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Summary

Networks encode relational structures between entities that do not generally abide by the con-
ditional independence assumption employed in most statistical models. In particular, network
analysis has gained traction in the past decades in the Social Sciences, where many applications
originate. This cumulative dissertation is dedicated to studying dynamic networks with a focus
on applications within the Social Sciences. The thesis is divided into four parts, with the first
part providing the background on the contributing manuscripts and putting them into a general
context. Each subsequent part is composed of two articles.

More specifically, the second part provides an overview of methods to model dynamic networks
as well as a substantively meaningful example of using dynamic networks as covariates to study
infections during the first wave of the COVID-19 pandemic. The first article introduces two mod-
eling frameworks, one based on Markov chains to study networks observed at discrete time points
and another one building on counting processes if the network is continuously monitored in a
fine-grained temporal resolution. We showcase the available methods, software implementations,
and their applicability and interpretation for each framework by two data examples. The sec-
ond article uses dynamic spatial and weighted networks as covariates to investigate how regional
mobility and social connectivity affect COVID-19 infections in Germany.

The third part focuses on studying networks observed at discrete points in time as the outcome
of a Markov chain. In the first article encompassed in this part, building on the theorization and
description of signed networks, starting with the structural balance theory of Heider (1946), and
the Temporal Exponential Random Graph model of Hanneke et al. (2010) the Signed Exponential
Random Graph Model (SERGM) for the study of dynamic signed networks is introduced. With
the theoretical foundation of structural balance theory in mind, novel simultaneous statistics are
proposed that provide better performance than operationalizing them by lagged covariates, as
commonly done by other authors. The second article examines the co-inventorship of patents
viewed as a bipartite network. Here one mode comprises the inventors, and the second mode is
composed of all patents on which the inventors collaborate. In particular, we propose a bipar-
tite variant of the TERGM with varying actor compositions, differentiating between inventors
that already submitted patents and those that did not while accounting for pairwise statistics of
inventors.

Finally, in the fourth part of the dissertation, we analyze event data observed in continuous and
discrete time. Within the first article, a tie-oriented model for longitudinal event network data is
proposed to explore the international trade of combat aircraft. Motivated by the observation that
automated or human-coded events often suffer from non-negligible false-discovery rates in event
identification, the second article offers the Relational Event Model for Spurious Events (REMSE)
as a flexible solution for modeling data while controlling for spurious events. Moreover, it is
possible to use the REMSE to assess the robustness of any Relational Event Model specification
for the studied event data.





Zusammenfassung

Netze kodieren Beziehungen zwischen Akteuren, welche im Allgemeinen nicht bedingt unabhängig
voneinander sind. Diese Annahme liegt den meisten statistischen Modellen zugrunde. In dem
Großteil der praktischen Anwendungen ist es natürlich, Netzwerke als sich im Laufe der Zeit
entwickelnde Systeme zu betrachten. Vor allem in den Sozialwissenschaften, wo viele Anwen-
dungen ihren Ursprung haben, hat die Netzwerkanalyse in den letzten Jahrzehnten an Bedeutung
gewonnen. Diese kumulative Dissertation beschäftigt sich mit der Untersuchung von dynamischen
Netzwerken mit einem Schwerpunkt auf Anwendungen in den Sozialwissenschaften. Die Arbeit
ist in vier Teile gegliedert, wobei der erste Teil den Hintergrund zu den Beiträgen liefert und diese
in einen allgemeinen Kontext einordnet. Jeder weitere Teil besteht jeweils aus zwei Artikeln.

Im zweiten Teil wird nach einem Überblick über Methoden zur Modellierung dynamischer Net-
zwerke ein aussagekräftiges Beispiel für die Verwendung dynamischer Netzwerke als Kovariaten
zur Untersuchung von Infektionen während der ersten Welle der COVID-19-Pandemie vorgestellt.
Der erste Artikel stellt zwei Modellierungsverfahren vor, eines auf der Grundlage von Markov-
Ketten zur Untersuchung von Netzwerken, die zu diskreten Zeitpunkten beobachtet werden, und
ein anderes, das auf Zählprozessen basiert, wenn das Netzwerk kontinuierlich in einer feinkörnigen
zeitlichen Auflösung beobachtet wird. Anhand von zwei Datenbeispielen werden die gebotenen
Methoden, Softwareimplementierungen sowie deren Anwendbarkeit und Interpretation für die bei-
den Verfahren vorgestellt. Der zweite Artikel nützt dynamische und räumliche Netzwerke, sowie
solche mit gewichteten Kanten als Kovariaten, um zu ermitteln, wie regionale Mobilität und soziale
Konnektivität die COVID-19-Infektionen in Deutschland beeinflussen.

Der dritte Teil konzentriert sich auf die Untersuchung von Netzwerken, die zu diskreten Zeitpunk-
ten als Ausgang einer Markov-Kette untersucht werden. Der erste Artikel dieses Teils baut auf
der Theoretisierung und Beschreibung von Netzwerken mit positiven und negativen Kanten auf.
Basierend auf der strukturellen Balancetheorie von Heider (1946) und dem Temporal Exponential
Random Graph Model von Hanneke et al. (2010) wird das Signed Exponential Random Graph
Modell (SERGM) zur Untersuchung dynamischer Netzwerke mit positiven und negativen Kanten
vorgestellt. Auf der theoretischen Grundlage der strukturellen Gleichgewichtstheorie werden si-
multane Statistiken vorgeschlagen, die eine bessere Performanz bieten als die Operationalisierun
von anderen Autoren. Der zweite Artikel untersucht die Ko-Erfinderschaft von Patenten als bipar-
tites Netzwerk. Dabei besteht das erste Set von Akteuren aus den Erfindern, das zweite aus den
Patenten, an denen die Erfinder zusammenarbeiten können. Dabei wird eine bipartite Variante des
TERGM mit einer sich ändernden Akteurszusammensetzung eingeführt, welche zwischen Erfind-
ern, die bereits Patente angemeldet haben, und solchen, die dies nicht getan haben, unterschieden
wird. Gleichzeitig werden paarweise Statistiken der Erfinder berücksichtigt.

Im vierten Teil der Dissertation werden schließlich Eventdaten analysiert, die in kontinuierlicher
und diskreter Zeit erfasst wurden. Der erste Artikel schlägt ein verbindungsorientiertes Mod-
ell für longitudinale Eventdaten vor, um den internationalen Handel mit Kampfflugzeugen zu
beschreiben. Motiviert durch die Beobachtung, dass automatisierte oder menschlich kodierte
Events oft zu falsch-positiven Events führen, bietet der zweite Artikel das Relational Event Model
for Spurious Events (REMSE) als flexible Lösung für die Modellierung von Daten unter Kontrolle
von diesen fehlerhaften Events. Darüber hinaus ist es möglich, das REMSE zu verwenden, um die
Robustheit einer beliebigen Spezifikation des REMs zur Modellierung von bestimmten Eventdaten
zu überprüfen.
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Part I.

Introduction and Background





1. Overview

“As statisticians, we should know what we are talking about and should care that
what we say is true, in the sense of agreeing with phenomena in the real world. If we
statisticians are to become statistical scientists we must become thoroughly familiar
with the processes of science.”

J. A. Nelder

This quote by Nelder (1999, p. 258) highlights the vital connection between statistical models
and real-world phenomena. To ensure that statistical models mirror real-world phenomena, we
have to “play in everyone’s backyard” as John Wilder Tukey put it so famously. Kass (2011) even
argued for substituting the classical view of statistical inference based on drawing inference from
a sample on some unreachable population for a “pragmatist” view trying to best align the “real”
and “theoretical world”, which can be seen as synonyms for the words where statistical models
and real-world phenomena live in. Along these lines, one might describe the statistician’s job as a
process starting with the collection of data and the theories posed within the respective substantive
sciences. Consecutively, we formalize this data and theory with the help of mathematical objects.
In this “theoretical world” (Kass, 2011), we define a statistical model which is characterized by
random variables and parameters that we can, in turn, estimate from the observed data. In the
last step, we trace the estimated parameters back to a substantially meaningful interpretation. As
described in Box (1976), this process is iterative and model criticism is used to ascertain whether
the model is a good fit to the observed data or if further loops, i.e., changes to the model itself or
its specification, are required. This dissertation consists of six manuscripts with the aim to show
how “statistics” or “statistical science” (as Nelder, 1999 would have put it) can assist in analyzing
data collected in the Social Sciences. The type of data we are predominantly concerned with is
network data, as “networks are ubiquitous in science and have become a focal point for discussion
in everyday life”(Goldenberg et al., 2010, p.129). Most networks are also emergent of a dynamic
process and seldom are inherently static since “[e]very social fact is situated, surrounded by other
contextual facts and brought into being by a process relating it to past contexts" (Abbott, 1997,
p.1152). Therefore, our main focus lies on the analysis of temporally evolving networks.

The Perspective of Social Network Data Analysis Network data analysis in the Social Sciences
has gained traction in the past decades (Borgatti et al., 2009). The field can be traced back to
Moreno (1934), who investigated the remarkably high number of runaways of students from a girl
school. During this project, he raised concerns about the independence of each separate runaway
and introduced the “sociogram”, which later evolved into graph drawing and the adjacency ma-
trix, to uncover that the embedding of the girls in a social space leads to clustered outbreaks.
Suppose one were to apply standard statistical models, e.g., logistic regression, to the binary
indicator of whether a specific girl ran away or not. Moreno’s theory violates the conditional
independence assumption inherent to the classic regression model, rendering its mere application
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1. Overview

questionable. This observation embodies a core concept of the social network perspective in that
attributes of individuals of a study are not viewed as autonomous but “arising out of structural
or relational processes” (Wasserman and Faust, 1994, p.7). As a result, the central differentiating
characteristic of network theories is that the relations between the studied subjects are a vital
part of them. More abstractly, the question Moreno (1934) brought up can be stated as follows:
How is individual behavior affected by the behavior of other actors in the same network and the
network itself? A term coined in the Social Sciences for this type of mechanism are “influence”
processes, whereas “selection” concerns processes in which behavior affects the relations between
actors in the network. We are, therefore, also interested in studying how a particular network
can be the product of endogenous and exogenous factors. These two types of canonical problems
tackled in social network analysis provide a clear division visible in the whole thesis.

Statistical Network Analysis From the statistical perspective, the data example of Moreno
(1934) leading to the area of sociometry and later social network analysis requires methods that
adequately account for interdependencies between the studied relationships. While dependencies
are often treated as technical issues when applying statistical models in, e.g., longitudinal settings
(Zeger and Qaqish, 1988), understanding instead of merely controlling for these dependencies is
core to network theories as well as the statistical network analysis methods used to test hypotheses
originating from these theories (Robins and Pattison, 2005). In a series of articles (Goldenberg
et al., 2010; Kim et al., 2018; Butts, 2008) and books (Kolaczyk, 2009, 2017; Kolaczyk et al., 2009;
Cranmer et al., 2021; Carrington et al., 2005), thorough treatments of these methods as well as
general introductions to the field are provided. Under the risk of oversimplification, one can dif-
ferentiate these modeling endeavors along one dimension measuring how explicit the dependence
between relations is stated in the model. On the one end of this spectrum is the Exponential Ran-
dom Graph Model (ERGM,Robins et al., 1999), where the dependence assumptions are precisely
stated and interwoven with the model specification. In the other limit case we get the Graphon
model (for an introduction see Sischka and Kauermann, 2022), leading to a nonparametric rep-
resentation of very complex structural patterns. Latent Space Models (Hoff et al., 2002), Infinite
Relational Models (Kemp et al., 2006), Infinite Feature Models (Miller et al., 2009), p2 Models
(van Duijn et al., 2004), and Stochastic Actor-oriented Models (Snijders, 1996) can be placed
somewhere between those two poles. While the books by Lusher et al. (2012) and Carrington
et al. (2005) cover the ERGM, we refer to Matias and Robin (2014) and Kim et al. (2018) for an
introduction to models based on node-specific latent variables.

Outline of the Introduction Within the first part of this dissertation, we provide an overview of
this statistical toolbox of models for dynamic networks forming the foundation for the contributed
manuscripts. In Chapter 2 we focus on two different mathematical formalizations of networks and
show how they allow the representation of a taxonomy of networks and, in general, systems of
interrelated entities. For dynamic networks, the settings differ in that we either observe the tem-
poral networks only at specific time points or continuously in time. In the next step, Chapter 3
introduces approaches to model networks in the two respective settings. For the former situation,
Section 3.1 focuses on Exponential Random Graph Models (ERGM, Robins et al. 1999), as this
model class provides a unified and flexible framework for testing and modeling complex depen-
dencies with theoretical underpinnings of the available exponential family theory (Schweinberger
et al., 2020; Barndorff-Nielsen, 1978). Conversely, Section 3.2 covers the framework for events
introduced by Butts (2008) for the latter setting. Besides modeling the relations in networks

2



themselves, the second canonical task in social network analysis is to detect how actor attributes
are affected by networks, which we cover in Chapter 4. To conclude, attention is drawn to some
open issues that can serve as the basis of future research. In summary, the goal of the introduc-
tion is to provide the means to carry out the statistician’s task outlined above applied to network
data.
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2. Formalization of Network Data

Following the seminal work of Moreno (1934) a novel scientific area called “sociometry” arose and
sociologists (Granovetter, 1973) and anthropologists (Bott, 1957) started to use matrix algebra to
formalize these network effects, eventually accumulating in what is now known as “social network
analysis” (Wasserman and Faust, 1994). For this chapter, we build on this work and introduce
a framework to represent network data as mathematical objects, based on which the statistical
models introduced in subsequent chapters are defined. In Section 2.1 we present a formalization for
network data in which the relationships are temporally extensive, and entire networks are observed
at specific points in time. Section 2.2 instead suggests a framework to represent interactions by
counting processes.

Some notational remarks; we use upper case letters for random variables, X, lower case letters
for their observation, x, calligraphic letters for sets, intervals or tuples, X , and write the letters
in bold if they are matrices or vectors, x.

2.1. From Networks to Graphs

Graphs and Networks In general, the term “networks” describes “an abstract concept referring
to a system of interrelated entities” (Crane, 2018), while “graphs” are defined as particular math-
ematical objects used to represent certain characteristics of a “network”. After obtaining some
network measurements, one can formalize the network as a graph. Formally, a graph G = (V, E)
consists of two sets: V = {1, ..., N} is the set of actors for N actors (also called vertices or nodes
in the literature), while E = {(i1, j1), ..., (iM , jM )} ⊆ P = {(i, j); i, j ∈ V} with |E| = M is the
set of M observed edges or ties. We call each element in P a “pair” or “relation”. When working
with multiple graphs simultaneously V(G) denotes the actor labels and E(G) the edges of graph
G. Examples of what those two sets can represent are provided over the course of this section.
If (i, j) ∈ E ⇒ (j, i) ∈ E ∀ i ̸= j with i, j ∈ V holds, the corresponding graph is “undirected”,
while it is otherwise “directed”. Put differently, for “directed” graphs, the order of actors carries
additional information, while this is not the case for “undirected” graphs. If not stated otherwise,
self-loops cannot be observed, i.e., ∀ i ∈ V, (i, i) /∈ E . Mathematically, we can express a graph by
its “adjacency matrix” y = (yij)i,j=1,...,N where the entries are given by

yij =
{

1, if (i, j) ∈ E
0, else

(2.1)

Let Y denote the set of all possible adjacency matrices between M actors that could be potentially
observed. Henceforth, we refer to graph G by y. Returning to the example of Moreno (1934) on
runaways in the Hudson School for Girls, the set V = {1, ..., 44} encompasses N = 44 girls in the
school, and the M = 71 edges in E are directed and represent feelings of attraction between these
girls. For unconstrained directed networks without loops of 44 actors, the size of Y is 244(44−1),
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2. Formalization of Network Data

Figure 2.1.: Network indicating the feelings of attraction between pupils at Hudson School for Girls. The
color of nodes is red if the respective girl was among the runaways and black otherwise. Additionally, the
rectangles represent the cottages in which the girls lived. The size of the nodes is given by the sum of in-
and out-degree. This figure is inspired by Figure 1 in Borgatti et al. (2009).

which is already astronomically large. Graph drawing helps to visualize the network on a two-
dimensional plane by, e.g., applying algorithms proposed by Fruchterman and Reingold (1991)
or Brandes and Pich (2007). Figure 2.1 depicts the network emerging from feelings of attraction
between pupils at Hudson School for Girls, where pupils are represented as nodes and attraction
between them as directed edges.

Descriptive Network Statistics This basic notion of graphs already allows to measure abstract
concepts such as centrality and cohesion. To begin, one may quantify centrality on the level of
actors in a directed graph as their in- and out-degree. The degree statistics are in the case of

6



2.1 From Networks to Graphs

directed networks given by the number of in- and out-going ties, respectively, and can be stated
in terms of y for actor i and i = 1, ..., N :

si,Out(y) =
∑

j ̸=i

yij

si,In(y) =
∑

j ̸=i

yji.
(2.2)

The related total degree of this actor i is given by stotal
i (y) = si,Out(y)+si,In(y), which is captured

by the size of the nodes in Figure 2.1. Freeman (1978) proposed a general technique to aggregate
this type of micro level centrality index to the macro level and hence characterize the whole
adjacency matrix y. Let SOut(y) = max

i=1,...,N
si,Out(y) be the maximum out-degree, then the out-

degree centrality of y is given by:

sOut(y) =
∑N

i=1 |SOut(y) − si,Out(y)|
max
ỹ∈Y

∑N
i=1 |SOut(ỹ) − si,Out(ỹ)|

. (2.3)

For this type of degree measure for directed graphs, the network ỹ in the denominator is the star
graph in which only one actor has outgoing edges to all other actors; hence the denominator can
be reduced to (N − 1)2. By substituting si,Out(y) with any other actor-level measure, such as
si,In(y) or si,Total(y), we obtain a rich class of “centrality” indices. Next to centrality, proposals
to quantify the formation of cohesive subgroups are of vital interest in social network analysis.
Cohesive subgroups are subsets of actors in V among whom many edges are observed (Wasserman
and Faust, 1994). The extent to which the entire graph is connected may be measured by counting
the number of edges in y,

sEdges(y) =
∑

i,j

yij = M, (2.4)

which, when normalized with the number of pairs, that is N(N − 1) for directed graphs, yields
the density of y. Based on the work of Luce and Perry (1949), we can further count the number
of transitive triangles leading to the global clustering coefficient given by

sTrans(y) ∝
∑

i,j,k

yijyihyhj . (2.5)

Normalizing (2.5) with the number of observed two-paths ∑
i,j,k yihyhj , we get the clustering

coefficient, which can also be viewed as the percentage of closed two-paths among all two-paths.
For the network depicted in Figure 2.1, the density, i.e. proportion of realized edges, is 0.04 and
the clustering coefficient 0.03 indicating a relatively sparse graph without a strong tendency to
close triangles.

Data on the Edge, Pair and Node Level In most applications involving network data, auxiliary
information is available one wants to incorporate into this framework. To represent data on the
edge level, we define the set {we}e∈E . Graphs in which this information is present are often called
“weighted graphs”; thus we is the weight of edge e. One instance for a weighted graphs results from
the network comprising federal districts of Germany as nodes in which weighted edges indicate
the proportion of Facebook friendships between users located in the respective districts, which we

7



2. Formalization of Network Data

Patents

Inventors

Figure 2.2.: Illustrative example of a bipartite network structure, where one mode consists of patents and
another mode of inventors.

use in Chapter 7. Further, “signed graphs” are particular graphs studied in Chapter 8, where the
edges can either be positive or negative; thus we ∈ {+, −} holds. Sometimes, we are given further
data {xij}i,j=1,...,N or {xi}i=1,...,N for each pair or actor in V, respectively. Often the latter type
of data is termed nodal attribute or behavior. In the running example, these include the binary
indicator of whether a girl ran away and the cottages where each girl lived. The color of the actors
in Figure 2.1 conveys whether or not a girl ran away, and the rectangles provide information on
the cottages in which they resided.

Bipartite Networks It is often not possible to observe the complete set of edges in the network.
One common example where the restriction of observable ties has a particular structure are bipar-
tite networks1, where there are two types of actors, and edges are only possible between different
types of actors. Hence V can be split into V1 and V2, and the space of possible ties is restricted toE
where E ⊆ {(i, k); i ∈ V1, k ∈ V2} holds. In Chapter 9, we investigate the driving forces behind
collaboration and innovation through bipartite networks of inventors and patents. Thus, inventors
are included in the set of actors in the first mode V1, while the patents make up the set of actors
V2 from the second mode. Figure 2.2 provides a schematic representation of such graphs, where
inventors are labeled from A to D and patents from Id 1 to 4. For instance, inventors A and D
jointly author the patent Id 1.

Temporal Networks If one were to observe the year of submission for each patent, one could
include this information as an additional actor mode leading to a tripartite network. The resulting
network can be understood as a particular case of a temporal network in which the actors of the
second mode (patents in the example above) are only active during one snapshot of the network.
In the more general setting, temporal networks are observed at discrete points in time 1, ..., T
and represent them as separate adjacency matrices for each step, i.e., y1, ..., yT . Technically, the
actor sets V1, ..., VT can vary over time as well. Instances of temporal networks appearing in this
thesis include the international trade of Major Conventional Weapons in 2016 and 2017 studied in
Chapter 6 and the signed network consisting of Defense Cooperation Agreements (Kinne, 2020)
and Militarized Interstate Disputes (Palmer et al., 2015) between 2000 and 2010 from Chapter 8.

1Alternative names used in the literature for bipartite networks are two-mode or affiliation networks.
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2.2 From Interactions to Counting Processes

These examples also clarify that actors in a network are not necessarily individuals but may be
conglomerate entities, i.e., countries.

2.2. From Interactions to Counting Processes

Another characteristic of relations observed over time is their duration, i.e., how long they are
active. Within the longitudinal setting of Section 2.1, relationships are implicitly assumed to be
lasting at least for the time between each observation (Butts and Marcum, 2017). This simultane-
ity enables the states of pairs to be codependent and follows from a certain temporal extensiveness
forming the basis of the presented “graph-as-networks” paradigm (Crane, 2018). However, if the
duration of the studied relations becomes shorter, ties become actions, whereby the classic net-
work structure becomes elusive and unstable. Ties, as conceptualized in Section (2.1), cannot be
classified into being present and absent anymore but emerge from event recurrences. These recur-
rences are deduced from observed event sequences, where time is observed on a continuous scale
(Vu et al., 2017). Data that behaves in this manner is increasingly available due to the automated
collection of network data on social platforms and sensory data (Lazer et al., 2009). To represent
such network data, an alternative formalization based on counting processes and relational events
can be used. Following Fritz et al. (2020) and Fritz et al. (2021), we use the temporal indicator t
if the temporal scale is discrete and t̃ if it is continuous.

Relational Events The main building block representing such data is the “relational event”,
which we denote by the tuple a = (i, j, t̃). Butts (2008) coined this term to encode pairwise
actions, which we observe in a stream of M events M = {a1, ..., aM }. For m = 1, ..., M , the mth
entry am of A provides information about an event from actor im ∈ S ⊆ V to actor jm ∈ R ⊆ V
at time point t̃m ∈ T . For the settings covered in this dissertation, it suffices to only regard events
without loops, i.e., im ̸= jm holds for m = 1, ..., M . The observational period T is assumed to span
from 0 to the exogenously determined time point τ with t̃1 = 0 and t̃m = τ , although relaxations
are straightforward where needed. In most cases, the event times are not time clustered; thus,
all event times are unique, and the events in A are ordered chronologically, i.e., t̃m < t̃m+1 for
m = 1, ..., M . One example for event data are 21,635 emails sent between 1998 and 2002 among
156 coworkers of the Enron corporation investigated in Perry and Wolfe (2013). Here, an event
represents a sent mail from coworker i to an associate j at time point t̃. Similarly to Section
2.1, an event is “directed” if the order of sender and receiver provides additional information
and “undirected” otherwise. In the latter case, events are restricted such that i < j holds. For
instance, for Chapter 10 the deliveries of combat aircraft directed from one particular country i to
another country j in year t̃ are examined. In contrast, we study undirected combat events between
rebel groups and state-based actors that occurred in the Syrian civil war in Chapter 11.

Characteristics of Events Weighted events with discrete or continuous weights can be repre-
sented by appending the value w to the event a. To give an example for discrete weights, Salathé
et al. (2013) study the spread of positive and negative sentiments towards a novel vaccine expressed
by tweets2, whereas Lerner et al. (2013) and Brandes et al. (2009) model political events with
continuous weights in the interval [-10,8.3] provided by the Kansas Event Data System (Schrodt

2One can also regard these observations as “signed” events.
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2. Formalization of Network Data

et al., 1994). As already stated, events are, for the most part, assumed to be instantaneous;
hence their duration is negligible. However, for enduring relationships, one can describe with a
categorical weight w the start and end of a relationship by two different event types as discussed
in (Stadtfeld et al., 2017). In the context of this dissertation, the analysis of pairwise events ,
i.e., events encompassing exactly one sender and receiver, is of particular interest. However, more
complex scenarios with set-valued senders and/or receivers are covered in Perry and Wolfe (2013),
Lerner et al. (2021) and Lerner and Lomi (2022). One example for such data is the original set-
ting of the Enron mail events mentioned above, where the number of receivers of an email can be
greater than one.

Exogenous Information Further information exogenous to the events is often available on the
level of the pair or the node, which is denoted by the corresponding sets {xij}i,j=1,...,N and
{xi}i=1,...,N . To give an example, Chapter 11 studies the co-location events in university housing
while incorporating self-reported friendships between students as pairwise and the floor on which
they live as nodal information.

Counting Processes Similar to the adjacency matrix from (2.1), all pairwise events can be
represented in a matrix-valued counting process, whose state at t̃ ∈ T is:

N(t̃) = (Nij(t̃)|i, j = 1, ..., N), (2.6)

where Nij(t̃) counts how many events have been observed between actors i and j in [0, t̃). Con-
trasting (2.1), the entries of (2.6) are positive integers. After observing event a = (i, j, t̃), the
corresponding entry in N(t̃) would increase by one, i.e. Nij(t̃) + 1 = Nij(t̃ + h) for h ↓ 0. Thus,
we assume that, in general, the realized counting process in T is right-continuous with left-hand
limits (Aalen et al., 2008). To accommodate for settings with a changing set of actors, we define
the risk set encompassing all pairs at time t̃ between which an event can happen by U(t̃). The risk
sets can change at all time points where events are observed, i.e., t̃1, ..., t̃m, if they are exogenous
to the stochastic events. These compositional changes occur in several settings, e.g., when certain
actors drop out early, or in the application of Chapter 10, when countries can start but also stop
existing. For completeness, let U = ⋃M

m=1 U(t̃m) be the set of all possible relations. One way
to guarantee the restriction to events without loops is to exclude the respective events from U .
Further we establish H(t̃) = {N(u); u < t̃} as the entire past of the counting process from time
point 0 up to but not including t̃. For brevity in notation, covariate processes of exogenous co-
variates resulting from the pairwise and nodal characteristics of events introduced in the previous
paragraph are implicitly incorporated in H(t̃).
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3. Network Models

Returning to the statistician’s job described in Chapter 1, the step following the formalization
of available data is modeling it within the constructed “theoretical world”. In Chapter 3, we
introduce network models as probabilistic models for the data generating process of network data,
while models for actor attributes are covered in Chapter 4. To start, Section 3.1 discusses ERGMs
as a general family of models for network data that can be viewed from the graphs-as-networks
perspective from Section 2.1. Next, Section 3.2 proposes REMs as a flexible solution for modeling
event data detailed in Section 2.2.

3.1. Exponential Random Graph Model

Our first aim is to formulate a probabilistic model for the network Y parameterized by θ abiding
particular dependency between the studied relations. This model can be used to empirically test
network theories that posit a particular dependency structure in the network while controlling for
alternative structural mechanisms and exogenous information. Further, we would like to assess
multiple competing theories simultaneously and use model selection criteria as a vehicle to decide
between different specifications based on empirical evidence in the observed network. Moreover,
by assuming that y is the outcome of a stochastic process, we recognize that there is a certain
structure in the network constraining the randomness of pairwise relations. Since Section 2.1
provides means to represent a whole taxonomy of networks, the proposed model should not be
limited to static and binary networks. To achieve all these goals, we introduce the ERGM as
a regression for network data (Lusher et al., 2012). Since the historical roots of ERGMs lie in
the p1 model proposed in Holland and Leinhardt (1981), some literature uses the alternative
name p∗ for the ERGM to signal that it generalizes the p1 model (see Wasserman and Pattison,
1996, Robins et al., 1999,Pattison and Wasserman, 1999, or Wasserman et al., 2007). Next, we
introduce dependence graphs to flexibly formulate dependencies between relations. Based on a
predefined form of dependence, one can subsequently derive a distribution over adjacency matrices
of binary and static networks. Subsequently, we discuss issues of interpretation of the parameters,
degeneracy, and estimation. Finally, we generalize the model class to bipartite and temporal
network data, because Chapters 6, 9, and 8 make use of and extend these models.

Dependence Graph Our aim is to specify a probabilistic model for the random variable Y =
(Yij)i,j=1,...,n, where each contained random pair might be conditionally dependent on other pairs.
To formalize this dependency, we introduce the dependence graph3 D, where V(D) consists of
all pairs, i.e., {Yij ; i ̸= j and i, j = 1, ..., n}, and the edges in E(D) translate to a conditional
dependence structure. If there is an edge between the nodes Yij and Yhk, the corresponding
pairs depend on one another conditional on the rest of the network. Conversely, this means

3Note that the closely related literature on graphical models calls this graph the “independence graph”.

11



3. Network Models

Figure 3.1.: Visualization of pairs between three actors (a) and the dependence graphs representing the
dyad-independent (b) and Markov-dependence (c).

(Yij , Yhk) /∈ E(D) if and only if Yij ⊥ Yhk holds conditional on all other pairs in Y (Lauritzen,
1996). We define a subgraph of D to be a graph where V(D) ⊆ V(C) and E(D) ⊆ E(C) holds and a
“clique” C to be a subgraph of D in which all possible edges are observed. In other words, cliques
are subsets of nodes in D that are assumed to be mutually dependent. For completeness, let A be
the set of all cliques in D, which can be identified for any graph. The importance of this object
will become clearer in the ensuing paragraph.

In general, dependence graphs are assumed to be undirected, nonrandom, and known, although
the assumption of undirectedness is relaxed when exogenous covariates are included (see Robins
et al., 2001). What dependence assumptions are reasonable is seldom self-evident and posits one
of the main challenges when modeling networks, since too simple assumptions often imply an un-
realistic data generating process while too complex assumptions can lead to unstable models and
also be unrealistic for larger networks. An example of the specification of an ERGM for a larger
network is provided in Chapter 9. We here provide increasingly complex examples of common
dependence assumptions to guide this process and refer to Robins et al. (2007) for additional
information on the topic. The iid regime, which most statistical models abide, forms the simplest
dependence assumption called the Bernoulli assumption, where no edges are in E(D) = ∅. Under
the dyad-independent assumption, each pair also depends on its reciprocal value (Holland and
Leinhardt, 1981). Beyond dyadic-dependence, Frank and Strauss (1986) proposed Markov depen-
dence graphs, where pairs are assumed to be independent if they do not share an actor, i.e., Yij is
conditionally independent of Yhk if {i, j} and {h, k} are disjoint sets. Figure 3.1 illustrates these
two types of dependence graphs together with all possible pairs between three actors. In recent
years, more complex dependency structures, such as partial conditional dependence (Pattison and
Robins, 2002) or conditional dependence (Snijders et al., 2006; Hunter and Handcock, 2006), were
proposed in the literature.

Model Formulation Given the dependence graph D, the Hammersley-Clifford theorem (Ham-
mersley and Clifford, 1971; Besag, 1974) establishes the joint distribution of all pairs in Y in the
following form:

Pθ(Y = y) = exp{∑
C∈A sC(y)θC}∑

ỹ∈Y exp{∑
C∈A sC(ỹ)θC} , (3.1)

12



3.1 Exponential Random Graph Model

Figure 3.2.: Visualization of all sufficient statistics incorporated in the p1 model. Circles represent actors
and lines edges, arrow heads indicate the direction of the ties.

where the “sufficient statistics” are

sC(y) =
∏

(i,j)∈E(C)
yij

and θC for all C in A are the “natural parameters” determining the distribution (Frank and Strauss,
1986). On one hand, the Hammersley-Clifford theorem establishes the missing link between the
dependence graph D and the joint probability distribution of all pairs in Y and, on the other
hand, guarantees that one only has to worry about the set of cliques in D as they are the sufficient
statistics of model (3.1). Additional information on the derivation of ERGMs based on dependence
graphs is provided in Wasserman and Robins (2005) and Robins and Pattison (2005), while Casella
and Berger (2001) supplies a formal background on the concept of statistical sufficiency.

To make the abstract form of (3.1) concrete, consider the example of modeling a network with
3 actors under the the dyadic-independence assumption illustrated in Figure 3.1 (b). For this
example, the set of cliques consists of each single pair and the three sets of reciprocal
pairs, thus A = {{Y12}, {Y21}, {Y23}, {Y32}, {Y13}, {Y31}, {Y12, Y21}, {Y23, Y32}, {Y31, Y13}} and ap-
plying (3.1) gives

Pθ(Y = y) ∝ exp{θ12y12 + ... + θ31y31 + θ12−21y12y21 + θ23−32y23y32 + θ31−13y31y13}. (3.2)

Since model (3.2) includes 9 parameters to be estimated, it is not identifiable given a single realized
network y which only consists of 6 pairs. Note that heuristically the dependence between pairs
translates to less information we can draw from a single realization of one pair from a larger
network, thus determining the effective degrees of freedom of a network is still subject of current
research (Krivitsky and Kolaczyk, 2015). To still obtain a parsimonious model, we assume that a
priori all actors in the networks are indistinguishable from one another, which can be represented
by a “homogeneity condition” yielding

θij = θi,Out + θj,In + θEdge (3.3)

for i ̸= j and

θ12−21 = θ23−32 = θ31−13 = θReci.
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3. Network Models

We refer to Robins and Pattison (2005) and Frank and Strauss (1986) for a more technical and
general definition of the “homogeneity condition” based on isomorphic graphs. Under these con-
straints, (3.2) simplifies to:

Pθ(Y = y) ∝ exp



θEdge

∑

i ̸=j

yij +
N∑

i=1
θi,Out




N∑

j=1
yij


 +

N∑

i=1
θi,In




N∑

j=1
yji


 + θReci

∑

i ̸=j,i<j

yijyji





= exp
{

θEdgesEdges(y) +
N∑

i=1
θi,Outsi,Out(y) +

N∑

i=1
θi,Insi,In(y) + θRecisReci(y)

}
. (3.4)

Model (3.4) was first derived by Holland and Leinhardt (1981) as the p1 model and its sufficient
statistics are illustrated in Figure 3.2. Frank and Strauss (1986) carry out a similar exercise for
the Markov dependence for undirected graphs (shown in Figure 3.1 (c) for directed networks) to
derive that the sufficient statistics are counts of k-star configurations for k = 1, ..., N − 1, which is
a subgraph where one actor is connected to k − 1 other actors, and triangles. The latter statistic
is stated in (2.5). In general, note that also the sufficient functions in (3.4) were already defined
as global descriptive statistics in (2.2) and (2.4).

Ensuing from this observation, we can define the ERGM the other way around and hence determine
the sufficient statistics implying a specific dependence and homogeneity assumption. Generally,
this view on ERGMs is more widespread, and Robins et al. (1999) introduced the model in the
following convenient representation:

Pθ(Y = y) = exp{θ⊤s(y)}
κ(θ) (3.5)

where

• θ ∈ Rp is a p-dimensional vector of natural parameters;

• s: Y → Rp is a function calculating the vector of p natural sufficient statistics for any network
in Y. As detailed in the previous paragraph, it determines the form of dependence between
the pairs in the network. Note that in addition to endogenous statistics capturing specific
structural patterns, we can incorporate exogenous in the sufficient statistics as detailed
underneath;

• κ(θ) = ∑
ỹ∈Y exp{θ⊤s(ỹ)} is a normalizing constant, which is sometimes also called the

partition function, to ensure that (3.5) sums up to one over all y ∈ Y.

Note that (3.5) is a canonical exponential family model with known properties that guarantee
meaningful inference and guide estimation procedures (see Barndorff-Nielsen, 1978 for a general
introduction to exponential families and Chapters 9 and 8 for details on this particular topic).
Building on the expression that “all roads lead to Rome”, we point out that one can also end
up with the specific form of (3.5) from the perspective of mechanical physics. In particular, one
can comprehend (3.5) as the solution to an optimization problem in the space of all possible
probability distributions, where we want to maximize the Gibbs entropy subject to the constraint
that the expectation of the sufficient statistics needs to be equal to their observed value (Park
and Newman, 2004).
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3.1 Exponential Random Graph Model

We can also incorporate exogenous statistics in the sufficient statistics s(y) on the level of the
pairs or nodes by including statistics in the following form

sPair(y) =
∑

i ̸=j

yijxij . (3.6)

For categorical and continuous nodal attributes one can define xij in (3.6) for i ̸= j through

sNodematch(y) =
∑

i ̸=j

yijI(xi = xj)

sNodeabs(y) =
∑

i ̸=j

yij |xi − xj |,

to, e.g., test whether there is the tendency for homophily or heterophily in the network (McPherson
et al., 2001). The theoretical underpinning with corresponding dependence graphs to incorporate
exogenous variables is provided by Robins et al. (2001) based on so-called chain graphs, that at
the same time include undirected edges between pairs and directed edges from exogenous variables
and the pairs.

Interpretation Interpreting the coefficients θ is possible both at the global network and single
tie level. We here illustrate the interpretation of θq for q ∈ {1, ..., p} corresponding to the sufficient
statistic sq(y). For the global perspective, θq > 0 implies that networks with increasing values of
sq(y) are also increasingly more likely according to (3.5) if all other statistics remain constant. The
contrary holds under θq < 0. To obtain an interpretation on the tie level reminiscent of logistic
regression, we need additional notation. By yx

ij we denote the network y where the (i, j)th entry
is fixed at value x for x ∈ {0, 1} and let y−(ij) be y excluding the relation yij . Next we define
change statistics as a function of y−(ij) returning the change in the sufficient statistics caused by
switching the entry yij from 0 to 1:

∆ij(y−(ij)) = s(y1
ij) − s(y0

ij). (3.7)

One can then specify the probability to observe a tie between actors i and j conditional on y−(ij):

Pθ(Yij = 1|Y−(ij) = y−(ij)) =
exp{θ⊤∆ij(y−(ij))}

1 + exp{θ⊤∆ij(y−(ij))}
. (3.8)

Thus we get the following interpretation on the level of the tie: if switching the value of yij from
0 to 1 raises only the qth entry of ∆ij(y−(ij)) by one, the conditional log-odds of Yij are changed
by the additive factor θq (Goodreau et al., 2009).

Estimation and Inference Given a set of sufficient statistics and realized network y, we want
to find an estimator θ̂ maximizing (3.5), called the maximum-likelihood estimator. Although the
likelihood has a simple mathematical form, maximizing it is notoriously difficult. The primary
obstacle in this endeavor is the evaluation of κ(θ), which in the case of directed networks neces-
sitates calculating the sum of |Y| = 2n(n−1) terms which is only feasible for small networks (Vega
Yon et al., 2021). Not provided the current computational possibilities, Strauss and Ikeda (1990)
base the estimation of θ on the pseudolikelihood, defined through (3.8) and equivalent to common
logistic regression. Since the properties of this approach are, however, unknown in the general
case of (3.5) (van Duijn et al., 2009), different types of Markov Chain Monte Carlo techniques
were proposed to help in this setting:
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3. Network Models

Figure 3.3.: Visualization of sufficient statistics for bipartite networks. Circles represent actors of mode 1,
while rectangles indicate actors of mode 2.

1. Stochastic Approximation via a Robbins-Monroe algorithm was proposed by Snijders (2002),
which can be comprehended as a stochastic version of the known Newton Raphson Algo-
rithm.

2. Handcock (2003) first adapted the methods of Geyer (1992) to the ERGM, where we ap-
proximate the logarithmic likelihood ratio of θ and a fixed θ0 via a Monte Carli quadrature.

3. Motivated by the importance of picking an adequate value for θ0 to approximate the likeli-
hood ratio, Hummel et al. (2012) suggest a Partial Stepping to successively find θ0.

All these approaches heavily rely on sampling networks from (3.5) under fixed parameter θ, which
is possible by employing a Metropolis-Hastings sampler that generates a Markov chain of graphs
that has (3.5) as its stationary distribution. See Hunter et al., 2013 and Byshkin et al., 2016
for more detail on this topic. We refer to the references provided above and Chapters 9 and 8
for additional information on the optimization procedures. In particular, Chapter 8 extends the
proposed methods of Handcock (2003) and Hummel et al. (2012) to dynamic signed networks.

Degeneracy Issues After or while fitting model (3.5) to realized data, an often occurring phe-
nomenon first described in Snijders (2002) and Handcock (2003) but formalized by Schweinberger
(2011) is obtaining a degenerate distribution over networks. If this happens, the probability distri-
bution (3.5) puts most probability mass under a particular set of parameters either on the empty
or full graph, which is unreasonable for most applications. One way of identifying this behavior is
through the goodness-of-fit procedure proposed by Hunter et al. (2008), where observed network
statistics are compared to statistics of networks simulated under the estimated model. Degeneracy
appears to be particularly prevalent for Markov graphs; thus Snijders et al. (2006) and Hunter
and Handcock (2006) propose novel weighted statistics that, in many cases, have better empirical
behavior. In Chapter 6, we explain how these statistics are constructed and can be interpreted,
while we adapt them in Chapter 8 to signed networks representing the predictions of structural
balance theory (Heider, 1946).

Bipartite Networks The entire derivation of the ERGM given above holds similarly for bipartite
networks. However, note that bipartite networks are constrained in that ties are only possible
between actors of different modes of actors. Resulting from this, all pairs (i, j) with i, j ∈ V1
or i, j ∈ V2 are nonstochastic and hence excluded from the actor set of the dependence graph.
This characteristic leads to slightly changed forms of dependence (Wang et al., 2013) and sufficient
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3.1 Exponential Random Graph Model

statistics (Faust and Skvoretz, 1999; Wang et al., 2009), exemplary statistics are depicted in Figure
3.3. Moreover, we introduce a novel suite of network terms in Chapter 9 for pairwise covariates
between actors of V1 or V2.

Temporal Networks Extending the framework to encompass networks observed over time, i.e.,
y1, ..., yT , can be achieved in two ways.

First, we can comprehend the evolution of these observed networks as the outcome of a Markov
chain, by specifying a joint model for

Pθ(Y1, ..., YT |Y0 = y0) =
T∏

t=1
Pθ(Yt = yt|Yt−1 = yt−1, ..., Y0 = y0), (3.9)

conditional on the initial network y0. Under a temporal Markov dependence structure of first
order4, the separate terms of the product of (3.9) simplify to

Pθ(Yt = yt|Yt−1 = yt−1, ..., Y1 = y1) = Pθ(Yt = yt|Yt−1 = yt−1). (3.10)

In the last step, we plug (3.5) into (3.10), although now the sufficient statistics can additionally
depend on the lagged network yt−1 next to yt:

Pθ(Yt = yt|Yt−1 = yt−1) =
exp

{
θ⊤s(yt, yt−1)

}

κ(θ, yt−1) . (3.11)

Sufficient statistics encompassed in s(yt, yt−1) can capture within-network or simultaneous de-
pendencies through statistics that only depend on yt and between-network dependencies by also
incorporating yt−1. While statistics for within-network dependencies were already illustrated
in Figure 3.2, Figure 3.4 provides three examples of statistics that relate to between-network
dependencies. This general model class is called the Temporal Exponential Random Graph
Model (TERGM,Hanneke et al., 2010) building on Robins and Pattison (2001). Afterwards the
model was substantially improved via the Separable Temporal Exponential Random Graph Model
(STERGM, Krivitsky and Handcock, 2014) by specifying a separable version of the model differ-
entiating between the formation and dissolution of edges. See Chapter 6 for a survey covering the
model and Chapter 10 for its adaption to event data.

Second, we can perceive the networks as evolving over time, guided by a Markov process. Snijders
and Koskinen (2013) suggest using the conditional distribution (3.10) in conjunction with random
opportunities for a change in the state of pairs. The resulting process has an ERGM as its
stationary distribution and can be considered a tie-oriented variant of the actor-oriented model
(SAOM, Snijders, 1996). In Koskinen and Lomi (2013) and Koskinen et al. (2015), this approach
is further broadened and applied to networks representing foreign direct investments between
countries.

4Higher order Markov dependence assumptions are possible in the same manner.
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3. Network Models

Figure 3.4.: Visualization of sufficient statistics for temporal networks. Contemporaneous edges are drawn
as solid lines, while edges observed in the past are dashed.

3.2. Relational Event Model

Being surrounded by sensor technologies every day in all shapes and forms, such as video cameras,
logs of phone calls, Twitter notifications, Facebook friendships, and sociometric badges (Lazer
et al., 2009; Eagle and Pentland, 2006), we can measure and map social movements at a much more
fine-grained resolution than at particular time points 1, ..., T . While one could still aggregate the
provided event traces over some time intervals and study them with the means detailed in Section
3.1, this approach necessarily comes with a loss of information (Stadtfeld, 2018). Further, it is
not trivial to assess the extent to which the aggregation of a specific number of events constitutes
a durable tie such as a friendship (Kitts, 2014). Take, for instance, the communication network
in response to the World Trade Center attack in 2001. For this data, much information lies in the
sequence of the calls, i.e., participation shifts and conversational norms discussed in Gibson (2003),
not necessarily in the aggregated networks5. One way to exploit the complete available temporal
information is the Relational Event Model (REM, Butts, 2008). In the following paragraphs, we
first formulate the model from the perspective of counting processes. Second, we detail how events
from the past can affect the intensity of this counting process in the present through sufficient
statistics. Then, the interpretation, estimation, and inference are detailed. Finally, extensions of
the REM are sketched.

Model Formulation Taking the matrix-valued counting process N(t̃) defined in (2.6) as a starting
point, we observe that each cell is nondecreasing in time and is thus a submartingale. For an
introduction to stochastic processes we refer to Daley and Vere-Jones (2008) and Aalen et al.
(2008, Chap.2). For technical reasons, we assume that Nij(0) = 0 holds and that Nij(t̃) is adapted
to a history {H(t̃)} for all (i, j) ∈ U . We can then apply the Doob-Meyer decomposition:

N(t̃) = Λ(t̃) + M(t̃), (3.12)

where Λ(t̃) =
∫ t̃

0 λ(u) du is defined as the matrix-valued intensity process and M(t̃) is a matrix-
valued local martingale, which is a process with expectation 0 and uncorrelated increments (Aalen
et al., 2008). One can think of the martingale process as random noise and of the intensity process
as the deterministic part of the observed counting process which we can learn. Put differently,

5For analyses of this data, see Butts, 2008 and Renshaw et al., 2022.
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3.2 Relational Event Model

(3.12) serves as the analog to the decomposition of observed values in linear models into the
predicted value and an unexplained residual. Formally, the (i, j)th cell of λ(t̃) is defined as

λij(t̃) = lim
h↓0

P(Nij(t̃ + h) = Nij(t̃) + 1)
h

,

which is the instantaneous probability of an event between actors i and j at time point t̃. In other
words, it suffices to specify a model for the intensity process to fully characterize the counting
process N(t̃). Note that this setting is equivalent to time-to-event analysis on which the textbooks
by Kalbfleisch and Prentice (2002) and Lawless (2003) give an overview.

We assume that N(t̃) is a matrix-valued inhomogenous Poisson process, whereby the increments
of each cell are Poisson distributed random variables between times h and t with t > h:

Nij(t) − Nij(h) ∼ Pois
(∫ t

h
λij(u) du

)
. (3.13)

We here opt for a local characterization of Poisson processes encompassing intensities that are
stochastic and explicitly depend on previous events, covering doubly stochastic Cox processes such
as self-exciting Hawkes processes (Hawkes, 1971).

Next, we parametrize the intensity of (2.6) conditional on the history of events and additional
exogenous covariate processes. On the tie-level, the conditional intensity to observe an event
between actors i and j at t̃ is specified through:

λij(t̃|H(t̃), θ) =
{

λ0(t̃) exp{θ⊤sij(H(t̃))}, if (i, j) ∈ U(t̃)
0, else

(3.14)

where

• λ0(t̃) ∈ R+ defines the baseline intensity, which one can either specify parametrically (Butts,
2008), semiparametrically (Fritz et al., 2022a), or nonparametrically (Vu et al., 2011a,b);

• θ ∈ Rp is a p-dimensional vector of parameters to be estimated;

• sij(H(t̃)) ∈ Rp are sufficient statistics calculated for the relation between actors i and j that
can be defined similar to the sufficient statistics in (3.5) and will be discussed in more depth
in the following paragraph.

We only constrain ourselves to intensities that are piecewise constant between the event times,
t̃1, ..., t̃M , although exogenous known shocks as introduced in Butts and Marcum (2017) are easily
incorporated. Resulting from this restriction, we can comprehend the implied counting process,
in most cases, as an homogeneous Poisson process we restart after each observed event with
accordingly updated intensities (Butts, 2008).

Sufficient Statistics Contrasting the definition of sufficient statistics in (3.5), the statistics
sij(H(t̃)) from (3.14) are defined on the level of each pair. This characteristic highlights the
differing levels of the two models introduced in Section 3.1 and 3.2: while the ERGM models net-
works from a global perspective, the REM operates on the local tie-level. We refer to Chapter 6 for
a more thorough discussion of the differences between the corresponding two models. That being
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3. Network Models

Figure 3.5.: Visualization of sufficient statistics on the tie level for REMs. Solid lines represent events
observed in the past, while the dotted lines indicate the modeled event. Arrowheads indicate the direction
of the event.

said, most global statistics of the ERGM do have an interpretation from the local perspective as
well (see (3.10) and Pattison and Robins, 2002).

Pairwise equivalents to the statistics visualized in Figure 3.2 (a) and (b) can be included in
sij(H(t̃)) as follows:

sij,Out-Sender
(H(t̃)

)
=

N∑

k=1
I

(
Nik(t̃−) > 0

)
(3.15)

sij,Reci
(H(t̃)

)
= I

(
Nji(t̃−) > 0

)
, (3.16)

where t̃− is the time point immediately before t̃ and the corresponding illustrations are supplied
in Figure 3.5 (a) and (b). Similar to (3.15), one can likewise define a statistic for the out-degree
of the receiver or the in-degree statistic. Beyond the dyadic level, we may incorporate the number
of transitive partners from Figure 3.5 (c) via the statistic

sij,Transitivity
(H(t̃)

)
=

N∑

k=1
I

(
Nik(t̃−) > 0

)
I

(
Nkj(t̃−) > 0

)

to cover tendencies of transitive clustering of events. Other types of triangular statistics are
described in Chapter 10 and legitimized in the application to the international combat aircraft
trade. If exogenous covariates on each pair are available, one may integrate such information in
(3.14) directly through

sij,Pair
(H(t̃)

)
= xij

for continuous data, while dummy-coded covariates can be generated for categorical data. We
further comment that categorical or continuous actor covariates can be transformed to pairwise
information by setting xij equal to I(xi = xj) for checking whether actors i and j match on a
categorical attribute or |xi −xj | in the continuous case. While these two examples reflect processes
of homophily and heterophily, other types of transformations can be used as well. In Chapter 10,
we suggest statistics to mirror the separable parametrization of the STERGM mentioned in Section
3.1. These statistics allow the differentiation between the onset and repetition of events.

In analogy to the parallel between the dependence graph and set of sufficient statistics detailed in
Section 3.1, the dependency structure between the individual pairwise counting processes encom-
passed in N(t̃) is also determined by the statistics sij(H(t̃)). We assume that, after conditioning
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3.2 Relational Event Model

Figure 3.6.: Graphical illustration of endogenous statistics. Solid lines represent past interactions, while
dotted lines are possible but unrealized events. The relative risk of the events in the second row compared
to the events in the first row is exp{θq} if all other covariates are fixed, where θq is the coefficient of the
respective statistic of each row.

on the history of events, all events are independent of one another. This does, however, not imply
the marginal independence of events, as an event observed at a particular point in time can affect
future events. Put differently, “past history creates the context for present action” (Butts, 2008,
p. 160). For a mathematically rigorous definition of possible dependence assumptions we refer to
Kreiss (2021).

Interpretation One can interpret the coefficient θq with q ∈ {1, ..., p} as the multiplicative change
in the intensity (3.14) if the corresponding statistic sij,q

(H(t̃)
)

is raised by one unit and all other
statistics are left unchanged. In the jargon of proportional hazards commonly employed in time-to-
event analysis, the covariates are assumed to have a proportional effect on the intensity function.
To give an example, a positive effect of the sender’s out-degree, shown in Figure 3.5 (a), may
be viewed as the tendency to interact with actors that were already active a lot in the past. A
graphical illustration of this interpretation for all statistics of Figure 3.5 is provided in Figure
3.6. For instance, the intensities of the events shown in the first row multiplied by exp{θq}, here
defined as the corresponding coefficient for each term, gives the intensity of the respective event
in the second row. Relaxations of this proportionality of the effect are possible by letting θ vary
over time as described later in this section and Chapters 10 and 11.

Estimation and Inference Based on a sufficient set of statistics, we construct the likelihood of θ
with observed stream of events A from the increments between all time points that according to
(3.13) are realizations of Poisson-distributed random variables. Under piecewise constant intensity
functions, (3.13) simplifies to:

Yij,m = Nij(t̃m) − Nij(t̃m−1) ∼ Pois
(
(t̃m − t̃m−1)λij(t̃m|H(t̃m), θ)

)
(3.17)

for all tm with m = 1, ..., M and (i, j) ∈ U(tm). Note that in the case of a continuously time-varying
baseline intensity as employed in Fritz et al. (2022a), (3.17) still serves as a simple rectangular
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3. Network Models

approximation of the integral in (3.13). The likelihood that we maximize with respect to θ can
then be formulated as

L(θ; M) =
M∏

m=1

∏

(i,j)∈U(t̃m)

( (
t̃m − t̃m−1

)
λij

(
t̃m|H(t̃m), θ

) )yij,m

exp
{−(t̃m − t̃m−1)λij(t̃m|H(t̃m), θ)

}
.

(3.18)

Note that (3.18) falls into the more general family of generalized linear models (GLMs) proposed
by Nelder and Wedderburn (1972), where the target variable Yij,m follows a Poisson distribution
with the offset term log(tm − tm−1). Due to this observation, we do not have to write ad hoc
software implementations but can rely on stable implementations for GLMs, such as the software
package stats (R Core Team, 2022) to find θ̂. Consistency and asymptotic normality of θ̂ can
be derived as a special case of known results for GLMs (Fahrmeir and Kaufmann, 1985). These
asymptotics allow the construction of tests and quantification of the uncertainty associated with
the obtained estimates.

A second remark concerns the case where λ0(t̃) from (3.14) is left unspecified. In fact, this
setting is equivalent to assuming λ0(t̃) = λ0,m holds for t̃ ∈ (tm−1, tm] and m = 1, ..., M , i.e.,
a separate constant intercept is estimated for each observed event. Consequentially, we use the
reverse argument of Whitehead (1980) to prove that (3.18) is equivalent to the partial likelihood
developed by Cox (1972, 1975):

L(θ; A) =
M∏

m=1

λimjm(tm|H(tm), θ)∑
(i,j)∈U(tm) λij(tm|H(tm), θ) . (3.19)

Maximizing (3.19) in respect to θ is still possible via a Newton-Raphson algorithm (for the tech-
nical details see Perry and Wolfe, 2013). One may alternatively derive this likelihood by assuming
that no information on the exact time points of events but solely their order is provided in the
data as detailed in Butts (2008). In this context, inference about θ̂ can be based on the theory
derived in Kreiß et al. (2019) if |V| increases and on the results of Perry and Wolfe (2013) if the
time span of observed events goes to infinity.

Incorporating nonlinear and random effects The connection to GLMs detailed in the prior
paragraph also enables us to utilize the literature extending GLMs to Generalized Additive Models
(GAM, Hastie and Tibshirani, 1987), varying-coefficient models (VCM,Hastie and Tibshirani,
1993), and random effects.

GAMs allow the inclusion of nonlinear effects in (3.14) in the following manner:

λij(t̃|H(t̃), θ) =
{

λ0(t̃) exp{∑p
q=1 fq

(
sij,q(H(t̃))

)}, if (i, j) ∈ U(t̃)
0, else

where fq
(
sij,q(H(t̃))

)
is a smooth function parametrized through basis functions. Assuming that

we use Kq basis functions for sij,q(H(t̃)), we write:

fq
(
sij,q(H(t̃))

)
=

Kq∑

k=1
θq,kBk

(
sij,q(H(t̃))

)
= θ⊤

q B
(
sij,q(H(t̃))

)
, (3.20)
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3.2 Relational Event Model

where the kth basis function is Bk(·) weighted by θq,k. To ensure that the function is adequately
smooth, we incorporate a multiplicative penalization term in (3.18). As for the type of basis
function and penalization, there are numerous options to choose from. In Chapter 7 we rely on
thin-plate splines (Wood, 2003) penalizing the curvature of the squared function, while P-splines
as proposed by Eilers and Marx (1996) are employed in Chapter 11. By including interaction
variables between smooth and linear effects we obtain time-varying effects via VCMs by setting:

θq(t̃) = θ⊤
q B(t̃).

In this context, the function θq(t̃) can be specified in the same manner as the smooth functions
in (3.20). In Chapter 10, we study an event network over a period of more than 50 years, thus
time-varying effects are urgently needed. Eventually, random effects can be used to control for
latent heterogeneity on the actor level, e.g., by including sender and receiver-specific effects in
(3.14):

λij(t̃|H(t̃), θ) =
{

λ0(t̃) exp{θ⊤sij
(H(t̃)

)
+ uS

i + uR
j }, if (i, j) ∈ U(t̃)

0, else

with uS
i ∼ N(0, τ2

S) and uR
i ∼ N(0, τ2

R) for i = 1, ..., N in the case with directed events. Following
the arguments presented in Kimeldorf and Wahba (1970) as well as in Chapters 7 and 11, estima-
tion routines proposed for Generalized Additive Models suffice for estimating models with these
extensions. We refer to Wood (2017) for a thorough treatment of these estimation techniques as
implemented in the versatile R package mgcv.

Extensions In some cases, the observed events suffer from measurement errors. One example of
this phenomenon is the non-negligible false-discovery rate in event identification when automated
or human-coded events are studied. In Chapter 11, we offer a method to control for the resulting
spurious events by defining two separate counting processes, one counting the real events and one
spurious event, each characterized by a different intensity function. Another particular type of
measurement error results from clustered observations, where the events are not observable in
continuous time, but we can only identify a time interval in which each event falls. We treat such
situations in Chapter 10 under the assumption that the exact order of events observed in the same
temporal interval carries no information.

Stadtfeld (2012) proposed an actor-oriented variant of the REM, which we introduced in a tie-
oriented version in (3.14). For this approach we assume that the intensity of directed events can
be split into a sender-specific intensity and a probability of selecting the receiver conditional on
the sender:

λij(t̃|H(t̃), θ) =
{

λi(t̃|H(t̃), θ1)pi(j|H(t̃), θ2), if (i, j) ∈ U(t̃)
0, else

where

λi(t̃|H(t̃), θ1) exp{θ⊤
1 si(H(t̃))} (3.21)

is the intensity for actor i to be the sender of any event and pi(j|H(t̃, θ2) describes the conditional
probability of choosing actor j as the receiver if actor i is the sender. The actor-specific intensity
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3. Network Models

can be related to a counting process of how often actors in the network are senders of events and
is hence sometimes called an egocentric REM (see Vu et al., 2011b for an example of how this
is sub-model can be of interest by itself). For the selection model, a discrete choice model as
introduced by McFadden (1973) is employed:

pi(j|H(t̃), θ2) = exp{θ⊤
2 sij(H(t̃))}

∑N
k=1,k ̸=i exp{θ⊤

2 sik(H(t̃))}
. (3.22)

While all sufficient statistics in (3.21) and (3.22) can be employed in (3.14), the other way around
does not hold. For θ1 and θ2 to be idendifiable, the corresponding statistics have to vary with the
sender in (3.21) and with the receiver in (3.22). An example for the former type of statistic is the
out-degree of the sender and for the latter the reciprocity statistic both illustrated in Figure 3.5
(a) and (b).

Perry and Wolfe (2013) amend the model beyond pairwise interactions to cover multicast events,
where the receiver of an event can be set-valued, i.e., events like a = (i, {j1, ..., jK}, t̃) are possible.
One setting in which such data naturally arise is when studying email traffic. Going in a similar
direction, Lerner et al. (2021) and Lerner and Lomi (2022) study so-called hyper events, which
are events not between two but multiple actors. The application covered in Lerner et al. (2021)
consists of approximately 2000 meeting events of Margaret Thatcher with her cabinet ministers.

24



4. Network Attribute Models

For many investigations, the principal goal lies in quantifying how an attribute is affected by the
actor’s embedding in the network instead of how the random relations are generated. If dynamics
are observed, we can distinguish between two settings for this type of study. First, we might
assume that the attributes and the network evolve simultaneously. Second, it is reasonable to
formulate a model where the network is an obvious antecedent to a change in the attribute in
particular applications with no simultaneous but temporal dependency.

A canonical case from sociology for the former setting is how smoking or drug consumption is
caused by one’s friend’s behavior (Snijders et al., 2018). The central question is whether the
behavior is explained by influence (“friends of smokers start to smoke”) or selection (“smokers
befriend predominantly other smokers”). While we can tackle hypotheses related to selection
processes with adequately defined exogenous covariates affecting the generation of the network in
the form of (3.6) (Robins et al., 2001), we require novel methods to investigate the influence of
social relations on attributes. Regarding the second data setting, one might consider how mobility
patterns relate to the number of people infected with COVID-19. For this example, assume that
a weighted network is provided in which the actors are spatial units, and the edges indicate the
mobility flows between the corresponding spatial units. In this example, the infection counts in
a particular temporal interval and spatial unit are the actor attribute. Based on the finding that
each infection becomes symptomatic only after an incubation period, which at the beginning of
the pandemic was estimated to be around five days (Li et al., 2020), one can argue that there
should only be a temporally lagged dependency between the mobility network and the infection
counts. Since this problem was at the time of writing this dissertation solely tackled for data
observed in discrete time representable with the tools of Section 2.1, our treatment of the topic
focuses on the corresponding data setting.

Simultaneous Dependence Robins et al. (2001) suggest Autologistic Actor Attribute Models
as a way to study social influences processes, where the roles of the network and attributes are
swapped in that the outcome of the attributes is stochastic and the network is fixed. In line with
the notation of Section 2.1, we change perspective from modeling the network Y to modeling the
attribute X = (X1, ..., XN ), being the random variable corresponding to a binary actor attribute
x, e.g., smoker vs. non-smoker. We obtain a probability distribution for X conditional on y
similar to (3.5):

Pθ(X = x|Y = y) = exp{θ⊤s(x, y)}
κ(θ, y) , (4.1)

where κ(θ, y) = ∑
x̃∈X exp{θ⊤s(x̃, y)} is the normalizing constant with X being the set of all

observable behaviors in the network. Relying on the theory of chain graphs, (4.1) follows again
from the Hammersley-Clifford theorem and the sufficient statistics can again be derived through
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particular forms of dependence and homogeneity assumptions (Robins et al., 2001; Daraganova
and Robins, 2013) .

If the actor attributes are observed over time, we denote their evolution by x1, ..., xT . In the same
manner that (3.5) was expanded to cover temporal networks in (3.11), it is straightforward to
model time-varying behavior with (4.1) through a first-order Markov assumption:

Pθ(Xt = xt|Xt−1 = xt−1, Y = y) = exp{θ⊤s(xt, xt−1, y)}
κ(θ, xt−1, y) (4.2)

providing a Temporal Autologistic Actor Attribute Model akin to the TERGM proposed by Han-
neke et al. (2010) and Robins and Pattison (2001). To model count-valued attributes, we extend
(4.2) following Krivitsky (2012):

Pθ(Xt = xt|Xt−1 = xt−1, Y = y) = h(xt) exp{θ⊤s(xt, xt−1, y)}
κ(θ, xt−1, y) , (4.3)

where we additionally have to specify a reference function h: X → [0, ∞) that characterizes the
distribution of Xt under θ = 0. We refer to Krivitsky (2012) for details on different ways to
choose the reference function, but for this section it suffices to work with the Poisson reference
measure h(xt) = ∏N

i=1
1

xi! .

On a side note, extensions of the ERGM to multivariate (Krivitsky et al., 2020), continuous
(Desmarais and Cranmer, 2012), and ordered (Krivitsky and Butts, 2017) networks are directly
transferable to modeling multivariate, continuous, and ordered attributes. Moreover, the estima-
tion routines sketched in Section 3.1 are applicable for this model class if the employed sampled is
adapted to (4.1), (4.2), or (4.3) depending on the employed model. Contrasting this approach, Sni-
jders et al. (2018) introduced a joint model for the co-evolution of networks and behavior based on
the SAOM, which was later enhanced to cover continuous behavior (Niezink and Snijders, 2017).
These two approaches, however, not only differ in being actor- vs. tie-oriented models but also in
the fact that in (4.1) and (3.5), either processes of influence or selection are studied conditionally
on the other, whereas Snijders et al. (2018) posits a joint model for the network and attribute.

Temporal Dependence Under the assumption that the dependence between attributes at time
point t is captured by past observations of the attributes themselves, the network, and other
exogenous factors, the sufficient statistics can be stated as s(xt, xt−1, y) = ∑N

i=1 xi,tsi(xt−1, y).
Incorporating these types of statistics in (4.3) under the Poisson reference measure yields:

Xi,t|Xt−1 = xt−1, Y = y ∼ Pois(λ = exp{si(xt−1, y)}), (4.4)

where si(xt−1, y) is an arbitrary function of past attributes, network y, and exogenous information,
which we again omit for notational brevity. Similar models for binary networks were proposed in
Hanneke et al. (2010) and Almquist and Butts (2014), while they were applied in Almquist and
Butts (2013) and Lebacher et al. (2021).

Returning to the example stated above concerning people infected with COVID-19, the attributes
are often multivariate. In Germany, the federal government agency responsible for health reporting
and disease control provides, for instance, infection data stratified according to the age and gender
of the population in a particular district. Let therefore the infection count in week t in age/gender
group g and district i be given by Xi,g,t. Moreover, we might not only have information on one but
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multiple networks, where some are time-constant and others vary over time. In our example, all
networks have 401 nodes representing all federal districts in Germany. In particular, we are given
a weighted network detailing the number of Facebook friends between these districts, denoted by
y1, as well as networks of the co-location probabilities, i.e., the probability of meeting one another.
While the first network y1 is measured before t = 1, therefore, constant over time, the co-location
networks are subject to change each week and denoted by y2

1, ..., y2
T . Extending (4.4) to such a

data setting yields:

Xi,g,t|Xi,g,t−1 = xi,g,t−1, Y1 = y1, Y2
t−1 = y2

t−1 ∼ Pois(λ = exp{si,g,t(xi,g,t−1, y1, y2
t−1)}). (4.5)

Note that the temporal delay of one week is legitimized by the finding that the incubation period is
around that time frame (Li et al., 2020). The specification of si,g,t(y1, y2

t−1) can include any actor-
level statistics such as the statistics in (2.2). One can also view the positions of the nodes found
through a graph drawing algorithm as a two-dimensional measure of how actors are embedded
in a particular network. We follow this path in Chapter 7 to find the position of each district
in y1 through multidimensional scaling as proposed by Brandes and Pich (2007). Subsequently,
we can incorporate the found coordinates in (4.5) via isotropic multivariate splines (Wood, 2003).
We use the Gini index to process the time-varying networks of co-location probabilities to the
actor level. This measure allows us to differentiate between mobility patterns of districts being
rather dispersed or restricted. In Chapter 7, we detail how to carry out those two tasks. Finally,
note that by using different reference measures in (4.3) than the Poisson reference measure, one
may generalize the Poisson distribution in (4.5) to any count distribution, such as the negative
binomial distribution for a fixed dispersion parameter.
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Figure 5.1.: Bipartite graph illustrating which contributed manuscripts relate to or build on which core
methods introduced in this introduction. Rectangles indicate the core methods if they have rounded corners
and the manuscripts if they have angular corners. Ties translate to manuscripts relating to a particular
core method.

The field of social network data analysis has grown continuously since its origin in Moreno (1934).
Given the resulting scientific breadth and depth, this overview is restricted to statistical network
analysis with the ERGM and REM. Nevertheless, this sub-field already offers a powerful modeling
framework taking the dependencies between the observed relations and attributes seriously. This
is a meaningful step towards specifying realistic models in more complex data scenarios. How
the ensuing manuscripts contributing to this dissertation are interwoven with those foundational
techniques can be best illustrated using techniques introduced in Section 2.1. Figure 5.1 displays
a bipartite graph where V1 contains the contributed manuscript, shown by rectangles with angular
corners, and V2 consists of the core methods introduced in the last chapter, depicted by rectangles
with round corners. Each chapter encompasses one of these manuscripts, which are provided in
the published version for the most part. Now, the contributions and aims of each manuscript are
detailed separately for each project:
Chapter 6, Fritz, Lebacher, and Kauermann (2020): We offer a survey of dynamic network
models for networks observed at specific times and networks available at a more fine-grained
temporal resolution. By doing that, we showcase the theoretical properties, fitting procedures,
applicability, and interpretation of the canonical models for each setting.
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5. Discussion and Future Work

Chapter 7, Fritz and Kauermann (2022): Motivated by the surge of the COVID-19 pandemic
starting in 2020, we investigate the effect of human mobility and social connectivity on the spread
of the virus on a local scale. With data provided by Facebook, we can address this task based
on the weekly rate of new infections in Germany during the first COVID-19 wave. First, we
find evidence that reduced social activities lower the incidence of infections. Second, our results
suggest that social distances affect infections next to geographical distances.
Chapter 8, Fritz, Mehrl, Thurner, and Kauermann (2022b): Stemming from the importance of
Structural Balance Theory (Heider, 1946), signed networks are among the most frequently studied
matters in social network analysis. Therefore, we extend the ERGM to such networks in static
and dynamic settings. We then apply the novel method to recent data on militarized interstate
disputes and defense cooperation agreements and provide a software implementation with the R
package ergm.sign.
Chapter 9, Fritz, De Nicola, Kevorg, Harhoff, and Kauermann (2022): The goal of this chapter
is to study the dynamically growing bipartite network of German patents and inventors by means
of a Temporal Exponential Random Graph Model (TERGM, Hanneke et al., 2010). Standard
procedures are infeasible when considering the emergent network of patents only within the main
area of electrical engineering since the network encompasses 78.412 actors. To circumvent this,
we decompose the network into several smaller subnetworks by exploiting inventors’ “mortality”
and “natality”. The reasoning for this is that inventors are, in most cases, only active during a
relatively short period of the studied period from 2000 to 2015. To explore the driving forces
behind innovation, we further introduce a suite of network terms to capture and test for network
characteristics, such as team persistence and collaboration interlocking.
Chapter 10, Fritz, Thurner, and Kauermann (2021): The duration of ties in networks varies
greatly. For instance, friendships are generally assumed to be active over a long period, while
emails are better comprehended as instantaneous events. While durable links are commonly only
available at specific instances, most events are observed continuously. For some events, namely
the delivery of combat aircraft, we can, however, only determine the temporal resolution up to
a specific year leading to time-clustered observations. To model such data while accounting for
time-varying and random coefficients, we generalize the Relational Event Model (REM,Butts,
2008). We further rely on separable models as introduced by Krivitsky and Handcock (2014) and
model the onset and repetition of yearly observed events with two separate intensity functions.
The proposed model is applied to the international combat aircraft trade network spanning from
1950 to 2017.
Chapter 11, Fritz, Mehrl, Thurner, and Kauermann (2022a): To ease the collection of event
data, researchers increasingly rely on automated or human-coded event data, which may include
spurious events, i.e., false-positive events. We propose the Relational Event Model for Spurious
Events (REMSE) as an extension to the REM to control for such spurious events. The practical
relevancy of the proposed model is exhibited in applications to event data from combat events in
the Syrian civil war and spatial proximity of students.

Beyond these topics, there are still numerous challenges in network science, guiding the way
for future research. For instance, one might wonder how dependence graphs from Section 3.1
behave as networks grow. As noted by Strauss (1986), the number of neighbors of a node in
the dependence graph under Markov dependence is 2(N − 2). Thus, one implicitly assumes that
the dependency of relations increases as the network expands. On the other hand, this behavior
goes against our heuristic understanding of sparsity in large graphs that the density decreases as
the network increases. Also, from the perspective of analytical sociology, it is hardly reasonable
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that actors have the capacities to maintain increasing relations or are even aware of the complete
growing network. Recalling the discussion at the beginning of Section 3.2, the availability of large
networks through novel technologies further underlines how important the consideration of models
for large network data is. It thus does not suffice to propose scalable estimation routines for the
network models introduced in this overview if the estimated models cannot mimic the behavior of
observed networks due to unrealistic dependence assumptions. A promising concept to help in this
regard is local dependence as described in Schweinberger and Handcock (2015). Under this type of
dependence, the network is decomposed into several sub-networks based on an either observed or
unobserved grouping of the actors. For this approach, complex dependence structures akin to the
ones from Section 3.1 are assumed solely within the sub-networks, while ties between sub-networks
abide by simpler forms of dependence. Within this framework, smaller dense networks nested
within larger, more sparse networks are represented more naturally. Although much theoretical
work considers attractive properties under local dependence, such as consistency under a growing
number of groups (Schweinberger and Stewart, 2020) and the recoverability of unknown groups
(Schweinberger, 2020), the presentation of the model is restricted to static binary networks; hence
extensions to temporal or bipartite networks, where adapted motions of local dependency are
necessary, represent an interesting future research direction. Moreover, extending the principles
of local dependence to other model classes, e.g., the REM, seems to be a fruitful premise.

The topic of large networks immediately brings the sampling of networks to mind. Generally, the
classical statistical setting, in which models are estimated only with a sample from the population
of interest and inference is drawn from the sample onto the population, should be critically re-
assessed when working with network data. Contrasting the standard setting in applied statistical
work, different types of infinite population scenarios are possible for network data as described in
Schweinberger et al. (2020). One setting is where we only observe a sub-network nested within a
larger network, and the researcher wants to learn about this unobserved network from the sub-
network. Although Shalizi and Rinaldo (2013) show that only specific dependence assumptions
lead to consistency under sampling for ERGMs, one can account for a particular type of sampling
design within the estimation procedure of the model. A general framework to account for sampling
is provided by Handcock and Gile (2012) if the size of the large network is known and not too
big, while more niche techniques were proposed for snowball (Pattison et al., 2013) and egocentric
sampling (Krivitsky and Morris, 2017). Especially within the local dependence framework, both
approaches have much potential, and designing sampling strategies under local dependence can
greatly ease the estimation of models. One might argue that those issues on inference go well
beyond technicalities but should also be brought to the center of attention in the substantive sci-
ences, where network data and theories naturally arise. Besides, concerns about sampling mainly
affect networks representable under the “graph-as-networks” paradigm, although they are equiv-
alently relevant for event data covered in Section 2.2. In Chapter 11, we take the first steps by
controlling for spurious events, but more general treatments of sampling designs for this type of
model are clearly needed.

The surge of event data further suggests that methods to study the effects of events on continuous
traces of attributes are needed to catch up with recent advances in digital technologies. Paralleling
the development of the REM, one practical way forward could be adapting known techniques for
the analysis of marked point processes (Sun et al., 2009) or egocentric REMs (Vu et al., 2011b)
to attributes. In general, these methods should be tailored to the type of continuous attribute
measured. For instance, continuously measured heart rates necessitate models that are different
than those used for categorical states, such as sleeping, walking, or running. Data sources simular
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to Aharony et al. (2011) further include attributes measured at the discrete and continuous scale;
hence methods combining event and network data are also needed. To sum up, there still remains
much to be done for the statistical analysis of network data. This thesis presents first steps in
several directions.
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1 INTRODUCTION

The conceptualization of systems within a network framework has become popular within the
last decades; see Kolaczyk (2009) for a broad overview. This is mostly because network models
provide useful tools for describing complex dependence structures and are applicable to a wide
variety of research fields. In the network approach, the mathematical structure of a graph is uti-
lized to model network data. A graph is defined as a set of nodes and relational information
(ties) between them. Within this concept, nodes can represent individuals, countries, or general
entities, whereas ties are connections between those nodes. Dependent on the context, these con-
nections can represent friendships in a school (Raabe, Boda, & Stadtfeld, 2019), transfers of goods
between countries (Ward, Ahlquist, & Rozenas, 2013), sexual relations between people (Bearman,
Moody, & Stovel, 2004), or hyperlinks between websites (Leskovec, Lang, Dasgupta, & Mahoney,
2009) to name just a few. Given a suitable data structure for the system of interest, the conceptu-
alization as a network enables analyzing dependencies between ties. A central statistical model
that allows this is the exponential random graph model (ERGM, Robins & Pattison, 2001). This
model permits the inclusion of monadic, dyadic, and hyperdyadic features within a regression-like
framework.

Although the model allows for an insightful investigation of within-network dependencies,
most real-world systems are typically more complex. This is especially true if a temporal dimen-
sion is added, which is relevant, as most systems commonly described as networks evolve
dynamically over time. It can even be argued that most static networks are de facto not static but
snapshots of a dynamic process. A friendship network, for example, typically evolves over time
and influences like reciprocity often follow a natural chronological order.

Of course, this is not the first paper concerned with reviewing temporal network models.
Goldenberg, Zheng, Fienberg, and Airoldi (2010) wrote a general survey covering a wide range of
models. The authors laid the foundation for further articles and postulated a soft division of statis-
tical network models into latent space (Hoff, Raftery, & Handcock, 2002) and p1 models (Holland
& Leinhardt, 1981), all originating in the Erdös-Rényi-Gilbert random graph models (Erdös &
Rényi, 1959; Gilbert, 1959). Kim, Lee, Xue, and Niu (2018) give a contemporary update on the field
of dynamic models building on latent variables. Snijders (2005) discusses continuous-time mod-
els and reframes the independence and reciprocity model as a stochastic actor-oriented model
(SAOM; Snijders, 1996). Block, Koskinen, Hollway, Steglich, and Stadtfeld (2018) provide an
in-depth comparison of the temporal ERGM (TERGM, Hanneke, Fu, & Xing, 2010) and the SAOM
with special focus on the treatment of time. Furthermore, the ERGM and SAOM for networks
that are observed at single time points are contrasted by Block, Stadtfeld, and Snijders (2019),
deriving theoretical guidelines for model selection based on the differing mechanics implied by
each model.

In the context of this compendium of articles, the scope is to give an update on the dynamic
variant of the second strand of models relating to p1 models. We therefore extend the summariz-
ing diagram of Goldenberg et al. (2010), as depicted in Figure 1. Generally, we divide temporal
models into two sections, by differentiating between discrete and continuous-time network mod-
els. This review paper will focus on tie-oriented models. Tie-oriented models are concerned with
formulating a stochastic model for the existence of a tie in contrast to the actor-oriented approach
by Snijders (2002), which specifies the model from the actor's point of view (Block et al., 2018).
The dynamical actor-oriented model (DyNAM, Stadtfeld & Block, 2017) adopts this actor-oriented
paradigm to event data. This type of model was formulated with a focus on social networks
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FIGURE 1 Tree diagram summarizing the dependencies between models originating in the
Erdös-Rényi-Gilbert graph model; the models situated in a box with a grey background are discussed in this
article. This graph is an update of Figure 6.1 in Goldenberg, Zheng, Fienberg, and Airoldi (2010).
ERGM = exponential random graph model; TERGM = temporal exponential random graph model;
STERGM = separable temporal exponential random graph model; SAOM = stochastic actor-oriented model;
DyNAM = dynamical actor-oriented model; REM = relational event model

(Snijders, 1996). Tie-oriented models, on the other hand, can be viewed as more general because
they are also applicable to nonsocial networks.

Statistical models for time discrete data rely on an autoregressive structure and condition the
state of the network at time point t on previous states. This includes the TERGM and the separable
TERGM (STERGM; Krivitsky & Handcock, 2014). There exists a variety of recent applications
of the TERGM. White, Forester, and Craft (2018) use a TERGM for modeling epidemic disease
outcomes and Blank, Dincecco, and Zhukov (2017) investigate interstate conflicts. In He, Dong,
Wu, Jiang, and Zheng (2019), Chinese patent trade networks are inspected, and Benton and You
(2017) use a TERGM for analyzing shareholder activism. Applications of STERGMs are given, for
example, by Stansfield et al. (2019) that model sexual relationships and by Broekel and Bednarz
(2018) that study the network of research and development cooperation between German firms.

In case of time-continuous data, the model regards the network as a continuously evolving
system. Although this evolution is not necessarily observed in continuous time, the process is
taken to be latent and explicitly models the evolution from the state of the network at time point
t − 1 to t (Block et al., 2018). In this paper, we discuss the relational event model (REM, Butts,
2008) for the analysis of event data. Applications of the REM are manifold and range from explain-
ing the dynamics of health behavior sentiments via Twitter (Salathé, Vu, Khandelwal, & Hunter,
2013), interhospital patient transfers (Vu, Lomi, Mascia, & Pallotti, 2017), online learning plat-
forms (Vu, Pattison, & Robins, 2015), and animal behavior (Tranmer, Marcum, Morton, Croft,
& de Kort, 2015) to structures of project teams (Quintane, Pattison, Robins, & Mol, 2013). Even-
tually, the REM is adapted to time-discrete observations of networks. That is, we observe the
time-continuous developments of the network at discrete observation times only. Henceforth, we
use the term time-clustered for this special data structure.

In reviewing dynamic network models, we assume a temporal first-order Markov dependency.
To be more specific, this implies that the network at time point t only depends on the previ-
ous observation of the network. This characteristic is widely used in the analysis of longitudinal
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networks (Hanneke et al., 2010; Krivitsky & Handcock, 2014) and the resulting conditional inde-
pendence among states of the network facilitates the estimation with an arbitrary number of time
points. In that respect, it suffices to only include two observational moments for illustrative pur-
poses because the interpretation and estimation with a longer series of networks is unchanged.
This allows for a clear-cut comparison of the methods at hand.

This paper is structured as follows. In Section 2, we give basic definitions that are used
throughout this paper and present the two data examples that will be analyzed as illustra-
tive examples. After that, Section 3 introduces a time-discrete network model and Section 4, a
time-continuous network model. They are applied in Section 5 on two data sets and Section 6
concludes. Additional results relating to the applications can be found in the Supplementary
Material.

2 DEFINITIONS AND DATA DESCRIPTION

2.1 Definitions
This article regards directed binary networks, with ties representing directed relations between
two nodes at a time point. The respective information can be represented in an adjacency matrix
Yt = (Yi𝑗,t)i,𝑗=1,..,n ∈  , where  = {Y ∶ Y ∈ {0, 1}n×n} represents the set of all possible networks
with n nodes. The entry (i, j) of Yt is “1” if a tie is outgoing from node i to j in year t and “0,”
otherwise. Furthermore, the discrete time points of the observations of Yt are denoted as t =
1, … ,T. We restrict our analysis to two time points in both exemplary networks, which suffices for
comparison. Hence, we set T = 2. In many networks, including our running examples, self-loops
are meaningless. We therefore fix Yii,t ≡ 0∀ i ∈ {1, … ,n} throughout the article. Furthermore,
all subscripted temporal indices (Yt) are assumed to take discrete values and all indices in brackets
(Y(t)) continuous values. The temporal indicator t denotes the observation times of the network,
and to notationally differ this from time-continuous model, we write t̃ for continuous time.

To sufficiently compare different models, we use two application cases. The first one repre-
sents the international trade of major weapons, which is given by discrete snapshots of networks
that are yearly aggregated over time-continuous trade instances, that is, the time-stamped infor-
mation is not observed. However, the second application, a network of email traffic, comes in
time-stamped format, which can be aggregated to discrete-time observations.

2.2 Data set 1: International arms trade
The data on international arms trading for the years 2016 and 2017 are provided by the Stockholm
International Peace Research Institute (SIPRI, 2019). To be more specific, information on the
exchange of major conventional weapons together with the volume of each transfer is included.
In order to have a binary network representation, we discretize the data and set edges Yij,t to “1”
if country i sent arms to country j in t.

The left side of Table 1 gives some descriptive measures (Csardi & Nepusz, 2006) and Figure 2
visualizes the arms trade network using the softwareGephi (Bastian, Heymann, & Jacomy, 2009).
The density of a network is the proportion of realized edges out of all possible edges and is similar
in both years, indicating the sparsity of the modeled network. Clustering can be expressed by the
transitivity measure, providing the percentage of triangles out of all connected triplets. Reciprocity
in a graph is the ratio of reciprocated ties and is similar in both years. As expressed by the high
percentage of repeated ties, most countries seem to continue trading with the same partners.
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TABLE 1 Descriptive statistics for the international arms trade network (left) and
the European research institutions email correspondence (right)

Arms trade network Email network
Time t 2016 2017 Period 1 Period 2
Number of events − − 4, 957 2, 537
Number of nodes n 180 180 88 88
Number of possible ties n(n − 1) 32,220 32,220 7,656 7,656
Density 0.021 0.020 0.123 0.087
Transitivity 0.195 0.202 0.407 0.345
Reciprocity 0.081 0.083 0.7 0.687
Repetition − 0.641 − 0.574

FIGURE 2 The international arms trade as a binary network in 2016 (left) and 2017 (right). Nodes that are
isolated in both years are not depicted for clarity and the node size relates to the sum of the out- and in-degrees.
The labels of the nodes are the ISO3 codes of the respective countries

Additionally, different kinds of exogenous covariates may be controlled for in statistical net-
work models. In the given example, we use the logarithmic gross domestic product (GDP; World
Bank, 2019) as monadic covariates concerning the sender and receiver of weapons. We also
include the absolute difference of the so-called polity IV index (Center for Systemic Peace, 2017),
ranging from zero (no ideological distance) to 20 (highest ideological distance), as a dyadic exem-
plary covariate. These covariates are assumed to be nonstochastic and we denote them by xt. See
the Supplementary Material for a list of all included countries and their ISO3 code.

2.3 Data set 2: European research institution email correspondence
The second network under study represents anonymized email exchange data between institution
members of a department in a European research institution (see Email EU Core, 2019; Paranjape,
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FIGURE 3 The European research institution email correspondence aggregated to a binary network divided
into Period 1 (days 1–365, left) and Period 2 (days 1–365, right). The node size relates to the sum of the out- and
in-degrees

Benson, & Leskovec, 2017). In this data set, we observe events 𝜔 = (i, 𝑗, t̃) that represent emails
sent from department member i to department member j at a specific time point t̃.

The data contain n = 89 persons and are recorded over 802 days. For this paper, we select
the first two years and split them again into two years, labeled Period 1 and Period 2. Within the
first period, 8, 068 events are recorded, and in the second period, 4, 031 events. We only regard
one-to-one email correspondences; therefore, we exclude all group mails from the analysis. In the
right column of Table 1, the descriptive measures for the two aggregated networks are given and
in Figure 3, they are visualized. All descriptive statistics are higher in the email exchange network
as compared to the arms trade network. In comparison to the arms trade network, the aggregated
network is more dense with more than 10% of all possible ties being realized. In both years, the
transitivity measure is relatively higher in both time periods. The high share of reciprocated ties is
intuitive given that the network represents email exchange between institution members that may
collaborate. No covariates are available for this network. See the Appendix for the visualization
of the degree distributions of both applications.

3 DYNAMIC EXPONENTIAL RANDOM GRAPH MODELS

3.1 Temporal ERGM
The ERGM is among the most popular models for the analysis of static network data. Holland and
Leinhardt (1981) introduced the model class, which was subsequently extended with respect to
fitting algorithms and network statistics (see Lusher, Koskinen, & Robins, 2012; Robins, Pattison,
Kalish, & Lusher, 2007). Spurred by the popularity of ERGMs, dynamic extensions of this model
class emerged, pioneered by Robins and Pattison (2001) who developed time-discrete models for
temporally evolving social networks. Before we start with a description of the model, we want
to highlight that the TERGM and the STERGM are most appropriate for equidistant time points.
That is, we observe the networks Yt at discrete and equidistant time points t = 1, … ,T. Only in
this setting, the parameters allow for a meaningful interpretation. See Block et al. (2018) for a
deeper discussion.
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Hanneke et al. (2010) is the main reference for the TERGM, a model class that utilizes the
Markov structure and, thereby, assumes that the transition of a network from time point t − 1
to time point t can be explained by exogenous covariates as well as structural components of the
present and preceding networks. Using a first-order Markov dependence structure and condition-
ing on the first network, the resulting dependence structure of the model can be factorized into

ℙ𝜃(YT , … ,Y2|Y1, x1, … , xT) = ℙ𝜃(YT|YT−1, xT)…ℙ𝜃(Y3|Y2, x3)ℙ𝜃(Y2|Y1, x2). (1)

In the formulation above, the joint distribution is decomposed into yearly transitions from Yt−1
to Yt. Furthermore, it is assumed that the same parameter vector 𝜃 governs all transitions. Often,
this is an unrealistic assumption for networks observed at many time points because the gener-
ative process may change other time. Therefore, it can be useful to allow for different parameter
vectors for each transition probability (i.e., 𝜃T, 𝜃T−1, ...). In such a setting, the parameters for each
transition can either be estimated sequentially (e.g., Thurner, Schmid, Cranmer, & Kauermann,
2019) or by using smooth time-varying effects (e.g., Lebacher, Thurner, & Kauermann, 2019).

Given the dependence structure (1), the TERGM assumes that the transition from Yt−1 to Yt
is generated according to an exponential random graph distribution with the parameter 𝜃:

ℙ𝜃(Yt = 𝑦t|Yt−1 = 𝑦t−1, xt) =
exp{𝜃Ts(𝑦t, 𝑦t−1, xt)}

𝜅(𝜃, 𝑦t−1, xt)
. (2)

Generally, s(yt, yt−1, xt) specifies a p-dimensional function of sufficient network statistics, which
may depend on the present and previous network, as well as on covariates. These network
statistics can include static components, designed for cross-sectional dependence structures (see
Morris, Handcock, & Hunter, 2008, for more examples). However, the statistics s(yt, yt−1, xt)
explicitly allow temporal interactions, for example, delayed reciprocity

sdelrecip(𝑦t, 𝑦t−1) ∝
∑
i≠𝑗

𝑦𝑗i,t𝑦i𝑗,t−1. (3)

This statistic governs the tendency whether a tie (i, j) in t − 1 will be reciprocated in t. Another
important temporal statistic is stability

sstability(𝑦t, 𝑦t−1) ∝
∑
i≠𝑗

(
𝑦i𝑗,t𝑦i𝑗,t−1 + (1 − 𝑦i𝑗,t)(1 − 𝑦i𝑗,t−1)

)
. (4)

In this case, the first product in the sum measures whether existing ties in t − 1 persist in t and
the second term is one if nonexistent ties in t − 1 remain nonexistent in t. The proportionality
sign is used because in many cases the network statistics are scaled into a specific interval (e.g.,
[0,n] or [0, 1]). Such a standardization is especially sensible for networks where the actor set
changes with time. Additionally, exogenous covariates can be included, for example, time-varying
covariates xij,t

sdyadic(𝑦t, xt) =
∑
i≠𝑗

𝑦i𝑗,txi𝑗,t. (5)

There exists an abundance of possibilities for defining interactions between ties in t−1 and t. From
this discussion and Equation (2), it also becomes evident that, in a situation where the interest lies
in the transition between two periods, a TERGM can be modeled simply as an ERGM, including
lagged network statistics. This can be done for example by incorporating yij,t−1 as explanatory
variable in (5), which is mathematically equivalent to the stability statistic (4). In the application
we call this statistic repetition (Block et al., 2018).
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Concerning the estimation of the model, maximum likelihood estimation appears to be a
natural candidate due to the simple exponential family form (2). However, the normalization
constant in the denominator of model (2) often poses an inhibiting obstacle when estimat-
ing (T)ERGMs. This can be seen by inspecting the normalization constant 𝜅(𝜃, 𝑦t−1, xt) =∑

�̃�∈ exp{𝜃Ts(�̃�t, 𝑦t−1, xt)}, which requires summation over all possible networks �̃� ∈  . This
task is virtually infeasible, except for very small networks. Therefore, Markov Chain Monte Carlo
(MCMC) methods have been proposed in order to approximate the logarithmic likelihood func-
tion (see Geyer & Thompson, 1992, for Monte Carlo maximum likelihood, and Hummel, Hunter,
& Handcock, 2012, for its adaption to ERGMs). The article by Caimo and Friel (2011) provides an
alternative algorithm that uses MCMC-based inference in a Bayesian model framework. Another
approach is to employ maximum pseudolikelihood estimation (MPLE, Strauss & Ikeda, 1990) that
can be viewed as a local alternative to the likelihood (van Duijn, Gile, & Handcock, 2009) but is
often regarded as unreliable and poorly understood in the literature (Handcock, 2003; Hunter,
Goodreau, & Handcock, 2008). However, the MPLE is claimed to be consistent and asymptotically
efficient (Desmarais & Cranmer, 2012) and the biased standard errors can be corrected via boot-
strap (Leifeld, Cranmer, & Desmarais, 2018). A notable special case arises if the network statistics
are restricted such that they decompose to

s(𝑦t, 𝑦t−1, xt) =
∑
i≠𝑗

𝑦i𝑗,t s̃i𝑗(𝑦t−1, xt), (6)

with s̃i𝑗 being a function that is evaluated only at the lagged network yt−1 and covariates xt for
tie (i, j). With this restriction, we impose that the ties in t are independent, conditional on the
network structures in t − 1. This greatly simplifies the estimation procedure and allows to fit the
model as a logistic regression model (see, e.g., Almquist & Butts, 2014) without the issues related
to the MPLE.

A problem, that is very often encountered when fitting (T)ERGMs with endogenous network
statistics is called degeneracy (Schweinberger, 2011) and occurs if most of the probability mass is
attributed to network realizations that provide either full or empty networks. One way to circum-
vent these problems is the inclusion of modified statistics, called geometrically weighted statistics
(Snijders, Pattison, Robins, & Handcock, 2006). Using the definitions of Hunter (2007), the geo-
metrically weighted out-degree distribution (GWOD) controls for the out-degree distribution with
one statistic, via

sGWOD(𝑦t) = exp{𝛼O}
n−1∑
k=1

(
1 − (1 − exp{−𝛼O})k)Ok(𝑦t), (7)

with Ok(yt) being the number of nodes with out-degree k in t and 𝛼O being the weighting
parameter. Correspondingly, the in-degree distribution is captured by the geometrically weighted
in-degree distribution (GWID) statistic by exchanging Ok(yt)with Ik(yt), which counts the number
of nodes with in-degree k, and 𝛼O with 𝛼I. While on the one hand, the weighting often effec-
tively counteracts the problem of degeneracy, the statistics become more complicated to interpret.
Negative values of the associated parameter typically indicate a centralized network structure.

Regarding statistics capturing clustering, the most common geometrically weighted triangular
structure is called geometrically weighted edge-wise shared partners (GWESP) and builds on the
number of two-paths that indirectly connect two nodes i and j given the presence of an edge (i, j):

sGWESP(𝑦t) = exp{𝛼S}
n−2∑
k=1

(
1 − (1 − exp{−𝛼S})k) Sk(𝑦t), (8)
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where 𝛼S is a weighting parameter. The number of edges with k shared partners (Sk(yt)) is uniquely
defined in undirected networks. If the edges are directed it must be decided which combina-
tion should form a triangle; see Lusher et al. (2012) for a discussion. As a default, the number of
directed two-paths is chosen (Goodreau, Kitts, & Morris, 2009). Generally, a positive coefficient
for GWESP indicates that triadic closure increases the probability of edge occurrence, and glob-
ally, a positive value for the associated parameter means more triadic closure as compared to a
regime with a negative value (Morris et al., 2008).

3.2 Separable TERGM
A useful improvement of the TERGM (2) is the STERGM proposed by Krivitsky and Handcock
(2014). This model can be motivated by the fact that the stability term leads to an ambiguous
interpretation of its corresponding parameter. Given that we include (4) in a TERGM and obtain
a positive coefficient after fitting the model, it is not clear whether the network can be regarded
as “stable” because existing ties are not dissolved (i.e., yij,t = yij,t−1 = 1) or because no new ties are
formed (i.e., yij,t = yij,t−1 = 0). To disentangle this, the authors propose a model that allows for the
separation of formation and dissolution.

Krivitsky and Handcock (2014) define the formation network as Y + = Yt ∪ Yt−1, being the
network that consists of the initial network Yt−1 together with all ties that are newly added in t.
The dissolution network is given by Y− = Yt ∩ Yt−1 and contains exclusively ties that are present
in t and t−1. Given the network in t−1 together with the formation and the dissolution network,
we can then uniquely reconstruct the network in t because Yt = Y +∖(Yt−1∖Y−) = Y− ∪ (Y +∖Yt−1).
Define 𝜃 = (𝜃+, 𝜃−) as the joint parameter vector that contains the parameters of the formation
and the dissolution model. Building on that, Krivitsky and Handcock (2014) define their model to
be separable in the sense that the parameter space of 𝜃 is the product of the parameter spaces of 𝜃+

and 𝜃− together with conditional independence of formation and dissolution given the network
in t − 1:

ℙ𝜃(Yt = 𝑦t|Yt−1 = 𝑦t−1, xt) = ℙ𝜃+(Y+ = 𝑦+|Yt−1 = 𝑦t−1, xt)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Formation Model

ℙ𝜃−(Y− = 𝑦−|Yt−1 = 𝑦t−1, xt)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Dissolution Model

. (9)

The structure of the model is visualized in Figure 4. On the left-hand side, the state of the
network Yt−1 is given, consisting of two ties (i, h) and (h, j). In the top network all ties that could
possibly be formed are shown dashed and the actual formation in this example (i, j) is shown solid.
On the bottom, the two ties that could possibly be dissolved are shown, and in this example, (h, j)
persists while (i, j) is dissolved. On the right-hand side of Figure 4, the resulting network at time
point t is displayed. Given this structure and the separability assumption (9), it is assumed that
the formation model is given by

ℙ𝜃+(Y+ = 𝑦+|Yt−1 = 𝑦t−1, xt) =
exp{(𝜃+)Ts(𝑦+, 𝑦t−1, xt)}

𝜅(𝜃+, 𝑦t−1, xt)
, (10)

with 𝜅(𝜃+, yt−1, xt) being the normalization constant. Accordingly, the dissolution model can be
defined. It becomes apparent how the STERGM is a subclass of the TERGM by inserting the
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FIGURE 4 Conceptual representation, illustrating formation, and dissolution in the separable temporal
exponential random graph model

separable models in (9) because

ℙ𝜃(Yt = 𝑦t|Yt−1 = 𝑦t−1, xt) =
exp{(𝜃+)Ts(𝑦+, 𝑦t−1, xt)}

𝜅(𝜃+, 𝑦t−1, xt)
exp{(𝜃−)Ts(𝑦−, 𝑦t−1, xt)}

𝜅(𝜃−, 𝑦t−1, xt)

=
exp{𝜃Ts(𝑦t, 𝑦t−1, xt)}

𝜅(𝜃, 𝑦t−1, xt)

with 𝜃 = (𝜃+, 𝜃−)T, s(yt, yt−1, xt) = (s(y+, yt−1, xt), s(y−, yt−1, xt))T, and the normalization constant
set accordingly.

For practical reasons, it is important to understand that the term dissolution model is some-
what misleading because a positive coefficient in the dissolution model implies that nodes (or
dyads) with high values for this statistic are less likely to dissolve. This is also the standard
implementation in software packages but can simply be changed by switching the signs of the
parameters in the dissolution model.

The network statistics are used similarly as in a cross-sectional ERGM. In Krivitsky and Hand-
cock (2014), they are called implicitly dynamic because they are evaluated either at the formation
network y+ or the dissolution network y−, which are both formed from yt−1 and yt. For example,
the number of edges is separately computed now for the formation and the dissolution network,
giving either the number of edges that newly formed or the number of edges that persisted. For
example, reciprocity in the formation network is defined as

srecip(𝑦+, 𝑦t−1) = srecip(𝑦+) ∝
∑
i≠𝑗

𝑦+𝑗i𝑦
+
i𝑗 , (11)

and in case of the dissolution model, y+ is simply exchanged with y−. Similarly, edge covariates
or the geometrically weighted statistics shown in Equations (5), (7), and (8) are now functions of
y+ or y−, not yt.

3.3 Model assessment
In analogy to binary regressions models, the (S)TERGM can be evaluated in terms of their
receiver-operator-characteristic (ROC) curve or precision-recall (PR), where the latter puts more
emphasis on finding true positives (e.g., Grau, Grosse, & Keilwagen, 2015). A comparison between
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different models is possible using, for example, the Akaike information criterion (AIC, Claeskens
& Hjort, 2008). Here, we want to highlight that the AIC fundamentally builds on the log likeli-
hood, which in most realistic applications is only available as an approximation; see Hunter et al.
(2008) for further discussion.

However, in statistical network analysis, it is often argued that suitable network models should
not exclusively provide good predictions for individual edges but also be able to represent topolo-
gies of the observed network. The dominant approach to asses the goodness-of-fit of (S)TERGMs
is based on sampling networks from their distribution under the estimated parameters and then
comparing network characteristics of these sampled networks with the same ones from the
observed network (Hunter et al., 2008). For this approach, it is recommendable to utilize net-
work characteristics that are not used for specifying the model. For instance, models that include
the GWOD statistic (7) may not be compared to its simulated values but against the out-degree
distribution.

Hanneke et al. (2010) point out that for networks with more than one transition from t − 1 to
t available, it is possible to employ a “cross-validation-type” assessment of the fit. The parameters
can be fit repetitively to all observed transitions except one hold-out transition. It is then checked,
how well the network statistics from the hold-out transition period are represented by the ones
sampled from the coefficients obtained from all other transitions.

4 RELATIONAL EVENT MODEL

4.1 Time-continuous event processes
The second type of dynamic network models results by comprehending network changes as a
continuously evolving process (see Girardin & Limnios, 2018 as a basic reference for stochastic
processes). The idea was originally introduced by Holland and Leinhardt (1977). In their work,
changes in the network are not occurring at discrete time points but as a continuously evolv-
ing process, where only one tie can be toggled at a time. This framework was extended by Butts
(2008) to model behavior, which is understood as a directed event at a specific time that potentially
depends on the past. Correspondingly, the observations in this section are behaviors that are given
as triplets 𝜔 = (i, 𝑗, t̃) and encode sender i, receiver j, and exact time point t̃. This fine-grained
temporal information is often called time-stamped or time-continuous; we adopt the latter name.
Furthermore, we only regard dyadic events in this article, that is, a behavior only includes one
sender and receiver.

The concept of behavior, hereinafter called event, generalizes the classical concept of binary
relationships based on graph theory as promoted by Wasserman and Faust (1994). This event
framework does not intrinsically assume that ties are enduring over a specific time frame (Butts,
2009; Butts & Marcum, 2017). For example in an email exchange network, sending one email at
a specific time point is merely a brief event, which does not convey the same information as a
durable relationship. Therefore, the time-stamped information cannot adequately be represented
in a binary adjacency matrix without having to aggregate the relational data at the cost of informa-
tion loss (Stadtfeld, 2012). Nevertheless, a friendship between actors i and j at a given time point
can still be viewed as an event that has a one-to-one analogy to a tie in the classical framework.

The overall aim of relational event models (REMs, Butts, 2008) is to understand the dynamic
structure of events conditional on the history of events (Lerner, Bussmann, Snijders, & Brandes,
2013). This dynamic structure, in turn, controls how past interactions shape the propensity of
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future events. To make this model feasible, we leverage results from the field of time-to-event
analysis or survival analysis, respectively (see, e.g., Kalbfleisch & Prentice, 2002, for an overview).

The central concept of the REM can be motivated by the introduction of a multivariate
time-continuous counting process

N(t̃) = (Ni𝑗(t̃)|i, 𝑗 ∈ {1, … ,n}), (12)

where Ni𝑗(t̃) counts how often actors i and j interacted in [0, t̃). Note that we indicate continuous
time t̃ with a tilde to distinguish from the discrete time setting with t = 1, 2, … ,T assumed in the
previous section. Process (12) is characterized by an intensity function 𝜆i𝑗(t̃) for i ≠ j, which is
defined as

𝜆i𝑗(t̃) = lim
dt↓0

ℙ(Ni𝑗(t̃ + dt) = Ni𝑗(t̃) + 1)
dt .

This is the instantaneous probability of observing a jump of size “1” in Ni𝑗(t̃), which indicates
observing the event (i, 𝑗, t̃). Because we assume that there are no self-loops 𝜆ii(t̃) ≡ 0 ∀ i = 1,
… ,n holds.

4.2 Time-continuous observations
Butts (2008) introduced the REM to analyze the intensity 𝜆i𝑗(t̃) of process (12) when
time-continuous data on the events are available. He assumed that the intensity is constant over
time but depends on time-varying relational information of past events and exogenous covariates.
Vu, Hunter, Smyth, and Asuncion (2011) extended the model by postulating a semiparametric
intensity similar to Cox (1972):

𝜆i𝑗(t̃|N(t̃), x(t̃), 𝜃) = 𝜆0(t̃) exp{𝜃Tsi𝑗
(

N(t̃), x(t̃)
)
}, (13)

where 𝜆0(t̃) is an arbitrary baseline intensity, 𝜃 ∈ ℝp is the parameter vector, and si𝑗(N(t̃), x(t̃)) is
a statistic that depends on the (possibly time-continuous) covariate process x(t̃) and the counting
process just prior to t̃.

Generally, similar statistics as already introduced in Section 3 can be included in si𝑗(N(t̃), x(t̃)).
Solely, the differing level of the model needs to be accounted for because model (13) takes a local
time-continuous point of view to understand the relational nature of the observed events. This
necessitates defining the statistics si𝑗(N(t̃), x(t̃)) from the position of specific ties, in contrast to the
globally defined statistics s(yt, yt−1, xt) in (2). To give an example, the tie-level version of reciprocity
for the event (i, j) is defined as

si𝑗,reciprocity(N(t̃), x(t̃)) = 𝟙(N𝑗i(t̃) > 0),

where 𝟙(·) is the indicator function. It only regards, whether already having observed the event
(j, i) prior to t̃ has an effect on 𝜆i𝑗(t̃|N(t̃), x(t̃), 𝜃), in comparison to the network level version (3) of
delayed reciprocity that counted all reciprocated ties between the networks yt and yt−1.

Degree statistics can be specified as either sender- or receiver-specific. If we, for example, want
to control for the out-degree of the sender, the corresponding tie-oriented statistic is

si𝑗,SOD(N(t̃), x(t̃)) =
n∑

h=1
𝟙(Nih(t̃) > 0).

The in-degree of the receiver can be formulated accordingly.
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Clustering in event sequences may be captured by different types of nested two-path configu-
rations. For instance, the tie-oriented version of directed two-paths, henceforth called transitivity,
is given by

si𝑗,TRA(N(t̃), x(t̃)) =
n∑

h=1
𝟙(Nih(t̃) > 0)𝟙(Nh𝑗(t̃) > 0).

The inclusion of monadic and dyadic exogenous covariates becomes straightforward by setting
si𝑗,dyadic

(
N(t̃), x(t̃)

)
equal to the covariate values of interest. Because the effect of a past event at

time 𝛿, say, on a present event at time t̃ may vary according to the elapsed time t̃ − 𝛿, Stadt-
feld and Block (2017) introduced windowed effects, which only regard events that occurred in a
prespecified time window, for example, a year. We will come back to this point in the next section.

If time-continuous observations are available, each dimension of the observed counting pro-
cess is conditionally independent given the past. This, in turn, enables the construction of a
likelihood, which can subsequently be maximized. Assuming that Ω is the set of all observed
events and  is the interval of observation, the likelihood can be written as:

(𝜃) = ∏
(i,𝑗,t̃)∈Ω

𝜆i𝑗(t̃|N(t̃), x(t̃), 𝜃) exp
⎧
⎪⎨⎪⎩
−∫



n∑
k,h=1

𝜆kh(u|N(u), x(u), 𝜃)du
⎫
⎪⎬⎪⎭
. (14)

It is straightforward to maximize the likelihood in the case of a parametric baseline intensity 𝜆0(t),
for example, Butts (2008) assumes 𝜆0(t) = 𝛾0. Alternatively, Butts (2008) analyzed events with
ordinal temporal information. In this setting, the likelihood is equal to the partial likelihood intro-
duced by Cox (1972) for estimating parameters of semiparametric intensities as in (13). Letting
Ut denote the set of all possible events that could have occurred at time point t but did not, the
partial likelihood for continuous event data is defined as

cont(𝜃) =
∏

(i,𝑗,t̃)∈Ω

𝜆i𝑗(t̃|N(t̃), x(t̃), 𝜃)∑
(k,h)∈Ut̃

𝜆kh(t̃|N(t̃), x(t̃), 𝜃)
. (15)

Consecutively,Λ0(t) = ∫ t
0 𝜆0(u)du can be estimated with a Nelson Aalen estimator (see Kalbfleisch

& Prentice, 2002, for further details on the estimation).
When dealing with large amounts of event data, the main obstacle is evaluating the sum over

the intensities of all possible ties in (15) (Butts, 2008). One exact option is to trade a longer running
time for a slimmer memory footprint by means of a coaching data structure. Vu et al. (2011) exploit
this by saving prior values of the sum and subsequently changing it event-wise by elements of
Ut̃ whose covariates changed. Alternatively, Vu et al. (2015) proposes approximate routines that
utilize case-control sampling and stratification for the Cox model (Langholz & Borgan, 1995).
More precisely, the sum is only calculated over a sampled subset of possible events in addition
to stratification. Lerner and Lomi (2019) go one step further and sample events out of Ω for the
calculation of (𝜃) in (15).

Numerous extensions of this model that build on already well-established methods in social
networks and time-to event analysis have been proposed. Perry and Wolfe (2013) used a strati-
fied Cox model in (13). Stadtfeld, Hollway, and Block (2017) adopted the SAOM to events. DuBois
and Smyth (2010) and DuBois, Butts, and Smyth (2013) extended the stochastic block model
for time-stamped relational events. Furthermore, DuBois, Butts, McFarland, and Smyth (2013)
adopted a Bayesian hierarchical model to event data when information is only available in smaller
groups.
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4.3 Time-clustered observations
Generally, the approach discussed above requires time-continuous network data, meaning that
we observe the precise time points of all events. To give an instance, in the first data example,
this means that we need the exact time point t̃ of an arms trade between countries i and j. Often,
such exact time-stamped data are not available and, in fact, trading between states can hardly be
stamped with a single time point t̃. Indeed, we often only observe the time-continuous network
process at discrete time points t = 1, … ,T. In such setting, we may assume a Markov structure
in that we do not look at the entire history of the process N(t̃) but just condition the intensity (13)
on the history of events from the previous observation t − 1 to t̃. Technically, this means that N(t)
is adapted to Ỹ (t̃) ∶= N(t̃) − N(t − 1) and x(t̃) for t̃ ∈ [t − 1, t]. We then reframe (13) as

𝜆i𝑗(t̃|Ỹ (t̃), x(t̃), 𝜃) = 𝜆0(t̃) exp{𝜃Tsi𝑗(Ỹ (t̃), x(t̃))}. (16)

In other words, we assume that the intensity of events between t − 1 and t does not depend
on states of the multivariate counting process (12) prior to t − 1. For this reason, all endoge-
nous statistics introduced in Section 4.2 are now evaluated on Ỹ (t̃) instead of N(t̃). This is a
reasonable assumption, if one is primarily interested in short-term dependencies between the
individual counting processes. It enables a meaningful comparison to the models from Section
3 that assume an analog discrete Markov property. However, we want to emphasize that this
dependence structure is not vital to inferential results.

If we observe the continuous process at discrete time points, it is inevitable that we observe
time-clustered observations, meaning that two or more events happen at the same time point.
Under the term tied observations, this phenomenon is well known in time-to-event analysis and
treated with several approximations. One option is the so-called Breslow approximation (see
Breslow, 1974; Peto, 1972). Let therefore

Ot = {(i, 𝑗) | Ni𝑗(t) − Ni𝑗(t − 1) > 0},

where element (i, j) is replicated Nij(t) − Nij(t − 1) times in Ot, that is, if an event between i and
j occurred multiple times in the interval from t − 1 to t, then (i, j) appears respective times in Ot.
Given that we have not observed the exact time point of an event, we also get no information on the
baseline intensity𝜆0(t̃) in (13) for t̃ ∈ [t−1, t] so that the model simplifies to a discrete choice model
structure (see, e.g., Train, 2009), which resembles the partial likelihood (15) and is defined as

clust(𝜃) =
T∏

t=1

∏
(i,𝑗)∈Ot

exp{𝜃Tsi𝑗(Ỹ (t), x(t))}
(∑

(k,h)∈Ut
exp{𝜃Tskh(Ỹ (t), x(t))}

)nt
, (17)

where nt = |Ot|. Alternatively, one can replace the denominator in (17) by considering all
possible orders of the unobserved events in Ot giving the average likelihood as introduced by
Kalbfleisch and Prentice (2002). Because this can be a combinatorial and, hence, numerical chal-
lenge, random sampling of time point orders among the time-clustered observations can be used
with subsequent averaging, which we call Kalbfleisch–Prentice approximation (see Kalbfleisch
& Prentice, 2002). Further techniques to deal with unknown time ordering are augmenting the
clustered events into possible paths of ordered events and adapting the maximum likelihood esti-
mation proposed for the SAOM by Snijders, Koskinen, and Schweinberger (2010) or using random

59



FRITZ ET AL. 289

sampling of the ordering. This can be legitimized in cases where we may assume indepen-
dence among events happening in one year because the events take a long time to materialize
(Snijders, 2017).

4.4 Model assessment
In comparison to the assessment for models operating in discrete time, widely accepted methods
dealing with relational event data are scarce. The proposals either stem from time-to-event anal-
ysis or regard link prediction, which is the task of predicting the most likely next event given the
history of past events (Liben-Nowell & Kleinberg, 2007). One example of the former option is the
usage of Schönfeld residuals by Vu, Asuncion, Hunter, and Smyth (2011) to check the assumption
of proportional intensities, which is central to semiparametric models as the one proposed by
Cox (1972). For the latter approach, we need to define a predictive measure that quantifies how
well the next event is predicted. Vu et al. (2011) proposed the recall measure that estimates the
percentage of test events, which are in the list of K most likely next events according to a given
model. Evaluating this percentage for different values of K permits a visualization of the predic-
tive capabilities of the model. The strength of the predicted intensity allows the ordering of events
according to the probability of being observed next. If we model the propensity of time-clustered
events that represent binary adjacency matrices, one can alternatively adopt the analysis of the
ROC and PR curve introduced in Section 3.3.

5 APPLICATION

When it comes to software, there exist essentially three main R packages that are designed for
fitting TERGMs and STERGMs. Most important is the extensive statnet library (Goodreau,
Handcock, Hunter, Butts, & Morris, 2008) that allows for simulation-based fitting of ERGMs.
The library contains the package tergm with implemented methods for fitting STERGMs using
MCMC approximations of the likelihood. However, currently the package tergm (version 3.5.2)
does not allow for fitting STERGMs with time-varying dyadic covariates for more than two time
periods jointly. The package btergm (Leifeld et al., 2018) is designed for fitting TERGMs using
either maximum pseudolikelihood or MCMC maximum likelihood estimation routines. In order
to obtain Bayesian Inference in ERGMs, the package bergm by Caimo and Friel (2014) can be
used. Besides implementations in R, the stand-alone program PNet (Wang, Robins, & Pattison,
2006) allows for simulating, fitting, and evaluating (T)ERGMs. In order to ensure comparable
estimates, we estimate the TERGM, as well as the STERGM, with the statnet library, using
MCMC-based likelihood estimation techniques. We use the package ergm and include delayed
reciprocity and the repetition of previous ties as dyadic covariates. The STERGM is fitted using
the tergm package.

Marcum and Butts (2015) implemented the R package relevent (version 1.0-4) to estimate
the REM for time-stamped data. It was followed by the package goldfish (version 1.2) by Stadt-
feld and Hollway (2018) for modeling event data with precise and ordinal temporal information
with an actor- and tie-oriented variant of the REM. Furthermore, it is highly customizable in
terms of endogenous and exogenous user terms and will be used in the following applications.

We want to remark that the STERGM coefficients are implicitly dynamic, whereas in the
TERGM, all network statistics except the lagged network and delayed reciprocity terms are eval-
uated on the network in t. All covariates of the REM are continuously updated and the intensity
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at time point t̃ ∈ [t − 1, t] only depends on events observed in [t − 1, t̃). Like the building period
proposed by Vu et al. (2011), the events in t − 1 are only used for building up the covariates
and not directly modeled. Moreover, the coefficients of the REM affect the intensity of a specific
event on the tie level. For the (S)TERGM, the estimates can be interpreted as the effect of a global
statistic s(yt, yt−1, xt) on the probability of observing the network yt. They also allow for a tie-level
interpretation based on the so-called change statistics (Cranmer & Desmarais, 2011). Due to no
compositional changes, we did not scale any statistics.

5.1 Data set 1: International arms trade
The results obtained for the arms trading data section are displayed in Table 2. For a detailed
interpretation of effects focusing on political, social, and economic aspects, we refer to the relevant
literature (e.g., Thurner et al., 2019). Here, we want to comment on a few aspects only. While
we do not have time stamps for the arms trades, the longitudinal networks can still be viewed as
time-clustered observations enabling the techniques from Section 4.3.

TABLE 2 Arms trade network: Comparison of parameters obtained from the TERGM (first column),
STERGM (formation in the second column, dissolution in the third column), and REM (fourth column)

TERGM STERGM REM
Formation Dissolution

Repetition 3.671∗∗∗ − − 2.661∗∗∗

(0.132) − − (0.143)
Edges −15.632∗∗∗ −17.186∗∗∗ −16.987∗∗∗ −

(1.809) (2.168) (3.587) −
Reciprocity −0.258 −0.620 −0.058 −0.109

(0.306) (0.436) (0.619) (0.181)
In-degree (GWID) −1.823∗∗∗ −2.106∗∗∗ −0.412 0.060∗∗ In-degree receiver

(0.278) (0.379) (0.442) (0.015)
Out-degree (GWOD) −3.220∗∗∗ −4.126∗∗∗ −0.326 0.010∗∗ Out-degree sender

(0.304) (0.462) (0.533) (0.004)
GWESP 0.050 0.076 0.150 0.010 Transitivity

(0.066) (0.071) (0.126) (0.029)
Polity score (absolute difference) −0.024∗ −0.028∗ −0.016 −0.016

(0.010) (0.014) (0.017) (0.009)
log(GDP) sender 0.313∗∗∗ 0.394∗∗∗ 0.323∗∗∗ 0.395∗∗∗

(0.048) (0.054) (0.088) (0.039)
log(GDP) receiver 0.165∗∗∗ 0.135∗ 0.327∗∗∗ 0.192∗∗∗

(0.043) (0.054) (0.087) (0.032)
Log likelihood −949.833 −675.327 −258.425
AIC 1,917.666 1,366.654 532.849∑ AIC 1,917.666 1,899.503

Note. Standard errors in brackets and stars according to p values smaller than 0.001 (∗∗∗), 0.05 (∗∗), and 0.1 (∗). The decay
parameter of the geometrically weighted statistics is set to log(2) and the Kalbfleisch–Prentice approximation was used with
100 random orderings of the events to find the estimates of the REM. TERGM = temporal exponential random graph model;
STERGM = separable temporal exponential random graph model; REM = relational event model; GWID = geometrically
weighted in-degree distribution; GWOD = geometrically weighted out-degree distribution; GWESP = geometrically weighted
edge-wise shared partners; GDP = gross domestic product; AIC = Akaike information criterion.
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FIGURE 5 Arms trade network: ROC (left) and PR (right) curves from the TERGM (dotted line), STERGM
(dot-dashed line), and REM (solid line). The AIC values of the respective curves are indicated in brackets.
ROC = receiver-operator-characteristic; PR = precision-recall; TERGM = temporal exponential random graph
model; STERGM = separable temporal exponential random graph model; REM = relational event model;
AIC = Akaike information criterion

Both the TERGM (column 1) and the REM (column 4) identify the repetition of previ-
ous ties as a driving force in the dynamic structure of the network. Degree-related covariates,
which are GWID and GWOD in the (S)TERGM and the in- and out-degrees in the REM, cap-
ture centrality in the network. The coefficients of the GWID and GWOD are negative and have
low p values in the TERGM. This stands in contrast to the STERGM, where these effects are
only pronounced in the formation model (column 2); however, they are insignificant effects
in the dissolution model (column 3). Hence, these effects suggest a centralized pattern in the
formation network, which is also captured by the TERGM. In the REM, an analogous pattern
can be detected because a higher in-degree of the receiver increases the respective intensity; thus;
spurs trade relations. Similar interpretations hold for the out-degree of the sender. Overall, coun-
tries that have a high out-degree are more likely to send weapons and countries with a high
in-degree to receive them, which again results in a centralized network structure as indicated by
the estimates in the TERGM and STERGM. This example illustrates how seemingly contrasting
coefficients of the (S)TERGM and REM can still imply a similar interpretation in terms of the
implied global network characteristics.

Lastly, consistent effects among the models were also found for the exogenous covariates. Con-
sider, for instance, the coefficient of the logarithmic GDP of the importing country. The TERGM
assigns a significantly higher probability to observe in-going ties to countries with a high GDP
just like the REM. However, disentangling the model towards formation and dissolution, we see
strongly significant coefficients in the dissolution model, whereas the effect for the formation
model is weakly significant.

Based on the independence assumption in (9), we can sum up the two AIC values and see
that the AIC value of the STERGM is smaller than of the TERGM. Furthermore, the ROC and
PR curves of all three models are shown in Figure 5. Again, both measures indicate that the
STERGM provides a slightly improved fit when compared to the TERGM and REM. The results
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of the simulation-based model assessment of the (S)TERGM can be found in the Supplementary
Material.

5.2 Data set 2: European research institution email correspondence
As already indicated by the descriptive statistics in Table 1, the email network seems to be
driven by three major structural influences: repetition, reciprocity, and transitive clustering. The
estimates from Table 3 demonstrate that all models were able to identify these forces.

According to the REM (column 4), the event network of email traffic in the research insti-
tution is not centralized and primarily based on collaboration between coworkers. We can draw
those conclusions from insignificant estimates of degree-related statistics and highly significant
estimates regarding reciprocity and repetition. In the TERGM (column 1), we find a positive and
significant effect of GWID, whereas no effect can be found in the STERGM (columns 2 and 3).
The estimates of repetition and reciprocity in the REM and TERGM are very pronounced. For
instance, the estimates of the REM imply that a reciprocated event is 19.6 times more likely than
an event with the same covariates only not being reciprocated. Interestingly, the STERGM detects
a lower effect of GWESP in the formation and dissolution than the TERGM. The effect of the
delayed reciprocity in the TERGM is less relevant than reciprocity in the formation and dissolu-
tion model. This strongly differing effect size results from the mathematical formulation of the
statistics given in Equations (3) and (11).

Contrasting the AIC values of the TERGM and STERGM shows that the dynamic structure of
the email network is again better explained by the STERGM. In the Supplementary Material, we

TABLE 3 Email exchange network: Comparison of parameters obtained from the TERGM (first
column), STERGM (formation in the second column, dissolution in the third column), and REM
(fourth column)

TERGM STERGM REM
Formation Dissolution

Repetition 1.367∗∗∗ − − 2.27∗∗∗
(0.107) − − (0.084)

Edges −5.755∗∗∗ −4.853∗∗∗ −2.237∗∗∗ −
(0.237) (0.247) (0.224) −

Reciprocity 0.398∗∗∗ 2.498∗∗∗ 2.586∗∗∗ 1.655∗∗∗
(0.112) (0.157) (0.226) (0.075)

In-degree (GWID) 1.060∗∗ 1.349∗ 0.709 −0.004 In-degree receiver
(0.333) (0.648) (0.415) (0.003)

Out-degree (GWOD) 0.031 −0.411 −0.369 −0.0001 Out-degree sender
(0.312) (0.431) (0.397) (0.003)

GWESP 1.560∗∗∗ 0.655∗∗∗ 0.429∗∗∗ 0.070∗∗∗ Transitivity
(0.110) (0.111) (0.086) (0.008)

Log likelihood −1,723.732 −1,000.506 −505.431
AIC 3,459.464 2,011.012 1,020.862∑ AIC 3,459.464 3,031.874

Note. Standard errors in brackets and stars according to p values smaller than 0.001 (∗∗∗), 0.05 (∗∗), and 0.1 (∗).
Decay parameter of the geometrically weighted statistics is set to log(2). TERGM = temporal exponential random
graph model; STERGM = separable temporal exponential random graph model; REM = relational event model;
GWID = geometrically weighted in-degree distribution; GWOD = geometrically weighted out-degree distribu-
tion; GWESP = geometrically weighted edge-wise shared partners; GDP = gross domestic product; AIC = Akaike
information criterion.
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give the results of model assessment for the (S)TERGM and REM, as well as an application of the
TERGM and STERGM to multiple time points.

6 CONCLUSION

6.1 Further models
Snijders (1996) formulated a two-stage process model operating in a continuous-time framework.
The dynamics are considered to evolve according to unobserved microsteps. At first, a sender out
of all eligible actors gets the opportunity to change the state of all his outgoing ties. Consecutively,
the actor needs to evaluate the probability of changing the present configuration with each pos-
sible receiver, which entails each actor's knowledge of the complete graph whenever he has the
possibility to toggle one of his ties. Lastly, the decision is randomly drawn relative to the proba-
bilities of all possible actions. In general, the SAOM is a well-established model for the analysis
of social networks, which was successfully applied to a wide array of network data, for example,
in sociology (Agneessens & Wittek, 2012; de Nooy, 2002), political science (Bichler & Franquez,
2014; Kinne, 2016), economics (Castro, Casanueva, & Galán, 2014), and psychology (Jason, Light,
Stevens, & Beers, 2014). Estimation of this model variant is predominantly carried out with the R
package RSiena (Ripley, Boitmanis, & Snijders, 2013).

Another notable model that can be regarded as a bridge between the ERGM and
continuous-time models is the longitudinal ERGM (LERGM; Koskinen, Caimo, & Lomi, 2015;
Snijders & Koskinen, 2013). In contrast to the TERGM, the LERGM assumes that the network
evolves in microsteps as a continuous-time Markov process with an ERGM being its limiting
distribution. Similar to the SAOM, the model builds on randomly assigning the opportunity to
change, followed by a function that governs the probability of a tie change. This model is still
tie-oriented, meaning that dyadic ties instead of actors are chosen and then have the option to
change the current network.

6.2 Summary
In this article, we emphasize tie-oriented dynamic network models. Comparisons between these
models can be drawn on the level at which each implied generating mechanism works and
how time is perceived. The overall aim in the TERGM is to find an adequate distribution of the
adjacency matrix Yt conditioning on information of previous realizations of the network. In the
separable extension, the aim remains unchanged, only splitting Yt into two subnetworks that
include all possible ties that were and were not present in Yt−1 separately. While the (S)TERGM
proceeds in discrete time, the REM tackles modeling the intensity on the tie level in continuous
time conditional on past events. Therefore, the (S)TERGM takes a global and REM a local point
of view. Even though this results in substantially different interpretations of the estimates, they
can still be related to one another by focusing on how the global effects of the (S)TERGM can be
emergent from tie-level effects treated in the REM. Furthermore, our discussion exposed how the
model assessment of the REM focuses on analogies with time-to-event analysis, that is, looking
at the adequate behavior of the model on the tie-level, and the (S)TERGM on simulation-based
procedures, which regards the capabilities of the model to capture global characteristics.

Finally, the typically required data structure differs between the model classes. While the
time-discrete generating mechanism of the (S)TERGM naturally processes network data that were

6. Tempus volat, hora fugit: A survey of tie-oriented dynamic network models in discrete and
continuous time
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observed at discrete time points, the REM is based on time-continuous data. Of the two analyzed
data sets, the international arms trade network represents the former data structure, whereas the
email traffic data are an example of the latter. By extending the REM to time-clustered observa-
tions and aggregating events to binary adjacency matrices, a meaningful comparison between the
STERGM, TERGM, and REM is enabled.
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APPENDIX

ADDITIONAL DESCRIPTIVES
Figures A1 and A2 depict the distributions of in- and out-degrees in the two networks. Building
on the in- and out-degrees of all nodes, these distributions represent the relative frequency of
all possible in- and out-degrees in the observed networks, which is calculated with the igraph
package in R (Csardi & Nepusz, 2006).

In the arms trade network, a strongly asymmetric relation is revealed, indicating that about
70% of the countries do not export any weapons, whereas a small percentage of countries account

0.0

0.2

0.4

0.6

0.8

0 5 10 15
Degree

P
ro
po
rti
on

In−Degree

0.0

0.2

0.4

0.6

0.8

0 20 40 60
Degree

P
ro
po
rti
on

Out−Degree

FIGURE A1 Arms trade network: Bar plots indicating the distribution of the in- and out-degrees. Black bars
indicate the values of year 2016 and the grey bars, year 2017
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FIGURE A2 Email exchange network: Bar plots indicating the distribution of the in- and out-degrees. Black
bars indicate the values of Period 1 and the grey bars, Period 2

for the major share of trade relations. The distribution of the in-degree is not that extreme, but
still, we have roughly one third of all countries not importing at all.

The email exchange network shows a different structure. Here, many medium-sized
in-degrees can be found, and only roughly 10% of all nodes have received no emails. For the
out-degree, this number doubles (roughly 20% have not sent emails). Furthermore, the distribu-
tion of the out-degree is more skewed than the one for the in-degree.
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Country Name ISO3 Country Name ISO3 Country Name ISO3Afghanistan AFG Germany DEU Niger NERAlbania ALB Ghana GHA Nigeria NGAAlgeria DZA Greece GRC Norway NORAndorra AND Grenada GRD Oman OMNAngola AGO Guatemala GTM Pakistan PAKAntigua and Barbuda ATG Guinea GIN Palau PLWArgentina ARG Guinea-Bissau GNB Panama PANArmenia ARM Guyana GUY Papua New Guinea PNGAustralia AUS Haiti HTI Paraguay PRYAustria AUT Honduras HND Peru PERAzerbaijan AZE Hungary HUN Philippines PHLBahamas BHS Iceland ISL Poland POLBahrain BHR India IND Portugal PRTBangladesh BGD Indonesia IDN Qatar QATBarbados BRB Iran IRN Romania ROMBelarus BLR Iraq IRQ Russia RUSBelgium BEL Ireland IRL Rwanda RWABelize BLZ Israel ISR Saint Kitts and Nevis KNABenin BEN Italy ITA Saint Lucia LCABhutan BTN Jamaica JAM Saint Vincent and the Grenadines VCTBolivia BOL Japan JPN Samoa WSMBotswana BWA Jordan JOR San Marino SMRBrazil BRA Kazakhstan KAZ Sao Tome and Principe STPBrunei Darussalam BRN Kenya KEN Saudi Arabia SAUBulgaria BGR South Korea KOR Senegal SENBurkina Faso BFA Kosovo KOS Serbia YUGBurundi BDI Kuwait KWT Seychelles SYCCambodia KHM Kyrgyzstan KGZ Sierra Leone SLECameroon CMR Laos LAO Singapore SGPCanada CAN Latvia LVA Slovakia SVKCape Verde CPV Lebanon LBN Slovenia SVNCentral African Republic CAF Lesotho LSO Solomon Islands SLBChad TCD Liberia LBR South Africa ZAFChile CHL Libya LBY Spain ESPChina CHN Lithuania LTU Sri Lanka LKAColombia COL Luxembourg LUX Sudan SDNComoros COM Macedonia (FYROM) MKD Suriname SURDR Congo ZAR Madagascar MDG Swaziland SWZCongo COG Malawi MWI Sweden SWECosta Rica CRI Malaysia MYS Switzerland CHECote dIvoire CIV Maldives MDV Tajikistan TJKCroatia HRV Mali MLI Tanzania TZACuba CUB Malta MLT Thailand THACyprus CYP Marshall Islands MHL Timor-Leste TMPCzech Republic CZE Mauritania MRT Togo TGODenmark DNK Mauritius MUS Trinidad and Tobago TTODominica DMA Mexico MEX Tunisia TUNDominican Republic DOM Micronesia FSM Turkey TUREcuador ECU Moldova MDA Turkmenistan TKMEgypt EGY Mongolia MNG Uganda UGAEl Salvador SLV Montenegro YUG Ukraine UKREquatorial Guinea GNQ Morocco MAR United Arab Emirates AREEstonia EST Mozambique MOZ United Kingdom GBREthiopia ETH Myanmar MYM United States USAFiji FJI Namibia NAM Uruguay URYFinland FIN Nauru NRU Uzbekistan UZBFrance FRA Nepal NPL Vanuatu VUTGabon GAB Netherlands NLD Viet Nam VNMGambia GMB New Zealand NZL Zambia ZMBGeorgia GEO Nicaragua NIC Zimbabwe ZWE
TABLE 1 Countries included in the analysis of the international trade network with the ISO3 codes, that are used
in the graphical representations of the network.

6. Tempus volat, hora fugit: A survey of tie-oriented dynamic network models in discrete and
continuous time

72



Fritz et al. 3
2 | SIMULATION-BASED MODEL ASSESSMENT IN (S)TERGMS
In Figures 1 and 4we show simulation-based godness-of-fit (GOF) diagnostics for the the TERGMmodel and in Figures
2, 3, 5 and 6 for the STERGM in the formation and dissolution model, respectively. The figures are created by the R

package ergm (version 3.10.4) and follow the approach of Hunter et al. [2008]. In all three models, the fitted model
is used in order to simulate 100 new networks. Based on these, different network characteristics are computed and
visualized in boxplots.

The standard characteristics used are the complete distributions of the in-degree, out-degree, edge-wise shared
partners andminimum geodesic distance (i.e. number of node pairs with shortest path of length k between them). The
solid black line indicates the measurements of these characteristic in the observed network. These statistics show
whether measures like GWID, GWOD andGWESP are sufficient to reproduce global network patterns. Becausemany
shares are rather small, we visualize the simulated and observed measures on a log-odds scale.

On the bottom of the figures it is shown how well the actual network statistics are reproduced. Note, that both
models compare different things as the TERGM is evaluated at yt while the STERGM regards y+ and y−. Overall, all
plots indicate a satisfying fit of the respective models.

73



4 Fritz et al.
2.1 | Data Set 1: International Arms Trade
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Goodness−of−fit diagnostics

F IGURE 1 Arms trade network: Simulation-based goodnes-of-fit diagnostics in the TERGM. Boxplots give the
evaluations of the respective network characteristics at the simulated networks and the solid line gives the actual
values from the observed network. First four panels give the log-odds of a node for different in-degrees (top left),
out-degrees (top right), edge-wise shared partners (middle, left) and minimum geodesic distance (middle right). All
included rescaled network statistics on the bottom panel.

6. Tempus volat, hora fugit: A survey of tie-oriented dynamic network models in discrete and
continuous time
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Goodness−of−fit diagnostics

F IGURE 2 Arms trade network: Simulation-based goodnes-of-fit diagnostics in the STERGM for the formation
model. Boxplots give the evaluations of the respective network characteristics at the simulated networks and the
solid line gives the actual values from the observed network. First four panels give the log-odds of a node for
different in-degrees (top left), out-degrees (top right), edge-wise shared partners (middle, left) and minimum
geodesic distance (middle right). All included rescaled network statistics on the bottom panel.
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Goodness−of−fit diagnostics

F IGURE 3 Arms trade network: Simulation-based Goodnes-of-fit diagnostics in the STERGM for the dissolution
model. Boxplots give the evaluations of the respective network characteristics at the simulated networks and the
solid line gives the actual values from the observed network. First four panels give the log-odds of a node for
different in-degrees (top left), out-degrees (top right), edge-wise shared partners (middle, left) and minimum
geodesic distance (between them, middle right). All included rescaled network statistics on the bottom panel.

6. Tempus volat, hora fugit: A survey of tie-oriented dynamic network models in discrete and
continuous time
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2.2 | Data Set 2: European Research Institution Email Correspondence
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Goodness−of−fit diagnostics

F IGURE 4 Email exchange network: Simulation-based Goodnes-of-fit diagnostics in the TERGM. Boxplots give
the evaluations of the respective network characteristics at the simulated networks and the solid line gives the
actual values from the observed network. First four panels give the log-odds of a node for different in-degrees (top
left), out-degrees (top right), edge-wise shared partners (middle, left) and minimum geodesic distance (middle right).
All included rescaled network statistics on the bottom panel.
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Goodness−of−fit diagnostics

F IGURE 5 Email exchange network: Simulation-based Goodnes-of-fit diagnostics in the STERGM for the
formation model. Boxplots give the evaluations of the respective network characteristics at the simulated networks
and the solid line gives the actual values from the observed network. First four panels give the log-odds of a node
for different in-degrees (top left), out-degrees (top right), edge-wise shared partners (middle, left) and minimum
geodesic distance (middle right). All included rescaled network statistics on the bottom panel.
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F IGURE 6 Email exchange network: Simulation-based Goodnes-of-fit diagnostics in the STERGM for the
dissolution model. Boxplots give the evaluations of the respective network characteristics at the simulated networks
and the solid line gives the actual values from the observed network. First four panels give the log-odds of a node
for different in-degrees (top left), out-degrees (top right), edge-wise shared partners (middle, left) and minimum
geodesic distance (between them, middle right). All included rescaled network statistics on the bottom panel.
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3 | ROC-BASED MODEL ASSESSMENT
3.1 | Data Set 1: International Arms Trade
As already stated in Section 3.3 of the main paper techniques for assessing the fit of a probabilistic classification can
be used when working with binary network data. In the case of observations at discrete time points this allows an
informal comparison of the models proposed in Section 3 and 4.3.

In the case of the TERGM and STERGM the application of the ROC- and PR-curve follows from the conditional
probability of observing a specific tie (see equation (2.5) of Hunter and Handcock, 2006). For the REM we predict
the intensities of all possible events given the information of t − 1 and use this value as a score in the calculation of
the ROC curve. While the latter approach is non-standard and can only be applied to REMs that regard durable ties,
it enables a direct comparison between the models as shown in Figure 7. The results of the ROC curve indicate a
generally good fit of all models. In the STERGM more parameters are estimated, which seems to lead to a slightly
bigger area under curve (AUC) values as compared to the REM and TERGM. Similar to the conclusions from the ROC
curve, the PR curve favors the TERGM and STERGM over the REM.
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F IGURE 7 Arms trade network: ROC (left) and PR (right) curves from the TERGM (dotted line), STERGM
(dot-dashed line), and REM (solid line).The AUC values of the respective curves are indicated in brackets.
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3.2 | Data Set 2: European Research Institution Email Correspondence
The second data set regards reoccurring events in the REM, which are aggregated for the analysis of the TERGM and
STERGM. Therefore, the ROC and PR curve are only available for the TERGM and STERGM. The results are depicted
in Figure 8. For this data set, the ROC curves favor the TERGM. Yet, when emphasis is put on finding the true positives,
the PR curve detects a better model fit of the STERGM.
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F IGURE 8 Email exchange network: ROC (left) and PR (right) curves from the TERGM (dotted line), STERGM
(dot-dashed line), and REM (solid line). The AUC values of the respective curves are indicated in brackets.

As explained in Section 4.4 one option to asses the goodness-of-fit of REMs is the recall measure as proposed
by Vu et al. [2011a,b]. We apply the measure in three different situations that may be of interest when measuring
the predictive performance of relational event models: predict the next tie, next sender, and next receiver. The worst
case scenario in terms of predictions of a model would be random guessing of the next sender, receiver, or event, the
resulting recall rates are indicated by the dotted lines. The results in Figure 9 exhibit a good predictive performance
of the REM, i.e. in about 75% of the events the right sender and receiver is among the 25 most likely senders and
receivers.
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F IGURE 9 Email exchange network: Recall curves of REM regarding the next sender (a), receiver (b), and event
(c). The dotted line indicates the measure under random guessing of the next sender, receiver, or event.

4 | APPLICATION WITH MULTIPLE TIME POINTS
In the main article, we fitted a TERGM as well as a STERGM to two time points, called period 1 and period 2. However,
it is possible to fit these models to multiple transitions. In order to do so, we took the first two years of the email
exchange network and aggregated the deciles into 10 binary networks. Using again a first order Markov assumption
and conditioning on the first network, this allows to fit a TERGM as well as a STERGM to the remaining nine networks.

6. Tempus volat, hora fugit: A survey of tie-oriented dynamic network models in discrete and
continuous time
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TERGM STERGM REM
Formation Dissolution

Repetition 1.986∗∗∗ − − 2.354∗∗∗

(0.058) − − (0.048) −
Edges −3.435∗∗∗ −4.485∗∗∗ −0.769∗∗∗ −

(0.059) (0.073) (0.107) −
Reciprocity 1.090∗∗∗ 2.755∗∗∗ 1.761∗∗∗ 1.699∗∗∗

(0.069) (0.079) (0.113) (0.043)
In-Degree (GWID) −1.239∗∗∗ −0.870∗∗∗ −0.307∗ 0.007∗∗∗ In-Degree Receiver

(0.099) (0.156) (0.152) (0.002)
Out-Degree (GWOD) −1.574∗∗∗ −1.757∗∗∗ −0.056 0.009∗∗∗ Out-Degree Sender

(0.097) (0.155) (0.159) (0.001)
GWESP 0.497∗∗∗ 0.508∗∗∗ 0.124∗∗ 0.199∗∗∗ Transitivity

(0.028) (0.029) (0.043) (0.011)
TABLE 2 Email exchange network: Comparison of parameters obtained from the TERGM (first column) and
STERGM (Formation in the second column, Dissolution in the third column). Standard errors in brackets and stars
according to p-values smaller than 0.001 (∗∗∗), 0.05 (∗∗) and 0.1 (∗). Decay parameter of the geometrically weighted
statistics is set to log(2).

For comparison we additionally fit a REM to the data set. The estimation is done using the function mtergm from the
package btergm (version 3.6.1) (Leifeld et al., 2018) that implementsMCMC-basedmaximum likelihood. The STERGM
is fitted again using the package tergm (version 3.5.2).

The corresponding results can be found in Table 2 in column 1 to 3. Note that the parameter estimates still refer
to the transition from t − 1 to t and can interpreted in the same way as in the main article. In that regard note, that
it is now assumed that the coefficients stay constant with time. Possible approaches to relax this assumption were
given in the main article. The estimates of the REM (column 4) are consistent with the (S)TERGM but slightly differ to
the main article, since now we condition only on the first out of 10 periods and hence model more events.
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Abstract
Since	 the	 primary	 mode	 of	 respiratory	 virus	 transmis-
sion	 is	 person-	to-	person	 interaction,	 we	 are	 required	
to	 reconsider	 physical	 interaction	 patterns	 to	 mitigate	
the	number	of	people	 infected	with	COVID-	19.	While	
research	has	shown	that	non-	pharmaceutical	interven-
tions	(NPI)	had	an	evident	impact	on	national	mobility	
patterns,	 we	 investigate	 the	 relative	 regional	 mobility	
behaviour	to	assess	the	effect	of	human	movement	on	
the	spread	of	COVID-	19.	 In	particular,	we	explore	 the	
impact	 of	 human	 mobility	 and	 social	 connectivity	 de-
rived	from	Facebook	activities	on	the	weekly	rate	of	new	
infections	 in	 Germany	 between	 3	 March	 and	 22	 June	
2020.	 Our	 results	 confirm	 that	 reduced	 social	 activity	
lowers	 the	 infection	 rate,	 accounting	 for	 regional	 and	
temporal	patterns.	The	extent	of	social	distancing,	quan-
tified	by	the	percentage	of	people	staying	put	within	a	
federal	 administrative	 district,	 has	 an	 overall	 negative	
effect	on	the	 incidence	of	 infections.	Additionally,	our	
results	 show	 spatial	 infection	 patterns	 based	 on	 geo-
graphical	as	well	as	social	distances.
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1 |  INTRODUCTION

The	COVID-	19	virus	outbreak	originating	in	mainland	China	leapt	over	to	Europe	and	quickly	
evolved	to	a	global	pandemic	in	March	2020.	Only	through	strict	non-	pharmaceutical	interven-
tions	 (NPI)	could	most	national	health	systems	rapidly	react	 to	 this	new	threat.	 In	numerous	
scientific	efforts,	physical	distancing	measures	were	discovered	to	be	the	most	effective	interven-
tions	(Prem	et al.,	2020)	and	found	to	be	necessary	maybe	until	2022	(Kissler	et al.,	2020).	The	
measures’	effectiveness	emanates	from	researchers	confirming	that	the	main	form	of	virus	trans-
mission	is	person-	to-	person	interaction	(Chan	et al.,	2020).	The	virus	can	be	spread	by	inhaling	
microscopic	aerosol	particles	that	contain	COVID-	19	and	remain	viable	in	the	air	with	a	half-	life	
of	about	1 h	(Asadi	et al.,	2020)	or	direct	contact	through	the	exchange	of	virus-	containing	drop-
lets	with	infected	individuals	(Guan	et al.,	2020).	Since	also	a	high	proportion	of	cases	is	asymp-
tomatic	(Lavezzo	et al.,	2020)	and	gets	infected	by	cases	in	the	presymptomatic	stage	(Li	et al.,	
2020b),	human	mobility	can	explain	the	spread	of	COVID-	19	to	a	considerable	extent	(Kraemer	
et al.,	2020).

Stemming	 from	the	consequential	need	 to	account	 for	contact	patterns	when	 investigating	
the	spread	of	COVID-	19,	Oliver	et al.	 (2020)	 list	multiple	possibilities	of	how	one	may	utilise	
mobile	phone	data	to	do	so.	To	enable	this	type	of	research,	Facebook	extended	the	Data for Good	
program	to	a	broader	audience	of	researchers	and	provided	so-	called	Disease Prevention Maps	
for	multiple	countries	(Maas	et al.,	2019).	This	database	includes	measurements	on	quantities	
like	co-	location,	user	counts	and	movement	ranges	on	a	regional	level	derived	from	information	
of	more	than	26 million	Facebook	users.	Additionally,	a	measure	for	the	social	connectedness	
between	geographical	regions	is	supplied	(Bailey	et al.,	2018).	In	various	studies,	this	data	source	
was	employed	to	demonstrate	how	the	impact	of	lockdown	measures	in	Italy	was	more	severe	
for	municipalities	with	higher	fiscal	capacities	(Bonaccorsi	et al.,	2020),	quantify	social	and	geo-
graphical	spillover	effects	from	relaxations	of	shelter-	in-	place	orders	(Holtz	et al.,	2020)	and	pre-
dict	the	number	of	infections	on	a	granular	spatiotemporal	resolution	using	contact	tracing	data	
(Lorch	et al.,	2020).

This	article	uses	the	same	data	source	to	analyse	how	regional	differences	in	mobility	pat-
terns	and	friendship	proximity	affect	 the	spread	of	COVID-	19	in	Germany.	While	NPIs,	 for	
example,	 the	nationwide	 shutdown	 in	Germany	 that	 started	22	March,	had	an	evident	 im-
pact	on	national	human	mobility	and	ceased	 the	exponential	spread	of	 the	virus	 (Flaxman	
et al.,	2020),	the	effect	of	the	relative	movement	between	regional	districts	was	not	yet	fully	
assessed.	So	far,	studies	concerning	human	movements	during	the	current	pandemic	are	fo-
cused	mainly	on	how	the	lockdown	affected	national	human	mobility	(Galeazzi	et al.,	2020)	
or	specific	regions	regarding	their	economic	status	(Bonaccorsi	et al.,	2020).	To	fill	this	gap,	
we	 derive	 covariates	 from	 the	 mobility	 data	 to	 quantify	 the	 overall	 dispersion	 of	 meeting	
patterns	and	compliance	with	social	distancing.	Through	weekly	standardisation	of	 the	co-
variates,	we	control	for	the	dynamics	therein,	which	are,	in	turn,	driven	by	NPIs.	As	a	result,	
our	research	enables	a	quantitative	assessment	of	different	mobility	strategies	relative	to	the	

K E Y W O R D S
COVID-	19,	infectious	disease	modelling,	semiparametric	
regression,	social	connectedness,	social	networks,	spatial	
network	data
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national	 average.	 Also,	 we	 infer	 positions	 of	 the	 federal	 administrative	 regions	 in	 a	 social	
space	from	the	information	on	the	relative	friendship	links	among	them	using	multidimen-
sional	 scaling	 (Cox	&	Cox,	2000).	Subsequently,	we	relate	 the	processed	data	 to	Germany’s	
weekly	rate	of	local	COVID-	19	infections	between	3	March	and	22	June	2020.	This	time	frame	
permits	 the	 analysis	 of	 the	 dynamic	 spread	 starting	 with	 the	WHO	 declaring	 COVID-	19	 a	
pandemic	(WHO,	2020).

We	employ	a	spatiotemporal	regression	model	for	the	ratio	of	local	COVID-	19	infections	that	
takes	 autoregressive	 structures,	 age-		 and	 gender-	specific	 effects,	 contagion	 by	 nearby	 districts	
in	the	geographical	and	social	space,	as	well	as	latent	heterogeneities	between	the	districts	into	
account.	Our	method	is	closely	related	to	the	surveillance	model	introduced	by	Held	et al.	(2005).	
They	extend	generalised	 linear	models	 to	analyse	 surveillance	data	 from	epidemic	outbreaks.	
This	approach	was	expanded	to	handle	multivariate	surveillance	data	(Paul	et al.,	2008),	control	
for	 seasonality	 and	 spatial	 heterogeneity	 (Held	 &	 Paul,	 2012)	 and	 include	 neighbourhood	 in-
formation	from	social	contact	data	(Meyer	&	Held,	2017).	In	contrast	to	this	type	of	model,	our	
model’s	objective	is	to	investigate	the	connection	between	mobility	patterns,	social	connectivity	
and	the	spread	of	COVID-	19	in	an	interpretable	manner.	While	forecasting	infections	is	undoubt-
edly	a	central	objective	in	epidemic	surveillance,	this	is	not	the	main	focus	of	our	work	(see	also	
Held	et al.,	2017).

The	rest	of	the	article	will	be	structured	as	follows:	We	discuss	the	data	sources,	its	measures	
on	social	interaction	as	well	as	mobility	in	Section	2.	In	Section	3,	we	detail	our	proposed	model-
ling	approach.	We	propose	an	imputation	model	for	missing	onset	dates	and	use	a	semiparamet-
ric	spatiotemporal	model	to	analyse	the	ratio	of	local	COVID-	19	infections	with	a	specific	disease	
onset	date.	The	results	of	the	analysis	are	presented	in	Section	4.	Section	5	concludes	the	article.

2 |  DATA DESCRIPTION

2.1 | Data on infections

Our	application’s	outcome	of	 interest	 is	 the	 ratio	of	COVID-	19	 infections	 in	a	 federal	admin-
istrative	district	(NUTS-	3	level),	which	we	define	as	the	quotient	of	the	number	of	COVID-	19	
infections	over	the	corresponding	population	size.	In	Germany,	there	are	n = 401	federal	admin-
istrative	districts	(a	complete	list	is	given	by	the	German	Federal	Statistical	Office).	At	a	higher	
hierarchical	 level,	each	 federal	district	also	belongs	 to	a	 federal	 state	 (NUTS-	1	 level).	 In	most	
figures,	for	example	Figure	2,	we	colour-	code	the	district-	specific	time	series	according	to	this	
allocation.	 If	we	refer	 to	a	specific	district	 in	 the	 text,	we	generally	specify	 the	corresponding	
federal	state	in	brackets.

Infection count:	The	 Robert-	Koch-	Institute	 provides	 timely	 data	 on	 the	 daily	 number	 of	
COVID-	19	infections	in	Germany	for	each	federal	district.	We	limit	the	present	analysis	to	indi-
viduals	between	15	and	59,years	old	due	to	the	age	structure	in	the	Facebook	population.	Besides,	
the	given	surveillance	counts	are	stratified	by	age	group	(15–	35	and	36–	59)	and	gender.	For	each	
entry,	dates	of	symptom	onset	and	reporting	are	given,	although	the	onset	date	is	partially	miss-
ing.	Our	principal	analysis	is	based	on	the	disease	onset	date	since	it	ensures	more	valid	infor-
mation	on	 the	 infection	 incidence	 (Günther	et al.,	2020).	 Imputation	of	 the	missing	values	 is	
required	(we	present	our	method	in	Section	3.1).	By	yi,g,t	we	denote	the	observed	(and	partially	
imputed)	counts	of	new	onsets	within	district	i,	age/gender-	group	g	and	week	t.	For	complete-
ness,	we	define	with	xi,g	the	corresponding	indicator	for	the	age/gender	group.
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Population:	We	obtained	district-	,	age-		and	gender-	specific	population	data	 from	the	German	
Federal	Statistical	Office.	To	guarantee	a	consistent	definition	of	age-	groups,	we	categorised	the	data	
according	to	the	two	primary	age	groups	according	to	which	the	infection	data	are	reported,	namely	
people	between	15–	35	and	36–	59 years	old.	The	corresponding	time-	constant	covariate	is	denoted	for	
age/gender-	group	g	in	district	i	by	xi,g,pop.

The	observed	rates	per	10.000	inhabitants	ỹi,g,t = 10.000yi,g,t
xi,g

	are	visualised	in	Figure	1	colour-	coded	
according	to	the	different	states.	For	each	week,	we	plot	the	rate	of	disease	onsets	that	we	par-
tially	 impute	 in	 case	 of	 missingness,	 as	 described	 in	 detail	 in	 the	 next	 section.	 Once	 the	 first	
peak	of	infections	could	be	overcome,	the	cases	in	the	aftermath	are	increasingly	attributed	to	
local	outbreaks.	Two	districts,	namely	Guetersloh	and	Warendorf	(North	Rhine-	Westphalia),	ex-
perience	a	 local	outbreak	 in	a	meat	 factory	during	 the	 last	weeks	of	 the	observational	period	
(Kottasová,	2020).	This	local	outbreak	encompasses	48%	of	all	infections	with	disease	onset	in	
the	week	starting	on	16	June.

2.2 | Data on social activity during COVID- 19

All	data	related	to	social	activities	during	the	COVID-	19	pandemic	are	generated	from	approxi-
mately	10 million	Facebook	users	in	Germany,	who	enabled	geolocation	features	in	the	Facebook	

F I G U R E  1 	 Observed	Rate	of	Weekly	Infections	for	each	federal	district.	The	colour	of	the	lines	indicate	the	
federal	state	in	which	each	district	is	located	and	the	dates	(mm:dd)	are	the	first	day	of	the	corresponding	week
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app	on	their	mobile	devices.	To	abide	by	the	privacy	policies,	the	observations	are	anonymised	
through	aggregation	onto	tile	bing	polygons,	censoring	if	we	observed	not	enough	users	in	the	
spatial	 region,	 as	 well	 as	 randomisation	 using	 additional	 noise	 and	 spatial	 smoothing	 (Maas	
et al.,	2019).	We	aggregate	the	polygons	to	the	same	spatial	units	for	our	application	on	which	
we	 have	 the	 infection	 data.	 We	 propose	 the	 following	 measures	 describing	 social	 interaction	
and	mobility.	All	measurements	are	taken	weekly,	where	we	use	simple	averaging	for	quantities	
available	at	a	more	granular	temporal	resolution.

Co- location:	Co-	location	in	week	t	 is	measured	by	the	probability	 pij,t	of	a	random	person	
from	district	i	to	be	located	in	the	same	0.6 km × 0.6 km	square	as	another	random	person	from	
district	j	(Iyer	et al.,	2020).	These	probabilities	are	then	used	to	construct	a	district-	wise	quantity	
for	the	concentration	of	meeting	patterns	using	the	Gini	index,	which	is	given	by:	

F I G U R E  2 	 (a)	Gini	indices	for	each	district	over	time.	(b)	Standardised	Gini	indices	for	each	district	over	
time.	(c)	Percentages	of	people	staying	put	for	each	district	over	time.	(d)	Standardised	percentages	of	the	people	
staying	put.	The	colour	of	the	lines	indicate	the	state	in	which	each	district	is	located	and	the	dates	(mm:dd)	are	
the	first	day	of	the	corresponding	week
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If	we	were	to	observe	the	maximal	value	of	1	in	xi,t,gini,	all	people	within	federal	district	i	would	only	
meet	people	(i.e.	Facebook	users)	from	only	one	further	district.	This	behaviour	is	exemplary	of	ex-
tremely	restricted	mobility.	Conversely,	a	lower	value	heuristically	indicates	dispersed	meeting	pat-
terns.	Due	to	this	intuitive	interpretation,	we	opt	for	the	Gini	index	as	a	measure	of	concentration.	
The	Gini	indices’	temporal	paths	for	the	401	districts	in	Germany	are	depicted	in	Figure	2a.	Overall,	
the	meeting	patterns	become	more	concentrated	on	a	few	other	districts	as	the	crisis	evolves.	This	
behaviour	contrasts	rather	dispersed	practices	before	the	pandemic.	An	upward	trend	is	visible	until	
the	nationwide	lockdown	on	22nd	of	March,	2020.1	Thereupon,	meeting	patterns	continue	to	be	
overall	condensed,	although	the	indices	slowly	decline.	To	enable	a	meaningful	comparison	between	
the	respective	estimates	in	the	regression	setting	of	Section	3,	we	standardise	the	Gini	indices	per	
week.	The	standardised	covariate	x̃i,t,gini	is	shown	in	Figure	2b	and	given	by	

where	�̂t,gini =
1
n
∑n

j=1 xj,t,gini	and	�̂t,gini =
�

1
n − 1

∑n
j=1 (xj,t,gini − �̂t,gini)2.

Percentage staying put:	Besides	the	relative	attribution	of	co-	location	probabilities	to	other	
districts,	we	investigate	a	measure	that	expresses	how	people	(Facebook	users)	comply	with	so-
cial	 distancing.	We	 quantify	 this	 concept	 by	 the	 covariate	 xi,t,sp,	 which	 is	 defined	 as	 the	 aver-
age	percentage	of	people	in	district	i	staying	put	during	week	t.	Respective	data	were	collected	
using	geolocation	traces	of	mobile	devices	and	users	are	defined	to	be	staying	put,	 if	 they	are	
only	observed	in	one	0.6 km × 0.6 km	square	throughout	a	day	(Facebook,	2020).	In	Figure	2c,	
clear	break-	points	are	visible,	giving	evidence	of	the	temporary	lockdown	that	started	between	
17	and	24	March.	During	the	following	weeks,	 the	observed	values	gradually	 level	off	around	
pre-	lockdown	values.	We	also	observe	some	peaks	in	the	weeks	starting	on	7	and	28	April,	which	
could	be	traced	back	to	the	different	mobility	behaviour	during	national	holidays,	namely	Good 
Friday	on	10	April	and	Labour Day	on	1	May	2020.

Similarly	to	the	treatment	of	the	Gini	index,	we	standardise	the	percentages	in	the	regression	
setting.	While	the	visual	impression	from	Figure	2c	insinuates	that	the	dynamics	of	people	staying	
put	are	similar	between	districts,	the	standardised	paths,	given	in	Figure	2d,	reveal	local	differences	
between	them.	For	instance,	the	early	look-	down	in	Bavaria	resulted	in	a	substantial	relative	increase	
of	the	respective	districts	between	the	10th	and	17th	of	March,	see	the	yellow-	green	lines.

Friendship distance:	Spatial	distance	 is	 found	 to	be	strongly	associated	with	 the	spread	be-
tween	regions	(Kang	et al.,	2020).	Beyond	the	geographical	proximity,	Cho	et al.	(2011)	argued	that	
friendship	ties	explain	specifically	long-	distance	mobility,	which	is	fundamental	for	understanding	
the	early	spread	of	the	pandemic	(Chinazzi	et al.,	2020).	To	accommodate	this	possible	line	of	infec-
tion,	we	include	a	measure	for	the	strength	of	friendship	ties	between	the	districts	of	Germany.	More	
precisely,	we	employ	the	social	connectedness	index	proposed	by	Bailey	et al.	(2018),	which	is	based	

xi,t,gini =

∑
m,l≠ i

�pim,t − pil,t�
2(n − 1) ∑

j≠ i
pij,t

.

	1In	Bavaria,	the	lockdown	started	already	on	16	March	2020.

(1)x̃i,t,gini =
xi,t,gini − �̂t,gini

�̂t,gini
,
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on	an	anonymised	snapshot	of	all	active	Facebook	users	and	their	friendship	networks	from	April	
2020.	For	the	administrative	district	i	and	j,	the	time-	invariant	measure	xij,soc	is	given	by:	

In	a	note,	Kuchler	et al.	(2021)	uncover	high	correlations	between	the	social	connectedness	indices	
and	the	spread	of	COVID-	19.	This	index	is	further	processed	to	provide	a	spatial	allocation	based	on	
social	instead	of	Euclidean	distances.	To	do	so,	we	first	transform	social	connectedness	to	social	dis-
tance	dsoc	by	taking	the	reciprocal	of	connectedness,	that	is,	dij,soc = 1

xij,soc.	Consecutively,	we	process	
these	distances	to	coordinates	using	multidimensional scaling	(Cox	&	Cox,	2000).	In	our	application,	
this	procedure’s	result	is	a	two-	dimensional	representation	of	each	district’s	location	in	the	network	
defined	through	Equation	(2)	that	is	only	identifiable	up	to	the	scale	and	rotation.	Using	Procrustes 
analysis,	we	map	the	rotation	of	the	inferred	coordinates	in	the	friendship	space	to	be	most	similar	
to	the	geographical	coordinates	(Cox	&	Cox,	2008).	Technical	details	on	both	procedures	are	given	
in	Annex	A.	The	outcome	of	the	algorithm	for	each	district	i	is	denoted	by	xi,soc	and	gives	the	geo-	
coordinates	in	the	friendship	space	as	shown	in	Figure	3.	Robust	connectivity	within	federal	states	
and	neighbouring	districts	are	visible	in	the	friendship	coordinates.	We	also	observe	that	the	capital,	
Berlin,	is	situated	in	the	very	centre,	reflecting	its	unique	and	highly	connected	position.	One	can	
also	detect	a	persisting	corridor	between	districts	located	in	former	East-		and	West	Germany.	Next	

(2)xij,soc =
#{Friendship Ties between users in district i and j}

#{Users in district i}#{Users in district j} ∀ i, j ∈ {1,…, n}.

F I G U R E  3 	 (a)	Coordinates	representing	the	friendship	distances.	The	colour	of	the	points	indicates	the	
state	in	which	each	district	is	located.	(b)	Map	representing	the	colour	legend.	The	thick	black	lines	represent	
borders	between	federal	states,	while	the	thinner	grey	borders	separate	federal	districts

7. On the interplay of regional mobility, social connectedness and the spread of COVID-19 in
Germany

92



8 |   FRITZ and KAUERMANN

to	the	social	coordinates,	we	incorporated	each	district’s	geographical	coordinates	xi,coord,	that	is,	the	
longitude	and	latitude	of	each	districts	centroid,	in	our	application.

3 |  MODELLING

We	start	by	proposing	a	model	to	impute	missing	dates	of	the	disease	onset.	Subsequently,	these	
partially	imputed	infection	data	are	modelled	with	a	negative	binomial	regression.

3.1 | Imputation model

We	can	see	in	Figure	4	that	approximately	30%	of	the	onset	dates	are	missing.	To	still	make	use	
of	all	available	information,	we	propose	to	impute	missing	disease	onset	dates	under	the	assump-
tion	of	missingness	at	random.	This	allows	for	unbiased	findings	which	are	not	guaranteed	when	
using	a	complete	case	analysis	(Little	&	Rubin,	2002).	In	particular,	we	leverage	the	fact	that	the	
chronologically	later	reporting	date	is	available	for	all	cases.	Thereby,	the	problem	of	imputing	the	
date	of	disease	onset	for	a	single	infection	is	reduced	to	imputing	the	time	between	onset	of	disease	
and	its	reporting	through	a	positive	test,	which	we	call	test	delay.	Following	Günther	et al.	(2020),	
we	use	the	subset	of	all	data	without	any	missing	disease	onset	dates	to	fit	a	distributional	regres-
sion	model	for	this	test	delay.	In	the	next	step,	we	predict	all	distributional	parameters	under	this	
model	for	all	cases	with	a	missing	disease	onset	date	and	sample	the	missing	onset	date.

F I G U R E  4 	 Count	of	missing	and	observed	disease	onset	dates	per	reporting	week
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To	 fit	 the	 imputation	model,	we	 first	disaggregate	 the	given	 surveillance	counts	 to	 the	pa-
tient	level.	For	each	complete	case	l,	the	data	include	the	age/gender	group	indicator	(xl,g),	an	
indicator	whether	the	reporting	date	was	during	a	weekend	(xl,weekend),	and	the	state	(xl,state)	and	
district	(xl,district)	where	it	was	observed.	Regarding	the	temporal	information	of	each	infection,	
we	are	given	the	date	of	disease	onset	(tl,o)	and	its	reporting	(tl,r).	For	complete-	case	data,	the	test	
delay	is	then	given	by	dl = tl,r − tl,o.	As	regressors	in	the	imputation	model,	we	include	dummy	
covariates	 xl = (xl,g , xl,weekend, xl,state, xl,district)	and	 the	metric	covariate	tl,r	 itself	 to	account	 for	
changing	testing	strategies,	for	example,	during	the	early	spread	the	test	capacities	were	limited	
and	patients	needed	to	wait	longer	for	a	test	to	be	conducted.	We	assume	that	dl	is	a	realisation	of	
random	variable	Dl,	which	follows	a	negative	binomial	model:	

where	�(Dl | xl, tl,r) = �l	and	Var(Dl | xl, tl,r) = �l + �l�2
l 	holds.	A	discrete-	valued	distribution	ap-

pears	most	suitable	since	the	patient-	level	data	are	available	daily,	making	the	test	delay	inherently	
discrete.	As	indicated	in	Equation	(3),	we	model	the	location	and	scale	parameters	of	the	distribution	
by	separate	linear	predictors.	Note	that	the	linear	predictors	are	defined	by	𝜂𝜇 = 𝜃⊤𝜇xl + f𝜇(tl,r)	and	
𝜂𝜎 = 𝜃⊤𝜎 xl + f𝜎(tl,r)	for	the	corresponding	distributional	parameters	and	that	the	linearity	only	refers	
to	linearity	in	the	coefficients	not	in	the	covariates.	Therefore,	the	model	lies	within	the	family	of	
generalised	additive	models	for	location,	scale	and	shape	(Rigby	&	Stasinopoulos,	2005).	While	all	
components	of	xl	have	a	log-	linear	effect,	we	parameterise	the	trend	effect	of	the	reporting	date	tl,r	
by	nonlinear	penalised	splines	(see	Eilers	&	Marx,	1996	for	details).	The	district-	specific	effects	are	
assumed	to	be	Gaussian.	After	having	obtained	the	estimates,	we	calculate	�𝜇 l̃ = exp{�𝜃⊤𝜇xl̃ + �f 𝜇(tl̃,r)}	
and	�𝜎 l̃ = exp{�𝜃⊤𝜎 xl̃ + �f 𝜎(tl̃,r)}	for	all	observations	̃l	with	missing	disease	onset.	We	can	now	simulate	
dl̃	from	Equation	(3)	to	acquire	a	full	data	set	by	setting	tl̃,o = tl̃,r − dl̃.	Through	aggregation	from	the	
daily	patient-	level	data	to	the	infection	counts	per	district	i	and	age/gender	group	g	with	disease	onset	
in	week	t,	denoted	by	yi,g,t,	we	build	a	single	partially	imputed	data	set.	This	procedure	is	repeated	K	
times	to	represent	the	uncertainty	associated	with	the	missing	information	of	all	disease	onsets.

3.2 | Infection model

To	 model	 the	 rate	 of	 infections	 with	 partially	 imputed	 data,	 we	 apply	 a	 negative	 binomial	
‘observation- driven’	model	for	count	data	including	the	population	as	an	offset	term	(Cox,	1981).	
By	doing	so,	we	assume	

where	xi,g,u = (u, xi,g , xi,g,pop, x̃i,u,gini, x̃i,u,sp, xi,coord, xi,soc, ỹi,g,t−1)	are	the	covariates	at	arbitrary	week	
u	specified	in	Section	2	and		denotes	the	set	of	age/gender	groups	used	from	the	data.	Furthermore,	
let	T	be	the	final	week	of	data	we	use	in	the	analysis.	We	assume	in	Equation	(4)	that	the	random	
variable	Yi,g,t	follows	a	negative	binomial	distribution	conditional	on	xi,g,t−1,	ai	and	bi	to	compensate	
overdispersion	in	the	observed	counts.

Aligned	with	models	for	the	spread	of	infectious	diseases	(Held	et al.,	2005),	we	decompose	
�i,g,t	into	an	endemic	and	epidemic	component:	

(3)Dl | xl, tl,r ∼ NB
(
𝜇l = exp

{
𝜃⊤𝜇xl + f𝜇(tl,r)

}
, 𝜎l = exp

{
𝜃⊤𝜎 xl + f𝜎(tl,r)

})
,

(4)Yi,g,t | xi,g,t−1, ai, bi ∼ NB(�i,g,t , �), ∀ i ∈ {1,…, 401}, g ∈ , and t = 2,…, T ,

(5)�i,g,t = exp
{
�END

i,g,t + �EPI
i,g,t

}
,
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where	each	part	is	parameterised	as	follows:	

We	include	a	first-	order	autoregressive	term	of	this	rate,	since	path	dependencies	and	self-	exciting	
behaviour	are	common	with	infectious	diseases	and	should	therefore	be	accounted	for	Held	et al.	
(2005).	In	addition,	we	transform	the	respective	term	by	h(x) = log(x + c)	to	bypass	problems	with	
absorbing	states	of	the	implied	counting	process	when	ỹi,g,t−1 = 0.	The	value	c  ∈  (0, 1]	is	estimated	
from	the	data.	More	general	types	of	these	autoregressive	models	are	proposed	by	Zeger	and	Qaqish	
(1988).

As	is	evident	from	Equation	(5),	we	constitute	that	both	the	epidemic	and	endemic	compo-
nents	have	a	multiplicative	effect	on	the	observed	infection	rates.	As	an	alternative,	Held	et al.	
(2005)	replace	the	log	link	by	an	identity	link,	although	Fokianos	et al.	(2020)	argue	for	the	log-
arithmic	link	implied	in	Equation	(5)	if	additional	covariates	are	available.	They	further	derive	
theoretical	properties,	such	as	ergodicity,	in	the	case	of	Poisson-	distributed	target	variables	under	
the	condition	𝜃AR(1) < 1.

Time- varying effects:	 For	 the	 endemic	 part	 (7),	 the	 temporal	 trend	 is	 reflected	 by	 piece-
wise	constant	fixed	effects	separately	for	each	week,	�t.	By	means	of	group-	specific	covariates	we	
control	for	gender-		and	age-	related	effects	and	their	interaction,	�gen,	�age	and	�age:gen	(Walter	&	
Mcgregor,	2020).	The	principal	covariates,	Gini	Index	and	Percentage	Staying	Put,	are	modelled	
by	piecewise	constants	in	each	week	for	maximal	flexibility.	To	account	for	the	stylised	fact,	that	
the	incubation	period,	that	is,	the	time	between	being	infected	and	symptom	onset,	for	COVID-	19	
is	around	5	days	(Li	et al.,	2020a),	we	lag	the	information	on	Gini	Index	and	Percentage	Staying	
Put	by	one	week	as	indicated	in	Equation	(7).

Isotropic smooth effects:	The	bivariate	 functions	 fcoord(xi,coord)	 and	 fsoc(xi,soc)	display	 the	
effects	of	geographical	coordinates	and	social	coordinates	on	the	incidence	rate.	To	properly	in-
corporate	xi,coord	and	xi,soc	in	our	regression	framework,	we	propose	the	usage	of	isotropic	splines.	
These	kind	of	flexible	functions	were	proposed	by	Duchon	(1977)	to	model	multiple	covariates	
by	a	multivariate	term	as	an	alternative	to	anisotropic	tensor	products.	Isotropic	smoothers	have	
the	property	of	giving	the	identical	predictions	of	the	response	under	arbitrary	rotation	and	re-
flection	of	 the	respective	covariates	(Wood,	2017).	This	characteristic	 is	commonly	reasonable	
when	working	with	geographical	coordinates	xi,coord	and	in	accordance	with	the	uniqueness	of	
the	multidimensional	scaling	results,	thus	also	for	xi,soc.	With	respect	to	the	form	of	the	smooth	
terms,	we	follow	Wood	(2003)	and	use	a	low-	rank	approximation	of	the	thin-	plate	splines	intro-
duced	in	Duchon	(1977).	To	obtain	a	smooth	fit,	we	impose	a	penalty	that	is	controlled	by	�soc	and	
�coord	for	the	respective	isotropic	splines.

Random effects:	 Because	 super	 spreader	 events	 such	 as	 carnival	 sessions	 (Streeck	 et  al.,	
2020)	 or	 local	 outbreaks	 in	 major	 slaughterhouses	 (Dyal	 et  al.,	 2020)	 lead	 to	 unobserved	 het-
erogeneities,	our	model	 comprises	 two	district-	specific	Gaussian	 random	effects.	The	 random	
effect	ai	governs	long-	term	heterogeneities,	while	short-	term	dependencies,	that	is,	sudden	lo-
cally	confined	outbreaks	as	visible	in	the	last	week	of	Figure	1,	are	captured	by	bi.	We	assume	
a = (a1, …, an)⊤ ∼ N(0, In𝜏2

a)	 and	 b = (b1, …, bn)⊤ ∼ N(0, In𝜏2
b).	 Relying	 on	 the	 duality	

(6)�EPI
i,g,t = �AR(1) log(ỹi,g,t−1 + c)

(7)
�END

i,g,t = �t +�gen�(xi,gen = ‘‘Male’’)+�age�(xi,age = ‘‘36−59’’)
+�age:gen�(xi,gen = ‘‘Male’’) ⋅�(xi,age = ‘‘36−59’’)+�t,ginixi,t−1,gini
+�t,spxi,t−1,sp+ fcoord(xi,coord)+ fsoc(xi,soc)+ai+bi�(t =T)+ log(xi,g,pop).
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between	semiparametric	regression	and	random	effects	 (Ruppert	et al.,	2003),	we	can	equiva-
lently	 write	 the	 random	 effects	 as	 semiparametric	 terms.	 Hence	 we	 may	 replace	ai	 and	bi	 by	
fa(i) = (a1, …, an)⊤Xa	 and	 fb(i) = (b1, …, bn)⊤Xb,	 respectively,	 and	 introduce	a	 ridge	penalty	
for	each	coefficient	vector.	In	this	context,	the	design	matrices	Xa	and	Xb	each	consist	of	n	dummy	
variables	indicating	to	which	district	a	specific	observation	refers.	As	a	result	of	this	reformula-
tion,	we	can	estimate	the	additional	parameters	�a	and	�b	as	tuning	parameters	in	semiparamet-
ric	regression	(see	Annex	B	for	further	information).

Modelling rates via count regression:	Effectively,	we	model	the	rate	of	infections	by	in-
cluding	the	term	log(xi,g,pop)	as	an	offset	in	Equation	(7)	since	the	infections	rates	Ỹ i,g,t	relate	to	
the	counts	through	Yi,g,t = Ỹ i,g,txi,g,pop	via	(note	the	slight	abuse	of	notation	as	we	here	do	not	re-
gard	the	infection	rate	among	10.000	inhabitants	but	the	percentage	of	people	infected	with	a	dis-
ease	onset	in	a	specific	week).	As	a	byproduct,	we	implicitly	assume	that	the	entire	population	is	
susceptible,	which	is	reasonable	when	considering	the	low	prevalence	of	COVID-	19	in	Germany	
during	the	first	wave.	However,	the	model	is	still	applicable	in	the	later	stages	of	the	pandemic	by	
replacing	this	offset	with	the	number	of	susceptible	inhabitants	in	each	region.

3.3 | Estimation

At	first,	we	propose	an	estimation	procedure	for	the	imputation	model	from	Section	3.1.	Given	a	
partially	imputed	data	set,	we	specify	how	to	get	estimates	for	the	infection	model	from	Section	
3.2.	Finally,	the	multiple	imputation	scheme	combining	both	approaches	is	presented.	Generally,	
we	carry	out	all	computations	conditional	on	the	observations	in	t = 1,	that	is,	the	week	between	
the	3rd	and	9th	of	March.

Imputation model:	We	get	estimates	for	the	imputation	model	through	maximising	the	like-
lihood	 function	 resulting	 from	 Equation	 (3).	 As	 mentioned	 in	 Section	 3.2,	 we	 can	 rewrite	 all	
random	effects	as	smooth	terms	and	penalise	this	likelihood	to	obtain	smooth	functions.	By	re-
peatedly	updating	the	estimators	through	a	backfitting	algorithm,	we	optimise	this	objective	(see	
Rigby	&	Stasinopoulos,	2005	for	details).	This	procedure	is	readily	implemented	in	the	software	
package	gamlss	(Stasinopoulos	et al.,	2020).

Infection model:	The	infection	model	is	characterised	by	the	parameters	c	and	θ,	relating	
to	 the	 log-	transformation	 of	 the	 autoregressive	 component	 and	 all	 other	 parameters.	 Given	 a	
partially	imputed	data	set,	we	first	consider	θ	to	be	a	nuisance	parameter	and	find	c	via	a	profile	
likelihood	approach.	Here	the	profile	likelihood	is	given	by	

where	(c, �)	is	the	joint	likelihood	resulting	from	Equation	(4)	and	̂�(c)	is	the	maximum	likelihood	
estimator	of	θ	for	a	fixed	value	of	c.	For	any	c,	we	can	find	�̂(c)	by	carrying	out	the	estimation	as	ex-
plained	in	Annex	B,	hence	it	is	straightforward	to	evaluate	Profile(c).	Building	on	this	result,	we	use	
standard	optimisation	software,	that	is,	the	optimise	routine	within	the	software	environment	R	
(R	Core	Team,	2020),	to	obtain	ĉ = arg maxc Profile(c).	In	the	consecutive	step,	we	fix	c	at	ĉ 	to	get	�̂	
again	by	following	Annex	B.

Multiple imputation:	 Since	 information	 on	 the	 onset	 of	 symptoms	 is	 missing	 for	 ap-
proximately	30%	of	the	cases,	we	proposed	an	imputation	model	in	Section	3.1	to	generate	K	
partially	imputed	data	sets.	To	correct	the	uncertainty	quantification	of	the	infection	model	
for	this	multiple	imputation	procedure,	we	use	the	Rubin’s	rule.	At	first,	we	sample	K	imputed	

Profile(c) = max
�

(c, �) = (c, �̂(c)),

7. On the interplay of regional mobility, social connectedness and the spread of COVID-19 in
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data	sets	according	to	Section	3.1.	Let	�̂(k) = (�̂(k), ĉ)	be	the	resulting	estimator	from	the	two-	
stage	maximum	profile	likelihood	procedure	explained	in	the	previous	paragraph	given	the	
partially	imputed	data	set	from	the	kth	imputation	step.	By	V̂ (k)	we	denote	the	corresponding	
variance	estimate	that	results	from	Bayesian	large	sample	properties	(Wood,	2013).	We	then	
average	 the	 coefficients	 over	 all	 K	 iterations	 to	 obtain	 �̂MI = 1

K
∑K

k=1 �̂(k)	 and	 estimate	 its	
variance	through:	

where	its	components	are	given	by	

In	our	application,	setting	K = 20	proved	to	be	sufficient	since	the	estimates	of	different	imputed	data	
sets	varied	only	marginally.

4 |  RESULTS

We	only	report	the	findings	of	the	infection	model	detailed	in	Section	3.2.	A	detailed	analysis	of	
the	imputation	model	as	well	as	a	robustness	check	for	the	infection	model	can	be	found	in	the	
Supplementary	Material.

4.1 | Temporal effect

To	start,	the	estimate	of	�t	is	shown	in	Figure	5.	The	progression	of	the	weekly	estimates	con-
firms	generally	decreasing	infection	rates	over	time.	Due	to	the	standardisation	employed	for	the	
principal	covariates	in	the	analysis,	the	temporal	trend	can	be	interpreted	as	the	log-	transformed	
expected	 infection	 rate	 of	 female	 individuals	 aged	 between	 15	 and	 35	 in	 a	 district	 where	 the	
standardised	Gini	Index	and	Percentage	Staying	Put	are	zero.	Since	observing	a	zero	in	the	stand-
ardised	covariates	translates	to	the	mean	observed	values	where	we	observed	most	information,	
the	standard	errors	are	also	extremely	narrow.

4.2 | Sociodemographic and epidemic effects

The	linear	time-	constant	estimates	are	given	in	Table	1	and	exhibit	in	general	a	negative	effect	on	
male	patients	compared	to	female	patients,	3%	in	the	younger	and	9.6%	in	the	older	age	cohort.2	

V̂ar(�̂MI) = V + (1 + K−1)B,

V = 1
K

K∑
k=1

�V (k)

B = 1
K −1

K∑
k=1

(�𝜗(k)−�𝜗MI)(�𝜗(k)−�𝜗MI) ⊤.

	2One	can	derive	these	percentages	by	computing	the	expected	multiplicative	change	that	results	from	alternating	the	
prediction	from	one	to	another	demographic	group.	For	instance,	exp{0.03} ≈ 0.97,	which	is	equivalent	to	a	3%	decrease,	
is	the	multiplicative	change	ceteris	paribus	between	females	and	males	both	aged	between	15	and	35.

97



   | 13FRITZ and KAUERMANN

According	to	its	partial	effect,	we	also	predict	that	the	older	age	group	has	a	lower	infection	rate	
than	the	younger	group	encompassing	individuals	aged	between	15	and	35,	for	men	9.7%	and	
women	 3.1%.	 The	 autocorrelation	 coefficient	�AR(1)	 expresses	 that	 one	 more	 infection	 among	
10.000	inhabitants	in	a	district	during	the	past	week	almost	doubles	the	predicted	infections	for	
the	present	week.	This	dominant	finding	confirms	strong	path	dependencies	in	the	data.	In	this	
context,	we	need	 to	remark	 that	 the	coefficients	are	partial	effects	 that	condition	on	all	other	

F I G U R E  5 	 Estimate	of	temporal	effect	�t.	The	95%	confidence	interval	accompanies	the	estimates,	and	the	
shown	dates	(mm:dd)	on	the	x-	axis	are	the	first	days	of	the	corresponding	weeks

T A B L E  1 	 Estimates	of	linear	time-	constant	effects

Covariable
Estimate  
(standard error)

exp{Estimate} 
(standard error)

Male −0.03 0.97
(0.015) (0.014)

A35–	A59 −0.031 0.969
(0.014) (0.013)

Male:	A35–	A59 −0.071 0.931
(0.02) (	0.017)

log(ỹi,g,t−1 + c) 0.623 1.865
(0.009) (0.031)

Notes	The	reference	group	are	female	individuals	aged	between	15	and	35.	By	use	of	the	delta	rule,	we	approximated	the	
standard	errors	of	the	transformed	coefficients	in	the	third	row.	The	value	c	is	estimated	at	0.499	with	a	standard	error	of	0.027.

7. On the interplay of regional mobility, social connectedness and the spread of COVID-19 in
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covariates	used	in	the	model.	Therefore,	a	positive	coefficient	of	a	dummy	variable	does	not	nec-
essarily	translate	to	the	same	finding	in	the	raw	numbers.

4.3 | Mobility effects

The	 time-	varying	 estimates	 regarding	 the	 relative	 mobility	 pattern	 are	 displayed	 in	 Figure	
6.	 Overall,	 the	 estimated	 effects	 of	 the	 measures	 proposed	 in	 Section	 2.2	 on	 the	 rate	 of	 local	
COVID-	19	infections	are	negative.	In	regards	to	relative	importance,	both	variables	rank	simi-
larly	during	the	lockdown	period	that	persists	until	early	May.	Subsequently,	the	Gini	Index	in	a	
region	gains	weight,	while	the	effect	of	People	Staying	Put	becomes	more	volatile.	The	temporal	
changes	of	the	respective	estimates	illustrate	nonlinearities,	which	would	not	have	been	suffi-
ciently	captured	by	linear	effects.

Gini index of co- location:	Given	all	other	covariates,	Figure	6a	suggests	 that	 inhabitants	
with	 meeting	 patterns	 that	 are	 centred	 around	 a	 few	 other	 districts	 entail	 reduced	 infection	
rates	for	a	specific	district.	This	tendency	is	only	suspended	in	the	week	starting	on	March	17th	
during	 the	early	 lockdown	 in	Bavaria.	The	corresponding	estimate	 is	positive	and	significant.	
Right	after	the	national	 lockdown	on	22	March	2020,	 is	ordered,	the	effect	 is	not	significantly	
different	from	zero	for	one	week	(03–	24).	The	estimated	effects	remain	low	but	negative	until	
the	German	government	introduces	compulsory	masks	in	public	areas	on	22	April	(Mitze	et al.,	
2020).	Thereupon,	the	effect	has	a	clear	downwards	tendency.	Once	policymakers	slowly	lift	the	
lockdown	measures,	the	estimate	declines	further	until	its	maximum	in	the	penultimate	week	
of	our	observational	period.	This	development	may	be	viewed	as	evidence	that	a	more	focused	
attribution	of	co-	location	probabilities	in	a	district	becomes	more	crucial	over	time.

F I G U R E  6 	 (a)	Time-	varying	effects	of	the	Gini	index	�̂t,gini.	(b)	Time-	varying	effects	of	the	Percentage	of	
People	Staying	Put	�̂t,sp.	The	95%	confidence	interval	accompanies	the	estimates,	and	the	shown	dates	(mm:dd)	
on	the	x-	axis	are	the	first	days	of	the	corresponding	weeks
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Percentage staying put:	Suppose	the	percentage	of	inhabitants	in	a	district	staying	put	is	
large	relative	to	the	national	tendency.	In	that	case,	we	expect	the	incidence	of	infections	through-
out	the	lockdown	period	to	be	lower.	We	deduce	this	result	from	the	largely	negative	estimates	
in	Figure	6b	for	the	weeks	between	10	March	and	12	May.	Once	the	orders	are	relaxed,	on	the	
other	hand,	the	standard	errors	of	the	respective	covariate	become	relatively	large,	and	the	effect	
vanishes	in	the	final	week	of	the	study.	A	possible	explanation	for	this	phenomenon	is	that	when	
daily	 infections	decline,	most	diseases	are	related	to	 local	outbreaks	(as	already	mentioned	 in	
Section	2).	These	breakouts,	in	turn,	cannot	be	associated	with	the	percentage	of	people	staying	
put.	One	exception	to	this	finding	is	the	estimate	in	the	week	starting	on	26	May,	where	we	en-
counter	a	significant	positive	effect.

4.4 | Spatial and social connectedness effects

In	our	model	specification,	we	incorporate	the	friendship	coordinates	and	geographical	coordi-
nates	as	two	spatial	effects.	In	combination	with	the	two	unstructured	latent	variables,	we	can	
disentangle	separate	influences	on	the	local	infection	rates	of	spatial	and	friendship	proximity	as	
well	as	short-		and	long-	term	district-	specific	deviations	from	it.

Spatial effects:	Let	us	start	with	the	smooth	spatial	effect	in	Figure	7.	Overall,	the	geograph-
ical	effects	within	federal	states,	indicated	by	the	black	borders	in	Figure	7,	are	mostly	hetero-
geneous.	To	give	some	examples,	an	almost	uniformly	augmented	risk	of	infections	is	estimated	
in	Baden-	Württemberg	and	Thuringia.	At	the	same	time,	we	remark	a	negative	spatial	effect	in	
Germany’s	northern	districts,	that	is,	Schleswig	Holstein	and	Mecklenburg	Western	Pomerania.	
On	the	other	hand,	the	fit	for	districts	in	North	Rhine-	Westphalia	varies	between	positive,	nega-
tive	and	no	effect.

We	visualise	the	result	of	the	friendship	coordinates	in	two	manners.	One	may	plot	the	smooth	
bivariate	function	in	the	friendship	space,	Figure	8a,	or	map	the	smooth	fit	on	the	geographical	
space,	Figure	8b.	The	re-	mapping	allows	for	sharp	edges	in	the	geographical	coordinates.	Broadly,	
the	fit	differentiates	between	districts	allocated	in	former	East	Germany	(corresponding	in	Figure	
8a	to	MDS	coordinates	located	in	the	first	quadrant)	and	former	West	Germany.	We	observe	that	
the	predicted	infections	are	ceteris	paribus	lower	if	a	district	is	situated	in	former	East	Germany.	
Districts	allocated	 in	 the	second	and	 fourth	quadrant	of	Figure	8a	 (mainly	 including	districts	
from	the	states	Bavaria,	North	Rhine-	Westphalia	and	parts	of	Lower	Saxony)	are	negatively	af-
fected	 by	 social	 proximity.	 Figure	 8b	 demonstrates	 how	 the	 partial	 effects	 sometimes	 change	
abruptly	between	large	cities	and	neighbouring	districts.	For	instance,	Berlin’s	central	position	
is	unrelated	to	the	infection	rates	compared	to	the	negative	effect	evaluated	in	Brandenburg.	We	
observe	a	similar	phenomenon	for	Hamburg	when	contrasting	its	partial	effect	with	surrounding	
districts	in	Schleswig	Holstein	and	Lower	Saxony.

Unobserved heterogeneity effect:	In	Figure	9,	the	posterior	modes	of	both	random	effects	
evince	strong	heterogeneities	between	districts	and	underpin	local	differences	in	the	spread	of	
COVID-	19.	Noticeable	estimates	of	 the	 long-	term	random	effects,	Figure	9a,	 reflect	early	out-
breaks	in	the	districts	Greiz	(Thuringia)	and	Coesfeld	(North	Rhine-	Westphalia).	Some	estimates	
may	also	be	related	to	heterogeneous	testing	practices	between	the	districts.

We	can	trace	back	most	high	estimates	of	the	short-	term	random	effect	to	locally	confined	out-
breaks,	for	instance,	Guethersloh	and	Warendorf	(North	Rhine-	Westphalia).	As	already	stated	in	
Section	2	the	proportion	of	infections	attributed	to	these	local	events	rises	once	the	general	level	
of	new	cases	declines.	This	result	is	supported	by	the	different	scales	of	the	two	types	of	random	
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effects	and	apparent	in	the	estimates	�𝜏a = 0.2 < �𝜏b = 0.585.	Therefore,	the	posterior	modes	of	
the	short-	term	effects	exhibit	higher	variances	and	are	larger	in	absolute	terms	than	the	long-	
term	effects.

4.5 | Model assessment

We	compare	various	alternative	model	specifications	to	check	the	robustness	of	our	conclusions.	
In	particular,	we	estimate	separate	models,	adding	dummy	covariates	for	each	state	and	leaving	
out	one	of	the	spatial	terms,	the	Gini	index,	the	Percentage	of	People	Staying	Put,	all	Facebook-	
related	covariates	and	random	effects.	For	this	endeavour,	we	utilise	the	corrected	Akaike	infor-
mation	criterion	(cAIC)	introduced	by	Wood	et al.	(2016)	since	the	effective	degrees	of	freedom	
need	to	adjusted	for	 the	additionally	estimated	variance	components	 if	random	effects	are	 in-
cluded	(we	average	the	respective	values	over	the	results	of	all	imputed	data	sets).	The	results	
in	Table	2	support	the	appropriateness	of	our	final	model	since	the	corresponding	cAIV	value	is	
the	lowest.	Besides,	the	change	in	the	cAIC	value	to	the	model	(4),	denoted	by	ΔcAIC,	permits	

F I G U R E  7 	 Estimated	smooth	spatial	effect	 fcoord.	The	thick	black	lines	represent	borders	between	federal	
states,	while	the	thinner	grey	borders	separate	federal	districts.	Through	arrows,	we	highlight	selected	states	
mentioned	in	the	text
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an	evaluation	of	the	variable	importance	of	each	eliminated	covariate.	We	can	conclude	from	
Table	2	that	the	exclusion	of	the	Gini	Index	induces	the	highest	loss	in	cAIC	value.	Concerning	
the	different	types	of	distances,	the	friendship	distance	is	more	important	than	the	geographical	
distance.

For	further	validation,	we	plot	one	draw	of	the	randomised	quantile	residuals	in	Figure	10a.	
Dunn	and	Smyth	(1996)	proposed	this	type	of	residual	based	on	the	result	that	evaluating	the	
cumulative	distribution	function	at	all	observed	values	of	 yi,g,t	under	the	estimated	parameters	
should	yield	uniformly	distributed	random	variables.	Transforming	these	uniform	values	by	the	
quantile	function	of	the	standard	normal	gives	the	quantile	residuals.	To	obtain	continuous	re-
siduals,	the	values	are	randomised	since	the	negative	binomial	distribution	in	Equation	(4)	has	
discrete	 support.	On	average,	 the	empirical	quantiles	are	close	 to	 the	 theoretical	 expectations	
and	do	not	 indicate	problems	regarding	 the	 statistical	 fit.	At	 the	 right	 tail	of	 the	distribution,	
38	(out	of	24.060)	observations	exhibit	higher	deviations	from	the	normal	quantiles,	which	we	
coloured	 in	 red.	The	 underlying	 counts	 are	 mainly	 credited	 to	 local	 outbreaks	 that	 could	 not	
be	completely	captured	by	the	random	effects,	namely	Coesfeld	(Thuringia),	Cuxhaven	(Lower	
Saxony),	 Aichach-	Friedberg	 (Bavaria),	 Guetersloh	 and	 Warendorf	 (North	 Rhine-	Westphalia).	
Additionally,	 we	 assess	 the	 predictions	 of	 the	 final	 model	 through	 plotting	 the	 predicted	 in-
fections	against	the	observed	infections,	Figure	10b,	and	a	rootogram	proposed	by	Kleiber	and	

F I G U R E  8 	 (a)	Coordinates	of	the	districts	in	the	friendship	space	with	the	smooth	partial	effect	of	 fsoc	in	
the	background.	We	only	show	the	predictions	in	the	range	of	observed	values.	(b)	Coordinates	of	the	districts	
in	the	geometric	space	with	the	smooth	partial	effect	of	 fsoc	again	shown	in	the	background	for	each	district.	
The	thick	black	lines	represent	borders	between	federal	states,	while	the	thinner	grey	borders	separate	federal	
districts.	Through	arrows,	we	highlight	selected	states	mentioned	in	the	text
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F I G U R E  9 	 (a)	Maximum	posterior	modes	of	the	long-	term	random	effects	ai.	(b)	Maximum	posterior	
modes	of	the	short-	term	random	effects	bi.	The	thick	black	lines	represent	borders	between	federal	states,	while	
the	thinner	grey	borders	separate	federal	districts.	Through	arrows,	we	highlight	selected	districts	mentioned	in	
the	text

T A B L E  2 	 Alternative	model	specifications	with	resulting	corrected	Akaike	information	criterion	(cAIC)	
value	and	change	in	corrected	AIC	value	when	compared	to	our	model	from	Section	3

Model description
cAIC  
(Model)

ΔcAIC 
(Model)

Our	model 86694 –	
With	state	effect 86694.79 0.790
Without	geographical	distance 86699.42 5.422
Without	friendship	distance 86701.26 7.262
Without	Age:Gender	interaction 86707.34 13.336
Without	percentage	staying	put 86732.46 38.461
Without	Gini	index 86974.32 280.319
Without	Facebook	covariates 87033.87 339.867
Without	long-	term	effect 87452.62 758.620
Without	short-	term	effect 87900.03 1206.034
Without	long-		and	short-	term	effect 88624.38 1930.382
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Zeileis	(2016),	Figure	10c.	Both	visualisations	confirm	a	strong	fit	of	the	presented	model	and	
proof	that	the	model	can	sufficiently	capture	the	observed	counts	of	infected	individuals.	Due	to	
the	multiple	imputation	scheme	specified	in	Sections	3.1	and	3.3,	we	carry	the	model	assessment	
out	for	each	imputation	separately	and	report	the	averaged	results.

5 |  CONCLUSION

In	this	writing,	our	contributions	are	twofold.	First,	we	used	state-	of-	the-	art	regression	models	
to	quantify	the	importance	of	human	mobility	for	understanding	the	spread	of	COVID-	19	on	a	
local	level	accounting	for	their	temporal	dynamic,	latent	effects	and	other	covariates.	Concerning	
the	relative	importance,	the	Gini	index	of	meeting	probability	attribution	proved	to	be	a	primary	

F I G U R E  1 0 	 (a)	QQ	Plot	of	randomised	quantile	residuals,	observations	with	a	distance	larger	than	1	to	the	
theoretically	expected	values	are	drawn	in	red.	(b)	Scatter	plot	of	the	observed	and	predicted	infection	count,	
for	the	x	and	y-	axis,	we	used	a	log(· + 1)	scale.	The	dotted	grey	line	is	the	best-	case	scenario	of	the	prediction	
and	has	intercept	0	and	slope	1.	(c)	Rootogram	comparing	the	observed	and	expected	counts.	The	grey	barplot	
specifies	the	observed	counts,	while	the	red	line	gives	the	expected	values	under	Equation	(4)
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driver	 of	 the	 infection	 rates.	 Second,	 we	 used	 methods	 from	 multivariate	 statistics	 to	 derive	
friendship	coordinates	for	the	federal	districts	in	Germany.	Consecutively,	we	coupled	the	result	
with	 a	 regression	 model	 via	 isotropic	 splines	 and,	 thereby,	 revealed	 a	 perpetual	 clustering	 of	
communities	in	former	East-		and	West	Germany	that	remains	existent	for	COVID-	19	infections	
because	 the	social	geographical	 system	proves	 to	be	an	essential	 regressor	 in	our	application.	
Moreover,	our	 findings	enable	an	evaluation	of	 the	district-	wise	policies	undertaken	between	
March	 and	 June	 2020.	 The	 results	 corroborate	 the	 usefulness	 of	 interventions	 limiting	 trans-	
district	movements	and	concentrating	meeting	patterns.	Especially	during	the	last	weeks	of	this	
study,	local	lockdowns	could	mitigate	further	national	outbreaks.

Still,	we	need	to	address	some	limitations	of	our	work,	which	require	additional	investigation.	
The	data	sources	for	the	infection	data	include	all	individuals	in	Germany	that	tested	positive	on	
COVID-	19.	During	the	peak	phase	in	March,	these	tests	were	mainly	carried	out	with	patients	
who	showed	symptoms	or	had	contact	with	an	 infected	 individual.	Due	 to	an	unknown	dark	
figure	of	infected	persons	missing	in	the	public	records	(Lavezzo	et al.,	2020),	the	observed	data	
are	a	proxy	 for	 the	current	epidemiological	situation.	To	control	 for	 this	possible	bias,	 further	
research	on	the	prevalence	of	COVID-	19	in	Germany	and	the	representability	of	the	official	sta-
tistics	of	the	real	infection	occurrence	akin	to	the	REACT	Study	in	England	(Riley	et al.,	2021)	
would	be	necessary.

Even	 with	 these	 caveats,	 the	 combination	 of	 infection,	 mobility	 and	 connectivity	 data	 can	
serve	 for	 a	 fruitful	 application	 of	 other	 methods	 as	 well.	 Contrasting	 our	 approach,	 one	 may	
tackle	the	regression	task	in	Section	3	by	incorporating	the	spatial	dependencies	directly	in	the	
correlation	structure,	as	is	done	in	the	literature	on	spatial	econometric	models	(LeSage	&	Pace,	
2009).	We	could	also	employ	novel	clustering	algorithms	that	naturally	exploit	different	proxim-
ity	dimensions,	such	as	the	geographical	and	social	space,	to	identify	similar	districts	while	tak-
ing	into	account	spatial	dependencies	(D’Urso	&	Vitale,	2020;	D’Urso	et al.,	2019).	Furthermore,	
the	research	questions	posed	in	this	article	would	greatly	benefit	from	an	examination	through	
the	lens	of	analytical	sociology	(Hedström	&	Bearman,	2011).	Nevertheless,	this	type	of	analysis	
usually	necessitates	individual-	level	data,	which	are	not	readily	available.	Therefore,	we	can	only	
verify	some	of	the	theoretical	results	of	Block	et al.	(2020)	on	the	macro	scale,	which	does	not	
necessarily	translate	to	the	micro	scale	(Stadtfeld,	2018).	Therefore,	additional	empirical	work	on	
the	implications	of	individual	behaviour	on	the	spread	of	COVID-	19	is	still	needed.	Nevertheless,	
our	work	can	give	valuable	pointers	in	that	regard	contingent	on	the	assumption	that	the	corre-
sponding	district	average	adequately	represents	the	mobility	patterns	of	an	individual.

6 |  DATA AND CODE AVAILABILITY

Facebook	collected	 the	anonymised	mobility	and	connectivity	data.	We	cannot	share	 the	raw	
data	due	to	a	data	agreement.	Still,	we	are	allowed	to	provide	all	data	aggregated	onto	the	level	
of	federal	districts.	To	guarantee	the	replicability	of	our	results,	we	make	the	complete	code	to	
obtain	the	results	from	this	article	available	online.	We	also	supply	a	visualisation	of	the	entire	
pipeline	of	our	analysis	in	the	Supplementary	Material	for	transparency.
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APPENDIX A

A. MULTIDIMENSIONAL SCALING AND PROCRUSTES ANALYSIS
In	 order	 to	 determine	 the	 information	 given	 in	 the	 pairwise	 social	 connectedness	 indices	
xsoc = (xij,soc)i,j=1,…,n	for	explaining	the	spread	of	COVID-	19	in	Germany,	we	use	techniques	
from	multivariate	statistics	(Cox	&	Cox,	2000).	Thereby,	we	can	derive	a	low-	dimensional	rep-
resentation	of	the	network	on	the	actor	level	and	guarantee	interpretable	as	well	as	transpar-
ent	results.	More	specifically,	we	apply	metric multidimensional scaling	 (MDS)	to	represent	
dissimilarity	matrices	in	a	lower-	dimensional	geometric	space	that	preserves	the	dissimilari-
ties	through	Euclidean	distances	(Borg	et al.,	2013).	To	illustrate	the	application	of	this	algo-
rithm,	one	can	think	of	MDS	as	a	technique	to	reverse-	engineer	geographical	coordinates	that	
are	 unique	 up	 to	 scale	 and	 rotation	 from	 distances	 between	 cities	 (Young	 &	 Householder,	
1938).

At	first,	we	transform	the	similarities	expressed	by	the	counts	of	friendship	ties	between	the	
districts	 xsoc	 to	 dissimilarities.	 In	 our	 application,	 the	 measure	 of	 dissimilarity	 is	 given	 by	
dsoc = ( 1

xij,soc
)i≠j=1,…,n	and	dii,soc = 0.	While	this	dissimilarity	matrix	is	symmetric	and	nonnega-

tive,	there	is	no	general	guarantee	that	the	entries	of	dsoc	are	Euclidean.	Therefore,	we	add	the	
constant	c	to	the	off-	diagonal	elements	to	ensure	that	the	distances	between	the	found	coordi-
nates	are	Euclidean	(Cailliez,	1983;	Mardia,	1978).	In	order	to	estimate	these	p-	dimensional	co-
ordinates	xi,soc = (xi,1, …, xi,p) ∀ i = 1, …, n	from	the	dissimilarity	matrix	dsoc,	the	objective	is	
to	minimise	the	squared	error	between	the	pairwise	entries	of	dsoc	and	the	Euclidean	distances	
calculated	with	the	respective	coordinates:	

in	our	case	we	set	p = 2.	See	Cox	and	Cox	(2000)	and	Borg	et al.	(2013)	for	methods	to	find	
x	 such	that	Equation	(A1)	holds,	which	are	 implemented	in	the	R-	package	stats	 (R	Core	
Team,	2020).

Since	arbitrary	transformations,	rotations	and	reflections	of	any	coordinates	that	optimise	(A1),	
represented	by	xsoc = (x1,soc, …, xn,soc),	are	equally	valid,	we	further	process	the	solution	to	guaran-
tee	uniqueness	and	an	intuitive	understanding	of	the	result.	To	achieve	this	goal,	we	use	Procrustes 
Analysis	(Cox	&	Cox,	2008)	and	find	an	optimal	solution	xsoc	to	Equation	(A1)	that	is	also	most	similar	
to	the	geographical	coordinates	xcoord = (x1,coord, …, xn,coord)	given	in	Figure	8.	As	a	measure	of	sim-
ilarity	between	the	matrices	xsoc	and	xcoord,	commonly	R2 =

∑n
i=1 (xi,soc − xi,coord)⊤(xi,soc − xi,coord)	

is	used.	Furthermore,	we	can	parameterise	the	desired	class	of	functions	that	transform	an	accord-
ing	to	Equation	(A1)	optimal	solution	xsoc,i	to	x̃soc,i	by:	

where	ρ	is	scalar	determining	the	dilation,		an	orthogonal	matrix	defining	the	rotation	and	reflec-
tion,	and	b	a	two-	dimensional	vector	for	a	possible	translation.	From	an	optimisation	point	of	view,	
we	now	have	to	find	ρ,	,	and	b	such	that	the	resulting	R2	is	minimised,	which	we	can	do	in	closed	
form	(see	Cox	&	Cox,	2000).	This	type	of	transformation	is	implemented	in	the	R-	package	vegan	
(Oksanen	et al.,	2020)	and	does	not	change	the	estimates	or	inference	because	we	apply	isotropic	
smooth	terms.

(A1)xsoc =
�

x⊤1,soc,…, x⊤n,soc

�
= argmin

x̃ ∈ℝp×n

��
i≠j

(dij,soc +c−‖x̃i− x̃j‖2)
�1∕2

,

(A2)x̃soc,i = 𝜌⊤xsoc,i + b,

109



   | 25FRITZ and KAUERMANN

B. ESTIMATION OF θ GIVEN c AND COMPLETE DATA
From	 Equation	 (4),	 we	 construct	 a	 likelihood	 for	 each	 district	 and	 age/gender	 group	 tuple.	
Combining	these	separate	contributions	under	independence	leads	to	a	joint	logarithmic	likeli-
hood	given	by:	

note	that	ϕ	is	the	dispersion	parameter	of	the	negative	binomial	distribution	and	that	the	likelihood	
of	the	imputation	model	from	Equation	(3)	in	Section	3.1	has	the	same	form	with	�−1 = �l.	Suppose	
we	plug	�i,g,t	as	defined	in	Equation	(5)	into	(B1)	and	fix	the	value	of	c.	In	that	case,	we	observe	that	
the	result	is	a	function	of	θ	and	resembles	the	likelihood	of	a	generalised	additive	model	with	negative	
binomial	distributed	target	variables	and	denote	the	likelihood	by	ℓ(θ|c)	(Ruppert	et al.,	2003).	To	obtain	
a	smooth	fit	of	θ,	we	extend	this	function	by	an	additive	penalisation	component:	

where	𝜏 =
(
𝜏a, 𝜏b, 𝜏coord, 𝜏soc

)⊤
	 are	 smoothing	 parameters	 weighting	 the	 term-	specific	 penalties	

S =
(

Sa, Sb, Scoord, Ssoc
)⊤.	The	choice	of	these	penalties	differs	between	the	random	effects	and	bi-

variate	spacial	effects.	For	the	random	effects,	we	follow	Ruppert	et al.	(2003)	and	define	Sa	and	Sb	
through	ridge	penalties,	hence,	for	instance,	Sa =

∑2
i=1 a2

i .	In	the	case	of	the	isotropic	semiparamet-
ric	terms,	we	chose	the	penalty	terms	in	accordance	with	Duchon	(1977).	Here,	Scoord	penalises	the	
roughness	of	the	bivariate	function	 fcoord(xi,coord) = fcoord(xi,coord,1, xi,coord,2),	where	xi,coord,p	denotes	
the	pth	dimension	of	xi,coord ∀ p ∈ {1, 2},	in	our	application	the	longitude	and	latitude	of	district	i.	
Given	this	notation,	we	can	state	the	functional	form	of	the	penalty	term:	

Besides	we	ensure	identifiability	of	all	smooth	effects	by	incorporating	a	sum-	to-	zero	constraint	per	
term,	which	translates	to	∑n

i=1 fcoord(xi,coord) = 0	for	 fcoord( ⋅ )	(Wood,	2017).
To	maximise	(B2)	in	terms	of	θ	and	τ,	we	follow	the	nested	optimisation	approach	of	Wood	

(2011).	Hence,	we	find	�̂ 	in	an	outer	iteration	and	̂�	consecutively	in	an	inner	iteration.	Generally,	
the	validity	of	this	procedure	rests	on	the	finding	that	�̂	is	the	posterior	mode	of	θ|y	under	the	as-
sumption	that	θ	follows	a	zero-	mean	normal	prior	with	improper	variance	(Kimeldorf	&	Wahba,	
1970).	Viewing	θ	as	random	coefficients	enables	us	to	estimate	all	smoothing	parameters	τ	via	
restricted	maximum	likelihood	estimation.	More	specifically,	we	set	up	f(y, θ|c)	given	ℓ(θ|c)	and	
f(θ).	Through	integrating	θ	out	of	 f(y, θ|c)	by	deploying	a	Laplace	approximation	we	obtain	an	
approximate	 REML	 criterion,	 which	 is	 a	 function	 of	 τ	 and	 ϕ,	 the	 dispersion	 parameter	 from	
Equation	(B1).	Maximising	the	derived	function	in	terms	of	these	parameters	gives	�̂ 	and	�̂	(see	
Wood,	2011	for	additional	details).	Given	the	tuning	parameters,	we	consecutively	find	�̂	through	
standard	penalised	iterative	re-	weighted	least	squares	estimates	(PIRLS,	Wood,	2017)	in	the	inner	
iteration.	We	repeat	this	iterative	scheme	until	convergence	to	obtain	�̂	and	�̂ 	given	a	fixed	value	
of	c.	A	scalable	implementation	of	this	routine	that	we	used	is	available	in	the	software	package	
mgcv	(Wood,	2017).

(B1)�(�, c)∝
n∑

i=1

∑
g∈

T∑
t=1

log
(

Γ(�+yi,g,t)
yi,g,t!Γ(yi,g,t)

)
+� log

(
�

�+�i,g,t

)
+yi,g,t log

(
�i,g,t

�+�i,g,t

)
.

(B2)�p(𝜃|c) = �(𝜃|c) − 𝜏⊤S,

Scoord = ∫ �2

�2xcoord,1
fcoord(xcoord)2+2 �2

�xcoord,1�xcoord,2
fcoord(xcoord)2

+ �2

�2xcoord,2
fcoord(xcoord)2 dxcoord,1 dxcoord,2.
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1 | ANALYSIS OF REPRESENTATIVENESS OF FACEBOOK DATA
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F I G U R E 1 Scatter-plot of the Facebook population that opted in the geolocation features and the general population for
each district.

To guarantee robust estimates, we investigate to what extent the mobility data provided by Facebook in the context of the

Data for Good program (Maas et al., 2019; Iyer et al., 2020) are representative of the general German population and in line with

other mobility data. We carry out the respective assessment in three parts:

1. Compare the spatial distribution of Facebook users that opted in geolocation features with the general population for each

district.

2. Contrast the age structure of Facebook users with the demographic pyramid in Germany.

3. Check if mobility data from other providers, i.e., Apple and Google, measure similar information as the Facebook data.

Spatial Distribution: Besides mobility data, the datasets made available by Facebook also include the daily counts of

Facebook users who enabled geolocation features in each federal district. For this assessment, we only look at the average of

users per district over the study period from the 3rd of March to the 16th of June 2020 and calculate the same quantity for the

general population provided by the German Federal Statistical Office. Figure 1 is a scatter-plot of 401 points representing the

general and Facebook population measured for each federal district. We can conclude from this plot that the spatial distribution

of Facebook users is positively correlated with official statistics, i.e., the estimated Pearson correlation is 0.98.

Age Representation: In addition to people’s spatial distribution, we want to compare the age structure of general Facebook

users and the general German population. The Facebook users’ age structure that turned on the geolocation features is unknown

due to differential privacy. As a possible proxy for this information, we compile information about the age structure of the entire

7. On the interplay of regional mobility, social connectedness and the spread of COVID-19 in
Germany
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F I G U R E 2 Comparison of the age- and gender-structure within Facebook and in the general population of Germany.

Facebook population in Germany from Facebook Audience Insights. Unfortunately, Facebook’s age-groups are not aligned with

the age groups used by the RKI. As can be seen in Figure 2, the Facebook population is younger than the general population.

While we can conclude that the age groups 18-24, 35-54 are adequately represented in the Facebook sample, there is a surplus of

people in the 25-to-34-year-old cohort. Simultaneously, the age group of the oldest individuals is in relative terms less populated

than the general population. Still, this finding does not necessarily indicate a bias in the mobility data that we use in the principal

analysis. Due to the standardisation of the mobility-related covariates given in Formula (1) of the main paper, the covariates are

robust to a nation-wide under- and over-representation of older and younger individuals. In that case, the measurement bias

would only be a constant, and hence the standardised covariates would be the same. We cannot quantify with the available data

whether the percentage compositions of those age structures vary within each district. However, the promising results of the

spatial representativeness make it reasonable to assume that this is not the case.

Mobility Measurement from other Sources: We now contrast the mobility data provided by two other major technology

companies, namely Apple1 and Google2, with the data made available by Facebook. We use the Google Community Mobility

Reports, including relative mobility trends in retail or grocery stores, transit stations, and places of work. Similarly, Mobility

Trends Reports from Apple use information on the relative requests for directions to walk, drive or use transit transportation in

Apple Maps to measure the mobility trends. Since solely the Percentage of People Staying Put relates to absolute movements in

the Facebook data, we investigate the Pearson correlation matrix of all given mobility indices in Figure 3. The high correlations

in the first row and column are conclusive in that the Percentage of People Staying Put captures the information of all other

variables reasonably well since the absolute correlation coefficients range from 0.88 to 0.97.

2 | PIPELINE OF THE ANALYSIS

To make the performed analysis of the main article as transparent as possible, Figure 4 depicts the complete pipeline, including

all stages needed for this work. Information on the raw data and needed pre-processing steps are given in Section 2 and Annex A.

The imputation and infection models, together with Ruben’s formula to pool estimates from different imputations, are specified

1https://covid19.apple.com/mobility
2https://www.google.com/covid19/mobility/
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F I G U R E 3 Correlation matrix of the weekly national mobility indicators from Facebook, Google, and Apple.

in Section 3 (all referred contend relates to the main article).

3 | IMPUTATION OF THE TEST DELAY

The imputation procedure given in the main article relies on all observations to be missing at random (Little and Rubin, 2002). To

check this assumption, we first argue for stochasticity of the mechanism driving the binary indicator whether the target variable,

i.e., the date of disease onset, is missing. In a second step, we perform a missing at random analysis to discover which covariates

affect this mechanism. We consecutively employ the detected covariates in the imputation procedure introduced in Section 2.3 of

the main article and report the full estimates. Finally, we conduct a sensitivity analysis to check whether our findings change if

we only regard cases with observed disease onset.

3.1 | Stochasticity of Missings

Each registered COVID-19 case can be characterised by three dates representing distinct stages of the disease, namely the time

of infection, disease onset, and registration at local health authorities. This progression is illustrated in Figure 5. While we do

not observe the disease onset date for some cases, we can still argue that all samples progress through the same three stages,

although the second date is in some cases latent. Hence under the assumption that the incubation period from the infection date

to the (observed or latent) disease onset date is stochastic, it is also appropriate to assume that the same holds for the test delay,

7. On the interplay of regional mobility, social connectedness and the spread of COVID-19 in
Germany
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F I G U R E 4 Visualisation of the complete pipeline from pre-processing raw data to obtaining the final estimates. Rectangles
relate to data, ovals to procedures, and tilted squares to estimators.
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Infection

 

    Test Delay 

  (Partially Observed) 

Disease Onset Registration 

 

  Incubation Period
  (Not Observed) 

F I G U R E 5 Illustrative temporal path of a COVID-19 infection, collected surveillance data and resulting delays.

Time Trend Age Gender Age:Gender District State cAIC Rank

Model 1 X X X X X X 121608.4 1

Model 2 X X X X X 121610.7 2

Model 3 X X X X X 142637.8 5

Model 4 X X X X X 126562 7

Model 5 X X X X X 121632.1 6

Model 6 X X X X X 121741.9 4

Model 7 X X X X X 121731.1 3

TA B L E 1 Different specifications of the missing at random process. The sign X signals the inclusion of a specific covariate
in the respective model. In the last two rows the corresponding corrected AIC (cAIC) values and their rankings are given.

defined as the time-span between disease onset and registration date. Given this argument, it is legitimate to impute the test delay

through a stochastic model. We can then use this information to project the disease onset date back from the registration date for

all cases given the observed data. Besides, we carry out a sensitivity analysis in Section 3.4 to check for structural differences in

the dynamics of infection rates of cases with a disease onset and all cases. The estimates excluding all observations with missing

disease onset date are in accordance with our findings of the main article.

3.2 | Missing at Random Analysis

Having established that the missing values are random, we need to identify the covariates driving the missing values’ mechanism.

To do that, we generate a binary indicator of whether the test delay was observed for each case l . In the consecutive step, we

take this binary indicator to be the target variable of a logistic regression with seven different sets of covariates given in Table

1, which we compare utilising the corrected AIC values (Wood et al., 2016). Further, we include all categorical covariates as

dummy-coded regressors. All effects are fixed beside the Gaussian random district-specific effects. We parametrise the temporal

trend by a penalised spline (Eilers and Marx, 1996). In the final row of Table 1, the corresponding cAIC values indicate that

Model 1 is the best specification of the missing at random process; hence we employ the corresponding set of covariates in our

imputation model.

3.3 | Results

Originating from the missing at random analysis of Section 3.2, our imputation model incorporates a random district-specific

effect, a temporal trend, and dummy covariates for the age, gender, and state cohort as well as an interaction between age and

7. On the interplay of regional mobility, social connectedness and the spread of COVID-19 in
Germany
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Covariable

Parameter

µl σl

(Standard Error) (Standard Error)

Intercept 1.852 −1.011
(< 0.01) 0.022

Male 0.005 −0.069
(< 0.01) (0.024)

A35-A59 0.017 0.101

(< 0.01) (0.02)
A35-A59:Male 0.038 −0.027

(< 0.01) (0.030)
Weekend −0.034 −0.049

(< 0.01) (0.017)

TA B L E 2 Imputation Model: Sociodemographic linear estimates. The reference group are female individuals aged between
15 and 35 living in Baden-Württemberg.

gender groups. In our proposed imputation procedure, we parametrise not only the mean of the test delay (µ) but also its scale

factor (σ). Therefore, we provide the full estimates of the corresponding model defined in Formula (2) of the main article

separately for each coefficient. Besides, we decompose all reported effects into sociodemographic, state, smooth and random

effects.

Sociodemographic Effects: The results of demographic terms are given in Table 2 and should be interpreted regarding the

mean and dispersion parameter of the period between disease onset date and reporting date, which we define as test delay.

State Effects: In addition to the demographic covariates, we included a fixed effect for each state. For the results shown in

Figure 6, we use Baden-Württemberg as the reference category. Hence, all estimates should be interpreted relative to Baden-

Württemberg. The state effects on µ in Figure 6 (a) indicate that the average test delay in eastern states, e.g., Saxony-Anhalt and

Saxony, is lower than in the reference category. The test delay volatility also varies significantly between the states, as shown in

Figure 6 (b), e.g., it is the highest in Mecklenburg Western Pomerania and Hamburg.

Smooth Effects: We observe a negative temporal trend for reporting dates during the beginning of March. But once we see

more reported cases in April, the average test delay lengthens. During this period, the σ parameter is higher, leading to a higher

variance of the respective observations. After May, the average delay decreases but increases again during the last week of this

study.

Random Terms: The district-specific intercept effects for µ are given in Figure 8 (a), while Figure 8 (b) shows them for σ .
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8 FRITZ AND KAUERMANN

F I G U R E 6 Imputation model: Linear state effects on µ and σ . The reference category is Baden-Württemberg, hence the
respective coefficient is fixed at zero.

F I G U R E 7 Imputation model: Smooth temporal trends of the µ (a) and σ (b) parameter.

7. On the interplay of regional mobility, social connectedness and the spread of COVID-19 in
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F I G U R E 8 Imputation model: Random district-specific effects regarding µ (a) and σ (b) parameter.

3.4 | Sensitivity Analysis of Disease Onset Imputation

We carry out a sensitivity analysis of the imputation procedure introduced in Section 3.1 of the main manuscript to check whether

our findings differ if we only regard cases with observed disease onset. In Figures 10 to 13, the model results are given if we

only include the cases where the disease onset date is recorded in the surveillance data. All findings of the principal analysis are

robust to the imputation method used; hence we see no structural differences that arise due to including all cases rather than only

the cases with an observed disease onset.

4 | ALTERNATIVE INFECTION MODEL

To exhibit the robustness of our findings, we compare the results under an alternative model specification based on the quasi-

likelihood (Wedderburn, 1974) combined with multiplicative random effects (comparable to Firth and Harris, 1991). In contrast

to the main analysis, not the complete conditional distribution but solely its first two moments are specified. To enable a clear

comparisons, we carry out the exact same procedure detailed in the main article but substitute the negative binomial likelihood

conditional on c for a conditional random variable Yi ,g ,t | xi ,g ,t−1, yi ,g ,t−1, ai , bi with Å(Yi ,g ,t | xi ,g ,t−1, yi ,g ,t−1, ai , bi ) =
exp{νEND

i ,g ,t
+ νEP I

i ,g ,t
} and Var(Yi ,g ,t | xi ,g ,t−1, yi ,g ,t−1, ai , bi ) = exp{νEND

i ,g ,t
+ νEP I

i ,g ,t
}φ, where φ is an additional dispersion

parameter to be estimated. Consecutively, we again correct for the multiple imputation scheme and the estimates relating to the

social activity during COVID-19 are given together with the original findings in Figure 14 and 15. It is clearly visible that the

findings hardly differ from the ones presented in the main article and that all conclusions drawn in the main article based on the

negative binomial approach are consistent with the ones of the quasi likelihood model. The results of all other covariates are in

line with the results of the principal analysis (see Figure 16 to 18).
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F I G U R E 1 0 Sensitivity model: (a) Time-varying effects of the Gini index θ̂t ,gi ni . (b) Time-varying effects of the
Percentage of People Staying Put θ̂t ,sp . The 95% confidence interval accompanies the estimates, and the shown dates (mm:dd)
on the x-axis are the first days of the corresponding weeks.
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F I G U R E 1 1 Sensitivity model: (a) Coordinates of the districts in the friendship space with the smooth partial effect of fsoc
in the background. We only show the predictions in the range of observed values. (b) Coordinates of the districts in the
geometric space with the smooth partial effect of fsoc again shown in the background for each district. The thick black lines
represent borders between federal states, while the thinner grey borders separate federal districts.

F I G U R E 1 2 Sensitivity model: Estimated smooth spatial effect fcoor d . The thick black lines represent borders between
federal states, while the thinner grey borders separate federal districts.
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F I G U R E 1 3 Sensitivity model: (a) Maximum posterior modes of the long-term random effects ai . (b) Maximum posterior
modes of the short-term random effects bi . The thick black lines represent borders between federal states, while the thinner grey
borders separate federal districts.
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The estimates are accompanied by the 95% confidence interval and the colour indicates whether the coefficients relate to the
original Negative binomial fit presented in the main analysis or the quasi likelihood approach.

F I G U R E 1 6 Quasi-likelihood model: (a) Coordinates of the districts in the friendship space with the smooth partial effect
of fsoc in the background. We only show the predictions in the range of observed values. (b) Coordinates of the districts in the
geometric space with the smooth partial effect of fsoc again shown in the background for each district. The thick black lines
represent borders between federal states, while the thinner grey borders separate federal districts.
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F I G U R E 1 7 Quasi-likelihood model: Estimated smooth spatial effect fcoor d . The thick black lines represent borders
between federal states, while the thinner grey borders separate federal districts.

F I G U R E 1 8 Quasi-likelihood model: (a) Maximum posterior modes of the long-term random effects ai . (b) Maximum
posterior modes of the short-term random effects bi . The thick black lines represent borders between federal states, while the
thinner grey borders separate federal districts.
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Abstract
Substantive research in the Social Sciences regularly investigates signed networks,

where edges between actors are either positive or negative. For instance, schoolchil-
dren can be friends or rivals, just as countries can cooperate or fight each other. This
research often builds on structural balance theory, one of the earliest and most promi-
nent network theories, making signed networks one of the most frequently studied
matters in social network analysis. While the theorization and description of signed
networks have thus made significant progress, the inferential study of tie formation
within them remains limited in the absence of appropriate statistical models. In this
paper we fill this gap by proposing the Signed Exponential Random Graph Model
(SERGM), extending the well-known Exponential Random Graph Model (ERGM)
to networks where ties are not binary but negative or positive if a tie exists. Since
most networks are dynamically evolving systems, we specify the model for both cross-
sectional and dynamic networks. Based on structural hypotheses derived from struc-
tural balance theory, we formulate interpretable signed network statistics, capturing
dynamics such as “the enemy of my enemy is my friend”. In our empirical application,
we use the SERGM to analyze cooperation and conflict between countries within the
international state system.

Keywords: Exponential Random Graph Models, Signed Networks, Structural Balance
Theory, International Relations, Inferential Network Analysis
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1 Introduction
In February 2022, Russia invaded Ukraine. This invasion shifted the relations that nu-
merous European countries had with the belligerents. The EU member states, including
previously Russia-aligned countries such as Hungary, sanctioned Russia and provide sup-
port to Ukraine. Belarus, a close ally of Russia, followed its partner into the conflict and
was accordingly also sanctioned by the EU member states. And Turkey, a political and
economic partner of both Ukraine and Russia, struggled to remain neutral in the conflict
and thus sought to mediate between the belligerents. A meaningful geopolitical adjust-
ment thus followed the Russian attack which demonstrates the importance of positive and
negative ties in the international network of states, showing how pairwise cooperation and
conflict between countries are interdependent.

Political scientists have studied this interplay of positive and negative ties between states
since the early 1960s (Harary, 1961). In this context, international relations are conceived as
signed networks, where the nodes are states and the edges are either positive, corresponding
to bilateral cooperation, negative, expressing bilateral conflict, or non-existent. Most of this
research builds on structural balance theory, which postulates that triads are balanced if
they include an odd number of positive relations and unbalanced if that number is either
even (“strong” structural balance; Heider, 1946; Cartwright and Harary, 1956) or exactly
two (“weak” structural balance; Davis, 1967). Accordingly, International Relations scholars
have studied whether specific triangular constellations correspond with these propositions
(Harary, 1961; Healy and Stein, 1973; McDonald and Rosecrance, 1985; Doreian and Mrvar,
2015) and what implications structural balance has for community formation and system
polarization (Hart, 1974; Lee et al., 1994). More recently, studies seek to test whether
structural balance affects interstate conflict and cooperation in an inferential framework
(Maoz et al., 2007; Lerner, 2016; Kinne and Maoz, 2022).

However, the study of signed networks is not restricted to International Relations.
There are also applications to friendship and bullying between children (Huitsing et al.,
2012, 2014), alliances and conflicts between tribal (Hage and Harary, 1984) or criminal
groups (Nakamura et al., 2020), statements of support and opposition between politicians
(Arinik et al., 2020; De Nooy and Kleinnijenhuis, 2013), and even to interactions within
ecological networks (Saiz et al., 2017). In the setting of online social media and multiplayer
games signed networks are also frequently studied (Leskovec et al., 2010; Bramson et al.,
2021). Signed networks are thus a substantively important subject of study across and
beyond the Social Sciences.

When working with signed networks, most techniques known from binary networks are
not directly appropriate. A significant amount of work thus focuses on adapting blockmod-
els (Doreian and Mrvar, 2009; Jiang, 2015) as well as network statistics, such as centrality
(Everett and Borgatti, 2014) and status (Bonacich and Lloyd, 2004), to signed networks.
From an inferential perspective, the study of signed networks so far has mainly relied on
logistic regression (Maoz et al., 2007; Lerner, 2016) or perceiving the observations as mul-
tivariate networks with multiple layers (Huitsing et al., 2012, 2014; Stadtfeld et al., 2020),
where one level relates to the positive and another to the negative edges. While the former
approach disregards endogenous dependence, the latter only allows for dependence between
the separate observed layers of the network. Moreover, the multilayer approach does not
adequately capture that most interactions in signed networks are either positive, negative,
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or non-existent. In other words, countries having negative and positive relations at the
same time is unrealistic.

In the context of binary networks, Frank and Strauss (1986) proposed Exponential
Random Graph Models (ERGMs) as a generative model for a network encompassing n
actors represented by the adjacency matrix y = (yi j)i, j=1,...,n, where yi j = 1 translates to
an edge between actors i and j and yi j = 0 indicates that there is no edge. Henceforth,
we use lowercase letters for variables when referring to the realized value of a random
variable, i.e., the observed network y, and capitalize the name to indicate that they are
stochastic random variables, for instance, Y . Within this framework, Wasserman and
Pattison (1996) formulate a probability distribution over all possible y ∈ Y by a canonical
exponential family model:

Pθ (Y = y) =
exp

{
θ ⊤s(y)

}

κ(θ ) ∀ y ∈ Y, (1)

where Y is the set of all observable binary adjacency matrices among n fixed actors, s : Y →
Rq is a function of sufficient statistics weighted by the coefficients θ ∈ Θ ⊆ Rp, and
κ(θ ) := ∑

ỹ∈Y exp{θ ⊤s(ỹ)} is a normalizing constant. Possible choices for the sufficient
statistics s(y) of directed networks include the number of edges and triangles in the network
(see Lusher et al., 2012 for a detailed overview of the model and other possible statistics).
Depending on the specific sufficient statistics, ERGMs relax the often unrealistic conditional
independence assumption inherent to most standard regression tools in dyadic contexts and
allow general dependencies between the observed relations. Note that in many applications,
auxiliary information x exogenous to the network is available, which can also be used in
the sufficient statistics. For brevity of the notation, we, however, omit the dependence
of s on x. Due to this ability to flexibly specify dependence among relations, account
for exogenous information, the desirable properties of exponential families, and versatile
implementation in the ergm R package (Handcock et al., 2008; Hunter et al., 2008), the
ERGM is a core inferential approach in the statistical analysis of networks.

In this article, we extend (1) to cover signed networks under general dependency as-
sumptions and coin the term Signed Exponential Random Graph Model (SERGM) for the
resulting model. The SERGM provides an inferential framework to test the predictions
of, e.g., structural balance theory (Heider, 1946; Cartwright and Harary, 1956) without
assuming that all observed relations are independent of one another. This characteristic is
of vital importance given that balance theory explicitly posits that the sign of one relation
depends on the state of other relations in the network. As the introductory examples sug-
gest, interdependence-driven sign changes occur rapidly between states, necessitating the
use of endogenous network statistics to adequately capture them. Along these lines, Lerner
(2016, p. 75) notes that “tests of structural balance theory” should not rely on “models
that assume independence of dyadic observations” and thereby flags the importance of de-
veloping an ERGM for signed networks. We answer this call by introducing, applying, and,
via the R package ergm.sign, providing statistical software in R (R Core Team, 2021) to
implement the SERGM for static and dynamic networks, which is currently available at:

https://github.com/corneliusfritz/ergm.sign
We proceed as follows: In the consecutive section, we formally introduce the SERGM

and a novel suite of sufficient statistics to capture network topologies specific to signed
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networks. In Section 3, we detail how to estimate the parameters of the SERGM and
quantify the uncertainty of the estimates. Next, we apply the introduced model class to
the interstate network of cooperation and conflict in Section 4. Finally, we conclude with
a discussion of possible future extensions.

2 The Signed Exponential Random Graph Model
2.1 Model Formulation
First, we establish some notation to characterize signed networks. Assume that the signed
adjacency matrix y = (yi j)i, j=1,...,n was observed between n actors. Contrasting the binary
networks considered in (1), the entries of this signed adjacency matrix yi j are either “+”,
“−”, or “0”, indicating a positive, negative, or no edge between actors i and j. To ease
notation, we limit ourselves to undirected networks without any self-loops, i.e., ∀ i, j =
1, ..., n yi j = y ji and yii = “0” holds. Nevertheless, the proposed model naturally extends
to directed settings. We denote the space encompassing all observable signed networks
between n actors by Y± and specify a distribution over this space analogous to (1) in the
following log-linear form:

Pθ (Y = y) =
exp

{
θ ⊤s(y)

}

κ(θ ) ∀ y ∈ Y±. (2)

The function of sufficient statistics in (2) takes a signed network as its argument and
determines the type of dependence between dyads in the network. A theoretically motivated
suite of statistics one can incorporate as sufficient statistics follows in Section 2.2 but
mirroring the term counting edges in binary networks, we can use the count of positive ties
in signed network y via

EDGE+(y) =
∑

i< j
I(yi j = “+”),

where I(·) is the indicator function. Along the same lines, one can define a statistic for the
number of negative edges EDGE−(y) and use both statistics as intercepts in the model.

We can extend (2) to dynamic networks, which we denote by Y1, ...,YT for observations
at t = 1, ...,T , by assuming a first-order Markov dependence structure to obtain

Pθ (Yt = yt |Yt−1 = yt−1) =
exp

{
θ ⊤s(yt ,yt−1)

}

κ(θ ,yt−1)
∀ yt ∈ Y±. (3)

The sufficient statistics encompassed in s(yt ,yt−1) capture within-network or endogenous
dependencies through statistics that only depend on yt and between-network dependencies
when incorporating yt−1. One instance for network statistics for between-network depen-
dency is the stability statistic for positive edges

STABILITY +(yt ,yt−1) =
∑

i< j
I(yi j,t = “+”)I(yi j,t−1 = “+”),
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which can equivalently be defined for negative ties. Thus, we assume that the observed
network is the outcome of a Markov chain with state space Y± and transition probability
(3). Of course, we may also include exogenous terms in (3), i.e., any pairwise- or actor-
specific information external to yt.

For the interpretation of the estimates, techniques from binary ERGMs can be adapted.
To derive a local tie-level interpretation, let θq with q ∈ {1, ..., p} denote the qth entry of θ
corresponding to the qth sufficient statistic, sq(yt ,yt−1). We further define yt = (yi j,t)i, j=1,...,n
for t = 1, ...,T and by y+

i j,t denote the network yt with the entry yi j,t fixed at “+”, y−
i j,t and

y0
i j,t are established accordingly. Let y(−i j),t refer to the network yt excluding the entry yi j,t .

Due to the added complexity of signed networks, the distribution of Yi j,t conditional on
Y(−i j),t is a multinomial distribution where the event probability of entry “+” is:

Pθ (Yi j,t = “+”|Y(−i j),t = y(−i j),t−1,Yt−1 = yt−1) =
exp

{
θ ⊤s(y+

i j,t ,yt−1)
}

∑
k∈{+,−,0} exp

{
θ ⊤s(yk

i j,t ,yt−1)
} . (4)

In the same manner, we can state the conditional probability of “−” and “0”. In accordance
with change statistics from binary ERGMs, we subsequently define positive and negative
change statistics through

∆ 0→+
i j,t (y(−i j),t ,yt−1) = s(y+

i j,t ,yt−1) − s(y0
i j,t ,yt−1)

∆ 0→−
i j,t (y(−i j),t ,yt−1) = s(y−

i j,t ,yt−1) − s(y0
i j,t ,yt−1).

(5)

While the positive change statistic ∆ 0→+
i j,t (yt ,yt−1) is the change in the sufficient statistics

resulting from flipping the edge value of yi j,t from “0” to “+”, the negative change statistic
∆ 0→−

i j,t (yt ,yt−1) relates to the change from “0” to “−”. By combining (4) and (5), we can
obtain the relative log odds of Yi j,t to be “+” and “−” rather than “0”:

log
(
Pθ (Yi j,t = “+”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1)
Pθ (Yi j,t = “0”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1)

)
= θ ⊤∆ 0→+

i j,t (y(−i j),t ,yt−1)

log
(
Pθ (Yi j,t = “−”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1)
Pθ (Yi j,t = “0”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1)

)
= θ ⊤∆ 0→−

i j,t (y(−i j),t ,yt−1).
(6)

This allows us to relate θ to the conditional distribution of Yi j,t given the rest of the network
and derive two possible interpretations of the coefficients reminiscent of multinomial and
logistic regression: the conditional log-odds of Yik,t to be “+” rather than “0” are changed
by the additive factor θp, if the value of yi j,t changing from “0” to “+” raises the pth entry
of ∆ 0→+

i j,t (y(−i j),t ,yt−1) by one unit, while the other statistics remain unchanged. A similar
interpretation holds for the negative change statistic.

Second, one can employ a global interpretation to understand the parameters on a
network level. Then, θq > 0 indicates that higher values of sq(yt ,yt−1) are expected under
(2) than under a multinomial graph model, which we define as a simplistic network model
where the value of each dyad is “+”, “−” and “0” with equal probability. In the opposing
regime with θq < 0, we expect lower values than under this multinomial graph model.
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2.2 From Structural Balance Theory to Sufficient Statistics
As discussed in the introduction, structural balance theory is a natural approach to signed
networks. But so far, inferential work on it remains limited and uses, as we show below,
suboptimal measures of its structural expectations. We thus shortly introduce the core
logic of structural balance theory, discuss previous measures of it, and then derive suffi-
cient statistics from it for inclusion in the SERGM. These statistics enable us to test the
structural expectations formulated by structural balance theory in a principled manner
within the framework introduced in Section 2.1.

Theory The main implication of structural balance theory relates to the existence of
triads between actors. Triads are the relations between three actors (Wasserman and
Faust, 1994) and generally called balanced if they consist solely of positive ties (“the friend
of my friend is my friend”) or one positive and two negative ties (“the enemy of my enemy is
my friend”). According to structural balance theory, this type of triad should be observed
more often than expected by chance in empirical signed networks. In contrast, triads that
include a single negative tie are structurally imbalanced as the node participating in both
positive relations has to cope with the friction of its two “friends” being opposed to each
other. This actor should thus try to turn the negative tie into a positive tie to achieve a
balanced constellation where all three actors share positive connections. But if this proves
impossible, the actor will eventually have to choose a side, making one of its previously
positive ties negative and resulting in structural balance. In triads where relations between
all three actors are negative, the actors at least have incentives to make similar changes;
these triads are thus also considered structurally imbalanced (Heider, 1946; Cartwright
and Harary, 1956). In particular, two actors could reap benefits by developing a positive
relationship, pooling their resources, and ganging up on the third node. However, later
work views these triads without any positive ties as weakly balanced (Heider, 1958; Davis,
1967), as Davis (1967) notes that enemies of enemies being enemies indicates structural
imbalance only if there are two subsets of nodes in the network. Triadic constellations with
one negative relation are thus structurally imbalanced, should be empirically rare, and,
where they exist, tend to turn into balanced states. Where only one negative tie exists,
there is strong pressure to either eliminate it or create an additional one. And where there
are three negative ties, actors at least have a clear incentive to turn one of them into a
positive relation opportunistically, though their (im-)balance depends on the nature of the
wider system (see also Easley and Kleinberg, 2010, ch. 5).

Testing Structural Balance via Lagged Statistics In interstate relations, this theory
implies that two countries that are on friendly terms with the same other state should not
wage war against each other. If three states all engage in conflict with each other, two
of them may also find it beneficial to bury their hatchet, focus on their common enemy,
and pool their resources against it. Along these lines, existing research asks whether two
countries’ probability to cooperate or to fight is affected by them sharing common friends
or foes (Maoz et al., 2007; Lerner, 2016). In particular, these authors investigate whether
having shared allies or enemies at time t − 1 affects the presence of positive and negative
ties at t. The resulting “friend of my friend is my friend” statistic we can incorporate in
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Figure 1: Combining past and present ties can misrepresent structural (im-)balance: Triads
observed at t −1 and t are balanced (left side), combined triads are imbalanced (right side).
Dashed lines indicate tie at t − 1, solid ones at t. Dotted arrows show which ties from t − 1
and t contribute to the exogenous specification.

the sufficient statistics of (3) is:

CF+(yt ,yt−1) =
∑

i< j
I(yi j,t = “+”)


 ∑

h̸=i,h̸= j

I(yih,t−1 = “+”)I(y jh,t−1 = “+”)

 . (7)

Similar delayed statistics can be defined for all other implications of the theory by treating
the existence of common friends and foes as exogenous covariates. However, this approach
comes with both theoretical and methodological problems. It is unclear whether actors
wait a period (a calendar year in the case of Maoz et al., 2007 and Lerner, 2016) to adjust
their relations towards structural balance and why they should do so as other applica-
tions of structural balance theory view these changes as instantaneous (see e.g. Kinne and
Maoz, 2022). If the countries do not wait for a period, this approach can misrepresent the
dynamics of signed networks as contradicting structural balance theory when they do not.

To illustrate this point, the right side of Figure 1 visualizes three structurally imbal-
anced constellations which Maoz et al. (2007) and Lerner (2016) uncover in the network of
cooperation and conflict between states: (a) The friend of a friend being an enemy, (b) the
enemy of an enemy being an enemy, and (c) the friend of an enemy being a friend. The left
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Figure 2: Sufficient statistics for signed networks.

side of Figure 1 presents the triads at t − 1 and t these constellations are potentially made
up of as ties are not observed simultaneously. The links of i and j to h were observed at
t −1 but those between i and j at t. The structurally imbalanced triads on the right side of
Figure 1 thus consist of observations of the same triad made at two different points in time.
Crucially, the left side of Figure 1 shows that both of these observations can themselves be
structurally balanced. Exogenous measures of common friends and enemies can thus only
capture the predictions of structural balance theory if (i) actors i and j wait a period until
they change their tie sign due to their links to h and (ii) their links to h remain unchanged.
Both of these conditions require strong assumptions regarding how actors behave within a
network. In particular, structural balance theory implies that the edges between i, j, and
h are interdependent. But its exogenous operationalization assumes two of these edges as
fixed while waiting to observe the third. An example shows that this is not just a theo-
retical issue, but mischaracterizes empirically observed relations between states: The US
and Iran had common foes in 1978 but, in 1979, had become outright enemies themselves.
The exogenous operationalization of structural balance regards this situation as unbalanced
although it is an example of the scenario of Figure 1b.

Testing Structural Balance via Endogenous Statistics Therefore, endogenous net-
work terms are necessary to capture the endogenous network dynamics postulated by
structural balance theory. We next define endogenous statistics that mirror each con-
stellation described by structural balance theory to test its predictions empirically. Build-
ing on the k-Edgewise-Shared Partner statistic developed to measure transitive closure in
binary ERGMs (Hunter, 2007), we can define k-Edgewise-Shared Friends, ESFk(y), and
k−Edgewise-Shared Enemies, ESEk(yt), for signed networks. ESFk(yt) counts the edges
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with k shared friends and ESEk(yt) those with k shared enemies. We further differentiate
between the state of the edge at the center of each triangular configuration and, e.g., write
ESF+

k (yt) and ESF−
k (yt) as the version of the statistic where the value of yi j is “+” and

“−”, respectively. Figure 2 illustrates the resulting four statistics.
For k = 2 these statistics reduce to specific types of common triangle configurations

(Holland and Leinhardt, 1972). However, as shown in Snijders et al. (2006), these types
of statistics frequently lead to degenerate distributions where most of the probability mass
is put on the empty or full graph (Handcock, 2003; Schweinberger, 2011). Moreover, the
implied avalanche effect is particularly pronounced if the corresponding parameters are
positive, as structural balance theory suggests. For binary ERGMs, it is thus standard to
employ a statistic of the weighted sum of statistics in which the weights are proportional
to the geometric sequence (Snijders et al., 2006; Hunter and Handcock, 2006). We follow
this practice and define the geometrically weighted statistic for negative edgewise-shared
enemies, as portrayed in Figure 2a, with a fixed decay parameter α as

GWESE+(yt ,α) = exp{α}
n−2∑

k=1
(1 − (1 − exp{−α}))k ESE+

k (yt). (8)

We establish the geometrically weighted variants of ESE−
k (yt),ESF+

k (yt), and ESF−
k (yt)

accordingly. Each of these statistics reflects a specific type of triadic closure in signed
networks as visualized in Figure 2. To interpret the coefficient θGWESE+ one can consider
the logarithmic relative change in the probability according to (3) when increasing the
number of common enemies of a befriended edge by one and keeping all other statistics
constant. If the befriended actors already had k prior common enemies before this change,
this relative change is given by

θGWESE+ (1 − (1 − exp{−α}))k .

Thus, if θGWESE+ > 0, each additional common enemy raises the probability to observe the
signed network, although the increments become smaller for higher values of k. Hunter
(2007) shows that these geometrical weighted statistics are equivalent to the alternating
k-triangle statistics proposed by Snijders et al. (2006).

These triadic structures fully capture the logic of structural balance as they allow us to
study the prevalence of triads where positive ties account for zero (Figure 2a) , one (Figure
2b), two (Figure 2c), and all three (Figure 2d) of the edges. According to this logic,
we would expect the statistics GWESE+(yt) and GWESF+(yt) to be higher in empirical
networks than expected by chance, but not GWESE−(yt) and, particularly, GWSF−(yt).
If, on the other hand, the coefficients corresponding to GWESE−(yt) or GWESF−(yt) turn
out to be positive in a network, this would offer empirical support for modifications of
structural balance theory that also see the constellation in Figure 2a as balanced (Heider,
1958; Davis, 1967) or combine it with insights about, e.g., opportunism or reputation (Maoz
et al., 2007). Mirroring the development of edge-wise shared enemy and friend statistics,
it is also possible to compute dyad-wise statistics that do not require i and j to share a tie.

Other Sufficient Statistics Besides these substantively informed statistics developed
from structural balance theory, there are - as in the binary case - numerous other statistics
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one may incorporate into the model. Some of these are even necessary to isolate the effects
of structural balance. In binary networks, closed triads where each node is connected to the
others are more likely to form if the involved actors are highly active due to processes such
as popularity. In the context of ERGMs, this phenomenon is captured by degree statistics
counting the number of actors in the network with a specific number of edges. For signed
networks, similar but more complicated processes may be at work and, to capture them,
we define DEG+

k (yt) and DEG−
k (yt) as statistics that, respectively, count the number of

actors in the signed network yt with degree k ∈ {1, ..., n−1} for “+”- and “−”-signed links,
respectively. Since the degree statistics are also prone to the degeneracy issues detailed
above, we define geometrically-weighted equivalents for the positive and negative degrees.
One can also incorporate exogenous statistics for the propensity to observe either a positive
tie, similar to (7), via the following statistic:

EXO+(yt) =
∑

i< j
I(yi j,t = “+”)xi j,t ,

where xi j,t can be any pairwise scalar information. Similar statistics can be defined for
negative, EXO−(yt), and any , EXO±(yt), tie. To test whether there is a tendency for homo-
or heterophily based on actor attribute x = (x1, ..., xn) in the network, one may transform
the nodal information to the pairwise level by setting xi j,t = |xi,t − x j,t | or xi j,t = I(xi,t = x j,t)
for continuous and categorical attributes, respectively.

3 Estimation and Inference
To estimate θ for a fully specified set of sufficient statistics, we maximize the likelihood of
(3) conditional on the initial network y0:

L(θ ; y1, ...,yT ) =
T∏

t=1

exp
{

θ ⊤s(yt ,yt−1)
}

κ(θ ,yt−1)
=

exp
{

θ ⊤
(∑T

t=1 s(yt ,yt−1)
)}

∏T
t=1 κ(θ ,yt−1)

. (9)

We can observe that this joint probability of the observed networks is still an exponential
family, where the sufficient statistic is the sum of the individual statistics, the normalizing
constant is composed of the product of the normalizing constants at each time point, and the
canonical parameter is unchanged. Evaluating the normalizing constant in (9), on the other
hand, necessitates the calculation of T ·

(
3

n(n−1)
2

)
summands, making the direct evaluation of

the likelihood prohibitive even for small networks. Fortunately, these difficulties are known
from the analysis of binary networks and have been tackled in numerous articles (see, e.g.,
Strauss and Ikeda, 1990; Hummel et al., 2012; Snijders, 2002; Hunter and Handcock, 2006),
which guide our estimation approach for the SERGM.

To circumvent the direct evaluation of (9), we can write the logarithmic likelihood ratio
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of θ and a fixed θ0 without a normalizing constant but an expected value

r(θ , θ0; y) =(θ − θ0)⊤
( T∑

t=1
s(yt ,yt−1)

)

− log
(
Eθ0

(
exp

{
(θ − θ0)⊤

( T∑

t=1
s(Yt ,yt−1)

)}))
.

(10)

We approximate the expectation in (10) by sampling networks over time, denoted by
Y (m) = (Y (m)

1 , ...,Y
(m)

T ) for the mth sample, whose dynamics are governed by (3) under θ0.
Due to the Markov assumption, it suffices to specify only how to sample Y

(m)
t conditional

on yt−1 for t = 1, ...,T via Gibbs sampling. In particular, we generate a Markov chain
with state space Y± that, after a sufficient burn-in period, converges to samples from Yt

conditional on yt−1. Since we toggle one dyad in each iteration, the conditional probability
distribution we sample from is the multinomial distributions stated in (4). In a setting
where we sample Yi j,t conditional on y(−i j),t and yt−1 with its present value given by ỹi j,t , we
can restate this conditional probability for “+” in terms of change statistics:

Pθ (Yi j,t = “+”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1) =
exp

{
θ ⊤∆ ỹi j,t→+

i j (y(−i j),t ,yt−1)
}

∑
k∈{+,−,0} exp

{
θ ⊤∆ ỹi j,t→k

i j (y(−i j),t ,yt−1)
} .

This reformulation speeds up computation, since for most statistics the calculation of global
statistics is computationally more demanding than the calculation of the change statistics
defined in (5). Given M sampled networks, we get

r(θ , θ0; y) ≈(θ − θ0)⊤
( T∑

t=1
s(yt ,yt−1)

)

− log
(

1
M

M∑

m=1
exp

{
(θ − θ0)⊤

( T∑

t=1
s(y(m)

t ,yt−1)
)})

,

(11)

as an approximation of (10). However, according to standard theory of exponential families,
the parameter θ maximizing (11) only exists if the sum of all observed sufficient statistics∑T

t=1 s(yt ,yt−1) under θ0 is inside the convex hull spanned by the sum of the sampled
sufficient statistics (see Theorem 9.13 in Barndorff-Nielsen, 1978). Since this condition
does not hold for arbitrary values of θ0, we modify the partial stepping algorithm under a
log-normal assumption on the sufficient statistics introduced by Hummel et al. (2012) to
dynamic signed networks for finding an adequate value for θ0 (details can be found in the
Supplementary Material). We seed our algorithm with θ0 maximizing the pseudo-likelihood
given by (4). To obtain estimates in the cross-sectional setting of (2), we can use the same
procedure by setting T = 1.

To quantify the sampling error of the estimates, we rely on the theory of exponential
families stating that the Fisher information I(θ ) equals the variance of ∑T

t=1 s(Yt ,yt−1)
under the maximum likelihood estimate θ̂ . We can estimate the Fisher information by
again sampling networks Y (1), ...,Y (M) and calculating the empirical variance of∑T

t=1 s(y(m)
t ,yt−1) for m = 1, ...,M. Due to the employed MCMC approximation, we follow

standard practice of the ergm and coda packages (Handcock et al., 2008; Plummer et al.,
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2006) and estimate the MCMC standard error by the spectral density at frequency zero of
the Markov chains of the statistics. For the final variance estimate, we sum up both types
of errors. By extending the bridge sampler introduced in Hunter and Handcock (2006) to
the SERGM for dynamic networks, we can also evaluate the AIC value of the model to
carry out a model selection (see Supplementary Material).

4 Testing Structural Balance in International Coop-
eration and Conflict

4.1 Motivation
We now employ the SERGM to investigate relations of cooperation and conflict in the
interstate network over the years 2000-2010. This application speaks directly to Maoz et al.
(2007), Lerner (2016), and the many other studies on structural balance in international
relations cited above. We focus on this period since it is the most current period for
which we have comprehensive and reliable data and because 9/11 provided a structural
break in international relations. We do not let θ vary over time here, but it would be
reasonable to assume that 9/11 altered the dynamics of the interstate network (see Thurner
et al., 2019). Hence θ likely changed from before to after 9/11 and we analyze only
the 2000s. One example of this phenomenon is how states cooperate on their defense
and security policies after 9/11. While alliances remain important, there is nowadays
relatively little change in the alliance network from one year to another as “only a dozen
new alliances have emerged since 9/11” (Kinne, 2020, p.730). Instead, a new type of formal
commitment between states, defence cooperation agreements (DCA), have become widely
used throughout the 1990s and 2000s (see Kinne, 2018, 2020). To ensure that we capture
interstate cooperation in a meaningful manner for the period we are interested in, we depart
from previous studies of structural balance in international relations and use DCAs instead
of alliances to operationalize interstate cooperation. We do so for for several reasons.

First, as noted, the contemporary alliance network is basically static, experiencing little
to no shifts over time. This is a challenge for estimation but, substantively, also severely
limits the extent to which alliance relations could be affected by conflict between states. In
contrast, DCAs are both initiated and terminated regularly (Kinne, 2018). Second, con-
temporary alliances are often multilateral and strongly institutionalized, meaning that if
e.g. a new member joined NATO, it would result in the creation of several new alliance ties
at once, but also that terminating these alliances, which have own secretariats, headquar-
ters, and command structures, is challenging and thus empirically rare. Alliances hence
do not clearly correspond to dyadic ties and have a life of their own which restricts tie
deletion. In contrast, DCAs are bilateral and not as institutionalized, making them corre-
spond much better to positive dyadic ties which can be formed but also removed (Kinne,
2018). Third, as opposed to alliances, DCAs are also signed by countries which have a
policy of neutrality, thus reducing the risk that some ties are structural zeros, i.e. ineligible
to be formed (Kinne, 2020). And fourth, most alliances only become active during armed
conflict, stipulating wartime cooperation between their members (Leeds et al., 2002), but
their goal is to deter enemies from instigating conflict in the first place. In other words,
states’ formal commitment to cooperate, as demonstrated in an alliance, becomes realized
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only in a fraction of cases which are those where the alliance’s main goal, deterrence, has
failed. In contrast, DCAs specify states’ commitment to and framework for peacetime,
day-to-day defence cooperation regarding activities such as joint defence policies, military
exercises, the co-development of military technology, and bilateral arms transfers (Kinne,
2018, 2020). DCAs therefore present a better dynamic measure of regular, bilateral defence
cooperation between states for the 2000s than alliances do.

4.2 Model Specification
To measure cooperative, positively-signed interstate relations, we thus use the DCA data
collected by Kinne (2020) and consider a tie as existent and positive if a pair of states
shares at least one active DCA in year t. For conflictious, negatively-signed relations, we
follow Maoz et al. (2007) and Lerner (2016) by using the Militarized Interstate Dispute
(MID) Data provided by Palmer et al. (2021). MIDs are defined as “united historical cases
of conflict in which the threat, display or use of military force short of war by one member
state is explicitly directed towards the government, official representatives, official forces,
property, or territory of another state” (Jones et al., 1996, p.163). We consider a tie to be
existent and negative in year t if a pair of states has at least one MID between them. We
plot the resulting interstate network, consisting of positive DCA- and negative MID-ties,
in the Supplementary Material.

To specificy a SERGM for modeling this evolving network, we first follow Maoz et al.
(2007) and Lerner (2016) by including several exogenous covariates, namely i’s and j’s
political difference, military capability ratio, the difference in wealth, and geographical
distance. These variables’ sources are discussed in the Supplementary Material. Stemming
from (3), we condition on the first year for the estimation and hence effectively model the
network between 2001 and 2010.

Regarding endogenous statistics, the SERGM includes, most importantly, the four tri-
adic terms developed above to capture the network’s tendency towards or against struc-
tural balance. Theoretically, we would expect the coefficients concerning GWESE+(yt)
and GWESF+(yt) but not GWESF−(yt) to have positive and statistically significant coeffi-
cients. For GWESE−(yt), the expectation depends on whether we believe the state system
to consist of two or of more groups (Davis, 1967). The latter appears more likely for the
2000s and we may thus expect to observe a positive coefficient. Furthermore, we include
the positive and negative degree statistics, to capture highly active nodes’ propensity to
(not) form more ties, and statistics that count the number of positive and negative edges
as well as how many isolate nodes exist in each part of the network. Finally, stability terms
are included to capture positive and negative ties remaining from the previous period. We
term this specification Model 1 and present the results on the left side of Table 1.

We further compare Model 1 to a model specification where we replace the endogenous
terms of structural balance, as depicted in Figure 2, with the exogenous versions used
by Maoz et al. (2007) and Lerner (2016), stated in (7), where i’s and j’s ties with h are
observed not contemporaneously but in t − 1. We denote the corresponding statistics by
CF+(yt ,yt−1) and CF−(yt ,yt−1) to quantify the effect of common friends on positive and
negative ties, while the number of common enemies are CE+(yt ,yt−1) and CE−(yt ,yt−1).
Each of these exogenous measures corresponds to one of our triadic endogenous statistics,
e.g. CF+(yt ,yt−1) to GWESF+(yt) and CE−(yt ,yt−1) to GWESE−(yt). Otherwise, the
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Table 1: Estimated coefficients and confidence intervals of the two model specifications
detailed above. Dashes indicate the exclusion of covariates in a model specification. ∆AIC
indicates the difference between the AIC values of Model 1 and 2.

Model 1 Model 2
Coef. CI Coef. CI

Edges + -1.161 [-1.59,-0.732] -0.689 [-1.203,-0.175]
Edges − -1.754 [-2.142,-1.366] -1.469 [-1.912,-1.026]
Isolates + 0.667 [-0.203,1.537] 0.462 [-0.422,1.346]
Isolates − -1.188 [-2.319,-0.057] -0.474 [-1.617,0.669]
Stability + 7.447 [7.331,7.563] 7.502 [7.379,7.625]
Stability − 5.531 [5.262,5.8] 5.594 [5.306,5.882]
Abs. Polity Diff. + -0.022 [-0.032,-0.012] -0.017 [-0.027,-0.007]
Abs. Polity Diff. − 0.004 [-0.016,0.024] 0.012 [-0.01,0.034]
CINC Ratio + 0.186 [0.117,0.255] 0.202 [0.129,0.275]
CINC Ratio − -0.168 [-0.293,-0.043] -0.14 [-0.279,-0.001]
Abs. GDP Diff. + -0.521 [-0.57,-0.472] -0.495 [-0.554,-0.436]
Abs. GDP Diff. − -1.04 [-2.651,0.571] -1.311 [-3.069,0.447]
Abs. Distance ± 3.324 [0.515,6.133] 2.796 [-0.428,6.02]
GWESE+ (Fig. 2a) 0.618 [0.308,0.928] -
GWESE− (Fig. 2b) 0.515 [0.199,0.831] -
GWESF+ (Fig. 2c) 0.489 [0.415,0.563] -
GWESF− (Fig. 2d) 0.319 [0.178,0.46] -
GWD+ -2.214 [-2.577,-1.851] -2.625 [-3.015,-2.235]
GWD− -0.321 [-1.617,0.975] -0.998 [-2.276,0.28]
CF+ - 0.069 [0.051,0.087]
CF− - 0.077 [0.04,0.114]
CE+ - 0.374 [-0.042,0.79]
CE− - 0.304 [-0.239,0.847]
∆AIC 0 599.894

two models are identical as Model 2 includes the other endogenous statistics specified in
Model 1. We can thus adjudicate whether operationalizing structural balance dynamics
in an endogenous manner, implying that they occur instantaneously, is preferable over the
exogenous specification where these dynamics occur with a one-period time delay.
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4.3 Results
Below, we interpret the results of the endogenous network terms and their exogenous equiva-
lents. We discuss the coefficient estimates of the exogenous covariates in the Supplementary
Material. As expected, both the GWESF+(yt) and the GWESE+(yt) terms exhibit positive
and statistically significant coefficients, with neither confidence interval encompassing zero.
These results align with structural balance theory in that both “the friend of my friend”
and “the enemy of my enemy” are my friend. But we also find that the GWESF−(yt) and
GWESE−(yt) coefficients are positive and statistically significant, albeit with smaller effects
and confidence intervals closer to zero than in the case of the first two statistics. In the
studied interstate network, there is thus also a tendency towards enemies of enemies being
enemies. This echoes the point that triangles with three negative ties are imbalanced only
in systems with two subsets (Davis, 1967), a condition that may have been present in the
highly bipolar first half of the Cold War, but not more than a decade after its termination.
This result is thus consistent with the verdict that, against early formulations of structural
balance theory (Heider, 1946; Cartwright and Harary, 1956), “if two negative relations are
given, balance can be obtained either when the third relationship is positive or when it
is negative” (Heider, 1958, p.206). Observing that the effect of GWESE−(yt) is positive
and statistically significant underlines the importance of overall network structure for the
predictions of structural balance theory.

We also find that friends of friends have an increased probability of being enemies. In
the international relations of the 2000s, what seems to hold is that both enemies of enemies
and friends of friends are more likely to interact than if they did not share relations with a
common third state. Friends of friends being more likely to fight than to have no relation
at all suggests that shared relations may also indicate the “reachability” of one state to
another within a system where some dyads, e.g., that between Lesotho and Belize, have a
very low structural probability of ever being active (see, e.g. Quackenbush, 2006). Triadic
closure, regardless of the sign, thus exists also in the network of cooperation and conflict
between states. However, we observe that the tendency towards such closure is stronger
for structurally balanced relations than for structurally imbalanced ones.

A comparison of the two model specifications shown in Table 1 allows us to ascer-
tain whether specifying the triadic relationships endogenously affects substantive results
and model performance. Here, it is visible that the AIC of the model with the endoge-
nous statistics is lower than that with their exogenous versions. Specifying interdependent
dynamics in the interstate network via endogenous covariates hence increases model per-
formance compared to trying to capture them by including lagged, exogenous variables.

More strikingly, Table 1 shows that the substantive results of the corresponding en-
dogenous and exogenous measures of structural balance dynamics differ significantly. Con-
trasting the results under the endogenous and exogenous model specification, the latter
offers much more limited support for these notions. While the coefficient of CF+(yt ,yt−1)
is positive and statistically significant, its effect size is still very close to zero. The “friends
of friends are friends”-effect is thus found to be substantively negligible in Model 2. In
contrast, the coefficient of CE+(yt ,yt−1) is positive and substantively larger, while its
95%-confidence interval includes zero, indicating that the model cannot statistically dis-
tinguish it from zero as its estimation is very imprecise. The statistics CF−(yt ,yt−1) and
CE−(yt ,yt−1) mirror their corresponding endogenous terms from Model 1 in that both ex-
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hibit positive coefficients but, again, the first is substantively much smaller and the second
one very imprecisely estimated. On the whole, this comparison of an endogenous and an
exogenous specification of the triadic configurations motivated by structural balance theory
thus shows that Model 1 is preferable over Model 2. The model including endogenous terms
thus not only provides better performance than that with their exogenous counterparts but
these terms are also estimated to be more influential and more precisely.

4.4 Model Assessment
To assess the fit of the estimated SERGM, we employ a graphical tool inspired by Hunter
et al. (2008) to evaluate whether it can adequately represent topologies of the observed
network not explicitly incorporated as sufficient statistics in (3). Therefore, we sample net-
works from (3), compute the statistics, summarize them, and then compare this summary
to the statistics evaluated on the observed network. Heuristically, a model generating sim-
ulations that better reflect the observed values also has a better goodness-of-fit. To cover
signed networks, we investigate the observed and simulated distributions of positive and
negative degrees, and edgewise-shared enemies and friends in the interstate network.

We report the goodness-of-fit plots for Model 1 from Table 1 in Figure 3 for the year
2005. In each subplot, a series of box plots display the distribution of a given value of the
statistic under consideration over the networks simulated from the model via the Gibbs
Sampler detailed in Section 3. The red line indicates where the statistic is measured
in the observed network and should thus, ideally, lie close to the median value of the
simulated networks, i.e., the center of the box plots. In Figure 3, this is the case for all
four statistics, indicating that Model 1 under the estimated parameters generalizes well to
network topologies not explicitly incorporated in the sufficient statistics.

Together, the results presented here indicate that the SERGM is able to uncover struc-
tural balance dynamics in the interstate network and is preferable over approaches that seek
to model signed interstate networks under conditional independence, but also that further
substantial research on structural balance in international relations is neeeded. The Supple-
mentary Material employs the SERGM to analyze a cross-sectional network, representing
enmity and friendship among New Guinean Highland Tribes (Hage and Harary, 1984), and
shows its applicability when there is no observable temporal dependence structure.
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Figure 3: Goodness-of-fit assessment in year 2005.

5 Discussion
We extended the core regression model for network data to dynamic and cross-sectional
signed networks. Given the theoretical foundation of structural balance, we introduce novel
endogenous statistics that offer better performance than operationalizing them by lagged
covariates, as commonly done in previous research. Finally, we apply the method to recent
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data on militarized interstate disputes and defense cooperation agreements and provide a
software implementation with the R package ergm.sign.

From a substantive point of view, this research offers new insights on the empirical test-
ing of structural balance theory and challenges earlier inferential studies on the topic. How
one captures structural balance matters. We show that an approach relying on past obser-
vations of some ties within a triad to measure structural balance as an exogenous variable
can mischaracterize triadic (im-)balance. We thus develop endogenous balance measures
that can be used in the SERGM framework and show empirically that these endogenous
measures result in different substantive results as well as increased model performance as
compared to the exogenous ones. Most importantly, the exogenous measures do not affect
tie formation consistent with structural balance theory, whereas when employing the en-
dogenous ones, we find evidence in line with it. States are thus more likely to cooperate if
they share common partners or are hostile to the same enemies. This indicates that there is
structural balance in interstate cooperation and conflict, at least when studying the 2000s.
Future work in International Relations should seek to build on this fundamental result
to test whether it also holds for earlier periods, for instance the bipolar Cold War years,
and how structural balance interacts with exogenous factors such as military capabilities.
Beyond International Relations, the SERGM will also serve to advance research across all
Social Sciences, allowing researchers to investigate tie formation in networks of friendship
and enmity between school children, gangs, or social media accounts.

At the same time, we find that, generally, states appear more likely to interact, positively
or negatively, when they share friends or enemies. Substantively, this result suggests that,
additional to structural balance, something else is at play and may indicate that some
state dyads are structurally very unlikely to ever be active, due to the countries’ distance,
lack of economic development, and/or power projection capabilities, mirroring research
on politically “relevant” or “active” dyads (see Quackenbush, 2006). But this implied
variation in “reachability” between states also points to the fact that structural balance
theory was developed on complete networks, where every possible ties is realized with
either a negative or a positive sign, while empirical networks are usually incomplete (see
Easley and Kleinberg, 2010, ch.5). It thus lends some support to Lerner’s (2016) argument
that tests of structural balance theory should not examine states’ marginal probability
to cooperate or fight, but instead their probability of cooperating or fighting conditional
upon them interacting. However, following Lerner’s (2016, Sec. 4.2.1) argument on the
use of ERGMs in conjunction with this conditional viewpoint, it becomes evident that (3)
is consistent with it. Defining Y |±| with Y |±|

i j = 1 if Yi j ̸= “0” as the random adjacency
matrix describing any type of interaction and Y , be it positive or negative, one can derive
the following conditional probability distribution

Pθ (Yt = yt |Y |±|
t = y

|±|
t ,Yt−1 = yt−1) =

exp
{

θ ⊤s(yt ,yt−1)
}

κ̃(θ ,yt−1,y
|±|
t )

∀ yt ∈ Y±, (12)

where κ̃(θ ,yt−1,y
|±|
t ) = ∑

ỹ∈Y± I(ỹ|±| = y
|±|
t ) exp

{
θ ⊤s(ỹ,yt−1)

}
. The conditional distri-

bution (12) is thus a SERGM with support limited to networks where y
|±|
t is equal to the

observed network and the coefficients of (12) are unchanged. Therefore, (3) implies (12).
Alternatively, some dyads’ lack of “reachability” may also indicate that dependency
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structures are not fully global, even in international relations where all actors know of
each other. Major powers should generally be able to reach all other states in the system,
thus also making their actions globally relevant, but smaller countries’ reach and relevance
will be more locally limited. Since the more general framework of ERGMs in (1) relies on
homogeneity assumptions implying that each endogenous mechanism has the same effect
in the entire network, model (3) might assume dependence between relations where, in
reality, there is none. One possible endeavor for future research would be adapting local
dependence (Schweinberger and Handcock, 2015) to signed and dynamic networks. This
approach assumes complex dependency solely within either observed or unobserved groups
of the actors, solving the obstacle of “reachability” between some countries in the network.
At the same time, other extensions of ERGMs, be it actor-specific random effects or curved
ERGMs where α in (8) is estimated from the data, are also feasible under (2) and (3).
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1 Technical Details
1.1 Partial Stepping Algorithm
Following standard theory of exponential families, θ maximizing the approximate likeli-
hood detailed in (11) of the main article only exists if the observed sufficient statistics∑T

t=1 s(yt ,yt−1) are inside the convex hull spanned by the sampled sufficient statistics(∑T
t=1 s(y(m)

t ,yt−1), ...,
∑T

t=1 s(y(M)
t ,yt−1)

)
(Barndorff-Nielsen, 1978). Since this condition

does not hold for arbitrary values of θ0, we adapt the partial stepping algorithm intro-
duced by Hummel et al. (2012) to find an adequate θ0.

In the kth step of this iterative procedure, we substitute ∑T
t=1 s(yt ,yt−1) in (11) of the

main article by

ξ (k) = γ (k)
T∑

t=1
s(yt ,yt−1) +

(
1 − γ (k)

)
m̂(k), (1)

where γ (k) ∈ (0, 1] and m̂(k) = 1
M

∑M
m=1

∑T
t=1 s(y(m)

t ,yt−1) is the estimated mean of the
sufficient statistics of networks sampled under θ (k). We select the largest possible value

∗Corresponding Autor: cornelius.fritz@stat.uni-muenchen.de
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of γ (k) in (1) such that even the point marginally closer to ∑T
t=1 s(yt ,yt−1), defined by

1.05γ (k)∑T
t=1 s(yt ,yt−1)+

(
1 − 1.05γ (k)

)
m(k), is inside the convex hull spanned by the sam-

pled statistics. One can test whether a point ∈ Rp lies in this convex hull via a linear
programming problem (details can be found in Hummel et al., 2012 and Krivitsky et al.,
2022).

To update θ (k) to θ (k+1) for a given γ (k), we thus optimize

(
θ (k+1) − θ (k)

)⊤
ξ (k) − log

(
1
M

M∑

m=1
exp

{
(θ − θ0)⊤

( T∑

t=1
s(y(m)

t ,yt−1)
)})

, (2)

with a Newton-Raphson algorithm and y
(m)
t ∀ m = 1, ...,M and t = 1, ...,T sampled from

model (3) of the main article. To ease this step, we assume that ∑T
t=1 s(Yt ,yt−1) follows

a p-variate Gauss distribution with mean m(k) and covariance matrix Σ(k), which is the
covariance matrix of the sufficient statistics under θ (k). Both terms can be estimated with
samples Y (1), ...,Y (M). Thereby we can state the optimal value of (2) in closed form:

θ (k+1) = θ (k) +
(
Σ̂(k)

)−1 (
ξ (k) − m̂(k)

)
.

The algorithm terminates when we estimate γ (k) = 1 two iterations in a row, we then
continue the procedure with ξ (k) = ∑T

t=1 s(yt ,yt−1) until the estimates stabilize.

1.2 Evaluation of the AIC
To decide between alternative specifications of the sufficient statistics, a common method
is to select the model with the lowest AIC value. The AIC is defined as

AIC(M) = 2p − 2ℓ(θ̂ ; y), (3)

where M is a SERGM for temporal networks with a particular specification of the sufficient
statistics and estimated parameters θ̂ and ℓ(θ̂ ; y) = log

(∏T
t=1 Pθ (Yt = yt |Yt−1 = yt−1)

)

is the log likelihood. To evaluate (3), we have to calculate the value of the intractable
logarithmic likelihood at θ̂ , which we can restate by

ℓ(θ̂ ; y) = r(θ̂ , θ̂Ind; y) + ℓ(θ̂Ind; y), (4)

where θ̂Ind ∈ Rp is the estimate of the sub-model including only the subset from the
sufficient statistics that abide the conditional dependence assumption (the coefficients of
all other (endogenous) statistics are fixed at 0). Due to this characteristic, ℓ(θ̂Ind; y) is
equivalent to the log likelihood in a multinomial regression and can be computed in closed
form. To evaluate r(θ̂ , θ̂Ind; y), we follow Hunter and Handcock (2006) and apply path
sampling (Gelman and Meng, 1998) to approximate

log
(
Eθ0

(
exp

{
(θ − θ0)⊤

( T∑

t=1
s(Yt ,yt−1)

)}))
= log

(
κ(θ )
κ(θ0)

)
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from (11) in the main article in a more precise manner. If we specify a smooth mapping
θ : [0, 1] → Rp with θ (0) = θ̂Ind and θ (1) = θ̂ and let 0 = u0 < u1 < ... < uJ = 1 for
J ∈ N be a fixed grid of so-called bridges and its finite support, the following approximation
holds:

log
(

κ(θ )
κ(θ0)

)
=

J∑

j=1

1
u j − u j−1

Eθ(u j)





 d

du
θ (u)

∣∣∣∣∣
u=u j




⊤
T∑

t=1
s (Yt ,yt−1)




≈ 1
M

J∑

j=1

M∑

m=1

1
u j − u j−1





 d

du
θ (u)

∣∣∣∣∣
u=u j




⊤
T∑

t=1
s
(
y

( j,m)
t ,yt−1

)

 , (5)

where y
( j,1)
t , ...,y

( j,M)
t are networks sampled conditional on yt−1 under θ (u j) ∀ j = 1, ..., J.

For our implementation, we set θ (u) = θ̂Ind + u(θ̂ − θ̂Ind), corresponding to a linear path
from θ̂Ind to θ̂ and d

duθ (u) = θ̂ − θ̂Ind. Plugging (5) into the first row of (11) of the main
article permits the computation of (3). For a more technical derivation of (5), we refer to
Hunter and Handcock, 2006 or Gelman and Meng, 1998.

2 Details on the Application to International Coop-
eration and Conflict

2.1 Data Visualization and Covariate Details
Here, we visualize the network and offer additional details regarding the data sources for
the application of the SERGM to interstate relations presented in Section 4. As discussed
in this section, we source data from Kinne (2020) and Palmer et al. (2021) to construct
a network, spanning the years 2000-2010, where positive ties represent Defense Coopera-
tion Agreements (DCAs) and negative ties Militarized Interstate Disputes (MIDs) between
states. A snapshot of the resulting network, as observed in 2005, is presented in Figure 1.

For this application, we also use additional data to construct our exogenous covariates.
The information underlying these variables, as well as the MID data, are sourced from the
peacesciencer package (Miller, 2021), but the original data sources are as follows: We
measure countries’ absolute political difference (Abs. Polity Diff.) using their polity scores
(Marshall et al., 2018), their relative military power by taking the ratio of their Composite
Indicators of National Capabilities∗ (CINC Ratio; Singer et al., 1972), their difference in
wealth via their absolute GDP difference (Abs. GDP Diff; Anders et al., 2020) and obtain
their geographical distance from Schvitz et al. (2022), log-transforming it before inclusion
(Abs. Distance). For each covariate, we separately estimate effects on the propensity of
a positive and negative edge. The only exception to this rule is the effect of the absolute
distance, which is assumed to be equal for both types of edges.

We now shortly discuss the estimation results for these covariates, as reported for Model
1 in Table 1 of the main article. These estimates are ceteris paribus, i.e. when accounting
for network dependencies via the endogenous terms. Regarding cooperation, countries are
found to be more likely to formally work together via defense cooperation agreements if they

∗We use the higher CINC value in the ratio’s numerator.
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Figure 1: Network of MIDs (red) and DCAs (blue) in 2005. The size of each node relates
to the degree (positive plus negative) of the respective country.

are politically more similar, more comparable in their wealth, but also differ more in their
material military capabilities. In particular the first result is in line with previous research
showing that similar regimes are more likely to ally (Lai and Reiter, 2000; Warren, 2016)
while the second indicates that for DCAs, which regulate activities such as the joint research
and development of military technology, countries’ economic match also plays a role. That
countries are more likely to cooperate as their CINC ratio increases indicates, instead, that
DCAs also follow a hierarchical structure where powerful states enter agreements with less
powerful ones (Lake, 2009). In contrast, we see that states are more likely to fight if their
CINCs, and hence military capabilities, are more similar whereas their differences in terms
of regime type and wealth are not found to play a role. Finally, countries’ absolute distance
exhibits a positive coefficient, indicating that, surprisingly, they are more likely to interact
the farther they are away from each other.

2.2 MCMC Diagnostics
In figures 2–6, we present some diagnostic plots of the MCMC chain used in the final
iteration of Model 1 in the application of Section 4 of the main article. We average the
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Figure 2: MCMC diagnostics of Model 1.

Markov chain of each sufficient statistic around its observed value for better readability.
Overall, one can observe that the model’s estimates converged, are not degenerate, and are
equal to the maximum likelihood estimates since the Markov chain oscillates around 0.
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Figure 3: MCMC diagnostics of Model 1.
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Figure 4: MCMC diagnostics of Model 1.
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Figure 5: MCMC diagnostics of Model 1.
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Figure 6: MCMC diagnostics of Model 1.
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Figure 7: Network of enmity (red) and friendship (red) among New Guinean Highland
tribes. The size of each node relates to the degree (positive plus negative) of the respective
people.

3 Application to a static network: Enmity and Friend-
ship among New Guinean Highland Tribes

3.1 Data Visualization and Sources
Next to dynamic networks one can also apply the SERGM to static networks. We demon-
strate this with network data on interactions between the New Guinean Highland Tribes
originally collected by Read (1954) and presented in Hage and Harary (1984). We source
these data from the R package signnet (Schoch, 2020). The network covers relations of
enmity and friendship among sixteen subtribes of the Gahuku-Gama, based on the an-
thropological work of Read (1954). Hage and Harary (1984) introduce it as an example
of a network which is not perfectly balanced due to the existence of triads with zero or
two positive ties but note that 82% of triads are balanced nonetheless. The full network
is plotted in Figure 7. We now apply the SERGM to this static network to test whether
structural balance effects can be recovered from it. The SERGM we specify includes edge
terms, GWESE, GWESF as well as a degree statistic. To show the flexibility with which
these statistics can be specified, we include the edge and GWESF terms separately for
positive and negative ties, but the GWESE and GWD statistics only for positive ties. For
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Table 1: Results of the models.

Dependence Independence
Coef. CI Coef. CI

Edges + -8.744 [-12.182,-5.306] -0.76 [-1.13,-0.39]
Edges − -1.647 [-2.766,-0.528] -0.76 [-1.13,-0.39]
GWESE+ 0.45 [0.015,0.885] -
GWESF+ 0.068 [-0.228,0.364] -
GWESF− 0.932 [0.616,1.248] -
GWD+ 5.492 [2.252,8.732] -
AIC 139.593 170.355

the sake of comparison, we also estimate a model that drops all endogenous network terms
and hence includes only the two edge terms. Results of both models are presented in Table
1.

3.2 Results and Model Assessment
In Table 1, it is apparent that the fully specified Dependence model has a lower AIC than the
Independence model which does not account for endogenous network terms, indicating that
it is preferable in terms of performance. Table 1 also offers some evidence that structural
balance drives tie formation among the Gahuku-Gama: GWESF has a positive effect on
positive ties whose 95%-Confidence Intervals clearly exclude zero while its effect on negative
ties is very close to zero. This implies that here, friends of friends are indeed more often
friends but not less often enemies than one would expect by chance. GWESE+ also exhibits
a positive and statistically significant effect, suggesting that subtribes with a common
enemy are more likely to share an alliance than in a random network of the same size.
Finally, the effect of GWD+ is also positive and statistically significant, meaning that a
subtribe’s probability of gaining a further positive tie increases with the number of such
ties it already has.

Figure 8 offers a visual assessment of the goodness-of-fit of the Dependence model.
Here, we can see that while the observed network lines up quite well with the simulated
ones in terms of Edgewise-Shared Friends, model fit is more problematic for Edgewise-
Shared Enemies where the observed network is regularly outside the interquartile range
of the simulated networks. Similarly, the model does not do a good job of capturing the
observed network’s negative degree distribution. Based on these plots, one may consider
re-running the Dependence model while specifying GWESE for both positive and negative
ties and including GWD−. Nonetheless this application demonstrates the possibility to use
the SERGM for the analysis of static networks.
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Figure 8: Model Assessment of the New Guinean Highland Tribes.

3.3 MCMC Diagnostics
Finally, we also present the MCMC diagnostics for this additional application. Below are
thus shown the MCMC trace plots for all its covariates (Figures 9–10). Overall, these
MCMC diagnostics indicate a good convergence of the model.
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Figure 9: MCMC diagnostics of Dependence Model.
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Cooperation and Conflict Tribes
Fixed α log(2) 1.5
Grid size for γ 3,000 2,000
Number of Bridges 16 16

Es
tim

at
io

n Burn-In 10,000 10,000
MCMC Interval 1,000 1,000
M 2,000 1,000
Start Empty True False

Va
ria

nc
e Burn-In 100,000 10,000

MCMC Interval 10,000 1,000
M 3,000 3,000
Start Empty True True

Br
id

ge

Burn-In 10,000 10,000
MCMC Interval 1,000 2,000
M 3,000 1,000
Start Empty True True

Table 2: Setting of the parameters of the fitting of the MCMC estimation procedure. One
can define separate configurations for the Gibbs sampler used for the estimation of the
parameters, the quantification of their variance, and the evaluation of the AIC.

4 Computational Settings
We provide the set tuning parameters of the MCMC algorithm and the models for both
applications in Table 2. We performed sensitivity checks to guarantee that the reported
findings do not depend on the fixed parameters. In general, the values should depend on
the density (the lower the density, the higher the burn-In and MCMC interval), size (the
larger the size, the higher the burn-In and MCMC interval), and the strength of exogenous
covariates (the stronger the influence of exogenous factors, the higher the burn-In and
MCMC interval) of the network.
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We analyse the bipartite dynamic network of inventors and

patents registered within the main area of electrical engineer-

ing in Germany to explore the driving forces behind innovation.

The data at hand leads to a bipartite network, where an edge

between an inventor and a patent is present if the inventor is a

co-owner of the respective patent. Since more than a hundred

thousand patents were filed by similarly as many inventors dur-

ing the observational period, this amounts to a massive bipartite

network, too large to be analysed as a whole. Therefore, we

decompose the bipartite network by utilising an essential char-

acteristic of the network: most inventors tend to stay active only

for a relatively short period, while new ones become active at

each point in time. Consequently, the adjacency matrix carries

several structural zeros. To accommodate for these, we propose

a bipartite variant of the Temporal Exponential Random Graph

Model (TERGM) in which we let the actor set vary over time,

differentiate between inventors that already submitted patents

and those that did not, and account for pairwise statistics of in-

ventors. Our results corroborate the hypotheses that inventor

characteristics and knowledge flows play a crucial role in the

dynamics of invention.

Keywords – Bipartite networks, Patent collaboration, Temporal

exponential random graph models, Inventors, Co-inventorship

networks, Knowledge flows
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1 | INTRODUCTION

In the social sciences, bipartite networks are often used to represent and study affiliation of the actors to some groups (such as

directors on boards, Friel et al., 2016, or football players in teams, Onody and de Castro, 2004) and participation of people

to events (such as researchers citing papers, Small, 1973, or actors in movies, Ahmed et al., 2007). Research on bipartite

structures was initially focused on unimodal projections of the networks (Breiger, 1974), where we consider two nodes of one

type to be tied if they share at least one alter of the other kind. This practice forces the researcher to give priority to one type of

node over another and thus comes with a loss of possibly relevant information (Koskinen and Edling, 2012). Direct bipartite

network analysis has first been considered in Borgatti and Everett (1997), where an introduction and traditional network analysis

techniques are systematically discussed. Latapy et al. (2008) further adjusted known concepts from unipartite networks, such as

clustering and redundancy, to the bipartite case, with a focus on large networks.

For this paper, we also consider high-dimensional bipartite networks where actors are related to one another through

instantaneous events, which by definition only occur once. In particular, we focus on the network formed by inventors residing in

Germany and patents submitted between 1995 and 2015, where a tie between an inventor and a patent is present if the focal

individual is listed among the patent’s inventors. The resulting data structure is visualised in Figure 1, where we can assign each

patent (or event, in the jargon of bipartite network analysis) to a time point and a set of co-inventors. For instance, inventors A

and B filed the joint patent with ID 1. We may represent the bipartite network structure as an adjacency matrix with entriesYi j ,

where

Yi j =

{
1 if actor i is on patent ID j

0 otherwise
(1)

and i ∈ I and j ∈ K, where we denote the complete set of inventors and patents by I and K, respectively. In our example this

bipartite network is of massive dimensions, with |I | = 78.412 inventors on a total of |K |= 126.388 filed patents.

The data allow us to gain insight into the dynamics and drivers of innovation, collaboration and knowledge flows in the

private sector. Moreover, inventorship status on a patent is legally more binding than authorship of academic papers, suggesting

a greater degree of validity of the results of network analysis in this context. The data, however, present some obstacles to

their study. First, the complete network is too massive, making analysis with most traditional network techniques prohibitive.

Second, the data carry structural zero entries since not all inventors are active during the entire time period between 1995 and

2015. This phenomenon is partially due to the retirement of inventors, who hence have natural “actor mortality”. Concurrently,

inventors are often active for a short period before changing careers, thereby ending their patent output and further reinforcing the

aforementioned actor mortality. Vice versa, new inventors continuously enter the market by producing their first patent, resulting

in what we can call “actor natality” in the network. These aspects imply that the bipartite network matrix (1) contains structural

zeros for inventors which are not active at particular time points. To incorporate this feature into a statistical network model,

we consider the network dynamically and discretise the time dimension by looking at yearly data, such that time takes values

t = 1, 2, . . . ,T , as sketched in Figure 1. In this context,T denote the number of observed time points. We then allow the actor

set to change at each time point. For the adjacency matrix of Figure 1, this leads to the matrix structure in Figure 2, where e.g.

inventor A retires after time point t = 1 and hence does not take part in the patent market at t = 2. We, therefore, define activity

sets It to include all actors that are active at time point t . We also define the event set Kt , which contains all patents submitted

in a particular time window. We assume that both sets are known for each time point t = 1, . . . ,T . Therefore, we decompose the

observed massive bipartite network matrix into smaller dimensional bipartite submatrices denoted by

Yt = (Yi j : i ∈ It , j ∈ Kt ), (2)
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F I G U R E 1 Illustrative example of the network structure.

which are visualised for t = 1 and 2 by the grey-shaded areas in Figure 2. Instead of modelling the entire bipartite network, we

break down our analysis to modelling Yt given the previous bipartite networks Y1, . . .Yt−1. Incorporating the varying actor set

as such in the analysis allows to structurally account for the observed actor mortality and natality while also making the difficulty

of the problem more manageable, thus solving both issues simultaneously.

This change in perspective induces a structure that deviates from conventionally analysed networks. To accommodate for

it in a probabilistic modelling framework, we extend the Temporal Exponential Random Graph Model (TERGM, Hanneke

et al., 2010) towards dynamic bipartite networks with varying actor sets. For TERGMs, we assume that a discrete Markov

chain can describe the generating process of the networks observed over time. The transition probabilities of jumping from

one network to another one are determined by an Exponential Random Graph Model (ERGM,Wasserman and Pattison, 1996).

ERGMs, on the other hand, were adapted to bipartite data by Faust and Skvoretz (1999), while adjustments to incorporate the

model specifications of Snijders et al. (2006) were proposed in Wang et al. (2013). These types of network models were already

successfully applied to static (Agneessens and Roose, 2008) as well as dynamic networks (Broekel and Bednarz, 2018).

In addition to the dynamically varying actor set, the network at hand presents another particular feature for which we need

to account in the modelling. Collaborations and knowledge flows generally build up over time, rather than being confined to

single time points. To adequately represent these mechanisms, we need to include covariate information from the past and on the

pairwise level of one alter set in the model, which has not yet been implemented in the bipartite ERGM framework. We, therefore,

define and include novel sufficient network statistics in our model to account for this particular kind of dynamic interdependence.

Overall, the contributions of this paper are the following. First, we demonstrate how massive bipartite networks can be

broken down in a way that allows their analysis. Secondly, we extend temporal network models towards bipartite network data

with varying actor sets. And lastly, with these requisites, we can analyse patent data with respect to innovation dynamics and

collaboration in a more refined way than has been feasible to date.

The remainder of the paper is organised as follows: Section 2 gives a literature overview of the research in patent data. In

this section, we also describe the data in detail. Section 3 motivates the model and introduces its novelties in more detail from a

theoretical perspective. We present the results of our empirical analysis in Section 4, while Section 5 wraps up the paper with

some concluding remarks.
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F I G U R E 2 Illustrative example of the tripartite network matrix. The two sub-matrices shaded in grey are Y1 in the top left
and Y2 on the bottom right.

2 | PATENT DATA

2.1 | Research in patent data

The analysis of patents and their impact and evolution over time is an important area of current economic research. Hall and

Harhoff (2012) provide a general overview of the field and its recent developments. The existence of patents induces a trade-off

for society, namely between short-term monopoly rights to the use of inventions as an incentive to invent and early publication

of inventions (rather than their secrecy for personal gain by the inventors), which may invite others to build on the patented

technology. The study of patents in much of classic economic literature revolves around the economic consequences of their

existence from a regulatory standpoint, or, in other words, whether the aforementioned trade-off is worth it for society. Patent

data are often also used in innovation research to explore how new technologies develop and spread, which innovation areas are

the most active, how innovation areas and sub-areas are connected with one another, and how productive firms or nations are

with regards to their patenting output.

Two of the main categories of methods for analysing patent data in this latter regard are keyword-based morphological

approaches and network-based approaches. Under keyword-based patent analysis, we understand the process of gaining insights

on core technology information of patents through text mining of the document content of each patent. Tseng et al. (2007) review

this approach and describe different text mining techniques that conform to the analytical process used by patent analysts, see,

e.g., Yoon and Park (2007) or Lee et al. (2009).
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In contrast to text mining approaches, network-based patent analysis starts with the idea of constructing a network map of

the technology space to understand how technology as a whole behaves and evolves. In this context, patents (or technologies) are

often considered as nodes of the network, where an edge links them if they are close to one another according to some proximity

measure. Such measure is often based on the citations that occur between patents (Alstott et al., 2017). The study of citation

networks has generally been an important area of research at least since the work of Garfield (1955) (see also de Solla Price,

1965 and Egghe and Rousseau, 1990), and the techniques developed for general citation networks can naturally be applied to

map patent citation networks (see, e.g., von Wartburg et al., 2005; Li et al., 2007; Verspagen, 2012).

As an alternative to using citation-based approaches for measuring proximity, one can draw a network map of the technology

space by focusing on the co-inventorship of patents. Using inventorship data instead of citations to construct the network entails

a different perspective on the technological space: The focus is shifted from the content of the patents towards the people

coming up with inventions. Thereby, we can gain insights into the network of inventors’ underlying collaborative structure

and investigate how behaviour differs between and among areas. Co-authorship networks have been extensively studied within

the area of research publications (see, e.g., Melin and Persson, 1996 and Newman, 2004). For patent data, it is possible to

construct the co-inventorship network in two main ways. One can directly analyse the bipartite network formed by the patents

and their inventors, see, e.g., Balconi et al. (2004). Alternatively, one projects the bipartite structure on one of the two modes,

which in the context of patent data is usually that of inventors. This entails a network composed only of inventors, in which two

nodes are connected if they have at least one patent in common (Ejermo and Karlsson, 2006; Bauer et al., 2021). Much of the

literature in this area utilises such projection since the focus is generally on knowledge flows between inventors, and models for

unimodal networks are developed to a greater extent. As explained in the introduction, however, projecting everything on one

mode inevitably loses information on the mode that is excluded.

2.2 | Data description

We consider patent applications submitted to the European Patent Office or the German Patent and Trademark Office (Deutsches

Patent- und Markenamt) between 1995 and 2015. More specifically, we look at patents filed within the main area of electrical

engineering, and for which at least one of the inventors listed on the patent has a residential address in Germany. For assigning

each patent to a single time point we use the priority date, i.e., the first-time filing date of a patent (which precedes the publication

and the grant date). We focus on electrical engineering as it is one of the largest main areas and as it has seen particularly high

growth rates since 2010. Moreover, collaborations between inventors are particularly frequent in this field. For our analyses, we

focus on the data starting 2000 and condition on the information from the first five years considered (i.e. from 1995 to 1999) to

derive covariates from them. The dataset can be represented in a massive bipartite network, for which the observed adjacency

matrix (1) is visualised in Figure 3.

As described in Section 1, we instead consider this a dynamic bipartite network, discretising the time steps yearly such that

time takes values t = 1, 2, . . . ,T . In our notation, t = 1 translates to the year 2000. We also allow the actor set to change at each

time point so that we end up withT bipartite networks in which the nodes are given by the active inventors at each time point.

Resulting from this, we include new inventors that are active for the first time and remove inactive ones from the network at

each time point t . The latter point is motivated by the empirical data, which suggests that if previously active inventors don’t

produce any patents for a long time, it is likely that they will not be active anymore. This phenomenon can stem from a changed

career path (moved up to a management position where writing patents is not among the work tasks) or retirement. To this point,

we show in Figure 4 the Kaplan-Meier estimate of the time passing between two consecutive patents by the same inventor. As

indicated by the dashed grey lines, about 85% of patents by a specific inventor that already had at least one patent are submitted

within two years from the previous one. Given this, we define an inventor as active at time t if they had at least one patent in the

two years prior to t . Note that by doing so we do not disregard the remaining 15% of the data, but simply label these inventors as

9. Modelling the large and dynamically growing bipartite network of German patents and inventors
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F I G U R E 3 Adjacency matrix of the patent-inventor network between 2000 and 2015 with black points in the (i , k )th row
indicating that inventor i is a co-owner of patent k . Note that the points are heavily over-represented pixel-wise, hence the
network is more sparse than it appears in the plot.

inactive for a specific period, at least until they appear on another patent.

As we are interested in investigating the drivers of patented innovation and inventor collaboration, we exclude patents

developed by a single inventor from the modelled patent set. Moreover, we exclude inventors with no address in Germany from

the actor set, as they make up less than 1% of the population. In addition to the residence address of each inventor and the date of

each patent, we also incorporate information on the gender of each inventor in our model.
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F I G U R E 4 Kaplan-Meier estimate of the duration between consecutive patents submitted between 2000 and 2015.

3 | MODELLING PATENT DATA AS BIPARTITE NETWORKS

3.1 | Temporal Exponential Random Graph Models for bipartite networks

Having laid out the available data, we now formulate a generative network model for the bipartite networks at hand. This

framework should allow us to differentiate between random and structural characteristics of the network to support or disregard

our substantive expectations, such as, for example, whether or not two inventors that teamed up in the past are likely to produce

another patent together in the future. To do so we first need to introduce some additional notation. As a general rule, we write Yt

for the network when viewed as a random variable and yt = (yt ,i k : i ∈ It , k ∈ Kt ) if we relate to the observed counterpart. In

this context, yt ,i k = 1 translates to inventor i being a co-owner of patent k , while yt ,i k = 0 indicates the contrary. As a result, the

observed networks are binary and undirected, i.e. yt ∈ {0, 1} |It |×|Kt | . We denote the space of all networks that could potentially

be observed at time point t by Yt . For our application, as explained in the previous section, the latter is restricted to only allow

for patents which have at least two inventors.

We specify the joint probability for the set of networks through

Ðθ (Y1, ...,YT ) =
T∏
t=1

Ðθ (Yt |Ht ), (3)

where Ht defines the history, composed of previous bipartite networks y1, ..., yt−1 and covariates x1, ..., xt−1. The covariates

can encompass dyadic and nodal information, but to make the notation less cumbersome, we suppress the explicit inclusion of

the covariates in the formulae. We simplify (3) by assuming a fixed time lag, i.e.

Ðθ (Yt |Ht ) = Ðθ (Yt |Yt−1 = yt−1, ...,Yt−s = yt−s ), (4)

for s ∈ Î. The Markov property then allows us to postulate an ERGM for the transition probability (4) in the following form:

Ðθ (Yt |Yt−1 = yt−1, ...,Yt−s = yt−s ) = exp {
θ⊤s(yt , ..., yt−s )}

κ (θ, yt−1, ..., yt−s ) , (5)

9. Modelling the large and dynamically growing bipartite network of German patents and inventors
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where θ = (θ1, . . . , θq ) ∈ Òq is a q-dimensional vector of parameters, s() : Yt × ... × Yt−s → Òq is the vector of

sufficient statistics and κ (θ, yt−1, ..., yt−s ) := ∑
y∈Yt exp {

θ⊤s(y, yt−1, ..., yt−s )} is a normalising factor. We obtain a canonical

exponential family model with known characteristics (Barndorff-Nielsen, 1978), which come in handy when quantifying the

uncertainty of the estimates of θ. Note that for the application to patent data, the coefficients governing the transition from one

time point to another are not necessarily constant over time due to external shocks, such as for example the dot-com bubble and

the 2008 financial crisis, which may affect the activity of inventors. For this reason, we let θ in (5) flexibly depend on time, and

estimate it separately for each time point t . We omit the subscript t from the formulae for notational simplicity though.

Interpreting the coefficients θ can be done both at the global network level as well on the single tie level. For the former,

θp > 0 implies that the expected value of the pth statistic of s(yt , ..., yt−s ) for networks generated from (5) is higher than under

a Bernoulli graph, while θp < 0 implies that it is lower. In this context, a Bernoulli graph is a simplistic network model where

every edge is present with equal probability of 0.5. For the latter, we define so called change statistics, which are the change in

the sufficient statistics caused by switching the entry yt ,i k from 0 to 1. Formally,

∆i k (yt , ..., yt−s ) = s(y+t ,i k , ..., yt−s ) − s(y−t ,i k , ..., yt−s ), (6)

where y+
t ,i k

is the network yt with entry yt ,i k fixed at 1, while the entry is set to 0 in y−
t ,i k

. For each possible inventor-patent

connection, we can then state the corresponding probability conditionally on the remaining bipartite network denoted by yC
t ,i k

,

i.e. the complete network yt excluding the single entry yt ,i k . This leads to

Ðθ

(
Yt ,i k = 1 |YC

t ,i k = yCt ,i k
)
=

exp{θ⊤∆t ,i k (yt , ..., yt−s ) }
1 + exp{θ⊤∆t ,i k (yt , ..., yt−s ) } . (7)

Through this expression we can relate θ, the canonical parameter of (5), to the conditional probability of inventor i to be co-owner

of patent k . We can thereby derive an interpretation of the coefficients reminiscent of the common logistic regression: if adding

the tie yt ,i k to the network raises the pth entry of ∆t ,i k (yt , ..., yt−s ) by one unit, the conditional log-odds ofYt ,i k are ceteris

paribus altered by the additive factor θp (Goodreau et al., 2009).

3.2 | Sufficient statistics for bipartite patent data

The main ingredient of model (5) is the set of sufficient statistics, which translates to a particular dependence structure assumed

for the edges in the observed bipartite network (Wang et al., 2013). A statistic that is typically included is the number of edges

at time point t , i.e. sedges (yt , ..., yt−s ) = |yt |, which can be comprehended as the equivalent of an intercept term in standard

regression models (Goodreau et al., 2009). As we are in a dynamic setting in which additional information on past networks is

available, we can define statistics that depend on the past networks, such as the number of patents in the previous s years for each

actor active at time point t :

spastpatent (yt , ..., yt−s ) = ∑
i ∈It

∑
k ∈Kt

yt ,i k

t−1∑
u=t−s

∑
l ∈Ku

yu,i l (8)

As the patent network presents some particular dependence structures, novel types of statistics are needed, which we describe in

the following.
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3.2.1 | Pairwise statistics of inventors

One drawback of representing the patent data as a bipartite adjacency matrix instead of the one-mode-projected version is that

incorporating information on the pairwise inventor-to-inventor level is not straightforward. We therefore introduce assortative

two-star statistics extending the work of Bomiriya (2014, Chapter 2) on homophily, which is defined as the mechanism driving

ties between similar individuals (McPherson et al., 2001), for bipartite networks. We take the patent-based two-star statistic as

starting point, which for yt is defined by

stwostar.patent (yt ) = 1

2

∑
k ∈Kt

∑
i ∈It

yt ,i k
©
«
∑
j,i

yt ,j k
ª®
¬
. (9)

The tendency to interact with one another is often based on the similarity of a factor variable ut = (ut ,i ; i ∈ It ) . We therefore

define the indicator matrix xt ∈ {0, 1} |It |×|It | with entries xt ,i j = 1(ut ,i = ut ,j ) . In line with Bomiriya (2014, Chapter 2), this

allows to augment the two-star statistic (9) in the form

shomophily.x (yt ) = 1

2

∑
k ∈Kt

∑
i ∈It

yt ,i k
©
«
∑
j,i

yt ,j k xt ,i j
ª®
¬
. (10)

Next, we generalise (10) by not restricting ourselves to any particular definition of xt but letting the matrix be an arbitrary

function of the networks from the past s years and other exogenous information. To further correct for different sizes of patents,

i.e. the number of inventors co-owning the patent, we normalise the statistic by the degree of each patent, whereby the novel

statistic is defined through:

sassort.x (yt , ..., yt−s ) = 1

2

∑
k ∈Kt

∑
i ∈It

yi k

(
100 ×

∑
j,i yt ,j k xt ,i j∑

j,i yt ,j k

)
(11)

The corresponding change statistic for an edge between inventor i and patent k is then

∆i k ,assort.x (yt , ..., yt−s ) = 100 ×
∑

j,i yt ,j k xt ,i j∑
j,i yt ,j k

, (12)

which can simply be interpreted as the percentage of inventors on patent k that match with inventor i in matrix x. We multiply

the statistic by 100, which does not affect the model itself but eases interpretation (as a unit increase is now equivalent to a single

percentage change). To give an example of a statistic of this type, we can combine (12) with matrix xPt , for which entry xP
t ,i j

is 1

if inventor i and j already had a joint patent in the last s years and 0 otherwise. The resulting statistic measures how previous

collaboration among inventors affects the propensity of future collaboration. More examples for such statistics are provided in

Section 4.

3.2.2 | Node set statistics

As a result of the actor natality and mortality described in the introduction, we can split the set of inventors It at each time

step t ∈ T into new inventors with their first patent in t , I+
t = {i ∈ It ;∑t−1

u=t−s
∑

k ∈Ku
yu,i k = 0}, and inventors that were

already active prior to t , I−
t = {i ∈ It ;∑t−1

u=t−s
∑

k ∈Ku
yu,i k > 0}. We here use the term “new inventors” for actors in I+

t

and “experienced inventors” for those in I−
t . We can then define y+t = (yt ,i k )i ∈I+

t ,k ∈Kt
and y−t = (yt ,i k )i ∈I−

t ,k ∈Kt to be the

sub-networks of yt made up of new and experienced inventors, respectively.

9. Modelling the large and dynamically growing bipartite network of German patents and inventors
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As it turns out, statistics on past behaviour such as (8) are not meaningful for inventors from I+
t , since no historical data

is available for those inventors at time t . To account for this, we decompose the statistics s(yt , ..., yt−s ) into three types of

terms, namely s+ (y+t ), s− (y−t , ..., yt−s ) , and s± (yt ) , which are defined as statistics that only relate to either y+t , y−t and past

networks or the full set of inventors yt , respectively. Defining the corresponding coefficients (θ+,θ−,θ±) and change statistics

(∆+
t ,i k ,∆

−
t ,i k ,∆

±
t ,i k ) accordingly yields

Ðθ

(
Yt ,i k = 1 |YC

t ,i k = yCt ,i k
)
=



π+
t ,i k (yt ), if i ∈ I+

t (new inventor)

π−
t ,i k

(yt , ..., yt−s ), if i ∈ I−
t (experienced inventor)

(13)

where π+
t ,i k

(yt ) and π−
t ,i k

(yt , ..., yt−s ) are given by

π+
t ,i k (yt ) = exp{(θ+)⊤∆+

t ,i k (y+t ) + (θ±)⊤∆±
t ,i k (yt ) }

1 + exp{(θ+)⊤∆+
t ,i k (y+t ) + (θ±)⊤∆±

t ,i k (yt ) }
π−
t ,i k (yt , ..., yt−s ) = exp{(θ−)⊤∆−

t ,i k (y−t , ..., yt−s ) + (θ±)⊤∆±
t ,i k (yt ) }

1 + exp{(θ−)⊤∆−
t ,i k (y−t , ..., yt−s ) + (θ±)⊤∆±

t ,i k (yt ) } .

As an example, for the common edge statistic sedges (yt , ..., yt−s ) , the aforementioned decomposition means we can define

sNew (y+t ) = |y+t | and sExperienced (y−t , ..., yt−s ) = |y−t |, to allow for new and experienced inventors to generally have a different

propensity to be part of a patent. Note that the splitting of the node set as in (13) does not assume any (in)dependence structure

between Y+
t and Y−

t , but rather serves as an aid to specify additional terms and interpret the coefficients at a finer level, as just

exemplified for the edge statistic.

3.2.3 | Adjustment for varying network size:

As argued in Krivitsky et al. (2011), the task of comparing estimated coefficients of two models with identical specifications but

different network sizes is non-trivial. This behaviour is due to the fact that including the edge count statistic from the previous

paragraph in a TERGM assumes density invariance as the network grows. This characteristic seldom holds for real-world

networks as it implies a linearly growing mean degree of all involved actors. In the case of our longitudinal patent network, the

number and composition of inventors and patents change from year to year, thus correcting for this is of practical importance to

be able to compare coefficient estimates at different time points. To solve the issue, we follow the suggestion of Krivitsky et al.

(2011) and incorporate the offset term 1
|It |+|Kt | to achieve asymptotically constant mean-degree scaling as the composition of

inventors and patents change over time.

3.3 | Estimation and inference

We now seek to estimate the parameter θ, by maximising the logarithmic likelihood constructed from (5) for the transition

between time points t − 1 and t . To do so, we follow the Markov Chain Monte Carlo Maximum Likelihood Estimation procedure

introduced by Geyer and Thompson (1992) and adapted to ERGMs by Hunter and Handcock (2006). In our application, we

repeat this for each available time step t = 1, ...,T .

First, note that subtracting any constant from the logarithmic likelihood constructed from (5) does not change its maximum.

We can therefore subtract the logarithmic likelihood evaluated at an arbitrary value of the parameter θ, i.e. θ0, which yields the
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equivalent objective function

l (θ) − l (θ0) = (θ − θ0)⊤s(yt , . . . , yt−s ) − log (
Åθ0

(exp{(θ − θ0)⊤s(Yt , . . . , yt−s ) }) ) , (14)

where Åθ (f (X)) is the expected value of random variable X characterised by parameter θ and transformed through the arbitrary

function f ( ·) . As described in Hunter and Handcock (2006), one can evaluate this objective function by approximating the

expected value by generating random networks Y(1) ,Y(2) , . . . ,Y(M ) from (5) under θ0. In particular, we approximate the

expected value in (14) through a Monte Carlo quadrature:

Åθ0

(exp{(θ − θ0)⊤s(Yt , . . . , yt−s ) }) ≈ 1

M

M∑
m=1

exp {
(θ − θ0)⊤s(y(m) , yt−1, ..., yt−s )} (15)

For sufficiently large M the convergence of this expectation is guaranteed, and we can plug (16) into (14) and apply Newton-

Raphson type of methods to maximise it with respect to θ. Sampling from a probability distribution with intractable normalisation

constant, such as (5), is achieved by a Metropolis-Hastings algorithm. In particular, we first sample an edge, defined as the tuple

(i , k ) , at random, and consecutively toggle the corresponding entry of Yt from 0 to 1 with probability equal to (7) (for more

details see Hunter et al., 2013). Due to the large size of the patent networks, we start with the observed network, propose 15.000

of such changes and then stop the Markov chain. This procedure is hence equivalent to contrastive divergence as introduced by

Hinton (2002) and adapted to ERGMs by Krivitsky (2017).

Inference on the estimates is drawn based on the Fisher matrix I(θ) , which equals the variance of the sufficient statistics for

exponential family distributions (Wassennan, 2004). Thus, we can approximate the Fisher matrix through

Î(θ) = Varθ (s(Yt , . . . , yt−s )) ≈ 1

M

M∑
m=1

(
s

(y(m) , yt−1, ..., yt−s ) − s̄
(y(1) , ..., y(M )

))
(
s

(y(m) , yt−1, ..., yt−s ) − s̄
(y(1) , ..., y(M )

))⊤

where s̄
(y(1) , ..., y(M )

)
=

1

M

M∑
m=1

s
(y(m) , yt−1, ..., yt−s ) is the vector of average of the sufficient statistics from the simulated

networks y(1) , . . . , y(M ) , which are, in turn, drawn from the fitted model with parameter θ set to its maximum likelihood

estimate.

4 | APPLICATION

We can now present the results of the application of our model to the patent data introduced in Section 2. For each statistic

included in the model, we first explain its meaning and subsequently interpret the corresponding estimated coefficient. Further

details on the specification of each sufficient statistic can be found in Appendix A. MCMC diagnostics, and goodness-of-fit

assessments as proposed by Hunter et al. (2008) are provided in the Supplementary Material.

4.1 | Network effects

Propensity to invent: To account for the changing activity levels over time, we incorporate a statistic that counts how many

edges are in the network. Following Section 3.2, we split this term into separate statistics for experienced and new inventors.

Heuristically, one can interpret the corresponding coefficients as the general propensity to form ties, i.e. participate in a patent,

9. Modelling the large and dynamically growing bipartite network of German patents and inventors
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F I G U R E 5 Estimated time-varying coefficients regarding the propensity to invent, two-star statistics, team persistence and
collaboration interlocking.

for the two inventor sets, respectively. The plot of the corresponding estimates is shown in the upper left panel of Figure 5. It

exhibits a different level of activity for new and experienced inventors. We expect this by design, as new inventors enter the

network precisely because they are active at time t , while experienced ones might only have been active in the past. Overall, we

observe a steady increase in activity in the network over time from 2008 onward for both sets of inventors.

Two-star statistics: Two-star statistics relate to the concept of centrality (Wasserman and Faust, 1994). For bipartite

networks, they can be defined with respect to each of the two modes (inventors and patents, respectively). For inventors the

statistic is given in Appendix A and expresses whether inventor i is more or less likely to invent an additional patent in year t ,

given that he/she is (co-)owner of at least another patent in that year. For patents, the statistic relates to the number of inventors

per patent and is given in (9). The top right panel of Figure 6 depicts the two corresponding estimates. For inventors, the

estimates take for most time points small positive values without much temporal variation. This indicates a slight tendency

towards centralisation for inventors, i.e. inventors aiming to submit multiple patents per year. For patents the corresponding
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(a) Team persistence (b) Collaboration interlocking

F I G U R E 6 Illustration of the change statistics related to assortative network statistics for team persistence (a) and
collaboration interlocking (b). Circles represent inventors, and squares are patents. The dashed line indicates a possible edge at
time point t , while black lines represent edges given at time point t . Grey lines, on the other hand, display past connections, and
grey squares stand for past patents.

two-star estimates are larger, i.e. patents tend to be owned by multiple inventors. The two star effect slowly decreases since 2011,

meaning that the number of owners per patent is getting smaller. The variance for the estimated two-star patent effect is generally

larger than the estimate of the corresponding two-star inventor effect, which stems from the fact that there are fewer patents than

inventors in a single year.

Team persistence: Most patented inventions are the result of team work (Giuri et al., 2007), which leads to the build-up of

valuable team-specific capital (Jaravel et al., 2018). We therefore expect past collaboration to positively affect the propensity for

two inventors to collaborate again. We include the team persistence statistic based on the pairwise statistics of inventors proposed

in 3.2 in the model to account for this effect. The statistic, which could also be defined as “repetition statistic”, is visually

represented in Figure 6 (a), and rests on the definition of matrix xPt , whose (i , j )th entry is 1 if inventor i and j have already

co-invented a patent in the previous five years and 0 otherwise. The bottom left panel of Figure 5 depicts the corresponding

coefficient estimate, which is significantly positive over time. This finding corroborates our anticipations that, controlling for the

other factors, two inventors are more likely to jointly produce a patent if they already worked on an invention together in the past.

Hence teams of inventors play an important role in patent creation.

Collaboration interlocking: In addition to investigating the persistence of collaborations, it is also of interest to understand

how having had a common partner in the past influences the tendency to develop a patent together in the present. We account for

this by including the collaboration interlocking statistic in our model. By common partners we are referring to actors such as

inventor h for inventors i and j in Figure 6 (b). We define the statistic again by pairwise statistics of inventors through the matrix

xCIt , encoding in the (i , j )th entry the binary information if inventors i and j have at least one common partner or not. The related

coefficient estimates are shown in the bottom right panel of Figure 5, where we notice that the estimate attains significantly

positive values throughout the observational period. This result suggests that if two inventors i and j both had a patent with the

same inventor h in the past, they are generally more likely to co-invent in the future. The finding holds controlling for all other

features in our model (including the previously described team persistence statistic), and can be viewed as akin to triadic closure

in unimodal networks, i.e. “a collaborator of my collaborator is more likely to become my collaborator”. The result thus supports

9. Modelling the large and dynamically growing bipartite network of German patents and inventors
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F I G U R E 7 Estimated time-varying coefficients regarding the spatial proximity, seniority, and gender of inventors.

the idea that the creation of inventor teams is often promoted via common colleagues and that informal knowledge flows are key

to the invention process (see Giuri and Mariani, 2013 and references cited therein).

4.2 | Effects of inventor-specific covariates

Spatial proximity: Many patents are created in a workplace environment (Giuri et al., 2007). For this reason, we would expect

inventors that live close to each other to be more likely to invent together. Moreover, there is empirical evidence that collaboration

is more likely between inventors that live close to one another even if they do not share the same employer (e.g., Crescenzi et al.,

2016). For these reasons, we include a spatial proximity statistic in our model, where we define spatial proximity as living within

a range of 50 km. We encode this proximity information in a binary matrix xSP and incorporate it in the model as a pairwise

statistic of inventors. The top left panel of Figure 7 depicts the estimated coefficients for the statistic. The positive values attained

over time confirm that inventors living near each other have a higher chance to collaborate. We can also see that the effect goes
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down over time from 2010 onward; this makes sense in an increasingly interconnected society, where more and more connections

are formed through the web in addition to physical ones.

Seniority: The top right panel in Figure 7 depicts the effect of the number of previously owned patents by each inventor

in the past five years. The corresponding statistic can be viewed as a measure of inventor seniority, where inventors with

more patents in the past are considered to be senior. Note that this statistic is only computed for the set of inventors which

were previously active in the network (experienced inventors), as for new inventors it would trivially be a structural zero. The

negative coefficient estimate here suggests that, conditional on all other statistics included in the model, senior inventors have a

lower propensity to create new patents. Prior research has shown that career dynamics of inventors are complex as economic

opportunities, productivity and personal preferences interact (see, e.g., Allen and Katz, 1992 and Bell et al., 2019). But our

results would be consistent with earlier results that with greater seniority, inventors take over managerial responsibilities within

the same firm, or that high visibility of their invention output also leads them to move to new employers and tasks, thus lowering

(or halting) their invention output.

Gender and gender homophily: Another variable of interest in the realm of innovation research is gender. Many researchers

have expressed concerns about the extremely low representation of women among inventors (typically far less than 10 %) and

possible wage discrimination, see, e.g., Hoisl and Mariani (2017) and Jensen et al. (2018). These studies made gender an

important topic in innovation economics. We incorporate gender in our model in two ways, i.e. as a main effect and as homophily

effect introduced in (10). The two plots at the bottom of Figure 7 show the effects of gender on the propensity to create patents

(left) and on homophily, i.e. the tendency of inventing together with people of the same gender (right). Note that both effects

need to be interpreted keeping in mind that the vast majority of the actors in the network are male (96%). From the plot on

the bottom left, we can see how, while male inventors seem to be slightly more active, all in all male and female inventors

did not show significant differences in their propensity to invent. Note that this holds given the inclusion of those inventors in

the network, i.e. given that they were already inventors. The gender homophily plot shows different results; here we see that,

while male inventors seem to have the same likelihood to form patents with both genders, female inventors tend to have more

collaborations with other females than with males. While the effect is quite sizeable in absolute value, the uncertainty here

is considerable given the small number of female actors in the network. Still, we can see this as weak evidence for a gender

homophily effect for female inventors. These results are consistent with earlier findings by Whittington (2018) who studies the

role of gender in life science inventor teams.

5 | DISCUSSION

This paper analyses a massive bipartite network consisting of all inventors and collaborative patents submitted between 1995

and 2015 in electrical engineering. To account for the sheer size of the complete network and the structural zeros in the related

bipartite adjacency matrix, we suggested a temporal decomposition of the data into multiple smaller networks. Guided by

substantive questions posed by innovation research, we then proposed a set of novel bipartite network statistics focused on gender

issues, team persistence, collaboration interlocking and spatial proximity.

Time-varying actor sets due to actor mortality and natality are often observed in networks beyond the realm of patent data.

For instance, scientific collaboration behaves similarly, as many PhD students do not pursue an academic career and hence have a

short lifespan in the scientific collaboration network. At the same time, new PhD students continuously enter the scientific world.

Therefore, we argue that the proposed temporal decomposition and the novel class of network terms can be employed in other

settings.

In addition to the methodological contributions, our study offers several empirical findings. In particular, we show how

spatial proximity, team work and interlocking of collaborations each have a positive impact on the output of inventors. We also

9. Modelling the large and dynamically growing bipartite network of German patents and inventors

184



16 FRITZ ET AL.

demonstrate how inventors’ characteristics, such as gender and seniority, play a significant role in the process.

All in all, our application to inventor teams presents an alternative to classical forms of analysis of patenting and inventorship

networks. While prior studies are almost exclusively focused on analysing the underlying mechanisms one at a time, we model

them simultaneously in the framework of bipartite networks. We argue that this can provide an effective alternative to classical

forms of regression-based analysis of this important phenomenon.
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A S U FFI C I E N T S TAT I S T I C S

In the following, we detail the mathematical definitions of all sufficient statistics incorporated in our model.

Propensity to invent: As already stated in Section 3.1, the standard term to incorporate in any ERGM specification is an

edge statistic that counts how many edges are realised in the network. In accordance with Section 3.2, we split this term into the

statistics sNew (y+t ) = |y+t | = ∑
i ∈I+

t

∑
k ∈Kt

yt ,i k and sExperienced (y−t , ..., yt−s ) = |y−t | = ∑
i ∈I−

t

∑
k ∈Kt

yt ,i k . Figures 8(a) and

8(b) visualise the corresponding two network configurations.

Two-star statistics: Two-star statistics can be stated regarding either set of actors in the case of bipartite networks. The

definition of the two-star statistic for the patents is shown in Figure 8(c) and given by

stwostar.patent (yt ) = 1

2

∑
k ∈Kt

∑
i ∈It

yt ,i k
©
«
∑
j,i

yt ,j k
ª®
¬
,

while the version for the inventors is visualised in Figure 8(d) and defined as:

stwostar.inventor (yt ) = 1

2

∑
i ∈It

∑
k ∈Kt

yt ,i k

(∑
l,k

yt ,i l

)
.

Pairwise statistics of inventors: We include three versions of pairwise statistics of inventors introduced in Section 3.2. The

statistics are given by

sassort.x (yt , ..., , yt−s ) = 1

2

∑
k ∈Kt

∑
i ∈It

yt ,i k

(
100 ×

∑
j,i yt ,j k xt ,i j∑

j,i yt ,j k

)
.

Note that, in general, the matrix x can be an arbitrary function of the past networks and nodal or dyadic exogenous information.

Its definition differs between the three statistics of pairwise statistics of inventors:

1. Team persistence: For i , j ∈ It and i , j the entries of xPt are given by

xPt ,i j =



1, if

∑t−1
u=t−s

∑
k ∈Ku

yu,i k yu,j k > 0

0, else

and a graphical illustration of the statistic is provided in Figure 8(g). One can comprehend this statistic as a particular type

of the four-cycle statistic (Wang et al., 2013) where one half already occurred in the past, and the other half might occur in

the present.

2. Collaboration interlocking: For i , j ∈ It and i , j the entries of xCI
t are defined by

xCI
t ,i j =



1, if

∑t−1
u=t−s

∑
h∈It

∑
k ,l ∈Ku

yu,i k yu,hk yu,j l yu,hl > 0

0, else

and a graphical illustration of the statistic is provided in Figure 8(h). Coming back to the representation as cycle-statistics,

this term is a six-cycle statistic in which four of the six edges happened in the time frame from t − 5 to t − 1 and two in year

t .
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3. Spatial proximity: For i , j ∈ It and i , j the entries of xSPt are defined as

x SP
t ,i j =



1, if dist(xcoord,i , xcoord,j ) > 50km

0, else

where xcoor d ,i and xcoor d ,j define the longitude and latitude of inventors i and j , respectively, and the function dist(xcoor d ,i , xcoor d ,j )
computes the distance in kilometers between them via the haversine formula.

Seniority: The respective binary indicator is based on the pastpatent statistic given in (8), but in this case we define it on

the inventor level:

sseniority,i (yt , ..., yt−s ) =
t−1∑

u=t−s

∑
k ∈Ku

yu,i k

We binarise this inventor-specific covariate by first computing the median of sseniority,i (yt , ..., yt−s ) over all inventors and then

using this value to split the inventors into two groups (i.e. seniors and juniors). The resulting categorical covariate relates to the

number of patents in the past, and is represented in Figure 8(e).

Gender and gender homophily: The main effect of gender is depicted in Figure 8(f) and defined by:

sgender (yt ) = ∑
i ∈It

∑
k ∈Kt

yt ,i k 1(xgender,i = “male”),

where xgender,i ∈ {“male”, “female”} indicates the gender of inventor i . The homophily effect, on the other hand, is for males

defined by:

shomophily.male (yt ) = 1

2

∑
k ∈Kt

∑
i ∈It

yt ,i k
©
«
∑
j,i

yt ,j k 1(xgender,i = “male”)1(xgender,j = “male”)ª®
¬
. (16)

and for females the formula reads :

shomophily.female (yt ) = 1

2

∑
k ∈Kt

∑
i ∈It

yt ,i k
©
«
∑
j,i

yt ,j k 1(xgender,i = “female”)1(xgender,j = “female”)ª®
¬
. (17)

Figure 8(i) visualises the homophily statistic for females. The equivalent statistic for males can be defined in the same manner.
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(a) Experienced inventors (b) New inventors (c) Patent two-stars

(d) Inventor two-stars (e) Seniority (f) Male inventors

(g) Team persistence (h) Collaboration interlocking (i) Homophily of females

F I G U R E 8 Network configurations for the general edge and two-star terms. Circles are inventors and squares patents and
black lines are observed edges in the network at time point t , while grey lines are edges in the past.
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S U P P L E M E N TA R Y M AT E R I A L

Modelling the large and dynamically growing
bipartite network of German patents and inventors

Cornelius Fritz1 | Giacomo De Nicola1 | Sevag Kevork1

| Dietmar Harhoff2 | Göran Kauermann1

1 | DESCRIPTIVE STATISTICS OF THE PATENT NETWORKS

The top left panel of Figure 1 depicts the absolute number of active inventors and patents in each year. In general, the number of

patents per year increase over time, although we observe a drop in recent years. Moreover, there are fewer active inventors than

patents in the networks, and the number of inventors is relatively constant over time. On the right side of Figure 1, we plot the

density over time. The density declines over time, although we see a boost in the last three years.

2 | IMPLEMENTATION

To carry out the analysis of the presented manuscript, we heavily rely on the statnet suite of packages. In particular, we

implement wrapper functions to use the ergm package for the estimation (Hunter et al., 2008; Krivitsky et al., 2021) and the

package template ergm.userterms(Hunter et al., 2013) to employ the novel pairwise statistics of inventors. To enable the use

of those statistics in other applications, we make the software package patent.ergm available for the software package R (R

Core Team, 2021). Moreover, we can provide the complete replication code, including the goodness-of-fit analysis and MCMC

diagnostics.

1
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F I G U R E 1 (a) Number of inventors and patents over time. (b) Density of the patent network. (c) Percentage of male
inventors over time.

3 | GOODNESS-OF-FIT ANALYSIS

To assess whether the estimated model adequately represents the generative mechanisms of the dynamic network of the patent

data at hand, we rely on the goodness-of-fit methods proposed by Hunter et al. (2008) and simulate 200 networks for each

time point i ∈ T. We then compute the degree distributions for inventors and patents and compare them to the respective

observed statistics. For the analysis carried out in this paper, we have 16 time points for which we separately estimated the model.

Resulting from this, we also have to carry out the goodness-of-fit assessment for each time point separately. To save space in the

supplementary materials, we only show the results for the first and last year in the analysis, namely 2000 and 2015, in Figure 4.
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F I G U R E 2 Goodness-of-fit assessment via the degree distributions of inventors and patents on a logarithmic scale in year
2000 and 2015. The red dots show the observed networks, the shades are gives the range for the simulated networks

4 | MCMC DIAGNOSTICS

We also provide the standard MCMC diagnostics to guarantee converged estimates of θ. Similarly to the goodness-of-fit

assessment, we limit the respective trace and density plots to the first and last year of the analysis.
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Abstract
We propose a novel tie-oriented model for longitudinal event network data. The generating mechanism
is assumed to be a multivariate Poisson process that governs the onset and repetition of yearly observed
events with two separate intensity functions. We apply the model to a network obtained from the yearly
dyadic number of international deliveries of combat aircraft trades between 1950 and 2017. Based on the
trade gravity approach, we identify economic and political factors impeding or promoting the number of
transfers. Extensive dynamics as well as country heterogeneities require the specification of semiparametric
time-varying effects as well as random effects. Our findings reveal strong heterogeneous as well as time-
varying effects of endogenous and exogenous covariates on the onset and repetition of aircraft trade events.

Keywords: arms trade network; combat aircraft; longitudinal network analysis; relational event model

1. Introduction
Network data capture information on relations between actors. The various types of links between
actors in the network encompass stable ties associated with some duration. For example, in polit-
ical science, military alliance agreements are active for a certain number of years (Cranmer et al.,
2012; Leeds, 2019). A different type of link consists of instantaneous bilateral events—like hos-
tile actions measured in real-time (Boschee et al., 2018). Note that instantaneous events can be
viewed as the limit case of stable ties if the duration of these ties goes to zero (Butts & Marcum,
2017). While instantaneous events can happen anytime, they are not always observable in a high
resolution of time. Under these circumstances, we can count the instantaneous events occurring
in a given time interval, which implies a network-based counting process. We define the respec-
tive class of processes as a multivariate counting process that simultaneously guides all dyadic
interactions within an event network and dedicate this article to its analysis. Comprehensive
monographs and survey articles on statistical network analysis are available in Kolaczyk (2009),
Kolaczyk (2017), Goldenberg et al. (2010), Lusher et al. (2012). Recent overviews of dynamic
network modeling can be found in Fritz et al. (2020), Kim et al. (2018).

In real-life applications, most networks exhibit dynamics, that is, structural changes over time
are driven by endogenous and exogenous determinants, being covariates that capture the present
or past network dependencies and additional information external to the evolution of the network,
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respectively. One way to conceive the generating process of networks is to represent it as a discrete
Markov chain, where the realized path consists of the observed networks, and the state space is
the set of all observable networks. The transition probabilities defining the chain are given by a
distribution over all possible networks (Robins & Pattison, 2001). For stable ties, this view results
in the temporal exponential random graph model (TERGM, Hanneke et al., 2010).

Alternatively, we can perceive the networks as evolving over time, guided by a continuous
Markov process (Holland & Leinhardt, 1977). In this case, network dynamics are often modeled
by the stochastic actor-oriented model (SAOM, Snijders, 1996) or in the case of instantaneous
events with a precise time stamp by the relational event model (REM) as proposed by Butts (2008).
Although modern sensory technology eases the collection of such fine-grained data (Lazer et al.,
2009), exact continuous information is usually not obtainable for every observed event. In our
case, for example, data on the transactions of combat aircraft trades are collected yearly, but
the exact time point of each event (e.g., day of delivery) is impossible to verify (SIPRI, 2019).
Therefore, instead of observing instantaneous events, we only protocol the counts of events
during given intervals. Consequently, the resulting event data can be comprehended as valued
networks, weighted by the count of events that happened within the given intervals. Though the
body of literature on dynamic network models is steadily growing, the consideration of valued
dynamic networks is less developed and mainly limited to cross-sectional analyses (see Desmarais
& Cranmer, 2012; Krivitsky, 2012; Robins et al., 1999; Krivitsky et al., 2009).

In this article, we introduce a tie-oriented model for the analysis of network-based event data.
Tie-orientedmodels assume a bilateral intensity governing the occurrence of events within a dyad,
as opposed to actor-oriented models suggested by Stadtfeld (2012) and extended in Hoffman et al.
(2020), Stadtfeld et al. (2017). This approach partitions the intensity into an egocentric sender-
specific intensity and a probability selecting the receiver conditional on the sender along the
lines of the discrete choice model of McFadden (1973). To represent the dynamic evolution of
the network-based process, we start with a framework that operates in continuous time at the
tie level. Because the ranking of events in our application is not unique due to the lack of exact
time stamps, standard REMs (Butts, 2008; Vu et al., 2011) cannot be readily applied. Therefore,
we develop our model under the assumption that the exact ordering of aircraft deliveries within
the window of a year is unknown and uninformative. Given that a perennial interplay between
policymakers of the involved countries as well as a lengthy order process preludes each trade, this
assumption seems reasonable (Snijders, 2017).

Our approach extends existing models in multiple ways. Firstly, we generalize the separable
decomposition of network dynamics differentiating between the formation and dissolution of ties
introduced by Krivitsky &Handcock (2014), Holland & Leinhardt (1977). In particular, we extend
the separable decomposition to event and count data instead of the continuous specification given
in Krivitsky &Handcock (2014) and Holland & Leinhardt (1977), where solely binary and durable
ties are regarded. Thereby, we enhance recently introduced windowed effects by Stadtfeld et al.
(2017). Furthermore, we propose a semiparametric specification and use penalized B-splines to
obtain flexible time-varying coefficients (Eilers & Marx, 1996). In a similar approach, Bauer et al.
(2021) employ non-linear effects to investigate the collaboration between inventors through joint
EU patents. Kreiß et al. (2019) propose a nonparametric model with time-varying coefficients
that necessitates time-continuous observations, although focusing on the estimator’s properties as
the number of actors goes to infinity. To capture latent actor-specific heterogeneity, we include
random effects for each actor in the network differentiating between the sender and receiver of
events. As an application case, we focus on the strategically most crucial international deliveries of
weapons, namely combat aircraft from 1950 to 2017 (Forsberg, 1994; SIPRI, 2020a). Combat air-
craft comprises all “unmanned aircraft with a minimum loaded weight of 20 KG” (SIPRI, 2020b).
They are very costly, and the number of units transferred constitutes highly valuable information
for military strategists (Forsberg, 1997). Therefore, we propose to focus on yearly unit sales as a
substantial quantity.
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The remainder of this article is structured as follows: the next section formally introduces the
tie-orientedmodel based on a network-based counting process together with extensions to separa-
ble, time-varying, and random effects and an estimation procedure. Consecutively, we introduce
the application case and apply our novel method. The paper concludes with Section 4.

2. Network-based counting process
2.1 A framework for discrete and continuous time event data
We start by proposing the model for time-continuous event data, which are observed at discrete
time points. We use the temporal indicator t̃ ∈ T = [0, T) andmathematically define the network-
valued process as a Poisson process on a valued network given by:

N(t̃)= (Nij(t̃) | i, j ∈ {1, . . . , n}) (1)

where n ∈N is the total number of actors in the network. Process (1) counts the relational events
between all actors in the network during the interval [0, t̃). It is characterized by the network-
valued intensity rate λ̃ (t̃)= (λ̃ij(t̃) | i, j ∈ {1, . . . , n}). The (i, j)th entry of this intensity is defined
as the probability that we observe an instantaneous jump of size 1 in Nij(t̃). Heuristically, this is
the probability of the occurrence of a directed event from actor i to j at time point t̃. By definition,
we set λ̃ii(t̃)= 0 ∀ i ∈ {1, . . . , n} and t̃ ∈ T .

Assuming the process is observed at discrete time points t ∈ {0, . . . , T} leads to the time-
discrete observations Y t , which are defined as cumulated events through:

Y t =N(t)−N(t − 1) ∀ t ∈ {1, . . . , T}
with N(0) set to 0. Based on the properties of a Poisson process, these increments follow a matrix-
valued Poisson distribution:

Y t ∼ Pois
( ∫ t

t−1
λ̃ (ũ)dũ

)
∀ t ∈ {1, . . . , T} (2)

Given that the exact orderings of events within each observation window are not known and
assumed to be uninformative, the integrated intensity on the time interval (t − 1, t] simplifies to
a constant, so that

∫ t
t−1 λ̃ (ũ)dũ= λ (t) holds. Accordingly, we define the observed values of Y t as

yt . As a result of Equation (2), the waiting times between subsequent events follow an exponential
distribution. Therefore, our model is equivalent to the REM as introduced in Butts (2008) in the
special case where ‖ yt ‖1= 1 ∀ t ∈ {1, . . . , T} holds under piece-wise constant intensities.

Generally, we are interested in modeling λ (t) conditional on the past network topology and
exogenous covariates, which are denoted by xt . Covariates can be node-specific (regarding either
a feature of the sender or receiver), dyadic (regarding a relation between the sender and receiver),
or global (regarding the complete network). Building on a first-order Markov property, we allow
the intensity to depend on the past network behavior and exogenous covariates through:

Yij,t ∼ Pois
(
λij(t, yt−1, xt−1)

) ∀ t ∈ {1, . . . , T}; i, j ∈ {1, . . . , n}, i �= j (3)

This is equivalent to the assumption of dyadic independence of events to occur in each time
interval given information on the past and exogenous covariates. Similar assumptions were made
by Lebacher et al. (2021) in the context of separable TERGMs (Krivitsky & Handcock, 2014).
Almquist & Butts (2014) justify this method for network panel data where little simultaneous
dependence between possible ties is present. For our application to the international combat air-
craft trades, this can be legitimized by the long time span of aircraft trades between the order and
delivery of units.1
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Accordingly, we specify the intensity in time-varying semiparametric form through:

λij(t, yt−1, xt−1)= λ0(t)exp{θ (t)�sij(yt−1, xt−1)} ∀ t ∈ {1, . . . , T} (4)

where λ0(t) is the baseline intensity, sij(yt−1, xt−1) is a multidimensional vector consisting of
network statistics and theoretically derived exogenous covariates in t − 1. We discuss different
specifications of the statistics in Section 3 where we describe the application case in more detail.
The coefficient vector θ (t) is possibly time-varying and needs to be estimated from the data.

In many application cases, compositional changes of the actor set occur. To compensate for
this phenomenon in the model, we include indicator functions similar to risk indicators in time-
to-event analysis (Kalbfleisch & Prentice, 2002). To be specific, we multiply the intensity by an
indicator function, determining whether actors i and j are both present in the network at time t:

λij(t, yt−1, xt−1)= I(i, j ∈Rt)λ0(t)exp{θ (t)�sij(yt−1, xt−1)} ∀ t ∈ {1, . . . , T} (5)

withRt denoting the set of actors partaking in the network at time point t. By including the indica-
tor functions I(i, j ∈Rt), we decompose our observed network into a stochastic and deterministic
component. The latter component consists of structural zeros at time point t in the modeled net-
work between all actors where at least one side is not present. With these actor set changes, the
possible range of the network statistics changes as well, leading to values which are not scaled
coherently for a comparison across years. To solve this issue, we divide all network statistics by
their maximal value to allow for a cohesive interpretation.

2.2 Extensions
2.2.1 Separability assumption
Interaction patterns are commonly substantially different for already linked and still unlinked
actors. To adequately capture this characteristic, Holland & Leinhardt (1977) proposed a process-
based model for binary ties taking the values “0” or “1” by two separate intensity functions. One
intensity toggles entries from “0” to “1” (formation of ties) and another one from “1” to “0” (dis-
solution of ties). Thereby, separate and potentially differential effects of statistics depending on
previous interaction behavior are enabled. This model, henceforth called separable model, was
later adopted to the SAOM by incorporating a so-called gratification function (Snijders & van
Duijn, 1997; Snijders, 2003) and to the TERGMby extending it to the separable TERGM (Krivitsky
& Handcock, 2014). However, one should keep these separablemodels apart from the separability
condition introduced in Almquist & Butts (2014). In the following, we combine the framework of
REMs with the separability approach as coined by Krivitsky & Handcock (2014).

More specifically, we postulate two different conditions for the network-based process under
which the effect of all covariates changes. One condition governs events between unlinked actors
and is characterized by the onset intensity. The second condition only regards events among actors
that already interacted with each other and is driven by the repetition intensity. In accordance
with the Markov assumption specified in Equation (4), we define the onset intensity at time t
to control all events which did not occur in yt−1. Accordingly, the repetition intensity drives the
events that did occur at least once in yt−1. This can be incorporated by splitting the intensity into
two conditional intensities:

λij(t, yt−1, xt−1)=
{

λ+
ij (t, yt−1, xt−1), if yij,t−1 = 0

λ−
ij (t, yt−1, xt−1), if yij,t−1 > 0

(6)

where λ+
ij (t, yt−1, xt−1) and λ−

ij (t, yt−1, xt−1) are defined along the lines of Equation (4) and spec-
ified by the corresponding time-varying parametric effects θ+(t) and θ−(t) jointly represented
by θ (t)= (

θ+(t), θ−(t)
)
. The possibly overlapping vectors of statistics are denoted accordingly

as s+ij (yt−1, xt−1) and s−ij (yt−1, xt−1), respectively. Setting s+ij,0(yt−1, xt−1)= 1 enables the inclusion
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of a time-varying intercept λ+
0 (t)= exp{θ+

0 (t)} in the onset model, this holds similarly for the
repetitionmodel. Consecutively, the complete separable model is given by replacing Equation (4)
with

λij(t, Y t−1, xt−1)= exp
{
I(yij,t = 0)

[
θ+(t)�s+ij (yt−1, xt−1)

]
+ I(yij,t > 0)

[
θ−(t)�s−ij (yt−1, xt−1)

]}
= exp

{
θ (t)�sij(yt−1, xt−1)

}
(7)

where θ (t)= (
θ+(t), θ−(t)

)
and

sij(yt−1, xt−1)=
(
I(yij,t = 0) · s+ij (yt−1, xt−1), I(yij,t > 0) · s−ij (yt−1, xt−1)

)

2.2.2 Spline-based time-varying effects
Let the kth component of statistic sij(yt−1, xt−1) be defined as sij,k(yt−1, xt−1) with the matching
coefficient θk(t). We expand each component θk(t) in a semiparametric way by replacing it with a
B-spline basis function (see de Boor, 2001). More specifically, we place equidistant knots on a grid
in T , where the number of knots can be chosen relatively high (Kauermann & Opsomer, 2011).
In principle, we could choose individual grids for each component of θ (t), but for the sake of a
simple notation, we select the same one for all covariates. We now rewrite each coefficient as:

θk(t)= B(t)αk ∀ k ∈ {0, . . . ,K} (8)
where B(t) ∈Rq is the B-spline basis evaluated at t and αk ∈Rq denotes the corresponding coef-
ficient vector. In our context, q constitutes the dimension of the B-spline basis and hence gives
the number of separate B-spline bases used for each covariate. To obtain a smooth fit, we penalize
the difference of adjacent basis coefficients αk as proposed by Eilers & Marx (1996). This leads
to the overall penalized log-likelihood function:

�p(α0, . . . , αK , γ0, . . . , γK)∝
T∑
t=1

∑
i,j∈Rt

(
yij,t log (λij,t)− λij,t

) − 1
2

K∑
k=0

γkα�
k Dkαk (9)

with λij,t = λij(t, yt−1, xt−1). The penalty results from the quadratic form with penalty matrix Dk
constructed from pairwise differences of the spline coefficients and γk as the penalty (and hence
tuning) parameter. This vector γ = (γ1, . . . , γK) controls the smoothness of the fit and is chosen
data based following a mixed model approach as described in detail in Ruppert et al. (2003), see
also Wood (2017). The incorporation of a penalization in Equation (9) results in a biased esti-
mator and a so-called bias-variance tradeoff, which is thoroughly discussed for penalized spline
smoothing in Ruppert et al. (2003). Kauermann & Opsomer (2011) extend the theoretical results
toward a data-driven finite-sample version, and Kauermann et al. (2009) show that the estimates
from Equation (9) are consistent.

2.2.3 Accounting for nodal heterogeneity
The specification of the model introduced so far implicitly implies that the nodal heterogene-
ity is fully captured by the structural statistics sij(yt−1, xt−1). As already thoroughly discussed by
Thiemichen et al. (2016) or Box-Steffensmeier et al. (2018), this can be considered a questionable
assumption. It seems, therefore, advisable to include sender- and receiver-specific random effects
to account for unobserved heterogeneity. Let therefore uSi denote a latent sender-specific effect of
actor i and uRj the receiver-specific effect of actor j. This leads to the heterogeneous intensity

λij(t, yt−1, xt−1, uS, uR)= λij(t, yt−1, xt−1)exp{uSi + uRj } ∀ t ∈ {1, . . . , T} (10)
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We assume uS = (uS1, . . . , uSn)� ∼N(0, Inτ2S ) and uR = (uR1 , . . . , uRn)� ∼N(0, Inτ2R) with In as the
n× n identity matrix. The expression λij(t, yt−1, xt−1) may be specified through Equation (4) or
(7). Conditional on the random effects uS and uR, the distributional assumption (3) still holds

Yij(t) | uS, uR ∼ Pois
(
λij(t, yt−1, xt−1, uS, uR)

)
(11)

∀ t ∈ {1, . . . , T}; i, j ∈ {1, . . . , n}, i �= j

where λij
(
t, yt−1, xt−1, uS, uR

)
is specified in Equation (10).

2.3 Estimation
The vector-valued function θ (t)= (

θ+(t), θ−(t)
)
is estimated by finding the argument maximiz-

ing the penalized likelihood resulting from Equation (11) and viewing the penalty on coefficient
vector α as an improper prior distribution. This leads to a generalized additive mixed model,
which is extensively discussed in Wood (2017), Ruppert et al. (2003), Ruppert et al. (2009). To
leverage the advanced optimization techniques proposed for this model class, we initially calculate
all covariates sij(yt−1, xt−1) for each actor-tuple and at each point in time. By doing that, we trans-
form the data into a generalized version of the so-called counting-process representation, which
is known from time-to-event analysis (Tutz & Schmid, 2016; Friedman, 1982; Whitehead, 1980).
For each snapshot of the event network at time point t, this procedure generates a design matrix
of |Rt| conditionally independent observations with a target variable yij,t expressing the number
of events that occurred between a specific tuple of actors and covariates given by sij(yt−1, xt−1).

For the estimation, we use the versatile R package mgcv (Wood, 2017, version 1.8-31). Thereby,
we follow Wood et al. (2017) who enhance the pseudo-quasi-likelihood method by Breslow &
Clayton (1993) for the analysis of larger data sets. The main extensions are threefold:

(1) The tuning parameters γ are not estimated until convergence in each iteration of the
estimation procedure but updated by only one Newton step.

(2) Efficient methods for computing the matrix cross-products in each iteration are run in
parallel (Li & Wood, 2020).

(3) The covariates are discretized along a marginal grid. Hence, the design matrices for the
smooth covariates take significantly less memory.

Wood et al. (2017) describe the method in detail as it is implemented in the function bam of
the already mentioned R package. Well-calibrated frequentist confidence bands for the estimated
function θ (t) are guaranteed by Bayesian large sample properties (Wood, 2006).

3. Application
3.1 Data
So far, quantitative work on the international arms trade utilizing statistical network analysis has
mostly been restricted to binarized networks. Here, the occurrence of a trade relationship between
two countries in a specific year was modeled conditional on endogenous and exogenous statistics
by the gravity model of trade by employing TERGMs and extensions of it (Lebacher et al., 2021;
Thurner et al., 2019). Contrary, Lebacher et al. (2020) fit a network disturbance model on the
yearly aggregated trend indicator values (SIPRI, 2020b) of the international arms trades, main-
taining the valued character of deliveries. All these contributions rely on data provided by the
Stockholm International Peace Research Institute (SIPRI, 2020a), and they consider each type of
major conventional weapons indiscriminately.

In the following, we concentrate on the counts of combat aircraft deliveries, as reported in
the SIPRI data, where each combat aircraft delivery is perceived as an event. We focus on the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.9
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 18 Nov 2021 at 08:41:45, subject to the Cambridge Core terms of use, available at

207



Network Science 297

RUS
ALB

USA

ARG

GBR

AUS
BEL

BOL

BGR

CAN

CHL

CHN

COL

CUB

CZE

DNK

DOM

EGY

ITA

SWE

ETH

FRA

GRC

GTM

HUN

IND

IDN

IRN

ISR

PRK

KOR

MEX
MYR

NLD

NZL

NOR

PHL

POL

PRT

ROM

ZAFCHE

SYR

TWN

THA
TUR

URY

FIN

HND

IRQ

JOR

LBN

LUX

MNG

PER

SAU

LKA

VEN

YEM

BRA

ECU

JPN

NIC

KHM

SLV

DEU

ESP

AFG

AUT

LAO

PRY

VNM

IRL

MAR

SDN

MYS

GHA

LBY

OMN

GIN

TUN

BEN CMR

CAF

TCD

ZAR

COG

GAB

MDG

MLI

MRT

NER

PAK

SEN

CIV
KWT

SOM

DZA

JAM

NGA

BFA

KEN

LBR

PAN

RWA

TGO

UGA

NPL

TZA

ZMB

BDI

TTO

ZWE
GUY

SGP

YEM

BGD

ARE

BHR

SLE

QAT
MWI

MOZ

BWA

PNG

GNB

LSO

SWZ

AGO

DJI

GMB

CYP

GNQ

FJI

MUS

EST

LVA

LTU

UKR

NAM

SVN

TJK

HRV

ERI

KGZ

KAZ

BLR

SVK

SER

GEO

MDA

MKD

CZE

AZE

UZB

ARM

MLT

CPV

SYC

Years 1995 – 2000

RUS
ALB

USA

ARG

GBR

AUS
BEL

BOL

BGR

CAN

CHL

CHN

COL

CUB

CZE

DNK

DOM

EGY

ITA

SWE

ETH

FRA

GRC

GTM

HUN

IND

IDN

IRN

ISR

PRK

KOR

MEX
MYR

NLD

NZL

NOR

PHL

POL

PRT

ROM

ZAFCHE

SYR

TWN

THA
TUR

URY

FIN

HND

IRQ

JOR

LBN

LUX

MNG

PER

SAU

LKA

VEN

YEM

BRA

ECU

JPN

NIC

KHM

SLV

DEU

ESP

AFG

AUT

LAO

PRY

VNM

IRL

MAR

SDN

MYS

GHA

LBY

OMN

GIN

TUN

BEN CMR

CAF

TCD

ZAR

COG

GAB

MDG

MLI

MRT

NER

PAK

SEN

CIV
KWT

SOM

DZA

JAM

NGA

BFA

KEN

LBR

PAN

RWA

TGO

UGA

NPL

TZA

ZMB

BDI

TTO

ZWE
GUY

SGP

YEM

BGD

ARE

BHR

SLE

QAT
MWI

MOZ

BWA

PNG

GNB

LSO

SWZ

AGO

DJI

GMB

CYP

GNQ

FJI

MUS

EST

LVA

LTU

UKR

NAM

SVN

TJK

HRV

ERI

KGZ

KAZ

BLR

SVK

SER

GEO

MDA

MKD

CZE

AZE

UZB

ARM

MLT

CPV

SYC

Years 2012 – 2017

Figure 1. The international network of combat aircraft trades in twoperiods. Node size is proportional to the sumof involved
deals and the grey-scale of each tie indicates the aggregated amount of deals in the specific time frame. The labels of the
nodes are the ISO3 codes of the respective countries. The four major sender countries are drawn in a darker shade.

transfers of aircraft because these weapon systems usually incorporate the highest technological
sophistication. Therefore, they are being restricted to close allies. Furthermore, they are of cru-
cial strategic importance for international deterrence and counterinsurgency in intrastate conflict
(Hoeffler & Mérand, 2016; Mehrl & Thurner, 2020). Lastly, their sizes and cost make the avail-
able data highly reliable (Forsberg, 1994, 1997). Previous research on combat aircraft trade was
limited to the quantitative analysis of a small subset of countries or fighter programs (Hoeffler
& Mérand, 2016; Vucetic, 2011; Vucetic & Nossal, 2012). Contrasting these endeavors, we take
a global point of view on the combat aircraft trade. Here, a closer look at the data reveals how
countries commonly partition major deals with their stable trade partners into multiple deliveries
occurring over the span of several years. For instance, the United States and Japan signed a deal in
1984 comprising 32 quantities of aircraft, which were realized between 1988 and 2016. The addi-
tional information provided by this segmentation of trade deals into isolated deliveries would be
lost when only regarding binarized networks.2

Two examples of the network representing aggregated events over 6 years are depicted in
Figure 1. Generally, the networks exhibit a structure with hubs around the United States (USA),
Russia (RUS), France (FRA), and United Kingdom (UK). Coincidentally, this set of countries
also demonstrate the highest average hub-scores over time (Kleinberg, 1999). Analog to the dis-
tribution of the in- and out-degrees in binary networks, we can examine the distribution of the
concatenated in- and outgoing event counts for all years. We call the respective statistics in- and
out-count, although they are equivalent to the generalized degree proposed byOpsahl et al. (2010).
The empirical distribution of those statistics enables a better understanding of the topology of the
observed networks. Figure 2(a) suggests a strong centralization in the outward event count distri-
bution. Some countries are the sender of up to 130 deliveries in one year. Still, on average, 82%
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Figure 2. Distributions of the Out- and In-Counts for all included countries concatenated over all years. The shaded area
represents the minimum andmaximum of the observed values. Both graphs are represented on a logarithmic scale.

of the countries do not export. The inward count distribution is not as skewed and centralized, as
shown in Figure 2(b). Nonetheless, the mode of the distribution is still at zero.

3.2 Model specification
We now employ the outlined model to the international combat aircraft trade network span-
ning from 1950 to 2017. The event networks are observed yearly. In this context, yij,t denotes
the number of observed combat aircraft units delivered in year t between country i and j and its
distribution follows from Equation (3). Given this information, we estimate the time-continuous
intensities of all country-dyads, which are per assumption governed by the repetition intensity if
the respective countries traded in the previous year and by the onset intensity otherwise as defined
in Equation (7).3 All network actors are countries, and an event represents the delivery of combat
aircraft between them. To appropriately capture interdependencies of the observed event counts,
we incorporate a wide range of endogenous statistics, whose mathematical representation is given
in Table 1 and visualized in Figure 3. Generally, we define all non-binary structural statistics to be
bounded between 0 and 100 to guarantee a consistent interpretation independent of the varying
network size and prevent the implied autoregressive counting process from unrealistic behavior
(Gjessing et al., 2010).

As already investigated in multiple applications (Snijders, 2003; Newman et al., 2002), the
degree structure plays a crucial role in the observed event network. In the case of directed events,
the in- and out-degree of a country determine its relative location in the network (Wasserman &
Faust, 1994). In our application, the degrees reflect the number of different countries with whom
a specific country had at least one transaction in a particular year as an importer (in-degree) and
exporter (out-degree). To reveal the impact of these measures on the intensity of observing an
event, we include four degree-related statistics concerning the sender and receiver in our speci-
fication, as illustrated in Figure 3(a)–(d). For instance, one can interpret a positive effect of the
sender’s out-degree as the tendency to trade with countries that are already sending a lot in the
previous year.

Besides degree-based statistics, Holland & Leinhardt (1971), Davis (1970) highlight the role
of triangular structures in networks. When adapted to event relations, it refers to the change in
intensity of an event between countries i and j, if they are indirectly connected by an additional

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.9
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 18 Nov 2021 at 08:41:45, subject to the Cambridge Core terms of use, available at

209



Network Science 299

Table 1. Mathematical formulations of the structural covariates as calcu-
lated for sij(yt−1, xt−1). The number of countries that are present in the
network at time point t is denoted by nt . The identifying letters concern
the respective graphical illustrations in Figure 3

Name Mathematical representation
(a) In-degree sender 100

nt−1
∑n

h=1 I(yhi,t−1 > 0)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) In-degree receiver 100
nt−1

∑n
h=1 I(yhj,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Out-degree sender 100
nt−1

∑n
h=1 I(yih,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Out-degree receiver 100
nt−1

∑n
h=1 I(yjh,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Transitivity 100
nt−2

∑n
h=1 I(yih,t−1 > 0)I(yhj,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(f) Shared supplier 100
nt−2

∑n
h=1 I(yhi,t−1 > 0)I(yhj,t−1 > 0)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(g) Reciprocity I(yji,t−1 > 0)

(a) (b) (c)

(e) (f) (g)

(d)

Figure 3. Graphs consisting of three arbitrary actors i,j, and h that illustrate the included triangular and dyadic covariates in
the first row. Dashed arrows represent the event that is modeled and solid arrows in t− 1.

two-path, i.e., third country. Since the aircraft deliveries between countries are directed, there
are multiple ways to define two-paths. We incorporate two triadic structures: transitivity, Figure
3(e), and shared supplier, Figure 3(f). While transitivity in an event network suggests that already
having observed a delivery from country i to k and k to j affects the intensity of an event from i to
j, the shared supplier mechanism reflects the tendency toward trading with countries that import
combat aircraft from a common exporter. These triangular structures were the only variants found
to be relevant for the trade of combat aircraft. Likewise, we control for reciprocity, which is the
tendency of countries to respond to previous events directed at them, Figure 3(g).

Political economy models of arms trade (Levine et al., 1994; Thurner et al., 2019) as well as the
gravity model of arms trade guide the selection of appropriate exogenous covariates. Thurner et al.
(2019), Akerman & Seim (2014) included the dyadic distance in kilometers between the capitals of
country i and j as well as the logarithmic gross domestic product (GDP in US $) of the sender and
receiver countries as covariates in the model. Pamp et al. (2018), Lebacher et al. (2021) empha-
size the impact of military expenditures as a proxy for the Newtonian power of attraction, which
we include in logarithmic form as a sender- and receiver-specific covariate. The respective yearly
data were collected by SIPRI (2019) in US $ and combined by Nordhaus et al. (2012) with data
from Singer et al. (1972). We use this combined data set but employ linear interpolation if at least
60% of the time series for a specific country is observed. Moreover, we incorporate two dyadic
variables controlling whether country i and j signed an alliance treaty or are similar to each other
in terms of their regimes in power, following Martínez-Zarzoso & Johannsen (2019), Thurner
et al. (2019). The alliance treaty obligations and provisions project identified military alliance
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Figure 4. Results of endogenous statistics relating to centrality. The shaded area indicates the 95% confidence bands of the
estimates and the dotted horizontal lines represent the time-constant parameters.

agreements (Leeds, 2019) and we operationalize regime dissimilarity by the absolute difference
in the Polity IV scores of countries i and j (Marshall, 2017). This measure indicates all countries’
year-wise regime characteristics and takes values from −10 (strongly autocratic) to 10 (strongly
democratic). Thus, the absolute differences lie between 0 (strong similarity) and 20 (strong dissim-
ilarity) for each country-dyad and year. The sources and used period of all incorporated exogenous
covariates are described in more detail in the Supplementary Material.

3.3 Results
3.3.1 Fixed effects
In Figures 4–7, the full results of the time-varying estimates are given accompanied by alternative
time-constant coefficients as dotted horizontal lines. The latter are obtained by setting θ (t)≡
θ . All exponentially transformed estimates at a specific point in time can be interpreted (ceteris
paribus) as the multiplicative change of the intensity (6) corresponding to the effect of covariates
in relative risk models (Kalbfleisch & Prentice, 2002). Therefore, an effect estimated at zero does
not change the relative risk of an event to happen, but positive or negative coefficients lead to a
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Figure 5. Results of endogenous statistics relating to past dyadic interaction and clustering. The shaded area indicates the
95% confidence bands of the estimates and the dotted horizontal lines represent the time-constant parameters.

higher or lower relative risk of the event to occur, respectively. Additionally, an event’s occurrence
is equivalent to the increment of one in the counts of aircraft units since one event represents a
combat aircraft delivery in our application case.

From simple inspection, it can be concluded that in all cases, time-varying coefficients are car-
rying completely different information as compared to time-constant coefficients. This is evidence
of the necessity to account for the multiple systemic changes within the international aircraft mar-
ket during the considered time interval. From a statistical point of view, the time-varying effects
can also be underpinned by a lower cAIC value when compared to time-constant effects (see
Section 3.4 for additional details on the cAIC).

Moreover, we observe different shapes of the curves of the time-varying coefficients when com-
paring onset and repetition conditions leading to the conclusion that the import of all covariates
on these two separate conditions is different.

Time-varying effects relating to the degree structure are shown in Figure 4. Figure 4(a) indicates
a steady negative influence of the sender’s in-degree in the onset condition from around 1965
onward. It can be concluded that the count of dyadic events is lower if the sender’s in-degree is
high, which may be justified by the observation that only a small subset of countries is adequately
equipped to produce and export aircraft. This technological possibility, in turn, increases self-
sufficient behavior, thus alleviating the need for additional imports. Contrary, in the repetition
condition, the in-degree of the receiver exhibits a positive effect for the post-Cold War period
from 1990 to 2010, Figure 4(b). Otherwise, the effect is insignificant. Concerning the receiver, a
negative effect of the in-degree can be observed from 1950 to 1980 in the onset model, Figure
4(c). When proceeding to deliver aircraft, the receiver’s in-degree effect is similar to the sender’s
in-degree effect, Figure 4(d). For the sender’s out-degree, the effect in the onset model is negative
until around 1980 and thereupon positive. In the latter case, the effect mirrors a higher tendency
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Figure 6. Results of exogenous statistics relating to economic factors. The shaded area indicates the 95% confidence bands
of the estimates and the dotted horizontal lines represent the time-constant parameters.

of delivering combat aircraft if the sender is already a prolific exporter country. During the entire
observational period, we observe that receivers are not senders themselves, thus exhibiting low
out-degrees, Figure 4(g) and (h). This behavior does not depend on the condition of the dyadic
intensity.

The specified triadic structures play a substantial role during the Cold War. Afterwards, the
impact disappears but is again strengthened after 2000 under the onset condition, Figure 5(a)
and (c). In particular, an increasing number of indirect transitive connections between country i
and j results in a greater count of aircraft deliveries between 1950 and 1990. Similarly, receiving
combat aircraft from the same third country increases the unit sales between the receivers during
the Cold War period, Figure 5(c). A possible consequence of this process is the strengthening of
a block structure. For a consecutive delivery, the triadic effects are less pronounced, and in the
case of shared suppliers, Figure 5(d), constantly insignificant. The count of reciprocal events, on
the other hand, raises trade from 1990 to 2005, Figure 5(e). This result may be a consequence of
an international market opening after the Soviet Union’s fall, leading to multiple emergent coun-
tries. If the relationship is maintained, reciprocal events are encouraged throughout the period of
observation, although to a smaller degree, Figure 5(f).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.9
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 18 Nov 2021 at 08:41:45, subject to the Cambridge Core terms of use, available at

213



Network Science 303

−0.10

−0.05

0.00

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂+ (t)

Polity Score Abs. Diff., Onset(a) (b)

(c) (d)

(e) (f)

−0.10

−0.05

0.00

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂− (t)

Polity Score Abs. Diff., Repetition

0.0

0.5

1.0

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂+ (t)

Alliance, Onset

0.0

0.5

1.0

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂− (t)

Alliance, Repetition

−0.15

−0.10

−0.05

0.00

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂+ (t)

Distance, Onset

−0.15

−0.10

−0.05

0.00

1950 1960 1970 1980 1990 2000 2010
Time (t)

θ̂− (t)

Distance, Repetition

Figure 7. Results of exogenous statistics relating to political, security, and geographical factors. The shaded area indicates
the 95% confidence bands of the estimates and the dotted horizontal lines represent the time-constant parameters.

While the logarithmic GDP of the receiver has a relatively weak positive influence when starting
a trade relation, Figure 6(a), its repetition is only affected after the end of the Cold War, Figure
6(b). On the sender-side, the estimates of both models are constantly positive, Figure 6(c) and (d).
In contrast to the effect in the onset model, the sender’s logarithmic GDP has a higher effect from
1950 to 1980 in the repetition condition. Moreover, the military expenditure of the receiver is one
of the main drivers in this model, Figure 6(f). Here, higher military spending of possible sender
countries augments the count of receiving combat aircraft deliveries, specifically during the 1950s.
Conversely, the exogenous covariate only slowly gains attention in the onset condition after the
ColdWar, Figure 6(e). While the effect of the military expenses of the sender stays overall positive
when delivering aircraft for the first time, it inhibits it to be repeated in the next year, Figure 6(g)
and (h).

The findings in Figure 7(a) and (b) indicate that similar regimes are overall more likely to
start trading combat aircraft. Only at the height of the Cold War from 1970 to 1980, the effect
is estimated at approximately 0, Figure 7(a). The strength of the effect is less salient in the
repetition condition than in the onset condition of our model, Figure 7(b). Furthermore, the time-
varying coefficients discover a steadily decreasing influence of beginning to transact with allies,
Figure 7(c). This finding suggests evidence of the overall deteriorating importance of interna-
tional alliances in combat aircraft transactions if they did not trade in the previous year. We do
not observe a similar downward trend when repeating an event, Figure 7(d). Lastly, a larger dis-
tance between the respective capitals generally hinders events from occurring, Figure 7(e) and
(f). Therefore, countries tend to trade with spatially more close than distant partners. This may be
caused by the relatively lower transportation cost and is in line with the expectations of the gravity
model of trade (Martínez-Zarzoso & Johannsen, 2019; Thurner et al., 2019, see corrigendum).
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Figure 8. Country-specific random sender and receiver effects. The drawn label represents the respective ISO3 code of the
represented country.

3.3.2 Random effects
The random effects permit an extended analysis of the unexplained heterogeneity in the model.
More precisely, the random effects express country-specific deviations from an overall behavioral
trend captured by the time-varying effects. Additionally, they correct the countries’ repeated mea-
surements as simultaneous senders and receivers of events in each year. The model introduced in
Section 2 comprises two country-specific random effects for all countries as a sender and receiver
of combat aircraft deliveries. The results are given in Figure 8 and visualized on a world map in
Figure 9.

In the first quadrant of Figure 8, countries with a positive random sender and receiver effect
are shown. This composition of random effects suggests that the respective countries are senders
and receivers of more combat aircraft events than marginally expected. Countries in the Middle
East, for example, Israel (ISR), Libya (LBY), and Jordanian (JOR), are allocated to this group.

Negative sender but positive receiver effects are identified for countries in South-East Asia
(Thailand (THA), Cambodia (KHM), Laos (LAO), Myanmar (MYR), and Sri Lanka (LKA)).
Compared to the average behavior, these countries are somewhat reluctant as senders and con-
fident as receivers of combat aircraft deliveries. The latent sender effect of Mexico (MEX) is the
most negative coefficient estimated. This suggests Mexico’s reliance on the import of combat air-
craft, although its high economic status would imply additional participation in the event network
as a sender.

The third quadrant contains all countries, which were less active than expected as a sender and
receiver of events. This strand of countries is either economically strong, yet exhibiting a passive
trading behavior, for example, Luxembourg (LUX), or relatively poor and missing preconditions
to send or receive weapons, for example, Trinidad and Tobago (TTO).

Lastly, a negative random coefficient regarding receiving arms is mostly associated with
European countries. The corresponding sender effect is positive. Hence, these countries are
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Figure 9. Random country-specific sender (a) and receiver (b) effects. The layout represents the borders as of 2020.

situated in the fourth quadrant of Figure 8. The East European countries Moldova (MDA),
Ukraine (UKR), and Belarus (BLR) have the highest positive sender effect paired with relatively
low receiver effects.

In terms of continent-wide tendencies, we locate Africa in the first three quadrants. South
America is principally assigned to the first and second quadrant. Asia, Oceania, and North
America are more dispersed and exhibit less homogeneous country behavior.

3.4 Model comparison and assessment
We compare the estimated model to alternative specifications, which are chosen to reflect all
subsequent extensions of Section 2.2 and are indicated in Table 2. Model 1 includes all effects
linearly without the separable extension. This is we assume that θ (t)≡ θ and omit the separation
of the statistics sij(yt−1, xt−1) into s+ij (yt−1, xt−1) and s−ij (yt−1, xt−1). This separability is added in
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Table 2. Specifications of the compared models and resulting corrected AIC (cAIC)
values

Separability Time-varying effects Random effects cAIC
Model 1 84,622.47
Model 2 � 65,614.86
Model 3 � � 63,174.49
Model 4 � � � 59,717.77

Model 2 according to Section 2.2.1. Model 3 includes time-varying coefficients as introduced in
Section 2.2.2. Lastly, Model 4 is the model whose findings were presented in Section 3.3. Hence,
also random effects are taken into account, which are explained in Section 2.2.3.

One way to compare these models is by means of information criteria, that is, the Akaike infor-
mation criterion (AIC, Akaike, 1974). As already discussed in the context of linear mixed models
(Greven & Kneib, 2010) and generalized mixed models (Saefken et al., 2014), the usage of the
conditional or marginal AIC does not appropriately incorporate the uncertainty of estimating the
covariance parameters of the random effects (in our application τ2S and τ2R). Therefore, we uti-
lize a corrected conditional AIC proposed by Wood et al. (2016). The resulting cAIC values are
given in Table 2 and indicate a superior model fit when all extensions introduced in Section 2.2
are included.

We assess the selected Model 4 with a graphical tool proposed by Hunter et al. (2008) for
general network models. The procedure’s basic idea is to evaluate whether networks randomly
generated according to the estimated network model at hand conserve pre-specified characteris-
tics of the observed network reasonably well. In our particular case, we simulate yearly increments
of our network counting process from Equation (11) and consider the result as a count-valued
network. However, most network statistics commonly used for this assessment are solely defined
for binary networks. Therefore, we propose a suite of novel statistics for our application case. To
detect whether our model adequately replicates possible over- or underdispersion in the count
data, we rely on the statistics from rootograms, that is, the empirical and simulated frequencies
of the counts in the networks. For general regression tasks involving count data, rootograms were
proposed by Kleiber & Zeileis (2016) and date back to Tukey (1977). Usually, one compares the
square-root-transformed observed and expected frequencies of the target variable. However, in
our application, we substitute the square-root transformation with a log transformation due to
the high percentage of zeros and use the simulated rather than expected frequencies to fit into the
framework of Hunter et al. (2008). Secondly, we investigate to what extent the performance of our
model is stable over the time frame we analyze. To do so, we compute the clustering coefficient
for weighted networks as proposed by Opsahl & Panzarasa (2009)4 for the yearly networks yt .
Besides, we examine the average in-count per year, which is directly related to the average count
per year. In the Supplementary Material, we show how the distribution of the observed counts of
in- and outgoing events given in Figure 2 is reproduced in the simulated networks and provide
the mathematical formulations of all statistics.

Figure 10 shows the variability of all specified statistics computed for all 1,000 simulated net-
works through boxplots and displays the average value by a blue triangle. Red lines indicate the
observed measurements. We can infer from Figure 10(a) that the estimated model captures even
high event counts between countries averaged over the entire period. At the same time, our
proposed model is capable of representing the yearly clustering as well as the average in-count,
see Figure 10(b) and (c). Therefore, we gather that the performance of the proposed model is
consistently good throughout the observational period.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.9
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Figure 10. Comparison of the observed and simulated frequencies of the dyadic event counts (a), weighted clustering coef-
ficients over time (b), and average in-count over time (c). The red lines indicate the observed values of each statistic, whereas
the boxplots are the result of drawing 1,000 networks according to Equation (11) and the blue triangles the average values.

4. Conclusion
We introduced a novel model for the analysis of relational event data. Originating in a counting
process operating in continuous time that we only observe at specific time points, we derived
a tie-level intensity, whose parameters can be estimated according to the maximum likelihood
principle. Extensions to separable models, which govern the onset and repetition of events by two
functions, and the incorporation of time-varying and random coefficients are given. Eventually,
we applied the procedure to the international combat aircraft network from 1950 to 2017. By
doing that, we use the additional information provided by the counts of yearly aircraft deliveries to
estimate a time-continuous intensity, contrary to existing work on binarized networks. Moreover,
the separability detects fundamentally different processes governing the onset and repetition of
event relationships, while the time-varying effects uncover a systemic change during the Cold
War period. Furthermore, we identified triangular network statistics and the sender’s economic

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.9
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nodal covariates as the principal drivers of the onset condition of the proposed intensity. Here, a
decaying effect of bilateral military alliances became apparent. For the repetition condition, this
effect remained consistently positive, and the receiver’s high military expenditure was shown to
be the driving force. Finally, the random effects enable a visual comparison of the unexplained
heterogeneity between the modeled countries (Figure 9) and correct the estimates for repeated
measurements as well as possible overdispersion.
Supplementary materials. For supplementary material for this article, please visit http://dx.doi.org/10.1017/nws.2021.9
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Notes
1 We further provide a descriptive analysis in the Supplementary Material to demonstrate high positive auto-correlation of
the endogenous covariates between consecutive years; therefore, they are a reliable proxy of simultaneous dependence.
2 In the Supplementary Material, we deliver the results regarding alternative models for the data. Overall, there is no relevant
difference to the findings presented subsequently.
3 As a robustness check, we compare different time frames to define which events are driven by the onset and repetition
intensity, for example, having delivered combat aircraft the last one or two years in the Supplementary Material.
4 We opt for the variant of the statistic that aggregates triplets of event counts within a year via the arithmetic mean.
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Figure 1: Yearly auto-correlations of endogenous covariates.

A Correlation of Endogenous Statistics between Sub-
sequent Years

To further legitimize the usage of lagged endogenous covariates, we investigate the yearly
auto-correlations of the corresponding statistics. Therefore, we construct time series on
the monadic level for the in- and out-degrees of each country and at the dyadic level for
triangular statistics, i.e., regarding a tuple of countries. In Figure 1, we then descriptively
analyze the yearly correlation between all statistics, where measurements are available
at both time points. The results again highlight the reliability of using the endogenous
statistics of the past year as a proxy for the current year, as we observe exceptionally high
correlations.

2

10. Separable and semiparametric network-based counting processes applied to the international
combat aircraft trades

224



●

●

●

●

●

●

● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●
●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●●

●
●●
●

●●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

0.0010.001

0.01

0.1

1

0 1 2 3 456 810 15 30 50
Degree

P
ro

po
rt

io
n

(a) Out−Degree

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

0.0010.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8
Degree

P
ro

po
rt

io
n

(b) In−Degree

Figure 2: Average Degree Distributions of the Out- and In-Degree for all included coun-
tries. The shaded area represents the minimum and maximum observed value. All graphs
are represented on a logarithmic scale.

B Data Sources

Table 1: Data sources of the exogenous covariates. Versions are indicated where available.

Covariate From To Data Source

GDP, Base-Year 2005 1950 2011 Gleditsch (2002), v4.1
2012 2017 World Bank (2017)

Military Expenditure, Base-Year 2017 1950 2000 Singer et al. (1972), v5.0
2000 2017 SIPRI (2019)

Polity Score 1950 2017 Marshall (2017)
Alliance 1950 2017 Leeds (2019), v4.01
Distance of Capitals 1950 2017 Gleditsch (2013)

C Further Descriptive Analysis
The distribution of the in- and out-degrees can be used to analyze the topology of general
networks (Barabási and Albert, 1999; Snijders, 2003; Newman et al., 2002). Similar to
the findings in Figure 2 of the main article, 2 (a) underpins the strong centralization of
the out-degree distribution. Again mirroring the results of the main article, the in-degree
distribution is not as skewed, Figure 2 (b). There are few high degree countries, but the
mode is still at zero.

Alternatively, we can focus the descriptive analysis on the top 10 sender and receiver
in the network. The yearly counts of the respective countries are represented as boxplots
in Figure 3 and 4. The exposed situation of USA is clearly visible, especially in Figure
3. This role was already thoroughly analyzed in Lorell (2003). India predominantly buys
combat aircraft from Great Britain, which reflects the dyadic colonial history. Japan, on

3
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the other hand, obtains 95% of the delivered aircraft from USA, being the second highest
receiving country.
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Figure 3: Boxplot of the observed counts over the years of the top 10 sender countries.
The labels are the ISO3 codes of the respective countries.
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Figure 4: Boxplot of the observed counts over the years of the top 10 sender countries.
The labels are the ISO3 codes of the respective countries.

D Robustness Checks
D.1 Weighted Fit
Each event can be comprehended as having a weight given by its TIV. As most pos-
sible events in out application were not realized, the respective TIVs are set to zero.
Therefore, the weight of the tuple between country i and j at time point t is given by
wi j(t) ∝ log

(
TIVi j(t) + 1

)
+ 1, where TIVi j(t) denotes the aggregated TIVs of the same

country tuple in the year t. The proportionality stems from the fact, that the weights are
subsequently standardized so that their sum equals 1.

Figures 5, 6, and 7 contrast the estimates resulting from the original and weighted fit.
The substantial conclusions drawn in Section 4 of the main article are paralleled by the
weighted estimates.
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Figure 5: Robustness checks of the estimated parameters comparing the original fit to
the model that weighted the observations according to the respective TIV.The green line
represents the original fit, while the shaded area indicates the 95% quantile confidence
bands of the weighted estimation.
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Figure 6: Robustness checks of the estimated parameters comparing the original fit to
the model that weighted the observations according to the respective TIV.The green line
represents the original fit, while the shaded area indicates the 95% quantile confidence
bands of the weighted estimation.
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Figure 7: Robustness checks of the estimated parameters comparing the original fit to
the model that weighted the observations according to the respective TIV.The green line
represents the original fit, while the shaded area indicates the 95% quantile confidence
bands of the weighted estimation.

D.2 Alternative Time-Spans defining Separability
The separability assumption can be adapted by changing the time frame, dictating which
intensity governs which event. In the application case we fixed this interval to be one year.
In order to legitimize this decision, we estimated the exact same model with a varying
interval length defining from when an event tuple is, e.g., driven by the onset intensity.
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For instance, a lag of 10 years would translate to being driving by the onset intensity if
two countries did not trade with each other in the last 10 years. Figure 8 plots the AIC
scores and values of the log likelihood evaluated at the final estimates of the respective
models over the lag. Apparently, there are only slight differences between using a log of
one or two years, yet longer lags lead to a steadily deteriorating performance of the model.
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Figure 8: (a): Resulting AIC value by varying the length of the interval defining the
separability. (b): The value of the log likelihood evaluated at the final estimates of the
respective models.
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D.3 Thresholds for TIV of Events
In the application of Section 3 all events were regarded unconditional of their extent.
Alternatively, one may only include events above a certain threshold in terms of TIVs of
the events. As a robustness check of the findings in the article, we, therefore, repeat the
parameter estimation in three different scenarios, which are defined as follows:

1. Include events, if their TIV is above the 0.05 quantile of all TIVs (> z0.05)
2. Include events, if their TIV is above the 0.1 quantile of all TIVs (> z0.1)
3. Include events, if their TIV is above the 0.15 quantile of all TIVs (> z0.15)
4. Include all events (Full Data)
The resulting estimates are shown in Figures 9 to 11 and proof the robustness of

Figures 4 to 7. More specifically, equal interpretations and conclusions stated in Section
3.3.1 still hold. Only slight variations are visible in Figure 9 (g) concerning the out-degree
of the receiver. Comparing the confidence bands of the original model with the estimates
of the conditional models, we observe full coverage in most cases.
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Figure 9: Robustness checks of the estimated parameters when only events with a specific
TIV are regarded.The shaded area indicates the 95% confidence bands of the estimates
from the unconditional model including all events.
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Figure 10: Robustness checks of the estimated parameters when only events with a specific
TIV are regarded.The shaded area indicates the 95% confidence bands of the estimates
from the unconditional model including all events.
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Figure 11: Robustness checks of the estimated parameters when only events with a specific
TIV are regarded.The shaded area indicates the 95% confidence bands of the estimates
from the unconditional model including all events.
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Table 2: Specifications of the compared models and resulting corrected AICc value.

Separability Time-Varying Effects Random Effects AICc

Model 1 7 7 7 84622.47
Model 2 X 7 7 65614.86
Model 3 X X 7 63174.54
Model 4 X X X 59718.04
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Figure 12: Comparison of the observed and simulated count distributions of the Out-
(a) and In-Counts (b) for all included countries summed up over all years. The red lines
indicate the observed values of each respective case, whereas the boxplots are the result
of drawing 1000 networks and the blue triangles the average values.

D.4 Corrected AIC for Finite Sample Size
Besides correcting for the uncertainty resulting from estimating the variance and tuning
parameters of the random and smooth components, we can define a version of the same
AIC value that corrects for finite sample sizes as proposed by Hurvich and Tsai (1989).
Table 2 reports this type of AIC value, although the results do not change compared to
the values reported in the main article.

E Further Results of the Model Assessment
We begin by giving the mathematical formulations of the three network statistics for
weighted networks analyzed in Section 3.4 of the main article. For the rootogram, we
compute the frequencies hk of combat aircraft deliveries k ∈ {1, . . .} over all year. We
calculated the weighted clustering coefficient proposed by Opsahl and Panzarasa (2009)
for the increments of our network counting process in each year. For the increments
yt in year t, we hence count the total value of the closed triplets and all triplets and
define the generalized clustering coefficient by their ratio. We specify a triplet’s value as
the arithmetic mean of all observed weights, i.e., the number of yearly deliveries in our
application case. The in-count of all countries in year t determines the yearly average
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in-count. For country i the in-count in year t is defined by in-count(i, t) = ∑n
j=1 y ji,t .

Taking the arithmetic mean over all in-count(i, t) ∀ i ∈ At , where the set At includes all
countries present in the trade network in year t, gives the average in-count per year. The
resultant statistic is proportional to the average events per year. We define the out-count
in the same line. If we then concatenate all in- or out-counts over all years, the resulting
empirical distribution represents the in- or out-counts irrespective of time. Figure 12 gives
visual proof that our model can conserve both the in- and out-count distributions.
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Abstract
As relational event models are an increasingly popular model for studying rela-

tional structures, the reliability of large-scale event data collection becomes more
and more important. Automated or human-coded events often suffer from non-
negligible false-discovery rates in event identification. And most sensor data is pri-
marily based on actors’ spatial proximity for predefined time windows; hence, the
observed events could relate either to a social relationship or random co-location.
Both examples imply spurious events that may bias estimates and inference. We
propose the Relational Event Model for Spurious Events (REMSE), an extension
to existing approaches for interaction data. The model provides a flexible solution
for modeling data while controlling for spurious events. Estimation of our model
is carried out in an empirical Bayesian approach via data augmentation. Based on
a simulation study, we investigate the properties of the estimation procedure. To
demonstrate its usefulness in two distinct applications, we employ this model to
combat events from the Syrian civil war and student co-location data. Results from
the simulation and the applications identify the REMSE as a suitable approach to
modeling relational event data in the presence of spurious events.

1 Introduction
In recent years, event data have become ubiquitous in the social sciences. For instance,
interpersonal structures are examined using face-to-face interactions (Elmer and Stadtfeld,
2020). At the same time, political event data are employed to study and predict the
occurrence and intensity of armed conflict (Fjelde and Hultman, 2014; Blair and Sambanis,
2020; Dorff et al., 2020). Butts (2008a) introduced the Relational Event Model (REM)
to study such relational event data. In comparison to standard network data of durable
relations observed at specific time points, relational events describe instantaneous actions
or, put differently, interactions at a fine-grained temporal resolution (Borgatti et al., 2009).

However, in some contexts there arise problems regarding the reliability of event data.
While data gathered from e.g. direct observations (Tranmer et al., 2015) or parliamen-
tary records (Malang et al., 2019) should prove unproblematic in this regard, other data
collection methods may be prone to spurious events, i.e. events that are recorded but
did not actually occur as such. For instance, data collection on face-to-face interactions
1Corresponding Autor: cornelius.fritz@stat.uni-muenchen.de
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relies on different types of sociometric badges (Eagle and Pentland, 2006) for which a
recent study reports a false-discovery rate of the event identification of around 20% when
compared to video coded data (Elmer et al., 2019). Political event data on armed conflict,
in contrast, are generally collected via automated or human coding of news and social
media reporting (Kauffmann, 2020). Spurious events may arise in this context if reports
of fighting are wrong, as may be the case for propaganda reasons or due to reporters’
reliance on rumors, or when fighting took place between different belligerents than those
named. Such issues are especially prevalent in machine-coded conflict data where both
false-positive and false-discovery rates of over 60% have been reported (King and Lowe,
2003; Jäger, 2018). However, even human-coded data suffer from this problem (Dawkins,
2020; Weidmann, 2015).

This discussion suggests that specific types of event data can include unknown quanti-
ties of spurious events, which may influence the substantive results obtained from models
such as the REM (Butts, 2008a) or the Dynamic Actor-Oriented Model (Stadtfeld et al.,
2017; Stadtfeld, 2012). We thus propose a Relational Events Model with Spurious Events
(REMSE) as a method that allows researchers to study relational events from potentially
error-prone contexts or data collections methods. Moreover, this tool can assess whether
spurious events are observed under a particular model specification and, more impor-
tantly, whether they influence the substantive results. The REMSE can thus serve as a
straightforward robustness check in situations where the researcher, due to their substan-
tive knowledge, suspects that there are spurious observations and wants to investigate
whether they distort their empirical results.

We take a counting process point of view where some increments of the dyadic counting
processes are true events, while others may be attributed to spurious events, i.e., exist due
to measurement error. This decomposition results in two different intensities governing
the two respective types of events. The spurious events are described by a spurious-event
intensity that we specify independently of the true-event intensity of true events. We
present the model under the assumption that the spurious events are purely random.
Therefore, we can model the respective intensity solely as a constant term. However,
more complex scenarios involving the specification of exogenous and endogenous covariates
for the spurious-event intensity are also possible. In general, we are however primarily
interested in studying what factors drive the intensity of true events. We model this
intensity following Butts (2008a), but the methodology is extendable to other model
types such as Stadtfeld et al. (2017); Vu et al. (2015); DuBois et al. (2013); Perry and
Wolfe (2013) or Lerner et al. (2021).

This article is structured as follows: We begin in Section 2 by introducing our method-
ology. In particular, we lay out the general framework to study relational event data
proposed by Butts (2008a) in Section 2.1 and introduce an extension to this framework,
the REMSE, to correct for the presence of spurious events in the remainder of Section 2.
Through a simulation study in Section 3, we investigate the performance of our proposed
estimator when spurious events are correctly specified and when they are nonexistent. We
then apply the proposed model in Section 4 to analyze fighting incidents in the Syrian
civil war as well as social interaction data from a college campus. A discussion of possible
implications and extensions for the analysis of events concludes the article in Section 5.
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2 A Relational Events Model with Spurious Events
2.1 Modeling framework for relational events
We denote observed events in an event stream E = {e1, ..., eM} of M elements. Each object
e ∈ E consists of a tuple encoding the information of an event. In particular, we denote
the two actors of an event by a(e) and b(e) and the time of the event with t(e). For
simplicity of notation, we omit the argument e for a() and b() when no ambiguity exists
and write am for a(em), bm for b(em), and tm for t(em) ∀ m ∈ {1, ...,m}. Stemming from our
application cases, we mainly focus on undirected events in this article; hence the events
e = (a, b, t) and ẽ = (b, a, t) are equivalent in our framework. Note however that the
proposed method also generalizes to the directed case. We denote the set of actor-tuples
between which events can possibly occur by R, where, for simplicity, we assume that R
is time-constant.

Following Perry and Wolfe (2013) and Vu et al. (2011a), we assume that the events in
E are generated by an inhomogeneous matrix-valued counting process

N (t) = (Nab(t)|(a, b) ∈ R), (1)

which, in our case, is assumed to be a matrix-valued Poisson process (see Daley and Vere-
Jones, 2008 for an introduction to stochastic processes). Without loss of generality, we
assume that N (t) is observed during the temporal interval T , starting at t = 0. The cells
of (1) count how often all possible dyadic events have occurred between time 0 and t, hence
N (t) can be conceived as a standard social network adjacency matrix with integer-valued
cell entries (Butts, 2008b). For instance, Nab(t) indicates how often actors a and b have
interacted in the time interval [0, t]. Therefore, observing event e = (a, b, t) constitutes an
increase in Nab(t) at time point t, i.e. Nab(t − h) + 1 = Nab(t) for h → 0. We denote with
λ(t) the matrix-valued intensity of process N (t). Based on this intensity function we can
characterize the instantaneous probability of a unit increase in a specific dimension of
N (t) at time-point t (Daley and Vere-Jones, 2008). We parametrize λ(t) conditional on
the history of the processes, H(t), which may also include additional exogenous covariates.
Hence, H(t) = (N (u),X(u)|u < t), where X(t) is some covariate process to be specified
later. Note that we opt for a rather general characterization of Poisson processes, including
stochastic intensities that explicitly depend on previous events. We define the intensity
function at the tie-level:

λab(t|H(t),ϑ ) =




λ0(t,α) exp{θ ⊤sab(H(t))}, if (a, b) ∈ R
0, else

(2)

where ϑ = (α⊤, θ ⊤)⊤ = vec(α, θ ) is defined with the help of a dyadic operator vec(·, ·)
that stacks two vectors and λ0(t,α) is the baseline intensity characterized by coefficients
α , while the parameters θ weight the statistics computed by sab(H(t)), which is the func-
tion of sufficient statistics. Based on sab(H(t)), we can formulate endogenous effects,
which are calculated from (N(u)|u < t), exogenous variables calculated from (X(u)|u < t),
or a combination of the two which results in complex dependencies between the observed
events. Examples of endogenous effects for undirected events include degree-related statis-
tics like the absolute difference of the degrees of actors a and b or hyperdyadic effects,
e.g., investigating how triadic closure influences the observed events. In our first applica-
tion case, exogenous factors include a dummy variable whether group a and b share an
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(a) Abs. Diff. of Degrees  (c) Matched Covariate (b) Triangle 

Figure 1: Graphical illustrations of endogenous and exogenous covariates. Solid lines
represent past interactions, while dotted lines are possible but unrealized events. Node
coloring indicates the node’s value on a categorical covariate. The relative risk of the
events in the second row compared to the events in the first row is exp{θend} if all other
covariates are fixed, where θend is the coefficient of the respective statistic of each row.

ethno-religious identity. Alternatively, one may incorporate continuous covariates, e.g.,
computing the absolute geographic distance between group a and b. We give graphical
representations of possible endogenous effects in Figure 1 and provide their mathematical
formulations together with a general summary in Annex A. When comparing the struc-
tures in the first row with the ones in the second row in Figure 1, the respective sufficient
statistic of the event indicated by the dotted line differs by one unit. Its intensity thus
changes by the multiplicative factor exp{θendo}, where θendo is the respective parameter
of the statistic if all other covariates are fixed. The interpretation of the coefficients is,
therefore, closely related to the interpretation of relative risk models (Kalbfleisch and
Prentice, 2002).

Previous studies propose multiple options to model the baseline intensity λ0(t). Vu
et al. (2011a,b) follow a semiparametric approach akin to the proportional hazard model
by Cox (1972), while Butts (2008a) assumes a constant baseline intensity. We follow
Etezadi-Amoli and Ciampi (1987) by setting λ0(t,α) = exp{ f (t,α)} , with f (t,α) being
a smooth function in time parametrized by B-splines (de Boor, 2001):

f (t,α) =
K∑

k=1
αkBk(t) = α⊤B(t), (3)

where Bk(t) denotes the kth B-spline basis function weighted by coefficient αk. To ensure
a smooth fit of f (t,α), we impose a penalty (or regularization) on α which is formulated
through the priori structure

p(α) ∝ exp{−γα⊤Sα}, (4)

where γ is a hyperparameter controlling the level of smoothing and S is a penalty matrix
that penalizes the differences of coefficients corresponding to adjacent basis functions as
proposed by Eilers and Marx (1996). We ensure identifiability of the smooth baseline

4

243



1

2

3

4

Figure 2: Graphical illustration of a possible path of the counting process of observed
events (Nab(t)) between actors a and b that encompasses spurious (Nab,0(t)) and true
events (Nab,1(t)).

intensity by incorporating a sum-to-zero constraint and refer to Ruppert et al. (2003) and
Wood (2017) for further details on penalized spline smoothing. Given this notation, we
can simplify (2):

λab(t|H(t),ϑ ) =




exp{ϑ ⊤Xab(H(t), t)}, if (a, b) ∈ R
0, else,

(5)

with Xab(H(t), t) = vec(B(t), sab(H(t))).

2.2 Accounting for spurious relational events
Given the discussion in the introduction, we may conclude that some increments of N (t)
are true events, while others stem from spurious events. Spurious events can occur because
of coding errors during machine- or human-based data collection. To account for such
erroneous data points, we introduce the Relational Events Model with Spurious Events
(REMSE).

First, we decompose the observed Poisson process into two separate matrix-valued
Poisson processes, i.e. N (t) = N0(t) + N1(t) ∀ t ∈ T . On the dyadic level, Nab,1(t)
denotes the number of true events between actors a and b until t, and Nab,0(t) the number
of events that are spurious. Assuming that Nab(t) is a Poisson process, we can apply the
so-called thinning property, stating that two separate processes that sum up to a Poisson
process are also Poisson processes (Daley and Vere-Jones, 2008). A graphical illustration
of the three introduced counting processes, Nab,0(t), Nab,1(t), and Nab(t), is given in Figure
2. In this illustrative example, we observe four events at times t1, t2, t3, and t4, although
only the first and third constitute true events, while the second and fourth are spurious.
Therefore, the counting process Nab(t) jumps at all times of an event, yet Nab,1(t) does so
only at t1 and t3. Conversely, Nab,0(t) increases at t2 and t4.
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The counting processes N0(t) and N1(t) are characterized by the dyadic intensities
λab,0(t|H0(t),ϑ0) and λab,1(t|H1(t),ϑ1), where we respectively denote the history of all
spurious and true processes by H0(t) and H1(t). This can also be perceived as a compet-
ing risks setting, where events can either be caused by the true-event or spurious-event
intensity (Gelfand et al., 2000). To make the estimation of θ0 and θ1 feasible and iden-
tifiable (Heckman and Honoré, 1989), we assume that both intensities are independent
of one another, which means that their correlation is fully accounted for by the covari-
ates. Building on the superpositioning property of Poisson processes, the specification of
those two intensity functions also defines the intensity of the observed counting process
Nab(t). In particular, λab(t|H(t),ϑ ) = λab,0(t|H0(t),ϑ0) + λab,1(t|H1(t),ϑ1) holds (Daley
and Vere-Jones, 2008).

The true-event intensity λab,1(t|H1(t),ϑ1) drives the counting process of true events
N1(t) and only depends on the history of true events. This assumption is reasonable
since if erroneous events are mixed together with true events, the covariates computed for
actors a and b at time t through sab(H(t)) would be confounded and could not anymore
be interpreted in any consistent manner. We specify λab,1(t|H1(t),ϑ1) in line with (2) at
the dyadic level by:

λab,1(t|H1(t),ϑ ) =




exp{ϑ ⊤
1 Xab,1(H1(t), t)}, if (a, b) ∈ R

0, else.
(6)

At the same time, the spurious-event intensity λab,0(t|H0(t),ϑ0) determines the type
of measurement error generating spurious events. One may consider the spurious-event
process as an overall noise level with a constant intensity. This leads to the following
setting:

λab,0(t|H0(t),ϑ0) =




exp{α0}, if (a, b) ∈ R
0, else.

(7)

The error structure, that is, the intensity of the spurious-event process can be made
more complex, but to ensure identifiability, λab,0(t|H0(t),ϑ0) cannot depend on the same
covariates as λab,1(t|H1(t),ϑ ). We return to the discussion of this point below and focus
on model (7) for the moment.

2.3 Posterior inference via data augmentation
To draw inference on ϑ = vec(ϑ0,ϑ1), we employ an empirical Bayes approach. Specif-
ically, we will sample from the posterior of ϑ given the observed data. Our approach is
thereby comparable to the estimation of standard mixture (Diebolt and Robert, 1994)
and latent competing risk models (Gelfand et al., 2000).

For our proposed method, the observed data is the event stream of all events E re-
gardless of being a real or a spurious event. To adequately estimate the model formulated
in Section 2, we lack information on whether a given event is spurious or not. We denote
this formally as a latent indicator variable z(e) for event e ∈ E :

z(e) =




1, if event e is a true event
0, if event e is a spurious event

6
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We write z = (z(e1), ..., z(eM)) to refer to the latent indicators of all events and use zm

to shorten z(em). Given this notation, we can apply the data augmentation algorithm
developed in Tanner and Wong (1987) to sample from the joint posterior distribution of
(Z,ϑ ) by iterating between the I Step (Imputation) and P Step (Posterior) defined as:

I Step: Draw Z(d) from the posterior p(z|ϑ (d−1), E);
P Step: Draw ϑ (d) from the augmented p(ϑ |z(d), E).

This iterative scheme generates a sequence that (under mild conditions) converges to
draws from the joint posterior of (ϑ ,Z) and is a particular case of a Gibbs’ sampler. Each
iteration consists of an Imputation and a Posterior step, resembling the Expectation and
Maximization step from the EM algorithm (Dempster et al., 1977). Note, however, that
Tanner and Wong (1987) proposed this method with multiple imputations in each I Step
and a mixture of all imputed complete-data posteriors in the P Step. We follow Little
and Rubin (2002) and Diebolt and Robert (1994) by performing one draw of Z and ϑ in
every iteration, which is a specific case of data augmentation. As Noghrehchi et al. (2021)
argue, this approach is closely related to the stochastic EM algorithm (Celeux et al.,
1996). The main difference between the two approaches is that in our P Step, the cur-
rent parameters are sampled from the complete-data posterior in the data augmentation
algorithm and not fixed at its mean as in Celeux et al. (1996). Consequently, the data
augmentation algorithm is a proper multiple imputation procedure (MI, Rubin, 1987),
while the stochastic EM algorithm is improper MI (see Noghrehchi et al., 2021). We
choose the data augmentation algorithm over the stochastic EM algorithm because Ru-
bin’s combination rule to get approximate standard errors can only be applied to proper
MI procedures (Noghrehchi et al., 2021).

In what follows, we give details and derivations on the I and P Steps and then exploit
MI to combine a relatively small number of draws from the posterior to obtain point and
interval estimates for ϑ .

Imputation-step: To acquire samples from Z = (Z1, ...,ZM) conditional on E and ϑ ,
we first decompose the joint density by repeatedly applying the Bayes theorem:

p(z|ϑ , E) = p(zM, ..., z1|ϑ , E)

=
M∏

m=1
p(zm|z1, ..., zm−1,ϑ , E). (8)

The distribution of zm conditional on z1, ..., zm−1,ϑ and E is:

Zm|z1, ..., zm−1,ϑ , E ∼ Bin
(

1, λambm,1(tm|H1(tm),ϑ1)
λambm,0(tm|H0(tm),ϑ0) + λambm,1(tm|H1(tm),ϑ1)

)
. (9)

Note that the information of z1, ...zm−1 and E allows us to calculate H1(tm) as well as
H0(tm). By iteratively applying (9) and plugging in ϑ (d) for ϑ , we can draw samples in
the I Step of Z = (Z1, ...,ZM) through a sequential design that sweeps once from Z1 to ZM.
The mathematical derivation of (9) is provided in Annex B.

Posterior-step: As already stated, we assume that the true-event and spurious-event
intensities are independent. Hence, the sampling from the complete-data posteriors of ϑ0
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and ϑ1 can be carried out independently. In the ensuing section, we therefore only show
how to sample from ϑ1|z, E , but sampling from ϑ0|z, E is possible in the same manner. To
derive this posterior, we begin by showing that the likelihood of E and z with parameter
ϑ1 is the likelihood of the counting process N1(t), which resembles a Poisson regression.
Consecutively, we state all priors to derive the desired complete-data posterior.

Given a general z sampled in the previous I Step and E , we reconstruct a unique
complete path of N1(t) by setting

Nab,1(t) =
∑

e∈E;
z(e)=1, t(e)≤t

I(a(e) = a, b(e) = b) ∀ (a, b) ∈ R, t ∈ T , (10)

where I(·) is an indicator function. The corresponding likelihood of N1(t) results from
the property that any element-wise increments of the counting process between any times
s and t with t > s and arbitrary actors a and b with (a, b) ∈ R are Poisson distributed:

Nab,1(t) − Nab,1(s) ∼ Pois
(∫ t

s
λab,1 (u|H1(u),ϑ1) du

)
. (11)

The integral in (11) is approximated through simple rectangular approximation between
the observed event times to keep the numerical effort feasible, so that the distributional
assumption simplifies to:

Yab,1(tm) = Nab,1(tm) − Nab,1(tm−1) ∼Pois ((tm − tm−1) λab,1 (tm|H1 (tm) ,ϑ1)) (12)
∀ m ∈ {1, ...,M} with zm = 1 and (a, b) ∈ R.

We specify the priors for α1 and θ1 separately and independent of one another. The
prior for α1 was already stated in (4). Through a restricted maximum likelihood approach,
we estimate the corresponding hyperparameter γ1 such that it maximizes the marginal
likelihood of z and E given γ1 (for additional information on this estimation procedure and
general empirical Bayes theory for penalized splines see Wood, 2011, 2020). Regarding the
linear coefficients θ1, we assume flat priors, i.e. p(θ1) ∝ k, indicating no prior knowledge.

In the last step, we apply Wood’s (2006) result that for large samples, the posterior dis-
tribution of ϑ1 under likelihoods resulting from distributions belonging to the exponential
family, such as the Poisson distribution in (12), can be approximated through:

ϑ1|z, E ∼ N
(
ϑ̂1,V1

)
. (13)

Here, ϑ̂1 denotes the penalized maximum likelihood estimator resulting from (12) with
the extended penalty matrix S̃1 defined by

S̃1 =

 S1 Op×q

Op×q Oq×q




with Op×q ∈ Rp×q for p, q ∈ N being a matrix filled with zeroes and S1 defined in
accordance with (4). For ϑ1 = vec(α1, θ1), let p be the length of α1 and q of θ1. The
penalized likelihood is then given by:

ℓp(ϑ1; z, E) = ℓ(ϑ1; z, E) − γ1ϑ ⊤
1 S̃1ϑ1, (14)

8
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Result: (ϑ (1), z(1)), ..., (ϑ (D), z(D))
Set: ϑ (0) to be the posterior mean of the true and spurious events, which are
sampled randomly from the observed events with equal probability

for d ∈ {1, ...,D} do
Imputation Step: Sample Z(d)|ϑ (d−1), E
for m ∈ {1, ...,M} do

• Sample Z(d)
m |z(d)

1 , ..., z(d)
m−1,ϑ (d−1), E according to (9)

• If z(d)
m = 1 update sab(H1(tm)) ∀ (a, b) ∈ R

end
Posterior Step: Sample ϑ (d)|z(d), E
• Reconstruct N0(t) and N1(t) ∀ t ∈ T from z(d) and E according to (10)
• Obtain ϑ̂0 and V0 by maximizing the penalized Poisson likelihood

given in (12) (only for N0(t) instead of N1(t))
• Sample ϑ (d)

0 |z(d), E ∼ N(ϑ̂0,V0)
• Obtain ϑ̂1 and V1 by maximizing the penalized Poisson likelihood

given in (12)
• Sample ϑ (d)

1 |z(d), E ∼ N(ϑ̂1,V1)
end

Algorithm 1: Pseudo-Code to obtain D samples from the data augmentation
algorithm.

which is equivalent to a generalized additive model; hence we refer to Wood (2017) for
a thorough treatment of the computational methods needed to find ϑ̂1. The variance
matrix in (13) has the following structure:

V1 =
(
X ⊤

1 W1X1 + γ1S̃1
)−1

.

Values for γ1 and ϑ̂1 can be extracted from the estimation procedure to maximize (14) with
respect to ϑ1, while X1 ∈ R(M|R|)×(p+q) is a matrix whose rows are given by Xab,1(H1(tm), tm−1)
as defined in (6) for m ∈ {1, ...,M} and (a, b) ∈ R. Similarly,
W1 = diag

(
λab,1(t|H1(t),ϑ1); t ∈ {t1, ..., tM}, (a, b) ∈ R

)
is a diagonal matrix.

For the P Step, we now plug in z(d) for z in (13) to obtain ϑ̂1 and V1 by carrying out
the corresponding complete-case analysis. In the case where no spurious events exist, the
complete estimation can be carried out in a single P Step. In Algorithm 1, we summarize
how to generate a sequence of random variables according to the data augmentation
algorithm.

Multiple imputation: One could use the data augmentation algorithm to get a large
amount of samples from the joint posterior of (ϑ ,Z) to calculate empirical percentiles for
obtaining any types of interval estimates. However, in our case this endeavor would be very
time-consuming and even infeasible. To circumvent this, Rubin (1976) proposed multiple
imputation as a method to approximate the posterior mean and variance. Coincidentally,
the method is especially successful when the complete-data posterior is multivariate nor-
mal as is the case in (13), thus only a small number of draws is needed to obtain good
approximations (Little and Rubin, 2002). To be specific, we apply the law of iterative

9

11. All that Glitters is not Gold: Modeling Relational Events with Spurious Events

248



expectation and variance:

E(ϑ |E) = E(E(ϑ |E , z)|z) (15)
Var(ϑ |E) = E(Var(ϑ |E , z)|z) + Var(E(ϑ |E , z)|z). (16)

Next, we approximate (15) and (16) using a Monte Carlo quadrature with K samples
from the posterior obtained via the data augmentation scheme summarized in Algorithm
1 after a burn-in period of D iterations:

E(ϑ |Eobs) ≈ 1
K

D+K∑

k=D+1
ϑ̂ (k) = ϑ̄ (17)

Var(ϑ |Eobs) ≈ 1
K

D+K∑

k=D+1
V (k) + K + 1

K(K − 1)

D+K∑

k=D+1

(
ϑ̂ (k) − ϑ̄

) (
ϑ̂ (k) − ϑ̄

)⊤

= V̄ + B̄, (18)

where ϑ̂ (k) = vec
(
ϑ̂ (k)

0 , ϑ̂ (k)
1

)
encompasses the complete-data posterior means from the kth

sample and V (k) = diag
(
V

(k)
0 ,V

(k)
1

)
is composed of the corresponding variances defined

in (13). We can thus construct point and interval estimates from relatively few draws
of the posterior based on a multivariate normal reference distribution (Little and Rubin,
2002).

3 Simulation Study
We conduct a simulation study to explore the performance of the REMSE compared to
a REM, which assumes no spurious events, in two different scenarios, including a regime
where measurement error is correctly specified in the REMSE and one where spurious
events are instead non-existent.

Simulation design: In S = 1000 runs, we simulate event data between n = 40 ac-
tors under known true and spurious intensity functions in each example. For exogenous
covariates, we generate categorical and continuous actor-specific covariates, transformed
to the dyad level by checking for equivalence in the categorical case and computing the
absolute difference for the continuous information. Generally, we simulate both counting
processes N1(t) and N0(t) separately and stop once |E1| = 500.

The data generating processes for true events is identical in each case and given by:

λab,1(t|H1(t),ϑ1) = exp{−5 + 0.2 · sab,Degree Abs.(H1(t)) (DG 1-2)
+ 0.1 · sab,Triangle(H1(t)) − 0.5 · sab,Repetition Count(H1(t))
+ 2 · sab,Sum cont.(H1(t)) − 2 · sab,Match cat.(H1(t))},

where we draw the continuous exogenous covariate (cont.) from a standard Gaussian
distribution and the categorical exogenous covariates (cat.) from a categorical random
variable with seven possible outcomes, all with the same probability. Mathematical defi-
nition of the endogenous and exogenous statistics are given in Annex A. In contrast, the
spurious-event intensity differs across regimes to result in correctly specified (DG 1) and
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Table 1: Result of the simulation study for the REMSE and REM with the two data-
generating processes (DG 1, DG 2). For each DG and covariate, we note the AVE (AVer-
age Estimate), RMSE (Root-Mean-Squared Error), and CP (Coverage Probability). We
report the average Percentage of False Events (PFE) for each DG in the last row.

REMSE REM
Coefs. AVE RMSE CP AVE RMSE CP

DG 1 (PFE: 4.819 %)
Intercept −5.0 −4.936 0.337 0.944 −3.510 1.523 0.003
Degree abs 0.2 0.198 0.009 0.940 0.168 0.033 0.018
Triangle 0.1 0.101 0.019 0.949 0.094 0.019 0.932
Repetition −0.5 −0.494 0.035 0.946 −0.385 0.120 0.039
Cov. cont. 2.0 1.982 0.101 0.951 1.557 0.453 0.003
Cov. cat. −2.0 −1.986 0.246 0.952 −1.594 0.461 0.515
P̂FE (in %) 4.835

DG 2 (PFE 0 %)
Intercept −5.0 −5.040 0.286 0.954 −5.027 0.281 0.955
Degree abs 0.2 0.201 0.008 0.958 0.201 0.008 0.956
Triangle 0.1 0.102 0.018 0.955 0.102 0.018 0.952
Repetition −0.5 −0.505 0.030 0.969 −0.504 0.030 0.964
Cov. cont. 2.0 2.009 0.087 0.952 2.006 0.086 0.948
Cov. cat. −2.0 −2.007 0.231 0.952 −2.004 0.230 0.952
P̂FE (in %) 0.0001

nonexistent (DG 2) measurement errors:

λab,0(t|H0(t),ϑ0) = exp{−2.5} (DG 1)
λab,0(t|H0(t),ϑ0) = 0 (DG 2)

Given these intensities, we follow DuBois et al. (2013) to sample the events.
Although the method is estimated in a Bayesian framework, we can still assess the

frequentist properties of the estimates of the REMSE and REM. In particular, the average
point estimate (AVE), the root-mean-squared error (RMSE) and the coverage probabilities
(CP) are presented in Table 1. The AVE of a specific coefficient is the average over the
posterior modes in each run:

AVE = 1
S

S∑

s=1
ϑ̄s,

where ϑ̄t is the posterior mean (17) of the tth simulation run. To check for the average
variance of the error in each run, we further report the RMSEs of estimating the coefficient
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vector ϑ :

RMSE =

√√√√1
S

S∑

s=1

(
ϑ̄s − ϑ

)⊤ (
ϑ̄s − ϑ

)
,

where ϑ is the ground truth coefficient vector defined above. Finally, we assess the
adequacy of the uncertainty quantification by computing the percentage of runs in which
the real parameter lies within the confidence intervals based on a multivariate normal
posterior with mean and variance given in (17) and (18). According to standard statistical
theory for interval estimates, this coverage probability should be around 95% (Casella and
Berger, 2001).

Results: DG 1 shows how the estimators behave if the true and false intensities are
correctly specified. The results in Table 1 suggest that the REMSE can recover the
coefficients from the simulation. On the other hand, strongly biased estimates are obtained
in the REM, where not only the average estimates are biased, but we also observe high
RMSEs and violated coverage probabilities.

In the second simulation, we assess the performance of the spurious event model when
it is misspecified. In particular, we investigate what happens when there are no spurious
events in the data, i.e., all events are real, and the intensity of Nab,2(t) is zero in DG 2.
Unsurprisingly, the REM allows for valid and unbiased inference under this regime. But
our stochastic estimation algorithm proves to be robust as for most runs, the simulated
events were at some point only consisting of true events. In other words, the REMSE can
detect the spurious events correctly and is unbiased if none occur in the observed data.

For both DG 1 and DG 2, the PFE estimated by the REMSE closely matches the
observed one whereas the REM, by constraining it to zero, severely underestimates the
PFE in DG 1. In sum, the simulation study thus offers evidence that the REMSE increases
our ability to model relational event data in the presence of measurement error while being
equivalent to a standard REM when spurious events do not exist in the data.

4 Application
Next we apply the REMSE on two real-world data sets motivated by the types of event
data discussed in the introduction, namely human-coded conflict events in the Syrian
civil war and co-location event data generated from the Bluetooth devices of students in
a university dorm. Information on the data sources, observational periods and numbers
of actors and events is summarized in Table 2. Following the above presentation, we focus
on modeling the true-event intensity of the REMSE and limit the spurious-event intensity
to the constant term. Covariates are thus only specified for the true-event intensity. In
our applications, the samples drawn according to Algorithm 1 converged to a stationary
distribution within the first 30 iterations. To obtain the reported point and interval
estimates via MI, we sampled 30 additional draws. Due to space restrictions, we keep our
2We include all actors that, within the two-year period, participated in at least five events. To verify
their existence and obtain relevant covariates, we compared them first to data collected by Gade et al.
(2019) and then to various sources including news media reporting. We omitted two actors on which we
could not find any information as well as actor aggregations such as “rioters” or “syrian rebels”.

3To capture new events instead of repeated observations of the same event, we omit events where the
most recent previous interaction between a and b occurred less than 20 minutes before.
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Table 2: Descriptive information on the two analyzed data sets.

Conflict Event Data in 4.1 Co-location Events in 4.2
Source ACLED MIT Human Dynamics Lab

(Raleigh et al., 2010) (Madan et al., 2012)
Observational Period 2017:01:01 - 2019:01:01 2008:11:01 - 2008:11:04
Number of Actors 682 58
Number of Events 4,362 2,4893

discussions of the substantive background and results of both applications comparatively
short.

4.1 Conflict events in the Syrian civil war
In the first example, we model conflict events between different belligerents as driven by
both exogenous covariates and endogenous network mechanisms. The exogenous covari-
ates are selected based on the literature on inter-rebel conflict. We thus include dummy
variables indicating whether two actors share a common ethno-religious identity or receive
material support by the same external sponsor as these factors have previously been found
to reduce the risk of conflict (Popovic, 2018; Gade et al., 2019). Additionally, we include
binary indicators of two actors being both state forces or both rebel groups as conflict
may be less likely in the former but more likely in the latter case (Dorff et al., 2020).

Furthermore, we model endogenous processes in the formation of the conflict event
network and consider four statistics for this purpose. First, we account for repeated
fighting between two actors by including both the count of their previous interactions as
well as a binary indicator of repetition, which takes the value 1 if that count is at least 1.
We use this additional endogenous covariate as a conflict onset arguably comprises much
more information than subsequent fighting. Second, we include the absolute difference
in a and b’s degree to capture whether actors with a high extent of previous activity are
prone to engage each other or, instead, tend to fight less established groups to pre-empt
their rise to power. Finally, we model hyper-dyadic dependencies by including a triangle
statistic that captures the combat network’s tendency towards triadic closure.

Given that fighting should be a relatively obvious event, one may wonder why conflict
event data may include spurious observations. This is because all common data collection
efforts on armed conflict cannot rely on direct observation but instead use news and social
media reporting. Spurious events thus occur when these sources report fighting which did
not actually take place as such. In armed conflict, this can happen for multiple reasons.
For instance, pro-government media may falsely report that state security forces engaged
with and defeated rebel combatants to boost morale and convince audiences that the
government is winning. Social media channels aligned with a specific rebel faction may
similarly claim victories by its own forces or, less obviously, battles where a rival faction
fought and suffered defeat against another group. In war-time settings, journalists may
also be unable or unwilling to enter conflict areas and thus base their reporting on local
contacts, rumors, or hear-say. Finally, spurious observations may arise here when reported
fighting occurred but was attributed to the wrong belligerent faction at some point in the
data collection process. From a substantive perspective, it is thus advisable to check for
the influence of spurious events when analysing these data.
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Table 3: Combat events in the Syrian civil war: Estimated coefficients with confidence
intervals noted in brackets in the first column, while the Z values are given in the second
column. The results of the REMSE are given in the first two columns, while the coefficients
of the REM are depicted in the last two columns. The last row reports the estimated
average Percentage of False Events (PFE).

REMSE REM
Coef./CI Z Val. Coef./CI Z Val.

Intercept -10.047 -102.124 -9.944 -115.723
[-10.24,-9.854] [-10.112,-9.775]

Degree Abs 0.03 12.677 0.03 17.295
[0.026,0.035] [0.027,0.034]

Repetition Count 0.009 45.28 0.009 56.342
[0.009,0.01] [0.009,0.01]

First Repetition 5.052 54.321 4.911 64.946
[4.87,5.235] [4.763,5.059]

Triangle 0.074 10.229 0.073 18.989
[0.06,0.089] [0.065,0.08]

Match Ethno-Religious Id. -0.387 -5.225 -0.393 -5.852
[-0.532,-0.242] [-0.525,-0.262]

Match Rebel 0.159 3.27 0.171 4.381
[0.064,0.255] [0.094,0.247]

Match State Force -0.087 -0.721 -0.077 -0.723
[-0.323,0.149] [-0.287,0.132]

Common Sponsor 1 -0.218 -2.51 -0.227 -2.957
[-0.388,-0.048] [-0.378,-0.077]

P̂FE (in %) 1.1 0
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Table 3 accordingly presents the results of an REM and the REMSE. Beginning with
the exogenous covariates, belligerents are found to be less likely to fight each other when
they share an ethno-religious identity or receive resources from the same external sponsor.
In contrast, there is no support for the idea that state forces exhibit less fighting among
each other than against rebels in this type of internationalized civil war, whereas different
rebel groups are more likely to engage in combat against one another. Furthermore,
we find evidence that endogenous processes affect conflict event incidence. The binary
repetition indicator exhibits the strongest effect across all covariates, implying that two
actors are more likely to fight each other if they have done so in the past. As indicated
by the positive coefficient of the repetition count, the dyadic intensity further increases
the more they have previously fought with one another. The absolute degree difference
also exhibits a positive effect, meaning that fighting is more likely between groups with
different levels of previous activity. And finally, the triangle statistic’s positive coefficient
suggests that even in a fighting network, triadic closure exists. This may suggest that
belligerents engage in multilateral conflict, attacking the enemy of their enemy, in order to
preserve the existing balance of capabilities or change it in their favor (Pischedda, 2018).

This discussion holds for both the results of REM and REMSE. Their point estimates
are generally quite similar in this application, suggesting that spurious events do not
substantively affect empirical results in this case. That being said, there are two noticeable
differences between the two models. First, the coefficient estimates for the binary indicator
of belligerents having fought before differs between the two models. In the REM, it implies
a multiplicative change of exp{4.911} = 135.775 while for the REMSE, it is estimated
at exp{5.059} = 157.433. While both models thus identify this effect to be positive and
significant, it is found to be substantively stronger when spurious events are accounted for.
Second, the two models differ in how precise they deem estimates to be. This difference is
clearest in their respective Z-values, which are always farther away from zero for the REM
than the REMSE. As a whole, these results nonetheless show that spurious events have
an overall small influence on substantive results in this application. The samples from the
latent indicators z also indicate that only approximately 1% of the observations, about 50
events, are on average classified as spurious events. These findings offer reassurance for
the increasing use of event data to study armed conflict.

4.2 Co-location events in university housing
In our second application, we use a subset of the co-location data collected by Madan
et al. (2012) to model when students within an American university dorm interact with
each other. These interactions are deduced from continuous (every 6 minutes) scans of
proximity via the Bluetooth signals of students’ mobile phones. Madan et al. (2012) used
questionnaires to collect a host of information from the participating students. This infor-
mation allows us to account for both structural and more personal exogenous predictors
of social interaction. We thus include binary indicators of whether two students are in
the same year of college or live on the same floor of the dorm to account for the expected
homophily of social interactions (McPherson et al., 2001). In addition, we incorporate
whether two actors consider each other close friends4. Given that the data were collected
around a highly salient political event, the 2008 US presidential election, we also incor-
porate a dummy variable to measure whether they share the same presidential preference
4We symmetrized the friendship network, i.e., if student a nominated student b as a close friend, we
assume that the relationship is reciprocated.
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Table 4: Co-location Events in University Housing: Estimated coefficients with confidence
intervals noted in brackets in the first column, while the Z values are given in the second
column. The results of the REMSE are given in the first two columns, while the coefficients
of the REM are depicted in the last two columns. The last row reports the estimated
average Percentage of False Events (PFE).

REMSE REM
Coef./CI Z Val. Coef./CI Z Val.

Intercept -10.077 -124.905 -10.012 -139.269
[-10.235,-9.919] [-10.153,-9.871]

Degree Abs 0.025 5.361 0.025 6.369
[0.016,0.035] [0.017,0.032]

Repetition Count 0.066 27.263 0.065 29.988
[0.061,0.07] [0.061,0.069]

First Repetition 2.714 42.024 2.615 44.704
[2.587,2.84] [2.501,2.73]

Triangle 0.049 6.597 0.049 8.109
[0.035,0.064] [0.037,0.061]

Match Floor 0.117 2.197 0.123 2.439
[0.013,0.221] [0.024,0.222]

Match Presidential Pref 0.195 4.374 0.188 4.499
[0.108,0.282] [0.106,0.27]

Match Year -0.003 -0.051 -0.012 -0.236
[-0.109,0.104] [-0.112,0.088]

Dyad. Friendship 0.157 3.145 0.15 3.15
[0.059,0.254] [0.057,0.243]

Sim. Interested In Politics -0.018 -0.74 -0.021 -0.917
[-0.064,0.029] [-0.065,0.024]

P̂FE (in %) 3.264 0

and a variable measuring their similarity in terms of interest in politics (Butters and Hare,
2020). In addition, we include the same endogenous network statistics here as in section
4.1. These covariates allow us to capture the intuitions that individuals tend to socialize
with people that they have interacted with before, are not equally popular as they are,
and they share more common friends with (Rivera et al., 2010). Compared to the first
application, sources of spurious events here are more evident as students may not actually
interact with but be physically close to and even face each other, e.g., riding an elevator,
queuing in a store, or studying in a common space.

We present the results in Table 4. Beginning with the exogenous covariates, we find
that the observed interactions tend to be homophilous in that students have social en-
counters with people they live together with, consider their friends, and share a political
opinion with. In contrast, neither a common year of college nor a similar level of political
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interest are found to have a statistically significant effect on student interactions. At the
same time, these results indicate that the social encounters are affected by endogenous
processes. Having already had a previous true event is found to be the main driver of the
corresponding intensity; hence having a very strong and positive effect. Individuals who
have socialized before are thus more likely to socialize again, an effect that, as indicated
by the repetition count, increases with the number of previous interactions. Turning to
the other endogenous covariates, the result for absolute degree difference suggests that
students a and b are more likely to engage with each other if they have more different
levels of previous activity, suggesting that e.g. popular individuals attract attention from
less popular ones. As is usual for most social networks (Newman and Park, 2003), the
triangle statistic is positive, meaning that students “socialize” with the friends of their
friends.

As in the first application, the REM and REMSE results presented in Table 4 are
closely comparable but also show some differences. Again, the effect estimate for bi-
nary repetition, at exp{2.715} = 15.105, is higher in the REMSE than in the REM
(exp{2.615} = 13.667) while Z-values and confidence intervals obtained in the REM are
substantially smaller in the REM than in the REMSE. In the co-location data too, the
results are thus not driven by the presence of spurious events but accounting for these
observations does affect results to some, albeit rather negligible, extent. This is the case
even though the average percentage of spurious events here is comparatively high at 3%.
That leaving out the corresponding 81 events yielded similar estimates may indicate that
spurious events were mainly observed at the periphery of the interaction network and
hardly affected the behavior in the network’s core. More generally, these results may
assuage concerns over sensor data reliability (see Elmer et al., 2019).

5 Discussion
In summary, this paper extends the relational event framework to handle spurious events.
In doing so, it offers applied researchers analyzing instantaneous interaction data a useful
tool to explicitly account for measurement errors induced by spurious events or to inves-
tigate the robustness of their results against this type of error. Our proposed method
controls for one explicit measurement error, namely that induced by spurious events. The
simulation study showed that our approach can detect such false events and even yield
correct results if they are not present. Still, we want to accentuate that numerous other
types of measurement error may be present when one analyses relational events, which
we disregard in this article. For instance, true events may be missing. These false nega-
tives, e.g., unreported conflict events between different belligerents, are difficult to tackle
because of a lack of information.

We explicitly recommend the use of the REMSE as a method for checking robustness.
When substantive knowledge suggests the presence of spurious events, the REMSE can be
used to assess whether REM results hold when accounting for them. Spurious events may
be common in datasets which come from sensors or are coded from journalistic sources,
as discussed above, and more generally seem credibly present in data that are based on
secondary sources instead of direct observation. Spurious events also occur, and may
possibly be more influential, in data where relations are directed, the model we introduce
accordingly also generalizes to directed event data. Especially for politically contentious
data, where some events may be openly claimed to be false, the REMSE offers a possibility
to adjudicate whether overall findings depend on such contested observations. But also
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where the data content is non-political, it is recommendable to check how common and
influential false observations are. We provide replication code implementing the REMSE
for this purpose.

When specifying the REMSE, two aspects require caution so that identifiability is
ensured. First, given we know which events are spurious, our model simplifies to a com-
peting risk model; thus, the identifiability issues discussed in Heckman and Honoré (1989)
or Tsiatis (1975) apply. For this reason, we presented our model under the assumption of
independence between the true-event and spurious-event intensities. Second, the partic-
ular specification of the covariates might also affect the identifiability of the model. This
may occur when one assumes complex dependencies of spurious events and exogenous
covariates are unavailable, or the prior information about the coefficients is too weak. For
the model specification employed in this article, this is not an issue due to the simple form
of the spurious-event intensity as long as at least one exogenous or endogenous term has
a nonzero effect on the true-event intensity. For more complex models, one may use mul-
tiple starting values of the data augmentation algorithm or formulate more informative
priors for θ1 and possibly θ0.

Our latent variable methodology can also be extended beyond the approach presented
here. A straightforward refinement along the lines of Stadtfeld and Block (2017) would be
to include windowed effects, i.e., endogenous statistics that are only using history ranging
into the past for a specific duration, or exogenous covariates calculated from additional
networks to the one modeled. The first modification could also be extended to separable
models as proposed in Fritz et al. (2021). A relatively simplistic version of the latter type
of covariate was incorporated in Section 4.2 to account for common friendships but more
complex covariates are possible. This might be helpful, for instance, when we observe
proximity and e-mail events between the same group of actors. Moreover, with minor
adaptions, the proposed estimation methodology could handle some of the exogenous or
endogenous covariates having nonlinear effects on the intensities.

Finally, the framing of the simultaneous counting processes may be modified and their
number extended. To better understand the opportunities our model framework entails,
it is instructive to perceive the proposed model as an extension to the latent competing
risk model of Gelfand et al. (2000) with two competing risks. For time-to-event data,
one could thus employ an egocentric version5 of our model for model-based clustering of
general duration times, which could prove to be a valuable tool for medical applications.
Or our proposed methodology could be conceived as a general tool to correct for additive
measurement errors in count data and extend it to spatial data analysis to be used in
settings described in (Raleigh et al., 2010).

A Definition of undirected network statistics
As REMs for undirected events are so far sparse in the literature, there are no standard
statistics that are commonly used (one exception being Bauer et al., 2021). Thus we
define all statistics based on prior substantive research (Rivera et al., 2010; Wasserman
and Faust, 1994) and undirected statistics used for modeling static networks (Robins et al.,
2007). Generally, nondirected statistics have to be invariant to swapping the positions of
actor a and b. For the following mathematical definitions, we denote the set of all actors
by A.
5See Vu et al., 2011b for further information on egocentric models.
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For degree-related statistics, we include the absolute difference of the degrees of actors
a and b:

sab,Degree Abs.(H(t)) = |
∑

h∈A
(I(Nah(t−) > 0) + I(Nha > 0)(t−))

−
∑

h∈A
(I(Nbh(t−) > 0) + I(Nhb(t−) > 0))|,

where t− is the point-in-time just before t. Alternatively, one might also employ other
bivariate functions of the degrees as long as they are invariant to swapping a and b, such as
the sum of degrees. When simultaneously using different forms of degree-related statistics,
collinearities between the respective covariates might severely impede the interpretation.

To capture past dyadic behavior, one can include Nah(t−) directly as a covariate. Since
the first event often constitutes a more meaningful action than any further observed events
between the actors a and b, we additionally include a binary covariate to indicate whether
the respective actors ever interacted before, leading to the following endogenous statistics:

sab,Repition Count(H(t)) = Nah(t−)
sab,First Repition(H(t)) = I(Nab(t−) > 0).

Hyperdyadic statistics in the undirected regime are defined as any type of triadic
closure, where actor a is connected to an entity that is also connected to actor b:

sab,Triangle =
∑

h∈A
I(Nah(t−) > 0)I(Nbh(t−) > 0)+

I(Nha(t−) > 0)I(Nbh(t−) > 0)+
I(Nah(t−) > 0)I(Nhb(t−) > 0)+
I(Nha(t−) > 0)I(Nhb(t−) > 0)

Finally, actor-specific exogenous statistics can also be used to model the intensities
introduced in this article. We denote arbitrary continuous covariates by xa,cont ∀ a ∈ A.
On the one hand, we may include a measure for the similarity or dissimilarity for the
covariate through:

sab,Sim. cont = |xa,cont − xb,cont |

sab,Dissim. cont = 1
|xa,cont − xb,cont |

.

For multivariate covariates, such as location, we only need to substitute the absolute value
for any given metric, e.g., euclidean distance. In other cases, it might be expected that
high levels of a continuous covariable result in higher or lower intensities of an event:

sab,Sum cont = xa,cont + xb,cont

.

Which type of statistic should be used depends on the application case and the hypotheses
to be tested. Categorical covariates, that we denote by xa,cat ∀ a ∈ A, can also be used to
parametrize the intensity by checking for equivalence of two actor-specific observations of
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the variable:

sab,Match cat = I(xa,cat = xb,cat)
.

Besides actor-specific covariates also exogenous networks or matrices, such as xNetwork ∈
R|A|×|A|, can also be incorporated as dyadic covariates in our framework:

sab,Dyad. Network = xNetwork,ab + xNetwork,ba

2 ,

where xNetwork,ab is the entry of the ath row and bth column of the matrix xNetwork. Exten-
sions to time-varying networks are straightforward when perceiving changes to them as
exogenous to the modeled events (Stadtfeld and Block, 2017).

B Mathematical derivation of (9)
For m ∈ {1, ...,M}, let Yambm,1(tm) = Nambm,1(tm)−Nambm,1(tm−1) be the increments of the latent
counting process of true events between the time points tm and tm−1, where we additionally
define t0 = 0 without the loss of generality. We observe E , hence we can reconstruct the
respective increment Yambm(tm) = Nambm(tm) − Nambm(tm−1) = Yambm,0(tm) + Yambm,1(tm), where
Yambm,0(tm) is the increment of the spurious-event counting process. The second equality
holds since by design the sum of increments of the processes counting the true and false
events is the increment of the observed counting process, i.e. Nab(t) = Nab,0(t) + Nab,1(t).
To sample from Zm|z1, ..., zm−1, E , note that Zm = Yambm,1(tm)|Yambm(tm) holds. Heuristically,
this means that if we know that one of the two thinned counting processes jumps at time
tm, the probability of the jump being attributed to Nambm,1(t) is the probability that the
mth event is a true event. For the increments of the involved counting processes, we
can then use the properties of the Poisson processes and the fact that the intensities are
piecewise constant between event times to derive the following distributional assumptions
∀ m = 1, ...,M:

Yambm,0(tm)|z1, ..., zm−1, E ,ϑ ∼ Pois (δmλambm,0(tm|H0(tm),ϑ0)) (19)
Yambm,1(tm)|z1, ..., zm−1, E ,ϑ ∼ Pois (δmλambm,1(tm,H1(tm),ϑ1)) (20)

Yambm(tm)|z1, ..., zm−1, E ,ϑ ∼ Pois
(

δm

(
λambm,0(tm|H0(tm),ϑ0) (21)

+ λambm,1(tm|H1(tm),ϑ1)
))

,
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where we set δm = tm − tm−1. We can now directly compute the probability of Zm =
1|z1, ..., zm−1, E ,ϑ :

p(zm = 1|z1, ..., zm−1, E ,ϑ ) = p(Yambm,1(tm) = 1|Yambm(tm) = 1, z1, ..., zm−1, E ,ϑ )

= p(Yambm,1(tm) = 1,Yambm(tm) = 1|z1, ..., zm−1, E ,ϑ )
p(Yambm(tm) = 1|z1, ..., zm−1, E ,ϑ )

= p(Yambm,1(tm) = 1,Yambm,2(tm) = 0|z1, ..., zm−1, E ,ϑ )
p(Yambm(tm) = 1|z1, ..., zm−1, E ,ϑ )

= p(Yambm,1(tm) = 1|z1, ..., zm−1, E ,ϑ )
p(Yambm(tm) = 1|z1, ..., zm−1, E ,ϑ )

× p(Yambm,2(tm) = 0|z1, ..., zm−1, E ,ϑ )
p(Yambm(tm) = 1|z1, ..., zm−1, E ,ϑ )

= λambm,1(tm|H1(tm,ϑ1))
λambm,0(tm|H0(tm),ϑ0) + λambm,1(tm|H1(tm),ϑ1)

In the last row we plug in (19) and (20) for the probabilities in the numerators and (21)
in the denominator to prove claim (9). The calculation for p(zm = 0|z1, ..., zm−1, E ,ϑ ) is
almost identical to the one shown here.
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