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I. Abkürzungsverzeichnis 

AD Alzheimer Demenz 

APP Amyloid precursor protein 

AUC  Fläche unter der Kurve/Integral 

β  Beta 

BRST  Hirnstamm 

CBL  Kleinhirn 

CD68 Cluster of differentiation 68 

CTX  Kortex 

[18F] Fluor 18 

FDG Fluordesoxyglukose 

HIP  Hippocampus 

Iba-1 Ionized calcium-binding adapter molecule 1 

kDa Kilo Dalton 

MAPT  Mikrotubuli-assoziiertes Protein Tau 

MWM  Morris Wasserlabyrinth 

NMDA  N-Methyl-D-aspartat 

PET  Positronenemissionstomographie 

https://en.wikipedia.org/wiki/Cluster_of_differentiation
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µPET Kleintier Positronenemissionstomographie 

PSEN1 Presenilin 1 Gen 

SPM Statistischer parametrischer Vergleich 

sTrem2 Soluble triggering receptor expressed on myeloid cells 2 

SUV Standardisierter Uptake-Wert 

SUVR Verhältnis des standardisierten Uptake-Werts 

TG  Transgen 

TSPO  Translokatorprotein 

VOI  Volume of interest 

WT  Wildtyp 

z.B.  Zum Beispiel 
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II. Publikationen der kumulativen Dissertation   

Die vorliegende kumulative Dissertation umfasst zwei bereits publizierte Manuskripte:   

Eckenweber, F., Medina-Luque, J., Blume, T., Sacher, C., Biechele, G., Wind, K., 

Deussing, M., Briel, N., Lindner, S., Boening, G., von Ungern-Sternberg, B., 

Unterrainer, M., Albert, N. L., Zwergal, A., Levin, J., Bartenstein, P., Cumming, P., 

Rominger, A., Höglinger, G. U., Herms, J., … Brendel, M. (2020). Longitudinal TSPO 

expression in tau transgenic P301S mice predicts increased tau accumulation 

and deteriorated spatial learning. Journal of neuroinflammation, 17(1), 208. 

https://doi.org/10.1186/s12974-020-01883-5 

Biechele, G., Wind, K., Blume, T., Sacher, C., Beyer, L., Eckenweber, F., Franzmeier, 

N., Ewers, M., Zott, B., Lindner, S., Gildehaus, F. J., von Ungern-Sternberg, B., 

Tahirovic, S., Willem, M., Bartenstein, P., Cumming, P., Rominger, A., Herms, J., & 

Brendel, M. (2021). Microglial activation in the right amygdala-entorhinal-

hippocampal complex is associated with preserved spatial learning in AppNL-G-

F mice. NeuroImage, 230,117707. https://doi.org/10.1016/j.neuroimage.2020.117707 

Beschreibung des Eigenanteiles an der Publikation „Longitudinal TSPO expression 

in tau transgenic P301S mice predicts increased tau accumulation and 

deteriorated spatial learning.” 

Erstellen des Studienkonzepts in Zusammenarbeit mit dem Betreuer. Praktische 

Umsetzung des Studienkonzepts mittels Ausführung der Kleintier PET Scans und der 

kognitiven Verhaltenstestung. Mitarbeit bei Versorgung und Fütterung der 

Versuchsmäuse, sowie regelmäßige Kontrolle des körperlichen Wohlergehens der 

Tiere. Nach Abschluss des praktischen Teils der Studie statistische Analyse, 

selbständige Auswertung und Interpretation der erhobenen Daten der PET Scans, der 

kognitiven Verhaltenstestung und der Immunohistochemie. Eigenständiges Verfassen 

des primären Manuskriptentwurfs des Papers. Anschließende Überarbeitung des 

Entwurfs bis zur finalen Version in Abstimmung mit dem Betreuer. 

Beschreibung des Eigenanteiles an der Publikation „Microglial activation in the 

right amygdala-entorhinal-hippocampal complex is associated with preserved 

spatial learning in AppNL-G-F mice. “: 

Einarbeitung und Training der Erstautorin bezüglich der Durchführung von Kleintier 

PET Scans und praktische Unterstützung bei den Scans der Studie. Unterstützung 
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bei Analyse und Auswertung der erhobenen Daten. Kritische Auseinandersetzung mit 

dem Manuskriptentwurf, Beurteilung und Modifikation des Entwurfs.  

 

1. Einführung 

818 Milliarden US Dollar betrugen die geschätzten weltweiten Kosten aller 

Demenzerkrankungen im Jahre 2015. Gemäß Hochrechnungen könnten sich die 

weltweiten Kosten bis zum Jahre 2030 auf mehr als das Doppelte erhöhen (Wimo et 

al., 2017). Damit stellen Demenzerkrankungen nicht nur eine riesige soziale 

Herausforderung für den Einzelnen und die Gesellschaft dar, sondern gehen 

gleichzeitig mit einer immensen finanziellen Belastung für die Industrienationen einher.  

Ursächlich für einen Großteil der Demenzen ist dabei der Morbus Alzheimer als mit 

Abstand häufigste Form der Demenz (Lane, Hardy, & Schott, 2018; Prince, Albanese, 

Guerchet, & Prina, 2014). In Europa liegt die geschätzte Prävalenz der Alzheimer-

Krankheit in der Gesamtbevölkerung bei ca. 5% und steigt altersabhängig auf 

Prävalenzraten von über 22% an, wenn man die Altersgruppe von 85 Jahren und älter 

einzeln betrachtet (Niu, Alvarez-Alvarez, Guillen-Grima, & Aguinaga-Ontoso, 2017). 

Heutige Standardmedikamente zur Behandlung der Alzheimer-Krankheit, bestehend 

aus den Acetycholinesterasehemmer Donepezil, Rivastigmin und Galantamin, sowie 

dem NMDA-Antagonisten Memantin bieten lediglich eine symptomatische 

Therapiemöglichkeit zur Besserung kognitiver Symptome. Sie bewirken jedoch weder 

eine signifikante Verlängerung der Lebenserwartung noch verhindern sie das 

Voranschreiten der Alzheimer-Krankheit (Lane et al., 2018; Weller & Budson, 2018). 

Essenziell für die Entwicklung neuartiger krankheitsverändernder Medikamente in 

klinischen Studien ist deshalb die Verwendung von krankheitsspezifischen Biomarkern 
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als frühzeitige Diagnosekriterien der Alzheimer-Demenz, wie z.B. 

Nervenwasseruntersuchungen und PET Bildgebung (Crous-Bou, Minguillon, Gramunt, 

& Molinuevo, 2017; Lane et al., 2018). Mittels PET Bildgebung können Patienten mit 

einem hohen Risiko für die Entwicklung einer Alzheimer-Demenz erkannt und bei 

erkrankten Patienten Rückschlüsse auf das individuelle Voranschreiten der Krankheit 

gezogen werden (Naseri, Wang, Guo, Sharma, & Luo, 2019). 

 

1.1 Pathophysiologie des Morbus Alzheimer – β-Amyloid und Tau 

Die zugrundeliegende Pathophysiologie der Alzheimer-Krankheit ist überaus komplex 

und die genauen Zusammenhänge und Wechselwirkungen sind bis heute im Detail 

noch nicht vollständig erforscht. 

Zu den spezifischen Merkmalen von Morbus Alzheimer gehören intrazelluläre 

Neurofibrillen aus hyperphosphoryliertem Tau Protein, extrazelluläre β-Amyloid 

Plaques, das Auftreten von Neuroinflammation sowie der damit einhergehende 

Schaden an Synapsen und Neuronen (Serrano-Pozo, Frosch, Masliah, & Hyman, 

2011).   

Verschiedene Isoformen von β-Amyloid werden durch Beta- und Gammasekretasen 

am APP abgespalten und aggregieren bei vermehrter Abspaltung oder verminderter 

enzymaler Beseitigung zu neurotoxischen Oligomeren oder unlöslichen β-Amyloid 

Plaques (Nalivaeva & Turner, 2019). Veränderungen der β-Amyloid Konzentration im 

Liquor sowie Ablagerungen von β-Amyloid Plaques treten dabei bereits viele Jahre vor 

Beginn erster neurokognitiver Symptome der Alzheimererkrankung auf (Bateman et 

al., 2012; Jack et al., 2010).  
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Das mikrotubuli-assoziierte Protein Tau (MAPT) hat zahlreiche verschiedene 

intrazelluläre Funktionen wie etwa die Stabilisierung von Mikrotubuli und Ausbildung 

des Cytoskeletts. Darüber hinaus übernimmt es Aufgaben bei axonalen 

Transportvorgängen von Vesikeln und Organellen und trägt wahrscheinlich auch zum 

Schutze des Erbguts bei (Silva & Haggarty, 2020; Tapia-Rojas et al., 2019). Im 

Rahmen von Tauopathien, wie beispielsweise der Alzheimererkrankung, erfolgt jedoch 

durch übermäßige posttranslationelle Modifikation eine Hyperphosphorylierung des 

Tau Proteins, wodurch etwa die Bindefähigkeit an Mikrotubuli verringert (Bramblett et 

al., 1993) und die Ablagerung von neurofilamentärem Tau begünstigt wird (Alonso, 

Zaidi, Novak, Grundke-Iqbal, & Iqbal, 2001; Naseri et al., 2019). Darüber hinaus hat 

hyperphosphoryliertes und konformationsverändertes Tau auch neuro- und 

synaptotoxische Eigenschaften (Naseri et al., 2019; Spillantini & Goedert, 2013).  

β-Amyloid Ablagerungen können dabei ein Voranschreiten der Tau Pathologie 

begünstigen, obwohl aggregiertes Tau auch bereits vor cerebralen β-Amyloid 

Ablagerungen auftreten kann (Spillantini & Goedert, 2013). 

 

1.2 Rolle der Neuroinflammation bei der Alzheimer-Krankheit 

PET Scans zeigen, dass Neuroinflammation in Form aktivierter Mikrogliazellen bei 

Morbus Alzheimer im Gehirn Erkrankter räumlich sowohl mit der Ablagerung von β-

Amyloid als auch Tau korreliert (Dani et al., 2018). Darüber hinaus kommt es im 

Rahmen von Morbus Alzheimer auch zur Ausbildung von reaktiver Astrozytose (Scholl 

et al., 2015).  

β-Amyloid Ablagerungen tragen wahrscheinlich bereits in frühen Phasen der 

Alzheimererkrankung zur Aktivierung von Mikrogliazellen bei, welche sowohl 

krankheitsabschwächende Einflüsse, wie etwa Reduzierung von akkumulierten 
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Plaques, als auch krankheitsverstärkende Einflüsse durch beständige Sekretion von 

Zytokinen und damit einhergehender chronischer Neuroinflammation aufweisen 

(Leyns & Holtzman, 2017). Tau kann ebenfalls die Entstehung cerebraler 

Neuroinflammation begünstigen, die ihrerseits durch Veränderung von Tau-Kinasen 

zum Voranschreiten der Tau-Pathologie und der Alzheimererkrankung beitragen kann 

(Laurent, Buee, & Blum, 2018). 

Neuroinflammation ist bei Alzheimerpatienten insbesondere im Temporallappen, dem 

Hippocampus und Frontallappen erhöht. Außerdem verändert Neuroinflammation die 

Konnektivität in funktionellen cerebralen Netzwerken und trägt damit zur Entwicklung 

kognitiver Defizite bei (Passamonti et al., 2019).  

Aus diesen Gründen ist ein genaues Verständnis der räumlichen und zeitlichen 

Zusammenhänge cerebraler Inflammationsvorgänge im Rahmen der 

Alzheimererkrankung eine essentielle Voraussetzung, um in Zukunft neuartige 

Therapieansätze entwickeln zu können.  

 

1.3 PET Bildgebung von Neuroinflammation und Glukosestoffwechsel bei 

der Alzheimer-Krankheit 

PET Bildgebung ermöglicht es, die Alzheimererkrankung in vivo zu diagnostizieren 

(Jack et al., 2018), und den individuellen Krankheitsverlauf sowie etwaige 

Therapieerfolge zu visualisieren. Da Neuroinflammation bereits in frühen 

Krankheitsstadien auftritt, ermöglicht deren Diagnostik mittels geeigneter Biomarker 

potenziell auch eine Vorhersage hinsichtlich des Krankheitsverlaufs des einzelnen 

Patienten (Edison, Donat, & Sastre, 2018). 



 

11 
 

Es existieren zahlreiche Tracer zur Detektion von Neuroinflammation, von welchen die 

meisten an TSPO, das 18kDa Translokatorprotein binden (Cerami, Iaccarino, & 

Perani, 2017). TSPO ist ein Protein der äußeren Mitochondrienmembran und wird 

verstärkt von aktivierten Mikrogliazellen exprimiert (Cerami et al., 2017; Scarf & 

Kassiou, 2011). Dies macht TSPO zu einer wichtigen Zielstruktur der in-vivo-

Bildgebung von Neuroinflammation (Chaney, Williams, & Boutin, 2019) und 

verschiedene Studien konnten via TSPO PET eine erhöhte TSPO Expression bei 

Patienten mit Morbus Alzheimer nachweisen (Dani et al., 2018; Hamelin et al., 2016). 

Der am häufigsten in der Forschung verwendete Neuroinflammationstracer ist 

[11C]PK11195 (Chandra et al., 2019),  dieser weist jedoch mehrere Nachteile auf. 

Neben einer kurzen Halbwertszeit und einer geringen Aufnahme des Tracers über die 

Blut-Hirnschranke ins Hirnparenchym bietet er ein schlechtes Kontrastverhältnis von 

Signal zu Hintergrund (Chandra et al., 2019; Ching et al., 2012). Aus diesem Grund 

wurden TSPO Tracer der zweiten und dritten Generation entwickelt, zu denen u.a. 

[18F]-GE-180 gehört (Fan et al., 2016). Aufgrund ihrer deutlich längeren Halbwertszeit 

von ca. 110 Minuten im Vergleich zu knapp über 20 Minuten bei [11C] markierten 

Tracern, ergeben sich auch deutliche Vorteile hinsichtlich Logistik, Verfügbarkeit und 

klinischer Anwendbarkeit von [18F].  

Ein weiterer wichtiger Tracer zur Diagnostik von Morbus Alzheimer ist [18F]-

Fluordesoxyglucose (FDG), welcher als Maß für den cerebralen Glukosemetabolismus 

dient und deshalb seit Jahrzehnten als Marker für Hypometabolismus im Rahmen von 

Demenzen verwendet wird (Jagust, 2018; Rice & Bisdas, 2017). Morbus Alzheimer 

kann dadurch mit hoher Spezifität und Sensitivität von anderen neurodegenerativen 

Erkrankungen und dem physiologischen Normalzustand abgegrenzt werden (Mosconi 

et al., 2008; Rice & Bisdas, 2017). 
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Der Glukosemetabolismus des Gehirns ist jedoch nicht nur von neuronalem 

Stoffwechsel und damit synaptischer Aktivität abhängig, sondern kann wohl z.B. auch 

vom Stoffwechsel glialer Zellen im Rahmen neuroinflammatorischer Vorgänge 

beeinflusst werden (Bouter & Bouter, 2019). 

 

1.4 Mausmodelle der Alzheimer-Krankheit 

Die Entdeckung genetischer Mutationen im APP Gen in den 1980er Jahren als eine 

Ursache von früh beginnendem familiär vererbtem Morbus Alzheimer verdeutlichte 

den Beitrag von genetischen Komponenten in der Entstehung der Krankheit (Puzzo, 

Gulisano, Palmeri, & Arancio, 2015). Dies führte zur Entwicklung des ersten 

transgenen Alzheimermausmodells im Jahre 1995 (Games et al., 1995).  

Mittlerweile werden in der Alzheimerforschung beinahe 200 verschiedene transgene 

Nagetiermodelle verwendet (Myers & McGonigle, 2019), die sich hinsichtlich ihrer 

pathophysiologischen Eigenschaften deutlich voneinander unterscheiden. 

Die meisten dieser Alzheimer Mausmodelle sind transgene Mausmodelle, die durch 

Expression menschlicher Gene wie APP, PSEN1 oder MAPT zur Bildung von β-

Amyloid Plaques bzw. neurofibrillärer Bündel führen (Drummond & Wisniewski, 2017). 

Durch die Verwendung mehrfach transgener Mausmodelle kann die Ausbildung AD-

krankheitstypischer Pathologien beschleunigt werden. Außerdem können 

Mausmodelle geschaffen werden, welche sowohl β-Amyloid Plaques als auch Tau 

ausbilden (Myers & McGonigle, 2019). 

Mittels transgener Mausmodelle können äußerst wertvolle wissenschaftliche 

Erkenntnisse über charakteristische Merkmale der Alzheimererkrankung gewonnen 
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werden, wobei man sich jedoch der mit dem jeweiligen Mausmodell verbunden 

Einschränkungen bewusst sein muss (Drummond & Wisniewski, 2017). 

Das P301S Mausmodell trägt die gleichnamige Mutation im Tau Gen und exprimiert 

dadurch eine menschliche Isoform von Tau (0N4R). In diesem Mausmodell zeigt sich 

hyperphosphoryliertes Tau im zerebralen Kortex, Hippocampus und Hirnstamm (Allen 

et al., 2002). Im Vergleich zu C57/BL6 Wildtypmäusen konnte im Gehirn von P301S 

Mäusen mittels ex vivo Immunohistochemie erhöhte Neuroinflammation 

nachgewiesen werden (Bellucci et al., 2004). Kognitive Defizite im räumlichen Lernen 

zeigen sich ab einem Alter von ca. 2,5 Monaten (Xu et al., 2014). 

Das AppNL-G-F Mausmodell exprimiert als neuartiges Knock in Mausmodell drei 

verschiedene Mutationen im APP Gen, die arktische, schwedische und 

beyreuther/iberische Mutation. Dies führt ohne Überexpression von APP zu erhöhter 

cerebraler β-Amyloid Deposition, die im Cortex bereits im Alter von zwei Monaten 

beginnt (Saito et al., 2014). Außerdem zeigen AppNL-G-F Mäuse im Vergleich zu 

Wildtypmäusen eine altersabhängig progredient eingeschränkte Gedächtnisleistung 

ab etwa 6 Monaten (Mehla et al., 2019), die in diesem frühen Alter jedoch nicht in allen 

Studien festgestellt werden konnte (Whyte et al., 2018). 

 

1.5 PET Studien zur longitudinalen Neuroinflammation in Mausmodellen 

der Alzheimer-Krankheit 

Zahlreiche Studien haben sich mit der Rolle von Neuroinflammation in 

unterschiedlichen Mausmodellen beschäftigt. Die meisten bisher durchgeführten PET 

Studien zur in-vivo-Detektion von Neuroinflammation legten dabei den Fokus auf 

transgene β-Amyloid Mausmodelle (Liu et al., 2015). So stellte sich bei PS2APP 
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Mäusen eine mit dem Alter ansteigende Neuroinflammation dar und bereits im Alter 

von 5 Monaten zeigte sich ein signifikanter Unterschied zwischen transgenen Mäusen 

und gleichaltrigen Wildtypmäusen durch gesteigerten cerebralen [18F]-GE-180 Uptake. 

Außerdem korrelierte gesteigerte Neuroinflammation mit erhöhter β-Amyloid-Last 

(Brendel et al., 2016). In einer longitudinalen PET-Studie mit APPS70 β-Amyloid-

Mäusen zeigte sich ebenfalls gesteigerte kortikale Neuroinflammation, deren Zunahme 

jedoch nicht linear verlief, sondern sich mit zunehmendem Alter abschwächte. 

Graphisch dargestellt ergab sich dadurch für die altersabhängige prozentuale 

Zunahme die Form eines umgekehrten U (Blume et al., 2018). Diese Beobachtung 

stimmt mit einer weiteren Studie zu longitudinaler Neuroinflammation in β-Amyloid-

Mäusen überein, die im Vergleich zur korrespondierenden Amyloidakkumulation einen 

deutlich früheren plateauartigen Verlauf der cerebralen Neuroinflammation zeigte 

(Lopez-Picon et al., 2018). Auch in neuartigen AppNL-G-F Knock In Mäusen zeigte sich 

eine kortikale sowie hippocampal betonte altersabhängig ansteigende 

Neuroinflammation, die positiv mit einem erhöhtem β-Amyloid-PET Signal korrelierte. 

Erhöhte Neuroinflammation korrelierte dabei in diesem Mausmodell mit schlechterem 

räumlichen Lernen im Morris Wasserlabyrinth (Sacher et al., 2019). Auch in Tau 

Mäusen ließ sich mittels TSPO Tracern in vivo eine erhöhte cerebrale 

Mikrogliaaktivierung detektieren (Maeda et al., 2011). 

 

1.6 Offene Fragen und Zielsetzung 

Zum Zeitpunkt der Durchführung der beiden Studien, mit denen ich mich im Rahmen 

meiner Dissertation beschäftigte, hatten bereits multiple Kleintier PET Studien ihren 

Focus auf die Beobachtung von Neuroinflammation in transgenen β-Amyloid 

Mausmodellen gelegt (Blume et al., 2018; Brendel et al., 2016; Liu et al., 2015; Lopez-
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Picon et al., 2018). Zu Neuroinflammation in transgenen Tau Mausmodellen, zum 

Vergleich selbiger mit Neuroinflammation in β-Amyloid Mausmodellen und zur 

Verknüpfung von Verhaltenstestung mit µPET Scans von Neuroinflammation 

existierten jedoch nur wenige Studien.  

Aus diesem Grund lag der Schwerpunkt dieser Dissertation darauf, großangelegte 

Neuroinflammationsuntersuchungen in zwei verschiedenen transgenen 

Alzheimermausmodellen mittels TSPO µPET durchzuführen und diese hinsichtlich 

räumlicher bzw. zeitlicher Verteilungsmuster zu analysieren. Anschließend wurden die 

PET Ergebnisse mit korrespondierendem räumlichen Lernen im Morris 

Wasserlabyrinth korreliert und durch PET unabhängige, immunohistochemische 

Analysen bestätigt. 

 

2. Inhalte der Promotionsarbeit 

2.1 Longitudinale TSPO Expression im P301S Tau Mausmodell zur 

Vorhersage erhöhter Tau Akkumulation und eingeschränktem räumlichen 

Lernen 

Da es zum Zeitpunkt der vorgestellten Studie kaum veröffentlichte Untersuchungen 

zum Imaging von Neuroinflammation in transgenen Tau Mausmodellen gab, legten wir 

in dieser Studie den Fokus darauf, zum ersten Mal weltweit eine groß angelegte 

longitudinale in-vivo-Bildgebung von Neuroinflammation in einem Tau Mausmodell mit 

mehreren zusätzlichen terminalen Validerungsanalysen durchzuführen. Die dabei 

angewandte Untersuchungsmethodik wurde in unserem Institut bereits erfolgreich in 

mehreren Studien mit anderen transgenen Mausmodellen etabliert (Blume et al., 2018; 
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Brendel et al., 2016; Focke et al., 2019; Sacher et al., 2019). Es galt jedoch den 

Methodentransfer zu etablieren. 

Es wurden n = 33 weibliche P301S Mäuse und n = 18 altersgleiche weibliche 

Wildtypmäuse zu drei verschiedenen Scanzeitpunkten (1,9 Monate; 3,9 Monate und 

6,4 Monate) mittels [18F]-GE-180 PET gemessen. Zusätzlich erfolgte eine [18F]-FDG 

PET zum 6,4- Monatszeitpunkt, sowie kognitive Verhaltenstestung mittels Morris 

Wasserlabyrinth und immunhistochemische Analysen des Hirnstamms und Kortex. Als 

dreidimensionale Zielvolumina zur Quantifizierung des PET Signals dienten dabei 

prädefinierte VOIs im Kortex (CTX), Hippocampus (HIP), Kleinhirn (CBL) und im 

Hirnstamm (BRST) (Abb.1).  

 

Abbildung 1: Definition der cerebralen Zielvolumina im bilateralen Kortex (CTX), im bilateralen 

Hippocampus (HIP), Kleinhirn (CBL) und im Hirnstamm (BRST) via Mausgehirn MRT-Atlas 

 

Zur Normalisierung der Daten wurde eine Pseudoreferenzregion im Nucleus 

Accumbens verwendet. Die so gewonnenen SUVR Werte  (
VOI

Nucleus Accumbens
) zeigten 

eine deutlich geringere Varianz im Vergleich zu einer herkömmlichen SUV basierten 

Skalierungsmethode (x 
Gewicht

injizierte Aktivität
) (Abb.2).  
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Abbildung 2: A Pseudoreferenzregion im Nucleus Accumbens ohne Unterschied im Traceruptake 

zwischen P301S und Wildtypmäusen im Statistischen parametrischen Vergleich (= SPM) B 

Unterschiedliche Robustheit der Daten nach SUVR bzw. SUV Skalierung ausgedrückt als %-CoV 

(= Koeffizient der Varianz) 
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In unserer Studie konnten wir zeigen, dass [18F]-GE-180 µPET Scans eine geeignete 

Methode darstellen, um cerebrale Neuroinflammation in vivo zu visualisieren und zu 

quantifizieren. Der cerebrale [18F]-GE-180 Uptake zeigte in unseren Zielregionen einen 

altersabhängigen Anstieg und war im Vergleich zu altersgleichen Wildtypmäusen 

erhöht (Abb. 3).  

Abbildung 3: Altersabhängiger cerebraler Anstieg der TSPO-Expression dargestellt als SUVR 

(= Verhältnis aus: Zielregion/Nucleus Accumbens); **p < 0,01; ***p < 0,001 

 

 

 

 



 

19 
 

Die cerebrale Mikrogliaaktivierung stieg dabei nicht linear an, sondern wies einen 

exponentiellen altersabhängigen Anstieg auf. Dies unterschied sich deutlich vom 

cerebralen Inflammationsverlauf in transgenen β-Amyloid-Mäusen (Abb. 4).  

 

Abbildung 4: Longitudinale kortikale Inflammation in transgenen Tau- und β-Amyloid-Mäusen 

dargestellt als Z-Wert 

P301S Mäuse zeigten im Vergleich zu Wildtypmäusen signifikante kognitive Defizite 

hinsichtlich räumlichem Lernen (Abb. 5). 

 

Abbildung 5: Kognitive Testung der Mäuse im Morris Wasserlabyrinth mit signifikant schlechteren 

Ergebnissen der P301S Mäuse im Vergleich zu Wildtypmäusen. *p < 0,05, **p < 0,01, ***p < 0,001 
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Außerdem korrelierte die longitudinale Zunahme an aktivierter Mikroglia sowohl mit 

erhöhten Tauablagerungen als auch mit schlechterem Abschneiden im Morris 

Wasserlabyrinth (Abb.6).  

 

Abbildung 6: Obere Reihe: Korrelation der Zunahme an Neuroinflammation in Kortex und 

Hippocampus dargestellt als Fläche unter der Kurve (= AUC) mit kognitivem Lernen im Morris 

Wasserlabyrinth (= MWM) Untere Reihe: Korrelation der prozentualen Zunahme an Neuroinflammation 
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zwischen Baseline und finalem Scanzeitpunkt mit kortikalen Tau-Ablagerungen in der 

Immunohistochemie 

Diese Ergebnisse wurden im Rahmen meiner Erstautorschaft „Longitudinal TSPO 

expression in tau transgenic P301S mice predicts increased tau accumulation and 

deteriorated spatial learning“ im Juli 2020 im Journal of Neuroinflammation 

veröffentlicht. 

 

2.2 Assoziation von regionspezifischer Mikrogliaaktivierung mit 

erhaltenem räumlichen Lernen in AppNL-G-F Mäusen  

Im Rahmen meiner Koautorschaft beschäftigte ich mich ebenfalls mit Bildgebung von 

Neuroinflammation und deren Beziehung zur Kognition in einem anderen transgenen 

Alzheimermausmodell.  

Dazu wurden n = 30 transgene AppNL-G-F Mäuse (n = 15 weibliche und n = 15 

männliche Mäuse) im Alter von 10 Monaten sowie n = 18 C57BL/6 Wildtypmäuse mit 

[18F]-florbetaben und [18F]-GE-180 gescannt. Anschließend erfolgte eine Testung der 

Kognition im Morris Water Maze sowie eine unabhängige Validierung der PET 

Ergebnisse mittels biochemischer und immunohistochemischer Untersuchungen. Zur 

Normalisierung der PET Daten wurde eine Pseudoreferenzregion im periaquäduktalen 

Grau verwendet, die in diesem Mausmodell bereits in einer vorherigen Studie unserer 

Arbeitsgruppe etabliert worden war (Sacher et al., 2019). 

10 Monate alte AppNL-G-F Mäuse zeigten im Vergleich zu Wildtypmäusen ausgeprägte 

cerebrale Neuroinflammation sowie Akkumulation von fibrillärem β-Amyloid (Abb.7). 
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Abbildung 7: Darstellung des Unterschieds des cerebralen [18F]-florbetaben und [18F]-GE-180 Uptakes 

von AppNL-G-F Mäusen und Wildtypmäusen mittels statistischem parametrischen Vergleich (= SPM) 

 

Es konnte eine signifikante Korrelation von Neuroinflammation im rechten 

entohirnal/piriformen Kortex und in der rechten Amygdala mit verbessertem 

räumlichem Lernen im MWM nachgewiesen werden, die sich auf der linken Seite des 

Gehirns weniger ausgeprägt darstellte (Abb.8). 

 

Abbildung 8: Obere Reihe: Bereiche positiver Korrelation von [18F]-GE-180 Uptake mit besserem 

Ergebnis im Morris Wasserlabyrinth. Darstellung mittels statistischem parametrischen Vergleich 

(= SPM) Untere Reihe: Graphische Darstellung der Regression von [18F]-GE-180 Uptake und 

verbesserten Ergebnis im Morris Wasserlabyrinth in den Amygdala und entohirnal/piriformen Kortex; X-

Achse = SUVR TSPO/Aβ; Y-Achse = Hauptkomponentenanalyse des Morris Wasserlabyrinth 
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Analog dazu gingen in oben genannten Hirnregionen nach rechts verschobene 

Asymmetrie Indices der Neuroinflammation mit besserem Outcome in der kognitiven 

Verhaltenstestung einher (Abb.9). 

 

Abbildung 9: Graphische Darstellung der Regression des Asymmetrie Index (= AI) der TSPO 

Expression und der Hauptkomponentenanalyse des Morris Wasserlabyrinth 

 

Darüber hinaus konnte die positive Korrelation von erhöhter Neuroinflammation mit 

verbessertem räumlichen Lernen in AppNL-G-F Mäusen im Rahmen der Studie ex vivo 

mittels unterschiedlicher Methoden nachgewiesen werden. Sowohl 

immunohistochemische Stainings mit Iba-1 als auch quantifizierende Bestimmungen 

von sTrem2 fungierten somit als unabhängige Bestätigung der zuvor gewonnenen 

[18F]-GE-180 µPET Ergebnisse (Abb.10).  
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Abbildung 10: sTrem2 war in TG Mäusen im Vergleich zu WT erhöht (A) Erhöhtes sTrem2 stand dabei 

in TG Mäusen in Zusammenhang mit einem besseren Ergebnis im Morris Wasserlabyrinth (Y-Achse = 

Hauptkomponentenanalyse) (B) In der Immunohistochemie zeigten TG Mäuse eine erhöhte Fläche an 

Iba-1 Positivität (C) Erhöhtes Iba-1 stand dabei in TG Mäusen in Zusammenhang mit einem besseren 

Ergebnis im Morris Wasserlabyrinth (Y-Achse = Hauptkomponentenanalyse) (D)   
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Diese Ergebnisse wurden im Rahmen meiner Koautorschaft „Microglial activation in 

the right amygdala-entorhinal-hippocampal complex is associated with preserved 

spatial learning in AppNL-G-F mice“ im Dezember 2020 in NeuroImage veröffentlicht. 

 

3. Zusammenfassung: 

Die Promotionsarbeit zielte darauf ab, zum ersten Mal eine longitudinale in-vivo-

Beobachtung von Neuroinflammation mit dem TSPO Tracer der dritten Generation 

[18F]-GE-180 in einem transgenen Tau Mausmodell durchzuführen. Dazu wurden 

transgene P301S Mäuse und altersentsprechende Wildtypmäuse zu definierten 

Zeitpunkten im Alter zwischen 1,9 und 6,4 Monaten mittels µTSPO PET gescannt. 

Zusätzlich erfolgten zum Ende der Studie eine Untersuchung des cerebralen 

Glukosemetabolismus mittels [18F]-FDG PET, eine Testung des kognitiven Verhaltens 

mittels Morris Wasserlabyrinth und die immunhistochemische Aufarbeitung von 

Tauablagerungen und Neuroinflammation.  

Die cerebrale Neuroinflammation stieg mit dem Alter an und war zum finalen 

Scanzeitpunkt im Vergleich zu WT Mäusen in den erhobenen Zielregionen deutlich 

erhöht (Kortex +12%; Hirnstamm +23%; Hippocampus +11%; Kleinhirn +18%; jeweils 

p< 0,001). Die Zunahme an Neuroinflammation erfolgte dabei nicht linear, sondern 

entsprach einer exponentiellen Kurve y = 0,09x² - 0,37x + 1,18. Dies steht im 

Gegensatz zum beobachteten Kurvenverlauf in β-Amyloid Mausmodellen, der einer 

konkaven quadratischen Funktion entspricht, z.B. für APP/PS1 Mäuse y = -0,04x² + 

1,21x - 1,23. In der Immunhistochemie korrelierte der kortikale [18F]-GE-180 Uptake 

dabei mit erhöhtem CD68 als Marker für aktivierte Mikroglia (R = 0,630, p = 0,028). 

Der [18F]-GE-180 Uptake im Hirnstamm korrelierte mit erhöhtem Iba-1 als allgemeiner 

Mikrogliamarker (r = 0,755, p = 0,007). Im Vergleich zu Wildtypmäusen zeigten P301S 
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Mäuse in der FDG PET einen Hypometabolismus im Hirnstamm (-4%, p = 0,002) und 

im Hippocampus (-6%, p < 0,001). Außerdem wiesen P301S Mäuse Defizite im 

räumlichen Lernen auf, was sich in signifikant schlechteren Ergebnissen im Morris 

Wasserlabyrinth darstellen ließ. So benötigten P301S Mäuse eine deutlich längere Zeit 

als Wildtypmäuse dafür, die virtuelle Plattform zu erreichen (39 ± 20 s vs. 20 ± 21 s; p 

< 0,001) und schwammen eine längere Distanz (544 ± 268 cm vs. 404 ± 414 cm; 

p=0,019). Insgesamt korrelierte longitudinal gesteigerte [18F]-GE-180 Anreicherung in 

P301S Mäusen mit den Defiziten im räumlichen Lernen und dem erhöhtem cerebralen 

Tau in der Immunhistochemie. Zusammenfassend kann man daher festhalten, dass 

[18F]-GE-180 µPET Scans eine geeignete Modalität für longitudinales in-vivo-

Monitoring von Neuroinflammation im P301S Mausmodell darstellen und damit 

Vorhersagen zu Tauablagerungen und Kognition getroffen werden können. 

In meiner Koautorschaft wurden Amyloidablagerungen, Neuroinflammation und 

räumliches Lernen im AppNL-G-F Knock in Mausmodell untersucht. AppNL-G-F Mäuse im 

Alter von 10 Monaten und altersentsprechende C57BL/6 Wildtypmäuse wurden mit 

dem β-Amyloid Tracer [18F]-florbetaben und TSPO Tracer [18F]-GE-180 gescannt. Es 

erfolgten Testungen des räumlichen Lernens durch das Morris Wasserlabyrinth sowie 

zusätzliche ex-vivo-Analysen mittels Immunhistochemie und quantifizierender 

Biochemie. Eine erhöhte cerebrale mikrogliale Aktivierung war mit einer besseren 

Performance im räumlichen Lernen assoziiert. Im Seitenvergleich zeigte sich eine 

stärkere Verknüpfung von erhöhter Neuroinflammation und besserem räumlichem 

Lernen für den rechten entohirnalen/piriformen Kortex (Rechts: β = 0,578, p = 0,01; 

Links: β = 0,339, p = 0,124) und für die rechte Amygdala (Rechts: β = 0,481, p = 0,038; 

Links: β = 0,182, p = 0,353). Kongruent zu dieser Beobachtung ergab sich ein 

verbessertes räumliches Lernen in transgenen Mäusen, deren Neuroinflammation in 
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der Amygdala nach rechts lateralisiert war (erhoben via Asymmetrie Index), β = -0,470, 

p = 0,013. Ex-vivo-Analysen von AppNL-G-F Mäusehirnen bestätigten die oben genannte 

Assoziation von erhöhter Neuroinflammation und besserem räumlichen Lernen mittels 

Iba-1 Immunhistochemie des Hippocampus (β = 0,705, p = 0,047) und Quantifizierung 

von sTrem2 im Vorderhirn-Lysat (β = 0,707, p = 0,038). Zusammenfassend kann 

gesagt werden, dass erhöhte Mikrogliaaktivierung im AppNL-G-F Knock in Mausmodell 

insgesamt mit verbesserter Kognition einhergeht und die interindividuell verschiedene 

Lateralisierung von Neuroinflammation einen signifikanten Einfluss auf räumliches 

Lernen ausübt.  

 

4. Summary: 

The objective of this doctoral thesis was to perform the first longitudinal in vivo 

observation of neuroinflammation utilizing the third generation TSPO tracer [18F]-GE-

180 in a transgenic tau mouse model. Transgenic P301S mice and age matched 

wildtype mice were scanned with µTSPO PET at predefined points ranging from 1.9 to 

6.4 months. Towards the end of the study additional examinations of cerebral glucose 

metabolism by [18F]-FDG PET, testing of cognitive behavior by Morris water maze 

(MWM) and immunohistochemical stainings of Tau accumulation and 

neuroinflammation were complemented. Cerebral neuroinflammation increased with 

age and was clearly elevated in the target VOIs at the final scan when compared to 

WT mice (cortex +12%, brainstem +23%, hippocampus +11%, cerebellum +18%, each 

p = < 0.001). The increase of neuroinflammation was not characterized by a linear 

function but matched an exponential curve instead y = 0.09x² - 0.37x + 1.18. This is 

contrary to the observed curve shape in β-amyloid mice matching concave quadratic 

functions, for example in APP/PS1 mice y = -0.04x² + 1.21x - 1.23. In 
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immunohistochemistry, cortical [18F]-GE-180 uptake correlated with elevated CD68 (R 

= 0,630, p = 0,028) as a marker for activated microglia. [18F]-GE-180 uptake in the 

brainstem correlated with increased Iba-1 (r = 0.755, p = 0.007) as a general microglial 

marker. When compared to wild type mice P301S mice showed hypometabolism in 

FDG PET in the brainstem (-4%, p = 0.002) and in the hippocampus (-6%, p < 0.001). 

Furthermore, P301S mice showed deficits in spatial learning, which was expressed by 

significantly worse performance in Morris water maze. P301S mice took significantly 

more time than wild type mice to reach the platform (39 ± 20 s vs 20 ± 21 s, p < 0.001) 

and swam a longer distance (544 ± 268 cm vs 404 ± 414 cm, p = 0.019). Overall 

longitudinally increased [18F]-GE-180 uptake in P301S mice correlated with impaired 

spatial learning and increased cerebral Tau in immunohistochemistry. To sum up, [18F]-

GE-180 µPET scans serve as a viable modality for in vivo monitoring of 

neuroinflammation in the P301S mouse model and facilitate predictions regarding Tau 

deposits and cognition. 

In my co-authorship β-amyloid deposits, neuroinflammation and spatial learning were 

investigated in the AppNL-G-F knock in mouse model. AppNL-G-F mice at the age of 10 

months and age matched C57BL/6 wild type mice were scanned with the β-amyloid 

tracer [18F]-florbetaben and [18F]-GE-180 µPET. Tests of spatial learning were carried 

out by MWM and additionally ex vivo analyses utilizing immunohistochemistry and 

biochemical quantification were performed. Increased cerebral microglial activation 

was associated with better performance in spatial learning. Comparing both sides there 

was a stronger link between increased neuroinflammation and better outcome in MWM 

for the right entohirnal/piriform cortex (right: β = 0.578, p = 0.01; left: β = 0.339, p = 

0.124) and right Amygdala (right: β = 0.481, p = 0.038; left: β = 0.182, p = 0.353). 

Congruently to this finding, there was a tendency for better spatial learning 
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performance in transgenic mice with lateralization of neuroinflammation to the right 

amygdala (generated via asymmetry index), (β = -0.470, p = 0.013). Ex vivo analyses 

of AppNL-G-F mouse brains confirmed the above-mentioned association of increased 

neuroinflammation and better spatial learning by using Iba-1 immunohistochemistry of 

the hippocampus (β = 0.705, p = 0.047) and quantification of sTrem2 in the forebrain 

lysate (β = 0.707, p = 0.038). In summary, increased microglial activation in the AppNL-

G-F knock in mouse model is linked to improved cognition and the inter-individually 

different lateralization of neuroinflammation has a significant impact on spatial learning. 
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