

C
U

O
N

G
 N

G
O

C
 T

R
A

N
C

on
fl

ic
t

D
et

ec
ti

on
 i

n
 S

of
tw

ar
e-

D
efi

n
ed

 N
et

w
or

k
s

CUONG NGOC TRAN

Conflict Detection in Software-Defined
Networks

OLMS

DISSERTATIONEN DER LMU

61

Conflict Detection in Software-Defined Networks

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig‐Maximilians‐Universität München

eingereicht von
Cuong Ngoc Tran
am 11. April 2022

1. Gutachter: PD Dr. Vitalian Danciu
2. Gutachter: Prof. Dr. Wolfgang Hommel
Tag der mündlichen Prüfung: 13. Juni 2022

Cuong Ngoc Tran

Conflict Detection in Software-Defined Networks

Dissertationen der LMU München

Band 61

Conflict Detection in
Software-Defined Networks

von
Cuong Ngoc Tran

Eine Publikation in Zusammenarbeit zwischen dem Georg Olms Verlag und
der Universitätsbibliothek der LMU München

Gefördert von der Ludwig-Maximilians-Universität München

Georg Olms Verlag AG
Hagentorwall 7
31134 Hildesheim
https://www.olms.de

Text © Cuong Ngoc Tran 2023
Diese Arbeit ist veröffentlicht unter Creative Commons Licence BY 4.0.
(http://creativecommons.org/licenses/by/4.0/). Abbildungen unterliegen ggf.
eigenen Lizenzen, die jeweils angegeben und gesondert zu berücksichtigen sind.

Erstveröffentlichung 2023
Zugleich Dissertation der LMU München 2022

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet abrufbar
über http://dnb.d-nb.de

Open-Access-Version dieser Publikation verfügbar unter:
http://nbn-resolving.de/urn:nbn:de:bvb:19-303449
https://doi.org/10.5282/edoc.30344

ISBN 978-3-487-16326-0

Contents

List of Figures .. IX

List of Tables .. XIII

Acknowledgement ... XV

Abstract .. XVII

Zusammenfassung ... XIX

1 Introduction ... 1
1.1 Conflicts in SDN... 3

1.1.1 A demonstration of conflicts in SDN.. 4
1.1.2 Conflict definition ... 5

1.2 Research questions, scope and challenges... 5
1.2.1 Research questions ... 6
1.2.2 Scope of this work .. 6
1.2.3 Challenges .. 7

1.3 Results... 7
1.3.1 A suitable method to examine conflicts in SDN....................................... 8
1.3.2 A framework for automating experiments in studying conflicts............... 8
1.3.3 Conflict classification... 8
1.3.4 Multi-property set and the relationship combination operator ·r 11
1.3.5 The algorithms to detect conflicts based on matchmap, actmap

and rule graph ... 11
1.3.6 Conflict detection prototype ... 12
1.3.7 List of publications.. 12

1.4 Methodology and dissertation's structure.. 15

2 Related Work.. 19
2.1 A sketch of the SDN history ... 19
2.2 Conflicts and bugs... 21
2.3 State-of-the-art ... 21

2.3.1 Policy conflicts in distributed system management................................. 21
2.3.2 Policy conflicts in traditional networks .. 27
2.3.3 Conflicts in SDN .. 30
2.3.4 Analysis of remarkable research .. 33

VI Contents

3 Approaches and Experiments.. 39
3.1 Considering the analytical approach.. 39

3.1.1 SDN model ... 39
3.1.2 Analogy to distributed computing systems ... 40
3.1.3 Conclusion .. 41

3.2 Experimental approach ... 41
3.2.1 Parameter space ... 41
3.2.2 Methodology .. 45

3.3 Explored subspaces ... 47
3.4 A framework for automating experiments ... 50

3.4.1 Generating SDN test-beds... 50
3.4.2 Encoding experimental subspaces .. 52
3.4.3 Generating compact values for dimensions related to control

applications from a subspace's encoding .. 54
3.4.4 End-point related dimensions ... 56
3.4.5 Expected and observed network behaviour .. 56
3.4.6 Dataset ... 58
3.4.7 (Re)Production of the test-bed .. 62

3.5 SDN control applications ... 68
3.5.1 Properties of SDN control applications .. 68
3.5.2 Control applications for experiments .. 69

3.6 Selected experiments illustrating the methodology .. 73
3.6.1 Experimental environment.. 73
3.6.2 Applications' configurations for experiments... 74
3.6.3 Experiments .. 76
3.6.4 Deriving conflict patterns and properties .. 87

3.7 Extracting conflict patterns and properties .. 90
3.8 Conclusion .. 92

4 Conflict Classification.. 95
4.1 Local conflicts.. 96

4.1.1 Shadowing.. 96
4.1.2 Generalization... 98
4.1.3 Redundancy.. 99
4.1.4 Correlation .. 99
4.1.5 Overlap ... 100
4.1.6 Discussion... 101

4.2 Distributed conflicts .. 102
4.2.1 Policy suppression by downstream traffic looping 102
4.2.2 Policy suppression by upstream traffic looping 105
4.2.3 Policy suppression by downstream traffic dropping 105
4.2.4 Policy suppression by upstream traffic dropping..................................... 107

Contents VII

4.2.5 Policy suppression by downstream packet modification 108
4.2.6 Policy suppression by upstream packet modification 109
4.2.7 Policy suppression by changes to paths .. 110

4.3 Hidden conflicts .. 112
4.3.1 Interaction primitives .. 113
4.3.2 Interaction combinations .. 115
4.3.3 Classifying hidden conflicts based on disturbance factors 115
4.3.4 Susceptible interactions and impact ... 119

4.4 Summary... 119

5 Conflict Detection ... 121
5.1 Multi-property set and ·r operator .. 122

5.1.1 Multi-property set ... 122
5.1.2 Comparison of multi-property sets using ·r operator 123
5.1.3 Application of multi-property set and the ·r operator 129

5.2 Comparison of SDN rules... 130
5.2.1 Matchmap .. 130
5.2.2 Actmap ... 133

5.3 Rule database and topology encoding .. 137
5.4 Rule graph... 138

5.4.1 Establishing connections between rules.. 138
5.4.2 Building the rule graph ... 141
5.4.3 Verifying the validity of a path in the rule graph 160

5.5 Local conflict detection ... 162
5.6 Distributed conflict detection .. 165

5.6.1 Detecting conflicts belonging to downstream traffic looping/dropping
distributed conflict classes ... 166

5.6.2 Coping with other distributed conflict classes ... 167
5.7 Hidden conflict detection .. 171

5.7.1 Considering the hidden conflict prediction approach 172
5.7.2 Detecting hidden conflicts with control applications' input 176

5.8 Complexity .. 181
5.9 Practical implications and conclusions... 182

6 Prototypical Implementation and Evaluation ... 185
6.1 Conflict detection prototype ... 185

6.1.1 Overview .. 186
6.1.2 Conflict detector as a Ryu application ... 187
6.1.3 Building the rule database .. 189
6.1.4 Conflict detector's mechanics ... 190
6.1.5 Execution of the conflict detector ... 192
6.1.6 Output of the conflict detector ... 193

VIII Contents

6.2 Evaluation ... 195
6.2.1 Network topologies .. 195
6.2.2 Evaluation results in designed cases.. 196
6.2.3 Evaluation results in randomly checked cases ... 198

6.3 Discussion ... 201

7 Conclusions and Prospects .. 203

Bibliography .. 207

Generating priority combinations for experiments ... 217

Acronyms ... 221

Glossary.. 223

List of Figures

1 SDN architecture... 2
2 Network topology for experimenting conflicts .. 4
3 Proof-of-conflict: anomalous network behaviour identified as conflicts 5
4 Definition of conflicts.. 5
5 Input and output of the conflict detector ... 6
6 The taxonomy of conflicts in SDN ... 9
7 Interactions of an application in isolation and when conflicting with another 10
8 Scope of the rules issued by the applications ... 10
9 Methodology .. 16
10 Policy refinement hierarchy .. 22
11 PCIM components and their interactions .. 25
12 A possible mapping of the SDN architecture to the PCIM model 26
13 Conflict is potential between two policies with overlapping subjects S (Switch)

and objects O (packets/flows) ... 27
14 Access-list conflict classes ... 28
15 Taxonomy of distributed conflicts established by Reyes .. 34
16 Common SDN elements.. 40
17 Parameter space ... 42
18 Methodology for exploring conflicts ... 45
19 A designed topology with 10 switches and 10 end-points 47
20 Simple linear topology.. 47
21 A designed topology simulating the core backbone of the Nippon Telegraph

and Telephone (NTT) network in Japan .. 48
22 A random topology generated with the Barabasi-Albert model 48
23 The proportion of the safe space and the space containing potential conflicts 49
24 Illustration of a simple test-bed for a network containing two end-points and

two SDN devices... 50
25 Illustration of a simple test-bed with the associated programs in each class of

machines .. 63
26 Topology topo1 for the experiments ... 74
27 Experiment 1: settings, expected and observed network behaviour 76
28 Experiment 2: settings, expected and observed network behaviour 77
29 Experiment 3: settings, expected and observed network behaviour 80
30 Experiment 4: settings, expected and observed network behaviour 80
31 Experiment 5: settings, expected and observed network behaviour 82
32 Experiment 6: settings, expected and observed network behaviour 83
33 Experiment 7: settings .. 84
34 Experiment 8: settings, expected and observed network behaviour 86
35 Experiment 9: settings, expected and observed network behaviour 86

X List of Figures

36 Methodology to extract conflict patterns, properties from the dataset 91
37 The taxonomy of conflicts in SDN ... 95
38 Local conflicts between two rules i and j having different priority

in Venn diagram ... 96
39 Local conflicts between two rules i and j having the same priority

in Venn diagram ... 98
40 Overlap between the match spaces of rules i, j and k that expose pairwise an

overlap local conflict, rendering rule j redundant ... 100
41 An example of the distributed conflict class policy suppression

by downstream traffic looping .. 103
42 An example of the distributed conflict class policy suppression

by upstream traffic looping... 105
43 An example of the distributed conflict class policy suppression by

downstream traffic dropping .. 106
44 An example of the distributed conflict class policy suppression

by upstream traffic dropping .. 107
45 An example of the distributed conflict class policy suppression

by downstream packet modification ... 108
46 An example of the distributed conflict class policy suppression

by upstream packet modification .. 109
47 An example of the distributed conflict class policy suppression

by changes to paths ... 110
48 A subtle case of the distributed conflict class policy suppression

by changes to paths ... 111
49 An example of a hidden conflict observed when co-deploying the

End-point Load Balancer, Traffic Engineering and Shortest Path First Routing
control applications .. 112

50 An example of the hidden conflict class event suppression
by upstream traffic looping... 116

51 An example of the hidden conflict class event suppression
by upstream traffic dropping .. 117

52 An example of the hidden conflict class event suppression
by changes to paths ... 117

53 An example of the hidden conflict class action suppression
by packet modification ... 118

54 Multi-property set as the intersection of multiple single-property sets 123
55 The relationship between two certain sets A and B... 123
56 The relationship of two multi-property sets is calculated by combining all

individual relationships of their associated single-property sets............................ 124
57 A network part containing three switches S1, S2 and S3 139
58 Exceptional case: common match space of r11 and r21 is a subset of that of r11

and r22 ... 141

XI

59 Illustration of edge attributes in a simple rule graph... 143
60 A scenario of adding the new rule r51 to the existing rule graph, in which there

exist connections from r22 to r51 and from r51 to r31 .. 144
61 A scenario of removing the rule r22 from the existing rule graph, the dashed

edges represent those whose attributes might need to be updated 147
62 Illustration of the common variables' content used in the algorithms 148
63 Topology topo3 ... 152
64 The rule graph after all rules were added.. 159
65 The rule graph after rule (3,0,1) was removed ... 160
66 Hidden conflict predictor mechanism ... 172
67 Communication of the conflict detector with other controller modules of the

Ryu SDN framework.. 186
68 The class diagram of the conflict detector... 188
69 The mechanics of the conflict detector ... 191
70 The simulated topology for the MWN's backbone network 196
71 The simulated topology for the Stanford's backbone network 197

List of Tables

2.1 A qualitative comparison of research related to conflict detection in SDN 31
3.1 Comparison of concepts for computer programs and our SDN model 40
3.2 Growth of the number of experiments by the number of switches 44
3.3 Information of the explored subspaces for conflicts .. 49
3.4 Classification of control applications ... 70
3.5 Experiment 1: switch S7's rule table after the first TCP session.............................. 77
3.6 Experiment 2: switch S7's rule table.. 78
3.7 Experiment 3: rule tables of switches S5, S3, S6 .. 79
3.8 Experiment 4: rule tables of switches S5, S3.. 81
3.9 Experiment 5: switch S7's rule table after the first UDP session............................. 82
3.10 Experiment 6: switch S7's rule table after the first UDP session

and deploying TE1's rules ... 83
3.11 Experiment 7: switch S7's rule table after establishing TCP sessions

from PC1 to PC3 and PC4 and deploying TE3's rules ... 84
3.12 Experiment 8: rule tables of switches S7, S6, S3, S5 after establishing

TCP sessions from PC1 and PC2 to PC3 and deploying TE2's rules......................... 85
3.13 Experiment 9: rule tables of switches S7, S5 after establishing TCP sessions

from PC1 and PC2 to PC3 ... 88
3.14 Identifying a conflict pattern by the relations between field values 89
4.1 Local conflict classes of two rules based on their priority, match fields

and action .. 97
4.2 Distributed conflicts' causes and directions... 102
4.3 Device primitives .. 113
4.4 Controller primitives ... 113
4.5 Application primitives ... 113
4.6 Combinations of interaction primitives ... 114
4.7 Mock events based on the interaction primitives .. 115
5.1 Worst-case complexity of the measures to detect or to cope with conflicts 183
5.2 Mapping between the names of conflict classes and numbers 183
6.1 Evaluation results in the designed cases on the MWN's backbone

network topology ... 198
6.2 Evaluation results concerning conflicts related to packet modification in the

designed cases on the MWN's and Stanford's backbone network topologies 198
6.3 Evaluation results in the designed cases on the Stanford's backbone

network topology ... 198
6.4 Evaluation settings for the randomly checked cases ... 199

XIV List of Tables

6.5 Evaluation results in the randomly checked cases on the MWN's backbone
network topology ... 200

6.6 Evaluation results in the randomly checked cases on the Stanford's backbone
network topology ... 200

Acknowledgement

When your mind’s mature,
and independent
in the world of science,
your beloveds, thanks!

It is a process of becoming mature and becoming an independent researcher, there-
fore the outcome of doctoral research is more than just publications and a dissertation
book, it is the researcher himself and his way of thinking. I would like to express my
sincere thanks to Vitalian – my Doktorvater – for sowing these seeds and patiently
growing them with me throughout the years.

The wholehearted support of Professor Kranzlmüller and the LMU-MNM Team
plays the key role to the success of my work. From specialized research problems
to daily matters, just “shout out loud” in the team and there will absolutely be help-
ful echoes. My special thanks go to Professor, Annette, Karl, Nils, Miki, Tobias
(Guggemos), Roger, Minh, Dang, Sophia, Matthias, Tobias (Fuchs), Jan, Pascal, Max,
Markus, Amir, Daniel, Sergej, Michelle, Korbinian.

This interesting research would not come true without the DAAD scholarship. I
am truly grateful for the warm support from DAAD, especially from the nice staffs
at Section ST34 (Natalie Bursinski, Christian Strowa…).

The thoughtful feedback and kind encouragements of Professor Wolfgang Hommel
sparked confidence in my research during the depressing covid-time. And finally,
my disputation could take place with the help of Frau Ulrike Robeck and Professor
Matthias Schubert.

In each stage of my life, I was lucky to have nice and attentive teachers, who
helped shape my mind and propel me towards new horizons of knowledge. I am
greatly indebted to them: thầy Hương, thầy Hoàng, thầy Lim, cô Hồng, thầy Nam,
thầy Mẫn, thầy Vũ…

I wish to thank my colleagues at genua for their support in the last phase of my
dissertation: Simon, Claas, Stefan-Lukas, Alexander, Carsten…The nice policies of
the research team facilitated me a lot in this critical phase.

Oma Christine, Opa Reinhold and Tante Stefanie of my daughter My, they are also
our family with whom I, my wife and our daughter can share everything.

My parents and my great-aunt “Bà Tự” – the plain farmers, and my aunt “Cô Nụ”,
always give me the best. No word can convey my gratitude to them.

My wonderful wife – Trang – und our lovely daughter – My – are always beside
me through everything. We will continue our way together and forever! V

XVI Acknowledgement

Cảm ơn ba má, bà Tự!
Cảm ơn vợ yêu, con gái yêu!
Cảm ơn ông bà, ba mẹ, anh chị em,
cô chú bác cậu dì, quý thầy cô, bè bạn,
những người luôn hỗ trợ, đồng hành, động viên Cường.
Thành công hôm nay xin sẻ chia cùng mọi người! `

Abstract

Traditional networks gain great success but are complex and designed with rigid
functions due to the tight bundle of both hardware and software in each network
device. The Software-Defined Networking (SDN) architecture facilitates the flexible
deployment of these functions by detaching them from network devices to a logically
centralized point, the so-called SDN controller, and maintaining a common commu-
nication interface between them. While promoting innovation for each side, this
architecture induces yet a higher chance of conflicts. Control applications’ intents
are implemented via the SDN controller as network functions, such as routing, fire-
walling, load balancing. Different intents imposed concurrently on a network can
result in conflicts, triggering unexpected network behaviour. The detection of con-
flicts in SDN, which is the prerequisite for their comprehensive handling, is the focus
of this work.

Our analysis shows that the formal analytical approach is not sufficient in detecting
conflicts due to diverse situations arising when operating an SDN. We opt for an
experimental approach by determining a parameter space and a methodology to
perform experiments through that space. We apply the proposed approach in various
network test-beds built on the OpenFlow-based SDN. Each test-bed associates with a
network topology, control applications are co-deployed there and traffic is generated
between end-points, network behaviour is then observed and analysed, the results
are arranged in a dataset of safe cases and potential conflict cases. To cope with
the considerable size of the experiment space, we discuss techniques to produce
“compact” subspaces and develop a framework to perform experiments in a highly
automated manner. Eventually, we have accumulated output from more than 11,700
experiments in our dataset, which cover a number of situations occurring in SDN.

The investigation of the dataset yields a conflict taxonomy composed of various
classes organised in three broad types: local, distributed and hidden conflicts. Each
conflict class is featured by its unique pattern or property necessary for its identifi-
cation. Our results augment the existing research in classifying local and distributed
conflicts. Hidden conflicts caused by side-effects of control applications’ behaviour
are completely new. Unlike local and distributed conflicts, they cannot be discerned
merely from rules in network devices but require additionally insight of the SDN
control mechanics for their recognition.

We introduce the new concept of multi-property set, being a set with multiple
properties, and a method to determine the relationship between sets of this kind
thanks to a relationship combination operator that we name ·r (“dot r”). These are
valuable in that they enable the effective comparison of SDN rules without any lim-
itations faced by existing solutions. Moreover, we exploit these findings in building
rule graphs to examine possible paths along which packet flows traverse. With the
capable means for comparing SDN rules and the rule graph, we present algorithms

XVIII Abstract

to detect conflicts based on their patterns or properties, and develop a conflict de-
tection prototype. The evaluation of the prototype justifies its reliability, indicating
the correctness and the realizability of our proposed concepts and methodologies for
classifying as well as for detecting conflicts.

Altogether, our work establishes a foundation for further conflict handling efforts
in SDN, e. g., conflict resolution and avoidance. In addition, we point out challenges
in connection with this work to be explored.

Zusammenfassung

Traditionelle Netze versprechen viel Erfolg, sind jedoch komplex und mit starren
Funktionen konzipiert, da die Hardware und Software in jedem Netzgerät eng gebün-
delt sind. Die Software-basierte-Netz-Architektur (engl. Software-defined Network-
ing, abk. SDN) erleichtert die flexible Bereitstellung von Netzfunktionen, indem
sie von Netzgeräten zu einem logisch zentralisierten Punkt, dem sogenannten SDN-
Controller, getrennt wird und eine allgemeine Kommunikationsschnittstelle zwis-
chen ihnen aufrechterhält. Dieser Aufbau fördert zwar das Innovationspotential für
jede Seite, führt aber auch zu einer höheren Wahrscheinlichkeit von Konflikten. Die
Absichten der Steuerungsanwendungen werden über den SDN-Controller im Netz
als Netzfunktionen implementiert, wie Routing, Firewalling, Load Balancing. Unter-
schiedliche Absichten, die dem Netz gleichzeitig auferlegt werden, können zu Kon-
flikten führen und unerwartetes Netzverhalten verursachen. Der Umgang mit Kon-
flikten ist daher unabdingbar. Im Fokus dieser Arbeit steht die Konflikterkennung
im SDN, die Voraussetzung für deren umfassende Handhabung ist.

Unsere Analyse zeigt, dass der formalanalytische Ansatz zur Konflikterkennung
aufgrund der vielfältigen Situationen, die beim Betrieb eines SDN auftreten, nicht
ausreicht. Wir entscheiden uns für den experimentellen Ansatz, indem wir einen Pa-
rameterraum und eine Methodik zur Durchführung von Experimenten durch diesen
Raum bestimmen. Wir wenden den vorgeschlagenen Ansatz in verschiedenen Netz-
Testumgebungen an, die auf OpenFlow-SDN basieren. Jede Testumgebung ist einer
Netztopologie zugeordnet, dort werden Steuerungsanwendungen gemeinsam bereit-
gestellt und Datenverkehr zwischen Endpunkten generiert, das Netzverhalten wird
dann beobachtet und analysiert, was die Anordnung der Experimentergebnisse in
einem Datensatz mit sicheren Fällen und potenziellen Konfliktfällen erleichtert. Um
mit der beträchtlichen Größe des Experimentraums umzugehen, diskutieren wir
Techniken, um “kompakte” Unterräume zu erzeugen und entwickeln einen Frame-
work für die hochautomatisierte Durchführung von Experimenten. Schließlich haben
wir in unserem Datensatz die Ergebnisse von mehr als 11.700 Experimenten ku-
muliert, die eine Reihe von Situationen abdecken, die in SDN auftreten.

Die Untersuchung des Datensatzes ermöglicht es uns, eine Konflikttaxonomie zu
erstellen, die aus verschiedenen Klassen besteht, die in drei große Gruppen unterteilt
sind: lokale, verteilte und versteckte Konflikte. Jede Konfliktklasse zeichnet sich
durch ihr einzigartiges Muster oder ihre einzigartige Eigenschaft aus, die für ihre
Identifizierung notwendig ist. Versteckte Konflikte, die durch Nebeneffekte des Ver-
haltens von Steuerungsanwendungen verursacht werden, sind völlig neu. Im Gegen-
satz zu lokalen und verteilten Konflikten sind sie nicht allein aus Regeln in den
Netzgeräten zu erkennen, sondern erfordern zu ihrer Erkennung zusätzlich die Ein-
sicht in die SDN-Steuerungsmechanik. Wir ergänzen die bestehende Forschung zur
Klassifikation lokaler und verteilter Konflikte um ein umfassenderes Ergebnis.

XX Zusammenfassung

Wir stellen das neue Konzept der Multi-Eigenschaft-Menge vor, die eine Menge mit
mehreren Eigenschaften ist, und die Methode, um die Beziehung zwischen solchen
Mengen mithilfe des Beziehungs-kombinationsoperators, den wir ·r (“dot r”) nen-
nen, zu bestimmen. Diese sind wertvoll, da sie den effektiven Vergleich von SDN-
Regeln ermöglichen, ohne dass Einschränkungen bei den anderen Lösungen entste-
hen. Ferner nutzen wir diese Erkenntnisse beim Erstellen des Regelgraphen, um
mögliche Pfade zu untersuchen, die Paketströme durchlaufen. Mit den fähigen Mit-
teln zum Vergleichen von SDN-Regeln und dem Regelgraph präsentieren wir Algo-
rithmen, um Konflikte anhand ihrer Muster oder Eigenschaften zu erkennen, und
bauen einen Prototyp zur Konflikterkennung. Die Auswertung rechfertigt seine Ver-
lässlichkeit, die die Korrektheit und Realisierbarkeit unserer vorgeschlagenen Kon-
zepte und Methoden zur Klassifikation sowie zur Erkennung von Konflikten anzeigt.

Unsere Arbeit hat eine Grundlage für weitere Forschung zur Handhabung von
Konflikten geschaffen, z.B. Konfliktlösung oder -vermeidung. Darüberhinaus weisen
wir auf Herausforderungen im Zusammenhang mit dieser Arbeit hin, die es zu er-
forschen gilt.

1 Introduction

Existing traditional networks have grown rapidly from modest beginnings. Their
interconnection making up the giant irreplaceable today’s Internet demonstrates an
apparent evidence of their success. In general, a traditional network device can be
seen as being composed of the three planes: management, control and data [40].
The data plane consists of various ports for receiving and transmitting packets based
on its forwarding table residing at the same plane, and switching fabrics to trans-
fer packets from the input buffer to the output buffer. The control plane situating
above that represents protocols used to populate forwarding tables in the data plane,
e. g., the OSPF, BGP routing protocols in a router. The management plane contains
software services useful for network administrators to monitor and configure control
functionalities.

The vertical bundle of the control and data planes in each network device makes it
capable of functioning autonomously. The control plane of one device communicates
with its peers residing in neighboring devices to obtain the information necessary
for the data plane to handle network traffic. In many cases, networking can be just
as simple as the mere plug-and-play of devices and cables. This very architectural
approach of distributed control plane is the main substrate that facilitates the fast
growth and massive scalability of the Internet.

However, the mentioned vertical integration also makes the network complex and
hard to manage. To make any change to the network, operators need to configure
each individual network device separately with low-level and vendor-specific com-
mands. The network management task, to some extent, can be compared to the
“mastery of complexity” [69]. In addition, the architecture restricts network innova-
tion to a small arena heavily dependent on a limited number of dominant network
device manufacturers. New features for network devices could only be implemented
by device vendors, the process often takes months or years from the feature request
time until it is available in a new product or new firmware. This is frustrating from
the view of network researchers and administrators, and also a big hindrance to net-
work innovation. These limitations push the search for alternatives to traditional
networking approach, one of those being Software-Defined Networking.

Experiencing more than two decades of evolution period since the presentation of
active networks [105] in the early 2000s, the architectural approach that emphasizes
the role of software in running networks, so-called Software-Defined Networking
(SDN), has now got more traction in the networking community. In SDN, the con-
trol and data plane are decoupled from each other and are able to evolve relatively
independently, which implicates a higher rate of innovation for each. Although there
is no consensus on the definition of SDN, literature [40, 74, 42, 57, 97] commonly
characterises its inherent features as follows:

2 1 Introduction

• control functionality is detached from network devices, making them simple packet
forwarding elements,

• forwarding decisions are flow-based in contrast with destination-based as in tradi-
tional networks,

• control logic is logically centralized in an (external) entity, the so-called SDN con-
troller,

• the network is programmable through control applications running on top of the
controller.

The concept of flow can be understood as a sequence of packets between a source
and a destination, which share the same attributes. The mentioned attributes include
fields in a protocol header, such as IP addresses, MAC addresses, status bits, they can
also be the ingress port of packets arriving at a network device. A flow is expressed
as a rule (or a flow entry) in the rule table of each network device on the path from
the source to the destination, and can be represented differently in these devices.

Control App 1 ...Control App 2

SDN Controller

Northbound Interface

Southbound Interface

SDN Devices

Event Event

Method Method

Request

Instruction

Rule table Rule table

Data plane

Control plane

Figure 1: SDN architecture

Unanimous consent on SDN architec-
ture has not been achieved though com-
mon views exist [38, 42, 91]. The sim-
ple form extracted from these common-
alities, which underpins our work, is il-
lustrated in Figure 1. The data plane
contains SDN devices, also known as
SDN switches, being simple forwarding
elements without embedded control pro-
grams. Network intelligence is removed
from them to a logically centralized con-
troller. Packets are handled in these
“dumb” switches based on their rule ta-
bles, whose rules consist of control in-
formation of different layers (e. g., layer
2–4) of the OSI model [47] and associ-
ated actions (e. g., forwarding matched packets to a specific port or to the controller,
dropping, or modifying some header fields). Standardized interfaces are introduced
between the controller and switches for their communication. The controller is a
software stack that controls SDN devices. One important function of the controller
is to provide the topology service for maintaining the consistent overview of the
network. Any change in the network, such as introducing or removing devices, or
disconnecting links, should be reflected immediately in the network overview at the
controller. The controller changes configurations of network devices based on ap-
plications’ demands. Network functions, e. g., MAC learning, routing, enforcement
of QoS or security, are programmed by control applications, which logically reside

1.1 Conflicts in SDN 3

above the controller. Control applications interact with the controller via its north-
bound interfaces to modify configurations of SDN devices.

The mechanics of SDN is represented by the arrows in Figure 1. A control applica-
tion via its method asks the controller to deploy new network functions in the data
plane, the controller in turn sends instructions to the data plane’s devices to install
new rules in the relevant devices. SDN devices can also send requests to the controller
for instructions on handling certain traffic types. The controller then generates events
for control applications, which respond via their methods. These methods are trans-
lated by the controller into instructions for the requested devices.

Any innovation brings both opportunities and challenges. SDN facilitates the op-
erations and management of computer networks as its distinguished revolution to
the conventional networking approach. By employing the flow concept for granular
forwarding decision, an SDN device is able to theoretically function like any network
device, such as switch, router, firewall, load balancer, or NAT device. Further, the
capability of being programmed renders the implementation of new network features
in SDN as simple as writing a program without having to rely much on network ven-
dors, thus promoting network innovation. On the other side of the coin, the SDN
architecture reveals appreciable issues. The centralized controller implies a single
point of failure. The unavailability of the controller causes the loss of the communi-
cation channel between control applications and network devices, possibly making
the data plane irresponsive to incoming traffic or behave in an unexpected manner.
Another threat is that the compromise of the controller entails the full control of the
whole data plane by attackers, which is much worse compared to the threat surface
exposed by the distributed control plane in traditional networks. Besides, since con-
trol applications are independent from each other, each could ask the controller to
realize its intent unbeknown to the others, which likely leads to conflicts in the data
plane. These pros and cons of SDN are by all means not an exhaustive list. Never-
theless, they quote a subset of the imperative areas for researching. Our work lays
focus on conflicts in the data plane induced by diverse control applications’ intents.

1.1 Conflicts in SDN
While the SDN architecture shows many enhancements over that of traditional net-
works, it introduces a bigger challenge in terms of conflicts among control applica-
tions. Network functions are implemented by control applications atop the controller,
which are translated by the controller into processing rules to be installed in the data
plane’s devices. Exemplary network functions include packet filtering, intrusion de-
tection and mitigation, load balancing and so on. These functions are bound to
network appliances with fixed positions in a traditional network. Implicitly, the in-
tents associated with these functions are separated. Any issue, observed after traffic
is processed by some function, can easily be ascribed to that function and the cor-
responding appliance. In contrast, SDN control applications can implement these

4 1 Introduction

functions on arbitrary devices; the execution of a function can even be distributed
across several devices. The trade-off for flexibility is thus the potential for network
errors that cannot be identified easily.

Since each control application intends the best for the network in its own per-
spective, conflicts are likely when the SDN controller simply accepts requests and
deploys them in the network. In practice, the controller may assume coordinating
control applications. Still, conflict handling that forms the fundamentals for such a
coordinator requires a scrutiny.

1.1.1 A demonstration of conflicts in SDN

Tra�c source

End-point

SDN controller

Target 1

Target 2

SDN device

Device 1

Device 2 Device 3

Device 4

Device 5

Figure 2: Network topology for experimenting
conflicts [54]

Concrete experiments were conducted to
illustrate conflicts in SDN [54]. A sim-
ple test-bed was constructed consisting
of five switches and three end-points as
sketched in Figure 2, on which two con-
trol applications including an End-point
Load Balancer (EpLB) and a Path Load
Balancer (PLB) were deployed. EpLB bal-
anced UDP traffic over several targets
by modifying the destination network ad-
dress of relevant packets. PLB distributed
traffic addressed to a target on several
paths in a round-robin manner. Fig-
ure 3a) shows the expected network be-
haviour when EpLB was deployed alone
onDevice 1 to balance traffic over Target 1
and Target 2. The case of deploying only
PLB on Device 1 to balance traffic over
three paths through Devices 2, 3, 4 is il-
lustrated in Figure 3b). Interestingly, the co-deployment of these two applications
leads to unexpected results depending on their start order as depicted in Figures 3c
and 3d.

Further experiments were carried out with varying order in executing the two
load balancers, different targets and changing positions of EpLB in the topology. The
outcome was alarming: 15 out of 16 cases were problematic [54]. Preliminary analysis
indicates that conflicts depend not only on the overlapping address space but also on
execution points of network functions in the topology, and on the deployment order
of control applications.

1.2 Research questions, scope and challenges 5

Controller

50%

50%

Targets

50%

50%

Targets

EpLB PLB

Controller

PLB EpLB

Controller

PLB

Controller

EpLB

Targets

33%
33%

33%

b) Path load-balancinga) End-point load-balancing

0%33%
33%

33%
0%

100%

d) Con�ict when
End-point LB starts �rst

100%

0%

Targets

c) Con�ict when
Path LB starts �rst

Tra�c Tra�c

1

2 3 4

5

T1

T2

Tra�c Tra�c

Figure 3: Proof-of-conflict: anomalous network behaviour identified as conflicts [108]

1.1.2 Conflict definition

 App.1 App. 2 App. 2App.1

Controller Controller Controller

SDN Devices SDN Devices SDN Devices

Figure 4: Definition of conflicts

The above conflict example exemplifies
the notion of conflicts targeted in this
work. We define a conflict as an anomaly
caused by interference between differ-
ent control applications: if the execu-
tion of two or more applications together
provokes undesired network behaviour
while running each of them alone is errorless, there is a conflict. This concept is
illustrated in Figure 4.

Our definition of conflict delimits its scope from the concept of bug, which refers
to a different kind of anomaly pertaining to an application and understood as the
term commonly used in programming. We discuss in Chapter 2.2 more on bugs in
SDN.

1.2 Research questions, scope and challenges
Conflicts render network behaviour erratic and unreliable, consequently, the control
application’s behaviour is deviated from its design. This issue is even worse in SDN
than in traditional networks as mentioned above. It is vital to handle conflicts, which
indicates either to avoid conflicts from occurring, or to resolve them once happen-
ing. These two approaches have as a prerequisite conflict detection, whose goal is to
determine the existence of conflicts in a given set of control applications and among
their rules deployed in the network.

6 1 Introduction

A comprehensive study on detection of conflicts in SDN is the focus of this work.

1.2.1 Research questions
This work addresses the following research questions (RQ).

• RQ1: What is a suitable method to examine conflicts in SDN?
• RQ2: How can conflicts between control applications in SDN be classified based

on their rules?
• RQ3: Given a set of rules from different control applications that are deployed or to

be deployed in an SDN, how many conflicts exist therein according to a provided
set of conflict classes? In case there exist conflicts, the following sub-questions
need to be answered:

– Conflict classification: to which conflict class does each of them belong?
– Conflict localization: which rules are involved?

The RQ3 and its sub-questions can be illustrated via the interfaces of a conflict
detector depicted in Figure 5. The additional input including the control applica-
tions’ information and the topology description is specified based on our analysis
and implementation of the conflict detector in this work, which are elaborated in
Chapter 5.

 Con�ict
Detector

data plane's rule set

topology description

con�icts
location of con�icts

class of con�icts

0

n>0

control apps' info

con�ict classes

Figure 5: Input and output of the conflict detector

Our survey of research on conflicts in SDN (see Chapter 2) shows that they have been
examined mostly based on specific use cases and analytical approach. Every now and
then, new kinds of conflicts are discovered. This raises a search for a suitable method
of studying conflicts in SDN tøachieve a comprehensive result, leading to RQ1. Once
detected, a conflict needs to be classified based on its features to support handling
efforts, e. g., conflict resolution, thus RQ2 is posed. The detection of conflicts, being
our goal, corresponds to RQ3. Our work answers these RQ sequentially: we first
determine a method to examine conflicts, then apply it to obtain a conflict taxonomy
of various classes, therefrom we demonstrate how conflicts can be detected.

1.2.2 Scope of this work
We examine conflicts within an SDN controlled by a single controller, the rule sets in
the network are installed by different control applications via that controller. We do

1.3 Results 7

not delve into the cooperation between multiple SDN controllers governing different
network segments.
We perform the detection of conflicts between control applications, not between man-
agement ones. The former concern themselves with the processing and forwarding of
packets while the latter involve in monitoring, configuring network devices and their
maintenance. Haleplidis et al. provides a detailed discussion on these two aspects of
SDN [42].

Conflict detection can be conducted at different levels ranging from rules in the
data plane (low level) to intents of control applications (high level). This work focuses
on the study of conflicts at the rule level since its thorough examination is still missing,
while the conflict exploration at higher levels needs to be founded on the low level
ones.

1.2.3 Challenges
This work has encountered a lot of difficulties along its progress. First, we sought an
appropriate dataset to experiment conflicts in SDN and to build a conflict detection
program, yet there is no existing one. The dataset required for our study needs to
portray the condition in which a conflict occurs, including the control applications
used, their priority, their start order, the target SDN devices of each application, the
tested network topology, the traffic generated in the network, the detected conflict
classes and locations.

We find that the formal analytic approach of studying conflict in SDN is not
sufficient and adopt the experimental approach supplemented by the analytic one
(cf. Chapter 3.1). This entails a wide spectrum of control application types/character-
istics to be inspected and experimented. Moreover, as we show in Chapter 3.2.1, the
experiment space would explode in an unmanageable magnitude without a proper
mechanism to reduce its size. The scarcity of existing applications implemented for
a specific SDN platform adds more complexity to the chosen approach.

Conflict handling by itself is a complex classic problem from detection to orches-
tration, resolution or avoidance. Research on conflicts in SDN is limited at the time
of this writing. This is conceivable due to technological limitations as there is no uni-
versal SDN realization and even no unanimous agreement on the SDN definition.

1.3 Results
In the course of addressing the research questions posed in Section 1.2.1, we have
made contributions to the existing knowledge of conflicts in SDN. We found a suit-
able method to study conflicts in SDN by combining both analytic and experimental
approaches. We establish a conflict taxonomy which is more comprehensive than the
hitherto discovered in literature and also includes a completely new conflict branch,
namely hidden conflicts. We propose effective methods to detect conflicts in a given

8 1 Introduction

setup based on our conflict taxonomy, their correctness is justified via the realization
and evaluation of a conflict detection prototype.

1.3.1 A suitable method to examine conflicts in SDN
Research on conflicts based on specific use cases and the analytical approach as con-
ducted in related work (see Chapter 2.3.3) appears insufficient, new conflict types
emerge every now and then. We compare the SDN model with that of distributed
computing systems in principle and notice that the software engineering techniques
applicable in the latter for verifying and evaluating a program cannot be applied in
SDN though similarities between them exist. On the contrary, concrete use cases
arising when operating SDN need to be considered as the base for researching con-
flicts. From our analysis of the SDN model, we infer an experimental parameter space
and a general methodology to conduct experiments through that space. Details are
presented in Chapter 3.2.

1.3.2 A framework for automating experiments in studying
conflicts

We develop a framework that performs experiments and recognises unexpected net-
work behaviour in a highly automated manner. Various experimental subspaces are
explored by this framework, covering a large number of settings concerning net-
work topologies, control applications, end-point combinations and other aspects.
The results obtained from more than 11,700 experiments are collected in our pub-
lished dataset1. The unexpected behaviour arising during the course of experimenting
logged in the dataset is analysed to determine if new conflict types come up. More
details are provided in Chapter 3.4.

1.3.3 Conflict classification
The analysis of anomalies in the experiments allows the establishment of a conflict
taxonomy shown in Figure 6. Three broad categories include local conflicts, dis-
tributed conflicts and hidden conflicts, each is sub-categorised in various conflict
classes based on their characteristics. Concrete experiments illustrating conflicts are
provided in Chapter 3.6 and details on each conflict class with its discernible patterns
or properties are presented in Chapter 4.

Local conflicts
These classes of conflicts arise due to the rule overlap local to a switch’s rule table. An
example is the generalization conflict class between two rules i and j which belong

1 https://github.com/mnm-team/sdn-conflicts

1.3 Results 9

to two different control applications and exhibit the pattern: “the priority of rule i is
smaller than the priority of rule j, the match space of rule i is a superset of that of
rule j, their actions differ”. Without the presence of rule j, all traffic matching rule i
is handled according to the action of this rule; the presence of rule j renders a subset
of traffic matching rule j, thus also matching rule i, to be handled according to the
action of rule j, which does not fulfill rule i. As a result, two control applications
installing these two rules cannot be satisfied at the same time, which constitutes a
conflict.

Local conflicts have been examined extensively in literature, e. g., in the work of
Pisharody [87] and Hamed et al. [43]. Our work complements theirs by a systematic
analysis and produces a comprehensive result.

Con�icts in SDN

Local Con�icts Hidden Con�ictsDistributed Con�icts

Generalization

Shadowing

Redundancy

Correlation

Overlap

Downstream Tra�c Looping

Downstream Tra�c Dropping

Event Suppression
by Local Handling

Event Suppression
by Changes to Paths

Action Suppression
by Packet Modi�cation

Undue Trigger

Tampering with
Event Subscription

Downstream Packet Modi�cation

Upstream Packet Modi�cation

Changes to Paths

Upstream Tra�c Dropping

Upstream Tra�c Looping Event Suppression by
Upstream Tra�c Looping

Event Suppression by
Upstream Tra�c Dropping

Figure 6: The taxonomy of conflicts in SDN

Distributed conflicts
As opposed to local conflicts, distributed conflicts are caused by rules from different
control applications in different rule tables, possibly belonging to different devices
across the network. For example, when deploying a control application, the traffic be-
tween two end-points A and B is delivered successfully; however, the co-deployment
of that control application with another causes that traffic stuck in a loop.

Distributed conflicts have been researched in literature in different forms other
than a conflict-related problem, e. g., network invariants [52], security enforcement [88,
95], bugs [50], therefore, the existing results are not suitable for conflict handling ef-
forts. We introduce an effective method to detect distributed conflicts and to facilitate
their further handling.

10 1 Introduction

Hidden conflicts
Throughout the experiments, we have discovered a completely new conflict type,
which we name hidden conflicts. Unlike local and distributed conflicts, hidden con-
flicts cannot be discerned by analysing alone rules in the data plane but need the
insight of the control mechanics from the control plane for their detection.

Device 2 Device 1 App. 1 App. 2

noti�cation of �ow 2

noti�cation of �ow 1

missing
noti�cation

rule 1234

�ow 1

�ow 2

�ow 1

�ow 2
�ow 2

noti�cation of �ow 1
rule 1

rule 1

rule 2

out: Dev.2

App.1
and
App. 2

App. 2
alone

Figure 7: Interactions of an application in isolation
and when conflicting with another [25]. For clarity,
the controller intermediary has been omitted.

We give an example of a hidden con-
flict between two control applications,
say App 1 and App 2. App 2, when de-
ployed alone, reacts to the notifications
of the traffic flows 1, 2, 3 and 4 by in-
stalling the four rules 1, 2, 3, 4 respec-
tively in device 1, this is depicted in the
upper box of Figure 7. App 1 in its iso-
lated execution installs rule 1234, which
matches also the traffic flows 2, 3, and
4. Consider the case in which rules from
App 2 have higher priority and different
actions compared to rule 1234 from App
1. The matching scope of rule 1 and rule
1234 is illustrated in Figure 8. In their co-
deployment, App 1 installs rule 1 in device 1 upon the arrival of flow 1, App 2 installs
rule 1234 also in this device subsequently. When flow 2 comes to device 1, rule 1 does
not match it but rule 1234 does, therefore, device 1 does not generate the notification
of flow 2 to the control plane. As a result, App 2 does not receive the notification of
flow 2 and does not install rule 2 as it did in the isolated execution, its intent is thus
not fulfilled, which constitutes a conflict as shown in the lower box of Figure 7. This
example is reproduced from experiment 6 in Chapter 3.6.3.

Figure 8: Scope of the rules issued by the
applications [25]

Rule 1 and rule 1234 expose a local
conflict belonging to the generalization
conflict class (see Section Local conflicts
above), whose effect according to this lo-
cal conflict class is that the broader rule
(rule 1234) defers to the more specific one
(rule 1) if the incoming traffic matches
both. In the above example, however, the
presence of the broader rule deprives the notifications required by a control applica-
tion to function correctly. The analysis of rules suggests an effect differing from the
actual consequence on the control application, which requires knowledge of the con-
trol plane’s operation for its recognition. In other words, a conflict, as a main effect
derived from the rules’ relationship in the data plane, can also have its side-effect.
We refer to conflicts arising from side-effects as hidden conflicts.

1.3 Results 11

To exhaustively examine hidden conflicts, we analyse the operational model of SDN
based on its primitives and determine possible disruptions of the control plane’s
mechanics. Thereby, we are able to establish the causes and effects of different kinds
of hidden conflicts and classify them accordingly.

1.3.4 Multi-property set and the relationship combination
operator ·r

SDN rules need to be compared to detect conflicts and attribute each to a conflict
class. Specifically, their priority, match fields and actions are collated. The compar-
ison between the priority and actions of SDN rules is intuitive while their match
fields’ comparison is not that simple. The match fields can contain multiple prop-
erties, e. g., source IP address, destination IP address, source TCP port, destination
TCP port; they can be expressed differently from rule to rule; their comparison re-
sults corresponding to their relationship can be disjoint, equal, subset, superset or
intersecting. Due to the rigidity of the existing solutions that hinders their appli-
cation in comparing general match fields (see Chapter 2.3.4), we introduce the new
concept of multi-property set and the relationship combination operator ·r.

A multi-property set is created from the intersection of different single-property
sets. For instance, consider a multi-property set of flowers in a garden that have five
petals, red color and are scentless, this set contains the flowers with three properties:
number of petals, color and scent. It can be constructed by intersecting the three
single-property sets: the first set of five-petal flowers, the second set of red-color
flowers and the third one of scentless flowers. The match fields of an SDN rule
correspond to a multi-property set.

The relationship combination operator ·r formulates the relationship between the
match fields of two SDN rules based on the relationship of each single-property set
associated with each field in the match. The resulting relationship combined by the
·r operator is either disjoint, equal, subset, superset, or intersecting.

These concepts are general and can be applicable for any kinds of multi-property
sets beyond the scope of our work, e. g., in determining the relationship between
the conditions of different Access-Control List (ACL) rules or IPTables2 rules, which
is necessary for identifying conflicts or misconfiguration in a given rule set. Their
details and how we apply them in comparing SDN rules are presented in Chapter 5.

1.3.5 The algorithms to detect conflicts based on matchmap,
actmap and rule graph

Match fields and actions can be specified distinctly between SDN rules, this compli-
cates their comparison to detect conflicts. For example, rule i of a routing application

2 https://linux.die.net/man/8/iptables

12 1 Introduction

describes only the destination IP address in its match and the output port in its ac-
tion, while rule j of a load balancing application has the destination IP address and
the destination TCP port in its match, its action specifies how it modifies the desti-
nation IP address and the output port. We need to put the rule specification on the
same scale, i. e., the same format, to be able to apply the concept of multi-property set
and the relationship combination operator ·r for their automatic comparison. The
matchmap and actmap concepts are introduced for this purpose (see Chapter 5.2).
We present additionally the rule graph (Chapter 5.4) to examine possible paths along
which traffic traverses, this enables the identification of conflicts concerning rules in
multiple devices. Our algorithms to detect conflicts based on these means (Chap-
ters 5.5, 5.6 and 5.7) do not suffer from the rigid constraints that those similar in
literature do (cf. Chapter 2.3.4).

1.3.6 Conflict detection prototype
Having established the methods to detect conflicts, we implement a conflict detec-
tion prototype (Chapter 6.1) based on OpenFlow SDN as a proof-of-concept for this
work. The evaluation of the prototype (Chapter 6.2) justifies its soundness and com-
pleteness in detecting conflicts, which indicates the realizability, the applicability and
the usefulness of our introduced concepts.

1.3.7 List of publications
Throughout the course of our work, we have published the following papers and
articles, four of them contribute directly to this dissertation and two are related.

Publications contributing to the dissertation
• CUONG NGOC TRAN and VITALIAN DANCIU: On Conflict Handling in Soft-
ware-Defined Networks. In Proceedings of the 2018 International Conference on
Advanced Computing and Applications, pages 50–57, Ho Chi Minh City, Vietnam,
2018. CPS, https://doi.org/10.1109/ACOMP.2018.00016 [110]

Summary: We demonstrate that the study of conflicts in SDN based on the analyt-
ical approach is not sufficient but requires in addition the experimental approach.
We present a parameter space for experiments, analyse the challenges of the chosen
approach and a methodology to conduct experiments through the space.

Own contribution: We adopt the same approach to study conflicts in this disser-
tation, i. e., we analyse the limitations of the analytical approach (cf. Chapter 3.1)
and opt for the experimental approach (cf. Chapter 3.2). The results of this paper
are extended in the subsequent publication [108].

1.3 Results 13

Other contributors: Vitalian Danciu proposed the SDN operational model and
compared it with the model of distributed computing systems, which revealed the
obstacles in applying the analytical approach for studying conflicts in SDN. A part
of the parameter space was derived from this SDN model.

• CUONG NGOC TRAN and VITALIAN DANCIU: A General Approach to Conflict
Detection in Software-Defined Networks. SN Computer Science, 1(1):9, Jul 2019,
https://doi.org/10.1007/s42979-019-0009-9 [108]

Summary: This journal article is an extension of the above paper [110]. We improve
our analysis of the SDN operational model and introduce a more comprehensive
parameter space together with a methodology to iterate through it. Concrete exper-
iments are conducted to demonstrate the feasibility and soundness of the proposed
approach.

Own contribution: The results from this article are fundamentally taken over in
this dissertation, including the experimental approach, the parameter space, the
methodology for performing experiments (cf. Chapters 3.1 and 3.2), and a part of
the conducted experiments (cf. Chapter 3.6). Compared to the article, these as-
pects are addressed in a more comprehensive manner in the dissertation, e. g., the
size of the parameter space is better illustrated in Table 3.2 in Chapter 3.2.1 and
more concrete experiments are provided in Chapter 3.6.3.

Other contributors: In addition to his contributions in the above paper [110], Vital-
ian Danciu also took charge of refining the content of this article.

• CUONG NGOC TRAN and VITALIAN DANCIU: Hidden Conflicts in Software-
Defined Networks. In Proceedings of the 2019 International Conference on Ad-
vanced Computing and Applications (ACOMP), pages 127–134, Nha Trang, Viet-
nam, 2019. IEEE, https://doi.org/10.1109/ACOMP.2019.00027 [109]

Summary: We present hidden conflicts occurring due to the side-effects of rules
deployed in the data plane. We analyse the SDN interaction primitives to deter-
mine possible causes of hidden conflicts, then perform experiments that support
our analysis. In an effort to predict hidden conflicts, we sketch the conflict predic-
tion prototype employing the speculative provocation method.

Own contribution: Hidden conflicts are a completely new conflict branch in the
conflict taxonomy. We adopt the results from this paper as part of this disserta-
tion, which encompasses i) the introduction of hidden conflicts (cf. Section 1.3.3),
ii) their analysis and classification (cf. Chapter 4.3) and iii) some experiments il-
lustrating hidden conflicts (cf. Chapter 3.6). This paper is extended in the sub-

14 1 Introduction

sequent publication [25]. The results in the dissertation are more comprehensive
compared to those from this paper, e. g., two more hidden conflict classes are pre-
sented, namely event suppression by upstream traffic looping and event suppression
by upstream traffic dropping (cf. Chapter 4.3.3).

Other contributors: Vitalian Danciu performed the analysis of the SDN interaction
primitives to derive the causes of hidden conflicts and compared this new conflict
type to the existing ones.

• VITALIAN DANCIU and CUONG NGOC TRAN: Side-Effects Causing Hidden
Conflicts in Software-Defined Networks. SN Computer Science, 1(1):278, Aug 2020,
https://doi.org/10.1007/s42979-020-00282-0 [25]

Summary: This article extends the above paper [109] in that we provide more
details of the hidden conflict prediction prototype, discuss the characteristics of
hidden conflicts, the limitation of the centralized prediction and suggest the inte-
gration of the hidden conflict prediction function in control applications.

Own contribution: Besides the results from the above paper [109], the outcomes
from this article are inherited in this dissertation to argue the choice of methods
for detecting hidden conflicts (cf. Chapter 5.7). Because of the limitations of the
prediction approach, we opt for detecting hidden conflicts based on the input from
control applications in this dissertation, instead of predicting hidden conflicts as
mentioned in this article.

Other contributors: In addition to his contributions mentioned in the above pa-
per [109], Vitalian Danciu also pointed out some limitations of the hidden conflict
prediction approach and refined the content of this article.

Publications beyond the scope of the dissertation
• CUONG NGOC TRAN and VITALIAN DANCIU: Privacy-preserving Multicast to
Explicit Agnostic Destinations. In Proceedings of the Eighth International Confer-
ence on Advanced Communications and Computation (INFOCOMP 2018), pages
60–65, Barcelona, Spain, 2018. IARIA XPS Press [111].

Summary: This paper presents MEADcast, a sender-centric multicast protocol that
is able to maintain the privacy of the participants in a multicast session and sup-
ports gradual deployment with provable increasing efficiency proportional with
the number of MEADcast-enabled routers. The recipients are agnostic of each
other, thus preserving privacy, and is not required to support the protocol. The
sender performs the discovery of MEADcast-enabled routers and transitions from
unicast transmission to MEADcast transmission in the presence of MEADcast-

1.4 Methodology and dissertation's structure 15

enabled routers. If there is no MEAD-cast enabled router, the sender transmits
messages to recipients using the normal unicast scheme.

• VITALIAN DANCIU and CUONG NGOC TRAN: MEADcast: Explicit Multicast
with Privacy Aspects. International Journal on Advances in Security, 12(1&2):13–28,
Aug 2019, https://www.iariajourn-als.org/security/tocv12n12.html [24].

Summary: This journal article extends the above paper [111]. We provide in addi-
tion the detailed design of the MEADcast protocol, illustrate its mechanics through
examples, and the required APIs to implement the protocol in practice.

1.4 Methodology and dissertation's structure
The methodology to tackle the conflict detection problem is presented in Figure 9
partitioned into segments representing the dissertation’s structure. Specifically, we
employ the following measures.

1. Conducting literature review for relevant research (Chapter 2).
To date, a handful can be listed, e. g., [71, 43, 86], they range from conflicts in
distributed systems, in traditional networks and in SDN. Research on conflicts in
SDN is limited and requires further investigation.
Result: existing conflict handling solutions, conflict classes in general and in SDN.

2. Approaches and experiments (Chapter 3).

• Choosing an appropriate approach to study conflicts in SDN.

– Analysing the analytical approach. This formal approach turns out to be
inadequate in exploring conflicts in SDN and needs to be augmented by the
experimental approach.

– Determining an experiment space with different configurations regarding
control applications, network topologies, combinations of end-points.

– Conceiving a methodology to perform experiments through the experiment
space.

Result: the choice of the experimental approach, a parameter space and a
methodology to carry out experiments through that space.

• Conducting experiments.

– Selecting an application suite for experiments.
– Building SDN test-beds.
– Performing experiments throughout the parameter space using the proposed

methodology. Note that, conflicts can only occur in the presence of at least

16 1 Introduction

Conduct literature review

Chapter 2:
Related Work

Chapter 3:
Approaches and
Experiments

Chapter 4:
Con�ict
Classi�cation

Chapter 5:
Con�ict Detection

Chapter 6:
Prototype and
Evaluation

Con�ict detection prototype

Evaluate the con�ict detection prototype

Build the con�ict detection prototype

Conceive the algorithms to detect con�icts

– Concepts: Multi-property set, .r operator, matchmap,
actmap, rule graph

– Algorithms

Local, distributed, hidden con�icts and
their patterns, properties

Experimental approach, parameter space,
methodology for experimentation

Select an appropriate approach to study con�icts in SDN

Study con�icts by experimental approach

Dataset containing safe and
potential con�ict cases

Existing con�ict classes,
con�ict handling solutions

Framework to automate
experiments

Classify con�icts

Figure 9: Methodology

1.4 Methodology and dissertation's structure 17

two control applications according to our definition (see Definition 1.1.2), ap-
plications’ bugs (cf. Chapter 2.2) are excluded from the experiment process.
In each experiment, the expected network behaviour is compared with the
observed network behaviour after deploying the applications together to rea-
son about conflicts. Since the parameter space is immense, a mechanism to
reduce its size and to automate the experiments is presented.

– Recording the characteristics of each conflict case, they are reflected by the
configuration of the experiment, the way that conflicts happen and the data
plane’s rule tables. Conflicts can be reasoned therefrom, e. g., a contradict-
ing rule set in an SDN device can be attributed to the configuration of the
applications or to the transport protocols used by the end-points.

Result:

– A framework to automate experiments through the parameter space accord-
ing to the methodology from the previous step.

– A dataset in which each data entry corresponding to an experiment setting
is marked as safe or as potential conflict. The data entry for the case of poten-
tial conflict logs the condition/environment of conflicts, how and where they
occur.

3. Analysing the dataset and classifying conflicts (Chapter 4).
Based on their characteristics, conflicts are divided in different groups, forming
a conflict taxonomy. The existing conflict classes and the classification strategies
from literature in the first step are also taken into account.
Result: a conflict taxonomy including local, distributed and hidden conflicts, and
their patterns, properties.

4. Detecting conflicts (Chapter 5).
Conceiving the methods and algorithms to detect conflicts based on the results
from step 3.
Result:

• The introduction of the new concepts that are employed in detecting conflicts:
multi-property set, relationship combination operator ·r, matchmap, actmap and
rule graph.

• Algorithms to detect conflicts.

5. Proof of concepts and evaluation (Chapter 6).

• Building a conflict detection prototype based on the concepts and algorithms
proposed in step 4.
Result: a conflict detection prototype.

18 1 Introduction

• Evaluating the prototype. The prototype is evaluated based on designed cases
and randomly checked cases. In the designed cases, a set of rules are deployed
in the chosen network topologies with known conflict types and location, the
detection results by the prototype are verified against these designed conflicts.
In the randomly checked cases, the prototype is integrated into the framework
for automating experiments from step 2, then a massive number of experiments
are conducted automatically by the framework with various settings concerning
network topologies, control applications, end-point combinations…We select
randomly samples and control the detection results of those.

We conclude our work and share our view on future prospects in Chapter 7.

2 Related Work

We delineate salient work through the SDN history that shapes today’s SDN architec-
ture, which is a premise for our work. Next, we distinguish the concepts of bug and
conflict to underline our focus. The related research on conflicts in distributed sys-
tems management and in traditional networks is then presented. Finally, we analyze
the relevant work on conflicts in SDN, mainly from which our work benefits.

2.1 A sketch of the SDN history
The effort for flexible network programmability has been made since years ago. Ten-
nenhouse and Wetherall introduced the concept of Active Networking in 1996 [105]
as a radical approach to network control. A programming interface (or network API)
was envisioned to expose resources (e. g., processing, storage, and packet queues) on
individual network nodes, and to support the construction of custom functionality
to apply to a subset of packets passing through a node. The idea was further devel-
oped in two programming models: capsule [114] and programmable router/switch
model [96, 7]. Active Networking did not see widespread deployment possibly due
to the lack of a clear path to development.

The next movement witnessed the separation of the control and data planes to
ease the network management tasks focusing narrowly on routing and configuration
management, such as debugging configuration problems and predicting or control-
ling routing behaviour. This trend catalyzed the introduction of i) an open interface
between the control and data planes, such as the ForCES (Forwarding and Control El-
ement Separation) interface [117] and ii) logically centralized control of the network,
proposed in the Routing Control Platform (RCP) [14], SoftRouter [58] architectures
and the Path Computation Element (PCE) [30] protocol. Although there was some
progress from the industry prototypes and standardization efforts, this trend still did
not receive widespread adoption. Dominant equipment vendors had little incentive
to promote open data-plane APIs which could facilitate new entrants into the mar-
ketplace. Besides, the need to rely on existing routing protocols to control the data
plane limits the applications that programmable controllers could support.

The advent of OpenFlow [70] made an important milestone. With experience and
lessons learnt from the previous endeavours and the well-timed availability of open
APIs from switch chipset vendors like Broadcom, OpenFlow balanced the tension
between research and pragmatism in that it facilitates more functions and it is im-
mediately deployable. Still, it needs to be enriched with more applications and use
cases. The term “Software Defined Networking” was coined by Kate Greene in 2009
in an article about the OpenFlow project at Stanford University1.

1 https://www.technologyreview.com/technology/tr10-software-defined-networking/

20 2 Related Work

OpenFlow employs a protocol-dependent mechanism in the data plane to handle
packets, in other words, it targets fixed-function switches that recognize a predeter-
mined set of header fields and that process packets using a small set of predefined
action. This eventually restricts its innovation capability, e. g., there is no way to
support a new protocol containing header fields that are not yet defined by the as-
sociated OpenFlow specification. This explains why the numbers of actions and
match fields keep increasing with the OpenFlow’s evolution: OpenFlow version 1.5
has 44 match fields and 19 actions, while the numbers in OpenFlow version 1.0 were
12 and 10, respectively. Perceiving this limitation, Protocol Oblivious Forwarding
(POF) [98, 61] and Programming Protocol-Independent Packet Processors (P4) [12]
were introduced with the goal of decoupling network protocols from packet forward-
ing and make the data plane reconfigurable, protocol-independent, programmable,
and future-proof. Specifically, POF uses the {offset, length} tuple to form a search
key to match a packet and also to encode actions that need to handle protocols
e. g., pushing a VLAN header, changing destination IP address; offset indicates the
skipped bits from the current cursor within the packet and length indicates the num-
ber of bits that should be included in the key starting from the offset position. P4
extends OpenFlow with a parser and table configuration component that is capa-
ble of compiling a configuration expressed in a P4 program and (re)configuring an
SDN device to instruct it how packets are to be processed, the parser is a finite state
machine that walks an incoming byte-stream and extracts headers based on the pro-
grammed parsing graph. As both approaches have attracted intensive interest from
the Open Networking Foundation (ONF), they are considered in ONF’s project on
protocol-independent forwarding (PIF)2. At the time of this writing, both P4 and
POF are still in their early stages of adoption with restricted availability for network-
ing research community. OpenFlow has been widely developed and well supported
while also possessing fundamental characteristics similar to P4 and POF for studying
conflicts, therefore we choose OpenFlow for our experiments and prototype devel-
opment. More about the SDN history and influencing projects are presented in [31,
48].

The management aspect involving monitoring, configuring and maintaining net-
work devices tends to be less explored in literature related to SDN. The SDN Research
Group (SDNRG) from Internet Research Task Force (IRTF) presents a comprehen-
sive SDN layer architecture taking into account both the control and management
concerns [42]. This architecture is compatible with the view of SDN from other
standard organizations including International Telecommunication Union (ITU) and
Open Networking Foundation (ONF). Well-known management-related work in-
cludes SNMP [11], NETCONF [28] with YANG data modeling language [8], Open-
Flow Management and Configuration Protocol (OF-Config) [77], Open vSwitch

2 https://www.opennetworking.org/news-and-events/protocol-independent-forwarding/

2.2 Conflicts and bugs 21

Database (OVSDB) [83]. Interesting studies in this regard are contributed by the
research group of Hommel and Steinke [99, 100, 101]. Our work focuses on conflicts
within the control area of SDN involving mainly processing and forwarding packets,
and excludes the consideration on the management facet.

2.2 Conflicts and bugs
It is necessary to differentiate between a bug and a conflict. Early conflict resolution
research [71] defined the term conflict based on undesired behaviour due to an overlap
of policy concerns, i. e., an issue that can only occur in the presence of two or more
concerns.

We notice that these two classes of anomalies in network behaviour need to be
distinguished. If the behaviour can be proven to pertain to a certain application, it is
called a bug, understood as the term commonly used in programming. Bugs in SDN
have been studied in literature on various dimensions, e. g., applying model check-
ing with symbolic execution to debug OpenFlow control applications [15], avoiding
programming faults and race conditions for control applications [37].

Some work debugs the data plane agnostic to control applications [45, 44], i. e.,
it does not care whether the anomalous network behaviour is caused by a control
application or by the co-deployment of multiple applications. While the goal of these
pieces of work diverts from ours, we could benefit from their findings to pinpoint
the problem in the data plane, e. g., to show the traversing path of a packet with any
header modifications between two hosts who currently cannot talk to each other, or
to detect a loop via packets passing the same switch twice.

As mentioned in Chapter 1, our work focuses on conflicts, which are anomalies
caused by the interference between applications.

2.3 State-of-the-art
Conflicts by itself is not a new topic, it has been researched extensively in different
fields. We can observe the connection of conflicts in distributed system management,
in traditional networks to those in SDN.

2.3.1 Policy conflicts in distributed system management
Distributed system management helps ensure efficient use of resources and provide
reliable services to users. Due to its importance, a set of standards (though originally
dedicated for Open Systems Interconnection (OSI) management [67]) have been de-
veloped to cope with the complexity in managing heterogeneous systems, including:
(i) Fault Management to detect, isolate and correct faults, (ii) Accounting Manage-
ment to record resource usage information and enable service providers to charge for
their services, (iii) Configuration Management to control installation and operation

22 2 Related Work

of services within a distributed system, (iv) Performance Management to improve the
services provided to users, e. g., better throughput, response time or reliability, or to
reduce operating cost, (v) Security Management to support the application of security
policies and mechanisms of the system, e. g., access control, encryption facilities.

Policies are usually used as a means of management. They can be represented
differently in a hierarchical fashion. At the high level, policy defines the goals of an
organization and possibly also the resources to achieve the goals. Low-level policies
refined from high-level ones guide the behaviour of resources or infrastructure ele-
ments. Danciu sketched a policy refinement hierarchy and its attributes as shown in
Figure 10, in which the top level strategic policies are refined into the middle level
functional policies, which in turn are refined to the lowest level operational poli-
cies [22]. Down along the hierarchy, the business aspects and abstraction level of
the policies decrease while their technical aspects and detail level grow. This view
of policies was also presented in the work of Wies [115] and Koch [55]. Examples of
high-level policy languages are KAoS [112], Virtualization Assurance Language for
Isolation and Deployment (VALID) [10] or the Intent Northbound Interfaces intro-
duced by ONF [46], some noticeable low-level policy languages include Ponder [21],
REI [49], Policy Description Language (PDL) [62] and eXtensible Access Control
Markup Language (XACML) [29].

Strategic

Functional

Operational

Policy-Type

Re�nement

Re�nement

Number of policiesTechnical aspects

Le
ve

l o
f d

et
ai

l

Business aspects

Le
ve

l o
f a

bs
tr

ac
tio

n

e.g., policies represented in Ponder,
XACML or formal notation
(logic programming, Event Calculus...)

e.g., con�guration
in each device

e.g., a business goal: “Online payment
of customers must be secure”

Figure 10: Policy refinement hierarchy [22]

Policy conflicts can occur when different policies have different goals applying to the
same or overlapping resources or services in a system. Conflict handling is thus vital
in distributed system management.

In order to automate the tasks of policy-based management and conflict handling,
policy modelling is necessary. Different working groups presented various views and
methods in modelling policies depending on their concerning scope of application-
s/services. As a result, multiple policy languages are introduced. Pérez et al. [82]
provide a comprehensive list of requirements for a certain policy language and a
policy framework/architecture. The important features of a policy language include:
being unambiguous and verifiable, clear and well-defined semantics, flexibility and ex-

2.3 State-of-the-art 23

tensibility, interoperability with other languages, support of multiple bindings, being
amenable to combining. The policy framework/architecture that transfers, stores and
enforces the policies written in a policy language needs to be: (i) well-defined, inde-
pendent of the particular implementation, (ii) flexible to allow addition of new device
types, (iii) capable of interoperating with other framework/architecture, (iv) capable
of detecting conflicts between policies, (v) capable of mapping high-level policies to
low-level ones, (vi) scalable under an increased system load.

We select the remarkable studies on policy-based management based on the above
criteria and discuss them in the following.

Ponder and Event Calculus
Moffet and Sloman [71] described management action policies representing by these
attributes: modality (i. e., imperatival and authority), subject, target object, goal
which can be refined into actions, and constraint. An exemplary policy is: “Members
of Payroll (subject) are permitted (modality) to Read (goal) Payroll Master files (ob-
ject), from terminals in the Payroll office, between 9AM and 5PM, Monday to Friday
(constraint)”. A conflict is potential if there exists between two policies the overlap of
subjects and/or objects. A conflict taxonomy and the mechanism to resolve conflicts
of modality were given. Lupu and Sloman [65, 66] continued this line of research
by proposing a method to detect and resolve modality conflicts in an offline manner
based on roles and policy precedence. The Ponder policy language [21] proposed by
this working group targets security policies for access control implementation also
complies to the management action policy template with the mentioned attributes.

Bandara et al. [3] presented a method for transforming specifications of event-
driven policies and system behaviour into a formal notation based on Event Calcu-
lus [56]. The formal notation in conjunction with abductive reasoning techniques
are applied in policy refinement and in performing a priori analysis of policy speci-
fications to identify modality conflicts and some application specific conflicts, such
as conflicts of interest and conflicts of duty. This work also facilitates the translation
of policy languages like Ponder [21] into the proposed formal notation to ease the
conflict handling procedure.

PDL and Logic Programming
PDL [62] is a declarative policy language that follows the “event causes action if condi-
tion” rule paradigm of active databases. PDL has clearly defined semantics, an archi-
tecture for enforcing its policies has also been specified. PDL does not support access
control policy and the mechanism to grouping policies. Chomicki et al. introduced
a framework employing logic programming for detecting action conflicts between
policies represented in PDL and for resolving them [17, 18]. Conflicts are captured
as violations of action constraints. The semantics of rules and conflict detection and
resolution are defined axiomatically using disjunctive logic programs generated au-
tomatically from PDL specifications. Conflicts are resolved by either suppressing the
events that could cause conflicts or by overriding the conflicting action.

24 2 Related Work

Rei
The Me-Centric project at HP Labs demanded a language that was able to express
management, conversation and behaviour policies, which led to the introduction of
the Rei policy language [49]. Rei is described in first order logic format for easy
translation from/to RDF, DAML+OIL and OWL. Policy makers create polices speci-
fied in Rei for domains consisting of resources. The polices contain actions that can
be performed on the resources, properties of users/agents that are allowed to use the
resources and the policy objects found by the conditions and the associated actions.
Policy object includes rights, obligations and dispensations. Rei allows policies to be
combined based on role and group. Rei policies are handled by a Rei policy engine
residing in a policy server, which interacts with a domain server to retrieve policies
of different domains and inserts them to the policy engine. The domain server keeps
the domain memberships of users built from contextual information sources and the
location of the policies. The Rei policy engine is queried when an agent requests a
certain action on a resource, the engine then checks if the requester has the right by
checking its policy objects or if it has been delegated the right. If the agent has the
right, its requested action can be enforced.

Rei supports conflict resolution using meta-policy specifications, which are policies
about how policies are interpreted and how they can be resolved statically. Conflicts
occur if two or more policies have the same action, on the same target but their
modalities (right/prohibition, obligation/dispensation) are different. Conflicts are
resolved statically by specifying priorities and precedence relations for the policies.

PCIM
IETF Policy Core Information Model (PCIM) [73], extending Common Informa-
tion Model (CIM) schema3 from Distributed Management Task Force (DMTF), in-
troduces the classes for defining policy objects that enable application developers,
network administrators, and policy administrators to represent policies of different
types. In this work, a policy-controlled network can be modelled as a state machine,
policies are used to control which state a policy-controlled device should be in or is
allowed to be in at a given time. A policy contains a set of policy rules, each consists
of a set of conditions and a set of actions. If the set of conditions of a policy rule
evaluates to true, the set of actions of this rule is executed. Policy rules can be pri-
oritized, e. g., to express an overall policy that has a general case with a few specific
exceptions. In the policy hierarchy, PCIM targets the specifications of lower-level,
vendor- and device-independent policies.

The main components of the PCIM model include: Policy Management Tool
(PMT), Policy Repository (PR), Policy Decision Point (PDP) and Policy Enforcement
Point (PEP).

3 https://www.dmtf.org/standards/cim/cim_schema_v24

2.3 State-of-the-art 25

• PMT is the tool for the administrator to create, edit, delete policies and monitor the
status of the policy-managed environment. Notifications as a result of the system
monitoring process are sent to the administrator via PMT.

• PR is the storage for PMT to store the policies manipulated by the administrator
and for PDP to put it into use. IETF suggests Lightweight Directory Access Proto-
col (LDAP) [102] as the access protocol to PR, though other implementations are
also available.

• PDP is the point where policy decisions are made. It has the global view of the
network area under control. PDP interprets policies from PR into a format that
can be understood by PEP and sends them to PEP.

• PEP is the point where the policy decisions are actually enforced. It is a component
running on a network/system node executing policies received from PDP. PEP can
notify PDP upon encountering unknown situations.

Request/
Noti�cation

Response/
Con�guration

Administrator

Policy Management Tool (PMT)

Policy Decision Point (PDP)

Policy Repository
 (PR)

Policy Enforcement Point (PEP)

Manipulate PR
via PMT

Noti�cation

Communication

get policy

provide policy(e.g., via LDAP)

(e.g., viaLDAP, HTTP)

Monitor

Noti�cation

(e.g., via COPS, SNMP, HTTP)

(e.g., via COPS, SNMP, HTTP, CLI, CORBA, FTP)

Figure 11: PCIM components and their interactions

Interactions between PCIM components
and possible interfaces are depicted in
Figure 11.

As an information model, PCIM is
kept generic in nature and must be
mapped into a particular data model
(e. g., CIM schema, LDAP schema, Man-
agement Information Base (MIB) [68])
for implementation. The communi-
cation interfaces between its compo-
nents are therefore flexible up to the
data model, Figure 11 gives some ex-
amples of those in addition to LDAP,
such as, Common Open Policy Service
(COPS) [27], Hypertext Transfer Proto-
col (HTTP) [35], Simple Network Management Protocol (SNMP) [16], Common
Object Request Broker Architecture (CORBA)4, File Transfer Protocol (FTP) [89].
An exemplary application of PCIM for policy-based admission control is presented
in a framework in [118].

PCIM framework configures resources via role. The administrator assigns each
resource to one or more roles and specifies policies for these roles. The use of role
helps maintain the consistent enforcement of policies across the whole network under
control and ease the process in which PDP selects policies from PR already grouped
on a role basis to apply on a particular set of resources. Moreover, the problem of
conflicts between policy rules can be simplified by defining the compatibility between
roles, so that, policy rules associated with incompatible roles will not be deployed

4 https://www.omg.org/spec/CORBA/

26 2 Related Work

on the same resource. Still, conflict handling is left to the specific implementation of
PCIM.

SDN Controller
 (PDP)

SDN Device 1
 (PEP1)

SDN Device 2
 (PEP2)

SDN Device 3
 (PEP3)

Control App 1, Control App2...
 (PR)

Response
Request

Response
Request

Figure 12: A possible mapping of the SDN
architecture to the PCIM model

We could map the SDN architecture to
the PCIM model to some extent, a pos-
sibility is shown in Figure 12. The (logi-
cally) centralized SDN controller corre-
sponds to PDP, it has the global view
of the network and translates policies/in-
tents of control programs, which asso-
ciate with PR, into rules in the rule tables
of SDN devices, which represent PEP. It
is, however, not a perfect mapping so
that the results, including conflict han-
dling, from existing PCIM implementa-
tion could be directly applicable in SDN.
The underlying assumption of the PCIM
model is that policies are stored in a cen-
tralized PR and are carefully defined in the predefined format/syntax by an adminis-
trator to avoid possible conflicts (though conflicts are inevitable). In SDN, policies
are distributed among different control applications without having to comply to
any predefined format/syntax, these applications can also come from third parties,
making it hard for the administrator to understand their objectives.

XACML
The OASIS consortium5 proposes XACML language [29] specialized in access control
policies. XACML is an XML-based language6, now also supports JavaScript Object
Notation (JSON) [13] representation. XACML follows the PDP/PEP approach similar
to the PCIM model. It is by itself a policy language, and also a language for describ-
ing the access control decision request/response between PEP and PDP. A XACML
policy specifies access control rules composed of subject-target-action-condition. Poli-
cies are written in XACML by an administrator and made available for PDP. Upon
receiving a query to access a certain resource, PEP will form a XACML request with
relevant attributes (e. g., the requester’s attributes, the resource in question, the ac-
tion) and send it to PDP; PDP then looks at the request and the policies that apply to
it, and issues a XACML response to PEP to indicate if access to the resource in ques-
tion should be granted. XACML reconciles policy conflicts through a collection of
combining algorithms, for example, deny-override, permit-override, first-applicable.

5 https://www.oasis-open.org/
6 https://www.w3.org/XML/

2.3 State-of-the-art 27

Summary
These working groups modelled policies and policy conflicts in distributed system
management and proposed methods to detect and resolve conflicts. Our work bene-
fits from their concept of conflicts: conflicts can only occur in case of the existence of
interference/overlap between two or more different entities, which are SDN control
applications in our case. Each control application deploys its rules governing network
behaviour. A rule can be seen as a low-level, operational policy that comprises of a
subject, an object and a set of actions in the simple form: subject performs action on
object, for example, switch S (as subject) forwards out of port O (as action) packet P
(as object). The modality (imperatival and authority) and the constraints of policies
are not considered at this low-level policy, i. e., the rule, in our work.

S

O1

O2

A1
A2

Figure 13: Conflict is potential between two policies
with overlapping subjects S (Switch) and objects O
(packets/flows)

Intuitively, two control applications
are at odds if their rules contradict each
other. In the SDN context, a conflict be-
tween two rules occurs if they have the
same subjects (the same switch), same or
overlapping objects (same packet/flow or
overlapping set of packets/flows) and dif-
ferent actions. Figure 13 illustrates a con-
flict case for two policies: S (subject) performs A1 (action 1) on O1 (object 1) and
S performs A2 on O2 while A1 ̸= A2. In fact, we have also showed that if the
actions of these two rules are the same or overlapped, conflict is still potential (see
Hidden Conflicts in Chapter 4.3). In our work, we model additionally the priority
of policies in an explicit manner while it is often implicitly modelled in distributed
system management’s policies, e. g., it is commonly admitted that the more specific
policy has higher precedence over the more general one.

In the full picture guided by the extensive research in this field, our focus appears
on the low-level operational policies. The techniques to detect conflicts specific to
SDN at this low level that we have applied are different than the ones devised in
this broad field. We inherit therefore chiefly the concept of conflicts and benefit in
positioning our work in this general research landscape as well as how it values and
could involve.

2.3.2 Policy conflicts in traditional networks
The approaches for policy-based management in distributed systems can generally be
applied in networking area, forming the base of Policy-Based Network Management
(PBNM) [103]. Some examples include a framework for policy-based admission con-
trol focusing on Resource Reservation Protocol (RSVP) [118], RSVP policy control
using XACML [106]. The impact of these pieces of work to ours was concluded in
the previous Section (2.3.1).

28 2 Related Work

Amongst the research on policy conflicts in traditional networks, the study conducted
by the research group of Hamed and Al-Shaer [94, 93, 43] on conflicts in network
security policies is most relevant to our work. They examined policy conflicts that
occurred due to rule misconfiguration in filtering-based network security, such as in
firewalls and IPSec gateways. Similar to policy rules commonly used in a firewall, a
policy rule examined in their work is composed of:

<order> <protocol> <src_ip> <src_port> <dst_ip> <dst_port> <action>

The order of the rule determines its position relative to other filtering rules, which
indicates its priority in the rule table; a rule has higher priority than its subsequent
rules in the rule table and lower priority compared to its preceding rules. The “5-
tuple filter” refers to the common layer 3 and 4 header fields of the OSI [47]: protocol
type, source IP address, source port, destination IP address, destination port. The action
field can be either the bypass (the traffic is transmitted unsecured), discard (the traffic
is dropped) or protect (the traffic is securely transmitted, e. g., by employing IPSec)
action. IP addresses can be a host or a network address, a wildcard (*) indicates an
any value of the IP address or the port field.

Access-list con�icts

Intra-policy con�icts Inter-policy con�icts

Shadowing Redundancy Correlation Exception Shadowing Spuriousness

Figure 14: Access-list conflict classes (adapted from [43])

Conflicts between rules are classified into various types (see [43], Figure 3) depending
on their interrelationship. The access-list conflicts among those (see Figure 14) also
transpire in SDN, which are further divided into the broad types of intra-policy con-
flicts for conflicts occurring within a single device and inter-policy conflicts for those
between different devices. Downwards in the hierarchy, intra-policy conflicts in-
clude the four classes: shadowing, redundancy, correlation, exception and inter-policy
conflicts contain: shadowing, spuriousness.

• Intra-policy shadowing: a rule is shadowed when every packet that could match
this rule is matched by some preceding rule having a different action. As a con-
sequence, the shadowed rule will never get effective. Shadowing is considered a
critical error as the shadowed rules become obsolete and never take effect, which
might cause legitimate traffic to be blocked or illegitimate traffic to be permitted.

2.3 State-of-the-art 29

The recommended resolution to this type of conflict is to position the general rule
after the more specific rule.

• Intra-policy correlation: two rules are correlated if there is some traffic that matches
both rules. If they have different actions, then the action performed on the traffic
depends on the ordering of the two correlated rules and a conflict occurs in this
case. Correlation is considered a conflict warning since the correlated rules imply
an action that is not explicitly controlled by the policy. To resolve this conflict,
the correlation between rules should be detected and the administrator needs to
choose the proper rule order complying with the policy requirements.

• Intra-policy exception (or intra-policy generalization): A rule is an exception of
some subsequent rule if their actions are different, and the subsequent rule is more
general (it could match all traffic that is matched by the preceding rule). Exception
is in general not an error, however, it needs to be identified because the exception
rules change the policy semantics, which may be undesirable. This type of conflict
is considered a warning that should be highlighted to the administrator.

• Intra-policy redundancy: A rule is redundant if every packet that could match
this rule is matched by some other rule having the same action. Redundancy is
considered a problem as it increases the size of the rule table and the search time
for packet filtering, while not contributing to the policy semantics. The redundant
rules should be discovered and removed.

• Inter-policy shadowing: The interrelationship between two rules is similar to that
of the intra-policy shadowing conflict but the rules locate in two different devices.
An inter-policy shadowing conflict occurs if the rule in the upstream device blocks
some traffic that is permitted by the rule in the downstream device. The authors
did not mention methods to tackle this kind of conflict.

• Inter-policy spuriousness: In contrast to the inter-policy shadowing conflicts, inter-
policy spuriousness conflicts occur if the rule in the upstream device permits some
traffic that is blocked by some rule in the downstream device. It is considered a
critical conflict because it allows unwanted traffic to flow across the network, in-
creasing the network vulnerability to attacks, e. g., port scanning, denial of service.
The authors did not specify mechanisms to handle this conflict type.

This research group also implemented a tool called “Security Policy Advisor” for au-
tomatic discovery of the above conflicts. Similar work focusing on generic standalone
firewalls and security gateways was conducted by Ferraresi et al. [33]. Studies related
to verification of network security policies, e. g., [26, 119, 63] examine the translation
and comparison of security rules, e. g., ACL or IPTables7 rules, some attempt real-
time quality. Their proposed methods can be adapted for comparing SDN rules in
detecting conflicts, especially when the real-time aspect is desired.

7 https://linux.die.net/man/8/iptables

30 2 Related Work

Summary
In traditional networks, network security rules for packet filtering appear more com-
plex than rules/low-level policies used by other control functions, e. g., routing, load
balancing, traffic engineering. Therefore, the view that, policy conflict handling
strategies in filtering-based network security can well represent the others, is rea-
sonable. In SDN, a flow rule in the data plane expose the similar structure as the
network security rule in that it is comprised of a priority value, various header fields
and actions. Techniques and findings in handling conflicts in filtering-based network
security can thus be applied in SDN to some extent. Our work takes over, for ex-
ample, some conflict classes identified by the aforementioned studies. However, we
notice that conflict handling in SDN is more arduous as the source of rules is not
only from a single administrator or an administrative group, but also from different
control applications. This means that studies of conflicts in SDN need to take into
account both flow rules in the data plane, and control applications. In addition, the
flexibility of SDN in supporting more match fields and action types (e. g., OpenFlow
SDN version 1.5.1 [78] specifies 45 match fields and 19 action types) increases the
complexity in conflict handling.

2.3.3 Conflicts in SDN
We provide a brief survey on prominent studies related to conflict detection in SDN,
shown in Table 2.1. The criteria are selected based on our own concerns driven by the
goal of this research, e. g., conflict classification, employed control applications, mech-
anisms for handling conflicts (including their detection), and the common interests
in literature on this topic, e. g., conflict resolution, real-time conflict handling, in-
variant compliance. Invariants indicate the predefined network properties that must
be complied with, e. g., availability of a path to a destination, absence of forward-
ing loops, enforcement of access control policies, isolation between virtual networks.
We observe in the early experiments (in Chapter 1.1.1) that network topologies also
influence how conflicts occur, thus this factor is considered in this survey.

FlowChecker [92] is a tool for identifying intra-switch misconfiguration within a
single flow table (also rule table) or inter-switch inconsistencies across OpenFlow
infrastructure. It encodes the data plane’s flow tables configuration in Binary Deci-
sion Diagrams and models the network behaviour in a single state machine, then
using symbolic model checking and temporal logic to provide the verification inter-
face. This interface can be applied in verifying the network consistency or validating
the correctness of the configuration of the data plane against the deployed control
application, or in debugging reachability and security problems. VeriFlow [52] is a
framework that intercepts the communication channel between the SDN controller
and network devices to check for network-wide invariant compliance when new net-
work events emerge. These events comprise forwarding rules being inserted, modi-
fied or deleted. VeriFlow is agnostic of the control applications above the controller,

2.3 State-of-the-art 31

N
am

e
C o

nfl
ic
tt
yp

e
Re

so
lu
tio

n
To

po
lo
gy

aw
ar
en

es
s

Re
al
-t
im

e
In
va

ri
an

ts
M
ec
ha

ni
sm

Ta
rg
et

ap
ps

F l
ow

Ch
ec
ke
r[
92

]
in
tr
a-
sw

itc
h,

in
te
r-
sw

itc
h

7
✓

N
/A

✓
Bi
na

ry
D
ec
is
io
n
D
ia
gr
am

s,
sy
m
bo

lic
m
od

el
ch

ec
ki
ng

,t
em

po
ra
ll
og

ic
co
m
m
on

co
nt
ro
la
pp

s

V e
riF

lo
w

[5
2]

N
/A

7
✓

✓
✓

eq
ui
va
le
nc
e
cl
as
se
s,
fo
rw

ar
di
ng

gr
ap

hs
ap

p-
ag

no
st
ic
,f
oc
us
in
g

on
O
pe

nF
lo
w

ru
le
s

Fo
rt
N
O
X
[8
8]

FR
ES
CO

[9
5]

N
/A

✓
7

✓
1

7
al
ia
s
re
du

ce
d
ru
le
s

O
pe

nF
lo
w
-e
na

bl
ed

se
cu
rit
y
ap

ps
H
FT

[3
2]

pa
re
nt
-c
hi
ld
,

in
te
r-
si
bl
in
g

✓
✓

N
/A

7
H
ie
ra
rc
hi
ca
l
Fl
ow

Ta
bl
es
,
N
et
w
or
k
In
fo
rm

at
io
n

Ba
se

se
cu
rit
y,
tr
affi

c
en

gi
ne

er
in
g

N
et
P l
um

be
r[
51

]
N
/A

7
✓

✓
✓

he
ad

er
sp
ac
e
an

al
ys
is
,i
nc

re
m
en

ta
lc
he

ck
of

ne
tw

or
k
up

da
te
s,
pl
um

bi
ng

gr
ap

h
ap

p-
ag

no
st
ic

C o
ry
ba

nt
ic
[7
2]

N
/A

✓
✓

N
/A

7
co
nt
ro
la
pp

s
pr
op

os
e
hi
gh

-le
ve
lo

bj
ec
tiv

es
,

ce
nt
ra
lc
oo

rd
in
at
or

re
so
lv
es

co
nfl

ic
ts

co
m
m
on

co
nt
ro
la
nd

m
an

ag
em

en
ta

pp
s

S t
at
es
m
an

[1
04

]
N
/A

✓
✓

✓
2

✓
th
re
e
vi
ew

s
of

ne
tw

or
k
st
at
e
an

d
de

pe
nd

en
cy

m
od

el
of

st
at
e
va
ria

bl
es

m
an

ag
em

en
ta

pp
s,

ha
rd
w
ar
e-
re
la
te
d

A
th
en

s
[2
]

N
/A

✓
✓

N
/A

7
co
nt
ro
la
pp

s
pr
op

os
e
hi
gh

-le
ve
lo

bj
ec
tiv

es
,

ce
nt
ra
lc
oo

rd
in
at
or

re
so
lv
es

co
nfl

ic
ts
by

vo
tin

g
m
ec
ha

ni
sm

s

co
m
m
on

co
nt
ro
la
nd

m
an

ag
em

en
ta

pp
s

R a
ve
l[
11

3]
N
/A

✓
✓

✓
3

✓
th
e
w
ho

le
co
nt
ro
lle
ra

nd
ap

ps
ar
e
re
pr
es
en

te
d
in

da
ta
ba

se
la
ng

ua
ge

s,
co
nfl

ic
t
ha

nd
lin

g
is

ba
se
d

on
th
e
vi
ew

m
ec
ha

ni
sm

s
of

th
e
da

ta
ba

se
an

d
a

m
ed

ia
tio

n
pr
ot
oc
ol

co
m
m
on

co
nt
ro
la
pp

s

Br
ew

[8
6]

re
du

nd
an

cy
,

ov
er
la
p,

sh
ad

ow
in
g,

ge
ne

ra
liz
at
io
n,

co
rr
el
at
io
n,

im
br
ic
at
io
n

✓
7

✓
7

flo
w

ex
tr
ac
tio

n,
flo

w
at
om

iz
at
io
n,

Pa
tr
ic
ia
tr
ie

lo
ok

up
,a
to
m
ic
flo

w
co
m
pa

ris
on

se
cu
rit
y,
fo
cu
si
ng

on
O
pe

nF
lo
w

ru
le
s

TC
D
R
[2
0]

in
te
r-
tr
an

sa
ct
io
n,

in
tr
a-
tr
an

sa
ct
io
n

✓
7

✓
4

7
is
ol
at
in
g
flo

w
ru
le
s
of

ne
tw

or
k
fu
nc

tio
ns
,
th
ei
r

de
pl
oy

m
en

t
is
tr
an

sa
ct
io
n-
ba

se
d,

flo
w

ru
le
s
ar
e

co
m
pa

re
d
to

de
te
ct

an
d
re
so
lv
e
co
nfl

ic
ts

be
fo
re

be
in
g
de

pl
oy

ed

ge
ne

ra
lm

an
ag

em
en

t
ap

ps

1
(t
es
te
d
up

to
10

00
flo

w
ru
le
s)

2
(t
es
te
d
up

to
10

0K
va
ria

bl
es
)

3
(t
es
te
d
on

m
in
in
et

[5
9]
)

4
(t
es
te
d
on

m
in
in
et
)

Ta
bl
e
2.
1:
A
qu

al
ita

tiv
e
co
m
pa

ris
on

of
re
se
ar
ch

re
la
te
d
to

co
nfl

ic
td

et
ec
tio

n
in

SD
N

32 2 Related Work

rules passed by the controller to the network are its sole concern. FortNOX [88] is a
software extension of the NOX OpenFlow controller [41], which provides role-based
authorization and security constraint enforcement when deploying new applications.
It is later developed into FRESCO [95], which shares the same scope of concern. The
Hierarchical Flow Tables (HFT) framework [32] organizes SDN rules into trees, in
which each tree node is independent in choosing the action to execute on a packet.
The resolution of conflicts in different parts of the tree is performed by user-defined
conflict-resolution operators located at each node of the tree. Its runtime is discussed
for future optimization, we note the real-time column for HFT thus as “not available”.
The target application is derived from the policy tree and the actions on traffic sup-
ported by HFT, which include admission control, guaranteed minimum bandwidth
and “don’t care”. NetPlumber [51] is a policy checking tool similar to VeriFlow. Its im-
plementation is based on the analysis of the header space of a packet and a plumbing
graph which captures all possible paths of flows in the network. Real-time capability
is achieved by performing incremental check of network updates instead of recomput-
ing all network transformation as its previous work [50]. Corybantic [72] supports
modular composition of disparate controller modules (or applications) competing
for resources while attempting to maximize the overall value of the controller’s de-
cisions. Each module makes proposals of change in the data plane, e. g., turning
off a switch or moving a virtual machine; then each module evaluates every cur-
rent proposal to calculate its gain/cost against that proposal in a common currency,
e. g., $ (USD); after that the coordinator, based on the sum value from the previous
steps for each proposal, picks the best proposal to deploy. Being at its early devel-
opment phase, Corybantic leaves some challenging issues including how to make a
good proposal for each control module and how to solve the primitive constrained
multi-objective optimization problem. Statesman [104] implements a network-state
management service that facilitates the independent operation of network manage-
ment applications. Its design is inspired by version control system (like git8) which
divides the network state into different views for conflict handling. Athens [2] is
a revision of the aforementioned Corybantic [72] design combined with some fea-
tures from Statesman’s approach [104] while employing the voting mechanisms to
resolve conflicts and to determine the resulting network state. The Ravel system [113]
introduces an new paradigm based on SDN, namely database-defined network, it
adds an abstract layer above the control plane by means of database, specifically SQL
database. Control applications are then characterised by database entries. Conflict
handling is accomplished thanks to the database’s view mechanisms and a mediation
protocol. The Brew framework [86] explores conflicts in SDN security applications,
the rule actions are abstracted into permit and deny. Competing rules, e. g., “forward
packet A out of port 1” and “forward packet A out of port 2” seem to be harmo-

8 https://git-scm.com/

2.3 State-of-the-art 33

nious in Brew, which might need to be addressed by research relying on this. The
TCDR approach [20] regards the deployment of a network function as transaction,
i. e., either all rules of that function take effect or none of them is enforced in case of
conflicts. Its realization is based on FortNOX [88]. Conflicts are arranged into intra-
conflict and inter-conflict, each with its own resolution strategy. The evaluation on
the mininet emulator [59] shows a comparable performance as its original controller
(Floodlight9) without the integrated TCDR components.

Summary
Our review of research related to conflicts in SDN communicates a common fact:
most studies aim directly at conflict resolution with the trade-off of limiting the
application domain of their solutions. The observation that new kinds of conflicts
emerge from time to time in various studies advocates the judgement: the compre-
hensive treatment of conflicts in SDN is unattainable without learning their essence
concerning the causes, the classification and the influenced factors. Therefore, we opt
for a layered approach focusing first on conflict detection on a broad scale to obtain
a more thorough understanding of interference between applications’ intents, before
taking the step towards further conflict handling (resolution, avoidance, application
design).

Most research on conflicts in SDN so far does not concern the sources of rules
applied or to be enforced in the data plane. In other words, conflicts arising in the
data plane are purely examined between rules present there without a projection
to their sources: the control applications. This leads to the omission of important
conflict classes that we have discovered (cf. Chapter 4).

2.3.4 Analysis of remarkable research
Our work acquires the existing results regarding conflict classification and detection,
while distilling the knowledge learnt from their limitations. We highlight the over-
lapping while contrasting our contributions in the following.

Conflict classification
The taxonomy of conflicts in network security policies presented by Hamed and Al-
Shaer [94, 93, 43] is partly reclaimed in our work. As mentioned in Section 2.3.2 (also
in Figure 14, they classify conflicts between access-list rules into intra-policy and inter-
policy categories. The former one refers to conflicts between rules within a device
and contains four classes, namely shadowing, redundancy, correlation and exception;
the latter, caused by rules in different devices, consists of two classes: shadowing and
spuriousness. We observe similar conflicts in SDN that can be triggered by local rules

9 https://github.com/floodlight/floodlight

34 2 Related Work

of a single device or by rules distributed in multiple devices, which we name by the
more intuitive terms: local conflicts and distributed conflicts, respectively.

• Local conflicts are organized into shadowing, redundancy, correlation and gener-
alization, which correspond to the four intra-policy conflict classes. However,
we notice another local conflict class with its distinctive pattern, named overlap.
This kind of conflicts is induced by two rules having intersecting match space
and the same actions. Interestingly, overlap class is also valid as a subclass of the
intra-policy conflicts in network security policies, complementing the taxonomy
introduced by Hamed and Al-Shaer.

• Distributed conflicts are divided in a more granular level specific to SDN and our
conflict definition, the upstream and downstream directions of a traffic flow that
influence the classification of inter-policy conflicts are applicable for distributed
conflicts. The analysis of our experiments’ results yields seven distributed con-
flict classes: downstream traffic looping, upstream traffic looping, downstream traf-
fic dropping, upstream traffic dropping, downstream packet modification, upstream
packet modification and changes to paths.

Pisharody examines conflicts in security policies in SDN [86] based on the existing
outcome from Hamed’s and Al-Shaer’s research. Intra-policy conflicts are arranged
into six classes: shadowing, redundancy, correlation, generalization, overlap and imbri-
cation, in which imbrication is new compared to our local conflict classes. Imbrication
conflicts are featured by rules whose match components specify header fields of dif-
ferent layers that cannot be compared directly. For instance, the match fields of one
rule contain only IPv4 addresses, the other rule with match fields contain only MAC
addresses. There may exist packets that matched by both rules although their match
components expose no overlap at the first glance. Pisharody proposes to reconcile
such rules by mapping layer 2 addresses to layer 3 addresses by means of an ARP ta-
ble lookup, thereby an imbrication conflict between rules is transformed to a conflict,
if any, belonging to one of the other five local conflict classes. In our work, all rules
are represented uniformly before being compared (by employing the matchmap and
actmap concepts, cf. Chapter 5.2), thus we do not consider imbrication as a local con-
flict class. Besides, we find it more suitable to classify a part of redundancy conflicts
in his work as overlap, this is justified in Chapter 4.1.6. Distributed conflicts seem to
be evasive in his study.

Distributed Con�icts

Invariant
Contention

Spuriousness Transformation
Contention

Loops Path
Ambiguity

Focusing Dispersion Occlusion General
Multi-Transform

Incomplete
Transformation

InjectionBypass

Figure 15: Taxonomy of distributed conflicts established by Reyes (reproduced from [90])

2.3 State-of-the-art 35

Reyes proposes a taxonomy of distributed conflicts in SDN, which is reproduced
in Figure 15. We iterate through each conflict class with arguments regarding its
adoption in our work.

• Invariant contention: invariants refer to certain criteria that a control application
tracks to decide if its policies need to be enforced, e. g., the throughput threshold
of some traffic. This conflict class is formulated due to the deviation of the network
behaviour between the isolated and the concurrent deployment of control applica-
tions, caused by e. g., the traffic throughput at the monitoring point varying in two
cases. In spite of the deviated network behaviour, we notice that the control appli-
cations’ intents are still fulfilled in either case: their rules are enforced if necessary,
i. e., only when the invariant threshold is exceeded, and these rules take effect as
desired. With reference to our definition of conflicts (see Chapter 1.1.2), we do not
incorporate this conflict class and its subclasses (focusing and dispersion) into our
conflict taxonomy.

• Spuriousness: this conflict class emanates from the inter-policy conflict class spu-
riousness in Hamed’s and Al-Shaer’s work mentioned above. An instance of this
class is observed when traffic allowed to flow in the network by an application is
blocked by another in the downstream direction of that traffic. This conflict class
corresponds to our distributed conflict class policy suppression by downstream traf-
fic dropping.

• Occlusion: is not considered as a distributed conflict class in our work as we define
distributed conflicts to occur between rules present on multiple rule tables in the
data plane, while the definition of this class in Reyes’ work reveals that rules of the
impacted application may not be deployed at all. In fact, this class appears to be
associated with our hidden conflict class action suppression by packet modification.

• General multi-transform: this class represents a special case of our distributed con-
flict class policy suppression by downstream packet modification as we observe that
conflicts can arise even when traffic is transformed only once.

• Loops: this class corresponds to our distributed conflict classes policy suppression
by downstream/upstream traffic looping.

• Path ambiguity: this class and its subclasses (incomplete transformation, injection,
bypass) are associated with our distributed conflict class policy suppression by changes
to paths. Conflicts of the subclasses incomplete transformation and injection appear
to have the same cause: traffic is transformed in transit on the forward direction
from the source to the destination, but fails to be re-transformed properly on the
backward direction, leading to the communication failure between the involved
end-points. We consider these situations to be special cases of the other subclass
bypass, and group them in the same distributed conflict class.

36 2 Related Work

Rule comparison
We need to compare SDN rules to detect conflicts. One of the objectives is to deter-
mine the relationship between the two sets associated with the match fields of two
given rules, which can be either disjoint, equal, subset, superset or intersecting. As
the match fields of SDN rules can contain multiple individual fields, e. g., source IPv4
address, destination IPv4 address, IP protocol, source TCP port, destination TCP port,
the direct application of the existing set theory to derive their relationship is not
simple, especially in case we wish to generalize the comparison of sets containing
multiple fields and automating this task in a computer program. In this regard, the
method proposed in Hamed’s and Al-Shaer’s work for comparing network security
policies [93], reapplied in Pisharody’s study for comparing SDN rules [86], is most
relevant. Yet, it is rigid in that the match fields of the policy/rule must be specified
in the format of the below five-element tuple so that the comparison method can be
performed:

<protocol> <src_ip> <src_port> <dst_ip> <dst_port>

The arising rigidity is conceivable as their research focuses on security rules/policies
only but not generic ones. With that limitation taken into consideration, we intro-
duce a general method to derive the relationship between sets containing multiple
fields, based on the new concept multi-property set and the relationship combination
operator ·r (see Chapter 5.1). The two new concepts matchmap and actmap are then
presented (in Chapter 5.2) to apply this method for comparing SDN rules whose
match fields do not need to be restricted to the five-element tuple as mentioned
above.

Conflict detection
Reyes [90] extends our conflict detection prototype (cf. Chapter 6.1) for identifying
conflicts. The detection results concerning general multi-transform conflicts in his
work are reused in evaluating our prototype (cf. Chapter 6.2). Existing network de-
bugging and verification tools such as VeriFlow [52], HSA and its Hassel library [50],
NetPlumber [51], APKeep [119] can identify traffic looping and dropping, the graphs
representing the traffic paths for verifying invariants in these tools (e. g., forwarding
graph in Veriflow and APKeep, propagation graph in HSA and plumbing graph in
Netplumber) are built in a similar manner as our rule graph for detecting distributed
conflicts (cf. Chapter 5.4). However, due to the disparate goals, these graphs are not
meant for detecting conflicts between control applications as ours and thus cannot
be employed directly in our case. Our rule graph is constructed with richer features
encoded in edge attributes to facilitate the reasoning about distributed conflicts. An
interesting topic on optimising the performance of our prototype can take advan-
tages of the strategies learnt from their work, e. g., by using the efficient trie data

2.3 State-of-the-art 37

structure [116] for searching rules, or partitioning the rule graph in multiple sub-
graphs to parallelize the reasoning of conflicts and aggregating the interim outcomes
to obtain the overall results.

3 Approaches and Experiments

The detection of conflicts in SDN within the scope of our work exhibits similarities
to the correctness verification of a distributed program in distributed computing
systems. Such verification can be undertaken by using common methods in software
engineering domain, e. g., model checking techniques. We attempt to employ the
same approach by developing a simple SDN model to analyse conflicts. We notice,
however, that it is insufficient. The study needs to be complemented by experiments
to cover situations particular to the mechanics of SDN. Based on the model’s analysis,
we derive a parameter space and a general methodology to conduct experiments as
well as to detect conflicts through that space.

We perform a massive number (over 11,700) of experiments by applying the pro-
posed methodology over various parts of the parameter space, most of them are
carried out automatically with the help of our framework. The framework automates
experiments in the chosen parameter subspaces, identifies potential conflicts and
creates a dataset for further examination of conflicts. The proposed methodology is
clarified via concrete experiments with a set of control applications covering differ-
ent criteria. We present nine experiments selected from both manual and automatic
ones, which supports the formulation of conflict classes and the decisions in realizing
the conflict detection prototype in subsequent chapters. The extraction of conflict
patterns or properties demands human intervention, we present a strategy to reduce
manual effort while still being able to maintain the high level of effectiveness for this
process.

3.1 Considering the analytical approach
We consider the analytical approach in detecting conflicts by modelling SDN and
perform analysis thereon. The comparison with distributed computing systems re-
veals yet that particular characteristics of SDN hinder this approach. We come to the
conclusion of employing the experimental approach as a result.

3.1.1 SDN model
We sketch a simple SDN network for our analysis shown in Figure 16. Two end-
points are connected via a network containing three SDN switches, each switch has
one or more rules organized in a rule table. Two applications deploy their rules in
the switches via the controller. Packets are sent by an end-point into the network and
handled by rules in switches. A switch can escalate notifications to the controller to
request for instructions on handling a certain packet, the notifications are passed to
the applications, which can react by issuing rules to be installed in the switch, or do
nothing. A rule in a switch can modify its matched packet, send it out of a port to

40 3 Approaches and Experiments

the next rule in another switch or to the controller, or drop that packet. Rules can
have different priority which decides which rule dominates in case two or more rules
in the same rule table match the same packet.

App.1 App.2

Controller

Switch3

Switch2Switch1

Rule2.1 . . .

Table
Rule3.1 . . .

Table
Rule1.1 . . .

Table

End-
point 1

End-
point 2

Message
transmission

Figure 16: Common SDN elements [108]

Traffic exchanged between end-points
can be of various profiles and transport
types, e. g., a VoIP phone call can use
constant bit rate (CBR) transported by
UDP. They can communicate in unicast
or multicast channel. Applications can
be deployed simultaneously or in differ-
ent chronological order. Each has one
or more configurations, which reflect the
change in the application’s behaviour but
not its intent. For instance, an End-point
Load Balancer may balance traffic per
packet or per session while still maintaining its intent of balancing traffic on its
replicas. An application can install its rule in one or more switches with different
priorities.

We regard a sequence of rules in different SDN switches that handle a message
from its reception in the network to its consumption as a program. The message in
transit associates with the program state. The program is correct if the message is
processed as intended by the application. For example, if the application’s intent is
to deliver certain traffic from two end-points, the corresponding program is correct
when it passed the traffic between these two end-points successfully. A program is
incorrect otherwise, i. e., some anomalies occur. An anomaly becomes a conflict if
it is caused by rules from different sources according to our definition of conflict in
Chapter 1.1.2.

Concept Distributed computing systems Software-defined network

operation instruction rule action

input data read from outside the program messages incoming to the network

output data delivered outside the program messages delivered to network edges

environment operating system controller

program sequence of instructions set of rules in switch tables

state content of variables messages in transit

Table 3.1: Comparison of concepts for computer programs and our SDN model [108]

3.1.2 Analogy to distributed computing systems
We notice the similarities between the SDN model and the distributed computing
systems running distributed programs. The analogy is summarized in Table 3.1. A
distributed program consists of a sequence of instructions, which corresponds to a

3.2 Experimental approach 41

sequence of rules in an SDN program. Input and output of the SDN program are
messages coming to the network and delivered to end-points. The controller to-
gether with applications correspond to the operating system in which the distributed
program is running.

Verification of correctness
A program can be verified against its specification, e. g., by using model checker to
traverse all possible values of its variables. Provided that the specification and the
model of the program are correctly formulated, a program is verified to be correct if
its variables do not show any illegal value during the checking.

Obstacles to analytical approach
The ability of control applications to install or remove rules in a switch makes up a
major hindrance against the approach of applying in SDN the verification technique
commonly used in the software engineering domain. The reason is that it is alike the
(hypothetic) operating system being able to modify the code of a program while it
is running, which would lead to changing the program to a new one. Therefore, any
verification that has been made on the original program needs to be carried out again.
The assumption of an isolated environment for running a program that enables its
verification does not hold in SDN.

3.1.3 Conclusion
We conclude that the plain analytical approach is not suitable for studying conflicts
in SDN. The situations in which an SDN program is changed by control applications
need to be examined via experiments, which provide the base for the analysis and
for the generalization of conflicts in SDN. As a result, we opt for the experimental
approach.

3.2 Experimental approach
In essence, our approach is to perform various experiments and observe conflicts
therein. The conflicts are analysed and generalized to conflict classes together with
their patterns and characteristics, which enable their detection. This general approach
is portrayed in this section via a parameter space and a methodology to perform
experiments on that space.

3.2.1 Parameter space
The analysis of the SDN model (Section 3.1.1) allows us to derive exhaustively a pa-
rameter space of eight dimensions shown in Figure 17 to perform experiments. Each
box surrounding the ticks on some axes denotes multiple values of the same group,
e. g., there are various end-point combinations for the 1:1 communication, or different
designed topologies. The axes of the parameter space are described in the following.

42 3 Approaches and Experiments

App
con�guration

App start orderTarget switches

End-point
tra�c pro�le

End-point
combination

Topology Transport type

C(1,1,1,1,1)

C(1,1,1,1,2)

C(1,1,1,2,1)

C(1,1,1,2,2)

...

A(1,2,3,4,5)

A(1,2,3,5,4)

A(1,2,4,3,5)

S(1)(2)(3)(4)(5)

...Random

Designed

TCP
UDP

SCTP

CBRVBRBurstyMixedReused

...

S(1)(2)(3)(5)(4)

S(1)(2)(4)(3)(5)

S(1,3)(2)(4)(5)(3)

...

 1:1com
-

m
uni-

cationn:mcom
-

m
uni-

cation

App priority

Same

Di�erent

Mixed

Same

Figure 17: Parameter space [108]

Topology The early demonstration of conflicts in Chapter 1.1.1 shows that network
topologies influence the occurrence of conflicts. Topologies can be in designed or
randomized structure.
Transport type Transport protocols behave with varying levels of robustness regard-
ing network anomalies. Common transport protocols and their combinations are
considered to ensure that the observation of conflicts (or the lack thereof) is not
dependent on the properties of the transport layer.
App. configuration The configuration of an SDN application defines its behaviour
regarding the introduction or removal of rules in the network, or the decisions taken
upon escalated messages. For instance, firewall: stateful or stateless; end-point load
balancer: packet-based or flow-based; path load balancer: balancing over first set of
links or over second set; bandwidth-related QoS app.: guaranteeing minimums of
various bandwidth thresholds, etc. A mark of C(1,1,1,2,2) means that applications #1,
#2 and #3 use their first configuration while applications #4 and #5 use their second
configuration.
App. start order SDN applications may be started and allowed to place their rules in
different chronological orders. They can also be started simultaneously (same order).
The axis contains all combinations of start orders within a set of applications. The
start order of applications is represented as a tuple A(first, second, …).
App. priority Applications may install their rules with the same or different priority.
The rule priority has local effect within the rule table of an SDN switch and helps
decide which rule is used in case multiple rules can match an incoming packet. We

3.2 Experimental approach 43

allow all combinations of priority in a chosen set of applications for experiments.
Target switches An SDN application may realize its function by placing rules on
one or more switches. To ensure a total coverage of cases, we introduce all combina-
tions of switches relevant to each application on this axis. The exemplary notation
S(1,3)(2)(4)(5)(3) means that application #1 interacts with switches 1 and 3, applica-
tion #2 with switch 2, application #3 with switch 4, application #4 with switch 5 and
application #5 with switch 3.
Traffic profile The traffic profile between end-points might differ depending on the
OSI Layer-7 application generating traffic in the data plane. We include distinct
traffic profiles as well as their combinations for experiments. The reused mark indi-
cates traffic profiles from sources other than our own traffic generators, e. g., from
published traces.
End-point combination Communication between end-points can take place in a
unicast (1:1) or multicast (n:m) fashion. We include all combinations of end-points,
structured by unicast/multicast.

Size of the parameter space
We assume the following figures in the general case:

• t different topologies
• x transport protocols and their combinations
• a applications, each has maximal c configurations
• s switches in each topology
• p traffic profiles
• e end-points get involved in each test

Consequently, there are

• t points on the Topology axis,
• x points on the Transport type axis,
• A =

∑a
i=2 c

i points on the App. configuration axis, as we vary the number of
applications from 2 to a,

• O =
∑a

j=2

(
a
j

)
× j! points on the App. start order axis,

• P =
∑a

k=2(k
k − k + 1) values on the App. priority axis,

• S =
∑a

l=2(2
s − 1)l points on the Target switches axis, as one application can be

deployed on 1..s switches,
• p points on the End-point traffic profile axis,
• C =

∑e
m=2

(
e
m

)
·m! points on the End-point combination axis.

We give the total number of experiments as

Ω = t·x·A·O·P ·S·p·C = t·x·
a∑

i=2

ci·
a∑

j=2

(
a

j

)
·j!·

a∑
k=2

(kk−k+1)·
a∑

l=2

(2s−1)l·p·
e∑

m=2

(
e

m

)
·m!

44 3 Approaches and Experiments

Applying the above formula to a case where
t = 5, x = 2, a = 5, c = 2, s = 10, p = 5, e = 5,
the number of experiments would be:
Ω = 1172083162379999772672000000 ≈ 1.17 · 1027

switches Ω (approximate value)

10 1.17 · 1027

11 3.76 · 1028

50 1087

100 10162

Table 3.2: Growth of the number of experiments by the
number of switches

Table 3.2 shows the growth of the exper-
iment space with reference to the num-
ber of switches, assuming that the other
dimensions’ size is fixed.
The addition of one switch into the topol-
ogy increases the number by an order of
magnitude, to Ω ≈ 3.76 · 1028. More re-
alistic scenarios increase the size of the
space to a degree beyond any hope of

a direct experimental approach: for 50 switches, Ω ≈ 1087 and for 100 switches,
Ω ≈ 10162. Obviously, mechanisms to reduce the size of the space and a methodol-
ogy suitable to perform highly automated experiments are necessary.

Reducing the size of the space
We can exploit the specific property of the control applications selected for experi-
ments to reduce the size of the target switches axis. For example, a firewall should
not be deployed on all devices but on those at the network boundary, an end-point
load balancer should place its rules on devices belonging to the paths connecting its
target end-points.

To serve the goal of studying conflicts, we can choose pragmatically points in the
parameter space where conflicts are potential, i. e., those with control applications
having common concerns. For instance, conflicts are more likely between two appli-
cations interested in TCP traffic and having rules deployed on the same switch.

It is worthwhile to choose “compact” subspaces from the large space to conduct
experiments. A “compact” subspace contains only valid points and none of them
is redundant. A point is invalid if the association between marks on different di-
mensions fails, for instance, a mark of C(1,1,1) on the App Configuration axis cannot
be associated with a mark of A(1,2) on the App Start Order axis as the former is
applicable for three applications while the latter applies for two applications only. A
redundant point repeats the same characteristics of another already-processed point.
Consider a case in which two points having the same values on all axes of the pa-
rameter space except for the priority, the mark on the priority axis of the first point
is {2, 2} and the second is {3, 3}. Although these two marks are different, they reflect
the same property: the two applications in concern are deployed with the same pri-
ority, which renders one of the mentioned points redundant. By only choosing valid
and “concise” points for experiments, we can obtain a more meaningful dataset for
studying conflicts. We provide more details on generating “compact” subspaces with
respect to application-related dimensions in Section 3.4.3.

3.2 Experimental approach 45

Experiment
space

Pick an unmarked point in the space,
determine the expected network behaviour
with the setting corresponding to that point

Compare the expected network behaviour
with the captured one

Execute the experiment with the
setting corresponding to the picked

point, capture the network behaviour

Mark the chosen point as safe

Mark the chosen point as con�ict,
note the extracted patterns, properties
and location of con�icts for this point

Extract con�ict patterns, properties
from the captured data

Con�ict patterns,
properties

There is no more unmarked
point in the space

There are still unmarked
points in the space

Classi�ed space:
Safe space | Con�ict space

Capture,
real network behaviour

Expected network behaviour

Unmarked point

No con�ict

Con�ict

Figure 18: Methodology for exploring conflicts [108]

3.2.2 Methodology
In principle, experiments are conducted through each point in the parameter space
(Figure 17) to study conflicts. The analysis of conflict cases allows the extraction
of patterns and properties of conflicts, from which conflict classes are formulated.
In practice, we can choose different subspaces to perform experiments. Figure 18
sketches the steps of our methodology.

1. A point in the space is selected as the starting point. The expected network be-
haviour of each control application in that point is determined by deploying it in
isolation and capturing all appropriate data, e. g., packet captures for each involv-
ing port of end-points, SDN switches, rule tables of SDN switches, link through-
put. These captures are then analysed to extract only the data germane to the
set of control applications involved in that point. The applications are assumed
to be reasonably correct and reliable, which means their (re)actions are always

46 3 Approaches and Experiments

consistent and deterministic against network events, e. g., incoming of a packet,
violation of a predefined bandwidth threshold. We notice that within the scope
of our work, we do not consider network faults or changes to topologies during
the observation phase, i. e., we do not simulate the failure or the introduction of
network devices.
Example: An End-point Load Balancer with configuration 1 is deployed on switch 1
and a Path Load Balancer with configuration 1 on switch 1. End-points 1 and 2
transmit UDP with a constant bit rate (CBR) traffic profile on a topology of 10
switches. When deployed in isolation, the Path Load Balancer (PLB) splits a
flow into equal sub-flows over different paths, and the End-point Load Balancer
(EpLB) balances incoming requests over a list of end-points. The traffic through-
put on the concerned paths and the number of communication sessions at each
end-point are logged for the case of PLB and EpLB, respectively. The rule tables
of the switches where these balancers install rules are also recorded.

2. The experiment is carried out. The chosen applications with the associated config-
urations are deployed on the network in the specified order, the end-points with
specified traffic profile transmit the transport protocol described in the selected
point. The network behaviour is captured, including, e. g., traffic throughput of
each switch port, rule tables, the number of communication sessions at each end-
point and the state of these sessions (successful or failed).

3. The experiment’s outcome is compared with the expected outcome by matching
the relevant data items from the capture of each application to the data gathered
when running that application in isolation. This entails performing different types
of comparison, depending on the application type. For instance, to observe the
effect of the End-point Load Balancer, the statistics data at the traffic source and
the target end-points are of interest. For the Path Load Balancer, the number of
packets/flows on the target paths should be considered, other information is out
of concern.
If the behaviour matches, the point is judged as “safe” and the next experiment
associated with a new point is executed. If the result suggests a conflict due to
different behaviour, an analysis step follows.

4. The captured data are analysed to ascertain the presence of conflicts and to clas-
sify them. If enough conflicts of a class have been observed, its patterns and/or
properties are formulated. A pattern constitutes a generalisation of a certain com-
bination of rules (and state) that lead to a conflict of a specific class. Thus, a
pattern can be viewed as a “signature” of a conflict class. The properties/patterns
of a conflict class enable the classification and detection of conflicts belonging to
that class, as presented in Chapters 4 and 5.

5. The point is marked as “safe” or “conflict”. The procedure is repeated if unmarked
points exist in the space.

3.3 Explored subspaces 47

The dataset created from the classified space and the collection of conflict patterns,
properties are valuable for the handling of conflicts. In this work, we make use of
them for the classification and the detection of conflicts. In general, they are also
beneficial for further conflict handling efforts, e. g., conflict resolution and avoidance.

3.3 Explored subspaces

Figure 19: A designed topology with 10 switches and
10 end-points

A point in the parameter space is a
tuple of values from all dimensions of
the parameter space. Each point en-
codes the setting of an experiment. Ac-
cording to the way we perform experi-
ments, each subspace can be associated
with the points generated in a chosen
network topology. Roughly speaking,
for each network topology, we create
a corresponding test-bed containing vir-
tual machines functioning as SDN de-
vices (switches) and end-points specified
in that topology, and an SDN controller.
Control applications are then deployed
with various settings concerning their
configurations, start order, priority and
target switches. Next, traffic is generated
between different combinations of end-points. Results are logged in a dataset and
anomalous cases are analysed to extract conflict features. These steps are explicated
in Sections 3.4 and 3.6.

Figure 20: Simple linear topology

We have performed experiments on six designed and six random network topologies,
four of them are shown in Figures 19, 20, 21 and 22. Control applications are diverse
in functions and thus in how they control the network, including routing, firewalling,
traffic engineering (a complete list of control applications is described in Section 3.5.2).
The actions of their rules include dropping packets, forwarding packets out of a set

48 3 Approaches and Experiments

Figure 21: A designed topology simulating the core backbone of the Nippon Telegraph and Telephone (NTT)
network [1] in Japan (55 switches, 12 end-points, reproduced from Reyes' work [90])

Figure 22: A random topology generated with the Barabasi-Albert model [4] (20 switches, 10 end-points, reproduced
from Reyes' work [90])

3.3 Explored subspaces 49

of ports, modifying packet headers, or a combination of those. They are deployed
in different priority and start order, their target switches also vary. TCP and UDP
traffic is generated between end-points mostly in unicast communication scheme
with VBR or CBR traffic profiles. Table 3.3 highlights the important features of the
explored subspaces.

Category Value Note

Topologies 12 6 designed topologies, 6 random topologies, # end-points ranges from
4 to 21, # switches from 3 to 55

Applications 14 containing fundamental functions (e. g., topology discovery, ARP cache,
NDP cache) and applications involved directly in conflict study, e. g., End-
point Load Balancer, Path Load Balancer, Firewall, Path Enforcer…(see
Section 3.5.2 for the full list of applications)

App. configuration 1 → 5 each app. has at least 1 configuration, at most 5

App. start order same and different at least two apps. are co-deployed in an experiment, at most 5

App. priority same and different the co-deployment of 2 apps. yields 3 combinations of priority, there are
541 combinations for 5 apps (see Section 3.4.3)

Target switches 1 → all each app. can have one target switch or more, or even deploy its rules
on all switches, e. g., the Shortest Path First app

Ep. Traffic Profile CBR and VBR netcat and iperf programs are used to generate TCP/UDP traffic

EP. Combination unicast, multicast multicast traffic is generated for the MEADcast app. in IPv6, all other
apps. are active on IPv4 unicast traffic

Transport type TCP, UDP –

Experiments 11,772 8796 experiments expose no conflict, 2976 experiments show potential
conflicts (these experiments are conducted automatically, the manual
experiments are not counted)

Table 3.3: Information of the explored subspaces for conflicts

Potential con�icts
(2976 experiments)

Safe space
(8796 experiments)

25.3%

74.7 %

Figure 23: The proportion of the safe space and the
space containing potential conflicts in the total
number of 11,772 experiments conducted
automatically by our framework

Our published results1 contain 11,772 ex-
perimentsconductedautomaticallybyour
framework (see Section 3.4), among those
2976 experiments (≈ 25.3%) exhibit unex-
pected output that need to be analysed to
conclude possible conflicts, these results
are visualized in Figure 23. The unex-
pected output is determined by compar-
ing the network behaviour in isolated de-
ploymentandinco-deploymentofcontrol
applications. Conflicts are potential in ex-
perimentsyielding theunexpectedoutput,
their existence can only be confirmed via themanual analysis, or with the employment
of a conflict detection program. A smaller number of experiments have been carried
outmanually for the stepwise examination of conflicts, they are not counted here since
their results are not collected in an organized manner as in the automatic execution

1 https://github.com/mnm-team/sdn-conflicts

50 3 Approaches and Experiments

with the framework. In the next section, we introduce a framework that enables the
massive execution of experiments and the collection of the dataset for conflict study.

3.4 A framework for automating experiments
The extremely large size of the parameter space for experiments figured out in Sec-
tion 3.2.1 urges the automation in their execution besides the need to reduce its size.
We describe in this section our approach to achieve these goals and implement a
framework therefrom.

3.4.1 Generating SDN test-beds

Control machine (outer machine)

End-point 1

SDN Controller

SDN
Switch 1

SDN
Switch 2

OpenFlow protocol

ssh

End-point 2

Figure 24: Illustration of a simple test-bed for a
network containing two end-points and two SDN
devices

We extend the existing work on creating
virtual machine infrastructure by Dan-
ciu et al. [23] to generate our SDN test-
bed in a highly automatic manner. The
network topology, i. e., the connections
between SDN switches and end-points,
is described in a file followed a prede-
fined format, this is input in a script
to generate the SDN test-bed. The test-
bed contains a control machine, which
is a virtual machine built on the KVM
software [53]. Inside the control ma-
chine, multiple virtual machines are cre-
ated based on the Xen software [5], one
of them is the SDN controller, the oth-
ers are SDN switches and end-points con-
nected to each other according to the network topology chosen for experiments. Each
test-bed thus corresponds to a network topology, from which a number of subspaces
of the parameter space are constructed and a sequence of experiments are carried
out. The use of virtual machine for each device facilitates the customization and
monitoring of each individual device for conflict examination.

A simple test-bed containing a controller, two switches and two end-points is
shown in Figure 24. We describe each component of the test-bed in the following.

Control machine (outer machine)
This virtual machine is built on the KVM [53] software and is also referred to as the
outer machine. All other test-bed components are packed within this outer machine
so that their activities are isolated from the outside networks, which helps avoid
any possible interference from outside that could otherwise impact the experiment
process in an uncontrolled manner. The control machine communicates with other

3.4 A framework for automating experiments 51

virtual machines via the ssh channel. It coordinates, assigns and schedules the jobs
to be executed in the SDN controller, SDN switches and end-points according to the
settings of the parameter space, then collects data from these machines and performs
analysis to detect anomalous cases, and finally creates the dataset for subsequent tasks,
e. g., analysis of conflicts for their classification, evaluation of the conflict detection
prototype.
Example Consider the setting for Experiment 1 (Section 3.6.3) described in Fig-
ure 27a, which we outline here for the sake of readability. In this experiment, two
applications End-point Load Balancer (EpLB) and Shortest Path First (SPF) are de-
ployed with configuration 1 each, in the same starting order, and the same priority of
1, EpLB places rules in switch 7 while SPF interacts with all switches, the end-points
use constant bit rate (CBR) transported via TCP, PC1 and PC2 are traffic sources, PC3
and PC4 are traffic sinks. The test-bed is generated according to the topology topo1.
In essence, the control machine needs to run a script that performs the following
tasks via the ssh channel.

1. Preparing a clean environment for experiments, e. g., stopping all controller-related
processes that possibly were executed earlier in other experiments, cleaning the
ARP cache in the end-points and rule tables in the switches, removing trace files
created by other experiments.

2. Starting the EpLB and SPF control applications in the controller simultaneously,
each with configuration 1, priority 1. Specifying the target switch for EpLB as 7,
and SPF as all.

3. After the control applications were started successfully in the controller, running
the pre-installed software in PC3 and PC4 to create the server processes, then
executing the software in PC1 and PC2 to create the client processes that establish
connections to the server processes. The pre-installed software has to generate
TCP traffic after the CBR traffic profile.

4. After the communication between end-points were finished (or after a timeout
period), creating the logs or trace data in the end-points and in the switches, e. g.,
the state (being successful or failed) of the communication between the end-points,
rule tables in each switch, throughput logged at each port.

5. Analysing the collected data to detect anomalous cases, storing the result in the
dataset together with the collected data, and the settings of the experiments (which
corresponds to a point in the parameter space).

6. Returning the clean environment for subsequent experiments as in step 1.

All of the above steps are performed automatically in our framework.

SDN Controller
SDN Controller contains all control applications. Each control application has its
global and local configurations. The global configuration specifies the priority, the

52 3 Approaches and Experiments

configuration number (according to the app. config axis in the parameter space),
and the target switches of the involved applications. The global configuration can be
rewritten by the control machine. The local configuration is specific to the control
application and cannot be changed by the outer control machine, e. g., for EpLB, the
first local configuration can be to balance requests over some set of servers, the second
configuration over another set of servers, for PLB, the first local configuration is to
balance traffic if the throughput exceed the first threshold value, the second local
configuration corresponds to the second threshold value. The control application
reads these configuration files and behaves accordingly.

SDN Switch
Also known as SDN device. The Open vSwitch software [84] with the enabled Open-
Flow features is employed to make a virtual machine become an OpenFlow switch.
Script files are put in each switch that can be called by the control machine to mea-
sure throughput of the switch’s interfaces during experiments, or to dump the rule
tables of the switch. These results are collected by the control machine.

End-point
The software to generate traffic is pre-installed in the end-points. According to the
value of the End-point traffic profile, transport type and end-point combination, the
control machine will run the appropriate software in the end-points to generate the
desired traffic. The communication state is logged in the end-points, e. g., how many
(UDP/TCP) sessions were established, and with which end-points, how many were
successful or failed. The control machine collects these results for further analysis.

3.4.2 Encoding experimental subspaces
Each test-bed corresponds to a network topology, it is alike that we choose a mark on
the topology axis of the parameter space for the first step before selecting the values
of the other axes. Hence, after the test-bed is generated, we need to choose different
subspaces derived from the network topology by varying the other dimensions of the
parameter space.

The tactics for reducing the parameter space’s size mentioned in Section 3.2.1 are
applied in choosing the experimental space. The control applications and their set-
tings are chosen in such a way that conflicts are highly potential, i. e., they share
some common concerns in at least one relevant dimension, for instance, all of them
are interested in TCP traffic, they place rules in the switches that probably belong to
the traffic paths between end-points according to our estimation from the network
topology. Listing 3.1 shows an exemplary encoding of a subspace.

3.4 A framework for automating experiments 53

#
1 plb eplb spf # app. name, e.g., Path Load Balancer, End-point Load Balancer
2 2 2 1 # the number of configurations of each app. in line 1
3 tcp udp # transport layer
4 7 4:7:all # target switches
5 cbr # end-point traffic profiles
6 10 # the number of switches in the network topology
7 10 # the number of end-points in the network topology
8 1 2:3 4 # end-point combinations, sources : targets
9 topo1 # name of the tested network topology

Listing 3.1: Encoding of an experimental subspace

1. The 1. line names the three control applications PLB, EpLB and SPF routing that
take part in the experiments.

2. The 2. line specifies the configuration of each application in the 1. line. In this
case, PLB has 2 different configurations, EPLB and SPF routing each has only 1
configuration.

3. The 3. line lists the transport type of the traffic to be generated by the end-points,
which is TCP and UDP in this example.

4. The 4. line shows the target switches on which each control application will be
deployed, delimited by the colons (“:”). PLB is deployed on switches 7 and 4,
EPLB on switch 7 and SPF routing targets all switches.

5. The 5. line specifies the traffic profile to be generated by the end-points.
6. The 6. line shows the total number of switches in the network topology. The

information about the number of switches and end-points (shown in the next
line) is useful in preparing a clean test-bed for performing each experiment. For
example, if there are n switches in the topology, their names according to our
naming scheme will be sw1, sw2, . . . swn, the control machine can communicate
with these switches by their name via ssh to clean their rule tables when needed.

7. The 7. line shows the total number of end-points in the network topology.
8. The 8. line indicates the combinations of end-point communication. In this case,

end-points 1 and 2 are the traffic sources, end-points 3 and 4 are the traffic sinks.
The communication combinations are: 1–3, 1–4, 2–3, 2–4.

9. The 9. line specifies the name of the topology used for this experiment round. As
mentioned above, each test-bed corresponds to a fixed network topology and we
cannot change the network topology within a test-bed. To perform experiments
on a new topology, a new test-bed needs to be generated from its topology’s
specification.

Note that a subspace as specified in this listing contains a set of points, each point is
a setting in the parameter space from which a single experiment is performed. Each
subspace is thus associated with a sequence of experiments. In the above encoding,
lines 6, 7 and 9 specify the information related to the network topology and thus
are fixed in the test-bed. We can change the other lines to create new subspaces

54 3 Approaches and Experiments

associated with the current topology, e. g., specifying other control applications in
line 1, changing the target switches of the control applications in line 4, or the end-
point combination in line 8.

This encoding facilitates the analysis of the dataset obtained after finishing the
experiments and the re-execution of an experiment point in the parameter space
to reproduce the outcome for examining an individual case if necessary. Next, we
explain how the points of the subspace, i. e., the experiment settings are generated
from the encoding of the subspace.

3.4.3 Generating compact values for dimensions related to
control applications from a subspace's encoding

We observe that the values for dimensions related to control applications, e. g., app.
config, app. start order and app. priority can be succinctly generated based on the list
of control applications involved in experiments and the number of configurations
of each. Our method of producing the configuration values for these dimensions
ensures that all generated points for experiments are valid and none of them is re-
dundant.

Choosing control applications from the application list
Each application is determined by its index in the application list. For instance, from
line 1 of Listing 3.1, the index of PLB is 0, EpLB 1 and SPF 2. The combinations
stemming from these three applications indicated by their indices are shown in List-
ing 3.2.

#
1 0 1
2 0 2
3 1 2
4 0 1 2

Listing 3.2: Apps combinations

For n control applications, experiments are conducted for different cases from de-
ploying two applications, then three applications, and so on until n applications are
tested. The permutation of the indices in each application combination (e. g., each
line in Listing 3.2) results in the associated values for the app. start order dimen-
sion. In our test, we deploy all control application simultaneously to facilitate the
automation of the experiments. In manual deployment for analysis in depth, we can
deploy control applications in different order as intended to observe conflicts. The
different order entails other concerns, e. g., when should the second application be
started, when come the third, how long should the interval between their start time
be. The choice and the result seem to depend much on the characteristics of the
control applications, the schedule and the type of traffic generated in the data plane.

3.4 A framework for automating experiments 55

Configuration generation
The configuration combinations are derived from each application combination (i. e.,
each line in Listing 3.2). The number of configurations of each application is specified
in the encoding of the experimental subspace. For example, line 1 of Listing 3.2 0 1
refers to a combination of PLB and EpLB, each has two configurations according to
line 2 of Listing 3.1, say config. 1 and confg. 2, we can infer thus 4 configurations for
these application combinations as shown in Listing 3.3.

#
1 1 1
2 1 2
3 2 1
4 2 2

Listing 3.3: Configuration combinations for PLB and EpLB

Priority generation
Priority implicates the rule order generated by different applications. The order pat-
tern should be unique to eliminate redundant setups and hence, redundant experi-
ments. For 2 applications, the priority combinations are:

#
1 2 2
2 2 3
3 3 2
4 3 3 # duplicated with 2 2, two apps. having the same priority

Listing 3.4: Priority combinations for two apps

Note that the application priority starts at 2, since the priority of 0 is reserved for the
table-miss entry and the priority of 1 for basic functions, e. g., ARP cache, ARP/ICMP
switching.

The interesting fact is that the number of essential priority combinations is not
intuitively derivable from the number of applications involved. One can mistakenly
infer that there are 4 priority combinations for 2 applications, 27 for 3 applications
and so on. In fact, it is 3 for 2 applications because the combination of 3 3 is a dupli-
cate pattern of 2 2 as noted in Listing 3.4, there are 13 combinations for 3 applications
shown in Listing 3.5, in which the priority relationships are denoted by the relation-
ship between a, b, c in the pattern column, the duplicate combinations are pointed
out. For 4 control applications, the total number of combinations is 75, it is 541 for
5 and 4863 for 6 applications. The method for generating the priority combinations
for n applications is portrayed in Appendix 7.

56 3 Approaches and Experiments

Main combi. Pattern Duplicated combi.
1 2 2 2 # a=b,a=c,b=c 3 3 3 4 4 4
2 2 2 3 # a=b,a<c,b<c 2 2 4 3 3 4
3 2 3 2 # a<b,a=c,b>c 2 4 2 3 4 3
4 2 3 3 # a<b,a<c,b=c 2 4 4 3 4 4
5 2 3 4 # a<b,a<c,b<c
6 2 4 3 # a<b,a<c,b>c
7 3 2 2 # a>b,a>c,b=c 4 2 2 4 3 3
8 3 2 3 # a>b,a=c,b<c 4 2 4 4 3 4
9 3 2 4 # a>b,a<c,b<c
10 3 3 2 # a=b,a>c,b>c 4 4 2 4 4 3
11 3 4 2 # a<b,a>c,b>c
12 4 2 3 # a>b,a>c,b<c
13 4 3 2 # a>b,a>c,b>c

Listing 3.5: Priority combinations for three apps

3.4.4 End-point related dimensions
The end-point combination dimension is specified in the encoding of the experimental
subspace (e. g., line 8 in Listing 3.1). As mentioned earlier in Section 3.5.2, we do not
deploy the MEADcast application in the automatic massive test but only in manual
run, which is the sole control application that influences the end-points’ multicast
communication. The other control applications target normal unicast traffic, thus the
subspace encoding reflects only unicast communication between end-points. Traffic
generation software is pre-installed in all end-points, then depending on the values
of the end-point traffic profile, transport type dimensions, the appropriate software is
called from the control machine to generate the desired traffic.
Example Lines 3, 5, 8 in Listing 3.1 specify the end-points 1 and 2 to communicate
with the end-points 3 and 4 via TCP and UDP using the constant bit rate (CBR)
encoding. The control script from the control machine starts in end-points 3 and 4
the server processes at some certain port using the nc (netcat) software, then starts
in end-points 1 and 2 the client processes to communicate with both end-points 3
and 4, the input and the options of the nc command allows the TCP and UDP traffic
to be generated in the CBR encoding.

3.4.5 Expected and observed network behaviour
Our definition of conflicts in Chapter 1 implies the comparison between the expected
and observed network behaviour in detecting conflicts. The expected network be-
haviour is obtained from the isolated deployment of each control application. In
contrast, the observed network behaviour is procured from the co-deployment of
different control applications.

3.4 A framework for automating experiments 57

Logged data for analyzing network behaviour
There are various kinds of data in each experiment that could be logged for anal-
ysis, e. g., traffic dumps for each interface of each network device, the number of
packets being dropped/forwarded by an interface, the speed and latency of the file
transmission or communication between end-points. Storing all traffic dumps would
be useful in most cases but requires large storage space. In comparing the expected
and real network behaviour to determine the presence of conflicts, we find the below
information necessary and sufficient.
Interface throughput over time The real-time traffic dumps are used to calculate
the traffic throughput over time of each interface of a network device without having
to store them. The throughput data are important in ensuring the correct outcome
of control applications that control the network bandwidth, e. g., Path Load Balancer,
bandwidth-related Traffic Engineering.
Communication state between end-points While deploying control applications
in isolation, the communication between end-points must be successful except for
those applications that explicitly drop some kind of traffic, e. g., firewall. The co-
deployment of control applications resulting in unsuccessful communication between
end-points would show the sign of anomalies that need further analysis. The log data
of communication state between end-points are also useful in ensuring the correct
behaviour expected by the control applications that redirects end-points communi-
cation, e. g., EpLB.
Rule tables The rule table can be analysed to ensure that the rules of a control
application are effective at its interested points (switches) in the network. There may
be the case in which the communication between end-points is successful in co-
deployment of the control applications while the rules of one of them are not present
at its target switch, although those rules are shown in the isolated deployment. The
correct network behaviour in this case deserves extra analysis to determine whether
it is correct by chance and if conflicts exist.

Comparison of expected and real network behaviour
Each control application is deployed in isolation with all of its configurations and
settings specified in the encoding of the subspace, e. g., in Listing 3.1. The network
behaviour in co-deployment of control applications is compared with that of each
application based on the logged data mentioned above. The deviated results from
the comparison indicate the presence of anomalies that suggests further examination
to detect and classify conflicts.

We choose the metric among the logged data to compare network behaviour based
on the intent of the control applications participating in the co-deployment, while
rule tables are always compared. For instance, EpLB does not concern about the
interface throughput but the communication state between end-points, e. g., if the
communication is successful, how many sessions are handled by a certain end-point;
in contrast, PLB is not interested in how communication sessions are balanced at end-

58 3 Approaches and Experiments

points but the throughput of each interface of its target switches. After determining
the metric according to the control applications involved, we perform the comparison
as follows:

• If the metric includes the interface throughput, the maximal value that was logged
is used. We allow a difference within a threshold, e. g., if we choose a threshold of
5 Mbps and the maximal throughput of an interface in the isolated deployment of
the control application is 60 Mbps while it is 64 Mbps in the co-deployment, then
no problem is raised regarding this metric.

• If the metric includes the communication state between end-points, we compare
the state of the communication sessions reported at end-points, e. g., via the exit
code of the program used for generating traffic, and the number of sessions handled
by each end-point acting as a server in the communication.

• In terms of rule tables, we compare the number of rules installed by the control
application in concern at its target switches. We differentiate rules from different
control applications based on the cookie values that we assign them. The presence
of a rule in a switch indicates two possibilities: i) the control application installs that
rule independent of the traffic coming to that switch, or ii) the control application
reacts to the arrival of certain traffic in the switch by installing that rule. In both
cases, if there exists no disruption, the number of rules of an application should
stay the same in the isolated deployment as well as in the co-deployment.

• Some control applications, e. g., firewall, can drop traffic, which could fail the com-
munication sessions between end-points that violate its policy. If none of these
applications takes part in the co-deployment but there exists failure in the commu-
nication between end-points, an alert of conflict is raised.

3.4.6 Dataset
Experiments’ results are logged in a dataset, that is organized in such a way that each
individual experiment can be conveniently replayed to reproduce the logged results.
We exploit the dataset to study features of conflicts to classify them (Chapter 4).

Dataset structure
We record the result of each experiment in terms of conflicts, its settings and rule
tables of network devices in a dataset. Listing 3.6 illustrates the file structure of the
dataset.

|-- 200820_152207
| |-- all_config
| |-- conflict.txt
| |-- sw1_flowdump.tar.gz
| |-- sw2_flowdump.tar.gz
| `-- ...
|-- 201109_003301
| |-- all_config

3.4 A framework for automating experiments 59

| |-- conflict.txt
| |-- sw1_flowdump.tar.gz
| |-- sw2_flowdump.tar.gz
| `-- ...
|-- ...
| |-- ...
`-- massive

|-- arpcache.py
|-- eplb_config_local1
|-- eplb_config_local2
|-- eplb.py
|-- spf.py
`-- ...

Listing 3.6: An excerpt of the file structure of an exemplary dataset

We refer to all experiments associated with a subspace (e. g., the subspace specified
in Listing 3.1) as an experiment round, these have their results stored in the same
directory named after the time point in the format Year-Month-Day_Hour-Minute-
Second (e. g., 200820_152207) when the round started. The time point serves as the
identifier (or shortly id) of the experiment round, which is required if we need to
reproduce and verify the results of that round. In an experiment round, each control
application is first deployed in isolation with each of its configuration, then they are
co-deployed according to the settings of each point in the subspace. All settings
of these points are written in a configuration file, named all_config, in the format:
app_name:app_config:app_priority:target switch. Since control applications are always
simultaneously co-deployed in this framework, we omit the value of the app start
order dimension in the configuration file. An excerpt of an exemplary all_config
file is shown in Listing 3.7. We can observe that it begins by the encoding of the
subspace similar to Listing 3.1 (lines 1–9), line 11 is the id of the experiment round.
There are 79 points in total in the subspace shown in this all_config file, which means
79 individual experiments for the co-deployment of control applications need to be
conducted (likewise, there are 76 points in the subspace described in Listing 3.1).
The way we store the settings in the all_config file allows the precise and handy
reproduction of each experiment point or the whole experiment round.

#
1 eplb pplb plb
2 1 4 1
3 tcp udp
4 7:3 4:7 5 6
5 cbr
6 10
7 10
8 1 2 8 9:3 4 5 6
9 topo1
10
11 200820_152207
12 point 1

60 3 Approaches and Experiments

13 eplb:1:2:7
14 pplb:1:2:3 4
15 point 2
16 eplb:1:2:7
17 pplb:1:3:3 4
18 point 3
19 ...

point 78
eplb:1:4:7
pplb:4:2:3 4
plb:1:3:7 5 6
point 79
eplb:1:4:7
pplb:4:3:3 4
plb:1:2:7 5 6

Listing 3.7: An excerpt of an exemplary all_config file

Deviated network behaviour between the isolated and the co-deployment of control
applications occurring during the experiment round is logged in a file named con-
flict.txt, an exemplary excerpt is shown in Listing 3.8. The logged data mentioned
in Section 3.4.5 are used for the comparison. The first line of the conflict.txt file is
the id of the experiment round. Points that do not show up in the conflict.txt file
correspond to the safe settings, e. g., points 4, 5, 6 in the above example.

#
1 200820_152207
2 error with nc, point = 1
3 nc from pc2 to pc3(UNKNOWN) [192.168.1.3] 3423 (?) : Connection timed out
4 error with nc, point = 1
5 nc from pc9 to pc3(UNKNOWN) [192.168.1.3] 3493 (?) : Connection timed out
6 error with iperf, point = 1, iperf from pc2 to pc3
7 [3] WARNING: did not receive ack of last datagram after 10 tries.
8 error with iperf, point = 1, iperf from pc9 to pc3
9 [3] WARNING: did not receive ack of last datagram after 10 tries.
10 error with nc, point = 2
11 nc from pc2 to pc3(UNKNOWN) [192.168.1.3] 3423 (?) : Connection timed out
12 error with iperf, point = 2, iperf from pc2 to pc3
13 [3] WARNING: did not receive ack of last datagram after 10 tries.
14 conflict, bw difference=5.94, point=2,sw5, eth3
15 conflict, bw difference=5.86, point=3,sw5, eth3
16 error with nc, point = 7
17 nc from pc2 to pc3(UNKNOWN) [192.168.1.3] 3423 (?) : Connection timed out
18 error with nc, point = 7
19 nc from pc9 to pc3(UNKNOWN) [192.168.1.3] 3493 (nut) : Connection timed

↪→ out
20 ...

Listing 3.8: An excerpt of an exemplary conflict.txt file

After each experiment finished, the rule tables of all network devices are stored. In
our framework, we use the ovs-ofctl dump-flows command for this purpose and we
name the rule tables obtained by this command as flow dump. After the whole ex-

3.4 A framework for automating experiments 61

periment round finished, all of these rule tables are compressed into a tarball2 file
and stored in the dataset under the directory named by the experiment round’s id.
The content of a tarball is illustrated in Listing 3.9, the name of each flow dump is
composed of the prefix sw<i>_flowdump_ and the suffix which is either the point
number in the experiment subspace or the control application’s name and its config-
uration number in case it is deployed in isolation.

#
1 sw1_flowdump_1
2 sw1_flowdump_2
3 sw1_flowdump_3
4 sw1_flowdump_4
5 ...
6 sw1_flowdump_eplb_1
7 sw1_flowdump_eplb_2
8 sw1_flowdump_plb_1
9 ...

Listing 3.9: An excerpt of an exemplary tarball of sw1_flowdump.tar.gz

An excerpt of the raw content of a flow dump in the tarball is shown in Listing 3.10.
These flow dumps are crucial in analyzing conflicts.

The massive directory in Listing 3.6 contains the source code of all control appli-
cations used for the experiments. We include them in the dataset so that any third
party can repeat the experiments and reproduce the results when necessary.

OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=77.728s, table=0, n_packets=147, n_bytes=8820, priority

↪→ =65535,dl_dst=01:80:c2:00:00:00,dl_type=0x88cc actions=CONTROLLER:65535
cookie=0x400, duration=69.193s, table=0, n_packets=11, n_bytes=753, idle_timeout

↪→ =1800, priority=2,tcp,in_port=2,nw_src=192.168.1.1,nw_dst=192.168.1.3,
↪→ tp_src=2313,tp_dst=3413 actions=output:3

cookie=0x400, duration=62.161s, table=0, n_packets=1, n_bytes=74, idle_timeout
↪→ =1800, priority=2,tcp,in_port=2,nw_src=192.168.1.2,nw_dst=192.168.1.3,
↪→ tp_src=2323,tp_dst=3423 actions=set_field:00:16:3e:11:11:04->eth_dst,
↪→ set_field:192.168.1.4->ip_dst,output:3

cookie=0x700, duration=69.156s, table=0, n_packets=0, n_bytes=0, idle_timeout
↪→ =1800, priority=2,tcp,nw_src=192.168.1.3,nw_dst=192.168.1.1,tp_src=3413,
↪→ tp_dst=2313 actions=output:2

cookie=0x700, duration=65.646s, table=0, n_packets=0, n_bytes=0, idle_timeout
↪→ =1800, priority=2,tcp,nw_src=192.168.1.4,nw_dst=192.168.1.1,tp_src=3414,
↪→ tp_dst=2314 actions=output:2

...

Listing 3.10: An excerpt of an exemplary flow dump

2 https://wiki.debian.org/TarBall

62 3 Approaches and Experiments

Retrieving information of an experiment from the dataset
The organization of the dataset allows determining the setting (corresponding to
a point in the parameter space) of an experiment and retrieving the rule tables of
network devices produced by that experiment.
Example Lines 10–14 of the file conflict.txt in Listing 3.8 report that point 2 of the
subspace experienced a problem related to the communication between PC2 and PC3
and the traffic throughput difference of the interface eth3 of switch 5 was higher than
the chosen threshold (we specified the threshold of 5 Mbps for our framework). The
first line of this file specifies the id, being 200820_152207, of the experiment round to
which the experiment corresponding to point 2 belongs, the directory containing the
file conflict.txt is named after this id (see also Listing 3.6). In the file all_config under
this directory, lines 15–17 (see Listing 3.7) specify the setting of this point: EpLB with
configuration 1, priority 2, interacts with switch 7 and PPLB with configuration 1, pri-
ority 3, interacts with switches 3 and 4. In this case, our framework deploys addition-
ally the SPF control application (see Section 3.5.2) with the priority of 1 to provide the
routing function since it is not specified in this point of the subspace. Lines 3, 5 and 8
of all_config state that the end-points 1, 2, 8, 9 transmit constant bit rate via TCP and
UDP to the end-points 3, 4, 5, 6; we use the tools nc and iperf in our framework to gen-
erate such traffic. We can retrieve the flow dumps of the target switches of the control
applications in point 2, i. e., switch 7 for EpLB and switches 3, 4 for PPLB by extract-
ing the tarballs sw7_flowdump.tar.gz, sw3_flowdump.tar.gz, sw4_flowdump.tar.gz to
get the relevant files sw7_flowdump_2, sw3_flowdump_2, sw4_flowdump_2. There we
also have the rule tables of the isolated deployment in the files sw7_flowdump_eplb_1,
sw3_flowdump_pplb_1, sw4_flowdump_pplb_1. With the setting inferred, we can re-
play the experiment to inspect step by step the occurring conflicts when necessary.

3.4.7 (Re)Production of the test-bed
Having explained the principles in building test-beds for experimenting conflicts, we
delineate the technical aspects useful for its (re)production in this section. The test-
bed in Figure 25 is reused for illustration. All programs mentioned in this section
are available in our published codebase3.

Environmental settings
In a normal setup, the whole test-bed is bundled in a big virtual machine (VM) to
avoid any possible interference from other (production) network traffic. This big vir-
tual machine is named outer control machine, run in a host machine. We recommend
the KVM hypervisor [53] in the host to run the outer control machine and the Xen
hypervisor [5] for the inner machines (including the SDN controller, switches and
end-points). Reyes presents two alternative approaches in which the outer machine

3 https://github.com/mnm-team/sdn-conflicts

3.4 A framework for automating experiments 63

ssh

start_xen_vms.bash
config_testbed.bash
parameter_space.bash
read_parameter_space.bash
choose_app.py
generate_config.py
one_point.bash
one_app.bash
...

dumpflows.bash
netbps (perl script)
tcpdump_fromoutside_bwgauge.bash
...

arpcache.py
eplb.py
plb.py
fw.py
topology.py
...

common_generate_qcow_image.sh
common_generate_xen_image.sh
common_qcow_helpers.sh
common_xen_helpers.sh
start_kvm_master.sh
...

Figure 25: Illustration of a simple test-bed with the associated programs in each class of machines

is created with the VirtualBox hypervisor4 or directly with Xen [90]. In the latter
case, the host machine has Xen installed and plays the role of the outer machine.
One can choose a suitable setting depending on her preference and the computing
environment being used.

Network topology and specification files
Each test-bed corresponds to a network topology. The creation of a test-bed from a
network topology specification is based on the work of Danciu et al. [23], in which
the specification files for each machine must be prepared beforehand. Reyes provides
a convenient python script to generate these specification files from a simpler speci-
fication containing the machines’ names and links between them. For the topology
in Figure 25, an excerpt of the specification looks like:

model.testbed.switches.add("sw1")
model.testbed.switches.add("sw2")
model.testbed.hosts.add("pc1")
model.testbed.hosts.add("pc2")
switch_edges = [["sw1","sw2"]]

4 https://www.virtualbox.org/

64 3 Approaches and Experiments

host_edges = [["sw1","pc1"], ["sw2","pc2"]]
edges = host_edges + switch_edges

Listing 3.11: An excerpt of the specification of machines and links for generating the test-bed in Figure 25

One can find the sample python script in our published codebase (file topogen/auto-
gen/sample_topology.py). The controller is added by default and thus is not specified
in the script. Some excerpts of the specification files for Controller, PC1, SW1 and
outer machine after executing the python script are shown below.

XEN_IMAGE_NAME="controller"
XEN_TEMPLATE_IMAGE="templates/controller/controller.img"
XEN_BRIDGES="(${XEN_IMAGE_NAME}_vif0,br_man)"
XEN_AUTOCONF="${XEN_IMAGE_NAME}_vif0"

Listing 3.12: An excerpt of the specification file xen_controller.spec for controller in the test-bed in Figure 25

XEN_IMAGE_NAME="pc1"
XEN_TEMPLATE_IMAGE="templates/pc/pc.img"
XEN_BRIDGES="(${XEN_IMAGE_NAME}_vif0,br_man) (${XEN_IMAGE_NAME}_vif1,br_s1p1)"
XEN_AUTOCONF="${XEN_IMAGE_NAME}_vif0"

Listing 3.13: An excerpt of the specification file xen_pc1.spec for PC1 in the test-bed in Figure 25

XEN_IMAGE_NAME="sw1"
XEN_TEMPLATE_IMAGE="templates/sw/sw.img"
XEN_BRIDGES="(${XEN_IMAGE_NAME}_vif0,br_man) (${XEN_IMAGE_NAME}_vif1,br_s1p1) (${

↪→ XEN_IMAGE_NAME}_vif2,br_s1s2)"
XEN_AUTOCONF="${XEN_IMAGE_NAME}_vif0"

Listing 3.14: An excerpt of the specification file xen_sw1.spec for SW1 in the test-bed in Figure 25

QCOW_IMAGE_NAME="simple_testbed"
QCOW_TEMPLATE_IMAGE="templates/outer.qcow"
XEN_SPEC_LIST="xen_controller.spec,xen_pc1.spec,xen_pc2.spec,xen_sw1.spec,xen_sw2.

↪→ spec"

Listing 3.15: An excerpt of the specification file qcow.spec for the outer control machine in the test-bed in Figure 25

We can observe from these specification files that a template image is required for
each kind of machine (lines starting with XEN_TEMPLATE_IMAGE), we prepared
four template images for the controller, hosts, switches and the outer control machine
for this purpose. Each template image contains existing programs as shown in Fig-
ure 25, they are necessary for configuring the test-bed, for conducting experiments
and creating log files to identify anomalies in an automatic manner. All machines
are connected to the management bridge br_man (line starting with XEN_BRIDGES),
the outer machine has access to the inner ones via this bridge. Another interface of
PC1 connects to the bridge br_s1p1, to which one of the interfaces of SW1 also con-
nects, thus there is a connection between PC1 to SW1 via the bridge br_s1p1. The
other connections are established in the same manner.

3.4 A framework for automating experiments 65

Once the specification files for all machines are available, a command is called to
create the outer control machine together with all Xen virtual machines inside:

bash common_generate_qcow_image.sh qcow.spec testbed.qcow

qcow.spec is the specification file for the outer machine shown in Listing 3.15 and
testbed.qcow is the target qemu disk image5. This qemu disk image can be modified
via the qemu-nbd and mount tools, e. g., to configure the IP address for ssh when the
machine is brought up.

The test-bed can be started from the host machine with the command:

bash start_kvm_master.sh testbed 88

in which testbed is the name of the qcow image just created (testbed.qcow), the num-
ber 88 specifies the last byte for the MAC address of this new outer control machine,
this number is specific to our own environment to distinguish test-beds created on
the same host machine. After the outer machine is brought up, it automatically in-
vokes the scripts start_xen_vms.bash, config_testbed.bash (shipped with its template
image) to start all the Xen virtual machines inside and to configure the test-bed (e. g.,
configure IP addresses for these machines, set up OpenFlow switches, bring up their
interfaces).

It is to be noted that the main purpose of the above steps is to create and bring
up the test-bed, bundled in the qcow image of the outer control machine. One can
copy and run this qcow image in another host machine with KVM hypervisor, or
convert it into other formats to run with the preferred hypervisors, e. g., VirtualBox,
VMWare Workstation Player6.

At this point, the test-bed is completely established, one can proceed to perform
experiments therein.

Conducting experiments and collecting the dataset
Once the test-bed is up, we can access the outer control machine to adapt the param-
eter space encoded in the file parameter_space.bash. The structure of this file was
explained in Section 3.4.2. Then, all experiments corresponding to the encoding in
this file can simply be performed by executing the script:

bash read_parameter_space.bash

The tasks performed by this script are as follows.

1. It parses the file parameter_space.bash for necessary information about the sub-
space encoded therein, e. g., which control applications take part in the experi-

5 https://linux.die.net/man/1/qemu-img
6 https://www.vmware.com/products/workstation-player.html

66 3 Approaches and Experiments

ments, how many configurations each has, their target switches, how many end-
points and switches there are in the test-bed, the end-point communication com-
bination.

2. It prepares the clean environment for experiments by removing the existing log
files and terminating any running experiment-related processes in the controller,
all switches and end-points.

3. Each control application is first executed alone with each of its configuration. The
types of traffic (TCP/UDP) specified in the file parameter_space.bash are generated
between all combinations of end-points derived from this file. Log files are created
in each end-point and switch, which manifest the expected network behaviour.
These log files hold the information concerning the throughput of each interface
of each switch, the communication state between end-points, and the rule tables
of each switch.

4. Control applications are then co-deployed with different combinations of their
configurations and priority. Log files created at each end-point and switch during
this step are compared with the relevant ones obtained previously in the isolated
deployment of each control application, deviations indicating potential conflicts
are recorded in the file conflict.txt, all settings are written into the file all_config.

5. After all experiments derived from the file parameter_space.bash are performed,
the dataset is updated and the clean environment for subsequent experiment
rounds is returned.

All of the above steps are carried out automatically by the script read_parameter_space-
.bash. The number of experiments varies depending on the number of control appli-
cations and their configurations specified in parameter_space.bash, e. g., there are 76
individual experiments for the encoding in Listing 3.1.

The command to execute the control applications in the controller in steps 3 and
4 is the following:

ssh -n controller "sh -c 'ryu-manager --observe-links $applist &' > /dev/null
↪→ 2>&1"

$applist variable contains the list of control applications, e. g., plb.py, eplb.py. In
Chapter 6, we introduce the conflict detection prototype as a control application,
named detector.py. The evaluation of the prototype in the test-bed can be automated
by simply appending the prototype program detector.py in the $applist variable in the
above command.

Replaying an experiment
One may replay a particular experiment from an experiment round to inspect the
occurring problems logged in the dataset. We provide the two scripts one_app.bash
and one_point.bash for this purpose. As mentioned in Section 3.4.6, each experiment
round (containing a set of experiments associated with the space specified in the

3.4 A framework for automating experiments 67

file parameter_space.bash) is assigned a unique ID in the dataset represented by the
time point in the format Year-Month-Day_Hour-Minute-Second (e. g., 200820_152207)
when the round started (see also Listing 3.6). Experiment settings are encoded as
points in the dataset, which are used in the files all_config and conflict.txt (see List-
ings 3.7 and 3.8). The setting associated with a point can be restored by:

bash one_point.bash <experiment round ID> <point number>

The command also deploys all control applications in that point together, we can then
generate traffic in the data plane, capture packets, inspect switches’ rule tables…to
examine the reported problems in detail.

In a point, control applications are co-deployed in some combination of their
configurations and priority. One may want to examine also how each of them is
deployed in isolation to compare the expected and observed network behaviour and
derive conflicts. The script one_app.bash is useful in this case:

bash one_app.bash <app_name> <config> <experiment round ID>

Testing a new control application
A new control application can be added to the test-bed for experimenting. The
following steps need to be fulfilled.

• Its python program (we use the ryu SDN framework implemented in the python
programming language as the controller) needs to be copied to the controller ma-
chine at the location specified by theAPPDIR variable of the file collectdata_config.bash
in the outer machine (which is /root/massive/ by default), its local configurations in
the files named appname_config_local_<i> where i ≥ 1 must also be placed there.

• The file parameter_space.bash needs to be updated with the presence of this new
control application, its number of configurations and target switches.

• The file read_parameter_space.bash needs to be updated with the comparison be-
tween the expected and observed network behaviour to detect symptoms of con-
flicts and report them in the log files. The comparison implemented for the existing
control applications (e. g., End-point Load Balancer) in this file can be used as a
guideline.

Then, experiments associated with the adapted parameter space containing the new
control application can be carried out by invoking the script:

bash read_parameter_space.bash

68 3 Approaches and Experiments

3.5 SDN control applications
Control applications play a crucial part in our conflict researching. We observe that
some properties of control applications may affect the way conflicts happen. We
describe these properties in this section, which are referred here and there later in
this book. A set of control applications follows.

3.5.1 Properties of SDN control applications
A control application can be deployed within the controller or separate, it can install
rules in an active or passive manner, and can maintain its state reflecting what it has
done.

Controller built-in vs. separate
SDN control applications can be implemented as controller built-in or they can be
separated from the controller and use the controller northbound interface (or Appli-
cation Programming Interface (API)) to control the network. The common controller
northbound APIs are Representational State Transfer (REST) APIs [36], applications
using REST APIs are referred to in this work as REST-based.

Controller built-in applications are quicker in response to an event or in installing
rules in the data plane while those separate from the controller induce more latency
and their responsiveness is highly dependent on the network state. Due to the high
latency in communicating with the controller, implementing separate applications
after the event/method model mentioned in Chapter 1 is not recommended though
it is possible by employing certain technique, e. g., Websocket [34] to maintain the
two-direction connection between the controller and a separate application and to
avoid the expensive polling problem pointed out in [64]. However, separate applica-
tions can support the user/administrator better in interacting flexibly and remotely
with the controller to actively control the network. Besides, they can be stopped or
started independently from the controller whereas the controller built-in applications
in some cases or in specific implementation can only be started or stopped together
with the controller.

Regarding our experiments’ setup, controller built-in applications can well replace
the separate ones for the same goals while providing higher level of reliability. There-
fore, most of our chosen control applications for experiments are controller built-in
ones.

Active vs. passive
A control application is classified as active if it behaves based on monitoring informa-
tion from the data plane that it actively detects (e. g., via symmetric request/response
messages using the controller’s method/event mechanism) or if its behaviour is inde-
pendent from events from the controller, e. g., it monitors the network and intercepts
if necessary. A passive application only reacts upon receiving events generated by the
controller.

3.5 SDN control applications 69

Intuitively, active applications can better avoid conflicts than passive ones since they
deploy rules only when necessary based on their analysis of the current data plane’s
situation. For studying conflicts, different combinations of both active and passive
applications are of interest.

Stateful vs. stateless (with reference to packet-in events)
There are situations that a switch receives at a time an avalanche of packets of the
same packet flow (i. e., having the same OSI L2–4 header fields) that it has to ask
the controller for instructions on forwarding; the switch sends many packets of this
flow to the controller which then generates a mass of packet-in events to control
applications. Control applications that treat packet-in events in a stateless manner
may result in network behaviour different from those stateful. Take, for example,
a stateless End-point Load Balancer (EPLB) application that balances incoming re-
quests to a virtual server in a round-robin fashion on different target replicas, this
EPLB receives multiple packet-in events of the same packet flow at a time, it gener-
ates corresponding rules to each of them: rules directing them to the first replica,
then rules to the second replica and so on until it has handled all packet-in events
of that flow. The resulting effect, which is generally not expected, is that rules of the
same match fields and different actions are installed repeatedly and then immediately
replaced/overridden by another rules. In general, this is not the behaviour that the
application developer desires and appears to be likely a bug. The common practice is
to handle packets of the same flow consistently and the control application should be
stateful in terms of handling packet-in events, i. e., it should log the packet-in events
that it has handled already and ignore the subsequent packet-in events having the
same concerning packet headers. In our experiments, the control applications are
always stateful in handling packet-in events.

3.5.2 Control applications for experiments
We describe the control applications that we employ for our experiments. Most of
them rely on the fundamental functions implemented as controller built-in including
topology discovery, ARP cache and NDP cache.

To avoid confusion, it is to be noted that in the SDN paradigm, a control appli-
cation can place its rules in any target switch, these rules can be assigned with pre-
defined priority while matching packets coming to the switch containing them. For
passive control applications, we also mention their target traffic in their description,
being the content of packet-in events to be handled by them.

Table 3.4 outlines the control applications that we employed according to their
characteristics. Since they are always stateful in handling packet-in events, we do not
mention this feature in the table.

70 3 Approaches and Experiments

Fundamental functions
Topology discovery: to discover ports, links and switches, their addition or removal.
If a port, a link or a switch is removed, the existing rules related to it will also
be deleted in the corresponding network devices. The controller sends Link Layer
Discovery Protocol messages (LLDP) [19] regularly to probe the aliveness of each
switch, port or link and updates the network topology accordingly (Volkan Yazici
provides a good explanation of the network discovery mechanism in SDN in his
blog7). We encode the network topology as a directed graph with self loops and
parallel edges, which facilitates the other network functions, such as routing, load
balancing.

Apps Active Passive Controller built-in REST-based Target traffic

Topology Discovery ✓ ✓ LLDP

ARP cache ✓ ✓ ✓ ARP

NDP cache ✓ ✓ ✓ IPv6, ICMPv6

SPF ✓ ✓ ARP, ICMP, TCP, UDP

EpLB ✓ ✓ TCP, UDP

PLB ✓ ✓ TCP, UDP

PPLB4S ✓ ✓ TCP, UDP

PPLB4D ✓ ✓ TCP, UDP

Firewall ✓ ✓ ✓ TCP, UDP

TE ✓ ✓ ✓ ✓ TCP, UDP

PE ✓ ✓ TCP, UDP

pHS ✓ ✓ TCP, UDP

aHS ✓ ✓ TCP, UDP

MEADcast ✓ ✓ MEADcast traffic (UDP over IPv6)

Table 3.4: Classification of control applications. SPF: Shortest Path First, EpLB: End-point Load Balancer, PLB: Path Load
Balancer, PPLB4S: Source-based Passive Path Load Balancer, PPLB4D: Destination-based Passive Path Load Balancer,
TE: Traffic Engineering, PE: Path Enforcer, pHS: Passive Host Shadowing, aHS: active Host Shadowing.

ARP cache: to learn and cache the MAC and IPv4 address mapping based on the
ARP REQUEST and ARP REPLY messages of end-points. Its operating mechanism is
similar to the address resolution proxy found in [60]. The ARP cache helps eliminate
the need of the spanning tree protocol in network topologies containing loops and
reduce undesirable traffic noise, e. g., broadcast traffic caused by ARP REQUEST/RE-
PLY while examining conflicts.
NDP cache: to learn and cache the MAC and IPv6 address mapping of end-points
based on the Neighbor Solicitation and Neighbor Advertisement messages as specified
in the Neighbor Discovery Protocol (NDP) [75].

7 https://vlkan.com/blog/post/2013/08/06/sdn-discovery/

3.5 SDN control applications 71

Shortest Path First Routing (SPF)
Target traffic: ARP/ICMP/TCP/UDP.
This controller built-in application provides the basic routing function for ARP, ICMP
and TCP/UDP traffic based on the shortest path first algorithm. It takes into account
the in_port of the packet coming into a switch and route the packet out of that switch
on the port other than the in_port to avoid traffic loop. SPF extends the fundamental
functions (topology discovery and ARP cache) and reacts passively upon receiving
packet-in events. It can be executed as one of the main control applications for
examining conflicts or as a background one for the others. In the latter case, SPF
does not deploy rules interfering the control applications that it supports.
SPF targets all switches in the network.

End-point Load Balancer (EpLB)
Target traffic: TCP/UDP traffic from a given IP/MAC address to be used as virtual
server IP and a list of replicas IP/MAC addresses.
The Session-based End-point Load Balancer (SBEpLB or EpLB) is realized as a con-
troller built-in application. It is interested in only packet-in events for TCP/UDP
traffic. Each session corresponds to a tuple of <IP source, IP destination, TCP or
UDP protocol, TCP/UDP source port and destination port>. When a client estab-
lishes connection to a proxy server, EpLB will direct this connection to one of the
replicas in a round-robin manner. Once a replica is assigned for the connection
from the client, this TCP/UDP session will be maintained until it ends, which means
a half-done session will never be assigned to another replica.
After choosing the replica for a new session, EpLB consults the global network topol-
ogy (provided by the fundamental functions) to decide the output port for the cur-
rent session to reach the replica. To some extent, it performs the routing function
for TCP/UDP traffic on its responsible network devices (the balancing points).

Path Load Balancing (PLB)
The controller built-in application PLB balances traffic over multiple paths to re-
duce/avoid congestion in the network. PLB actively collects and analyzes regularly
statistic data of its balancing points (one or a couple of switches) to calculate the
throughput of ports/flows and shifts some traffic flows on lower-load paths. It uses
the fundamental functions (ARP cache and topology discovery) to choose the paths
for balancing.

Source-based Passive Path Load Balancer (PPLB4S)
Target traffic: TCP/UDP traffic from a given list of IP/MAC addresses (to be used as
traffic source).

A use case for PPLB4S: a set of servers are broadcasting some live services and
there are multiple clients connecting to these servers to download the content. There
may be heavy traffic on the direction from servers to clients. Hence, traffic originating

72 3 Approaches and Experiments

from these servers, upon reaching the balancing points, will be directed on different
paths starting from the balancing point, if possible, to the clients. This helps reduce
the possible high load on a particular path.

PPLB4S functions as a passive controller built-in application and installs path flows
from balancing points to destinations, i. e., it installs rules on all switches along the
path that it has determined.

Destination-based Passive Path Load Balancer (PPLB4D)
This application is similar to the above PPLB4S, but as the name indicates, it bases
itself on the destination addresses.

Target traffic: TCP/UDP traffic from a given list of IP/MAC addresses (to be used
as traffic destination).

PPLB4D functions as a passive controller built-in application and installs path
flows from balancing points to destinations, i. e., it installs rules on all switches along
the path that it has determined.

Firewall (FW)
This control application is implemented in both controller built-in and REST-based
versions. Common firewall behaviour is specified in [39], it is expressed typically as a
predefined static set of rules to be deployed and does not reflect dynamic reactions to
network states. We extend the basic firewall functions with the capability of actively
monitoring its target switches and carrying out certain operations. Specifically, the
firewall periodically monitors the target switches based on their flows’ and ports’
information. The top-load flow of a port will be dropped temporarily if the port
throughput surpasses a predefined threshold.

Traffic Engineering (TE)
This control application is implemented in both controller built-in and REST-based
versions. It directs traffic on specific paths according to predefined policies. It can
behave in either active or passive manner. Traffic engineering practice related to
traffic shaping [9], traffic throttling or rate limiting has not yet realized due to the
limited support for OpenFlow’s meter feature by Open vSwitch (our SDN test-bed is
built with Open vSwitch version 2.6.2).
Path enforcer (PE) implemented by Reyes [90], is a specific case of the Traffic
Engineering application. This controller built-in passive application installs rules to
direct traffic on chosen paths, for example, some traffic class needs to be forwarded
on a more reliable path than the default shortest path.

Passive Host Shadowing (pHS)
Passive Host Shadowing, implemented by Reyes [90] as a controller built-in pas-
sive control application, adds rules to redirect traffic to an alternative destination
by modifying the corresponding fields of packets. It is useful in ensuring the ser-

3.6 Selected experiments illustrating the methodology 73

vice availability when a server needs to be maintained and a shadowed server takes
responsibility. The exertion of the shadowed server allows the service continuity
without any change from end users or DNS solutions.

Active Host Shadowing (aHS)
We implement a variant of Reyes’ Host Shadowing control application that behaves in
an active manner, named active Host Shadowing. It is a controller built-in application
that places its rules in the network without passively reacting upon receiving packet-
in requests. Its use-cases stay the same as its passive counterpart.

MEADCast – Multicast in SDN
Privacy-Preserving Multicast to Explicit Agnostic Destinations – short for MEAD-
cast [24] – is a protocol that supports the smooth transition from massive unicast
to sender-centric multicast to reduce traffic volume in the network while hiding the
identity of recipients from each other. MEADcast is deployed as a controller built-
in application and reacts to MEADcast-labeled traffic, which includes special UDP
messages transmitted over IPv6. Details of its implementation and deployment in
SDN is presented by Minh Nguyen in his thesis [76].

Our observation via manual deployment of MEADcast with the other control ap-
plications reveals no conflicts due to their non-overlapping concerns: one targeting
IPv6 and the others IPv4, therefore MEADcast was not involved in our massive test
(Section 3.4).

3.6 Selected experiments illustrating the methodology
We present nine experiments selected from the whole set of our experiments (more
than 11,700 individual experiments, see Section 3.3) to illustrate the proposed method-
ology. They also support the conflict analysis and classification in Chapter 4, and
assist our decision in implementing the conflict detection prototype in Chapter 6.
The first two show conflicts arising from contradicting rules within a rule table. The
results from the third and fourth experiments indicate that conflicts can occur by
the combination of rules in different devices. Another type of conflict appears in
the fifth and sixth experiments as side-effects of clashing rules in the same rule table,
the seventh experiment shows no side-effect but only conflicts featured by main ef-
fects of contradicting rules. We illustrate side-effect conflicts in the eighth and ninth
experiments caused by rules scattered in different devices.

3.6.1 Experimental environment
Experiments are deployed on the topology named topo1 shown in Figure 26. The
test-bed is built based on virtual machines as described in Section 3.4.1. We employ
the Ryu SDN framework [107] for the SDN controller and OpenFlow 1.3 as the con-
troller southbound API. Open vSwitch [84] with OpenFlow support is used for SDN

74 3 Approaches and Experiments

switches. Traffic among end-points is generated by common tools: iperf 8, netcat9
and ping.

3.6.2 Applications' configurations for experiments

S1 S2

S3 S4

S5 S6

S7

PC1 PC2

PC3 PC4

1 2

3

12

1
2 3

2
3
4

5

2

3 4

192.168.1.3

192.168.1.1 192.168.1.2

192.168.1.4

1
2 3

2 3

4
5

Figure 26: Topology topo1 for the experiments. The
numbers surrounding a switch indicate its port
names.

We employ the control applications
Shortest Path First (SPF), End-point
Load Balancer (EpLB), Path Load Bal-
ancer (PLB), Traffic Engineering (TE),
Destination-based Passive Path Load Bal-
ancer (PPLB4D) and Firewall (FW) de-
scribed in Section 3.5. They are executed
concurrently in different combinations,
depending on each experiment. Their
configurations are described in the fol-
lowing.

Shortest Path First (SPF)
The SPF application uses the topology in-
formation provided by the controller to
realize the shortest path first routing function for all common kinds of traffic: ARP,
ICMP, TCP, UDP. It is configured to deploy rules in two manners for IP traffic:

• SPF1: the rule’s match fields include: source IP address, destination IP address, IP
protocol number10

• SPF2: the rule’s match fields include only the destination IP address.

End-point Load Balancer (EpLB)
The session-based end-point load balancer balances TCP/UDP traffic among con-
figurable replicas. To change the target replica transparently to the sender, EpLB
modifies specific fields (e. g. destination MAC address, destination IP address) of
packets at its target switches. This operation is implemented by installing rules with
the set_field action in the corresponding OpenFlow SDN devices.

EpLB deploys its rules on switch S7 to balance UDP/TCP sessions between PC3
and PC4. It operates in two configurations:

• EpLB1: always forwarding traffic from PC1 to PC4 and from PC2 to PC3.
• EpLB2: the first incoming session destined to PC3 will be sent to PC3, the second

session to PC3 will be changed to PC4 by rewriting the destination information of
the relevant traffic, the third will come to PC3 and so on.

8 https://iperf.fr/
9 https://man.openbsd.org/nc.1
10 https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

3.6 Selected experiments illustrating the methodology 75

The balancing operation is transparent to end users in that the traffic in response
from PC4 to the original source will be changed to appear as if it was sent from PC3.

Path Load Balancer (PLB)
This application is deployed with only one configuration (PLB1) on switch S7. Load
on the link S7–S5 and S7–S6 is monitored. If this load exceeds a pre-defined thresh-
old, this application divides the load on different paths to the destination based on
the session information in a round-robin manner, otherwise it does nothing. For
instance, if the traffic volume on the link S7–S6 is above the threshold while the link
S7–S5 is underutilised, the largest flow on this link is directed to the link S7–S5 by
rewriting the output port of the corresponding rule(s) in the rule table of switch S7.

Traffic Engineering (TE)
TE is executed in three different manners.

• TE1: It directs all TCP and UDP traffic targeting PC4 with the destination port of
5001 on the link S6–S5 by installing a flow entry on switch S6 to direct this traffic
out of port 4.

• TE2: It redirects all traffic of the same port, destination, e. g. all traffic to the web
server on port 80, on a dedicated path which is supposed to be more secure and
reliable. In our experiment, all TCP and UDP traffic to PC3 with the destination
port being 5001 will be sent through the link S7–S6 by installing a flow entry on
switch S7 to direct all traffic of this kind out of its port 4.

• TE3: It sends all TCP traffic to PC3 out of port 3 of switch S7 on the link S7–S5
and all TCP traffic to PC4 out of port 4 of switch S7 on the link S7–S6.

Destination-based Passive Path Load Balancing (PPLB4D)
This control application is deployed in two configurations on switch S5.

• PPLB4D1: It directs alternately TCP and UDP sessions to PC4 on different paths,
e. g., the first session to PC4 is sent on the path S5–S3–S6–S4, the second on S5–S4
and the third on S5–S6–S4.

• PPLB4D2: It directs alternately TCP and UDP sessions to PC3 on different paths,
e. g., the first session to PC3 is sent on the path S5–S3, the second on S5–S4–S6–S3
and the third on S5–S6–S3.

Firewall (FW)
The Firewall is deployed with one configuration (FW1) on switch S3 to drop all TCP
and UDP traffic having the destination port of 5001 targeting PC4.

76 3 Approaches and Experiments

3.6.3 Experiments
For each experiment, we show its settings as a point in the parameter space estab-
lished in Chapter 3.2.1, the expected and the observed (real) network behaviour, and
the rule tables of the switches that contain rules causing conflicts. Some axes share
the common value, specifically, all experiments use the same topology, being topo1,
PC1 and PC2 communicate with PC3 and PC4 using the constant bit rate traffic
profile.

We use the cookie value of a rule to determine the control application installing
that rule. Information irrelevant to our analysis is removed while displaying rules,
including duration, table, n_packets, n_bytes. To improve clarity, we annotate the
action of each rule governing TCP/UDP traffic in a rule table together with the next
device, i. e., a switch or an end-point, that receives packets matched by that rule.

Experiment 1: SPF1 and EpLB1
(Figure 27 and Table 3.5) In this experiment, SPF1 and EpLB1 are executed with
the same priority of 1. Only the controller management rules are present in the rule
table of switch S7 in the beginning, they include rule 1 used for the topology discovery
service and rule 8, being the table-miss flow entry which forwards packets unmatched
by other rules in the same rule table to the controller. Rule generation happens on first
traffic both for EpLB1 and SPF1. After establishing the communication by nc between
PC1 and PC3, the rule table of switch 7 contains the rules shown in Table 3.5.

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(1,1)

Same

topo1

TCP

CBR

EpLB: S7
SPF: all

App priority

(1,1)

PC:1,2 -> 3,4

App1 = SPF
App2 = EpLB S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

ObservedExpected (EpLB1)

a) Settings b) Expected and observed network behaviour

Figure 27: Experiment 1: settings, expected and observed network behaviour

Conflict observation The resulting combination of rules prevents the second ap-
plication from being effective. Layer 4 traffic from PC1 to PC3 is handled by PC3
instead of PC4, as intended by EpLB.
Conflict analysis The conflict can be identified by comparing rules 6 and 7 high-
lighted in Table 3.5. From the order of the rules installed, rule 7 of EpLB is never
used to match incoming traffic since it is “covered” by rule 6 of the SPF application.
According to the OpenFlow 1.3 standard, a packet is matched by only one rule in a
rule table and the subsequent ones will be ignored.

3.6 Selected experiments illustrating the methodology 77

App Prio L2:Src Dst Type L3:Src Dst Prot Action

1 Ctrl 65535 – 01:80:c2:00:00:00 LLDP Ctrl

2 SPF1 1 00:16:3e:11:11:01 00:16:3e:11:11:03 ARP output:3

3 SPF1 1 00:16:3e:11:11:03 00:16:3e:11:11:01 ARP output:2

4 SPF1 1 00:16:3e:11:11:04 00:16:3e:11:11:01 ARP output:2

5 SPF1 1 00:16:3e:11:11:01 00:16:3e:11:11:04 ARP output:3

6 SPF1 1 – – – 192.168.1.1 192.168.1.3 TCP output:3 (to S5)

7 EpLB1 1 00:16:3e:11:11:01 00:16:3e:11:11:03 – 192.168.1.1 192.168.1.3 TCP SF:eth_dst=00:16:3e:11:11:04,

SF:ip_dst=192.168.1.4,

output:4 (to S6)

8 Ctrl 0 Ctrl

Table 3.5: Experiment 1: switch S7's rule table after the first TCP session. SF stands for set_field.

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(1,1,1)

Same

topo1

TCP

CBR

EpLB: S7
PLB: S7
SPF: all

App priority

(2,2,1)

PC:1,2 -> 3,4

App1 = EpLB
App2 = PLB
App3 = SPF

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

ObservedExpected (PLB1)

a) Settings b) Expected and observed network behaviour

Figure 28: Experiment 2: settings, expected and observed network behaviour

Experiment 2: EpLB1 and PLB1
(Figure 28 and Table 3.6) In this experiment, SPF1 provides the base routing function
and has lower priority while EpLB1 and PLB1 run with the same higher priority. The
throughput threshold for PLB1 is set to 5 Mb/s. The rule table of switch S7 has only
rules 1, 12 (controller management rules) in the beginning. Rule generation happens
on first traffic both for EpLB1 and PLB1.

Initially, the network behaviour corresponds to expectation, in that traffic trans-
ferred from PC1 to PC3 is handled by PC4. When the throughput observed on the
link S7–S6 exceeds the threshold, PLB deploys its rules.
Conflict observation The combination of rules in this experiments prevents PLB
from being effective. The flow above threshold still has its traffic being forwarded on
the link S7–S6 although PLB intends to move it to the link S7–S5.
Conflict analysis We find that the rules 2 and 4 highlighted in switch 7’s rule table
(Table 3.6) are at odds, and again the observed effect is a function of rule order.

Experiment 3: PPLB4D1 and TE1
(Figure 29 and Table 3.7) SPF1 provides the basic routing function with the priority of
1, PPLB4D1 installs its rules with the priority of 2 on switch S5, TE1 with the priority
of 2 on switch S6. In the beginning, the rule tables of switches S5 and S3 have only the

78 3 Approaches and Experiments

#
A
pp

Pr
io

in
_p

or
t

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

A
ct
io
n

1
Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

2
Ep

LB
1

2
–

00
:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
3

–
19

2.
16

8.
1.
1

19
2.
16

8.
1.
3

TC
P

se
t_
fie

ld
:e
th
_d

st
=0

0:
16

:3
e:
11

:1
1:
04

,

se
t_
fie

ld
:ip

_d
st
=1

92
.1
68

.1
.4
,o

ut
pu

t:4
(t
o
S6

)

3
Ep

LB
1

2
–

00
:1
6:
3e

:1
1:
11

:0
4

00
:1
6:
3e

:1
1:
11

:0
1

–
19

2.
16

8.
1.
4

19
2.
16

8.
1.
1

TC
P

se
t_
fie

ld
:e
th
_s
rc
=0

0:
16

:3
e:
11

:1
1:
03

,

se
t_
fie

ld
:ip

_s
rc
=1

92
.1
68

.1
.3
,o

ut
pu

t:2
(t
o
S1

)

4
PL

B1
2

2
00

:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
3

–
19

2.
16

8.
1.
1

19
2.
16

8.
1.
3

TC
P

se
t_
fie

ld
:e
th
_d

st
=0

0:
16

:3
e:
11

:1
1:
04

,

se
t_
fie

ld
:ip

_d
st
=1

92
.1
68

.1
.4
,o

ut
pu

t:3
(t
o
S5

)

5
SP

F1
1

–
00

:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:3

6
SP

F1
1

–
00

:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:2

7
SP

F1
1

–
00

:1
6:
3e

:1
1:
11

:0
4

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:2

8
SP

F1
1

–
00

:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
4

A
RP

ou
tp
ut
:3

9
SP

F1
1

–
–

–
–

19
2.
16

8.
1.
1

19
2.
16

8.
1.
3

TC
P

ou
tp
ut
:3
(t
o
S5

)

10
SP

F1
1

–
–

–
–

19
2.
16

8.
1.
4

19
2.
16

8.
1.
1

TC
P

ou
tp
ut
:2
(t
o
S1

)

11
SP

F1
1

–
–

–
–

19
2.
16

8.
1.
1

19
2.
16

8.
1.
4

TC
P

ou
tp
ut
:3
(t
o
S5

)

12
Ct
rl

0
Ct
rl

Ta
bl
e
3.
6:
Ex
pe

rim
en

t2
:s
w
itc

h
S7

's
ru
le

ta
bl
e

3.6 Selected experiments illustrating the methodology 79

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

Sw
itc

h
2

PP
LB

4D
1

2
–

–
–

19
2.
16

8.
1.
1

19
2.
16

8.
1.
4

TC
P

48
35

0
50

01
ou

tp
ut
:2

(t
o
S3

)

S5
3

SP
F1

1
00

:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
4

A
RP

ou
tp
ut
:3

4
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
4

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:5

5
Ct
rl

0
Ct
rl

Sw
itc

h
S3

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

S3
2

SP
F1

1
–

–
–

19
2.
16

8.
1.
1

19
2.
16

8.
1.
4

TC
P

–
–

ou
tp
ut
:3

(t
o
S6

)

3
Ct
rl

0
Ct
rl

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

Sw
itc

h
1

Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

S6
2

TE
1

2
–

–
–

–
19

2.
16

8.
1.
4

TC
P

–
50

01
ou

tp
ut
:4

(t
o
S5

)

3
TE
1

2
–

–
–

–
19

2.
16

8.
1.
4

U
D
P

–
50

01
ou

tp
ut
:4

(t
o
S5

)

4
Ct
rl

0
Ct
rl

Ta
bl
e
3.
7:
Ex
pe

rim
en

t3
:r
ul
e
ta
bl
es

of
sw

itc
he

s
S5

,S
3,
S6

80 3 Approaches and Experiments

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(1,1,1)

Same

topo1

TCP; UDP

CBR

PPLB4D: S7
TE: S7
SPF: all

App priority

(2,2,1)

PC:1,23,4

App1 = PPLB4D
App2 = TE
App3 = SPF

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

ObservedExpected (PPLB4D1)

a) Settings b) Expected and observed network behaviour

Figure 29: Experiment 3: settings, expected and observed network behaviour

first and the last rules (controller management rules), while all rules in the rule table
of switch S6 are populated in the meantime. Other rules are installed in switches S5
and S3 on the first TCP traffic from PC1 to PC4.
Conflict observation PC1 and PC2 fail to communicate with PC4 on some TCP and
UDP connections as their traffic is caught in a loop among switches S5–S3–S6–S5.
Conflict analysis We analyse the rule tables of these switches and see that the effec-
tive rules for the generated traffic forward it in a loop. These rules are highlighted
in Table 3.7. Specifically, rule 2 in switch S5 installed by PPLB4D sends the traffic to
switch S3, where rule 2 of SPF directs it to switch S6, rule 2 installed by TE in switch
S6 forwards it back to switch S5, the traffic is handled again by rule 2 in switch S5,
making a traffic loop.

Experiment 4: PPLB4D1 and FW1
(Figure 30 and Table 3.8) We also use SPF1 to provide the routing function with the
priority of 1, lower than that of the two main control applications in test: PPLB4D1
and FW1. In the beginning, switch S5 has only rules 1 and 9 (controller management
rules), while the rule table of switch S3 is completely populated with its four rules.
Other rules are installed in switch S5 when PC1 and PC2 communicate with PC4
respectively.

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(1,1,1)

Same

topo1

TCP; UDP

CBR

PPLB4D: S5
FW: S3
SPF: all

App priority

(2,2,1)

PC:1,23,4

App1 = PPLB4D
App2 = FW
App3 = SPF

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

ObservedExpected (PPLB4D1)

a) Settings b) Expected and observed network behaviour

Figure 30: Experiment 4: settings, expected and observed network behaviour

3.6 Selected experiments illustrating the methodology 81

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

2
PP

LB
4D

1
2

–
–

–
19

2.
16

8.
1.
1

19
2.
16

8.
1.
4

TC
P

48
35

4
50

01
ou

tp
ut
:2

(t
o
S3

)

3
PP

LB
4D

1
2

–
–

–
19

2.
16

8.
1.
2

19
2.
16

8.
1.
4

TC
P

51
09

4
50

01
ou

tp
ut
:3

(t
o
S4

)

Sw
itc

h
4

SP
F1

1
00

:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
4

A
RP

ou
tp
ut
:3

S5
5

SP
F1

1
00

:1
6:
3e

:1
1:
11

:0
4

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:5

6
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
4

00
:1
6:
3e

:1
1:
11

:0
2

A
RP

ou
tp
ut
:5

7
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
2

00
:1
6:
3e

:1
1:
11

:0
4

A
RP

ou
tp
ut
:3

8
SP

F1
1

–
–

–
19

2.
16

8.
1.
4

19
2.
16

8.
1.
2

TC
P

–
–

ou
tp
ut
:5

(t
o
S7

)

9
Ct
rl

0
Ct
rl

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

Sw
itc

h
1

Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

S3
2

FW
1

2
–

–
–

–
19

2.
16

8.
1.
4

TC
P

–
50

01
dr
op

3
FW

1
2

–
–

–
–

19
2.
16

8.
1.
4

U
D
P

–
50

01
dr
op

4
Ct
rl

0
Ct
rl

Ta
bl
e
3.
8:
Ex
pe

rim
en

t4
:r
ul
e
ta
bl
es

of
sw

itc
he

s
S5

,S
3

82 3 Approaches and Experiments

Conflict observation Some TCP and UDP sessions starting from PC1 and PC2 to
PC4 fail as their traffic gets dropped at switch S3.
Conflict analysis We find that the combination of rules in switches S5 and S3 that
handled the matched TCP or UDP traffic involves in causing the issue. A case is
observed from Table 3.8: rule 2 in switch S5 installed by PPLB4D sends its matched
traffic to switch S3, the traffic is dropped by rule 2 there.

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

ObservedExpected (EpLB2)

b) Expected and observed network behaviour

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(2,1)

Same

topo1

UDP

CBR

EpLB: S7
SPF: all

App priority

(2,1)

PC:1,23,4

App1 = EpLB
App2 = SPF

a) Settings

Figure 31: Experiment 5: settings, expected and observed network behaviour

App Prio L2:Src Dst Type L3:Src Dst Prot L4:Src Dst Action
1 Ctrl 65535 – 01:80:c2:00:00:00 LLDP Ctrl
2 EpLB2 2 – – – 192.168.1.1 192.168.1.3 UDP 48834 5001 output:3 (to S5)
3 EpLB2 2 – – – 192.168.1.3 192.168.1.1 UDP 5001 48834 output:2 (to S1)
4 SPF1 1 00:16:3e:11:11:01 00:16:3e:11:11:03 ARP output:3
5 SPF1 1 00:16:3e:11:11:03 00:16:3e:11:11:01 ARP output:2
6 SPF1 1 – – – 192.168.1.1 192.168.1.3 UDP – – output:3 (to S5)
7 Ctrl 0 Ctrl

Table 3.9: Experiment 5: switch S7's rule table after the first UDP session

Experiment 5: EpLB2 and SPF1
(Figure 31 and Table 3.9) In this experiment, PC1 and PC2 send traffic to PC3, PC4
acts as a replica of PC3. The rule table of switch S7 has only rules 1, 7 (controller
management rules) in the beginning. Rule generation happens on first traffic both
for EpLB2 and SPF1.
Conflict observation Further UDP sessions from PC1 to PC3 can not be balanced
as expected. All of the next UDP sessions from PC1 always come to PC3 while they
were meant to be alternately handled by PC3 and PC4.
Conflict analysis The problem can be identified by comparing rules 2 and 6 high-
lighted in Table 3.9 and analysing the operation mechanism of the control applica-
tions. EpLB features a UDP session by additional information of layer 4 source and
destination ports as reflected in rule 2. It is supposed to install new rules to handle
further UDP traffic from PC1 to PC3 having different combination of layer 4 source-
destination ports when being triggered by the corresponding packet-in events for this
kind of traffic from the controller. However, since rule 6 matched the mentioned

3.6 Selected experiments illustrating the methodology 83

incoming traffic already, no packet-in event is generated. We can conclude in this
case that the installation of rules in the data plane exposes two effects: i) the main ef-
fect observed in the data plane with the respective conflict between rules, and ii) the
side-effect influencing the control plane’s mechanics and thus cancelling the involved
control application’s intention. Specifically, the presence of rule 6 has the side-effect
of suppressing the packet-in events required by EpLB for its proper function.

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(2,2,1)

A (1,2,1)

topo1

UDP

CBR

EpLB: S7
TE: S7
SPF: all

App priority

(2,1,1)

PC:1,23,4

App1 = EpLB
App2 = TE
App3 = SPF

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

ObservedExpected (EpLB2)

a) Settings b) Expected and observed network behaviour

Figure 32: Experiment 6: settings, expected and observed network behaviour

App Prio L2:Src Dst Type L3:Src Dst Prot L4:Src Dst Action
1 Ctrl 65535 – 01:80:c2:00:00:00 LLDP Ctrl
2 EpLB2 2 – – – 192.168.1.1 192.168.1.3 UDP 38643 5001 output:3 (to S5)
3 EpLB2 2 – – – 192.168.1.3 192.168.1.1 UDP 5001 38643 output:2 (to S1)
4 SPF1 1 00:16:3e:11:11:01 00:16:3e:11:11:03 ARP output:3
5 SPF1 1 00:16:3e:11:11:03 00:16:3e:11:11:01 ARP output:2
6 TE2 1 – – – – 192.168.1.3 TCP – 5001 output:4 (to S6)
7 TE2 1 – – – – 192.168.1.3 UDP – 5001 output:4 (to S6)
8 Ctrl 0 Ctrl

Table 3.10: Experiment 6: switch S7's rule table after the first UDP session and deploying TE1's rules

Experiment 6: EpLB2 and TE2
(Figure 32 and Table 3.10) SPF1 is modified to work in concert with EpLB2 and TE2 in
this experiment, its rules will be overwritten or not deployed at all where EpLB2’s or
TE1’s rules are active. EpLB2 balances sessions between PC3 and PC4 where PC4 acts
as a replica of PC3. TE2 installs static rules on switch S7 to direct all TCP and UDP
traffic having the specified destination port (5001 in this case) to PC3 out of port 4
of switch S7. The rule table of switch S7 has only rules 1, 8 (controller management
rules) in the beginning of the experiment. Rule generation happens on first traffic
both for EpLB2 and SPF1. In the role of an administrator, we install TE2 rules later
via REST API. This experiment shows the importance of the application deployment
order.
Conflict observation Similar to the previous experiment, EpLB2 is completely dis-
abled for subsequent UDP sessions having the destination port of 5001 after the TE2’
rules become effective.

84 3 Approaches and Experiments

Conflict analysis Rules 2 and 7 are identified to be responsible for the problem and
are highlighted in Table 3.10. Since rule 7 is more general in that it matches only
the destination IP address and the destination UDP port, further UDP sessions with
these fields will be handled by this rule and no packet-in event is generated that
would otherwise ensure the proper function of EpLB2. Again, the presence of rule 7
has the side-effect inducing this conflict.

App Prio L2:Src Dst Type L3:Src Dst Prot L4:Src Dst Action
1 Ctrl 65535 – 01:80:c2:00:00:00 LLDP Ctrl
2 TE3 2 – – – – 192.168.1.3 TCP – – output:3 (to S5)
3 TE3 2 – – – – 192.168.1.4 TCP – – output:4 (to S6)
4 SPF2 1 00:16:3e:11:11:01 00:16:3e:11:11:03 ARP output:3
5 SPF2 1 00:16:3e:11:11:03 00:16:3e:11:11:01 ARP output:2
6 SPF2 1 00:16:3e:11:11:04 00:16:3e:11:11:01 ARP output:2
7 SPF2 1 00:16:3e:11:11:01 00:16:3e:11:11:04 ARP output:3
8 SPF2 1 – – – – 192.168.1.3 – – – output:3 (to S5)
9 SPF2 1 – – – – 192.168.1.1 – – – output:2 (to S1)
10 SPF2 1 – – – – 192.168.1.4 – – – output:3 (to S5)
11 Ctrl 0 Ctrl

Table 3.11: Experiment 7: switch S7's rule table after establishing TCP sessions from PC1 to PC3 and PC4 and
deploying TE3's rules

Experiment 7: TE3 and SPF2
(Figure 33 and Table 3.11) This experiment shows that side-effects do not happen at
all when the application with more specific rules does not operate on the basis of
packet-in events.

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(3,2)

A(2,1)

topo1

TCP, UDP

CBR

TE: S7
SPF: all

App priority

(2,1)

PC:1,23,4

App1 = TE
App2 = SPF

Figure 33: Experiment 7: settings

The rule table of switch S7 has only
rules 1, 11 (controller management rules)
in the beginning. Rule generation hap-
pens on first traffic by SPF2. TE3’s rules
are installed subsequently.
Observation and analysis Rules 2 and
8 follow the overlap conflict pattern (see
Chapter 4.1.5), which features a similar
relationship between two rules as in the
generalization pattern but their actions
are the same. Rules 3 and 10 exhibit the
generalization conflict pattern. The net-
work behaves as expected for the main effect and there is no side-effect at all: all
TCP traffic to PC3 and PC4 is forwarded according to rules 2 and 3, other traffic, e. g.
UDP, ICMP is controlled by SPF2’s rules.

Experiment 8: TE2 and PPLB4D2
(Figure 34 and Table 3.12) SPF1 is modified to work in concert with PPLB4D2 and TE2
in this experiment, its rules is overwritten or not deployed at all where PPLB4D2’s or

3.6 Selected experiments illustrating the methodology 85

S w
itc

h
S7

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
r l

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

2
TE
2

2
–

–
–

–
19

2.
16

8.
1.
3

T C
P

–
50

01
ou

tp
ut
:4

(t
o
S6

)
3

TE
2

2
–

–
–

–
19

2.
16

8.
1.
3

U
D
P

–
50

01
ou

tp
ut
:4

(t
o
S6

)
4

SP
F1

1
00

:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:2

5
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:3

6
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
2

A
RP

ou
tp
ut
:2

7
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
2

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:3

8
SP

F1
1

–
–

–
19

2.
16

8.
1.
3

19
2.
16

8.
1.
1

TC
P

–
–

ou
tp
ut
:2

(t
o
S1

)
9

SP
F1

1
–

–
–

19
2.
16

8.
1.
3

19
2.
16

8.
1.
2

TC
P

–
–

ou
tp
ut
:2

(t
o
S1

)
10

Ct
rl

0
Ct
rl

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

Sw
itc

h
2

SP
F1

1
–

–
–

19
2.
16

8.
1.
1

19
2.
16

8.
1.
3

TC
P

–
–

ou
tp
ut
:2

(t
o
S3

)
S6

3
SP

F1
1

–
–

–
19

2.
16

8.
1.
2

19
2.
16

8.
1.
3

TC
P

–
–

ou
tp
ut
:2

(t
o
S3

)
4

Ct
rl

0
Ct
rl

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

2
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:1

S w
itc

h
3

SP
F1

1
00

:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:2

S3
4

SP
F1

1
00

:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
2

A
RP

ou
tp
ut
:2

5
SP

F1
1

–
–

–
–

19
2.
16

8.
1.
3

TC
P

–
–

ou
tp
ut
:1

(t
o
PC

3)
6

SP
F1

1
–

–
–

19
2.
16

8.
1.
3

19
2.
16

8.
1.
1

TC
P

–
–

ou
tp
ut
:2

(t
o
S5

)
7

SP
F1

1
–

–
–

19
2.
16

8.
1.
3

19
2.
16

8.
1.
2

TC
P

–
–

ou
tp
ut
:2

(t
o
S5

)
8

Ct
rl

0
Ct
rl

S w
itc

h
S5

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
rl

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

2
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:5

2
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:2

4
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
2

A
RP

ou
tp
ut
:5

5
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
2

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:2

6
SP

F1
1

–
–

–
19

2.
16

8.
1.
3

19
2.
16

8.
1.
1

TC
P

–
–

ou
tp
ut
:5

(t
o
S7

)
7

SP
F1

1
–

–
–

19
2.
16

8.
1.
3

19
2.
16

8.
1.
2

TC
P

–
–

ou
tp
ut
:5

(t
o
S7

)
8

Ct
rl

0
Ct
rl

T a
bl
e
3.
12

:E
xp

er
im

en
t8

:r
ul
e
ta
bl
es

of
sw

itc
he

s
S7

,S
6,
S3

,S
5
af
te
re

st
ab

lis
hi
ng

TC
P
se
ss
io
ns

fr
om

PC
1
an

d
PC

2
to

PC
3
an

d
de

pl
oy

in
g
TE
2'
s
ru
le
s

86 3 Approaches and Experiments

TE2’s rules are active. TE2 installs static rules on switch S7 to direct all TCP and UDP
traffic having the destination port 5001 destined to PC3 out of port 4 of this switch.
PPLB4D2 monitors packet-in events triggered by switch S5 for TCP/UDP sessions
destined to PC3, and installs rules to balance these sessions on different paths. The
rule table of each switch has only the first and the last rules (controller management
rules) in the beginning, except that switch S7 is also populated with TE2’s rules. Rule
generation happens on TCP traffic from PC1 and PC2 to PC3 for SPF1.

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

ObservedExpected (PPLB4D2)

b) Expected and observed network behaviour

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(2,2,1)

Same

topo1

TCP, UDP

CBR

TE: S7
PPLB4D: S5
SPF: all

App priority

(2,2,1)

PC:1,23,4

App1 = TE
App2 = PPLB4D
App3 = SPF

a) Settings

Figure 34: Experiment 8: settings, expected and observed network behaviour

Conflict observation TCP sessions from PC1 and PC2 to PC3 are not balanced by
PPLB4D2 in its co-deployment with TE2 as they were in the isolated execution of
PPLB4D2.
Conflict analysis These TCP sessions are redirected around the listening point of
PPLB4D2, being switch S5, therefore this control application does not receive its inter-
ested packet-in events and does not react to balance these sessions. The responsible
rules are highlighted in Table 3.12. The mentioned sessions are handled by rule 2 of
TE2 at switch S7, which forwards them to switch S6 and they are matched by rules
2 and 3 there, these sessions are then sent to switch S3 and reached PC3 afterwards.
As a result, they do not cross switch S5 at all as expected by PPLB4D2.

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

ObservedExpected (PPLB4D2)

b) Expected and observed network behaviour

App
con�g.

App start orderTarget switches

Ept traf.
prof.

Ept combi.
Topology Transport type

C(2,2,1)

Same

topo1

TCP, UDP

CBR

EpLB: S7
PPLB4D: S5
SPF: all

App priority

(2,2,1)

PC:1,23,4

App1 = EpLB
App2 = PPLB4D
App3 = SPF

a) Settings

Figure 35: Experiment 9: settings, expected and observed network behaviour

3.6 Selected experiments illustrating the methodology 87

Experiment 9: EpLB2 and PPLB4D2
(Figure 35 and Table 3.13) SPF1 is modified to work in concert with EpLB2 and
PPLB4D2 in this experiment, its rules are suppressed where EpLB2’s or PPLB4D2’s
rules are active. EpLB2 registers for packet-in events originated from switch S7 for
TCP/UDP sessions destined to PC3. It reacts by installing rules in switch S7 to
balance these sessions between PC3 and PC4, the relevant fields in each packet are
rewritten (using the OpenFlow’s set_field function) where necessary. PPLB4D2 mon-
itors packet-in events sent by switch S5 for TCP/UDP sessions destined to PC3, and
installs rules to balance these sessions on different paths. The rule table of each switch
has only the first and the last rules (controller management rules) in the beginning.
Rule generation happens on TCP traffic from PC1 and PC2 to PC3 for all control
applications.
Conflict observation Some TCP/UDP sessions from PC1 and PC2 to PC3 are not
balanced by PPLB4D2 in its co-deployment with EpLB2 as they were in the isolated
execution of PPLB4D2.
Conflict analysis The traffic of these TCP/UDP sessions is modified and the asso-
ciated packet-in events are not interested by PPLB4D2 anymore. This case is illus-
trated by the highlighted rules in Table 3.13: the TCP traffic handled by rule 3 in
switch S7 is modified to have its new destination as PC4, this traffic is sent to switch
S5, PPLB4D2 receives the corresponding packet-in event but is not interested in and
ignores it. Consequently, this session is handled by rule 10 in switch S5 installed by
SPF1.

3.6.4 Deriving conflict patterns and properties
The classification of conflicts facilitates their handling. Conflicts having common
features can be grouped in a class. The common features for some conflicts can be
identified by a pattern, while some cannot be portrayed by a pattern but only by their
properties. For demonstration purposes, we show how a conflict pattern is extracted
from the first and second experiments’ results, and discuss the properties of the con-
flicts occurring in the other experiments. The results from all above experiments
are referred in Chapters 4 and 5 for our analysis in reasoning about and classify-
ing conflicts, and in justifying the implementation decision of the conflict detection
prototype.

Extraction of conflict patterns
Table 3.14 collects the manually detected contradicting rules from the first and second
experiments and generalizes them into more abstract footprints of conflict including
priority, match and action. These conflict footprints are referred to as correlation
in the classification of network security policy conflicts in traditional networks pre-
sented in [43].

88 3 Approaches and Experiments

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
r l

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

2
Ep

LB
2

2
–

–
–

19
2.
16

8.
1.
1

19
2.
16

8.
1.
3

TC
P

50
81

6
50

01
ou

tp
ut
:3
(t
o
S5

)

3
Ep

LB
2

2
–

–
–

19
2.
16

8.
1.
2

19
2.
16

8.
1.
3

U
D
P

53
75

6
50

01
se
t_
fie

ld
:e
th
_d

st
=0

0:
16

:3
e:
11

:1
1:
04

,

se
t_
fie

ld
:ip

_d
st
=1

92
.1
68

.1
.4
,

ou
tp
ut
:3
(t
o
S5

)

SW
4

Ep
LB

2
2

–
–

–
19

2.
16

8.
1.
3

19
2.
16

8.
1.
1

TC
P

50
01

50
81

6
ou

tp
ut
:2
(t
o
S1

)

S7
5

Ep
LB

2
2

–
–

–
19

2.
16

8.
1.
4

19
2.
16

8.
1.
2

U
D
P

50
01

53
75

6
se
t_
fie

ld
:e
th
_s
rc
=0

0:
16

:3
e:
11

:1
1:
03

,

se
t_
fie

ld
:ip

_s
rc
=1

92
.1
68

.1
.3
,

ou
tp
ut
:2
(t
o
S1

)

6
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:2

7
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:3

8
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
2

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:3

9
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
2

A
RP

ou
tp
ut
:2

10
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
4

00
:1
6:
3e

:1
1:
11

:0
2

A
RP

ou
tp
ut
:2

11
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
2

00
:1
6:
3e

:1
1:
11

:0
4

A
RP

ou
tp
ut
:3

12
Ct
rl

0
Ct
rl

Sw
itc

h
S5

#
A
pp

Pr
io

L2
:S
rc

D
st

Ty
pe

L3
:S
rc

D
st

Pr
ot

L4
:S
rc

D
st

A
ct
io
n

1
Ct
r l

65
53

5
–

01
:8
0:
c2
:0
0:
00

:0
0

LL
D
P

Ct
rl

2
PP

LB
4D

2
2

–
–

–
19

2.
16

8.
1.
1

19
2.
16

8.
1.
3

TC
P

50
81

6
50

01
ou

tp
ut
:2
(t
o
S3

)

3
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
1

A
RP

ou
tp
ut
:5

4
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
1

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:2

5
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
2

00
:1
6:
3e

:1
1:
11

:0
3

A
RP

ou
tp
ut
:2

6
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
3

00
:1
6:
3e

:1
1:
11

:0
2

A
RP

ou
tp
ut
:5

7
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
4

00
:1
6:
3e

:1
1:
11

:0
2

A
RP

ou
tp
ut
:5

8
SP

F1
1

00
:1
6:
3e

:1
1:
11

:0
2

00
:1
6:
3e

:1
1:
11

:0
4

A
RP

ou
tp
ut
:3

9
SP

F1
1

–
–

–
19

2.
16

8.
1.
3

19
2.
16

8.
1.
1

TC
P

–
–

ou
tp
ut
:5
(t
o
S7

)

10
SP

F1
1

–
–

–
19

2.
16

8.
1.
2

19
2.
16

8.
1.
4

TC
P

–
–

ou
tp
ut
:3
(t
o
S4

)

11
SP

F1
1

–
–

–
19

2.
16

8.
1.
4

19
2.
16

8.
1.
2

TC
P

–
–

ou
tp
ut
:5
(t
o
S7

)

12
SP

F1
0

Ct
rl

Ta
bl
e
3.
13

:E
xp

er
im

en
t9

:r
ul
e
ta
bl
es

of
sw

itc
he

s
S7

,S
5
af
te
re

st
ab

lis
hi
ng

TC
P
se
ss
io
ns

fr
om

PC
1
an

d
PC

2
to

PC
3

3.6 Selected experiments illustrating the methodology 89

Exp. # Field Rule i value Rule j value Relation

1
priority

1 1
equality

2 2 2

1
match

tcp,L3_src=192.168.1.1,
L3_dst=192.168.1.3

tcp,L2_src=00:16:3e:11:11:01,
L2_dst=00:16:3e:11:11:03,
L3_src=192.168.1.1,
L3_dst=192.168.1.3

overlap

2 tcp,L2_src=00:16:3e:11:11:01,
L2_dst=00:16:3e:11:11:03,
L3_src=192.168.1.1,
L3_dst=192.168.1.3

tcp,in_port=2,
L2_src=00:16:3e:11:11:01,
L2_dst=00:16:3e:11:11:03,
L3_src=192.168.1.1,
L3_dst=192.168.1.3

1
action

output:3 set_field, output:4
inequality

2 set_field, output:4 set_field, output:3

Table 3.14: Identifying a conflict pattern by the relations between field values [108]

We observe that within a pair of rules, their priority is equal, the space represented
by their match fields has an overlap and their actions differ. Thus the conflict pattern
for rules i and j can be formulated as:
Correlation : priorityi = priorityj ,matchi ∩matchj ̸= ∅, actioni ̸= actionj

In general, we can derive other conflict classes by generalizing the structure of the
detected conflict patterns. We apply this method to infer a complete list of local
conflicts presented in Chapter 4.1.

Featuring conflicts by properties
The conflicts occurring in experiments 3 and 4 show no pattern of contradicting rules
in a single rule table but come from the combination of rules in different devices.
We refer to this class of conflicts as distributed conflicts. They can be derived from
rules that together handle a common packet flow in an unexpected manner, e. g.,
forwarding it in a loop or dropping it. We provide more details of distributed conflicts
in Chapter 4.2.

The effects suggested by the mutual contradicting rules in experiments 5 and 6, as
we show in Chapter 4.1, differ from the actual consequence that the victim control
application suffers. To be more specific, rules 2 and 6 in Table 3.9 of experiment 5
exhibit the conflict of overlap class, whose effect should be harmless, rules 2 and 7 in
Table 3.10 expose a generalization conflict with the supposed effect to be the general
rule (rule 7) would defer to the more specific one (rule 2) for the common traffic.
The real effect was that the control applications of higher priority function incorrectly
due to the lack of packet-in events. It can be seen from experiment 7 that the same
patterns show but this kind of conflict does not occur. Hence, the pattern from these
contradicting rules cannot represent this kind of conflicts. In experiments 5 and 6, the
conflicts are contingent on the mechanic at the control plane, specifically the packet-
in event. This class of conflicts is featured by the mechanic of the control applications
that operate in response to this kind of event, not a static conflict pattern. We name

90 3 Approaches and Experiments

this kind of conflicts as hidden conflicts and detail them in Chapter 4.3. Experiments
8 and 9 exhibit other types of hidden conflicts that occur due to the rule combination
in different devices.

3.7 Extracting conflict patterns and properties
The determination of a pattern or the unique properties of a conflict type to formu-
late a conflict class, which is a step in our chosen methodology for studying conflicts
(see Section 3.2.2), requires human decisions. To cope with the considerable number
of results in the dataset, we combine the extraction of conflict patterns and proper-
ties with the development of a conflict detection prototype (see Chapter 6) and its
evaluation against the dataset in a repetitive manner as shown in the methodology
in Figure 36.

1. We select a set of unanalysed conflict cases logged in the dataset, they correspond
to a set of points in a subspace that is reported to induce conflicts, which are
recorded in the file conflict.txt of an experiment round (see Section 3.4.6).

2. We analyse and extract conflict patterns, properties from these cases manually. If
a pattern or a group of properties are observed more than once, we formulate a
conflict class therefrom. An example of extracting a conflict pattern is shown in
Section 3.6.4. Furthermore, we attempt to derive new conflict classes from the
caught patterns, properties if possible. For example, from the pattern of the cor-
relation conflict class formulated in Section 3.6.4, which features the relationship
between two rules i and j based on the tuple composed of their priority, match
and action as:
Correlation : priorityi = priorityj ,matchi ∩matchj ̸= ∅, actioni ̸= actionj ,
we analyse the patterns containing this tuple but with different relationship be-
tween each of its components, one of the new conflict classes can be formulated
as:
Redundancy : priorityi ≤ priorityj ,matchi ⊆ matchj , actioni = actionj

The effect associated with each conflict class is drawn, e. g., the effect of the re-
dundancy class is harmless. More details on the results of this step are presented
in Chapter 4.
The points associated with these conflict cases in the dataset are marked as “anal-
ysed” and will not be processed again in subsequent rounds of the experiment
loop. If no new conflict class is found in the chosen set of unanalysed conflict
cases, the process repeats from step 1.

3. We build the conflict detection prototype based on the newly discovered conflict
classes and the existing ones obtained from literature in the first round of the
experiment loop, or integrate the new conflict classes into the prototype from the
second round. The concepts, the algorithms to detect conflicts and the implemen-
tation of the prototype are elaborated in Chapter 5.

3.7 Extracting conflict patterns and properties 91

Dataset

Select a set of unanalysed con�ict cases logged in the dataset

Analyse and extract con�ict patterns, properties.
Formulate con�ict classes therefrom.

Derive related con�ict classes if possible

Build the con�ict detection prototype, or
integrate the newly extracted con�ict patterns, properties

in the con�ict detection prototype

No

Yes

A set of unanalysed
con�ict cases

Evaluate the prototype against each
unanalysed con�ict case in the dataset

Con�ict detected?

No

Yes

No

Yes

No

Yes

Con�ict classes and
their patterns, properties

Con�ict detection prototype

Existing con�ict classes
from literature

E�ect of the detected con�ict corresponds to
the e�ect logged in the con�ict case?

Unanalysed con�ict cases exist in the dataset?

New con�ict class is discovered?

Figure 36: Methodology to extract conflict patterns, properties from the dataset

92 3 Approaches and Experiments

4. We evaluate the prototype against each unanalysed conflict case in the dataset.

a) If the prototype detects no conflict, although that case is logged as potential
conflicts in the dataset, this indicates the possible presence of a new conflict
class. The process is brought back to step 2, where we analyse this case man-
ually to determine if conflicts exist and extract their patterns or properties.

b) The process is also brought back to step 2 for manual analysis and extraction
of conflict patterns, properties, in case the prototype detects conflicts but their
effect according to the classification in step 2 does not correspond to the effect
of the conflict case logged in the dataset. For instance, a conflict detected
by the prototype belongs to the redundancy class, whose effect is harmless
according to the result in step 2; however, the issue logged in file conflict.txt for
that case is that the throughput difference of a switch interface was higher than
the preset threshold, the effects do not correspond and this case needs to be
examined manually. If the log reports unsuccessful communications between
end-points while no control application in the co-deployment intends to drop
traffic (e. g., firewall), that case should be analysed manually, i. e., the process
also repeats at step 2. Due to the large number of such cases, we only select
a limited amount therefrom for manual investigation. This incompleteness,
however, is offset by the analysis to derive new conflict classes based on the
existing ones described in step 2.

c) Otherwise, the prototype is evaluated against the next unanalysed conflict
case in the dataset until all cases have been processed.

The added outcome of this loop is therefore the gradual enhancement of the conflict
detection prototype. Besides this incremental evaluation of the prototype, we also
evaluate it in designed and random scenarios presented in Chapter 6.

3.8 Conclusion
We have presented an SDN model and applied the formal analytical approach for
researching conflicts. Our findings reveal that this approach exposes the inherent
shortcomings due to particular situations arising when operating an SDN. We opt
for the experimental approach to overcome these limitations, in which we introduce
a methodology and a parameter space for experiments. The large experimental space
size could not be addressed manually, we implement a framework for automating ex-
periments consequently. The framework facilitates the creation of test-beds, each
corresponds to a network topology. It allows the specification of different parameter
(sub)spaces, from which experimental settings are derived and experiments are per-
formed automatically. The expected and observed network behaviour are compared
to determine potential conflicts based on communication states between end-points,
throughput of switches’ interfaces and their rule tables. All settings and experiments’

3.8 Conclusion 93

results are logged in a dataset. The framework also supports the reproduction of a
single experiment in the dataset, which aids the stepwise inspection of conflicts in
that experiment. Our published results11 consists of 11,772 experiments conducted
automatically by this framework, among those conflicts are potential in 2,976 exper-
iments.

We describe a set of control applications and nine concrete experiments to illus-
trate the proposed methodology as well as the conflicts encountered. These conflicts
can manifest within a single switch, or on multiple switches. Some conflicts occur
due to the side-effects of rules that influence the SDN’s control mechanic. They pro-
vide guidelines for the classification of conflicts in the next chapter. The extraction
of conflict patterns or properties from the dataset for their classification requires hu-
man intervention. We propound a methodology to reduce the manual effort while
still maintaining the high accuracy, in which the conflict detection prototype is in-
crementally improved with the newly identified conflict patterns/properties and then
is further applied in the extraction process.

11 https://github.com/mnm-team/sdn-conflicts

4 Conflict Classification

We increment the existing research by a more comprehensive classification of local
conflicts, and the examination of distributed conflictswithmore focus on contradicting
rules among various control applications. Notably, we discovered a completely new
type of anomalies occurring due to side-effects of rule installation, which we name
hidden conflicts. While the local and distributed conflicts can be determined based on
the presence of rules in the data plane, knowledge from the control plane is required
for the identification of hidden conflicts. In this chapter, we classify conflicts in SDN
and show the patterns of local conflict classes as well as the properties of distributed
and hidden conflicts that enable their detection. For hidden conflicts, as a new type,
we present in addition our approach to examine and to classify them.

We align the conflict classes in a taxonomy shown in Figure 37. These classes to-
gether with their patterns or properties are derived by our analysis of the experiments’
results and are complete with reference to the experimental subspaces described in
Chapter 3.

Con�icts in SDN

Local Con�icts Hidden Con�ictsDistributed Con�icts

Generalization

Shadowing

Redundancy

Correlation

Overlap

Downstream Tra�c Looping

Downstream Tra�c Dropping

Event Suppression
by Local Handling

Event Suppression
by Changes to Paths

Action Suppression
by Packet Modi�cation

Undue Trigger

Tampering with
Event Subscription

Downstream Packet Modi�cation

Upstream Packet Modi�cation

Changes to Paths

Upstream Tra�c Dropping

Upstream Tra�c Looping Event Suppression by
Upstream Tra�c Looping

Event Suppression by
Upstream Tra�c Dropping

Figure 37: The taxonomy of conflicts in SDN

96 4 Conflict Classification

4.1 Local conflicts

i

j

priority i < priority j

Action i ≠ Action j Shadowing

Action i = Action j Redundancy

i

j

Action i ≠ Action j Generalization

Action i = Action j Overlap1

ij
Action i ≠ Action j Correlation2

Action i = Action j Overlap2

ij

Match space of rule i Match space of rule j

Intersection of the match spaces of rules i and j

Legend:

Any action No con�ict

Figure 38: Local conflicts between two rules i and j

having different priority in Venn diagram

As the name indicates, local conflicts oc-
cur between rules within a single device
and these rules are installed by different
control applications. Among the compo-
nents of SDN rules, we find that the pri-
ority, match fields and actions involve in
shaping this kind of conflicts.

Conflicts are potential only when there
exists an overlap in the match fields of
two rules. Table 4.1 shows all possible
relationship combinations of the priority,
match fields and actions of an SDN rule
pair. We do not list the cases of the dis-
jointed match fields since they yield no
conflict.

Depending on the network effect
caused by the relationship of these com-
ponents (priority, match fields and ac-
tions) of a rule pair, we are able to cat-
egorize local conflicts in different classes:
shadowing, generalization, redundancy,
correlation and overlap. They are also noted in Table 4.1 and visualized in Figures 38
and 39.

Local conflicts have been studied in network security policies by Hamed and Al-
Shaer [43], in SDN by Pisharody [86], and are referred to in their work as intra-policy
conflicts. Our work based on the experimental approach confirms their results and
makes improvements by a more comprehensive classification outcome.

Local conflict classes are featured by their patterns. We describe in the following
for each class its pattern, the effect and give examples.

4.1.1 Shadowing

Pattern
Rule i is shadowed by rule j if the relationship between the two rules follows the
pattern:
Shadowing : priorityi < priorityj ,matchi ⊆ matchj , actioni ̸= actionj

Effect
The shadowed rule (rule i) becomes ineffective.

4.1 Local conflicts 97

#
pr
i i
vs

pr
i j

m
at
ch

i
vs

m
at
ch

j
ac
tio

n
Co

nf
lic
tc

la
ss

an
d
no

te

1
p
r
i i

<
p
r
i j

m
i
⊂

m
j

a
i
̸=

a
j

Sh
ad

ow
in
g:

ru
le

ii
s
sh
ad

ow
ed

by
ru
le

j

2
p
r
i i

<
p
r
i j

m
i
⊂

m
j

a
i
=

a
j

Re
du

nd
an

cy
:r
ul
e
ii
s
re
du

nd
an

t

3
p
r
i i

<
p
r
i j

m
i
=

m
j

a
i
̸=

a
j

Sh
ad

ow
in
g:

ru
le

ii
s
sh
ad

ow
ed

by
ru
le

j

4
p
r
i i

<
p
r
i j

m
i
=

m
j

a
i
=

a
j

Re
du

nd
an

cy
:r
ul
e
ii
s
re
du

nd
an

t

5
p
r
i i

<
p
r
i j

m
i
⊃

m
j

a
i
̸=

a
j

G
en

er
al
iz
at
io
n:

ru
le

ii
s
a
ge

ne
ra
liz
at
io
n
of

ru
le

j

6
p
r
i i

<
p
r
i j

m
i
⊃

m
j

a
i
=

a
j

O
ve
rla

p

7
p
r
i i

<
p
r
i j

m
i
̸⊂

m
j
∧

m
i
̸⊃

m
j
∧

m
i
∩

m
j
̸=

∅
a
i
̸=

a
j

Co
rr
el
at
io
n:

a
pa

rt
of

ru
le

ii
s
in
eff

ec
tiv

e

8
p
r
i i

<
p
r
i j

m
i
̸⊂

m
j
∧

m
i
̸⊃

m
j
∧

m
i
∩

m
j
̸=

∅
a
i
=

a
j

O
ve
rla

p

9
p
r
i i

=
p
r
i j

m
i
⊂

m
j

a
i
̸=

a
j

Co
rr
el
at
io
n:

cr
iti
ca
l(*

*)

10
p
r
i i

=
p
r
i j

m
i
⊂

m
j

a
i
=

a
j

Re
du

nd
an

cy
:r
ul
e
ii
s
re
du

nd
an

t

11
p
r
i i

=
p
r
i j

m
i
=

m
j

a
i
̸=

a
j

Co
rr
el
at
io
n:

(*
)

12
p
r
i i

=
p
r
i j

m
i
=

m
j

a
i
=

a
j

Re
du

nd
an

cy
:(

*)

13
p
r
i i

=
p
r
i j

m
i
⊃

m
j

a
i
̸=

a
j

Co
rr
el
at
io
n:

cr
iti
ca
l(*

*)

14
p
r
i i

=
p
r
i j

m
i
⊃

m
j

a
i
=

a
j

Re
du

nd
an

cy
:r
ul
e
ji
s
re
du

nd
an

t

15
p
r
i i

=
p
r
i j

m
i
̸⊂

m
j
∧

m
i
̸⊃

m
j
∧

m
i
∩

m
j
̸=

∅
a
i
̸=

a
j

Co
rr
el
at
io
n:

cr
iti
ca
l(*

*)

16
p
r
i i

=
p
r
i j

m
i
̸⊂

m
j
∧

m
i
̸⊃

m
j
∧

m
i
∩

m
j
̸=

∅
a
i
=

a
j

O
ve
rla

p:
a
pa

rt
of

ei
th
er

ru
le

is
in
eff

ec
tiv

e
(*
*)

17
p
r
i i

>
p
r
i j

m
i
⊂

m
j

a
i
̸=

a
j

G
en

er
al
iz
at
io
n:

ru
le

ji
s
a
ge

ne
ra
liz
at
io
n
of

ru
le

i

18
p
r
i i

>
p
r
i j

m
i
⊂

m
j

a
i
=

a
j

O
ve
rla

p

19
p
r
i i

>
p
r
i j

m
i
=

m
j

a
i
̸=

a
j

Sh
ad

ow
in
g:

ru
le

ji
s
sh
ad

ow
ed

by
ru
le

i

20
p
r
i i

>
p
r
i j

m
i
=

m
j

a
i
=

a
j

Re
du

nd
an

cy
:r
ul
e
ji
s
re
du

nd
an

t

21
p
r
i i

>
p
r
i j

m
i
⊃

m
j

a
i
̸=

a
j

Sh
ad

ow
in
g:

ru
le

is
ha

do
w
s
ru
le

j

22
p
r
i i

>
p
r
i j

m
i
⊃

m
j

a
i
=

a
j

Re
du

nd
an

cy
:r
ul
e
ji
s
re
du

nd
an

t

23
p
r
i i

>
p
r
i j

m
i
̸⊂

m
j
∧

m
i
̸⊃

m
j
∧

m
i
∩

m
j
̸=

∅
a
i
̸=

a
j

Co
rr
el
at
io
n:

a
pa

rt
of

ru
le

ji
s
in
eff

ec
tiv

e

24
p
r
i i

>
p
r
i j

m
i
̸⊂

m
j
∧

m
i
̸⊃

m
j
∧

m
i
∩

m
j
̸=

∅
a
i
=

a
j

O
ve
rla

p:
a
pa

rt
of

ru
le

ji
s
in
eff

ec
tiv

e

T a
bl
e
4.
1:
Lo

ca
lc
on

fli
ct

cl
as
se
s
of

tw
o
ru
le
s
ba

se
d
on

th
ei
rp

rio
rit
y,
m
at
ch

fie
ld
s
an

d
ac
tio

n.
In

O
pe

nF
lo
w
SD

N
,t
he

m
at
ch

fie
ld
s
of

a
ru
le
sp
an

th
e
O
SI
la
ye
rs
2,
3,
4.

Th
e
co
nfl

ic
tc

la
ss
es

no
te
d

w
ith

(*
)
in

ro
w
s
11

,1
2
do

no
to

cc
ur

in
O
pe

nF
lo
w

sw
itc

h
im

pl
em

en
te
d
by

O
pe

n
vS
w
itc

h
in

ou
rt
es
t-
be

d
(O
pe

nF
lo
w

1.
3,
O
VS

2.
6.
2)
.T

he
eff

ec
to

fr
ow

s
no

te
d
w
ith

(*
*)
de

pe
nd

s
on

th
e

im
pl
em

en
ta
tio

n.

98 4 Conflict Classification

i

j

priority i = priority j

Action i ≠ Action j Correlation1

Action i = Action j Redundancy

i

j

Action i ≠ Action j Correlation1

Action i = Action j Redundancy

ij
Action i ≠ Action j Correlation2

Action i = Action j Overlap2

ij

Match space of rule i Match space of rule j

Intersection of the match spaces of rules i and j

Legend:

Any action No con�ict

Figure 39: Local conflicts between two rules i and j having the same priority in Venn diagram

Example

Rule i: priority=1, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6,
tcp_src=48350, tcp_dst=5001}, action=output:2

Rule j: priority=2, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6},
action=output:3

Rule i with lower priority is more specific than rule j, thus all packets could be
matched by rule i are actually matched by rule j. Since they have different actions,
these packets are not handled as expected by rule i.

4.1.2 Generalization

Pattern
Rule i is generalized by rule j if the relationship between the two rules exhibits the
pattern:
Generalization : priorityi > priorityj ,matchi ⊂ matchj , actioni ̸= actionj

Effect
A part of the general rule (rule j) becomes ineffective.

4.1 Local conflicts 99

Example

Rule i: priority=2, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6,
tcp_src=48350, tcp_dst=5001}, action=output:2

Rule j: priority=1, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6},
action=output:3

Rule i of higher priority is more specific than rule j, therefore all packets matched
by rule i will not be matched by rule j. Because they have different actions, these
packets are not handled as expected by rule j.

4.1.3 Redundancy

Pattern
Rule i becomes redundant due to the presence of rule j if the relationship between
the two rules exhibits the pattern:
Redundancy : priorityi ≤ priorityj ,matchi ⊆ matchj , actioni = actionj

Effect
The redundant rule is harmless in terms of its influence on the network behaviour.
However, it increases the size of a rule table unnecessarily, which can degrade the per-
formance in searching rules, e. g., to match a packet or to compare rules for conflict
detection.

Example

Rule i: priority=1, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6,
tcp_src=48350, tcp_dst=5001}, action=output:2

Rule j: priority=2, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6},
action=output:2

Rule i with lower priority is more specific than rule j , hence rule i is never used to
match a packet once rule j is present. However, they have the same action, packets
matched by rule j are still handled as expected by rule i.

4.1.4 Correlation
Pattern
Rule i and rule j are correlated if the relationship between the two rules follows the
patterns:
Correlation1 : priorityi = priorityj , matchi ⊆ matchj ∨ matchi ⊇ matchj , actioni ̸= actionj

or
Correlation2 : matchi ⊈ matchj ∧ matchi ⊉ matchj ∧ matchi ∩ matchj ̸= ∅, actioni ̸= actionj

100 4 Conflict Classification

Effect
If the rules have different priority, a part of the lower priority rule becomes ineffective.
If they have the same priority, it becomes critical since it is unclear which rule should
get effective and which not.

Example
Rules i and j follow the pattern correlation2:

Rule i: priority=2, match={ether_type=0x0800, ipv4_src=192.168.1.1}, action=output:2
Rule j: priority=2, match={ether_type=0x0800, ipv4_dst=192.168.1.4}, action=output:3

In this case,
matchi ∩ matchj = {ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4}
If a packet entering the switch containing these two rules belongs to the flow:

ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6, tcp_dst=5001

it is unclear how this packet is handled since it can be matched by either rule i or
rule j and their actions are different.

The conflicts between rules 6, 7 in Table 3.5 of experiment 1 and rules 2, 4 in
Table 3.6 of experiment 2 in Chapter 3.6.3 exhibit the pattern correlation1.

4.1.5 Overlap

Pattern
Rule i and rule j are overlapped if the relationship between the two rules follows the
pattern:
Overlap1 : priorityi > priorityj ,matchi ⊆ matchj , actioni = actionj

or
Overlap2 : matchi ⊈ matchj ∧matchi ⊉ matchj ∧matchi ∩matchj ̸= ∅, actioni = actionj

Effect

i j k

Figure 40: Overlap between the match spaces of
rules i, j and k that expose pairwise an overlap local
conflict, rendering rule j redundant

The overlap between rules is harmless in
terms of their influence on network be-
haviour. These rules can be subject for
optimization, e. g., to reduce the rule ta-
ble size to obtain higher performance in
searching rules. Consider three rules i, j
and k in a rule table having the same pri-
ority, the same action, and their match
spaces intersect each other as shown in
Figure 40, apparently, each pair of these rules expose an overlap local conflict and
none of them is redundant within a pair. However, all traffic matched by rule j can

4.1 Local conflicts 101

be handled by either rule i or rule k in the same manner, which means that rule j

can be removed from the rule table without any consequence.

Example
Rules i and j follow the pattern overlap2:

Rule i: priority=2, match={ether_type=0x0800, ipv4_src=192.168.1.1}, action=output:2
Rule j: priority=2, match={ether_type=0x0800, ipv4_dst=192.168.1.4}, action=output:2

In this case,
matchi ∩ matchj = {ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4}
As these two rules have the same action, packets matched by either one are handled
in the same way, as expected by both.

4.1.6 Discussion
If we consider the timeout of a rule, the relationship of two rules exposing a local
conflict is then temporal. For example, consider row 2 in Table 4.1, rule i is made
redundant by rule j, if the timeout of rule i is longer than that of rule j, then rule
i is redundant only when rule j is still present. Once rule j gets removed, rule i

becomes effective if it is not shadowed or made redundant by any other rule. In
resolving conflict, it seems worthwhile to take into account the temporal aspects of
rules.

Cases 6 and 18 in Table 4.1 are classified as redundant in the work of Pisharody [86].
We notice that the effect can be different in the perspective of the whole rule tables
containing more than these two rules. If a rule is deemed redundant, it means that
this rule can be removed without any issue because the traffic matched by it would
be treated in the same way. However, case 6 exposes a different effect. As rule i is
broader than rule j (see Table 4.1), there can be traffic matched by rule i but not by
rule j. Hence, the removal of rule i could lead to this slice of traffic being handled
differently by some rule other than rule j. On the other hand, there might exist some
rule k that is shadowed by rule j but is a specific case of rule i, i. e., rule i and k

expose a generalization conflict where rule k has higher priority. In this case, if rule
j is removed, traffic that should be matched by rule i as a result of removing rule j

is matched instead by rule k, thus the effect of redundancy is not true. We classify
this case therefore as overlap, indicating that no rule of the two (rules i and j) is
redundant. The same argument applies for case 18 in Table 4.1.

Pisharody [86] introduces imbrication conflicts, arising due to rules specifying
match fields at different layers and those rules are directly compared without being
expressed in the same scale. This class is not incorporated in the local conflicts as
all rules are represented in the same format before being checked for conflicts in our
work.

102 4 Conflict Classification

4.2 Distributed conflicts
The combined effect of rules in different network devices or in different rule tables
can lead to unexpected network behaviour, e. g., traffic looping or traffic dropping.
We name this kind of anomalies distributed conflicts as opposed to local conflicts
mentioned in the previous section, which occur due to the contention on handling
traffic between rules residing in the same rule table.

Distributed conflicts lead to the suppression of control applications’ policies since
their rules are not active on the intended traffic as expected. Based on our experi-
ments’ results and existing work in literature, we are able to conclude the possible
causes of distributed conflicts including: traffic looping, traffic dropping, packet mod-
ification and changes to paths. From the perspective of a control application, the
suppression of its policies can effect in either downstream or upstream direction of
its target network devices.

Cause

Direction
downstream upstream

Traffic looping ✓ ✓
Traffic dropping ✓ ✓
Packet modification ✓ ✓
Changes to paths 7 ✓

Table 4.2: Distributed conflicts' causes and directions

The metaphoric meaning of these terms
originates from the water flow direction
in nature: downstream indicates the direc-
tion that a river or a water stream flows
and upstream refers to the reverse direc-
tion. Policy suppression is said to take
place in the downstream direction of a net-
work device if its occurrence is after the
involved traffic flow leaving that device.

On the contrary, the suppression is in the upstream direction of a device if it happens
before the traffic flow reaching that device. The involved traffic flow with respect to
a control application is the one that is influenced by that application’s policies in its
isolated deployment, but is not in its co-deployment with other applications. This
temporal attribute does impact the conflict detection (see Chapter 5) and thus con-
tributes to the classification of conflicts. The downstream direction attribute is not
applicable to the changes to paths cause, otherwise the involved traffic would have
traversed through the target devices of the control application, which contradicts this
cause. The cause and direction combination shown in Table 4.2 founds the base for
the classification of distributed conflicts.

4.2.1 Policy suppression by downstream traffic looping
The combined effect of rules stemming from different control applications can lead
to their matched traffic being forwarded in a loop. A traffic loop occurs among a
sequence of rules if there exists a packet handled by them in a loop, i. e., one of these
rules appears at least twice in the sequence of rules that the packet traverses.

4.2 Distributed conflicts 103

Property
The rules of a control application take effect on its target traffic at its target network
devices. However, its overall policies are not achieved as its target traffic is caught in
a loop occurring afterwards.

Effect
The influenced traffic cannot be handled as intended by the mentioned control ap-
plication but gets stuck in a loop. The effect is more catastrophic if the traffic is
replicated at some switch in the loop as the network can quickly be overloaded.

Example

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(PPLB4D and TE)

Expected (PPLB4D)

Figure 41: An example of the distributed conflict
class policy suppression by downstream traffic looping,
observed when deploying together the control
applications Destination-based Path Load Balancer
(PPLB4D) and Traffic Engineering (TE) (reproduced
from experiment 3 in Chapter 3.6.3)

Experiment 3 in Chapter 3.6.3 shows
a conflict of this class. We repro-
duce briefly this experiment here includ-
ing the conflict effect depicted in Fig-
ure 41. If we denote rule i at switch
j as ri@Sj , the rule sequence caus-
ing traffic looping in this experiment is:
r2@S5, r2@S3, r2@S6, r2@S5, in which
r2@S5 and r2@S3 are installed by
the application Destination-based Path
Load Balancer (PPLB4D) and r2@S6 by
the Traffic Engineering (TE) application.
The combined effect of the rules from
these two control applications causes the
traffic sent by PC1 not able to reach PC4 as expected (shown in the left part of Fig-
ure 41) but stuck in a loop among three switches S5–S3–S6–S5. The loop occurs on the
traffic after (downstream) it left the target switch of PPLB4D (switch S5), suppressing
the overall policy of this application reflected in its isolated deployment.
r2@S5 (installed by PPLB4D):

priority=2, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6, tcp_src
↪→ =48350, tcp_dst=5001}, action=output:2 (send to switch S3)

r2@S3 (installed by PPLB4D):

priority=1, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6},
action=output:3 (send to switch S6)

r2@S6 (installed by TE):

priority=2, match={ether_type=0x0800, ipv4_dst=192.168.1.4, ip_protocol=6, tcp_dst=5001},
action=output:4 (send to switch S5)

104 4 Conflict Classification

From the above rules, we can infer the impacted traffic, which belongs to the flow:

ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6, tcp_src=48350, tcp_dst=5001

Discussion
Traffic looping may be caused by mistake of a single control application, which is a
bug (see Chapter 2.2), or by different intention of control applications on the same
traffic. In any case, its consequence is not expected and the traffic looping needs to
be detected and resolved to ensure the stable operation of the network.

We notice an interesting example (not applicable in OpenFlow SDN but possibly
achievable in POF or P4 SDN) in which a rule with the action modifying its matched
packets can have the traffic escape the rule loop:
r1@S1 (output:1 in its action is to send matched traffic to r2@S2):

priority=1, match={ether_type=0x0800, ipv4_src=192.168.1.0/30, ipv4_dst=192.168.1.5, ip_protocol=6,
tcp_src=48350, tcp_dst=5001}, action=output:1

r2@S1 (output:2 in its action is to send matched traffic to end-point):

priority=1, match={ether_type=0x0800, ipv4_src=192.168.1.4, ipv4_dst=192.168.1.5, ip_protocol=6,
tcp_src=48350, tcp_dst=5001}, action=output:2

r2@S2 (output:1 in its action is to send matched traffic to r1@S1):

priority=1, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6},
action={increase ipv4_src by 1, output:1}

If a packet belonging to the flow

ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.5, ip_protocol=6, tcp_src=48350, tcp_dst=5001

enters switch S1 and is matched by rule r1@S1, it is sent to switch S2 and is handled
by r2@S2, which increases its ipv4_src by 1 and sends it back to switch S1; its ipv4_src
becomes 192.168.1.2, and is sent by r1@S1 to r2@S2; after the next two rounds ping-
ponged between r1@S1 and r2@S2, its ipv4_src is now 192.168.1.4 and is not matched
by r1@S1 any more but by r2@S1, which forwards it out of the loop to the end-point.
This example may have a use case in network debugging or used by some kind of
attack to increase the network load gradually so that it is not easily detected by
common security method. Although the loop in this case occurs with an eventual
escape and the effect is less aggressive, its detection for closer examination is still
worthwhile.

4.2 Distributed conflicts 105

4.2.2 Policy suppression by upstream traffic looping
The traffic loop can also occur before the traffic could reach the target network devices
of a control application.

Property
A control application places its rules in its target network devices; however, its target
traffic is caught in a loop and could not reach these devices as expected in its isolated
deployment.

Effect
The influenced traffic cannot be handled as intended by the mentioned control ap-
plication. The effect is more catastrophic if the traffic is replicated at some switch in
the loop as the network can quickly be overwhelmed.

Example

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(PPLB4D, TE and aHS)

Expected (aHS)

Figure 42: An example of the distributed conflict
class policy suppression by upstream traffic looping,
observed when deploying together the control
applications Destination-based Path Load Balancer
(PPLB4D), Traffic Engineering (TE) and active Host
Shadowing (aHS)

A conflict of this class is depicted in Fig-
ure 42, observed when co-deploying the
control applications Destination-based
Path Load Balancer (PPLB4D), Traffic
Engineering (TE) and active Host Shad-
owing (aHS). In its isolated execution,
the rules installed by aHS at switch S4
take effect to forward TCP/UDP traffic
destined to PC4 to PC3. In the co-
deployment of the applications, this traf-
fic gets stuck in a loop due to the same
reason as in the previous example (see
Figure 41) and could not approach switch
S4. Consequently, the loop in the up-
stream direction of switch S4 suppresses the policies enforced by aHS.

Discussion
The above example shows an extreme case containing conflicts of two distributed
conflict classes: policy suppression by both downstream and upstream traffic looping.
In general, multiple conflicts of various classes can co-exist when running different
applications together. The discussion points in Section 4.2.1 also apply for this conflict
class.

4.2.3 Policy suppression by downstream traffic dropping
A rule with a drop action, a non-forwarding action or an invalid forwarding action,
e. g., forwarding matched packets to a non-existent port of the switch, will cause its
matched traffic to be dropped.

106 4 Conflict Classification

Property
The rules of a control application take effect on its target traffic at its target network
devices. However, this traffic gets dropped by other applications afterwards.

Effect
The traffic cannot be handled as intended by the affected application, but is dropped
at the switch containing the rules dropping traffic. Therefore, the overall policies of
the affected application could not be achieved.

Example

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(PPLB4D and FW)

Expected (PPLB4D)

Figure 43: An example of the distributed conflict
class policy suppression by downstream traffic
dropping, observed when deploying together the
control applications Destination-based Path Load
Balancer (PPLB4D) and Firewall (FW) (reproduced
from experiment 4 in Chapter 3.6.3)

A conflict belonging to this class is pre-
sented in experiment 4 in Chapter 3.6.3,
which is summarized in Figure 43 in-
cluding the conflict effect. The rule se-
quence causing the issue in this experi-
ment is: r2@S5, r2@S3; the first rule is
deployed by the application Destination-
based Path Load Balancer (PPLB4D) and
the second by Firewall. As PPLB4D is not
aware of the intent of the Firewall appli-
cation, it balances some traffic sent from
PC1 to PC4 on the path S5–S3–S6–S4,
which gets dropped by the Firewall’s rule
at switch S3 and thus could not reach the
expected destination PC4. The traffic dropping occurs after (downstream) the traffic
left the target switch of PPLB4D (switch S5), suppressing the accomplishment of this
application’s policies as reflected in its isolated run.
r2@S5:

priority=2, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6, tcp_src
↪→ =48354, tcp_dst=5001}, action=output:2 (send to switch S3)

r2@S3:

priority=1, match={ether_type=0x0800, ipv4_dst=192.168.1.4, ip_protocol=6, tcp_dst=5001}, action=drop

From the above rules, we can infer the impacted traffic, which belongs to the flow:

ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.4, ip_protocol=6, tcp_src=48354, tcp_dst=5001

4.2 Distributed conflicts 107

Discussion
A firewall can be deployed at the network boundary and has predefined rules drop-
ping malicious traffic. This case is usual and should not raise any concern. In detect-
ing conflicts, an option for this exception should be taken into account.
A rule with a non-forwarding action, e. g.,:

priority=2, match={ether_type=0x0800, ipv4_src=192.168.1.1, ipv4_dst=192.168.1.3},
action=set_field:192.168.1.2 -> ip_dst

or with an invalid forwarding action (e. g., sending traffic out of a non-existent port)
will lead to the same consequence as a rule having a drop action. However, it appears
more to be a bug since the normal role of a rule should be to keep the traffic flowing
or to drop it. Still, the arisen unexpected network behaviour needs to be detected
and handled.
Downstream traffic dropping is referred to in Reyes’ thesis [90] as spuriousness, sim-
ilar to the term used in another research on security policy conflicts in traditional
networks by Hamed and Al-Shaer [43], which is bound to the firewall application.
We observe that this conflict class can also occur between control applications other
than the firewall and opt for this more neutral term.

4.2.4 Policy suppression by upstream traffic dropping
Traffic can be dropped on its way to the target network devices of a control applica-
tion.

Property

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(FW and aHS)

Expected (aHS)

Figure 44: An example of the distributed conflict
class policy suppression by upstream traffic dropping,
observed when deploying together the control
applications Firewall (FW) and active Host
Shadowing (aHS)

A control application installs its rules in
its target network devices; however, its
target traffic gets dropped by other appli-
cations and could not reach these devices
as expected in its isolated deployment.

Effect
The influenced traffic cannot be handled
as intended by the affected control appli-
cation.

Example
An instance of this conflict class is ob-
served when co-deploying the control ap-
plications Firewall (FW) and active Host
Shadowing (aHS), as illustrated in Figure 44. In its isolated execution, the rules in-
stalled by aHS at switch S4 take effect to forward TCP/UDP traffic destined to PC4 to

108 4 Conflict Classification

PC3. In the co-deployment of the applications, this traffic gets dropped at switch S5
by FW rules and could not approach switch S4. Consequently, the traffic dropping
in the upstream direction of switch S4 suppresses the policies enforced by aHS.

Discussion
The discussion points in Section 4.2.3 also apply for this conflict class.

4.2.5 Policy suppression by downstream packet modification
Network traffic can be influenced by policies from multiple control applications at
different points on its path to the destination. There are cases in which an application
controls traffic in a manner that suppresses the intent of another application whose
policies were enforced earlier.

Property
A control application enforces its policies to its interested traffic at some points in the
network, that traffic is later modified by other control applications, which invalidates
the overall policies of the first one observed in its isolated deployment.

Effect
The overall policies of the affected control application is not fulfilled, though its rules
are properly deployed.

Example

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(EpLB and pHS)

Expected (EpLB)

Figure 45: An example of the distributed conflict
class policy suppression by downstream packet
modification, observed when co-deploying the
End-point Load Balancer (EpLB) and passive Host
Shadowing (pHS) control applications

An instance of this conflict class can
be observed when deploying the End-
point Load Balancer (EpLB) and passive
Host Shadowing (pHS) applications as
depicted in Figure 45. EpLB is deployed
on switch S7 to balance TCP/UDP traf-
fic destined to PC3 over PC3 and PC4,
pHS puts its rules on switch S5 to di-
rect all TCP/UDP traffic towards PC4 to
PC3. As a result, a part of traffic head-
ing to PC3 that was redirected to PC4 by
EpLB at switch S7 is re-modified by pHS
at switch S5 to send it to PC3. This down-
stream modification of traffic with reference to the viewpoint of EpLB annuls partly
its overall policies compared to its isolated deployment.

Discussion
This conflict class is synthesized from the distributed conflict class general multi-
transform examined by Reyes [90]. A general multi-transform conflict occurs if there

4.2 Distributed conflicts 109

exist packets that are modified (transformed) twice or more times by different control
applications at different network devices. We use a more neutral name and notice that
a conflict of this class can also occur even in case the packets are transformed only
once. An example can be inferred from the above example (Figure 45) if the pHS
application swaps its front-end and back-end targets, i. e., to directs all TCP/UDP
traffic destined to PC3 to PC4. In this case, traffic from PC1 to PC3 is modified only
once either at switch S7 by EpLB or at switch S5 by pHS and the conflict still happens.

4.2.6 Policy suppression by upstream packet modification
Network traffic can be altered on its path to the destination. There are cases in which
a control application modifies the traffic at one point, leading to unavailable traffic
that would otherwise be influenced by another control application at subsequent
points in the path to the destination.

Property
Traffic interested by a control application, before reaching its target network devices,
was modified by other control applications once or more times. Consequently, the
modified traffic is not matched by rules from that application at its target network
devices anymore and its overall policies observed in the isolated deployment are not
achieved.

Effect
The policies of the control application does not take effect, as its rules do not match
the modified traffic.

Example

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(FW and EpLB)

Expected (FW)

Figure 46: An example of the distributed conflict
class policy suppression by upstream packet
modification, observed when co-deploying Firewall
(FW) and End-point Load Balancer (EpLB)

Figure 46 shows an example of this con-
flict class. The Firewall control applica-
tion (FW) is deployed on switch S5 to
drop all traffic sent from PC1 to PC3.
The End-point Load Balancer (EpLB) in-
stalls its rules on switch S7 to balance
TCP/UDP traffic destined to PC3 over
PC3 and PC4. In the co-deployment of
these two applications, some traffic to
PC3 is modified at switch S7 by changing
its destination to PC4; this traffic then ar-
rives at switch S5 and is not matched by
Firewall’s rules anymore, but get forwarded to PC4. Hence, from the Firewall appli-
cation’s perspective, its policies are suppressed due to the upstream modification of
the packets.

110 4 Conflict Classification

Discussion
The above example implies a type of security attack relevant to this conflict class,
namely firewall bypassing by means of packet modification, which was illustrated by
Porras et al. [88]. In this attack, traffic is modified before getting through the firewall
in such a way that it is not filtered there, and then re-modified afterwards to reach the
destination targeted by the attacker. The authors introduced in this work a security
policy enforcement kernel called FortNOX to check for rule conflicts based on the
alias-set rule reduction algorithm. Due to the focus on security compliance, conflicts
between control applications are not addressed in detail as in our work. Moreover,
conflict checking is omitted between a rule pair if they both have forwarding action,
though in reality, a conflict can still occur between them.

A similar conflict class was examined by Reyes [90] and referred to in his work as
occlusion. We notice it to be an instance of the hidden conflict class action suppression
by packet modification in our work (see Section 4.3.3) as this case reflects a disruption
in the control plane and could not be discerned by rules in the data plane.

4.2.7 Policy suppression by changes to paths

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(FW and TE)

Expected (FW)

Figure 47: An example of the distributed conflict
class policy suppression by changes to paths, observed
when co-deploying the Firewall (FW) and Traffic
Engineering (TE) control applications

Network traffic interested by a control ap-
plication can be forwarded on some path
not containing its target network devices.
As a result, the policies of that application
do not take effect.

Property
A control application puts rules on its tar-
get network devices to control a certain
slice of network traffic. However, that
traffic gets forwarded on a path not con-
taining that set of devices due to the in-
fluence of other applications.

Effect
The policies of the affected control application is not fulfilled, even though its rules
are deployed properly.

Example
Figure 47 illustrates a conflict of this class observed when executing the Firewall
(FW) and Traffic Engineering (TE) control applications together. FW puts its rules
on switch S5 to drop all TCP/UDP traffic from PC1 to PC3; however, this traffic is
directed to switch S6 by TE rules installed at switch S7. The path changing due to
TE rules thus renders FW rules ineffective.

4.2 Distributed conflicts 111

Discussion
The example above shows a naive scenario of firewall bypassing by changing the
traffic path. In practice, the firewall should be placed on the network boundary or
cover all possible paths that the involved traffic may traverse. The same tactic is
applicable for all control applications to avoid conflicts of this class.

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(aHS and TE)

Expected (aHS)

Figure 48: A subtle case of the distributed conflict
class policy suppression by changes to paths, observed
when co-deploying the active Host Shadowing (aHS)
and Traffic Engineering (TE) control applications

A subtle case of this conflict class is ex-
amined by Reyes [90], which is referred
to in his work as incomplete transforma-
tion. This case arises when the packet
modification intended by a control appli-
cation for both forward and backward di-
rections, but the backward modification
fails due to path changing triggered by
another application. The consequence
could be failure in communication be-
tween end-points. We reproduce this
case in the example illustrated in Fig-
ure 48. Active Host Shadowing (aHS)
rules are active at switch S5 to forward all TCP/UDP traffic from PC1 targeting PC3
to PC4 by modifying the destination (IP and MAC addresses) from PC3 to PC4.
This modification should be transparent to the sender (so that PC1 thinks that it is
communicating with PC3 and not PC4); therefore, the returning traffic from PC4
must be modified again to appear as if it originates from PC3. aHS installs its rules
for both the forward and backward transformation of packets at switch S5. While
everything goes fine in the isolated deployment of aHS, an unexpected case is ob-
served in the co-deployment of aHS and Traffic Engineering (TE). In this case, TE
is active at switch S4 to forward all TCP/UDP traffic from PC4 to PC1 on the path
via switch S6, leading to this traffic not being transformed at switch S5 by aHS rules.
The final outcome is unpleasing: PC1 is trying to establish a connection with PC3
but receiving instead unsolicited answers from PC4, PC1 drops these packets of PC4
and the communication session initiated by PC1 fails.

This subtle case, similar to the naive scenario with Firewall, can be rectified by
letting aHS install its rules on switches covering all possible paths between PC1 and
the set of PC3 and PC4, two intuitive options for the target switches of aHS in this
case would be either i) S7 or ii) S5 and S6. It is worth noting that while conflicts of
this class can be avoided by this way, conflicts of other classes can still occur. The
investigation towards a comprehensive conflict avoidance is beyond the scope of this
work.

112 4 Conflict Classification

�ow 2

TE
and
EpLB

out: S6

S7S6

missing event for �ow 2

Ctrl.

noti�cation of �ow 1
event for �ow 1

rule 1
rule 1

noti�cation of �ow 2

rule 2

event for �ow 2

rule 2

�ow 1

�ow 1

event for �ow 1

rule 1234

rule 1

rule 1234

noti�cation of �ow 1

�ow 2

rule 1

out: S6

TE EpLB

EpLB
alone

Figure 49: An example of a hidden conflict observed when co-deploying the End-point Load Balancer (EpLB), Traffic
Engineering (TE) and Shortest Path First Routing (SPF) control applications, observed in experiment 6 in Chapter 3.6.3.
S6, S7 are switches in the data plane, Ctrl is the controller. The match fields of rule 1 cover only traffic flow 1, of rule 2
only traffic flow 2, and of rule 1234 both. Rule 1234 has lower priority than rule 1 and rule 2.

4.3 Hidden conflicts
We found a type of conflict that are orthogonal with the local and distributed conflicts
in that it cannot be discerned by purely analysing rules in the data plane, but needs
the control plane assertion to determine its existence. We name this type of conflict
as hidden conflict.

Experiments 5, 6, 7, 8 and 9 in Chapter 3.6.3 depict the traits of hidden conflicts.
We reproduce the one from experiment 6 in Figure 49 to facilitate our analysis (this
example was also presented in a shorter form in Chapter 1.3.3 to illustrate hidden
conflicts). The End-point Load Balancer (EpLB) application, in its isolated execu-
tion, reacts to each notification of new traffic flows (e. g., via packet-in events) with
respective rules (see the upper box of Figure 49). In its co-deployment with the Traf-
fic Engineering (TE) application (see the lower box of Figure 49), after TE installed
rule 1234 covering traffic flows 1 and 2, EpLB still handles flow 1 correctly but does
not install its rules to handle flow 2 as observed in its isolated run. Our analysis
reveals the cause to be the missing notification to EpLB for flow 2, since this flow is
handled locally by rule 1234 from TE. This cause differs completely from what can
be concluded by purely examining rules in the data plane: rules 1 and 1234 expose
a generalization local conflict (see Section 4.1.2), whose commonly accepted effect is
that the broader rule (rule 1234) defers to the more specific one (rule 1) if the incom-

4.3 Hidden conflicts 113

ing traffic matches both. In other words, the main effect manifested via data plane’s
rules can have its side-effect impacting the control applications. Hidden conflicts are
those arising from such side-effects.

Events Actions

packet out

flow removal by internal timer1 drop

packet with action modify

device/link/port startup escalate data packet

device/link/port shutdown escalate status

device/link/port failure escalate notification

device's state query modify and out

modify and escalate

Table 4.3: Device primitives [25]

Events Actions

device/link/port enabled publish event

device/link/port disabled install rule

device/link/port failure modify rule

packet escalated delete rule

notification escalated nop

function call from application

device's state response

Table 4.4: Controller primitives [25]

Events Actions

startup install rule

shutdown modify rule

packet-in delete rule

topology change delegate packet to device2

notification nop

device's state response

Table 4.5: Application primitives [25]

1 flow timeout
2 by sending packet-out

The characteristic of hidden conflicts sug-
gests a method to explore them via the
examination of the potential influences
used by applications and the SDN control
mechanics that are susceptible to each in-
fluence.

We examine hidden conflicts with ref-
erence to the operational model of the
OpenFlow SDN [79]. As far as we are
concerned, this model is also valid for the
common SDN technologies in principle,
e. g., POF [98, 61], P4-based SDN using
P4 [12] and P4Runtime [81]. At first, we
derive the interaction primitives between
devices, the controller and control appli-
cations, which are triggered by events in
the network, e. g., packets arriving at a
device. The influence on each combina-
tion of interactions can lead to hidden
conflicts, we assess thus each combina-
tion in terms of its susceptibility to in-
fluence. We acquire thereby a conflict
model including: i) the susceptible com-
binations of interaction primitives, ii) the
conditions in which they may be influ-
enced and iii) the potential impact on
the control application that relies on a
combination at the time when one of the
conditions is met. Based on how the in-
teraction primitive combinations can be

disturbed, we are able to organize hidden conflicts in different classes.

4.3.1 Interaction primitives
The interactions transpire in OpenFlow SDN between two pairs of entities: the device
and the controller, the controller and the control application. The triggering events
along with the possible actions being triggered are listed in Tables 4.3, 4.4 and 4.5.

114 4 Conflict Classification

D
ev

ic
e

Co
nt
ro
lle

r
A
pp

lic
at
io
n

D
is
tu
rb
an

ce
N
ot
e

#
ev

en
t

ac
tio

n
ev

en
t

ac
tio

n
ev

en
t

ac
tio

n
fa
ct
or

1
st
ar
tu
p

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
en

ab
le
d

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
N
oP

2
st
ar
tu
p

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
en

ab
le
d

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
in
st
al
lr
ul
es

a,
b,
c,
d,
e

3
st
ar
tu
p

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
en

ab
le
d

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
m
od

ify
ru
le
s

a,
b,
c,
d,
e

4
st
ar
tu
p

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
en

ab
le
d

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
de

le
te

ru
le
s

a,
b,
c,
d,
e

5
st
ar
tu
p

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
en

ab
le
d

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
pa

ck
et
-o
ut

a,
b,
c,
d,
e

6
sh
ut
do

w
n

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
di
sa
bl
ed

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
N
oP

7
sh
ut
do

w
n

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
di
sa
bl
ed

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
in
st
al
lr
ul
es

a,
b,
c,
d,
e

8
sh
ut
do

w
n

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
di
sa
bl
ed

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
m
od

ify
ru
le
s

a,
b,
c,
d,
e

9
sh
ut
do

w
n

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
di
sa
bl
ed

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
de

le
te

ru
le
s

a,
b,
c,
d,
e

10
sh
ut
do

w
n

es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
di
sa
bl
ed

pu
bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
pa

ck
et
-o
ut

a,
b,
c,
d,
e

11
fa
ilu

re
es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
fa
ilu

re
pu

bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
N
oP

12
fa
ilu

re
es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
fa
ilu

re
pu

bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
in
st
al
lr
ul
es

a,
b,
c,
d,
e

13
fa
ilu

re
es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
fa
ilu

re
pu

bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
m
od

ify
ru
le
s

a,
b,
c,
d,
e

14
fa
ilu

re
es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
fa
ilu

re
pu

bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
de

le
te

ru
le
s

a,
b,
c,
d,
e

15
fa
ilu

re
es
ca
la
te

st
at
us

de
vi
ce
/p
or
t/
lin

k
fa
ilu

re
pu

bl
is
h
ev
en

t
to
po

lo
gy

ch
an

ge
pa

ck
et
-o
ut

a,
b,
c,
d,
e

16
st
at
e
qu

er
y

st
at
e
re
sp
on

se
de

vi
ce

st
at
e
re
sp
on

se
pu

bl
is
h
ev
en

t
de

vi
ce

st
at
e
re
sp
on

se
N
oP

17
st
at
e
qu

er
y

st
at
e
re
sp
on

se
de

vi
ce

st
at
e
re
sp
on

se
pu

bl
is
h
ev
en

t
de

vi
ce

st
at
e
re
sp
on

se
in
st
al
lr
ul
es

a,
b,
c,
d,
e

18
st
at
e
qu

er
y

st
at
e
re
sp
on

se
de

vi
ce

st
at
e
re
sp
on

se
pu

bl
is
h
ev
en

t
de

vi
ce

st
at
e
re
sp
on

se
m
od

ify
ru
le
s

a,
b,
c,
d,
e

19
st
at
e
qu

er
y

st
at
e
re
sp
on

se
de

vi
ce

st
at
e
re
sp
on

se
pu

bl
is
h
ev
en

t
de

vi
ce

st
at
e
re
sp
on

se
de

le
te

ru
le
s

a,
b,
c,
d,
e

20
st
at
e
qu

er
y

st
at
e
re
sp
on

se
de

vi
ce

st
at
e
re
sp
on

se
pu

bl
is
h
ev
en

t
de

vi
ce

st
at
e
re
sp
on

se
pa

ck
et
-o
ut

a,
b,
c,
d,
e

21
pa

ck
et

ou
t

–
–

–
–

de
vi
ce

on
ly

22
pa

ck
et

dr
op

–
–

–
–

de
vi
ce

on
ly

23
pa

ck
et

m
od

ify
(+
ou

t)
–

–
–

–
de

vi
ce

on
ly

24
pa

ck
et

es
ca
la
te

pa
ck
et

es
c.

pu
bl
is
h
ev
en

t
pa

ck
et
-in

N
oP

25
pa

ck
et

es
ca
la
te

pa
ck
et

es
c.

pu
bl
is
h
ev
en

t
pa

ck
et
-in

in
st
al
lr
ul
es

a,
b,
c,
d,
e

26
pa

ck
et

es
ca
la
te

pa
ck
et

es
c.

pu
bl
is
h
ev
en

t
pa

ck
et
-in

m
od

ify
ru
le
s

a,
b,
c,
d,
e

27
pa

ck
et

es
ca
la
te

pa
ck
et

es
c.

pu
bl
is
h
ev
en

t
pa

ck
et
-in

de
le
te

ru
le
s

a,
b,
c,
d,
e

28
pa

ck
et

es
ca
la
te

pa
ck
et

es
c.

pu
bl
is
h
ev
en

t
pa

ck
et
-in

pa
ck
et
-o
ut

a,
b,
c,
d,
e

29
flo

w
tim

eo
ut

es
ca
la
te

no
tifi

ca
tio

n
no

tifi
ca
tio

n
es
ca
la
tio

n
pu

bl
is
h
ev
en

t
flo

w
re
m
ov

ed
N
oP

30
flo

w
tim

eo
ut

es
ca
la
te

no
tifi

ca
tio

n
no

tifi
ca
tio

n
es
ca
la
tio

n
pu

bl
is
h
ev
en

t
flo

w
re
m
ov

ed
in
st
al
lr
ul
es

a,
b,
c,
d,
e

31
flo

w
tim

eo
ut

es
ca
la
te

no
tifi

ca
tio

n
no

tifi
ca
tio

n
es
ca
la
tio

n
pu

bl
is
h
ev
en

t
flo

w
re
m
ov

ed
m
od

ify
ru
le
s

a,
b,
c,
d,
e

32
flo

w
tim

eo
ut

es
ca
la
te

no
tifi

ca
tio

n
no

tifi
ca
tio

n
es
ca
la
tio

n
pu

bl
is
h
ev
en

t
flo

w
re
m
ov

ed
de

le
te

ru
le
s

a,
b,
c,
d,
e

33
flo

w
tim

eo
ut

es
ca
la
te

no
tifi

ca
tio

n
no

tifi
ca
tio

n
es
ca
la
tio

n
pu

bl
is
h
ev
en

t
flo

w
re
m
ov

ed
pa

ck
et
-o
ut

a,
b,
c,
d,
e

T a
bl
e
4.
6:
Co

m
bi
na

tio
ns

of
in
te
ra
ct
io
n
pr
im

iti
ve
s
[2
5]

4.3 Hidden conflicts 115

Controller Application Disturbance Note

event action event action factor

mock event publish event event NoP mock event sent by apps
relayed via controller

mock event publish event event install/modify/delete
rules/packet-out

a,b,c,d,e,f,g mock event sent by apps
relayed via controller

mock event NoP app sends mock event
directly to app

mock event install/modify/delete
rules/packet-out

a,b,c,d,e,f,g app sends mock event
directly to app

Table 4.7: Mock events based on the interaction primitives [25]

4.3.2 Interaction combinations
The combinations of interaction primitives between devices, controller and applica-
tions are listed in Table 4.6. We assume that there is no direct interaction between
devices and applications, i. e., all interactions are relayed and translated by the con-
troller. Some interaction combinations are impossible in practice and can be elimi-
nated from further analysis, these include

• the items marked as “device only”, since they do not reflect an actual interaction;
• the items where the application action is void, marked “NoP”.

Mock events that have no base in an actual state change in the network can be gen-
erated to exploit the interactions between the controller and applications, either for
productive use, e. g., to diagnose a network problem, or with malicious intent. Ta-
ble 4.7 shows the combinations of the interactions between applications and the
controller resulting from the mock events being introduced at the controller level or
at the application level. Any of the events from Table 4.6 intended for the controller
or the application could be exploited as a mock event.

4.3.3 Classifying hidden conflicts based on disturbance factors
Network behaviour can be influenced unexpectedly by the disruption of the above
interactions listed in Table 4.6, causing hidden conflicts. We classify hidden conflicts
in the following according to the disturbance factors that have been observed in
experiments or that are conceivable.

a) Event suppression by local handling
Property A switch handles an incoming packet locally, instead of escalating it to
the controller.
Effect The involved application is deprived of the event notification and does not
function properly.
Example An illustration for a conflict of this class is observed in experiment 6 in
Chapter 3.6.3, which is reproduced in Figure 49: the presence of rule 1234 from the

116 4 Conflict Classification

Traffic Engineering application results in the missing notification for End-point Load
Balancer when flow 2 arrives at switch S7. Experiments 5 in Chapter 3.6.3 reveals
another conflict of this class.

b) Event suppression by upstream traffic looping
The term upstream was explained in Section 4.2. In essence, the upstream direction,
considered in reference to a target network device of a control application and its
interested traffic flow, indicates the case in which the mentioned incident (e. g., traffic
dropping, looping) happened on a traffic flow, causing this flow unable to reach the
target network device.
Property The target traffic of a control application is caught in a loop and could not
reach its target network devices as expected in its isolated deployment.
Effect The involved application is deprived of the event notification and does not
function properly.

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(PPLD4D, TE and pHS)

Expected (pHS)

Figure 50: An example of the hidden conflict class
event suppression by upstream traffic looping,
observed when deploying together the control
applications Destination-based Path Load Balancer
(PPLB4D), Traffic Engineering (TE) and passive Host
Shadowing (pHS)

Example The effect of a conflict of
this class is depicted in Figure 50, ob-
served when co-deploying the control ap-
plications Destination-based Path Load
Balancer (PPLB4D), Traffic Engineering
(TE) and passive Host Shadowing (pHS).
In its isolated execution, pHS installs its
rules at switch S4 in reaction to packet-
in events triggered by the traffic flow
from PC1 to PC4, these rules forward
TCP/UDP traffic destined to PC4 to PC3.
In the co-deployment of these applica-
tions, the combined effect of the rules
from PPLB4D and TE causes the traffic
sent by PC1 not able to approach switch S4 but stuck in a loop among three switches
S5–S3–S6–S5. Consequently, the traffic loop in the upstream direction of switch S4
suppresses the events expected by pHS for its correct functionality.
Discussion Unlike distributed conflicts, there is no downstream counterpart for hid-
den conflicts in terms of the upstream characteristic, since the incidents occurring in
the downstream direction of a control application’s target switch could not influence
the control mechanics of that application.

c) Event suppression by upstream traffic dropping
Property The target traffic of a control application gets dropped by other appli-
cations, thus could not reach its target network devices as expected in its isolated
deployment.
Effect The involved application is deprived of the event notification and does not
function properly.

4.3 Hidden conflicts 117

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(FW and pHS)

Expected (pHS)

Figure 51: An example of the hidden conflict class
event suppression by upstream traffic dropping,
observed when deploying together the control
applications Firewall (FW) and passive Host
Shadowing (pHS)

Example An instance of this conflict
class is observed when co-deploying the
control applications Firewall (FW) and
passive Host Shadowing (pHS), as illus-
trated in Figure 51. In its isolated execu-
tion, pHS installs its rules at switch S4 in
reaction to packet-in events triggered by
the traffic flow from PC1 to PC4, these
rules forward TCP/UDP traffic destined
to PC4 to PC3. In the co-deployment of
the applications, this traffic gets dropped
at switch S5 by FW rules and could not
approach switch S4. Consequently, the
traffic dropping in the upstream direction of switch S4 suppresses the events expected
by pHS for its correct functionality.

d) Event suppression by changes to paths

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(TE and PPLB4D)

Expected (PPLB4D)

Figure 52: An example of the hidden conflict class
event suppression by changes to paths, observed
when deploying together the control applications
Traffic Engineering (TE) and Destination-based
Passive Path Load Balancer (PPLB4D)

Property Prevention of escalation by
changes to paths, i. e., when a traffic flow
interested by an application is forwarded
around the switch holding a rule that
would escalate packets of that flow to the
controller.
Effect The involved application is de-
prived of the event notification and does
not function properly.
Example Experiment 8 in Chapter 3.6.3
illustrates this hidden conflict class,
the expected and observed network be-
haviour is reproduced in Figure 52. The
control application Destination-based Passive Path Load Balancer (PPLB4D) reacts
to packet-in events triggered by switch S5 for TCP/UDP sessions destined to PC3 by
installing rules to balance these sessions on different paths. When being deployed
with Traffic Engineering (TE), these TCP/UDP sessions are forwarded by TE rules
at switch S7 to switch S6. Switch S5 does not receive the traffic flow as in its iso-
lated execution, thus does not trigger any packet-in event required by PPLB4D for
its correct functionality.

e) Action suppression by packet modification
Property A device executing rules that modify packets before they are escalated
to the controller. The escalation can be performed by that device or by subsequent
devices. The escalated packets are no longer accepted within an application’s scope.

118 4 Conflict Classification

Effect The affected control application does not react against the event notification
containing the altered packet. Its intention thus is not fulfilled.

S1 S2

S3 S4

S5 S6

PC1 PC2

PC3 PC4

S7

Observed
(EpLB and PPLB4D)

Expected (PPLB4D)

Figure 53: An example of the hidden conflict class
action suppression by packet modification, observed
when deploying together the control applications
End-point Load Balancer (EpLB) and
Destination-based Passive Path Load Balancer
(PPLB4D)

Example This hidden conflict class is
demonstrated in Experiment 9 in Chap-
ter 3.6.3, the expected and observed
network behaviour is reproduced in
Figure 53. The control application
Destination-based Passive Path Load Bal-
ancer (PPLB4D) balances TCP/UDP traf-
fic destined to PC3 by placing its rules at
switch S5 in reaction to packet-in events
originated from this switch for this slice
of traffic. End-point Load Balancer
(EpLB) registers for packet-in events sent
from switch S7 also for TCP/UDP ses-
sions destined to PC3. It reacts by in-
stalling rules in this switch to balance these sessions between PC3 and PC4, the
relevant fields in each packet are rewritten (using the OpenFlow’s set_field function)
where necessary. When executing these two applications together, some TCP/UDP
sessions from PC1 and PC2 to PC3 are not balanced by PPLB4D as they were in its
isolated run. The identified cause is that the traffic of these sessions are modified at
switch S7 by EpLB rules to have its new destination as PC4, this traffic is then sent
to switch S5, PPLB4D receives the associated packet-in event but is not interested in
and ignores it. In summary, the packet modification by EpLB leads to the suppression
of action from PPLB4D and hence its intention is not accomplished.

f) Undue trigger
Property Contrary to action suppression by packet modification, a control application
can be “tricked” into installing, modifying or removing rules by packets modified by
other applications before escalation. This can also happen in the course of an attack
by mock packets or by falsified events sent by attackers.
Effect The affected control applications reacts (by installing, modifying or removing
rules) against the undue events, which could result in unexpected network behaviour.
Example An instance of this conflict class is observed when co-deploying the End-
point Load Balancer (EpLB) and passive Host Shadowing (pHS) as shown previously
in Figure 45, which exposes also a sample of the distributed conflict class policy sup-
pression by downstream packet modification. A slice of traffic altered by EpLB rules
at switch S7 triggers packet-in events at switch S5, inducing pHS to install its rules
to re-modify this traffic. As a result, the overall policies of EpLB are not achieved.
Although this experiment reveals a case of this hidden conflict class, it is controver-
sial in terms of the conflict consequence on the affected application, being pHS, as its

4.4 Summary 119

intent does not appear to be violated, thus this hidden conflict seems negligible. Yet,
the final assessment of the consequence is up to the network operator.

An attacker that wangles to act as an application or to control an existing one
could fabricate counterfeit events and send them to other applications to provoke for
their undue reactions. A counterfeit event can be any event in Table 4.6 meant for
the controller or the application.

g) Tampering with event subscription
Property The disruption entailing this conflict class is contingent on applications
being able to modify each other’s subscriptions. As a result, a control application
might cause an undue trigger hidden conflict to another application or suppress events
by unsubscribing events for it, or subscribes it with unsolicited events. This case can
also transpire in a security attack.
Effect The affected application does not function as expected.
Discussion Although this conflict class has not been observed in our set of experi-
ments, it is conceivable in case an SDN implementation allows a control application
to modify the subscription of the others, e. g., one of them acts as a coordinator that
intercepts the other’s activities concerning rule deployment. The event subscription
of a control application could also be tampered in a security attack if the attacker is
able to intercept the communication channel between the controller and that appli-
cation. He could then act as the victim application and, for example, register for new
events to spy the network, cause undue trigger hidden conflicts to other applications,
or install malicious rules in the network.

4.3.4 Susceptible interactions and impact
The interaction combinations shown in Tables 4.6 and 4.7 may be susceptible to one
or more hidden conflict causes, i. e., disturbance factors. Each of them is analyzed
and the disturbances that they are sensitive to are determined, the results are noted
in the Disturbance factor column of these tables. A combination is sensitive if it can
be disrupted by one of the disturbance factors. We notice that the consequences of
a disruption strongly relate to the purpose of the interaction set including missing
rules, redundant rules or wrong rules in one device or more, which may provoke
anomalous network behaviour.

4.4 Summary
We have presented various conflict classes in SDN grouped in three broad categories:
local, distributed and hidden conflicts. Local conflicts feature those occurring be-
tween rules in the same rule table of an SDN device, they are classified by comparing
rules regarding their priority, match space overlap and actions. Distributed conflicts
are determined based on the combined effect of rules situated in different devices,

120 4 Conflict Classification

which influence the same traffic flow in an unexpected manner, e. g., causing traf-
fic looping or dropping. In contrast to the first two categories, hidden conflicts are
contingent on the disruptions in the control plane that lead to undesired network
behaviour.

Our systematic analysis in classifying local conflicts supplements the existing re-
sults introduced by Hamed and Al-Shaer [43] and Pisharody [86]. Reyes presents a
taxonomy of distributed conflicts in SDN [90], a part of that is reused in our work
for distributed conflict assortment while the irrelevant part is not incorporated. For
example, we consider the class invariant contention (containing two subclasses dis-
persion and focusing) in his work not to be a conflict class according to our conflict
definition since the involved applications’ intents are still fulfilled, although there
exists certain deviation in network behaviour between the isolated and concurrent
deployment of applications. More discussion on his work is provided in Chapter 2.3.4.
Distributed conflicts have been also researched in other forms, e. g., as network in-
variants [52] or policy compliance [51]. However, with different focuses, these are not
meant to detect conflicts between rules installed by various control applications as
ours. The completely new conflict category discovered in our work, namely hidden
conflicts, opens another research area in the ecosystem of conflicts in SDN.

5 Conflict Detection

Conflicts need to be handled to avoid unexpected network behaviour. We present in
this chapter methods to detect conflicts based on their patterns or properties identi-
fied in Chapter 4. These patterns and properties portray the relationships between
rules in the same rule table or in different ones. They can be determined from the
rule components including the priority, match fields and actions. The detection of
conflicts demands the comparison of these rule components.

Existing solutions do not facilitate the general rule comparison at the granular level
associated with our conflict classification, e. g., in determining if the match space of
a rule is a subset, superset of another rule, or if they intersect each other. We in-
troduce thus the general concept of multi-property set and a method to extract the
relationship between sets of this type using the ·r (pronounced as “dot r”) operator,
both of which enable the rule comparison without restrictions endured by existing
research. As the match and action components can be expressed differently in each
rule, for instance, some match component specifies only layer 2 addresses, some only
layer 3 information, their homogeneous representation is required for the automatic
comparison. We propose the so-called matchmap and actmap concepts for this pur-
pose. These concepts are roughly illustrated in the below example with rules 1 and 2
following the OpenFlow SDN standard:

rule 1: priority=3, match={ipv4_src=192.168.1.1, ipv4_dst=192.168.2.2, ip_proto=6, tcp_dst=80}, action={
↪→ output:3}

rule 2: priority=2, match={ipv4_src=192.168.1.0/24, ip_proto=6}, action={set_field:ipv4_src=192.168.1.3,
↪→ output:2}

By manual analysis, it is obvious that the match space of rule 1 is a subset of rule 2’s,
and thus, their match overlap is that of rule 1. In conjunction with their priority and
action relationship, we can infer a local conflict of the generalization class between
them. In order to automate these steps, rules 1 and 2 need to be represented in the
same format, one possibility is:

rule 1: priority=3, match={ipv4_src=192.168.1.1, ipv4_dst=192.168.2.2, ip_proto=6, tcp_dst=80},
action={set_field:none, output:3}

rule 2: priority=2, match={ipv4_src=192.168.1.0/24, ipv4_dst = any, ip_proto=6, tcp_dst = any},
action={set_field:ipv4_src=192.168.1.3, output:2}

The original match fields and actions of these rules are now converted to their
matchmap and actmap, which are uniform. Each match or matchmap corresponds
to a multi-property set with the individual properties comprising ipv4_src, ipv4_dst,
ip_proto, tcp_dst. The formulated algebra associated with the ·r operator presented

122 5 Conflict Detection

in this chapter enables the automatic reasoning about the relationship between multi-
property sets.

Having these tools available, we show how they can be employed in detecting
conflicts. For distributed conflicts and some hidden conflict classes characterised by
rules in multiple rule tables, we establish the connections of rules in different tables
that handle the same traffic flow and reason about all possible anomalies therein,
these rules’ connections are referred to as rule graph. Some distributed and hidden
conflict classes entail extreme complexity or expose the interpretative nature in their
identification, some appear to be security-related concerns. We provide insightful
discussions on measures to cope with them and on practical implications.

5.1 Multi-property set and ·r operator
The key information of SDN rules for reasoning about conflicts according to our
established conflict taxonomy (see Chapter 4) includes their priority, match and ac-
tions. While the comparison of the rule priority as number is intuitive, it is not
simple in comparing rules’ matches and actions because each rule can specify them
differently. The rule match, being a set containing multiple fields, adds more com-
plexity. As discussed in Chapter 2.3.4, the rigidity of the existing methods hampers
their utilization in comparing SDN rules. Therefore, we introduce a new notion,
namely multi-property set, corresponding to the rule match and the operator ·r for
deriving relationships between sets of this type. In this section, we elaborate these
tools and their general application from the mathematical viewpoint. Their applica-
tion for SDN rules’ comparison is demonstrated in the subsequent sections.

5.1.1 Multi-property set
Match fields of an SDN rule can be compared to a set composed of different single
properties, e. g., source IP address, destination IP address, source TCP port, desti-
nation TCP port. We refer to such a set as multi-property set, as opposed to single-
property set. Some examples of single-property sets are the set of people in the age
of 30 (we may add the context, e. g., in country X), the set of students passing the
math exam (context: in university Y). Multi-property sets can be the set of people
(in country X) in the age of 30, above 1,5 meter tall, having driver’s licences, or the
set of students (in university Y) passing the math, physics and chemistry exams. It
is evident that a multi-property set is formed by the intersection of multiple single-
property sets, each associates with the constraint specified for one of the properties
of the multi-property one. For example, the set of students passing the math, physics
and chemistry exams is formed by the intersection of the three single-property sets,
the first being those passing the math exam, the second the physics exam, and the
third the chemistry exam.

5.1 Multi-property set and ·r operator 123

s

Multi-property set
s = s1 ∩ s2 ∩ ... ∩ sn

Property-k set
sk

Property-1 set
s1

Property-2 set
s2

Property-n set
sn

Figure 54: Multi-property set as the intersection of
multiple single-property sets. Each property-i set is
a single-property set created by the constraint
specified for the property i of the multi-property set.
The multi-property set has n properties: property 1,
property 2…, property k…, property n.

To be more precise, we give the defini-
tions of single-property set and multi-
property set as follows.

Definition 5.1 (Single-property set). A
single property set is a set that is associ-
ated with only one property. All elements
in the set must satisfy the constraint spec-
ified for that property.

Definition 5.2 (Multi-property set). A
multi-property set is a set that is associ-
ated with more than one property. It cor-
responds to the intersection of the single-
property sets, each is created from the con-
straint specified for one of the properties of
the multi-property set.
Let S be a multi-property set of n proper-
ties, n ≥ 2,
let Sk be a single-property set correspond-
ing to the constraint specified for the kth property of S, 1 ≤ k ≤ n.
⇒ S = ∩n

k=1Sk = S1 ∩ S2 ∩ · · · ∩ Sn

An illustration of the multi-property set is shown in Figure 54.

A B

a) A and B are disjoint
 A ∩ B = ∅

A B

e) A intersects B
A ⊈ B ∧ A ⊉ B ∧ A ∩ B ≠ ∅

A

B

b) A is a proper superset of B
or B is a proper subset of A
 A ⊃ B

A B

d) A and B are equal
 A = B

B

A

c) A is a proper subset of B
or B is a proper superset of A
 A ⊂ B

Figure 55: The relationship between two certain sets A and B

5.1.2 Comparison of multi-property sets using ·r operator
Given any two sets A and B, their relationship can be:

• Disjoint: A ∩B = ∅
• Equal: A = B

• Proper subset: A ⊂ B

• Proper superset: A ⊃ B

124 5 Conflict Detection

• Intersecting: A ⊈ B ∧A ⊉ B ∧A ∩B ̸= ∅

Figure 55 illustrates these relationships. In this work, two sets are said to overlap
if they are not disjoint, i. e., their relationship is either equal, proper subset, proper
superset, or intersecting. The relationship of two multi-property sets can be rea-
soned about through the relationships of their associated single-property sets. This
is demonstrated in Figure 56.

A

Multi-property set
A = A1 ∩ A2 ∩ ... ∩ An

rAB = A .r B= r1 .r r2 .rr rn

Property-1 set
B1

Property-2 set
B2

Property-k set
Bk

Property-k set
Ak

Property-1 set
A1

Property-2 set
A2

BProperty-n set
Bn

Property-n set
An

Multi-property set
B= B1 ∩ B2 ∩ ... ∩ Bn

rAB , r1...rn ∈ {0, 1, 2, 3, 4}

Relationship

Relationship rn = An .r Bn

Relationship r1 = A1 .r B1

Relationship r2 = A2 .r B2
Relationship rk = Ak .r Bk

Figure 56: The relationship of two multi-property sets A and B, denoted as rAB = A .r B, is calculated by
combining all individual relationships of their associated single-property sets r1 = A1 .r B1, r2 = A2 .r B2, · · ·
rn = An .r Bn . The relationship combination operator is denoted as ·r (pronounced as "dot r").

We introduce the relationship combination operator, denoted as ·r (pronounced as
“dot r”), to combine the relationships of individual single-property sets to obtain
the overall relationship between two multi-property sets. Given two multi-property
sets A and B, each has n properties, being property 1, property 2…property n, we
represent the single-property set created by the constraint corresponding to property
i of set A as Ai, of B as Bi. The sets A and B can then be represented via their
corresponding single-property sets as:
A = A1 ∩A2 ∩ · · · ∩ An

B = B1 ∩B2 ∩ · · · ∩Bn

The relationship between A and B, denoted as rAB or A .r B, is calculated based
on the relationships of their individual single-property sets as following:
rAB = A .r B = (A1 .r B1) .r (A2 .r B2) .r · · · .r (An .r Bn) = r1 .r r2 .r · · · .r rn
where ri is the relationship between the single-property sets Ai and Bi, i ∈ {1 · · ·n}.
The relationship between two sets A and B, written as rAB or A .r B, is determined

5.1 Multi-property set and ·r operator 125

by how they intersect each other. The following definitions hold for both single-
property and multi-property sets (i. e., regardless of A and B being single-property
or multi-property sets).

Definition 5.3 (Encoding of the relationship between two sets). We define the encod-
ing of the relationships between two certain sets as follows.

• A and B are disjoint, represented as rAB = A .r B = 0, if A ∩B = ∅
• A and B are equal, represented as rAB = A .r B = 1, if A ∩B = A = B

• A is a propersubset of B, represented as rAB = A .r B = 2,
if ∀x ∈ A ⇒ x ∈ B ∧ ∃x ∈ B | x /∈ A, or A ∩B = A ∧A ̸= B

• A is a propersuperset of B, represented as rAB = A .r B = 3,
if ∀x ∈ B ⇒ x ∈ A ∧ ∃x ∈ A | x /∈ B, or A ∩B = B ∧A ̸= B

• A intersects B, represented as rAB = A .r B = 4,
if ∃x ∈ A | x /∈ B∧∃x ∈ B | x /∈ A∧A∩B ̸= ∅, or A ⊈ B∧A ⊉ B∧A∩B ̸= ∅

In the above encoding, the ·r operator can be represented by a function with input as
two sets and output as a number:
·r : (A,B) → C , where A, B are (single-property or multiple-property) sets, C ∈
{0, 1, 2, 3, 4}

Theorem 5.1. Using the encoding in Definition 5.3, i. e., disjoint relationship as 0,
equal as 1, proper subset as 2, proper superset as 3, intersecting as 4, the relation-
ship combination operator ·r works on the input of these encoding numbers as follows:
X ∈ {0, 1, 2, 3, 4}
0 .r X = 0 (5.1)
X .r X = X (5.2)
X .r 1 = X (5.3)
2 .r 3 = 4 (5.4)
X .r 4 = 4 if X ̸= 0 (5.5)
In this case, the ·r operator can be represented as a function whose input being the
above encoding numbers:
·r : (X,Y) → Z, where X, Y, Z ∈ {0, 1, 2, 3, 4}
The relationship combination operator has the commutative and associative properties,
i. e.,
X .r Y = Y .r X (5.6)
X .r Y .r Z = (X .r Y) .r Z = X .r (Y .r Z) where X, Y, Z ∈ {0, 1, 2, 3, 4}

(5.7)

Example:
2 .r 3 = 3 .r 2 = 4

1 .r 2 .r 3 .r 2 = (1 .r 2) .r (3 .r 2) = 2 .r 4 = 4

Now we need to prove the Equations 5.1 to 5.7.
Due to the associative property of the intersection operation (∩) [85], we have

126 5 Conflict Detection

A ∩B = (A1 ∩A2 ∩ · · · ∩ An) ∩ (B1 ∩B2 ∩ · · · ∩Bn)

= (A1 ∩B1) ∩ (A2 ∩B2) ∩ · · · ∩ (An ∩Bn)

This is expressed with the ·r operator as: rAB = A .r B = r1 .r r2 .r · · · .r rn
Without loss of generality, take A = A1 ∩A2 and B = B1 ∩B2

⇒ A ∩B = A1 ∩B1 ∩A2 ∩B2 = (A1 ∩B1) ∩ (A2 ∩B2) and
rAB = r1 .r r2, where r1 is the relationship between the two sets associated with the
first properties A1 and B1, r2 between A2 and B2.
We assume that there always exists a multi-property subset X if none of its corre-
sponding single-property subset is empty, which means
Assumption :

For X = X1 ∩X2 ∩ · · · ∩Xn, if Xi ̸= ∅ where i ∈ {1..n}, then X ̸= ∅ (5.8)

Proof of Property 5.6
The relationship combination operator has the commutative property
X .r Y = Y .r X where X,Y ∈ {0, 1, 2, 3, 4}
Proof
Due to the commutative and associative properties of the intersection of sets [85], we
have
A∩B = (A1 ∩A2)∩ (B1 ∩B2) = (A1 ∩B1)∩ (A2 ∩B2) = (A2 ∩B2)∩ (A1 ∩B1)

which means
rAB = r1 .r r2 = r2 .r r1
This can be generalized as X .r Y = Y .r X where X,Y ∈ {0, 1, 2, 3, 4} according
to our encoding in Definition 5.3.

Proof of Property 5.7
The relationship combination operator has the associative property
X .r Y .r Z = (X .r Y) .r Z = X .r (Y .r Z) where X, Y, Z ∈ {0, 1, 2, 3, 4}
Proof
Consider the certain three-property sets A and B

A = A1 ∩A2 ∩A3

B = B1 ∩B2 ∩B3

Due to the commutative and associative properties of the intersection of sets, we have
A ∩ B = A1 ∩ A2 ∩ A3 ∩ B1 ∩ B2 ∩ B3 = (A1 ∩ B1) ∩ (A2 ∩ B2) ∩ (A3 ∩ B3) =

((A1 ∩B1) ∩ (A2 ∩B2)) ∩ (A3 ∩B3) = (A1 ∩B1) ∩ ((A2 ∩B2) ∩ (A3 ∩B3))

Which means
rAB = r1 .r r2 .r r3 = (r1 .r r2) .r r3 = r1 .r (r2 .r r3)

This can be generalized as
X .r Y .r Z = (X .r Y) .r Z = X .r (Y .r Z) where X, Y, Z ∈ {0, 1, 2, 3, 4}

Proof of Equation 5.1
Equation 5.1: 0 .r X = 0

For any set S, we have S ∩ ∅ = ∅,

5.1 Multi-property set and ·r operator 127

If A1 ∩B1 = ∅ (which means r1 = 0 according to our encoding in Definition 5.3)
⇒ A∩B = (A1 ∩B1)∩ (A2 ∩B2) = ∅ ∩ (A2 ∩B2) = ∅ or rAB = 0 regardless the
result of A2 ∩B2 (i. e., r2), thus rAB = r1 .r r2 = 0 .r X = 0

Proof of Equation 5.2
Equation 5.2: X .r X = X

According to Equation 5.1, we have
0 .r 0 = 0 (5.9)
If A1 = B1, A2 = B2 (which means r1 = r2 = 1), then
A1 ∩B1 = A1 = B1 and
A2 ∩B2 = A2 = B2, therefore
A ∩B = (A1 ∩B1) ∩ (A2 ∩B2) = A1 ∩A2 = A and
A ∩B = (A1 ∩B1) ∩ (A2 ∩B2) = B1 ∩B2 = B

⇒ A ∩B = A = B ⇒ rAB = 1 according to our encoding in Definition 5.3), thus
1 .r 1 = 1 (5.10)
If A1 ⊂ B1 and A2 ⊂ B2, then A = A1 ∩A2 ⊂ A1 ∩B2 ⊂ B1 ∩B2 = B, thus
A ⊂ B, which means
2 .r 2 = 2 (5.11)
Likewise,
3 .r 3 = 3 (5.12)
Consider the case
A1 ⊈ B1 ∧A1 ⊉ B1 ∧A1 ∩B1 ̸= ∅ and
A2 ⊈ B2 ∧A2 ⊉ B2 ∧A2 ∩B2 ̸= ∅
Then, A∩B = (A1∩B1)∩ (A2∩B2) ̸= ∅ due to Assumption 5.8 since A1∩B1 ̸= ∅
and A2 ∩B2 ̸= ∅.
As A1 ⊈ B1 and A2 ⊈ B2 ⇒ A1 −B1 ̸= ∅ and A2 −B2 ̸= ∅
⇒ ∃x ∈ (A1 −B1) ∩ (A2 −B2) ⊂ A1 ∩A2 = A

Evidently, x /∈ B1 ∩B2 = B, therefore: A ⊈ B

Likewise, B ⊈ A, thus A ⊈ B ∧A ⊉ B ∧A ∩B ̸= ∅ or
4 .r 4 = 4 (5.13)
From 5.9, 5.10, 5.11, 5.12, 5.13, we have: X.rX = X for X ∈ {0, 1, 2, 3, 4}

Proof of Equation 5.3
Equation 5.3: X .r 1 = X

According to Equations 5.1 and 5.2,
0 .r 1 = 0 (5.14)
1 .r 1 = 1 (5.15)
If A1 = B1 (which means r1 = 1) and A2 ⊂ B2 (which means r2 = 2),
A = A1 ∩A2 ⊂ B1 ∩B2 = B, therefore
2 .r 1 = 2 (5.16)
Likewise,
3 .r 1 = 3 (5.17)

128 5 Conflict Detection

Consider the case A1 = B1 and A2 ⊈ B2 ∧A2 ⊉ B2 ∧A2 ∩B2 ̸= ∅
since A2 ∩B2 ̸= ∅, we have
A ∩B = (A1 ∩B1) ∩ (A2 ∩B2) ̸= ∅ due to Assumption 5.8
As A2 ⊈ B2 ⇒ A2 −B2 ̸= ∅ ⇒ ∃x ∈ A1 ∩ (A2 −B2) ⊂ A1 ∩A2 = A

Evidently, x /∈ A1 ∩B2 = B1 ∩B2 = B, therefore A ⊈ B

Likewise, B ⊈ A, thus A ⊈ B ∧A ⊉ B ∧A ∩B ̸= ∅ or
4 .r 1 = 4 (5.18)
From 5.14, 5.15, 5.16, 5.17, 5.18, we have X .r 1 = X for X ∈ {0, 1, 2, 3, 4}

Proof of Equation 5.4
Equation 5.4: 2 .r 3 = 4

Without loss of generality, assume that A1 ⊂ B1 and A2 ⊃ B2 or r1 = 2, r2 = 3.
We have A1 ∩B1 = A1 ̸= ∅ and A2 ∩B2 = B2 ̸= ∅
⇒ A ∩B = (A1 ∩B1) ∩ (A2 ∩B2) ̸= ∅ due to Assumption 5.8.
As A2 ⊃ B2 ⇒ A2 −B2 ̸= ∅ ⇒ ∃x ∈ A1 ∩ (A2 −B2) ⊂ A1 ∩A2 = A

Evidently, x /∈ B2 ⇒ x /∈ B1 ∩B2 = B, therefore A ⊈ B

Likewise, B ⊈ A, thus A ⊈ B ∧A ⊉ B ∧A ∩B ̸= ∅.
Therefore, Equation 5.4: 2 .r 3 = 4 holds.

Proof of Equation 5.5
Equation 5.5: X .r 4 = 4 if X ̸= 0

From 5.13 and 5.18, we have 4 .r 4 = 4 and 1 .r 4 = 4

Consider the case A1 ⊂ B1 and A2 ⊈ B2∧A2 ⊉ B2∧A2∩B2 ̸= ∅ (r1 = 2, r2 = 4)
since A2 ∩B2 ̸= ∅, we have
A ∩B = (A1 ∩B1) ∩ (A2 ∩B2) ̸= ∅ due to Assumption 5.8
As A2 ⊈ B2 ⇒ A2 −B2 ̸= ∅ ⇒ ∃x ∈ A1 ∩ (A2 −B2) ⊂ A1 ∩A2 = A

Evidently, x /∈ B2 ⇒ x /∈ B1 ∩B2 = B, therefore A ⊈ B

Likewise, B ⊈ A, thus A ⊈ B ∧A ⊉ B ∧A ∩B ̸= ∅ or
2 .r 4 = 4 (5.19)
Similarly, we can prove that
3 .r 4 = 4 (5.20)
From 5.13, 5.18, 5.19, 5.20, we have X .r 4 = 4 for X ∈ {1, 2, 3, 4}

Theorem 5.2. If two multi-property sets A and B are not disjoint, we can derive their
intersection based on the individual intersection of their single-property sets as
A ∩B = (A1 ∩B1) ∩ (A2 ∩B2) ∩ · · · ∩ (An ∩Bn)

The intersection set of A and B is thus also a multi-property set whose associated single-
property sets are the intersection of the single-property sets of A and B.

Proof
Due to the commutative and associative properties of the intersection of sets [85],
we have

5.1 Multi-property set and ·r operator 129

A∩B = (A1 ∩A2 ∩ · · · ∩An)∩ (B1 ∩B2 ∩ · · · ∩Bn) = (A1 ∩B1)∩ (A2 ∩B2) · · · ∩
(An ∩Bn)

5.1.3 Application of multi-property set and the ·r operator
These tools, multi-property set and the ·r operator, are applicable for any kinds of
multi-property sets in general. For example, consider two sets of flowers in a garden
based on three properties: color, number of petals, and scent
A = {color ∈ {red, blue, yellow, pink}, number of petals > 3, scent = none}
B = {color ∈ {yellow, pink}, number of petals > 5, scent = any (including scentless
flowers)}
We can apply the ·r operator to compute their relationship as follows (see Defini-
tion 5.3 and Theorem 5.1).

• For the sets corresponding to the first property (color),
A1 = {red, blue, yellow, pink},B1 = {yellow, pink}⇒ A1 ⊃ B1 ⇒ r1 = A1 .r B1 = 3

• For the sets corresponding to the second property (number of petals),
A2 = {number of petals > 3}, B2 = {number of petals > 5} ⇒ A2 ⊃ B2 ⇒ r2 =

A2 .r B2 = 3

• For the sets corresponding to the third property (scent),
A3 = {scent = none}, B3 = {scent = any} ⇒ A3 ⊂ B3 ⇒ r3 = A3 .r B3 = 2

• The overall relationship of these two flower sets A and B is therefore
rAB = A .r B = r1 .r r2 .r r3 = 3 .r 3 .r 2 = (3 .r 3) .r 2 = 3 .r 2 = 4

indicating that they are intersecting, i. e., A ⊈ B ∧A ⊉ B ∧A ∩B ̸= ∅.
According to Theorem 5.2, their intersection is
A ∩B= {color ∈ {yellow, pink}, number of petals > 5, scent = none}

Flowers have attributes, rules have fields. Another concrete example is described in
the Section 5.2.1 (under Definition 5.6), in which match fields of OpenFlow rules
are compared by these tools. More use cases are thinkable concerning policies or
rules that comprise multiple properties in their condition (also, criteria or match),
indicating that their condition component corresponds to a multi-property set. The
two basic components of a rule or a policy are condition and action, depending on
the domains, other components may be present, e. g., event, time (see Chapter 2.3.1).
In the domain of networked systems, packet filtering rules created by the IPTables1
tool, ACL rules, those specified in OpenFlow SDN and P4 SDN expose certain sim-
ilarities in their match (or condition) component. For example, an IPTables rule in
a FORWARD chain of a FILTER table looks like:

match criteria = {protocol = tcp, source IP = 192.168.1.0/24, destination IP = 192.168.2.0/24, destination
↪→ port = 80}, target (action) = {ACCEPT}

1 https://linux.die.net/man/8/iptables

130 5 Conflict Detection

an ACL rule in a Cisco router:

deny udp any 192.168.200.0 0.0.0.255 lt 1024

which can be expressed as:

criteria (match) = {protocol = udp, source IP = any, destination IP = 192.168.200.0/24, destination udp
↪→ port less than 1024}, action = {deny}

an OpenFlow rule:

priority=3, match={ipv4_src=192.168.1.0/24, ipv4_dst=192.168.2.0/24, ip_proto=6, tcp_dst=80}, action={
↪→ output:3}

a P4 rule:

match = {ipv4.srcAddr = 192.168.1.1, ipv4.dstAddr = 192.168.1.3}, action = {forward on port 3}

These exemplary rules specify various header fields in their conditions (i. e., match
or criteria), which are associated with multi-property sets, the ·r operator can be
employed to compute the relationship between these sets to reason about conflicts.
Conceivably, the local conflicts presented in our work (cf. Chapter 4.1) occur not only
within SDN rules, but also in general packet filtering rules produced by IPTables,
ACL or other tools. In any case, conflicts need to be detected and resolved to ensure
correct network behaviour. Our method for comparing SDN rules in the next section
demonstrates the application of multi-property sets and the ·r operator in practice.

5.2 Comparison of SDN rules
Match fields and actions can be expressed differently between SDN rules, e. g., some
rule specifies only a destination IP address in its match and an output port in its
actions, some shows a tuple of TCP source port and destination port for its match,
its actions denote how a matched packet is modified together with an output port.
We need to represent SDN rules in a uniform format in order to employ the multi-
property set and the relationship combination operator ·r for their automatic com-
parison. The matchmap and actmap concepts are introduced as a result.

5.2.1 Matchmap
We need to determine the relationship between rules to check for their possible
conflicts. If their match components overlap, i. e., their relationship is either equal,
proper subset, proper superset or intersecting, a conflict is likely.

The match component of a rule contains different header fields associated with a
packet, such as, source and destination IPv4 addresses, source TCP port. It can also

5.2 Comparison of SDN rules 131

contain payload patterns of the packet, e. g., POF SDN allows to specify values for
the (offset, length) tuple which can match not only packet headers but also payload
data. We refer to these match fields including packet headers and payload data as
packet-internal fields, and the match space including these packet-internal fields as
packet-internal match. Besides, information other than packet-internal fields can be
used as match fields, e. g., the ingress port of a packet arriving at a switch, these fields
are regarded as non-packet-internal fields.

Definition 5.4 (Packet-internal field). A packet-internal field is either a header field or
a pattern used to match the packet’s payload data. It is also a match field. The defini-
tions of packet and header field follow those described in the OpenFlow Switch version
1.5.1 specification [78]. We extend the definition of match field from this specification
to include also the pattern of packet’s payload data.

Definition 5.5 (Non-packet-internal field). A non-packet-internal field is a match field
that does not belong to the set of packet-internal fields. It can be technology specific,
e. g., an ingress port match field in OpenFlow SDN.

Definition 5.6 (Packet-internal match). A packet-internal match of a rule is a multi-
property set corresponding to the match part of that rule that contains only packet-
internal fields.

Rule matches are essentially multi-property sets and we can compare them using the
multi-property set comparison approach mentioned in Section 5.1.2. However, it is
necessary to represent them uniformly before comparing since each rule match can
be expressed differently. For example, consider the following two OpenFlow rules’
matches m1 and m2:

m1: in_port = 3, ether_type = 0x0800, ipv4_dst = 192.168.2.0/25
m2: ether_type = 0x0800, ipv4_src = 192.168.1.0/24, ipv4_dst = 192.168.2.0/24

The match m1 corresponds to a multi-property set having the in_port, ether_type
and ipv4_dst properties, m2 has ether_type, ipv4_src and ipv4_dst properties.
These two multi-property sets associated with m1 and m2 need to be represented
in the same format for their comparison. Using their “denominator” of
in_port, ether_type, ipv4_src, ipv4_dst, we can describe m1 and m2 as:

m1: in_port = 3, ether_type = 0x0800, ipv4_src = any, ipv4_dst = 192.168.2.0/25
m2: in_port = any, ether_type = 0x0800, ipv4_src = 192.168.1.0/24, ipv4_dst = 192.168.2.0/24

The relationship of m1 and m2 is then determined based on their single-property set
relationships as follows.

• The relationship of the first property, being in_port, of m1 and m2 is: r1 = 2 as
the set containing only an element having the value of 3 is a proper subset of the
other set containing elements of any value.

132 5 Conflict Detection

• The relationship of the second property, being ether_type, ofm1 andm2 is: r2 = 1

(equal).
• The relationship of the third property, being ipv4_src, of m1 and m2 is: r3 = 3

(proper superset).
• The relationship of the fourth property, being ipv4_dst, of m1 and m2 is: r4 = 2

(proper subset).
• The overall relationship of m1 and m2 is r1 .r r2 .r r3 .r r4 = 2.r1.r3.r2 = 4,

which means m1 and m2 having the intersecting relationship.

The above example raises the issue: which denominator, understood as all properties
or all fields that the rule matches in comparison have, should we use? It is obvious that
the minimal denominator would be the union of all set of the rules’ match fields. A
comprehensive denominator would cover all possible match fields, including all fields
in any packet’s headers and fields specific to the technology in use. As an example,
OpenFlow Switch version 1.5.1 specifies up to 45 match fields, the comprehensive
denominator for this OpenFlow version, thus, has 45 match fields. In practice, we
may be interested in handling conflicts for certain kinds of traffic, e. g., TCP, UDP,
SCMP traffic while ignoring others, e. g., ARP, ICMP. In this case, we can choose a
simpler denominator bound to the kinds of traffic that we are interested in, rather
than an all-inclusive one which may be too redundant and degrade the performance
in detecting conflicts. In principle, the denominator needs to cover all header fields
at all layers of the interested traffic kinds specified by the technology in use so that
the conflicts can be discovered for cross-layer traffic. For example, the denominator
specified for TCP traffic using IPv4 implemented in OpenFlow version 1.5.1 looks
like:
in_port, eth_src, eth_dst, eth_type, ipv4_src, ipv4_dst, ip_proto, tcp_src, tcp_dst
We can use this denominator to detect the overlap between the following two matches
m3 and m4, which feature fields of different layers:

m3: in_port = 3, ether_type = 0x0800, dst_ipv4 = 192.168.2.0/25, ip_proto = 6, dst_TCP = 80
m4: ether_type = 0x0800

In the same manner as we used to detect the relationship between m1 and m2, we
can see that m3 is a proper subset of m4. If we use a “narrower” denominator
just covering the OSI layer 3 and layer 4 fields, the rule having the match m4 can be
ignored as m4 specifies only a header field belonging to the OSI layer 2, which results
in ignoring a possible conflict between that rule and the rule having the match m3.
In practice, it is sufficient to choose a “compact” denominator covering the match
fields of all rules if this information is available beforehand.

We refer the mapping result of a rule match to a denominator as a matchmap and
for the sake of lucidity, the denominator is referred as matchmap template. In the
subsequent sections, we encode the any value in the matchmap as -1.

5.2 Comparison of SDN rules 133

Definition 5.7 (Matchmap template). A matchmap template is a tuple containing the
names of packet-internal fields and non-packet-internal fields.

Definition 5.8 (Matchmap). A matchmap is the mapping result of a rule match to
a matchmap template according to a predefined mapping function. In other words,
the matchmap is a tuple of values after the order and the format of the matchmap
template, each value is the value of the field in the rule match whose name is specified
in the matchmap template.

Definition 5.9 (Mapping function for matchmap). Given a matchmap templatemmt :

(f1, f2, · · · , fn), in which fi stands for field i, which is either a packet-internal or non-
packet-internal field,
the corresponding matchmap mm has the format: mm : (vf1, vf2, · · · , vfn), where
vfi is the value of field i,
we define the mapping function fmat to obtain the matchmap mm from a rule match
rm and the matchmap template mmt, i. e., mm = fmat(rm,mmt) as follows:

• If the value of the field fi is specified explicitly in the rule match rm, say v, then
vfi = v.

• If the value of the field fi is not specified in the rule match rm, then vfi = −1 where
-1 indicates an any value.

We notice that the rule match may specify a field differently in different SDN imple-
mentation, e. g., OpenFlow SDN represents an IPv4 source address explicitly by its
name, while POF SDN expresses that in a tuple, such as <offset = 208 bits, length =
32 bits>. In any case, while programming the data plane, the administrator has to
figure out and be aware of how to specify a match field for a certain packet header
or payload data pattern, which warrants the feasibility in mapping a rule match to a
matchmap template.

If the match spaces represented by the matchmap of two rules are not disjoint,
we can calculate their intersection, which is also a match space, after the method to
derive the intersection of two non-disjoint multi-property sets in Theorem 5.2.

We give additionally the definition of the term packet-internal matchmap that is
frequently used in the subsequent sections.

Definition 5.10 (Packet-internal matchmap). A packet-internal matchmap of a rule
is a multi-property set corresponding to the packet-internal match of that rule (Defini-
tion 5.6). It is formed from the matchmap of that rule by assigning all of its non-packet-
internal fields the value -1 while leaving its packet-internal fields unchanged. The value
of -1 in the matchmap indicates an any value.

5.2.2 Actmap
SDN rules can have actions that modify matched traffic before passing it to the next
device. Consequently, a packet can match rules with completely disjoint packet-

134 5 Conflict Detection

internal match spaces on different devices along its forwarding path. Our approach
to detect distributed conflicts (see Section 5.6) requires keeping track of the rule
match transformation to establish the connection between rules in different devices.
Two rules in two directly connected devices are said to have a connection if there
exists a packet that is matched by both of them. This connection can be determined
by combining the match and action components of the rule in the first device, the
result is compared with the match component of the other rule in the second device.
This is elaborated in Section 5.4.1.

Similar to the rule match, the action component can be specified differently from
rule to rule. We introduce the actmap notion to represent the rule action uniformly
which facilitates not only its combination with the rule match based on thematchmap
but also the comparison of actions between rules to reason about local conflicts.
Actmap is the mapping result of the rule action to an actmap template which defines
the actmap’s components. An all-embracing actmap template corresponding to a
given matchmap template would contain all packet-internal fields of that matchmap
template so that any change of packets can be expressed in the associated actmap. In
practice, it is sufficient to choose a “compact” actmap template covering all packet-
internal fields that are modified in all rules if this information is known in advance.
The actmap template includes additional components reflecting how the matched
packet is handled, e. g., being forwarded out of a port, being dropped.

Definition 5.11 (Actmap template). An actmap template is a tuple containing the
names of packet-internal fields and the names of actions.

Definition 5.12 (Actmap). An actmap is the mapping result of the rule action to an
actmap template according to a predefined mapping function.

Definition 5.13 (Mapping function for actmap). Given the actmap template, named
amt:
pf1, pf2, · · · , pfn, a1, a2, · · · , ap
The actmap, named am, has the format:
vpf1, vpf2, · · · , vpfn, va1, va2, · · · , van
In which:
pfi: packet-internal field i, which is a header field in a packet or a pattern of the
payload data, e. g., Ethernet source address, IPv4 destination address.
ai: name of action i, which is other than modifying packet-internal fields, e. g., to
forward out of port 2
vpfi: value of the packet-internal field i after being modified.
vai: value of the action i
We define the mapping function f to obtain the actmap am from the rule action ra

and the actmap template amt, i. e., am = f(ra, amt), as follows:

• If the value of the field pfi is specified explicitly in the rule action ra, say v, then
vpfi = v.

5.2 Comparison of SDN rules 135

• If the value of the field pfi is not specified in the rule action ra, then vpfi = −1 where
-1 at the position of the packet-internal field of an actmap indicates a no change value.

• The mapping of the action types other than modifying packet-internal fields can be
customized flexibly for the implementation. For instance, one can define the mapping
function for the action of forwarding the matched packet out of a port list as a list of
port number, a drop action as an empty list.

Definition 5.14 (Output matchmap). The output matchmap of a rule is the matchmap
obtained by combining the matchmap and actmap of that rule according to a predefined
function.

Definition 5.15 (Combination function for output matchmap). Given the matchmap
mm:
mm : mnpf1,mnpf2, · · · ,mnpfm,mpf1,mpf2, · · ·mpfn
and the all-embracing actmap am: apf1, apf2, · · · , apfn, a1, a2, · · · , ap
the corresponding output matchmap omm has the format:
omm : (onpf1, onpf2, · · · , onpfm, opf1, opf2, · · · opfn)
In which:
mnpfi: non-packet-internal field i of the matchmap, e. g., ingress port of the packet,
metadata and pipeline fields in OpenFlow SDN
mpfi: packet-internal field i of the matchmap, which is a header field in a packet or a
pattern of the payload data, e. g., Ethernet source address, IPv4 destination address
apfi: packet-internal field i of the actmap
ai: name of action i, which is other than modifying packet-internal fields
onpfi: output of the non-packet-internal field i
opfi: output of the packet-internal field i
We define the combination function fmat_act to obtain the output matchmap omm

from the matchmap mm and the actmap am, i. e., omm = fmat_act(mm, am), as
follows:

• the non-packet-internal fields of omm have the same value as those of mm, i. e.,
onpfi = mnpfi, i ∈ {1..m}.

• if the packet-internal field of the actmap am is other than -1 (-1 in the actmap means
no change), then the corresponding packet-internal field of omm has the same value
as that of the actmap, i. e., opfi = apfi if apfi ̸= −1

• if the packet-internal field of the actmap am is -1, then the corresponding packet-
internal field of omm has the same value as that of the matchmap mm, i. e., opfi =
mpfi if apfi = −1

• A “compact” actmap instead of the all-embracing actmap can be used. In this case,
the “compact” actmap is first converted to the “all-embracing” one by inserting the
value -1 (no change) to the positions corresponding to the unspecified packet-internal
fields of the “compact” actmap compared to the “all-embracing” one. The combining
steps above can then be applied to calculate the output matchmap.

136 5 Conflict Detection

Example:

rule match m: in_port = 3, ether_type = 0x0800, ipv4_src = 192.168.1.1, ipv4_dst = 192.168.2.2, ip_proto =
↪→ 6, tcp_dst = 80

rule action a: change ipv4_dst to 192.168.4.4, change tcp_dst to 8080, send packet out of ports 2 and 3

matchmap template mmt:in_port, eth_src, eth_dst, eth_type, ipv4_src, ipv4_dst,
ip_proto, tcp_src, tcp_dst
actmap template amt: eth_src, eth_dst, eth_type, ipv4_src, ipv4_dst, ip_proto, tcp_src,
tcp_dst, outport list
By mapping the rule match m and action a to the matchmap and actmap template
mmt and amt, we have:

rule matchmap mm: 3, -1, -1, 0x0800, 192.168.1.1, 192.168.2.2, 6, -1, 80
rule actmap am: -1, -1, -1, -1, 192.168.4.4, -1, -1, 8080, [2, 3]

The output matchmap omm obtained by combining the matchmap mm and actmap
am, omm = fmat_act(mm, am), is:

output matchmap omm: 3, -1, -1, 0x0800, 192.168.1.1, 192.168.4.4, 6, -1, 8080

In addition, the following terms are frequently used in bulding the rule graph for
detecting distributed conflicts.

Definition 5.16 (Output match space). The output match space of a rule is a multi-
property set yielded from the output matchmap of that rule.

Definition 5.17 (Output packet-internal match space). The output packet-internal
match space of a rule is a multi-property set containing only the packet-internal fields of
the output matchmap of that rule. Its corresponding matchmap, named output packet-
internal matchmap, is formed from the output matchmap of that rule by assigning
all of its non-packet-internal fields the value -1 while leaving its packet-internal fields
unchanged. The value of -1 in the matchmap indicates an any value.

In comparing the match components of rules in different devices, it does not make
sense to compare their non-packet-internal fields, e. g., ingress port, only their packet-
internal fields matter.

Definition 5.18 (Common match space). A common match space of rule r1 in device
1 and rule r2 in device 2, where r1’s action is to forward its matched traffic to device
2, is the intersection of the two match spaces, the first corresponds to the output packet-
internal matchmap (Definition 5.17) of r1, the second corresponds to the packet-internal
matchmap (Definition 5.10) of r2. This common match space is therefore associated
with the intersection of the two mentioned matchmaps and the intersection is named
common matchmap. This definition also applies in case r1 and r2 are in two rule tables
of a device if that device contains multiple rule tables.

5.3 Rule database and topology encoding 137

5.3 Rule database and topology encoding
The rule database and the topology encoding are crucial for the conflict detection.
The rule database, mentioned in our subsequent algorithms as the variable RDB, is
maintained to be consistent with rules in the data plane so that the conflict detection
can rely on to provide precise results. A rule in a rule table of an SDN device is
stored in the rule database by the tuple (device ID, table ID, rule ID), in which

• device ID is the identifier of the SDN device, e. g., the datapath ID in OpenFlow
SDN,

• each SDN device can hold multiple rule tables, leading to the use of the table ID
corresponding to the ordinal number of the table holding the rule under consider-
ation,

• each rule is numbered uniquely when it is added to the rule database, this number
is used as the ID for that rule.

The tuple (device ID, table ID, rule ID) identifies a rule in the whole data plane’s rule
set. Each rule is maintained in the database with its matchmap, actmap based on the
chosen matchmap and actmap templates, and a list of next hops that can be inferred
from the topology information. In essence, an entry in the rule database contains
the following information:
(device ID, table ID, rule ID, priority, matchmap, actmap, list of next hops, original
rule encoding in the data plane)
The original rule encoding in the data plane is useful in determining the rule in the
device if it needs to be manipulated, e. g., for resolving conflicts, or in case more
information is required for certain purposes. The rule encoding in OpenFlow SDN
version 1.3 [79] contains: cookie, cookie mask, idle timeout, hard timeout, priority,
match, actions, which is employed for illustration of the original rule in the rule
database.

A rule can be installed by control applications or by an administrator, and removed
also by these actors besides the rule timeout. Interestingly, the installation of a new
rule may trigger the removal of an existing one depending on the implementation of
SDN devices. For instance, OpenFlow switch based on Open vSwitch (version 2.6.2)
lets a new rule overwrite an existing one if they both have the same match fields
and priority i. e., these rules expose either a redundant or a correlation local conflict
(cf. Chapter 4.1), consequently, the existing rule gets removed. The rule database
needs to be updated in the presence of these events. Besides the rule database, the
conflict database (for local, distributed and hidden conflicts) may need to be updated
due to the introduction or removal of a rule as new conflicts can arise or some existing
conflicts can be purged.

The network topology information, referred to in our algorithms as the variable
TOPO, can be maintained automatically by the topology discovery service, which is
generally a basic function in SDN. The manual maintenance is also possible but could

138 5 Conflict Detection

require much effort and lead to high delay in detecting conflicts in case of incidents
causing topology changing, e. g., a device or a link is down. There are also different
ways to encode the topology, we opt for the directed multi-graph (also called Multi-
digraph in literature) in our prototype (see Chapter 6.1) that allows the encoding of
topology with multiple parallel connections between a pair of devices. Each vertex in
this graph corresponds to an SDN device with its ID, an edge represents the physical
link between two devices, the port through which a link is connected to a device
is maintained as the edge’s attribute. In addition, the ARPcache control application
(see Chapter 3.5.2), which caches the MAC and IPv4 address mapping of end-points
and their connections to SDN device, can be used to infer the device and its port
that an end-point connects to.

5.4 Rule graph
We can conclude the existence of anomalies, and thus conflicts, based on the obser-
vation of how a certain packet being handled in the network and which rules being
involved. The rules that together handle the same traffic flow are said to be con-
nected. In this section, we first show how to establish connections between rules in
two directly connected SDN devices or in two rule tables. We apply this approach
recursively in building a rule graph, which enables the reasoning about conflicts pre-
sented in subsequent sections.

5.4.1 Establishing connections between rules
Definition 5.19 (Connection of rules). Two rules in two directly connected devices are
said to have a connection if there exists a packet that is matched by both of them, i. e.,
that packet is matched by the rule in the first device, possibly being transformed and
then sent out to the second device, and is matched by the other rule there. This also
applies for two rules in two rule tables of the same device. The connection is directed
and the direction is from the first rule to the second one.

Apparently, after being processed by the first rule, that packet belongs to the common
match space (see Definition 5.18) of these two rules. Moreover, it is important to note
that if they reside in different devices and the ingress port is specified in the second
rule, this port must correspond to the output port stated in the first rule’s action
according to the network topology in concern, in other words, there needs to be a
(physical) link between two devices connecting the output port of the first rule and
the input port of the second rule.

The knowledge of the network topology is required for establishing rule connec-
tions. This knowledge can be obtained in advance and maintained by the network
operator or by using the network topology discovery service if available.

A rule in an SDN device’s rule table can become inactive if it is shadowed or
made redundant due to local conflicts with other rules in that same rule table. By

5.4 Rule graph 139

conducting local conflict detection (which does not require the use of the rule graph,
see Section 5.5), we are able to ascertain if a rule is active. We examine only the
connections between active rules as they are involved in the traffic forwarding process
which can cause distributed conflicts.

Definition 5.20 (Active and inactive rule). A rule is said to be active if it is not
shadowed or made redundant due to local conflicts with other rules in the same rule
table. It is an inactive rule otherwise.

S3S1

2

3 12

3

1

4

r11
r12
...
r1m

r31
r32
...
r3p

Rule table 0 Rule table 0

S2

1 2

3
r21
r22
...
r2n

Rule table 0

Figure 57: A network part containing three switches
S1, S2 and S3. The numbers around a switch indicate
the ports from which it connects to other switches
or end-points.

Consider a network part containing
three SDN devices, being switches S1,
S2 and S3 shown in Figure 57, each
has only one rule table, named Ta-
ble 0, in which its rules reside, S1
has m rules: r11, r12 · · · r1m, S2 has
n rules: r21, r22 · · · r1n, S3 has p

rules: r31, r32 · · · r3p, each rule has its
matchmap and actmap as elaborated in
Sections 5.2.1 and 5.2.2. Assume that r11
is an active rule and its action is to for-
ward matched traffic out of port 2 of
switch S1, which is connected to port 3
of of switch S2, in establishing the con-
nections between r11 and rules in switch S2, the following aspects need to be taken
into account.

• The matched traffic of r11 can be transformed by its action. Using the combination
function for output matchmap in Definition 5.15, we can obtain the output matchmap
omm (see Definition 5.14) of r11 that corresponds to the match space containing
all transformed traffic originally matched by r11’s match component.

• If rule r21 in switch S2 handles a packet passed by r11, then the following propo-
sitions hold:

– r21 is an active rule (see Definition 5.20).
– r11 and r21 can have different packet-internal match spaces (see Definition 5.6)

due to r11’s action modifying the matched packets. Moreover, they can be in-
stalled by different control applications.

– The packet-internal match space of r21 overlaps with the output packet-internal
match space (see Definition 5.17) of r11, i. e., their relationship is either equal,
proper subset, proper superset, or intersecting. This is evident as there exists a
packet matched by both r11 and r21.

– If r21 specifies the ingress port match field, that port must correspond to the port
from which switch S2 connects to the output port stated in the r11’s action. In

140 5 Conflict Detection

this case, as we assume that the output port of r11 is 2, the ingress port of that
rule must be 3 according to the topology in Figure 57.

• Different packets handled by r11 can be matched by different rules in switch S2.
According to our definition of rule connection (Definition 5.19), this means there
can be multiple connections between r11 and rules in switch S2. An exemplary
case is that the output packet-internal match space (Definition 5.17) of r11 is a
proper superset of the packet-internal match space (Definition 5.6) of r21, rule r21
generalizes rule r22 according to the generalization local conflict pattern, i. e., r22
has higher priority but its match space is a proper subset of r21’s and their actions
are different. In this case:

– a packet belonging to the match space of r22 will be handled by this rule as it
has higher priority than r21, this packet belongs to the common match space
(Definition 5.18) of r11 and r22, say pfmm11_22 (pfmm: packet-internal field
matchmap).

– a packet belonging to the match space of r21 but not r22’s will be handled by r21,
this packet belongs to the common match space of r11 and r21, say pfmm11_21.

We notice in this case that pfmm11_22 is a proper subset of pfmm11_21, a packet
belonging to pfmm11_22 thus also belongs to pfmm11_21, here the priority of r21
and r22 decides which rule is chosen to match that packet.
In general, if the output packet-internal match space (see Definition 5.17) of r11
overlaps with both packet-internal match spaces (Definition 5.6) of the active rules
r21 and r22, it can lead to the case where different packets handled by r11 can be
matched by different rules in switch S2 and this can be generalized for more than
two rules in the next hop device, here being switch S2.
Exceptional case: There are also exceptions happening in case the common match
space (Definition 5.18) of r11 with a rule in S2 is a subset of that of r11 with another
rule in S2, and the latter rule has higher priority, then all packets matched by r11
will be handled only by the latter rule, this case is illustrated in Figure 58. It appears
more complicated when more rules get involved, yet, the rule priority is again the
decisive factor in this case.
It is clear which rule in switch S2 will handle a packet matched by r11 if the
match spaces of r21 and r22 are disjoint. We discuss further the case in which
the match spaces of r21 and r22 are not disjoint, which means these two rules
expose some kind of local conflicts (see Chapter 4.1). As we assume that both rules
are active, the local conflicts of classes redundancy and shadowing are excluded
between them. Which rule will match a packet belonging to the match space
of these two rules, depending on which class of local conflicts they expose and
possibly the implementation of the data plane.

5.4 Rule graph 141

– If r21 and r22 have different priority, the packet is matched against the higher
priority one.

– If the actions of r21 and r22 are the same, these two rules expose the local conflict
of overlap class whose consequence is benign.

– If they have equal priority and intersecting match spaces, i. e., they expose a cor-
relation local conflict, it may depend on the SDN technology and the implemen-
tation of the data plane to decide which rule dominates, for example, OpenFlow
Switch 1.5.1 [78] leaves it undefined and different network vendors may imple-
ment the SDN device’s behaviour differently, e. g., the newer rule dominates. We
notice that this case is critical and recommend the local conflict of this kind to
be resolved immediately so that the network behaviour is deterministic, as the
network devices can come from different vendors and the network behaviour in
this case can become inconsistent.

• If the action of rule r11 is to forward its matched traffic out of ports 2 and 3, then
besides checking the above points in switch S2, we have to repeat that also in switch
S3 as r11 has two next hop devices, being switches S2 and S3 in this case according
to the topology in Figure 57.

• In case each switch has multiple rule tables, the above points also apply. A rule
table can be considered as the next hop of a certain active rule if its action is to
submit the matched packets to that table.

In the next section, we show the procedure of building a rule graph to reason about
conflicts based on establishing the connection of each rule pair while taking into
consideration the above discussed points.

5.4.2 Building the rule graph

r11 r21

r22

Figure 58: Exceptional case: common match space of
r11 and r21 is a subset of that of r11 and r22 . r21
and r22 are both active rules, the latter rule has
higher priority.

A packet can traverse different devices
in the data plane and be handled by a
sequence of rules in these devices. Ac-
cording to our definition of the connec-
tion between two rules (Definition 5.19),
each pair of adjacent rules in this rule se-
quence are connected. It can be seen as
if this rule sequence grows from the se-
quence containing only the first rule by
repeatedly searching for the connected
rule of the last rule in the sequence and
concatenating it there.

A rule graph can be built based on the connections of rules. The main idea in
reasoning on conflicts from the rule graph is to encode in that graph all possible
paths, being a sequence of rules, that various slices of traffic can take once they

142 5 Conflict Detection

enter the network, then point out the questionable paths according to the defined
properties of distributed conflicts. Further analysis of this set of paths to confirm
the presence of distributed conflicts may be carried out if necessary. For example, if
there exists a path containing a loop manifested by the repeated occurrence of the
same rule in it, we can conclude with high certainty a conflict case. We encode the
information about paths as edge attributes throughout the process of building the
rule graph. A path grows together with the growth of a corresponding rule sequence
when connections between rules are formed.

Figure 59 illustrates the edge attributes in a simple rule graph. For simplicity, we
denote a rule as rxy where x represents the device ID and y the rule ID in Table 0 of
that device, we assume that there is only a rule table, named Table 0, in each device
(with this assumption, the full form of rule rxy would be (x, 0, y)). In this graph,
rule r11 connects to rules r21 and r22, a packet matched by r11 will then be handled
by either r21 or r22, depending on the match space and the priority of r21 and r22
as elaborated in Section 5.4.1. An edge from r11 to r21 is added to the rule graph
with the attribute including (path = (r11, r21), matchmap = matchmap11_21, priority
= priority of r21), in which matchmap11_21 is formed by the intersection between
the output packet-internal matchmap of r11 and the packet-internal matchmap of
r21 (see Definition 5.17). Apparently, if there exists a packet handled by both r11
and r21, that packet will belong to the match space represented by matchmap11_21.
Likewise, another edge from r11 to r22 is formed with the attribute (path = (r11, r22),
matchmap = matchmap11_22, priority = priority of r22), in which matchmap11_22 is
the intersection between the output packet-internal matchmap of r11 and the packet-
internal matchmap of r22; a packet processed by both r11 and r22 will belong to the
match space matchmap11_22. Further edges from r21 to r41, r22 to r31, and r31 to
r41 are added to the rule graph. The matchmap associated with a path is calculated
cumulatively from all rules in that path. For instance, in the edge from r21 to r41,
matchmap11_21_41 of the path containing three rules r11, r21 and r41 is calculated
as follows:

• matchmap11_21 = intersection between the output packet-internal matchmap of
r11 and the packet-internal matchmap of r21 (matchmap11_21 is also thematchmap
of the edge from r11 to r21)

• omm11_21 = output matchmap obtained by combining matchmap11_21 with r21’s
action (see Definition 5.15)

• matchmap11_21_41 = intersection between omm11_21 and the packet-internal
matchmap of r41

A packet processed by the three rules r11, r21 and r41 will belong to the match space
matchmap11_21_41 after being handled by r21. This example shows the role of the
matchmap in the attribute of an edge: it is necessary in growing a path. If omm11_21
does not intersect with the packet-internal matchmap of r41, the path containing r11,

5.4 Rule graph 143

r21 and r41 will not exist. However, the edge from r21 to r41 can still be present if the
output packet-internal machmap of r21 overlaps with the packet-internal matchmap
of r41. By encoding the edge attribute in this manner, we can observe the following
benefits:

• Once a path exhibits a problem, e. g., the same rule occurs twice within it which
indicates a traffic loop, we can conclude the presence of anomalies and all the
involved rules.

• Given a packet and its entrance point in the rule graph, we can infer its path in the
network based on the matchmap and priority of the edges in the rule graph, and
thus determine its fate (e. g., being dropped, stuck in a loop, delivered successfully
to an end-point) without having to perform the matching of the packet against
each individual rules in various network devices.

The priority in the edge attribute is required for the cases mentioned in Section 5.4.1.
For instance, a packet matched by r11 can then be processed by either r21 or r22,

• if that packet belongs only to matchmap11_21 and not matchmap11_22 or vice
versa, it is clear which rule will take over it,

• if it belongs to the intersection between matchmap11_21 and matchmap11_22 in
case these two matchmaps overlap, the priority in the edge attribute will decide. If
these two edges from r11 to r21 and r22 have the same priority, then the implemen-
tation policy in the (virtual) hardware will decide, e. g., the newer rule dominates.

r11

r21

r22

r31

r41

path = (r11 , r21)
matchmap = matchmap 11_21
priority = priority of r 21

path = (r 11 , r 22)
matchmap = matchmap 11_22
priority = priority of r 22

path = (r11, r21, r41)
matchmap = matchmap 11_21_41
priority = priority of r 41

path = (r11, r22 , r 31)
matchmap = matchmap11_22_31
priority = priority of r31

path = (r11, r22 , r31, r41)
matchmap = matchmap 11_22_31_41
priority = priority of r41

Figure 59: Illustration of edge attributes in a simple rule graph

For simplicity, we illustrate only a tuple (path, matchmap, priority) for the attribute
of each edge in the rule graph in Figure 59. In fact, an edge’s attribute contains a
list of such tuples. More details are presented in the next section concerning the
introduction of a new rule in the rule graph.

144 5 Conflict Detection

Unlike the network topology expressed as a directed multi-graph to allow multiple
parallel edges between a pair of vertices, the rule graph is encoded by a directed graph,
thus, there is only a single directed edge between a pair of vertices. For reasoning
about conflicts, it makes no sense to have multiple directed connections between the
same two rules in a rule graph.

We present in the following the two basic actions in building the rule graph, in-
cluding i) adding a new rule to and ii) removing an existing rule from the rule graph,
and provide a stepwise example for their illustration.

Introduction of a new rule

r11

r21

r22

r31
r41

r51

Figure 60: A scenario of adding the new rule r51 to
the existing rule graph (in Figure 59), in which there
exist connections from r22 to r51 and from r51 to
r31

The central principle in adding the new
ruleNR into the rule graph is that, ifNR

is an active rule (i. e., it is not shadowed
or made redundant by another rule) and
is not yet in the rule graph, it will become
a new vertex there, then all edges whose
attributes are impacted by the introduc-
tion of NR must have their attributes up-
dated. These edges include:

• the new edges from some existing rules to NR and from NR to the existing rules
if there exist connections between NR and these rules, these are the edges from
r22 to r51 and from r51 to r31 in the scenario depicted in Figure 60 (as mentioned
above, rxy represents the rule number y in table 0 of device x and its full form in
the rule graph is (x, 0, y)),

• the existing edges if there exist packets handled by the new rule and flowing along
the paths containing these edges. The edge from r31 to r41 in Figure 60 is a
candidate one as there can be packets flowing on the new path containing this
edge, being (r11, r22, r51, r31, r41), besides the existing one (r11, r22, r31, r41). The
attribute of this edge would then be the tuple list
[(path = (r11, r22, r31, r41), matchmap = matchmap11_22_31_41, priority = priority of r41),
(path = (r11, r22, r51, r31, r41), matchmap = matchmap11_22_51_31_41, priority = priority of
r41)].

To simplify the first illustration of the rule graph, we leave out some details in Fig-
ures 59 and 60, for example, only one tuple in the tuple list of each edge’s attribute
is sketched. In fact, the attribute of an edge, being a list of tuples, contains at least
a “minimal” tuple whose path is composed of two vertices making that edge (except
for that edge ending at a vertex representing a loop or a drop action). Obviously,
the minimal tuple has the most general matchmap compared to other tuples in the
same edge, i. e., its matchmap is equal to or a superset of other tuples’ matchmap.
This minimal tuple is always present in the edge’s attribute and has the benefit in

5.4 Rule graph 145

growing a path or matching a packet to find its path via the rule graph: we need
to perform certain comparison related to the matchmap of edges’ tuples in these
cases, if the comparison reveals a mismatch with the minimal tuple’s matchmap, the
edge containing this tuple can be excluded without having to consider other tuples’
matchmaps of that edge.

There is no redundant tuple in the attribute of an edge. A tuple is redundant if it
has the same matchmap as other tuple and its path is a subset of or equal to the other’s.
The minimal tuple whose path consisting of only two vertices is always present in an
edge’s attribute and is not deemed redundant.

A vertex in the rule graph can denote a normal rule represented by the tuple
(device ID, table ID, rule ID), an end-point by the tuple (0, end-point’s IP), a drop
action in the form of (device ID, table ID, -1) or a loop as (device ID, table ID, -4). In
our prototypical implementation, we use additionally the tuple (device ID, table ID,
-2) to embody the drop action due to an invalid (non-existent) output port, and the
tuple (device ID, table ID, -3) for a rule without connected rules in its next hop, these
cases are mainly related to a bug rather than a conflict and thus are not mentioned
further. A path is a sequence of vertices, each corresponds to a rule, except for the
last one which can be of any vertex type, i. e., rule, end-point, drop action or loop.

For ease of reference, we illustrate the content of the common variables used in
our algorithms in Figure 62.

Algorithm 1 presents the steps conducted to update the rule graph when a new rule
NR is added to rule table T of device D. Each rule corresponds to a vertex in the
rule graph and is represented by the tuple (device ID, table ID, rule ID) similar to how
it is held in the rule database RDB. For each table T_ of device D_, we maintain
a list of rules forwarding the matched traffic to that table. The variable holding this
list of rules is named LR2DT (a mapping of lists of rules to devices’ tables) and the
rules sending traffic to table T_ of device D_ is accessed by LR2DT [D_][T_] (the
pseudo-code’s style follows that of the python programming language, in this case,
LR2DT is similar to a dictionary data structure in python). When a new rule is
added to the rule database RDB, based on its actions and the topology encoding
TOPO, its next hops are extracted and the mapping LR2DT is updated with this
information. We notice that the next hops of a rule can be i) tables in the same
device, ii) other devices (i. e., table 0 of other devices), iii) end-points, iv) controller,
or v) a drop action; the mapping LR2DT is updated in the first and second cases.

For the introduction of the new rule (D,T,NR), the following cases are consid-
ered in Algorithm 1.

• If there is no rule sending traffic to table T of device D, then (D,T,NR) will be
a new vertex without any vertex connecting to it. However, this new vertex can
connect to other existing vertices (lines 1–4), this is checked and the rule graph
is updated via the invocation of the function ADD_RULE_TO_RULE_GRAPH. The

146 5 Conflict Detection

same situation occurs if there are rules sending traffic to table T of device D, but
these rules do not connect to NR (lines 52–56).

• If there exists a rule (DR, TR, R) connecting to (D,T,NR):

– in case there is no rule connecting to (DR, TR, R), we create a new edge between
these two rules and let the path containing them grow through the new vertex
(D,T,NR) (lines 19–25),

– otherwise, (DR, TR, R) is the ending point of an edge, we let the paths of this
edge grow through the new vertex (D,T,NR) (lines 26–49).

The function ADD_RULE_TO_RULE_GRAPH determines and updates the attributes
of the edges influenced by the new rule (D,T,NR) by calling itself recursively until
one of the following conditions holds.

• The next hop of the currently considered rule is empty, i. e., its action is to drop
the matched traffic (lines 59–64).

• The next hop of the currently considered rule is an end-point (lines 65–74).
• The loop occurs (lines 103–113). In this case, a rule appears twice in some path.
• The currently considered rule has no connection with any rule in the next hop

(lines 122–124).

During the rule graph building process, the attribute of an edge can be updated
multiple times by appending new tuples to the tuple list, as long as each tuple is
unique in this list (lines 114, 117). As mentioned above, a tuple is added to the tuple
list of an edge if it is not redundant in that list. Moreover, any existing tuple being
made redundant by the appearance of the new tuple must be removed.
Exceptional case: In this algorithm, we do not directly exclude the exceptional

case discussed in Section 5.4.1 in which the common match space (Definition 5.18)
of certain rules, say rules r1 and r2 is a subset of that of r1 and r3, where r2 and
r3 reside in the same next hop of r1 and r3 has higher priority than r2. It becomes
more complicated when the case occurs on more than two rules in the next hop. Our
approach to reduce the complexity in this comparison is to let all possible connections
between active rules be built, the trade-off while reasoning about distributed conflicts
is that we have to verify the paths containing signs of conflicts to make sure all edges
(corresponding to the rule connections) in each of these paths are valid. More details
are provided in Section 5.4.3.

This algorithm examines the case of adding a single rule to the rule graph. It is
common in practice that a set of new rules are deployed in the data plane almost
concurrently, meaning that multiple new rules might be added to the rule graph
simultaneously. An optimization for this algorithm is conceivable by determining
the connections between these new rules in advance, then adding them to the rule
graph as new edges without updating their attributes immediately but applying the
algorithm only to those new rules which have no connection from other new rules.

5.4 Rule graph 147

This tactic helps reduce the number of rounds expended on updating the new edges’
attributes compared to the effort spent on adding each single rule separately to the
rule graph.

Removal of an existing rule

r11

r21

r22

r31
r41

r51

r11

r21

r31
r41

r51

Before removing r22

After removing r22

Figure 61: A scenario of removing the rule r22 from
the existing rule graph, the dashed edges represent
those whose attributes might need to be updated

When a rule is removed, all paths con-
taining it need to be removed and there-
fore the influenced edges’ attributes hold-
ing these paths need to be updated.
These influenced edges belong to a sub-
graph of the original rule graph, being
a Directed Acyclic Graph (DAG) having
the vertex associated with the removed
rules as its single source. Moreover, all
edges ending at or starting from the re-
moved rule are also deleted from the rule
graph. The removal of an edge does not
lead to the removal of its vertices, i. e.,
the two vertices making that edge are still
kept in the rule graph. On the contrary,
the removal of a vertex has the consequence of all edges containing it also being re-
moved. Figure 61 illustrates the removal of rule r22 from the existing rule graph, all
edges containing r22 are removed and those belonging to the DAG having the single
source as r22 must have their attributes updated if their paths containing r22. A ques-
tion may emerge: why are the two edges (r51, r31) and (r31, r41) not removed as a
consequence of the removal of r22, there seems to be no more traffic flowing through
these edges? In fact, such traffic can still be generated if there exist end-points con-
necting to the device with ID 5 and its traffic is matched by r51. The controller can
only detect the presence of SDN devices but not end-points, thus not all end-points
are present in the rule graph until they send traffic into the network and can then be
discovered by the controller.

Algorithm 2 shows the process of updating the rule graph when rule RR is re-
moved from table T of device D. All influenced edges have their attributes updated
via the recursive invocation of the function REMOVE_RULE_FROM_RULE_GRAPH.
This function terminates upon one of the following conditions.

• The attribute of an edge has no tuple whose path containing the vertex (D,T,RR).
In this case, the variable COUNT is still equal to 0 after that edge was examined
(line 25).

• There is no more edge in the currently considered subgraph to examine (lines 14–
16). This applies also in case vertex V (in line 14) represents a loop, a drop action
or an end-point.

148 5 Conflict Detection

Entry 1: (
 device ID = 1, table ID = 0, rule ID = 1, priority = 2,
 matchmap = (-1, 192.168.1.5, 6, -1, 80),
 actmap = (-1,-1,-1,-1,[1,2]),
 list of next hops = [(2,0),(3,0)],
 original rule = (cookie = 0x01, cookie_mask = 0x00,
 idle_timeout = 1800, hard_timeout = 0, priority = 2,
 match=(ip_dst=192.168.1.5, ip proto = 6, tcp_dstport =80)
 actions=(output port: 1, 2)))
...
Entry n: (D, T, R, priority, matchmap,
 actmap, list of next hop, original rule encoding)

Vertices:
 V1 : (device ID = 1, table ID = 0, rule ID = 1)
 V 2 : (1,0,2)
 ...
 Vn : (D, T, R)

Edges:
 E 1 : ((device ID = 1, table ID = 0, rule ID = 1)
 (device ID = 2, table ID = 0, rule ID = 2)),
 E1's attribute: [(path1=((5,0,2),(3,0,4),(1,0,1),(2,0,2)),
 matchmap1 = (-1, 192.168.1.5, 6, -1, 80), priority1 = 3),
 (path2, matchmap2, priority2)]
 ...
 E n : ((D, T, R),(D', T', R')),
 En's attribute = [(path1, matchmap1, priority1), ...]

(device ID = 1, table ID = 0),
 rule list = [rule 1=(device ID=2, table ID=0, rule ID=3),
 rule 2 = (2,0,5), rule 3 = (4,0,2)]
(2,0), rule list = [(1,0,1), (1,0,3), (4,0,1)]
...
(D,T), rule list = [(D',T',R'), (D'',T'',R'')]

(device ID = 1, table ID = 0, rule ID = 1),
 list of con�icting rules = [
 (rule ID = 2, class = shadowing, pattern=(1,2,1)),
 (3, redundancy, (1,2,0)), (4, generalization, (1,3,1))]
...
(D, T, R), list of con�icting rules = [
 (R', con�ict class, con�ict pattern))]

Vertices:
 V 1 : device ID = 1
 V 2 : 2
 ...
 V n : D

Edges:
 E12 : (device ID = 1, device ID = 2)
 E12's attribute: (src port = 3, dst port = 4)
 E21 : (2, 1)
 E21's attribute: (src port = 4, dst port = 3)
 ...
 En : (D,D'), attribute = (src port, dst port)

RDB

(Rule database)

(Rule graph)
RG

LR2DT

(List of rules sending matched
 tra�c to a rule table of a device)

LCDB

(Local con�ict database)

topo
(topology)

Figure 62: Illustration of the common variables' content used in the algorithms. Each rule is identified by the tuple
(device ID, table ID, rule ID) and its information can be retrieved from the rule database.

5.4 Rule graph 149

Algorithm 1 Pseudo-code for updating the rule graph RG when adding a new rule
identified by the tuple (D,T,NR)

Input: The tuple (D,T,NR) identifying the new rule in the rule database RDB .D, T,NR are the ID of the
device, the table and the new rule
Effect (Output): The rule graph RG is updated
Global variables: The existing rule graph RG, the rule database RDB, the network topology TOPO, the variable
LR2DT containing the mapping between devices’ tables and rules sending traffic to them, the local conflict database
LCDB (cf. Section 5.5)
Note: More details on the variables are illustrated in Figure 62

1: if LR2DT [D][T] is empty then .LR2DT [D][T] is the list of rules sending traffic to Table T of Device D
2: for NH in the list of next hops of rule (D,T,NR) do .Retrieved from the rule database RDB, NH can be

i) a subsequent rule table, identified by (device ID, table ID), ii) a device (device ID, 0), i. e., table 0 of that device, iii)
an end-point, or iv) a drop action

3: ADD_RULE_TO_RULE_GRAPH(D,T,NR,NH , matchmap of rule (D,T,NR), ((D,T,NR)))

.the last variable of this function is a path, in this case contains only a single vertex, being (D,T,NR)

4: end for
5: else
6: CR = 0 .to count the number of rules connected to rule (D,T,NR)

7: for Rule (DR, TR, R) in LR2DT [D][T] do .Rule (DR, TR, R) sends traffic to Table T of Device D
8: if (DR, TR, R) is an active rule then .see Definition 5.20, a rule can be determined as active or inactive

based on the local conflict database LCDB defined in Section 5.5
9: if the output port of rule (DR, TR, R) does not correspond to the ingress port of rule (D,T,NR)

according to TOPO then .i. e., the tuple (output port of rule (DR, TR, R), ingress port of rule (D,T,NR)) is
not equal to the tuple (src port, dst port) in the attribute of the edge (DR, D) in TOPO

10: continue .ignore rule (DR, TR, R) and check the next rule
11: end if
12: OMM = fmat_act(matchmap of rule (DR, TR, R), actmap of rule (DR, TR, R)) .Combine the

matchmap and actmap of rule (DR, TR, R) to obtain its output matchmap OMM , see Definitions 5.14 and 5.15
13: Re = (packet-internal match of OMM) .r (packet-internal match of rule (D,T,NR) .see

Section 5.1.2 and Definition 5.6
14: if Re == 0 then .0 means a “disjoint” relationship
15: continue .ignore rule (DR, TR, R) and check the next rule
16: end if
17: IMM = (packet-internal match of OMM) ∩ (packet-internal match of rule (D,T,NR)) .see

Theorem 5.2
18: CR = CR+1 .increase the number of rules connected to rule (D,T,NR) by 1
19: Add vertex (D,T,NR) to the rule graph RG

20: Add edge E from vertex (DR, TR, R) to vertex (D,T,NR) to the rule graph RG

21: Update the attribute of E with the tuple (path = ((DR, TR, R), (D,T,NR)), matchmap = IMM ,
priority = NR’s priority) .the attribute of E is a list of tuple, the added tuple in this case becomes the first one in this
list

22: if indegree of vertex (DR, TR, R) == 0 then .There is no rule connected to rule (DR, TR, R) in the
rule graph RG

23: for NH in the list of next hops of rule (D,T,NR) do
24: ADD_RULE_TO_RULE_GRAPH(D,T,NR,NH, IMM, ((DR, TR, R), (D,T,NR)))

25: end for
26: else
27: CP = 0 .to count the number of paths that have connection to rule (D,T,NR)

28: Extract from the rule graph RG the list of edges LIER ending at vertex (DR, TR, R) .by
e. g., looping through all edges of RG and storing the ones satisfying the mentioned condition in LIER (LIER: List
of IN_EDGES of rule (DR, TR, R))

29: for IER in LIER do .IER: IN_EDGE of rule (DR, TR, R)

30: for Tuple T in list of tuples of IER do .the attribute of an edge is a list of tuples, each tuple
consists of a path, a matchmap associated with that path and a priority

31: ReP = (packet-internal match of path P ’s matchmap) .r (packet-internal match of rule
(D,T,NR)) .relationship of the two multi-property sets, see Section 5.1.2

150 5 Conflict Detection

32: if path P of T contains only 2 vertices and the matchmap in T is the same as that of some
other tuple of IER OR P represents a loop OR ReP == 0 then .A path containing a loop is identified by the last
rule following the pattern (device ID, table ID, -4), ReP == 0 indicates that the two sets are disjoint

33: continue .ignore tuple T and check the next one
34: end if
35: IMMP = (packet-internal match of path P ’s matchmap) ∩ (packet-internal match of rule

(D,T,NR)) .Intersection of the two multi-property sets, see Theorem 5.2
36: CP = CP+1 .increase the number of paths connecting to rule (D,T,NR)

37: Create a new path NP by appending the vertex (D,T,NR) to Path P

38: Update the attribute of edge E from vertex (DR, TR, R) to vertex (D,T,NR) with the
tuple (path = NP , matchmap = IMMP , priority = NR’s priority)

39: for NH in the list of next hops of rule (D,T,NR) do
40: ADD_RULE_TO_RULE_GRAPH(D,T,NR,NH, IMMP , NP)

41: end for
42: end for
43: end for
44: if CP == 0 then
45: for NH in the list of next hops of rule (D,T,NR) do
46: ADD_RULE_TO_RULE_GRAPH(D,T,NR,NH, IMM, ((DR, TR, R), (D,T,NR)))

47: end for
48: end if
49: end if
50: end if
51: end for
52: if CR == 0 then .there is no rule connected to rule (D,T,NR)

53: for NH in the list of next hops of rule (D,T,NR) do
54: ADD_RULE_TO_RULE_GRAPH(D,T,NR,NH , matchmap of rule (D,T,NR), ((D,T,NR)))

55: end for
56: end if
57: end if
58: function ADD_RULE_TO_RULE_GRAPH(D,T,R,NH,MM,P)

Input: The device ID D, the table ID T , the rule ID R, the next hop NH of rule (D,T,R), the input matchmap
MM and the path P

Effect (Output): The rule graph RG is updated
Global variables: The existing rule graph RG, the rule database RDB, the network topology TOPO, the variable
LR2DT containing the mapping between devices’ tables and rules sending traffic to them, the local conflict database
LCDB (defined in Section 5.5)
Note: The input matchmap MM can be the matchmap of rule (D,T,R), or of path P containing this rule as the
last rule (also vertex) in this path. The next hop NH can be a rule table with the pattern (Device ID, Rule Table ID),
e. g., (D, 1) or (D’, 0), can be an end-point or a drop action.

59: if NH == “drop” then
60: Add vertex (D,T,−1) to the rule graph RG if it does not exist there .Vertex having the value -1 in the

position of rule ID (third element in the vertex) means dropping
61: Add edge E from vertex (D,T,R) to vertex (D,T,−1) to the rule graph RG

62: if the tuple list of edge E does not contain the tuple (path=P , matchmap=MM , priority=-1) then .priority
= -1 means “don’t care”

63: Update the attribute of E by appending to the end of its tuple list the tuple (path=P , matchmap=MM ,
priority=-1)

64: end if
65: else if NH is an end-point EP then
66: Add vertex (0, EP ′s IP address) to the rule graph RG if it does not exist there .We assume that there

is no SDN device with ID 0 and use 0 to denote an end-point, so the vertex (0, IP address)

67: Add edge E from vertex (D,T,R) to vertex (0, EP ′s IP address) to the rule graph RG

68: Append vertex (0, EP ′s IP address) to path P

69: if the tuple list of edge E does not contain the tuple (path=P , matchmap=MM , priority=-1) then .priority
= -1 means “don’t care”

70: Update the attribute of E by appending to the end of its tuple list the tuple (path=P , matchmap=MM ,
priority=-1)

71: end if

5.4 Rule graph 151

72: if the tuple list of E does not contain the “minimal” tuple (path=((D,T,R), (0, EP ′s IP address)),
matchmap = matchmap of rule (D,T,R), priority=-1) then

73: Append to the tuple list of E the “minimal” tuple (path=((D,T,R), (0, EP ′s IP address)),
matchmap = matchmap of rule (D,T,R), priority=-1)

74: end if
75: else .NH is neither a drop action nor an end-point, so it is a rule table identified by a tuple (device ID, table ID)
76: OMMR = fmat_act(matchmap of rule (D,T,R), actmap of rule (D,T,R)) .Combine the matchmap

and actmap of rule (D,T,R) to obtain its output matchmap OMMR , see Definitions 5.14 and 5.15
77: OMM = fmat_act(matchmap MM , actmap of rule (D,T,R)) .Combine the input matchmap MM

with the actmap of rule (D,T,R) to obtain the Output Matchmap OMM

78: Count = 0 .Used to count the number of rules connected by (D,T,R) in the next hop NH

79: for Rule (DNR, TNR, NR) in NH do .Next Hop NH is a rule table identified by the tuple (device ID,
table ID)

80: if (DNR, TNR, NR) is not an active rule then .see Definition 5.20, a rule can be determined as active
or inactive based on the local conflict database LCDB defined in Section 5.5

81: continue .Check the next rule in NH

82: end if
83: ReR = (packet-internal match of OMMR) .r (packet-internal match of (DNR, TNR, NR))

.Relationship of the two multi-property sets, see Section 5.1.2
84: if ReR == 0 then .The two sets are disjoint
85: continue .Check the next rule in NH

86: end if
87: if Output port of (D,T,R) does not correspond to ingress port of (DNR, TNR, NR) according to

the topology information in case these two rules reside in two devices, or they do not have the same ingress port in
case they are in two tables of the same device then .We assume the rule match contains the ingress port field, refer to
line 9 of this algorithm for more explanation

88: continue .Check the next rule
89: end if
90: Count = Count + 1 .increase the number of rules in the next hop that have connection from (D,T,R)

91: IMMR = (packet-internal match of OMMR) ∩ (packet-internal match of (DNR, TNR, NR))
.Intersection of the two multi-property sets, see Theorem 5.2

92: if if edge ((D,T,R), (DNR, TNR, NR)) is not present in RG then
93: Add edge E from vertex (D,T,R) to vertex (DNR, TNR, NR) to the rule graph RG

94: end if
95: if the tuple list of E does not contain the tuple (path = ((D,T,R), (DNR, TNR, NR)), matchmap

= IMMR , priority = priority of (DNR, TNR, NR)) then
96: Update the attribute of E by appending to its tuple list the tuple (path =

((D,T,R), (DNR, TNR, NR)), matchmap = IMMR , priority = priority of (DNR, TNR, NR))
97: end if
98: Re = (packet-internal match of OMM) .r (packet-internal match of (DNR, TNR, NR))
99: if Re == 0 then
100: continue .Check the next rule in NH

101: end if
102: IMM = (packet-internal match of OMM) ∩ (packet-internal match of (DNR, TNR, NR))
103: if Vertex (DNR, TNR, NR) belongs to Path P then .Forwarding Loop occurs
104: Append vertices (DNR, TNR, NR) and (DNR, TNR,−4) to path P .Vertex having the value

-4 in the position of rule ID denotes a loop
105: Update the attribute of edge E from vertex (D,T,R) to vertex (DNR, TNR, NR) by appending

to its tuple list the tuple (path = P , matchmap = IMM , priority = priority of (DNR, TNR, NR)) if it is not yet
in the list

106: if RG does not contain edge the edge ((DNR, TNR, NR), (DNR, TNR,−4) then
107: Add edge ((DNR, TNR, NR), (DNR, TNR,−4)), say edge LE, to RG .LE: Loop Edge
108: end if

152 5 Conflict Detection

109: if the tuple list of edge LE does not contain the tuple (path = P , matchmap = IMM , priority = -1)
then .priority = -1 means “don’t care”

110: Update the attribute of LE by appending to its tuple list the tuple (path = P , matchmap = IMM ,
priority = -1)

111: end if
112: continue .check the next rule in NH

113: end if
114: Append vertex (DNR, TNR, NR) to path P

115: if the tuple list of edge E does not contain the tuple (path = P , matchmap = IMM , priority = priority
of (DNR, TNR, NR)) then .E = ((D,T,R), (DNR, TNR, NR))

116: Update the attribute of edge E by appending to its tuple list the tuple (path = P , matchmap = IMM ,
priority = priority of (DNR, TNR, NR))

117: end if
118: for NNH in the list of next hops of (DNR, TNR, NR) do .NNH is identified by device ID and

Table ID, e. g., (D,2) or (D’,0) if NNH is other than an end-point or a drop action
119: ADD_RULE_TO_RULE_GRAPH(DNR, TNR, NR,NNH, IMM,P)
120: end for
121: end for
122: if Count == 0 then .No rule in NH matches traffic passed by rule (D,T,R)

123: Add vertex (D,T,R) to the rule graph RG

124: end if
125: end if
126: end function

A vertex representing a loop, a drop action is removed from the rule graph if there
is no vertex connected to it (lines 8, 9 and 30, 31). This helps avoid the misleading
interpretation in identifying distributed conflicts related to traffic looping or traffic
dropping.

Once a tuple whose path containing the removed rule RR is deleted (lines 19–24),
the tuple whose path is a subset of the path in the deleted tuple may need to be
added to the attribute of the currently considered edge if it is not redundant (lines
25–59). For example, if the path containing rule RR is [V1, V2, VRR, V3, V4, V5] (VRR

is the vertex corresponding to the removed rule RR), after the tuple containing this
path was removed from the edge’s attribute, the tuple containing the shorter path
[V3, V4, V5] need to be examined and may be added to that edge’ attribute.

S2

S1 S3

PC2

PC1

PC32

3

2
3

192.168.1.1

192.168.1.2

192.168.1.3

12

31

1

PC4

192.168.1.4

4

Figure 63: Topology topo3. The numbers around a
switch indicate the ports from which it connects to
other switches or end-points.

The handling of loops appears more com-
plex compared to the other cases. If a
traffic loop occurs (lines 40–45), the cur-
rently considered edge E and the next
edge pointing to the vertex representing
the loop have their attribute updated. If
the loop related to rule RR is removed
due to the removal of this rule, the edge
pointing to the loop vertex is also re-
moved (lines 28, 29).

In a broader view, besides updating
the rule graph due to the removal of an
existing rule in the data plane, other actions also need to be carried out: updating
the rule database and the conflict database. If a rule shadows or makes another rule

5.4 Rule graph 153

Algorithm 2 Pseudo-code for updating the rule graph RG when removing the rule
(D,T,RR)

Input: The tuple (D,T,RR) identifying the removed rule in the rule database RDB .D, T,RR are the ID of
the device, the table and the rule
Effect (Output): The rule graph RG is updated
Global variables: The existing rule graph RG

Note: More details on the variables are illustrated in Figure 62
1: if Vertex (D,T,RR) does not exist in RG then
2: Return
3: end if
4: for Edge E in the list of edges starting from vertex (D,T,RR) do
5: V is the vertex at which edge E ends
6: REMOVE_RULE_FROM_RULE_GRAPH((D,T,RR), V)
7: Remove edge E from the rule graph RG

8: if V represents a loop, a drop action or an end-point and its indegree is 0 then
9: Remove vertex V from the rule graph RG

10: end if
11: end for
12: Remove vertex (D,T,RR) from the rule graph RG

13: function REMOVE_RULE_FROM_RULE_GRAPH(RV, V)
Input: Vertex RV containing the rule to be removed, vertex V from which edges starting will be examined.
Effect (Output): The rule graph RG is updated
Global variables: The existing rule graph RG

14: if Outdegree of V is 0 then .there is no edge starting from V

15: return
16: end if
17: for Edge E in the list of edges starting from V do
18: COUNT = 0
19: for Tuple T in the list of tuples of edge E do .The attribute of an edge is a list of tuples
20: if Path P of tuple T contains vertex RV then .Each tuple contains a path, a matchmap and a priority
21: COUNT = COUNT + 1
22: Remove tuple T from the tuple list of edge E
23: end if
24: end for
25: if COUNT > 0 then
26: NV is the vertex in the end of edge E .NV : Next Vertex
27: if NV represents a loop then .NV has the form (device ID, table ID, -4)
28: if No tuple in the attribute of edge E contains a path bearing a loop then .such path contains the

same vertex twice in it
29: Remove edge E from the rule graph RG

30: if the indegree of vertex NV is 0 then
31: Remove vertex NV from the rule graph RG

32: end if
33: end if
34: continue .check the next edge that starts from V

35: end if
36: for Edge IE in the list of edges ending at V do .IE: in-edge
37: for Tuple IT in the list of tuples of edge IE do .IT : input tuple
38: OMM = fmat_act(matchmap in tuple IT , actmap of rule associated with vertex V) .Combine

the matchmap of tuple IT with the actmap of the rule V to obtain the output matchmap OMM , see Definitions 5.14
and 5.15

39: IMM = (packet-internal match of OMM) ∩ (packet-internal match of the matchmap of rule
NV) .Intersection of the multi-property sets, see Theorem 5.2

154 5 Conflict Detection

40: if Vertex NV belongs to path P then .Forwarding Loop occurs
41: Append vertices NV and (device ID in NV , table ID in NV , -4) to the path of tuple IT to

obtain the new path NP .Vertex having the value -4 in the position of rule ID denotes a loop
42: Update the attribute of edge E by appending to its tuple list the tuple (NP, IMM,NV ’s

priority) if it is not yet in the list
43: Update the attribute of edge from vertex NV to vertex (device ID in NV , table ID in NV ,

-4) by appending to its tuple list the tuple (NP, IMM,NV ’s priority) if it is not yet in the list
44: continue .check the next tuple of edge IE
45: end if
46: Appending vertex NV to the path of tuple IT to obtain the new path NP

47: if NV == “drop” or NV is an end-point then
48: Update the attribute ofE by appending to the end of its tuple list the tuple (NP,OMM,−1)

if the list does not contain this tuple .priority = -1 means “don’t care”
49: continue .check the next tuple of edge IE
50: end if
51: if NP is a subset of a tuple’s path in the tuple list of edge E and IMM is equal to that tuple’s

matchmap then
52: continue .The tuple (NP , IMM , priority of NV) is redundant in the attribute of edge E
53: else
54: Append the tuple (NP, IMM, priority of NV) in the tuple list of edge E
55: end if
56: end for
57: end for
58: REMOVE_RULE_FROM_RULE_GRAPH(RV,NV)
59: end if
60: end for
61: end function

redundant, its removal would lead to the introduction of this shadowed or redundant
rule in the rule graph.

Example
Consider the topology topo3 in Figure 63, the following rules are to be added to rule
table 0 of switches S1, S2 and S3 in the order that they appear, i. e., the first rule of
switch S1 is installed first, then the second rule of switch S1, and so on, the last rule
of switch S3 (rule 3) is installed last.

S1:
1. cookie=1, priority=2, match={ipv4_dst=192.168.1.2, ip_proto=6}, action={output:3}
2. cookie=2, priority=1, match={ipv4_dst=192.168.1.2, ip_proto=6, tcp_dst=80}, action={output:2}
3. cookie=2, priority=1, match={ipv4_dst=192.168.1.3, ip_proto=17}, action={output:3}

S2:
1. cookie=1, priority=1, match={ipv4_src=192.168.1.1, ipv4_dst=192.168.1.2, ip_proto=6, tcp_dst=80}, action

↪→ ={output:1}
2. cookie=2, priority=1, match={ipv4_src=192.168.1.3, ipv4_dst=192.168.1.2, ip_proto=6, tcp_dst=80}, action

↪→ ={drop}

S3:
1. cookie=1, priority=1, match={ipv4_dst=192.168.1.2}, action={output:3}
2. cookie=2, priority=2, match={ipv4_src=192.168.1.3, ipv4_dst=192.168.1.2}, action={set_field:ipv4_src

↪→ =192.168.1.1, output:3}
3. cookie=1, priority=1, match={ipv4_dst=192.168.1.3}, action={output:1}

5.4 Rule graph 155

The number in the beginning of each rule is added when it is stored in the rule
database for detecting conflicts. This number serves as the identifier of the rule in
each rule table. In our prototype (Section 6.1), the newer rule’s identifier number is
bigger than the older one’s. We use cookie to identify the rule source, i. e., the control
application installing that rule. In this case, there are two control applications, one
installs rules with cookie 1, the other with cookie 2.

Using the below matchmap template and actmap template (also simplified for the
demo purpose), we can represent rules with their matchmap and actmap once they
are stored in the rule database.
matchmap template: src IPv4, dst IPv4, IP protocol, src TCP port, dst TCP port, src UDP port, dst UDP port
actmap template: new src IPv4, new dst IPv4, new src TCP port, new dst TCP port, new src UDP port, new
dst UDP port, list of output ports

S1:
1. cookie=1, priority=2, matchmap=(-1, 192.168.1.2, 6, -1, -1, -1, -1), actmap=(-1,-1,-1,-1,-1,-1,[3]), nexthop=[3]
2. cookie=2, priority=1, matchmap=(-1, 192.168.1.2, 6, -1, 80, -1, -1), actmap=(-1,-1,-1,-1,-1,-1,[2]), nexthop

↪→ =[2]
3. cookie=2, priority=1, matchmap=(-1, 192.168.1.3, 17, -1, -1, -1, -1), actmap=(-1,-1,-1,-1,-1,-1,[3]), nexthop=[3]

S2:
1. cookie=1, priority=1, matchmap=(192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1), actmap=(-1,-1,-1,-1,-1,-1,[1]),

↪→ nexthop=[‘‘end-point:192.168.1.2’’]
2. cookie=2, priority=1, matchmap=(192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1), actmap=(-1,-1,-1,-1,-1,-1,[]),

↪→ nexthop=[‘‘drop’’]

S3:
1. cookie=1, priority=1, matchmap=(-1, 192.168.1.2, -1, -1, -1, -1, -1), actmap=(-1,-1,-1,-1,-1,-1,[3]), nexthop=[2]
2. cookie=2, priority=2, matchmap=(192.168.1.3, 192.168.1.2, -1, -1, -1, -1, -1), actmap=(192.168.1.1, -1,-1,-1,-1,-

↪→ 1,[3]), nexthop=[2]
3. cookie=1, priority=1, matchmap=(-1, 192.168.1.3, -1, -1, -1, -1, -1), actmap=(-1,-1,-1,-1,-1,-1,[1]), nexthop=[‘‘

↪→ end-point:192.168.1.3’’]

The value -1 in the matchmap indicates any value (i. e., “don’t care”), in the actmap
it means no change.

We demonstrate how the rule graph is built by applying the Algorithm 1 in in-
stalling each rule one by one, assuming that all rules are in table 0 of the respective
switch (as said, there can be multiple rule tables in an SDN device) and the local
conflict detection (cf. Section 5.5) has been carried out for the newly installed rule,
the device identifiers of switches S1, S2, S3 are 1, 2, 3 respectively. We denote a vertex
of the graph as a tuple (device ID, table ID, rule ID), a rule can also be identified by
this way in the whole rule database.

156 5 Conflict Detection

The first rule is to be installed in table 0 of switch S1, it is added to the rule database
as rule (1,0,1). At this point, there is no rule sending traffic to switch S1, the list
LR2DT [1][0] (list of rules sending traffic to table 0 of switch 1) is empty, the code
block of lines 1-4 in Algorithm 1 is executed. The next hop of rule (1,0,1) is switch 3,
the function ADD_RULE_TO_RULE_GRAPH is invoked with the parameter (1,0,1,3,
(-1, 192.168.1.2, 6, -1, -1, -1, -1),((1,0,1),)). The NH (next hop) variable of this function
is switch 3, the process proceeds from line 76 in Algorithm 1. As there is not yet any
rule in switch S3 at this time, the variable COUNT is equal to 0 (line 112), the vertex
(1,0,1) is added to the rule graph RG as the first one.

The second rule (1,0,2) is to be installed in table 0 of switch S1. However, the local
conflict detection (cf. Section 5.5) reports that it is shadowed by rule (1,0,1) and thus
is inactive (see Definition 5.20) in handling traffic. This rule is not added to the rule
graph.

The third rule (1,0,3) is added to the rule graph RG in the same manner as the first
rule (1,0,1). RG contains two disconnected vertices (1,0,1) and (1,0,3) at this point.

The list LR2DT [2][0] is empty as there is no rule sending its matched traffic to ta-
ble 0 of switch S2, the installation of the fourth rule (2,0,1) invokes the function
ADD_RULE_TO_RULE_GRAPH with the parameter (2,0,1,“end-point:192.168.1.2”,
(192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1),((2,0,1),)) (line 3 of Algorithm 1). The code
block of lines 65-74 is performed, which creates a new edge between two vertices
(2,0,1) and (0, 192.168.1.1) in the rule graph.

((2,0,1),(0,192.168.1.2)), attribute = [(path1 = ((2,0,1),(0,192.168.1.2)), matchmap1 = (192.168.1.1, 192.168.1.2, 6,
↪→ -1, 80, -1, -1), priority1 = -1)]

For the fifth rule (2,0,2), the function ADD_RULE_TO_RULE_GRAPH is called with
the parameter (2,0,2,“drop”,(192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1),((2,0,2),)) (line 3 of
Algorithm 1). The code block of lines 59-64 is executed, the new edge between two
vertices (2,0,2) and (2,0,-1) is added to the rule graph.

((2,0,2),(2,0,-1)), attribute = [(path1=((2,0,2),(2,0,-1)), matchmap1 = (192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1),
↪→ priority1 = -1)]

The sixth rule (3,0,1) is deployed, the list LR2DT [3][0] contains rules (1,0,1) and
(1,0,3), the code block between lines 6-56 is active in this case. In the first round of the
for loop of line 7, say for7_1, rule (DR, TR, R) is rule (1,0,1), OMM (line 12) is also
the matchmap of rule (1,0,1) as its action does not make changes on the matchmap.
The new rule (D,T,NR) is rule (3,0,1), all fields in the chosen matchmap template
are packet-internal fields (see Definition 5.4), IMM (line 17) is thus the intersection
between the matchmap of rule (1,0,1) and rule (3,0,1) according to the Theorem 5.2,
IMM = (-1, 192.168.1.2, 6, -1, -1, -1, -1). The relationship Re (line 14) is also the
relationship between the matchmap of rule (1,0,1) and (3,0,1), obtained by applying
the ·r operator on the two multi-property sets associated with the matchmap of these

5.4 Rule graph 157

two rules (see Theorem 5.1). All fields of rule (DR, TR, R) are equal to that of rule
(D,T,NR) except the third field of (DR, TR, R), being 6, is the subset of the third
field of (D,T,NR), being -1 (any). The relationship of their third fields r3 is encoded
as 2 (proper subset), and of other fields r1, r2, r4, r5, r6, r7 as 1 (equal). The overall
relationship of the matchmap of these two rules is
Re = r1 .r r2 .r r3 .r r4 .r r5 .r r6 .r r7 = 1.r1.r2.r1.r1.r1.r1 = 2

which means the matchmap of (DR, TR, R) is a proper subset of that of (D,T,NR)

(a more detailed example of applying the ·r operator to compute the relationship
between two matchmap is described in Section 5.2.1). The value of CR is 1 (line 18),
a new edge from vertex (1,0,1) to vertex (3,0,1) is added to the rule graph (lines 19,
20):

((1,0,1),(3,0,1)), attribute = [(path1=((1,0,1),(3,0,1)), matchmap1=(-1, 192.168.1.2, 6, -1, -1, -1, -1), priority1 = 1)
↪→]

No edge ends at vertex (1,0,1), the function ADD_RULE_TO_RULE-_GRAPH is
invoked with the parameter (3,0,1,2,(-1, 192.168.1.2, 6, -1, -1, -1, -1),((1,0,1), (3,0,1)))
(line 24). The process goes on from line 76, rule (D,T,R) in this function is rule
(3,0,1), OMMR is equal to the matchmap of rule (3,0,1) since the action of this rule
does not alter the matched traffic. OMM (line 77) is (-1, 192.168.1.2, 6, -1, -1, -1,
-1). In the first round of the for loop at line 79, say for79_1, nested within the first
round of the loop for7_1, next hop NH is switch S2, (DNR, TNR, NR) is rule (2,0,1).
ReR = 3, indicating that OMMR is a proper superset of the packet-internal match
of rule (DNR, TNR, NR) (line 83). Rule (DNR, TNR, NR) accepts packets from any
ingress port (it does not specify the ingress port in its match fields), the condition at
line 87 is not satisfied, the process proceeds at line 90, the variable Count has value
1. IMMR = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1) (line 91). An edge from vertex
(3,0,1) to vertex (2,0,1) is added to the rule graph (lines 92, 97).

((3,0,1),(2,0,1)), attribute =
[(path1 = ((3,0,1),(2,0,1)), matchmap1 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1), priority1 = 1)]

OMM (line 98) is (-1, 192.168.1.2, 6, -1, -1, -1, -1), the packet-internal match of
(DNR, TNR, NR) (which is rule (2,0,1)) is (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1),
Re = 3 in this line, meaning that OMM is a proper superset of the packet-internal
match of rule (DNR, TNR, NR). In line 102, IMM = (192.168.1.1, 192.168.1.2, 6, -1, 80,
-1, -1). In line 103, the vertex (2,0,1) does not belong to path P , being ((1,0,1),(3,0,1)),
the condition of the if statement does not hold. Path P becomes ((1,0,1),(3,0,1),(2,0,1))
(line 114), the attribute of the edge ((3,0,1),(2,0,1)) is updated with path P (lines 115-
117):

((3,0,1),(2,0,1)), attribute =
[(path1 = ((3,0,1),(2,0,1)), matchmap1 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1), priority1 = 1),

158 5 Conflict Detection

(path2 = ((1,0,1,),(3,0,1),(2,0,1)), matchmap2 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1), priority2 = 1)]

The list of next hop of rule (DNR, TNR, NR) (rule (2,0,1)) is [“end-point:192.168.1.2”]
(line 118), the function ADD_RULE_TO_RULE_GRAPH is called recursively in the
for loop at line 119 with the parameter (2,0,1,“end-point:192.168.1.2”, (192.168.1.1,
192.168.1.2, 6, -1, 80, -1, -1), ((1,0,1,),(3,0,1), (2,0,1))). The process continues at line 65,
as the edge ((2,0,1),(0,192.168.1.2)) is already present in the rule graph RG, the effect
of adding this edge again (line 67) does not cause any change in RG. Path P at line
68 becomes ((1,0,1,),(3,0,1),(2,0,1),(0, 192.168.1.2)). Edge E at line 70 is updated with
path P in its attribute.

((2,0,1),(0,192.168.1.2)), attribute =
[(path1 = ((2,0,1),(0,192.168.1.2)), matchmap1 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1), priority1 = -1),
(path2 = ((1,0,1,),(3,0,1),(2,0,1),(0,192.168.1.2)), matchmap2 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1),

↪→ priority2 = -1)]

In the second round of the for loop at line 79, say for79_2, nested within the first
round of the loop for7_1, next hop NH is switch S2, (DNR, TNR, NR) is rule (2,0,2).
Following the steps similar to the first round of the loop for79_1, a new edge between
the vertices (3,0,1) and (2,0,2) is added and the attribute of the edge ((2,0,2),(2,0,-1))
is updated.

((3,0,1),(2,0,2)), attribute =
[(path1 = ((3,0,1),(2,0,2)), matchmap1 = (192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1), priority1 = 1),
(path2 = ((1,0,1,),(3,0,1),(2,0,2)), matchmap2 = (192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1), priority2 = 1)]

((2,0,2),(2,0,-1)), attribute =
[(path1 = ((2,0,2),(2,0,-1)), matchmap1 = (192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1), priority1 = -1),
(path2 = ((1,0,1,),(3,0,1),(2,0,2),(2,0,-1)), matchmap2 = (192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1), priority2

↪→ = -1)]

At this point, the for loop at line 79 nested within the first round of the loop for7_1
is complete, so is the first round for7_1. In the second round of the for loop at line
7, rule (DR, TR, R) is rule (1,0,3), rule (D,T,NR) in this round is rule (3,0,1) again,
the condition at line 14 holds, this loop terminates.

When the seventh rule (3,0,2) is installed, the process goes on in the similar manner
as for the sixth rule (3,0,1), the following edges are added or have their attributes
updated:

((1,0,1),(3,0,2)), attribute = [(path1=[(1,0,1),(3,0,2)], matchmap1=(192.168.1.3, 192.168.1.2, 6, -1, -1, -1, -1),
↪→ priority1 = 2)]

((2,0,1),(0,192.168.1.2)), attribute =
[(path1 = ((2,0,1),(0,192.168.1.2)), matchmap1 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1), priority1 = -1),
(path2 = ((1,0,1,),(3,0,1),(2,0,1),(0,192.168.1.2)), matchmap2 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1),

↪→ priority2 = -1),
(path3 = ((1,0,1,),(3,0,2),(2,0,1),(0,192.168.1.2)), matchmap3 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1),

↪→ priority3 = -1)]

5.4 Rule graph 159

The eighth rule (3,0,3) is deployed, the rule graph RG is updated with the two new
edges:

((1,0,3),(3,0,3)), attribute = [(path1 = ((1,0,3),(3,0,3)), matchmap1 = (-1, 192.168.1.3, 17, -1, -1, -1, -1), priority1
↪→ = 1)]

((3,0,3),(0,192.168.1.3)), attribute =
[(path1 = ((3,0,3),(0, 192.168.1.3)), matchmap1 = (-1, 192.168.1.3, -1, -1, -1, -1, -1), priority1 = -1),
(path2 = ((1,0,3,),(3,0,3),(0, 192.168.1.3)), matchmap2 = (-1, 192.168.1.3, 17, -1, -1, -1, -1), priority2 = -1)]

The complete rule graph is shown in Figure 64. The edges’ attribute (not shown in
this graph for clarity) can be used to track how a given packet would travel, and some
problem can be revealed directly from this graph. For example, from the attribute of
the edge ((2,0,2),(2,0,-1)) which embodies traffic dropping

[(path1=((2,0,2),(2,0,-1)), matchmap1 = (192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1), priority1 = -1),
(path2 = ((1,0,1,),(3,0,1),(2,0,2),(2,0,-1)), matchmap2 = (192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1), priority2 = -

↪→ 1)]

we can infer the impacted traffic: this traffic can be handled by all rules in the rule
chain in path2 or by a subset of rules in this rule chain containing at least two last
rules (corresponding to path1). In this case, the slice of impacted traffic corresponds
to matchmap2. We present the algorithms to determine the candidate matchmap of
the impacted traffic in Section 5.4.3.

(1,0,1)

(3,0,1) (2,0,2)

(3,0,2) (2,0,1) (0,192.168.1.2)

(1,0,3) (3,0,3)

drop

(0,192.168.1.3)

(2,0,-1)

Figure 64: The rule graph after all rules were added

In another example, we show how to
exploit the rule graph to determine the
“fate” of a packet, which can be employed
for other purposes beyond the scope of
concerns in this work, e. g., to verify the
reachability between end-points, or to
check invariants. Consider a TCP packet
sent by PC1 (IP address: 192.168.1.1) to
PC2 (IP address: 192.168.1.2) with the
source and destination TCP ports being 3333 and 80 respectively,

• as PC1 is connected to switch S1, rules in this switch will be checked, this packet
is matched by rule (1,0,1);

• based on the rule graph, the next rule handling this packet can be either (3,0,1) or
(3,0,2), the matchmap and the priority of the edges from rule (1,0,1) to these two
rules will decide: this packet belongs to matchmap1 of the edge ((1,0,1),(3,0,1)) and
thus is processed by rule (3,0,1);

• the rule graph suggests the next rule can be (2,0,1) or (2,0,2), the matchmap of
these edges reveals the correct one to be (2,0,1);

160 5 Conflict Detection

• the matchmap of the edge ((2,0,1),(0,192.168.1.2)) shows a match with the packet,
thus it will be delivered successfully to the end-point 192.168.1.2

In practice, for such a communication between PC1 and PC2, there must also be
rules for the backward direction from PC2 to PC1, we show only exemplary rules for
the ease of illustration.

(1,0,1)

(3,0,1)

(3,0,2) (2,0,1)

(2,0,2)

(0,192.168.1.2)

(1,0,3) (3,0,3)

drop

(0,192.168.1.3)

(2,0,-1)

Figure 65: The rule graph after rule (3,0,1) was
removed

The removal of a rule is intuitive. Con-
sider the scenario in which rule (3,0,1)
is removed from the rule graph in Fig-
ure 64. All edges containing this rule
are deleted, the new rule graph is shown
in Figure 65. The edges belonging to
the DAG having the deleted rule (3,0,1)
as source are also influenced. Their at-
tributes need to be updated by removing
the tuple whose path containing this rule.
These edges include ((2,0,1),(0,192.168.1.2)) and ((2,0,2),(2,0,-1)), their attributes be-
come:

((2,0,1),(0,192.168.1.2)), attribute =
[(path1 = ((2,0,1),(0,192.168.1.2)), matchmap1 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1), priority1 = -1),
(path3 = ((1,0,1,),(3,0,2),(2,0,1),(0,192.168.1.2)), matchmap3 = (192.168.1.1, 192.168.1.2, 6, -1, 80, -1, -1),

↪→ priority3 = -1)]
((2,0,2),(2,0,-1)), attribute = [(path1=((2,0,2),(2,0,-1)), matchmap1 = (192.168.1.3, 192.168.1.2, 6, -1, 80, -1, -1),

↪→ priority1 = -1)]

5.4.3 Verifying the validity of a path in the rule graph
The rule graph can be exploited for various purposes, e. g., to verify the reachabil-
ity between a pair of end-points in exchanging certain slices of traffic, or to figure
out problems related to traffic looping or dropping. These can be accomplished by
searching in the rule graph for the leaves (i. e., vertices whose outdegree equal to 0)
satisfying a particular pattern (e. g., traffic loops have the pattern (X,Y,−4)), then
extracting the attributes of the edges ending at these vertices and controlling the va-
lidity of the paths therein. If there exists traffic flowing along a path, the problem
or the verification can be confirmed to be true. We refer to this traffic as the path’s
candidate traffic in the following and demonstrate the steps to determine it as well
as to confirm if the path is valid.

The entrance point of the candidate traffic is the first rule in the path, it must thus
match this rule, so that it can be absorbed by the path. Then we need to check that
the traffic is not deviated to another path due to local conflicts of rules in the current
path with other rules. The verification is necessary as we allow exceptions to reduce
complexity during the rule graph building process.

5.4 Rule graph 161

Algorithm 3 shows the steps to determine the candidate matchmap (CMM) associated
with the candidate traffic of the path under consideration. CMM is initialized as the
first rule’s matchmap of the path. Each field of CMM can be marked as fixed or
changeable. Once a field is marked as fixed, it will not be changed anymore. If all
fields are marked as fixed, the process of determining CMM is finished. Otherwise,
the process goes on until the last vertex of the path is examined. The non-packet-
internal fields of CMM stay unchanged until the end of the combination process and
are marked as fixed fields. The packet-internal fields of CMM is determined based
on the action and the match fields of each rule in the path. If the rule action is to
change a field, that field is marked as fixed in CMM. The value of a changeable field
in CMM is set to that of the corresponding field of the rule in concern if that rule’s
field value is a subset of the current value of the CMM’s field.

We retain the fields of CMM if the rules’ action is to change them. The reason
is that the rule action can change the rule match completely, an extreme example is
that the rule action modifies all packet-internal fields of the rule match and makes
the output match space absolutely disjoint with the original rule match at all packet-
internal fields. Since we attempt to determine the candidate traffic starting from the
first rule in the path, it must match this rule. The incorporation of the changes made
by the rule action into CMM can lead to the consequence that the first rule does not
match the candidate traffic anymore.

Algorithm 3 Pseudo-code for determining the candidate matchmap of a path
Input: Path P , which is a sequence of vertices, each corresponding to a rule
Output: Candidate matchmap CMM

1: CMM = First rule’s matchmap .CMM : candidate matchmap
2: Mark all non-packet-internal fields of CMM as fixed and all packet-internal fields of CMM as changeable
3: if P has only one vertex then
4: Return CMM

5: else
6: Mark those packet-internal fields of CMM as fixed where the action of the first rule is to change them
7: if All CMM ’s fields are marked as fixed then
8: Return CMM

9: end if
10: end if
11: for Rule (D,T,R) in path P do
12: if (D,T,R) is the first rule then .Already examined, so ignore it
13: continue
14: end if
15: Combine each of the changeable fields of CMM with the corresponding fields of (D,T,R) according to the

rule: if that field value of rule (D,T,R) is a proper subset of that of CMM , set that field value of CMM to that
of (D,T,R) .The information of rule (D,T,R) is retrieved from the rule database RDB, see Figure 62

16: if (D,T,R) is the last vertex of P then
17: Return CMM

18: end if
19: Mark those changeable packet-internal fields of CMM as fixed if the action of (D,T,R) is to change them
20: if All CMM ’s fields are marked as fixed then
21: Return CMM

22: end if
23: end for

162 5 Conflict Detection

After having the candidate traffic represented by its matchmap, we have to verify it
twice.

• At its entrance point, which corresponds to the first vertex of the path, the candi-
date traffic or part of it can be handled by other rules due to possible local conflicts
of the rule in the first vertex with other rules in the same table. We need to deter-
mine the part of the candidate traffic that is handled exclusively by the rule in the
first vertex. The candidate traffic can therefore shrink down in this step.

• We need to check if the candidate traffic would flow according to the given path
or it might be deviated to another path due to exceptional cases that were ignored
during the rule graph building process.

Algorithm 4 Pseudo-code for determining the candidate matchmap of a path at the
entrance point

Input: First vertex V of path P , candidate matchmap CMM

Output: Candidate matchmap CMM of path P after removing its part handled by other rules due to local conflicts.
Global variables:: Local Conflict Database LCDB (see Section 5.5 and Figure 62)

1: (D,T,Re) is the rule in vertex V .(D,T,Re) at entrance point is an active rule (Definition 5.20)
2: for (D,T,R) in the list of rules with which (D,T,Re) has local conflicts based on the local conflict database

LCDB do
3: if (D,T,R) is not inactive (Definition 5.20) and the priority of (D,T,R) is greater than the priority of

(D,T,Re) then
4: Remove from CMM the overlap between CMM and the matchmap of rule (D,T,R)

5: if CMM is empty then .this happens when any fields of CMM is empty
6: Return
7: end if
8: end if
9: end for

If the match space associated with CMM becomes empty after removing its overlap-
ping part handled by other rules according to Algorithm 4, we can conclude that path
P is not valid as there exists no traffic handled by that path. Otherwise, the next step
is carried out according to Algorithm 5. Every rule in the path is considered until
the last one. At each step, CMM is combined with the rule action and compared
with the relevant matchmap of all edges starting from the vertex containing that rule.
If during this process, CMM becomes empty due to the removal of its overlapping
part with the relevant matchmap, then the path is not valid. If CMM is not empty
until the last vertex of the path, we can confirm that path’s validity.

5.5 Local conflict detection
Local conflicts presented in Chapter 4.1 can be detected based on their patterns which
characterise the relationship of the priority, the match and action components of a
pair of rules in concern. The comparison of the priority, being the number, is straight-
forward; the match relationship is derived from theirmatchmap following the method
developed in Section 5.2.1; using the actmap notion introduced in Section 5.2.2, the

5.5 Local conflict detection 163

Algorithm 5 Pseudo-code for verifying the validity of a path
Input: Path P , candidate matchmap CMM

Output: Conclude if path P is valid
1: for Vertex V in path P do
2: if V is the last vertex of P then
3: Conclude that path P is valid
4: Return
5: end if
6: (D,T,R) is the rule in V

7: CMM = fmat_act(CMM , actmap of rule (D,T,R)) .output matchmap CMM calculated from
CMM and the actmap of rule (D,T,R), see Definitions 5.14 and 5.15, the information of rule (D,T,R) is retrieved
from the rule database RDB, see Figure 62

8: Ep is the edge starting from V in path P

9: Tuple Tp in the list of tuples of Ep that has its path being a part of path P .the attribute of an edge is a list of
tuples of (path, matchmap, priority)

10: Prip is the priority in tuple Tp

11: for Edge E in the list of edges starting from V other than Ep do
12: Tuple T in the list of tuples of E that has its path being a part of path P except the last vertex in that path
13: MM is the matchmap in tuple T
14: Pri is the priority in tuple T
15: if MM overlaps with CMM and Pri is greater than Prip then
16: Remove from CMM the overlapping part between CMM and MM

17: if CMM is empty then
18: Conclude that path P is not valid
19: Return
20: end if
21: end if
22: end for
23: end for

action can also be compared intuitively. We can then conclude if a conflict exists
between two given rules and of which class it is. By maintaining the information of
to which control application a rule belongs, e. g., using cookie in OpenFlow SDN, we
are able to tell whether local conflicts occur between control applications.
We find that the encoding of conflict patterns by tuples of numbers is convenient for
the comparison required in detecting local conflicts. Specifically, for two given rules
i and j, we encode the relationship of their priority as:

• prii = prij : 0
• prii < prij : 1
• prii > prij : 2

the relationship between their match fields is encoded in the same manner as for
general sets mentioned in Section 5.1.2:

• disjoint: 0 (matchi ∩matchj = ∅)
• equal: 1 (matchi ∩matchj = matchi = matchj)
• proper subset: 2 (matchi ∩matchj = matchi ∧matchi ̸= matchj or matchi ⊂
matchj)

• proper superset: 3 (matchi∩matchj = matchj ∧matchi ̸= matchj or matchi ⊃
matchj)

164 5 Conflict Detection

• intersecting: 4 (matchi ⊈ matchj ∧matchi ⊉ matchj ∧matchi ∩matchj ̸= ∅)

the relationship of there actions is encoded as:

• same: 0
• different: 1

The comparison of rule relationships and conflict patterns to identify local conflicts
is then as simple as comparing tuples of numbers. For example, the shadowing local
conflict pattern can be represented by the tuple (1, 1, 1) or (1, 2, 1), if the relationships
between the priority, match fields and actions of two rules i and j form one of these
two tuples, a shadowing local conflict between them can be deduced.

Local conflicts in a given rule set can be detected exhaustively by iterating through
each pair of rules. In another scenario where a new rule is to be added in the rule
table of a switch, we only need to compare it with the existing rules in that rule
table to detect local conflicts. The latter case is demonstrated in Algorithm 6 and is
implemented in our conflict detection prototype in Section 6.1.

Similar to the rule database, a database of local conflicts needs to be maintained
when a rule is added or removed. Each entry of this database has the format (device
ID, table ID, rule ID, a list of tuples), each tuple in the list of tuples contains: a
rule (represented by an ID number in the rule database) exposing a local conflict
with the rule identified by the first three elements (device ID, table ID, rule ID), the
corresponding conflict class and conflict pattern.

The introduction of a new rule NR having an overlapping (i. e., non-disjoint)
match space with an existing rule ER can have some effect and the local conflict
database LCDB may need to be updated accordingly:

• No or negligible effect if NR and ER have the same priority, match, action (lines
11, 12) of Algorithm 6.

• NR overwrites ER if they have the same priority, match but different action (lines
13, 14). This might vary for other SDN implementation but it holds for our cho-
sen test-bed platform (using Open vSwitch-based OpenFlow switches). In this
case, ER is removed from the rule set and the rule database; the conflict database
(including local, distributed and hidden conflict) needs to be updated respectively.

• NR dominates for the traffic belonging to the overlapping space between the two
rules if NR has higher priority than ER (lines 15, 16). In this case, the entry for
ER in the local conflict database LCDB is updated and not that of NR.

• ER dominates for the traffic belonging to the overlapping space between the two
rules if NR’s priority is equal to or lower than ER (lines 17, 18). In this case, the
entry for NR in the local conflict database LCDB is updated.

5.6 Distributed conflict detection 165

The way we encode the local conflict database in the last two cases eliminates the
redundancy of encoding the local conflict for both involved rules (NR andER) while
still ensuring the capability of reasoning about that local conflict when necessary.

Algorithm 6 Pseudo-code for detecting local conflicts when adding the new rule
(D,T,NR)

Input: The tuple (D,T,NR) identifying the new rule in the rule database RDB .D, T,NR are the ID of the
device, the table and the new rule
Effect (Output): The local conflict database LCDB is updated if new local conflicts are found
Global variables: The List of Local Conflict Patterns LCP , the rule database RDB, the local conflict database
LCDB .As mentioned above, a local conflict pattern can be represented as a triple, e. g., (1,2,1)
Note: More details on the variables are illustrated in Figure 62

1: for Rule (D,T,R) in Rule Table (D,T) do .(D,T) identifies table T of device D
2: if (D,T,R) and (D,T,NR) are from the same control application then .e. g., using cookie in OpenFlow SDN

to relate a rule to its control application
3: continue .Do not examine conflicts between rules from the same control application, we consider this to be a

bug or an intended behaviour of that application, e. g., to refresh the timeout of its rule by installing the same rule again
4: end if
5: Remm = (matchmap of (D,T,NR) .r (matchmap of (D,T,R)) .relationship of two multi-property sets, see

Section 5.1.2, the result can be either 0 (disjoint), 1 (equal), 2 (proper subset), 3 (proper superset), or 4 (intersecting)
6: if Remm != 0 then .not disjoint
7: Repri = relationship between NR’s priority and R’s priority .smaller, equal or greater
8: React = relationship between NR’s action and R’s action .same or different
9: for Pattern P in LCP do

10: if P matches the tuple (Repri, Remm, React) then
11: if (D,T,NR) and (D,T,R) have the same priority, match and actions then
12: break .We choose to do nothing in this case, one can however reset the timeout of rule (D,T,R) in

the rule database RDB, or remove rule (D,T,R) from and add rule (D,T,NR) to RDB

13: else if (D,T,NR) and (D,T,R) have the same priority, match but different actions then .This
case depends on the SDN implementation, the behaviour in the next line holds for our test-bed

14: Remove rule (D,T,R) from the rule database RDB .As said, the removal of a rule also triggers
the change in the conflict databases

15: else if (D,T,NR) has higher priority than (D,T,R) then
16: In LCDB, create (if not yet available) or append to the tuple list of the entry ((D,T,R),tuple

list) the tuple (NR, conflict class of pattern P , pattern P)
17: else
18: In LCDB, create (if not yet available) or append to the tuple list of the entry ((D,T,NR),tuple

list) the tuple (R, conflict class of pattern P , pattern P)
19: end if
20: break .Proceed with the next rule in Table (D,T)

21: end if
22: end for
23: end if
24: end for

When a rule is removed from the rule database, the local conflict database LCDB

needs to be updated. Algorithm 7 illustrates this case.

5.6 Distributed conflict detection
We organize distributed conflicts in seven classes according to their causes (traffic
looping, traffic dropping, packet modification, changes to paths) and directions (up-
stream, downstream) (see Chapter 4.2). The rule graph (Section 5.4) provides an effi-
cient means for detecting conflicts belonging to the two distributed conflict classes:

166 5 Conflict Detection

Algorithm 7 Pseudo-code for updating the local conflict database LCDB when re-
moving rule (D,T,RR)

Input: The tuple (D,T,RR) identifying the removed rule in the rule database RDB .D, T,RR are the ID of the
device, the table and the new rule
Effect (Output): The local conflict database LCDB is updated (if rule (D,T,RR) was present there).
Global variables: the rule database RDB, the local conflict database LCDB

1: if LCDB contains an entry having the pattern ((D,T,RR),tuple list) then
2: remove from LCDB this entry
3: end if
4: for Entry E in LCDB containing Device D, Table T do .E follows the pattern ((D,T , a rule number), a tuple list)
5: for Tuple Tup in the tuple list of E do .Tup contains (rule number, conflict class, pattern)
6: if The first element of Tup is equal to RR then
7: remove Tup from the tuple list of E
8: end if
9: end for

10: end for

policy suppression by downstream traffic looping and policy suppression by downstream
traffic dropping. Conflicts belonging to other distributed conflict classes are largely
interpretative due to the lack of an effective method to verify their existence. As
far as we are concerned, no existing solution in literature can be employed for their
detection either. Therefore we provide instead in-depth discussions on limitations
and practical implications for these conflict classes.

5.6.1 Detecting conflicts belonging to downstream traffic
looping/dropping distributed conflict classes

The encoding used in the rule graph facilitates the reasoning about conflicts belonging
to these two distributed conflict classes. After the rule graph is built or updated, we
search for vertices having the patterns (X,Y,−1) and (X,Y,−4), which denote the
drop action and the traffic loop respectively. The attribute of each edge connected
to these vertices contains a list of tuples of (path, matchmap, priority) that reveals
the involved rules and the affected traffic. Each path shows a sequence of rules
handling the influenced traffic, which is eventually dropped or caught in a loop.
Given a path, we can determine the candidate matchmap of the influenced traffic
according to Algorithms 3 and 4. If the candidate traffic exists (i. e., the resulting
candidate matchmap of these two algorithms is not empty), and the path is verified
to be valid based on Algorithm 5, we can conclude the problem of traffic looping
or dropping. It becomes a conflict if the rules in the path are installed by different
control applications. In our implementation, this can be checked by referencing to the
rule cookie in the rule database. In any case, the problems related to (unintended)
traffic dropping and traffic looping need to be detected and handled timely, even
if it is a bug of a control application or an erroneous deployment of rules by an
administrator. The intended traffic dropping, e. g., by a firewall, should be noticed in
advance to disable unnecessary detection results.

5.6 Distributed conflict detection 167

The conflicts detected by this approach are classified to be in the downstream direc-
tion as the rules of the “victim” control application(s) were active on the influenced
traffic before it is dropped or looped. The incident of traffic dropping or looping
is thus considered to arise in the downstream direction with reference to the target
device(s) of the application(s).

5.6.2 Coping with other distributed conflict classes
For other distributed conflict classes, we realize that without an effective means to
verify the expected network behaviour of each control application, the conclusions
based on the signs of conflicts in their co-deployment are rather interpretative. The
signs for distributed conflicts can be observed based on how the target traffic of each
control application being handled in the network, obtainable via monitoring tools
(e. g., with the help of a packet analyzer like tcpdump2) or by using the rule graph.
Still, the following questions could not be addressed reasonably:

• Q1: How would the target traffic of a control application be handled if it was
executed in isolation? The subsequent questions emerge as a consequence of this
question.

• Q2: Consider the target traffic of a control application being dropped or looped
before reaching its target switch(es), would that traffic be able to reach this switch
and processed by the rules of that control application if it were not dropped or
looped? The problems related to the traffic looping or dropping must be identified
and resolved anyway, but the conclusion that the conflict belongs to the class policy
suppression by upstream traffic looping/dropping appears unpersuasive.

• Q3: A packet was modified once or multiple times by rules from different control
applications on its way from the source to the destination, but it gets delivered suc-
cessfully, and none of the control applications intends traffic dropping or looping,
would this case be considered a conflict?

• Q4: A packet interested by a control application was modified once or multiple
times by rules of the others, therefore this packet is not matched by its rule(s)
at its target switch(es) any more, yet gets delivered successfully, none of the con-
trol applications intends traffic dropping or looping, does a conflict exist in this
situation?

• Q5: A packet interested by a control application is forwarded by rules of another
and could not reach its target device, yet that packet is delivered successfully, none
of the control applications intends traffic dropping or looping, would there be a
conflict?

2 https://www.tcpdump.org/

168 5 Conflict Detection

The observation leading to the conflict classification relies on our experimental ap-
proach, in which the network behaviour observed in the isolated execution of each
control application is compared with that in the co-deployment of control applica-
tions. However, the isolated deployment of a control application as a means for
detecting conflicts is generally inapplicable in practice: i) it is impractical to stop a
network running various applications/services to deploy each of them in isolation
and record the network behaviour, ii) the replication of a running network for such
testing is too expensive, not to mention the fact that end-points and their generated
traffic are ordinarily unknown. Therefore, we could not count on this approach for
detecting conflicts in a running network. Due to the interpretative nature of these
conflict classes and the lack of an efficient method to detect them, we discuss in
the following measures to issue warnings on potential presence of their instances. A
warning indicates the uncertainty in concluding the presence of conflicts, but it is
worthwhile for a closer look by a network operator to decide if conflicts exist.

Coping with the classes: upstream traffic looping/dropping
Conflicts of these two classes occur from the perspective of a control application
when it places rules in some device(s) with the intent to regulate certain slice of traf-
fic, yet this traffic gets dropped or looped before reaching the target device of that
application (thus, the incident transpires in the upstream direction of the device),
leaving its rules never active on that traffic. In spite of the interpretative nature of
these conflicts due to questions Q1 and Q2 above, the effect of traffic dropping or
looping is obvious. If no control application intends traffic dropping or looping,
the problem must be handled. The rule graph can be employed to detect these con-
flicts in the same manner as for the distributed conflict classes downstream traffic
looping/dropping (see Section 5.6.1).

Coping with the class: downstream packet modification
A conflict of this class is observed when rules of a control application is active on
its target traffic at its target device(s), that traffic is modified later on by rules from
other applications in such a way that invalidates the first application’s intent. A case
exposing similar symptoms in the concurrent execution of control applications is
interpretative due to questions Q1 and Q3. An approach to identify symptoms and
issue warnings on potential conflicts of this class for a control application can be
envisioned via the following steps.

1. Determining rules of that control application in its target devices.
2. From each rule R of these rules (corresponding to a vertex in the rule graph),

tracing forward along the edges in the rule graph until the last edge. A list of last
edges are obtained after this step.

3. Examining the attribute of each edge in the above list of edges, the attribute is a list
of tuples of (path, matchmap, priority), path P in the list of all paths containing
rule R is inspected. A warning is issued if all of the following conditions hold:

5.6 Distributed conflict detection 169

a) Path P does not represent traffic looping or dropping.
b) At least one rule standing between rule R and the last rule in path P performs

packet modification.
c) Path P is valid (see Section 5.4.3)

In practice, it might be unusual that the address fields of a packet, e. g., IPv4, MAC
addresses or TCP/UDP ports, are modified frequently (except for known scenarios
such as SDN devices are functioning as routers). The rule graph can be extended
to issue warnings in this situation during its building process. In each tuple in the
attribute of an edge, an extra counter can be added to count the number of rules in
the path that modify packets. When a connection between a rule pair is established
and the ending rule in that connection performs packet modification, the counter is
increased. One may decide to raise warnings based on the counter value. Another
solution is presented by Reyes [90], which employs the rule graph to determine if any
path leading to the newly deployed rule contains a rule modifying traffic besides the
current rule (i. e., the newly deployed one). If this holds and these two rules come
from two distinct control applications, there exists some traffic modified at least
twice by two applications, a conflict of the general multi-transform class is raised.
As discussed in Chapter 4.2.5, this distributed conflict class – downstream packet
modification – is synthesized from the general multi-transform distributed conflict
class in Reyes’ work. His proposed algorithm, reproduced in Algorithm 8, to cope
with this kind of conflicts is thus applicable in this case.

Coping with the class: upstream packet modification
An instance of this class arises when a packet interested by a control application was
modified by the others before entering its target device(s), and thus is not matched by
its rules anymore. Eventually the overall policies of that application are not obtained.
The conclusion for a distributed conflict of this class based on the similar symptom
shown in the co-deployment of applications is interpretative due to questions Q1 and
Q4. A warning of this kind of conflicts can be released if a valid path in the rule
graph reflecting this symptom is found. Consider the case with control application
A interested in traffic T and having its rules deployed in device D, D has only one
rule table, the candidate path will be composed of a list of vertices divided in three
parts.

• Part 1: a list of one or multiple vertices before device D, traffic T is matched and
modified by some of these vertices and becomes T ′.

• Part 2: a vertex in device D, the rule associated with this vertex is not installed by
application A, the modified traffic T ′ is not interested by application A.

• Part 3: a list of zero (empty list) or multiple vertices after device D.

We can trace for the candidate path in the rule graph with the starting point being
each rule R in the target device D of application A that is not installed by A. If a

170 5 Conflict Detection

Algorithm 8 Pseudo-code for detecting general multi-transform conflicts (adapted
from an existing algorithm in Reyes’ work [90] (Algorithm 2, Chapter 6.4, page 82
of his thesis))

Input: The tuple (D,T,NR) identifying the new rule to be added in the rule graph RG .D, T,NR are ID
number of the device, the table and the new rule
Output: Alarms of rules that together with the new rule leading to multi-transform conflicts
Global variables: the rule database RDB, the rule graph RG

Note: More details on the variables are illustrated in Figure 62
1: if the actions of (D,T,NR) modify matched packets then
2: CHECK_MULTI_TRANSFORM((D,T,NR), (D,T,NR), False)

3: end if
4: function check_multi_transform((D,T,NR), (DR, TR, R), visited)

Input: the new rule (D,T,NR) to be added in the rule graph RG, rule (DR, TR, R) standing before rule
(D,T,NR) on the path containing (D,T,NR), boolean variable visited marking the visited state of rule
(D,T,NR).
Output: Alarms of rules that together with (D,T,NR) causing multi-transform conflicts.
Global variables: The existing rule graph RG, the rule database RDB

5: if (D,T,NR) and (DR, TR, R) are the same rule AND visited == True then .There is a loop
6: Return .The traffic loop is handled separately as mentioned in Section 5.6.1, this function stops here
7: end if
8: Extract from the rule graph RG the list of vertices LV , from which edges connected to the vertex associated with

rule (DR, TR, R) start .each directed edge in the rule graph starts from a rule and ends at another rule
9: for Vertex V in the list of vertices LV do

10: Extract rule (DRV , TRV , RV) corresponding to Vertex V

11: if the actions of (DRV , TRV , RV) modify matched packets AND the output match space of
(DRV , TRV , RV) overlaps with the match space of rule (D,T,NR)AND (DRV , TRV , RV) and (D,T,NR)

belong to different control applications then .the output match space of a rule is the combination of its match
fields and its actions (see Definition 5.16), the association of a rule to its control application can be obtained via certain
metadata fields of that rule, e. g., rule cookie in OpenFlow SDN

12: Raise a multi-transform conflict with rule (DRV , TRV , RV) and rule (D,T,NR)

13: else
14: CHECK_MULTI_TRANSFORM((D,T,NR), (DRV , TRV , RV), True) .Recurse with the new

rule (D,T,NR) and rule (DRV , TRV , RV). As (D,T,NR) has been already visited by this function in its very
first invocation, the associated boolean variable is set to True

15: end if
16: end for
17: end function

valid path in the attribute of each edge starting from ruleR (i. e., the vertex associated
with rule R) contains rules satisfying part 1 above, a warning will be given.

The practical point mentioned in the previous section for the distributed conflict
class downstream packet modification also applies for this conflict class: the rule graph
can be adapted to report unusual cases in which a packet is modified multiple times
on its way. This is also an efficient measure against the firewall bypassing attack
mentioned in Chapter 4.2.6 by means of packet modification (a packet is modified
to bypass the firewall, then re-modified after crossing the firewall to reach its desti-
nation).

Coping with the class: changes to paths
The interested traffic of a control application is forwarded by rules of the others on a
path not covering its target devices, leading to this conflict. A case with the similar
symptom is interpretative due to questions Q1 and Q5. In order to issue a warning for

5.7 Hidden conflict detection 171

this kind of conflicts, we need to check all valid paths in the rule graph that handles
the interested traffic of that application but does not contain any vertex (also rule)
residing in its target devices. Obviously, the expenditure for this exploration would
be intense as we might need to check the attributes of all edges ending at a leaf, i. e.,
a vertex whose outdegree is zero.

This kind of conflicts can be avoided if the control application chooses the target
devices for rule deployment in such a way that all paths along which its interested
traffic flows will cross these devices. For instance, a firewall application aiming to
filter all traffic from outside should install its rules on all devices on the network
boundary. A similar example was shown in Chapter 4.2.7.

5.7 Hidden conflict detection
In coping with hidden conflicts, our first attempt was to consider control applications
as black-boxes and employed speculative provocation in probing their behaviour to
predict conflict occurrence. This approach has the advantage of not demanding prior
knowledge of control applications. The prediction is based on fake events that pos-
sibly trigger control applications’ reactions, which are intercepted and examined to
derive hidden conflicts. However, we observe that, on the one hand, stateful control
applications are influenced by fake events and may function incorrectly in reacting to
subsequent genuine events. On the other hand, the number of fake events for prob-
ing is extremely large, making it too expensive for hidden conflict prediction, another
issue is the interference between the fake and genuine events. Therefore, we opt for
a “grey-box” approach that takes some input of the involved control applications in
order to detect hidden conflicts.

We present a method to detect hidden conflicts of the class: event suppression by
local handling. The four classes event suppression by upstream traffic looping/dropping,
event suppression by changes to paths and action suppression by packet modification
reveal the interpretative quality (see Section 5.6.2) that restricts the reliable identi-
fication of their instances in the co-deployment of control applications, we discuss
alternatively approaches to cope with them from a practical viewpoint. The other
two classes, including undue trigger and tampering with event subscription, appear
to arise in the course of a security attack in the control plane, we point out existing
measures in literature applicable for their handling.

172 5 Conflict Detection

5.7.1 Considering the hidden conflict prediction approach

Application

Predictor

Controller rule-set

(1) fake event

install rule

(2) intercept (3) a
lert

receive
event

Admin

Figure 66: Hidden conflict predictor mechanism [25]

We have developed in our earlier
work [25] a hidden conflict predictor ap-
plicable for the first hidden conflict class
event suppression by local handling. We
present in the following our experiences
with this approach and justify against its
employment.

In this approach, each control applica-
tion is a black-box to the predictor. This
view is reasonable as control applications
can be implemented by third-party bodies and their precise behaviour can be un-
known to a network operator. In essence, the prediction of hidden conflicts is carried
out in three steps illustrated in Figure 66.

1. The Hidden Conflict Predictor generates fake events simulating possible incidents
in the data plane, e. g., a packet arrives at a switch and is escalated to the controller,
or some port of a switch is down.

2. Control applications interested in such events may react by installing, removing
or modifying rules in the data plane.

3. The predictor intercepts these reactions, analyses if there exist conflicts and in-
forms the administrator of the issues.

For each of these steps, we notice the obstacles hindering the choice of this approach.

Generating fake events
A controller can create for control applications different kinds of events related to
topology changes, monitoring data and requests for instructions on handling certain
traffic.

• In general, any change of the topology requires the intervention of the adminis-
trator. Fake events related to topology changes can be useful during the network
management to probe possible effects to control applications. In a normal run,
such events are rare while their occurrence should be handled separately in terms
of the network management in conjunction with human efforts, the probe for pre-
dicting hidden conflicts based on these events is therefore not encouraged.

• A fake event containing monitoring information can be useful in estimating the
network resilience in case of excessive load. We notice, however, that control appli-
cations interested in such events tend to be active ones (see Chapter 3.5.1), i. e., they
actively monitor the network and make changes if necessary, or there can be a con-
troller service that periodically monitor the network and notify them for critical
incidents that need their intervention. Therefore, fake events containing monitor-

5.7 Hidden conflict detection 173

ing information are generally not encouraged except when they are intentionally
created for certain kinds of estimation mentioned above.

• As hidden conflicts of the first five classes can occur due to control applications
being deprived of their interested events or the modification of the content of con-
trol applications’ interested events, fake events related to requests for instructions
of packet handling are more relevant. In OpenFlow SDN, such events are named
packet-in events; a packet for a packet-in event must be complete, i.e, it contains
all relevant headers of a normal packet.

Fake events for the first hidden conflict class: event suppression by local handling
It is conceivable that the presence of any active rule (see Definition 5.20) in the data
plane not escalating matched packets to the control plane can be the source of this
hidden conflicts class. A fake event can be generated for a packet matched by an
existing rule to probe for reaction of control applications. Traffic completing the two
rules causing a local conflict whose match spaces show the subset or superset rela-
tionship is more notable as candidate traffic for the fake events of this class, because
one of the control application appears to be more granular in installing its rules pos-
sibly as a reaction to a packet-in event, its behaviour is accidentally disabled by the
other application installing the broader rule, the contention (manifested as a local
conflict) also reveals the possibility that these applications are interested in events
related to some common traffic.
The number of such fake events is generally large. An event needs to specify the
SDN device’s identifier (e. g., datapath ID in OpenFlow SDN), the complete header
of a packet and possibly the packet payload. Consider an exemplary rule:
priority = 2, ipv4_dst = 192.168.2.0/24, protocol = UDP, dst_port = 5001, action = [out-
put:3]
a packet matched by this rule can have any source IPv4 address and source UDP
port, its destination IPv4 address can be one of the 256 values within the IP range
192.168.2.0/24, not to mention the layer 2 headers. The number of fake events for
this rule in the worst case is therefore greater than Ω:
Ω = the number of source IP addresses * the number of destination IP addresses * the
number of source UDP ports = 232 · 28 · 216 = 256

Suppose that each probe takes 1ms, the total duration needed is ≈ 2.2 · 106 years; to
probe this number of fake events to detect conflicts of the first hidden conflict class
is impractical!
We may perform the probing with selected samples from the rule’s match space to
reduce the number of fake events. The existence of a conflict among these probes
would be sufficient for the correct conclusion. However, if no conflict is found, the
conclusion of a conflict-free setting would be lame.
Fake events for the second and third hidden conflict classes: event suppression
by upstream traffic looping/dropping We can infer from the rule graph (see Sec-
tion 5.4.2) the slices of traffic that get dropped or stuck in a loop based on vertices

174 5 Conflict Detection

having the patterns (X,Y,−1) or (X,Y,−4), the corresponding valid traffic paths
are also available. For each traffic slice and its path, if the switch under consideration
is not inside that path and there is no rule matching a dropped/looped traffic slice
in that switch, that traffic becomes the candidate for predicting these hidden conflict
kinds (the presence of rules matching this traffic would lead to the distributed conflict
policy suppression by upstream traffic looping/dropping as discussed in Section 5.6.2
albeit with its interpretative nature). Similar to the case of the first hidden conflict
class, the number of fake events is also exceedingly high, inhibiting its employment
in the hidden conflict prediction.
Fake events for the fourth hidden conflict class: event suppression by changes to path
Hidden conflicts of this class are caused by interested traffic of the control application
in concern being forwarded around its target switches. From the perspective of the
predictor which regards control applications as black-boxes, all information necessary
for synthesizing fake events to probe this kind of conflict is not available, including
target switches and traffic slices interested by a control application. This means that,
to comprehensively detect conflicts of this class, we have to create fake events from
all switches in the network; for each switch, the candidate packets are those matched
by active rules in other switches which do not forward traffic to that switch (the
candidate packets for this class are thus excluded from the set of candidate ones for
the first class). Needless to say, the number of such fake events is large, making it
not practical to probe all of them.
Fake events for the fifth hidden conflict class: action suppression by packet mod-
ification The cause for conflicts of this class is that modified packets escalated to
the control plane are not interested by control applications while the original pack-
ets would be. Packets can be modified at the switch in examination before being
sent to the control plane, or they were altered by rules in other switches before ar-
riving at that switch. The candidate packets for fake events in the former case is
intuitive, being those matched by the involved rules. In the latter case, all rules in
the current switch needs to be inspected; for each rule, we need to trace back all
chains of connected rules (see Definition 5.19) containing it in the rule graph to de-
termine any change made to its matched packets; if there exists one or more rules
in the chain modifying the packets, the set of unmodified packets corresponds to
the candidate packets for the fake events of this class, given that there is no rule
in the current switch matching this unmodified set (it would possibly become the
first hidden conflict class otherwise). It would be much more complicated in case a
packet is modified multiple times, we may have to check all sets of packets after each
change before their arrival at the current switch. Another aspect to consider is that if
the packets were unmodified, they might be handled differently in the network and
did not reach the current switch, thus not causing hidden conflict of this class but of
the fourth class. As we do not know the target switches of the control applications,
we need to do the check for all switches. The mentioned complexity, together with

5.7 Hidden conflict detection 175

the other issues of the fake-event-based approach, keep us from delving further into
tackling this hidden conflict class using this approach.

Control applications’ reactions
A control application can register for different kinds of events. In the current ap-
proach, a control application cannot discern fake and genuine events, it always react
by sending instructions to the data plane or simply doing nothing, upon receiving
an event. However, stateful applications (see Definition 3.5.1) log also its reactions to
fake events and behave differently once receiving genuine events later, therefore they
do not function as expected in the presence of both fake and genuine events. Con-
sider an example with a stateful end-point load balancer performing round-robin
balancing for TCP sessions on three replicas based on packet-in events; for the first
genuine event, it directs the corresponding TCP session to the first replica; during the
probing process for hidden conflicts, it receives a fake event which it cannot discern,
it reacts with rules sending this new TCP session to the second replica though these
rules are intercepted and are not installed in the data plane; then a new event, being
a genuine one, reaches this balancer, it notices that it has directed two TCP sessions
to the first two replicas, thus it forwards this new session to the third replica; indeed,
without the fake event, the latter TCP session would be handled by the second replica,
not the third one; thus the fake event does trigger a problem.

Intercepting control applications’ reactions to fake events
The reactions of control applications caused by fake events needs to be intercepted
and analysed to detect hidden conflicts. It is challenging to differentiate reactions
triggered by fake events and those by genuine events, and worse, active actions un-
related to any events can get involved. In principle, the predictor does not know if a
control application reacts to the fake event until it catches the reactions. Some con-
trol application does not react to a fake event as it is not interested in that event or
it is an active application (see Definition 3.5.1) not functioning based on unsolicited
events. Therefore, for a single fake event, there can be no reaction, one or many re-
actions, the predictor needs to considers these cases. In this black-box approach, we
have not figured out a solution to distinguish a reaction to a fake event and an active
action generated in the meantime. For instance, the predictor sends a fake packet-in
event, after a short period, it observes two requests of installing new rules in the data
plane, it intercepts both to examine hidden conflicts, both rules are not deployed in
the data plane at all; however, one request comes actually from the administrator
and should be enforced; in this case, the mistaken interception leads to a problem.

Summary
In employing the speculative prediction of hidden conflicts, we have to face with
the critical issues that cannot be remedied effectively and efficiently, including prob-
ing a large number of fake events, the state poisoning of stateful control applications,

176 5 Conflict Detection

and the obscure discrimination between control applications’ reactions to fake events
and their genuine actions. Therefore, we choose a “grey-box” approach in detecting
hidden conflicts by asking for input from control applications concerning their in-
terested kinds of traffic, target switches where they place rules and if they function
based on packet-in events.

5.7.2 Detecting hidden conflicts with control applications'
input

Certain input from control applications is required in detecting hidden conflicts to
overcome the problems encountered in the black-box approach. The input corre-
sponds to the required information of a packet-in event including the traffic kinds in
which a control application is interested, in the form of packet headers, and the target
switches of that application. An exemplary input file for hidden conflict detection
of the End-point Load Balancer (EpLB), the Destination-based Path Load Balancer
(PPLB4D) and the routing control applications is shown in Listing 5.1.

[eplb]
ts = 7 5 6 # a list of target switches
ipv4_src = 192.168.1.1 # a list of source IPv4 addresses
ipv4_dst = 192.168.1.3 192.168.1.4 # a list of destination IPv4 addresses
ip_proto = 6 17 # a list of protocols, which includes TCP and UDP in this case

[pplb4d]
ts = 3 4
ipv4_dst = 192.168.1.3, 192.168.2.0/24
ip_proto = 17 # UDP

[routing]

Listing 5.1: Exemplary input file for detecting hidden conflicts

A control application can be interested in some specific traffic kind as the EpLB
application or any traffic as the routing application, the administrator may want to
detect hidden conflicts for certain control applications or for all of them, these are
specified in the hidden conflict input file. In the following, we show how to cope with
hidden conflicts of the first five classes with information from the input file. Again,
the other two classes require security measures to protect the control plane, which is
out of scope of our work and is not discussed here.

The general idea is to form the match space of traffic interested by each control
application from its input and compare it with rules in the data plane. The match
space is denoted by a special representation form of matchmap using list (or array),
which we name list-matchmap. For example, using the matchmap template
matchmap template: ingress port, EtherType, src IPv4, dst IPv4, IP protocol, src TCP
port, dst TCP port, src UDP port, dst UDP port
the list-matchmap of EpLB from Listing 5.1 is represented by:

5.7 Hidden conflict detection 177

[-1], [2048], [192.168.1.1],[192.168.1.3, 192.168.1.4],[6, 17],[-1],[-1],[-1],[-1]
in which the EtherType value is inferred from that of an IP packet (0x800 or 2048
in decimal value), the value -1 of a field represents any value, the list is denoted by
the square bracket pair ([]). This way of representation allows the inference of the
field combinations to form the granular matchmap, thus enables the flexible specifi-
cation of control applications’ interested traffic in the input file, e. g., the two separate
matchmaps inferred from the above list-matchmap of EpLB among others are:
-1, 2048, 192.168.1.1, 192.168.1.3, 6, -1, -1, -1, -1
-1, 2048, 192.168.1.1, 192.168.1.4, 17, -1, -1, -1, -1
The comparison of a rule’s matchmap with a list-matchmap of a control application
can be carried out directly based on the multi-property set and the ·r operator ac-
cording to Definition 5.3, Theorems 5.1 and 5.2 without having to infer the granular
individual matchmaps of the list-matchmap. To illustrate the comparison, we take
an exemplary rule R having the matchmap {3, 2048, -1, 192.168.1.4, 6, -1, 80, -1, -1}

• Each field in the rule’s matchmap is compared with each field in the corresponding
list of the list-matchmap. For example,

+ the first field of R is a subset of that of EpLB, their relationship is thus r1 = 2,
their overlap value is 3,

+ their second fields are equal, their relationship is r2 = 1,
+ the third field of R is a superset of that of EpLB, their relationship is r3 = 3 and

the overlap value is 192.168.1.1,
+ the fourth field of R is a subset of EpLB’s, their relationship r4 = 2, their overlap

value is 192.168.1.4,
+ the fifth field of R is a subset of EpLB’s, their relationship and overlap value are

r5 = 2 and 6, respectively,
+ their sixth fields are equal, their relationship is r6 = 1,
+ the seventh field of R is a subset of EpLB’s, their relationship r7 = 2 and the

overlap value is 80,
+ their two other fields are equal, r8 = r9 = 1.

• Their overall relationship is
r = R .r (list matchmap of EpLB) = r1 .r r2 .r r3 .r r4 .r r5 .r r6 .r r7 .r r8 .r r9 =

2 .r 1 .r 3 .r 2 .r 2 .r 1 .r 2 .r 1 .r 1 = 4

which means that rule R and the list matchmap of EpLB are intersecting. Their
final overlap is {3, 2048, 192.168.1.1, 192.168.1.4, 6, -1, 80, -1, -1}

The choice of rules for comparison varies depending on the hidden conflict class
under consideration. We present in the following a method to detect conflicts of the
first hidden conflict class. The other classes show prohibitively expensive cost for the
detection and/or exhibit the similar interpretative nature as some distributed conflict
classes (see Section 5.6.2), which restrains the solid judgement about the presence

178 5 Conflict Detection

of their conflicts. We discuss instead the approaches to cope with these kinds of
conflicts and the practical implications.

Detecting conflicts of the first hidden conflict class: event suppression by local
handling
The cause of hidden conflicts of this class is that the existing rules in the target
switch(es) of a control application match and handle incoming traffic locally, thus
no relevant event is generated to the application. We need to determine these rules
by comparing each with the list-matchmap of the control application. Algorithm 9
shows how these rules are identified.

Algorithm 9 Pseudo-code for identifying rules causing hidden conflicts of class Event
Suppression by Local Handling with input from control applications

Input: input file IF specifying control applications registering for the packet-in events, the characteristics of traffic
interested by them and their target switches
Output: Alarms of rules causing hidden conflicts, the influenced traffic in the matchmap form and the influenced
control applications.

1: Create from the input file IF a list of target switches LTS of all control applications, for each target switch TSi ,
establish a list of list-matchmaps LMMi corresponding to the characteristics of traffic interested by the control
applications, each list-matchmap is associated with a control application

2: for Switch S in the list of target switches LTS do
3: for list-matchmap LMM in the list of list-matchmaps associated with switch S do
4: for Rule (S, 0, R) in the set of rule that has not been checked for hidden conflicts in table 0 of switch S do

.Check table 0 as a packet coming to a switch will first be handled by rules in this table
5: if Rule (S, 0, R) and list-matchmapLMM are associated with the same control applicationOR (S, 0, R)

is inactive then .see Definition 5.20
6: continue .do not check hidden conflicts for control applications against the rules installed by themselves,

also skip inactive rules as they do not impact incoming packets and thus do not induce hidden conflicts
7: end if
8: if LMM is the last list-matchmap in the list of list-matchmaps associated with switch S then
9: Mark (S, 0, R) as already checked for hidden conflicts .So it will not be checked more than once for

hidden conflicts
10: end if
11: Trace the table pipeline in switch S to extract the sequence of actions conducted on packets matched by

rule (S, 0, R)

12: if The sequence of actions includes sending matched packets to the controller without modifying them
then

13: continue .There’s no hidden conflicts in this case
14: end if
15: Re = (list-matchmap LMM) .r (matchmap of rule (S, 0, R)) .Relationship between two multi-property

sets, see Section 5.1.2
16: if Re == 0 then .disjoint
17: continue .Rule (S, 0, R) does not cause hidden conflicts, ignore it
18: end if
19: I = (list-matchmap LMM) ∩ (matchmap of rule (S, 0, R)) .Intersection between the multi-property

sets, see Theorem 5.2
20: Raise an alarm of the presence of the first hidden conflict class caused by rule (S, 0, R) in switch S with

the influenced traffic I , and that the control application associated with the list-matchmap LMM is influenced by
this hidden conflict

21: end for
22: end for
23: end for

5.7 Hidden conflict detection 179

Coping with the second and third hidden conflict classes: event suppression by
upstream traffic looping/dropping
Once the rule graph is built, we can infer the slices of traffic that are dropped or
looped and the associated valid paths (also rule chains3). For a path among those
that does not contain the target switch(es) of the control application under considera-
tion, the corresponding traffic slice of that path is compared with the list-matchmap
representing the interested traffic of that application (a conflict of this second or
third hidden conflict class does not occur if the path contains the target switch(es)).
If there is an overlap between them, we can issue a warning on a potential conflict
of these hidden conflict classes. As mentioned in Section 5.6.2, a warning indicates
only the potential occurrence of conflicts and serves as guidelines for the network
operator in inspecting possible incidents.

We could not conclude with certainty the occurrence of conflicts belonging to
these classes due to their interpretative nature. Since the isolated deployment of
each application to examine the expected network behaviour is generally inapplica-
ble in practice (see Section 5.6.2), we do not know how the traffic would be handled
if there were no incident of traffic looping/dropping. It could be modified or sent on
some path not containing the target switch(es) of the control application in concern,
or something else. However, the traffic looping/dropping related problems are com-
monly critical (unless they are intended as in case of a firewall filtering certain traffic)
and are identified as a fundamental functions of the rule graph, independently from
the measures against hidden conflicts. This mitigates the consequences of these two
hidden conflict classes or even lessens them to be negligible.

Coping with the fourth hidden conflict class: event suppression by changes to paths
Given that the traffic interested by a control application is known, conflicts of this
class cannot be detected just by examining rules in the target switch(es) of that control
application, rather rules in the other switches need to be investigated to see if the
relevant traffic is sent around that application’s target switch(es). We notice that
this conflict class and the first hidden conflict class are mutually exclusive. In case
there are rules matching the interested traffic of the control application in its target
switch(es), conflicts of the first class may occur and there exists no conflict of this
class, and vice versa.

The idea in coping with this class’ conflicts is to check if traffic interested by a
control application appears in the network and is handled completely by rules in
switches other than the target switch(es) of that application. This can be achieved by
sniffing traffic at all switches’ interfaces facing end-points, e. g., by using tcpdump tool.
Once that traffic appears, we need to check the rule chain handling it and conclude

3 The terms path and rule chain are used interchangeably to facilitate the understanding in different contexts:
a path is a sequence of vertices in the rule graph, each vertex corresponds to a rule. A path thus corresponds
to a chain of connected rules, named rule chain.

180 5 Conflict Detection

the presence of conflicts of this class if no rule in the rule chain resides in the target
switch(es) of the control application. Another way is to check the rule graph to
extract all possible rule chains handling traffic interested by the control applications
and give conclusion in a similar manner just mentioned.

The realization of the idea is practical in a small network with only a few number of
end-points (e. g., less than 10), otherwise it turns out to be too expensive. Moreover,
consider an example in which a control application states that it is interested in all
traffic with destination TCP port of 80, then all end-points need to be considered,
all rules including destination TCP port of 80 or any (wildcard) are involved. We
can envision how expensive it is to detect this hidden conflict class in either way of
dumping end-points’ traffic or inspecting rule chains.

It is also uncertain how the interested traffic of a control application would be
forwarded if it were not influenced by rules of the other that causes path changing.
This interpretative aspect adds up to the complexity in detecting conflicts of this class.

Although a satisfiable solution in detecting this conflict class could not be provided,
we find that it can be avoided by deploying the control application on the set of target
switches in a way such that all of its interested traffic will be forwarded through at
least one of these switches. For example, in experiment 8 in Chapter 3.6.3, the hidden
conflict can be avoided if the PPLB4D2 application is deployed on both switches S5
and S6.

Coping with the fifth hidden conflict class: action suppression by packet
modification
If a packet is modified in the target switch(es) of the control application before being
sent to the controller, we can detect this kind of conflict in very much the same way
as for the first hidden conflict class.

Otherwise, conflicts of this class and the first class are mutually exclusive. It can
only occur for a control application in its target switches if the first class’ conflicts do
not exist for that application in those switches. For each rule in the target switches
of the control application that escalates packets to the control plane, we need to trace
back the rule chain connected to it in the rule graph (see Section 5.4.2), then check
if the packet was modified by one of these rules and if the original packet or the
intermediate packet is of interest of the considered control application. A warning
for this kind of hidden conflict can be raised if this holds.

We take an example to illustrate how the candidate rule chains can be found. As-
sume that each rule table has at least a table-miss rule that sends packets to the
controller (which is typical in OpenFlow SDN), then rules in the adjacent switches
directing matched traffic to the target switches of the control application in concern
need to be examined, because they can introduce traffic unmatched by any rules in
these target switches but only the table-miss rule. If a rule satisfies this condition, all
rule chains containing it are candidate for checking against hidden conflicts of this
class.

5.8 Complexity 181

A packet can be transformed multiple times before reaching the target switches. We
can only tell that the packet arriving at the target switches used to be the one inter-
ested by the control application, but we could not tell with certainty how it would
be if that packet were not modified, or if it were modified in some way beneficial to
this application. This can only be asserted precisely in a separate test-bed replicating
the current network and with isolated execution of the control application, but it is
prohibitively expensive as discussed in Section 5.6.2. The conclusion on the presence
of hidden conflicts of this class in the co-deployment of control applications is thus
interpretative, a warning about their potential occurrence is more suitable.

Coping with the hidden conflict classes: undue trigger and tampering with event
subscription
An attack can employ the mechanism similar to the speculative method employed
in the hidden conflict predictor (see Section 5.7.1) to trigger control applications in
installing rules or removing rules, which causes hidden conflicts of undue trigger
class. If the SDN implementation allows the dynamic subscription/unsubscription
for certain events by control applications, the attacker can also act as an applica-
tion and register/deregister events once he is able to intercept the communication
channel between the controller and applications, leading to the tampering with event
subscription hidden conflicts.

In practice, all communication channels between the controller and the applica-
tions, and between applications need to be secured to avoid these kinds of attack,
e. g., by using strong encryption techniques. In addition, all applications must be
authorized before they can participate in controlling the network. Some approaches
relevant for this purpose include FortNOX, which is a software extension of the NOX
OpenFlow controller employing the role-based authorization and security constraint
enforcement [88], and FRESCO, being a framework for security application develop-
ment [95].

5.8 Complexity
The detection of conflicts includes the detection of the individual conflict classes:
local, distributed and hidden conflicts. Consider a network with diameter d having
s switches, each switch has at most t rule tables, each table contains at most r rules,
there are a control applications, each specifying at most i interested traffic patterns.
In building the rule graph for detecting distributed conflicts, we examine the worst
case where a rule always has connections to all rules in its next hop (being the next
rule tables or the first table in its next hop).

We show in Table 5.1 the worst-case complexity in detecting or coping with each
conflict class according to our proposed measures.

182 5 Conflict Detection

• When a new rule is inserted in a rule table, it is checked against r rules in that table
for local conflicts. The complexity in the worst case is O(r), for all local conflict
classes (LC1,2,3,4,5). It is also checked for hidden conflicts HC1 event suppression
by local handling by comparing with all interested traffic patterns of each control
application, the worst-case complexity is O(ai).

• In building the rule graph, which includes the introduction/removal of a rule
to/from the rule graph, the worst case induces the complexity of O(rtd−1) if that
rule is the first rule in the longest rule chain handling the same traffic slice. The
longest rule chain’s length is td since it contains rules in each rule table of all
switches along the network diameter. The best case complexity is O(1) if that rule
is in the end of the rule chain.

• Distributed conflicts are inferred from the rule graph, the worst-case complexity
of their detection aligns with that of the rule graph building in the worst case. We
notice that, as the loop in building the rule graph is detected and excluded from
further establishment of the rule chain (also path), there would be no infinite rule
chain arising due to possible loops. Once the rule graph is built, the detection
of traffic looping or traffic dropping corresponds to the search for vertices of the
loop/drop pattern. The worst-case complexity aligns with the maximum number
of vertices in the rule graph, being O(str). Our measures against the distributed
and hidden conflicts related to traffic looping/dropping (DC1,2,3,4 and HC2,3) have
therefore this worst-case complexity.

• The worst-case complexity of the measures to cope with distributed and hidden
conflict classes related to changes to paths (DC7, HC4) is O((s − 1)rtd) as we
have to examine rules in all switches other than the target switches of the control
application under consideration. For each of these switches, the number of rule
chains to be checked is at most rtd.

• For those classes related to packet modification (DC5,6 and HC5), the worst-case
complexity is O(rtd) in case we have to examine all the longest rule chains con-
taining rules in the target switches of the control application under consideration.

The worst-case complexity for each class is assessed qualitatively as low, medium or
significant in Table 5.1 for intuitiveness. As mentioned in Section 5.7, the hidden
conflict classes undue trigger and tampering with event subscription require security
measures in the control plane and are not examined further in our work.

5.9 Practical implications and conclusions
We have introduced the general tools including multi-property set, ·r operator and
its algebra, match-map, actmap, rule graph, and presented their application in detect-
ing or coping with conflicts in SDN. These tools enable the intuitive and efficient
detection of local conflicts, distributed conflicts of the classes policy suppression by
downstream traffic looping/dropping and hidden conflicts of the class event suppres-

5.9 Practical implications and conclusions 183

Class Target Rules Worst-case Complexity Output

LC1,2,3,4,5 rules in TS O(r), low rules in TS causing LC

DC1,2,3,4 rules (vertices) in RG exposing loop/-
drop patterns

O(str), medium rule chains in RG causing DC

DC5,6 rules in TS and rule chains in RG con-
taining them

O(rtd), significant rules chains in RG causing DC

DC7 rules in switches other than TS O((s − 1)rtd), significant rules chains in RG causing DC

HC1 rules in TS O(ai), low rules in TS causing HC

HC2,3 rules (vertices) in RG exposing loop/-
drop patterns

(O(str)), medium rule chains in RG causing HC

HC4 rules in switches other than TS O((s − 1)rtd), significant rule chains in RG causing HC

HC5 rules in TS and rule chains in RG con-
taining them

O(rtd), significant rule chains in RG causing HC

Table 5.1: Worst-case complexity of the measures to detect or to cope with conflicts. LC: Local Conflict, DC: Distributed
Conflict, HC: Hidden Conflict, RG: Rule Graph, TS: Target switches of the control applications. The conflict classes in
the first column are numbered for brevity in this table, the mapping of class name-number is shown in Table 5.2.

sion by local handling. The derivation of the other classes’ conflicts experiences the
interpretative nature, some with extremely high complexity. We have discussed alter-
natively the measures to cope with them, in which warnings are issued for potential
conflicts.

Class number in Table 5.1 Class name

1 Shadowing

Local 2 Generalization

Conflicts 3 Redundancy

(LC) 4 Correlation

5 Overlap

1 Policy suppression by downstream traffic looping

2 Policy suppression by upstream traffic looping

Distributed 3 Policy suppression by downstream traffic dropping

Conflicts 4 Policy suppression by upstream traffic dropping

(DC) 5 Policy suppression by downstream packet modification

6 Policy suppression by upstream packet modification

7 Policy suppression by changes to paths

1 Event suppression by Local Handling

Hidden 2 Event suppression by upstream traffic looping

Conflicts 3 Event suppression by upstream traffic dropping

(HC) 4 Event suppression by changes to paths

5 Action suppression by packet modification

Table 5.2: Mapping between the names of conflict classes and numbers in Table 5.1

In practice, traffic dropping and traffic looping, if not intended (e. g., by a firewall),
need to be detected and resolved. The conflicts related to these incidents are there-
fore remedied accordingly, they include the four distributed conflict classes policy
suppression by downstream/upstream traffic looping/dropping and the two hidden con-
flict classes event suppression by upstream traffic looping/dropping. Our proposed rule

184 5 Conflict Detection

graph paves the way for effective methods to identify traffic looping and dropping
in the network. The cases in which a packet is modified multiple times in transit
can also be alarming and worth a close examination. The rule graph is handy in
determining them according to the algorithm proposed by Reyes (see Algorithm 8
in Section 5.6.2). The two distributed conflict classes policy suppression by down-
stream/upstream packet modification and the hidden conflict class action suppression
by packet modification are tackled by this manner. It is prohibitively expensive to de-
tect distributed and hidden conflicts related to changes to paths. However, these can
be prevented by choosing the target switches of a control application in such a way
that all of its interested traffic must flow across these switches. The two remaining
hidden conflict classes undue trigger and tampering with event subscription need to
be handled by security measures in the control plane and are not inspected in detail.

In the next chapter, we demonstrate the realization of the concepts presented in
this chapter via a prototype to detect local conflicts, traffic looping and dropping in
general, and hidden conflicts of the class event suppression by local handling. The work
of Reyes [90] in identifying traffic modified multiple times in transit by employing
the rule graph supplements our results.

6 Prototypical Implementation and Evaluation

Having established the conceptual methodology in Chapter 5, we demonstrate its re-
alizability via a conflict detection prototype. The arguments on the practical aspects
in detecting conflicts (see Chapter 5.9) drive our choice of functionalities for the pro-
totype, which aims at detecting local conflicts, general traffic looping and dropping,
and hidden conflicts of the class event suppression by local handling. The prototype
is extended by Reyes [90] to identify conflicts related to packet modification, supple-
menting the results of our work.

The prototype has been incrementally enhanced during the process of extracting
conflict patterns and properties according to the methodology in Chapter 3.7, there-
fore, we consider it to have been already evaluated against the collected dataset by this
process. In this chapter, we evaluate the prototype in two manners: designed and ran-
domly checked. We deploy rules in the data plane with known conflicts and have the
prototype identify them in the designed cases, the results are then controlled manu-
ally. In the randomly checked cases, the framework for automating experiments (see
Chapter 3.4) with the integrated conflict detection prototype is employed to perform
a large number of tests. When the number of conflicts detected by the prototype
exceeds a preset threshold, we select randomly a set of samples and analyse them to
confirm the outcome. The evaluation results indicate that the prototype is sound and
complete in detecting conflicts for the designed case. The number of conflicts found
in the latter case is large, causing the manual control process much time-consuming
for the whole set of detected conflicts, however, the quality of soundness can be
asserted on the selected conflict samples.

Finally, we share the insights acquired while developing and evaluating the proto-
type, which would benefit its employment in practice.

6.1 Conflict detection prototype
We have implemented a conflict detection prototype, which we name Conflict De-
tector, based on Ryu1, a component-based SDN framework completely realized in
the Python programming language. The practical aspects in detecting conflicts (see
Chapter 5.9) justify our decision on the functionalities of the detector: it covers all
local conflict classes, is able to detect the general traffic looping and traffic drop-
ping, and the hidden conflict class event suppression by local handling. Reyes [90]
extends the detector to cope with conflicts related to packet modification, we portray
the result from this part of his work as a supplement for our work. The prototype’s
codebase is available online2.

1 https://ryu.readthedocs.io
2 https://github.com/mnm-team/sdn-conflicts

186 6 Prototypical Implementation and Evaluation

Control App 1 ...Control App 2

Ryu SDN Controller

SDN Devices

Event

Method

Request

Instruction

Rule table Rule table

Method Method

Request

Response

Topology
Discovery

CM1

 ... Con�ict
Detector

Administrator

use
service

execute
methods

Event
Dispatcher

Parser/
Serializer

CM2 alert if
con�icts exist

Controller-
core

REST Service
install/remove/
modify rules

REST-based App ...

Libs

OpenFlow 1.3

Event/Method

Event Event

Figure 67: Communication of the conflict detector with other controller modules (CM) of the Ryu SDN framework.
The Conflict Detector and REST Service boxes are our added components.

6.1.1 Overview
The conflict detector is implemented as a controller built-in application. Figure 67
shows its communication with other controller modules, including Topology Discov-
ery, Event Dispatcher and Parser/Serializer.

• Event Dispatcher: each message from network devices sent to the controller is
wrapped in an event and is dispatched by the Event Dispatcher module to other
controller modules or control applications that have registered for that event. Con-
trol applications can also send events to each other via the Event Dispatcher, this
mechanism is exploited by the conflict detector to observe the methods/reactions
from other control applications to maintain the rule database and detect conflicts
therein.

• Parser/Serializer: this module is responsible for transferring messages from the
controller to the data plane, which includes installing/modifying/removing rules

6.1 Conflict detection prototype 187

in the data plane, sending packets (packet-out messages) or requests (e. g., to ask
for statistical data or rule tables of a device) to the data plane. The conflict detector,
on the one hand, intercepts methods from control applications to build the rule
database, on the other hand, asks the Parser/Serializer to realize these methods
in the data plane. Note that the communication of this module is one-way, only
from the controller to the data plane. Any response from the data plane to the
controller is handled by the Event Dispatcher module. Therefore, although the
conflict detector sends its requests, e. g., for retrieving the data plane’s rule tables,
to the Parser/Serializer, it gets the response from the Event Dispatcher module.

• Topology Discovery: this controller module discovers and maintains the state of
the network devices connected to the controller. Any introduction or removal
of a switch’s interface, a switch itself or a link is notified by this module via the
corresponding topology-related events to the interested control applications. The
detector indirectly uses the service of the Topology Discovery module to maintain
an updated global view of the network.

The conflict detector alerts the administrator if there exist conflicts in the data plane
or the rules to be installed will lead to conflicts. The detector can work in two modes:
passive or active. In the active mode, it does not allow a new rule to be deployed
if that rule would yield conflicts. In the passive mode, it informs the administrator
of the situation while letting the rule be deployed in the meantime. For examining
conflicts and evaluating the prototype, we execute the detector in the passive mode
by default.

We implemented a REST service that allows the REST-based applications (see
Chapter 3.5.1) or the administrator to interact with the network. In order to detect
conflicts from these sources, this REST service is treated as a normal control appli-
cation, i. e., its methods are also intercepted and analysed by the conflict detector.

The communication between the controller and the data plane is performed via
the OpenFlow 1.3 protocol [79].

6.1.2 Conflict detector as a Ryu application
Figure 68 shows the classes on which the prototype is built. The RyuApp is shipped
with the Ryu framework, the other classes are implemented on our own. A Ryu
application is a subclass of the RyuApp class. The TopologyDiscovery class uses the
service of the existing Topology Discovery controller module to maintain the updated
global view of the data plane, this information is important in detecting conflicts,
e. g., in tracking how a certain packet is handled in the network to reason about
distributed conflicts. Our prototype is realized in the ConflictDetector class which
inherits the ARPCache class, ARPCache is a subclass of the TopologyDiscovery class.

188 6 Prototypical Implementation and Evaluation

RyuApp

#_CONTEXTS: dictionary
#_EVENTS: list
+OFP_VERSIONS: list
+observers: dictionary
 ...

+send_event_to_observers(event,state)
 ...

ARPCache

+arp_cache_database: dictionary
 ...

+packet_in_handler(event)
+discover_arpmapping(ipv4)
 ...

Con�ictDetector

+rule_database: dictionary
+local_conflict_rules: dictionary
+distributed_conflict_rules: dictionary
+hidden_conflict_rules: dictionary
+rule_graph: dictionary
+dc_flag: integer = 0
+dc_timeout: integer
 ...

+detect_distributed_conflicts()
+detect_hidden_conflicts_eslh()
+build_rule_graph()
+flowmod_handler()
 ...

TopologyDiscovery

+net: dictionary = Digraph (networkx)
+all_switch_ports: dictionary
+non_interswitch_ports: dictionary
+interswitch_ports: dictionary
 ...

+switch_features_handler(event)
+switch_enter_handler(event)
+switch_leave_handler(event)
+link_add_handler(event)
+link_delete_handler(event)
 ...

Figure 68: The class diagram of the conflict detector. The visibility of the classes' attributes and operations accords
with the UML conventions, i. e., +: public, -: private, #: protected.

TopologyDiscovery class
This class maintains the topology information based on the topology-related events,
e. g., switch leaving/entering, link adding/deleting events. The network topology is
encoded in a directed graph implemented by the networkx3 library.

ARPCache class
This class maintains the mapping between the MAC addresses and IPv4 addresses
of all end-points involved in transmitting traffic in the data plane. It also stores the
information regarding the datapath ID of the switch that an end-point is connected
to and on which port number of that switch. The information provided by the ARP-
Cache and TopologyDiscovery classes is sufficient to infer all possible paths (including
the shortest path) between two given end-points, which is leveraged by some control
applications, e. g., shortest path first routing.

Utility class
In addition to the above classes, we introduce the Utility class (not shown in Fig-
ure 68). All control applications employed for our study of conflicts must inherit
this class to invoke the add_flow, modify_flow or remove_flow functions once they
wish to make some change in the data plane. Thereby all methods from control appli-

3 https://networkx.org/

6.1 Conflict detection prototype 189

cations are relayed by the Event Dispatcher controller module to the conflict detector,
which analyses them to explore conflicts.

6.1.3 Building the rule database
The conflict detection prototype aims at detecting conflicts between control applica-
tions that install rules handling TCP or UDP traffic with IPv4 addresses. These rules
range from a broad rule that specifies only a single match field, e. g., the ingress port
of a packet in a switch or the destination MAC address, to a much more specific rule
with most match fields specified. With that goal and the knowledge of the control
applications involved, we choose the following matchmap template and actmap tem-
plate:
matchmap template: ingress port, EtherType, src IPv4, dst IPv4, IP protocol, src TCP
port, dst TCP port, src UDP port, dst UDP port
actmap template: new src IPv4, new dst IPv4, new src TCP port, new dst TCP port,
new src UDP port, new dst UDP port, list of output ports
Each request from a control application on change in the data plane corresponds to
an event, which is relayed by the Event Dispatcher module to the conflict detector. If
a new rule governs TCP or UDP traffic, it is stored in the rule database of the conflict
detector. Its match fields and actions are mapped to the chosen matchmap template
and actmap template to obtain its matchmap and actmap according to Definitions 5.9
and 5.13 in Chapter 5.2. The list of next hops necessary for the detection of conflicts
spanning multiple devices (e. g., distributed conflicts) is inferred from the rule’s ac-
tion and the information of the TopologyDiscovery class. Consequently, a rule entry
in the rule database looks like:
switch’s datapath ID, table ID, rule number, cookie, cookie mask, hard timeout, idle
timeout, priority, match, action, next hops, matchmap, actmap
The tuple (switch’s datapath ID, table ID, rule number) identifies a rule in the whole
rule database.

If a rule governs layer 3 traffic but specifies only layer 2 addresses, e. g., it con-
tains MAC addresses but not IPv4 addresses, these addresses are mapped to the
corresponding layer 3 addresses based on the information from the ARPCache class.
Hence, we do not formulate the local conflicts of imbrication class caused by rules
specifying addresses in different layers as pointed out in the work of Pisharody [86].

If the new rule does not govern TCP or UDP traffic, e. g., its field of EtherType is
not 0x0800 (for IPv4) or its IP Protocol field is 1 (for ICMP traffic), this rule is not
stored in the rule database or checked against conflicts but gets deployed right off in
the data plane. Therefore, a number of unrelated rules, such as rules handling ARP,
ICMP traffic, are excluded from the rule database, which enhances the performance
of the conflict detector.

190 6 Prototypical Implementation and Evaluation

6.1.4 Conflict detector's mechanics
The conflict detector is executed in two major threads: the main thread responsible
for detecting local and hidden conflicts, and the other thread responsible for the
distributed conflict detection. Its mechanics is illustrated in Figure 69.

• The main thread intercepts all methods/reactions from control applications to build
the rule database, and to control the variables triggering the detection of distributed
conflicts in the other thread. Every time a new rule is to be installed, the main
thread checks for local and hidden conflicts if that rule is realized according to
Algorithm 6 in Chapter 5.5. By default, the detector operates in the passive mode,
i. e., it lets a rule deployed even if that rule might be in conflict with others. In
this mode, the request from a control application is first implemented in the data
plane to minimize the reaction time of the control plane, before other steps are
carried out by the conflict detector. In the active mode, conversely, a request must
be checked against local and hidden conflicts before it can be deployed in the data
plane, thus causing higher latency in the reaction time of the controller.

• The distributed conflict thread executes in a loop that checks dc_flag in every
dc_timeout period. If dc_flag is set to 1, it detects distributed conflicts by building
or updating the rule graph from the rule database as described in Chapter 5.4. Note
that every time a request (as an event) to install a new rule or remove an existing
rule emerges, the main thread clears dc_flag, processes the request, and sets this
flag afterwards, thus the detection of distributed conflicts is only performed if no
request comes up during the dc_timeout period. Moreover, it is executed only once
after the last request and is triggered again only by the next request. This tactic
has the following advantages.

– Reducing the overhead in detecting distributed conflicts compared to the case
in which it is called every time a rule is installed or removed. In other words,
the detection of distributed conflicts does not necessarily run every time a single
rule is installed or removed, but only after a “round” of new rules are deployed
or existing rules are removed (note that such a “round” can contain only one
rule).

– Reducing the probability of misleading conclusion of distributed conflict cases.
When a packet flow comes into the network, a sequence of rules can be installed
in different devices to handle it. The detection of distributed conflicts on each
installation of a single rule could cause the detector to mistakenly alert of traffic
dropping due to lacking of rule handling a new packet flow. By waiting for a
timeout period after the last rule deployment, we assume that all rules handling
the new packet flow have been completely installed.

However, it has the disadvantage that distributed conflicts can only be detected
after the rules causing them were deployed instead of a possibly expected measure

6.1 Conflict detection prototype 191

+ Set dc_�ag = 0
+ Start a thread to detect
 distributed con�icts

+ Start the Con�ict Detector
+ Set the timeout for
distributed con�icts
dc_timeout = DCTO

The main thread in�uences
the Distributed Con�ict thread
via dc_�ag

dc_�ag=0 wait for
dc_timeout

period

+ build/update the
rule graph

+ check distributed
con�ict, raise

an alarm if
con�icts exist

+ reset dc_�ag = 0

dc_�ag=1

check dc_�ag

Wait for a method

A method is an event,
it can emanate from
control applications or
from the administrator
to install/remove/modify
rules in the data plane

<<Event>>
 Method

A method is issued?

Yes

No

reset dc_�ag =0

mode of the detector?

+ implement the method
in the data plane

+ detect local con�icts
and hidden con�icts,

raise an alarm
if con�icts exist

+ update the rule database
+ set dc_�ag = 1

passive
detect local con�icts
and hidden con�icts

con�icts exist?

raise an alarm
of con�icts

yes

+ deploy the method
in the data plane

+ update the
rule database

+ set dc_�ag = 1

active

no

Main thread

Distributed Con�ict

thread

Figure 69: The mechanics of the conflict detector. The Distributed Conflict thread is meant to detect distributed
conflicts, in our case it targets the general traffic looping and traffic dropping. Reyes [90] implements the detection of
conflicts related to packet modification also in this thread.

192 6 Prototypical Implementation and Evaluation

to prevent them from happening. In this version of our detector, the thread for
distributed conflicts detects general traffic looping and traffic dropping. The detec-
tion of conflicts related to packet modification implemented by Reyes [90] is also
a part of this thread.

Detecting local conflicts
Upon receiving a new rule to be installed in a rule table of a switch that governs TCP
or UDP traffic, the conflict detector collates the tuple (priority, matchmap, actmap) of
the new rule with that of each rule in the same rule table to detect local conflicts after
the Algorithm 6 presented in Chapter 5.5. The detector reports all rule pairs exposing
local conflicts and the conflict classes. The detector also stores this information
using the reference number of the rule in the rule database, i. e., the tuple (switch’s
datapath ID, table ID, rule number) (see Section 6.1.3), this information is exploited
in detecting distributed conflicts.

Detecting traffic looping and traffic dropping
The conflict detector builds the rule graph from the rule database to detect traffic loop-
ing and traffic dropping as described in Chapter 5.6.1. The rule graph is a directed
graph implemented by the networkx4 library. This process excludes the inactive rules
(see Definition 5.20 in Chapter 5.4.1) due to the redundancy or shadowing local con-
flicts. Each case of traffic looping/dropping is reported together with a sequence of
involved rules.

Detecting hidden conflicts of the class event suppression by local handling
Hidden conflicts of this class are detected according to Algorithm 9 in Chapter 5.7.2,
in which each control application specifies its target traffic as header fields, target
switches and if it is interested in packet-in events. The detection is carried out in the
main thread in a similar manner applied for local conflicts.

Detecting conflicts related to packet modification
These conflicts are determined based on Algorithm 8 in Chapter 5.6.2. The conflict
detector is extended by Reyes [90] to implement this algorithm. The detection is
performed in the distributed conflict thread, the rule pair transforming a certain
slice of traffic (i. e., that traffic is modified at least twice) are reported if found.

6.1.5 Execution of the conflict detector
The detector program detector.py can be executed as a normal Ryu application. For
instance, to detect conflicts between the two control applications End-point Load
Balancer (EpLB) and Path Load Balancer (PLB), the following command is invoked:

4 https://networkx.org

6.1 Conflict detection prototype 193

ryu-manager --observe-links detector.py eplb.py plb.py

The observe-links option enables the topology discovery service required by the de-
tector to maintain the global overview of the network, which is necessary in building
the rule graph for detecting conflicts related to rules in multiple devices.

Our REST service, named utility_rest.py, can be co-deployed with other control
applications and the detector, so that rules can also be installed via REST APIs by
REST-based applications or by the administrator:

ryu-manager --observe-links detector.py utility_rest.py eplb.py plb.py

A rule can then be installed via the curl utility5 and conflicts are raised by the detector
if any. An example of the rule installation via curl:

curl -X POST -d '{"dpid":1,"match":{"in_port":1, "eth_type":2048, "ipv4_src
↪→ ":"192.168.1.1", "ipv4_dst":"192.168.1.3"}, "actions":[{"type":"OUTPUT","
↪→ port":2}]}' http://<controller IP>:8080/utility/addrule

The detector can also be integrated into our framework for automating experiments
to detect conflicts in a massive number of experiments. As described in Chapter 3.4.7,
the command used by our framework to deploy applications in the controller is:

ssh -n controller "sh -c 'ryu-manager --observe-links $applist &' > /dev/null
↪→ 2>&1"

in which $applist contains the list of control applications, e. g., plb.py, eplb.py. The
integration of the detector is accomplished by appending the program detector.py into
this $applist variable. The reproduction of our experiments, including those used
for evaluating the conflict detector, can be achieved by following the instructions
mentioned in Chapter 3.4.7. The steps to integrate a new control application into the
framework for experiments are also described there.

6.1.6 Output of the conflict detector
The detector logs various information periodically throughout the experiments. The
information related to the installed rules, the rule graph and the conflicts is most
important in terms of conflict detection. A sample of this information is:

self.ft =
1:{0: {1: (512, 2, OFPMatch(oxm_fields={‘eth_type’: 2048, ‘in_port’: 1, ‘ipv4_src’: ‘172.16.1.1’, ‘ipv4_dst’:

↪→ ‘172.16.1.3’}), [OFPActionOutput(len=16,max_len=65509,port=3,type=0)], [2], (1, 2048, 0,
↪→ ‘172.16.1.1’, ‘172.16.1.3’, -1, -1, -1, -1), (-1, -1, -1, -1, -1, -1, {3})),

5 https://linux.die.net/man/1/curl

194 6 Prototypical Implementation and Evaluation

2: (513, 3, OFPMatch(oxm_fields={‘eth_type’: 2048, ‘ipv4_dst’: ‘172.16.1.3’}), [OFPActionOutput(len
↪→ =16,max_len=65509,port=4,type=0)], [3], (-1, 2048, 0, -1, ‘172.16.1.3’, -1, -1, -1, -1), (-1, -1, -
↪→ 1, -1, -1, -1, {4}))}}

2:{0: {1: (512, 2, OFPMatch(oxm_fields={‘eth_type’: 2048, ‘in_port’: 1, ‘ipv4_src’: ‘172.16.1.1’}), [
↪→ OFPActionSetField(ipv4_src=‘172.16.1.2’), OFPActionOutput(len=16,max_len=65509,port=2,type
↪→ =0)], [-2], (1, 2048, 0, ‘172.16.1.1’, -1, -1, -1, -1, -1), (‘172.16.1.2’, -1, -1, -1, -1, -1, {2})),
2: (513, 3, OFPMatch(oxm_fields={‘eth_type’: 2048, ‘ipv4_dst’: ‘172.16.1.3’}), [OFPActionOutput(len

↪→ =16,max_len=65509,port=2,type=0)], [-2], (-1, 2048, 0, -1, ‘172.16.1.3’, -1, -1, -1, -1), (-1, -1, -
↪→ 1, -1, -1, -1, {2}))}}

...

number of nodes in rule graph = 18
number of edges in rule graph = 17
((3, 0, 2), (2, 0, 2)) {((3, 0, 2), (2, 0, 2)): ((-1, 2048, 0, -1, ‘172.16.1.3’, -1, -1, -1, -1), 3),

((5, 0, 2), (3, 0, 2), (2, 0, 2)): ((-1, 2048, 0, -1, ‘172.16.1.3’, -1, -1, -1, -1), 3),
((1, 0, 2), (3, 0, 2), (2, 0, 2)): ((-1, 2048, 0, -1, ‘172.16.1.3’, -1, -1, -1, -1), 3)}

((4, 0, 1), (2, 0, 2)) {((4, 0, 1), (2, 0, 2)): ((-1, 2048, 0, ‘172.16.1.1’, ‘172.16.1.3’, -1, -1, -1, -1), 3)}
((5, 0, 4), (5, 0, -1)) {((3, 0, 5), (5, 0, 4)): ((-1, 2048, 0, ‘172.16.1.2’, ‘172.16.1.6’, -1, -1, -1, -1), -1)}
((4, 0, 3), (4, 0, -4)) {((3, 0, 3), (4, 0, 3), (5, 0, 3), (3, 0, 4), (4, 0, 3), (4, 0, -4)): ((-1, 2048, 0, ‘172.16.1.4’,

↪→ ‘172.16.1.5’, -1, -1, -1, -1), -1)}
...

self.lc_cfl_rules =
1:{0: {1: [(2, ‘class Shadowing2 (local conflicts)’, (2, 3, 1))]}}
2:{0: {1: [(2, ‘class Correlation2 (local conflicts)’, (2, 4, 1))]}}
...
Number of local conflicts by dpid: [6, {1: {‘sha2’: 1}, 2: {‘cor2’: 1}, 3: {‘gen1’: 1}, 4: {‘red’: 1}, 5: {‘cor3’: 1}, 6: {‘

↪→ ove’: 1}}]
Number of local conflicts by class: [6, {‘gen1’: 1, ‘cor3’: 1, ‘cor2’: 1, ‘sha2’: 1, ‘red’: 1, ‘ove’: 1}]

self.hc_cfl_rules =
‘pplb4s’: [((2, 0, 2), [[-1], 2048, [6, 17], [‘192.168.1.3’], [‘172.16.1.3’], [-1], [-1], [-1], [-1]])]
Number of rules causing hidden conflicts by control app: {‘pplb4s’: 1}

self.dt_cfl_rules =
1:[(((3, 0, 3), (4, 0, 3), (5, 0, 3), (3, 0, 4), (4, 0, 3), (4, 0, -4)), (-1, 2048, 0, ‘172.16.1.4’, ‘172.16.1.5’, -1, -1, -1, -1))

↪→]
2:[(((3, 0, 5), (5, 0, 4)), (-1, 2048, 0, ‘172.16.1.2’, ‘172.16.1.6’, -1, -1, -1, -1))]
Number of distributed conflicts by class: {‘drop’: 1, ‘loop’: 1}

The variable self.ft stores the rule tables containing all rules governing interested
traffic, which is TCP/UDP traffic in this case. The sample shows rules in table 0 of
devices 1 and 2, encoded with the dictionary data type of the python programming
language. For example, rule (1,0,2) has cookie 513, priority 3, next hop as device with
ID 3, matchmap (-1, 2048, 0, -1, 172.16.1.3, -1, -1, -1, -1), actmap (-1, -1, -1, -1, -1, -1, 4).

The rule graph has 18 nodes (vertices) and 17 edges, four edges are shown in the
sample together with their attributes in the form of (path: (matchmap, priority)). The
edge ((5, 0, 4), (5, 0, -1)) denotes a traffic dropping distributed conflict, the edge ((4,
0, 3), (4, 0, -4)) embodies a traffic looping distributed conflict.

6.2 Evaluation 195

The detected local conflicts are logged in the variable self.lc_cfl_rules, rule (1, 0, 1) in
the sample is shadowed by rule (1, 0, 2), the conflict pattern is (2, 3, 1). The local
conflict patterns are encoded as tuples of numbers in our implementation, each tuple
reflects the relationship between two rules in terms of (priority relationship, match
relationship, action relationship), the pattern (2, 3, 1) indicates that the former rule
has lower priority than the latter rule, its match space is a proper subset of the latter
and their actions are different (see Chapter 5.5 for more details).

The detected hidden conflicts are stored in the variable self.hc_cfl_rules, the sample
reports that rule (2, 0, 2) causes a hidden conflict of the class event suppression by
local handling to the control application PPLB4S (Source-based Passive Path Load
Balancer).

The variable self.dt_cfl_rules holds information of the detected distributed conflicts.
A traffic looping conflict and a traffic dropping conflict are notified, the path and
matchmap of the influenced traffic are shown.

We are able to verify the conflicts arising based on the above logged information.
For instance, a local conflict between two rules reported in the variable self.lc_cfl_rules
can be controlled by checking their details regarding the priority, match fields and
actions in the rule tables stored in the variable self.ft, a distributed conflict can be
examined by referring additionally to the edges of the rule graph. These tactics are
applied in evaluating the conflict detector in the next section.

6.2 Evaluation
We evaluate the conflict detector based on the test-bed environment described in
Chapter 3.4.1. A set of control applications are tested on two new network topolo-
gies besides the REST service that is employed for installing rules with pre-designed
conflicts. To be able to confirm the realizability of the conflict detector, we attempt
to evaluate the soundness and completeness of its detection results. These qualities
are controlled in the designed and in randomly checked scenarios.

6.2.1 Network topologies
We build the evaluation test-beds associated with the topologies simulating the Mu-
nich Scientific Network (MWN) backbone6 and the Stanford University’s backbone
network [50]. The MWN backbone connects different university campuses, institu-
tions in Bavaria, Germany to serve the research, teaching and study demands. The
network is complex, as of 2019, it is constituted of 91 backbone routers, more than
1900 switches and more than 5000 LANs, the statistic data in 2017 shows that up to
220.000 devices connected to this network within a week, it received ≈1.6 PByte/-
month and sent out ≈0.7 PByte/month. Our topology (Figure 70) simplifies most of

6 https://www.lrz.de/services/netz/mwn-ueberblick_en/

196 6 Prototypical Implementation and Evaluation

these aspects while preserving only the backbone network “shape” with 21 switches
and uses 21 representative end-points for generating traffic. Similarly, the Stanford
University network (Figure 71) containing 26 switches distributed in three layers
(backbone, distribution, access) is connected with 14 symbolic end-points.

Virt.FW

Virt.FW

Virt.FW

Virt.FW

Internet

Hochschule
Weihenstephan

LMU

LRZ

TUM

Garching

Großhadern

11

2

3

4

5

6

7 8

9

10

11

12

13
14

15

16
17

18

19

20

21

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16 17

18

19

20 21

Figure 70: The simulated topology for the MWN's backbone network7

6.2.2 Evaluation results in designed cases
We deploy the REST service, named utility_rest.py, at the controller and install rules
via the curl utility as mentioned in Section 6.1.5.

ryu-manager --observe-links detector.py utility_rest.py

The rules are designed with known conflicts. An example of a designed shadowing
local conflict and a traffic looping distributed conflict on the MWN topology is:

{‘‘comment’’: ‘‘LC: shadow2’’}

7 https://www.lrz.de/services/netz/mwn-ueberblick/backbone.png

6.2 Evaluation 197

{‘‘dpid’’:1, ‘‘cookie’’:‘‘0x200’’, ‘‘priority’’:2, ‘‘match’’:{‘‘in_port’’:1, ‘‘eth_type’’:2048, ‘‘ipv4_src’’:‘‘172.16.1.1’’, ‘‘
↪→ ipv4_dst’’:‘‘172.16.1.3’’}, ‘‘actions’’:[{‘‘type’’:‘‘OUTPUT’’,‘‘port’’:3}]}

{‘‘dpid’’:1, ‘‘cookie’’:‘‘0x201’’, ‘‘priority’’:3, ‘‘match’’:{‘‘eth_type’’:2048, ‘‘ipv4_dst’’:‘‘172.16.1.3’’}, ‘‘actions’’:[{‘‘
↪→ type’’:‘‘OUTPUT’’,‘‘port’’:4}]}

{‘‘comment’’: ‘‘DC: Loop 3-4-5-3’’}
{‘‘dpid’’:3, ‘‘cookie’’:‘‘0x200’’, ‘‘priority’’:2, ‘‘match’’:{‘‘eth_type’’:2048, ‘‘ipv4_src’’:‘‘172.16.1.4’’, ‘‘ipv4_dst

↪→ ’’:‘‘172.16.1.5’’}, ‘‘actions’’:[{‘‘type’’:‘‘OUTPUT’’,‘‘port’’:4}]}
{‘‘dpid’’:4, ‘‘cookie’’:‘‘0x201’’, ‘‘priority’’:2, ‘‘match’’:{‘‘in_port’’:4, ‘‘eth_type’’:2048, ‘‘ipv4_src’’:‘‘172.16.1.4’’, ‘‘

↪→ ipv4_dst’’:‘‘172.16.1.5’’}, ‘‘actions’’:[{‘‘type’’:‘‘OUTPUT’’,‘‘port’’:5}]}
{‘‘dpid’’:5, ‘‘cookie’’:‘‘0x201’’, ‘‘priority’’:2, ‘‘match’’:{‘‘in_port’’:2, ‘‘eth_type’’:2048, ‘‘ipv4_src’’:‘‘172.16.1.4’’, ‘‘

↪→ ipv4_dst’’:‘‘172.16.1.5’’}, ‘‘actions’’:[{‘‘type’’:‘‘OUTPUT’’,‘‘port’’:1}]}

Backbone

Access

Distribution

1 2

3 4 5 6 7
8 9 10 11 12

13 14
15 16

17 18
19 20

21 22
23 24

25 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 71: The simulated topology for the Stanford's backbone network [50]

The conflicts detected by the detector are compared with our design to conclude
the soundness and completeness. This is possible thanks to the information logged
by the detector including the rules, the rule graph and the identified conflicts (see
Section 6.1.6). The results are shown in Tables 6.1 and 6.3, all conflicts are precisely
identified.

The conflicts concerning packet modification are evaluated separately by Reyes [90].
Scenarios for conflicts are carefully designed in advance using the framework for
automating experiments (see Section 6.1.5), and the conflicts identified by the detector
are controlled manually. The evaluation results from his work are synthesized in
Table 6.2. As explained in his work, the detector does not achieve the completeness
quality in some tests (e. g., tests 1, 2, 3, 4 on the Stanford topology and test 5 on the
MWN topology) because of the high latency in detecting conflicts of this type while
each test is restricted within a fixed time frame, this consequence is foreseeable due

198 6 Prototypical Implementation and Evaluation

to the significant complexity pointed out in Chapter 5.8. Yet, the soundness of the
detected conflicts is accomplished.

Test
Local conflicts Traffic Traffic Hidden conflicts

Shadowing Generalization Redundancy Correlation Overlap Loop Drop ESLH

1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4

5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5

Table 6.1: Evaluation results in the designed cases on the MWN's backbone network topology. Each cell shows the
number of conflicts detected by the prototype over the number of designed conflicts. ESLH stands for the hidden
conflict class Event Suppression by Local Handling.

Test MWN Stanford

1 2/2/2 2/1/1

2 5/5/5 2/1/1

3 6/6/6 4/2/2

4 8/8/8 4/2/2

5 10/7/7 2/2/2

Table 6.2: Evaluation results concerning conflicts related to packet modification in the designed cases on the MWN's
and Stanford's backbone network topologies . Each cell shows the number of designed conflicts, the number of
conflicts detected by the prototype, and the number of valid cases. This table is synthesized from the evaluation
results presented by Reyes [90] (Tables 7.3 and 7.4 in Chapter 7, page 92 of his thesis).

Test
Local conflicts Traffic Traffic Hidden conflicts

Shadowing Generalization Redundancy Correlation Overlap Loop Drop ESLH

1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4

5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5

Table 6.3: Evaluation results in the designed cases on the Stanford's backbone network topology. Each cell shows the
number of conflicts detected by the prototype over the number of designed conflicts. ESLH stands for the hidden
conflict class Event Suppression by Local Handling.

6.2.3 Evaluation results in randomly checked cases
We use the framework for automating experiments with the integrated conflict detec-
tor to run the tests automatically (cf. Section 6.1.5). Different control applications (de-
scribed in Chapter 3.5.2) with various settings are deployed on the simulated MWN
and Stanford networks. The number of conflicts that will occur in each test is un-
known before the test is finished. We select some samples of conflicts from those
reported by the detector to assess its correctness.

6.2 Evaluation 199

Dimensions Test space for MWN test-bed Test space for Stanford test-bed

App config. Each app has 1 config. Each app has 1 config.

App start order Same Same

App priority All combinations All combinations

Target switches EpLB:1, PPLB4S:2, HS:5, PE:10 EpLB: 15 16, PPLB4S: 5 6, PPLB4D: 1 2

Ept traf.prof. CBR CBR

Ept combi. (src-->dst) {3 4 7 8 13 14 15 16 19 21} -->{1 2 5 6 17 18} {9 10 11 12 13 14} -->{1 2 3 4 5 6 7 8}

Topology MWN Stanford

Transport type TCP/UDP TCP/UDP

Table 6.4: Evaluation settings for the randomly checked cases

Control applications
The fundamental functions including topology discovery and ARP cache are involved
in all experiments, so is the shortest path first routing operating as the background
application for the others, i. e., its rules are active at a network device only when other
control applications do not effect there. We deploy the control applications End-point
Load balancer (EpLB), Source-based Passive Path Load Balancer (PPLB4S), passive
Host Shadowing (pHS) and Path Enforcer (PE) on the MWN topology, the Stanford
topology is tested with EpLB, PPLB4S and PPLB4D (Destination-based Passive Path
Load Balancer). Each application has one configuration in the test.

• In the MWN test-bed, EpLB places rules on switch 1 to balance TCP/UDP traffic
destined to end-point 2 over end-points 1 and 2, PPLB4S deploys rules on switch
2 to direct TCP/UDP traffic sent by end-point 3 on all possible paths to the desti-
nation, pHS is active on switch 5 to redirect TCP/UDP traffic to end-point 6 if the
destination of this traffic is end-point 5, PE enforces the path through switches 10
and 8 for TCP/UDP traffic flowing through switch 10.

• In the Stanford test-bed, EpLB installs rules on switches 15 and 16 to balance
TCP/UDP traffic destined to end-point 3 over end-points 3 and 4, PPLB4S is active
on switches 5 and 6 to direct TCP/UDP traffic sent by end-points 3 and 4 on all
possible paths to the destination, PPLB4D monitors events on switches 1 and 2
and issues rules forwarding TCP/UDP traffic destined to end-points 7 and 8 on all
possible paths.

Tested dimensions
Table 6.4 describes the tested dimensions. Each control application has one config-
uration, they all start at the same time in each experiment, all combinations of the
priority in their co-deployment are tested. We use netcat and iperf to generate TCP
and UDP traffic in the CBR traffic profile between all combinations of end-points
shown in this table. The test space for the MWN test-bed contains 145 individual
experiments, the space for the Stanford test-bed has 22 experiments.

200 6 Prototypical Implementation and Evaluation

Results
It took more than 62 hours to complete 145 individual tests associated with the di-
mensions specified for the MWN topology, and more than 9 hours for 22 tests on
the Stanford topology. We choose randomly 5 tests on each topology to analyze the
results. The number of conflicts detected in most of the tests is large, for example,
a test on the MWN topology reports 27 Correlation local conflicts and 60 hidden
conflicts of the class Event Suppression by Local Handling, the total number of rules
stored in the rule database of the detector is 790 (see Test 1 in Table 6.5). It would be
excessively time-consuming to verify all reported conflicts as this process has to be
performed manually. Therefore, we choose to control for each conflict class at most
10 samples. The results are logged in Tables 6.5 and 6.6. For all of these randomly
selected samples, we are able to confirm that the conflicts identified by the detector
are precise.

Test
App # Local conflicts Traffic Traffic HC

Priority rules Sha Gen Red Cor Ove Loop Drop ESLH

1 (2,2,2,2) 790 0/0/0 0/0/0 0/0/0 27/10/10 0/0/0 0/0/0 0/0/0 60/10/10

2 (2,2,3,4) 803 0/0/0 0/0/0 0/0/0 26/10/10 0/0/0 0/0/0 0/0/0 60/10/10

3 (3,2,2,3) 816 0/0/0 0/0/0 0/0/0 27/10/10 0/0/0 0/0/0 0/0/0 60/10/10

4 (3,5,2,4) 789 0/0/0 0/0/0 0/0/0 25/10/10 0/0/0 0/0/0 0/0/0 59/10/10

5 (5,4,3,2) 791 0/0/0 0/0/0 0/0/0 24/10/10 0/0/0 0/0/0 0/0/0 60/10/10

Table 6.5: Evaluation results in the randomly checked cases on the MWN's backbone network topology. The App
Priority column shows the priority combination of the control applications (EpLB, PPLB4S, HS, PE) in the test, the #
rules column notes the number of rules stored in the rule database of the detector. Each cell of the columns for
conflicts shows the number of conflicts detected by the prototype, the number of conflicts that we select randomly
to control, and the number of conflicts that are identified correctly by the prototype in the selected set confirmed by
our manual control. Sha stands for Shadowing, Gen: Generalization, Red: Redundancy, Cor: Correlation, Ove: Overlap,
and HC ESLH stands for the hidden conflict class Event Suppression by Local Handling.

Test
App # Local conflicts Traffic Traffic HC

Priority rules Sha Gen Red Cor Ove Loop Drop ESLH

1 (2,2,2) 650 0/0/0 0/0/0 0/0/0 4/4/4 0/0/0 0/0/0 0/0/0 34/10/10

2 (2,3,4) 672 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 0/0/0 34/10/10

3 (3,2,2) 670 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 0/0/0 35/10/10

4 (3,4,2) 662 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 0/0/0 35/10/10

5 (4,3,2) 659 0/0/0 0/0/0 0/0/0 5/5/5 0/0/0 0/0/0 0/0/0 34/10/10

Table 6.6: Evaluation results in the randomly checked cases on the Stanford's backbone network topology. The App
Priority column shows the priority combination of the control applications (EpLB, PPLB4S, PPLB4D) in the test, the #
rules column notes the number of rules stored in the rule database of the detector. Each cell of the columns for
conflicts shows the number of conflicts detected by the prototype, the number of conflicts that we select randomly
to control, and the number of conflicts that are identified correctly by the prototype in the selected set confirmed by
our manual control. Sha stands for Shadowing, Gen: Generalization, Red: Redundancy, Cor: Correlation, Ove: Overlap,
and HC ESLH stands for the hidden conflict class Event Suppression by Local Handling.

6.3 Discussion 201

6.3 Discussion
We employ the conflict detection prototype as a means to evaluate the concepts and
results established in this research, comprising i) the conflict classes and their patterns
or properties, and ii) the methods to detect conflicts based on the multi-property set
notion, the relationship combination operator ·r, thematchmap and actmap concepts,
and the rule graph. Although their correctness is justified by the soundness and
completeness of the prototype in detecting conflicts, the performance aspect has not
been optimised. We are able to observe some performance indicators reflecting the
expensiveness in terms of detection time and memory usage when executing the
detector. This is conceivable as the detector needs to maintain the considerable data
about rules in the rule database and the rule graph. The same problem has been
raised and addressed to some extent in the related work that aims at the real-time
quality, such as VeriFlow [52] and NetPlumber [51]. Their strategies include using
efficient data structure, such as trie [116], for searching rules and parallelizing the
process of reasoning about anomalies by partitioning the rule graph in multiple sub-
graphs. These can be applied to improve our detector’s performance. As pointed
out in Section 6.1.4, the detection of distributed conflicts on each rule deployment
can yield misleading output if a sequence of rules are still being deployed in reaction
to a new traffic flow entering the network, while the real-time detection cannot be
achieved if the detector waits and reacts only after that whole rule sequence were
installed. No existing solution can tackle this issue, to the best of our knowledge. A
probable intriguing topic for future study could be to predict the rule sequence in
advance by some machine learning technique, the soundness of the detection results
would then be contingent on the precision of the rule sequence prediction.

In principle, it is not necessary that the rule database contains all rules in the data
plane, rather only those governing the traffic under consideration. For instance, we
may filter away all rules handling ICMP, ARP traffic and insert to the rule database
only those influencing TCP/UDP traffic. This is an important factor that helps im-
prove the detector’s performance as the size of the rule database and the rule graph
is reduced accordingly, thus accelerating the searching time. Another notable fac-
tor relates to the choice of the matchmap and actmap templates. Each new rule is
mapped to these templates to obtain itsmatchmap and actmap, before being stored in
the rule database. The comparison of rules is conducted based on these two “maps”.
The more “compact” templates lessen the time required for each comparison of a
rule pair, which is the crucial unit task for most time-consuming operations of the
detector, such as updating the rule database and the rule graph on the presence of
new rules to detect conflicts. The type of traffic being examined decides the template
fields, e. g., the matchmap template in case it is only required to check conflicts for
TCP traffic can be:

202 6 Prototypical Implementation and Evaluation

• matchmap template 1: ingress port, EtherType, src IPv4, dst IPv4, IP protocol, src
TCP port, dst TCP port or

• matchmap template 2: ingress port, src IPv4, dst IPv4, src TCP port, dst TCP port

Apparently, the latter template is more “compact” and sufficient for comparing rules
if the rule database contains only those regulating TCP traffic.

The conflict detector can be extended for checking invariants or policy compli-
ance, which are among the common concerns in operating a network and are often
addressed based on a graph of rules, e. g., forwarding graph in Veriflow [52] and AP-
Keep [119], propagation graph in HSA [50], plumbing graph in Netplumber [51]. Our
rule graph is equipped with a richer set of features than these graphs, thus can well
be suitable for these goals.

7 Conclusions and Prospects

The SDN paradigm enables an ecosystem in which control applications are loosely
coupled with the network infrastructure. On the one hand, this paradigm brings
more independence in developing control applications and boosts their innovation
cycle compared to the traditional network’s. On the other hand, it induces a higher
probability of conflicts when putting them together on the same infrastructure, due
to the fact that they may have different goals to be enforced in the network. Our
work aims at detecting conflicts within a given set of rules deployed in the network
infrastructure by various control applications. The entailed sub-goals include the
classification and localization of conflicts so that further efforts can be exerted, e. g.,
conflict orchestration, resolution or avoidance.

Our analysis of the formal analytical approach commonly employed in literature
shows that it is not sufficient for exploring conflicts in SDN. We opt for the experi-
mental approach in which we introduce a parameter space, a general methodology
for conducting experiments through this space and for studying conflicts. We ap-
ply this methodology in various subspaces formed by concrete network topologies,
control applications and end-point combinations. The immense experimental space
urges the quest of a method to reduce manual attempts in performing experiments.
For this purpose, we develop a framework that automates most steps in the method-
ology. Each subspace is encoded in a structured text file, the framework derives a set
of settings from this encoding and conducts experiments, the expected and observed
network behaviour are compared to determine settings with anomalies, the results are
logged in a dataset. Eventually, more than 11,700 experiments have been conducted
by this framework. It also supports the reproduction of an individual experiment
from the dataset for examining conflicts. The anomaly cases reported in the dataset
are analysed manually in the beginning, conflict classes are formulated and featured
by their patterns or properties. In the next step, we employ the continuous integra-
tion process in building the conflict detection prototype and re-integrating it in the
massive experimentation by the framework. Each anomaly logged in the dataset, un-
recognizable by the prototype, is manually analysed. If a new conflict class is found,
it is built into the prototype, which is then employed in subsequent experiments. This
continuous integration approach not only enhances the conflict detection prototype
throughout the experimentation process, but also helps reduce the time and effort in
manually analysing anomaly cases, thus enabling the exploration of more subspaces
to study conflicts.

The experimental approach yields fruitful outcomes: we have established a conflict
taxonomy encompassing local conflicts, distributed conflicts and hidden conflicts.
Local conflicts occurs between rules in a single rule table. They are categorised into
various classes, being shadowing, generalization, redundancy, correlation and overlap.
Distributed conflicts are featured by the unexpected combined effect of rules in dif-

204 7 Conclusions and Prospects

ferent rule tables or different network devices. They are aligned in seven classes by
the causes (traffic looping, traffic dropping, packet modification, changes to paths) and
the direction of the incidents (downstream or upstream, the direction does not apply
for the changes to path cause). Remarkably, we have discovered a completely new
anomaly type, namely hidden conflict, which emanates from the side-effect of rule
deployment and requires the insight of the control plane for their detection. Hidden
conflicts are classified into seven classes: event suppression by local handling, event
suppression by upstream traffic looping, event suppression by upstream traffic dropping,
event suppression by changes to paths, action suppression by packet modification, undue
trigger and tampering with event subscription.

Each conflict class is distinguishable by its unique pattern or property. This is
exploited in conceiving the algorithms and developing the conflict detection proto-
type in the aforementioned continuous integration process. In order to compare
SDN rules, which is crucial in detecting conflicts, we propose a new concept, named
multi-property set, and the relationship combination operator ·r. These facilitate the
rule comparison without the restrictions or assumptions incurred by existing solu-
tions, such as, a rule match must include layer 4’s information. More valuable trait of
these tools is that they are general and thus applicable for any kinds of multi-property
sets. For example, they can be employed for comparing the conditions (or match cri-
teria) of ACL or IPTables rules, or to derive the relationship between two given set of
flowers based on various attributes, e. g., color, number of petals, scent. To leverage
the multi-property set and the ·r operator for automatic rule comparison, we intro-
duce additionally the matchmap and actmap concepts, which allows heterogeneous
SDN rules to be represented in a uniform format. The pattern-based identification of
local conflicts can then be realized in a simple manner. Conflicts related to rules in
different rule tables are handled by the rule graph, being a directed graph reflecting
how traffic flows in the data plane. We examine hidden conflicts first by a specula-
tive prediction method, in which control applications are considered as black boxes.
We observe, however, critical issues concerning the large number of fake events, the
state poisoning of stateful control applications and the interference between fake and
genuine events. Consequently, we adopt a more “relaxing” approach which requires
extra information from control applications for their detection, e. g., target switches,
interested traffic.

The excessive complexity and the interpretative nature in identifying conflicts of
some classes hamper the efficient realization of their detection. Our discussion on
their practical aspects suggests alternatively reasonable measures, which are imple-
mented in our conflict detection prototype. The evaluation of the prototype demon-
strates the realisability and correctness of our proposed concepts and algorithms.

Our work provides a firm foundation for farther efforts in handling conflicts in
SDN. Conceivable areas that could directly profit by our achievements include con-
flict orchestration, resolution and avoidance. The more comprehensive the detection’s
outcome is, the more benefits these areas gain.

205

Future Work
We can envision the following challenges to be explored in conjunction with our work.

SDN technologies
We employ OpenFlow SDN for experimenting conflicts, the outcome favours thus
this technology. Newer prominent SDN technologies emerge during the time of this
writing related to P4 [80], P4Runtime [81] and POF [61]. Unlike OpenFlow devices,
P4 devices can be configured with diverse capabilities. A device can be equipped with
richer features than the others, e. g., some are capable of IPv6 extension headers, some
are not. P4-based SDN is enabled by some APIs such as P4Runtime, through which
the communication between the data plane and the logically centralized controller
is performed. The controller as well as the control applications need to be aware of
the data plane devices’ diversity while issuing rules. Network functions cannot be
deployed “arbitrarily” but only on capable devices (except when all devices are config-
ured uniformly in terms of their capabilities). POF (protocol-oblivious forwarding)
SDN allows the representation of match fields by {offset, length} tuples to provide the
flexibility against the rigid specification of protocols as in OpenFlow SDN. P4, POF,
OpenFlow and future SDN technologies, by themselves, create a new dimension in
our parameter space (see Chapter 3.2.1) for researching conflicts.

Topology change
The change in the network topology, e. g., the introduction, removal or failure of a
network device or a link, can lead to new conflicts or cause the existing rules conflict-
ing, since the assumptions made by the control applications are possibly invalidated.
One of the examples observed through our experiments is that the routing applica-
tion kept forwarding traffic to a switch on the shortest path that at some point failed
and became a black-hole in the network. The case indicates the need of applica-
tions in reacting to network dynamics to ensure their proper functions. Intuitively,
a garbage collection mechanism should be carried out to remove or update the rules
influenced by topology changes. In general, conflicts triggered by topology changes
may be an interesting topic to be explored.

Matching policy
Different policies can be employed in selecting rules matching a packet that arrives
at a network device, e. g., best match, deny take precedence, most/least specific take
precedence [6]. Our work favors the first match policy to some extent, which is
used by OpenFlow SDN and is also the most prevalent policy in rule-based packet
processing. It is unclear how other matching policies may impact the occurrence
of conflicts, and if a certain policy can reduce the propensity of conflicts than the

206 7 Conclusions and Prospects

others in the same condition. The insights acquired from studying these aspects
could greatly benefit the design, the implementation as well as the operation of SDN.

Real-time conflict detection
A rule can be checked against conflicts before being enforced in the data plane. Some
existing study (e. g., [52, 87]) shows encouraging results with about 15.5% overhead
added in the rule deployment time by employing efficient techniques and data struc-
tures like trie [116]. These are promising to achieve real-time detection of local con-
flicts and hidden conflicts of the first class (event suppression by local handling). The
control of each single rule for distributed conflicts is excessively expensive as dis-
cussed in Chapter 6.1.4. However, this can be alleviated if we could predict the rules
to be deployed, which simulates the complete set of rules handling the packet flow
in concern, e. g., by using certain machine learning techniques. It is appealing to in-
vestigate the possibility of real-time conflict detection by applying these techniques
and data structures.

Further conflict handling efforts
The conceivable undertaking after detecting conflicts encompasses their resolution
and avoidance.

Conflict resolution
Different strategies for resolving conflicts can be taken into account, e. g., favoring
rules of some application by raising its priority in case of conflicts, manually inserting
rules to fulfill the intended goal, or disabling a certain application. The resolution
strategies appear to be context-specific and require more investigation to identify the
appropriate choice in each situation.

Conflict avoidance
A plausible scenario for conflict avoidance is to design a suite of applications that
could work together in harmony. One can employ the dry-run approach with varied
settings on this application suite to observe conflicts by using a conflict detector like
ours. He can then progressively modify the applications or choose configurations
that yield conflict-free outcomes. This approach, to some extent, realizes one of the
conflict resolution strategies. The dimensions and parameters for customizing the
applications to avoid conflicts are among the engaging research avenues.

Bibliography

[1] Adolfo Arteta, Benjamín Barán, and Diego Pinto. “Routing and Wavelength
Assignment over WDM Optical Networks: A Comparison between MOACOs
and Classical Approaches”. In: Proceedings of the 4th International IFIP/ACM
Latin American Conference on Networking. LANC ’07. San José, Costa Rica:
Association for Computing Machinery, 2007, pp. 53–63. isbn: 9781595939074.
doi: 10.1145/1384117.1384126.

[2] Alvin AuYoung et al. “Democratic Resolution of Resource Conflicts Between
SDN Control Programs”. In: Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies. CoNEXT
’14. Sydney, Australia: Association for Computing Machinery, 2014, pp. 391–
402. isbn: 9781450332798. doi: 10.1145/2674005.2674992.

[3] Arosha K. Bandara, Emil C. Lupu, and Alessandra Russo. “Using Event Calcu-
lus to Formalise Policy Specification and Analysis”. In: Proceedings of the 4th
IEEE International Workshop on Policies for Distributed Systems and Networks.
POLICY ’03. USA: IEEE Computer Society, 2003, p. 26. isbn: 0769519334. doi:
10.1109/POLICY.2003.1206955.

[4] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random
Networks”. In: Science 286.5439 (1999), pp. 509–512. doi: 10.1126/science.286.
5439.509.

[5] Paul Barham et al. “Xen and the Art of Virtualization”. In: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles. SOSP ’03.
Bolton Landing, NY, USA: Association for Computing Machinery, 2003,
pp. 164–177. isbn: 1581137575. doi: 10.1145/945445.945462.

[6] Cataldo Basile, Alberto Cappadonia, and Antonio Lioy. “Algebraic Models
to Detect and Solve Policy Conflicts”. In: Computer Network Security. Ed. by
Vladimir Gorodetsky, Igor Kotenko, and Victor A. Skormin. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2007, pp. 242–247. isbn: 978-3-540-73986-9.
doi: 10.1007/978-3-540-73986-9_20.

[7] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. “An Archi-
tecture for Active Networking”. In: High Performance Networking VII: IFIP
TC6 Seventh International Conference on High Performance Networks (HPN
‘97), 28th April – 2nd May 1997, White Plains, New York, USA. Ed. by Ahmed
Tantawy. Boston, MA: Springer US, 1997, pp. 265–279. isbn: 978-0-387-35279-
4. doi: 10.1007/978-0-387-35279-4_17.

[8] M. Bjorklund. YANG - A Data Modeling Language for the Network Configura-
tion Protocol (NETCONF). RFC 6020. IETF, Oct. 2010. url: http://tools.ietf.
org/rfc/rfc6020.txt.

[9] S. Blake et al. An Architecture for Differentiated Services. RFC 2475. IETF, Dec.
1998. url: http://tools.ietf.org/rfc/rfc2475.txt.

https://doi.org/10.1145/1384117.1384126
https://doi.org/10.1145/2674005.2674992
https://doi.org/10.1109/POLICY.2003.1206955
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1145/945445.945462
https://doi.org/10.1007/978-3-540-73986-9_20
https://doi.org/10.1007/978-0-387-35279-4_17
http://tools.ietf.org/rfc/rfc6020.txt
http://tools.ietf.org/rfc/rfc6020.txt
http://tools.ietf.org/rfc/rfc2475.txt

208 Bibliography

[10] Soren Bleikertz and Thomas Groß. “A Virtualization Assurance Language for
Isolation and Deployment”. In: 2011 IEEE International Symposium on Policies
for Distributed Systems and Networks. 2011, pp. 33–40. doi: 10.1109/POLICY.
2011.10.

[11] U. Blumenthal and B. Wijnen. User-based Security Model (USM) for version 3
of the Simple Network Management Protocol (SNMPv3). RFC 3414. IETF, Dec.
2002. url: http://tools.ietf.org/rfc/rfc3414.txt.

[12] Pat Bosshart et al. “P4: Programming Protocol-Independent Packet Proces-
sors”. In: SIGCOMM Comput. Commun. Rev. 44.3 (July 2014), pp. 87–95. issn:
0146-4833. doi: 10.1145/2656877.2656890.

[13] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC
8259. IETF, Dec. 2017. url: http://tools.ietf.org/rfc/rfc8259.txt.

[14] Matthew Caesar et al. “Design and Implementation of a Routing Control
Platform”. In: Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2. NSDI’05. USA: USENIX Asso-
ciation, 2005, pp. 15–28.

[15] Marco Canini et al. “A NICE Way to Test Openflow Applications”. In: Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation. NSDI’12. San Jose, CA: USENIX Association, 2012, p. 10.

[16] J.D. Case et al. Simple Network Management Protocol (SNMP). RFC 1157. IETF,
May 1990. url: http://tools.ietf.org/rfc/rfc1157.txt.

[17] Jan Chomicki, Jorge Lobo, and Shamim Naqvi. “A logic programming ap-
proach to conflict resolution in policy management”. In: 7th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR’2000).
Citeseer. 2000.

[18] Jan Chomicki, Jorge Lobo, and Shamim Naqvi. “Conflict Resolution Using
Logic Programming”. In: IEEE Trans. on Knowl. and Data Eng. 15.1 (Jan. 2003),
pp. 244–249. issn: 1041-4347. doi: 10.1109/TKDE.2003.1161596.

[19] Paul Congdon. Link Layer Discovery Protocol and MIB v0.0. IEEE standards
association. 2002. url: https://www.ieee802.org/1/files/public/docs2002/lldp-
protocol-00.pdf (visited on 03/13/2022).

[20] Jie Cui et al. “Transaction-Based Flow Rule Conflict Detection and Resolu-
tion in SDN”. In: 2018 27th International Conference on Computer Communi-
cation and Networks (ICCCN). IEEE. 2018, pp. 1–9. doi: 10.1109/ICCCN.2018.
8487415.

[21] Nicodemos Damianou et al. “The Ponder Policy Specification Language”. In:
Policies for Distributed Systems and Networks. Ed. by Morris Sloman, Emil C.
Lupu, and Jorge Lobo. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 18–38. isbn: 978-3-540-44569-2. doi: 10.1007/3-540-44569-2_2.

[22] Vitalian Danciu. “Application of Policy-based Techniques to Process-oriented
IT Service Management”. PhD thesis. LMU, 2007. isbn: 383707160X. doi: 10.
5282/edoc.7816.

https://doi.org/10.1109/POLICY.2011.10
https://doi.org/10.1109/POLICY.2011.10
http://tools.ietf.org/rfc/rfc3414.txt
https://doi.org/10.1145/2656877.2656890
http://tools.ietf.org/rfc/rfc8259.txt
http://tools.ietf.org/rfc/rfc1157.txt
https://doi.org/10.1109/TKDE.2003.1161596
https://www.ieee802.org/1/files/public/docs2002/lldp-protocol-00.pdf
https://www.ieee802.org/1/files/public/docs2002/lldp-protocol-00.pdf
https://doi.org/10.1109/ICCCN.2018.8487415
https://doi.org/10.1109/ICCCN.2018.8487415
https://doi.org/10.1007/3-540-44569-2_2
https://doi.org/10.5282/edoc.7816
https://doi.org/10.5282/edoc.7816

Bibliography 209

[23] Vitalian Danciu, Tobias Guggemos, and Dieter Kranzlmüller. “Schichtung
virtueller Maschinen zu Labor- und Lehrinfrastruktur”. In: 9. DFN-Forum
Kommunikations-technologien. Bonn: Gesellschaft für Informatik e.V., 2016,
pp. 35–44.

[24] Vitalian Danciu and Cuong Ngoc Tran. “MEADcast: Explicit Multicast with
Privacy Aspects”. In: International Journal on Advances in Security 12.1&2 (Aug.
2019), pp. 13–28. issn: 1942-2636. url: https://www.iariajournals.org/security/
tocv12n12.html.

[25] Vitalian Danciu and Cuong Ngoc Tran. “Side-Effects Causing Hidden Con-
flicts in Software-Defined Networks”. In: SN Computer Science 1.1 (Aug. 2020),
p. 278. issn: 2661-8907. doi: 10.1007/s42979-020-00282-0.

[26] C. Diekmann et al. “Verified iptables Firewall Analysis”. In: 2016 IFIP Net-
working Conference (IFIP Networking) and Workshops. 2016, pp. 252–260. doi:
10.1109/IFIPNetworking.2016.7497196.

[27] D. Durham et al. The COPS (Common Open Policy Service) Protocol. RFC
2748. IETF, Jan. 2000. url: http://tools.ietf.org/rfc/rfc2748.txt.

[28] R. Enns et al. Network Configuration Protocol (NETCONF). RFC 6241. IETF,
June 2011. url: http://tools.ietf.org/rfc/rfc6241.txt.

[29] eXtensible Access Control Markup Language (XACML) version 3.0. OASIS Stan-
dard. OASIS. Jan. 22, 2013. url: http://docs.oasis-open.org/xacml/3.0/xacml-
3.0-core-spec-os-en.pdf (visited on 03/13/2022).

[30] A. Farrel, J.-P. Vasseur, and J. Ash. A Path Computation Element (PCE)-Based
Architecture. RFC 4655. IETF, Aug. 2006. url: http://tools.ietf.org/rfc/rfc4655.
txt.

[31] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The Road to SDN: An In-
tellectual History of Programmable Networks”. In: SIGCOMM Comput. Com-
mun. Rev. 44.2 (Apr. 2014), pp. 87–98. issn: 0146-4833. doi: 10.1145/2602204.
2602219.

[32] Andrew D. Ferguson et al. “Hierarchical Policies for Software Defined Net-
works”. In: Proceedings of the First Workshop on Hot Topics in Software Defined
Networks. HotSDN ’12. Helsinki, Finland: Association for Computing Machin-
ery, 2012, pp. 37–42. isbn: 9781450314770. doi: 10.1145/2342441.2342450.

[33] S. Ferraresi et al. “Automatic Conflict Analysis and Resolution of Traffic Filter-
ing Policy for Firewall and Security Gateway”. In: 2007 IEEE International Con-
ference on Communications. 2007, pp. 1304–1310. doi: 10.1109/ICC.2007.220.

[34] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455. IETF, Dec. 2011.
url: http://tools.ietf.org/rfc/rfc6455.txt.

[35] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. IETF,
June 1999. url: http://tools.ietf.org/rfc/rfc2616.txt.

[36] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”. PhD thesis. University of California, Irvine, 2000.

https://www.iariajournals.org/security/tocv12n12.html
https://www.iariajournals.org/security/tocv12n12.html
https://doi.org/10.1007/s42979-020-00282-0
https://doi.org/10.1109/IFIPNetworking.2016.7497196
http://tools.ietf.org/rfc/rfc2748.txt
http://tools.ietf.org/rfc/rfc6241.txt
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://tools.ietf.org/rfc/rfc4655.txt
http://tools.ietf.org/rfc/rfc4655.txt
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/2342441.2342450
https://doi.org/10.1109/ICC.2007.220
http://tools.ietf.org/rfc/rfc6455.txt
http://tools.ietf.org/rfc/rfc2616.txt

210 Bibliography

[37] Nate Foster et al. “Frenetic: A Network Programming Language”. In: SIG-
PLAN Not. 46.9 (Sept. 2011), pp. 279–291. issn: 0362-1340. doi: 10 . 1145 /
2034574.2034812.

[38] Framework of Software-Defined Networking. ITU Recommendation Y.3300,
June 2014. ITU. url: http://www.itu.int/rec/T-REC-Y.3300-201406-I/en
(visited on 03/13/2022).

[39] N. Freed. Behavior of and Requirements for Internet Firewalls. RFC 2979. IETF,
Oct. 2000. url: http://tools.ietf.org/rfc/rfc2979.txt.

[40] Paul Goransson and Chuck Black. Software Defined Networks: A Comprehen-
sive Approach. 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2014. isbn: 012416675X.

[41] Natasha Gude et al. “NOX: Towards an Operating System for Networks”. In:
SIGCOMM Comput. Commun. Rev. 38.3 (July 2008), pp. 105–110. issn: 0146-
4833. doi: 10.1145/1384609.1384625.

[42] E. Haleplidis et al. Software-Defined Networking (SDN): Layers and Architec-
ture Terminology. RFC 7426. IETF, Jan. 2015. url: http://tools.ietf.org/rfc/
rfc7426.txt.

[43] Hazem Hamed and Ehab Al-Shaer. “Taxonomy of Conflicts in Network Secu-
rity Policies”. In: IEEE Communications Magazine 44.3 (Mar. 2006), pp. 134–
141. issn: 1558-1896. doi: 10.1109/MCOM.2006.1607877.

[44] Nikhil Handigol et al. “I Know What Your Packet Did Last Hop: Using Packet
Histories to Troubleshoot Networks”. In: Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation. NSDI’14. Seattle,
WA: USENIX Association, 2014, pp. 71–85. isbn: 9781931971096.

[45] Nikhil Handigol et al. “Where is the Debugger for My Software-Defined Net-
work?” In: Proceedings of the First Workshop on Hot Topics in Software Defined
Networks. HotSDN ’12. Helsinki, Finland: Association for Computing Machin-
ery, 2012, pp. 55–60. isbn: 9781450314770. doi: 10.1145/2342441.2342453.

[46] Intent NBI – Definition and Principles. Tech. rep. Open Networking Founda-
tion, Oct. 2016. url: https://opennetworking.org/wp-content/uploads/2014/
10/TR-523_Intent_Definition_Principles.pdf (visited on 03/13/2022).

[47] Information technology - Open Systems Interconnection - Basic ReferenceModel:
The Basic Model. Standard. International Organization for Standardization,
Nov. 1994.

[48] Yosr Jarraya, Taous Madi, and Mourad Debbabi. “A Survey and a Layered Tax-
onomy of Software-Defined Networking”. In: IEEE Communications Surveys
& Tutorials 16.4 (2014), pp. 1955–1980. doi: 10.1109/COMST.2014.2320094.

[49] Lalana Kagal. Rei: A Policy Language for the Me-Centric Project. Tech. rep.
HP Labs, Palo Alto, Sept. 26, 2002. url: https://ebiquity.umbc.edu/_file_
directory_/papers/57.pdf (visited on 03/13/2022).

[50] Peyman Kazemian, George Varghese, and Nick McKeown. “Header Space
Analysis: Static Checking for Networks”. In: Proceedings of the 9th USENIX

https://doi.org/10.1145/2034574.2034812
https://doi.org/10.1145/2034574.2034812
http://www.itu.int/rec/T-REC-Y.3300-201406-I/en
http://tools.ietf.org/rfc/rfc2979.txt
https://doi.org/10.1145/1384609.1384625
http://tools.ietf.org/rfc/rfc7426.txt
http://tools.ietf.org/rfc/rfc7426.txt
https://doi.org/10.1109/MCOM.2006.1607877
https://doi.org/10.1145/2342441.2342453
https://opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://doi.org/10.1109/COMST.2014.2320094
https://ebiquity.umbc.edu/_file_directory_/papers/57.pdf
https://ebiquity.umbc.edu/_file_directory_/papers/57.pdf

Bibliography 211

Conference on Networked Systems Design and Implementation. NSDI’12. San
Jose, CA: USENIX Association, 2012, p. 9.

[51] Peyman Kazemian et al. “Real Time Network Policy Checking Using Header
Space Analysis”. In: Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation. NSDI’13. Lombard, IL: USENIX Associ-
ation, 2013, pp. 99–112.

[52] Ahmed Khurshid et al. “VeriFlow: Verifying Network-Wide Invariants in Real
Time”. In: Proceedings of the First Workshop on Hot Topics in Software Defined
Networks. HotSDN ’12. Helsinki, Finland: Association for Computing Machin-
ery, 2012, pp. 49–54. isbn: 9781450314770. doi: 10.1145/2342441.2342452.

[53] Avi Kivity et al. “KVM: The Linux Virtual Machine Monitor”. In: Proceedings
of the Linux symposium. Vol. 1. 8. Dttawa, Dntorio, Canada. 2007, pp. 225–230.

[54] Rosalie Kletzander. A testbed for researching conflicts in SDN. Bachelor’s thesis.
Ludwig-Maximilians-Universität München, 2017. url: https : / /www.mnm-
team.org/pub/Fopras/klet17/ (visited on 03/13/2022).

[55] Thomas Koch. Automated management of distributed systems. Shaker, 1997.
isbn: 3-8265-2594-9.

[56] Robert Kowalski and Marek Sergot. “A Logic-Based Calculus of Events”.
In: Foundations of Knowledge Base Management: Contributions from Logic,
Databases, and Artificial Intelligence Applications. Ed. by Joachim W. Schmidt
and Constantino Thanos. Berlin, Heidelberg: Springer Berlin Heidelberg,
1989, pp. 23–55. isbn: 978-3-642-83397-7. doi: 10.1007/978-3-642-83397-7_2.

[57] Diego Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”.
In: Proceedings of the IEEE 103.1 (2015), pp. 14–76. doi: 10.1109/JPROC.2014.
2371999.

[58] TV Lakshman et al. “The Softrouter Architecture”. In: Proc. ACM SIGCOMM
Workshop on Hot Topics in Networking. Vol. 2004. ACM, 2004.

[59] Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks”. In: Proceedings of the 9th
ACM SIGCOMMWorkshop on Hot Topics in Networks. Hotnets-IX. Monterey,
California: Association for Computing Machinery, 2010. isbn: 9781450304092.
doi: 10.1145/1868447.1868466.

[60] Jun Li et al. “A Software-Defined Address Resolution Proxy”. In: Proceedings
of the 2017 IEEE Symposium on Computers and Communications (ISCC). July
2017, pp. 404–410. doi: 10.1109/ISCC.2017.8024563.

[61] S. Li et al. “Protocol Oblivious Forwarding (POF): Software-Defined Network-
ing with Enhanced Programmability”. In: IEEE Network 31.2 (2017), pp. 58–66.
doi: 10.1109/MNET.2017.1600030NM.

[62] Jorge Lobo, Randeep Bhatia, and Shamim Naqvi. “A Policy Description Lan-
guage”. In: AAAI/IAAI 1999 (1999), pp. 291–298.

https://doi.org/10.1145/2342441.2342452
https://www.mnm-team.org/pub/Fopras/klet17/
https://www.mnm-team.org/pub/Fopras/klet17/
https://doi.org/10.1007/978-3-642-83397-7_2
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/ISCC.2017.8024563
https://doi.org/10.1109/MNET.2017.1600030NM

212 Bibliography

[63] Claas Lorenz et al. “Continuous Verification of Network Security Compli-
ance”. In: IEEE Transactions on Network and Service Management 19.2 (2022),
pp. 1729–1745. doi: 10.1109/TNSM.2021.3130290.

[64] S. Loreto et al. Known Issues and Best Practices for the Use of Long Polling
and Streaming in Bidirectional HTTP. RFC 6202. IETF, Apr. 2011. url: http:
//tools.ietf.org/rfc/rfc6202.txt.

[65] E. Lupu and M. Sloman. “Conflict Analysis for Management Policies”. In: In-
tegrated Network Management V: Integrated management in a virtual world
Proceedings of the Fifth IFIP/IEEE International Symposium on Integrated Net-
work Management San Diego, California, U.S.A., May 12–16, 1997. Ed. by Aurel
A. Lazar, Roberto Saracco, and Rolf Stadler. Boston, MA: Springer US, 1997,
pp. 430–443. isbn: 978-0-387-35180-3. doi: 10.1007/978-0-387-35180-3_32.

[66] Emil C Lupu and Morris Sloman. “Conflicts in Policy-based Distributed Sys-
tems Management”. In: IEEE Transactions on Software Engineering 25.6 (Nov.
1999), pp. 852–869. issn: 1939-3520. doi: 10.1109/32.824414.

[67] Management Framework for Open Systems Interconnection (OSI) for CCITT
Applications. ITU Recommendation X.700, September 1992, ITU. url: https:
//www.itu.int/rec/T-REC-X.700-199209-I/en (visited on 03/13/2022).

[68] K. McCloghrie and M. Rose. Management Information Base for Network Man-
agement of TCP/IP-based internets: MIB-II. RFC 1213. IETF, Mar. 1991. url:
http://tools.ietf.org/rfc/rfc1213.txt.

[69] Nick McKeown. “Software-Defined Networks and The Maturing of The In-
ternet”. IET Appleton Lecture. Apr. 2014.

[70] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Networks”.
In: SIGCOMMComput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–74. issn: 0146-
4833. doi: 10.1145/1355734.1355746.

[71] Jonathan D Moffett and Morris S Sloman. “Policy Conflict Analysis in Dis-
tributed System Management”. In: Journal of Organizational Computing and
Electronic Commerce 4.1 (1994), pp. 1–22.

[72] Jeffrey C. Mogul et al. “Corybantic: Towards the Modular Composition of
SDN Control Programs”. In: Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks. HotNets-XII. College Park, Maryland: Association
for Computing Machinery, 2013. isbn: 9781450325967. doi: 10.1145/2535771 .
2535795.

[73] B. Moore. Policy Core Information Model (PCIM) Extensions. RFC 3460. IETF,
Jan. 2003. url: http://tools.ietf.org/rfc/rfc3460.txt.

[74] Thomas D Nadeau and Ken Gray. SDN: Software Defined Networks: An Au-
thoritative Review of Network Programmability Technologies. O’Reilly Media,
Inc., 2013. isbn: 9781449342302.

[75] T. Narten et al. Neighbor Discovery for IP version 6 (IPv6). RFC 4861. IETF,
Sept. 2007. url: http://tools.ietf.org/rfc/rfc4861.txt.

https://doi.org/10.1109/TNSM.2021.3130290
http://tools.ietf.org/rfc/rfc6202.txt
http://tools.ietf.org/rfc/rfc6202.txt
https://doi.org/10.1007/978-0-387-35180-3_32
https://doi.org/10.1109/32.824414
https://www.itu.int/rec/T-REC-X.700-199209-I/en
https://www.itu.int/rec/T-REC-X.700-199209-I/en
http://tools.ietf.org/rfc/rfc1213.txt
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2535771.2535795
https://doi.org/10.1145/2535771.2535795
http://tools.ietf.org/rfc/rfc3460.txt
http://tools.ietf.org/rfc/rfc4861.txt

Bibliography 213

[76] Duc Minh Nguyen. Deployment of MEADcast in Stub Software-Defined
Networks. Bachelor’s thesis. Ludwig-Maximilians-Universität München, 2019.
url: https://www.mnm-team.org/pub/Fopras/nguy19/.

[77] OpenFlow Management and Configuration Protocol (OF-Config 1.1. 1). Version
1.1.1, ONF TS-008. Open Networking Foundation. Mar. 23, 2013. url: https:
//opennetworking.org/wp- content/uploads/2013/02/of- config- 1- 1- 1 .pdf
(visited on 03/13/2022).

[78] OpenFlow Switch Specification. Version 1.5.1. Open Networking Foundation.
2015. url: https : / / opennetworking . org / wp - content / uploads / 2014 / 10 /
openflow-switch-v1.5.1.pdf (visited on 03/13/2022).

[79] OpenFlow Switch Specification. Version 1.3.5. Open Networking Foundation.
2015. url: https : / / opennetworking . org / wp - content / uploads / 2014 / 10 /
openflow-switch-v1.3.5.pdf (visited on 03/13/2022).

[80] P416 Language Specification. Version 1.2.1. The P4 Language Consortium. June
2020. url: https : / / p4 . org / p4 - spec / docs / P4 - 16 - v1 . 2 . 1 . pdf (visited on
03/13/2022).

[81] P4Runtime Specification. Version 1.2.0. The P4.org API Working Group. July
2020. url: https : / / opennetworking . org /wp - content / uploads / 2020 / 10 /
P4Runtime-Spec.pdf (visited on 03/13/2022).

[82] Gregorio Martínez Pérez, Félix J García Clemente, and Antonio F Gómez
Skarmeta. “Policy-based Management of Web and Information Systems Secu-
rity: An Emerging Technology”. In: Information Security and Ethics: Concepts,
Methodologies, Tools, and Applications. IGI Global, 2008, pp. 2991–3005. doi:
10.4018/978-1-59904-937-3.ch200.

[83] B. Pfaff and B. Davie. The Open vSwitch Database Management Protocol. RFC
7047. IETF, Dec. 2013. url: http://tools.ietf.org/rfc/rfc7047.txt.

[84] Ben Pfaff et al. “The Design and Implementation of Open vSwitch”. In: Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation. NSDI’15. Oakland, CA: USENIX Association, 2015, pp. 117–
130. isbn: 9781931971218.

[85] Charles C Pinter. A book of set theory. Courier Corporation, 2014. isbn: 978-
0486497082.

[86] Sandeep Pisharody. “Policy Conflict Management in Distributed SDN Envi-
ronments”. PhD thesis. Arizona State University, 2017.

[87] Sandeep Pisharody et al. “Brew: A Security Policy Analysis Framework for
Distributed SDN-Based Cloud Environments”. In: IEEE Transactions on De-
pendable and Secure Computing 16.6 (2019), pp. 1011–1025. doi: 10.1109/TDSC.
2017.2726066.

[88] Philip Porras et al. “A Security Enforcement Kernel for OpenFlow Networks”.
In: Proceedings of the First Workshop on Hot Topics in Software Defined Net-
works. HotSDN ’12. Helsinki, Finland: Association for Computing Machinery,
2012, pp. 121–126. isbn: 9781450314770. doi: 10.1145/2342441.2342466.

https://www.mnm-team.org/pub/Fopras/nguy19/
https://opennetworking.org/wp-content/uploads/2013/02/of-config-1-1-1.pdf
https://opennetworking.org/wp-content/uploads/2013/02/of-config-1-1-1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://p4.org/p4-spec/docs/P4-16-v1.2.1.pdf
https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Spec.pdf
https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Spec.pdf
https://doi.org/10.4018/978-1-59904-937-3.ch200
http://tools.ietf.org/rfc/rfc7047.txt
https://doi.org/10.1109/TDSC.2017.2726066
https://doi.org/10.1109/TDSC.2017.2726066
https://doi.org/10.1145/2342441.2342466

214 Bibliography

[89] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959. IETF, Oct. 1985. url:
http://tools.ietf.org/rfc/rfc0959.txt.

[90] Nicholas Reyes. “Detection of Distributed Conflicts in Software-Defined Net-
works”. MA thesis. Ludwig-Maximilians-Universität München, 2021. url:
https://www.mnm-team.org/pub/Diplomarbeiten/reye21/.

[91] SDN Architecture, Version 1. Tech. rep. Open Networking Foundation, June
2014. url: https://opennetworking.org/wp-content/uploads/2013/02/TR_
SDN_ARCH_1.0_06062014.pdf (visited on 03/13/2022).

[92] Ehab Al-Shaer and Saeed Al-Haj. “FlowChecker: Configuration Analysis and
Verification of Federated Openflow Infrastructures”. In: Proceedings of the
3rd ACM Workshop on Assurable and Usable Security Configuration. SafeCon-
fig ’10. Chicago, Illinois, USA: Association for Computing Machinery, 2010,
pp. 37–44. isbn: 9781450300933. doi: 10.1145/1866898.1866905.

[93] Ehab Al-Shaer et al. “Conflict Classification and Analysis of Distributed Fire-
wall Policies”. In: IEEE Journal on Selected Areas in Communications 23.10
(2005), pp. 2069–2084. doi: 10.1109/JSAC.2005.854119.

[94] Ehab S Al-Shaer and Hazem H Hamed. “Firewall Policy Advisor for anomaly
discovery and rule editing”. In: Proceedings of the IFIP/IEEE Eighth Inter-
national Symposium on Integrated Network Management, 2003. Colorado
Springs, CO, USA, Mar. 2003, pp. 17–30. doi: 10.1109/INM.2003.1194157.

[95] Seungwon Shin et al. “FRESCO: Modular Composable Security Services for
Software-Defined Networks”. In: Proceedings of the 20th Annual Network &
Distributed System Security (NDSS) Symposium. San Diego, CA United States,
2013.

[96] Jonathan M Smith et al. SwitchWare: Accelerating Network Evolution (White
paper). University of Pennsylvania. Jan. 1996. url: https://repository.upenn.
edu / cgi / viewcontent . cgi ? article = 1212& context = cis _ reports (visited on
03/13/2022).

[97] Software-defined networking: The new norm for networks. ONF White Paper.
Apr. 13, 2012. url: http : / / opennetworking . wpengine . com /wp - content /
uploads/2011/09/wp-sdn-newnorm.pdf (visited on 03/13/2022).

[98] Haoyu Song. “Protocol-Oblivious Forwarding: Unleash the Power of SDN
through a Future-Proof Forwarding Plane”. In: Proceedings of the Second ACM
SIGCOMMWorkshop on Hot Topics in Software Defined Networking. HotSDN
’13. Hong Kong, China: Association for Computing Machinery, 2013, pp. 127–
132. isbn: 9781450321785. doi: 10.1145/2491185.2491190.

[99] Michael Steinke, Iris Adam, and Wolfgang Hommel. “Multi-Tenancy-Capable
Correlation of Security Events in 5G Networks”. In: 2018 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN).
2018, pp. 1–6. doi: 10.1109/NFV-SDN.2018.8725633.

[100] Michael Steinke and Wolfgang Hommel. “A Data Model for Feder-
ated Network and Security Management Information Exchange in Inter-

http://tools.ietf.org/rfc/rfc0959.txt
https://www.mnm-team.org/pub/Diplomarbeiten/reye21/
https://opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://doi.org/10.1145/1866898.1866905
https://doi.org/10.1109/JSAC.2005.854119
https://doi.org/10.1109/INM.2003.1194157
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1212&context=cis_reports
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1212&context=cis_reports
http://opennetworking.wpengine.com/wp-content/uploads/2011/09/wp-sdn-newnorm.pdf
http://opennetworking.wpengine.com/wp-content/uploads/2011/09/wp-sdn-newnorm.pdf
https://doi.org/10.1145/2491185.2491190
https://doi.org/10.1109/NFV-SDN.2018.8725633

Bibliography 215

organizational IT Service Infrastructures”. In: NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium. 2018, pp. 1–2. doi: 10.1109/
NOMS.2018.8406162.

[101] Michael Steinke and Wolfgang Hommel. “Overcoming Network and Security
Management Platform Gaps in Federated Software Networks”. In: 2018 14th
International Conference on Network and Service Management (CNSM). 2018,
pp. 295–299.

[102] J. Strassner et al. Policy Core Lightweight Directory Access Protocol (LDAP)
Schema. RFC 3703. IETF, Feb. 2004. url: http://tools.ietf.org/rfc/rfc3703.txt.

[103] John Strassner. Policy-based Network Management: Solutions for The Next
Generation. Morgan Kaufmann, 2003. isbn: 9781558608597.

[104] Peng Sun et al. “A Network-State Management Service”. In: SIGCOMM Com-
put. Commun. Rev. 44.4 (Aug. 2014), pp. 563–574. issn: 0146-4833. doi: 10.
1145/2740070.2626298.

[105] David L. Tennenhouse and David J. Wetherall. “Towards an Active Network
Architecture”. In: SIGCOMM Comput. Commun. Rev. 37.5 (Oct. 2007), pp. 81–
94. issn: 0146-4833. doi: 10.1145/1290168.1290180.

[106] Emir Toktar, Edgard Jamhour, and E Maziero. “RSVP Policy Control using
XACML”. In: Proceedings. Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks, 2004. POLICY 2004. IEEE. 2004, pp. 87–
96. doi: 10.1109/POLICY.2004.1309153.

[107] FUJITA Tomonori. Introduction to Ryu SDN Framework. Presentation in 2013
Open Networking Summit. 2013. url: https://ryu-sdn.org/slides/ONS2013-
april-ryu-intro.pdf (visited on 03/13/2022).

[108] Cuong Ngoc Tran and Vitalian Danciu. “A General Approach to Conflict
Detection in Software-Defined Networks”. In: SN Computer Science 1.1 (July
2019), p. 9. issn: 2661-8907. doi: 10.1007/s42979-019-0009-9.

[109] Cuong Ngoc Tran and Vitalian Danciu. “Hidden Conflicts in Software-
Defined Networks”. In: Proceedings of the 2019 International Conference on
Advanced Computing and Applications (ACOMP). IEEE. Nha Trang, Vietnam,
2019, pp. 127–134. doi: 10.1109/ACOMP.2019.00027.

[110] Cuong Ngoc Tran and Vitalian Danciu. “On Conflict Handling in Software-
Defined Networks”. In: Proceedings of the 2018 International Conference on
Advanced Computing and Applications. Ho Chi Minh City, Vietnam: CPS,
2018, pp. 50–57. doi: 10.1109/ACOMP.2018.00016.

[111] Cuong Ngoc Tran and Vitalian Danciu. “Privacy-Preserving Multicast to ex-
plicit agnostic Destinations”. In: Proceedings of the Eighth International Con-
ference on Advanced Communications and Computation (INFOCOMP 2018).
Barcelona, Spain: IARIA XPS Press, 2018, pp. 60–65. isbn: 978-1-61208-655-2.

[112] Andrzej Uszok, Jeffrey M. Bradshaw, and Renia Jeffers. “KAoS: A Policy and
Domain Services Framework for Grid Computing and Semantic Web Ser-
vices”. In: Trust Management. Ed. by Christian Jensen, Stefan Poslad, and Theo

https://doi.org/10.1109/NOMS.2018.8406162
https://doi.org/10.1109/NOMS.2018.8406162
http://tools.ietf.org/rfc/rfc3703.txt
https://doi.org/10.1145/2740070.2626298
https://doi.org/10.1145/2740070.2626298
https://doi.org/10.1145/1290168.1290180
https://doi.org/10.1109/POLICY.2004.1309153
https://ryu-sdn.org/slides/ONS2013-april-ryu-intro.pdf
https://ryu-sdn.org/slides/ONS2013-april-ryu-intro.pdf
https://doi.org/10.1007/s42979-019-0009-9
https://doi.org/10.1109/ACOMP.2019.00027
https://doi.org/10.1109/ACOMP.2018.00016

216 Bibliography

Dimitrakos. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 16–26.
isbn: 978-3-540-24747-0.

[113] Anduo Wang et al. “Ravel: A Database-Defined Network”. In: Proceedings
of the Symposium on SDN Research. SOSR ’16. Santa Clara, CA, USA: Asso-
ciation for Computing Machinery, 2016. isbn: 9781450342117. doi: 10 . 1145/
2890955.2890970.

[114] David J Wetherall, John V Guttag, and David L Tennenhouse. “ANTS: A
Toolkit for Building and dynamically Deploying Network Protocols”. In: 1998
IEEE Open Architectures and Network Programming. IEEE. 1998, pp. 117–129.
doi: 10.1109/OPNARC.1998.662048.

[115] René Félix Jacques Wies. “Policies in Integrated Network and Systems Man-
agement: Methodologies for the Definition, Transformation, and Application
of Management Policies”. PhD thesis. LMU, 1995.

[116] Dan E. Willard. “New Trie Data Structures Which Support Very Fast Search
Operations”. In: J. Comput. Syst. Sci. 28.3 (July 1984), pp. 379–394. issn: 0022-
0000. doi: 10.1016/0022-0000(84)90020-5.

[117] L. Yang et al. Forwarding and Control Element Separation (ForCES) Frame-
work. RFC 3746. IETF, Apr. 2004. url: http://tools.ietf.org/rfc/rfc3746.txt.

[118] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based
Admission Control. RFC 2753. IETF, Jan. 2000. url: http://tools.ietf.org/rfc/
rfc2753.txt.

[119] Peng Zhang et al. “APKeep: Realtime Verification for Real Networks”. In: 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
20). Santa Clara, CA: USENIX Association, Feb. 2020, pp. 241–255. isbn: 978-
1-939133-13-7. url: https://www.usenix.org/conference/nsdi20/presentation/
zhang-peng.

https://doi.org/10.1145/2890955.2890970
https://doi.org/10.1145/2890955.2890970
https://doi.org/10.1109/OPNARC.1998.662048
https://doi.org/10.1016/0022-0000(84)90020-5
http://tools.ietf.org/rfc/rfc3746.txt
http://tools.ietf.org/rfc/rfc2753.txt
http://tools.ietf.org/rfc/rfc2753.txt
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng

Generating priority combinations for
experiments

Priority combinations form a dimension in the parameter space for experiments (see
Chapter 3.2.1). We notice that the combinations depend on the number of control
applications involved in the experiments. For example, two applications a and b yield
four combinations:
2 2 (application a has the priority of 2, so is application b → pria = prib)
2 3 (application a has the priority of 2, application b has the priority of 3→ pria < prib)
3 2 (application a has the priority of 3, application b has the priority of 2→ pria < prib)
3 3 (application a has the priority of 3, so is application b → pria = prib)
The last combination of “3 3” is a repetition of “2 2” since these two applications have
the same priority.

Note that the choice of 2 and 3 for priority assignment on the two applications
is not important. One can choose 1 and 2, or 1000 and 1001, it does not matter as
long as we have two different numbers for two applications. Likewise, we need three
different numbers for three applications. We choose 2, 3 and 4 in the below case
containing three control applications.

For 3 applications a, b and c, there are 13 combinations:

Main combi. Pattern Duplicated combi.
1 2 2 2 # a=b,a=c,b=c 3 3 3 4 4 4
2 2 2 3 # a=b,a<c,b<c 2 2 4 3 3 4
3 2 3 2 # a<b,a=c,b>c 2 4 2 3 4 3
4 2 3 3 # a<b,a<c,b=c 2 4 4 3 4 4
5 2 3 4 # a<b,a<c,b<c
6 2 4 3 # a<b,a<c,b>c
7 3 2 2 # a>b,a>c,b=c 4 2 2 4 3 3
8 3 2 3 # a>b,a=c,b<c 4 2 4 4 3 4
9 3 2 4 # a>b,a<c,b<c
10 3 3 2 # a=b,a>c,b>c 4 4 2 4 4 3
11 3 4 2 # a<b,a>c,b>c
12 4 2 3 # a>b,a>c,b<c
13 4 3 2 # a>b,a>c,b>c

For 4 applications, the total number of combinations is 75, it is 541 for 5 applications
and 4863 for 6 applications.

There are different ways to solve this priority generation problem. We choose the
recursive solution based on the observation of the combinations on an axis.

For 1 application, there is 1 point on the axis

a
-----------x------------>

218 Generating priority combinations for experiments

Adding application b, there are 3 possibilities

a=b
-----------x------------>

a < b
-----------x------x----->

b < a
----x------x------------>

→ there are 1 case of 1 point and 2 cases of 2 points.
Similarly, adding application c, there are 4 possibilities
+ from 1 point a = b, 1 other point a = b = c and 2 other points: a = b > c, a = b < c

are generated,
+ from each case of 2 points, e. g., a < b, there are 2 other 2 points (a < b = c, a =

c < b) and 3 other 3 points (a < b < c, a < c < b, c < a < b) generated. We
obtained 2 cases of two points in the beginning.
→ in total, there are:
1(1point) + 2(2point) + 2(2(2point)+3(3point)=1(1point)+6(2point)+6(3point)=13
cases.
This method can be applied recursively for n applications.
Denote f(n, k) as the number of cases having k points when n applications are
considered. For instance, f(2, 1) represents the number of cases of 1 point in the
axis when considering 2 applications.
We have

f(1,1)=1
f(2,1)=1, f(2,2)=2
f(3,1)=1, f(3,2)=2[(f2,1)+f(2,2)], f3,3)=3[f(2,2)]=3!
f(4,1)=1, f(4,2)=2[f(3,1)+f(3,2)], f(4,3)=3[f(3,2)+f(3,3)], f(4,4)=4[f(4,3)]=4!

The total number of combinations for n applications is

g(n)=f(n,1)+f(n,2)+...+f(n,k)+...+f(n,n)

We can generalize the recursive functions as follows

f(n,1)=1
f(n,n)=n!
f(n,k)=k*(f(n-1,k-1)+f(n-1,k))
g(n)=f(n,1)+f(n,2)+...+f(n,k)+...+f(n,n)

The above functions can be written in the R programming language1 as follows

fac <- function(n){ if (n == 1) return (1)
else return (n*fac(n-1)) } #calculate n!

1 https://www.r-project.org/about.html

219

f <- function(n,k){ if (k==1) return (1)
else if (n==k) return (fac(n))
else return (k*(f(n-1,k-1)+f(n-1,k)))}

g <- function(n) {s=0; for (i in (1:n)){ (s = s+f(n,i)) }; return (s) }
#e.g., g(3)=13

The script pri_gen.py in our published codebase2 can be used to generate each of these
combinations. Further instructions on the arguments are provided in the beginning
of this script.

2 https://github.com/mnm-team/sdn-conflicts

Acronyms

ACL Access-Control List
API Application Programming Interface
ARP Address Resolution Protocol
CIM Common Information Model
COPS Common Open Policy Service
CORBA Common Object Request Broker Architecture
DAG Directed Acyclic Graph
DAML+OIL DARPA Agent Markup Language + Ontology Inference Layer
DMTF Distributed Management Task Force
EpLB End-point Load Balancer
FTP File Transfer Protocol
FW Firewall
HS Host Shadowing
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
ICMPv6 Internet Control Message Protocol version 6
IETF Internet Engineering Task Force
IP Internet Protocol
IPv6 Internet Protocol version 6
IRTF Internet Research Task Force
ISO International Organization for Standardization
ITU International Telecommunication Union
JSON JavaScript Object Notation
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
LLDP Link Layer Discovery Protocol
MEADcast Multicast to Explicit Agnostic Destinations
MIB Management Information Base
NDP Neighbor Discovery Protocol
NETCONF Network Configuration Protocol
NFV Network Function Virtualization
OASIS Organisation for the Advancement of Structured Information

Standards
ONF Open Networking Foundation
OSI Open Systems Interconnection
OWL Web Ontology Language
P4 Programming Protocol-Independent Packet Processors
PBNM Policy-Based Network Management

222 Acronyms

PCIM Policy Core Information Model
PDL Policy Description Language
PE Path Enforcer
PLB Path Load Balancer
POF Protocol Oblivious Forwarding
PPLB4D Destination-based Passive Path Load Balancer
PPLB4S Source-based Passive Path Load Balancer
RDF Resource Description Framework
REST Representational State Transfer
RSVP Resource Reservation Protocol
SDN Software-Defined Networking
SNMP Simple Network Management Protocol
SPF Shortest Path First
TCP Transmission Control Protocol
TE Traffic Engineering
UDP User Datagram Protocol
UML Unified Modeling Language
VALID Virtualization Assurance Language for Isolation and Deployment
XACML eXtensible Access Control Markup Language
XML Extensible Markup Language

Glossary

Many definitions are reused from RFC 7426 [42] and from the OpenFlow Switch
specification [78]. Those frequently mentioned in this book are presented here for
the sake of easy reference.

Action “an operation that acts on a packet. An action may forward the packet to a
port, modify the packet (such as decrementing the TTL field) or change its state (such as
associating it with a queue). Most actions include parameters, for example, a set-field
action includes a field type and field value” [78].
Bug an anomaly in the network behaviour caused by errors pertaining to a control
application, not by the interference between two or more control applications.
Conflict an anomaly in the network behaviour caused by the interference between
two or more control applications.
Control Application (or simply application) “a piece of software that utilizes underly-
ing services to perform a function” [42], for example, topology discovery is a common
service employed by control applications.
Control Plane “the collection of functions responsible for controlling one or more net-
work devices. The control plane instructs network devices with respect to how to process
and forward packets” [42].
Data Plane (or forwarding plane) “the collection of resources across all network de-
vices responsible for forwarding traffic” [42].
Datapath (specific to OpenFlow) “the aggregation of components of an OpenFlow
logical switch that are directly involved in traffic processing and forwarding” [78].
Flow a sequence of packets between a source and a destination, which share the
same attributes. The mentioned attributes include fields in the protocol header, such
as IP addresses, MAC addresses, status bits, they can also be the ingress port of a
packet arriving at a network device. A flow is expressed as a rule (or a flow entry) in
the rule table of each network device on the path from the source to the destination,
and can be reflected differently in these devices.
Forwarding “deciding the output port or set of output ports for a packet, and transfer-
ring that packet to those output ports” [78].
Header “control information embedded in a packet used by a switch to identify the
packet and to inform the switch on how to process and forward the packet. The header
typically includes various header fields to identify the source and destination of the
packet, and how to interpret other headers and the payload” [78].
Header Field “a value from the packet header. The packet header is parsed to extract
its header fields which are matched against corresponding match fields” [78].

224 Glossary

Match Field “a part of a flow entry against which a packet is matched. Match fields
can match the various packet header fields, the packet ingress port, the metadata value.
A match field may be wildcarded (match any value) and in some cases bitmasked
(match subset of bits)” [78].
Matching “comparing the set of header fields and pipeline fields of a packet to the
match fields of a flow entry (or rule)” [78].
Network Device “an entity that receives packets on its ports and performs one or
more network functions on them. Network devices can be implemented in hardware or
software and can be either physical or virtual” [42].
OpenFlow Controller “an entity interacting with the OpenFlow switch using the
OpenFlow switch protocol. In most case, an OpenFlow Controller is software which
controls many OpenFlow Switches” [78].
OpenFlow Protocol the protocol used for the communication between the Open-
Flow Controller and OpenFlow Switches.
OpenFlow Switch “a set of OpenFlow resources that can be managed as a single entity,
includes a datapath and a control channel” [78].
Packet “a series of bytes comprising a header, a payload and optionally a trailer, in
that order, and treated as a unit for purposes of processing and forwarding” [78].
Port where packets enter and exit an SDN device, may be a physical or a logical port,
e. g., port Controller in an OpenFlow switch [78].
Rule (or flow entry) an element in a rule table used to match and process packets. It
contains a set of match fields for matching packets, a priority for matching precedence,
and a set of actions to apply. A rule in a network device can also contain a set of
counters to track packets [78].
Rule Table (or flow table) a group of rules residing in a network device. When a
packet arrives at the network device, rules in the rule table are searched based on a
predefined matching policy (e. g., first match) to match that packet.
Software-Defined Networking “a programmable networks approach that supports
the separation of control and forwarding planes via standardized interfaces” [42].
Traffic Path the path including all network devices that the traffic under considera-
tion traverses from its source to its destination.

Cuong Tran won the DAAD scholarship for his doctoral research at the
Munich Network Management Team, Ludwig-Maximilians-Universität Mün-
chen, and achieved the degree in 2022. He loves to do research on policy
confl icts in networked systems, IP multicast and alternatives, network
security, and virtualized systems. Besides, teaching and sharing are also
among his interests.

The SDN architecture facilitates the fl exible deployment of network func-
tions. While promoting innovation, this architecture induces yet a higher
chance of confl icts compared to conventional networks. The detection of
confl icts in SDN is the focus of this work.

Restrictions of the formal analytical approach drive our choice of an experi-
mental approach, in which we determine a parameter space and a method-
ology to perform experiments. We have created a dataset covering a number
of situations occurring in SDN. The investigation of the dataset yields a con-
fl ict taxonomy composed of various classes organized in three broad types:
local, distributed and hidden confl icts. Interestingly, hidden confl icts caused
by side-effects of control applications‘ behaviour are completely new.

We introduce the new concept of multi-property set, and the ·r (“dot r”) op-
erator for the effective comparison of SDN rules. With these capable means,
we present algorithms to detect confl icts and develop a confl ict detection
prototype. The evaluation of the prototype justifi es the correctness and the
realizability of our proposed concepts and methodologies for classifying as
well as for detecting confl icts.

Altogether, our work establishes a foundation for further confl ict handling
efforts in SDN, e.g., confl ict resolution and avoidance. In addition, we point
out challenges to be explored.

C
U

O
N

G
 N

G
O

C
 T

R
A

N
C

on
fl

ic
t

D
et

ec
ti

on
 i

n
 S

of
tw

ar
e-

D
efi

 n
ed

 N
et

w
or

k
s

44,00 €
ISBN 978-3-487-16326-0

www.olms.de

61

	Contents
	List of Figures
	List of Tables
	Acknowledgement
	Abstract
	Zusammenfassung
	Introduction
	Conflicts in SDN
	A demonstration of conflicts in SDN
	Conflict definition

	Research questions, scope and challenges
	Research questions
	Scope of this work
	Challenges

	Results
	A suitable method to examine conflicts in SDN
	A framework for automating experiments in studying conflicts
	Conflict classification
	Multi-property set and the relationship combination operator r
	The algorithms to detect conflicts based on matchmap, actmapand rule graph
	Conflict detection prototype
	List of publications

	Methodology and dissertation's structure

	Related Work
	A sketch of the SDN history
	Conflicts and bugs
	State-of-the-art
	Policy conflicts in distributed system management
	Policy conflicts in traditional networks
	Conflicts in SDN
	Analysis of remarkable research

	Approaches and Experiments
	Considering the analytical approach
	SDN model
	Analogy to distributed computing systems
	Conclusion

	Experimental approach
	Parameter space
	Methodology

	Explored subspaces
	A framework for automating experiments
	Generating SDN test-beds
	Encoding experimental subspaces
	Generating compact values for dimensions related to controlapplications from a subspace's encoding
	End-point related dimensions
	Expected and observed network behaviour
	Dataset
	(Re)Production of the test-bed

	SDN control applications
	Properties of SDN control applications
	Control applications for experiments

	Selected experiments illustrating the methodology
	Experimental environment
	Applications' configurations for experiments
	Experiments
	Deriving conflict patterns and properties

	Extracting conflict patterns and properties
	Conclusion

	Conflict Classification
	Local conflicts
	Shadowing
	Generalization
	Redundancy
	Correlation
	Overlap
	Discussion

	Distributed conflicts
	Policy suppression by downstream traffic looping
	Policy suppression by upstream traffic looping
	Policy suppression by downstream traffic dropping
	Policy suppression by upstream traffic dropping
	Policy suppression by downstream packet modification
	Policy suppression by upstream packet modification
	Policy suppression by changes to paths

	Hidden conflicts
	Interaction primitives
	Interaction combinations
	Classifying hidden conflicts based on disturbance factors
	Susceptible interactions and impact

	Summary

	Conflict Detection
	Multi-property set and r operator
	Multi-property set
	Comparison of multi-property sets using r operator
	Application of multi-property set and the r operator

	Comparison of SDN rules
	Matchmap
	Actmap

	Rule database and topology encoding
	Rule graph
	Establishing connections between rules
	Building the rule graph
	Verifying the validity of a path in the rule graph

	Local conflict detection
	Distributed conflict detection
	Detecting conflicts belonging to downstream traffic looping/dropping distributed conflict classes
	Coping with other distributed conflict classes

	Hidden conflict detection
	Considering the hidden conflict prediction approach
	Detecting hidden conflicts with control applications' input

	Complexity
	Practical implications and conclusions

	Prototypical Implementation and Evaluation
	Conflict detection prototype
	Overview
	Conflict detector as a Ryu application
	Building the rule database
	Conflict detector's mechanics
	Execution of the conflict detector
	Output of the conflict detector

	Evaluation
	Network topologies
	Evaluation results in designed cases
	Evaluation results in randomly checked cases

	Discussion

	Conclusions and Prospects
	Bibliography
	Generating priority combinations for experiments
	Acronyms
	Glossary

