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Zusammenfassung
Potenzgesetze sind typische Signaturen von komplexen Systemen und in der

Astrophysik gibt es zahlreiche Beispiele dafür. Die Ursachen dafür zu ergründen ist
eine herausfordernde Aufgabe, für die es unterschiedliche Herangehensweisen gibt.
In dieser Dissertation beginne ich mit einer mathematischen Betrachtung von Po-
tenzgesetzen und der definierenden Eigenschaft der Skalen-Invarianz. Für physikali-
sche Systeme ist diese Abwesenheit von charakteristischen Skalen lediglich in einem
begrenzten Bereich erfüllt. Durch mehrere Beispiele zeige ich, dass Potenzgesetze
als Lösungen von Differenzialgleichungen auftreten können, wobei ihre Gültigkeit
üblicherweise durch die Anfangs- und Randbedingungen bestimmt wird. Für die
beobachteten Massefunktionen, dN/dM ∼ M−α mit α ∼ 2, diskutiere ich ein sehr
allgemeingültiges Modell hierarchischer Fragmenation gegenüber einem mehr phy-
sikbasierten Modell der Sternentstehung.

Cosmic Rays haben Energieverteilungen welche über viele Größenordnungen
durch Potenzgesetze gekennzeichnet sind, im Gegensatz zu den exponentiell ab-
fallenden Verteilungsfunktionen, die in der statistischen Mechanik für Systeme im
Gleichgewicht charakteristisch sind. Superstatistics ist eine mögliche Verallgemei-
nerung der statistischen Mechanik für Nichtgleichgewichts-Systeme. Hier sind die
auftretenden Potenzgesetze in den Verteilungsfunktionen das Ergebnis einer Über-
lagerung von Gleichgewichtsverteilungen mit unterschiedlichen Temperaturen. Ich
untersuche die physikalischen Grundlagen dieses Modells, um es auf die beobachte-
ten Energieverteilungen der Cosmic Rays anzuwenden. Dafür ist ein mathematischer
Zusammenhang zwischen den beobachteten differentiellen Intensitäten und der aus
Superstatistics hergeleiteten Verteilungsfunktion notwendig, was in vorausgehenden
Studien fehlerhaft behandelt wurde. Insofern bietet diese Abhandlung eine Verbes-
serung der theoretischen Grundlagen des Superstatistics-Modells mit Anwendung in
der Teilchenphysik. Dieses Modell nutze ich, um damit aus den Beobachtungsda-
ten von AMS für primäre (He, C, O) und sekundäre (Li, Be, B) Cosmic Rays die
besten Fit-Parameter zu bestimmten. Smolla et al. (2020) führen die zwei beobach-
ten Universalitätsklassen an Cosmic Ray Spektren auf die für QCD-Streuprozessen
charakteristische Energieskala ∼ 200 MeV und zwei unterschiedlichen Arten der
Überlagerung von Temperaturfluktuationen zurück. Zu den Ergebnissen dieser Ar-
beit ergänze ich eine kritische Diskussion dieser neuartigen Interpretation und dem
Superstatistics-Modell im Allgemeinen.

Interstellare Turbulenz, die initiale Massenverteilung der Sterne, das Sternentste-
hungsgesetz, und die Ferninfrarot-Radio Korrelation sind Beispiele für nahezu uni-
verselle Potenzgesetze, in dem Sinn, dass sie überraschend schwach auf die Variation
der detaillierten Parameter des jeweiligen physikalischen Systems reagieren. Ich fasse
jeweils die Beobachtungsdaten zusammen und diskutiere physikalische Modelle, um
das Auftreten der Potenzgesetze zu erklären. Die Sternentstehung zeigt sich als ein
zentraler Treiber hinter all diesen Phänomenen. Ich präsentiere ein neues schema-
tisches Galaxien-Modell, bei dem thermisches Gas, turbulentes Gas, Magnetfelder
und Cosmic Rays vergleichbare Energiedichten haben. Die beobachteten Potenzge-
setze kennzeichnen die Kopplungen zwischen diesen vier Hauptkomponenten und der
Sternentstehung. Aufgrund der Komplexität und der Bandbreite an physikalischen
Skalen in unserer Galaxie, ignoriert dieses Modell viele Details absichtlich. Das Ziel
ist auf diese Weise die selbstregulierenden Mechanismen aufzudecken, welche für
die beobachteten Potenzgesetze und die Gleichverteilung der Energie verantwortlich
sind.
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Abstract

Power laws are typical signatures of complex systems and examples in astrophysics
are manifold. Understanding their origin is challenging and can be approached in
very different ways. In this thesis, I first provide a mathematical treatment of power
laws which starts from the defining property of scale-invariance. For physical sys-
tems this absence of scales holds only over a finite range. Power laws can be found as
solutions to differential equations whereas their validity is usually constrained by ini-
tial and boundary conditions which I demonstrate with several examples. An almost
physics-free interpretation for the origin of observed mass functions, dN/dM ∼M−α

with α ∼ 2, is given by a simple hierarchical fragmentation model which I discuss
next to a more physical model of star formation.

Cosmic ray energy spectra are power laws over many orders of magnitude in
contrast to exponentially decaying energy distribution functions which are typical
for equilibrium statistical mechanics. Superstatistics is a particular generalization
of statistical mechanics for nonequilibrium systems. It generates power law dis-
tribution functions from a superposition of equilibrium distributions with variable
temperatures. I carefully assess the physical motivation for this model in order to
apply it to the observed energy spectra of cosmic rays. This requires a relation
between the superstatistical distribution function and the observed differential in-
tensity which has been treated inaccurately by previous studies of superstatistics.
Hence, the provided derivation clarifies and improves the theoretical basis of super-
statistical models applied to particle physics. I apply this model to recent AMS data
for primary (He, C, O) and secondary (Li, Be, B) cosmic rays in order to determine
the best fit parameters. Smolla et al. (2020) interpret the two observed universal-
ity classes of cosmic ray spectra as resulting from the characteristic energy scale
∼ 200 MeV in QCD scattering processes and two distinct types of superpositions
of temperature fluctuations. In addition to presenting these results, I also provide
a critical discussion for this novel interpretation and the superstatistical model in
general.

Interstellar turbulence, stellar initial mass function, star formation law, and far-
infrared–radio correlation are examples for nearly universal power laws, in the sense
that they are remarkably insensitive to variations in parameters of the respective
physical system. For each case I review the available observational data and discuss
models which account for their origin. Star formation turns out being an essential
driver behind all these phenomena. I present a new schematic version of a galaxy
model where thermal gas, turbulent gas, magnetic fields and cosmic rays all have
comparable energy densities. The observed power laws characterize the intercon-
nections between these four components and star formation. Due to the complexity
and multi-scale nature of the galaxy, this model deliberately ignores many details.
Its aim is to identify the self-regulating mechanisms which give rise to the observed
power laws and the equipartition of energy.
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Chapter 1

Introduction

Power laws are found in a broad variety of physical but also non-physical systems. If
you count how often each word appears in this thesis and list all words according to
their rank (most, second most, etc.) then you will discover a power law. And even
if you translate this thesis and count the frequency of words in the foreign language
you will again find a power law (e.g., Ferrer i Cancho, 2005). Further examples
range from the number of animals in the ocean vs. their mass (e.g., Hatton et al.,
2021), the frequency of earth quakes vs. their strength (e.g., Sornette et al., 1996)
or the fractal coast line of Britain (e.g., Mandelbrot, 1967). Not only the examples
are very diverse but also the proposed explanations for the origin of the observed
power laws are manifold. Here, we focus on power laws in the realm of astrophysics
and in particular on the following:
• Cosmic ray energy spectrum (chapter 3);
• Interstellar electron density power spectrum (chapter 4);
• Stellar initial mass function (section 5.1);
• Star formation law (section 5.2);
• Far-infrared–radio correlation (section 5.3).

All these phenomena are characterized by power laws which are remarkably insen-
sitive to variations in the parameters of the respective systems. The cosmic ray
energy spectrum is characterized by ∼ E−γ where γ = 2.7 or γ = 3.0 hold for a
large class of atomic nuclei with very different histories. The spectral slope of the
electron density power spectrum appears to be identical when measured as a sort
of galactic average via interstellar scintillation in radio waves or when measured in
situ by the Voyager space probe in the local interstellar medium. Because stars form
out of cool gas and the cooling rate of gas clouds increases with larger metallicity,
it is reasonable to expect metallicity to be an important factor for star formation.
However, both the stellar initial mass function and the star formation law appear to
be largely unaffected by changes in metallicity. The far-infrared–radio correlation
is connected to star formation and is observed in spiral galaxies like our own Milky
Way but also in galaxies with very different masses, luminosities and star formation
rates. Evidently, explaining the origin of the observed power laws requires mecha-
nisms which are to some extent insensitive to the details of the system. It is in this
sense that we use the term universal in the following.

Figure 1.1 shows a nearby spiral galaxy which is thought to be very similar
to our own galaxy which we can only observe from the inside. Here, we focus on
such type of regular disk galaxies and use characteristic properties and scales based
on observations for the Milky Way. Our galaxy consists not only of stars and dark
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Figure 1.1: This barred spiral galaxy UGC 12158 is thought to have a lot in common with
our own galaxy. Its diameter is ∼ 40 kpc. Image credit: NASA/ESA Hubble Space Telescope,
https://esahubble.org/images/potw1035a/

matter but also of interstellar gas, dust, radiation, and relativistic particles which can
be summarized as interstellar medium (ISM). Most of the stellar and ISM mass are
located in a thin disk which is approximately axisymetric. In general and on large
scales the density decreases with radius, however, for most of our considerations
here we consider galactic averages. The interstellar gas can be found in multiple
phases which are thought to coexist in an approximate pressure equilibrium (e.g.,
three phase model by McKee and Ostriker, 1977). The characteristic densities,
temperatures and ionization degrees are presented in figure 1.2.

In order to calculate energy densities and energy dissipation rates for our galaxy
we need to specify the total volume and an average density. Because we are mainly
interested in processes that occur in the interstellar medium we consider a simple
cylindrical disk model for the galaxy. We use r = 15 kpc for the disk radius and h =
300 pc for a constant disk height. We assume an average temperature of T ∼ 104 K
(warm medium) and an average density of one proton per cm3, which corresponds
to a thermal pressure of

3

2
nkBT ≈ 2× 10−12 erg/cm3 (1.1)

and a total gas mass within the disk of Mgas ≈ 5× 109 M� which is of the order of
fifty percent of the total gas mass and one percent of the total mass (baryons and

https://esahubble.org/images/potw1035a/


3

Figure 1.2: A significant fraction of the total gas mass is bound in cold atomic and molecular
hydrogen filling a rather small volume within the galactic disk. The warm medium occupies a
larger volume inside and outside of the disk. The hot medium fills most of the volume outside
of the disk. Table taken from Girichidis et al. (2020).

dark matter) of the galaxy. These values are in reasonable agreement with recent
observations for the Milky Way (e.g. McMillan, 2017; Everall et al., 2022; Wang
et al., 2022).

Considering the flow of energy within the galaxy the stars are a major driver
which continuously convert gravitational and nuclear binding energy into other forms
of energy (i.e., mostly radiation, but also kinetic energy in the form of relativistic
particles and nonrelativistic gas motion). The luminosity of our galaxy today is of
the order of a hundred billion solar luminosities or

Γgal ∼ 1045 erg/s. (1.2)

Most of this energy is carried by electromagnetic radiation emitted from stars and
will ultimately leave the galaxy. The most extreme luminosities from individual
stars are due to supernovae (SNe) with about ∼ 1053 erg/s (Woosley and Janka,
2005). However, this power holds only for a very short time and most of the energy
is carried by neutrinos which play an important role in the early evolution of SNe but
hardly interact with the ISM. For large scale (& 100 pc) considerations of the galaxy
and on long time scales (& Myr) we are interested in the average power from SNe
which interacts with other components of the galaxy. Most importantly that is the
kinetic energy carried by the expanding SNR. Woosley and Janka (2005) estimate
the average release of kinetic energy per core collapse SN as ∼ 1051 erg. Given that
in our galaxy about three SNe occur per century, the mean power contribution to
kinetic energy is

ΓSN ∼ 1042 erg/cm3. (1.3)

This allows for an order of magnitude estimate about the power available to drive
phenomena like interstellar turbulence or cosmic ray acceleration.

Figure 1.3 shows a schematic diagram for the basic architecture of our galaxy
model together with the observed power laws which we investigate throughout this
thesis. Evidently, this model ignores many of the details which are certainly relevant
for accurately describing the small scale physical processes. The advantage of the
model’s simplicity is the possibility to consider the entire galaxy as a dynamical
system in which energy flows between its components such that a stationary state
of dynamical equilibrium can be achieved. Furthermore, it allows for a more visual
and comprehensive investigation about the self-regulating mechanisms which are



4 1. Introduction

responsible for the observed power laws and order of magnitude equipartition of
energy densities in thermal gas, turbulent gas, magnetic fields, and cosmic rays (e.g.,
Draine, 2010; Seta and Beck, 2019; Sun et al., 2020; Ballesteros-Paredes et al., 2020).
The model is not yet implemented numerically and for the given thesis it mainly
serves as a guide for our intuition when discussing the origin of the respective power
law. A more detailed version of the given diagram is presented in the concluding
chapter 6.

Thermal 
Gas

Magnetic
Fields

Cosmic
Rays

Star 
Formation

Turbulent 
Gas

Cosmic Ray
Energy Spectrum

Stellar Initial
Mass Function

Far-Infrared –
Radio Correlation

Electron Density 
Power Spectrum

Figure 1.3: Schematic diagram of the main components in our galaxy model and the couplings
(arrows) which are inspired by the observed power laws. The cosmic ray energy spectrum reveals
a characteristic power law shape while covering more than ten orders of magnitude (see chapter
3). Stars appear to be formed according to a universal mass distribution, the stellar initial mass
function, which includes a power law spanning two orders of magnitude in mass (see section
5.1). The fluctuations in the interstellar electron density reveal a power spectrum following
a power law over eleven orders of magnitude in wave number with a spectral index close to
a simple hydrodynamic turbulence model (see chapter 4). The far-infrared–radio correlation
tightly connects two seemingly distinct parts of the electromagnetic spectrum (see section 5.3).
Star formation is an essential driver which transfers nuclear binding energy to all the other
galactic components which in turn also back-react on the star formation process.



Chapter 2

Mathematical Treatment of Power
Laws

2.1 Characterizing power laws

2.1.1 Scale invariance

Scale invariance or self-similarity is a property tightly connected to power laws
which can be illustrated quite simply. Sornette (2004) defines scale invariance in the
following way. Consider an observable O which depends on some variable x. The
observable is said to be scale-invariant if there is some number µ(λ) for all λ such
that rescaling the variable, x→ λx, yields to the following change of the observable

O(λx) = µO(x). (2.1)

This equation can be solved with the following Ansatz

O(x) = Cxα (2.2)

which is the definition for a power law, with constant (independent of x) numbers
C and α. Inserting equation (2.2) into equation (2.1) gives

O(λx) = C(λx)α

= λαO(x) (2.3)

which allows us to express the power law exponent as α = lnµ/ lnλ. Self-similarity
or scale invariance is best illustrated by considering the ratio of rescaled-observable
to original observable

O(λx)

O(x)
= λα (2.4)

which is independent of the variable x. The terminology self-similarity is mostly
used when x is some length scale that is characteristic for the system such that
x → λx effectively produces a larger or smaller version of the system which is
self-similar to the original one with respect to a given observable O(x). A simple
geometrical example are two triangles with different size but identical measures in
all three angles. Such triangles are self-similar and can be transformed into one
another by an appropriate rescaling parameter λ. However, the concept of scale
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invariance is quite general and the transformation x → λx is not constrained to x
being some length scale of the problem. For example it could also be a time- or
velocity-scale upon which the observable depends.

When we talk about power laws we are referring to functions defined by equation
(2.2) which is actually a monomial because it consists of only one term with the
given variable to some power. Physical observables which are of the form

O′(x) = C0 + C1x
α, (2.5)

with two constants C0 and C1, can simply be translated into a power law by in-
troducing a new observable by subtracting the constant additive term, that is
O(x) = O′(x) − C0, such that O(x) is again a true power law. However, more
general polynomials like O(x1, x2, x3, ...) =

∑
i cix

ni are in general not scale invari-
ant or power laws. Of course, in reality most observables will not depend only on
a single parameter x but on many different parameters like pressure, density, tem-
perature, etc. In this case there is still hope that O(x) holds as an approximation
at least for a certain range of values in the other parameters or at least when all
other parameters are held constant. However, there are also many cases where the
effect of the other parameters cannot be ignored and the scale invariance property
becomes broken due to variation in the other parameters. Additionally, for any real
physical system, scale invariance will only hold over a finite range in the parameter
x. These boundaries (and/or initial conditions) effectively introduce characteristic
scales into the problem which we discuss further in section 2.2.4.

2.1.2 Log-log plots

Double-logarithmic plots are frequently used in astrophysics and there are at least
two reasons for this. First, it allows representing a large range of scales visually
on a limited area for the given plot. Second, power laws turn into straight lines as
is illustrated by figure 2.1. This is yet another visual demonstration of power laws
being scale invariant.

This property of power laws can also be demonstrated in mathematical terms.
Consider for example the following kind of mass function (see chapter 5 on star for-
mation) N(M) = CM−α which can equivalently be written in logarithmic quantities
M̃ = log(M) (and therefore M = 10M̃) as follows

logN = log[CM−α]

= log[C(10M̃)−α]

= logC − αM̃ log 10

= logC − α log(M). (2.6)

This simple calculation shows why power laws turn into straight lines when both
observable and variable are used in logarithmic scaling. The slope is given by the
power law index, which for our example yields

d(logN)

d(logM)
= −α. (2.7)
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Figure 2.1: Whenever a power law observable, O, or its variable, x, cover a larger range it is
not very useful to use a linear scaling as illustrated by the left plot. Using a logarithmic scaling
on both axes (right plot) allows to better visualize the entire range. Another benefit is that
power laws reveal a characteristic property as they turn into straight lines where the slope is
given by the power law index.

2.2 Differential equations

2.2.1 Some examples

In the following we present a few examples of ordinary differential equations (ODEs)
in order to gain some intuition on how power laws can be generated as solutions to
differential equations. It is a useful exercise because most physical laws are expressed
by differential equations. For astrophysical applications fluid equations like Euler
and Navier-Stokes are particularly relevant partial differential equations (PDEs) and
will be addressed in the subsequent section.

Finding a solution to a first order ODEs leads to one constant of integration.
This constant has to be specified via an extra condition, for example the initial
condition. We denote the respective constant with C in the following and consider
some ODEs for the observable O(x) depending on some variable x.

Consider the following kind of linear homogeneous ODE where the relative
change of the observable is simply a function of the variable to some power, that is

dO(x)

dx
= α

1

xγ
(2.8)

with constant factor α. Solutions to this ODE are obtained simply by integration
as follows

O(x) = O(x0) + α

∫ x

x0

x̃−γdx̃. (2.9)
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The solutions to this ODE can be separated into two classes for γ = 1 and γ 6= 1.
The former condition yields logarithmic solutions1 whereas the latter requirement
yields the following power law2

O(x) = C +
α

1− γ
x1−γ (γ 6= 1) (2.11)

where C = O(x0) − α/(1 − γ)x1−γ
0 . Equation (2.8) describes the relative change

of the observable with respect to the variable as proportional to some power of the
variable itself and independent of the value for the observable itself. Its form is
therefore quite general and it generates power law solutions where the power law
index (1− γ) can take any value for γ 6= 1.

Another relevant example for a linear homogeneous ODE is obtained by multi-
plying the r.h.s. of equation (2.8) with the observable O(x) which yields

dO(x)

dx
= α
O(x)

xγ
. (2.12)

For γ 6= 1 the solutions are exponential functions.3 For γ = 1 this ODE directly
reflects the scale invariance of the solutions because the infinitesimal change of ob-
servable O with respect to the variable x is simply proportional to the ratio of the
respective absolute quantities, that is

dO(x)

dx
= α
O(x)

x
. (2.14)

Hence, it comes as no surprise to recover a power law solution, that is

O(x) = Cxα (2.15)

with constant C = O(x0)/xα0 .
A physical example for this ODE stems from the field of cosmic ray (CR) research.

The energy spectra of these electrically charged particles reaching Earth from space
turn out to be close to a single power law index over many orders of magnitude.
We discuss this topic in greater depth in chapter 3 but for now we only want to
present a very simple argument presented by Syrovat-Skii (1961) which connects the
observed spectrum with our given ODE (2.14) and on the equipartition of energy.

1For γ = 1 the solutions to equation (2.8) are

O(x) = C + α lnx (2.10)

with constant C = O(x0)− α lnx0.
2This equation is strictly speaking not a power law because of the additive constant C. However,

this term can simply be removed by subtracting the constant and considering this new observable
which is a true power law as defined in section 2.1.

3For completeness we provide the solution to the ODE (2.12) for γ 6= 1 which is

O(x) = C exp

(
α

1− γ
x1−γ

)
(2.13)

with constant C = exp
(
−αx1−γ0 /(1− γ)

)
O(x0). For γ = 0 the solution describes simply an

exponential increase or decay (depending on the signature of α) and for γ = −1 and α = −σ2 the
solution turns into the normal distribution ∼ exp(−x2/(2σ2)) provided the appropriate choice of
normalization constant C.
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The argument aims to explain the power law index of the number of cosmic ray
particles N scaling with energy E as follows

N(E) ∼ E−3/2 (2.16)

or equivalently

dN(E)

dE
∼ E−5/2. (2.17)

Syrovat-Skii (1961) makes the following assumptions in order to explain this scaling.

1. The total internal energy, U , of the CR accelerator is distributed equally among
the following three components: cosmic ray energy, UCR, turbulent energy,
Uturb, magnetic energy, Umag, such that U = 3UCR.

2. The CRs are ultra-relativistic such that the kinetic energy is approximately
equal to the total energy of the CR particle, E, and we have UCR = NE and
U = 3NE. Hence dU = d(3NE) = 3EdN + 3NdE.

3. Energy losses occur only due to diffusion of CR particles (i.e. neglecting ra-
diative losses) and therefore dU = EdN .

The last two equations for dU can be combined and arranged to

dN(E)

dE
= −3

2

N(E)

E
(2.18)

which is the ODE presented in equation (2.14) upon identifying O(x)→ N(E) and
α = −3/2 and consequently yields the solution N(E) = CE−3/2 in agreement with
equation (2.16) for the observations which we aimed to explain.4

From these simple examples we would like to emphasize the following learnings:

1. Both ODEs, that is equations (2.8) and (2.12), are linear and hence the sum of
particular solutions is also a solution to the respective ODE. This superposition
principle holds irrespective of the given value of γ and hence for both power
law and exponential or logarithmic solutions presented here.

2. One initial condition is required to specify a particular solution to first order
ODEs. However, the initial condition is represented in the particular solution
merely as an additive constant or constant factor. The functional form (e.g.,
power law or exponential) is not affected by the initial condition.

These properties are in general not fulfilled when we consider nonlinear ODEs. To
demonstrate this we consider the following example

dO
dx

= −αO3(x) (2.19)

4Evidently the desired power law index −3/2 is connected to the internal energy of the CR
accelerator being distributed among three components. If the internal energy was distributed
among four components, dU = d(4NE), the analogous derivation would result in N(E) = CE−3/4

which is a spectrum significantly shallower than observed. Radiation or thermal pressure would
be two potential candidates for a fourth component. Their relative significance depends on the
environment under consideration.
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with constant α > 0. A solution to this nonlinear ODE is

O(x) =

√
1

2α

(
C̃ + x

)−1/2

(2.20)

with constant C̃ = O(x0)/(2α)− x0. It is straight forward to verify that the sum of
two solutions with different values of C̃ does not yield another solution to the ODE
(2.19). The superposition principle is not valid because of the nonlinear term O3(x).
Another point to outline here is that the solution is not a power law in general but
it converges to a power law only asymptotically as

O(x)
x�C̃−−−→∼ x−1/2. (2.21)

Evidently, for a given value of α it is the initial condition O(x0) which determines
the scale (via the requirement x� C̃ = O(x0)/(2α)− x0) above which the solution
converges to a power law. The relevance of initial conditions in nonlinear ODEs
therefore goes beyond some simple multiplication or addition of a constant as we
demonstrated before with the examples for linear ODEs. For nonlinear ODEs the
initial conditions can actually alter the shape of the solutions.

In fluid mechanics one usually deals with partial differential equations (PDEs)
that is equations with derivatives of more than one variable in general, for example
one time and three spatial derivatives. Depending on the complexity of the flow
these equations are linear or nonlinear. In the following we introduce the (in general
nonlinear) Euler and Navier-Stokes equations and investigate their connection to
scale invariance and power law solutions.

2.2.2 Euler equations

For a non-viscous fluid with density ρ = ρ(r, t), pressure p, and velocity v = v(r, t),
the continuity equation is

∂ρ

∂t
= −∇ · (ρv), (2.22)

and in the presence of an external field, with force density f (note [f ] = Force/Volume =
ML−2t−2), the Euler equations (in plural because one equation for each vector com-
ponent) are given as the following set of nonlinear PDEs

ρ

(
∂v

∂t
+ (v · ∇)v

)
= f −∇p. (2.23)

Together these equations describe the kinematics and dynamics of an incompressible
fluid with zero viscosity under the influence of pressure and gravity. In the context of
star formation these equations are frequently used to model the gravitational collapse
of a gas cloud. For fluids with non-zero viscosity the Navier-Stokes equations need
to be considered.

2.2.3 Navier-Stokes equations

For a compressible viscous fluid with density ρ, pressure p, viscosities η and ξ (with
[η] = [ξ] = ML−1t−1)5 and in the presence of some force field density f (with [f ] =

5For compressible fluids there are two kinds of viscosity. The first, η, is also known as dynamic
viscosity and corresponds to the shear stress of the fluid. The second viscosity, ξ, arises from the
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Force/Volume = ML−2t−2) the Navier Stokes equations are given (e.g., Bestehorn,
2006) by

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ f + η∇2v +

(
ξ +

η

3

)
∇(∇ · v) (2.24)

together with the continuity equation (2.22).
These equations are quite general but also contain some restrictive assumptions.

For example both viscosities are assumed to be constant for all locations in the
fluid. In general a fluid’s viscosity depends on its temperature and consequently
equation (2.24) is, at least strictly speaking, constrained to isothermal compressible
and viscous fluids.

For an incompressible fluid ∂ρ/∂t = 0 reduces the continuity equation (2.22) to
∇ · v = 0 and the Navier Stokes equations (2.24) simplify (e.g., Bestehorn, 2006) to

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ f + η∇2v. (2.25)

Just like any other set of dynamical equations the Navier-Stokes equations can be
brought into a dimensionless form by a change of variables. Therefore we apply the
following transformations

t′ =
t

tc
and therefore

∂

∂t
=

1

tc

∂

∂t′
, (2.26)

x′ =
x

lc
and therefore ∇ =

1

lc
∇′, (2.27)

ρ′ =
ρ

ρc
, (2.28)

v′ =
v

vc
, (2.29)

p′ =
p

pc
, (2.30)

f ′ =
f

fc
, (2.31)

where we have introduced the following characteristic and constant scales: a length
scale lc, a velocity scale vc, a density ρc, a pressure6 pc, and a force density scale fc.
The new primed variables, t′ for time, x′ for position, ρ′ for density, v′ for velocity, p′
for pressure, and f ′ for the force field density, are all dimensionless by construction.
Applying this change of variables to equation (2.24) and multiplying both sides of
the equation with lc/(v2

cρc) yields the compressible Navier-Stokes equations in the
following dimensionless form

ρ′
(
St
∂v′

∂t′
+ (v′ · ∇′)v′

)
= −Eu ∇′p′ + Fr−2f ′ + Re−1∇′2v′ + Re−1

2 ∇′(∇′ · v′).

(2.32)

tension due to compression of the fluid. The numerical factors in front of the second viscosity
in the Navier-Stokes equations vary depending on the given definition of the shear stress tensor,
commonly labeled as τij , from which the two viscosities are derived ultimately.

6The pressure scale is also frequently denoted as ∆p because it refers to a pressure difference.
Here we simply write pc to follow a coherent and simple notation.
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Here we have introduced the following four dimensionless numbers7

St =
lc
tcvc

(Strouhal number), (2.33)

Eu =
pc
ρcv2

c
(Euler number), (2.34)

Fr =
vc√
lcfc/ρc

(Froude number), (2.35)

Re =
lcvcρc
η

(Reynolds number). (2.36)

The last term on the right hand side of equation (2.32) also carries a dimensionless
factor, Re−1

2 = ξ+η/3
lcvcρc

, which is similar to the Reynolds number but to our best
knowledge does not have a commonly accepted name. The continuity equation
(2.22) in these dimensionless variables is

St
∂ρ′

∂t′
= −∇ (ρ′v′) . (2.37)

For astrophysical applications it is common practice to use a different set of
dimensional parameters which we obtain by making the following identifications

St =
lc
tcvc

tc=lc/vc−−−−→ St = 1, (2.38)

Eu =
pc
ρcv2

c

pc=c2sρc−−−−→M−2 =

(
cs
vc

)2

, (2.39)

Fr2 =
v2
c

lcfc/ρc

fc=ρcGM/lc∼Gρ2c l2c−−−−−−−−−−−→ αvir = 2Ekin/|Egrav| ∼
v2
c

Gρcl3c
. (2.40)

With these new dimensionless numbers, namely the Mach number,M = vc/cs, and
the virial parameter, αvir ∼ v2

c/(Gρcl
3
c), the Navier-Stokes equations can be written

as

ρ′
(
∂v′

∂t′
+ (v′ · ∇′)v′

)
= −M−2∇′p′ + α−1

virf
′ + Re−1∇′2v′ + Re−1

2 ∇′(∇′ · v′).

(2.41)

A clear benefit from introducing dimensionless numbers into the Navier-Stokes
equations is demonstrated by the similarity principle. It allows for a connection
between the dynamical and kinematical properties of a fluid. The dynamical prop-
erties of the fluid are characterized by the dimensionless numbers which determine
the kinematical behavior of the fluid. This implies that two fluid streams can be
similar although their absolute size or velocity are very different - provided that
their dimensionless numbers are equal and they are characterized by similar initial

7Of course these dimensionless numbers can also be expressed in terms of other related quan-
tities. The Reynolds number is also frequently expressed with respect to the dynamic viscos-
ity ν = η/ρc as Re = lcvc/ν. The Froude number with respect to the gravitational attraction
gc = fc/ρc is written as Fr = vc/

√
gclc. Alternatively the Froude number is also sometimes de-

fined as Fr = v2c/(gclc). In astrophysical applications the Froude number is less common and it is
replaced by the virial paramter αvir = 2Ekin/|Egrav| ∼ v2c/(Gρcl

3
c) which can be obtained from

the Froude number when identifying fc = ρcGM/lc and M = ρcl
3
c .
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and boundary conditions. We emphasize the importance of the latter requirement
because it appears to be overlooked sometimes.

All quantities in equation (2.41) are dimensionless which has inspired some au-
thors to refer to them as "scale-free equations" (e.g., Krumholz, 2014; Guszejnov
et al., 2018). These equations are scale-free in the sense that physical scales like
the size of the system or the velocity dispersion only enter into the equations in cer-
tain combinations via the dimensionless parameters. For example Krumholz (2014)
points out that rescaling the density and length scales as

ρ→ λρ, (2.42)

l→ λ−1/2l (2.43)

leaves Mach number,M, and the virial parameter, αvir, and the Reynolds number,
Re, unchanged.8 This property is what is commonly meant by "scale-free" dynamical
equations: it is the possibility to rescale the system in a certain way such that the
relevant dimensionless parameters are unchanged. However, there may very well be
other physical quantities which are not invariant under these transformations like
for example the mass of some sphere in the fluid changes as

M ∼ ρl3 → M̃ ∼ λ−1/2M (2.44)

Krumholz (2014) uses this example to point out that numerical simulations for star
formation, which are based on equations like the Navier-Stokes equations (2.41),
cannot be used to derive some characteristic mass scale - unless there are physical
reasons which constrain the possibility to rescale the system. And that is precisely
the point to emphasize here. The physical reality, in contrast to idealized models,
introduces scales into these scale-free equations. This is unavoidable because there
are physical processes which are more or less important on particular scales only,
like for example heat and radiation transfer processes which are negligible for dif-
fuse gas but dominate the thermal energy balance of a contracting gas cloud for
larger densities. Other examples are dissipative processes due to the viscosity of a
fluid which are dominant only on small scales (meaning "small" compared to some
characteristic length scale of the system like its diameter).

Another subtlety we would like to comment here concerns the connection of non-
linear differential equations and self-similar solutions, that is power law solutions.
The importance of initial and boundary conditions for finding particular solutions
to differential equations appears to be sometimes not emphasized sufficiently. Groß-
mann (2011) for example claims that nonlinear equations produce self-similar so-
lutions9 and concludes from it that one should expect self-similar flows10 whenever
the nonlinear term, (v · ∇)v, in the Navier-Stokes equations (2.25) dominates over
the viscous term η∇2v. This argument suggests that the Euler equations (2.23)
should produce self-similar solutions for v(r, t). However, the analytic form of the
solutions depends on the initial and boundary conditions. For example the so-called

8More generally the transformation (t,x,v) 7→ (λ2nt, λnx, λ−nv) leaves the Euler equations
(2.23) invariant for n ∈ R and for the Navier-Stokes equations (2.32) this holds true only for the
single case where n = 1.

9"Nichtlineare Differentialgleichungen erzeugen selbstähnliche Lösungen!" on p. 92 in Groß-
mann (2011)

10"Beispielsweise haben wir zu erwarten, dass die der Navier-Stokes-Gleichung genügenden Strö-
mungen u(x, t) von Flüssigkeiten selbstähnlich sind, solange der Term ∝ u2 das Dämpfungsglied
∝ ν überwiegt" on p. 93 in Großmann (2011)
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ABC flows (Arnold-Beltrami-Childress flows) are a simple steady-state solution to
the Euler equations which is not self-similar (power laws) but spatially periodic
(trigonometric functions) according to Dombre et al. (1986). Together with the
above example for a nonlinear ODE (equation (2.19)) we have presented two counter
examples to demonstrate that nonlinear ODEs do not necessarily produce power law
solutions. It is equally true that power laws are not only generated by nonlinear
ODEs but also by linear ODEs as demonstrated above with equation (2.14).

In the following we discuss the connection of dimensionless dynamical equations
and power laws and the importance of initial and boundary conditions for finding
solutions. Because the Navier-Stokes equations are very hard to solve in general
we take some simpler partial differential equations in order to demonstrate that
dimensionless equations do not necessarily lead to scale-free solutions and scaling
relations. The reason for this is simply the necessity to include initial and boundary
conditions in order to solve the equations. And that is how characteristic scales
enter into these otherwise scale-free dynamical equations.

2.2.4 Initial and boundary conditions

In order to determine the evolution of some physical observable (e.g., density or
velocity) with respect to some parameter (e.g., time) from the underlying dynam-
ical equations it is necessary to specify the initial conditions (ICs) and boundary
conditions (BCs). In general, these conditions affect whether or not a solution is
self-similar or not. Here we consider two examples. First, a solution to the diffusion
equation which is not self-similar and later a self-similar solution for the density
profile of an isothermal gas cloud which is collapsing under its own gravity and
described by Euler equations as inviscid flow.

The diffusion equation can be written as

∂v

∂t
= D∇2v (2.45)

with Diffusion coefficient [D] = L2t−1 assumed to be constant. Using the same
notation as in the previous section we can convert this equation the following di-
mensionless form

∂v′

∂t′
= D′∇′2v′ (2.46)

where we have defined a dimensionless diffusion constant D′ = Dtc/l
2
c with D′ > 0.

Considering only the dimensionless diffusion equation (2.46) it appears that any
diffusive system could be characterized simply by its diffusion coefficient D′. And
since the diffusion equation and D′ are both invariant under the following set of
transformations

x→ λx (2.47)
t→ λ2t (2.48)

the characteristic length scales (e.g., the size of the system) are irrelevant and it is
only the diffusion coefficient that determines the system’s evolution. However, this
statement was only true if the initial and boundary conditions would be invariant
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under the same transformations. This is in general not the case. Consider for
example the following initial condition

v(x′, 0) = sin
( π
L′
x
)
, x′ ∈ (0, L′) (2.49)

and boundary condition

v(0, t) = v(L′, t′) = 0, t′ ∈ (0,∞), (2.50)

where the lengh scale L is dimensionless, i.e., expressed in units of l′. Together with
these two conditions the diffusion equation (2.46) can be solved via separation of
variables (p.991, Arens et al., 2010) which yields

v(x, t) = e−(πD′/L′)2t′ sin
( π
L′
x′
)
. (2.51)

Notably this solution is not scale-free but it contains a characteristic length scale,
L′, which has entered via the initial and boundary conditions.

A well known example for a self-similar solution can be found in the context of
star formation. Consider an initially isotropic cloud of gas which collapses isother-
mally under its own gravity and we would like to determine the evolution of the
density, ρ(r), with respect to the radius from the center of the cloud, r. Shu (1977)
investigated this problem by solving the Euler equations brought to the following
one-dimensional form

∂v

∂t
+ v

∂v

∂r
=
c2
s

ρ

∂ρ

∂r
− GM

r2
(2.52)

together with the continuity equation

∂ρ

∂t
+

1

r2

∂

∂r

(
r2ρv

)
= 0 (2.53)

where M is the total mass of the cloud and cs is the speed of sound. There are
different kinds of solutions (Shu (1977) present singular solutions, collapse solutions,
expansion wave-collapse solutions) and one of them is the self-similar density profile

ρ(r) ∼ r−2. (2.54)

Shu (1977) show that this scaling holds for the nearly static outer envelope of the
collapsing cloud and that it results from requiring v → 0 for t → 0 which is a
particular choice for the ICs.

These two examples, diffusion and isothermal collapse, are meant to illustrate
that in general it is necessary to take into account the initial and boundary conditions
in order to potentially infer scaling-laws from dynamical equations like Euler or
Navier-Stokes equations. In chapter 4 we present Kolmogorov’s 1941 turbulence
model which is characterized by the velocity scaling v ∼ l1/3. This particular self-
similar velocity scaling results from demanding a constant energy transfer rate in
the velocity field of the flow provided that the fluid is incompressible, homogeneous
and isotropic. Similar to the previous examples, homogeneity and isotropy of the
flow requires appropriate initial and boundary conditions.
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Figure 2.2: This hierarchical tree diagram illustrates the first three steps of a continuous
fragmentation process of some large object into smaller pieces. For a perfectly self-similar
process the number of branches is constant over all levels and the total mass of the initial
object will be divided into equal parts among the fragments at each level.

2.3 Hierarchical fragmentation
A very simple and general way to obtain a power law is through a branching process
where some object continuously fragments into pieces level by level as illustrated by
figure 2.2.

If the initial object has a mass M0 and we assume it to continuously fragment
into equally massive pieces at each level, n, then the number of pieces, N , with a
certain mass, Mn, is given by

N(Mn) =
M0

Mn

(2.55)

provided that no mass is lost or left behind, meaning the total mass of all fragments
at every level of the hierarchical tree is constant. Assume that the branching process
occurs on a very short time scale compared to the life time of pieces, τ , before they
fragment again into smaller pieces and assume that τ ≈ const for all levels. Imagine
a random sampling process of pieces from an ensemble of many (→ ∞) hierarchi-
cal trees then the number of pieces within a given mass interval is determined by
equation (2.55) and therefore

dN(M)

dM
∝M−2. (2.56)

This particular scaling with the inverse square of the mass is close to the observed
value for the high mass range of the stellar initial mass function (see chapter 5) and
many other astrophysical objects (see section 5.1.2).

In order to come a bit closer to the reality of star formation the fragmentation
model can also be formulated with some additional features as presented by Gusze-
jnov et al. (2018). Assume that at each step there is a probability ε with 0 < ε < 1
for the fragmentation cascade to terminate and the respective piece to turn its entire
mass into a star. The total mass of stars M? with mass Mn which formed at level n
is then given by

M?(Mn)

M0

= ε(1− ε)n. (2.57)
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For a scale-free fragmentation cascade over a larger range we require ε � 1. The
number of fragments N produced per level is constant and we want it to be some
small natural number. Then the mass of a fragment relative to its parent is κ =
Mn/Mn−1 = N−1 with 0 < κ < 1. With respect to the initial mass, M0, we find

Mn

M0

= (1− ε)nκn. (2.58)

In order to determine the scaling of the mass function

N(Mn) =
M?(Mn)

Mn

(2.59)

we have to calculateM?(Mn) for arbitrary level n. This requires a fair bit of algebra
and some approximations in order to determine a solution without specifying the
parameters κ and ε. Plugging equation (2.58) into equation (2.57) gives

M?(Mn)

M0

= εκ−n
Mn

M0

. (2.60)

The level n can be expressed as

n =
ln(Mn

M0
)

ln(1− ε) + ln(κ)
(2.61)

and allows us to rewrite the κ-term as follows

κ−n =
(
κ

−1
ln(1−ε)+ln(κ)

)ln
(
Mn
M0

)

=

(
Mn

M0

)ln

(
κ

−1
ln(1−ε)+ln(κ)

)

=

(
Mn

M0

) − ln(κ)
ln(1−ε)+lnκ

. (2.62)

Plugging this into equation (2.60) gives

M?(Mn)

M0

= ε

(
Mn

M0

) − ln(κ)
ln(1−ε)+lnκ Mn

M0

= ε

(
Mn

M0

) ln(1−ε)
ln(1−ε)+lnκ

= ε

(
Mn

M0

) 1
1+lnκ/ ln(1−ε)

. (2.63)

The latter exponent can be approximated for a reasonable range of values for the
parameters ε and κ. For 0 < ε� 1, which we required in the first place in order to
obtain a large range for the cascade, we have

ln(1− ε) = −ε+O(ε2)

≈ −ε. (2.64)
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The parameter κ = N−1 represents the inverse of the number of fragments per frag-
mentation event. Here we do not bother to define a rigorous limit but simply argue
that the minimum requirement N ≥ 2 (otherwise there is no fragmentation at all) is
sufficient to guarantee that ln(κ)� 0 (because ln(1/2) ≈ −0.7 and the logarithm is
monotonically decreasing for larger N) and therefore the fraction ln(κ)/(ln(1 − ε))
will be some large number such that we can approximate the entire exponent as

1

1 + lnκ/ ln(1− ε)
=

1

lnκ/ ln(1− ε)
+O

((
1

lnκ/ ln(1− ε)

)2
)

≈ ln(1− ε)
lnκ

≈ −ε
lnκ

≈ 0. (2.65)

Applying this approximation to equation (2.63) we ultimately find

M?(Mn)

M0

≈ ε = const. (2.66)

Plugging this result into (2.59) yields

N(Mn) ∝M−1
n (2.67)

which holds for all levels n � ε−1 and therefore we recover the identical scaling as
in equation (2.56) found for the less elaborate model.

This particular scaling, N(M) = αM−1, with constant α, guarantees an equal
amount of mass contained in any logarithmic interval of mass which can be simply
verified as follows ∫ M2

M1

N(M)dM = α

∫ M2

M1

M−1dM

= α ln

(
M2

M1

)
(2.68)

which is constant for M2/M1 = const. A particular case is the frequently seen
choice of a logarithmic mass bin which sets M2/M1 = 10. This scale invariant mass
function is observed for a broad variety of astronomical objects as we discuss in
section 5.1.2.

2.4 Statistical physics

2.4.1 Heavy tails in probability density functions

In the context of probability theory an essential property of power laws is their
so-called heavy tail. Its significance can be illustrated by considering two standard
examples for a probability density function (PDF), namely the normal distribution

Pn(x) =
1√

2πσ2
exp

(
−(x− x0)2

2σ2

)
. (2.69)
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and the lognormal distribution

Pl(x) =
1√

2πσ2

1

x
exp

(
−(ln(x/x0))2

2σ2

)
. (2.70)

In figure 2.3 the normal distribution and the lognormal distribution are plotted
for x0 = 1 and varying σ ∈ (1, 3, 10). For the normal distribution x0 represents
the mean value and σ the standard deviation. Apparently the normal distribution
remains quite narrow even for larger values of the standard deviation. The lognormal
distribution however becomes a lot broader, meaning it does not fall off so quickly,
in comparison to the normal distribution. It produces a heavy tail which is longer
for larger values of σ. In this double-logarithmic plot the heavy tail resembles a
straight line which is the characteristic property of a power law as argued above in
figure 2.1.
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(a) Normal distribution as defined by equa-
tion (2.69) for x > x0 and with x0 = 1.
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(b) Lognormal distribution as defined by
equation (2.70) for x > x0 and with x0 = 1.

Figure 2.3: Here we plot only the range x > x0 for a normal PDF (x0 = mean value)
and lognormal PDF (x0 is the so-called median which separates lower half from higher half
of the PDF). Evidently both PDFs become broader the larger the value for σ. However, in
comparison to each other the normal PDF is a lot more narrow then the lognormal PDF. In
fact the lognormal produces a heavy tail which is very close to a straight line in this double
logarithmic plot which is a characteristic property of power laws.

There are two important learnings to take away from this example. First,
heavy-tailed PDFs (power laws, lognormal distributions with large σ, ...) carry
non-negligible likelihoods for large values in x. This property distinguishes them
from the normal distribution which is more narrow around its mean value. Second,
although being a characteristic property for power laws, something that looks like
a straight line over multiple orders of magnitude in a log-log plot does not have to
be generated from a true power law. There are other functions, like the lognormal
distribution for example, which are very close to a power law over a large range in
x, given the appropriate values of the parameters x0 and σ.

Here we do not go into further detail but recommend Sornette (2004) for a more
thorough treatment of power laws in the realm of probability theory because our
main point was to demonstrate the significance of heavy tails and give some examples
for their relation to power laws and other PDFs. In the next section we move on to
review some essentials about canonical statistical physics which will be generalized
in the subsequent chapter.
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2.4.2 Boltzmann-Gibbs Statistics

The distribution function P (p, q) is a probability density which describes the density
of states with respect to a set of variables that characterize the system. Commonly
it accounts for the relative number of atoms in a finite volume of position and
momentum phase space. The number of particles dN in the position and momentum
interval d3pd3q is given by

dN ∝ P (p, q)d3pd3q. (2.71)

A well known particular case in Boltzmann-Gibbs statistics is the canonical ensem-
ble, which describes a system of many particles which are in thermal equilibrium
with an embedding heat reservoir at constant temperature β−1. The equilibrium
distribution for this mechanical system is proportional to the Boltzmann factor
B(E) = e−βE, that is the spectral shape (dependence on energy) of the distribution
is characterized by

P (p, q) = C(β)e−βE(p,q), (2.72)

which determines the relative frequency of particles with energy E for a given inverse
temperature β. In many cases the total energy of a system can be split into a sum
of two terms as E(p, q) = Ekin(p) +Epot(q) then the number of particles dN in the
position and momentum interval d3pd3q is

dN ∝ Cpe
−βEkin(p)d3pCqe

−βEpot(q)d3q (2.73)

which illustrates the possibility to consider the distribution function separately in
position, Pq, and momentum space, Pp, with respective normalization constants

Cx =

(∫ +∞

−∞
e−βE(x)d3x

)−1

(2.74)

in units of [Cx]
−1 = [x]3 where x represents q or p. If the energy does not depend on

the direction of x it is convenient to choose spherical coordinates where
∫ +∞
−∞ d3x =

4π
∫ +∞

0
x2dx and

Cx =

(
4π

∫
e−βE(x)x2dx

)−1

(2.75)

In many cases (e.g., ideal gas) the potential energy can be neglected and the kinetic
energy depends only on the absolute value of the momentum such that

dN ∝ 4πCpe
−βE(p)p2dp (2.76)

which for non-relativistic freely moving (Epot = 0) particles with mass m and kinetic
energy E(p) = p2/(2m) yields the following normalization

Cp =

(
4π

∫ ∞
0

e−
βp2

2m p2dp

)−1

=

(
2πm

β

)− 3
2

(2.77)
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and is known as Maxwell-Boltzmann distribution in momentum space

dN ∝ Ppd3p = Cpe
−βp2

2m d3p

∝ Ppdp = Cpe
−βp2

2m 4πp2dp. (2.78)

This defines the PDF in momentum space for a non-relativistic particle as Pp(p) =
4πp2Cpe

−βp2/(2m) where the index in our notation11 reminds us on the fact that
[Pp] = [p]−1. The analogous distribution in energy space can be calculated from the
conservation condition Ppdp = PEdE which yields

PEdE = Pp
dp

dE
dE

= Pp

√
m

2E
dE

=
2√
π
β

3
2 e−βE

√
EdE (2.79)

where it is worth emphasizing that in energy space PE ∝
√
E ∝ p whereas in

momentum space Pp ∝ p2 ∝ E which we refer to as phase space factor ρ(p) = p2 or
ρ(E) =

√
E which accounts for the density of states in the respective phase space.

It is thus important to clarify for a given distribution function which phase space
we consider. In many cases this is momentum or another definition of energy.

The classical Maxwell Boltzmann distribution can be brought to a relativistic
form where E = p2/(2m) is replaced by E =

√
p2 +m2 (in c = 1 units) which

was presented by Jüttner (1911). The result for evaluating the integral for the
normalization (2.75) can also be taken from Landau and Lifschitz (1979) which
yields

Cp =

(∫ ∞
0

e−β
√
p2+m2

4πp2dp

)−1

∼
(
K0 (βm)

βm
+

2K1 (βm)

(βm)3

)−1

, (2.80)

where K0, K1 are modified Bessel functions of the second kind also known as Mac-
Donald-functions (p.528, Bronstein et al., 1977). The corresponding distribution
function is known as Maxwell Jüttner distribution given by

dN ∝ e−β
√
p2+m2

(βm)−1K0 (βm) + 2(βm)−3K1 (βm)

p2dp

m3
. (2.81)

Another more compact way to express the normalization upon ignoring constant
factors is

Cp ∼
(
K2(βm)

β

)−1

, (2.82)

11Some authors prefer a different notation where the distribution function is written as fp with
units [fp] = [p]−3 meaning that dN ∝ fpd3p. We choose to include the phase space factor ρ(p) = p2

(special case) or more generally ρ(x) into the definition of our distribution function such that
dN ∝ Pxdx and Px(E) = Cxρ(x)e−βE(x) is the distribution function where the variable x could
be for example the particle’s velocity, momentum or kinetic energy.
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can be found in Chacón-Acosta et al. (2010). The classical Maxwell Boltzmann
distribution and the relativistic Maxwell Jüttner equation differ from each other
because of the respective relations between energy and momentum, that is E =
p2/(2m) for classical and E =

√
p2 +m2 for relativistic particles.

In summary, the equilibrium distribution of states x (e.g., momenta) can be
calculated from

Px(x, β) = Cx(β)ρ(x)e−βE(x) (2.83)

with normalization Cx(β) = (
∫
ρ(x)e−βE(x)dx)−1. In this notation the Maxwell

Boltzmann distribution in momentum space is written as

Pp(E(p)) = Cp(β)ρ(p)e−βE(p) (2.84)

with Cp(β) = (2πm/β)−3/2, phase space factor ρ(p) = 4πp2 and energy E(p) =
p2/(2m). In the following section we introduce superstatistics which allows us to
treat non-equilibrium systems and determine the corresponding distribution func-
tions.

2.4.3 Superstatistics

The general idea of superstatistics is that the observed nonequilibrium distribution
results from a superposition of equilibrium distribution functions that are individu-
ally associated with an inverse temperatures β. Whereas the canonical ensemble in
Boltzmann Gibbs statistics applies to a many particles system embedded within a
larger heat bath at constant temperature, superstatistics addresses an ensemble of
canonical ensembles by introducing a distribution of inverse temperature which can
vary in time and/or space.

As a concrete example consider a cosmic ray detector which counts the num-
ber of particles within a given energy range. These particles originate from various
cosmic environments with different temperatures. If there is a large enough spatial
volume at constant temperature, and enough time to distribute the energy, then
equilibrium thermodynamics would predict a distribution of energies characterized
by e−βE energy dependence. Hence, for each energy distribution of cosmic rays com-
ing from a particular equilibrium environment at constant temperature we associate
a Boltzmann factor B(E) = e−βE. Considering large enough environments, with
different equilibrium temperatures, should then lead to observing superposition of
equilibrium distributions because our detector here on Earth does not distinguish
individual particles from different environments but only counts the total number
of particles with energy E.

Drawing back on the previous section on Boltzmann Gibbs statistics, we can
define a conditional PDF

pE(E|β) = C(β)ρ(E)e−βE. (2.85)

which is essentially the Maxwell Boltzmann distribution for an ideal gas at constant
temperature T = β−1 (in units [T ] = eV) with the characteristic Boltzmann factor
B(E) = e−βE and normalization constant

Cp(β) =

(∫ +∞

−∞
e−βE(p)d3p

)−1

. (2.86)
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Superstatistics derives a generalized Boltzmann factor by superimposing the un-
derlying conditional distributions pE(E|β) with an appropriate weight accounting
for the distribution of β. Beck and Cohen (2003) distinguish between type-A and
type-B superstatistics which differ in their respective weight when summing up the
conditional distributions to obtain the accumulated and observable energy distri-
bution. Here we use superstatistics type-B which integrates the locally normalized
distribution functions (2.85) over the distribution of inverse temperatures in the
following way

PE(E) =

∫ ∞
0

g(β)pE(E|β)dβ. (2.87)

In order to solve this equation one needs to specify the relation between energy
and momentum E(p) and the distribution of inverse temperatures g(β). Differ-
ent classes of distributions were investigated in detail by Beck and Cohen (2003)
who showed that χ2-distributed inverse temperature distributions naturally gener-
ate asymptotic power laws in the resulting superimposed distribution function. That
is, for a sum a of independent and identically distributed Gaussian random variables
Xi with

β =
n∑
i=1

X2
i , (2.88)

the corresponding PDF is a χ2-distribution (see Beck (2004)) written as

g(β) =
1

Γ(n/2)

(
n

2β0

)n
2

β
n
2
−1e
− nβ

2β0 , (2.89)

with the mean inverse temperature defined as

β0 =

∫ ∞
0

βg(β)dβ = T−1
0 . (2.90)

In order to calculate the normalization Cp(β) one generally has to distinguish
between three different regimes:

1. Newtonian: E = p2

2m

2. Relativistic: E =
√
p2 +m2

3. Ultra-relativistic (p� m): E = p.

The normalization in the Newtonian regime was calculated in (2.77) for the ex-
ample of the Maxwell Boltzmann distribution. For the relativistic case we identified
the Maxwell Jüttner distribution with corresponding normalization (2.80). For cos-
mic rays we are only concerned with relativistic and ultra-relativistic particles. In
agreement with Beck (2004), we use the ultra-relativistic energy momentum relation,
which implies p2dp = E2dE, and allows to calculate the β-dependent normalization
simply as

Cp(β)−1 =

∫ +∞

0

e−βEE2dE

= 2β−3. (2.91)
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Putting everything together we can determine the distribution function (2.87),
given the particular normalization (2.91) and the χ2-distributed inverse temperature
distribution (2.89), with the following calculation.

PE(E) =

∫ ∞
0

g(β)pE(E|β)dβ

=
1

Γ(n/2)

(
n

2β0

)n
2
∫ ∞

0

β
n
2
−1e
− nβ

2β0
β3

2
ρ(E)e−βEdβ

= ρ(E)
1

2Γ(n/2)

(
n

2β0

)n
2
∫ ∞

0

β
n
2

+2e
−β

(
E+ n

2β0

)
dβ

= ρ(E)
Γ(3 + n

2
)

2Γ(n/2)

(
n

2β0

)n
2
(
E +

n

2β0

)−3−n
2

∼ ρ(E)

(
n

2β0

)n
2
(
E +

n

2β0

)−3−n
2

. (2.92)

In the last line we have dropped the term with the Gamma functions because it is a
constant global factor which is irrelevant for the spectral shape (energy dependence)
of the distribution. Introducing q = 1+2/(n+6) (equivalent to n/2+3 = 1/(q−1))
and b = β0/(4− 3q), allows us to express the result as

PE(E) ∼ ρ(E)

(
n

2β0

)−3(
n

2β0

) 1
q−1
(
E +

n

2β0

) −1
q−1

∼ ρ(E)

(
n

2β0

)−3
(

n
2β0

E + n
2β0

) 1
q−1

∼ ρ(E)

(
n

2β0

)−3
(

1

1 + E 2β0
n

) 1
q−1

∼ ρ(E) (1 + (q − 1)bE)
1

1−q = ρ(E)e−bEq . (2.93)

In the last step we have again dropped an irrelevant constant factor, that is (n/2β0)−3,
and we have introduced the q-exponential defined by

exq := (1 + (1− q)x)
1

1−q . (2.94)

The so-called entropic index q determines the high-energy behavior of the distribu-
tion (i.e., the fat tail of the PDF) since the q-exponential asymptotically approaches
a power law

lim
E→∞

e−bEq ∝ Eγ (2.95)

with spectral index γ = 2 − 1/(q − 1) for q > 1, whereas for q = 1 we recover the
canonical Boltzmann factor

lim
q→1

e−bEq = e−bE. (2.96)

We introduce a constant C for the global amplitude as physically meaningless fit-
ting factor (because it is irrelevant for the spectral shape which is the focus of our
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analysis) in order to write down the final expression for our distribution function
based on χ2-superstatistics as

PE(E) = Cρ(E)e−bEq (2.97)

and summarize the following formulae

β =
n∑
i=1

X2
i , (2.98)

β0 =

∫ ∞
0

βg(β)dβ = T−1
0 , (2.99)

b =
β0

4− 3q
= T−1, (2.100)

n =
2

q − 1
− 6., (2.101)

which we exploit for interpreting the physical meaning of the parameters inferred
from the observed for cosmic ray spectra in section 3.3.





Chapter 3

Cosmic Rays

3.1 Observations

Cosmic rays (CRs) are fast moving charged particles coming from space and carrying
energies ranging from 106 eV to 1020 eV which is exceeding the most powerful hu-
man made particle accelerators by multiple orders of magnitude. Protons, meaning
ionized hydrogen nuclei, are the most abundant CRs but all sorts of atomic nuclei,
electrons and their corresponding anti particles are found. CRs can be detected di-
rectly in space (e.g., the Alpha Magnetic Spectrometer (AMS) on the International
Space Station) outside of Earth’s magnetic field and atmosphere which operate like a
safety shield against CRs, or with ground based detectors via the secondary particle
showers which are triggered when CRs collide with other particles in the atmosphere.
With an extensive analysis the type of particle and its energy before colliding can
be reconstructed (e.g., by the Pierre Auger Observatory in Argentina). The pres-
ence of CRs outside of our solar system can be inferred indirectly by investigating
the electromagnetic radiation emitted due to acceleration or collision with other
particles.

In the following we present an overview about the essential observable properties,
the CR energy spectrum, the relative abundance of various particle species, and the
spectrum of CR induced electromagnetic radiation, namely radio, x-rays and gamma
rays. In the subsequent section 3.2 we present the so-called standard paradigm for
the origin of galactic CRs (e.g., Gabici et al., 2019) and show how it builds on
the observational evidence gathered in the previous section. Our main focus is to
find a model which allows to interpret the origin of the observed power law energy
spectrum. For this purpose we provide a novel interpretation by applying a model
based on superstatistics, which was introduced in section 2.4.3.

3.1.1 Energy spectrum and isotropy of cosmic ray (CR) flux

Figure 3.1 presents the flux of CRs spanning eleven orders of magnitude in energy
which resembles a single power law at first look (left plot) whereas many more de-
tails can be discovered when considering different energy ranges and particle types
more closely (right plot). The observed spectrum here at Earth carries valuable in-
formation in particular about CR acceleration and transport because both processes
are in general energy or rigidity (momentum per charge) dependent. For example
a gradual shift to a steeper spectrum for larger energies could hint on either: a)
less efficient acceleration for higher energetic particles or b) larger losses for higher
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(a) Cosmic ray all particle spectrum

(b) Protons, electrons and anti-particles

Figure 3.1: The all particle cosmic ray flux illustrates a remarkably broad power law de-
pendence on energy (left plot, taken from Gaisser et al., 2016). A closer look shows the
spectrum becomes steeper for E & 1× 106 GeV (the so-called knee) and again flatter for
E & 1× 109 GeV (the so-called ankle). Distinguishing between different types of particles
(right plot, taken from Gabici et al., 2019) reveals more subtle spectral features.

energetic particles. The latter could result from energy losses during propagation
or from escaping particles. Evidently the observed spectrum here at Earth can be
affected by multiple processes along the way (e.g., diffusion, reacceleration, convec-
tion, collisions, radiative losses) and it is quite challenging to disentangle them. In
general the particular spectral features of different particle types (e.g., electrons,
protons, carbon, boron) provide strong constraints to any cosmic ray model.

The low energy range with E . 10 GeV is affected by the influence of the solar
wind and the sun’s magnetic field (Moraal, 2014). The flux in this energy region
thus becomes modified and time dependent and has to be corrected by applying solar
modulation models (e.g., Boschini et al., 2017) or by Voyager 1 and 2 measurements
(e.g., Cummings et al., 2016; Stone et al., 2019) in order to gain knowledge about
the CR spectrum outside of the heliosphere.

Another important piece of the puzzle is the energy dependent degree of anisotropy
of the flux. Impressively cosmic rays appear to reach Earth from all directions at
nearly equal amplitude with deviations of only 10−4 for protons at tens of TeV
(Gabici et al., 2019). Therefore cosmic ray models must explain both, the high
degree of isotropy and the energy dependent low level of anisotropy.

3.1.2 Elemental and isotopic composition of CR flux

Figure 3.2 compares the abundance of different nuclei in CRs with the abundance
of chemical elements in our solar system. Evidently there is a strong correlation
for many chemical elements whereas for lithium, beryllium and boron, for example,
their relative abundance exceeds the solar system reference value by at least four
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Figure 3.2: Comparing the relative abundance of chemical elements in our solar system
with detected cosmic rays allows to infer essential information about their propagation. The
overabundance of lithium (Li), beryllium (Be) or boron (B) in CRs can be explained as a product
of CR collisions with interstellar gas. Plot taken from Tatischeff and Gabici (2018).

orders of magnitude. In fact, these elements are not among the typically produced
elements from stellar nuclear fusion but they must be the result of CRs colliding
with interstellar gas particles such that larger nuclei fragment into smaller ones. This
so-called spallation process is the dominant production mechanism for elements like
lithium, beryllium and boron, which are therefore called secondary cosmic rays.

Figure 3.3: The flux ratio of boron to carbon with measurements since 1980 with AMS-02
(red points) providing the most recent and precise values. The dashed line corresponds to
a CR propagation model with constant boron to carbon ratio for larger energies which is in
contradiction to the AMS-02 data. The energy variable EK is kinetic energy per nucleon. Plot
taken from Aguilar et al. (2016).

Figure 3.3 shows the flux ratio of boron to carbon over three orders of magnitude
in kinetic energy per nucleon and carries valuable information about CR propaga-
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Figure 3.4: Secondary to primary ratio with scandium (Sc), titanium (Ti), vanadium (V) (all
secondary) and primary iron (Fe). The decreasing flux ratio is similar to the behaviour of boron
to carbon in figure 3.3. Graphic by Strong et al. (2007).

tion. Whereas boron is entirely of secondary origin (a product from spallation)
(Strong et al., 2007), carbon is dominantly of primary origin.1 Next to nitrogen
and oxygen, carbon is also one of boron’s parent nuclei. When we speak of primary
cosmic rays we refer to atomic nuclei which are accelerated at their sources and have
maintained their identity (no spallation) until being observed, directly or indirectly
(Strong et al., 2007). In general kinetic energy per nucleon is conserved in spallation
reactions (e.g., Kachelriess and Semikoz, 2019) and therefore the spectrum of a type
of primary CR will be inherited by their offspring, the secondary CRs, at least in the
absence of further complications as for example multiple production channels. In
this case a constant secondary to primary ratio would be expected when detecting
the CRs shortly after their production. In reality we detect the secondary CRs at
a random time sooner or later after their production. The observed spectrum is
therefore modulated by energy dependent processes along the way. A decreasing
secondary to primary flux could for example hint on either of the following two
scenarios: a) higher energetic primary CRs are less abundant in the environments
suitable for production of secondaries or b) the differential cross sections for pro-
ducing secondaries decrease for higher energies. The latter explanation is usually
rejected but to our best knowledge there is still a considerable uncertainty about
the exact energy dependence of cross sections for all relevant (hadronic) production
channels (e.g., Génolini et al., 2018). Considering further combinations of secondary
to primary ratios (see figure 3.4), apart from boron to carbon, allows to test if the
observed energy dependence of the decreasing flux truly carries information about
CR transport in general, which we discuss further in section 3.2.2.

Unstable isotopes in secondary CRs can be used to infer knowledge about the
propagation time. For that purpose the abundance of the unstable 10Be isotope with
a lifetime τ1/2 ∼ 1Myr can be compared to the abundance of stable 9Be in CRs as
shown in figure 3.5.

1For lower energies (at about 1 GeV/nucleon) there can be a substantial (∼ 20%) contribution
of secondary carbon according to Génolini et al. (2018).
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Figure 3.5: The ratio of unstable 10Be to stable 9Be carries information about the propagation
time of secondary CRs. An increasing ratio with energy is expected due to increased half life
for larger Lorentz factors. Graphic by Strong et al. (2007).

3.1.3 Radio, x-rays and gamma rays induced by CRs

There are two important mechanisms by which CRs can produce electromagnetic
radiation, namely through collision with other particles or due to acceleration. CRs
carry charge and therefore interact with electromagnetic fields like the magnetic field
in our galaxy. Due to the Lorentz force, which acts on all charged particles moving
(to some degree) perpendicular to a magnetic field, the CRs gyrate around the field
lines and emit synchrotron radiation. Furthermore, CRs are also accelerated due
to scattering with other charges or irregularities in the magnetic field and radiate
bremsstrahlung. Another important mechanism is CR scattering off lower energy
photons (background radiation) which is called inverse compton scattering when the
momentum is transferred from CR to photon. Additionally, CRs can interact with
other particles via the strong nuclear force and produce new hadrons (e.g., atomic
nuclei or pions), leptons and ultimately photons (e.g., gamma rays). In order to
infer the presence of CRs in far away regions it is necessary to develop models which
calculate the spectrum of the radiation in dependence on parameters associated
with the properties of the surrounding environment and the CRs. These models are
commonly composed of two scenarios: a leptonic and a hadronic scenario.

Hadronic scenarios account for gamma ray emission due to proton-proton col-
lisions which produce neutral pions that are unstable and decay into gamma ray
photons with a spectrum parallel to their progenitors for large enough energies.
This process has a characteristic peak at the rest mass energy of the neutral pion
mπ0 ≈ 67.5 MeV which can be exploited to distinguish the gammas rays from an
alternative origin like electron bremsstrahlung (e.g., Ackermann et al., 2013).

Leptonic scenarios account for synchrotron radiation, inverse compton scattering
and thermal and nonthermal bremsstrahlung. Applying hadronic and leptonic mod-
els jointly to an observed spatially integrated radiation spectrum like in figure 3.6
allows to (partially) reconstruct the energy spectrum of leptons and hadrons which
are responsible for the electromagnetic radiation.
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Figure 3.6: The spatially integrated spectral energy distribution of Tycho’s SNR (purple), x-
ray (green), GeV (orange) and TeV (red) gamma rays reveals the presence of accelerated charged
particles, namely CRs. The solid line is the best fit with a model dominated by synchrotron
radiation in the radio and x-ray and pion decay induced gamma radiation. Graphic by Morlino
and Caprioli (2012).

3.1.4 Questions

Having discussed the observational data for CRs there are some fundamental ques-
tions which arise naturally as for example the following:

1) Where do CRs originate from?

2) How are CRs accelerated?

3) How do CRs propagate from sources to observation sites?

During the last fifty years a so-called standard paradigm (e.g., Gabici et al., 2019)
has established for answering these (and many other) questions. In short the answers
can be summarized as follows:

1) CRs with energies E . 1015−17 eV are mainly of galactic origin

2) where they experience diffusive shock acceleration in supernova remnants until
they escape into the surrounding medium and

3) propagate diffusively through the galactic disk and a magnetized halo with a few
kiloparsec scale height.

Despite considerable progress in CR research there are still many open question
that are actively under debate. Gabici et al. (2019) present a detailed review about
the observational and theoretical pieces which are in tension with each other. The
authors conclude that it is not yet clear if the paradigm can be maintained or if some
of its cornerstones must be replaced. The improvements in observational techniques
and accuracy have furthermore allowed to define much more specific questions than
we consider here. We will mainly focus on the observed power law energy spectra
here at Earth and aim to understand the dominant mechanisms behind it.
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3.2 Standard paradigm interpretation of energy spec-
tra

3.2.1 Diffusive shock acceleration

The overall shape of the CR energy spectrum, with its heavy tail, immediately tells
us this is not a thermal distribution, meaning the momentum (or energy) distribution
associated with an ideal gas at constant temperature, which is characterized by an
exponential decay for larger energies (see section 2.4.2). In fact, regardless of the
spectral shape but merely the presence of such enormously high energies in CRs could
not be explained as thermal origin even with the hottest large scale gas reservoirs
in our galaxy - like the hot ionized medium - with temperatures of T ∼ 106 K are
associated only with a mean kinetic energy per particle of kBT ∼ 10−4 MeV and thus
multiple orders of magnitude below the characteristic energies of CRs. Therefore a
powerful source of nonthermal energy is needed to explain the energy distribution
of cosmic rays.

Estimating the power required for CR acceleration sources to maintain a sta-
tionary state of cosmic ray energies relies on specifying the volume, V , with average
CR energy density, ECR, and the mean time the CRs reside within that volume,
τres. For our Galaxy the average CR energy density is roughly (e.g., Ferrière, 2001;
Cummings et al., 2016)

ECR ∼ 1 eV cm−3 ∼ 1.6× 10−12 erg/cm3. (3.1)

Maintaining this energy density consequently requires a source which balances the
average power carried away by the CRs escaping from the volume, which is

ΓCR =
ECRV
τres

∼ 5× 1040 erg/s (3.2)

with CR residence timescale τres = 6 Myr (see equation (3.15) in next section), a
galactic disk with radius r = 15 kpc and scale height h = 300 pc. Evidently, the
power required to maintain the observed energy density, ECR, is about ten percent
of the galactic average power contribution to kinetic energy by SNe as calculated in
equation (1.3).

For the acceleration of CRs it has become broadly accepted that shock fronts in
SNRs provide a suitable environment (Reynolds, 2008).2 Magnetic field irregularities
and fluctuations (e.g., Alfvén waves) in the proximity of the shock front isotropise
the particle distribution and eventually deflect some of the particles back across
the shock front. The original idea of diffusive acceleration by reflecting CRs via
magnetized clouds in the ISM goes back to Fermi (1949). Building on this approach
Bell (1978) and Blandford and Ostriker (1978) both showed with quite different
derivations that diffusive acceleration in strong shocks generate power law energy
spectra with universal spectral index under quite general conditions. This process is
generally (not only for strong shocks) known as diffusive shock acceleration (DSA).
In the following we consider the derivation by Bell (1978) which is nicely presented
in Gaisser et al. (2016).

2Not only super novae but also novae, caused by accreting white dwarfs in binary systems, are
capable of accelerating cosmic rays as recent observational evidence presented by Aharonian et al.
(2022) shows.
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Figure 3.7: The gamma ray emission of various SNR presented as differential number density
with the canonical E−2 scaling which implies that the spectrum predicted by DSA corresponds
to a straight horizontal line. Given are three old SNRs (order 10.000 years, W44, IC443 and
W51C) with low-energy cutoffs, young SNRs with flat spectra and high-energy cutoffs (Tycho
and CasA) as well as flat sources with TeV-energy turnovers (RX J0852.0-4622 and RX J1713.7-
3946). Graphic by Becker Tjus and Merten (2020).

Consider a charged particle moving in the vicinity of the expanding shock front
in a supernova remnant. On either side of the shock the particle will encounter
magnetic field irregularities or MHD (magneto-hydrodynamic) waves which deflect
the particle. With a finite probability the particle will be deflected backwards such
that it crosses the shock front another time. Each passage (going back and forth)
increases the particle’s momentum by a factor ξ = ∆E/E such that after n cycles
a particle with initial energy E0 has

E = E0(1 + ξ)n (3.3)

and solving this equation for the number of cycles yields

n =
ln
(
E
E0

)
ln (1 + ξ)

. (3.4)

Given that the probability for the particle to escape during one passage is Pesc the
probability for the particle to remain in the acceleration region for n passages until
it has reached the energy E is given by (1− Pesc)

n. From this we can estimate the
scaling of the number of particles which gain at least this amount of energy as 3

N(≥ E) ∝
∞∑
m=n

(1− Pesc)
m =

(1− Pesc)
n

Pesc
(3.5)

3Usually we consider the number of particles dN in a finite energy interval dE instead of
considering all particles with energies ≥ E but the difference in the following derivation is negligible
because the contributions of

∑∞
m=k(1− Pesc)m �

∑k
m=n(1− Pesc)m for sufficiently large k which

is guaranteed by considering a sufficiently broad energy range dE by which we define the particle
density dN/dE.
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where the latter equality holds generally for |1−Pesc| < 1. We can then use equation
(3.4) to eliminate n and find

N(≥ E) ∝ (1− Pesc)
ln(E/E0)
ln(1+ξ)

Pesc
=

1

Pesc

(
E

E0

)−δ
(3.6)

where we have used xln(a) = aln(x) and introduced the spectral index

δ =
ln
(

1
1−Pesc

)
ln(1 + ξ)

≈ Pesc

ξ
. (3.7)

The spectral index of the accelerated CRs can thus be calculated from the escape
probability weighted by the average energy gain per passage. The derivation rests on
applying the Lorentz transformations and integrating over all possible "scattering
angles" (collisionless deflection) which is found in Gaisser et al. (2016) and yields

Pesc =
4u2

c

ξ ∼ 4

3
β (3.8)

with βc = (u1−u2) being the velocity of the unshocked gas "upstream" (u1) relative
to the shocked gas "downstream" (u2) and c velocity of light. Introducing the
compression factor r = ρ2/ρ1 and using the continuity equation u1/u2 = ρ2/ρ1 = r
yields

δ =
3

r − 1
. (3.9)

The compression factor r depends on the adiabatic index κ = cp/cv of the gas and
the Mach number M = u1/cs according to Shore (1992) as

r =
(κ+ 1)M2

(κ− 1)M2 + 2
. (3.10)

For a monoatomic nonrelativistic gas κ = 5/3 we find in the strong shock limit with
M � 1 that r = 4

1+3/M2 ≈ 4 and thus

δ ≈ 1. (3.11)

This result can be equivalently expressed with respect to the differential number
density (with γ = δ + 1) as

N (E) =
dN
dE
∝ E−γ, (3.12)

where γ ≈ 2. It is quite remarkable that the spectral index depends only the com-
pression ratio of the shock. The acceleration spectrum is therefore fully determined
by properties of the accelerator itself, that is the shock front and the surrounding
ISM.

This prediction of DSA in the strong shock limit can be tested with the observed
emission spectra of SNRs. As described above this is done by fitting models for
leptonic and hadronic scenarios on the observed radio, x-ray and gamma ray spectra.
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Figure 3.7 presents the gamma ray spectra (as tracers for the CR spectral index) for
various older and younger SNRs and reveals that the spectral index is somewhere
around γ ∼ 2 as predicted by DSA but only for certain energies and types of SNRs.
In fact these deviations are no surprise for various reasons. First, SNRs can be
characterized by various evolutionary stages which differ strongly when comparing
a few hundred years old SNRs (Tycho, Cas A) with ten thousand years old SNRs
(W44, IC443, W51C) and furthermore there are different types of SNRs as illustrated
by the diversity of images in figure 3.8. Second, the spectrum predicted by DSA
corresponds to an average over time in contrast to the snapshot we take with our
gamma ray observations. Third, the assumptions that went into the above derivation
are highly idealized and ignore many other important aspects as we discuss in the
following.

Figure 3.8: These Chandra x-ray images illustrate the diversity of super nova remnants.
Image credit: NASA/CXC/SAO.

The above derivation for DSA treated CRs as test particles which become con-
fined by MHD waves in the environment and accelerated by passing over the in-
finitely wide and plane shock front which propagates perpendicular to the regular
ambient magnetic field. Basically all these assumptions are violated for real SNRs.
Considering weaker shocks or SNRs at later times corresponds to lower mach num-
bers which leads to γ > 2 meaning steeper spectra. On the other hand the back
reaction of cosmic rays on the shock front, which is accounted for in nonlinear DSA
models (e.g., Malkov and Drury, 2001), could modify the spectrum (e.g., make it
concave according to Recchia and Gabici, 2018). Using a semi-analytic model of non-
linear DSA Diesing and Caprioli (2021) derive injection spectra with 2.1 ≤ γ ≤ 3.0
dependent on the particular properties of the SNRs and γ ∼ 2.2 for average older
SNRs with moderate expansion velocities which make a significant contribution in
our Galaxy.

Another mechanism which is neglected in the simple test particle approach of
DSA is the possibility of self generated Alfvén waves by the CRs via the streaming
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instability which was already noted by Bell (1978) when introducing DSA. According
to Malkov and Drury (2001) the following three conditions are required for DSA to
work efficiently: "(i) at least a few thermal particles downstream must be able to
return upstream; (ii) the accelerated particles must not propagate freely to keep
crossing the shock; and (iii) if many particles are accelerated to high energies, their
pressure must not smear out the shock completely".

Another questionable assumption in our derivation concerns the escape proba-
bility Pesc ≈ ξ depends only on the relative energy increase per passage that is

ξ =
4(u1 − u2)

3c
=

4u2

c
. (3.13)

The probability for the particle to escape the acceleration region is thus independent
of its energy.4 This property was already mentioned in the original paper by Bell
(1978) but it is worth to be critically questioned because the mechanisms for diffusion
and confinement typically are energy dependent as we will see in the next section.
Other additional factors are the obliquity of the shock and the impact of turbulent
magnetic field amplification in the vicinity of the shock as investigated by Xu and
Lazarian (2022b).

Amato and Casanova (2021) describe how the escaping CRs may provide an im-
portant mechanism for self regulation of the acceleration system. In this perspective
a large escape probability allows the escaping CRs to generate more Alfvén waves
via the streaming instability which reacts back onto the CR current by confining the
particles and thereby reducing the escape probability and consequently lowering the
rate of self generated Alfvén waves which again increases the escape probability. In
this way the acceleration system as a whole could self regulate the escape probability
to a nearly constant value over time. However, CR confinement via self generated
Alfvén waves is an energy dependent process and thus we would also expect an
energy dependent escape probability in contrast to the DSA assumptions above.

In summary, diffusive shock acceleration provides important insights into the
physical mechanisms behind CR acceleration. Nevertheless, many questions remain
open like the effect of CR back reactions (e.g., Blasi, 2019a), magnetic field ampli-
fication (e.g., Bell, 2004; Schure et al., 2012) and the maximum acceleration energy
(e.g., Tatischeff and Gabici, 2018). The observational evidence shows that SNRs
in fact accelerate CRs and that the observed injection spectrum E−2.1 − E−2.5 is
slightly steeper than the strong shock limit prediction by DSA. On the other hand,
CRs might additionally be accelerated in different environments like in shock fronts
of super bubbles, in stellar wind or near the galactic centre, with possibly different
spectra, and it is not yet decided if SNRs are indeed the dominant contributors to
the galactic CRs observed at Earth (e.g., Gabici et al., 2019). Evidently there is
yet not enough observational evidence for a universal source spectrum of CRs which
could be simply compared to the observed spectrum at Earth in order to specify the
spectral modification due to CR propagation which we address in the next section.

3.2.2 Diffusive transport

Cosmic rays do not propagate through the galaxy in straight lines because they
carry electric charge and therefore unavoidably gyrate around the ambient magnetic

4More generally the escape probability would be Pesc = 4u2/v for a particle with velocity v
whereas we have limited our treatment on the relativistic case where v ≈ c.
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field lines. Additionally they interact with the irregularities of the magnetic field
lines and with MHD waves like magnetosonic or Alfvénic waves. Here we do not go
into the details of diffusive transport but refer to a more complete treatment in the
textbook Schlickeiser (2002). We follow a rather phenomenological approach and
simply acknowledge that any CR transport model must account for (collisionless)
diffusion and additionally for collisions of CRs with the ambient gas. Both processes
are in general energy dependent and thus modulate the observed CR spectrum.
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Figure 3.9: Cosmic ray gyro-radius, rg, vs. momentum perpendicular to the magnetic field,
p⊥, for different field strengths. 10−6 G represents a characteristic order of magnitude for the
ISM in our Galaxy. Describing cosmic ray transport via a fluid description is reasonable on
length scales sufficiently larger than their gyro-radii. Plot taken from Hanasz et al. (2021).

Whereas the diffusive motion of CRs prohibits to extract any information about
the particle’s origin from its arrival direction we can still learn a great deal about
the time it has traveled, the confinement time and the average amount of matter it
must have traversed, the so-called grammage, Λ. The latter can be inferred from the
relative abundance of secondary CRs (see figure 3.2) when accounting for all possible
production channels by collisions of primary CRs with the interstellar gas. There is
some uncertainty in the differential cross sections but enough knowledge to provide
a decent order of magnitude estimate for the grammage which yields Λ ∼ 10 g/cm2

(e.g., Gaisser et al., 2016; Tatischeff and Gabici, 2018). The grammage is given
in units of mass density integrated over the CR path length which depends on the
average density along the way. Given the mean ISM density in our galactic disk
with ρdisk ∼ mp/cm3 the corresponding path length is

l =
Λ

ρdisk
∼ 2 Mpc (3.14)
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which exceeds even the largest dimension of the disk by more than an order of
magnitude and thus provides another hint that CRs propagate diffusively. The path
length l corresponds to a time scale

τres = l/c ∼ 6 Myr, (3.15)

the residence time, capturing the time CRs reside within the galactic disk.
There is yet another independent source of information to infer a time scale

associated with the journey of CRs. The relative abundance of unstable to stable
isotopes in cosmic rays can be used as atomic clocks in order to infer the average
time the particles have existed before reaching our detector. For that purpose the
unstable 10Be isotope with a lifetime τ1/2 ∼ 1 Myr is well suited because beryllium
is nearly exclusively produced by collision of heavier nuclei with interstellar gas and
therefore the inferred time scale represents the propagation time through the ISM.
Connell (1998) employ a leaky box model to the data collected by the Ulysses High
Energy Telescope and derive a cosmic ray confinement time

τesc ∼ 26Myr. (3.16)

This value refers to cosmic rays with a kinetic energy per nucleon ∼ 0.5 GeV and a
mean gas density inside the "leaky box" nbox = 0.19 atoms/cm3 which was inferred
from simultaneously fitting the transport model to observed secondary-to-primary
ratios and grammage Λ ≈ 7 g cm−2.

The average density nbox is lower than the average density in the galactic disk
with about one atom per cm3. This discrepancy and τesc > τres can be reconciled
if the cosmic rays spend a significant time in more dilute environments like the hot
ISM (nhot ∼ 0.0065 cm−3 (Ferrière, 2001), which fills most of the volume above and
below the disk. This scenario is commonly described as cosmic ray confinement in
a magnetized halo. Accurately describing CR transport becomes even more com-
plex when accounting for the different phases of the ISM and cosmic ray streaming
instabilities in order to determine the respective diffusion coefficient (e.g., Xu and
Lazarian, 2022a).

H2 ∼ Dτesc (3.17)

with scale height H (vertical extension from the disk) of the halo and diffusion
coefficient D. Evoli et al. (2020) apply a cosmic ray propagation model to recent
AMS measurements and conclude H & 5 kpc.

In general the confinement time τesc(R) ∼ H2/D(R), or equivalently speaking
the diffusion coefficient D(R), depends on the particle’s rigidity. It is of particular
interest because the energy dependence of the diffusion provides the link between
injection spectrum Ninj and the observed spectrum here at Earth Nobs via5

Nobs ∝ Ninjτesc ∝ NinjD
−1(R). (3.18)

when neglecting possible further modifications due to other energy dependent CR
transport processes like reacceleration for example. The energy dependence of the
diffusion coefficient can be inferred from the flux ratio of secondary to primary CRs.
Aguilar et al. (2016) present the AMS-02 data6 shown in figure 3.3 and determine

5Here we use the following notation for the differential number density N (E) = dN/dE.
6Here we explicitly distinguish AMS-02 data release from the older AMS-01 data. In the

following we simply write AMS and usually consider AMS-02 data.
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the rigidity dependence of the diffusion coefficient as Φ(B/C) ∝ D−1(R) ∝ R−0.33

by a single power law fit in the rigidity range 65 GV ≤ R ≤ 2.6 TV. Plugging this
result into (3.18) and using Nobs ∝ R−2.8 for the proton spectrum in the hundred
GV range Aguilar et al. (2015) yields

Ninj ∝ R−2.47 (3.19)

which is significantly steeper than the DSA prediction γ = 2 discussed in the previ-
ous section.

Remarkably the power law of the diffusion coefficient can be connected to the
power spectrum of the external turbulence of the ISM which is also characterized
by a power law (see section 4). In a leaky box model with CRs as test particles in
a fluctuating magnetic field with δB2/B2 � 1 quasi linear theory allows to connect
the wave number dependence of the spectral energy density Ek of turbulence to the
diffusion coefficient (see Schlickeiser (2002) for a more detailed treatment)

Ek ∝ k−s → D(R) ∝ R2−s. (3.20)

The spectral energy density Ek is a characteristic quantity for different types of tur-
bulence. For Kraichnan turbulence Ek ∝ k−3/2 and hence D(R) ∝ R1/2 whereas for
Kolmogorov turbulence Ek ∝ k−5/3 and hence D(R) ∝ R1/3 which agrees perfectly
with the results obtained by Aguilar et al. (2016) and also the interstellar turbulence
spectrum obtained by Armstrong et al. (1995) and subsequent studies discussed in
section 4. Although this argument sounds quite conclusive it has tossed over an im-
portant subtlety, namely the relation between the hydrodynamic turbulence power
spectrum, associated with the electron density fluctuations considered by Armstrong
et al. (1995), and the magneto-hydrodynamic turbulence power spectrum which is
relevant for the scattering of CRs.

In summary the presented standard paradigm of CRs provides potential mech-
anisms that may collectively account for the observed power law energy spectra.
Recent observational data allows to rule out one or the other model but there is
still an ongoing debate about the dominant physical mechanisms responsible for the
observed spectra (Gabici et al., 2019).7 In the following we employ a model that
has yet deserved little attention from the field of CR research and may therefore
provide some new insights by using an approach grounded in statistical physics.

3.3 Superstatistical interpretation of CR energy spec-
tra

In our published paper Smolla et al. (2020) we use superstatistics to analyse the
flux of primary (He, C, O) and secondary nuclei (Li, Be, B) detected with rigidity
(momentum per charge) between 2 GV and 3 TV by the Alpha Magnetic Spectrom-
eter (AMS) on the International Space Station that was published in Aguilar et al.
(2017, 2018). We show that q-exponential distribution functions, as motivated by
generalized versions of statistical mechanics with temperature fluctuations, provide

7Here we have not provided a complete review about all potential mechanisms. In particular
energy losses due to radiation and particle collisions certainly modify the observed spectrum.
Reacceleration, adiabatic deceleration and convection may also be important in particular for
p . 10 GeV range where diffusion is weaker (Schlickeiser, 2002).
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excellent fits for the measured flux of all nuclei considered. Primary and secondary
fluxes reveal a universal dependence on kinetic energy per nucleon8 for which the
underlying energy distribution functions are solely distinguished by their effective
degrees of freedom. All given spectra are characterized by a universal mean tem-
perature parameter T ∼ 200 MeV which agrees with the Hagedorn temperature.
Our analysis suggests that quantum chromodynamics (QCD) scattering processes
together with nonequilibrium temperature fluctuations provide a plausible expla-
nation for the observed universality in cosmic ray energy spectra. Our analysis
suggests that QCD scattering processes together with nonequilibrium temperature
fluctuations imprint universally onto the measured cosmic ray spectra, and produce
a similar shape of energy spectra as high energy collider experiments on the Earth.

3.3.1 Methodology

Reasons to go beyond equilibrium thermodynamics

kinetic energy per nucleon
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Figure 3.10: Evidently the flux of Helium nuclei, detected by AMS and presented by Aguilar
et al. (2017) as differential intensity in the GeV to TeV range, does not decay exponentially
for larger energies but the straight line in this log-log plot illustrates its asymptotic power law
behavior. The blue solid curve shows the attempt to fit the data with a Maxwell-Boltzmann
distribution Pp = Cp2e−βE .

From equilibrium thermodynamics we know that the momentum distribution of
an ideal gas at constant temperature T = β−1 (kB = 1 convention with temperature
in energy units [T ] = eV) is described by the Maxwell Boltzmann distribution in
momentum space Pp = C(β)p2e−βE(p) with a temperature dependent normalization
constant C(β). Given the momentum or energy distribution of CRs we can naively
try to find a best fit for the Maxwell Boltzmann distribution with β as free param-
eter. Fig. 3.10 illustrates that the flux of Helium detected by AMS in the GeV

8Commonly rigidity (momentum per charge) is chosen rather than kinetic energy or momentum
because it is particles with equal rigidity which experience the same acceleration and diffusion. Also
the AMS data is presented as differential intensity in rigidity. For highly relativistic particles the
spectrum is the same in momentum, energy or rigidity units whereas the shape differs for nuclei
in the GeV range or below.
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to TeV range does not decay exponentially for larger energies, which is characteris-
tic for a Maxwell Boltzmann distribution, but as a power law over multiple orders
of magnitudes. This heuristic argument suggests that nonequilibrium statistical
physics might be a more suitable description which is the scope of generalized sta-
tistical mechanics. Therefore, superstatistics provides a framework which naturally
generates power laws rather than exponential distributions as the relevant effective
canonical distributions. But before applying the superstatistical model to the AMS
data we review some important subtleties about different ways for counting particles
and investigating the CR spectra.

Differential intensity and energy variables

The AMS data in Aguilar et al. (2017, 2018) was presented in bins of rigidity R =
pc/Ze with atomic number Z, electric charge e, momentum p = |p|, [R] = [V]
and the corresponding flux measured in units [J(R)] = [m-2sr-1s-1GV-1]. Instead of
rigidity we have chosen to investigate the spectrum with respect to kinetic energy
per nucleon, defined as

E =
Etotal −m

A
(3.21)

with total energy Etotal =
√
p2 +m2, momentum p = |p|, rest mass m = Au,

mass number A, atomic mass unit u = 0.931 GeV and [m] = [p] = [GeV] in c = 1
convention. To convert the flux dependence from rigidity R to kinetic energy per
nucleon E, we need to transform the flux JR(R) → JE(E) such that JR(R)dR =
JE(E)dE is conserved. This is a simple transformation of variables and yields

JE(E) =
A

Ze

E + u√
E(E + 2u)

JR(R), (3.22)

with [JE(E)] = [m-2sr-1s-1GeV-1]. For better visibility of the accuracy of our fits, we
multiplied the flux with E2.7, such that the units for the flux in the presented plots
are [GeV1.7m-2sr-1s-1]. For the atomic number A we refer to the AMS collaboration
(Aguilar et al., 2017, 2018) who inferred the following average abundance of isotopes
4He, 12C, 16O, 6.5Li, 8Be and 10.7Be among the detected nuclei. The measured flux
J represents a differential intensity. Thus it counts the number of particles with
energy E (or rigidity R) coming from a unit solid angle that pass through a unit
surface per unit of time. Therefore, in order to apply superstatistics we need to
connect distribution functions with differential intensities.

Fitting distribution functions to differential intensities

The distribution function of our superstatistical model is given by (2.97), for which
we still need to specify the energy momentum relation in order to calculate the
phase space factor ρ(E). Since we consider kinetic energy per nucleon, defined in
equation (3.21), which depends only on the magnitude of the momentum we have
d3p = 4πp2dp which implies ρ(p) ∼ p2. Hence, the density of states ρ(E) can be
calculated from the conservation condition Ppdp = PEdE which yields

PE(E) = Cρ(E)e−bEq = Cρ(p)
dp
dE

e−bEq . (3.23)
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Calculating the derivative dp/dE and using ρ(p) = p2 = A2E(E + 2u) we find

ρ(E) ∼ (E + u)
√
E(E + 2u), (3.24)

where we have again neglected constant global factors in our equations because we
are focusing on the shape of the spectrum rather than its absolute magnitude. Thus
for our superstatistical model the distribution function with respect to kinetic energy
per nucleon is given by

PE = C(E + u)
√
E(E + 2u)e−bEq . (3.25)

Evidently, [PE] = [eV−1 m−3] does not have the same dimension as the detected
flux, that is given as differential intensity J with [J ] = [eV−1 m−2 s−1 sr−1] . This
reminds us that in order to associate a distribution function with a measured dif-
ferential intensity we have to account for the rate at which particles go through the
detector. Therefore, we multiply with the particle’s velocity to obtain the flux, JE,
corresponding to the distribution function, PE, which yields

Jmod
E (E) = Cv(E)PE(E) = Cv(E)ρ(E)e−bEq . (3.26)

Apparently Jmod
E (E) has the the desired physical dimensions because [vPE] = [eV m−2 s−1]

and the units sr−1 for the solid angle are merely a dimensionless global factor. In
order to express the velocity in terms of E we use p = γmv with γ = 1√

1−v2 (in c = 1

convention), p = A
√
E(E + 2u) and m = Au to find

v(E) =

√
E(E + 2u)

(E + u)
. (3.27)

Plugging everything into equation (3.26) yields

Jmod
E (E) = CE(E + 2u)e−bEq , (3.28)

which is the differential intensity of our our model, Jmod
E (E), that was derived

from the superstatistical distribution function. Moraal (2013) provides a detailed
overview about the different ways to count particles including the relation be-
tween differential intensity and momentum space distribution function (3.26) upon
exploiting the fact that E ∼ p for large momenta such that we finally obtain
v(E)ρ(E) ∼ E(E + 2u) ∼ p2.

This careful analysis is essential for connecting the observed cosmic ray differen-
tial intensities with the theoretical distribution functions from the superstatistical
model. In previous studies the fitting of distribution functions to the data was
technically incorrect (e.g., Beck, 2004, 2009; Yalcin and Beck, 2018). Hence, the
methodology presented here is an important contribution for interpreting any cos-
mic ray data with theoretical models which are based on superstatistics.

3.3.2 Results and interpretation

We use the AMS data (Aguilar et al., 2017, 2018) to investigate the universal prop-
erties of the primary CRs helium, carbon, oxygen, and the secondary CRs beryllium,
lithium, boron. Our superstatistical model allows to infer physical parameters from
the observed energy spectra by applying (3.28) to the observed differential intensities
with C > 0, q > 1 and T = b−1 > 0 as fitting parameters.
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Figure 3.11: The particle flux of each CR species was fitted with equation (3.28) using the
three parameters C, T, q. The vertical axis in this log-log plot was multiplied with E2.7 for better
visibility. The fit’s accuracy can be quantified by the deviation from modelled Jmod to observed
flux Jobs weighted by the respective measurement error σ. Evidently, almost all data points fall
within the uncertainty range of ±σ illustrated as grey shaded area. The mean temperature T0

is defined in equation (2.90). The amplitude C has dimensions [C] = [m−2 sr−1 s−1 GeV−3]
which is omitted in the legend of the plot for reasons of better readability.

Fig. 3.11 illustrates that most data points are fitted by our model within a single
standard deviation for all six nuclei. We determined the best fit by applying χ2-
minimization with (Jmod

E −Jobs
E )/σ, meaning deviation of model from data weighted

by the respective measurement uncertainty, where the standard deviation σ is the
sum of measurement uncertainties for a specific energy bin. For most of the data the
error is of the order of a few percent whereas the uncertainty tends to increase with
energy up to the largest uncertainty of 89 percent associated with the Beryllium
flux measured in the highest energy bin.

Since our analysis focuses on the spectral shape we collect all constant factors,
which do not depend explicitly on the energy, in the amplitude C, which is merely
a gauge for the absolute magnitude of the flux.

The entropic index q determines the high-energy (i.e., the tail) behavior of the
distribution since the q-exponential asymptotically approaches a power law

lim
E→∞

e−bEq ∝ Eγ, (3.29)
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with spectral index

γ = 2− 1

q − 1
(3.30)

for q > 1. The effective degrees of freedom n, defined by equation (2.88), are related
to the entropic index q via

n =
2

q − 1
− 6. (3.31)

The parameter T = b−1 represents a temperature in energy units that mainly
affects the low-energy turnover around the flux maximum. For the temperature
parameter T0 = β−1

0 , defined in (2.90), we get the value T0 ∼ 600 MeV for each
of the six CR species, that is atomic nuclei which are built of multiple nucleons
- protons and neutrons. Our superstatistical model considers kinetic energy per
nucleon and each nucleon consists of three quarks. Dividing the mean temperature
by the number of quarks per nucleon yields T0/3 ∼ 200 MeV. This temperature or
energy scale coincides with the observed value of the Hagedorn temperature which
is roughly known to be in the range 140 to 200 MeV (Hagedorn, 1965; Rafelski and
Ericson, 2016; Broniowski et al., 2004). It represents a universal critical temperature
for the quark gluon plasma and for high energy QCD scattering processes. The best
fit value for T0/3 turns out to be the same for all six nuclei, i.e., for both primary
and secondary cosmic rays within a range of about one tenth of its absolute value.
This interpretation was outlined more broadly in Smolla et al. (2020) and presented
earlier for electrons and positrons by Yalcin and Beck (2018).

Figure 3.12 reveals the universal properties of the primary (He, C, O) and sec-
ondary (Li, Be, B) cosmic ray fluxes when rescaling each nuclei’s flux with a suitable
global factor such that all data points collapse to a single line in the low energy range.
Fixing the global amplitude parameter to C = 1 and T = 0.240 GeV, which is the
average value for the temperatures inferred from the individual best fits in figure
3.11, allows us to do a best fit with q as the only free parameter for the collapsed data
of primaries and secondaries. This yields qprim = 1.2109 (n = 3.5) and qsec = 1.1969
(n = 4.2). From its definition in (2.88) we require n to be an integer and we can
interpret n as effective degrees of freedom of temperature fluctuations. Evidently,
the best fit parameters are not integers but this could be explained by secondary
effects in the following reasoning. The observed spectra are the outcome of an initial
spectra, associated with the energy distribution at the source of acceleration, that
becomes modified during propagation due to energy dependent radiative losses, col-
lision and diffusion processes. In the absence of these affects, meaning considering
the energy spectra near the source, we would expect to observe nprim = 3 and for
the secondaries nsec = nprim + 1 we could have an extra degree of freedom since they
originate from the collision of primaries with secondaries. This speculative interpre-
tation still requires further research in order to clarify the physical meaning of the
effective degrees of freedom. Nevertheless, it is an interesting approach which builds
on previous results (Tsallis et al., 2004; Beck, 2004, 2009; Yalcin and Beck, 2018).

3.3.3 Discussion

In the following we choose a critical point of view to discuss the results obtained with
our superstatistical model. We outline some subtle details in the methodology and
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Figure 3.12: Each particle flux was rescaled with a suitable factor such that the data points
roughly collapse to a single line at the low energy end and the universal properties of primary
and secondary cosmic ray nuclei spectra become visible. For larger energies the spectrum splits
into primaries and secondaries which is distinguished by a single parameter, the entropic index
q and can be interpreted by the underlying effective degrees of freedom.

comment on the canonical interpretation of the data within the standard paradigm
of CRs.

Relevance of solar wind modulation

The AMS measurements were taken on the ISS at about 400 km above Earth’s
surface and are thus subject to solar wind modulation which yields a suppressed
flux compared to outside the heliosphere, in particular for charged particles with
kinetic energies per nucleon E . 10 GeV (Moraal, 2014). Thus for our given AMS
data with kinetic energies per nucleon in the range of 0.4 GeV . E . 1.2 TeV the
flux in the lower energy range should be affected and we aim to quantify this effect of
solar wind modulation on our given spectra. Using cosmic ray propagation models
allows to infer the unmodulated flux before cosmic rays are entering the heliosphere,
that is the local interstellar flux, from the given data.

This was recently done by Boschini et al. (2017, 2018, 2020) who combined the
two cosmic ray propagation models HelMod and Galprop and published the cal-
culated flux for all our given atomic nuclei and for the entire energy range cov-
ered by AMS. We use their data and interpolate it to match the AMS energy
bins definition. We find an upper bound for the deviation of local interstellar
flux (LIS) to flux inside heliosphere (AMS) for the lowest energetic particles with
LIS/AMS . 4 for E = 0.4 GeV. The two spectra converge for larger energies and
we find LIS/AMS . 1.2 for E = 10 GeV such that in fact only the lowest energy
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Figure 3.13: Superstatistical results are robust when correcting for heliospheric impact. Using
cosmic ray propagation models HelMod and Galprop allows Boschini et al. (2017, 2018, 2020)
to estimate the flux outside the heliosphere, that is unmodulated by solar wind representing
the local interstellar spectra, in short LIS. Here, we use the data published in Boschini et al.
(2017, 2018, 2020) which we investigate for the given AMS energy bins. We apply (3.28), that
is Jmod

E (E) = CE(E + 2u)eq(−bE) with exq ≡ (1 + (1− q)x)
1

1−q , in order to derive the best
fit global amplitude C, temperature T and entropic index q. From the best fit parameter T
we derive the average temperature per quark as T0/3. The entropic index q can be translated
into effective degrees of freedom n and into the spectral index γ representing the asymptotic
power law behaviour lim

E→∞
e−bEq ∝ Eγ .

range of our spectra is significantly affected. Since the propagation model provides
the flux without giving any uncertainty, we assign each estimated flux the same
relative error as in the AMS data set. This makes the comparison between the flux
inside and outside the heliosphere consistent and allows to put appropriate weight
on measurements with smaller uncertainties for our least-square optimization.

Analogously to the steps performed above for the given AMS data, we apply our
superstatistical model to the LIS data and present the resulting fits and parameters
in figure 3.13. The average temperatures T0/3 for the different nuclei are about
50 to 80 MeV lower than for the unmodulated AMS data, namely in the range
129 to 152 MeV. Still, these temperatures are all about the scale of the Hagedorn
temperature and in fact coincide with the temperature range 130 to 160 MeV inferred
by q-exponential distributions applied to some LHC experiments (e.g., Wong et
al., 2015; Wilk and Wlodarczyk, 2017). The effective degrees of freedom remain
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approximately the same. Since the reliability of our methodology ultimately depends
on having a large energy range measured for all the different nuclei, the AMS data
is the best currently available experimental data set. In contrast, measurements
acquired by Voyager outside the heliosphere only cover energies from about 3 MeV to
a few hundred MeV (e.g., Cummings et al., 2016; Stone et al., 2019). Hence, we apply
our analysis to the broad range of AMS-measured data and estimate the modulation
by the solar wind, rather than using theoretically derived data for unmodulated
spectra.

Choice of kinetic energy per nucleon vs. total energy

As an alternative to the canonical statistics considering the total energy per atom a
quantity frequently considered in cosmic ray literature is kinetic energy per nucleon.
The choice of total vs. kinetic energy is meaningless for the energy spectrum asso-
ciated with the Boltzmann factor whereas the weighting per nucleon actually yields
a different spectrum as illustrated below.

The relativistic generalization for kinetic energy is Ekin = Etot−m =
√
p2 +m2−

m which can be expanded for p� m to recover the classical kinetic energy as first
order term in Ekin = p2

2m
+ O (p4). Considering the Boltzmann factor B(Etot) =

e−βEtot the choice of total energy Etot or kinetic energy (Etot−m) are equivalent up
to a temperature dependent global constant since

B(Ekin) = e−β(Etot−m)

= eβme−βEtot

∝ B(Etot) (3.32)

whereas the choice of kinetic energy per nucleon E = (Etot−m)/A does not factorize
into the canonical Boltzmann factor and a constant because

B(E) = e
−β(Etot−m)

A =
[
e−β(Etot−m)

] 1
A . (3.33)

To summarize, the Boltzmann factors B(Etot) and B(Ekin) are generalizations which
recover the classical Boltzmann statistics with B(p2/2m) for p� m. Whereas B(E),
with kinetic energy per nucleon E = (Etot − m)/A, is characterised by a different
energy dependence, that is the distribution function actually has a different spectral
shape. Superstatistics with kinetic energy per nucleon is thus not a generalization of
canonical Boltzmann statistics for energy per atom and should therefore be investi-
gated more critically in terms of the underlying assumptions and their implications
for the statistical model at hand.

Deriving the superstatistical distribution function: normalization con-
stant for relativistic particles

In agreement with Beck (2004) we calculate the normalization (2.91) in the following
way

Cp(β)−1 =

∫ +∞

0

e−βEE2dE

= 2β−3. (3.34)
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However, this integral rests on an important assumption, that is ρ(E) ∼ ρ(p),
meaning the density of states is essentially the same in energy and momentum space,
which holds true only for to the ultra-relativistic regime where E ∼ p. Evidently,
this relation holds for both choices of energy, the total energy E =

√
p2 +m2 or the

kinetic energy per nucleon E = (
√
p2 +m2 − m)/A, only for p � m. One could

argue that lim
m→0

ρ(E) = E2 but m → 0 for massive particles actually means p � m

which is only true for sufficiently large temperatures meaning p ∼ β−1 � m which
will be violated when integrating over

∫∞
0

dβ in (2.87). Additionally, the required
temperatures exceed even the temperature of the hot ionized medium T ∼ 106 K ∼
100 eV ∼ 10−7mp (with proton mass mp) by multiple orders of magnitude.

A more rigorous derivation for a relativistic superstatistical distribution function
could be obtained by using the relativistic normalization constant which is found in
the Maxwell Jüttner distribution (2.80) and can be expressed more compactly via
equation (2.82). Hence, in order to find the relativistic distribution function (2.87)
for χ2-superstatistics the following integral has to be solved

PEtot(Etot) ∼
∫ ∞

0

β
n
2 e
−β(Etot+

n
2β0

)

K2(βm)
dβ. (3.35)

Here K2 represents the modified Bessel function of the second kind. To our best
knowledge this integral has not yet been solved analytically but could be investigated
(e.g. with numerical methods) in future work.

Interpretation of AMS data within standard paradigm of CRs

Whereas we decided to investigate the CR spectra in kinetic energy per nucleon
the AMS collaboration focused on rigidity. There are at least two arguments why
AMS uses rigidity. First, the given magnetic spectrometer actually measures the
particle’s rigidity. Second, in the standard paradigm of CRs (section 3.2) diffusive
shock acceleration and diffusive transport accelerate particles according to their
rigidity (Kachelriess and Semikoz, 2019).

Figure 3.14: The flux of primary CRs helium, carbon and oxygen shares an identical rigidity
dependence for R > 60 GV. Plot by Aguilar et al. (2017).

Figure 3.14 illustrates the identical rigidity dependence of primary CRs helium,
carbon and oxygen for R > 60 GV. This property can be understood within the
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standard paradigm of CRs if the different nuclei are all accelerated at the same
kind of sources (in a statistical sense) according to their rigidity and thus share an
identical injection spectrum. Assuming their propagation properties to depend only
on rigidity and not on the type of particle (e.g., number of nucleons), and in the
absence of further effects like energy dependent losses, we expect an identical rigidity
dependence for all primaries. The particle dependent spectra for R < 60 GV could
result from collisions of primaries with other interstellar particles. The effective
production cross sections during such collisions depend on the type of particle and
generally tend to increase with the number of charges per nuclei (Aguilar et al.,
2021b).9

Figure 3.15: The spectra for the secondary CRs lithium, beryllium and boron all share an
identical rigidity dependence for R > 30 GV whereas lithium and boron already share this
property for R > 7 GV. Plot by Aguilar et al. (2018).

Figure 3.15 presents the flux of the secondary CRs lithium, beryllium and boron
with identical rigidity dependence for R > 30 GV whereas lithium and boron already
share this property for R > 7 GV. The reduced flux of beryllium could result
from the decay of the radioactive 10Be isotope. For higher momenta (and thus
higher rigidities) this effect is diminished because of the reduced half life due to
time dilation in the particle’s frame of reference that is Lorentz-boosted compared
to the observer’s frame.

Figure 3.16 compares the rigidity dependent flux of primaries to secondaries.
Clearly we recover the two universality classes which are also observed for the spectra
in kinetic energy per nucleon in figure 3.12. The right plot presents the spectral index
γ = d[log(Flux)]/d[log(R)] determined over rigidity intervals bounded by 7.09, 12.0,
16.6., 22.8, 41.9, 60.3., 192, and 3300 GV. Apparently the spectra of primary and
secondary nuclei all harden (become flatter) for R & 200 GV but this effect is even
more pronounced for the secondaries. Analogously to the reasoning for determining
the diffusion coefficient from the primary to secondary flux ratio (see figure 3.3) this
spectral break may well be associated with CR transport and because it imprints
even stronger on the secondary spectra. Blasi (2019b) proposes an explanation
arguing that the spectral break could be due to a transition from CRs scattering
on self-generated Alfvén waves to CRs scattering on pre-existing MHD waves. The
energy range of this transition can be estimated by comparing the rate of nonlinear
Landau damping to the growth rate of the resonant streaming instability which
is responsible for the generation of self-generated Alfvén waves. Remarkably the
transition is expected at about the observed scale of ∼ 200 GV but its applicability

9In general the effective production sections also depend on the kinetic energy per nucleon but
turn out to be approximately constant above a few GeV/nucleon (Génolini et al., 2018).
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Figure 3.16: The left plot clearly shows that He, C, O and Li, Be, B respectively share the
same rigidity dependence that clearly separates the primaries from the secondaries. The right
plot illustrates the spectral break at ∼ 200 GV for both primaries and secondaries whereas for
the latter the hardening is even more pronounced. Plots by Aguilar et al. (2018).

is constrained to environments with fully ionized gas because even a small fraction
of neutral gas could fully damp the CR-generated Alfvén waves (Amato and Blasi,
2018). Ultimately the spectral break needs to be explained self-consistently together
with all the other recent anomalies (see review by Gabici et al., 2019) for which
various models are currently under debate (see review by Kachelriess and Semikoz,
2019).

3.3.4 Comparison with new data for other heavy CR nuclei

After the publication of Smolla et al. (2020) the AMS collaboration released data for
the primaries neon, magnesium, silicon (Aguilar et al., 2020), iron (Aguilar et al.,
2021b), and the secondary fluorine (Aguilar et al., 2021a). Figure 3.17 shows the
results obtained with our superstatistical model for the new data and additionally
for protons (Aguilar et al., 2015). The accuracy of the fits is quite good and generally
comparable to the previous results presented in figure 3.11. Comparing the best fit
parameters obtained for all particle types (new and old data), namely the degrees
of freedom n and the temperature T0/3, provides the following insights. First, with
n ∼ 3.16− 3.45, primary CRs are clearly characterized by lower degrees of freedom
compared to the secondary CRs with n ∼ 3.96 − 4.27. Second, the temperature
ranges from ∼ 193 − 266 MeV without a clear correlation with respect to primary
vs. secondary. Third, protons clearly differ from primary and secondary CRs in
terms of temperature and degrees of freedom. We conclude that the simple picture
we propose above and in Smolla et al. (2020), namely a universal temperature scale
T0/3 ∼ 200 MeV and the distinction of two universality classes by the effective
degrees of freedom, has become less sharp with the new data but it is not excluded.

In analogy to the universality plot in figure 3.12 we aim to illustrate the (ap-
proximate) universality of primary and secondary CRs by rescaling each flux with
a suitable constant such that the data collapse in figure 3.18. On the low energy
end E < 10 GeV the two primaries helium and iron deviate strongly from the model
but for larger energies the fits work very well. Apparently the new data still fits
approximately into the previously proposed interpretation of a single universality
class for primaries and secondaries respectively.
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(a) Neon, magnesium, silicon (all primary CRs).
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Figure 3.17: Results of our superstatistical model applied to the newest AMS data fitted
with equation (3.28) using three parameters, namely the amplitude C, temperature T , entropic
index q. From T we calculate the mean temperature T0 (see equation (2.90)) and from q
we obtain the effective degrees of freedom n (see equation (3.31)). The fit’s accuracy can be
quantified by the deviation from modelled Jmod to observed flux Jobs weighted by the respective
measurement error σ. The bottom figure illustrates the effective degrees of freedom are lower
for the primary CRs (blue) than for the secondary CRs (red).

On the other hand, according to the AMS collaboration the new data reveals two
(rigidity dependent) universality classes of primary and secondary CRs respectively
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Figure 3.18: The (approximately) universal spectra of primary (He, C, O, Fe, Ne, Mg, Si) and
secondary (Li, Be, B, F) cosmic rays can be illustrated by multiplying each flux with a constant
factor such that the data collapse nearly to single curve. We set T = 252 GeV, which is the
arithmetic mean temperature of the individual best fit parameters in 3.17, and determined the
best fit for the entropic index q from which the degrees of freedom follow directly via (3.31).

as illustrated in figure 3.19. They classify the rigidity spectra in Aguilar et al. (2020)
for the heavier nuclei 20Ne, 24Mg, 28Si as distinct universality class to the lighter
nuclei 4He, 12C, 16O but surprisingly 56Fe belongs to the latter class although it is the
heaviest nuclei. Apparently the atomic number A does not distinctly characterize
the two universality classes and the interpretation is yet unclear. On the other
hand the heavy secondary 19F deviates from the rigidity dependence of the lighter
secondaries 6.5Li, 8B and 10.7Be.10

Further evidence for new features in heavier nuclei can be found by considering
the secondary to primary flux ratios in figure 3.20. If CR propagation properties
are fully determined by the particle’s rigidity we would expect a constant ratio of
heavy F/Si to the light B/C but the data discovers a mildly decreasing ratio for low
rigidities and an increasing ratio for higher rigidites. Another peculiar feature is the
increasing Fe/O ratio up toR ∼ 100 GV which is in tension with the standard models
of CR propagation and also with other low energy measurements (e.g., Schroer et
al., 2021).

In summary the new data can be interpreted with our superstatistical model self-
consistently with the previously discovered universality classes for primaries and
secondaries respectively. Nevertheless, our proposed model appears to be rather
insensitive to the newly discovered peculiar features discussed above. Further work

10Aguilar et al. (2018) determined these mass numbers as an effective mean value from the
relative abundance of different isotopes in the detected flux.
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Figure 3.19: The AMS collaboration reported two universality classes for the rigidity spectra
of primaries and secondaries respectively. The left plot reveals a different rigidity dependence
of the heavy secondary F compared to the lighter secondaries Li, Be, B. Similarly, the heavier
primaries Ne, Mg, Si deviate from the lighter primaries He, C, O. Interestingly the right plot
shows that the heavy primary Fe looks more similar to the lighter than to the heavier primaries.
Left plot by Aguilar et al. (2021a) and right plot by Aguilar et al. (2021b).

Figure 3.20: On the left the heavy secondary to primary ratio F/Si is compared to the
usual primary to secondary ratio B/C and its rigidity dependent features suggest different
propagation properties of heavy compared to lighter nuclei. On the right we see that the flux
of the heaviest observed nuclei compared to oxygen increases for the low rigidity end until it
becomes approximately constant. This peculiar behaviour deviates from the predictions of CR
propagation models (lower right) before the new AMS data was published. Left plot by Aguilar
et al. (2021a) and right plot by Aguilar et al. (2021b).

is needed to decide whether it is a weakness of our model to not detect the further
two universality classes or if the spectra of primary and secondary CRs are in fact
universal - at least within a certain energy range.



Chapter 4

Interstellar Turbulence

An understanding of turbulence will eventually necessitate a realization of the in-
tegration and vanishing of such dualities as parts and the whole, determinism and
randomness, and, especially, order and chaos. (Scalo, 1987)

4.1 Observations

A closer look into interstellar space reveals a great diversity of structures. The inter-
stellar medium (ISM) consists mainly of cold (∼ 10 to 100 K), warm (∼ 104 K) and
hot (∼ 106 K) gas reservoirs, a small fraction of dust, cosmic rays, electromagnetic
radiation and magnetic fields (e.g., Ferrière, 2001). Although the ISM contributes
only a smaller fraction to the total mass of our galaxy it is of utmost importance for
most processes leading to the formation of structures and therefore for the evolu-
tion of the entire galaxy. Examples range from spiral structure at tens of kiloparsec
scales, molecular gas clouds at parsec scales to dust particle formation at microm-
eter scales. Describing the ISM necessarily involves a broad range of scales and a
variety of interactions between its components making it a truly complex system.
In the following we focus on turbulent motions of the gas components of the ISM
and how these can be traced via their effect on electromagnetic radiation. A rea-
sonably complete picture can be obtained because most of the ISM is ionized. Even
for environments with a significant fraction of neutral atoms, there is usually still
a sufficient degree of ionization such that the neutrals are tightly coupled to the
ions with a collision time of ∼ 102 − 103 years for the cold neutral medium and
∼ 102 − 104 years for the warm neutral medium (Ferrière, 2019).

Figure 4.1 shows the polarization gradient |∇P | derived from radio data which
reveals a complex web of filamentary structures that look similar to the results
obtained in simulations of magnetized turbulence with low Mach numbers (Gaensler
et al., 2011). This is not the only hint on the presence of turbulent motions in the
ISM but further evidence can be obtained from various observational techniques (see
review by Elmegreen and Scalo, 2004).

Figure 4.2 shows the Big Power Law in the Sky obtained for the power spectrum
of electron density fluctuations in the ISM. The spectrum is inferred by closely
investigating radio data for fluctuations in intensity and phase which are caused
by the scattering of photons with the free electrons. This so-called interstellar
scintillation was exploited by Armstrong et al. (1981, 1995) in order to derive the
electron density power spectrum for a range of wavenumbers from k ∼ 10−13 to
10−6m−1. The authors used data and methods which are less certain to constrain
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Figure 4.1: The radio polarization gradient |∇P | carries information about the properties of
the turbulent, diffuse and ionized gas in the ISM. It reveals a complex web of structures with
maximal gradients perpendicular (lines in inset) to the filaments (elongated shapes). Image
shows an 18-deg2 region of the Southern Galactic Plane Survey at a frequency of 1.4 GHz
published by Gaensler et al. (2011).

Figure 4.2: Electron density 3D power spectrum with in situ measurements by Voyager Lee
and Lee (2019) and remotely measured H-alpha data by Chepurnov and Lazarian (2010) added
to the original work by Armstrong et al. (1995). The spectrum can be approximated by a
single power law ∼ q−11/3, in spatial wave number q (in our notation k), over eleven orders of
magnitude. For the smallest scales (q > 10−6 m−1) there is an excess of energy compared to
the extrapolated spectrum. Plot taken from Stinebring et al. (2019).

the spectrum for the lower wave numbers down to k ∼ 10−17 m−1 and Chepurnov
and Lazarian (2010) provided H-alpha emission data to make these constraints more
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tight. The composite spectrum can be approximated with a single power law over
eleven orders of magnitude. The spectral slope ∼ k−11/3 of this 3D power spectrum
turns out to be consistent with the prediction by one of the earliest turbulence
models proposed by Kolmogorov (1941), which we introduce in the next section
and discuss its applicability to the observed electron density power spectrum of the
ISM. However, it should be noted that other "non-Kolmogorov" power spectra have
been reported by Xu and Zhang (2020a). The authors applied a new method for
determining the dispersion measure from pulsar observations and found a shallower
(than ∼ k−11/3) spectrum for the cold interstellar phases, which is characterized by
supersonic turbulence, and a steeper spectrum for the diffuse warm medium on kilo-
parsec scales. On scales below hundreds of parsecs they confirmed a Kolmogorov-like
density spectrum for the warm diffuse medium. Although we focus our discussion on
the interstellar medium we would like to mention that similar spectra have also been
observed for the gaseous medium between galaxies, i.e. the intergalactic medium.
Xu and Zhang (2020b) use fast radio burst observations to infer power law spectra
consistent with Kolmogorov’s turbulence model with an outer scale of ∼ 100 Mpc.
However, their analysis carries a relatively large uncertainty in the derived spectral
index.

4.2 Discussion with Kolmogorov’s turbulence model
Turbulence has been intensively studied within the framework of fluid dynamics but
a general and complete description is still an unsolved challenge. Multiple models
have been proposed and reviewed (Landau and Lifschitz, 1986; Brandenburg and
Lazarian, 2013). These models typically predict scaling relations associated with
some statistical properties of the fluid’s density or velocity field. In the following we
provide a brief introduction of some essential quantities of fully developed, isotropic
and stationary hydrodynamic turbulence. We follow a heuristic and instructive
derivation of the model first proposed by Kolmogorov (1941), which applies to in-
compressible flows with a statistically isotropic and homogeneous velocity field.

For an incompressible fluid with density ρ, pressure p, kinematic viscosity ν (with
[ν] = L2t−1) the continuity equation is ∇·v = 0 and in the absence of external forces
the Navier-Stokes (NS) equation (see section 2.2.3) is

ρ
∂v

∂t
= ρν∇2v︸ ︷︷ ︸

viscosity

− ρ(v · ∇)v︸ ︷︷ ︸
advection

− ∇p︸︷︷︸
pressure

. (4.1)

On the right hand side of the equation we identify one term respectively for viscosity,
advection and pressure. The viscous term is responsible for the dissipation of kinetic
energy of the flow. The nonlinear advection term allows for a spectral transfer of
kinetic energy and physically represents the inertia of fluid elements. The relative
importance of these two terms can be estimated by replacing the spatial derivative
∇ simply with some inverse length scale l−1

0 and the velocity vector v with some
velocity magnitude v0 which is characteristic for flow on the spatial scale l0. For
example l0 could be the diameter of the system and v0 the velocity dispersion within
this system. The ratio of advection to viscous term can then be written as

ρ(v · ∇)v

ρν∇2v
∼ ρl−1

0 v2
0

ρνl−2
0 v0

=
l0v0

ν
≡ Re. (4.2)
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The introduced Reynolds number Re is dimensionless and allows to distinguish dif-
ferent regimes of streaming properties for a viscous fluid. For Re ∼ 1 both viscosity
and inertia are important and, at least for appropriate initial and boundary condi-
tions, the fluid flow will be laminar. For Re � 103 inertia clearly dominates over
viscosity and the fluid flow will be turbulent.1

Energy cascade

Considering a flow with sufficiently large Reynolds number the advection term dom-
inates which effectively redistributes kinetic energy from lower to higher wavenum-
bers. We take a concrete example to demonstrate how this spectral energy transfer
works. If a one dimensional flow starts with a sinusoidal velocity field, v(x) =
sin(kx), then the advection term is given as v∂x sin(kx) = k sin(kx) cos(kx) =
k
2
sin(2kx). Hence, the advection term produces a sine wave with twice the wavenum-

ber compared to the initial wave and again enters into the Navier Stokes equations.
This sine wave is again affected by the advection term such that the cycle continues
to higher and higher wavenumbers. Effectively this generates an energy cascade
from low to high wavenumbers with negligible energy dissipation until the viscous
term becomes important. The dissipation-free range is called the intertial range
(inertia dominates), ranging from the outer scale l0 ∼ k−1

0 to the dissipation scale
ld ∼ k−1

d . Here we simply ignore factors of 2π when converting from wavelengths l
to wavenumbers k which are defined as k = 2π/l.

Figure 4.3 illustrates the idea of this turbulent energy cascade. On the largest
scales (outer scale l0) energy is injected which generates eddies (or whorls) which
successively break down into smaller ones and thereby transporting kinetic energy
from large to small scales at a constant rate. This process continues until the
viscosity of the fluid dissipates the kinetic energy of the fluid into heat and radiation.
The idea goes back to Richardson in 1922 who also contributed a little poem (printed
in a more recent edition of his book (Richardson, 2007).

Big whorls have little whorls
Which feed on their velocity,

And little whorls have lesser whorls
And so on to viscosity.

From this phenomenological description of turbulence it is possible to derive the
spectral shape of the kinetic energy of the fluid by just a few simple arguments
motivated by dimensional analysis. Therefore we introduce the following quantities:

• length scale l for the size (or wavelength) of an eddy with wavenumber k =
2π/l ∼ l−1

• velocity v(l) characteristic for an eddy of size l (e.g., the velocity dispersion
over the distance l)

• time scale τl ∼ l/v(l) (equivalently we write τ(k) ∼ (kv(k))−1) known as eddy
turnover time

1The critical Reynolds number Re ∼ 103 provides only an order of magnitude and may vary for
different systems. It is commonly inferred from laboratory experiments (Frisch, 1995).
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Figure 4.3: This sketch illustrates the energy cascade in turbulence. Energy is injected to
the fluid flow at the lowest wavenumbers (k ∼ k0), meaning on the largest spatial scales, and
transported at a constant rate over the entire inertial range (k0 < k < kd) until it becomes
dissipated on the smallest spatial scales corresponding to the highest wavenumbers (k ∼ kd).

Before proceeding it is instructive to emphasize two underlying assumptions.
First, we postulate the localness of interactions meaning that the flux of energy at
a given length scale l predominantly involves comparable length scales.2 Second,
we postulate the energy cascade to proceed in a self-similar fashion with a constant
flux of energy ε over the inertial range with [ε] = eVg−1s−1 (energy per mass per
time). From these two assumptions it is straightforward to derive the formula for
ε by dimensional analysis. In fact, dimensional analysis necessarily leads to power
law functions (for an extensive treatment see Henriksen, 2015) such that the derived
power law scaling is essentially given by the basic construction of the model. The
resulting power law relationship of the turbulent power spectrum can also be under-
stood as a direct consequence from demanding the energy cascade to occur with a
constant transport rate in a self-similar fashion.

Although the viscosity is responsible for the dissipation of energy at the bottom
of the energy cascade for the inertial range ε must be independent of ν because of
the localness of the interactions and the dominance of inertia over viscosity in this
wavenumber range. For a given wavenumber k in the inertial range the turbulent
energy transport rate, ε, must depend on a combination of the fluid’s characteristic
scales which are the density ρ (constant for incompressible fluids), velocity v(k) and
wavenumber k. The only combination which yields the desired dimensions is

ε ∼ kv(k)3 (4.3)

where ε ≈ const for the inertial range. This transport rate (also dissipation rate)
can also be written in a more intuitive way as ε ∼ v2(k)/τ(k), representing the

2This argument is best understood in Fourier space by saying that coupling is dominated be-
tween modes of comparable wavenumbers. In physical space smaller eddies are naturally embedded
in larger eddies and therefore entire eddies will be transported relative to the rest frame of the
fluid but this larger scale motion is unimportant for the energy flux within the eddies.
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kinetic energy per unit mass per eddy turnover time. From it we can derive the
wavenumber or length scale dependent scaling of the velocity

v(k) ∼ ε1/3k−1/3, (4.4)

v(l) ∼ ε1/3l1/3. (4.5)

Taking a concrete example these results tell us that the velocity dispersion and the
eddy turnover time within a given turbulent system increase with the size of the
subsystem to the power of 1/3 and 2/3 respectively. The spectral energy density
E(k)dk = 1

2
v2(k)
k

dk therefore scales with wavenumber according to

E(k) ∼ k−5/3. (4.6)

For isotropic turbulence the power spectrum depends only on the magnitude of the
wave vector. Thus E(k)dk = 4πk2P (k)dk, ultimately leads to the 3D spectrum

P (k) ∼ k−11/3 (4.7)

and thereby recovering the observed scaling of the electron density power spectrum
in figure 4.2.

In the following we aim to interpret the interstellar electron density spectrum
within the given framework. It is important to emphasize that Kolmogorov’s power
spectrum was derived for the velocity field of some incompressible (i.e., constant
density) fluid whereas the Big Power Law is associated with the density field of the
interstellar free electrons.3 We assume the applicability of Kolmogorov’s model for
turbulence and the associated energy cascade in order to discuss potential mecha-
nisms for energy injection and energy dissipation.

Energy injection

The outer scale of turbulence refers to the length scale at which the largest turbu-
lent eddies are driven. For larger scales (lower wavenumbers) the power spectrum
decreases. Consequently, if this spectral break can be identified in the interstellar
turbulence power spectrum this would be a clear indication for the scale at which
the driving mechanism operates. In figure 4.2 there is no sign for such a break all the
way up to about ∼ 10 pc but there is some considerable uncertainty at these length
scales. Haverkorn et al. (2008) used rotation measure fluctuations and inferred an
outer scale of a few parsec inside our Galaxy’s spiral arms and about a hundred par-
sec for the interarm regions. The authors interpret these two distinct outer scales as
a hint for the different energy injection mechanisms. Within the galactic spiral arms
the dominant mechanism could be stellar winds and protostellar outflows whereas
in the interarm regions SNe and superbubbles would dominate. In general, and as
a galactic average, SNe are commonly assumed to be a major driver of interstellar
turbulence (e.g., Ferrière, 2019).

The significance of SNe can also be motivated with an order of magnitude cal-
culation by comparing the average power provided by SNe on galactic scales to the
integrated turbulent dissipation rate, Γturb. For our Galaxy we use an average power

3In general the velocity fluctuations would be a much more direct tracer of turbulence than
density fluctuations but are also more difficult to observe. See Brandenburg and Lazarian (2013)
for an overview about velocity statistics in astrophysical turbulence.



4.2 Discussion with Kolmogorov’s turbulence model 61

for the kinetic energy contribution from SNe, which is ΓSN ≈ 1042 erg/s derived in
equation 1.3. The characteristic length scale for a SNR is l ∼ 100 pc which we there-
fore use as outer scale for the energy injection from SNe (e.g., Bacchini et al., 2020,
and references in section 5.4 of their paper). For v = 10 km s−1 we obtain τ ∼ 10 Myr
for the largest eddy turnover time, which can be used as an order of magnitude es-
timate for the turbulent decay time scale (e.g. Mac Low, 1999; Chamandy et al.,
2016). The given value of v is about the same order as the velocity of sound for an
ideal gas with T ∼ 104 K, which is the temperature of the warm ISM that fills most
of the volume in the galactic disk. The corresponding turbulent energy transport
rate is ε ∼ v2/τ ∼ 1.6× 10−3 erg/gs. For our disk galaxy model (defined in the
Introduction 1) with n = 1 cm−3 we obtain the following galactic average volumetric
turbulent kinetic energy density

Eturb ∼
1

2
ρv2

∼ 0.5 eV/cm3

∼ 10−12 erg/cm3. (4.8)

The corresponding integrated turbulent decay rate Γturb ∼ EturbV/τ is

Γturb ∼ 1040 erg/s (4.9)

which is about two orders of magnitude lower than the kinetic power from SNe.
Evidently, even if the efficiency for the conversion of SNe energy into gas turbulence
is very low, this would still be sufficient to maintain interstellar turbulence in the
absence of any other drivers.

Of course this argument provides only a necessary but not a sufficient condi-
tion to identify SNe as dominant driver for the observed turbulence. Furthermore,
this reasoning applies to the integrated power contribution (i.e., galactic average)
whereas locally the relative importance of the various sources may differ. For exam-
ple in outer parts of the galactic disc with a lower star formation rate the relative
contribution from SN driving to turbulence may be less important than in the galac-
tic center with a high star formatin rate. Consequently it is difficult to determine a
single source which is responsible for driving interstellar turbulence but a plethora of
potential candidates are found. This can be illustrated with the following (possibly
incomplete) list of potential drivers behind interstellar turbulence.

• Stellar feedback: SNe, stellar wind, HII-regions, and superbubbles (e.g., Nor-
man and Ferrara, 1996; Padoan et al., 2016; Bacchini et al., 2020)

• Instabilities driven by gravity: galaxy interactions (e.g., Renaud et al., 2014),
gas accretion onto the galactic disk (e.g., Elmegreen and Burkert, 2010; Bac-
chini et al., 2020)

• Galactic shear: due to differential rotation (e.g., Richard and Zahn, 1999;
Semelin and Combes, 2000)

• Cloud-cloud collisions (e.g., Dobbs et al., 2011)

The relative importance of the respective energy sources depends both on the
particular region (e.g., inner or outer galactic disk, in- or outside of spiral arms)
and on the given length scales (e.g., larger regions with hundreds of parsec or inside
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a star forming region with sub-parsec extensions) under consideration. For the
smaller scales another potential turbulence driver is magnetic field amplification
via the cosmic ray streaming instability in the vicinity of supernova shock fronts
(e.g., Bell, 2004; Xu and Lazarian, 2022a). There is an ongoing debate on how this
power is distributed and to what extent and on which scales and environments the
individual energy sources contribute (e.g., Mac Low and Klessen, 2004; Bacchini et
al., 2020; Elmegreen et al., 2022). However, at least in star forming environments,
SNe certainly play an important rule in driving interstellar turbulence

Energy dissipation

In a purely hydrodynamic, rather than magneto-hydronamic, description of turbu-
lence, the energy is dissipated due to the viscosity of the fluid which can be generated
from a sort of friction due to colliding particles that make up the fluid. For the Big
Power Law (see figure 4.2) we are concerned with the density field of electrons. A
first guess could be that the fluid’s viscosity results from electrons scattering with
each other and thereby loosing energy through bremmstrahlung. In this case the
dissipation of energy should be at work roughly at about the electron collision mean
free path. Most of the free electrons are part of the WIM for which the electrons
have a mean free path λe ∼ 0.2 au (see figure 4.4). But the turbulent energy cas-
cade appears to continue to much smaller length scales. Observations from pulsar
scintillations (Armstrong et al., 1995) extend the inertial range to about the radius
of the Earth (10−5 au) and Voyager data (Lee and Lee, 2019) goes even further
and displays a flatter rather than steeper spectrum at about hundred kilometers
(10−6 au) in length scale and measured locally in the vicinity of our solar system.
This observation appears to be in tension with earlier studies who reported the inner
scale to be at about a few hundred kilometers (Molnar et al., 1995; Spangler and
Gwinn, 1990). Given these observations, it is difficult to determine a length scale
for interstellar turbulence at which dissipative processes dominate.4

The characteristic scales listed in figure 4.4 suggest that the electron density fluc-
tuations are collissionless for the shorter wave lengths. Consequently, at least for
the smaller scales, there have to be other processes responsible for transporting and
dissipating energy. This is not surprising however. After all, the fluid we are con-
cerned with consists of electric charges and carries a magnetic field with it. Plasma
physics and MHD are therefore necessary to accurately describe the processes at
work for dissipating the turbulent energy. Here we do not go into the details of this
framework but only mention the most prominent dissipation mechanisms relevant
to our case of electron density fluctuations. For a review on MHD turbulence see
Beresnyak (2019).

In MHD the fluctuations of the fluid are comprised of three different wave modes:
Alfvén waves, and slow or fast magnetosonic waves. According to Ferrière (2019)
the fast and slow modes are mostly dissipated by viscous damping in the collisional
regime l � λp with proton collision mean free path λp '

√
2λe. Alfvén modes

cascade almost undamped down to λp and are dissipated by Landau damping at
length scales near the proton inertial length, rp = VA/Ωp, and proton gyro radius,

4Different turbulent environments may also be dominated by other dissipation mechanisms. For
example in molecular clouds the fraction of neutral atoms is a lot higher and ambipolar diffusion
is the dominant dissipation process according to Krumholz (2014).
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Figure 4.4: These are typical values in the four different ISM phases (CNM = cold neutral,
WNM = warm neutral, WIM = warm ionized, HIM = hot ionized medium). Here, T is
the gas temperature, nH the hydrogen number density, ne the free electron number density,
Cs =

√
Pth/ρ the isothermal sound speed with mass density ρ and thermal pressure Pth,

VA =
√

2PB/ρ the Alfvén speed with magnetic pressure PB = B2/(8π), ωe =
√

4πnee2/me
the plasma frequency, Ωe = −eB/(mec) the electron gyro frequency, re = v⊥e|Ωe| the electron
gyro radius , τe ∼ T 1.5/ne the electron collision time, λe ∼ T 2/ne the electron collision mean
free path, L a typical length scale, V a characteristic velocity, Re = V L/ν the standard (fluid)
Reynolds number with kinematic viscosity ν, Rem = V L/η its magnetic counterpart with
magnetic diffusivity η, Pm = Rem/Re the magnetic Prandtl number. The enormous variations
in Re and Rem between the CNM and the HIM is a consequence of Re ∝ ν−1 ∝ neT

−2.5 and
Rem ∝ η−1 ∝ T 1.5. Generally, the large Reynolds numbers are in agreement with a turbulent
interstellar medium in all phases. The values of VA, Ωe and re are obtained for B = 5 µG
corresponding to a magnetic pressure PB ∼ 1 eV/cm3. Table taken from Ferrière (2019).

rp = v⊥p/Ωp, which are both of order few hundred kilometers for the WIM where
values and definitions are found in figure 4.4.

Evidently, Kolmogorov’s 1941 turbulence model with a dissipation free energy
cascade from large to small scales provides only a crude description of interstellar
turbulence and does not represent the physical reality of the interstellar medium
accurately. Furthermore, the power spectrum with E ∼ k−5/3, which is characteristic
for Kolmogorov’s model, can also be generated by other models of turbulence (e.g.,
Goldreich and Sridhar, 1995). The deviations in the assumptions by Kolmogorov’s
model and the reality of interstellar turbulence is manifold and can be illustrated
by the following (possibly incomplete) list.
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• not a single energy source: energy is injected at multiple scales with
different mechanisms

• not a single energy sink: energy is dissipated at multiple scales with
different mechanisms

• no clear separation of scales: injection, inertial and dissipation ranges
are not fully distinct but overlap with each other

• not purely hydrodynamic: most of the volume of the ISM is magnetized
and therefore governed by magnetohydrodynamic (MHD) turbulence

• not isotropic: magnetic fields, galactic rotation and other factors in-
troduce anisotropy into the fluid flow and transport of energy

• not homogeneous: the ISM has at least three phases with different
compositions, temperatures and densities

• not incompressible: pressure and density are not constant and shock
waves propagate through the medium

• not subsonic (scale dependent): some regions of the ISM are transsonic
(e.g., warm medium) or even supersonic (e.g., molecular clouds)

In summary, it is neither possible to determine a single dominant driver for tur-
bulence nor is there a single mechanism responsible for dissipation which is valid for
all of interstellar turbulence. Both sources and sinks of turbulent energy depend on
the properties of the ISM. Collectively, all these different mechanisms and environ-
ments, lead to the well structured power spectrum known as Big Power Law in the
Sky shown in figure 4.2.

4.3 Magnetic fields

Magnetic fields are omnipresent in the ISM and interstellar turbulence is an impor-
tant driver not only for shaping the topology of the field but also for converting
kinetic into magnetic energy. All observations for the magnetic fields are rather
indirect and involve different tracers. Polarized infrared emission from interstellar
dust is one possibility exploited by the Planck satellite image in figure 4.5. Addi-
tionally, synchrotron emission, its polarization and Faraday rotation are essential
for inferring both magnetic field strength and the orientation of the field lines. In
spiral galaxies large scale magnetic fields with B ∼ 10µG are typical (e.g., Fletcher,
2010; Beck, 2012). This corresponds to a magnetic field energy density of

B2

8π
∼ 4× 10−12 erg/cm3. (4.10)

In the vicinity of SN shock fronts stronger (small scale) magnetic fields with 50 −
100 µG have been inferred (e.g., Berezhko et al., 2003; Ressler et al., 2014). In most
spiral galaxies (large-scale) ordered magnetic fields are observed with an orientation
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Figure 4.5: All sky image of our Galaxy taken by the Planck satellite. The galactic plane
is distinguished by more intense dust emission which is indicated via the colour scale. The
polarisation of the dust emission is represented via the texture and traces the orientation of
the magnetic field which turns out to be largely parallel to the galactic plane. The emission
from dust is computed from a combination of Planck observations at 353, 545 and 857 GHz,
whereas the direction of the magnetic field is based on Planck polarisation data at 353 GHz.
Image credit: ESA and the Planck Collaboration.

parallel to the galactic plane which can be interpreted as a result from a mean-
field dynamo. However, the overall structure is more complicated (e.g., Beck, 2012;
Beck et al., 2020) and on the top of ordered field there is an irregular or turbulent
component of the magnetic field. In the following we aim to outline the connection
between interstellar turbulence and magnetic field amplification.

We follow the same convention as Brandenburg and Subramanian (2005) and
express the magnetic field in units of Gauss (i.e., [B] = G with 1 G = 10−4 T =
10−4 kgA−1s−2) and write down Maxwell’s equations in SI units as follows

∇ ·E =
ρ

ε0
(4.11)

∇ ·B = 0 (4.12)

∇×E = −∂B
∂t

(4.13)

∇×B = µ0

(
j + ε0

∂E

∂t

)
(4.14)

where E is the electric field, B is the magnetic field, ρ is the charge density, ε0 =
1/(µ0c

2) is the vacuum permittivity, µ0 is the vacuum permeability, c is the speed of
light, j is the current density. Furthermore, we introduce the electric conductivity σ
and the magnetic diffusivity η = 1/(µ0σ). In the following we simply set µ0 = ε0 = 1,
which implies η = 1/σ.

For the ISM in our galactic disk, and various other astrophysical environments
(discussed in section 3.2 in Brandenburg and Subramanian, 2005), the high conduc-
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tivity of the plasma allows us to neglect the displacement current term in equation
(4.14) such that it reduces to

∇×B = j (4.15)

which is known as Ampere’s law. The current density j is subject to Ohm’s law,

j = σ(E + v ×B), (4.16)

where v denotes the velocity field of the plasma. We can use this equation to express
the electric field as

E = ηj − v ×B

(4.15)
= η∇×B − v ×B. (4.17)

which we use to eliminate E from Faraday’s law of induction (4.13) and obtain the
following general form of the induction equation

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B). (4.18)

Exploiting the following well-known formula ∇ × (∇ × a) = ∇(∇ · a) − ∆a, with
Laplace operator ∆ = ∇ · ∇, which holds for arbitrary vectors a ∈ R3 (p. 302
in Lang and Pucker (2010). Setting a = B, and using Gauss’s law for magnetism
(4.12), yields the following identity

∇× (∇×B) = −∆B. (4.19)

Provided that the magnetic diffusivity η is constant over the entire space, we obtain
the following form of the induction equation

∂B

∂t
= ∇× (v ×B)− η∇× (∇×B)

(4.19)
= ∇× (v ×B)− η∆B. (4.20)

The vector-product term (v ×B) is commonly referred to as induction term and it
is useful to expand it further by exploiting another formula, that is ∇× (a× b) =
a(∇ · b)− b(∇ ·a) + (b · ∇)a− (a · ∇)b, which holds for arbitrary vectors a, b ∈ R3

(p.302, Lang and Pucker, 2010). Again, Gauss’s law for magnetism, equation (4.12),
eliminates the ∇ ·B -term such that we can rewrite the induction equation as

∂B

∂t
= (B · ∇)v︸ ︷︷ ︸

stretching

−B(∇ · v)︸ ︷︷ ︸
compression

− (v · ∇)B︸ ︷︷ ︸
advection

− η∆B︸ ︷︷ ︸
diffusion

. (4.21)

Evidently, the dynamics of the magnetic field are determined by the net effect
of stretching, compression, advection and diffusion. An essential property about
plasmas with high conductivity is known as flux freezing (e.g., Brandenburg and
Subramanian, 2005). In the limit of η → 0 (equivalent to σ → ∞) it guarantees
a constant magnetic flux. Considering a flux tube of length l with surface A we
require BA to be constant. Conservation of mass requires ρAl to be constant and
hence B ∝ ρl. And for (nearly) incompressible fluids B ∝ l. Thus, any fluid motion
which stretches the tube length l automatically amplifies the magnetic field. An
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Figure 4.6: This Planck satelite image depicts the Orion Molecular Cloud. The magnetic field
lines are largely ordered and parallel to the galactic plane (located above the top of this image)
whereas the topology of the magnetic field varies more strongly in the vicinity of the denser and
star forming regions (e.g., near the darkest clump on the lower left which is the Orion Nebula).
The emission from dust is computed from a combination of Planck observations at 353, 545
and 857 GHz, whereas the direction of the magnetic field is based on Planck polarisation data
at 353 GHz. Image credit: ESA and the Planck Collaboration.

important mechanism operating on larger galactic scales is the α-Ω-dynamo (e.g.,
Kulsrud and Zweibel, 2008) which is driven by the differential rotation in a galactic
disk. The small-scale or turbulent dynamo operates on smaller scales and can be
directly related to the turbulent power spectrum as we demonstrate in the following
while referring to Batchelor (1950) and Kulsrud and Zweibel (2008) for a complete
derivation.

Kulsrud and Zweibel (2008) show that for the kinematic regime, where the back-
reaction of the magnetic field on the kinematics of the flow can be neglected, the
magnetic energy at a given wave number grows exponentially at a rate that depends
on the eddy turnover time in Kolmogorov’s turbulence model. At a given wavenum-
ber the magnetic field becomes amplified until the back-reaction of the magnetic
field on the plasma flow becomes signifcant and a nonlinear theory is required as
for example proposed by Xu and Lazarian (2016). In this regime the magnetic field
grows only linearly in time until the magnetic field energy saturates with the turbu-
lent kinetic energy. This equipartition is first reached for the largest wave numbers
(small scales) and than spreads in an inverse cascade to the lower wavenumbers
(large scales). An upper limit for the growth of magnetic energy is set by the turbu-
lent energy at the outer scale of turbulence. After sufficient time it is thus reasonable
to expect the turbulent dynamo creating an equipartition of energy, at least as an
order of magnitude estimate, such that

B2

8π
∼ 1

2
ρv2 (4.22)
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with v being the characteristic turbulent velocity on the largest scale. Given the
turbulence model considered above with the turbulent kinetic energy density of
∼ 10−12 erg/cm3 energy equipartition corresponds to a magnetic field strength B ∼
6µG which agrees with observations in the range of given uncertainties. The equipar-
tition of turbulent and magnetic energy at the outer scale of turbulence has also been
found in dynamo simulations with SN-driven turbulence by Schober et al. (2013).
The large scale coherence of magnetic fields is thought to be a result of the α-Ω-
dynamo and the differential rotation of the galaxy (e.g., Beck et al., 2020).



Chapter 5

Star Formation

Star formation involves many physical mechanisms acting in concert, including grav-
ity, hydrodynamics, magnetic fields, radiation, and chemistry. While all of these
processes have a role to play, understanding the whole picture is difficult without
first understanding how various subsets of these mechanisms work together. Above
all, it is important to explore how star formation arises from the interplay of gravity
and turbulence, which provide the canvas upon which other physics can be painted.
(Guszejnov et al., 2020)

5.1 Initial Mass Function

5.1.1 Observations

The stellar Initial Mass Function (IMF) is a crucial element of star formation theory
and it has profound implications for a variety of other fields in astrophysics. The
IMF represents the number of newly formed stars per interval in mass. From an
observational perspective we can think of it as a sort of histogram one would obtain
if it was possible to count the number of stars within a given interval of mass at
the moment when they enter the main sequence of the Hertzsprung-Russel diagram.
Unfortunately, such a direct assessment is not feasible for multiple reasons. De-
termining the IMF from observational data is a long and indirect procedure where
errors and systematic biases can enter in various ways. Here we shall only provide
a short overview in order to have a better understanding about the uncertainties
associated with determining the IMF. In essence there are three major difficulties:

1. Mass-luminosity relation:
The luminosity and mass of a star are connected via an empirical relation which
depends on the star’s age, its chemical composition and its spin. For low mass
and pre-main-sequence stars the inherent uncertainties are particularly high.

2. Converting present day to initial mass function:
Even young star clusters are typically observed at an age of a few 107 years
which means that the most massive stars have already left the main sequence
while some very low mass stars have not even yet reached it. Thus stellar evo-
lutionary models inevitably need to be invoked, whereas on galactic scales the
star formation history becomes important additionally, in order to reconstruct
the initial mass function from present day observations.
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3. Assessing all stars:
For any system of stars, be it a cluster or a galaxy, it is important to obtain a
fairly complete sample of stars. In practice this can be challenging for many
reasons. The image resolution constrains the ability to detect low mass stars
due to their lower luminosity. The multiplicity of stellar systems is another
obstacle because individual stars cannot always be resolved. Dust extinction
complicates observations even more. Dynamical evolution of star clusters typ-
ically leads to mass segregation such that more massive objects arrange near
the center while the lower masses tend to settle further outside. Ultimately,
these lower mass stars can be ejected from the cluster due to gas expulsions
from the inner high mass stars. In this case, the observed sample is incomplete
and needs to be corrected by applying dynamical models for star clusters.

Evidently, determining the IMF is a lengthy procedure which inevitably involves
empirical relations or theoretical models. These difficulties are well acknowledged in
the literature. Kroupa et al. (2013) refers to the second problem in the above list with
his IMF unmeasurability theorem which states "the IMF cannot be extracted directly
for any individual stellar population". The theorem is justified by considering the
time scales of star formation. Since for any cluster of stars the most massive stars
have already left the main sequence even before star formation has ceased there
is no time when all stars have fully assembled and are observable. The initial
mass function is therefore rather a theoretical construction than a directly accessible
physical quantity.

Figure 5.1: The most prominent IMF models are shown which all converge to Salpeter’s
power law for higher masses but vary slightly from each other for sub-stellar masses (M�).
The brown dwarf regime is particularly uncertain due to the observational difficulties mentioned
above. The plot is taken from Offner et al. (2014).
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Characterizing the shape of the IMF goes back to Salpeter (1955) who found the
differential number of stars dN with masses in the range of 0.4 − 10M� to be best
fit by a power law,

N?(M) =
dN

dM
∝M−α, (5.1)

with α ≈ 2.35. More precisely, the original paper used another convention for which
the IMF is defined as the number of stars per logarithmic interval of mass such that

dN

d logM
∝M−Γ, (5.2)

for which the exponents of the two conventions are related by Γ = α − 1. Since
its first detection there have been numerous studies fitting observational data with
different functional forms. An overview of the most established IMF functions is
given by figure 5.1. In fact, the power law shape for the larger mass has become
quite established but even in 1955 Salpeter must have known that his power law
prescription must break down for lower mass at some point since a diverging number
of low mass stars is not reasonable.

This turnover has its peak at about Mc ≈ 0.2 − 0.3M� (Offner et al., 2014)
which sets a characteristic scale for the IMF. In this way the IMF can be split into
two parts: a low mass and a high mass regime for M & 1 M�. The low mass range
can be fit with a lognormal distribution as defined by Chabrier (2003) (or with
other similarly shaped functions) whereas the high mass range is characterized by
Salpeter’s power law dependence with α ≈ 2.3− 2.4 according to Krumholz (2014).
This scale-free part of the IMF is assumed to span a range of nearly two orders
of magnitude (Offner et al., 2014). However, the high mass range is difficult to
constrain strictly from observations.

Is the IMF universal?

Intuitively one would expect the IMF to be sensitive on the local conditions of the
star forming region. There are numerous potential factors which could affect the
complex process of a collapsing gas cloud until it turns into a star in hydrostatic
equilibrium for which its future evolution is determined by its initial mass. Never-
theless, not all of these parameters need to affect the initial mass function. On the
other hand, there are some particular properties of star forming regions for which
we have conclusive arguments that they should affect stellar masses produced within
that region. Here we consider only one illustrative example, namely the abundance
of heavier elements which is commonly referred to as metallicity. The higher the
metallicity in a gas cloud the higher its cooling rate. Consequently we would expect
the metallicity in a star forming environment to affect the slope of the IMF for at
least two reasons:

• Jeans Mass argument (clouds collapse only ifM > MJ ∝
√
T 3/ρ as we discuss

below in section 5.1.2):
low metallicity→ less effective cooling→ higher temperature→ higher Jeans
mass (MJ ∝ T 3/2) → low mass objects do not collapse
→ top heavy IMF

• Self regulatory ansatz (accretion vs. feedback):
low metallicity→ photons couple more weakly to accreted gas + lower cooling
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rate means higher sound speed (cs ∝
√
T/ρ)→ higher mass accretion rate with

nonlinear dependence on mass → higher mass objects accrete more mass
→ top heavy IMF

Following this reasoning, and in the absence of additional metallicity-related effects,
one would expect a top-heavy IMF (excess of high mass stars) for low metallicity
environments and a bottom-heavy (excess of low mass stars) IMF for metal rich
environments. This "variable IMF prediction" (Kroupa et al., 2013) can be tested
observationally by comparing IMFs obtained for different regions or earlier times in
cosmic evolution for which the metallicity was lower.1

Over the last decades a lot of literature has been published reporting about
deviations from IMF universality (e.g., Hopkins, 2018, and references therein). Such
claims should be considered carefully because, as explained above, the IMF is not a
directly accessible quantity but necessarily involves model assumptions and therefore
may be systematically biased. Observations of resolved stellar populations in the
Milky Way and nearby galaxies enable counting stars whereas studies of more distant
galaxies cannot resolve individual objects and involve different methods to infer
the IMF (e.g., stellar population synthesis) (Guszejnov et al., 2019). Additionally,
most observations are constrained to a fairly small range of masses since low mass
stars are only detectable on short distance while high mass stars are limited to
actively star forming regions due to their short lifetimes. Therefore, the robustness
of different results has to be checked carefully to avoid misleading conclusions about
the apparent (non-)universality of the IMF. The following claims on IMF deviations
in rather extraordinary environments are worth emphasizing.

• Bottom-heavy IMF for some giant elliptical galaxies (e.g., Dokkum and Con-
roy, 2010; Cappellari et al., 2012; Oldham and Auger, 2018; Smith, 2020)

• Top-heavy IMF for some star clusters near Milky Way center (e.g., Bartko
et al., 2010; Lu et al., 2013; Hosek et al., 2019)

• Top-heavy IMF in globular clusters with higher density and lower metallicity
(e.g., Marks et al., 2012)

• Top-heavy IMF for some ultra faint dwarf galaxies (e.g., Geha et al., 2013;
Guszejnov et al., 2019)

Offner et al. (2014) concludes there is "no compelling evidence for substantial
IMF variations for resolved stellar populations in the local universe". Other reviews
draw similar conclusions (e.g., Bastian et al., 2010; Kroupa et al., 2013). However,
in a more recent review Hopkins (2018) claims "a growing wealth of evidence points
against a universal IMF". But even if the IMF may not be perfectly universal, it
appears to be remarkably independent of the particular environmental conditions.

It is worth clarifying some subtleties in the notion of universality which are
frequently not clearly addressed. First, we must define the size of the system for
which we consider the IMF. This could be a star-forming region, an entire galaxy
or even an ensemble of galaxies at a given epoch of cosmic evolution. Therefore,
Hopkins (2018) suggests to distinguish stellar, galactic and cosmic IMFs. Possibly

1However the mass-luminosity relation needed for determining the stellar mass also depends on
the metallicity of the star and these two factors could potentially "conspire" in such way that the
resulting IMF turns out to be relatively insensitive to variations in metallicity.
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there is a universal IMF for (at least some types of) galaxies at our given epoch in
cosmic time. This could be the result of a superposition of different IMFs on a level
of star-forming regions. The universality on a galactic scale could be result of an
averaging process over all star-forming regions. Alternatively, if the IMF turns out
to be universal even on the level of individual (large enough) star-forming regions the
universality on a galactic level would be a direct consequence. This latter scenario, a
universal stellar IMF, is particularly interesting because it hints on the dominance of
some universal mechanism which appears to operate independently of environmental
parameters which characterize different star-forming regions.

5.1.2 Discussion

Ideally the origin of the IMF would be discussed within a more complete theory
of star formation which takes into account all the relevant physical processes. This
turns out being an extremely challenging task for multiple reasons. First, the spatial
scales cover a range of about seven orders of magnitude for giant molecular clouds
with d . 100 pc collapsing to protostars with d ∼ 10−5 pc which cannot be resolved
over the entire dynamical range in hydrodynamic simulations (e.g., Guszejnov and
Hopkins, 2016). Second, the dynamical equations describing the turbulent and mag-
netized fluid are in general very hard to solve without simplifying assumptions like an
equation of state for the gas which can only accurately describe a certain evolution-
ary period of the collapsing cloud (e.g., Krumholz et al., 2007). Third, the collapse
is governed by a competition of multiple physical mechanisms like shock fronts and
self-gravity responsible for compressing the gas cloud vs. thermal pressure, turbu-
lent motion of the gas, radiation and magnetic fields which are all supporting the
cloud against compression. Therefore a broad range of physics needs to be connected
in order to describe the collective actions and reactions adequately. Fourth, there
are poor observational constraints for some important parameters inside molecular
clouds like the magnetic field, velocity and density distributions in 3D (e.g., Scalo,
1990; Mac Low and Klessen, 2004; Beattie et al., 2019). Last but not least, star
formation is not an isolated process but stars typically form in clusters within larger
star forming regions such that the formation process of a single star is affected
by its environment (e.g., radiation and turbulence as investigated by Mathew and
Federrath, 2021) or, when put into more general terms, depends on the boundary
conditions. Krumholz (2014) provides a great overview about the "big problems in
star formation" and highlights the IMF as one of its central challenges. Lee et al.
(2020) provide a more recent review on the origin of the IMF.

In the following we do not attempt to present an overview about the whole
range of IMF models but we choose a particular approach in order to better outline
the most important aspects. Explaining the origin and universality of the IMF
essentially needs to recover the following two properties. First, the scale-free power
law tail for M & 1 M�. Second, the turnover around the peak mass at about
Mc ∼ 0.2 M�. The former calls for scale-free physical processes whereas the latter
explanation must somehow incorporate a characteristic mass scale.

Two prime candidates for scale-free processes, potentially responsible for the
high mass power law tail of the IMF, are gravity and turbulence, which are both
certainly at work in collapsing gas clouds. In a Newtonian framework gravity is
scale-free because the force is proportional to the inverse square of the distance and
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this holds for arbitrary distances. Turbulence is scale-free over some large inertial
range, as discussed in chapter 4.

Gravitationally unstable molecular clouds

Interstellar turbulence is associated with density fluctuations on all scales which can
create over-dense regions which collapse when their self-gravity exceeds a critical
limit. Such a critical parameter can be obtained by investigating the equations for
inviscid fluids under their own gravitational potential (see section 2.2.2) in order
to obtain the dispersion relation. This approach goes back to Jeans (1902) and
can be summarized as follows. For a uniform cloud with density, ρ, radius, R,
sound speed, cs, and some perturbation which affects the density field as ρ(x, t) =
ρ0 + ρp exp (i(kx− ωt)), a linear stability analysis of the fluid equations with self-
gravity leads to the following dispersion relation2

ω2 = c2
sk

2 − 4πGρ. (5.3)

Perturbations with wavenumber k <
√

4πGρ/cs will be exponentially amplified,
that is the cloud contracts due to its own gravity. The critical wavenumber can be
equally expressed as a critical length scale,

λJ =

√
πc2

s

Gρ
, (5.4)

which is the so-called Jeans length. The associated Jeans mass can be defined as

MJ =
4π

3
ρ

(
λJ
2

)3

=
π

5
2

6

c3
s√
G3ρ

, (5.5)

where it is common practice to use λJ/2 as radius for the spherical mass distribution
but according to Girichidis et al. (2020) there is no fundamental justification which
constrains the numerical factors in the Jeans mass to better than a factor of a
few.3 Assuming an ideal gas equation of state implies the sound speed is given by
cs =

√
kBT/(µmH) and the Jeans mass then scales as

MJ ∝ T 3/2ρ−1/2. (5.6)

2The Jeans criterion is derived under some simplifying assumptions which we will not discuss
here but simply refer to chapter five in Binney and Tremaine (2011).

3There is also an alternative derivation for a critical mass scale, the Bonnor-Ebert mass, which
differs from the Jeans mass in its numerical factor. And in contrast to the Jeans mass the Bonnor-
Ebert mass considers the external pressure. McKee and Ostriker (2007) provide a useful derivation.
Apart from the choice of which critical mass scale to consider, there is another aspect which has the
potential to be non-negligible even for order of magnitude calculations, namely the support from
turbulent motions. The derivation for the Jeans mass here considers only the support from thermal
pressure. Taking into account turbulence with supersonic motions adds another pressure which can
be incorporated into equation (5.5) by redefining cs → ceff =

√
c2s + σ2/3 with velocity dispersion

for the turbulent motion of the gas, σ, as discussed by Mac Low and Klessen (2004). Replacing cs
with ceff in equation (5.5) yieldsMJ,eff ∼ 200 MJ for supersonic turbulence in molecular clouds with
σ ∼ 10cs. Consequently, the effect of turbulent support against gravitational support is important
to consider even for order of magnitude calculations about gravitational stability in supersonic
molecular clouds.
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It is useful to normalize the Jeans mass to typical values for molecular clouds4 with
T ∼ 10 K and n ∼ 1× 102 cm−3 with mean molecular weight, µ = 2.33, for which
we can express the Jeans mass as

MJ ≈ 29 M�

(
T

10 K

)3/2 ( n

100 cm−3

)−1/2

. (5.7)

If the total mass exceeds this limit the cloud is gravitationally unstable and will
begin to collapse and become denser in the inner regions. The denser the cloud the
lower the Jeans mass and thus the contracting cloud will soon contain more than one
Jeans-unstable regions and the cloud will fragment.5 This is a direct consequence of
the Jeans Mass scaling according to equation (5.6) provided that the temperature
remains constant because the cooling and heating rates balance each other. This
scenario is referred to as isothermal collapse.

Relevance of turbulence for star formation

In chapter 4 we discuss the properties of interstellar turbulence in more detail. Here
we summarize the main properties which are relevant for deriving the IMF within
a model of turbulent fragmentation. Turbulence is essential for understanding star
formation because stars form out of dense molecular gas clouds and the gas in their
interior is not steady but in turbulent motion. Such molecular clouds are typically
characterized by supersonic turbulence which effectively provides a pressure against
suppression due to gravitational collapse of the cloud (Chevance et al., 2020). But
turbulence can also act in favor of contraction. One mechanism is that turbulence
increases collision rates and thereby enhances cooling via collisional excitation and
subsequent photon emission which consequently reduces the thermal pressure. An-
other effect of compressible turbulence is that it creates density fluctuations above a
critical threshold, which is the mechanism at the heart of the star formation model
proposed by Hopkins (2013) which we discuss in the following. And because density
fluctuations grow exponentially whereas velocities only grow linearly turbulence will
always produce some regions which are unstable. In order to make quantitative
statements about the relevance of turbulence for star formation it is useful to treat
the density field statistically with a PDF.

Numerical simulations and observations (e.g., Sharda et al., 2022, and references
therein) have established the prescription of a lognormal density PDF in turbulent
star forming regions

P (s)ds =
1√

2πσ2
s

exp

(
−(s− s0)2

2σ2
s

)
ds (5.8)

where s = ln(ρ/ρ0) with volume-averaged mean density ρ0 and s0 = −σ2
s/2 due to

conservation of mass (Krumholz, 2014). The width of this function, σs, generally
increases with the Mach number,M. The lognormal shape is well interpreted as a
result of the central limit theorem because the density field results from a multitude

4According to Ferrière (2001) the typical densities in molecular clouds are n ∼ 102 − 106 cm−3

and T ∼ 10 − 20 K such that the Jeans mass derived in equation (5.7) represents an order of
magnitude estimate for an upper limit for the (thermal) Jeans mass of molecular clouds.

5For an order of magnitude estimate the free-fall time tff ∼ 1/
√
Gρ is suitable to approximate

the time it takes for the gas cloud to collapse. Hence the denser regions collapse faster which is in
support of the fragmentation process.
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of random interactions (compression, shocks, rarefactions) which correspond to the
multiplication of a large number of random factors.6

The velocity dispersion scaling discussed above for Kolmogorov turbulence is
straight forward to generalize for other turbulent power spectra, which are given by
E(k) ∼ k−n (with n = 5/3 for Kolmogorov turbulence) via

σ2
v(l) ∼

∫ ∞
2π/l

E(k)dk ∼ k−n+1 ∼ ln−1. (5.9)

Taking the square root yields

σv(l) ∼ l(n−1)/2 (5.10)

which is known under the name of linewidth-size relationship because it corresponds
to the observation that the linewidth of absorption or emission lines scale with the
size of gas clouds in the interstellar medium (ISM).7

Furthermore interstellar turbulence is also important with respect to magnetic
fields which are potentially relevant for star formation in many different ways. One
effect is the additional magnetic pressure which together with thermal pressure op-
poses an inward acceleration of a magnetized gas cloud. Magnetic tension, meaning
the resistance of magnetic field lines against deformation, is also important which
depends on the geometry of the field lines and therefore also on the properties of
the turbulent plasma. Magnetic fields around young stars are important drivers for
jets and outflows. And turbulent compression can enhance ambipolar diffusion and
consequently lower the magnetic pressure locally (Nakamura and Li, 2008). Fur-
thermore, there are many possibilities for magnetic fields to influence star formation
in more indirect ways and it is not yet clear to what extent magnetic fields actually
influence which observable quantities of the star formation processes (Krumholz and
Federrath, 2019).

In the following we discuss a star formation model introduced by Hopkins (2012)
which builds on previous models (e.g., Padoan and Nordlund, 2002; Hennebelle and
Chabrier, 2008) which aim at explaining the IMF via fragmentation in a turbulent
medium. These models have a statistical approach to star formation theory in
common because they all invoke a PDF for the density field which is connected
to the properties of interstellar turbulence. Thus the scale-free nature of the IMF
power law tail is inherited from the scale-free nature of turbulence and gravity. The
characteristic mass scale, together with the lognormal-shaped turnover, is simply a
result from the underlying density probability distribution function.

6Multiplying logarithmic quantities is equivalent to taking the logarithm of the sum of the
quantities, that is ln(a) ln(b) = ln(a+ b).

7Larson (1981) analyzed observational data of molecular clouds and found a power law rela-
tionship between the internal velocity dispersion and the cloud’s size σ ∝ Lα and mass σ ∝ Mβ .
In Larson’s original paper the best fit straight line through a cloud of data points was determined
as α = 0.38 and β = 0.20. The number of decimals in these results does not represent the ac-
tual uncertainty of this prescription as later studies have drawn different conclusions. Heyer et al.
(2009) found the internal velocity dispersion to depend also on the density of the cloud as described
by σ ∝ (ΣL)α with α = 0.5 and surface density Σ. Ballesteros-Paredes et al. (2011) provide an
overview of observational results at the time. Lately, Ballesteros-Paredes et al. (2018) found this
relation to only hold for a limited dynamic range spanned by the column densities.
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Turbulent fragmentation

Hopkins (2012, 2013) (hereafter H12 and H13) apply a methodology which goes back
to Press and Schechter (1974) together with the so-called excursion set formalism.
Here we outline only some essential aspects of the model in order to discuss their
results.

The density field is described by a lognormal PDF, which is the imprint of
turbulent compressions and rarefactions. In H13 a length scale dependent stability
criterion is derived for a galactic disk and the density can be related to the largest
Mach number in the galactic disk. In order to construct a statistical realization of
the PDF one picks a random point in the galactic disk around which the gas density
is smoothed within some arbitrary radius R < h. The mean density in this region,
ρ0(R), can be compared to some critical density threshold, B(R), which is defined
below in equation (5.13), and takes into account contributions from galactic angular
momentum, turbulence, thermal and magnetic support which dominate on different
length scales. For a turbulent galactic disc, with scale height h, the critical density
above which a region is self-gravitating is

ρcrit
ρ0

=
Q

2κ̃

(
1 +

h

R

)[
σ2
g(R)

σ2
g(h)

h

R
+ κ̃2R

h

]
, (5.11)

where the Toomre parameter, Q, and κ̃ are both numerical factors of order unity
for marginally unstable galactic disks.8 The dispersion is given by

σ2
g(R) = c2

s + 〈v2
t (R)〉+ v2

A (5.12)

where vt is the turbulent velocity dispersion and vA the Alfvén velocity. The barrier
in this model is given by

B(R) = ln

(
ρcrit
ρ0

)
+
S(R)

2
(5.13)

where S(R) is the variance in ln(ρ) averaged over a volume with radius R.9 The
model is best illustrated by considering figure 5.2.

H12 show that the resulting mass function can be approximated as

dN
dM
∼ ρcrit(M)√

2πS0

∣∣∣∣d ln ρcrit
d lnM

∣∣∣∣ exp

[
−(ln[ρcrit/ρ0] + S0/2)2

2S0

]
M−2. (5.14)

This lengthy expression can be further approximated for the low and high-mass
range. For the high-mass range this allows to connect the exponent of the IMF
power law index α (defined by equation (5.1)) to the spectral index of turbulence,
n, as follows

α ≈ 3(1 + n−1)

2
+

(3− n)2 ln(M/M0)− n ln 2

2S(M)n2
. (5.15)

8The Toomre parameter Q ∼ 1 marks the critical point below which an axisymmetric gaseous
disk becomes unstable to perturbations. H13 uses the following definitions: Toomre parameter
Q = (σg(h)κ)/(πGΣgas), gas surface density Σgas, epicyclic frequency κ = 2Ωr−1g d(r2gΩ)/drg,
orbital frequency Ω = vc/rg, and κ̃ = κ/Ω. For constant circular velocity vc(rg) it follows κ̃ = 2.

9In H13 the variance in the logarithmic density is calculated from the following integral S(R) =∫∞
0
|W̃ (k,R)|2 ln

[
1 + b2v2t (k)/(c2s + κ2k−2)

]
d ln k with some suitable window function W̃ (k,R)

and where b ∼ 1 gives the fraction of the turbulent velocity in the compressive (longitudinal)
motions.
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Figure 5.2: This figure from Hopkins (2013) nicely captures the essential features of the
model. Left plot: the red dashed line marks the critical density, the barrier, B(R), defined by
equation (5.13), above which a region with radius R and density ρ(R) becomes gravitationally
unstable or self-gravitating. The sonic length corresponds to the length scale below which
turbulent motions are subsonic. The sonic length is related to the turbulent power spectrum
via the lindewidth-size relation in equation (5.10). Middle plot: each curve corresponds to a
random realization of the density power spectrum at some random point in space and averaged
with some window function within a radius R. Comparing these "trajectories" to the barrier
(left plot) illustrates that most points are not self-gravitating. Right plot: this particular
"trajectory", that is the mean density ρ(R) in a volume with radius R around some point in
space, is self-gravitating on multiple scales. The "first crossing" corresponds to the largest
scale which is unstable and the "last crossing" to the smallest scale. The smaller the scales the
larger the critical density and hence these scales will collapse faster because their free-fall time
is shorter.

H12 find α ≈ 2.2− 2.4 for typical initial conditions M0 ∼ ρ0h
3 ∼ 105 − 106 M� and

turbulent power spectra in the range n ∈ [5/3, 2] in good agreement with observa-
tions. The spectral index n = 5/3 corresponds to Kolmogorov turbulence and n = 2
to supersonic turbulence. The turnover at the lower masses occurs below the sonic
length scale which corresponds to the following mass scale

Msonic ≈
2

3

c2
sRsonic

G
≈ M�

( cs
0.3 km s−1

)2
(
Rsonic

0.1 pc

)
(5.16)

and the overall shape appears to be in good agreement with observations as illus-
trated by figure 5.3.

In our discussion so far we have been somewhat imprecise when speaking about
the mass function, N(M), which in general may refer to different stages of the
star formation process. Thus it is necessary to distinguish between the (prestellar)
core mass function (CMF)10 and the stellar initial mass function (IMF). Offner et
al. (2014) offer a great overview about the various possibilities for the connection
between CMF and IMF. Guszejnov and Hopkins (2015) derive both CMF and IMF
from an analytic model in reasonable agreement with observations. If the CMF and

10The term "core" applies to many different kinds of dense gas clouds: starless cores (grav-
itationally bound or unbound), prestellar cores (starless and self-gravitating), protostellar cores
(containing a protostar). Consequently cores are evolving and any CMF is always a composition
of snapshots at a given evolutionary moment which is challenging to distinguish unambiguously.
"Clump" is another frequently used terminology in the context of star formation which refers to
large collections of gas which are likely to form a cluster of stars.
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Figure 5.3: The core mass function (CMF) derived by the H12 model from the last crossing
mass function (see figure 5.2) compared to observations of prestellar/starless CMFs in different
regions. The modeled CMF corresponds to Mh = 30, that is the Mach number for a region
with size equal to the disc scale height, and n = 2, that is a steeper power spectrum as for
Kolmogorov turbulence with n = 5/3 as discussed in chapter 4. Plot taken from Hopkins
(2012).

IMF are self-similar to another then we would expect the evolutionary process from
cores to stars to fulfill the following conditions:

• Cores must be gravitationally bound in order to produce stars;

• If cores accrete further mass, merge or fragment further, then this process has
to occur in a self-similar way;

• Star formation efficiency (fraction of gas converted to stars) must be compa-
rable for cores with different masses;

• Timescale on which stars are formed must be comparable for cores with dif-
ferent masses.

There are some hints for a direct correspondence (e.g., self-similar mapping) between
the two quantities but there is also still considerable uncertainty with respect to
observations (Lee et al., 2020).

In summary, the star formation model presented by H12 and H13 derives a core
mass function (CMF) which recovers both the high-mass power law tail and the
lognormal shaped turnover for the low mass range of the stellar initial mass func-
tion (IMF). The universal power law with α ∼ 2.3 can be understood as resulting
from the omnipresence of turbulence in the star forming environments and the rel-
atively weak dependence on the exact value for the spectral index of the turbulent
power spectrum. The characteristic mass scaleMc together with a lognormal-shaped
turnover for the lower mass range results from the characteristic scales that enter the
model as initial and boundary conditions. These conditions are, the Mach number
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at disc scale height, the speed of sound and the mean density, which are all con-
nected to each other and therefore closely tied to certain values. However, the model
is fairly complicated and involves many assumptions and approximations which can
be questioned. At the same time there are certainly many important details which
are not covered and the model cannot provide a physically accurate description of
the star formation process which is simply too complex to model adequately in all
details. Hence, in the following, we aim at taking an even more granular view on the
origin of the observed mass functions. In doing so, we deliberately neglect basically
all the physics and consider a very general and simple procedure which leads to mass
functions with a power law exponent α ∼ 2.

Is there a universal mass function?

Having discussed the origin of the mass functions for stars and prestellar cores it
is interesting to take a broader look and compare it to mass functions for other
objects in our universe. Such an investigation naturally includes a large amount of
uncertainty due to observational biases, like for example given an incomplete sample
where larger masses are detected more frequently than lower masses. Comparing
different mass functions also requires to choose a certain normalization which needs
to be estimated when the data is incomplete and the total mass of all objects is
unsure. Keeping this in mind, it is however surprising that the overall shape, that
is the power law index of the mass function, appears to be α ∼ 2 for all sorts of
different objects. Figure 5.4 shows the mass functions of objects as small as asteroids
and planets all the way to galaxies and galaxy clusters and thereby spanning a range
of more than thirty orders of magnitude in mass.

Evidently these objects are quite different to each other and are nevertheless all
characterized by a similar mass spectrum. Therefore we are interested in finding
universal mechanisms which do not depend on the specific details of the system and
reproduce the observed scaling. In section 2.3 we demonstrate how the α = 2 scaling
emerges from two very simple toy models for fragmentation.11 Because these toy
models are invariant under time reversal they can equally well represent a model for
a self-similar merging process in the context of galaxy and galaxy cluster formation.
Consequently, α = 2 can be understood as a result from self-similar fragmentation
or merging processes.

This particular mass function scaling is also special in the sense that it guar-
antees an equal amount of mass per logarithmic mass interval, d ln(M), as can be
demonstrated simply by

∆M =

∫ M1

M0

N(M)dM = C ln(M1/M0), (5.17)

with constant C. Evidently ∆M depends only on the ratio M1/M0, which implies
that it is constant for any logarithmic mass bin because M1/M0 = 10. This "equal
mass per logarithmic mass bin" property holds only for N(M) ∼ M−1 (or equiv-
alently dN(M)/dM ∼ M−2, that is α = 2), whereas exponents larger or smaller

11Another interesting toy model was presented by Elmegreen (1997) who derives the IMF via
random sampling from a turbulent fractal cloud.
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Figure 5.4: Here we show a plot which hints on the existence of a universal mass function
which spans more than thirty orders of magnitude in mass and contains objects from asteroids
up to galaxy clusters. The overall normalization for the respective mass functions was estimated
by Binggeli and Hascher (2007) from the observed abundance of the objects. For galaxies (g)
and galaxy clusters (c) the lower black line corresponds to the baryonic mass only and the
upper end of the shaded region to baryonic mass + dark matter. Plot taken from Kroupa et al.
(2013).

would lead to a ∆M which depends on the given mass scale.12 The scale-free nature
of this particular scaling thus goes beyond the generic scale invariance intrinsic to
all power laws as discussed in section 2.1.

However, speculations about the existence of a universal mass function (Tutukov
and Shustov, 2020; Shustov and Tutukov, 2018; Binggeli and Hascher, 2007) should
be taken with a grain of salt because the similar scaling holds only very roughly. For

12The observed N(M) ∼ M−1 scaling is a solution for the differential equation dN
N = −dM

M
which illustrates the structural similarity of the number of objects N to their masses M . It is
straightforward to verify as follows ∫

dN

N
=

∫
−dM

M

ln(N) + C1 = − ln(M) + C2

ln(NM) = C2 − C1

NM = exp(C2 − C1) ≡ C
N = CM−1.
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example Davidzon et al. (2017) find α ≈ 1.5 for low redshift galaxies whereas some
type of higher redshift galaxies are better fit by a double Schechter function which
contains two power law indices. These deviations from α = 2 could be interpreted as
the presence of physical processes which are characteristic to the respective system
(planets, stars, galaxies, etc.) whereas all these systems are characterized by a
sort of baseline mass function which is due to some very general mechanisms like
fragmentation or merging as illustrated by the toy models. Shustov and Tutukov
(2018) follow a similar line of thought and take the α = 2 as the "basic spectrum"
which results from the random character of the underlying processes whereas the
deviations are interpreted as imprints of "specific physical processes" like galactic
or stellar winds for example.

5.2 Star Formation Law

5.2.1 Observations

Apart from the initial mass function (IMF) there is another important quantity in
the context of star formation, that is the star formation rate (SFR), which represents
the amount of gas converted into stars per unit of time. The SFR is essential because
it is closely tied to the evolution of the galaxy itself and the coupling is in both ways
and over a large range of spatial scales because the large-scale evolution of a galaxy
affects the SFR and the SFR affects the large-scale evolution of the galaxy. Stars
are energy "sources" for the ISM because they convert nuclear binding energy into
radiation and into particle motion as stellar wind or in supernova explosions for
example. In consequence stars are responsible for accelerating cosmic rays (see
chapter 3) and driving the turbulent motion of interstellar gas (see chapter 4 on
interstellar turbulence). Hence the SFR is an essential quantity not only to study
star formation but also to better understand the galaxy at large.

The SFR is commonly given as a surface density ΣSFR. In disk galaxies the
surface density for gas, Σgas, typically refers to averaging the volume density, ρ, as
Σgas =

∫∞
−∞ ρdz, where z is the coordinate perpendicular to the galactic disk. An

analogous averaging procedure can be done for the three dimensional SFR density
to obtain ΣSFR in units of [ΣSFR] = M�yr−1pc−2. Hence ΣSFR describes the rate at
which some galactic environment converts gas into stars.

Although star formation certainly presents a complex multi-scale problem with
many parameters that could potentially matter, observations reveal a simple power
law which connects the SFR surface density to the gas surface density as follows

ΣSFR ∼ Σn
gas. (5.18)

It is known as star formation law or Kennicutt-Schmidt law because it goes back
to Schmidt (1959) and Kennicutt (1998). The value of the power law index n does
not appear to be universal but rather varying between n ∼ 1− 2 for different kind
of galaxies and environments (e.g., Whitworth et al., 2022; Girichidis et al., 2020)
but at least for "normal" and nearby spiral galaxies it appears to be fairly well
constrained to n ≈ 1.4 according to a recent study by de los Reyes and Kennicutt
(2019) which is shown in figure 5.5.
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Figure 5.5: This plot is taken from de los Reyes and Kennicutt (2019) and shows the star
formation law observed for 153 nearby spiral galaxies. The dashed lines represent constant
depletion times τdep = Σgas/ΣSFR. They used three different fitting techniques and determined
n = 1.41 with a dispersion of 0.28 as best fit to their data. More details on the methodology
and uncertainties are found in their paper.

5.2.2 Discussion

There is an ongoing debate about the star formation law with respect to questions
like the following: Considering figure 5.6, does the SFR correlate with the density
of atomic hydrogen (HI), molecular hydrogen (H2) or with the sum of both (de los
Reyes and Kennicutt, 2019)? How does the correlation change for low metallicity
and high redshift galaxies (Whitworth et al., 2022)? What is local version of the
star formation law, that is not averaged over the entire galaxy but holds sub-kpc
scales (Bigiel et al., 2008)?

In the following we do not aim to answer these questions but focus on the star
formation law on global scales for galaxies like our own Milky Way and with respect
to the total gas density. Given the power law index n ∼ 1.4 for the star formation
law in equation (5.18) we would naturally like to understand its origin. We would
expect n = 1.5 if stars form out of collapsing gas clouds on a free-fall time because
τff ∼ ρ−1/2. Under the premise that star formation itself is directly proportional to
the density of available gas and given that we can take Σgas ∼ ρgas the star formation
rate should then scale as ΣSFR ∼ Σgas/τff ∼ Σ1.5

gas. However, the observed SFR is
about two orders of magnitude lower than expected if stars were produced simply
by gas clouds in free-fall collapse. If all molecular clouds in the Milky Way were
in free-fall collapse we would expect an integrated SFR of ∼ 300 M�yr-1 (Evans II
et al., 2021) which is more than a factor of hundred times larger than the observed
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Figure 5.6: This plot compares the distribution of gas (upper panel) to the star formation
rate SFR for the nearby galaxy NGC 5055. Apparently the correlation between molecular gas
density and SFR surface density than between atomic gas density and Σgas. However, there is
some considerable uncertainty in the data because of the observational methods. The density of
H2 is derived from the CO line emission intensity and the conversion factor carries a significant
uncertainty (de los Reyes and Kennicutt, 2019). The SFR surface density is determined directly
from the UV-emission of young massive stars and indirectly via the infrared emission caused by
heated dust presumably by the UV radiation of massive young stars. The figure was published
by Leroy et al. (2008).

value of ∼ 2 M�yr-1 (Chomiuk and Povich, 2011). The discrepancy between these
two values can be captured by introducing a dimensionless parameter ε ∼ 0.01.13
There are two opposing scenarios on how to interpret the low value of ε.

Either star formation is "slow but efficient" or it is "fast but inefficient" (Krui-
jssen et al., 2019). A third option is a mix of the two scenarios, that is "slow
and inefficient", as presented by Evans et al. (2022) who connect the efficiency to
the virial parameter of the star forming region in order to explain the varying but
generally low efficiency of star formation. The difficulty in determining the physical
mechanisms setting ε is one of the three "big problems in star formation" (Krumholz,
2014).14

Krumholz et al. (2012) present a version of a local star formation law which
reduces the observed scatter in the star formation law by introducing the free-fall
time into the star formation law as follows

ΣSFR ∼
Σn
gas

τff
. (5.19)

13The parameter ε can be interpreted in different ways. A frequently seen choice is to define it
via the ratio of free-fall time to depletion time ε = τff/τdep (e.g., Krumholz, 2014).

14The other two big problems in star formation are understanding stellar clustering and the
origin of the stellar initial mass function.
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They interpret this surface density star formation law as a result of an underlying
volumetric star formation law which can be written in our notation as

ρSFR ∼
ρ

τff
∼ ρ3/2. (5.20)

They find that this local volumetric star formation law holds both for data from
the Milky Way and nearby galaxies. Apparently, large-scale galactic properties
(e.g., orbital period) affect the SFR only indirectly via their influence on the gas
density.15 Bacchini et al. (2019) find evidence for the volumetric star formation law
ρSFR ∼ ρ2 to hold in the Milky Way and in nearby star-forming galaxies.

Since observations are typically constrained to quantities that are averaged over
the line of sight, there are large uncertainties involved and it is challenging to decide
whether the volumetric or surface density star formation law provides the tighter re-
lationship. According to de los Reyes and Kennicutt (2019): "the physics behind the
star formation law remain unclear". However, in combination with other observed
power laws, the star formation law certainly provides a useful tool to investigate the
interconnections within a galaxy.

5.3 Far-infrared–radio correlation

5.3.1 Observations

The far-infrared – radio correlation (FRC) is a fairly tight power law relationship
which connects the luminosity of two very distinct ranges of the electromagnetic
spectrum. The correlation has been observed both globally (scales of tens of kilo-
parsec) for entire galaxies (e.g., de Jong et al., 1985; Helou et al., 1985; Niklas,
1997; Yun et al., 2001; Tabatabaei et al., 2017; Heesen et al., 2022) and locally
(sub-kiloparsec scales) within galaxies (e.g., Boulanger and Perault, 1988; Murphy
et al., 2006; Paladino et al., 2006; Dumas et al., 2011; Heesen et al., 2014).

Figure 5.7 compares the far-infrared luminosity at 60µm to the radio luminosity
at 1.4 GHz in two plots which were published by Yun et al. (2001). Their study con-
tains 1809 galaxies with redshift z < 0.15 and they claim to provide a representative
sample for the population of "late type field galaxies in the local volume". The cor-
relation has a relatively low scatter over about five orders of magnitude for the given
data and the authors infer a linear correlation between the radio and far-infrared
luminosities.

We can write down the FRC via the radio luminosity Lrad and the far-infrared
luminosity LFIR as

Lrad ∼ LbFIR (5.21)

where b < 1, b = 1, and b > 1, correspond to a sub-linear, linear or super-linear
correlation respectively. The linearity or non-linearity of the FRC is still a matter of
debate (e.g., Heesen et al., 2022, and references therein) due to methodological and
observational uncertainties and the choice of wavelengths considered for both radio
and far-infrared emission. Furthermore, in general the relationship may change for
different types of galaxies (e.g., Schober et al., 2016; Petter et al., 2020; Delvecchio

15For galaxies with surface densities a lot higher than in the Milky Way Krumholz et al. (2012)
expect deviations from the local volumetric star formation law.
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(a) Radio vs. far-infrared luminosities

(b) Logarithmic ratio of far-infrared to radio
luminosity vs. far-infrared luminosity

Figure 5.7: The far-infrared –radio correlation (FRC) spans about five orders of magnitude
in luminosity when plotting the radio luminosity at 1.4 GHz against the far-infrared luminosity
at 60µm (left). Introducing the q-parameter as a measure of the logarithmic ratio of the two
luminosities allows to visualize the relatively low scatter of the correlation (right). The infrared
data stems from 1809 galaxies observed in infrared with the Infrared Astronomical Satelite
(IRAS) and the radio data from the NVSS catalog. Both plots taken from Yun et al. (2001).

et al., 2021). However, the correlation appears to hold for a broad variety of galaxies.
Tabatabaei et al. (2017) investigate radio emission in the range of 1− 10 GHz and
infrared emission in the range 8 − 1000 µm for 61 nearby galaxies with various
morphologies. They find indications for a nonlinear FRC from a declining value of
q which is the logarithmic ratio of the two luminosities. They consider to different
definitions for q, where they use either total infrared emission (TIR) or the far-
infrared emission (FIR) in the range 42−122 µ only. Their conclusion implies b > 1,
however they do not infer an explicit value for b. For a sample of 74 nearby galaxies
Niklas (1997) find b = 1.25± 0.08 for non-thermal radio emissions at 10.8 GHz and
1.4 GHz frequencies. For a sample of 76 nearby galaxies Heesen et al. (2022) infer
b = 1.34 ± 0.06 at 144 MHz, b = 1.16 ± 0.06 at 1.4 GHz, and b = 1.08 ± 0.06 at
5 GHz.

5.3.2 Discussion

There is little doubt that star formation is a common cause for the radio and infrared
emissions that is to some extent responsible for the observed FRC. In star forming
environments the more massive stars emit a lot of high-energy UV-photons which
heat up the surrounding dust and make it re-radiate this energy in the infrared.
Hence a correlation between the SFR and infrared luminosities is plausible. On the
other hand star forming regions host SNRs where cosmic rays can be accelerated
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Figure 5.8: The q-parameter here is defined as the logarithmic ratio of luminosities in non-
thermal mid-radio-continuum emission (MRC) and far-infrared (FIR, blue points) and total
infrared (TIR, black points). The decreasing trend hints on a super-linear FRC. Plot taken
from figure 9 in Tabatabaei et al. (2017).

(see section 3.2). These cosmic rays (CRs) are exposed to Lorentz forces in the
omnipresent interstellar magnetic field (see section 4.3) and, due to their low mass
to charge ratio (compared to protons or heavier nuclei) CR electrons are significantly
affected by loosing energy via synchrotron radiation. Typically this occurs in GHz
frequencies, meaning radio waves of a few tens of centimeters. Hence, this type of
non-thermal radio emission depends on the product of at least two factors: first,
the CR energy density, and second, the magnetic field strength. Provided that
both quantities are correlated accordingly with star formation activity, and ignoring
other contributions to radio and infrared emission, then this reasoning would be in
agreement with the observed FRC.

However, it requires further clarification why the correlation is so tight and
apparently insensitive to variations of specific properties of the observed galaxies.
We are thus interested in finding an explanation which holds for a broad range
of environments. Schleicher and Beck (2013) propose a model which explains the
FRC by relating the SFR and the magnetic field strength via turbulent magnetic
field amplification. Their model can be evaluated for disk galaxies with arbitrary
redshifts and being interested in cases like our own galaxy we consider the case
where z = 0 which allows to simplify their equations and outline the power laws
connecting magnetic fields, gas surface density, and SFR surface density, such that
the observed FRC is reproduced.

In this model we characterize disk galaxies with a certain average and constant
volume density, ρ, and a constant ratio of disk scale height to galactic radius, h/R ∼
const, such that ignoring constant factors allows to express the scaling of the total
gas mass with radius as M ∼ R3 or equivalently

R ∼M1/3. (5.22)

The gas surface density Σgas ∼ hρ ∼ R and consequently

M ∼ Σ3
gas. (5.23)

Using the star formation law (5.18) it follows

M ∼ Σ
3/n
SFR. (5.24)
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If interstellar turbulence is mainly driven by SNe we can write for the energy injection
rate

Γinj ∼ ΣSFR ∼Mn/3 (5.25)

and provided that turbulence is in a stationary state (i.e., the energy injection rate
equals the dissipation rate corresponding to a constant flux of energy via a cascade
of turbulent kinetic energy as discussed in section 4.2), we have

Γdiss = ε ∼ Σσ2

τh
(5.26)

with σ being the gas velocity dispersion on scales of the disk scale height h and
τh ∼ h/σ being the eddy turnover time (see section 4.2). Solving for the velocity
dispersion yields

σ ∼Mn/9. (5.27)

For τh � τgalaxy age there is enough time for magnetic field amplification via the
small scale dynamo (see section 4.3) such that equipartition can be reached for the
magnetic and turbulent energy densities.16 With turbulent kinetic energy density
∼ ρσ2 the equipartition condition gives

B2 ∼ ρσ2 (5.28)

which implies for constant ρ that the magnetic field strength follows the same scaling
with mass as the velocity dispersion

B ∼Mn/9. (5.29)

Using equation (5.23) and equation (5.24) we obtain

B ∼ Σn/3
gas (5.30)

and

B ∼ Σ
1/3
SFR. (5.31)

For the star formation law index n = 1.4 we obtain B ∼ Σ0.47
gas . These two power

laws for the magnetic field, scaling with gas density and star formation rate surface
density, are in reasonable agreement with results by other studies (e.g. Niklas and
Beck, 1997; Heesen et al., 2014; Basu et al., 2017). Via direct numerical simulations
of a supernova driven galactic dynamo, Gressel et al. (2008) discover a closely related
correlation between the ratio of regular to turbulent magnetic field Bturb/Breg ∝
SFR0.38 and the star formation rate (not density), as long as the supernova rate and
the SFR are proportional to another. We discuss interstellar turbulence in chapter
4 and magnetic field amplification in section 4.3.

Furthermore, in case of equipartition between the energy densities of CRs and
magnetic fields the synchrotron luminosity is related to the magnetic field strength
via

Lsync ∼ B3+αsync (5.32)

16For an order of magnitude estimate for spiral galaxies we can take σ ∼ 10 km s−1 (e.g., Mogotsi
et al., 2016) and h ∼ 100pc and find τh ∼ 10Myr which is certainly a lot smaller than τgalaxy age ∼
Gyr.
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with synchrotron spectral index αsync defined via the synchrotron flux density Sν ∼
ν−αsync at frequency ν and related to the spectral index of the CR electron flux
N ∼ E−p, with p = 2αsync + 1. Using equation (5.31) thus yields

Lsync ∼ Σ
1+αsync/3
SFR . (5.33)

Provided that LFIR ∼ ΣSFR, and the reasonable assumption for nearby galaxies
(discussed in section 3.1 in Schleicher and Beck, 2013) that the radio emission Lrad

is dominated by the synchrotron emission, Lsync, we can infer b = 1+αsync/3 for the
FRC (5.21). Hence, for αsync > 0 we obtain a super-linear FRC where the scaling is
determined by the synchrotron spectral index αsync.

For the given sample of nearby galaxies and the frequency range of 1− 10 GHz
Tabatabaei et al. (2017) determined a non-thermal (contributions from thermal radio
emissions were subtracted) spectral index αnt = 0.97±0.16 which upon identification
with αsync corresponds to b ≈ 1.32.

Apparently the power laws derived from this simple model are in good agreement
with observations which provides evidence for the equipartition between magnetic
field, cosmic ray and turbulent energy densities.17

However, a serious shortcoming of the proposed model is that it can only account
for the global FRC because it involves only quantities averaged over the entire galaxy
on tens of kiloparsec. A closer investigation would be required to understand the
mechanisms at work on sub-kiloparsec scales responsible for the local observations
of the FRC. There are also other proposed explanations for understanding the origin
of the FRC (e.g. Voelk, 1989; Niklas and Beck, 1997; Bell, 2003; Lacki et al., 2010)
and it remains an open issue which model comes closest to the physical reality.

17Not all observations agree with the scalings derived here. For example Tabatabaei et al. (2013)
provide a detailed investigation of a nearby spiral galaxy and recover a correlation between B–ΣSFR
and B–Σgas however their power law indices are about half the value we derived here.





Chapter 6

Conclusion

Understanding the processes in our galaxy which give rise to the observed power laws
is challenging because of the interconnectivity of all components. Figure 6.1 provides
a schematic illustration of the various couplings in the galaxy which are characterized
by the given power laws. In this galaxy model we consider star formation as the
dominant power source which distributes energy between thermal gas, turbulent
gas, cosmic rays and magnetic fields, such that an order of magnitude equipartition
in energy densities is reached with E ∼ 10−12 erg/cm3. The comparable magnitude
of energy densities provides yet another challenge because all components have the
potential to provide feedback which changes the conditions for the evolution of the
other components and the entire galaxy.

Star formation takes a central role because it converts gravitational and nuclear
binding energy from small scales into radiation, magnetic energy, and kinetic energy
(heat, turbulence, neutrinos, cosmic rays) which are now acting on large scales. On
galactic average most of the power is carried by electromagnetic radiation which
ultimately leaves the galaxy without significant losses. The fraction which becomes
converted into kinetic energy, cosmic rays and magnetic fields can be further trans-
ported and interchanged between these components. Of particular importance are
core collapse supernovae which is the outcome of only a small fraction of all stars
which have sufficient mass. The number of stars per interval in mass is accounted for
by the initial mass function, N? ∼M−2.35, with the power law shape valid for masses
in the range of roughly one to a hundred solar masses. The steepness of this slope
sets the relative amount of core collapse supernovae and therefore determines their
galactic average power contribution. The origin and universality of the initial mass
function can be interpreted as resulting from the density and turbulence properties
of the interstellar gas out of which stars form. Turbulence increases the pressure
support of gas clouds which opposes their self-gravity and thereby acts against star
formation on small scales (interior of gas clouds). On the other hand, turbulence also
creates over-densities which become gravitationally unstable and thereby turbulence
promotes star formation on larger scales (exterior of gas clouds).

Interstellar turbulence can be traced via electron density fluctuations, for which
the power spectrum became known as the Big Power Law in the Sky, characterized
by Eturb ∼ k−5/3, in agreement with Kolmogorov’s hydrodynamical model for homo-
geneous, isotropic and stationary turbulence. Supernovae provide sufficient power in
order to maintain interstellar turbulence at the observed levels and the square of the
turbulent velocity (e.g., velocity dispersion of the gas) tends to correlate with the star
formation rate, v2 ∝ SFR. This observation agrees with the scenario of supernovae
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Figure 6.1: Schematic illustration of our interconnected galaxy model where the interac-
tions between the five major components are characterized by power law relationships. Star
formation continuously provides power which can be distributed among all components which
ultimately leads to an order of magnitude equipartition of thermal pressure, 1.5nkBT , turbu-
lent pressure, 0.5ρv2, magnetic field energy density, B2/8π, and cosmic ray energy density,
ECR =

∫
ENCRdE.

being the main driver behind turbulence provided that the initial mass function is
universal such that the average frequency of supernovae is directly proportional to
the star formation rate. However, other drivers may contribute additionally at an ex-
tent which depends on the length scales under consideration and the location within
the galaxy. The physical mechanisms responsible for dissipating the turbulent en-
ergy cannot be meaningfully discussed within a purely hydrodynamical framework
because the dissipation scale appears to be a lot smaller than the mean free path
of the particles. This suggests the significance of magneto-hydrodynamical waves
for the dissipation of energy on the small scales and multiple potential mechanisms
exist which depend on the local properties of the plasma. Interstellar turbulence
also transfers kinetic energy into magnetic energy via the turbulent dynamo which
is a reasonable explanation for the observed energy equipartition.
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Magnetic fields are omnipresent in the interstellar medium and essential for un-
derstanding processes like dissipation of turbulence, cosmic ray acceleration and
confinement. The origin of the far-infrared–radio correlation, LGHz ∝ LbIR, can be
traced back to star formation being a common cause for both the radio and the
infrared luminosity. However, the tightness of the relationship is surprising because
of the multitude of physical processes that could potentially affect the correlation.
It can be interpreted as a result of turbulent magnetic field amplification where
B ∝ Σ

1/3
SFR. The power law exponent, b, is inferred from the spectral index of the

cosmic ray electrons which are held responsible for contributing the dominant frac-
tion of LGHz via synchrotron emission. A charged particle in perpendicular motion
to a magnetic field experiences the Lorentz force and therefore magnetic fields are
essential for understanding the acceleration and propagation of charges in the inter-
stellar medium.

Cosmic rays are characterized by power law energy spectra over ten orders of
magnitude. The differential number density spectrum, NCR ∝ E−γ, carries informa-
tion about the origin and transport of cosmic rays. For the atomic nuclei among the
cosmic rays two different universality classes can be identified which are character-
ized by γ = 2.7 for primary and γ = 3.0 for secondary cosmic rays. The difference
in spectral index can be understood as an imprint of their different origin and prop-
agation histories. We provide a novel interpretation by applying a nonequilibrium
statistical model, which is called superstatistics, to the AMS data for primary (He,
C, O) and secondary (Li, Be, B) cosmic rays and connect the spectral index to some
effective degrees of freedom of the underlying temperature fluctuations. The model
fits well to the data, however, both interpretation and methodology are discussed
critically. The open questions about cosmic ray acceleration and propagation can-
not be answered satisfactorily within the superstatistical model. The characteristic
temperature scale, T ∼ 200 MeV, in the superstatistical model exceeds the thermal
energies of even the hottest interstellar gas by many orders of magnitude. The argu-
ment that young neutron stars would provide sufficiently high temperatures is not
conclusive. Nevertheless, the energy densities of cosmic rays and warm interstellar
medium are roughly comparable within an order of magnitude, ECR ∼ 1.5nkBT .

Thermal gas in the interstellar medium exists in multiple phases and the warm
medium is too hot to form stars. Star formation occurs only in environments where
the gas is sufficiently cool and dense. The rate at which gas is turned into stellar
mass, can be expressed as a star formation rate surface density which correlates
with the gas surface density as ΣSFR ∝ Σ1.4. It is plausible that star formation
is enhanced by higher gas surface densities but the physical reasons for the given
power law exponent are still uncertain. Additionally, high star formation rates pro-
vide feedback that drive interstellar turbulence, heat and disperse the surrounding
gas, and thereby reduce the star formation rate for the subsequent epoch. This pro-
vides a self-regulation mechanism for star formation which could be to some extent
responsible for the observed overall low efficiency by which gas is turned into stars.

Apparently our galaxy is a highly organized system which is certainly not in a
static equilibrium but could be rather characterized by a dynamical equilibrium.
The energy released from star formation flows through the system in such a way
that the energy densities are brought roughly into equipartition. Future work could
build upon the outlined galaxy model in multiple ways. It would be interesting to
create a numerical implementation where the individual components are coupled in
such a way that the given power law relationships and equipartition conditions are
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valid. This could enable to investigate the stability properties of the system and its
sensitivity to changes in the power law exponents. Additionally, the model could
be expanded to include other important properties of the galaxy as for example the
gravitational energy. More generally the openness of the system should be included
because in reality a galaxy is embedded in an environment with which it interacts
and exchanges mass and energy. Not only electromagnetic radiation but also cosmic
rays, gas and dust can leave the galactic disk, propagate through the galactic halo
or even reach out the intergalactic medium. Furthermore, gas accretion onto the
galactic disk is relevant for both star formation and interstellar turbulence.

In summary, power laws are typical signatures for complex systems in general and
therefore also discovered for many observables associated with our galaxy. Under-
standing the origin of a given power law relationship is challenging because usually
there are various models which produce the same result. In order to rule out a
particular model one could therefore consider the implications it has on other ob-
servables. Further research in this direction would allow for a better understanding
and modeling of the galaxy as a dynamical and self-regulating system. Conceptually
this could be understood as a transition from doing galactic architecture to doing
galactic ecology.
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