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Zusammenfassung

Hauptziel dieser Arbeit ist es, Entscheidungswälder in strukturell einfacherere Modelle zu
transformieren. Dabei gilt es die Vorteile von Entscheidungswäldern zu erhalten – hohe
Prädiktionsgüte und Stabilität – aber gleichzeitig die Komplexität so stark zu reduzieren,
dass sich zentrale Zusammenhänge in den Daten interpretieren lassen. Die vorgestellten
Methoden ermöglichen zudem neue Wege um Modell- und Prädiktionsunsicherheiten zu
quantifizieren. Desweiteren befasst sich diese Arbeit mit Anwendungen von maschinellem
Lernen in Situationen mit hoher – und teils komplexer – Unsicherheit, sowie mit der Re-
produzierbarkeit von statistischen Methoden in wissenschaftlichen Artikeln.

Der erste Teil der Arbeit präsentiert Ansätze, um Entscheidungswälder umzuformen und
zu vereinfachen. Dabei bauen drei der Beiträge direkt auf dem RuleFit Ansatz auf, bei
welchem in einem ersten Schritt Entscheidungswälder in ihre elementaren Regeln zerlegt
werden. In einem zweiten Schritt werden regularisierte Regressionverfahren verwendet, um
zu einer möglichst kleinen Menge von Entscheidungsregeln zu gelangen. In dieser Arbeit
werden sowohl Bayesianische Ansätze, über die horseshoe prior, als auch L1-regularisierte
Regressionsverfahren verwendet. Dabei wird auch die Komplexität der Regeln – Anzahl
Bedingungen und Umfang – mit berücksichtigt.
Der Bayesianische Ansatz erlaubt eine Inklusion der Regelkomplexität direkt in das hier-
archische Modell, in Form einer rule structured prior. Zudem lassen sich aus der a-Post-
eriori Verteilung neue Wege zur Quantifierung von Unsicherheit, sowohl von Koeffizien-
tenschätzern, als auch der daraus abgeleiteten Statistiken, wie der Variablenwichtigkeit,
ableiten.
Ein weiterer untersuchter Ansatz ist die Zusammenfassung von ähnlichen Entscheidungs-
regeln in Regeln mit mengenwertigen Schwellenwerten. Durch das Mitteln über viele ähn-
liche Regeln werden so die Glättungseigenschaften von Entscheidungswäldern imitiert. Gle-
ichzeitig sind diese komprimierten Regeln weiterhin interpretierbar. Zur Gruppierung der
Entscheidungsregeln werden Clustering Verfahren verwendet, welche die zentralsten men-
genwertigen Regeln in den Daten extrahieren.
Desweiteren wird die Inkludierung von vorhandenem Expertenwissen in Rule Ensembles
untersucht. Dazu wird das Rule Ensemble mit Regeln basierend auf Expertenwissen oder
aus medizinischen Richtlinien angereichert. Ein modifiziertes Penalisierungsverfahren wird
entwickelt um der Unsicherheit der verschiedenen Wissensquellen angemessen Rechnung
zu tragen.
In einem weiteren Beitrag wird die Darstellung von Entscheidungswäldern durch einen
mengenwertigen Entscheidungsbaum vorgestellt. Die Modellunsicherheit, über den korrek-
ten Schwellenwert und die zu verwendende Kovariable für den Test, wird bereits während
der Induktion berücksichtigt. Der resultierende Entscheidungsbaum mit mengenwerti-
gen Entscheidungen an jedem Knoten ist eine spezielle Form eines Entscheidungswaldes,
welcher Eigenschaften eines Random Forest imitiert, aber gleichzeit um eine zentrale Baum-
struktur zentriert ist.
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Der zweite Teil der Arbeit befasst sich mit Anwendungen von regularisierter Regression
und Entscheidungswäldern in Situationen mit hoher Unsicherheit.
Ein wichtiges und herausforderndes Feld der personalisierten Medizin ist die Identifizierung
von genetischen Biomarkern. Um die Konsistenz der Variablenselektion zu erhöhen, wird
eine Erweiterung der L1-Regularisierung vorgeschlagen, welche die univariate Kompaktheit
und Trennung von Genen bezüglich der abhängigen Variable mit berücksichtigt. Dabei wer-
den Gütekriterien aus der Clustering Theorie und klassischer Testtheorie verwendet, um
Gene zu identifizieren, in welchen sich die Klassen deutlich in ihrer Genexpression unter-
scheiden. Vielversprechende Gene werden in der Regularisierung bevorzugt.
Ausserdem wird die Anwendung von Entscheidungswäldern für Wahlprognosen von unent-
schlossenen Wählern untersucht. Dabei wird ein Entscheidungswald in ein komplexeres
Modell eingebettet, welches die mengenwertige Zielgröße von noch unentschlossenen Wähl-
ern berücksichtigt.

Im dritten Teil der Arbeit wird eine Reproduzierbarkeitsstudie vorgestellt. Untersucht wird
der aktuelle Stand der Reproduzierbarkeit von Artikeln in der Fachzeitschrift PLOS ONE.
Die Ergebnisse bestärken die Forderung nach besseren Standards der Methodenbeschrei-
bung in Veröffentlichungen, insbesondere bei komplexen statistischen Modellen, sowie eine
Zugänglichmachung von Quellcode.
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Summary

This thesis explores alternative representations of tree ensemble methods. The general goal
is to keep the desirable properties – good predictive performance and stability – while low-
ering the structural model complexity to a point that allows interpretation. The alternative
representation of tree ensembles also open up new ways to asses model and prediction un-
certainty. Additionally, this work is concerned with applications of supervised learning
methods in situations of high and complex uncertainty and with the current state of re-
producibility of scientific articles.

The first part of the thesis presents ways to reshape and simplify tree ensembles. Three of
the contributions build directly upon the RuleFit approach, that decomposes tree ensem-
bles into decision rules and uses regularized regression to find a sparse set of decision rules.
Modified regularization schemes are proposed, that directly incorporate information about
the rule structure – support and rule length – in the penalization. Bayesian shrinkage
priors and L1-regularized regression are explored for the regularization step.
In the Bayesian model, the horseshoe prior is used to induce sparsity. The aforementioned
information about the rule structure can be included in the resulting Bayesian hierarchical
model in a straightforward way as a rule structured prior. Besides improved accuracy,
the Bayesian framework allows a better quantification of uncertainty of both parameter
estimates and derived statistics, such as the variable importance scores.
A second approach is to mimic the smoothing behaviour of the original forest method, by
means of soft rules. To this end, a large number of similar rules extracted from the tree
ensemble is compressed into set-valued rules. This allows to carry over the smoothing and
good predictive performance from tree ensembles, while keeping the model interpretable.
Clustering algorithms are used directly on the decision rules, to identify groups of rules.
Additionally, this work explores the incorporation of expert knowledge and domain knowl-
edge, such as textbooks and guidelines, into rule ensembles. In order to account for the
different degrees of uncertainty about the validity of the knowledge sources, a customized
regularization scheme is presented.
Besides rule ensembles, also a framework to represent a tree ensemble by a single tree struc-
ture is presented. At each node several tests are allowed using both set-valued splitting
points and multiple covariates, capturing the uncertainty about the correct splitting posi-
tions and covariate used for splitting. The model uncertainty is already taken into account
during tree induction, leading to more stable and accurate tree models. The resulting tree
is a special case of a tree ensemble, that mimics the behaviour of random forests, while
being structurally much simpler.

The second part of this thesis contributes to applications of machine learning methods
in situations of high and complex uncertainty.
An important but challenging task is the identification of genetic biomarkers for personal-
ized medicine. To improve the variable selection consistency, we extend the L1-regression
by taking the univariate properties of genes into account. To this end, measures de-
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rived from clustering theory and statistical testing are incorporated into the regularization
scheme. Genes that decompose into well separated and compact classes are promoted. Fur-
thermore, the application of machine learning methods for election forecasting of undecided
voters is explored. To this end, a random forest model is embedded into a larger model,
that takes into account the complex and set-valued response for voters that are not decided
yet. The framework allows to make use of the complex uncertainty, instead of neglecting it.

The third part of this thesis presents an empirical reproducibility study, that evaluates
the state of reproducibility of articles published in the journal PLOS ONE. The study
emphasizes the need of better reporting standards for complex statistical methods and the
publication of source code.
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1 Introduction

1.1 Tree Ensemble Learning and its limitations

In general, supervised learning is concerned with approximating an unknown function that
maps the covariate space to the outcome. In the last decades supervised learning was a
topic of major interest and myriads of different approaches have been proposed. Good
overviews can be for example found in Fernandez-Delgado et al. (2014), Murphy (2012)
and Hastie et al. (2017). One extremely popular supervised learning framework is ensem-
ble learning, where multiple weak models, in the following referred to as weak learners,
are combined into a stronger model. The intuition of ensemble learning is that each weak
learner is able to capture a different aspect of the dataset. Combining the different ‘ex-
perts’ leads to a solution that takes the different possible ways to describe the relationship
between covariates and outcomes into account and thus produces more stable and accurate
predictions than any single model that lays all its eggs into one basket. The improvement
gained from combining models into an ensemble was found to be the greatest when com-
bining unstable models, as long as their accuracy remains higher than random guessing
(Freund et al., 1999).

In general, almost any class of models can be combined into an ensemble for different
learning tasks, e.g. stepwise regression (Breiman, 1996), clustering (Kiselev et al., 2017),
time series forecasting (Oliveira and Torgo, 2015) and deep learning (Deng and Platt, 2014).
In the context of supervised learning it is particularly popular to use decision trees 1 as
weak learners. Decision trees are an interesting candidate for ensemble learning, as they
are known to be unstable. Small perturbations in the training data can lead to a com-
pletely different model structure which makes them prone to over-fitting. Interestingly,
in the context of ensemble learning this downside becomes a merit, as building trees on
re-samples of the training data directly translates into an increase in model variance of the
ensemble, which in return reduces the prediction variance.

It was often found that decision forests2 show a remarkably strong predictive performance
with little to no over-fitting (Probst and Boulesteix, 2017). The most popular tree-based
ensemble approaches to date are random forests and gradient boosting. Their appeal stems

1The term decision tree (or sometimes abbreviated as tree) is used for both classification trees and
regression trees in a supervised learning setting throughout this work.

2In this work we use the term decision forests is used for all ensemble frameworks that combine decision
trees as weak learners, not only for random forest type models. Therefore the terms decision forest and
tree ensemble are used synonymously.



2 1. Introduction

from their relatively simple ‘out-of-the-box’ usage, robustness towards parameter choices
(Bernard et al., 2009; Probst et al., 2019) and good predictive accuracy. Also they are
flexible towards all kinds of tabular data, freeing the modeller from making many assump-
tions on the underlying relationship, such as interaction effects. Another advantage is their
robustness towards extreme data situations, such as p >> n, extremely large datasets or
datasets that contain a lot of noise covariates (Couronné et al., 2018). Random forests for
example are a very popular tool for feature selection in gene expression data, where the
number of covariates typically exceeds the number of samples. This has led to a widespread
use of tree ensemble methods in the last decades, for example in medicine (Brajer et al.,
2020), genomics (Boulesteix et al., 2012) and official statistics (Tam and Clarke, 2015).

However, a major downside is the black-box character of decision forests. As the final model
is a combination of hundreds or thousands of decision trees, it is difficult to understand
the inner workings of the forest. This makes it difficult to extract pattern or hypotheses
from the data, that go beyond predictions. Many methods to address this caveat have been
proposed, such as (conditional) Variable Importance (Strobl et al., 2008), Partial Depen-
dence (Hastie et al., 2017) and SHAP-values (Lundberg and Lee, 2017). These methods
can describe which covariates the ensemble relies on either globally, or for an individual
prediction and also can interpret the marginal impact of individual covariates or interac-
tions thereof. However, while those methods can account for the covariates used (which in
many cases might be sufficient) and their marginal impact, it is still unclear how exactly
they are used by the model. In recent years increasing scepticism was expressed about the
safety, fairness and reliability of machine learning (ML) models (Barocas et al., 2017). ML
was for example found to reproduce current social and racial inequalities and various kind
of biases (Mehrabi et al., 2021). Another problem is that pattern found in the current
data may not extend well to situations in other temporal or spacial context. In all these
situations, the ability to inspect the pattern that a model is based on is key for a ‘safe’ ap-
plication. This allows to identify pattern found by the model that may be either unethical,
data artefacts or pattern that may not generalize well to future data (Caruana et al., 2015).

The lack of insight, characteristic to black box models, such as decision forests is prob-
lematic when judging the generalizability of the model. Cross validation (CV), the most
common method to estimate the generalization error, is often only a weak proxy for the
true generalization error (Toll et al., 2008). Potential problems that are not covered with
CV are shifts in covariate distributions (Altman et al., 2009), methodological artefacts,
measurement errors and more generally a pattern drift. Generalizability was for example
found problematic in clinical applications, where models trained in one hospital decreased
in performance for patients in other hospitals (Zech et al., 2018). Reasons for the decrease
include shifts in the distribution of patient subgroups, stratified for example by sex, age
or socio-economic background, different ways of measurement and artefacts due to the
measurement (or the non-measurement) process (Gennatas et al., 2020). Additionally, ad-
vancements in medicine make models based on data from decades ago not extend well to
the present. Therefore, without knowing the pattern on which the model is based on, it



1.2 Aim of this work 3

is hard to judge, if the model will generalize well for (future) unseen data (Justice et al.,
1999). While vice versa, if one understands the underlying pattern that the model relies
on, it may be possible to estimate the decrease in performance that is to be expected and
issue a warning if the risk of failure is high. External validation is also very important to
control for the effect of potential confounder variables (Steyerberg et al., 2013).

The above arguments imply that interpretability, generalizability and robustness are strongly
entangled. Additionally, scientific results are often subject to a large degree of uncertainty
about the correct model and data preprocessing steps necessary to reach valid conclusions,
also often referred to as researchers degrees of freedom (Hoffmann et al., 2021; Simmons
et al., 2011). Widely used procedures, such as step-wise model selection often do not
communicate this uncertainty to the user and give a false impression of definite results.
Trying to replicate findings with different data or preprocessing steps can lead to vastly
different results. Therefore, it is very important to have insight into the inner workings of
the model, its robustness and stability as a way to allow for external validation (Gennatas
et al., 2020). A lack in either aspect can basically invalidate any interpretation made upon
the model. On the other hand, the ability to follow the models reasoning also builds trust
from domain experts in the model (Buchanan and Shortliffe, 1984) and allows a contextu-
alisation of the results (Boulesteix et al., 2019).

It was often stated that there exists a clear trade-off between interpretation and predictive
performance (Kuhn and Johnson, 2013). A reformulation of this statement is that a model
needs to be complex in order to generalize well. This thesis work tries to question this
inverse relationship, by looking at in-between approaches that are just complex enough
to generalize well, but reshape the complexity in a form that allows interpretation. The
complexity is necessary to account for the uncertainty in the model building process. The
guiding question of this work is if it may be possible to account for the uncertainty in a
way that does not turn the model into a black-box.

1.2 Aim of this work

This cumulative dissertation explores different representations of tree ensemble methods.
The goal is to preserve the upsides of ensemble learning – strong predictive performance,
robustness and smooth decision boundaries – but reshape the ensemble in a form that is
more accessible to human interpretation. A special emphasis is hereby on the approxima-
tion of the forest by a set of decision rules that are more interpretable than the original
forest. The assumption is that the greedy learning procedure in tree ensembles produces
overly complex models. By removing unnecessary complexity, it is therefore possible to
simplify the model significantly and still preserve the most important pattern.

Decision forests can be interpreted as a special form of model uncertainty in decision
tree learning. Typically, a large number of trees is necessary to capture the different possi-
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ble ways to model the data. This work explores the possibility to ‘compress’ much of this
complexity in a much smaller number of decision rules or even a single tree, that inherit an
explicit representation of the uncertainty about the exact structure. To this end, concepts
from the theory of model imprecision are borrowed to capture the rich set of tree models
that might fit the data well, instead of only an optimal one. One line of work is therefore
to approximate the forests behaviour as an imprecise version of a much simpler model,
such as an set-valued decision tree or rule ensemble.

In a similar mindset, Bayesian regularization approaches are combined with rule ensemble
learning, which enables natural ways to quantify uncertainty of both parameter estimates,
as well as derived statistics, such as variable importance scores. Sampling from the poste-
rior distribution of the rule ensemble can be interpreted as drawing different ensembles all
together, thus allows inspection of the robustness and variability of the model.

Different regularization schemes – in both Bayesian regularization and frequentist L1-
regularization – are explored that directly take into account the ‘interpretational com-
plexity’ and trustworthiness of the terms, instead of only penalizing the magnitude of
coefficients. To this end a rule structured prior is proposed that allows a direct penal-
ization of overly complex rules. A second line of thought is to penalize terms differently,
depending on its source and reliability. This opens up the inclusion and prioritization
of expert knowledge into otherwise purely data driven models. The aim is to enrich the
ensemble with valuable information and to build trust from domain experts.
Lastly, in the context of biomarker selection we explore regularization schemes that prior-
itize genes that appear as trustworthy predictors when analysed univariatly. The goal is
to improve the variable selection stability and reduce over-fitting on spurious relationships.

In a wider context, the proposed methods aim at improving on the trustworthiness of
ensemble models, by allowing the user to judge if the found mechanisms are reasonable –
and perhaps interesting – or are likely just random fluctuations and spurious correlations.
It is argued here that these aspects are highly relevant to produce reliable results, in both
science and industry. Representing tree ensembles in a way, that allow a glimpse into their
inner working are therefore highly desirable for sanity checks, building trust from domain
experts and their application in high stake situations. Being able to follow the models
‘reasoning’ makes it also easier to compare and contrast new results with existing research
and to derive hypotheses for further research (Boulesteix et al., 2019).

The general difficulty of reproducibility and its pitfalls are also studied in this work, to
emphasise this importance of interpretable, reliable and yet accurate ensemble models.

This thesis is structured as follows: Chapter 2 introduced notations and gives an overview
on existing decision tree and tree-based ensemble approaches that the contributions build
upon. Also the framework of rule ensembles is introduced, as an existing alternative rep-
resentation of decision forests. Chapter 3 provides an overview and a contextualisation of
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the contributions made in this thesis. Additionally, for each contribution a brief summary
is given, together with critical comments and an outlook of possible future research direc-
tions. In Section 3.1 alternative representations of tree ensembles are explored. Section 3.2
presents applications of machine learning methods in situations with high and complex
uncertainty. Section 3.3 finishes with a contribution to the state of reproducibility in
statistical research. Chapter 4 concludes with final remarks by the author.





2 Methodological Background

In supervised learning, we are given a training data set consisting of N tuples {(yi, xi)}Ni=1

where y ∈ R or y ∈ {0, 1} for regression and binary classification respectively. Y is
referred to as outcome, response or label, with realisation y and yi denoting the realisation
for observation i. X denotes the vector consisting of the p random variables X1, . . . , Xp,
referred to as covariates. x denotes the realisation of X and xi denotes the observed vector
of covariates for observation i. The j’th component of the covariate vector is accessed via
x(j). In this work, if not stated otherwise, the covariates are assumed to be numeric, hence
X ∈ Rp where p is the number of covariates. The goal in supervised learning is to ‘learn’
the unknown function F (X) = Y that maps the covariate space to the outcome and to
use this function for predictions. As the data is typically observed under noise and with a
finite sample size N , F (X) is barely an approximation of the underlying true function 1.

2.1 Decision Trees

This section provides a non-exhaustive overview on decision tree learning. The focus is on
areas and concepts that are relevant within the presented work. More extensive surveys
on the topic of classic decision trees can be found in (Rokach and Maimon, 2005; Strobl
et al., 2009).

Decision trees are non-parametric, graphical models, that recursively partition the co-
variate space X into hyper-rectangles S ∈ Rp, and assign piecewise constant predictions
to all values that fall into each hyper-rectangle.2 Starting at the root node where all data
points are present, at each inner node a decision is made based on a splitting rule x(v) ∈ s,
where s ∈ R is a subspace in covariate v, that is used for the comparison. Assuming
numeric covariates, s has the form of an interval (−∞, t] or [t,∞) where t ∈ R is the
splitpoint. The splitting function φ can be expressed via

φ(x, v, t) = I(x(v) ≤ t) or φ(x, v, t) = I(x(v) ≥ t) = 1− I(x(v) < t), (2.1)

depending on the direction that is encoded in the tree and I ∈ {0, 1} is the indicator
function. All observations that fulfil the splitting rule are moved to the left child node or

1If such a function even exists.
2Even though the partitions can be p-dimensional, due to the selective manner of decision trees, they

usually live in much lower dimensions.
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Figure 2.1: Representation of a tree for binary classification (Y=1 as red dots and Y=0 as
blue dots) with two covariates X1 and X2. Left: Representation of the sub-
spaces S in feature space, with colors indicating the predicted class. Right:
Representation of the tree as a graph, where each node can be written as a
decision rule r(x). Inside the leaf-nodes (rectangles) the upper number spec-
ifies the predicted class, the bottom number the predicted probability for the
predicted class. At each inner node the splitting rule is shown.

to the right child node otherwise 3. Here we will represent the splitting rule or condition
as the triplet c = (z, v, t), where z specifies the leafnode on which path the splitting rule
is a part of 4.
The recursive partitioning is repeated until a leaf node is reached and the assigned (con-
stant) leaf value is returned as a prediction for all observations reaching this leaf node5.
Each leaf node specifies a partition Sh. Sh can be seen as a decision rule that combines

3Assuming binary decision trees. Other popular classes of decision trees are oblique trees (Murthy
et al., 1994; Carreira-Perpinán and Tavallali, 2018; Bennett et al., 2000), where hyperplanes are used
as splitting condition and multi-way trees, with more than two childnodes (Khandagale et al., 2020;
Breiman et al., 1984).

4Many splitting rules will therefore be part of several paths.
5An alternative are model-trees that use a parametric model in each leaf node to make a prediction,

instead of the constant value (Zeileis et al., 2008; Seibold et al., 2016; Strobl et al., 2015).
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the splitting rules along its path with the logical ∧ and can be written as,

I(x ∈ Sh) = rh(x) =
∏

a:za=h

φ(x, va, ta) rh ∈ {0, 1}. (2.2)

Figure 2.1 shows the different representations of the same decision tree in feature space
and as a graph.
The output of the whole decision tree can be written as the sum of decision rules leading
to leafnodes , multiplied with the corresponding prediction value µh,

P̂ (Y |X = x) =
∑

h∈M
I(x ∈ Sh)µh =

∑

h∈M
rh(x)µh, (2.3)

where M is the index set of leafnodes.
One concept to deal with uncertainty in the measurement of covariates, or when using
logistic decision functions in the inner nodes, is to use fractional observations (Ripley,
1996; Quinlan, 1993). The idea is to move observations to both childnodes, if a decision
cannot be made with certainty. This approach can also be applied if missing values are
encountered, by splitting up the observation on both child nodes and thus abstaining from
making any definite decision. A final prediction for such fractional observations can be
obtained by averaging the prediction values of all leaf nodes, weighted by the fraction (or
probability) of the observation that is found in each leaf node.

Decision trees are very flexible models and can capture non-linear relationships. Theo-
retically, decision trees can approximate any given function F (X). However linear rela-
tionships require very deep trees and will still ultimately remain non-smooth.
Through their hierarchical structure, decision trees are able to detect interactions between
covariates, without any prior specifications. Decision trees can also combine categorical
and numerical features in a natural way. Several ways to deal with missing values in
the covariates have been proposed, which makes them applicable in many data situations
(Quinlan, 1993).
Typically, at each node only a single covariate is used for splitting, making the graphical
representation relatively easy to interpret. The structure of binary decision trees and its
typical representation as a graph of splitting rules deliver an easy human comprehensibil-
ity (Podgorelec et al., 2002), as shown in Figure 2.1. To deduce the characteristics of the
subgroups, specified by the leaf nodes of a tree, one has to simply start at the top of the
tree and successively move down the tree, which somewhat resembles human reasoning.
This properties make decision trees popular in the medical domain, as the practitioner can
explain what a prediction is based on.

Tree Induction and the Problem of Instability. While decision trees have a number
of attractive properties, they also have major shortcomings. One problem is the lack of
smoothness found in trees, as typically piecewise constant functions are used. While being
arguably more problematic for regression, as the underlying function is expected to be
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smooth here, this can also be problematic in the case of classification, as already minor
changes in the covariate values can lead to a completely different prediction.

Another well known drawback of decision trees is their instability (Breiman, 1996; Philipp
et al., 2016; Strobl et al., 2009). Instability stems mostly from the tree induction process.
Learning globally optimal decision trees is typically computationally infeasible. For this
reason a variety of (greedy) decision tree induction methods have been proposed in the
literature that instead use local quality criteria to successively partition the training data.
At each node, beginning at the root node, a search is performed over all possible splitting
points. For each possible split the quality in the two child nodes is evaluated and the split
taken that promises the biggest improvement in purity. In classification the most popular
quality criteria are gini gain (Breiman et al., 1984) and entropy (Quinlan, 1993). Similarly,
for regression trees the mean squared error can be used as a measure of purity. The most
common splitting criteria are biased towards selecting covariates with many unique values
and missing values. Unbiased selection criteria, that decouple variable selection and split-
point selection, have been proposed in (Strobl et al., 2007a; Hothorn et al., 2006). Once
the locally optimal splitting covariate and point is found, the training samples are moved
to the two child nodes and the procedure is repeated until no partitioning improves the
impurity further or some other stopping criteria, such as maximum tree depth, is reached 6.
Instability can be traced back to the all-in decision at each node (Mirzamomen and Kan-
gavari, 2017). Even though two splitting rules can be close in terms of expected gain, they
can lead to very different data partitionings. Due to the recursive process, the choice will
greatly impact the following selections of splitting rules and thus the structure of the tree.
This leads to a large degree of structural instability 7, with respect to small changes in
the training data. Removing or adding only a small fraction of observations can lead to
completely different overall tree structures.

As an alternative to the all-in decisions at each node, option trees (Buntine, 1992) and
alternating decision trees (Freund and Mason, 1999; Frank et al., 2015) have been pro-
posed. Instead of using only the single best split at each node multiple splitting rules are
allowed, capturing the uncertainty involved with the decision. This essentially leads to a
set of trees, that share large subtrees. Following each subtree leads to an exponentially
growing number of different trees that can be averaged to get a final prediction.

Another approach to robustify decision trees is through the use of imprecise probabili-
ties (Corani et al., 2014; Bernard, 2005). Instead of evaluating only the observed data,
virtual observations from both classes are added to the ’true’ observations in each leaf,

6A common alternative is to grow overly large trees and ‘prune’ away subtrees that contribute little
(Mingers, 1989; Patil et al., 2010).

7Structural instability refers to the graphical representation of the tree. Different trees may lead to the
same data partitioning through different splitting rules, making interpretations based on a single tree
highly suspicious. Model instability refers to the Variance of the model F (x) when learned on slightly
different training samples.
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leading to a credal set of possible target distributions for which lower and upper bounds
of entropy can be calculated (Mantas and Abellán, 2014; Abellan and Moral, 2003). This
approach takes into account the effect of small perturbations in the training data and leads
to more robust trees that perform better in the presence of label errors and noise.

2.2 Ensemble Learning as Generalized Additive Model

Ensemble learning can be used to address the problems of poor generalization due to
overfitting and instability of greedily learned decision trees. Combining several decision
trees built on different samples of the training data (Friedman et al., 2003), called weak
learners, generally leads to more accurate and robust predictions. The benefits of ensemble
learning have also been attributed to its smoothing behaviour (Bühlmann and Yu, 2002;
Bühlmann, 2012): Averaging over several piecewise constant functions leads to an overall
smoother decision boundary 8. The sacrifice to be made, when adopting the ensemble
approach, is the immediate loss in structural interpretability of the individual decision
trees.
From a statistical point of view, most ensemble methods can be framed as generalized
additive models (Dietterich, 2002; Hastie and Tibshirani, 2017). For example an ensemble
regressor may be written as a linear combination of M weak learners fl

F (x) = α0 +
M∑

l=1

αlfl(x), (2.4)

where α0 is an intercept term and αl, l = 1, ...,M are weights. In the context of tree ensem-
ble methods typically αl ∈ [0, 1],

∑M
l=1 αl = 1 is used, which is the weighted mean of the

individual predictions. Also more sophisticated models can be used to learn the weights
via ‘stacking’ (Zhou, 2021). This work will focus on linear real weights αl ∈ R with no
further restrictions.

Interestingly, the ensemble F (x) that combines several weak learners can represent much
more complex decision boundaries than any individual learner f(x), also known as the
representational problem (Dietterich, 2002). In the context of decision trees and decision
rules this means that ensembles of decision trees can represent (almost) smooth and other
complex decision boundaries, whereas single (binary) trees can only represent axis parallel
hyper-rectangles.

Obviously, combining different weak learners can only be effective, if the weak learners
capture different hypotheses about the data. Therefore when learning an ensemble, di-
versity among the learners needs to be promoted. The two most dominant approaches,
boosting and random forests, encourage diversity through different importance sampling
schemes (Friedman et al., 2003). These will be discussed in the following.

8that is ultimately still non-smooth in the case of a finite number of weak learners.
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2.3 Random Forests

Random forests combine decorrelated, independently grown, decision trees. By increas-
ing the variance between the individual trees the variance of the combined classifier will
decrease, leading on average to lower generalization errors. Decorrelation is achieved in
random forests by inducing randomness in the tree building process through simultaneously
applying two techniques: Bagging (Breiman, 1996) and random subspaces (Ho, 1998). This
leads to a decorrelation between the individual trees, or in other words, the trees become
experts of different aspects of the data.

In bagging, each tree fl is build on an independent bootstrap sample (Efron, 1982), lead-
ing to different datasets presented to each learner. While the original random forest uses
bootstrapping, it was argued in (Scornet, 2017; Bühlmann and Yu, 2002; Boulesteix et al.,
2012) that using subsampling (drawing without replacement) instead of bootstrapping does
not decrease the performance of random forests. On the other hand, using subsampling
reduces bias in variable importance measures (Strobl et al., 2007b) and allows to derive
theoretical properties of random forests such as consistency and asymptotic behaviour
(Biau and Scornet, 2016; Bernard et al., 2009). Resampling (using either bootstrap sam-
ples or subsampling) was shown to greatly improve the predictive performance of unstable
classifiers, such as decision trees. One important property of bagging is that it produces
smoother decision boundaries which leads to a better generalization (Bühlmann and Yu,
2002; Breiman, 2001; Bühlmann, 2012).

As a second source of randomness, random forests use the random subspaces method (Ho,
1998). At each node the next split is restricted to only a random subset of the covariates.
This decorrelates the trees further. The fraction of features to be used is also considered
the most important tuning parameter in random forests.
Predictions in random forests can be obtained by averaging over the individual predictions

FRF (x) =
1

M
(f1(x,Θ1) + ...+ fM(x,ΘM)) (2.5)

where f1, .., fM are the trees built on the independent re-samples with randomized feature
subsets at each node, denoted as Θ1, ...,ΘM . In the original formulation of random forests
trees are grown until purity, but recently random forests have also been shown to work
well with more shallow trees (Duroux and Scornet, 2018), which is beneficial from a com-
putational and an interpretational point of view.

Various extensions have been proposed to induce other sources of randomness and thus
decorrelate the trees further. This includes sampling of the splitting points (Geurts et al.,
2006) and using transformations such as PCA (Rodriguez et al., 2006) or random projec-
tions on the input data (Dasgupta and Freund, 2008).
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2.4 Gradient Boosting

Similar to random forests, boosting can be framed as building a sequence of trees on
importance samples of the training data (Friedman et al., 2003). Instead of building the
trees independently, gradient boosting (Friedman, 2001) uses a stagewise approach. After
initializing with a first guess such as F0 = E(Y ), gradient boosting proceeds to iteratively
calculate the error gradient of the current ensemble via

u(x) = Ey

[
∂L(y, F (x))

∂F (x)

∣∣∣x
]

F (x)=Fm−1(x)

, (2.6)

where L as an appropriate loss function evaluated at the current ensemble Fm−1(x) =∑m−1
l=0 βlfl(x) and fits the next learner fm (e.g. CART) jointly with a linear weight βm

to the negative error gradient as the ’pseudo-responses’ ỹ = −u(x) instead of the original
response (Bühlmann and Hothorn, 2007). The next learner is added, with a shrinkage
factor ν to the current ensemble Fm(x) = Fm−1(x) + νβmfm(x) and the process repeated
until some stopping criteria is reached. As a greedy procedure, the previous ensemble is
fixed and remains unchanged in later iterations, in contrast to step-wise approaches. An
extension to the gradient boosting algorithm is to also induce randomness, by only using
a subsample to fit each new decision tree fm(x) (Friedman, 2002) and random feature
subsets. This stochastic gradient boosting was shown to lead to higher accuracy ensembles,
due to a decorrelation between the individual learners, most notably for smaller datasets.
Subsampling and shrinkage can be also viewed as a form of regularization (Bentéjac et al.,
2021). An additional penalty term was included recently in the popular eXtreme gradient
boosting (XGBoost) model (Chen and Guestrin, 2016) that directly penalizes the tree com-
plexity for each newly introduced base learner. As a different form of regularization it was
proposed to randomly drop-out previously trained trees from the ensemble in order to en-
hance decorrelation and combat over-specialisation of trees (Vinayak and Gilad-Bachrach,
2015).

The gradient boosting algorithm is very popular due to its flexibility and general formula-
tion. A large class of base learners can be employed for fm and any differentiable function
can be used as loss function L in equation 2.6, making it applicable in many domains e.g.
image processing (Feilke et al., 2016) or genomics (Ogutu et al., 2011). Important choices
– besides decision trees with log-loss – are the exponential loss for binary classification
which leads to the adaBoost algorithm (Bühlmann and Hothorn, 2007; Freund et al., 1996;
Schapire, 2003) or to use splines or generalized linear models as base learners (Bühlmann
and Hothorn, 2007; Bühlmann, 2006).
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2.5 Rule Ensemble Methods

Besides decision trees, there exists a steady tradition of ensemble learning that uses decision
rules as weak learners. One major advantage of decision rules is that they are composed of
a conjunction of simple if-else statements and are therefore highly interpretable for humans.
Another advantage of decision rules is that as long as the set of rules is small, it is easy to
employ them offline. One example for this are clinical guidelines, where the practitioner
performs several tests and can make a prediction based on the result of decision rules. The
goal in rule ensemble learning is therefore to produce as small sets as possible and reduce
the amount of overlap between rules, if interpretability is the goal.

Learning globally optimal decision rules is an NP-hard problem. Several (greedy) ap-
proaches to rule ensemble learning have been proposed, including divide and conquer
approaches (Cohen, 1995; Fürnkranz, 1999; Weiss and Indurkhya, 2000). Another very
effective line of research is to combine decision rules with boosting (Dembczyński et al.,
2010; Schapire, 1999). Boosted decision rule ensemble were shown to posses great predic-
tive performance, but a downside is that the ensembles can be quite large and the rules
overlapping, making them again more or less a black-box model.
Learning decision rules in a linear ensemble jointly with the weights and linear terms was
introduced in (Wei et al., 2019; Jawanpuria et al., 2011).

An alternative approach is to extract candidate rules from learned tree ensembles. RuleFit
(Friedman and Popescu, 2008) proposes to not learn the decision rules directly, but instead
take a three-step procedure.
First, a tree ensemble is generated. RuleFit uses gradient boosted trees, but also different
types of trees and ensemble approaches such as random forests (Nalenz and Villani, 2018)
and conditional random forests (Fokkema, 2020; Hothorn et al., 2006) can be used to gen-
erate the decision rules.
As a second step, each tree in the forest is decomposed into their defining decision rules, by
harvesting all paths to each node. Both inner nodes and leaf nodes are harvested, to allow
the ensemble to use simpler rules, when possible. The decomposition into the defining
splitting rules is shown in Figure 2.2. A total of 4 rules can be extracted from this tree,
such as r3(x) = I(x(1) ≤ 1) · I(x(2) ≤ −1).
In the third step, the decision rules rh(x) are transformed to dummy covariates using the
product of splitting functions φ (cf. Section 2.1, Equation 2.2) and included, together
with linear terms, in a regularized regression model. Additionally, some form of cleansing
should be performed beforehand. For example, as each inner node is the union of its two
child nodes, the dummy terms will be linearly dependent. Therefore, only one of each pair
of child nodes should be kept. This aspect is perhaps under-appreciated in the literature
and rarely discussed (Nalenz and Villani, 2018), but might have considerable effect on the
solution.

The rules extracted from the tree ensembles will show a high degree of redundancy, as
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x(1) ≤ 1

x(2) ≤ −1 ŷ1

ŷ2 ŷ3

yes no

yes no

φ(c) z v t

I(x(1) ≤ 1) 1 1 1
I(x(1) > 1) 2 1 1
I(x(1) ≤ 1) 3 1 1
I(x(2) ≤ −1) 3 2 −1
I(x(1) ≤ 1) 4 1 1
I(x(2) > −1) 4 2 −1

Figure 2.2: Left: Binary decision tree with 3 leafs, 1 internal node and the root node. Right:
Further decomposition of the decision rules into the elementary conditions.
Multiple conditions per rule are combined with the logical AND.

well as contain uninformative rules. Variable selection and regularization are therefore a
necessity. Nodeharvest (Meinshausen, 2010) solves this by a regularized linear program,
leading to relatively sparse solutions. RuleFit combines decision rules extracted from the
gradient boosted decision trees together with linear terms in the L1-regularized final model,

{α∗, β∗, β∗0} = arg min
β0,β,α

[
L(y, F (x, β0, β, α)) + λ

(
p∑

j=1

|βj|+
H∑

h=1

|αh|
)]

, (2.7)

with

F (x) = σ(β0 +

p∑

j=1

βjx
(j) +

H∑

h=1

αhrh(x)). (2.8)

Usually, all covariates are scaled before applying regularization techniques, as otherwise
features with a lower scale will be penalized more heavily. This can easily be seen by the
penalty for a covariate that is rescaled (given the same effect) as λ|β∗| = c · λ|β|. RuleFit
chooses to not scale the decision rules, which puts additional penalty on rules with a low
support. This implies that rules that cover close to half of all observations will be penal-
ized the least, as those will have the highest scale. However, one potential downside of this
heuristic is that it penalizes a low support, but does not directly penalizes unnecessary
conditions (Nalenz and Villani, 2018).
The output of RuleFit (and most rule ensemble models) is a list of rules, together with
their coefficients, which allows to order them by their effect size |β|.

Lastly, an interesting approach to rule ensemble learning was proposed recently in SIRUS
(Bénard et al., 2021). As a first step, SIRUS uses a quantile transformation to reduce the
number of unique values per covariate, that can be used for splitting. Then a random forest
is trained on the transformed dataset. Due to the low number of unique values, many paths
to nodes will be shared across the forest and SIRUS simply aggregates the extracted rules
and uses the k most frequent for prediction. This approach avoids the linear weighting
step, which leads to more stable and interpretable results.





3 About the contributing material:
Relations, summaries and outlooks
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Figure 3.1: Schematic graph of the contributions topics, aligned on the three step proce-
dure of the RuleFit approach where (1) stands for ensemble learning, (2) for the
extraction, gathering and processing of decision rules and (3) for the regular-
ized regression. Also shown are the contributions with the following abbrevia-
tions. CRF: Cultivated Random Forests, UV: Undecided Voters, HR: horserule,
CRE: Compressed Rule Ensembles, ERF: Expert RuleFit, DPL: Discriminative
Power Lasso. More details can be found in the Declaration of Contributions
(cf. page XI). A connection means that the contribution was concerned with
the topic. Not shown in the graph is the reproducibility study PLOS.

This cumulative dissertation explores the topic of representing tree ensembles by means
of simpler models, with a special focus on the RuleFit approach. Figure 3.1 positions the
contributions along the three steps of the RuleFit procedure, (1) general ensemble learn-
ing, (2) decision rule extraction and processing and (3) the regularized linear model. The
contributions HR, CRE, ERF are directly within the field of rule ensemble learning while
the other works contribute directly to one specific area. Not shown in Figure 3.1 is the
reproducibility study PLOS, which is not so much concerned with a specific method but
with the general state of reproducibility in statistical research. In the following the authors
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contributions are summarized and the main findings and results, together with a critical
reflection and future directions, presented. The contributions are divided in three parts.
The contributions in the first part (Section 3.1) are concerned with alternative representa-
tions of tree ensembles. The second part (Section 3.2) consists of applications of machine
learning methods in situations of high or complex uncertainty. The third part (Section 3.3)
presents the contribution PLOS, that analyses the current state of reproducibility.

3.1 Alternative Representations of Tree Ensembles

3.1.1 Bayesian Rule Ensemble Learning

Nalenz, M. and Villani, M. (2018). Tree ensembles with rule structured horseshoe regular-
ization. Annals of Applied Statistics, 12(4):2379–2408.
Code: horserule R-package on CRAN.

In this project we propose two alterations to the RuleFit model described in Section 2.7.
The first alteration is based on the known over-shrinkage effect in L1-regularized regression
(Zhao and Yu, 2006). With increasing number of noise covariates or redundant covariates,
a higher penalty parameter λ needs to be selected for sufficient shrinkage. At the same
time, a higher shrinkage will also shrink the relevant predictors towards zero, which the
model counteracts by taking in correlated predictors to substitute for the overshrinkage.
This behaviour is especially undesirable, when the goal is to build an interpretable model,
as it will lead to larger model sizes and jeopardizes the validity of the interpretation. Also,
in the context of rule ensembles, the number of unimportant predictors will always be high
(cf. Section 2.5).
Instead, we propose to use a modified version of the horseshoe prior (Carvalho et al., 2009,
2010) to find a sparse rule set. Horseshoe priors belong to the class of global-local shrinkage
priors (Bhadra et al., 2019). The standard horseshoe regression can be expressed as the
hierarchical Bayesian model

y|X,β, σ2 ∼ Nn(Xβ, σ2In), (3.1)

βj|λj, τ 2, σ2 ∼ N (0, λjτ
2σ2),

σ2 ∼ σ−2dσ2,

λj ∼ C+(0, 1),

τ ∼ C+(0, 1),

where C+(0, 1) denotes the standard half-Cauchy distribution. The main advantage is that
individual predictors can still become large, through their local scale parameters λj, even
when the global shrinkage τ becomes high. This counteracts the over-shrinkage and leaves
important predictors virtually untouched. As the coefficients are either included in full size,
or shrunk towards zero, the horseshoe prior can be seen as a continuous approximation of
the behaviour of a well specified discrete-mixture model (Carvalho et al., 2009). In the
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context of rule ensembles this leads to sparse solutions, with only a few rules remaining
in the model, which are allowed to have high β coefficients. As in the standard horseshoe
regression all predictors have the same prior inclusion probability, we extend the model by
including the rule structure. This is done by setting the local scale prior to

λj ∼ C+(0, Aj),

with

Aj =
(2 ·min(1− s(rj), s(rj)))µ

(l(rj))
η , (3.2)

where l(rj) denotes the length of rule j defined as its number of conditions and s is the
support of the rule. This expresses the prior belief that complicated and very specific rules
are unlikely to reflect any true relationships. The hyper-parameters η and µ control the
strength of this rule structured prior. Through the heavy tails of the half-Cauchy distri-
bution on λ, the prior can still be overwhelmed by the likelihood, if a rule fits the data
very well. Sampling from the posterior distribution is done using a more efficient Gibbs-
Sampling scheme proposed in (Makalic and Schmidt, 2015).

Building upon the benefits of the horseshoe regularization, as a second alteration we pro-
pose to use trees generated by both random forests and gradient boosting. This will
naturally lead to an overall larger number of rules, which the horseshoe regularization is
capable to deal with. The advantage is that random forests and gradient boosting will find
quite different rules and including both increases the chance of finding good ones.

Using both simulated data and regression benchmark data we show that the aforemen-
tioned changes greatly increase the predictive performance and the recovery of true linear
signals (if present). Additional experiments show, that the usage of the horseshoe prior is
the most influential change, whereas using both boosting and random forests to generate
the decision rules leads to a smaller, yet still notable improvement.

Additionally, the Bayesian framework allows a quantification of the uncertainty that is as-
sociated with the coefficient vector β. As we draw samples from the posterior distribution
of the coefficients P (β|·, X, Y ), we also obtain the posterior distribution for all derived
statistics. Following (Friedman and Popescu, 2008), the importance of a decision rule or
linear terms can be calculated as

Imp(rl) = |βl| sd(rl),

where sd denotes the standard deviation. Variable importance scores are calculated by
summing up the importance of all rules that involve covariate j, discounted by the number
of covariates involved in the rule. Therefore the variable importance of covariate j can be
written as,

VarImp(j) = Imp(x(j)) +
∑

l:j∈Ql

Imp(rl)/ |Ql| ,



20 3. About the contributing material: Relations, summaries and outlooks

Figure 3.2: Posterior distribution of the VarImp for the 13 covariates of the Boston Housing
dataset, which analyses the impact of different factors on the average housing
prices in areas of Boston. Graph taken from Nalenz and Villani (2018).

where Ql is the set of covariates involved in rule l and Imp(x(j)) is the importance of the
linear term (Friedman and Popescu, 2008). As both of these measures are functions of β, we
can derive posterior distributions, that allows to quantify the uncertainty of importance
scores. Figure 3.2 shows the posterior distribution of VarImp for the Boston housing
data. While some covariates have very narrow credible intervals, for others the uncertainty
about the importance is quite high. This quantification of uncertainty for measures such
as VarImp is interesting, as it can be used to guide further research hypotheses towards
the most promising covariates. Also it gives a measure of robustness for any conclusions
that are based on the VarImp.

Comments and Outlook. Even though the classification worked well on the dataset
that we tried in our experiments, we later found that the convergence properties of the
Gibbs-Sampling scheme can be poor. This is connected to the problem of separability in
combination with heavy tailed priors on the scales of regression coefficients (Ghosh et al.,
2018), that allows individual coefficients to become unreasonably large. To deal with this
problem it was recently proposed to use a more informative prior on the global scale param-
eter τ , to avoid extreme behaviours (Piironen and Vehtari, 2017). Another remedy could
be to use distributions with less heavy tails for τ . A second approach is the regularized
horseshoe prior, which puts a second level of penalty on values that are deem unreasonably
high (Piironen and Vehtari, 2017). It would be interesting to adopt these methods for the
classification setting.

The current implementation uses a rather efficient Gibbs sampling scheme based on the
work of Makalic and Schmidt (2015). However, for large datasets the current implemen-
tation is still too slow. Recently proposed sampling schemes promise even further perfor-
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mance increase for the horseshoe regression models, such as the elliptical slice sampling
(Hahn et al., 2019) or the recently proposed GPU accelerated sampling (Terenin et al.,
2019) which promise additional speed ups for large datasets.

The idea of applying Bayesian inference to re-estimate coefficients of an otherwise fixed
model to produce uncertainty estimates is also interesting for other model classes such as
deep learning (Klein et al., 2021). While fully Bayesian ensemble methods such as BART
(Hill et al., 2020; Chipman et al., 2010) and DART (Linero and Yang, 2018; Linero, 2018)
are very powerful, they can also be computationally costly for big datasets. Using a two-
step approach of estimating the structure and applying a Bayesian regression approach on
top can be a good compromise for large datasets.

Lastly, it would be interesting to sample the split points of otherwise fixed rules, by spec-
ifying a prior distribution for split points. The idea is, that this way the model does not
need to take in very similar rules to express the uncertainty about the split point, but
instead samples from the posterior distribution of split points. This idea is similar to the
approaches taken in CRE and CRF, discussed in the following.

3.1.2 Compressed Rule Ensembles

Nalenz, M. and Augustin, T. (2021a). Compressed rule ensemble learning. Under review
for AISTATS. Preprint available under: https://github.com/maltenlz/Malte-Nalenz/
blob/main/CRE.pdf.

Even though the RuleFit approach provides much simpler models compared to tree ensem-
bles, interpretability is still often suboptimal due to two reasons: (1) The final output from
RuleFit often still contains a relatively high number of rules that can be fairly complex
(involve a high number of conditions). This is partly due to the linear combination and
the over-shrinkage effect of the L1-regularized regression, as argued in section 3.1.1. (2)
Secondly, small changes in the data can lead to fairly different rule models. While this
may not be a problem in terms of predictive performance, it raises questions whether the
interpretation of the final rule set is valid (Bénard et al., 2021).

In Bühlmann and Yu (2002) the authors show that the good performance of forest meth-
ods can be attributed to the smoothing of the hard-thresholding rules. This is achieved by
averaging over similar trees with different splitting points. When reducing the set of rules
in the rule ensemble approach to a small number of non-smooth rules, it stands to reason
that the smoothing behaviour is lost. To maintain good predictive accuracy, the rule-set
therefore needs to become larger and contain similar and overlapping rules, in order to fit
smooth decision boundaries, which makes interpretation difficult.

To resolve this dilemma we propose to compress similar rules into soft rules with set-

https://github.com/maltenlz/Malte-Nalenz/blob/main/CRE.pdf
https://github.com/maltenlz/Malte-Nalenz/blob/main/CRE.pdf
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valued splitting points, called ensemble rules. This allows to carry over the smoothing
behaviour, while being relatively easy to interpret. To find similar rules, we perform uni-
variate k-means clustering on the split points found in the original forest. Given T (j) , the
set of all split-points from conditions that involve covariate j, the clusterlabels l are chosen
to minimize the cluster-criteria

C(k, µ, T (j)) =
k∑

l=1

∑

{z:g(j)z =l,tz∈T (j)}

(tz − µl)2, (3.3)

where k is a pre-specified number of clusters, g(j) is the vector of clusterlabels and µ the
vector of mean values of the clusters. Using the cluster solution from Equation 3.3, the
split-points in each group T

(j)
l are compressed into soft ensemble conditions via

Φ(x, j, l) = |T (j)
l |−1

∑

t∈T (j)
l

φ(x, j, t). (3.4)

The averaging over several discrete outputs from the splitting function φ turns the binary
decision into a soft decision, that gives a transition interval depending on T

(j)
l . Thus, per

covariate only k ensemble conditions remain that capture the most central aspects of the
forest method and are relatively robust towards changes in the training data.
By using groups of split points we capture the model variance and uncertainty of the tree
ensemble about the exact position of the optimal split-point. At the same time the rules
in Equation 3.4 are still simple to interpret, as they involve only one covariate at a time
and involve only a neighbourhood of split-points.
The conditions in each original rule are replaced with their corresponding ensemble con-
dition. The whole rule output is calculated by the product over all ensemble conditions
involved, leading to an overall soft rule output, denoted as R.
The Compressed Rule Ensemble (CRE) uses a linear combination of ensemble rules R. A
modified L1-regularized regression model is applied to achieve a sparse solution. To put
additional penalty on overly complex rules with many conditions, they are rescaled, using

R∗h(x) =
Rh(x)

l(Rh)η
, η > 0, (3.5)

where l(R) is the rule length and η a parameter controlling the amount of extra penalty.
This is inspired by the rule structured prior from Section 3.1.1 and can be seen as a variant
of the adaptive Lasso (Zou, 2006), which is also applied in Section 3.1.3 and Section 3.2.1.

Empirically, compressed rule ensembles are on average smaller, while achieving higher
accuracies, compared to competing rule ensemble methods. This is due to the smooth de-
cision boundaries introduced by the ensemble conditions (also discussed in Section 3.1.4).
An additional advantage of the CRE approach is that it provides a notion of prediction
stability. In the original RuleFit an observation can be close to several split-points and
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already small changes in the input space can lead to a significant change in the predictive
distribution. In CRE each ensemble rule provides a transition interval and small changes
will not have an unreasonable high impact on the prediction. At a first glance a set of
split-points or a transition interval makes interpretation more complex. However, in high
stake situations it is almost a necessity to know how reliable an active rule is and how close
the predictions are, which is a blind spot of hard thresholding rule ensembles. With that
CRE provides a better way to quantify the uncertainty in both the model structure and
predictions.

Comments and Outlook. One interesting future work direction would be to provide bet-
ter visualisation tools for CRE. In many cases it could be possible to back transform the
final rule output1 into a small number of very shallow (soft) decision trees.

The framework of rule compression is also interesting for the more general setting of clus-
tering and summarising of forest methods. Through the clustered nature of random forests,
it could be possible to approximate the decision forest by means of a small number of com-
pressed trees, granting a glimpse on the inner workings of the black-box. Using the same
logic, the CRE framework could be interesting for interpreting predictions. By gathering
all active leaf nodes for a given prediction and using the ensemble compression approach,
most of the model variance could be expressed by a relatively small number of ensemble
rules.

Lastly, a downside of the current approach is, that it ignores the depth of the rules, from
where the split points are extracted. If an effect is very specific, and only relevant in in-
teraction with other covariates, it might be blurred, when looking only at the univariate
distributions of split points. The key question that arises is, in what situations and how
much compression is reasonable without tempering with the signal, and when perhaps a
multivariate clustering approach would be more appropriate.

1The rule output is a list of ensemble rules with corresponding coefficients.
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3.1.3 Incorporating Expert Knowledge into Rule Ensembles

Ebner, L., Nalenz, M., ten Teije, A., van Harmelen, F., and Augustin, T. (2021). Ex-
pert rulefit: Complementing rule ensembles with expert knowledge. In 19th International
Conference on Artificial Intelligence in Medicine, KR4HC Workshop. Currently unavail-
able under the original address. Instead available under: https://github.com/maltenlz/
Malte-Nalenz/blob/main/ERF.pdf

Decision rules closely resemble the way of human reasoning and arguing. This similarity
allows the inclusion of already available knowledge, in the form of knowledge bases, expert
systems and domain knowledge, that can be expressed in form of decision rules. This con-
tribution explores the inclusion of already existing expert knowledge sources, in the form
of decision rules, to complement the purely data based rules generated in rule ensemble
methods. The rationale is that knowledge represented in textbooks and guidelines can be,
to a certain degree, seen as validated. This validation may not be only statistically, but
through clinical experiments, which adds valuable information. Including expert knowl-
edge can also improve generalization performance, when pattern drift can be expected,
the amount of training data is limited or the chance of confounder effects is high. As
discussed above, one example is the application of a predictive model trained on hospital
data. Purely data derived rules might capture characteristics that are specific to one hos-
pital and not work well in another (Lee and He, 2019). On the other hand, validated rules
are expected to also work well in other hospitals, as they are based on general knowledge.
Another argument for using expert rules is that decision rules that comply with knowledge
from other sources are to be preferred, and build trust in the model.
The proposed method Expert RuleFit (ERF) combines the set of rules extracted from deci-
sion trees with optional and confirmatory decision rules extracted from expert knowledge.
Optional and confirmed decision rules differ in their degree of certainty. Confirmed rules
might be knowledge acquired from textbooks that express biologically confirmed knowl-
edge 2, whereas optional rules can be prior knowledge from previous studies, which can
not be seen as validated (yet), but still add external information.
The full ERF model becomes

F (x) = α0 +
D∑

d=1

αdrd(x) +
∑

c∈Ic
αcrc(x) +

∑

o∈Io
αoro(x) +

∑

c∈Icl

αcllcl(x) +
∑

c∈Iol

αcolco(x), (3.6)

where Ic, Icl are the indices of confirmed rules and linear effects respectively, Io, Iol the
indices of the optional rules and optional linear effects.
Given the expert knowledge enriched rule-set, L1-regularized regression is used to find a
sparse solution. As validated knowledge is preferred, if it fits the data reasonable well, we

2Knowledge that is based on the understanding of the underlying biological processes.

https://github.com/maltenlz/Malte-Nalenz/blob/main/ERF.pdf
https://github.com/maltenlz/Malte-Nalenz/blob/main/ERF.pdf
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adjust the loss function to

{α∗, β∗, β∗0} = arg min
β0,β,α

[
L(y, F (x, β0, β, α)) + λ




D∑

d=1

|αd|+
∑

o∈Io
ν|αo|+

∑

ol∈Iol

η|βol |



]

(3.7)

= arg min
β0,β,α

[
L(y, F (x, β0, β, α)) +

D∑

d=1

λ|αd|+
∑

o∈Io
λν|αo|+

∑

ol∈Iol

λη|βol |
]
,

(3.8)

where ν, η ∈ [0, 1] are discount factors. Choosing ν, η < 1 leads to a preference of optional
terms over data generated ones. In Equation 3.8 no penalty is given to the inclusion of
validated knowledge, which leads to an automatic inclusion in the final model.
In first empirical results on a diabetes dataset we show, that the ERF model shows pre-
dictive performance on-par with the standard RuleFit model, while including a large pro-
portion of expert derived knowledge. This can build trust from domain experts and also
potentially generalize better to other datasets.

Comments and Outlook. The idea to induce expert knowledge acquired through dif-
ferent means, such as biological experiments, is very promising. In the medical domain,
for many diseases a huge body of literature exists. It would be quite wasteful, to discard
all prior knowledge. However, currently the knowledge acquisition is completely manual
which may be problematic in two ways.
With manual acquisition, the extracted expert knowledge might be biased by the expecta-
tions and prior knowledge of the modeller. This point may also be seen from the opposite
direction, as the modeller can make informed decisions about which knowledge to include,
which might actually improve the model. The second downside of manual acquisition is
the effort that it requires, as the amount of prior information can be vast. Automated
acquisition might help in both regards, as it is somewhat objective and able to process
large databases efficiently.

Another interesting application of ERF could be its usage to validate already acquired
knowledge. Given a repository of standardized datasets, the relevant expert knowledge
could be automatically acquired and validated empirically against other knowledge sources,
as well as against data derived rules, to get a measure of their accuracy. This idea is
connected to a problem in classical testing, where hypotheses are tested against null hy-
potheses, which is often unreasonable. Instead one could use the RuleFit approach to
derive alternative hypotheses from the data, which gives a more realistic comparison to
test against.
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Figure 3.3: Decision Surface for a simulated dataset of (a) The first split using CRF, (b) full
random forest model (c) CART tree with depth 2. CRF mimics the behaviour
of random forests. Graph taken from Nalenz and Augustin (2021b).

3.1.4 Decision Forests as Decision Tree Uncertainty

Nalenz, M. and Augustin, T. (2021b). Cultivated random forests: Robust decision tree
learning through tree structured ensembles. Technical Report. Available under: https:
//epub.ub.uni-muenchen.de/77861

This work addresses the issues of instability and poor generalization of classical tree in-
duction methods. As argued in Section 2.1 the instability mostly stems from the greedy
recursive learning procedure, which partitions the data very fast. Ensemble methods solve
this issue with combining multiple individually unstable decision trees to produce a more
stable and accurate – but also hard to interpret – final model.

This contribution explores an in-between approach, that mimics the behaviour of ran-
dom forests while providing a relatively simple tree structure. At each node, instead of
keeping only the locally best splitting rule, we keep all splits that are ‘almost as good’. To
this end two type of ensemble modules are introduced that combine sets of decisions into
soft decision, similar to the compressed rules in Section 3.1.2. To capture the uncertainty
about the correct split point, robust split modules keep the k closest splitpoints on both
sides of the optimal splitpoint. Let t0 denote the central splitpoint and (x(i), w(i)) the i’th
ordered covariate value and its fraction present in the current node to split then the robust
split module consists of the set

T (t0) = {t−j = x(i−j) ≤ . . . ≤ t−1 = x(i−1) ≤ t0 = x(i) ≤ t1 = x(i+1) ≤ . . . ≤ tm = x(i+m)},

where j and m are chosen as the highest value that the sum of weights on the left and right
side of t0 lower than k. The splitting rule can be calculated as in CRE (cf. equation 3.4) by

https://epub.ub.uni-muenchen.de/77861
https://epub.ub.uni-muenchen.de/77861
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averaging over the individual decisions. During the induction process the whole set of split
points is evaluated by averaging the individual impurity values implied by each split point.
This can be seen as a form of regularization, as it forces the algorithm to prefer regions
that are stable towards the purity measure and punishes regions where small changes in
the covariate values lead to a drastic decline in the impurity measure. The idea is similar to
the idea of robust split points in (Strobl and Augustin, 2009). If a splitpoint is good, small
changes in the input space should not have a dramatic influence on the impurity value.
This can also be seen from the viewpoint of data imprecision, with a fixed splitpoint, but
asking the question how much the prediction would change, if the observation was slightly
different. In contrast to previous soft decision tree models, the approach is non-parametric
and purely based on the distribution of the training data around the split point in a given
node.
To capture the uncertainty about the correct covariate to chose, option modules that con-
sist of all covariates that lead to impurity criteria within a margin of the optimal one.
The decision rules are directed, such that the left childnode has the higher implied target
probability as in (Zimmermann, 2008).
At each node, while training and prediction, observations are passed to both childnodes as
fractional observations, expressing our uncertainty about the correct split and leading to
more stable tree structures (Abbasian et al., 2013), as ‘close call’ observations will be found
in both childnodes. Combining multiple ensemble modulesM, provides relatively smooth
decision boundaries, that mimic random forests. The decision boundary of the resulting
Cultivated Random Forest (CRF) and its ability to mimic a random forest is shown in
Figure 3.3 for simulated data.

CRF can be also interpreted as a specific kind of ensemble. The fraction of an obser-
vation that is present in a leafnode can be written as the average of an ensemble of trees,
where the individual trees are elements of the Cartesian product of each ensemble module,
via

L(x,ML) =
∏

M∈ML

(
1

|M|
∑

d∈M
d(x)

)
=

1

|D×|
∑

DL∈D×

(∏

d∈DL
d(x)

)
=

1

|D×|
∑

DL∈D×
L(x, DL),

(3.9)

where ML is the set of modules that lead to the leaf node, d are the individual decisions
in each module M, and D× the Cartesian product of all modules on the path to the leaf
node. Intuitively, it is the same, if we make multiple decisions at each node, or average
over the set of binary trees, spanned by the ensemble modules.
Empirically, we show that CRF reaches predictive performance close to random forests,
while being structurally much simpler, as the model is centralized around a single tree
structure. With that CRF offers a nice trade-off between predictive performance and
model parsimony. Especially noteworthy is that using only robust split modules already
leads to very decent predictive performance on some datasets, close to random forests and
sometimes better. These models have the advantage of having an interpretation that is



28 3. About the contributing material: Relations, summaries and outlooks

similar to normal decision trees and hence relatively open for human interpretation.
CRF also provides a natural measure of model uncertainty: By looking at the spread of
a given observations over the different leafs and its predictions, one can easily identify if
the decisions were often close and hence the observation ends up in many different leaf
nodes. For this observations the sensible approach could be to abstain from a prediction
and instead use a different prediction method or consult an domain expert.

Comments and Outlook. In the current approach the margin within which different co-
variates are seen as ’almost as good’ in the option modules needs to be pre-specified. This
is clearly suboptimal, as the parameter most likely will depend on the data at hand. A
more statistically motivated approach would be beneficial. The ideas presented in (Strobl
and Augustin, 2009) might be interesting to this end. One heuristic could be to specify a
fraction of observations that need to flip label, in order for two splits to be equally good.

A second potential improvement would be to also allow multiple robust split modules
per covariate, to allow for multi-modal impurity surfaces. It is however unclear if this is
desirable, as it will come at the price of making the model more complicated and one loses
the relatively easy tree structure.

In general the proposed method does not require much additional computation at training
time, as the entropy for each possible splitting point and covariate is computed regardless.
A slight increase in computation, if trees are grown to full depth is due to the fact, that
the data is separated at a slower rate, as many observations will be present in both child
nodes, which on the other hand is beneficial in terms of model stability and generalizabil-
ity. More optimised implementations, preferably written in high performance languages,
such as C++. would make CRF computationally slightly worse than CART and C4.5 but
cheaper compared to full ensemble methods.

Given that computation is feasible, it would also be interesting to combine a few CRF
trees again into an ensemble. The expectation is that the effect of re-sampling is less no-
table, as the weak learners are much more stable and CRF already mimics an ensemble of
re-sampled trees. Therefore, we would expect less gains from bagging and random forests,
but the combination with boosting could be quite interesting.
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3.2 Machine Learning Applications under Severe
Uncertainty

3.2.1 Regularized Regression for Single Cell Data

Fütterer, C., Nalenz, M., and Augustin, T. (2021). Discriminative power Lasso – incorpo-
rating discriminative power of genes into regularization-based variable selection. Technical
Report. Available under: https://epub.ub.uni-muenchen.de/77862

The identification of biomarkers that can be used as indicators for certain outcomes of a
disease is an important but challenging task. The problems mostly arise from the high
dimensionality of the data, coupled with often relatively few observations. Additionally,
the dependency structure can be complex, with high correlations between genes. Often
already a small number of decisive genes can be found, that explain a certain disease rea-
sonably well. The goal in this setting is therefore to select the most decisive covariates.

The commonly used L1-regularized regression can be used to select relatively small sets of
candidate genes that can be used for either further analysis or predictions. However, due
to the over-shrinkage effect and small N the variable selection performance and consistency
of LASSO may be suboptimal.
In this contribution we explore the combination of clustering metrics with supervised regu-
larized regression modelling. In a first step, for each gene the separation of the target groups
is evaluated univariately. The biological reasoning is, that decisive genes should express
differently in each group. To this end the clustering evaluation metrics Davies-Bouldin
and Silhouette indices are used (Arbelaitz et al., 2013). Additionally, discriminative power
based on ANOVA scores are considered. Instead of using the output from a clustering
algorithm, directly the target classes are used as groups. This measure of discriminative
power of each gene contains information about the compactness and difference in means
between the target groups.
In a second step a customized L1-regression is used, where the individual penalties are
proportional to the discriminative power, which is similar to the adaptive LASSO (Zou,
2006). This gives the multivariate model a push towards genes that also appear decisive
univariatly and decompose nicely into groups. On the other hands, genes that only work
well in a multivariate model, are penalized more heavily. As in this extreme p >> N sit-
uation the overall uncertainty is high, this more cautious approach focuses on the clearly
relevant genes. The resulting Discriminative Power Lasso (DP-L) has an interesting inter-
pretation as a soft filtering approach. Instead of the often used hard filtering of genes prior
to the modelling, we do not exclude genes, but instead promote the promising ones. This
also reduces the ‘researchers degrees of freedom’ (Simmons et al., 2011) and thus may lead
to a better reproducibility.

In experiments on single cell data and on simulated data, we show that the inclusion

https://epub.ub.uni-muenchen.de/77862
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of the discriminative power measure leads to significantly smaller final models, while being
on par in terms of accuracy compared to Lasso, adaptive Lasso and the elastic net (Zou
and Hastie, 2005). Especially, the precision of identifying relevant genes is significantly
improved.

Comments and Outlook. An interesting extension would be to use Bayesian shrinkage
priors, as in Section 3.1.1, which were already applied successfully previously to genetic
data (Li and Yao, 2018). The Bayesian framework allows for more intuitive formulation
of prior inclusion probabilities. Similar to the rule structured prior, one could therefore
adjust the prior inclusion probabilities of promising genes.

Secondly, the application in other domains would be interesting. In areas, where the
uncertainty of finding the correct covariates is high and the target groups are expected to
express differently in their univariate distributions, DP-L could be used to perform a more
robust variable selection compared to the Lasso.

3.2.2 Ensemble Learning under Complex Uncertainty

Kreiss, D., Nalenz, M., and Augustin, T. (2020). Undecided voters as set-valued
information–machine learning approaches under complex uncertainty. Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Tutorial and
Workshop on Uncertainty in Machine Learning. Available under: https://github.com/
maltenlz/Malte-Nalenz/blob/main/UV.pdf

Undecided voters are a non-neglectable phenomenon in elections. Most current polling
and forecasting approaches either force the undecided voter to give a (unjustified) precise
answer, or simply drop them all-together. In this article we argue that both approaches
do not represent the inherent imprecision of the party preference in a satisfying way. Let
S = {1, .., s} be the different options in an election, the true answer of an undecided voter
can not be represented by any single element from S, but instead several elements, between
which the individual is still pondering.

This can be expressed by the concept of consideration sets, that contain multiple elements
from S, that the undecided voter has not yet decided against (Oscarsson and Rosema,
2019). With that, the consideration set can be seen as the power set Y = P(S) of S. Each
element in Y can be interpreted, from the so called ontic perspective, as an entity on their
own, allowing the application of classic supervised learning approaches. For example, a
multinomial regression model can be applied where each ` ∈ Y is used as outcome category
(Plass, 2018). In this article clustering algorithms are applied, in order to find structural
differences between the different groups of undecided voters.
On the other hand, from the so called epistemic point of view, the consideration set can
be interpreted as a coarse version of the true but at this time unknown outcome. This

https://github.com/maltenlz/Malte-Nalenz/blob/main/UV.pdf
https://github.com/maltenlz/Malte-Nalenz/blob/main/UV.pdf
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interpretation is especially interesting for forecasting. Let ` ∈ P(S) be the individuals
consideration set and X the covariates, then under the assumption of random coarsening
and identical conditional distributions of Y given X for the decided and the undecided
voters, point valued estimated can be obtained via

P̂ (Y = l|Y = `,X = x) =
P̂ (Y = l|X = x, Id = 1)∑
a∈` P̂ (Y = a|X = x, Id = 1)

, (3.10)

where Id is an indicator if the individual belongs to the group of decided voters (Kreiss
and Augustin, 2020). This approach uses the decided voters to estimate the conditional
distribution and normalizes the multinomial distribution with the probabilities from the
outcomes that are part of the consideration set, excluding all other classes. The conditional
distributions can be estimated using standard machine learning approaches. Because we
expect voter preferences to depend on complex covariate interactions as well as non-linear
dependencies, random forests is a natural choice for this estimation problem. Random
forests are also naturally capable of using both numeric and categorical covariates. After
estimating the conditional probability distribution we use (3.10) to refine the random
forests estimates, by including the information of the consideration sets, producing a final
point estimate for each individual. By that, all available information is used in a satisfying
way.

Comments and Outlook. The decomposition in Equation 3.10 opens up the application
of standard statistical or machine learning approaches, while at the same time taking into
account the complex structure of the outcome. This approach is very data efficient, as it
can make use of partial information, which otherwise would be discarded.

In this work the set valued consideration sets were reduced to a point valued estimate
under the assumption, that the conditional distribution of the undecided is identical to
the conditional distribution of the decided voters. However, if the goal is for example to
forecast coalitions of parties, the consideration sets offer an even more natural way to reach
point forecasts. For example, if a person is pondering between the green party and the
SPD, one knows for certain that a potential coalition of green, SPD and FDP will receive
its vote. This also reduces the forecast uncertainty as no estimate for the precise choice is
required (Kreiss and Augustin, 2021).
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3.3 Reproducibility Study

Seibold, H., Czerny, S., Decke, S., Dieterle, R., Eder, T., Fohr, S., Hahn, N., Hartmann,
R., Heindl, C., Kopper, P., Lepke, D., Loidl, V., Mandl, M., Musiol, S., Peter, J., Piehler,
A., Rojas, E., Schmid, S., Schmidt, H., Schmoll, M., Schneider, L., To, X.-Y., Tran, V.,
Völker, A., Wagner, M., Wagner, J., Waize, M., Wecker, H., Yang, R., Zellner, S., and
Nalenz, M. (2021). A computational reproducibility study of PLOS ONE articles featuring
longitudinal data analyses. PLOS ONE, 16(6).
Code: https://gitlab.com/HeidiSeibold/reproducibility-study-plos-one

Computational reproducibility, even when the used dataset and a description of the method
used are available, is far from trivial (Artner et al., 2020). Typical problems involve vague-
ness in the description of the methods, especially missing specifications of parameters and
preprocessing steps, missing data descriptions or coding errors and a lack of code in an open
source language, such as R (R Core Team, 2021) or Python (Van Rossum and Drake Jr,
1995).

In this project computational reproducibility was measured empirically in the setting of
a masters level course in ‘longitudinal data analysis’. First, we selected papers published
in PLOS ONE, that used longitudinal statistical methods (i.e. Generalized linear mixed
models or Generalized estimated equations), had data and a data description available.
Authors were asked for their cooperation in case of arising questions and only responsive
authors included in the study. Using this criteria eleven papers were selected and dis-
tributed to student groups of 2-3 students each. The exercise sessions were used by the
groups to work on their project during the semester. As an end result, each student group
handed in a detailed report, including a summary of the content, the methods involved, the
reproduction process, problems in the reproduction process, as well as their correspondence
with the authors of the article 3. Reproduction was performed solely with R, independent
from the language used in the article.

Successful reproducibility was defined as reaching the same interpretation, given the data
analysis. This relatively loose definition was required, as the analysed papers used very dif-
ferent models and interpreted different parameters and statistics. However, we performed a
qualitative analysis for each article, about the difficulties, problems and solutions that were
encountered. Overall, for eight out of the eleven articles we were able to reach the same
interpretation as the authors. In the non-reproducible papers, the problems arose mainly
through software issues coupled with a very vague methods description. Even though 8 out
of 11 appears as a good quota for reproduction, for many articles, a considerable amount
of reverse engineering was necessary to deduce important specifications, such as the corre-
lation structure. Also only two papers were reproducible without contacting the authors
to receive additional information or code. Overall, the study supports the demand that

3The student groups were encouraged to write emails to the authors in case of not surmountable problems.
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source code and data should be provided for each submission. Additionally, vague methods
descriptions make reproduction very difficult.

Comments and Outlook. The idea of using students to test reproducibility appears to
be a win-win situation. After the course, we received very positive feedback from the
student side. The motivation, to contribute to something important (reproducibility) was
an important motivator. Through informal feedback we were told, that reproducing the
results also helped to understand the methods better. This makes sense, as often the devil
lays in the detail, when it comes to reproducing an article and therefore a thorough un-
derstanding of the methods is required. At the same time more studies are reproduced,
which is a big win as well, as it directly adds to the credibility of results. To make this
teaching framework easier to implement, it could help to define more detailed check lists as
an orientation for the student groups. However such a detailed check list is hard to define
for more complex models and presumably has to be topic specific.

The definition of ‘reaching the same interpretation’ used in this project was flexible enough
for the study at hand, but is not suitable for larger scale studies. More formal definitions of
reproducibility, such as the ones in Artner et al. (2020) would be very important for more
complex statistical data analysis, but are hard to define. More research on reproducibility,
such as Hoffmann et al. (2021) is therefore very important to ensure scientific progress.





4 Concluding remarks

This chapter contains a general resume and outlook. More detailed conclusions and out-
looks for each contribution can be found in the previous chapter.

This thesis explored alternative representations of tree ensemble methods, by means of
simpler models. In many cases interpretability can be improved by regularizing away
unnecessary complexity and reshaping the remaining model variance in a more compre-
hensible form. Contrary to the often stated trade-off between simplicity and accuracy,
simplifying forest methods does not necessarily decrease accuracy – and sometimes even
improves it. Especially promising is the approach to represent tree ensembles by means
of set-valued rules, that can compress the uncontrolled growth of the original forest into
a much simpler form that focusses on the most central pattern. The possibility that a
syntheses of simplicity and accuracy is possible gives hope that the current rise of machine
learning methods in critical areas of society such as the digitalization of official statis-
tics and healthcare will not necessarily be followed by a great depression due to arising
problems connected to the lack of insight. The ability to give an explanation, as well as
an honest characterization of model uncertainty, must be seen as a prerequisite for a suc-
cessful and safe application, that is compliant with societal, political and ethical standards.

Even though decision rule ensembles promise a nice trade-off between simplicity and ac-
curacy, in future work the validity, consistency and stability of rule ensembles need to be
analysed more closely. The results presented in Gennatas et al. (2020) imply that decision
rule ensembles often coincide with the expectation of domain experts, but more studies are
needed on this important topic.

The frameworks presented here are very general and allow different directions moving
forward. As they mostly build on forest methods in a post-processing manner, their rele-
vance is directly connected to the popularity of forest methods. The application of forest
methods in areas, where interpretation is often more important than prediction, such as
psychology (Fokkema and Strobl, 2020) makes interpretable models even more appealing.
An interesting future direction could be to use simplified representations of forests to allow
a descriptive analysis of the most important pattern that the model relies on, rather than
building a new predictive model. To this end, it may be possible to derive Pareto-efficient
points between accuracy and simplicity, similar to the proportion of variance explained
in principal component analysis. With that, the approach of representing tree ensemble
methods by set-valued decision rule sets or trees is promising and a first step towards a
safer application of tree ensemble methods.
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We propose a new Bayesian model for flexible nonlinear regression and
classification using tree ensembles. The model is based on the RuleFit ap-
proach in Friedman and Popescu [Ann. Appl. Stat. 2 (2008) 916–954] where
rules from decision trees and linear terms are used in a L1-regularized regres-
sion. We modify RuleFit by replacing the L1-regularization by a horseshoe
prior, which is well known to give aggressive shrinkage of noise predictors
while leaving the important signal essentially untouched. This is especially
important when a large number of rules are used as predictors as many of
them only contribute noise. Our horseshoe prior has an additional hierarchi-
cal layer that applies more shrinkage a priori to rules with a large number
of splits, and to rules that are only satisfied by a few observations. The ag-
gressive noise shrinkage of our prior also makes it possible to complement
the rules from boosting in RuleFit with an additional set of trees from Ran-
dom Forest, which brings a desirable diversity to the ensemble. We sample
from the posterior distribution using a very efficient and easily implemented
Gibbs sampler. The new model is shown to outperform state-of-the-art meth-
ods like RuleFit, BART and Random Forest on 16 datasets. The model and its
interpretation is demonstrated on the well known Boston housing data, and
on gene expression data for cancer classification. The posterior sampling, pre-
diction and graphical tools for interpreting the model results are implemented
in a publicly available R package.

1. Introduction. Learning and prediction when the mapping between input
and outputs is potentially nonlinear and observed in noise remains a major chal-
lenge. Given a set of N training observations (x, y)i, i = 1, . . . ,N , we are inter-
ested in learning or approximating an unknown function f observed in additive
Gaussian noise

y = f (x) + ε, ε ∼ N (
0, σ 2)

,

and to use the model for prediction. A popular approach is to use a learning en-
semble [Breiman (1996, 2001), Freund and Schapire (1996), Friedman (2001)]

f (x) =
m∑

l=1

αlfl(x),
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where fl(x) is a basis function (also called a weak learner in the machine learning
literature) for a subset of the predictors. A variety of basis functions fl have been
proposed in the last decades, and we will here focus on decision rules. Decision
rules are defined by simple if-else statements and therefore highly interpretable by
humans. Finding a set of optimal rules is NP hard [Friedman and Popescu (2008)],
and most practical algorithms therefore use a greedy learning procedure. Among
the most powerful are divide and conquer approaches [Cohen (1995), Fürnkranz
(1999)] and boosting [Schapire (1999), Dembczyński, Kotłowski and Słowiński
(2010)].

A new way to learn decision rules is introduced in Friedman and Popescu
(2008) in their RuleFit approach. RuleFit is estimated by a two-step procedure.
The rule generation step extracts decision rules from an ensemble of trees trained
with gradient boosting. The second regularizaton step learns the weights αl for
the generated rules via L1-regularized (Lasso) regression, along with weights on
linear terms included in the model. This is similar to stacking [Wolpert (1992),
Breiman (1996)], with the important difference that the members of the ensemble
are not learned decision trees or other predictors, but individual rules extracted
from trees. As argued in Friedman and Popescu (2008), this makes RuleFit a more
interpretable model and, we argue below, has important consequences for the reg-
ularization part. RuleFit has been successfully applied in particle physics, in med-
ical informatics and in life sciences. Our paper makes the following contributions
to improve and enhance RuleFit.

First, we replace the L1-regularization [Tibshirani (1996)] in RuleFit by a gener-
alized horseshoe regularization prior [Carvalho, Polson and Scott (2010)] tailored
specifically to covariates from a rule generation step. L1-regularization is compu-
tationally attractive, but has the well-known drawback of also shrinking the effect
of the important covariates. This is especially problematic here since the number of
rules from the rule generation step can be very large while potentially only a small
subset is necessary to explain the variation in the response. Another consequence
of the overshrinkage effect of the L1-regularization is that it is hard to choose an
optimal number of rules; increasing the number of rules affects the shrinkage prop-
erties of the Lasso. This makes it very hard to determine the number of rules a pri-
ori, and one has to resort to cross-validation, thereby mitigating the computational
advantage of the Lasso. A horseshoe prior is especially attractive for rule learn-
ing since it shrinks uninformative predictors aggressively while leaving important
ones essentially untouched. Inspired by the prior distribution on the tree depth in
Bayesian Additive Regression Trees (BART) [Chipman, George and McCulloch
(2010)], we design a generalized horseshoe prior that shrinks overly complicated
and specific rules more heavily, thereby mitigating problems with overfitting. This
is diametrically opposed to RuleFit, and to BART and boosting, which all combine
a myriad of rules into a collective where single rules only play a very small part.

Second, we complement the tree ensemble from gradient boosting [Friedman
(2001)] in RuleFit with an additional set of trees generated with Random Forest.
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The error-correcting nature of boosting makes the rules highly dependent on each
other. Trees from Random Forest [Breiman (2001)] are much more random and
adding them to rules from boosting therefore brings a beneficial diversity to the
tree ensemble. Note that it is usually not straightforward to combine individual
trees from different ensemble strategies in a model; our combination of RuleFit
and horseshoe regularization is an ideal setting for mixing ensembles since RuleFit
makes it easy to combine ensembles, and the horseshoe prior can handle a large
number of noise rules without overfitting.

Third, an advantage of our approach compared to many other flexible regres-
sion and classification models is that predictions from our model are based on a
relatively small set of interpretable decision rules. The possibility to include linear
terms also simplifies interpretation since it avoids a common problem with deci-
sion trees that linear relationships need to be approximated with a large number of
rules. To further aid in the interpretation of the model and its predictions, we also
propose graphical tools for analyzing the model output. We also experiment with
post-processing methods for additional pruning of rules to simplify the interpreta-
tion even further using the method in Hahn and Carvalho (2015).

We call the resulting two-step procedure with mixed rule generation followed
by generalized rule structured horseshoe regularization the HorseRule model. We
show that HorseRule’s ability to keep the important rules and aggressively remov-
ing unimportant noise rules leads to both great predictive performance and high
interpretability.

The structure of the paper is as follows. Section 2 describes the decision rule
generation method in HorseRule. Section 3 presents the horseshoe regularization
prior and the MCMC algorithm for posterior inference. Section 4 illustrates as-
pects of the approach on simulated data and evaluates and compares the predictive
performance of HorseRule to several main competing methods on a wide variety
of real datasets. Section 5 concludes.

2. Decision rule generation. This section describes the rule generation step
of HorseRule, which complements the rules from gradient boosting in Friedman
and Popescu (2008) with rules from Random Forest with completely different
properties.

2.1. Decision rules. Let Sk denote the set of possible values of the covariate
xk and let sk,m ⊆ Sk denote a specific subset. A decision rule can then be written
as

(2.1) rm(x) = ∏
k∈Qm

I (xk ∈ sk,m),

where I (x) is the indicator function and Qm is the set of variables used in defin-
ing the mth rule. A decision rule rm ∈ {0,1} takes the value 1 if all of its |Qm|
conditions are fulfilled and 0 otherwise. For orderable covariates sk,m will be an
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FIG. 1. Decision tree for the Boston housing data.

interval or a disjoint union of intervals, while for categorical covariates sk,m are
explicitly enumerated. There is a long tradition in machine learning to use deci-
sion rules as weak learners. Most algorithms learn decision rules directly from
data, such as in Cohen (1995), Dembczyński, Kotłowski and Słowiński (2010).
RuleFit exploits the fact that decision trees can be seen as a set of decision rules.
In a first step a tree ensemble is generated, which is then decomposed into its
defining decision rules. Several efficient (greedy) algorithmic implementations are
available for constructing the tree ensembles. The generated rules typically corre-
spond to interesting subspaces with great predictive power. Each node in a decision
tree is defined by a decision rule. Figure 1 shows an example tree for the Boston
housing dataset and Table 1 its corresponding decision rules. We briefly describe
this dataset here since it will be used as a running example throughout the paper.
The Boston housing data consists of N = 506 observations which are city areas
in Boston and p = 13 covariates are recorded. These variables include ecological

TABLE 1
Corresponding rules, defining the decision tree

Rules Conditions

r1 RM ≥ 6.94
r2 RM < 6.94
r3 RM < 6.94 & LSTAT < 14.4
r4 RM < 6.94 & LSTAT ≥ 14.4
r5 RM < 6.94 & LSTAT < 14.4 & CRIM < 6.9
r6 RM < 6.94 & LSTAT < 14.4 & CRIM ≥ 6.9
r7 RM ≥ 6.94 & LSTAT < 14.4 & DIS < 1.5
r8 RM ≥ 6.94 & LSTAT < 14.4 & DIS ≥ 1.5
r9 6.94 ≤ RM < 7.45
r10 6.94 ≤ RM < 7.45
r11 6.94 ≤ RM < 7.45 & LSTAT < 9.7
r12 6.94 ≤ RM < 7.45 & LSTAT ≥ 9.7
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measures of nitrogen oxides (NOX), particulate concentrations (PART) and prox-
imity to the Charles River (CHAS), the socio-economic variables proportion of
black population (B), property tax rate (TAX), proportion of lower status popula-
tion (LSTAT), crime rate (CRIM), pupil teacher ratio (PTRATIO), proportion of
old buildings (AGE), the average number of rooms (RM), area proportion zoned
with large lots (ZN), the weighted distance to the employment centers (DIS) and
an index of accessibility to key infrastructure (RAD). The dependent variable is
the median housing value in the area.

Using equation (2.1) for example, r11 can be expressed as

r11(x) = ∏
k∈Q11

I (xk ∈ sk,11) = I (6.94 ≤ RM < 7.45)I (LSTAT < 9.7).

This rule is true for areas with relatively large houses with between 6.94 and 7.45
rooms and less than 9.7% lower status population. The mth tree consists of 2(um −
1) rules, where um denotes the number of terminal nodes. Therefore

∑M
m=1 2(um −

1) rules can be extracted from a tree ensemble of size M .

2.2. Collinearity structure of trees. The generated rules will be combined in a
linear model and collinearity is a concern. For example, the two first child nodes in
each tree are perfectly negative correlated. Furthermore, each parent node is per-
fectly collinear with its two child nodes, as it is their union. One common way to
deal with the collinearity problem is to include the terminal nodes only. This ap-
proach also reduces the number of rules and therefore simplifies computations. We
have nevertheless chosen to consider all possible rules including also nonterminal
ones, but to randomly select one of the two child nodes at each split. The reason
for also including nonterminal nodes is three-fold. First, even though each parent
node in a tree can be reconstructed as a linear combination of terminal nodes, when
using regularization this equivalence no longer holds. Second, our complexity pe-
nalizing prior in Section 3.3 is partly based on the number of splits to measure
the complexity of a rule, and will therefore shrink the several complex child nodes
needed to approximate a simpler parent node. Third, the interpretation of the model
is substantially simplified if the model can select a simple parent node instead of
many complex child nodes.

2.3. Generating an informative and diverse rule ensemble. Any tree method
can be used to generate decision rules. Motivated by the experiments in Friedman
and Popescu (2003), Rulefit uses gradient boosting for rule generation [Friedman
and Popescu (2008)]. Gradient boosting [Friedman (2001)] fits each tree iteratively
on the pseudo residuals of the current ensemble in an attempt to correct mistakes
made by the previous ensemble. This procedure introduces a lot of dependence
between the members of the ensemble, and many of the produced rules tend to be
informative only when combined to an ensemble. It might therefore not be possible
to remove a lot of the decision rules without destroying this dependency structure.

52 Attached contributions



2384 M. NALENZ AND M. VILLANI

Random Forest on the other hand generates trees independently from all pre-
vious trees [Breiman (2001)]. Each tree tries to find the individually best parti-
tioning, given a random subset of observations and covariates. Random Forest will
often generate rules with very similar splits, and the random selection of covariates
forces it to often generate decision rules based on uninformative predictors. Ran-
dom Forest will therefore produce more redundant and uninformative rules com-
pared to gradient boosting, but the generated rules with strong predictive power
are not as dependent on the rest of the ensemble.

Since the rules from boosting and Random Forest are very different in nature, it
makes sense to use both types of rules to exploit both methods’ advantages. This
naturally leads to a larger number of candidate rules, but the generalized horseshoe
shrinkage proposed in Section 3.2 and 3.3 can very effectively handle redundant
rules. Traditional model combination methods usually use weighting schemes on
the output of different ensemble methods [Rokach (2010)]. In contrast we com-
bine the extracted rules from the individual trees. To the best of our knowledge
this combination of individual weak learners from different ensemble methods is
novel and fits nicely in the RuleFit framework with horseshoe regularization, as
explained in the Introduction.

The tuning parameters used in the tree generation determine the resulting deci-
sion rules. The most impactful is the tree-depth, controlling the complexity of the
resulting rules. We follow Friedman and Popescu (2008) with setting the depth of
tree m to

tdm = 2 + �ϕ�,(2.2)

where �x� is the largest integer less or equal than x and ϕ is a random variable
following the exponential distribution with mean L−2. Setting L = 2 will produce
only tree stumps consisting of one split. With this indirect specification the forest
is composed of trees of varying depth, which allows the model to be more adaptive
to the data and makes the choice of a suitable tree depth less important. We use
this approach for both boosted and random forest trees.

Another important parameter is the minimum number of observations in a node
nmin. A too small nmin gives very specific rules and the model is likely to capture

spurious relationships. Using nmin = N
1
3 as a default setting has worked well in

our experiments, but if prior information about reasonable sizes of subgroups in
the data is available the parameter can be adjusted accordingly. Another choice is
to determine nmin by cross validation.

In the following, all other tuning parameters, for example, the shrinkage param-
eter in gradient boosting or the number of splitting covariates in the Random For-
est, are set to their recommended standard choices implemented in the R-packages
randomForest and gbm.

3. Ensembles and rule based horseshoe regularization. This section dis-
cusses the regularization step of HorseRule and present a new horseshoe shrinkage
prior tailored specifically for covariates in the form of decision rules.
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3.1. The ensemble. Once a suitable set of decision rules is generated, they can
be combined in a linear regression model of the form

y = α0 +
m∑

l=1

αlrl(x) + ε.

As ri(x) ∈ {0,1} they already have the form of dummy variables and can be di-
rectly included in the regression model. A simple but important extension is to
also include linear terms

(3.1) y = α0 +
p∑

j=1

βjxj +
m∑

l=1

αlrl(x) + ε.

This extension addresses the difficulty of rule and tree based methods to approx-
imate linear effects. Splines, polynomials, time effects, spatial effects or random
effects are straightforward extensions of equation (3.1).

Friedman and Popescu (2008) do not standardize the decision rules, which puts
a higher penalty on decision rules with a smaller scale. To avoid this behavior, we
scale the predictors to have zero mean and unit variance.

3.2. Bayesian regularization through the horseshoe prior. A large set of can-
didate decision rules is usually necessary to have a high enough chance of finding
good decision rules. The model in (3.1) will therefore always be high dimensional
and often p + m > n. Many of the rules will be uninformative and correlated with
each other. Regularization is therefore a necessity.

RuleFit uses L1-regularized estimates, which corresponds to an a posterior
mode estimator under a double exponential prior in a Bayesian framework
[Tibshirani (1996)]. As discussed in the Introduction, the global shrinkage effect of
L1-regularization can be problematic for rule covariates. L1-regularization is well
known to lead to both shrinkage and variable selection. There now exist imple-
mentations of RuleFit that use the elastic net instead of L1-Regularization, which
can lead to improved predictive performance [Zou and Hastie (2005)], however
elastic net still only uses one global shrinkage parameter.

Another common Bayesian variable selection approach is based on the spike-
and-slab prior [George and McCulloch (1993), Smith and Kohn (1996)]

(3.2) βj ∼ w · N(
βj ;0, λ2) + (1 − w) · δ0,

where δ0 is the Dirac point mass function, N(βj ;0, λ2) is the normal density with
zero mean and variance λ2, and w is the prior inclusion probability of predictor
xj . Discrete mixture priors enjoy attractive theoretical properties, but need to ex-
plore a model space of size 2(p+m), which can be problematic when either p or m

are large. The horseshoe prior by Carvalho, Polson and Scott (2009, 2010) mim-
ics the behavior of the spike-and-slab but is computationally more attractive. The
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regression model with the original horseshoe prior for linear regression is of the
form

y|X,β, σ 2 ∼ Nn

(
Xβ, σ 2In

)
,(3.3)

βj |λj , τ
2, σ 2 ∼ N (

0, λj τ
2σ 2)

,(3.4)

σ 2 ∼ σ−2 dσ 2,(3.5)

λj ∼ C+(0,1),(3.6)

τ ∼ C+(0,1),(3.7)

where C+(0,1) denotes the standard half-Cauchy distribution. We use horseshoe
priors on both linear [the β’s in equation (3.1)] and rule terms [the α’s in equation
(3.1)]. The horseshoe shrinkage for βj is determined by a local shrinkage param-
eter λj > 0 and a global shrinkage parameter τ > 0. This is important since it
allows aggressive shrinking of noise covariates through small values of τ , while
allowing individual signals to have large coefficients through large λj . Carvalho,
Polson and Scott (2010) show that the horseshoe is better at recovering signals
than the Lasso, and the models obtained from the horseshoe are shown to be al-
most indistinguishable from the ones obtained by a well defined spike-and-slab
prior.

3.3. Horseshoe regularization with rule structure. The original horseshoe as-
signs the same prior distribution to all regression coefficients, regardless of the
rule’s complexity (number of splits in the tree) and the specificity (number of data
points that fulfill the rule). Similar to the tree structure prior in BART, we therefore
modify the horseshoe prior to express the prior belief that rules with high length
(many conditions) are less likely to reflect a true mechanism. In addition, we also
add the prior information that very specific rules that are satisfied by only a few
data points are also improbable a priori. The rule support s(rl) ∈ (0,1) is given by
s(rj ) = N−1 ∑N

i=1 rj (xi ). Note that a support of 95% can also be interpreted as
5%. Therefore we express the specificity of a rule through min(1 − s(rj ), s(rj ))

instead. These two sources of prior information are incorporated by extending the
prior on λj to

λj ∼ C+(0,Aj ),

with

(3.8) Aj = (2 · min(1 − s(rj ), s(rj )))
μ

(l(rj ))η
,

where l(rj ) denotes the length of rule j defined as its number of conditions. With
increasing number of conditions the prior shrinkage becomes stronger, as well
as with increasing specificity. The hyperparameter μ controls the strength of our
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belief to prefer general rules that cover a lot of observations and η determines how
strongly we prefer simple rules. The response y should be scaled when using the
rule structure prior since the scale of β depends on the scale of y.

The rule structure for Aj in equation (3.8) is designed such that Aj = 1 for
rules with support 0.5 and length 1, as the ideal. Since limμ→0,η→0 Aj = 1, our
rule structure prior approaches the standard horseshoe prior for small μ and η.
The rule structure prior gives a gentle push towards simple and general rules, but
its Cauchy tails put considerable probability mass on nonzero values even for very
small Aj ; the data can therefore overwhelm the prior and keep a complex and
specific rule if needed.

A model with many complex specific rules may drive out linear terms from the
model, thereby creating an unnecessarily complicated model. We therefore use a
standard prior with A = 1 for linear terms, and set the parameters μ and η to values
larger than 0, which has the effect of giving linear effects a higher chance of being
chosen a priori. When p is small it may also be sensible to use no shrinkage at
all on the linear effects, and this is also allowed in our Gibbs sampling algorithm
in Section 3.4. The hyperparameters μ and η can be chosen guided by theoretical
knowledge about what kind of rules and linear effects are reasonable for a problem
by hand, or determined via cross validation. As a default choice (μ,η) = (1,2)

worked well in our experiments, penalizing rule complexity heavily and low rule
support moderately.

3.4. Posterior inference via Gibbs sampling. Posterior samples can be ob-
tained via Gibbs sampling. Sampling from the above hierarchy is expensive, as the
full conditionals of λj and τ do not follow standard distributions and slice sam-
pling has to be used. Makalic and Schmidt (2016) propose an alternative Horse-
shoe hierarchy that exploits the following mixture representation of a half-Cauchy
distributed random variable X ∼ C+(0,Ψ ):

X2|ψ ∼ IG
(

1

2
,

1

ψ

)
,(3.9)

ψ ∼ IG
(

1

2
,

1

Ψ 2

)
,(3.10)

which leads to conjugate conditional posterior distributions. The sampling scheme
in Makalic and Schmidt (2016) samples iteratively from the following set of full
conditional posteriors:

β|· ∼ Np

(
A−1XT y, σ 2A−1)

,

σ 2|· ∼ IG
(

n + p

2
,
(y − Xβ)T (y − Xβ)

2
+ βT �∗−1β

2

)
,

λ2
j |· ∼ IG

(
1,

1

νj

+ βj
2

2τ 2σ 2

)
,
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τ 2|· ∼ IG
(

p + 1

2
,

1

ρ
+ 1

2σ 2

p∑
j=1

βj
2

λj
2

)
,

νj |· ∼ IG
(

1,
1

A2 + 1

λ2
j

)
,

ρ|· ∼ IG
(

1,1 + 1

τ 2

)
,

with A = (XT X + �∗−1), �∗ = τ 2�, � = diag(λ1
2, . . . , λp

2).

3.5. Computational considerations. The computational complexity of
HorseRule can be mainly composed in rule generation and weight learning. The
computational cost will thereby always be higher than using boosting or Ran-
dom Forest alone. This speed disadvantage is partly mitigated by the fact that the
HorseRule performs well also without cross-validation.

We have used the R implementations gbm and randomForest here. These al-
gorithms do not scale well for large N and p and become a bottleneck for
N > 10,000. This can be easily remedied by migrating the rule generation step to
Xtreme Gradient Boosting (XGBoost) [Chen and Guestrin (2016)] or lightGBM
[Ke et al. (2017)] that are magnitudes faster for big datasets.

Compared to Bayesian tree learning procedures such as BART or the re-
cently proposed Dirichlet Adaptive Regression Trees (DART) [Linero (2018)], no
Metropolis–Hastings steps are necessary to learn the tree structure in HorseRule;
HorseRule uses only Gibbs sampling on a regularized linear model with rule
covariates, which scales linearly with the number of observations [Makalic and
Schmidt (2016)]. Sampling 1000 draws from the posterior distribution in the
HorseRule model for the Boston housing data used in Section 4.7 takes about
90 seconds on a standard computer. The complexity of the Horseshoe sam-
pling depends mostly on the number of linear terms and decision rules, and
increases only slowly with N . Li and Yao (2014) suggest a computational short-
cut where a given βj is sampled in a given iteration only if the corresponding
scale (λj · τ ) is higher than a threshold. The λj needs to be sampled in every
iteration to give every covariate the chance of being chosen in the next itera-
tion. We have implemented this approach and seen that it can give tremendous
computational gains, but we have not used it when generating the results here
since the effects it has on the invariant distribution of the MCMC scheme needs
to be explored further. Finally, for very large N (> 10,000) the linear alge-
bra operations in the Gibbs sampling can become time consuming, and GPU
acceleration can be used to speed up sampling [Terenin, Dong and Draper
(2016)].
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3.6. Sampling the splitting points. The BART model can be seen as the sum
of trees with a Gaussian prior on the terminal node values

μj ∼ N
(

0,
0.5

τ
√

k

)
,

where k denotes the number of trees. BART uses a fixed regularization parameter
τ and samples the tree structure, while HorseRule uses a fixed rule structure and
adapts to the data through sampling the shrinkage parameters λj and τ . Using a
fixed tree structure offers dramatic computational advantages, as no Metropolis–
Hastings updating steps are necessary, but the splits are likely to be suboptimal
with respect to the whole ensemble.

As shown in Section 4, both HorseRule and BART achieve great predictive per-
formance through different means, and a combination in which both shrinkage
and tree structure are sampled in a fully Bayesian way could be very powerful, but
computational very demanding. An intermediate position is to keep the splitting
variables fixed in HorseRule, but to sample the splitting points. We have observed
that HorseRule often keeps very similar rules with slightly different splitting points
in the ensemble, which is a discrete approximation to sampling the splitting points.
Hence this could also improve interpretability since a large number of rules with
nearby splitting points can be replaced by a single rule with an estimated splitting
point. It is also possible to replace many similar rules with suitable basis expan-
sions, such as cubic terms or splines.

4. Results. This section starts out with a predictive comparison of HorseRule
against a number of competitors on 16 benchmark datasets. The following sub-
sections explore several different aspects of HorseRule on simulated and real data
to evaluate the influence of different components of the model. Section 4.2 con-
trasts the ability of RuleFit and HorseRule to recover a true linear signal in models
with additional redundant rules. The following subsection uses two real datasets
to demonstrate the effect of having linear effects in HorseRule, and the advan-
tage of using horseshoe instead of L1 for regularization. Section 4.4 addresses that
HorseRule uses the training data both to generate the rules and for learning the
weights. Section 4.5 explores the role of the rule generating process in HorseRule,
and Section 4.6 the sensitivity to the number of rules. Finally in Sections 4.7 and
4.8 we showcase HorseRule’s ability to make interpretable inference from data in
different domains.

4.1. Prediction performance comparison on 16 datasets. We compare the
predictive performance of HorseRule with competing methods on 16 regression
datasets. The datasets are a subset of the datasets used in Chipman, George and
McCulloch (2010). From the 23 datasets that were available to us online we ex-
cluded datasets that lacked a clear description of which variable to use as response,
or which data preprocessing has to be applied to get to the version described in
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TABLE 2
Summary of the 16 regression datasets used in the evaluation. N , Q and C are the number of

observations, quantitative and categorical predictors, respectively

Name N Q C Name N Q C

Abalone 4177 7 1 Diamond 308 1 3
AIS 202 11 1 Hatco 100 6 4
Attend 838 6 3 Heart 200 13 3
Baskball 96 4 0 Fat 252 14 0
Boston 506 13 0 MPG 392 6 1
Budget 1729 10 0 Ozone 330 8 0
CPS 534 7 3 Servo 167 2 2
CPU 209 6 1 Strike 625 4 1

Chipman, George and McCulloch (2010). Since both RuleFit and HorseRule as-
sume Gaussian responses, we also excluded datasets with clearly non-Gaussian
response variables, for example count variables with excessive number of zeros.
HorseRule can be straightforwardly adapted by using a negative-binomial data
augmentation scheme [Makalic and Schmidt (2016)], but we leave this extension
for future work. Table 2 displays the characteristics of the datasets.

We compare HorseRule to RuleFit [Friedman and Popescu (2008)], Random
Forest [Breiman (2001)], Bayesian Additive Regression Trees (BART) [Chipman,
George and McCulloch (2010)], Dirichlet Adaptive Regression Trees (DART)
[Linero (2018)], a recent variant of BART that uses regularization on the input
variables, and XGBoost [Chen and Guestrin (2016)] a highly efficient implemen-
tation of gradient boosting.

We use 10-fold cross validation on each dataset and report the relative RMSE
(RRMSE) in each fold; RRMSE for a fold is the RMSE for a method divided
by the RMSE of the best method on that fold. This allows us to compare perfor-
mance over different datasets with differing scales and problem difficulty. We also
calculate a worst RRMSE (wRRMSE) on the dataset level, as a measure of robust-
ness. wRRMSE is based on the maximal difference across all datasets between a
method’s RRMSE and the RRMSE of the best method for that dataset; hence a
method with low wRRMSE is not far behind the winner on any dataset. We also
calculate the mean RRMSE (mRRMSE) as the relative RMSE on dataset level
averaged over all datasets.

To ensure a fair comparison we use another (nested) five-fold cross validation
in each fold to find good values of the tuning parameters for each method. For
BART and Random Forest the cross-validation settings from Chipman, George and
McCulloch (2010) are used. DART is relatively independent of parameter tuning,
through the usage of hyperpriors, so we only determine the optimal number of
trees. For RuleFit we cross-validate over the number of rules and the depth of
the trees, as those are the potentially most impactful parameters. The shrinkage τ
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TABLE 3
Settings for the compared methods

Method Parameter settings

HR-default Ensemble: GBM+RF; L = 5; (μ,η) = (1,2).
HR-CV Ensemble: GBM+RF; L = (2,5,8); (μ,η) = ((0,0), (0.5,0.5), (1,2)).
RuleFit k = 500,1000, . . . ,5000; L = (2,5,8).
Random Forest Fraction of variables used in each tree = (0.25,0.5,0.75,1,

√
p/p).

BART (γ, q) = ((3,0.9), (3,0.99), (10,0.75)); τ = 2,3,5; number of trees: 50,200.
DART Number of trees: 50,100.
XGBoost Number of trees: 50,100,200,350,500; ν = 0.1,0.05,0.01; tree depth: 4,6,8.

in RuleFit is determined by the model internally. XGBoost has many parameters
that can be optimized, we chose the number of trees, the shrinkage parameter and
the tree depth as the most important. For HorseRule we use cross-validation to
identify suitable hyperparameters (μ,η) as well as the tree depth. We also run a
HorseRule version with the proposed standard settings without cross-validation.
Table 3 summarizes the settings of all methods.

We first compare the three different HorseRule versions. Figure 2 shows the
predictive performance of the HorseRule models over 10 · 16 = 160 dataset and
cross-validation splits. While the (μ,η) = (1,2) already performs better than the
prior without rule structure [(μ,η) = (0,0)], cross-validation of (μ,η) helps to
improve performance further.

FIG. 2. RRMSE comparison of the different HorseRule versions across all folds.

60 Attached contributions



2392 M. NALENZ AND M. VILLANI

FIG. 3. RRMSE comparison of HorseRule with competing methods across all folds.

Figure 3 and Table 4 show that HorseRule has very good performance across all
datasets and folds, and the median RRMSE is smaller than its competitors. DART
also performs well and is second best in terms of median RRMSE. HorseRule-
default is the third best method for the median and best for the mean, which is
quite impressive since it does not use cross-validation.

Table 5 summarizes the performance on the dataset level. DART is the best
model on 7/16 datasets and has the best average rank. HorseRule-CV is the best
method on 5/16 datasets and has a slightly worse rank than DART. The last rows
of Table 5 displays the wRRMSE and mRRMSE over all datasets for each method;
it shows that whenever HorseRule is not the best method, it is only marginally be-
hind the winner. This is not true for any of the other methods which all perform
substantially worse than the best method on some datasets. RuleFit performs the

TABLE 4
RRMSE distribution over the 160 crossvalidation folds of the competing methods

25%-Quant Median Mean 75%-Quant

XGBoost 1.02 1.139 1.496 1.509
RuleFit 1.026 1.129 1.426 1.618
RandomForest 1.039 1.137 1.508 1.677
HR-default 1.007 1.101 1.247 1.238
HR-CV 1.004 1.072 1.262 1.198
DART 1.012 1.080 1.376 1.342
BART 1.030 1.131 1.377 1.357
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TABLE 5
Cross-validated prediction performance for the 16 regression datasets. Each entry shows the RMSE

and in parentheses the rank on this dataset. The best result is marked in bold

BART RForest RuleFit HorseRule HorseRule-CV DART XGBoost

Abalone 2.150 (7) 2.119 (3) 2.139 (5) 2.115(2) 2.114 (1) 2.129 (4) 2.147 (6)
AIS 1.144 (4) 1.247 (7) 1.207 (6) 0.713 (2) 0.699 (1) 1.061 (3) 1.188 (5)
Attend 394,141 (5) 411,900 (7) 345,177 (1) 398,485 (6) 365,010 (2) 370,006 (4) 367,231 (3)
Baskball 0.087 (3) 0.086 (2) 0.088 (4) 0.088 (4) 0.092 (7) 0.083 (1) 0.089 (6)
Boston 2.867 (2) 3.153 (7) 3.037 (6) 2.940 (4) 2.926 (3) 2.819 (1) 2.97 (5)
Budget 0.039 (2) 0.038 (1) 0.061 (7) 0.041 (4) 0.042 (5) 0.056 (6) 0.039 (2)
CPS 4.356 (3) 4.399 (6) 4.386 (5) 4.348 (1) 4.370 (4) 4.353 (2) 4.448 (7)
CPU 41.52 (4) 54.08 (6) 54.50 (7) 36.03 (1) 37.47 (3) 42.87 (5) 36.75 (2)
Diamond 215.0 (3) 465.9 (7) 233.7 (4) 184.5 (2) 171.27 (1) 245.8 (5) 343.6 (6)
Hacto 0.453 (7) 0.311 (6) 0.297 (5) 0.261 (2) 0.260 (1) 0.264 (3) 0.269 (4)
Heart 8.917 (2) 9.048 (3) 9.349 (7) 9.241 (5) 9.070 (4) 8.869 (1) 9.310 (6)
Fat 1.306 (6) 1.114 (2) 1.173 (3) 1.264 (5) 1.245 (4) 1.072 (1) 1.329 (7)
MPG 2.678 (3) 2.692 (5) 2.672 (2) 2.714 (6) 2.689 (4) 2.642 (1) 2.750 (7)
Ozone 4.074 (3) 4.061 (2) 4.189 (7) 4.120 (4) 4.165 (5) 4.054 (1) 4.174 (6)
Servo 0.588 (5) 0.486 (3) 0.502 (4) 0.409 (2) 0.403 (1) 0.671 (6) 0.719 (7)
Strikes 458.4 (7) 453.7 (5) 447.7 (3) 449.2 (4) 447.2 (2) 447.1 (1) 456.6 (6)

Av. Rank 3.9375 4.5625 4.8750 3.5625 3 2.9375 5.3125
wRRMSE 1.742 2.720 1.726 1.179 1.160 1.666 2.006
mRRMSE 1.128 1.250 1.182 1.051 1.035 1.141 1.201

best on 1/16 datasets, and the median RRMSE is slightly lower than for Random
Forest and XGBoost. XGBoost has the hightest median RRMSE and rank in this
experiment. This is probably due to the fact, that all methods except Random For-
est rely to a certain degree on boosting and improve different aspects of it, making
it a hard competition for XGBoost.

To summarize, the results show that HorseRule is a highly competitive method
with a very stable performance across all datasets. The rule structured prior was
found to improve predictive performance, and performs well also without time-
consuming cross-validation of its hyperparameters.

4.2. Regularization of linear terms and rules—RuleFit vs. HorseRule. This
subsection uses simulated data to analyse the ability of HorseRule and RuleFit
to recover the true signal when the true relationship is linear and observed with
noise. The data is generated with Xi ∼ N (0,1), i = 1, . . . ,100, Y = 5X1 + 3X2 +
X3 + X4 + X5 + ε and ε ∼ N (0,1). The first five predictors thus have a positive
dependency with y of varying magnitude while the remaining 95 covariates are
noise. Table 6 reports the results from 100 simulated datasets. RMSE measures
the discrepancy between the fitted values and the true mean for unseen test data.
RuleFit and HorseRule model use 500 rules in addition to the linear terms. The best
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TABLE 6
Simulation study. The true effect is linear

RMSE �βtrue �βnoise

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000

OLS 3.23 1.10 1.06 1.25 0.19 0.14 2302 3.78 2.54
Horseshoe
Regression

1.14 1.01 1.01 0.40 0.18 0.13 1.72 0.70 0.49

HorseRule
α = 0, β = 0

1.54 1.02 1.01 1.99 0.39 0.29 2.74 0.22 0.15

HorseRule
α = 1, β = 2

1.25 1.02 1.01 1.15 0.37 0.28 3.14 0.37 0.24

RuleFit
k = 2000

1.84 1.23 1.15 3.58 1.42 1.05 1.18 0.91 0.99

model in RMSE is as expected the Horseshoe regression without any rules. The
OLS estimates without any regularization struggles to avoid overfitting with all the
unnecessary covariates and does clearly worse than the other methods. HorseRule
without the rule structure prior outperforms RuleFit, but adding a rule structured
prior gives an even better result. The differences between the models diminishes
quickly with the sample size (since the data is rather clean), the exception being
RuleFit which improves at a much lower rate than the other methods. Table 6 also
breaks down the results into the ability to recover the true linear signal, measured
by �βtrue = |(β1, β2, β3, β4, β5) − (5,3,1,1,1)|1, and the ability to remove the
noise covariates, measured by �βnoise = |(β6, . . . , β100)−(0, . . . ,0)|1. We see that
the HorseRule’s horseshoe prior is much better at recovering the true linear signal
compared to RuleFit with its L1-regularization. OLS suffers from its inability to
shrink away the noise.

Even though such clear linear effects are rare in actual applications, the sim-
ulation results in Table 6 shows convincingly that HorseRule will prioritize and
accurately estimate linear terms when they fit the data well. This is in contrast to
RuleFit which shrinks the linear terms too harshly and compensates the lack of fit
with many rules. HorseRule will only try to add nonlinear effects through decision
rules if they are really needed.

4.3. Influence of linear terms in HorseRule, and regularizing by horseshoe in-
stead of L1. In this section we analyze to what extent HorseRule’s good perfor-
mance depends on having linear terms in the model, and how crucial the horseshoe
regularization is for performance. We demonstrate the effect of these model speci-
fication choices on the two datasets Diamonds and Boston. The Diamonds dataset
was selected since HorseRule is much better than its competitors on that dataset.
The Boston data was chosen since it will be used for a more extensive analysis in
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FIG. 4. RMSE on the Diamond (left) and the Boston (right) dataset when linear terms are removed
and when using L1 regularization instead of horseshoe.

Section 4.7. Figure 4 shows the RMSE distribution over the folds used in 10-fold
cross-validation. The results are replicated 10 times using different random seeds.
The results show that the aggressive shrinkage offered of the horseshoe prior is
essential for HorseRule; changing to L1 increases RMSE, especially for the Dia-
mond data. Note that the L1-version is not entirely identical to RuleFit, as RuleFit
uses different preprocessing on rules and only boosting generated rules [Friedman
and Popescu (2008)]. Figure 4 also shows that adding linear terms gives small
decrease of RMSE, but seems less essential for HorseRule’s performance.

4.4. Influence of the two-step procedure. One concern of our two-step proce-
dure is that the same training data is used to find rules and to learn the weights.
This double use of the data can distort the posterior distribution and uncertainty
estimates. It should be noted however that the rule generation uses only random
subsets of data, which mitigates this effect to some extent. It is also important to
point out that the predictive results presented in this paper are always on an unseen
test set so this is not an issue for the performance evaluations.

One way to obtain a more coherent Bayesian interpretation is to split the training
data in two parts: one part for the rule generation and one part for learning the
weights. We can view this as conditionally coherent if the rule learned from the first
part of the data is seen as prior experience of the analyst in analyzing the second
part of the data. An obvious drawback with such an approach is that less data can be
used for learning the model, which will adversely affect predictive performance.
Table 7 displays how predictive performance on the Diamonds (N = 308) and
Boston (N = 506) data deteriorates from a 50/50 split of the training data. Both
these datasets are small and we have also included the moderately large Abalone
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TABLE 7
Median RMSE for different splitting strategies

Diamond Boston Abalone

All data 184.6 2.851 2.115
50/50 split 283.7 3.555 2.136

data (N = 4177); for this dataset the data splitting has essentially no effect on
the performance. Hence, data-splitting may be an attractive option for moderately
large and large data if proper Bayesian uncertainty quantification is of importance.

4.5. Influence of the rule generating process. In this section we analyze the
influence of different rule generating processes on model performance for the Di-
amond dataset with (N = 308 and p = 4) and the Boston housing data (N = 506
and p = 13).

In each setting 1000 trees with an average tree depth of L = 5 are used, using
different ensemble strategies for the rule generation:

1. Random Forest generated rules plus linear terms.
2. Gradient boosting generated rules plus linear terms.
3. A combination of 30% of the trees from Random Forest and 70% from gradient

boosting plus linear terms.

The results are shown in Figure 5. As expected the error-correcting rules found
by gradient boosting outperforms randomly generated rules from Random For-

FIG. 5. RMSE on the Diamond (left) and the Boston (right) dataset for different rule generating
strategies.
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FIG. 6. RMSE depending on the number of trees on the Diamond (left) and Boston (right) dataset
for (μ,η) = (0,0) (red) and (μ,η) = (1,2) (blue).

est. However, combining the two types of rules leads to a lower RMSE on both
datasets. In our experiments it rarely hurts the performance to use both type of
rules, and on some datasets it leads to a dramatically better prediction accuracy.
The mixing proportion for the ensemble methods can also be seen as a tuning
parameter to give a further boost in performance.

4.6. Influence of the number of rules. Another parameter that is potentially
crucial is the number of trees used to generate the decision rules. In gradient boost-
ing limiting the number of trees (iterations) is the most common way to control
overfitting. Also in BART the number of trees has a major impact on the qual-
ity and performance of the resulting ensemble [Chipman, George and McCulloch
(2010)]. The same is expected for RuleFit, as it uses L1-regularization; with an
increasing number of rules the overall shrinkage τ increases, leading to an over-
shrinkage of good rules.

To investigate the sensitivity of HorseRule to the number of trees, we increase
the number of trees successively from 100 to 1500 in the Boston and Diamond
datasets. This corresponds to 500,550, . . . ,5 · 1500 = 7500 decision rules be-
fore removing duplicates. We also test if the rule structured prior interacts with
the effect of the number of trees by running the model with (μ,η) = (0,0) and
(μ,η) = (1,2). Figure 6 shows the performance of HorseRule as a function of the
number of trees used to extract the rules. Both HorseRule models are relatively in-
sensitive to the choice of k, unless the number of trees is very small. Importantly,
no overfitting effect can be observed, even when using an extremely large number
of 1500 trees on relatively small datasets (N = 308 and N = 506 observations,
respectively). We use 1000 trees as a standard choice, but a small number of trees
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TABLE 8
The 10 most important rules in the Boston housing data

Rule 5%I Ī 95%I β̄

1 RM ≤ 6.97 0.96 0.99 1.00 24.1
LSTAT ≤ 14.4

2 RM ≤ 6.97 0.77 0.89 1.00 −21.9
DIS > 1.22
LSTAT ≤ 14.4

3 LSTAT ≤ 4.66 0.00 0.27 0.51 12.35
4 TAX ≤ 416.5 0.00 0.21 0.43 −10.46

LSTAT ≤ 4.65
5 NOX ≤ 0.59 0.00 0.12 0.21 −2.94
6 NOX ≤ 0.67 0.00 0.10 0.33 3.87

RM > 6.94
7 NOX > 0.67 0.00 0.11 0.37 −3.24
8 LSTAT > 19.85 0.00 0.15 0.53 −3.18
9 linear : AGE 0.00 0.09 0.15 −0.03

10 linear : RAD 0.00 0.07 0.19 0.10

can be used if computational complexity is an issue, with little to no expected loss
in accuracy.

4.7. Boston housing. In this section we apply HorseRule to the well known
Boston Housing dataset to showcase its usefulness in getting insights from the
data. For a detailed description of the dataset see Section (2.1). The HorseRule
with default parameter settings is used to fit the model. Table 8 shows the 10 most
important effects. Following Friedman and Popescu (2008), the importance of a
linear term is defined as

I (xj ) = |βj |sd(xj ),

where sd(·) is the standard deviation, and similarly for a predictor from a decision
rule

I (rl) = |αl|sd(rl).

We use the notation Ij when it is not important to distinguish between a linear term
and a decision rule. For better interpretability we normalize the importance to be in
[0,1], so that the most important predictor has an importance of 1. Table 8 reports
the posterior distribution of the normalized importance (obtained from the MCMC
draws) of the 10 most important rules or linear terms. The most important single
variable is LSTAT, which appears in many of the rules, and as a single variable in
the third most important rule. Note also that LSTAT does not appear as a linear
predictor among the most important predictors.
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FIG. 7. RuleHeat for the Boston housing data. See the text for details.

To interpret the more complex decision rules in Table 8 it is important to un-
derstand that decision rules in an ensemble have to be interpreted with respect to
other decision rules, and in relation to the data points covered by a rule. A useful
way to explore the effects of the most important rules is what we call a RuleHeat
plot, see Figure 7 for an example for the Boston housing data. The horizontal axis
lists the most important decision rules and the vertical axis the N observations.
A square is green if rl(x) = 1. The grayscale on the bar to the left indicates the
outcome (darker for higher price) and the colorbar in the top of the figure indicates
the sign of the covariate’s coefficient in the model (sand for positive). RuleHeat
makes it relatively easy to to find groups of similar observations, based on the
rules found in HorseRule, and to assess the role a rule plays in the ensemble.
For example, Figure 7 shows that the two most important rules differ only in a
few observations. The two rules have very large coefficients with opposite signs.
Rule 1 in isolation implies that prices are substantially higher when the proportion
of lower status population is low (LSTAT ≤ 14.4) for all but the very largest houses
(RM ≤ 6.97). However, adding Rule 2 essentially wipes out the effect of Rule 1
(24.1−21.9 = 2.2) except for the six houses very close to the employment centers
(DIS < 1.22) where the effect on the price remains high.

Similarly to the variable importance in Random Forest and RuleFit, we can
calculate a variable input importance for the HorseRule model. The importance of
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FIG. 8. Posterior distribution of the input variable importance for the 13 covariates.

the j th predictor given the data is defined as [Friedman and Popescu (2008)]

J (xj ) = I (xj ) + ∑
l:j∈Ql

I (rl)/|Ql|,

where the sum runs over all rules where xj is one of the predictors used to de-
fine the rule. Note how the importance of the rules are discounted by the number
of variables involved in the rule, |Ql|. Figure 8 shows the posterior distribution
of J (xj ) for the 13 covariates. LSTAT is the most important covariate with me-
dian posterior probability of 1 and very narrow posterior spread, followed by RM
which has a median posterior importance of around 0.75. The importance of some
variables, like NOX and INDUS, has substantial posterior uncertainty whereas for
other covariates, such as AGE, the model is quite certain that the importance is low
(but nonzero).

The overlapping rules, as well as similar rules left in the ensemble in order to
capture model uncertainty about the splitting points make interpretation somewhat
difficult. One way to simplify the output from HorseRule is to use the decoupling
shrinkage and summary (DSS) approach by Hahn and Carvalho (2015). The idea
is to reconstruct the full posterior estimator β̂ with a 1-norm penalized represen-
tation, that sets many of the coefficients to exactly zero and also merges together
highly correlated coefficients. We do not report systematic tests here, but in our
experiments using DSS with a suitable shrinkage parameter did not hurt the pre-
dictive performance, while allowing to set a vast amount of coefficients to zero.
Using HorseRule followed by DSS on the Boston housing data leaves 106 nonzero
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TABLE 9
The ten most important rules in Boston data after DSS

Rule Ī β̄

1 RM ≤ 7.13 1.00 −3.47
2 RM ≤ 6.98 0.97 −2.36

PTRATIO ≤ 18.7
LSTAT > 5.95

3 LSTAT > 18.75 0.81 1.80
4 linear : RAD 0.80 0.10
5 RM ≤ 7.437 0.79 −2.03

LSTAT ≤ 7.81
6 NOX ≤ 0.62 0.70 −1.64

RM ≤ 7.31
7 RM ≤ 7.1 0.68 −2.47

RAD ≤ 4.5
LSTAT ≤ 7.81

8 NOX > 0.59 0.63 −1.47
9 linear : LSTAT 0.58 −0.09

10 linear : AGE 0.58 −0.02

coefficients in the ensemble. The 10 most important rules can be seen in Table 9.
We can see that the new coefficients are now less overlapping. The relatively small
number of rules simplify interpretation. Posterior summary for regression with
shrinkage priors is an active field of research [see, e.g., Nalenz and Villani (2018),
Piironen and Vehtari (2017) and Puelz, Hahn and Carvalho (2017) for interest-
ing approaches] and future developments might help to simplify the rule ensemble
further.

4.8. Logistic regression on gene expression data. Here we analyze how
HorseRule can find interesting pattern in classification problems, specifically in
using gene expression data for finding genes that can signal the presence or ab-
sence of cancer. Such information is extremely important since it can be used
to construct explanations about the underlying biological mechanism that lead to
mutation, usually in the form of gene pathways. Supervised gene expression clas-
sification can also help to design diagnostic tools and patient predictions, that help
to identify the cancer type in early stages of the disease and to decide on suitable
therapy [Van’t Veer et al. (2002)].

Extending HorseRule to classification problems can be easily done using a la-
tent variable formulation of, for example, the logistic regression. We chose to use
the Pólya–Gamma latent variable scheme by Polson, Scott and Windle (2013).
Methodological difficulties arise from the usually small number of available sam-
ples, as well as high number of candidate genes, leading to an extreme p � n
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TABLE 10
Accuracy in training and test set for the prostate cancer data

BART Random Forest RuleFit HorseRule

CV-Accuracy 0.900 0.911 0.831 0.922
CV-AUC 0.923 0.949 0.953 0.976
Test-Accuracy 0.824 0.971 0.941 0.971
Test-AUC 1 0.991 0.995 1

situation. We showcase the ability of HorseRule to make inference in this diffi-
cult domain on the Prostate Cancer dataset, which consists of 52 cancerous and 50
healthy samples (n = 102). In the original data p = 12,600 genetic expressions are
available, which can be reduced to 5966 genes after applying the preprocessing de-
scribed in Singh et al. (2002). Since spurious relationships can easily occur when
using higher order interactions in the p � n situation, we use the hyperparameters
μ = 2 and η = 4 to express our prior belief that higher order interactions are very
unlikely to reflect any true mechanism.

Table 10 shows that HorseRule has higher accuracy and significantly higher
AUC than the competing methods. We also test the methods on an unseen test
dataset containing 34 samples not used in the previous step. All methods have
lower error here, implying that the test data consists of more predictable cases.
The difference is smaller, but HorseRule performs slightly better here as well.

The 10 most important rules for HorseRule are founds in Table 11. It contains
eight rules with one condition and only two with two conditions, implying that
there is not enough evidence in the data for complicated rules to overrule our prior
specification. All of the most important rules still contain 0 in their 5% posterior
importance distribution, implying that they are eliminated by the model in at least
5% of the samples; the small sample size leads to nonconclusive results.

Figure 9 shows the input variable importance of the 50 most important genes.
In this domain the advantage of having estimates of uncertainty can be very ben-
eficial, as biological follow up studies are costly and the probability of spurious
relationships is high. In this data the genes 37,639_at and 556_s_at contain an
importance of 1 in their 75% posterior probability bands. The gene 37,639_at was
found in previous studies to be the single gene most associated with prostate cancer
[Yap et al. (2004)]. However, gene 556_s_at, which makes up the most important
Rule 1, was only found to be the ninth important in previous studies on the same
data using correlation based measures [Yap et al. (2004)]. So, while this gene is
individually not very discriminative (77% accuracy), it becomes important in con-
junction with other rules. This is also borne out in the RuleHeat plot in Figure 10.
The outcome is binary, and the vertical bar to the left is red for cancer and black for
healthy. RuleHeat shows that Rule 1 covers all except one cancer tissue together
with a number of normal tissues, and would therefore probably not be found to be
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TABLE 11
10 most important rules in the cancer data

Rule 5%I Ī 95%I β̄

1 556_s_at ≤ 1.55 0 0.33 1 3.10
2 34,647_at ≤ −1.18 0 0.15 1 −1.78

37,639_at ≤ 1
3 37,478 > −0.32 0 0.18 0.91 1.42
4 38,087_s_at ≤ 0.83 0 0.23 1 1.81
5 34,678_at > 0.38 0 0.19 0.88 −1.58
6 1243_at ≤ 0.35 0 0.15 0.66 1.19
7 37,639_at ≤ 1 0 0.13 0.80 −1.10
8 33,121_g_at ≤ 0.672 0 0.10 0.82 −1.09

960_g_at > 0.378
9 41,706_at ≤ 1.33 0 0.15 0.79 −1.13

10 39,061_at > 0.31 0 0.1 0.52 −1.03

significant using traditional tests in logistic regression. Its importance arises from
the combination with the other rules, especially Rule 2, Rule 7 and Rule 8, that are
able to correct the false positive predictions using Rule 1 alone.

To illustrate HorseRule’s potential for generating important insights from inter-
action rules, we present the subspaces of the two most important interaction rules
in Figure 11 and Figure 12. Again healthy tissues are colored black and cancerous
red. The first interaction looks somewhat unnatural. The gene 37,639_at is individ-

FIG. 9. Posterior distribution of the input variable importance of the 50 most influential covariates.
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FIG. 10. RuleHeat for the prostate cancer data. Cancer tissues are colored in red, healthy in black.

ually seen to be a strong classifier where higher values indicate cancer. This rule
is also individually represented as Rule 7. The second split on 34,647_at < −1.18
corrects three misclassified tissues by the first split alone. This rule probably only
works well in the ensemble but may not reflect a true mechanism. The second in-
teraction effect is more interesting. It seems that healthy tissues have lower values
in the expression of 33,121_g_at and higher values in the expression of 960_g_at.
This rule might reflect a true interaction mechanism and could be worth analysing
further.

Overall, this shows that HorseRules nonlinear approach with interacting rules
complements the results from classical linear approaches with new information.
Decision rules are especially interesting for the construction of gene-pathways
[Glaab, Garibaldi and Krasnogor (2010)], diagnostic tools and identification of
targets for interventions [Slonim (2002)].

5. Conclusions. We propose HorseRule, a new model for flexible nonlinear
regression and classification. The model is based on RuleFit and uses decision
rules from a tree ensemble as predictors in a regularized linear fit. We replace the
L1-regularization in RuleFit with a horseshoe prior with a hierarchical structure es-
pecially tailored for a situation with decision rules as predictors. Our prior shrinks
complex (many splits) and specific (small number of observations satisfy the rule)
rules more heavily a priori, and is shown to be efficient in removing noise without
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FIG. 11. Scatterplot for Genes 37,639_at and 34,647_at. Healthy samples in black and cancerous
samples in red. Rule 2 is defined by the bottom right quadrant.

FIG. 12. Scatterplot for Genes 33,121_g_at and 960_g_at. Healthy samples in black and cancer-
ous samples in red. Rule 8 is defined by the top left quadrant.
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tampering with the signal. The efficient shrinkage properties of the new prior also
makes it possible to complement the rules from boosting used in RuleFit with an
additional set of rules from random forest. The rules from Random Forest are not
as tightly coupled as the ones from boosting, and are shown to improve prediction
performance compared to using only rules from boosting.

HorseRule is shown to outperform state-of-the-art competitors like RuleFit,
BART and Random Forest in an extensive evaluation of predictive performance on
16 widely used datasets. Importantly, HorseRule performs consistently well on all
datasets, whereas the other methods perform quite poorly on some of the datasets.
We explored different aspect of HorseRule to determine the underlying factors
behind its success. We found that the combination of mixing rule from different
tree algorithms and the aggressive but signal-preserving horseshoe shrinkage are
essential, but that the addition of linear terms seems less important. Our experi-
ments also show that the predictive performance of HorseRule is not sensitive to
its prior hyperparameters. We also demonstrate the interpretation of HorseRule in
both a regression and a classification problem. HorseRule’s use of decision rules
as predictors and its ability to keep only the important predictors makes it easy to
interpret its results, and to explore the importance of individual rules and predictor
variables.

Acknowledgements. We are grateful to the two reviewers and the Associate
Editor for constructive comments that helped to improve both the presentation and
the contents of the paper.

SUPPLEMENTARY MATERIAL

The HorseRule R-package (DOI: 10.1214/18-AOAS1157SUPP; .pdf). Exam-
ple code illustrating the basic features of our HorseRule package in R with stan-
dard settings. The package is available on CRAN at https://CRAN.R-project.org/
package=horserule.
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Abstract

Ensembles of decision rules extracted from tree ensembles, like RuleFit, promise
a good trade-off between predictive performance and model simplicity. However,
they are affected by competing interests: While a sufficiently large number of binary,
non-smooth rules is necessary to fit smooth, well generalizing decision boundaries,
a too high number of rules in the ensemble severely jeopardizes interpretability. As
a way out of this dilemma, we propose to take an extra step in the rule extrac-
tion step and compress clusters of similar rules into ensemble rules. The outputs
of the individual rules in each cluster are pooled to produce a single soft output,
which reflects the marginal smoothing behaviour of the original ensemble. The final
model, that we call Compressed Rule Ensemble (CRE), fits a linear combination
of ensemble rules. On a variety of datasets we show empirically that CRE is both
sparse and accurate, carrying over the ensemble behaviour, while remaining inter-
pretable. CRE delivers predictive performance on par with state-of-the-art tree
ensemble methods but with a model size that is substantially smaller compared to
previous rule ensemble approaches. Predictions can be explained by looking at the
active ensemble rules, which allows external validation. We showcase that ensemble
rules are also useful for a wider range of models that utilize decision rules extracted
from tree ensembles.

1 Introduction

Ensemble methods that use decision trees as base learners are among the most popular
and successful general purpose supervised learning methods. They can naturally adapt to
non-linearities, capture interactions between features and often perform well off-the-shelf
with little to no parameter tuning (Fernandez-Delgado et al., 2014). Most tree ensemble
methods use re-sampling schemes in order to create trees that capture different aspects
of the training data. This increased model variance in return leads to more stable, robust
and accurate predictions compared to a single decision tree.

However, the increase in model complexity resulting from the ensemble approach is also
a major downside. While a single decision tree is straightforward to interpret, a forest
resulting from the combination of hundreds, deep and randomized, decision trees, can
not be processed by the human mind, essentially turning the ensemble into a black box

1
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model. Methods for analysing the behaviour of the forest exist, such as Variable Impor-
tance (Breiman, 2001) and recently proposed variants, such as SHAP-values (Lundberg
and Lee, 2017), but the intuitive structure of the individual trees is lost. This makes it
unclear, how exactly a decision is reached, which is a fact that is often not acceptable in
high-stake situations, such as a medical treatment choice.

One approach towards interpretable machine learning models is to learn rule ensembles.
As decision rules are composed of simple if-else statements, they are easier to interpret for
humans, compared with deep decision trees. One such approach is RuleFit introduced by
(Friedman and Popescu, 2008). Instead of learning decision rules directly, the candidate
rules are extracted from decision forests and combined in a penalized linear model. The
rationale of RuleFit is both simple and compelling: Tree ensemble methods often have
remarkable accuracy. However, their greedy learning procedure produces overly compli-
cated models. By regularizing away the unnecessary complexity, RuleFit promises a step
towards a favourable accuracy-complexity trade-off.

We argue that rule ensemble approaches suffer from competing interests: In order to
provide smooth decision boundaries, a property essential for good generalization in en-
sembles (Bühlmann and Yu, 2002; Bühlmann, 2012), a sufficiently large number of slightly
different – potentially overlapping – rules need to be selected for the final ensemble, which
in return harms the interpretability. We propose a way to solve this dilemma, based on
the interpretation of ensemble learning as a smoothing of the hard thresholding behaviour
of decision rules (Bühlmann and Yu, 2002). Instead of using the individual decision rules
directly, we first identify clusters of similar conditions. To this end univariate clustering
is performed on the splitpoints in each covariate. The resulting groups of similar con-
ditions are then compressed into soft conditions, that we call ensemble conditions. By
averaging the discrete outputs of the individual conditions, ensemble conditions produce
a smooth output, that reflects the behaviour of the original forest method. Ensemble
rule compression allows to carry over the smoothing behaviour of forest methods while
sacrificing very little in terms of interpretability and reflecting the uncertainty about the
‘true’ splitpoint. We argue that often already a few compressed rules allow to capture
and interpret the central behaviour of the forest, allowing a glimpse into the black box.

The structure of this paper is as follows. In section 2 we give an overview of existing
rule ensemble approaches, and in section 3 we review the RuleFit approach and introduce
notations. Section 4 introduces compressed rule ensembles (CRE), that combine ensem-
ble rules, based on ensemble conditions, with the RuleFit approach. We also showcase
that ensemble rules are useful in other rule ensemble frameworks. Section 5 presents our
experiments on classification tasks. Section 6 concludes.

2 Related work

Several different ways have been proposed to (greedily) induce decision rule ensembles.
Classical approaches include the divide and conquer algorithms, that sequentially induces
non-overlapping rules (Cohen, 1995; Fürnkranz, 1999), and boosted decision rules (Fre-
und and Schapire, 1996; Weiss and Indurkhya, 2000; Dembczyński et al., 2008) that use
re-weighting schemes to induce rules that iteratively reduce the error from the current
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x(1) ≤ 1

x(2) ≤ −1 ŷ1

ŷ2 ŷ3

yes no

yes no

φ(c) s v t

I(x(1) ≤ 1) 1 1 1
I(x(1) > 1) 2 1 1
I(x(1) ≤ 1) 3 1 1
I(x(2) ≤ −1) 3 2 −1
I(x(1) ≤ 1) 4 1 1
I(x(2) > −1) 4 2 −1

Figure 1: Left: Binary decision tree with 3 leafs, 1 internal node and the root node. Right:
Further decomposition of the decision rules into the elementary conditions. Multiple
conditions per rule are combined with the logical AND.

ensemble.

RuleFit (Friedman and Popescu, 2008) combines candidate rules in a penalized linear
model. This two-step formulation of rule learning allows the application of standard sta-
tistical learning methods. In its original formulation rules are extracted from gradient
boosted decision trees (Friedman, 2002), but also other forest types have been explored
(Nalenz and Villani, 2018; Fokkema, 2020). Inducing decision rules jointly with learning
the weight coefficients was explored in (Jawanpuria et al., 2011) and (Wei et al., 2019).
Using quadratic programming to select the final ruleset was explored in (Meinshausen,
2010).

Another interesting way to combine decision rules was recently proposed with SIRUS
(Bénard et al., 2021), where paths are extracted from an adapted version of random
forests: the data is quantile transformed beforehand, to limit the possible splitpoints in
trees, allowing to identify frequent pattern across trees. The most common decision rules
are simply averaged to produce a prediction, without the need of a linear combination,
which improves the model stability significantly.

3 Predictive rule ensembles

Given the N training examples (yi, xi), i = 1, . . . , N , with generic variables y and x, where
y is either discrete or numeric and x = (x1, ..., xp) ∈ Rp is the p-dimensional covariate
vector, with the j’th component of x denoted as x(j), we seek to find a function, that
allows to predict y from x. In the context of predictive rule ensembles and assuming a
regression task we look at the class of generalized additive models

y =
H∑

h=1

αhrh(x), rh ∈ {0, 1} (1)

where decision rules rh(x) are used as basis functions, weighted by the coefficients αh.
Instead of learning decision rules directly from the data, the RuleFit framework, takes a
two-step procedure.
First, a (greedy) tree ensemble is generated. (Friedman and Popescu, 2008) use gradient
boosting to generate the set of trees. As boosting shows great accuracy in many tasks, it

3
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is reasonable to assume that the model is able to find interesting subspaces, defined by
decision rules. The decision trees are then decomposed into its defining decision rules and
harvested across the whole ensemble. In our approach we decompose the rules further into
their elementary conditions. s denotes the index of the rule that the condition originates
from, v the index of the covariate used for the comparison and t the splitpoint. Figure 1
shows an example of this decomposition and the introduced notation. A condition is
thus defined by the triplet ca = (sa, va, ta), a = 1, ..., A, where A is the total number of
conditions collected from the forest and M = |{s}| is the number of decision rules. Note
that in this step only the different paths to all nodes are stored, not the values of the leaf
nodes. The full rule is the conjunction of its individual conditions. The hard-thresholding
split function φ is given by

φ(x, v, t) = I(x(v) < t) or (2)

φ(x, v, t) = I(x(v) ≥ t) = 1− I(x(v) < t) (3)

depending on the direction that is encoded in rh and assuming numerical features. As
the second step the decision rules are included, together with linear terms, as 0-1 features
in a linear regression model. Using the above notations, the full rules rh ∈ {0, 1} are
obtained by taking the product of the conditions that are part of rule h,

rh(x) =
∏

a:sa=h

φ(x, va, ta). (4)

As the original forest contains a large number of rules, L1-penalization (Tibshirani, 1996)
is used to shrink the large set of candidate rules down to the truly predictive ones.

4 Compressed rule ensembles (CRE)

As in previous versions of RuleFit, as a first step a tree ensemble is generated. Either
the random forest or gradient boosting framework can be applied. For computational
efficiency we use XGBoost (Chen and Guestrin, 2016) to generate the rules. However,
before transforming the rules directly into 0-1 features using (4), we take an additional
step and compress groups of similar conditions into ensemble conditions.

4.1 Ensemble compression

When using re-sampling techniques as is commonly featured in both random forests and
(stochastic) gradient boosting, the split points inside the forests will often appear in
clusters. Depending on the sample that is seen by a tree and the weights in this iteration,
the (greedy) tree induction algorithm will often chose similar trees with slightly different
splitpoints. This is generally beneficial in terms of predictive performance, as it leads to a
smooth decision boundary (Bühlmann and Yu, 2002), which stabilizes predictions. This
also implies that when removing many rules in RuleFit we expect the decision boundaries
to become non-smooth and the predictive performance to drop. The goal is therefore to
preserve smoothness, but reshape it in a form that is accessible for human interpretation.

4.2 Clustering of similar conditions

To preserve the forests behaviour, we identify clusters of similar conditions that only differ
in their exact splitpoint and combine their binary decision into a single smooth decision.

4
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More formally, for each covariate j, j = 1, ..., p we look at the vector of splitpoints T (j) =
(ta : va = j). This step collects all splitpoints from splits involving covariate j from all
rules that were extracted from the original forest. Note that the splitpoints are taken
from single condition rules or from more complicated rules, involving several conditions
and other covariates. Also no attention is drawn to the depth of the rule in which
the condition appears, as with the symmetry in the conjunctive form of decision rules,
ordering is somewhat arbitrary. As we expect the clusters of splitpoints to be fairly
obvious, we use k-means as a robust and well understood clustering method to find the
clusters. We assume that the splitpoints will appear in a relatively small number of
cluster. The k centers in the k-means algorithm are chosen to minimize the intra-cluster
variation,

C(k, µ, T (j)) =
k∑

l=1

∑

{z:g(j)z =l,tz∈T (j)}

(tz − µl)2 (5)

where z ∈ {1, ..., Z = |T (j)|} is the index of splitpoints for covariate j, g(j) = (g1, ..., gZ)
is the vector of clusterlabels for the splitpoints and µ = (µ1, ..., µk) the vector of mean
values of the k groups. For this one-dimensional clustering problem the Ckmeans.1d.dp
algorithm (Wang and Song, 2011) can be applied, that uses dynamic programming to
find the global optimal solution. If a certain splitpoint is very important in the predic-
tion task, it will often appear in the vector T (j) and dominate the cluster solution in
equation (5). This is a desired property, as it results in an implicit weighting of regions
found important by the forest method. As the appropriate number of clusters for each
covariate is unknown a-priori, we determine the optimal k using the AIC criterion with
a pre-specified maximum number of clusters kmax. Other clustering algorithms that we
considered were Gaussian-Mixture-Models and density based clustering methods, such
as DBSCAN (Schubert et al., 2017). As the results were quite similar, we decided to
stick with k-means as the most simple and robust approach. Note that the clustering is
performed on the splitpoints found in the forest, never on the original data, making this
step computationally cheap. For 500 trees the number of splits is typically << 1000 per
covariate and therefore almost independent from N and only linear in p.

4.3 Combining multiple conditions into a soft condition.

Given the vectors of splitpoints for group l of covariate j from the clustering step, T
(j)
l =

(ti ∈ T (j) : g
(j)
i = l), we combine the individual conditions to ensemble conditions. The

combined output of the ensemble condition is computed by average pooling of the outputs
from the individual conditions. The soft output function for ensemble condition l becomes

Φ(x, v, l) = |T (v)
l |−1

∑

t∈T (v)
l

φ(x, v, t). (6)

Averaging over several conditions turns the individual binary outputs φ(x, v, t) ∈ {0, 1}
into a soft output Φ(x, v, l) ∈ [0, 1]. In contrast to other soft decision rule approaches,
such as Akdemir et al. (2013), our approach is non-parametric. Φ reflects the empirical
distribution from the splits found in the forest and preserves the univariate behaviour of
the full ensemble and compresses it in a single ensemble condition. Figure 2 shows the
distribution of splitpoints for the Diabetes dataset from UCI repository (Dua and Graff,
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Figure 2: Distribution of splitpoints for the 6 most used covariates in the diabetes data set,
using kmax = 4. Colours indicate the cluster solution from the Ckmeans.1d.dp algorithm.
The dashed line shows the soft output Φ(x) for each cluster (compressed condition).

2017) and the clustering result using kmax = 4. We can see that the Φ(x) can follow arbi-
trary distributions. Also note the dense regions, forming clusters of splitpoints that are
interesting for predictions. Lastly, if the underlying relationship is in fact a stepfunction,
we expect the forest method to also be able to capture it and in return, the intervals of
the clusters will become very narrow.

To finish this step, all original conditions are replaced by their corresponding ensem-
ble conditions. Using ensemble conditions turns each binary rule rh into a smooth rule
Rh generalizing equation (4). The output of Rh is calculated via

Rh(x) =
∏

a:sa=h

Φ(x, va, ga) ∈ [0, 1]. (7)

As all conditions in each cluster have the same output for any given xi, this allows to
remove a large number of redundant rules.

4.4 Finding a sparse set

Given the ensemble rules, the second step combines them to a reduced ensemble. We
investigate two ways of rule aggregation, weighting and averaging.

6
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Linear Weighting Following RuleFit, the ensemble rules are included, together
with linear terms, in the (generalized) linear regression model:

F (x) = σ(β0 +

p∑

j=1

βjxj +
H∑

h=1

αhRh(x)), (8)

where σ is a link function. As in (Friedman and Popescu, 2008) the rule terms are not
scaled, leading to a higher penalty on rules with low support. However one property
specific to compressed rules is that rule support decreases slower with additional condi-
tions, leading to lower penalization of complicated rules. As complicated rules are highly
undesireable in terms of interpretability, we counteract this effect by decreasing the scale
of each Rh proportional to the number of conditions involved, via

R∗h(x) =
Rh(x)

length(Rh)η
, η > 0, (9)

where η is a parameter that controls the amount of extra penalty for the number of
conditions involved and length(Rh) is the number of conditions. This is similar to the
rule structured prior used in (Nalenz and Villani, 2018). Penalizing depth was also found
an effective way to promote simplicity in (Wei et al., 2019; Chipman et al., 2010). We
found η = 0.5 to work well as a default choice, but η can also be guided by prior knowledge,
about the complexity of the underlying relationship or tuned via cross validation. The
weights are found by solving the L1-regularized regression

{α∗, β∗, β∗0} = arg minβ0,β,α

[
L(y, F (x)) + λ

(
p∑

j=1

|βj|+
H∑

h=1

|αh|
)]

, (10)

with L being an appropriate loss function. A big advantage of the linear model approach
is its easy interpretability. Following (Friedman and Popescu, 2008), we can rank rules
and linear terms by their (rescaled) effect size |α∗| and |β∗| respectively as a measure
of importance. In our experiments we use the R-package (R Core Team, 2021) glmnet
(Friedman et al., 2010) and the penalty parameter λ is chosen via cross-validation (CV).
A popular choice is to use λ1se the highest λ value within one standard deviation of the
minimum, in order to promote sparsity, which is also used for CRE.

Averaging An alternative to the linear combination (8) is to simply count the
number of occurrences of each smooth rule Rh and average over the most frequent rules.
For each rule the associated prediction values for cases that are covered/not covered by
a rule, µ+, µ− respectively are the weighted mean on the training data

µ+,h =
1∑N

i=1Rh(xi)

N∑

i=1

yiRh(xi), (11)

µ−,h =
1∑N

i=1(1−Rh(xi))

N∑

i=1

yi(1−Rh(xi)), (12)

assuming y ∈ {0, 1}, which is a soft version of the SIRUS algorithm. Predictions for the
whole ensemble rule are obtained via

ŷi,h = Rh(xi, v, g) · µ+,h + (1−Rh(xi, v, g)) · µ−,h. (13)
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The output of the whole ensemble is then simply the average of the K most frequent
compressed rules Rh. Adopting the SIRUS approach (Bénard et al., 2021) to use com-
pressed conditions instead of normal decision rules goes together quite naturally with the
idea of ensemble compression, avoiding any data discretization. We find the core idea of
SIRUS particularly interesting, as it can be seen as a proxy of how good a whole tree
ensemble can be summarised by a small number of ensemble rules.

4.5 The effect of of ensemble compression

Choice of kmax The inverse k−1max can be interpreted as compression rate. Setting
kmax = 1 compresses all splitpoints per covariate into a single group and results in a
monotonic transformation of the covariate, based on the distribution of the splitpoints.
In this setting only monotonic effects can be captured and no change of sign is possible.
Increasing kmax allows changes in sign and magnitudes of the effects, therefore finding
different regions of interest. As k → Z, where Z is the number of splitpoints in this
covariate, our model approaches the original RuleFit model. Using ensemble compression
also acts as a regularizer, as it makes it harder to overfit on individual rules, but has to
take into account the general pattern found by the forest. We found a relatively small
value of kmax (e.g. kmax = 4) is usually a good choice as discussed below.

Computational cost. The number of unique conditions is reduced to a maximum
of kmax distinct ensemble conditions for each covariate, which can be significantly lower
than the number of distinct original conditions. This also leads to a much smaller number
of unique rules in the linear modelling step, which is important, as the design matrix
in equation (10) is of size (n, p + H). As duplicates and colinear terms can be safely
removed, this effectively lowers the computational cost and memory usage significantly,
and decreasing kmax lowers the computation time considerably. On datasets where the
number of predictive covariates is relatively small, as is in the Diabetes data, around
60 % of Rh can be removed from the initial set (with kmax = 4). If the splits distribute
more evenly over a large number of covariates, the reduction is still notable but less
pronounced.

5 Results

In this section we test our method empirically. The goal is to show that CRE is able to
produce both accurate and small models, due to the smooth boundaries introduced by
the ensemble compression. R-code to reproduce all results will be made available upon
publication.

5.1 Experimental setup

For comparison we use 16 binary classification datasets from the UCI repository (Dua and
Graff, 2017). We chose datasets that consist of mostly numerical covariates and require
minimal preprocessing. A detailed description of selection criteria and preprocessing,
algorithm settings and additional results can be found in the supplementary material
(SM). We limit the experiments to binary classification but note that CRE can also be
extended to regression, multi-label and multi-target classification (Aho et al., 2012).

8

85



Table 1: Accuracy measured in AUC for the competing methods on the 16 benchmark
datasets.

dataset CRES CREk:2 CREk:4 CREk:6 CRERF PRE RF RuleFit SIRUS XGB

Australian 0.901 0.937 0.939 0.944 0.935 0.930 0.936 0.938 0.921 0.939
Banknote 0.986 1 1 1 1 1.000 1.000 1.000 0.972 1

Biodeg 0.871 0.929 0.931 0.930 0.919 0.915 0.938 0.924 0.840 0.932
Blood Transf 0.732 0.730 0.750 0.748 0.741 0.724 0.668 0.751 0.708 0.746

Diabetes 0.823 0.830 0.830 0.831 0.832 0.829 0.825 0.840 0.807 0.841
Haberman 0.712 0.683 0.670 0.680 0.621 0.676 0.685 0.708 0.651 0.688

Heart 0.898 0.910 0.896 0.896 0.888 0.877 0.905 0.897 0.899 0.906
ILPD 0.709 0.728 0.723 0.718 0.704 0.735 0.752 0.706 0.729 0.724

Ionosphere 0.955 0.963 0.964 0.965 0.954 0.965 0.981 0.968 0.941 0.970
Liver 0.649 0.666 0.679 0.644 0.667 0.623 0.564 0.657 0.644 0.654

Parkinsons 0.906 0.945 0.959 0.950 0.968 0.857 0.953 0.960 0.888 0.962
Pop Failure 0.907 0.947 0.945 0.952 0.946 0.947 0.920 0.925 0.889 0.946

Sonar 0.863 0.923 0.927 0.910 0.925 0.875 0.949 0.915 0.829 0.940
Spambase 0.963 0.985 0.986 0.986 0.985 0.980 0.987 0.985 0.933 0.988
WBCD 0.991 0.992 0.993 0.991 0.993 0.992 0.992 0.989 0.981 0.995

Wilt 0.952 0.990 0.992 0.991 0.993 0.991 0.990 0.993 0.901 0.990

Mean Rank 7.688 4.875 4.125 4.750 5.188 7 4.875 4.812 8.750 2.938

Mean ∆AUC 0.033 0.012 0.011 0.014 0.018 0.027 0.019 0.012 0.051 0.008

Table 2: Left: Number of coefficients selected for the final model. Right: Figure 3:
Normalized Accuracy vs. Normalized Sparsity where 1 is the best on each dataset and 0
the worst. CREk:2 (red circle), CREk:4 (orange triangle), PRE (green square), RuleFit
(blue cross), SIRUS (purple squares).

dataset CREk:2 CREk:4 CREk:6 CRERF PRE RuleFit SIRUS

Australian 18 26 32 19 20 40 15
Banknote 11 21 29 18 45 45 14

Biodeg 52 62 69 51 50 106 22
Blood Transf 7 8 8 6 9 22 6

Diabetes 9 18 23 10 28 36 9
Haberman 2 3 3 2 4 23 6

Heart 13 17 18 18 22 28 18
ILPD 10 10 15 9 10 68 8

Ionosphere 33 40 43 22 23 27 15
Liver 7 9 10 8 8 24 10

Parkinsons 22 25 27 20 14 35 18
Pop Failure 29 38 40 27 25 46 17

Sonar 50 61 61 42 31 54 19
Spambase 95 112 119 121 75 149 22
WBCD 31 32 36 24 28 36 15

Wilt 16 23 29 23 55 91 17

Mean Rank 2.75 4.44 5.47 2.88 3.81 6.62 2.03
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5.2 Competing methods

As a black box baseline with generally strong predictive performance we include random
forests and gradient boosting. Random forest (RF) is run with default settings using
the original randomForest R-package (Breiman, 2001). Gradient boosting, implemented
with the xgboost R-package (Chen and Guestrin, 2016), is more dependent on parameter
tuning. We use model based optimization with mlrMBO (Bischl et al., 2017) inside each
fold, in order to find reasonable parameters and ensure a fair comparison.

We compare against two versions of RuleFit, both implemented with the pre R-package
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(Fokkema, 2020). RuleFit uses normal CART trees as base learners and parameter set-
tings that most closely resemble the original version of RuleFit. In order to determine a
reasonable tree depth, we use 5-fold CV inside each fold. PRE is a more interpretable
setting proposed in (Fokkema, 2020) that uses λ1se and an average treedepth of 3 (with-
out tuning).

SIRUS is built using the sirus (Bénard et al., 2021) R-package, with the number of
rules determined using the CV strategy proposed by the authors and implemented in the
package.

The CRE based models use gradient boosted trees from xgboost to generate the rules.
Different degrees of compression are tested, using kmax = {2, 4, 6} denoted as CREk:kmax .
Only CRERF uses random forests to generate the rules, as a way to measure the influence
of the tree generating process and kmax = 4. All CRE models use η = 0.5 (cf. (9)) to
promote taking in less complex rules. No parameters, for the rule generation or η, are
tuned. Better predictive performance may be reached, but in this article we are inter-
ested in the ‘out-of-the-box’ performance. We also test compressed rules with averaging
of the rules, which resembles the SIRUS approach. To estimate the influence of the rule
compression, CRES uses on each dataset the average number of rules used by SIRUS,
leading to the overall same model complexity as SIRUS. We expect the same number of
ensemble rules to generalize better compared to normal rules.

Accuracy We report accuracy as measured by the area under the curve (AUC).
Table 2 shows the results over the 16 datasets, together with the mean rank and average
deviation from the best AUC value over all datasets. In line with our expectation, and
previously reported results, a well tuned XGB model is on average the most accurate.
CREk:4 achieves the second best rank, outperforming all rule based competitors, the
vanilla random forest and the tuned RuleFit model. It is interesting to note that CREk:2
is still competitive in terms of accuracy to random forest and RuleFit and outperforming
most of the other rule based competitors. Using a higher compression parameter CREk:6
is not beneficial in the analysed datasets. This can be contributed to the regularizing
effect of ensemble compression, making kmax = 4 our recommended default choice for
prediction. SIRUS, CRES and PRE are on average less accurate. As seen by the average
deviation from the best method, CRE models and RuleFit are on average not much
behind the best method, implying a stable performance. The same is not true for SIRUS,
CRES and PRE, which sacrifice on average a notable amount of accuracy.

Model Complexity Table 2 shows the number of selected rules and linear terms.
In terms of model complexity SIRUS, CREk:2, CRERF and PRE produce the smallest
models, with SIRUS being the winner. However, as discussed above, SIRUS and PRE
have to sacrifice an substantial amount of accuracy to achieve this goal, whereas CREk:2
on most datasets produces similarly sparse models, while remaining competitive in pre-
dictive performance. CREk:4 takes in slightly more rules, but also produces reasonably
small models on most datasets, whereas also showing strong accuracy. RuleFit produces
overall the largest models.

Accuracy vs. Sparsity We conclude that CRE produces models that are both
accurate and sparse, whereas all of the competing methods have to compromise either
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Table 3: Model output for the Diabetes data.

Rule β

Intercept −1.41
age ≥ [21.5;26.5] ∧ BMI ≥ [21.75;28.15] 0.57
age ≥ [27.5;34.5] 0.47
BMI ≥ [21.75;28.15] 0.38
BMI <[28.45;32.35] ∧ preg <[5.5;6.5] −0.26
BMI <[38.45;45.45] ∧ pedi <[0.6;0.9] −0.26
BMI ≥ [21.75;28.15] ∧ pedi ≥ [0.14;0.37] 0.22
linear: plas 0.15
plas <[115.5;141.5] ∧ preg <[5.5;6.5] −0.09
BMI <[38.45;45.45] ∧ plas <[142;188.5] −0.06
BMI ≥ [28.45;32.35] ∧ pedi ≥ [0.38;0.59] 0.06
preg ≥ [5.5;6.5] 0.05
BMI <[38.45;45.45] ∧ plas <[142;188.5] −0.05
∧ preg <[7.5;8.5]
BMI <[28.45;32.35] ∧ preg <[7.5;8.5] −0.05
preg <[7.5;8.5] ∧ skin ≥ [3.5;11.5] −0.02

aspect. This trade-off can be seen in Figure 3, where only CREk:2 and CREk:4 are
able to consistently achieve good accuracy and sparsity (top right quadrant). This is
enabled through the usage of ensemble rules, that allow smooth decision boundaries
even for extremely sparse solutions. Ensemble compression also improves the predictive
performance of the SIRUS framework, when using the same amount of rules. CRE
produces more accurate models, when combined with gradient boosting, while producing
more sparse solution, when using random forest to generate the rules. While in this study
a well tuned XGBoost model is the most accurate, CRE is on average not much worse
while producing very well interpretable models.

5.3 Interpretation

Finally, we showcase how CRE can be used for vivid interpretation. Here we focus on
the literal interpretation of the rules, as they are the main advantage of rule ensembles.
The following table shows an output of CREk:4 for the Diabetes dataset 1:

It becomes immediatly obvious that diabetes is strongly connected to age and BMI
and its interaction. BMI appears to be the most important covariate, appearing in
almost all of the ensemble rules, often in combination with different covariates. The
rule BMI ≥ [21.75; 28.15] also demonstrates the usefulness of ensemble rules. In this
region the risk of diabetes starts to increase, but no single split value would describe the
relationship well and would be rather arbitrary. The distribution of split points and Φ(x)
can be visualised, as shown in Figure 2.

CRE can also give an explanation of how a prediction is produced. Table 4 shows the
output for a ‘close call’ observation with (age,BMI, pedi, preg, plas) = (32, 23.3, 0.67, 8, 62.1).
It is interesting to take a closer look at the rule age ≥ [27.5, 34.5]. If this ensemble rule

1A description of the covariates can be found in the supplementary material. Y = 1: diabetes positive.
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Table 4: CRE prediction explanation.

Rule β R(x) βR(x)

linear: plas 0.023 62.1 1.440
Intercept −1.410 1 −1.410
age ≥ [27.5;34.5] 0.470 0.450 0.210
BMI <[38.45;45.45] −0.260 0.410 −0.110
∧ pedi <[0.6;0.9]
preg ≥ [5.5;6.5] 0.050 1 0.050
BMI <[38.45;45.45] −0.060 0.200 −0.010
∧ plas <[142;188.5]
BMI ≥ [21.75;28.15] 0.380 0.020 0.010
age ≥ [21.5;26.5] 0.570 0.020 0.010
∧ BMI ≥ [21.75;28.15]

fully fires (R(x) = 1, cf. equation (4)) the risk of diabetes increases by exp(0.47) = 1.6.
In this example about half the split points in the ensemble rule fire, leading to an in-
crease in risk of exp(0.21) = 1.24. If instead hard rules were used, the rule could only give
the full risk increase or none at all. While the last rule contributes little to the current
prediction, it is still interesting: If the covariate BMI increases this rule will fire more
strongly and the diabetes risk will increase. Instead of giving all or nothing decisions,
CRE allows to spot grey areas, that are interesting for interventions.

6 Conclusion and Future Directions

We proposed a framework to compress decision tree ensembles into smooth decision rules.
Combining ensemble conditions with the RuleFit approach leads to simpler and more ro-
bust models, while being competitive in terms of predictive performance. We argue, that
the increase in complexity, due to smooth decision rules, does not harm interpretability.
On the contrary, it resembles human intuition, so that the interpretation reflects the
models uncertainty better.
We expect CRE to be more stable than RuleFit, as the ensemble rules are less dependent
on the specific data sample and are more consistent between runs. However, in this paper
we were unable to test the stability empirically, as to the best of our knowledge no suitable
stability measure exists. The approach in (Bénard et al., 2021) requires discretizing the
data, which does not make sense for CRE. Suitable stability measures would be highly
desirable, for future work.
Compressed rules may also be interesting to approximate a forest by means of a simpler
model. To this end, rule compression can be used to get an insight in the inner workings
of a forest, by extracting the most common paths in the forest, as was showcased by the
combination with the SIRUS approach.
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Supplement A – Data Gathering and Preprocessing

Datasets, used in the section 5 and the diabetes dataset in section 4 of the paper are
taken from the UCI machine learning repository (Dua and Graff, 2017). These criteria
are:

� In this article we only consider binary classification.

� We chose datasets with mostly numerical features or features with low cardinality.

� Only datasets with low number of missing values are considered to minimize algo-
rithm differences in missing value handling.

This criteria are set in order to make preprocessing as minimal as possible. Mostly
numerical features are chosen for two reasons: (1) Ensemble compression only works
on numerical features. (2) Tested algorithms have different ways to deal with discrete
features, therefore we want to limit the influence of the implementation on the results.
The preprocessing takes the following steps:

� Missing values are mean-imputed.

� Categorical features are simply transformed to numerical features, using the factor
levels. (only in the Australian dataset).

� Dummy covariates are left as they are.

� For the liver dataset the Covariate ”drinks number” is used to generate the classes,
as in (?).

Generally, first the datasets were selected and the preprocessing fixed, then we ran the
experiments and no further datasets were excluded.

Supplement B – Algorithm Settings

The exact settings and software used to allow reproducibility of results in section 4 are
stated below:

� RuleFit: we use the R-package pre (Fokkema, 2020) to build the RuleFit model.
For reasons of comparability we use boosted CART trees to generate the rules, but
note that using the conditional random forest method to generate the trees might
improve performance, as shown in Fokkema (2020). Other settings are set to the
ones in Friedman and Popescu (2008). The most impactful parameter, treedepth
is determined via internal 5-fold CV trying the values 1, 2, 3, 4, 5. λ is taken as
minimal value from the sequence, promoting accurate models.

� PRE is built using the default setting of pre, which was shown in (Fokkema, 2020)
to provide a good trade-off between accuracy and interpretability.

� RandomForest (RF) are built using the R-package randomForest (Breiman, 2001).
The number of features sampled at each split is left to default (b√pc) and normal
bootstrapping used for resampling. RF is used as a out-of-the-box baseline.
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� XGBoost (XGB) is tuned via Bayesian Optimization, as it relies much more on
suitable parameters, which is done with the R-package mlrMBO (Bischl et al.,
2017). The learning rate is considered between [0.005, 0.1], covariates per tree
between [0.7, 1], subsample per tree between [0.2, 1] and the maxdepth of trees as
{1, 2, 3, 4, 5, 6}. The budget is set to 20 and the remaining values to default.
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Supplement C – Additional Results

The following graphs shows a graphical visualisation of the results presented in section 4
of the paper:

xgboost

CRE k = 4

CRE k = 2

RuleFit

CRE k = 6

CRE RF

rf

PRE

CRE-S

sirus

0.
00

0.
05

0.
10

0.
15

0.
20

Delta AUC

Figure 3: ∆AUC for the competing methods. The best performing method will have
∆AUC = 0 in the given fold. The methods are ordered by the mean ∆AUC.
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Figure 4: Number of non-zero coefficients (rules or linear terms).
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Table 5: Performance meassured by accuracy over the 16 datasets.

dataset CRE-S CREk:2 CREk:4 CREk:6 CRERF PRE RF RuleFit SIRUS XGB

Australian 0.841 0.864 0.862 0.868 0.864 0.861 0.865 0.870 0.829 0.868
Banknote 0.905 0.999 0.999 0.999 0.999 0.989 0.993 0.996 0.899 0.998

Biodeg 0.663 0.855 0.860 0.866 0.862 0.855 0.868 0.873 0.767 0.863
Blood Transf 0.762 0.765 0.761 0.762 0.767 0.762 0.751 0.781 0.762 0.789

Diabetes 0.651 0.776 0.758 0.752 0.762 0.752 0.768 0.769 0.698 0.758
Haberman 0.735 0.735 0.732 0.735 0.735 0.735 0.725 0.712 0.735 0.732

Heart 0.786 0.822 0.802 0.815 0.819 0.785 0.809 0.829 0.822 0.838
ILPD 0.714 0.715 0.714 0.705 0.722 0.714 0.705 0.696 0.714 0.700

Ionosphere 0.840 0.920 0.932 0.935 0.937 0.937 0.934 0.920 0.883 0.926
Liver 0.569 0.609 0.615 0.612 0.621 0.583 0.539 0.580 0.565 0.600

Parkinsons 0.809 0.897 0.912 0.907 0.907 0.856 0.902 0.902 0.866 0.922
Pop Failure 0.915 0.952 0.948 0.952 0.944 0.944 0.922 0.948 0.915 0.946

Sonar 0.732 0.857 0.842 0.838 0.856 0.785 0.842 0.847 0.756 0.842
Spambase 0.860 0.946 0.952 0.952 0.947 0.942 0.953 0.946 0.857 0.957
WBCD 0.939 0.967 0.967 0.961 0.967 0.963 0.960 0.965 0.942 0.970

Wilt 0.946 0.983 0.982 0.986 0.984 0.984 0.982 0.986 0.946 0.986

Mean Rank 8.562 4.031 5.281 4.250 3.562 6.469 6.312 4.625 8.062 3.844

Delta Best 0.071 0.009 0.011 0.010 0.007 0.022 0.018 0.011 0.053 0.007

Although we believe accuracy to be less informative compared to AUC, we also pro-
vide tabular results of the accuracy. The results are quite similar to the AUC results.
Noteworthy difference is CRE−S which performs worse when meassured in accuracy, im-
plying that the prediction outputs are not well calibrated. Another noteworthy difference
is, that using the accuracy as meassure, CRERF shows the overall strongest performance.
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Supplement D – Dataset Description of the Diabetes

Data

To show the easy interpretability of CRE, we use in Section 4 the freely available Pima
Diabetes data set. For a more detailed description, see (?). The full names of covariates
are:

� preg: Number of times pregnant

� plas: Plasma glucose concentration a 2 hours in an oral glucose tolerance test

� pres: Diastolic blood pressure (mm Hg)

� skin: Triceps skin fold thickness (mm)

� insu: 2-Hour serum insulin (mu U/ml)

� mass: Body mass index (weight in kg/(height in m)2) 2

� pedi: Diabetes pedigree function

� age: Age (years)

� y: Class variable (0 or 1) (1 = Diabetes)

2Also referred to as BMI in the main paper, due to better understandability.
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Abstract

We propose a robust decision tree induction method that mitigates the problems
of instability and poor generalization on unseen data. In the spirit of model
imprecision and robust statistics, we generalize decision trees by replacing internal
nodes with two types of ensemble modules that pool together a set of decisions into
a soft decision: (1) option modules consisting of all reasonable variable choices at
each step of the induction process, (2) robust split modules including all elements
of a neighbourhood of an optimal split-point as reasonable alternative split-points.
We call the resulting set of trees cultivated random forest as it corresponds to an
ensemble of trees which is centered around a single tree structure, alleviating the loss
of interpretability of traditional ensemble methods. The explicit modelling of non-
probabilistic uncertainty about the tree structure also provides an estimate of the
reliability of predictions, allowing to abstain from predictions when the uncertainty
is too high. On a variety of benchmark datasets, we show that our method is often
competitive with random forests, while being structurally substantially simpler and
easier to interpret.

1 Introduction

Decision trees are one of the most common prediction methods. Their popularity mostly
stems from their interpretability and methodological simplicity. Decision tree successively
partition the covariate space into smaller subspaces that are purer with respect to the
target values H. Most practical algorithms, such as CART [6] and C45 [27], use a greedy
procedure that chooses the covariate and split-point with the largest gain in purity at each
step. Decision trees are adaptive to arbitrary underlying functions and can perform well
in several domains. A major downside of decision trees is their instability with respect to
small perturbations of the training data, see already [4]. Slight changes in the training set
can lead to entirely different tree structures, raising suspicion about the validity of their
implied interpretations as well as their generalizibility to unseen data.
The instability can be traced back to the all-in decision at each node [8]. Adding or
removing observations might lead to the choice of a different splitting point or even
different variable to split on. Through the recursive structure, all decisions depend on the
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previous ones. Thus small changes in the top layer of the tree can lead to dramatically
different subtrees. Decisions can only partially be reversed post-hoc through pruning away
dubious subtrees, making individual choices very influential.
Ensemble methods such as bagging [4], random forests [5] and boosting [16] solve the
instability and generalizibility issues at the cost of giving up the interpretational simplicity:
Instead of a single tree model, a sequence of trees is generated, each built on alterations
of the original data. The final prediction is then the a combination of these individually
weak decision trees.
In this article, we take a conceptually different approach. Instead of trying to find an
optimal single tree or generating an ensemble of multiple decision trees, we model the
uncertainty about the tree structure directly. To this end we introduce ensemble modules
that pool a set of decisions into a soft decision. Ensemble modules capture the uncertainty
about both the variable to use and the choice of an exact splitting position. The resulting
model, that we call cultivated random forest (CRF), corresponds to an ensemble of trees,
carrying over the desired stability and generalizability of ensemble methods. However,
through a notion of neighbourhood interpretability is preserved. In many domains such
as the clinical, the ability to inspect what a prediction is based upon is crucial in order to
reveal spurious or nonsensical relationships [9], potential gender and racial biases [10] and
give practitioners the option to intervene with the decision system in a guided way. This is
also important to build acceptance from practioners. Additionally, through the framework
of model imprecision, CRF is able to give an estimate of the reliability of predictions,
that can be used to abstain from a predictions, if the uncertainty is too high. This is
especially important, when the decision system is integrated in a larger work-flow and
also alternative means of decision exist such as domain experts. With this, CRF offers a
good trade-off between high accuracy, interpretability and accountability.
In section 2 basic notations and principles of decision tree learning are recalled. In section
3 we introduce ensemble modules and the resulting CRF model. Benchmark results on
several binary classification datasets are shown in section 4, and section 5 concludes.

2 Decision tree learning

Decision Trees. Decision trees use a graph of decision rules to map a ?-dimensional
covariate vector x8 = (G8,1, ..., G8,?) to a decision about the target value H8. In the following
all covariates are assumed to be numeric and the target to be binary thus H ∈ {0, 1}. Trees
consist of a root node, a set of internal nodes and a set of leaf nodes. Starting from the
root node where the whole dataset X = {x8}#8=1 consisting of # covariate vectors is present,
subsets of observations are moved to its childnodes based on decision rules, recursively
partitioning X into smaller rectangles. Here only univariate binary decisions of the form
3 (x, C0, 9) = � (G 9 ≤ C0) are considered, thus each decision leads to exactly two childnodes.
For ease of notation 3 (x, C0, 9) will be in the following oversimplified as 3 (x) and assumed
that C0 and 9 are attached.
In this article, we also utilize the idea of fractional observerations [27, 29]: if a decision
can not be made with certainty, observations are split up into fractions and moved to
both childnodes. Each observation is attached a value F8,; ∈ [0, 1] that represents the
fraction of the 8’th observations that is present in the ;’th node. Once a leafnode is
reached, a decision is made based on its attached prediction value Ĥ for the target variable
H, typically either the majority class or class distribution. A leaf node can be written as a
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Figure 1: Option Tree vs. Ensemble module. Decisions are shown as rectangles, implied
current leaf nodes as diamonds. The numbers inside the diamonds reflect the target
distribution ?(H = 1|x). (a) Option Tree. Different subtrees follow from each option split
(b) Ensemble module, consisting of a set of decisions followed by pooling of the resulting
leafnodes with similar target distribution. The decision nodes inside the dashed rectangle
can be summarized as a single robust split module.

product of decision rules by L(x,DL) =
∏
3∈DL 3 (x), where DL = {31, ..., 3;} is the path

of ; decisions, that have to be fulfilled 1 to reach this node [17].

Tree induction. Given a training sample where we are given X and the labels H, the
goal is to build a decision tree that is able to classify unseen samples. Many different tree
inducers have been proposed, for an overview we refer to [30]. Usually, at each step during
training the decision that minimizes some measure of impurity in the implied childnodes
is chosen and applied to the data points, partitioning the training data. In this article,
the Gini impurity is used as in CART [6]. This recursive process is repeated until no split
reduces impurity further or a stopping criterion is reached.

Decision tree instability. Instability in decision tree learning is a well known problem
[20, 4]. At each node a single decision is required, while there can be considerable
uncertainty about the correct choice. This dilemma leads to a high degree of instability.
In this article, we focus on:

Variable uncertainty: At each node, a binary decision tree needs to decide on exactly one
covariate for further partitioning. If the implied purity of several covariates is similar, this
all-in approach neglects the uncertainty about our choice.

Splitting point uncertainty: Given the covariate to split on, a cut-point C0 needs to be
chosen. If the impurity surface is flat, a sharp decision is not justified. This uncertainty
translates to a lack of smoothness that is found in decision trees [20].

Other sources of uncertainty include paramter uncertainty, such as the correct maximum
tree depth, and the choice of the best subtree. This is typically addressed through pruning
techniques. Good overviews can be found in [23, 30].

Ensemble methods and option trees. Random forests address the aforementioned
stability issues with the bagging of randomized trees. In the standard version each tree is
build independently on a bootstrap sample of X using only a subset of covariates. The
predictions of this sequence of trees are combined through averaging or voting. Ensemble

1If the path to this leaf node goes to the left side at a node 9 we take 3 9 (x) into DL while we take
1 − 3 9 (x) if it goes to the right. More details can be found in the supplementary materials.
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methods work well in practice because they reduce several problems of single decision trees:
they introduce smoother decision boundaries, mitigate the variable selection uncertainty
and lead to better generalization performance.
Another approach to address the variable uncertainty is to use multiple decisions at each
node if the implied purity is similar. This was first introduced by Buntime [8] as option
trees. In Fig.1 (a), an option tree is shown. At each node several decisions are allowed.
The resulting subtrees are subsequently grown and evaluated separately and the final
prediction is an aggregate over all subtrees. The option tree approach was combined in
[15] with boosting into the alternating decision tree (ADT) model. ADTs were shown
to posses decent predictive performance and relatively small model sizes. An interesting
property is that option trees and ADT can be seen as structurally sparse representation
of an ensemble. As a part of the structure is shared by all subtrees, a whole ensemble of
trees can be described by a single tree structure [14].

3 Cultivated Random Forest

In this work, ensemble learning is viewed from the point of robust statistics and model
imprecision. Instead of a single model, we are looking at a set of models that correspond to
a set of different choices in the model construction process. Typically, in robust statistical
models, these are distributional assumptions or priors in the Bayesian setting. In the
context of decision trees, model imprecision was applied to the probability distributions
in the leafnodes to robustify entropy based splits [22, 2]. Here we instead use this
framework to express our uncertainty about the structure of the tree itself and capture
the uncertainty involved with the choices made during the tree induction process. To
this end, we generalize the decision tree model by replacing internal nodes with ensemble
modules M = {31, ..., 3ℎ} that consist of the set of ℎ decisions that are reasonable at a
given step of the induction process. To preserve the binary tree structure, the decisions
are then pooled and observations split up into fractions. Usually the left child node is
the True part of the decision rule. For ensemble modules we require the decisions to be
directed as in [32]. In binary classification we define the right childnode to have the higher
implied target probability ?(H = 1|G). For multinomial and other target distributions,
more sophisticated merging algorithms are required, as in [26][31]. For the case that all
decisions are weighted equally and we use the average as pooling function, the fraction
going to the left childnode is given by k(x,M) = |M|−1 ∑

3∈M 3 (x). If only a fraction of
an observation is present in this leaf, we simply take fractions of this fraction.
The whole process is shown in Fig. 1 (b). A set of decisions is considered inside the
ensemble module and then pooled into two child nodes. Note that the decision G2 > 3
is directed, such that the right childnode has the higher target probability ?(H = 1|G).
The name ensemble module stems from the insight that the fraction of an observation to
be present in a given leaf node can be written by replacing the ; binary decisions in the
path to a leafnode with ; ensemble modules ML = {M1, ...,M;}, and pooling after each
ensemble module, as

L(x,ML) =
∏
M∈ML

(
1

|M|
∑
3∈M

3 (x)
)
=

1

|�× |
∑

�L∈�×

©«
∏
3∈�L

3 (x)ª®¬
=

1

|�× |
∑

�L∈�×
L(x, �L)

(1)
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Figure 2: (a): Compact representation of a robust split module. (b,c) Example Classifica-
tion of (G1, G2) = (5, 4) assuming q = 1. (b) standard binary tree, (c) tree with robust split
module. Nodes are drawn as circles. Numbers and colouring represent F8,; , the fractions
of the example observation that reach each node.

with D× = {M1 × ... ×M;}. So in fact, by pooling the decisions at each ensemble module,
the fractional observations in each leafnode can be written as average over an ensemble of
trees that is spanned by the Cartesian product of the ensemble modules. The derivation
can be found in the supplementary materials. By that CRF is a structurally sparse
representation of an ensemble of size |D× |. The main difference to random forests is
that the trees in the ensemble are not grown independently, but instead are chosen as
all reasonable choices along the induction process. Individual trees are therefore not
constructed as weak learners that are decorrelated in order to improve the final classifiers
generalizibility. On the contrary, the trees share the largest part of the tree structure with
other trees in the ensemble but deviate on average just in a few decisions. We expect
that generalization performance will be lower in certain domains where the decorrelation
aspect of random forest is important to capture all underlying mechanisms present in
the data. But we argue that in many applications this aspect is overcompensated by the
simplification and resulting interpretability. We introduce two types of ensemble modules,
that will be defined formally in the next sections:

� Option modules that consist of all reasonable variable choices at the each respective
step.

� Robust split modules that given the best split-point with respect to impurity for
each covariate also consist of reasonable alternative thresholds.

Both module types of ensemble modules can be combined. This is shown in Fig.1 (b) by
replacing the single decision that is part of the option module G1 ≤ 4 with a robust split
module.

Robust split module. [7] show that an ensemble of decision trees using bagging without
replacement can be described as a neighborhood around the optimal split-point. Imagine
the simple example where we are given one numeric covariate G with associated labels
H. The underlying true function is H = � (G > C0), however G is observed with noise.
Depending on the degree of noise and the sample size, when using bootstrap samples
of the original data, the decisions will be distributed around the true split point C0. In
this simple example the ensemble can be summarized as %(C>), where % is a unknown
distribution function. Therefore, it should be possible to describe large parts of a bagged
tree ensemble through the neighbourhood of splits.
The splits found in our induction process are unlikely to be optimal, so the theoretical
results from [7], just discussed, can be only understood as a heuristic. As no prior
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knowledge about the split’s distribution is available we choose a non-parametric approach
and use the closest points in the covariate space to construct a neighbourhood T (C0)
around C0. Let (G(8) , F (8)) be the 8’th ordered covariate value and its fraction present in
the current node to split, then we define the robust split module as

T (C0) = {C− 9 = G(8− 9) ≤ . . . ≤ C−1 = G(8−1) ≤ C0 = G(8) ≤ C1 = G(8+1) ≤ . . . ≤ C< = G(8+<)}

with

9 = (arg max
9̃

8−1∑
@=8− 9̃

F (@) < :) + 1 ; < = (arg max
9̃

8+ 9̃∑
@=8+1

F (@) < :) + 1.

Intuitively, on both sides we take : ”full” observations into the set. This expresses our
assumption that we can not be too sure about the exact position of the split and should
also consider all slightly different splits as equally likely, mimicking the behaviour of
bagging. As split-points are constituted by observations, fractional observations directly
imply fractional split-points. Let q(C) denote the weight that can be interpreted as the
”representation strength” defined by the point mass of the data points in the current leaf
for a cut-point C, given by the recursive function

q(C) =




∑#
8=1 F (8) � (G(8) = C), if C ∉ {C− 9 , C<}

: −∑ 9−1
;=1 q(C−;), if C = C− 9 (2)

: −∑<−1
;=1 q(C;), if C = C< .

In (2) an exception is made for the boarder cases C− 9 and C<. As those often can
not be included fully they are simply asssigned the remaining of : on this side. This
neighbourhood is constructed such that

∑
C∈T (C0) q(C) ≤ 2: + q(C0) in each robust split

module. For an observation reaching a robust split module ;, the fraction that is moved
to the left side is given by the gating function

k(x,T (C0)) = 1∑
C∈T (C0) q(C)

∑
C∈T (C0)

q(C)� (G ≤ C).

The fraction present in the left childnode is then F (8),;4 5 C = F (8)k(G(8) ,T (C0)) and the
fraction in the right childnode F (8),A86ℎC = F (8) (1 − k(G(8) ,T (C0))). This directly implies
that for each observation the sum of the fraction over all (current) leaf nodes equals 1
at each moment in training and prediction. Cases close to the decision boundary will be
present in both childnodes for further training. This is shown in Fig.2 for an example
data point. Instead of being present in only one node, the data point is present in three
current leafnodes. This reflects our uncertainty as the observation is close to the decision
boundaries and slightly different model choices would have let to different decision.
During induction, the exact position of C0 will therefore not influence the tree structure
substantially, leading to more stable structures, as we withdraw from making a definite
decision at this point. Importantly, as T is centered around C0, the interpretation of
the robust split module is similar to a common binary decision. When looking at a
node instead of the sharp interpretation ’if G 9 ≤ C0’ we can interpret each robust split
module as ’if G 9 is less than around C0’ (G 9 / C0). This offers a nice trade-off between
smoothness and interpretability. The parameter : controls the degree of smoothness that
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Figure 3: Decision Surface for the simulated dataset of (a) The first split using CRF,
(b) full random forest model (c) CART tree with depth 2. Details can be found in the
supplementary materials.

we enforce on the model. In the extreme case of : = # the gating function k equals the
univariate empirical cumulative distribution function. Our choice is motivated by the
results in [7], who show that split-points using bagging without replacement lie within
a #1/3 neighborhood around the optimal C0. Due to the suboptimality of found splits
in practice, we found a slightly bigger neighbourhood of : = (∑#

8=1 F (8))1/2 to work well.
Note that : is not optimized in the tree induction.

Option module. To address the variable uncertainty, we introduce option modules,
similar to option trees and ADT. Let ℎ 9 denote the weighted impurity using covariate 9 for
splitting and ℎ<8= the minimal impurity value found in the current step. Then, for a given
threshold [; , for the next split all covariates G 9 with { 9 |ℎ 9 ≤ ℎ<8= + [;} are taken into the
set as reasonable options. As the decisions made in the top layers of the tree are the most
influential on the tree structure, the parameter [; is set to diminish with increasing depth,
here by [; = [0/B;3, where B; is the tree depth in node ; and [0 is a pre-specified parameter.
Thus in the top layers more covariates are taken into option modules, while in the bottom
layers extra covariates are only added if the decision is very tight.2 Option modules can
easily be combined with robust split module using robust split modules instead of single
splits for each covariate. ℎ 9 can then be set as average impurity of all elements in T (C0).
This approach shares similarity with the idea of inner ensembles, where bootstrap samples
are used to decide on the best next single split [1, 21]. q(T (C0)) is then normalized to
sum up to one, to give each covariate the same weight. The combination of the two types
of modules is shown in Fig.3 on simulated data, where the two classes are drawn from
2-dimensional mixture of normals. In this example, CRF approximates the behaviour of
random forest quite well with respect to the decision surface and the smoothness that is
introduced. The smoothness stems from the robust split modules. Also both covariates
are used in the first split, as the decision is tight. In contrast to multivariate split methods,
such as oblique trees [25], the decisions are not jointly optimized. This can be seen as a

2We also tested using Hoeffding bounds to select alternative covariates [12, 24].The Hoeffding bound
is inversely proportional to = and in our experiments too few covariates were considered in the top levels
of the tree and too many in the bottom levels. However a more theoretically motivated choice of [ that
expresses the trade-off between reflecting all choices and the reduced interepretability would still be
desirable.
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form of regularization, as the decisions are required to be individually predictive. The
decision surface for CART in Fig.3 (c) shows the lack of smoothness in standard decision
trees, making it impossible to capture the underlying relationship in this simulation.

Predictions. For a leafnode the attached prediction value is set as the mean of y weighted
by its fractions present in this node Ĥ 9 = (

∑#
8=1 F8,;)−1

∑#
8=1 F8,;H8. At prediction time, test

cases will have non-zero weights in several leafnodes. The output from our model for a
given observation 8 and the set of < leafnodes is the set Y̌ = {( Ĥ1, F8,1), ..., ( Ĥ<, F8,<)}.
For obtaining a real valued point estimate, we can simply use the weighted average over
the set Y̌ with ?(H |G8) =

∑<
9=1 F8, 9 Ĥ 9 . Note that the size of Y̌ is the number of leafnodes,

not the number of trees that are represented by our ensemble. For interpretation, this
allows to look at the leaf nodes with the highest fractions and have a symbolic description,
what the prediction is based on. It can also be informative to look at the spread of Y̌
as a measure for reliability of this prediction. A natural measure is the variance of the
fractional predictions. The reliability reflects the degree of conflict between the decisions
in the ensemble modules. If an observation is often close to the decision boundary, or
if decisions inside option modules are contradictory, the prediction is found unreliable.
Consider the example where half the fractions of an observations fall into leafs with
prediction value 0 and the other half into leafs with prediction value 1. Both the variance
and the final prediction for this observation will be 0.5. This prediction shows a high
degree of uncertainty in two layers: about the predicted value ?(H |G) = 0.5 and given
?(H |G) the stochastic uncertainty about the outcome. On the other hand, if an observation
always falls into leafs with predicted values of 0.5, we are quite certain that we should
predict 0.5 and the uncertainty concerns only the outcome. A nice property for set-valued
predictions is the option to abstain from a prediction if the uncertainty is too high [11].
This is important in practice, when a high cost is associated with a wrong prediction.
For example in clinical applications it might be better to remeasure covariates in case of
potential measurement error or consider a further test altogether if the model prediction
is unreliable for a given patient. Also expert knowledge should be taken into account for
uncertain predictions, if available.

4 Experiments

To test the predictive capabilities of our proposed method, we carried out 10-fold cross
validation on two sets of data sets:

Gene expression data. The goal is to predict a binary disease outcome, based on
the genetic expression profile. These data sets are characterised by an extreme ? >> =
situation with thousands of covariates and small sample sizes.

Binary classification benchmark datasets. The datasets are taken from the UCI
repository [13]. Data are coming from various domains, including small and medium sized
data sets with varying number of covariates, and varying degrees of target imbalance.

Evaluation settings. All datasets together with seeds (that were generated randomly
for the experiments) and a data description are available in the supplementary material
to enhance an easy reproducibility. As some of the datasets are imbalanced, we chose the
area under the ROC curve (AUC) as evaluation metric. We compare CRF against random
forest as the ensemble benchmark and to CART as the baseline for an interpretable model.
All methods were run with standard settings from the R-libraries randomForest and rpart
respectively [28]. We test 4 different versions of CRF:
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Dataset random forest CRF-full CRF-split CRF-option CRF-shallow CART
Colon [3] 0.850 0.887 0.874 0.808 0.887 0.859

Gene DLBC [18] 0.951 0.955 0.901 0.78 0.955 0.721
Expression Leukaemia [19] 1 1 1 1 1 0.838

Prostate [18] 0.955 0.968 0.938 0.847 0.968 0.851
Australian Credit 0.932 0.936 0.921 0.928 0.937 0.903

Benchmark Banknote 1.000 0.998 0.998 0.999 0.995 0.966
Data Blood Transfusion 0.685 0.750 0.731 0.691 0.745 0.729

Climate Model 0.930 0.940 0.920 0.909 0.936 0.771
Diabetes 0.828 0.831 0.814 0.800 0.830 0.797
EEG-Eye-State 0.985 0.935 0.940 0.934 0.794 0.724
Haberman 0.682 0.724 0.696 0.681 0.723 0.626
Indian Liver 0.752 0.749 0.724 0.709 0.749 0.667
Ionosphere 0.982 0.957 0.940 0.960 0.949 0.905
Magic 0.937 0.920 0.901 0.904 0.887 0.808
Parkinsons 0.980 0.950 0.949 0.932 0.953 0.890
QSAR Biodeg 0.933 0.923 0.900 0.878 0.906 0.838
Spambase 0.986 0.980 0.971 0.973 0.962 0.894
SPECTF 0.850 0.837 0.764 0.724 0.841 0.721
Steel Plates 0.992 1.000 1.000 1.000 0.987 1.000
Vertebral 0.995 0.958 0.956 0.966 0.947 0.927
Wisconsin Breast 0.992 0.992 0.987 0.991 0.992 0.948
Wilt 0.987 0.987 0.989 0.984 0.958 0.960

Table 1: Average AUC using 10-fold CV over 22 Datasets. Results are marked in bold
where versions of CRF performs comparably or better than random forest.

1. CRF-full with both types of ensemble modules with a max-depth of 14.

2. CRF-split using only neighborhood moduleswith a max-depth of 14.

3. CRF-option using only option modules with a max-depth of 14.

4. CRF-shallow with a max-depth of 6 leading to a maximum of 126 nodes/ensemble
modules and both types of ensemble modules.

Each version uses a minimum node size for splitting of 6, a data depenendet parameter
: =
√
=; , where =; is the sum of weights in node ; and W0 = 0.3. All algorithms could be

tuned, so we believe it to be a fair comparison to run them with standard settings, especially
as random forests are known to be quite robust with respect to the parameter choices.
More details about the different implementations can be found in the supplementary
materials.

Predictive performance. Table 1 shows the AUC of the competing methods using the
above setting. All versions of CRF outperform CART on all tested datasets. On 16 out
of the 22 tested Datasets CRF-full performs comparably or better than Random Forest,
if one is willing to trade off 0.01 in AUC. In 9 Datasets CRF-full shows slightly better
performance. Performance is especially good in small data sets, where the uncertainty
in the tree induction process is high. Noteworthy is the good performance on the gene
expression datasets. CRF is able to account for the extremely high uncertainty due
to the small samples and has s generalization performance on par with random forest,
whereas CART clearly struggles. Also on difficult and perhaps noisy data sets such
as Blood Transfusion and Haberman with overall low AUC values, CRF shows strong
performance. Here the decorrelated trees in random forests might become too weak, leading
to suboptimal ensemble performance. On 5 of the datasets CRF performs significantly
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Figure 4: Accuracy, given the option to abstain from a vote, with varying thresholds
the prediction spread f(?(H |x)). The dashed line shows the proportion that can be
reliably predicted and the full line the accuracy for the predicted cases. (a) Diabetes, (b)
Parkinsons.

worse than random forest. A likely explanation is that for these datasets the optimal
decision surface is truly multimodal, which CRF in its current state is unable to capture
well.

Influence of treedepth. CRF-shallow performs almost identical to CRF-full on most
datasets. However on some datasets performance drops significantly, implying that deeper
trees are necessary in some of the datasets. This result is also interesting, as it suggests
that over-fitting is not a huge problem in CRF. Note that no form of pruning is applied
on the deeper trees.

Robust split modules. Using only the robust split module deteriorates the AUC on
most datasets, but still outperforms CART on all tested datasets. On 9 datasets the
performance is similar to random forest. Note that CRF-split offers almost the same easy
interpretability as a standard decision tree.

Option modules. CRF-option still improves on standard CART in most datasets,
but the lack of smoothness provided by the robust split modules decreases performance
significantly. It is also notable that on some datasets the decrease is quite big, especially
the genetic datasets with small sample sizes. The uncertainty about the split-point is here
the highest and neglecting it results in worse generalization performance due to instability.
Also the setting of [ and choice of [0 might be suboptimal on these datasets.

Abstaining from predictions. Fig.4 shows the accuracy if the classifier is given the
option to abstain if the prediction spread f(?(H |x)) > C for different thresholds C. On
the Diatebes and Parkinsons data, abstaining from about 40% of the predictions gives
an substantial increase of 8% in accuracy. For the abstained predictions other means of
decisions (such as expert opinions) might be better suited, or data recollected in case of
possible meassurement error. Together with the interpretability aspect, this makes our
method especially well suited for medical and clinical applications.

To summarise, in this section we showed, that CRF can perform remarkably well on many
datasets despite restricting the ensemble to a neighborhood around a single tree.
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5 Conclusion

We introduced a new framework for the construction of tree ensembles: instead of growing
a sequence of trees, we construct a set of trees corresponding to reasonable choices in
the construction process. The resulting cultivated random forests (CRF) are structurally
simpler than regular random forests, which can be beneficial both for diagnosing their
validity as well as memory efficiency. The empirical results suggest that CRF is competitive
to random forests on many of the tested data sets. An further advantage is that CRF
gives an estimate of the reliability of each prediction that can be used to abstain from
predictions. This might also be interesting in further research, when building ensembles of
randomized CRF, where weak learners can abstain from predictions. We believe that the
framework of model imprecision in decision tree learning is well worth exploring further,
as it is flexible and the CRF can be generated ”on the fly”. Next steps include more
data adaptive ways to construct neighbourhoods, as well as exploring weighting schemes
when pooling covariates in option modules. Also suitable pruning methods should be
investigated, as it is likely to limit the complexity further and might lead to an increase in
accuracy. A shortcoming of our method, that we will adress in the future, is the implicit
assumption of uni-modal impurity surfaces in the covariates. While being beneficial for
interpretation this might harm predictitve performance for those data sets, where this
assumption does not hold.

6 Broader Impact

We believe that our framework of tree structured ensemble learning makes a step towards
much needed transparency in machine learning. As machine learning emerges in more and
more areas of daily life it affects large parts of society directly. Black-box models may be
used to predict insurance claims, calculate credibility scores for credit applicants or in
prosecution of potential criminals, with potentially negative consequences for individuals.
In our opinion the possibility to give a reasoning behind a prediction should be a minimal
requirement in these areas. The same is true in clinical applications, where statistical
models might decide on the optimal treatment and consequences of error may be fatal.
Here practitioners should need to have the possibility to have insight in the reasoning
behind a prediction, in order to challenge its validity. Also the ability to estimate its own
reliability becomes more and more important in order to build trust in the predictions
made by machine learning models. Here our approach is only a first step and more
sophisticated ways should be explored to estimate a model’s reliability.
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(a)
G1 ≤ 5

G2 ≤ 3 G2 ≤ 4

(b)
G1 ≤ {4, 5, 6}

G2 ≤ {2, 3, 4} G2 ≤ {3, 4, 5}

Figure 5: Example for the paths to leafnodes

Supplement A - Details of Cultivated Random Forest

A leaf node can be written as a product of decision rules by L(x,DL) =
∏
3∈DL 3 (x),

where DL = {31, ..., 3;} is the path of ; decisions, that have to be fulfilled. For the 4
leafnodes shown in Fig. 1 (a) the corresponding paths DL are:

1. {3 (x, 5, 1), 3 (x, 3, 2)}
2. {3 (x, 5, 1), 1 − 3 (x, 3, 2)}. Note 1 − 3 (x, 3, 2) corresponds to the decision � (G2 > 3).
3. {1 − 3 (x, 5, 1), 3 (x, 4, 2)}
4. {1 − 3 (x, 5, 1), 1 − 3 (x, 4, 2)}

If instead ensemble modules are used as shown in Fig. 1 (b) the corresponding pathsML
are:

1. {k(G,M1), k(x,M2)}
2. {k(G,M1), 1 − k(x,M2)}
3. {1 − k(G,M1), k(x,M3)}
4. {1 − k(G,M1), 1 − k(x,M3)}

with M1 = {3 (x, 4, 1), 3 (x, 5, 1), 3 (x, 6, 1)},M2 = {3 (x, 2, 2), 3 (x, 3, 2), 3 (x, 4, 2)} and
M3 = {3 (x, 3, 2), 3 (x, 4, 2), 3 (x, 5, 2)}. Then we can write the fraction present in a given
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leafnode as:

L(x,ML) =
∏
M∈ML

(
1

|M|
∑
3∈M

3 (x)
)

=
1∏

M∈DL |M|
©«

∑
31∈M1

31(x) ·
∑

32∈M2

32(x) · ... ·
∑
3;∈M;

3; (x)ª®¬
=

1

|�× |
∑

31∈M1,...,3;∈M;

31(x) · ... · 3; (x)

=
1

|�× |
∑
�∈�×

(∏
3∈�

3 (x)
)

=
1

|�× |
∑

�L∈�×
L(x, �L)

with D× = {M1 × ... ×M;}.

Supplement B - Simulation

The data used for the illustrative example in Figure 3 of the main paper was generated as
following: for 8 = 1, · · · , 300:

H8 ∼ B(0.5)

G8 |H8 = 1 ∼ N2
( ( −1−1 , ) ( 0.752 0

0 0.752

) )
G8 |H8 = 0 ∼ N2

(( 11 )
,
(
0.752 0
0 0.752

) )
The simulation is used to highlight the smoothness of the decision boundaries of different
classifiers, when the true underlying relationship requires smooth boundaries.

Supplement C - Benchmark Experiments

Data

The UCI data sets were selected under following criteria:

� Public availability.

� Binary classification.

� Mostly numeric or categorical features with low cardinality.

The last criteria has the following reasoning. One of the main improvements of CRF
compared to CART is the robust split module, that requires numerical attributes. Hence
categorical attributes are transformed to dummy variables, while random forests and
CART have different ways built in to handle categorical attributes with larger cardinality.
However the CRF framework can straightforwardly be extended to more naturally handling
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of categorical features (for example using the approach from CART), which will be one
of the next steps in further research. So to achieve a good comparison of the main
improvements of CRF we focus on datasets with mostly numeric covariates.
For the genetic datasets fully preprocessed datasets were chosen, so that no further
preprocessing needed to be applied.

Dataset Covariates N Class 1 Class 2
Australian 14 690 383 307
Banknote 4 1372 762 610
Blood Transfusion 4 748 570 178
Climate Model 20 540 46 494
Diabetes 8 768 500 268
EEG-Eye-State 14 14980 8257 6732
Haberman 3 306 225 81
Indian Liver 10 583 416 167
Ionosphere 34 351 126 225
Magic 10 19020 12332 6688
Parkinsons 22 195 48 147
QSAR Biodeg 42 1055 699 356
Spambase 57 4601 2788 1813
SPECTF 44 267 55 212
Steel Plates 33 1941 1268 673
Vertebral 6 620 420 200
Wilt 5 4839 4578 261
Wisconsin Breast Cancer 30 569 357 212

Table 2: Characteristics of the 18 binary classification benchmark data sets from the UCI.

Dataset Covariates N Class 1 Class 2
Colon 2000 62 40 22
DLBC 2647 77 19 58
Leukaemia 7128 72 47 25
Prostate 2135 102 50 52

Table 3: Characteristics of the 4 gene expression data sets.

Table 2 shows characteristics of the UCI datasets and Table 3 for the genetic datasets.
The datasets cover a wide range of domains as well as varying size and number of covariates.
Also different situations of class imbalance are covered. The folder of data sets used is
attached. The target variable can be found in the last column of each data set.

Implementations

We used R (v. 3.5.3) to perform the benchmarking. To this end 10-fold crossvalidation
was performed, using the same seed for data splitting for each method.
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Random Forest Random forest was fit using the randomForest (v. 4.6-14)
package from CRAN. We ran the algorithm with standard settings, which corresponds
to 500 trees that are grown until purity and ?/3 covariates, where ? is the number of
covariates in total, tried at each node.

CART For fitting the CART algorithm, we used the rpart (v. 4.1-15) package from
CRAN. The standard settings are a minimum number of observations for splitting of 20
and a maximum depth of 30. To prevent overfitting a pre-pruning mechanism is build in:
a split is not made if the impurity meassure is reduced by less than 0.01. We also tried
cost-complexity pruning implemented in rpart, however the results got worse on average,
compared to prepruning.

Cultivated Random Forest We implemented a prototype version in R. All code
to run the experiments together with a full implementation of CRF will be published
online at the time of publication, as described above.
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Abstract. Machine learning algorithms have great potential to enhance
clinical diagnosis and treatment. Yet, their overall performance is limited
by the quality and quantity of available training data, while their adop-
tion is limited by the level of trust ascribed by human experts. Injecting
additional knowledge obtained from existing literature or from human ex-
pertise into the machine learning algorithm is widely seen as a solution
to both of these problems. Yet, few implementations of expert-guided
machine learning exist to date. We present Expert RuleFit (ERF), an
approach to integrate expert knowledge in the form of rules and linear
terms into an existing method for rule learning (RuleFit). A customized
regularization strategy allows us to consider the different strengths of
expert knowledge. For an empirical evaluation, we trained ERF models
on a diabetes dataset for which we acquired expert rules from medical
guidelines and expert interviews. We show that our ERF method enriches
or replaces potentially spurious correlations learned from a patient sam-
ple with expert-derived, validated domain knowledge without sacrificing
predictive performance. The integration of different knowledge sources
makes the ERF model a promising tool for learning accurate, explainable
and trustworthy medical decision rules.

Keywords: Decision rules · Rule learning · Explainable Machine Learn-
ing.

1 Introduction

Machine Learning (ML) systems offer great potential in medicine to provide
healthcare improvements. Their ability to learn from data without explicit hu-
man guidance provides an attractive solution to the problems of manual knowl-
edge acquisition encountered in the development of rule-based expert systems
[16]. Considering the complexity and dynamics of medical knowledge, inductive
learning is essential for successful decision support systems [16]. However, it is
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not to be forgotten that rule-based expert systems [2] have two clear advantages
over ML systems.

First, expert systems allow for the integration of and reasoning with vari-
ous sources of expert knowledge, ranging from personal assessments to factual
textbook knowledge. ML algorithms, to the contrary, are dependent on training
examples as the only source of information. To generalize well to unseen cases,
ML requires sufficient data to represent the population as a whole. Besides the
number of training examples, this depends on the amount of information present
in the recorded attributes, the amount of noise and the presence of hidden con-
founders. Due to the high cost and effort of information acquisition, privacy
concerns and an intrinsic uncertainty of medical data, clinical datasets are often
characterized by few examples, many missing values and insufficient task-relevant
input attributes. Then, ML models suffer from limited generalizability. Indeed,
significant performance decline is often observed when a model trained on data
from e.g. one hospital is used to predict patient outcomes from another.

Second, expert systems draw upon expert-derived knowledge (e.g. in form of
rules) to perform reasoning. As a result, expert system recommendations come
with explanations that resemble human knowledge and reasoning in structure
and vocabulary. The state-of-the-art in ML, to the contrary, often trades explain-
ability for predictive accuracy. In safety-critical applications, this may diminish
human trust and chances for system adoption. Without the possibility of expert
validation, high performance on test sets derived from the same distribution as
the training set is often considered as evidence that real knowledge has been cap-
tured by a model. This is dangerous because, in practice, ML cannot guarantee
reasonable patterns. Lacking any general domain knowledge, it cannot be ruled
out that ML algorithms make mistakes that would appear trivial to a human
[11].

A solution to both problems of generalizability and explainability is to in-
corporate prior knowledge. As an additional source of information, it allows ML
algorithms to better generalize to unseen cases while allowing human experts
to better understand and validate recommendations. We meet this challenge
proposing Expert RuleFit, a classification method that combines the strengths
of inductive ML and expert rule-based reasoning. Expert RuleFit injects expert
knowledge in the form of rules and linear terms into the existing rule ensemble
method RuleFit [9]. We use the term expert knowledge to refer to any form
of knowledge that experts consider state of the art and that they formulate to
the best of their knowledge. As such, expert knowledge is somehow validated,
e.g. through expert reasoning and academic studies or practically from experi-
ence or usage. The rules allow to stratify a patient population into task-relevant
subpopulations, while the linear terms allow to express correlations between
patient attributes and the target. Furthermore, by means of a tailored regular-
ization strategy, our approach allows experts to specify confirmed knowledge to
certainly enter the final prediction model as well as optional knowledge to be
promoted over data rules through a customized penalization strategy. By adding
expert knowledge in the form of rules to a data-generated rule set, we increase
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the explainability and trustworthiness of ML results, to meet the high demands
on medical decision support systems.

The contribution of this paper is a novel approach to combine rule learning
with rule based expertise, implemented as an extension of the existing rule ensem-
ble RuleFit and illustrated by a use case of diabetes diagnosis. We start in section
2 with a brief discussion of related work. Section 3 describes the existing RuleFit
method and discusses its limitations in medical application contexts. Section 4
presents Expert RuleFit as an expert-guided RuleFit extension to obtain the
benefits of expert knowledge inclusion. Section 5 compares Expert RuleFit with
the conventional RuleFit method on a use case of diabetes diagnosis. Finally,
section 6 concludes and points out research paths for future work.

2 Related Work

Knowledge representation in the form of rules has a long tradition in medical
AI, in particular in rule-based expert systems [2]. More recently, the integra-
tion of symbolic prior knowledge into the process of learning from examples has
been considered in hybrid systems [18]. In pursuit of theory-guided data science
and scientific consistency in machine learning, research interest is increasingly
devoted to combinations of data- and knowledge driven approaches. Under the
umbrella term informed machine learning, the recent survey paper [17] provides
a structured overview on many different ML learning algorithms that can be en-
riched with prior knowledge. A taxonomy classifies them according to the source
of knowledge, its representation and its integration into the ML process. The ma-
jority of research work is concerned with the use of symbolic knowledge in neural
networks. [20] and [4] use logical formulas to guide the output of deep neural net-
works as logical constraints in loss functions. In [14], knowledge graphs enhance
deep neural networks with rules about relations between instances. In contrast,
Expert RuleFit does not add rule-based knowledge to deep learning, but to a rule
learning engine. Using the terminology from the informed ML taxonomy [17],
we use expert knowledge as knowledge source, rules as knowledge representation
and integrate knowledge directly into the learning algorithm. One particularly
related approach is Expert-Augmented Machine Learning (EAML) [11], where
domain experts use an online platform to assess the relative risk of subpopula-
tions defined by RuleFit rules and the difference between their assessment and
the empirical risk is considered as part of a novel regularization strategy for Rule-
Fit. Whereas EAML first derives knowledge from data and then has the same
evaluated by experts post hoc, our approach allows to formulate knowledge a pri-
ori which is then taken into account by the rule-learning algorithm. This allows
human knowledge to be explicitly integrated to co-define model components.

3 Context

RuleFit is a rule ensemble method proposed by Friedman and Popescu [9]. In
general, ML ensembles solve prediction problems by combining the predictions of
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several classifiers. That is to say, multiple classifiers are trained to solve the same
problem and consequently, their individual results are aggregated in the form of
a generalized, linear model to form one joint prediction model [1]. The ensemble
members – commonly referred to as base learners – are potentially different func-
tions of different subsets of predictor attributes derived from the training data [9].
The rationale of ensembling is performance improvement by variance reduction.
Given a labelled dataset {(xi, yi)}Ni=1, RuleFit derives regression and classifica-
tion ensembles whose accuracy is competitive with state-of-the-art methods such
as random forests [13]. The rule learning ability avoids knowledge acquisition,
enables massive data inputs and allows for knowledge discovery. The use of rules
and linear terms as base learners makes RuleFit models potentially comprehen-
sible for humans [10]. RuleFit has a better accuracy-complexity trade-off than
most of the state-of-the art in ML [11]. This makes it a promising candidate to
provide decision support in safety-critical domains with high demands on both
accuracy and explainability [21]. The RuleFit algorithm proceeds in two stages:
Ensemble Generation and Regularisation.

Stage 1: Ensemble Generation RuleFit models are linear combinations of
rules and linear terms, whose predictive relevance is to be defined by respective
coefficients. Following Friedman’s stochastic gradient boosting strategy of rule
learning [8], RuleFit generates an overly large set of candidate rules from boosted
tree ensembles. As products of attribute-value tests from the root node to every
other node in the tree, rules act as binary classifiers r(x) ∈ {0, 1}, where x
is the covariate vector, indicating whether observations match their conditions.
To help illustrate the idea of the rule generation process, Figure 1 depicts an
exemplary, simple decision tree generated from the Pima Indian Diabetes (PID)
dataset available from the UCI ML Repository [5]. The rules listed in Table 1
correspond to the paths to all nodes of the tree. Note that in RuleFit only the
conditions are kept as decision rules, not the predictions in the leaf nodes. The
rationale however is that decision rule specify subgroups that are predictive with
respect to the target attribute. Rule r3 in Table 1 specifies patients that are at
least 29 years and have a BMI of less than 27. From Fig.1. we can see that the
risk for diabetes is lower in this group.

Table 1. Rules corresponding to the decision tree in Fig. 1.

Rules Conditions

r1 Age < 29
r2 Age ≥ 29
r3 Age ≥ 29 & BMI < 27
r4 Age ≥ 29 & BMI ≥ 27

This process is repeated for each tree from the boosted tree ensemble and the
extracted decision rules are concatenated to a large set of rules. The resulting
rule set is cleaned according to sufficient support, colinearity and duplicates. To
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Age < 29

BMI < 27

yes no

1

2

3

6 7
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.67  .33
100%
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43%

No
.80  .20

5%

Yes
.42  .58

38%

yes no

1

2

3

6 7

Fig. 1. Decision tree extracted from the PID dataset.

better capture linear effects, numeric attributes xj are preprocessed (see [9]) and
added as linear terms l(xj) in the ensemble:

F (x) = α0 +

D∑

d=1

αdrd(x) +

p∑

j=1

βj l(xj). (1)

Stage 2: Regularization To boil the overly large set of candidate rules down
to the truly informative ones, Lasso regularized regression is applied to learn the
regression coefficients αd and βj [19]. The least absolute shrinkage and selection
operator ”Lasso” is widely considered in ML literature and -practice for spar-
sification problems. It is easy to implement with a number of efficient solvers
available and known for its selective nature when confronted with high dimen-
sional data. Accordingly, the model coefficients γRF = (α0, {αd}D1 , {βj}p1) are
learned as:

γRF = arg min
γRF

N∑

i=1

L (yi, F (x)) + λ ·




D∑

d=1

|αd|+
p∑

j=1

|βj |


 , (2)

where L is an appropriately chosen loss function (typically sum of squared for
linear regression and negative log-likelihood with sigmoid link-function on F (x)
for binary classification) [13]. The result are relatively sparse prediction models,
where the majority of coefficient estimates is set to zero [7].

RuleFit’s suitability in medical contexts is limited by its dependency on suf-
ficient data and human acceptance. Similar to the majority of ML algorithms,
model generalizability is constrained by the quantity and quality of the train-
ing set. At the same time, human acceptance of model results is constrained
by the number and complexity of learned decision rules as well as their consis-
tency with domain knowledge and expert assessments. Without reference to any
general knowledge of the domain, RuleFit rules may often combine conditions
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that contradict expert assessments. In this regard, RuleFit offers no possibility
to remove some rules and include others. This diminishes RuleFit’s chances for
regular use and consultation in clinical practice [11].

4 Method

A solution to both the problems of limited generalizability and limited trust
lies in an incorporation of expert knowledge into the RuleFit algorithm. Expert
knowledge is a natural way to counter the problem of insufficient training data,
and in medicine it is widely available. Whereas expert knowledge commonly
refers to normal cases, typical symptoms and causal relationships, data-derived
patterns reflect real patients with comorbidities, confounding factors and in-
dividual differences [11]. Therefore, training data can extend the coverage of
expert knowledge through exceptional cases or unknown patterns while expert
knowledge can compensate the effects of spurious patterns learned from poor,
atypical training examples with medical regularities and consensual knowledge.
Furthermore, the inclusion of expert knowledge is likely to increase human trust
in model results. After all, physicians formulate patient conditions according
to their understanding of the human physiology and task-relevant symptoms
and effects, while ML algorithms learn only correlations from the empirical dis-
tribution of a patient sample. We therefore present Expert RuleFit (ERF) as
a classification method, derived in 3 stages: Knowledge Acquisition, Combined
Ensemble Generation and Knowledge-Aware Regularization.

Stage 1: Expert Knowledge Acquisition. Prior to the learning process, ex-
pert knowledge regarding the learning task may be formulated as rules and linear
effects. Similar to the knowledge acquisition strategy used to develop rule-based
expert systems, this involves manual knowledge acquisition from domain ex-
perts, medical guidelines, study results and textbooks. This information is then
translated into rules and linear effects. Rules separate patients into subpopu-
lations with respect to their target values. For example, in diabetes diagnosis
the expert rule BMI > 40 & Age ≥ 60 & BP > 120 defines a subpopulation
of obese, elderly people with increased blood pressure. A physician might spec-
ify this subpopulation to have a high incidence rate of diabetes compared to
the whole population. Particularly favourable for rule formulation are clinical
practice guidelines, whose recommendations on the diagnosis and treatment of
patients with specific clinical conditions are either directly formulated as rules
or as structured, rule-like statements. To distinguish different degrees to which
expert knowledge is validated, ERF allows users to declare some rules and linear
terms as confirmed and others as optional knowledge.

Stage 2: Combined Ensemble Generation. Consequently, at most 4 dif-
ferent sets of expert knowledge enter the ERF model together with the given
dataset. These are the sets of confirmed expert rules rc, c ∈ Ic and linear terms
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lcl , cl ∈ Icl as well as the sets of their optional counterparts ro, o ∈ Io and
lol , ol ∈ Iol , where Ic, Icl , Io and Iol are disjoint index sets that are also dis-
joint with {1, ..., D}. Based on the given dataset and the encoded expert knowl-
edge, data rules rd are generated using the RuleFit method. This results in one
common, enlarged set of base learners to enter the linear predictor

F (x) = α0 +

D∑

d=1

αdrd(x) +
∑

c∈Ic
αcrc(x) +

∑

o∈Io
αoro(x) +

∑

cl∈Icl
βcl l(xcl) +

∑

ol∈Iol
βol l(xol)

(3)

of the ERF model. In difference to RuleFit, linear terms are not included by
default, but according to expert knowledge on their respective relevance. Since
expert knowledge is included before learning the weight coefficients that spec-
ify the importance of the base learners, redundant and non-informative expert
knowledge can be recognised and assessed as such while expert knowledge in-
completeness may be compensated by the rules learned from the training data.
ERF models cover the entire spectrum from purely data-driven RuleFit models
to models that include only expert knowledge and no data rules.

Stage 3: Knowledge-Aware Regularization. To learn the coefficients, we
developed a tailored regularization strategy, where adaptive penalty factors serve
to guarantee an inclusion of confirmed expert knowledge and allow for a pro-
motion of optional expert knowledge over data-generated predictors in the fi-
nal model. The term penalty factors refers to multiplicative weight vectors
applied to the Lasso penalty term λ, which allow to adjust penalization dif-
ferently for every coefficient, e.g. to put discount on the inclusion of selected
model terms [22]. The optimization problem for estimating the model coeffi-
cients γERF = (α0, {αd}D1 , {αc}c∈Ic , {αo}o∈Io , {βcl}cl∈Icl , {βol}ol∈Iol ) extends
to

γERF =arg min
γERF

N∑

i=1

L (yi, F (x)) +λ·
[

D∑

d=1

|αd|+
∑

o∈Io
νo|αo|+

∑

ol∈Iol

ηol |βol |
]
. (4)

Data rules are fully penalized using 1 as penalty factor. Confirmed expert rules
and linear terms are exempted from penalization using 0 as penalty factor: They
are certainly included in the final model and therefor do not appear in the
penalty term above. For optional expert rules and linear terms, the user may
specify customized vectors ν with νo ∈ [0, 1] and η with ηol ∈ [0, 1] as penalty
factors to prefer each respective base learner to a customized degree over the
data rules. The smaller ν and η are chosen, the cheaper it is for the model to
include the corresponding covariates. Setting all components of ν and η to 1
leads to an equal treatment of optional terms and data generated terms. This
approach loosely resembles the adaptive lasso [22], but with the penalty factors
chosen in accordance to medical expertise. Our promotion of expert knowledge
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Table 2. An excerpt of expert rules collected from medical guidelines and expert inter-
views including the degree to which rule accordance is regarded as diabetes indicator.

Expert Rule Source Diabetes Prevalence Type

Age >= 60 & BP >= 81 & BMI > 40 SMC-D very high confirmed
Glucose > 110 & BP > 90 NHG-D mid optional
Age <= 42 & BP <= 80 & BMI <= 29 Expert 1 low confirmed
Age >= 45 & BP >= 90 & BMI >= 35 & Glucose >= 130 Expert 2 high confirmed

through diminished penalties is designed to balance the data rules that precisely
fit an empirical distribution and thus help to achieve more robust, generalizable
models.

5 Experiments

We evaluate the performance of ERF on the diagnosis of Type 2 diabetes.

Experimental Setting. We use the aforementioned PID dataset, obtained
from the UCI repository [5], where the learning task is to diagnose diabetes pa-
tients. For 768 adult women, information is recorded regarding the number of
pregnancies, age, BMI, triceps skinfold thickness, blood pressure (BP), insulin-
and glucose levels, a genetic predisposition to diabetes and the diabetes test re-
sult.
As expert knowledge, we manually extracted rules and linear terms from two
diabetes guidelines, the Standards of Medical Care in Diabetes [3] and the Na-
tional healthcare guideline – Diabetes Mellitus Type 2 [15]. Both sources reference
attributes in the PID dataset and present knowledge in the form of patient con-
ditions. Guideline information about the extent to which specified conditions
indicate the presence of diabetes was used to classify expert knowledge as indi-
cators of minor, moderate, strong and very strong diabetes risks. In addition, we
conducted two expert interviews with practicing physicians, who specified a set
of task-relevant patient subpopulations based on their diagnostic understanding
and experience. According to the rationale that indicators of minor or (very)
strong diabetes risk are more reliable separators than moderate indicators, we
defined 20 confirmed expert rules, 2 confirmed linear terms, 34 optional expert
rules and 3 optional linear terms.

Experimental Protocol. We train four different versions of our proposed ERF
model, one existing implementation of the conventional RuleFit model and one
Random Forest model, whereby the latter two serve as baselines. The four pro-
posed ERF models are as follows: First, a standard ERF model called ERF
includes data rules together with confirmed and optional expert knowledge with
full penalty put on all optional expert knowledge (ν = η = 1). Second, the
model ERF prio is the same, but with optional expert knowledge preferred
over data rules using ν = η = 0.5. The penalty factors were chosen as equal
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because the guidelines and expert assessments did not provide a finer subdivi-
sion to justify different penalty values. Third, the model ERF only includes
only expert knowledge and no data rules. Fourth, the model RuleFit – as our
implementation of the conventional RuleFit method – contains only data rules
but no expert knowledge. In addition, we use the model PRE as an existing
implementation of the RuleFit method 3 as well as a Random Forest model
4 as baselines. We evaluate the models on AUC (area under the ROC curve)
and classification accuracy. With regard to explainability, we use the size of
the final ensemble as an indicator of model complexity. Furthermore, we con-
sider the proportion of expert knowledge in the final model as an indicator of
medically coherent predictors, supporting explainability and trustworthiness of
model results. To investigate training data dependence, all models are trained
on 4 different sized subsamples of the PID data set. Finally, every individual
model was made subject to 10-fold cross validation (CV) to provide balanced
accuracy measures [13]. As usual, we derive 10-fold-CV estimates from splitting
the original training data into 10 random, equally sized subsets or folds. For each
fold k, the model is retrained, using the observations in the other 9 folds and
evaluated using the observations in fold k. Eventually, the final performance is
calculated as the average performance over the 10 folds [7].

Results. AUC and classification accuracy results (Fig. 2) are similar for all
model settings, especially on the full dataset and the sample set of 400 patients.
This shows that expert knowledge is task-relevant and often able to replace data
rules without sacrificing predictive performance. For the larger data set sizes, the
ERF models comprising both data- and expert knowledge are most competitive.
For the smaller samples, ERF models achieve the same accuracy while including
expert-validated patient conditions as predictors. The results of the ERF only
models, which do not include any predictors learned from the dataset they are
evaluated on, suggest that the expert knowledge contains as much task-relevant
information as 400 training examples. Looking at the performance of RuleFit
and PRE, we were not able to show a performance gain through the inclusion of
expert knowledge. We presume this is partly because our expert knowledge is not
complete and partly because the validation set has been randomly subsampled
from the same empirical distribution as the training data. Eventually, ERF and
ERF prio are slightly outperformed by the Random Forest model on the
larger dataset sizes and cleary outperformed on the 200 sample. Our RuleFit
implementation is rather competitive with RandomForest on all dataset sizes
and significantly better than PRE on the 200 sample.

Final model sizes (Fig. 3) – ranging from 10 to 25 – are similar throughout
the competing model settings and dataset sizes, indicating a high interpretability

3 We use PRE, as the original R-implementation by [9] is no longer available. We
adapted our penalization strategy to make results comparable with PRE, by using
λ1se, the largest λ within one standard error of the minimal one, to produce a more
sparse solution. This was found to produce a better accuracy-complexity tradeoff.

4 We use the default settings of the R-package randomForest
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Fig. 2. Cross-validated (10-fold) results on classification accuracy (left) and AUC
(right) of ERF- and RuleFit models and a Random Forest model trained on differ-
ent sized samples of the PID dataset.

of the RuleFit algorithm and its variants, PRE and ERF, on this dataset.
Although we initially entered a total of 59 expert knowledge terms, about half
of the confirmed- and about 20 of the optional expert rules were removed due to
insufficient support on the dataset or perfect correlation with other expert- or
data rules. We see that the inclusion of expert knowledge decreases the ensemble
size compared to our implementation of RuleFit, but remains slightly above
the PRE version of RuleFit. Finally, the integration of expert knowledge in the
form of additional base learners did not significantly influence the size of the
final model.

Results on the proportion of expert knowledge in the final models as well as
among their 10 most important base learners (Fig. 4) show high expert knowl-
edge accordance across all ERF models. In particular, 50-75% of all base learners
that remain in the final model and 8-10 out of the 10 most important terms (i.e.
the terms with highest coefficients) correspond to expert knowledge. Of course,
this is partly due to the concept of expert knowledge-aware regularisation, where
confirmed expert knowledge is exempted from penalisation. Yet, the results show
the value of expert knowledge for adequate predictions. Finally, an exemption
from penalisation does not automatically make a model coefficient large and the
associated base learner important. Thus, ERF models largely base their results
on validated, medically coherent predictors instead of correlations derived from
a patient sample.
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We conclude that the ERF method yields explainable and more medically
coherent models than RuleFit without sacrificing predictive accuracy or adding
to model complexity. ERF’s potential to yield increased accuracy at decreased
model complexity was shown in an associated simulation study in [6]. As such,
ERF promises accurate and yet simple models, including a large fraction of
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Fig. 3. Cross-validated (10-fold) results on the ensemble size of ERF- and RuleFit
models trained on different sized samples of the PID dataset.
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among the 10 most important base learners and overall. Importance of a term is defined
as the absolute size of its coefficient.

127



12 Ebner, Nalenz et al.

validated, causal knowledge as important predictors and thus lowering the risk
of including spurious relationships.

6 Conclusion and Future Work

We presented ERF as an expert-guided ML model for binary classification. Our
approach combines the strengths of both ML and rule-based expert systems.
While making use of RuleFit’s rule learning ability, ERF allows human experts
to complement an automatically generated knowledge base with knowledge they
themselves work with to make decisions. In addition, ERF allows users to vary
between purely expert knowledge-driven and purely data-driven models, depend-
ing on which information sources they trust most. This turns machine learning
into a tool to enhance human reasoning, instead of overwriting it [12]. Finally,
the increased level of human involvement promotes human trust in model results,
which in turn raises the chances of adoption in clinical practice.

An inherent limitation is the constraint of expert knowledge to attributes in
the dataset. Since ERF learns the weight coefficients of expert knowledge from
corresponding data examples, a reference in the data is necessary to empirically
evaluate the predictive influence of an expert rule or linear term.

Future work on ERF opens up several research paths. In the first instance, we
would like to conduct larger scale experiments with more diverse data sets. Using
the PID dataset, all models were evaluated using a validation set that has been
randomly subsampled from the empirical distribution. This is risky when the set
of patient examples is not representative of the whole population of interest as it
is the case with many clinical datasets. However, the test set generally contains
similar correlations as the training set [11]. To further evaluate and compare the
out-of-sample performance of ERF and RuleFit models, test sets from different
health institutions or different survey dates could help to investigate whether
the inclusion of general, causal expert knowledge reduces performance decline
over time or makes models more robust to changes in underlying variable dis-
tributions. If a certain patient group is underrepresented in the dataset used to
train the model, expert rules concerning this patient group could help to make
the model more generalizable to the entire patient population. To support our
assumptions on increased explainability and human acceptance, models should
be evaluated and compared by domain experts. On another note, the possibility
to evaluate hypotheses or theories on empirical data suggests the use of ERF
as an exploratory tool in medical research or even the strongly theory driven
social sciences. Finally, the strengths of the ERF method are currently associ-
ated with the efforts of manual expert knowledge acquisition and -formulation.
Even though ERF facilitates and restricts the latter, good results demand for
thought-out development of rules and linear predictors. Especially with regard
to scalability, manual knowledge acquisition is suboptimal and may sometimes
speak against ERF usage. A promising aspect of future work lies in an integration
of ERF with methods for automated knowledge acquisition, such that experts
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could point to medical text from which rules and linear effects are extracted
automatically.
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Discriminative Power Lasso – Incorporating
Discriminative Power of Genes into

Regularization-Based Variable Selection
Cornelia Fuetterer+∗, Malte Nalenz+∗, and Thomas Augustin+

Abstract—In precision medicine, it is known that specific genes
are decisive for the development of different cell types. In drug
development it is therefore of high relevance to identify biomark-
ers that allow to distinguish cell-subtypes that are connected to a
disease. The main goal is to find a sparse set of genes that can
be used for prediction. For standard classification methods the high
dimensionality of gene expression data poses a severe challenge.
Common approaches address this problem by excluding genes during
preprocessing. As an alternative, L1-regularized regression (Lasso)
can be used in order to identify the most impactful genes.
We argue to use an adaptive penalization scheme, based on the
biological insight that decisive genes are expressed differently among
the cell types. The differences in gene expression are measured as
their discriminitive power (DP), which is based on the univariate
compactness within classes and separation between classes. ANOVA
based measures, as well as measures coming from clustering theory,
are applied to construct the covariate specific DP.
The resulting model, that we call Discriminative Power Lasso (DP-
Lasso), incorporates the DP as covariate specific penalization into the
Lasso. Genes with a higher DP are penalized less heavily and have a
higher chance for being part of the final model. With that the model
can be guided towards more promising and trustworthy genes, while
the coefficients of uninformative genes can be shrunken to zero more
reliably.
We test our method on single-cell RNA-sequencing data as well
as on simulated data. DP-Lasso leads on average to significantly
sparser solutions compared to competing Lasso-based regularization
approaches, while being competitive in terms of accuracy.

Keywords—Penalized Regression, Variable Selection, Clustering
validation metrics, scRNA-sequencing data.

I. INTRODUCTION

In personalized medicine, it is important to identify genes,
which can be used to accurately predict the individual
outcomes. For the development of biomarkers, a lower
number of covariates means less effort in its subsequent
clinical testing. As in high-dimensional settings many genes
are often noise, the challenge is to select only the covariates
that are relevant in terms of prognostic, predictive or biological
impact to the drug or the disease [19]. In case of non-small
cell lung cancer (NSCLC), the detection of the biomarker
EML4-ALK fusion gene [27] led to the development of
the drug crizotinib, which is used for patients carrying an
ALK-fusion. In contrast to the earlier low response, crizotinib
dramatically raised the response rate in NSCLC [19].

+Ludwig-Maximilians-University, Munich. Department of Statistics.
*These authors contributed equally to this work.

In general, the transition of healthy cells into cancerous
cells affects changes in gene expression that can be measured.
It is therefore common practice to investigate single-cell RNA
sequencing data, introduced by [30], which allows insights
into the different cell types of single cells. In the case of a
cell cycle, the cell passes from the DNA synthesis (S-phase)
to the mitosis (M-phase), including the gap phases (G1 and
G2) in between. These different phases can be distinguished
by its measured gene expression of a synchronized cell
population. For example, a high score at the G2M checkpoint
can be an indicator of metastasis tumor [21]. Testing whether
genes are differentially expressed among different cell types
might therefore lead to valuable insights.

From a biological point of view, it is therefore of relevance
to extract a sparse set of genes that can be used to classify
and characterize the subpopulations [11]. One common
approach is to use penalized regression models, such as
the Lasso [31] that find a trade-off between model fit and
model complexity. The advantage of the Lasso is that it
provides variable selection, by setting coefficients to exactly
zero. An extension is the adaptive Lasso [36] which uses
covariate specific penalization terms. The penalization terms
are inversely proportional to the ordinary least square (OLS)
estimates from a multivariate regression model.

In this article, we combine the concepts of regularized
regression with the biological background of differentially
expressed genes. Genes that differ univariately with respect
to the target, should be penalized less heavily.
We therefore introduce the term discriminative power (DP),
which allows a covariate specific evaluation of compactness
and separation with regard to the outcome. Discriminative
power is measured by means of clustering indices [3], as well
as by the classic concept of analysis of variance (ANOVA)
[12].
The discriminative power is directly incorporated as covariate
specific penalization into the adaptive Lasso, resulting in our
approach Discriminative Power Lasso (DP-Lasso).
Using the DP as penalization weights in a L1-regularized
model can be seen as a soft filtering as we do not exclude
any covariates before performing regression, but favour genes
with good univariate properties. The idea is to give covariates
with low univariate DP a higher penalty, while reducing the
penalty on the more promising covariates.
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This paper is structured as follows. In Section II we
introduce notations give an overview over commonly used
regularization based methods. Section III introduces the
DP-Lasso model. In Section IV and Section V we test the
performance of DP-Lasso on scRNA-sequencing datasets
as benchmark datasets, and on simulated data. Section VI
concludes and provides an outlook.

II. METHODS

In supervised learning, the goal is to estimate the under-
lying function that maps the p-dimensional covariate space
to the outcome. As training data, we are given a matrix X ,
composed of p covariate vectors each containing the values
of the N observations. This leads to the covariate matrix
X = (x1, · · · , xp), j = 1, · · · , p, and the vector Y containing
the N outcomes. xij denotes the value of observation i for
covariate j, xj the N values of covariate j, and xi· the p
dimensional observation vector for observation i. Given that
the outcome is continuous, a common approach is to estimate
the linear model

ŷi = β0 +

p∑

j=1

βjxij , (1)

where β is the p-dimensional vector of regression coefficients.
In the following categorical outcomes Y ∈ {1, · · · ,K} are
considered. In this case a generalized linear model (glm) is
appropriate, which uses a linear structure as in Equation 1
and connects it to the target through a link function [10].
Thus, for binary outcomes Y ∈ {0, 1} logistic regression is
used and for K > 2 classes the multinomial-logit model.
However, for ease of notation in the following the linear
model is used in the description of the methods.

In high dimensional data and especially p >> N glms
cannot reliably be estimated, due to the problems of
multicollinearity and perfect separation [1, 14]. Also glms
can not deal efficiently with irrelevant predictors, as no
variable selection is performed. It is therefore common
practice to reduce the number of genes before analysis.

For this purpose, the univariate filtering approach selects
covariates based on (adjusted) p-values of univariate tests or
biological reasoning. The final result highly depends on the
researcher’s choice, because a threshold or number of genes
kept for the analysis has to be specified.

Alternatively, one can use regularized regression models
for parameter estimation, that find a trade-off between model
fit and model complexity. Regularized regression models also
lead to more stable solutions for β coefficients in p >> N ,
as extreme behaviour is penalized [15]. This allows to find a
unique solution in situations where glms might fail, such as
perfect seperability and multicolinearity.

In regularized regression models, the overall loss function is
decomposed in the discrepancy of the observed target and
the model prediction and a penalty term that controls the

complexity of the model. In case of the classical Lasso, the
penalty is equal to the L1-norm of the coefficients β, leading
to the overall loss function [31]:

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2

︸ ︷︷ ︸
SSE

+λ

p∑

j=1

|βj |
︸ ︷︷ ︸
Penalty Term

, (2)

for linear regression. The degree of shrinkage and sparsity
is controlled by a global shrinkage parameter λ, which is
usually chosen via cross-validation.

Lasso regression allows to shrink coefficients to exactly
zero, which leads to a covariate selection. Lasso has
efficient solvers available, making it a good choice for high
dimensional datasets. However, the Lasso has the known
deficiency of overshrinkage: To remove a large number of
uninformative covariates, a high penalty parameter needs to
be chosen. This in return will also shrink the coefficients
of informative predictors to some extent. To counteract, the
Lasso will take in correlated predictors, to substitute for
the overshrinkage [35]. This makes the interpretation of
covariates left in the final model somewhat dubious, as it
is unclear if the covariate itself is important or just as a
substitute for the overshrinkage of another covariate.

If predictive performance is the primary objective, Ridge
regression (L2-penalty) is a popular alternative. L2-penalty
limits the influence of individual covariates, by penalizing
high β’s strongly, but shrinks no coefficient to exactly zero
[15].

The Elastic Net (Zou and Hastie 2005) uses a mixture
of the L1-norm (Lasso) and the L2-norm (Ridge). The loss
function of the Elastic Net can be written as

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2 + α

p∑

j=1

λj |βj |+

(1− α)

p∑

j=1

λjβ
2
j , (3)

where α is a mixing parameter that controls the proportion
of L1 and L2-penalty that is put on the coefficients.
Elastic Net often shows better predictive performance than
Lasso, while also being able to set coefficients to exactly zero.

To reduce the amount of over-shrinkage and improve
variable selection consistency, the adaptive Lasso [36] was
proposed. Instead of using the same global shrinkage λ on
every coefficient, the adaptive Lasso uses a covariate specific
shrinkage parameter λj , which allows a separate penalty for
each covariate. This leads to the loss function of the adaptive
Lasso [36]

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2 +

p∑

j

λj |βj |, (4)
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where λj = λwj is the covariate specific penalty and wj

discount factors that increase or decrease the amount of
penalization for covariate j. In the original adaptive Lasso,
wj is calculated as the inverse of the parameter estimates
of the ordinary least squares (OLS) regression, hence
wj = 1/β̂

(OLS)
j . This approach can be shown to improve

the model selection consistency under certain assumptions
[36]. More concretely this results in less penalization of
important covariates with high β̂

(OLS)
j , which allows the final

coefficients to become large, mitigating the over-shrinkage
effect. In case of p >> N , the covariate specific weighting can
be obtained by a ridge regression instead of the OLS estimates.

Several other extensions of the Lasso have been proposed,
such as the fused Lasso [32], group Lasso [20], Bayesian
Lasso [22] and Bayesian shrinkage priors [2].

Another commonly used approach for gene selection is
the usage of tree ensembles, such as random forests [8].
Random forests [4], that combine several decision trees,
are a popular choice for genetic classification data, as they
posses strong predictive performance and do not require
further assumptions. Measures, such as (unbiased) variable
importance [29] and SHAP values [17] can be used to assess
the importance of individual covariates, to rank covariates
and to identify the most impactful genes.

III. DISCRIMINATIVE POWER LASSO

In p >> N situations, where the number of covariates
exceeds the number of observations, there always exists an
infinite amount of solutions for the regression hyperplane
defined by the regression coefficients. While regularization
helps to promote sparsity and limit extreme behaviour, we
argue that additional information can guide the model towards
more robust and reliable solutions. In contrast to the original
adaptive Lasso, we want to limit the impact of covariates
that only work well in a multivariate model, but are not
discriminative univariatly. If enough data is available, such
interplay between different covariates can be reliably esti-
mated. However, with limited training data, the chance of
over-fitting on spurious relationships is high, when learning
multivariate models. Therefore, we suggest to instead promote
genes that decompose the data in ‘natural’ groups, measured
by the univariate discriminative power based on the conditional
distribution f(Xj |Y ), j = 1, ..., p.
The construction of the DP can be motivated by the concept
of analysis of variance that measures the impact of a grouping
variable on a numeric outcome by their differences in means.
Therefore, for the construction of the DP we use the depen-
dent variable Y as independent variable that we condition on
to explain the differences in X . This change in perspective
adds new information that is unavailable in a purely supervised
regression approach. Secondly, cluster validation measures that
have been developed in unsupervised clustering theory can
be applied. Instead of using the outputted cluster labels as
groups, as it is usually done in unsupervised learning, we
directly use the target labels Y as grouping. The discriminative

power therefore measures how well a covariate decomposes
the underlying groups in terms of compactness and separation.

A. Target Adaptive Regularization

We implement the preference towards covariates with high
discriminative power by discounting their penalty, similarly to
the adaptive Lasso. The overall loss function of DP-Lasso can
be written as

L(y,X, β, λ, w) = E(ŷ, y, β) +
p∑

j=1

λj |βj |, (5)

where E is an appropriate loss function measuring the devia-
tion from the fitted response vector ŷ and the true values y,
using a suitable link function. For logistic regression deviance
or log-loss are common choices for E . In case of a linear
model the model takes the form of Equation 4. We propose to
chose the covariate specific penalty as λ

(DP )
j := λw

(DP )
j and

w
(DP )
j = 1/DPj , where DPj is the discriminative power of

gene j. This gives the model a gentle push towards covariates
that appear more natural and reliable, based on their DP. Note
that both the calculation of DP and the following regularized
regression model are based on all N observations of the
training data.
Combining the DP with the supervised approach enriches the
regression model with new information. Covariates with high
DP are more likely to be selected in the final model, whereas
covariates, that only work well in a multivariate model, but
have a low individual DP are more likely to be removed.
The adaptive shrinkage parameter also counteracts the over-
shrinkage. Coefficients of covariates that work well in the
multivariate model and also appear as good candidates, based
on their DP , will be penalized less heavily and will be allowed
to become large. On the other hand, clearly uninformative
covariates with a low DP will receive an even higher penalty
and can be removed more easily in the regularization step.
Lastly, if several solutions to Equation 5 are similarly good,
our approach gives a gentle push towards covariates that
appear more trustworthy.

B. Characterization of natural groupings

This section motivates the construction of our DP mea-
sures. In general, we assume covariates Xj in which the
underlying groups Y are homogeneous and well separated
from the other groups as more promising . This reflects the
idea that relevant genes should express differently among the
K classes. Figure 1 shows the distribution of two example
genes from the later used single-cell RNA-sequencing dataset
EMTAB2805 of [5]. For the gene on the left side, we can see
that the two underlying classes show clear differences in their
distribution. Also the two groups are relatively compact and
their group-means well separated. For the gene on the right
side, the two groups show a stronger overlap, and they are less
separated. Therefore, the gene on the left side appears to be a
more natural candidate for a decisive gene and should have a
higher chance of being selected.
The same rationale can be used for K > 2. Figure 2 shows
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Fig. 1. Univariate distributions of two genes. The colors indicate the two
groups. Left side: the two classes show clear differences in their distribution.
Right side: the distributions are strongly overlapping with no clear difference.
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Fig. 2. Univariate distributions of two genes. The colors indicate the three
groups. Left side: the three classes show clear differences in their distribution.
Right side: the distributions are strongly overlapping with no clear difference.

the univariate distributions for three classes on the same genes,
which can be used to assess the compactness and separation.
The idea of DP-Lasso is therefore to prefer genes that de-
compose nicely into the underlying classes with regard to
compactness and separation. We call this concept of ‘natural
grouping’ the discriminative power DP . Genes with a high
discriminative power will be favored in the regularization step
(see Section III-A).

When using for example a logistic regression model, com-
pactness of the groups (as an indication of naturality of
the group) is not directly evaluated. The same goes for the
distance between groups (or their means): As long as the
groups are perfectly separable by a hyperplane, as is the
case in p >> N , the margin to the discrimination plane
is typically not considered in the loss function. Figure 3
shows two simulated covariates with a similar slope from
a logistic regression model. While the two classes can be
separated similarly good in both covariates, intuitively we
would prefer the covariate shown on in right side, due to
its distribution. Here the two classes express differently and
the two groups are both compact and well separated, whereas
the distribution on the left side appears more likely to be
random. These descriptive illustrations aim to motivate the
inclusion of additional information into the penalization by
the discriminative power, which is described in the following.

The natural decomposition can be formalized by the con-
cepts of compactness and separation with respect to the
response.

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
X1

P
(Y

|X
1)

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
X2

P
(Y

|X
2)

Fig. 3. The graph shows simulated genes, that can similarly well discrimi-
nated by a logistic regression. Left side: the clusters appear unnatural. Right
side: compact groups with well separated group means.

C. Measures of discriminative power (DP)

In the following we describe three interesting options to
measure the discriminative power. The goal is to capture
information about the compactness and seperation between
classes in each gene. The discriminative power is therefore
calculated univariatly over each covariate j using the target
variable y as grouping. In the following

x
(k)
j = {xij : yi = k}Ni=1 (6)

denotes the set of values of covariate j that belong to
observations with the target class k, and x

(k)
hj denotes the

covariate values of the h’th observation in class k.
There exists a large number of quality criteria that are
commonly used in unsupervised learning to evaluate
clustering solutions. Also the idea of discriminative power
can be interpreted as a classical test problem. The following
describes three ways to measure DP , based on these
principles.

1) ANOVA-approach: One classical way to test for differ-
ences in group means is the analysis of variance (ANOVA)
[12]. Intuitively, the ANOVA expresses how much of the
sample variance can be explained by the grouping. More
concretely, the ANOVA tests whether there is a difference in
the means of K groups based on its F-statistic.
Let x̄(k)

j = 1
nk

∑nk

h=1 x
(k)
hj denote the class mean of covariate

j in target class k, where nk is number of observations
belonging to class k and x̄j denotes the overall mean over all
N observations. The according test statistic Fj measures the
ratio of between-group variability and within-group variablity
of covariate j via

Fj =
(N −K)

(K − 1)

∑K
k=1 nk(x̄

(k)
j − x̄j)

2

∑K
k=1

∑nk

h=1(x
(k)
hj − x̄

(k)
j )2

. (7)

The value of the F-statistic is large in case that the dis-
tances between the groups are considerably higher than the
distances within the groups. The higher the F-statistic, the
higher the proportion of variance explained by the grouping,
indicating significant differences in class means. We thus use
the value of the F-statistic as one possibility for the mea-
surement of discriminative power and determine the discount
factor wDP

j for the penalization in the subsequent step with
w

(ANOV A)
j = 1/Fj . As 1/Fj can become quite large we use
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a logarithmic transform to attenuate the differences in DP
between the genes and to avoid numerical instabilities.

2) Davies-Bouldin Index: The Davies-Bouldin index DB
measure was developed for validating the clustering quality
based on compactness and separation of the clusters [6]. As
mentioned before, instead of evaluating a cluster solution, the
K classes are evaluated. The DB index relates the compactness
within the groups to the separation between the classes. The
compactness of class k is measured root mean squared error
of observations from class k to the class mean x̄

(k)
j of class

k in covariate j, leading to

∆DB
j (k) =

√√√√ 1

nk

nk∑

h=1

(x
(k)
hj − x̄

(k)
j )2,

which in the univariate case simplifies to the standard deviation
of observations in group k. The separation between the groups
k and l groups is measured via the Euclidian distance of their
respective class means x̄

(k)
j and x̄

(l)
j , which in the univariate

case simplifies to

δDB
j (k, l) = |x̄(k)

j − x̄
(l)
j |.

The overall DB Index is then given as

DBj =
1

K

K∑

k=1

max
l ̸=k

{
∆DB

j (k) + ∆DB
j (l)

δDB
j (k, l)

}
, (8)

which compares each class to its closest class, as a more
pessimistic measure. The better the groups are separated and
compact, the lower the DB index becomes, and as a conse-
quence, the less penalization this covariate should be subjected
to. Therefore, the discount factor is taken as w

(DB)
j = DBj .

3) Silhouette Index: The silhouette index Sj [24] considers
the compactness and separation evaluated on the individual
level. For the construction of the ‘silhouette width’ sij the
closeness of observation i to all observations within its group
k = yi is measured via

∆Sil
j (i, k) =

1

(nk − 1)

∑

h:yh=k,h ̸=i

|xij − x
(k)
hj |, (9)

which is similar to the compactness measure in the DB
index. However, ∆Sil

j takes the closeness to each individual
observation into account, instead of measuring the deviation
from the mean.
Seperation between the groups is measured via,

δSil
j (i, k) = min

l ̸=k

{
1

nl

nl∑

h=1

|xij − x
(l)
hj |

}
, (10)

which takes the minimum average distance to the members of
any other class. The silhouette width sij combines compact-
ness and separation which leads to

sij =
δSil
j (i, k)−∆Sil

j (i, k)

max{∆Sil
j (i, k), δSil

j (i, k)} . (11)

As a last step, the silhouette index Sj is calculated by
averaging over the silhouette width sij of all N individuals,

Sj =
1

N

N∑

i=1

sij ∈ [−1, 1]. (12)

Sj which can be used as a global measure of clustering quality
given the covariate j and the target classes.
The absolute silhouette index takes values close to 1, if
all observations are compact within their groups and well
separated to the other groups. The more the silhouette index
Sj approaches 0, the less compact the observations are within
their groups and the less separated among covariate j. In this
case the groupings are not nicely decomposed, and therefore
this covariate is considered as less decisive.
The higher the absolute value of the silhouette index of
covariate j, the better the distinction of the two underlying
groups. Covariates with a high absolute silhouette index should
be penalized less, therefore we set w(Sil)

j = 1/|Sj |.

IV. EMPIRICAL COMPARISON

In this section we first present the scRNA-sequencing
benchmark data and test the performance of DP-Lasso with
different choices for the DP against competing methods. For
both the binary classification, described in Section IV-C and
the multiclass classification, described in Section IV-D, we
perform a 5−times repeated 10−fold cross validation. As the
supervised model is based on the classes present in the training
data, we can only predict the number of underlying classes that
are part of the training data set, in contrast to unsupervised
clustering models.

A. Single-cell RNA-sequencing data (ScRNA-Seq data)

Based on the paper of [28], we use the same single-cell
RNA-sequencing datasets as [16]. As proposed by [28], we
only include genes into our analysis with read counts higher
than 1 transcript per million mapped read (TPM) in more
than 25% of the considered cells. This leads to a differing
number of covariates p in case of the binary classification
and the multiclass classification task, as shown in Table I. For
the choice of cell types, we use the same selection as [16].
In case of the binary response, two selected cell types will
be analyzed (left side of Table I). In case of the multiclass
classification task (right side of Table I), we analyze K cell
populations. The underlying numbers of cells in case of the
binary response (K = 2) are N1 and N2, and for the multiclass
response (K > 2) the respective cell populations are denoted
with N1, · · · , NK .
In accordance to the paper of [16], we consider their proposed
binary classification tasks. However, instead of their approach
of all pairwise combinations, we use a multinomial model for
the K > 2 cases, which means one model per dataset. In
the following, the cell types of the analyzed single-cell RNA-
sequencing datasets are described. The EMTAB2805 data of
[5] contain the cell cycle stages G1, S, G2M of the mouse
embryonic stem cell (mESC). For the dataset GSE45719 [7]
we include the different states of transition of mid blastocyst,
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TABLE I
BENCHMARK DATA, SHOWING THE NUMBER OF COVARIATES p, NUMBER OF OBSERVATIONS N , AND THE OBSERVATIONS PER CLASS N1 VS. N2 IN THE

BINARY CLASSIFICATION TASK AND N1 VS. N2 VS. · · · VS. NK IN THE MULTICLASS CLASSIFICATION TASK

Binary Response Multiclass Response

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

p 13,110 10,851 7,987 6,748 12,849 11,065 7,831 7,329

Subpopulation 1 G1 mid blastocyst BMDC 1h LPS NKT0 G1 mid blastocyst BMDC 1h LPS NKT0
N1 96 60 96 45 96 60 96 45

Subpopulation 2 G2M 16-cell stage embryo BMDC 4h LPS NKT17 G2M 16-cell stage embryo BMDC 4h LPS NKT17
N2 96 50 191 44 96 50 191 44

Subpopulation 3 - - - - S 8-cell stage embryo BMDC 6h LPS NKT1
N3 - - - - 96 37 191 46

Subpopulation 4 - - - - - - NKT2
N4 - - - - - - - 68

8-cell stage embryo as well 16-cell stage embryo. In case
of the single-cell RNA-sequencing data of GSE48968 bone
marrow-derived dendritic cells (BMDCs) were stimulated with
three different pathogenic components, analyzing the different
responses for the dataset [25]. We will analyze only the
component Lipopolysaccharides (LPS) at different timepoints
(1h, 4h, 6h) after incubation. The data set GSE74596 contains
different types of Natural killer T (NKT) cells extracted from
the thymus. The cell types NKT1, NKT2 and NKT17 are
subtypes of the helper T cells [9].
The objective is to determine a supervised model that can
classify the different cell types, given the expression profiles
in these datasets. Also, as a second objective it is important to
find a sparse solution to focus on the most important genes.

B. Competing Methods

The L1-regularized regression is carried out with the R
package glmnet [13]. The λ values are found via the internal
10-fold CV approach and chosen as the value λ leading to the
smallest estimated generalization error. For adaptive Lasso, the
covariate specific penalty weights are determined with ridge
regression wj = 1/β̂Ridge

j due to the p >> N situation.
We also compare our methods to the Elastic Net, as a baseline
for good predictive performance. Elastic Net is fit using glmnet
and α = 0.5, leading to a equal mixture of L1 and L2-
penalization (cf. Section II).
For DP-Lasso the ANOVA based DP weights are implemented
with the R package stats [23]. The Silhouette Index is cal-
culated with the R package cluster [18] and the Davies-
Bouldin Index with the package clusterSim [34]. The final
DP-Lasso model is again fit using the glmnet procedure, using
the covariate specific penalty weights derived from the DP .

C. Binary classification

In this section the results for the experiments on binary
classification tasks are presented and analysed.

1) Accuracy – Binary: Accuracy is measured in terms of
the misclassfication rate, averaged over all folds. The results
of the empirical comparison can be found in Table II. Elastic
Net shows overall the lowest misclassifcation rate, however

the difference to the DP-Lasso models and the normal Lasso
is only marginal. The only exception is the adaptive Lasso,
which performs clearly worse compared to the other methods.
This is likely due to the strong correlation present in the data.
The three proposed DP-Lasso model show only minor
differences in terms of misclassification rate, with a slight
advantage for DP-LANOV A. We conclude, that the accuracy
of DP-Lasso is comparable to the competitors irrespective the
choice of the discriminative power.

2) Number of Coefficients – Binary: If the primary ob-
jective is to identify biomarkers, it is very important to find
sparse solutions, as the cost of follow up studies can be high.
Next, we therefore analyse the number of covariates selected
by each method, which is the number of non-zero coefficients
left in the regularized model. Out of all methods, the Elastic
Net (Enet) selects the highest number of covariates, which is
expected, due to its part of L2-penalty.
All DP-Lasso models select significantly fewer covariates than
the competing methods, on all binary classification tasks. Of-
ten the difference is quite large. For example on the GSE74596
dataset DP-LAnova selects only 4 covariates, whereas Lasso
selects 18. An likely explanation is the over-shrinkage effect
in Lasso regression, which takes in irrelevant predictors (cf.
Section II). On the other hand, DP-LAnova is able to reduce
the penalty on the important covariates and reaches a very
sparse solution.
From the class of DP-Lasso models, DP-LANOV A is the most
selective and finds the sparsest solutions. However, DP-LDB

and DP-LSil also produce smaller model sizes compared to
the competing methods on all binary classification tasks.

D. Multiclass Classification

DP-Lasso can also be applied for multiclass (K > 2)
classification. Note, that in case of K > 2 and the
multinomial-logit model K − 1 coefficient vectors β are fit
for the different categories, whereas one category is used
as reference category. DP is measured as before for each
covariate, leading to an equal penalization for each of the
outcome categories.
In contrast to the binary case, the adaptive Lasso uses a
different penalization weight for each covariate and outcome
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TABLE II
THE MISCLASSIFICATION RATE FOR BINARY AND MULTICLASS CLASSIFICATION ON THE FOUR BENCHMARK DATASETS. THE BEST RESULT ON EACH

DATASET (LOWEST NUMBER) IS MARKED IN BOLD.

Binary Multiclass

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

Lasso 0.05 (0.006) 0.01 (0.000) 0.02 (0.003) 0.00 (0.000) 0.06 (0.010) 0.03 (0.009) 0.19 (0.100) 0.01 (0.003)
Elastic Net 0.04 (0.006) 0.01 (0.000) 0.02 (0.000) 0.00 (0.000) 0.06 (0.007) 0.02 (0.005) 0.18 (0.008) 0.01 (0.004)
adaptive Lasso 0.11 (0.008) 0.02 (0.000) 0.07 (0.007) 0.15 (0.031) 0.17 (0.006) 0.10 (0.013) 0.26 (0.010) 0.28 (0.015)
DP-LANOV A 0.05 (0.006) 0.01 (0.000) 0.02 (0.004) 0.00 (0.000) 0.06 (0.009) 0.11 (0.017) 0.17 (0.009) 0.03 (0.006)
DP-LDB 0.05 (0.009) 0.01 (0.000) 0.02 (0.004) 0.01 (0.001) 0.08 (0.007) 0.07 (0.016) 0.20 (0.014) 0.03 (0.006)
DP-LSil 0.04 (0.006) 0.01 (0.000) 0.04 (0.004) 0.00 (0.006) 0.18 (0.018) 0.06 (0.008) 0.24 (0.011) 0.06 (0.013)

TABLE III
THE NUMBER OF SELECTED COEFFICIENTS FOR BINARY AND MULTICLASS CLASSIFICATION ON THE FOUR BENCHMARK DATASETS. THE BEST RESULT

(LOWEST NUMBER) ON EACH DATASET IS MARKED IN BOLD.

Binary Multiclass

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

Lasso 58 (1.9) 20 (0.4) 55 (0.9) 18 (0.6) 127 (3.5) 67 (1.0) 163 (5.5) 72(1.7)
Elastic Net 142 (1.8) 103 (1.1) 125 (1.2) 66 (0.5) 250 (13.1) 199 (1.5) 276 (10.2) 197 (1.9)
adaptive Lasso 38 (2.1) 13 (0.6) 48 (0.8) 27 (0.7) 65 (1.6) 36 (0.3) 84 (4.8) 52 (3.0)
DP-LANOV A 17 (0.4) 5 (0.1) 19 (0.4) 4 (0.2) 45 (0.6) 23 (1.2) 70 (1.1) 17 (0.5)
DP-LDB 25 (0.9) 9 (0.1) 30 (0.3) 7 (0.1) 71 (1.3) 39 (0.8) 125 (1.6) 37 (0.3)
DP-LSil 22 (0.5) 9 (0.3) 36 (0.6) 8 (0.4) 181 (2.2) 32 (0.8) 172 (1.8) 90 (3.3)

category again resulting from the ridge estimator.

1) Accuracy – Multiclass: Accuracy is again measured as
misclassification rate. The results can be found in Table II.
Of all methods the Elastic Net shows the strongest predicitve
performance, followed by the Lasso. the adaptive Lasso again
performs clearly worse on all datasets in terms of accuracy.
From the DP-Lasso models, DP-LDB is competitive on most
datasets, and DP-LANOV A remains competitive on three of
the datasets and shows significantly worse performance on
the GSE45719 data. DP-LSil performs worse overall in the
multinomial setting, but still notably better than the adaptive
Lasso.

2) Number of Coefficients – Multiclass: In terms of model
size, DP-LANOV A again uniformly produces the sparsest so-
lutions on all datasets. Lasso and Elastic Net keep around 3 to
10 times more non-zero coefficients in the model respectively.
DP-LDB also produces relatively small models, on par with
the adaptive Lasso, whereas DP-LSil clearly struggles on the
EMTAB2805, GSE48968 and GSE74596 datasets.

E. Empirical Results Summary

The empirical comparison on benchmark data indicates that
DP-Lasso is able to maintain a high accuracy. At the same time
DP-Lasso finds significantly smaller models, often by a factor
of 3 to 10 compared to Lasso and Elastic Net. This is due
to the incorporation of the DP into the penalization scheme,
which helps to remove uninformative genes and instead focus
on the relevant ones.

To summarise, DP-Lasso and especially DP-LANOV A pro-
duces significantly smaller model sizes, while being able to
maintain accuracy on par with current state-of-the-art regular-
ized regression approaches.

V. SIMULATION STUDY

In this section, we test our method on simulated data. The
setup is as follows. X1, ..., X10 are drawn from a normal
distribution N (−1, σ), for observations of class 1, and from
N (1, σ) for observations of class 2. This reflects the assump-
tion that relevant genes express differently between the target
groups. All additional covariates X11, ..., Xp are drawn from
N (0, σ) and can therefore be considered as irrelevant. We
test the values p ∈ {100, 1000, 5000} and σ2 ∈ {1, 2, 3} and
draw N = 100 observations in each setting. With increasing σ
the groups become more overlapping and we expect learning
to become increasingly difficult. Note that the covariates are
drawn independently, implying X ∼ Np(µ, σ

2Ip), where I is
the identity matrix, making it an ideal situation for all methods.
Each experiment is repeated 10 times and the results averaged.
As in this experiment the relevant covariates are known,
we measure the methods capabilities to identify the decisive
covariates. To this end, we measure the Precision as

Precision =
||β̂true||0
||β̂||0

, (13)

where ||·||0 specifies the 0-norm, which counts up the non-zero
entries and β̂true denotes the first ten entries of the coefficient
vector, which by design we know to be the correct effects.
β̂ denotes all coefficients obtained by the regularized model.
This measure is useful as the number of potential covariates is
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TABLE IV
THE PRECISION AND RECALL ON THE DIFFERENT SIMULATION SETTINGS, AVERAGED OVER 10 RUNS. RESULTS ARE PRESENTED AS PRECISION /

RECALL. FOR EACH SETTING THE METHOD WITH THE HIGHEST PRECISION IS MARKED IN BOLD.

σ2 = 1 σ2 = 2 σ2 = 3

p = 100 p = 1000 p = 5000 p = 100 p = 1000 p = 5000 p = 100 p = 1000 p = 5000

Lasso 0.86 / 0.99 0.60 / 0.99 0.53 / 0.98 0.45 / 0.96 0.32 / 0.96 0.23 / 0.93 0.48 / 0.95 0.37 / 0.84 0.28 / 0.84
Elastic Net 0.55 / 1.00 0.27 / 1.00 0.20 / 1.00 0.29 / 1.00 0.15 / 1.00 0.10 / 0.98 0.37 / 0.99 0.20 / 0.96 0.14 / 0.91
adaptive Lasso 0.99 / 0.97 0.97 / 0.98 0.94 / 0.95 0.88 / 0.98 0.58 / 0.96 0.37 / 0.91 0.71 / 0.93 0.35 / 0.82 0.28 / 0.85
DP-LANOV A 1.00 / 0.87 1.00 / 0.92 1.00 / 0.85 0.99 / 0.95 0.88 / 0.93 0.80 / 0.91 0.82 / 0.87 0.50 / 0.83 0.38 / 0.85
DP-LDB 1.00 / 0.95 1.00 / 0.94 1.00 / 0.92 0.92 / 0.98 0.77 / 0.94 0.50 / 0.91 0.71 / 0.94 0.35 / 0.85 0.28 / 0.84
DP-LSil 1.00 / 0.94 1.00 / 0.94 1.00 / 0.91 0.96 / 0.98 0.76 / 0.93 0.67 / 0.90 0.63 / 0.88 0.41 / 0.79 0.31 / 0.81

high. However, If the model has a high Precision, the identified
genes can be trusted.
Secondly, we measure the Recall

Recall =
||β̂true||0

10
, (14)

as the fraction of the relevant covariates that was discovered
by the model.
The results are shown in Table IV. We can see that the DP-
Lasso models show significantly higher Precision compared
to Lasso and Elastic Net. The adaptive Lasso performs better
than the Lasso in this ideal setting, in contrast to the results on
the real data from the previous section. Overall DP-LDB and
DP-LANOV A show the highest Precision, even in very difficult
data situations. For instance, with N = 100, p = 5000, σ = 1,
DP-LANOV A , DP-LDB and DP-LSil are able to maintain a
100% Precision and thus are very selective and able to find
the correct covariates. DP-LANOV A has the highest Precision
in every setting.
It is also important to compare the Recall, as it reflects the
fraction of true effects that are found by a model. Elastic Net
shows the highest Recall, which is a result of the large number
of coefficients that was kept in the model. On the other hand,
all DP-Lasso models show a Recall which is typically slightly
lower but still competitive with Lasso and adaptive Lasso. This
again is due to very selective nature of DP-Lasso.
Overall, we conclude that the non-zero coefficients found by
the DP-Lasso can be trusted more to reflect true mechanisms,
compared to its competitors. At the same time DP-Lasso is
capable to maintain a competitive Recall.
It is reassuring to note that on average the accuracy measured
by the area under the curve AUC of the methods is very
similar, with a slight edge for the DP-LDB , DP-LANOV A and
the Elastic Net.

VI. CONCLUSION

With DP-Lasso, we propose a novel regularization
based approach for covariate selection in the context of
gene expression data. Incorporating univariate measures
of discriminative power that are based on the principles
of separation and compactness enriches the model with
additional information. Our approach can also be interpreted
as soft filtering: instead of removing genes a-priori, more
promising genes are simply promoted, freeing the modeller
from ad-hoc choices, such as selecting the correct number

of genes to remove. In a boarder context we argue that soft
filtering, instead of hard filtering, therefore also enhances
reproducibility, as it reduces the ‘researchers degrees of
freedom’ [26] involved in a study.

Empirically, we show that DP-Lasso shows accuracy on
par with the popular methods Lasso and Elastic Net, while
choosing significantly less genes. With a simulation study
we confirm that DP-Lasso is capable of ignoring a large
number of irrelevant predictors and instead focusses on the
truly relevant ones – due to the double criteria of being
relevant both univariatly and in the multivariate model.
This selectiveness is very desirable in the context of gene
expression data, as both the number of candidate genes is
high and follow-up studies are costly. Therefore, a short
but confident list of very promising genes, as given by the
DP-Lasso model, is preferred in this context.

As currently the discriminative power is calculated
univariately, it does not explicitly take the correlation
structure ofthe covariates into account. An interesting
direction for future work would therefore be to extend
the DP-Lasso approach by taking the correlation structure
between covariates into account and adjust the penalization
accordingly, similar to the approach in [33].

In this article, we focussed on the application for genetic
classification data, however DP-Lasso can also be applied in
other domains. As long as the classes are expected to show
differences in the univariate distribution of covariates, we
expect DP-Lasso to deliver a good predictive performance
coupled with a low number of selected covariates.
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Abstract. Undecided voters in pre-election polls, even though an in-
creasing phenomenon and issue in electoral research, have mostly been
neglected in conventional analysis so far. We argue to include this in-
herent form of uncertainty in a set-valued manner, in order to make
the most of the valuable information, not improperly reducing voters’
response to either an spuriously precise answer or to drop outs. The
resulting consideration set consists of all elements the individual is still
pondering between and can be interpreted in two ways, depending on the
question at hand. First, for the sake of forecasting, it can be seen as a
coarse version of the yet unknown element the individual ends up choos-
ing, using the information for so-called epistemic modeling. Second, from
an so-called ontic view, it can be seen as entity of its own, representing
the individual’s current position accurately and thus allowing to exam-
ine structural properties within the population. Both views provide good
opportunities for machine learning. In this paper we introduce one exem-
plary approach based on each view, analysing structural properties using
spectral clustering and forecasting using random forests, providing initial
methodology for this type of complex, non-stochastic uncertainty. The
theory is applied with constructed consideration sets to the most recent
German federal election of 2017, using data from the German Longitu-
dinal Election Study. The results are promising, laying the groundwork
for further machine learning approaches concerning this natural type of
inherent uncertainty.

Keywords: Epistemic imprecision · Ontic imprecision · Set-Valued Data
· Consideration Sets · Random Forests · Spectral Clustering · Election

1 Introduction

Increasing numbers of undecided voters before an election4 urge us to find new
ways to deal with these individuals in statistical analysis and empirical election

4 see for example [19,4]
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research. Conventionally, the undecided voters are either forced by the question-
naire to give a precise answer or neglected in further analysis reliant on possibly
unjustified assumptions (e.g. [17,15]). This leaves the undecided with the options
to either over-simplify their position conveying incorrect information, or to drop
out. Hence, recently in [17,16,15,12,13] the authors argue to include set-valued
response options in surveys. Several arguments are put forward, like the reduc-
tion of nonresponse, the natural procedure or the more accurate representation
of uncertainty. Despite these advantages, set-valued response options are regret-
tably not yet included in most surveys, also because methodology handling this
type of information is in the beginning stages only. Thus, with this paper we con-
tribute to a solution of the resulting “chicken-egg dilemma” [9, p. 7], providing
approaches and ideas for such data.

Human choice generally, as argued by [16, p. 256], can be seen as a process
in stages, excluding possibilities until arriving at one final element. Thus, at a
given point in time before an election, which resembles a choice of N individuals
amongst a finite set of alternatives {1, · · · , s} = S, not every individual’s position
can be determined by only one element of the choice set. As several individuals
are still pondering between options, the most accurate representation of their
position is a set, excluding all options of S they will definitively not choose. This
set, consisting in the case of a decided voter of one and a still undecided voter
of several elements, determines naturally and accurately their position and will
from now on be called consideration set following [16].

Indecision amongst voters is hereby a natural and very interesting exam-
ple with practical relevance for the theoretical groundwork laid by Couso and
Dubois (e.g. [8,7]). Following them, the resulting set-valued information can be
interpreted in two ways, dependent on the question at hand. First, considering
the election outcome, it can be seen as a coarse version of one true but at the
time unknown element contained in the set, providing incomplete information.
This is the so-called epistemic or disjunctive view. Second, focussing on the time
point of the survey, the set represents the positions as a non-reducible entity of
its own. This so-called ontic or conjunctive view regards a decided or undecided
alike as a viable position with its own characteristics. Both views, even though
very different, are justified, dealing with complementary issues.

In this paper we develop initial methodology for either view, providing first
approaches and opportunities for machine learning to incorporate this set-valued
information. With the ontic approach, regarding the undecided between specific
parties as positions of their own, new structural properties concerning the po-
litical landscape can be examined. We generate socioeconomic clusters (using
spectral clustering) and assess structural properties within the undecided and
decided before the German federal election of 2017. For the epistemic view, we
develop a forecasting approach incorporating the otherwise wasted information
of the undecided. We hereby estimate transition probabilities of the undecided
with random forests based on the decided individuals and provide an overall
forecasting approach, reliant on simulation and assumptions, that is able to take
the information of the consideration set into account. Both approaches are ap-
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plied to data of the most recent German federal election of 2017, provided by the
German Longitudinal Election Study [10] with constructed consideration sets.

This paper is structured as follows: First, in Section 2 we consolidate the
ontic and epistemic methodology and introduce possible approaches for either
view. We later apply the approaches to the most recent German federal election
in Section 3. The concluding remarks in Section 4 reflect on the possibilities and
challenges of this new way of incorporating undecided voters.

2 Methods

2.1 The Ontic and Epistemic Views

Dependent on the question at hand, a set consisting of the same elements can
be interpreted in two different ways. To take a meanwhile classical example (e.g.
[8]), if we are interested in the languages an individual is capable to speak, the set
{English, French, German} is a precise representation of the truth, while if we are
interested in the language he or she feels the most comfortable with, the same set
contains only incomplete information. Equally, in the case of an undecided voter
before an election, we can either focus on the indecision itself, which is accurately
represented by the set as a whole, or focus on the choice outcome, in which case
only incomplete information is provided. Thus, set-valued information obtained
by a pre-election survey can be used in two different ways. Reflecting uncertainty
in electoral analysis in a set-valued manner is a natural and especially interesting
application for the theoretical groundwork laid by Couso and Dubois, presented
for example in [8,7,3]. The state space of the consideration sets consist of all
possible combinations of the original options, which can naturally be represented
by the power set P (S) of the set of the original options. Hence, in the case of an
undecided, we are provided with a set l that can be described as the realization
of a measurable mapping Y : Ω → P (S) from some underlying space Ω into the
set of all combinations. This set-valued representation can now be interpreted
under ontic or epistemic imprecision.

Starting with the set as entity of its own, also called ontic or conjunctive
interpretation, we consider undecided voters between specific parties as a fur-
ther position. In this case, the consideration set is a precise representation of
something naturally imprecise. Hence, it cannot be reduced or improved in any
way. As the original choice set consists of finite elements measured on a nominal
scale, the power set does as well, satisfying the same basic mathematical prop-
erties. Hence, methodology based on conventional approaches can broadly be
transferred. Quite naturally, but most importantly, this protruding trait of ontic
approaches opens up a wide range of options to apply state of the art machine
learning approaches to data with this type of complex non-stochastic uncer-
tainty. By this, the ontic view of undecided voters prior to the election enables
new ways to examine structural properties within the political landscape.

The epistemic view, in contrast, focuses on the election outcome. Hereby,
the set at the time point of the poll, accurately representing the position of an
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undecided individual, is a coarse version of the one true element the individual
ends up choosing. In other words, the set-valued information is an imprecise
version of something precise. Thus, only incomplete information about the phe-
nomena of interest (the eventual choice) is provided within the consideration
set. To obtain statements about the precise value of interest, next to incorpo-
rating further information, one can make rather rigorous assumptions or reflect
the uncertainty within interval-valued results. After all, we are only provided
with incomplete information in the sense that ∀ω ∈ Ω only Y (ω) ∈ l = Y(ω) is
observable, with Y again as a mapping Ω → P (S) now representing the set of
mappings {Y : Ω → S,∀ω, Y (ω) ∈ Y(ω)}, where we assume one of each is the
true underlying mapping (e.g. [7, p. 1504]). As a consequence, reducing the set
or assigning probabilities to each of its elements is usually strived for, in order
to retrieve as precise information as possible about the variable of interest.

The following two sections reflect on possible applications of ontic as well as
epistemic imprecision conducted with data from pre-election polls.

2.2 More on the Ontic Approaches

While in conventional pre-election voter analysis the undecided are neglected,
we try to show in this section how including those individuals in a set-valued
manner can open up new perspectives and findings about structural properties.
The common procedure to monitor each month and regular before elections po-
litical orientations and developments in the political landscape of a country5

could be enriched by these approaches, including further positions of interest.
As the consideration sets are, as described in Section 2.1, the most accurate rep-
resentation of the undecided, ontic approaches not only enable new findings, but
also represent the current structural properties of the political landscape in the
most accurate way. Several approaches are possible, examining different aspects
of the political landscape concerning the undecided. Recently, as one example,
we [12] extended discrete choice models with the undecided’s consideration sets,
providing new findings about the undecided in Germany.

For the ontic approach, we focus on the connection between socioeconomic
clusters within the population and the undecided. Hereby, trends of indecisive-
ness could be located and assigned towards specific clusters. Thus, we cluster our
data according to socioeconomic variables and examine structural differences of
decided and undecided within the resulting socioeconomic groups. Conclusions
from the composition of the clusters can then be interpreted from a political
science perspective. We use spectral clustering (e.g. [18]) as a common machine
learning approach for dividing our population in characteristics based on similar-
ity in their covariate values. Hereby, we make use of the spectrum of a similarity
matrix in order to perform dimensionality reduction and natural scaling on the
data before clustering in fewer dimensions. The eventual clustering on this new
data is usually performed by a simple algorithm like k-means.

5 like for example in Germany the Politbarometer https://www.forschungsgruppe.

de/Aktuelles/Politbarometer/ last visited: 28.07.2020
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The approach introduced in this paper is only meant to exemplify the op-
portunities of machine learning to describe this new type of data under ontic
imprecision. It goes without saying, that there are numerous possibilities for
straightforward applications of machine learning approaches, examining struc-
tural properties concerning the undecided, while already this rather simple one
can initiate new ways to think about the political landscape.

2.3 More on the Epistemic Approaches

The epistemic approach, like sketched in Section 2.1, concerns itself with the
yet unknown element in the consideration set the individual ends up voting
for. Hence, in contrast to the ontic approaches addressing diverse questions,
the epistemic ones try to improve forecasting, using the potentially valuable
information of the undecided. As there is no information about the final choice
of the undecided provided, either rather strong assumptions have to be made, or
the uncertainty is manifested in the results using interval-valued identification.
Thus, several approaches are possible, weighting the justifiability of assumptions
with the precision of the results.6 In a recent paper [13], we discuss this question,
considering different approaches to incorporate the set-valued information into
election forecasting, resulting in three different suggestions. Here, we pick up on
the second one, achieving point-valued estimation by assuming that, given the
covariates, the undecided choose identical to the decided with the consideration
set as restriction of the possible outcomes.

Each individual holds a consideration set l ∈ P (S) and covariates X = x
in some space X. The consideration set is written as an event {Y = l} with
l ∈ P (S) and his or her possibly unknown choice on election day as {Y = l}
with l ∈ S. In order to estimate transition probabilities, the approach uses the
distribution of the decided P (Y = l|X = x, Id = 1), which can be estimated
from the data, with Id as the indicator function for being decided. In order to
incorporate the information of the consideration sets, all options not in l are
excluded. Therefore, scaling the estimates from the decided to comply with the
multinomial distribution results in:

P̂ (Y = l|Y = l, X = x)︸ ︷︷ ︸
Transition Probabilities

=
P̂ (Y = l|X = x, Id = 1)∑
a∈l P̂ (Y = a|X = x, Id = 1)

(1)

leading to point-valued estimation of every parameter. Hence, to ensure point
valued estimation, some implicit assumption of independent coarsening in the
sense that undecided behave identical to the undecided is made. This resembles a
random coarsening process, but satisfies mathematical properties different from
the common CAR assumption of [11].

We utilize random forests [5] to estimate the conditional distributions for
each undecided individual in Equation (1). Random forests grow a sequence of
independent decision trees on bootstrap samples of the original data. At each

6 also see Manski’s Law of Decreasing Probability [14, p. 1]
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node, only a subset of the covariates is used for splitting, efficiently reducing the
correlation between the individual trees. These decorrelated, individually weak,
trees are subsequently combined into an ensemble, typically through voting or by
averaging the probability estimates. The resulting ensemble classifier was gener-
ally shown to significantly improve generalization performance and stability. As
random forests are based on a set of decision trees, they posses several properties
that are desirable in epistemic forecasting:

– They can naturally capture interaction effects between variables, without
the need of prespecification.

– Non-linear effects can be appoximated. While single decision trees strug-
gle to capture linear relationships, random forests can approximate them
reasonably well.

– Both numeric and categorical covariates are natively supported without the
need of any preprocessing.

Another reason to chose random forests over other popular ensemble methods,
such as gradient boosting, is their stability towards a large grid of reasonable
parameter choices [1].

As for the decided voters both the outcome Y and the covariate values X are
known, random forests are applied directly, using the decided as training data.
This implicitly presupposes, in accordance with above, that the conditional dis-
tributions of Y given the covariates are equal for decided and undecided voters,
hence P (Y = l|X = x, Id = 1) = P (Y = l|X = x, Id = 0). For easier reference
in the discussion, we call this structural similarity assumption. Thus, for the un-
decided voters we can estimate the conditional multinomial distribution over all
possible parties for each individual, using the structural similarity assumption.
Note, however, that the random forest output is only a first level prediction,
that is subsequently refined by taking into account the information given by the
consideration sets, using Equation (1). This combines the predicitve power of
random forests with the additional information given by the consideration sets.
7

Provided with the estimated transition probabilities resulting from Equa-
tion (1), hence the probability an undecided chooses a particular party from
their consideration set, we want to estimate the overall distribution together
with the decided individuals. To this end, we use a Monte Carlo simulation
approach: For the undecided we simulate precise decisions, drawing from the
restricted multinomial distribution of each individual. Thus, the decided and
the simulated data from the undecided can be used together for straightforward
estimation of the overall distribution. In order to minimize the variance of the
results, we repeat the process, averaging over the different estimates. The re-
sulting point-valued estimates can be directly used for forecasting. Nevertheless,
one should explicitly mention that the underlying assumptions are disputable.

7 We do not use the undecided in the first level of estimation with some kind of
simulation, in order to avoid strong assumptions about the final outcome in the
consideration sets.
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Thus, this approach can be seen as only a first example of how to integrate state
of the art machine learning reliant on set-valued information of the undecided.

3 Application

3.1 The Data from The GLES

The ideas developed in Section 2.2 and 2.3 are applied for the most recent
German federal election of 2017, using the state of the art pre-election poll
conducted by the GLES 8. Set-valued answer options are regrettably not included
in this survey, but the assessment of the parties by the individuals and their
statement about the certainty of their choice are, enabling construction of a
consideration set as already conducted by [17, p. 261].
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Fig. 1. The plot illustrates the distribution of the positions in our dataset, including
decided and undecided individuals between exactly two parties. On the x-axis the
numbers of observations and on the y-axis the corresponding position are shown.

8 German Longitudinal Election Study: Pre- and post- election cross-section available
under https://www.gesis.org/wahlen/gles/daten; last visited: 27.07.20
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For our analysis, we use the so-called second vote9 for the six main parties10

anticipated to reach at least one seat in the parliament, in addition not including
non-voters. As always in our illustrative example, structures of nonresponse in
the dataset are not explicitly adjusted for. Moreover, we only focus on the most
common case of indifference between exactly two parties.

The distribution of the positions in our data is illustrated in Figure 1. As
one can see, the decided make up the major positions within this dataset, but
546 of the overall 1558 individuals are undecided, constituting one third of the
population. A big proportion of the undecided is pondering between the two
biggest and currently governing parties CDU and SPD with 160 observations,
while there are few voters undecided between (combinations with) smaller parties
in our dataset. These first descriptive results already hint towards a structural
difference between the decided and undecided.

3.2 Clustering to Examine Ontic Structures

The approach sketched in Section 2.2 can be divided into two parts. First, we
use spectral clustering with the three variables age, household size and household
income to identify three separate socioeconomic groups within our population.
The results are shown in Figure 2. While the first cluster mostly represents rather
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Fig. 2. This figure visualises the resulting three clusters using spectral clustering with
the three variables age, household size and household income and k-means.

9 The second vote basically determines the distribution of the seats among
the parties, and thus is usually used for forecasting. For more informa-
tion see: https://www.bundeswahlleiter.de/en/bundestagswahlen/2021/

informationen-waehler/wahlsystem.html, last visited 27.07.20
10 The parties are: AfD, FDP, CDU (including CSU), SPD, Green, Left
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young and well earning individuals, living in a household with in average almost
three individuals and the second one consist predominantly of pensioners, the
third one is more intermixed. Considering we used three variables, the separation
visualised in Figure 2 is proficient for our purposes.

Second, we examine the distribution of the consideration sets amongst the
clusters as viable positions of their own. Thus, Figure 3 visualises the distribu-
tion of the positions, on the left side for the decided only and on the right side
for the consideration sets, separate for the three clusters. As we can see, the
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Fig. 3. This figure illustrates the composition of the three socioeconomic clusters, on
the left for the decided only and on the right for the consideration sets.

positions are very unevenly distributed amongst the clusters. Notable, for ex-
ample, is the high proportion of undecided between the Green and other parties
within the first cluster, as mentioned above mostly consisting of young voters
with comparable high income. The proportion of overall undecided is the highest
within this first cluster in our data as well. Next to the insights into the polit-
ical landscape, Figure 3 also shows structural differences between the decided
and undecided. This underlines the importance of including undecided voters in
electoral forecasting in order to avoid bias. The results of this first analysis are
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therefore twofold. First, we examined structural properties, analysing predomi-
nate affiliation of specific undecided voters towards specific clusters. Second, we
established structural differences between the decided and undecided.

3.3 Epistemic Forecasting

As described in Section 2.3, a random forest was applied using all available co-
variates, consisting of sociodemographic variables and several batteries of opinion
questions. For training only the decided voters were used, as argued above. Us-
ing 10-fold cross validation on the decided voters led us to an estimated error
rate of 25.4 %. This suggests that some of the covariates are clearly predictive.
Furthermore, restricting the outcome space via the consideration sets adds im-
portant information. The Monte Carlo simulation to obtain overall estimates as
explained in Section 2.2 is repeated 1000 times, leading to results illustrated in
Figure 4 next to the ones only based on the decided.

40.5

21.8

9.6

9.6

11

7.6

Left

Green

SPD

CDU

FDP

AfD

0 10 20 30 40
Estimated Proportion

Estimation Using the Decided

38.8

24.3

10.1

9.8

10.5

6.6

Left

Green

SPD

CDU

FDP

AfD

0 10 20 30 40
Estimated Proportion

Estimation Using Consideration Sets

Fig. 4. The plot illustrates the forecasts of the overall distribution for the six main
parties. On the left side based only on the decided and on the right incorporating
undecided voters using random forest and simulation. The y-axis shows the six main
parties while the x-axis shows the corresponding estimated proportion.

There are notable differences, stressing the impact of including the undecided.
The biggest party CDU is less strongly represented including the undecided,
while the SPD has a higher proportion. While the Green Party and FDP have
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slightly higher estimates including the undecided, the wing parties AfD and Left
Party have lower ones.

When drawing conclusion on political issues, one has to be cautious not to
overinterpret our results, as the nonresponse structures are not adjusted for and
the consideration sets had to be constructed. Nevertheless, including the unde-
cided using random forests with the structural similarity assumption is straight-
forward applicable, providing first sound methodology which could be improved
by further research.

4 Concluding Remarks

In this paper we proposed new ways to include the otherwise wasted information
of undecided voters by making use of their consideration sets. For the ontic view,
common methodology can broadly be transferred as the power set satisfies the
same basic mathematical properties of the original data, while for the epistemic
view, rather strong and untestable assumptions are necessary in order to obtain
more concise forecasting. Thus, numerous approaches are possible, integrating
machine learning into this natural type of uncertainty. While the ontic view
focuses on new findings in structural properties, the epistemic one may improve
election forecasting by including this valuable information.

We introduced one approach each, analysing structural properties with spec-
tral clustering and extending forecasting reliant on the structural similarity as-
sumption and random forests. Both approaches, even though not yet perfected,
yield promising results. Thus, we provided initial methodology which must be
further developed and improved. Concerning forecasting, new sources of informa-
tion could be incorporated like decisions in previous elections or expert knowl-
edge in a (generalised) Bayesian way. Furthermore, set-valued approaches are
promising. This includes cautious data completion explicitly [2] (see also, e.g. for
classifiers, [6]) as well as working in the spirit of partial identification following
[14], permitting to weaken assumptions resulting in more credible results. For
ontic approaches, discrete choice models are of particular interest, examining
connections between attributes and indecision between specific parties. Hereby,
highlighting attributes of individuals determined to vote for the right-wing party
AfD compared to those only considering it, might provide essential insights into
the trend towards nationalistic parties.

With this paper, we open up this complex uncertainty structure towards ex-
citing applications for a broad spectrum of machine learning methodology.

Acknowledgement. We sincerely thank the anonymous reviewers for their
helpful remarks. Further we thank the LMU mentoring, supporting young re-
searchers, and the GLES for providing the dataset.
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Abstract

Computational reproducibility is a corner stone for sound and credible research. Especially

in complex statistical analyses—such as the analysis of longitudinal data—reproducing

results is far from simple, especially if no source code is available. In this work we aimed to

reproduce analyses of longitudinal data of 11 articles published in PLOS ONE. Inclusion cri-

teria were the availability of data and author consent. We investigated the types of methods

and software used and whether we were able to reproduce the data analysis using open

source software. Most articles provided overview tables and simple visualisations. General-

ised Estimating Equations (GEEs) were the most popular statistical models among the

selected articles. Only one article used open source software and only one published part of

the analysis code. Replication was difficult in most cases and required reverse engineering

of results or contacting the authors. For three articles we were not able to reproduce the

results, for another two only parts of them. For all but two articles we had to contact the

authors to be able to reproduce the results. Our main learning is that reproducing papers is

difficult if no code is supplied and leads to a high burden for those conducting the reproduc-

tions. Open data policies in journals are good, but to truly boost reproducibility we suggest

adding open code policies.

Introduction

Reproducibility is—or should be—an integral part of science. While computational reproduc-

ibility is only one part of the story, it is an important one. Studies on computational reproduc-

ibility (e.g. [1–6]) have found reproducing findings in papers is far from simple. Obstacles
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include lack of methods descriptions and no availability of source code or even data. Research-

ers can choose from a multitude of analysis strategies and if they are not sufficiently described,

the likelihood of being able to reproduce the results are low [7, 8]. Even in cases where results

can be reproduced, it is often tedious and time-consuming to do so [6].

We conducted a reproducibility study based on articles published in the journal PLOS

ONE to learn about reporting practices in longitudinal data analyses. All PLOS ONE papers

which fulfilled our selection criteria (see Fig 1) in April 2019 were chosen ([9–19]).

Longitudinal data is data containing repeated observations or measurements of the objects

of study over time. For example, consider a study investigating the effect of alcohol and mari-

juana use of college students on their academic performance [10]. Students perform a monthly

survey on their alcohol and marijuana use and consent to obtain their grade point averages

(GPAs) each semester during the study period. In this study not only the outcome of interest

(GPAs during several semesters) is longitudinal, but also the covariates (alcohol and marijuana

use) change over time. This does not always have to be the case in longitudinal data analysis.

Covariates may also be constant over time (e.g. sex) or baseline values (e.g. alcohol consump-

tion during the month before enrollment).

Due to the clustered nature of longitudinal data with several observations per subject, spe-

cial statistical methods are required. Common statistical models for longitudinal data are

mixed effect models or generalized estimating equations. These models can have complex

structures and rigorous reporting is required for reproducing model outputs. A study on

reporting in generalized linear mixed effect models (GLMMs) on papers from 2000 to 2012

found that there is room for improvement on reporting of these models [20]. Alongside the

models, visualization of the data often plays an important role in analyzing longitudinal data.

An example is the spaghetti plot, a line graph with the outcome on the y-axis and time on the

x-axis. Research on computational reproducibility when methods are complex—such as in this

case—is still in its infancy. With this study we aim to add to this field and to provide some

Fig 1. Data selection. Data selection procedure according to our requirements and number of papers fulfilling the

respective requirements.

https://doi.org/10.1371/journal.pone.0251194.g001
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insights on challenges of reproducibility in the 11 papers investigated. Furthermore we would

like to note that each reproduced paper, is another paper that we can put more trust in. As

such reproducing a single paper is already a relevant addition to science.

Computational (or analytic [21]) reproducibility studies—as we define them for this

work—take existing papers and corresponding data sets and aim to obtain the same results

from the statistical analyses. One prerequisite for such a study is the access to the data set

which was used for the original analyses. Also, a clear description of the methods used is essen-

tial. An easily reproducible paper provides openly licensed data alongside an openly licensed

source code in a programming language commonly used for statistical analyses and also avail-

able under a free open source software license (e.g. R [22] or python [23]). If the source code is

accompanied with a detailed description of the computing environment (e.g. operating system

and versions of R packages) or the computing environment itself (e.g. a Docker container

[24]) we believe the chances of obtaining the exact same results to be highest. It is difficult to

determine whether a scientific project is reproducible: Is it possible to obtain exactly the same

values? Is the (relative) deviation lower than a certain value? Is the difference in p-value lower

than a certain value? These and more are questions that can be asked and if answered “yes” the

results can be marked as reproducible. Yet all of these come with downsides including being

too strict, incomparable, uncomputable, or downright not interesting. Here, we use the defini-

tion of leading to the same interpretation, without a rigorous formal definition. The reason is,

that the papers analysed here use very different models, so it is hard to compare them on a sin-

gle scale (such as absolute relative deviation, see e.g. [6]). We argue, that in combination with a

qualitative description of challenges and difficulties that we faced in each reproduction pro-

cess, this definition fits our small scale, heterogeneous, setting better.

In this work we investigated longitudinal data analyses published in PLOS ONE. The multi-

disciplinarity of PLOS ONE is a benefit for our study as longitudinal data play a role in various

fields. Additionally the requirement for a data availability statement in PLOS ONE (see https://

journals.plos.org/plosone/s/data-availability) facilitates the endeavour of a reproducibility

study. Note that we only selected papers which provided data openly online and where authors

agreed with being included in this study. We assume that this leads to a positive bias in the

sense that other papers would be more difficult to reproduce.

In the following we discuss the questions we asked in this reproducibility study, the setup of

the study within the context of a university course, the procedure of paper selection, and

describe the process of reproducing the results.

Materials and methods

Study questions

The aim of this study is to investigate reproducibility in a sample of 11 PLOS ONE papers deal-

ing with longitudinal data. We also collect information on usage of methods, how they are

made available and computing environments used. We expect that this study will help future

authors in making their work reproducible, even in complex settings such as when working

with longitudinal data. Note that based on the selection of 11 papers we cannot make infer-

ences on papers in general or in the journal. We can, however, learn from the obstacles we

encountered in the given papers. Also, even reproducing a single paper creates scientific value.

It provides a scientific check of the work and increases (or in case of failure decreases) trust in

the results.

With the reproducibility study we want to answer the following questions:

1. Which methods are used?

PLOS ONE A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses
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(a) What types of tables are shown?

(b) What types of figures are shown?

(c) What types of statistical models are used?

2. Which software is used?

(a) Is the software free and open source?

(b) Is the source code available?

(c) Is the computing environment described (or delivered)?

3. Are we able to reproduce the data analysis?

(a) Are the methods used clearly documented in the paper or supplementary material (e.g.

analysis code)?

(b) Do we have to contact the authors in order to reproduce the analysis? If so, are authors

responsive and helpful? How many e-mails are needed to reproduce the results?

(c) Do we receive the same (or very similar) numbers in tables, figures and models?

4. What are characteristics of papers which make reproducibility easy/possible or difficult/

impossible?

5. What are learnings from this study? What recommendations can we give future authors for

describing their methods and reporting their results?

Project circumstances

This project was conducted as part of the master level course Analysis of Longitudinal Data
running during the summer term 2019 (23.01.19—27.07.19) at the Ludwig-Maximilians-Uni-

versität München. The course is a 6 ECTS (credit points according to the European Credit

Transfer and Accumulation System) course aimed at statistics master students (compulsory in

biostatistics master, elective in other statistics masters) with 4 hours of class each week: 3 hours

with a professor (Heidi Seibold), 1 with a teaching assistant (Malte Nalenz). The course teaches

how to work with longitudinal data and discusses appropriate models, such as mixed effect

models and generalized estimating equations, and how to apply them in different scenarios. As

part of this course, student groups (2-3 students) were assigned a paper for which they aimed

to reproduce the analysis of longitudinal data. In practical sessions the students received help

with programming related problems and understanding the general theory of longitudinal

data analysis. To limit the likelihood of bias due to differing skills of students, all groups

received support from the teachers. Students were advised to contact the authors directly in

case of unclear specifications of methods. Internal peer reviews, where one group of students

checked the setup of all other groups, ensured that all groups had the same solid technical and

organizational setup. Finally all projects were carefully evaluated by the teachers and updated

in case of problems. Replications and a student paper were the output of the course for each

student group and handed in in August 2019. We believe that the setup of this reproducibility

study benefits from the large time commitment the students put into reproducing the papers.

Also having several students and two researchers work on each paper, ensures a high quality of

the study.

This project involved secondary analyses of existing data sets. We had not worked with the

data sets in question before.

PLOS ONE A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses
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Selection of papers

For a paper to be eligible for the reproducibility study it has to fulfill the following

requirements:

R.1 The paper deals with longitudinal data and uses mixed effect models or generalized esti-

mating equations for analysis.

R.2 The paper is accompanied by data. This data is freely available online without registration.

R.3 At least one author is responsive to e-mails.

Requirement R.1 allows us to select only papers relevant to the topic of this project.

Requirement R.2 is necessary to allow for reproducing results without burdens (e.g. applica-

tion for data access). Although PLOS ONE does have an open data policy (https://journals.

plos.org/plosone/s/data-availability), we found many articles which had statements such as

“Data cannot be made publicly available due to ethical and legal restrictions”. Issues with data

policies in journals have been studied in [25]. Requirement R.3 is important to be able to con-

tact the authors later on in case of questions. Fig 1 shows the selection procedure. All papers

which did not fulfill the criteria were excluded. The PLOS website search function was utilized

to scan through PLOS ONE published works. Key words used were “mixed model”, “general-

ized estimating equations”, “longitudinal study” and “cohort study”. This key word search—

performed for us by a contact at PLOS ONE—resulted in 57 papers. From these 14 papers ful-

filled all criteria and were selected. Two authors prohibited to use of their work within our

study. We note that authors do not have the right to prohibit the reuse of their work as all

papers are published under CC-BY license. However the negative response lead us to drop the

papers, as we expected to have the need to contact authors with questions. For one paper we

did not receive any response. Discussions on the selection criteria of all proposed papers are

documented in https://osf.io/dx5mn/?branch=public.

Table 1 shows a summary of all papers selected so far.

Replication

In the reproducibility study we adhered to open science best practices. (1) We contacted all

corresponding authors of papers we aimed to reproduce via e-mail; (2) all of our source code

and data used is available; (3) any potential errors in the original publications were reported

immediately to the corresponding author.

In our study we conducted all analyses as close to the original analyses as possible. If many

analyses were performed in the original paper, we focused on the analyses of longitudinal data.

We conducted all analyses using R [22] regardless of the software used in the original paper to

mimic a situation where no access to licensed software is available (R was the only open source

software used in the 11 papers).

Each analyis consisted of the following steps:

1. Read the data into R.

2. Prepare data for analysis.

3. Produce overview figure(s) with outcome(s) on the y-axis and time on the x-axis.

4. Reproduce analysis results (e.g. model coefficients, tables, figures).

The description about all these steps was generally vague (see classification of reported

results in [6]) meaning that there were multiple ways of preparing or analysing the data that

were in line with the descriptions in the original paper. This study, thus, exposed a large
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amount of “researcher degrees of freedom” [26] coupled with a lack in transparency about in

the original studies. We aimed to take steps that align as closely as possible with the original

paper and the results therein. That means, if the methods description in paper or supplemen-

tary material were clear, we used those; If not, we tried different possible strategies that we

assumed could be correct; If this was not possible or did not lead to the expected results, we

contacted the authors to ask for help. All code used by us is publicly available including soft-

ware versions and in a format easily readable by humans (literate programming, for further

information see section on technical details).

Results

The results of our study are summarized in Tables 2–4. As each paper has its own story and

reasons why it was or wasn’t reproducible and what the barriers were, we provide a short

description of each individual paper reproduction.

Which methods are used? For an overview on the following questions we refer to

Table 2.

What types of tables are shown? Most of the papers show tables on characteristics of the

observation units at baseline or other summary tables (similar to the so called “Table 1” com-

monly used in biomedical research) which give a good overview of the data.

What types of figures are shown? Few papers include classical visualizations taught in

courses on longitudinal data, such as spaghetti plots. They mostly present other visualizations

(for details, see Table 2).

Table 1. Selected papers.

Citation Title

[9] Wagner et al (2017) Airway Microbial Community Turnover Differs by BPD Severity in Ventilated

Preterm Infants

[10] Meda et al (2017) Longitudinal Influence of Alcohol and Marijuana Use on Academic Performance in

College Students

[11] Visaya et al (2015) Analysis of Binary Multivariate Longitudinal Data via 2-Dimensional Orbits: An

Application to the Agincourt Health and Socio-Demographic Surveillance System

in South Africa

[12] Vo et al (2018) Optimizing Community Screening for Tuberculosis: Spatial Analysis of Localized

Case Finding from Door-to-Door Screening for TB in an Urban District of Ho Chi

Minh City, Viet Nam

[13] Aerenhouts et al (2015) Estimating Body Composition in Adolescent Sprint Athletes: Comparison of

Different Methods in a 3 Years Longitudinal Design

[14] Tabatabai et al (2016) Racial and Gender Disparities in Incidence of Lung and Bronchus Cancer in the

United States: A Longitudinal Analysis

[15] Rawson et al (2015) Association of Functional Polymorphisms from Brain-Derived Neurotrophic Factor

and Serotonin-Related Genes with Depressive Symptoms after a Medical Stressor in

Older Adults

[16] Kawaguchi, Desrochers

(2018)

A Time-Lagged Effect of Conspecific Density on Habitat Selection by Snowshoe

Hare

[17] Lemley et al (2016) Morphometry Predicts Early GFR Change in Primary Proteinuric

Glomerulopathies: A Longitudinal Cohort Study Using Generalized Estimating

Equations

[18] Carmody et al (2018) Fluctuations in Airway Bacterial Communities Associated with Clinical States and

Disease Stages in Cystic Fibrosis

[19] Villalonga-Olives et al

(2017)

Longitudinal Changes in Health Related Quality of Life in Children with Migrant

Backgrounds

https://doi.org/10.1371/journal.pone.0251194.t001
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What types of statistical models are used? Although in most cases (G)LMMs are supe-

rior to GEEs (see [27] for an in-depth discussion and further references)—, 7 out of the 11

papers used GEEs for their analyses [11, 12, 15–19]. There is, in fact, only one complex mixed

model among the methods used (Beta Binomial Mixed Model, [9]). The other articles [10, 13,

14] use LMMs which are equivalent to GEEs for normally distributed response variables. It

should be noted that the selection of papers may not be representative of the general use of

GEEs and (G)LMMs. Nevertheless it seems that the reluctance of using GEEs has not spilled

over from the statistics community to some other fields, which we speculate to have historical

reasons, as GLMMs used to be difficult to compute.

Which software is used? The results of this section are summarized in Table 3.

Is the software free and open source? All except one paper (paper [16]) used closed

source software. As our goal was to evaluate how hard reproducing results is when licenses for

software products are not available we worked with the open source software R. Implementa-

tions in different software products for complex methods such as GEEs and (G)LMMs may

show slightly different results even when given the same inputs and with this we expected diffi-

culties in reproducing exactly the same numbers for all papers using software other than R.

Table 2. Which statistical methods were used by the papers?.

Overview Tables Visualisations Models Used

[9] Baseline demographics Several, e.g. spaghetti plot Beta Binomial Mixed

Model

[10] Baseline demographics, model output Several, e.g. scatter plots (alkohol vs. marijuana use) of

different time points

LMM

[11] Overview of household types Several, e.g. lasagna plot GEE

[12] Baseline demographics none GEE

[13] Correlation none LMM (cross-

classified)

[14] Many especially smoking and lung cancer incidence rates for different year,

genders, races and regions

Mean curves LMM

[15] Baseline demographics Mean curves GEE

[16] Data overview Mean curves GEE

[17] Correlation matrix Mean curves GEE

[18] Sample characteristics Several, e.g. FEV1 over time GEE

[19] Baseline demographics DAG GEE

https://doi.org/10.1371/journal.pone.0251194.t002

Table 3. Which software was used by the papers?.

Software Open Source Source Code Computing Environment

[9] SAS no partly SAS version

[10] SPSS no no SPSS version

[11] no information (email contact states Stata) no no no information

[12] no information (email contact states Stata) no no no information

[13] SAS no no SAS version

[14] SAS no no SAS version

[15] SAS no no SAS version

[16] R yes upon request Package version

[17] SAS no no SAS version

[18] SPSS no no SPSS version

[19] MPlus no no MPlus version

https://doi.org/10.1371/journal.pone.0251194.t003
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Is the source code available? Only one paper (paper [9]) provided source code. The

source code provided was only a small part of the entire code needed to reproduce the results.

Nevertheless it was a major help in obtaining the specifications of the models. For one paper

we received the code through our email conversations [16]. For all other papers we had to rely

on the methods and results sections of the papers. Often we resorted to reverse engineering the

results as the methods sections were not sufficiently detailed.

Is the computing environment described (or delivered)? In most cases the authors pro-

vided information on the software used and the software version (9 out of 11). None of the

papers described the operating system or provided a computing environment (e.g. Docker

container).

Are we able to reproduce the data analysis? The results of this section are summarized

in Table 4.

Are the methods used clearly documented in paper or supplementary material (e.g.

analysis code)? Although all papers in question had methods sections, for most papers we

were not able to extract all needed information to reproduce the results by ourselves. The most

common issue was that papers did not provide enough detail about the methods used (e.g.

model type was mentioned but no detailed model specifications, for details see Table 4). Since,

in addition, no source code was provided (except for paper [9]), reproducing results was gen-

erally only possible by reverse engineering and/or contacting the authors. As most authors

used licensed software which was not available to us, we could not determine if we would have

reached the same results using default settings in the respective software. A clear documenta-

tion therefore requires enough detail to explicitly specify all necessary parameters for the

model, even when using a different software.

Do we have to contact the authors in order to reproduce the analysis? How many e-

mails are needed to reproduce the results? In all but two cases (papers [10, 19]) we con-

tacted the authors to ask questions on how the results were generated (for four of them several

emails were exchanged). All but one of the authors responded, which was to be expected as we

had previously contacted them asking whether they would agree with us doing this project and

only papers were chosen where authors responded positively. In most cases responses by

authors were helpful.

Do we receive the same (or very similar) numbers in tables, figures and models? As the

articles use different models and present their main results in terms of different statistics

(model coefficients, F-statistics, correlation), the purely numerical deviation between our

Table 4. Were the results reproducible?.

Method documentation Contact Attempts Author Responses Models Computable Same Interpretation Classification of Failure

[9] Missing Details 2 1 partly no Software differences

[10] Missing Details 0 0 yes yes

[11] yes 1 1 partly yes Software differences

[12] Missing Details 1 1 yes yes

[13] Missing Details 3 2 partly no Software differences

[14] yes 1 0 no no Software differences, Model Description

[15] Correlation Structure missing 1 1 yes yes

[16] Correlation Structure missing 1 1 yes yes

[17] Correlation Structure missing 3 1 yes yes

[18] 4 1 no Data and Model description

[19] yes 0 0 yes yes

https://doi.org/10.1371/journal.pone.0251194.t004
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results and the original results is not informative in isolation. Also, as we used different soft-

ware implementations, some deviation was to be expected. Therefore, we define similar results

as having the same implied interpretations, regarding sign and magnitude of effects. If the

signs of the coefficients was the same and the ordering and magnitude of coefficients roughly

the same, we regarded the results as successfully reproduced. We were able to fully reproduce

6 out of 11 articles (see also Table 4). Here differences were marginal and did not lead to a

change of interpretations. An example (original and reproduced coefficients of article [15])

can be seen in Fig 2. For another two articles at least parts of the analysis could be reproduced

(e.g. one out of two models used by the authors). For the 8 articles, that we found to be fully or

partly reproducible, we were able to follow the data preprocessing and identify the most likely

model specifications. Only three out of the 11 papers could not be reproduced at all, one

because of implementation differences [13] and one due to problems preparing the data set

used by the authors [18]. In [14] it was unclear how the data was originally analysed and with-

out responses from the authors to our contact attempts via email we were not able to deter-

mine whether the different conclusions reached by our analysis are due to incorrect analysis

on side of the authors or missing information.

Note that for some of the results, a considerable amount of time and effort needed to be

invested to reverse engineer model settings. In the following we summarize the reproduction

process for each paper individually, in order to give more insights about the specific problems

and challenges that we encountered. (see also Table 4).

In [9] problems arose with the provided data set. The data description was found to be

insufficient. Variable names in the data set differed from the ones in the code provided by the

authors. We were able to resolve this problem based on feedback from the authors. When run-

ning the analysis using R and the R package PROreg [28], results differed from the original

results due to details in the implementation and a different optimization procedure. The repro-

duced coefficients had the same sign as in the original study. However, differences in magni-

tude were large for some of the coefficients, likely due to differences in the optimization

procedure. Given our definition, we were unable to reproduce the results. A second model fit-

ted by the authors was not reproduced, due to convergence problems (model could not be fit-

ted at all).

Fig 2. Original and reproduced model parameter estimates for the ewbGEE model of article [15]. In this article the

differences in parameters do not lead to a different interpretation.

https://doi.org/10.1371/journal.pone.0251194.g002
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We were able to reproduce the results in [10] without contacting the authors. Some diffi-

culty arose from the very sparse model description in the publication, such as, which variables

were included as fixed or random effects. Also no source code was available. However within

reasonable trial of different model specifications we obtained very similar results as in the orig-

inal publication.

In [11] the number of observations differed between the publication and the provided

data set. Upon request one of the authors provided a data set, that was almost identical to

the one used in the study. The performed descriptive analysis and correlation analysis

yielded the same results. A second difficulty arose, as the authors did not specify the correla-

tion structure used in their model, but instead relied on the Stata routine to determine the

best fitting correlation structure using the Quasi-Likelihood information criterion. If the

correlation structure yielding the coefficients closest to the ones in [11] is used, the coeffi-

cients are almost identical. However, we also performed the aforementioned model search

procedure in R but ended up with a different correlation structure as the best fitting. Using

the correlation structure found best by our R implementation, would lead to a change in

interpretation of the coefficients.

In [12] difficulties arose from different implementations in the software used. Also the

model description was incomplete, which required us to try all possible combinations of vari-

ables to include. However, the correlation structure was well described and with feedback

from the authors we were able to obtain the same results deviating only on the third decimal.

[13] used a cross-classified LMM, via the SAS “PROC mixed procedure”. Reproduction in

R was difficult, as no R package offered the exact same functionality. After trying several R

implementations, we settled on the nlme R package [29]. The random effects were not speci-

fied in the publication. Also SAS code to shed light on this question was not available. Other

questions regarding preprocessing and model specifications could be resolved through the

feedback of the authors, but we did not receive the needed information on the random effects.

As such we could not reproduce the results.

In [14] the data set used for modeling was not given as a file. Instead the authors provided

links to the website where the data had been initially obtained from. We were not able to

obtain the same data set given the sources and the description. This might be due to changes

in the online sources. Still, differences in summary statistics were not substantial. We were

unable to reproduce the same model due to unclear model specification. Our attempts led to

some vastly different estimates. Possible reasons for failure are an insufficient model descrip-

tion or even incorrect analysis.

We were able to reproduce the results in [15] with only minor differences in the estimated

coefficients. Feedback from the authors was required to find the correct correlation structure

used in their GEE model, which was not explicitly stated in the paper.

The results in [16] were computationally reproducible. Despite minor differences in the

coefficients we arrived at the same interpretations and differences were most likely due to dif-

ferent optimization procedures in the softwares used. The correlation structure was not stated

in the article, but we were able to find the correct one using reverse engineering (grid search).

For the reproduction of [17] we had problems with data preprocessing. This was partly due

to the unclear handling of missing values and due to details of the dimensionality reduction

procedure used in preprocessing. The authors provided the final data set when we contacted

them. The model specifications of the GEE used by the authors were not stated, but we were

able to reproduce the exact same results as the authors by reverse engineering the correlation

structure and link function. During this we found that using different model specifications or

slightly different versions of the data set leads to substantially different results. Given the above

definition this article was reproducible.
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The results in [18] could not be reproduced. The (DNA) data was given in raw format as a

collection of hundreds of individual files, without any provided code or step by step guide for

preprocessing, making reproduction of the data set to be used in the statistical analysis impos-

sible for us. Figures and Tables of the clinic data were reproducible.

The results in [19] were reproducible. All necessary model specifications for their GEE

model and reasoning behind it were explicitly stated in the paper. The original analysis was

carried out in M-plus, but reproduction in R gave almost identical results.

What are characteristics of papers which make reproducibility easy/possible or diffi-

cult/impossible? Based on the discussion of the individual papers we identified determinants

of successes and failures. We found that the simpler the methods used in the paper the easier it

was to reproduce the paper. Papers dealing with classical LMMs (papers [10, 14]) were reason-

ably easy to reproduce.

The data provided by the authors played a major role as well. If the clean data was provided,

reproducing was much easier than for papers providing raw data (papers [14, 17, 18]), where

preprocessing was still necessary. For one paper [18] getting and preparing the data was so

complex that we gave up. Even after the authors provided us with an online tutorial on work-

ing with this type of data, we were far from understanding what needed to be done. If special-

ists (e.g. bioinformaticians) on working with this type of data had been involved, we might

have had better chances.

We believe that with code provided—even if it is written using software we do not have

access to—computational reproducibility is easier to obtain. It is hard to make this conclusion

based on the 11 papers we worked with, because only one provided partial code and 1 provided

code on request, but they also did not contradict our prior beliefs.

What are learnings from this study? What recommendations can we give future authors

for describing their methods and reporting their results? Trying to reproduce 11 papers

gave us a glimpse at how hard computational reproducibility is. We used papers published in

an open access journal, which provided data and the authors were supportive of the project.

We think it is fair to assume that these papers are among the most open projects available in

academic literature at the moment. Nevertheless we were only able to reproduce the results

without contacting the authors for two papers.

We not only recommend authors to provide data and code with their paper, but we suggest

that this should be made a requirement from journals.

Further points

One paper published raw names of study participants, which we saw as unnecessary informa-

tion and with that as an unreasonable breach of the participants. We informed the authors

who updated the data on the journal website.

Discussion

In this study we aimed at reproducing the results from 11 PLOS ONE papers dealing with sta-

tistical methods for longitudinal data. We found that most authors use tables and figures as

tools for presenting research results. Although all papers in question had data available for

download, only one paper came with accompanied source code. From our point of view the

lack of source code is the main barrier in reproducing results of the papers. For some papers

we were still able to reproduce results by using a strategy of reverse engineering the results and

by asking the authors. In an ideal situation, however, the information needed should not be

hidden within the computers and minds of original authors, but should be shared as part of
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the article (optimally in the form of a research compendium with paper, data, code, and

metadata).

One of the authors initially contacted asked us to refrain from reproducing their paper on

the grounds that students would not have the capabilities to do such complex analyses. We did

not include the article in our study, but strongly disagree with this statement, especially since

the students in question all have a strong statistics background and benefited from the guid-

ance of researchers. Furthermore the students checked each other’s works in an internal peer

review. We would even go so far as to claim that a lot of other statistical work is less under-

stood by the researcher and less thoroughly checked by peers before it is combined into a pub-

lication. Working as a big team gave us the option to conduct time intensive reverse

engineering attempts of results, which small research teams or single researchers would poten-

tially not have had.

We did not choose the papers randomly, but based on the set of potential papers given to us

by PLOS ONE and then selected all papers meeting our criteria (see Fig 1). We can and should

not draw conclusions from our findings on the 11 selected papers on the broader scientific

landscape. Our work does, however, give us some insights on what researchers, reviewers, edi-

tors and publishers could focus on improving in the future: Publish code next to the data. To

PLOS ONE we propose to include code in their open data policy.

Reproducing a scientific article is an important contribution to science and knowledge dis-

covery. It increases trust in the research which is computationally reproducible and raises

doubt in the research which is not.

Technical details

All results including detailed reports and code for each of the 11 papers are available in the

GitLab repository https://gitlab.com/HeidiSeibold/reproducibility-study-plos-one. All files can

also be accessed through the Open Science Framework (https://osf.io/xqknz). For all computa-

tions all relevant computational information (R and package versions, operating system) are

given below the respective computations. The relevant information for this article itself is

shown below.

• R version 4.0.3 (2020-10-10), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=de_DE.UTF-8,

LC_COLLATE=en_US.UTF-8, LC_MONETARY=de_DE.UTF-8, LC_MESSAGES=e-
n_US.UTF-8, LC_PAPER=de_DE.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TE-
LEPHONE=C, LC_MEASUREMENT=de_DE.UTF-8, LC_IDENTIFICATION=C

• Running under: Ubuntu 20.04.2 LTS

• Matrix products: default

• BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

• Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

• Other packages: data.table 1.13.0, dplyr 1.0.2, ggplot2 3.3.3, googlesheets 0.3.0, kableExtra

1.3.1, knitr 1.32, plyr 1.8.6, rcrossref 1.1.0

• Loaded via a namespace (and not attached): cellranger 1.1.0, cli 2.4.0, codetools 0.2-18, color-

space 2.0-0, compiler 4.0.3, crayon 1.4.1, crul 1.1.0, curl 4.3, digest 0.6.27, DT 0.18, ellipsis

0.3.1, evaluate 0.14, fansi 0.4.2, farver 2.1.0, fastmap 1.1.0, generics 0.0.2, glue 1.4.2, grid
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4.0.3, gtable 0.3.0, hms 0.5.3, htmltools 0.5.1.1, htmlwidgets 1.5.3, httpcode 0.3.0, httpuv

1.5.5, httr 1.4.2, jsonlite 1.7.2, labeling 0.4.2, later 1.1.0.1, lifecycle 1.0.0, magrittr 2.0.1, mime

0.10, miniUI 0.1.1.1, munsell 0.5.0, pillar 1.6.0, pkgconfig 2.0.3, promises 1.2.0.1, ps 1.6.0,

purrr 0.3.4, R6 2.5.0, Rcpp 1.0.6, readr 1.4.0, reshape2 1.4.4, rlang 0.4.10, rmarkdown 2.7,

rstudioapi 0.13, rvest 0.3.6, scales 1.1.1, shiny 1.6.0, stringi 1.5.3, stringr 1.4.0, tibble 3.1.1,

tidyselect 1.1.0, utf8 1.2.1, vctrs 0.3.7, viridisLite 0.4.0, webshot 0.5.2, withr 2.4.2, xfun 0.22,

xml2 1.3.2, xtables 1.8-4
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Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig, ohne uner-
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