (2017) FAK / p-
FAK(Y397) 

PTK2 hPDL cells (14/M, M, dig, P5-8, 
1×104 cells/cm2,) 

static equiaxial 
mechanical 
strain for 
15min, 1h, 
6h, 24h 

2.5% Flexercell Strain Unit FX5000-T + 
silicone bottomed six-well plates coated 
with collagen type I (Flexcell Int. Corp.) 
+ vacuum 

equibiaxial n.g. n.g. FAK increase followed by decrease (WB) 
p-FAK increase followed by decrease (WB): 

FAK: highest @ 1h: 1.7 (ratio)* 
FAK: lowest @ 24h: 0.8 (ratio)* 
p-FAK: highest @ 1h: 1.4 (ratio)* 
p-FAK: lowest @ 24h: 0.7 (ratio)* 

Hülter-Hassler et al. (2017) KI-67 MKI67 hPDL cells (14/M, M, dig, P5-8, 
1×104 cells/cm2,) 

static equiaxial 
mechanical 
strain for 
15min, 1h, 
6h, 24h 

2.5% Flexercell Strain Unit FX5000-T + 
silicone bottomed six-well plates coated 
with collagen type I (Flexcell Int. Corp.) 
+ vacuum 

equibiaxial n.g. n.g. increase followed by decrease (WB) highest @ 15min: 1.8 (ratio)* 
lowest @ 24h: 0.3 (ratio)* 

Hülter-Hassler et al. (2017) YAP YAP1 hPDL cells (14/M, M, dig, P5-8, 
1×104 cells/cm2,) 

static equiaxial 
mechanical 
strain for 
15min, 1h, 
6h, 24h 

2.5% Flexercell Strain Unit FX5000-T + 
silicone bottomed six-well plates coated 
with collagen type I (Flexcell Int. Corp.) 
+ vacuum 

equibiaxial n.g. n.g. cytoplasmic extract (WB): no change 
nuclear extract (WB): increase followed by decrease 

YAP (nuclear extract): highest @ 1h: 1.3 ratio)* 
YAP (nuclear extract): lowest @ 24h: 0.6 (ratio)* 

Jacobs et al. (2013) ALP ALPP hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
BioFlex® Plates coated with pronectin + 
vacuum 

equibiaxial increase (qPCR, actin + GAPDH) 5%: 2.7 (FC)* n.g. n.g. 

Jacobs et al. (2013) Collagen 
type-I (COL-
1) 

COL1A1 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
BioFlex® Plates coated with pronectin + 
vacuum 

equibiaxial decrease followed by increase then 
decrease (qPCR, actin + GAPDH) 

1%: 0.8 (FC)† 
5%: 1.1 (FC)† 
10%: 0.7 (FC)† 

n.g. n.g. 

Jacobs et al. (2013) Cyclin D1 CCND1 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
BioFlex® Plates coated with pronectin + 
vacuum 

equibiaxial increase (qPCR, actin + GAPDH) 10%: 8.3 (FC)* n.g. n.g. 

Jacobs et al. (2013) OCN BGLAP hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
BioFlex® Plates coated with pronectin + 
vacuum 

equibiaxial increase followed by decrease (qPCR, 
actin + GAPDH) 

highest @ 1%: 1.3 (FC)* 
lowest @ 5%: 0.6 (FC)* 

n.g. n.g. 

Jacobs et al. (2013) OPG TNFRSF11B hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
BioFlex® Plates coated with pronectin + 
vacuum 

equibiaxial increase (qPCR, actin + GAPDH) 5%: 2.7 (FC)* increase (ELISA) 10%: 44.6 (ng/105 cells)* / control no OPG detectable 

Jacobs et al. (2013) RANKL TNFSF11 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
BioFlex® Plates coated with pronectin + 
vacuum 

equibiaxial increase followed by decrease (qPCR, 
actin + GAPDH) 

highest @1%: 1.6 (FC)* 
lowest @ 5%: 0.7 (FC)* 

n.g. n.g. 

Jacobs et al. (2014) COX-2 PTGS2 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial increase (qPCR, actin + GAPDH) 10%: 31.4 (FC) n.g. n.g. 

Jacobs et al. (2014) IL-6 IL6 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3 cN/mm2), 
10% (5.2 cN/mm2) 

Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial decrease followed by increase (qRT-
PCR, actin + GAPDH) 

lowest @ 1%: 0.5 (FC)* 
highest @ 10%: 1.6 (FC)* 

decrease followed by increase (ELISA) lowest @ 1%: 5.6 (pg/ml)* / 0.6 (ratio-calc) 
highest @ 10%: 13.8 (pg/ml)* / 1.5 (ratio-calc) 

Jacobs et al. (2014) MMP-8 MMP8 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7 cN/mm2), 
5% (3 cN/mm2), 
10% (5.2 cN/mm2) 

Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial n.g. n.g. MMP8: increase (ELISA) 
TIMP1/MMP8: increase followed by decrease (ELISA) 

MMP8 @10%: 38.8 (pg/ml) / 12.1 (ratio-calc) 
TIMP1/MMP8 highest @ 5%: 17.2 (rel×1000) / 2 (ratio-
calc ×1000) 
TIMP1/MMP8 lowest @ 10%: 2 (rel×1000)* / 0.2 (ratio-
calc ×1000) 

Jacobs et al. (2014) PGE2 PGE2 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial n.a. n.a. increase (ELISA) 10%: 47.9 (pg/ml), ration can not be calculated 

Jacobs et al. (2014) TIMP-1 TIMP1 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 1% (0.7cN/mm2), 
5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial n.g. n.g. TIMP1: increase (ELISA) 
TIMP1/MMP8: increase followed by decrease (ELISA) 

TIMP1 @10%: 71.2 (qng/ml) / 4.5 (ratio-calc) 
TIMP1/MMP8 highest @ 5%: 17.2 (rel×1000) / 2 (ratio-
calc ×1000) 
TIMP1/MMP8 lowest @ 10%: 2 (rel×1000)* / 0.2 (ratio-
calc ×1000) 

Jacobs et al. (2015) OPG TNFRSF11B hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial OPG: increase (qPCR, actin + GAPDH) 
RANKL/OPG: temporary decrease 

OPG @ 5%: 2.9 (FC)* 
RANKL/OPG @ 5%: 0.2 (ratio)* 

increase (ELISA) 5%: 13.7 (ng/ml)* / 3.1 (ratio-calc) 

Jacobs et al. (2015) RANKL TNFSF11 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 5% (3cN/mm2), 10% 
(5.2cN/mm2) 

Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial RANKL: decrease followed by increase 
(qPCR, actin + GAPDH) 
RANKL/OPG: temporary decrease 

RANKL lowest @ 5%: 0.6 (FC)* 
RANKL highest @ 10%: 2.4 (FC)* 
RANKL/OPG @ 5%: 0.2 (ratio)* 

n.g. n.g. 

Jacobs et al. (2018) COX-2 PTGS2 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 3% (2cN/mm2) Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial increase (qPCR; actin + GAPDH) 3.8 (FC)† n.g. n.g. 

Jacobs et al. (2018) MMP-8 MMP8 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 3% (2cN/mm2) Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial n.g. n.g. increase (ELISA) 17.7 (pg/ml)* / 1.5 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Jacobs et al. (2018) PGE2 PGE2 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 3% (2cN/mm2) Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial n.a. n.a. no change (ELISA)  

Jacobs et al. (2018) TIMP-1 TIMP1 hPDL cells ($) (n.g./n.g., n.g, 
method n.g., P4-6, subconfluency) 

static 12h 3% (2cN/mm2) Flexercell Strain Unit FX 3000 + 
Bioflex® Plates + vacuum 

equibiaxial n.g. n.g. increase (ELISA) 1947 (pg/ml)* / 1.3 (ratio-calc) 

Jiang and Hua (2016) ALP ALPP hPDL cells (12-18/n.g., PM, exp, P 
n.g., n.g.) 

dynamic 0.1Hz (5s 
stretch and 
5s relaxation) 
for 6h, 12h, 
24h, 48h 

5% Flexcell FX-5000 Tension System + 
flexible-bottomed six-well plates coated 
with type I collagen (Sigma) + vacuum 

equibiaxial increase (sqPCR, GAPDH) 24h: 2.7 (FC)* increase (WB, GAPDH) 24h: no quantitative information is given 

Jiang and Hua (2016) OCN BGLAP hPDL cells (12-18/n.g., PM, exp, P 
n.g., n.g.) 

dynamic 0.1Hz (5s 
stretch and 
5s relaxation) 
for 6h, 12h, 
24h, 48h 

5% Flexcell FX-5000 Tension System + 
flexible-bottomed six-well plates coated 
with type I collagen (Sigma) + vacuum 

equibiaxial increase (sqPCR, GAPDH) 24h: 3 (FC)* increase (WB, GAPDH) 24h: no quantitative information is given 

Jiang and Hua (2016) RUNX2 RUNX2 hPDL cells (12-18/n.g., PM, exp, P 
n.g., n.g.) 

dynamic 0.1Hz (5s 
stretch and 
5s relaxation) 
for 6h, 12h, 
24h, 48h 

5% Flexcell FX-5000 Tension System + 
flexible-bottomed six-well plates coated 
with type I collagen (Sigma) + vacuum 

equibiaxial increase (sqPCR, GAPDH) 24h: 2.9 (FC)* increase (WB, GAPDH) 24h: no quantitative information is given 

Kaku et al. (2019) CSF1 CSF1 hPDLCs (n.g./n.g., n.g., exp, P4-6, 
1×105) 

dynamic 0.5Hz (30 
cyc/min) for 
48h 

12% Flexcell FX-2000 + silicon membrane + 
vaccum 

equibiaxial n.g. n.g. increase (ELISA) 301.9 (pg/ml)† / 3.1 (ratio-calc) 

Kaku et al. (2019) IL-1B IL1B hPDLCs (n.g./n.g., n.g., exp, P4-6, 
1×105) 

dynamic 0.5Hz (30 
cyc/min) for 
48h 

12% Flexcell FX-2000 + silicon membrane + 
vaccum 

equibiaxial n.g. n.g. increase (ELISA) 12.1 (pg/ml)† / 1.6 (ratio-calc) 

Kaku et al. (2019) RANKL TNFSF11 hPDLCs (n.g./n.g., n.g., exp, P4-6, 
1×105) 

dynamic 0.5Hz (30 
cyc/min) for 
48h 

12% Flexcell FX-2000 + silicon membrane + 
vaccum 

equibiaxial n.g. n.g. increase (ELISA) 27.8 (pg/ml)† / 3.3 (ratio-calc) 

Kaku et al. (2019) TNFα TNF hPDLCs (n.g./n.g., n.g., exp, P4-6, 
1×105) 

dynamic 0.5Hz (30 
cyc/min) for 
48h 

12% Flexcell FX-2000 + silicon membrane + 
vaccum 

equibiaxial n.g. n.g. increase (ELISA) 4.7 (pg/ml)† / 4.8 (ratio-calc) 

Kanzaki et al. (2006) OPG TNFRSF11B hPDL cells (n.g./n.g., n.g., exp, P4-
8, n.g.) 

dynamic 0.5Hz (1s 
stretch/1s 
relaxation) 
sqPCR for 
48h; ELISA 
for 72h 

15% Flexercell Strain-Unit + type I collagen-
coated silicone membrane + vacuum 

equibiaxial increase (sqPCR, β-actin) 1.7 (ratio)* increase (ELISA) 277.1 (pmol/L)* / 1.3 (ratio-calc) 

Kanzaki et al. (2006) RANKL TNFSF11 hPDL cells (n.g./n.g., n.g., exp, P4-
8, n.g.) 

dynamic 0.5Hz (1s 
stretch/1s 
relaxation) for 
48h 

15% Flexercell Strain-Unit + type I collagen-
coated silicone membrane + vacuum 

equibiaxial increase (sqPCR, β-actin) 12.9 (ratio)* n.g. n.g. 

Kanzaki et al. (2006) TGF-β TGFB1 hPDL cells (n.g./n.g., n.g., exp, P4-
8, n.g.) 

dynamic 0.5Hz (1s 
stretch/1s 
relaxation) 
sqPCR for 
48h; ELISA 
for 6h, 24h, 
48h, 72h 

15% Flexercell Strain-Unit + type I collagen-
coated silicone membrane + vacuum 

equibiaxial increase (sqPCR, β-actin) 1.5 (ratio)* increase (ELISA) 72h: 2 (ng/ml)* / 1.1 (ratio-calc) 

Kanzaki et al. (2019) ARRAY ARRAY immortalized hPDLCs (n.g./n.g., 
n.g., gene transfection, n.g., n.g.) 

dynamic 0.5Hz (1s 
stretch/1s 
relaxation) for 
24h 

15% Flexercell Strain-Unit + type I collagen-
coated silicone membrane + vacuum 
(Kanzaki et al 2006) 

equibiaxial SurePrint G3 Human miRNA microarray 
8 × 60 K miRBase 16.0 (Agilent 
Technologies) 

too many n.a. n.a. 

Kanzaki et al. (2019) OPG TNFRSF11B immortalized hPDLCs (n.g./n.g., 
n.g., gene transfection, n.g., n.g.) 

dynamic 0.5Hz (1s 
stretch/1s 
relaxation) for 
24h 

15% Flexercell Strain-Unit + type I collagen-
coated silicone membrane + vacuum 
(Kanzaki et al 2006) 

equibiaxial increase (qPCR, RPS18) 2.2 (FC)* increase (WB, n.g.) 
increase (ELISA) 

WB: 1.8 (ratio)*  
ELISA: 16.3 (ng/ml)* / 1.3 (ratio-calc) 

Kanzaki et al. (2019) RANKL TNFSF11 immortalized hPDLCs (n.g./n.g., 
n.g., gene transfection, n.g., n.g.) 

dynamic 0.5Hz (1s 
stretch/1s 
relaxation) for 
24h 

15% Flexercell Strain-Unit + type I collagen-
coated silicone membrane + vacuum 
(Kanzaki et al 2006) 

equibiaxial increase (qPCR, RPS18) 9.9 (FC)* n.g. n.g. 

Kikuiri et al. (2000) ecNOS NOS3 hPDL cells (14-17/n.g., PM, dig, P5-
10, 4×105) 

dynamic 0.1Hz 
(elongation 
for 5s, 
relaxation for 
5s) sqPCR 
for 3h,12h; 
WB for 3h, 6h 

18% Flexercell Strain Unit (Shimizu 1994) + 
flexible silicon rubber bottoms + vacuum 

equibiaxial ecNOS (sqPCR, GAPDH), expressed in 
both control and experimental groups 

no quantitative information is given control groups (WB): no expression  
experimental group (WB): strong expression 

no quantitative information is given 

Kikuiri et al. (2000) iNOS NOS2 hPDL cells (14-17/n.g., PM, dig, P5-
10, 4×105) 

dynamic 0.1Hz 
(elongation 
for 5s, 
relaxation for 
5s) for 12h 

18% Flexercell Strain Unit (Shimizu 1994) + 
flexible silicon rubber bottoms + vacuum 

equibiaxial no expression (sqPCR, GAPDH)  no expression (WB)  



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Kim et al. (2007) Osteocalcin BGLAP hPDL cells (n.g./n.g., n.g., exp, P5-
10, 5×104) 

dynamic 0.1Hz (6 
cyc/min: 
strain for 5s 
followed by a 
5s relaxation) 
for 6d 

9% Flexcell strain unit FX-2000 + 35-mm 
Flexercell plate dish + vacuum 

equibiaxial increase (sqPCR, GAPDH) 75 (rel)* / 1.7 (ratio-calc) n.g. n.g. 

Kim et al. (2007) UNCL UNC50 hPDL cells (n.g./n.g., n.g., exp, P5-
10, 5×104) 

dynamic 0.1Hz (6 
cyc/min: 
strain for 5s 
followed by a 
5s relaxation) 
for 6d 

9% Flexcell strain unit FX-2000 + 35-mm 
Flexercell plate dish + vacuum 

equibiaxial increase (sqPCR, GAPDH) 117 (rel)* / 1.3 (ratio-calc) n.g. n.g. 

Kletsas et al. (2002) c-Fos FOS hPDL cells (n.g./n.g., n.g., exp, P3-
4, 90% confluency) 

static 0.5h, 1h, 3h, 
6h, 12h, 24h 

2.5% Petriperm dish + plexiglass template 
with a convex surface + weight 

equibiaxial n.g. n.g. increase (WB) 3h: 225% (rel)* / 2.3 (ratio-calc) 

Kletsas et al. (2002) c-Jun JUN hPDL cells (n.g./n.g., n.g., exp, P3-
4, 90% confluency) 

static 0.5h, 1h, 3h, 
6h, 12h, 24h 

2.5% Petriperm dish + plexiglass template 
with a convex surface + weight 

equibiaxial n.g. n.g. increase (WB) 1h: 186% (rel)* / 1.9 (ratio-calc) 

Konstantonis et al. (2014) ALP ALPP hPDL cells (n.g./n.g., n.g., exp, P3-
6 & P20-24, n.g.) 

dynamic 1Hz for 12h 8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial “young cells” (P3-6): increase (qPCR, 
GAPDH) 
“senescent cells” (P20-24): increase 
(qPCR, GAPDH) 

“young cells”:150% (rel)* / 1.5 (ratio-calc) 
“senescent cells”: 50% (rel)* / 1.5 (ratio-
calc) 

“young cells”: ALP activity increase (colorimetric assay) 
“senescent cells”: ALP activity increase (colorimetric 
assay) 

“young cells”:150% (rel)* / 1.5 (ratio-calc) 
“senescent cells”: 95% (rel)* / 1.6 (ratio-calc) 

Konstantonis et al. (2014) c-fos FOS hPDL cells (n.g./n.g., n.g., exp, P3-
6 & P20-24, n.g.) 

dynamic 1Hz for 0.5h, 
1h, 1.5h, 2h, 
2.5h, 3h 

8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial “young cells” (P3-6): increase followed 
by decrease (qPCR, GAPDH) 
“senescent cells” (P20-24): increase 
followed by decrease (qPCR, GAPDH) 

“young cells” highest @ 0.5h: 1300% (rel)* / 
1.3 (ratio-calc) 
“young cells” lowest @ 3h: 50% (rel)* / 0.5 
(ratio-calc) 
“senescent cells” highest @ 1h: 740% (rel)* 
/ 7.4 (ratio-calc) 
“senescent cells” lowest @ 3h: 50% (rel)* / 
0.5 (ratio-calc) 

n.g. n.g. 

Konstantonis et al. (2014) ERK / p-ERK MAPK3; 
MAPK1 

hPDL cells (n.g./n.g., n.g., exp, P3-
6 & P20-24, n.g.) 

dynamic 1Hz for 
15min, 
30min, 
60min, 
180min 

8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial n.g. n.g. “young cells” (P3-6): not reported 
p-ERK in “senescent cells” (P20-24) (WB, actin): 
temporary increase 
ERK in “senescent cells” (WB, actin): no change 

no quantitative information is given 

Konstantonis et al. (2014) JNK / p-JNK MAPK8 hPDL cells (n.g./n.g., n.g., exp, P3-
6 & P20-24, n.g.) 

dynamic 1Hz for 
15min, 
30min, 
60min, 
180min 

8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial n.g. n.g. “young cells” (P3-6): not reported 
p-JNK in “senescent cells” (P20-24) (WB, actin): 
temporary increase 
JNK in “senescent cells” (WB, actin): no change 

no quantitative information is given 

Konstantonis et al. (2014) p38-MAPK / 
p-p38-MAPK 

MAPK14 hPDL cells (n.g./n.g., n.g., exp, P3-
6 & P20-24, n.g.) 

dynamic 1Hz for 
15min, 
30min, 
60min, 
180min 

8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial n.g. n.g. “young cells” (P3-6): not reported 
p-p38 in “senescent cells” (P20-24) (WB, actin): 
temporary increase 
p38 in “senescent cells” (WB, actin): no change 

no quantitative information is given 

Kook and Lee (2012) CDK2 CDK2 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. decrease (WB, α-tubulin) 1 (?) * / 0.4 (ratio-calc) 

Kook and Lee (2012) CDK4 CDK4 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. decrease (WB, α-tubulin) 1 (?) * / 0.3 (ratio-calc) 

Kook and Lee (2012) CyclinA CCNA1; 
CCNA2 

hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. decrease (WB, α-tubulin) no quantitative information is given 

Kook and Lee (2012) CyclinD1 CCND1 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. decrease (WB, α-tubulin) 1 (?) * / 0.4 (ratio-calc) 

Kook and Lee (2012) CyclinE CCNE1 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. decrease (WB, α-tubulin) 1 (?) * / 0.3 (ratio-calc) 

Kook and Lee (2012) ERK / p-ERK MAPK3; 
MAPK1 

hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. p-ERK: increase (ELISA) 0.5 (ng/ml)* / 3 (ratio-calc) 

Kook and Lee (2012) ERK / p-ERK MAPK3; 
MAPK1 

hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5%, 3%, 5%, 
10% 

FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. p-ERK: temporary increase (WB, ERK) p-ERK @ 1.5%: no quantitative information is given 

Kook and Lee (2012) JNK / p-JNK MAPK8 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5%, 3%, 5%, 
10% 

FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. p-JNK: temporary increase (WB, JNK) p-JNK @ 1.5%: no quantitative information given 

Kook and Lee (2012) JNK / p-JNK MAPK8 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. p-JNK: increase (WB, JNK) 1.8 (OD at 450nm) * / 7 (ratio-calc) 

Kook and Lee (2012) P21 CDKN1A hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5%, 3%, 5%, 
10% 

FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. increase (WB, α-tubulin) 3%: 3.6 (ratio)† 

Kook and Lee (2012) p21 / p-p21 TCEAL1 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. p-p21: increase (WB, α-tubulin) p-p21: 3.2 (FC) * / 3.2 (ratio)* 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Kook and Lee (2012) P27 CDKN1B hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5%, 3%, 5%, 
10% 

FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. increase (WB, α-tubulin) 10%: 1.6 (ratio)† 

Kook and Lee (2012) p38-MAPK / 
p-p38-MAPK 

MAPK14 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5%, 3%, 5%, 
10% 

FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. p-p38: temporary increase (WB, p38) p-p38 @ 1.5%: no quantitative information is given 

Kook and Lee (2012) p38-MAPK / 
p-p38-MAPK 

MAPK14 hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. p-p38: increase (ELISA) 4.2 (ng/ml)* / 6.8 (ratio-calc) 

Kook and Lee (2012) PCNA PCNA hPLF (20-30/M, PM, dig, P4-7, 80% 
confluency) 

static 1h 1.5% FX-4000 Tension Plus System + flexible 
bottomed six-well plates coated with 
COL I + vacuum 

equibiaxial n.g. n.g. decrease (WB, α-tubulin) no quantitative information is given 

Lee et al. (2012) CCL-20 CCL20 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 48h: 4.4 (ratio)† n.g. n.g. 

Lee et al. (2012) CCL-20 CCL20 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 
12%,15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 12%: 4.0 (ratio)† n.g. n.g. 

Lee et al. (2012) hBD-1 DEFB1 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial no change  n.g. n.g. 

Lee et al. (2012) hBD-1 DEFB1 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial no change  n.g. n.g. 

Lee et al. (2012) hBD-2 DEFB4A hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 12h…24h:.5.6 (ratio)† n.g. n.g. 

Lee et al. (2012) hBD-2 DEFB4A hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 15%: 5.9 (ratio)† n.g. n.g. 

Lee et al. (2012) hBD-3 DEFB103B hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 48h: 3 (ratio)† n.g. n.g. 

Lee et al. (2012) hBD-3 DEFB103B hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 15%: 2.8 (ratio)† n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Lee et al. (2012) IL-1β IL1B hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 48h: 3 (ratio)† n.g. n.g. 

Lee et al. (2012) IL-1β IL1B hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 15%: 3.3 (ratio)† n.g. n.g. 

Lee et al. (2012) IL-8 CXCL8 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 48h: 2.6 (ratio)† n.g. n.g. 

Lee et al. (2012) IL-8 CXCL8 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 
12%,15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 15%: 2.3 (ratio)† n.g. n.g. 

Lee et al. (2012) SIRT1 SIRT1 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GADPDH) 24h: 3.4 (ratio)† increase (WB, β-actin) 24h: 3.4 (ratio)† 

Lee et al. (2012) SIRT1 SIRT1 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 12%: 3.2 (ratio)† increase (WB, β-actin) 12%: 3.3 (ratio)† 

Lee et al. (2012) TLR-2 TLR2 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 24h: 6.5 (ratio)† n.g. n.g. 

Lee et al. (2012) TLR-2 TLR2 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 12%: 6.3 (ratio)† n.g. n.g. 

Lee et al. (2012) TLR-4 TLR4 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation)for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 24h: 4.6 (ratio)† n.g. n.g. 

Lee et al. (2012) TLR-4 TLR4 hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 12%: 4.6 (ratio)† n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Lee et al. (2012) TNF-a TNF hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
3h, 6h, 12h, 
24h, 48h 

12% Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 48h: 4.7 (ratio)† n.g. n.g. 

Lee et al. (2012) TNF-a TNF hPDLF-hTERT (n.g./n.g., PM, dig, 
P n.g., 70% confluent) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

3%, 6%, 12%, 
15% 

Flexercell FX-4000 Strain Unit + 35-mm 
flexible-bottomed Uniflex culture plates 
with a centrally located rectangular 
portion (15.25 mm×24.18 mm) coated 
with type I collagen + vacuum 

uniaxial increase (sqPCR, GAPDH) 15%: 4.1 (ratio)† n.g. n.g. 

Lee et al. (2015) ALP ALPP hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 3.8 (ratio)* n.g. n.g. 

Lee et al. (2015) CCL3 CCL3 hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
2h, 4h, 8h, 
24h, 48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 48h: 2.8 (ratio)† n.g. n.g. 

Lee et al. (2015) CCL5 CCL5 hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
2h, 4h, 8h, 
24h, 48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 48h: 7.9 (ratio)† n.g. n.g. 

Lee et al. (2015) CCR5 CCR5 hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) 
qPCR for 2h, 
4h, 8h, 24h, 
48h; WB for 
1d, 2d, 3d, 4d 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 48h: 11.3 (ratio)† temporary increase (WB, β-actin) no quantitative information is given 

Lee et al. (2015) Colα1 
(collagen α1) 

COL1A1 hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 4.1 (ratio)* n.g. n.g. 

Lee et al. (2015) IL-12 IL12A hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 8.4 (ratio)* n.g. n.g. 

Lee et al. (2015) OCN BGLAP hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 4.2 (FC?)† / 4.7 (ratio-calc) n.g. n.g. 

Lee et al. (2015) OPG TNFRSF11B hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 7.7 (ratio)* n.g. n.g. 

Lee et al. (2015) Periostin POSTN hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 8.8 (ratio)* n.g. n.g. 

Lee et al. (2015) RANKL TNFSF11 hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 1.9 (rel)* / 1.2 (ratio-calc) n.g. n.g. 

Lee et al. (2015) Runx2 RUNX2 hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
48h 

12% Flexcell FX-5000 Tension Unit + 
BioFlex Culture Plate + vacuum 

equibiaxial increase (qPCR, β-actin) 3.8 (ratio)* n.g. n.g. 

Li et al. (2013) ERK1/2 / p-
ERK1/2 

MAPK3; 
MAPK1 

hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 12h, 24h, 
48h 

10% Flexcell FX-5000 Tension Unit + 
flexible-bottomed BioFlex Culture Plates 
coated with type I collagen + vacuum 

equibiaxial n.g. n.g. p-ERK1/2: increase (WB, ERK) p-ERK1/2 @ 24h: 3.2 (rel)† / 13.7 (ratio-calc) 

Li et al. (2013) ERK5 / p-
ERK5 

MAPK7 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 12h, 24h, 
48h 

10% Flexcell FX-5000 Tension Unit + 
flexible-bottomed BioFlex Culture Plates 
coated with type I collagen + vacuum 

equibiaxial n.g. n.g. p-ERK5: no change (WB, ERK5)  

Li et al. (2013) JNK / p-JNK MAPK8 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 12h, 24h, 
48h 

10% Flexcell FX-5000 Tension Unit + 
flexible-bottomed BioFlex Culture Plates 
coated with type I collagen + vacuum 

equibiaxial n.g. n.g. p-JNK: no change (WB, JNK)  

Li et al. (2013) P38 / p-P38 MAPK14 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 12h, 24h, 
48h 

10% Flexcell FX-5000 Tension Unit + 
flexible-bottomed BioFlex Culture Plates 
coated with type I collagen + vacuum 

equibiaxial n.g. n.g. p-P38: no change (WB, P38)  

Li et al. (2013) RUNX2 RUNX2 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 12h, 24h, 
48h 

10% Flexcell FX-5000 Tension Unit + 
flexible-bottomed BioFlex Culture Plates 
coated with type I collagen + vacuum 

equibiaxial increase followed by decrease (qPCR, 
GAPDH) 

highest @ 24h: 3.2 (FC)* 
lowest @ 48h: 0.2 (FC)* 

increase followed by decrease (WB, GAPDH) hightest @ 24h: 0.8 (rel)* / 2.0 (ratio-calc) 
lowest @ 48h: 0.1 (rel)* / 0.4 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Li et al. (2013) SP7 SP7 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 12h, 24h, 
48h 

10% Flexcell FX-5000 Tension Unit + 
flexible-bottomed BioFlex Culture Plates 
coated with type I collagen + vacuum 

equibiaxial decrease (qPCR, GAPDH) 48h: 0.1 (FC)* temporary increase (WB, GAPDH) 24h: 0.5 (rel)* / 1.3 (ratio-calc) 

Li et al. (2013) SPP1 SPP1 hPDL cells (12-20/n.g., PM, exp, 
P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 12h, 24h, 
48h 

10% Flexcell FX-5000 Tension Unit + 
flexible-bottomed BioFlex Culture Plates 
coated with type I collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 24h: 3.4 (FC)* temporary increase (WB, GAPDH) 24h: 0.3 (rel)* / 2.8 (ratio-calc) 

Li et al. (2014) ERK1/2 / p-
ERK1/2 

MAPK3; 
MAPK1 

hPDL cells (12-16/F, 12-16/M, PM, 
exp, P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% Flexcell FX-5000 Tension Unit + six-well 
culture plates coated with type I 
collagen + vacuum 

equibiaxial n.g. n.g. p-ERK1/2: increase (WB, ERK) p-ERK1/2: 0.5 (rel)* / 8.0 (ratio-calc) 

Li et al. (2014) HIF-1a HIF1A hPDL cells (12-16/F, 12-16/M, PM, 
exp, P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 0h, 12h, 
24h, 48h 

10% Flexcell FX-5000 Tension Unit + six-well 
culture plates coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 24h: 2.4 (ratio)* increase (WB, GAPDH) 24h: 1.1 (rel)* / 1.9 (ratio-calc) 

Li et al. (2014) JNK / p-JNK MAPK8 hPDL cells (12-16/F, 12-16/M, PM, 
exp, P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% Flexcell FX-5000 Tension Unit + six-well 
culture plates coated with type I 
collagen + vacuum 

equibiaxial n.g. n.g. p-JNK: increase (WB, JNK) p-JNK: 0.6 (rel)* / 1.1 (ratio-calc) 

Li et al. (2014) P38 / p-P38 MAPK14 hPDL cells (12-16/F, 12-16/M, PM, 
exp, P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% Flexcell FX-5000 Tension Unit + six-well 
culture plates coated with type I 
collagen + vacuum 

equibiaxial n.g. n.g. increase (WB, p38) 0.8 (rel)* / 1.4 (ratio-calc) 

Li et al. (2014) RUNX2 RUNX2 hPDL cells (12-16/F, 12-16/M, PM, 
exp, P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% Flexcell FX-5000 Tension Unit + six-well 
culture plates coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 3.3 (rel)* / 6.6 (ratio-calc)* increase (WB, GAPDH) 0.1 (rel)* / 2.7 (ratio-calc) 

Li et al. (2014) SP7 SP7 hPDL cells (12-16/F, 12-16/M, PM, 
exp, P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% Flexcell FX-5000 Tension Unit + six-well 
culture plates coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 2.7 (rel)* / 5.7 (ratio)* increase (WB, GAPDH) 0.05 (rel)* / 1.3 (ratio-calc) 

Li et al. (2014) SPP1 SPP1 hPDL cells (12-16/F, 12-16/M, PM, 
exp, P3-6, 80% confluence) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h 

10% Flexcell FX-5000 Tension Unit + six-well 
culture plates coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 2.4 (rel)* / 4.8 (ratio)* increase (WB, GAPDH) 0.02 (rel)* / 1.5 (ratio-calc) 

Li et al. (2015) Cx43 GJA1 hPDL cells ($) (n.g./n.g., n.g., n.g., 
P3-6, 75%-85% confluence) 

dynamic 0.005Hz 
(3min/cyc) for 
0.5h, 1h, 2h, 
4h, 8h, 12h, 
24h 

5% “custom-made tensile device + elastic 
membranes were made of polydimethyl-
siloxane (PDMS) gel +motor” 

uniaxial increase (qPCR, GAPDH) 24h: 6.3 (ratio)* increase (WB, GAPDH) 24h: 0.8 (rel)* / 2.1 (ratio-calc) 

Li et al. (2015) OPG TNFRSF11B hPDL cells ($) (n.g./n.g., n.g., n.g., 
P3-6, 75%-85% confluence) 

dynamic 0.005Hz 
(3min/cyc) for 
0.5h, 1h, 2h, 
4h, 8h, 12h, 
24h 

5% “custom-made tensile device + elastic 
membranes were made of polydimethyl-
siloxane (PDMS) gel +motor” 

uniaxial increase (qPCR, GAPDH) 12h: 4.0 (ratio)* increase (WB, GAPDH) 8h: 0.9 (rel)* / 4.4 (ratio-calc) 

Li et al. (2015) Osterix SP7 hPDL cells ($) (n.g./n.g., n.g., n.g., 
P3-6, 75%-85% confluence) 

dynamic 0.005Hz 
(3min/cyc) for 
0.5h, 1h, 2h, 
4h, 8h, 12h, 
24h 

5% “custom-made tensile device + elastic 
membranes were made of polydimethyl-
siloxane (PDMS) gel +motor” 

uniaxial increase (qPCR, GAPDH) 24h: 14.0 (ratio)* increase followed by plateau (WB, GAPDH) 12h…24h: 1.6 (rel)* / 4.2 (ratio-calc) 

Li et al. (2015) RANKL TNFSF11 hPDL cells ($) (n.g./n.g., n.g., n.g., 
P3-6, 75%-85% confluence) 

dynamic 0.005Hz 
(3min/cyc) for 
0.5h, 1h, 2h, 
4h, 8h, 12h, 
24h 

5% “custom-made tensile device + elastic 
membranes were made of polydimethyl-
siloxane (PDMS) gel +motor” 

uniaxial increase (qPCR, GAPDH) 1h: 3.9 (ratio)* increase (WB, GAPDH) 4h: 1.3 (rel)* / 3.3 (ratio-calc) 

Li et al. (2015) RUNX2 RUNX2 hPDL cells ($) (n.g./n.g., n.g., n.g., 
P3-6, 75%-85% confluence) 

dynamic 0.005Hz 
(3min/cyc) for 
0.5h, 1h, 2h, 
4h, 8h, 12h, 
24h 

5% “custom-made tensile device + elastic 
membranes were made of polydimethyl-
siloxane (PDMS) gel +motor” 

uniaxial increase (qPCR, GAPDH) 24h: 12.0 (ratio)* increase followed by plateau (WB, GAPDH) 12h…24h: 2 (rel)* / 1.4 (ratio-calc) 

Liao and Hua (2013) CSE SLC2A1 hPDL cells (13-18/n.g., PM, dig, P3-
8, Confluence) 

static 30min, 
60min, 
90min, 
120min 

1.5% Flexcell FX-5000 Tension System + 
flexible-bottomed six-well plates + 
vacuum 

equibiaxial increase (qPCR, GAPDH) 60min: 3.7 (ratio)* n.g. n.g. 

Liao and Hua (2013) OPG TNFRSF11B hPDL cells (13-18/n.g., PM, dig, P3-
8, Confluence) 

static 60min 1.5% Flexcell FX-5000 Tension System + 
flexible-bottomed six-well plates + 
vacuum 

equibiaxial OPG: increase (qPCR, GAPDH) 
OPG/RANKL: increase (qPCR, 
GAPDH) 

1.4 (ratio)* 
1.2 (ratio)* 

OPG: increase (ELISA) 
OPG/RANKL: increase (ELISA) 

2127.7 (ng/mL)* / 1.2 (ratio-calc) 
1.2 (rel)* / 1.7 (ratio-calc) 

Liao and Hua (2013) RANKL TNFSF11 hPDL cells (13-18/n.g., PM, dig, P3-
8, Confluence) 

static 60min 1.5% Flexcell FX-5000 Tension System + 
flexible-bottomed six-well plates + 
vacuum 

equibiaxial RANKL: increase (qPCR, GAPDH) 
OPG/RANKL: increase (qPCR, 
GAPDH) 

1.2 (ratio)* 
1.2 (ratio)* 

RANKL: decrease (ELISA) 
OPG/RANKL: increase (ELISA) 

1787.2 (ng/mL)* / 0.7 (ratio-calc) 
1.2 (rel)* / 1.7 (ratio-calc) 

Liu et al. (2012) BGN BGN hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial increase (qPCR, GAPDH) 1.9 (rel)* / 4.6 (ratio-calc) n.g. n.g. 

Liu et al. (2012) Col12A1 COL12A1 hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial Increase (qPCR, GAPDH) 1.4 (rel)* / 3.9 (ratio-calc) n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Liu et al. (2012) EGFR EGFR hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial increase (qPCR, GAPDH) 1.8 (rel)* / 4.9 (ratio-calc) n.g. n.g. 

Liu et al. (2012) IGF-1 IGF1 hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial increase (qPCR, GAPDH) 1.2 (rel)* / 6.0 (ratio-calc) n.g. n.g. 

Liu et al. (2012) ITGA1 ITGA1 hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial decrease (qPCR, GAPDH) 0.6 (rel)* / 0.4 (ratio-calc) n.g. n.g. 

Liu et al. (2012) ITGA3 ITGA3 hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial Increase (qPCR, GAPDH) 0.7 (rel)* / 3.3 (ratio-calc) n.g. n.g. 

Liu et al. (2012) MMP-2 MMP2 hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial Increase (qPCR, GAPDH) 2.0 (rel)* / 3.6 (ratio-calc) n.g. n.g. 

Liu et al. (2012) MSX1 MSX1 hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial increase (qPCR, GAPDH) 0.8 (rel)* / 4.7 (ratio-calc) n.g. n.g. 

Liu et al. (2012) SMAD7 SMAD7 hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial increase (qPCR, GAPDH) 0.4 (rel)* / 2.1 (ratio-calc) n.g. n.g. 

Liu et al. (2012) TGFbR1 TGFBR1 hPDL cells (12-15/n.g., PM, exp, 
P3-4, Confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
24h 

12% Flexcell FX 3000 + six-well, flexible-
bottomed plates + vacuum (Li et al 
2010; Tang et al 2006) 

equibiaxial decrease (qPCR, GAPDH) 0.4 (rel)* / 0.5 (ratio-calc) n.g. n.g. 

Liu et al. (2017) ALP ALPP hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial HPDLSCs: increase (qPCR, β-actin) HPDLSCs @ 12%: 1.6 (ratio)* n.g. n.g. 

Liu et al. (2017) C-fos FOS hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial HPDLSCs: increase (qPCR, β-actin) HPDLSCs @ 14%: 1.7 (ratio)* n.g. n.g. 

Liu et al. (2017) IL-1β IL1B hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial n.g. n.g. HPDLSCs: increase followed by plateau (ELISA) HPDLSCs @ 6%...14%: 3.2 (pg/106 cells)* / 1.5 (ratio)* 

Liu et al. (2017) IL-6 IL6 hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial n.g. n.g. HPDLSCs: increase (ELISA) HPDLSCs @ 14%: 585.7 (pg/106 cells)* / 11.7 (ratio)* 

Liu et al. (2017) IL-8 CXCL8 hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial n.g. n.g. HPDLSCs: increase (ELISA) HPDLSCs @ 14%: 466.7 (pg/106 cells)* / 128.2 (ratio)* 

Liu et al. (2017) OPG TNFRSF11B hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial HPDLSCs: increase (qPCR, β-actin) HPDLSCs @ 12%: 1.6 (ratio)* n.g. n.g. 

Liu et al. (2017) RANKL TNFSF11 hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial HPDLSCs: increase (qPCR, β-actin) HPDLSCs @ 14%: 1.8 (ratio)* n.g. n.g. 

Liu et al. (2017) RUNX2 RUNX2 hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial HPDLSCs: increase (qPCR, β-actin) HPDLSCs @ 12%: 3.7 (ratio)* n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Liu et al. (2017) TNF-α TNF hPDLSCs cells (37.9±7.2/n.g., PM 
and M, dig, P3, 95% confluence) 
from healthy (HPDLSCs) and 
patients w/ periodontitis 
(PPDLSCs: 38.9 ± 7.9/n.g., n.g., 
dig, P3, 95% confluence) 

dynamic 0.1Hz for 12h 6%, 8%, 10%, 
12%, 14% 

Flexcell FX-4000T + 6-well Bioflex 
plates + vacuum 

equibiaxial n.g. n.g. HPDLSCs: increase followed by plateau (ELISA) HPDLSCs @ 6%...14%: 18.6 (pg/106 cells)* / 1.2 (ratio)* 

Long et al. (2001) IL-10 IL10 hPDL cells ($) (18/F, 16/F, 22/M, 
16/M, M, n.g., P6-20, 5×105) 

dynamic 0.005Hz 
sqPCR for 
4h, 24h, 48h; 
ELISA for 
24h, 48h 

6% Flexercell unit + pronectin-coated six-
well Flexercell plates + vacuum 
(Gassner et al 1999) 

equibiaxial increase (sqPCR, GAPDH) 24h: 781.3 (rel)* / not detectable in the 
control 

increase (ELISA) 48h: 62.2 (pg/ml)* / control not detectable 

Long et al. (2001) IL-1β IL1B hPDL cells ($) (18/F, 16/F, 22/M, 
16/M, M, n.g., P6-20, 5×105) 

dynamic 0.005Hz for 
24h 

sqPCR: 3%, 6%, 
10%, 15%; 
ELISA: 6%, 10%, 
15% 

Flexercell unit + pronectin-coated six-
well Flexercell plates + vacuum 
(Gassner et al 1999) 

equibiaxial decrease followed by plateau then 
increase (sqPCR, GAPDH) 

lowest @ 6%…10%: 11.4 (rel) / 0.1 (ratio-
calc) 
highest @15%: 152.3 (rel) / 1.5 (ratio-calc) 

increase (ELISA) 15%: 85.7 (pg/ml)* / control n.g 

Long et al. (2001) IL-1β IL1B hPDL cells ($) (18/F, 16/F, 22/M, 
16/M, M, n.g., P6-20, 5×105) 

dynamic 0.005Hz 
sqPCR for 
4h, 24h, 48h; 
ELISA for 
24h, 48h 

6% Flexercell unit + pronectin-coated six-
well Flexercell plates + vacuum 
(Gassner et al 1999) 

equibiaxial no expression (sqPCR, GAPDH) no quantitative information is given no expression (ELISA) no quantitative information is given 

Long et al. (2001) IL-6 IL6 hPDL cells ($) (18/F, 16/F, 22/M, 
16/M, M, n.g., P6-20, 5×105) 

dynamic 0.005Hz 
sqPCR for 
4h, 24h, 48h; 
ELISA for 
24h, 48h 

6% Flexercell unit + pronectin-coated six-
well Flexercell plates + vacuum 
(Gassner et al 1999) 

equibiaxial no expression (sqPCR, GAPDH) no quantitative information is given no expression (ELISA) no quantitative information is given 

Long et al. (2001) IL-8 CXCL8 hPDL cells ($) (18/F, 16/F, 22/M, 
16/M, M, n.g., P6-20, 5×105) 

dynamic 0.005Hz 
sqPCR for 
4h, 24h, 48h; 
ELISA for 
24h, 48h 

6% Flexercell unit + pronectin-coated six-
well Flexercell plates + vacuum 
(Gassner et al 1999) 

equibiaxial no expression (sqPCR, GAPDH) no quantitative information is given no expression (ELISA) no quantitative information is given 

Long et al. (2001) TNF-α TNF hPDL cells ($) (18/F, 16/F, 22/M, 
16/M, M, n.g., P6-20, 5×105) 

dynamic 0.005Hz 
sqPCR for 
4h, 24h, 48h; 
ELISA for 
24h, 48h 

6% Flexercell unit + pronectin-coated six-
well Flexercell plates + vacuum 
(Gassner et al 1999) 

equibiaxial no expression (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Long et al. (2002) COX-2 PTGS2 hPDL cells (18/F, 16/F, 18/M, 16/M, 
M, exp, P3-6, Confluent) 

dynamic 0.005Hz for 
4h, 24h, 48h 

6% Flexercell unit + collagen type 1-coated 
Bioflex II plates + vacuum 

equibiaxial decrease (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Long et al. (2002) iNOS NOS2 hPDL cells (18/F, 16/F, 18/M, 16/M, 
M, exp, P3-6, Confluent) 

dynamic 0.005Hz for 
4h, 24h, 48h 

6% Flexercell unit + collagen type 1-coated 
Bioflex II plates + vacuum 

equibiaxial no change (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Long et al. (2002) MMP-1 MMP1 hPDL cells (18/F, 16/F, 18/M, 16/M, 
M, exp, P3-6, Confluent) 

dynamic 0.005Hz for 
4h, 24h, 48h 

6% Flexercell unit + collagen type 1-coated 
Bioflex II plates + vacuum 

equibiaxial no change (sqPCR, GAPDH) no quantitative information is given no expression (WB)  

Long et al. (2002) MMP-3 MMP3 hPDL cells (18/F, 16/F, 18/M, 16/M, 
M, exp, P3-6, Confluent) 

dynamic 0.005Hz for 
4h, 24h, 48h 

6% Flexercell unit + collagen type 1-coated 
Bioflex II plates + vacuum 

equibiaxial no change (sqPCR, GAPDH) no quantitative information is given no expression (WB)  

Long et al. (2002) PGE2 PGE2 hPDL cells (18/F, 16/F, 18/M, 16/M, 
M, exp, P3-6, Confluent) 

dynamic 0.005Hz for 
24h 

1.8%, 3%, 6%, 
10%, 12.5% 

Flexercell unit + collagen type 1-coated 
Bioflex II plates + vacuum 

equibiaxial n.a. n.a. 1.8%, 3%, 6%: no expression (RIA) 
10%, 12.5%: increase (RIA) 

12.5%: 102.8 (ng /106 cells) / control: no PGE2 detectable 

Long et al. (2002) TIMP-II TIMP2 hPDL cells (18/F, 16/F, 18/M, 16/M, 
M, exp, P3-6, Confluent) 

dynamic 0.005Hz 
sqPCR for 
4h, 24h; WB 
for 24h, 48h 

6% Flexercell unit + collagen type 1-coated 
Bioflex II plates + vacuum 

equibiaxial no change (sqPCR, GAPDH) no quantitative information is given no change (WB)  

Ma et al. (2015) ARRAY ARRAY hPDL cells (11/F, PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch 
followed by 
5s relaxation) 
for 6h, 24h 

10% Cell Strain Unit (CSU + flexible-
bottomed culture dish made of elastic 
silicon rubber (Q7-4750, Dow Corning 
Co., Midland, MI, USA) + spherical cap 

equibiaxial Human Extracellular Matrix & Adhesion 
Molecules RT2 Profiler PCR Array 
(PAHS-013, SABiosciences) 

   

Ma et al. (2015) Integrin a 5 ITGAV hPDL cells (11/F, PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch 
followed by 
5s relaxation) 
for 6h, 24h 

10% Cell Strain Unit (CSU + flexible-
bottomed culture dish made of elastic 
silicon rubber (Q7-4750, Dow Corning 
Co., Midland, MI, USA) + spherical cap 

equibiaxial n.g. n.g. increase (WB, GAPDH) 24h: 1.1 (rel)* / 1.3 (ratio-calc) 

Matsuda et al. (1998a) ERK1/2 / p-
ERK(Tyr204) 

MAPK3; 
MAPK1 

hPDL cells (n.g./n.g., n.g., exp, P3-
5, confluence) 

dynamic 0.1Hz 
(6cyc/min: 
strain for 5s 
and then 5s 
relaxation) for 
15min, 
30min, 60min 

9% Flexercell Strain Unit Model FX-2000 
(Banes et al 1985) + flexible substratum 
(25 mm dia., Flex I culture plate) + 
vacuum 

equibiaxial n.g. n.g. no change (WB) no quantitative information is given 

Matsuda et al. (1998a) JNK / p-
JNK(Thr183/Tyr18
5) 

MAPK8 hPDL cells (n.g./n.g., n.g., exp, P3-
5, confluence) 

dynamic 0.1Hz 
(6cyc/min: 
strain for 5s 
and then 5s 
relaxation) for 
15min, 
30min, 60min 

9% Flexercell Strain Unit Model FX-2000 
(Banes et al 1985) + flexible substratum 
(25 mm dia., Flex I culture plate) + 
vacuum 

equibiaxial n.g. n.g. increase (WB) no quantitative information is given 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Matsuda et al. (1998a) p38 / p-
p38(Thr180/Tyr18
2) 

MAPK14 hPDL cells (n.g./n.g., n.g., exp, P3-
5, confluence) 

dynamic 0.1Hz 
(6cyc/min: 
strain for 5s 
and then 5s 
relaxation) for 
15min, 
30min, 60min 

9% Flexercell Strain Unit Model FX-2000 
(Banes et al 1985) + flexible substratum 
(25 mm dia., Flex I culture plate) + 
vacuum 

equibiaxial n.g. n.g. no change (WB) no quantitative information is given 

Matsuda et al. (1998b) ALP ALPP hPDL cells (n.g./n.g., M, exp, P3-7, 
n.g.) 

dynamic 0.1Hz 
(6cyc/min: 
strain for 5s 
followed by 
5s relaxation) 
for 2d, 4d, 6d 

9%,18% Flexercell Strain Unit Model FX-2000 
(Banes et al 1985) + flexible substratum 
(25 mm dia., Flex I culture plate) + 
vacuum 

equibiaxial n.g. n.g. 9%: increase (ALP activity) 
18%: increase (ALP activity) 

9% @ 6d: 257.7 (U/mg protein)* / 1.4 (ratio-calc) 
18% @ 4…6d: 230.8 (U/mg protein)* / 1.3 (ratio-calc) 

Matsuda et al. (1998b) EGF-R EGFR hPDL cells (n.g./n.g., M, exp, P3-7, 
n.g.) 

dynamic 0.1Hz 
(6cyc/min: 
strain for 5s 
followed by 
5s relaxation) 
for 4d 

9% Flexercell Strain Unit Model FX-2000 
(Banes et al 1985) + flexible substratum 
(25 mm dia., Flex I culture plate) + 
vacuum 

equibiaxial n.g. n.g. decrease (WB) 0.4 (ratio) 

Memmert et al. (2019) ARRAY ARRAY hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial PrimePCR™ Assay (Autophagy (SAB 
Target List) H96, Bio-Rad Laboratories, 
Munich, Germany) 

 n.g. n.g. 

Memmert et al. (2019) ATG10 ATG10 hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: temporary decrease (qPCR, 
GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 4h: 0.9 (FC)† 
20% @ 24h: 0.3 (FC)† 

n.g. n.g. 

Memmert et al. (2019) ATG4C ATG4C hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: no change (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

20% @ 24h: 0.4 (FC)† n.g. n.g. 

Memmert et al. (2019) ATG7 ATG7 hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: temporary decrease (qPCR, 
GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 4h: 0.8 (FC)† 
20% @ 24h: 0.4 (FC)† 

n.g. n.g. 

Memmert et al. (2019) BCL2 BCL2 hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: temporary decrease (qPCR, 
GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 4h: 0.7 (FC)† 
20% @ 24h: 0.7 (FC)† 

n.g. n.g. 

Memmert et al. (2019) BID BID hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: decrease followed by increase 
(qPCR, GAPDH) 
20%: no change (qPCR, GAPDH) 

3% lowest @ 4h: 0.9 (FC)† 
3% highest @ 24h: 1.9 (FC)† 

n.g. n.g. 

Memmert et al. (2019) DAPK1 DAPK1 hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 24h: 0.7 (FC)† 
20% @ 24h: 0.3 (FC)† 

n.g. n.g. 

Memmert et al. (2019) LC3-I Map1lc3a hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial n.g. n.g. increase (WB, GAPDH) no quantitative information is given 

Memmert et al. (2019) LC3-II Map1lc3a hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial n.g. n.g. increase (WB, GAPDH) 1.4 (ratio)† 

Memmert et al. (2019) PIK3CG PIK3CG hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: no change (qPCR, GAPDH) 
20%: no change (qPCR, GAPDH) 

 n.g. n.g. 

Memmert et al. (2019) SNCA SNCA hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: increase (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 24h: 1.2 (FC)† 
20% @ 24h: 0.3 (FC)† 

n.g. n.g. 

Memmert et al. (2019) TP53 TP53 hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: increase (qPCR, GAPDH) 
20%: temporary increase (qPCR, 
GAPDH) 

3% @ 4h: 2.1 (FC)† 
20% @ 4h: 4.2 (FC)† 

n.g. n.g. 

Memmert et al. (2019) UVRAG UVRAG hPDLCs (11-19/n.g., n.g., exp, P3-
5, 80% confluence) 

static 4h, 24h 3%, 20% CESTRA cell strain device + BioFlex-II-
culture plates + stepping motor 
(Deschner et al. 2012) 

equibiaxial 3%: temporary decrease (qPCR, 
GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 4h: 0.7(FC)† 
20% @ 24h: 0.5 (FC)† 

n.g. n.g. 

Memmert et al. (2020) ARRAY ARRAY hPDLFs (11-19/n.g., n.g., exp, P3-5, 
80% confluency) 

dynamic 0.1Hz for 24h 3% CESTRA cell strain device + 6-well 
BioFlex plates coated with collagen type 
I + stepping motor 

equibiaxial PrimePCR assay (Autophagy [SAB 
Target List] H96,Bio-Rad Laboratories, 
Munich, Germany) 

 n.g. n.g. 

Memmert et al. (2020) SQSTM1 SQSTM1 hPDLFs (11-19/n.g., n.g., exp, P3-5, 
80% confluency) 

static qPCR for 8h, 
16h, 24h; WB 
for 1h 

3% CESTRA cell strain device + 6-well 
BioFlex plates coated with collagen type 
I + stepping motor 

equibiaxial increase (qPCR, GAPDH) 16h: 1.5 (FC)† no change (WB, GAPDH)  

Memmert et al. (2020) SQSTM1 SQSTM1 hPDLFs (11-19/n.g., n.g., exp, P3-5, 
80% confluency) 

static qPCR for 8h, 
16h, 24h; WB 
for 1h 

20% CESTRA cell strain device + 6-well 
BioFlex plates coated with collagen type 
I + stepping motor 

equibiaxial decrease followed by increase (qPCR, 
GAPDH) 

lowest @ 8h: 0.6 (FC)† 
highest @ 16h: 1.8 (FC)† 

increase (WB, GAPDH) 1.7 (ratio)† 

Memmert et al. (2020) SQSTM1 SQSTM1 hPDLFs (11-19/n.g., n.g., exp, P3-5, 
80% confluency) 

dynamic 0.1Hz qPCR 
for 8h, 16h, 
24h; WB for 
1h 

3% CESTRA cell strain device + 6-well 
BioFlex plates coated with collagen type 
I + stepping motor 

equibiaxial increase (qPCR, GAPDH) 24h: 3.2 (FC)† increase (WB, GAPDH) 3.2 (ratio)† 

Meng et al. (2010) a-SMA ACTA2 hPDL cells (12-17/n.g., n.g., exp, 
P3-4, 80% confluence) 

dynamic 0.5 Hz for 1h, 
3h, 6h, 12h 

0.4% 
(4000µstrain) 

“a uniaxial four point bending system” 
(Yu 2009; Sichuan University, patents 
CN2534576 and CN1425905) consists 
of a digital control part, an actuator, and 
cell culture plates) 

uniaxial increase (sqPCR, GAPDH) 12h: 8.4 (ratio)* increase (WB, GAPDH) 12h: 2 (rel)* / 9.8 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Miura et al. (2000) PA PLAT; PLAU hPDL cells (12/M, 10/M, 11/F, exp, 
PM, P5-7 and P19-22, confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
5d 

9%, 18% Flexercell strain unit + culture plates 
coated with type I collagen (Flexcell) 

equibiaxial n.g. n.g. 9%: increase (PA activity, chromogenic substrate 
assay) 
15%: increase (PA activity, chromogenic substrate 
assay) 

“young cells” (P5-7) @ 9%: 5.9 (mU/105cells)* / 1.6 
(ratio-calc) 
“old cells” (P19-22) @ 9%: 8.2 (mU/105cells)* / 2.2 (ratio-
calc) 
“young cells” (P5-7) @ 15%: 8 (mU/105cells)* / 2.2 (ratio-
calc) 
“old cells” (P19-22) @ 15%:10.9 (mU/105cells)* / 2.9 
(ratio-calc) 

Miura et al. (2000) PA PLAT; PLAU hPDL cells (12/M, 10/M, 11/F, exp, 
PM, P5-7 and P19-22, confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
1d, 3d, 5d 

18% Flexercell strain unit + culture plates 
coated with type I collagen (Flexcell) 

equibiaxial n.g. n.g. “young cells” (P5-7): increase (PA activity, 
chromogenic substrate assay) 
“old cells” (P19-22): increase (PA activity, chromogenic 
substrate assay) 

“young cells” @ 5d: 7.8 (mU/105cells)* / 2.1 (ratio-calc) 
“old cells” @ 5d: 11.8 (mU/105cells)* / 3 (ratio-calc) 

Miura et al. (2000) PA PLAT; PLAU hPDL cells (12/M, 10/M, 11/F, exp, 
PM, P5-7 and P19-22, confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
duration n.g. 

18% Flexercell strain unit + culture plates 
coated with type I collagen (Flexcell) 

equibiaxial n.g. n.g. “young cells” (P5-7): increase (PA activity, 
chromogenic substrate assay) 
“old cells” (P19-22): increase (PA activity, chromogenic 
substrate assay) 

Donor 1, “young cells” : 7.9 (mU/105cells)† / 2.2 (ratio-
calc) 
Donor 1, “old cells” : 11.5 (mU/105cells)† / 3.1 (ratio-calc) 
Donor 1, “young cells” : 2.5 (U/mg protein)† / 1.8 (ratio-
calc) 
Donor 1, “old cells” : 3.0 (U/mg protein)† / 2.2 (ratio-calc) 
Donor 2, “young cells”: 7.6 (mU/105cells)† / 2.3 (ratio-
calc) 
Donor 2, “old cells” : 12.3 (mU/105cells)† / 3.4 (ratio-calc) 
Donor 2, “young cells” : 2.4 (U/mg protein)† / 1.6 (ratio-
calc) 
Donor 2, “old cells” : 2.9 (U/mg protein)† / 2.1 (ratio-calc) 
Donor 3, “young cells” : 7.2 (mU/105cells)† / 2.4 (ratio-
calc) 
Donor 3, “old cells” : 12.6 (mU/105cells)† / 3.9 (ratio-calc) 
Donor 3, “young cells” : 2.5 (U/mg protein)† / 1.6 (ratio-
calc) 
Donor 3, “old cells” : 2.9 (U/mg protein)† / 2.1 (ratio-calc) 

Miura et al. (2000) PAI-1 SERPINE1 hPDL cells (12/M, 10/M, 11/F, exp, 
PM, P5-7 and P19-22, confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
duration n.g. 

18% Flexercell strain unit + culture plates 
coated with type I collagen (Flexcell) 

equibiaxial “young cells” (P5-7): no change 
(sqPCR, GAPDH) 
“old cells” (P19-22): no change (sqPCR, 
GAPDH) 

no quantitative information is given n.g. n.g. 

Miura et al. (2000) tPA PLAT hPDL cells (12/M, 10/M, 11/F, exp, 
PM, P5-7 and P19-22, confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
duration n.g. 

18% Flexercell strain unit + culture plates 
coated with type I collagen (Flexcell) 

equibiaxial “young cells” (P5-7): increase (sqPCR, 
GAPDH) 
“old cells” (P19-22): increase (sqPCR, 
GAPDH) 

no quantitative information is given “young cells”: increase (WB) 
“old cells”: increase (WB) 

no quantitative information is given 

Miura et al. (2000) uPA PLAU hPDL cells (12/M, 10/M, 11/F, exp, 
PM, P5-7 and P19-22, confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
duration n.g. 

18% Flexercell strain unit + culture plates 
coated with type I collagen (Flexcell) 

equibiaxial “young cells” (P5-7): no expression 
(sqPCR, GAPDH) 
“old cells” (P19-22): no expression 
(sqPCR, GAPDH) 

no quantitative information is given “young cells”: no expression (WB) 
“old cells”: no expression (WB) 

no quantitative information is given 

Molina et al. (2001) Focal 
Adhesion 
Kinase 1 
(p125FAK) / p-
FAK 

PTK2 hPDL cells (12-14/n.g., PM, exp, 
P3-6, confluence) 

static 15min, 
30min, 
45min, 1h, 
24h, 48h, 72h 

2.5% Petriperm dishes stretched by being 
placed on top of a spheroidal convex 
template (Saito et al1991) + weight 

equibiaxial n.g. n.g. p-FAK: increase followed by plateau then decrease 
(WB, FAK total) 

p-FAK: highest @ 45…60min: 7.1% (rel)* / 2.3 (ratio-
calc) 
p-FAK: lowest @ 72min: 2% (rel)* / 0.6 (ratio-calc) 

Monnouchi et al. (2011) ACE ACE hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8%, 12% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial increase (sqPCR, GAPDH) 8%: 6.1 (FC)* n.g. n.g. 

Monnouchi et al. (2011) AGT AGT hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial increase (qPCR, β-actin) HPLF-2E: 1.8 (FC)* 
HPLF-2D: 2.3 (FC)* 
HPLF-3M: 1.6 (FC)* 

n.g. n.g. 

Monnouchi et al. (2011) ALP ALPP hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial increase (qPCR, β-actin) HPLF-2E: 2.3 (FC)* 
HPLF-2D: 2.1 (FC)* 
HPLF-3M: 2.9 (FC)* 

n.g. n.g. 

Monnouchi et al. (2011) AT1 AGTR1 hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial increase (sqPCR, GAPDH) HPLF-2E: no quantitative information is 
given 
HPLF-2D: no quantitative information is 
given 

increase (WB, β-actin) HPLF-3M: no quantitative information is given 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Monnouchi et al. (2011) AT2 AGTR2 hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial no change (sqPCR, GAPDH) HPLF-2E: no quantitative information is 
given 
HPLF-2D: no quantitative information is 
given 

no change (WB, β-actin) HPLF-3M: no quantitative information is given 

Monnouchi et al. (2011) OPG TNFRSF11B hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8%, 12% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial increase (sqPCR, GAPDH) HPDLF-2E: 12%: 2.2 (FC)* n.g. n.g. 

Monnouchi et al. (2011) RANKL TNFSF11 hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8%, 12% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial decrease followed by inccrease 
(sqPCR, GAPDH) 

HPDLF-2E: lowest @ 8%: 0.5 (FC)* 
HPDLF-2E: highest @ 12%: 1.3 (FC)* 

n.g. n.g. 

Monnouchi et al. (2011) Renin REN hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8%, 12% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial increase (sqPCR, GAPDH) 8%: 2.4 (FC)* n.g. n.g. 

Monnouchi et al. (2011) TGF-β1 TGFB1 hPDL cells (30/F, 39/F, 26/m, M, 
dig, P5-6, Sub-confluence) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) 

uniaxial increase (qPCR, β-actin) HPLF-2E: 2.6 (FC)* 
HPLF-2D: 1.7 (FC)* 
HPLF-3M: 2.1 (FC)* 

n.g. n.g. 

Monnouchi et al. (2015) IL-11 IL11 hPDL cells (30/F, 39/F, 26/M, M, 
exp, P5-7, 2×104/cm2) 

dynamic 1Hz (0.5s 
stretch and 
0.5s 
relaxation per 
cycle) for 1h 

8% STB-140 (STREX Co) + culture 
chambers coated with type I collagen 
(Cell matrix I-P; Nitta Gelatin Inc., 
Osaka, Japan) (Monnouchi 2011) 

uniaxial increase (qPCR, β-actin) HPDLC-2D: 2.6 (FC)* 
HPDLC-2E: 5.5 (FC)* 
HPDLC-3M: 3.5 (FC)* 

increase (ELISA) HPDLC-2D: 124.0 (pg/ml)* / 4 (ratio-calc) 
HPDLC-2E: 88.0 (pg/ml)* / 2.8 (ratio-calc) 
HPDLC-3M: 217.0 (pg/ml)* / 2.3 (ratio-calc) 

Nakashima et al. (2009) Fibulin-5 FBLN5 hPDL cells (n.g./n.g., M, exp, P6, 
Confluent) 

dynamic 0.01Hz 
(1/60Hz) for 
7d 

5% STB-140 STREX cell stretch system 
(Strex Co) + elastic silicone chamber 

uniaxial increase (Northern blot, β-actin) 1.5 (ratio) increase (WB, β-actin) 1.9 (ratio) 

Narimiya et al. (2017) MMP-12 MMP12 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 4×105) 

static qPCR for 6h, 
12h, 24h; 
ELISA for 
24h WB for 
24h 

15% Cell Extender version3 (MOLCURE, 
Tokyo, Japan) + Bioflex® plates 
(Flexcell) + actuator (Wada 2017) 

equibiaxial increase (qPCR, GAPDH) 24h: 10.5 (FC)* increase (ELISA) 
increase (WB) 

ELISA: 420 (pg/ml)* / 1.5 (ratio-calc) 
WB: no quantitative information given 

Narimiya et al. (2017) TIMP-1 TIMP1 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 4×105) 

static 24h 15% Cell Extender version3 (MOLCURE, 
Tokyo, Japan) + Bioflex® plates 
(Flexcell) + actuator (Wada 2017) 

equibiaxial no change (qPCR, GAPDH)  n.g. n.g. 

Narimiya et al. (2017) TIMP-2 TIMP2 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 4×105) 

static 24h 15% Cell Extender version3 (MOLCURE, 
Tokyo, Japan) + Bioflex® plates 
(Flexcell) + actuator (Wada 2017) 

equibiaxial no change (qPCR, GAPDH)  n.g. n.g. 

Narimiya et al. (2017) TIMP-3 TIMP3 Human immortalized PDLCs 
(n.g./n.g., n.g., gene transfection, 
n.g., 4×105) 

static 24h 15% Cell Extender version3 (MOLCURE, 
Tokyo, Japan) + Bioflex® plates 
(Flexcell) + actuator (Wada 2017) 

equibiaxial no change (qPCR, GAPDH)  n.g. n.g. 

Nazet et al. (2020) ALP ALPP hPDLF (17-27/F, 17-27/M, M, n.g., 
P3-6, 7×104) 

static 24h, 48h, 72h 35% six-well bioflex membrane plates coated 
with collagen I + custom-made 
spherical cap silicone stamps 

equibiaxial n.g. n.g. increase followed by platform (ELISA) 48h...72h: 1.4 (ratio)† 

Nazet et al. (2020) ALP ALPP hPDLF (17-27/F, 17-27/M, M, n.g., 
P3-6, 7×104) 

static 48h 7%, 10%, 16%. 
35% 

six-well bioflex membrane plates coated 
with collagen I + custom-made 
spherical cap silicone stamps 

equibiaxial n.g. n.g. increase (ELISA) 16%: 1.5 (ratio)† 

Nazet et al. (2020) COX-2 PTGS2 hPDLF (17-27/F, 17-27/M, M, n.g., 
P3-6, 7×104) 

static 24h, 48h, 72h 35% six-well bioflex membrane plates coated 
with collagen I + custom-made 
spherical cap silicone stamps 

equibiaxial temporary increase (qPCR, TBP/PPIB) 48h: 2.2 (FC)† n.g. n.g. 

Nazet et al. (2020) COX-2 PTGS2 hPDLF (17-27/F, 17-27/M, M, n.g., 
P3-6, 7×104) 

static 48h 7%, 10%, 16%. 
35% 

six-well bioflex membrane plates coated 
with collagen I + custom-made 
spherical cap silicone stamps 

equibiaxial increase (qPCR, TBP/PPIB) 35%: 2.5 (FC)† n.g. n.g. 

Nazet et al. (2020) IL-6 IL6 hPDLF (17-27/F, 17-27/M, M, n.g., 
P3-6, 7×104) 

static 24h, 48h, 72h 35% six-well bioflex membrane plates coated 
with collagen I + custom-made 
spherical cap silicone stamps 

equibiaxial temporary decrease (qPCR, TBP/PPIB) 48h: 0.6 (FC)† n.g. n.g. 

Nazet et al. (2020) IL-6 IL6 hPDLF (17-27/F, 17-27/M, M, n.g., 
P3-6, 7×104) 

static 48h 7%, 10%, 16%. 
35% 

six-well bioflex membrane plates coated 
with collagen I + custom-made 
spherical cap silicone stamps 

equibiaxial decrease (qPCR, TBP/PPIB) 35%: 0.7 (FC)† n.g. n.g. 

Nemoto et al. (2010) ARRAY ARRAY hPDL cells (20/n.g., 40/n.g., M, dig, 
P4-8, 5×105 cells/cm2) 

dynamic 0.017Hz 
(1/60Hz) 
(conditions: 
60s/returns; 
resting time: 
29s)   short 
time for 1h, 
3h, 12h, 24h, 
48h; long 
time for 1d, 
3d, 5d, 7d 

5% (Stretch 
length: 1.6mm, 
stretch ratio: 
105%) 

STB-140 (Strex Co) + 50 cm2 silicon 
chambers coated with 50 mg/ml COL1 
+ stepping motor 

uniaxial Gene Chip Human Genome U133 plus 
(Agilent) 

too many n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Nemoto et al. (2010) COLIVα1 COL4A1 hPDL cells (20/n.g., 40/n.g., M, dig, 
P4-8, 5×105 cells/cm2) 

dynamic 0.017Hz 
(1/60Hz) 
(Conditions: 
60s/returns; 
resting time: 
29s)  short 
time for 1h, 
3h, 12h, 24h, 
48h; long 
time for 1d, 
3d, 5d, 7d 

5% (Stretch 
length: 1.6mm, 
stretch ratio: 
105%) 

STB-140 (Strex Co) + 50 cm2 silicon 
chambers coated with 50 mg/ml COL1 
+ stepping motor 

uniaxial short time: increase followed by plateau 
(qPCR, GAPDH) 
long time: increase (qPCR, GAPDH) 

short time @ 1h…48h: 0.3 (rel)* / 1.7 (ratio-
calc) 
long time @ 7d: 0.5 (rel)* / 5.4 (ratio-calc) 

n.g. n.g. 

Nemoto et al. (2010) COLIα1 COL1A1 hPDL cells (20/n.g., 40/n.g., M, dig, 
P4-8, 5×105 cells/cm2) 

dynamic 0.017Hz 
(1/60Hz) 
(Conditions: 
60s/returns; 
resting time: 
29s) short 
time for 1h, 
3h, 12h, 24h, 
48h; long 
time for 1d, 
3d, 5d, 7d 

5% (Stretch 
length: 1.6mm, 
stretch ratio: 
105%) 

STB-140 (Strex Co) + 50 cm2 silicon 
chambers coated with 50 mg/ml COL1 
+ stepping motor 

uniaxial short time: decrease (qPCR, GAPDH) 
long time: decrease (qPCR, GAPDH) 

short time @ 24h: 0.3 (rel)* / 0.3 (ratio-calc) 
long time @ 3d: 0.2 (rel)* / 0.3 (ratio-calc) 

n.g. n.g. 

Nemoto et al. (2010) COLXIIα1 COL12A1 hPDL cells (20/n.g., 40/n.g., M, dig, 
P4-8, 5×105 cells/cm2) 

dynamic 0.017Hz 
(1/60Hz) 
(conditions: 
60s/returns; 
resting time: 
29s)   short 
time for 1h, 
3h, 12h, 24h, 
48h; long 
time for 1d, 
3d, 5d, 7d 

5% (Stretch 
length: 1.6mm, 
stretch ratio: 
105%) 

STB-140 (Strex Co) + 50 cm2 silicon 
chambers coated with 50 mg/ml COL1 
+ stepping motor 

uniaxial short time: decrease (qPCR, GAPDH) 
long time: decrease (qPCR, GAPDH) 

short time @ 12h: 0.1 (rel)* / 0.3 (ratio-calc) 
long time @ 1d: 0.2 (rel)* / 0.4 (ratio-calc) 

n.g. n.g. 

Ngan et al. (1990) cAMP cAMP hPDL cells (n.g./n.g., PM, dig, P4-6, 
4×105 cells/cm2) 

static 5min, 15min, 
30min, 60min 

n.g. Petriperm dishes + spheroidal convex 
template + weight 

equibiaxial n.a. n.a. increase (cAMP assay) 60min: 0.8 (pmol/104 PDL cells)* / 1.1 (ratio-calc) 

Ngan et al. (1990) PGE2 PGE2 hPDL cells (n.g./n.g., PM, dig, P4-6, 
4×105 cells/cm2) 

static 5min, 15min, 
30min, 60min 

0.28%, 0.95%, 
1.09%, 1.72% 

Petriperm dishes + spheroidal convex 
template + weight 

equibiaxial n.a. n.a. 0.28%: increase (RIA) 
0.95%: temporary decrease (RIA) 
1.09%: increase (RIA) 
1.72%: increase (RIA) 

0.28% @ 120min: 109 (pg/104 PDL cells)* / 1.1 (ratio-
calc) 
0.95% @ 15min: 98 (pg/104 PDL cells)* / 0.9 (ratio-calc) 
1.09% @ 120min: 111 (pg/104 PDL cells)* / 1.1 (ratio-
calc) 
1.72% @ 30min: 101 (pg/104 PDL cells)* / 1.7 (ratio-calc) 

Nogueira et al. (2014a) TLR2 TLR2 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluence) 

dynamic 0.05Hz for 
1d, 3d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Nokhbehsaim 2012; 
further reference to Rath-Deschner 
2009) 

equibiaxial 3%: increase followed by decrease 
(qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% highest @ 1d: 1.1 (FC)* 
3% lowest @ 3d: 0.88 (FC) 
20% @ 3d: 0.31 (FC) 

n.g. n.g. 

Nogueira et al. (2014a) TLR4 TLR4 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluence) 

dynamic 0.05Hz for 
1d, 3d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Nokhbehsaim 2012; 
further reference to Rath-Deschner 
2009) 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 3d: 0.88 (FC) 
20% @ 3d: 0.48 (FC) 

n.g. n.g. 

Nogueira et al. (2014a) Visfatin NAMPT hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluence) 

dynamic 0.05Hz for 
1d, 3d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Nokhbehsaim 2012; 
further reference to Rath-Deschner 
2009) 

equibiaxial 1d: decrease followed by plateau 
(qPCR, GAPDH) 
3d: decrease (qPCR, GAPDH) 

3...20% @ 1d: 0.7 (FC)† 
20% @ 3d: 0.6 (FC)† 

n.g. n.g. 

Nogueira et al. (2014b) COX2 PTGS2 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluence) 

dynamic 0.05Hz for 
36h 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial n.g. n.g. increase (ELISA) 20%: 210 (pg/mL)* / 1.8 (ratio-calc) 

Nogueira et al. (2014b) OPG TNFRSF11B hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluence) 

dynamic 0.05Hz for 
1d, 3d 

20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial OPG: decrease followed by plateau 
(qPCR, GAPDH) 
RANKL/OPG: increase 

OPG @ 1d…3d: 0.2 (FC)* 
RANKL/OPG @ 1d: 4.5 (ratio)* 

OPG: decrease (ELISA) 
RANKL/OPG: increase 

OPG @ 1d: 0.6 (ratio)* 
RANKL/OPG @ 3d: 1.4 (ratio)* 

Nogueira et al. (2014b) PGE2 PGE2 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluence) 

dynamic 0.05Hz for 
1d, 3d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial n.a. n.a. 1d: increase (ELISA) 
3d: increase followed by plateau (ELISA) 

20% @ 1d: 28.3 (ratio)† 
3…20% @ 3d: 4.3 (ratio)† 

Nogueira et al. (2014b) RANKL TNFSF11 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluence) 

dynamic 0.05Hz for 
1d, 3d 

20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial RANKL: decrease (qPCR, GAPDH) 
RANKL/OPG: increase 

RANKL @ 3d: 0.3 (FC)* 
RANKL/OPG @ 1d: 4.5 (ratio)* 

RANKL: decrease (ELISA) 
RANKL/OPG: increase 

RANKL @ 1d: 0.6 (ratio)* 
RANKL/OPG @ 3d: 1.4 (ratio)* 

Nokhbehsaim et al. (2010) ALP ALPP hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3%: increase followed by decrease 
(qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% highest @1d: 1.13 (FC) 
3% lowest @ 6d: 0.59 (FC) 
20% @ 6d: 0.34 (FC) 

n.g. n.g. 

Nokhbehsaim et al. (2010) COL1 COL1A1; 
COL1A2 

hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20% decrease (qPCR, GAPDH) 

3% @ 1d: 0.25 (FC) 
20% @ 6d: 0.30 (FC) 

n.g. n.g. 

Nokhbehsaim et al. (2010) COX2 PTGS2 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3% temporary increase (qPCR, 
GAPDH) 
20% increase (qPCR, GAPDH) 

3% @ 1d: 1.29 (FC) 
20% @ 6d: 3.32 (FC) 

n.g. n.g. 

Nokhbehsaim et al. (2010) IGF1 IGF1 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3%: decrease followed by plateau 
(qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 1d...6d: 0.57 (FC) 
20% @ 1d: 0.25 (FC) 

n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Nokhbehsaim et al. (2010) IL-1B IL1B hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3%: increase (qPCR, GAPDH) 
20%: increase (qPCR, GAPDH) 

3% @ 1d: 12.41 (FC) 
20% @ 6d: 36.16 (FC) 

n.g. n.g. 

Nokhbehsaim et al. (2010) IL-8 CXCL8 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz qPCR 
for 1d, 6d; 
ELISA for 1d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3%: increase (qPCR, GAPDH) 
20%: increase (qPCR, GAPDH) 

3% @ 6d: 17.48 (FC) 
20% @ 6d: 7.54 (FC) 

3%: increase (ELISA) 
20%: increase (ELISA) 

3%: 394.16 (pg/105 cells) / 11.6 (ratio-calc) 
20%: 109.47 (pg/105 cells) / 3.2 (ratio-calc) 

Nokhbehsaim et al. (2010) RUNX2 RUNX2 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 1d: 0.24 (FC) 
20% @ 1d: 0.27 (FC) 

n.g. n.g. 

Nokhbehsaim et al. (2010) TGFB1 TGFB1 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3%: temporary decrease (qPCR, 
GAPDH) 
20%: increase (qPCR, GAPDH) 

3% @ 1d: 0.58 (FC) 
20% @ 6d: 1.38 (FC) 

n.g. n.g. 

Nokhbehsaim et al. (2010) VEGF VEGFA hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial 3%: temporary decrease (qPCR, 
GAPDH) 
20%: increase (qPCR, GAPDH) 

3% @ 1d: 0.70 (FC) 
20% @ 6d: 2.51 (FC) 

3%: decrease (ELISA) 
20%: increase (ELISA) 

3%: 431.81 (pg/105 cells) / 0.1 (ratio-calc) 
20%: 4669.43 (pg/105 cells) / 1.4 (ratio-calc) 

Nokhbehsaim et al. (2011a) BMPR1A BMPR1A hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 6d 3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial increase (qPCR, GAPDH) 1.2 (FC)* n.g. n.g. 

Nokhbehsaim et al. (2011a) BMPR1B BMPR1B hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 6d 3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial no change (qPCR, GAPDH)  n.g. n.g. 

Nokhbehsaim et al. (2011a) BMPR2 BMPR2 hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 6d 3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial decrease (qPCR, GAPDH) 0.8 (FC)* n.g. n.g. 

Nokhbehsaim et al. (2011a) Collagen I 
(COL1) 

COL1A1; 
COL1A2 

hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 
1d, 6d 

3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial decrease (qPCR, GAPDH) 1d: 0.3 (FC)* n.g. n.g. 

Nokhbehsaim et al. (2011a) RUNX2 RUNX2 hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 
1d, 6d 

3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial decrease (qPCR, GAPDH) 1d: 0.2 (FC)* n.g. n.g. 

Nokhbehsaim et al. (2011a) TGF-b1 TGFB1 hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 
1d, 6d 

3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial temporary decrease (qPCR, GAPDH) 1d: 0.6 (FC)* n.g. n.g. 

Nokhbehsaim et al. (2011a) TGF-bR1 TGFBR1 hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 6d 3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial no change (qPCR, GAPDH)  n.g. n.g. 

Nokhbehsaim et al. (2011a) TGF-bR2 TGFBR2 hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 6d 3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial decrease (qPCR, GAPDH) 0.8 (FC)* n.g. n.g. 

Nokhbehsaim et al. (2011a) VEGF VEGFA hPDL cells (8-17/F, 8-14/M, n.g., 
n.g., P3-5, 80% confluence) 

dynamic 0.05Hz for 
1d, 6d 

3% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor 

equibiaxial temporary decrease (qPCR, GAPDH) 1d: 0.7 (FC)* n.g. n.g. 

Nokhbehsaim et al. (2011b) BMP-2 BMP2 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluen) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: increase (qPCR, GAPDH) 

3% @ 6d: 0.59 (FC) 
20% @ 1d: 2.6 (FC) 

n.g. n.g. 

Nokhbehsaim et al. (2011b) Follistatin FST hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluen) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 1d: 0.5 (FC)* 
20% @ 6d: 0.6 (FC)* 

n.g. n.g. 

Nokhbehsaim et al. (2011b) MGP MGP hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluen) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 6d: 0.4 (FC)* 
20% @ 6d: 0.3 (FC)* 

n.g. n.g. 

Nokhbehsaim et al. (2011b) Noggin NOG hPDL cells (n.g./n.g., n.g., n.g., P3-
5, 80% confluen) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: decrease followed by plateau 
(qPCR, GAPDH) 
20%: decrease followed by plateau 
(qPCR, GAPDH) 

3% @ 1d...6d: 0.5 (FC)* 
20% @ 1d...6d: 0.6 (FC)* 

n.g. n.g. 

Nokhbehsaim et al. (2012) COX2 PTGS2 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: no change (qPCR, GAPDH) 
20%: increase (qPCR, GAPDH) 

20% @ 6d: 1.5 (FC)* n.g. n.g. 

Nokhbehsaim et al. (2012) IL10 IL10 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: decrease followed by increase 
(qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% lowest @ 1d: 0.5 (FC)* 
3% highest @ 6d: 1.6 (FC)* 
20% @ 1d: 0.7 (FC)* 

n.g. n.g. 

Nokhbehsaim et al. (2012) IL1RN IL1RN hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: decrease followed by increase 
(qPCR, GAPDH) 
20%: decrease followed by increase 
(qPCR, GAPDH) 

3% lowest @ 1d: 0.7 (FC)* 
3% highest @ 6d: 2.2 (FC)* 
20% lowest @ 1d: 0.5 (FC)* 
20% highest @ 6d: 2 (FC)* 

n.g. n.g. 

Nokhbehsaim et al. (2012) IL-1β IL1B hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 6d: 0.08 (FC)* 
20% @ 6d: 0.5 (FC)* 

n.g. n.g. 

Nokhbehsaim et al. (2012) IL-6 IL6 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
qPCR 1d, 6d; 
ELISA for 1d, 
2d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: increase (qPCR, GAPDH) 
20%: increase (qPCR, GAPDH) 

3% @ 1d: 2 (FC)* 
20% @ 6d: 3.6 (FC)* 

3%: decrease (ELISA) 
20%: decrease followed by increase (ELISA) 

3% @ 2d: 1.1 (pg/104 cells )†/ 0.04 (ratio-calc) 
20% lowest @ 1d: 32.4 (pg/104 cells)† / 0.8 (ratio-calc) 
20% highest @ 2d: 63.0 (pg/104 cells)† / 2.3 (ratio-calc) 

Nokhbehsaim et al. (2012) IL-8 CXCL8 hPDL cells (n.g./n.g., n.g., n.g., P3-
5, n.g.) 

dynamic 0.05Hz for 
1d, 6d 

3%, 20% strain device (CESTRA) + six-well 
BioFlex® collagen-coated culture plates 
+ stepping motor (Rath-Deschner 2009) 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 6d: 0.08 (FC)* 
20% @ 1d: 0.8 (FC)* 

n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Ohzeki et al. (1999) COX-1 PTGS1 hPDL cells (12/M, 10/M, 11/F , PM, 
exp, P5-7 and P19-22, Confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
unclear 

unclear Flexercell strain unit (Shimizu et al 
1994) + flexible-bottom culture plates 
coated with type I collagen (Flexcell) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Ohzeki et al. (1999) COX-2 PTGS2 hPDL cells (12/M, 10/M, 11/F , PM, 
exp, P5-7 and P19-22, Confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
unclear 

unclear Flexercell strain unit (Shimizu et al 
1994) + flexible-bottom culture plates 
coated with type I collagen (Flexcell) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Ohzeki et al. (1999) PGE2 PGE2 hPDL cells (12/M, 10/M, 11/F , PM, 
exp, P5-7 and P19-22, Confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
5d 

9%, 18% Flexercell strain unit (Shimizu et al 
1994) + flexible-bottom culture plates 
coated with type I collagen (Flexcell) + 
vacuum 

equibiaxial n.a. n.a. “young cells” (P5-7): increase (RIA) 
“aged cells” (P19-22): increase (RIA) 

“young cells” @ 18%: 5.9 (ng/106 cells) / 5.6 (ratio-calc) 
“aged cells” @ 18%: 11.6 (ng/106 cells) / 9.4 (ratio-calc) 

Ohzeki et al. (1999) PGE2 PGE2 hPDL cells (12/M, 10/M, 11/F , PM, 
exp, P5-7 and P19-22, Confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
1d, 3d, 5d 

18% Flexercell strain unit (Shimizu et al 
1994) + flexible-bottom culture plates 
coated with type I collagen (Flexcell) + 
vacuum 

equibiaxial n.a. n.a. “young cells” (P5-7): increase (RIA) 
“aged cells” (P19-22): increase (RIA) 

“young cells” @ 5d: 5.9 (ng/106 cells) / 11.2 (ratio-calc) 
“aged cells” @ 5d: 12.1 (ng/106 cells) / 17.3 (ratio-calc) 

Ohzeki et al. (1999) PGE2 PGE2 hPDL cells (12/M, 10/M, 11/F , PM, 
exp, P5-7 and P19-22, Confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
5d 

18% Flexercell strain unit (Shimizu et al 
1994) + flexible-bottom culture plates 
coated with type I collagen (Flexcell) + 
vacuum 

equibiaxial n.a. n.a. increase (RIA) “young cells” (P5-7) (donor 1): 8.3 (ng/106 cells) / 13.2 
(ratio-calc) 
“aged cells” (P19-22) (donor 1): 12.0 (ng/106 cells) / 24 
(ratio-calc) 
“young cells” (P5-7) (donor 1): 2.5 (ug/mg protein) / 8.1 
(ratio-calc) 
“aged cells” (P19-22) (donor 1): 2.9 (ug/mg protein) / 
11.6 (ratio-calc) 
“young cells” (P5-7) (donor 2): 9.3 (ng/106 cells) / 18.6 
(ratio-calc) 
“aged cells” (P19-22) (donor 2): 14.0 (ng/106 cells) / 18.7 
(ratio-calc) 
“young cells” (P5-7) (donor 2): 2.6 (ug/mg protein) / 8.4 
(ratio-calc) 
“aged cells” (P19-22) (donor 2): 3.2 (ug/mg protein) / 
12.8 (ratio-calc) 
“young cells” (P5-7) (donor 3): 9.3 (ng/106 cells) / 14.8 
(ratio-calc) 
“aged cells” (P19-22) (donor 3): 12.0 (ng/106 cells) / 19.0 
(ratio-calc) 
“young cells” (P5-7) (donor 3): 2.5 (ug/mg protein) / 8.2 
(ratio-calc) 
“aged cells” (P19-22) (donor 3): 3.0 (ug/mg protein) / 
10.7 (ratio-calc) 

Ozawa et al. (1997) PA PLAT; PLAU hPDL cells (n.g./n.g., n.g., exp, P 
n.g., Confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) 
sqPCR for 
3d; 
Photometry 
for 1d, 3d, 5d 

18% Flexercell strain unit (Banes et al 1985) 
+ flexible-bottom culture plates coated 
with type I collagen (Flexcell) + vacuum 

equibiaxial n.a. n.a. increase (PA activity; photometric) 5d: 8.1 (mU/105 cells) / 1.9 (ratio-calc) 

Ozawa et al. (1997) PAI-1 SERPINE1 hPDL cells (n.g./n.g., n.g., exp, P 
n.g., Confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) 
sqPCR for 
3d; ELISA for 
1d, 3d, 5d 

18% Flexercell strain unit (Banes et al 1985) 
+ flexible-bottom culture plates coated 
with type I collagen (Flexcell) + vacuum 

equibiaxial no change (sqPCR, GAPDH) no quantitative information is given no change (ELISA)   

Ozawa et al. (1997) tPA PLAT hPDL cells (n.g./n.g., n.g., exp, P 
n.g., Confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) 
sqPCR for 
3d; 
Photometry 
for 1d, 3d, 5d 

18% Flexercell strain unit (Banes et al 1985) 
+ flexible-bottom culture plates coated 
with type I collagen (Flexcell) + vacuum 

equibiaxial increase (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Padial-Molina et al. (2013) POSTN POSTN hPDL cells (35/F, 29/M, PM, n.g., 
P4-7, 2.5×105) 

dynamic 0.1Hz 
(6cyc/min) for 
24h, 4d, 7d 

14% Flexcell FX-5000 Tension System + 
BioFlex Culture Plates coated with 
Collagen I + vacuum 

equibiaxial no change (sqPCR, GAPDH)  no change (WB)  



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Padial-Molina et al. (2013) bIGH3 TGFBI hPDL cells (35/F, 29/M, PM, n.g., 
P4-7, 2.5×105) 

dynamic 0.1Hz 
(6cyc/min) for 
24h, 4d, 7d 

14% Flexcell FX-5000 Tension System + 
BioFlex Culture Plates coated with 
Collagen I + vacuum 

equibiaxial no change (sqPCR, GAPDH)  no change (WB)  

Pan et al. (2014) Cofilin/p-
Cofilin 

CFL1 hPDL cells (n.g./n.g., n.g., dig, P4-
8, 95% confluence) 

dynamic 0.1Hz for 6h, 
24h 

10% Flexercell Tension Plus system FX-
5000T + collagen I-coated 6-well Bioflex 
plates + vacuum 

equibiaxial n.g. n.g. cofilin: no change (WB, β-actin) 
p-cofilin: increase (WB, β-actin) 

p-cofilin: 24h: 2.5 (ratio)* 

Pan et al. (2014) RhoA / GTP-
RhoA 

RHOA hPDL cells (n.g./n.g., n.g., dig, P4-
8, 95% confluence) 

dynamic 0.1Hz for 6h, 
24h 

10% Flexercell Tension Plus system FX-
5000T + collagen I-coated 6-well Bioflex 
plates + vacuum 

equibiaxial n.g. n.g. RhoA: no change (WB, β-actin) 
GTP-RhoA: increase (WB, β-actin) 

GTP-RhoA: 24h: 1.7 (ratio)* 

Pan et al. (2014) Rho-GDIα ARHGDIA hPDL cells (n.g./n.g., n.g., dig, P4-
8, 95% confluence) 

dynamic 0.1Hz for 6h, 
24h 

10% Flexercell Tension Plus system FX-
5000T + collagen I-coated 6-well Bioflex 
plates + vacuum 

equibiaxial n.g. n.g. decrease (WB, β-actin) 24h: 0.5 (ratio)* 

Pan et al. (2014) ROCK ROCK1; 
ROCK2 

hPDL cells (n.g./n.g., n.g., dig, P4-
8, 95% confluence) 

dynamic 0.1Hz for 6h, 
24h 

10% Flexercell Tension Plus system FX-
5000T + collagen I-coated 6-well Bioflex 
plates + vacuum 

equibiaxial n.g. n.g. increase (WB, β-actin) ROCK: 24h: 2.4 (ratio)* 

Papadopoulou et al. (2017) c-fos FOS hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

static 15min, 
30min, 
60min, 
180min 

8% in-house designed device prepared by 
Controla (Advanced Technology 
Equipment, Athens, Greece) + silicone 
dishes + moving clamp 

uniaxial temporary increase (qPCR, GAPDH) donor A @ 30min: 4.0 ((FC)† 
donor B @ 30min: 6.7 (FC)† 
donor C @ 1h: 4.2 (FC)† 

n.g. n.g. 

Papadopoulou et al. (2017) c-fos FOS hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

dynamic 1Hz for 
15min, 
30min, 
60min, 
180min 

8% six station stretching appratus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Konstantonis et al 2014; further 
reference to Neidlinger-Wilke et al 
2001) 

uniaxial temporary increase (qPCR, GAPDH) donor A @ 1h: 8.3 ((FC)† 
donor B @ 1h: 10.6 (FC)† 
donor C @ 1h: 10.9 (FC)† 

n.g. n.g. 

Papadopoulou et al. (2017) c-jun JUN hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

static 15min, 
30min, 
60min, 
180min 

8% in-house designed device prepared by 
Controla (Advanced Technology 
Equipment, Athens, Greece). + silicone 
dishes + moving clamp 

uniaxial temporary increase (qPCR, GAPDH) donor A @ 1h: 1.6 (FC)† 
donor B @ 1h: 1.7 (FC)† 
donor C @ 1h: 1.7 (FC)† 

n.g. n.g. 

Papadopoulou et al. (2017) c-jun JUN hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

dynamic 1Hz for 
15min, 
30min, 
60min, 
180min 

8% six station stretching appratus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Konstantonis et al 2014; further 
reference to Neidlinger-Wilke et al 
2001) 

uniaxial temporary increase (qPCR, GAPDH) donor A @ 1h: 2.3 (FC)† 
donor B @ 1h: 1.7 (FC)† 
donor C @ 1h: 4.2 (FC)† 

n.g. n.g. 

Papadopoulou et al. (2017) ERK (pan 
ERK) / p-
ERK1/2 

MAPK3; 
MAPK1 

hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

static 15min, 
30min, 
60min, 
180min 

8% in-house designed device prepared by 
Controla (Advanced Technology 
Equipment, Athens, Greece). + silicone 
dishes + moving clamp 

uniaxial n.g. n.g. ERK1/2: no change (WB, actin) 
p-ERK1/2: temporary increase (WB, actin) 

ERK1/2: no quantitative information is given 
p-ERK1/2: no quantitative information is given 

Papadopoulou et al. (2017) ERK (pan 
ERK) / p-
ERK1/2 

MAPK3; 
MAPK1 

hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

dynamic 1Hz for 
15min, 
30min, 
60min, 
180min 

8% six station stretching appratus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Konstantonis et al 2014; further 
reference to Neidlinger-Wilke et al 
2001) 

uniaxial n.g. n.g. ERK: no change (WB, actin) 
p-ERK1/2: temporary increase (WB, actin) 

ERK: no quantitative information is given 
p-ERK1/2: no quantitative information is given 

Papadopoulou et al. (2017) JNKs / p-
JNKs 

MAPK8; 
MAPK9; 
MAPK10 

hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

static 15min, 
30min, 
60min, 
180min 

8% in-house designed device prepared by 
Controla (Advanced Technology 
Equipment, Athens, Greece) + silicone 
dishes + moving clamp 

uniaxial n.g. n.g. JNKs: no change (WB, actin) 
p-JNKs: temporary increase (WB, actin) 

JNKs: no quantitative information is given 
p-JNKs: no quantitative information is given 

Papadopoulou et al. (2017) JNKs / p-
JNKs 

MAPK8; 
MAPK9; 
MAPK10 

hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

dynamic 1Hz for 
15min, 
30min, 
60min, 
180min 

8% six station stretching appratus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Konstantonis et al 2014; further 
reference to Neidlinger-Wilke et al 
2001) 

uniaxial n.g. n.g. JNKs: no change (WB, actin) 
p-JNKs: temporary increase (WB, actin) 

JNKs: no quantitative information is given 
p-JNKs: no quantitative information is given 

Papadopoulou et al. (2017) p38 MAPK / 
p-p38(Thr180/ 
Tyr182) 

MAPK14 hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

static 15min, 
30min, 
60min, 
180min 

8% in-house designed device prepared by 
Controla (Advanced Technology 
Equipment, Athens, Greece). + silicone 
dishes + moving clamp 

uniaxial n.g. n.g. p-p38: temporary increase (WB, actin) 
p38: no change (WB, actin) 

p-p38: no quantitative information is given 
p38: no quantitative information is given 

Papadopoulou et al. (2017) p38 MAPK / 
p-p38(Thr180/ 
Tyr182) 

MAPK14 hPDL cells (3 donors: 9-20/n.g., 
n.g., exp, P3-6, n.g.) 

dynamic 1Hz for 
15min, 
30min, 
60min, 
180min 

8% six station stretching appratus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Konstantonis et al 2014; further 
reference to Neidlinger-Wilke et al 
2001) 

uniaxial n.g. n.g. p-p38: temporary increase (WB, actin) 
p38: no change (WB, actin) 

p-p38: no quantitative information is given 
p38: no quantitative information is given 

Papadopoulou et al. (2019) ALP ALPP hPDLF (n.g./n.g., n.g., exp, P n.g., 
n.g.) 

dynamic 1Hz for 18h 8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial increase (qPCR, GAPDH) 2.3 (FC)† n.g. n.g. 

Papadopoulou et al. (2019) c-fos FOS hPDLF (n.g./n.g., n.g., exp, P n.g., 
n.g.) 

dynamic 1Hz for 0.5h 8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial increase (qPCR, GAPDH) 4.2 (FC)† n.g. n.g. 

Papadopoulou et al. (2019) JNK / p-
JNK(Thr183/Tyr18
5) 

MAPK8 hPDLF (n.g./n.g., n.g., exp, P n.g., 
n.g.) 

dynamic 1Hz for 0.33h 
(20min) 

8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial n.g. n.g. JNK: no change (WB, GAPDH) 
p-JNK(Thr183/Tyr185): increase (WB, GAPDH) 

no quantitative information is given 

Papadopoulou et al. (2019) OPN SPP1 hPDLF (n.g./n.g., n.g., exp, P n.g., 
n.g.) 

dynamic 1Hz for 18h 8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial increase (qPCR, GAPDH) 1.6 (FC)† n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Papadopoulou et al. (2019) p38 / p-
p38(Thr180/Tyr18
2) 

MAPK14 hPDLF (n.g./n.g., n.g., exp, P n.g., 
n.g.) 

dynamic 1Hz for 0.33h 
(20min) 

8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial n.g. n.g. p38: no change (WB, GAPDH) 
p38(Thr180/Tyr182):: increase (WB, GAPDH) 

no quantitative information is given 

Papadopoulou et al. (2019) pan ERK / p-
ERK1/2(Thr202/
Tyr204) 

MAPK3; 

MAPK1 

hPDLF (n.g./n.g., n.g., exp, P n.g., 
n.g.) 

dynamic 1Hz for 0.33h 
(20min) 

8% six station stretching apparatus + 
optically transparent silicone dishes pre-
coated with fibronectin + moving clamp 
(Neidlinger-Wilke et al 2001) 

uniaxial n.g. n.g. pan ERK: no change (WB, GAPDH) 
p-ERK1/2(Thr202/Tyr204): increase (WB, GAPDH) 

no quantitative information is given 

Pelaez et al. (2017) ARRAY ARRAY hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial SurePrint G3 Human v.16 miRNA Array 
Kit (8x60K, Release 16.0, Agilent) 

   

Pelaez et al. (2017) Cx43 GJA1 hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 2.0 (rel)* / 2.0 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) GATA4 GATA4 hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 1.9 (rel)* / 3.3 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) MEF2C MEF2C hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 3.6 (rel)* / 20.0 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) MYH7 MYH7 hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 15.7 (rel)* / 16.5 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) MYL2 MYL2 hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 1.9 (rel)* / 2.0 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) MYL7 MYL7 hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 16.2 (rel)* / 17.1 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) Nitric oxide Nitric oxide hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial n.a. n.a. increase (photometric) 20 min: 1.048 (relative NO levels)* / 1.07 (ratio-calc) 

Pelaez et al. (2017) Nkx2.5 NKX2-5 hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 5.1 (rel)* / 2 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) NPPA NPPA hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH)  3.6 (rel)* / 1.9 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) NPPB NPPB hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH)  1.2 (rel)* / 2.4 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) TNNT2 TNNT2 hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 2.1 (rel)* / 1.3 (ratio-calc) n.g. n.g. 

Pelaez et al. (2017) TPM1 TPM1 hPDLSC cells (n.g./n.g., M, dig, P2-
3, 85–90 % confluent) 

dynamic 0.5Hz for 2h 5% “custom-built bioreactor system” + 
chambers + linear actuator 

uniaxial increase (qPCR, GAPDH) 2.5 (rel)* / 6.8 (ratio-calc) n.g. n.g. 

Peverali et al. (2001) AP-1 not clear hPDL fibroblasts (n.g./n.g., n.g., 
exp, P3-6, 80% confluency) 

static 15min, 30min 2.5% Petriperm dish + template with a convex 
surface + weight 

equibiaxial n.g. n.g. increase (EMSA) no quantitative information is given 

Peverali et al. (2001) C-FOS FOS hPDL fibroblasts (n.g./n.g., n.g., 
exp, P3-6, 80% confluency) 

static 15min, 30min 2.5% Petriperm dish + template with a convex 
surface + weight 

equibiaxial n.g. n.g. increase (in-gel kinase assay) no quantitative information is given 

Peverali et al. (2001) C-JUN JUN hPDL fibroblasts (n.g./n.g., n.g., 
exp, P3-6, 80% confluency) 

static 7min, 15min, 
30min 

2.5% Petriperm dish + template with a convex 
surface + weight 

equibiaxial n.g. n.g. increase (in-gel kinase assay) no quantitative information is given 

Pinkerton et al. (2008) ARRAY ARRAY hPDL cells (n.g./n.g., PM, exp, P4, 
3×105) 

dynamic 0.01Hz 
(Strain for 6s 
every 90s) for 
6h, 12h, 24h 

12% Flexercell FX-4000 Strain Unit + 6-well, 
35 mm flexible-bottomed Uniflex culture 
plates with a centrally located, 
rectangular type I collagen-coated 
culture strip (15.25 mm×24.18 mm) + 
vacuum 

uniaxial RT2 Profiler PCR Array System 
(Superarray Bioscience Corp.) testing 
the expression of 79 genes encoding 
common cytokines 

ARRAY n.g. n.g. 

Qin and Hua (2016) ALP ALPP hPDL cells (12-14/n.g., PM, n.g., 
P3-8, 1×106 cells/ml) 

dynamic 0.5Hz (2s) for 
1h, 3h, 6h 

5% n.g. n.g. not reported with reference to force 
(qPCR, GAPDH) 

 temporary decrease (WB, GAPDH) 1h: 0.03 (rel)* / 0.2 (ratio-calc) 

Qin and Hua (2016) Col-1 COL1A1 hPDL cells (12-14/n.g., PM, n.g., 
P3-8, 1×106 cells/ml) 

dynamic 0.5Hz (2s) for 
1h, 3h, 6h 

5% n.g. n.g. not reported with reference to force 
(qPCR, GAPDH) 

 increase (WB, GAPDH) 3h: 0.16 (rel)* / 3.2 (ratio-calc) 

Qin and Hua (2016) OCN BGLAP hPDL cells (12-14/n.g., PM, n.g., 
P3-8, 1×106 cells/ml) 

dynamic 0.5Hz (2s) for 
1h, 3h, 6h 

5% n.g. n.g. not reported with reference to force 
(qPCR, GAPDH) 

 temporary decrease followed by temporary increase 
(WB, GAPDH) 

lowest @ 1h: 0.09 (rel)* / 0.7 (ratio-calc) 
highest @ 3h: 0.2 (rel)* / 1.5 (ratio-calc) 

Rath-Deschner et al. (2009) IGF1 IGF1 hPDL cells (n.g./n.g., n.g., exp, P3-
5, 80% confluency) 

static qPCR for 4h, 
24h; WB for 
24h 

3%, 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlex plates 
(Flexcells) + screws (Deschner et al 
2007) 

equibiaxial 3%: temporary increase (qPCR, 
GAPDH) 
20%: decrease followed by plateau 
(qPCR, GAPDH) 

3% @ 4h: 171.69% (rel) / 1.7 (ratio-calc) 
20% @ 4h...24h: 54.42% (rel) / 0.5 (ratio-
calc) 

3%: increase (WB, β-actin) 
20%: no change (WB, β-actin) 

no quantitative information is given 

Rath-Deschner et al. (2009) IGF1R IGF1R hPDL cells (n.g./n.g., n.g., exp, P3-
5, 80% confluency) 

static 4h, 24h 3%, 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlexs plates 
(Flexcells) + screws (Deschner et al 
2007) 

equibiaxial 3%: increase followed by plateau 
(qPCR, GAPDH) 
20%: decrease (qPCR, GAPDH) 

3% @ 4h: 115.72% (rel) / 1.2 (ratio-calc) 
20% @ 24h: 82.97% (rel) / 0.8 (ratio-calc) 

n.g. n.g. 

Rath-Deschner et al. (2009) IGF2 IGF2 hPDL cells (n.g./n.g., n.g., exp, P3-
5, 80% confluency) 

static 4h, 24h 3%, 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlexs plates 
(Flexcells) + screws (Deschner et al 
2007) 

equibiaxial 3%: increase followed by plateau 
(qPCR, GAPDH) 
20%: decrease followed by plateau 
(qPCR, GAPDH) 

3% @ 4h: 112.49% (rel) / 1.1 (ratio-calc) 
20% @ 4h...24h: 82.97% (rel) / 0.8 (ratio-
calc) 

n.g. n.g. 

Rath-Deschner et al. (2009) IGFBP1 IGFBP1 hPDL cells (n.g./n.g., n.g., exp, P3-
5, 80% confluency) 

static qPCR for 4h, 
24h; WB for 
24h 

3%, 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlexs plates 
(Flexcells) + screws (Deschner et al 
2007) 

equibiaxial 3%: decrease followed by increase 
(qPCR, GAPDH) 
20%: increase (qPCR, GAPDH) 

3% lowest @ 4h: 65.99% (rel) / 0.7 (ratio-
calc) 
3% highest @ 24h: 144.50% (rel) / 1.4 
(ratio-calc) 
20% @ 24h: 291.49% (rel) / 2.9 (ratio-calc) 

3%: no change (WB, β-actin) 
20%: increase (WB, β-actin) 

no quantitative information is given 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Rath-Deschner et al. (2009) IGFBP3 IGFBP3 hPDL cells (n.g./n.g., n.g., exp, P3-
5, 80% confluency) 

static qPCR for 4h, 
24h; WB for 
24h 

3%, 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlexs plates 
(Flexcells) + screws (Deschner et al 
2007) 

equibiaxial 3%: decrease (qPCR, GAPDH) 
20%: increase followed by decrease 
(qPCR, GAPDH) 

3% @ 24h: 84.33% (rel) / 0.8 (ratio-calc) 
20% @ highest at 4h:158.27% (rel) / 1.6 
(ratio-calc) 
20% lowest at 24h:75.80% (rel) / 0.8 (ratio-
calc) 

3%: no change (WB, β-actin) 
20%: increase (WB, β-actin) 

no quantitative information is given 

Rath-Deschner et al. (2009) IGFBP5 IGFBP5 hPDL cells (n.g./n.g., n.g., exp, P3-
5, 80% confluency) 

static qPCR for 4h, 
24h; WB for 
24h 

3%, 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlexs plates 
(Flexcells) + screws (Deschner et al 
2007) 

equibiaxial 3%: increase (qPCR, GAPDH) 
20%: increase followed by decrease 
(qPCR, GAPDH) 

3% @ 4h: 136.06% (rel) / 1.4 (ratio-calc) 
20% @ highest at 4h:127.34% (rel) / 1.3 
(ratio-calc) 
20% @ lowest at 24h: 69.00% (rel) / 0.7 
(ratio-calc) 

3%: increase (WB, β-actin) 
20%: no change (WB, β-actin) 

no quantitative information is given 

Rath-Deschner et al. (2009) IRS1 IRS1 hPDL cells (n.g./n.g., n.g., exp, P3-
5, 80% confluency) 

static 4h, 24h 3%, 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlexs plates 
(Flexcells) + screws (Deschner et al 
2007) 

equibiaxial 3%: temporary decrease (qPCR, 
GAPDH) 
20%: increase followed by decrease 
(qPCR, GAPDH) 

3% @ 4h: 82.46% (rel) / 0.8 (ratio-calc) 
20% highest at 4h: 112.39% (rel) / 1.1 
(ratio-calc) 
20% lowest at 24h: 86.49% (rel) / 0.9 (ratio-
calc) 

n.g. n.g. 

Rath-Deschner et al. (2009) PCNA PCNA hPDL cells (n.g./n.g., n.g., exp, P3-
5, 80% confluency) 

static 4h, 24h, 48h 3%, 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlexs plates 
(Flexcells) + screws (Deschner et al 
2007) 

equibiaxial 3%: increase (qPCR, GAPDH) 
20%: increase (qPCR, GAPDH) 

3% @ 48h: 114.97% (rel) / 1.1 (ratio-calc) 
20% @ 48h: 146.32% (rel) / 1.5 (ratio-calc) 

n.g. n.g. 

Ren et al. (2015) ATF4 ATF4 hPDL cells (12-18, PM, exp, P4-6, 
80% confluency) 

dynamic 0.5Hz for 1h, 
3h, 6h, 12h, 
18h, 24h 

10% Flexercell FX-4000 Strain Unit + six-well 
35mm silicone membrane culture plates 
coated with type I collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 1h: 1.7 (FC)* n.g. n.g. 

Ren et al. (2015) BSP IBSP hPDL cells (12-18, PM, exp, P4-6, 
80% confluency) 

dynamic 0.5Hz for 1h, 
3h, 6h, 12h, 
18h, 24h 

10% Flexercell FX-4000 Strain Unit + six-well 
35mm silicone membrane culture plates 
coated with type I collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 24h: 3.2 (FC)* n.g. n.g. 

Ren et al. (2015) ERK1/2 / p-
ERK1/2 

MAPK3; 
MAPK1 

hPDL cells (12-18, PM, exp, P4-6, 
80% confluency) 

dynamic 0.5Hz for 1h, 
3h, 6h, 12h, 
18h, 24h 

10% Flexercell FX-4000 Strain Unit + six-well 
35mm silicone membrane culture plates 
coated with type I collagen + vacuum 

equibiaxial n.g. n.g. ERK1/2: no change (WB, GAPDH) 
p-ERK1/2: increase (WB, GAPDH) 

ERK1/2: no quantitative information is given 
p-ERK1/2: 3h: 0.7 (rel)* / 6.2 (ratio-calc) 

Ren et al. (2015) OCN BGLAP hPDL cells (12-18, PM, exp, P4-6, 
80% confluency) 

dynamic 0.5Hz for 1h, 
3h, 6h, 12h, 
18h, 24h 

10% Flexercell FX-4000 Strain Unit + six-well 
35mm silicone membrane culture plates 
coated with type I collagen + vacuum 

equibiaxial increase followed by plateau (qPCR, 
GAPDH) 

18…24h: 1.5 (FC)* n.g. n.g. 

Ren et al. (2015) RUNX2 / p-
RUNX2 

RUNX2 hPDL cells (12-18, PM, exp, P4-6, 
80% confluency) 

dynamic 0.5Hz for 1h, 
3h, 6h, 12h, 
18h, 24h 

10% Flexercell FX-4000 Strain Unit + six-well 
35mm silicone membrane culture plates 
coated with type I collagen + vacuum 

equibiaxial RUNX2: increase (qPCR, GAPDH) RUNX2 @ 3h: 2.9 (FC)* RUNX2: temporary increase followed by plateau then 
temporary decrease (WB, GAPDH) 
p-RUNX2: increase followed by plateau (WB, GAPDH) 

RUNX2: highest @ 3h…6h: 0.7 (rel)† / 1.9 (ratio-calc) 
RUNX2: lowest @12h: 0.2 (rel)† / 0.6 (ratio-calc) 
p-RUNX2 @ 3h…6h: 0.4 (rel)* / 9.5 (ratio-calc) 

Ren et al. (2015) SP7 SP7 hPDL cells (12-18, PM, exp, P4-6, 
80% confluency) 

dynamic 0.5Hz for 1h, 
3h, 6h, 12h, 
18h, 24h 

10% Flexercell FX-4000 Strain Unit + six-well 
35mm silicone membrane culture plates 
coated with type I collagen + vacuum 

equibiaxial increase (qPCR, GAPDH) 12h: 4.3 (FC)* n.g. n.g. 

Ritter et al. (2007) ARRAY ARRAY hPDL cells (12-14/n.g., PM, exp, 
P3-6, near-confluence) 

static 6h 2.5% Petriperm dish + template made of 
brass + weight (Saito et al 1991) 

equibiaxial apoptosis and NFκ-B pathway GEArray 
Q Series kit (SuperArray, Bethesda, 
Md.) 

ARRAY   

Ritter et al. (2007) BAD BAD hPDL cells (12-14/n.g., PM, exp, 
P3-6, near-confluence) 

static 6h 2.5% Petriperm dish + template made of 
brass + weight (Saito et al 1991) 

equibiaxial increase (qPCR, β-actin) 5.2 (FC) n.g. n.g. 

Ritter et al. (2007) CRADD CRADD hPDL cells (12-14/n.g., PM, exp, 
P3-6, near-confluence) 

static 6h 2.5% Petriperm dish + template made of 
brass + weight (Saito et al. 1991) 

equibiaxial increase (qPCR, β-actin) 2.1 (FC) n.g. n.g. 

Ritter et al. (2007) FAS FAS hPDL cells (12-14/n.g., PM, exp, 
P3-6, near-confluence) 

static 6h 2.5% Petriperm dish + template made of 
brass + weight (Saito et al. 1991) 

equibiaxial increase (qPCR, β-actin) 2.0 (FC) n.g. n.g. 

Ritter et al. (2007) IL1β IL1B hPDL cells (12-14/n.g., PM, exp, 
P3-6, near-confluence) 

static 6h 2.5% Petriperm dish + template made of 
brass + weight (Saito et al. 1991) 

equibiaxial increase (qPCR, β-actin) 5.8 (FC) n.g. n.g. 

Ritter et al. (2007) NFkB NFKB1 hPDL cells (12-14/n.g., PM, exp, 
P3-6, near-confluence) 

static 6h 2.5% Petriperm dish + template made of 
brass + weight (Saito et al. 1991) 

equibiaxial increase (qPCR, β-actin) 1.7 (FC) n.g. n.g. 

Saminathan et al. (2012) ARRAY ARRAY hPDL cells (n.g./n.g., n.g., exp, P3-
4, confluence) 

dynamic 0.01Hz 
(1/95Hz) 
(square 
waveform: 5s 
(0.2Hz) every 
90s) for 6h, 
12h, 24h 

12% Flexercell FX-4000 strain unit + six-well, 
35 mm flexible-bottomed UniFlex® 

Series culture plates containing a 
centrally located rectangular strip 
(15.25×24.18 mm) coated with type I 
collagen + vacuum 

uniaxial extracellular matrix and adhesion molecules 
using the RT2 Profiler PCR Array System 
(SABiosciences) 

ARRAY n.g. n.g. 

Saminathan et al. (2012) Caspases 3/7 
(combined 
assay) 

CASP3; CASP7 hPDL cells (n.g./n.g., n.g., exp, P3-
4, confluence) 

dynamic 0.01Hz 
(1/95Hz) 
(square 
waveform: 5s 
(0.2Hz) every 
90s) for 6h, 
12h, 24h 

12% Flexercell FX-4000 strain unit + six-well, 
35 mm flexible-bottomed UniFlex® 

Series culture plates containing a 
centrally located rectangular strip 
(15.25×24.18 mm) coated with type I 
collagen + vacuum 

uniaxial n.g. n.g. decrease (Caspase-Glo 3/7 Assay) 6h: 100.87 (RLU×103) / 0.9 (ratio-calc) 

Shen et al. (2014) ALP ALPP hPDLSC cells (12-24/n.g., PM, dig, 
P4-6, 100% confluence) 

dynamic 0.1Hz for 6h, 
12h, 24h 

12% Flexcell FX-4000T Tension Plus System 
+ 6-well, flexible-bottomed culture plate 
coated with type I collagen (Sigma)+ 
vacuum 

equibiaxial increase (qPCR, β-actin) 24h: 13.8 (rel)* / 2.5 (ratio-calc) increase (WB, GAPDH) 24h: 347.2 (rel)* / 1.5 (ratio-calc) 

Shen et al. (2014) CD146 MCAM hPDLSC cells (12-24/n.g., PM, dig, 
P4-6, 100% confluence) 

dynamic 0.1Hz for 6h, 
12h, 24h 

12% Flexcell FX-4000T Tension Plus System 
+ 6-well, flexible-bottomed culture plate 
coated with type I collagen (Sigma)+ 
vacuum 

equibiaxial decrease (qPCR, β-actin) 24h: 1.2 (rel)* / 0.4 (ratio-calc) decrease (WB, GAPDH) 24h: 158.5 (rel) * / 0.8 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Shen et al. (2014) OCN BGLAP hPDLSC cells (12-24/n.g., PM, dig, 
P4-6, 100% confluence) 

dynamic 0.1Hz for 6h, 
12h, 24h 

12% Flexcell FX-4000T Tension Plus System 
+ 6-well, flexible-bottomed culture plate 
coated with type I collagen (Sigma)+ 
vacuum 

equibiaxial increase (qPCR, β-actin) 24h: 10.5 (rel)* / 2.6 (ratio-calc) increase (WB, GAPDH) 24h: 279.2 (rel) * / 1.5 (ratio-calc) 

Shen et al. (2014) Runx2 RUNX2 hPDLSC cells (12-24/n.g., PM, dig, 
P4-6, 100% confluence) 

dynamic 0.1Hz for 6h, 
12h, 24h 

12% Flexcell FX-4000T Tension Plus System 
+ 6-well, flexible-bottomed culture plate 
coated with type I collagen (Sigma)+ 
vacuum 

equibiaxial increase (qPCR, β-actin) 24h: 13.5 (rel)* / 3.4 (ratio-calc) increase (WB, GAPDH) 24h: 415.1 (rel)* / 1.3 (ratio-calc) 

Shimizu et al. (1994) IL-1β IL1B hPDL cells (12/M, PM, exp, P4, 
confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

9%, 18% Flexercell Strain Unit + flexible 
bottomed culture plates (Flexcell Corp) 
+ vacuum 

equibiaxial n.g. n.g. 9%: increase followed by plateau (RIA) 
18%: increase followed by plateau (RIA) 

9% @ 3d…5d: 27.9 (fmol/105 cells)* / 1.2 (ratio-calc) 
18% @ 3d…5d: 42.3 (fmol/105 cells)* / 1.8 (ratio-calc) 

Shimizu et al. (1995) IL-1β IL1B hPDL cells (12/M, PM, exp, P4, 
confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + flexible 
bottomed culture plates (Flexcell Corp) 
+ vacuum 

equibiaxial n.g. n.g. increase followed by plateau (radioactivity) 3d...5d: 54.1 (fmol/105 cells)* / 2.1 (ratio-calc) 

Shimizu et al. (1995) PGE2 PGE2 hPDL cells (12/M, PM, exp, P4, 
confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 3d, 5d 

18% Flexercell Strain Unit + flexible 
bottomed culture plates (Flexcell Corp) 
+ vacuum 

equibiaxial n.a. n.a. increase (RIA) 5d: 7.9 (ng/106 cells)* / 19.8 (ratio-calc) 

Shimizu et al. (1997) ICE CASP1 hPDL cells (18/F, 19/F, 23/F, PM, 
exp, P5-6 and P18-20, n.g.) 

dynamic 0.1Hz 
(6cyc/min) for 
3d 

9%, 18% Flexcell strain unit + flexible-bottomed 
culture plates + vacuum (Shimizu 1994; 
further reference to Banes 1985) 

equibiaxial “young cells” (P5-6): no change 
(sqPCR, GAPDH) 
“old cells” (P18-20): no change (sqPCR, 
GAPDH) 

no quantitative information is given n.g. n.g. 

Shimizu et al. (1997) IL-1β IL1B hPDL cells (18/F, 19/F, 23/F, PM, 
exp, P5-6 and P18-20, n.g.) 

dynamic 0.1Hz 
(6cyc/min) 
RIA for 1d, 
3d, 5d 
sqPCR for 3d 

18% Flexcell strain unit + flexible-bottomed 
culture plates + vacuum (Shimizu 1994; 
further reference to Banes 1985) 

equibiaxial “young cells” (P5-6): increase (sqPCR, 
GAPDH) 
“old cells” (P18-20): increase (sqPCR, 
GAPDH) 

no quantitative information is given “young cells”: increase followed by plateau (RIA) 
“old cells” increase (RIA) 

“young cells” @ 3d…5d: 40 (fmol/105 cells)* / 2.1 (ratio-
calc) 
“old cells” @ 5d: 60 (fmol/105 cells)* / 3 (ratio-calc) 

Shimizu et al. (1997) IL-1β IL1B hPDL cells (18/F, 19/F, 23/F, PM, 
exp, P5-6 and P18-20, n.g.) 

dynamic 0.1Hz 
(6cyc/min) for 
5d 

9%, 18% Flexcell strain unit + flexible-bottomed 
culture plates + vacuum (Shimizu 1994; 
further reference to Banes 1985) 

equibiaxial n.g. n.g. “young cells” (P5-6): increase (RIA) 
“old cells” (P18-20): increase (RIA) 

“young cells” @ 18%: 41.6 (fmol/105 cells)* / 2.1 (ratio-
calc) 
“old cells” @ 18%: 61.3 (fmol/105 cells)* / 3.1 (ratio-calc) 

Shimizu et al. (1997) IL-1β IL1B hPDL cells (18/F, 19/F, 23/F, PM, 
exp, P5-6 and P18-20, n.g.) 

dynamic 0.1Hz 
(6cyc/min) for 
5d 

n.g. Flexcell strain unit + flexible-bottomed 
culture plates + vacuum (Shimizu 1994; 
further reference to Banes 1985) 

equibiaxial n.g. n.g. Donor 1, “young cells” (P5-6): increase (RIA) 
Donor 1, “old cells” (P18-20): increase (RIA) 
Donor 2, “young cells” (P5-6): increase (RIA) 
Donor 2, “old cells” (P18-20): increase (RIA) 
Donor 3, “young cells” (P5-6): increase (RIA) 
Donor 3, “old cells” (P18-20): increase (RIA) 

Donor 1, “young cells”: 39.8 (fmol/105 cells)† / 2.1 (ratio-
calc) 
Donor 1, “old cells” 60.2 (fmol/105 cells)† / 3.0 (ratio-calc) 
Donor 2, “young cells”: 35.0 (fmol/105 cells)† / 2.4 (ratio-
calc) 
Donor 2, “old cells”: 51.7 (fmol/105 cells)† / 3.3 (ratio-
calc) 
Donor 3, “young cells”: 39.3 (fmol/105 cells)† / 2.2 (ratio-
calc)  
Donor 3, “old cells”: 55.3 (fmol/105 cells)† / 3.2 (ratio-
calc) 

Shimizu et al. (1998) COX-1 PTGS1 hPDL cells (12/M, PM, exp, P5, 
confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
3d 

18% vacuum unit from Flexcell Corporation equibiaxial no change (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Shimizu et al. (1998) COX-2 PTGS2 hPDL cells (12/M, PM, exp, P5, 
confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
6h, 24h, 3d, 
5d 

18% Flexcell strain unit + flexible-bottomed 
culture plates + vacuum (Shimizu 1994; 
further reference to Banes 1985) 

equibiaxial increase (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Shimizu et al. (1998) PGE2 PGE2 hPDL cells (12/M, PM, exp, P5, 
confluent) 

dynamic 0.1Hz 
(6cyc/min) for 
1d, 2d, 3d, 
4d, 5d 

18% vacuum unit from Flexcell Corporation equibiaxial n.a. n.a. increase (RIA) 5d: 9.1(ng/106 cells) / 10.1 (ratio-calc) 

Spencer and Lallier (2009) OPG TNFRSF11B hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial increase (sqPCR, S15rRNA) 2.3 (ratio)* n.g. n.g. 

Spencer and Lallier (2009) Plexin A1 PLXNA1 hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial decrease (sqPCR, S15rRNA) 0.3 (ratio)* n.g. n.g. 

Spencer and Lallier (2009) Plexin B1 PLXNB1 hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Plexin C1 PLXNC1 hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial increase (sqPCR, S15rRNA) 3.5 (ratio)* n.g. n.g. 

Spencer and Lallier (2009) RANKL TNFSF11 hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial decrease (sqPCR, S15rRNA) 0.2 (ratio)* n.g. n.g. 

Spencer and Lallier (2009) rRNA S15 RPS15 hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem3A SEMA3A hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem3C SEMA3C hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem3D SEMA3D hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial increase (sqPCR, S15rRNA) 22 (ratio)* n.g. n.g. 

Spencer and Lallier (2009) Sem3E SEMA3E hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem4A SEMA4A hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Spencer and Lallier (2009) Sem4C SEMA4C hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem4D SEMA4D hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem4F SEMA4F hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem5A SEMA5A hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem5B SEMA5B hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial increase (sqPCR, S15rRNA) 8 (ratio)* n.g. n.g. 

Spencer and Lallier (2009) Sem6B SEMA6B hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem6C SEMA6C hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Spencer and Lallier (2009) Sem7A SEMA7A hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial decrease (sqPCR, S15rRNA) 0.07 (ratio)* n.g. n.g. 

Spencer and Lallier (2009) Β1 integrin ITGB1 hPDL cells (16-35/n.g., n.g., n.g., 
P8-15, n.g.) 

static 12h 10% Petriperm dish + two pieces of acrylic + 
screws 

equibiaxial no change (sqPCR, S15rRNA)  n.g. n.g. 

Steinberg et al. (2011) MAP4 MAP4 hPDL cells (14/n.g., PM, exp, P6-
10, 75-85% confluence) 

static 6h, 12h, 18h, 
24h 

2.5% Lumox culture dishes (Greiner Bio-One) 
+ template with convex surface + weight 
(Hasegawa et al 1985) 

equibiaxial n.g. n.g. temporary decrease (WB) 6h: 36% (% of control) / 0.4 (ratio-calc) 

Steinberg et al. (2011) Myo IC, 
cytoplasmic 

MYO1C hPDL cells (14/n.g., PM, exp, P6-
10, 75-85% confluence) 

static 6h, 12h, 18h, 
24h 

2.5% Lumox culture dishes (Greiner Bio-One) 
+ template with convex surface + weight 
(Hasegawa et al 1985) 

equibiaxial n.g. n.g. increase (WB) 18h: 257% (% of control) / 2.6 (ratio-calc) 

Steinberg et al. (2011) NM1 MYO1C hPDL cells (14/n.g., PM, exp, P6-
10, 75-85% confluence) 

static 6h, 12h, 18h, 
24h 

2.5% Lumox culture dishes (Greiner Bio-One) 
+ template with convex surface + weight 
(Hasegawa et al 1985) 

equibiaxial n.g. n.g. decrease (WB) 18h: 42% (% of control) / 0.4 (ratio-calc) 

Steinberg et al. (2011) PROTEOMIC
S 

PROTEOMICS hPDL cells (14/n.g., PM, exp, P6-
10, 75-85% confluence) 

static 3h, 6h, 12h 2.5% Lumox culture dishes (Greiner Bio-One) 
+ template with convex surface + weight 
(Hasegawa et al 1985) 

equibiaxial n.a. n.a. 1D-SDS-PAGE of subcellular protein fractions; LC-ESI-
MS/MS; MASCOT search 

 

Steinberg et al. (2011) Talin TLN1; TLN2 hPDL cells (14/n.g., PM, exp, P6-
10, 75-85% confluence) 

static 6h, 12h, 18h, 
24h 

2.5% Lumox culture dishes (Greiner Bio-One) 
+ template with convex surface + weight 
(Hasegawa et al 1985) 

equibiaxial n.g. n.g. temporary decrease (WB) 6h: 53% (% of control) / 0.5 (ratio-calc) 

Sun et al. (2016) COL1 COL1A1 hPDL cells (18/M, 20/M, 20/F, 24/F, 
PM and M, dig, P3-5, confluency) 

dynamic 0.5Hz for 4h 
per day for 
1d, 5d 

12% FX-5000T Flexcell Tension Plus unit + 
Bioflex Flexcell + vacuum 

uniaxial temporary decrease (qPCR, GAPDH) 1d: 0.7 (ratio)* decrease (WB, GAPDH) 1d: 0.6 (ratio)* 

Sun et al. (2016) IL-1β IL1B hPDL cells (18/M, 20/M, 20/F, 24/F, 
PM and M, dig, P3-5, confluency) 

dynamic 0.5Hz for 4h 
per day for 
1d, 5d 

12% FX-5000T Flexcell Tension Plus unit + 
Bioflex Flexcell + vacuum 

uniaxial n.g. n.g. increase (ELISA) 5d: 53 (pg/ml)* / control not detectable 

Sun et al. (2016) RUNX2 RUNX2 hPDL cells (18/M, 20/M, 20/F, 24/F, 
PM and M, dig, P3-5, confluency) 

dynamic 0.5Hz for 4h 
per day for 
1d, 5d 

12% FX-5000T Flexcell Tension Plus unit + 
Bioflex Flexcell + vacuum 

uniaxial increase followed by decrease (qPCR, 
GAPDH) 

highest @ 1d: 2.0 (ratio)*  
lowest @ 5d: 0.9 (ratio)* 

increase followed by decrease (WB, GAPDH) highest @ 1d: 1.5 (ratio)* 
lowest @ 5d: 0.8 (ratio)* 

Sun et al. (2016) TNF-α TNF hPDL cells (18/M, 20/M, 20/F, 24/F, 
PM and M, dig, P3-5, confluency) 

dynamic 0.5Hz for 4h 
per day for 
1d, 5d 

12% FX-5000T Flexcell Tension Plus unit + 
Bioflex Flexcell + vacuum 

uniaxial n.g. n.g. increase (ELISA) 5d: 41 (pg/ml)* / control not detectable 

Sun et al. (2017) COL1 COL1A1 hPDL cells (18-28/n.g., n.g., dig, 
P3-5, 70-80% confluence) 

dynamic 0.5Hz for 
12h, 24h, 48h 

12% FX-5000T™ Flexercell Tension Plus™ 
+ COL-I-coated silicone Bioflex® culture 
plates + vacuum 

uniaxial decrease (qPCR, GAPDH) 24h: 0.5 (ratio)* decrease (WB,GAPDH) 24h: 0.4 (ratio)* 

Sun et al. (2017) IL-1β IL1B hPDL cells (18-28/n.g., n.g., dig, 
P3-5, 70-80% confluence) 

dynamic 0.5Hz for 
12h, 24h, 48h 

12% FX-5000T™ Flexercell Tension Plus™ 
+ COL-I-coated silicone Bioflex® culture 
plates + vacuum 

uniaxial n.g. n.g. increase (ELISA) 48h: 89.76 (pg/ml) / 89.8 (ratio-calc) 

Sun et al. (2017) RUNX2 RUNX2 hPDL cells (18-28/n.g., n.g., dig, 
P3-5, 70-80% confluence) 

dynamic 0.5Hz for 
12h, 24h, 48h 

12% FX-5000T™ Flexercell Tension Plus™ 
+ COL-I-coated silicone Bioflex® culture 
plates + vacuum 

uniaxial temporary decrease (qPCR, GAPDH) 12h: 0.5 (ratio) temporary decrease (WB,GAPDH) 12h: 0.8 (ratio)* 

Sun et al. (2017) TNF-α TNF hPDL cells (18-28/n.g., n.g., dig, 
P3-5, 70-80% confluence) 

dynamic 0.5Hz for 
12h, 24h, 48h 

12% FX-5000T™ Flexercell Tension Plus™ 
+ COL-I-coated silicone Bioflex® culture 
plates + vacuum 

uniaxial n.g. n.g. increase (ELISA) 48h: 77.52 (pg/ml) / 77.5 (ratio-calc) 

Suzuki et al. (2014) BMP-2 BMP2 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

3%, 5%, 10% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial increase (qPCR, GAPDH) 10%: 5.3 (ratio)* n.g. n.g. 

Suzuki et al. (2014) BMP-2 BMP2 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h, 12h, 24h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial increase (qPCR, GAPDH) 6h: 5 (ratio)* n.g. n.g. 

Suzuki et al. (2014) BMP-4 BMP4 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial increase (qPCR, GAPDH) 1.3 (ratio)* n.g. n.g. 

Suzuki et al. (2014) COX-2 PTGS2 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial increase (qPCR, GAPDH) 6h: 66.3 (rel)* / 25.2 (ratio-calc) n.g. n.g. 

Suzuki et al. (2014) EP1 PTGER1 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial not detectable (sqPCR, GAPDH)  n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Suzuki et al. (2014) EP2 PTGER2 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial increase (sqPCR, GAPDH) 1.6 (ratio)* n.g. n.g. 

Suzuki et al. (2014) EP3 PTGER3 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial no change (sqPCR, GAPDH)  n.g. n.g. 

Suzuki et al. (2014) EP4 PTGER4 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial increase (sqPCR, GAPDH) 3.6 (ratio)* n.g. n.g. 

Suzuki et al. (2014) ERK1/2 / p-
ERK1/2 

MAPK3; 
MAPK1 

hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
15min, 45min 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial n.g. n.g. ERK1/2: no change (WB) 
p-ERK1/2: increase (WB) 

ERK1/2: no quantitative information is given 
p-ERK1/2 @ 45min: 6.3 (rel)* / 3.9 (ratio-calc) 

Suzuki et al. (2014) IGF-1 IGF1 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial decrease (qPCR, GAPDH) 0.4 (ratio)* n.g. n.g. 

Suzuki et al. (2014) JNK / p-JNK MAPK8 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
15min, 45min 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial n.g. n.g. JNK: no change (WB) 
p-JNK: increase (WB) 

JNK: no quantitative information is given 
p-JNK @ 45min: 32 (rel)* / 10 (ratio-calc) 

Suzuki et al. (2014) p38 / p-p38 MAPK14 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
15min, 45min 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial n.g. n.g. p38: no change (WB) 
p-p38: increase (WB) 

p38: no quantitative information is given 
p-p38 @ 45min: 4 (rel)* / 1.9 (ratio-calc) 

Suzuki et al. (2014) PGE2 PGE2 hPDL cells (19-29/n.g., M, n.g., P3-
10, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
6h 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone resin chamber 
(size 32×32 mm, STB-CH-10.0, Strex 
Co.) + motor 

uniaxial n.a. n.a. increase followed by plateau (ELISA) 1h…6h: 229.9 (pg/ml)* / 2.9 (ratio-calc) 

Symmank et al. (2019) GDF15 GDF15 hPDLFs (n.g./n.g., n.g., n.g., P4-6, 
confluence) 

static 3h, 6h, 12h 5% Flexcell FX-3000™ Tension System + 
pronectin-coated Biofex plates + 
vacuum 

equibiaxial increase (qPCR, GAPDH and ACTB) 3h: 2.9 (FC)† increase (ELISA) 12h: 615.5 (pg/ml)† / 4.4 (ratio-calc) 

Takano et al. (2009) COL1 COL1A1 hPDL cells (14-16/n.g., PM, exp, 
P6-9, confluent) 

static 12h 5%, 10% STREX system + STREX-chamber ST-
CH-10 (STREX Co.) + manual device 
(STB-10; STREX Co.) 

uniaxial increase (qPCR, β-actin) 10%: 1.9 (ratio)* increase (ELISA) 10%: 2.4 (ug/ml)* / 1.7 (ratio-calc) 

Takano et al. (2009) MMP-1 MMP1 hPDL cells (14-16/n.g., PM, exp, 
P6-9, confluent) 

static 12h 5%, 10% STREX system + STREX-chamber ST-
CH-10 (STREX Co.) + manual device 
(STB-10; STREX Co.) 

uniaxial increase (qPCR, β-actin) 10%: 1.6 (rel)* / 2 (ratio-calc) increase (ELISA) 10%: 3.8 (ug/ml)* / 1.6 (ratio-calc) 

Tang et al. (2012) Osx SP7 hPDLSCs (12-18/n.g., PM, dig, 
CD146 enrichment, P2, 1×105 
cells/cm2) 

dynamic 0.5Hz for 3h, 
6h, 12h, 24h 

0.3% 
(3000µstrain) 

four-point bending strain unit 
(SXG4201, University of Electronic 
Science and Technology of China, 
China) + force-loading plates made 
from bottom part of the 75 cm2 cell 
culture flasks (with canted neck 
(No.353135, BD Falcon) + actuator (Li 
et al 2009, Wang et al 2010; further 
reference to Liu 2006) 

uniaxial increase (qPCR, GAPDH) 24h: 15.4 (rel)* / 8.6 (ratio-calc) increase (WB, GAPDH) 24h: 1.2 (rel)* / 1.4 (ratio-calc) 

Tang et al. (2012) Runx2 RUNX2 hPDLSCs (12-18/n.g., PM, dig, 
CD146 enrichment, P2, 1×105 
cells/cm2) 

dynamic 0.5Hz for 3h, 
6h, 12h, 24h 

0.3% 
(3000µstrain) 

four-point bending strain unit 
(SXG4201, University of Electronic 
Science and Technology of China, 
China) + force-loading plates made 
from bottom part of the 75 cm2 cell 
culture flasks (with canted neck 
(No.353135, BD Falcon) + actuator (Li 
et al 2009, Wang et al 2010; further 
reference to Liu 2006) 

uniaxial increase (qPCR, GAPDH) 24h: 9.6 (rel)* / 7.4 (ratio-calc) increase followed by plateau (WB, GAPDH)? 12h…24h: 1.1 (rel)* / 1.4 (ratio-calc) 

Tang et al. (2012) Satb2 SATB2 hPDLSCs (12-18/n.g., PM, dig, 
CD146 enrichment, P2, 1×105 
cells/cm2) 

dynamic 0.5Hz for 3h, 
6h, 12h, 24h 

0.3% 
(3000µstrain) 

four-point bending strain unit 
(SXG4201, University of Electronic 
Science and Technology of China, 
China) + force-loading plates made 
from bottom part of the 75 cm2 cell 
culture flasks (with canted neck 
(No.353135, BD Falcon) + actuator (Li 
et al 2009, Wang et al 2010; further 
reference to Liu 2006) 

uniaxial increase follwed by plateau (qPCR, 
GAPDH) 

6h…24h: 4.5 (rel)* / 4.1 (ratio-calc) increase followed by plateau (WB, GAPDH) 6h…24h: 1.2 (rel)* / 1.3 (ratio-calc) 

Tantilertanant et al. (2019a) IL6 IL6 hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
2h, 6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial donor 1: increase (qPCR, GAPDH) 
donor 2: increase (qPCR, GAPDH) 
donor 3: increase (qPCR, GAPDH) 

donor 1: 6h: 9.4 (FC)† 
donor 2: 6h: 10.5 (FC)† 
donor 3: 6h: 9.9 (FC)† 

n.a. n.a. 

Tantilertanant et al. (2019a) IL6R IL6R hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
2h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial increase (qPCR, GAPDH) 3.2 (FC)† n.g. n.g. 

Tantilertanant et al. (2019a) MMP1 MMP1 hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial increase (qPCR, GAPDH) 6h: 1.5 (FC)† n.g. n.g. 

Tantilertanant et al. (2019a) MMP14 MMP14 hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial 6h: increase (qPCR, GAPDH) 6h: 1.4 (FC)† n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Tantilertanant et al. (2019a) MMP2 MMP2 hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial increase (qPCR, GAPDH) 6h: 1.4 (FC)† n.g. n.g. 

Tantilertanant et al. (2019a) MMP3 MMP3 hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial increase (qPCR, GAPDH) 6h: 1.5 (FC)†   

Tantilertanant et al. (2019a) MMP8 MMP8 hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial no change (qPCR, GAPDH)  n.g. n.g. 

Tantilertanant et al. (2019a) TIMP1 TIMP1 hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial no change (qPCR, GAPDH)  n.g. n.g. 

Tantilertanant et al. (2019a) TIMP2 TIMP2 hPDLCs (n.g./n.g., n.g., 3 donors, 
exp, P3-8, 2x105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

equibiaxial no change (qPCR, GAPDH)  n.g. n.g. 

Tantilertanant et al. (2019b) ATP ATP hPDL cells (n.g./n.g., M, exp, P3-4, 
2×105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
10min, 
20min, 
30min, 
60min, 
120min 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

uniaxial n.a. n.a. increase (Luminescence) 10min: 4.7 (ratio) 

Tantilertanant et al. (2019b) BMP2 BMP2 hPDL cells (n.g./n.g., M, exp, P3-4, 
2×105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
2h, 6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

uniaxial increase (sqPCR, GAPDH) 6h: 7.2 (FC)* n.g. n.g. 

Tantilertanant et al. (2019b) BMP6 BMP6 hPDL cells (n.g./n.g., M, exp, P3-4, 
2×105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
2h, 6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

uniaxial increase (sqPCR, GAPDH) 6h: 7.2 (FC)* n.g. n.g. 

Tantilertanant et al. (2019b) BMP9 GDF2 hPDL cells (n.g./n.g., M, exp, P3-4, 
2×105) 

dynamic 1Hz 
(frequency of 
60 rpm) 
sqPCR: for 
2h, 6h; 
ELISA: for 
48h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

uniaxial increase (sqPCR, GAPDH) 6h: 6.5 (FC)* conditioned medium: increase (ELISA) 
cell lysate: increase (ELISA) 

conditioned medium: 282.9 (pg)† / 11.0 (ratio-calc) 
cell lysate increase: 16.24 (pg)† / 3.7 (ratio-calc) 

Tantilertanant et al. (2019b) Noggin NOG hPDL cells (n.g./n.g., M, exp, P3-4, 
2×105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
2h, 6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

uniaxial increase (sqPCR, GAPDH) 6h: 2.4 (FC)* n.g. n.g. 

Tantilertanant et al. (2019b) P2Y1 P2RY1 hPDL cells (n.g./n.g., M, exp, P3-4, 
2×105) 

dynamic 1Hz 
(frequency of 
60 rpm) for 
2h, 6h 

10% uniaxial stretch apparatus developed at 
the Faculty of Dentistry, Chulalongkorn 
University + gelatin-coated silicone 
membranes (2.5×2cm2; Silastic T-4, 
Dow Corning, GmbH, Germany) 

uniaxial increase (sqPCR, GAPDH) 6h: 3.5 (FC)* n.g. n.g. 

Tsuji et al. (2004) MMP-1 MMP1 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1×105) 

dynamic 0.17Hz 
(1/6Hz) 
(10cyc/min) 
for 48h 

20% Flexercell Strain Unit + culture plates 
coated with type I collagen (Flex I) + 
vacuum 

equibiaxial no change (sqPCR, GAPDH)  n.g. n.g. 

Tsuji et al. (2004) MMP-2 MMP2 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1×105) 

dynamic 0.17Hz 
(1/6Hz) 
(10cyc/min) 
for 48h 

20% Flexercell Strain Unit + culture plates 
coated with type I collagen (Flex I) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) 0.8 (rel)* / 1.6 (ratio-calc) n.g. n.g. 

Tsuji et al. (2004) OPG TNFRSF11B hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1×105) 

dynamic 0.17Hz 
(1/6Hz) 
(10cyc/min) 
sqPCR for 
12h, 24h, 
48h, 72h, 
120h; qPCR 
for 48h 

20% Flexercell Strain Unit + culture plates 
coated with type I collagen (Flex I) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) 
increase (qPCR, β-actin) 

sqPCR @ 48h: 2.2 (ratio)*  
qPCR @ 48h: 34.8 (rel)* / 6.4 (ratio-calc) 

n.g. n.g. 

Tsuji et al. (2004) OPG TNFRSF11B hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1×105) 

dynamic 0.17Hz 
(1/6Hz) 
(10cyc/min) 
for 48h 

sqPCR for 5%, 
20%, 25%; ELISA 
for 20% 

Flexercell Strain Unit + culture plates 
coated with type I collagen (Flex I) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) 20%: 1.5 (rel)*/ 2.2 (ratio-calc) increase (ELISA) 20%: 339 (pM) / 3.0 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Tsuji et al. (2004) RANKL TNFSF11 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1×105) 

dynamic 0.17Hz 
(1/6Hz) 
(10cyc/min) 
for 48h 

20% Flexercell Strain Unit + culture plates 
coated with type I collagen (Flex I) + 
vacuum 

equibiaxial no change (sqPCR, GAPDH)  n.g. n.g. 

Tsuji et al. (2004) TIMP-1 TIMP1 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1×105) 

dynamic 0.17Hz 
(1/6Hz) 
(10cyc/min) 
for 48h 

20% Flexercell Strain Unit + culture plates 
coated with type I collagen (Flex I) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) 0.9 (rel)* / 2.3 (ratio-calc) n.g. n.g. 

Tsuji et al. (2004) TIMP-2 TIMP2 hPDL cells (n.g./n.g., PM, exp, P 
n.g., 1×105) 

dynamic 0.17Hz 
(1/6Hz) 
(10cyc/min) 
for 48h 

20% Flexercell Strain Unit + culture plates 
coated with type I collagen (Flex I) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) 1.1 (rel)* / 1.8 (ratio-calc) n.g. n.g. 

Tsuruga et al. (2009) Fibrillin-1 FBN1 hPDL cells (n.g./n.g., M, exp, P3-6, 
confluent) 

dynamic 0.017Hz 
(1/60Hz)) for 
7d 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone chamber 
precoated with type I collagen + motor 

uniaxial no change (Northern blot, β-actin) no quantitative information is given increase (WB, β-actin) increase of 27% (rel) / 1.3 (ratio-calc) 

Tsuruga et al. (2009) Fibrillin-2 FBN2 hPDL cells (n.g./n.g., M, exp, P3-6, 
confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
7d 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone chamber 
precoated with type I collagen + motor 

uniaxial no change (Northern blot, β-actin) no quantitative information is given increase (WB, β-actin) increase of 23% (rel) / 1.2 (ratio-calc) 

Tsuruga et al. (2009) MMP-2 MMP2 hPDL cells (n.g./n.g., M, exp, P3-6, 
confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
7d 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone chamber 
precoated with type I collagen + motor 

uniaxial n.g. n.g. increase (WB, β-actin) 2.5 (ratio) 

Tsuruga et al. (2012) Fibulin-5 FBLN5 hPDL cells (n.g./n.g., PM, exp, P3-
6, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
7d 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone chamber 
precoated with type I collagen + motor 

uniaxial n.g. n.g. FBLN5: no change (WB, β-actin) 
LTBP-2/Fibulin-5: decrease 

FBLN5: no quantitative information reported; 
LTBP-2/Fibulin-5: 41% (% of control) / 0.4 (ratio-calc) 

Tsuruga et al. (2012) LTBP-2 LTBP2 hPDL cells (n.g./n.g., PM, exp, P3-
6, confluent) 

dynamic 0.017Hz 
(1/60Hz) for 
7d 

5% STB-140 STREX cell stretch system 
(Strex Co) + silicone chamber 
precoated with type I collagen + motor 

uniaxial no change (Norhtern blot, β-actin)  cell lysates: decrease (WB, β-actin) 
cell surface and extracellular proteins (WB, β-actin): 
biotinylated decrease; nonbiotinylated no change 
medium: increase (WB, β-actin) 
LTBP-2/Fibulin-5: decrease 

cell lysates: 0.29 (ratio) 
cell surface and extracellular proteins: biotinylated and 
nonbiotinylated: no quantity is given 
medium: no quantity is given 
41% (rel) / 0.4 (ratio-calc) 

Wada et al. (2017) COX-2 PTGS2 immortalized human PDLCs via 
gene transfection (n.g./n.g., n.g., 
dig, P n.g., 4.0×105) 

static 6h, 12h, 24h 15% Cell Extender (ver. 3, Molcure, Tokyo, 
Japan) + Bioflex® plates (Flexcell®) + 
moving screw 

equibiaxial increase (qPCR, GAPDH) 12h: 3.8 (FC)* n.g. n.g. 

Wada et al. (2017) IL-1β IL1B immortalized human PDLCs via 
gene transfection (n.g./n.g., n.g., 
dig, P n.g., 4.0×105) 

static 6h, 12h, 24h 15% Cell Extender (ver. 3, Molcure, Tokyo, 
Japan) + Bioflex® plates (Flexcell®) + 
moving screw 

equibiaxial increase (qPCR, GAPDH) 24h: 5.2 (FC)* n.g. n.g. 

Wada et al. (2017) IL-6 IL6 immortalized human PDLCs via 
gene transfection (n.g./n.g., n.g., 
dig, P n.g., 4.0×105) 

static 6h, 12h, 24h 15% Cell Extender (ver. 3, Molcure, Tokyo, 
Japan) + Bioflex® plates (Flexcell®) + 
moving screw 

equibiaxial increase (qPCR, GAPDH) 6h: 21 (FC)* n.g. n.g. 

Wada et al. (2017) IL-6 IL6 immortalized human PDLCs via 
gene transfection (n.g./n.g., n.g., 
dig, P n.g., 4.0×105) 

dynamic 0.5Hz for n.g. 15% Cell Extender (ver. 3, Molcure, Tokyo, 
Japan) + Bioflex® plates (Flexcell®) + 
moving screw 

equibiaxial increase (qPCR, GAPDH) duration n.g.: 72.6 (FC)* n.g. n.g. 

Wada et al. (2017) Osteopontin SPP1 immortalized human PDLCs via 
gene transfection (n.g./n.g., n.g., 
dig, P n.g., 4.0×105) 

static 6h, 12h, 24h 15% Cell Extender (ver. 3, Molcure, Tokyo, 
Japan) + Bioflex® plates (Flexcell®) + 
moving screw 

equibiaxial increase (qPCR, GAPDH) 6h: 27 (FC)* increase (WB, β-actin) 2.2 (ratio)* 

Wada et al. (2017) Runx2 RUNX2 immortalized human PDLCs via 
gene transfection (n.g./n.g., n.g., 
dig, P n.g., 4.0×105) 

static 6h, 12h, 24h 15% Cell Extender (ver. 3, Molcure, Tokyo, 
Japan) + Bioflex® plates (Flexcell®) + 
moving screw 

equibiaxial increase (qPCR, GAPDH) 24h: 1.7 (FC)* n.g. n.g. 

Wada et al. (2017) TNF-α TNF immortalized human PDLCs via 
gene transfection (n.g./n.g., n.g., 
dig, P n.g., 4.0×105) 

static 6h, 12h, 24h 15% Cell Extender (ver. 3, Molcure, Tokyo, 
Japan) + Bioflex® plates (Flexcell®) + 
moving screw 

equibiaxial increase (qPCR, GAPDH) 12h: 5.4 (FC)* n.g. n.g. 

Wang et al. (2011) ARRAY ARRAY hPDL cells (12-16/n.g., PM, dig, P4, 
1×105 cells/ml) 

dynamic 0.5Hz for 2h 0.5% 
(5000µstrain) 

four-point bending system + force-
loading plates made out of the bottoms 
of 250 ml cell culture flasks (Falcon) 
8×4 cm2 in size and 1.15 mm thick 

uniaxial CapitalBio human whole-genome 
oligonucleotide chip 35k (CapitalBio Co, 
Beijing, China) spotted with 35,000 
genes 

 n.a. n.a. 

Wang et al. (2011) BHLHB2 DEC1 hPDL cells (12-16/n.g., PM, dig, P4, 
1×105 cells/ml) 

dynamic 0.5Hz for 2h 0.5% 
(5000µstrain) 

four-point bending system + force-
loading plates made out of the bottoms 
of 250 ml cell culture flasks (Falcon) 
8×4 cm2 in size and 1.15 mm thick 

uniaxial increase (qPCR, GAPDH) 4.4 (FC)* n.g. n.g. 

Wang et al. (2011) CCL2 CCL2 hPDL cells (12-16/n.g., PM, dig, P4, 
1×105 cells/ml) 

dynamic 0.5Hz for 2h 0.5% 
(5000µstrain) 

four-point bending system + force-
loading plates made out of the bottoms 
of 250 ml cell culture flasks (Falcon) 
8×4 cm2 in size and 1.15 mm thick 

uniaxial increase (qPCR, GAPDH) 3.9 (FC)* n.g. n.g. 

Wang et al. (2011) CDC42EP2 CDC42EP2 hPDL cells (12-16/n.g., PM, dig, P4, 
1×105 cells/ml) 

dynamic 0.5Hz for 2h 0.5% 
(5000µstrain) 

four-point bending system + force-
loading plates made out of the bottoms 
of 250 ml cell culture flasks (Falcon) 
8×4 cm2 in size and 1.15 mm thick 

uniaxial increase (qPCR, GAPDH) 4.9 (FC)* n.g. n.g. 

Wang et al. (2011) COX-2 PTGS2 hPDL cells (12-16/n.g., PM, dig, P4, 
1×105 cells/ml) 

dynamic 0.5Hz for 2h 0.5% 
(5000µstrain) 

four-point bending system + force-
loading plates made out of the bottoms 
of 250 ml cell culture flasks (Falcon) 
8×4 cm2 in size and 1.15 mm thick 

uniaxial increase (qPCR, GAPDH) 6.4 (FC)* n.g. n.g. 

Wang et al. (2011) IER3 IER3 hPDL cells (12-16/n.g., PM, dig, P4, 
1×105 cells/ml) 

dynamic 0.5Hz for 2h 0.5% 
(5000µstrain) 

four-point bending system + force-
loading plates made out of the bottoms 
of 250 ml cell culture flasks (Falcon) 
8×4 cm2 in size and 1.15 mm thick 

uniaxial increase (qPCR, GAPDH) 4.2 (FC)* n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Wang et al. (2011) KLF10 KLF10 hPDL cells (12-16/n.g., PM, dig, P4, 
1×105 cells/ml) 

dynamic 0.5Hz for 2h 0.5% 
(5000µstrain) 

four-point bending system + force-
loading plates made out of the bottoms 
of 250 ml cell culture flasks (Falcon) 
8×4 cm2 in size and 1.15 mm thick 

uniaxial increase (qPCR, GAPDH) 6.2 (FC)* n.g. n.g. 

Wang et al. (2011) SPRY2 SPRY2 hPDL cells (12-16/n.g., PM, dig, P4, 
1×105 cells/ml) 

dynamic 0.5Hz for 2h 0.5% 
(5000µstrain) 

four-point bending system + force-
loading plates made out of the bottoms 
of 250 ml cell culture flasks (Falcon) 
8×4 cm2 in size and 1.15 mm thick 

uniaxial increase (qPCR, GAPDH) 4.1 (FC)* n.g. n.g. 

Wang et al. (2013) Caspase-3, 
Pro- / 
Caspase-3, 
cleaved 

CASP3 hPDL cells (n.g./n.g., PM, dig, P4-8, 
95% confluency) 

dynamic 0.1Hz for 6h, 
24h 

20% Flexcell Tension Plus system FX-5000T 
+ collagen I-coated six-well Bioflex 
plates (Flexcel) + vacuum 

equibiaxial n.g. n.g. Pro-Caspase 3: no change (WB, β-actin) 
Cleaved caspase-3: increase (WB, β-actin) 

Pro-Caspase-3: no quantitative information is given 
Cleaved caspase-3: 24h: 2.1 (ratio)* 

Wang et al. (2013) PARP PARP1 hPDL cells (n.g./n.g., PM, dig, P4-8, 
95% confluency) 

dynamic 0.1Hz for 6h, 
24h 

20% Flexcell Tension Plus system FX-5000T 
+ collagen I-coated six-well Bioflex 
plates (Flexcel) + vacuum 

equibiaxial n.g. n.g. 116kD PARP: no change (WB, β-actin) 
85kD PARP: increase (WB, β-actin) 

116kD PARP: no quantitative information is given 
85kD PARP: 24h: 2.2 (ratio)* 

Wang et al. (2013) RhoGDIα ARHGDIA hPDL cells (n.g./n.g., PM, dig, P4-8, 
95% confluency) 

dynamic 0.1Hz for 6h, 
24h 

20% Flexcell Tension Plus system FX-5000T 
+ collagen I-coated six-well Bioflex 
plates (Flexcel) + vacuum 

equibiaxial n.g. n.g. decrease (WB, β-actin) 24h: 0.4 (ratio)* 

Wang et al. (2018) Actin (f-actin) ACTB hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 1×105 cells/cm2) 

dynamic 0.5Hz for 2h, 
6h 

0.4% 
(4000µstrain) 

four-point bending strength device (west 
China college of Stomatology, Sichuan 
University, number of national patents 
of RP China: CN2534576 and 
CN1425905) (Hu 2015) 

uniaxial n.g. n.g. increase (WB, β-actin) 6h: 1.2 (rel)* / 1.7 (ratio-calc) 

Wang et al. (2018) Akt AKT1 hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 1×105 cells/cm2) 

dynamic 0.5Hz for 2h, 
6h 

0.4% 
(4000µstrain) 

four-point bending strength device (west 
China college of Stomatology, Sichuan 
University, number of national patents 
of RP China: CN2534576 and 
CN1425905) (Hu 2015) 

uniaxial n.g. n.g. increase followed by plateau (WB, β-actin) 2h...6h: 1.2 (rel)* / 2 (ratio-calc) 

Wang et al. (2018) Girdin CCDC88A hPDL cells (n.g./n.g., n.g., n.g., P 
n.g., 1×105 cells/cm2) 

dynamic 0.5Hz for 2h, 
6h 

0.4% 
(4000µstrain) 

four-point bending strength device (west 
China college of Stomatology, Sichuan 
University, number of national patents 
of RP China: CN2534576 and 
CN1425905) (Hu 2015) 

uniaxial n.g. n.g. increase (WB, β-actin) 6h: 2.7 (rel)* / 1.7 (ratio-calc) 

Wang et al. (2019a) circRNA3154 
circRNA5034 
circRNA3133 
circRNA5045 
circRNA1818 
circRNA1358 

circRNA3154 
circRNA5034 
circRNA3133 
circRNA5045 
circRNA1818 
circRNA1358 

hPDLSC (14-16/n.g., PM, dig and 
limited dilution, P3, 5×105) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 + Flexcell amino 
silicone-bottom plates were coated with 
a 0.6 g/L collagen I solution (Sigma-
Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 
increase (qPCR, GAPDH) 
increase (qPCR, GAPDH) 
increase (qPCR, GAPDH) 
decrease (qPCR, GAPDH) 
decrease (qPCR, GAPDH) 

3.7 (FC)* 
2.7 (FC)* 
4.5 (FC)* 
7.0 (FC)* 
0.3 (FC)* 
0.3 (FC)* 

n.a. n.a. 

Wang et al. (2019a) OCN BGLAP hPDLSC (14-16/n.g., PM, dig and 
limited dilution, P3, 5×105) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 + Flexcell amino 
silicone-bottom plates were coated with 
a 0.6 g/L collagen I solution (Sigma-
Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 5.8 (FC)* n.g. n.g. 

Wang et al. (2019a) RNA-Seq RNA-SEQ hPDLSC (14-16/n.g., PM, dig and 
limited dilution, P3, 5×105) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 + Flexcell amino 
silicone-bottom plates were coated with 
a 0.6 g/L collagen I solution (Sigma-
Aldrich) + vacuum 

equibiaxial Illumina Hiseq. 4000 with focus on 
circRNA species 

n.a. n.a. n.a. 

Wang et al. (2019a) RUNX2 RUNX2 hPDLSC (14-16/n.g., PM, dig and 
limited dilution, P3, 5×105) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 + Flexcell amino 
silicone-bottom plates were coated with 
a 0.6 g/L collagen I solution (Sigma-
Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 2.5 (FC)* n.g. n.g. 

Wang et al. (2019a) SP7 SP7 hPDLSC (14-16/n.g., PM, dig and 
limited dilution, P3, 5×105) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 + Flexcell amino 
silicone-bottom plates were coated with 
a 0.6 g/L collagen I solution (Sigma-
Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 4.5 (FC)* n.g. n.g. 

Wang et al. (2019b) Cbfα1 RUNX2 hPDLCs (18-30/n.g., M, dig, P2-5, 
confluence) 

dynamic 0.1Hz 
(6cyc/min, 5s 
on and 5s off)  
qPCR for 
12h, 24h, 
48h; WB for 
24h, 48h 

12% Flexcell FX-5000TM + Bioflex plates + 
vaccum 

equibiaxial increase (qPCR, β-actin) 48h: 1.3 (FC)† increase (WB, GAPDH) 48h: no quantitative information is given 

Wang et al. (2019b) COL-1 COL1A1 hPDLCs (18-30/n.g., M, dig, P2-5, 
confluence) 

dynamic 0.1Hz 
(6cyc/min, 5s 
on and 5s off)  
qPCR for 
12h, 24h, 
48h; WB for 
24h, 48h 

12% Flexcell FX-5000TM + Bioflex plates + 
vaccum 

equibiaxial increase (qPCR, β-actin) 48h: 1.6 (FC)† increase (WB, GAPDH) 48h: no quantitative information is given 

Wang et al. (2019b) OCN BGLAP hPDLCs (18-30/n.g., M, dig, P2-5, 
confluence) 

dynamic 0.1Hz 
(6cyc/min, 5s 
on and 5s off)  
qPCR for 
12h, 24h, 
48h; WB for 
24h, 48h 

12% Flexcell FX-5000TM + Bioflex plates + 
vaccum 

equibiaxial increase (qPCR, β-actin) 48h: 1.3 (FC)† increase (WB, GAPDH) 24h: no quantitative information is given 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Wang et al. (2019b) OSX SP7 hPDLCs (18-30/n.g., M, dig, P2-5, 
confluence) 

dynamic 0.1Hz 
(6cyc/min, 5s 
on and 5s off)  
qPCR for 
12h, 24h, 
48h; WB for 
24h, 48h 

12% Flexcell FX-5000TM + Bioflex plates + 
vaccum 

equibiaxial increase followed by plateau (qPCR, β-
actin) 

24h...48h: 1.5 (FC)† increase (WB, GAPDH) 48h: no quantitative information is given 

Wang et al. (2019b) TAZ TAZ hPDLCs (18-30/n.g., M, dig, P2-5, 
confluence) 

dynamic 0.1Hz 
(6cyc/min, 5s 
on and 5s off)  
qPCR for 
12h, 24h, 
48h; WB for 
24h, 48h 

12% Flexcell FX-5000TM + Bioflex plates + 
vaccum 

equibiaxial increase (qPCR, β-actin) 48h: (FC)† increase (WB, GAPDH) 48h: no quantitative information is given 

Wei et al. (2014) ARRAY ARRAY hPDLSCs cells (12-16/ n.g., PM, 
dig, P2-3, 80% confluence) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum 

equibiaxial Paraflo™ miRNA Microarray Assay    

Wei et al. (2014) BSP IBSP hPDLSCs cells (12-16/ n.g., PM, 
dig, P2-3, 80% confluence) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 2.8 (ratio)* increase (WB, β-actin) no quantitative information is given 

Wei et al. (2014) OCN BGLAP hPDLSCs cells (12-16/ n.g., PM, 
dig, P2-3, 80% confluence) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 2.1 (ratio)* increase (WB, β-actin) no quantitative information is given 

Wei et al. (2014) Runx2 RUNX2 hPDLSCs cells (12-16/ n.g., PM, 
dig, P2-3, 80% confluence) 

dynamic 1.0Hz for 12h 10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 1.8 (ratio)* increase (WB, β-actin) no quantitative information is given 

Wei et al. (2015) ACVR2B ACVR2B hPDLSCs cells (10-14/n.g., n.g., 
dig, P3, 80% confluence) 

dynamic 1.0 Hz for 6h, 
12h, 24h, 48h 

10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum 

equibiaxial n.g. n.g. decrease (WB, β-actin) 24h: 0.6 (rel)* / 0.7 (ratio-calc) 

Wei et al. (2015) ALP ALPP hPDLSCs cells (10-14/n.g., n.g., 
dig, P3, 80% confluence) 

dynamic 1.0Hz for 6h, 
12h, 24h, 48h 

10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum 

equibiaxial n.g. n.g. increase (ALP activity) 48h: 0.6 [Sigma unit/(min * mg protein)]* / 11.0 (ratio-
calc) 

Wei et al. (2015) OCN BGLAP hPDLSCs cells (10-14/n.g., n.g., 
dig, P3, 80% confluence) 

dynamic 1.0Hz for 6h, 
12h, 24h, 48h 

10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 24h: 3.5 (FC)* n.g. n.g. 

Wei et al. (2015) Runx2 RUNX2 hPDLSCs cells (10-14/n.g., n.g., 
dig, P3, 80% confluence) 

dynamic 1.0Hz for 6h, 
12h, 24h, 48h 

10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum 

equibiaxial increase (qPCR, GAPDH) 48h: 1.8 (FC)* n.g. n.g. 

Wescott et al. (2007) ARRAY ARRAY hPDL fibroblasts (n.g./n.g., PM, 
exp, P4, 3×105) 

dynamic 0.01Hz 
(1/96Hz) 
(intermittent 
deformation 
of 12% for 6s 
every 90s) for 
6h, 12h, 24h 

12% Flexercell FX-4000 Strain Unit + six-
well, 35-mm flexible-bottomed Uniflex 
culture plates + vacuum 

uniaxial Osteogenic RT2 Profiler PCR Array 
(Superarray Bioscience Corp.) 

too many n.g. n.g. 

Wolf et al. (2014) HMGB1 HMGB1 hPDL cells (12-14/n.g., PM, n.g., P 
n.g., confluence) 

static 8h 20% loading platform with cylindrical posts + 
collagen type I-coated BioFlex plates 
(Flexcells Int.) + screws (Deschner et 
al., 2007, Rath-Deschner et al 2009) 

equibiaxial n.g. n.g. increase (ELISA) 1.4 (ratio)* 

Wu et al. (2015) mDia1 DIAPH1 hPDL cells (n.g./n.g., PM, n.g., P3-
6, 95% confluence) 

dynamic 0.1Hz for 6h, 
24h 

10% Flexercell Tension Plus system FX-
5000T + six-well Bioflex plates + 
vacuum 

equibiaxial n.g. n.g. increase followed with platform (WB, GAPDH) 6h...24h: 1.1 (ratio)* 

Wu et al. (2015) Profilin-1 PFN1 hPDL cells (n.g./n.g., PM, n.g., P3-
6, 95% confluence) 

dynamic 0.1Hz for 6h, 
24h 

10% Flexercell Tension Plus system FX-
5000T + six-well Bioflex plates + 
vacuum 

equibiaxial n.g. n.g. increase (WB, GAPDH) 24h: 2.4 (ratio)* 

Wu et al. (2015) RhoA-GTP RHOA hPDL cells (n.g./n.g., PM, n.g., P3-
6, 95% confluence) 

dynamic 0.1Hz for 6h, 
24h 

10% Flexercell Tension Plus system FX-
5000T + six-well Bioflex plates + 
vacuum 

equibiaxial n.g. n.g. increase (WB, GAPDH) 24h: 4.9 (ratio)* 

Wu et al. (2015) Rho-GDIα ARHGDIA hPDL cells (n.g./n.g., PM, n.g., P3-
6, 95% confluence) 

dynamic 0.1Hz for 6h, 
24h 

10% Flexercell Tension Plus system FX-
5000T + six-well Bioflex plates + 
vacuum 

equibiaxial n.g. n.g. decrease (WB, GAPDH) 24h: 0.5 (ratio)* 

Wu et al. (2016) Caspase 7, 
Pro- / 
Caspase 7, 
cleaved 

CASP7 hPDL cells (11-13/n.g., PM, exp, 
P4-6, 70-80% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.g. n.g. Pro-caspase 7: increase (WB, GAPDH) 
Cleaved caspase 7: increase (WB, GAPDH) 

Pro-Caspase 3 @ 24h: 0.3 (rel)† / 21.1 (ratio-calc) 
Cleaved caspase 7 @ 24h: 0.6 (rel)† / 6.3 (ratio-calc) 

Wu et al. (2016) Caspase 8, 
cleaved 
(18kDa) 

CASP8 hPDL cells (11-13/n.g., PM, exp, 
P4-6, 70-80% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.g. n.g. increase (WB, GAPDH) 24h: 0.2 (rel)† / 4.9 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Wu et al. (2016) Caspase 8, 
cleaved 
(43/45kDa) 

CASP8 hPDL cells (11-13/n.g., PM, exp, 
P4-6, 70-80% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.g. n.g. increase (WB, GAPDH) 24h: 0.5 (rel)† / 8.3 (ratio-calc) 

Wu et al. (2016) Caspase 8, 
Pro- 

CASP8 hPDL cells (11-13/n.g., PM, exp, 
P4-6, 70-80% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.g. n.g. increase (WB, GAPDH) 24h: 0.6 (rel)† / 8.4 (ratio-calc) 

Wu et al. (2016) Caspase 9, 
Pro- / 
Caspase 9, 
cleaved 

CASP9 hPDL cells (11-13/n.g., PM, exp, 
P4-6, 70-80% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.g. n.g. Pro-caspase 9: increase (WB, GAPDH) 
Cleaved caspase 9: increase (WB, GAPDH) 

Pro-caspase 9 @ 24h: 0.8 (rel)† 31.8 (ratio-calc) 
Cleaved caspase 9 @ 24h: 0.7 (rel)† / 7.7 (ratio-calc) 

Wu et al. (2016) Caspase-3, 
cleaved 

CASP3 hPDL cells (11-13/n.g., PM, exp, 
P4-6, 70-80% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.g. n.g. increase (WB, GAPDH) 24h: 0.1 (rel)* / 1.7 (ratio-calc) 

Wu et al. (2017) ARRAY ARRAY hPDL cells (11/F, 12/F, 13/F, PM, 
exp, P4, confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
qPCR for 
24h; WB for 
6h, 24h 

1%, 10%, 20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial Human Cytoskeleton Regulators RT2 
ProfilerTM PCR Array (PAHS-088, 
SABiosciences, Frederick, MD) 

ARRAY n.a. n.a. 

Wu et al. (2017) CDC42EP2 CDC42EP2 hPDL cells (11/F, 12/F, 13/F, PM, 
exp, P4, confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
qPCR for 
24h; WB for 
6h, 24h 

1%, 10%, 20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.a. n.a. decrease (WB, GAPDH) no quantitative information is given 

Wu et al. (2017) STMN1 STMN1 hPDL cells (11/F, 12/F, 13/F, PM, 
exp, P4, confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
qPCR for 
24h; WB for 
6h, 24h 

1%, 10%, 20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.a. n.a. decrease (WB, GAPDH) no quantitative information is given 

Wu et al. (2017) WASL WASL hPDL cells (11/F, 12/F, 13/F, PM, 
exp, P4, confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 24h 

1%, 10%, 20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.a. n.a. increase (WB, GAPDH) no quantitative information is given 

Wu et al. (2019a) BSP IBSP hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 1.6 (FC)† n.g. n.g. 

Wu et al. (2019a) CAP HACD1 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 2.4 (FC)† n.g. n.g. 

Wu et al. (2019a) CEMP1 AMDHD2 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 2.0 (FC)† increase (WB, GAPDH) no quantitative information is given 

Wu et al. (2019a) CTGF CCN2 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial decrease (qPCR, GAPDH) 0.8 (FC)† n.g. n.g. 

Wu et al. (2019a) DVL2 DVL2 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 3.1 (FC)† n.g. n.g. 

Wu et al. (2019a) GDF5 GDF5 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 4.7 (FC)† n.g. n.g. 

Wu et al. (2019a) GLI2 GLI2 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 1.6 (FC)† n.g. n.g. 

Wu et al. (2019a) LATS1 LATS1 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 1.5 (FC)† n.g. n.g. 

Wu et al. (2019a) LIMD1 LIMD1 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 2.9 (FC)† n.g. n.g. 

Wu et al. (2019a) MSX2 MSX2 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 1.5 (FC)† n.g. n.g. 

Wu et al. (2019a) OCN BGLAP hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 2.1 (FC)† n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Wu et al. (2019a) RUNX2 RUNX2 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 1.6 (FC)† increase (WB, GAPDH) no quantitative information is given 

Wu et al. (2019a) SATB2 SATB2 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 1.7 (FC)† n.g. n.g. 

Wu et al. (2019a) SPP1 SPP1 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 2.3 (FC)† increase (WB, GAPDH) no quantitative information is given 

Wu et al. (2019a) TEAD1 TEAD1 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR,GAPDH) 1.3 (FC)† n.g. n.g. 

Wu et al. (2019a) TEAD2 TEAD2 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 2.2 (FC)† n.g. n.g. 

Wu et al. (2019a) WTIP WTIP hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 1.8 (FC)† n.g. n.g. 

Wu et al. (2019a) WWTR1 TAZ hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 3.7 (FC)† n.g. n.g. 

Wu et al. (2019a) YAP1 YAP1 hPDLCs (14-25/n.g., M, exp, P3-6, 
70-80% confluence) 

dynamic 0.1Hz for 24h 10% Flexcell FX-5000TM + six-well Bioflex 
plates coated with type I collagen + 
vaccum 

equibiaxial increase (qPCR, GAPDH) 2.2 (FC)† n.g. n.g. 

Wu et al. (2019b) Caspase 3, 
Pro- / 
Caspase 3, 
cleaved 

CASP3 hPDLFs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.g. n.g. Pro-caspase-3 (35 kDa): increase (WB, GAPDH) 
Cleaved caspase-3 (ca. 17 kDa): increase (WB, 
GAPDH) 
Cleaved caspase-3: increase (colorimetric assay) 

Pro-caspase-3: 12h: 0.6 (rel)* / 1.2 (ratio-calc) 
Cleaved caspase-3: WB @ 24h: 0.1 (rel)* / 3.3 (ratio-
calc) 
Cleaved caspase-3: colorimetric assay @ 24h: 1.5 
(ratio)* 

Wu et al. (2019b) Caspase 5, 
Pro- / 
Caspase 5, 
cleaved 

CASP5 hPDLFs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial n.g. n.g. Pro-caspase-5 (45 kDa): decrease (WB, GAPDH) 
Cleaved caspase-5 (20 kDa): increase (WB, GAPDH) 
Cleaved caspase-5: increase followed by plateau 
(colorimetric assay) 

Pro-caspase-5: 24h: 0.2 (rel)† / 0.6 (ratio-calc) 
Cleaved caspase-5: WB @ 24h: 0.2 (rel)† / 15.0 (ratio-
calc) 
Cleaved caspase-5: colorimetric assay @ 6h…24h: 1.7 
(ratio)* 

Xu et al. (2011) ARRAY ARRAY hPDL cells (12/F, PM, exp, P4, 
confluence) 

dynamic 0.1Hz 
(6cyc/min) for 
6h, 24h 

20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial Human Apoptosis RT2 Profiler PCR 
Array (PAHS-012; Superarray) with 
B2M, GAPDH and ACTB as reference 
genes 

too many n.g. n.g. 

Xu et al. (2012) Cx43 GJA1 hPDL cells (12/F, 15/M, PM, exp, 
P4-6, confluence) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 24h 

1%, 10%, 20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial 1% strain: temporary decrease followed by 
temporary increase (qPCR, b-actin) 
10% strain: temporary decrease (qPCR, b-
actin) 
20% strain: decrease followed by plateau 
then increase (qPCR, b-actin) 

1% strain lowest @ 0.5h: 0.2 (rel)† / 0.2 
(ratio-calc) 
1% strain highest @ 1h: 2.1 (rel)† / 1.9 
(ratio-calc) 
10% strain lowest@ 0.5h: 0.2 (rel)† / 0.2 
(ratio-calc) 
20% strain lowest @ 0.5h…1h: 0.4 (rel)† / 
0.4 (ratio-calc) 
20% strain highest @ 24h: 1.8 (rel)† / 2 
(ratio-calc) 

n.g. n.g. 

Xu et al. (2015) a-SMA ACTA2 hPDL cells (n.g./n.g., PM, exp, P3-
5, 80% confluence) 

dynamic 0.5Hz qPCR 
for 6h; ELISA 
for 0h, 1h, 3h, 
6h, 12h 

0.2% 
(2000µstrain), 
0.4% 
(4000µstrain) 

a uniaxial four-point bending system 
(developed at Sichuan University, 
patents CN2534576 and CN1425905) 

uniaxial 2000µstrain: increase (qPCR, GAPDH) 
4000µstrain: increase (qPCR, GAPDH) 

2000 µstrain: 1.2 (ratio)* 
4000 µstrain: 2.6 (ratio)* 

2000 µstrain: increase (ELISA) 
4000 µstrain: increase (ELISA) 

2000 µstrain @ 12h: 348.5 (pg/ml)* / 1.4 (ratio-calc) 
4000 µstrain @ 12h: 393.9 (pg/ml)* / 1.6 (ratio-calc) 

Xu et al. (2017) Periostin POSTN hPDL cells (n.g./n.g., PM and M, 
exp, P3, n.g.) 

dynamic 0.5Hz for 0h, 
12h, 24h, 48h 

10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum (Wei 
et al 2014) 

equibiaxial increase (qPCR, GAPDH) 48h: 3.3 (FC)* increase (WB, α-tubulin) 48h: 3.6 (ratio)* 

Xu et al. (2017) TGF-β TGFB1 hPDL cells (n.g./n.g., PM and M, 
exp, P3, n.g.) 

dynamic 0.5Hz for 0h, 
12h, 24h, 48h 

10% Flexcell FX-5000 Tension system + 
Flexcell Amino silicone bottomed plates 
coated with 0.6mg/mL collagen I 
solution (Sigma Aldrich) + vacuum (Wei 
et al 2014) 

equibiaxial increase (qPCR, GAPDH) 48h: 3.5 (FC)* increase (WB, α-tubulin) no quantitative information is given 

Yamaguchi and Shimizu (1994) ALP ALPP hPDL fibroblasts (12/M, 10/M, 
11/F, 3 donors, PM, exp, donor#1 
P4, donor#2 P6, donor#3 P4, 
confluent) 

dynamic 0.1Hz 
(6cyc/min: 5s 
elongation 
and 5s 
relaxation) for 
3d 

24% Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1985) 

equibiaxial n.g. n.g. donor 1: decrease (ALP activity) 
donor 2: decrease (ALP activity) 
donor 3: decrease (ALP activity) 

donor 1: 10.3 (mU/105 cells) / 0.6 (ratio-calc) 
donor 2: 10.0 (mU/105 cells) / 0.6 (ratio-calc) 
donor 3: 10.6 (mU/105 cells) / 0.6 (ratio-calc) 

Yamaguchi et al. (1994) PGE2 PGE2 hPDL fibroblasts (12/M, 19/F, 
11/M, PM, exp, P4, 1×105) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off) 
for 1d, 3d, 5d 

18% Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1985) 

equibiaxial n.a. n.a. increase (RIA) 5d: 8.9 (ng/106 cells)* / 17.8 (ratio-calc) 

Yamaguchi et al. (1994) PGE2 PGE2 hPDL fibroblasts (12/M, 19/F, 
11/M, PM, exp, P4, 1×105) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off)  
for 5d 

9%, 12%, 15%, 
18%, 21%, 24% 

Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1985) 

equibiaxial n.a. n.a. increase (RIA) 24%: 14 (ng/106 cells)* / 28 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Yamaguchi et al. (1996) ALP ALPP hPDL fibroblasts (12/M, PM, exp, P 
n.g., 1×105) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off) 
for 1d, 3d, 5d 

24% Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1990) 

equibiaxial n.g. n.g. decrease followed by plateau (ALP activity) 3d…5d: 10.7 (mU/105 cells)* / 0.6 (ratio-calc) 

Yamaguchi et al. (1996) ALP ALPP hPDL fibroblasts (12/M, PM, exp, P 
n.g., 1×105) 

dynamic 0.1Hz 
(6cyc/min: 5s 
on and 5s off) 
ALP activity 
for 5d; 
sqPCR for 3d 

ALP activity for 
9%, 12%, 15%, 
18%, 21%, 24%; 
sqPCR for 12%, 
24% 

Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1990) 

equibiaxial decrease (Northern blot, β-actin) no quantitative information is given decrease (ALP activity) 24%: 9.4 (mU/105 cells)* / 0.5 (ratio-calc) 

Yamaguchi et al. (1997) PAI-1 SERPINE1 hPDL fibroblasts (12/M, 10/M, 
11/F, exp, 3 donors, P unclear, 
confluent) 

static 5d 18% Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1985) 

equibiaxial no change (sqPCR, GAPDH) no quantitative information is given n.g. n.g. 

Yamaguchi et al. (1997) Plasminogen 
activator 

PLAT; PLAU hPDL fibroblasts (12/M, 10/M, 
11/F, exp, 3 donors, P unclear, 
confluent) 

static 1d, 3d, 5d 18% Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1985) 

equibiaxial n.g. n.g. increase (PA activity, photometric) 5d: 7.5 (mU/105 cells)* / 2.2 (ratio-calc) 

Yamaguchi et al. (1997) Plasminogen 
activator 

PLAT; PLAU hPDL fibroblasts (12/M, 10/M, 
11/F, exp, 3 donors, P unclear, 
confluent) 

static 5d 9%, 18% Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1985) 

equibiaxial n.g. n.g. increase (PA activity, photometric) 18%: 7.9 (mU/105 cells)* / 2.2 (ratio-calc) 

Yamaguchi et al. (1997) tPA PLAT hPDL fibroblasts (12/M, 10/M, 
11/F, exp, 3 donors, P unclear, 
confluent) 

static 5d 18% Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1985) 

equibiaxial increase (sqPCR, GAPDH) no quantitative information is given increase (WB) no quantitative information is given 

Yamaguchi et al. (1997) uPA PLAU hPDL fibroblasts (12/M, 10/M, 
11/F, exp, 3 donors, P unclear, 
confluent) 

static 5d 18% Flexercell strain unit + flexible-bottom 
culture plates coated with type I 
collagen (Flexcell) + vacuum (Banes et 
al 1985) 

equibiaxial not detectable (sqPCR, GAPDH) no quantitative information is given not detectable (WB) no quantitative information is given 

Yamaguchi et al. (2002) ALP ALPP hPDL fibroblasts (n.g./n.g., PM, 
n.g., P8, confluent) 

dynamic 0.5Hz 
(30cyc/min: 
1s on and 1s 
off) for 30min, 
90min, 6h 

15% a strain unit (Flexercell) + type I 
collagen-coated, silicon membrane) 
culture plates (Flex I; Flexercell) + 
vacuum 

equibiaxial temporary decrease (sqPCR, GAPDH) 90min: 0.8 (ratio)* n.g. n.g. 

Yamaguchi et al. (2002) c-fos FOS hPDL fibroblasts (n.g./n.g., PM, 
n.g., P8, confluent) 

dynamic 0.5Hz 
(30cyc/min: 
1s on and 1s 
off) for 30min, 
90min, 6h 

15% a strain unit (Flexercell) + type I 
collagen-coated, silicon membrane) 
culture plates (Flex I; Flexercell) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) 30min: 55.8 (ratio)* n.g. n.g. 

Yamaguchi et al. (2002) COL-I COL1A1 hPDL fibroblasts (n.g./n.g., PM, 
n.g., P8, confluent) 

dynamic 0.5Hz 
(30cyc/min: 
1s on and 1s 
off) for 30min, 
90min, 6h 

15% a strain unit (Flexercell) + type I 
collagen-coated, silicon membrane) 
culture plates (Flex I; Flexercell) + 
vacuum 

equibiaxial temporary increase (sqPCR, GAPDH) 30min: 1.2 (ratio)* n.g. n.g. 

Yamaguchi et al. (2002) COL-III COL3A1 hPDL fibroblasts (n.g./n.g., PM, 
n.g., P8, confluent) 

dynamic 0.5Hz 
(30cyc/min: 
1s on and 1s 
off) for 30min, 
90min, 6h 

15% a strain unit (Flexercell) + type I 
collagen-coated, silicon membrane) 
culture plates (Flex I; Flexercell) + 
vacuum 

equibiaxial decrease (sqPCR, GAPDH) 6h: 0.6 (ratio)* n.g. n.g. 

Yamaguchi et al. (2002) MGP MGP hPDL fibroblasts (n.g./n.g., PM, 
n.g., P8, confluent) 

dynamic 0.5Hz 
(30cyc/min: 
1s on and 1s 
off) for 30min, 
90min, 6h 

15% a strain unit (Flexercell) + type I 
collagen-coated, silicon membrane) 
culture plates (Flex I; Flexercell) + 
vacuum 

equibiaxial increase (sqPCR, GAPDH) 6h: 1.5 (ratio)* n.g. n.g. 

Yamaguchi et al. (2002) ON SPARC hPDL fibroblasts (n.g./n.g., PM, 
n.g., P8, confluent) 

dynamic 0.5Hz 
(30cyc/min: 
1s on and 1s 
off) for 30min, 
90min, 6h 

15% a strain unit (Flexercell) + type I 
collagen-coated, silicon membrane) 
culture plates (Flex I; Flexercell) + 
vacuum 

equibiaxial no change (sqPCR, GAPDH)  n.g. n.g. 

Yamaguchi et al. (2002) OPN SPP1 hPDL fibroblasts (n.g./n.g., PM, 
n.g., P8, confluent) 

dynamic 0.5Hz 
(30cyc/min: 
1s on and 1s 
off) for 30min, 
90min, 6h 

15% a strain unit (Flexercell) + type I 
collagen-coated, silicon membrane) 
culture plates (Flex I; Flexercell) + 
vacuum 

equibiaxial decrease (sqPCR, GAPDH) 6h: 0.7 (ratio)* n.g. n.g. 

Yamaguchi et al. (2004) Cathepsin B CTSB hPDL fibroblasts (15-18/F and 15-
18/F, PM, exp, P n.g., 4×106) 

static 12h 0.28%, 0.95%, 
1.72%, 2.50% 

Petriperm dish + spheroidal convex 
template + weight 

equibiaxial n.g. n.g. increase (ELISA) 2.5%: 15 (ng/g of cellular protein)* / 2.4 (ratio-calc) 

Yamaguchi et al. (2004) Cathepsin B CTSB hPDL fibroblasts (15-18/F and 15-
18/F, PM, exp, P n.g., 4×106) 

static sqPCR for 
12h; ELISA 
for 3h, 6h, 9h, 
12h, 24h 

2.50% Petriperm dish + spheroidal convex 
template + weight 

equibiaxial increase (sqPCR, GAPDH) no quantitative information is given increase (ELISA) 12h: 15 (ng/g of cellular protein)* / 1.6 (ratio-calc) 

Yamaguchi et al. (2004) Cathepsin L CTSL hPDL fibroblasts (15-18/F and 15-
18/F, PM, exp, P n.g., 4×106) 

static 12h 0.28%, 0.95%, 
1.72%, 2.50% 

Petriperm dish + spheroidal convex 
template + weight 

equibiaxial n.g. n.g. increase (ELISA) 2.5%: 22 (ng/g of cellular protein)* / 3.1 (ratio-calc) 

Yamaguchi et al. (2004) Cathepsin L CTSL hPDL fibroblasts (15-18/F and 15-
18/F, PM, exp, P n.g., 4×106) 

static 3h, 6h, 9h, 
12h, 24h 

2.50% Petriperm dish + spheroidal convex 
template + weight 

equibiaxial increase (sqPCR, GAPDH) no quantitative information is given increase (ELISA) 12h: 20.8 (ng/g of cellular protein)* / 2.7 (ratio-calc) 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Yamashiro et al. (2007) ACY1 ACY1 hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial increase (qPCR, β-actin) duration n.g.: 2.7 (ratio)* n.g. n.g. 

Yamashiro et al. (2007) ADRB2 ADRB2 hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial increase (qPCR, β-actin) duration n.g.: 1.6 (ratio)* n.g. n.g. 

Yamashiro et al. (2007) ARRAY ARRAY hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial Human Genome Focus GeneChip 
probe array #900377 (Affymetrix) 

 n.a. n.a. 

Yamashiro et al. (2007) ATF1 ATF1 hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial decrease (qPCR, β-actin) duration n.g.: 0.6 (ratio)* n.g. n.g. 

Yamashiro et al. (2007) BCL2 BCL2 hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial increase (qPCR, β-actin) duration n.g.: 1.3 (ratio)* n.g. n.g. 

Yamashiro et al. (2007) CASP3 CASP3 hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial increase (qPCR, β-actin) duration n.g.: 1.2 (ratio)* n.g. n.g. 

Yamashiro et al. (2007) FOS FOS hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial increase (qPCR, β-actin) duration n.g.: 2.0 (ratio)* n.g. n.g. 

Yamashiro et al. (2007) GOSR1 GOSR1 hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial decrease (qPCR, β-actin) duration n.g.: 0.4 (ratio)* n.g. n.g. 

Yamashiro et al. (2007) TP53BP2 TP53BP2 hPDL fibroblasts (21/F, 24/F, 17/F, 
22/M, n.g., n.g., P5-9, 2×105) 

dynamic 0.1Hz 
(6cyc/min) for 
0.5h, 1h, 2h, 
16h 

18% Flexercell Strain Unit + flexible-
bottomed culture plates (FLEX II) + 
vacuum (Myokai et al 2003; Banes et al 
1990) 

equibiaxial increase (qPCR, β-actin) duration n.g.: 1.4 (ratio)* n.g. n.g. 

Yang et al. (2006) ALP ALPP hPDLCs (10-13/n.g., PM, exp, P4-8, 
confluent) 

dynamic 0.05Hz (cycle 
of 3/min) for 
2h, 4h, 6h, 
12h, 24h 

310-320 grams 
force 

“A new model to apply intermittent 
mechanical stress on cells” (Zhang 
1999) 

uniaxial n.g. n.g. increase (biochemistry test) 4h: 3 (unit/104 cellls)* / 4.3 (ratio-calc) 

Yang et al. (2006) OCN BGLAP hPDLCs (10-13/n.g., PM, exp, P4-8, 
confluent) 

dynamic 0.05Hz (cycle 
of 3/min) for 
2h, 4h, 6h, 
12h, 24h 

310-320 grams 
force 

“A new model to apply intermittent 
mechanical stress on cells” (Zhang 
1999) 

uniaxial n.g. n.g. increase (RIA) 12h: 1.6 (ng/104 cellls)* / 8 (ratio-calc) 

Yang et al. (2006) OPG TNFRSF11B hPDLCs (10-13/n.g., PM, exp, P4-8, 
confluent) 

dynamic 0.05Hz (cycle 
of 3/min) for 
2h, 4h, 6h, 
12h, 24h 

310-320 grams 
force 

“A new model to apply intermittent 
mechanical stress on cells” (Zhang 
1999) 

uniaxial decrease (in-situ hybridization staining) 4h: 0.3 (optical density)* / 0.5 (ratio-calc) decrease (ELISA) 24h: 38.9 (10-15 mol)* / 0.9 (ratio-calc) 

Yang et al. (2010) ALP ALPP hPDLCs (10-13/n.g., PM, dig, P4-6, 
80% confluent) 

dynamic 0.005Hz 
(cycle of 3 
minutes) for 
0.5h,1h, 2h, 
4h, 6h, 12h, 
24h 

12% “A new model to apply intermittent 
mechanical stress on cells” (Yang et al 
2006; further reference to Zhang 1999) 

uniaxial temporary increase (sqPCR, β-actin) 4h: 0.8 (rel)* / t0 = 0 n.g. n.g. 

Yang et al. (2010) CBFA1 RUNX2 hPDLCs (10-13/n.g., PM, dig, P4-6, 
80% confluent) 

dynamic 0.005Hz 
(cycle of 3 
minutes) for 
0.5h,1h, 2h, 
4h, 6h, 12h, 
24h 

12% “A new model to apply intermittent 
mechanical stress on cells” (Yang et al 
2006; further reference to Zhang 1999) 

uniaxial increase followed by decrease (sqPCR, 
β-actin) 

highest @ 1h: 2.0 (optical density)* / 3.3 
(ratio-calc relative to t0) 
lowest @ 12h: 0.3 (optical density)* / 0.5 
(ratio-calc relative to t0) 

n.g. n.g. 

Yang et al. (2010) OPG TNFRSF11B hPDLCs (10-13/n.g., PM, dig, P4-6, 
80% confluent) 

dynamic 0.005Hz 
(cycle of 3 
minutes) for 
0.5h,1h, 2h, 
4h, 6h, 12h, 
24h 

12% “A new model to apply intermittent 
mechanical stress on cells” (Yang et al 
2006; further reference to Zhang 1999) 

uniaxial increase followed by decrease (sqPCR, 
β-actin) 

highest @ 2h: 1.5 (rel)* / 1.4 (ratio-calc 
relative to t0) 
lowest @ 6h: 0.3 (rel)* / 0.3 (ratio-calc 
relative to t0) 

n.g. n.g. 

Yang et al. (2010) OPN SPP1 hPDLCs (10-13/n.g., PM, dig, P4-6, 
80% confluent) 

dynamic 0.005Hz 
(cycle of 3 
minutes) for 
0.5h,1h, 2h, 
4h, 6h, 12h, 
24h 

12% “A new model to apply intermittent 
mechanical stress on cells” (Yang et al 
2006; further reference to Zhang 1999) 

uniaxial increase (sqPCR, β-actin) 0.5h: 1.8 (rel)* / t0 = 0 n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Yang et al. (2010) RANKL TNFSF11 hPDLCs (10-13/n.g., PM, dig, P4-6, 
80% confluent) 

dynamic 0.005Hz 
(cycle of 3 
minutes) for 
0.5h,1h, 2h, 
4h, 6h, 12h, 
24h 

12% “A new model to apply intermittent 
mechanical stress on cells” (Yang et al 
2006; further reference to Zhang 1999) 

uniaxial increase (sqPCR, β-actin) 24h: 0.7 (optical density)† / 14.0 (ratio-calc 
relative to t0) 

n.g. n.g. 

Yang et al. (2015) IL-6 IL6 hPDLCs (n.g./n.g., PM, n.g., P4-6, 
3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
2h,4h, 8h, 
24h, 48h 

12% Flexcell FX-5000™ Tension Unit + 
BioFlex culture plate + vacuum 

equibiaxial increase (qPCR, β-actin) 48h: 20.0 (ratio) n.g. n.g. 

Yang et al. (2015) MMP-1 MMP1 hPDLCs (n.g./n.g., PM, n.g., P4-6, 
3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
2h,4h, 8h, 
24h, 48h 

12% Flexcell FX-5000™ Tension Unit + 
BioFlex culture plate + vacuum 

equibiaxial increase (qPCR, β-actin) 48h: 4.0 (ratio)* n.g. n.g. 

Yang et al. (2015) MMP-2 MMP2 hPDLCs (n.g./n.g., PM, n.g., P4-6, 
3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
2h,4h, 8h, 
24h, 48h 

12% Flexcell FX-5000™ Tension Unit + 
BioFlex culture plate + vacuum 

equibiaxial increase (qPCR, β-actin) 48h: 8.0 (ratio) n.g. n.g. 

Yang et al. (2015) Rxfp1 RXFP1 hPDLCs (n.g./n.g., PM, n.g., P4-6, 
3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
2h, 4h, 8h, 
24h 

12% Flexcell FX-5000™ Tension Unit + 
BioFlex culture plate + vacuum 

equibiaxial increase (sqPCR, β-actin) 
increase (qPCR, β-actin) 

sqPCR: no quantitative information is given 
qPCR @ 24h: 8.5 (ratio)* 

n.g. n.g. 

Yang et al. (2015) Rxfp2 RXFP2 hPDLCs (n.g./n.g., PM, n.g., P4-6, 
3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
2h,4h, 8h, 
24h 

12% Flexcell FX-5000™ Tension Unit + 
BioFlex culture plate + vacuum 

equibiaxial no change (sqPCR, β-actin) 
qPCR is not given 

no quantitative information is given n.g. n.g. 

Yang et al. (2015) VEGF VEGFA hPDLCs (n.g./n.g., PM, n.g., P4-6, 
3×105) 

dynamic 0.1Hz 
(6cyc/min) for 
2h,4h, 8h, 
24h, 48h 

12% Flexcell FX-5000™ Tension Unit + 
BioFlex culture plate + vacuum 

equibiaxial increase (qPCR, β-actin) 48h: 20.9 (ratio) n.g. n.g. 

Yang et al. (2016) ATF4 ATF4 hPDLCs (12-16/n.g., PM, exp, P3-4, 
80% confluences) 

dynamic 0.5Hz 
(30cyc/min) 
for 1h, 3h, 6h, 
12h, 24h 

10% Flexcell® FX-5000™ Tension System + 
“six-well culture plates with 35-mm 
silicone membrane coated on the 
bottom” + vacuum 

equibiaxial increase (qPCR,GAPDH) 24h: 1.9 (FC)* increase (WB, GAPDH) 1h: 2.2 (ratio)* 

Yang et al. (2016) Bip HSPA5 hPDLCs (12-16/n.g., PM, exp, P3-4, 
80% confluences) 

dynamic 0.5Hz 
(30cyc/min) 
for 1h, 3h, 6h, 
12h, 24h 

10% Flexcell® FX-5000™ Tension System + 
“six-well culture plates with 35-mm 
silicone membrane coated on the 
bottom” + vacuum 

equibiaxial increase (qPCR,GAPDH) 24h: 2.5 (FC)* n.g. n.g. 

Yang et al. (2016) BSP IBSP hPDLCs (12-16/n.g., PM, exp, P3-4, 
80% confluences) 

dynamic 0.5Hz 
(30cyc/min) 
for 1h, 3h, 6h, 
12h, 24h 

10% Flexcell® FX-5000™ Tension System + 
“six-well culture plates with 35-mm 
silicone membrane coated on the 
bottom” + vacuum 

equibiaxial increase (qPCR,GAPDH) 24h: 2.0 (FC)* n.g. n.g. 

Yang et al. (2016) eIF2a / p-
eIF2a 

EIF2AK3 hPDLCs (12-16/n.g., PM, exp, P3-4, 
80% confluences) 

dynamic 0.5Hz 
(30cyc/min) 
for 1h, 3h, 6h, 
12h, 24h 

10% Flexcell® FX-5000™ Tension System + 
“six-well culture plates with 35-mm 
silicone membrane coated on the 
bottom” + vacuum 

equibiaxial n.g. n.g. eIF2α: no change (WB, GAPDH) 
p-eIF2a: increase (WB, GAPDH) 

eIF2α: no quantitative information is given 
p-eIF2a @ 6h: 0.6 (rel)* / 15 (ratio-calc) 

Yang et al. (2016) OCN BGLAP hPDLCs (12-16/n.g., PM, exp, P3-4, 
80% confluences) 

dynamic 0.5Hz 
(30cyc/min) 
for 1h, 3h, 6h, 
12h, 24h 

10% Flexcell® FX-5000™ Tension System + 
“six-well culture plates with 35-mm 
silicone membrane coated on the 
bottom” + vacuum 

equibiaxial increase (qPCR,GAPDH) 24h: 3.2 (FC)* n.g. n.g. 

Yang et al. (2016) PERK EIF2AK3 hPDLCs (12-16/n.g., PM, exp, P3-4, 
80% confluences) 

dynamic 0.5Hz 
(30cyc/min) 
for 1h, 3h, 6h, 
12h, 24h 

10% Flexcell® FX-5000™ Tension System + 
“six-well culture plates with 35-mm 
silicone membrane coated on the 
bottom” + vacuum 

equibiaxial n.g. n.g. increase (WB, GAPDH) 6h: 0.7 (rel)* / 2.3 (ratio-calc) 

Yang et al. (2016) Xbp1 XBP1 hPDLCs (12-16/n.g., PM, exp, P3-4, 
80% confluences) 

dynamic 0.5Hz 
(30cyc/min) 
for 1h, 3h, 6h, 
12h, 24h 

10% Flexcell® FX-5000™ Tension System + 
“six-well culture plates with 35-mm 
silicone membrane coated on the 
bottom” + vacuum 

equibiaxial increase (qPCR,GAPDH) 24h: 3.2 (FC)* n.g. n.g. 

Yang et al. (2018) ALP ALPP hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) for 24h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial increase (qPCR, GAPDH) 1.8 (FC)* n.g. n.g. 

Yang et al. (2018) COL1 COL1A1 hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) for 24h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial increase (qPCR, GAPDH) 1.7 (FC)* n.g. n.g. 

Yang et al. (2018) CTGF CCN2 hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) for 24h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial increase (qPCR, GAPDH) 3.0 (FC) n.g. n.g. 

Yang et al. (2018) CYR61 CCN1 hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) for 24h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial increase (qPCR, GAPDH) 1.5 (FC) n.g. n.g. 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Yang et al. (2018) OCN BGLAP hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) qPCR 
for 24 h; WB 
for 72h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial increase (qPCR, GAPDH) 2.0 (FC)* increase (WB, GAPDH) 1.8 (ratio)* 

Yang et al. (2018) OPN SPP1 hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) qPCR 
for 24 h WB 
for 72h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial increase (qPCR, GAPDH) 3.3 (FC)* increase (WB, GAPDH) 2.4 (ratio)* 

Yang et al. (2018) OSX SP7 hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) for 24h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial increase (qPCR, GAPDH) 1.7 (FC)* n.g. n.g. 

Yang et al. (2018) RUNX2 RUNX2 hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) for 24h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial increase (qPCR, GAPDH) 1.8 (FC)* n.g. n.g. 

Yang et al. (2018) YAP YAP1 hPDLCs (12-24/n.g., PM, dig, P3-8, 
80% confluence) 

dynamic 0.1Hz (5s 
stress and 5s 
rest) for 72h 

10% Flexercell FX-4000 Strain Unit + silicon 
membranes of wells coated with type I 
collagen (BioFlex) + vacuum (Chang et 
al 2015) 

equibiaxial n.g. n.g. nucleus YAP: increase (WB, GAPDH) 
cytoplasm YAP: decrease (WB, GAPDH) 

nucleus YAP: 11.9 (ratio)* 
cytoplasm YAP: no quantitative information is given 

Yoshino et al. (2003) PEDF SERPINF1 hPDL fibroblasts (n.g./n.g., M, exp, 
P4-6, confluency) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) 
sqPCR 
duration n.g.; 
WB for 24h 

14% Flexercell Strain Unit + type I collagen 
(35-mm 6-well) + vacuum 

equibiaxial no change (sqPCR, GAPDH) no quantitative information is given decrease (WB, GAPDH) 0.4 (rel)* / 0.7 (ratio-calc) 

Yoshino et al. (2003) VEGF VEGFA hPDL fibroblasts (n.g./n.g., M, exp, 
P4-6, confluency) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) for 
24h 

7%, 14%, 21% Flexercell Strain Unit + type I collagen 
(35-mm 6-well) + vacuum 

equibiaxial n.g. n.g. increase (ELISA) 14%: 1.4 (ng/2×105 cellls)* / 2.3 (ratio-calc) 

Yoshino et al. (2003) VEGF VEGFA hPDL fibroblasts (n.g./n.g., M, exp, 
P4-6, confluency) 

dynamic 0.2Hz 
(12cyc/min: 
stretch for 
2.5s followed 
by 2.5s of 
relaxation) 
sqPCR 
duration n.g.; 
ELISA for 
12h, 24h, 
36h, 48h 

14% Flexercell Strain Unit + type I collagen 
(35-mm 6-well) + vacuum 

equibiaxial increase (sqPCR, GAPDH) no quantitative information is given increase (ELISA) 48h: 3.1 (ng/2×105 cellls)* / 2.8 (ratio-calc) 

Yu et al. (2018) COL1 COL1A1 hPDLCs (18-30/n.g., M, dig, P3-5, 
3×105) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h, 
72h 

12% Flexcell 5000 Tension System + 6-well, 
flexible-bottomed culture plates 
(Flexcell) which were coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, ACTB) 48h: 1.3 (FC)* increase (WB, β-actin) no quantitative information is given 

Yu et al. (2018) Cyclin D1 CCND1 hPDLCs (18-30/n.g., M, dig, P3-5, 
3×105) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h, 
72h 

12% Flexcell 5000 Tension System + 6-well, 
flexible-bottomed culture plates 
(Flexcell) which were coated with type I 
collagen + vacuum 

equibiaxial n.g. n.g. decrease (WB, β-actin) no quantitative information is given 

Yu et al. (2018) LEF1 LEF1 hPDLCs (18-30/n.g., M, dig, P3-5, 
3×105) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h, 
72h 

12% Flexcell 5000 Tension System + 6-well, 
flexible-bottomed culture plates 
(Flexcell) which were coated with type I 
collagen + vacuum 

equibiaxial n.g. n.g. decrease (WB, β-actin) no quantitative information is given 

Yu et al. (2018) RUNX2 RUNX2 hPDLCs (18-30/n.g., M, dig, P3-5, 
3×105) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h, 
72h 

12% Flexcell 5000 Tension System + 6-well, 
flexible-bottomed culture plates 
(Flexcell) which were coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, ACTB) 48h: 3.4 (FC)* increase (WB, β-actin) no quantitative information is given 

Yu et al. (2018) SP7 SP7 hPDLCs (18-30/n.g., M, dig, P3-5, 
3×105) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h, 
72h 

12% Flexcell 5000 Tension System + 6-well, 
flexible-bottomed culture plates 
(Flexcell) which were coated with type I 
collagen + vacuum 

equibiaxial increase (qPCR, ACTB) 72h: 3.3 (FC)* increase (WB, β-actin) no quantitative information is given 

Yu et al. (2018) β-Catenin / β-
Catenin, 
active 

CTNNB1 hPDLCs (18-30/n.g., M, dig, P3-5, 
3×105) 

dynamic 0.5Hz 
(30cyc/min) 
for 24h, 48h, 
72h 

12% Flexcell 5000 Tension System + 6-well, 
flexible-bottomed culture plates 
(Flexcell) which were coated with type I 
collagen + vacuum 

equibiaxial n.g. n.g. β-catenin: no change (WB, β-actin) 
active β-catenin: decrease (WB, β-actin) 

β-catenin: no quantitative information is given 
active β-catenin: no quantitative information is given 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Yuda et al. (2015) CTGF/CCN2 CCN2 hPDLCs (23/M. 25/F, 21/F, PM, 3 
donors, n.g., P n.g., subconfluence) 

dynamic 1Hz 
(60cyc/min: 
0.5s stretch 
and 0.5s 
relaxation per 
cycle) qPCR 
for 1h; ELISA 
for 3h 

8% STB-140 (STREX, Osaka, Japan) + 
flexiblebottomed culture chambers 
coated with type I collagen (Cellmatrix I-
P, Nitta Gelatin Inc, Osaka, Japan) + 
motor 

uniaxial donor 1: increase (qPCR, GAPDH) 
donor 2: increase (qPCR, GAPDH) 
donor 3: increase (qPCR, GAPDH) 

donor 1: 2 (FC)* 
donor 2: 2.4 (FC)* 
donor 3: 1.3 (FC)* 

donor 1: Increase (ELISA) 
donor 2: Increase (ELISA) 
donor 3: Increase (ELISA) 

donor 1: 91.2 (pg/mg)* / 1.9 (ratio-calc) 
donor 2: 82.4 (pg/mg)* / 1.6 (ratio-calc) 
donor 3: 57.4 (pg/mg)* / 1.6 (ratio-calc) 

Zhao et al. (2016) ASC PYCARD hPDLCs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well Bioflex plates + vacuum 

equibiaxial decrease (qPCR, GAPDH) 6h: 1.2 (ratio)* increase followed by decrease (WB, GAPDH) highest @ 6h: 0.8 (rel)* / 1.3 (ratio-calc) 
lowest @ 24h: 0.3 (rel)* / 0.5 (ratio-calc) 

Zhao et al. (2016) Caspase 1 CASP1 hPDLCs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz (6 
cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well Bioflex plates + vacuum 

equibiaxial increase followed by decrease (qPCR, 
GAPDH) 

highest @ 6h: 1.2 (ratio)* 
lowest @ 24h: 0.6 (ratio)* 

Pro-caspase-1 (50 kDa): temporary increase (WB, 
GAPDH) 
Caspase-1 (20 kDa): increase (WB, GAPDH) 
Caspase-1-activity: increase (caspase colorimetric 
assay kit) 

Pro-caspase-1 @ 6h: 5.2 (ratio)* 
Caspase-1@ 6h: 6.7 (ratio)* 
Caspase-1 activity @ 6h: 1.5 (ratio)* 

Zhao et al. (2016) Caspase 5 CASP5 hPDLCs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz (6 
cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well Bioflex plates + vacuum 

equibiaxial increase (qPCR, GAPDH) 6h: 10 (ratio)* Pro-caspase-5 (48 kDa): increase (WB, GAPDH) 
Caspase-5 (20 kDa): increase (WB, GAPDH) 
Caspase-5-activity: increase (caspase colorimetric 
assay kit) 

Pro-caspase-5 @ 6h: 2.8 (ratio)* 
Caspase-5 @ 6h: 2.5 (ratio)* 
Caspase-5-activity @ 6h: 1.6 (ratio)* 

Zhao et al. (2016) IL-1β IL1B hPDLCs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz (6 
cyc/min: 5s 
stretch and 
5s relaxation) 
qPCR and 
WB for 0h, 
6h, 24h; 
ELISA for 1h, 
2h, 4h, 6h, 
12h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well Bioflex plates + vacuum 

equibiaxial increase followed by decrease (qPCR, 
GAPDH) 

highest @ 6h: 1.4 (ratio)* 
lowest @ 24h: 0.6 (ratio)* 

Pro-IL-1β (31 kDa): increase (WB, GAPDH) 
IL-1β (17 kDa): increase (WB, GAPDH) 
IL-1β in the culture medium: temporary increase 
(ELISA) 

Pro-IL-1β @ 6h: 1.7 (ratio)* 
IL-1β @6h: 1.8 (ratio)* 
IL-1β in the culture medium @ 6h: 5.5 (ratio)* 

Zhao et al. (2016) NLRP1 NLRP1 hPDLCs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well Bioflex plates + vacuum 

equibiaxial decrease (qPCR, GAPDH) 24h: 0.4 (ratio)* increase (WB, GAPDH) 6h: 2.1 (ratio)* 

Zhao et al. (2016) NLRP3 NLRP3 hPDLCs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well Bioflex plates + vacuum 

equibiaxial increase followed by decrease (qPCR, 
GAPDH) 

highest @ 6h: 5.3 (ratio)* 
lowest @ 24h: 0.5 (ratio)* 

increase (WB, GAPDH) 24h: 8.3 (ratio)* 

Zhao et al. (2017) Caspase-5, 
Pro- / 
Caspase-5 

CASP5 hPDLCs (11-13/n.g., PM, exp, P4-6, 
confluence) 

dynamic 0.1Hz (6 
cyc/min: 5s 
stretch 
followed by 
5s relaxation) 
for 6h, 24h 

10%, 20% Cell Strain Unit (CSU) + elastic silicon 
rubber membrane + spherical cap (step 
motor) (Hao et al 2009) 

equibiaxial Caspase 5 @ 10%: increase (qPCR, β-
actin) 
Caspase 5 @ 20%: increase (qPCR, β-
actin) 

Caspase 5 @ 10% + 24h: 11.2 (FC)* 
Caspase 5 @ 20% + 24h: 15.2 (FC)* 

Caspase 5: 10%: increase (WB, GAPDH) 
Caspase 5: 20%: increase (WB, GAPDH) 
Pro-caspase 5: 10%: increase (WB, GAPDH) 
Pro-caspase 5: 20%: increase (WB, GAPDH) 

Caspase 5 @ 10% + 24h: 0.4 (rel)† / 36.2 (ratio-calc) 
Caspase 5 @ 20% + 24h: 0.8 (rel)† / 69.1 (ratio-calc) 
Pro-caspase 5 @ 10% + 24h: 0.5 (rel)† / 7.9 (ratio-calc) 
Pro-caspase 5 @ 20% + 24h: 0.7 (rel)† / 12.2 (ratio-calc) 

Zhuang et al. (2019) GSDMD GSDMD hPDLCs (11-16/n.g., PM, exp, P4-6, 
80-90% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
for 6h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well BioFlex plates + vacuum 

equibiaxial increase (qPCR, GAPDH) 24h: 6.6 (ratio)* GSDMD (53 kDa): no change (WB, GAPDH) 
GSDMD (31 kDa): increase (WB, GAPDH) 

GSDMD (31 kDa) @ 6h: 0.7 (rel)* / 1.8 (ratio-calc) 

Zhuang et al. (2019) IL-18 IL18 hPDLCs (11-16/n.g., PM, exp, P4-6, 
80-90% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
WB for 6h, 
24h; ELISA 
for 1h, 2h, 4h, 
6h, 12h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well BioFlex plates + vacuum 

equibiaxial n.g. n.g. increase followed by decrease (WB, GAPDH) 
IL-18 in culture medium: increase (ELISA) 

highest @ 6h: 0.7 (rel)* / 1.4 (ratio-calc) 
lowest @ 24h: 0.3 (rel)* / 0.6 (ratio-calc) 
IL-18 in culture medium 6h: 6.6 (ratio)* 

Zhuang et al. (2019) IL-1β IL1B hPDLCs (11-16/n.g., PM, exp, P4-6, 
80-90% confluence) 

dynamic 0.1Hz 
(6cyc/min: 5s 
stretch and 
5s relaxation) 
WB for 6h, 
24h; ELISA 
for 1h, 2h, 4h, 
6h, 12h, 24h 

20% Flexcell Tension Plus system FX-5000T 
+ six-well BioFlex plates + vacuum 

equibiaxial n.g. n.g. Pro-IL-1β (31 kDa): increase followed by decrease 
(WB, GAPDH) 
Mature-IL-1β (17 kDa): decrease (WB, GAPDH) 
IL-1β in culture medium: increase (ELISA) 

Pro-IL-1β highest @ 6h: 0.8 (rel)* / 1.1 (ratio-calc) 
Pro-IL-1β lowest @24h: 0.6 (rel)* / 0.9 (ratio-calc) 
Mature-IL-1β @ 24h: 0.3 (rel)* / 0.6 (ratio-calc) 
IL-1β in culture medium 6h: 10.4 ( (ratio)* 

Ziegler et al. (2010) ARRAY ARRAY hPDLFs (12-14/n.g., PM, exp, P8-
12, near-confluence) 

static 0.5h, 3h, 6h 2.5% Lumox dish + template with convex 
surface + weight (Hasegawa et al 1985) 

equibiaxial RT2-Profiler qPCR-Array (SA 
Biosciences) not further specified 

too many! n.a. n.a. 

Ziegler et al. (2010) FAK / p-FAK PTK2 hPDLFs (12-14/n.g., PM, exp, P8-
12, near-confluence) 

static 0.25h, 0.5h, 
1h, 3h, 6h 

2.5% Lumox dish + template with convex 
surface + weight (Hasegawa et al 1985) 

equibiaxial n.g. n.g. FAK: increase (WB, β-actin) 
p-FAK: increase (WB, β-actin) 

FAK @ 6h: 42.8 (rel)* / 1.3 (ratio-calc) 
p-FAK: 0.25h: 35.9 (rel)* / 1.1 (ratio-calc) 

Ziegler et al. (2010) Intergrin β3 ITGB3 hPDLFs (12-14/n.g., PM, exp, P8-
12, near-confluence) 

static 0.25h, 0.5h, 
1h, 3h, 6h 

2.5% Lumox dish + template with convex 
surface + weight (Hasegawa et al 1985) 

equibiaxial n.g. n.g. increase (WB, β-actin) 6h: 44 (rel)* / 1.3 (ratio)* 



a Entry given as reported in the study. 
b All official gene symbols come from the HUGO Gene Nomenclature Committee (HGNC; URL: https://www.genenames.org) after checking specificity of primers with Primer-BLAST. 
c Gender/Sex of donors: “M” – male, “F” – female; Tooth type: “PM” – premolar, “M” – molar; Cell density: given in cells/well if not otherwise mentioned. 
d Frequencies labeled bold orange were converted to hertz (Hz) according to its definition using the information reported in the study (in brackets) 
e Force type deduced from the description of the force apparatus given by the authors. 
f Gene and protein expression: 1. conclusion of change (increase, decrease…) was given according to the defined criteria in Figure 2; 2. different markers to describe the amount of change; † Information derived from figures using Engauge Digitizer; *Folds calculated by measuring the graphs, without using the Engauge Digitizer; No makers: Information derived from figures by description 
in the articles 

Reference Gene/ 
Analytea 

Official gene 
symbol / 
abbreviationb 

Cell (age/gender of donors, 
tooth type, isolation method, 
passages used, cell density)a,c 

Force 
type 
(stat./ 
dyn.)a 

Force 
duration and 
frequencyd 

Force 
magnitudea 

Force apparatusa Force type: 
equibiaxial 
or uniaxiale 

Gene expression: Increase, 
decrease, no change (method w/ 
reference gene); Methods: qPCR, 
sqPCR, Northern blotf 

Gene expression: When it reaches peak 
and peak’s magnitude (fold change; 
times or ratio; unclear = ?)f 

Protein expression: Increase, decrease, no change 
(method w/ reference); Methods: ELISA, WB, RIA, 
EMSA, IFf 

Protein expression: When it reaches peak and peak’s 
magnitude (times or ratio; unclear = ?)f 

Ziegler et al. (2010) p38-MAP-
kinase / p-
p38-MAP-
kinase(Thr180/ 
Tyr182) 

MAPK14 hPDLFs (12-14/n.g., PM, exp, P8-
12, near-confluence) 

static 0.25h, 0.5h, 
1h, 3h, 6h 

2.5% Lumox dish + template with convex 
surface + weight (Hasegawa et al 1985) 

equibiaxial n.g. n.g. p38: decrease followed by increase (WB, β-actin) 
p-p38: increase (WB, β-actin) 

p38 lowest @ 0.5h: 29.6 (rel)* / 0.9 (ratio-calc) 
p38 highest @ 6h: 43.9 (rel)* / 1.3 (ratio-calc) 
p-p38 @ 6h: 36.1 (rel)* / 1.1 (ratio-calc) 

Ziegler et al. (2010) p44/42-MAP-
kinase / p-
p44/42-MAP-
kinase(Thr202/ 
Tyr204) 

MAPK3; 
MAPK1 

hPDLFs (12-14/n.g., PM, exp, P8-
12, near-confluence) 

static 0.25h, 0.5h, 
1h, 3h, 6h  

2.5% Lumox dish + template with convex 
surface + weight (Hasegawa et al 1985) 

equibiaxial n.g. n.g. p44/42: increase followed by decrease (WB, β-actin) 
p-p44/42: decrease followed by increase (WB, β-actin) 

p44/42: highest @ 0.5h: 55.6 (rel)* / 1.1 (ratio-calc) 
p44/42: lowest @ 3h: 45 (rel)* / 0.9 (ratio-calc) 
p-p44/42: highest @ 6h: 37.8 (rel)* / 1.1 (ratio-calc) 
p-p44/42: lowest @ 1h: 31.7 (rel)* / 0.9 (ratio-calc) 
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Criteria for Risk of Bias 
 
Reporting quality of in vitro studies 
 
This table was compiled from different sources. The main structure derived from supplementary Table S4 
published by Vasant et al (2018), that is based on Samuel et al. (2016). 
 
 

Criterion # Variable/Sub variable Where should it be found? Definition for “low risk of bias” (LoB) 

1 Description of scientific background → Introduction LoB: Scientific background is described. 

2 Description objective Research question – What I’m interested in? 
Hypotheses to be tested. 
→ In the last paragraph of the introduction 
and/or the Abstract 

LoB: All objectives (primary and secondary) 
clearly reported. (“Aim of the study was…”, “We 
hypnotized …”, etc.) 

3 Justification for model → Abstract, Introduction and M&M LoB: Reason for choosing cell type(s) and the 
type of force, its magnitude and its duration are 
given. 
Optional: Reasons for choosing analytes and 
assays used. 

4 Study design description → Abstract; last paragraph of the 
Introduction; M&M 

LoB: The materials and methods are described 
in a way, that the experimental procedures can 
be replicated if the samples are given. 

5 Defined experimental outcomes → Experimental procedures outlined in M&M 
and outcomes presented in results 
correspond 

LoB: Results as presented in the Results 
section and the experimental procedures 
outlined in M&M correspond. 

6 Ethical statement → M&M: Cell culture LoB: Ethical statement is provided. 
n.a.: not applicable for commercial vendors of 
primary cells (e.g. Lonza, Promocell, etc.) or 
cell lines from official sources (RIKEN, ATCC, 
ECACC, etc.) 

7 Cell maintenance condition → M&M: Cell culture LoB: Minimum required are source of cells 
(primary cells and cell lines), their isolation 
method (primary cells), culture conditions 
(both), passage used (primary cells) and 
seeding density (both), confluency level (both). 

8 Description of measurement 
precision and variability 

“Statistics should be fully reported in the 
manuscript/article, including the statistical 
test used, exact value of N and the 
definitions. value of N and the definitions of 
center and dispersion and the precision 
measures (e.g., mean, median, SD, SEM, 
confidence intervals).” ( Biophysical 
Journal’s Guidelines for the Reproducibility of 
Biophysics Research) 
→ M&M: Statistics; Results 

LoB: Measurement precision and variability are 
described. 

9 Statistical analysis LoB: All statistical procedures for data analysis 
are provided; all statistical results derive from 
statistical procedures described in M&M. 

10 Results description → Results LoB: All results outlined in “Objective” and 
generated by experimental procedures 
described M&M are given. 

 
Abbreviations:  Levels: 
LoB Low risk of bias  “+” Low risk of bias (LoB) 
M&M Materials and Methods  “-“ High risk of bias (HoB) 
   “?” Incomplete/unclear risk of bias 
   n. a. Not applicable 

 
  



Methodological quality of in vitro studies 
 
This table was compiled from different sources. The main structure derived from supplementary Table S3 
published by Vansant et al. (2018) that is based on Samuel et al. (2016). Additionally, table 1 (“Glossary key 
terms”) and further definitions listed in table 2, both from Samuel et al. (2016), were used to prepare the following 
table. 
 
Criterion # Variable/Sub variable Definition of variable or sub variable Definition for “low risk of bias” (LoB) 

 Selection bias Samuel et al (2016): “Selection bias: Systematic 
differences in the comparison groups.” 
 
OHAT RoBT, p. 5: “Selection bias refers to systematic 
differences between baseline characteristics of the 
groups that are compared (Higgins and Green 2011).” 

 

1* Selection bias 
/ Baseline characteristics 

similarity/appropriate control group 
selection 

OHAT RoBT, p. 9: “Comparison group 
appropriateness refers to having similar baseline 
characteristics of factors related to the outcome 
measures of interest between groups aside from the 
exposures (and outcomes for case- control studies).” 

LoB: Control and treated groups are similar 
at the start of the study (e.g. cell type, 
passage, cell density [cells/well], 
confluency). => Appropriate/controlled 
exposure 

2 Selection bias 
/ Allocation concealment 

OHAT RoBT, p. 7: “Allocation concealment prior to 
assigning the exposure level or treatment group 
(along with randomization in question #1) helps to 
assure that treatment is not given selectively based 
on potential differences in human subjects or non-
human experimental animals.” 
 
Samuel et al (2016): “A process that it used to prevent 
selection bias. The person allocating subjects to 
experimental arms is unaware of which arm the 
subjects are being allocated until the moment of 
assignment. This prevents researchers from 
(unconsciously or otherwise) influencing the allocation 
of subjects.” 

LoB: The experimental subjects (i.e. cell 
culture plates) are all prepared at the same 
time without allocating them to specific 
experimental arms (no definition in advance 
of the experiment). Directly before an 
experiment, plates are randomly chosen 
and allocated to the experimental arms. 

3 Selection bias 
/ Randomization 

OHAT RoBT, p. 5: “Randomization of exposure or 
sequence generation (along with allocation 
concealment in question #2) helps to assure that 
treatment is not given selectively based on potential 
differences in human subjects or non-human 
experimental animals (e.g., randomization by animal 
body weight avoids potential selection bias introduced 
by assigning all of the smallest animals to the high-
dose exposure group).” 

n. a. 

4 Performance bias 
/ Blinding of researchers 

OHAT RoBT, p. 15: “Performance bias refers to 
systematic differences in the care provided to human 
participants or experimental animals by study groups. 
Examples include contamination of the control group 
with the exposure or intervention, unbalanced 
provision of additional interventions or co-
interventions, difference in co-interventions, 
inadequate blinding of providers and participants in 
human studies (Viswanathan et al. 2012), and 
inadequate blinding of research personnel to the 
animal’s study group (Sena et al. 2007).” 
 
OHAT RoBT, p. 16: “Blinding requires that research 
personnel do not know which administered dose or 
exposure level the human subject or animal is being 
given (i.e., study group). Human studies also require 
blinding of the human subjects when possible.” 

n. a. 

5 Detection bias 
/ Blinding of outcome assessors 

Samuel et al (2016): “Detection bias: Systematic 
differences in the outcome assessment between 
groups.” 
 
OHAT RoBT, p. 22: “Detection bias refers to 
systematic differences between experimental and 
control groups with regards to how outcomes and 
exposures are assessed (Higgins and Green 2011) 
and also considers validity and reliability of methods 
used to assess outcomes and exposures 
(Viswanathan et al. 2012).” 
 
OHAT RoBT, p. 25: “Detection bias can be minimized 
by using valid and reliable methods to assess the 
outcome applied consistently across groups (i.e., 
under the same method and time-frame). Objectivity 
of the outcome assessment and the need for blinding 
are two sides of the same issue. Blinding requires that 
outcome assessors do not know the study group or 
exposure level of the human subject or animal when 
the outcome was assessed.” 

n. a. 



Criterion # Variable/Sub variable Definition of variable or sub variable Definition for “low risk of bias” (LoB) 

6 Attrition bias 
/ Complete outcome data 

Samuel et al (2016): “Systematic differences in 
excluding study units between groups” 
 
OHAT RoBT, p. 19: ”Attrition or exclusion bias: 
systematic differences in the loss or exclusion from 
analyses of participants or animals. […] Incomplete 
outcome data includes loss due to attrition 
(nonresponse, dropout, or loss of follow-up) or 
exclusion from analyses.” 

LoB: Accounting for all included study units. 
 
HoB: Reports on incomplete outcome data 
including loss due to attrition or exclusion 
from analyses. 

7 Reporting bias 
/ Selective outcome data 

Samuel et al (2016): “Reporting bias: Systematic 
omission of results in the study documentation/ 
publication.” And: “Selective outcome reporting: The 
reporting of only selected results, not all results.” 
 
OHAT RoBT, p. 30: “Selective reporting bias refers to 
selective inclusion of outcomes in the publication of 
the study on the basis of the results (Hutton and 
Williamson 2000, Higgins and Green 2011). […] 
Selective reporting is present if pre-specified 
outcomes are not reported or incompletely reported. 
[…] Selective reporting bias can be assessed by 
comparing the “methods” and “results” section of the 
paper, and by considering outcomes measured in the 
context of knowledge in the field.” 

LoB: The outcome data from all 
experiments as given in M&M is reported 
and accounted for. All results given in the 
Results section must derive from materials 
and methods reported in M&M. All 
uninterpretable or intermediate test results 
and withdrawals are explained including lost 
samples; e.g. ELISA measurements below 
detection limit. 

8 Confounding bias 
/ Account for confounding variables 

Samuel et al (2016): “Systematic differences in 
factors potentially influencing the results between 
groups. […] Is very context depending. In an animal 
study of endocrine disruption, bedding material 
potentially containing phytoestrogens should be the 
same for all groups.” 
 
OHAT RoBT, p. 11: “Confounding variables or 
confounders include any factor that is: 1) associated 
with the exposure, 2) an independent risk factor for a 
given outcome, and 3) unequally distributed between 
study groups (Gerstman 2013). The potential 
confounder cannot be an intermediate effect on the 
causal pathway between exposure and the outcome 
(Gerstman 2013, Sterne et al. 2014). Appropriate 
methods to account for these differences would 
include multivariable analysis, stratification, matching 
of cases and controls, or other approaches.” 
see also OHAT RoBT, p. 32! 
 
OHAT RoBT, p. 13: Low risk of bias can be assumed, 
if “There is direct evidence that appropriate 
adjustments or explicit considerations were made for 
primary covariates and confounders in the final 
analyses through the use of statistical models to 
reduce research-specific bias including 
standardization, matching, adjustment in multivariate 
model, stratification, propensity scoring, or other 
methods that were appropriately justified.” 

LoB: Confounding variables were 
identified/named in connection with: 
• exposure (e.g. uneven force 

distribution), 
• test procedures (e.g. vehicle controls), 
• cell culture (e.g. age and gender of 

donors, and passage numbers of 
primary cells used for experiment). 

Appropriate adjustments or explicit 
considerations were made in the final 
analyses using statistical methods or other 
methods that were appropriately justified 
and discussed or discussed only in an 
appropriate section in the Discussion part. 

9 Appropriate statistical methods 
/ Sample size determination 

Samuel et al (2016): “Appropriateness of statistical 
methods of experimental design and data analysis 
has to be demonstrated/justified.” 
 
OHAT RoBT, p. 31: “One of the common statistical 
issues identified has been reporting of statistical tests 
that require normally distributed data (e.g., t-test or 
ANOVA) without reporting that the homogeneity of 
variance was tested or confirmed. It is recommended 
that experts with some knowledge of statistical 
methods used in the literature participate in drafting 
the risk-of-bias criteria for identifying inappropriate 
statistical methods when a review protocol is 
developed. Even with early expert consultation and 
planning, statistical methods questions may arise 
when the actual studies are assessed. Additional 
consultation and modifications to the statistical 
methods risk-of-bias criteria may be necessary. When 
changes are made, they should be documented along 
with the date on which modifications were made and 
the logic for the changes.” 

LoB: Sample size calculation is given. 

10 Appropriate statistical methods 
/ Statistical analysis 

LoB: Appropriate statistical analysis and 
their justification are given. 
• Why was that specific test chosen? 
• Preliminaries for statistical procedures 

are tested – e.g. normal distribution – 
and the tests were chosen accordingly. 



Criterion # Variable/Sub variable Definition of variable or sub variable Definition for “low risk of bias” (LoB) 

11* Appropriate/controlled exposure (incl. 
characterization) 

Samuel et al (2016): “It needs to be ensured that all 
subjects are treated/exposed in the same way, e.g., 
by controlling the food consumption per animal in a 
feeding study.” 
 
OHAT RoBT, p. 22-23: “Detection bias refers to 
systematic differences between experimental and 
control groups with regards to how outcomes and 
exposures are assessed (Higgins and Green 2011) 
and also considers validity and reliability of methods 
used to assess outcomes and exposures 
(Viswanathan et al. 2012). […] For controlled 
exposure studies (i.e., experimental human or animal 
studies), the use of reliable methods to measure 
exposure depends primarily on ensuring the purity 
and stability of the treatment compound.” 

LoB: All data on the exposure 
characteristics are reported for both 
experimental and control groups. In cell 
culture: 
• same cell type, 
• cultivated identically, 
• same seeding density or same 

confluency, 
• same passage numbers. 

12* Optimal time window used Samuel et al (2016): “This refers to the age and status 
(e.g., pregnancy or disease status) of the animals. In 
a developmental toxicity study, for example, the 
exposure should take place during the most 
appropriate gestation days. In cell culture 
experiments, the cells should be exposed at their 
optimal developmental state, e.g., at confluency, or 
within certain cell passage numbers, for which the 
stability of the karyotype is guaranteed.” 
 
OHAT RoBT, p. 2: “Was the exposure in the 
appropriate biological window to affect the outcome? 
This is considered under indirectness. Was the 
outcome assessed at an adequate amount of time 
after the exposure for the development of the 
outcome? This is considered under indirectness. 
Does the timing of exposure or outcome assessment 
impact the consistency of results? If the appropriate 
biological window is unclear for an outcome of 
interest, differences in timing of exposure or outcome 
assessment could be used to stratify results when 
considering unexplained inconsistency. […] Does the 
duration of the experiment lasts long enough to cause 
the biological response?” 

LoB: In cell culture experiments, the same 
cell type is used for experimental and 
control(s) condition, cultivated identically, 
seeded at the same densities/confluency 
and same passage number. 
For force application, force type, force 
duration and force magnitude are proved to 
be of biological relevance. 
Proved e.g. by presenting a dose-response 
curve or by reference to previous 
publications where a dose-response curve 
or similar was published. 

13 Statement conflict of interest/funding 
source 

Samuel et al (2016): “Conflicts or funding by bodies 
with vested interests may result in (un-)conscious 
biases during the entire study, from planning to 
publication.” 

LoB: Statement conflict of interest and 
funding source are given. 

14* Test substance/treatment details Samuel et al (2016): “The test substance identity 
should be known, including possibly interfering 
impurities. Treatment details should be known, in 
order to assess issues such as optimal time window 
used.” 

LoB: All chemicals, kits or tools/apparatuses 
used are named with their manufacture, 
purity and their specificity (e.g. order/article 
number) and preparation for experimental 
application is given (e.g. dilution and diluent, 
etc.); PCR primers sequence, etc. 

15 Test organism/system Samuel et al (2016): “The animal type/strain or the 
cell system needs to be stated, e.g. using different 
cell batches may introduce bias.” 

LoB: Primary cells isolated from donors of 
the same age range and sex. In cell culture 
experiments, the same cell type is used for 
experimental and control(s) condition, 
cultivated identically, seeded at the same 
densities/confluency and same passage 
number. 

 
 
 

Abbreviations:  Levels: 
LoB Low risk of bias  “+” Low risk of bias (LoB) 
HoB High risk of bias  “-“ High risk of bias (HoB) 
M&M Materials and Methods  “?” Incomplete/unclear risk of bias 
   n. a. Not applicable 
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Abiko et al. (1998) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Agarwal et al. (2003) + + n. a. n. a. n. a. + + ? - - + ? - + + 
Arima et al. (2019) ? + n. a. n. a. n. a. + + ? - - ? ? ? + ? 
Basdra et al. (1995) ? + n. a. n. a. n. a. + + ? - - ? ? - + ? 
Basdra et al. (1996) ? + n. a. n. a. n. a. + + ? - - ? ? - + ? 
Bolcato-Bellemin et al. (2000) + + n. a. n. a. n. a. + + ? - - ? ? ? + ? 
Chang et al. (2015) ? + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Chang et al. (2017) + + n. a. n. a. n. a. + + ? - - + ? - + + 
Chen et al. (2014) + + n. a. n. a. n. a. - - ? - - + ? + ? ? 
Chen et al. (2015) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Chiba and Mitani (2004) + + n. a. n. a. n. a. + ? ? - - ? ? ? ? ? 
Cho et al. (2010) ? + n. a. n. a. n. a. + + ? - - ? ? - + ? 
Deschner et al. (2012) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Diercke et al. (2011) ? + n. a. n. a. n. a. + + ? - - + ? - + ? 
Doi et al. (2003) ? + n. a. n. a. n. a. + + ? - - ? ? ? + ? 
Fujihara et al. (2010) + + n. a. n. a. n. a. + + ? - - ? ? - + ? 
Goto et al. (2011) ? + n. a. n. a. n. a. + ? ? - - ? ? + ? ? 
Hao et al. (2009) + + n. a. n. a. n. a. + + ? - - + ? + + + 
He et al. (2004) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
He et al. (2019) ? + n. a. n. a. n. a. + + ? - - ? + + + + 
Howard et al. (1998) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Huelter-Hassler et al. (2017) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Hülter-Hassler et al. (2017) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Jacobs et al. (2013) ? + n. a. n. a. n. a. + + ? - - + ? + + + 
Jacobs et al. (2014) ? + n. a. n. a. n. a. + + ? - - + ? ? + + 
Jacobs et al. (2015) ? + n. a. n. a. n. a. + + ? - - + ? ? + + 
Jacobs et al. (2018) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Jiang and Hua (2016) + + n. a. n. a. n. a. + + ? - - ? ? + + + 
Kaku et al. (2019) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Kanzaki et al. (2006) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Kanzaki et al. (2019) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Kikuiri et al. (2000) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Kim et al. (2007) ? + n. a. n. a. n. a. + ? ? - - ? ? - + ? 
Kletsas et al. (2002) + + n. a. n. a. n. a. + ? ? - - + ? - + ? 
Konstantonis et al. (2014) ? + n. a. n. a. n. a. + ? ? - - ? ? + ? ? 
Kook and Lee (2012) + + n. a. n. a. n. a. + + ? - - + + ? ? ? 
Lee et al. (2012) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Lee et al. (2015) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Li et al. (2013) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Li et al. (2014) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Li et al. (2015) ? + n. a. n. a. n. a. + + ? - - ? ? ? + ? 
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Liao and Hua (2013) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Liu et al. (2012) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Liu et al. (2017) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Long et al. (2001) + + n. a. n. a. n. a. + + ? - - + ? ? + + 
Long et al. (2002) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Ma et al. (2015) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Matsuda et al. (1998a) ? + n. a. n. a. n. a. + + ? - - ? ? ? + + 
Matsuda et al. (1998b) ? + n. a. n. a. n. a. + + ? - - ? ? ? + + 
Memmert et al. (2019) ? + n. a. n. a. n. a. + + ? - - + ? + + ? 
Memmert et al. (2020) + + n. a. n. a. n. a. + + ? - - + ? + ? ? 
Meng et al. (2010) + + n. a. n. a. n. a. + + ? - - + ? ? + + 
Miura et al. (2000) ? + n. a. n. a. n. a. + ? ? - - ? ? ? ? ? 
Molina et al. (2001) ? + n. a. n. a. n. a. + + ? - - ? ? ? + ? 
Monnouchi et al. (2011) ? + n. a. n. a. n. a. + + ? - - ? ? + + ? 
Monnouchi et al. (2015) + + n. a. n. a. n. a. + + ? - - + ? ? + + 
Nakashima et al. (2009) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + + 
Narimiya et al. (2017) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Nazet et al. (2020) ? + n. a. n. a. n. a. + + ? - + + + + + ? 
Nemoto et al. (2010) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Ngan et al. (1990) ? + n. a. n. a. n. a. + ? ? - - ? + - + ? 
Nogueira et al. (2014a) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Nogueira et al. (2014b) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Nokhbehsaim et al. (2010) ? + n. a. n. a. n. a. + ? ? - - ? ? ? ? ? 
Nokhbehsaim et al. (2011a) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Nokhbehsaim et al. (2011b) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Nokhbehsaim et al. (2012) ? + n. a. n. a. n. a. + + ? - - ? ? + + ? 
Ohzeki et al. (1999) ? + n. a. n. a. n. a. + ? ? - + ? ? ? + ? 
Ozawa et al. (1997) ? + n. a. n. a. n. a. + ? ? - - ? + ? + ? 
Padial-Molina et al. (2013) + + n. a. n. a. n. a. + + ? - - + + + + ? 
Pan et al. (2014) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Papadopoulou et al. (2017) ? + n. a. n. a. n. a. + ? ? - - ? ? ? ? ? 
Papadopoulou et al. (2019) ? + n. a. n. a. n. a. + + ? - - ? ? + ? ? 
Pelaez et al. (2017) + + n. a. n. a. n. a. + + ? - + + ? ? + ? 
Peverali et al. (2001) + + n. a. n. a. n. a. + + ? - - + ? - + ? 
Pinkerton et al. (2008) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Qin and Hua (2016) ? + n. a. n. a. n. a. ? ? ? - - ? ? ? ? ? 
Rath-Deschner et al. (2009) + + n. a. n. a. n. a. + + ? - - + + + ? ? 
Ren et al. (2015) + + n. a. n. a. n. a. + + ? - - + ? - + ? 
Ritter et al. (2007) + + n. a. n. a. n. a. + + ? - - + ? - + ? 
Saminathan et al. (2012) ? + n. a. n. a. n. a. + ? ? - - + ? ? + ? 
Shen et al. (2014) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
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Shimizu et al. (1994) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Shimizu et al. (1995) ? + n. a. n. a. n. a. + ? ? - - + + ? + ? 
Shimizu et al. (1997) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Shimizu et al. (1998) ? + n. a. n. a. n. a. + ? ? - - + ? ? + ? 
Spencer and Lallier (2009) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Steinberg et al. (2011) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Sun et al. (2016) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Sun et al. (2017) + + n. a. n. a. n. a. + + ? - - + ? ? + + 
Suzuki et al. (2014) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Symmank et al. (2019) ? + n. a. n. a. n. a. + + ? - - ? ? ? + ? 
Takano et al. (2009) + + n. a. n. a. n. a. + ? ? - - + ? ? + + 
Tang et al. (2012) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Tantilertanant et al. (2019a) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Tantilertanant et al. (2019b) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Tsuji et al. (2004) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Tsuruga et al. (2009) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Tsuruga et al. (2012) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Wada et al. (2017) ? + n. a. n. a. n. a. + ? ? - - ? ? + + ? 
Wang et al. (2011) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Wang et al. (2013) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Wang et al. (2018) ? + n. a. n. a. n. a. + + ? - - ? ? ? + ? 
Wang et al. (2019a) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Wang et al. (2019b) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Wei et al. (2014) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Wei et al. (2015) + + n. a. n. a. n. a. + + ? - + + ? + + ? 
Wescott et al. (2007) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Wolf et al. (2014) + + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Wu et al. (2015) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Wu et al. (2016) + + n. a. n. a. n. a. + + ? - - + ? - + ? 
Wu et al. (2017) + + n. a. n. a. n. a. + + ? - - + + + + + 
Wu et al. (2019a) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Wu et al. (2019b) + + n. a. n. a. n. a. + + ? - - + + + + + 
Xu et al. (2011) + + n. a. n. a. n. a. + + ? - - + ? ? + + 
Xu et al. (2012) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Xu et al. (2015) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Xu et al. (2017) + + n. a. n. a. n. a. + + ? - - + ? ? + + 
Yamaguchi and Shimizu (1994) ? + n. a. n. a. n. a. + ? ? - - ? ? - + ? 
Yamaguchi et al. (1994) ? + n. a. n. a. n. a. + ? ? - - ? + ? + ? 
Yamaguchi et al. (1996) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Yamaguchi et al. (1997) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Yamaguchi et al. (2002) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 



Supplement 4.1 Risk of bias assessment for the methodological quality of the included in vitro studies 

  4 

Reference Selection bias Performance 
bias 

Detection 
bias 

Attrition 
bias 

Reporting 
bias 

Confounding 
bias 

Appropriate statistical 
methods 

Appropriate/ 
controlled 
exposure (incl. 
characterization) 

Optimal 
time 
window 
used 

Statement 
conflict of 
interest/fund-
ing source 

Test 
substance/treat-
ment details 

Test organism/system 

Baseline 
characteristics 
similarity / 
appropriate 
control group 
selection 

Allocation 
concealment 

Randomi-
zation 

Blinding of 
researchers 

Blinding 
of 
outcome 
assessors 

Complete 
outcome 
data 

Selective 
outcome 
data 

Account for 
confounding 
variables 

Sample size 
determination 

Statistical 
analysis 

Yamaguchi et al. (2004) ? + n. a. n. a. n. a. + ? ? - - ? ? - + ? 
Yamashiro et al. (2007) + + n. a. n. a. n. a. + - ? - - + ? ? + + 
Yang et al. (2006) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Yang et al. (2010) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 
Yang et al. (2015) + + n. a. n. a. n. a. + + ? - - + ? + + ? 
Yang et al. (2016) + + n. a. n. a. n. a. + ? ? - - + ? ? + ? 
Yang et al. (2018) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Yoshino et al. (2003) + + n. a. n. a. n. a. ? ? ? - - + ? ? + ? 
Yu et al. (2018) + + n. a. n. a. n. a. + ? ? - - + ? ? + ? 
Yuda et al. (2015) ? + n. a. n. a. n. a. + ? ? - - ? ? ? + ? 
Zhao et al. (2016) + + n. a. n. a. n. a. + + ? - - + ? + + + 
Zhao et al. (2017) + + n. a. n. a. n. a. + + ? - - + + + ? + 
Zhuang et al. (2019) + + n. a. n. a. n. a. + + ? - - + + + + ? 
Ziegler et al. (2010) + + n. a. n. a. n. a. + + ? - - + ? ? + ? 

 

Summary 

Selection bias 
Perfor-
mance 

bias 
Detection 

bias Attrition bias Reporting 
bias 

Confounding 
bias 

Appropriate statistical 
methods 

Appropriate/ 
controlled exposure 

(incl. characterization) 

Optimal 
time 

window 
used 

Statement 
conflict of 

interest/funding 
source 

Test 
substance/ 
treatment 

details 

Test 
organism/

system 
Baseline 

characteristics 
similarity / 

appropriate control 
group selection 

Allocation 
concealment 

Randomi-
zation 

Blinding of 
researcher

s 

Blinding of 
outcome 

assessors 
Complete 

outcome data 
Selective 

outcome data 
Account for 
confounding 

variables 
Sample size 

determination 
Statistical 
analysis 

Low risk of bias ("+") 75 (55%) 137 (100%) 0 (n.a.) 0 (n.a.) 0 (n.a.) 134 (98%) 88 (64%) 0 (0%) 0 (0%) 4 (3%) 80 (58%) 13 (9%) 54 (39%) 126 (92%) 31 (23%) 

Number of "?" 62 (45%) 0 (0%) 0 (n.a.) 0 (n.a.) 0 (n.a.) 2 (1%) 47 (34%) 137 (100%) 0 (0%) 0 (0%) 57 (42%) 124 (91%) 67 (49%) 11 (8%) 106 (77%) 

Number of "-" 0 (0%) 0 (0%) 0 (n.a.) 0 (n.a.) 0 (n.a.) 1 (1%) 2 (1%) 0 (0%) 137 (100%) 133 (97%) 0 (0%) 00 (0%) 16 (12%) 0 (0%) 0 (0%) 
Sum 137 137 0 0 0 137 137 137 137 137 137 137 137 137 137 
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Ozawa et al. (1997) + + + + ? - ? + + + 
Padial-Molina et al. (2013) + + + + + - ? + + + 
Pan et al. (2014) + + ? + + + + + + + 
Papadopoulou et al. (2017) + + ? ? ? + ? ? + + 
Papadopoulou et al. (2019) + + ? + ? + ? + + + 
Pelaez et al. (2017) + + ? + - + - + + + 
Peverali et al. (2001) + + ? + + - + - - + 
Pinkerton et al. (2008) + + ? + + + + ? + + 
Qin and Hua (2016) + + ? ? ? + ? + + + 
Rath-Deschner et al. (2009) + + ? + + + + + + + 
Ren et al. (2015) + + ? + + - + + + + 
Ritter et al. (2007) + + ? + + + + ? + + 
Saminathan et al. (2012) + + ? + ? + ? + + + 
Shen et al. (2014) + + ? + + + + + + + 
Shimizu et al. (1994) + + ? + ? - ? + + + 
Shimizu et al. (1995) + ? + + ? - + + + + 
Shimizu et al. (1997) + + ? + ? - ? + + ? 
Shimizu et al. (1998) + + + + ? - ? + + + 
Spencer and Lallier (2009) + + ? + ? + ? - - - 
Steinberg et al. (2011) + + + + + + + + + + 
Sun et al. (2016) + + ? + + + + + + + 
Sun et al. (2017) + + ? + + + ? + + + 
Suzuki et al. (2014) + + ? + + + + + + + 
Symmank et al. (2019) + + ? + + - ? ? ? + 
Takano et al. (2009) + + ? + ? + + + + + 
Tang et al. (2012) + + ? + + + + + + + 
Tantilertanant et al. (2019a) + + ? + + + + + + + 
Tantilertanant et al. (2019b) + + ? + + + + + + + 
Tsuji et al. (2004) + + ? + ? + ? + + + 
Tsuruga et al. (2009) + + ? + ? + + - - + 
Tsuruga et al. (2012) + + ? + ? + ? - - + 
Wada et al. (2017) + + ? + ? + ? + + + 
Wang et al. (2011) + + ? + + + + ? + + 
Wang et al. (2013) + + ? + + + + + + + 
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Wang et al. (2018) + + ? ? ? - ? + + ? 
Wang et al. (2019a) + + ? + + + + + + + 
Wang et al. (2019b) + + ? + + + + + + + 
Wei et al. (2014) + + ? + + + + + + + 
Wei et al. (2015) + + ? + + + + ? + + 
Wescott et al. (2007) + + ? + + + + - - + 
Wolf et al. (2014) + + ? + ? + ? + + + 
Wu et al. (2015) + + ? + + + ? + + + 
Wu et al. (2016) + + ? + + + + + + + 
Wu et al. (2017) + + ? + + + + + + + 
Wu et al. (2019a) + + ? + + + + + + + 
Wu et al. (2019b) + + + + + + + + + + 
Xu et al. (2011) + + ? + + + + ? + + 
Xu et al. (2012) + + ? + + + + + + + 
Xu et al. (2015) + + ? + ? + ? + + + 
Xu et al. (2017) + + ? + + + + + + + 
Yamaguchi and Shimizu (1994) + + ? + ? - ? + + + 
Yamaguchi et al. (1994) + + + + ? - + + + + 
Yamaguchi et al. (1996) + + ? + ? - ? + + + 
Yamaguchi et al. (1997) + + ? ? ? - ? + + + 
Yamaguchi et al. (2002) + + ? + + - ? - - + 
Yamaguchi et al. (2004) + + ? + ? + ? + + ? 
Yamashiro et al. (2007) + + ? ? + + ? ? + + 
Yang et al. (2006) + + ? + ? - ? + + + 
Yang et al. (2010) + + ? + + - + + + + 
Yang et al. (2015) + + ? + + + ? + + + 
Yang et al. (2016) + + ? + ? - + + + + 
Yang et al. (2018) + + ? + + + + + + + 
Yoshino et al. (2003) + + ? + ? - + ? + + 
Yu et al. (2018) + + ? ? ? + + + + + 
Yuda et al. (2015) + + ? + ? + ? + + + 
Zhao et al. (2016) + + ? + + + + + + + 
Zhao et al. (2017) + + + + + + + + + + 
Zhuang et al. (2019) + + + + ? + + + + + 
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Ziegler et al. (2010) + ? + + + + + - - ? 

 
Summary Description of 

scientific 
background 

Description 
objective 

Justification for 
model 

Study design 
description 

Defined 
experimental 

outcomes 

Ethical 
statement 

Cell 
maintenance 

condition 

Description of 
measurement 
precision and 

variability 

Statistical 
analysis 

Results 
description 

Low risk of bias ("+") 137 (100%) 129 (94%) 14 (10%) 126 (92%) 85 (62%) 100 (73%) 87 (64%) 99 (72%) 117 (85%) 127 (93%) 
Unknown/Incomplete ("?") 0 (0%) 5 (4%) 123 (90%) 11 (8%) 50 (36%) 0 (0%) 49 (36%) 20 (15%) 2 (1%) 9 (7%) 
High risk of bias ("-") 0 (0%) 3 (2%) 0 (0%) 0 (0%) 2 (1%) 33(24%) 1 (1%) 18 (13%) 18 (13%) 1 (1%) 
Not applicable ("n.a.") 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Sum 137 137 137 137 137 137 137 137 137 137 
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Table S5.1 Force apparatuses used to apply dynamic equibiaxial tension 
Type of apparatus Publications Number Subtotal 
Flexcell FX-5000 Tension Unit 
Flexcell Tension Plus System 
FX-5000T 
Flexercell FX-4000 Strain Unit 
Flexcell FX-4000T 
Flexcell FX 3000 

Chang et al. (2015), Jiang and Hua (2016), Lee et al. (2015), Li et 
al. (2013), Li et al. (2014), Liu et al. (2012), Liu et al. (2017), 
Padial-Molina et al. (2013), Pan et al. (2014), Ren et al. (2015), 
Shen et al. (2014), Wang et al. (2013), Wang et al. (2019a), 
Wang et al. (2019b), Wei et al. (2014), Wei et al. (2015), Wu et al. 
(2015), Wu et al. (2019a), Xu et al. (2017), Yang et al. (2015), 
Yang et al. (2016), Yang et al. (2018), Yu et al. (2018), Zhao et al. 
(2016), Zhuang et al. (2019) 

25 53 

Flexercell Strain Unit Abiko et al. (1998), Agarwal et al. (2003), Chang et al. (2017), 
Chiba and Mitani (2004), Doi et al. (2003), Kanzaki et al. (2006), 
Kikuiri et al. (2000), Long et al. (2002), Long et al. (2001), Miura 
et al. (2000), Ohzeki et al. (1999), Ozawa et al. (1997), Shimizu et 
al. (1998), Shimizu et al. (1997), Shimizu et al. (1995), Shimizu et 
al. (1994), Tsuji et al. (2004), Yamaguchi et al. (1996), 
Yamaguchi and Shimizu (1994), Yamaguchi et al. (1994), 
Yamaguchi et al. (2002), Yamashiro et al. (2007), Yoshino et al. 
(2003), Kanzaki et al. (2019) 

24 

Flexercell Strain Unit Model FX-
2000 

Kim et al. (2007), Matsuda et al. (1998b), Matsuda et al. (1998a), 
Kaku et al. (2019) 

4 

“Cell Strain Unit” (CSU) (silicone 
rubber membrane in disk) 

Hao et al. (2009), Ma et al. (2015), Wu et al. (2017), Wu et al. 
(2016), Xu et al. (2012), Xu et al. (2011), Zhao et al. (2017), Wu 
et al. (2019b) 

8 10 

Circularly clamped compliant 
membrane with spherical cap 
and vacuum (Tecoflex 
membrane) 

Howard et al. (1998) 1 

Plastic culture cylinder with 
elastic silicone membrane and 
movable plate 

He et al. (2004) 1 

CESTRA cell strain device 
(based on Bioflex® plates) 

Deschner et al. (2012), Nogueira et al. (2014a), Nogueira et al. 
(2014b), Nokhbehsaim et al. (2012), Nokhbehsaim et al. (2011b), 
Nokhbehsaim et al. (2011a), Nokhbehsaim et al. (2010), 
Memmert et al. (2020) 

8 9 

“Cell Extender” (Bioflex-based) Wada et al. (2017) 1 
 Total number  72 
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Table S5.2 Force apparatuses used to apply dynamic uniaxial tension 
Type of apparatus Publications Number Subtotal 
STREX STB-140 Arima et al. (2019), Goto et al. (2011), Nemoto et al. (2010), 

Monnouchi et al. (2015), Monnouchi et al. (2011), Nakashima et 
al. (2009), Suzuki et al. (2014), Tsuruga et al. (2012), Tsuruga et 
al. (2009), Yuda et al. (2015) 

10 10 

Six station stretching apparatus 
(silicone dishes and moving 
clamp) 

Konstantonis et al. (2014), Papadopoulou et al. (2017), 
Papadopoulou et al. (2019) 

3 10 

Uniaxial stretch apparatus 
(Chulalongkorn University, 
silicone membrane) 

Tantilertanant et al. (2019a), Tantilertanant et al. (2019b) 2 

“A new model” (silicone 
membrane and motor) 

Yang et al. (2010), Yang et al. (2006) 2 

Scholertec NS-350 (Scholertec, 
silicone membrane) 

Fujihara et al. (2010) 1 

“Custom-made tensile device” 
poly dimethyl siloxane (PDMS) 
gel and motor 

Li et al. (2015) 1 

“custom-built bioreactor system 
and linear actuator” 

Pelaez et al. (2017) 1 

Flexcell FX-4000 strain unit 
FX-5000T Flexcell Tension Plus 
unit 

Chen et al. (2015), Cho et al. (2010), Lee et al. (2012), Pinkerton 
et al. (2008), Saminathan et al. (2012), Sun et al. (2016), Sun et 
al. (2017), Wescott et al. (2007) 

8 8 

Four-point bending system He et al. (2019), Meng et al. (2010), Tang et al. (2012), Wang et 
al. (2011), Wang et al. (2018), Xu et al. (2015) 

6 6 

 Total number  34 
 
Table S5.3 Force apparatuses used to apply static equibiaxial tension 

Type of apparatus Publications Number Subtotal 
Flexercell Strain Unit Bolcato-Bellemin et al. (2000), Yamaguchi et al. (1997) 2 11 
Flexcell FX-5000 Tension 
System 
Flexercell Strain Unit FX5000-T 
FX-4000 Tension Plus System 
Flexercell Strain Unit FX 3000 

Huelter-Hassler et al. (2017), Hülter-Hassler et al. (2017), Jacobs 
et al. (2013), Jacobs et al. (2014), Jacobs et al. (2015), Jacobs et 
al. (2018), Kook and Lee (2012), Liao and Hua (2013), Symmank 
et al. (2019) 

9 

Petriperm dish and template Basdra et al. (1996), Basdra et al. (1995), Diercke et al. (2011), 
Kletsas et al. (2002), Molina et al. (2001), Ngan et al. (1990), 
Peverali et al. (2001), Ritter et al. (2007), Spencer and Lallier 
(2009), Yamaguchi et al. (2004) 

10 10 

“Cell Extender” (Bioflex-based) Narimiya et al. (2017), Wada et al. (2017) 2 7 
CESTRA cell strain device 
(Bioflex-based) 

Memmert et al. (2019), Memmert et al. (2020) 2 

“loading platform with cylindrical 
posts” (University of Bonn, 
Bioflex-based) 

Rath-Deschner et al. (2009), Wolf et al. (2014) 2 

custom-made spherical cap 
silicone stamps Bioflex-based) 

Nazet et al. (2020) 1 

Lumox culture dishes Steinberg et al. (2011), Ziegler et al. (2010) 2 2 
“a tension incubator” Chen et al. (2014) 1 1 
 Total number  31 

 
Table S5.4 Force apparatuses used to apply static uniaxial tension 

Type of apparatus Publications Number 
“in-house designed device” (silicone dishes 
and moving clamp) 

Papadopoulou et al. (2017) 1 

STREX system Takano et al. (2009) 1 
 Total number 2 
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Table S5.5 Maximal force magnitude and force duration applied using dynamic 
equibiaxial tension depending on the frequency of force application 

Frequency Publications Number 
0.005 Hz Agarwal et al. (2003) (48h; 3%, 6%, 8%, 15%), Long et al. (2002) (48h; 6%), Long et al. (2001) (48h; 6%) 3 
0.05 Hz Deschner et al. (2012) (24h; 3%), Nogueira et al. (2014a) (3d; 3%, 20%), Nogueira et al. (2014b) (3d; 3%, 

20%), Nokhbehsaim et al. (2010) (6d; 3%, 20%), Nokhbehsaim et al. (2011a) (6d; 3%), Nokhbehsaim et al. 
(2011b) (6d; 3%, 20%), Nokhbehsaim et al. (2012) (6d; 3%, 20%) 

7 

0.1 Hz Abiko et al. (1998) (5d; 18%), Chang et al. (2015) (72h; 12%), Chang et al. (2017) (72h; 12%), Hao et al. 
(2009) (48h; 1%, 10%, 20%), Jiang and Hua (2016) (48h; 5%), Kikuiri et al. (2000) (12h; 18%), Kim et al. 
(2007) (6d; 9%), Lee et al. (2015) (48h; 12%), Liu et al. (2012) (24h; 12%), Liu et al. (2017) (12h; 6%, 8%, 
10%, 12%, 14%), Ma et al. (2015) (24h; 10%), Matsuda et al. (1998a) (1h; 9%), Matsuda et al. (1998b) (6d; 
9%,18%), Memmert et al. (2020) (24h; 3%), Miura et al. (2000) (5d; 9%, 18%), Ohzeki et al. (1999) (5d; 
9%, 18%), Ozawa et al. (1997) (5d; 18%), Padial-Molina et al. (2013) (7d; 14%), Pan et al. (2014) (24h; 
10%), Shen et al. (2014) (24h; 12%), Shimizu et al. (1994) (5d: 9%, 18%), Shimizu et al. (1995) (5d; 18%), 
Shimizu et al. (1997) (5d; 9%, 18%), Shimizu et al. (1998) (5d; 18%), Wang et al. (2013) (24h; 20%), Wang 
et al. (2019b) (48h; 12%), Wu et al. (2015) (24h; 10%), Wu et al. (2016) (24h; 20%), Wu et al. (2017) (24h; 
1%, 10%, 20%), Wu et al. (2019a) (24h; 10%), Wu et al. (2019b) (24h; 20%), Xu et al. (2011) (24h; 20%), 
Xu et al. (2012) (24h; 1%, 10%, 20%), Yamaguchi and Shimizu (1994) (3d; 24%), Yamaguchi et al. (1994) 
(5d; 18%), Yamaguchi et al. (1996) (5d; 24%), Yamashiro et al. (2007) (16h; 18%), Yang et al. (2015) (48h; 
12%), Yang et al. (2018) (72h;10%), Zhao et al. (2016) (24h; 20%), Zhao et al. (2017) (24h; 10%, 20%), 
Zhuang et al. (2019) (24h; 20%) 

42 

0.17 Hz (1/6Hz) Tsuji et al. (2004) (48h; 20%) 1 
0.2 Hz Yoshino et al. (2003) (48h; 7%, 14%, 21%) 1 
0.5 Hz Chiba and Mitani (2004) (5d; 15%), Doi et al. (2003) (48h; 7.2 kPa, 15.4 kPa), He et al. (2004) (24h; 10%), 

Howard et al. (1998) (24h; 5%, 10%), Kaku et al. (2019) (48h; 12%), Kanzaki et al. (2006) (72h; 15%), 
Kanzaki et al. (2019) (24h; 15%), Li et al. (2013) (48h; 10%), Li et al. (2014) (48h; 10%), Ren et al. (2015) 
(24h; 10%), Wada et al. (2017) (n.g; 15%), Xu et al. (2017) (48h; 10%), Yamaguchi et al. (2002) (6h; 15%), 
Yang et al. (2016) (24h; 10%), Yu et al. (2018) (72h; 12%) 

15 

1 Hz Wang et al. (2019a) (12h; 10%), Wei et al. (2014) (12h; 10%), Wei et al. (2015) (48h; 10%) 3 
 Total number 72 

 
Table S5.6 Maximal force magnitude and force duration applied using dynamic uniaxial 

tension depending on the frequency of force application 
Frequency Publications Number 
0.005 Hz Li et al. (2015) (24h; 5%), Yang et al. (2010) (24h; 12%) 2 
0.01 Hz Nakashima et al. (2009) (7d; 5%), Pinkerton et al. (2008) (24h; 12%), Saminathan et al. (2012) (24h; 

12%), Wescott et al. (2007) (24h; 12%) 
4 

1/60 Hz (0.017 Hz) Goto et al. (2011) (7d; 5%), Nemoto et al. (2010) (7d; 5%), Suzuki et al. (2014) (24h; 3%, 5%, 10%), 
Tsuruga et al. (2009) (7d; 5%), Tsuruga et al. (2012) (7d; 5%) 

5 

0.05 Hz Yang et al. (2006) (24h; 310-320 grams force) 1 
0.1 Hz Chen et al. (2015) (24h; 12%) 1 
0.2 Hz Cho et al. (2010) (48h; 3%, 6%, 12%, 15%), Lee et al. (2012) (48h; 33%, 6%, 12%,15%) 2 
0.5 Hz Arima et al. (2019) (24h; 10%), Fujihara et al. (2010) (48h; 10%), He et al. (2019) (3h; 0.2%), Meng 

et al. (2010) (12h; 0.4%), Pelaez et al. (2017) (2h; 5%), Sun et al. (2016) (5d; 12%), Sun et al. (2017) 
(48h; 12%), Tang et al. (2012) (24h; 0.3%), Wang et al. (2011) (2h; 0.5%), Wang et al. (2018) (6h; 
0.4%), Xu et al. (2015) (12h; 0.2%, 0.4%) 

11 

1 Hz Konstantonis et al. (2014) (12h; 8%), Monnouchi et al. (2011) (1h; 8%, 12%), Monnouchi et al. 
(2015) (1h; 8%), Papadopoulou et al. (2017) (3h; 8%), Papadopoulou et al. (2019) (18h; 8%), 
Tantilertanant et al. (2019a) (48h; 10%), Tantilertanant et al. (2019b) (6h; 10%), Yuda et al. (2015) 
(3h; 8%) 

8 

 Total number 34 
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Table S5.7 Maximal force magnitude and force duration applied using static equibiaxial 
tension 

Magnitude Publications Number 
0.28 % Ngan et al. (1990) (1h), Yamaguchi et al. (2004) (12h) 2 
0.95 % Ngan et al. (1990) (1h), Yamaguchi et al. (2004) (12h) 2 
1 % Jacobs et al. (2013) (12h), Jacobs et al. (2014) (12h) 2 
1.09 % Ngan et al. (1990) (1h), Yamaguchi et al. (2004) (12h) 2 
1.5 % Kook and Lee (2012) (1h), Liao and Hua (2013) (2h) 2 
1.72 % Ngan et al. (1990) (1h), Yamaguchi et al. (2004) (12h) 2 
-100 kPa Chen et al. (2014) (15d) 1 
20 kPa Bolcato-Bellemin et al. (2000) (12h) 1 
2.5 % Basdra et al. (1995) (1h), Basdra et al. (1996) (12h), Diercke et al. (2011) (72h), Huelter-Hassler et al. 

(2017) (24h), Kletsas et al. (2002) (24h), Molina et al. (2001) (72h), Peverali et al. (2001) (0.5h), Ritter et 
al. (2007) (6h), Steinberg et al. (2011) (24h), Yamaguchi et al. (2004) (24h), Ziegler et al. (2010) (6h) 

11 

3 % Jacobs et al. (2018) (12h), Kook and Lee (2012) (1h), Rath-Deschner et al. (2009) (24h), Memmert et al. 
(2019) (24h), Memmert et al. (2020) (24h) 

5 

5 % Jacobs et al. (2015) (12h), Jacobs et al. (2014) (12h), Jacobs et al. (2013) (12h), Kook and Lee (2012) 
(1h), Symmank et al. (2019) (12h) 

5 

7 % Nazet et al. (2020) (48h) 1 
9 % Yamaguchi et al. (1997) (5d) 1 
10 % Jacobs et al. (2013) (12h), Jacobs et al. (2014) (12h), Jacobs et al. (2015) (12h), Kook and Lee (2012) 

(1h), Nazet et al. (2020) (48h), Spencer and Lallier (2009) (12h) 
6 

15 % Narimiya et al. (2017) (24h), Wada et al. (2017) (24h) 2 
16 % Nazet et al. (2020) (48h) 1 
18 % Yamaguchi et al. (1997) (5d) 1 
20 % Memmert et al. (2019) (24h), Memmert et al. (2020) (24h), Rath-Deschner et al. (2009) (24h), Wolf et al. 

(2014) (8h) 
4 

35 % Nazet et al. (2020) (72h) 1 
 Total number 52 

 
Table S5.8 Maximal force magnitude and force duration applied using static uniaxial 

tension 
Magnitude Publications Number 
5 % Takano et al. (2009) (12h) 1 
8 % Papadopoulou et al. (2017) (3h) 1 
10 % Takano et al. (2009) (12h) 1 
 Total number 3 

 
Dynamic equibiaxial tension (72): longest duration and mainly used magnitude 
Dynamic uniaxial tension (34): longest duration and mainly used magnitude 
Static equibiaxial tension (52): Magnitude and corresponding longest duration 
Static uniaxial tension (3): Magnitude and corresponding longest duration 
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al. (2015), Shen et al. (2014), 
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Kanzaki et al. (2019), Lee et al. 
(2015), Li et al. (2015), Liao and 
Hua (2013), Liu et al. (2017), 
Monnouchi et al. (2011), 
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(2014), Yang et al. 
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(2013), Liu et al. (2017), Yang et 
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Spencer and Lallier (2009) 
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Takano et al. (2009), Wang et al. 
(2019b), Yang et al. (2018), Yu 
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He et al. (2004), Qin and 
Hua (2016), Takano et al. 
(2009), Wang et al. 
(2019b), Yu et al. (2018) 

Nemoto et al. (2010), Sun 
et al. (2017) 

Sun et al. (2016), 
Sun et al. (2017) 

  Jacobs et al. (2013) 
Yamaguchi et al. (2002) 
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PGE2 PGE2  Abiko et al. (1998), 
Agarwal et al. (2003), 
Jacobs et al. (2014), 
Long et al. (2002), Ngan 
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al. (2014), Li et al. 
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Supplement 8: Gene List Analysis 
 
Summary of the pathway analysis applied using “dynamic” and “static” differential expressed 
gene (DEG) lists (Figures 3 and 5, Table 4). Pathway analysis was done quering the 
“GeneOntology/Biological Process” and GeneAnalytics’ “SuperPath” databases using the 
complete DEG lists (Table 4, Figures 5A and 5B) and the nodes included in the individual 
subnetworks (Figures 5C and 5D). To increase specificity, results from both databases were 
filtered according to the proportion of query genes in relation to the number of background 
genes of the specific database entry and a cut-off of ≥0.05 (i.e. 5 %) was applied. 
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Gene list – Dynamic tension DEGs 
 
Table S8.1 Enriched GeneOntology/Biological Process terms 
 
Ratio: Number of genes in gene set divided by the total number of background genes in the specific 
GeneOntology/Biological Process term. A ratio cut-off ≥ 0.05 was applied. The top 10 most significant 
enriched terms (i.e. those with the highest -log10(FDR) values) were selected. 
 

Gene list GO Term Ratio -log10(FDR) 
Complete GO.0009719: response to endogenous stimulus 0.05 36.16 
 GO.0071495: cellular response to endogenous stimulus 0.05 30.14 
 GO.0070848: response to growth factor 0.09 30.14 
 GO.0001503: ossification 0.15 29.10 
 GO.0071363: cellular response to growth factor stimulus 0.09 28.91 
 GO.0051270: regulation of cellular component movement 0.06 27.80 
 GO.0030334: regulation of cell migration 0.06 27.77 
 GO.0072359: circulatory system development 0.06 27.54 
 GO.2000145: regulation of cell motility 0.06 27.54 
 GO.0045597: positive regulation of cell differentiation 0.06 27.36 
Cluster #1 GO.0048661: positive regulation of smooth muscle cell proliferation 0.09 8.97 
 GO.0007196: adenylate cyclase-inhibiting G protein-coupled glutamate receptor 

signaling pathway 
0.56 8.97 

 GO.1904705: regulation of vascular smooth muscle cell proliferation 0.12 8.38 
 GO.0050729: positive regulation of inflammatory response 0.06 8.13 
 GO.0032642: regulation of chemokine production 0.08 7.64 
 GO.1904707: positive regulation of vascular smooth muscle cell proliferation 0.16 7.52 
 GO.0007193: adenylate cyclase-inhibiting G protein-coupled receptor signaling 

pathway 
0.07 7.44 

 GO.0032722: positive regulation of chemokine production 0.09 6.61 
 GO.0051966: regulation of synaptic transmission, glutamatergic 0.08 6.47 
 GO.0031663: lipopolysaccharide-mediated signaling pathway 0.13 5.81 
Cluster #2 GO.0070848: response to growth factor 0.05 23.23 
 GO.0071363: cellular response to growth factor stimulus 0.05 22.47 
 GO.0051216: cartilage development 0.12 19.23 
 GO.0061448: connective tissue development 0.09 18.94 
 GO.0003007: heart morphogenesis 0.08 17.64 
 GO.0050678: regulation of epithelial cell proliferation 0.06 17.06 
 GO.0048514: blood vessel morphogenesis 0.05 16.87 
 GO.0055024: regulation of cardiac muscle tissue development 0.18 16.68 
 GO.0060393: regulation of pathway-restricted SMAD protein phosphorylation 0.19 15.67 
 GO.0003206: cardiac chamber morphogenesis 0.11 15.47 
Cluster #3 GO.0060079: excitatory postsynaptic potential 0.09 14.10 
 GO.0035235: ionotropic glutamate receptor signaling pathway 0.24 14.10 
 GO.0098976: excitatory chemical synaptic transmission 0.38 6.97 
 GO.0001964: startle response 0.11 5.79 
 GO.0097553: calcium ion transmembrane import into cytosol 0.05 4.87 
 GO.0060134: prepulse inhibition 0.14 3.82 
 GO.1903539: protein localization to postsynaptic membrane 0.13 3.77 
 GO.0035249: synaptic transmission, glutamatergic 0.09 3.51 
 GO.0007616: long-term memory 0.06 3.20 
Cluster #4 GO.0001649: osteoblast differentiation 0.10 12.50 
 GO.0002076: osteoblast development 0.22 6.80 
 GO.0031214: biomineral tissue development 0.06 6.56 
 GO.0045124: regulation of bone resorption 0.08 4.09 
 GO.0045669: positive regulation of osteoblast differentiation 0.05 3.60 
 GO.0060346: bone trabecula formation 0.25 3.37 
 GO.0060389: pathway-restricted SMAD protein phosphorylation 0.15 3.11 
 GO.0034505: tooth mineralization 0.14 3.08 
 GO.0042487: regulation of odontogenesis of dentin-containing tooth 0.14 3.08 
 GO.0002063: chondrocyte development 0.09 2.77 
Cluster #5 GO.0050718: positive regulation of interleukin-1 beta secretion 0.16 7.23 
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Gene list GO Term Ratio -log10(FDR) 
 GO.0051402: neuron apoptotic process 0.05 2.96 
Cluster 6 GO.0030199: collagen fibril organization 0.08 3.68 
 GO.0044319: wound healing, spreading of cells 0.08 2.57 
 GO.0042310: vasoconstriction 0.06 2.46 
 GO.0045777: positive regulation of blood pressure 0.05 2.33 

 
 
Table S8.2 Enriched GeneAnalytics’ SuperPathways 
 
Ratio: Number of genes in gene set divided by the total number of background genes in the specific 
SuperPath. The top 10 most significant enriched terms (i.e. those with the highest Score) were selected. 
 

Gene list SuperPath Name Ratio Score 
Complete ERK Signaling 0.05 115.97 
 Akt Signaling 0.06 96.02 
 PAK Pathway 0.06 95.94 
 PEDF Induced Signaling 0.06 91.03 
 TGF-Beta Pathway 0.06 84.03 
 Interleukin-4 and 13 Signaling 0.18 70.16 
 Lung Fibrosis 0.27 70.05 
 Integrin Pathway 0.06 66.46 
 Hippo Signaling Pathway 0.14 66.29 
 Pathways in Cancer 0.06 65.92 
Cluster #1 Rheumatoid Arthritis 0.08 37.32 
 GPCRs, Class C Metabotropic Glutamate, Pheromone 0.31 37.04 
 Th1 Differentiation Pathway 0.08 32.22 
 IL-10 Pathway 0.14 31.41 
 Taste Transduction 0.07 30.90 
 T Cell Receptor Signaling Pathway 0.04 30.56 
 Phospholipase D Signaling Pathway 0.04 30.40 
 Transcription_Role of VDR in Regulation of Genes Involved in Osteoporosis 0.11 29.60 
 Interleukin-10 Signaling 0.10 28.99 
 Malaria 0.10 28.85 
Cluster #2 ERK Signaling 0.03 81.42 
 PAK Pathway 0.04 77.43 
 PEDF Induced Signaling 0.04 74.29 
 Akt Signaling 0.04 72.97 
 TGF-Beta Pathway 0.04 70.06 
 Interleukin-4 and 13 Signaling 0.13 66.96 
 Pathways in Cancer 0.04 63.44 
 Cardiomyocyte Differentiation Through BMP Receptors 0.45 62.49 
 Human Embryonic Stem Cell Pluripotency 0.09 61.85 
 TGF-beta Signaling Pathway (KEGG) 0.14 58.94 
Cluster #3 Nicotine Addiction 0.18 63.13 
 Amyotrophic Lateral Sclerosis (ALS) 0.10 47.79 
 Amphetamine Addiction 0.07 44.99 
 Circadian Entrainment 0.03 44.11 
 CAMP Signaling Pathway 0.03 36.72 
 Dopamine-DARPP32 Feedback Onto CAMP Pathway 0.03 36.29 
 SALM Protein Interactions at The Synapses 0.19 34.67 
 Post NMDA Receptor Activation Events 0.10 30.81 
 Neurophysiological Process Glutamate Regulation of Dopamine D1A Receptor 

Signaling 
0.06 27.81 

 Protein-protein Interactions at Synapses 0.06 27.57 
Cluster #4 Development_Hedgehog and PTH Signaling Pathways in Bone and Cartilage 

Development 
0.13 34.33 

 Transcription_Role of VDR in Regulation of Genes Involved in Osteoporosis 0.11 33.30 
 Osteoblast Signaling 0.29 32.17 
 Interleukin-11 Signaling Pathway 0.07 18.16 
 FGF Signaling Pathway 0.06 17.88 
 Regulation of Retinoblastoma Protein 0.05 17.12 
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Gene list SuperPath Name Ratio Score 
 TGF-beta Receptor Signaling (WikiPathways) 0.05 16.97 
 Endochondral Ossification 0.05 16.49 
 TGF-beta Signaling Pathways 0.03 14.82 
 Parathyroid Hormone Synthesis, Secretion and Action 0.03 14.39 
Cluster #5 NOD-like Receptor Signaling Pathway 0.03 41.05 
 Nucleotide-binding Oligomerization Domain (NOD) Pathway 0.10 32.03 
 Nucleotide-binding Domain, Leucine Rich Repeat Containing Receptor (NLR) Signaling 

Pathways 
0.08 31.12 

 Toll-like Receptor Signaling Pathway 0.01 26.29 
 Apoptosis and Autophagy 0.02 23.41 
 Necroptosis 0.02 16.71 
 Shigellosis 0.01 15.09 
 Innate Immune System 0.00 13.99 
 Measles 0.01 13.68 
Cluster #6 Integrin Pathway 0.02 39.05 
 Phospholipase-C Pathway 0.02 34.17 
 Focal Adhesion 0.02 33.83 
 Degradation of The Extracellular Matrix 0.02 33.35 
 Cytoskeleton Remodeling Regulation of Actin Cytoskeleton By Rho GTPases 0.03 30.98 
 ERK Signaling 0.01 29.68 
 Smooth Muscle Contraction 0.11 27.75 
 MiRNA Targets in ECM and Membrane Receptors 0.09 26.73 
 Actin Nucleation By ARP-WASP Complex 0.01 20.13 
 Cell Adhesion_Endothelial Cell Contacts By Non-junctional Mechanisms 0.08 19.29 
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Gene list – Static tension DEGs 
 
Table S8.3 Enriched GeneOntology Biological Process terms 
 
Ratio: Number of genes in gene set divided by the total number of background genes in the specific 
GeneOntology/Biological Process term. A ratio cut-off ≥ 0.05 was applied. The top 10 most significant 
enriched terms (i.e. those with the highest -log10(FDR) values) were selected. 
 

Network GO Term Ratio -log10(FDR) 
Complete GO.0001503: ossification 0.06 10.08 
 GO.0009612: response to mechanical stimulus 0.05 8.97 
 GO.0031960: response to corticosteroid 0.06 8.91 
 GO.0071260: cellular response to mechanical stimulus 0.10 8.40 
 GO.0007565: female pregnancy 0.06 8.32 
 GO.0062013: positive regulation of small molecule metabolic process 0.07 8.21 
 GO.0051384: response to glucocorticoid 0.07 7.99 
 GO.0097191: extrinsic apoptotic signaling pathway 0.09 7.88 
 GO.0008625: extrinsic apoptotic signaling pathway via death domain receptors 0.19 7.54 
 GO.0048660: regulation of smooth muscle cell proliferation 0.06 6.99 
Cluster #1 GO.0008625: extrinsic apoptotic signaling pathway via death domain receptors 0.16 7.78 
 GO.0097191: extrinsic apoptotic signaling pathway 0.06 7.66 
 GO.2000134: negative regulation of G1/S transition of mitotic cell cycle 0.05 6.14 
 GO.0031571: mitotic G1 DNA damage checkpoint 0.06 5.08 
 GO.2000811: negative regulation of anoikis 0.17 4.91 
 GO.0048661: positive regulation of smooth muscle cell proliferation 0.05 4.89 
 GO.0001836: release of cytochrome c from mitochondria 0.14 4.74 
 GO.0043567: regulation of insulin-like growth factor receptor signaling pathway 0.13 4.69 
 GO.1900740: positive regulation of protein insertion into mitochondrial membrane involved 

in apoptotic signaling pathway 
0.12 4.60 

 GO.1902895: positive regulation of pri-miRNA transcription by RNA polymerase II 0.12 4.60 
Cluster #2 GO.0022617: extracellular matrix disassembly 0.09 6.26 
 GO.0051043: regulation of membrane protein ectodomain proteolysis 0.13 4.23 
 GO.0002675: positive regulation of acute inflammatory response 0.12 4.18 
 GO.0030574: collagen catabolic process 0.08 3.92 
 GO.0070498: interleukin-1-mediated signaling pathway 0.06 3.68 
 GO.0032963: collagen metabolic process 0.06 3.64 
 GO.0051155: positive regulation of striated muscle cell differentiation 0.05 3.59 
 GO.1905049: negative regulation of metallopeptidase activity 0.33 3.54 
 GO.0031622: positive regulation of fever generation 0.29 3.47 
 GO.0060558: regulation of calcidiol 1-monooxygenase activity 0.29 3.47 
Cluster #3 GO.0042487: regulation of odontogenesis of dentin-containing tooth 0.14 3.48 
 GO.0002076: osteoblast development 0.11 3.44 
 GO.0071295: cellular response to vitamin 0.09 3.35 
 GO.0001958: endochondral ossification 0.08 3.29 
 GO.0045124: regulation of bone resorption 0.05 3.09 
Cluster #4 GO.0006501: C-terminal protein lipidation 0.18 3.92 
 GO.0044804: autophagy of nucleus 0.12 3.64 
Cluster #5 GO.0045725: positive regulation of glycogen biosynthetic process 0.12 3.68 
 GO.0046628: positive regulation of insulin receptor signaling pathway 0.13 3.68 
 GO.0048009: insulin-like growth factor receptor signaling pathway 0.14 3.68 
 GO.0014065: phosphatidylinositol 3-kinase signaling 0.06 3.54 
Cluster #6 GO.0050919: negative chemotaxis 0.09 4.83 
 GO.1990138: neuron projection extension 0.05 4.46 
 GO.0071526: semaphorin-plexin signaling pathway 0.08 3.38 
 GO.0048675: axon extension 0.06 3.19 
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Table S8.4 Enriched GeneAnalytics’ SuperPathways 
 
Ratio: Number of genes in gene set divided by the total number of background genes in specific SuperPath. 
The top 10 most significant enriched terms (i.e. those with the highest Score) were selected. 
 

Gene list SuperPath Name Ratio Score 
Complete Senescence and Autophagy in Cancer 0.15 76.37 
 Transcription_Role of VDR in Regulation of Genes Involved in Osteoporosis 0.27 66.96 
 ERK Signaling 0.02 64.47 
 Apoptosis Modulation and Signaling 0.07 62.14 
 Cell Adhesion_ECM Remodeling 0.20 61.73 
 Pathways in Cancer 0.04 61.42 
 Photodynamic Therapy-induced NF-kB Survival Signaling 0.23 59.03 
 Akt Signaling 0.03 58.38 
 Interleukin-4 and 13 Signaling 0.11 56.77 
 Apoptotic Pathways in Synovial Fibroblasts 0.03 53.00 
Cluster #2 Photodynamic Therapy-induced AP-1 Survival Signaling. 0.16 53.00 
 TNFR1 Pathway 0.04 44.37 
 DREAM Repression and Dynorphin Expression 0.04 43.47 
 Direct P53 Effectors 0.06 43.04 
 Toll-like Receptor Signaling Pathway 0.03 42.49 
 Apoptosis Modulation and Signaling 0.04 42.00 
 Pathways in Cancer 0.02 37.74 
 Interleukin-4 and 13 Signaling 0.06 37.67 
 Human Cytomegalovirus Infection 0.03 37.28 
 Endometrial Cancer 0.03 36.40 
Cluster #2 Photodynamic Therapy-induced NF-kB Survival Signaling 0.13 39.60 
 Cell Adhesion_ECM Remodeling 0.10 37.53 
 GPCR Pathway 0.01 36.02 
 HIF-1 Signaling Pathway 0.06 32.53 
 Interleukin-4 and 13 Signaling 0.05 32.15 
 NF-KappaB Family Pathway 0.03 31.61 
 Akt Signaling 0.01 31.17 
 PAK Pathway 0.01 31.15 
 Matrix Metalloproteinases 0.09 30.74 
 Cytokine Signaling in Immune System 0.01 29.80 
Cluster #3 Transcription_Role of VDR in Regulation of Genes Involved in Osteoporosis 0.09 35.40 
 Osteoblast Signaling 0.21 29.60 
 Development_Hedgehog and PTH Signaling Pathways in Bone and Cartilage Development 0.08 25.17 
 Interleukin-11 Signaling Pathway 0.05 15.18 
 FGF Signaling Pathway 0.04 14.99 
 Notch-mediated HES/HEY Network 0.04 14.93 
 Regulation of Retinoblastoma Protein 0.04 14.49 
Cluster #4 Autophagy Pathway 0.05 31.79 
 Autophagy - Animal 0.03 28.97 
 Cellular Senescence (REACTOME) 0.01 22.08 
 Senescence and Autophagy in Cancer 0.03 20.84 
Cluster #5 Immune Response Function of MEF2 in T Lymphocytes 0.03 22.92 
 Development IGF-1 Receptor Signaling 0.02 21.82 
 EGFR Transactivation By Gastrin 0.12 18.92 
 NFAT and Cardiac Hypertrophy 0.01 17.98 
 IL-2 Pathway 0.01 17.95 
 IGF1 Pathway 0.07 17.48 
 Factors and Pathways Affecting Insulin-like Growth Factor (IGF1)-Akt Signaling 0.06 17.19 
 P70S6K Signaling 0.01 17.18 
 Integrins in Angiogenesis 0.04 16.05 
 PI3K-Akt Signaling Pathway 0.01 15.92 
Cluster #6 Axon Guidance 0.03 34.21 
 Semaphorin Interactions 0.04 20.53 
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Abstract: This study aimed to investigate the effects of different magnitudes and durations of static
tensile strain on human periodontal ligament cells (hPDLCs), focusing on osteogenesis, mechanosens-
ing and inflammation. Static tensile strain magnitudes of 0%, 3%, 6%, 10%, 15% and 20% were applied
to hPDLCs for 1, 2 and 3 days. Cell viability was confirmed via live/dead cell staining. Reference
genes were tested by reverse transcription quantitative real-time polymerase chain reaction (RT-
qPCR) and assessed. The expressions of TNFRSF11B, ALPL, RUNX2, BGLAP, SP7, FOS, IL6, PTGS2,
TNF, IL1B, IL8, IL10 and PGE2 were analyzed by RT-qPCR and/or enzyme-linked immunosorbent
assay (ELISA). ALPL and RUNX2 both peaked after 1 day, reaching their maximum at 3%, whereas
BGLAP peaked after 3 days with its maximum at 10%. SP7 peaked after 1 day at 6%, 10% and
15%. FOS peaked after 3 days with its maximum at 3%, 6% and 15%. The expressions of IL6 and
PTGS2 both peaked after 1 day, with their minimum at 10%. PGE2 peaked after 1 day (maximum
at 20%). The ELISA of IL6 peaked after 3 days, with the minimum at 10%. In summary, the lower
magnitudes promoted osteogenesis and caused less inflammation, while the higher magnitudes
inhibited osteogenesis and enhanced inflammation. Among all magnitudes, 10% generally caused a
lower level of inflammation with a higher level of osteogenesis.

Keywords: periodontal ligament cells; tensile strain; bone remodeling; stretching; orthodontic
tooth movement

1. Introduction

The aim of orthodontic tooth movement (OTM) is to align malpositioned teeth by
applying external forces (“orthodontic forces”) to the teeth and thus stimulating bone
remodeling [1]. Located between the teeth and the alveolar bone, the human periodontal
ligament (hPDL) and the cells it contains play an essential role in withstanding mechan-
ical forces in physiological, pathological and therapeutical conditions, e.g., orthodontic
treatment [2].

During OTM, mechanical stimulation triggers complex aseptic inflammatory cellular
and molecular processes causing the remodeling of the surrounding tissues, ultimately
leading to bone resorption on the compression side and bone formation on the tension
side. Inflammation is regulated by a large array of mediator molecules [3], including
pro-inflammatory molecules such as interleukin 1B (IL1B), tumor necrosis factor (TNF),
interleukin 6 (IL6) and interleukin 8 (IL8), as well as prostaglandin-endoperoxide syn-
thase 2 (PTGS2; also known as COX2), prostaglandin E2 (PGE2) and anti-inflammatory
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molecules such as interleukin 10 (IL10) [4]. Various molecules mediating osteoclasto-
/osteoblastogenesis are upregulated at different stages of bone remodeling during this
aseptic inflammatory process [5], including transcription factors (e.g., Runt-related tran-
scription factor 2 (RUNX2) and SP7, also known as osterix) [6–8] and early or late os-
teoblastic marker genes such as alkaline phosphatase (ALPL), bone-matrix protein-bone
gamma-carboxyglutamate protein (BGLAP, also known as osteocalcin) [9], as well as re-
ceptor activator of nuclear factor kappa ligand (RANKL) and osteoprotegerin (OPG) [10].
The proto-oncogene FOS is an immediate/early gene essential for mechanical stimulation.
Its dimerization with JUN forms the heterodimeric activator protein 1 (AP1), which then
binds to different promoters of osteoblast-specific genes, activating the proliferation and
differentiation of osteoblasts in periodontal tissue [2,11].

Appropriate mechanical loading is essential for the homeostasis and thus the con-
trolled and coordinated remodeling of both the PDL and the alveolar bone. A lack of
mechanical stimuli will lead to the atrophy of PDL and/or bone. In contrast, excessive
force affects PDL and bone in a similar manner resulting in periodontal attachment loss
and/or loss of alveolar bone, respectively, finally leading to uncontrolled tooth movement
and/or root resorption [1,12]. Taken together, optimal therapeutical forces are crucial for
well-regulated tissue remodeling. Clinically, therapeutic tooth movement is centrally based
on careful mechanical stimulation as low and as short as possible, sufficient to achieve
the desired biological responses [1,12]. Therefore, parameters of mechanical stimulation
eligible to induce therapeutic tissue remodeling within the periodontal and osseous tissues
need to be further defined [1,12].

To gain improved insight into the effects of therapeutic forces on the expression and
regulation of relevant genes involved in tooth movement and bone remodeling, different
in vitro force application models have been suggested specifically in terms of compressive
forces [7,13–15]. Regarding tension, different in vitro models have been applied addressing
distinct issues [16–18], i.e., apoptosis [19,20], pyroptosis [21], angiogenesis [22], osteoge-
nesis [23] and inflammation [24], but most of these studies focused on specific tension
magnitudes only. Even in those studies considering different magnitudes, tension was only
applied for a single period of time [25–28].

Therefore, aim of this study was to investigate the effects of different tensile strain
magnitudes and durations on human periodontal ligament cells (hPDLCs), with special em-
phasis on gene expression related to bone remodeling, mechanosensing and inflammation.

2. Results

A custom-made apparatus was constructed (Figure 1) to apply different magnitudes of
static equibiaxial tensile strain to adherent cells growing on a flexible membrane. Static cell
stretching was achieved by spherical caps placed below the membrane (Figure 1) leading
to an increase in membrane area. Herein, static cell stretching of hPDLCs of different
magnitudes (0% = control, 3%, 6%, 10%, 15 % and 20%) was applied to hPDLCs with the
respective, matching spherical caps for 1, 2 and 3 days. In the remaining parts of this
manuscript, the magnitude of static tensile strain was represented by the percentage of
stretch applied. Cell viability was assessed by live/dead cell staining, and the expression
of target genes related to bone remodeling, mechanosensation and inflammation was
quantified using reverse transcription quantitative real-time polymerase chain reaction
(RT-qPCR) and/or enzyme-linked immunosorbent assay (ELISA).

2.1. Cell Viability

Since the maximum equibiaxial tensile strain is induced in the central part of the mem-
brane [29], cells growing in this area of each membrane were used for viability testing with
live/dead cell staining (Figure 2). The viability of hPDLCs remained unaffected as com-
pared to the untreated control samples independent of tension magnitude and duration.
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Figure 1. Experimental setup used to apply tensile strain: cells were seeded on the elastic silicone
membrane of a BioFlex® plate and incubated overnight. Afterward, spherical caps with defined
shapes were inserted into the base plate to statically apply a 3%, 6%, 10%, 15% or 20% increase of the
membrane area. No tensile strain was applied to the control wells. After placing the BioFlex® plate
onto the base plate, the outer frame was fixed with screws, thus applying tensile strain of predefined
magnitudes to the cells growing on the membrane (more details can be found in Section 4.2).

Figure 2. Cell viability of human periodontal ligament cells (hPDLCs) as assessed by live/dead cell
staining. Microscopic images (bar: 200 µm) of cells growing in the center of each well were used
herein, representing different tensile strain magnitudes and durations. Live cells are indicated by
green staining, and dead cells are indicated by red staining (yellow arrows).

2.2. Reference Gene Selection

For validation of reference genes, the expression of a panel of eight pre-selected
genes was assessed with RT-qPCR using samples exposed to 0%, 10% and 20% cell stretch-
ing for 1 and 3 days. Considering the Cq values, the most abundant reference gene
was RNA18S5 with mean Cq values ranging from 8.03 ± 0.53 to 8.55 ± 0.32 (Figure 3a;
Supplementary Table S1.1).

The RefFinder program was used to identify the most stable reference gene within
the panel, which calculated comprehensive gene stability values for each gene based on
four different algorithms (Figure 3b; Supplementary Tables S1.2 and S1.3). Accordingly,
RPL22 (RefFinder gene stability: 2.115), GAPDH and POLR2A (both 2.449) were the most
stable reference genes tested (Figure 3b and Supplement 1). The “Minimum Information
for Publication of Quantitative Real-Time PCR Experiment” (MIQE) guidelines recommend
using more than one reference gene for normalization to improve the quality of data [30].
Albeit RefFinder calculated the same gene stability values for both GAPDH and POLR2A,
the latter was selected together with RPL22 as reference genes for normalization, due to a
comparable level of expression as for most of the target genes analyzed in this study.
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Figure 3. Reference gene primer stability was obtained with RefFinder. (a). Cq values for the panel
of reference genes, using samples exposed to different tensile strain magnitudes for 1 and 3 days.
Average expression (all) for the three magnitudes was also calculated. Six quantitative real-time
polymerase chain reaction (qPCR) runs were analyzed representing three biological replicates with
two technical replicates each (Supplement 1). (b). Comprehensive gene stability analysis for the panel
of reference genes. Lower values indicate higher gene stability (Supplement 1).

2.3. Expression of Target Genes

Cell stretching was applied to hPDLCs for up to three days using six different mag-
nitudes (0%, 3%, 6%, 10%, 15% and 20%). Afterward, expression of target genes was
analyzed with RT-qPCR (reference genes: RPL22 and POLR2A) and/or ELISA. A total of
thirteen different loci were included, representing three different functional groups: bone-
remodeling-related genes, including ALPL, RUNX2, BGLAP, SP7, TNF and TNFRSF11B,
the mechanosensation-related locus FOS and the inflammation-related loci, including IL6,
PTGS2, PGE2, IL1B, IL8 and IL10. The differences in gene expression between the test
groups and the corresponding controls were analyzed. Tensile strain duration dependency
was determined for each magnitude separately, and magnitude dependency was assessed
for each duration. If not otherwise stated, mean fold changes (FC) and adjusted P (Padj.)
values after Bonferroni correction for multiple testing are reported. Descriptive statistics
for each analyte and tension/duration combination are summarized in Table 1.

The protein concentrations of TNF, IL1B, IL8 and IL10 in the supernatants were all
below the detection limit and were therefore not further analyzed. The gene expression of
tumor necrosis factor-alpha receptor superfamily member 11B (TNFRSF11B, also known as
OPG) was below the detection limit (Cq values > 35) and therefore not further analyzed.
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Table 1. Summary statistics and comparison of the effects of static tensile strain on target gene expression (ALPL, BGLAP, PTGS2, FOS, IL6, RUNX2 and SP7) reported
as fold change, PGE2 and IL6 in hPDLCs. Results are shown as mean (±SD) and 95% confidence interval [95% CI]. P-values were obtained with Kruskal–Wallis test
(KW) and adjusted by the Bonferroni correction for multiple tests (adjusted P, Padj.).

Analyte Magnitude

Duration of Tensile Strain Application (Days) KW of Duration
(Magnitude Fixed)

1 Day 2 Days 3 Days

Mean (SD) [95% CI] Mean (SD) [95% CI] Mean (SD) [95% CI] Padj. Sign.

ALPL (FC) 3 2.94 (0.35) [3.35;3.37] 0.57 (0.03) [0.57;0.63] 0.65 (0.09) [0.70;0.80] 0.002 **
6 2.45 (0.21) [2.61;2.68] 0.56 (0.11) [0.56;0.79] 0.84 (0.12) [0.91;1.02] 0.001 **

10 1.66 (0.84) [2.45;2.52] 0.72 (0.07) [0.75;0.82] 0.97 (0.14) [1.08;1.20] 0.051 n.s.
15 2.37 (0.28) [2.58;2.76] 0.57 (0.05) [0.58;0.62] 0.73 (0.03) [0.76;0.76] 0.001 **
20 1.76 (0.17) [1.90;1.97] 0.84 (0.14) [0.99;1.05] 0.68 (0.18) [0.83;0.92] 0.002 **

KW of magnitude (duration fixed) <0.001 *** <0.001 *** 0.001 **

BGLAP (FC) 3 1.11 (0.48) [1.05;2.04] 0.19 (0.08) [0.28;0.30] 0.80 (0.15) [0.96;1.01] 0.001 **
6 1.40 (0.23) [1.62;1.70] 0.25 (0.07) [0.32;0.35] 1.73 (0.27) [2.05;2.08] 0.002 **

10 1.06 (0.21) [1.21;1.34] 0.73 (0.12) [0.81;0.85] 3.35 (0.84) [3.74;4.70] 0.001 **
15 1.67 (0.73) [2.25;2.85] 0.21 (0.03) [0.22;0.24] 2.68 (0.66) [3.04;3.40] 0.001 **
20 1.00 (0.21) [1.13;1.34] 0.42 (0.17) [0.59;0.65] 2.14 (0.40) [2.51;2.65] 0.001 **

KW of magnitude (duration fixed) 0.077 n.s. <0.001 *** <0.001 ***

PTGS2 (FC) 3 3.12 (0.75) [3.47;4.07] 0.81 (0.07) [0.83;0.93] 1.35 (0.12) [1.45;1.48] 0.001 **
6 3.30 (0.54) [3.93;4.01] 0.79 (0.11) [0.86;0.91] 1.58 (0.28) [1.77;1.97] 0.001 **

10 2.08 (0.81) [2.63;2.72] 0.96 (0.09) [1.02;1.05] 1.45 (0.35) [1.82;1.95] 0.004 **
15 3.64 (0.24) [3.78;3.94] 0.83 (0.07) [0.85;0.94] 1.61 (0.16) [1.75;1.80] 0.001 **
20 2.21 (0.61) [2.74;2.76] 1.30 (0.49) [1.65;1.65] 0.91 (0.27) [1.22;1.26] 0.014 *

KW of magnitude (duration fixed) <0.001 *** 0.017 * 0.001 **

FOS (FC) 3 0.79 (0.09) [0.83;0.91] 1.02 (0.11) [1.08;1.19] 1.85 (0.15) [2.01;2.07] 0.001 **
6 0.81 (0.09) [0.84;0.98] 0.82 (0.19) [0.85;1.14] 1.87 (0.46) [2.23;2.30] 0.003 **

10 0.80 (0.05) [0.84;0.85] 0.82 (0.09) [0.90;0.91] 1.52 (0.17) [1.73;1.73] 0.003 **
15 0.86 (0.35) [0.75;1.58] 0.77 (0.10) [0.87;0.91] 2.05 (0.25) [2.17;2.43] 0.003 **
20 0.78 (0.18) [0.93;1.02] 1.16 (0.45) [1.65;1.65] 1.48 (0.24) [1.66;1.79] 0.012 *

KW of magnitude (duration fixed) 0.041 * 0.024 * 0.001 **

IL6 (FC) 3 1.76 (0.24) [1.92;2.08] 0.46 (0.05) [0.51;0.52] 0.92 (0.15) [1.06;1.15] 0.001 **
6 1.67 (0.14) [1.78;1.83] 0.41 (0.03) [0.43;0.46] 1.11 (0.17) [1.17;1.39] 0.001 **

10 1.01 (0.41) [1.33;1.53] 0.57 (0.02) [0.57;0.59] 1.21 (0.14) [1.32;1.37] 0.018 *
15 2.01 (0.80) [2.96;3.11] 0.38 (0.03) [0.39;0.42] 1.03 (0.14) [1.14;1.21] 0.001 **
20 1.19 (0.14) [1.30;1.38] 0.50 (0.10) [0.56;0.67] 0.92 (0.14) [1.00;1.06] 0.001 **

KW of magnitude (duration fixed) <0.001 *** <0.001 *** 0.036 *
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Table 1. Cont.

Analyte Magnitude

Duration of Tensile Strain Application (Days) KW of Duration
(Magnitude Fixed)

1 Day 2 Days 3 Days

Mean (SD) [95% CI] Mean (SD) [95% CI] Mean (SD) [95% CI] Padj. Sign.

RUNX2 (FC) 3 2.49 (0.20) [2.65;2.78] 0.77 (0.07) [0.83;0.83] 0.70 (0.12) [0.84;0.87] 0.003 **
6 2.15 (0.26) [2.38;2.48] 0.80 (0.03) [0.82;0.85] 0.89 (0.16) [1.08;1.10] 0.003 **

10 1.60 (0.84) [2.37;2.44] 0.63 (0.04) [0.67;0.69] 1.04 (0.18) [1.25;1.27] 0.064 n.s.
15 2.08 (0.15) [2.22;2.30] 0.85 (0.04) [0.86;0.92] 0.82 (0.07) [0.86;0.92] 0.003 **
20 1.32 (0.16) [1.44;1.54] 0.81 (0.17) [0.98;1.03] 0.62 (0.21) [0.85;0.90] 0.002 **

KW of magnitude (duration fixed) <0.001 *** <0.001 *** 0.002 **

SP7 (FC) 3 2.18 (0.64) [2.76;2.97] 2.75 (1.61) [4.17;4.29] 0.50 (0.08) [0.54;0.60] 0.003 **
6 4.84 (2.33) [6.56;6.94] 2.96 (1.24) [3.94;4.17] 1.20 (1.32) [2.07;3.53] 0.018 *

10 4.22 (3.01) [7.70;8.07] 1.56 (0.74) [2.42;2.51] 1.84 (0.70) [2.22;2.92] 0.140 n.s.
15 4.34 (1.38) [4.18;7.11] 3.20 (2.12) [5.36;5.51] 2.37 (0.61) [2.42;3.48] 0.059 n.s.
20 0.65 (0.13) [0.67;0.88] 0.84 (0.35) [1.25;1.27] 0.81 (0.46) [0.92;1.54] 0.519 n.s.

KW of magnitude (duration fixed) <0.001 *** 0.022 * 0.002 **

PGE2 (pg/well) 0 938.7 (80.1) [1002.1;1002.6] 603.7 (16.6) [615.3;629.6] 498.3 (32.3) [526.3;542.6] 0.001 **
3 1318.5 (166.3) [1437.6;1477.3] 1165.5 (38.0) [1197.8;1198.7] 1075.0 (67.1) [1130.2;1131.5] 0.034 *
6 1246.0 (83.8) [1331.5;1348.9] 1080.2 (56.9) [1110.2;1171.1] 934.5 (135.6) [963.4;1195.3] 0.005 **

10 1466.3 (143.4) [1590.9;1591.6] 1096.7 (30.4) [1130.2;1134.0] 972.2 (103.3) [1093.4;1099.7] 0.002 **
15 1625.5 (86.0) [1642.1;1769.5] 1451.6 (190.9) [1678.3;1709.5] 1240.2 (81.0) [1321.7;1358.0] 0.006 **
20 1962.5 (270.1) [2140.6;2236.1] 1779.1 (96.5) [1856.2;1885.7] 1456.2 (73.6) [1505.3;1556.1] 0.003 **

KW of magnitude (duration fixed) <0.001 *** <0.001 *** <0.001 ***

IL6 (pg/well) 0 133.5 (20.6) [157.1;159.8] 143.1 (13.4) [147.2;166.8] 277.7 (35.1) [305.1;312.5] 0.002 **
3 308.6 (60.4) [381.1;387.4] 300.5 (21.7) [325.2;327.9] 512.4 (28.6) [532.1;559.9] 0.003 **
6 179.0 (12.1) [184.6;198.8] 192.0 (24.5) [211.7;216.8] 488.1 (71.1) [549.0;563.2] 0.003 **

10 203.4 (34.7) [241.5;250.6] 186.3 (16.0) [200.0;201.7] 335.0 (18.5) [350.6;357.6] 0.003 **
15 176.3 (4.5) [179.5;180.0] 208.1 (8.4) [215.1;220.0] 502.5 (46.2) [541.5;574.6] 0.001 **
20 316.1 (53.9) [375.1;387.3] 291.3 (22.0) [303.4;324.9] 506.0 (30.3) [532.7;539.2] 0.003 **

KW of magnitude (duration fixed) <0.001 *** <0.001 *** <0.001 ***

* Padj. < 0.05; ** Padj. < 0.01; *** Padj. < 0.001; n.s., not significant.
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2.3.1. Bone-Remodeling-Related Target Genes

Expression of bone-remodeling-related genes ALPL, RUNX2, BGLAP and SP7 was
evaluated using RT-qPCR (reference genes: RPL22 and POLR2A). The results are shown in
Figure 4 and summarized in Table 1.

Figure 4. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) results
for genes related to bone remodeling after 1 to 3 days of static tensile strain application: (a) RUNX2,
(b) SP7, (c) ALPL and (d) BGLAP. Each experimental unit is summarized by mean (l) and error bars
representing SD. The ∆∆Cq method was applied, and RPL22 and POLR2A were used as reference
genes. Gene expression of controls is indicated by the gray dashed line. Analysis of differences
between the test and control groups was carried out with the Kruskal–Wallis test followed by
Bonferroni correction for multiple testing. Significant differences between groups are indicated as
follows: *, test group vs. corresponding control; effects of duration: $, 1 day vs. 2 days; @, 1 day vs. 3
days; &, 2 days vs. 3 days; effects of magnitudes (“#”) are indicated by Padj. values; “#” defines the
counterpart of comparisons. Levels of significance: Padj. < 0.05: *, $, @, #; Padj. < 0.01: **, $$, @@, &&,
##; Padj. < 0.001: ***, $$$, &&&, ###.

Generally, the gene expression of RUNX2 and ALPL showed similar dependency on
the duration and magnitude of cell stretching. The transcription of both genes showed
a significant increase after 1 day of cell stretching (RUNX2 mean range: 1.32–2.49; ALPL
mean range: 1.66–2.94), which declined at Days 2 and 3 and ultimately reached control
levels (RUNX2: 0.62–1.04; ALPL: 0.56–0.97) (Figure 4a,c). For both genes, the highest gene
expression was found after 3% cell stretching at Day 1 (RUNX2: 2.49 ± 0.20, Padj. = 0.001;
ALPL: 2.94 ± 0.35, Padj. < 0.001), showing significant differences in comparison to further
test groups (RUNX2: 3% vs. 20%, Padj. = 0.005; ALPL: 3% vs. 10%, Padj. = 0.027, 3% vs.
20%, Padj. = 0.014). The transcriptional activity of both genes increased less after exposure
to higher stretching levels (RUNX2: 20%, 1.32 ± 0.16; ALPL: 10%, 1.66 ± 0.84 and 20%,
1.76 ± 0.17), and differences compared to the controls did not reach statistical significance
(Padj. > 0.05). Independent of the stretching level, the expression of both target genes either
returned to the control levels or was even lower at Days 2 and 3.
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Identical to RUNX2 and ALPL, SP7 expression was also inversely related to the dura-
tion of the mechanical stimulation (Figure 4b). The specific amount of stretching applied
to the cells caused inconsistent effects on SP7 gene expression. While lower tensile strain
levels (6%, 10% and 15%) led to significant upregulation, maximum cell stretching (20%)
induced a downregulation of SP7 expression which did not reach significance.

Except for 3% magnitude, the BGLAP gene was also differentially expressed, mostly
depending on the duration of the mechanical stimulation (Figure 4d, Table 1). After 1 day,
its gene expression was initially not statistically different from the corresponding controls
(mean FC range: 1.00–1.67). A statistically significant downregulation was found for the
remaining tensile strain magnitudes (mean FC range: 0.21–0.42) except 10% (mean FC: 0.73)
after 2 days. After 3 days of 10% and 15% tensile strain application, a statistically significant
upregulation of BGLAP was found (FC; 10%: 3.35 ± 0.84; 15%: 2.68 ± 0.66). Cell stretching
of 3% led to a significant temporary downregulation (0.19 ± 0.08, Padj. < 0.001) at Day 2
only. Maximum BGLAP gene expression was identified with 10% cell stretching at Day 3
(FC: 3.35 ± 0.84, Padj. = 0.001).

2.3.2. Mechanosensation-Related Target Genes

Generally, FOS gene expression remained unchanged at Days 1 and 2, independent
of the tensile strain magnitude (mean FC range: 0.77–1.16; Figure 5, Table 1). After three
days of cell stretching, upregulation was induced (mean FC range: 1.48–2.05) showing no
differences between the various force magnitudes.

Figure 5. RT-qPCR results of the mechanosensation-related gene FOS. Each experimental unit is
summarized by mean (l) and error bars representing SD. The ∆∆Cq method was applied, and RPL22
and POLR2A were used as reference genes. Gene expression of controls is indicated by the gray
dashed line. Analysis of differences between the test and control groups was carried out with the
Kruskal–Wallis test followed by Bonferroni correction for multiple testing. Significant differences
between groups are indicated as follows: *, test group vs. corresponding control; effects of duration:
@, Day 1 vs. Day 3; &, Day 2 vs. Day 3. Levels of significance: Padj. < 0.05: *, &; Padj. < 0.01: **, @@,
Padj. < 0.001: @@@.

2.3.3. Inflammation-Related Target Genes

The gene expressions of IL6 and PTGS2 on the transcriptional level, as well as the
corresponding ELISA results, are given in Figure 6 and Table 1.
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Figure 6. Expression of inflammation-related genes and metabolites: (a) IL6 gene, (b) IL6 in the
supernatant, (c) PTGS2 gene, (d) PGE2 in the supernatant. Each experimental unit is summarized by
mean (l) and error bars representing SD. The ∆∆Cq method was applied, and RPL22 and POLR2A
were used as reference genes. Gene expression of controls is indicated by the gray dashed line.
Analysis of differences between the test and control groups was carried out with the Kruskal–Wallis
test followed by Bonferroni correction for multiple testing. Significant differences between groups
are indicated as follows: *, test groups vs. corresponding control; effect of tensile strain duration: $,
Day 1 vs. Day 2; @, Day 1 vs. Day 3; &, Day 2 vs. Day 3; effect of tensile strain magnitude (“#”) are
reported with Padj. values and “#” defines the counterpart of comparisons. Levels of significance:
Padj. < 0.05: *, @, &, #; Padj. < 0.01: **, $$, @@, &&, ##; Padj. < 0.001: ***, $$$, @@@.

Generally, IL6 gene expression was increased in cells exposed to tensile strain as
compared to the controls at Day 1 (mean FC range: 1.01–2.01), but it was significantly
attenuated at Day 2 (mean FC range: 0.38–0.57), finally returning to control levels at Day
3 (mean FC range: 0.92–1.21) (Table 1, Figure 6a). The maximum IL6 gene expression
was observed at Day 1 following the application of 15% cell stretching (FC: 2.01 ± 0.80),
whereas the lower magnitudes of 3% and 6% induced a less pronounced upregulation
(mean FC range: 1.67–1.76). IL6 gene expression remained unaffected for both the 10%
and 20% tensile strain. Two days of cell stretching led to a downregulation of IL6 gene
expression (mean FC range: 0.38–0.57), which was statistically significant for the 6% (FC:
0.41 ± 0.03, Padj. = 0.002) and 15% tensile strain (FC: 0.38 ± 0.03, Padj. < 0.001) compared
to the corresponding controls only. After 3 days of tensile strain application, IL6 gene
expression reached the level of the corresponding control.

Regarding the translational level, IL6 concentration in the cell culture supernatant
was dependent on the duration of cell stretching (Table 1, Figure 6b). It was elevated
during the first two days in comparison to untreated controls (176.3–316.1 pg/well, which
corresponded to a ratio of 1.32–2.37) followed by a further increase after 3 days of cell
stretching independent of its magnitude (335.0–512.4 pg/well; ratio: 1.21–1.85). The highest
IL6 concentrations were identified with 3% (1 day: ratio = 2.31, Padj. < 0.001; 2 days: 2.10,
Padj. < 0.001; 3 days: 1.85, Padj. = 0.006) and 20% tensile strain independent of the duration
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(1 day: 2.37, Padj. < 0.001; 2 days: 2.04, Padj. < 0.001; 3 days: 1.82, Padj. = 0.008). Generally,
the lowest IL6 concentrations were found after 10% cell stretching at all time points.

PTGS2 gene expression was initially upregulated (Day 1) (mean FC range: 2.08–3.64)
(Table 1, Figure 6c), showing the strongest increase for the 15% tensile strain (FC: 3.64 ± 0.24,
Padj. < 0.001). At Day 2 (mean FC range: 0.79–1.30) PTGS2 gene expression remained
unchanged, whereas at Day 3 almost no effect on gene expression was observed (mean FC
range: 0.91–1.61).

Exposure of hPDLCs to tensile strain caused a significant upregulation of PGE2 during
the entire observation period, reaching the maximum amount at Day 1 (1246.0–1962.5 pg/well,
which corresponded to a ratio of 1.33–2.09 relative to the control) (Table 1, Figure 6d). With
lower levels of tensile strain (3%, 6% and 10%), no differences were found compared to
the unexposed control in terms of PGE2 expression. Only magnitudes of 15% (1 day: 1.73,
Padj. = 0.001; 2 days: 2.40, Padj. = 0.001; 3 days: 2.49, Padj. = 0.001) and 20% (1 day: 2.09,
Padj. < 0.001; 2 days: 2.95, Padj. < 0.001; 3 days: 2.92, Padj. < 0.001) significantly amplified
PGE2 concentrations.

3. Discussion

Physical loading induces both compression and tensile forces in tissues and cells,
influencing and modulating their physiology. It is well established that tension triggers
cellular mechanisms, including those leading to bone remodeling at the whole-body level.
As such, physiological activities in the orofacial region such as mastication and various non-
physiological impacts, i.e., therapeutical stimulation during orthodontic tooth movement
induce tensile forces in the periodontal ligament (PDL), promoting tissue and especially
bone remodeling therein.

Therefore, the effect of tension on hPDLCs has been widely addressed in numerous
in vitro studies, which have been recently reviewed [16,31]. In most of these in vitro
studies, the effects of exclusively one specific tensile strain magnitude were analyzed,
commonly for a maximum of 48 h using tension devices based on cells growing on a
flexible membrane, similar to the one proposed in this study [16]. However, the combined
effects of different magnitudes together with various durations on hPDLCs have rarely
been compared. Herein, we applied different levels of cell stretching (i.e., 3%, 6%, 10%,
15% and 20%) for various periods of time (i.e., 1, 2 and 3 days), to cover a broad range of
tensile strain parameters, and analyzed their impact on the regulation of bone remodeling,
mechanosensing and inflammation processes in hPDLCs.

3.1. Selection of Tensile Strain Parameters

In a recently published systematic review [16], different sources were identified to
deduce clinical relevant tensile strain magnitudes for in vitro studies: (1) tensile strain
derived from mastication or OTM [32–35], (2) finite element simulation including biome-
chanical confirmation [36,37], (3) the specific anatomy of the periodontium including the
PDL width [38], or (4) previously published studies [39–41]. Based on finite element sim-
ulations and biomechanical testing, it was shown that bodily movement of a premolar
tooth with 1 N pressure induced 1% strain in the PDL on the tension side [36], whereas
strains of 6–7% for intrusive and 8–25% for horizontal tooth movement in the PDL were
reported after application of 3 N intrusive loading [37]. Similar results were obtained
considering the specific anatomy of the PDL in vivo: application of 1 N and 3 N forces to
incisors led to an increase in PDL width of ~12% [38]. A recent systematic review reported
10% tensile strain as the most frequently applied magnitude [16]. Herein, 10% tensile
strain was selected as being equivalent to a physiological force exposure, whereas 20% cell
stretching is commonly used to investigate the influence of pathogenic stimuli on cellular
mechanotransduction in hPDLCs [39–41] and therefore was considered the upper limit of
tensile strain in this study. Magnitudes of 3% and 6% were applied to determine the lower
limit of the mechanical stimulus affecting gene expression [39,41].
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In line with most of the previous studies, the total observation period in the current
study did not exceed 3 days, avoiding the repetition of cell feeding, which might have
unpredictably affected cellular physiology. Based on these considerations, tensile strain
magnitudes of 0%, 3%, 6%, 10%, 15% and 20% were applied for 1, 2 and 3 days in this study.

3.2. Effect of Different Parameters of Tensile Strain on Bone Remodeling

The osteogenic differentiation of hPDLCs plays an essential role in the bone remodeling
of the periodontium [9,42]. Different genetic loci are involved in its regulation, including
but not limited to RUNX2, SP7, ALPL, BGLAP and TNFRSF11B. Among them, RUNX2 is
considered as one of the key regulators of bone remodeling that is upregulated in both
preosteoblasts and immature osteoblasts but downregulated in mature osteoblasts [43].
Expression of RUNX2 is stimulated by mechanical compression in osteoblasts [13] and
mechanical tension in hPDLCs [44]. RUNX2 is essential for the regulation of several
downstream loci involved in osteoblast differentiation and bone-matrix synthesis, including
alkaline phosphatase (ALPL) and osterix (SP7) [45,46]. Being an essential transcription
factor for osteogenic differentiation the latter acts downstream of RUNX2 [6,47]. Belonging
to the zinc finger-containing transcription factors of the SP family, SP7 is expressed in
osteoblasts. Its expression is essential for the differentiation of preosteoblasts into mature
osteoblasts [6,45]. ALPL expression has been commonly accepted as an early marker for
new bone formation [48], which in turn is activated by RUNX2, and thus is essential for
osteoblast maturation [9,48]. It plays a central role in osteogenic mineralization, bone
calcification and mineralization [49–51]. BGLAP is the most abundant non-collagenous
bone-matrix protein produced by mature osteoblasts [49]. Its expression is regulated among
others by RUNX2 and SP7 [9,45], and it is highly expressed in the late stage of osteoblast
differentiation and mineralization [49].

In this study, expression of RUNX2, SP7, ALPL and BGLAP roughly followed a time
dependent pattern, showing similarity with the timeline of events occurring during osteo-
genesis [9]. RUNX2, as one of the key regulators of bone remodeling, was upregulated after
1 day of cell stretching only. This finding is consistent with a previous study, showing a
considerably amplified RUNX2 expression within the first 24 h of cell stretching, increasing
6 h after the start of the mechanical stimulation [52]. RUNX2 upregulation has also been
observed in several studies applying dynamic tensile strain [23,42,48,53].

Comparable with the RUNX2 gene, the ALPL gene was also differentially expressed
depending on the observation period. The maximum upregulation of ALPL gene expression
was identified after 1 day of tensile strain application, followed by a slight downregulation
afterward, with lower levels (3% and 6%) resulting in stronger gene expression. Similar
findings have been reported for 1% and 5% tensile strain [54], whereas other studies report
no correlation between ALPL gene expression and tensile strain magnitude [49,55]. These
contradicting results might be due to differences in the experimental conditions.

SP7, another gene acting downstream of RUNX2 in the osteoblast differentiation
pathway, showed a sustained upregulation, which was most evident for 6% to 15% tensile
strain, while 20% caused an adverse effect independent of its duration. The maximum
upregulation of SP7 gene expression was identified at Day 1 for most magnitudes. These
results were consistent with other studies, which reported upregulation of SP7 in hPDLCs
after 1 day of tensile strain application [23,45,47]. Similar to RUNX2, downregulation was
found herein for 20% magnitude at all time points, indicating an inhibitory effect of high
magnitude cell stretching for osteogenic differentiation.

BGLAP expression tended to increase with the length of cell stretching applied, reveal-
ing the highest expression after 3 days at 6% to 20%. A similar late regulation pattern of
BGLAP has been reported in other studies [49,54]. The decreasing expression of BGLAP
after 2 days of cell stretching observed herein might be explained by the cell proliferation
of young osteoblasts, considering the heterogeneous characteristics of hPDLCs [56] and
the specific characteristic of BGLAP, which is mainly upregulated in mature osteoblasts [9].
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Similarly, downregulation of BGLAP was also identified in stretched osteoblasts, which
was attributed to the presence of osteoblasts in different stages of development [54].

Interestingly, TNFRSF11B gene expression was below the detection limit in all experi-
mental conditions in this study. In contrast, upregulation of TNFRSF11B has been reported
previously in hPDLCs after exposure to static tensile strain for 12 h but not for longer
periods of time [16,54,57]. Thus, one might assume that the TNFRSF11B gene is already
upregulated by tensile strain in shorter time periods than covered in the present study.

3.3. Effect of Different Parameters of Tensile Strain on Mechanosensing

FOS is an immediate/early response gene which is essential for the perception of
mechanical stimulation. Dimerization of FOS with JUN creates the active heterodimeric
transcription factor AP1, which plays a central role in osteoblast proliferation and differ-
entiation [11,34]. Regardless of tension magnitudes, upregulation of FOS in hPDLCs was
only observed after 3 days of tension in this study. Other studies have reported upregu-
lation of FOS in stretched hPDLCs as early as after 15 min [58,59] and 3 h [60] of tensile
strain application. Shorter force application intervals should be added in further studies,
considering the early response characteristics of FOS.

3.4. Effect of Different Parameters of Tensile Strain on Inflammation

It has been demonstrated that inflammation is induced by mechanical stimuli during
OTM [3] and regulated by several cytokines and chemokines [61]. Among others, IL6,
PGE2, PTGS2, TNF, IL8 and IL1B play key roles in inflammation and bone resorption, while
IL10 is regarded as an anti-inflammatory mediator. As an inflammatory cytokine, IL6 is
involved in osteoclastogenesis [4,52] and its regulation by tensile strain has been reported
in several previous in vitro studies [52,55,62,63].

In this study, IL6 gene expression was upregulated after 1 day of cell stretching
depending on the magnitude, but no effect was found after 3 days. In contrast, on the
translational level the total amount of IL6 increased with the length of cell stretching for
all magnitudes in the current study. In a study of Jacobs et al. [62] no significant time
dependency was found for IL6 gene expression, but it tended to correlate with the strength
of tensile strain application. It was suggested that lower strain magnitudes induce anti-
inflammatory effects whereas higher magnitudes lead to pro-inflammatory effects [62]. A
similar conclusion was proposed by Wada et al. [52], who reported an upregulated IL6
gene expression after 15% strain application within the first 24 h. On the other hand, Nazet
et al. [55] reported a decreased IL6 gene expression after 16% and 35% tensile strain applied
for 48 h. The inconsistent results observed in these studies might be due to the pro- and
anti-inflammatory properties of IL6, together with the complex regulation pathway [63].

PTGS2 is a key enzyme involved in PGE2 biosynthesis and both play essential roles
in inflammation and bone resorption in response to mechanical stimuli [64,65]. Generally,
increasing PTGS2 expression and PGE2 synthesis is reported after exposure of hPDLCs
to increasing magnitudes of static tensile strain [55,62]. Concerning the effects of tensile
strain duration on PTGS2 gene expression, partially contradicting results have been re-
ported [52,55]. Interestingly, no significant difference in the transcription of the PTGS2
gene for different magnitudes was found herein in general, whereas PGE2 expression was
significantly amplified after tensile strain application with higher magnitudes (15% and
20%). Taken together, it seems reasonable to assume that higher magnitudes of tensile
strain lead to increased inflammation and should thus be avoided in clinical situations.

IL1B, TNF, IL8 and IL10 were below the detection limits of the ELISA systems applied
in this study. So far, expression of IL8 and IL10 after tensile strain application has been re-
ported for cells exposed to dynamic tensile strain only [4,66]. Though upregulation of IL1B
and TNF has been previously reported for static tensile strain [49,52], the different molecular
response might be due to individual difference among cells from different donors.

A growing portion of orthodontic patients presents with periodontal disease [1,67,68].
Periodontitis has been associated not only with numerous chronic systemic inflammatory
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and autoimmune conditions, such as atherosclerosis, diabetes mellitus and rheumatoid
arthritis [69], but also with macular degeneration [70] and colorectal cancer [71]. It has been
hypothesized that pro-inflammatory mediators (e.g., IL6 and IL1B), which are highly ex-
pressed locally within inflamed periodontal tissue, will be spread systematically, ultimately
amplifying different pre-existing non-oral inflammation [71]. It has been proposed that
OTM and periodontitis share some molecular pathways, particularly in terms of inflamma-
tion and osteogenesis/osteclastogenesis. Yet, the interrelation between both conditions as
well as the association between periodontitis and several distinct systemic diseases remain
to be elucidated. Herein, the expression of several genes coding for pro-inflammatory
mediators was positively correlated with the exposure of PDL cells against tensile strain. In
order to avoid an exaggerated expression of pro-inflammatory stimuli during orthodontic
tooth movement that might additionally enhance periodontitis-associated inflammation
and tissue destruction, lower therapeutic forces might be appropriate for the orthodon-
tic treatment of patients with a history of periodontitis as compared to periodontally
healthy patients.

3.5. Clinical Relevance

In this study the effects of different tension parameters applied to hPDLCs were
analyzed with reference to bone remodeling, mechanosensing and inflammation. The
expression of genes regulating bone remodeling was clearly dependent on the duration of
tensile strain application. Generally, lower magnitudes (≤15%) enhanced bone remodeling,
whereas 20% tensile strain attenuated bone remodeling. Upregulation of inflammation-
related genes was correlated with higher tensile strain (15% and 20%). Though it is difficult
to transfer in vitro results to the in vivo situation, it seems to be reasonable to assume that
excessive forces might lead to adverse effects in clinical situations, especially in patients
with a high susceptibility of periodontitis or associated diseases. Light orthodontic forces
seem to be beneficial for coordinated bone remodeling and the maintenance of periodontal
tissue homeostasis, ultimately enabling efficient tooth movement.

3.6. Strengths and Limitations of the Study

In this study, an apparatus was designed and manufactured to apply different levels
of tensile strain simultaneously. This was achieved by using 3D designed and printed caps,
which allowed the parameterized variation of tensile strain magnitudes.

Different tensile strain magnitudes and durations were applied to hPDLCs derived
from the same donor and treated the same way throughout all experimental procedures.
Regulation of genetic loci related to bone remodeling, mechanosensation and inflammation
were investigated in this study, which was followed by a comprehensive analysis of their
strain magnitude and duration-related expression.

Additionally, the stability of a panel of reference genes was evaluated using samples
from the experimental condition and the corresponding controls and analyzed by four
different algorithms calculating reference gene stability. Based on the computational
analysis, the two most stable reference genes were selected to reduce variations in RT-qPCR
experiments [30].

Though a comprehensive range of tensile strain magnitudes and durations was se-
lected in this study, the first sampling took place after 1 day of strain application. Thus,
early response genes, such as FOS, might have been undetectable. Taking this into account,
additional earlier sampling points with regard to the initiation of the force application
might have been appropriate.

Sample collection was performed after unloading of the experimental setup. Its
disassembly and the time needed for sample preparation comprised a relevant delay
between unloading and sample collection (i.e., cell lysates for gene expression studies, or
collection of cell culture supernatants), leading to a possible change of cellular activity
and/or physiology.
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The PDL is considered as the main target of mechanical stimulation within the peri-
odontium [12,72]. The effects of in vitro mechanical stimulation on PDL cells have been
summarized in several recent reviews [16–18,73,74]. Independent of the specific isolation
technique applied, it is commonly accepted that isolated PDL cells in fact represent a
heterogeneous cell phenotype, which is primarily determined by the anatomical origin
(middle third of the root) and the fibroblastic growth characteristics [56,75]. Long-term
cultivation of hPDLCs typically leads to changes in cell morphology, growth rate, gene
expression and response to mechanical stimulation [16,56,76–78]. To address this problem
and to increase phenotypic homogeneity, hPDLCs are normally used in in vitro studies
only with low passage numbers (passage ≤ 7) [56]. Nevertheless, it should be mentioned
that clonal selection has been observed in hPDLCs as early as Passage 2, whereas RUNX2,
COL1A1 and ALPL expressions were not shown to be affected by passage number [79].
Yet, the particular phenotype of PDL cells as used herein has not been additionally con-
firmed based on molecular markers. Only a comparably small number of primary PDL
cells can be harvested from one healthy donor. Hence, a balance between absolute cell
amount and passage number must be achieved to conduct cell culture experiments, if
pooling of cells from different individuals or the usage of immortalized primary cell lines
should be avoided [56,80]. Since many different parameters have been tested herein to
thoroughly delineate the effects of tensile strain on hPDLCs, a considerably large number of
donor-specific cells was required. Thus, hPDLCs isolated according to standard protocols
originating from one donor were used at Passages 5–6 [56].

Nevertheless, to gain insight into the biological variability of gene regulation during
tensile strain application, cells derived from different donors should be included in future
studies [60,81].

4. Materials and Methods
4.1. Primary Cell Culture

HPDLCs were obtained from the healthy first premolars of a 15-year-old female, which
were removed due to orthodontic reasons with informed consent from the patient and
her legal custodian. This study was conducted in accordance with the Declaration of
Helsinki (https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/;
accessed on 27 January 2022). Approval for the collection and use of hPDLCs was ob-
tained from the ethics committee of the Ludwig-Maximilians-Universität München (project
number 045-09).

Cells were derived from tissue samples obtained from the middle third of the roots
using the explant technique as described by Somerman, et al. [75]. HPDLCs were cultivated
with low glucose DMEM (21885025, Gibco, Life Technologies, Carlsbad, CA, USA) sup-
plemented with 10% FBS (F7524; Sigma-Aldrich, St. Louis, MO, USA), 2% MEM vitamins
(M6895; Biochrom, Berlin, Germany) and 1% of antibiotic/antimycotic (15240-062; Life
Technologies, Carlsbad, CA, USA). Cells were grown in a humidified atmosphere with 5%
CO2 at 37 ◦C and passaged in regular intervals of 3 to 4 days using 0.05% trypsin-EDTA
solution (59417C; Sigma-Aldrich, St. Louis, MO, USA). Cells from Passages 5–6 were used
in all experiments.

4.2. Tensile Strain Application Using a Custom-Made Tension Apparatus

Based on previous publications [55,82], an apparatus (Figures 1 and 7) was constructed:
(1) to apply different magnitudes of static equibiaxial tensile strain to adherent cells and
(2) to feed cells without the relaxation of the flexible substrate delivering tensile strain
to these cells. The apparatus consisted of five parts: a “base plate”, 3D-printed pinned
spherical caps, a BioFlex® Collagen-I coated Culture Plate (BF-3001C, Flexcell Intl. Corp.,
Hillsborough, NC, USA), a “frame” and screws (Figure 7).

https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/
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Figure 7. Experimental setup used to apply tensile strain. The apparatus consisted of 5 parts: the
base plate, the pinned spherical cap, the BioFlex® plate, the frame and the screws. After assembly, the
cell-attached membrane was fitted onto the pinned spherical cap and stretched, producing predefined
magnitudes of tensile strain. (a) 3D representation of the apparatus; (b) parts of the apparatus;
(c) step-by-step (1–6) assembly of the apparatus.

The base plate, frame and spherical caps were constructed using a CAD program
(Autodesk® Inventor® Professional 2019, Autodesk Inc., San Rafael, CA, USA) according
to data published elsewhere [55,82]. Prototypes of the base plate, the frame and spherical
caps representing different tensile strain levels [55] (Table 2) were printed with a 3D printer
(Ultimaker 3, Ultimaker, Geldermalsen, The Netherlands) using a polylactic acid filament
(Ultimaker PLA filament 2.85 mm, part no. 1618, Ultimaker); a polyvinyl alcohol filament
was used to print the support structures (Ultimaker PVA filament 2.85 mm, Ultimaker). The
final base plates and frames were made from aluminum by the workshop of the Department
of Physics, LMU München. The 3D-printed spherical caps were used in the experiments.

Table 2. Cap parameters and media volume.

Parameter
Membrane Area Increase

0% (Control) 3% 6% 10% 15% 20%

Radius r (mm) 1 n.a. 50.62 36.82 29.54 25.25 22.82
Height h (mm) 1 n.a. 2.94 4.16 5.38 6.58 7.60

Volume of
medium (mL) 2.89 4.37 4.96 5.54 6.08 6.52

1 Nazet et al. [55], Figure 1 with b = 17.0 mm.

HPDLCs were seeded at a cell density of 1.2 × 105 cells/well on 6-well collagen-I
coated BioFlex® Culture Plates (Flexcell Intl. Corp., Hillsborough, NC, USA) and incubated
overnight. Immediately prior to the assembly of the apparatus, the culture medium was
changed. Then, the tensile strain application apparatus was assembled in a sterile environ-
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ment as follows (Figure 7b,c): (1) 3D-printed spherical pinned caps were symmetrically
inserted into the aluminum base plate; (2) the cover of the BioFlex® plate was removed,
and the plate was vertically placed onto the caps; (3) the frame was placed on the edges of
the plate and screws were crosswise tightened symmetrically to fix the frame, plate and
base plate and thus applying tensile strain to the adherent cells. The plate was covered and
placed back into the CO2 incubator.

The elastic membranes including the attached cells were stretched by caps of different
parameters (Table 2), resulting in an increase of membrane area of 0% (i.e., control), 3%, 6%,
10%, 15% and 20% and thus applying tensile strain to the cells [55]. Controls (0% tensile
strain) were defined as wells without caps. All strain magnitudes were applied for 1, 2
and 3 days in two identical sets of apparatuses: one set for cell viability testing and the
other for gene expression measurement and ELISA. For each tensile strain magnitude, three
biological replicates were allocated for each duration. All assembled apparatuses were
incubated and treated under the same conditions.

4.3. Cell Viability

The cell viability of hPDLCs for all magnitude/duration combinations was assessed
using a live/dead cell staining kit (PK-CA707-30002, PromoKine, Heidelberg, Germany)
according to the manufacturer’s instructions. Following strain release and removal of
the supernatants, all wells were washed twice with PBS. Afterward, the BioFlex® plates’
silicone membranes were cut out and placed in pre-labeled cell culture dishes (628160,
CELLSTAR®, Greiner Bio-One GmbH, Frickenhausen, Germany). The membranes were
then covered with fresh staining solution and incubated for 40 min in complete darkness
at room temperature. Fluorescence microphotographs were taken of the centers of each
membrane with a fluorescence microscope (EVOS® FL, Invitrogen, Carlsbad, CA, USA)
using 10× and 20× objectives.

4.4. Sample Preparation

After 1, 2 and 3 days of tensile strain application, the plate covers of the specific setup
were removed. Cell culture supernatants from all wells were collected individually for
ELISA (see below). The volume of each sample was recorded, and the samples were stored
at −20 ◦C for further ELISA analysis. Next, the adherent cells were washed twice with
sterile PBS, and cell lysates were prepared from each well using 750 µL RNA lysis buffer
(R0160-1-50; Zymo, Irvine, CA, USA) according to the manufacturer’s instructions. Cell
lysates were stored at −80 ◦C until all samples were collected.

4.5. Gene Expression Analysis

Analysis of PTGS2, IL6, FOS, RUNX2, SP7, ALPL, BGLAP, TNFRSF11B and TNF
gene expressions following tensile strain application was carried out for all experimental
magnitude/duration combinations according to previously described protocols [14]. A
synopsis of the sample preparation and quantitative RT-PCR (RT-qPCR) is given below. A
checklist according to the “Minimum Information for Publication of Quantitative Real-Time
PCR Experiment” (MIQE) guidelines [30,83] is provided in Supplementary Table S2.1.

Total RNA preparation: Total RNA preparation was carried out using the Quick-
RNA™ MicroPrep Kit (R1051; Zymo, Ivine, CA, USA) according to the manufacturer’s
instructions. The following two steps were included in the procedure to reduce possible
genomic DNA contamination: (I) defrosted cell lysates were centrifuged through QIAshred-
der™ columns (Qiagen, Hilden, Germany) before column purification; (II) during column
purification, Dnase I digestion (Zymo) was applied. Finally, total RNA was eluted with
15 µL of Dnase/Rnase-free water (Zymo). Rnase inhibitor (Rnasin®, N2515; Promega,
Madison, WI, USA) was added to each eluate at a final concentration of 1 U/µL. The total
RNA preparations were stored at −80 ◦C until further use.

PCR primer selection: Generally, primer sequences were selected from public sources
for both genes of interest and potential reference genes (Table 3). All primer pairs used
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were tested in silico according to the MIQE guidelines [30] as previously published [14]
(Supplementary Tables S2.1 and S2.2). If not otherwise mentioned, unmodified primers
were synthesized by Metabion GmbH (Planegg/Steinkirchen, Germany; Oligonucleotide
Purification Cartridge OPC® purification). Optimal annealing temperatures were deter-
mined with gradient PCR using the qPCR cycling program as specified in the MIQE
checklist (Supplementary Table S2.1). Primer specificity was confirmed by agarose gel
electrophoresis. Primer efficiencies were evaluated using standard curves prepared from
serial dilutions of cDNA as specified in Supplementary Table S2.3 and quantified in the
LightCycler® 480 using the primer pairs detailed in Table 3.

Reference gene selection: A panel of reference genes (EEF1A1, GAPDH, POLR2A,
PPIB, RNA18SN5, RPL0, RPL22 and YWHAZ) was selected from public sources [55,84].
Evaluation of these reference genes was carried out using cDNA sampled from control,
10% and 20% after 1 and 3 days of static tensile strain application. RT-qPCR was performed
as described below using gene-specific primers (Supplementary Table S2.3). The raw
Cq values (Supplementary Table S1.1) were analyzed using RefFinder [85] (URL: https:
//www.heartcure.com.au/reffinder/ (accessed on 30 March 2021)), and the most stable
genes were used as reference genes in RT-qPCR (Table 3).

RT-qPCR: Total RNA samples were thawed, and RNA concentration was determined
photometrically (NanoDrop ND-1000, Peqlab, Erlangen, Germany). All RNA samples
(600 ng each) were reverse transcribed to cDNA in a total reaction volume of 20 µL using
the SuperScript™ IV First-Strand Synthesis System (18091050, Thermo Fisher Scientific,
Waltham, MA, USA) and random primers as described by the manufacturer. Quantitative
PCR was performed with the Luminaris Color HiGreen qPCR Master Mix Kit (K0392;
Thermo Fisher Scientific, Waltham, MA, USA) following the instructions of the manufac-
turer using 2 µL cDNA (1:5 prediluted) in each PCR reaction. Each qPCR reaction included
an initial Uracil-DNA glycosylase pre-treatment step to prevent carry-over contamination.
Further details of the RT-qPCR reaction conditions are summarized in the MIQE checklist
(Supplementary Table S2.1).

Gene expression calculation: Expression of target genes was quantified using the
∆∆Cq method [86] with the selected reference genes POLR2A and RPL22. For each ten-
sion/duration combination, six qPCR reactions were analyzed representing three biological
replicates with two technical replicates each.

4.6. Enzyme-Linked Immunosorbent Assay

Complete cell culture supernatant from all wells was collected for ELISA. The protein
concentration of IL6, IL1B, IL8, TNF and IL10 was determined using the following DuoSet
human ELISA kits (all from R&D Systems, Minneapolis, MN, USA): IL6 (DY206-05), IL1B
(DY201-05), IL8/CXCL8 (DY208-05), TNF (DY210-5) and IL10 (DY217B-05). The PGE2 con-
centration in the cell culture supernatant was determined using the “PGE2 High Sensitivity
ELISA kit” (ADI-931-001; Enzo Life Sciences (ELS) AG, Lausen, CH). All measurements
were conducted using a microplate reader (Varioscan, Thermo Electron Corporation, Van-
taa, Finland). For each magnitude/duration combination three biological replicates were
measured twice. The measurements were reported as “concentration per well” (ng/well)
using the well-specific volumes of each supernatant.

4.7. Statistics

Descriptive statistics of the gene expression and ELISA results are reported as
mean ± standard deviation (SD) and 95% confidence intervals. All calculations were
based on three biological replicates with two technical replicates for each gene/magnitude/
duration combination. For each gene locus and marker molecule, differences between the
different tensile strain magnitudes and durations were evaluated using the Kruskal–Wallis
test followed by Bonferroni correction for multiple comparisons (Padj.). All statistical proce-
dures were carried out using IBM SPSS Statistics 27 (IBM Corp., Armonk, NY, USA). All
test procedures were two-tailed considering Padj. values < 0.05 significant.
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Table 3. Specification of the PCR primers used for gene quantification.

Gene
GenBank
Accession
Number

Primer Sequence
(f: 5′-Forward Primer-3′ ;
r: 5′-Reverse Primer-3′)

Annealing
Temp. (◦C)

Data Ac-
quisition

Temp. (◦C)

Amplicon
Size (bp)

Primer
Efficiency Source

PTGS2 NM_000963.4 f: AAGCCTTCTCTAACCTCTCC
r: GCCCTCGCTTATGATCTGTC 58 77 234 1.995 Janjic Rankovic et al. [14],

Shi et al. [87]

IL6 NM_000600.5

f:
TGGCAGAAAACAACCTGAACC

r:
TGGCTTGTTCCTCACTACTCTC

58 76 168 1.955 Janjic Rankovic et al. [14],
Shi et al. [87]

FOS NM_005252.4

f:
GCTTTGCAGACCGAGATTGC

r:
TTGAGGAGAGGCAGGGTGAA

58 83 203 1.860 Janjic Rankovic et al. [14]

RUNX2 NM_001015051.4
f: GCGCATTCCTCATCCCAGTA

r:
GGCTCAGGTAGGAGGGGTAA

58 81 176 1.954 Shi et al. [7], Janjic
Rankovic et al. [14]

SP7 NM_001173467.3

f:
GGCACAAAGAAGCCGTACTC

r:
CACTGGGCAGACAGTCAGAA

61 81 247 1.935 Gronthos et al. [88]

ALPL NM_001127501.4

f:
GGACCATTCCCACGTCTTCAC

r:
CCTTGTAGCCAGGCCCATTG

64 80 137 1.968 Liu et al. [26]

BGLAP NM_199173.6
f:

AGCGAGGTAGTGAAGAGAC
r: GAAAGCCGATGTGGTCAG

64 82 142 2.076 Gartland et al. [89]

TNFRSF11B NM_001066 f: TCAAGCAGGAGTGCAATCG
r: AGAATGCCTCCTCACACAGG 64 81 342 1.941 Yang et al. [46]

TNF NM_000594.4
Commercial primer pair from
realtimeprimers.com (Order
information: VHPS-9415 †)

58 79 173 1.967 Janjic Rankovic et al. [14],
Shi et al. [87]

POLR2A NM_000937.5 f: TCGCTTACTGTCTTCCTGTTGG
r: TGTGTTGGCAGTCACCTTCC 58 79 108 1.886 Nazet et al. [55]

RPL22 NM_000983.4
f:

TGATTGCACCCACCCTGTAG
r: GGTTCCCAGCTTTTCCGTTC

61 75 98 1.939 Nazet et al. [55]

† Real Time Primers, LLC, Elkins Park, PA, USA (primer sequences are disclosed upon purchase).

5. Conclusions

This study covered a broad range of tensile strain magnitudes and durations, with
focus on bone remodeling, mechanosensing and inflammation. Generally, lower magni-
tudes were in favor of osteogenesis and resulted in less or even inhibited inflammation.
Higher magnitudes led to an inhibition of osteogenesis and induced a higher level of
inflammation. Among all magnitudes applied, 10% was optimal with higher levels of os-
teogenesis without evoking significant inflammation at the same time. The results showed
an improved insight into the biological regulations of hPDLCs after exposure to different
levels of tensile strain for a maximum period of 3 days. The current data might be useful in
defining appropriate forces for OTM in clinical situations. Light orthodontic forces seem to
be beneficial for coordinated bone remodeling and the maintenance of periodontal tissue
homeostasis, ultimately enabling efficient tooth movement. The current results suggest
that different force magnitudes might affect the expression of inflammatory- and bone-
remodeling-related factors differently. These observations might be of relevance for future
clinical studies, especially on interdisciplinary topics such as the application of orthodontic
force as a regenerative stimulus to enhance periodontal defect healing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms23031525/s1.

Author Contributions: Conceptualization, U.B., A.W. and C.S.; Methodology, U.B., C.S., M.J.R. and
T.S.; Software, U.B. and T.S.; Validation, U.B., C.S. and T.S.; Formal Analysis, U.B., C.S. and M.J.R.;
Investigation, U.B., C.S. and M.J.R.; Resources, U.B. and A.W.; Data Curation, U.B., C.S. and M.J.R.;

https://www.mdpi.com/article/10.3390/ijms23031525/s1
https://www.mdpi.com/article/10.3390/ijms23031525/s1


Int. J. Mol. Sci. 2022, 23, 1525 19 of 23

Writing—Original Draft Preparation, U.B. and C.S.; Writing—Review and Editing, U.B., C.S., M.J.R.,
M.F., T.S. and S.O.; Supervision, U.B., A.W. and M.F. All authors have read and agreed to the published
version of the manuscript.

Funding: Changyun Sun was supported by a grant from the China Scholarship Council (CSC File
No 201809370043).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki. Approval for the collection and use of hPDLCs was obtained from the ethics
committee of the Ludwig-Maximilians-Universität München (project number 045-09; primal date of
approval 24 March 2009; latest amendment approved on 23 July 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All authors confirm that all related data supporting the findings of this
study are given in the article and its Supplementary Materials.

Acknowledgments: The authors would like to give great thanks to Christine Schreindorfer and
Laure Djaleu (both from the Department of Orthodontics, University Hospital, LMU Munich) for
their assistance regarding the lab work. The aid of Jürgen Aust in the final manufacturing of the
tension apparatus is gratefully acknowledged.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding this manuscript.

Abbreviations

ALPL Alkaline phosphatase, biomineralization associated
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IL10 Interleukin 10
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KW Kruskal-Wallis test
MIQE Minimum Information for Publication of Quantitative Real-Time PCR Experiment
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PDL Periodontal ligament
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PTGS2 Prostaglandin-endoperoxide synthase 2
qPCR Quantitative real-time polymerase chain reaction
RANKL Receptor activator of the nuclear factor kappa ligand
RT-qPCR Reverse transcription qPCR
RUNX2 Runt-related transcription factor 2
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TNF Tumor necrosis factor α
TNFRSF11B Tumor necrosis factor-alpha receptor superfamily member 11B
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Supplementary Table S1.1: Raw data (Cq) 
 

# 
Sample 

type Day GAPDH YWHAZ PPIB RPL0 RPL22 EEF1A1 POLR2A RNA18S5 

1 10% 1 18.94 21.14 21.55 22.02 21.85 18.39 22.71 7.89 
2 10% 1 19.89 22.03 21.92 22.57 22.55 19.14 23.59 9.05 
3 10% 1 19.03 21.26 21.72 21.93 21.74 18.51 22.53 8.16 
4 20% 1 19.90 22.04 22.19 22.67 22.67 19.28 23.35 8.98 
5 20% 1 19.51 21.72 21.96 22.23 22.10 18.86 22.96 8.50 
6 20% 1 19.36 21.47 22.14 22.07 21.97 18.71 22.99 8.41 
7 control 1 19.57 21.88 21.96 21.90 22.01 18.63 23.02 8.70 
8 control 1 19.83 22.02 22.39 22.72 22.51 19.11 23.32 8.92 
9 control 1 19.47 21.58 21.79 22.03 21.96 18.67 22.90 8.39 
10 10% 3 18.55 21.51 20.65 20.81 21.01 16.96 22.66 7.69 
11 10% 3 18.64 21.37 20.60 20.57 21.00 16.88 22.71 7.63 
12 10% 3 18.80 21.60 20.92 21.55 21.66 17.57 22.88 7.76 
13 20% 3 19.05 21.89 21.30 21.93 22.02 17.98 22.93 8.36 
14 20% 3 19.26 22.13 22.04 21.46 21.81 17.88 23.23 8.87 
15 20% 3 18.53 21.52 20.56 21.07 21.36 17.36 22.73 8.16 
16 control 3 18.96 21.31 20.76 20.83 20.99 16.94 22.63 7.50 
17 control 3 19.07 21.78 21.26 21.93 21.67 17.71 22.65 7.74 
18 control 3 19.63 22.10 21.14 21.26 21.35 17.48 23.42 8.60 
 
 

 Cq Values 
 Control (N=6) 10 % (N=6) 20 % (N=6) All (N=18) 
EEF1A1     

Mean (SD) 18.1 (0.838) 17.9 (0.915) 18.3 (0.720) 18.1 (0.799) 
Median [Min; Max] 18.2 [16.9; 19.1] 18.0 [16.9; 19.1] 18.3 [17.4; 19.3] 18.2 [16.9; 19.3] 

GAPDH     
Mean (SD) 19.4 (0.338) 19.0 (0.483) 19.3 (0.460) 19.2 (0.448) 
Median [Min; Max] 19.5 [19.0; 19.8] 18.9 [18.6; 19.9] 19.3 [18.5; 19.9] 19.2 [18.5; 19.9] 

POLR2A     
Mean (SD) 23.0 (0.331) 22.8 (0.381) 23.0 (0.223) 23.0 (0.310) 
Median [Min; Max] 23.0 [22.6; 23.4] 22.7 [22.5; 23.6] 23.0 [22.7; 23.4] 22.9 [22.5; 23.6] 

PPIB     
Mean (SD) 21.6 (0.601) 21.2 (0.574) 21.7 (0.644) 21.5 (0.605) 
Median [Min; Max] 21.5 [20.8; 22.4] 21.2 [20.6; 21.9] 22.0 [20.6; 22.2] 21.6 [20.6; 22.4] 

RNA18S5     
Mean (SD) 8.31 (0.565) 8.03 (0.534) 8.55 (0.315) 8.30 (0.504) 
Median [Min; Max] 8.50 [7.50; 8.92] 7.83 [7.63; 9.05] 8.46 [8.16; 8.98] 8.38 [7.50; 9.05] 

RPL0     
Mean (SD) 21.8 (0.657) 21.6 (0.763) 21.9 (0.568) 21.8 (0.642) 
Median [Min; Max] 21.9 [20.8; 22.7] 21.7 [20.6; 22.6] 22.0 [21.1; 22.7] 21.9 [20.6; 22.7] 

RPL22     
Mean (SD) 21.7 (0.535) 21.6 (0.581) 22.0 (0.425) 21.8 (0.510) 
Median [Min; Max] 21.8 [21.0; 22.5] 21.7 [21.0; 22.6] 22.0 [21.4; 22.7] 21.8 [21.0; 22.7] 

YWHAZ     
Mean (SD) 21.8 (0.294) 21.5 (0.314) 21.8 (0.271) 21.7 (0.312) 
Median [Min; Max] 21.8 [21.3; 22.1] 21.4 [21.1; 22.0] 21.8 [21.5; 22.1] 21.7 [21.1; 22.1] 
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Supplementary Table S1.2: Summary table of RefFinder results 
 

Method Ranking Order (Better--Good--Average) 
1 2 3 4 5 6 7 8 

Delta CT RPL22 GAPDH RNA18S5 PPIB RPL0 POLR2A YWHAZ EEF1A1 
BestKeeper POLR2A YWHAZ GAPDH RPL22 RNA18S5 RPL0 PPIB EEF1A1 
Normfinder RPL22 GAPDH RNA18S5 PPIB RPL0 POLR2A YWHAZ EEF1A1 
Genorm YWHAZ | 

POLR2A 
 GAPDH RNA18S5 RPL22 PPIB RPL0 EEF1A1 

Recommended 
comprehensive 
ranking 

RPL22 GAPDH POLR2A YWHAZ RNA18S5 PPIB RPL0 EEF1A1 

 
 

Supplementary Table S1.3: Comprehensive gene stability 
 

Genes Geomean of ranking values 
RPL22 2.11 
GAPDH 2.45 
POLR2A 2.45 
YWHAZ 3.15 
RNA18S5 3.66 
PPIB 5.09 
RPL0 5.69 
EEF1A1 8.00 
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Supplementary Table S1.4: Gene stability by Delta CT method 
 
 

Genes Average of STDEV 
RPL22 0.33 
GAPDH 0.35 
RNA18S5 0.36 
PPIB 0.39 
RPL0 0.40 
POLR2A 0.41 
YWHAZ 0.45 
EEF1A1 0.49 
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Supplementary Table S1.5: Gene stability by BestKeeper 
 
 

CP data of housekeeping Genes by BEST KEEPER 
 GAPDH YWHAZ PPIB RPL0 RPL22 EEF1A1 POLR2A RNA18S5 
n 18 18 18 18 18 18 18 18 
geo Mean [CP] 19.22 21.68 21.48 21.74 21.78 18.10 22.95 8.28 
AR Mean [CP] 19.22 21.69 21.49 21.75 21.79 18.11 22.96 8.30 
min [CP] 18.53 21.14 20.56 20.57 20.99 16.88 22.53 7.50 
max [CP] 19.90 22.13 22.39 22.72 22.67 19.28 23.59 9.05 
std dev [+/- CP] 0.38 0.27 0.53 0.52 0.39 0.70 0.25 0.43 
CV [% CP] 1.98 1.24 2.45 2.41 1.81 3.85 1.08 5.13 
min [x-fold] -1.61 -1.46 -1.90 -2.26 -1.73 -2.33 -1.34 -1.72 
max [x-fold] 1.61 1.36 1.87 1.97 1.85 2.27 1.55 1.70 
std dev [+/- x-fold] 1.30 1.20 1.44 1.44 1.31 1.62 1.19 1.34 

 

Pearson correlation coefficient ( r ) by BEST KEEPER 
 GAPDH YWHAZ PPIB RPL0 RPL22 EEF1A1 POLR2A RNA18S5 
YWHAZ 0.680 - - - - - - - 

p-value 0.002 - - - - - - - 
PPIB 0.827 0.450 - - - - - - 

p-value 0.001 0.061 - - - - - - 
RPL0 0.777 0.408 0.864 - - - - - 

p-value 0.001 0.093 0.001 - - - - - 
RPL22 0.802 0.529 0.870 0.966 - - - - 

p-value 0.001 0.024 0.001 0.001 - - - - 
EEF1A1 0.807 0.352 0.919 0.955 0.948 - - - 

p-value 0.001 0.153 0.001 0.001 0.001 - - - 
POLR2A 0.823 0.839 0.571 0.523 0.645 0.538 - - 

p-value 0.001 0.001 0.013 0.026 0.004 0.021 - - 
RNA18S5 0.851 0.772 0.797 0.695 0.805 0.766 0.865 - 

p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 
 

Pearson correlation coefficient ( r ) 
BestKeeper vs. GAPDH YWHAZ PPIB RPL0 RPL22 EEF1A1 POLR2A RNA18S5 
coeff. of corr. [r] 0.919 0.660 0.920 0.898 0.947 0.928 0.784 0.931 
p-value 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 
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Supplementary Table S1.6: Gene stability by normFinder 
 
 

Gene name Stability value 
RPL22 0.119 
GAPDH 0.174 
RNA18S5 0.216 
PPIB 0.259 
RPL0 0.301 
POLR2A 0.327 
YWHAZ 0.394 
EEF1A1 0.442 
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Supplementary Table S1.7: Gene stability by Genorm 
 
 

Gene name Stability value 
YWHAZ | POLR2A 0.176 
GAPDH 0.255 
RNA18S5 0.274 
RPL22 0.309 
PPIB 0.343 
RPL0 0.366 
EEF1A1 0.397 
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Supplementary Table S2.1: MIQE checklist for the RT‐qPCR workflow 
 
Reference: Bustin et al. (2010). BMC Mol Biol; 11:74. 
  

Details Checklist 

Sample/Template   

Source If cancer, was biopsy screened for adjacent 
normal tissue? 

Human periodontal ligament cells were isolated from health teeth using the explant 
technique described by Somerman et al. (1988) as previously published (Janjic Rankovic et 
al. 2020; Shi et al. 2019a; Shi et al. 2019b) 

Method of preservation Liquid N2/RNAlater/formalin Preserved in liquid nitrogen 

Storage time (if appropriate) If using samples >6 months old 12 months 

Handling Fresh/frozen/formalin Cell lysates were prepared using RNA lysis buffer from Quick-RNATM MicroPrep kit (R1051; 
Zymo). After directly frozen in liquid nitrogen, cell lysates were stored at -80°C until further 
use for RNA extraction. 

Extraction method TriZol/columns Defrosted cells lysates were passed through QIAshredder™ columns (Qiagen) to shear 
genomic DNA. The Quick-RNA™ Miniprep Kit (Zymo) was used for further RNA 
purification. After primary column purification, DNase I digestion was applied to reduce 
genomic DNA contamination as described by the manufacturer (Zymo). Finally, 
DNase/RNase-free water was used to elute the RNA from the columns. Before storage in 
the -80°C, RNase inhibitor RNasin® (Promega) was added to each preparation. 

RNA:DNA-free Intron-spanning primers/no RT control Most primers were intron-spanning (Supplementary Table 2.2). Treatment with 
QIAshredder™ columns (Qiagen) and DNase I (Zymo) digestion were applied to reduce 
genomic DNA contamination. RT- (no RT) controls were tested and showed no 
contamination of genomic DNA. 

Concentration Nanodrop/ribogreen/microfluidics Purity and concentration of extracted RNA were detected photometrically (Nanodrop ND-
1000; PeqLab). Ratio of A260/280>1.8 was found, indicating free of protein contamination 
during RNA preparations. 

RNA: integrity Microfluidics/3':5' assay No. 

Inhibition-free Method of testing Serial dilution of cDNA; as shown in “Primer efficiency” in Table 3 of the manuscript. 

Assay optimisation/validation 
 

Accession number RefSeq XX_1234567 Table 3 of the manuscript; Supplementary Table S2.2 

Amplicon details Exon location, amplicon size Supplementary Table S2.2 

Primer sequence Even if previously published Table 3 of the manuscript; Supplementary Tables S2.2 and S2.3. The sequence of the 
purchased primers from Realtimeprimers.com was disclosed upon purchase. 
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Details Checklist 

Probe sequence* Identify LNA or other substitutions No probes were used. 

In silico BLAST/Primer-BLAST/m-fold Primer-BLAST, UCSC In-Silico PCR, Beacon Designer Free Edition, Primer-Check, 
uMELT, UNAfold and ENSEMBL were used for in silico test. 

empirical Primer concentration/annealing temperature The optimal annealing temperatures were first identified by gradient PCR (Biometra 
TProfessional Gradient; Biometra, Goettingen, Germany) and then were finalized by qPCR 
on Roche LightCycler® 480 (LC480). Optimal annealing temperatures are recorded in Table 
3 of the manuscript. 

Priming conditions Oligo-dT/random/combination/target-specific The SuperScript® IV First Strand Synthesis System (Invitrogen) was used for cDNA 
synthesis with random hexamers provided. For each cDNA synthesis reaction, 600 ng total 
RNA was used. Target-specific primers for qPCR were used after assessment, as shown in 
Table 3 of the manuscript. 

PCR efficiency Dilution curve Information on serial dilutions and primer efficiency was summarized in Supplementary 
Table S2.3. For each gene, two technical replicates were used for each dilution for qPCR. 
For analysis of qPCR including the standard curves, LC480 software version 1.5.0.39 was 
used. 

Linear dynamic range Spanning unknown targets The analysing software for qPCR appointed the linear dynamic range automatically. 

Limits of detection LOD detection/accurate quantification The analysing software for qPCR appointed the LOD automatically. 

Intra-assay variation Copy numbers not Cq Each gene was detected on one individual plate. 

RT/PCR   

Protocols Detailed description, concentrations, volumes For real-time PCR, the Luminaris Color HiGreen qPCR Master Mix Kit (K0392; Thermo 
Fisher Scientific, Vilnius, Lithuania) was used to detect gene expression of PTGS2, IL6, 
TNF, RANKL, RUNX2, SP7, ALPL, and BGLAP using the LightCycler® 480 with LC480 
software version 1.5.0.39 (both from Roche Molecular Diagnostics, Basel, Switzerland). 
According to the manufacturer’ protocol, 2 µl diluted cDNA (1:5 with double distilled, sterile 
water), 0.6 µl gene-specific forward primer, 0.6 µl gene-specific reverse primers, 6.8 µl PCR 
water and 10 µl qPCR Mastermix were added for reaction. PCR reactions proceeded as 
follows: 2 min of pretreatment of Uracil-DNA glycosylase (UDG) at 50 °C, 10 min of initial 
denaturation at 95 °C and 45 cycles of amplifications. Each amplification was consisted of 
four steps: 15 s of denaturation at 95 °C, 30 s of specific annealing temperature for each 
primer pair, 30 s of elongation at 72 °C and 5 s of data acquisition at the given temperature. 
For each plate, both no template controls (NTC) and no RT (reverse transcriptase) controls 
were added. NTCs were included for detection of primer dimers, while no RT controls were 
assessed for genomic DNA contamination. 
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Details Checklist 

Reagents Supplier, Lot number Primers for genes were either acquired commercially or synthesized using sequences from 
related literatures. Primers from related literatures were verified by in silico tests using 
related bioinformatic tools given in Supplementary Table S2.2. All primers were synthesized 
by Metabion GmbH (Planegg/Steinkirchen, Germany; Oligonucleotide Purification Cartridge 
OPC® purification) or purchased from realtimeprimers.com. Information on the kits used 
(Quick-RNA™ MicroPrep kit; SuperScript® IV First Strand Synthesis kit, Invitrogen; 
Luminaris Color HiGreen qPCR Master Mix Kit) were all given in the manuscript. 

Duplicate RT ΔCq No, but two technical replicates were repeated for each biological replicate at minimum. 

NTC Cq & melt curves Yes 

NAC ΔCq beginning:end of qPCR No, as no probes were used. 

Positive control Inter-run calibrators  No, each gene was tested on one plate with all samples included. 

Data analysis   

Specialist software e.g., QBAsePlus IBM SPSS Statistics 26 (IBM Corp., Armonk, NY, USA) 

Statistical justification e.g., biological replicates For each force magnitude for every force duration, three biological replicates were used. 
Each biological replicate was repeated with two technical replicates, giving a total of 6 
amplifications of qPCR. 

Transparent, validated 
normalisation 

e.g., GeNorm summary After testing with RT-qPCR using cDNA from some samples and assessment with 
Reffinder, RPL22 and POLR2A were proved to be most stable in this experiment among 
the panel of reference genes. Therefore, RPL22 and POLR2A were used as reference 
genes for following analysis. 
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Supplementary Table S2.2: In‐silico analysis of the RT‐qPCR primer 
 

Official gene 
symbol 

Reference 
sequence 
(NCBI GenBank) 

5'-forward primer-3' 
(length / Tm / %GC / max. ΔG hairpin & 
self-dimer / Self-comp./Self-3'-comp.) 

5'-reverse primer-3' 
(length / Tm / %GC / max. ΔG hairpin & 
self-dimer / Self-comp./Self-3'-comp.) 

Primer 
location 
(max. G 
cross-
dimer) 

Amplicon 
(length, 
%GC, Tm, 
SSAT) 

Amplicon location 
(bp of Start/Stop) 

Intron-
spanning 
(length, 
bp) 

In silico qPCR 
specificity 

Variants 
targeted 
(Transcript/ 
Splice) 

Primer sequence 
source 

Genes of interest 

ALPL NM_001127501.4 
GGACCATTCCCACGTCTTCAC 
(21 / 58.2°C / 57% / -1.3 & -3.3 / 4/0) 

CCTTGTAGCCAGGCCCATTG 
(20 / 57.9°C / 60% / -1.3 & -4.4 / 5/3) 

Exon 1 
(0) 

137bp, 55%, 
90.5°C, No 

1330 / 1466 Yes (597) 
Yes 
(BLAST, UCSC) 

Yes (Liu et al. 2017) 

BGLAP NM_199173.6 AGCGAGGTAGTGAAGAGAC 
(19 / 52.6°C / 53% / n.f. & n.f. / 2/1) 

GAAAGCCGATGTGGTCAG 
(18 / 52.3°C / 56% / n.f. & n.f. / 2/1) 

Exon 3/4 
(-1.1) 

142bp, 61%, 
93.5°C, No 

175 / 316 Yes (201) Yes 
(BLAST, UCSC) 

Yes (Gartland et al. 2005) 

PTGS2 NM_000963.4 AAGCCTTCTCTAACCTCTCC 
(20 / 52.9°C / 50% / n.f. & -0.5 / 5/0) 

GCCCTCGCTTATGATCTGTC 
(20 / 55.2°C / 55% / n.f. & -2.0 / 4/1) 

Exon 4/5 
(-2.9) 

234bp, 45%, 
88°C, No 

510 / 743 Yes (430) Yes 
(BLAST, UCSC) 

Yes 
(Janjic Rankovic et 
al. 2020; Shi et al. 
2019a) 

FOS NM_005252.4 
GCTTTGCAGACCGAGATTGC 
(20 / 57.2°C / 55% / -2.0 & -3.4 / 4/2) 

TTGAGGAGAGGCAGGGTGAA 
(20 / 57.3°C / 55% / n.f. & n.f. / 2/0) 

Exon 4 
(-2.0) 

203bp, 57%, 
93.5°C, No 

687 / 889 No 
Yes 
(BLAST, UCSC) 

Yes 
(Janjic Rankovic et 
al. 2020) 

IL6 NM_000600.5 
TGGCAGAAAACAACCTGAACC 
(21 / 56.5°C / 48% / -1.1 & -1.1 / 3/0) 

TGGCTTGTTCCTCACTACTCTC 
(22 / 56.9% / 50% / n.f. & n.f. / 2/0) 

Exon 2/3 
(-3.3) 

168bp, 43%, 
85.5°C, No 

317 / 484 Yes (707) 
Yes 
(BLAST, UCSC) 

Yes 
(Janjic Rankovic et 
al. 2020; Shi et al. 
2019a) 

RUNX2 NM_001015051.4 
GCGCATTCCTCATCCCAGTA 
(20 / 56.9°C / 55% / n.f. & -5.2 / 4/2) 

GGCTCAGGTAGGAGGGGTAA 
(20 / 56.9°C / 60% / -1.0 & -1.0 / 3/1) 

Exon 6/7 
(-2.9) 

176bp, 57%, 
92.0°C, No 947 / 1122 

Yes 
(20131) 

Yes 
(BLAST, UCSC) Yes 

(Janjic Rankovic et 
al. 2020; Shi et al. 
2019b) 

SP7 NM_001173467.3 
GGCACAAAGAAGCCGTACTC 
(20 / 56.2°C / 55% / -2.4 & -2.4 / 4/0) 

CACTGGGCAGACAGTCAGAA 
(20 / 56.6°C / 55% / -2.5 & -2.5 / 5/1) 

Exon 3 
(-2.4) 

247bp, 57%, 
93°C, No 383 / 629 No 

Yes 
(BLAST, UCSC) Yes 

(Gronthos et al. 
2003) 

TNFRSF11B NM_002546.4 
TCAAGCAGGAGTGCAATCG 
(19 / 54.9°C / 53% / -2.0 & -3.4 / 6/4) 

AGAATGCCTCCTCACACAGG 
(20 / 56.3°C / 55% / -1.3 & -1.3 / 4/1) 

Exon 2/4 
(-4.1) 

342bp, 46%, 
88.5°C/91°C, 
Yes 

342 / 683 Yes (6020) 
Yes 
(BLAST, UCSC) 

Yes (Yang et al. 2010) 

TNF NM_000594.4 
Commercial primer 
(20 / 55.9°C / 55% / n.f. & n.f. / 3/0) 

Commercial primer 
(20 / 54.2°C / 45% / n.f. & -4.4 / 6/2) 

Exon 4 
(-2.0) 

173bp, 50%, 
85.5°C, Yes 

Commercial primer 
from 
realtimeprimers.com 
(Order information: 
VHPS-9415) 

No 
Yes 
(BLAST, UCSC) Yes 

Realtimeprimers.com; 
(Janjic Rankovic et 
al. 2020; Shi et al. 
2019a) 

Reference genes 

EEF1A1 NM_001402.6 
CCTGCCTCTCCAGGATGTCTAC 
(22 / 59.0°C / 59% / -3.0 & -3.0 / 5/2) 

GGAGCAAAGGTGACCACCATAC 
(22 / 58.7°C / 55% / -1.5. & -3.2 / 6/2) 

Exon 5/6 
(–2.9) 

105bp, 52%, 
88°C, No 804 / 908 Yes (87) 

Yes 
(BLAST/UCSC) Yes (Nazet et al. 2020) 

GAPDH NM_002046.7 
CTCCTGTTCGACAGTCAGCC 
(20 / 57.4°C / 60% / -2.5 & -3.1 / 6/1) 

CGACCAAATCCGTTGACTCC 
(20 / 55.9°C/ 55%/ -0.7 & -0.7 / 3/1) 

Exon 1 / 2-
3 
(–3.8) 

103bp, 58%, 
91°C, No 

12 / 114 

Yes, rev. 
primer on 
exon 
junction 

Yes 
(BLAST/UCSC) 

Yes 
(Chirieleison et al. 
2017) 

POLR2A NM_000937.5 
TCGCTTACTGTCTTCCTGTTGG 
(22 / 57.8°C / 50% / n.f. & n.f. / 3/0) 

TGTGTTGGCAGTCACCTTCC 
(20 / 57.4°C / 55% / -1.3 & -1.3 / 3/3) 

Exon 21/22 
(–2.5) 

108bp, 53%, 
89.5°C, No 3811 / 3918 Yes (468) 

Yes 
(BLAST/UCSC) Yes (Nazet et al. 2020) 

PPIB NM_000942.5 TTCCATCGTGTAATCAAGGACTTC 
(24 / 56.7°C / 42% / -1.3 & -1.3 / 4/2) 

GCTCACCGTAGATGCTCTTTC 
(21 / 56.1°C / 52% / -0.7 & -0.7 / 4/0) 

Exon 3/4 
(–2.1) 

88bp, 53%, 
87°C, No 

313 / 400 Yes (3194) Yes 
(BLAST/UCSC) 

Yes (Nazet et al. 2020) 

RNA18SN5 NR_003286.4 
AACTGCGAATGGCTCATTAAATC 
(23 / 55.8°C / 39% / -1.7 & -1.7 / 6/3) 

GCCCGTCGGCATGTATTAG 
(19 / 55.2°C / 58% / -2.4 & -2.4 / 5/1) 

n.a. (–2.4) 
103bp, 46%, 
85.5°C, No 

84 / 186 No (rRNA) 
No (RNA45S5 
also targeted) 

__ (Nazet et al. 2020) 
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Official gene 
symbol 

Reference 
sequence 
(NCBI GenBank) 

5'-forward primer-3' 
(length / Tm / %GC / max. ΔG hairpin & 
self-dimer / Self-comp./Self-3'-comp.) 

5'-reverse primer-3' 
(length / Tm / %GC / max. ΔG hairpin & 
self-dimer / Self-comp./Self-3'-comp.) 

Primer 
location 
(max. G 
cross-
dimer) 

Amplicon 
(length, 
%GC, Tm, 
SSAT) 

Amplicon location 
(bp of Start/Stop) 

Intron-
spanning 
(length, 
bp) 

In silico qPCR 
specificity 

Variants 
targeted 
(Transcript/ 
Splice) 

Primer sequence 
source 

RPL0 NM_001002.4 
GAAACTCTGCATTCTCGCTTCC 
(22 / 57.4°C / 50% / -0.6 & -3.4 / 4/0) 

GACTCGTTTGTACCCGTTGATG 
(22 / 57.1°C / 50% / n.f. & -2.0 / 4/0) 

Exon 6/7 
(–1.8) 

120bp, 50%, 
89°C, No 

702 / 821 Yes (1091) 
Yes 
(BLAST/UCSC) 

Yes (Nazet et al. 2020) 

RPL22 NM_000983.4 
TGATTGCACCCACCCTGTAG 
(20 / 56.6°C / 55% / n.f. & -3.4 / 4/2) 

GGTTCCCAGCTTTTCCGTTC 
(20 / 56.4°C / 55% / n.f. & -3.0 / 4/0) 

Exon 2/3 
(–1.5) 

98bp, 44%, 
84°C, No 

91 / 188 Yes (4597) 
Yes 
(BLAST/UCSC) 

Yes (Nazet et al. 2020) 

YWHAZ NM_003406.4 
AGGAGATTACTACCGTTACTTGGC 
(24 / 57.8°C / 46% / n.f. & n.f. / 4/2) 

AGCTTCTTGGTATGCTTGTTGTG 
(23 / 57.4°C / 43% / -1.8 & -3.0 / 4/0) 

Exon 8/9 
(–2.2) 

91bp, 47%, 
86°C, No 

491 / 581 Yes (617) 
Yes 
(BLAST/UCSC) 

Yes (Nazet et al. 2020) 

Tm, melting temperature of primer or qPCR product (amplicon); %GC, percent of guanin/cytosine content; bp, base pairs; max. G hairpin, maximal G of hairpin; max. G self-dimer, maximal G 
of self-dimer; Self-comp., self complementary; Self-3'-comp., self 3' complementary; max. G Cross-dimer, maximal G of cross-dimer; SSAT, secondary structures at annealing temperature (at 
primer binding sites); n.f., not found. 
 
To perform silico analysis of RT-qPCR primers, their targets and corresponding amplification products, the following programs and online resources were used. All URLs were valid on 02-12-2020. 
a. Primer-BLAST (URL: https://www.ncbi.nlm.nih.gov/tools/primer-blast/) was used to check the “length” of primer, “In silico qPCR specificity”, possible co-amplification of genomic DNA, “Self-

comp.” and “Self-3'-comp”. 
b. UCSC In-Silico PCR (URL: https://genome.ucsc.edu/cgi-bin/hgPcr) was used to check “In silico qPCR specificity” and RT-qPCR in genomic context. 
c. “Amplicon (length)”, “Amplicon location (bp of Start/Stop)”, “Intron-spanning (length)” was identified or calculated by either Primer-BLAST or UCSC In-Silico PCR 
d. Beacon DesignerTM Free Edition (Premier BioSoft International, Palo Alto, CA, USA, URL: http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1) was used to identify primers' specifications 

(Tm, %GC, max. ΔG hairpin & max. ΔG self-dimer, max. ΔG cross-dimer). 
e. Primer-Check (URL: http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp) was used to check for “Primer location”, which means the exon/intron binding sites. 
f. uMelt (URL: https://dna-utah.org/umelt/quartz/) was used to check “Amplicon (%GC, Tm)”, which means GC content and melting temperature of the amplicon. 
g. UNAFold@IDT-DNA (URL: http://eu.idtdna.com/UNAFold?, maximum sequence length 255 bases) was used to check “Amplicon (SSAT)”, to identify occurrence of secondary structures in the 

RT-qPCR product during the annealing step. mFold @ http://www.unafold.org/mfold/applications/dna-folding-form.php :  
h. ENSEMBL (URL: https://www.ensembl.org) was used to check “Variants targeted (Transcript/Splice)”. 
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Supplementary Table S2.3: Primer validation by RT‐qPCR 
 

Gene 
symbol 

Primer sequence 
(f: 5'-forward primer-3'; 
r: 5'-reverse primer-3') 

Primer sequence 
source 

Prediluted 
cDNA (1:5) 

used? 

Specificity 
by melting 
curve / Tm 

(°C) 

Specificity 
by 

agarose 
gel / 

amplicon 
size (bp) 

Annealing 
temp. (°C)/ 

data 
acquisition 
temp. (°C) 

Dilution series 
used for 

efficiency testing 

Primer efficiency 

Effici-
ency 

Error Slope Y inter-
cept 

Genes of interest 

ALPL f: GGACCATTCCCACGTCTTCAC 
r: CCTTGTAGCCAGGCCCATTG 

(Liu et al. 2017) Undiluted Yes / 82.3 Yes / 137 64 / 80 Undil., 1:4, 1:16, 
1:64, 1:256, 1:1024 

1.968 0.0291 -3.401 37.70 

BGLAP f: AGCGAGGTAGTGAAGAGAC 
r: GAAAGCCGATGTGGTCAG 

(Gartland et al. 2005) Prediluted Yes / 84.6 Yes / 142 64 / 82 Predil., 1:4, 1:16, 
1:64, 1:256, 1:1024 

2.076 0.00897 -3.152 35.71 

PTGS2 f: AAGCCTTCTCTAACCTCTCC 
r: GCCCTCGCTTATGATCTGTC 

(Janjic Rankovic et al. 
2020; Shi et al. 2019a) 

Prediluted Yes / 79.4 Yes / 234 58 / 77 Predil., 1:4, 1:16, 
1:64, 1:256 

1.995 0.0356 -3.335 35.95 

FOS f: GCTTTGCAGACCGAGATTGC 
r: TTGAGGAGAGGCAGGGTGAA 

(Janjic Rankovic et al. 
2020) 

Prediluted Yes / 84.7 Yes / 203 58 / 83 Predil., 1:4, 1:16, 
1:64, 1:256 

1.860 0.0327 3.711 37.74 

IL6 f: TGGCAGAAAACAACCTGAACC 
r: TGGCTTGTTCCTCACTACTCTC 

(Janjic Rankovic et al. 
2020; Shi et al. 2019a) 

Prediluted Yes / 78.1 Yes / 168 58 / 76 Predil., 1:4, 1:16, 
1:64, 1:256 

1.955 0.0231 -3.434 39.18 

RUNX2 f: GCGCATTCCTCATCCCAGTA 
r: GGCTCAGGTAGGAGGGGTAA 

(Janjic Rankovic et al. 
2020; Shi et al. 2019b) 

Prediluted Yes / 83.1 Yes / 176 58 / 81 Predil., 1:4, 1:16, 
1:64, 1:256, 1:1024 

1.954 0.0129 -3.437 34.96 

SP7 f: GGCACAAAGAAGCCGTACTC 
r: CACTGGGCAGACAGTCAGAA 

(Gronthos et al. 2003) Undiluted Yes / 84 Yes / 247 61 / 81 Undil., 1:4, 1:16, 
1:32, 1:64, 1:128 

1.935 0.0367 -3.489 36.28 

TNFRSF11B f: TCAAGCAGGAGTGCAATCG 
r: AGAATGCCTCCTCACACAGG 

(Yang et al. 2010) Prediluted Yes / 83 Yes / 342 64 / 81 Predil., 1:5, 1:25, 
1:125, 1:625 

1.941 0.0211 -3.473 32.63 

TNF Commercial primer pair from 
realtimeprimers.com (Order information: 

VHPS-9415) 

(Janjic Rankovic et al. 
2020; Shi et al. 2019a) 

Undiluted Yes / 81 Yes / 173 58 / 79 Undil., 1:4, 1:16, 
1:32, 1:64, 1:128 

1.967 0.0421 -3.404 37.27 

Reference genes 

EEF1A1 f: CCTGCCTCTCCAGGATGTCTAC 
r: GGAGCAAAGGTGACCACCATAC 

(Nazet et al. 2020) Prediluted Yes / 79.9 Yes / 105 61 / 77 Predil., 1:10, 1:100, 
1:1000, 1;10,000 

1.981 0.00773 -3.367 30.06 

GAPDH f: CTCCTGTTCGACAGTCAGCC 
r: CGACCAAATCCGTTGACTCC 

(Chirieleison et al. 2017) Prediluted Yes / 82.4 Yes / 103 52 / 79 Predil., 1:10, 1:100, 
1:1000, 1;10,000 

1.970 0.00209 -3.396 31.55 

POLR2A f: TCGCTTACTGTCTTCCTGTTGG 
r: TGTGTTGGCAGTCACCTTCC 

(Nazet et al. 2020) Prediluted Yes / 81.9 Yes / 108 58 / 79 Predil., 1:10, 1:100, 
1:1000, 1;10,000 

1.886 0.0150 -3.630 37.25 
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Gene 
symbol 

Primer sequence 
(f: 5'-forward primer-3'; 
r: 5'-reverse primer-3') 

Primer sequence 
source 

Prediluted 
cDNA (1:5) 

used? 

Specificity 
by melting 
curve / Tm 

(°C) 

Specificity 
by 

agarose 
gel / 

amplicon 
size (bp) 

Annealing 
temp. (°C)/ 

data 
acquisition 
temp. (°C) 

Dilution series 
used for 

efficiency testing 

Primer efficiency 

Effici-
ency 

Error Slope Y inter-
cept 

PPIB f: TTCCATCGTGTAATCAAGGACTTC 
r: GCTCACCGTAGATGCTCTTTC 

(Nazet et al. 2020) Prediluted Yes / 80.1 Yes / 88 55 / 77 Predil., 1:10, 1:100, 
1:1000, 1;10,000 

1.909 0.00896 -3.560 35.93 

RNA18S5 f: AACTGCGAATGGCTCATTAAATC 
r: GCCCGTCGGCATGTATTAG 

(Nazet et al. 2020) Prediluted Yes / 77.8 Yes / 103 55 / 55 Predil., 1:10, 1:100, 
1:1000, 1;10,000 

1.869 0.00242 -3.682 21.57 

RPL0 f: GAAACTCTGCATTCTCGCTTCC 
r: GACTCGTTTGTACCCGTTGATG 

(Nazet et al. 2020) Prediluted Yes / 81.3 Yes / 120 64 / 79 Predil., 1:10, 1:100, 
1:1000, 1;10,000 

2.010 0.0430 -3.299 33.73 

RPL22 f: TGATTGCACCCACCCTGTAG 
r: GGTTCCCAGCTTTTCCGTTC 

(Nazet et al. 2020) Prediluted Yes / 77.6 Yes / 98 61 / 75 Predil., 1:10, 1:100, 
1:1000, 1;10,000 

1.939 0.0160 -3.478 34.41 

YWHAZ f: AGGAGATTACTACCGTTACTTGGC 
r: AGCTTCTTGGTATGCTTGTTGTG 

(Nazet et al. 2020) Prediluted Yes / 78.9 Yes / 91 55 / 76 Predil., 1:10, 1:100, 
1:1000, 1;10,000 

1.945 0.0216 -3.462 34.89 
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