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Zusammenfassung

Das maschinelle Lernen (ML) wird mir zunehmender Häufigkeit in Produkten und Prozessen eingesetzt.
Standardmäßig funktionieren die meisten ML-Modelle als sogenannte ”Black Boxes”, was es schwierig
macht, Erkenntnisse zu gewinnen, Vertrauen zu schaffen, die Modelle zu debuggen und individuelle
Vorhersagen zu erklären. Das Gebiet des interpretierbaren maschinellen Lernens (IML) adressiert dieses
Probleme und hat zum Ziel, das Verhalten von ML-Modellen und deren Vorhersagen zu erklären.

Diese kumulative Dissertation besteht aus 10 Beiträgen, die sich alle mit modellagnostischen IML-
Methoden beschäftigen. Modellagnostische IML-Methoden arbeiten so, dass es keine Rolle spielt, ob
das zu interpretierende Modell ein neuronales Netz oder ein Entscheidungsbaum ist. Diese Arbeit trägt
insbesondere in zweierlei Hinsicht zur IML-Forschung bei: Konsolidierung modellagnostischer IML-
Methoden und Verbesserung etablierter modellagnostischer Interpretationsmethoden, insbesondere der
Permutation Feature Importance (PFI) und des Partial Dependence Plot (PDP).

Als Beitrag zur Konsolidierung präsentiert diese Arbeit eine kurze Geschichte von IML, den aktuellen
Stand der Technik und zukünftige Herausforderungen. Diese Herausforderungen sind oft mit all-
gemeinen Fallstricken verbunden, mit denen Anwender bei der Verwendung von IML-Methoden zur
Interpretation von Modellen konfrontiert werden, wobei ein häufiger Fallstrick abhängige Features
sind. In dieser Arbeit werden viele dieser allgemeinen Fallstricke identifiziert und mögliche Lösungen
beschrieben. Außerdem wird SIPA vorgestellt, was für Sampling, Intervention, Prediction und Aggre-
gation steht - ein allgemeines Schema, nach dem die meisten modellagnostischen Methoden funktion-
ieren. Auf der Grundlage des SIPA-Schemas wurde iml, ein R-Softwarepaket für die modellagnostische
Interpretation von maschinellem Lernen, implementiert.

PDP und PFI sind etablierte IML-Methoden, die zur Beschreibung von Featureeffekten und -wichtigkeit
verwendet werden. Viele Limitationen und Verbesserungsmöglichkeiten dieser Methoden sind jedoch
bisher nicht ausreichend erforscht - eine Lücke, die diese Arbeit füllt. Sowohl PFI als auch PDP
können irreführende Erklärungen liefern, wenn es zur Extrapolation in unwahrscheinliche Regionen des
Featureraumes aufgrund von abhängigen Features kommt. Daher wird in dieser Arbeit vorgeschlagen,
PDP und PFI in Untergruppen der Daten zu berechnen. Der Untergruppenansatz reduziert das Problem
der Extrapolation erheblich und ermöglicht eine differenziertere Interpretation von Featureeffekten und
-wichtigkeit. Eine weitere Möglichkeit, das Problem der abhängigen Features für PFI zu lösen, ist die
Verwendung von conditional PFI, bei dem die Permutation des Features den Zusammenhang mit den
anderen Features berücksichtigt. In dieser Arbeit wird die Relative Feature Importance eingeführt,
die die conditional PFI verallgemeinert, indem sie die Konditionierung auf beliebige Features erlaubt
und somit die Analyse des indirekten Einflusses von Features ermöglicht. Darüber hinaus werden IML-
Methoden häufig verwendet, um Schlussfolgerungen über die reale Welt zu ziehen. Dies wirft die
Frage auf, unter welchen Bedingungen die Modellinterpretation auf die reale Welt ausgedehnt werden
darf und wie mit verschiedenen Arten von Unsicherheit umgegangen werden muss. In dieser Arbeit
werden die Bedingungen untersucht, unter denen statistische Inferenz mit PDP und PFI möglich ist.
Darüber hinaus werden Verbindungen zwischen PDP und PFI untersucht, und auf Grundlage dieser
Gemeinsamkeiten werden neue Visualisierungen für PFI vorgeschlagen.

Darüber hinaus schlägt diese Arbeit mehrere modellagnostische Metriken für die Modellkomplexität
vor, die auf einer funktionalen Dekomposition mit Accumulated Local Effects basieren. Mit diesen
Metriken kann ein Modell nicht nur auf seine Leistung, sondern auch auf seine Interpretierbarkeit hin
optimiert werden.



Neben PDP und PFI wird in dieser Arbeit eine neue Methode für Counterfactual Explanations
vorgestellt, die zur Erklärung einzelner Modellvorhersagen verwendet werden können. Die vorgeschla-
gene Suchprozedur für Counterfactual Explanations wird als multikriterielles Optimierungsproblem
formuliert, welche es dem Benutzer ermöglicht, den richtigen Kompromiss zwischen verschiedenen
Metriken für die Counterfactual Explanations zu wählen.
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Summary

Machine learning (ML) is increasingly making its way into products and processes. By default, most
ML models operate as black boxes, making it difficult to derive insights, gain trust, debug the models
and explain individual predictions. The field of interpretable machine learning (IML) addresses these
shortcomings and aims to explain the average behavior of ML models and individual predictions.

This cumulative dissertation consists of 10 contributing articles, all dealing with model-agnostic IML
methods. Model-agnostic IML methods work in such a way that it does not matter whether the model
being interpreted is a neural network or a decision tree. In particular, this thesis contributes to IML
research in two ways: consolidating model-agnostic IML methods and improving established model-
agnostic interpretation methods, especially Permutation Feature Importance (PFI) and the Partial
Dependence Plot (PDP).

As a contribution towards consolidation, this thesis presents a brief history of IML, the current state-of-
the-art and future challenges. These future challenges are often associated with general pitfalls faced
by practitioners in using IML methods to interpret models, with a common pitfall being dependent fea-
tures. Furthermore, this thesis identifies many of these general pitfalls and describes possible remedies.
Further, SIPA is introduced, which stands for sampling, intervention, prediction and aggregation – a
shared framework by which most model-agnostic methods operate. Based on this shared framework,
iml, an R software package for model-agnostic machine learning interpretation, was implemented.

PDP and PFI are well-established methods in IML that are used to describe feature effects and feature
importance. However, many limitations and potential improvements have not been adequately explored
– a gap that this thesis fills. Both PFI and PDP can be misleading if the features are dependent due to
extrapolation in unlikely regions of the feature space. Therefore, this thesis proposes to compute PDP
and PFI in subgroups of the data. The subgroup approach greatly reduces the problem of extrapolation
and allows for a more nuanced interpretation of feature effects and importance. Another way to address
the dependent feature problem for PFI is to use conditional PFI, where the permutation of the feature
is conditional on all other features. This thesis introduces relative feature importance which generalizes
the conditional PFI by allowing to condition on arbitrary feature subsets, and allowing indirect influence
of features to be studied. Moreover, IML is often used to draw conclusions about the real world. This
raises the question of the conditions under which the model interpretation may be extended to the real
world and how to deal with various types of uncertainty. This thesis examines the conditions under
which statistical inference with PDP and PFI might be possible. Further, connections between PDP
and PFI are studied, and, based on commonalities, new visualizations for PFI are proposed.

In addition, this thesis proposes several model-agnostic metrics for model complexity based on func-
tional decomposition with accumulated local effects. With these metrics, a model can be optimized
not only for performance, but also for interpretability.

Besides PDP and PFI, this thesis introduces a new method for counterfactual explanations that can
be used to explain individual model predictions. The proposed counterfactual search is formulated as
multi-objective optimization problem, which enables the user to choose the right trade-off between
different objectives for the counterfactual explanation.
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Part I.

Introduction and Background





1. Introduction

It is one thing to have a model with which one can make accurate predictions; it is another
to have a model that makes accurate predictions for the right reasons.

– Simulation and Similarity, Michael Weisberg (2012)

1.1. Motivation and Scope

Machine learning (ML) is increasingly used for automating tasks and making decisions. Also, many
scientific applications rely on ML, for example in ecology (Bair et al., 2013; Esselman et al., 2015;
Obringer and Nateghi, 2018), medicine (Boulesteix et al., 2020; Stiglic et al., 2020; Pintelas et al.,
2020), the social sciences (Stachl et al., 2020; Zhao et al., 2020), and many more fields. For example,
Obringer and Nateghi (2018) used ML to predict water reservoir levels for cities, based on population,
soil moisture, water use, precipitation and so on.

In supervised ML, the focus is on optimizing a loss function on unseen data. Flexible, but well tuned
models often outperform simpler models in performance on test data, and ensembles of different models
often further outperform individual models. Before ML became more popular, the classical statistical
modeling approach was (and still is) used in applications that focus on generating insights. The
statistical approach prioritizes considerations of the data-generating process over predictive performance
on unseen test data. These considerations of the data-generating process is what makes the statistical
modeling approach often more interpretable: model parameters are usually connected to a concept of
the data-generating process.

The focus of ML on test performance pushes interpretability of the model into the backseat. For
structurally more restricted models, such as decision rules or linear models, individual components of
the model can be interpreted in isolation and be related to understandable concepts. For example,
a coefficient of a linear regression model can be mapped to an individual feature and be interpreted,
more or less, in isolation. The terminal node of a decision tree gives us a list of binary decisions that
lead to a certain prediction. Structurally less restricted models that are well tuned, such as neural
networks and gradient boosted trees, often perform well but don’t have a direct mapping of model
parameter to feature effects or concepts, making interpretation more difficult.

As more machine learning is used, the need for tools to understand their decision processes grows.
Regulated industries such as banks or health care require auditability of their products and processes,
for which it’s necessary to look inside how the model operates. ML models can encode social biases
such as gender bias (Prates et al., 2019) and learn harmful, non-causal relationships (Caruana et al.,
2015; Ribeiro et al., 2016b; Lapuschkin et al., 2019). In all these cases, the model performance on test
data might not reveal the problem. ML is also increasingly used in science, an endeavor that requires
interpretability for different reasons (Roscher et al., 2020): Explaining the world lies at the very heart
of science. Using an opaque model to describe a phenomenon therefore seems like a step in the wrong
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1. Introduction

direction. However, in many situations, using the ML model approach might produce complex models
that outperform state-of-the-art mechanistic models or classical statistical models. The opaque model
might generalize better, but as the relationships of interest are encoded in the model, they are hidden
from the researchers. All these different needs (auditability, fairness, knowledge generation, ...) can
be addressed by making the models more interpretable.

Interpretable machine learning (IML) is a research field concerned with extracting knowledge from
machine learning models and explaining individual predictions. The IML field covers (1) inherently
interpretable models, (2) modifications of more complex models to make them more interpretable, and
(3) post-hoc interpretation methods. This thesis focuses on model-agnostic interpretation methods,
which are post-hoc methods that are applied on a trained model and have no influence over how the
model is trained. Model-agnostic means that the IML methods can be applied to any ML model, as
they do not rely on access to, for example, the model parameters, but only need access to the prediction
function (Ribeiro et al., 2016a). For model-agnostic methods it does not matter whether the underlying
model is a neural network, a random forest or a linear model. This allows a certain modularity, as
the same explanation method can be used even when the underlying model is exchanged for a better
performing model. Furthermore, model-agnostic methods allow comparison of models, which is not
always possible for different interpretable model classes: We cannot compare the coefficients of a
logistic regression with the splits made by a decision tree. But we can compare the PFI of both
models, and even with other, more complex models.

Explaining “black box” ML models for high stakes decisions has been criticized (Rudin, 2019; Rudin
et al., 2021) in favor of ML models that are interpretable by design. As we argue in Molnar et. al
(2020), interpretable models should always be included in benchmarks, and a decision for a “black
box” model has to be justified with a relevant increase in performance. The critique by Rudin (2019)
centers on choice of model, but is not an argument against the use of model-agnostic interpretation
method per se. Using an interpretable model does not prohibit the application of model-agnostic
interpretation methods. On the contrary, model-agnostic interpretation methods can create additional
insights into the model. While, for example, a decision rule list might be interpretable to some degree,
the interpretation of the model might not tell us the average effect of a feature. Model-agnostic feature
effect plots, such as the partial dependence plot, can be applied to answer this question.

While the field of ML interpretability has roots in statistical modeling and rule-based ML (Molnar
et. al, 2020), many of the model-agnostic methods are relatively new and consolidation is necessary.
In Scholbeck et. al (2020) we showed that many model-agnostic interpretation methods work under
the SIPA framework of sampling, intervention, prediction and aggregation. The R package ‘iml‘,
was designed under the SIPA principle (Molnar et al., 2018) and implements many methods in one
package: partial dependence plots (PDP), accumulated local effect (ALE) plots, individual conditional
expectation (ICE) curves, permutation feature importance (PFI), the H-statistic, Shapley values, LIME
and tree surrogate models. There are further commonalities between model-agnostic methods: PFI
can be split into importances for individual data points and there are many parallels between PFI and
PDP (Casalicchio et. al, 2019). A conditional version of PFI can also be extended to include features
that were not used by the model (König et. al, 2021), which allows to study indirect influence of
features and biases/fairness.

As many model-agnostic interpretation methods manipulate features individually, they show unexpected
and possibly unwanted behavior when features are dependent. When features are correlated, many
model-agnostic methods create new data that have a different distribution than the training data, and
might even lie outside the convex hull of the data and represent physically impossible entities. As part
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1.2 Outline

of this thesis, I look at the behavior of PDP and PFI when feature are dependent and suggest using
regression trees to compute the PFI in subgroups (Molnar et. al, 2020). Misleading interpretation due
to feature dependence is one of many pitfalls that one can run into when interpreting a model. Other
pitfalls include a wrong causal interpretation and failing to account for interactions (Molnar et. al,
2020).

IML can be seen as “descriptive statistics” of models, and, as such, often lack uncertainty quantifi-
cation. In the contribution Molnar et. al (2021), we proposed how PDP and PFI, which are external
model descriptors, can be turned into an inferential statistical tool. We propose to use these same
external descriptors (PDP/PFI) directly on the data-generating process, at least in theory and simu-
lation, to define a ground truth that the model aims to recover. This allows us to conduct inference,
but needs the additional, strong assumption of model unbiasedness.

Interpretation methods can also be used to quantify the interpretability of a model itself. In Molnar
et. al (2020) we used ALE plots to quantify the interaction strength, the average complexity of the
main effects of the features and the number of features. We constructed these measures to be model-
agnostic, meaning they can be compared across different model types. We demonstrated that those
measures can be used as additional objectives (next to predictive performance) for model selection.

While PDP and PFI are used to describe the average behavior of models, methods such as coun-
terfactual explanations explain individual predictions. Counterfactual explanations describe minimal
changes to the features of a data instance so that the prediction is substantially changed. We trans-
lated the search for counterfactuals into a multi-objective optimization problem (Dandl et. al, 2020),
which allows to generate multiple counterfactuals, with different trade-offs. The user can then choose
counterfactuals with the application-specific best trade-off.

1.2. Outline

Part I describes the methodological background of this thesis and Part II presents the individual paper
contributions.

Section 2.1 in Part I introduces the concept of supervised ML. Section 2.2 discusses the need for
interpretability by various stakeholders (Section 2.2.1) and why interpretability is so difficult to define
(Section 2.2.2). An option for making ML more interpretable is to work with intrinsically interpretable
models. This approach has some drawbacks, as described in Section 2.2.3.

This thesis focuses on model-agnostic interpretation methods that can be applied to any ML model in
a post-hoc fashion, that is, after the model was trained. Section 2.3 provides a definition of the model-
agnostic interpretation approach (Section 2.3.1), followed by an overview of available methods (Sec-
tion 2.3.2). Section 2.3.3 compares model-agnostic interpretation with model-specific interpretation
based on inspecting the learned parameters and structures. Most model-agnostic interpretation meth-
ods follow the same framework of sampling, intervention, prediction and aggregation (Section 2.3.4),
the principle after which the R package ‘iml‘ was designed.

The model-agnostic interpretation methods that were central to this thesis are presented in Section 2.4:
The partial dependence plot (Section 2.4.1), accumulated local effect plots (Section 2.4.2), permutation
feature importance (Section 2.4.4) and counterfactual explanations (Section 2.4.5).
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1. Introduction

Section 2.5 explains why dependent features cause problems for many interpretation methods. Section 3
concludes Part I with thoughts on the future of model-agnostic interpretation methods.
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2. Methodological and General Background

This chapter provides the methodological background for this thesis on machine learning, interpretabil-
ity and model-agnostic interpretation methods.

2.1. Supervised Machine Learning

Supervised ML is a form of inductive learning: The goal is to learn general rules from specific data
examples.

An unknown data-generating process produces data that follows a distribution PXY . A data point
from the data-generating process PXY consists of a p-dimensional feature vector x(i) ∈ X and the
target y(i) ∈ Y. To refer to a subset of features, x(i)

S ∈ XS with S ⊆ {1, . . . , p} is used, XS
being a |S|-dimensional feature subspace. Complimentary, XC denotes the remaining features so that
S ∪ C = {1, . . . , p} and S ∩ C = ∅. The goal in supervised learning is to approximate the unknown
function f : X 7→ Rg that maps from p features X to a prediction in Rg, e.g. g = 1 for regression,
and g is the number of classes for classification. We call the approximation of f by the ML model
f̂ . This function f̂ is induced by training the model on a dataset drawn from PXY . Multiple draws
comprise a dataset Dn =

((
x(1), y(1)

)
, . . . ,

(
x(n), y(n)

))
. Here, n denotes the number of draws, with

each data point coming from the joint distribution Di ∼ PXY , i ∈ {1, . . . , n}. This dataset Dn
is used to induce the model f̂ . The induction is done by an inducer algorithm: I : D × Λ → H,
and the inducer maps from the hyperparameter space Λ and set of all datasets D to the function
hypothesis space H that is defined by the ML model class the inducer can produce. For example, if
the inducer only produces ML models that are linear in the feature space, only functions of the form
f̂(x(i)) = β0 +βTx(i), β ∈ Rp are in the hypothesis space H. The induction process is an optimization
process in which a risk is minimized: R(f̂) = EXY [L(Y, f̂(X))] =

∫
L(Y, f̂(X))dPXY . The risk

requires a loss function L : Y ×Rg → R+
0 .

After model induction, the model is evaluated on a separate dataset to avoid an over-confident empirical
risk estimation. For separation of training and testing, the dataset Dn is split into a dataset Dn1 for
induction and a dataset Dn2 for testing, so that n1 + n2 = n. The empirical risk on the test data is
defined as:

Remp(f̂Dn2 ,λ
) := 1

n2

n2∑
i=1

L
(
yi, f̂Dn2,λ(xi)

)

The resulting performance estimate is subject to variance. To get more stable results, resampling
strategies such as bootstrapping or cross-validation can be employed. I denote sets of indices for training
data with Bd in the d-th split repetition and for the evaluation data B−d, so that Bd∪B−d = {1, . . . , n}.
The training data might further be (repeatedly) split into training and validation datasets. The purpose
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2. Methodological and General Background

of the validation dataset is to find a good configuration of model parameters that are not optimized
in the training phase itself (for example the architecture of a neural network).

2.2. Interpretability

This section discusses who needs interpretability for ML and what interpretability is. Furthermore, it
gives an overview of IML methods, examines IML’s roots in statistics and rule-based ML and discusses
the differences between interpretable models vs. post-hoc interpretation.

2.2.1. Stakeholders

As more complex ML models are used to enhance products, to automate processes and even to conduct
scientific research, the demand for interpretation increases. To understand the demand for IML, we
have to consider all the different stakeholders that are involved (Tomsett et al., 2018): creators,
operators, executors, decision subjects and examiners.

Carefully controlling the model performance by the model creators is critical, but there are many
problems that can occur despite good test performance. For example, the prediction might rely on
non-causal artifacts, for example asthma as predictor for improved pneumonia outcomes (Caruana
et al., 2015), presence of snow to decide between wolfs and dogs (Ribeiro et al., 2016b) and presence
of watermarks for image classification (Lapuschkin et al., 2019). These artifacts might not show up in
performance evaluation, but when using IML methods. IML methods enable model creators to debug
the model and compare, for example, feature importance values with expert knowledge.

Operators are the people who work with the model output and executors are the ones that act on
that information. For a sepsis warning system in a clinic, the nurses were the operators (receiving the
patients sepsis scores on a tablet) and the doctors acted on the scores (by paying closer attention to
that patient and giving antibiotics) (Sendak et al., 2020). The lack of model interpretability made
the communication between nurses and doctors challenging and nurses actually tried to fill the lack
of interpretation by providing their own, which was not always correct and could have had unintended
consequences (Elish and Watkins, 2020).

The people who are affected by the decisions are called decision subjects. This could be the person
that got their loan application rejected or who was diagnosed by a data-driven algorithm with a disease.
These decisions can range from having negligible to major impacts on the life of people. Interpretability
can enable the person to understand the decision and to take educated further steps. Interpretability
might also be required to challenge decisions. ML models can encode social biases, such as gender bias
(Prates et al., 2019) and learn harmful, non-causal relationships. Here, especially local explanation
methods can help, which can justify individual predictions.

Examiners are external stakeholders that test, audit or otherwise investigate the model. Especially
regulated industries such as finance and health care require auditing of algorithms. Important tools in
the auditor’s toolbox are ML interpretation methods (Johner et al., 2021).

ML is also increasingly used in scientific discovery (Roscher et al., 2020). However, replacing mech-
anistic or classical statistical models with ML leads to a partial loss of understanding the studied
phenomenon. Interpretable machine learning allows the scientist not only to model the phenomenon
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2.2 Interpretability

at hand, but to also learn more about the relationships between features and target, ant thus about
the data-generating process.

2.2.2. Definition of Interpretability

A big criticism of IML is that interpretability is not well defined (Lipton, 2018; Doshi-Velez and
Kim, 2017). Miller (2019) tries to define interpretability in the following way: “Interpretability is the
degree to which a human can understand the cause of a decision”. Bu this only moves the burden
to defining “human understanding”, and therefore still remains vague as it is unclear when a human
has “understood” the decision. A simulatability-based definition says: “Interpretability is the degree to
which a human can consistently predict the model’s result” (Kim et al., 2016). This definition allows
a way to quantify interpretability (correlation between human and model prediction), but is rather
narrow. For example, measures of feature importance do not directly allow to predict the model’s
results, but still offer valuable insights into the workings of the model.

How can research on interpretable machine learning be conducted when the defining element of the
field, “interpretability” is not accurately defined? To answer this question and justify the field, I want
to distinguish between the use of “interpretability” as a keyword and as a measurable quantity.

“Interpretable machine learning” and “explainable artificial intelligence” are useful keywords to bundle
approaches with the shared goal of making machine learning models more transparent. The keywords
draw together research areas such as statistics, rule-based ML, sensitivity analysis, social science and
more. In the interpretability-as-keyword case, I would argue that we do not require a mathematical
definition of interpretability. Similarly, the field of “deep learning” does not have a formal definition of
when a neural network is deep.

The more severe criticism applies to the use of interpretability as measurable quantity. In ML research,
new approaches can be benchmarked against the state-of-the-art in terms of predictive performance.
But for IML, there is no ground truth to which an explanation can be compared to. This complicates
research on interpretability. How can researchers “prove” that their approach is more interpretable
than another? The answer to this question is far reaching, as the scientific evaluation of methods is
tied to the definition of interpretability.

There is no conclusive, mathematical definition that can say when an ML model is explainable or
interpretable. However, as Rudin (2019), Molnar et. al (2020) and Askira-Gelman (1998) argue, the
answer might be that we don’t need one single definition of interpretability, but rather multiple aspects
of interpretability. We can divide these measurable aspects of interpretability into: (1) human-based
evaluations on a proxy task or in the real application and (2) function level or mathematical evaluations
(Doshi-Velez and Kim, 2017).

Human-based evaluations in scientific studies are often based on proxy tasks, as an evaluation in
the real application is more difficult to implement. Measurements include, for example, how much an
interpretation improves a human’s task performance (Dhurandhar et al., 2017; Zhou et al., 2018; Plumb
et al., 2019), the user’s ability to predict the outcome (Zhou et al., 2018), the user’s ability to reproduce
a models output for a given input (Friedler et al., 2019; Poursabzi-Sangdeh et al., 2018), the user’s
ability to predict how the prediction will change given a change in features (Friedler et al., 2019), how
closely users follow the prediction of a model (Poursabzi-Sangdeh et al., 2018), how well users detect
model errors (Poursabzi-Sangdeh et al., 2018), the users response times (Huysmans et al., 2011) and
answer confidence (Huysmans et al., 2011). This selection shows how diverse the evaluation can be.
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And even behind single measures listed here, for example the first criterion “how much interpretation
helps with task” is task-dependent and can take on very diverse shapes. Human-based evaluations
can also have very different outcomes based on prior knowledge of the target audience. For example,
humans who are educated in linear regression models will work more successfully with interpreting a
coefficient table than people who see such a table for the first time. A look into the social sciences
(Miller, 2019) tells us that many properties that constitute a good explanation are in conflict with each
other. This is another argument that even for humans no single best-performing explanation exists,
but interpretability is more of a multi-objective problem.

Function level evaluations are derived analytically from the model itself. Examples are sparsity, lin-
earity, and monotonicity in feature effects. Another example is model size (e.g. number of non-zero
coefficients or length of decision rules) which is a model-class-dependent criterion for interpretability
(Huysmans et al., 2011; Rüping et al., 2006; Askira-Gelman, 1998; Yang et al., 2017; Schielzeth, 2010;
Lakkaraju et al., 2017; Fürnkranz et al., 2012; Ustun and Rudin, 2016). Model complexity cannot tell
us whether a decision tree is more interpretable than a linear model, but we can compare the maximum
tree depth of two decision trees. Other measures include fidelity, i.e., how well an explanation predicts
the model outcome (Plumb et al., 2019). Measurable dimensions of interpretability even allow to
optimize a model not only for predictive performance, but also for interpretability. Examples of these
dimensions are sparsity in the features that were used, monotonicity in the feature effects, sparsity in
the explanations and so on. In Molnar et. al (2020), we proposed quantifiable measures of model
complexity, that can be computed in a model-agnostic way and which can be used in multi-objective
optimization, as we show in an application.

I will use the word “interpretability” throughout the thesis for referring to extracting knowledge about
a model and “explanation” for explaining individual predictions.

2.2.3. Intrinsically Interpretable Models

The field of interpretable modeling is old: linear regression model have been around for over 200 years
and rule-based ML methods were developed in the mid of the 20th century. In this chapter, we briefly
revisit basic “intrinsically interpretable models” as they constitute building blocks for many model-
agnostic interpretation methods. Two pillars of IML are statistical regression models and rule-based
ML models. Both model families are collections of supervised ML approaches, as defined in Section 2.1,
and are deemed intrinsically interpretable, due to their structural design. Statistical regression models,
such as the generalized additive models, are often applied with a different modeling mindset (Breiman
et al., 2001), but we focus on these models from an ML perspective.

The linear regression model restricts the relationship between the target variable Y and the features
X to a weighted sum: f̂(x(i)) = β0 + β1x

(i)
1 + . . . + βpx

(i)
p . This strong model restriction allows an

isolated interpretation of the coefficients βj , j ∈ {1, . . . , p} as effects of the individual features. The
interpretation is additive, which means we can isolate the individual features and do not have to think
about interactions. There are many adaptions that allow the linear regression model to capture more
complex relationships, such as the generalized additive model (Hastie and Tibshirani, 2017).

Decision trees represent the relationship with partitions: y(i) =
∑M
m=1 cmI{x(i) ∈ Rm}, where Rm

defines a data partition that can be defined by a set of conjunctions based on the feature space and cm
is often the loss-optimal constant model (e.g. the mean for L2-loss) and at the same time the prediction
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in this partition. Decision trees are special cases of decision rules, since trees are hierarchically organized
with disjunct partitions.

A turning point for ML, especially for deep neural networks, was 2012, when a convolutional neural
network won the ImageNet challenge (Deng et al., 2009). These complex models, especially deep
learning, but also boosted tree ensembles and random forests gained a lot of popularity, due to their
superior predictive performance in many prediction tasks. Compared to their intrinsically interpretable
counterparts, the more complex, but well regularized/tuned ML models do not allow for straightforward
interpretation. Interpretable models such as decision trees and linear regression models have structural
restrictions that make them arguably more interpretable. These restrictions pose constraints on the
hypothesis space, and when the best solutions are outside of that space, the models lack the flexibility
to achieve a high performance. A purely linear regression model fails when interactions are present;
decision trees have a hard time reconstructing linear relationships. The approach with, for example,
deep neural networks is to start with a rather flexible model class and approach a good solution
by careful model tuning and regularization. However, it is recommended to start a project with
interpretable models and add complexity as needed (Molnar et. al, 2020). This allows to study the
trade-off between model complexity and model performance.

Interpretable models remain building blocks for many other model-agnostic methods. For example,
surrogate models such as LIME (Ribeiro et al., 2016b) make use of interpretable models that are fitted
locally to a prediction.

2.3. Model-agnostic Interpretable Machine Learning

This chapter defines the term “model-agnostic interpretation method”, introduces the shared frame-
work by which many model-agnostic methods work and illustrates the difference in interpretation of
intrinsically interpretable models and of post-hoc model-agnostic approaches.

2.3.1. Definition

Model-agnostic interpretation methods describe the relationship between input features and predictions
by systematically probing the prediction function. This probing requires access to the prediction
function and the data. Model-agnostic methods therefore treat ML models as black boxes: Model-
agnostic methods do not rely on “internal information” of the model, such as the estimated weights
in a linear model or the learned structure in decision trees.

We can describe model-agnostic interpretation as a function I : (F ,X ,Y) 7→ E, that maps from F , the
space of prediction functions, the feature space X and the target space Y to the space of explanations
E. The space of explanations depends on the interpretation method. For feature effect methods such
as PDP or ALE plots E = F1 is the space of 1-dimensional functions, or respectively E = Fp for
p-dimensional variants. For PFI method the explanation space for a single feature is E = R. We call a
method post-hoc, when it is applied after the model was trained. This applies to all the model-agnostic
interpretation methods in this thesis.
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Model-agnostic 
Interpretation 

Feature 
Importance Feature Effects

Global Model 
Interpretation 

Local Prediction 
Explanation

Counterfact.Shapley ...PFI PDP ALEfANOVA ICE

Figure 2.1.: Taxonomy of Methods

2.3.2. Methods Overview

Interpretation methods for ML can be categorized based on their scope, model type to which they can
be applied and targeted data type. The targeted data type has the strongest influence on how the
produced explanations look like: When images are input to the model, the explanations can usually
be visualized as heatmaps that are laid over the original image. For text inputs, the explanations are
usually based on highlighting text passages, or emphasis on words. This thesis focuses on tabular data,
where a column usually represents one feature or one category (dependent on the encoding of the
categorical features).

Figure 2.1 shows a short taxonomy of the model-agnostic interpretation methods for tabular data. The
first differentiator is whether an interpretation method quantifies an average model behavior (global),
or explains an individual prediction (local). In the first case, we speak of a global model interpretation,
as the object of the interpretation is an average behavior. We can further distinguish the global
interpretations into feature effects and feature importance measures. Feature effects describe how
changes in features change the prediction on average. Feature effects usually constitute a projection
of the high-dimensional prediction function f̂ to a lower-dimensional function f̂S : XS 7→ Y, with
typically |S| = 1 or |S| = 2. In that sense, the purpose of a feature effect method is to reduce
the dimensionality of the prediction function f̂ , which allows to isolate main effects and interaction
effects of the prediction function. Examples of feature effect methods are the partial dependence plot
(Friedman, 1991), individual conditional expectation curves (Goldstein et al., 2015), accumulated local
effect plots (Apley and Zhu, 2020) and the functional ANOVA (Hooker, 2004, 2007).

Feature importance methods assign a relevance value to each feature. Many different proposals exist
(Wei et al., 2015) ranging from model-specific approaches for linear models, over difference-based
approaches from sensitivity analysis to hypothesis testing-based approaches. A popular, model-agnostic
importance approach is PFI, as described in Section 2.4.4. For loss-based methods, importance is
defined in terms of loss reduction that can be attributed to features: The higher the increase in loss
when “destroying” the feature information (e.g. by permutation), the more important the feature is
according to the PFI measure. Feature importance measures can also be derived from the variance of
the respective feature effects based on PDP Greenwell et al. (2018) or functional ANOVA (Hooker,
2007, 2004).
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2.3 Model-agnostic Interpretable Machine Learning

Methods that work with feature interactions fall either into the feature effect category or feature
importance. When 2D-PDPs are used, for example, the goal is to visualize the combined feature
effect. When the H-Statistic (Friedman et al., 2008) is used to quantify the strength of interaction,
the resulting measure can be seen as a quantification of importance of the interaction.

Local explanation methods explain individual predictions of ML models. The methods differ in how
they attribute the prediction to the features: LIME (Ribeiro et al., 2016b) fits a local surrogate model
such as a linear model, Shapley values (Štrumbelj and Kononenko, 2014; Lundberg and Lee, 2017;
Lundberg et al., 2018) average marginal contributions of features; Counterfactual explanations follow
yet another approach: Counterfactuals are copies of the original data instance with minimal changes
in the features, but with a relevant difference in the prediction, see also Section 2.4.5. A single ICE
curve is also a local explanation that only highlights the influence of a single feature on the prediction
of a data instance. For local methods, effect and importance merge, more or less, since the local
importance of a feature is often a simple transformation of the feature effect, for example the absolute
values of the Shapley values, or the t-statistic for the coefficients in a linear model.

Some local methods can be aggregated to global methods. Shapely values can be aggregated over
the data to provide global model interpretations about feature importance, effects and interactions
(Lundberg et al., 2018). ICE curves, when plotted for the entire dataset, allows for both a local and
a global model interpretation at the same time. Averaging the ICE curves over all the data produces
the PDP, a global interpretation of the feature effect.

2.3.3. Analyzing Model Components vs. Behavior

The goal of model-agnostic model interpretation methods differs from the goal of the interpretation
of intrinsically interpretable models. A model is usually called intrinsically interpretable when a human
can relate an individual component to the real world. A coefficient in a linear model can be interpreted
as the linear, isolated effect a feature has on the prediction, when all other features remain unchanged.
In a decision tree, the decision path defined by IF-clauses to a terminal leaf can be interpreted as the
explanation for the prediction.

But components of complex models, that many would not label intrinsically interpretable, can be
analyzed to some degree. Activation maps for convolutional neural networks visualize the images that
activate neurons (Nguyen et al., 2016, 2017; Olah et al., 2017). For random forests one can use
the minimal depth distribution of the features as a measure of importance (Paluszynska et al., 2020;
Ishwaran et al., 2010). These examples of interpreting components of more complex models blur the
lines between “intrinsically interpretable” models and model-agnostic post-hoc interpretation of “black
box” models.

However, without an interpretable design, the strategy of interpreting the parts (weights, structure,
etc.) becomes less viable. Fortunately, model-agnostic interpretation methods are available. In con-
trast to the internal view of analyzing model components, model-agnostic approaches take on an
external view of the model function by analyzing its behavior. Model-agnostic methods ignore the
inner structure of the model, and describe the model by how it behaves when the input features are
changed. Model-agnostic methods can even address shortcomings of “intrinsically interpretable” mod-
els: For example, inspecting a decision rule list does not report the importance of individual features,
but PFI can be reported along with the decision rule lists.
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PXY X, y X̃, y f(X̃), y PDP/PFI/ALE
Sample Intervene Predict Aggregate

Figure 2.2.: The SIPA framework

In statistics, statistical models are constructed based on assumptions about the relationships and
distributions of the variables in the real world. When these assumptions hold, then we cannot only
interpret the coefficients, but we can also make inferential claims about their distributions. And if we
additionally assume that the model structure is coherent with the true data-generating mechanism, and
the model is trained on a representative sample, the inference can be extended to the entire population.
However, this approach no longer works for model-agnostic interpretation of complex ML models. To
link this external model interpretation to the data-generating process, we would need a ground truth
against which we can compare the estimate, and assumptions about the distributions of the output of
these interpretation methods. In Molnar et. al (2021) we defined ground truth versions of PDP and
PFI, by applying these interpretation methods to the unknown true prediction function f as defined
by the data-generating process. This allows us to study biases and sources of uncertainty when we
compare, e.g. the PFI applied to the model and applied to the data-generating process.

2.3.4. SIPA Framework

The model-agnostic methods have in common that they treat a model as a black box and mostly work
by “probing” the model with input data, and observing the output. This recipe can be summarized in a
common framework, the SIPA framework (Scholbeck et. al, 2020). The SIPA framework is comprised
of sampling data, applying an intervention on the data, getting model predictions for the new data and
aggregating the results. The sampling step requires sampling data from the data-generating process.
In the intervention step, the data instances are intervened upon, for example by permuting a feature
column (for PFI). The prediction step takes this “design matrix” that comes out of the intervention
step and adds the model prediction to the data. In the aggregation step, the explanation is produced
from data and predictions. Figure 2.2 visualizes the SIPA steps.

The implementation of the R package iml (Molnar et al., 2018) was inspired by the SIPA framework.
The SIPA framework allows methods to be shared between different methods. This was realized
using an object-oriented programming approach, where the InterpretationMethod superclass was
implemented, from which all other interpretation methods inherit. The InterpretationMethod class
enforces that the intervention and aggregation steps are provided by the child classes and allows the
individual and reusable implementation of intervention and aggregation steps. The sampling step
is delegated to the user who has to choose the data based on which the interpretation should be
computed. To handle the data, a Data class was implemented. The Predictor class is another basic
but central class to iml: it holds the prediction model and serves as abstraction layer to the prediction
function. The Predictor class works with many models by providing implementation for the popular
ML libraries mlr, mlr3 and caret.
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Figure 2.3.: ICE curves and PDP

2.4. Model-agnostic Interpretation Methods

This section explains the model-agnostic IML methods that were the most relevant to this thesis:
the partial dependence plot, accumulated local effect plots, interaction effects, permutation feature
importance and counterfactual explanations.

2.4.1. Partial Dependence Plots

The PDP (Friedman, 1991) describes the average change in the predicted outcome of an ML model
when one or more of the features are changed while the remaining features are not. The partial
dependence function for a feature set XS is a marginalized version of the prediction function f̂ ,
where the features XC (with S ∪ C = {1, . . . , p} and S ∩ C = ∅) are integrated over, and therefore
“removed”.

PDS(x) =
∫
XC

f̂(x,XC)dPXC
(XC) (2.1)

Since the distribution PX is usually unknown, the estimation relies on Monte Carlo integration:

P̂DS(x) = 1
n

n∑
i=1

f̂(x,x(i)
c ) (2.2)

To visualize the partial dependence function, one has to define grid points along XS , at which the
partial dependence function PDS(x) is evaluated and plotted.

For categorical data, the principle is the same. But instead of defining a grid, each category is a “grid
point”.

The PDP has two big shortcomings. One is feature interactions, and the other is feature dependence.
When the prediction is not just the sum of individual feature effects, then the model encodes feature
interactions. When two features interact, then the effect of one feature one the prediction function
depends on the value of the other feature. As the PDP marginalizes over features XC , any interactions
between features XS and XC are averaged over and are invisible in the plot. This “hiding” of feature
interactions is by design, but can result in incorrect interpretation. For example, a flat PD might invite
to (wrongly) conclude that a feature has no effect on the prediction, even when the feature might be
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quite influential for the prediction, but mostly through interactions with others. A solution to reveal
potential interactions is to enhance the PDP with individual conditional expectation (ICE) curves. An
ICE curve (Goldstein et al., 2015) for an instance {(x(i)

S , x
(i)
C )}(i) is defined as the curve f̂ (i)

S plotted
along with x(i)

S . The features values x(i)
C are kept fixed. Plotting the ICE curves can reveal interactions

that are not visible in the PDP. Figure 2.3 shows examples for both PDP and ICE curves.

Feature dependence means that features XS are not statistically independent from features in XC ,
with linear correlation being a special case of dependence. Dependence can be a severe problem for
the PDP and can result in misleading interpretations (Hooker and Mentch, 2019; Molnar et al., 2020).
Feature dependence might even have the consequence that for the computation of the PDP impossible
data points are created and used. ALE plots (Apley and Zhu, 2020), functional ANOVA (Hooker,
2004, 2007) and subgroup PDPs (Molnar et al., 2020) have been proposed as possible solutions.
However, the problem remains fundamental, as the effects of dependent features might just not be
fully separable.

2.4.2. Accumulated Local Effect Plots

Accumulated local effect (ALE) plots (Apley and Zhu, 2020) were developed as an alternative to the
PDP, especially for the case of dependent features. ALE offers a decomposition of the prediction
function into an intercept, main effects and interaction effects of increasing order.

f̂(x(i)) = f0 +
∑p

j=1
fALE,j(x(i)

j ) +
∑p

j 6=k
fALE,jk(x

(i)
j , x

(i)
k ) + . . .+ fALE,1,...,p(x(i)

1 , . . . , x(i)
p ),

where each fALE,S is an ALE component with an according ALE plot visualization (at least for
|S| ∈ {1, 2}). This decomposition is unique under an orthogonality-like property further described in
Apley and Zhu (2020). The ALE first order effects fALE,j of a single feature xj , j ∈ {1, . . . , p} for
model f̂ is defined as

fALE,j(xj) =
∫ xj

z0,j

E
[
∂f̂(x1, . . . , xp)

∂zj

∣∣∣∣∣Xj = zj

]
dzj − cj (2.3)

=
∫ xj

z0,j

∫
XC

∂f̂(x1, . . . , xp)
∂zj

P(XC |zj)dXCdzj − cj (2.4)

Here z0,j is the lower bound for Xj , which it makes sense to choose the minimum of xj .

The expectation E is computed with respect to the marginal distribution of the other features XC

(C ∪ j = {1, . . . , p}) and conditional on the feature value of xj . The constant cj is defined so that
the average of fALE,j(xj) is zero with respect to the marginal distribution of Xj . This ensures that
the ALE components sum up to the full prediction function and deliver a full decomposition. The
idea behind ALE is to isolate the effect of feature Xj from all other features XC . This is done by
integrating the expectation of the derivative of f with respect to Xj .
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Estimation

For the estimation, the integral is exchanged for finite difference. In practice, this means that access
to the gradient of the prediction function is not required. First, we have to estimate the uncentered
ALE for feature Xj (with XC representing the remaining features):

ˆ̃fALE,j(x) =
kj(x)∑
k=1

1
nj(k)

∑
i:x(i)

j ∈Nj(k)

[
f̂(zk,j ,x

(i)
C )− f̂(zk−1,j ,x

(i)
C )
]

(2.5)

Equation 2.5 can also shed some light on why the method is called “Accumulated Local Effects”. In
the inner sum, differences in predictions are computed, where the feature of interest is replaced with
grid values zk, k ∈ {1, . . . , kj}, where kj is the number of grid values that was set for feature Xj ,
and kj(x) indicates the interval number in which x falls into. This difference can be interpreted as
the local effect that a feature has for a specific data instances in this interval. These differences are
averaged across the instances that have their x(i)

j value in this interval, which is captured in Nj(k).
This average of differences represents the effect the feature has, locally. The local, average effects per
interval are accumulated along the domain of Xj .

To finalize the computation of the ALE curve, the effect computed in Equation 2.5 has to be centered:

f̂ALE,j(x) = ˆ̃fALE,j(x)− 1
n

n∑
i=1

ˆ̃fALE,j(x(i)
j ) (2.6)

Figure 2.4 (an adaptation from Apley and Zhu (2020) and Molnar (2019)) visualizes the accumulation
of intervals. It is possible to compute ALE curves also for higher-order effects, for example 2-way
interactions, but I refer to Apley and Zhu (2020) for details. First and second-order ALE curves are
implemented in the iml R package (Molnar et al., 2018), and in the ALEPlot package (Apley, 2018).

To make ALE work with categorical features, a “trick” has to be applied. Since ALE, by definition,
requires an ordering, it only works for categorical features once they are ordered. For a given order, the
categorical ALE can be interpreted as the difference in prediction when changing from one category to
another.

ALE plots have also been criticized, because in some cases, ALE does not yield the same mathematical
structures that were defined in the data-generating process (Groemping, 2020), which can be counter-
intuitive for the interpretation of ALE.

ALE as Functional Decomposition

ALE can also be understood as a decomposition of the prediction function f̂ . The idea behind functional
decomposition is that we can split a high-dimensional function f̂ : X 7→ Y into a sum of components
with increasing dimensionality:

f̂(x(i)) = f0 + f1(x(i)
1 ) + . . .+ fp(x(i)

p ) + f12(x(i)
12 ) + . . .+ f1,...,p(x(i)

1,...,p)
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Figure 2.4.: ALE construction
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Figure 2.5.: Decomposition of function f(X) = 2+x1 +x2 +x2 ·x3 using functional decomposition.
Since all feature are independent (X1, X2, X3 ∼ N(0, 1)), the decompositions of PDP,
functional ANOVA and ALE are the same, up to a constant.
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Figure 2.6.: Decomposition of function f(X) = 2+x1 +x2 +x1 ·x2 using functional decomposition.
Since all feature are independent x1, x2, x3 ∼ N(0, 1), the decompositions of (centered)
PDP, functional ANOVA and ALE are combined.

The term f0 can be interpreted as an intercept and the fj , j ∈ {1, . . . , p} as first order or main
effects. Beyond that, the terms capture interaction effects between features, for example, the term
f12 captures an interaction between features X1 and X2. Each of these lower effects map from a set
of features to the target space and can be interpreted as the feature (interaction) effect.

With only the assumption that the components add up to the full function f̂ without further assump-
tions about the components and the relations between them, the components do not have a unique
solution. Various proposals have been made how to uniquely define the functional decomposition.
One such decomposition is provided by ALE. The components as computed by ALE fulfill a pseudo-
orthogonal property: The pseudo-orthogonality says that the ALE operator, which maps a function to
the S-th ALE component, applied sequentially to f̂ yields again the same ALE component. But more
importantly it says that when first applying the ALE operator HS : Rp 7→ R|S| for component S on f̂
(yielding fALE,S) and then applying a different ALE operator HJ : Rp 7→ R|J | for J with J 6= S will
result in a flat ALE curve that equals 0.

An example of a full functional decomposition with ALE plots is visualized in Figure 2.5. The main
effects can be visualized with a curve, and second-order interactions using tile plots (heatmaps). For any
input x, the prediction can be decomposed into the individual components. For example, the prediction
for data instance x1 = −0.5, x2 = 1.5 decomposes into: f(x) = 2.00− 0.50 + 1.50 + 0 + 0 + 2.25 + 0.
This is also visualized in Figure 2.6.

We used the ALE composition in the paper Molnar et. al (2020), in which we defined measures
of model complexity based on functional decomposition. ALE is computationally fast and allows to
compute components independently of each other. Another functional decomposition is given with
the functional ANOVA proposed by Hooker (2004), which was later generalized for dependent features
(Hooker, 2007).
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2. Methodological and General Background

2.4.3. Feature Interactions

Features interact when “the prediction cannot be expressed as the sum of the feature effects, because
the effect of one feature depends on the value of the other feature” (Molnar, 2019). In functional
decomposition, every component that depends on more than one feature describes an interaction effect.
The order of an interaction is the number of features that are involved in the term. This means that the
following terms do not represent interactions: f0, f1, . . . , fp. Second-order interactions are terms that
include two features: f1,2, . . . , f1,p, . . . , fp,1, . . . , fp,p. For higher order interactions, equivalently more
terms are used. We can distinguish between methods that extract the components of interaction terms,
i.e., that try to retrieve something related to the decomposition terms and methods that quantify the
strength of an interaction. Two-dimensional PDP and ALE plots visualize second-order interaction
effects directly. Measures like the H-Statistic quantify the strength of interaction in terms of variance
based on the PDP (Friedman et al., 2008). We used a variance based method to compute the share
of ALE functional decomposition that is based on interactions to describe the complexity of a model
in Molnar et. al (2020). Functional ANOVA expresses interaction strength in terms of the variance of
the respective component Hooker (2004, 2007).

Another measure of strength of pairwise interactions uses repeated dichotomization of variable and
constructs the interaction predictor by comparing the means of the resulting quadrants (Lou et al.,
2013; Caruana et al., 2015). Identified interactions are then ranked and incrementally to a generalized
additive model as 2D-tensors.

2.4.4. Permutation Feature Importance

Permutation feature importance (PFI) is one of many approaches to quantify the global importance
of features in an ML model. PFI was first introduced for random forests (Breiman, 2001). Since
then, PFI has been studied in detail, and many adaptions have been proposed (Ishwaran and Lu, 2019;
Archer and Kimes, 2008; Janitza et al., 2018; Strobl et al., 2008; Boulesteix et al., 2012; Strobl et al.,
2007). Finally, a model-agnostic version was proposed by Fisher et al. (2019).

Model-agnostic PFI is defined as the increase in loss when a feature is permuted. Mathematically, PFI
is defined as:

PFIS = E
[
L(f̂(X̃S , XC), Y )− L(f̂(X), Y )

]
(2.7)

Here, L is a loss function, and X̃S are the data where features XS were perturbed. If this perturbation
is a simple permutation, the result is the marginal PFI. This would be the case for X̃S ∼ XS and
X̃S ⊥ XC . However, the marginal PFI suffers when features are dependent (e.g. correlated), as further
described in Section 2.5. When X̃S is sampled conditional on the features XC , we call the approach
the conditional feature importance (Candès et al., 2018; Molnar et al., 2020). Conditional sampling
means that we sample X̃S ∼ XS |XC . Conditional PFI can also be used when features are dependent,
but offer a different interpretation.

The PFI is defined as integral over an (unknown) distribution. As such, we can estimate it with Monte
Carlo integration:
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2.4 Model-agnostic Interpretation Methods

P̂F IS = 1
n

n∑
i=1

(
( 1
m

m∑
k=1

L(y(i), f̂(x̃(i,k)
S ,x(i)

C )))− L(y(i), f̂(x(i)))
)

(2.8)

Here m is the number of times the permutation or sampling is repeated for more stable results. The
estimation approach is illustrated in Table 2.1.

Table 2.1.: Illustration of permutation for PFI. Table (a) shows the features x1, . . . , xp, target y
and the loss L. In (b), the values for xj are permuted, which changes the loss L.

(a)
x1 . . . xj . . . xp y L

0.7 . . . 1.3 . . . 12.1 1.1 0.012
1.7 . . . 1.8 . . . 7.1 4.9 0.119
...

...
...

...
...

...
...

1.3 . . . 1.9 . . . 2.1 3.2 0.044
2.7 . . . 8.2 . . . 17.0 2.2 0.92

(b)
x1 . . . x̃j . . . xp y L

0.7 . . . 1.8 . . . 12.1 1.1 0.166
1.7 . . . 8.2 . . . 7.1 4.9 1.222
...

...
...

...
...

...
...

1.3 . . . 1.3 . . . 2.1 3.2 0.208
2.7 . . . 1.9 . . . 17.0 2.2 0.478

At first glance PFI and PDP are rather different methods. However, as we showed in Scholbeck et. al
(2020), they both work by the framework of sampling, intervention, prediction and aggregation. We
could show that there are even more parallels between both methods, which was leveraged to propose
novel visualizations of PFI (Casalicchio et. al, 2019).

2.4.5. Counterfactual Explanations

Counterfactual1 explanations can be used to explain individual predictions of ML models. The “factual”
in “counterfactual” stands for the prediction that was observed for a specific instance. Counterfactual
refers to a prediction that we did not observe. In that sense, counterfactual explanations reverse the
approach of other methods: Counterfactual explanations explain which values the features would have
to take on to yield a different prediction. A counterfactual explanation is represented by a new data
point, for which a few features are changed (compared to the original data point).

Counterfactual explanations are therefore contrastive, and selective (focus on a few feature changes),
which makes them an ideal candidate for explanations for humans (Miller, 2019). Both model-agnostic
and model-specific versions of counterfactual explanations exist (Wachter et al., 2017; Joshi et al., 2019;
Looveren and Klaise, 2019; Poyiadzi et al., 2019; Sharma et al., 2019; Grath et al., 2018; Dhurandhar
et al., 2019; White and d’Avila Garcez, 2019; Karimi et al., 2019).

Most approaches propose an optimization function that combines various objectives: The prediction for
the counterfactual should be as close as possible to the desired prediction; As few features as possible
should be changed; The feature value changes should be kept at a minimum; The resulting data point
should be as realistic as possible, according to the joint distribution of the data. In Dandl et. al
(2020) we were the first to formulate this search for counterfactuals as a multi-objective optimization
problem.

1Not to be confused with counterfactuals in the causal inference literature
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Figure 2.7.: Features X1 and X2 (black dots). Permutation of feature X1 yields new data (blue
crosses), which extrapolate to areas outside the original data distribution

2.5. Dependent Features and Extrapolation

Model-agnostic, permutation-based methods take the data X ∼ PX and apply an intervention (Schol-
beck et. al, 2020). For PDP, this intervention means replacing a feature with a fixed value. For
(marginal) PFI, the feature of interest is sampled / permuted. We call this interventional data X̃.
An interpretation method can be true to the data, if the intervention preserves the joint distribution
(Definition 1).

Definition 1. An intervention I : X 7→ X is true to the data when the generated data follows the
same distribution X̃ = I(X) ∼ PX .

The marginal version of PDP, PFI and so on are true-to-the-data when features are independent, as XS

are drawn from the marginal distribution. However, when the features are dependent, marginal versions
of PDP and PFI are no longer true to the data. This dependence between two individual features can be
a simple linear correlation, but also other, more complex dependencies that are non-linear and involve
more than two features are possible. As a consequence, practitioners have to use non-linear dependence
measures such as HSIC to detect possible dependencies (Molnar et. al, 2020). The intervention of
PDP and PFI produce a distribution that does not match the original joint distribution any longer.

By computing marginal PDP or PFI on dependent data, the feature values are extrapolated to regions
outside of the data distribution (see Figure 2.7). Extrapolation leads to an emphasis on predictions for
feature values with low probability or at worst can produce impossible data points. The extrapolation
problem affects all interpretation method that rely on permutation or sampling from the marginal
distribution of features. Extrapolation is problematic for two reasons:

1. Uncertain model predictions. The extrapolated data points lie outside of the training data.
This means that the model was never trained on data in this region of the feature space. As a
result, an extreme prediction of the model in this region of the feature space would be possible
as the model was never “controlled” in this area (via the loss function).
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Figure 2.8.: Misleading PDP due to extrapolation. Simulated are features X1 and X2 which follow
a joint uniform distribution from -1 to 1, except that the density for points with
X1 < 0, X2 < 0 is zero, and therefore the features are dependent. The prediction
function is a linear model with an additional interaction term Y = X1 +X2 + I(X1 <
0, X2 < 0) · exp(X1 · X2). The left plot shows the data sample and the prediction
function surface, the right plot shows the PDP for feature X1.

2. Undefined data-generating process. The newly generated data points might represent im-
possible entities, like a 20 year old person with 30 years of professional experience. When these
impossible data points are used to compute PDP and PFI, their interpretations become prob-
lematic.

Therefore, feature dependence poses one of the biggest conceptual problems for permutation-based
interpretation methods such as PDP and PFI. Figure 2.8 shows a case of a misleading PDP due to
extrapolation. The features X1 and X2 are dependent, and the PDP estimate is strongly influenced
by model predictions in areas where the data density is zero. We could call the PDP misleading,
since it suggests that for values of X1 above 0.5, the average prediction is above 1, although for the
entire training set no prediction larger than 1 was ever observed. The PDP, however, is not necessarily
“wrong”, since it gives interesting insights into the prediction function when we knowingly intervene
on X1 and potentially extrapolate. The PDP shows that the prediction function changes from linear
to exponential at X1 = 0, which we could only notice because of the extrapolation. There is a tension
between staying true to the data (by not extrapolating), and staying true to the model (by showing
what the function looks like).

The exact effect of extrapolation on interpretation cannot be stated a-priori. The effect depends on the
chosen model class (e.g. trees, linear model, ...), the dependence structure, the strength of dependence
and so on. The model must represent an interaction in the extrapolated area between the features for
the interpretation to be affected by extrapolation.
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2. Methodological and General Background

Conditional Versions of PDP and PFI

A solution to the extrapolation problem is to adjust the intervention so that it becomes true-to-
the-data. These versions of PFI and PDP, the conditional PFI (Molnar et al., 2020; Fisher et al.,
2019; Watson and Wright, 2019; Hooker and Mentch, 2019) and the conditional PDP, also called
M-Plot (Apley and Zhu, 2020), replace feature values using the conditional distribution instead of the
marginal distribution. Their sampling mechanisms changes from X̃S ∼ XS , to a conditional sampling
mechanism so that X̃S ∼ XS |XC (or X̃C ∼ XC |XS for the case of M-Plot). This conditional sampling
mechanism respects the conditional distribution and produces data points where the joint distribution
is respected and makes sure that the intervention is true to the data.

The conditional distribution is typically unknown and has to be estimated. For conditional PFI, various
approaches were suggested, such as using knockoffs (Watson and Wright, 2019; Candès et al., 2018)
and imputation (Fisher et al., 2019). We suggested an approach based on permutation in subgroups
(Molnar et. al, 2020).

While conditional interpretation methods avoid the extrapolation problem, they change the interpreta-
tion itself, which can results in unintuitive behavior (if a marginal interpretation was expected). There
is an inherent tension between staying true to the data and staying true to the model (Chen et al.,
2020). The tension only arises when features are dependent, as independence between two subsets
of features XS and XC means that the marginal and conditional distribution of XS |XC ∼ XS and
XC |XS ∼ XC coincide. The marginal PDP and PFI allow an isolated interpretation of feature effect or
importance which can fully be attributed to that particular feature unaffected by other features (except
through interactions). By switching to the conditional PDP / PFI, the interpretation also becomes
conditional, meaning that the interpretation becomes entangled between features.

The conditional PDP can be defined in analogue with the marginal PDP (Equation 2.1), but with a
conditional expectation:

cPDPS(x) =
∫
XC |XS

f̂(x,XC)dPX(XC |XS = x). (2.9)

The conditional PDP for a feature mixes the (marginal) effects of the feature of interest with all other
features that are dependent on it. This is because at a certain grid value of feature XS , instances with
values of XC that are more likely get a larger weight.

The conditional PFI is defined similarly to the marginal PFI (Equation 2.7):

cPFIS = EY,XC ,XSX̃S |XC

[
L(f̂(X̃S , XC), Y )− L(f̂(X), Y )

]
, (2.10)

While the PDP combines effects of dependent features, the conditional PFI of a feature shrinks if
other features are correlated with the feature of interest. The conditional PFI can be interpreted as the
drop in performance for removing XS , but given that we know the values of XC . In the extreme case
that two features are copies of each other, and both are used by the model, the conditional PFI can
approach zero, since the other feature encodes the same information. It would be a pitfall (Molnar et.
al, 2020) to conclude that both features were irrelevant to the model. It is not set in stone that the
conditioning must consider all features, or only features in the model. We explored the idea of relative
feature importance (König et. al, 2021) as a framework for analyzing the importance of a feature
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2.5 Dependent Features and Extrapolation

relative to an arbitrary set of other features. Choosing a meaningful set of features to condition on can
be used, for example, to study indirect influences of features. Indirect influence plays a role in fairness
considerations, and allows to study whether, for example, gender influences the model prediction via
other features.
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3. Concluding Remarks and Future Work

Since I started my dissertation a few years ago, the hype around interpretable machine learning has
grown a lot. The increased need for interpretability is not surprising. With the increased use of ML,
the demand for interpretability grows as well. This makes IML a fast growing field: A lot of new
interpretation methods have been introduced. In my opinion, the field of interpretability has reached a
first “plateau” of maturity – as proven by a large body of research, established interpretation methods,
software implementations, even startups that sell “interpretability-as-a-service”.

Instead of developing new methods, I deliberately in my dissertation focused on consolidation and
deepening our understanding of established methods. Also, my conclusion and ideas of future work on
IML revolve around the notion that the IML field needs more rigor, more consolidation and addressing
more fundamental questions. In the following, I discuss a few themes that I think future work should
focus on.

3.1. Dependent Features – A More Fundamental Problem?

Correlated or dependent features are a big issue when interpreting ML models. The dependence problem
has been a constant throughout all articles contributing to this thesis. Other researchers have noticed
the problem as well, and suggested various approaches to juggle the delicate trade-off between avoiding
extrapolation, but also disentangling the interpretation of features. But still, none of these methods
seem to completely fix the dependence problem once and for all. Can the dependence problem not be
fixed? I believe the way we are approaching the dependence problem can only address the problem
superficially, be it using conditional variants, grouping features together or working with disentangled
representations of features. The dependence problem is inherent to the current ML paradigm. This
paradigm treats feature dependence as a technical problem, a nuisance to be dealt with. But maybe
the right question to ask would be: Why are these features dependent? What does their dependence
mean for the interpretation? Is there even a real world equivalent for disentangling the features?

In my opinion, feature dependence is not a solely technical problem to solve, but the modeling approach
must be adapted to treat such dependencies as part of the data-generating process. The merely
associative nature of most predictive models prohibit a more causal interpretation of importance and
effects of features. Causal inference is a modeling field that treats dependent features not as a mere
nuisance, but requires explicit causal assumptions of the data structure. My believe is that to “fix”
the dependence problem also means that we have to “fix” our approach to modeling. Causal inference
is a research direction that could be helpful in this regard.
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3.2. Do We Really Have to Define Interpretability?

One of the biggest critique of IML is that “interpretability” lacks a definition and therefore the field
would lack rigor. A lot of ink has been spent on discussing the definition of model interpretability. But
what if interpretability can never be defined with a simple definition or metric? Could we again be asking
the wrong question? I believe there are three ways forward in face of this critique: (1) acknowledging
multi-dimensionality of interpretability, (2) case studies and simulations, and (3) axiomatization.

Multi-dimensionality of Interpretability

A possible way forward could be to let go of the desire to have a single definition of interpretability and
embrace that there are various dimensions of interpretability. Examples of such dimensions are sparsity,
monotonicity, linearity, time reduction in human task completion, faithfulness of an explanation, and
so on. In Molnar et. al (2020), we tried to define three such dimensions in a model-agnostic way:
sparsity, main effect complexity and interaction strength, in our case to quantify the complexity /
interpretability of ML models themselves. An embrace of multi-dimensionality of interpretability would
shift the burden away from showing that an IML method fulfills a fuzzy notion of interpretability, and
towards concrete aspects of interpretability. This would also increase the rigor of the research, since it
forces the researchers to be explicit about how their models or explanation methods are interpretable:
It would not be enough to just claim interpretability, but required to define and compare methods or
models across various metrics. This is already happening in the field, but could be done with more
emphasis.

Case Studies and Simulations

When describing the distribution of a random variable, we have various choices: We can describe the
center of the mass with the average value, with the median, with a weighted average, the mode, ... We
can describe the width of the distribution by calculating the range between minimum and maximum
value, or the variance, or the interquartile distance, ... However, there is no scientifically correct way,
the choice is subject to preferences and, very importantly, limitations of each descriptor. For example,
the mean of a distribution can be heavily influenced by outliers, so that for a very skewed distribution,
such as household income, the median might be a more useful descriptor.

With IML, I would argue that we are in a similar situation. Both descriptive statistics and IML describe
either distribution or model and both provide various descriptors to choose from. Instead of requiring
“proof” of whether an IML method matches some fuzzy definition of interpretability, we could collect
use cases and simulations to study limitations of IML methods and catalogue how IML methods behaves
for specific tasks, models and data-generating processes.

These type of method-focused studies have already had an impact on IML research and lead to a
better understanding of limitations and improvement of methods. Thanks to Goldstein et al. (2015),
we know that there are situations where the PDP is basically flat, but still the feature influences the
prediction function. The feature effect is fully mediated through interactions with other features, so
that the main effect is zero. Groemping (2020) showed that ALE plots can deliver non-intuitive results
for dependent and interacting features in a simple simulated setting. Hooker (2007) studied a simple
simulation with two dependent features and a simple model to show limitations of the PDP.
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Scenario by scenario, these studies generate a body of practical knowledge for IML methods. This
additional rigor can ultimately lead to concrete recommendations on whether to use a certain IML
method in a certain scenario and how to interpret the results.

Axiomatization

Shapley values for explaining predictions are a quite popular IML method. While many factors have
contributed to this method’s success, the axiomatic framework on which it is based is one of the key
ingredients. Shapley values are based on game theory, a system of four axioms – efficiency, dummy,
symmetry and additivity – for which Shapley values provide a unique solution. These axioms are not
only useful for mathematical reasons, but they also define how we can interpret the Shapley values. For
example, the dummy axiom implies that a feature that does not change the prediction, no matter how
much the feature is changed, receives an attribution of zero. Other methods also fulfill the dummy
axiom, for example the PDP. But in contrast, the PDP did not emerge from an axiomatic framework.
Thus, axiomatization can help us in two ways: For established methods, we can, post-hoc, check
whether they fulfill certain axioms. Or, as in the case with Shapley values, we can start with a set of
axioms and build a method from scratch that fulfills these axioms.

In this sense, axiomatization is a complementary approach to use cases and simulations: Instead of
describing the properties of an explanation method, we can first think about desirable axioms and
then develop and/or test interpretation methods accordingly. While some research papers are already
guided by axiomatization, there is room for more axiom-based research.

3.3. Can IML Reveal Insights About the Real World?

Classical statistical modeling is state-of-the-art for inferring properties of the real world form data in
many scientific disciplines. Statistics, especially statistical modeling and hypothesis testing, is accepted
in most quantitative fields, like medicine or ecology, as a method to generate knowledge. Statistical
modeling puts a lot of emphasis on thinking about the data-generating process and adapting the models
accordingly. In some fields, for example ecology, classical statistical modeling is slowly being replaced,
or at least challenged, by ML models with an additional application of IML methods (Roscher et al.,
2020). A goal of research is, ultimately, to generate knowledge, and therefore researchers more and
more often interpret output of IML methods as real world effects.

However, most IML methods are first and foremost designed to describe the model, not the real world.
Currently, our ML models and IML methods are not ready for this use case. We need more research to
bridge the gap between IML being model descriptors and IML being used for real world inference. For
PFI and the PDP, we made some first steps with our contribution Molnar et. al (2021) by proposing a
ground truth equivalent of PFI and PDP in the data-generating process and providing estimators that
respect model variance and confidence intervals.

3.4. Which Uncertainty?

The question of real world inference is coupled with the question of uncertainty. All of the IML
methods in this thesis assumed a fixed model that is trained once and the IML method only works by
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manipulating the data. Therefore the only uncertainty that we can measure is the approximation error
of the IML method, which for many IML methods is just the variance of the Monte Carlo integration.
But this ignores the uncertainty in the training process itself. The uncertainty stems from the training
data being a random sample, but also from stochastic steps in the training, such as stochastic gradient
descent for neural networks, or bootstrapping for random forests. Especially when our goal is to draw
conclusions about the real world, the uncertainty of the entire procedure, including training, have to
be taken into account. As most IML methods are designed for a fixed model, there is room for future
research to adapt IML methods to take model uncertainty into account.

IML has reached a first plateau of usability, but IML methods are already being used outside their
intended use, as addressed in the paragraphs before. I am confident that the IML research community
can address these shortcomings, bringing more rigor to IML and making IML a powerful and useful
tool for practitioners and researchers.
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Abstract. We present a brief history of the field of interpretable ma-
chine learning (IML), give an overview of state-of-the-art interpretation
methods and discuss challenges. Research in IML has boomed in recent
years. As young as the field is, it has over 200 years old roots in regres-
sion modeling and rule-based machine learning, starting in the 1960s.
Recently, many new IML methods have been proposed, many of them
model-agnostic, but also interpretation techniques specific to deep learn-
ing and tree-based ensembles. IML methods either directly analyze model
components, study sensitivity to input perturbations, or analyze local or
global surrogate approximations of the ML model. The field approaches
a state of readiness and stability, with many methods not only proposed
in research, but also implemented in open-source software. But many
important challenges remain for IML, such as dealing with dependent
features, causal interpretation, and uncertainty estimation, which need
to be resolved for its successful application to scientific problems. A fur-
ther challenge is a missing rigorous definition of interpretability, which is
accepted by the community. To address the challenges and advance the
field, we urge to recall our roots of interpretable, data-driven modeling
in statistics and (rule-based) ML, but also to consider other areas such
as sensitivity analysis, causal inference, and the social sciences.

Keywords: Interpretable Machine Learning · Explainable Artificial In-
telligence

1 Introduction

Interpretability is often a deciding factor when a machine learning (ML) model
is used in a product, a decision process, or in research. Interpretable machine
learning (IML)1 methods can be used to discover knowledge, to debug or justify

? This project is funded by the Bavarian State Ministry of Science and the Arts and
coordinated by the Bavarian Research Institute for Digital Transformation (bidt)
and supported by the German Federal Ministry of Education and Research (BMBF)
under Grant No. 01IS18036A. The authors of this work take full responsibilities for
its content.

1 Sometimes the term Explainable AI is used.
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the model and its predictions, and to control and improve the model [1]. In
this paper, we take a look at the historical building blocks of IML and give an
overview of methods to interpret models. We argue that IML has reached a state
of readiness, but some challenges remain.

2 A Brief History of IML

A lot of IML research happened in the last couple of years. But learning in-
terpretable models from data has a much longer tradition. Linear regression
models were used by Gauss, Legendre, and Quetelet [109, 64, 37, 90] as early as
the beginning of the 19th century and have since then grown into a vast array of
regression analysis tools [115, 98], for example, generalized additive models [45]
and elastic net [132]. The philosophy behind these statistical models is usually
to make certain distributional assumptions or to restrict the model complexity
beforehand and thereby imposing intrinsic interpretability of the model.

In ML, a slightly different modeling approach is pursued. Instead of restrict-
ing the model complexity beforehand, ML algorithms usually follow a non-linear,
non-parametric approach, where model complexity is controlled through one or
more hyperparameters and selected via cross-validation. This flexibility often
results in less interpretable models with good predictive performance. A lot of
ML research began in the second half of the 20th century with research on, for
example, support vector machines in 1974 [119], early important work on neural
networks in the 1960s [100], and boosting in 1990 [99]. Rule-based ML, which
covers decision rules and decision trees, has been an active research area since
the middle of the 20th century [35].

While ML algorithms usually focus on predictive performance, work on in-
terpretability in ML – although underexplored – has existed for many years.
The built-in feature importance measure of random forests [13] was one of the
important IML milestones.2 In the 2010s came the deep learning hype, after a
deep neural network won the ImageNet challenge. A few years after that, the
IML field really took off (around 2015), judging by the frequency of the search
terms ”Interpretable Machine Learning” and ”Explainable AI” on Google (Fig-
ure 1, right) and papers published with these terms (Figure 1, left). Since then,
many model-agnostic explanation methods have been introduced, which work
for different types of ML models. But also model-specific explanation methods
have been developed, for example, to interpret deep neural networks or tree en-
sembles. Regression analysis and rule-based ML remain important and active
research areas to this day and are blending together (e.g., model-based trees
[128], RuleFit [33]). Many extensions of the linear regression model exist [45, 25,
38] and new extensions are proposed until today [26, 14, 27, 117]. Rule-based ML
also remains an active area of research (for example, [123, 66, 52]). Both regres-

2 The random forest paper has been cited over 60,000 times (Google Scholar; Septem-
ber 2020) and there are many papers improving the importance measure ([110, 111,
44, 56]) which are also cited frequently.
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Fig. 1. Left: Citation count for research articles with keywords “Interpretable Ma-
chine Learning” or “Explainable AI” on Web of Science (accessed August 10, 2020).
Right: Google search trends for “Interpretable Machine Learning” and “Explainable
AI” (accessed August 10, 2020).

sion models and rule-based ML serve as stand-alone ML algorithms, but also as
building blocks for many IML approaches.

3 Today

IML has reached a first state of readiness. Research-wise, the field is maturing
in terms of methods surveys [75, 41, 120, 96, 1, 6, 23, 15], further consolidation
of terms and knowledge [42, 22, 82, 97, 88, 17], and work about defining inter-
pretability or evaluation of IML methods [74, 73, 95, 49]. We have a better under-
standing of weaknesses of IML methods in general [75, 79], but also specifically
for methods such as permutation feature importance [51, 110, 7, 111], Shapley
values [57, 113], counterfactual explanations [63], partial dependence plots [51,
50, 7] and saliency maps [2]. Open source software with implementations of var-
ious IML methods is available, for example, iml [76] and DALEX [11] for R
[91] and Alibi [58] and InterpretML [83] for Python. Regulation such as GDPR
and the need for ML trustability, transparency and fairness have sparked a dis-
cussion around further needs of interpretability [122]. IML has also arrived in
industry [36], there are startups that focus on ML interpretability and also big
tech companies offer software [126, 8, 43].

4 IML Methods

We distinguish IML methods by whether they analyze model components, model
sensitivity3, or surrogate models, illustrated in Figure 4.4

3 Not to be confused with the research field of sensitivity analysis, which studies the
uncertainty of outputs in mathematical models and systems. There are methodolog-
ical overlaps (e.g., Shapley values), but also differences in methods and how input
data distributions are handled.

4 Some surveys distinguish between ante-hoc (or transparent design, white-box models,
inherently interpretable model) and post-hoc IML method, depending on whether
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Fig. 2. Some IML approaches work by assigning meaning to individual model com-
ponents (left), some by analyzing the model predictions for perturbations of the data
(right). The surrogate approach, a mixture of the two other approaches, approximates
the ML model using (perturbed) data and then analyzes the components of the inter-
pretable surrogate model.

4.1 Analyzing Components of Interpretable Models

In order to analyze components of a model, it needs to be decomposable into
parts that we can interpret individually. However, it is not necessarily required
that the user understands the model in its entirety (simulatability [82]). Com-
ponent analysis is always model-specific, because it is tied to the structure of
the model.

Inherently interpretable models are models with (learned) structures and
(learned) parameters which can be assigned a certain interpretation. In this con-
text, linear regression models, decision trees and decision rules are considered
to be interpretable [30, 54]. Linear regression models can be interpreted by ana-
lyzing components: The model structure, a weighted sum of features, allows to
interpret the weights as the effects that the features have on the prediction.

Decision trees and other rule-based ML models have a learned structure
(e.g.,“IF feature x1 > 0 and feature x2 ∈ {A,B}, THEN predict 0.6”). We can
interpret the learned structure to trace how the model makes predictions.

This only works up to a certain point in high-dimensional scenarios. Linear
regression models with hundreds of features and complex interaction terms or
deep decision trees are not that interpretable anymore. Some approaches aim
to reduce the parts to be interpreted. For example, LASSO [98, 115] shrinks the
coefficients in a linear model so that many of them become zero, and pruning
techniques shorten trees.

4.2 Analyzing Components of More Complex Models

With a bit more effort, we can also analyze components of more complex black-
box models. 5 For example, the abstract features learned by a deep convolutional
neural network (CNN) can be visualized by finding or generating images that

interpretability is considered at model design and training or after training, leaving
the (black-box) model unchanged. Another category separates model-agnostic and
model-specific methods.

5 This blurs the line between an “inherently interpretable” and a “black-box” model.
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activate a feature map of the CNN [84]. For the random forest, the minimal
depth distribution [85, 55] and the Gini importance [13] analyze the structure
of the trees of the forest and can be used to quantify feature importance. Some
approaches aim to make the parts of a model more interpretable with, for exam-
ple, a monotonicity constraint [106] or a modified loss function for disentangling
concepts learned by a convolutional neural network [130].

If an ML algorithm is well understood and frequently used in a community,
like random forests in ecology research [19], model component analysis can be
the correct tool, but it has the obvious disadvantage that it is tied to that specific
model. And it does not combine well with the common model selection approach
in ML, where one usually searches over a large class of different ML models via
cross-validation.

4.3 Explaining Individual Predictions

Methods that study the sensitivity of an ML model are mostly model-agnostic
and work by manipulating input data and analyzing the respective model pre-
dictions. These IML methods often treat the ML model as a closed system that
receives feature values as an input and produces a prediction as output. We
distinguish between local and global explanations.

Local methods explain individual predictions of ML models. Local explana-
tion methods have received much attention and there has been a lot of innovation
in the last years. Popular local IML methods are Shapley values [69, 112] and
counterfactual explanations [122, 20, 81, 116, 118]. Counterfactual explanations
explain predictions in the form of what-if scenarios, which builds on a rich tradi-
tion in philosophy [108]. According to findings in the social sciences [71], counter-
factual explanations are “good” explanations because they are contrastive and
focus on a few reasons. A different approach originates from collaborative game
theory: The Shapley values [104] provide an answer on how to fairly share a
payout among the players of a collaborative game. The collaborative game idea
can be applied to ML where features (i.e., the players) collaborate to make a
prediction (i.e., the payout) [112, 69, 68].

Some IML methods rely on model-specific knowledge to analyze how changes
in the input features change the output. Saliency maps, an interpretation method
specific for CNNs, make use of the network gradients to explain individual classi-
fications. The explanations are in the form of heatmaps that show how changing
a pixel can change the classification. The saliency map methods differ in how
they backpropagate [114, 69, 80, 107, 105]. Additionally, model-agnostic versions
[95, 69, 129] exist for analyzing image classifiers.

4.4 Explaining Global Model Behavior

Global model-agnostic explanation methods are used to explain the expected
model behavior, i.e., how the model behaves on average for a given dataset.
A useful distinction of global explanations are feature importance and feature
effect.
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Feature importance ranks features based on how relevant they were for the
prediction. Permutation feature importance [28, 16] is a popular importance mea-
sure, originally suggested for random forests [13]. Some importance measures
rely on removing features from the training data and retraining the model [65].
An alternative are variance-based measures [40]. See [125] for an overview of
importance measures.

The feature effect expresses how a change in a feature changes the predicted
outcome. Popular feature effect plots are partial dependence plots [32], individ-
ual conditional expectation curves [39], accumulated local effect plots [7], and
the functional ANOVA [50]. Analyzing influential data instances, inspired by
statistics, provides a different view into the model and describes how influential
a data point was for a prediction [59].

4.5 Surrogate Models

Surrogate models6 are interpretable models designed to “copy” the behavior of
the ML model. The surrogate approach treats the ML model as a black-box and
only requires the input and output data of the ML model (similar to sensitivity
analysis) to train a surrogate ML model. However, the interpretation is based on
analyzing components of the interpretable surrogate model. Many IML methods
are surrogate model approaches [89, 75, 72, 95, 34, 10, 18, 61] and differ, e.g., in the
targeted ML model, the data sampling strategy, or the interpretable model that
is used. There are also methods for extracting, e.g., decision rules from specific
models based on their internal components such as neural network weights [5,
9]. LIME [95] is an example of a local surrogate method that explains individual
predictions by learning an interpretable model with data in proximity to the
data point to be explained. Numerous extensions of LIME exist, which try to fix
issues with the original method, extend it to other tasks and data, or analyze
its properties [53, 93, 92, 121, 47, 94, 103, 12].

5 Challenges

This section presents an incomplete overview of challenges for IML, mostly based
on [79].

5.1 Statistical Uncertainty and Inference

Many IML methods such as permutation feature importance or Shapley values
provide explanations without quantifying the uncertainty of the explanation.
The model itself, but also its explanations, are computed from data and hence
are subject to uncertainty. First research is working towards quantifying uncer-
tainty of explanations, for example, for feature importance [124, 28, 4], layer-wise
relevance propagation [24], and Shapley values [127].

6 Surrogate models are related to knowledge distillation and the teacher-student
model.
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In order to infer meaningful properties of the underlying data generating
process, we have to make structural or distributional assumptions. Whether it
is a classical statistical model, an ML algorithm or an IML procedure, these
assumptions should be clearly stated and we need better diagnostic tools to test
them. If we want to prevent statistical testing problems such as p-hacking [48] to
reappear in IML, we have to become more rigorous in studying and quantifying
the uncertainty of IML methods. For example, most IML methods for feature
importance are not adapted for multiple testing, which is a classic mistake in a
statistical analysis.

5.2 Causal Interpretation

Ideally, a model should reflect the true causal structure of its underlying phe-
nomena, to enable causal interpretations. Arguably, causal interpretation is usu-
ally the goal of modeling if ML is used in science. But most statistical learning
procedures reflect mere correlation structures between features and analyze the
surface of the data generation process instead of its true inherent structure.
Such causal structures would also make models more robust against adversarial
attacks [101, 29], and more useful when used as a basis for decision making. Un-
fortunately, predictive performance and causality can be conflicting goals. For
example, today’s weather directly causes tomorrow’s weather, but we might only
have access to the feature “wet ground”. Using “wet ground” in the prediction
model for “tomorrow’s weather” is useful as it has information about “today’s
weather”, but we are not allowed to interpret it causally, because the confounder
“today’s weather” is missing from the ML model. Further research is needed to
understand when we are allowed to make causal interpretations of an ML model.
First steps have been made for permutation feature importance [60] and Shapley
values [70].

5.3 Feature Dependence

Feature dependence introduces problems with attribution and extrapolation. At-
tribution of importance and effects of features becomes difficult when features
are, for example, correlated and therefore share information. Correlated features
in random forests are preferred and attributed a higher importance [110, 51].
Many sensitivity analysis based methods permute features. When the permuted
feature has some dependence with another feature, this association is broken and
the resulting data points extrapolate to areas outside the distribution. The ML
model was never trained on such combinations and will likely not be confronted
with similar data points in an application. Therefore, extrapolation can cause
misleading interpretations. There have been attempts to “fix” permutation-based
methods, by using a conditional permutation scheme that respects the joint dis-
tribution of the data [78, 110, 28, 51]. The change from unconditional to condi-
tional permutation changes the respective interpretation method [78, 7], or, in
worst case, can break it [57, 113, 62].
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5.4 Definition of Interpretability

A lack of definition for the term ”interpretability” is a common critique of the
field [67, 22]. How can we decide if a new method explains ML models better
without a satisfying definition of interpretability? To evaluate the predictive
performance of an ML model, we simply compute the prediction error on test
data given the groundtruth label. To evaluate the interpretability of that same
ML model is more difficult. We do not know what the groundtruth explana-
tion looks like and have no straightforward way to quantify how interpretable
a model is or how correct an explanation is. Instead of having one groundtruth
explanation, various quantifiable aspects of interpretability are emerging [87, 86,
77, 46, 131, 3, 102, 87, 21, 31].

The two main ways of evaluating interpretability are objective evaluations,
which are mathematically quantifiable metrics, and human-centered evaluations,
which involve studies with either domain experts or lay persons. Examples of
aspects of interpretability are sparsity, interaction strength, fidelity (how well
an explanation approximates the ML model), sensitivity to perturbations, and
a user’s ability to run a model on a given input (simulatability). The challenge
ahead remains to establish a best practice on how to evaluate interpretation
methods and the explanations they produce. Here, we should also look at the
field of human-computer interaction.

5.5 More Challenges Ahead

We focused mainly on the methodological, mathematical challenges in a rather
static setting, where a trained ML model and the data are assumed as given
and fixed. But ML models are usually not used in a static and isolated way,
but are embedded in some process or product, and interact with people. A more
dynamic and holistic view of the entire process, from data collection to the final
consumption of the explained prediction is needed. This includes thinking how
to explain predictions to individuals with diverse knowledge and backgrounds
and about the need of interpretability on the level of an institution or society in
general. This covers a wide range of fields, such as human-computer interaction,
psychology and sociology. To solve the challenges ahead, we believe that the field
has to reach out horizontally – to other domains – and vertically – drawing from
the rich research in statistics and computer science.
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57. Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in ex-
plainable AI: A causality problem. arXiv preprint arXiv:1910.13413 (2019)

58. Klaise, J., Van Looveren, A., Vacanti, G., Coca, A.: Alibi: Algorithms for
monitoring and explaining machine learning models. URL https://github.
com/SeldonIO/alibi (2020)

59. Koh, P.W., Liang, P.: Understanding black-box predictions via influence func-
tions. arXiv preprint arXiv:1703.04730 (2017)

60. König, G., Molnar, C., Bischl, B., Grosse-Wentrup, M.: Relative feature impor-
tance. arXiv preprint arXiv:2007.08283 (2020)

61. Krishnan, S., Wu, E.: Palm: Machine learning explanations for iterative debug-
ging. In: Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analyt-
ics. pp. 1–6 (2017)

62. Kumar, I.E., Venkatasubramanian, S., Scheidegger, C., Friedler, S.: Problems with
Shapley-value-based explanations as feature importance measures. arXiv preprint
arXiv:2002.11097 (2020)

63. Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: The dangers of
post-hoc interpretability: Unjustified counterfactual explanations. arXiv preprint
arXiv:1907.09294 (2019)

4. Interpretable Machine Learning–A Brief History, State-of-the-Art and Challenges

46



12 Molnar et al.
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Abstract. An increasing number of model-agnostic interpretation tech-
niques for machine learning (ML) models such as partial dependence plots
(PDP), permutation feature importance (PFI) and Shapley values provide
insightful model interpretations, but can lead to wrong conclusions if
applied incorrectly. We highlight many general pitfalls of ML model inter-
pretation, such as using interpretation techniques in the wrong context,
interpreting models that do not generalize well, ignoring feature depen-
dencies, interactions, uncertainty estimates and issues in high-dimensional
settings, or making unjustified causal interpretations, and illustrate them
with examples. We focus on pitfalls for global methods that describe the
average model behavior, but many pitfalls also apply to local methods
that explain individual predictions. Our paper addresses ML practitioners
by raising awareness of pitfalls and identifying solutions for correct model
interpretation, but also addresses ML researchers by discussing open
issues for further research.
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1 Introduction

In recent years, both industry and academia have increasingly shifted away from
parametric models, such as generalized linear models, and towards non-parametric
and non-linear machine learning (ML) models such as random forests, gradient
boosting, or neural networks. The major driving force behind this development
has been a considerable outperformance of ML over traditional models on many
prediction tasks [32]. In part, this is because most ML models handle interactions
and non-linear effects automatically. While classical statistical models – such as
generalized additive models (GAMs) – also support the inclusion of interactions
and non-linear effects, they come with the increased cost of having to (manually)
specify and evaluate these modeling options. The benefits of many ML models
are partly offset by their lack of interpretability, which is of major importance in
many applications. For certain model classes (e.g. linear models), feature effects
or importance scores can be directly inferred from the learned parameters and
the model structure. In contrast, it is more difficult to extract such information
from complex non-linear ML models that, for instance, do not have intelligible
parameters and are hence often considered black boxes. However, model-agnostic
interpretation methods allow us to harness the predictive power of ML models
while gaining insights into the black-box model. These interpretation methods
are already applied in many different fields. Applications of interpretable machine
learning (IML) include understanding pre-evacuation decision-making [124] with
partial dependence plots [36], inferring behavior from smartphone usage [106,105]
with the help of permutation feature importance [107] and accumulated local effect
plots [3], or understanding the relation between critical illness and health records
[70] using Shapley additive explanations (SHAP) [78]. Given the widespread
application of interpretable machine learning, it is crucial to highlight potential
pitfalls, that, in the worst case, can produce incorrect conclusions.

This paper focuses on pitfalls for model-agnostic IML methods, i.e. methods
that can be applied to any predictive model. Model-specific methods, in contrast,
are tied to a certain model class (e.g. saliency maps [57] for gradient-based
models, such as neural networks), and are mainly considered out-of-scope for this
work. We focus on pitfalls for global interpretation methods, which describe the
expected behavior of the entire model with respect to the whole data distribution.
However, many of the pitfalls also apply to local explanation methods, which
explain individual predictions or classifications. Global methods include the
partial dependence plot (PDP) [36], partial importance (PI) [19], accumulated
local affects (ALE) [3], or the permutation feature importance (PFI) [12,33,19].
Local methods include the individual conditional expectation (ICE) curves [38],
individual conditional importance (ICI) [19], local interpretable model-agnostic
explanations (LIME) [94], Shapley values [108] and SHapley Additive exPlana-
tions (SHAP) [78,77] or counterfactual explanations [115,26]. Furthermore, we
distinguish between feature effect and feature importance methods. A feature
effect indicates the direction and magnitude of a change in predicted outcome due
to changes in feature values. Effect methods include Shapley values, SHAP, LIME,
ICE, PDP, or ALE. Feature importance methods quantify the contribution of a
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Fig. 1. Selection of popular model-agnostic interpretation techniques, classified as local
or global, and as effect or importance methods.

feature to the model performance (e.g. via a loss function) or to the variance of
the prediction function. Importance methods include the PFI, ICI, PI, or SAGE.
See Figure 1 for a visual summary.
The interpretation of ML models can have subtle pitfalls. Since many of the inter-
pretation methods work by similar principles of manipulating data and “probing”
the model [100], they also share many pitfalls. The sources of these pitfalls can
be broadly divided into three categories: (1) application of an unsuitable ML
model which does not reflect the underlying data generating process very well,
(2) inherent limitations of the applied IML method, and (3) wrong application
of an IML method. Typical pitfalls for (1) are bad model generalization or the
unnecessary use of complex ML models. Applying an IML method in a wrong way
(3) often results from the users’ lack of knowledge of the inherent limitations of
the chosen IML method (2). For example, if feature dependencies and interactions
are present, potential extrapolations might lead to misleading interpretations for
perturbation-based IML methods (inherent limitation). In such cases, methods
like PFI might be a wrong choice to quantify feature importance.

Sources of pitfall Sections

Unsuitable ML model 3, 4
Limitation of IML method 5.1, 6.1, 6.2, 9.1, 9.2
Wrong application of IML method 2, 5.2, 5.3, 7, 8, 9.3, 10

Table 1. Categorization of the pitfalls by source.

Contributions: We uncover and review general pitfalls of model-agnostic
interpretation techniques. The categorization of these pitfalls into different
sources is provided in Table 1. Each section describes and illustrates a pit-
fall, reviews possible solutions for practitioners to circumvent the pitfall, and
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discusses open issues that require further research. The pitfalls are accompanied
by illustrative examples for which the code can be found in this repository:
https://github.com/compstat-lmu/code pitfalls iml.git. In addition to reproduc-
ing our examples, we invite readers to use this code as a starting point for their
own experiments and explorations.

Related Work: Rudin et al. [96] present principles for interpretability and
discuss challenges for model interpretation with a focus on inherently interpretable
models. Das et al. [27] survey methods for explainable AI and discuss challenges
with a focus on saliency maps for neural networks. A general warning about using
and explaining ML models for high stakes decisions has been brought forward
by Rudin [95], in which the author argues against model-agnostic techniques
in favor of inherently interpretable models. Krishnan [64] criticizes the general
conceptual foundation of interpretability, but does not dispute the usefulness
of available methods. Likewise, Lipton [73] criticizes interpretable ML for its
lack of causal conclusions, trust, and insights, but the author does not discuss
any pitfalls in detail. Specific pitfalls due to dependent features are discussed by
Hooker [54] for PDPs and functional ANOVA as well as by Hooker and Mentch
[55] for feature importance computations. Hall [47] discusses recommendations
for the application of particular interpretation methods but does not address
general pitfalls.

2 Assuming One-Fits-All Interpretability

Pitfall: Assuming that a single IML method fits in all interpretation contexts
can lead to dangerous misinterpretation. IML methods condense the complexity
of ML models into human-intelligible descriptions that only provide insight into
specific aspects of the model and data. The vast number of interpretation methods
make it difficult for practitioners to choose an interpretation method that can
answer their question. Due to the wide range of goals that are pursued under
the umbrella term “interpretability”, the methods differ in which aspects of the
model and data they describe.

For example, there are several ways to quantify or rank the features according
to their relevance. The relevance measured by PFI can be very different from
the relevance measured by the SHAP importance. If a practitioner aims to gain
insight into the relevance of a feature regarding the model’s generalization error,
a loss-based method (on unseen test data) such as PFI should be used. If we aim
to expose which features the model relies on for its prediction or classification –
irrespective of whether they aid the model’s generalization performance – PFI
on test data is misleading. In such scenarios, one should quantify the relevance
of a feature regarding the model’s prediction (and not the model’s generalization
error) using methods like the SHAP importance [76].

We illustrate the difference in Figure 2. We simulated a data-generating
process where the target is completely independent of all features. Hence, the
features are just noise and should not contribute to the model’s generalization
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error. Consequently, the features are not considered relevant by PFI on test data.
However, the model mechanistically relies on a number of spuriously correlated
features. This reliance is exposed by marginal global SHAP importance.

As the example demonstrates, it would be misleading to view the PFI com-
puted on test data or global SHAP as one-fits-all feature importance techniques.
Like any IML method, they can only provide insight into certain aspects of model
and data.

Many pitfalls in this paper arise from situations where an IML method that
was designed for one purpose is applied in an unsuitable context. For example,
extrapolation (Section 5.1) can be problematic when we aim to study how the
model behaves under realistic data but simultaneously can be the correct choice
if we want to study the sensitivity to a feature outside the data distribution.

For some IML techniques – especially local methods – even the same method
can provide very different explanations, depending on the choice of hyperparam-
eters: For counterfactuals, explanation goals are encoded in their optimization
metrics [34,26] such as sparsity and data faithfulness; The scope and meaning
of LIME explanations depend on the kernel width and the notion of complexity
[8,37].

Solution: The suitability of an IML method cannot be evaluated with respect
to one-fits-all interpretability but must be motivated and assessed with respect
to well-defined interpretation goals. Similarly, practitioners must tailor the choice
of the IML method and its respective hyperparameters to the interpretation
context. This implies that these goals need to be clearly stated in a detailed
manner before any analysis – which is still often not the case.

Open Issues: Since IML methods themselves are subject to interpretation,
practitioners must be informed about which conclusions can or cannot be drawn
given different choices of IML technique. In general, there are three aspects to
be considered: (a) an intuitively understandable and plausible algorithmic con-
struction of the IML method to achieve an explanation; (b) a clear mathematical
axiomatization of interpretation goals and properties, which are linked by proofs
and theoretical considerations to IML methods, and properties of models and
data characteristics; (c) a practical translation for practitioners of the axioms
from (b) in terms of what an IML method provides and what not, ideally with
implementable guidelines and diagnostic checks for violated assumptions to guar-
antee correct interpretations. While (a) is nearly always given for any published
method, much work remains for (b) and (c).

3 Bad Model Generalization

Pitfall: Under- or overfitting models can result in misleading interpretations
with respect to the true feature effects and importance scores, as the model does
not match the underlying data-generating process well [39]. Formally, most IML

5. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models

56



6 C. Molnar et al.

0.0

0.2

0.4

0.6
X

4

X
6

X
14 X
3

X
10

X
20

X
11 X
1

X
2

X
15

X
12

X
16

X
18

X
19 X
5

X
7

X
8

X
9

X
13

X
17

Feature

S
co

re

IML method

mean |SHAP|

PFI on test data

Fig. 2. Assuming one-fits-all interpretability. A default xgboost regression model
that minimizes the mean squared error (MSE) was fitted on 20 independently and
uniformly distributed features to predict another independent, uniformly sampled target.
In this setting, predicting the (unconditional) mean E[Y ] in a constant model is optimal.
The learner overfits due to a small training data size. Mean marginal SHAP (red, error
bars indicate 0.05 and 0.95 quantiles) exposes all mechanistically used features. In
contrast, PFI on test data (blue, error bars indicate 0.05 and 0.95 quantiles) considers all
features to be irrelevant, since no feature contributes to the generalization performance.

methods are designed to interpret the model instead of drawing inferences about
the data-generating process. In practice, however, the latter is often the goal of
the analysis, and then an interpretation can only be as good as its underlying
model. If a model approximates the data-generating process well enough, its
interpretation should reveal insights into the underlying process.

Solution: In-sample evaluation (i.e. on training data) should not be used to
assess the performance of ML models due to the risk of overfitting on the
training data, which will lead to overly optimistic performance estimates. We
must resort to out-of-sample validation based on resampling procedures such as
holdout for larger datasets or cross-validation, or even repeated cross-validation
for small sample size scenarios. These resampling procedures are readily available
in software [67,89], and well-studied in theory as well as practice [4,11,104],
although rigorous analysis of cross-validation is still considered an open problem
[103]. Nested resampling is necessary, when computational model selection and
hyperparameter tuning are involved [10]. This is important, as the Bayes error for
most practical situations is unknown, and we cannot make absolute statements
about whether a model already optimally fits the data.

Figure 3 shows the mean squared errors for a simulated example on both
training and test data for a support vector machine (SVM), a random forest, and
a linear model. Additionally, PDPs for all models are displayed, which show to
what extent each model’s effect estimates deviate from the ground truth. The
linear model is unable to represent the non-linear relationship, which is reflected
in a high error on both test and training data and the linear PDPs. In contrast,
the random forest has a low training error but a much higher test error, which
indicates overfitting. Also, the PDPs for the random forest display overfitting
behavior, as the curves are quite noisy, especially at the lower and upper value
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Fig. 3. Bad model generalization. Top: Performance estimates on training and test
data for a linear regression model (underfitting), a random forest (overfitting) and a
support vector machine with radial basis kernel (good fit). The three features are drawn
from a uniform distribution, and the target was generated as Y = X2

1 +X2−5X1X2 + ε,
with ε ∼ N(0, 5). Bottom: PDPs for the data-generating process (DGP) – which is
the ground truth – and for the three models.

ranges of each feature. The SVM with both low training and test error comes
closest to the true PDPs.

4 Unnecessary Use of Complex Models

Pitfall: A common mistake is to use an opaque, complex ML model when an
interpretable model would have been sufficient, i.e. when the performance of
interpretable models is only negligibly worse – or maybe the same or even better
– than that of the ML model. Although model-agnostic methods can shed light
on the behavior of complex ML models, inherently interpretable models still
offer a higher degree of transparency [95] and considering them increases the
chance of discovering the true data-generating function [23]. What constitutes
an interpretable model is highly dependent on the situation and target audience,
as even a linear model might be difficult to interpret when many features and
interactions are involved.

It is commonly believed that complex ML models always outperform more
interpretable models in terms of accuracy and should thus be preferred. However,
there are several examples where interpretable models have proven to be serious
competitors: More than 15 years ago, Hand [49] demonstrated that simple

5. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
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models often achieve more than 90% of the predictive power of potentially highly
complex models across the UCI benchmark data repository and concluded that
such models often should be preferred due to their inherent interpretability;
Makridakis et al. [79] systematically compared various ML models (including
long-short-term-memory models and multi-layer neural networks) to statistical
models (e.g. damped exponential smoothing and the Theta method) in time series
forecasting tasks and found that the latter consistently show greater predictive
accuracy; Kuhle et al. [65] found that random forests, gradient boosting and
neural networks did not outperform logistic regression in predicting fetal growth
abnormalities; Similarly, Wu et al. [120] have shown that a logistic regression
model performs as well as AdaBoost and even better than an SVM in predicting
heart disease from electronic health record data; Baesens et al. [7] showed that
simple interpretable classifiers perform competitively for credit scoring, and in
an update to the study the authors note that “the complexity and/or recency of
a classifier are misleading indicators of its prediction performance” [71].

Solution: We recommend starting with simple, interpretable models such as
linear regression models and decision trees. Generalized additive models (GAM)
[50] can serve as a gradual transition between simple linear models and more
complex machine learning models. GAMs have the desirable property that they
can additively model smooth, non-linear effects and provide PDPs out-of-the-box,
but without the potential pitfall of masking interactions (see Section 6). The
additive model structure of a GAM is specified before fitting the model so that
only the pre-specified feature or interaction effects are estimated. Interactions
between features can be added manually or algorithmically (e.g. via a forward
greedy search) [18]. GAMs can be fitted with component-wise boosting [99]. The
boosting approach allows to smoothly increase model complexity, from sparse
linear models to more complex GAMs with non-linear effects and interactions.
This smooth transition provides insight into the tradeoffs between model simplicity
and performance gains. Furthermore, component-wise boosting has an in-built
feature selection mechanism as the model is build incrementally, which is especially
useful in high-dimensional settings (see Section 9.1). The predictive performance
of models of different complexity should be carefully measured and compared.
Complex models should only be favored if the additional performance gain
is both significant and relevant – a judgment call that the practitioner must
ultimately make. Starting with simple models is considered best practice in data
science, independent of the question of interpretability [23]. The comparison of
predictive performance between model classes of different complexity can add
further insights for interpretation.

Open Issues: Measures of model complexity allow quantifying the trade-off
between complexity and performance and to automatically optimize for multiple
objectives beyond performance. Some steps have been made towards quantifying
model complexity, such as using functional decomposition and quantifying the
complexity of the components [82] or measuring the stability of predictions [92].
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However, further research is required, as there is no single perfect definition of
interpretability, but rather multiple depending on the context [30,95].

5 Ignoring Feature Dependence

5.1 Interpretation with Extrapolation

Pitfall: When features are dependent, perturbation-based IML methods such as
PFI, PDP, LIME, and Shapley values extrapolate in areas where the model was
trained with little or no training data, which can cause misleading interpretations
[55]. This is especially true if the ML model relies on feature interactions [45] –
which is often the case. Perturbations produce artificial data points that are used
for model predictions, which in turn are aggregated to produce global or local
interpretations [100]. Feature values can be perturbed by replacing original values
with values from an equidistant grid of that feature, with permuted or randomly
subsampled values [19], or with quantiles. We highlight two major issues: First,
if features are dependent, all three perturbation approaches produce unrealistic
data points, i.e. the new data points are located outside of the multivariate joint
distribution of the data (see Figure 4). Second, even if features are independent,
using an equidistant grid can produce unrealistic values for the feature of interest.
Consider a feature that follows a skewed distribution with outliers. An equidistant
grid would generate many values between outliers and non-outliers. In contrast
to the grid-based approach, the other two approaches maintain the marginal
distribution of the feature of interest.

Both issues can result in misleading interpretations (illustrative examples are
given in [55,84]), since the model is evaluated in areas of the feature space with
few or no observed real data points, where model uncertainty can be expected
to be very high. This issue is aggravated if interpretation methods integrate
over such points with the same weight and confidence as for much more realistic
samples with high model confidence.

Solution: Before applying interpretation methods, practitioners should check
for dependencies between features in the data, e.g. via descriptive statistics or
measures of dependence (see Section 5.2). When it is unavoidable to include
dependent features in the model (which is usually the case in ML scenarios),
additional information regarding the strength and shape of the dependence
structure should be provided. Sometimes, alternative interpretation methods
can be used as a workaround or to provide additional information. Accumulated
local effect plots (ALE) [3] can be applied when features are dependent, but can
produce non-intuitive effect plots for simple linear models with interactions [45].
For other methods such as the PFI, conditional variants exist [17,84,107]. In the
case of LIME, it was suggested to focus in sampling on realistic (i.e. close to the
data manifold) [97] and relevant areas (e.g. close to the decision boundary) [69].
Note, however, that conditional interpretations are often different and should
not be used as a substitute for unconditional interpretations (see Section 5.3).

5. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
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Fig. 4. Interpretation with extrapolation. Illustration of artificial data points
generated by three different perturbation approaches. The black dots refer to observed
data points and the red crosses to the artificial data points.

Furthermore, dependent features should not be interpreted separately but rather
jointly. This can be achieved by visualizing e.g. a 2-dimensional ALE plot of
two dependent features, which, admittedly, only works for very low-dimensional
combinations. Especially in high-dimensional settings where dependent features
can be grouped in a meaningful way, grouped interpretation methods might be
more reasonable (see Section 9.1).

We recommend using quantiles or randomly subsampled values over equidis-
tant grids. By default, many implementations of interpretability methods use an
equidistant grid to perturb feature values [41,81,89], although some also allow
using user-defined values.

Open Issues: A comprehensive comparison of strategies addressing extrapola-
tion and how they affect an interpretation method is currently missing. This also
includes studying interpretation methods and their conditional variants when
they are applied to data with different dependence structures.

5.2 Confusing Linear Correlation with General Dependence

Pitfall: Features with a Pearson correlation coefficient (PCC) close to zero can
still be dependent and cause misleading model interpretations (see Figure 5).
While independence between two features implies that the PCC is zero, the
converse is generally false. The PCC, which is often used to analyze dependence,
only tracks linear correlations and has other shortcomings such as sensitivity
to outliers [113]. Any type of dependence between features can have a strong
impact on the interpretation of the results of IML methods (see Section 5.1).
Thus, knowledge about the (possibly non-linear) dependencies between features
is crucial for an informed use of IML methods.

Solution: Low-dimensional data can be visualized to detect dependence (e.g.
scatter plots) [80]. For high-dimensional data, several other measures of depen-
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Fig. 5. Confusing linear correlation with dependence. Highly dependent features
X1 and X2 that have a correlation close to zero. A test (H0: Features are independent)
using Pearson correlation is not significant, but for HSIC, the H0-hypothesis gets
rejected. Data from [80].

dence in addition to PCC can be used. If dependence is monotonic, Spearman’s
rank correlation coefficient [72] can be a simple, robust alternative to PCC. For
categorical or mixed features, separate dependence measures have been proposed,
such as Kendall’s rank correlation coefficient for ordinal features, or the phi
coefficient and Goodman & Kruskal’s lambda for nominal features [59].

Studying non-linear dependencies is more difficult since a vast variety of pos-
sible associations have to be checked. Nevertheless, several non-linear association
measures with sound statistical properties exist. Kernel-based measures, such as
kernel canonical correlation analysis (KCCA) [6] or the Hilbert-Schmidt indepen-
dence criterion (HSIC) [44], are commonly used. They have a solid theoretical
foundation, are computationally feasible, and robust [113]. In addition, there are
information-theoretical measures, such as (conditional) mutual information [24]
or the maximal information coefficient (MIC) [93], that can however be difficult to
estimate [116,9]. Other important measures are e.g. the distance correlation [111],
the randomized dependence coefficient (RDC) [74], or the alternating conditional
expectations (ACE) algorithm [14]. In addition to using PCC, we recommend
using at least one measure that detects non-linear dependencies (e.g. HSIC).

5.3 Misunderstanding Conditional Interpretation

Pitfall: Conditional variants of interpretation techniques avoid extrapolation but
require a different interpretation. Interpretation methods that perturb features
independently of others will extrapolate under dependent features but provide
insight into the model’s mechanism [56,61]. Therefore, these methods are said to
be true to the model but not true to the data [21].

For feature effect methods such as the PDP, the plot can be interpreted as
the isolated, average effect the feature has on the prediction. For the PFI, the
importance can be interpreted as the drop in performance when the feature’s
information is “destroyed” (by perturbing it). Marginal SHAP value functions
[78] quantify a feature’s contribution to a specific prediction, and marginal SAGE

5. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
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Fig. 6. Misunderstanding conditional interpretation. A linear model was fitted
on the data-generating process modeled using a linear Gaussian structural causal model.
The entailed directed acyclic graph is depicted on the left. For illustrative purposes, the
original model coefficients were updated such that not only feature X3, but also feature
X2 is used by the model. PFI on test data considers both X3 and X2 to be relevant. In
contrast, conditional feature importance variants either only consider X3 to be relevant
(CFI) or consider all features to be relevant (conditional SAGE value function).

value functions [25] quantify a feature’s contribution to the overall prediction
performance. All the aforementioned methods extrapolate under dependent
features (see also Section 5.1), but satisfy sensitivity, i.e. are zero if a feature is
not used by the model [56,25,61,110].

Conditional variants of these interpretation methods do not replace feature
values independently of other features, but in such a way that they conform to
the conditional distribution. This changes the interpretation as the effects of all
dependent features become entangled. Depending on the method, conditional
sampling leads to a more or less restrictive notion of relevance.

For example, for dependent features, the Conditional Feature Importance
(CFI) [17,117,84,107] answers the question: “How much does the model perfor-
mance drop if we permute a feature, but given that we know the values of the other
features?” [107,63,84]. 8 Two highly dependent features might be individually
important (based on the unconditional PFI), but have a very low conditional
importance score because the information of one feature is contained in the other
and vice versa.

In contrast, the conditional variant of PDP, called marginal plot or M-plot
[3], violates sensitivity, i.e. may even show an effect for features that are not used
by the model. This is because for M-plots, the feature of interest is not sampled
conditionally on the remaining features, but rather the remaining features are
sampled conditionally on the feature of interest. As a consequence, the distribution
of dependent covariates varies with the value of the feature of interest. Similarly,
conditional SAGE and conditional SHAP value functions sample the remaining

8 While for CFI the conditional independence of the feature of interest Xj with the
target Y given the remaining features X−j (Y ⊥ Xj |X−j) is already a sufficient
condition for zero importance, the corresponding PFI may still be nonzero [63].
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features conditional on the feature of interest and therefore violate sensitivity
[56,109,25,61].

We demonstrate the difference between PFI, CFI, and conditional SAGE
value functions on a simulated example (Figure 6) where the data-generating
mechanism is known. While PFI only considers features to be relevant if they are
actually used by the model, SAGE value functions may also consider a feature to
be important that is not directly used by the model if it contains information
that the model exploits. CFI only considers a feature to be relevant if it is both
mechanistically used by the model and contributes unique information about Y .

Solution: When features are highly dependent and conditional effects and impor-
tance scores are used, the practitioner must be aware of the distinct interpretation.
Recent work formalizes the implications of marginal and conditional interpre-
tation techniques [21,56,63,61,25]. While marginal methods provide insight into
the model’s mechanism but are not true to the data, their conditional variants
are not true to the model but provide insight into the associations in the data.

If joint insight into model and data is required, designated methods must
be used. ALE plots [3] provide interval-wise unconditional interpretations that
are true to the data. They have been criticized to produce non-intuitive re-
sults for certain data-generating mechanisms [45]. Molnar et al. [84] propose
a subgroup-based conditional sampling technique that allows for group-wise
marginal interpretations that are true to model and data and that can be applied
to feature importance and feature effects methods such as conditional PDPs
and CFI. For feature importance, the DEDACT framework [61] allows to de-
compose conditional importance measures such as SAGE value functions into
their marginal contributions and vice versa, thereby allowing global insight into
both: the sources of prediction-relevant information in the data as well as into
the feature pathways by which the information enters the model.

Open Issues: The quality of conditional IML techniques depends on the good-
ness of the conditional sampler. Especially in continuous, high-dimensional set-
tings, conditional sampling is challenging. More research on the robustness of
interpretation techniques regarding the quality of the sample is required.

6 Misleading Interpretations due to Feature Interactions

6.1 Misleading Feature Effects due to Aggregation

Pitfall: Global interpretation methods, such as PDP or ALE plots, visualize the
average effect of a feature on a model’s prediction. However, they can produce
misleading interpretations when features interact. Figure 7 A and B show the
marginal effect of features X1 and X2 of the below-stated simulation example.
While the PDP of the non-interacting feature X1 seems to capture the true
underlying effect of X1 on the target quite well (A), the global aggregated effect
of the interacting feature X2 (B) shows almost no influence on the target, although
an effect is clearly there by construction.

5. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
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Fig. 7. Misleading effect due to interactions. Simulation example with interactions:

Y = 3X1−6X2 +12X21(X3≥0) +ε with X1, X2, X3
i.i.d.∼ U [−1, 1] and ε

i.i.d.∼ N(0, 0.3). A
random forest with 500 trees is fitted on 1000 observations. Effects are calculated on 200
randomly sampled (training) observations. A, B: PDP (yellow) and ICE curves of X1

and X2; C: Derivative ICE curves and their standard deviation of X2; D: 2-dimensional
PDP of X2 and X3.

Solution: For the PDP, we recommend to additionally consider the correspond-
ing ICE curves [38]. While PDP and ALE average out interaction effects, ICE
curves directly show the heterogeneity between individual predictions. Figure 7
A illustrates that the individual marginal effect curves all follow an upward trend
with only small variations. Hence, by aggregating these ICE curves to a global
marginal effect curve such as the PDP, we do not lose much information. However,
when the regarded feature interacts with other features, such as feature X2 with
feature X3 in this example, then marginal effect curves of different observations
might not show similar effects on the target. Hence, ICE curves become very het-
erogeneous, as shown in Figure 7 B. In this case, the influence of feature X2 is not
well represented by the global average marginal effect. Particularly for continuous
interactions where ICE curves start at different intercepts, we recommend the use
of derivative or centered ICE curves, which eliminate differences in intercepts and
leave only differences due to interactions [38]. Derivative ICE curves also point
out the regions of highest interaction with other features. For example, Figure 7
C indicates that predictions for X2 taking values close to 0 strongly depend on
other features’ values. While these methods show that interactions are present
with regards to the feature of interest but do not reveal other features with which
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General Pitfalls of Model-Agnostic Interpretation 15

it interacts, the 2-dimensional PDP or ALE plot are options to visualize 2-way
interaction effects. The 2-dimensional PDP in Figure 7 D shows that predictions
with regards to feature X2 highly depend on the feature values of feature X3.

Other methods that aim to gain more insights into these visualizations are
based on clustering homogeneous ICE curves, such as visual interaction effects
(VINE) [16] or [122]. As an example, in Figure 7 B, it would be more meaningful
to average over the upward and downward proceeding ICE curves separately and
hence show that the average influence of feature X2 on the target depends on an
interacting feature (here: X3). Work by Zon et al. [125] followed a similar idea by
proposing an interactive visualization tool to group Shapley values with regards
to interacting features that need to be defined by the user.

Open Issues: The introduced visualization methods are not able to illustrate
the type of the underlying interaction and most of them are also not applicable
to higher-order interactions.

6.2 Failing to Separate Main from Interaction Effects

Pitfall: Many interpretation methods that quantify a feature’s importance or
effect cannot separate an interaction from main effects. The PFI, for example,
includes both the importance of a feature and the importance of all its interactions
with other features [19]. Also local explanation methods such as LIME and Shapley
values only provide additive explanations without separation of main effects and
interactions [40].

Solution: Functional ANOVA introduced by [53] is probably the most popular
approach to decompose the joint distribution into main and interaction effects.
Using the same idea, the H-Statistic [35] quantifies the interaction strength
between two features or between one feature and all others by decomposing
the 2-dimensional PDP into its univariate components. The H-Statistic is based
on the fact that, in the case of non-interacting features, the 2-dimensional
partial dependence function equals the sum of the two underlying univariate
partial dependence functions. Another similar interaction score based on partial
dependencies is defined by [42]. Instead of decomposing the partial dependence
function, [87] uses the predictive performance to measure interaction strength.
Based on Shapley values, Lundberg et al. [77] proposed SHAP interaction values,
and Casalicchio et al. [19] proposed a fair attribution of the importance of
interactions to the individual features.

Furthermore, Hooker [54] considers dependent features and decomposes the
predictions in main and interaction effects. A way to identify higher-order inter-
actions is shown in [53].

Open Issues: Most methods that quantify interactions are not able to identify
higher-order interactions and interactions of dependent features. Furthermore, the

5. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
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presented solutions usually lack automatic detection and ranking of all interactions
of a model. Identifying a suitable shape or form of the modeled interaction is
not straightforward as interactions can be very different and complex, e.g., they
can be a simple product of features (multiplicative interaction) or can have a
complex joint non-linear effect such as smooth spline surface.

7 Ignoring Model and Approximation Uncertainty

Pitfall: Many interpretation methods only provide a mean estimate but do
not quantify uncertainty. Both the model training and the computation of
interpretation are subject to uncertainty. The model is trained on (random)
data, and therefore should be regarded as a random variable. Similarly, LIME’s
surrogate model relies on perturbed and reweighted samples of the data to
approximate the prediction function locally [94]. Other interpretation methods
are often defined in terms of expectations over the data (PFI, PDP, Shapley values,
...), but are approximated using Monte Carlo integration. Ignoring uncertainty
can result in the interpretation of noise and non-robust results. The true effect of
a feature may be flat, but – purely by chance, especially on smaller datasets – the
Shapley value might show an effect. This effect could cancel out once averaged
over multiple model fits. Figure 8 shows that a single PDP (first plot) can be
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Fig. 8. Ignoring model and approximation uncertainty. PDP for X1 with Y =
0 ·X1 +

∑10
j=2Xj + εi with X1, . . . , X10 ∼ U [0, 1] and εi ∼ N(0, 0.9). Left: PDP for

X1 of a random forest trained on 100 data points. Middle: Multiple PDPs (10x) for
the model from left plots, but with different samples (each n=100) for PDP estimation.
Right: Repeated (10x) data samples of n=100 and newly fitted random forest.

misleading because it does not show the variance due to PDP estimation (second
plot) and model fitting (third plot). If we are not interested in learning about
a specific model, but rather about the relationship between feature X1 and the
target (in this case), we should consider the model variance.

Solution: By repeatedly computing PDP and PFI with a given model, but with
different permutations or bootstrap samples, the uncertainty of the estimate
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can be quantified, for example in the form of confidence intervals. For PFI,
frameworks for confidence intervals and hypothesis tests exist [117,2], but they
assume a fixed model. If the practitioner wants to condition the analysis on the
modeling process and capture the process’ variance instead of conditioning on a
fixed model, PDP and PFI should be computed on multiple model fits [83].

Open Issues: While Moosbauer et al. [85] derived confidence bands for PDPs
for probabilistic ML models that cover the model’s uncertainty, a general model-
agnostic uncertainty measure for feature effect methods such as ALE [3] and
PDP [36] has (to the best of our knowledge) not been introduced yet.

8 Ignoring the Rashomon Effect

Pitfall: Sometimes different models explain the data-generating process equally
well, but contradict each other. This phenomenon is called the Rashomon effect,
named after the movie “Rashomon” from the year 1950. Breiman formalized it for
predictive models in 2001 [13]: Different prediction models might perform equally
well (Rashomon set), but construct the prediction function in a different way
(e.g. relying on different features). This can result in conflicting interpretations
and conclusions about the data. Even small differences in the training data can
cause one model to be preferred over another.

For example, Dong and Rudin [29] identified a Rashomon set of equally well
performing models for the COMPAS dataset. They showed that the models
differed greatly in the importance they put on certain features. Specifically, if
criminal history was identified as less important, race was more important and
vice versa. Cherry-picking one model and its underlying explanation might not be
sufficient to draw conclusions about the data-generating process. As Hancox-Li
[48] states “just because race happens to be an unimportant variable in that one
explanation does not mean that it is objectively an unimportant variable”.

The Rashomon effect can also occur at the level of the interpretation method
itself. Differing hyperparameters or interpretation goals can be one reason (see
Section 2). But even if the hyperparameters are fixed, we could still obtain
contradicting explanations by an interpretation method, e.g., due to a different
data sample or initial seed.

A concrete example of the Rashomon effect is counterfactual explanations.
Different counterfactuals may all alter the prediction in the desired way, but
point to different feature changes required for that change. If a person is deemed
uncreditworthy, one corresponding counterfactual explaining this decision may
point to a scenario in which the person had asked for a shorter loan duration and
amount, while another counterfactual may point to a scenario in which the person
had a higher income and more stable job. Focusing on only one counterfactual
explanation in such cases strongly limits the possible epistemic access.

Solution: If multiple, equally good models exist, their interpretations should
be compared. Variable importance clouds [29] is a method for exploring variable

5. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models

68



18 C. Molnar et al.

importance scores for equally good models within one model class. If the interpre-
tations are in conflict, conclusions must be drawn carefully. Domain experts or
further constraints (e.g. fairness or sparsity) could help to pick a suitable model.
Semenova et al. [102] also hypothesized that a large Rashomon set could contain
simpler or more interpretable models, which should be preferred according to
Section 4.

In the case of counterfactual explanations, multiple, equally good explanations
exist. Here, methods that return a set of explanations rather than a single one
should be used – for example, the method by Dandl et al. [26] or Mothilal et al.
[86].

Open Issues: Numerous very different counterfactual explanations are over-
whelming for users. Methods for aggregating or combining explanations are still
a matter of future research.

9 Failure to Scale to High-Dimensional Settings

9.1 Human-Intelligibility of High-Dimensional IML Output

Pitfall: Applying IML methods naively to high-dimensional datasets (e.g. vi-
sualizing feature effects or computing importance scores on feature level) leads
to an overwhelming and high-dimensional IML output, which impedes human
analysis. Especially interpretation methods that are based on visualizations make
it difficult for practitioners in high-dimensional settings to focus on the most
important insights.

Solution: A natural approach is to reduce the dimensionality before applying
any IML methods. Whether this facilitates understanding or not depends on
the possible semantic interpretability of the resulting, reduced feature space –
as features can either be selected or dimensionality can be reduced by linear
or non-linear transformations. Assuming that users would like to interpret in
the original feature space, many feature selection techniques can be used [46],
resulting in much sparser and consequently easier to interpret models. Wrapper
selection approaches are model-agnostic and algorithms like greedy forward
selection or subset selection procedures [60,5], which start from an empty model
and iteratively add relevant (subsets of) features if needed, even allow to measure
the relevance of features for predictive performance. An alternative is to directly
use models that implicitly perform feature selection such as LASSO [112] or
component-wise boosting [99] as they can produce sparse models with fewer
features. In the case of LIME or other interpretation methods based on surrogate
models, the aforementioned techniques could be applied to the surrogate model.

When features can be meaningfully grouped in a data-driven or knowledge-
driven way [51], applying IML methods directly to grouped features instead
of single features is usually more time-efficient to compute and often leads to
more appropriate interpretations. Examples where features can naturally be
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grouped include the grouping of sensor data [20], time-lagged features [75], or
one-hot-encoded categorical features and interaction terms [43]. Before a model
is fitted, groupings could already be exploited for dimensionality reduction, for
example by selecting groups of features by the group LASSO [121].

For model interpretation, various papers extended feature importance methods
from single features to groups of features [5,43,114,119]. In the case of grouped PFI,
this means that we perturb the entire group of features at once and measure the
performance drop compared to the unperturbed dataset. Compared to standard
PFI, the grouped PFI does not break the association to the other features of the
group, but to features of other groups and the target. This is especially useful
when features within the same group are highly correlated (e.g. time-lagged
features), but between-group dependencies are rather low. Hence, this might also
be a possible solution for the extrapolation pitfall described in Section 5.1.

We consider the PhoneStudy in [106] as an illustration. The PhoneStudy
dataset contains 1821 features to analyze the link between human behavior based
on smartphone data and participants’ personalities. Interpreting the results in
this use case seems to be challenging since features were dependent and single
feature effects were either small or non-linear [106]. The features have been
grouped in behavior-specific categories such as app-usage, music consumption, or
overall phone usage. Au et al. [5] calculated various grouped importance scores on
the feature groups to measure their influence on a specific personality trait (e.g.
conscientiousness). Furthermore, the authors applied a greedy forward subset
selection procedure via repeated subsampling on the feature groups and showed
that combining app-usage features and overall phone usage features were most of
the times sufficient for the given prediction task.

Open Issues: The quality of a grouping-based interpretation strongly depends
on the human intelligibility and meaningfulness of the grouping. If the grouping
structure is not naturally given, then data-driven methods can be used. However,
if feature groups are not meaningful (e.g. if they cannot be described by a super-
feature such as app-usage), then subsequent interpretations of these groups are
purposeless. One solution could be to combine feature selection strategies with
interpretation methods. For example, LIME’s surrogate model could be a LASSO
model. However, beyond surrogate models, the integration of feature selection
strategies remains an open issue that requires further research.

Existing research on grouped interpretation methods mainly focused on
quantifying grouped feature importance, but the question of “how a group of
features influences a model’s prediction” remains almost unanswered. Only re-
cently, [5,15,101] attempted to answer this question by using dimension-reduction
techniques (such as PCA) before applying the interpretation method. However,
this is also a matter of further research.

9.2 Computational Effort

Pitfall: Some interpretation methods do not scale linearly with the number of
features. For example, for the computation of exact Shapley values the number
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of possible coalitions [25,78], or for a (full) functional ANOVA decomposition
the number of components (main effects plus all interactions) scales with O(2p)
[54].9

Solution: For the functional ANOVA, a common solution is to keep the analysis
to the main effects and selected 2-way interactions (similar for PDP and ALE).
Interesting 2-way interactions can be selected by another method such as the
H-statistic [35]. However, the selection of 2-way interactions requires additional
computational effort. Interaction strength usually decreases quickly with increas-
ing interaction size, and one should only consider d-way interactions when all
their (d−1)-way interactions were significant [53]. For Shapley-based methods, an
efficient approximation exists that is based on randomly sampling and evaluating
feature orderings until the estimates converge. The variance of the estimates
reduces in O( 1

m ), where m is the number of evaluated orderings [25,78].

9.3 Ignoring Multiple Comparison Problem

Pitfall: Simultaneously testing the importance of multiple features will result
in false-positive interpretations if the multiple comparisons problem (MCP) is
ignored. The MCP is well known in significance tests for linear models and
exists similarly in testing for feature importance in ML. For example, suppose
we simultaneously test the importance of 50 features (with the H0-hypothesis
of zero importance) at the significance level α = 0.05. Even if all features are
unimportant, the probability of observing that at least one feature is significantly
important is 1− P(‘no feature important’) = 1− (1− 0.05)50 ≈ 0.923. Multiple
comparisons become even more problematic the higher the dimension of the
dataset.

Solution: Methods such as Model-X knockoffs [17] directly control for the false
discovery rate (FDR). For all other methods that provide p-values or confidence
intervals, such as PIMP (Permutation IMPortance) [2], which is a testing approach
for PFI, MCP is often ignored in practice to the best of our knowledge, with some
exceptions[105,117]. One of the most popular MCP adjustment methods is the
Bonferroni correction [31], which rejects a null hypothesis if its p-value is smaller
than α/p, with p as the number of tests. It has the disadvantage that it increases
the probability of false negatives [90]. Since MCP is well known in statistics,
we refer the practitioner to [28] for an overview and discussion of alternative
adjustment methods, such as the Bonferroni-Holm method [52].

As an example, in Figure 9 we compare the number of features with significant
importance measured by PIMP once with and once without Bonferroni-adjusted
significance levels (α = 0.05 vs. α = 0.05/p). Without correcting for multi-
comparisons, the number of features mistakenly evaluated as important grows

9 Similar to the PDP or ALE plots, the functional ANOVA components describe
individual feature effects and interactions.
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considerably with increasing dimension, whereas Bonferroni correction results in
only a modest increase.
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Fig. 9. Failure to scale to high-dimensional settings. Comparison of the number
of features with significant importance - once with and once without Bonferroni-corrected
significance levels for a varying number of added noise variables. Datasets were sampled
from Y = 2X1 + 2X2

2 + ε with X1, X2, ε ∼ N(0, 1). X3, X4, ..., Xp ∼ N(0, 1) are
additional noise variables with p ranging between 2 and 1000. For each p, we sampled
two datasets from this data-generating process – one to train a random forest with 500
trees on and one to test whether feature importances differed from 0 using PIMP. In all
experiments, X1 and X2 were correctly identified as important.

10 Unjustified Causal Interpretation

Pitfall: Practitioners are often interested in causal insights into the underlying
data-generating mechanisms, which IML methods do not generally provide. Com-
mon causal questions include the identification of causes and effects, predicting
the effects of interventions, and answering counterfactual questions [88]. For
example, a medical researcher might want to identify risk factors or predict
average and individual treatment effects [66]. In search of answers, a researcher
can therefore be tempted to interpret the result of IML methods from a causal
perspective.

However, a causal interpretation of predictive models is often not possible.
Standard supervised ML models are not designed to model causal relationships but
to merely exploit associations. A model may therefore rely on causes and effects
of the target variable as well as on variables that help to reconstruct unobserved
influences on Y , e.g. causes of effects [118]. Consequently, the question of whether
a variable is relevant to a predictive model (indicated e.g. by PFI > 0) does not
directly indicate whether a variable is a cause, an effect, or does not stand in any
causal relation to the target variable. Furthermore, even if a model would rely
solely on direct causes for the prediction, the causal structure between features
must be taken into account. Intervening on a variable in the real world may
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affect not only Y but also other variables in the feature set. Without assumptions
about the underlying causal structure, IML methods cannot account for these
adaptions and guide action [58,62].

As an example, we constructed a dataset by sampling from a structural causal
model (SCM), for which the corresponding causal graph is depicted in Figure 10.
All relationships are linear Gaussian with variance 1 and coefficients 1. For a linear
model fitted on the dataset, all features were considered to be relevant based
on the model coefficients (ŷ = 0.329x1 + 0.323x2 − 0.327x3 + 0.342x4 + 0.334x5,
R2 = 0.943), although x3, x4 and x5 do not cause Y .

Solution: The practitioner must carefully assess whether sufficient assumptions
can be made about the underlying data-generating process, the learned model, and
the interpretation technique. If these assumptions are met, a causal interpretation
may be possible. The PDP between a feature and the target can be interpreted
as the respective average causal effect if the model performs well and the set of
remaining variables is a valid adjustment set [123]. When it is known whether
a model is deployed in a causal or anti-causal setting – i.e. whether the model
attempts to predict an effect from its causes or the other way round – a partial
identification of the causal roles based on feature relevance is possible (under
strong and non-testable assumptions) [118]. Designated tools and approaches are
available for causal discovery and inference [91].

Open Issues: The challenge of causal discovery and inference remains an open
key issue in the field of ML. Careful research is required to make explicit under
which assumptions what insight about the underlying data-generating mechanism
can be gained by interpreting an ML model.

Y

X1 X2

X3

X4 X5

Fig. 10. Causal graph

11 Discussion

In this paper, we have reviewed numerous pitfalls of local and global model-
agnostic interpretation techniques, e.g. in the case of bad model generalization,
dependent features, interactions between features, or causal interpretations. We
have not attempted to provide an exhaustive list of all potential pitfalls in ML
model interpretation, but have instead focused on common pitfalls that apply to
various model-agnostic IML methods and pose a particularly high risk.
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We have omitted pitfalls that are more specific to one IML method type:
For local methods, the vague notions of neighborhood and distance can lead to
misinterpretations [69,68], and common distance metrics (such as the Euclidean
distance) are prone to the curse of dimensionality [1]; Surrogate methods such
as LIME may not be entirely faithful to the original model they replace in
interpretation. Moreover, we have not addressed pitfalls associated with certain
data types (like the definition of superpixels in image data [98]), nor those related
to human cognitive biases (e.g. the illusion of model understanding [22]).

Many pitfalls in the paper are strongly linked with axioms that encode
desiderata of model interpretation. For example, pitfall 5.3 (misunderstanding
conditional interpretations) is related to violations of sensitivity [56,110]. As
such, axioms can help to make the strengths and limitations of methods explicit.
Therefore, we encourage an axiomatic evaluation of interpretation methods.

We hope to promote a more cautious approach when interpreting ML models
in practice, to point practitioners to already (partially) available solutions, and
to stimulate further research on these issues. The stakes are high: ML algorithms
are increasingly used for socially relevant decisions, and model interpretations
play an important role in every empirical science. Therefore, we believe that
users can benefit from concrete guidance on properties, dangers, and problems of
IML techniques – especially as the field is advancing at high speed. We need to
strive towards a recommended, well-understood set of tools, which will in turn
require much more careful research. This especially concerns the meta-issues of
comparisons of IML techniques, IML diagnostic tools to warn against misleading
interpretations, and tools for analyzing multiple dependent or interacting features.
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Summary

Complex, non-parametric models, which are typically used in machine learning, have
proven to be successful in many prediction tasks. But these models usually operate as
black boxes: While they are good at predicting, they are often not interpretable. Many
inherently interpretable models have been suggested, which come at the cost of losing
predictive power. Another option is to apply interpretability methods to a black box
model after model training. Given the velocity of research on new machine learning
models, it is preferable to have model-agnostic tools which can be applied to a random
forest as well as to a neural network. Tools for model-agnostic interpretability methods
should improve the adoption of machine learning.
iml is an R package (R Core Team 2016) that offers a general toolbox for making machine
learning models interpretable. It implements many model-agnostic methods which work
for any type of machine learning model. The package covers following methods:

• Partial dependence plots (Friedman 2001): Visualizing the learned relationship be-
tween features and predictions.

• Individual conditional expectation (Goldstein et al. 2015): Visualizing the learned
relationship between features and predictions for individual instances of the data.

• Feature importance (Fisher, Rudin, and Dominici 2018): Scoring features by con-
tribution to predictive performance.

• Global surrogate tree: Approximating the black box model with an interpretable
decision tree.

• Local surrogate models (Ribeiro, Singh, and Guestrin 2016): Explaining single pre-
dictions by approximating the black box model locally with an interpretable model.

• Shapley value (Strumbelj et al. 2014): Explaining single predictions by fairly dis-
tributing the predicted value among the features.

• Interaction effects (Friedman, Popescu, and others 2008): Measuring how strongly
features interact with each other in the black box model.

iml was designed to provide a class-based and user-friendly way to make black box ma-
chine learning models interpretable. Internally, the implemented methods inherit from
the same parent class and share a common framework for the computation. Many of
the methods are already implemented in other packages (e.g. (Greenwell 2017), (Gold-
stein et al. 2015), (Pedersen and Benesty 2017)), but the iml package implements all of
the methods in one place, uses the same syntax and offers consistent functionality and
outputs. iml can be used with models from the R machine learning libraries mlr and
caret, but the package is flexible enough to work with models from other packages as
well. Similar projects are the R package DALEX (Biecek 2018) and the Python package
Skater (Choudhary, Kramer, and team 2018). The difference to iml is that the other
two projects do not implement the methods themselves, but depend on other packages.
DALEX focuses more on model comparison, and Skater additionally includes interpretable
models and has less model-agnostic interpretability methods compared to iml.

Molnar et al., (2018). iml: An R package for Interpretable Machine Learning. Journal of Open Source Software, 3(27), 786.
https://doi.org/10.21105/joss.00786
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The unified interface provided by the iml package simplifies the analysis and interpreta-
tion of black box machine learning learning models.
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Abstract. Model-agnostic interpretation techniques allow us to explain
the behavior of any predictive model. Due to different notations and ter-
minology, it is difficult to see how they are related. A unified view on
these methods has been missing. We present the generalized SIPA (sam-
pling, intervention, prediction, aggregation) framework of work stages for
model-agnostic interpretations and demonstrate how several prominent
methods for feature effects can be embedded into the proposed frame-
work. Furthermore, we extend the framework to feature importance com-
putations by pointing out how variance-based and performance-based im-
portance measures are based on the same work stages. The SIPA frame-
work reduces the diverse set of model-agnostic techniques to a single
methodology and establishes a common terminology to discuss them in
future work.

Keywords: Interpretable Machine Learning | Explainable AI | Feature
Effect | Feature Importance | Model-Agnostic | Partial Dependence

1 Introduction and Related Work

There has been an ongoing debate about the lacking interpretability of machine
learning (ML) models. As a result, researchers have put in great efforts devel-
oping techniques to create insights into the workings of predictive black box
models. Interpretable machine learning [15] serves as an umbrella term for all
interpretation methods in ML. We make the following distinctions:

(i) Feature effects or feature importance: Feature effects indicate the direc-
tion and magnitude of change in predicted outcome due to changes in
feature values. Prominent methods include the individual conditional ex-
pectation (ICE) [9] and partial dependence (PD) [8], accumulated local ef-
fects (ALE) [1], Shapley values [19] and local interpretable model-agnostic
explanations (LIME) [17]. The feature importance measures the impor-
tance of a feature to the model behavior. This includes variance-based
measures like the feature importance ranking measure (FIRM) [10], [20]
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and performance-based measures like the permutation feature importance
(PFI) [7], individual conditional importance (ICI) and partial importance
(PI) curves [4], as well as the Shapley feature importance (SFIMP) [4].
Input gradients were proposed by [11] as a model-agnostic tool for both
effects and importance that essentially equals marginal effects (ME) [12],
which have a long tradition in statistics. They also define an average input
gradient which corresponds to the average marginal effect (AME).

(ii) Intrinsic or post-hoc interpretability : Linear models (LM), generalized lin-
ear models (GLM), classification and regression trees (CART) or rule lists
[18] are examples for intrinsically interpretable models, while random forests
(RF), support vector machines (SVM), neural networks (NN) or gradient
boosting (GB) models can only be interpreted post-hoc. Here, the inter-
pretation process is detached from and takes place after the model fitting
process, e.g., with the ICE, PD or ALEs.

(iii) Model-specific or model-agnostic interpretations: Interpreting model coef-
ficients of GLMs or deriving a decision rule from a classification tree is
a model-specific interpretation. Model-agnostic methods such as the ICE,
PD or ALEs can be applied to any model.

(iv) Local or global explanations: Local explanations like the ICE evaluate the
model behavior when predicting for one specific observation. Global expla-
nations like the PD interpret the model for the entire input space. Further-
more, it is possible to explain model predictions for a group of observations,
e.g., on intervals. In a lot of cases, local and global explanations can be
transformed into one another via (dis-)aggregation, e.g., the ICE and PD.

Motivation: Research in model-agnostic interpretation methods is compli-
cated by the variety of different notations and terminology. It turns out that
deconstructing model-agnostic techniques into sequential work stages reveals
striking similarities. In [14] the authors propose a unified framework for model-
agnostic interpretations called SHapley Additive exPlanations (SHAP). How-
ever, the SHAP framework only considers Shapley values or variations thereof
(KernelSHAP and TreeSHAP). The motivation for this research paper is to pro-
vide a more extensive survey on model-agnostic interpretation methods, to reveal
similarities in their computation and to establish a framework with common ter-
minology that is applicable to all model-agnostic techniques.

Contributions: In Section 4 we present the generalized SIPA (sampling, inter-
vention, prediction, aggregation) framework of work stages for model-agnostic
techniques. We proceed to demonstrate how several methods to estimate feature
effects (MEs, ICE and PD, ALEs, Shapley values and LIME) can be embedded
into the proposed framework. Furthermore, in Section 5 and 6 we extend the
framework to feature importance computations by pointing out how variance-
based (FIRM) and performance-based (ICI and PI, PFI and SFIMP) importance
measures are based on the same work stages. By using a unified notation, we
also reveal how the methods are related.
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2 Notation and Preliminaries

Consider a p-dimensional feature space XP “ X1 ˆ ¨ ¨ ¨ ˆXp with the feature in-
dex set P “ t1, . . . , pu and a target space Y. We assume an unknown functional

relationship f between XP and Y. A supervised learning model f̂ attempts to
learn this relationship from an i.i.d. training sample that was drawn from the
unknown probability distribution F with the sample space XP ˆY. The random
variables generated from the feature space are denoted by X “ pX1, . . . , Xpq.
The random variable generated from the target space is denoted by Y . We
draw an i.i.d. sample of test data D with n observations from F . The vector

xpiq “ pxpiq1 , . . . , x
piq
p q P XP corresponds to the feature values of the i-th obser-

vation that are associated with the observed target value ypiq P Y. The vector

xj “ pxp1qj , . . . , x
pnq
j qJ represents the realizations of Xj . The generalization error

GEpf̂ ,Fq corresponds to the expectation of the loss function L on unseen test
data from F and is estimated by the average loss on D.

GEpf̂ ,Fq “ E
”
Lpf̂pX1, . . . , Xpq, Y q

ı

yGEpf̂ ,Dq “ 1

n

nÿ

i“1

Lpf̂pxpiq1 , . . . , xpiqp q, ypiqq

A variety of model-agnostic techniques is used to interpret the prediction
function f̂px1, . . . , xpq with the sample of test data D. We estimate the effects
and importance of a subset of features with index set S (S Ď P ). A vector of
feature values x P XP can be partitioned into two vectors xS and xzS so that
x “ pxS , xzSq. The corresponding random variables are denoted by XS and XzS .
Given a model-agnostic technique where S only contains a single element, the
corresponding notations are Xj , Xzj and xj , xzj .

The partial derivative of the trained model f̂pxj , xzjq with respect to xj is
numerically approximated with a symmetric difference quotient [12].

lim
hÑ0

f̂pxj ` h, xzjq ´ f̂pxj , xzjq
h

« f̂pxj ` h, xzjq ´ f̂pxj ´ h, xzjq
2h

, h ą 0

A term of the form f̂pxj`h, xzjq´ f̂pxj´h, xzjq is called a finite difference (FD)
of predictions with respect to xj .

FDf̂ ,jpxj , xzjq “ f̂pxj ` h, xzjq ´ f̂pxj ´ h, xzjq

3 Feature Effects

Partial dependence (PD) and individual conditional expectation (ICE): First sug-
gested by [8], the PD is defined as the dependence of the prediction function on
xS after all remaining features XzS have been marginalized out [9]. The PD is
estimated via Monte Carlo integration.

7. Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic
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PDf̂ ,SpxSq “ EXzS

”
f̂pxS , XzSq

ı
“
ż
f̂pxS , XzSq dPpXzSq (1)

yPDf̂ ,SpxSq “
1

n

nÿ

i“1

f̂pxS , xpiqzS q

The PD is a useful feature effect measure when features are not interacting [8].
Otherwise it can obfuscate the relationships in the data [4]. In that case, the
individual conditional expectation (ICE) can be used instead [9]. The i-th ICE
corresponds to the expected value of the target for the i-th observation as a

function of xS , conditional on x
piq
zS .

zICEpiqf̂ ,SpxSq “ f̂pxS , xpiqzS q
The ICE disaggregates the global effect estimates of the PD to local effect esti-
mates for single observations. Given |S| “ 1, the ICE and PD are also referred to
as ICE and PD curves. The ICE and PD suffer from extrapolation when features
are correlated, because the permutations used to predict are located in regions
without any training data [1].

Accumulated local effects (ALE): In [1] ALEs are presented as a feature effect
measure for correlated features that does not extrapolate. The idea of ALEs is
to take the integral with respect to Xj of the first derivative of the prediction
function with respect to Xj . This creates an accumulated partial effect of Xj

on the target variable while simultaneously removing additively linked effects of
other features. The main advantage of not extrapolating stems from integrating
with respect to the conditional distribution of Xzj on Xj instead of the marginal
distribution of Xzj [1]. Let z0,j denote the minimum value of xj . The first order
ALE of the j-th feature at point x is defined as:

ALEf̂ ,jpxq “
ż x

z0,j

EXzj |Xj

«
Bf̂pXj , Xzjq

BXj

ˇ̌
ˇ̌Xj “ zj

ff
dzj ´ constant

“
ż x

z0,j

«ż Bf̂pzj , Xzjq
Bzj dPpXzj |zjq

ff
dzj ´ constant (2)

A constant is subtracted in order to center the plot. We estimate the first order
ALE in three steps. First, we divide the value range of xj into a set of intervals
and compute a finite difference (FD) for each observation. For each i-th observa-

tion, x
piq
j is substituted by the corresponding right and left interval boundaries.

Then the predictions with both substituted values are subtracted in order to
receive an observation-wise FD. Second, we estimate local effects by averaging
the FDs inside each interval. This replaces the inner integral in Eq. (2). Third,
the accumulation of all local effects up to the point of interest replaces the outer
integral in Eq. (2), i.e., the interval-wise average FDs are summed up.
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The second order ALE is the bivariate extension of the first order ALE. It is
important to note that first order effect estimates are subtracted from the second
order estimates. In [1] the authors further lay out the computations necessary
for higher order ALEs.

Marginal effects (ME): MEs are an established technique in statistics and
often used to interpret non-linear functions of coefficients in GLMs like logistic
regression. The ME corresponds to the first derivative of the prediction function
with respect to a feature at specified values of the input space. It is estimated by
computing an observation-wise FD. The average marginal effect (AME) is the
average of all MEs that were estimated with observed feature values [2]. Although
there is extensive literature on MEs, this concept was suggested by [11] as a novel
method for ML and referred to as the input gradient. Derivatives are also often
utilized as a feature importance metric.

Shapley value: Originating in coalitional game theory [19], the Shapley value
is a local feature effect measure that is based on a set of desirable axioms. In
coalitional games, a set of p players, denoted by P , play games and join coalitions.
They are rewarded with a payout. The characteristic function v : 2p Ñ R maps
all player coalitions to their respective payouts [4]. The Shapley value is a player’s
average contribution to the payout, i.e., the marginal increase in payout for the
coalition of players, averaged over all possible coalitions. For Shapley values
as feature effects, predicting the target for a single observation corresponds to
the game and a coalition of features represents the players. Shapley regression
values were first developed for linear models with multicollinear features [13]. A
model-agnostic Shapley value was first introduced in [19].

Consider the expected prediction for a single vector of feature values x, con-
ditional on only knowing the values of features with indices in K (K Ď P ), i.e.,
the features XzK are marginalized out. This essentially equals a point (or a line,
surface etc. depending on the power of K) on the PD from Eq. (1).

EXzK

”
f̂pxK , XzKq

ı
“
ż
f̂pxK , XzKq dPpXzKq “ yPDf̂ ,KpxKq (3)

Eq. (3) is shifted by the mean prediction and used as a payout function vPDpxKq,
so that an empty set of features (K “ H) results in a payout of zero [4].

vPDpxKq “ EXzK

”
f̂pxK , XzKq

ı
´ EXKYpP zKq

”
f̂pXK , XzKq

ı

“ yPDf̂ ,KpxKq ´yPDf̂ ,HpxHq

“ yPDf̂ ,KpxKq ´
1

n

nÿ

i“1

f̂pxpiqK , x
piq
zKq

The marginal contribution ∆jpxKq of a feature value xj joining the coalition of
feature values xK is:

∆jpxKq “ vPDpxKYtjuq ´ vPDpxKq “ yPDf̂ ,KYtjupxKYtjuq ´yPDf̂ ,KpxKq
The exact Shapley value of the j-th feature for a single vector of feature values
x corresponds to:
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{Shapleyf̂ ,j “
ÿ

K ĎP ztju

|K|!p|P | ´ |K| ´ 1q!
|P |! ∆jpxKq

“
ÿ

K ĎP ztju

|K|!p|P | ´ |K| ´ 1q!
|P |!

”
yPDf̂ ,KYtjupxKYtjuq ´yPDf̂ ,KpxKq

ı

Shapley values are computationally expensive because the PD function has
a complexity of OpN2q. Computations can be sped up by Monte Carlo sampling
[19]. Furthermore, in [14] the authors propose a distinct variant to compute
Shapley values called SHapley Additive exPlanations (SHAP).

Local interpretable model-agnostic explanations (LIME): In contrast to all
previous techniques which are based on interpreting a single model, LIME [17]
locally approximates the black box model with an intrinsically interpretable
surrogate model. Given a single vector of feature values x, we first perturb xj
around a sufficiently close neighborhood while xzj is kept constant. Then we
predict with the perturbed feature values. The predictions are weighted by the
proximity of the corresponding perturbed values to the original feature value. Fi-
nally, an intrinsically interpretable model is trained on the weighted predictions
and interpreted instead.

4 Generalized Framework

Although the techniques presented in Section 3 are seemingly unrelated, they
all work according to the exact same principle. Instead of trying to inspect the
inner workings of a non-linear black box model, we evaluate its predictions when
changing inputs. We can deconstruct model-agnostic techniques into a framework
of four work stages: sampling, intervention, prediction, aggregation (SIPA). The
software package iml [16] was inspired by the SIPA framework.

We first sample a subset (sampling stage) to reduce computational costs,
e.g., we select a random set of available observations to evaluate as ICEs. In or-
der to change the predictions made by the black box model, the data has to be
manipulated. Feature values can be set to values from the observed marginal dis-
tributions (ICEs and PD or Shapley values), or to unobserved values (FD based
methods such as MEs and ALEs). This crucial step is called the intervention
stage. During the prediction stage, we predict on previously intervened data.
This requires an already trained model, which is why model-agnostic techniques
are always post-hoc. The predictions are further aggregated during the aggrega-
tion stage. Often, the predictions resulting from the prediction stage are local
effect estimates, and the ones resulting from the aggregation stage are global
effect estimates.

In Fig. 1, we demonstrate how all presented techniques for feature effects are
based on the SIPA framework. Although LIME is a special case as it is based
on training a local surrogate model, we argue that it is also based on the SIPA
framework as training a surrogate model can be considered an aggregation of
the training data to a function.
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Fig. 1. We demonstrate how all presented model-agnostic methods for feature effects
are based on the SIPA framework. For every method, we assign each computational
step to the corresponding generalized SIPA work stage. Contrary to all other methods,
LIME is based on training an intrinsically interpretable model during the aggregation
stage. We consider training a model to be an aggregation, because it corresponds to an
optimization problem where the training data is aggregated to a function. For reasons
of simplicity, we do not differentiate between the actual functions or values and their
estimates.
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5 Feature Importance

We categorize model-agnostic importance measures into two groups: variance-
based and performance-based.

Variance-based : A mostly flat trajectory of a single ICE curve implies that
in the underlying predictive model, varying xj does not affect the prediction for
this specific observation. If all ICE curves are shaped similarly, the PD can be
used instead. In [10] the authors propose a measure for the curvature of the PD
as a feature importance metric. Let the average value of the estimated PD of

the j-th feature be denoted by yPDf̂ ,jpxjq “ 1
n

řn
i“1

yPDf̂ ,jpxpiqj q. The estimated

importance zIMPyPD,j
of the j-th feature corresponds to the standard deviation of

the feature’s estimated PD function. The flatter the PD, the smaller its standard
deviation and therefore the importance metric. For categorial features, the range
of the PD is divided by 4. This is supposed to represent an approximation to
the estimate of the standard deviation for small to medium sized samples [10].

zIMPyPD,j
“

$
’’&
’’%

d
1

n´1

nř
i“1

”
yPDf̂ ,jpxpiqj q ´yPDf̂ ,jpxjq

ı2
xj continuous

1
4

”
max

!
yPDf̂ ,jpxjq

)
´min

!
yPDf̂ ,jpxjq

)ı
xj categorial

(4)

In [20] the authors propose the feature importance ranking measure (FIRM).
They define a conditional expected score (CES) function for the j-th feature.

CESf̂ ,jpvq “ EXzj

”
f̂pxj , Xzjq

ˇ̌
xj “ v

ı
(5)

It turns out that Eq. (5) is equivalent to the PD from Eq. (1), conditional on
xj “ v.

CESf̂ ,jpvq “ EXzj

”
f̂pv,Xzjq

ı

“ PDf̂ ,jpvq
The FIRM corresponds to the standard deviation of the CES function with all
values of xj used as conditional values. This in turn is equivalent to the standard
deviation of the PD. The FIRM is therefore equivalent to the feature importance
metric in Eq. (4).

{FIRM f̂ ,j “
b
V arpzCESf̂ ,jpxjqq “

b
V arpyPDf̂ ,jpxjqq “zIMPyPD,j

Performance-based : The permutation feature importance (PFI), originally
developed by [3] as a model-specific tool for random forests, was described as a
model-agnostic one by [6]. If feature values are shuffled in isolation, the relation-
ship between the feature and the target is broken up. If the feature is important
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for the predictive performance, the shuffling should result in an increased loss [4].
Permuting xj corresponds to drawing from a new random variable X̃j that is
distributed like Xj but independent of Xzj [4]. The model-agnostic PFI measures
the difference between the generalization error (GE) on data with permuted and
non-permuted values.

PFIf̂ ,j “ E
”
Lpf̂pX̃j , Xzjq, Y q

ı
´ E

”
Lpf̂pXj , Xzjq, Y q

ı

Let the permutation of xj be denoted by x̃j . Consider the sample of test data
Dj where xj has been permuted, and the non-permuted sample D. The PFI
estimate is given by the difference between GE estimates with permuted and
non-permuted values.

zPFI f̂ ,j “ yGEpf̂ ,Djq ´yGEpf̂ ,Dq

“ 1

n

nÿ

i“1

Lpf̂px̃piqj , x
piq
zj q, ypiqq ´

1

n

nÿ

i“1

Lpf̂pxpiqj , x
piq
zj q, ypiqq (6)

In [4] the authors propose individual conditional importance (ICI) and partial
importance (PI) curves as visualization techniques that disaggregate the global
PFI estimate. They are based on the same principle as the ICE and PD. The
ICI visualizes the influence of a feature on the predictive performance for a
single observation, while the PI visualizes the average influence of a feature for
all observations. Consider the prediction for the i-th observation with observed

values f̂pxpiqj , x
piq
zj q and the prediction f̂pxplqj , x

piq
zj q where x

piq
j was replaced by a

value x
plq
j from the marginal distribution of observed values xj . The change in

loss is given by:

∆Lpiqpxplqj q “ Lpf̂pxplqj , x
piq
zj qq ´ Lpf̂pxpiqj , x

piq
zj qq

The ICI curve of the i-th observation plots the value pairs pxplqj , ∆Lpiqpxplqj qq for
all l values of xj . The PI curve is the pointwise average of all ICI curves at all l

values of xj . It plots the value pairs pxplqj , 1
n

řn
i“1∆Lpiqpxplqj qq for all l values of

xj . Substituting values of xj essentially resembles shuffling them. The authors
demonstrate how averaging the values of the PI curve results in an estimation
of the global PFI.

zPFI f̂ ,j “
1

n

nÿ

l“1

1

n

nÿ

i“1

∆Lpiqpxplqj q

Furthermore, a feature importance measure called Shapley feature impor-
tance (SFIMP) was proposed in [4]. Shapley importance values based on model
refits with distinct sets of features were first introduced by [5] for feature selec-
tion. This changes the behavior of the learning algorithm and is not helpful to
evaluate a single model, as noted by [4]. The SFIMP is based on the same com-
putations as the Shapley value but replaces the payout function with one that is
sensitive to the model performance. The authors define a new payout vGEpxjq

7. Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic
Interpretations
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that substitutes the estimated PD with the estimated GE. This is equivalent to
the estimated PFI from Eq. (6).

vGEpxjq “ yGEpf̂ ,Djq ´yGEpf̂ ,Dq “ zPFI f̂ ,j “ vPFIpxjq

We can therefore refer to vGEpxjq as vPFIpxjq and regard the SFIMP as an
extension to the PFI [4].

6 Extending the Framework to Importance Computations

Variance-based importance methods measure the variance of feature effect es-
timates, which we already demonstrated to be based on the SIPA framework.
Therefore, we simply add a variance computation during the aggregation stage.
Performance-based techniques measure changes in loss, i.e., there are two possi-
ble modifications. First, we predict on non-intervened or intervened data (pre-
diction stage). Second, we aggregate predictions to the loss (aggregation stage).
In Fig. 2, we demonstrate how feature importance computations are based on
the same work stages as feature effect computations.

7 Conclusion

In recent years, various model-agnostic interpretation methods have been de-
veloped. Due to different notations and terminology it is difficult to see how
they are related. By deconstructing them into sequential work stages, one dis-
covers striking similarities in their methodologies. We first provided a survey on
model-agnostic interpretation methods and then presented the generalized SIPA
framework of sequential work stages. First, there is a sampling stage to reduce
computational costs. Second, we intervene in the data in order to change the
predictions made by the black box model. Third, we predict on intervened or
non-intervened data. Fourth, we aggregate the predictions. We embedded mul-
tiple methods to estimate the effect (ICE and PD, ALEs, MEs, Shapley values
and LIME) and importance (FIRM, PFI, ICI and PI and the SFIMP) of fea-
tures into the framework. By pointing out how all demonstrated techniques are
based on a single methodology, we hope to work towards a more unified view
on model-agnostic interpretations and to establish a common ground to discuss
them in future work.
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draw a random sample from test data

ICE permutations:

( xS
(1), x ∖ S

(i)
)

( xS
(2) , x ∖ S

(i)
)

...
(x S

(n) , x ∖S
( i)

)

Sampling

Intervention

Aggregation

predict with observed data predict with intervened data

estimate loss

 take difference between losses

average of PI

PFI

standard deviation of PD

compute observation-wise loss

Prediction

i-th ICI

PI

for each i-th observation

i-th ICE

PD

average of PI

FIRM

 compute pointwise average

for each i-th observation

(xK∪{ j }
(i ) , x ∖(K∪{ j })

(i)
) (xK

(i ), x ∖K
(i )

)

average observation-wise
losses to GE estimate

SFIMP

take difference to get
marginal contribution to GE

sum up weighted
marginal contributions

 
create set of all possible
feature index combinations
without j

 
for each combination 
of indices K

Fig. 2. We demonstrate how importance computations are based on the same work
stages as effect computations. In the same way as in Fig. 1, we assign the computational
steps of all techniques to the corresponding generalized SIPA work stages. Variance-
based importance measures such as FIRM measure the variance of a feature effect,
i.e., we add a variance computation during the aggregation stage. Performance-based
importance measures such as ICI, PI, PFI and SFIMP are based on computing changes
in loss after the intervention stage. For reasons of simplicity, we do not differentiate
between the actual functions or values and their estimates.
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18. Rudin, C., Ertekin, Ş.: Learning customized and optimized lists of rules with math-
ematical programming. Mathematical Programming Computation 10(4), 659–702
(Dec 2018)
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Model-agnostic Feature Importance and Effects with
Dependent Features–A Conditional Subgroup Approach
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Abstract The interpretation of feature importance in machine learning mod-
els is challenging when features are dependent. Permutation feature impor-
tance (PFI) ignores such dependencies, which can cause misleading interpre-
tations due to extrapolation. A possible remedy is more advanced conditional
PFI approaches that enable the assessment of feature importance conditional
on all other features. Due to this shift in perspective and in order to en-
able correct interpretations, it is therefore important that the conditioning
is transparent and humanly comprehensible. In this paper, we propose a new
sampling mechanism for the conditional distribution based on permutations in
conditional subgroups. As these subgroups are constructed using decision trees
(transformation trees), the conditioning becomes inherently interpretable. This
not only provides a simple and effective estimator of conditional PFI, but also
local PFI estimates within the subgroups. In addition, we apply the conditional
subgroups approach to partial dependence plots (PDP), a popular method for
describing feature effects that can also suffer from extrapolation when fea-
tures are dependent and interactions are present in the model. We show that
PFI and PDP based on conditional subgroups often outperform methods such
as conditional PFI based on knockoffs, or accumulated local effect plots. Fur-
thermore, our approach allows for a more fine-grained interpretation of feature
effects and importance within the conditional subgroups.
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Fig. 1 Misleading PDP. Simulation of features x1 ∼ U(0, 1), x2 ∼ U(0, 1− x1) and a non-

additive prediction model f̂(x) = exp(x1 +x2). Left: Scatter plot with 100 data points and

the prediction surface of f̂ . Right: PDP of x1. The grey dots are observed (x1, f̂(x1, x2))-
pairs. For x1 > 0.75 the PDP suggests higher average predictions than the maximum pre-
diction observed in the data.

Keywords Interpretable Machine Learning, Explainable AI, Permutation
Feature Importance, Partial Dependence Plot

1 Introduction

Many model-agnostic machine learning (ML) interpretation methods (see Mol-
nar (2019); Guidotti et al. (2018) for an overview) are based on making pre-
dictions on perturbed input features, such as permutations of features. The
partial dependence plot (PDP) (Friedman et al., 1991) visualizes how changing
a feature affects the prediction on average. The permutation feature impor-
tance (PFI) (Breiman, 2001; Fisher et al., 2019) quantifies the importance of
a feature as the reduction in model performance after permuting a feature.
PDP and PFI change feature values without conditioning on the remaining
features. If features are dependent, such changes can lead to extrapolation to
areas of the feature space with low density. For non-additive models such as
tree-based methods or neural networks, extrapolation can result in misleading
interpretations (Strobl et al., 2008; Toloşi and Lengauer, 2011; Hooker and
Mentch, 2019; Molnar et al., 2020). An illustration of the problem is given in
Figure 1.

Extrapolation can be avoided by sampling a feature conditional on all
other features and thereby preserving the joint distribution (Strobl et al.,
2008; Hooker and Mentch, 2019). This yields conditional variants of the PDP
and PFI that have to be interpreted differently. While the interpretation of
marginal PDP and PFI is independent of the other features, the interpretation
of conditional PDP and PFI is conditional on other features.
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Importance and Effects with Dependent Features 3

Figure 2 shows how conditional PFI can be misinterpreted: Features X1

and X3 have the same coefficient in a linear model and the same marginal PFI,
but X1 has a lower conditional PFI since it is correlated with feature X2. The
conditional PFI must be interpreted as the additional, unique contribution
of a feature given all features we conditioned on (König et al., 2020; Fisher
et al., 2019). It therefore has also been called “partial importance” (Debeer
and Strobl, 2020). If interpreted incorrectly, this can lead to the wrong conclu-
sion that, for example, two strongly dependent features are irrelevant for the
prediction model (Figure 2). The correct conclusion would be that a feature
is less relevant given knowledge of the dependent feature.

In Figure 2, the conditional PDP shows a positive effect for a feature that
has a negative coefficient in a linear regression model. The discrepancy is
due to correlation of the feature with another feature with a large positive
coefficient. The conditional effect of a feature is a mix of its marginal effect
and the marginal effects of all dependent features (Hooker and Mentch, 2019;
Apley and Zhu, 2016). While conditional PFI might assign a low importance
to a feature on which the model relied heavily, the conditional PDP has the
opposite pitfall: it can show an effect for a feature that was not used by the
model. This interpretation might be undesirable and is similar to the omitted
variable bias phenomenon, which also happens in Figure 2: regressing f̂ from
X2, while ignoring X1 (Apley and Zhu, 2016).

The interpretation of conditional PFI and PDP requires knowledge of the
dependence structure between the feature of interest and the other features.
Such knowledge of dependence structures would help explain differences be-
tween a feature’s marginal and conditional PFI and break down the condi-
tional PDP into the effect of the feature of interest and that of the dependent
features. However, state-of-the-art conditional sampling mechanisms such as
knockoffs (Barber et al., 2015; Candes et al., 2018; Watson and Wright, 2019)
do not provide a readily interpretable conditioning.

Our contributions are the following. We propose the conditional subgroup
PDPs (cs-PDPs) and PFIs (cs-PFIs). Both are based on conditional subgroup
permutation (cs-permutation), a sampling method for the conditional distribu-
tion. Standard (i.e., marginal) PDPs and PFIs are computed and interpreted
within subgroups of the data, enabling a local interpretation of feature effect
and importance while handling the problem of extrapolation. We construct the
subgroups for a feature by training a decision tree in which the distribution of
the feature becomes less dependent on other features. The tree structure allows
interpretation of how other features influence the effect and importance of the
feature at hand. We show that the conditional PFI estimate based on cs-PFIs
can recover the ground truth in simulations and often outperforms related
approaches. In addition, we study how well different conditional PDP/PFI
approaches retain the joint distribution of data sets from the OpenML-CC18
benchmarking suite (Bischl et al., 2019) and show that cs-permutation achieves
state-of-the-art data fidelity. We demonstrate that the cs-PDPs have a high
model fidelity, that is, they are closer to the model prediction than other fea-
ture effect methods. By inspecting the cs-PFIs and cs-PDPs in combination

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
Subgroup Approach

104



4 Christoph Molnar et al.

−4

−2

0

2

−2 0 2
Feature x2

A
ve

ra
ge

 p
re

di
ct

io
n

cond. PDP PDP

x3

x2

x1

0.0 0.3 0.6 0.9

Importance

conditional marginal

Fig. 2 Simulation of a linear model f̂(x) = x1 − 0.1 · x2 + x3 with x1, x2, x3 ∼ N(0, 1) and
a correlation of 0.978 between x1 and x2. Left: PDP and conditional PDP for feature x2.
The conditional PDP mixes the effects of x1 and x2 and thus shows a positive effect. Right:
PFI and conditional PFI of x1, x2 and x3. The PFI of x1 decreases when x1 is permuted
conditional on x2 and vice versa.

with the respective subgroup descriptions, insights into the model and the
dependence structure of the data are possible. We show how we can trade
off human-intelligibility of the subgroups for extrapolation by choosing the
granularity of the grouping. In an application, we illustrate how cs-PDPs and
cs-PFIs can reveal new insights into the ML model and the data.

2 Notation and Background

We consider ML prediction functions f̂ : Rp 7→ R, where f̂(x) is a model
prediction and x ∈ Rp is a p-dimensional feature vector. We use xj ∈ Rn
to refer to an observed feature (vector) and Xj to refer to the j-th feature
as a random variable. With x−j we refer to the complementary feature space
x{1,...,p}\{j} ∈ Rn×(p−1) and with X−j to the corresponding random variables.

We refer to the value of the j-th feature from the i-th instance as x
(i)
j and to

the tuples D = {
(
x(i), y(i)

)
}ni=1 as data.

The Permutation Feature Importance (PFI) is defined as the increase
in loss when feature Xj is permuted:

PFIj = E[L(Y, f̂(X̃j , X−j))]− E[L(Y, f̂(Xj , X−j))] (1)

If the random variable X̃j has the same marginal distribution as Xj (e.g.,

permutation), the estimate yields the marginal PFI. If X̃j follows the condi-

tional distribution X̃j ∼ Xj |X−j , we speak of the conditional PFI. The PFI
is estimated with the following formula:

P̂F Ij =
1

n

n∑

i=1

(
1

M

M∑

m=1

L̃m(i) − L(i))

)
(2)

105



Importance and Effects with Dependent Features 5

where L(i) = L(y(i), f̂(x(i))) is the loss for the i-th observation and L̃(i) =

L(y(i), f̂(x̃
(i)
j ,x

(i)
−j)) is the loss where x

(i)
j was replaced by the m-th sample

x̃
m(i)
j . The latter refers to the i-th feature value obtained by a sample of xj .

The sample can be repeated M -times for a more stable estimation of L̃(i).
Numerous variations of this formulation exist. Breiman (2001) proposed the
PFI for random forests, which is computed from the out-of-bag samples of
individual trees. Subsequently, Fisher et al. (2019) introduced a model-agnostic
PFI version.

The marginal Partial Dependence Plot (PDP) (Friedman et al., 1991)
describes the average effect of the j-th feature on the prediction.

PDPj(x) = E[f̂(x,X−j)], (3)

If the expectation is conditional on Xj , E[f̂(x,X−j)|Xj = x], we speak of the
conditional PDP. The marginal PDP evaluated at feature value x is estimated
using Monte Carlo integration:

P̂DP j(x) =
1

n

n∑

i=1

f̂(x,x
(i)
−j) (4)

3 Related Work

In this section, we review conditional variants of PDP and PFI and other
approaches that try to avoid extrapolation.

3.1 Related Work on Conditional PDP

The marginal plot (M-Plot) (Apley and Zhu, 2016) averages the predictions
locally on the feature grid and mixes effects of dependent features.

Hooker (2007) proposed a functional ANOVA decomposition with hierar-
chically orthogonal components, based on integration using the joint distribu-
tion of the data, which in practice is difficult to estimate.

Accumulated Local Effect (ALE) plots by Apley and Zhu (2016) reduce
extrapolation by accumulating the finite differences computed within intervals
of the feature of interest. By definition, interpretations of ALE plots are thus
only valid locally within the intervals. Furthermore, there is no straightforward
approach to derive ALE plots for categorical features, since ALE requires
ordered feature values. Our proposed approach can handle categorical features.

Another PDP variant based on stratification was proposed by Parr and
Wilson (2019). However, this stratified PDP describes only the data and is
independent of the model.

Individual Conditional Expectation (ICE) curves by Goldstein et al. (2015)
can be used to visualize the interactions underlying a PDP, but they also suf-
fer from the extrapolation problem. The “conditional” in ICE refers to condi-
tioning on individual observations and not on certain features. As a solution,

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
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Hooker and Mentch (2019) suggested to visually highlight the areas of the ICE
curves in which the feature combinations are more likely.

3.2 Related Work on Conditional PFI

We review approaches that modify the PFI (Breiman, 2001; Fisher et al., 2019)
in presence of dependent features by using a conditional sampling strategy.

Strobl et al. (2008) proposed the conditional variable importance for ran-
dom forests (CVIRF), which is a conditional PFI variant of Breiman (2001).
CVIRF was further analyzed and extended by Debeer and Strobl (2020). Both
CVIRF and our approach rely on permutations based on partitions of decision
trees. However, there are fundamental differences. CVIRF is specifically devel-
oped for random forests and relies on the splits of the underlying individual
trees of the random forest for the conditional sampling. In contrast, our cs-PFI
approach trains decision trees for each feature using X−j as features and Xj

as the target. Therefore, the subgroups for each feature are constructed from
their conditional distributions (conditional on the other features) in a separate
step, which is decoupled from the machine learning model to be interpreted.
Our cs-PFI approach is model-agnostic, independent of the target to predict
and not specific to random forests.

Hooker and Mentch (2019) made a general suggestion to replace feature
values by estimates of E[Xj |X−j ].

Fisher et al. (2019) suggested to use matching and imputation techniques
to generate samples from the conditional distribution. If X−j has few unique

combinations, they suggested to group x
(i)
j by unique x

(i)
−j combinations and

permute them for these fixed groups. For discrete and low-dimensional fea-
ture spaces, they suggest non-parametric matching and weighting methods
to replace Xj values. For continuous or high-dimensional data, they suggest
imputing Xj with E[Xj |X−j ] and adding residuals (under the assumption of
homogeneous residuals). Our approach using permutation in subgroups can
be seen as a model-driven, binary weighting approach extended to continuous
features.

Knockoffs (Candes et al., 2018) are random variables which are “copies”
of the original features that preserve the joint distribution but are otherwise
independent of the prediction target. Knockoffs can be used to replace feature
values for conditional feature importance computation. Watson and Wright
(2019) developed a testing framework for PFI based on knockoff samplers
such as Model-X knockoffs (Candes et al., 2018). Our approach is complemen-
tary since Watson and Wright (2019) is agnostic to the sampling strategy that
is used. Others have proposed to use generative adversarial networks for gen-
erating knockoffs (Romano et al., 2019). Knockoffs are not transparent with
respect to how they condition on the features, while our approach creates
interpretable subgroups.

Conditional importance approaches based on model retraining have been
proposed (Hooker and Mentch, 2019; Lei et al., 2018; Gregorutti et al., 2017).
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Sampling Strategy Used/Suggested By Assumptions

No intervention on Xj Drop-and-Refit,
LOCO (Lei et al., 2018)

Permute Xj Marginal PFI (Breiman,
2001; Fisher et al., 2019),
PDP (Friedman et al., 1991)

Xj |= X−j

Replace Xj by knockoff
Zj with (Zj , X−j) ∼
(Xj , X−j) and Zj |= Y

Knockoffs (Candes et al., 2018),
CPI (Watson and Wright, 2019)

(Xj , X−j) ∼ N

Move each x
(i)
j to left and

right interval bounds
ALE (Apley and Zhu, 2016) Xj |= X−j in inter-

vals
Permute Xj in subgroups cs-PFI, cs-PDP Xj |= X−j in sub-

groups
Permute Xj in random for-
est tree nodes

CVIRF (Strobl et al., 2008; Debeer
and Strobl, 2020)

Xj |= X−j cond.
on tree splits in
X−j to predict Y

Impute Xj from X−j (Fisher et al., 2019) Homogeneous
residuals

Table 1 Sampling strategies for model-agnostic interpretation techniques.

Retraining the model can be expensive, and answers a fundamentally different
question, often related to feature selection and not based on a fixed set of
features. Hence, we focus on approaches that compute conditional PFI for a
fixed model without retraining.

None of the existing approaches makes the dependence structures between
the features explicit. It is unclear which of the features in X−j influenced the
replacement of Xj the most and how. Furthermore, little attention has been
paid on evaluating how well different sampling strategies address the extrapo-
lation problem. We address this gap with an extensive data fidelity experiment
on the OpenML-CC18 benchmarking suite. To the best of our knowledge, our
paper is also the first to conduct experiments using ground truth for the con-
ditional PFI. Our approach works with any type of feature, be it categori-
cal, numerical, ordinal and so on, since we rely on decision trees to find the
subgroups used for conditioning. The differences between the different (con-
ditional) PDP and PFI approaches ultimately boil down to how they sample
from the conditional distribution. Table 1 lists different sampling strategies of
model-agnostic interpretation methods and summarizes their assumptions to
preserve the joint distribution.

4 Conditional Subgroups

We suggest approaching the dependent feature problem by constructing an
interpretable grouping Gj such that the feature of interest Xj becomes less
dependent on remaining features X−j within each subgroup. In the best case
the features become independent: (Xj ⊥ X−j)|Gj . Assuming that we find
a grouping in which (Xj ⊥ X−j)|Gj holds, sampling from the group-wise
marginal distribution removes extrapolation (see Figure 3) and within each

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
Subgroup Approach
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Fig. 3 Features X2 ∼ U(0, 1) and X1 ∼ N(0, 1), if X2 < 0.5, else X1 ∼ N(4, 4) (black dots).
Top left: The crosses are permutations of X1. For X2 < 0.5, the permutation extrapolates.
Bottom left: Marginal density of X1. Top right: Permuting X1 within subgroups based
on X2 (X2 < 0.5 and X2 ≥ 0.5) reduces extrapolation. Bottom right: Densities of X1

conditional on the subgroups.

group, the samples from the marginal and the conditional distribution would
coincide. Such groupings exist when, for example, the features in X−j are cat-
egorical, or when the conditional distribution of Xj only depends on discrete
changes in features X−j . Such a grouping would consequently enable (1) the
application of standard PFI and PDP within each group without extrapolation
and (2) sampling from the global conditional distribution P (Xj |X−j) using
group-wise permutation and aggregation. With our approach we exploit these
properties to derive both a group-wise marginal interpretation and, for the
PFI, a global conditional interpretation. Even when such a discrete grouping
does not exist, e.g., when the true dependence is linear, the cs-permutation
reduces extrapolation, see Figure 4. Moreover, an accurate interpretation re-
quires the groupings to be human-intelligible. We can gain insight into how the
model behaves within specific subgroups which is not possible with approaches
that directly sample Xj conditional on all features X−j (Candes et al., 2018;
Strobl et al., 2008; Aas et al., 2019; Fisher et al., 2019; Watson and Wright,
2019).

For our approach, any algorithm can be used that splits the data in X−j
so that the distribution of Xj becomes more homogeneous within a group
and more heterogeneous between groups. We consider decision tree algorithms
for this task, which predict Xj based on splits in X−j . Decision tree algo-
rithms directly or indirectly optimize splits for heterogeneity of some aspects
of the distribution of Xj in the splits. The partitions in a decision tree can
be described by decision rules that lead to that terminal leaf. We leverage
this partitioning to construct an interpretable grouping Gkj based on random
variable Gj for a specific feature Xj . The new variable can be calculated by
assigning every observation the indicator of the partition that it lies in (mean-
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ing for observation i with x
(i)
−j ∈ Gkj the group variable’s value is defined as

g
(i)
j := k).

Transformation trees (trtr) (Hothorn and Zeileis, 2017) are able to
model the conditional distribution of a variable. This approach partitions the
feature space so that the distribution of the target (here Xj) within the result-
ing subgroups Gkj is homogeneous, which means that the group-wise parame-
terization of the modeled distribution is independent of X−j . Transformation
trees directly model the target’s distribution P(Xj ≤ x) = FZ(h(x)), where
FZ is the chosen (cumulative) distribution function and h a monotone in-
creasing transformation function (hence the name transformation trees). The
transformation function is defined as a(y)Tθ where a : Xj 7→ Rk is a basis
function of polynomials or splines. The task of estimating the distribution is
reduced to estimating θ, and the trees are split based on hypothesis tests for
differences in θ given X−j , and therefore differences in the distribution of Xj .
For more detailed explanations of transformation trees please refer to Hothorn
and Zeileis (2017).

In contrast, a simpler approach would be to use classification and re-
gression trees (CART) (Breiman et al., 1984), which, for regression, min-
imizes the variance within nodes, effectively finding partitions with different
means in the distribution ofXj . However, CART’s split criterion only considers
differences in the expectation of the distribution of Xj given X−j : E[Xj |X−j ].
This means CART could only make Xj and X−j independent if the distribu-
tion of Xj only depends in its expectation on X−j (and if the dependence can
be modeled by partitioning the data). Any differences in higher moments of
the distribution of Xj such as the variance of Xj |X−j cannot be detected.

We evaluated both trtr which are theoretically well equipped for splitting
distributions and CART, which are established and well-studied. For the re-
mainder of this paper, we have set the default minimum number of observations
in a node to 30 for both approaches. For the transformation trees, we used the
Normal distribution as target distribution and we used Bernstein polynomials
of degree five for the transformation function. Higher-order polynomials do
not seem to increase model fit further (Hothorn, 2018).

We denote the subgroups by Gkj ⊂ Rp−1, where k ∈ {1, . . . ,Kj} is the
k-th subgroup for feature j, with Kj groups in total for the j-th feature. The

subgroups per feature are disjoint: Glj ∩ Gkj = ∅,∀l 6= k and
⋃K
k=1 Gkj = Rp−1.

Let (ykj ,x
k
j ) be a subset of (y,x) that refers to the data subset belonging to

the subgroup Gkj . Each subgroup can be described by the decision path that
leads to the respective terminal node.

4.1 Remarks

4.1.1 Continuous Dependencies

For conditional independence Xj ⊥ X−j |Gkj to hold, the chosen decision tree
approach has to capture the (potentially complex) dependencies between Xj
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Fig. 4 Left: Simulation of features X1 ∼ N(0, 1) and X2 ∼ N(0, 1) with a covariance of 0.9.
Middle: Unconditional permutation extrapolates strongly. Right: Permuting on partitions
found by CART (predicting X2 from X1) has greatly reduces extrapolation, but cannot get
rid of it completely. x1 and x2 remain correlated in the partitions.

and X−j . CART can only capture differences in the expected value of Xj |X−j
but are insensitive to changes in, for example, the variance. Transformation
trees are in principle agnostic to the specified distribution and the default
transformation family of distributions is very general, as empirical results sug-
gest (Hothorn and Zeileis, 2017). However, the approach is based on the as-
sumption that the dependence can be modeled with a discrete grouping. For
example, in the case of linear Gaussian dependencies, the corresponding opti-
mal variable would be linear Gaussian itself, and would be in conflict with our
proposed interpretable grouping approach. Even in these settings the approach
allows an approximation of the conditional distribution. In the case of simple
linear Gaussian dependencies, partitioning the feature space will still reduce
extrapolation. But we never get rid of it completely, unless there are only
individual data points left in each partition, see Figure 4.

4.1.2 Sparse Subgroups

Fewer subgroups are generally desirable for two reasons: (1) for a good approx-
imation of the marginal distribution within a subgroup, a sufficient number of
observations per group is required, which might lead to fewer subgroups, and
(2) a large number of subgroups leads to more complex groups, which reduces
their human-intelligibility and therefore forfeits the added value of the local,
subgroup-wise interpretations. As we rely on decision trees, we can adjust the
granularity of the grouping using hyperparameters such as the maximum tree
depth. By controlling the maximum tree depth, we can control the trade-off
between the depth of the tree (and hence its interpretability) and the homo-
geneity of the distribution within the subgroups.
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4.2 Conditional Subgroup Permutation Feature Importance (cs-PFI)

We estimate the cs-PFI of feature Xj within a subgroup Gkj as:

PFIkj =
1

nk

∑

i:x(i)∈Gk
j

(
1

M

M∑

m=1

L(y(i), f̂(x̃
m(i)
j , x

(i)
−j))− L(y(i), f̂(x(i)))

)
, (5)

where x̃
m(i)
j refers to a feature value obtained from the m-th permutation of xj

within the subgroup kj . This estimation is exactly the same as the marginal
PFI (Equation 2), except that it only includes observations from the given
subgroup. Algorithm 1 describes the estimation of the cs-PFIs for a given
feature on unseen data.

Algorithm 1: Estimate cs-PFI
Input: Model f ; data Dtrain, Dtest; loss L; feature j; no. permutations M

1 Train tree Tj with target Xj and features X−j using Dtrain

2 Compute subgroups Gkj for Dtest based on terminal nodes of Tj , k ∈ {1, . . . ,Kj}
3 for k ∈ {1, . . . ,Kj} do
4 Lorig := 1

nk

∑
i:x(i)∈Gkj

L(y(i), f̂(x(i)))

5 for m ∈ {1, . . . ,M} do
6 Generate x̃m

j by permuting feature values xj within subgroup Gkj
7 Lm

perm := 1
nk

∑
i:x(i)∈Gkj

L(y(i), f̂(x̃
m(i)
j ,x

(i)
−j))

8 cs-PFIkj = 1
M

∑M
m=1 L

m
perm − Lorig

9 cs-PFIj = 1
n

∑Kj

k=1 n
kPFIkj

The algorithm has two outcomes: We get local importance values for feature
Xj for each subgroup (cs-PFIkj ; Algorithm 1, line 8) and a global conditional
feature importance (cs-PFIj ; Algorithm 1, line 9). The latter is equivalent
to the weighted average of subgroup importances regarding the number of
observations within each subgroup (see proof in Appendix A).

cs-PFIj =
1

n

Kj∑

k=1

nkPFIkj

The cs-PFIs needs the same amount of model evaluations as the PFI
(O(nM)). On top of that comes the cost for training the respective decision
trees and making predictions to assign a subgroup to each observation.

Theorem 1 When feature Xj is independent of features X−j for a given

dataset D, each cs-PFIkj has the same expectation as the marginal PFI, and
an n/nk-times larger variance, where n and nk are the number of observations
in the data and the subgroup Gkj .

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
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The proof of Theorem 1 is shown in Appendix B. Theorem 1 has the prac-
tical implication that even in the case of applying cs-PFI to an independent
feature, we will retrieve the marginal PFI, and not introduce any problem-
atic interpretations. Equivalence in expectation and higher variance under the
independence of Xj and X−j holds true even if the partitions Gkj would be
randomly chosen. Theorem 1 has further consequences regarding overfitting:
Assuming a node has already reached independence between Xj and X−j ,
then further splitting the tree based on noise will not change the expected
cs-PFIs.

4.3 Conditional Subgroup Partial Dependence Plots (cs-PDPs)

The conditional PDP has a different interpretation than the marginal PDP,
as the motivating example in Figure 2 showed: The conditional PDP can be
interpreted as the effect of a feature on the prediction, given that all other
features would change according to the joint distribution. This violates a de-
sirable property that the effect of features that were not used by the model
should have a zero effect curve. This poses a dilemna for dependent features:
Either extrapolate using the marginal PDP, or use the conditional PDP with
undesirable properties for interpretation. Our proposed cs-PDPs reduces ex-
trapolation while allowing a marginal interpretation within each subgroup. We
compute the cs-PDPkj for each subgroup Gkj using the marginal PDP formula
in Equation 4.

cs-PDPkj (x) =
1

nk

∑

i:x(i)∈Gk
j

f̂(x, x
(i)
−j)

This results in multiple cs-PDPs per feature, which can be displayed together
in the same plot as in Figure 12. As shown in Figure 5, even features that do not
contribute to the prediction at all can have a conditional PDP different from
zero. We therefore argue that an aggregation of the cs-PDPs to the conditional
PDP is not meaningful for model interpretation, and we suggest to plot the
group-wise curves. For the visualization of the cs-PDPs, we suggest to plot
the PDPs similar to boxplots, where the dense center quartiles are indicated
with a bold line (see Figure 6). We restrict each cs-PDPkj to the interval

[min(xj),max(xj)], with xj = (x
(1)
j , · · · , x(n

k
j )

j ).
Equivalently to PFI, the subgroup PDPs approximate the true marginal

PDP even if the features are independent.

Theorem 2 When feature Xj is independent of features X−j for a given

dataset D, each cs-PDPkj has the same expectation as the marginal PDP, and
an n/nk-times larger variance, where n and nk are the number of observations
in the data and the subgroup Gkj .

The proof of Theorem 2 is shown in Appendix C. Theorem 2 has the same
practical implications as Theorem 1: Even if the features are independent, we
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impression that X2 has an influence on the target. The cs-PDPs help in this regard, as the
effects due to X1 (changes in intercept) are clearly separated from the effect that X2 has
on the target (slope of the cs-PDPs), which is zero. Unlike the marginal PDP, the cs-PDPs
reveals that for increasing X2 we expect that the prediction increases due to the correlation
between X1 and X2.
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Fig. 6 Left: Marginal PDP. Bottom right: Boxplot showing the distribution of feature
X. Top right: PDP with boxplot-like emphasis. In the x-range, the PDP is drawn from
±1.58 · IQR/√n, , where IQR is the range between the 25% and 75% quantile. If this range
exceeds [min(xj),max(xj)], the PDP is capped. Outliers are drawn as points. The PDP is
bold between the 25% and 75% quantiles.

will, in expectation, get the marginal PDPs. And when trees are grown deeper
than needed, in expectation the cs-PDPs will yield the same curve.

Both the PDP and the set of cs-PDPs need O(nM) evaluations, since∑Kj

k=1 n
k = n (and worst case O(n2) if evaluated at each x

(i)
j value). Again,

there is an additional cost for training the respective decision trees and making
predictions.

5 Training Conditional Sampling Approaches

To ensure that sampling approaches are not overfitting, we suggest to separate
training and sampling, where training covers all estimation steps that involve
data. For this purpose, we refer to the training data with Dtrain and to the
data for importance computation with Dtest. This section both describes how

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
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we compared the sampling approaches in the following chapters and serves as
a general recommendation for how to use the sampling approaches.

For our cs-permutation, we trained the CART / transformation trees on
Dtrain and permuted Xj of Dtest within the terminal nodes of the tree. For
CVIRF (Strobl et al., 2008; Debeer and Strobl, 2020), which is specific to
random forests, we trained the random forest on Dtrain to predict the target
y and permuted Xj of Dtest within the terminal nodes. For Model-X knock-
offs (Candes et al., 2018), we fitted the second-order knockoffs on Dtrain and
replaced Xj in Dtest with its knockoffs. For the imputation approach (Fisher
et al., 2019), we trained a random forest on Dtrain to predict Xj from X−j ,
and replaced values of Xj in Dtest with their random forest predictions plus a
random residual. For the interval-based sampling (Apley and Zhu, 2016), we
computed quantiles of Xj using Dtrain and perturbed Xj in Dtest by moving
each observation once to the left and once to the right border of the respec-
tive intervals. The marginal permutation (PFI, PDP) required no training, we
permuted (i.e., shuffled) the feature Xj in Dtest.

6 Conditional PFI Ground Truth Simulation

We compared our cs-PFI approach using CART (tree cart) and transformation
trees (tree trtr), CVIRF (Strobl et al., 2008; Debeer and Strobl, 2020), Model-
X knockoffs (ko) (Candes et al., 2018) and the imputation approach (impute
rf) (Fisher et al., 2019) in ground truth simulations. We simulated the fol-

lowing data-generating process: y(i) = f(x(i)) = x
(i)
1 · x

(i)
2 +

∑10
j=1 x

(i)
j + ε(i),

where ε(i) ∼ N(0, σε). All features, except feature X1 followed a Gaussian dis-
tribution: Xj ∼ N(0, 1). Feature X1 was simulated as a function of the other

features plus noise: x
(i)
1 = g(x

(i)
−1) + εx. We simulated the following scenarios

by changing g and εx:

– In the independent scenario, X1 did not depend on any feature: g(x
(i)
−1) =

0, εx ∼ N(0, 1). This scenario served as a test how the different conditional
PFI approaches handle the edge case of independence.

– The linear scenario introduces a strong correlation of X1 with feature X2:

g(x
(i)
−1) = x

(i)
2 , εx ∼ N(0, 1).

– In the non-linear scenario, we simulated X1 as a non-linear function of

multiple features: g(x
(i)
−1) = 3 ·1(x

(i)
2 > 0)−3 ·1(x

(i)
2 ≤ 0) ·1(x

(i)
3 > 0). Here

also the variance of εx ∼ N(0, σx) is a function of x: σx(x(i)) = 1(x
(i)
2 >

0) + 2 · 1(x(i) ≤ 0) · 1(x
(i)
3 > 0) + 5 · 1(x

(i)
2 ≤ 0) · 1(x

(i)
3 ≤ 0).

– For the multiple linear dependencies scenario, we chose X1 to depend

on many features: g(x
(i)
−1) =

∑10
j=2 x

(i)
j , εx ∼ N(0, 5).

For each scenario, we varied the number of sampled data points n ∈
{300, 3000} and the number of features p ∈ {9, 90}. To “train” each of the
cPFI methods, we used 2/3 · n (200 or 2000) data points and the rest (100
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/ 1000) to compute the cPFI. The experiment was repeated 1000 times. We
examined two settings.

– In setting (I), we assumed that the model recovered the true model f̂ = f .
– In setting (II), we trained a random forest with 100 trees (Breiman, 2001).

In both settings, the true conditional distribution ofX1 given the remaining
features is known (function g and error distribution is known). Therefore we
can compute the ground truth conditional PFI, as defined in Equation 2. We
generated the samples of X1 according to g to get the X̃1 values and compute
the increase in loss. The conditonal PFIs differed in settings (I) and (II) since

in (I) we used the true f , and in (II) the trained random forest f̂ .

6.1 Conditional PFI Ground Truth Results

For setting (I), the mean squared errors between the estimated conditional
PFIs and the ground truth are displayed in Table 2, and the distributions
of conditional PFI estimates in Figure 7. In the independent scenario, where
conditional and marginal PFI are equal, all methods performed equally well,
except in the low n, high p scenario, where the knockoffs sometimes failed. As
expected, the variance was higher for all methods when n = 300. In the lin-
ear scenario, the marginal PFI was clearly different from the conditional PFI.
There was no clear best performing conditional PFI approach, as the results
differ depending on training size n and number of features p. For low n and low
p, knockoffs performed best. For high p, regardless of n, the cs-permutation
approaches worked best, which might be due to the feature selection mech-
anism inherent to trees. The multiple linear dependencies scenario was the
only scenario in which the cs-PFI approach was consistently outperformed by
the other methods. Decision trees already need multiple splits for recovering
linear relationships, and in this scenario, multiple linear relationships had to
be recovered. Imputation with random forest worked well when multiple linear
dependencies are present. For knockoffs, the results were mixed. As expected,
the cs-PFI approach worked well in the non-linear scenario, and outperformed
all other approaches. Knockoffs and imputation with random forests both over-
estimated the conditional PFI (except for knockoffs for n = 300 and p = 90).
In addition to this bias, they had a larger variance compared to the cs-PFI
approaches.

Generally, the transformation trees performed equal to or outperformed
CART across all scenarios, except for the multiple linear dependencies sce-
nario. Our cs-PFI approaches worked well in all scenarios, except when mul-
tiple (linear) dependencies were present. Even for a single linear dependence,
the cs-PFI approaches were on par with knockoffs and imputation, and clearly
outperformed both when the relationship was more complex.

In setting (II), a random forest was analyzed, which allowed us to include
the conditional variable importance for random forests (CVIRF) by Strobl
et al. (2008); Debeer and Strobl (2020) in the benchmark. The MSEs are

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
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Table 2 MSE comparing estimated and true conditional PFI (scenario I). Legend: impute
rf: Imputation with a random forest, ko: Model-X knockoffs, mPFI: (marginal) PFI, tree
cart: cs-permutation based on CART, tree trtr: cs-permutation based on transformation
trees.

setting cs-PFI (cart) cs-PFI (trtr) impute rf ko mPFI

independent
n=300, p=10 1.33 1.35 1.67 1.47 1.39
n=300, p=90 1.50 1.29 1.46 5.81 1.31
n=3000, p=10 0.14 0.15 0.16 0.13 0.15
n=3000, p=90 0.15 0.14 0.14 0.18 0.13

linear
n=300, p=10 4.62 4.30 3.64 2.03 44.83
n=300, p=90 5.55 5.26 17.53 11.63 45.36
n=3000, p=10 0.40 0.26 0.26 0.63 37.40
n=3000, p=90 0.45 0.31 3.55 0.38 36.32

multi. lin.
n=300, p=10 2443.67 2623.54 1276.41 1583.69 2739.83
n=300, p=90 2574.54 2896.47 2141.01 6607.73 2988.68
n=3000, p=10 1031.83 900.68 140.98 810.78 1548.37
n=3000, p=90 1075.95 1041.10 438.25 185.13 1599.59

non-linear
n=300, p=10 22.00 17.76 265.73 668.34 1204.17
n=300, p=90 19.99 19.81 504.53 131.77 1248.74
n=3000, p=10 1.18 1.00 144.77 626.80 1156.32
n=3000, p=90 1.17 1.13 206.01 579.02 1136.83

displayed in Appendix D, Table 7, and the distribution of conditional PFI
estimates in Appendix D in Figure 14. The results for all other approaches are
comparable to setting (I). For the low n settings, CVIRF worked as well as
the other approaches in the independent scenario. It outperformed the other
approaches in the linear scenario and the multiple linear scenario (when n was
small). The CVIRF approach consistently underestimated the conditional PFI
in all scenarios with high n, even in the independent scenario. Therefore, we
would recommend to analyze the conditional PFI for random forests using cs-
PFI for lower dimensional dependence structures, and imputation for multiple
(linear) dependencies.

7 Trading Interpretability for Accuracy

In an additional experiment, we examined the trade-off between the depth of
the trees and the accuracy with which we recover the true conditional PFI.
For scenario (I), we trained decision trees with different maximal depths (from
1 to 10) and analyzed how the resulting number of subgroups influenced the
conditional PFI estimate. The experiment was repeated 1000 times. Figure
8 shows that the deeper the transformation trees (and the more subgroups),
the better the true conditional PFI was approximated. The plot also shows
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Fig. 7 Setting (I) comparing various conditional PFI approaches on the true model against
the true conditional PFI (horizontal line) based on the data generating process.

that no overfitting occurred, which is in line with theoretical considerations in
Theorem 1.

8 Data Fidelity Evaluation

PDP and PFI work by data intervention, prediction, and subsequent aggrega-
tion (Scholbeck et al., 2019). Based on data D, the intervention creates a new
data set. In order to compare different conditional sampling approaches, we
define a measure of data fidelity to quantify the ability to preserve the joint
distribution under intervention. Failing to preserve the joint distribution leads
to extrapolation when features are dependent. Model-X knockoffs, for exam-
ple, are directly motivated by preserving the joint distribution, while others,
such as accumulated local effect plots do so more implicitly.

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
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Fig. 8 Conditional PFI estimate using cs-PFI (cart / transformation tree) with increas-
ing number of subgroups (simulation scenario I). Displayed is the median PFI over 1000
repetitions along with the 5% and 95% quartiles.

Data fidelity is the degree to which a sample X̃j of feature Xj preserves

the joint distribution, that is, the degree to which (X̃j , X−j) ∼ (Xj , X−j)
In theory, any measure that compares two multivariate distributions can be
used to compute the data fidelity. In practice, however, the joint distribution
is unknown, which makes measures such as the Kullback-Leibler divergence
impractical. We are dealing with two samples, one data set without and one
with intervention.

In this classic two-sample test-scenario, the maximum mean discrepancy
(MMD) can be used to compare whether two samples come from the same
distribution (Fortet and Mourier, 1953; Smola et al., 2007; Gretton et al.,

119



Importance and Effects with Dependent Features 19

2007, 2012). The empirical MMD is defined as:

MMD(D, D̃) =
1

n2

∑

x,z∈D
k(x, z)− 2

nl

∑

x∈D,z∈D̃
k(x, z) +

1

l2

∑

x,z∈D̃
k(x, z) (6)

where D = {x(i)j , x
(i)
−j}ni=1 is the original data set and D̃ = {x̃(i)j , x

(i)
−j}li=1 a

data set with perturbed x
(i)
j . For both data sets, we scaled numerical features

to a mean of zero and a standard deviation of one. For the kernel k we used
the radial basis function kernel for all experiments. For parameter σ of the
radial basis function kernel, we chose the median L2-distance between data
points which is a common heuristic (Gretton et al., 2012). We measure data
fidelity as the negative logarithm of the MMD (−log(MMD)) to obtain a more
condensed scale where larger values are better.

Definition 1 (MMD-based Data Fidelity) Let D be a dataset, and D̃ be
another dataset from the same distribution, but with an additional interven-
tion. We define the data fidelity as: Data Fidelity = −log(MMD(D, D̃)).

We evaluated how different sampling strategies (see Table 1) affect the data
fidelity measure for numerous data sets of the OpenML-CC18 benchmarking
suite (Bischl et al., 2019). We removed all data sets with 7 or fewer features
and data sets with more than 500 features. See Appendix E for an overview of
the remaining data sets. For each data set, we removed all categorical features
from the analysis, as the underlying sampling strategies of ALE plots and
Model-X knockoffs are not well equipped to handle them. We were foremost
interested in two questions:

A) How does cs-permutation compare with other sampling strategies w.r.t.
data fidelity?

B) How do choices of tree algorithm (CART vs. transformation trees) and tree
depth parameter affect data fidelity?

In each experiment, we selected a data set, randomly sampled a feature
and computed the data fidelity of various sampling strategies as described in
the pseudo-code in Algorithm 2.

For an unbiased evaluation, we split the data into three pieces: Dtrain
(40% of rows), Dtest (30% of rows) and Dref (30% of rows). We used Dtrain
to “train” each sampling method (e.g., train decision trees for cs-permutation,
see Section 5). We used Dref , which we left unchanged and Dtest, for which the
chosen feature was perturbed to estimate the data fidelity. For each data set,
we chose 10 features at random, for which sampling was applied. Marginal per-
mutation (which ignores the joint distribution) and ”no perturbation” served
as lower and upper bounds for data fidelity. For CVIRF, we only used one
tree per random forest as we only compared the general perturbation strategy
which is the same for each tree.

We repeated all experiments 30 times with different random seeds and
therefore different data splits. All in all this produced 12210 results (42 data

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
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Algorithm 2: Data Fidelity Experiments
Input: OpenML-CC18 data sets, sampling strategies

1 for data set D in OpenML-CC18 do
2 Remove prediction target from D (only keep it for CVIRF)
3 Randomly order features in D
4 for features j ∈ {1, . . . , 10} do
5 for repetition ∈ {1, . . . , 30} do
6 Sample min(10.000, n) rows from D
7 Split sample into Dtrain (40%), Dtest (30%) and Dref (30%)
8 for each sampling do
9 “Train” sampling approach using Dtrain (e.g., construct

subgroups, fit knockoff-generator, ...)

10 Generate conditional sample X̃j for Dtest

11 Estimate data fidelity as −log(MMD(Dref ,Dtest))

12 return Set of data fidelity estimates

sets × (up to) 10 features × 30 repetitions) per sampling method. All results
are shown in detail in Appendix E (Figures 15, 16, 17, 18).

Since the experiments are repeated across the same data sets and the same
features, the data fidelity results are not independent. Therefore, we used a
random intercept model (Bryk and Raudenbush, 1992) to analyze the dif-
ferences in data fidelity between different sampling approaches. The random
intercepts were nested for each data set and each feature. We chose “Marginal
Permutation” as the reference category. We fitted two random intercept mod-
els: One to compare cs-permutation with fully-grown trees (CART, trtr) with
other sampling methods and another one to compare different tree depths.

8.1 Results A) State-of-the-art comparison

Figure 9 shows the effect estimates of different sampling approaches mod-
eled with a random intercept model. The results show that cs-permutation
performed better than all other methods. Model-X knockoffs and the imputa-
tion approach (with random forests) came in second place and outperformed
ALE and CVIRF. Knockoffs were proposed to preserve the joint distribution,
but are based on multivariate Gaussian distribution. This seems to be too
restrictive for the data sets in our experiments. CVIRF does not have much
higher data fidelity than marginal permutation. However, results for CVIRF
must be viewed with caution, since data fidelity regards all features equally
– regardless of their impact on the model prediction. For example, a feature
can be highly correlated with the feature of interest, but might not be used
in the random forest. A more informative experiment for comparing CVIRF
can be found in Section 6. Figure 15 and Figure 16 in Appendix E show the
individual data fidelity results for the OpenML-CC18 data sets. Not perturb-
ing the feature at all has the highest data fidelity and serves as the upper
bound. The marginal permutation serves as a lower baseline. For most data
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Fig. 9 Linear regression model coefficients and 95% confidence intervals for the effect of
different sampling approaches on data fidelity, with (nested) random effects per data set
and feature. A) Comparing different sampling approaches. No perturbation (”none”) and
permutation (”perm”) serve as upper and lower bounds. B) Comparing cs-permutation
using either CART or transformation trees and different tree depths (1,2,3,4,5 and 30).
Marginal permutation is the reference category.

sets, cs-permutation has a higher data fidelity compared to all other sampling
approaches. For all the other methods there is at least one data set on which
they reach a low data fidelity (e.g., “semeion”, “qsar-biodeg” for ALE; “nodel-
simulation”, “churn” for imputation; “jm1”, “pc1” for knockoffs). In contrast,
cs-permutation achieves a consistently high data fidelity on all these data sets.

Additionally, we review the data fidelity rankings of the sampling methods
in Table 3. The rankings show a similar picture as the random intercept model
estimates, except that Model-X knockoffs have a better average ranking than
imputation. This could be the case since on a few data sets (bank-marketing,
electricity, see Figure 15 in Appendix E) Model-X knockoffs have a very low
data fidelity but on most others a higher model fidelity than the imputation
method.

none cs (trtr) ko cs (cart) imp ale perm cvirf
Mean ranks 2.50 3.51 3.70 3.76 4.25 4.61 6.82 6.84

SD 0.73 0.87 1.32 0.91 1.37 2.07 1.14 1.14

Table 3 Mean ranks and their standard deviation based on data fidelity of various per-
turbation methods over data sets, features and repetitions. Legend: none: No intervention,
which serves as upper benchmark. cart30: cs-permutation with CART with maximal depth
of 30. trtr30: cs-permutation with transformation trees with maximal depth of 30. imp:
Imputation approach. ko: Model-X knockoffs Candes et al. (2018) . ale: ALE perturbation
Apley and Zhu (2016). cvirf: Conditional variable importance for random forests Strobl et al.
(2008). perm: Unconditional permutation.

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
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8.2 Results B) tree configuration

We included shallow trees with maximum depth parameter from 1 to 5 to
analyze the trade-off between tree depth and data fidelity. We included trees
with a maximum depth parameter of 30 (“fully-grown” trees as this was the
software’s limit) as an upper bound for each decision tree algorithm. Figure 9
B) shows that the deeper the trees (and the more subgroups), the higher
the data fidelity. This is to be expected, since deeper trees allow for a more
fine-grained separation of distributions. More importantly, we are interested
in the trade-off between depth and data fidelity. Even splitting with a maxi-
mum depth of only 1 (two subgroups) strongly improves data fidelity over the
simple marginal permutation for most data sets. A maximum depth of two
means another huge average improvement in data fidelity, and already puts
cs-permutation on par with knockoffs. A depth of three to four is almost as
good as a maximum depth parameter of 30 and already outperforms all other
methods, while still being interpretable due to their shortness. CART slightly
outperforms transformation trees clearly when trees are shallow, which is sur-
prising since transformation trees are, in theory, better equipped to handle
changes in the distribution. Deeply grown transformation trees (max. depth of
30) slightly outperform CART. Figure 17 and Figure 18 in Appendix E show
data fidelity aggregated by data set.

9 Model Fidelity

Model fidelity has been defined as how well the predictions of an explanation
method approximate the ML model (Ribeiro et al., 2016). Similar to Szepan-
nek (2019), we define model fidelity for feature effects as the mean squared
error between model prediction and the prediction of the partial function fj
(which depends only on feature Xj) defined by the feature effect method, for
example fj(x) = PDPj(x). For a given data instance with observed feature

value x
(i)
j , the predicted outcome of, for example, a PDP can be obtained by

the value on the y-axis of the PDP at the observed xj value.

Model Fidelity(f̂ , fj) = 1
n

∑n
i=1(f̂(x(i))− fj(x(i)j ))2, (7)

where fj is a feature effect function such as ALE or PDP. In order to eval-
uate ALE plots, they have to be adjusted such that they are on a comparable
scale to a PDP (Apley and Zhu, 2016): fALE,adjj = fALEj + 1

n

∑n
i=1 f̂(x(i)).

We trained random forests (500 trees), linear models and k-nearest neigh-
bours models (k = 7) on various regression data sets (Table 4). 70% of the data
were used to train the ML models and the transformation trees / CARTs. This
ensure that results are not over-confident due to overfitting, see also Section 5.
The remaining 30% of the data were used to evaluate model fidelity. For each
model and each data set, we measured model fidelity between effect prediction
and model prediction (Equation 7), averaged across observations and features.
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wine satellite wind space pollen quake
No. of rows 6497 6435 6574 3107 3848 2178
No. of features 12 37 15 7 6 4

Table 4 We selected data sets from OpenML Vanschoren et al. (2014); Casalicchio et al.
(2017) having 1000 to 8000 instances and a maximum of 50 numerical features. We excluded
data sets with categorical features, since ALE cannot handle them.

Table 5 shows that the model fidelity of ALE and PDP is similar, while
the cs-PDPs have the best model fidelity. This is an interesting result since
the decision trees for the cs-PDPs are neither based on the model nor on the
real target, but solely on the conditional dependence structure of the features.
However, the cs-PDPs have the advantage that we obtain multiple plots. We
did not aggregate the plots to a single conditional PDP, but computed the
model fidelity for the PDPs within the subgroups (visualized in Figure 12). Our
cs-PDPs using trees with a maximum depth of 2 have a better model fidelity
than using a maximum depth of 1. We limited the analysis to interpretable
conditioning and therefore allowed only trees with a maximum depth of 2,
since a tree depth of 3 already means up to 8 subgroups which is already an
impractical number of PDPs to have in one plot. CART sometimes beats trtr
(e.g., on the “satellite” data set) but sometimes trtr has a lower loss (e.g., on
the “wind” data set). Using different models (knn or linear model) produced
similar results, see Appendix F.

pollen quake satellite space wind wine
PDP 9.61 0.04 4.80 0.03 44.84 0.75
ALE 9.91 0.04 4.81 0.03 44.83 0.75

cs-PDP trtr1 8.44 0.04 4.49 0.03 29.96 0.71
cs-PDP cart1 8.44 0.04 3.71 0.03 31.38 0.73
cs-PDP trtr2 8.17 0.04 3.25 0.03 26.56 0.70
cs-PDP cart2 8.29 0.04 3.05 0.03 25.96 0.71

Table 5 Median model fidelity averaged over features in a random forest for various data
sets. The cPDPs always had a lower loss (i.e. higher model fidelity) than PDP and ALE. The
loss monotonically decreases with increasing maximum tree depth for subgroup construction.

10 Application

In the following application, we demonstrate that cs-PDPs and cs-PFI are
valuable tools to understand model and data beyond insights given by PFI,
PDPs, or ALE plots. We trained a random forest to predict daily bike rentals
(Dua and Graff, 2017) with given weather and seasonal information. The data
(n = 731, p = 9) was divided into 70% training and 30% test data.

8. Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional
Subgroup Approach
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10.1 Analyzing Feature Dependence

The features in the bike data are dependent. For example, the correlation be-
tween temperature and humidity is 0.13. The data contains both categorical
and numerical features and we are interested in the multivariate, non-linear
dependencies. Thus, correlation is an inadequate measure of dependence. We
therefore indicate the degree of dependence by showing the extent to which
we can predict each feature from all other features in Table 6. This idea
is based on the proportional reduction in loss (Cooil and Rust, 1994). Per
feature, we trained a random forest to predict that feature from all other
features. We measured the proportion of loss explained to quantify the de-
pendence of the respective feature on all other features. For numerical fea-
tures, we used the R-squared measure. For categorical features, we computed
1−MMCE(yclass, rf(X))/MMCE(yclass, xmode), where MMCE is the mean
misclassification error, yclass the true class, rf() the classification function of
the random forest and xmode the most frequent class in the training data. We
divided the training data into two folds and trained the random forest on one
half. Then, we computed the proportion of explained loss on the other half
and vice versa. Finally, we averaged the results. The feature “work” can be
fully predicted by weekday and holiday. Season, temperature, humidity and
weather can be partially predicted and are therefore not independent.

season yr holiday weekday temp hum work weather wind
45% 8% 29% 14% 66% 43% 100% 46% 12%

Table 6 Percentage of loss explained by predicting a feature from the remaining features
with a random forest.

10.2 cs-PDPs and cs-PFI

To construct the subgroups, we used transformation trees with a maximum
tree depth of 2 which limited the number of possible subgroups to 4. Figure 10
shows that for most features the biggest change in the estimated conditional
PFI happens when moving from a maximum depth of 0 (= marginal PFI)
to a depth of 2. This makes a maximum depth of 2 a reasonable trade-off
between limiting the number of subgroups and accurately approximating the
conditional PFI. We compared the marginal and conditional PFI for the bike
rental predictions, see Figure 11.

The most important features, according to (marginal) PFI, were temper-
ature and year. For the year feature, the marginal and conditional PFI are
the same. Temperature is less important when we condition on season and hu-
midity. The season already holds a lot of information about the temperature,
so this is not a surprise. When we know that a day is in summer, it is not
as important to know the temperature to make a good prediction. On humid
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Fig. 11 Left: Comparison of PFI and cs-PFI for a selection of features. For cs-PFI we also
show the features that constitute the subgroups. Right: Local cs-PFI of temperature within
subgroups. The temperature feature is important in spring, fall and winter, but neglectable
on summer days, especially humid ones.

summer days, the PFI of temperature is zero. However, in all other cases, it is
important to know the temperature to predict how many bikes will be rented
on a given day. The disaggregated cs-PFI in a subgroup can be interpreted as
“How important is the temperature, given we know that the season and the
humidity”.

Both ALE and PDP show a monotone increase of predicted bike rentals
up until a temperature of 25 ◦C and a decrease beyond that. The PDP shows
a weaker negative effect of very high temperatures which might be caused by
extrapolation: High temperature days are combined with e.g. winter. A limi-
tation of the ALE plot is that we should only interpret it locally within each
interval that was used to construct the ALE plot. In contrast, our cs-PDP
is explicit about the subgroup conditions in which the interpretation of the
cs-PDP is valid and shows the distributions in which the feature effect may be
interpreted. The local cs-PDPs in subgroups reveal a more nuanced picture:
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Fig. 12 Effect of temperature on predicted bike rentals. Left: PDP and ALE plot. Right:
cs-PDPs for 4 subgroups.

For humid summer days, the temperature has no effect on the bike rentals,
and the average number of rentals are below that of days with similar temper-
atures in spring, fall and drier summer days. The temperature has a slightly
negative effect on the predicted number of bike rentals for dry summer days
(humidity below 70.75). The change in intercepts of the local cs-PDP can be
interpreted as the effect of the grouping feature (season). The slope can be
interpreted as the temperature effect within a subgroup.
We also demonstrate the local cs-PDPs for the season, a categorical feature.
Figure 13 shows both the PDP and our local cs-PDPs. The normal PDP shows
that on average there is no difference between spring, summer and fall and only
slightly less bike rentals in winter. The PDP with four subgroups conditional
on temperature shows that the marginal PDP is misleading. The PDP indi-
cates that in spring, summer and fall, around 4500 bikes are rented and in
winter around 1000 fewer. The cs-PDPs in contrast show that, conditional on
temperature, the differences between the seasons are much greater, especially
for low temperatures. Only at high temperatures is the number of rented bikes
similar between seasons.

11 Discussion

We proposed the cs-PFIs and cs-PDPs, wich are variants of PFI and PDP that
work when features are dependent. Both cs-PFIs and cs-PDPs rely on permu-
tations in subgroups based on decision trees. The approach is simple: Train
a decision tree to predict the feature of interest and compute the (marginal)
PFI / PDP in each terminal node defined by the decision tree.

Compared to other approaches, cs-PFIs and cs-PDPs enable a human com-
prehensible grouping, which carries information how dependencies affect fea-
ture effects and importance. As we showed in various experiments, our meth-
ods are on par or outperform other methods in many dependence settings. We
therefore recommend using cs-PDPs and cs-PFIs to analyze feature effects and
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Fig. 13 Effect of season on predicted rentals. Left: PDP. Right: Local cs-PDPs. The
cs-PDPs are conditioned on temperature, in which the tree split at 21.5 and at 9.5.

importances when features are dependent. However, due to their construction
with decision trees, cs-PFIs and cs-PDPs do not perform well when the fea-
ture of interest depends on many other features, but only if it depends on a
few features. We recommend analyzing the dependence structure beforehand,
using the imputation approach with random forests in the case of multiple
dependencies, and cs-PFIs in all other cases.

Our framework is flexible regarding the choice of partitioning and we leave
the evaluation of the rich selection of possible decision tree and decision rules
approaches to future research.

Reproducibility: All experiments were conducted using mlr (Lang et al.,
2019) and R (R Core Team, 2017). We used the iml package (Molnar et al.,
2018) for ALE and PDP, party/partykit (Hothorn and Zeileis, 2015) for CVIRF
and knockoff (Patterson and Sesia, 2020) for Model-X knockoffs. The code
for all experiments is available at https://github.com/christophM/paper_

conditional_subgroups.
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A Decompose conditional PFI into cs-PFIs

Assuming a perfect construction of Gj , it holds that Xj ⊥ X−j |Gj and also that Xj ⊥
Gj |X−j (as Gj is a compression of X−j). Therefore

P (Xj |X−j) = P (Xj |X−j , Gj) = P (Xj |Gj). (8)

When we sample the replacement x̃
(i)
j for an x

(i)
j from the marginal within a group (P (Xj |Gj =

g
(i)
j ), e.g., via permutation) we also sample from the conditional P (Xj |X−j = x

(i)
−j). Every

data point from the global sample can therefore equivalently be seen as a sample from the
marginal within the group, or as a sample from the global conditional distribution.
As follows, the weighted sum of marginal subgroup PFIs coincides with the conditional PFI
(cPFI).

cPFI =

n∑

i=1

1
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B Expectation and Variance of the PFI in a Subgroup

We show that under feature independence the PFI and a PFI in an arbitrary subgroup
have the same expected value and the subgroup k PFI has a higher variance. Let L̃(i) =
1
M

∑M
m=1 L(y(i), f̂(x̃

m(i)
j , x

(i)
−j) and L(i) = L(y(i), f̂(x
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j , x
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−j).
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C Expectation and Variance of the PDP in a Subgroup

We show that under feature independence the PDP and a PDP in an arbitrary subgroup
have the same expected value and the subgroup k PDP has a higher variance.
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Table 7 MSE comparing estimated and true conditional PFI (for random forest, scenario
II). Legend: impute rf: Imputation with a random forest, ko: Model-X knockoffs, mPFI:
(marginal) PFI, tree cart: cs-permutation based on CART, tree trtr: cs-permutation based
on transformation trees, CVIRF: conditional variable importance for random forests.

setting cs-PFI (cart) cs-PFI (trtr) cvirf impute rf ko mPFI

independent
n=300, p=10 0.26 0.28 0.22 0.27 0.25 0.27
n=300, p=90 0.19 0.17 0.14 0.18 0.19 0.17
n=3000, p=10 0.07 0.07 1.39 0.07 0.06 0.08
n=3000, p=90 0.08 0.08 1.37 0.08 0.08 0.08

linear
n=300, p=10 1.79 1.69 0.45 1.87 1.10 7.11
n=300, p=90 1.93 1.88 1.36 4.25 2.93 7.06
n=3000, p=10 0.29 0.22 5.41 0.25 0.40 6.80
n=3000, p=90 0.32 0.24 6.98 1.66 0.26 7.02

multi. lin.
n=300, p=10 667.79 744.48 275.58 335.40 377.35 726.15
n=300, p=90 972.42 1098.74 301.26 823.89 1473.67 1065.26
n=3000, p=10 715.41 625.99 1790.45 114.71 454.26 1017.53
n=3000, p=90 974.37 945.19 5090.09 532.44 110.94 1416.30

non-linear
n=300, p=10 1.40 1.29 1.37 3.96 12.35 18.51
n=300, p=90 1.06 1.03 2.05 6.77 2.38 12.32
n=3000, p=10 0.17 0.16 6.53 1.55 15.29 17.56
n=3000, p=90 0.15 0.14 9.09 3.28 8.00 11.30

D cPFI Ground Truth Scenario II

This chapter contains the results for the conditional PFI ground truth simulation, scenario
II with an intermediate random forest.
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Fig. 14 Experiment (II) comparing various conditional PFI approaches with an intermedi-
ary a random forest against the true conditional PFI based on the data generating process.
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E Data Fidelity on OpenML-CC18 data sets

An overview of data sets from the OpenML-CC18 benchmarking suit. We used a subset of
42 out of 72 data sets with 7 to 500 continuous features.

OpenML ID Name No. Obs. No. numerical feat. No. feat.
1049 pc4 1458 38 38
1050 pc3 1563 38 38
1053 jm1 10880 22 22
1063 kc2 522 22 22
1067 kc1 2109 22 22
1068 pc1 1109 22 22

12 mfeat-factors 2000 217 217
14 mfeat-fourier 2000 77 77

1461 bank-marketing 45211 8 17
1475 first-order-theorem-proving 6118 52 52
1480 ilpd 583 10 11
1486 nomao 34465 90 119
1487 ozone-level-8hr 2534 73 73
1494 qsar-biodeg 1055 42 42
1497 wall-robot-navigation 5456 25 25

15 breast-w 683 10 10
1501 semeion 1593 257 257
151 electricity 45312 8 9

1510 wdbc 569 31 31
16 mfeat-karhunen 2000 65 65

182 satimage 6430 37 37
188 eucalyptus 641 15 20
22 mfeat-zernike 2000 48 48

23517 numerai28.6 96320 22 22
28 optdigits 5620 63 65

307 vowel 990 11 13
31 credit-g 1000 8 21
32 pendigits 10992 17 17
37 diabetes 768 9 9

40499 texture 5500 41 41
40701 churn 5000 17 21
40966 MiceProtein 552 78 82
40979 mfeat-pixel 2000 241 241
40982 steel-plates-fault 1941 28 28
40984 segment 2310 19 20
40994 climate-model-simulation-crashes 540 21 21

44 spambase 4601 58 58
4538 GesturePhaseSegmentationProcessed 9873 33 33
458 analcatdata authorship 841 71 71
54 vehicle 846 19 19
6 letter 20000 17 17

6332 cylinder-bands 378 19 40

Table 8 Overview of OpenML CC18 data sets used for the data fidelity experiment.
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E.1 Data Fidelity Results
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Fig. 15 Data Fidelity experiment with OpenML-CC18 data sets (1/2). Different sam-
pling types are compared: unconditional permutation (perm), cs-permutation (maximal tree
depth) with CART (cart30) or transformation trees (trtr30), Model-X knockoffs (ko), data
imputation with a random forest (imp), ALE (ale), conditional variable importance for ran-
dom forests (cvirf) and no permutation (none). Each data point in the boxplot represents
one feature and one data set. Results from repeated experiments have been averaged (mean)
before using them in the boxplots.
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Fig. 16 Data Fidelity experiment with OpenML-CC18 data sets (2/2). Different sam-
pling types are compared: unconditional permutation (perm), cs-permutation (maximal tree
depth) with CART (cart30) or transformation trees (trtr30), Model-X knockoffs (ko), data
imputation with a random forest (imp), ALE (ale), conditional variable importance for ran-
dom forests (cvirf) and no permutation (none). Each data point in the boxplot represents
one feature and one data set. Results from repeated experiments have been averaged (mean)
before using them in the boxplots.
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Fig. 17 Data Fidelity experiment with OpenML-CC18 data sets (1/2). Different tree depths
and tree types (CART and Transformation Trees) are compared. Unconditional permutation
and lack of permutation serve as lower and upper bound for data fidelity and their median
data fidelity is plotted as dotted lines. Each data point in the boxplot represents one feature
and one data set. Results from repeated experiments have been averaged (mean) before
using them in the boxplots.
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Fig. 18 Data Fidelity experiment with OpenML-CC18 data sets (2/2). Different tree depths
and tree types (CART and Transformation Trees) are compared. Unconditional permutation
and lack of permutation serve as lower and upper bound for data fidelity and their median
data fidelity is plotted as dotted lines. Each data point in the boxplot represents one feature
and one data set. Results from repeated experiments have been averaged (mean) before
using them in the boxplots.
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1 Introduction

Statistical models such as linear or logistic regression models are frequently
used to learn about relationships in data. Assuming that a statistical model
reflects the data generating process (DGP) well, we may interpret the model
coefficients in place of the DGP and draw conclusions about the data. An
important part of interpreting the coefficients is the quantification of their
uncertainty via standard errors, which allows to separate random noise (non-
significant coefficients) from real effects. Statistical biases and violation of as-
sumptions are well studied for many model classes, such as heterogeneous resid-
uals, deviations from normality, and non-additivity for linear models (Fahrmeir
et al., 2007).

Increasingly, machine learning approaches such as gradient-boosted trees,
random forests or neural networks are used instead of or in addition to statis-
tical models. Compared to statistical models that are driven by considerations
of the data generating process, the machine learning approaches often lack a
mapping between model parameters and properties of the DGP. Due to the
ability of many machine learning models to address highly non-linear relation-
ships and interactions, they often outperform more restrictive statistical mod-
els. Scientific applications of machine learning are widespread and range from
modeling volunteer labor supply (Bair et al., 2013), mapping fish biomass (Es-
selman et al., 2015), analyzing urban reservoirs (Obringer and Nateghi, 2018),
identifying disease-associated genetic variants (Boulesteix et al., 2020), and in-
ferring behavior from smartphone use (Stachl et al., 2020). In these scientific
applications, the model is only the means to an end: a better understanding
of the data generating process, in particular the conditional expectation of the
target variables as a function of the features.

Model-agnostic interpretation methods (Ribeiro et al., 2016) are a (par-
tial) remedy to the lack of interpretable parameters of more complex mod-
els. Model-agnostic methods follow a general procedure of 1) sampling data,
2) manipulating this data, 3) predicting and 4) aggregating the predictions
(Scholbeck et al., 2019). Since none of these steps depend on specific model
properties, model-agnostic interpretation techniques allow us to study the be-
havior of arbitrary models. Partial dependence (PD) plots (Friedman, 1991)
and permutation feature importance (PFI) (Breiman, 2001; Fisher et al., 2019)
are popular model-agnostic methods for describing the relationship between
input features and model outcome on a global level. PD plots visualize the
average effect features have on the prediction, and PFI estimates how much
each feature improves the model performance and therefore how relevant a
feature is. However, PD and PFI merely describe the prediction (or classifica-
tion) function, but lack a theory that connects them to the data generating
process. Treating PD and PFI as statistical estimators (like coefficients in a re-
gression model) would require a theoretical counterpart in the DGP: a ground
truth estimand that these interpretation methods are supposed to retrieve.
Furthermore, for proper inference about the DGP, we need to quantify the
uncertainty of PD and PFI estimators. Linear regression models, for exam-
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ple, provide variance estimates for the coefficients, which help to distinguish
true effects from randomness and allow confidence interval estimation and hy-
pothesis testing. Most machine learning approaches, however, do not provide
variance estimates for their predictions or model parameters. Yet, the training
process itself can be a relevant source of variance as the trained model heavily
depends on the specific training data.

We propose to treat PD and PFI as statistical estimators of a ground truth,
which allows us to relate the model interpretation to the data generating pro-
cess. In Section 2, we introduce related work and in Section 3 we introduce
notation and background on PD and PFI. In Section 4, we formulate PD
and PFI as estimators of (proposed) ground truth estimands in the DGP. By
treating PD and PFI as statistical estimators, we can apply the bias and vari-
ance decomposition and identify the different sources of uncertainty. To reflect
the different uncertainty sources, we distinguish between model-PD/PFI and
learner-PD/PFI. The model-PD/PFI (Section 6) follows the standards defini-
tions of PD and PFI. We propose confidence intervals and variance estimators
for model-PD/PFI and show that they neglect the model variance originating
from the training process. In Section 7, we propose the learner-PD and learner-
PFI which take the model variance into account, study their statistical biases
and propose variance estimators and confidence intervals. For models that lack
variance estimates, multiple model refits are required to capture the variance
due to the learning process. Data size is often a limiting factor, so that model
refits are based on resampled data with overlapping observations. This overlap
can lead to an underestimation of variance and thus to confidence intervals that
are too narrow. We leverage a variance correction approach from model perfor-
mance estimation to improve the variance estimation. In Section 8, we analyze
the coverage of the confidence intervals for learner-PD and learner-PFI with
and without the correction. In the application in Section 9 we demonstrate
the use of confidence intervals for PD and PFI and illustrate the importance
of taking the model variance into account.

2 Related Work

For PD plots, model-specific confidence intervals exist that rely on models with
inherent variance estimators such as Bayesian additive regression trees (Cafri
and Bailey, 2016; Zhao and Hastie, 2021). Furthermore, various applied articles
contain computations of PD confidence bands (Bair et al., 2013; Grange and
Carslaw, 2019; Esselman et al., 2015; Emrich and Pierdzioch, 2016; Page et al.,
2018; Obringer and Nateghi, 2018). These approaches either quantify only the
error due to Monte Carlo approximation or, when they cover model variance,
they do not account for underestimation of the variance. This demonstrates
the need for a theoretical underpinning of this inferential tool for practical
research. For PFI and related approaches, multiple suggestions for confidence
intervals and variance estimation are available. Some contributions are specific
to the random forest PFI (Ishwaran and Lu, 2019; Archer and Kimes, 2008;
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Janitza et al., 2018), for which a test for null importance was proposed by
Altmann et al. (2010).

Model-agnostic PFI confidence intervals that are similar to ours are pro-
posed by Watson and Wright (2019); Williamson et al. (2019, 2020). We addi-
tionally correct for variance underestimation arising from resampling (Nadeau
and Bengio, 2003) and relate the estimators to the proposed ground truth
PFI. An alternative approach for providing bounds on PFI is proposed by
Fisher et al. (2019) via Rashomon sets, which are sets of models with simi-
lar near-optimal prediction accuracy. Furthermore, alternative approaches of
“model-free” inference exist (Parr et al., 2020; Parr and Wilson, 2019; Zhang
and Janson, 2020), which aim to infer properties of the data without an inter-
mediary ML model.

3 Background and Notation

We denote the joint distribution induced by the data generating process as
PXY , where X is a p-dimensional random variable and Y a 1-dimensional
random variable. We describe the true mapping from features X to the target
Y with f(X) = E[Y |X = x]. We denote a single random draw from the DGP
with x(i) and y(i). A dataset consisting of multiple draws from PXY will be
called Dn = {(x(1), y(1)), . . . , (x(n), y(n))}, where n is the number of samples

and with each (x(i), y(i)) ∼ PXY , i ∈ {1, . . . , n}. An ML model f̂ is a function

(f̂ : X → Y) that maps a feature vector to a prediction (e.g. Y = R for

regression). The model f̂ is induced based on a datasetDn, using a loss function

L : Y×Rp → R+
0 . As the true function f is unknown, the model f̂ is interpreted

instead of f , for example, with PD plots and PFI. The model f̂ is learned by
an ML learner I : D × Λ → H that maps from the space of datasets and the
space of hyperparameters Λ to the function hypothesis space H. The learning
process contains two sources of randomness: the training data being a random
sample from PXY and (possibly) the inherent randomness of the training

process (Bouthillier et al., 2021).1 Thus, a model f̂ can be seen as realization
of a random variable F with distribution PF . We assume that the model is
evaluated with a risk function R(f̂) = EXY [L(Y, f̂(X))] =

∫
L(y, f̂(x))dPXY ,

based on a loss function L. To get unbiased estimates of the risk, model training
and evaluation use different datasets. The dataset Dn is split into Dn1 for
model training and Dn2 for evaluation, with n1 + n2 = n. The empirical risk

is estimated with R̂(f̂Dn2
,λ) := 1

n2

∑n2

i=1 L
(
y(i), f̂Dn2

,λ(x(i))
)

.

We distinguish between the ”simulation” and the ”real world” scenario
(Hothorn et al., 2005). In the simulation scenario, we can generate a quasi-
infinite number of datasets, which allows us to refit the model multiple times
using fresh data each time. In the real world setting, we assume that a single
dataset of size n is available. To fit multiple models (of the same class) and to

1 For example, stochastic gradient descent and weight initialization in neural networks or
bootstrap and feature sampling in random forests are sources of randomness.
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obtain multiple estimates of the risk, resampling techniques such as bootstrap-
ping, cross-validation and repeated subsampling have to be used. We denote
by Bd the set of indices for the training data in the d-th split repetition and
with B−d the corresponding test data indices, where Bd ∪ B−d = {1, . . . , n},
b ∈ {1, . . . ,m}, and m is the number of models trained with different data.

We distinguish between the interpretation of a single model and the dis-
tribution of models produced by a learner. Often a fixed trained model f̂ is
the subject of interpretation. Any interpretation of a fixed model neglects the
model variance originating from the learning process. Often we are interested
in extending the interpretation to the distribution of models produced by a
learner. For example, the importance of a feature in a decision tree might be
zero because it was never selected for a split. However, if we were to train the
tree on a slightly different sample from the same distribution, it might obtain
a non-zero importance. A similar distinction between model and learner can
be made for performance estimation, where model performance is estimated
with a test set, but learner performance requires averaging performance over
m repetitions and thus model refits.

3.1 Partial Dependence (PD)

The partial dependence function (Friedman, 1991) of a model f̂ describes the
expected effect of a feature after marginalizing out the effects of all other
features. Partial dependence of a feature set XS , S ⊆ {1, . . . , p} (usually |S| =
1) is defined as:

PDS = EXC
[f̂(x,XC)], (1)

where XC are the remaining features so that S∪C = {1, . . . , p} and S∩C = ∅.
The PD is estimated using Monte Carlo integration:

P̂DS(x) =
1

n2

n2∑

i=1

f̂(x, x
(i)
C ) (2)

For simplicity, we write PD instead of PDS , and P̂D instead of P̂DS when
we refer to an arbitrary PD. The PD plot consists of a line connecting the
points {(x(g), P̂DS(x(g))}Gg=1, with G grid points that are usually equidistant
or quantiles of PXS

. See Figure 6 for an example of a PD plot.

3.2 Permutation Feature Importance (PFI)

The PFI (Breiman, 2001; Fisher et al., 2019) of a model f̂ is defined as the
increase in loss L when the feature set XS (usually just one feature) is per-
muted:

PFIS = EX̃SXCY
[L(Y, f̂(X̃S , XC))]− EXY [L(Y, f̂(X))], (3)

9. Relating the Partial Dependence Plot and Permutation Feature Importance to the Data
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where X̃S is a random variable based on the distribution of XS . There are two
versions of PFI, the marginal PFI and the conditional PFI, which have different
strategies to replace XS and also different interpretations. The marginal PFI
can be interpreted as the importance of the feature, ignoring dependencies
with other features and also ignoring that the data used may differ greatly
from the original joint distribution PX (extrapolation). For the marginal PFI
we take the expected value over the distribution PXS

· PXCY , which means
that X̃S follows the marginal distribution of XS and is independent of XC

and Y (X̃S |= XC , Y ). This means that the marginal PFI breaks the association
between the feature(s) XS and the target Y , but also between XS and all other
features XC . For the conditional PFI (cPFI) (Molnar et al., 2020; Watson and
Wright, 2019; Hooker and Mentch, 2019; Candès et al., 2018), the expectation
is taken over the distribution PXS |XC

·PXCY , so that X̃S follows the conditional
distribution of XS given XC but is still independent of Y . The interpretation of
the conditional PFI of a feature is therefore also conditional on all features that
are correlated with the feature of interest. Conditional PFI may be interpreted
as the additional importance of a feature given that we already know the other
feature values.

PFI and cPFI are estimated with Monte Carlo integration:

P̂F IS =
1

n

n2∑

i=1

(
1

l

l∑

k=1

L(y(i), f̂(x̃
(k,i)
S , x

(i)
C ))− L(y(i), f̂(x(i)))

)
, (4)

where x̃
(k,i)
S with k ∈ {1, . . . , l} is the k-th sample of xS for the i-th observation.

For the marginal PFI, x̃
(k,i)
S can be a permutation of the original vector xS . The

conditional PFI requires a conditional sampling mechanism for the feature,
such as subgroups (Molnar et al., 2020) or knockoffs (Candès et al., 2018;

Watson and Wright, 2019). The estimation of P̂F I requires unseen data, so
that the loss estimates deliver unbiased results (Zheng and van der Laan, 2011;
Chernozhukov et al., 2018). If not stated otherwise, mathematical derivations
in this paper apply to both marginal and conditional PFI. We assume that the
loss used for PFI can be computed per instance, which excludes losses such
as AUC. See Figure 6 for a PFI example. As with PD, we use PFI instead of

PFIS and P̂F I instead of P̂F ISs.

4 Relating Model to Data Generating Process

The goal of statistical inference is to gain knowledge about the DGP. Therefore,
the modeler aims to establish relationships between properties of the model
and the DGP. For example, under certain assumptions, the coefficients of a
generalized linear model (= model properties) can be related to parameters of
the respective conditional distribution defined by the DGP, such as conditional
mean and covariance structure (= DGP properties). Machine learning models
such as random forests or neural networks lack such a mapping between learned
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model parameters and properties of the data generating process. This lack
of counterparts in the DGP make it difficult to interpret complex machine
learning models and to draw conclusions about the real world. Interpretation
methods such as PD and PFI provide external descriptors of how features
affect the model predictions. Howerver, PD and PFI are estimators that lack a
counterpart estimand in the DGP. We propose an inference approach for these
external descriptors. We define a ground truth version of PD and PFI directly
on the DGP, namely the DGP-PD and the DGP-PFI. The DGP-PD and the
DGP-PFI are defined as the PD and PFI, but applied to the true function
f instead of f̂ . This means that the DGP-PD becomes the feature effect of
features XS on the underlying function f :

Definition 1 (DGP-PD) The DGP-PD is the PD applied to function f :
X 7→ Y of the data generating process.

DGP-PD(x) = EXC
[f(x,XC)]

Similarly, for the DGP-PFI we replace f̂ for f and compute the expected
losses. We compute the difference between the loss for the permuted distribu-
tion and the loss on the joint distribution. Since we work with the true f , the
“original” loss is the aleatoric uncertainty (without any bias or variance).

Definition 2 (DGP-PFI) The DGP-PFI is the PFI applied to function f :
X 7→ Y of the data generating process.

DGP-PFI = EX̃SXCY
[L(Y, f(X̃S , XC))]− EXY [L(Y, f(X))]

The function f is usually unknown. If it were known in an application,
we would not need machine learning in the first place. However, Definitions 1
and 2 immediately enable at least two useful applications: It allows scientists
to compare the PD/PFI of a model with the PD/PFI of the DGP in simu-
lation studies and research statistical biases. More importantly, the ground
truth definitions of DGP-PD and DGP-PFI allow us to treat PD and PFI as
statistical estimators of properties of the data generating process.

This paper studies PD and PFI as statistical estimators of the ground
truth DPG-PD and DGP-PFI, including bias and variance decompositions,
and confidence interval estimators. Whether the estimands themselves are de-
sirable in specific data scenarios and model choices is out-of-scope for this
work. Others have done work in limitations of PFI and PD: For example Mol-
nar et al. (2020); Hooker and Mentch (2019); Strobl et al. (2008) show that
interpretation methods produce misleading results under strongly dependent
features (e.g. large correlation between features), Zhao and Hastie (2021) as-
sess whether PDs can be used to estimate causal effects, and Groemping (2020)
studied whether PDs recover the linear relationship of the DGP when the re-
lationship between target and features is linear. Extrapolation when features
are dependent might be one of the biggest issue for PD and PFI. As one possi-
ble remedy, conditional variants of PDP and PFI (Molnar et al., 2020; Fisher

9. Relating the Partial Dependence Plot and Permutation Feature Importance to the Data
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DGP-PD learner-PD model-PD P̂D

f E[f̂ ] f̂

DGP-PFI learner-PFI model-PFI P̂F I

Bias Variance MC

Model Bias Model Variance

Bias Variance MC

Figure 1 A model f̂ deviates from f due to model bias and variance. Similarly P̂D and

P̂F I estimates deviate from their ground truth versions DGP-PD and DGP-PFI due to
bias, variance, and Monte Carlo integration (MC).

et al., 2019; Watson and Wright, 2019; Apley and Zhu, 2020) have been pro-
posed. For PD, the conditional variant is also called M-Plot (Apley and Zhu,
2020) and weights predictions according to how likely their respective feature
values are for a given PD grid point. Our proposed variance and confidence
interval estimators and other results apply to both the original and conditional
variants of PD and PFI, if not stated otherwise.

5 Bias-Variance Decomposition

The definition of DGP-PD and DGP-PFI gives us a ground truth to which
the PD and PFI of a model can be compared – at least in theory and sim-
ulation. The error of the estimation (mean squared error between estimator
and estimand) can be decomposed into the systematic deviation from the true
estimand (statistical bias) and the variance due to model variance. PD and
PFI are both expectations over the – usually unknown – joint distribution of
the data. The expectations are therefore usually estimated from data using
Monte Carlo integration, which adds another source of variance to the PFI
and PD estimates. Figure 1 visualizes the chain of errors that stand between

the estimand (DGP-PD,DGP-PFI) and the estimates (P̂D, P̂F I).

For the PD, we compare the MSE between the true DGP-PD (PDf as

defined in Equation 1) with the theoretical PD of a model instance f̂ (PDf̂ )
at position x.

EF [(PDf (x)− PDf̂ (x))2] = (PDf (x)− EF [PDf̂ (x)])2

︸ ︷︷ ︸
Bias2

+VF [PDf̂ (x)]
︸ ︷︷ ︸
V ariance

Here, F is the distribution of the trained models, which can be treated as a
random variable. The bias-variance decomposition of the MSE of estimators
is a well known result (Geman et al., 1992). For completeness, we provide a
proof in Appendix A. Figure 2 visualizes bias and variance of a PD curve, and
the variance due to Monte Carlo integration.

Similarly, the MSE of the theoretical PFI of a model (Equation 3) can
be decomposed into squared bias and variance. The proof can be found in
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Figure 2 Illustration of bias, variance and Monte Carlo approximation for the PD. Left:
Various PDPs using different data for the Monte Carlo integration, but keeping the model
fixed. Right: The green dashed line shows the DGP-PD plot of a toy example. Each thin
line is the PD plot for the model fitted with a different sample, and the thick blue line is
the average thereof. Deviation of the expected PDP from the DGP-PDP are due to bias,
deviations of the individual model-PDPs to the expected PDP are due to model variance.

Appendix B.

EF [(PFIf̂ − PFIf )2] = Bias2F [PFIf̂ ] + VF [PFIf̂ ]

The model variance of PD/PFI stems from variance in the model fit, which
depends on the training sample D and on randomness in the model training
such as weight initialization or feature and observation sampling. When con-
structing confidence intervals, we have to take into account the variance of
PFI and PDP across model fits, and not just the error due to Monte Carlo
integration. As we show in an application (Section 9), whether PD and PFI
are based on a single model or are averaged across model refits can impact the
interpretation, and especially the certainty of the interpretation. We therefore
distinguish between model-PD/PFI and learner-PD/PFI, which are averaged
over refitted models. Variance estimators for model-PD/PFI only account for
variance due to Monte Carlo integration.

6 Model-PD and Model-PFI

In this section, we study the model-PD and the model-PFI, and provide vari-
ance and confidence interval estimators. With model-PD and model-PFI, we
refer to the original proposals for PD (Friedman, 1991) and PFI (Breiman,

2001; Fisher et al., 2019) for fixed models. Conditioning on a given model f̂
ignores the model variance due to the learning process. Only the variance due
to Monte Carlo integration can considered in this case.

The model-PD estimator (Equation (2)) is unbiased regarding the theo-
retical model-PD (Equation (1)). Also, the estimated model-PFI (Equation 4)
is unbiased with respect to the theoretical model-PFI (Equation 3). These
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findings are general properties of Monte Carlo integration, which state that
Monte Carlo integration converges to the integral due to the law of large num-
bers. Proofs can be found in Appendix C and E. In addition, model-PD and
model-PFI are unbiased estimator of the DGP-PD (Theorem 1) and DGP-PFI
(Theorem 2), under certain conditions.

To quantify the variance due to Monte Carlo integration and to construct
confidence intervals, we calculate the variance across the test data instances.
For the model-PD, the variance can be estimated with:

V̂(P̂D(x)) =
1

n2(n2 − 1)

n2∑

i=1

(
f̂(x, x

(i)
C )− P̂D(x)

)2
.

Similarly, for the model-PFI the variance is:

V̂(P̂F I) =
1

n2(n2 − 1)

n∑

i=1

(
L(i) − P̂F I

)2
,

where L(i) = 1
l

∑l
k=1 L(y(i), f̂(x̃

(k,i)
S , x

(i)
C ))− L(y(i), f̂(x(i))).

Model-PD and model-PFI are mean estimates of independent samples with
estimated variance. As such, they follow a t-distribution with n2 − 1 degrees
of freedom. This allows us to construct point-wise confidence bands for the
model-PD and confidence intervals for the model-PFI, that capture the Monte
Carlo approximation uncertainty. We define point-wise α-confidence bands
around the estimated model-PD:

CI
P̂D(x)

=

[
P̂D(x)− t

1−α2

√
V̂(P̂D(x)); P̂D(x) + t

1−α2

√
V̂(P̂D(x))

]
. (5)

where t
1−α2

is the 1 − α/2 quantile of the t-distribution with n2 − 1 degrees

of freedom. We proceed in the same manner for PFI:

CI
P̂FI

=

[
P̂F I − t

1−α2

√
V̂(P̂F I); P̂F I + t

1−α2

√
V̂(P̂F I)

]
. (6)

Confidence intervals for model-PD and model-PFI ignore the model vari-
ance. The interpretation, therefore, is limited to variance regarding the Monte
Carlo approximation, and we cannot generalize results to the data generat-
ing process. Model-PD/PFI and its confidence bands/intervals are applicable
when the focus is a fixed model (e.g. in a model audit).

7 Learner-PD and Learner-PFI

To account for the model variance, we propose the learner-PD and the learner-
PFI, which average the PD/PFI over m model fits f̂d, d ∈ {1, . . . ,m} produced
by the same learning algorithm, but trained on different data samples. The
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learner-variants are averages of the model-variants, where for each model-
PD/PFI the model is repeatedly “sampled” from the distribution of models.

The learner-PD is therefore the expected PD over the distribution of mod-
els generated by the learning process: EF [PD(x)]. We estimate the learner-PD
with:

P̂D(x) =
1

m

m∑

d=1

1

|B−d|
∑

i∈B−d

f̂d

(
x, x

(i)
C

)
, (7)

where f̂d is trained on sample indices Bd and the PD estimated using samples
B−d so that Bd ∩B−d = ∅.

Following the PD, the learner-PFI is the expected PFI over the distribu-
tion of models produced by the learner: EF [PFI]. We propose the following
estimator for the learner-PFI:

P̂F I =
1

m

m∑

d=1

1

|B−d|
∑

i∈B−d

(
¯̃L
(i)
d − L

(i)
d

)
, (8)

where losses L
(i)
d = L(y(i), f̂d(x

(i))) and ¯̃L
(i)
d = 1

l

∑l
k=1 L(y(i), f̂d(x̃

(k,i)
S , x

(i)
C ))

are estimated with data B−d for a model trained on data Bd. Marginal and
conditional versions can also be distinguished for the learner-PFI, depending
on how X̃S was sampled. A similar estimator has been proposed by Janitza
et al. (2018) for random forests.

7.1 Bias of Learner-PD

The learner-PD is an unbiased estimator of the expected PD over the distribu-

tion of models F , since EF [P̂D(x)] = EF

[
1
m

∑m
d=1 P̂Dd(x)

]
= m

mEF [PDf̂ (x)] =

EF [PDf̂ (x)]. The bias of the learner-PD regarding the DGP-PD is linked to
the bias of the model. If the ML model is unbiased, the PDs are unbiased as
well.

Theorem 1 Model unbiasedness implies PD unbiasedness:
EF [f̂(x)] = f(x) =⇒ EF [EXC

[f̂ ]] = EXC
[f ]

Proof Sketch 1 Applying Fubini’s Theorem allows us to switch the order of
integrals. Further replacing EF [f̂ ] with f proves the unbiasedness. A full proof
can be found in Appendix D.

By model bias, we refer to the deviation between the estimated f̂ and
f . Inductive bias, i.e. the preference of one generalization over another, is
necessary for learning (Mitchell, 1980). A wrong choice of inductive bias, such

as assuming a linear f̂ for a non-linear f , leads to deviations of f̂ from f . But
there are also other reasons why a bias of f̂ from f may occur, for example
a too small training data size. We discuss the critical assumption of model
unbiasedness further in Section 10.

9. Relating the Partial Dependence Plot and Permutation Feature Importance to the Data
Generating Process
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7.2 Bias of Learner-PFI

The learner-PFI is unbiased regarding the expected learner-PFI over the distri-
bution of models F , since the learner-PFI is a simple mean estimate. However,
unlike the learner-PD, model unbiasedness does not, in general, imply unbi-
asedness of the learner-PFI regarding the DGP-PFI. In the following, we study
the PFI bias when the squared error is used for loss L (L2-loss).

Theorem 2 If model f̂ is unbiased with EF [f̂ ] = f and the L2-loss is used,
then the conditional model-PFI and conditional learner-PFI are unbiased es-
timators of the conditional DGP-PFI.

Corollary 1 If model f̂ is unbiased, the L2-loss is used and the features XS

are independent of features XC , then the marginal model-PFI and marginal
learner-PFI are unbiased estimators of the DGP-PFI. If the features are de-
pendent, the following bias is introduced: PFIf̂ −DGP-PFI = EX̃SX

[VF [f̂ ]]−
EX [VF [f̂ ]].

Proof Sketch 2 Both L and L̃ can be decomposed into bias, variance, and
irreducible error. Due to the subtraction, the irreducible error vanishes and
the differences of biases and variances remain. Model unbiasedness sets the
bias terms to zero, but the difference in variance only becomes zero if either
XS |= XC or conditional PFI is used. The extended proof can be found in Ap-
pendix F.

Sampling featureXS creates a new distribution (X̃S , XC), with a (possibly)

different variance for a given point across models. If the variance of f̂ changes
for X̃S , this leads to a bias in the PFI estimate. Besides this bias due to
the extrapolation variance, the assumption of model unbiasedness is critical
or even unreasonable for regions outside of PXY , since there is no feedback
whether the model matches the DGP in these regions. Furthermore, the DGP
might have a probability density of zero for regions of extrapolation. This
means that the marginal PFI for dependent features can have a conceptual
problem, as the permutation might create data points that are in conflict with
the DGP (Hooker and Mentch, 2019; Molnar et al., 2020).2

Intuitively, the model-PFI and learner-PFI should tend to have a negative
bias and therefore underestimate the DGP-PFI. A model cannot use more in-
formation about the target than is encoded in the DGP (except for dependent
features in combination with marginal PFI). However, as Theorem 3 shows
the (conditional) PFI can be larger than the DGP-PFI.

Theorem 3 The difference between the conditional PFI (cPFIf̂ ) and the con-

ditional DGP-PFI (cPFIf ) of a model f̂ is given by:

cPFIf − cPFIf̂ = 2EXC

[
VXS |XC

[f ]− CovXS |XC
[f, f̂ ]

]
.

2 Imagine a person with a weight of 4kg and a height of 2m.
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Proof Sketch 3 For the L2 loss, the expected loss of a model f̂ can be de-
composed into the expected loss between f̂ and f and the expected variance of
Y given X. Due to the subtraction, the latter term vanishes. The remainder
can be simplified using that Y |= X̃S | XC and P (X̃S , XC) = P (XS , XC). The
extended proof can be found in Appendix G.

However, for an overestimation of the PFI to occur, the expected con-
ditional variance of f̂ must be greater than the one of f . Moreover, f̂ and f
must have a large expected conditional covariance, meaning that f̂ has learned
something about f .

7.3 Variance Estimation

The learner-PD and learner-PFI vary due to model variance (refitted models),
but also due to using different samples each time for the Monte Carlo integra-
tion. Their variance estimates therefore capture the entire modeling process.
Insofar, learner-PD/PFI along with their variance estimators bring us closer
to the DGP-PD/PFI and only the systematic bias remains unknown.

We can estimate this point-wise variance of the learner-PD with:

V̂(P̂D(x)) =

(
1

m
+ c

)
· 1

(m− 1)

m∑

d=1

(P̂Dd(x)− P̂D(x))2

And equivalently for learner-PFI:

V̂(P̂F I) =

(
1

m
+ c

)
· 1

(m− 1)

m∑

d=1

(P̂F Id − P̂F I)2

The correction term c depends on the data setting. In simulation settings
that allow us to draw new training and test sets for each model, we can use
c = 0, yielding the standard variance estimators. In real world settings, we
usually have a fixed dataset of size n and models are refitted using resam-
pling techniques. Consequently, data are shared by model refits and variance
estimators will underestimate the true variance (Nadeau and Bengio, 2003).
To correct the variance estimate of the generalization error for bootstrapped
or subsampled models, Nadeau and Bengio (2003) suggested the correction
term c = n2

n1
(where n2 and n1 are sizes of test and training data). However,

the correction remains a rough correction, relying on the strongly simplify-
ing assumption that the correlation between model refits depends only on the
number of shared observations in the respective training datasets, and not
on the specific observations that they share. While this assumption is usually
wrong, we show in Section 8 that the correction term offers a vast improvement
for variance estimation – compared to using no correction.

9. Relating the Partial Dependence Plot and Permutation Feature Importance to the Data
Generating Process

156



14 Christoph Molnar et al.

7.4 Confidence Bands and Intervals

Since learner-PD and learner-PFI are means with estimated variance, we can
use the t-distribution with m − 1 degrees of freedom to construct confidence
bands/intervals, where m is the number of model fits. The point-wise confi-
dence band for learner-PD is:

CI
P̂D(x)

=

[
P̂D(x)− t

1−α2

√
V̂(P̂D(x)); P̂D(x) + t

1−α2

√
V̂(P̂D(x))

]
,

where t
1−α2

is the respective 1 − α/2 quantile of the t-distribution with

m − 1 degrees of freedom. Equivalently, we propose a confidence interval for
the learner-PFI:

CI
P̂FI

=

[
P̂F I − t

1−α2

√
V̂(P̂F I); P̂F I + t

1−α2

√
V̂(P̂F I)

]
.

Respecting the model variance can make a difference in the interpretation
as we show in the application, Section 9. Resampling strategies make better
use of the data, in the sense that a bigger share of the data ends up being used
as test data compared to the holdout strategy.

8 Confidence Interval Coverage Simulation

In simulations we compared confidence interval performance between boot-
strapping and subsampling, with and without variance correction. We simu-
lated two data generating processes: a linear DGP was defined as y = f(x) =
x1 − x2 + ε and a non-linear DGP as y = f(x) = x1 −

√
1− x2 + x3 · x4 +

(x4/10)2 + ε. All features were uniformly sampled from the unit interval [0; 1]
and for both DGPs we set ε ∼ N(0, 1). We studied the two settings “simu-
lation” and “real world”. In both settings, we trained (each 15 times) linear
models (lm), regression trees (tree) and random forests (rf), and computed con-
fidence intervals for learner-PD and learner-PFI across the 15 refitted models.
In the “simulation” setting, we sampled n ∈ {100, 1, 000} fresh data points
for each model refit, where 63.2% of the data were used for training and the
remaining 36.8% for PDP and PFI estimation.

In the “real world” setting, we sampled n ∈ {100, 1, 000} data points once
per experiment, and generated 15 training data sets using bootstrap (sample
size n with replacement, which yields 0.632 · n unique data points in expec-
tation) or subsampling (sample size 0.632 · n without replacement). In both
settings, learner-PD and learner-PFI plus their respective confidence intervals
were computed over the 15 retrained models. We repeated the experiment
10,000 times and counted how often the estimated confidence intervals cov-
ered the expected PD or PFI (Ef̂ [PD] and Ef̂ [PFI]) over the distribution of
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Table 1 Coverage Probability of the 95% PDP Confidence Bands. boot = bootstrap, subs
= subsampling, * = with adjustment.

dgp model n boot boot* subs subs* ideal

linear lm 100 0.41 0.89 0.34 0.82 0.95
linear lm 1000 0.41 0.89 0.33 0.80 0.95
linear rf 100 0.39 0.86 0.36 0.83 0.95
linear rf 1000 0.38 0.87 0.35 0.83 0.95
linear tree 100 0.54 0.96 0.47 0.92 0.95
linear tree 1000 0.57 0.96 0.48 0.91 0.95
non-linear lm 100 0.43 0.90 0.36 0.84 0.95
non-linear lm 1000 0.41 0.89 0.33 0.81 0.95
non-linear rf 100 0.39 0.87 0.36 0.84 0.95
non-linear rf 1000 0.38 0.86 0.36 0.83 0.95
non-linear tree 100 0.58 0.98 0.51 0.95 0.95
non-linear tree 1000 0.59 0.97 0.51 0.94 0.95

Table 2 Coverage Probability of the 95% PFI Confidence Intervals. boot = bootstrap, subs
= subsampling, * = with adjustment.

dgp model n boot boot* subs subs* ideal

linear lm 100 0.27 0.70 0.23 0.63 0.94
linear lm 1000 0.25 0.68 0.21 0.60 0.95
linear rf 100 0.44 0.92 0.39 0.88 0.95
linear rf 1000 0.42 0.90 0.38 0.86 0.95
linear tree 100 0.52 0.97 0.42 0.90 0.95
linear tree 1000 0.42 0.90 0.34 0.81 0.95
non-linear lm 100 0.31 0.81 0.25 0.72 0.94
non-linear lm 1000 0.25 0.67 0.21 0.59 0.95
non-linear rf 100 0.47 0.94 0.43 0.91 0.95
non-linear rf 1000 0.41 0.89 0.38 0.86 0.95
non-linear tree 100 0.68 0.99 0.56 0.96 0.94
non-linear tree 1000 0.58 0.97 0.46 0.92 0.95

models F .3 These expected values were computed using 10,000 separate runs.
The coverage estimates were averaged across features per scenario, and, for
PD also across grid points ({0.1, 0.3, 0.5, 0.7, 0.9} for all features.

Table 2 and Table 1 show that in the “simulation” setting (“ideal”), we
can recover confidence intervals using the standard variance estimation with
the desired coverage probability. However, in the “real-world”, setting the
confidence intervals for both learner-PD and learner-PFI are too narrow across
all scenarios and both resampling strategies, when the intervals are based on
naive variance estimates. Some coverage probabilities are especially low, such
as for linear models with 30%− 40%.

The coverage probabilities drastically improve when the correction term is
used, see Figure 3. However, in the simulated scenarios, they are still somewhat
too narrow. For the linear model, the confidence intervals were the most narrow

3 The coverage is not regarding the DGP-PD/PFI, but regarding the expected learner-
PD/PFI, as we studied the choices of resampling and correction for the model variance.
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Figure 3 Confidence interval width vs. coverage for bootstrapping and subsampling, com-
paring before and after correction. Segments connect identical scenarios.
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Figure 4 Confidence interval width vs. coverage for bootstrap and subsampling, both with
correction. Segments connect identical scenarios.

with coverage probabilities of around 80% − 90% for PD and 60% − 80% for
PFI across DGPs and sample sizes. The PD confidence bands were not much
affected by increasing sample size n, but the PFI estimates became slightly
more narrow in most cases. In the case of decision trees, the adjusted confidence
intervals were sometimes too large, especially for adjusted bootstrap.

Except for trees on the non-linear DGP, bootstrap outperformed subsam-
pling in terms of coverage, meaning the coverage was closer to the 95% level
and rather erred on the side of “caution” with wider confidence intervals (see
Figure 4). As recommended in Nadeau and Bengio (2003), we used 15 refits.
We additionally analyzed how the coverage and interval width changed by in-
creasing refits from 2 to 30 and noticed that the coverage worsened with more
refits, while the width of the confidence intervals decreased. Increasing the
number of refits comes with an inherent trade-off between interval width and
coverage: The more refits are considered, the more accurate the learner-PFI
and learner-PD become and also the more certain the variance estimates be-
come, scaling with 1/m. But there is a limit to the information in the data, so
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Figure 5 Average PD confidence band width (left) and coverage (right) as a function of
number of refitted models for the random forest on the non-linear DGP.

that additional refits falsely reduce the variance estimate and the confidence
intervals become too narrow. To refit the model 10 - 20 times seemed to be an
acceptable trade-off between coverage and interval width, see for example Fig-
ure 5. Below ∼ 10 refits, the confidence intervals were large, and also the mean
PD/PFI estimates have a high variance. Above ∼ 20 refits, the widths did not
decrease by much anymore. The figures for the other scenarios can be found
in Appendix H. With our simulation results we could show that confidence
intervals using the naive variance estimation (without correction) results in
way too narrow intervals. While the simple correction term by Nadeau and
Bengio (2003) does not always provide the desired coverage probability, it is
a vast improvement over the naive approach. We therefore recommend us-
ing the correction when computing confidence intervals for learner-PD and
learner-PFI – it is currently the best approach available. We also recommend
refitting the model around 15 times. For more “cautious” confidence intervals
we recommend using confidence intervals based on resampling with replace-
ment (bootstrap) over sampling wihtout replacement (subsampling). However,
beside wider confidence intervals, the bootstrap requires additional attention
when model tuning with internal resampling is used, as data points may oth-
erwise end up in both training and validation data.

9 Application

We apply our proposed estimators to predict wine quality (Cortez et al., 2009)
(n = 1599) from physicochemical features such as alcohol content and acid-
ity. We compared the performance (mean squared error) of a linear regression
model, a regression tree (CART) (Breiman et al., 1984) and a random forest
(Breiman, 2001) using 15 bootstrap samples (sample size n with replacement).
The MSEs for the different models were: 0.425 (Linear regression), 0.342 (Ran-
dom Forest) and 0.456 (Tree).The random forest was significantly better than
the other models based on an adjusted t-test of the performance difference
(Nadeau and Bengio, 2003), with a 95% confidence interval of [-0.098;-0.069]

9. Relating the Partial Dependence Plot and Permutation Feature Importance to the Data
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Figure 6 Top: Lerner-PFI and model-PFI with point-wise 95%-confidence intervals for the
random forest. Bottom: Lerner-PDP and model-PDP with point-wise 95%-confidence bands
for the random forest and feature ”alcohol”.

for the difference to the linear model MSE and [-0.158;-0.071] for the difference
to the decision tree. We reused the 15 random forests from the bootstrap to
estimate the learner-PD and learner-PFI including their confidence intervals
based on adjusted variance estimates. Figure 6, top row, shows that the most
important features were alcohol, sulphates and volatile acidity. The model-PFI
quantifies how important each feature was for a fixed random forest, and the
confidence intervals show the variance of the approximation of the model-PFI
due to Monte Carlo integration. The model-PFI, however, cannot tell us how
much the estimate varies due to model variance. The learner-PFI quantifies
this model variance. Both model-PFI and learner-PFI gave a similar ordering
for the top features. The learner-PFI shows that alcohol is more important
than sulphates (with no overlap in the confidence intervals), for which the
model-PFI would suggest that the importance is almost equal.

Figure 6, bottom row, shows both the model-PDP and the learner-PDP
for the alcohol feature. Notably, the confidence bands of the learner-PDP are
wider than of the model-PDP. Especially for very low and for high alcohol
volumes the models have a high variance. Neglecting the model variance would
mean being overconfident about the partial dependence curve. In particular,
the Monte Carlo approximation error decreases with 1/n as the sample size n
for PD and PFI estimation increases. Wrongly interpreted, this can lead to a
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false sense of confidence in the estimated effects and importance, even though
only one model is considered and model variance is ignored.

10 Discussion

We related the PD and the PFI to the data generating process (DGP), pro-
posed variance and confidence intervals, and discussed conditions for inference.
Our derivations were motivated by taking an external view of the statistical
inference process, and postulating that there is a ground truth counterpart to
PD/PFI in the data generating process. To the best of our knowledge, sta-
tistical inference via model-agnostic interpretable machine learning is already
used in practice, but under-explored in theory.

A critical assumption for inference of effects and importance using inter-
pretable machine learning is unbiasedness of the model. The model bias is
difficult to test, and can be introduced by, e.g. choice of model class, regu-
larization and feature selection. For example, regularization techniques such
as LASSO introduce a small bias on purpose (Tibshirani, 1996) to decrease
model variance and improve predictive performance. We have to better under-
stand how specific biases affect the prediction function and therefore PD and
PFI estimates. Another crucial limitation for inference of PD and PFI is the
underestimation of variance due to data sharing between model refits. While
we could show that a simple correction of the variance (Nadeau and Bengio,
2003) vastly improves the coverage, a proper estimation of the variance re-
mains an open issue. A promising approach relying on repeated nested cross
validation to correctly estimate the variance was recently proposed by Bates
et al. (2021). However, this approach is more computationally intensive by up
to a factor of 1,000.
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Supplementary Material

A Bias and Variance of PD

The expected squared difference between model-PD and DGP-PD can be decomposed into
bias and variance.

Proof

EF [(PDf − PDf̂ )2] = EF [(EXC
[f ]− EXC

[f̂ ])2]

= EF [EXC
[f ]2]− 2EF [EXC

[f ] · EXC
[f̂ ]]

+ EF [EXC
[f̂ ]2]

= E2
F [EXC

[f ]] + VF [EXC
[f ]]

︸ ︷︷ ︸
=0

− 2EXC
[f ]EF [EXC

[f̂ ]]

+ E2
F [EXC

[f̂ ]] + VF [EXC
[f̂ ]]

= (EXC
[f ]− EF [EXC

[f̂ ]])
︸ ︷︷ ︸

Bias

2

+ VF [EXC
[f̂ ]]

︸ ︷︷ ︸
Variance

= (PDf − EF [PDf̂ ])
︸ ︷︷ ︸

Bias

2 + VF [PDf̂ ]
︸ ︷︷ ︸
Variance

B Bias and Variance of PFI

The expected squared difference between model-PFI and DGP-PFI can be decomposed into
bias and variance.

Proof

EF [(PFIf̂ − PFIf )2] = EF [PFI2
f̂

] + EF [PFI2
f ]

− 2EF [PFIf̂PFIf ]

= VF [PFIf̂ ] + EF [PFIf̂ ]2

+ PFI2
f − 2EF [PFIf̂PFIf ]

= (PFIf − EF [PFIf̂ ])2 + VF [PFIf̂ ]

= Bias2F [PFIf̂ ] + VF [PFIf̂ ]

C Model-PD Unbiasedness Regarding Theoretical PD

Proof By the law of large numbers, the Monte Carlo integration converges with n2 →∞ to

the true integral. Assuming n2 identically distributed random draws X
(1)
C , . . . , X

(n2)
C ∼ XC
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and model f̂ , the estimate is:

EXC
[P̂D(x)] = EXC

[
1

n2

n2∑

i=1

f̂(x,X
(i)
C )

]

=
1

n2
n2EXC

[f̂(x,XC)]

= PD(x)

and therefore unbiased for the interval, i.e., the theoretical PD of the model.

D Model-PD Unbiasedness Regarding DGP-PD

Proof Unbiasedness of the model f̂ implies unbiasedness of the model-PD.

EF [EXC
[f̂ ]]

Def
=

∫

F

∫

XC

f̂(xS , XC)dP(XC)dP(F )

Fub
=

∫

XC

∫

F
f̂(xS , XC)dP(F )dP(XC)

Def
= EXC

[EF [f̂ ]]

Unbiased
= EXC

[f ]

Fubini’s theorem requires that
∫
F,XC

|f̂ |dPFPXC
< ∞. This is given when it can be

guaranteed that the model predictions have an upper bound c : |f̂(x)| < c <∞.

E Model-PFI Regarding theoretical PFI

Proof As a function of random variables, the loss L itself is a random variable. We assume
that the loss L(i) of observation i is a sample from the distribution of losses: L(i) ∼ L
and, similarly for the permuted loss: L̃(k,i) ∼ L̃, where L(i) = L(y(i), f̂(x(i))) and L̃(k,i) =

L(y(i), f̂(x̃
(k,i)
S , x

(i)
C )).

The expectation of our estimator is:

EX̃SXSXCY [P̂F I f̂ ] = EX̃SXSXCY

[
1

n2

n2∑

i=1

(
1

l

l∑

k=1

(L̃(k,i) − L(i)))

]

=
1

n2
n2EX̃SXSXCY [((

1

l
lL̃)− L)]

= EX̃SXCY [L̃]− EXSXCY [L]

= PFIf̂

In expectation, we retrieve the theoretical PFI of the model.

F PFI Biases for L2

We assume that L is the squared loss L(y, f̂) = (y − f̂(x))
2

and that E[Y |X] can be described
by f with some additive, irreducible, error ε with E(ε) = 0 and V(ε) = σ2. To further
examine the bias for PFI, we apply the Bias-Variance Decomposition also on the loss itself:
In addition, we use that EXY [Y ] = EX [f(X)], VY [Y ] = σ2 and E[A2] = V[A] +E[A]2. We
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first derive the bias-variance decomposition of (i) permuted loss and (ii) original loss and
derive from that the expected PFI.

For the permuted loss (i):

EFX̃SXY [L̃] = EFX̃SXY [(Y − ˜̂
f)2]

= EX̃SXY [Y 2 − 2Y EF [
˜̂
f ] + EF [

˜̂
f2]]

= EX̃SXY [Y 2 − 2Y EF [
˜̂
f ] + EF [

˜̂
f ]2 + VF [

˜̂
f ]]

= VY [Y ] + EX̃SX [f2 − 2fEF [
˜̂
f ] + EF [

˜̃
f̂ ]2 + VF [

˜̂
f ]]

= σ2
︸︷︷︸

Data Var

+EX̃SX

[
(f − EF [

˜̂
f ])2

]

︸ ︷︷ ︸
Bias2

+EX̃SX [VF [
˜̂
f ]]︸ ︷︷ ︸

Variance

For the original loss (ii):

EFXY [L] = EFXY [(Y − f̂)2]

= EXY [Y 2 − 2Y EF [f̂ ] + EF [f̂2]]

= EXY [Y 2 − 2Y EF [f̂ ] + EF [f̂ ]2 + VF [f̂ ]]

= VY [Y ] + EX [f2 − 2fEF [f̂ ] + EF [f̂ ]2 + VF [f̂ ]]

= σ2
︸︷︷︸

Data Var

+EX

[
(f − EF [f̂ ])2

]

︸ ︷︷ ︸
Bias2

+EX [VF (f̂)]︸ ︷︷ ︸
Variance

The expected PFI for feature XS then is:

PFI = EFX̃SXY [L̃]− EFXY [L]

(i)+(ii)
= σ2 + EX̃SX

[
(f − EF [

˜̂
f ])2

]
+ EX̃SX [VF (

˜̂
f)]

− (σ2 + EX

[
(f − EF [f̂ ])2

]
+ EX [VF (f̂)])

= EX̃SX

[
(f − EF [

˜̂
f ])2

]
− EX

[
(f − EF [f̂ ])2

]

+ EX̃SX [VF [
˜̂
f ]]− EX [VF [f̂ ]]

We can derive the same L2 decomposition for the DGP-PFI by replacing f̂ with f in the
equation above. This yields PFIf = EX̃SX [(f(X)−f(X̃S , XC))2], since VF [f ] = VF [f̃ ] = 0

and EF [f ] = f and EF [f̃ ] = f̃ .
The bias of the model-PFI, compared to the DGP-PFI, is:

PFIf̂ − PFIf = EX̃SX [(f − EF [
˜̂
f ])2 − (f − f̃)2]

︸ ︷︷ ︸
Permutation Loss Bias

(9)

− EX

[
(f − EF [f̂ ])2]

]

︸ ︷︷ ︸
(Model Bias)2

+EX̃SX [VF [f̂ ]]− EX [VF [f̂ ]]
︸ ︷︷ ︸

Variance Inflation

(10)

The permutation loss bias and the squared model bias from the equation above are zero
when the model is not biased, i.e., f̂ = f . The variance inflation term is zero if X̃S ∼ XS |XC ,
which is the case when conditional PFI is used, or when marginal PFI is used and features
XS are independent from features XC . If the features in XS and XC are dependent, the
marginal PFI might be biased, even when the underlying model is unbiased.
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G DGP-PFI minus model-PFI for L2

cPFIf − cPFIf̂ = EX̃SXCY [(Y − f)2]− EXSXCY [(Y − f)2]

−
(
EX̃SXCY [(Y − f̂)2]− EXSXCY [(Y − f̂)2]

)

=
(
EXSXCY [(Y − f̂)2]− EXSXCY [(Y − f)2]

)

︸ ︷︷ ︸
T1:=

+
(
EX̃SXCY [(Y − f))2]− EX̃SXCY [(Y − f̂)2]

)

︸ ︷︷ ︸
T2:=

We know that for any g : X → Y holds:

EX,Y [(Y − g)2] = EX [VY |X [Y ]] + EX [(EY |X [Y ]− g)2]

Since f = EY |XS ,XC
[Y ] we can conclude for our first term T1 that:

T1 = EXSXC
[VY |XS ,XC

[Y ]] + EXSXC
[(f − f̂)2]

−
(
EXSXC

[VY |XS ,XC
[Y ]] + EXSXC

[(f − f)2]
︸ ︷︷ ︸

=0

)

= EXSXC
[(f − f̂)2]

We apply the same trick to T2. Moreover, Y |= X̃S | XC .

T2 = EX̃SXC
[VY |X̃S ,XC

[Y ]] + EX̃SXC
[(EY |X̃S ,XC

[Y ]− f)2]

−
(
EX̃SXC

[VY |X̃S ,XC
[Y ]] + EX̃SXC

[(EY |X̃S ,XC
[Y ]− f̂)2]

)

= EX̃SXC
[(EY |XC

[Y ]− f)2]− EX̃SXC
[(EY |XC

[Y ]− f̂)2]

If we now set together the two terms again and use in the first step that P (XS , XC) =
P (X̃S , XC), we get:

T1+T2 = EXSXC
[(f − f̂)2] + EXSXC

[(EY |XC
[Y ]− f)2]

− EXSXC
[(EY |XC

[Y ]− f̂)2]

= EXSXC

[
f2 − 2ff̂ + f̂2 + EY |XC

[Y ]2 − 2EY |XC
[Y ]f + f2

− EY |XC
[Y ]2 + 2EY |XC

[Y ]f̂ − f̂2
]

= 2EXSXC

[
(f2 − EY |XC

[Y ]f)− (ff̂ − EY |XC
[Y ]f̂)

]

= 2EXC

[
EXS |XC

[
(f2 − EY |XC

[Y ]f)− (ff̂ − EY |XC
[Y ]f̂)

]]

∗
= 2EXC

[
(EXS |XC

[f2]− EY |XC
[Y ]EXS |XC

[f ])

− (EXS |XC
[ff̂ ]− EY |XC

[Y ]EXS |XC
[f̂ ])
]

∗∗
= 2EXC

[
(EXS |XC

[f2]− EXS |XC
[f ]2)

− (EXS |XC
[ff̂ ]− EXS |XC

[f̂ ]EXS |XC
[f ])
]

= 2EXC

[
VXS |XC

[f ]− CovXS |XC
[f, f̂ ]

]

At *, we use the fact that the random variable EY |XC
[Y ] is measurable by the σ-Algebra

generated from XC and we are inclined to pull it out of the expectation. In **, we use that
from f = EY |XS ,XC

[Y ] follows EXS |XC
[f ] = EY |XC

[Y ].
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Figure 7 CI coverage for PD with n=100.
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Figure 8 CI width for PD with n=100.
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Figure 9 CI coverage for PD with n=1,000.
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Figure 10 CI width for PD with n=1,000.
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Figure 11 CI coverage for PFI with n=100.
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Figure 12 CI width for PFI with n=100.
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Figure 13 CI coverage for PFI with n=1,000.
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Figure 14 CI width for PFI with n=1,000.
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Abstract—Interpretable Machine Learning (IML) methods
are used to gain insight into the relevance of a feature of
interest for the performance of a model. Commonly used
IML methods differ in whether they consider features of
interest in isolation, e.g., Permutation Feature Importance
(PFI), or in relation to all remaining feature variables, e.g.,
Conditional Feature Importance (CFI). As such, the perturba-
tion mechanisms inherent to PFI and CFI represent extreme
reference points. We introduce Relative Feature Importance
(RFI), a generalization of PFI and CFI that allows for a more
nuanced feature importance computation beyond the PFI
versus CFI dichotomy. With RFI, the importance of a feature
relative to any other subset of features can be assessed,
including variables that were not available at training time.
We derive general interpretation rules for RFI based on a
detailed theoretical analysis of the implications of relative
feature relevance, and demonstrate the method’s usefulness
on simulated examples.

Index Terms—feature importance, interpretable machine
learning, explainable artificial intelligence, causality

I. Introduction

Predictive modelling is increasingly deployed in high-
stakes environments, e.g., in the criminal justice system
[11], loan approval [32], recruiting [9] and medicine [27].
Due to legal regulations [10], [29] and ethical consid-
erations, ML methods need not only perform robustly
in such environments but also be able to justify their
recommendations in a human-intelligible fashion. This
development has given rise to the field of interpretable
machine learning (IML) that involves studying methods
that provide insight into the relevance of features for
model performance, referred to as feature importance.
Prominent feature importance techniques include per-
mutation feature importance (PFI) [5], [12] and condi-
tional feature importance (CFI) [12], [19], [25]. PFI is
based on replacing the feature of interest X j with a per-
turbed version sampled from the marginal distribution
P(X j) while CFI perturbs X j such that the conditional
distribution with respect to the set R of remaining
features P(X j|XR) is preserved. The sampling strategy
defines the method’s reference point and therefore affects
the method’s implicit notion of relevance. While PFI
quantifies the overall reliance of the model on the feature
of interest, CFI quantifies its unique contribution given

This work is funded by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IS18036A and supported by
the Bavarian State Ministry of Science and the Arts in the framework
of the Centre Digitisation.Bavaria (ZD.B). The authors of this work take
full responsibility for its content.

all remaining features.
While both PFI and CFI are useful, they fail to answer
more nuanced questions of feature importance. For in-
stance, a stakeholder may be interested in the importance
of a feature relative to a subset of features. Also, the user
may want to know how important a feature is relative
to variables that had not been available at training time.
We suggest relative feature importance (RFI) as a gen-
eralization of PFI and CFI that moves beyond the di-
chotomy between PFI, which breaks all dependencies
with features, and CFI, which preserves all dependen-
cies with features. In contrast to PFI and CFI, RFI is
based on a perturbation that is restricted to preserve
the relationships with a set of variables G that can be
chosen arbitrarily. We show that RFI is (1) semantically
meaningful and (2) practically useful.
We demonstrate the semantical meaning of RFI in Sec-
tion IV. In particular, we derive general interpretation
rules that link nonzero RFI to (1) the conditional depen-
dence of the feature of interest with the target and non-
conditioned features XR given the conditioned variables
XG in the data and (2) the conditional dependence of
the input to the feature of interest X j with the model’s
prediction Ŷ given fixed inputs to the remaining features
XR (Theorem 1). Furthermore, we show that a nonzero
difference between RFIG

j and RFIG∪N
j , with N being an

arbitrary set disjunct with G, implies the conditional
dependence X j 6y XN |XG (Theorem 2).
In Section V, we provide an implementation of RFI
estimation that is based on recent results from the re-
lated knockoff research field [7], [23]. Furthermore, we
translate the testing framework developed for condi-
tional feature importance [30] to RFI. We support our
theoretical analysis and findings by various simulation
studies in Section VI. In particular, we show that RFI can
expose the indirect contribution of variables that are not
directly used by the model but provide information via
dependent variables (Section VI-A). Similarly, we show
how RFI can be used to assess feature importance with
respect to variables not included at training time (Section
VI-B).

A. Contributions and Related Work
While conditioning on subsets of variables has been

suggested before [12], [25], the implications of this gen-
eralized variant of CFI have not yet been rigorously
analyzed. Some IML methods perturb or hide subsets
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of features, e.g., in the context of multiple regression rel-
ative importance analysis is a model-specific technique
that averages over all importances of models trained on
feature subsets [6], [16]. Model-agnostic, local approx-
imations to the respective feature effect that avoid re-
training and instead perturb subsets of features have also
been proposed [17], [33]. A very recent global, model-
agnostic feature importance proposal called SAGE quan-
tifies feature importance by perturbing multiple features
[8].
While the aforementioned approaches are all based on
removing several features to provide more nuanced
insight into the model, our proposal only modifies
the feature of interest. Our approach is model-agnostic
and global, while most aforementioned approaches are
model-specific or local. The exception is the global,
model-agnostic SAGE [8], however the approaches are
not only computationally but also semantically differ-
ent. E.g. our method assigns an importance of zero
for features that are not used by the model1, which
is not the case for SAGE. While our approach aims
to provide nuanced insights into variable importance
relative to a specific set, SAGE aims to quantify the
overall importance of variables for the model.
Feature importance relative to variables that have not
been included in the training set has not been studied
before. The indirect influence of variables that the model
does not computationally rely but statistically depend on
has been studied e.g. in [1].

II. Background and Notation
A. Notation

{ j}
R

R

G

G∗G

Fig. 1. Overview of our notation.

We denote the target variable, i.e., the variable the
model predicts, as Y and feature variables by X(.). We
refer to the variables as features to emphasize when
they were used in model training. Their observations
are denoted by y and x(.). We use D := {1, . . . , p} for the
index set of all features included in model training and
j for the index of our feature of interest, X j. The index
set of the remaining variables is denoted as R := D\{ j}
(rest, remainder). The index set of features, relative to
which the importance of X j is considered, is denoted
as G. As G can refer to any index set of variables, we
denote its intersection with R as G = R ∩ G and its
complement as R = R\G. We denote the index set of

1A proof of this property is given in Lemma 2.

conditioning variables that were not made available to
the model during training as G∗ = G\R.
In case we add new elements to the conditioning set
G, we will denote this set as N. The set may include
variables within and outside D. The respective compo-
nents are denoted as N∗ = N\R and as N = R ∩ N.
The remainder of R without G and N is denoted as
R = R\N. We denote perturbed variables of interest
relative to G as X̃G

j . We refer to the original and perturbed
probability distribution of X j as the observational and
interventional distribution P(X j, . . . ) and P(X̃G

j , . . . ). The
inspected model is denoted as f , its prediction as Ŷ.
Independence of Y and X conditional on Z is denoted
using X y Y|Z, the respective conditional dependence as
X 6y Y|Z.

B. Feature Importance

Performance-based feature importance methods assess
the relevance of a feature of interest X j by assessing the
impact of a perturbation of X j on the model’s perfor-
mance. Local feature importance methods focus on the
importance of features for specific data points, whereas
global feature importance methods assess the impact
over the whole domain. In the following, we focus on
global methods.
Global feature importance is computed according to the
following general schemata:

FI j = R̃ j − R or FI j =
R̃ j

R
where we denote the original risk of the model and the
risk after perturbing X j as R and R̃ j, respectively. For
estimation, the true risk R is replaced with the empirical
risk Remp.
Feature importance methods furthermore differ in how
they perturb and whether they rely on retraining the
model. While some methods retrain the model after
the perturbation (e.g. LOCO, [15]), others evaluate the
impact of the perturbation on the same original model
(e.g. [5], [25]). In this work, we focus on methods that
avoid retraining.
For methods that avoid retraining, we observe
a dichotomy between two general perturbation
approaches: resampling that preserves the marginal and
resampling that preserves the conditional distribution.
Marginal resampling was originally proposed to
compute perturbed versions of X j by permuting the
observations x(i)

j within the sample [5]. The respective
sample breaks the dependence between X j and (Y,XR)
while preserving the marginal distribution P(X j). More
recently, Model Reliance was proposed [12], which
takes the expectation over all possible permutations.
Resampling from the marginal distribution has been
criticized to introduce bias, in particular because it
overestimates the importance of correlated variables
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[25], resulting in incorrect feature rankings [26]. It also
leads to extrapolation under dependent features [14],
[19], i.e. conclusions about the model are being drawn
using unrealistic data points on which the model was
not trained. CFI, on the other hand, samples from the
conditional distribution P(X j|XR) [2], [7], [12], [14], [19],
[25], [28]. A large variety of model-specific methods exist
[13], [31]. Conditional variants quantify the importance
of a feature given the information that all remaining
features R contain about X j [20], thereby avoiding
evaluation of the model on unrealistic datapoints [19].

III. Relative Feature Importance

Relative Feature Importance is a general framework
that assesses feature importance relative to arbitrary
variable sets G. The frameworks subsumes PFI and CFI
as two extreme special cases.
In PFI, X j is replaced with a perturbed version that pre-
serves the marginal distribution P(X j) while breaking the
dependencies with Y and all features. In CFI, a perturbed
version of X j is used that preserves the conditional
distribution P(X j|XR), thereby only breaking conditional
dependence between X j and Y given all features. As
our analysis in Section IV establishes, the replacement
strategies of PFI and CFI define extreme reference points.
CFI quantifies the contribution relative to all remaining
features R, whereas PFI regards a feature in isolation.
We go beyond the PFI versus CFI dichotomy. We argue
that it is (1) meaningful (Section IV) and (2) practically
useful (Section VI) to replace X j with perturbed ver-
sions that preserve the conditional distribution P(X j|XG)
with respect to arbitrary sets G while requiring X̃G

j y
(XR,Y)|XG. G can be a subset of R, but can also in-
clude variables not available at training time such that
G\R , ∅. We term the resulting method Relative Feature
Importance (RFI):

Definition 1 (Relative Feature Importance – RFI): We
define Relative Feature Importance with respect to a
feature set G with Y < G and a fixed model f as

RFIG
j := R̃ j|G − R,

where R̃ j|G := R(Y, f (XR, X̃G
j )) is the risk w.r.t. to a

replacement variable X̃G
j and R = R(Y, f (X j,XR)) refers to

the original risk. The replacement variable has to satisfy

• X̃G
j ∼ P(X j|XG) and

• X̃G
j y (XR,Y)|XG.

In the following section, we discuss the semantic mean-
ing of RFI. The estimation of RFI is discussed in Sec-
tion V.

IV. Interpreting Relative Feature Importance
IML techniques aim to provide insight into the model

and, possibly, into the underlying data generating
mechanism. However, IML techniques themselves
are subject to interpretation. The characterization
of an IML method by its mathematical definition
is computationally precise, but has limited aid in
guiding users to make conclusions about the underlying
model and data. In this section we provide a (non-
comprehensive) list of interpretation rules for RFI, that
characterize the method by how it behaves in its context.
This context includes both the model and the underlying
data generating mechanism. More specifically, we link RFI
to (conditional) independence in the underlying data
set as well as to whether the model’s prediction Ŷ is
constant in the argument x j for a fixed xR. While RFI
can be used for quantification of feature importance,
we focus our analysis on relevance as a binary property
and characterize relative feature relevance (RFI , 0).
We show that the implicit notion of relevance of
RFI is defined by the choice of G. By modifying the
conditioning set G beyond the PFI versus CFI dichotomy,
we are able to gain insight into more nuanced aspects
of the model and the data generating mechanism. The
main results are given in Theorem 1 and Theorem 2.
Furthermore, we highlight limitations stemming from
the choice of the loss function L and the model fit for
the interpretation, which are, in our humble opinion,
underrepresented in the current discussion.
We structure our analysis by taking the user’s
perspective and asking ”What can we infer from
relative feature relevance?”.

A. Implications of Relative Feature Relevance
In the following, we analyze the implications of RFI

without further assumptions about model and data. We
thereby distinguish between two levels of explanation.
Relative feature relevance provides insight, both into
model and data.

Theorem 1: If RFIG
j , 0 then

• X j 6y (Y,XR)|XG in the underlying distribution (data
level)

• X̃ j 6y Ŷ|XR w.r.t. the interventional distribution
P(X j|XG)P(XG,XR) > 0 (model level)

We prove Theorem 1 in two steps. First, we assess
the implications of the respective independence for the
underlying data set (Lemma 1). Then, we assess the im-
plications of the respective independence for the model
(Lemma 2). The contrapositions yield Theorem 1.

Lemma 1: If X j y (Y,XR)|XG for any G with Y < G then
RFIG

j = 0.

10. Relative Feature Importance
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We base the proof of Lemma 1 on the insight that
(because the model f is fixed) an equivalence in dis-
tribution implies an equivalence in risk (Proposition
1). Therefore conditions under which the interventional
distribution P(X̃G

j ,XR,Y) coincides with the original dis-
tribution P(X j,XR,Y) are sufficient for RFI = 0.

Proposition 1: If observational and interventional dis-
tribution coincide, then risks with and without pertur-
bation are equal:

P(Y,X j,XR) = P(Y, X̃G
j ,XR)⇒ R( f ) = R̃ j|G( f )

Proof of Proposition 1: Given that P(Y,X j,XR) =
P(Y, X̃ j,XR) we can write

R( f ) = EY,X j,XR [L(Y, f (X j,XR))]

= EY,X̃ j,XR
[L(Y, f (X̃ j,XR))] = R̃( f ).

We show next that the conditional independence
X j y (XR,Y)|XG is a sufficient condition for identity of
both distributions.

Proof of Lemma 1: It holds that

P(Y,X j,XR,XG) = P(X j|Y,XR,XG)P(Y,XR,XG)
Xj y (XR ,Y)|XG

= P(X j|XG)P(Y,XR,XG)
(def)
= P(X̃G

j |XG)P(Y,XR,XG)

= P(X̃G
j ,Y,XR,XG).

Using Proposition 1 we can infer that RFIG
j = 0.

So far, we have assessed implications for the un-
derlying data generating mechanism. Next, we assess
implications for the inspected model f .

Lemma 2: If X̃G
j y Ŷ|XR w.r.t. the interventional distri-

bution P(X̃G
j ,XG,XR) then RFIG

j = 0 for any G.

Proof of Lemma 2: If the prediction for an observation
(x1, . . . , xp) is independent of the value x′j w.r.t. the inter-
ventional distribution, the prediction is unaffected when
replacing x j with any value x′j with P(x′j|XG = xG)P(XG =

xG,XR = xR) > 0. Consequently, any sample from X̃G
j

yields the same prediction.
Furthermore values x′j with nonzero probability over the
interventional distribution also have nonzero probability
over the observational distribution. The interventional
distribution can be rewritten as

P(X̃G
j ,XG,XR) = P(X̃G

j |XG,XR)P(XG,XR)

= P(X̃G
j |XG)P(XG,XR)

= P(X j|XG)P(XG,XR).

Similarly, the observational distribution can be factor-
ized into P(X j|XG,XR)P(XG,XR). As P(X j|XG,XR) > 0 ⇒
P(X j|XG) > 0 (which can be derived from, e.g., the law
of total probability) it follows that P(X̃G

j ,XG,XR) > 0 ⇒
P(X j,XG,XR) > 0.
Consequently the prediction ŷ for any value x j with
positive probability P(X j = x j|XR = xR) is identical given
unchanged xR.
As the conditional distributions of X j and X̃G

j overlap
and the distribution of XR is unaffected, the prediction
Ŷ is identical with and without perturbation. Therefore
R = R̃ j|G and RFIG

j = 0.

To summarize, we have shown that independence on
the dataset and on the model level respectively imply
RFIG

j = 0 and can thereby prove Theorem 1.

Proof of Theorem 1: The result follows from contra-
position of Lemma 1 and contraposition of Lemma 2.

Theorem 1 shows that nonzero RFIG
j implies depen-

dencies between sets of variables on the model level
as well as on the data level. Which dependencies are
relevant for RFIG

j can be controlled with the conditioning
set G. Consequently, the conditioning set G determines
the method’s implicit definition of relevance. I.e., on
the data level, if X j y (XR,Y)|XG holds, RFIG

j is zero
irrespective of any other dependencies that may hold,
e.g. with XG (Lemma 1). Nonzero RFI, a difference in
performance on interventional and observational distri-
bution, can only be caused by dependencies that have
been destroyed in the interventional distribution, the
dependencies with and via XG are preserved by the
replacement X̃G

j and can therefore not be responsible for
RFIG

j , 0. Similarly, on the model level, X̃G
j y Ŷ|XR over

the interventional distribution P(X j|XG)P(XG,XR) yields
zero RFI (Lemma 2). The behavior of the model outside
the domain in which it is evaluated is irrelevant for RFIG

j .
What domain the model is evaluated over depends on
the choice of G.
Because we can control RFI’s implicit definition of rel-
evance with G, RFI allows more nuanced insights into
model and data than PFI or CFI alone. In Theorem 1, we
aim to make the implicit definition of relevance explicit.
On the data level, nonzero RFI implies the dependence
of X j with the tuple (Y,XR) given XG (X j 6y (Y,XR)|XG).
In order to understand the aforementioned dependence,
using the graphoid axioms contraction and weak union
[22], the equivalent formulation below can be adduced:

(X j 6y Y|XG) ∨ (X j 6y XR|XG,Y).

At least one of the two conditional dependencies has
to hold for nonzero RFIG

j . The first dependence can be
rephrased as: X j is informative of Y, even if we already
know XG. It is more difficult to make sense of the second
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dependence. Under dependent features (X j 6y XR|XG,Y),
the distribution of X j with XR is not preserved un-
der perturbation X̃G

j . In the interventional distribution
P(X̃G

j ,XR) observations that are improbable or impossi-
ble w.r.t. the observational distribution P(X j,XR) can be
possible and probable (and vice versa). Consequently,
in the interventional distribution the feature distribution
differs from the observation feature distribution. Even if
X j y Y|XG holds, the model may perform suboptimally
due to this distribution shift and cause RFIG

j nonzero2. If
the conditioning set is a superset of R (G ⊇ R), such
that set of remaining variables XR is empty, it holds
that (X j y XR|XG,Y). Therefore nonzero RFI must be
attributed to (X j 6y Y|XG) for G ⊇ R.
On the model level, nonzero RFI implies that the model’s
predictions are conditionally dependent on X̃G

j given the
remaining features R are fixed. E.g. for a linear model
that has coefficient zero for all terms involving X j, this
dependence would not be fulfilled, and RFIG

j would
be zero (Lemma 2). The model is evaluated over the
interventional distribution P(X j|XG)P(XG,XR) > 0, which
varies depending on G. If G contains a nearly perfect
correlate of X j, X j can be reconstructed well. In contrast,
if G = ∅, for every possible xR the model is evaluated
over the whole marginal distribution of X j. Although
choosing a smaller set G ⊂ R leads to extrapolation
under dependent features, it allows more insight into
the model’s mechanism. For interpretation purposes like
safety, this is highly desirable.
In the preceding paragraphs we have highlighted the
importance of the conditioning set G for the method’s
implicit notion of relevance and illustrated the results
from Theorem 1. We have argued that the condition-
ing set controls which potential dependencies can be
responsible for nonzero RFIG

j . The insights lead to a
further, interesting application of RFI. By assessing the
difference ∆RFIG→G∪N

j = RFIG
j − RFIG∪N

j when modifying
the conditioning set G by adding new elements N, we are
able to assess the role of the dependencies with variables
in N relative to a baseline G. While for RFIG

j only depen-
dencies of X j with and via G are preserved, for RFIG∪N

j
also dependencies with and via N are maintained. If
∆RFIG→G∪N

j is nonzero, this change has to be due to
dependencies involving N, but not G. We substantiate
this claim with Theorem 2. In order for ∆RFIG→G∪N

j to
be positive, the dependence X j 6y XN |XG has to hold.

Theorem 2: If the difference ∆RFIG→G∪N
j = RFIG

j -
RFIG∪N

j , 0, then X j 6y XN |XG.

2Let e.g. X1,X2 be perfectly correlated and independent of Y. Then
adding X1 − X2 does not alter its prediction performance, unless
the dependence between the variables is broken. Also see [14] for a
discussion in PFI.

Proof of Theorem 2: Under independence X j y Xn|XG
it holds that

P(X̃G
j ,Y,XR,XG,XN) = P(X̃G

j |Y,XR,XG,XN)P(Y,XR,XG,XN)
(def X̃G

j )

= P(X j|XG)P(Y,XR,XG,XN)
Xj y Xn |XG

= P(X j|XG,XN)P(Y,XR,XG,XN)
(def X̃G∪N

j )

= P(X̃G∪N
j |XG,XN)P(Y,XR,XG,XN)

(def X̃G∪N
j )

= P(X̃G∪N
j |Y,XG,XN,XR)P(Y,XR,XG,XN)

= P(X̃G∪N
j ,Y,XR,XG,XN)

The equality P(X̃G
j ,Y,XR,XG,XN) = P(X̃G∪N

j ,Y,XR,XG,XN)
implies P(X̃G

j ,Y,XR) = (X̃G∪N
j ,Y,XR). Invoking Proposi-

tion 1 it holds that the corresponding risks R j|G and
R j|G∪N are equal. As RFIG

j − RFIG∪N
j = R j|G − R j|G∪N it

holds that X j 6y Xn|XG ⇒ ∆RFIG→G∪N
j = 0. Contraposition

proves Theorem 2.

While nonzero RFIG
j as well as nonzero ∆RFIG→G∪N

j

have clear implications, interpreting zero RFIG
j or zero

∆RFIG→G∪N
j is difficult. For example, we may be tempted

to interpret RFIG
j = 0 as conditional independence in

the data. However, the general principle that absence of
evidence is no evidence for absence also applies in the
context of RFI. A dependence in the data may not be
captured by the model when it has a poor fit and does
not rely on the respective variable. Similarly, although
f may be optimal, a dependence in higher moments
may simply not be modeled by f or captured by the
loss L. As all aforementioned causes of nonzero RFI
are potentially sufficient, but not necessary, it is unclear
which of the causes nonzero RFI can be attributed
to. Furthermore, the related problem of conditional
independence testing is provably hard [24].
The theoretical insights that we derive in this Section
(Theorem 1 and 2) are applied and illustrated in a
simulation study in Section VI.

V. Estimation and Testing

Estimating and sampling from the conditional dis-
tribution is in general difficult, especially in high-
dimensional continuous settings. Various approaches for
replacing X j with samples from its conditional distribu-
tion exist, e.g., knockoff approaches [2], [7], [23], imputa-
tion and weighting [12] or permutation within decision
tree leaves [18]. We used Model-X knockoffs [7] in this
work, but note that the RFI approach is agnostic to its
algorithmic implementation.

10. Relative Feature Importance
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Using (standard) empirical risk estimates, our RFI esti-
mate is

ˆRFI
G
j =

1
n

n∑

i=1

L
(
y(i), f (x̃(i)

j , x
(i)
R )

)
− 1

n

n∑

i=1

L
(
y(i), f (x(i)

j , x
(i)
R )

)

where x̃(i)
j is a sample from X̃G

j . We can then test
for nonzero RFIG

j using procedures for conditional
independence tests, e.g., [30], thereby quantifying the
uncertainty coming from empirical risk minimization.
Because of the central limit theorem, the empirical risk
converges (in probability) to a Gaussian distribution
with increasing number of observations. Therefore,
one-sided, paired t-tests can be used to infer tests and
confidence intervals [30]. The test procedures proposed
in [30] are agnostic to the conditioning set for the
perturbation X̃G

j . For smaller samples, the Exact Test by
Fisher may be used.
The t-test and Fisher Exact Test ignore uncertainty
and bias of the estimation procedures, i.e. the ML
model and the knockoff-sampler are treated as “fixed”.
E.g. misspecified, suboptimal models may not capture
dependencies. Or dependencies are in higher moments
that are not captured by the loss. Consequently, without
further assumptions, the framework does not provide a
test for conditional independence in the dataset.
The popular testing procedures for knockoffs proposed
by [7] provide FDR over all features, but does not test
the significance of the importance of individual features.

VI. Simulation Studies
In the following, we demonstrate the usefulness of

RFI on two simulation studies. In the first example, we
use RFI to expose indirect influence of variables that are
not computationally used by the model. In the second
example, we assess feature importance relative to a
confounder that was unavailable at training time. In both
examples, we represent the underlying data generating
mechanism, that gives rise to the dependencies in the
data, with a causal directed acyclic graph (DAG). The
code for the examples is available online3.

A. Indirect Influence
A prominent application of interpretable machine

learning is auditing models regarding its reliance on
protected attributes A like age or sex. A reliance on
the respective attributes may result in unfair discrimi-
nation and requires further inspection. With approaches
like fairness through unawareness [3], the model does
not rely on protected attributes directly. However, by
implicitly reconstructing the sensitive attributes using
seemingly harmless correlates, the model can indirectly
make use of the protected attribute resulting in poten-
tially harmful, unfair discrimination [3].

3Link to Code: https://github.com/gcskoenig/icpr2020-rfi

PFI and CFI cannot expose such indirect influence. As
Lemma 2 proves, RFIG

A is zero for a model that does not
(directly) use the feature of interest A for the prediction
for any conditioning set G. Furthermore, from PFI and
CFI alone, we cannot infer whether the importance of
a variable can be attributed to its dependence with an
indirect influence. Using RFIG

j with G = A we preserve
the influence of A on the prediction and can thereby
restrict the attribution of importance to contributions
stemming from dependencies not involving A (Theo-
rem 1, Lemma 1). The difference to ∆RFIG→G∪N

j with
G = ∅ and N = A exposes the indirect influence.
Not every indirect influence from a sensitive attribute
is considered undesirable. Certain correlates of A may
indeed be valid criteria for a decision (e.g. [4]). Impor-
tance stemming from dependencies with A via such re-
solving variables Z would be considered acceptable. We
can assess the indirect influence beyond contributions
stemming from dependence via Z by comparing to a
baseline G = Z. In this baseline, contributions via Z are
preserved and therefore irrelevant for RFI. Consequently,
when setting N = A, the difference ∆RFIG→G∪N

j only
quantifies indirect influence that is not resolved by Z.
We demonstrate the usefulness of RFI to expose in-
direct influence in a simulation study. The dataset is
a sample drawn from the distribution induced by a
structural causal model (SCM) depicted in Figure 2. All
relationships are additive linear with coefficients 1 and
Gaussian noise terms (σ1 = σ2 = σ4 = 1, σ3 = 0.3 and
σy = 0.5). An ordinary least squares linear regression
model was fit to predict Y from X1, . . . ,X4 (MSE = 0.25,
f (x1, x2, x3, x4) = 0.00x1 − 0.01x2 + 1.01x3 + 1.00x4). We
trained model-X knockoffs [7] on the training data and
evaluated RFI on test data. Sample size is 105 with 10%
test data.
In order to quantify the direct influence of the features
we compute PFI. As we can see in Figure 3, X1 and
X2 are considered irrelevant. In order to expose their
indirect influence, we additionally compute RFI with
respect to G = {X1} and G = {X2} respectively. For both
variables we observe a drop in importance of X3 and X4.
Consequently both X1 and X2 have an indirect influence
on the target (Theorem 2).
Furthermore we are interested in whether the indirect
influence of X1 can be resolved by X2. We therefore
compute RFIG∪N

j with G = {X2} and N = {X1}. We see that
for X3 no change in importance can be observed. This is
due to the independence X1 y X3|X2

4 (Theorem 2). The
indirect influence is resolved. However, for X4 the impor-
tance decreases further and is therefore not resolved by
X2. This is in alignment with the dependence X1 6y X4|X2
implied by the graph (Figure 2).

4As faithfulness and causal markov condition hold, d-separation
in the graph and (conditional) independence coincide [21]. We can
therefore read the independence structures off Figures 2 and 4.
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X1

X2 X3

X4

Y

Fig. 2. Variable X1 influences Y both via the chain X2 → X3 and via
X4. X1 may be some undesired influence, and X2 a variable resolving
the undesired influence. We find that the prediction can nevertheless
be influenced via X4 by comparing RFIX2

4 with RFIX2 ,X1
4 (Figure 3). All

relationships are additive linear Gaussian with all coefficients being
equal to 1 and σ1 = σ2 = σ4 = 1, σ3 = 0.3 and σy = 0.5.
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Fig. 3. RFI’s for a linear regression model fitted on the dataset
illustrated in Figure 2. Feature importance values are averaged over
30 runs and rounded. Feature importance values are averaged over
30 runs and rounded. We evaluated significance using a t-test for the
first run. All positive features were significant at α = 0.01, whereas for
all zero RFI values the null could not be rejected. For X1 and X2 all
RFIs are zero, whereas for X3 and X4 RFIs are positive. We see that X1
and X2 both have an indirect influence on X3 and X4, but that X2 can
resolve the influence of X1 on X3.

B. Variables Outside Training Set
When designing a model f , a practitioner may have

decided to exclude a variable from the feature set, e.g.,
because it was then considered irrelevant, it belongs
to a different modality or would have required further
preprocessing. Furthermore, when auditing a machine
learning model f , variables that have not been available
for the training of the model may be accessible.
In this example, we demonstrate that variables outside
the training set can be included in the conditioning set
for RFI. Consequently, importance of the features relative
to variables outside the training set and the indirect
influence of such variables can be assessed. More specif-
ically, we simulate a hypothetical situation where the
influence of a previously unknown confounder C shall
be evaluated. This variable C is available for the model
audit. In particular, we wonder whether the features
X1, X2 and X3 are only or partly important due to a
dependence via C.
The dataset was sampled from a structural causal model
(SCM) depicted in Figure 4. Assuming faithfulness and
the causal Markov condition, this DAG implies the
following (conditional) (in-)dependencies: X1 is indepen-
dent of C, X3 is independent of Y conditional on C, and

X2 is dependent on Y. Note that the dependence between
X2 and Y is due to the common cause C as well as
due to a direct effect of X2 on Y. All relationships are
additive linear with coefficients 1 and additive Gaussian
noise (σ1 = σ2 = σC = 1.0 and σ3 = σY = 0.5). We
fit an ordinary least squares linear regression model on
X1, X2 and X3 to predict Y (MSE = 0.40, f (x1, x2, x3) =
1.0x1 + 1.17x2 + 0.67x3). C was not available for model
training. We trained Model-X knockoffs [7] on training
data and sampled from X̃G

j on test data. Sample size is
105 with 10% test data.
When computing RFIC

j (G = {C}) for each variable,
the different relationships with C become apparent. The
respective results are depicted in Figure 5. For X1 the
feature importance relative to C remains unchanged as
the variables are pairwise independent (Theorem 2). For
X3, that is only dependent with Y via C, it completely
vanishes (Lemma 1). For X2 the feature importance
decreases but remains nonzero, as X2 is dependent with
Y directly and via C.
Consequently, using RFI, we can (1) identify variables
that are important due to a variable unavailable at
training time and (2) distinguish between variables that
only depend on Y via C from those that do not. With PFI
(G = ∅) or CFI (G = R) such a distinction is in general
not possible.

C

X1 X2 X3

Y C

X1 X2 X3

Y

Fig. 4. Left: We see the causal graph G corresponding to the Structural
Causal Model that was used to generate the dataset used in Figure
5. All relationships are additive linear Gaussian with all coefficients
equal to 1 and σ1 = σ2 = σC = 1.0 and σ3 = σY = 0.5. Right: Pairwise
dependencies after conditioning on C.
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Fig. 5. Feature Importance results corresponding to the dataset de-
picted in Figure 4. We averaged RFI over 30 runs. RFI for X1 is
unaffected by changes in G, for X2 RFI drops with C is added to G.
For X3 RFI vanishes relative to C. For all except for RFIC

X3
the null can

be rejected at α = 0.01 in the first run.
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VII. Discussion

We proposed relative feature importance (RFI), a gen-
eral conditional feature importance framework which
allows to condition on arbitrary sets of other features,
including features outside the training set. We underpin
the method with theoretical results allowing insight into
both model and underlying dataset. In a simulation
study, the usefulness of the method for the exposure of
indirect influence is demonstrated.
Relative feature importance requires sampling from (un-
known) conditional distributions. For continuous vari-
ables and in high-dimensional settings this task is chal-
lenging and an open area of research [7], [23]. Uncer-
tainty stemming from inaccurate sampling may affect the
interpretation. The quality of insight into the underlying
dataset strongly depends on the training and evaluation
of the model. Dependencies in higher moments are
usually not modeled and not captured by standard loss
functions and can therefore not be detected. Especially
the interpretation of zero RFI requires careful assessment
of the model specification. Further research is needed to
assess necessary assumptions for the interpretation of
RFI. These challenges are not unique to RFI, but apply
more generally in the field of interpretable machine
learning [20].
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Visualizing the Feature Importance for Black
Box Models

Giuseppe Casalicchio (�), Christoph Molnar, and Bernd Bischl
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Ludwigstraße 33, 80539 Munich, Germany
giuseppe.casalicchio@stat.uni-muenchen.de

Abstract. In recent years, a large amount of model-agnostic methods
to improve the transparency, trustability, and interpretability of machine
learning models have been developed. Based on a recent method for
model-agnostic global feature importance, we introduce a local feature im-
portance measure for individual observations and propose two visual tools:
partial importance (PI) and individual conditional importance (ICI) plots
which visualize how changes in a feature affect the model performance on
average, as well as for individual observations. Our proposed methods are
related to partial dependence (PD) and individual conditional expectation
(ICE) plots, but visualize the expected (conditional) feature importance
instead of the expected (conditional) prediction. Furthermore, we show
that averaging ICI curves across observations yields a PI curve, and
integrating the PI curve with respect to the distribution of the considered
feature results in the global feature importance. Another contribution
of our paper is the Shapley feature importance, which fairly distributes
the overall performance of a model among the features according to the
marginal contributions and which can be used to compare the feature
importance across different models.

Keywords: Interpretable Machine Learning · Explainable AI · Feature
Importance · Variable Importance · Feature Effect · Partial Dependence.

1 Introduction and Related Work

Machine learning (ML) algorithms such as neural networks and support vector
machines (SVM) are often considered to produce black box models because
they do not provide any direct explanation for their predictions. However, these
methods often outperform simple linear models or decision trees in predictive
performance as they can model complex relationships in the data. Nevertheless,
such simple models are still preferred in areas such as life sciences and social
sciences due to their simplicity and interpretability [14]. Many researchers have
therefore developed and implemented several model-agnostic interpretability
tools, which quantify or visualize feature effects or feature importance [9, 11, 17].

In our context, the terms feature effect, feature contribution and feature attri-
bution describe how or to what extent each feature contributes to the prediction
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of the model, either on a local or a global level. Methods for feature effects
include partial dependence (PD) plots [10], individual conditional expectation
(ICE) plots [11] and, more recently, SHAP values [15]. These methods visualize
or quantify the relationship and contribution of each feature to the prediction
of a model without requiring knowledge about the true values of the target
variable. A method that measures feature effects based on the Shapley value [19]
from coalitional game theory was first presented for classification in [21] and has
been extended to regression and global analysis in [22]. Further developments,
visualizations, and generalizations were introduced by [15, 16]. Similar work
proposing a general notion of a quantity of interest for the characteristic function
of the Shapley value and focusing on the joint and marginal contributions of
feature sets was introduced by [8].

In biomedical research, for example, measuring the effects of biomedical
markers w.r.t. model prediction is as essential as measuring their added value
regarding model performance [4]. We use the term feature importance1 to describe
how important the feature was for the predictive performance of the model,
regardless of the shape (e.g., linear or nonlinear relationship) or direction of
the feature effect. This implies that measures of feature importance require
knowledge of the true values of the target variable. The most prominent approach
is the permutation importance introduced by Breiman [3] for random forests. It
computes the drop in out-of-bag performance after permuting the values of a
feature. A model-agnostic global permutation-based feature importance (PFI)
was recently introduced in [9].

Contributions: We review model-agnostic global PFI and propose an efficient
approximation based on Monte-Carlo integration. We then introduce a local
version of the global PFI, which measures the feature importance of individual
observations. We provide visualizations for local and global PFI, which illustrate
how changes in the considered feature affect model performance. We also relate our
new visual tools to PD plots, ICE plots and show that the integral of our PI curve
results in the global PFI measure. Furthermore, we propose a permutation-based
Shapley feature importance (SFIMP) measure that fairly distributes the model
performance among features and allows the comparison of feature importances
across different models.

2 Preliminaries and Background on Feature Effects

In this section, we introduce the notation and describe methods focusing on
feature effects, which we transfer to feature importance in Section 4 and 5.

General Notation: Consider a p−dimensional feature space XP = (X1 × . . .×
Xp) with the feature index set P = {1, . . . , p} and a target space Y. Suppose
that there is an unknown functional relationship f between XP and Y. ML
algorithms try to learn this relationship using training data with observations

1 In the literature, the term feature importance is sometimes also used for methods
that only work with model predictions. In our context, however, we would categorize
them under feature effects as they do not take into account the model performance.

187



Visualizing the Feature Importance for Black Box Models 3

that have been drawn i.i.d. from an unknown probability distribution P on the
joint space XP ×Y . We consider an arbitrary prediction model f̂ , fitted on some
training data to approximate f and analyze it with model-agnostic interpretability
methods. Let D = {(x(i), y(i))}ni=1 be a test data set sampled i.i.d. from P where
n is the number of observations in the test set. We denote the corresponding
random variables generated from the feature space by X = (X1, . . . , Xp) and
the random variable generated from the target space by Y . In our notation,

the vector x(i) = (x
(i)
1 , . . . , x

(i)
p )> ∈ XP refers to the i-th observation, which is

associated with the target variable y(i) ∈ Y, and xj = (x
(1)
j , . . . , x

(n)
j )> denotes

the realizations of the j-th feature. We denote the generalization error of a fitted
model, which is measured by a loss function L on unseen test data from P, by
GE(f̂ ,P) = E(L(f̂(X), Y )). It can be estimated using the test data D by

ĜE(f̂ ,D) = 1
n

∑n
i=1 L(f̂(x(i)), y(i)). (1)

A better estimate for the generalization error of an ML algorithm can be obtained
using resampling techniques such as cross-validation or bootstrap [1].

PD Plots [10] visualize the marginal relationship between features of interest
and the expected prediction of a fitted model on a global level. Consider a subset
of feature indices S ⊆ P and its complement C. Each observation x ∈ XP can be
partitioned into xS ∈ XS and xC ∈ XC containing only features from S and C,
respectively. Let XS and XC be the corresponding random variables and let the
prediction function using features in S, marginalized over features in C be the
PD function defined by fS(xS) = EXC

(f̂(xS , XC)). This definition also covers
f∅(x∅) and results in a constant, the average prediction over P . We can estimate
the PD function using Monte-Carlo integration by averaging over feature values

x
(i)
C in order to marginalize out features in C:

f̂S(xS) = 1
n

∑n
i=1 f̂

(i)
S (xS) = 1

n

∑n
i=1 f̂(xS ,x

(i)
C ). (2)

Here, f̂
(i)
S (xS) = f̂(xS ,x

(i)
C ) can be read in two ways: a) the prediction of the i-th

observation with replaced feature values in S taken from x or b) the prediction
of x with replaced values in C taken from the i-th observation. Plotting the pairs

{(x∗(k)

S , f̂S(x∗
(k)

S ))}mk=1 using (often m < n) grid points denoted by x∗
(1)

S , . . . ,x∗
(m)

S

yields a PD curve. Fig. 1 illustrates the PD principle for a simple example.

x1 x2 x3

1 4 5
2 6 7

→
x1 x2 x3

1 4 5
1 6 7

2 4 5
2 6 7

→

x1 x2 x3 f̂
(i)
S (x1)

1 4 5 f̂
(i)
S (1)

1 6 7 f̂
(i)
S (1)

2 4 5 f̂
(i)
S (2)

2 6 7 f̂
(i)
S (2)

→
x1 x2 x3 f̂S(x1)

1 4 5 1
n

∑n
i=1 f̂

(i)
S (1)

2 6 7 1
n

∑n
i=1 f̂

(i)
S (2)

Fig. 1. PD plot for an example with n = 2, p = 3 and S = {1} and C = {2, 3} (marginal
effect of x1 on f̂). We construct a grid using each observed value from x1, i.e., x1

(1) = 1
and x1

(2) = 2, and compute the PD function using these grid points.
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ICE Plots [11]: The averaging in Eq. (2) of the PD function can obfuscate
more complex relationships resulting from feature interactions, i.e. when the
partial relationship of one or more observations depends on other features. ICE
plots address this problem by visualizing to what extent the prediction of a
single observation changes when the value of the considered feature changes.

Instead of plotting the pairs {(x∗(k)

S , f̂S(x∗
(k)

S ))}mk=1, ICE plots visualize the pairs

{(x∗(k)

S , f̂
(i)
S (x∗

(k)

S ))}mk=1 for each observation indexed by i ∈ {1, . . . , n}.
Shapley Value: A coalitional game is defined by a set of players P , which

can form coalitions S ⊆ P . Each coalition S achieves a certain payout. The
characteristic function v : 2P → R maps all 2p possible coalitions to their payouts.
The Shapley value [19] now fairly assigns a value to each player depending on
their contribution in all possible coalitions. This concept was transferred to
feature effect estimation in [21]. We could explain the prediction of a single,
fixed observation x by regarding features as players, who form various coalitions
(subsets) S to achieve the prediction f̂(x). For each coalition S, we are only
allowed to access values of features from S. A natural definition of the payout
is the PD value fS(xS), which we shift so that an empty set of no features is
assigned a value of 0 – which is required by the general Shapley value definition:

v(xS) = EXC
(f̂(xS , XC))− EX(f̂(X)) = fS(xS)− f∅(x∅). (3)

The marginal contribution of feature j, joining a coalition S, is defined as

∆j(xS) = v(xS∪{j})− v(xS) = fS∪{j}(xS∪{j})− fS(xS).

Let Π be the set of all possible permutations over the index set P . For a
permutation π ∈ Π, we denote the set of features that are in order before feature
j as Bj(π). For example, for p = 4, if we consider feature j = 4 and permutation
π = {2, 3,4, 1}, then B4(π) = {2, 3}. For an observation x and its feature value
for feature j, the Shapley value can be estimated by

φ̂j(x) = 1
p!

∑
π∈Π ∆̂j(xBj(π)

)

= 1
p!

∑
π∈Π f̂Bj(π)∪{j}(xBj(π)∪{j})− f̂Bj(π)(xBj(π)

)

= 1
p!·n

∑
π∈Π

∑n
i=1 f̂

(i)
Bj(π)∪{j}(xBj(π)∪{j})− f̂

(i)
Bj(π)

(xBj(π)
),

where f̂Bj(π) and f̂Bj(π)∪{j} are estimated by Eq. (2). An efficient approximation
based on Monte-Carlo integration using m rather than p! · n summands was
proposed by [22]. Consider the following example to illustrate the Shapley value:
The features enter a room in a random order specified by the permutation π. All
features in the room participate in the game, i.e., they contribute to the model
prediction. The Shapley value φj is the average additional contribution of feature
j by joining whatever features already entered the room before.

3 Permutation-based Feature Importance

Background. The permutation importance for random forests introduced in [3]
measures the performance, e.g., the mean squared error (MSE), of each tree
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within a random forest using out-of-bag samples. The performance is measured
once with and once without permuted values of the feature of interest. The
difference between those two performance values is computed for each tree and
averaged to yield the feature importance. Permuting the values of a feature breaks
the association between the feature and the target variable and results in a large
drop in performance if the considered feature is important. A model-agnostic
global PFI for features included in S can be defined as

PFIS = E(L(f̂(X̃S , XC), Y ))− E(L(f̂(X), Y )) (4)

where X̃S refers to an independent replication of XS , which is also independent
of XC and Y . This implies that X̃S is a new (multivariate) random variable,
which is distributed as XS , but independent of everything else. This definition is
analogous to the permutation-based model reliance introduced by [9] and relates
to the definition in [12] where the authors focus on random forests. The larger the
value of PFIS , the more substantial the increase in error when we permute feature
values in S, and the more important we deem the feature set S. According to [9],

the use of the ratio PFIS = E(L(f̂(X̃S , XC), Y ))/E(L(f̂(X), Y )) instead of the
difference might be more comparable across different models, as it always refers
to the relative drop in performance with respect to the standard generalization
error. However, using the ratio can result in numerically unstable estimations if
the denominator is close or equal to zero. Thus, both definitions have drawbacks
that we try to are address in Section 5.

Estimating and Approximating the PFI. The first term of Eq. (4) encodes the
expected generalization error under perturbation of features in feature set S,
which can be formulated as:

E(L(f̂(X̃S , XC), Y )) = E(XC ,Y )(EX̃S |(XC ,Y )(L(f̂(X̃S , XC), Y )))

= E(XC ,Y )(EX̃S
(L(f̂(X̃S , XC), Y )))

= E(XC ,Y )(EXS
(L(f̂(XS , XC), Y )))

In the derivation above, the first equality follows from the “law of total expec-
tation”, the second from the independence of X̃S from (XC , Y ), and the third
because X̃S is distributed as XS . We can plug in an estimator for the inner
expected value and denote the estimate of this quantity by

ĜEC(f̂ ,D) = 1
n

∑n
i=1

1
n

∑n
k=1

L(f̂(x
(k)
S ,x

(i)
C ), y(i)). (5)

The index C in GEC emphasizes that the set of features in C were not replaced
with a perturbed random variable and can thus be seen as the model performance
using features in C (and ignoring those in S). The above estimator is analogous
to the V-statistic [18] and may also be replaced by the unbiased U-statistic using
1
n

∑n
i=1

1
n−1

∑
k 6=i L(f̂(x

(k)
S ,x

(i)
C ), y(i)) as proposed by [9].2 The estimator scales

2 For the sake of simplicity, we consider the V-statistic throughout the article. How-
ever, all calculations and approximations based on Eq. (5) still apply – with slight
modifications – when using the U-statistic.
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with O(n2) (for a given set C, and assuming f̂ can be computed in constant
time), which can be expensive when n is large. However, we can use a different
formulation to motivate an approximation for Eq. (5): Let {τττ1, . . . , τττn!} be the
set of all possible permutation vectors over the observation index set {1, . . . , n}.
As shown by [9], we can replace Eq. (5) by the equivalent formulation

ĜEC,perm(f̂ ,D) = 1
n

∑n
i=1

1
n!

∑n!
k=1

L(f̂(x
(τ

(i)
k )

S ,x
(i)
C ), y(i)).

If we approximate ĜEC,perm by Monte-Carlo integration using only m randomly
selected permutations rather than all n! permutations, we obtain

ĜEC,approx(f̂ ,D) = 1
n

∑n
i=1

1
m

∑m
k=1

L(f̂(x
(τ

(i)
k )

S ,x
(i)
C ), y(i)). (6)

The approximation refers to permuting features in S repeatedly (i.e., m times)
and averaging the resulting model performances.3 The PFI from Eq. (4) can be
estimated using Eq. (5) for the first term and using Eq. (1) for the last term.
Including the summands into an iterated sum yields the estimate

P̂F IS = 1
n2

∑n
i=1

∑n
k=1

(
L(f̂(x

(k)
S ,x

(i)
C ), y(i))− L(f̂(x(i)), y(i))

)
. (7)

If we use Eq. (6) rather than Eq. (5), we obtain the approximation

P̂F IS,approx = 1
n·m

∑n
i=1

∑m
k=1

(
L(f̂(x

(τ
(i)
k )

S ,x
(i)
C ), y(i))− L(f̂(x(i)), y(i))

)
. (8)

Eq. (8) is identical to the permutation importance of random forests formalized
in [12] if we consider m as the number of trees, replace n with the number of

out-of-bag samples per tree and replace the model f̂ with the individual trees
fitted within a random forest, i.e., f̂k.

4 Visualizing Global and Local Feature Importance

Consider the summands in Eq. (7) and denote them by

∆L(i)(xS) = L(f̂(xS ,x
(i)
C ), y(i))− L(f̂(x(i)), y(i)).

This quantity refers to the change in performance between the i-th observa-
tion with and without replaced feature values xS . Inspired by ICE plots, we
introduce individual conditional importance (ICI) plots which visualize the pairs

{(x(k)
S , ∆L(i)(x

(k)
S ))}nk=1 for all observations i = 1, . . . , n. We define the local fea-

ture importance of the i-th observation (regarding features in S) as the integral of

3 By the same logic, we could also directly approximate Eq. (5) by summing over m
randomly selected feature values for features in S instead of using all of them. We
here opted for Eq. (6), due to the in our opinion interesting relation to the random
forest permutation importance explained at the end of this section.
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the corresponding ICI curve with respect to the distribution of XS . It is estimated

by P̂F I
(i)

S = 1
n

∑n
k=1∆L

(i)(x
(k)
S ) and can be interpreted as the expected change

in performance of the i-th observation after marginalizing its features in S. It
also refers to the contribution of the i-th observation to the global PFI (see later
in Eq. (9)). To the best of our knowledge, a similar definition for local feature
importance only exists in the context of random forests, e.g., in [7].

Analogous to the PD function from Eq. (2), we introduce the partial impor-
tance (PI) function as the expected change in performance at a specific value

xS , which can be estimated by P̂ IS(xS) = 1
n

∑n
i=1∆L

(i)(xS). Consequently, a

PI plot visualizes the pairs {(x(k)
S , P̂ IS(x

(k)
S ))}nk=1 and refers to the pointwise

average of all ICI curves across all observations at fixed grid points xS .
Fig. 2 illustrates the computation of ICI and PI curves for the first feature.

It also shows the n grid points for which ∆L(i)(x
(i)
S ) = 0 ∀i. We can omit these

points by plotting the pairs {(x(k)
S , ∆L(i)(x

(k)
S ))}k∈{1,...,n}\{i} to visualize the

unbiased estimation of the feature importance proposed by [9]. Visualizing the
ICI curves for the approximation in Eq. (8) implies that some grid points are
randomly skipped because the feature values used as grid points are implicitly
determined by the randomly selected permutations in Eq. (8). The ICI curves,
the PI curve, and the global PFI are related: Averaging all ICI curves pointwise
yields a PI curve. Integrating the PI curve (as well as averaging the integral of

all ICI curves) using Monte-Carlo integration over all points {x(k)
S }nk=1 yields an

equivalent estimate of the global PFI from Eq. (7):

P̂F IS = 1
n

∑n
i=1 P̂F I

(i)

S = 1
n

∑n
k=1 P̂ IS(x

(k)
S ). (9)

We propose to additionally inspect the PI and ICI curves instead of focusing on a
single PFI value. PI curves enable the user to identify regions in which the feature
importance is higher or lower than its global PFI. ICI curves additionally enable
the user to identify (suspicious) observations that impact the global PFI strongly
and can reveal heterogeneity in the feature importance among the observations,
which remain hidden in the PI plots (see also Section 6).

Algorithm 1 describes a procedure for obtaining PI and PD plots, which also

allows to return ICI and ICE plots by visualizing {(x∗(k)

S , ∆L(i)(x∗
(k)

S ))}mk=1 and

{(x∗(k)

S , f̂
(i)
S (x∗

(k)

S ))}mk=1 for all observations i. Similar to PD and ICE plots, we
can use all k = 1, . . . , n or a random sample (of size m < n) of feature values
from S as grid points for PI and ICI plots.

5 Shapley Feature Importance

In this section, we introduce the Shapley F eature IMPortance (SFIMP) measure,
which allows to easily visualize and interpret the contribution of each feature to
the model performance. Our goal is to fairly distribute the performance difference
among the individual features between the scenario when all features are used
and when all features are ignored, which is illustrated in Fig. 3.

11. Visualizing the Feature Importance for Black Box Models
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x1 x2 x3
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3 8 9
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1 4 5
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1 8 9

2 4 5
2 6 7
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b)−→
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Fig. 2. The tables on the left side illustrate the required steps to create ICI curves
and PI plots as described in Algorithm 1. The right plot visualizes the ICI curves
of individual observations for i = 1, 2, 3 (dotted and dashed lines) and the PI curve
(solid line) which is the average of ICI curves at each point of the abscissa. All points
belonging to the same observation are connected by a line to produce the ICE curves.

Algorithm 1: PD plot and PI plot

1. Choose m grid points x∗
(1)

S , . . . ,x∗
(m)

S .
2. Repeat the following steps for the k-th grid point:

a) Modify the data by replacing all observed values in xS with the constant

values from the k-th grid point x∗
(k)

S .
b) Use the modified data from a), the prediction function f̂ and the loss function

L and calculate for all individual observations:
i) f̂

(i)
S (x∗

(k)

S ) = f̂(x∗
(k)

S ,x
(i)
C )

ii) ∆L(i)(x∗
(k)

S ) = L(f̂(x∗
(k)

S ,x
(i)
C ), y(i))− L(f̂(x(i)), y(i))

c) Aggregate the individual values:

i) f̂S(x∗
(k)

S ) = 1
n

∑n
i=1 f̂

(i)
S (x∗

(k)

S )

ii) P̂ IS(x∗
(k)

S ) = 1
n

∑n
i=1∆L

(i)(x
(k)
S )

3. Plot the pairs {(x∗(k)

S , f̂S(x∗
(k)

S ))}mk=1 and {(x∗(k)

S , P̂ IS(x∗
(k)

S )}mk=1.

The Shapley value was used in [6] for a fair attribution of the difference in
model performance. However, the authors focused on feature selection which
requires refitting the model by leaving out or including features. This can lead
to different results of the learning algorithm since different relationships can
be learned due to the absence of features. This is reasonable in the context of
feature selection. However, as we measure the feature importance of an already
fitted model, we prefer marginalizing over features rather than omitting them
completely. Inspired by Eq. (3), we define the characteristic function of the
coalition of features in S ⊆ P based on Eq. (5) as:

vGE(S) = ĜES(f̂ ,D)− ĜE∅(f̂ ,D). (10)

The characteristic function measures the change in performance between using
features in S (i.e., ignoring features in its complement C by marginalizing over
them) and ignoring all features. This is similar to Eq. (7) which, in contrast,
measures the change in performance between ignoring features in S and using
all features. Since the error ĜE∅(f̂ ,D) (no features are considered, i.e., all
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Visualizing the Feature Importance for Black Box Models 9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
performance (e.g. classification error)

 performance achieved by

no feature (S =  ∅ )
all features (S = P)

Fig. 3. Illustration of the difference in model performance that we want to fairly
distribute among the features. The model performance (e.g., classification error) is 0.1
when using all features (green bar) and 0.5 when ignoring all features (red bar). Our
goal is to fairly distribute the resulting performance difference of 0.4 among all involved
features based on their marginal contribution.

features are marginalized out) is usually greater than ĜES(f̂ ,D), vGE(S) will
have negative values.4 The marginal contribution of a feature j to a coalition of
features in S is given by

∆j(S) = vGE(S ∪ {j})− vGE(S) = ĜES∪{j}(f̂ ,D)− ĜES(f̂ ,D).

If we consider a permuted order π ∈ Π of the features, where Bj(π) is the set of
features occurring before feature j, we obtain the Shapley value estimation

φ̂j(vGE) = 1
p!

∑
π∈Π ∆j(Bj(π))

= 1
p!

∑
π∈Π ĜEBj(π)∪{j}(f̂ ,D)− ĜEBj(π)(f̂ ,D),

(11)

which refers to the SFIMP measure of feature j. Computing Eq. (11) is compu-
tationally expensive when the number of features p is large, even if we use the
approximation of the model performance from Eq. (6). We therefore suggest an
efficient procedure in Algorithm 2. The Shapley value satisfies the following four
desirable properties as already worked out in [6]:

1. Efficiency:
∑p
j=1 φj = vGE(P ). All SFIMP values add up to vGE(P ), i.e., the

difference in performance between the scenario when all features are used
and when all features are ignored. This allows us to calculate the proportion
of explained importance for each feature j using

φj∑p
j=1 φj

.

2. Symmetry: If vGE(S ∪ {j}) = vGE(S ∪ {k}) for all S ⊆ {1, . . . , p} \ {j, k},
then φj = φk. Two features j and k have the same SFIMP values if their
marginal contribution to all possible coalitions is the same.

3. Dummy property: If vGE(S ∪ {j}) = vGE(S) for all S ⊆ P , then φj = 0.
The SFIMP value of a feature j is zero if its marginal contribution does not
change no matter to which coalition S the feature is added.

4. Additivity: φj(vGE+wGE) = φj(vGE)+φj(wGE). The SFIMP value resulting
from a single game with two combined performance measures φj(vGE +wGE)
is the same as the sum of the two SFIMP values resulting from two separate
games with corresponding characteristic functions, i.e., φj(vGE) + φj(wGE).
Linearity: φj(c · vGE) = c · φj(vGE). Any multiplication of the performance
measure with a constant c does not affect the feature ranking.

4 We prefer the definition in Eq. (10) as it directly shows the relation to Eq. (3),
however, we could also swap the sign as discussed at the end of this section.

11. Visualizing the Feature Importance for Black Box Models
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Algorithm 2: Approximation of SFIMP values: Contribution of j-th feature
towards the model performance.

Input: mfeat, mobs, f̂ , L, D = {(x(i), y(i))}ni=1

1 forall k ∈ {1, . . . ,mfeat} do
2 choose a random permutation of the feature indices π ∈ Π.
3 set S = Bj(π) containing features that won’t be permuted.

4 set ĜES,perm = 0 and ĜES∪{j},perm = 0.
5 forall l ∈ {1, . . . ,mobs} do
6 choose a random permutation of observation indices τττ ∈ {τττ1, . . . , τττn!}.
7 measure performance by permuting features w.r.t. τττ = (τ (1), . . . , τ (n)):

ĜES,perm = ĜES,perm + 1
n

∑n
i=1 L(f̂(x

(i)
S ,x

(τ(i))
C ), y(i)))

ĜES∪{j},perm = ĜES∪{j},perm + 1
n

∑n
i=1 L(f̂(x

(i)

S∪{j},x
(τ(i))

C\{j}), y
(i)))

8 compute marginal contribution for feature j in iteration k:

∆
(k)
j (S) = 1

mobs
· (ĜES∪{j},perm − ĜES,perm)

9 return φ̂j = 1
mfeat

∑mfeat
k=1 ∆

(k)
j (S)

The properties above imply that fairly distributing the drop in performance

using vPFI(S) = P̂F IS = ĜEC(f̂ ,D)− ĜEP (f̂ ,D) results in the same Shapley
values (except for the sign) and is equivalent to using −vGE(P ). The SFIMP
measure can thus be seen as an extension of the PFI measure in the sense that
it additionally fairly distributes the importance values among features. The
PFI measure ignores features in S by permuting or marginalizing over them,
which destroys any correlation and interaction of features in C with features
in S. Consequently, the PFI of a feature also includes the importance of any
interaction with that feature and features in C and therefore an interaction will
be fully attributed to all involved features. The SFIMP measure solves this issue
as it considers the marginal contribution of a feature and equally distributes the
importance of interactions among the interacting features. This allows comparing
feature importances across different models.

6 Simulations and Application

For full reproducibility, all our proposed methods are available in the R package
featureImportance5. The repository also contains the R code, which is partly
based on batchtools [13], for the application and simulation in this section.

6.1 Simulations

PI and ICI Plots. Consider the following data-generating model:

Y = X1 +X2 + 10X1 · 1X3=0 + 10X2 · 1X3=1 + ε,

5 https://github.com/giuseppec/featureImportance.
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X1, X2
i.i.d∼ N (0, 1), X3 ∼ B(1, 0.5), ε ∼ N (0, 0.5).

We simulate a training data set with 10000 observations, train a random forest
and compute the global PFI on 100 test sets of size n = 100 sampled from the
same distribution. We demonstrate that, by merely inspecting the global PFI,
the features X1 and X2 would be considered equally important. However, due to
the interactions, it is clear that feature X1 should be considered more important
than X2 when X3 = 0 and vice-versa when X3 = 1.

According to Eq. (9), averaging the local feature importances (i.e., the integral
of all ICI curves) results in the global PFI. Having at hand the local feature
importance of each observation allows calculating the PFI conditional on other
features. This does not require additional time-consuming calculations, as we only
have to average the already computed local feature importances according to the
condition considered in the conditional PFI. The relevance of conditional feature
importance in the case of random forests with correlated features was discussed
in [20]. In Fig. 4, we illustrate the usefulness of a model-agnostic conditional PFI
in case of interactions by showing the PI curves of X1 and X2 conditional on the
binary feature X3. The integral of these conditional PI curves refers to the PFI
conditional on X3. Its value differs depending on the two groups introduced by
feature X3, which suggests that there is an interaction between the features X1

and X3 as well as X2 and X3.
Table 1 shows that feature X1 and X2 are almost equally important if we

consider the unconditional global PFI. However, a different ranking of features is
obtained when we compute the PFI conditional on X3. Thus, inspecting PI and
ICI curves conditional on other feature values may help in detecting interactions.

Table 1. The mean and the standard deviation (numbers in brackets) of the PFI values
estimated using the 100 simulated test data sets.

X1 X2

global PFI 77.976 (14.15) 76.764 (13.89)
PFI for X3 = 0 152.49 (26.06) 1.428 (1.32)
PFI for X3 = 1 1.261 (1.03) 151.489 (24.69)

Shapley Feature Importance. We illustrate how the SFIMP measure can be
used to compare the feature importance across different models and present the
results of a small simulation study to compare the SFIMP measure introduced in
Section 5 with the difference-based and the ratio-based PFI discussed in Section
3. Consider the following data-generating linear model with a simple interaction:

Y = X1 +X2 +X3 +X1 ·X2 + ε, X1, X2, X3
i.i.d∼ N (0, 1), ε ∼ N (0, 0.5).

All three features and the interaction of X1 and X2 have the same linear effect on
the target Y . We simulate training data with 10000 observations and train four

11. Visualizing the Feature Importance for Black Box Models
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Fig. 4. PI curves of X1 and X2 calculated using all observations (black line) and
conditional on X3 = 0 (red line) and X3 = 1 (green line). The points plotted on the
lines refer to the observed feature values that were used as grid points to produce the
corresponding PI curves as described in Algorithm 1.

learning algorithms using the mlr R package [2] in their defaults: An SVM with
Gaussian kernel (ksvm), a random forest (randomForest), a simple linear model
(lm) and another one that considers 2-way interaction effects (rsm). We use a test
set with n = 100 observations sampled from the same distribution and compute
the SFIMP values according to Eq. (11). Panel (a) of Fig. 5 displays how the
SFIMP measure distributes the total explainable performance among all features
and shows the proportion of explained importance for each feature. We repeat
the experiment 500 times on different test sets of equal size and additionally
compute the difference-based and ratio-based PFI. The results are shown in panel
(b) of Fig. 5. For the linear model without interaction effects, the calculated
importance of all three features is equal (median ratio of 1). For all other models,
we obtained a higher importance for the interacting features, indicating that
these models were able to grasp the interaction effect. However, as permuting a
feature destroys any interaction with that feature, the PFI values of a feature
will also include the importance of any interaction with that feature. Thus, the
importance of the interaction between X1 and X2 is contained in the PFI value
for feature X1 as well as in the PFI value for feature X2. This will overestimate
the importance of X1 and X2 with respect to X3 since X1 and X2 share the
same interaction. In panel (b), we thus show the ratio of the importance values
with respect to X3. The results suggest that the difference-based PFI considers
X1 and X2 twice as important as X3 as the median ratio is around 2. In contrast,
the median ratio of SFIMP is around 1.5 as the importance of the interaction is
fairly distributed among X1 and X2.

6.2 Application on Real Data

We demonstrate our graphical tools on the Boston housing data, which is publicly
available on OpenML [23] with data set ID 531. The data set contains 13 features
that may affect the median home price of 506 metropolitan areas of Boston. We
used the OpenML R package [5] and created the OpenML task with ID 167147
containing a holdout split ( 2

3 vs. 1
3 ) for training a random forest and producing

the PI and ICI plots on the test set.
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(a) Comparing the model performance and SFIMP values across different models
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(b) Simulation with 500 repetitions

Fig. 5. Panel (a) shows the results of a single run, consisting of sampling test data and
computing the importance on the previously fitted models. The first numbers on the
left refer to the model performance (MSE) using all features. The other numbers are
the SFIMP values which sum up to the total explainable performance vGE(P ) from Eq.
(10). The percentages refer to the proportion of explained importance. Panel (b) shows
the results of 500 repetitions of the experiment. The plots display the distribution of
ratios of the importance values for X1 and X2 with respect to X3 computed by SFIMP,
by the difference-based PFI, and by the ratio-based PFI.

Row (1) of Table 2 shows the global PFI values of all features. They are
estimated using Eq. (7) by taking into account all 166 ·166 points of the test data.
Fig. 6 shows the corresponding PI and ICI curves for the two most important
features (LSTAT and RM). They visualize which regions of each feature and
which observations have a high impact on the computed PFI values on a global
and local level, which follows from the relation in Eq. (9).

PI plots visualize the expected change in performance at each position of the
abscissa. An expected change close to zero across the whole range of the feature
values suggests an unimportant feature. The PI plot of LSTAT in Fig. 6 suggests
that the feature is more important if LSTAT < 10. For illustration purposes,
we omit all observations for which LSTAT ≥ 10 and recompute the conditional
PFI values, which are displayed in Row (2) of Table 2. The resulting conditional
PFI values are smaller, i.e., excluding observations for which LSTAT ≥ 10 makes
the LSTAT feature less important. Note that omitting observations change the
empirical distribution of the features and thus also affects the importance of
other features when the PFI values are recomputed.

ICI curves additionally reveal the most (and the least) influential observations
for the feature importance by considering their integral (see highlighted lines
in Fig. 6). We can, for example, omit observations with a negative ICI curve
integral. In our test set, we observe 18 of 166 ICI curves with a negative integral

11. Visualizing the Feature Importance for Black Box Models
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for the LSTAT feature. These observations have a negative impact on the global
PFI according to the relation in Eq. (9). We omit them and recompute the PFI
values. The results are listed in row (3) of Table 2 and show an increased PFI
value for LSTAT.

Table 2. PFI values calculated for a random forest trained on the Boston housing
training set and using the MSE on the test data. The PFI values in row (1) are based
on all observations from the test set, in row (2) on a subset where LSTAT < 10 and in
row (3) after removing observations having a negative ICI integral.

LSTAT RM NOX DIS CRIM PTRATIO AGE INDUS TAX RAD B ZN CHAS

(1) 32.0 15.6 3.9 2.7 2.6 2.2 1.2 1.0 1.0 0.8 0.8 0.1 0.1
(2) 10.4 29.6 1.5 3.3 0.8 2.3 0.8 0.5 1.2 1.1 0.6 0.2 0.2
(3) 35.3 17.0 4.3 2.4 2.5 2.5 1.1 1.2 0.8 0.9 0.8 0.1 0.1

7 Conclusion and Future Work

It is essential for practitioners to peek inside black box models to get a better
understanding of how features contribute to model predictions or how they affect
the model performance. Model-agnostic visualization methods can simplify this
task tremendously. Regarding the feature importance, the PI and ICI curves are
a convenient choice for visualizing how features affect model performance. We
demonstrated how to disaggregate the global PFI into its individual local PFI
components, which enabled us to visualize the feature importance on a local
and global level. It also allows practitioners to analyze and compare the feature
importance across different groups of observations in the data, e.g., by subsetting
the data according to other feature values and computing a conditional feature
importance similar to [20] on the subsetted data which may reveal interactions.
Another interesting aspect, which we leave for future work, is aggregating the local
feature importances of individual observations (i.e., the integral of ICI curves)
across different features to obtain a measure for the importance of individual
observations. This could be used to find clusters of observations in the data
that were important for the model performance similar to [15], but based on
feature importance rather than feature effects. Furthermore, it is also possible to
disaggregate the Shapley feature importance introduced in Section 5 and produce
plots similar to Shapley dependency plots that were recently introduced in [15],
but we leave this for future work. Our proposed methods serve as an evaluation
tool that is applied to a data set after a model has been fitted. As a consequence,
our methods can be used to either assess the feature importance based on the
“in-sample performance” or based on the “out-of-sample performance” of a fitted
model. In the former case, the same data could be used to fit the model and to
calculate the quantities involved in the definition of our methods. We focused on
the latter case with independent test data. However, we could also investigate
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Fig. 6. PI and ICI plots for a random forest and the two most important features of the
Boston housing data (LSTAT and RM). The horizontal lines in the PI plots represent
the value of the global PFI (i.e., the integral of the PI curve). Marginal distribution
histograms for features are added to the PI margins. The ICI curve with the largest
integral is highlighted in green and the curve with the smallest integral in red.

the variability introduced by the estimation of the model itself via resampling
and plot or aggregate the resulting set of quantities.
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Abstract. Post-hoc model-agnostic interpretation methods such as par-
tial dependence plots can be employed to interpret complex machine
learning models. While these interpretation methods can be applied re-
gardless of model complexity, they can produce misleading and verbose
results if the model is too complex, especially w.r.t. feature interactions.
To quantify the complexity of arbitrary machine learning models, we
propose model-agnostic complexity measures based on functional decom-
position: number of features used, interaction strength and main effect
complexity. We show that post-hoc interpretation of models that mini-
mize the three measures is more reliable and compact. Furthermore, we
demonstrate the application of these measures in a multi-objective opti-
mization approach which simultaneously minimizes loss and complexity.

Keywords: Model Complexity · Interpretable Machine Learning · Ex-
plainable AI · Accumulated Local Effects ·Multi-Objective Optimization

1 Introduction

Machine learning models are optimized for predictive performance, but it is of-
ten required to understand models, e.g., to debug them, gain trust in the predic-
tions, or satisfy regulatory requirements. Many post-hoc interpretation methods
either quantify effects of features on predictions, compute feature importances,
or explain individual predictions, see [17, 24] for more comprehensive overviews.
While model-agnostic post-hoc interpretation methods can be applied regard-
less of model complexity [30], their reliability and compactness deteriorates when
models use a high number of features, have strong feature interactions and com-
plex feature main effects. Therefore, model complexity and interpretability are
deeply intertwined and reducing complexity can help to make model interpreta-
tion more reliable and compact. Model-agnostic complexity measures are needed
to strike a balance between interpretability and predictive performance [4, 31].

Contributions. We propose and implement three model-agnostic measures
of machine learning model complexity which are related to post-hoc interpretabil-
ity. To our best knowledge, these are the first model-agnostic measures that de-
scribe the global interaction strength, complexity of main effects and number
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2 C. Molnar et al.

of features. We apply the measures to different datasets and machine learning
models. We argue that minimizing these three measures improves the reliability
and compactness of post-hoc interpretation methods. Finally, we illustrate the
use of our proposed measures in multi-objective optimization.

2 Related Work and Background

In this section, we introduce the notation, review related work, and describe the
functional decomposition on which we base the proposed complexity measures.

Notation: We consider machine learning prediction functions f : Rp 7→ R,
where f(x) is a prediction (e.g., regression output or a classification score). For
the decomposition of f , we write fS : R|S| 7→ R, S ⊆ {1, . . . , p}, to denote a
function that maps a vector xS ∈ R|S| with a subset of features to a marginal
prediction. If subset S contains a single feature j, we write fj . We refer to the
training data of the machine learning model with the tuples D = {(x(i), y(i))}ni=1

and refer to the value of the j-th feature from the i-th instance as x
(i)
j . We write

Xj to refer to the j-th feature as a random variable.
Complexity and Interpretability Measures: In the literature, model

complexity and (lack of) model interpretability are often equated. Many com-
plexity measures are model-specific, i.e., only models of the same class can be
compared (e.g., decision trees). Model size is often used as a measure for in-
terpretability (e.g., number of decision rules, tree depth, number of non-zero
coefficients) [3, 16, 20, 22, 31–34]. Akaikes Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) are more widely applicable measures for
the trade-off between goodness of fit and degrees of freedom. In [26], the au-
thors propose model-agnostic measures of model stability. In [27], the authors
propose explanation fidelity and stability of local explanation models. Further
approaches measure interpretability based on experimental studies with humans,
e.g., whether humans can predict the outcome of the model [8, 13, 20, 28, 35].

Functional Decomposition: Any high-dimensional prediction function can
be decomposed into a sum of components with increasing dimensionality:

f(x) =

Intercept︷︸︸︷
f0 +

1st order effects︷ ︸︸ ︷
p∑

j=1

fj(xj) +

2nd order effects︷ ︸︸ ︷
p∑

j<k

fjk(xj , xk) + . . .+

p-th order effect︷ ︸︸ ︷
f1,...,p(x1, . . . , xp) (1)

This decomposition is only unique with additional constraints regarding the
components. Accumulated Local Effects (ALE) were proposed in [1] as a tool
for visualizing feature effects (e.g., Figure 1) and as unique decomposition of the
prediction function with components fS = fS,ALE . The ALE decomposition is
unique under an orthogonality-like property described in [1].

The ALE main effect fj,ALE of a feature xj , j ∈ {1, . . . , p} for a prediction
function f is defined as

fj,ALE(xj) =

∫ xj

z0,j

E
[
∂f(X1, . . . , Xp)

∂Xj

∣∣∣∣Xj = zj

]
dzj − cj (2)
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Quantifying Model Complexity 3

Here, z0,j is a lower bound ofXj (usually the minimum of xj) and the expectation
E is computed conditional on the value for xj and over the marginal distribution
of all other features. The constant cj is chosen so that the mean of fj,ALE(xj)
with respect to the marginal distribution of Xj is zero, so that the ALE compo-
nents sum to the full prediction function. By integrating the expected derivative
of f with respect to Xj the effect of xj on the prediction function f is isolated
from the effects of all other features. ALE main effects are estimated with finite
differences, i.e., access to the gradient of a prediction function is not required
(see [1]). We base our proposed measures on the ALE decomposition, because
ALE are computationally cheap (worst case O(n) per main effect), they can be
computed sequentially instead of simultaneously, they do not require knowledge
of the joint distribution, and several software implementations exist [2, 25].

3 Functional Complexity

In this section, we motivate complexity measures based on functional decom-
position. Based on Equation 1, we decompose the prediction function into a
constant (estimated as f0 = 1

n

∑n
i=1 f(x(i))), main effects (estimated by ALE),

and a remainder term containing interactions (i.e., the difference between the
full model and constant + main effects).

f(x) = f0 +

p∑

j=1

MEC: How complex?︷ ︸︸ ︷
fj,ALE(xj) +

IAS: Interaction strength?︷ ︸︸ ︷
IA(x)

︸ ︷︷ ︸
NF: How many features were used?

(3)

This arrangement of components emphasizes a decomposition of the prediction
function into a main effect model and an interaction remainder. We can analyze
how well the main effect model itself approximates f by looking at the magni-
tude of the interaction measure IAS. The average main effect complexity (MEC)
captures how many parameters are needed to describe the one-dimensional main
effects on average. The number of features used (NF) describes how many fea-
tures were used in the full prediction function.

3.1 Number of Features (NF)

We propose an approach based on feature permutation to determine how many
features are used by a model. We regard features as ”used” when changing a
feature changes the prediction. If available, the model-specific number of features
is preferable. The model-agnostic version is useful when the prediction function
is only accessible via API or when the machine learning pipeline is complex.

The proposed procedure is formally described in Algorithm 1. To estimate
whether the j-th feature was used, we sample instances from data D, replace
their j-th feature values with random values from the distribution of Xj (e.g., by
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Algorithm 1: Number of Features Used (NF)

Input: Number of samples M , data D
1 NF = 0
2 for j ∈ 1, . . . , p do

3 Draw M instances {x(m)}Mm=1 from dataset D
4 Create {x(m)∗}Mm=1 as a copy of {x(m)}Mm=1

5 for m ∈ 1, . . . ,M do

6 Sample x
(new)
j from {x(i)j }ni=1 with the constraint that x

(new)
j 6= x

(m)
j

7 Set x
(m)∗
j = x

(new)
j

8 if f(x(m)∗) 6= f(x(m)) for any m ∈ {1, . . . ,M} then NF = NF + 1.

9 return NF

sampling xj from other instances from D), and observe whether the predictions
change. If the prediction of any sample changes, the feature was used.

We tested the NF heuristic with the Boston Housing data. We trained de-
cision trees (CART) with maximum depths ∈ {1, 2, 10} leading to 1, 2 and 4 fea-
tures used and an L1-regularized linear model with penalty λ ∈ {10, 5, 2, 1, 0.1, 0.001}
leading to 0, 2, 3, 4, 11 and 13 features used. For each model, we estimated NF
with sample sizes M ∈ {10, 50, 500} and repeated each estimation 100 times. For
the elastic net models, NF was always equal to the number of non-zero weights.
For CART, the mean absolute differences between NF and number of features
used in the trees were 0.280 (M = 10), 0.020 (M = 50) and 0.000 (M = 500).

3.2 Interaction Strength (IAS)

Interactions between features mean that the prediction cannot be expressed as a
sum of independent feature effects, but the effect of a feature depends on values
of other features [24]. We propose to measure interaction strength as the scaled
approximation error between the ALE main effect model and the prediction
function f . Based on the ALE decomposition, the ALE main effect model is
defined as the sum of first order ALE effects:

fALE1st(x) = f0 + f1,ALE(x1) + . . .+ fp,ALE(xp)

We define interaction strength as the approximation error measured with loss L:

IAS =
E(L(f, fALE1st))

E(L(f, f0))
≥ 0 (4)

Here, f0 is the mean of the predictions and can be interpreted as the functional
decomposition where all feature effects are set to zero. IAS with the L2 loss
equals 1 minus the R-squared measure, where the true targets yi are replaced
with f(x(i)).

IAS =

∑n
i=1(f(x(i))− fALE1st(x

(i)))2

∑n
i=1(f(x(i))− f0)2

= 1−R2
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Quantifying Model Complexity 5

If IAS = 0, then L(f, fALE1st) = 0, which means that the first order ALE model
perfectly approximates f and the model has no interactions.

3.3 Main Effect Complexity (MEC)

To determine the average shape complexity of ALE main effects fj,ALE , we
propose the main effect complexity (MEC) measure. For a single ALE main
effect, we define MECj as the number of parameters needed to approximate the
curve with piece-wise linear models. For the entire model, MEC is the average
MECj over all main effects, weighted with their variance. Figure 1 shows an
ALE plot (= main effect) and its approximation with two linear segments.

−3

−2

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

A
L

E

Fig. 1. ALE curve (solid line) approximated by two linear segments (dotted line).

We use piece-wise linear regression to approximate the ALE curve. Within the
segments, linear models are estimated with ordinary least squares. The break-
points that define the segments are found by greedy and exhaustive search along
the interval boundaries of the ALE curve. Greedy here means that we first opti-
mize the first breakpoint, then the second breakpoint with the first breakpoint
fixed and so on. We measure the degrees of freedom as the number of non-zero
coefficients for intercepts and slopes of the linear models. The approximation
allows some error, e.g., an almost linear main effect may have MECj = 1, even
if dozens of parameters would be needed to describe it perfectly. The approxi-
mation quality is measured with R-squared (R2), i.e., the proportion of variance
of fj,ALE that is explained by the approximation with linear segments. An ap-
proximation has to reach an R2 ≥ 1 − ε, where ε is the user defined maximum
approximation error. We also introduced parameter maxseg, the maximum num-
ber of segments. In the case that an approximation cannot reach an R2 ≥ 1− ε
with a given maxseg, MECj is computed with the maximum number of seg-
ments. The selected maximum approximation error ε should be small, but not
too small. We found ε between 0.01 and 0.1 visually meaningful (i.e. a subjec-
tively good approximation) and used ε = 0.05 throughout the paper. We apply
a post-processing step that greedily sets slopes of the linear segments to zero,
as long as R2 ∈ {1− ε, 1}. The post-processing potentially decreases the MECj ,
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especially for models with constant segments like decision trees. MECj is aver-
aged over all features to obtain the global main effect complexity. Each MECj is
weighted with the variance of the corresponding ALE main effect to give more
weight to features that contribute more to the prediction. Algorithm 2 describes
the MEC computation in detail.

Algorithm 2: Main Effect Complexity (MEC).

Input: Model f , approximation error ε, max. segments maxseg, data D
1 Define R2(gj , fj,ALE) :=

∑n
i=1(gj(x

(i)
j )− fj,ALE(x

(i)
j ))2/

∑n
i=1(fj,ALE(x

(i)
j ))2

2 for j ∈ {1, . . . , p} do
3 Estimate fj,ALE

// Approximate ALE with linear model

4 Fit gj(xj) = β0 + β1xj predicting fj,ALE(x
(i)
j ) from x

(i)
j , i ∈ 1, . . . , n

5 Set K = 1
// Increase nr. of segments until approximation is good enough

6 while K < maxseg AND R2(gj , fj,ALE) < (1− ε) do
// Find intervals Zk through exhaustive search along ALE

curve breakpoints

// For categorical feature, set slopes β1,k to zero

7 gj(xj) =
∑K+1
k=1 Ixj∈Zk · (β0,k + β1,kxj)

8 Set K = K + 1

9 Greedily set slopes to zero while R2 > 1− ε
// Sum of non-zero coefficients minus first intercept

10 MECj = K +
∑K
k=1 Iβ1,k>0 − 1

11 Vj = 1
n

∑n
i=1(fj,ALE(x(i)))2

12 return MEC = 1∑p
j=1 Vj

∑p
j=1 Vj ·MECj

4 Application of Complexity Measures

In the following experiment, we train various machine learning models on dif-
ferent prediction tasks and compute the model complexities. The goal is to an-
alyze how the complexity measures behave across different datasets and mod-
els. The dataset are: Bike Rentals [10] (n=731; 3 numerical, 6 categorical fea-
tures), Boston Housing (n=506; 12 numerical, 1 categorical features), (down-
sampled) Superconductivity [18] (n=2000; 81 numerical, 0 categorical features)
and Abalone [9] (n=4177; 7 numerical, 1 categorical features).

Table 1 shows performance and complexity of the models. As desired, the
main effect complexity for linear models is 1 (except when categorical features
with 2+ categories are present as in the bike data), and higher for more flexible
methods like random forests. The interaction strength (IAS) is zero for additive
models (boosted GAM, (regularized) linear models). Across datasets we observe
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Quantifying Model Complexity 7

bike Boston Housing superconductivity abalone
learner MSE MEC IAS NF MSE MEC IAS NF MSE MEC IAS NF MSE MEC IAS NF

cart 923035 1.1 0.07 6 23.7 1.9 0.12 4 325.0 1.0 0.23 8 6.0 2.8 0.09 3
cart2 1245105 1.0 0.01 2 29.8 1.7 0.02 2 417.6 1.0 0.22 3 6.7 3.0 0.02 1

cvglmnet 667291 1.1 0.00 9 27.4 1.0 0.00 8 351.1 1.0 0.00 50 5.1 1.0 0.00 6
gamboost 539538 1.6 0.00 8 17.7 2.5 0.00 10 360.3 1.7 0.00 14 5.3 1.1 0.00 4

ksvm 424184 1.6 0.04 8 13.7 1.7 0.09 13 256.0 2.2 0.25 81 4.6 1.0 0.12 8
lm 629144 1.5 0.00 9 23.4 1.0 0.00 13 337.4 1.0 0.00 81 4.9 1.0 0.00 8
rf 478115 1.8 0.06 9 13.2 2.5 0.10 13 167.4 3.0 0.25 81 4.6 1.7 0.30 8

Table 1. Model performance and complexity on 4 regression tasks for various learners:
linear models (lm), cross-validated regularized linear models (cvglmnet), kernel support
vector machine (ksvm), random forest (rf), gradient boosted generalized additive model
(gamboost), decision tree (cart) and decision tree with depth 2 (cart2).

that the underlying complexity measured as the range of MEC and IAS across
the models varies. The bike dataset seems to be adequately described by only
additive effects, since even random forests, which often model strong interactions
show low interaction strength here. In contrast, the superconductivity dataset
is better explained by models with more interactions. For the abalone dataset
there are two models with low MSE: the support vector machine and the random
forest. We might prefer the SVM, since main effects can be described with single
numbers (MEC = 1) and interaction strength is low.

5 Improving Post-hoc Interpretation

Minimizing the number of features (NF), the interaction strength (IAS), and
the main effect complexity (MEC) improves reliability and compactness of post-
hoc interpretation methods such as partial dependence plots, ALE plots, feature
importance, interaction effects and local surrogate models.

Fewer features, more compact interpretations. Minimizing the number
of features improves the readability of post-hoc analysis results. The computa-
tional complexity and output size of most interpretation methods scales with
O(NF), like feature effect plots [1, 14] or feature importance [6, 11]. As demon-
strated in Table 2, a model with fewer features has a more compact representa-
tion. If additionally IAS = 0, the ALE main effects fully characterize the pre-
diction function. Interpretation methods that analyze 2-way feature interactions
scale with O(NF2). A complete functional decomposition requires to estimate∑NF

k=1

(
NF
k

)
components which has a computational complexity of O(2NF ).

Less interaction, more reliable feature effects. Feature effect plots such
as partial dependence plots and ALE plots visualize the marginal relationship
between a feature and the prediction. The estimated effects are averages across
instances. The effects can vary greatly for individual instances and even have
opposite directions when the model includes feature interactions.

In the following simulation, we trained three models with different capabilities
of modeling interactions between features: a linear regression model, a support
vector machine (radial basis kernel, C=0.05), and gradient boosted trees. We

12. Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc
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simulated 500 data points with 4 features and a continuous target based on
[15]. Figure 2 shows an increasing interaction strength depending on the model
used. More interaction means that the feature effect curves become a less reliable
summary of the model behavior.

Fig. 2. The higher the interaction strength in a model (IAS increases from left to
right), the less representative the Partial Dependence Plot (light thick line) becomes
for individual instances represented by their Individual Conditional Expectation curves
(dark thin lines).

The less complex the main effects, the better summarizable. In
linear models, a feature effect can be expressed by a single number, the regression
coefficient. If effects are non-linear the method of choice is visualization [1, 14].
Summarizing the effects with a single number (e.g., using average marginal effects
[23]) can be misleading, e.g., the average effect might be zero for U-shaped
feature effects. As a by-product of MEC, there is a third option: Instead of
reporting a single number, the coefficients of the segmented linear model can be
reported. Minimizing MEC means preferring models with main effects that can
be described with fewer coefficients, offering a more compact model description.

6 Application: Multi-objective Optimization

We demonstrate model selection for performance and complexity in a multi-
objective optimization approach. For this example, we predict wine quality (scale
from 0 to 10) [7] from the wines physical-chemical properties such as alcohol and
residual sugar of 4870 white wines. It is difficult to know the desired compromise
between model complexity and performance before modeling the data. A solution
is multi-objective optimization [12]. We suggest searching over a wide spectrum
of model classes and hyperparameter settings, which allows to select a suitable
compromise between model complexity and performance.

We used the mlrMBO model-based optimization framework [19] with ParEGO
[21] (500 iterations) to find the best models based on four objectives: number of
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Quantifying Model Complexity 9

features used (NF), main effect complexity (MEC), interaction strength (IAS)
and cross-validated mean absolute error (MAE) (5-fold cross-validated). We op-
timized over the space of following model classes (and hyperparameters): CART
(maximum tree-depth and complexity parameter cp), support vector machine
(cost C and inverse kernel width sigma), elastic net regression (regulariza-
tion alpha and penalization lambda), gradient boosted trees (maximum depth,
number of iterations), gradient boosted generalized additive model (number of
iterations nrounds) and random forest (number of split features mtry).

Results. The multi-objective optimization resulted in 27 models. The mea-
sures had the following ranges: MAE 0.41 – 0.63, number of features 1 – 11,
mean effect complexity 1 – 9 and interaction strength 0 – 0.71. For a more in-
formative visualization, we propose to visualize the main effects together with
the measures in Table 2. The selected models show different trade-offs between
the measures.

Table 2. A selection of four models from the Pareto optimal set, along with their ALE
main effect curves. From left to right, the columns show models with 1) lowest MAE,
2) lowest MAE when MEC = 1, 3) lowest MAE when IAS =≤ 0.2, and 4) lowest
MAE with NF ≤ 7.

gbt
(maxdepth:8,
nrounds:269)

svm
(C:23.6979,
sigma:0.0003)

gbt
(maxdepth:3,
nrounds:98)

CART
(maxdepth:14,
cp:0.0074)

MAE 0.41 0.58 0.52 0.59
MEC 4.2 1 4.5 2
IAS 0.64 0 0.2 0.2
NF 11 11 11 4

fixed.acidity

volatile.acidity

citric.acid

residual.sugar

chlorides

free.sulfur.dioxide

total.sulfur.dioxide

density

pH

sulphates

alcohol
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7 Discussion

We proposed three measures for machine learning model complexity based on
functional decomposition: number of features used, interaction strength and
main effect complexity. Due to their model-agnostic nature, the measures al-
low model selection and comparison across different types of models and they
can be used as objectives in automated machine learning frameworks. This also
includes ”white-box” models: For example, the interaction strength of interac-
tion terms in a linear model or the complexity of smooth effects in generalized
additive models can be quantified and compared across models. We argued that
minimizing these measures for a machine learning model improves its post-hoc
interpretation. We demonstrated that the measures can be optimized directly
with multi-objective optimization to make the trade-off between performance
and post-hoc interpretability explicit.

Limitations. The proposed decomposition of the prediction function and
definition of the complexity measures will not be appropriate in every situa-
tion. For example, all higher order effects are combined into a single interaction
strength measure that does not distinguish between two-way interactions and
higher order interactions. However, the framework of accumulated local effect
decomposition allows to estimate higher order effects and to construct different
interaction measures. The main effect complexity measure only considers linear
segments but not, e.g., seasonal components or other structures. Furthermore,
the complexity measures quantify machine learning models from a functional
point of view and ignore the structure of the model (e.g., whether it can be rep-
resented by a tree). For example, main effect complexity and interaction strength
measures can be large for short decision trees (e.g. in Table 1).

Implementation. The code for this paper is available at https://github.
com/compstat-lmu/paper 2019 iml measures. For the examples and experiments
we relied on the mlr package [5] in R [29].
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Abstract. Counterfactual explanations are one of the most popular
methods to make predictions of black box machine learning models
interpretable by providing explanations in the form of ‘what-if scenarios’.
Most current approaches optimize a collapsed, weighted sum of multiple
objectives, which are naturally difficult to balance a-priori. We propose
the Multi-Objective Counterfactuals (MOC) method, which translates the
counterfactual search into a multi-objective optimization problem. Our
approach not only returns a diverse set of counterfactuals with different
trade-offs between the proposed objectives, but also maintains diversity in
feature space. This enables a more detailed post-hoc analysis to facilitate
better understanding and also more options for actionable user responses
to change the predicted outcome. Our approach is also model-agnostic
and works for numerical and categorical input features. We show the
usefulness of MOC in concrete cases and compare our approach with
state-of-the-art methods for counterfactual explanations.

Keywords: Interpretability · Interpretable machine learning · Counter-
factual explanations · Multi-objective optimization · NSGA-II.

1 Introduction

Interpretable machine learning methods have become very important in recent
years to explain the behavior of black box machine learning (ML) models. A
useful method for explaining single predictions of a model are counterfactual
explanations. ML credit risk prediction is a common motivation for counterfac-
tuals. For people whose credit applications have been rejected, it is valuable
to know why they have not been accepted, either to understand the decision
making process or to assess their actionable options to change the outcome.
Counterfactuals provide these explanations in the form of “if these features had
different values, your credit application would have been accepted”. For such
explanations to be plausible, they should only suggest small changes in a few
features. Therefore, counterfactuals can be defined as close neighbors of an actual

? This work has been partially supported by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IS18036A and by the Bavarian State
Ministry of Science and the Arts in the framework of the Centre Digitisation.Bavaria
(ZD.B). The authors of this work take full responsibility for its content.
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data point, but their predictions have to be sufficiently close to a (usually quite
different) desired outcome. Counterfactuals explain why a certain outcome was
not reached, can offer potential reasons to object against an unfair outcome and
give guidance on how the desired prediction could be reached in the future [35].
Note that counterfactuals are also valuable for predictive modelers on a more
technical level to investigate the pointwise robustness and the pointwise bias of
their model.

2 Related Work

Counterfactuals are closely related to adversarial perturbations. These have
the aim to deceive ML models instead of making the models interpretable [30].
Attribution methods such as Local Interpretable Model-agnostic Explanations
(LIME) [27] and Shapley Values [22] explain a prediction by determining how
much each feature contributed to it. Counterfactual explanations differ from
feature attributions since they generate data points with a different, desired
prediction instead of attributing a prediction to the features.

Counterfactual methods can be model-agnostic or model-specific. The latter
usually exploit the internal structure of the underlying ML model, such as the
trained weights of a neural network, while the former are based on general
principles which work for arbitrary ML models - often by only assuming access
to the prediction function of an already fitted model. Several model-agnostic
counterfactual methods have been proposed [8,11,16,18,25,29,37]. Apart from
Grath et al. [11], these approaches are limited to classification. Unlike the other
methods, the method of Poyiadzi et al. [25] can obtain plausible counterfactuals
by constructing feasible paths between data points with opposite predictions.

A model-specific approach was proposed by Wachter et al. [35], who also
introduced and formalized the concept of counterfactuals in predictive modeling.
Like many model-specific methods [15,20,24,28,33] their approach is limited to
differentiable models. The approach of Tolomei et al. [32] generates explanations
for tree-based ensemble binary classifiers. As with [35] and [20], it only returns a
single counterfactual per run.

3 Contributions

In this paper, we introduce Multi-Objective Counterfactuals (MOC), which to the
best of our knowledge is the first method to formalize the counterfactual search
as a multi-objective optimization problem. We argue that the mathematical
problem behind the search for counterfactuals should be naturally addressed as
multi-objective. Most of the above methods optimize a collapsed, weighted sum
of multiple objectives to find counterfactuals, which are naturally difficult to
balance a-priori. They carry the risk of arbitrarily reducing the solution set to a
single candidate without the option to discuss inherent trade-offs – which should
be especially relevant for model interpretation that is by design very hard to
precisely capture in a (single) mathematical formulation.
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Compared to Wachter et al. [35], we use a distance metric for mixed feature
spaces and two additional objectives: one that measures the number of feature
changes to obtain sparse and therefore more interpretable counterfactuals, and
one that measures the closeness to the nearest observed data points for more
plausible counterfactuals. MOC returns a Pareto set of counterfactuals that
represents different trade-offs between our proposed objectives, and which are
constructed to be diverse in feature space. This seems preferable because changes
to different features can lead to a desired counterfactual prediction1 and it is
more likely that some counterfactuals meet the (hidden) preferences of a user. A
single counterfactual might even suggest a strategy that is interpretable but not
actionable (e.g., ‘reduce your number of pregnancies’) or counterproductive in
more general contexts (e.g., ‘increase your age to reduce the risk of diabetes’).
In addition, if multiple otherwise quite different counterfactuals suggest changes
to the same feature, the user may have more confidence that the feature is an
important lever to achieve the desired outcome. We refer the reader to Appendix A
for two concrete examples illustrating the above.

Compared to other counterfactual methods, MOC is model-agnostic and
handles classification, regression and mixed feature spaces, which furthermore
increases its practical usefulness in general applications. Together with [16], our
paper also includes one of the first benchmark studies that compares multiple
counterfactual methods on multiple, heterogeneous datasets.

4 Methodology

[35] loosely define counterfactuals as:

“You were denied a loan because your annual income was 30,000. If your income

had been 45,000, you would have been offered a loan. Here the statement of

decision is followed by a counterfactual, or statement of how the world would

have to be different for a desirable outcome to occur. Multiple counterfactuals

are possible, as multiple desirable outcomes can exist, and there may be several

ways to achieve any of these outcomes.”

We now formalize this statement by stating four objectives, which a counterfactual
should adhere to. In the subsequent section we provide detailed definitions of
these objectives and tie them together as a multi-objective optimization problem
in order to generate a diverse set of different trade-off solutions.

4.1 Multi-Objective Counterfactuals

Definition 1 (Counterfactual Explanation). Let f̂ : X → R be a prediction
function, X the feature space and Y ′ ⊂ R a set of desired outcomes. The latter
can either be a single value or an interval of values. We define a counterfactual
explanation x′ for an observation x∗ as a data point fulfilling the following: (1)

1 Rashomon effect [5]

13. Multi-objective counterfactual explanations
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its prediction f(x′) is close to the desired outcome set Y ′, (2) it is close to x∗ in
the X space, (3) it differs from x∗ only in a few features, and (4) it is a plausible
data point according to the probability distribution PX . For classification models,
we assume that f̂ returns the probability for a user-selected class and Y ′ has to
be the desired probability (range).

This can be translated into a multi-objective minimization task:

min
x

o(x) := min
x

(
o1(f̂(x), Y ′), o2(x,x∗), o3(x,x∗), o4(x,Xobs)

)
, (1)

with o : X → R4 and Xobs as the observed (i.e. training) data. The first

component o1 quantifies the distance between f̂(x) and Y ′. We define it as:2

o1(f̂(x), Y ′) =

{
0 if f̂(x) ∈ Y ′
inf

y′∈Y ′
|f̂(x)− y′| else

.

The second component o2 quantifies the distance between x∗ and x using the
Gower distance to account for mixed features [10]:

o2(x,x∗) =
1

p

p∑

j=1

δG(xj , x
∗
j ) ∈ [0, 1]

with p being the number of features. The value of δG depends on the feature
type:

δG(xj , x
∗
j ) =

{
1

R̂j
|xj − x∗j | if xj is numerical

Ixj 6=x∗j if xj is categorical

with R̂j as the value range of feature j, extracted from the observed dataset.
Since the Gower distance does not take into account how many features have

been changed, we introduce objective o3, which counts the number of changed
features using the L0 norm:

o3(x,x∗) = ||x− x∗||0 =

p∑

j=1

Ixj 6=x∗j .

The fourth objective o4 measures the weighted average Gower distance between
x and the k nearest observed data points x[1], ...,x[k] ∈ Xobs as an empirical
approximation of how likely x originates from the distribution of X :

o4(x,Xobs) =
k∑

i=1

w[i] 1

p

p∑

j=1

δG(xj , x
[i]
j ) ∈ [0, 1] where

k∑

i=1

w[i] = 1.

2 We chose the L1 norm over the L2 norm for a natural interpretation. Its non-
differentiability is negligible for evolutionary optimization.
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Throughout this paper, we set k to 1. Further procedures to increase the plausi-
bility of the counterfactuals are integrated into the optimization algorithm and
are described in Section 4.3.

Balancing the four objectives is difficult since the objectives contradict each
other. For example, minimizing the distance between counterfactual outcome and
desired outcome Y ′ (o1) becomes more difficult when we require counterfactual
feature values close to x∗ (o2 and o3) and to the observed data (o4).

4.2 Counterfactual Search

Our proposed method MOC uses the Nondominated Sorting Genetic Algorithm
II (NSGA-II) [7] with modifications specific to the problem considered. First,
unlike the original NSGA-II, it uses mixed integer evolutionary strategies (MIES)
[19] to work with the mixed discrete and continuous search space. Furthermore,
a different crowding distance sorting algorithm is used, and we propose some
optional adjustments tailored to the counterfactual search in the upcoming
section.

For MOC, each candidate is described by its feature vector (the ‘genes’)
and the objective values of the candidates are evaluated by Eq. (1). Features
of candidates are recombined and mutated with predefined probabilities – some
of the control parameters of MOC. Numerical features are recombined by the
simulated binary crossover recombinator [6], all other feature types by the uniform
crossover recombinator [31]. Based on [19], numerical features are mutated by the
scaled Gaussian mutator. Categorical features are altered by uniformly sampling
from their admissible levels, while binary and logical features are simply flipped.
After recombination and mutation, some feature values are randomly set to the
values of x∗ with a given (low) probability – another control parameter – to
prevent all features from deviating from x∗.

Contrary to NSGA-II, the crowding distance is computed not only in the
objective space R4 (L1 norm) but also in the feature space X (Gower distance),
and the distances are summed up with equal weighting. As a result, candidates are
more likely kept if they differ greatly from another candidate in their feature values
although they are similar in the objective values. Diversity in X is desired because
the chances of obtaining counterfactuals that meet the (hidden) preferences of
users are higher. This approach is based on Avila et al. [2].

MOC stops if either a predefined number of generations is reached (default) or
the performance no longer improves for a given number of successive generations.

4.3 Further Modifications

Initialization Naively, we could initialize a population by uniformly sampling
some feature values from their full range of possible values, while randomly
setting other features to the values of x∗ to induce sparsity. However, if a
feature has a large influence on the prediction, it should be more likely that the
counterfactual values differ from x∗. The importance of a feature for an entire
dataset can be measured as the standard deviation of the partial dependence

13. Multi-objective counterfactual explanations
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plot [12]. Analogously, we propose to measure the feature importance for a single
prediction with the standard deviation of the Individual Conditional Expectation
(ICE) curve of x∗. ICE curves show for one observation and for one feature how
the prediction changes when the feature is changed, while other features are
fixed to the values of the considered observation [9]. The greater the standard
deviation of the ICE curve, the higher we set the probability that the feature
value is initialized with a different value than the one of x∗. Therefore, the
standard deviation σICE

j of each feature xj is transformed into probabilities
within [pmin, pmax] · 100%:

P (value differs) =
(σICE

j −min(σICE )) · (pmax − pmin)

max (σICE )−min(σICE )
+ pmin

with σICE := (σICE
1 , ..., σICE

p ). pmin and pmax are control parameters with
default values 0.01 and 0.99.

Actionability To get more actionable counterfactuals, extreme values of nu-
merical features outside a predefined range are capped to the upper or lower
bound after recombination and mutation. The ranges can either be derived from
the minimum and maximum values of the features in the observed dataset or
users can define these ranges. In addition, users can identify non-actionable
features such as the country of birth or gender. The values of these features are
permanently set to the values of x∗ for all candidates within MOC.

Penalization Furthermore, candidates whose predictions are further away from
the target than a predefined distance ε ∈ R can be penalized. After the candidates
have been sorted into fronts F1 to FK using nondominated sorting, the candidate
that violates the constraint least will be reassigned to front FK+1, the candidate
with the second smallest violation to FK+2, and so on. The concept is based on
Deb et al. [7]. Since the constraint violators are in the last fronts, they are less
likely to be selected for the next generation.

Mutation Since the aforementioned mutators do not take the data distribution
into account and can potentially generate unlikely new candidates, we suggest
a conditional mutator. It generates plausible feature values conditional on the
values of the other features. For each input feature, we trained a transformation
tree [14] on Xobs, which is then used to sample values from the conditional
distribution. We mutate the feature in randomized order since a feature mutation
now depends on the previous changes.

How our proposed strategies for initialization and mutation affect MOC is later
examined in a benchmark study (Sections 6 & 7).

4.4 Evaluation Metric

We use the popular hypervolume indicator (HV) [38] to evaluate the quality of

our estimated Pareto front, with reference point s = ( inf
y′∈Y ′

|f̂(x∗)− y′|, 1, p, 1),
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representing the maximal values of the objectives. We compute the HV always
over the complete archive of evaluated solutions.

4.5 Tuning of Parameters

We also use HV, when we tune MOC’s control parameters – population size,
the probabilities for recombining and mutating a feature of a candidate – with
iterated F-racing [21]. Furthermore, we let iterated F-racing decide whether our
proposed strategies for initialization and mutation of Section 4.3 are preferable.
Tuning is performed on six binary classification datasets from OpenML [34] –
which were not used in the benchmark. A summary of the tuning setup and
results can be found in Table 5 in Appendix B. Iterated F-racing found both our
initialization and mutation strategy to be advantageous. The tuned parameters
were used for the credit data application and the benchmark study.

5 Credit Data Application

This section demonstrates the usefulness of MOC to explain the prediction of
credit risk using the German credit dataset [13]. The dataset has 522 complete
observations and nine features containing credit and customer information. Cate-
gories with few case numbers were combined. The binary target indicates whether
a customer has a ‘good’ or ‘bad’ credit risk. We chose the first observation of the
dataset as x∗ with the following feature values:

Age Sex Job Housing Saving accounts Checking account Credit amount Duration Purpose

22 female 2 own little moderate 5951 48 radio/TV

We tuned a support vector machine (with radial-basis (RBF) kernel) on the
remaining data with the same tuning setup as for the benchmark (Appendix C).
To obtain a single numerical outcome, only the predicted probability for the class
‘good’ credit risk was returned. We obtained an accuracy of 0.64 for the model
using two nested cross-validations (CV) (5-fold CV in outer and inner loop) and
a predicted probability for ‘good’ credit risk of 0.41 for x∗.

We set the desired outcome interval to Y ′ = [0.5, 1], which indicates a
change to a ‘good’ credit risk. We generated counterfactuals using MOC with the
parameter setting selected by iterated F-racing. Candidates with a prediction
below 0.5 were penalized.

A total of 136 counterfactuals were found by MOC. In the following, we focus
upon the 82 of them with predictions within [0.5, 1]. Credit duration was changed
for all counterfactuals, followed by credit amount (86%). Since a user might not
want to investigate all returned counterfactuals individually (in feature space),
we provide a visual summary of the Pareto set in Figure 1, either as a parallel
coordinate plot or a response surface plot3 along two features. All counterfactuals
had values equal to or smaller than the values of x∗ for duration and credit
amount. The response surface plot illustrates why these feature changes were

3 This is equivalent to a 2-D ICE-curve through x∗ [9]. We refer to Section 4.3 for a
general definition of ICE curves.

13. Multi-objective counterfactual explanations
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Fig. 1. Visualization of counterfactuals for the first data point x∗ of the credit dataset.
(a) Feature values of the counterfactuals. Only changed features are shown. The given
numbers indicate the minimum and maximum feature values of the counterfactuals.
(b) Response surface plot for the model prediction along features duration and credit
amount, holding other feature values constant at the value of x∗. Colors and contour
lines indicate the predicted value. The white point is x∗ and the black points are the
counterfactuals that only proposed changes in duration and/or credit amount. The
histograms show the marginal distributions of the features in the observed dataset.

recommended. The color gradient and contour lines indicate that either duration
or both credit amount and duration must be decreased to reach the desired
outcome. Due to the fourth objective and the conditional mutator, we obtained
counterfactuals in high density areas (indicated by histograms). Counterfactuals
in the lower left corner seem to be in a less favorable region far from x∗, but they
are close to the training data.

6 Experimental Setup

In this section, the performance of MOC is evaluated in a benchmark study
for binary classification. The datasets are from the OpenML platform [34] and
are briefly described in Table 1. We selected datasets with no missing values,
with up to 3500 observations and a maximum of 40 features. We randomly
selected ten observed data points per dataset as x∗ and excluded them from
the training data. For each dataset, we tuned and trained the following models:
logistic regression, random forest, xgboost, RBF support vector machine and a
one-hidden-layer neural network. The tuning parameter set and the performance
using nested resampling are in Table 8 in Appendix C. Each model returned
only the probability for one class. The desired target for each x∗ was set to the
opposite of the predicted class:

Y ′ =

{
]0.5, 1] if f̂(x∗) ≤ 0.5

[0, 0.5] else
.

225



Multi-Objective Counterfactual Explanations 9

Table 1. Description of benchmark
datasets. Legend: task: OpenML
task id; Obs: Number of rows;
Cont/Cat: Number of continu-
ous/categorical features.

Task Name Obs Cont Cat

3718 boston 506 12 1
3846 cmc 1473 2 7
145976 diabetes 768 8 0
9971 ilpd 583 9 1
3913 kc2 522 21 0
3 kr-vs-kp 3196 0 36
3749 no2 500 7 0
3918 pc1 1109 21 0
3778 plasma retinol 315 10 3
145804 tic-tac-toe 958 0 9

Table 2. MOC’s coverage rate of methods to be
compared per dataset averaged over all models.
The number of nondominated counterfactuals for
each method are given in parentheses. Higher val-
ues of coverage indicate that MOC dominates the
other method. The ∗ indicates that the binomial
test with H0 : p < 0.5 that a counterfactual is
covered by MOC is significant at the 0.05 level.

DiCE Recourse Tweaking

boston 1* (36) 0.92* (24) 0.9* (10)
cmc 1* (17) 0.75 (8)
diabetes 1* (64) 0.45 (40) 1 (3)
ilpd 1* (26) 1* (37) 0.83 (6)
kc2 1* (53) 0.31 (55) 1 (2)
kr-vs-kp 1* (8) 0.2 (10)
no2 1* (58) 0.5 (12) 0.9* (10)
pc1 1* (60) 0.66* (38)
plasma retinol 1* (7) 0.89* (9)
tic-tac-toe 1* (20) 0.75 (8)

The benchmark study aimed to answer two research questions:

Q1) How does MOC perform compared to other state-of-the-art methods for
counterfactuals?

Q2) How do our proposed strategies for initialization and mutation of Section 4.3
influence the performance of MOC?

For the first one, we compared MOC – once with and once without our proposed
strategies for initialization and mutation – with ‘DiCE’ by Mothilal et al. [24],
‘Recourse’ by Ustun et al. [33] and ‘Tweaking’ by Tolomei et al. [32]. We chose
DiCE, Recourse and Tweaking because they are implemented in general open
source code libraries.4 The methods are only applicable to certain models: DiCE
can handle neural networks and logistic regressions, Recourse can handle logistic
regressions and Tweaking can handle random forests. Since Recourse can only
process binary and numerical features, we did not train logistic regression on cmc,
tic-tac-toe, kr-vs-kp and plasma retinol. As a baseline, we selected the closest
observed data point to x∗ (according to the Gower distance) that has a prediction
equal to our desired outcome. Since this approach is part of the What-If Tool
[36], we call this approach ‘Whatif’.

The parameters of DiCE, Recourse and Tweaking were set to the default
values recommended by the authors (Appendix D). To allow for a fair comparison,
we initialized MOC with the parameters of iterated F-racing which were tuned
on other binary classification datasets (Appendix B). While MOC can potentially
return several hundreds of counterfactuals, the other methods are designed to
either return one or a few. We have therefore limited the maximum number of

4 Most other counterfactual methods are implemented for specific examples, but cannot
be easily used for other datasets.

13. Multi-objective counterfactual explanations
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counterfactuals to ten for all approaches.5 Tweaking and Whatif generated only
one counterfactual by design. For MOC we reduced the number of counterfactuals
by preferring the ones that achieved the target prediction Y ′ and/or the highest
HV contribution.

For all methods, only nondominated counterfactuals were considered for the
evaluation. Since we are interested in a diverse set of counterfactuals, we evaluate
the methods based on the size of their counterfactual set, its objective values,
and the coverage rate derived from the coverage indicator by Zitzler and Thiele
[38]. The coverage rate is the relative frequency with which counterfactuals of
a method are dominated by MOC’s counterfactuals for a certain model and x∗.
A counterfactual covers another counterfactual if it dominates it, and it does
not cover the other if both have the same objective values or the other has
lower values in at least one objective. A coverage rate of 1 implies that for each
generated counterfactual of a method MOC generated at least one dominating
counterfactual. We only computed the coverage rate over counterfactuals that
met the desired target Y ′.

To answer the second research question, we compared the dominated HV
over the generations of MOC with and without our proposed strategies for
initialization and mutation. As a baseline, we used a random search approach
that has the same population size (20) and number of generations (175) as MOC.
In each generation, some feature values were uniformly sampled from their set of
possible values derived from the observed data and x∗, while other features were
set to the values of x∗. The HV for one generation was computed over the newly
generated candidates combined with the candidates of the previous generations.

7 Results

Q1) MOC vs. State-of-the-Art Counterfactual Methods

Table 2 shows the coverage rate of each method (to be compared) by the tuned
MOC per dataset. Some fields are empty because Recourse could not process
features with more than two classes and Tweaking never achieved the desired
outcome for pc1. MOC’s counterfactuals dominated all counterfactuals of DiCE
for all datasets. The same holds for Tweaking except for kr-vs-kp and tic-tac-toe
because the counterfactuals of Tweaking had the same objective values as the
ones of MOC. MOC’s coverage rate of Recourse only exceeded 90% for boston and
ilpd since Recourse’s counterfactuals often deviated less from x∗ (but performed
worse in other objectives).

Figure 2 compares MOC (with (mocmod) and without (moc) our proposed
strategies for initialization and mutation) with the other methods for the datasets
diabetes and no2 and for each model separately. The resulting boxplots for
all other datasets are shown in Figures 4 and 5 in the Appendix. They agree
with the results shown here. Compared to the other methods, both versions
of MOC found the most nondominated solutions, which met the target and

5 Note that this artificially penalizes our approach in the benchmark comparison.
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Fig. 2. Boxplots of the objective values and number of nondominated counterfactuals
(count) per model for MOC with our proposed strategies for initialization and mutation
(mocmod), MOC without these modifications, Whatif, DiCE, Recourse and Tweaking
for the datasets diabetes and no2. Lower values are better except for count.

changed the least features. DiCE performed worse than MOC in all objectives.
Tweaking’s counterfactuals were often closer to x∗, but they were further away
from the nearest training data point and more features were changed. Tweaking’s
counterfactuals often did not reach the desired outcome because they stayed too
close to x∗. The MOC with our proposed modifications found counterfactuals
closer to x∗ and the observed data, but required more feature changes compared
to MOC without the modifications.

Q2) MOC Strategies for Initialization and Mutation

Figure 3 shows the ranks of the dominated HVs for MOC without modifications,
for each modification of MOC and random search. Ranks were calculated per
dataset, model, x∗ and generation, and were averaged over all datasets, models
and x∗. We transformed HVs to ranks because the HVs are not comparable
across x∗. It can be seen that the MOC with our proposed modifications clearly
outperforms the MOC without these modifications. The ranks of the initial
population were higher when the ICE curve variance was used to initialize the
candidates. The use of the conditional mutator led to higher dominated HVs
over the generations. We received the best performance over the generations
when both modifications were used. At each generation, all versions of MOC
outperformed random search. Figure 6 in the Appendix shows the ranks over
the generations for each dataset separately. They largely agree with the results
shown here. The performance gains of MOC compared to random search were
particularly evident for higher-dimensional datasets.

13. Multi-objective counterfactual explanations
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Fig. 3. Comparison of the ranks w.r.t. the dominated HV (domhv) per generation
averaged over all models and datasets. For each approach, the population size of each
generation was 20. A higher HV and therefore a higher rank is better. Legend: moc:
MOC without our proposed modifications; moccond : MOC with the conditional mutator;
mocice: MOC with the ICE curve variance initialization; mocmod : MOC with both
modifications; random: random search.

8 Conclusion and Outlook

In this paper, we introduced Multi-Objective Counterfactuals (MOC), which to
the best of our knowledge is the first method to formalize the counterfactual
search as a multi-objective optimization problem. Compared to state-of-the-art
approaches, MOC returns a diverse set of counterfactuals with different trade-offs
between our proposed objectives. Furthermore, MOC is model-agnostic and
suited for classification, regression and mixed feature spaces. We demonstrated
the usefulness of MOC to explain a prediction on the German credit dataset
and showed in a benchmark study that MOC finds more counterfactuals than
other counterfactual methods that are closer to the training data and required
fewer feature changes. Our proposed initialization strategy (based on ICE curve
variances) and our conditional mutator resulted in higher performance in fewer
evaluations and in counterfactuals that were closer to the data point we were
interested in and to the observed data.

MOC has only been evaluated on binary classification, and only with respect
to the dominated HV and the individual objectives. It is an open question how to
let users select the counterfactuals that meet their – a-priori unknown – trade-off
between the objectives. We leave these investigations to future research.

9 Electronic Submission

The complete code of the algorithm and the code to reproduce the experiments
and results of this paper are available at https://github.com/susanne-207/moc.
The implementation of MOC is based on our implementation of [19], which we also
used for [3]. We will provide an open source R library with our implementation
of the method based on the iml package [23].
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A Illustration of MOC’s Benefits

This section illustrates the benefits of having a diverse set of counterfactuals using
the diabetes dataset of the benchmark study (Section 6). We will compare the
counterfactuals returned by MOC with the ones of Recourse [33] and Tweaking
[32]. Due to space constraints, we only show the six counterfactuals of MOC with
the highest HV contribution for both examples.

Table 3 contrasts MOC’s counterfactuals with the three counterfactuals of
Recourse for the prediction of observation 741. A logistic regression predicted a
probability of having diabetes of 0.89 for this observation. The desired target is a
prediction of less than 0.5, which indicates having no diabetes. All counterfactuals

Table 3. Counterfactuals and corresponding objective values of MOC and Recourse
for the prediction of a logistic regression for observation 741 of the diabetes dataset.
Shaded fields indicate values that differ from the value of observation 741 in brackets.

Feature (x∗) MOC1 MOC2 MOC3 MOC4 MOC5 MOC6 Recourse1 Recourse2 Recourse3

preg (11) 11.00 6.35 11.00 11.00 11.00 6.35 11.00 11.00 10.92
plas (120) 27.78 3.29 79.75 94.85 79.75 3.18 57.00 57.00 57.00
pres (80) 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00
skin (37) 37.00 37.00 37.00 37.00 37.00 37.00 37.00 36.81 37.00
insu (150) 150.00 150.00 17.13 150.00 40.61 150.00 150.00 150.00 150.00
mass (42.3) 42.30 42.30 29.17 15.36 29.17 42.30 42.30 42.30 42.30
pedi (0.78) 0.78 0.78 0.31 0.78 0.17 0.78 0.78 0.78 0.78
age (48) 48.00 41.61 44.42 48.00 48.00 48.00 28.36 28.36 28.36

o1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o2 0.06 0.12 0.10 0.07 0.10 0.11 0.08 0.08 0.08
o3 1.00 3.00 5.00 2.00 4.00 2.00 2.00 3.00 3.00
o4 0.10 0.05 0.03 0.07 0.04 0.07 0.09 0.09 0.09

of Recourse suggest the same reduction in age and plasma concentration (plas),
with two counterfactuals additionally suggesting a minimal reduction in the
number of pregnancies (preg) or the skin fold thickness (skin).6 Apart from that
a reduction in age or preg is impossible, they do not offer many options for users.
Instead, MOC returned a larger set of counterfactuals that provide more options
for actionable user responses and are closer to the observed data than Recourse’s
counterfactuals (o4). Counterfactual MOC1 has overall lower objective values
than all counterfactuals of Recourse. MOC3 suggested changes to five features so
that it is especially close to the nearest training data point (o4).

Table 4 compares the set of counterfactuals found by MOC with the single
counterfactual found by Tweaking for the prediction of observation 268. A
random forest classifier predicted a probability of having diabetes of 0.62 for this
observation. Again, the desired target is a prediction of less than 0.5. Tweaking
suggested reducing the number of children and plasma glucose concentration
(plas) while increasing the age so that the probability of diabetes decreases. This

6 By reclassifying age and preg as integers (instead of decimals), integer changes would
be recommended by MOC, Recourse and Tweaking.
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Table 4. Counterfactuals and corresponding objective values given by MOC and
Tweaking for the prediction of a random forest for observation 268 of the cmc dataset.
Shaded fields indicate values that differ from the value of observation 268 in brackets.

Feature (x∗) MOC1 MOC2 MOC3 MOC4 MOC5 MOC6 Tweaking1

preg (2) 2.00 2.00 2.00 2.00 2.00 2.00 1.53
plas (128) 121.50 90.21 126.83 128.00 88.44 120.64 119.71
pres (64) 64.00 64.00 64.00 64.00 64.00 64.00 64.00
skin (42) 42.00 42.00 42.00 42.00 42.00 42.00 42.00
insu (0) 0.00 0.00 0.00 0.00 0.00 90.93 0.00
mass (40) 40.00 40.00 40.00 40.00 40.00 40.00 40.00
pedi (1.1) 1.10 0.48 1.10 0.17 0.46 1.10 1.10
age (24) 24.00 24.00 24.00 24.00 25.85 24.00 28.29

o1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
o2 0.00 0.06 0.00 0.05 0.06 0.02 0.02
o3 1.00 2.00 1.00 1.00 3.00 2.00 3.00
o4 0.05 0.02 0.05 0.04 0.01 0.03 0.06

is contradictory and not plausible. In contrast, MOC’s counterfactuals suggest
various strategies, e.g., only a decrease of plas, which is easier to realize. In
addition, MOC1, MOC3 and MOC6 dominate the counterfactual of Tweaking.
Since five of six counterfactuals suggest changes to plas, the user may have more
confidence that plas is an important lever to achieve the desired outcome.

B Iterated F-racing

We used iterated F-racing (irace) [21] to tune the parameters of MOC for binary
classification. The parameters and considered ranges are given in Table 5. The
number of generations was not part of the parameter set because it would
be always tuned to the upper bound. Instead, the number of generations was
determined after the other parameters were tuned with irace. Irace was initialized
with a maximum budget of 3000 evaluations equal to 3000 runs of MOC. In every
step, irace randomly selected one of 300 instances. Each instance consisted of
a trained model, a randomly selected data point from the observed data as x∗

and a desired outcome. The desired target for each x∗ was the opposite of the
predicted class:

Y ′ =

{
]0.5, 1] if f̂(x∗) ≤ 0.5

[0, 0.5] else
.

The trained model was either logistic regression, random forest, xgboost, RBF
support vector machine or a two-hidden-layer neural network. Each model esti-
mated only the probability for one class. The models were trained on datasets
obtained from the OpenML platform [34] (without the sampled x∗) and are
briefly described in Table 7. While these datasets were not used in the benchmark
study (Section 6), the same preprocessing steps were conducted and the models
were tuned with the same setup (see Section C for details).

In each step of irace, parameter configurations were evaluated by running MOC
on the same selected instance. MOC stopped after evaluating 8000 candidates

13. Multi-objective counterfactual explanations
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Table 5. Parameter space investigated with iterated F-racing, as well as the resulting
optimized configuration (Result).

Name Description Range Result

M Population size [20, 100] 20
initialization Initialization strategy [Random, ICE curve] ICE curve
conditional Whether to use the [TRUE, FALSE] TRUE

conditional mutator
p.rec Probability a pair of [0.3, 1] 0.57

parents is chosen to
recombine

p.rec.gen Probability a feature [0.3, 1] 0.85
is recombined

p.rec.use.orig Probability the indicator [0.3, 1] 0.88
for feature changes is
recombined

p.mut Probability a child is [0.05, 0.8] 0.79
chosen to be mutated

p.mut.gen Probability one [0.05, 0.8] 0.56
feature is mutated

p.mut.use.orig Probability indicator [0.05, 0.5] 0.32
for a feature change is
flipped

with Eq. (1), which should be enough to ensure convergence of the HV in most
cases. The integral of the first order spline approximation of the dominated
HV over the evaluations was the performance criterion as recommended by
[26]. The integral takes into account not only the extent but also the rate of
convergence of the dominated HV. A Friedman test was used to discard less
promising configurations. The first Friedman test was conducted after initial
configurations were evaluated on 15 instances; afterward, the test was conducted
after evaluating the remaining configurations on a single instance to accelerate
the exclusion process. The best configuration returned is given in Table 5.

To obtain a default parameter for the number of generations for the benchmark
study, we determined for the 300 instances after how many generations of the
tuned MOC the dominated HV has not increased for 10 generations. We chose
the maximum of 175 generations as a default for the study.

Table 6. Tuning search space per model.
The hyperparameters ntrees and nrounds
were log-transformed.

Model Hyperparameter Range

randomforest ntrees [0, 1000]
xgboost nrounds [0, 1000]

svm cost [0.01, 1]
logreg lr [0.0005, 0.1]

neuralnet lr [0.0005, 0.1]
layer size [1, 6]

Table 7. Description of datasets for
tuning with iterated F-racing. Legend:
Task: OpenML task id; Obs: Number
of rows; Cont/Cat: Number of continu-
ous/categorical features.

Task Name Obs Cont Cat

3818 tae 151 3 2
3917 kc1 2109 21 0

52945 breastTumor 277 0 6
3483 mammography 11183 6 0
3822 nursery 12960 0 8
3586 abalone 4177 7 1
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C Model Hyperparameters for the Benchmark Study

We used random search (with 200 iterations for neural networks and 100 iterations
for all other models) and 5-fold CV (with misclassification error as performance
measure) to tune the hyperparameters of the models on the training data. The
tuning search space was the same as for iterated F-racing and is shown in Table
6. Numerical features were scaled (standardization (Z-score) for random forest,
min-max-scaling (0-1-range) for all other models) and categorical features were
one-hot encoded. For neural network and logistic regression, ADAM [17] was the
optimizer, the batch size was 32 with a 1/3 validation split and early stopping was
conducted after 5 patience steps. Logistic regression needed these configurations
because we constructed the model as a zero-hidden-layer neural network. For all
other hyperparameters of the models, we chose the default values of the mlr [4]
and keras [1] R packages. Table 8 shows the accuracies of the trained models
using nested resampling (5-fold CV in outer and inner loop).

Table 8. Accuracy using nested resampling per benchmark dataset and model. Legend:
Name: OpenML task name; rf: random forest. Logistic regression (logreg) was only
trained on datasets with numerical or binary features.

Name rf xgboost svm logreg neuralnet

boston 0.90 0.89 0.87 0.86 0.87
cmc 0.70 0.72 0.67 0.68
diabetes 0.76 0.74 0.75 0.63 0.68
ilpd 0.69 0.67 0.65 0.53 0.58
kc2 0.81 0.80 0.79 0.75 0.72
kr-vs-kp 0.99 0.99 0.97 0.99
no2 0.63 0.59 0.58 0.55 0.54
pc1 0.93 0.93 0.91 0.91 0.88
plasma retinol 0.53 0.52 0.58 0.55
tic-tac-toe 0.99 0.99 0.98 0.97

D Control Parameters of Counterfactual Methods

For Tweaking [32], we only changed ε, a positive threshold that limits the tweaking
of each feature. It was set to 0.5 because it obtained better results for the authors
on their data example on Ad Quality in comparison to the default value 0.1.
We used the R implementation of Tweaking on Github: https://github.com/
katokohaku/featureTweakR (commit 6f3e614). For Recourse [33], we left all
parameters at their default settings. We used the Python implementation of
Recourse on Github: https://github.com/ustunb/actionable-recourse (commit
aaae8fa). For DiCE [24], we used the ‘DiverseCF’ version proposed by the
authors [24] and left the control parameters at their defaults. We used the
inverse mean absolute deviation for the feature weights. For datasets where the
mean absolute deviation of a feature was zero, we set the feature weight to
10. We used the Python implementation of DiCE available on Github: https:
//github.com/microsoft/DiCE (commit fed9d27).

13. Multi-objective counterfactual explanations
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Fig. 4. Boxplots of the objective values and number of nondominated counterfactuals
(count) per dataset and model for MOC with our proposed strategies for initialization
and mutation (mocmod), MOC without these modifications, Whatif, DiCE, Recourse
and Tweaking. Lower values are better except for count.

237



Multi-Objective Counterfactual Explanations 21

● ●

●

●

●

● ●

●

●

●

●●

●

●

●●●●●●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

neuralnet rf svm xgboost

di
ce

m
oc

m
oc

m
od

w
ha

tif

m
oc

m
oc

m
od

tw
ea

ki
ng

w
ha

tif

m
oc

m
oc

m
od

w
ha

tif

m
oc

m
oc

m
od

w
ha

tif

0.0

0.2

0.4

0.0

0.1

0.2

0

5

0.00
0.05
0.10

5

10

(a) kr-vs-kp

●

●

●
●
●

●●●

●

●
●●

●

●

●●
●

●
●

●

●

●

●●

●
●

●
●
●
●●
●●
●
●●●●●●

●●

●●●●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●

●
●
●

●●●●●●●●●●●●●
●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●

●●●●●●

●
●●

●●●●●●●●●●●●● ●●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●●
●

●

●
●●

●

●●
●●●●●

●●

●
●

●●

●

●

●●●●●●●●●●●●

●●

●●●●●●●●●●●

neuralnet rf svm xgboost

o
1

o
2

o
3

o
4

count

di
ce

m
oc

m
oc

m
od

w
ha

tif

m
oc

m
oc

m
od

tw
ea

ki
ng

w
ha

tif

m
oc

m
oc

m
od

w
ha

tif

m
oc

m
oc

m
od

w
ha

tif

0.0

0.2

0.4

0.0
0.2
0.4
0.6

0
2
4
6

0.0
0.1
0.2
0.3

5

10

(b) cmc

●●

●

●

●
●
●

●●
●
●

●
●

●

●

●
●

●

●
●
●●
●●

●

●
●

●●

●●
●

●

●

●

●●

●

●●●●
●●

●

●
● ●●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
● ●

●●

●

●●●●●●●

●
●

●
●

●

●● ●●
●●●●

●

●

●

●

●

●

●●
●
●

●●●
●
●●●●

●

●

●

●●

●
●

●

●
●
●

●
●
●

●

●

●

●
●

neuralnet rf svm xgboost

di
ce

m
oc

m
oc

m
od

w
ha

tif

m
oc

m
oc

m
od

tw
ea

ki
ng

w
ha

tif

m
oc

m
oc

m
od

w
ha

tif

m
oc

m
oc

m
od

w
ha

tif

0.0

0.2

0.4

0.0
0.1
0.2
0.3

0

5

10

0.00
0.05
0.10
0.15

5

10

(c) plasma retinol

● ●

●●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●● ●●

●

●

neuralnet rf svm xgboost

o
1

o
2

o
3

o
4

count

di
ce

m
oc

m
oc

m
od

w
ha

tif

m
oc

m
oc

m
od

tw
ea

ki
ng

w
ha

tif

m
oc

m
oc

m
od

w
ha

tif

m
oc

m
oc

m
od

w
ha

tif

0.0
0.1
0.2
0.3

0.2

0.4

2

4

0.0

0.2

0.4

5

10

(d) tic-tac-toe

Fig. 5. Boxplots of the objective values and number of nondominated counterfactuals
(count) per dataset and model for MOC with our proposed strategies for initialization
and mutation (mocmod), MOC without these modifications, Whatif, DiCE, Recourse
and Tweaking. Lower values are better except for count.
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