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ZUSAMMENFASSUNG 

Die diabetische Nierenerkrankung (DN) ist ein Hauptrisikofaktor für chronische 

Nierenerkrankungen und Nierenversagen. Die DN stellt hierbei eine heterogene Erkrankung 

mit multifaktorieller, komplexer Pathogenese dar. Die Interaktion von intrinsischen 

Nierenepithelzellen des Nephrons mit gewebsresidenten und invadierenden Immunzellen wird 

als entscheidender Faktor für die Erkrankungsentstehung und Progression verstanden. Die 

subklinische Erkrankungsentwicklung in der Initialphase der Erkrankung erschwert die frühe 

klinische Identifizierung und Erforschung der DN und ist damit ein Haupthindernis für eine 

effektive Therapieentwicklung 

Dieses Hindernis stellt die Motivation füer die hier vorgestellte Arbeit dar. Mittels eines 

systembiologischen Ansatzes von Protokoll-Nierenbiopsien in der Frühphase der DN soll eine 

umfassende Erkrankungsdefinition mittels Integration von genomischen, morphologischen 

und klinischen Datenquellen erstellt werden. Ein besonderer Fokus der Arbeit ist hierbei die 

Definition der Interaktionen zwischen morphometrischer und transkriptioneller Analyse von 

Protokoll-Biopsien bei früher, sub-klinscher DN in Patienten mit Type 2 Diabetes des Pima 

Eingeborenen Stammes im Süd-Westen der USA. Die Analysen nutzen Daten einer 6-järhigen 

klinischen Therapiestudie die die Nierenprotektion von Losartan gegenüber Plazebo 

untersuchte (siehe ClinicalTrials.gov: NCT00340678). 71 Studienteilnehmer mit einer 

Protokoll-Biopsie am Studienende wurden in die bioinformatischen Analysen der quantitativen 

Morphometrie und der Biopsie-Genexpressionsanalyse eingeschlossen. 

Das kortikale interstitielle Volumen (VvInt) zeigte hierbei die signifikanteste Assoziation 

zwischen ultrastruktureller Schädigung und der tubulären Genexpression. Transkriptionelle 

Ko-Expressionsanalysen identifizierten vier Module mit signifikanter Assoziation zum 

interstitiellen Fibrosegrad. Hierbei zeigten 930 Transkripte eine positive und 913 eine negative 



 

 2 

Korrelation mit der Fibrose. Eine Funktionsanalyse der Transkripte zeigte eine Häufung von 

inflammatorischen, migratorischen und tubulär-metabolische Funktion assoziierten Genen. Im 

nächsten Analyseschritt wurden die Gene identifiziert, die die verschiedenen Signalwege am 

besten in Signalknotenpunkten verbinden konnten. Interleukin 1B stellte sich als ein solcher 

Hauptregulationsfaktor dar, der die verschiedene VvInt-assozierte Signaltransduktionswege 

ansteuern kann. VvInt-assozierte Transkripte, gemessen in der Nierenbiopsie, zeigten eine 

signifikante Korrelation mit der Albuminurie und der gemessen glomerulären Filtrationsrate 

8.2 Jahre (Median) nach der Biopsie. 

Ein paralleler Ansatz für die Assoziation der glomerulären Expressionsdaten mit der 

glomerulären Basalmembrandicke, der mesangialen Expansion und der podozytären 

Schädigung. Die assozierten Gene waren für Immunzellmigration, Komplement-Aktivierung, 

mTOR- und Rac-Signaluebertagung und axonale Entwicklungprozesses angereichert. 

Abschließend wurde die zelluläre Lokalisation der Expressions-Signale mittels Kartierung in 

Einzel-Zell Genexpressionsdaten definiert. Proximale Tubulusepithelzellen stellten eine 

Hauptquelle für die VvInt-assoziierten Transkripte dar, Mesangialzellen für die glomerulären 

Strukturen und zu allen Prozessen steuerten Immunzellen Transkripte bei. 

Zusammenfassend wird in der hier eingereichten Arbeit eine systembiologische Integration 

von intra-renalen Genexpressionsmustern mit der quantitativen Morphometrie in 

Nierenbiopsien vorgestellt. Es werden molekulare Mechanismen der frühen DN identifiziert, 

die signifikant mit der langfristigen Erkrankungsentwicklung assoziiert sind. Die hier 

vorgestellten Ansätze und Daten etablieren neue molekulare Therapieziele für die 

medikamentöse Therapie und neue Biomarker für die Früherkennung der DN, beides dringend 

benötigte Therapiewerkzeuge.  
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Summary 

Diabetes is a major risk factor for the development of chronic kidney disease and a major cause 

of end-stage kidney failure. Diabetic kidney disease (DKD) is a multifactorial heterogenous 

disease with a complex pathogenesis. Crosstalk between resident kidney cells and immune 

cells plays a critical role in DKD initiation and progression. The long clinically silent phase of 

the disease makes it challenging for clinicians to identify and provide intervention to slow 

disease progression at an early phase when such intervention may be most beneficial. A 

comprehensive systems biology approach was developed in this thesis to provide an unbiased 

view of mechanisms behind DKD progression active in early disease. This method was derived 

from sources across genomics, morphogenomics, proteomics, and phenotypic data sets. 

Specifically, bioinformatic methods were employed to identify potential interactions between 

transcriptomics and morphometrics in kidney biopsies obtained from patients with early DKD 

in Pima Indian populations with type 2 diabetes. Participants were part of a 6-year clinical trial 

primarily evaluating the renoprotective efficacy of losartan versus placebo (ClinicalTrials.gov 

number NCT00340678). Seventy-seven participants who underwent protocol kidney biopsies 

at the end of the trial were included in this study. Quantitative morphometric scoring and tissue 

genome-wide gene expression profiling was performed on microdissected tissues from 

protocol biopsies. The ultrastructural lesion most strongly associated with tubular 

transcriptional profiles was cortical interstitial fractional volume (VvInt), a scale of interstitial 

fibrosis. Transcriptional co-expression network analysis revealed four gene modules 

significantly correlated with interstitial fibrosis. Of the 1,843 genes in these modules, 930 

correlated positively and 913 correlated negatively with VvInt. Inflammatory and migratory 

mechanisms, along with pathways related to differentiated tubular metabolic function, were 

among the mechanisms enriched with greater interstitial fibrosis. Pathway network analysis 

was then carried out to highlight key genes that connected multiple signaling pathways. IL1B 
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was identified as a top upstream regulator for the core set of transcripts linked to multiple 

VvInt-associated signaling pathways. VvInt-associated transcripts at the time of biopsy showed 

a significant correlation with albuminuria and measured glomerular filtration rate a median of 

8.2 years after biopsy. These results suggest a potential predictive association between early 

structural injury and disease progression. A similar approach was used to assess the role of 

early glomerular injury, characterized by increased glomerular basement membrane width, 

mesangial expansion, and podocyte injury, in DKD progression. Pathway functional analysis 

revealed gene expression fingerprints of immune cell trafficking, complement systems 

activation, mTOR, Rac signaling, and axonal guidance pathways associated with early 

glomerular injury. To further validate these results, these structural correlates were projected 

on transcriptional profiles at the single-cell level that showed enrichment of VvInt transcripts 

in proximal tubular epithelial cells and of transcripts associated with glomerular phenotypes in 

mesangial/smooth muscle cell types. Ample evidence of enrichment was observed on immune 

cell types, myeloid cells, and T cells.  

In summary, we developed a novel approach integrating intra-kidney gene transcript 

expression with quantitative morphometry. This method can be applied to identify molecular 

mechanisms activated in early DKD that may help predict major health outcomes. The 

identified genes linked to early structural damage and long-term kidney function are potential 

candidates for the identification of non-invasive biomarkers for progressive kidney disease. 

These genes also represent promising targets for early therapeutic intervention. This systems 

biology approach using bioinformatics-based methods can contribute to the identification of 

altered mechanisms that occur early in the disease course. These methods may be applied to 

other types of pharmacogenetic analysis and expanded precision medicine. 
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Abbreviations 
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EC  Endothelial cells 

EGF  Epidermal growth factor 

eQTL  Expression quantitative traits  
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FDA  Food and Drug Administration 
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GBM  Glomerular basement membrane width 

GFR  Glomerular filtration rate 

GV  Glomerular volume 

Hba1C  Glycated hemoglobin A1c 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
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ICAM1 Intercellular adhesion molecule 1 

IL-8  C-X-C motif chemokine ligand 8  
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IL1B  Interleukin 1 Beta 

IQR  Interquartile range 

JAK1  Janus kinase 1 

JAK2  Janus kinase 2 

lnRNA  Long noncoding RNA 

MAPK8 Mitogen-activated protein kinase 8  

MC  Mesangial Cell 

mGFR  Iothalamate glomerular filtration rate 

MMP2  Matrix metallopeptidase 9 

MMP9  Matrix metallopeptidase 2  

mRNA  Messenger RNA 

NFAT5 Nuclear factor of activated T cells 5  

NFKB1 Nuclear factor kappa B subunit 1  

NVPC  Numerical density of podocyte cell per glomerulus 

PC  Principal cells 

PCR  Polymerase chain reaction 

PEC  Parietal epithelial cell 

PHF1  PHD finger protein 1  

POD  Podocyte 

PRKCQ Protein kinase C theta  

PTEC  Proximal tubular cells 

RAC1  Rac family small GTPase 1  

RNA  Ribonucleic acid 

SOX2  SRY-box transcription factor 2 

STAT3 Signal transducer and activator of transcription 3  

SV  Surface volume of peripheral GBM per glomerulus 

TAL  Thick ascending loop 

TCA  Tricarboxylic acid 

TNF-A  Tumor necrosis factor 

TNFR2 TNF receptor superfamily member 1B 

TP53  Tumor protein p53  

TREM-1 Triggering receptor expressed on myeloid cells 1 

TRIM29 Tripartite motif containing 29  

TSP1  Thrombospondin 1 

VEGF  Vascular endothelial growth factor A  
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VEGFA Vascular endothelial growth factor A  

VPC  Volume of podocyte cell 

VPCN  Volume of podocyte nuclei 

vSMC  Vascular smooth muscle cells 

VVMES Mesangial fractional volume 

VVPC  Volume fraction of podocyte cell per glomerulus 

VVPCN Volume fraction of podocyte nuclei per podocyte cell 

WGCNA Weighted gene co-expression network analysis 
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1. Introduction 

1.1 Chronic kidney disease 

In addition to excreting waste, excess water, and acid, the kidneys control mineral and salt 

levels in the blood. They also reabsorb and recycle important metabolites and control blood 

pressure. This homeostatic balance is crucial to the functioning of other organs and tissues. 

Acute kidney injury can inhibit or prevent the kidneys from performing these routine functions, 

leading to chronic kidney disease (CKD) in some instances. CKD can develop in individuals 

of any age, race, or gender; however, the condition is more common in women. CKD is a 

leading global health concern with an estimated prevalence of 11–13% worldwide. A 2010 

Global Burden of Disease Study showed that CKD had risen from the 27th to the 18th leading 

cause of death in the world 1. Developed and developing countries both demonstrate a high 

prevalence of CKD: 12% of cases occur in Europe, the Middle East, East Asia, and Latin 

America, while 7% are found in South Asia. Per a report from the World Congress of 

Nephrology (2017), Germany ranked third (17%) in CKD prevalence. General increases in the 

rates of diabetes and hypertension can be partly blamed for the elevated risk of CKD seen in 

the United States, especially in African Americans, Hispanics, American Indians, and people 

of South Asian origin (World Kidney Day: Chronic Kidney Disease, 2015 

http://www.worldkidneyday.org/faqs/chronic-kidney-disease/). Other factors contributing to 

the spectrum of CKD include poor glycemic control, underlying autoimmune disease, and a 

family history of kidney disease (Table 1). CKD causes the kidneys to lose function over time; 

progression to end-stage kidney disease leads to kidney failure, which requires either dialysis 

or a kidney transplant 2. 
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Table 1: Risk factors for chronic kidney disease. 

Risk Factor Definition Examples 

Susceptibility agents Increased susceptivity 

to kidney damage 

Family history of kidney 

disease, reduced kidney 

mass, lower birthweight, 

aging race-ethnicity, socio-

economic elements low 

education, lower income. 

Initiation agents Initiate kidney injury  Diabetes, autoimmune 

disease, hypertension, 

urinary tract infections 

Progression agents Leads to worsening kidney 

injury, resulting in rapid 

decline in kidney function  

Heavy proteinuria, blood 

pressure, high HbA1c, 

smoking 

End-stage agents  Increase morbidity and 

mortality related to kidney 

failure 

Low serum albumin level, 

vascular stress, lower 

dialysis dose 

 

Table 1 Legend: Categories of risk factors for chronic kidney disease (CKD), including a 

family history of CKD, socioeconomic and demographic factors, high blood pressure, poor 

glycemic control in diabetes, and vascular stress leading to end-stage kidney disease. Any of 

these risks (alone or in combination) can lead to both kidney and cardiovascular complications 

and organ damage. 

 

Figure 1: Trajectory of kidney functions and complications leading to end-stage kidney 

disease 

 

Figure 1 Legend: A framework of the course of chronic kidney disease (CKD). Risk increases 

towards the right extreme, tipping the balance from normal to disease progression. If left 

untreated, an increased risk of CKD leads to further kidney and cardiovascular complications. 

This mechanism can further lower glomerular filtration rate (GFR), leading to kidney failure 

Normal

CKD  
PATH 

Higher

Risk
Renal 

Injury
GFR 

decline
Kidney 

failure

ESKD/

DEATH
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and requiring initiation of dialysis and to transplantation. Each rectangular box represents a 

phase of kidney function. The arrows between boxes depict the progression to different stages 

after the initial insult. The intensity of blue denotes the severity (i.e., from light blue to dark 

blue), indicating normal to late stages of kidney function decline. (Adapted from Lesley A et 

al. CHAPTER 53 - Staging and Management of Chronic Kidney Disease.(Lesley A. Stevens, 

Nicholas Stoycheff, Andrew S. Levey.  

 

Many contributing factors to CKD are attributed to a lack of awareness of the disease among 

the general population. CKD is progressive and usually leads to end-stage kidney disease 

within 10 to 20 years after initial diagnosis. A rapid decline in kidney function is a significant 

predictor of end-stage kidney disease. Therefore, early detection and management are crucial 

in slowing or halting the progression to end-stage kidney disease and other adverse outcomes 

of CKD, including cardiovascular disease.  

 

1.2 Prevalence of kidney disease 

The estimated glomerular filtration rate (eGFR) is currently the recommended measure of 

kidney function, with different eGFR levels denoting various stages of kidney disease. Normal 

kidney function occurs at >60 mL/min/1.73m2, mild to moderate loss of kidney function occurs 

at 59–45mL/min, and kidney failure occurs at less than 15 mL/min. The German Health 

Interview and Examination Survey for Adults included 2008–2011 data to provide a 

representative estimate of the prevalence of kidney dysfunction in Germans 3; approximately 

1.53 million German adults had an eGFR of <60 mL/min.1.73m2. The prevalence of CKD in 

the United States reflects the global picture, with kidney disease as the 9th leading cause of 

mortality. The latest United States Kidney Data System report indicated the overall prevalence 

of CKD in the adult U.S. population to be 14.9% (2015–2018). 
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 (https://www.usrds.org/2017/view/v1_01.aspx). Incident end-stage kidney disease cases 

increased by 2.3% in 2018 over 2017. Figure 2 illustrates the striking rise in the prevalence of 

end-stage kidney disease from 2015 to 2018 across ages, races, and sexes. 

 

Figure 2: Prevalence of end-stage kidney disease over a 4-year period 

 
Figure 2 Legend: Adapted from https://www.usrds.org. The prevalence of end-stage kidney 

disease from 2015 to 2018 across ages, sexes, and races. Ethnicities included Hispanic/Latino 

(Non/Yes) and unknown. Source: States Kidney Data System, 2020 Annual Data Report: 

Epidemiology of Kidney Disease in the United States. National Institutes of Health, National 

Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892. 

 

1.3 Kidney physiology 

The kidneys regulate blood volume and excrete excess water, metabolic products, and toxins 

from the body; the kidneys filter approximately 200 liters of fluid per day. As a highly 

vascularized organ, the kidneys are composed of an outer layer called the kidney cortex, a 

middle layer named the kidney medulla, and the inner kidney pelvis region. Each kidney 
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possesses roughly 1 million nephron structures that represent functional or filtering units. A 

single nephron comprises a kidney corpuscle, proximal convoluted tubule, loop of Henle, and 

distal convoluted tubule (Figure 3, created by Biorender.com). Nephrons begin in the cortex 

with the kidney corpuscle, proximal tubule, and distal tubule and extend into the medullary 

region with the loop of Henle and collecting duct. The peritubular capillaries lie next to the 

entire tubular length and play a critical role in solute transport. The kidney corpuscle 

responsible for the filtration of plasma consists of two main components: the glomerulus and 

Bowman’s capsule. More specifically, the glomerulus is a ball of capillary tubes enclosed by 

Bowman’s capsule. The inner layer of highly specialized epithelial cells is referred to as 

podocytes; the outer epithelial layer extends to proximal epithelial cells; and the space between 

these two layers represents Bowman’s space, which collects and transports ultrafiltrated 

plasma. The glomerulus filters fluids, glucose, metabolites, and waste products from the 

glomerular capillary into Bowman’s capsule. This filtration process is achieved as plasma 

passes through filtration barriers composed of the capillary endothelium, podocyte foot 

processes, and the vascular basement membrane. Mesangial cells are present within the 

glomerulus, where they produce basement membrane–like structures that support the 

glomerular complex structure. As filtered fluids pass through the proximal and distal 

convoluted tubules and the loop of Henle, ions and molecules are reabsorbed into the 

circulatory system. This process is crucial to maintaining homeostasis between glomerular 

filtrate and the blood. Nearly 65% of filtrate reabsorption occurs within the first tubular 

segment, the proximal tubules, which leads to the hair-pin structure of the loop of Henle in the 

medullary region. This kidney tubular section provides high osmotic pressure that facilitates 

the reabsorption process in later tubular segments. Further reabsorption and secretion of ions 

occur in the distal convoluted tubular region. Any remaining fluid gathers in the collecting 

duct—the terminal region of the distal convoluted tubule—for secretion to the ureter. GFR, as 
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detailed below, can be used to indirectly measure the total amount of filtrate formed and is 

proportional to fluctuations in the hydrostatic and osmotic pressures in Bowman’s capsule and 

the glomeruli. 

 

Figure 3 Nephron schema  

 

Figure 3 Legend: Schematic diagram of the kidney with an inlay figure of a single nephron 

showing the glomerulus and tubular segments. This figure depicts the arrangement of nephron 

segments within a single nephron. The round glomerulus connects to the collecting duct via 

tubular interstitial components of the proximal convoluted tubule, peritubular capillaries, loop 

of Henle, and distal convoluted tubule. Source: Created by biorender.com 

 

1.4 Parameters used to measure kidney function 

GFR is defined as the amount of blood filtered by the glomerulus per unit of time and is 

currently considered the best clinical indicator of overall kidney function. In addition to GFR, 

measures of proteinuria and albuminuria are widely used to evaluate kidney function and 

represent accepted parameters of kidney health4. Structural abnormalities detected during 

kidney biopsies are routinely used to determine the extent of kidney damage and to help 
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characterize the pathophysiologic nature of the specific disease entity. The National Kidney 

Foundation proposed a CKD definition and classification based on GFR (Table 2) in 2002. 

 

Table 2: CKD stages based on kidney function 

CKD stages Description  GFR 

(mL/min/1.73m2) 

1 
Normal kidney function 

≥90 

2 
Mild kidney damage 

60-89 

 

3 Moderate kidney damage 
30-59 

 

4 
Severe kidney damage 

15-29 

5 
Kidney failure 

>15 

 

Table 2 Legend: CKD: chronic kidney disease; GFR: glomerular filtration rate. This table lists 

stages of kidney disease based on the kidney function and GFR at the time of presentation. 

Stages 4 and 5 are defined as progressive and end-stage kidney disease, respectively. Colors in 

the arrow range from low risk (green) to high risk (red). 

 

GFR can be estimated in several ways. Methods include the Modification of Diet in Kidney 

Disease study approach, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), 

Berlin Initiative Study 1, and a modified version of the CKD-EPI method based on Cystatin C. 

However, recent studies have raised concerns about the widespread use of GFR as the main 

determinant of CKD staging. A major criticism of the 2002 classification scheme is the 

potential lack of precision of GFR estimates, particularly when estimated GFR is >60 

mL/min/1.73m2 5. Another confounder is the low rate of patients (~2%) who are seen to 

progress from Stage 3 CKD. The higher prevalence of CKD and low GFR is similarly 

confounded by age. These issues have led to reclassified guidelines: proteinuria and albumin 
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creatinine ratios are now included for more robust kidney disease staging 6-15. The National 

Kidney Foundation Kidney Disease Outcomes Quality Initiative and the international guideline 

group, Kidney Disease: Improving Global Outcomes (KDIGO) recently proposed an updated 

CKD classification that incorporates albuminuria changes (Figure 3).  

 

Figure 3: Classification of CKD by GFR and albuminuria category 

 

Figure 3 Legend: Modified chart of the KDIGO classification of CKD stages based on GFR 

and albuminuria levels. GFR categories range from 1 to 5; Category 3 is divided into 3a and 

3b. Albuminuria categories of low, mild, and high are based on the spot urine albumin-to-

creatinine ratio (A1, A2, and A3, respectively). Colored blocks indicate the risk of CKD by 

crossreferencing risk by GFR/albuminuria. Green: low risk, no CKD, no prior kidney disease; 

Tan: moderately increased risk with mild lowering of GFR and intermediate increase in 

albuminuria; Pink: persistent albuminuria increase and GFR loss; Purple: high albuminuria and 

severe kidney damage with possible kidney failure. 
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The root causes of CKD can be attributed to a diverse set of etiologies, such as diabetic kidney 

disease (DKD), hypertension, glomerular disease, tubulointerstitial disease, and recurrent acute 

kidney injury. According to the National Institute of Diabetes and Digestive and Kidney 

Disease, diabetes and high blood pressure are the two major contributors to CKD. 

 

1.5 Diabetic kidney disease 

As mentioned, DKD is a major global cause of CKD and end-stage kidney disease. 

Approximately 463 million adults have been diagnosed with diabetes to date; this figure is 

expected to grow to 700 million by 2045 16. Yet diabetes often goes undiagnosed in 1 in 2 

adults with the disease, suggesting that the true number of affected individuals is higher. The 

2019 International Diabetes Federation Diabetes Atlas reported that 10% of total global health 

expenditure is devoted to diabetes management, resulting in a substantial healthcare burden 

(International Diabetes Federation. IDF Diabetes Atlas, 9th edn. Brussels, Belgium: 2019. 

https://www.diabetesatlas.org) 17-19. The most recent United States Kidney Data System report 

(https://adr.usrds.org/2020) highlighted diabetes as the top cause of end-stage kidney disease 

(Figure 4) followed by hypertension and glomerulonephritis. 
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Figure 4: Prevalence of end-stage kidney disease by cause  

 

Figure 4 Legend: Modified from https://www.usrds.org. Prevalence of end-stage kidney 

disease by cause in 2015–2018 across all ages, sexes, and races. Ethnicities included 

Hispanic/Latino (Non/Yes) and unknown. Source: States Kidney Data System, 2020 Annual 

Data Report: Epidemiology of Kidney Disease in the United States. National Institutes of 

Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 

20892. 

 

DKD is a complex progressive disease strongly linked with microvascular complications. High 

circulating levels of glucose stress both the kidney glomerulus and tubulointerstitum. If left 

untreated, this stress can develop into CKD and eventually end-stage kidney failure. DKD is 

also a significant risk predictor of cardiovascular disease. Given the health impact and financial 

burden of DKD, as well as its contribution to CKD, disease management is urgently needed. 

The current clinical regimen of diabetes management through blood pressure control and 

lowering hemoglobin A1c has reduced disease incidence; however, early intervention in CKD 
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progression remains necessary to halt or potentially reverse its course. The current focus on 

personalized medicine reinforces the importance of identifying subsets of patients who may 

respond more effectively to certain treatments.  

Moderate albuminuria (microalbuminuria) is a broadly applied standard that nephrologists use 

for early detection of kidney complications as well as DKD progression. This standard has 

been widely adopted since Viberti and colleagues first described it in 1982 20. The diagnostic 

criteria have been updated repeatedly and now include new methods of urinary albumin 

excretion detection. Moderate albuminuria (microalbuminuria)is generally defined as a urinary 

albumin excretion rate of 30–140mg/min as indicated by sample type: 30–300mg/day in a 24-

hr urine specimen, 20–200µg/min from a timed urine sample, or 30–300mg/g from a spot urine 

sample. The latest Kidney Disease Outcomes Quality Initiative guidelines labeled levels below 

30 as a normal albuminuria range and those above 300 as macroalbuminuria. Non-albuminuric 

paths also exist in diabetes progression 21-25.  

GFR estimates that are based on approaches such as the Modification of Diet in Kidney Disease 

study approach and the CKD Epidemiology Collaboration are largely derived from estimates 

of creatinine measurements. Such estimates have been criticized for their lack of precision in 

CKD diagnosis/staging, especially in diabetic populations. A direct measurement of GFR (i.e., 

iothalamate GFR) using kidney clearance of exogenous tracers is currently considered the gold 

standard clinical method. However, the practical measurement of iothalamate GFR renders it 

a challenging routine assessment. DKD is conventionally characterized based on eGFR 

together with the urinary albumin-to-creatinine ratio (ACR); this measure is used to stratify 

patients who may be susceptible to progressive kidney disease 26-30. 

The variable course of DKD in its initial stages also presents a challenge to diagnostic 

approaches intended to identify at-risk populations with early clinical disease 31, 32. The 

progression to end-stage kidney disease in the normal albuminuric stage 33 and the regression 
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of moderate albuminuria (microalbuminuria) in some patients further complicates diagnostic 

and therapeutic approaches 23, 34-36. Additionally, scholars have recently pointed out 

inconsistencies in GFR and ACR in terms of characterizing DKD progression 37. 

 

1.6 Kidney biopsy 

Kidney biopsy remains a key method of assessing kidney damage. Following early 

hypertrophy, morphological changes develop that lead to glomerular basement thickening. 

Such thickening represents an early structural abnormality in DKD and is often followed by 

interstitial lesions and mesangial expansion in the glomerulus. These morphological changes 

can occur well before clinical manifestation as evidenced by eGFR or albuminuria. Several 

studies have indicated that applying histological features from biopsy tissues can predict 

disease progression much earlier than classical clinical parameters 38-40. For other conditions 

such as cancer, biopsy material has been used for histological and molecular profiling to 

classify high-risk patients and to identify potential therapeutic targets. The molecular profiling 

of tissue derived from damaged organs can provide greater insight into disease staging than 

cell culture methods. Tissue microdissection, either via laser capture or manual dissection, can 

also provide valuable information about cell-specific origins of regulated gene signatures, 

pathways, and molecular mechanisms. General analysis of the disease process is further 

enhanced when these change patterns are compared with patterns in healthy tissue. With a 

sufficient number of samples, statistical power can detect pattern-based differences within 

disease groups; these differences can then be used to identify at-risk patients and novel drug 

targets and has been showed in several studies.  
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2. Bioinformatics 

The field of bioinformatics emerged before the advent of DNA sequencing. In her pioneering 

work after World War II, Margaret Dayhoff applied state-of-the-art computational methods to 

create an atlas of protein sequences; she has since been deemed the mother of bioinformatics. 

The terms “bioinformatics” and “computational biology” are often used interchangeably. Both 

approaches embrace the use of computational methods to decode complex aspects of biology. 

Bioinformatics refers to the specialized application of computational and mathematical 

methods to store, organize, analyze, understand, visualize, and integrate information associated 

with molecular entities 41. This domain merges specific knowledge using computer science, 

statistics, mathematics, and biology to identify biologic mechanisms embedded in large 

biologic datasets 42. The field of bioinformatics also encompasses medical informatics, which 

involves the integration of clinical data and patient- or disease-specific information.  

The pre- and post-genomic eras in bioinformatics can be differentiated by the publication of 

first complete sequence of the human genome. Methods used in bioinformatics/computational 

biology later expanded from computation to the storage, retrieval, and characterization of 

complex patterns extracted from terabytes of data derived from the data explosion 

accompanying recent technological advances. Biologists are now faced with the challenge of 

extracting knowledge from “big data.” With developments in omics data generation, more 

advanced bioinformatics techniques are required in statistical and computational spaces to 

process related information. Machine learning algorithms and artificial intelligence tools are 

being used to establish deep learning neural networks. Medical bioinformatics presently 

focuses on constructing appropriate algorithms to decode data and address questions within 

defined biological settings (e.g., specific disease trajectories).  
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2.1 Systems biology 

Although the term “systems biology” is widely used, confusion persists regarding when and 

how to apply it. This uncertainty follows the shift from a traditional single mechanism–driven 

approach to a more data-driven, integrative means of characterizing biologic processes. 

Systems biology seeks to explain the complex dynamic interactions underlying specific 

processes to establish links between biomolecules and aspects of physiology. There has been a 

large influx of research embracing systems biology concept over the last decade rising from 

just two studies published in 2000 to more than 13K studies by 2020. The current systems 

biology is considered to evolve through three different phases: systems molecular biology, 

systems-mathematical biology and finally to system-medicine leading to exponential growth 

in drug discovery 43. 

The application of bioinformatics and systems biology requires the integration of diverse 

scientific approaches to generate hypotheses that can be iteratively refined (Figure 5). Systems 

biology in medicine refers to using bioinformatics to gain disease-related knowledge at the 

patient level encompassing information across genome-phenome cascade from 

transcriptomics, proteomics, metabolomics, lipidomics. This information can reveal novel 

explanations about the pathophysiology of disease progression. This systems approach is 

especially beneficial in a multifactorial disease such as DKD as the disease pathophysiology 

cut across multiple organs/tissue 44. 
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Figure 5: Systems biology as a multidisciplinary science  

 

Figure 5 Legend: A pie chart displaying the major components of systems biology. 

Bioinformatics integrates these components. The outer circle of bidirectional arrows shows 

how each element leads to new ideas/concepts to be addressed by the other elements. Figure 

modified from the Institute for Systems Biology. 

 

2.2 Precision medicine 

Precision medicine or personalized medicine often used interchangeably refers to the same 

concept that changes “one size fits all” approach in medicine. Many treatment regimens and 

clinical identification methods focus on classic disease etiology without necessarily 

considering key differences within subgroups. Advances in molecular personalized medicine 
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have allowed for a more holistic view of patients (e.g., by integrating datasets describing 

transcriptomic–epigenetic modifications, proteomics, and metabolomic landscapes in addition 

to genetic polymorphisms). This multifaceted analysis offers several benefits: it can facilitate 

identification of genomic, transcriptomic, or proteomic features that predispose individuals to 

disease; predicts patients’ responses to therapy; enhance diagnosis by identifying prognostic 

biomarkers; and provide potential mechanistic insights into disease processes. This general 

approach can also stratify patient subgroups, thereby enabling more precise treatment (Figure 

6) with the expectation that the treatment can be more customized to the genetic makeup of the 

individual patient. 

 

Figure 6: Precision medicine integrating multimodal networks  
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Figure 6 Legend: A schematic summary of data integration beginning with a heterogenous 

population. This approach is flexible enough to be adapted for any organ/tissue type. Data 

integration and pathway-based knowledge in specific cellular contexts facilitate patient 

stratification in clinical trials. 

 

The coordinated efforts of many research groups have also inspired kidney researchers to 

assume a more personalized medicine approach, largely based on integrating bioinformatics 

and systems biology methodologies 45-47. Cancer research has embraced the concept of disease 

group variations and integrated this approach of precision medicine 48. These differences have 

led to subclasses of cancer types and breakthroughs in target identification and drug discovery. 

As discussed, GFR and albuminuria are currently standard in the clinical characterization of 

DKD. However, each method has shortcomings. Variations in creatinine measurement and its 

inefficiency in adequately capturing tubular and vascular damage limit its utility in precisely 

characterizing the disease course. Patient rates of DKD progression are highly variable: some 

individuals with diabetes progress rapidly to the end stage while others remain in a mild to 

moderate stage for longer periods 49. These variations are partially due to the molecular 

processes associated with disease progression. Systems biology is well positioned to identify 

the biology underlying this heterogeneity based on diverse omics data. Combining molecular 

profiling with pathologic criteria is one way to identify the underlying differences in these 

patients with diverse progression and thereby advance personalized medicine in kidney disease.  

 

2.3 Enhanced characterization of disease models through systems biology 

Disease model platforms have greatly advanced basic scientific research. Experimental 

organisms such as the mouse, rat, and zebrafish have enriched our understanding of 

pathophysiologic processes. Unfortunately, these models often fail to exactly recapitulate the 
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disease mechanisms seen in human disease 50. Several drug targets had to be withdrawn from 

clinical trials due to the serious adverse effects which were not evident during the preclinical 

testing 51. Systems biology approaches can be useful for identifying general pathways and 

molecular networks shared between species. In some cases, these approaches have also been 

helpful in reinterpreting animal models in the human disease setting. Our group recently 

employed a systems biology approach to integrate human DKD pathways across three DKD 

mouse models.  

A novel systems biology approach, Tool for Approximate Large (TALE), was developed for 

network comparison 52. This method was applied where human diabetic nephropathy (DN) 

networks were compared with three experimental murine DN networks via graph matching 53. 

The TALE method compares network structures and extracts overlapping subnetworks 

between the query network (i.e., human DN in this case) and the model network. Gene 

expression profiling from biopsied tissue was derived from a type 2 diabetes cohort and from 

the three mouse models. This approach involved microdissection of kidney tissue to extract 

enhanced glomerular-specific RNAs to improve tissue specificity. Differentially regulated 

genes were identified from each dataset using bioinformatics methods to compare the diseased 

and control groups. The differentially regulated genes were then used to generate 

transcriptional networks of regulatory pathways within each species and model. These 

networks were produced on the basis of functional associations between individual genes 

described in the literature. These networks were then provided as input for the subgraph 

matching algorithm. First, TALE ranks genes in the query network by their degree of 

connectivity within the network, essentially establishing seed genes. The method relies on two 

parameters, namely the seed gene percentage in datasets and the mismatch percentage. The 

seed gene percentage defines the number or percentage of important genes needed to build the 

network from the query dataset; the mismatch parameter is the percentage of missing genes 
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allowed when generating the overlap network. The mismatch percentage introduces flexibility 

into the algorithm to enable identification of a set of subnetworks that may partially overlap 

within datasets. When comparing networks between biological systems, incomplete 

orthogonality can occur between species or tissues at the gene level. In TALE, functional 

overlapping begins with identifying seed genes that are then used to identify functionally 

associated genes to extend the data to a potential network. This process eventually revealed 

key shared processes/networks between human DN samples and the three mouse models. The 

networks validated pathways previously established as playing a role in the biology of DN. 

This approach also uncovered novel pathways linked to the pathophysiology of this disease. 

Essentially, this method focuses less on individual genes and more on common changes in 

regulatory pathways and networks between human diabetic nephropathy (DN) data samples 

and mouse models. Generating specific networks can more effectively characterize the general 

pathophysiologic processes occurring between species or models.  

This example demonstrates the advantage of systems biology approaches in identifying global 

mechanisms or pathways altered in DN models and patient data. Such methods can be useful 

in evaluating optimal experimental models for mechanistic studies. Systems biology can be 

leveraged to discern shared and unique networks as well. A study of lupus disease–associated 

kidney damage further validated this method’s utility across disease etiologies 54. Computation-

based approaches thus show promise in advancing our understanding of biologic mechanisms. 

In-silico methods in particular can reduce the financial burden and time required to identify 

relevant models. 

 

2.4 Single-cell RNAseq analysis and diabetic nephropathy 

Single-cell RNA sequencing (scRNAseq) is a promising analysis tool that has progressed 

dramatically over the past few years; it can reveal transcriptional changes occurring in a 
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multitude of single-cells obtained from every sample of interest. Single-cell sequencing reveals 

how distinct (or orchestrated) different cell populations’ contributions within heterogeneous 

tissues are to the tissue signal as a whole. This approach is especially powerful when single-

cell sequencing is available from healthy control and diseased tissue. In addition, this 

information represents a new means for the in-silico dissection of tissue. 

This technology, along with developments in material procurement and library generation to 

computational resources, has shown efficacy in fields such as oncology and neuroscience 55. 

When coupled with bioinformatics techniques, scRNAseq can be employed to characterize rare 

and complex cell types and to establish regulatory relationships between genes/cell types 56-58. 

This technology can also characterize cells obtained from biofluids as noninvasive liquid 

biopsies 59. The cancer field has successfully captured the tissue heterogeneity of tumors with 

the high throughput sequencing technology but with little success in defining the circulating 

tumor cells (CTC). Deploying single cell methodology, the cellular level heterogeneity of 

patient derived CTC is now emerging, effectively identifying targetable biomarkers with 

cellular precision. The FDA has approved the use of circulating tumor cells as a clinical 

diagnostic tool, and scRNAseq can provide detailed information in this regard. Genetic 

integration via expression Quantitative Traits (eQTL) is presently carried out using bulk RNA 

transcriptomics. Recent research integrating scRNAseq signals with candidates from genome-

wide association studies has revealed new cell-specific pathways and cell-specific eQTLs 60, 

61.  

Kidney tissue is heterogeneous; therefore, signals should be captured from distinct cell types. 

The kidney contains more than 50 segments/compartments, providing a particular challenge to 

generate single-cell data across the highly differentiated kidney cell types. With the 

development of kidney specific tissue dissociation and subsequent identification of individual 

cell cluster identification of transcripts characteristic for known kidney cell types has become 
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feasible. In addition, this approach allows to identify novel cell clusters, leading to a molecular 

(re-) definition of kidney cells in health and disease. 

 

3. Hypothesis and goals of thesis 

Systems biology and bioinformatic methods can be applied to identify networks of 

genes/mechanisms linked to the pathophysiology of DKD that manifest as pathologic or 

clinical criteria. This information can be used to classify disease stages or severity and to 

determine appropriate therapeutic strategies. In this thesis, we tested the hypothesis that 

network analysis can generate a systemwide perspective with mechanistic information to 

identify early disease parameters. Such a holistic approach would be especially valuable for 

diseases such as DKD, which may show clinical signs of progression over 15–20 years. A 

comprehensive approach integrating the molecular profiling of transcriptional changes and 

histological analysis could be used to identify fundamental pathological mechanisms that act 

as therapeutic targets as well as novel biomarkers seen at an early (i.e., pre-clinical) stage of 

disease. 

The central goals of this thesis were as follows:  

• To develop a bioinformatics-based method to characterize and then link molecular 

changes to morphological changes and clinical parameters that occur during the initial 

stages and progression of DN; 

• To initially use tubular interstitial tissue profiling for the analysis of changes within this 

compartment, that is accepted as a prognostic feature of progressive DN; 

• To validate key aspects of this analysis using single-cell analysis of parallel kidney 

tissue; 
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• To validate the general approach by analyzing the corresponding glomerular 

compartment in order to establish viability and applicability of the method in other 

tissue settings.  
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4. Material and Methods 

4.1 Study cohorts 

4.1.1 Early DKD cohort 

A tribe of American Indians from the Gila River Indian community in Arizona (i.e., Pima 

Indians) are thought to have the highest incidence and prevalence of type 2 diabetes in the 

world. Diabetes often develops at a young age in this population. Pima Indians generally 

exhibit higher insulin resistance than their Caucasian counterparts, possibly due to genetics. A 

large cohort of Pima Indians from this community enrolled in a longitudinal study (1965–2007) 

of diabetes and its complications conducted by the U.S. National Institutes of Health (NIH) 35, 

62. The NIH study involved detailed clinical follow-up for more than two decades (including 

kidney biopsies). Given the greater likelihood of diabetes onset and duration in this population, 

the NIH study offered an ideal resource for investigating DKD progression.  

A group of 169 adults from the Gila River Indian Community were enrolled in a randomized, 

double-blinded, placebo-controlled clinical trial (ClinicalTrials.gov number, NCT00340678). 

The primary goal of this trial was to assess the renoprotective effect of losartan, an angiotensin 

receptor blocker, in relation to the standard of care 63. The primary study outcome was a GFR 

decline to ≤60 mL/min or half the baseline value if the entry GFR was <120 mL/min. Exclusion 

criteria included type 2 diabetes for <5 years and urinary ACR of >300 mg/g. Annual 

iothalamate GFR measurements were taken during the trial 32, 64 and during follow up after the 

trial. In total, 111 of the 169 participants underwent an ultrasound-guided protocol research 

kidney biopsy at the end of the clinical trial 63. An investigator who was masked to the clinical 

data then performed quantitative morphometric measurements using unbiased random 

sampling. VvInt, glomerular basement membrane width, mesangial fractional volume per 

glomerulus, foot process width, and percentage of glomerular endothelial cell fenestration (a 

measure of endothelial injury) were assessed as previously reported 63, 65.  
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Urinary albumin excretion was evaluated via nephelometric immunoassay and measured 

annually. Urine and serum creatinine were measured with a modified Jaffé reaction 63, 65. Urine 

albumin excretion in this study was presented as the albumin-to-creatinine ratio (ACR) in mg/g 

creatinine. The study was approved by the Institutional Review Board of the National Institute 

of Diabetes and Digestive and Kidney Diseases. All study participants signed an informed 

consent document. 

 

4.1.2 Advanced DKD cohort 

Indication biopsy samples from 17 advanced DKD samples were collected from the European 

Kidney cDNA Bank Cohort (ERCB). The ERCB cohort is a multicenter study across 24 

European centers 66. Thirty-one living donor biopsies were used as controls. These biopsies 

were obtained at the time of transplantation. Study participants were predominantly Caucasian. 

This study captured surplus biopsy material in an RNA fixative (RNAlater, Qiagen) for 

transcriptomic profiling. Limited clinical information (i.e., serum creatinine, proteinuria, and 

demographic variables) was also collected when kidney biopsy specimens were procured. 

Kidney function (i.e., GFR) at the time of biopsy was expressed using the MDRD formula. 

Biospecimens were collected after obtaining informed consent and following approval from 

the local ethics committee. 

 

4.2 Tissue microdissection and microarray preparation 

Kidney biopsies were harvested using a Max-Core 16G biopsy needle and Tru-Guide from 

Bard Peripheral Vascular (Tempe, AZ) with ultrasound guidance. Each tissue specimen was 

immediately placed in a 2.0mL cryovial containing 1.0mL RNALater from Ambion (Now 
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ThermoFisher Scientific). Biopsies were stored at -20°C until microdissection. Tissue samples 

were microdissected manually using nickel-plated pin holders and 0.25mm Tungsten needles 

from Fine Science Tools (Foster City, CA). Specimens were dissected into RNALater using an 

SZX16 dissecting microscope (Olympus, Tokyo, Japan), and each compartment (i.e., 

glomerulus and interstitium) was placed in RNALater at -20°C until RNA extraction. Total 

RNA was extracted with the Qiagen (Germantown, MD) Allprep Micro kit according to the 

protocol using optional beta-mercaptoethanol. RNA was analyzed for concentration and 

quality using an Agilent Bioanalyzer 2100 (Santa Clara, CA). cDNA was synthesized and 

amplified from 15ng total RNA using the NuGEN Ovation PicoSL WTA System V2 Kit 

(NuGEN Technologies, San Carlos, CA) according to the manufacturer’s instructions. 

Amplified cDNA was isolated over MinElute Columns (Qiagen, Venlo, Netherlands) 

according to recommendations in the NuGEN Ovation manual.  

Amplified cDNA was fragmented and biotinylated using the NuGEN Encore Biotin Module 

and prepared for hybridization according to the NuGEN Ovation manual with reagents from 

Affymetrix (Santa Clara, CA). Next, 16 ng/ul labeled cDNA were hybridized to the Affymetrix 

GeneChip Array Human Genome U133A and Plus 2.0 chips which were then washed, stained, 

and scanned according to the Affymetrix User Guide for Expression Array Plates. Glomerular 

and tubular RNA underwent similar processing.  

 

4.3 Microarray data processing 

Affymetrix *.cel image files from glomerular and tubular tissues were obtained and processed 

as described previously 67. The *.cel files were screened for quality control using methods 

implemented in the Affy package in R software, an open-source statistical platform 

(https://www.r-project.org). Each *.cel file represented an individual patient. The steps 
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outlined in the Methods section were performed separately on glomerular and tubular data. All 

*.cel files were then read into R software. Quality control analysis and data preprocessing were 

conducted next. The RNA degradation plot is a quality control measure that plots the trend of 

RNA degradation from 5’-3’; an array with a steep slope compared to other arrays indicates 

RNA degradation. Density histograms of log-intensities from all arrays were superimposed 

into one graph to identify arrays whose distributions differed from others’. Normalized 

unscaled standard error plots and relative log expression plots can also reveal outlier arrays. 

For this study, arrays that behaved consistently differently on all quality control measures were 

removed; those that passed the quality control were then normalized using the robust multichip 

array method. This method includes three main steps: (1) background correction to remove 

background noise from the probe signal on each array; (2) normalization to remove variation 

introduced during target preparation and hybridization (i.e., to make data from all arrays 

comparable); and (3) summarization of probe intensities into gene- or probe set–level 

expression signals depending on the downstream analysis requirement. Expression signals 

were then log2 transformed for computational and statistical analysis. A custom definition file 

from Brain Array was used to annotate and map the probes to genes. This process was carried 

out separately for individual batches. Ideally, all samples would have been run in one batch to 

avoid technical variation. Although a single run is possible for experiments from model 

systems, one run can be infeasible for human biopsy samples given the infrequency of biopsies. 

Our samples were therefore processed in several batches, which carries the risk of a potential 

batch effect between runs. This effect, which could be due to variations in reagents, microarray 

chips, other equipment, or the technician handling the processing procedure, may have 

systematic impacts on signals. It is thus crucial to account for this technical artifact. We 

employed batch correction based on the empirical Bayes framework described by Johnson et 

al.68 on normalized log2-transformed data as the authors recommended. Principal component 
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analysis and hierarchical clustering were applied before and after batch correction to evaluate 

the effects of a batch and any other technical or biological separation on samples. Gene 

expression data from healthy living donors and DKD samples from the European Kidney 

cDNA Bank-Kroener Fresenius Biopsy Bank were processed accordingly 67 and are available 

through GEO [GSE47184]. Owing to ethical considerations, privacy protection, and to avoid 

identifying individual participants in this vulnerable population, the Ethics Board of the 

National Institute of Diabetes and Digestive and Kidney Diseases has stipulated that individual-

level gene expression and genotype data from this study cannot be made publicly available 65. 

 

4.4 Gene co-expression modules 

An important research question in systems biology pertains to how genes/proteins/metabolites 

interact. A detailed understanding of how most genes function in a normal or disease state 

remains lacking particularly when dealing with high-throughput technologies including single-

cell profiling. Single genes are no longer thought to drive physiological changes; rather, the 

concerted, orchestrated action of a set of genes is assumed to lead to alterations. Several 

systematic approaches can be employed to identify responsible gene sets, from clustering 

methods to more complex pattern recognition machine learning artificial intelligence 

algorithms. A common method is network construction: genes/proteins are depicted as nodes, 

and the connections or edges of these nodes are determined based on literature co-citation or 

data-driven associations. Another approach is co-expression analysis, grounded in the notion 

that genes which co-express or co-regulate in a system play similar functional roles. Yet 

another method, weighted gene co-expression network analysis (WGCNA) 69, is purely data-

driven and establishes relations in a dataset to enable meaningful assessment.  
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Gene co-expression modules were constructed in R, based on the established statistical method 

of correlation that is widely accepted within the biological community. Though its basic 

function is to establish correlations among all genes, WGCNA enhances this analysis by 

implementing a “weighted” correlation and creating an adjacency matrix where coefficients 

are raised to a “power.” This power, or β, describes disparity in the strength of correlations. A 

fully connected set of networks is then generated from the adjacency matrix. Given the goal of 

building networks that resemble the biological network, a scale-free network is adopted in this 

method. Nearly all real-life networks are scale-free; that is, certain nodes or hubs exhibit 

connections or edges within the network, whereas others have fewer connections following 

power law. These connections are contextualized by studying the relationships between 

neighbors, from which a network can grow based on functional associations. The method uses 

a sequential approach (Figure 7) by first calculating pairwise correlations among all gene pairs 

in the expression matrix to estimate the similarity between expression profiles. In other words, 

if there are n genes in a matrix, then each gene will have n-1 correlation values. These 

correlations raised to a power (β) are then computed between all gene pairs, effectively 

amplifying the difference between strong and weak correlations. The power is chosen based 

on scale-free network topology. The next step is to construct modules from a set of 

interconnected genes. The topological overlap matrix measures the pairwise similarity between 

network genes, which is then transformed into a dissimilarity measure. Subsequent hierarchical 

clustering of genes in the topological overlap matrix assigns them to branches in the cluster 

dendrogram. Gene pairs that share a high degree of topological overlap are assigned to a 

module. Then, a hypothetical module eigen gene is constructed; the module eigen gene is a 

summarized vector representing the expression profiles within each module as the first 

principal component of the module. Module eigen genes can be further correlated with each 

other to be merged into similar modules. These eigen genes are a main derivative of this method 
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and can be applied in many downstream steps as surrogates for genes within a given module. 

Module eigen genes can also be correlated with external traits, phenotypes, demographic 

features, histological scores, or any aggregate patient measure. The genes that constitute eigen 

genes can be used for granular analysis as well. Functional enrichment analysis, performed in 

a module-specific manner, can then reveal key underlying functions representing either 

module-specific or shared mechanisms.  

We applied this method on tubulointerstitial and glomerular gene expression data 

independently and generated modules via the above steps. Finally, we correlated the module 

eigen genes to phenotypes and prioritized modules that were significantly associated with our 

variables of interest (p<0.05). Module transcripts were then used for downstream functional 

analysis. 

 

Figure 7: Schema of sequential approach 

 

Figure 7 Legend: A schematic flowchart of the analysis illustrating the process from biopsy, 

data preprocessing, and analysis. WGCNA: weighted gene co-expression network analysis. 

WGCNA comprises several methods: co-expression patterns, module detection, module 

clustering based on eigen genes, and reiterative merging of the modules.  
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4.5 Functional gene annotation, enrichment, and pathway analysis 

Several tools are available to perform functional enrichment analysis (e.g., gene set enrichment 

analysis from the Broad Institute, DAVID, GeneGO, and gProfiler). In this study, the Ingenuity 

Pathway Analysis software tool (Ingenuity Systems, Redwood City, CA) (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity- pathway-analysis) was employed 

to define enriched functional terms within module genes with respect to pathways. A pathway 

network was constructed based on the criterion that pathways should have more than two genes 

in common. Functional biological processes and molecular functions were inferred using the 

controlled vocabulary of Gene Ontology in Genomatix software (Genomatix, Munich, 

Germany). GePS (https://www.genomatix.de/online_help.html), Genomatix Pathway System 

was used to construct a network from module genes. Network nodes denoted the genes 

identified from modules, and network edges denoted the connections linking genes based on 

co-citation in the literature. The degree of co-citation can be adjusted based on user preference. 

In this case, the criteria for the transcriptional network in GePS indicated that genes should 

have functional terms (e.g., inhibition/activation) from more than two literature sources.  

 

4.6 Upstream regulator analysis approach and gene selection 

Upstream regulator network analysis effectively identifies the cascade of upstream regulators 

and intermediate regulators that explain downstream observed transcriptional changes. As the 

name implies it is a causal analysis utilizing a reverse engineering approach. This method in 

summary tries to learn why the genes are regulated in a certain manner in the given biological 

disease or condition. Upstream regulator network analysis on the IPA platform was used to 

construct this cascading network. IPA software queries its enriched, curated backend database 

to identify involved regulators and predict whether an involved upstream regulator is likely to 
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be activated or inhibited. Genes shared among two or more pathways were extracted from the 

VvInt pathway network. This gene set was then screened against the database for potential 

upstream regulators affecting downstream expression changes via direct or indirect 

connections.  

 

4.7 Tissue processing for single-cell analysis 

Similar to the bulk mRNA cohort, participating members of the American Indians from 

Arizona, US underwent a protocol kidney biopsy for the single cell analysis. The research core 

was used for quantitative morphometry and tissue expression studies. CryoStor® (Stemcell 

Technologies) preserved kidney tissue samples were collected from 44 American Indian 

participants enrolled between 2016 and 2017. Single-cell transcriptome was generated from 2–

3 mg of the biopsy samples. Tissue procurement and processing protocols were adapted from 

the collaboration with Accelerating Medicines Partnership’s lupus network, Pathway 

Exploration and Analysis in Kidney Disease 70. The protocol was modified to enrich from the 

epithelial cell type. Kidney biospecimens in 1ml Hypothermasol™ (Stemcell Technologies) 

were transferred to the lab and immediately cryopreserved in DMSO containing CryoStor® 

CS 10 (Stemcell Technologies) solution for long-term storage in liquid nitrogen.  

 

4.7.1 Single-cell isolation 

The following protocols were applied for tissue dissociation as published previously 71, 72. The 

process starts with the thawing of samples in 37˚C water bath for 1 minute. The thawed samples 

are then placed in a 1 mL DMEM/F12 medium (with L-Glutamine, HEPES, and high glucose) 

supplemented with 10% heat-inactivated FBS. After incubation at room temperature for 10 

minutes, the tissue samples of 1-mm3 pieces are cut and placed in a 1.5-mL tube containing 
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500 μL digestion media with LiberaseTM TL (research grade, Roche) and incubated on an 

orbital shaker (500 rpm) for 12 minutes at 37˚C with a mild titration step after 6 minutes 

using a wide-bore 1000-μL tip. At the end of 12 minutes 500μL DMEM/F12 medium 

containing 10% FBS was added to halt the digestion. And after a one minute of incubation at 

room temperature the cell suspension was then filtered through a 30-µm strainer (Milteny 

Biotech) into a 15-mL conical tube. The left-over solid tissue was passed through nylon mesh 

using the rubber end of a 3-mL syringe pestle. The filter was then washed with 10mL 

DMEM/F12/10% FBS medium, and cells were pelleted by centrifugation for 10 minutes at 

200g at 4˚C. The supernatant was immediately removed via vacuum suction using a glass 

Pasteur pipet. The cell pellet was then gently re-suspended in 55 µl medium. Cell viability was 

analyzed with a Countess II FL automated cell counter using the Trypan Blue dye exclusion 

method. 

 

4.8 Next-generation sequencing of single-cell mRNA 

The single cell samples prepared using the above the protocol are transferred to the University 

of Michigan Advanced Genomics Core facility for sequencing on droplet-based high-

throughput 10XGenomics™ Chromium™ platform.10,000 viable cells in up to 46 µl 

DMEM/F12/10%FBS per sample were added to each channel of a chip. The 10X platform 

technology allows cell lysis, individual cell barcoding, and reverse RNA transcription 

Specifically, the 10X Single-cell 3' GEX – version 3.1 kit was used for the processing. Library 

preparation at the core included emulsion breakage, PCR amplification, cDNA fragmentation, 

oligo adapter, and Illumina sample index addition. Libraries were pooled and sequenced on an 

Illumina NovaSeq6000 platform as asymmetric paired-end runs (28 x115 bases) with a median 

of 200 million raw sequencing reads per sample71, 72 Sequencer output was processed in the 

proprietary 10X Chromium single-cell gene expression analysis software CellRanger 
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(https://support.10xgenomics.com/single-cell-geneexpression/software/pipelines/latest/what-

is-cell-ranger). 

 

4.9 Analysis of single-cell data 

The Core facility initially processed sequence data using CellRanger. The output data files 

were further processed using Seurat-version 3, implemented as an R package (https://cran.r-

project.org/web/packages/Seurat/index.html). Cells containing 500–5000 genes per cell were 

only included after initial filtering to account for cell doublet and cell viability issues. Doublet 

formation (i.e., two adjacent cell types captured by a single droplet) is a common concern in 

single-cell technology; doublets are identified as cells with a larger mRNA content and genes 

than a single cell. We applied the cutoff of >500 and <5000 genes per cell to account for this 

technical artifact. Another quality measure of cell viability in single-cell technology is the 

percentage of mitochondrial gene read content. A high percentage of mitochondrial gene reads 

suggests low cell viability, such as when cells’ cytoplasmic mRNA is lost during dissociation 

due to plasma membrane breakage. A threshold of <50% mitochondrial reads per cell was used 

in this study. 10XGenomics version 3 chemistry has been found to return a higher percentage 

of mitochondrial reads irrespective of cell viability in certain tissue types, including kidney 

tissue. Deep sequencing of samples (200 million reads) to obtain more genes per cell can 

mitigate this issue. Downstream analysis followed the standard single-cell processing of 

normalization, scaling, dimensionality reduction (i.e., principal component analysis), and 

uniform manifold approximation and projection 73. Sample integration was performed using 

the Harmony algorithm to account for batch effects and to identify differentially expressed cell 

type–specific markers 74. We used the functionality embedded in the Seurat R package to 

normalize and scale read counts; this functionality uses a global scaling method that normalizes 

the gene expression measurement for each cell by the total expression, multiplies this value by 
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10,000 (default), and log-transforms scaled expression values 74-76. We chose the resolution 

parameter of 6 for unsupervised clustering. Publicly available resources including published 

literature, Kidney Interactive Transcriptome (http://humphreyslab.com/SingleCell), Human 

Protein Atlas (https://www.proteinatlas.org), the Epithelial Systems Biology Laboratory 

(https://hpcwebapps.cit.nih.gov/ESBL/Database/) and Immgen (https://www.immgen.org/) 

were used to annotate clusters with cell-specific markers 71.  

 

4.10 Statistical analysis 

Affymetrix microarray processing, normalization, and WGCNA were carried out in R 

statistical platform using Affy package and WGCNA package. Single-cell processing and 

visualizations were performed using the Seurat package in R. Significance analysis of 

microarrays was conducted in the MultiExperiment Viewer within the Institute for Genomic 

Research suite to identify differentially regulated gene sets in advanced DKD compared to 

controls. The significance threshold of the false discovery rate was set at ≤0.05.  

 

5. Results 

The central goal of this thesis was to generate bioinformatics-based tools that could be used to 

identify molecular and structural fingerprints linked to disease progression in a DKD 

population at an early disease stage, showcasing a systematic bioinformatic approach to dataset 

integration. To this end, we employed a data reduction method and a weighted gene correlation 

network method that summarized high-dimensional data while retaining the flexibility to 

associate with the phenotype of interest. We focused on a type 2 diabetic cohort whose 

participants underwent protocol kidney biopsies. Participants exhibited clinically early kidney 
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disease, with most falling under a CKD stage of G1 or A1 per KDIGO guidelines (see Figure 

3). Baseline characteristics of the study cohorts are described in the following sections.  

 

5.1 Transcriptomic profiling 

All kidney biopsy tissue was manually microdissected to extract glomerular and tubular tissue 

for RNA isolation. Samples were then sent to the sequencing core for transcriptional profiling 

using an Affymetrix array platform. High-throughput profiling enabled transcriptional changes 

to be captured on a genome-wide scale. We could therefore identify key regulatory changes 

and establish network-level crosstalk among molecular changes. The raw data after rigorous 

preprocessing (as explained in the Methods section) were quantile-normalized and log2 

transformed to satisfy a Gaussian distribution. The systematic bioinformatic approach 

WGCNA, as explained earlier, was applied to this dataset to capture coregulated gene groups 

(i.e., those implying orchestrated biological functions). 

Using microarray preprocessing, gene expression profiling of tubulointerstitial and glomerular 

tissue was generated from the protocol kidney biopsy specimens from Pima Indian samples, 

indication biopsies from Caucasian DN patients, and healthy living donors. A log2-transformed 

robust multichip array normalized gene expression matrix was constructed for three datasets 

(i.e., glomerular and tubular profiles from early DKD and the tubular expression matrix from 

advanced DKD) after preprocessing the arrays that passed quality control. A background noise 

signal was calculated from Affymetrix positive control intensities. These controls were 

included in the chip as spike-ins, which were used to maintain constant expression values. We 

applied the median ± 2 standard deviations of control signals and filtered the expression matrix 

to include only genes that were expressed above the noise threshold.  

 



 

 43 

5.2 Tubulointerstitial subgroup 

5.2.1 Clinical characteristics 

Table 3 summarizes the baseline clinical, demographic, and morphometric characteristics of 

this cohort with tubulointerstitial expression profiling. Most participants had an iothalamate 

measured glomerular filtration rate (mGFR) of >90 mL/min with an average of 147 mL/min. 

The cohort’s overall median ACR was 35 mg/g at the time of biopsy, with roughly half of 

participants in the normal albuminuric range (<30 mg/g) and the other half in the micro–

macroalbuminuric range (>30 mg/g). Interstitial volume (measured as % kidney cortex) was 

significantly higher (29.5% vs. 11.9% in non-diabetic living kidney donor biopsies; p<0.0001). 

 

Table 3: Baseline characteristics of tubulointerstitial cohort 

M/F (% male) 15/34 (30.6) 

Age (years) 46 ± 9.8 

Duration of diabetes (years) 15.7 ± 6.8 

BMI (kg/m2) 35.2 ± 8.2 

HbA1c (%) 9.20 ± 2 

Systolic blood pressure (mm/Hg) 124.73 ± 13.99 

Diastolic blood pressure (mm/Hg) 78.02 ± 8.09 

ACR (mg/g) 35.46 [90.21] 

mGFR (mL/min) 147 ± 45 

VvInt (%) 29.5±9.6 

Follow-up post-biopsy (years) 10.1[2.0] 

 

Data are presented as mean (±SD), median [Interquartile range], or proportions (%). M/F: 

male/female; BMI: body mass index; HbA1c: glycated hemoglobin A1c; ACR: urinary 

albumin-to-creatinine ratio; mGFR: iothalamate glomerular filtration rate; VvInt: cortical 

interstitial fractional volume. 

 

5.2.2 Module detection 

We used WGCNA to define co-expressed gene sets. As explained in the Methods section, this 

protocol first groups highly correlated gene pairs into a module. The second step iterates to 

integrate the modules whose eigen genes are strongly correlated. The complexity of our high-



 

 44 

dimensional dataset was substantially reduced using this iterative approach, resulting in 11 

transcriptional modules ranging from 129 to 2,378 transcripts from tubulointerstitial profiles. 

The eigen genes of these 11 modules were then correlated with all cross-sectional variables of 

interest (e.g., VvInt, GFR, ACR) as well as with GFR and ACR over the follow-up period. The 

reduction from ~12,000 features to 11 features minimized or eliminated the dependency on 

multiple correction. Four eigen genes had statistically significant associations (p≤0.05) with 

VvInt; these eigen genes belonged to the black, blue, brown, and green modules, the colors do 

not imply any significance rather for naming purpose only. Negative correlation with VvInt 

was captured by the eigen genes from the black and brown modules (r=-0.31 and r= -0.51, 

respectively) whereas a positive relationship was established by the blue and green module 

eigen genes (r=0.38 and r=0.43, respectively) 65. 

 

5.2.3 Functional context of VvInt-associated transcripts 

To further understand these modules’ involvement in the pathophysiology of DKD, the 

transcripts within each module were extracted and screened for their known biological 

enrichments. A total of 1,843 genes were significantly correlated with VvInt (q-value≥0.05 and 

|r| =<=0.25) from all the four modules. This “fibrosis” signatures were then evaluated for 

literature-derived prior interactions using a co-citation network approach based on natural 

language processing in GePS. This system uses information from several public databases to 

compile more than 400 human pathways. The software enables to generate the co-citation 

networks using different criteria for establishing connection. Here the signatures were scanned 

for co-citations in PubMed-indexed publications by a functional term (e.g., “A induces B”). 

An additional filter was employed to ensure that these interactions had more than two citations 

on a functional level. For visual clarity, separate transcriptional networks of the top 100 most-

connected transcripts were generated for genes positively and negatively correlated with VvInt 
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(Figure 8). Several inflammatory signaling markers (e.g., CCL2, ICAM1), proliferation 

mediators (e.g., TP53), and growth factor–related signaling mechanisms (e.g., EGF, VEGF) 

appeared on the central hub of these networks, suggesting the presence of these mechanisms 

in early DKD. Gene ontology enrichment demonstrated similar traits enriched with immune 

regulatory functions, integrin binding, cell activation, and focal adhesion with the positively 

correlated transcripts. Transcripts negatively correlated with VvInt were enriched for 

molecular functions such as oxidoreductase activity and NAD binding in addition to being 

highly enriched with metabolic biologic processes 65.  
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Figure 8: Transcriptional network of genes associated with fibrosis score (VvInt) 

 

 

 

A 
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Figure 8 Legend: Transcriptional networks A (top) and B (bottom). Genes from positively and 

negatively correlated VvInt modules were input into the Genomatix Genome Analyzer to 

establish relationships among these genes. For visual clarity, the top 100 genes were selected 

(separately from positively and negatively correlated genes) for network generation. Edges or 

connections define a functional relationship between genes based on experimentally curated 

information in the GePS database with more than two literature citations. Connections denote 

a functional keyword relationship, such as the appearance of “induced” or “activated” between 

genes in the same sentence.  

 

  

B 
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5.2.4 Pathways associated with interstitial damage 

The previous section outlined relationships between previously studied genes among fibrosis-

associated gene sets. Functional enrichment analysis can further uncover the mechanisms 

dysregulated in molecular fingerprints due to associated damage (e.g., using classic gene 

ontology classification analysis or pathway-level investigations). In this section, we discuss 

pathways challenged by interstitial damage. Pathway analysis conducted in IPA software 

revealed 53 significantly enriched pathways using the 1,843 VvInt-related transcripts as input. 

Several pathways were identified (e.g., inflammatory or cell–cell/cell–matrix interaction 

pathways), with PXR/RXR activation, FXR/RXR pathways, and metabolic pathways among 

those most enriched 65. 

A network of disease-associated pathways was constructed from the 53 enriched pathways 

(Figure 9). Pathways with shared genes were grouped into clusters, resulting in a bipartite 

structure. Clear clusters of metabolic and inflammatory pathways suggested that these changes 

manifested in the early DKD stage and were associated with tubular damage. One metabolic 

cluster comprised fatty acid B oxidation, oxidative phosphorylation, and TCA cycle pathways. 

An inflammatory cluster composed of signaling mechanisms, including the extracellular matrix 

and growth factor signaling (e.g., inhibition of angiogenesis by TSP1), inflammasome 

pathway, and IL-8 signaling pathway, demonstrated early-stage interactions prior to clinical 

disease presentation. Mitochondrial dysfunction and LPS/IL-1–mediated inhibition of RXR 

pathways seems to be at the crossroads of this bipartite pathway network. Most pathways 

within each subcluster were densely interconnected (Figure 9). A small set of genes including 

PRKCQ, NFKB1, MAPK8, ALDH2 and RAC1 had high connectivity among VvInt-associated 

pathways. This pattern suggests key players’ central roles in coordinating changes of potential 

interest 65. 
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Figure 9: Network of fibrosis-associated pathways  
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Figure 9 Legend: A network of significantly enriched canonical pathways, generated via 

Ingenuity Pathway Analysis. Enrichment is based on 1,843 genes from four modules associated 

with VvInt. The threshold for pathway significance was set at p≤0.05. The network was 

restricted to pathways connected by ≥3 genes to display connectivity or crosstalk among 

enriched pathways. A bowtie structure indicates enrichment of metabolic signatures 

predominant in the left cluster (cyan nodes) and inflammatory pathways in the right cluster 

(pink nodes). Edges represent more than three genes shared by the nodes. 

 

5.2.5 Identification of upstream regulators 

A dense interconnected network points towards activation of a potential causal upstream 

mechanism. Upstream regulators influence the expression patterns observed in downstream 

genes. A set of 229 genes was enriched in this interconnected pathway network. Using a causal 

network inference approach 77, IL1B along with 48 intermediate regulators was identified as 

the master regulator of inflammation, affecting the expression of more than 50% of shared 

genes (Figure 10) 65. IL1B has been well studied in DKD model systems of advanced tubular 

dysfunction; it is essential to the interplay between tubular cell damage, linking apoptosis and 

innate immune activation. Activation of the downstream targets MMP2 and MMP9 facilitates 

the recruitment of inflammatory cells and fibroblasts, prompting fibrosis. Five transcriptional 

regulators (PHF1, SOX2, NFAT5, TRIM29, HEY1), connected with a common intermediate 

transcriptional regulator TP53, modulate the downstream targets of differentiated tubular 

function and oxidative stress 65. 
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Figure 10: Upstream regulator of complex fibrosis network  

 

Figure 10 Legend: IL1B is the top upstream regulator of genes associated with VvInt and shared 

among more than one pathway. Based on upstream regulator analysis generated via Ingenuity 

Pathway Analysis, IL1B was predicted to be the top regulator affecting expression of the 229 

genes from the four modules through 48 intermediate regulators.  

  

5.2.6 Fibrosis and kidney function decline 

The identified modules were correlated to structural damage at the time of biopsy. With regard 

to clinical utility, it is worthwhile to explore how these VvInt modules contribute to disease 

progression. The focal cohort is unique in its availability of long-term follow-up on clinical 

phenotypes with annual GFR and ACR measurements. The median [IQR] observation period 

was 15.9 [2.5] years, with 10.1 [2.0] years median follow-up length post-biopsy (Figure 11). 

No significant association was observed between the four modules in terms of cross-sectional 
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GFR and ACR. However, a significant association emerged between the module eigen genes 

and kidney function over time, respectively, over a median 10-year follow-up after biopsy 

(p≤0.05). This pattern indicates that clinical presentation might be misleading or unable to 

capture early-stage DKD; only over a longer diabetic duration (i.e., 20+ years) does this 

association start to become stronger in terms of classical clinical phenotypes 65. 

  

Figure 11: Association of VvInt modules with GFR and ACR measurement over time 

 

Figure 11 Legend: Eigen genes of VvInt-associated modules correlated with GFR and ACR 

measured over time. The first column is VvInt measured at the time of biopsy. Subsequent 

columns represent correlations of eigen genes with follow-up GFR and ACR. The color legend 

follows the legend bar on the right. Blue shades denote negative correlations, and purple shades 

denote positive correlations. The depth of the color indicates the correlation strength.  

 

5.2.7 Findings from early DKD to advanced DKD 

Fibrosis-associated genes were captured from a preclinical DKD cohort of American Indian 

ethnicity. To examine the impact of these early disease signals in advanced DKD, clinically 

indicated biopsies (N=17) were obtained from patients with advanced DKD and compared to 

healthy living donors to identify differentially regulated gene signatures. Fibrosis signatures 

from early DKD overlapped with differentially regulated genes in advanced DKD. Baseline 

characteristics of these 17 DN patients from a European (i.e., ERCB) DKD cohort are listed in 

Table 4. The DN patients in this cohort were mostly in CKD Stage 3–5 with an average 

estimated GFR of 44.3 mL/min/1.73m2. In total, 1,302 of the 1,843 fibrosis signatures (71%) 
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were significantly differentially regulated in late-stage DKD compared to healthy living kidney 

donors (N=31); 98% had concordant changes with disease. Figure 12 displays preserved nodes 

from the VvInt-transcriptional network in advanced DKD 65. 

 

Table 4: Baseline characteristics of DN samples in ERCB cohort (N=17) 

Variables   

Age (years) 58.3 ± 10.7 

Gender (% female) 29% 

eGFR (mL/min per 1.73 m2) 44.3 ± 24.9 

 

Table 4 Legend: Age and eGFR are presented as mean ± SD. eGFR is calculated using the 

MDRD equation.  
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Figure 12: Transcriptional network of signatures in advanced DKD 
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Figure 12 Legend: Transcriptional network active in the tubulointerstitial compartment of 

advanced diabetic nephropathy (DN) patients in the ERCB cohort. Overall, 71% of VvInt-

associated genes were differentially regulated in DN patients compared to controls, indicating 

that genes which appeared associated with early lesions of damage remained active in later DN 

stages. The network presented here illustrates connections among the top 100 highly connected 

nodes. Purple denotes increased gene expression and blue denotes decreased gene expression 

compared to controls.  

 

5.3 Glomerular subgroup 

5.3.1 Clinical characteristics 

While several studies have highlighted the importance of tubular involvement in DKD, the 

conventional mechanisms of moderate albuminuria (microalbuminuria) and hyperfiltration 

associated with glomerular structural and functional changes in early DKD represent key 

criteria of disease progression 78. To evaluate potential glomerular changes occurring early in 

DKD, transcriptional associations of the glomerular expression profile were compared to 

observed structural changes. We used the same bioinformatic analytical pipeline to test the 

general validation or potential transferability of this method to other tissues or data elements. 

Baseline characteristics of participants in the same cohort from whom glomerular samples were 

obtained are described below. The weighted correlation approach (WGCNA) was used to 

identify modules and eigen modules associated with glomerular lesions, with output data 

mapped onto pathways.  

Characteristics of the cohort with glomerular expression profiling are presented in Tables 5A 

and 5B. The 69 participants’ median urine ACR was 26 mg/g with an average measured 

iothalamate glomerular filtration rate of 145 mL/min. Similar to the tubular cohort, more than 

half of these participants had normal ACR (<30 mg/g).  
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Table 5A: Characteristics of cohort used in glomerular analysis 

Characteristic  At time of biopsy (N=69) 

Male sex, n (%) 18 (30) 

Age, years 45 ± 10 

Diabetes duration, years 15.5 ± 6.4 

HbA1c (%) 9.4 ± 2 

Systolic blood pressure (mm/Hg) 122.4 ± 12.81 

Diastolic blood pressure (mm/Hg) 77.79 ± 7.14 

ACR (mg/g) 25.93[141.57] 

mGFR (mL/min) 145 ± 52 

Serum creatinine (mg/dl) 0.7 ± 0.2 

Post-biopsy follow-up length, years 10.1[2.0] 

 

Data presented as mean (±SD) or median [IQR] or proportions (%). HbA1c: glycated 

hemoglobin A1c; ACR: urinary albumin-to-creatinine ratio; mGFR: iothalamate glomerular 

filtration rate. Clinical characteristics are comparable to samples used in the tubulointerstitum 

analysis. 

 

Table 5B: Summary of structural parameters from kidney biopsies of 69 participants 

Characteristic  At time of biopsy 

GBM Width (nm) 493.6 (107.30) 

VVMES (%) 0.28 (0.08) 

SV (µm2/µm3) 0.09 (0.02) 

VPCN (µm3) 150.4 (52.61) 

VVPCN (%) 0.11(0.04) 

VPC (µm3) 1651(1272) 

VVPC (%) 0.15 (0.05) 

NVPC (N/glom) 0.0002 (0.0001) 

GV (x106 µm3) 2.01(0.52) 

FPW (nm) 901.3 (531.10) 

FEN (%) 47.57 (18.81) 

 

Data are presented as mean (±SD). GBM: glomerular basement membrane width; VVMES: 

mesangial fractional volume; SV: surface volume of peripheral GBM per glomerulus; VPCN: 

volume of podocyte nuclei; VVPCN: volume fraction of podocyte nuclei per podocyte cell; 
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VPC: volume of podocyte cell; VVPC: volume fraction of podocyte cell per glomerulus; 

NVPC: numerical density of podocyte cell per glomerulus; GV: glomerular volume; FPW: foot 

process width in peripheral GBM; FEN: percent of endothelial fenestration. 

 

5.3.2 Module detection 

The WGCNA method detailed earlier was employed to identify modules or gene sets in the 69 

participants’ glomerular expression profiles. Data generation and preprocessing followed the 

same protocol as described in the tubulointerstitial section. Fourteen functional modules of 

varying size (106–2,123 transcripts) were identified in the glomerular expression dataset. The 

eigen genes from all 14 modules were then correlated with clinical and glomerular 

morphometric traits measured cross-sectionally (Figure 13). The threshold for statistically 

significant associations was set at p≤0.05. The green-yellow module showed strong positive 

correlations with glomerular basement membrane width and mesangial volume and negative 

correlations with intact foot process width and podocyte measurements, including podocyte 

volume and the numerical density of podocyte per glomerulus. Out of three module eigen 

genes, one was positively correlated and two were negatively correlated with fenestrated 

endothelium. These eigen genes belonged to brown, pink, and cyan modules, respectively. The 

colors of module eigen genes were assigned arbitrarily. Detailed results are shown in Table 6. 
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Figure 13: Heatmap showing association of eigen genes and structural parameters 

Figure 13 Legend: Each cell reports the correlation coefficient from correlating module eigen 

genes (rows) to traits (columns). Only modules significantly correlated with any trait are shown 

in the heatmap. GBM: glomerular basement membrane width; VVMES: mesangial fractional 

volume; VVPCN: volume fraction of podocyte nuclei per podocyte cell; VPC: volume of 

podocyte cell; VVPC: volume fraction of podocyte cell per glomerulus; NVPC: numerical 

density of podocyte cell per glomerulus; FEN: percent of endothelial fenestration. The table is 

color-coded by correlation according to the legend (***p≤0.001, **p≤0.01, *p≤0.05). 

Significance was set at p≤0.05. 
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Table 6: Thirteen modules from glomerular expression matrix and eigen gene–trait correlations 

Modules GBM VVMes GV SV FPW FEN VVPC VVPCN VPC NVPC 

Black        -   

Blue           

Brown      +     

Cyan +     -     

Green           

GreenYellow + +     - - + - 

Magenta           

Midnight blue           

Pink      -    - 

Red           

Salmon           

Tan        -  - 

Turquoise           

 

Table 6 Legend: + indicates positive correlation of eigen gene with trait; - indicates negative 

correlation of eigen gene with trait. GBM: glomerular basement membrane width; VVMES: 

mesangial fractional volume; GV: glomerular volume; SV: surface volume of peripheral GBM 

per glomerulus; FPW: foot process width in peripheral GBM; FEN: percent of fenestrated 

endothelium; VVPC: volume fraction of podocyte cell per glomerulus; VVPCN: volume 

fraction of podocyte nuclei per podocyte cell; VPC: volume of podocyte cell; NVPC: numerical 

density of podocyte cell per glomerulus.  

 



 

 60 

 

5.3.3 Functional network of glomerular lesion-associated transcripts 

Transcripts which showed strong correlations with each score (p≤0.05 and |r| =>=0.25) within 

each significant module were extracted and assessed for active functional fingerprints. One 

module (green-yellow) was significantly associated with nearly all traits. Because this module 

demonstrated strong correlations across traits, we evaluated the underlying theme. The 

affiliated genes were screened for known pathophysiology using canonical pathway analysis 

via IPA. Ample presence of inflammation, cell signaling, cell cycle, immune cell traffic, lipid 

metabolism, complement system, STAT3, and dendritic cell/natural killer cell communication 

was observed in these transcripts. Signaling mechanisms such as TREM-1, TNFR2, Tec-

kinase, CXCR4, Chemokines, and CCR5 signaling in macrophages composed the hub of these 

networks, again implying that these programs were activated in early stages of DKD. mTOR, 

Rac signaling, and axonal guidance pathways were among the significantly enriched pathways 

in podocyte trait-associated genes. Tables 7A–7D present detailed results on the enriched 

pathways for each associated trait. Thus, the general approach developed using data from the 

tubulointerstitial compartment could also identify unique parameters present in glomeruli. 
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Table 7A: Pathways enriched in gene set associated with glomerular basement membrane 

GBM signature–associated pathways   -log (B-H p-value) 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 4.07E+00 

T Helper Cell Differentiation 4.07E+00 

Atherosclerosis Signaling 4.07E+00 

Complement System 3.98E+00 

Leukocyte Extravasation Signaling 3.96E+00 

Granulocyte Adhesion and Diapedesis 3.60E+00 

Th1 Pathway 3.60E+00 

Agranulocyte Adhesion and Diapedesis 3.34E+00 

Th1 and Th2 Activation Pathway 3.02E+00 

Natural Killer Cell Signaling 2.92E+00 

Th2 Pathway 2.40E+00 

Dendritic Cell Maturation 2.24E+00 

Phagosome Formation 2.21E+00 

TREM1 Signaling 2.09E+00 

GP6 Signaling Pathway 1.50E+00 

MSP-RON Signaling Pathway 1.40E+00 

Autoimmune Thyroid Disease Signaling 1.35E+00 

Crosstalk between Dendritic Cells and Natural Killer Cells 1.35E+00 

FcŒ≥ Receptor-mediated Phagocytosis in Macrophages and 

Monocytes 1.31E+00 

Lipid Antigen Presentation by CD1 1.31E+00 

Allograft Rejection Signaling 1.31E+00 

Graft-versus-Host Disease Signaling 1.31E+00 

 

Table 7A Legend: 213 genes significantly correlated with the glomerular basement membrane 

width at the threshold of r≥0.25| and p≤0.05 were selected for IPA. Significant canonical 

pathways after the Benjamin-Hochberg procedure (p≤0.05) are included in the table.  
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Table 7B: Pathways enriched in gene set associated with mesangial volume measurement 

 

Mesangial expansion signature–associated pathways   -log(B-H p-value) 

Granulocyte Adhesion and Diapedesis 4.37E+00 

Agranulocyte Adhesion and Diapedesis 4.33E+00 

Complement System 3.54E+00 

Phagosome Formation 2.75E+00 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 2.74E+00 

Natural Killer Cell Signaling 2.71E+00 

Leukocyte Extravasation Signaling 2.71E+00 

Autoimmune Thyroid Disease Signaling 2.71E+00 

Dendritic Cell Maturation 2.68E+00 

Allograft Rejection Signaling 2.68E+00 

Graft-versus-Host Disease Signaling 2.68E+00 

Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells 2.12E+00 

Crosstalk between Dendritic Cells and Natural Killer Cells 2.01E+00 

MSP-RON Signaling Pathway 2.01E+00 

TREM1 Signaling 1.93E+00 

iCOS-iCOSL Signaling in T Helper Cells 1.79E+00 

Type I Diabetes Mellitus Signaling 1.74E+00 

Th1 Pathway 1.74E+00 

Neuroinflammation Signaling Pathway 1.74E+00 

Th1 and Th2 Activation Pathway 1.62E+00 

Atherosclerosis Signaling 1.53E+00 

Tumoricidal Function of Hepatic Natural Killer Cells 1.46E+00 

Th2 Pathway 1.46E+00 

B Cell Development 1.33E+00 

Role of Pattern Recognition Receptors in Recognition of Bacteria 

and Viruses 1.30E+00 

PKCŒ∏ Signaling in T Lymphocytes 1.30E+00 

 

Table7B Legend: 148 genes significantly correlated with mesangial volume at the threshold of 

r≥|0.25| and p≤0.05 were selected for IPA. Significant canonical pathways after the Benjamin-

Hochberg procedure (p≤0.05) are included in the table. 
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Table 7C: Pathways enriched in gene set associated with all podocytes structural 

measurements 

 

Podocyte signature–associated pathways   -log(B-H p-value) 

EIF2 Signaling 1.43E+01 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 5.84E+00 

Allograft Rejection Signaling 4.60E+00 

mTOR Signaling 4.55E+00 

Regulation of eIF4 and p70S6K Signaling 4.19E+00 

OX40 Signaling Pathway 3.82E+00 

CD28 Signaling in T Helper Cells 3.62E+00 

Graft-versus-Host Disease Signaling 3.57E+00 

Granulocyte Adhesion and Diapedesis 3.57E+00 

Th1 and Th2 Activation Pathway 3.57E+00 

Th2 Pathway 3.57E+00 

Coronavirus Pathogenesis Pathway 3.57E+00 

T Helper Cell Differentiation 3.33E+00 

Cdc42 Signaling 3.33E+00 

Systemic Lupus Erythematosus In T Cell Signaling Pathway 3.23E+00 

Th1 Pathway 3.20E+00 

Autoimmune Thyroid Disease Signaling 3.13E+00 

Calcium-induced T Lymphocyte Apoptosis 2.95E+00 

iCOS-iCOSL Signaling in T Helper Cells 2.95E+00 

Tumoricidal Function of Hepatic Natural Killer Cells 2.92E+00 

Agranulocyte Adhesion and Diapedesis 2.82E+00 

Type I Diabetes Mellitus Signaling 2.73E+00 

B Cell Development 2.57E+00 

Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells 2.47E+00 

Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 2.26E+00 

 

Table 7C Legend: 770 genes significantly correlated with any podocyte measurement at the 

threshold of r≥|0.25| and p≤0.05 were selected for IPA. The top 25 out of 69 significant 

canonical pathways after the Benjamin-Hochberg procedure (p≤0.05) are included in the table.  
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Table 7D: Pathways enriched in gene set associated with fenestrated endothelium damage 

 

Pathways enriched in signatures associated with FEN 

 -log(B-H 

p-value) 

Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 3.30E+00 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 2.02E+00 

CD40 Signaling 2.02E+00 

iCOS-iCOSL Signaling in T Helper Cells 2.02E+00 

HMGB1 Signaling 2.02E+00 

Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes 2.02E+00 

TNFR2 Signaling 2.02E+00 

GP6 Signaling Pathway 2.02E+00 

Death Receptor Signaling 2.00E+00 

Phospholipase C Signaling 2.00E+00 

Role of NFAT in Regulation of the Immune Response 1.98E+00 

CD27 Signaling in Lymphocytes 1.89E+00 

MIF Regulation of Innate Immunity 1.74E+00 

B Cell Activating Factor Signaling 1.74E+00 

April Mediated Signaling 1.74E+00 

Dendritic Cell Maturation 1.68E+00 

CD28 Signaling in T Helper Cells 1.65E+00 

Primary Immunodeficiency Signaling 1.65E+00 

Systemic Lupus Erythematosus In T Cell Signaling Pathway 1.63E+00 

Crosstalk between Dendritic Cells and Natural Killer Cells 1.62E+00 

Atherosclerosis Signaling 1.51E+00 

IL-15 Production 1.51E+00 

MIF-mediated Glucocorticoid Regulation 1.45E+00 

Th1 and Th2 Activation Pathway 1.45E+00 

T Cell Receptor Signaling 1.43E+00 

 

Table 7D Legend: 252 genes significantly negatively correlated with mesangial volume at the 

threshold of r≥|0.25| and p≤0.05 were selected for IPA. 25 significant canonical pathways 

after the Benjamin-Hochberg procedure (p≤0.05) are included in the table. Note: None of the 

pathways passed the multiple testing threshold for the gene set with a positive correlation with 

fenestrated endothelium (FEN).  
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5.4 Mapping of transcripts into single cell 

5.4.1 Clinical characteristics 

We used scRNAseq characterize or map the cellular sources of signatures associated with 

structural damage from glomerular and tubulointerstitial bulk mRNA profiles. Single-cell 

kidney expression profiles were obtained from the same American Indian population of early 

DKD used for the bulk studies, but from an independent set of patients (N=44). 

Characteristics of the DKD cohort at the time of sample collection are provided in Table 8. 

 

Table 8: Characteristics of 44 Pima Indians with single-cell profiling 

Characteristic At time of biopsy 

 (N=44) 

Age, years 41 ± 11 

Diabetes duration, years 12.2 ± 7.5 

Male sex, N (%) 14 (32) 

Body Mass Index (kg/m2) 36.9 (7.3) 

HbA1c (%) 9.2 ± 2.4 

Systolic blood pressure (mmHg) 119 ± 12 

Diastolic blood pressure (mmHg) 72 ± 10 

ACR, median [IQR](mg/g) 18 [9 - 53] 

mGFR (mL/min) 159 ± 58 

 

Table 8 Legend: Mean with SD are provided for continuous variables. ACR: albumin-to-

creatinine ratio; mGFR: iothalamate measured glomerular filtration rate. Median [IQR] for 

ACR. 

 

5.4.2 Detection of kidney cell types 

The scRNAseq analysis underwent rigorous preprocessing and filtering as explained in the 

Methods section. The combined samples yielded 85232 cells that passed quality control 

parameters. Unsupervised clustering at a granularity resolution of 0.6 using all cells pass 
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quality control resulted in 18 distinct clusters as shown in the uniform manifold approximation 

and projection plot in Figure 14. Literature-derived known kidney cell type–specific markers 

from several public sources were used to identify clusters and annotate labels for specific cell 

types. Kidney cell types and tissue resident immune cells were detected from kidney biopsy 

specimens using this scRNAseq protocol from 44 DKD kidney biopsies 72. The 18 clusters 

covered the entire kidney cell lineage along nephron and tissue resident immune cells. The size 

of cell clusters ranged from 12 to 17,571 cells. Most samples contributed cells to each cluster. 

 

Figure 14: Unsupervised clustering of cells from 44 patients with diabetic kidney disease 

 
Figure 14 Legend: Uniform manifold approximation and projection plot from unsupervised 

clustering of 85232 cells from 44 DKD samples into 18 distinct cell type clusters. Each cluster 

is denoted by specific colors. Each point within each cluster is a cell. ATL: Ascending thin 

loop of Henle; CNT: Connecting tubule; DCT: Distal connecting tubule; DTL: Descending 

loop of Henle; EC: Endothelial cells; IC: intercalated cells; MC: Mesangial Cell; PC: Principal 

cells; PEC: Parietal epithelial cell; POD: Podocyte; PTEC: Proximal tubular cells; TAL: Thick 

ascending loop; vSMC: Vascular smooth muscle cells. 
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5.4.3 Cellular fingerprint of morphometric trait-associated genes 

Fibrosis genes identified from the co-expression modules and the VvInt traits and genes 

associated with glomerular structural lesions were superimposed on scRNAseq data to identify 

the signatures’ cell lineage. These genes were initially identified from the bulk RNA, which is 

expected to encompass signals from all cell types in each tissue compartment in varying 

proportions. Genes’ fingerprints to their cellular localization can be determined in several 

ways. Here we deployed an overlay of the co-expression signatures on the expression matrix, 

averaged from single-cell profiles. A majority of the 1,843 fibrosis-associated genes were 

present in single-cell data and showed higher enrichment in the proximal tubule, immune 

clusters, and endothelial clusters (Figure 15). Interestingly, the proximal tubule epithelial cell 

exhibited a different pattern than other cell types by falling into its own cluster or branch in the 

dendrogram. Some genes displaying high expression in the proximal tubule epithelial cell also 

showed slightly higher expression in the other tubular segments of the DTL. 

 

Figure 15: Cellular map of fibrosis signatures in DKD  

Figure 15 Legend: A heatmap showing the expression of fibrosis-associated genes across the 

cellular landscape of the DKD population. Raw intensities were z normalized. The color scale 
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follows the color legend bar on the right, with blue as the lowest signal and yellow as the 

highest signal. 

  

Module genes associated with the glomerular bulk RNA expression and traits were similarly 

evaluated for enrichment of cell specificity. Gene sets associated with each glomerular trait 

were mapped separately. Most genes were associated with increased mesangial expansion. The 

glomerular basement membrane width and podocyte loss were mapped to kidney resident 

endothelial cells and mesangial/smooth muscle cell clusters in addition to immune clusters 

(Figures 16A–16D). 

Figure 16: Heatmap visual representation of cellular localization of glomerular trait–associated 

genes derived from bulk mRNA.  

 

A. 
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B. 

 

 

 

C. 
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D. 

Figure 16 Legend: Single-cell localization of genes associated with structural traits [A–D] from 

glomerular bulk mRNA expression profiles. The color bar for expression intensity follows the 

scale in the legend for each plot from minimum (blue) to maximum (yellow). (A) Heatmap of 

the range of expression of 209 genes associated with GBM in cyan and green-yellow module 

in glomerular data; (B) Heatmap clustering of 147 genes from the green-yellow module 

associated with mesangial expansion on the single-cell landscape; (C) Heatmap of 750 genes 

associated with podocyte injury traits from modules (pink, black, tan, and green-yellow on the 

single-cell expression matrix); (D) Mapping of 645 genes from cyan, green-yellow, and brown 

modules associated with the fenestrated endothelium on DKD single-cell profiles. 

 

 

6. Discussion 

6.1 Overview 

In this study, a systems biology approach sequentially combining multiomics was applied to 

explore mechanisms of early morphogenomic changes in DKD. Transcriptomics, quantitative 

morphometrics, and clinical outcome data constituted the evaluated layers. Structural damage 

precedes the clinical manifestation of GFR and ACR, such that nephrologists often miss these 
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early indications in the clinical setting. A lack of effective biomarkers for detecting early DN 

has hindered understanding of cellular and molecular events correlated with the earliest 

structural changes in DN. Here, protocol biopsies from a homogenous type 2 diabetes 

population enabled the detection of genome-wide signals expressed in the early stage of DKD. 

By leveraging structural indications of disease stages, tubulointerstitial damage and glomerular 

structural lesions were integrated with transcriptomic levels. This approach led to the 

identification of various key signaling and metabolic pathways activated in early DKD. The 

powerful resource of long-term outcomes enabled us to anchor these changes to kidney 

function over 15 years of post-biopsy follow-up. Significant enrichment in inflammatory 

mechanisms and metabolic processes was observed in positively and negatively correlated 

VvInt transcripts, respectively. The same approach was then applied to glomeruli to test this 

method’s applicability in another pathophysiologic setting, namely by screening the 

associations of transcriptional levels with well-established glomerular lesions such as the 

glomerular basement membrane width, mesangial volume, podocyte loss, and endothelial 

fraction. Finally, single-cell sequencing was used to map the cellular localization of identified 

gene expression signatures. 

 

6.2 Generalizability of findings beyond early DKD 

This thesis describes the successful application of an approach that combines molecular and 

morphometric data in early DKD. The ultimate goal of integration studies such as this one is 

to identify early targets of therapeutic intervention (in our case, to slow the decline in kidney 

function before irreversible damage has occurred). Gene expression sets from tubulointerstitial, 

and glomerular compartments were evaluated for disease fingerprints via a “guilt-by-

association” approach using a co-expression method. The VvInt-associated transcripts were 

further evaluated for functional disease outcomes (mGFR/ACR trajectories) over 10 years of 
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post-biopsy follow-up. To determine whether the activation of these signatures was specific to 

the disease population under study, we validated our findings in a different cohort (i.e., a 

European cohort). Participants of this ERCB cohort were in more advanced CKD stages with 

an average GFR of 44 mL/min per 1.73 m2 compared to an mGFR of 147mL/min in Pima 

Indians. Roughly, 80% of implicated transcripts in Pima Indians were differentially regulated 

in this European cohort. These transcripts showed concordant changes of disease association 

as compared to healthy controls. Genes that exhibited positive/negative associations with 

scarring were also upregulated/downregulated, respectively, in advanced DKD. Notably, the 

studied cohorts differed on an array of features ranging from ethnic characteristics, 

environmental changes, disease stage, BMI, and other comorbidities. The concordant damage 

identified across cohorts therefore holds great potential clinical importance. The early onset of 

diabetes in the Pima Indian cohort highlights an urgent need for early intervention in the disease 

course. The high frequency of kidney failure (ESRD) by the age of 45 in this population with 

youth onset diabetes mandates further study 79. The approach as outlined here clearly 

demonstrates the potential of integrating multiomics data to capture relevant regulatory events. 

In this instance, the option of intervening at early disease stages should be far more effective 

than intervening later after the development of extensive tissue damage.  

Identifying gene signatures and associated functional units of pathways was here shown to 

facilitate the identification of dysregulated genes/functions in a tissue/disease context. Several 

transcriptomic studies, focusing on differential changes between DKD from indication biopsies 

and normal kidneys in human and in different diabetic mice models and controls, have 

demonstrated the utility of pathway identification in disease settings 53, 80-82. These studies 

examined the role of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) and JAK-STAT signaling and other inflammatory markers, now established as a 

pathogenetic contributor to DKD progression 53, 80, 81, 83, 84. Such research has also revealed 
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evidence of the JAK-STAT signaling mechanism in early DKD, advanced DKD, and murine 

modes. These molecular whole-genome studies provided the rational for an interventional 

clinical trial evaluating the safety and kidney efficacy of Baricitinib, a JAK1 and JAK2 

inhibitor, as a potential therapy in patients with advanced DKD (ClinicalTrials.gov number 

NCT01683409) 85. This trial provides a compelling example of successfully applying 

bioinformatics-driven bench-side findings in clinical care. Baricitinib has been found to 

significantly lower the level of urine albumin excretion, the primary outcome of the trial. The 

dose-dependent reduction of uACR compared to placebo after six months of treatment has 

shown a sustained reduction in urine protein four weeks after discontinuing Baricitinib 86. Of 

note, our and other transcriptomic studies predicted lower blood and urinary markers 

(CXCL10, VEGFA, CCL1) linked to JAK-STAT activation under treatment. Reductions in 

these markers were found to precede a reduction in albuminuria, underscoring the promise of 

this approach in identifying targets along with their engagement biomarkers. 

 

 

6.3 Bioinformatic approach captures crosstalk of processes 

The “translational” approach employed in the Baricitinib trial offered an example as to how to 

potentially discern related targets of interventional utility. However, a single gene or pathway 

is rarely the sole stimulus of disease progression, especially in heterogenous multifactorial 

diseases such as DKD where multiple cross-communicating mechanisms are thought to dictate 

disease progression at various disease stages. A systematic computational bioinformatic 

method can be used to help integrate and model these interactions to better explain the 

underlying disease physiology. Flexible in-silico modelling approaches can help facilitate 

identification of individual pathways as well as the regulatory cap of interacting pathways. 

These regulatory nodes can serve as potential drug targets or markers of integrated disease 
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activity. The tubulointerstitial fibrosis pathway network model studied here shows clear 

evidence of such active cross-communication among dysregulated pathways. Specifically, 

distinct clusters of dense networks of tubular dedifferentiation and inflammation processes 

(Figure8) mediated through two pathways: mitochondrial dysfunction and LPS/IL-1–mediated 

inhibition of RXR function. A growing body of evidence supports the suggestion of 

dysfunctional mitochondria as pathological mediators of DKD. Mitochondrial dysfunction has 

been linked to tubular injury in the kidney environment, interfering with cellular signaling and 

the generation of augmented reactive oxygen species. The disease state in the diabetes milieu 

alters this pathway, including glucose oxidation in proximal tubules. Studies of pre-clinical 

models have also suggested a potential pharmacological effect of targeting mitochondria to 

improve kidney function 87. In particular, Zhan et al. 88 observed that a tubular-specific enzyme 

called myo-inositol oxygenase had increased expression in diabetic mice along with 

mitochondrial fragmentation. D-glucarate supplementation in these diabetic mice showed 

attenuated myo-inositol oxygenase expression, tubular damage, and improved kidney function.  

 

6.4 Upstream regulator of clusters 

The upstream regulator analysis detailed here effectively captured the cascade of upstream 

regulators influencing the transcriptional gene expression changes occurring downstream. 

Several studies in other modalities have suggested the effectiveness of this approach in 

identifying potential regulators and target genes with novel therapeutic and diagnostic utility 

89-91. The approach detailed here strongly suggests the ability to identify upstream regulators 

from clusters in the pathway network. Upon screening the pathways affecting the inflammation 

cluster, the top upstream regulator was found to be IL1β. A set of five master transcription 

factors (PHF1, SOX2, NFAT5, TRIM29, HEY1) through a mediator of TP53 were activated in 

the dedifferentiation cluster. The regulators identified are well-studied targets in DKD. IL1β-
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dependent mechanisms have been described in DKD model systems of advanced tubular cell 

dysfunction 92, 93 where these mechanisms were found to link apoptosis and innate immune 

activation. IL1β-driven genes are important downstream signaling elements of the 

inflammasome that becomes activated during the progressive damage associated with loss of 

tubular function 94. 

Dedifferentiation master regulators (PHF1, SOX2, NFAT5, TRIM29, HEY1) were found to be 

connected via a common mediator TP53. This set should influence downstream targets 

involved in oxidative phosphorylation, mitochondrial dysfunction, and the production of nitric 

oxide and reactive oxygen species in macrophages. Intra kidney oxidative stress is a marker of 

both disease initiation and progression. Studies have shown that the cell-specific deletion of 

TP53 from proximal cells attenuates oxidative stress, macrophage infiltration, and tubular 

damage95. NFAT5 is an osmotic stress-response transcription factor shown to have tonicity-

dependent and independent modes of actions 96. NFAT5 provides a potential link between 

diabetic hyperosmotic stress and disease progression in part through modulation of pro-

inflammatory cytokine expression by resident epithelial tissue and immune cells. 

 

6.5 Systems biology identifies known and new targets associated with early structural 

lesions of DKD 

Previous studies have identified an association between mesangial fractional volume, surface 

density of the glomerular basement membrane, and glomerular volume with GFR decline40. 

Importantly, these structural lesions can initiate and develop even when patients are clinically 

silent. No diabetes studies to date have linked molecular correlates of this early surrogate 

outcome of disease progression to underlying pathways, which could in theory reveal targets 

for early intervention. Pathways currently undergoing drug targeting, such as the GP6 signaling 
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pathway, were identified as “significant pathways” captured in our bioinformatic integration 

of structure and transcriptome. High blood glucose, vascular shear stress, and oxidative stress 

often coexist in patients with diabetes and are known risk factors for cardiovascular events. 

Signaling events downstream of the GP6 pathway are influenced by hyperglycemia, oxidative 

stress, and shear stress. Another well-known podocyte injury pathway, the mTOR signaling 

pathway, was also identified in glomerular transcriptomic associations in this study. The 

established role of mTOR in diabetic podocyte injury helped to validate our general analysis 

method 97, 98. 

 Inflammation is associated with progressive type 2 diabetes but has yet to be fully 

characterized. We also observed high enrichment and molecular fingerprints of inflammation 

markers and associated pathways in the network identified in VvInt-correlated 

tubulointerstitial transcripts. Similar inflammation signatures appeared in the glomerular data. 

Innate immune mediators play critical roles in the pathogenesis of type 2 diabetes. Activation 

of the nuclear factor-κB (NF-κB) signaling pathway via receptors for advanced glycation end 

products and toll-like receptors can contribute to inflammation through HMGB199. HMGB1 

also contributes to the production of proinflammatory cytokines including IL-6, IL-1β, and 

TNF-α, all of which were captured in DKD transcriptional signatures 100, 101. Although 

inflammation is commonly associated with late events in DKD, our data demonstrate that these 

signatures are enriched and captured at clinically early stages of DKD. The macrophage 

migration inhibitory factor, another proinflammatory cytokine of the innate immune system 

and a main player in the induction of immunoinflammatory responses, was also enriched in the 

glomerular signatures studied here. These results provide convincing evidence of inflammation 

events in early DKD stages and strongly imply that anti-inflammatory intervention may be 

useful early in disease progression. 
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Genome-wide expression profiles represent powerful tools to capture the active tissue 

transcriptional response. The functional state of the transcriptional regulatory mechanism can 

be inferred using several approaches, such as the causal inference network method. This 

method has been applied successfully in kidney disease: kidney mRNA profiles were 

associated with disease progression to identify predictors of disease in cohorts with established 

CKD, including DKD. The transcripts were then screened as noninvasive targets and 

successfully validated as diagnostic markers across different cohorts 67. By employing a similar 

approach, the signatures of early DKD reported here can be used as a framework for future 

experimental studies to capture an upstream regulatory mechanism of phenotype-associated 

signatures. Doing so may help researchers identify noninvasive markers that reflect intra–

kidney disease processes occurring in patients with undetectable disease activity during 

preclinical presentation. 

 

6.6 Cellular source of structure-associated functions 

Single-cell sequencing was used in this study to map the expression modules identified by 

bioinformatics into distinct enriched cell types. The kidney is a complex organ consisting of 

highly specialized cell types. The sequencing technology employed in the first part of this study 

successfully identified global transcriptional changes occurring in the two major tissue 

compartments: the glomerulus and tubulointerstitial tissues. Based on the experimental 

constrains, these results could not be ascribed to a specific cell type. Single-cell sequencing 

facilitates the generation of individual transcriptomes from several thousands of cells in 

complex tissues, thus enabling detection of transcriptional regulation in distinct cell types. This 

method further allows for the identification of known or as-yet-unidentified cell subtypes or 

cellular states to provide evidence of unique molecular processes activated in these cell 
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lineages 71. When diseased tissue can be compared to healthy control, cell types as well as 

molecular dynamics implicated in the disease stage can be identified.  

The scRNAseq analysis of a cohort of 44 DKD kidney samples revealed 18 distinct cell clusters 

comprising the proximal tubule, immune cell, and endothelial clusters. This single-cell 

technology also indicated several unique immune clusters, including a myeloid cluster along 

with B cell and T cell clusters. The resultant dataset provides a reference atlas of single-cell 

populations in early DKD. These scRNAseq data can be used to identify similarities, 

differences, and relationships among cell lineages as well. Additionally, the approach can be 

used in conjunction with other data types involving bulk RNA102. Deconvolution (i.e., signal 

restoration) of single-cell data and bulk RNA profiles obtained from cohorts with long-term 

follow-up can also unveil cell-specific disease prognostic markers. The clusters identified in 

this study can be further dissected at different levels of granularity to allow the study of new 

cell types as their specific markers emerge.  

For example, the mapping of fibrosis-associated genes onto the single-cell map showed an 

enrichment of these signatures in the proximal tubule cell cluster. A logical extension of the 

present study might include the evaluation of potential cross-communication between cell 

types of interest by investigating ligand/receptor expression patterns between epithelial cells, 

fibroblast, immune and endothelial cells. The characterization of cell–cell communication 

could provide information about normal kidney function and how it is altered by disease. 

Analyzing and mapping structural correlates onto a single-cell population can help identify 

where kidney dysfunction has impacted cellular and tissue integrity and prioritize these 

associations for further mechanistic studies. 

 



 

 79 

7. Limitations 

This study has several limitations. A lack of control subjects from the same population hindered 

inferences regarding how the structure and molecular fingerprints were associated with the 

normal condition. Another limitation is the limited sample size, which is a key obstacle in 

expression studies especially those on DKD. Comprehensive phenotype data were obtained 

over 20 years of patient follow-up, expression profiling, and pathological structural 

measurements. Paradoxically, the unique, extended follow-up of the Pima protocol biopsy 

cohort represents another limitation; it would be challenging to find another type 2 DKD cohort 

with such extended follow-up and rich phenotypic resources which is a key strength of this 

study. Single-cell sequencing was performed on a different group of participants (albeit in the 

same population) due to a lack of single-cell profiling techniques when biopsy tissue samples 

were procured for expression studies.  

 

8. Conclusion 

The innovative integration of system biology and computational approaches in this study is 

theoretically applicable to any domain in which disease-associated mechanisms can be 

identified. Conventional methods often fail to capture the vast dimensionality of features when 

dealing with small datasets. Novel bioinformatics methods should thus be adopted to identify 

mechanisms that can be rationalized biologically and statistically. The WGCNA approach 

adopted here is highly flexible: this method computes eigen genes that summarize biological 

information contained in the genes assigned to each module into a single value per sample. 

This aggregation greatly reduces dimensionality while maintaining the flexibility to dissect 

modules into individual genes as needed. Another advantage of this type of method is that the 

identified vectors can be further passed onto other complex algorithms (e.g., Bayesian 

networks or classic regression methods). A biological mechanism is not driven by individual 
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genes but rather involves multiple genes and their interactions. Network analysis can 

effectively capture subtle, coordinated changes in direct or indirect interactions between 

entities. This technique is particularly common in social science research, with several popular 

tools and apps having adopted this algorithm.  

Researchers have gradually begun to identify the power and utility of these network analysis 

tools in medical research. A paradigm shift towards more open-source and collaborative spaces 

has promoted this change. Most bioinformatic and systems biology methods have borrowed 

concepts from other domains. Approaches are often independent of the disease setting and are 

instead contingent on the structure of data. This broad applicability benefits medical research, 

as methods can be applied to kidney disease and other domains (e.g., complex diseases such as 

neurological disorders and cancer). WGCNA can specifically be employed to identify 

candidate biomarker genes and therapeutic targets based on the associations of module genes 

and hub genes with disease phenotypes and disease outcomes. This method has already been 

adopted in cancer studies to identify biomarkers 103. This strategy cannot only be applied on 

mRNA profiles, but also shows efficacy in the small RNA world, such as lnRNA where Le et. 

al 104 used WGCNA to analyze mRNA and lnRNA expression profiles in triple-negative breast 

cancers; the authors ultimately identified a set of disease-specific mRNAs and lnRNAs as 

potential therapeutic targets.  

In addition to being applicable to different disease domains, these methods are largely 

technology- or platform-independent. The algorithms can therefore perform well on high-

dimensional data generated from various high-throughput platforms (e.g., RNAseq, 

scRNAseq, or high-throughput proteomic platforms). Several scholars have implemented these 

methods in various omic areas, including proteomics 105 and metabolomics 106.  
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9. Future perspectives 

This thesis describes the use of transcriptomic profiles and structural lesions to identify early 

disease surrogate expression signatures associated with long-term disease progression. Our 

work identified novel inflammatory and metabolic programs associated with fibrosis and 

glomerular lesions. In particular, this study highlights the complex multifactorial and 

heterogenous pathophysiology of DKD. Upstream regulator analysis revealed several key 

drivers orchestrating downstream events. The application and validation of single-cell analysis 

provided a cellular landscape of the altered regulation of these genes. Subsequent follow-up 

studies could prioritize disease-associated candidate genes for evaluation as biomarkers.  

To fully harness the clinical utility of new biomarkers in precision medicine, scholars will need 

to integrate proteomic and metabolomic profiles preferably from the same patients. The 

findings of this thesis could be extended to the assessment of noninvasive biomarkers from 

urine/blood biofluids from enriched signatures (Figure 17). Noninvasive biomarkers hold great 

potential clinical utility and can enhance the applicability of research findings from bench to 

bedside in clinical settings. 
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Figure 17: Updated scheme illustrating the inclusion of biofluids to the implemented analytical 

pipeline 

 

Figure 17 Legend: Schematic flowchart illustrating the process of biopsy, data preprocessing, 

and analysis. This figure highlights the inclusion of urine/blood samples to be integrated with 

module genes. WGCNA: weighted gene co-expression network analysis. WGCNA comprises 

several methods: co-expression patterns, module detection, module clustering based on eigen 

genes, and reiterative merging of modules.  

 

A well-powered DKD cohort with multiomics data from the same patients will be necessary 

for a more integrated analysis and multiple activities are ongoing in this field, most notably the 

Kidney Precision Medicine Project (KPMP), utilizing many aspects of the studies described in 

this thesis. Advances in machine learning methods and artificial intelligence have led to new 

opportunities for data integration in bioinformatics. Precision medicine requires information 

coalition in a patient-centric manner. Medical research is now embracing the concept of 

multiomics data integration, with several methods under development. Combining clinical and 

histological information with multiomics profiles will provide more insight into the cellular 

functions at work in disease progression. This thesis highlights the potential of combining two 
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data domains with extension to the single-cell level. Overall, integrating proteomics and 

metabolomics will improve the prognostic and diagnostic predictive accuracy of disease 

phenotypes and enhance treatment stratification.  
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