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Zusammenfassung

Die vorliegende Arbeit wirft Licht auf die Entstehung Schwarzer Löcher und ihre
Quantenkonsistenz. Die Kombination der fundamentalsten Theorien, Quantenfeldthe-
orie und Allgemeinen Relativitätstheorie, führt bei der Betrachtung Schwarzer Löcher
zum Informationsparadoxon, welches auf die Unvereinbarkeit beider Theorien hinweist.
Da dieses Paradoxon in seiner Art einzigartig ist, stellt es eine herausragende Gelegenheit
dar, durch seine Auflösung grundlegende Gesetzmäßigkeiten der Natur zu entdecken.
In dieser Arbeit untersuchen wir, ob bereits die Entstehung eines Schwarzen Lochs zu

Inkonsistenzen führt und so auf das Informationsparadoxon schließen lässt. Zu diesem
Zweck verwenden wir eine massive Schale und halten diese im Gleichgewicht für ver-
schiedene Radien. Mit diesem Aufbau simulieren wir die Entstehung eines Schwarzen
Lochs, unmittelbar davor, währenddessen und danach. Auf diesem gravitativen Hinter-
grund verwenden wir Quantenfelder um mögliche Inkonsistenzen aufzuspüren.
Ein wesentlicher Teil dieser Arbeit besteht in der Herleitung der Dynamik von Quan-

tenfeldern im System einer ruhenden Schale. Hierfür entwickeln wir zwei unterschiedliche
Herangehensweisen, die die Dynamik von Quantenfeldern über Grenzflächen hinweg bes-
timmt. Da es sich hierbei um ein Paradebeispiel der Optik handelt, leiten wir diese
Techniken an bereits vollständig gelösten optischen Systemen ab und erhalten dadurch
zugleich neue Methoden zur Lösung komplizierter optischer Systeme.
Mit diesem Vorgehen bestimmen wir die Quantenfelder in einer lokalen Umgebung der

Schale einerseits mit Hilfe des Äquivalenzprinzips und andererseits mit Informationsnetzw-
erken. Letztere konstruieren wir aus Quantengraphen, welche einen neuartigen Ansatz zur
Bestimmung von Quantenfeldern in komplizierten Umgebungen darstellen. Insbesondere
der Kompromiss zwischen technischer Einfachheit und Präzision kann so auf einzigartiger
Weise gestaltet werden.
Mit diesem lokalen Ansatz untersuchen wir die Vakuumpersistenz auf Inkonsistenzen.

Im Rahmen unserer Untersuchung stellen wir fest, dass die Entstehung eines Schwarzen
Lochs keine Widersprüche erzeugt und somit nicht als relevanter Teil des Information-
sparadoxes angesehen werden kann. Darüber hinaus legen wir dar, wie weitere Anwen-
dungen von Quantenfeldern in komplizierten gravitativen oder optischen Hintergründen
mit unseren entwickelten Methoden analysiert werden können.



Abstract

This thesis sheds light on the quantum consistency of black-hole formation. When ex-
amining black-holes, the combination of the most fundamental theories, quantum field
theory and general relativity, leads to the information paradox. This paradox exposes
the incompatibility of these theories and since it is one of a kind, solving it offers an
unparalleled opportunity to discover fundamental laws of nature.
In this work, we investigate whether the formation of a black-hole already hints to in-

consistencies and consequently to the information paradox. For this purpose, we construct
a massive shell and maintain it balanced at various radii. With this arrangement, we sim-
ulate a collapsing shell before, during, and after it has formed a black-hole. Quantum
fields are then utilized to reveal possible inconsistencies during these stages.
Deriving the dynamics of quantum fields in the system of a stabilized shell is an essential

element of this work. To this end, we develop two distinct techniques to determine the
dynamics of quantum fields across interfaces. Since this is a prime example of optics,
we derive these approaches from fully solved optical systems, thereby acquiring novel
opportunities for the analysis of sophisticated optical systems.
With this procedure, we determine the quantum fields in a local environment of the

shell using the equivalence principle on the one hand and information networks on the
other. The latter are constructed by quantum graphs, which provide a new technique for
deriving quantum fields in complicated environments. Most notably, the trade-off between
technical simplicity and precision may be individually tailored in this approach.
Using this local framework, we examine the vacuum persistence for inconsistencies.

Within the scope of our study, the formation of a black-hole does not cause anomalies
and thus cannot be regarded as a relevant aspect of the information paradox. In addition,
we elaborate how the techniques we have developed can be used to study other applications
of quantum fields in challenging gravitational or optical environments.





1. Introduction

Black-holes have emerged as one of physics’ most fascinating phenomena, providing both
astounding predictions and a deeper understanding of our most fundamental theories.
Recently, ground-breaking observational studies of black-hole mergers [1] and of the black-
holes at the cores of Messier 87 [2] and the Milky Way [3] have been published. With this
solidified foundation in place, we can address other intriguing black-hole mysteries, such
as those that go beyond the classical level. Most notably, quantum effects in a black-hole
system ultimately lead to the information paradox [4–6]. Due to this paradox, it is still
unclear how the most profound theories, general relativity and quantum field theory, can
be combined to adequately describe black-holes [7,8]. As a result, this paradox represents
an unparalleled opportunity to push the boundaries of knowledge.
In this thesis, we investigate whether traces of this puzzle can be identified during

the formation of a black-hole in a classical gravitational collapse. Despite significant
progress, technical difficulties have so far prevented a complete semiclassical description
of black-hole formation [9–11]. As we argued in [12], due to the locality of quantum field
theory we believe that inconsistencies in black-hole formation can be detected in a local
environment that includes a fraction of the forming horizon. This local perspective allows
for the application of the equivalence principle and simplifies the investigation greatly.
We use quantum field theory in curved spacetimes to study the formation of black-holes
by posing the following questions in a local framework:

• How does the emergence of an apparent horizon disrupt quantum communication
and affect the entanglement entropy?

• Do quantum fields evolve consistently during black-hole formation?

The first question concerns whether and how causality is respected, which requires that
once the black-hole is formed, no information is allowed to leave its interior. The second
question seeks to determine whether the semiclassical approach breaks down during the
formation process, hence pointing to the information paradox. This observation would
be in line with other arguments that a non-perturbative description of black-holes1 is
required to solve the information paradox [21–24].

1Explicit non-perturbative models of black-holes are for example discussed in [13–20].
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Figure 1.1.: The probability density of a quantum field displayed in green due to the
influence of two glass pillars in a Double-slit-like arrangement placed in the gravitational
background of a thin shell. The probability density is calculated using the methods
presented in this thesis, and the artistic rendering is done using ray-tracing.

To address these questions, we will develop techniques that determine how a quantum
field propagates in the gravitational background of a collapsing thin shell, and hence in
systems with interfaces. These methods allow the investigation of a wide range of other
applications, such as the study of decoherence in gravitational backgrounds [25–27]. In
Fig. 1.1, we illustrate a potential Double-slit-like setup for investigating decoherence in
the presence of a forming black-hole. The key features here are the propagation in a
curved background through interfaces, such as through the surface of the shell and
equivalently the glass columns depicted in Fig. 1.2b) and Fig. 1.2c), respectively. We
create and test our ideas in optical and gravitational systems which possess different
interfaces to demonstrate their broad applicability in Chapter 2.
As we will see, near the formation of a black-hole through a collapsing shell, non-

perturbative techniques must be used to compute quantum fields in this background. In
Sec. 3.1, we apply the equivalence principle to describe the geometry of a thin shell in a
local environment using normal coordinates [28–35] as illustrated in Fig. 1.2a). We use
the procedure developed in [36] to determine the size of the normal environment and the
allowed frequency range for the shell geometry. Because of these constraints, we must
limit ourselves to high-frequency field modes, making our investigation complementary
to the well-known gray body calculation performed in the low-frequency regime [21]. We
continue in Sec. 3.2 by examining a massive thin shell made up of matter that satisfies
the condition of strong and dominant energy. Stabilizing the shell, we treat its radius as
a free parameter to investigate the various stages of black-hole formation individually.
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Figure 1.2.: Overview over the different setups we consider throughout the thesis to
obtain the propagation of a quantum field in the gravitational geometry of a collapsing
thin shell. In a) is a collapsing shell schematically depicted with Minkowski background
M in its interior and Schwarzschild geometry S in its exterior. Additionally, a normal
neighborhood N is constructed in which the two glass columns of the setup in Fig. 1.1
are placed. The propagation across the shell surface is seen in b) in a zoomed-in view of
the glass column configuration. In c), the Huygens principle is depicted schematically for
transmission and reflection at a vacuum-glass interface. We also explore the propagation
of a quantum field for a collapsing shell background on a quantum graph composed of
straight edges such as e and vertices such as v in d).

With the local description of a stabilized shell, we derive the propagation of quantum
fields in Sec. 3.3, and investigate the two questions outlined above. First, we conduct a
communication experiment by transmitting a signal from the inside to the outside of the
shell in Sec. 3.3.3. Second, in Chapter 4 we calculate the vacuum persistence amplitude
of the Minkowski vacuum inside the shell to check whether quantum fields evolve consis-
tently during black-hole formation. In particular, we place an external source inside the
shell and test for an inertial observer whether the vacuum state of a scalar field evolves
according to the principles of quantum field theory. For that matter, in Sec. 4.2 and [37],
we first study dynamical vacuum effects in the setting of atom physics. There, vacuum ef-
fects induced by the Coulomb potential serve as a well-tested analogue for vacuum effects
caused by a black-hole geometry. All of these vacuum-induced phenomena are anticipated
from the viewpoint of open quantum systems, from which we adapt renormalization tech-
niques to quantum field theory in curved spacetimes and obtain a fundamental physical
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interpretation. In particular, we interpret quantum field theory in curved spacetimes as
an open quantum system in Sec. 4.1 and [38].
In Chapter 5, a second approach is used to extend this research to dynamical black-hole

formation with a collapsing shell. In this framework, we embed quantum graphs made up
of edges connected by vertices in the background of a thin shell as depicted in Fig. 1.2d).
The edges provide an inherently (1+1) dimensional support for the quantum fields, whilst
the vertices are reflecting and transmitting impurities that encode physical properties of
the background. Since this technique allows us to calculate local observables in a totally
different manner compared to the normal neighborhood approach, we may use both to
verify and supplement each other’s results. For example, when the gravitational back-
ground can be adequately described through adiabatic expansion, as we establish for a
fixed shell in Chapter 3, the local description of quantum fields in normal neighborhoods
is especially favorable. This technique, however, reaches its limits when the geometry
is more challenging, such as that of a collapsing shell. Because the latter includes the
formation of an apparent horizon, we intend to employ quantum graphs, which can cir-
cumvent the technical challenges of obtaining observables like the entanglement entropy,
as demonstrated in Sec. 5.2 and [39].
Quantum graphs offer two important features that make computing observables of

quantum fields in curved spacetimes simpler than ever before. To begin, the induced
spacetime on each (1+1) dimensional edge is conformally flat, considerably simplifying the
calculations of observables. This simplification, in particular, allows us to do analytic and
non-perturbative calculations of quantum fields while still addressing (3 + 1) dimensional
physics. Furthermore, the complexity of the quantum graph may be adjusted to the
situation at hand. Morally, this is similar to restricting the path integral in (3 + 1)

dimensions to a subset of particularly relevant paths. This greatly reduces the parameter
space of quantum field theory, allowing us to explore apparent horizon formation and many
more applications of quantum fields in complicated optical or gravitational backgrounds.
Finally, in Chapter 6, we summarize our findings and offer some suggestions for future

projects. In this work we use the metric signature diag(−,+,+,+) and Planck units with
c = G = ~ = 1. The indices of the equation numbers denote acronyms for principles,
approximations, and constraints on which the equation in question relies. These acronyms
are defined in App. A.





2. Propagation Across Interfaces

As outlined in the introduction, we begin by analyzing how fields evolve in optical systems
that have boundaries and interfaces. Therefore, as a first step we consider a massless, real
scalar field φ coupled to an external source J in a spacetime filled with a medium. We
choose a medium which effect on the field can be described by a constant susceptibility
ε, modifying the dispersion relation. In the rest frame of the medium, the equation of
motion in three spatial dimensions using the Cartesian coordinates (t,x) reads

�εxφ :=
(
−ε∂2

t + ∂2
x

)
φ = J . (2.1) bHS

This differential equation is solved with a plane wave ansatz exp{i(ωεkt− kx)} with mo-
mentum k. The resulting dispersion relation is thus (ωεk)

2 = k2/ε.
The equation of motion (2.1) can be conveniently obtained by introducing an auxiliary

metric ηε = diag(−1/ε, 1, 1, 1) for the kinetic contraction of a scalar field action in a
Minkowski background. This action is composed of the free part Sε0, the source term SJ

and is expressed by

Sε0 + SJ = −1

2

∫

B

dµx (ηµνε ∂µφ∂νφ+ 2φJ) , (2.2) bHS

with measure dµx = d4x
√
−det(η), Minkowski metric η and with support of the integral

over the whole Minkowski spacetime, i.e. B = {x : x ∈ R4}.
To answer the questions raised in the introduction, we will utilize quantum fields and

thus promote φ to operators. The key object we are interested in is the Feynman propaga-
tor, which is obtained by computing the time-ordered correlator evaluated in the vacuum
state |0〉,

∆ε
xy := i〈Tφxφy〉 , (2.3) bHS

where T denotes the time ordering, 〈 . 〉 := 〈0| . |0〉 and where we take the shorthand
notation fx := f(x) and fxy := f(x, y) for any function or distribution f(x), f(x, y). This
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propagator satisfies the fundamental equation

�ε∆ε
xy = −δ(4)

xy , (2.4) bHS

with the Dirac delta distribution δ and appropriate boundary conditions implied. The
propagator (2.3) can then be expressed as [40]

∆ε
xy = −

∫
d4k

(2π)4

e−ik(x−y)

ηµνε kµkν − iε
= ΘxtytG

ε
xy + ΘytxtG

ε
yx, (2.5) bHS

with Heaviside step function Θ and Wightman distribution Gε
xy := i〈φxφy〉 given by

Gε
xy =

∫ ε

k

eik⊥(x⊥−y⊥) , (2.6) bHS

with the shorthand
∫ ε

k

:= i

∫
d3k

(2π)32ωεk ε
e−iω

ε
k(xt−yt)eik‖(x

‖−y‖) . (2.7) bHS

Here, for later convenience, the spacetime coordinates are denoted as xµ =
(
xt, x⊥,x‖

)

and the spatial momenta k = (k⊥,k‖). In the next Sections, we derive with differ-
ent approaches an expression for the Feynman propagator that is valid in systems with
boundaries and regions with different susceptibilities. Both approaches have significant
advantages and applicability, and they will be crucial in determining the propagator in a
black-hole scenario in Chapter 4.

2.1. Non-Perturbative Approach via Matching

Conditions

2.1.1. Reflection at Boundaries

Let us now introduce a boundary to the system filled with a medium as described above.
We do so by modifying the support of the integral B in Eq. (2.2) such that the action
now describes a system that is spatially constrained. The external source J is then placed
in the bulk, meaning it has no overlap with the boundary Supp(J) ∩ ∂B = 0, and the
scalar field is used to analyze the boundary ∂B. For simplicity, we first consider a planar
boundary with x⊥ = 0 using Cartesian coordinates as depicted in Fig. 2.1. With this
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B ε

x⊥

0

x‖
J

k
R

q

Figure 2.1.: Setup of a half-space B = {x : x⊥ < 0} with susceptibility ε. This half-space
system possesses a planar boundary at x⊥ = 0 and is unconstrained in the x‖ directions.
The Huygens’ principle is sketched for a plane wave caused by the external source J with
a wave vector k and for the reflected wave R with a wave vector q.

setup, varying the action (2.2) with B = {x : x⊥ < 0} leads to the equation of motion

�εxφ+ δx⊥∂x⊥φ = J . (2.8) bHS

Interpreting this relation as the equation of motion in the bulk together with a condition
for the field φ at the boundary, the propagator in the bulk ∆ε

xy fulfills

�εx∆
ε
xy = δ(4)

xy . (2.9) bHS

This propagator is not affected by the boundary and therefore contains no reflection off
the boundary. We take this effect into account by exploiting Huygens’ principle H.
According to the Huygens’ principle, the field configuration on the boundary acts like a

source for the reflected field as illustrated in Fig. 2.1. Thus, we take the following ansatz
for the whole field configuration

φx =

∫
dµz

(
∆ε
xzJz + δz⊥∆ε

xz

↔
∂z⊥φz

)
, (2.10) bHS

where f
↔
∂z⊥g = [∂z⊥(f)g − f∂z⊥(g)]/2. This ansatz satisfies (2.8) since,

�εxφx =

∫
dµz

(
δ(4)
xz Jz +

1

2
δz⊥
[
�εx∂z⊥∆ε

xzφz − δ(4)
xz ∂z⊥φz

])
= Jx − δx⊥∂x⊥φx , (2.11) bHS

where, in the second step, integration by parts was carried out using asymptotic fall-off
conditions. Written in this form, it is clear that the boundary term on the right-hand
side acts like a source term. The field configuration on the boundary itself can only be
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caused by the external source and therefore reads

δz⊥φz = δz⊥

∫
dµy ∆ε

zyJy . (2.12) bHS

Inserting this into Eq. (2.10) yields

φx =

∫
dµz

(
∆ε
xzJz + δz⊥∆ε

xz

↔
∂z⊥

∫
dµy ∆ε

zyJy

)
=

∫
dµy

(
∆ε
xy + ∆Rxy

)
Jy , (2.13) bHS

where we have renamed the z integral of the first term to a y integral and defined the
reflection propagator

∆Rxy :=

∫
dµzδz⊥∆ε

xz

↔
∂z⊥∆ε

zy . (2.14) bHS

Therefore, as a direct consequence of Huygens’ principle, fixing an intermediate point of
a propagator ∆, here at the boundary (z⊥ = 0), leads to a consecutive action of two
propagators. This procedure is by no means limited to one intermediate point, but can
be generalized to any number.
In the following we investigate the retarded reflection propagator in order to examine its

properties. Notice, we have only used the defining equation of the propagators in Eq. (2.9).
Thus, denoting the incoming momentum k and the reflected wave momentum q as shown
in Fig. 2.1, the retarded reflection propagator results to be

ret∆Rxy = iΘxtyt

∫
d3k dq⊥

(2π)38ωεkω
ε
q ε

2
δ(ωεk − ωεq) (q⊥ − k⊥)

×
(
e−i(ω

ε
qx
t−ωεky

t)eik‖(x
‖−y‖)ei(q⊥x

⊥−k⊥y⊥) − h.c.
)
,

(2.15) b rHS

where the z and q‖ integration was performed with the restriction of a large temporal
difference xt − yt, which we denote with the equation superscript r. Because of this
restriction, the zt integration yielded the delta distribution enforcing energy conservation
δ(ωεk − ωεq) and thus all contributions which include δ(ωεk + ωεq) were neglected. We rewrite
the delta distribution with δ(ωεk − ωεq) = εωεq/|q⊥| [δ(q⊥ − k⊥) + δ(q⊥ + k⊥)] such that the
first contribution setting k⊥ = q⊥ vanishes in Eq. (2.15) due to the q⊥−k⊥ part. Applying
this, the retarded propagator evaluates to

ret∆Rxy = iΘxtyt

∫
d3k

(2π)34ωεkε

k⊥
|k⊥|

(
e−iω

ε
k(xt−yt)eik‖(x

‖−y‖)e−ik⊥(x⊥+y⊥) − h.c.
)
. (2.16) b rHS

Decomposing this propagator with ret∆Rxy = (GRxy −GRyx)Θxtyt the Wightman distribution
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for the reflection propagator reads

GRxy = i

∫
d3k

(2π)34ωεkε

k⊥
|k⊥|

e−iω
ε
k(xt−yt)eik‖(x

‖−y‖)e−ik⊥(x⊥+y⊥) . (2.17) b rHS

In order to obtain a physical understanding we compute the k integral and use approx-
imations when needed. First we use

∫
R dx x/|x|f(x) =

∫∞
0

dx [f(x) + f(−x)], second we
take a normal incidence setup n with x‖ = y‖ and transform to spherical coordinates

ret∆Rxy = iΘxtyt

∫
dkdkθdkφ

2(2π)3
k sin(kθ)

(
e−ik/ε(x

t−yt) cos [k∆x cos(kθ)]− h.c.
)
, (2.18) b r nHS

where ∆x =
√

(x‖ − y‖)2 + (x⊥ + y⊥)2. Performing the kφ integration and the kθ inte-
gration results in

ret∆Rxy = iΘxtyt

∫
dk π

(2π)3∆x

(
e−ik/ε(x

t−yt) sin (k∆x) + h.c.
)
. (2.19) b r nHS

With
∫
R dx eikx = 2

∫∞
0

dx cos(kx) = 2πδ(k) and
∫∞

0
dx sin(kx) = 1/k we evaluate the

integral to be

ret∆Rxy =
Θxtyt

(2π)2∆x

[
πδ

(
∆x− xt − yt

ε

)
− πδ

(
−∆x− xt − yt

ε

)]
. (2.20) b r nHS

Since the difference xt−yt is strictly positive enforced by the Heaviside step function, the
delta distribution of the second term does not contribute. Thus, the final result is

ret∆Rxy =
Θxtyt

4π∆x
δ

(
∆x− xt − yt

ε

)
. (2.21) b r nHS

Therefore, the reflected field configuration can only propagate in negative x⊥ direction,
that is, away from the boundary. This is the expected physical result which we could
have also obtained using mirror charges and thus validating the ansatz for the field in
Eq. (2.10).
As a final consistency check we act with the d’Alembert operator onto this propagator,

�εx
ret∆Rxy = δ(xt − yt)δ(x⊥ + y⊥)δ(2)(~x‖ − ~y‖) = 0 , (2.22) b rHS

where in the second step we used x⊥ + y⊥ < 0. Thus, as required, the total propagator
satisfies the fundamental equation

�εx
(ret∆ε

xy + ret∆Rxy
)

= δ(4)
xy . (2.23) b rHS
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S

SC

εS

ε

x⊥

0

x‖

J

T

J R

Figure 2.2.: System of two half-spaces S and SC with susceptibilities εS and ε and a
shared planar boundary separating them at x⊥ = 0. An external source J is localized in
the lower half-space from which an optical ray is transmitted denoted with T and reflected
denoted with R. For plane waves, the Huygens’ principle is visualized to show how the
angle of propagation changes upon transmission or reflection.

Having described systems with boundaries in this Section, we move on to systems with
interfaces between different media in the next Section.

2.1.2. Reflection and Transmission at Interfaces

To study optical systems with interfaces, we now consider a scattering object, e.g. a
sphere, with susceptibility εS and place it in a medium with susceptibility ε. We probe
the scattering object from outside by using an external source J and thus prohibit any
overlap between the scattering object and the source. With the support of the scattering
object S the action of a real scalar field placed into this setup is given by

S = −1

2

∫

SC
dµ (ηµνε ∂µφ∂νφ+ 2φJ)− 1

2

∫

S
dµ ηµνεS ∂µφ∂νφ , (2.24) bHS

with ηε|εS = diag(−1/ε|εS, 1, 1, 1) and the complement of S denoted with SC .
For the time being, we consider a scattering object which is spread out to a whole

half-space as depicted in Fig. 2.2, i.e. S =
{
x : x⊥ ≥ 0

}
and SC =

{
x : x⊥ < 0

}
. Both

half-spaces share a boundary at x⊥ = 0 and thus an interface with normal vector n = ∂x⊥ .
We choose this setup because its simplicity makes it the most suitable optical system
for studying transitions at interfaces. Now we derive the reflection and transmission
propagators of this system using the Huygens’ principle, as sketched in Fig. 2.2.
Varying the action in the lower and upper half-space results in the following equations

of motion

�εφ+ δx⊥∂x⊥φ = J , �εSφ− δx⊥∂x⊥φ = 0 , (2.25) bHS

where the d’Alembert operator of the respected half-space with �ε|εSx := −ε|εS ∂2
xt + ∂2

x
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was introduced. Interpreting this relation as the usual equation of motion together with
a condition on the field φ at the interface, the propagators in the half-spaces are given by
their defining equation

�ε|εSx ∆ε|εS
xy = δ(4)

xy . (2.26) bHS

The external source J is located outside the scattering object, i.e. in the lower half-
space < as depicted in Fig. 2.2. With this setup, reflection from the lower half-space back
to the lower half-space and transmission from the lower half-space to the upper half-space
take place at the interface. The strength of these effects is represented by the reflection
coefficient R and transmission coefficient T . With this convention, we take analogous
to the Wightman distribution of the reflection propagator for a boundary in (2.17) the
following ansatz for the Wightman distribution in the lower half-space

G<
xy =

∫ ε

k

[
eik⊥(x⊥−y⊥) − e−ik⊥(x⊥+y⊥)R(k)

]
. (2.27)HS

Thus, in contrast to a total reflection as for boundaries in (2.17), we now allow partial
reflection. This way, we can account for a non-vanishing transmission with T > 0. A
convenient ansatz for the Wightman distribution required for the transmission propagator
then reads

G>
xy =

∫ ε

k

eiq⊥x
⊥−ik⊥y⊥ T (k) , (2.28) bHS

where q⊥(k‖, k⊥) is determined as follows. Due to the different susceptibility in the up-
per half-space, the fields fulfill a different equation of motion as seen in (2.25). There-
fore, also the Wightman distributions incorporate different dispersion relations such that
�εSx G

>
xy = 0 and �εxGRxy = 0. Requiring the ansatz (2.28) to respect the dispersion relation

of the upper half-space yields

q⊥(k) = sgn(k⊥)

√(εS
ε
− 1
)
k2
‖ +

εS
ε
k2
⊥ . (2.29) bHS

Continuity of φx and its normal derivative ∂x⊥φx, as required by Eq. (2.25), implies
that the propagator ∆xy and ∂x⊥∆xy are continuous across the interface. Therefore, the
explicit boundary conditions for the Wightman distributions of the two half-spaces are

lim
x⊥→ 0−

G<
xy = lim

x⊥→ 0+
G>
xy , lim

x⊥→ 0−
∂x⊥G

<
xy = lim

x⊥→ 0+
∂x⊥G

>
xy , (2.30) bHS

where the limit for 0+ is taken from the upper half-space and for 0− from the lower
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half-space. Inserting the Green functions (2.27) and (2.28), we obtain a relation for the
reflection and transmission coefficient,

1−R(k) = T (k) , k⊥ + k⊥R(k) = q⊥T (k) . (2.31) bHS

Solving for these coefficients then results in

R(k) =
q⊥ − k⊥
k⊥ + q⊥

=
A− 1

A+ 1
, T (k) =

2k⊥
k⊥ + q⊥

=
2

A+ 1
, (2.32) bHS

with A := [(εS/ε− 1) tan2(α) + εS/ε]
1/2 and α the angle of incidence which is defined

through tan2(α) := k2
‖/k

2
⊥.

A consistency check for this result is to investigate the charge flow of a complex scalar
field across the interface. To this end, we calculate the current jµ[φ] = i (φ∗∂µφ− ∂µφ∗φ)

on both sides of the interface and demand continuity of the normal derivative of j across
the interface. For the two half-spaces system this results in the condition

lim
x⊥→ 0−

ηµνε nµjν [φ
<] = lim

x⊥→ 0+
ηµνεS nµjν [φ

>] . (2.33) bHS

To illustrate that this equation is satisfied, we use the external source J(k) ∝ δ(3)(k− k̃),
which creates a monochromatic plane wave with spatial momentum k̃. The resulting scalar
field in the respective half-space is then given by φ<|>x =

∫
dµy ∆

<|>
xy Jy. Inserting these

fields into Eq. (2.33) and normalizing the initial current to one, results in the following
condition

1 =
∣∣∣R(k̃⊥)

∣∣∣
2

+
Re
[
q⊥(k̃⊥)

]

k̃⊥

∣∣∣T (k̃⊥)
∣∣∣
2

. (2.34) bHS

This relation is satisfied by the reflection and transmission coefficients in (2.32). Thus, the
propagators in (2.27) and (2.28) account for a conserved charge flow across the interface.
The first term on the right-hand side, |R|2, corresponds to the reflected fraction of the
current, and the second term, Re(q⊥)|T |2/k⊥, corresponds to the transmitted fraction.
These fractions are the “reflectance” and “transmittance”, respectively.
Taking into account the explicit form of the coefficients in Eq. (2.32) allows for the

following phenomenological observations: First, the reflection and transmission coeffi-
cients fulfill the identity R(ω̄) + T (ω̄) = 1 and agree with the spin-averaged Fresnel
equations. Second, total reflection, |R|2 → 1, occurs for εS/ε → ∞, describing a per-
fect mirror. Third, for ε > εS total reflection can also be achieved for εS/ε → 0 or
α → ±π/2. Both cases correspond to total internal reflection, which in optical experi-
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ments is caused by the latter limit, as soon as the angle of incidence exceeds the critical
angle |α| > |αc| = |arctan(1/[ε/εS − 1])|.
Since an infinitely sharp interface can at best be an approximation to a real interface

in an experiment, we investigated in collaboration with Ka Hei Choi and Patrick Hager
a smooth transition between the half-spaces [41, 42]. Even though this interface is more
realistic, it shares the same reflection and transmission properties of an infinitely sharp
interface if the incident wave has a wavelength which is large compared to the transition
region. Therefore, if the incident field configuration cannot resolve the transition the
interface can be replaced with an infinitely sharp one such that a technical more simple
model can be used.
In the following Section, we use the results of the two half-space systems as a reference

point for a different approach to describing propagation in this setup. This approach
becomes necessary when the system is not simple enough so that we cannot solve the
transition conditions in (2.30). For instance, this can be the case if the interface has a
complicated time or spatial dependence, or the dispersion relation of a half-space is too
complicated for the propagator of this half-space to be known.

2.2. Perturbative Approach via the Interaction Picture

In this Section, we explore an alternative approach to the one presented in the previous
Section to derive the propagator in a system with two different media connected by an
interface. As we will see, this approach has advantages over the previous consideration
which we will exploit later on.

2.2.1. Different Dispersion Relations Encoded as Interaction

As in Sec. 2.1.2, we consider a Minkowski spacetime (M, η) with region S and its com-
plement SC , which are characterized by the susceptibilities εS and ε, respectively. For
convenience, we state the action (2.24) again,

S0 = −1

2

∫

SC
dµ (ηµνε ∂µφ∂νφ+ 2φJ)− 1

2

∫

S
dµ ηµνεS ∂µφ∂νφ =:

∫

SC
dµLε0 +

∫

S
dµLεS0 . (2.35) bHS

The kinetic terms dictate the dispersion relation (ωεk)
2 = k2/ε in SC and (ωεSk )2 = k2/εS

in S. Instead of determining the propagator using matching conditions as in Sec. 2.1.2,
we now adopt the following point of view. We require the field φ to propagate in the
whole spacetime according to the first dispersion relation (ωεk)

2 = k2/ε, i.e. now also in
the region S. This first leads to an incorrect description of the propagation within the
scattering object, which is corrected by an interaction term SI . Changing the perspective
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Figure 2.3.: Spatial projections of the terms in (2.38) to the propagator for a spacetime
filled with a medium of susceptibility εS. Fundamentally, the fields propagate according
to the dispersion relation with susceptibility ε and therefore interacting at every point.
This means, z1, z2 and all subsequent zi are integrated over the whole spacetime.

does not alter the theory at hand and thus we only regroup the action (2.35) with

S0 =

∫

M
dµ Lε0 −

1

2

∫

S
dµ
[
ηµνεS ∂µφ∂νφ− ηµνε ∂µφ∂νφ

]
=:

∫

M
dµLε0 +

∫

S
dµLI . (2.36) bHS

In this perspective, the “free” field φ evolves by means of the propagator ∆ε in (2.5), i.e.
as if the whole spacetime is filled with a uniform medium with susceptibility ε. In the
rest state of the medium, the dispersion relation of the scattering object is then encoded
through the Lagrangian LI = λS (∂tφ)2 /2 and the coupling constant λS = εS−ε. Utilizing
the interaction picture of quantum field theory, the non-perturbative propagator of the
whole system is then

∆xy = i

〈
Tφxφy exp

{
i

∫

S
dµLI

}〉

con

, (2.37) bHS

where 〈·〉con includes only connected diagrams and we omit to explicitly write down the
iε prescription limTz→∞(1+ε)

∫ Tz
−Tz dzt.

Note that describing the dispersion relation in SC as “free” and the one in the scattering
object S as an interaction was a specific choice. We can equally consider the “free”
propagation with respect to the region S and the action of the medium in SC in terms
of an interaction term. In this case, ∆εS would be the propagator of the free field and
ε− εS would be the coupling constant. For the non-perturbative evaluation of (2.37) it is
irrelevant which choice we make. However, if we wish to consider (2.37) at finite order in
in the coupling constant, the choice is crucial.
To demonstrate this, we first consider a scattering object which covers the whole space-

time. This means, we take a system with the susceptibility εS, but describe fields that
obey a dispersion relation based on ε. Therefore, the fields interact at any point in space-
time since now the interaction part of (2.36) is important everywhere. Including all these
interactions, we obtain the full Green function according to (2.37):
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∆xy = ∆ε
xy + λS

∫

M
dµz1 ∂zt1∆

ε
xz1
∂zt1∆

ε
z1y

+ λ2
S

∫

M
dµz1dµz2 ∂zt1∆

ε
xz1
∂zt1∂zt2∆

ε
z1z2

∂zt2∆
ε
z1y

+ · · ·

= −
∫

d4k
eik(x−y)

ηµνε kµkν

(
1− ηµνεS kµkν − ηµνε kµkν

ηµνε kµkν
+

(
ηµνεS kµkν − ηµνε kµkν

ηµνε kµkν

)2

+ · · ·
)

= −
∫

d4k
eik(x−y)

ηµνεS kµkν
= ∆εS

xy ,

(2.38) bHS

where we used the geometric series from the second to the third row and did not provide
the iε prescription of the propagators. The first three terms which are explicitly written
here are depicted in Fig. 2.3. The resummed result is indeed the propagator ∆εS which
relies on the correct dispersion relation. In the very same way a massive propagator can
be obtained from the resummation of the mass term m2φ2 “interactions” as shown in the
App. C. However, if one truncates the sum in (2.38) at a finite order in λS, one does not
obtain ∆εS . For a sufficiently small λS, a perturbative evaluation of (2.37) up to some
order is nevertheless a viable approach which brakes down at latest when |λS| ≥ 1.
If, on the other hand, one uses the susceptibility εS for the dispersion relation of the

fields φ, then there is no interaction such that the integral in (2.37) has no support and
vanishes. Thus one obtains ∆εS in leading order no matter how many orders in λS are
taken into account. For this example, choosing the dispersion relation which respects εS
is therefore preferable. For each application we deal with in this thesis, we will investigate
the best choice and discuss alternatives.

2.2.2. Connection of the Perturbative and the Non-Perturbative

Approach

To demonstrate the connection between the perturbative and the non-perturbative ap-
proach we show their equivalent result for the system analyzed in Sec. 2.1.2. This means,
we consider an interface separating two half-spaces with different media. However, this
time we use the perturbative approach instead of the non-perturbative one. Again, the
scattering object has susceptibility εS and covers the upper half-space > with domain
S =

{
x : x⊥ ≥ 0

}
. We place an external source in the lower half-space < with domain

SC =
{
x : x⊥ < 0

}
and susceptibility ε.

We choose similar susceptibilities ε ≈ εS such that we can treat λS as a smallness
parameter which allows us to expand (2.37) and take finite orders in λS into account. We
thus compute the propagator perturbatively, which we indicate with the symbol p. Up
to the second order in λS, the propagator (2.37) for the two half-spaces is then computed
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Figure 2.4.: Spatial projections of the contributions in (2.39) to the reflection propagator
∆R in a) and to the transmission propagator ∆T in b) for the system consisting of two
media with different susceptibilities.

with

∆xy = ∆ε
xy + λS

∫

S
dµz1 ∂zt1∆

ε
xz1
∂zt1∆

ε
z1y

+ λ2
S

∫

S
dµz1dµz2 ∂zt1∆

ε
xz1
∂zt1∂zt2∆

ε
z1z2

∂zt2∆
ε
z1y
.

(2.39) b pHS

The leading order contribution ∆
(0)
xy = ∆ε

xy corresponds to free propagation as if there
were no scattering object. The subsequent contributions interact with the scattering
object once and twice, respectively. These interactions are shown in Fig. 2.4 with points
z1 and z2 and contribute to reflection and transmission. In the following, we first calculate
the linear order ∆

(1)
xy and subsequently use it to determine the quadratic order ∆

(2)
xy .

Linear Order The diagram representing the term ∆
(1)
xy linear in λS is depicted in Fig. 2.4

with a single interaction vertex at z1 for reflection and transmission respectively. By
substituting the Feynman propagators and taking z = z1 we get

∆(1)
xy = λS

∫

S
dµz

∫
d4k

(2π)4

d4q

(2π)4

k0q0 e
iq(x−z)eik(z−y)

(ηµνε qµqν − iε)(ηµνε kµkν − iε)
, (2.40) b pHS

where we introduced the iε prescription. As usual, the limit ε→ 0 outside the momentum
integrals is understood. The zt and z‖ integration yield delta distributions, which in turn
simplify the corresponding q0 and q‖ integration,

∆(1)
xy = λS

∫ ∞

0

dz⊥
∫

d4k

(2π)4

dq⊥
2π

k2
0

eik‖(x
‖−y‖)e−ik0(xt−yt)e−iz

⊥(q⊥−k⊥)eiq⊥x
⊥−ik⊥y⊥

(−εk2
0 + k2

‖ + q2
⊥ − iε)(−εk2

0 + k2
‖ + k2

⊥ − iε)
. (2.41) b pHS

Eq. (2.41) contains a total of four poles in the complex k0 plane as depicted in Fig. 2.5a).
For simplicity, we first fix the causal order as xt > yt, indicated with c, and restore the
other case later. With this restriction, only the two poles in the lower half-plane contribute
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Re(k0)

Im(k0)

× ×

ωεk ωεq××

−ωεk−ωεq

xt < yt

xt > yt

a)

Re(q⊥)

Im(q⊥)

×

−k⊥ ×

k⊥

x⊥ > z⊥

x⊥ < z⊥

b)

Figure 2.5.: Complex plane of the k0 integral in Eq. (2.41) depending on the causal
order of xt and yt depicted in a). Complex plane of the q⊥ integral belonging to the
first term in Eq. (2.43) shown in b) for the reflection contribution (x⊥ < z⊥) and the
transmission contribution (x⊥ > z⊥).

as shown in Fig. 2.5a),

∆(1)
xy = iλS

∫ ∞

0

dz⊥
∫

d3k

(2π)3

dq⊥
2π

eik‖(x
‖−y‖)eiq⊥(x⊥−z⊥)eik⊥(z⊥−y⊥)

× ωεke
−iωεk(xt−yt) − ωεqe−iω

ε
q(xt−yt)

2ε(k⊥ − q⊥)(k⊥ + q⊥)
,

(2.42) b p cHS

where again (ωεq)
2 = (k2

‖ + q2
⊥)/ε. For the denominators, we apply the Sokhotski-Plemelj

theorem, P [1/(k⊥ ± q⊥)] = 1/(k⊥ ± q⊥ + iε) + iπδ(k⊥ ± q⊥) with the Cauchy principal
value P . Because of the minus sign in the numerator in Eq. (2.42), the contributions of
the delta distributions δ(k⊥ ± q⊥) cancel each other out. This leads to

∆(1)
xy = iλS

∫ ∞

0

dz⊥
∫

d3k

(2π)3

dq⊥
2π

eik‖(x
‖−y‖)eiq⊥(x⊥−z⊥)eik⊥(z⊥−y⊥)

× ωεke
−iωεk(xt−yt) − ωεqe−iω

ε
q(xt−yt)

2ε(k⊥ − q⊥ + iε)(k⊥ + q⊥ + iε)
.

(2.43) b p cHS

The second term, proportional to ωεq , carries the poles k⊥ = q⊥− iε and k⊥ = −q⊥− iε in
the lower complex k⊥ half-plane. This term vanishes identically since z⊥ > 0 > y⊥. The
first term, however, yields a non-vanishing contribution regardless of whether we close the
q⊥ integration contour in the lower (for x⊥ < z⊥) or upper half-plane (for x⊥ > z⊥) as
demonstrated in Fig. 2.5b). Thus the propagator becomes

∆(1)
xy = iλS

∫ ∞

0

dz⊥
∫ ε

k

(ωεk)
2

2 (k⊥ + iε)

[
Θx⊥z⊥e

ik⊥(x⊥−y⊥) −Θz⊥x⊥e
−ik⊥(x⊥+y⊥)+2iz⊥(k⊥+iε)

]
.

(2.44) b p cHS
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Performing the z⊥ integration over the support of the scattering object, i.e., the upper
half-space, we obtain

∆(1)
xy = −

∫ ε

k

ω̄

4

[
Θx⊥e

ik⊥(x⊥−y⊥)
(
1− 2ix⊥k⊥

)
+ Θ−x⊥e

−ik⊥(x⊥+y⊥)
]
, (2.45) b p cHS

where we introduced a rescaled expansion parameter ω̄ = λS(ωεk)
2/k2
⊥ = λS[1+tan2(α)]/ε

with the angle of incidence α. This propagator is valid for y⊥ < 0 and xt > yt such that
the Wightman distribution equals the propagator Gxy := ∆xy|xt>yt . As before we group
the contribution to the Wightman distribution into the three terms of direct propagation,
reflection and transmission,

Gxy = (1−Θx⊥)
(
Gε
xy +GRxy

)
+ Θx⊥G

T
xy . (2.46) b pHS

With this definition, the reflection propagator up to linear order in λS, depicted as the
first diagram in Fig. 2.4a) reads

GRxy = −
∫ ε

k

eik⊥(x⊥+y⊥)R(ω̄) , (2.47) b pHS

with reflection coefficient

R(ω̄) =
1

4
ω̄ +O

(
ω̄2
)
. (2.48) b pHS

The corresponding transmission propagator, as represented by the first two diagrams in
Fig. 2.4b), is given by

GTxy =

∫ ε

k

eik⊥(x⊥−y⊥)

(
1 +

i

2
ω̄k⊥x

⊥
)
T (ω̄) +O

(
ω̄2
)
, (2.49) b pHS

where the x⊥ independent factors are combined in the transmission coefficient,

T (ω̄) = 1− 1

4
ω̄ +O

(
ω̄2
)

= 1−R(ω̄) . (2.50) b pHS

The contributions which depend on x⊥ such as the one in (2.49) modify the exponen-
tial and thus yield terms of every order in k⊥x

⊥. Next, we compute the reflection and
transmission propagator to quadratic order in λS.

Quadratic Order Having examined the first order term ∆
(1)
xy , we can now evaluate the

second order term ∆
(2)
xy in (2.39). To simplify the computation we perform it as similar

as possible to the previous calculation of the linear order term ∆
(1)
xy . To achieve this,
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we express the linear transmission propagator ∆
T (1)
xy := ∆

(1)
xy |x⊥>0 as a four-momentum

integral,

∆T (1)
xy =

∫
d4k

(2π)4

eik(x−y)

ηε(k, k)− iεX(k0, k⊥, x
⊥) , (2.51) b pHS

with

X(k0, k⊥, x
⊥) := −λS

k2
0

2 (k⊥ + iε)

(
1

2(k⊥ + iε)
− ix⊥

)
. (2.52) b pHS

For xt > yt we obtain the expression (2.45) through the k0 integration. In addition,
there is a contribution for xt < yt, which we have to include for the calculation of the
second order as argued in App. C. Since we have rewritten the transmission propagator
as a four-moment integral, we can now morally re-run the calculation of the linear order
with a modified propagator and thus analogously iteratively solve for higher orders. Since
z⊥1 > 0, we can rewrite the second-order contribution in (2.39) using the transmission
propagator (2.51), so that

∆(2)
xy = λS

∫

S
dµz ∂zt∆

ε
xz∂zt∆

T (1)
zy . (2.53) b pHS

Here, and in general for every propagator ∆
(n)
xy of order λnS, we take the transmission

propagator ∆
T (n−1)
zy to describe the propagation from the lower half-space to the upper

half-space and add one propagator ∆ε
xz which then determines whether it is a contribution

for the transmission propagator ∆
T (n)
xy or the reflection propagator ∆

R(n)
xy depending on

the choice of x⊥.
Eq. (2.53) is similar to that for ∆

(1)
xy , which makes it convenient to again assume the

causal order xt > yt and perform the steps (2.41) and (2.42) analogously. This yields a
higher order version of (2.43),

∆(2)
xy = iλS

∫ ∞

0

dz⊥
∫

d3k

(2π)3

dq⊥
2π

eik‖(x
‖−y‖)eiq⊥(x⊥−z⊥)eik⊥(z⊥−y⊥)

× ωεke
−iωεk(x0−y0)X(ωεk, k⊥, z

⊥)− (ωεk → ωεq)

2ε(k⊥ − q⊥ + iε)(k⊥ + q⊥ + iε)
.

(2.54) b p cHS

The second term proportional to ωεq has three poles in the lower complex k⊥ half-plane.
As depicted in Fig. 2.6a), these are irrelevant because the integration contour is closed in
the upper half-plane, since z⊥ > y⊥. In contrast, the first term, which is proportional to
ωεk, has the pole structure shown in Fig. 2.6b), which leads to the expression
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Figure 2.6.: Complex plane of the k⊥ integral belonging to the second term in Eq. (2.54)
expressed in a) and for the reflection contribution (x⊥ < z⊥) and the transmission con-
tribution (x⊥ > z⊥) of the q⊥ integral of the first term in Eq. (2.54) shown in b).

∆(2)
xy = iλS

∫ ∞

0

dz⊥
∫ ε

k

(ωεk)
2X(ωεk, k⊥, z

⊥)

2 (k⊥ + iε)

×
[
Θx⊥z⊥e

ik⊥(x⊥−y⊥) −Θz⊥x⊥e
−ik⊥(x⊥+y⊥)+2iz⊥(k⊥+iε)

]
.

(2.55) b p cHS

Performing the z⊥ integration and splitting the terms proportional to Θx⊥ and Θ−x⊥ , we
obtain

∆(2)
xy =

∫ ε

k

ω̄2

8

[
Θx⊥e

ik⊥(x⊥−y⊥)
(

1− 2ik⊥x
⊥ −

(
k⊥x

⊥)2
)

+ Θ−x⊥e
−ik⊥(x⊥+y⊥)

]
. (2.56) b p cHS

As previously outlined, higher orders could now be calculated iteratively by using the
transmission part from (2.56) as input for the subsequent order.
Thus, combining the leading order in (2.47) with (2.56) the reflection coefficient up to

second order in λS as depicted in Fig. 2.4a) results in

R(ω̄) =
1

4
ω̄ − 1

8
ω̄2 +O

(
ω̄3
)
. (2.57) b pHS

The transmission Wightman distribution, including all diagrams in Fig. 2.4b), is given by

GTxy =

∫ ε

k

eik⊥(x⊥−y⊥)

(
1 +

i

2

(
ω̄ − ω̄2

4

)
k⊥x

⊥ − 1

8

(
ω̄ k⊥x

⊥)2
)
T (ω̄) +O

(
ω̄3
)
, (2.58) b pHS
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with transmission coefficient

T (ω̄) = 1− 1

4
ω̄ +

1

8
ω̄2 +O

(
ω̄3
)

= 1−R(ω̄) . (2.59) b pHS

We note that the propagation across the interface terminates within the scattering
object. Therefore, the transmission propagator encodes the dispersion relation inherited
from S such that �εSx GTxy = 0, in contrast to the reflection with �εxGRxy = 0. As for
the example with the scattering object covering the entire spacetime, the interaction
exponential in (2.37) provides the correct dispersion relation. This is reflected in terms
entering with powers of k⊥x⊥ in (2.58), and by a partial resummation the transmission
propagator becomes

GTxy =

∫ ε

k

eiq⊥x
⊥−ik⊥y⊥T (ω̄) , (2.60) b pHS

where we used q⊥ as introduced in (2.29). Replacing k⊥ by q⊥, the dispersion relation of
S is now indeed encoded in the upper half-plane. For a perturbative analysis where the ω̄
expansion is truncated, ω̄ must be small, i.e. λS/ε� 1 and tan2(α)� 1. In this setting,
only systems with T ≈ 1 and R � 1 can be described consistently. For scenarios in which
total internal reflection may occur, a closed-form expression of this series is needed that
takes into account all orders of λS. Due to the simplicity of the interface, we can presume
all higher order contributions as in the example of the scattering object covering the whole
spacetime. Considering all terms of the series, the transmission coefficient reads,

T (ω̄) =
∞∑

n=0

√
π

Γ(2 + n)Γ(1
2
− n)

ω̄n =
2

1 +
√

1 + ω̄
= 1−R(ω̄) , (2.61) bHS

with the gamma function Γ. These transmission and reflection coefficients agree with the
result in (2.32) obtained by matching techniques with A =

√
1 + ω̄.

For the system of two half-spaces, both the perturbative and non-perturbative ap-
proaches can be used. For any other system, it is necessary to check which technique is
more suitable. The perturbative approach is preferred when the dispersion relation for
the scattering object or for the surrounding spacetime is so complicated that the propa-
gator is unknown. Furthermore, if the scattering object has a complicated geometry or
time dependence, the perturbative approach only requires solving a more sophisticated
integral in the interaction exponential (2.37). For the non-perturbative approach, this
would mean solving complicated transition conditions. On the other hand, if a system
allows total reflection, the perturbative approach requires resummation that may not be
feasible, such that in this case the non-perturbative approach is preferred. We will discuss
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which approach to use in the subsequent systems in the context of field theory in curved
spacetimes. As we will see, in this context we will face the difficulty that we require
the propagator in a complicated background geometry such that we have to use the non-
perturbative technique. In the next Chapter, we demonstrate how to solve this dilemma
by exploiting the principle of equivalence.





3. Propagation During Black-Hole
Formation

Solving the propagator’s defining equation for a given spacetime can be arbitrarily diffi-
cult. If the propagator is only required in a local environment, the principle of equivalence
can be used to obtain it straightforwardly for any spacetime [30]. According to the princi-
ple of equivalence, the gravitational mass equals the inertial mass. Therefore, an observer
cannot distinguish between being accelerated and being subjected to a homogeneous grav-
itational field [43]. This means that in a small environment where the gravitational field
is sufficiently homogeneous, the metric for an arbitrarily curved background is flat when
expressed using coordinates in which a free-falling observer is at rest. For environments
that are larger, such that the Minkowski metric is insufficient, the inhomogeneity of the
gravitational field can be taken into account with correction terms. A particular coordi-
nate manifestation of this procedure are the Riemann normal coordinates (RNC) and the
Fermi normal coordinates (FNC), which we introduce in the next Section.
In Sec. 3.2, we begin by constructing and analyzing the geometry of thin matter shells

with different trajectories, as described in our article [12] in collaboration with Florian
Niedermann. Using a normal neighborhood, we derive the propagator of a scalar field
in Sec. 3.3 perturbatively and non-perturbatively in a fixed shell background. We then
examine these propagators to see whether a communication experiment across the shell
fails once the shell radius is smaller than the gravitational radius in Sec. 3.3.3.

3.1. Normal Coordinates

In the following Sections, we will concentrate on RNC before delving into alternative
normal coordinates in Section 3.1.5. To construct RNC around an anchor point in a
given background metric g for an observer with coordinate velocity va, we proceed as
follows: We compute locally the vierbein eaµ which satisfies the conditions ea0 = va and
gabe

a
αe

b
β = ηαβ, i.e. transforming the metric into the Minkowski metric at the anchor

point. Using this vierbein, the inverse RNC metric up to the fourth adiabatic order, i.e.
including terms O(x4) in the standard coordinates xα = (x0, x1, x2, x3) reads [44,45]
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gµν(x) = ηµν +
1

3
Rα

µν
βx

αxβ +
1

6
Rα

µν
γ,βx

αxβxγ

+

(
1

15
Rµ
αβλR

ν
γδ
λ +

1

20
Rµ

α
ν
β,γδ

)
xαxβxγxδ +O

(
x5
)
,

(3.1) aG

with the Riemann tensor Rµ
ναβ = Γµνβ,α − Γµνα,β + ΓλνβΓµαλ − ΓλναΓµβλ and its derivatives

evaluated at the origin xα = 0. Taking only finite orders of the expansion into account as
in (3.1) can usually only approximate a curved background in a neighborhood and thus
we indicate this approximation with the symbol a. In the next Section, we derive the
propagator of a scalar field in such a neighborhood using a novel approach based on the
technique we presented in Sec. 2.2.

3.1.1. Propagation in RNC via the Perturbative Approach

To obtain the propagator1 in RNC we start with the action of a free massless scalar field
minimally coupled to a gravitational background with the metric g,

S = −1

2

∫
d4x
√−g gµν∂µφ∂νφ , (3.2) bHG

where we adopt the notation det(g) =: g for this Chapter. Placing the field into a
RNC patch one can for a given adiabatic order find the propagator by iteratively solving
the defining equation of the propagator [30]. This is a delicate procedure that relies on
tedious calculations and special properties of RNC. Since this is a perturbative problem,
we instead apply the perturbative approach from Sec. 2.2 to find the RNC propagator
and compare our results with [30].
This perturbative approach requires to choose the kinetic part of the action according to

which the fields should propagate freely. For the action (3.2), there are among others the
following candidates for the kinetic Lagrangian: Lk ∈ {−Zµν∂µφ∂νφ/2, Z

µνφ∂µ∂νφ/2}
with Zµν ∈ {√−g gµν , gµν , ηµν}. The second class of kinetic terms are relevant if one
partial integrates (3.2) leading to an interaction term which is proportional to Γµνµ ∂νφ.
This can prove to be in particular useful if one wants to compute observables of for
example bi-local operators by connecting both points of the operator with a Wilson line,
i.e. a path ordered exponential of Γµνµ [17].
Since the leading order term of the RNC propagator in [30] is the Minkowski propagator

we conveniently choose the Minkowski action as the free part Lk = −ηµν∂µφ∂νφ/2. Then,
splitting (3.2) into this free part and the remaining part, which is now an interaction part,
reads
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y

x

+ y

x

z1

+ y

x

z1

z2

Figure 3.1.: Spatial projection into a plane of the first three contributions to the prop-
agator ∆xy in a RNC patch with the origin at y. The fields propagate with respect to a
dispersion relation respected in the leading order Minkowski spacetime and thus interact
with the difference added by higher order contributions at every spacetime point except
the origin. Therefore, z1 and z2 are integrated over the whole RNC patch. The difference
between the background and the Minkowski term, i.e. the strength of the interaction, is
exemplary indicated by the shading of the gray color.

S = −1

2

∫
d4x
√−g gµν∂µφ∂νφ = −1

2

∫
dµ
(
ηµν +

√−g hµν + (
√−g − 1)ηµν

)
∂µφ∂νφ

= −1

2

∫
dµ ηµν∂µφ∂νφ−

1

2

∫
dµ h̃µν∂µφ∂νφ =:

∫
dµ Lk +

∫
dµ LI ,

(3.3) bHG

where gµν = ηµν + hµν and h̃µν :=
√−g hµν + (

√−g − 1)ηµν . With this regrouping we
can, as before, obtain the Feynman propagator perturbatively by expanding

∆xy = i

〈
Tφxφy exp

{
i

∫
dµLI

}〉

con

. (3.4) bHG

Inserting the interaction Lagrangian (3.3) results for the first two contributions

∆xy = −
∫

d4k
eikx

k2

(
e−iky +

∫
dµz

∫
d4q

eiz(q−k)−iqy

q2
h̃µνz kµqν +O(h̃2)

)
, (3.5) bHG

where the leading term according to the construction is the Minkowski propagator.
As a first application of Eq. (3.5) we consider the RNC metric (3.1) up to the third

adiabatic order and place one leg of the propagator into the origin y = 0 as depicted in
Fig. 3.1. Using the inverse RNC metric (3.1), the measure required for h̃µν expanded in
RNC reads
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√−g − 1 =
1

6
Rαβx

αxβ − 1

12
Rαβ,γx

αxβxγ

−
(

1

40
Rαβ,γδ −

1

36
RαβRγδ +

1

180
Rα

λ
β
κRγλδκ

)
xαxβxγxδ +O

(
x5
)
,

(3.6) aG

with the Ricci tensor Rαβ. This way h̃µνz is a polynomial in z which we can rewrite
in terms of partial derivatives acting on the plane waves w.r.t. q, i.e. zµ → −i∂qµ .
Using integration by parts the derivatives act on qν/q2 and the z integral yields a delta
distribution δ(4)(k − q). Performing the now trivial q integral and neglecting terms of
quadratic order in the Ricci scalar R, Ricci tensor, and Riemann tensor, yields

∆x0 = −
∫

d4k
eikx

k2

(
1 +

R

3k2
− 2Rαβk

αkβ

3k4
− iR,µ

kµ

k4
+ 2iRµν,α

kµkνkα

k6
+O(R2)

)
,

(3.7) b a lHG

in agreement with the RNC propagator in reference [30].
To determine the RNC propagator to the fourth adiabatic order is more involved. Since

the reference [30] calculates the propagator for a massive scalar field we also implement a
mass for better comparability. To see how the mass term can be included perturbatively
in a Minkowski background see App. C. Since here the mass term in the action includes
a RNC measure, we split it up into a Minkowski contribution which we put into the free
Lagrangian LK = −ηµν∂µφ∂νφ/2−m2φ2/2 and a curvature correction we include into the
interaction Lagrangian LI = −h̃µν∂µφ∂νφ/2 + (

√−g − 1)m2φ2/2.
For the fourth adiabatic order we cannot neglect contributions of order h̃2 anymore and

thus we take all parts in Fig. 3.1 into account. Expanding (3.4) to this order we obtain

∆xy = −
∫
d4k

eikx

k2 +m2

{
e−iky −

∫
dµz1

∫
d4q

eiz1(q−k)

q2 +m2

[
e−iqy

(
h̃µνz1 kµqν + m̃2

z1

)

+

∫
dµz2

∫
d4K

eiz2(K−q)−iKy

K2 +m2

(
h̃µνz1 kµKν

(
h̃σλz2 Kσqλ + m̃2

z2

)
+ m̃2

z1
m̃2
z2

)
+O(h̃3)

]}
,

(3.8) b a lHG

where m̃2
x := (

√−gx− 1)m2. The table below shows to what order n one must expand in
h̃ and m̃2 to capture all contributions up to the desired adiabatic order,

adiabatic order 0 1 2 3 4 5 6 7 · · ·
h̃n, m̃2n 0 0 1 1 2 2 3 3 · · ·

. (3.9) b a lHG

Therefore, expression (3.8) is valid up to the 5th adiabatic order. Nevertheless, we restrict
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ourselves to the fourth adiabatic order since it is the leading order contribution in vacuum
spacetimes such as the Schwarzschild spacetime.
As a first sanity check we compute the contributions which include two derivatives of

the Riemann tensor and compare them with the results in the literature. For this purpose,
terms linear in h̃ and m̃2 are sufficient and thus the first line in (3.8). Using the single
terms of (3.1) and (3.6) which possess two derivatives of the Riemann tensor and inserting
them into (3.8) we find

∫
d4k

eikx

k2 +m2

(
kµ

( 1

20
Rµ

α
ν
β,γδ −

1

40
ηµνRαβ,γδ

)
∂kα∂kβ∂kγ∂kδ

kν
k2 +m2

− m2

40
Rαβ,γδ∂kα∂kβ∂kγ∂kδ

1

k2 +m2

)
.

(3.10) b a lHG

We perform all derivatives the propagator becomes

−
∫

d4k
2eikx

5 (k2 +m2)3

(
R,α

,α −
2kαkβRαβ

,γ
,γ

k2 +m2
− 6kαkβR,αβ

k2 +m2
+

12kαkβkγkδRαβ,γδ

(k2 +m2)2

)
,

(3.11) b a lHG

which agrees with the expression in [30].
All correction terms in (3.7) and (3.11) depend on either the Ricci scalar or the Ricci

tensor. To shorten the computation we restrict ourselves from now on to vacuum space-
times and thus neglect all contributions which include the Ricci tensor or the Ricci scalar.
The only remaining corrections to the Minkowski propagator up to the fourth adiabatic
order are quadratic in the Riemann tensor. The propagator (3.8) for vacuum spacetimes
then becomes

∆x0 = −
∫

d4k
eikx

k2 +m2

(
1 + kµ

(X µν
αγβκ

180
−
Yµναγβκ

15

)
∂kα∂kβ∂kδ∂kκ

kν
k2 +m2

− kµ
9
Rµ

α
ν
βR

σ
δ
λ
κ∂kα∂kβ

(
kνkσ

k2 +m2
∂kδ∂kκ

kλ
k2 +m2

)
− m2

180

ηµν
4
X µν
αγβκ∂kα∂kβ∂kγ∂kδ

1

k2 +m2

)

=: −
∫

d4k eikx
(

1

k2 +m2
+
I

180
− II

15
− III

9
−m2 IV

180

)
,

(3.12) b a l vHG

where X µν
αγβκ = ηµνRα

ε
δ
γRβεκγ and Yµναγβκ = Rµ

βδ
γRν

ακγ. Notice, the terms h̃m̃2 and m̃4

appearing in (3.8) do not contribute for vacuum spacetimes in fourth adiabatic order.
Performing the derivatives and using the first Bianchi identity Rαβγδ+Rαγδβ+Rαδβγ = 0

together with the identity RµαβγRνβαγ = RµαβγRναβγ/2 we find for the individual terms
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I = III = 0 and

−II
15

=
12

45
Y − 16

15
Z − k2

180
IV , −IV

180
=

1

k2 +m2

(
3

45
X − 12

15
Y +

32

15
Z
)
, (3.13) b a l vHG

with definitions X := RβεκγRβεκγ/(k
2 +m2)

3, Y := kαkβRα
εκγRβεκγ/(k

2 +m2)
4 and

Z := kαkβkγkδRα
ε
β
κRγεδκ/(k

2 +m2)
5. Adding these results into the propagator (3.12)

yields

∆x0 = −
∫

d4k eikx
(

1

k2 +m2
+

1

15
X − 8

15
Y +

16

15
Z
)
. (3.14) b a l vHG

This propagator is consistent with the one in the article [30] and was derived in a fairly
simple and straightforward manner. As a result, due to its technical simplicity, using this
method to find the propagator in normal neighborhoods appears to be preferable to the
established technique presented in [30]. Finally, because we will compute the convolution
of the propagator with external sources in Chapter 4 to analyze vacuum persistence in
normal neighborhoods, we calculate the following quantity,

√−gx∆x0 = −
∫

d4k eikx
(

1

k2 +m2
+

4

15
Y − 16

15
Z
)
. (3.15) b a l vHG

This is the RNC propagator with one leg in the origin which resolves the leading order
correction to the Minkowski propagation. We chose one leg to be in the origin to connect
to the results in the literature.
Without choosing a leg of the propagator at the origin, i.e., without y = 0 in Eq. (3.5),

rewriting the polynomials of z in terms of q derivatives would lead to additional terms
depending on y. To avoid this, we first shift the q integral to p = q − k such that (3.5)
becomes

∆xy = −
∫

d4k
eikx

k2

(
e−iky +

∫
dµz

∫
d4p

eizp−i(p+k)y

(p+ k)2
h̃µνz kµ(pν + kν) +O(h̃2)

)
. (3.16) b aHG

The polynomials in z can now be rewritten in terms of p derivatives such that the prop-
agator to the second adiabatic order reads

∆xy = −
∫

d4k
eikx

k2

(
e−iky +

∫
d4p δ(p)e−i(p+k)ykµh̃

µν(i∂p)
(pν + kν)

(p+ k)2

)

= −
∫

d4k
eik(x−y)

k2

(
1 +

R

3k2
− 2Rαβk

αkβ

3k4
+
Rαβx

αxβ

6k2
− Rα

µν
βkµkνx

αxβ

3k2

)
.

(3.17) b a lHG

As a consistency check for y → 0 we recover ∆x0 in (3.7) to the second adiabatic order. We
can see that there is already a contribution to this adiabatic order for vacuum spacetimes.
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As a result, for vacuum spacetimes up to the second adiabatic order and taking the
measures of the convolution with external source into account we obtain

√−gx∆xy

√
−gy = −

∫
d4k

eik(x−y)

k2 +m2

(
1− Rα

µν
βkµkνx

αxβ

3(k2 +m2)

)
. (3.18) b a l vHG

As can be seen in (3.6) for a vacuum spacetime up to second adiabatic order
√−gx = 1

and thus the measure contributions are not relevant here. In the following Section, we
choose the geometry of a thin shell and compute the curvature tensors needed for a RNC
construction in the shell’s exterior, as well as the RNC propagators.

3.1.2. RNC Patch in a Schwarzschild Geometry

In order to investigate the formation of a black-hole quantum mechanically, we first need a
suitable model for the formation. Charged and rotating black-holes exhibit unique effects,
such as the Penrose process [46], which we investigate in App. B for the production of
a dark matter jet. However, as we are only interested in the formation of any black-
hole in this work, we choose a Schwarzschild black-hole. For this purpose, we use a
classical, spherically symmetric gravitational collapse that eventually forms a black-hole
[47]. Outside the collapsing object of massM , Birkhoff’s theorem dictates a Schwarzschild
spacetime [48]. Therefore, in spherical Schwarzschild coordinates (tS, r, θ, φ), the line
element of this geometry is

ds2 = −f(r) dt2S + f−1(r) dr2 + r2dΩ2 , (3.19) G

with f(r) = 1 − rg/r, the Schwarzschild radius rg = 2M and dΩ2 = dθ2 + sin2(θ) dφ2.
For radii r > rg the spacetime is static relative to the observer field uS = f−1/2∂tS . The
geodesic equation for the trajectories of the Schwarzschild observer γ is γ̈ = rg/2r

2 ∂r.
This acceleration must be maintained by the observer to remain at rest.
Because of the coordinate singularity in (3.19) at r = rg, other observers are advanta-

geous for our considerations, since we will consider objects that can cross the Schwarzschild
horizon. In order to consider an observer which can describe horizon crossing we solve
the geodesic equation for radial timelike geodesics. Further demanding the observer to
follow an inward directed geodesic with radial position R(τ) we determine the 4 velocity

u(R) =

√
rg
R
ur + e

f 2(R)
∂tS −

√
e2 − f(R) ∂r ,

(3.20) bG

with the constant of motion e describing the total energy for a relativistic particle. Notice,
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the coordinate velocity of this probe dR/dtS = ur/utS decreases to zero when the probe
approaches the horizon and therefore horizon crossing cannot be described.
To change to an observer with 4 velocity (3.20) we compute the dual vector field

u?(R) = −grad[tP (tS, r)]|r=R with tP (tS, r) = tS +
∫ r

0
dr′u?r(r

′). Expressing the line ele-
ment (3.19) of the Schwarzschild geometry with dtS = edtP −u?r(r)dr results in the gener-
alized Painlevé-Gullstrand coordinates (tP , r, θ, φ) using as time coordinate the eigentime
of a radial infalling observer as in [49],

ds2
e = −

(
1− e2χ2(r)

)
dt2P + 2χ(r) dr dtP +

1

e2
dr2 + r2dΩ2 , (3.21) G

where χ(r) =
√
e2 − f(r)/e2.

In these coordinates, the 4 velocity of a radially infalling probe with total energy eP is
given by

uP (R) =

√
e2 − f(R)ur + eeP

f(R)
∂tP −

√
e2
P − f(R) ∂r . (3.22) bG

In contrast to the 4 velocity in Schwarzschild coordinates (3.20) there is now a possi-
bility for the coordinate velocity to remain finite at R = rg. Namely, if the observer
and the probe share the same total energy e = eP the coordinate velocity evaluates to
dR/dtP = −

√
rg/R and horizon crossing can be described.

For simplicity we choose an observer which starts at rest and then freely falls from
infinity. The total energy of a non-relativistic particle with speed v � c at asymptotic
infinity f(R) ≈ 1 reads [49],

eNRN (R) = 1 +
v2

2
− M

R
, (3.23) bG

with the rest energy, kinetic energy and potential energy. Therefore, setting v = 0 and
R→∞ results in the total energy e = 1. This choice of the observer leads to the standard
Painlevé-Gullstrand coordinates and the line element (3.21) becomes

ds2 = −f dt2P + 2

√
rg
r

dtP dr + dr2 + r2dΩ2 , (3.24) G

which, as required, is regular at r = rg. The velocity of the free falling observer in these
coordinates is given by

u(R) = ∂tP −
√
rg
r
∂r . (3.25) bG
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To build a RNC patch, we require the vierbein at the anchor point (t0, r0, θ0, φ0) around
which we want to expand the background in terms of normal coordinates. For this purpose
we take the freely falling observer in Painlevé-Gullstrand coordinates with velocity (3.25)
and construct the vierbein by taking ea0 = ua and using the identity gPabeaµebν = ηµν . This
results in

ea0 = ua , er1 = 1 , eθ2 =
1

r0

, eφ3 =
1

r0 sin θ0

. (3.26) G

To determine the RNC metric (3.1) we require the Riemann tensor in RNC coordinates.
Taking the vierbein (3.26) we can transform the Riemann tensor in PG coordinates Rabcd

to the RNC with Rµναβ = Rabcde
a
µe
b
νe
c
αe

d
β. The resulting components are

R0110 = R3232 =
rg
r3

0

, R2020 = R3030 = R1221 = R1331 =
rg
2r3

0

. (3.27) aG

Substituting these components into the metric expansion (3.1), we obtain the RNC
metric for a radially free-falling observer in a Schwarzschild geometry up to second order.
Consideration of the next higher adiabatic order requires the derivatives of the Riemann
tensor in RNC,

Rαβγδ,µ = eaαe
b
βe

c
γe
d
δe
m
µ (Rabcd,m − ΓnmaRnbcd − ΓnmbRancd − ΓnmcRabnd − ΓnmdRabcn) . (3.28) G

Performing this calculation yields [36]

R0110,0 = R2323,0 = 2R2020,0 = 2R1221,0 = 2R1021,2 = 2R3032,2 = 3
rg
r0

4

√
rg
r0

,

R1010,1 = R2332,1 = 2R0220,1 = 2R1212,1 = 2R0120,2 = 2R2331,2 = 3
rg
r0

4
.

(3.29) G

Components with an index interchange 2 ↔ 3 remain unchanged due to the symmetry
between the x2 and x3 direction. Note that the RNC metric components show no special
behavior for r0 = rg. As explained before, taking finitely many terms of the RNC expan-
sion into account raises the question about the domain of validity, i.e. the neighborhood
around the anchor point in which the RNC are valid.

3.1.3. Domain of Validity of RNC Patches

This Section summarizes the work done with Bruno Högl [36], in which we determine the
size and shape of normal neighborhoods at a given adiabatic order and accuracy which
improves on earlier works [50–53]. For explicit expressions obtained in this Section we
refer the reader to the Mathematica code we supplied for this project in [54]. Explicitly,
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we take the RNC metric (3.1) and determine the RNC patch size for the leading order
term. Computing the neglected higher order terms then allows us to estimate how far one
can move away from the origin before the requirement on the smallness can no longer be
achieved. We first demonstrate this procedure in a general framework and then apply it
to determine the RNC patch size in a Schwarzschild geometry which we will require in
Chapter 4.
Using a superscript to denote the adiabatic order, we require higher order terms of the

RNC metric g(n) in (3.1) to be negligible, i.e.

∣∣gαβ(n+k)(x)− gαβ(n)(x)
∣∣ ≤ δ

∣∣gαβ(n)(x)
∣∣ , (3.30) aG

with N 3 k ≥ 2 and the smallness parameter δ ∈ ] 0, 1] with δ � 1 which reflects
the maximally allowed metric mismatch for the application in question. The patch size
obtained for g(n) is more accurate the more higher order terms are computed and used
for the comparison with g(n). Ideally, with k → ∞ all higher order terms are taken into
account leading to perfect accuracy.
The metric itself is not an observable, but occurs, for example, fully contracted in the

action of physical systems such as point particles or scalar fields as in (3.2). We then
use this action to compute metric-sensitive observables. Taking this into account, we
can deal with certain troublesome behaviors of the truncated metric expansion, e.g. that
an off-diagonal component g(n)

αβ (x) becomes small compared to gαβ(n+1)(x) − gαβ(n)(x) or
that g(n)

αβ (x) even vanishes for certain x. In the action, such minimal contributions are
irrelevant because of the contraction of the metric. We therefore compare the terms of
adiabatic order n + k with the maximum of all components at adiabatic order n and
therefore exchange Eq. (3.30) with

∣∣gαβ(n+k)(x)− gαβ(n)(x)
∣∣ ≤ δmaxdiagα,β

{∣∣∣g(n)
αβ (x)

∣∣∣
}
, (3.31) aG

where we denote maxdiagα,β {gαβ} for max{gαβ, gαα, gββ}, where gαα and gββ are the diagonal
components to an off-diagonal component gαβ (α 6= β).
As a first application of (3.31) we find the size of the leading order Minkowski patch for

a Schwarzschild geometry by taking n = 0 and demanding the first curvature correction
to vanish, i.e. k = 2. Solving Eq. (3.31) for x then determines the maximal x which
we denote with x

(0)
\R by expressing the adiabatic order of the truncated metric series in

the superscript and the highest adiabatic terms used on the left-hand side of (3.31) in
the subscript. Here, the adiabatic order of the truncated metric series is n = 0 and the
highest adiabatic order of the truncated metric k = 2 which we denote with \R indicating
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that the Riemann term in the RNC metric is truncated. For n = 0, the right-hand side
of (3.31) is just δ since maxdiagα,β {|ηαβ|} = 1, ∀α, β. To determine the full patch size, we
first compute the extent along the RNC axes. This means, we set all x’s except one xµ

to zero and consider (3.31) with xν = 0, ∀ ν 6= µ. Inserting the Riemann tensors (3.27)
of the RNC patch in a Schwarzschild background into (3.31) yields the following set of
conditions,

x
µ (0)
\R = ±

√
3D
√
δ, ∀µ , (3.32) aG

where we defined D = rg (r0/rg)
3/2 = r0

√
r0/rg.

Second, we analyze all possible xµ-xν combinations in (3.31) while setting the other x’s
to zero. We start with the x0-x1 combination and thus set x2 = x3 = 0. The mismatch
between the eta patch and the RNCmetric of second adiabatic order is plotted in Fig. 3.2a)
with a black shading denoting the maximally allowed error delta and the lightest gray
shading denoting a vanishing error in the origin. The domain of validity is a square and
therefore the conditions along the x0 and x1 axes are valid for all combinations of the
two coordinates. This means, the condition in (3.32) correctly determines the boundary
of the domain of validity. Next, the combination x0-x2 is depicted in Fig. 3.2b) which
clearly deviates from a square shape. Therefore, the condition (3.32) does not account for
the border of the domain of validity and it must be adjusted. The correct description of
the shape in Fig. 3.2b) is involved but still resembling a square. Therefore we shrink the
patch along the diagonals and let it remain a square. Applying this yields new conditions
for x0 and x2 given by

x
0 (0)
\R = ±

√
2D
√
δ , x

2 (0)
\R = ±

√
2D
√
δ . (3.33) aG

The combination x0 − x3 yields an identical patch as in Fig. 3.2b), and therefore the
x3 condition is also replaced by

x
3 (0)
\R = ±

√
2D
√
δ . (3.34) aG

All other xµ-xν combinations do not add new restrictions.
As a third step, we consider the xµ-xν combinations with only one x set to zero. A

patch of particular interest is shown in Fig. 3.2c) for the x2-x3 combination with x0 6= 0

and x1 = 0. The domain of validity is a circle with radius
√

6D2δ − 2(x0)2, which is more
restrictive than the conditions before and thus we add this condition to x0 (0)

\R , x2 (0)
\R , and

x
3 (0)
\R . With this condition all other combinations are satisfied as well.
Fourth, the xµ-xν combinations without setting any x’s to zero, yield domain of va-
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Figure 3.2.: In a) - c) and f) we show the Minkowski patches resulting from neglecting
the second order Riemann term and thus denoted by η\R. Minkowski patches obtained
from neglecting the second and third order terms are denoted by η\dR and are given
in d) and g). Second-order RNC patches for which the third-order term is discarded are
denoted by R\dR and are given in e) and h). Darker shades of gray correspond to a larger
error up to the black area indicating the maximal allowed error δ. White areas indicate
an error greater than δ and are therefore outside the range of validity. The parameters for
a) - e) are M = 1, r0 = 24, δ = 0.1 and for f) - h) δ = 10−3. All not displayed directions
xµ are taken to be zero except in c), where x0 is set to its maximum value of 37.
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lidities which do not restrict the previous conditions any further. Therefore, Eq. (3.31)
results in the following conditions for the Minkowski patch:

∣∣∣x0 (0)
\R

∣∣∣ ≤ min

{
√

2D
√
δ,

√
3D2δ − (x2)2 + (x3)2

2

}
,

∣∣∣x1 (0)
\R

∣∣∣ ≤
√

3D
√
δ ,

∣∣∣x2 (0)
\R

∣∣∣ ≤ min
{√

2D
√
δ,
√

6D2δ − (x3)2 − 2(x0)2
}
,

∣∣∣x3 (0)
\R

∣∣∣ ≤ min
{√

2D
√
δ,
√

6D2δ − (x2)2 − 2(x0)2
}
.

(3.35) aG

The last two conditions display the polar symmetry of the patch reflecting the spherical
symmetry of the Schwarzschild geometry.
The conditions for the domain of validity in (3.35) are expressed in terms of RNC.

We select certain geodesics along which we wish to calculate the patch size in order to
translate it into PG coordinates. First, we consider the geodesic of a freely infalling probe
with 4-velocity (3.25). By construction in this RNC patch the probe is at rest. With
the conditions (3.35) the maximal valid eigentime reads τ (0)

PG := max
{∣∣∣x0 (0)

\R

∣∣∣
}

=
√

2D
√
δ.

The reparametrization of the curve with the observer’s eigentime is here simply given by
tobs = tPG = τ . Therefore, we integrate (3.25) yielding r(τ) and insert τ (0)

PG to determine
the minimal radial value of the PG observer’s geodesic for which the Minkowski patch is
still valid,

rmin = r
(
τ

(0)
PG

)
= r0

(
1− 3√

2

√
δ

) 2
3

. (3.36) aG

Placing the anchor point of the RNC r0 sufficiently close to rg and taking a sufficiently
large δ, the RNC patch can cross the event horizon and extend into the black-hole. For
example, taking r0 = 2.1M with δ = 0.01 yields rmin ≈ 1.79M .This is due to the afore-
mentioned regularity of RNC at the horizon. Arbitrary far away from the black-hole
r0 →∞ the patch size becomes arbitrarily large reflecting the asymptotic flatness of the
Schwarzschild geometry.
It is important to note, that Eq. (3.36) may not be used in a region with quickly changing

background curvature. This might cause problems take too few derivatives of the metric
into account and/or choose the maximally allowed error δ too large. For example, for
δ = 2/9 Eq. (3.36) returns the minimal radius rmin = 0 which of course is unreasonable.
Therefore, we have to restrict to certain values of r0 and δ if we want to use Eq. (3.36).
If these values are too restricting for the application in question, we have to take higher
orders of the metric expansion into consideration, either by using a g(n) patch instead of
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the Minkowski patch or by calculating the validity of the Minkowski patch using (3.31)
with k > 2. We investigate both possibilities and start with calculating the Minkowski
patch size using (3.31) with k = 3. Performing the same procedure as before, instead of
(3.35) we then obtain the following improved conditions for the Minkowski patch,

∣∣∣x0 (0)
\dR

∣∣∣ ≤
√

2D
√
δ − 5

2
Dδ ,

∣∣∣x1 (0)
\dR

∣∣∣ ≤
√

3D
√
δ − 9

4

√
r0

rg
Dδ ,

∣∣∣x2 (0)
\dR

∣∣∣ ≤ min

{
√

2D
√
δ − 5

2
Dδ,

√
12D3δ − (x3)2 (9x0 + 2D)− 2(x0)2 (3x0 + 2D)√

9x0 + 2D

}
.

(3.37) aG

We label these conditions with \dR, because now we take into account the RNC metric
(3.1) up to the third adiabatic order which depend on the derivatives of the Riemann
tensor. Notice, since the exact conditions are very lengthy we Taylor expanded them
in δ, except for the directional dependence term. The x3 condition can be obtained
by symmetry from the x2 condition by interchanging x2 with x3. Finally, we also have
a condition for the directional dependence of x0 which follows from solving the x2 or
x3 condition for x0. Notice, δ has to be taken sufficient small such that the RHS of the
conditions (3.37) are strictly positive.
As before, we altered the patches obtained in the iteration technique in the simplest, yet

most sensible, way to generate the suitable functional dependencies in (3.37). Consider,
for example, the domain of validity shown in Fig. 3.2d), in particular the diagonal “arms”
of the patch that extend to infinity. This plot corresponds to a non-compact, open domain
of validity, which is unreasonable and therefore we remove these “arms”. We will go into
more detail about why they should be removed when we discuss Fig. 3.3.
Translating the domain of validity (3.37) to PG coordinates as we did to find (3.36),

the minimal radial value of validity is

rmin = r0

(
1− 3√

2

√
δ +

15

4
δ

) 2
3

. (3.38) aG

For the example we chose before r0 = 2.1M and δ = 0.01 the minimal radius is
rmin ≈ 1.85M which is larger than the value obtained with (3.36). Considering higher
orders of the metric series improves the domain of validity in terms of the accuracy in
describing the background, but does not necessarily enlarge it. For example, the patch in
Fig. 3.2d), which includes higher orders of the metric series, is smaller than that depicted
in Fig. 3.2a).
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As already mentioned, we now derive the domain of validity of a RNC patch which
includes the first curvature corrections, i.e. taking the metric g(n)(x) with n = 2. The
domain of validity of such a g(2) is then obtained

∣∣∣x0 (2)
\dR

∣∣∣ =
∣∣∣x1 (2)
\dR

∣∣∣ ≤
(

2√
r0/rg + 1

) 1
3

Dδ
1
3 +

8

9

D√
r0/rg + 1

δ ,

∣∣∣x2 (2)
\dR

∣∣∣ ≤ min

{(
4

3
√
r0/rg

) 1
3

Dδ
1
3 − 8

27

D√
r0/rg

δ, r0
6D2 + (x1)2 − 2(x3)2

6x1x3
δ

}
.

(3.39) aG

As before, we Taylor expanded the conditions in δ. The x0 and x1 conditions are equal
except for an additional directional x1 dependence which we again find by solving the
x2 condition for x1. We again insert x0 (2) into the PG observer’s geodesic for r0 = 2.1M ,
δ = 0.01 and find rmin ≈ 1.61M . The patch now reaches further into the black-hole which
was achieved by including curvature corrections.
Notice, this enlargement crucially depends on δ. For example, the g(2) patch size in the

x0-x1 plane depicted in Fig. 3.2e) is smaller than the Minkowski patch sizes in Fig. 3.2a)
and Fig. 3.2d). This is because an error of δ = 0.1 is too large for a reference point placed
at r0 = 24M . If we reduce the error to be δ = 10−3, we find instead the three patches
depicted in Fig. 3.2f), Fig. 3.2g) and Fig. 3.2h). Now Fig. 3.2f) and Fig. 3.2g) almost
agree, with the latter being slightly larger, as expected. This can also be seen through
the agreement of the conditions in (3.35) and (3.37) in the x0-x1 plane in the limit δ → 0,
as the higher order terms in (3.37) become strictly irrelevant. Furthermore, the g(2) patch
in Fig. 3.2h) is now substantially larger than both Minkowski patches. Therefore, we
conclude that for this setup the error δ = 10−3 is a good choice while δ = 0.1 is not.
This growth of the range of validity continues for higher order metric expansions. To

this end, we consider the metric g(n) for n = 3 and n = 4. However, since the conditions for
the g(3) and g(4) patch are extensive, we demonstrate the increase in patch size graphically.
In Fig. 3.3 we plotted the g(4) patch in the x0-x1 plane for δ = 10−3. In addition, we show
the edge regions of the Minkowski patch from Fig. 3.2f) and the g(2) patch from Fig. 3.2h)
as well as the g(3) patch. Overall, we observe a continuous growth of the patch sizes with
increasing adiabatic order n. We can see that the arms which extend to infinity in the
g(2) patch disappear for the g(3) patch and reappear for g(4). These arms are formed along
a line describing combinations of x0 and x1 for which the first and third derivatives of
the Riemann tensor vanish, which implies that the coefficients of g(3)− g(2) and g(5)− g(4)

vanish. We can safely ignore such pathological arms, since considering higher orders in
the calculation of patch sizes, namely by using (3.31) with k ≥ n+ 1, cancels these arms.
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Figure 3.3.: The smallest and the second smallest patch are those of Figs. 3.2f) and
3.2h), while the next larger patch corresponds to g(3) for M = 1 and r0 = 24. These
boundaries correspond to an error of δ ∈ [ 0.9× 10−3, 10−3 ] and thus the thickness of the
boundary lines for the patches with n = 0, 2, 3 shows how fast the error grows for the
respective patches: the thicker the boundary, the slower the error grows. The fourth order
patch with maximal error δ = 10−3 is shown completely. The change in size and shape of
the patches with increasing order is complicated, but a qualitative increase can be seen.

This becomes clear when we consider the g(3) patch. It is computed using only k = 4, but
since the coefficient of g(4) − g(3) also depends on terms depending only on the Riemann
tensor and not its derivative, this coefficient is finite along this line, and thus the arms do
not appear. Analogously, higher order terms of even n do not depend only on derivatives
of the Riemann tensor and their consideration in the calculation of, e.g., the g(4) patch
would lead to the truncation of the arms.
With the domain of validity of RNC patches being large enough to cross an event

horizon, one immediate question arises. Does causality, restricting every geodesic starting
inside a black-hole remains inside, also hold for RNC patches covering a part of the interior
and a part of the exterior? We answer this question in the next Section.

3.1.4. Causality at the Event Horizon in RNC Patches

In the previous Section, we saw that RNC patches can cross the horizon of a black-hole.
Therefore, we want to investigate the causal structure for such patches, i.e. whether
the horizon can be crossed by a probe only from the outside to the inside. The event
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horizon for an eternal black-hole is also an apparent horizon [55]. The latter, in contrast
to the event horizon, allows a description in finite spacetime regions and is therefore the
preferred object for analyzing the causal structure locally [55]. For spherically symmetric
spacetimes, apparent horizons are characterized as the null hypersurface through which
radially outward light rays change the sign of their coordinate velocity. For a Schwarzschild
spacetime in PG coordinates, this velocity is given by (1, 1−

√
rg/r, 0, 0) and thus the sign

change occurs at r = rg. We can also specify this radial position of the apparent horizon
as the radius reached by the PG observer after the proper time τPG(r0) = 2/3(D − rg),
measured from the reference point at r = r0.
We first study causality at the horizon for the leading order Minkowski patch of a RNC

expansion. We anchor this patch at a reference point outside the horizon, but close enough
to it that a small neighborhood of the reference point covers a portion of the horizon. To
describe the horizon in RNC coordinates, we transform the velocity (1, 0, 0, 0) into PG
coordinates using the vierbein (3.26), giving λ0 = 1 and λ1 =

√
rg/r0. In addition, we

shift the resulting line so that it intersects the x0 axis at x0 = τPG thereby describing the
horizon by the straight line Ω(x0) = (x0,

√
rg/r0(x0 − τPG), 0, 0). As will be legitimated

in the next paragraph, the reference point must be arbitrarily close to the horizon for this
construction to be valid. Thus, for r0 → rg, we get dΩα/dx0 → (1, 1, 0, 0).
In this construction, the horizon is given by the upper dashed line in the spacetime

diagram in Fig. 3.4, which is drawn here with 45◦, but is to be understood a little bit
steeper, since we have dΩ1/dx0 =

√
rg/r0 < 1 for r0 > rg. The light geodesics directed

radially outward from the reference point (0, 0) follow the lower dashed line with 45◦. For
negative x0, there is a crossing point of the horizon with the outgoing light rays, which is
pathological because the geodesics cross the horizon from the inside to the outside. This
indicates the collapse of the validity to perform the parallel shift of the horizon. Thus, for
large x0, the horizon is no longer represented by the parallel-shifted line that describes
it well for small x0. Since in the limit r0 → rg the horizon satisfies dΩ1/dx0 → 1, the
intersection then shifts to x0 → −∞. So, for an anchor point of the RNC sufficiently
close to the horizon, the collapse of the parallel shift can be taken far outside the domain
of validity of the normal coordinates such that we can use the parallel shift.
For a RNC expansion anchored at the apparent horizon r0 = rg, the horizon is given by

the lower dashed line in Fig. 3.4. Outward directed light rays emitted at the origin remain
at the horizon. Any time-like geodesic touches the horizon only at the anchor point and
is always inside the black-hole thereafter.
Finally, choosing the reference point inside the black-hole r0 < rg, the horizon intersects

the x0 axes at negative x0 and infinitely less steeply than 45◦, since now dΩ1/dx0 > 1.
Thus, as expected, all light rays starting at the reference point remain in the black-hole.



3.1 Normal Coordinates 57

τPG

τf

τs

α α

0 1

0

1

2

x1 [arb. units]

x
0
[a
rb
.
u
n
it
s]

1

Figure 3.4.: Shown are geodesics for radially outward directed light rays in a RNC patch
of a Schwarzschild geometry. The dashed lines represent the outgoing null geodesics in for
the leading order RNC contribution, i.e. the Minkowski patch with x0 = x1 + const. The
dotted lines correspond to three timelike observers following radially infalling geodesics
with different initial velocities. The solid lines are outward null geodesics taking the first
curvature correction in the RNC into account.

Note, however, that the outward directed light rays follow the line (x0, x0, 0, 0), and thus
appear to the RNC observer as outgoing. For negative x0 we again see a collapse of the
parallel shift of the horizon, which can be avoided by constructing the RNC sufficiently
close to the horizon.
In addition, we want to test whether the causal ordering of events in PG coordinates

remains the same in the RNC. For that purpose, we consider two additional timelike ob-
servers on radial geodesics starting at the reference point r0 outside the black-hole. In PG
coordinates, one observer starts with an inward radial velocity vr = Vf ∈ ]−∞,−

√
rg/r0 [

faster than that of the free-falling PG observer and the second with the slower one
vr = Vs ∈ ] −

√
rg/r0, 0 ] as depicted in Fig. 3.4. Using the vierbein (3.26), we trans-
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form vr to obtain the velocity in RNC,

λ0(V ) =

√
rg
r0
V +

√
V 2 + f(r0)

f(r0)
, λ1(V ) =

V +
√

rg
r0

√
V 2 + f(r0)

f(r0)
. (3.40) b aG

These fulfill λ0(V ) > 1, ∀V, r as well as λ1(Vf) < 0 and λ1(Vs) > 0, ∀ r. We now
check whether the angles α(Vs) and α(Vf), which are between the world line of the PG
observer (x0, 0, 0, 0) and the other observers (x0λ0(V ), x0λ1(V ), 0, 0) is always smaller
than π/4, i.e. if they are causally connected. These angles are determined to be α(Vs) =

π/2− tan−1(λ0(Vs)/λ
1(Vs)) and α(Vf) = π/2 + tan−1(λ0(Vf)/λ

1(Vf)). To satisfy the above
causal condition λ0(Vs)/λ

1(Vs) > 1 and λ0(Vf)/λ
1(Vf) < −1 must hold, which is the

case for all possible Vs and Vf, respectively. Moreover, we verify that the faster observer
reaches the horizon earlier than the PG observer and that the slower observer takes longer.
The PG observer crosses the horizon after the proper time τPG. As before, suppose the
horizon is described by an angle 45◦ and require for the correct causal ordering demands
τf = τPG + λ1(Vf)τPG < λ0(Vf)τPG for the faster observer and τs := τPG + λ1(Vs)τPG >

λ0(Vs)τPG for the slower one. These conditions are also fulfilled for all possible Vf and
Vs. The same analysis can be done for a RNC patch constructed inside the black-hole
yielding the same causal results.
So far we have calculated the geodesics in the global PG coordinates and transformed

them to RNC. There is no causality violation in the PG coordinates, which we have
successfully translated into the RNC. It remains to be investigated whether a causality
violation occurs in RNC when the geodesic equations are solved directly in RNC using a
truncated metric.
As before, we consider a small neighborhood of the reference point crossing the apparent

horizon and take into account the first curvature correction. Setting x1 = 0 for radially
outward directed light rays, we obtain for the coordinate velocity

v1(x0)
∣∣
x1=0

=
dx1

dx0

∣∣∣∣
x1=0

=

(
1− (x0)2

3r2
g

)− 1
2

. (3.41) aG

Within the domain of validity (3.39), the argument on the right-hand side is strictly
positive, since for (x0)2 > 3r2

g an error of δ > 1 would be needed causing a breakdown of
the perturbation series.
The coordinate velocity (3.41) indicates that the geodesics start steeper the later they

start from x1 = 0. Therefore, the lines corresponding to outward light rays inside the
black-hole with x0 > τPG are steeper than the line corresponding to the horizon with τPG,
and therefore do not cross it and remain inside the black-hole. The expressions for the
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complete coordinate velocity and the corresponding geodesics are very lengthy. Therefore,
to question causality for x1 6= 0, we plot two example geodesics in Fig. 3.4 with solid lines
instead of analyzing their analytic expressions. We can see that a line starting at x1 = 0

becomes steeper the later it starts. This has the consequence that lines starting later and
thus steeper at x1 = 0 only become steeper in comparison to the horizon. Therefore, light
rays directed outward can indeed not leave the black-hole no matter how r0 is chosen.
If we choose the expansion point outside the black-hole with r0 > rg, then the upper

solid line in Fig. 3.4 describes the horizon and the lower solid line represents light rays
emitted at the reference point. The latter departs radially outward from the horizon and
thus moves away from the black-hole, which is not the case for an Minkowski patch of the
RNC, as can be seen from the dashed lines, which have a constant distance.
In summary, this Section shows that no matter where one constructs a RNC patch,

even near an event horizon, causality within the patch is respected. This reinforces the
statement that normal coordinates taking only a finite adiabatic order into account are
always valid when used in a sufficiently small neighborhood, even though it might cross
an apparent horizon.

3.1.5. Temporally Expanded Fermi Normal Coordinates

In Sec. 3.1.3 we demonstrated that RNC coordinates are valid only for a finite amount
of time. If an application in question requires the temporal validity of the metric to be
larger than the one of the RNC, other normal coordinates are favored. For instance, Fermi
normal coordinates (FNC) as developed in [50] are another set of normal coordinates with
a longer temporal validity. Instead of a point as in the RNC case, their construction relies
on a whole geodesic γ(τ).
Starting from an arbitrary reference point p = γ(0) on the geodesic γ(τ), the FNC of a

point q are constructed as illustrated in Fig. 3.5. The geodesic γ is followed until γ(x0),
where a RNC expansion is performed in the orthogonal directions. For these orthogonal
RNC we take the geodesic ωx0(ζ) with ωx0(0) = γ(x0) and dωx0/dζ|0 = v ⊥ dγ/dτ |x0 that
reaches the point q at ζ = ζ0. For clarity, since the RNC expansion describes the spatial
part of the FNC, we label the associated coordinates with indices ᾱ. The point q is then
described with the coordinates (x0, x1̄, x2̄, x3̄) with xᾱ = ζλᾱ. The λᾱ are obtained as
before by expanding v in terms of the vierbein at γ(x0), va = λᾱeaᾱ(x0) with ηᾱβ̄λᾱλβ̄ = 1.
The vierbein along the geodesic γ is constructed with ea0(τ) = dγa(τ)/dτ and the re-
maining components eaᾱ fixed by requiring orthonormality. Therefore, the interval of the
geodesic γ determines (x0, 0, 0, 0) and the orthogonal geodesics yield ζ(0, λ1̄, λ2̄, λ3̄) at
every point γ(x0).
Since FNC is based on the RNC construction, the metric expansions are given by close
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Figure 3.5.: Depicted is the FNC construction along the geodesic γ(τ) with orthogonal
RNC expansions at the points p and γ(x0) with vierbeins eaα(0) and eaα(x0). The latter is
used to find the FNC coordinates of the point q.

analogy to (3.1) by [50]

gαβ(x) = ηαβ −G(α, β)Rαµ̄βν̄(x
0)xµ̄xν̄ + · · · , (3.42) aG

with symmetric G defined as G(0, 0) = 1, G(0, ᾱ) = 2/3, and G(ᾱ, β̄) = 1/3. Since
each point γ(x0) of the central geodesic serves as a reference point for an orthogonal
RNC expansion, the Riemann tensor must be evaluated at each γ(x0). Thus, unlike only
requiring an anchor point for RNC, FNC require geometric information along an interval
of γ.
Since in the spatial directions the FNC corresponds to a RNC expansion, we can apply

our previous procedure to obtain the domain of validity for the spatial directions. The
temporal validity is given by the interval of the considered geodesic and thus the spacetime
validity domain describes a “tubular shape” around the geodesic γ. Depending on the local
curvature, the diameter of the tube may vary for different x0. Thus, if we restrict ourselves
to the spatial part gᾱβ̄ of the metric (3.42), we find analogous conditions for the domain
of validity as for the RNC patch. The crucial difference is that the Riemann tensor now
depends on x0 with Rᾱβ̄γ̄δ̄(x

0) and not only on the anchor point Rαβγδ|p. Integration over
x0 then leads to a tubular domain of validity for FNC.
Therefore, whenever an application in question requires a large temporal validity, FNC

should be used if the temporal validity of a RNC is not sufficient. The aspect to deal
with then is that the time dependence of the metric (3.42) may not be polynomial due
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to the time dependence of the Riemann tensor. This may obscure the reason for wanting
to use normal coordinates in the first place. However, in what follows we construct
coordinates that attempt to combine the advantages of FNC and RNC by extending the
time dependence of the Riemann tensor in FNC to obtain greater temporal validity than
in RNC, with only a polynomial dependence in the metric.
For that matter, we first expand the geodesic γ in τ = x0 around a point p and then

construct the FNC. The vierbein and Riemann components at γ(x0), previously obtained
by parallel transport along γ in (3.42), are now found by parallel transport along the
Taylor expanded γ and thus they are also expanded in x0. Using (3.42), we then obtain
in temporally expanded FNC,

xa(x) = pa + ea0x
0 + ė0

a(x
0)2 + xᾱ(eaᾱ + ėaᾱx

0) + · · · ,
gαβ(x) = ηαβ −G(α, β)(Rαµ̄βν̄ + Ṙαµ̄βν̄x

0)xµ̄xν̄ + · · · ,
(3.43) aG

where a dot represents a differentiation w.r.t. τ . We call this procedure an “FNC expan-
sion around a point” and abbreviate it with FNCP.
The domain of validity of this FNCP around p can be determined analogously to the

usual FNC. Since cutting the expansion in x0 introduces an additional mismatch into the
full series, this procedure yields another error. Thus, the range of validity of FNCP is a
time-limited part of the full tubular range of the FNC. Fixing the total error, which is
composed of the temporal expansion and the RNC expansion in the orthogonal direction,
results in a tubular region that shrinks in the orthogonal direction for later times and
finally to a point at the maximum possible time. Since this also occurs for negative times,
the validity of the patch can be described by a point in space that grows in time to a
finite spherical region and eventually shrinks back to a point.
If there is no temporal information about the Riemann tensor or the geodesic known, we

treat x0 extensions in the same way as orthogonal xᾱ extensions. In this case, FNCP are
comparable to RNC in the sense that both represent a way of assigning normal coordinates
to a spacetime patch using only geometric information at a single reference point. As
might be expected, we then find that the validity of this FNCP is identical to that of a
corresponding RNC patch around the same reference point [36].
In summary, normal neighborhoods offer a straightforward way to obtain the propa-

gator. This propagator is valid in various different spacetime regions depending on the
specific choice of normal coordinates. With this knowledge we now examine a thin shell
background in the next Section.
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Figure 3.6.: Schematic diagram in a) and the Penrose diagram in b) for the collapsing
shell with the Minkowski spacetime inside the shell displayed as a white area. Outside
the shell, the Schwarzschild geometry S is shown in gray with the event horizon H at
r = rg and the singularity as a wavy line. The dashed line indicates a constant radius
with R > rg. The gray shading represents the difference between the background and the
Minkowski spacetime, with a smooth transition across the shell enforced by the junction
conditions.

3.2. Thin Shell Geometry

In order to study black-hole formation we consider a collapsing thin shell displayed in
Fig. 3.6a). As discussed for optical interfaces in Sec. 2.1.2, an infinitely thin shell resembles
a good approximation to a more realistic extended and potentially fuzzy shell as long as
the wavelength of the considered field configuration is large compared to the thickness of
the shell. According to Birkhoff’s theorem, a thin shell with mass M and radius R(τ) has
a Minkowski spacetime inside and a Schwarzschild geometry outside, as shown in Fig. 3.6.
Thus the line element is given by

ds2
< = −(dxt)2 + dr2 + r2dΩ2 r < R ,

ds2
> = −f(r) dt2S + f−1(r) dr2 + r2dΩ2 r > R ,

(3.44) G

where as before f(r) = 1− rg/r and rg = 2M . The Minkowski time coordinate xt inside
the shell is different from tP and tS in (3.19) and (3.24) outside the shell.
With the coordinates on the shell x̃µ̃ = (τ, θ, φ) the pullback yields the induced metric

on the shell,

g̃µ̃ν̃ =
∂Fα
◦

∂x̃µ̃
∂F β
◦

∂x̃ν̃
g◦αβ = diag

(
−1, R2(τ), R2(τ) sin2(θ)

)
, (3.45) G

where ◦ ∈ {>,<} indicates whether the metric is induced from outside or inside with
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F µ
> = (tS(τ), R(τ), θ, φ) and F µ

< = (xt(τ), R(τ), θ, φ), respectively. The first junction
condition equates the two expressions and thus ensures the continuity of the line element
[56]. This relates the time coordinate inside to the time coordinate in the exterior,

dtS
dxt

=

√
f(R) + Ṙ2

f(R)
√

1 + Ṙ2
, (3.46) G

where Ṙ = dR/dτ .
According to the second junction condition deduced from the Einstein field equations

[56], a jump J in the extrinsic curvature K across the shell can only occur if an energy-
momentum tensor Sµ̃ν̃ is induced at the boundary,

J
(
K̃ µ̃
ν̃

)
− δµ̃ν̃ J

(
K̃
)

= −8πSµ̃ν̃ . (3.47) G

Unlike most other gravitational collapse models, the shell has a distributional character,
and thus there is a jump of K across the shell. The extrinsic curvature is

Kµν =
1

2
Lnhµν = hαµh

β
ν∇αnβ , (3.48) G

with the tensor hµν = gµν−nµnν and the normal vector of the shell nµ ∝ ∂µ(r−R) which
obeys gµνnµnν = 1. Solving these equations for the normal vectors yields

n>µ (R) =


−Ṙ,

√
f(R) + Ṙ2

f(R)
, 0, 0


 , n<µ (R) =

(
−Ṙ,

√
1 + Ṙ2, 0, 0

)
. (3.49) G

As required, the normal vector is orthogonal to the 4-velocity of the shell uµ>n>µ = 0 since
uµ> = (ṫS, Ṙ, 0, 0) and n>µ = (−Ṙ, ṫS, 0, 0).
The right-hand side of Eq. (3.47) requires the energy-momentum tensor S of the shell.

For S we assume the shell to be made out of a perfect fluid with energy density ρ and
pressure p, i.e. Sµ̃ν̃ = diag(−ρ, p, p). The mass of the shell together with the shell trajectory
R(t) then uniquely determines the left-hand side of (3.47). Therefore, solving (3.47) for
the energy density and pressure yields

ρ =

√
1 + Ṙ2 −

√
f(R) + Ṙ2

4πR
, p = − R

2Ṙ
ρ̇− ρ . (3.50) G

With these equations at hand, we can now consider a particular trajectory R(τ) and
check whether it can be realized in terms of physical matter that fulfills the strong and
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M ds2
<

S ds2
>
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b)

Figure 3.7.: Schematic sketch of a fixed shell with radius R > rg in a) and the Penrose
diagram in b) with the Minkowski spacetime inside (white area) and Schwarzschild ge-
ometry S outside (gray area).

dominant energy condition. First, we study the simplest model of a shell at rest with
Ṙ = 0. This spacetime has no horizon for R > rg as can be seen in its Penrose diagram
in Fig. 3.7. Eq. (3.50) in this case reduces to

ρfix =
1−

√
f(R)

4πR
, pfix =

2R
(

1−
√
f(R)

)
− rg

16π
√
f(R)R2

. (3.51) G

These solutions show that a fixed shell geometry is fully consistent for R > 25rg/24.
However, for R ≤ 25rg/24 Eq. (3.51) is unphysical, since for these radii the dominant
energy condition ρ ≥ |p| is violated. This condition guarantees a subluminal flow within
the perfect fluid, and thus a shell for R ≤ 25rg/24 cannot be stabilized with ordinary
matter. For R → rg the pressure pfix even diverges, which would require an arbitrarily
large force to hold the shell in place.
The second shell we want to consider is one which follows the trajectory of the free-

falling Painlevé-Gullstrand observer with velocity (3.25). As can be seen in Eq. (3.22)
the coordinate velocity of this shell remains finite at R = rg. Inserting Ṙ = −

√
rg/R in

(3.50) results in

ρfall =

√
f+(R)− 1

4πR
, pfall =

1

8πR

(
1 +

rg − 2Rf+(R)

2R
√
f+(R)

)
, (3.52) G

with f+(R) = 1 + rg/R. Unlike the fixed shell model, both quantities are regular and
finite before and during the horizon crossing at R = rg. Moreover, all energy conditions
are satisfied throughout the whole collapse. Since the pressure is always negative pfall < 0,
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the shell undergoes a faster collapse compared to a dust shell with pdust = 0. The pressure
of the fixed shell, on the other hand, is positive in order to stabilize the shell. For the
time being, we will restrict ourselves to the fixed shell and investigate in the following
Section the propagation of a scalar field in this geometry.

3.3. Propagation in a Fixed Shell Background

With the fixed shell geometry prepared in the previous Section, we now consider a massless
scalar field on this fixed shell background. The action of this field then reads

S = −1

2

∫

<

d4x
√
− det(η) ηµν∂µφ∂νφ−

1

2

∫

>

d4x
√
− det(g>) gµν> ∂µφ∂νφ , (3.53) bHG

where the subscripts > and < denote the exterior r ≥ R or interior r < R. To determine
the propagator of the scalar field in this theory, we will proceed analogously to the optical
case as in Chapter 2. In the following Section, we will begin by using the perturbative
approach to describe the curved background as a spacetime dependent interaction term.

3.3.1. Perturbative

As seen before, in the perturbative approach we choose a metric with respect to which
we know the propagator and describe the difference to the actual background as an inter-
action. The choice of the metric has crucial effects on calculations and should therefore
be considered carefully. For the fixed shell we choose the Minkowski spacetime inside
the shell such that the free propagator of the fields is simply the Minkowski propagator
and the exterior spacetime is incorporated with an interaction. Thus the free part of the
action is that of a massless scalar field on a Minkowski background, which extends over
the entire spacetime:

S0 = −1

2

∫

M
dµ ηµν∂µφ∂νφ , (3.54) bHG

with measure dµ = dr dφ dθ r2 sin(θ). For the interaction part of the action we express
the Schwarzschild line element (3.19) in terms of the time inside the shell xt(tS) using
(3.46) for Ṙ = 0. The exterior line element in these coordinates then reads

ds2
> = (g>)µνdx

µdxν = − f(r)

f(R)
dt2 + f−1(r) dr2 + r2dΩ2 . (3.55) G

Like before, we treat the difference between the action in the exterior and the Minkowski
action in (3.54) as an interaction term with support in the exterior only. The full action
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Figure 3.8.: Suspended shell with a Schwarzschild geometry in the exterior and a
Minkowski background in the interior is shown in a). Zoomed-in situation with the shell
as a interface at x⊥ = 0 is displayed in b).

becomes

S =

∫

M
dµ

[
−1

2
ηµν∂µφ∂νφ+ LI

]
, (3.56) bHG

where the interaction Lagrangian reads

LI = −1

2
ΘrR

[√
det(g>)

det(η)
gµν> − ηµν

]
∂µφ∂νφ =: −1

2
ΘrR g

µν
I ∂µφ∂νφ , (3.57) bHG

with the auxiliary interaction metric gI . It should be noted that, as in the optical scenario,
gI is not an ordinary metric, since it does not satisfy Einstein’s field equations and does
not even transform like a second rank tensor. Analogous to how we performed it for the
optical system, we rewrote the action of a free scalar field living on the background of a
resting shell (3.53) into the form (3.56).
For the perturbative expansion, we introduce λ = rg/R� 1 as our smallness parameter.

By this condition, we can only study shell radii for which R � rg holds. Later we will
work non-perturbatively in λ whereby we can then consider R ≈ rg. In addition, we
assume that the propagator is evaluated near the shell inside a cubic box with edge
length `0 � R. This makes it advantageous to use the Cartesian coordinates anchored to
the shell as depicted in Fig. 3.8,

(x‖, x⊥) = (r cos(φ)θ, r sin(φ)θ, r −R) , (3.58) lHG
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where (|x‖|, |x⊥|) < (`0/2, `0/2), and θ < `0/(2R) � 1. Thus, we introduce a second
smallness parameter x̄⊥ = x⊥/R with λ � x̄⊥ � 1. Expanding the auxiliary metric in
(3.57) up to order λx̄⊥, we find

gI(x) ' λ

2
diag

[
−
(

1− 2x̄⊥+
3λ

4
+ 2(x̄⊥)2 − 3λx̄⊥

)
,

− 1− 2x̄⊥ − λ

4
− 2(x̄⊥)2 + λx̄⊥, 1 +

3λ

4
, 1 +

3λ

4

]
,

(3.59) l pHG

which is valid up to corrections of order λ2.
With this auxiliary interaction metric the perturbative contribution to the Feynman

propagator can then be calculated by expanding the closed-form expression

∆xy = i
〈

Tφxφy e−
i
2

∫
> dµz(gµνI )z∂zµφz∂zνφz

〉
con
. (3.60) b l pHG

The support of the intermediate integration
∫

dµz has to be modified such that the re-
striction |(z⊥, z‖)| � R holds. This modification does not influence the result as long as
|xt− yt| � `0 and |(x⊥− y⊥,x‖− y‖)| � `0 since then causality implies that

∫
dµy∆xyJy

is not probing the space outside the box of size `0. This also restricts the allowed external
sources J to be localized inside the box with sufficiently short temporal support.
As in the optical scenario we restrict y⊥ < 0 and fix the causal order with xt > yt.

Since we chose the interior Minkowski spacetime according to which the field propagate
freely in (3.56), we can perform several computational steps analogous to the ones in the
optical case. For instance, evaluating (3.60) by following the computation in the complex
plane as in (2.40) to (2.44) we find for the reflection propagator,

GRxy = i

∫ ∞

0

dz⊥
∫

k

(gµνI )z⊥kµkν
2 (k⊥ + iε)

e−ik⊥(x⊥+y⊥)+2iz⊥(k⊥+iε) . (3.61) bHG

In comparison to the optical calculation, the spatial dependence of the interaction metric
alters the calculation at this point. The z⊥ integration is now also affected by the inter-
action metric and the derivative in (2.53) now also acts on the transmission coefficient.
Since we expanded the interaction metric these changes can be implemented with ease
and the reflection propagator becomes

GRxy =

∫

k

eik⊥(x⊥+y⊥)λ

8

(
tan2(α)

Rk⊥

(
i+

1

Rk⊥
+ iλ

)
− λ+

3iλ

2Rk⊥

)
, (3.62) b l pHG

where we neglected terms of order λ3, λ/(Rk⊥)3 and λ2/(Rk⊥)2.
Since this propagator can only be trusted for sufficiently large shell radii R we now go
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Figure 3.9.: Suspended shell with the leading order patch of a RNC construction an-
chored at x in the shell’s exterior is depicted in a). Zoomed-in situation including a part
of the shell at x⊥ = 0 and a part both inside and outside is shown in b). Notice the abrupt
change in shading symbolizing that the metrics are not matched with junction conditions
at the shell surface. This setup is analogous to the optical system in Fig. 2.2.

over to a RNC construction which will allow to remove this constraint. We anchor the
RNC patch outside the shell as shown in Fig. 3.9a). At leading order, the RNC metric in
RNC coordinates as in Eq. (3.1) is the Minkowski metric. We take a small neighborhood
that includes part of the interior and part of the RNC patch. This way, we can treat
them as two half-spaces, as shown in Fig. 3.9b). Denoting the leading adiabatic order of
the RNC line element with the superscript (0), the line element in this neighborhood can
then be written in the coordinates (3.58) as

ds2
< = −(dxt)2 + (dx⊥)2 + (dx‖)2 ,

(0)ds2
> = −f(r?)

f(R)
(dxt)2 + f−1(r?)(dx

⊥)2 + (dx‖)2 .
(3.63) a l pHG

We can understand this line element as two RNC patches that we simply glued together
without applying junction conditions. This way, we describe the underlying smooth man-
ifold with two metrics which are not continuous over the shell at x⊥ = 0. An intuitive
analogy is provided by a continuously differentiable function approximated by a piecewise
constant but noncontinuous function. In our case, we approximate the smooth manifold
in a neighborhood with two pieces. As in the analogy, the amount of RNC patches and
the distances between the anchor points determine the precision of the approximation.
Thus, if we need a more accurate description of the external geometry, we can consider
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more RNC patches glued together and/or higher orders of the RNC expansion in (3.1).
This discontinuity in the metric requires a boundary term when we determine the

propagator with

∆xy = i
〈

Tφxφy e−
i
2

∫
> dµz(gµνI )z∂zµφz∂zνφz− i

2

∫
dµ̃z(φz nµ<∂zµφz−φz n

µ
>∂zµφz)

〉
con
, (3.64) bHG

where dµ̃z denotes the (Minkowski) shell surface element together with the outward-
pointing shell normal vectors (3.49) for the fixed shell,

nµ>(R) =

(
0,
√
g⊥⊥> , 0, 0

)
, nµ<(R) = (0, 1, 0, 0) . (3.65) G

Performing the double expansion of the exponential to linear order in λ and gI , the
Feynman propagator reads

∆xy = ∆η
xy −

∫
dµz (gµνI )z∂zµ∆η

xz∂zν∆
η
zy

− 1

2

∫
dµ̃z

[√
(g⊥⊥> )z
f(R)

− 1

]
[
∆η
xz∂z⊥∆η

zy + ∆η
zy∂z⊥∆η

xz

]
.
(3.66) b a l pHG

If we were to insert the exterior metric of the shell without RNC expansion as in (3.55),
the boundary contribution in the second line would vanish since the metric satisfies the
junction conditions and (g⊥⊥> )z = f(R). However, using the RNC expansion, the line
element is (3.63) and thus (g⊥⊥> )z = f(r?), resulting in a boundary term for r? 6= R.
As the similarity of Fig. 3.9b) to the optical scenario already suggests, due to the con-

stant line element in the exterior the computations in the complex plane can be performed
as in the Eqs. (2.40) to (2.45). For the reflection propagator we then obtain

GRxy = −
∫

k

eik⊥(x⊥+y⊥)λx̄?
4

[
1 + tan2(α)

]
. (3.67) a l pHG

Here, the smallness parameters are λ = rg/R � 1 and x̄? = x?/R� 1 with x? = r? −R
and the angle of incidence is tan2(α) = k2

‖/k
2
⊥. To this result we make the following

observations: The reflectance increases as the shell radius approaches rg. Moreover, the
reflection disappears in the limit r? → R showing the smoothness of the underlying
background. As in the optical analog case, R increases with the angle of incidence. The
restrictions to the coordinates x⊥/R � 1 (and |x‖|/R � 1) translates in momentum
space to (Rk⊥) � 1 (and (Rk‖) � 1). Thus, this result is valid for sufficiently large
frequencies with ωkR > ωkrg � 1 making it complementary to the gray body calculation
in the literature [21], which operates in the low-frequency range with ωkrg � 1.
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3.3.2. Nonperturbative Approach

For the non-perturbative approach, we consider the system shown in Fig. 3.9b) and thus
the RNC construction with line element (3.63). However, unlike in the previous Section,
we now do not assume λ to be small. Then, for the propagators inside G< and outside
G> the shell, we make the following ansatz,

G<
xy =

∫

k

[
eik⊥(x⊥−y⊥) − e−ik⊥(x⊥+y⊥)R(k)

]
,

G>
xy =

∫

k

ei(q⊥x
⊥/
√
f(r?)−k⊥y⊥) T (k) ,

(3.68) b a lHG

where we have included the factor 1/
√
f(r?) in the exponential for later convenience. As

in the optical case, the momentum q⊥ is determined by the requirement �xG>
xy = 0, and

reads

q⊥(k) = sgn(k⊥)

√(
f(R)

f(r?)
− 1

)
k2
‖ +

f(R)

f(r?)
k2
⊥ . (3.69) b a lHG

As in the optical analogous case with (2.30), the reflection and transmission coefficients
R and T are determined by the condition that the propagator is continuous and smooth
across the interface. Here, this condition reads

lim
x⊥↗R

G<
xy = lim

x⊥↘R
G>
xy , lim

x⊥↗R
nµ<∇x

µG
<
xy = lim

x⊥↘R
nµ>∇x

µG
>
xy , (3.70) bHG

with the interior and exterior normal vectors (3.65). Substituting the ansatzes for the
propagators in (3.68), we obtain equivalently to the optical case

R(k) =
q⊥ − k⊥
k⊥ + q⊥

, T (k) =
2k⊥

k⊥ + q⊥
. (3.71) b a lHG

As for the optical analogy in Sec. 2.1.2, these coefficients obey charge conservation and
recover Eq. (2.34) with q⊥ as defined in (3.69). For an arbitrarily large shell with R→∞
keeping r? > R, the system trivializes with q⊥ → k⊥, R → 0 and T → 1. This is the
expected result, since the curvature difference between the inner and outer geometries
vanishes in this limiting case. In the following Section, we will examine these coefficients
in greater depth.
In order to validate this result we expand the reflection coefficient up to second order
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in the smallness parameters λ = rg/R� 1 and x̄? = x?/R� 1 with x? = r? −R,

R(k) =
λx̄?
4

[
1 + tan2(α)

] (
1− x̄? + λ

)
, (3.72) b a lHG

which is valid up to order λ3, λx̄3
? and λ2x̄2

?. The leading order terms agree with the
perturbative result (3.67) solidifying both approaches in curved spacetimes.
The anchor point of the normal neighborhood x? in (3.72) must be carefully chosen. If

we choose it too close to the shell surface, we will underestimate the reflectance because
the curvature in the outer region will not be sufficiently probed. On the other hand, if
we choose x? too large, we overestimate the reflectance. To find a good choice for x?, we
match the result in (3.72) with the reflection coefficient of the perturbative calculation
without RNC construction in (3.62) and solve for the expansion point x?. In order to
shorten the expressions, we perform this matching in a close to normal incidence scenario
with tan(α)� 1 indicated by the equation superscript s. Solving for the expansion point
with this restriction, then yields

x̄? =
1

4
(2− λ)λ+

1

2
(λ− 1)λ tan2(α) +O

(
λ3, tan4(α)

)
. (3.73) b a l p sHG

Inserting this expansion point into the non-perturbative propagators in (3.68) is the best
description of the propagation in this background that we provide in this work. In contrast
to the perturbative propagators (3.62) and (3.67), the non-perturbative propagator has
the advantage that it also captures the case where the shell is close to horizon formation
at R ≈ rg. Therefore, we use this construction to study the quantum field theoretic
properties of the fixed shell background close to horizon formation in the next Sections.

3.3.3. Communication Across the Fixed Shell Surface

With the propagator determined, we can now investigate what happens when we conduct
a communication experiment across the surface of the fixed shell with various radii R ≈ rg.
The continuity condition in (2.34) computed with (3.71) implies that once the reflectance
|R|2 becomes one, the transmittance Re(q⊥)|T |2/k⊥ vanishes and thus no communication
from inside to outside is possible. Therefore, we use the reflectance as a diagnostic tool
for a communication experiment close to horizon formation.
Total reflection |R|2 → 1 and therefore vanishing transmission Re(q⊥)|T |2/k⊥ → 0

occurs for q⊥ → 0. Setting q⊥ = 0 in (3.69) and solving for λ results in a critical value
which marks the point across no communication is possible. This value to leading order
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Figure 3.10.: Reflectance from the inside of the shell according to Eq. (3.71) for the
suspended shell model with radius R and RNC expansion in the exterior region, anchored
at (3.73). The solid line is for a mode at normal incidence, i.e. α = 0, for which the
reflectance reaches unity at R/rg = 1 . The dashed line is for the case α = π/6, for
which total reflection occurs at a larger radius R/rg > 1. In the latter case, this occurs
in a range where the fixed shell is made out of matter fulfilling all energy conditions with
R/rg > 25/24, indicated by the shaded area.

reads

λc = 1− x̄? tan2(α) +O(x̄2
?) . (3.74) b a lHG

For the case of normal incidence with α = 0, we find λc = 1 and thus that the communi-
cation from the inside to the outside breaks down as soon as the shell radius equals rg and
thus coincides with the radius of horizon crossing. The solid line in Fig. 3.10 shows the
reflectivity for radii close to rg and demonstrates that the reflectivity smoothly approaches
one. This smoothness suggests no drastic change for observables of a quantum field during
the formation of a black-hole, as could be expected from the equivalence principle. For
α 6= 0 a similar picture results as can be seen by the dashed line in Fig. 3.10 for α = π/6.
The critical point for this angle is in the region where the shell can be fully stabilized
physically, i.e. λc < 24/25. As expected, if the incidence on the fixed shell is not in the
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radial direction, a particle is less efficient in evading the shell.
Comparing the suspended shell with that of the optical model in Sec. 2, we find that

total internal reflection occurs as soon as λ < λc. The momentum q⊥ in (3.69) then
becomes imaginary, which in turn leads to an exponential damping of the modes outside
the shell. In the outlook we will elaborate on this phenomenon and its possible connection
to Hawking radiation.
The consideration for R ≤ 25rg/24 is of more formal interest since, as discussed in

Sec. 3.2, for these radii a fixed shell is unphysical. Thus, the same investigation for a
freely collapsing shell as in (3.52), where horizon formation is taking place, is desirable
but left for future work. Nonetheless, our simple communication experiment illustrates
that the boundary propagator approach is fully compatible with conventional expectations
arising from the study of the causal structure of a shell spacetime. We go on in the next
Chapter by addressing the second question posed in the introduction





4. Quantum Consistency of Black-Hole
Formation

To study quantum effects in a fixed shell background we first introduce the required tools.
For that matter, let us consider a quantum system in the state |Ψ 〉. We assume this
system to be isolated and thus including all degrees of freedom relevant to our discussion.
In the canonical approach, the system can then be described by the Hamilton operator H
and the constraint

H|Ψ 〉 = 0 . (4.1)Q

This ansatz is reparametrization invariant and is therefore preferred in relativistic contexts
where the special role of time - usually enforced in non-relativistic setups - is inappropriate.
A prime example for this approach is quantum gravity, where Eq. (4.1) is called Wheeler-
DeWitt equation and |Ψ 〉 describes the entire universe [57]. In our case, this is an
elegant way to fully implement the idea of a closed quantum system which includes the
measurement process.

4.1. Quantum Field Theory in Curved Spacetimes as

an Open Quantum System

In order to perform an experiment, we take some known detector which measures a
system. Ideally, this detector has no effect on the system; that is, we choose to make a
measurement that is solely dependent on the detector’s resolution and not on how the
detector influences the system. With this detector, we are able to prepare the state of the
detector |ΨD 〉 and of the system |ΨS 〉 separately, and thus the state of the whole setup
as a product state |Ψ 〉 ∝ |ΨD,ΨS 〉. This implies that there is a part of the Hamilton
operator HD which describes solely the detector and a part HS which describes solely
the system. Additionally there is a part HDS which describes interactions between these
two sectors as depicted in Fig. 4.1. Altogether, the Hamilton operator can be written as
H = HD +HS +HDS.
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System
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Figure 4.1.: Schematic decomposition of the Hamilton operator in parts which solely
describes the system HS, the detector HD and the interaction between both sectors HDS.
The Hamilton operators describing a subsystem on its own, such as HD and HS, are
represented by a square, while the Hamilton operator HDS acting on both subsystems, is
symbolized by a circle.

Following [37] we take as a detector, a non-relativistic quantum system like an Hydrogen
atom and choose an observer such that the detector is at rest in an inertial frame. The
degree of freedom we want to describe is a point particle with position x and momentum p

in phase space {x,p}. The position and momentum operators satisfy the commutation
relations [xa,pb] = iδab and [xa,xb] = [pa,pb] = 0. Taking the proper time of the
observer t, the wave function of the particle ψt(x) := 〈x|ΨD〉t then satisfies the Schrödinger
equation

i∂tψt(x) = (HD +HDS)ψt(x) . (4.2)Q

For the system we consider a scalar field Φ with phase space {Φ,Π}. We here denote the
scalar field Φ to distinguish it from the scalar field operator φ in the Heisenberg picture,
which we employed in the last Chapters. The field operators fulfill the equal time commu-
tation relations [Φx,Πy] = −iδ(3)

xy and [Φx,Φy] = [Πx,Πy] = 0. Analogously to the wave
functions in the non-relativistic case we define a wave functional Ψt[Φ] := 〈Φ |ΨS 〉t using
the eigenstates of the operator Φ. With the Schrödinger equation of the detector (4.2) we
can then write the Hamilton constraint (4.1) as

[i∂tψt(x)] Ψt[Φ] + ψt(x) (HS +HDS) Ψt[Φ] = 0 , (4.3)QHS

where we used HSψt(x) = HDΨt[Φ] = 0. Integration by parts leads us to the Schrödinger
equation for the system

i∂tΨt[Φ] = (HS +HDS)Ψt[Φ] . (4.4)QHS

Next, we consider a setup in which some of the degrees of freedom of the system are not
resolved, but traced out. Thus, we split up the system into one part we call probe P and
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Figure 4.2.: The Hamilton operator of the systemHS is decomposed into parts describing
the probe HP , the environment HE and the interaction between them HPE.

another part we call environment E and couple them as depicted in Fig. 4.2. We assume
the probe and the environment can be prepared separately such that a system state can
initially be written as a product state |ΨS 〉 ∝ |ΨP ,ΨE 〉 and the Hamilton operator reads
HS = HP + HE + HPE. The degrees of freedom in the environment are not coupled to
the detector and are thus not resolved directly. Since the probe and the environment
interact with each other, tracing out the degrees of freedom in the environment results
in a mixed state for the probe such that it becomes an open quantum system [58]. In
these scenarios, instead of using the initial state |ΨS 〉 of the system, one has to take the
initial density matrix ρS = |ΨS 〉〈ΨS |. The density matrix of the probe ρP can then be
obtained by tracing out the environment ρP = TrE(ρS). The dynamical equation for the
system’s density matrix is determined by the Schrödinger equation (4.4) and reads

i∂tρ
S =

[
HS +HDS, ρ

S
]
. (4.5)QHS

Since the whole system on its own evolves unitary, the solution of this equation can then
be expressed with the unitary time-evolution operator Utf ti with ρStf = Utf tiρStiU

†
tf ti

and
ρSti := ρS. We can determine the density matrix of the probe at the final time with
ρPtf = TrE[ρStf ]. Therefore, we can define the probe’s time-evolution operator Etf ti as
follows

ρPtf = TrE[ρStf ] =: Etf tiρPti . (4.6)QHS

Here, the time-evolution operator of the probe Etf ti is determined using the time evolution
of the whole system including the environment. Typically the exact dynamics of the
environment is unknown and techniques are developed to find Etf ti of an open quantum
system without requiring this knowledge [59]. Most importantly, even though we might
not know the exact evolution of the environment, the operator Etf ti preserves the trace [60].
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Figure 4.3.: Hamilton operator schematically depicted with a part describing the detec-
tor HD, the scalar field HΦ and gravity HG. The detector is chosen sufficiently small and
operated for a short time such that gravity only directly couples to the scalar field.

This property follows directly from (4.6) since

TrP [ρPtf ] = TrP [Etf tiρPti ] = TrP
{
TrE[ρStf ]

}
= TrS[ρSti ] = 1 , (4.7)QHS

where in the second last step we used the unitary time evolution of the whole system, i.e.,
TrS[ρStf ] = TrS[Utf tiρStiU

†
tf ti

] = TrS[U †tf tiUtf tiρSti ] = TrS[ρSti ]. Therefore, we have to make
sure that the density matrix of the probe has trace one or equivalently that the states of
the probe are normalized. This property of open quantum systems is of major importance
in the next Sections in which we discuss the time evolution of a ground state in a system
with external potentials, backgrounds and sources.

4.1.1. Dynamical Spacetimes

As we have seen in the previous Section, treating a subsystem of a unitarily evolving
quantum system as an open quantum system leads to normalized states at all times.
Thus subsystems of a unitarily evolving quantum system inherit the property of unitarity.
From the point of view that the whole universe evolves unitarily and that quantum field
theory in curved spacetime can be considered as a theory of an open quantum system,
naturally unitarity must also hold. Violations of unitarity in quantum field theory in
curved spacetimes can therefore lead to a more fundamental theory, such as quantum
gravity. If for example the most fundamental theory of everything consists of a quantum
gravity theory together with the standard model, then quantum field theory in curved
spacetime might emerge by for example performing an effective field theory approach and
decoherence. Since these procedures involve integrating out degrees of freedom quantum
field theory in curved spacetime describes only a subsystem and thus an open quantum
system.
In collaboration with Ka Hei Choi, we generalized the study of understanding quantum

field theory in curved spacetimes as open quantum systems to dynamical gravitational
backgrounds [38]. Specifically, we used the Schrödinger picture of quantum field theory
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Figure 4.4.: Setup of a detector with Hamilton operator HD interacting through HDΦ

with a scalar field with Hamilton operator HΦ set in a curved background with metric g.

to examine the non-unitarity encoded in the VPA for dynamical spacetimes. This Section
provides an overview of the main ideas that are intertwined with this project.
For this purpose, we consider a massive scalar field Φ that is coupled to a detector

in a system with masses that curve the spacetime. The Hamilton operator of the entire
system, which satisfies the Hamilton constraint (4.1), is composed of a gravitational part
HG, the scalar field part HΦ and for the detector HD, as shown in Fig. 4.3. As is common
for quantum field theory in curved spacetime, we neglect back reaction effects, i.e., we do
not take into account how the scalar field Φ perturbs the spacetime itself. As a result,
we actually consider quantum fields on a curved background with metric g, as in the
framework illustrated in Fig. 4.4.
For technical simplicity and consequent best comprehensibility, we choose a conformally

flat Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime in (d+1) dimensions. The
line element of these spacetimes in conformal coordinates (η,x) is given by,

ds2 = a2
η

[
− dη2 +

d∑

i=1

(dxi)2

]
(4.8) G

with the scale factor aη.
As in Sec. 4.1, we introduce the conformal time η via the non-relativistic detector,

with which we perform an ADM splitting of the spacetime. In this way, employing
the Schrödinger picture of quantum field theory the functional Ψη[Φ] encodes the time
dependent description of the quantum system and solves the Schrödinger equation (4.4),
which now reads [61],

i∂ηΨη[Φ] = Hη[Φ]Ψη[Φ] . (4.9) bQHG
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For simplicity, we discard the interaction with the detector such that the Hamilton oper-
ator only describes the scalar field Φ with mass m in the curved background,

Hη[Φ] :=
1

2

∫

Ση

ddx
√
gη

(
1

qη

δ2

δΦ2
x

+ qabη ∂aΦx∂bΦx +m2Φ2
x

)
, (4.10) bQHG

where q denotes the determinant of the spatial metric on the hypersurface Ση. With
the help of the annihilation operator Cη and the creation operator C†η one can write the
Hamilton operator as (CηC

†
η + C†ηCη)/2 [62]. With this definition the ground state wave

functional solving CηΨ0
η[Φ] = 0 and the Schrödinger equation (4.9) is then a Gaussian in

Φ and reads [61,62],

Ψ0
η[Φ] = Nη exp

{
−1

2

∫

Ση

ddx ddy
√
qη
√
qη ΦxKηxyΦy

}
, (4.11) bQHG

with the kernel K and Φ independent prefactor N . In order to relate to the more familiar
canonical quantization using the Heisenberg picture of quantum field theory we expand
the field operator φ of a free scalar field in the Heisenberg picture in terms of the mode
functions and the annihilation operator ck and creation operator c†k [63–65],

φx =

∫
ddk

(2π)d

(
eik·xu∗η(k)ck + e−ik·xuη(k)c†k

)
. (4.12) bQHG

Both mode functions solve the Klein-Gordon equation, and picking a complex structure
determines the positive and negative frequency modes, so that the vacuum state is defined
by ck|0〉 = 0. In order to link this decision to the Schrödinger picture, we Fourier transform
the kernel Kη(k) = FT

(
Kηxy

)
and derive it from u∗η(k) using [61],

Kη(k) = − i√−g
∂ηu

∗
η(k)

u∗η(k)
. (4.13) bHG

The kernel is constructed such that the ground state functional solves the Schrödinger
equation (4.9), while the mode functions fulfill the Klein-Gordon equation. In this way,
Eq. (4.13) links the two dynamical equations for each respective picture. We connect
the two pictures at the level of the kernel and mode functions since, due to the non-
applicability of the Stone-von Neumann theorem [66], a connection for quantum field
theoretic setups in dynamical spacetimes has yet to be worked out at the level of states
and operators [67].
As is common practice in the Heisenberg picture, we relate the modes at η → ±∞ by a

Bogoliubov transformation uη(k) = αk vη(k) + βk v
∗
η(k) with the Bogoliubov coefficients
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αk and βk and normalize them with uη(k)u̇∗η(k)−u∗η(k)u̇η(k) = ia1−d
η [63,68]. Denoting the

coordinate volume of the hypersurface Σ with vΣ, the norm of the ground state functional
(4.11) using (4.13) at final time is [38]

‖Ψ0
ηf
‖2 =

[∏

k

Aηf (k)

]
exp

{
− vΣ

∫
ddk

(2π)d
lnAηf (k)

}
, (4.14) b tQHG

with

Aηf (k) :=

∣∣∣∣∣
ωηi(k)

ωηf (k)

(
aηi
aηf

)d−1 (
1 + 2|βk|2

)
∣∣∣∣∣

1
2

, (4.15) bQHG

where the dispersion relation for the scalar field with mass m reads ω2
η(k) = k2 +m2a2

η.
Notice, to obtain Eq. (4.14) we used a functional which was initially normalized and
averaged over time to discard an oscillatory contribution explicitly given in [38] which is
nevertheless irrelevant for our discussion here.
The norm of Ψ0

ηf
in (4.14) deviates from one if Aηf (k) 6= 1. This is the case if either

βk 6= 0 or ωηi(k) 6= ωηf (k). The Bogoliubov coefficient βk is measuring the mixing between
the positive and negative frequency modes and is connected to the number density |βk|2
of the particles produced by the background [68]. To better understand the the second
scenario of non-unitarity, i.e. if ωηi(k) 6= ωηf (k), we choose for simplicity the well studied
example of a FLRW spacetime in (1 + 1) dimensions with scale factor [68]1

a2
η = A+B tanh(ρη), (4.16) G

where A, ρ ∈ R+, B ∈ R and A > |B|. In this example, the spacetime is static for
η → ±∞ and has an expanding phase (if B > 0) or contracting phase (if B < 0) which
lasts 1/ρ. The number density for this spacetime is given by [68]

|βk|2 =
sinh2

[
π
2ρ
{ωηf (k)− ωηi(k)}

]

sinh
[
π
ρ
ωηi(k)

]
sinh

[
π
ρ
ωηf (k)

] . (4.17) bHG

If the background changes practically instantaneously for the field modes in question, i.e.
ρ � ωη, the quantity Aηf in (4.15) becomes A2

ηf
→ (1 + ω2

ηi
/ω2

ηf
)/2. For an expanding

universe with B � 0, fields are blue shifted with ωηi � ωηf and A2
ηf
→ 1/2. In this case,

the logarithm in (4.14) changes the sign of the exponent which causes the norm of the final
state to diverge due to the infinite volume vΣ and thus resembling an infrared divergence.

1This model can also be conveniently used in optical systems to describe smooth interfaces between two
media as discussed in Sec. 2.1.2.
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If the universe contracts instead with B � 0 introducing a red shift with ωηi � ωηf
the logarithm in (4.14) diverges and thus the norm of the final state approaches zero
similar to the case close to a black-hole singularity as discussed in [61]. Notice, to obtain
this behavior the prefactor Nη in (4.11) was crucial since it delivered the exponential in
(4.14)2. Before we discuss how to investigate the interpretation of these results we first
investigate other choices for the extend of the transition region 1/ρ.
Namely, if on the other hand the universe evolves adiabatically, its scale factor fulfills

∂ηaη/aη � ωη. For (4.16) this means B/(Aρ) � ωη. In this case there are no particles
produced, i.e. |βk|2 → 0 [68], and the quantity Aηf in (4.15) becomes A2

ηf
→ ωηi/ωηf .

The special case ωηi = ωηf is obtained for B = 0 and resembles a static universe with
∂ηaη = 0, i.e. a Minkowski spacetime with the norm of the ground state (4.14) remaining
one for all times.
In general, for adiabatically evolving spacetimes one can determine the mode function

using a WKB ansatz, which in (d+ 1) spacetime dimensions reads [68],

uη(k) =
1√

2Wη(k) ad−1
η

exp

{
−i
∫ η

ηi

dη′Wη′(k)

}
, (4.18) bHG

where Wη(k) satisfies the nonlinear equation,

W 2
η (k) = ω2

η(k)− 1

2

(
∂2
ηWη(k)

Wη(k)
− 3

2

[∂ηWη(k)]2

W 2
η (k)

)
. (4.19) bHG

This equation is then solved iteratively up to the desired adiabatic order. For our
current discussion it is sufficient to take the zeroth adiabatic order into account and
take Wk(η) ≈ ωk(η). Since the leading order contribution to the renormalized energy-
momentum tensor is given by the fourth adiabatic order, taking the zeroth adiabatic
order neglects any particle production and thus |βk|2 = 0 [68]. Furthermore, in the con-
text of computing the propagator in a normal neighborhood in Sec. 3.1, we also performed
an adiabatic expansion and restricting to the zeroth order corresponds to taking only the
leading order Minkowski contribution in Eq. (3.1) into account. Therefore, the mode
function (4.18) simplifies to a plane wave as for a Minkowski spacetime.
The norm of the ground state functional for the leading adiabatic order is then given

2Since this property will become important when we will compute vacuum persistence amplitudes,
frameworks not taking the normalization factor into account such as in [69] do not cover the full
picture.
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by (4.14) with

Aηf (k) =

∣∣∣∣∣
ωηi(k)

ωηf (k)

(
aηi
aηf

)d−1
∣∣∣∣∣

1
2

. (4.20) b aQHG

One immediate observation of this result is that it only depends on the initial conformal
time ηi and final conformal time ηf . For d = 1 we obtain the same result as before with
the explicit example of a (1 + 1) dimensional “tanh universe” with scale factor (4.16).
This means, as long as the universe evolves adiabatically, the norm of the ground state
functional does not depend on its explicit form of the evolution as required.
If the universe expands, i.e. aηi < aηf , no matter by how much, Aηf (k) < 1 and thus

the norm of the ground state (4.14) diverges due to the infrared divergence as discussed
before. For a contracting universe with aηi > aηf we obtain Aηf (k) > 1 which causes the
norm of the ground state to approach zero. For a universe with scale factor which is the
same for the initial and final conformal time aηi = aηf , we have Aηf (k) = 1 such that the
norm of the ground state equals one at the final time. This is the case no matter how the
universe evolved between ηi and ηf as long as it evolved adiabatically. This means, the
increase of the norm due to an expanding universe can exactly be compensated through
a contraction by the same amount. With this quantitative behavior of the ground state
functional for adiabatic evolving spacetimes we study renormalization in the next Section.

4.1.2. Renormalization

In order to analyze the change of the norm we first notice that the notion of an instan-
taneous vacuum state remains intact to the leading adiabatic order. This means the
annihilation operator fulfills CηΨ0

η[Φ] = 0 for all η if and only if the leading adiabatic
order is taken into account [38]. This is in accordance with choosing the vacuum state
by demanding the adiabatically renormalized energy-momentum tensor to vanish [70].
Therefore to leading adiabatic order, even though its norm can change, an initial instan-
taneous vacuum state remains an instantaneous vacuum state for all times. In the context
of renormalizing the energy-momentum tensor in the Heisenberg picture of quantum field
theory in curved spacetimes, up to the third adiabatic order all contributions are dis-
carded due to ultraviolet divergences [68, 71]. This way the fourth adiabatic order and
thus particle production is taken into account, while zeroth adiabatic order effects such
as the change of the energy density of the ground state are discarded [38].
In curved space-times, point-splitting is a well-known method of renormalization em-

ployed in the Heisenberg picture of quantum field theory [72]. One can base the entire
analysis on renormalizing the vacuum polarization 〈φ2

x〉 = limy→x〈φyφx〉, and derive more
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complicated observables like the energy momentum tensor from it. For this purpose,
Hadamard states are often used as vacuum states due to their short-distance regularity,
covariance and adiabaticity guaranteed for all orders. Performing the expectation value
in a Hadamard state, we split it into the following two parts [73–75]

〈φxφy〉 = Hxy + Wxy, (4.21) bQHG

where H is the Hadamard parametrix which includes the short-distance singularities and
describes the geometric, state-independent contribution. On the other hand, W depends
on the state and is regular. The ultraviolet-regular vacuum polarization is then obtained
by subtracting the Hadamard parametrix, i.e. 〈φ2

x〉ren = limy→x[〈φxφy〉−Hxy]. In this way,
effects such as those at the leading adiabatic order analyzed in Sec. 4.1.1, are discarded.
This procedure in the Heisenberg picture cannot be directly translated to the Schrödinger
picture due to their a priori in-equivalence in dynamical spacetimes [66]. Therefore, we
perform a different approach to discard unphysical effects [38].
To renormalize computations in quantum field theory in curved spacetimes in the

Schrödinger picture we adopt the viewpoint of open quantum systems, i.e. we normalize
the states whenever it is required [58]. This viewpoint relies on the requirement that
at every instant of time a probabilistic interpretation of quantum field theory has to be
established. In our case, the probability density is given by δPt[Φ] = |Ψt[Φ]|2 for a field
configuration Φ [61,62,76]. Initially at ti, we prepare the states with an intact probabilis-
tic interpretation such that the probability density fulfills

∫
DΦ δPti [Φ] = 1. At a later

time tf > ti, however, this is not guaranteed and the expanding or contracting universe
discussed in Sec. 4.1.1 is an example for which it does not hold since the norm of the
ground state (4.14) changes over time. This is the standard renormalization procedure in
open quantum systems whenever for example external potentials are used [58].
As explained previously, if the underlying fundamental description of nature is unitary,

the subsystems must likewise be unitary. Violations of this underlying principle can be
traced back to pathologies in our description, such as introducing tachyonic degrees of
freedom [77,78], or to our ignorance of taking essential degrees of freedom only effectively
into account. In our case of the scalar field in a FLRW background this is introduced
by the semi-classical approximation, i.e. treating the background classical and rigid. In
Sec. 4.3, we will go into detail how one can analyze models for pathologies. If pathologies
are not the reason, one retains the probabilistic interpretation and thus cures the mistake
by not taking all relevant degrees of freedom into account by normalizing the states in
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question. In our semi-classical approximation, this amounts to

δPt[Φ] =
|Ψt[Φ]|2
‖Ψt‖2

(4.22) bQHG

such that
∫
DΦ δPt[Φ] = 1. In this way the probabilistic interpretation of quantum field

theory is restored such that transition probabilities are between zero and one as required.
In curved backgrounds with singularities it might be that the normalization cannot be
performed. For instance, as we have seen in Sec. 4.1.1 if we let a universe naively shrink
to a point or equivalently approach the singularity in the interior of a black-hole as
discussed in [61], the norm of the ground state vanishes and thus (4.22) is ill-defined. This,
however, corresponds to the first category of unitarity violation, namely the occurrence of
a pathology, here manifested by a singularity. In this case a probabilistic interpretation
cannot be restored and an alternative model should be considered. In [38], we go into
detail about how vacuum persistence can be used to systematically infer whether a system
undergoes non-unitary evolution due to some pathology.
With these tools which allow to identify physical effects, i.e. those who are present

after renormalization, we first investigate vacuum effects on an atom in a Minkowski
background in the next Section and generalize to curved spacetimes afterwards to study
black-hole formation.

4.2. Probing the QED Vacuum with Atoms

4.2.1. Atom Light Interaction

In this Section, we use the more familiar application of atom physics to demonstrate
the concepts of open quantum systems. This research was conducted in [37] with Marc
Schneider, and it is now summarized here. We investigate the impact of the atom’s
Coulomb potential on the QED vacuum and the back reaction on the atom. As a result,
we determine the effects of the QED vacuum on the atom and this way obtain the Lamb
shift as well as an extra dynamical effect.
The dynamical Casimir effect is a well-known dynamical QED effect on the atom. This

phenomenon demonstrates how the QED vacuum behaves on an accelerating atom in
contrast to one at rest as with the Lamb shift. In [79], the effects of the QED vacuum on
an oscillating atom are investigated as shown schematically in Fig. 4.5a). The dynamics
caused by the oscillation, opposed to the time-independent Lamb shift, can excite the
atom and hence destabilize the ground state. By emitting photons during the relaxation
of the atom, the QED vacuum may be indirectly examined.
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Figure 4.5.: An oscillating atom with an electron that interacts with QED vacuum
bubbles leading to the dynamic Casimir effect is shown in a). Schematic depiction in b)
of an interaction Hamilton operatorHAR that connects the atom’s free Hamilton operators
HA to the QED sector with Hamilton operator HR.

Our case of interest deals with the atom at rest and investigate the dynamical effects
of the QED vacuum in the Coulomb potential of the nucleus. In this investigation, we
employ the bound-state electron of a hydrogen atom as a detector and examine the QED
vacuum that is modified by the presence of the nucleus. As before, we assume that the
atom’s state |ΨA 〉 and the system’s state |ΨR 〉 were initially decoupled, allowing us to
express them as a product state |Ψ 〉 ∝ |ΨA,ΨR 〉. The Hamilton operator is subsequently
decomposed into the different parts as depicted in Fig. 4.5b). Altogether, the Hamilton
operator is expressed as Htot = HA +HR +HAR.
The wave function ψt(x) := 〈x|ΨA〉t of the bounded electron then solves the Schrödinger

equation of the detector (4.2), which explicitly reads

i∂tψt(x) = (HA +HAR)ψt(x) . (4.23)Q

For reference, we first consider the atom without the interaction with the QED vacuum
encoded in HAR. In this case, the detector boils down to the quantum mechanical prob-
lem of an atom, which may be characterized semi-classically by the nucleus’s Coulomb
potential. As a result, the Hamilton operator of this detector HA consists of the electron’s
kinetic energy plus its potential energy in the coulomb potential and reads in SI units

HA = − 1

2me

∆− e2

4πε0r
, (4.24) b eQ
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with electron mass me, electric charge e and vacuum permittivity ε0.
The hydrogen wave functions are the eigenstates of the Hamilton operator HA and are

given for the ground state and the first excited state by,

ψ100(x) =
1√
πa3

0

exp

{
− r

a0

}
, ψ200(x) =

1

2
√

2πa3
0

(
2− r

a0

)
exp

{
− r

2a0

}
. (4.25) b eQ

For HAR = 0, the states fulfilling the Schrödinger equation (4.26) are then given by
ψnlmt (x) = exp {−iEnt}ψnlm(x) with the eigenvalues E1 and E2.
Equipped with the non-relativistic detector of an atom, we now consider the system to

be electromagnetic fields. Therefore, the conjugated variables are the vector potential A
and the electric field E in the phase space {A,E} for which the commutation relations read[
Aix, E

j
y

]
= −iδijδ(3)

xy and
[
Aix, A

j
y

]
=
[
Ei

x, E
j
y

]
= 0, using the temporal gauge A0 = 0 [62].

Defining the wave functional 〈A |ΨR 〉t = Ψt[A] using the eigenstates of the operator A
and performing the same steps as in Sec.4.1 we find analogous to (4.4) the Schrödinger
equation for the electromagnetic fields

i∂tΨt[A] = (HR +HAR)Ψt[A] . (4.26) b eQHS

First, let us consider a free electromagnetic field, for which the Hamilton operator
reads [62]

HR =
1

2

∫
d3x

(
− δ

δAx

· δ

δAx

+ Bx ·Bx

)
, (4.27)QHS

where B := ∇ × A and E = iδ/δA has been used. Analogous to the scalar field case
introducing the annihilation and creation operator C and C† the Hamilton density oper-
ator can be written as (CxC

†
x + C†xCx)/2. The functional of the ground state fulfilling

CxΨ0
t [A] = 0 and solving the free part of the Schrödinger equation (4.4) then becomes

Ψ0
t [A] = Nt exp

{
−1

2

∫
d3x d3yBxKxyBy

}
, (4.28)QHS

where as before K is the kernel. The A independent prefactor Nt includes the normaliza-
tion constant of the state together with the phase exp(−iω0t). The energy of the ground
state ω0, diverges in quantum field theory. Normal ordering the Hamilton density oper-
ator, it is set to zero such that only differences to the ground state energy are relevant.
A first excited state resembling a photon with polarization ε and wave vector k can then
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be found by applying the field operator onto the ground state,

Ψ1
t [A] ∝

∫
d3x e−ix·k ε ·C†x Ψ0

t [A] . (4.29)QHS

So far we have constructed the wave function and functional of the atom and QED vac-
uum in their free theories, i.e. neglecting any interaction between the atom and the QED
vacuum. As initially assumed their interaction does not modify any of them tremendously
such that we can prepare the whole system in a product state. This, however, conveniently
allows us to prepare the detector and the QED vacuum as free states and include inter-
actions between them perturbatively. Therefore, we can expand the part of the evolution
operator due to the interaction whereas keeping the free parts untouched. This different
treatment of these evolution operators automatically introduces the interaction picture of
quantum physics.
A state in the interaction picture is characterized by factoring out the time-evolution

operator with respect to the free Hamilton operators H and H. I.e., a Schrödinger state
written in terms of an interaction state reads |ΨA|Q 〉St = UA|Q(t)|ΨA|Q 〉It , where S and
I indicate the Schrödinger and interaction picture. Transition amplitudes in this picture
are then given by

A = I
t〈Ψ |T exp

{
−i
∫ t

t0

dt′HAR(t′)

}
|Ψ 〉It0 , (4.30) b eQHS

where as before T denotes the time ordering of the argument within the exponential.
We can now determine the transition amplitudes of a Hydrogen atom placed in an

electromagnetic wave system. First, we consider the process of the atom to begin in its
ground state at t0 → −∞ together with one photon and end up in an excited atom state
and the QED vacuum at t→∞. The amplitude (4.30) for this process is as follows,

A = I
∞〈 200, 0 |T exp

{
−i
∫

dt′HAR(t′)

}
| 100, 1 〉I−∞ . (4.31) b e rQHS

Expanding the time evolution operator, the leading contribution to this amplitude is given
by the order linear in HAR. In temporal gauge the interaction Hamilton operator reads
HAR = −ieψ†γ · Aψ with gamma matrices γµ and ψ† = ψ̄γ0. Inserting the complete
sets

∫
DA |A 〉〈A | and

∫
d3y|y 〉〈y | into Eq. (4.31) results in the transition amplitude
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A = −
∫

d3xDx · Sx, where

Dx = e

∫
d3y ψ̄2L0

y ψ̄xγ
0γψxψ

100
y δ(E1 − E2 + ωk) ,

Sx =

∫
DA

∫
d3k Ψ̄0[A]eix·kAkΨ1[A]

(4.32) b e r pQHS

Employing Eq. (4.29) the integral in A becomes the second moment of a Gaussian integral
which can be computed exactly. Furthermore, in the dipole approximation, i.e. the
wavelength of the photon is large compared to the extend of the atom, we approximate
exp(ix · k) ≈ 1 and thus the entire x dependence is encoded in Dx. Evaluating Dx

further we find the usual proportionality Dx ∝ ψ̄2L0
x xψ100

x . Inspecting the Hydrogen wave
functions (4.25), we see that

∫
d3xDx vanishes for L = 0 and is finite for L = 1. This

is one example of the selection rules which prohibit the optical transition from Ψ100 to
Ψ200 or vice versa. Taking these approximations into account and restricting the atom to
two levels the interaction Hamilton operator reduces to the Jaynes-Cummings Hamilton
operator.
Within the Hamilton operator of the Hydrogen atom (4.24) we have used the Coulomb

potential. This was an effective approach and there is work [80] suggesting that instead
of taking the Coulomb potential, one can replace it with the exchange of photons at tree
level between the electron and the nucleus. Allowing for loop contributions, the Coulomb
potential undergoes quantum corrections, which we determine in the next Section.

4.2.2. Vacuum Induced Spontaneous Excitation

To account for quantum field fluctuations, we consider the QED vacuum as the system.
To this end, we introduce fermionic fields describing electrons and positrons with a four-
spinor ψa. The phase space is spanned by ψ and ψ†, for which the equal time anti-
commutation relations are {ψx, ψ

†
x} = −iδ(3)

xy .
As explained in Sec. 4.1.1 one can base the entire analysis on the renormalized vacuum

polarization 〈ψ̄xψx〉 = limy→x〈ψ̄yψx〉, and deduce more complicated expectation values
such as the one of the current from it. In the case at hand, these observables allow for
the retrieval of information about the vacuum state as follows: The conserved current jµx
causes an electric field modification that may be measured via back reaction on the vac-
uum detected with an atomic bound state. This means, vacuum fluctuations cause a
local perturbation of the classical Coulomb potential, which affects the bound-state elec-
tron. Since the state of the undisturbed atom is known, we can derive information about
the vacuum itself by analyzing the difference from the state of the disturbed atom. The
conserved fermionic current in QED is jµ = −eψ̄γµψ. Therefore, we may create a cur-
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rent operator Oµj = −eγµ acting on 〈ψ̄ψ〉x which connects the current and the vacuum
polarization.
The effects of the vacuum on an atom have previously been carefully studied. For

instance, Uehling investigated static fields to find the time-independent average contribu-
tion that accounted for the later experimentally observed Lamb shift [81]. In their studies,
Dirac and Heisenberg [82, 83] formalized the techniques used by employing the density
matrix, which is built as the difference between positive and negative frequency modes.
Ultraviolet divergences coming from evaluating two fields at the same time were simply
discarded. Known today as renormalization, we employ the process of subtracting the
Hadamard parametrix as presented in Sec. 4.1.1 to derive the effective potential, which
describes time-dependent and time-independent contributions from the QED vacuum. To
this end, we briefly summarize the work of Zahn et. al. [84–87] here.
Instead of performing the renormalization for a quantum field in a dynamical back-

ground like in Sec.4.1.1, we now do it for a quantum field in a Coulomb potential. In
terms of operation, we are exchanging a gravitational background for an electromagnetic
potential, both of which are unresolved and hence external. The features of quantum fields
in external potentials frequently overlap with those of curved spacetimes, as indicated by
the striking resemblance of the Schwinger effect and Hawking radiation [88,89].
The propagator, like before, is the main focus of our investigation into vacuum effects.

However, previously, we were only interested in the vacuum effects of scalar fields, and
hence only in their propagator, whereas here we are studying the QED vacuum, and so
the propagator of the fermion field ψ is required. Fortunately, the Klein-Gordon operator
can be decomposed into a contraction of the Dirac operator and its adjoint, allowing for
the derivation of the fermionic propagator ∆ψ from its scalar counterpart ∆ [90],

∆ψ
xy := i〈Tψxψ̄y〉 = (iγµDµ +m) ∆xy , (4.33)QHS

where Dµ = ∂µ − ieAµ. Propagators in the external Coulomb potential are studied for a
scalar field and a spinor field, respectively, in [91] and [92]. The mode functions in the
Coulomb potential are derived, for example, in [93–97].
As discussed in Sec. 4.1.2, the bare expression of the vacuum polarization has ultravi-

olet divergences which are discarded by subtracting the Hadamard parametrix such that
one ends up with the renormalized vacuum polarization 〈ψ̄xψx〉ren. This quantity incorpo-
rates how the QED vacuum creates electron positron pairs with which the renormalized
expectation value of the current density can be obtained and reads [87]

〈jµx 〉ren =
e

8π2
Wxxγ

µ , (4.34)QHS
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where Wxx can be derived iteratively employing the Hadamard coefficients W (n). Follow-
ing this modern approach, [85] showed that the result matches with the original result
found by Uehling [81] for static fields and Serber [98] for dynamical fields.
Using the notation of [98], the renormalized expectation value of the current density

caused by an external current J is (for m ≡ 1)

〈jµx 〉ren =

∫
d4y

∫ π
2

0

d$ cos3($)Λ(x− y;$)��Jµy , (4.35) pQHS

with the integration kernel given by [85,98]

Λ(x;$) =
α

32π5

∫
d4k

k4
e−ikx ln

[
1− k2

2
cos($)

]
. (4.36) pQHS

Λ has two contributions, one static denoted by Λ1,

Λ1(r;$) = − α

16π2r
cos2($)

∫ ∞

1

dK
K3

e−2Kr sec($) , (4.37) pQHS

and one dynamic denoted by Λ2 which reads [85,98]

Λ2(τ ;$) =
α

8π2τ
cos($)

∫ ∞

1

dK
K2

J1(2Kτ sec($)) , (4.38) pQHS

where t = |t − t′|/νCompton, τ =
√
|r2 − t2|, r = |r − r′|/λCompton, k0 = K sinh(ϕ) and

k = K cosh(ϕ) as in [98].
The time-independent contribution yields the Uehling potential U(r) which in a more

common form reads [63,81,98,99]

∫
d3y

π

e2α
U(r)∆Jµy . (4.39) pQHS

The Uehling potential is a quantum correction of the classical Coulomb potential with
lim~→0 U(r) = 0. Combining the Coulomb potential in (4.24) with the Uehling potential
changes the resulting hydrogen eigenfunctions and eigenvalues. Because this is a small
correction, we use perturbation theory to examine how the eigenvalues of the hydrogen
states (4.25) change in the presence of the Uehling potential,

∆Enl =

∫
d3xU(r) |ψnl0(x)|2 . (4.40) pQHS

This contribution, called Lamb shift, shifts the eigenvalue by En − ∆Enl such that the
hydrogen wave functions are modified and read exp{−i(En −∆Enl)t}ψnl0(x). Eq. (4.40)
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produces a magnitude of |∆Eln/En| / 10−8 for the ground state and the first excited state
of a hydrogen atom (4.25). By precisely measuring these energy levels in an experiment,
the effect of the QED vacuum on the atom could be determined [100].
The time-dependent contribution (4.38), on the other hand, introduces dynamic effects

on the electron’s bound states. Performing the K integration yields

Λ2(x) =
α

8π2

[
1

2
− γ +

x2

4
2F3

(
1, 1

2, 2, 3

∣∣∣∣∣− x
2

)
− ln(x)

]
, (4.41) pQHS

where γ is the Euler-Mascheroni constant and x := τ sec($). The logarithm in (4.41)
dominates the small τ behavior, whereas the hypergeometric term controls the intermedi-
ate part, which is the most relevant one for our investigation on atomic scales. For large
radii or after long times, the Serber potential goes to zero, i.e. limx→∞ Λ2(x) = 0.
Similar to the Uehling potential in (4.39), we define the Serber potential S with

∫
d4y S(τ)��Jµy . (4.42) pQHS

Performing the integration over $ the closed form of the Serber potential reads

S(τ) =
α

8π2

[√
π

4
G2,2

3,5

(
1, 1; 5/2

1, 2;−1, 0, 0

∣∣∣∣∣ τ
2

)
− 2 ln(τ)

3
− 2

3

(
1

3
+ γ − ln(2)

)]
, (4.43) pQHS

with G the Meijer G-function. For small τ � 1, the Serber potential is expanded as
S(τ) = −α ln(τ)/12π2 +O(τ 0) and thus diverges logarithmically at zero. Asymptotically,
for τ � 1, the Serber potential is given by a damped oscillation, that is limτ→∞ S(τ) ∝
[cos(2τ)]/τ 3 +O(1/τ 4) as seen in Fig. 4.6.
As before with the Uehling potential leading to the Lamb shift, we now investigate the

effect of the Serber potential on the bound state electron. In this analysis, we concentrate
on the influence of quantum fluctuations on the bound state electron while neglecting
the effect on the Coulomb potential itself. Because we have a time-dependent potential,
energy conservation is not enforced, causing tensions owing to the assumption of an eternal
Coulomb field. In this regard, because we are using the electron in the bound state as
a detector for QED processes, we must consider the system to be open. To remove this
tension, the process has to include the dynamical resolution of the Coulomb potential3, its
quantum corrections, and the proton to establish a closed system. The similarities with
particle production by black-holes are intriguing and worth considering [37]. Because
protons are subject to quantum chromodynamics, they are not included in the QED

3Despite recent research in this direction such as in [80], resolving the Coulomb potential in terms of
fundamental degrees of freedom has not been achieved yet.
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Figure 4.6.: The left panel shows the Serber potential S(τ) for τ ∈ [0.16, 2.5] where the
logarithmic divergence is dominant and oscillatory contributions are highly suppressed.
For the interval τ ∈ [2.5, 15] in the right panel the Meijer G-function becomes relevant
such that the potential performs damped oscillations.

spectrum. In the case of positronium, a full QED process may be employed to characterize
the bound state, but because this configuration is unstable, it may be inappropriate for
analyzing small alterations produced by vacuum fluctuations. Only in a closed system
with a microscopic description of the Coulomb potential can a comprehensive account
of the energy fluxes be obtained. The back reaction is described as a scattering process
in this model, with the elements constituting the classical potential such that energy
conservation is assured through unitarity.
At the moment, however, we are operating with the semi-classical approximation, and

hence in an open quantum system. We employ the Rayleigh-Schrödinger perturbation
theory for time-dependent potentials to investigate the effect of the Serber potential on
atomic states. In this context, we find in particular an instability of the ground state
using Fermi’s golden rule,

P (1)(t) =

∣∣∣∣i
∫ t

t0

dξei(En−Ei)ξ〈200|S(ξ)|100〉
∣∣∣∣
2

6= 0 . (4.44) p eQHS

As a result, the Serber potential allows that the electron trapped in the 1S orbital can
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Figure 4.7.: Schematic depiction of the action composed of a scalar field part S0 and an
external source with action SE and the coupling between them with SJ .

transition to the 2S orbital. In this regard, we can observe that the hydrogen ground
state is not a QED ground state. As a quantitative example, we take the typical time for
an atomic transition with t ∈ [0, 10−17] and r ∈ [10−3 a0, 10 a0], resulting in a transition
probability of order O(10−20). The Serber potential makes no contribution to the selec-
tion criteria outlined in Sec. 4.2.1, since the probability of any ψnlm(r) being excited to
ψnl+1m(r) by the Serber effect is zero. In a technical sense, the electron of a hydrogen
atom couples to an electron-positron vacuum bubble through two photons. Because this
2-photon coupling cannot alter the electron’s angular momentum by one, the Serber con-
tribution does not follow the typical selection rules, but instead concerns transitions that
occur, for example, in 2-photon excitation.
Through spontaneous excitation of the atom ground state, non-trivial vacuum effects

caused by the Coulomb potential may be detected in this manner. As a result, the atom
may be employed as a detector for QED vacuum effects. When an atom is placed in a
curved spacetime, there is an extra source of vacuum induced spontaneous excitation of
the atom, as we shall see in the next Section.

4.3. Vacuum Persistence in Curved Spacetimes

As described in the introduction, we are interested in the persistence of the vacuum of a
probe field in a curved background. This persistence is given by the amplitude 〈 0f | 0i 〉,
relating the initial vacuum state | 0i 〉 with the final vacuum state | 0f 〉. As in the previous
Section we could take the QED vacuum and analyze spontaneous excitation of an atom in
a curved spacetime. However, to concentrate on the phenomena introduced by the curved
background, we choose the most simple probe field, a massless, real scalar field φ and as
a detector an external source J , as shown in Fig. 4.7. Since we do not know the dynamics
of an external source and thus have no information about its kinetic action SE, we treat
it as an environment. We place this arrangement in a Minkowski spacetime (M, η) and
thus the action is given by S = S0 + SJ ,
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S = −1

2

∫

M
dµx (ηµν∂µφ∂νφ+ 2φJ) =:

1

2

∫

M
dµx dµy

(
φxKxyφy − 2φxJxδ

(4)
xy

)
, (4.45)HS

with Kxy := �xδ
(4)
xy .

To calculate the vacuum persistence amplitude, there is a plethora of methods. Here,
we use the approach relying on the path integral quantization of a free scalar field φ with
an external source J and consider the generating functional [68,101,102],

〈 0f | 0i 〉J =

∫ φf

φi

Dφ eiS[φ,J ] . (4.46)QHS

The boundaries of the path integral can conveniently be rewritten as 〈 0f |φtf 〉 and
〈φti | 0i 〉 due to the orthonormality of the states. Since the initial and final sates are
vacuum states in a free theory, these amplitudes can be expressed as Gaussian function-
als in φ. These functionals are then conveniently reformulated as an iε prescription in
(4.46) with Kxy replaced by Kε

xy = (�x − iε) δ(4)
xy with the limit ε→ 0 understood [102].

Adopting this procedure and performing a substitution φ → φ̄ with φ̄x =
∫

dµy
√
Kε
xyφy

as in [68] or φ̄x = φx +
∫

dµy(K
ε)−1
xy Jy the generating functional becomes [103]

〈 0f | 0i 〉J ∝
√

det(∆) exp

{
i

2

∫
dµx dµyJx∆xyJy

}
, (4.47)QHS

where we performed the
∫
Dφ̄ integral using (�x − iε) (Kε)−1

xy = δ
(4)
xy and the Feynman

propagator fulfilling ∆xy = (Kε)−1
xy .

In Sec. 4.1.2, we argued that in the context of open quantum systems, the states of a
subsystem have to be properly normalized. Since we are interested in whether the vacuum
changes due to the presence of the external source, we normalize the total amplitude by
dividing the expression without sources 〈 0f | 0i 〉0J := 〈 0f | 0i 〉J/〈 0f | 0i 〉0. In this way,
the normalization of the vacuum states is guaranteed and the contributions not coming
from the source are taken out such that in (4.47) only the exponential depending on
the external source remains. Historically [104], this is the first setup in which the VPA
was discussed, and from which the following expression of the VPA was derived with the
Schwinger action principle,

〈 0f | 0i 〉0J :=
〈 0f | 0i 〉J
〈 0f | 0i 〉0

= exp

{
i

2

∫
dµx dµyJx∆xyJy

}
=: eiWJ . (4.48)QHS

For real WJ , the VPA is just a phase and the vacuum is stable. The probability for the
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vacuum state to be persistent is affected by the imaginary part [104],

∣∣〈 0f | 0i 〉0J
∣∣2 = e−2Im(WJ ) = exp

{
−
∫

d3k

(2π)32ωk

∣∣∣
∫

dµx e
−ikxJx

∣∣∣
2

k0=ωk

}
, (4.49)QHS

where we assumed the external source to be real, i.e. Im(J) = 0.
It is common practice to use the VPA to analyze the unitarity of quantum systems

[105, 106]. There is also a plethora of similar techniques examining the same question
which are connected to the VPA. For instance, a suitable way to investigate whether
unitarity is broken is to check the optical theorem in the context of scattering theory. If
the imaginary part of a forward scattering amplitude is positive, for example in considering
tachyonic degrees of freedom, the optical theorem does not hold and the quantum system
evolves non-unitarily. This has been used extensively to shrink the parameter space in
model building such as in [77, 78] for effective field theories and in [107] for inflation
models.
For a quantum system evolving unitarily, the probabilistic interpretation is guaranteed

at all times, i.e., the transition probabilities are bounded by zero and one. Therefore, in
a properly functioning quantum system the VPA satisfies the condition,

|〈0f |0i〉0J |2 ≤ 1 . (4.50)QHS

In general, the external source J radiates and thus fills the system with particles that were
not present before the source was turned on. This decreases the transition probability for
the system to remain in the initial vacuum state, which is therefore a measure of particle
production. The transition probability (4.49) satisfies (4.50) as we will show for specific
external sources in the next Section. The inclusion of other contributions such as a curved
background may potentially yield |〈0f |0i〉0J |2 > 1, which would reflect an inconsistency
that violates the probabilistic interpretation of quantum field theory [105, 106]. In this
way, the determination of the VPA is an important consistency check for quantum field
theory in curved spacetimes which we will apply for black-hole formation in Sec. 4.3.2
using the external sources which we characterize in a Minkowski background in the next
Section.

4.3.1. Construction of Privileged External Sources

In order to study the VPA in the context of black-hole formation and thus for a thin
shell geometry, we first analyze the external sources that we intend to use in a Minkowski
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background. Of primary interest to us will be a temporally smeared-out point source

Jsx =
1√

2πσ2
exp

{−(t− t0)2

2σ2

}
δ(3)
x , (4.51)QHS

with standard deviation σ. The VPA in Minkowski (4.49) using such a source then
becomes

∣∣〈 0+ | 0− 〉0Js
∣∣2 = exp

{
−
∫

d3k

(2π)32ωk2π
e−ω

2
kσ

2

}
= exp

{
− 1

2(2π)3σ2

}
. (4.52)QHS

Switching the source on and off adiabatically with σ →∞ the transition amplitude is one
and therefore the vacuum state remains in the initial state. Notice, the result does not
depend on t0, i.e. we loose all information when the sources are switched on. Thus, the
vacuum decay does not depend on absolute time but only on relative times as required
by the Poincaré symmetry of the Minkowski spacetime.
The limit σ → 0 describes a source which is turned on and off again in an instant

and Jsx → δ
(4)
x . The VPA (4.52) jumps to zero in an arbitrary short amount of time

indicating a pathology. This pathology is caused by an external source which could not
be created by reasonable physics since to manufacture a δ(4)

x source one would require
modes with arbitrary high energy and thus exceeding the Plank energy scale. Those
modes are not part of the standard model and therefore we cannot expect a δ(4)

x source
to yield something meaningful.
In the intermediate region in which σ is finite and non-zero the VPA returns a proba-

bility 0 < p < 1. In summary, the VPA of any point source reduced in time in Minkowski
satisfies the bound (4.50), and thus we can use it for curved backgrounds in the following
section.
A more involved source is composed of an emitter and an absorber source J = Je + Ja.

We switch on the emitter source which radiates away particles until it is switched off
again. Afterwards particles can be absorbed by the source Ja which is temporarily
switched on. This way the two sources have different support in time which do not overlap:∫

dt JexJ
a
x = 0. We take the emitter and absorber source to be temporally smeared-out

point sources (4.51) such that a communication source reads

J cx =
1√

8πσ2

(
δ(3)
xxe exp

{−(t− te)2

2σ2

}
+ δ(3)

xxa exp

{−(t− ta)2

2σ2

})
. (4.53)QHS

Inserting this source into the VPA (4.49) results in four terms in the exponential. Two
terms are self-interacting contributions and depend either solely on Je or Ja leading to
|〈 0f | 0i 〉0Je|

2 and |〈 0f | 0i 〉0Ja|
2 analogous to (4.52). The other two terms include both Je
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Figure 4.8.: Causal contribution to the VPA for an external point source which is
switched on and off two times with a temporal Gaussian profile centered around te = 0
and ta with standard deviation σ.

and Ja and thus require the propagator between the emitter and absorber. This new
contribution reads

AJc :=
|〈 0f | 0i 〉0Jc |

2

|〈 0f | 0i 〉0Je|
2 |〈 0f | 0i 〉0Ja|

2

= exp

{
−
∫

d3k

(2π)3

e−ω
2
kσ

2

16ωkπ
cos [ωk(ta − te)− k(xa − xe)]

}
.

(4.54)QHS

AJc either amplifies the self-interaction contribution or decrease its effect depending on the
spatial distance between the sources xa−xe and the temporal difference ta− te. However,
this effect is strictly smaller than the self-source effects |〈 0f | 0i 〉0Je|

2 and |〈 0f | 0i 〉0Ja|
2 such

that the VPA remains smaller than one.
As a first example let us consider an external point source (4.53) which is turned on and

off smoothly two times with J c|xe=xa and σ finite. We choose the values te = 0 and ta > 0

for clarity. Performing the integration yields the behavior depicted in Fig. 4.8. We can
see that if the difference between te and ta is taken sufficiently large ta � σ, the causal
part of the VPA (4.54) is negligible due to the smallness of the overlap of the Gaussian
functions. For ta = 0 the source (4.53) is not turned on and off twice but only once and
thus reduces to the source (4.51) and the VPA (4.52). Between those two extremes of
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ta = 0 and ta � σ, a transition from a decrease of the VPA to an enhancement can be
seen in a region where the Gaussian functions overlap substantially ta ≈ 3σ.
In this Section, we analyzed the sources (4.51) and (4.53) in a Minkowski spacetime.

With these results we can in the next Section place the very same sources into the back-
ground of the fixed shell and evaluate the differences. This way we analyze the contri-
bution of the curved background and use this external source construction as a tool to
detect potential pathologies introduced by the background geometry.

4.3.2. Vacuum Persistence in a Suspended Shell Background

To analyze whether quantum fields evolve unitarily throughout all phases of black-hole
formation, we compute the vacuum persistence amplitude (VPA) in a fixed shell geometry
as in [12] together with Florian Niedermann. To this end, we analyze the stability of the
initial vacuum state |0i〉 associated with an inertial observer inside the shell. Since the
interior is a Minkowski spacetime with line element (3.63), we construct the quantum field
inside the shell as follows,

φx =

∫
d3k√

(2π)32ωk

(
eikµx

µ

ak + e−ikµx
µ

a†k

)
, (4.55) bQHG

with the creation operator a†k and the annihilation operator ak which annihilates the
vacuum ak |0i〉 = 0. Next, we place a source J inside the fixed shell and use the propagator
(3.68) together with the RNC expansion point (3.73) for the VPA (4.48),

∣∣〈 0f | 0i 〉0J
∣∣2 = exp

{
− Im

(∫

M
dµx dµyJx∆xyJy

)}
. (4.56) b a l p sQHG

Since the source J is located in the interior of the shell, the VPA (4.56) contains
nontrivial information about the curved geometry in the exterior through the reflection
part of the propagator ∆ and therefore the reflection coefficient in (3.71). We have found
the non-perturbative reflection propagator by applying various approximation methods
and constraints (a l p s), and thus must choose a source that consistently accounts for all
of these as well. As shown in App. D, the temporally smeared-out point source (4.51) can
satisfy these criteria. Localizing the source at xJ , it scales in configuration space with
Jx ∝ δ

(3)
xxJ exp {−(xt)2/(2σ2

t )} and is given in momentum space by

J(k) =
1√
2π
eikxJ exp

{
−(ωk − 〈ωk〉)2

2
σ2
t

}
, (4.57)QHS

with the mean 〈ωk〉. σt and 〈ωk〉 are both constrained by the validity of the used approxi-
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Figure 4.9.: Vacuum persistence amplitude (4.56) for a temporally smeared-out point
source (4.57) inside a fixed shell of radius R. The distance from the source to the shell is
0.005rg for the central solid line and zero for the upper and 0.01rg for the lower boundary
of the dark shaded regions. The RNC are constructed around the point (3.73) for α = 0.
The parameters for the source used in the upper plot are σt = 0.08rg and 〈ωk〉 = 4/σt
while for the lower plot σt = 0.05rg in line with the validity discussion in App. D. The
dashed lines are the Minkowski contributions of the sources, which serve as a reference
corresponding to the fraction that is insensitive to the shell and its external geometry.
The radii R/rg > 25/24 are presented shaded in the background to depict the region in
which the shell can be stabilized with respect to standard matter.

mations as explained in App. D. As valid examples, we choose σt/rg = 0.08� 1 together
with σt/rg = 0.05 � 1 and 〈ωk〉rg = 4rg/(σt) � 1 to investigate the influence of σt on
the VPA.
With all this in mind, we present in Fig. 4.9 the VPA (4.56) as a function of the shell

radius R/rg and the distance between the shell and the source at xJ . The dashed lines
are the VPAs in the absence of the shell and are thus given by the results of Sec. 4.3. The
deviation from this Minkowski result is more pronounced as R approaches rg, indicating
a change in the vacuum structure close to black-hole formation. Due to the spatial fall-off
of the propagator, the effect of reflection is less significant when the boundary is farther
away. The central result of this analysis is that the VPA is smooth and always less than
one, thus respecting the bound (4.50) and preserving the probabilistic interpretation of
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quantum field theory in this setup. However, in Fig. 4.9 it can also be seen that especially
for R ≈ rg the VPA increases for larger σt. This raises the research question of whether
this amplification leads to a VPA larger than one when σt is comparable to the black-hole
lifetime and this way connecting to the work of Page [21]. This long-time behavior could
be studied using FNC, which do not share the time constraint of the RNC construction,
as discussed in Sec. 3.1.5.
While these results allow for a first consistency check for black-hole formation, the

fixed shell has to be replaced with a collapsing shell in order to validate that black-hole
formation is indeed paradox-free. Since the techniques developed in this Chapter reach
their limits for a collapsing shell with radius R ≈ rg, we investigate in the next Chapter
the complement approach of quantum graphs which does allow for such an analysis.





5. Analyzing Black-Holes with
Quantum Graphs

As we have seen in the last Chapter, there is a need for a new approach in quantum
field theory in curved spacetimes to investigate black-hole formation. In this Chapter we
investigate a novel approach of compact quantum graphs which consist of idealized one-
dimensional edges connected by vertices as depicted in Fig. 5.1. As we will show, quantum
graphs contain the essential structure to grasp the black-hole properties such that it can
conveniently be extracted by feasible analytical calculations. In Sec. 5.1 we introduce the
construction of quantum graphs in the optical analogue system to investigate propagation
across transitions and generalize to entanglement entropy and black-holes in Sec. 5.2 and
Sec. 5.3.

5.1. Quantum Graphs

Consider a quantum graph G embedded in a globally hyperbolic manifoldM = RT × Σ

with metric g and thus a generalized version of previous works of quantum graphs in
a Minkowski background [108, 109]. As depicted in Fig. 5.1 for a (2 + 1) dimensional
setup, we choose a quantum graph which is constructed out of straight edges e, which are
connected via vertices v. Furthermore, we parameterize a position on a specific edge of
length ` with x ∈ I := [0, `]. Then Z : RT × I → M maps a point on the edge to the
manifold M and a scalar field ϕ : M → R assigns any point in the manifold a certain
value. With these definitions we can define a real scalar field confined onto the edge with
φ := ϕ ◦ Z:

Φ : RT × I → R ,

φx = ϕ
(
Zx
)
.

(5.1)HS

This resembles a conformal field theory for φ which as previously discussed simplifies
computations of observables tremendously no matter how complicated the background
geometry is. For instance, the mode functions on each edge are plane waves.
The Laplace operators introduced in the equations of motion on each edge can be
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Figure 5.1.: A (2 + 1) dimensional quantum graph made up of straight edges like the
dashed one e that are linked with vertices like v depicted with a dot.

generalized to a self-adjoint operator on the whole graph if certain boundary conditions
for φ are applied at each vertex [108,109]. The condition on self-adjointness, however, does
not uniquely determine the boundary conditions but leaves room for ambiguousness which
are relevant for the physical properties of the vertices [110]. We choose the Kirchhoff-
Neumann boundary conditions which preserve the current and thus are preferred for
describing the propagation of a field through a quantum graph. For a vertex connecting
two edges, these conditions translate to the standard continuity conditions for φ which we
encountered at the reflection and transmission off interfaces. In this way, at each vertex
transmission and reflection can occur encoding properties of the spacetime or medium the
quantum graph is embedded in.
To illustrate this, let us investigate the optical setup of two half-spaces filled with

different media which we discussed in Sec. 2.1.2. First, we take the simple graph setup
of one edge in each half-space connected with a vertex at the interface as depicted in
Fig. 5.2a). Analogous to the (3 + 1) dimensional counterpart in (2.24), the action of the
scalar field on this graph reads

S = −1

2

∫

SC
dµ (ηµνε ∂µφ∂νφ+ 2φJ)− 1

2

∫

S
dµ ηµνεS ∂µφ∂νφ , (5.2) bHS

with measure dµx = d2x
√
−det(η) and ηε|εS = diag(−1/ε|εS, 1). Following the same

steps as in Sec. 2.1.2 the reflection and transmission propagators read

G<
xy = −

∫ ε

k

e−ik(x+y)R G>
xy =

∫ ε

k

eiqx−iky T (5.3) bHS
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Figure 5.2.: Quantum graphs probing the properties of the two half-space system with
susceptibility εS in S and susceptibility ε in SC . a) depicts the minimal construction
with a vertex v located on the interface such that the quantum field follows a dispersion
relation which depends solely on one susceptibility for each edge. In b) is a quantum
graph shown which depends on the angles between the external edges and the interface
such that it is sensitive to angle dependent phenomena in (3 + 1) dimensions. Compared
to the graph in a) two paths are added, which can be generalized to more paths in order
to increase the resolution on the angle dependency. In c) a star graph is shown with which
any graph can be constructed.

with q2 = k2εS/ε and the shorthand now reads

∫ ε

k

:= i

∫
dk

4πωεkε
e−iω

ε
k(xt−yt) . (5.4) bHS

The reflection and transmission coefficients are equivalent to the normal incidence case of
(2.32),

R =
q − k
k + q

=

√
εS −

√
ε√

ε+
√
εS
, T =

2k

k + q
=

2
√
ε√

ε+
√
εS
. (5.5) bHS

The dependence on the incident angle in (2.32) is encoded in q whereas (5.5) does not
encode any angle information. Therefore, in this minimal graph setup we can only investi-
gate the normal incident scenario of the full (3+1) dimensional treatment. To recover the
angle dependency, more complex graphs must be explored, such as the one in Fig. 5.2b),
which is being investigated in collaboration with Cecilia Giavoni with findings which will
be published elsewhere. With the additional edges and vertices there are more paths to
propagate from the lower half-space to the upper half-space which can lead to constructive
or destructive interference. Taking the external edges to be normal to the dashed circle,
the internal lines will change depending on the angle between the external lines and the
interface. In this way the interior of the dashed circle acts like an extended vertex which
is sensitive to these angles and (3 + 1) dimensional effects such as the Brewster angle can
be investigated.

Both graphs in Fig. 5.2a) and Fig. 5.2b) rely on vertices on the interface which connect
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two edges and thus the standard smoothness conditions on φ are applied. Nevertheless, the
Kirchhoff-Neumann boundary conditions generalize to vertices with more edges attached
such as the star graph in Fig. 5.2c). As explored with Patricia Ribes Metidieri in [110],
the reflection and transmission coefficients for such a star graph in the two half-space
system are given by

R = 1− 2
√
ε∑

i

√
εi
, T =

2
√
ε∑

i

√
εi
, (5.6) bHS

where εi is the susceptibility of the medium in which the ith edge is located. With the
description of a star graph at hand, arbitrary complicated graphs such as the one in
Fig. 5.1 can be constructed by combining star graphs with each other.
Although we only demonstrated quantum graphs in an optical test setup in this Section,

their applicability is far ranging. For instance, as investigated in [110], quantum graphs
allow to analyze an accelerating interface in the two half-space system. This can be viewed
as a generalization of the (1+1) dimensional analysis of moving mirrors introduced in [111]
since with quantum graphs the interface does not have to reflect totally and effects which
are present in (3 + 1) dimensions can be addressed. Accelerated mirror models are of
particular interest since they serve as toy models for the gravitational collapse [112–114].
Therefore, generalizing the investigation of moving mirror models with quantum graphs
also expands the research of particle creation or black-hole formation in gravitational
collapse models.
In this work, we introduce quantum graphs for black-holes by establishing the area law

of entanglement entropy. The area law is a quantum field theory effect that depends on
a geometrical (3 + 1) dimensional quantity and thus illustrates the emergence of higher
dimensional effects on a graph naturally.

5.2. Entanglement Entropy of Black-Holes

There is a deep connection between the entanglement entropy and Hawking radiation
in black-hole thermodynamics and thus to the information paradox. Therefore, under-
standing the entanglement entropy of a black-hole opens up new possibilities for the
understanding of quantum field theory in curved spacetimes. Seminal work towards a
microscopic derivation of the entanglement entropy of a black-hole was performed in [115]
in which a sphere was traced out in a Minkowski background simulating a black-hole. In
this Section we summarize the investigation of this entanglement entropy using quantum
graphs carried out in collaboration with Cecilia Giavoni in [39]. Before we employ quan-
tum graphs in Sec. 5.2.2, we summarize the treatment of a partly traced out scalar field
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as presented in [115,116] for a (3 + 1) and (1 + 1) dimensional setup.

5.2.1. The Area Law of Entanglement Entropy

As introduced in Sec. 4.1, employing the Schrödinger picture of quantum field theory the
Hamilton operator for a scalar field with mass m in a Minkowski background reads

H[Φ] =
1

2

∫
d3x

[
Π2

x + |∇Φx|2 +m2Φ2
x
]
. (5.7)QHS

We trace out the quantum field within a sphere and thus exploit the spherical symmetry
by using spherical coordinates and expand Φ and Π in real spherical harmonics Ylm.
Discretizing the system with a spherical lattice constructed out of N shells, the Hamilton
operator (5.7) can be written as H[Φ] =

∑
lmHlm[Φ] with [115]

Hlm[Φ] =
1

2a

N∑

i=1

(
Π̃2
lm,i +

N∑

j=1

Φlm,iKijΦlm,j

)
, (5.8) dQHS

where a is the distance between nearest neighbor shells, Π̃i = a2Πi and

Kij =

(
l(l + 1)

i2
+m2a2 +

(i− 1
2
)2

i2
+

(i+ 1
2
)2

i2

)
δij −

(j + 1
2
)2

j(j + 1)
δi,j+1 −

(i+ 1
2
)2

i(i+ 1)
δi+1,j ,

(5.9) dQHS

where we chose Dirichlet boundary conditions such that Φlm,0 = 0 and Φlm,N+1 = 0.
Except for the angular momentum and mass term, the terms in (5.9) encapsulate the
oscillators’ nearest neighbor interaction.
As in the original article [115], we analyze the scalar field’s ground state |ψ 〉 and trace

out a sphere with radius R = a (n+ 1/2). The resulting entanglement entropy is calcu-
lated using the density operator |ψ 〉〈ψ |, which is determined by the matrix Ω =

√
K,

which we cast into the form,

Ω =

[
A B
BT C

]
, (5.10) dQHS

where A is a n×n matrix accounting for correlations and self-interactions between the n
traced out oscillators, C is a (N − n)× (N − n) matrix accounting for (self-)correlations
between oscillators outside the entanglement sphere, and B is a n × (N − n) matrix
accounting for correlations across the entanglement sphere surface. We will use indices
with subscript 1, i1, ranging from 1 to n and indices i2 ranging from (n + 1) to N such
that the different parts of Ω can easily be identified in the following expressions.
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Figure 5.3.: Entanglement entropy in (3 + 1) dimensions as a function of the entangling
sphere radius squared with N = 200 for a scalar field with ma = 1 for the solid line and
m = 0 for the dashed line.

With this construction, as discussed in [115], the entanglement entropy with n traced
out harmonic oscillators can be determined with S(n,N) =

∑
l(2l + 1)Sl(n,N), where

Sl(n,N) =
N∑

i2=n+1

(
− ln(1− ξi2)−

ξi2
1− ξi2

ln ξi2

)
. (5.11) dQHS

With the eigenvalues λi2 of the matrix γ−1β, ξi2 is computed with

ξi2 =
λi2

1 +
√

1− λ2
i2

, β =
1

2
BTA−1B , γ = C − β . (5.12) dQHS

The numerical result of the entanglement entropy as a function of the entangling sphere’s
radius for a scalar field with different masses is presented in Fig. 5.3. The plots’ linearity
demonstrates the area law of entanglement entropy, i.e. S(n,N) ∝ R2, as originally
demonstrated in [115]. Because the whole system is integrated out for n = N , the
entanglement entropy vanishes for n → N . However, decreasing entropies occur only in
finite-size systems, which is not the case for a black-hole in an unlimited universe which
makes this effect of secondary interest for our investigation.
We now repeat the same procedure in (1 + 1) dimensions because a single edge of a



5.2 Entanglement Entropy of Black-Holes 109

quantum graph is a (1 + 1) dimensional entity and thus the microscopic phenomenology
of entanglement entropy on a graph is related to the entanglement entropy in (1 + 1)

dimensions. For that matter, consider a free massive scalar quantum field on a (1 + 1)

dimensional lattice with Hamilton operator

H[Φ] =
1

2a

N∑

i=1

(
Π̃2
i +

N∑

j=1

ΦiKijΦj

)
, (5.13) dQHS

where with Dirichlet boundary conditions K is given by

Kij =
[
2 +m2a2

]
δij − δi,j+1 − δi+1,j . (5.14) dQHS

As we will see, the analytic derivation of the entanglement entropy in (1+1) is important
for our investigation of entanglement entropy on quantum graphs. Therefore, we follow
closely [116] for the analytical derivation and rewrite K as

Kij =

(
ki
ε

)2

δij − δi+1,j − δi,j+1 , (5.15) dQHS

with

ki := ε
√

2 +m2a2 . (5.16) dQHS

The auxiliary parameter ε specifies the ratio of K’s non-diagonal and diagonal terms.
As can be seen in (5.15), diagonal terms dominate for large masses, such that ε can be
regarded as a smallness parameter if the mass is chosen sufficiently large. Computing Ω

to the leading order of ε, results in

Ai1j1 =
ki1
ε
δi1j1 +O(ε) , Ci2j2 =

kn+i2

ε
δi2j2 +O(ε) , Bi1j2 = − δi1,nδj2,1ε

kn + kn+1

+O(ε3) .

(5.17) dQHS

Notice that A is diagonal, implying that the oscillators in the interior of the entangling
sphere are decoupled. The same applies to the exterior since C is diagonal too. Nonethe-
less, in B, we take the correlation between the n-th oscillator and the n + 1-th oscillator
across the entangling sphere into account.
Following the previously described derivation for the entanglement entropy, one obtains

[116],

S1+1(n,N) =
1 + 2 ln[4 (2 +m2a2)]

16 (2 +m2a2)2 +O(ε8) , (5.18) dQHS
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Figure 5.4.: The entanglement entropy of a chain of N = 200 oscillators in (1 + 1)
dimensions as a function of the number of traced out oscillators n is displayed. For the
solid line, ma = 1, and for the dashed line, m = 0, which for better comparability is
normalized to one for n = 100.

where n should not be chosen close to the boundaries n = 0 and n = N in order to
avoid boundary effects. The entanglement entropy, which displays the influence of the
boundaries depending on the mass of the field, is numerically obtained in Fig. 5.4. From
the numerical result, it is evident that the constant behavior in (5.18) is only a reliable
approximation if the mass is large enough. That the entanglement entropy in (1 + 1)

dimensions is independent of n in the large mass limit is essential for our consideration.
This conclusion is nothing else than the area law in (1+1) dimensions because the surface
of the interaction between the last traced out oscillator and the first one outside is just
one point, regardless of which n-th oscillator is considered. With the area law in (3 + 1)

and (1 + 1) dimensions discussed, we now analyze the entanglement entropy on quantum
graphs in the next Section.

5.2.2. Quantum Graph Analysis of the Area Law

In this part, we investigate how the area law of entanglement entropy is encoded on
quantum graphs. We discover that all graphs that yield the area law are similar to a three
dimensional mesh graph for which we depicted a two dimensional version in Fig. 5.5. To
calculate the entanglement entropy of these network graphs, we use a bottom-up approach,
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Figure 5.5.: A mesh graph in (2 + 1) dimensions with the interior of a circle of radius
R traced out. With thick edges, a ring-shaped subgraph is highlighted that includes all
intersection points with the circle indicated with dots. As examples of basic building
parts of this graph we show a dotted line for a single edge graph, a dashed line for a one
loop graph, and a dot dashed line for a two loop graph.

starting with the microscopic components of a network graph, such as the highlighted parts
in Fig. 5.5. With the microscopic characteristics of entanglement entropy analyzed then
allows us to fully investigate the macroscopic entanglement entropy later on.

Microscopic Picture

The most fundamental building block of a mesh-like graph is a single edge, such as the
dotted one shown in Fig. 5.5. Since an edge is a (1 + 1) dimensional object, the entangle-
ment entropy of a scalar field in (1 + 1) dimensions, as defined in Sec. 5.2.1, is also the
entanglement entropy of a scalar field restricted to a single edge. In this regard, (5.18)
provides the entanglement entropy for a scalar field with a large mass on an edge. Since
for now we are only interested in the relative change of the entanglement entropy in terms
of n and not its precise value, we normalize the entanglement entropy to the value of a
(1 + 1) dimensional reference system at n = N/2,

S̄(n,N) =
S(n,N)

S1+1(N/2, N)
. (5.19) dQHS
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Figure 5.6.: Entanglement entropy in terms of the radius of the entangling sphere for
the basic graphs presented in Fig. 5.5. In particular, the entanglement entropy for the
edge graph (dotted), one loop graph (dashed), and two loop graph (solid for ma = 1 and
normalized for m = 0 shown with circles) is provided. A vertical dashed line at R = 2.5
indicates the entangling sphere radius explicitly chosen in Fig. 5.5.

With this normalization, the entanglement entropy of the dotted edge in the arrangement
depicted in Fig. 5.5 is set to S̄edge(n,N) = 1. When the radius of the entanglement
sphere is doubled or halved, the edge is traced out entirely or not at all, leading to a
vanishing entanglement entropy. Apart from small modifications due to boundary effects
the numerical evaluation of the entanglement entropy shown in Fig. 5.6 emerges.
We can now design more complex components of the mesh graph using the edge as a

fundamental building piece. By gluing four edges together, a loop graph resembling a
loop, such as the dashed one in Fig. 5.5, may be created. For an analytic derivation of
the entanglement entropy, gluing the ends of an edge graph together to form a loop graph
is easier. In this manner, we use K from Eq. (5.14) and introduce an interaction between
the first and N -th oscillator,

Kij =
[
2 +m2a2

]
δij − δi,j+1 − δi+1,j − δi,1δN,j − δi,Nδ1,j . (5.20) dQHS

As a result, each oscillator now has two nearest neighbors and is hence indistinguishable
from one another. In the large mass expansion, this leads to a change to (5.17) in the
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matrix B, which now reads

Bi1j2 = − δi1,nδj2,1
kn + kn+1

ε− δi1,1δj2,N−n
k1 + kN

ε+O(ε3) . (5.21) dQHS

The two contributions to B correspond for the two intersection points, which are depicted
in Fig. 5.5 as two white points. In comparison to the single edge graph, this extra intersec-
tion point results in an additional non vanishing eigenvalue ξN for the ground state density
matrix. This eigenvalue adds a new n independent term to S(n,N) in (5.11), contribut-
ing in S(n,N) with the same value as ξn+1 such that S̄loop(n,N) = 2S̄edge(n,N) = 2. This
analytic result is in agreement with a numerical calculation of the entanglement entropy
shown in Fig. 5.6 for the dashed loop graph given in Fig. 5.5.
In summary, only interactions across the surface of the entanglement sphere are signif-

icant in the large mass expansion. Therefore, one edge crossing the surface twice (or two
edges crossing it once each) results in the same entanglement entropy [39]. Unlike a mesh
graph, the radius of the entangling sphere has no effect on any of such graphs other than
determining if the entanglement entropy is zero or not since the number of intersections
is unaffected by the radius.
Until now, all graphs we investigated were totally describable using approaches of quan-

tum field theory on a lattice. The single edge graph was quantum field theory in (1 + 1)

dimensions, and the loop graph simply modified the Dirichlet boundary conditions to
periodic ones. In any case, we now explore more sophisticated graphs, which necessitate
the use of graph concepts as introduced in Sec. 5.1.
Consider the dot dashed two loop graph in Fig. 5.5. Instead of gluing several loop

graphs together, we make X loop graphs by taking a one loop graph and adding internal
edges. For example, the dot dashed two loop graph in Fig. 5.5, may be constructed using
a one loop graph and an extra internal edge. As a result, we produce vertices that link
three edges, for which the Kirchhoff-Neumann boundary conditions must be applied, as
explained in Sec. 5.1. For technical aspects, we refer the reader to [117].
As a result of implementing a new edge and connecting it to two locations on the one

loop, additional terms in K of Eq. (5.20) are introduced. The radius of the entanglement
sphere R, as well as the form and position of the two loop graph, determine whether a new
term in K impacts the matrices A, B, or C. The additional interactions at the vertices
contribute in the large mass expansion only if they appear as a term in B, i.e., if they
create an intersection. As a result, the entanglement entropy of two loop graphs or in
general X loop graphs is non-trivial in terms of R.
To demonstrate this, Fig. 5.6 depicts the entanglement entropy of the two loop graph

seen in Fig. 5.5. Aside from boundary effects, the entanglement entropy, as anticipated,
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depends only on the number of intersection points with the entangling sphere. Since
the boundary effects are more widespread for lower masses, the step-like behavior of the
entanglement entropy is less prominent, as seen in Fig. 5.6.
This section concludes with the following observation: The number of intersections with

the entangling sphere determines the microscopic entanglement entropy of a mesh graph
in the large mass limit. This insight is essential for the justification of exchanging the
mesh graph with simpler graphs in the following Section.

Macroscopic Picture

As previously demonstrated, the entanglement entropy of a scalar field with sufficiently
large mass relies solely on the number of intersections of the graph with the entangling
sphere surface. In this situation, a graph encompassing only the entangling sphere sur-
face’s vicinity may be sufficient to compute the correct entanglement entropy. In the
example given in Fig. 5.5, the graph constructed out of the thick edges is a X loop graph
that contains all intersections of the mesh graph with the entangling sphere surface. For
different sphere radii, we must pick a distinct X loop graph to contain all intersection
points. In this sense, the greater the radius of the entangling sphere, the greater the
number of intersection points.
In [39], we examine various types of graphs, implementing the procedure to choose a

distinct graph for each radius of the entangling sphere. Most importantly, we discovered
that the interactions between the oscillators in angular directions have no effect in the
large mass limit. Because of this, we can now use a basic graph construction to obtain the
entanglement entropy of the system. The entanglement entropy of a single radial edge in
the large mass limit is given by (5.18). Taking one such minimal graph for a unit area
element ã2, we construct a star graph with the vertex in the origin such that each edge
equally contributes to the entanglement entropy. Due to the Poincaré invariance of the
quantum field, we must implement ã as a constant and therefore not dependent on R,
such that the density of the local interactions is uniform throughout the spacetime. In
this way, the area of the entangling sphere determines the number of these radial graphs
and the entanglement entropy for a given radius R is given by

S(R) =
4πR2

ã2
S1+1

(
N

2
, N

)
=

4πR2

ã2

[
1 + 2 ln[4 (2 +m2a2)]

16 (2 +m2a2)2 +O(ε8)

]
. (5.22) dQHS

This yields the area law in (3 + 1) dimensions, S(R) ∝ R2. In this construction, the area
law emerged in the large mass limit since it only depends on the number of intersection
points with the entangling sphere surface. The main advantage of this minimal approach
compared to others is that we just had to compute the entanglement entropy in (1 + 1)
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dimensions. Because of its simplicity, this method is ideally suited for treatments in more
complicated contexts, such as that of a gravitational collapse. Nevertheless, this technique
necessitates sophisticated knowledge of the system, here the microscopic entanglement
entropy, and is dependent on the large mass limit.
Therefore, we also examined mesh graphs in [39] that do not require that knowledge

and also allow to obtain the area law for the entanglement entropy for low masses. In
order to obtain the area law for low masses correlations on a graph in angular directions
are needed. In a nutshell, edges in angular directions allow for the emergence of angular
momentum which itself acts like a mass term such that the large mass result, the area law,
is obtained. The very same behavior can be studied in (3 + 1) dimensions by artificially
restricting to certain modes with specific angular momentum in (5.9). The are law only
emerges if either a large mass is chosen such that ma � 1 or enough modes of different
angular momenta are taken [39]. Taking a star graph previously does not account for any
angular momentum such that only the l = 0 mode contributes which only results in an
area law if the mass is sufficiently large. In addition, we used mesh graphs to validate all
of the previously chosen assumptions [39].
In conclusion, the study of entanglement entropy on quantum graphs revealed three key

facts. First, taking a mesh graph all phenomena of (3 + 1) dimensions can be analyzed
despite its construction only relying on (1+1) dimensions. Second, if we limit ourselves to
a subset of observables, such as taking only fields with large masses into consideration, we
may construct simpler quantum graphs that produce correct results for this subset of ob-
servables. These simpler graphs enable quicker numerical computation or even analytical
derivation, such as in the case of the star graph employed in the large mass limit. Third,
quantum graphs may be used as a diagnostic tool, identifying, amplifying, or weakening
certain aspects of a physical process. For example, by choosing specific graphs for our
entanglement entropy analysis, we were able to focus in detail on different contributions,
such as the ones close to the entangling sphere surface in the microscopic picture, bulk
contributions in the macroscopic picture, modes without angular momentum using a star
graph, and so on and so forth. This procedure allowed us to develop a thorough un-
derstanding of the system at hand and is entirely general enough to be applied to more
complex systems, as discussed in the next Section.

5.3. Quantum Graphs in Curved Spacetimes

The strength of quantum graphs was demonstrated in the previous Section on a Minkowski
background, so we can now outline their applicability on a curved background. In that
regard, we will first review the developments in (1 + 1) dimensional black-hole formation
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and later on discuss what quantum graphs can add to them.
In (1 + 1) dimensions the Einstein-Hilbert action does not yield a dynamical equation

of motion since it is a boundary term [118]. Non-trivial gravity actions are obtained
for example by dimensionally reducing their (3 + 1) dimensional counterparts. For the
Schwarzschild black-hole, this means one integrates over the angular coordinates to ob-
tain a (1 + 1) dimensional action for gravity which now possesses a dilaton field [119]. In
terms of analyzing the lower dimensional analogue of Hawking radiation the CGHS-model
has been investigated which includes a dilaton field inspired by String theory [120]. In
summary, as put in [121], these so-called generalized dilaton theories offer three central
motivations to study them. First, as already mentioned higher dimensional gravity theo-
ries can yield one specific generalized dilaton theory after dimensional reduction. Second,
String theory is a generalized dilaton theory in a certain limit. Third, since they allow
for explicit computations they are taken as toy models to quantize gravity or to compute
quantum field theory in curved spacetime effects such as Hawking radiation.
In addition to this bottom-up strategy, there is a top-down approach to studying black-

hole formation. Instead of investigating a (1 + 1) dimensional collapse to investigate
black-hole formation, this approach takes the standard gravitational collapse in (3 + 1)

dimensions such as the Oppenheimer-Snyder model of a collapsing dust cloud and analyzes
it for fixed angular coordinates [122]. This means, the probe field only exists along a radial
line with constant angular coordinates and the boundary condition in the origin is usually
taken such that the field is reflected to simulate the (3 + 1) dimensional behavior [123].
This is equivalent to investigating black-hole formation in (3 + 1) dimensions using a
single radial edge graph with one end at the origin and the other one reaching to infinity.
Because of this equivalence, we utilize this graph setup as the basis for more complex graph
systems that allow us to be sensitive to additional effects of the black-hole formation, and
therefore extend the research in the field.
Before we address our perspective on black-hole formation utilizing quantum graphs,

we elaborate on the literature about angular coordinate restricted studies, that can al-
ways be thought of as investigations on a single radial edge graph. First and foremost the
motivation to restrict the angular coordinates is because the resulting (1+1) dimensional
action for the probe field allows for analytic computations of effects such as Hawking
radiation [123]. Since the motivation is clearly to still analyze properties of the (3 + 1) di-
mensional collapse, this simplification comes with a cost. First, ambiguities solely related
to (1 + 1) dimensional scalar fields in curved spacetimes, such as how the Unruh state
Wightman function changes due to isometries induced by the Killing vector field, must be
addressed [123]. Second, findings in the (1 + 1) dimensional treatment may not provide
a complete picture of the process in (3 + 1) dimensions, necessitating the construction
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of a bridge between the higher and lower dimensional systems. For example, it is stated
in [122] that during a gravitational collapse, the energy momentum tensor of a scalar
probe field restricted to a set of angular coordinates is irrelevant to the dynamics of the
collapse during black-hole creation. This statement is generalized to (3+1) dimensions by
employing energy conservation, which is suggested to connect the energy flux F 3+1 across
a sphere surface with radius R at light-like infinity J + to the flux in (1 + 1) dimensions
F 1+1 as follows [124],

F 3+1(J +) =
Γ0

4πR2
F 1+1(J +) . (5.23) bQHG

The lower dimensional flux is distributed over the entire sphere’s surface and hence divided
by its area. It is worth noting that the same prefactor emerges when we employ a star
graph, as we did in the context of entanglement entropy in Sec. 5.2. By incorporating the
gray body factor Γ0, the following effect of higher dimensions is taken into consideration.
In contrast to the (1 + 1) dimensional case, fields scatter off the gravitational background
in (3 + 1) dimensions, and hence some of the outgoing fields reflect back to the collapsing
object and finally to the black-hole, and thus do not reach J + which reduces the flux
F 3+1(J +) compared to F 1+1(J +). Another contribution to the outgoing flux that cannot
be included in the lower dimensional analysis comes from modes with non-zero angular
momentum, because only spherical waves can be tracked along a radial line with constant
angular coordinates. While some of these modes are capable to reach J +, most of them
backscatter and contribute to energy fluxes in angular directions. The question of whether
these contributions might possibly accumulate and drastically change the result of [122]
cannot be answered in this (1 + 1) dimensional framework.
Taking quantum graphs, however, we can conduct the following gedankenexperiment.

Placing a radial edge graph in the system of a gravitational collapse, as previously de-
scribed, provides the (1+1) dimensional flux F 1+1. Generalizing to a star graph accounts
for the area of the sphere surface in (5.23). Connecting the radial edges in the shape
of a spider web, for instance, permits fields to propagate back and hence backscatter,
potentially producing the gray body factor Γ0 in (5.23). Moreover, as in the examination
of entanglement entropy in Sec. 5.2, modes with angular momentum are included as well
for such a graph. As shown in Sec. 3.3, the backscattering effect in (3 + 1) dimensions is
the reason why fields cannot leave a black-hole in the first place, hence performing these
computations on systems with this property, such as a spider web graph, is desirable. In
this way, as we will investigate in future work, quantum graphs provide a profound anal-
ysis of the gravitational collapse in (3 + 1) dimensions while maintaining the simplicity of
using (1 + 1) dimensional physics on each edge.





6. Conclusion and Outlook

The goal of this work was to determine whether the evolution of quantum fields during
black-hole formation is paradox-free. In analogy to this question, we first studied the
propagation in optical systems possessing boundaries and interfaces between media with
different susceptibilities. Thereby, we developed techniques to determine the propagator
of a field crossing an interface that correctly reproduce known results of classical field
theory. More precisely, we constructed methods to determine the Feynman propagator
perturbative and non-perturbative in the difference of the susceptibilities and showed their
compatibility. Since this approach is universal, we applied it to obtain the propagator in
normal environments. Additionally, we investigated the domain of validity, causality in
black-hole geometries and the explicit construction of the normal coordinates. The latter
were Riemann normal coordinates, Fermi normal coordinates, and newly constructed
temporally expanded Fermi normal coordinates.
For the analysis of black-hole formation, we considered a thin shell at rest made of

physical matter and determined the surface pressure required to stabilize the shell. We
then investigated this geometry in a local environment covering a part of the shell using
normal coordinate patches such that we could formally map this system to the previously
discussed optical one with two media. In this way, we succeeded in deriving the propagator
for the thin shell system using the perturbative as well as the non-perturbative approach.
By using the propagator for the thin shell system, we analyzed how the formation of a

horizon affects communication. A signal sent from the inside of the shell to the outside
uses the transmitting part of the propagator and thus its transmittance. If the shell
radii R are chosen closer and closer to the gravitational radius R→ rg, the transmittance
decreases smoothly until it finally vanishes for R ≤ rg. As a consequence, communication
breaks down as soon as the shell exceeds its own horizon in accordance with causality.
With the propagator fulfilling these plausibility checks we considered the vacuum per-

sistence amplitude inside the shell using an external source. Compared to the case without
the shell, i.e. for a Minkowski spacetime, the amplitude is enhanced the closer the source
is placed to the shell. This effect is stronger the longer the source is switched on and the
closer the shell radius R is chosen to the gravitational radius rg. Despite these origins of
amplification, the amplitude never exceeds unity and thus the quantum field in the system
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of a fixed shell possesses a unitary evolution. It should be noted, however, that this result
was found under certain assumptions and constraints. Most remarkably, the setup used
is only sensitive to microscopic time scales compared to the black-hole lifetime. Since
sources that are turned on for longer periods of time showed larger amplification, it will
be of particular interest in the future to investigate a setup that allows larger time scales.
As suggested in earlier work, most notably by Page [21], relevant corrections should oc-
cur on time scales on the order of the black-hole lifetime. Since the time limiting factor
for the system under consideration was the construction of a RNC patch, an analogous
analysis with an FNC construction for an orbiting observer should allow an arbitrarily
time-extended, but still local, investigation.
Consequently, one possibility to extend the research of fixed shells is to ask whether

a quantum field in the fixed-shell background remains unitary on arbitrarily long time
scales. Furthermore, the approximation of the outer geometry of the shell can be improved
by either including more RNC patches or by increasing the adiabatic order of the RNC
expansion. Additionally, since a fixed shell can at best approximate the various stages
of black-hole formation, the switch to a dynamically collapsing shell and overcoming the
difficulties involved is an essential part of future investigations. Since the spacetime of a
collapsing shell is dynamical, we will study the vacuum persistence amplitude in dynamical
spacetimes separately with the help of the Schrödinger picture of quantum field theory
in [38].
Apart from all the improvements one can achieve for our black-hole formation analysis,

the developed framework allows for a plethora of directions that can be taken for future
projects. For example, the evanescent wave that we observed in the case of total reflection
for a stabilized shell with radius R < rg might be related to particle creation and thus
Hawking radiation. In this context, the entanglement entropy of a black-hole deserves
special attention with a local treatment.
We took the first steps in this direction by analyzing the entanglement entropy resulting

from tracing out a sphere of a quantum field in a Minkowski background as introduced
in [125]. For that matter, we took quantum graphs and showed how they can supplement
and complement the local computation of observables using normal neighborhoods. We
demonstrated that quantum graphs can be applied for quantum fields in complicated
backgrounds in two distinct manners. First, choosing a quantum graph with simple
structure explicitly designed for the observable and system in question, one can analyze
analytically the full (3 + 1) dimensional effect while relying on easier (1 + 1) dimensional
physics on each edge of the graph. The second approach uses a mesh graph in order to be
sensitive to any observables in an arbitrary system, which, however, requires a numerical
derivation of expectation values due to the involved structure. Using both strategies, we
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analyzed the entanglement entropy in Minkowski locally thoroughly and found matching
results with the literature whenever present. This validates quantum graphs’ capability
to examine observables in quantum field theory and forecasts their eminent utility in
any application of quantum fields in complicated systems such as dynamical and in-
homogeneous gravitational or optical backgrounds.
With all the techniques developed in this thesis we plan as the next steps to investigate

the following key aspects:

• Throughout analysis of the signature of dynamical black-hole formation on the en-
tanglement entropy and particle production.

• Exploring open quantum system techniques for quantum fields in dynamical back-
grounds to refine the tools for deducing quantum inconsistencies during the lifetime
of a black-hole.

In conclusion, the local investigation of observables in complicated systems, such as the
formation of black-holes employing normal neighborhoods and/or quantum graphs, is by
no means completed and will reveal even more exciting discoveries in the future.





A. Principles, Restrictions and
Approximations

Principles

The principles used in the main text and indicated as subscripts at equation numbers are
listed here alphabetically. Note, the selection of principles is not unique, but was chosen
to give an overall picture of the ideas that influenced this work the most.

C - Classical Physics of Point like Objects

The dynamics of a classical system is determined by the equations of motion, which can
be derived from the action with the help of Hamilton’s Principle [126]. In this way, for
example, geodesics of point particles or Fermat’s Principle (1662) of ray optics can be
obtained. These solutions constitute a trajectory in configuration space, traversed by a
point-like object, which thus perceives the system at a single point at any time.

G - General Relativity

General relativity is the natural extension of the Special Theory of Relativity by also
covering accelerated observers. Due to the Principle of Equivalence, an observer cannot
distinguish between being accelerated and being subjected to a homogeneous gravitational
field [43]. General relativity can then be derived as a geometric theory of gravity in which
masses curve spacetime, which is assumed to be torsion-free.

H - Huygens’ Principle

Huygens’ Principle serves as the basis for describing the propagation of waves of any
kind [127]. Introduced on the level of the action using Hamilton’s Principle the Huygens’
Principle generates terms including spatial derivatives in contrast to point objects. This
reflects that the described degrees of freedom perceive the system non-locally making all
paths in configuration space relevant.
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Q - Quantum Physics

In quantum physics, objects obey the Principle of Superposition of States, so that the
results of measurements are only based on probabilities [128]. In the configuration space
of a point particle this means that following Huygens’ Principle a superposition of all
paths with a weight determined by the action is considered [129]. A measurement singles
out one path, and wave properties are observed by repeating the experiment many times.

S - Special Relativity

Special relativity relies on the restriction that the spacetime is isotropic and homogeneous,
making all points in the spacetime indistinguishable. The Principle of Relativity holds,
thus the laws of physics are equal for all observers which are at rest or moving with a
constant velocity. With these ideas one can show that a maximum velocity exists and
derive the formalism of special relativity [130].

Restrictions and Approximations

The restrictions and approximations used in the main text and indicated as superscripts
at equation numbers are listed here alphabetically.

a - Finite Adiabatic Order

Spacetimes expanded in normal coordinates typically yield a metric with infinitely many
terms [44, 45]. Working with a finite adiabatic order, i.e., truncating the series, is only
reasonable if the higher order terms are negligible. This can be achieved for fields with
small enough wavelengths. Similarly, in adiabatically evolving spacetimes, observables can
be computed using finite adiabatic orders, for example, by employing a WKB ansatz [68].

b - Back-Reaction

Particles and fields are treated as perfect probes. This means that the effect they have
on the medium or on the geometry is ignored.

c - Causal Order

If one specifies the causal order of two events connected by a Feynman propagator, one
contribution of the propagator is filtered out, i.e., either that of the future light cone or
that of the past light cone. In this way, the propagator can be derived more easily for one
of the two contributions, and the other is subsequently added.
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d - Discretization

To compute observables of quantum fields numerically, we discretize the spacetime, re-
sulting in oscillators that are coupled to their nearest neighbors.

e - External Potential

Describing an atom we treat the Coulomb potential of the nucleus as an external quantity,
i.e. classical, inert and the fundamental degrees of freedom creating this potential are not
resolved.

l - Locality

Normal neighborhoods usually have finite spatial and temporal validity. Therefore, the
calculations must be constrained in time and space to be correct in accordance with the
size of the normal neighborhood patch.

n - Normal Incidence

Normal incidence is given when the direction of propagation of a plane wave is perpen-
dicular to a plane surface, i.e. the angle of incidence is zero.

p - Perturbative

The propagator for an interacting field theory is typically derived considering finite orders
in a perturbative calculation with the interaction strength as the smallness parameter.

r - Long Time Restriction

When describing scattering experiments, it is often convenient to choose a large time
difference between the initial setup and the measurement. This usually makes it possible to
describe the initial and final states in a non-interacting setup, which simplifies calculations.

s - Small Angle Approximation - Near Normal Incidence

Restricting the setup to the case of near normal incidence simplifies the calculations by
allowing the incidence angle of a plane wave to be considered as a smallness parameter.
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v - Vacuum Space-Times

Vacuum spacetimes are a group of spacetimes for which the Ricci scalar and the Ricci
tensor vanish, making certain calculations easier. Since the geometry we are interested
in is that of a thin shell and the interior and exterior are vacuum spacetimes, we use this
simplifying constraint whenever it is worth doing so.

t - Time Average

To eliminate the oscillatory contribution to an expression, one integrates over one period
of the harmonic part and divide by the period time.



B. Dark Matter Jets of Kerr
Black-Holes

In this Appendix we summarize the investigation of dark matter jets of rotating black-holes
in collaboration with Ottavia Balducci [131]. Dark matter particle decay and annihilation
into Standard Model particles provide the most direct way to discover properties of dark
matter. Some recent experiments have produced encouraging findings in this regard [132–
136]. Of course, we do not know if the observed signals are indeed caused by dark matter
particles, but it is an intriguing hypothesis.
The WIMP effective cross section is a typical effective cross section for the annihilation

of dark matter particles, however it is too small to explain the measured fluxes of dark
matter annihilation products. To explain the observations potentially connect to dark
matter, a boost factor B, often of the order of 102 − 104, is introduced to dark matter
models [137–141]. Various causes for the needed dark matter overdensity are suggested,
such as density inhomogeneity on small scales [142] or Sommerfeld enhanced annihilation
cross sections [143]. B is defined for an entering dark matter particle beam that annihilates
certain target dark matter particles by

B =
ρB
ρ0

ρT
ρ0

(B.1) G

where ρB and ρT are the densities of the beam and the target, respectively, which we
normalize with the dark matter density in the solar system ρ0 [144,145].
We propose a novel explanation for such dark matter overdensities in our neighborhood

by using rotating black-holes. A spinning black-hole forms a dark matter jet that might
be directed towards us, resulting in the target dark matter particles being in our local
neighborhood and thus ρT/ρ0 = 1. The Penrose process underlies jet production and is
hence applicable to all massive particles [146]. However, for charged particles, electromag-
netic jet production is dominating compared to the gravitational effect, so we are only
concerned with neutral particles such as WIMPs.
As a starting point, we study galaxies with a spinning Kerr black-hole at their core.

Particles that follow geodesics from the accretion disk into the black-hole may collide
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Figure B.1.: A typical geodesic in a Kerr spacetime is presented schematically, which
is relevant for dark matter jet production. The solid line depicts a geodesic of particle
A traveling from the accretion disk into the black-hole, where it scatters off particle B.
Particle A then escapes the black-hole and proceeds parallel to the rotation axis, whereas
particle B falls into the black-hole’s singularity.

with other particles in the black-hole ergosphere. According to [146], due to the Pen-
rose process, some of these particles may subsequently follow a geodesic heading out of
the ergosphere and traveling parallel to the axis of rotation, as illustrated in Fig. B.1.
Collecting all geodesics of this type, the black-hole generates a dark matter jet along its
rotating axis. The strength of this process determines whether or not an overdensity of
dark matter may be observed within the jet. Since the particles in the jet take up very
little volume compare to those in the accretion disk, the density in the jet can theoretically
be much higher.
To get a quantitative estimate of the dark matter density in the jet, we use the Kerr

metric of a black-hole with massM and angular momentumMa. The motion of a particle
in this background is dictated by the constants of motion, which are the particle’s mass,
energy, angular momentum, and the Carter constant which reads

Q = (uθ)
2 + a2 cos2 (θ)

(
1− E2

)
+

cos2 (θ)

sin2 (θ)
L2 , (B.2) G

where u, E and L are the particle’s corresponding proper velocity, total energy, and
angular momentum. Using the constants of motion and the dark matter particle’s initial
position and velocity, we can calculate its final position and velocity, and thus whether it
contributes to jet formation.
We determine the boost function to investigate the overdensity created by these geodesics
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along the rotation axis,

B (x) =
ρout (x)

ρ0 (x)
. (B.3) G

The density of the outgoing particles ρout inside the dark matter jet is calculated by
integrating over all outgoing velocities vout,

ρout (x) =

∫
d3vout

Vout (x,vout)

dNout

dvout

(x,vout) , (B.4) G

with the number of particles in the beam Nout (x,vout) at x with velocity vout occupying
the volume Vout (x,vout) = r2

out sin(θ)vr,out. The number of outgoing particles, Nout, is
given by the number of particles falling into the ergosphere and filtering out all of those
that follow paths that do not end up in the beam. Explicitly, it is obtained with

Nout (x,vout) = ηPscat

∫
d3vinf (vin) ρinVin (x,vin,vout) . (B.5) G

The volume occupied by particles with initial velocities of vin = (vr, vφ, vθ) that reach
at x in the jet with final velocity vout is denoted by Vin. The incident particle density
is specified by ρin, and the velocity distribution function is provided by f (vin). The
prefactor consists of the efficiency of the Penrose process η and the probability Pscat

that an incoming particle is scattered in the ergosphere and not before in the accretion
disk. In the next section, we will introduce approximations to simplify (B.4) allowing to
numerically compute the boost function (B.3).

Approximations and Assumptions

In order to numerically compute (B.4) for the specific galaxy in question, we systematically
simplify (B.4) using various approximations and assumptions in this section.
Volume of infalling particles:
The volume occupied by the incoming particles is described as a ring with radius

rin, height ∆z = zmax − zmin, and width vr∆t, such that it reads Vin (x,vin,vout) =

2πrinvr∆t∆z (x,vin,vout). A more precise method would start by tracing particles in the
jet with known velocities back to the ergosphere and accretion disk during a specific time
period. All relevant geodesics like the one depicted in Fig. B.1 may then be gathered
and utilized to calculate how many particles from the accretion disk finally end up in
the jet. To substantially cut calculation time, we approximate this technique with an
incident ring. There are various competing effects in this scenario, such as a bigger radius
implying a larger volume but also a lower dark matter density. As a result, there is an
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area in the accretion disk where the majority of the particles relevant to jet formation are
produced. The most relevant geodesics are collected by suitably selecting rin inside this
region. To get an upper bound, we pick rin so that we get the highest boost factor. For
the Andromeda galaxy this is 0.1 pc.
Carter constant:
As in [146], we assume the scattering in the ergosphere has no effect on the value of the

Carter constant and that particles with the correct value of the Carter constant Qout end
up in the jet and do not follow any other geodesic with the same value. We determine
the starting position that the particles must have in order to end up in the beam at x by
holding all other parameters constant and solving Qin = Qout for z (x,vin,vout). There
does not exist a geodesic if this equation has no solution for a given set of parameters.
Distribution function:
The velocity distributions of the infalling particles are assumed to be Gaussian,

f (vin) :=
exp

{
−1

2
(vin − v0)TΣ−1(vin − v0)

}
√

(2π)3|det(Σ)|
. (B.6) G

To keep the model simple, we assume that the covariance matrix is diagonal and isotropic
such that Σ = diag(σ2, σ2, σ2), and assume that the dark matter particles follows a stable
orbit with v0 = (0, 0, vφ,0). The orbit velocity vφ,0 is extracted from the data on the
Milky Way rotation curves in [147]. We utilize Fig. 2 from [148] to compute the mass
accretion rate dM/dt of supermassive black-holes. With this accretion rate we determine
the standard deviation σ by equating it with the particle infall rate near the black-hole
and numerically solving this equation for σ,

dM

dt
= 4πr2

inρin

∫ 1

0

dvr
1√

2πσ2
e−

v2r
2σ2 vr . (B.7) G

The dark matter density in the accretion disk may then be approximated as ρin (0.1 pc) =

30ρ0 for the Andromeda galaxy at rin = 0.1 pc with a cored dark matter profile [149].
Penrose efficiency:
The Penrose process’ efficiency is depends solely on the black-hole’s angular momentum,

and for extreme black-holes, it may reach a maximum of 0.52 [150]. We assume a Penrose
efficiency of η = 0.01 since the angular momentum of the black-holes in the galaxies’ cores
is unknown.
Mean free path:
Since we follow the dark matter particles along a single geodesic, we must account for

the possibility of scattering with other dark matter particles in the accretion disk. To do
so, we use the particles’ mean free path and assume that just one scattering event happens
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Figure B.2.: Dark matter boost function B in the beam is given for different distances
from the black-hole and the rotation axis. With white lines the opening angle of the
beam 2θB is indicated schematically. There is no data for the white pixels due to the
in-applicability of our estimations.

on average within the ergosphere. We derive Pscat = λmfp/rin ≈ 2M/rin by considering
that the dark matter density does not vary significantly along the geodesic.

Results

The dark matter density produced by a dark matter beam from a black-hole is now quan-
titatively calculated using these approximations. We do this by performing a Riemann
sum over the dark matter particles’ initial velocities in (B.5). In this procedure, the inte-
gration limits and step size are numerically changed to take advantage of the sweet spot
between accuracy and calculation time, as described in our supplied code [131]. Moreover,
there is a lower boundary constraint on the outgoing radial velocity, because the particles
arriving today had to be expelled away from the black-hole at earliest during its creation,
thus vr,out > rout/tage with the black-hole’s age tage.
As a first example, we consider the black-hole in the center of the Andromeda galaxy.

Its rotation axis is oriented toward the solar system, allowing us to compute the dark
matter overdensity caused by the dark matter ray in our local neighborhood. Assuming
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Figure B.3.: The boost factor B of a DM beam at different distances from the black-hole
rout and massesM is shown for θ = 10−8. The mass range covers both smaller black-holes
found in galactic centers and the biggest black-holes ever observed. The symbols A and
S represent the two cases addressed in the text, Andromeda and Sagittarius A*.

that the age of the black-hole is the same as the age of the galaxy, tage = 1010 yrs, the
dark matter boost function in the solar system B ≈ 10−12. Although this is the most
promising candidate, the overdensity yields a boost factor with B � 1 and thus cannot
explain boost functions of the order 104 required to explain indirect dark matter data in
the solar system.
The density profile of the Andromeda black-hole’s dark matter beam is depicted in

Fig. B.2. We can infer the following conclusions from this result. To begin, the beam
is substantially collimated with an aperture angle of 2θB ≈ 10−5. Furthermore, the
beam’s range allows it to be distinguished from the background even at a distance of
1Mpc. Finally, as one approaches the black-hole and its axis of rotation, the dark matter
density of the jet grows by several orders of magnitude. Despite of this increase, it never
achieves a considerable overdensity. Based on these observations, we may conclude that
the Andromeda black-hole is capable of emitting a sharp, long-range, but faint dark matter
beam.
To learn more about this dark matter beam, we examined its qualitative behavior for

various values of the black-hole’s angular momentum a. We find that the dark matter
density of a Schwarzschild black-hole, a = 0, is 8 orders of magnitude lower than that of a
a = M/2 [131]. Geodesics reaching the target location without any Kerr phenomena asso-
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ciated with rotating black-holes, such as the Penrose process, account for this background
contribution. Since this contribution is minimal in comparison to the dark matter density
in the beam for rotating black-holes, the dark matter beam is substantially produced by
Kerr metric effects. Furthermore, the bigger the a value, the more collimated is the dark
matter beam [131], in accordance with intuition.
In Fig. B.3, we plot the boost factor as a function of the black-hole mass and the

distance to the black-hole, allowing us to examine many different astrophysical black-
holes. To investigate an interesting possibility, we take the black-hole Sagittarius A*
in the center of the Milky Way and calculate the boost function at a distance of 10 pc.
Observing the annihilation or decay products in this region, which is so close to a black-
hole, could open up new opportunities for the indirect detection of dark matter in the
vicinity of black-holes. However, as shown in Fig. B.3, the boost factor for Sagittarius
A* even that close to it is so small that further investigation in this direction is not
justified. From Fig. B.3 we extract an ideal boost function for lower distances and masses
in the 108M� to 109M� range, with a maximum boost of Bmax ≈ 40. This dark matter
overdensity, however, is still much too low for indirect dark matter observations. In this
regard, we summarize that dark matter jets are formed by rotating black-holes, but they
are so faint that they do not significantly contribute to dark matter overdensities. Because
our investigation of spinning black-hole effects connected with dark matter was only the
first step in this field, we expect that owing to its unique characteristics, this area of dark
matter overdensity sources will get more attention in the future.



C. Mass Insertion

The procedure of mass insertion shows in an illuminating way how a kinetic term in
the action can be considered as an interaction term. Thus it serves as a guide for the
perturbative approach finding the propagator across interfaces in Sec. 2.2. To this end,
we restate the mass insertion as treated, for example, in [63] and carefully analyze its
properties.
The Feynman propagator of massless scalar fields φ interacting due to the mass term

in the action can be calculated analogously to (2.37) and is

∆m
xy = i

〈
Tφxφy exp

{
− i

2

∫
dµzm

2φ2
z

}〉
. (C.1)HS

Expanding the exponential and contracting the fields we find the series

∆m
xy = −

∫
d4k

(2π)4

e−ik(x−y)

k2 − iε

(
1− m2

k2 − iε +

(
m2

k2 − iε

)2

+ · · ·
)

= −
∫

d4k

(2π)4

e−ik(x−y)

k2 +m2 − iε ,
(C.2)HS

where we used the Geometric Series in the last step. The result is the massive propagator,
which we would also have obtained by solving the fundamental equation of the propagator
for massive fields. This is the well-known method of mass insertion, which we will now
analyze in more detail.
Performing the k0 integration of the massive propagator yields

∆m
xy = ΘxtytG

m
xy + ΘytxtG

m
yx , (C.3)HS

with the Wightman distributions of massive scalar fields

Gm
xy := i

∫
d3k

(2π)32ωmk
e−iω

m
k (xt−yt)eik(x−y) , (C.4)HS

together with the dispersion relation (ωmk )2 = k2 +m2. Let us first check whether instead
of the whole propagator we can derive the massive Wightman distributions with the mass
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insertion procedure. The first non-trivial contribution to a potential massive Wightman
distribution is given by

i

∫

z

Gxzm
2Gzy = −im2

∫
d3k

(2π)32ωk

d3q

2ωq
e−i(ωqx

t+ωky
t)ei(kx−qy)δ(ωq − ωk)δ(3)(q− k)

= −im2

∫
d3k

(2π)34ω2
k

e−iωk(xt−yt)eik(x−y)δ(0) ,

(C.5)HS

where Gxy = Gm
xy

∣∣
m=0

. Performing the k0 integration of the corresponding term in
Eq. (C.2) and projecting it onto the positive frequency contribution, we obtain instead

Θxtyt

∫
d4k

(2π)4

e−ik(x−y)

k2 − iε
m2

k2 − iε
= −im2Θxtyt

∫
d3k

(2π)34ω2
k

e−iωk(xt−yt)eik(x−y)

(
xt − yt − i

ωk

)
.

(C.6)HS

For xt−yt →∞ this expression also diverges. Taking in (C.5) also the finite time interval
xt−yt, the diverging δ(0) is replaced by xt−yt and apart from the Heaviside step function
agrees with the first two terms in (C.6).
The missing Heaviside step function together with the restricted zt integration can be

introduced with the correct combination of Heaviside step functions for the Wightman
distributions,

i

∫

z

ΘxtztGxzm
2ΘztytGzy = −im2Θxtyt

∫
d3k

(2π)34ω2
k

e−iωk(xt−yt)eik(x−y)(xt − yt) . (C.7)HS

This expression is the outcome of the k0 integration in (C.1). This, however, generates
the following contribution as well,

iΘxtyt

∫

z

ΘxtztGxzm
2ΘytztGyz = im2Θxtyt

∫
d3k

(2π)34ω2
k

e−iωk(xt−yt)eik(x−y) i

ωk
. (C.8)HS

Both contributions (C.7) and (C.8) together yield (C.6), as expected, since we only
changed the order of integration over z and k0. This shows that we cannot find the
massive Wightman distributions simply by gluing together massless Wightman distribu-
tions, since crucial contributions such as (C.8) would not be considered. This instructive
example demonstrates, that the computation of a propagator in an interacting theory
with (C.1) must be performed with the free propagators.



D. RNC Size Quantum Experiment

This Appendix is about an error analysis for the systems we study in Sec. 4.3.2. Since this
system uses a normal neighborhood in the exterior of the shell, we start with the domain of
validity discussed in Sec. 3.1.3. The minimum Schwarzschild radius that can be described
with the considered RNC patch anchored at the expansion radius r0 is given by (3.38).
The expansion point used in (3.73) has a maximum radius of r0 = 5/4R for R→ rg. We
demand that the Minkowski patch reaches the fixed shell with radius rmin = R and obtain
with Eq. (3.38) a maximal error of δ ≈ 5× 10−2, which is sufficient.
For the application in question, we need the propagator of a scalar field in the RNC

patch as derived in Sec. 3.1.1. As can be seen, for example in (3.17), the adiabatic
expansion of the metric amounts for the propagator to a large momentum expansion.
Therefore, the RNC propagator for a finite adiabatic order is not trustworthy if the
momentum is too small or the wavelength too large, i.e., on the order of the curvature
length scale. We circumvent this problem by introducing an infrared energy cutoff ωIR.
We demand that the error due to neglecting the curvature terms affects the result by at
most one percent which requires the cutoff to be ωIR ≈ 4

√
rg/2/(r0)3/2.

To avoid any dependence on the exact value of ωIR, we only study observables that
are not infrared sensitive. For example, in applications with external sources J , we can
choose J such that the contribution from infrared physics is negligible. In Sec. 4.3.2
we use the source (4.57) that has a Gaussian dependence in energy space, and thus we
must choose the standard deviation σt and the mean 〈ωk〉 such that the observable in
question does not depend on ωIR. In addition, for a chosen σt, we must ensure that
the temporal validity of the system under consideration is large enough. The temporal
validity of a RNC patch given by Eq. (3.37) depends on the mass of the black-hole.
Taking δ = 10−2 as before, a Minkowski patch anchored at r0 yields a time restriction
of |xt| < tmax(R) = 0.16 r

3/2
0

√
f(R)/[rgf(r0)]. Since in Sec. 4.3.2 we use this source for

different values of R and tmax increases monotonically for R > rg, we choose the most
restrictive radius for which the shell can be stabilized, i.e., R→ 25rg/24. Taking r0 as in
(3.73), we obtain σt = tmax(25rg/24)/2 ≈ 0.08rg and 〈ωk〉 = 4/σt such that the cutoff ωIR

is not relevant. For astrophysical black-holes with masses ranging from one to 1011 solar
masses, the validity in time ranges from tmax = 1µs to tmax = 40 h in SI units.
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Now that the temporal constraint on the external source is established, only the spatial
restriction needs to be examined. The source in Sec. 4.3.2 is a point source located inside
the shell at xJ . This point must be taken sufficiently close to the surface of the shell
such that it can be approximated as flat. We require that the error introduced by this
approximation be of the order of 10−2. A geometric consideration then provides that the
distance between the shell and the source is constrained to be R− x⊥J < 0.1R.
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