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Zusammenfassung

Das Verständnis der mikroskopischen Struktur Schwarzer Löcher bleibt eine der wichtig-
sten Aufgaben der theoretischen Physik. Besonders wertvoll ist es, wenn diese Struktur
in Form von transparenten physikalischen Phänomenen mit beobachtbaren Konsequenzen
formuliert werden kann. In der vorliegenden Dissertation diskutiere ich eine solche Idee.
Konkret argumentiere ich für das Vorhandensein einer Wirbelsubstruktur in Schwarzen
Löchern. Dies wird durch zwei verschiedene Paradigmen gestützt, die sich mit den Quan-
teneigenschaften von Schwarzen Löchern befassen. Das erste besteht aus einer Korrespon-
denz zwischen Schwarzen Löchern und generischen Objekten mit maximaler Entropie, die
mit der Unitarität vereinbar sind, den so genannten Saturonen. In dieser Arbeit wird eine
spezifische Realisierung des letzteren explizit ausgearbeitet. Bemerkenswerterweise ergeben
sich aus der einfachen Anforderung der Unitaritätssättigung mehrere Eigenschaften, die
denen von Schwarzen Löchern in einem einfachen Nicht-Gravitationsmodell entsprechen.
Insbesondere wird eine Korrespondenz zwischen solchen Saturonen mit Wirbelstärke und
nahezu extrem rotierenden schwarzen Löchern deutlich. Das zweite ist das so genannte
N -Portrait, bei dem Schwarze Löcher als Kondensate von marginal begrenzten Gravitonen
verstanden werden. Sowohl aus der ersten als auch aus der zweiten Sichtweise heraus liegt
die Vermutung nahe, dass die Wirbelstärke eine notwendige Eigenschaft stark rotierender
Schwarzer Löcher ist. Einerseits kann dies tiefgreifende astrophysikalische Konsequenzen
haben, andererseits kann es aus der Perspektive vieler Körper von Interesse sein. Ersteres
ist relevant für die starken Jets, die in aktiven galaktischen Kernen wie M87 beobachtet
werden. Diese Emissionen können im Gegensatz zum Standardbild ohne eine kohärent mag-
netisierte Scheibe erklärt werden, was ein klares Indiz für das Szenario darstellt. Dieses
Ergebnis ist generell für supermassereiche Schwarze Löcher in den galaktischen Zentren von
Bedeutung, da diese aufgrund ihrer Spätzeitdynamik ein hohes Maß an Rotation aufweisen
dürften und dies auch beobachtet wurde.

Der zweite Teil dieser Arbeit konzentriert sich auf leichtere Schwarze Löcher mit sub-
solarer Masse. Diese Objekte können nicht durch die Standard-Sterndynamik gebildet
werden und würden, falls sie entdeckt werden, eine andere Erklärung für ihren Ursprung
erfordern: Sie könnten zum Beispiel primordial sein. In diesem Fall sind diese Objekte
phänomenologisch motivierte Kandidaten für dunkle Materie. Allerdings besteht derzeit
kein Konsens über ihren Entstehungsmechanismus. Der Rest dieser Dissertation widmet
sich daher der Vorstellung eines dieser Mechanismen sowie der daraus resultierenden Kon-
sequenzen. In diesem Szenario bilden sich Schwarze Löcher durch den Einschluss von
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Quarks, die im frühen Universum entstanden sind. Der Mechanismus erfordert nur eine
minimale Hypothese, um sowohl in “unserem” QCD-Sektor als auch in einem dunklen
Sektor zu funktionieren, wobei mehrere Probleme vermieden werden, die in den Standar-
dentstehungsszenarien, die auf dem Kollaps inflationärer Überdichten basieren. Eine der
Besonderheiten liegt in der natürlichen Produktion von hochgradig drehenden Schwarzen
Löchern bei der Entstehung - relevant im Hinblick auf die zuvor diskutierte Wirbelun-
terstruktur. Eine weitere Eigenschaft ist die spezifische Gravitationswellen-Energiedichte,
die durch die kollabierenden Dynamik erzeugt wird, die nahezu frequenzunabhängig ist.
Das resultierende Spektrum kann möglicherweise den stochastischen gravitativen Hinter-
grund erklären der mit Pulsar-Timing-Arrays beobachtet wird, erklären und wird in naher
Zukunft von anderen Beobachtungsmissionen untersucht werden die bei höheren Frequen-
zen arbeiten.

Motiviert durch die phänomenologische Relevanz wird eine numerische Studie der kol-
labierenden Dynamik von zwei eingeschlossenen Monopolen durchgeführt. Es wird er-
wartet, dass dies die Hauptmerkmale des zuvor erwähnten Quark-Kollapses erfasst. Ein
Quark/Anti-Quark-Paar, das durch einen Gluon-String verbunden ist, ähnelt einemMonopol/Anti-
Monopol-Paar, das durch ein magnetisches Flussrohr verbunden ist. Seit langem stellt sich
die Frage, wie viel das letztere System über das erstere aussagen kann. Während diese Anal-
yse die bereits bestehenden Studien über die Dynamik von eingeschlossenen Monopolen im
punktförmigen Limit erweitert, liefert sie neue Erkenntnisse über die Korrespondenz mit
der QCD-Physik. Interessanterweise spielt die Sättigung der Unitarität eine Schlüsselrolle,
wenn es darum geht, Licht in diese Korrespondenz zu bringen.



Abstract

Understanding the microscopic structure of black holes remains one of the most important
tasks of theoretical physics. It is especially valuable when this structure can be formulated
in terms of transparent physical phenomena with observational consequences. In the first
part of this dissertation, I discuss such an idea. Concretely, I argue for the presence of
vortex sub-structure within black holes. This is supported by two different paradigms ad-
dressing the quantum properties of black holes. The first one consists of a correspondence
between black holes and generic objects of maximal entropy compatible with unitarity,
so-called saturons. In this work, a specific realization of the latter is worked out explicitly.
Remarkably, from the simple requirement of unitarity saturation, several properties analo-
gous to the ones of black holes emerge in a simple non-gravitational model. In particular, a
correspondence between such saturons with vorticity and close-to-extremal rotating black
holes is made apparent. The second one is the so-called N -portrait, where black holes are
understood as condensates of marginally bounded gravitons. Motivated by both the former
and the latter, it is natural to conjecture that vorticity is a necessary property of highly-
spinning black holes. One one hand, this can have profound astrophysical consequences,
and, on the other, it can be of interest from a many-body perspective. The former is rele-
vant for powerful jets observed in active galactic nuclei such as M87. These emissions can
be explained without the need of a coherently magnetized disk, contrary to the standard
picture, providing a clear smoking gun for the scenario. This result is generally relevant for
supermassive black holes in the galactic centres, since these are expected, and observed,
to be highly spinning due to their late-time dynamics.

The second part of this thesis focuses on lighter, sub-solar mass black holes. Standard
stellar dynamics cannot account for them and, if detected, an explanation for their origin
would be required: for example, they could be primordial. These objects are phenomeno-
logically motivated dark matter candidates. However, there is currently no consensus on
their formation mechanism. The rest of this dissertation is therefore dedicated to present-
ing one of those mechanisms, as well as its consequences. In this scenario black holes are
formed due to confinement of quarks produced in the Early Universe. The mechanism
requires minimal hypothesis to work both within “our" QCD sector or in a dark sector,
while avoiding several issues encountered in the standard formation scenarios based on
the collapse of inflationary overdensities. One of its peculiar features lies in the natural
production of highly spinning black holes at formation – relevant in view of the previously
discussed vortex sub-structure. Yet another property is the specific gravitational-wave en-
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ergy density produced by the collapsing dynamics, which is almost frequency-independent.
The resulting spectrum can potentially explain the stochastic gravitational background ob-
served via pulsar timing arrays and will be probed in the near future by other observational
missions operating at higher frequencies.

Motivated by the phenomenological relevance, a numerical study of the collapsing dy-
namics of two confined monopoles is performed. This is expected to capture the main
features of the previously mentioned quark collapse. In fact, a quark/anti-quark pair
connected by a gluon string is similar to a monopole/anti-monopole pair connected by a
magnetic flux tube. A long-standing question is how much the latter system can inform us
about the former. Therefore, while this analysis extends previous studies on the dynamics
of confined monopoles performed in the point-like limit, it provides new insights on its
correspondence with QCD physics. Intriguingly, unitarity saturation plays a key-role in
shedding light on such correspondence.
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Chapter 1

Invitation

1.1 Black Holes
Black holes (BHs) are the main focus of this work. Therefore, before proceeding, we shall
review some of their properties. A Schwarzschild BH is a solution of Einstein’s General
Relativity with metric

ds2 = −
(

1− rg
r

)
dt2 +

(
1− rg

r

)−1
dr2 + r2dΩ2, (1.1)

where rg = 2GNM is the Schwazschild radius, M the BH mass and dΩ2 is the two-sphere
distance. The Schwarzschild radius determines the event horizon. This is the sphere from
which no light-like worldline can escape from.

BHs are considered exceptional objects due to their mysterious properties such as their
area-law entropy [1], the presence of an information horizon, a thermal spectrum – known
as Hawking radiation [2]–, an information time retrieval i.e. a timescale after which the
information stored by the BH becomes available to an asymptotic observer known as Page’s
time [3], a maximal bound on their spin, etc.

However, it was recently proposed that these properties are not unique to gravity, and
to BHs [4]. This is due to the fact that unitarity imposes a universal bound on entropy [5].
This crucial observation followed from earlier works [6, 7] where configurations with high
micro-state degeneracy were built while keeping unitarity under control.

The maximal entropy of a self-sustained localized configuration, gravitational or not,
compatible with unitarity corresponds to [4]

S ≤ Area

GGold
= f 2Area, (1.2)

where Area ∼ Rd−2, d being the spacetime dimensionality, corresponds to the area of
the objects (from now on d = 4), and GGold ∼ f−2 is the Goldstone coupling associated
to the symmetry broken by the object itself. Configurations saturating bound (1.2) are
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called saturons [4]. In particular, BHs are gravitational saturons spontaneously breaking
Poincaré symmetry, whose Goldstone coupling is given by GN. Under the replacement

GGold → GN, equivalently f →MPl, (1.3)

(1.2) reduces to the known Bekenstein entropy relation [1]

SBH ∼
Area

GN
∼M2

PlArea. (1.4)

Simultaneously, for saturons the entropy is also equal to

Smax ∼ AreaGGold ∼
1
α
, (1.5)

α being the value of the microscopic coupling in the theory at lengths R. For a BH
α = αgr ∼ (RBHMPl)−2, which when inserted in (1.5), correctly recovers (1.4) (GN = M−2

Pl ).
In [4, 5] it was shown that saturons, from a single requirement of entropy saturation,

manifest several BH properties

• Indeed an area-law entropy (1.2)

• They decay, at leading order in 1/S in a thermal way

T ∼ 1/R (1.6)

• Semi-classically they display an information horizon

• A bound from below on their information retrieval (analogous to Page’s time)

tmin ∼
R

α
∼ SmaxR. (1.7)

• A bound on their maximal spin [8]

Jmax ≤ Smax. (1.8)

This is analogous to the maximal rotation of a spinning BH. Such object can be
described in terms of Kerr metric and is uniquely determined by its mass M and its
angular momentum J . In Boyer-Lindquist coordinates its metric reads

ds2 = −
(

1− rgr

Σ

)
dt2 + Σ

∆dr2 + Σdθ2+
(
r2 + a2 + rgra

2

Σ sin2 θ

)
sin2 θ dφ2

− 2rgra sin2 θ

Σ dt dφ

(1.9)
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where the coordinates r, θ, φ are determined by

x =
√
r2 + a2 sin θ cosφ,

y =
√
r2 + a2 sin θ sinφ,

z = r cos θ,
(1.10)

and the quantities

a = J

Mc
,

Σ = r2 + a2 cos2 θ,

∆ = r2 − rgr + a2,

(1.11)

were introduced for simplicity. The event horizon corresponds to the larger root
of the condition ∆ = 0, for which the radial part of the metric becomes singular
(analogously to the non-rotating case (1.1). Clearly, for rg < 2a, or equivalently,
J > GM2, no real solution exist. Without an event horizon, the singularity of the
BH becomes naked and this is not possible. It follows that, for a spinning BH

JBH < GM2 ' SBH . (1.12)

This is the gravitational version of (1.8). In the context of General Relativity, it
emerges as a consequence of geometry. One of the main point of this work is that
saturons outside of gravity obey the same bound. Its origin within these solution is
clear and understood with standard field theoretical treatments as shown in [8].

The main message of Ref. [4] is that none of these properties are unique to BHs and to
gravity. This connection has been shown for several models, such as instantons, solitons
and other bound states [4, 6, 7, 5], eg., for 1 + 1 dimensions [9] in the Goss-Neveu model
[10]. Moreover, similar properties have been argued to emerge in QCD [11] in the so-called
color-glass condensate [12].

As already mentioned, the case of spin for this class of objects has been firstly address
in [8], which will be the main focus of this chapter. The main concept of vorticity was
shown for a SU(N) prototype model introduced in [4], and developed in [5] for the non-
rotating case. These bound-states can be viewed as a special version of non-topological
solitons, or Q-balls [13, 14]. An important new feature that makes them black-hole-like, is
the maximal degeneracy of microstates which satisfies (1.2).

1.2 The role of saturation

Given the close relation between the entropy-area law and the saturation of unitarity, we
recap here the main findings of Ref. [4], which will prove useful for later reference.
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Figure 1.1: A 2→ n process

It turns out [4] that unitarity of scattering amplitude puts a non-perturbative upper
bound on the entropy of a system. The entropy bound attained by various field theoretical
objects, was observed [6, 7] to be

Smax = MR = 1
α

= Area f 2, (1.13)

where O(1) factors have been dropped. We will explain how these equalities comes about
below. The main message, is that the first two equality are deeply connected to scattering
amplitudes. Namely, when the first two equality are satisfied by a field theoretical config-
uration, the system is in correspondence with the non-perturbative saturation of unitarity
of a 2→ n amplitude at momentum transfer q = 1/R and αn = 1. Moreover, in all practi-
cal explicit realizations where the first two equalities of (1.13) are satisfied, also the third
condition applies. Namely, Bekenstein entropy follows from non-perturbative saturation of
unitarity in 2→ n scatterings.

This suggests the physical interpretation that at saturation, scattering of two highly
energetic quanta can produce a classical object, namely a saturon via the process (see
Fig. 1.1)

2→ n = saturon. (1.14)

This is somewhat counterintuitive, since the scattering of two highly-energetic quanta into
a large number of soft-quanta is exponentially suppressed. The point is that a large number
of final, physically equivalent microstate can make up for such suppression, providing a
close-to-unity cross-section.

This is similar to what is expected for BHs. In fact, upon scattering of two arbitrarily
highly energetic quanta (above Mp), a classical configuration, a BH satisfying relation
(1.13), forms. Therefore a BH is an example of saturon in gravity. Notice that a BH forms
regardless of the specific value of the scattering energy, as long as it is super-Planckian.
The reason for this lies in the derivative-like nature of the gravitational coupling

αg(q) = q2

M2
p

, (1.15)
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where q represents the typical momentum transfer of the 2 → n = BH scattering at
q = 1/R. When building saturons outside of gravity, e.g., in renormalizable theories, the
microscopic coupling α(q) runs at most logarithmically. Therefore, it is not surprising that
the saturation of unitarity, and therefore (1.13), is satisfied only at a specific center of mass
energy. Namely, for a 2 → n scattering, the typical momentum transfer depends on the
microscopic coupling evaluated at that scale

q = 1
R

= f
√
α(1/R). (1.16)

Correspondingly the center of mass energy is

E = qn = 1
R
n = f

√
α(1/R)n. (1.17)

The window of opportunity for this to happen has to be very narrow in the center of mass
energy [4] ∆E/E ∼ α � 1 [4]. From now on, the energy scale at which the coupling is
evaluated is omitted.

1.2.1 Entropy relation to inverse coupling

To clarify the statements of the previous Section we believe instructive, and useful for later,
to report here the example presented in [4].

Consider the following four-point bosonic interaction

α(φiφi)(φjφj), (1.18)

of a theory invariant under an internal symmetry acting on the index i, j = 1, ..., N . In
the rest of the work we focus on the case of a weak microscopic coupling. Therefore, it is
useful to define the following ’t Hooft coupling [15]

λt = αN, (1.19)

and work in the double scaling limit

α→ 0, N →∞, λt = finite. (1.20)

We are interested into the scattering of two quanta into a highly occupied state of momen-
tum ~k i.e.

|n〉 =
∏
j

(
a†j(~k)

)nj√
nj!

|0〉, (1.21)

wherew aj denotes the annihilation operator of the bosonic field in (1.18) and the total
occupation number is

n =
N∑
j=1

nj. (1.22)
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While the macrostate is fixed by n, its degeneracy can be large as it can be seen from its
microstates realization (1.21). The reason for their indistinguishability is precisely due to
the double-scaling limit (1.20).

Yet another coupling useful in this analysis, is the one due to the state (1.21), i.e.
the collective coupling, describing the effective interaction between one quanta, and the
background formed by the others

λc = αn, (1.23)

which is also taken in a double scaling limit

α→ 0, n→∞, λc = finite. (1.24)

In this limit, only leading order semiclassical corrections to the dynamics should be included
[16, 17] and, however, they won’t matter for the discussion 1.

For n � 1, the occupation number state (1.21) can be used to build explicitly the co-
herent state describing the energy lump. Notice that in this limit, the number eigenstate in
(1.21), can be thought almost as a coherent state of n quanta, with energy per-constituent-
quantum sharply peaked around |~k| ∼ 1/R ∼ q, q being the typical momentum transfer of
the 2→ n scattering amplitude. Therefore, this configuration is made of n constituent of
energy ∼ q ∼ 1/R. Namely, the energy of the lump is

E ∼ n

R
. (1.25)

For the system to be self-sustained, the kinetic energy of a single quantum should be
balanced by the potential energy of the background i.e.,

Ekin ∼
1
R
∼ Epot ∼

αn

R
, (1.26)

which holds true for
λc ∼ 1. (1.27)

Namely, a collective coupling of λc ∼ O(1) is necessary. In this case the energy of the
configuration is

E ∼ n

R
∼ 1
αR

, (1.28)

which is the usual relation between the size and the energy of a soliton.
Let us now turn to the entropy of the lump. In the limit α→ 0 the microstates defining

the macrostate (1.21) are classically indistinguishable. This is because in this limit, any
process distinguishing the flavour (the j-index) of the particles is suppressed. This is the
power of the large N limit.

1For example this effect should be accounted by a non-trivial transformation of the bosonic cre-
ation/annihilation operators via a Bogoliubov transformation.
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In this limit the state in (1.21), under the constraint (1.22), has the following microstate
degeneracy

nst '
(
n+N
N

)
= cN

(
1 + N

n

)n (
1 + n

N

)N
, (1.29)

where Stirling approximation was used for n� 1 and N � 1. Note that the prefactors cN
is a polynomial function of n,N and will not matter for the discussion. It can be set to
one from here onwards.

The entropy of the configuration is given by (λc = 1)

S = lnnst '
1
α

ln
(

(1 + λt)
(

1 + 1
λt

)λt)
, (1.30)

which reproduces the first two equalities of (1.13) for λt ∼ 1. (c.f. (1.28)). Note that to
obtain them, the theory required

λt ∼ λc ∼ 1. (1.31)
The last equality in (1.13), is obtained by noticing that the lump breaks translation invari-
ance, with associated Goldstone decay constant

f = 1
R
√
α

=
√
N

R
. (1.32)

This shows that for unitary collective couplings (1.31), Bekenstein area-law (1.13) is re-
covered for this simple non-gravitational system.

1.2.2 The role of unitarity in scattering amplitudes

We are now ready to show the importance of saturation for the scattering amplitude of
2→ n processes [4]. The relevant cross section is given by

σ =
nst∑

microstates

σ2→n. (1.33)

The last term corresponds to
σ2→n = cnn!αn, (1.34)

Similarly to before, the dimensionfull prefactor cn is at most polynomial and not relevant
for the discussion since here we are interested in the exponential behaviour of the cross-
section.

Eq. (1.34) seems to grow unboundedly for large enough n. Such growth is not physical
and is due to the asymptotic nature of the perturbative expansion in (1.34). Indeed, the
point of optimal truncation is given by the n such that the succession in (1.34) stops
decreasing and starts growing. This is given by

λc = αn = 1, (1.35)
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for which, in the double-scaling limit (1.24)

σ2→n = e−n = e−1/α, (1.36)

as expected for the scattering amplitude associated to a 2 → n process. It can be shown
that (1.36) represents the maximal cross section also when non-perturbative effects are
taken into account (i.e. for n� α−1) as shown by Ref. [4].

So far, the information about the microstates degeneracy has not been accounted.
This appears in the form of summation of indistinguishable final states in (1.33). For
λc ∼ λt ∼ 1, the resulting cross section becomes

σ ' e−
1
α

+S, (1.37)

which is of order unity for S = 1/α. This is precisely condition (1.13) obtained in the
previous section. If the ’t Hooft coupling λt � 1, the entropy would be bigger, but it
would result in a violation of unitarity. This brings a clear message. Unitarity of 2 → n
scattering amplitudes puts an upper bound on the maximal entropy of a n-composite
self-sustained configuration, which corresponds to (1.13).

1.3 The N-portrait
So far, a class of self-sustained configurations outside of gravity, sautrons, have been dis-
cussed. These objects saturate the unitarity bound of 2 → n scattering amplitudes of
2 highly energetic quanta into n soft quanta due to the large microstate degeneracy of
identical final states. It turns out that saturons, from this simple property, posses both
an entropy-area law, as well as other several properties analogous to BH. The emergence
of other properties other than Bekenstein area-law will be shown explicitly in the next
chapter.

In this section we briefly summarize a a different approach which tries to resolve the
inner substructure of BHs as a Bose-Einstein condensate of marginally bounded gravitons.
This framework, proposed by Dvali and Gomez (see [18, 19, 20] for an incomplete list),
is well-supported by the previously presented saturon picture. Historically, however, the
latter came after the former.

A natural question is whether the microscopic substructure, which is better under-
control, of non-gravitational saturon, could be extended to BHs. In fact saturons are
localized classical self-sustained configurations composed of soft-quanta. In the case of a BH
such soft quanta would be gravitons, and the system would be analogous to a Bose-Einstein
condensate. The point is that, if this description holds true, then it bears corrections
beyond the semi-classical treatment.

In this picture the number of constituents N is given by

N ' M2

M2
p

' R2

L2
p

, (1.38)
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R being the BH Schwarzschild radius and M its mass. Each constituent has energy q ∼
1/R, therefore leading to the configuration mass

M = qN, (1.39)

and the microscopic coupling is
αg = 1

M2
pR

2 . (1.40)

Note the analogy between these equations and the one in the previous section. Hawking
emission is understood in this picture as rescattering of constituent-quanta, composing the
BH. To compute it, it is necessary to take into account the combinatorial factor, due to
the presence of N -background gravitons. Moreover, the outgoing quanta have an energy
given by the typical size of the localized object. This leads to

Γ ∼ α2
g

(
N
2

)
1
R
∼ 1
R
, (1.41)

where the binomial factor accounts for the above mentioned combinatorial factor (N � 1
was used), αg is the coupling entering the Feynman diagram and R−1 is the typical energy.

The reason why this emission is thermal, i.e. T ∼ 1/R, can be understood from the
fact that for much more highly energetic quanta, δN � 1 condensate constituents takes
part in the scattering. This process, is therefore exponentially suppressed as

e−δN = e−
∆E
T , (1.42)

where the typical energy of outgoing quanta is ∆E ∼ δN/R. Suppression (1.42) is precisely
the Boltzmann factor expected for a thermal distribution.

In this construction, the classical BH is obtained in the limit of infinite constituents
N →∞. It is clear that physical BHs have a finite N , and therefore 1/N -corrections, not
visible in semi-classical treatment, can be computed. These appear in the form of quantum
hair, which becomes available to an asymptotic observer in a timescale

Γ−1 ∼ τ ∼ R

α
∼ nR. (1.43)

Two comments are in order: the above timescale corresponds to the celebrated Page time
[3]. Classically it corresponds to the time after which the BH lost half of its mass due to
the emission of Hawking quanta.

In the corpuscular picture it is the timescale after which the quantum backreaction is no
longer negligible, as it becomes comparable to the mass of the BH itself. Therefore, it marks
the timescale after which the semiclassical solution is no longer a reliable description of the
BH. This is known as quantum breaking [20], and the timescale in (1.43) is the quantum
break time (see Fig. 1.2 for a visual sketch of the phenomenon). Note that in the semi-
classical limit, n → ∞, τ also becomes infinite, exemplifying the quantum nature of the
phenomenon2.

2Restoring ~, n ∝ ~−1.
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Figure 1.2: Dynamical trajectories of classical vs quantum one point function. At initial
times the classical dynamics is a good approximation to the true quantum dynamics. At
later time, the classical solution no longer provides a reliable description of the system.

This phenomenon was studied explicitly in several theories outside of gravity. For
example, for the case of scalar field theories I worked out in depth the effect of quantum
backreaction on coherent states – the quantum counterpart of classical configurations –
both analytically [16, 17] and numerically [21, 22], within the framework of two-particle-
irreducible effective actions. The main focus of these works were scalar homogeneous
condensates.



Chapter 2

Vorticity in black holes

This chapter is based on my work with G. Dvali, F. Kühnel [8]. Therein we show that an
analogous version of the extremality bound on the spin obeyed by a black hole is equally
respected by a Q-ball type saturon within a renormalisable theory without gravity. This
is achieved building an explicit stationary configuration with vorticity. Remarkably, the
topological nature of the vortex winding, forbids the emission of soft quanta, therefore
providing a microscopic understanding of the absence of Hawking-emission in extremal
black hole. These features provide support for describing a black hole with maximal spin
as a condensate of gravitons endowed with vorticity.

A generic consequence, is that in the presence of mobile charges, the global vortex
traps the magnetic flux of the gauge fields, possibly providing macroscopically-observable
consequences. This can explain, for example, the most powerful jests observed in active
galactic nuclei, even without a specifically magnetized accretion disk surrounding the black
hole. Such flux entrapment, can also serve as a probe to various hidden sectors, e.g.,
millicharged dark matter.

After introducing the subject, in this Chapter I will first recap on saturons and their
physical relation to BHs, to later focus on the rotational case and the possible phenomeno-
logical consequences

2.1 Introduction

The microscopic structure of black holes remains to be understood. One of the main
obstacles is the lack of experimental probes of black hole quantum properties. In this
light, it is very important to identify and explore those microscopic theories that lead
to macroscopically-observable phenomena. In this chapter I will describe one such phe-
nomenon: vorticity [8]. Our proposal is based on two lines of thought.

On one hand, as discussed in the previous chapter, there are physical indications [19, 18]
that at the quantum level a black hole of radius R represents a condensate of “soft”
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gravitons, i.e., gravitons of characteristic wavelength ∼ R and frequency

ω ∼ 1/R . (2.1)

The defining property of a black hole is that the graviton condensate is at the critical
point of saturation, also referred to as the point of “maximal packing”. At this point, the
occupation number of gravitons Ngr, their quantum gravitational coupling (we shall work
in 3 + 1 dimensions),

αgr ≡ 1/(RMP)2 , MP ≡ Planck mass , (2.2)

and entropy S, satisfy the relation

S = Ngr = 1
αgr

. (2.3)

Taking into account Eq. (2.2), it is clear that this equation, reproduces the Bekenstein-
Hawking entropy of a black hole.

On the other hand, it has been argued recently [4], and showed in the previous Chapter,
that the expression (2.3) is not specific to black holes or gravity. Rather, it represents a
particular manifestation of the following universal upper bound, imposed by unitarity, on
the microstate entropy S of a generic self-sustained bound state of size R,

S = 1
α

= R2f 2 , (2.4)

where α is the running coupling of the theory evaluated at the scale R and f is the
decay constant of Goldstone modes of symmetries spontaneously broken by the bound
state. Furthermore, it was argued that there exists a large class of objects saturating this
bound and that such objects, so-called saturons, exhibit close similarities with black holes.
This proposal has been verified on multiple examples [6, 7, 4, 9, 5]. The correspondence
between black holes and generic saturated systems opens up the possibility of using saturons
in calculable theories as laboratories for understanding the well-established black hole
properties and for predicting new ones.

The goal of the present chapter is to provide one more link in this correspondence. The
main message is that black holes and other saturons naturally support a vortex structure.
This imposes an upper bound on the saturon spin very similar to the extremality bound
on a spinning black hole. This offers a microscopic explanation of black hole’s maximal
spin in terms of the vorticity of the graviton condensate.

The vortex structure, when interacting with a neutral plasma of particles charged under
some gauge symmetry, such as electromagnetism, necessarily traps a magnetic flux in it.
This trapping can have some macroscopically-observable consequences. It can also provide
an observational window in various hidden sectors, such as millicharged dark matter.

We believe that, due to the universality of saturons, the vorticity property in black holes
can be understood without entering into the technicalities of quantum gravitational com-
putations. In short, at the level of our presentation, the vorticity in black holes represents
a conjecture supported by the evidence gathered from calculable saturated systems.
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We shall explain the main concepts on a prototype SU(N) model [4] which has been
shown by Ref. [5] to support the black-hole-like saturated bound-states. These bound-
states can be viewed as a special version of non-topological solitons, or Q-balls [13, 23]
(for some implications, see Refs. [14, 24]). An important new feature that makes them
black-hole-like, is the maximal degeneracy of microstates which satisfies Eq. (2.3).

2.2 Prototype model
Consider a theory [4, 5] of a scalar field φ in the adjoint representation of global SU(N)
symmetry. The Lagrangian density in obvious matrix notations has the following form,

L = 1
2tr(∂µφ)(∂µφ)− α

2 tr
(
fφ− φ2 + I

N
trφ2

)2
. (2.5)

Here, α is a dimensionless coupling and f is the scale. It is very important to keep in mind
that α and N obey the unitarity constraint [4] described in the previous Chapter

λt = αN . 1 . (2.6)

The correspondence with a macroscopic black hole pushes one to consider the extremely
large values of N (for instance, considering a solar-mass black hole leads to N ∼ 1077).
This gives the benefit of using the power of 1/N -expansion and we will work, from now
on, to leading order in 1/N .

The theory (2.5) has multiple degenerate vacua with different patterns of spontaneous
symmetry breaking as seen from the minimization equation

fφba −
(
φ2
)b
a

+ δba
N

trφ2 = 0 (2.7)

These vacua corresponds to the breaking of SU(N) → SU(N −K) × SU(K) × U(1), for
N ≥ K ≥ 1. The order parameters breaking to these vacua can be parametrized as

〈φ〉 = 〈ϕ〉
√
K√

N(N −K)
diag

(
N −K
K

, ...,
N −K
K

,−1, ..., 1
)
, (2.8)

where the traceless diagonal vacuum matrix contain respectively K and N −K identical
elements, corresponding to (N − K)/K and −1 above. The broken generators by this
configuration correspond to the ones living in the off-diagonal block matrix. A simple
counting gives 2(N−K)K broken generators, where (N−K)K is the size of the mentioned
off-diagonal block matrix, and the factor two is due to the presence of two generators for
each entry (the analog of σ1 and σ2 Pauli matrices distributed in the block).

Inserting ansatz (2.8) in the vacuum condition (2.7), we obtain

〈ϕ〉 = f

√
K(N −K)
N − 2K . (2.9)
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For the present discussion focus will be on the SU(N)-symmetric vacuum and the
broken one SU(N − 1) × U(1) i.e., K = 1. In the former vacuum, the theory exhibits
a mass gap m2 = αf 2. In the latter, for N � 1, there exist ' 2N species of massless
Goldstone modes and 〈ϕ〉 ' f . The two vacua are separated by a domain wall. A planar
static wall has a tension (energy per unit length) equal m3/6α. The thickness of the wall
is δw = 1/m.

Following Ref. [5], we shall be interested in the field configurations described by the
ansatz

φ = U †ΦU , (2.10)
where (for N � 1)

Φ = ρ(x)
N

diag
[
(N − 1),−1, . . . ,−1

]
, (2.11)

and
U = exp

[
i χa(x)T a

]
. (2.12)

Here T a’s are the generators broken by Eq. (2.11) and χa(x) are the corresponding Gold-
stone mode. This ansatz gives the effective Lagrangian (1/N effects absorbed in rescalings)

L = 1
2
[
∂µρ∂

µρ+ ρ2∂µχ
a∂µχa − αρ2 (ρ− f)2

]
. (2.13)

In this effective theory, we shall be interested in the state that represents a hybrid of the
following two solutions.

The first solution [5], which serves as the basis for the black hole prototype, is a station-
ary spherical bubble of SU(N−1)×U(1) vacuum embedded in SU(N)-invariant asymptotic
space. This solution is described by the ansatz,

ρ = ρ(r) , χa = δa1ωt . (2.14)

Correspondingly, the only non-trivial equation is

d2
rρ+ 2

r
drρ+ ρ

[
ω2 − α(ρ− f)(2ρ− f)

]
= 0 . (2.15)

This has a solution that interpolates from ρ(0) = f to ρ(∞) = 0. The bubble is stable
because of the conserved charge, equal to the occupation number of the Goldstone modes,
NG. In the thin-wall approximation,

ω2 � αf 2 = m2 , (2.16)

the charge is given by,

NG = 2πω
∫

dr r2ρ2(r) ' 2π
3αm

2ωR3 . (2.17)

Conservation of this quantity ensures the bubble stability. In fact, this quantity breaks
the degeneracy between the two vacua, allowing for a localized, stationary configuration
provided that the negative core energy balances the positive wall energy.
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In the thin-wall limit, such two distinct contributions split in a very clear way.
In the core, the profile is constant, and therefore the energy budget can be estimated

by setting to zero the last term in (2.15) to obtain ρmax. The corresponding energy is
given by the energy splitting between the two no longer degenerate vacua multiplied by
the volume of the configuration

Ecore ∼ −
∫
core

d3xV (ρmax) ∼ −ω2m
2

α
R3, (2.18)

while the wall-energy contribution comes from the kinetic term, and is integrated only in
a small region of size m−1:

Ewall ∼
∫
m−1

dr r2(drρ)2 ∼ R2m
3

α
. (2.19)

The total energy of the configuration therefore becomes

E ∼ Ecore + Ewall ∼
m3

α

(
R2 − ω2

m
R3
)
, (2.20)

which upon extremization with respect to R gives R ∼ m/ω2.
Restoring the proper numerical factors, the energy, size and charge of the bubble can

be rewritten as [8]

MBub = ω

α

m5

ω5

(40π
81

)
, R = 2

3
m

ω2 , NG = 1
α

m5

ω5

(16π
81

)
. (2.21)

All the above relations, up to order one factors, hold also in the thick-wall regime, in which
we have

ω ∼ m ∼ 1
R
. (2.22)

In this limit, the above equations become extremely similar to the ones discussed in the
previous chapter

MBub '
ω

α
, R = 1

ω
, NG '

1
α
, (2.23)

At this point, the characteristics of the saturon bubble of the SU(N) theory become
isomorphic to an equal-radius black hole of gravity, under the mapping f → MP. In
particular, the entropy of the bubble becomes

S ∼ 1
α
∼ (Rf)2 ∼ M2

Bub
f 2 . (2.24)

The source of the bubble’s microstate entropy, which matches the Bekenstein-Hawking
entropy of the corresponding black hole, is the exponential degeneracy of the Goldstone
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vacuum in the bubble interior. This is given by the combinatorics of NG chosen from the
N−flavour sectors of broken symmetry, providing a degeneracy and an entropy

nstates '
(

1 + 2N
NG

)NG (
1 + NG

2N

)N
, S = log nstates, (2.25)

where Stirling’s formula was used. In particular, to obtain (2.24), NG ∼ N is necessary.
This is equivalently stated as unitarity of collective couplings λc ' λt ' 1. Notice how
this saturation conditions, derived in the Invitation for the case of an energetic lump, are
a consequence of unitarity saturation also for the non-topological soliton discussed in this
Chapter.

Vorticity

In order to establish the basis for vorticity, let us notice that the Lagrangian (2.13) admits
a second, topologically non-trivial, configuration in form of a global vortex line [25]. In
spherical coordinates (r, ϕ, θ) (ϕ polar angle, θ azimuthal angle) it is described by the
ansatz

ρ = ρ(r, θ) , χa = δa1nϕ , (2.26)
where ρ(r) is interpolating between ρ(0) = 0 and ρ(∞) = f . The existence of the solution
is guaranteed by the topologically non-trivial boundary condition with winding number n.
The core of the vortex has a size δv ∼ 1/m which is comparable to the thickness of the
bubble wall in the previous example.

Now, we wish to focus on a hybrid configuration in which the vortex line is piercing
through a finite radius bubble. In spherical coordinates, the ansatz for the Goldstone mode
describing such a configuration is

ρ = ρ(r, θ), χa = δa1 (nϕ+ ωt) . (2.27)
The time-dependence of the Goldstone field guarantees stability of the bubble, whereas the
winding number n maintains the vortex within. The resulting equation of motion is

d2
rρ+ 2

r
drρ+ 1

r2 d2
θρ+ cos θ

r2 sin θdθρ−
n2

r2 sin θ2ρ+ ρ
[
ω2 − α(ρ− f)(2ρ− f)

]
= 0 . (2.28)

The above Eq. (2.28) can be solved numerically imposing the following boundary conditions
1:

ρ(0, θ) = ρ(∞, θ) = ρ(r, 0) = 0, dθρ(r, π/2) = 0 (2.29)
The last condition select parity-even solutions, while for ρ(r, π/2) = 0 parity-odd solution
would be found.

1To find a numerical solution, firstly a redefinition of the radial variable was performed R = r/(r+ 1).
The solution was then found on a rectangular grid in (R, θ), employing a fourth-order finite difference
scheme with an iterative Ralphson-Newton algorithm which is described in the Appendix. This was
developed in C + + by the author. A similar method is used to treat Boson-stars with vorticity in [26],
based on the Fortran library FIDISOL/CADSOL. A suitable initial ansatz for the profile, compatible with
the boundary conditions, should be chosen in order for the iterative method to converge towards the actual
solution.
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Figure 2.1: Spatial profile of axially-symmetric parity-even Q-ball with n = 1 vorticity.

An explicit realization of the former case is shown, for winding n = 1, in Fig. 2.1. While
an in-depth exploration of the properties of the solution is out of the scope of this work,
the found solution serves as a further proof of the existence of the discussed configurations.

As it is clear from Eqs. (2.16, 2.21), in the thin-wall limit, the radius of the bubble
is much larger than the core of the vortex as well as the thickness of the bubble wall,
R� δv ∼ δw ∼ 1/m. In the thickness-wall limit, these quantities becomes comparable.

The above winding configuration endows the bubble with angular momentum

J =
∫
T0ϕd3x = nNG, (2.30)

where, in obvious notation, T0ϕ denotes the relevant component of the energy momentum
tensor of the system. This is very similar to the case of a spinning Q-ball considered in
Ref. [27] for 2+1 dimensions and generalized to 3+1 in Ref. [28]. The important difference
is that for a saturated bubble NG is also equal to entropy. Therefore, for such a bubble we
have

J = nNG ∼ nS . (2.31)

Notice that for the saturon bubble, the total vorticity n cannot be much higher than one.
In the opposite case, the vortex energy ∼ n2/(αR) would exceed the entire mass of the
bubble, which is impossible. This imposes the upper bound n ∼ 1. Thus, we learn that
the maximal angular momentum of the saturon bubble is

Jmax ∼
M2

Bub
f 2 ∼ S . (2.32)

Strikingly, this expression is similar to the one satisfied by the maximal angular momentum
of a spinning black hole,
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Jmax ∼
M2

BH
M2

P
∼ S . (2.33)

The above similarity is remarkable in two ways. First, it gives yet another supporting
evidence to the correspondence between the generic saturons and black holes. Secondly,
it offers a microscopic explanation of the bound (2.33): the maximal angular momentum
of a black hole is restricted by the vorticity of the graviton condensate. In addition, there
can exist non-stationary non-axisymmetric configurations with zero vorticity, such as, e.g.,
a vacuum bubble or a black hole pierced through by multiple vortex lines with zero total
winding number and unrelated spin (for a sketch see Fig. 2.2).

It should be made clear that we are not suggesting that a black hole cannot spin
without vorticity. This is already clear from the fact that for a large black hole the angular
moment can change almost continuously, whereas the vorticity is defined by a topological
winding number. However, our point is that the maximal spin of a black hole is necessarily
correlated with maximal vorticity that black hole can sustain. In this way, we provide a
topological meaning to extremality. Of course, some non-stationary black holes, can carry
vortices even if the total spin is zero. But such configurations will evolve in time even
classically. Thus, a necessary correlation between vorticity and spin takes place only for
highly spinning black holes.

Notice that as a very interesting byproduct, our picture offers a microscopic explanation
for the zero temperature of extremal black holes. Thus, an extremal black hole in our
picture is a black hole that has a maximal possible spin for a given mass. It is obvious that
such objects cannot evaporate. Evaporation is a process that leads to a gradual decrease of
the mass. Since the spectrum is thermal, emission of a quantum of arbitrarily low energy
is possible. But for a black hole of maximal vorticity, such a process is not possible since
the winding number cannot change continuously due to its topological nature. Our picture
thus gives a topological meaning to the stability of extremal black holes. Notice that small
corrections to thermality due to finite N cannot change this conclusion, since the jump
in winding number requires the change of energy of order one in units of a black hole
mass. Such a process has an exponentially suppressed probability and vanishes in strict
semi-classical limit which represents the correct reference point for comparison with known
properties of extremal black holes.

It is worth pointing out that, the degeneracy of the Goldstone vacuum, that is respon-
sible for maximal microstate entropy, is in one-to-one correspondence with the degeneracy
of the vortex configurations. This is because the vortexes are formed by the same broken
generators that account for the bubble degeneracy. This connection between vorticity and
the microstate entropy gives an additional basis for our proposal that analogous vorticity
must be supported by black holes.
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2.3 Magnetic field trapping
Despite the fact that the order parameter responsible for the vortex carries no gauge
charge when interacting with some charged matter, the vortex will trap the flux of the
corresponding magnetic field. This is a very general phenomenon of trapping the gauge
flux by a global vortex [29], which we shall apply to the present case.

Let us represent the vortex field in form of a complex order parameter ψ ≡ ρeiθ. This
field carries no gauge charge. Let us assume that the vortex order parameter interacts non-
trivially with some fields, χ+ = ρ+eiθ+ and χ− = ρ−eiθ− , carrying opposite charges = ±q
under some gauge U(1)gauge symmetry. Its rôle can be played by ordinary electromagnetism,
the weak isospin, or some hidden sector symmetry. For example, these two fields can
impersonate the two oppositely-charged components (e.g., electrons and ions) of the neutral
plasma interacting with a black hole or a Q-ball.

Correspondingly, we assign the non-zero expectation values, 〈ρ−〉2, 〈ρ−〉2 6= 0, which
measure the properly-weighted number densities of particles. The interaction term must
respect both the global shift symmetry, θ → θ + α by a constant phase α, as well as,
the U(1)gauge gauge symmetry. Without loss of generality, we can consider the following
interaction in an effective many-body Lagrangian,

ψχ−χ+ + h.c. = 2ρρ+ρ− cos(θ + θ+ + θ−) . (2.34)

This fixes the transformation properties under the global shift symmetry as χ± → χ±eiα.
This transformation is orthogonal to U(1)gauge. Despite this, the vortex is trapping the
magnetic field.

We can prove this by following the steps of Ref. [29]. Let us analyse the field configu-
ration far away from the vortex core. Assuming that the electromagnetic field strength is
zero, the equation for the photon field reads

Aµ = 1
eq

〈ρ+〉2∂µθ+ − 〈ρ−〉2∂µθ−
〈ρ−〉2 + 〈ρ+〉2

, (2.35)

where e is the gauge coupling. Integrating the above expression over a closed path around
the vortex and using Stoke’s theorem, we obtain the following magnetic flux conducted by
the vortex,

Flux =
∮

dxµAµ = 2π
eq

[
n+ + n

〈ρ−〉2

〈ρ−〉2 + 〈ρ+〉2

]
, (2.36)

where n± = 1
2π
∮

dxµ∂µθ± are integers and we took into account that, regardless of the
coefficient of the interaction energy (2.34), its minimization demands n+ + n− = −n.
This is non-zero, unless the expectation values are adjusted to n via extreme fine-tuning,
which cannot happen throughout the accretion process. In particular, for n = 1 such an
adjustment is simply impossible.

Despite being formed by an electrically neutral order parameter, when interacting with
a neutral medium with dynamical charged components, the vortex generically traps the
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Figure 2.2: Sketch of a black hole with a number of randomly oriented vortex/anti-vortex
pairs.

magnetic flux. Notice, this trapping is very different from the magnetic flux supported by
Abrikosov (or Nielsen-Olesen) vortex lines in superconductors. In these cases, the primary
order parameter transforms under the gauge U(1)gauge. Due to this, the flux is quantized
in units of 1/(eq). In contrast, the magnetic flux (2.36) trapped by a global vortex is
fractional [29].

The configuration of a black hole with a trapped magnetic flux is similar to a classical
solution of a black hole pierced by a cosmic string. Such solutions are well known (c.f.
Ref. [30]). In the case of electromagnetic U(1), the role of the flux is played by an ordinary
magnetic field trapped in form of a vortex line.

In addition, the magnetic flux can have a stabilising effect against unwinding of a vortex
in a way similar to how the gauge flux stabilizes the vortexes in theories with topologically-
trivial vacuum structure [31]. This effect can be explicitly traced in the present case of
a saturon with the vortex with fractional magnetic flux. Thus, astrophysical black holes
are expected to exhibit vortex structure with the magnetic flux lines piercing through them.

2.4 Consequences of vorticity

It is well known that highly-rotating black holes can emit very powerful jets and in turn
spin down (see Ref. [32] for a recent review). One important mechanism powering these jets
has been suggested by Blandford & Znajek (BZ) [33]. The core idea relies on the presence
of a black hole magnetosphere, which by rotation winds up in the toroidal direction and
thereby leads to emission of powerful jets. For these to be sustained, the usual assumption
is the presence of magnetized accreting matter around the black hole. However, for the BZ
mechanism to work, the conditions concerning strength, length scale and configuration of
the magnetic field must be chosen properly. Furthermore, magneto-rotational instabilities
provide another complication [32].

Our proposal provides a very different framework for understanding this dynamics. As
discussed in the previous section, vortexes trap the magnetic field by interacting with the
surrounding neutral plasma of either ordinary or a weakly-charged dark matter. Therefore,
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highly-rotating black holes, can efficiently slow down due to the emission process introduced
in Ref. [33]. Their total emitted power can be estimated as PBZ ∼ Flux2Ω2.

Of course, the coherence of the resulting jets highly depends on the geometrical dis-
tribution of the magnetic flux. Assuming the simplest alignment with the rotational axis,
the emitted power can span several orders of magnitude within the range of observational
interest. Note that the maximal magnetic field (of arbitrary gauge group) that a black
hole can sustain is B ∼ Flux/R2

g .MPR
−1
g ∼M2

P/
√
Ngr .

One of the intriguing examples is the jet power observed in M87, PM87 ∼ 1042÷44 erg s−1

[34]. The numerical simulations within the standard framework seem not to provide jets
powerful enough to be compatible with the high end of the above interval [34].2 Within
our framework, the effect can potentially be accounted solely by the BZ mechanism due to
vorticity.

In particular, the flux (2.36) can be macroscopic if the charge q is extremely small. For
example, in case of ordinary electrodynamics, particles with very small q can be present in
the form of a fluid of dark matter or even a stationary vacuum condensate.

For example, a light cold dark matter particle of mass mDM and local energy density
ρlocal in the black hole vicinity, would generate the following effective mass for the photon,
mγ = eq

√
ρlocal /mDM. For illustration, let us choose both Compton wavelengths to be

comparable with the gravitational radius of M87-type black hole, mγ ∼ mDM ∼ 10−18 eV.
This in particular will guarantee the localization of the entire magnetic flux within the
black hole neighbourhood. Then, for eq ∼ 10−39, (implying ρlocal ∼ 104 eV4) the black hole
would be endowed with a jet power compatible with observations.

In general, a constraint to be taken into account comes from the Galactic magnetic
field Bgalaxy. In fact, due to the vorticity of the latter, the photon mass on galactic scales
is bounded by mγ <

√
eq Bgalaxy [35].

The above discussion shows how the black hole vorticity could provide a “portal” into
the sector of dark matter with minuscule electric charges. Curiously, in the previous
example, the mass mDM is not too far from the range of so-called “fuzzy” dark matter
[36, 37]. However, at the level of the present discussion we are not attempting to establish
a specific connection.

A further implication of the presence of vortexes is their impact on the evaporation
dynamics of a near-extremal black hole. Due to Hawking emission these objects are ex-
pected to become extremal, at which point, as discussed previously, evaporation stops.
The astrophysical consequences of this will be explored elsewhere.

Another consequence of vorticity is related to mergers of compact bodies with at least
one being in the mass range around a solar mass. These are generally believed to involve
neutron stars. However, as gravitational-wave observatories are not yet sensitive enough to
sufficiently resolve the information on the compactness of these objects, their classification
is merely by mass, plus a possible electromagnetic counterpart [38]. While the former can

2Note that an accretion disk might influence the BZ emission.
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be accounted for by a primordial nature of the hole, the latter could be explained by its
vorticity.



Chapter 3

Primordial black holes from
confinement

This chapter focuses on Ref. [39], where G. Dvali, F. Kühnel and myself proposed a novel
mechanism for the formation of primordial BHs (PBHs). Therein, heavy quarks of a
confining gauge theory produced by de Sitter fluctuations are pushed apart by inflation
and get confined after horizon re-entry. In this case, by quarks we mean any object on which
flux tubes of “colour” can terminate. BH formation is due to the large amount of energy
stored in the flux tube connecting the quarks pair. The resulting hole can be much lighter,
and can posses an higher spin that those produced by standard collapse of horizon-size
overdensities. Compared to them, no specific tuning of the inflationary potential is needed
in order to obtain an abundance of PBHs comparable to an order-one fraction of dark
matter. Namely, this scenario can work with arbitrary inflationary scenario. Moreover,
other difficulties exhibited by such mechanisms are also avoided. Phenomenological features
of the new mechanism are discussed as well as accounting for both the entirety of the dark
matter and the supermassive black holes in the galactic centres. Under proper conditions,
the mechanism can be realised in a generic confinement theory, including ordinary QCD. A
possible string-theoretic realisation via D-branes. will also be discussed. Interestingly, for
conservative values of the string scale, the produced gravity waves are within the range of
recent NANOGrav data. Simple generalisations of the mechanism allow for the existence
of a significant scalar component of gravity waves with distinct observational signatures.

Before plunging into discussion of the work in [39], a qualitative schematic summary of
the mechanism is shown below in order to provide a clear physical picture of the mechanism.

The formation mechanism can be divided into three main steps (for simplicity focus
here will be simply on a single quark/anti-quark pair):

• Inflationary fluctuations produces quarks which are diluted by the inflationary ex-
pansion as shown in the figure below.
By the end of inflation their distance has grown as d ∝ eNe , Ne being the number of
e-folds from the formation time until the end of inflation.
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Figure 3.1

• Quarks are later confined at energy scale Λc.

Figure 3.2

Coloured flux tubes (strings) connected to quarks form. However their collapse can-
not take place due to causality as the distance between quarks is bigger than the
horizon. In this period, up to the formation of a primordial black holes, Λc < mq,
namely, all the quarks masses should be bigger than the confinement scale in order
to prevent string tunnelling into quarks pairs, therefore shortening the typical length
of the string. This is the main assumption necessary for the mechanism to work.
However, it does not to be fulfilled after black hole formation.

• Eventually quarks enter in causal contact, and due to the large energy stored in the
string connecting them they start accelerating relativistically towards each others.
The configuration Schwarzschild radius is given by

Figure 3.3

RPBH ' l2plΛ2
c t� Λ−1

c (3.1)

Therefore the system eventually finds itself within its Schwarzschild radius, and a
PBH forms.

The phenomenological consequences of the mechanism are the following:

• 100% of dark matter at MPBH ∼ 1017g can be obtained.



3.1 Introduction 25

• The fraction of PBH to dark matter scales, in radiation dominated epoch, as

fPBH = ΩPBH

ΩCDM
∝M

−1/2
PBH . (3.2)

This peculiar scaling can provide the necessary seeds to explain the observed super-
massive BHs in the galactic centres.

• Depending on the confining scales, BHs lighter than the solar mass can be highly
spinning due to the presence of an impact parameter induced by string-deviations
from a complete straightness.

• The mechanism is compatible with known QCD if during the formation epoch

Λc . mq. (3.3)

This could be realized in the Early Universe, as the expectation values of fields can
change (even easier when considering moduli in string theory) before relaxing to their
known temperature T = 0 values.

• The formation dynamics produce a unique gravitational wave signal, in particular
ΩGW is flat, which could be phenomenologically interesting for NANOGrav data, but
also for LISA future measurements.

• A simple generalization of the mechanism can lead to the production of low-multiple
gravitational contribution, which is currently not excluded by NANOGrav data.

• The mechanism is ready-made for a straightforward string-theoretic motivated im-
plementation.

The rest of the chapter elucidates quantitatively on the above-listed points.

3.1 Introduction
Interest in black-holes has been recently fostered due to the milestone detection of mergers
by LIGO/Virgo [40], together with several other events [41]. Whether these black holes
could have a primordial origin is a natural question, as more of these merging objects are
being detected within mass ranges at the boundary or even outside of what can be expected
from stellar collapse.

Several formation mechanisms for primordial black holes (PBHs) exist on the market.
The mostly focused ones, require large overdensity, which, if above a critical threshold,
collapse to black holes. In most of cases, there overdensities have an inflationary ori-
gin, and collapse to PBHs upon Hubble horizon re-entry of the associated scale. Other
non-inflationary scenarios for PBHs formation are based, for instance, on inhomogeneities
arising from first-order phase transitions, bubble collisions, and the collapse of cosmic
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strings, necklaces, domain walls or non-standard vacua (see Ref. [42] for references). De-
spite the existence of several attempts, finding a viable mechanism for the production of
PBHs remains a challenging question for both cosmology and particle physics.

In this Chapter a novel mechanism for the productions of PBHs is presented, which
is rather natural within the framework of confining theories, such as, asymptotically-free
QCD-like gauge theories with massive quarks. This mechanism is based on the dilution of
heavy quarks produced during inflation which get confined by QCD-like flux tubes upon
horizon re-entry. PBH formation is then caused by the large amount of energy which is
stored in the string connecting the quark pairs. A similar mechanism was proposed in [43],
where black holes are formed via the collapse of monopoles connected by cosmic strings.
Differently from it, quarks can be produced as perturbative states during inflation. On
top of that, the asymptotic freedom of the theory, guarantees their confinement by QCD
flux tubes. Consequently the proposed mechanism can be implemented also within the
Standard Model QCD, under proper conditions during during the Early Universe, which
will be specified later

We also speculate about the string-theoretic realisations of this mechanism. In this case,
the rôle of heavy quarks is played by compact D-branes produced by de Sitter fluctuations
during brane inflation. The rôle of the QCD flux tubes connecting them are played by
D-strings which form after graceful exit. We estimate that for conservative values of string-
theoretic parameters, the gravitational waves produced during the confinement process is
in interesting range for NANOGrav data [44].

A scalar component of the emitted gravitational waves from PBH formation can follow
from a simple generalization of our scenario, potentially leading to interesting observa-
tional signature such as the existence of low multiple as well as the dependence of de-
tected power of the gravity waves on the isotope composition of the detector. In fact, as
pointed by NANOGrav observations, given the current observational sensitivity, further
non-quadrupolar contribution to the signal is not yet excluded. Future verification of this
possibility, could provide a hint of such a non-standard gravitational-wave contributions.

This chapter is structured as follows.The mechanism and its dynamics are described in
Sec. 3.2. The cosmological relevance for the production of PBH dark matter, as well as for
supermassive black holes in galactic centres ias addressed in Sec. 3.3. Here the viability of
the scenario within QCD as well as in string-theoretic context is addressed together with
the above-mentioned generalization necessary to obtain a scalar component of emitted
gravitational waves from PBH formation. The last section 3.4 is left for Discussion and
Outlook

Throughout this chapter units in which MP = c = ~ = 1, unless explicitly stated for
clarity, are used.
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3.2 Mechanism
A QCD-like gauge theory with massive quarks is the key ingredient of our scenario. By
“quark” it is meant a generally arbitrary “coloured” state onto which the associated gauge
flux tube can end. Throughout the formation epoch, quarks must be heavier than the
associated confinement scale, Λc, in order to ensure the string non-fragmentation; a nec-
essary condition for the scenario to work. This epoch covers from the last 60 or so e-folds
of the inflationary period, up to the radiation/matter domination era, during which the
black holes are formed. Afterwards, the relation between quark masses and Λc can change,
even reverse, with quarks lighter than the confining scale. Such change will not affect the
outcome of PBH formation. Since, generically the expectation values of the fields change
throughout cosmology, the class of possibility is rather wide and can include even “our”
QCD.

In the simplest scenario it can be assumed that during the inflationary period QCD
was not confining i.e., that the confining scale Λc < Hi at that time, where Hi denotes
the inflationary Hubble. In this case, de Sitter fluctuations will produce quark/anti-quarks
which will be freely inflated afterwards.

In the opposite case (Λc > Hi), from the moment of their formation quarks will be
connects to a QCD flux tubes, which, in turn, causes a suppressed nucleation probability
due to the additional contribution from the flux tube.

The proposed scenario then works as follows: consider a quark/anti-quark pair, expo-
nentially diluted by the inflationary expansion to distances much bigger than the infla-
tionary horizon. Eventually the pair comes in causal contact during the later radiation
dominated era, when it gets confined by strings of tension µ = Λ2

c. In this case the energy
stored in the confining string, and in the system (the monopole mass is negligible compared
to these horizon size strings), is

E ∼ Λ2
c t , (3.4)

where t is the time of horizon re-entry of the pair.
Once within causal contact, the two quarks start moving towards each other with

acceleration proportional to Λ2
c/mq, becoming quickly ultra-relativistic. Due to the large

amount of energy stored in the confining string, the system’s Schwarzschild radius Rg ∼ E
is much bigger than the string width Λ−1

c . This implies the condition
Λ2

c√
g∗(T )T 2

� 1
Λc

, (3.5)

which results in the formation of a PBH of mass MPBH,

MPBH(t) ∼ E(t) ∼ Λ2
c t� Λ−1

c . (3.6)

Eq. (3.6) can readily be expressed in terms of the temperature T at the time of formation:

MPBH(T ) ≈ 3
√

5 Λ2
c

4π3/2
√
g∗(T ) T 2

. (3.7)
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Figure 3.4: Number of relativistic degrees of freedom as a function of temperature (adopted
from Ref. [45]).

Figure 3.5: Sketch of the initial configuration at collapse, for which δx� d.

Where, g∗(T ) is the number of relativistic degrees of freedom at temperature T (depicted
in Fig. 3.4).

The PBH mass in Eq. (3.6) should be compared with the one obtained from the collapse
of horizon-size overdensities [46, 47, 48], in which case we have

M̃PBH(t) ≈ γ t , (3.8)

with γ ∼ O(1).1 Hence, M̃PBH is much larger than that of our proposed mechanism; their
ratio being

MPBH

M̃PBH
≈ Λ2

c
γ
� 1 . (3.9)

Before discussing the conditions necessary to obtain 100% of PBH dark matter, the
spin of the resulting black holes is addressed in the next Section.

Spin

Duuring the inflationary period, de Sitter quantum fluctuations, induce a Brownian motion
of the string zero mode, related to the string straightness. This is of order Hi for each

1Here, for simplicity, we neglect the effect of critical collapse (c.f. Refs. [49, 50, 51, 52, 53, 54, 55]),
which leads to a PBH mass spectrum.
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Figure 3.6: Dimensionless spin aPBH at formation time as a function of MPBH and Λc
according to Eq. (3.12). The case Λc & Hi is considered.

Hubble time H−1
i , leading to the following estimate on the string non-straightness

δx '
√
Ne H

−1
i , (3.10)

Ne being the number of e-folds from the string-pair nucleation time to the end of inflation,
and is given by

Ne = 1
2 log

(
MPBHHi

Λ2
c

)
. (3.11)

Eq. (3.10) serves as a good estimate for the impact parameter at black-hole formation, as
the quark/anti-quark pair collapses ultra-relativistically in the radiation-dominated epoch
(see Fig. 3.5 for a sketch of the initial collapsing configuration). In the following this is
assumed to be the only mechanism sourcing angular momentum for PBHs. Therefore the
dimensionless Kerr spin parameter aPBH at formation is approximated by

aPBH '
δx

Rg
' 1
HiMPBH

log
(
Hi MPBH

Λ2
c

)1/2

, (3.12)

where numerical factors of order one have been neglected.
Notice that the condition (3.5) translates into a constraint aPBH <

√
NeΛc/Hi, where

Λc is the string scale during the re-entry. Therefore, special attention has to be paid
to the scenarios in which this quantity changes significantly relative to its inflationary
value, as this can constrain the impact parameter significantly. For the simplest case when
throughout the process Λc ∼ Hi ∼ R−1

g , Eq. (3.12) would result into a near-maximal spin.
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Equation (3.12) is depicted in Fig. 3.6, for the case Λc & Hi (logarithmic corrections
are to be included if this condition is relaxed). The white region corresponds to an impact
parameter bigger than the corresponding configurations’s Schwarzschild radius. In this case
the system is expected to undergo rotations while rotating, and requires a more accurate
study, which includes also back-reaction. This is beyond the scope of this work.

Highly-rotating black holes can be produced. Especially for low mass values, but high
confining scales (see Fig. 3.6). It is clearly possible to have formation of maximally-spinning
PBHs consistent with structure-formation constraints which demand the presence of dark
matter at latest around redshift O(104) corresponding to T ∼ O(10) eV. Of course, isolated
events of black-hole formation via confinement could still have taken place at much later
time, and might occur even today, with potentially detectable signatures.

According to the estimate (3.12), heavier black holes will not be spinning significantly.
It is known that the spin of black holes of mass MPBH ∼M� ∼ 1038MP cannot be caused
by inflationary fluctuations as being clear from Fig. 3.6. However, in this region PBHs can
start spinning due to accretion [56]. Other spin sources might be relevant for spin in this
case, depending on the specific implementation of the mechanism.

Finally, the window between 104 g and 1010 g, as discussed in Sec. 3.3, is an interesting
region in which higher inflationary scales can contribute to the PBH spin, therefore making
it very attractive from an observational point of view. In general, probing PBH spins in
the mass range close to the blue-coloured area of Fig. 3.6 could not only serve as a check
of the proposed mechanism but also as an indirect measurement of the inflationary scale
Hi.

As it is clear from the above discussion spin may be used to distinguish between PBHs
which from confinement versus the standard mechanism via overdensities. While the former
can give maximally-rotating black holes, aPBH ∼ 1, the latter has an upper bound on the
spin at formation aoverdense

PBH . 10−1 as discussed in Ref. [57] (see also Refs. [58, 59], and
Ref. [60] for producing larger spins in the matter-dominated era). Further accretion cannot
help to significantly increase the PBH spin as long as MPBH �M� as shown by Ref. [56].

3.3 Dark Matter
In this section the question as to whether the confinement mechanism can form an order-one
fraction of the dark matter is addressed. Some similarities are shared with the mechanism
proposed in Refs. [61, 62], where bubble produced in the inflationary period are expo-
nentially stretched by the cosmological expansion, and later, during radiation domination,
re-collapse. Differently from it, our scenario does not require fine-tuning of the production
rate of quarks during the inflationary period in order to obtain the entirety of dark matter.

The quark mass mq can be higher or lower than the inflationary Hubble scale Hi. In
the first case an exponential suppression of the nucleation takes place, similar to the dual
monopole case. Indeed, heavier objects than the Hubble scale are produced due to de
Sitter Gibbons-Hawking effective temperature Th = Hi/2π



3.3 Dark Matter 31

The quark mass mq can be either higher or lower than the inflationary Hubble scale Hi.
In the former case nucleation processes are exponentially suppressed, similar to the dual
monopole-case. In fact, objects heavier than the Hubble scale can be produced due to de
Sitter Gibbons-Hawking effective temperature Th = Hi/2π [63], whose rate scales as [64]

λ ∝ e−B , (3.13)

where for quarks B = mq/Th ≡ Bq (see Ref. [64]). The QCD confininng scale can be
either below or above the inflationary Hubble. In the latter case, quarks are already in
a confined phase, and also the string nucleation probability contributes to Eq. (3.13),
namely B = Bq + 2Λ2

cRs/Th, where Rs corresponds to the string length. Taking string-
gravity effects into account, leaves the exponential suppression unaltered as shown in [64].
Moreover it is needed

Λc . mq (3.14)

which suppress the tunnelling probability of cosmologically long strings into quarks-pairs
upon horizon re-entry later in the Universe history. Note that this probability per unit-
length, per unit-time is given by P ∝ exp(−πm2

q/Λ2
c) (see Ref. [25]).

Since Eq. (3.13) follows from a semi-classical calculation, it holds trues for mq (and if
confined during inflation, the confinement scale Λc) bigger than the inflationary Hubble
scale. While quarks are inflated during the inflationary period, their final density should
not be too diluted, namely during the inflationary period mq(Λc) & Hi is required. It
follows that the pre-factor in (3.13) is expected to be of order one.

Independently of the nucleation scenario it is possible to compute the PBH dark-matter
fraction, being defined as

fPBH ≡
ρPBH(t)
ρCDM(t) = 1

ρCDM(t)

∫
dMPBH

dnPBH(t)
d lnMPBH

, (3.15)

in which ρCDM is the energy density of cold dark matter (CDM). If the collapse takes place
in a radiation-dominated universe, it can be expressed as

ρCDM(t) ≈ 3
16π t3/2

1
M

1/2
eq

, (3.16)

where Meq = teq = 2.8× 1017M� ∼ 1055, corresponding to the cosmological horizon mass
at the time teq of matter-radiation equality. The number density of PBHs redshifts in
exactly the same way as ρCDM:

dnPBH(t)
d lnMPBH

≈ λΛ3
c

1
M

3/2
PBH

1
t3/2

, (3.17)
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Figure 3.7: Mass dependence of dfPBH/d lnMPBH for different values of the combination
λΛ3

c according to Eq. (3.18). Shaded areas: Constraints on fPBH for a monochromatic
mass function, from evaporations (red), lensing (blue), gravitational waves (GW) (gray),
dynamical effects (green), accretion (light blue), CMB distortions (orange) (see Ref. [42]).

where a constant λ given by Eq. (3.13) was assumed through inflation (as discussed below
Eq. (3.13) the prefactor is of order-one). Combining Eqs. (3.16, 3.17), we find for the
present PBH dark-matter fraction, Eq. (3.15),

fPBH ≈
32π
3 λΛ3

c

(
MPBH

Meq

)−1/2

. (3.18)

For different values of the combination λΛ3
c, dfPBH/d lnMPBH is shown in Fig. 3.7; the

shaded areas indicate the existing observational constraints on the PBH abundance (see
Ref. [42]). Since these are computed for the case of a monochromatic spectrum, the fact
that the dotted lines do not intersect the shaded ones, does not imply a viable realization
of the scenario, but it should rather be considered only as an indication of such.

It is clear that the M−1/2
PBH scaling of Eq. (3.18) leads to heavy constraints. Note that a

possible cut-off in the spectrum is given by the tunneling probability Ptunnel of the string
into quark/anti-quark pairs per unit-time per unit-length. This sets a critical length, for
which longer strings will start to break into shorter strings configurations [25]. This can
schematically be estimated as

Ptunnel ∝ e−πm
2
q/Λ2

c , Ptunnel t
2
crit

!= 1 , (3.19)

where in the second equation tcrit is defined. The string breakage will therefore affect PBHs
in the spectrum at masses around MPBH ∼ Λ2

cP
−1/2
tunnel. Although in an explicit realization
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Figure 3.8: Dependence of fPBH on the highest value of the mass-spectrum, Mc, and the
combination λΛ3

c [see Eq. (3.18)]. The black line corresponds to saturation of Eq. (3.20)
below which the scenario admits PBH as dark matter.

this could be the case, given the working assumption Λc � mq we neglect such possibility in
the following discussion, even though this could be phenomenologically relevant for certain
region of the parameter space.

To check whether all of the dark matter can be accomodated with the confinement
mechanism, a constraint analysis accounting for the whole extended PBH mass function
was performed. Therefore we impose the condition [65]∫ M2

M1
d lnMPBH

dfPBH(MPBH)
d lnMPBH

1
fmax(MPBH)

!
≤ 1 , (3.20)

where fmax(MPBH) corresponds to the maximal allowed value of fPBH in the case of a
monochromatic spectrum as given in Fig. 3.7. For the analysis, we focus on the region
between M1 = 1017 g, M2 = 1037 g and show our results in Fig. 3.8. Mc corresponds to the
highest mass in dfPBH/d lnMPBH. The black line is obtained by saturating the inequality
in Eq. (3.20). Values below that are compatible with experimental constraints. We note
that for a maximum mass Mc between 1017 g and 1019 g, corresponding to λΛ3

c ≈ 10−18,
the entire dark matter can be accommodated for. In order to obtain a PBH of mass 1017 g,
the corresponding choice of λ ≈ 10−3 and Λc ≈ 10−5 requires T ' 8 · 10−16 [see Eqs. (3.6,
3.7)].

Of phenomenological relevance could also be the case where PBHs are formed during a
matter-dominated epoch. This could happen while the inflaton relaxes oscillating around
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its minimum at the end of inflation or if the collapse takes place after equality (or in some
non-standard cosmological history). In all cases, the PBH dark-matter fraction scales as

fmd
PBH ∝ lnMPBH . (3.21)

It follows that in the case of an extended spectrum, such as the one considered in Fig. 3.8,
the parameter window realising order-one fraction of dark matter is smaller for extended
periods of matter domination. In general, small periods of matter domination would still
make the scenario viable in several regions of the parameter space.

The scenario avoids one of the biggest issues plaguing the standard mechanism for PBH
productions based on the collapse of horizon-size overdensities as it requires no exponential
fine-tuning. In fact, if the PBHs form from Gaussian inhomogeneities with root-mean-
square amplitude σ, then the fraction β of horizon patches undergoing collapse to PBHs
is [48]

β ≈ erfc
[

δc√
2 σ

]
, (3.22)

where ‘erfc’ is the complementary error function and δc ≡ δρc/ρ corresponds to the crit-
ical threshold for black-hole formation.2 As it is apprent from Eq. (3.22), there is an
exponential sensitivity of the PBH abundance on the amplitude of the primordial power
spectrum. Differently, the mechanism based on confinement avoids this sort of exponen-
tial fine-tuning, as the resulting collapsing dynamics is (almost) uniquely determined by
the system itself, and is but slightly affected by the surrounding environment. As dis-
cussed above, a phenomenological-window capable of justifying an order-one fraction of
the presently observed dark matter is also easily obtained.

Supermassive Black Holes

An open questions in current astrophysics is about the origin of supermassive black holes
(SMBH), i.e., those black holes with a mass higher than about MBH & 105M�. These
objects are observed in the galactic centres [70]. Their origin is difficult to be justified by
standard accretion of stellar black holes. In fact, accretion mechanisms become effective
rather later in the universe (i.e. at redshifts between 0 ≤ z ≤ 6, compatibly with Galaxy
formation). However, heavy black holes with massesMBH & 109M�, are observed at earlier
times (z & 6) as pointed in Refs. [71, 72]. This opens the questions for their origin. The
observational ratio between the mass of a galaxy, Mgalaxy, and that of the supermassive
black holes, MBH, at its centre is approximately [70]

Mgalaxy

M centre
BH

∼ 105 . (3.23)

2During the radiation-domination, assuming spherical collapse, a value of δc = 0.45 has been obtained
using numerical simulations (c.f. Ref. [66]). This value depends on the shape and the statistics of the over-
densities which undergo gravitational collapse (see Refs. [67, 68] for spherical perturbations and Ref. [69]
for non-spherical shapes). Furthermore, there is a slight discrepancy amongst the results of various groups.
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When combined with the number density of galaxies massive enough to host a SMBH
[73], an amount of PBHs of order f centre

PBH ∼ 10−7 is required (see Ref. [74])3. These super-
heavy objects, due to the rather-slowly decaying mass spectrum, are a byproduct of our
mechanism.

In fact, if we focus on the window where an order-one fraction of dark matter is produced
via confinement, namely for a maximal mass Mc ∼ 1019 g, λΛ3

c ∼ 10−18, we obtain

fheavy
PBH ≡

∫ Meq

104M�
d lnMPBH

dfPBH(MPBH)
d lnMPBH

≈ 10−10 . (3.24)

The resulting value fheavy
PBH is essentially independent w.r.t. the upper cut-off already a

few orders of magnitude above the lower one. Finally, taking into account accretion,
PBHs for which MPBH & 104M� at formation, can increase their value up to the one
observed of 109M� as seen in Ref. [75]. This accretion mechanism, however, slows down
for heavier masses MBH & 1010M� as discussed in Ref. [76]. This process may increase
fheavy

PBH to the necessary value of 10−7, which would be in complete agreement with the recent
analysis of Ref. [72]. There it is shown, via semi-analytical arguments, that PBHs of mass
MPBH & 104M�, not only can accrete to the desired SMBH masses, but they can do
so without conflicting with current observational bounds, justifying the current amount of
observed SMBHs as long as fPBH(M & 104M�) . 10−9. Direct comparison with Eq. (3.24)
shows that SMBHs are a natural consequence of PBHs generated via confinement.

Evaporation Constraints

Usually, Hawking radiation [77, 78] is assumed to be valid for the entire lifetime of a black
hole. Consequently, PBHs with masses below about 1015 g are not considered to be viable
dark-matter candidates, as they would have fully evaporated by now.

This is based on an extrapolation of the semiclassical computation, well beyond its do-
main of validity. Clearly, through the decay process, backreaction becomes non-negligible,
latest by the time the black holes has emitted half of its original mass.

The results of [19], where back-reaction is performed in an explicit prototype model
describing the microscopic structure of a black hole [19], confirms this intuition. In fact,
by its half-decay, the full quantum evolution of the system departs from the semiclassical
one. This is due, for example, to the back-reaction of quantum information carried by the
hole [79].

Ref. [80] argued that, given the inability of a black hole to get rid efficiently of this
information, Hawking radiations is slowed down, and eventually halted. The slow-down
of the decay process at latest by the time of half-decay has been shown to unambigously
take place in various prototype models. Even though the final fate of a black hole beyond

3The value of f centre
PBH might vary by several orders of magnitude due to uncertainties in the accretion

mechanism (f centre
PBH could be as low as 10−9 as commented in Ref. [74]).



36 3. Primordial black holes from confinement

1.×10
-8

1.×10
-5

1.×10
-2

1.×10
1

1.×10
4

1.×10
7

1.×10
10

1.×10
13

1.×10
16

Figure 3.9: Density plot of fPBH/λ vs. T and Λc according to Eq. (3.18). The dashed black
line corresponds to fPBH/λ = 1, while the dotted black line is given by Rg ' Λ−1

c .

this time requires deeper analyses, enough evidence is provided to conclude that it was
premature to discard PBHs lighter than 1015 g from the list of dark matter candidates.

Adopting the most conservative result of Ref. [80], namely, assuming a correction to
the black-hole lifetime τ of the form

τ → S2τ , (3.25)

with S being the BH entropy. From Eq. (3.25), it follows that BHs of masses larger than
MBH ≥ 104 g have a lifetime longer than the age of the Universe, t0, and therefore might
indeed be possible dark-matter candidates. Heavier BHs from 1010 g up to 1015 g would still
be constrained from BBN and CMB, although in a weaker way as they would emit a much
less intense radiation. Heavier PBHs for which MPBH ≥ 1016 g have unaltered constraints,
given the validity of the semi-classical description throughout the age of the Universe.

In Fig. 3.9 the dependence of fPBH for different values of the confining scale Λc and
temperature T is shown. Between 104 g and 1010 g a 100% fraction of the dark matter
could be explained by PBHs. The dotted line Rg ' Λ−1

c corresponds to the limiting case
for black-hole formation, as in this case the gravitational radius becomes comparable to
the thickness of the QCD string.
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The case of rotation

Another stabilizing source for extremely light PBHs is vorticity. As already discussed, this
scenario easily allows for the production of highly-spinning BHs, close-to-extremal. These,
in turn, as argued in Chap. II, posses a vortex structure. The topological nature of the
vortex, being the winding number n an integer, forbids the emission of soft-quanta emission
process, such as Hawking emission. This offers yet another reason against the premature
dismiss of PBH lighter than 1015 g as dark matter candidates.

Moreover, in the case of rotating PBHs, other phenomenological consequences follow.
The vortex, which is a global order parameter, can act as a support for the magnetic
field, which is induced by its interaction with mobile charges surrounding the hole. This
effectively result in an effective local mass for the photon surrounding the PBH and the
confinement of the associated U(1) magnetic flux follows.

This mechanism can take place for any sector, and therefore it can serve as a portal to
some dark sector (see discussion in Chap. II). If, however, the actual confined “magnetic”
flux is the one from our electromagnetic sector, U(1)em, the resulting PBHs would effectively
source also primordial magnetic fields. Later dynamo amplifications of these effect could
provide an explanation for the observed galactic magnetic field. The details of this are left
for future works.

Gravitational Waves

The collapse of a quark/anti-quark pair into a PBH leads to the emission of gravitational
radiation. A monopole/anti-monopole system connected by a cosmic string [81] is expected
to emit gravity in a similar way. Given that the size of the impact parameter matters only
at BH formation, gravity waves can be estimated in the approximation of a straight QCD-
string attached to quarks.

The lowest frequency produced by the collapse of a single pair corresponds to approxi-
mately its initial inverse distance: the cosmological horizon, given by the cosmological time
t. As explained above, the impact parameter becomes relevant on distances comparable to
the Schwarzschild radius of the configuration, while for the present focus we will look at
frequencies on much longer lengths. Therefore the dynamics can be assumed to be head-
on. In this case, the monopole/anti-monopole confined dynamics, which applies in this
case, was studied by Ref. [81], where it was shown to lead to an emitted gravitational-wave
spectrum Pn at frequency ωn = 2πn/t

Pn ∼
Λ4

c
n
. (3.26)

The validity of Equation (3.26) is up to frequency numbers of order M2
PBH/m

2
q [81]. For

higher harmonics, Pn decreases first as n−2, and is eventually exponentially suppressed
[81, 82, 83]. In our case, given the enormous energy stored in the string at initial times,
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Eq. (3.26) can be safely used through our discussion. As shown by Ref. [81] the radi-
ated power is emitted in a small beaming angle oriented along the collapse direction; it
can be estimated as θ ∼ n−1/2 [81]. In the proposed scenario, it might be possible, in
certain regions of the parameter space, to produce an observationally relevant stochastic
gravitaitional-wave background.

A similar analysis was performed in Ref. [84, 85], where the gravitational-wave signal
due to the rapid annihilation of monopole pairs, linked by straight strings, was studied.
This was found to lead to a flat ΩGW. Therefore, assuming the mass distribution extends
to MPBH � Λ2

c f
−1, f being the gravitational-wave frequency, the resulting spectrum is

nearly scale invariant.
This could be relevant in view of the recent NANOGrav date, found at a frequency

f = year−1. This is easily mapped to a formation time within the confinement scenario
around 10−3 s. Refs. [84, 86, 85] can be followed to estimate the resulting gravitational-wave
background from confinement, giving

ΩNANO
GW ∼ 10−11 ∝ λΛ4

c . (3.27)

The pre-factor depends slightly on the extension of the PBH spectrum distribution. It is
of O(1) if PBHs are still forming today. This implies Λc ≥ 10−2.5 to match observations.
Indeed a lower scale would suppress the amount of emitted gravitational waves too much.
It is interesting to note that the amplitude of NANOGrav data (3.27), for a gravitational
flat signal, would be within the prospective reach of LISA [85].

We would like to point out that a mild extension of our scenario can provide a significant
(or even a dominant) scalar component of gravity waves. This would be the case if there
would exist a massless scalar field interacting both with heavy quarks as well as with the
Standard Model particles. For example, it suffices to couple the mediator scalar to the
heavy quarks via a standard Yukawa interaction with coupling constant g.

In order to have an interesting observable effect, this coupling must be stronger than
gravity. Let us parameterise by ε the relative strength of the effective coupling of the
scalar to the Standard Model particles with respect to gravity. This quantity must be
very small in order to accommodate phenomenological constraints on gravity-competing
forces. In particular, the equivalence-principle violating part of such interaction must obey
ε . 10−6 [87, 88]. In case of an equivalence-preserving interaction, the constraints are
milder, ε . 10−3 or so [89].

Under such circumstances the power of the scalar gravitational radiation relative to
a tensor one, as seen by a detector constructed out of ordinary Standard Model matter,
is controlled by the product gε. At the expense of having large g, this parameter can
be within the range of observational interest, even for the values of ε well within the
above phenomenological bounds. This provides an interesting motivation for the search
of gravitational waves with rather unusual properties. In particular, such waves can carry
a scalar monopole component and their observed intensity can be sensitive to an isotope
composition of the detector.
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The possible existence of a scalar component of gravity waves can also be of potential
interest in the light of the NANOGrav data (see Ref. [44]) which allows for the possibil-
ity that the observed gravitational-wave signal receives contributions also from monopolar
and/or dipolar components. This is impossible in General Relativity, where gravitational
waves require a quadrupolar source [90]. However, as discussed above, the confinement
mechanism can in principle accommodate additional non-standard contributions into grav-
itational waves.

PBHs from Real QCD?

In this Section we wish to briefly discuss whether the “real” QCD can be used for realising
the presented PBH scenario. At first glance, this looks improbable, since ordinary QCD
does not satisfy the necessary condition of all quarks being heavier than the QCD scale
Λc. Correspondingly, one expects that strings have no chance to last any appreciable time.
Even if formed, they will quickly break apart by producing a multiplicity of light quark
pairs. However, the situation is more subtle, because for our mechanism the present-epoch
values of the quark masses relative to Λc are not important. What matters is their values
in the early Universe.

As argued in Ref. [91], the quark masses as well as Λc can significantly vary during
cosmological evolution. The reason is that the expectation values of the fields controlling
these parameters change. In fact, in string-theoretic context, where the QCD gauge cou-
pling “constant” is set by fields, such as dilaton and other moduli, the time-variation of Λc
is a norm rather than an exception. The same is true about the quark masses, since both
the Higgs expectation value and Yukawa couplings (which similarly to gauge coupling are
determined by moduli) vary.

Therefore, when submerged into a cosmological framework, ordinary QCD can satisfy
all requirements of PBH formation scenario by quark confinement. In the present chapter
we shall not enter into the details of model building, since our purpose was to point
out rather generic aspects of the scenario. However, we wish to remark that its specific
realisations can lead to additional potentially interesting correlations with phenomena that
are sensitive to Λc and mq. An example is an expansion of the cosmologically acceptable
window for the axion field, due to variations of Λc and mq in the early epoch [91].

Due to the electromagnetic charge of QCD quarks, a question may arise whether the
electromagnetic backreaction can affect the collapse dynamics. As shown in Ref. [92], the
power in photon emission is P ∼ Λ4

c/m
2
q. This is negligible w.r.t. the initial total energy of

the system under condition (3.14) which is assumed throughout this work. Furthermore, as
previously mentioned, for the scenario to work with ordinary QCD, the parameter values,
such as QCD scale and quark masses must be shifted from their present values. In this
case, there is no reason why also the electromagnetic coupling could not have been much
weaker during the collapse, therefore suppressing the effect even further.
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String-Theoretic Realisation

We wish to briefly discuss a possible string-theoretic realisation of our scenario. We shall
not give a full-fledged construction, but merely only point out that string theory contains all
the generic key ingredients for it in form of Dp-branes. These represent extended objects,
of world-volume dimensionality p + 1, on which open strings end (for introduction, see
Ref. [93]).

It has been known for some time that D-branes can serve as the main engine for
driving inflation in string theory [94, 95]. In this scenario, the D-brane tension serves
as the source for the energy density required for achieving a temporary de Sitter-like
state. In the simplest version, initially, some D-branes and anti-D-branes (D̄-branes) are
separated by finite distances in compact dimensions, and slowly move towards each other.
We note that since D-branes can be wrapped around some of the compact dimensions, the
dimensionality of the transverse space in which they are separated can be less than 6. The
positive potential energy provided by this configuration (approximately given by the sum
of the brane tensions) drives inflation along the 4 non-compact dimensions. The rôle of a
slow-rolling inflaton field is played by a brane-separation mode. Upon collision, the D-D̄
pairs annihilate, releasing their tension energy into various low-lying string excitations,
thereby reheating the Universe.

It was noticed that brane inflation allows production of extended objects much heavier
than the inflationary Hubble parameter Hi, such as, macroscopic fundamental strings [96].
In the present chapter we shall focus on the production of stringy objects as a result
of brane annihilation after inflation. During the process of annihilation of Dp-D̄p, the
Dp−2-branes are generically produced. The structures that have only two world-volume
coordinates in “our” 4 non-compact space-time dimensions, from the point of view of
effective 4-dimensional theory, represent D-strings. The characteristic tension of such
strings is given by µ ∼ M2

s (Mn
s Vn)/gs, where Ms is the fundamental string scale, gs is

the string coupling and n is the the number of compact longitudinal dimensions (wrapped
by the D-brane). Vn is the volume of these dimensions. In the simplest case, if the
compactification volume is given by the string length, we have (Mn

s Vn) ∼ 1. Remarkably,
as it was argued in Ref. [97], after brane inflation, the production is dominated by above
string-like objects. Various aspects of their formation and evolution has been studied in
Refs. [98, 99].

We envisage the following implementation of our PBH scenario in this framework. The
lower-dimensionD-branes, which appear point-like from the 4-dimensional perspective, can
be produced as a result of de Sitter fluctuations during the inflationary stage, while the
inflation-driving D-D̄ system is still functioning. From the point of view of our scenario,
such point-like D-defects, play the rôle of “quarks”. Their mass can be estimated as mq ∼
Ms(Mn

s Vn)/gs, where n now has to be understood as the number of compact longitudinal
dimensions wrapped by a “D-quark”, and Vn as the volume of these dimensions. During
the stage of brane-inflation, “D-quarks” are inflated away.

Towards the end of inflation, upon annihilation of the “parental” D-D̄ system, the
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string-like D-branes will be produced. We are interested in the case in which they connect
the previously produced D-quarks. In such a situation, D-strings play the same rôle as
the QCD flux tube played in the confinement case. Our scenario of PBH formation thus
should follow.

In this context, it is intriguing to point out a potential connection with gravitational-
wave signals observed by NANOGrav (see Ref. [100] for a PBH explanation and Ref. [44]
for the original reference). As already discussed in detail in the Sec. 3.3, our scenario would
reach the level of this signal for relatively large values of the string tension. These values
are reached for a rather conservative choice of string-theoretic parameters. For example,
in case of an elementary D1-string, the parameters are 4

Ms ∼ 1017−16 GeV, gs ∼ 10−2 . (3.28)

This appears to be an excellent regime in which the gravitational-wave signal originates
from formation of PBHs as dark-matter candidates by our mechanism. For even larger
values of the tension, the dissipation in gravitational waves is significant but effective field-
theoretic estimates become less reliable.

In the context of a string-theoretic implementation of our mechanism, we would like to
comment on the possible presence of non-standard (monopolar and/or dipolar) components
as allowed by the NANOGrav data [44]. As already discussed in Sec. 3.3, the presented
confinement scenario can potentially accommodate these contributions in the presence of
light scalar fields sourced by the endpoints of strings (i.e., heavy quarks or D-“quarks”) and
also interacting with the Standard Model particles. Interestingly, in the string-theoretic
realisation of our scenario such fields are generic, as there exist scalar moduli that are
sourced by the endpoint D-branes. If some of these fields remain sufficiently light or
massless, they can be emitted by the D-string/quark systems in modes including the lower
multiples.

Of course, as already explained, the same scalar fields are subjected to severe constraints
from precision gravitational physics. The reason is that they mediate gravity-competing
long-range forces. We cam distinguish two cases.

The first is when the scalar force in question does not violate the equivalence principle
(at least, in the sector of the Standard Model particles). This is the case if the scalar is
sourced by the trace of the energy momentum tensor T µµ, which is for instance the situation
for the modulus that corresponds to the fluctuations of the entire compactification volume
of extra-dimensional space. The phenomenological restriction is that the strength of the
force mediated by such a field among ordinary particles must approximately be 10−5 times
weaker than gravity [101]. The restriction comes mainly from the deflection of star light
by the sun.

The second case is when the scalar field in question is not sourced strictly by the trace
T µµ and has also other couplings. This is for instance the case with the string dilaton.

4For effective D1-strings that are obtained by wrapping the higher extend (p > 1) Dp-branes around
p− 1 compact extra dimensions, the same effective tension can be obtained for smaller value of Ms.
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In this case, the couplings to ordinary matter fields are more severely constrained, since
the force mediated by such a field violates the equivalence principle. In case of a dilaton,
this violation can be understood from the fact that dilaton sets the values of gauge and
gravitational couplings. Due to this, it couples with different strengths to protons and
neutrons and correspondingly mediates the isotope-dependent forces among the atoms
(see, e.g., Refs. [102, 103]). The phenomenological constraints on such forces bound them
to 10−12 of gravity [87, 88].

In conclusion, while the string-theoretic version of our scenario contains interesting
candidate sources for low-multipole gravitational waves, a non-trivial interplay among the
couplings with various sources is required for accommodating the phenomenological con-
straints from the existing precision gravitational measurements.5

Shall the future data be proven to indeed provide the evidence for such gravitational
waves, this will boost motivation for finding viable enhancement mechanisms of the men-
tioned scalar waves.

3.4 Discussion and Outlook
In this chapter we have introduced a novel mechanism for PBH formation, which relies on
the production of quarks during the inflationary phase. These are exponentially pushed
apart, and get connected by QCD flux tubes after the temperature drops below the con-
finement scale. Upon horizon re-entry, the quarks accelerate towards each other under the
influence of the string tension. The black-hole formation is then triggered by the large
amount of energy stored in the string connecting the quark pair.

The presented mechanism does not suffer from exponential fine-tuning, unlike most
standard scenarios in which PBHs form from collapse of cosmological overdensities. More-
over, unlike other PBHs which are created during the radiation-dominated epoch and
which carry none to very little spin, the confinement mechanism allows for the formation
of maximally-rotating black holes, in particular, in the sub-solar mass range as shown in
Fig. 3.6. At formation time of a black hole, the impact parameter between the colliding
quarks can be as large as the configuration’s Schwarzschild radius, therefore leading to
maximally-rotating black holes.

In Sec. 3.3 we demonstrated that the PBHs formed by the confinement mechanism
can account for the entirety of the dark matter in a mass range around 1017 – 1019 g (see
Fig. 3.8). As a by-product, the slowly decaying mass spectrum, scaling as M−1/2

PBH , could
at the same time provide seeds for the supermassive black holes observed in the galactic
centres. In fact, the right amount of seeds is compatible with 100% of PBH dark matter
produced by the same mechanism.

In view of recent arguments that imply a substantial relaxation of the evaporation
constraints [see Ref. [80] and Eq. (3.25)], we found that even conservative estimates allow

5In the present chapter we shall not enter in a discussion about naturalness of light scalar moduli, as
this question is not specific to the present case and is shared by any theory of scalar gravity.
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for possible realisations of 100% of the dark matter within our scenario in the mass range 104

– 1010 g. For masses above the upper end of this range, the standard radiative constraints
due to nucleosynthesis, and CMB — although shallower — still applies when using our
conservative estimate. However, a complete reevaluation of those constraints, taking the
black hole’s full quantum structure and dynamics into account, is still missing. This would
be of great importance for any scenario in which PBHs of masses below approximately
1017 g form. We leave these investigations for future work.

Interestingly, the confinement mechanism of PBH formation could in principle have
been driven by ordinary QCD. This is possible, since the time-variation of parameters
such as the QCD scale and quark masses are rather generic in inflationary cosmology [91].
Correspondingly, it is not unnatural that the values favourable for the presented mechanism
of PBH formation were attained in the early epoch.

We have also outlined a possible implementation of the presented mechanism within
a string-theoretic framework of inflation driven by D-branes [94, 95]. In this case, the
rôle of heavy “quarks” connected by colour flux tubes is assumed by compact D-branes
connected by D-strings. Interestingly, for conservative values of the string-theoretic pa-
rameters (3.28), the obtained gravitational-wave signal from PBH formation has the right
amplitude in order to be compatible with the events recently detected by NANOGrav,
including the possibility to account for possible scalar contributions to the signal.



44 3. Primordial black holes from confinement



Chapter 4

Dynamics of confinement

This Chapter mostly overlaps with a work to appear, in collaboration with G.
Dvali and S. Valbuena Bermudez [104].

4.1 Introduction
Confinement is the most peculiar property of Yang-Mills theory. A probe pair of quark/anti-
quark, if separated by a large distance, will have a linearly growing potential with distance,
rather than one which falls off with it. This is a way of understanding why the microscopic
degrees of freedom of QCD, quarks and gluons, never manifest themselves alone, but rather
they combine into colour-singlets e.g., baryons and mesons. This is always the case asymp-
totically, namely for distances much longer than the QCD scale dc.

Such distance has a deep physical meaning. It signals the crossing between two regimes:
for energy higher than Λc = d−1

c , quarks and gluons are fundamental degrees of freedom,
manifesting themselves asymptotically. Below Λc, confinement takes place, and no coloured
states are observed.

This scale can easily be computed from the running of the coupling. It corresponds,
in fact, to the scale below which the theory stops being perturbative. Above it, the
gauge coupling αc is smaller than one, a phenomenon known as asymptotic freedom. It is
inherently due to the presence of gluons, which make the coupling weaker and weaker at
higher energies as it can be seen from the one loop running group equation that will be
displayed at the end of this Chapter.

Upon reach of Λc, the theory becomes strongly coupled and confinement takes place.
The theory, in this regime, is still not analytically solved. A natural questions follows:
are there physical systems in which the interaction energy between two bodies grows with
distance? Is the underlying mechanism well-understood for these system?

This is indeed the case for type II superconductors as predicted by Abrikosov [105, 106].
To understand this, consider two magnets with respectively the north and south pole
positioned at the opposite sides of a superconductor. Indeed, within the superconductor
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the magnetic field lines are not welcomed. However, due to conservation of the ~B-lines,
a flux tubes forms between the north and the south-poles of the two magnets. Inside
it, superconductivity, a consequence of condensation of e.g., a Copper pair, is effectively
destroyed. Therefore a linearly growing potential between the two magnets is present,
attracting them. This is known as Meissner effect.

Of course, when this phenomenon happens in QCD, the flux tube is non-abelian. More-
over, the confined flux, rather than magnetic, is “coloured”. The idea of a dual Meissner
effect where “colour” is confined was proposed in [107, 108, 109]. The building blocks of
this construction are monopoles. Due to the presence of a condensate breaking the sym-
metry, and therefore making the “magnetic” photon massive (this is the analogous of the
superconductor in the Abrikosov case), these object charge is confined.

The goal of this chapter is to study an explicit realization of this phenomenon, in order
to better understand both the underlying mechanism as well as the resulting dynamics.
To do so, we focused on the simplest possible field theoretical realization: an SU(2) local
theory. This theory explicitly admits monopole, which, upon proper choice of the field
content, can be confined.

As a by-product of our analysis, the dynamics of the previous Section, where quarks are
confined to form primordial black holes, is also better understood, and explicitly described.

It is found that the point-like limit, which admits an explicit dynamical solution, serves
as a good approximation of the full-system, as both the trajectory as well as the resulting
gravitational spectrum are well-matched. However, as argued below, the finite-width of
the configuration captures novel features, which could be relevant for future astrophysical
searches.

Yet another result is the explicit realisation of a sphaleron-like configuration in the
confined phase. This corresponds to attaching two strings, the flux tubes confining the
magnetic charge of the monopoles, with opposite winding. This can be realised for a
monopole/anti-monopole pair with maximal twist. The attachment plane corresponds to
a domain-wall dividing the monopole from the anti-monopole. The resulting configuration
corresponds to the saddle between two vacua in the gauge sector, and leads to a classically
stationary configuration due to the inherent axial symmetry of the system, where the
attraction of the confining string is balanced by the repulsive force of the twist. Inevitably,
the system is unstable under small perturbations, which leads to the annihilation of the
monopoles as expected.

The last part of this chapter is dedicated to the duality between quarks and monopole
confinement. In particular, physical arguments are given as to why this classical system
properly captures the dynamical annihilation of quarks in the considered parameter space
region. This is deeply tied to the saturation of scattering amplitudes discussed in the first
two Chapters.
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4.1.1 Monopole Confinement

In the previous chapter I described a novel mechanism for producing primordial black holes
[39]. Therein, quark pairs, produced and diluted in the inflationary era, are confined in the
late Universe and upon horizon re-entry collapse, forming black holes (BHs) due to the large
amount of energy stored in the flux tubes connecting them. Given the constant acceleration
of quarks sourced by the string, gravitational waves (GWs) of frequency comparable to the
inverse of the horizon size are produced.

Previous calculations of the radiated GW power indicate, in the point-like limit, the
following emitted power for a large range of frequencies:

Pn ∼
Λ4

c
M2

p

1
n
, (4.1)

n being the frequency number, Mp the planck mass, and Λc the confining scale [81]. This
relation was derived considering a pair of monopoles connected by a string and is expected
to be valid in the fermionic case too. Such sources could explain the recent hints of
stochastic GW background obtained from pulsar timing arrays [44, 110]. Moreover, given
the flatness of the resulting energy density across several orders of frequency [111], in the
future, it will be possible to cross-check, e.g., with LISA.

Motivated by this, the goal of this chapter is to analyze the full dynamics of a monopole/anti-
monopole pair in the confined phase in detail. To do so, we consider a SU(2) gauged theory
and choose a simple scalar sector capable of achieving the above-mentioned configuration
via spontaneous symmetry breaking: a scalar field in the adjoint representation, and a
complex scalar doublet. The former breaks the gauge group SU(2) to U(1), therefore ad-
mitting t’Hooft-Polyakov monopoles as a solution [112, 113]. The latter breaks the residual
U(1) gauge group leading to the confinement of the associated “magnetic flux”.

It turns out that the point-like limit approximates very well the fully-fledged classical
dynamics of the system. However, we observe annihilation within a time approximately
given by the distance, contrary to the point-like case, where an oscillatory behaviour is
obtained. Furthermore, the resulting GW spectrum is appropriately captured by the point-
like result for scales longer than the monopole width. On the contrary, we observe non-
negligible corrections to the power spectrum for scales comparable to the monopole radius,
where the emitted radiation is boosted, therefore providing corrections to the GWs emission
produced by the confinement dynamics.

A further advantage of this approach lies in the freedom to twist the flux tube connecting
the two monopoles [114]. This is done in terms of a twisting angle γ. The maximally
twisted case corresponds to the gluing between two strings of opposite winding number.
In concomitance to this point, a domain wall form. This configuration in the unconfined
case was firstly proposed by [115], and explicitly realized in [114], and has half-integer
fermionic charge, analogously to the case of a sphaleron (see e.g., [116]). In this work we
analyze such system in the confined case. Due to the metastability of the configuration,
the monopole/anti-monopole pair does not annihilate, contrary to the case of non-maximal
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twist. Instead, it starts emitting soft quanta, and stationarizes at a distance where the
repulsive twist force is balanced by the attractive confining force. Eventually, however,
instability kicks in, and the monopoles annihilate, dissipating and radiating away the
remaining energy.

4.1.2 The role of saturation and relation to quarks

Away from the case of maximal twist, however, the pair always annihilates. A natural
question is whether the system, rather than emitting closed incoherent strings, as observed,
can, instead, produce a long coherent string connecting a monopole pair – similarly to
its initial conditions. Energetically this is possible, since most of the initial energy at
the collision moment is in the form of kinetic energy of the monopoles, which are ultra-
relativistic.

Namely, as the two monopoles approach each other, the system has no memory of its
initial configuration, and effectively, from there onward, the dynamics can be thought of
as a

few → many (4.2)

scattering process. This is analogous to the systems discussed in Chapter I. In the present
case, the asymptotic configuration is played by the long string connecting the monopoles,
which is made of coherently organized quanta of soft energy. The production of these
many quanta, from only the few ones constituting the initially highly energetic monopoles,
is exponentially suppressed.

Contrary to Chapter I, however, a large degeneracy of final states is not present in
order to make up for such suppression, and the corresponding scattering amplitude can
therefore not be saturated. An immediate way of seeing this is the small symmetry group
considered in this example SU(2), i.e., Nc = 2. To put it simply, the asymptotic state is
undersaturated: it is highly improbable for the two highly energetic monopoles to produce
a highly coherent object.

A natural question is how much of the dynamics discussed above applies to the case of
confined quarks. Answering this question can shed light on quark confinement: a strongly
quantum coupled system can be described in terms of a weakly coupled, classical one.

To address this point, we will focus on the case of heavy quarks, therefore ensuring no
breaking of the long string into quark/anti-quark pair. Namely, the lightest quark in the
spectrum is much heavier than the confinement scale mq � Λc. In this case, the tunnelling
process of the string into quarks pairs is exponentially suppressed. At distances larger than
the confinement scale, the quarks “colour” is confined into flux tubes made of gluons. This
is analogous to the case of monopoles in the Higgs phase, whose associated “magnetic”
charge is confined into a string connecting them.

The resulting dynamics is analogous. The huge energy stored in the connecting fluxes is
converted into kinetic energies of the quarks (monopoles) which rapidly accelerate towards
each other. Due to the string length being much longer than the confinement scale, these
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become ultra-relativistic, and can soon be treated as massless. Up to the collapse point,
the trajectory is expected to be the same, and effectively depends only on the mass of
the quarks (monopoles). What about the moment the string becomes shorter than the
confinement length?

At this moment, the energy stored in the quark pair in the form of kinetic energyy is
much bigger than the confinement scale. Correspondingly, the gauge coupling evaluated
at that scale, as a consequence of asymptotic freedom, is perturbative. This provides
further support for the quarks dynamics being captured by the weakly coupled classical
dynamics of monopoles. From there onwards, as a consequence of the lack of saturation,
also the quark pair is expected to dissipate into incoherent glueballs, rather than producing
a classical object.

4.2 Model Setup
We are interested in the dynamics of a long string in the confined phase. The monopole/anti-
monopole serves as terminations of the magnetic flux associated to it. We now describe
the system allowing for such configuration.

Consider a SU(2) gauged field theory containing a scalar adjoint representation, ϕa,
a = 1, 2, 3 and a scalar fundamental representation ψ. The system is described by the
Lagrangian

L = 1
2Dµϕ

aDµϕa + (Dµψ)†Dµψ −
1
4W

a
µνW

aµν − V (ϕ, ψ) (4.3)

where summation over SU(2) indices is understood, and the gauge field W a
µ has field

strength
W a
µν = ∂µW

a
µ − ∂νW a

µ + gεabcW b
µW

c
ν . (4.4)

As usual we define the covariant derivatives by

Dµϕ
a = ∂µϕ

a + gεabcW b
µϕ

c, (4.5)

Dµψ = ∂µψ − ig
σa

2 W
a
µψ. (4.6)

Finally, the potential is given

V (ϕ, ψ) = λ

4 (ϕaϕa − η2)2 + λ̃

2 (ψ†ψ − v2)2 + c ψ†σaψϕa. (4.7)

The system in (4.3) has SO(4) × SO(3) global (softly broken by c 6= 0) and SU(2) local
symmetry. As it can be seen from the potential (4.7), both fields spontaneously break the
symmetry acquiring a vacuum expectation value. Since our main interest is in the case
where there is a separation of scales η � v, symmetry breaking happens in two steps.

The adjoint breaks the global symmetry SO(3) to SO(2). The associated vacuum
manifold is a two-sphere S2. Correspondingly the second homotopy group is non-trivial
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Figure 4.1: A sketch of the initial monopole/anti-monopole initial configuration.

and monopoles configurations are admitted. From the local side of things, the symmetry
is broken down to U(1) and two gauge fields become massive. We refer to this phase as
Coulomb.

Upon spontaneous symmetry breaking of ψ, for c ∼ 0, the global symmetry SO(4) is
broken down to SO(3). This is similar to Higgs doublet global symmetry in the Standard
Model whose global residual symmetry is SU(2)custodial. For non-vanishing c coupling the
actually symmetry is SO(2)× SO(2), which is broken to SO(2). The previously massless
gauge boson, now becomes massive, therefore confining the associated “magnetic” flux of
monopole into strings. This is referred to as the Higgs phase. The dynamics of monopoles
during the latter phase transition is the main focus of this Chapter.

4.3 String realization
In Fig. 4.1 a sketch of the initial configuration studied in this work is shown. A monopole
and anti-monopole are positioned along the z-axes, and have, initially, a distance d. For
simplicity we denote with θ and θ the azimuthal angle of the monopole and anti-monopole
respectively. In the Coulomb phase, this can be though as a magnetic dipole configuration.
The string connecting them, can easily be guessed, providing us with ψ. For θ = 0, a
monopole should be recovered ψ ∝ (cos θ/2, sin θ/2eiφ)t, while for θ = π an antimonopole
should be obteined ψ ∝ (sin θ/2, cos θ/2eiφ)t, φ being the polar angle. Therefore the string
configuration is given by [117, 118, 114]

ψ ∝
(

sin(θ/2) sin(θ̄/2)eiγ + cos(θ/2) cos(θ̄/2)
sin(θ/2) cos(θ̄/2)eiφ − cos(θ/2) sin(θ̄/2)ei(φ−γ)

)
. (4.8)

Above γ is responsible for the twist between monopole and anti-monopole. This can be
seen from the fact that for θ = π, ψ indeed describes an anti-monopole similarly to the one
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above. However, the polar angle needs to be shifted φ→ φ + γ. In the upper hemisphere
we have, for θ = θ = 0, ψ = (v, 0)t, while in the lower hemisphere, for θ = θ = π,
ψ = (veiγ, 0)t. In between, connecting the two monopole, we have a unit winding string,
i.e., for θ = π and θ = 0, ψ ∝ (eiφ, 0)t.

Far from the monopoles, the string (4.8), is proportional to the third Pauli matrix
positive eigenvector. Given that in our study, the last interaction term in (4.7) was chosen
negative c < 0, the adjoint field unit vector ϕ̂a for the monopoles is asymptotically given
by [117]

ϕ̂a = 1
v2ψ

†τaψ, a = 1, 2, 3 (4.9)

where τa are the three Pauli matrices (see Fig. 4.3 below).
In the next Section we analyze the monopole/anti-monopole configuration after the

first phase transition, ignoring the doublet. Although this was already done in [118, 114]
it serves as a useful exercise before turning to the symmetry broken phase.

4.4 Monopole/anti-monopole system
The explicit equations of motion can be found in Appendix B. For simplicity, from now
on, the gauge coupling g = 1 and all dimensionfull quantities are expressed in terms of η
which is also set to unity. Before proceeding we note that λ is the parameter of the theory
determining the mass and size of the monopoles.

The field configuration of a single monopole is given by [112, 113]

ϕa = h(r)r̂a, W a
i = (1− k(r))

r
εaij r̂j, (4.10)

where r is the radial coordinate and its norm is given by r̂a = ra/|~r|. Under ansatz (4.10),
a stationary configuration can be found by solving the following equations of motion

h′′(r) + 2
r
h′(r) = 2

r2k(r)2h(r)− λ(h(r)2 − 1)h(r), (4.11)

k′′(r) = 1
r2 (k(r)2 − 1)k(r) + h(r)2k(r), (4.12)

supplemented with the following asymptotic conditions

h(r) r→0−−→ 0, k(r) r→0−−→ 1, (4.13)
h(r) r→∞−−−→ 1, k(r) r→∞−−−→ 0. (4.14)

The above equations can be solved numerically. The resulting profile is shown in Fig. 4.2.

We are now ready to generalize the ansatz (4.10) to the case of interest of a monopole/anti-
monopole as

ϕa = h(rm)h(r̄m)ϕ̂a, (4.15)
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Figure 4.2: Monopole profile.

Figure 4.3: Example of field configuration ϕ̂a for twist γ = 0 according to Eq. (4.15) in
the yz plane. The circles denote the monopoles position.

with rm (r̄m) being the radial distance from the monopole (anti-monopole) center and ϕ̂a
is defined in (4.9). An example of such configuration is shown in Fig. 4.3.

The gauge field ansatz follows from the usual requirement of vanishing covariant deriva-
tive of the Higgs isovector at spatial infinity, Dµϕ̂|r→∞ = 0, giving

W a
µ = −(1− k(rm))(1− k(r̄m))εabcϕ̂b∂µϕ̂c. (4.16)

As expected, the monopole/anti-monopole attract each other in a Coulomb-way due to
their magnetic charge. We verified this behaviour, which was firstly analysed numerically
for this system in [114]. It was also shown there, that the potential energy of the system
depends on the twist γ as firstly suggested by [115].

Verifying these properties served as a valuable check of the numerics presented in this
work.

4.5 Monopole/Anti-monopole connected by strings
Eqs. (B.1,B.4) were solved numerically, with initial conditions given by the monopole/anti-
monopole ansatz (4.15) and (4.16). Before the evolution, the system was numerically
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relaxed, with a similar method as the one used in [114].
Far from the monopoles, ϕa = ηδa3, implying that ψ, due to the last interaction term

in (4.7), needs to be proportional to the positive σ3 eigenvector 〈|ψ|〉 ∝ (1, 0)t, as correctly
described by ansatz (4.8)1.

ψ minimizes the interaction energy above the pair. Crossing the monopole, the con-
figuration becomes singular. Namely, at the monopole south pole the phase changes by
2π. As a consequence, between the monopoles, along the z-axis, ψ ∝ (0, eiφ)t, where φ is
the polar angle. The associated winding number is, by construction, unity. At the north
pole of the anti-monopole, the string flips again by 2π and is, thereafter proportional to
ψ ∝ (eiγ, 0)t.

The potential energy is independent from the explicit value of γ. However, the same
is not true for the kinetic terms of both scalar and gauge fields. In fact, γ 6= 0 leads to
an extra repulsive interaction [114] between the pair, which is maximal for γ = π. The
consequences of such interaction will be described later, and, for now, we focus on the case
γ = 0.

As the “magnetic” field of the pair confines into tubes, the monopole/anti-monopole
pair accelerate towards each other, turning relativistically, and, finally, annihilates. In

Figure 4.4: Magnetic Field Evolution.The colour bar corresponds to the magnitude.

Fig. 4.4, snapshots of the time evolution of the “magnetic” field are shown. The string
forms at early times.

The magnetic field is neutralized by the longitudinal massive photon component i.e.,
the eaten Goldstone boson [35]. Effectively, the system behaves as the type II supercon-
ductor described in the Introduction. Moreover, due to compactness of the SU(2) group,
no residual magnetic charge is observed. In fact, the confining string, related to the break-
ing of the U(1) subgroup, has same charge units as the monopoles, ensuring a complete
neutrlization of the magnetic field. Regarding this point, it should be noted that numer-
ically this was verified for big enough volumes. If the lattice size was too small, some of
the monopole charge would be “trapped” at the boundary, resulting in some net magnetic
field at the end of the simulation. This, of course, was just an artefact of numerics.

1we chose c ≤ 0 in our numerical simulations
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Figure 4.5: Phase of the confining scalar field in the xy plane at the middle of the string
height.
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Figure 4.6: Time evolution of the position of the cores of the monopole and anti-monopole.
The dots are numerical results while the dashed line is the point-like solution (4.18). Here
a = µ/mm = 0.16η.

An explicit example of string formation is shown in Fig. 4.5. The figure shows the
phase of the field ψ along the xy plane, in between the two monopoles. Therein, the initial
phase of ψ was randomized at each lattice point. As it can be seen, a clear string structure
with winding one emerges. Motivated by this, from now on, we use the initial conditions
mentioned at the beginning of the Section.

The dynamics shown in Fig. 4.4 is appropriately approximated by the point-like solution
found in [81] as we are about to show. The action of the system considered by Ref. [81] is

I = −mm

∫
ds1 −mm

∫
ds2 − Λ2

c

∫
dS, (4.17)

in which the monopole/anti-monopole worldlines are determined by the first two terms,
while the last one addresses the string world-sheet. Extremization of (4.17) leads to the
equations of motion for the system, which admits a particular solution consisting of a
monopole pair connected by a straight string. The resulting monopoles trajectories are
found to be [81]

x(t) = ±sgn(t)
a

(γ0 −
√

1 + (γ0v0 − a|t|)2) (4.18)

where t0 = −γ0v0/a, a = Λ2
c/mm, v0 and γ0 = (1− v2

0)−1/2 are respectively the maximum
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Figure 4.7: Angularly integrated power emitted Pn according to (4.20). The amplitude was
normalized w.r.t. to the lowest frequency comparable to the initial monopoles distance.
Up to frequencies comparable to the monopoles size Pn ∝ n−1 (shaded region).

velocity and Lorentz factor of the monopoles, reached at t = 0. This describes a pair of
relativistic monopoles, connected by a string, oscillating around their center.

The resulting dynamics is shown in Fig. 4.6 where it is compared with the actual
numerical result. The black dots stands for the numerical position of the monopoles center
in the fully-fledged field theoretical study. As it can be seen, they are nicely fitted by
solution (4.18) (dashed line). Indeed, as anticipated, the monopoles, under a constant
acceleration, become relativistic. However, in our study, upon approaching each other, they
annihilate, contrary to what is seen in the point-like case, where they, instead, miss each
other, and undergo an oscillatory motion around the starting center of the configuration.

4.5.1 Gravitational Waves

We wish now to evaluate the resulting gravitational wave spectrum of our dynamics, and
to compare it to the point-like study of Ref. [81]. The radiated gravitational power at
frequency ωn = 2πn/T (T being the collapse time)2, per unit solid angle in the direction
k, |k| = ωn is given by [119]

P =
∑
n

Pn =
∑
n

∫
dΩdPn

dΩ , (4.19)

dPn
dΩ = Gω2

n

π

(
T ∗µν(ωn,k)T µν(ωn,k)− 1

2 |T
µ
µ (ωn,k)|2

)
. (4.20)

Above the energy-momentum tensor in Fourier space is defined as

T µν(ωn,k) = 1
T

∫ T

0
dt eiωnt

∫
d3xe−ik·xT µν(t,x). (4.21)

In Fig. 4.7, the radiated gravitational spectrum Pn n as a function of n over logarithmic
intervals due to the collapse is shown. As it can be seen, for low frequencies, n . 7 (red

2For practical purposes we chose T = 2dη−1, d being the lattice distance between monopoles.
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Figure 4.8: Initial magnetic field configuration comparison for γ = 0, π.

shaded area in the plot), the spectrum is Pn ∼ n which is the same scaling found in the
point-like study [81]. This is easy to understand: such wavenumbers corresponds to lengths
longer than the string and monopoles width, and therefore the system can be considered
effectively point-like.

Differently from the point-like result, however, near annihilation the radiation spectrum
is boosted, for frequencies comparable to the width of the system. No exact scaling was
found in this region of frequencies. However, suffices to say that this is very different from
the point-like case where the spectrum is expected to decay even faster. Higher modes
have are not displayed in 4.7, as their inverse becomes comparable to the lattice spacing,
and therefore could be unreliable.

4.5.2 Twisted case

So far we have been focused on the untwisted configuration i.e., γ = 0. This corresponds to
an energetic minimum of the string energy. While it is obvious from (4.8) that rotating γ
by 2π gives back the same configuration, it is straightforward to see how the energy varies
with γ (at fixed distance d) and find that γ = π is an energy maximum.

In Fig. 4.8, the effect of the twist on the initial magnetic field configuration is shown.
While for the case γ = 0 (a) the magnetic field lines connect between monopole and
anti-monopole, in the twisted case γ = π (b) the situation is dramatically different. The
magnetic fields do not close on the monopoles and open up. This configuration corresponds
to gluing two string with opposite winding number. At the gluing plane, z = z∗, the string
phase becomes singular, and inverts itself, resulting in the magnetic field shown in the
Figure. This effectively results in a domain wall between the upper and lower part of the
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Figure 4.9: Evolution of the magnetic and scalar cores of the monopole/anti-monopole pair
for initial twist γ = π.

system as shown in Fig. 4.8. The symmetry of the configuration, γ = π, provides a further
rationale for this to be an energy maximum.

While perturbations are indeed expected to break the enhanced symmetry of the con-
figuration, allowing the system to relax to the energy minimum of the zero-charge sector,
it is clear that independently of the phase of the system – Coulomb or Higgs – there will be
a repulsive force between the two monopoles, forbidding their annihilation at the classical
level. Refs. [114, 120] numerically verified the behaviour of this object in the unconfined
case, and observed how for twist γ = π the monopole/anti-monopole, attractively inter-
acting via the Coulomb potential, do not annihilate due to the repulsive effect of the twist.
To our knowledge, the behaviour of this configuration in the confined phase has not been
addressed so far.

The dynamics in the confined phase is shown in Fig. 4.9 where the position of the two
monopoles core centers is shown as a function of time. As it can be seen, at initial time the
two magnetic cores start to accelerate towards each other due to the flux tubes connecting
them, dragging the scalar core along and the system turns relativistic.

The dynamics is analogous to the untwisted one, c.f. Fig. 4.6, up to the collapse
moment. While in the untwisted case the two monopoles simply annihilates, in this case
the magnetic cores repel each other and slow down, as they cannot annihilate due to the
relative twist. While for γ 6= π this was verified never to happen, as the two monopoles
can easily untwist in the direction of the more favourable minimum, for γ = π the string
cannot unwind, and a metastable configuration is obtained.

From there on the two monopoles have a bouncing behaviour, and dissipate energy up
to settling to a constant distance where the confining energy is balanced by the repulsive
twist energy. Eventually the metastable configuration becomes unstable and the pair fully
annihilates. Concomitantly a deviation from axial symmetry is observed. Given the axial
symmetry of the initial configuration, and the fact that the dynamics should preserve such
symmetry, we believe this to be a numerical artefact.

In Fig. 4.9 Λc = η was used. For lower value of this parameter the bouncing sizes, as
well as distance of the bound state were observed to be larger.
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Relation to sphaleron

Ref. [116] found a sphaleron solution in the electroweak theory with baryonic charge 1/2.
We show here, that for γ = π, configuration (4.8), describing a fully twisted monopole/anti-
monopole pair gives the same result. This offers an interpretation of the solution found by
[116] as suggested by Ref. [121]. We focus here only on the SU(2) group for simplicity.

A massless SU(2) charged chiral fermion χ has a current

jµ = χγµχ, (4.22)

whose divergence receive the anomalous contribution

∂µj
µ = g2

64π2 ε
µνρσW a

µνW
a
ρσ. (4.23)

It follows from (4.23), that if the gauge and Higgs fields are time dependent, so is the
chiral fermionic charge. In particular, if the fields interpolates between two vacua via an
incontractible loop, then the femionic charge is expected to change by an integer. By
symmetry reasoning, the sphaleron, namely the configuration at the top of the barrier
between these two vacua, is expected to have fermionic charge 1/2.

Assuming the baryonic flux of the three volume to vanish, the change of fermionic
charge can be obtained (noticing that the right hand side of (4.23) is the total derivative
of the Chern-Simon form). This leads to the Chern-Simon number

Q(sphaleron) = g2

32π2

∫
d3xεijk

(
W aijW ak − g

3εabcW
aiW bjW ck

)
. (4.24)

Eq. (4.24), must be evaluated in the right gauge, namely, it must be ensured that at spatial
infinity the spatial part of the Chern-Simon form decays faster than 1/r. This can be done
via the gauge transformation [116]

U(~x) = exp
[
i

2Θ(r)~σ · ~x
]
, (4.25)

where Θ(r) is an arbitrary function chosen to approach π sufficiently fast as r → ∞. By
plugging (4.16) under gauge transformation (4.25) in (4.24), it is straightforward to see

Q(sphaleron) = 1/2 (4.26)

as expected. The result of this analysis, performed in the Coulomb case, was verified to
numerically hold also in the confined case.

4.6 Heavy Quark Annihilation
This section is dedicated to showing the existence of a remarkable correspondence between
the scattering of monopoles and the scattering of heavy quarks in QCD. For simplicity,
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consider a heavy quark in the fundamental representation of a gauged SU(Nc). By “heavy”
here, it is meant that the quark mass mq is much higher than the QCD scale, Λc. No light
quarks are assumed to exist in the theory and the quark spin is unimportant fore the
analysis that follows.

The four-point gluon function, is determined by the fundamental coupling αc. For later
convenience, we also define the ’t Hooft coupling λt ≡ αcNc [15] and work in the large Nc

limit.
In this theory the scale Λc has an important physical meaning, namely, it divides two

descriptions. For distances smaller than the QCD length Lc ≡ Λ−1
c , the theory is described

in terms of weakly interacting gluons and quarks. At lower energies, namely for distances
bigger than Lc, confinement takes place, and fundamental degrees of freedom become
colourless composites e.g., glueballs and mesons.

In this phase, when sources are separated by a distance d � Lc, the gluon “electric”
field is trapped in a flux tube connecting the two. This is the essence of the description,
which can be thought as a dual version of Meissner effect.

In the previous Sections the dynamics of monopoles with confined “magnetic” charge is
addressed. A pair of quark/anti-quark connected by a QCD string is strikingly similar to
such system. The monopole (anti-monopole) is mapped on quark (anti-quark). Magnetic
flux tube is mapped on the QCD string.

A natural question is how much of QCD physics is captured by the above correspon-
dence. The SU(2) monopoles are confined as the theory enters the Higgs phase. Corre-
spondingly, the resulting solitonic object is made of fundamental degrees of freedom (scalar
and gauge bosons) in the weak-coupling regime. Therefore, the system is well-approximated
by the classical dynamics.

In the dual QCD case, constituents are confined and strongly coupled, a fact that
makes such correspondence rather difficult to establish. Any hint bypassing this problem,
is a fundamental step-forward in our understanding of QCD physics: a strongly-coupled
quantum system, the one of confined quarks pairs, could be described in terms of a weakly-
coupled classical one, i.e., monopoles connected by “magnetic” flux tubes.

Now, we would like to show evidence that the above numerical simulation captures the
dynamical behaviour of confined quarks pairs in the following sense. Namely, we observe
that in the head-on scattering of this system, a long-classical string is never recreated.
The pair always annihilate and radiates aways. We provide arguments as to why the same
behaviour is expected for quarks when considered in the same kinetic regime.

Before proceeding it is worth mentioning that here we will not be dealing with the
twisted case discussed in the previous Section. In that case, for γ = π, a meta-stable
configuration is obtained. In fact, the monopoles do not annihilate immediately, but rather
radiated quanta, and stabilize at a distance where the repulsive twist interaction is balanced
by the string energy connecting them. Because most of the initial energy of the system has
been radiated away, upon relaxation to the zero-charge vacuum (when the two monopoles
annihilate), there is not enough energy to recreate a long-classical object as the initial one.
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Surprisingly, even for γ = 0, when the monopoles annihilate right away, even though the
system has enough energy to produce a long classical string, this never happens. Notice that
in our analysis, the initial energy of the configuration is much bigger than the monopoles
mass dµ � mm which is clearly subdominant. This leads to a relativistic acceleration of
the string ends. When the quarks are about to annihilate, at a distance comparable to the
string width Lc ≡ Λ−1

c , their kinetic energy is of order ∼ dΛ2
c � mm, and can therefore be

treated as massless.
The same analysis applies when describing the dynamics of confined quarks, under the

replacement mm → mq. It should be mentioned that the following hierarchy of scales is
necessary

Λc � mq � dΛ2
c , (4.27)

where the first inequality ensures the stability of the string under nucleation of quark pairs,
and the last one ensures that the quark/anti-quark pair is relativistic as they approach each
others.

The key-point is that the quarks scattering length, when they are at a distance Λ−1
c , is

much shorter than the QCD confining scale Lc ∼ Λ−1
c , i.e.,

r∗ ∼
αc
dΛ2

c

� Λ−1
c , (4.28)

where αc is the QCD running coupling evaluated at energies r−1
∗ ; this is much higher than

the confinement scale, Λc, and therefore αc is weak, as it can be understood from the 1-loop
renormalization group flow of the QCD gauge coupling

αc(r−1
∗ ) = 2π

b log
(
r−1

∗
Λc

) , (4.29)

where b = 11
3 Nc − 1

3Nf , Nc being the number of colours and Nf the number of flavours of
quarks in the theory (assumed to be in the fundamental representation for simplicity).

Thus, the quark-anti-quark scattering can be evaluated in the weak coupling regime.
However, we must keep in mind that the multiplicity Nc of the produced quanta is large
and the collective effects, controlled by a product αcNc, must be taken into account.

The products of the scattering, at distances of order Λ−1
c hadronizes, forming colourless

states. A natural question is whether this can consist of a long stretched string, or to
many closed strings (glueballs) and open strings (mesons). This is due to the exponential
suppression of the former process when considering a

2→ n (4.30)

transition, as discussed in [4] and summarized in Chapter I.
The question is whether the summation over final degenerate micro-states can make

up for such exponential suppression: this can happen if the classical configuraiton is at
saturation. As we will argue below, this is not the case for the considered system.
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Entropy of the string

The number of microstate of a straight QCD string of length d is given by all possible
distinct orientations

nst ∼
d2

L2
c

, (4.31)

leading to a string entropy much smaller than the maximal saturation entropy

Sstring ∼ log
(
d2

L2
c

)
� Ssat ∼

d2

L2
c

, (4.32)

for the case d� Lc considered in the numerical simulations.
This shows that the string entropy is not sufficient to make up for the exponential

suppression due to the (4.30) process which we are about to estimate explicitly.

Figure 4.10: Quark pair annihilates into gluons, which produce a quark pair and gluons.

Before that, let us note that different types of diagrams can contribute to (4.30). In
the first case, the quarks can annihilate into gluons which then produce the quark pair
plus other gluons as shown in Fig. 4.10. Another possibility, is that quarks scatters
without annihilating, producing several gluons (see Fig. 4.11 for an example). Yet another
possibility is a system producing several short open strings, namely mesons as in Fig, 4.12.

The first two cases both consist of a quark-pair accompanied by several soft-gluons as
outgoing states. These can be organized in the form of a classical long string, or in form
of short closed strings (namely glueballs) 3.

The point is that due to the lack of saturation of entropy (4.32), the former is expo-
nentially suppressed with respect to the latter. Equally stated, it is more probable for the
system to produce many incoherent glueballs rather than a coherent classical long string

3These are fundamental deggrees of freedom in the confined phase, and therefore the resulting state is
quantum.
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Figure 4.11: Quarks scattering into gluons without annihilation.

Figure 4.12: Quarks annihilation into mesons.

made of highly coherent gluons. Simply put, the first case has a much higher entropy than
the other.

Gluon picture: Understanding suppression from the entropy of multi-gluon
state

A long classical string can be thought of as a state with a high-occupation number n of
gluons. For illustrative purposes and clarity we work in the ’t Hooft limit, Nc →∞, λt =
finite.

Our focus is the scattering of two hard quanta, into n soft gluon. The resulting final
state is a colour singlet, however, its microstate entropy is enhanced due to the colour
group representation being big. This enhances the transition probability as shown in [4].

In this limit the fundamental coupling is weak but collective coupling is finite. In this
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theory we are interested in production of a state of high occupation number n of soft gluons
out of the initial high energy state of few hard quanta. The gluons are soft quanta of De-
Broglie wavelength ∼ d, and therefore their number can be estimated to be n ∼ d2Λ2

c .
Ignoring, for a moment, the contribution due to the degeneracy of microstates, this leads
to the following suppression, analogous to the one found in Chapter I

σ2→N ' e−n (4.33)

The n-gluon state forms a large representation of the colour group and effectively has
a high microstate entropy. This enhances the transition probability. Of course, the string
is colourless, but this simply means that the final physical state is averaged over colour.

Simple microstates counting leads, for λt ∼ 1, to the same result found in Chapter I
[4], that is

σ =
∑

microstates

σ2→n ' e−n
(
en

Nc

)Nc
. (4.34)

Namely, saturation of unitarity takes place only for Nc ∼ n. In our numerical analysis,
however, Nc ∼ 1, while n� 1 from which follows

σ ∼ e−(dΛc)2
. (4.35)

This shows the exponential suppression of the process.
Basically, in the language of [4], the long string is an strongly undersaturated object.

Correspondingly, the cross section for its production is exponentially suppressed. This is
the underlying physical reason for non-observation of the re-production of a long string in
a head-on collision of confined monopoles. The same picture holds for confined quarks.

Indeed there exist others regimes where the string is unsuppressed. For example, this
is the case when the energy of quarks is less than 4mq but still much larger than Λc. In
this case the string of length L = 2mq/Λ2

c can be created.
For initial energies much bigger than 4mq, it is natural to ask whether increasing the

number of quark flavours can make up for the lack of saturation. This is not possible as
it can be seen form Eq. (4.29) and below. In fact, if the number of flavours increases too
much, the asymptotic freedom of the theory is spoiled.

4.7 Outlook

In this chapter we numerically studied the confinement of a SU(2) monopole/anti-monopole
pair. Initially the pair is in a dipolar configuration as in Fig. 4.3. The confinement is
instantaneously imposed by setting an extra complex doublet field in its Higgs-phase,
therefore breaking the residual U(1) and giving mass to the previously massless “photon”.
In this sense the considered initial configuration is similar to a first order phase transition,
where the pair is suddenly in the confining phase.
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As shown in Fig. 4.6, the monopoles become immediately relativistic due to the con-
finement of the magnetic flux inside the cosmic string connecting them. Taking initial
random phases for the confining scalar field, it is possible to see the dynamical emergence
of the tube as shown in Fig. 4.5.

The GW spectrum is also computed and is well-approximated by the point-like study
of Ref. [81] for wavelengths longer than the relevant widths of the system (i.e., monopoles
and string width). Namely, we confirm a power spectrum Pn ∝ n−1, n denoting the
frequency number. As previously mentioned, this type of spectrum can lead to a flat
density of GWs ΩGW across several orders of the frequency, therefore making it interesting
from a phenomenological perspective in view of future refinement of the stochastic GW
background hints obtained from pulsar timing arrays [44, 110]. Due to the low frequency
range of the detection – inverse years – a natural mechanism for the production of the
necessary initial configuration i.e., of a long cosmic string connecting the pair is proposed
in Ref. [39], where the cosmic string is exponentially long due to the inflationary dilution
of the later confined quarks.

Differently from the point-like study, we observe that for initial configurations of en-
ergies much higher than the monopole mass, the head-on collision always results in the
annihilation of the monopole, and the energy of the configuration dissipates away. This
is always the case unless the twist is maximal i.e., γ = π. This case corresponds to the
gluing of a string with a string of opposite winding number. Effectively, a domain wall
is present at the junction point as shown in Fig. 4.8b. The resulting configuration, upon
confinement, is a metastable one: the repulsive energy of the twist is balanced by the
attractive string tension as shown in Fig. 4.9. This configuration is the generalization to
the confined case of the solution found in [116]. Its meaning in terms of vacuum structure
is clear: it corresponds to the lowest maximum along the path interpolating between two
SU(2) gauge vacua i.e., a sphaleron. To support this, its fermionic charge is shown to be
half-integer. Indeed, being a maximum, as the instability kicks in, the configuration relaxes
to the Q = 0 vacuum, the strings untwist, and the monopole annihilates, dissipating the
remaining energy.

For γ 6= π, the monopoles always annihilates immediately. In particular, it is argued
why the same behaviour is expected for the case of a confined quark/anti-quark pair in
the same kinematic regime. In particular, it is shown that the reason why the system
annihilates, rather than forming another long string, analogous to the initial condition,
is tied to a lack of entropy saturation of such classical objects. in fact, a 2 → n process
is generally exponentially suppressed. In Chapter I, we showed how a large microstate
degeneracy of final states can make up for the suppression, leading to the formation of
a highly coherent classical object, made of soft-quanta of De-Broglie wavelength d. A
necessary condition for this to happen is n ∼ Nc, or equivalently, that both collective
couplings λc = αcn and λt = αcNc are of order unity and therefore saturate scattering
unitarity. Correspondingly, such configurations have a maximally entropy equal to their
area measured in units of Goldstone decay constants associated to the symmetries broken
by the the configuration itself.
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In the system considered numerically, Nc ∼ 1, and therefore saturation is not possible.
Therefore, the process of formation of a very long classical string is exponentially sup-
pressed with respect, e.g., to the process where small closed-string loops are produced in
an incoherent way. The same argument applies to the case of quarks.

The end result is striking: in this kinematic regime, the dynamics of two highly rel-
ativistic quarks colliding head on – a very quantum state –, is captured by the classical
evolution of two collapsing monopoles in the weak-coupling regime.
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Appendix A

Newton Raphson method

In this Appendix we describe the algorithm used to obtain the profile of the vortex in the
non-topological soliton.

In two dimension the vortex profile has only radial dependence, and therefore a solution
can easily be found via shooting. In three dimension the profile also depends on the
azimuthal angle and a different approach becomes necessary. In an early work [28], to
solve this kind of system, the profile ansatz was decomposed into an orthonormal angular
basis i.e., in terms of Legendre polynomial. However, the interaction terms in the potential
do mix such harmonics, leading to a complicated coupled system, which requires a by-hands
truncation in order to be solved. Ref. [28] showed a good convergence already with the
inclusion of the first few harmonics.

Later, an explicit full-numerical solution for Q-balls with vortices was found using the
FIDISOL/CADSOL. This is a professional package, written in Fortran 90, developed by a
team in Karlsruhe Institute of Technogy. Its purpose is to solve two and three dimensional
elliptic and parabolic partial differential equations.

While this package can be used to solve much more complex systems, e.g., the profile
of boson stars including the gravitational field [122], the algorithm, namely the Newton-
Raphson method, was easily implementable in C++ by myself, and the desired solution
was obtained.

In general such algorithm allows one to solve the following partial differential equation
(written schematically):

P (r, θ, ϕ, ϕr, ϕθ, ϕrr, ϕθθ, ϕrθ) = 0, (A.1)

where r, θ are the coordinates, ϕ the profile of the field and pedix denote its derivatives
with respect to the coordinates.

This method is suitable for boundary problems on a Nr×Nθ grid. However, the biggest
(and only) disadvantage, is that it requires an initial ansatz for the solution. Such solution
must indeed respect the boundary condition. Moreover, if it is too different from the exact
solution, there will be no convergence. It should be noted that in most practical cases,
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however, it is very easy to come up with a physically well-motivated ansatz, which, by
experience, leads to the right solution.

The algorithm can be summarized as follow:

• The initial ansatz ϕ(0) is not an exact solution to (A.1) i.e.

P (ϕ(0)) 6= 0. (A.2)

• Define a new solution
ϕ(1) = ϕ(0) + δϕ(0) (A.3)

and assume this to be an exact solution to (A.1), i.e., P (ϕ(1)) = 0.

• Expand P (ϕ(1) = 0 for small δϕ(0) to first order, i.e.,

0 = P (ϕ(1)) = P (ϕ(0) + δϕ(0)) ' P (ϕ(0)) + ∂P

∂ϕ
(ϕ(0))δϕ0 (A.4)

• Obtain ϕ(1) via (A.4). This consists of solving a linear system, for which different
methods exist.

• Set the new solution to be the starting ansatz ϕ(0) = ϕ(1) and go back to the first
step.

• Keep iterating the above points until P (ϕ(0)) is smaller than a prescribed initial value.

If the last point is fulfilled, the algorithm converged to the desired solution.
Notice that in order to derive (A.4), the derivative of P with respect to ϕ must be

specified.



Appendix B

Fields equation for the confined
monopoles

We write here explicitly the equations of motion we solve for the SU(2) monopole/anti-
monopole system, used for the numerical simulation

∂2
t ϕ

a = ∇2ϕa − gεabc∂iφbW c
i − gεabc(Diϕ)bW c

i − λ(ϕbϕb − η2)ϕa − gεabcϕbΓc − cψ†σaψ,
(B.1)

∂2
t ψ

α = ∇2ψα − g2

4 W
a
i W

a
i ψ

α − ig2Γa(σaψ)α − igW a
i (σa∂iψ)α − cϕaσaψα − λ̃(ψ†ψ − v2)ψα,

(B.2)
∂tW

a
0i = ∇2W a

i + gεabcW b
j ∂jW

c
i − gεabcW b

jW
c
ij −DiΓa − gεabcϕb(Diϕ)c+

− 1
2g

2ψ†ψW a
i − igψ†σa∂iψ, (B.3)

∂tΓa = ∂iW
a
0i − g2

p

[
∂i(W a

0i) + gεabcW b
iW

c
0i + gεabcϕb(Dtϕ)c + igψ†σa∂tψ

]
, (B.4)

where we are using the temporal gauge, W a
0 = 0, Γa = ∂iW

a
i are introduced as new

variables, and g2
p = 1.5 is a numerical parameter that we can choose to ensure numerical

stability. The equations were evolved with a Cranck-Nicolson leapfrog algorithm combined
with absorbing boundary conditions [123].
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