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Zusammenfassung

Die Bezeichnung stark korreliertes Material beschreibt eine Klasse von Materialien,
in denen die elektronische Struktur aufgrund von starker Coulomb Wechselwirkung
nicht hinreichend durch die Annahme eines nicht-interagierenden Elektronengases be-
schrieben wird. Aufgrund von Abschirmungseffekten wird die Coulomb Wechselwir-
kung in typischen Modellen als lokal genähert und steht damit im Konflikt mit dem
kinetischen Teil des Hamiltonians. Die aktuell führende Methode zur Behandlung
von stark korrelierten Materialien ist die dynamische Molekularfeldtheorie (DMFT),
die sowohl lokale Wechselwirkungseffekte, als auch nicht lokale kinetische Terme glei-
chermaßen in Betracht zieht.
Innerhalb dieser Arbeit führen wir unter Verwendung des effektiven Wirkungsfor-
malismus das Konzept von DMFT und ihrer Cluster-Erweiterung, der zellulären
dynamischen Molekularfeldtheorie (CDMFT) ein. Des Weiteren diskutieren wir das
Konzept der Matrix Produkt Zustände (MPS) und erklären alle Schritte, die not-
wendig sind, um DMFT Rechnungen mit MPS als Störstellen-Löser durchzuführen.
Ausgerüsted mit diesen Werkzeugen untersuchen wir die Effekte elektronischer Kor-
relationen in BaOsO3, einem Material in dem sowohl Hund’s Kopplung als auch
Spin-Orbit Wechselwirkung signifikant sind. Wir erforschen das Zusammenspiel die-
ser Interaktionen mit einer van-Hove Singularität nahe der Fermikante und finden,
dass Hund’s Kopplung und Spin-Orbit Wechselwirkung miteinander im Wettbewerb
stehen. Darüber hinaus verwenden wir CDMFT um die tetragonale Phase des binären
Übergangsmetalloxides CuO zu untersuchen. Experimente zeigen, dass dieses sich
verhält, wie zwei entkoppelte CuO2 Subgitter. Wir zeigen, dass diese Entkopplung
durch elektronische Korrelationseffekte erheblich verstärkt wird. Ein Vergleich von
impulsauflösenden Spektralfunktionen mit winkelauflösenden Photoemissionsspek-
tren (ARPES) zeigt gute Übereinstimmung und stellt die Verbindung zum Expe-
riment her. Durch Verwendung der variationellen Cluster Approximation (VCA)
identifizieren wir die Symmetrie des Ordnungsparameters der supraleitenden Pha-
se im lochdotierten Fall und schlussfolgern, dass sich die Entkopplung der Subgitter
hindurchzieht bis hin zum supraleitenden Zustand.





Abstract

The term strongly correlated material describes a class of materials in which the elec-
tronic structure is not sufficiently described by the assumption of a non-interacting
electron gas, due to non-negligible Coulomb repulsion. Due to screening effects these
interactions are within typical models approximated to be of local nature, which
yields a competition with the non-local kinetic part of the Hamiltonian. To this
date the leading method to treat strongly correlated materials is dynamical mean
field theory (DMFT) as it treats the local interaction and non-local kinetic parts on
essentially equal footing.
Within this thesis we introduce the concept of DMFT and its cluster extension
cellular dynamic mean field theory (CDMFT) from the effective action formalism.
Further, we will discuss the concept of matrix product states (MPS) and all the steps
necessary to perform DMFT calculations with MPS as an impurity solver.
Equipped with these tools, we investigate the electronic correlation effects in BaOsO3,
a material that features both significant Hund’s coupling and spin-orbit coupling. We
thoroughly investigate the interplay between those and a van-Hove singularity close
to the Fermi level and find a competition between Hund’s and spin-orbit coupling.
Furthermore, using CDMFT we investigate the tetragonal phase of the binary tran-
sition metal oxide CuO, which was found to behave as two weakly coupled CuO2

sublattices in experiment. We show that this decoupling is significantly enhanced by
strong electronic correlation effects. The connection to experimental data is drawn
by the comparison of momentum resolved spectra with angle resolved photoemission
spectroscopy (ARPES) measurements, which yields good agreement. By the use of
variational cluster approximation (VCA) we further identify the symmetry of the
superconducting order parameter upon hole doping, concluding that the correlation
induced sublattice decoupling even carries over to the superconducting state.
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Chapter 1

Introduction

The understanding of the electronic structure of solids is one of the main objectives
of condensed matter physics. In situations where the atomic orbitals of a solid’s
constituents are strongly overlapping, the description of electrons as an essentially
non-interacting gas is a reasonable approximation [6]. The nuclei are treated as fixed
in space, spanning a periodic crystal structure and thereby contributing a periodic
potential in which the electrons can move. Due to this translational invariance, the
non-interacting electron gas assumption leads to well-defined bands. That is momen-
tum states that the electrons are allowed to occupy. Starting from the band with the
lowest energy, those bands are filled up according to Pauli’s exclusion principle [7].
In terms of band structure it is straight forward to define insulators and metals [8, 9].
Namely, a material is insulating if all bands are either full or empty as then it costs
a finite amount of energy to excite an electron. On the other hand a metal is a
material where there exists a partially filled band. A further improvement of this
single-particle description is to take into account the other electrons by the means
of a self-consistently determined effective potential, e.g. by density functional theory
(DFT) [10–12]. This still yields well-defined bands as DFT treats the problem on
an effectively single particle level, which is sufficient to accurately describe many
materials [13].
In real materials, the electronic structure consists of many bands most of which are
either so favourable in energy, that they get filled up entirely or are so unfavourable
that they stay completely empty whether or not electron-electron interactions are
considered [14]. However, there may be bands that are partially occupied. If those
bands stem from atomic orbitals that are strongly localized, their energy scales may
be on par with those from electron-electron interaction as it becomes less favourable
for them to delocalize [15]. Materials hosting such bands are called strongly correlated



2 1. Introduction

materials as it becomes insufficient to only include the electron-electron interaction
as an effective potential. When this is the case, the description by DFT may yield
qualitatively wrong results, as electron-electron interaction can yield exotic effects
like high-temperature superconductivity [16], Mott insulating states [17] and Hund’s
metallicity [18], which are not captured by band theory. Gaining an insight into the
microscopic properties of strongly correlated materials is therefore of high interest.
To this aim, it is desirable to extract low energy tight-binding models on top of
which electron-electron interaction can be included explicitly. This can be achieved,
for instance by the means of fitting localized Wannier functions [19] to the dispersion
of the bands that are expected to host effects of strong electronic correlations. The
extracted tight-binding model will then be an effective model for the orbitals the
fitted bands originate from, which may also include contributions from orbitals the
correlated orbitals hybridize with, e.g. oxygen p-orbitals.
Upon inclusion of electron-electron interaction, the resulting model can then be
solved using Dynamical Mean Field Theory (DMFT) [14, 18, 20, 21]. In typical
models for correlated materials, one approximates the interaction between electrons
to be of local nature due to screening of the Coulomb potential and the small overlap
of atomic orbitals with those of the neighbouring atoms [15]. This intrinsic competi-
tion between local and non-local degrees of freedom is the reason why models, like the
Hubbard model [15, 22, 23], are still not completely solved. DMFT has become one
of the most prominent methods to access dynamical quantities of interacting tight-
binding models due to treating the non-local kinetic and local interaction degrees
of freedom on equal footing [20]. This enables DMFT to capture e.g. the transition
from a paramagnetic metal to a Mott insulating state [20, 24] in a half-filled band,
which relies on electronic correlations to freeze out the electrons movement [17] and
can not be explained within band theory. In particular, the successful combination
of the two aforementioned methods (DFT + DMFT) has become the state of the art
for electronic structure calculations [14, 21, 25, 26].
DMFT maps the interacting tight-binding model onto an impurity problem, where
interactions between electrons are only included on the impurity cluster, while the
dynamic exchange with the rest of the lattice is encoded in a bath of free elec-
trons [14, 20]. Even though this problem is already far simpler than the full lattice
problem, it is still an interacting many-body problem, which needs to be solved for
its interacting single-particle Green’s function. This is a very demanding task and
therefore the main computational load of DMFT rests on the respective impurity
solvers. Common solvers are continous time quantum Monte Carlo (CTQMC) [27],
exact diagonalisation (ED) [28], numerical renormalization group (NRG) [29, 30] and
tensor network techniques such as matrix product states (MPS) [31, 32].
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In this thesis, we implemented a MPS-based impurity solver working on the imag-
inary frequency axis [33–36]. The benefits of said solver are that it is able to work
exactly at zero temperature without having to deal with a fermionic sign problem [27],
a typical problem in CTQMC, while also being able to treat larger system sizes than
possible in ED. As the implementation of said solver was a large part of this thesis
we introduce the concept of MPS and give a detailed overview of all necessary steps
to solve an impurity problem by the use of MPS as an impurity solver.
Further, we investigate the transition metal oxide BaOsO3, which has four electrons
in its 5d shell [37]. As the d orbitals are spatially not very extended, the material can
be expected to be significantly correlated [15, 18]. Due to crystal field effects [38, 39],
only three out of the five bands corresponding to the 5d shell cross the Fermi level,
which is why we study an effective three band Hubbard-Kanamori model [22]. Fur-
thermore due to the high principal quantum number, spin-orbit coupling (SOC)
is sizeable and can be shown to favour exactly four total angular momentum or-
bitals [40]. Since the electron’s spin is already accounted for in those orbitals, one
expects that large SOC introduces a tendency towards a band insulating state. The
reason being that four electrons in four total angular momentum orbitals correspond
to a completely filled shell.
In contrast to SOC, Hund’s coupling, a type of electron-electron interaction present
in multi orbital Hubbard models, tends to lead to strong correlation effects [18]. This
stands in competition with the band insulating state favoured by SOC as the latter
is at its core a single-particle effect and therefore expected to show only weak corre-
lation effects. Additionally, in DFT and without the inclusion of SOC we find that
the material features a van Hove singularity [41] (vHs) directly at the Fermi surface.
The presence of a vHs in the vicinity of the Fermi level leads to a high density of
states (DOS) at low energies. This yields a larger active space for correlations, which
tends to enhance the effects of the electron-electron interaction. On the other hand
SOC splits the vHs and thereby competes with the correlation enhancing effect of
the vHs. It is the competition of the vHs, SOC and Hund’s coupling together with
the simple cubic structure that makes BaOsO3 an interesting material to study.
In addition to BaOsO3, we study a highly symmetric tetragonal phase of CuO, which
is quite exotic as in its bulk phase CuO crystallizes in a lower symmetric monoclinic
structure [42]. This situation changes when thin films of CuO are grown on a SrTiO3

substrate [43–45]. It then crystallizes in its tetragonal phase. The material features
well separated 2D layers [44], which yields a 2D character of the underlying physics
making tetragonal CuO (t-CuO) an intriguing candidate to study the mechanisms
behind superconductivity in similar cuprate materials [16, 46, 47]. Due to the posi-
tion of the oxygen atoms, t-CuO features an unconventional order of the magnitude of
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hopping parameters [48]. Namely, the next nearest neighbour hopping is larger than
the nearest neighbour one. Within a single layer of t-CuO this introduces a struc-
ture of two CuO2 sublattices that are intercalated and only connected by the nearest
neighbour hopping. In angle resolved photoemission spectroscopy (ARPES) [45] and
resonant inelastic x-ray scattering (RIXS) [49] experiments evidence was found that
said sublattices are in fact only weakly coupled. Indeed a weak coupling of the sub-
lattices explains why at half filling the material favours stripe order over the usual
antiferromagnetic ordering (AFM) that is found in most cuprates [16, 46, 47] as a
single layer of t-CuO can then be viewed as two intercalated AFM ordered sublat-
tices, which automatically yields stripe order.
Within this thesis, we discuss what is the origin of this decoupling and how it influ-
ences the nature of the superconducting order parameter. To this aim, we consider
a single band Hubbard model in Cellular Dynamical Mean Field Theory (CDMFT).
CDMFT is an extension of DMFT, which allows to take into account also non-local
correlations [50–52], enabling us to investigate the effects the interaction between
electrons have on the decoupling of these CuO2 sublattices. We find that electronic
correlations strongly enhance this decoupling effect and further investigate its ro-
bustness by studying the two limiting cases of an isolated cluster as well as the
non-interacting case. We compare the spectra obtained from our simulations to the
ARPES spectra, confirming the model. Furthermore, using a continous time quan-
tum Monte Carlo (CTQMC) solver [53–55] we give an estimate towards the critical
temperature for the stripe ordering within our cluster calculations. Using Varia-
tional Cluster Approximation (VCA) [56–58], a complementary cluster technique,
we identify the symmetry of the superconducting order parameter. We find that the
sublattice decoupling carries over to the superconducting state and hope that those
findings will trigger an experimental effort to dope t-CuO in an attempt to measure
its order parameter.

The thesis is structured as follows: In Chap. 2 we give an introduction to DMFT
and its cluster extension CDMFT as during the course of this work DMFT was the
most prominently used method. In Chap. 3 we give an introduction to the concept of
matrix product states (MPS) since our impurity solver is based on MPS techniques.
In Chap. 4 we present an in depth discussion of the steps necessary to solve an im-
purity problem by the use of MPS. Chap. 5 deals with the real material study we
conducted on BaOsO3. In Chap. 6 we discuss our results on the weak coupling of
sublattices in single layers of tetragonal CuO. Finally, in Chap. 7 we give a summary
of the main findings achieved during this work.



Chapter 2

Dynamical Mean Field Theory

Due to the simultaneous importance of the non-local and local contributions to typ-
ical Hamiltonians of correlated materials the solution of ground state problems and
questions about electronic structure are notoriously difficult. Over the last few
decades DMFT [14, 20, 50, 51] has proven to be a valuable tool, when it comes
to addressing these type of problems. Based on the works of Metzner and Voll-
hardt [59], Georges et al. [20, 60] solved the Hubbard model in infinite dimensions
for its local Green’s function and proposed that their solution could be modified as
an approximate method in lower dimensions. This laid the foundation for DMFT,
which treats the kinetic part of the Hamiltonian as coupling to one (or multiple)
bands of free electrons, while the interaction is treated exactly on a single site.
In the following we first want to give a motivation for DMFT from the point of
view of the effective action formalism, where it can be obtained as approximation to
the Baym-Kadanoff functional [61]. This point of view has also been discussed by
Kotliar et al. [14], where a similar derivation can be found. Afterwards, we are give
an overview of the relations that are needed to setup a DMFT self-consistency circle.

2.1 Effective action formalism

In this section we are first going to discuss the general framework of the effective
action formalism and then apply it using the single particle Green’s function as an
observable.
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2.1.1 General framework

We start from the grand canonical potential

Ω = − ln

(∫
Dψψ̄e−S[ψ,ψ̄]

)
(2.1)

for some action S given in terms of Grassmann fields ψ and ψ̄. We can now choose
an observable A and a source J , such that adding J ◦A[ψ, ψ̄] to the action yields the
generating functional of A

Ω[J ] = − ln

(∫
Dψψ̄e−S[ψ,ψ̄]−J◦A[ψ,ψ̄]

)
. (2.2)

Here the ◦ denotes the contraction that is needed to make the term J ◦ A[ψ, ψ̄] a
meaningful part of the action, while A[ψ, ψ̄] denotes the operator given in terms
of Grassmann variables, which yields A = 〈A[ψ, ψ̄]〉J=0. We want to stress the
difference between A and A[ψ, ψ̄] is that the former is an observable while the latter
is the corresponding operator.
We can now introduce a Legendre Transformation to obtain a functional of the
observable A instead of the source J

Γ[A] = Ω[J [A]]− J [A] ◦ A. (2.3)

Note that here again the ◦ stands for the necessary contraction between J [A] and A,
however this time that contraction is different from the one above as now A is the
observable not its corresponding operator. Taking the variational derivative of the
above expression with respect to A we obtain

δΓ[A]

δA
=

δΩ

δJ [A]

δJ [A]

δA
− J [A]− δJ [A]

δA
◦ A = −J [A] (2.4)

The last equality follows from the definition of J [A] as the source generating A. This
equation tells us that at stationarity of the functional Γ[A] the source J [A] is equal
to zero. We may now write the action as

S = S0 + λS1 (2.5)

with S0 and S1 being simple and difficult to treat parts of the action respectively.
Here λ is a typical coupling parameter that comes with S1, e.g. e2 for the Coulomb
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interaction between electrons. We can carry out an expansion in the parameter
λ [14, 62, 63]

J = J0 + λJ1 + . . . (2.6)

Γ = Γ0 + λΓ1 + . . . , (2.7)

which yields a simpler reference system

Ω0[J0] = − ln

(∫
Dψψ̄e−S0[ψ,ψ̄]−J0◦A[ψ,ψ̄]

)
. (2.8)

The goal is now to determine J0 such that 〈A[ψ, ψ̄]〉J0 still yields the exact value for
A. We write Γ[A] = Γ0[A] + ∆Γ[A] absorbing all the higher order terms in λ into
∆Γ[A]. Taking the variational derivative with respect to A we obtain

−J [A] = −J0[A] +
δ∆Γ[A]

δA
. (2.9)

Thus, using that at the stationary point of Γ[A] the source J [A] vanishes, we obtain
a set of equations for A and J0

A = 〈A[ψ, ψ̄]〉J0 (2.10)

J0[A] =
δ∆Γ[A]

δA
. (2.11)

Up to here all steps of the derivation were exact. However, obtaining δ∆Γ[A]
δA

in typical
applications is extremely difficult if not impossible. Therefore, the practical approach
is to approximate δ∆Γ[A]

δA
which also yields an approximate solution for A.

2.1.2 Single particle Green’s function as observable

Now we want to apply the formalism derived above to the case where we have the
action of a typical tight binding model with local interactions

S[ψ, ψ̄] = S0[ψ, ψ̄] + S1[ψ, ψ̄] (2.12)

S0[ψ, ψ̄] = β−1
∑

n

∑

ανij

ψ̄iαn
(
−iωnδijδαν + tανij − µδijδαν

)
ψjνn (2.13)

S1[ψ, ψ̄] = β−1
∑

n

∑

i

∑

ανρξ

Vανρξψ̄iαnψ̄iνnψiρnψiξn. (2.14)
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Here the ψiαn = ψiα(iωn) are the Grassmann variables corresponding to electrons on
a site of the lattice denoted by i, in the active orbital α, with Matsubara frequency
iωn. The spin was absorbed into the active orbital to not complicate the notation
any further. β is the inverse temperature, µ the chemical potential, tανij the hopping
matrix element and Vανρξ the interaction tensor.
In this section we are interested in the single particle Green’s function G as observ-
able. Thus, we identify A from above with Giαjν(iωn) which is given by

Giαjν(iωn) =
〈
ψiα(iωn)ψ̄jν(iωn)

〉
J0
. (2.15)

Now we need to determine J0 formally as a source that yields the exact G and
contracts with ψiα(iωn)ψ̄jν(iωn). Dyson’s equation [64] for the self-energy Σ states

Σiαjν(iωn) = (G−1
0 )iαjν(iωn)− (G−1)iαjν(iωn). (2.16)

Writing S0[ψ, ψ̄] + J0 ◦ A[ψ, ψ̄] as

S0[ψ, ψ̄] + J0 ◦G[ψ, ψ̄] = β−1
∑

n

∑

ανij

ψ̄αin
(
−G−1

0 + J0

)
iαjν

(iωn) ψνjn (2.17)

we can identify J0 = Σ. In the case at hand the functional Γ(G) from last section
is the Baym-Kadanoff [61, 65] functional and ∆Γ = Φ is the so called interaction
energy functional [14]. Neither the functional Φ nor its derivative Σ = δΦ

δG
can be

evaluated exactly, however it was shown by Metzner and Vollhardt [59] that in the
limit of infinite dimensions the self-energy Σ not only becomes local, meaning

Σiαjν(iωn)
d→∞
= δijΣαν(iωn) (2.18)

but also that all the diagrams contributing to Σ collapse to only consist of local
Green’s functions, while all other contributions are suppressed by at least an order
of 1/d [20, 59]. As the interaction we considered is purely local as well, in the d→∞
limit it therefore suffices to solve a single site problem for its self-energy.

2.2 Dynamical Mean Field equations

In the last section we concluded that a single site problem is sufficient to describe the
self-energy Σ(iωn) of an interacting tight binding model in infinite dimensions. We
therefore define an auxiliary impurity problem with the goal of computing Σ(iωn) by
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the action

Simp[ψ, ψ̄] = Simp
0 [ψ, ψ̄] + Simp

1 [ψ, ψ̄] (2.19)

Simp
0 [ψ, ψ̄] = β−1

∑

n

∑

αν

ψ̄αn(−G−1)αν(iωn) ψνn (2.20)

Simp
1 [ψ, ψ̄] = β−1

∑

n

∑

ανρξ

Vανρξψ̄αnψ̄νnψρnψξn. (2.21)

Note that here G is not just the local part of G0 but some so far unknown function.
It is the non-interacting Green’s function of the impurity model and often called
the Weiss function as it mimics the interchange of the single site with the rest of
the lattice similar to a Weiss field in classical mean field theory [20]. However in
contrast to the classical case G is a dynamic quantity depending on frequency. From
last section we know that it has to be chosen such that the interacting impurity
Green’s function Gimp mimics the local interacting Green’s function G of the original
model. This means

Gimp
αν (iωn) :=

〈
ψαnψ̄νn

〉
Simp

!
=

〈
ψiαnψ̄iνn

〉
S

=: Giαiν(iωn). (2.22)

Here the right side of the equation can be assumed to be independent of the position
i as long as we are considering translationally invariant problems. Unfortunately, in
general there is no closed formula to obtain G from G0 without knowing G or Σ. It
can however be determined self-consistently. The idea is to start from some guess for
G and use it to compute Gimp. We can then use the Dyson equation of the impurity
problem to obtain the impurity self-energy

Σimp
αν (iωn) = G−1(iωn)− (Gimp)−1(iωn). (2.23)

As explained in the last section, when G is chosen correctly we should recover the
self-energy Σ of the original interacting tight binding model. We can therefore insert
it into the Dyson equation (2.23) of the original lattice system and obtain

(G−1)iαjν(iωn) = (G−1
0 )iαjν(iωn)− δijΣimp

αν (iωn). (2.24)

As we are treating a translationally invariant problem the above is diagonal in mo-
mentum space. Thus we apply a Fourier transform and obtain

(G−1)ανk(iωn) = (G−1
0 )ανk(iωn)− Σimp

αν (iωn). (2.25)

Note that due to its locality, the self-energy is constant in momentum. We may now
obtain the local Green’s function Gloc(iωn) of the original lattice problem as

Gloc
αν (iωn) := Giαiν(iωn) =

(
1

2π

)d
vd

∫

BZ

ddk
[(
G−1

0k − Σimp
)−1
]
αν

(iωn), (2.26)
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where we took the continuum limit and vd is the volume of the d-dimensional unit
cell. Please note that the matrix inversion corresponds to the orbital indices, while
the momentum index is integrated over the first Brillouin zone (BZ). In practice
this integral is often approximated by summing up a fine grid of points in the BZ.
Having obtained Gloc(iωn) we can now check for self-consistency by comparing it
to Gimp(iωn), since when G(iωn) did describe the correct single particle problem,
then Gloc(iωn) = Gimp(iωn). We thus insert Gloc(iωn) into the Dyson equation of
the impurity problem (2.23) and obtain an update for the non-interacting impurity
Green’s function G(iωn)

[
(G ′)−1

]
αν

(iωn) =
[
(Gloc)−1(iωn) + Σimp(iωn)

]
αν
. (2.27)

In case the updated G ′(iωn) still shows significant deviations from G(iωn) we repeat
the above calculation iteratively until G ′(iωn) = G(iωn), in which case the impurity
problem mimics the infinite dimensional lattice problem exactly.
For infinite dimensions the above procedure is exact, however it may also approx-
imately be applied for a lattice problem of any dimension [59, 60]. As it turned
out this procedure actually reproduces experimental results for real materials very
accurately and has become one of the leading methods to include electron-electron
interactions on top of existing electronic structure calculations [14, 21, 25, 26].
As a wrap up of this section in Fig. 2.1 we show a pictorial representation of an
entire DMFT calculation. First we take a guess G. A typical choice would be the
non-interacting Green’s function of the lattice system Gloc

0 , but also other choices are
possible, for example in cases where one wants to investigate whether spontaneous
symmetry breaking occurs it might be interesting to initialize G in a way that already
has a broken symmetry and observe if the latter gets restored over multiple itera-
tions. After the initial guess for G was chosen we have to setup the impurity problem.
Due to the fact that G(iωn) can in principle have any dependence on iωn, we have
to introduce a sufficient amount of degrees of freedom so that this dependence can
be captured. The model of choice is often the Anderson impurity model (AIM) [66],
which consists of a single site with interactions coupled to a non-interacting bath
and is further discussed in Sec. 4.1. Having set up the impurity problem we perform
the following steps until we reach convergence:

a) Solve the impurity problem for Gimp using the impurity solver of our choice
(cf. Chap. 4).

b) Insert Gimp into the Dyson equation of the impurity problem (2.23) to obtain
the impurity self-energy Σimp.
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initial guess G Anderson impurity model

impurity solver

Gimp

Σimp = G−1 − (Gimp)−1

Σimp

Gloc =
∑

k

(
G−10k − Σimp

)−1

Gloc

G′−1 = (Gloc)−1 + Σimp

G ′
Stop the cycle when G = G′

Figure 2.1: Schematic depiction of a DMFT self-consistency cycle. The blue boxes
depict the objects that are inputs and outputs of the processes described by the red
boxes.

c) Perform the Brillouin zone integration (2.26) which yields the local Green’s
function of the lattice system Gloc.

d) Identify the local Green’s function Gloc with Gimp and put it into the impurity
problems Dyson equation (2.27) to obtain an update for G.

e) Compare the updated G ′ to G. In case they show significant deviations setup
a new impurity problem with G → G ′, then repeat steps a) - d) until G = G ′.

Here we want to stress that the solution of the impurity problem (a) is the most
time consuming part of the method as the impurity problem is still an interacting
many-body problem. It therefore needs to be solved by the means of sophisticated
many-body techniques. The method of our choice is a matrix product state (MPS)
based impurity solver that is going to be introduced in more detail in Chap. 3 and
Chap. 4.

2.3 Cellular Dynamical Mean Field Theory

In some situations longer ranged correlation effects may not be negligible after all,
for which the standard single site DMFT may be insufficient to accurately obtain
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(a)

(b)

~r ~r
~̃r

~R

~r = ~̃r + ~R

Figure 2.2: Construction of a super lattice consisting of clusters. (a) Graphical
depiction of the identification of sets of sites as clusters and interpretation of those
as sites on the super lattice. The circles represent the original sites, while sites on
the same square form a cluster. (b) Graphical depiction of the unique decomposition
of an arbitrary vector ~r on the original lattice into an super lattice vector ~̃r and a
cluster vector ~R.

the local Green’s function Gloc and related observables. The most prominent meth-
ods that attempt to remedy this shortcoming are dynamical cluster approximation
(DCA) [67, 68] and cellular dynamical mean field theory (CDMFT) [50, 51]. Both
treat a cluster of sites as the impurity system instead of just a single site. However,
the approach is fundamentally different.
While DCA works on clusters directly in momentum space, therefore fundamentally
ensuring the translational invariance of the problem, CDMFT works on real space
clusters, which leads to a breaking of translational symmetry that in the end has
to be restored by a reperiodisation procedure [69]. The great benefit of CDMFT,
however, is that as it works directly in real space, we can choose an arbitrary cluster
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geometry. This makes it straight forward to also investigate symmetry broken phases
like e.g. antiferromagnetic order without neglecting the non-local fluctuations. Since
in the context of this thesis CDMFT was our cluster extension of choice we are going
to introduce it here, while for an introduction to DCA we refer the reader to the
original works [67, 68] and Ref. [52], a review of quantum cluster methods.
CDMFT can be derived just as DMFT was derived in Sec. 2.1.2 and Sec. 2.2. How-
ever, there are a few key differences. For single site DMFT one can show that the
mapping to the impurity problem in infinite dimensions corresponds to integrating
out all but one site of the lattice [14, 20]. It is the same for CDMFT, with the
difference that we have to integrate out the entire lattice apart from one cluster.
When considering the hopping matrix tανij from Eq. (2.13) this means that the sites
contained in the cluster have to be sorted into the local degrees of freedom α, ν. This
corresponds to a super lattice construction [52], where every site on the super lattice
actually is a cluster on the original one. This construction might sound complicated
at first, but is actually rather straight forward as schematically shown in Fig. 2.2.
The only constraint on the choice of clusters is that it has to be possible to span the
full lattice by periodically repeating clusters.
As mentioned before we have to sort the hoppings contained on the cluster into the
local degrees of freedom. To this aim we define

Tαν
IĩJj̃

= tανij , (2.28)

where we choose I and J such that they are indices running over the positions within
the cluster ~RI , ~RJ , while ĩ and j̃ run over the super lattice vectors. This is to say
any vector ~ri on the original lattice can be uniquely decomposed as ~ri = ~̃rĩ + ~RI ,
which is schematically shown in Fig. 2.2b. We demand that the super lattice is
translational invariant, meaning that every cluster is supposed to be identical. Then
we can regroup the indices of T such that (α, I), (ν, J) → α, ν where the new α, ν
now run over orbital as well as positional degrees of freedom as long as the position
is contained on the cluster. We can perform a partial Fourier transform on the super
lattice degrees of freedom ĩ, j̃ only, which yields

Tανk =
1

V

∑

ĩj̃

Tαν
ĩj̃
e−i

~k(~̃rĩ−~̃rj̃) =
∑

~d

Tαν~d e−i
~k~d, (2.29)

where we introduced the distance vector between clusters on the super lattice ~d and
used that due to translational invariance on the super lattice Tαν

ĩj̃
= Tαν(~̃rĩ − ~̃rj̃).

Therefore the non-interacting Green’s function of the super lattice can be obtained
by

(G0k)αν =
[
(iωn1− Tk)−1]

αν
. (2.30)
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Note that here the index k corresponds to some momentum within the reduced
Brillouin zone (RBZ), as the unit vectors of the super lattice are larger than the ones
of the original one. The interacting Green’s function of the cluster on the original
lattice can be obtained analogous to (2.26):

Glatt
αν (iωn) =

(
1

2π

)d
vSL
d

∫

RBZ

ddk
[
((G0k)

−1 − Σcluster)−1
]
αν

(2.31)

Note that here the integral again goes over the reduced Brillouin zone, the indices
α, ν indicate orbital as well as positional degrees of freedom within the clusters and
vSL
d is the volume of a unit cell on the super lattice. The cluster self-energy Σcluster

in the above equation has to be computed via mapping the lattice problem onto an
impurity model as before. The impurity action is given analogous to (2.19-2.21) by

Scluster[ψ, ψ̄] = Scluster
0 [ψ, ψ̄] + Scluster

1 [ψ, ψ̄] (2.32)

Scluster
0 [ψ, ψ̄] = β−1

∑

n

∑

αν

ψ̄αn(−G−1)αν(iωn) ψνn (2.33)

Scluster
1 [ψ, ψ̄] = β−1

∑

n

∑

ανρξ

Vανρξψ̄αnψ̄νnψρnψξn. (2.34)

The only difference is that α, ν now also run over some positional degrees of free-
dom contained in the impurity cluster. As the interaction is still local the entire
construction has no influence on the shape of V and therefore there are no non-local
components.
Solving the cluster problem in a self-consistent manner, as described for the single-
site case in the last section, we obtain the cluster Green’s function for the super
lattice.
For this rather quick derivation we essentially went back to approximating the
Baym-Kadanoff functional [61, 65] by finite ranged self-energies instead of local ones
(c.f. 2.18). This same approach is discussed also in the review by Kotliar et al. [14],
while in Ref. [51] the derivation relies on integrating out all degrees of freedom not
contained on the cluster akin to the cavity construction for single site DMFT [20].
We can now attempt to go back to the Green’s function of the original lattice G(~r, ~r ′).
To this aim we compute the complete Fourier transform (instead of the partial one

from before) of the cluster Green’s function G( ~K, ~K ′, ~̃k)

G( ~K, ~K ′, ~̃k)α̃,ν̃ =
1

NCV

∑

IJij

Glatt
i,I,j,J,α̃,ν̃ e

−i( ~K+
~̃
k)(~RI+~̃ri)ei(

~K ′+~̃k)(~RJ+~̃rj). (2.35)
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Here ~̃k stands for a super lattice momentum while the ~K ( ~K ′) are cluster momenta,
α̃ (ν̃) are orbital degrees of freedom and NC is the number of sites per cluster. The
reason why we denoted only one super lattice momentum vector is that we explicitly
constructed the super lattice to be translationally invariant and therefore the above

expression is diagonal in ~̃k. This also means that Glatt does only depend on the
distance ~d = ~̃rj − ~̃ri, which enables us to reformulate the above as

G( ~K, ~K ′, ~̃k)α̃,ν̃ =
1

NCV

∑

IJi~d

Glatt
IJ,α̃,ν̃,~d

e−i(
~K− ~K′)~̃riei(

~K′+~̃k)~de−i(
~K+

~̃
k)~RI+i( ~K′+~̃k)~RJ

=
1

NC

∑

IJi~d

Glatt
IJ,α̃,ν̃,~d

ei(
~K′+~̃k)~de−i(

~K+
~̃
k)~RI+i( ~K′+~̃k)~RJ . (2.36)

In the second step we used that the cluster momenta ~K and ~K ′ are elements of
the reciprocal super lattice and therefore the scalar product with an element of the
super lattice gives multiples of 2π. Resolving the Fourier transform of the super
lattice first, this yields

G( ~K, ~K ′, ~̃k)α̃,ν̃ =
1

NC

∑

IJ

[((
G

0,
~̃
k+ ~K′

)−1

− Σcluster

)−1
]

I,J,α̃,ν̃

× e−i(
~K+

~̃
k)~RI+i( ~K′+~̃k)~RJ . (2.37)

As the original problem is translationally invariant we would like to obtain a quantity
diagonal also in the cluster momenta. However, the clustering introduces a breaking
of translational invariance on the original lattice, as effects of electronic correlations
are only taken into account within the clusters not between them.
As this spatial symmetry breaking is purely artificial we have to come up with a
method to restore the symmetry. The reperiodisation prescription we use was orig-
inally proposed by Sénéchal et al. [69] in the context of cluster perturbation the-
ory [52], but can also be applied to CDMFT and other cluster methods [70]. The

key idea is to simply discard all matrix elements of G( ~K, ~K ′, ~̃k)α̃,ν̃ with ~K 6= ~K ′.
Using this we obtain

G(~k)α̃,ν̃ =
1

NC

∑

IJ

[((
G

0,
~̃
k+ ~K

)−1

− Σcluster

)−1
]

I,J,α̃,ν̃

e−i(
~K+

~̃
k)(~RI−~RJ )

=
1

NC

∑

IJ

[((
G0,~k

)−1

− Σcluster

)−1
]

I,J,α̃,ν̃

e−i
~k(~RI−~RJ ), (2.38)
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where we used that for every momentum of the original lattice ~k there is a unique

decomposition in cluster momenta ~K and super lattice momenta ~̃k such that ~k =
~̃k + ~K. Eq. (2.38) can now be used to compute, e.g. momentum resolved spectral
functions or other observables of interest on the original lattice.
Concluding this chapter we want to stress that in both CDMFT and single-site
DMFT the solution of the impurity (cluster) problem is the most cost intensive
operation within the self-consistency loop. The optimization of a Matrix Product
State (MPS) based impurity solver working on the imaginary frequency axis was a
large part of this work. For this reason we want to give an introduction into the
workings of said solver. Due to the fact that it is largely based on MPS methods the
next chapter will concern itself with an repetition of those, preparing the reader for
Chap. 4, where the most important steps of the impurity solver will be explained.



Chapter 3

Introduction to Matrix Product
States

Even though the impurity problem that is obtained via the mapping introduced by
DMFT is far less complicated than the full lattice problem from which it is obtained,
it is still a quantum many body problem and as such finding its interacting Green’s
function G(iωn) is a difficult task.
As mentioned in Chap. 1, our impurity solver of choice is an MPS-based solver [33–
36] on the imaginary frequency axis as it works directly at zero temperature, has no
sign problem compared to CTQMC [27] and can tackle rather large impurity systems
as compared to ED. Therefore in this section we want to give a short introduction
to the main algorithms that are used to obtain G(iωn).

3.1 The general concept

This section features a rather superficial introduction to the concepts of matrix prod-
uct states/operators (MPS/MPO). The interested reader may find a more in depth
discussion in Ref. [32]. We start from a one dimensional lattice system of size L, in
which an arbitrary quantum state can be written as

|ψ〉 =
∑

σ

cσ1,...,σL |σ〉 . (3.1)

Here σi is a label for the local basis states at site i, while cσ1,...,σL are some, possibly
complex, coefficients and |σ〉 = |σ1〉 ⊗ · · · ⊗ |σL〉. The coefficients cσ1,...,σL can in
principle have an arbitrary form (up to normalization), but for this discussion it will
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be useful to consider some special cases. Namely, assume that cσ1,...,σL factorizes into
products of simple scalars

cproduct
σ1,...,σL

=
∏

i

c[i]
σi
. (3.2)

Here the bracketed index refers to the site of the coefficient vector, as it may in
principle be different on every site. In this case the state |ψ〉 would be a product
state, as it factorizes into tensor products of local states. An example for situations
in which a product state can be a solution to a many-electron problem is when there
is no interaction as then the eigenstates of the Hamiltonian can be written as tensor
products of single particle eigenstates [71].
However, in many-body physics and specifically when considering strongly correlated
electrons, a product state can usually not capture the physics of interest. As the
name suggests a matrix product state is similar to Eq. (3.2) in that the coefficient is
factorized. However for an MPS the factors are matrices and the multiplication is a
matrix multiplication

cMPS
σ1,...,σL

=
∑

a

M
[1]σ1

1,a1
M [2]σ2

a1,a2
. . .M

[L]σL
aL−1,1

. (3.3)

Here we introduced the bond indices labelled by ai. The contraction of these bond
indices is in essence nothing else than a matrix multiplication. Again the bracketed
indices denote that the M tensor on every site may be different, however in order to
not overload the notation we are going to drop this index from now on. We want the
reader to note that this is only to make the notation simpler not because we assume
the M tensors to be site independent.
In theory any arbitrary state can be expressed as an MPS, however, the bond dimen-
sion D can be exponentially large for an arbitrary state. In practice we restrict the
dimension of the bond indices as follows. We can merge two neighbouring tensors of
the MPS by contracting their intermediate bond index, i.e.

M̃σiσi+1
ai−1,ai+1

=
∑

ai

Mσi
ai−1,ai

Mσi+1
ai,ai+1

. (3.4)

This two-site tensor can then again be split into two single-site tensors by the virtue
of singular value decomposition

M̃σiσi+1
ai−1,ai+1

= M̃(σiai−1),(σi+1ai+1) = U(σiai−1),aiSaiV
†
ai,(σi+1ai+1). (3.5)

Here one does usually only keep singular values Sa greater than some truncation
threshold ε so that insignificant contributions are discarded. This truncation is what
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Figure 3.1: Pictorial representation of an MPS for a lattice of size L = 4 in mixed
canonical representation with respect to site 3 (a) and with respect to the bond in
between site 2 and 3 respectively (b). Graphical depiction of an MPO (c) for a lattice
of the same size.

makes MPS an efficient method, as the states, that one does usually treat (e.g. ground
states) do have a singular value spectrum that is decaying rather fast and therefore
many can be discarded with close to no loss of accuracy [32].
In the following sections, we will commonly use the so called canonical representa-
tions of MPS, namely every MPS can be brought into one of the following forms by
applying successive merges and SVDs:

a) Mixed canoncial representation with respect to site i

cMPS
σ1,...,σL

=
∑

a

Aσ1
1,a1

. . . Aσi−1
ai−2,ai−1

Mσi
ai−1,ai

Bσi+1
ai,ai+1

. . . BσL
aL−1,1

. (3.6)

b) Mixed canonical representation with respect to the bond in between site i and
i+ 1

cMPS
σ1,...,σL

=
∑

a

Aσ1
1,a1

. . . Aσi−1
ai−2,ai−1

Aσiai−1,ai
CaiB

σi+1
ai,ai+1

. . . BσL
aL−1,1

. (3.7)

In principle, we can also have mixed canonical representations with respect to mul-
tiple sites by merging more tensors into the center tensor in Eq. (3.6). The tensors
A (B) are called left (right) normalized which means they have the properties

∑

σ

(Aσ†Aσ)a,b = δa,b (3.8)

∑

σ

(BσBσ†)a,b = δa,b. (3.9)
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Analogous to states operators can also be written in matrix product form these are
then called matrix product operators (MPO)

O =
∑

σ,σ′

c
σ′1,...,σ

′
L

σ1,...,σL |σ′〉 〈σ|

c
σ′1,...,σ

′
L

σ1,...,σL =
∑

a

W
σ1,σ′1
1,a1

. . .W
σL,σ

′
L

aL−1,1
. (3.10)

As all the tensor contractions in this section may seem complicated and overwhelming
to a first time reader we present a pictorial representation of both a MPS and a MPO
in Fig. 3.1. Here connected tensor legs correspond to contracted indices. In order
to not overload the figures in the following sections with indices we are from now on
only going to label uncontracted legs.

3.2 Density Matrix Renormalization Group

One of the core applications of MPS is the computation of ground states for interact-
ing many body systems. The main algorithm that is used to this aim is the density
matrix renormalization group [72] (DMRG). As before this section should rather
be thought of as a quick overview than an extensive review, which should instead
be found in Ref. [32]. In essence DMRG corresponds to minimizing the following
function:

F(|ψ〉 , λ) = 〈ψ|H |ψ〉 − λ(〈ψ|ψ〉 − 1) (3.11)

Here H is the Hamiltonian and λ is a Lagrange multiplier guaranteeing normaliza-
tion. Soon we will identify λ as the ground state energy of the reduced eigenvalue
problem.
Depending on whether the minimization happens with respect to a single-site ten-
sor or a two-site tensor the algorithm is called two-site or single-site DMRG. Here,
we will focus on two-site DMRG thus we bring the MPS into the mixed canonical
representation with respect to two sites and take the derivative with respect to the
corresponding tensor M

σiσi+1∗
ai−1,ai+1

∂F
∂M

σi,σi+1∗
ai−1,ai+1

=
∑

a′i−1,a
′
i+1

∑

bi,bi+1,bi−1

L
ai−1,a

′
i−1

bi−1
W

σi,σ
′
i

bi−1,bi
W

σi+1,σ
′
i+1

bi,bi+1
R
ai+1,a

′
i+1

bi+1
M

σ′i,σ
′
i+1

a′i−1,a
′
i+1

− λMσi,σi+1
ai−1,ai+1

!
= 0, (3.12)
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Figure 3.2: Graphical depiction of the left side of (3.13) for a lattice of size 6 and
i = 3. All contracted indices are suppressed. The left and right contractions L and
R are depicted by the green encircled tensors.

where W
σi,σ

′
i

bi−1,bi
is the MPO tensor of H at site i and we used that all tensors in the

MPS are left (right) normalized for sites left (right) to site i (i + 1). L and R are
defined as:

L
ai−1,a

′
i−1

bi−1
=

∑

al,a
′
l,bl

l<i−1

∑

σl,σ
′
l

l<i

A
σ′1
1,a′1

W
σ′1,σ1

1,b1
Aσ1∗

1,a1
. . . A

σ′i−1

a′i−2,a
′
i−1
W

σ′i−1,σi−1

bi−2,bi−1
Aσi−1∗
ai−2,ai−1

R
ai+1,a

′
i+1

bi+1
=

∑

al,a
′
l,bl

l>i+1

∑

σl,σ
′
l

l>i+1

B
σ′i+2

a′i+1,a
′
i+2
W

σ′i+2,σi+2

bi+1,bi+2
Bσi+2∗
ai+1,ai+2

. . . B
σ′L
a′L−1,1

W
σ′L,σL
bL,1

BσL∗
aL−1,1

.

Now Eq. (3.12) can be understood as eigenvalue problem for a matrix Heff defined
as

Heffv = λv (3.13)

Heff
(σi,σi+1,ai−1,ai+1),(σ′i,σ

′
i+1,a

′
i−1,a

′
i+1) =

∑

b

L
ai−1,a

′
i−1

bi−1
W

σi,σ
′
i

bi−1,bi
W

σi+1,σ
′
i+1

bi,bi+1
R
ai+1,a

′
i+1

bi+1

v(σi,σi+1,ai−1,ai+1) = Mσi,σi+1
ai−1,ai+1

.

Thus solving the eigenvalue problem (3.13) with respect to its ground state we find
a new optimized tensor M̃ . A graphical depiction of the left side of (3.13) can be
seen in Fig. 3.2.
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By the use of a singular value competition the MPS can be brought into a mixed
canonical representation with respect to the two sites on the right (left). The new
tensor will in practice have a singular value spectrum that yields an increase in bond
dimension between the sites i and i+1 up to a maximum of dD with D the maximal
bond dimension of the old tensor. In order to keep the computation feasible we will
usually truncate the bond dimension at some maximal value D thus keeping only
the D most important states of the local eigenvalue problem.
Once the representation has been shifted to the mixed canonical form with respect to
the next sites we can repeat the process described above to obtain another two-site
update. Since the optimization is only done rather locally, in order to make sure that
we converge to the overall ground state, we have to repeat this process, sweeping
back and forth through the MPS, until convergence is reached [32].

3.3 Krylov Time Evolution

In this section we briefly introduce the global Krylov time evolution method. As
before our goal is to convey to the reader the idea of the method rather than go into
every detail. For a more detailed review please refer to Ref. [73].
As the name suggests the global Krylov method is a global method that does in
principle not depend on the MPS structure and can also be applied to non-MPS
specific problems.
The key idea is to reduce the dimensionality of the problem by projecting the time-
evolution operator into a so called Krylov subspace. The Krylov subspace of di-
mension n with respect to a state |Ψ〉 and Hamiltonian H is defined as Kn =
span (|Ψ〉 , . . . , Hn−1 |Ψ〉). In order to write the projector it is useful to define an
orthonormal basis of Kn by {|ξ1〉 , . . . |ξn〉} where |ξi〉 is obtained by successively or-
thonormalizing H i−1 |Ψ〉 against every other |ξj〉 with j < i. The best approximation
to the exact time evolved state that can be made in Kn is the projection of the exact
state onto Kn. Therefore, when we start from |Ψ〉 and want to make a time step of
δt our best approximation reads:

|Ψ(∆t)〉 = PKne
−i∆tH |Ψ〉 = PKne

−i∆tHPKn |Ψ〉 (3.14)

=
∞∑

k=0

PKn
(−i∆t)k

k!
HkPKn |Ψ〉 (3.15)

≈
∞∑

k=0

(−i∆t)k
k!

(PKnHPKn)k |Ψ〉 . (3.16)
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Here we introduced the projector onto Kn as PKn =
∑n

i=1 |ξi〉 〈ξi|. Note that the
first line is exact, as |Ψ〉 is already within Kn. The approximation in the third line
consists in the insertion of the projector in between each H. This would only be
exact if Kn would span the entire Hilbert space. Continuing from here we obtain

|Ψ(∆t)〉 ≈ e−i∆tPKnHPKn |Ψ〉 (3.17)

=
√
〈Ψ|Ψ〉

∑

j

|ξj〉 (e−i∆tPKnHPKn )j,1. (3.18)

Here we used that |ξ1〉 = |Ψ〉 /
√
〈Ψ|Ψ〉. Note that the exponentiation of PKnHPKn is

numerically comparably easy as its matrix dimension is equal to dim(Kn) = n. The
main computational weight rests on the repeated application of H when building up
the Krylov subspace. In practice, one needs to include enough Krylov vectors |ξi〉
such that the inclusion of a further vector does not change the state in a significant
way. A reasonable criterion for convergence in the dimension of Kn is therefore
|(e−i∆tPKnHPKn )n,1|. Once the last element of the exponential is smaller than some
threshold value the krylov subspace expansion can be considered converged.

3.4 Time Dependent Variational Principle

The Time Dependent Variational Principle (TDVP) is a rather general procedure
[74, 75] that can be used in order to evolve states in time given any variational
ansatz. The idea is to project the evolution onto the tangent space of the variational
manifold. In practice we are going to apply TDVP to MPS [76, 77] defining it as our
variational manifold. In principle one can allow the variation of single-site, two-site
or even multi-site tensor, however the computational complexity rises significantly
the more sites are allowed to vary at once. For the sake of simplicity in this section
we are going to discuss single-site TDVP only, as before the goal of this section is
to give the reader an intuitive understanding of TDVP rather than give an in depth
review. The latter can be found in Ref. [73].
Our starting point is the time dependent Schrödinger equation (TDSE)

∂

∂t
|Ψ(t)〉 = −iH |Ψ(t)〉 . (3.19)

The projector onto the tangent space of our variational manifold (M) can be written
as [73]

PT|Ψ〉M =
L∑

i=1

P l
i−1 ⊗ 1⊗ P r

i+1 −
L∑

i=1

P l
i ⊗ P r

i+1, (3.20)
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where L is the number of sites. It is instructive to define P l/r in terms of the left
and right bases of the MPS in mixed canonical representation

|a〉li =
∑

σk
k≤i

(Aσ1 . . . Aσi)1,a |σ1〉 ⊗ · · · ⊗ |σi〉 (3.21)

|b〉ri =
∑

σk
k≥i

(Bσi . . . BσL)b,1 |σi〉 ⊗ · · · ⊗ |σL〉 . (3.22)

Note that 〈a|a′〉l/ri = δa,a′ due to the left (right) normalisation properties of the A
(B) tensors. With the help of these basis states, the mixed canonical representation
introduced in Sec. 3.1 can be written as

|Ψ〉 =
∑

a,b,σi

Mσi
a,b |a〉li−1 ⊗ |σi〉 ⊗ |b〉

r
i+1 . (3.23)

The projectors from Eq. 3.20 can then be defined as:

P l
i =

∑

a

|a〉li 〈a|
l
i (3.24)

P r
i =

∑

b

|b〉ri 〈b|
r
i (3.25)

P l
0 = 1 ∧ P r

L+1 = 1. (3.26)

With these definitions in place we can intuitively understand the definition of the
tangent space projector PT|Ψ〉M in Eq. 3.20. Namely, the first term allows the variation
of a single site tensor on any site, while the second term projects out changes parallel
to |Ψ〉 in order to ensure norm conservation. Thus, if one wanted to derive two-site
TDVP one would have to allow for the variation of two neighbouring sites in the first
term.
Applying the above projector onto the TDSE we obtain

∂

∂t
|Ψ(t)〉 ≈ −iPT|Ψ〉MH |Ψ(t)〉 . (3.27)

This can be solved by exponentiating the operator on the right:

|Ψ(∆t)〉 ≈ e
−iPT|Ψ〉MH∆t |Ψ〉 (3.28)
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Now even after the projection on the tangent space Eq. 3.28 is still not solvable,
however we can write

PT|Ψ〉MH =
∑

k

h1,k −
∑

k

h2,k (3.29)

h1,k = P l
k−1 ⊗ 1⊗ P r

k+1H (3.30)

h2,k = P l
k ⊗ P r

k+1H (3.31)

and apply a second order symmetric Trotter-Suzuki decomposition [78, 79]:

|Ψ(∆t)〉 ≈ e−ih1,1
∆t
2 eih2,1

∆t
2 . . . e−ih1,L∆teih2,L∆t . . . eih2,1

∆t
2 e−ih1,1

∆t
2 |Ψ〉

+ O(∆t3) (3.32)

This is equivalent to performing all the evolutions above successively. Thus one ends
up with equations of the following form

∂

∂t
|Ψ̃1,k(t)〉 = − i

2
h1,k |Ψ̃1,k〉 (3.33)

∂

∂t
|Ψ̃2,k(t)〉 =

i

2
h2,k |Ψ̃2,k〉 . (3.34)

Here we denoted the intermediate state that already had some evolutions performed
on top of it by |Ψ̃1/2,k〉. Contracting the above equations from the left with |a〉lk−1⊗
|σk〉 ⊗ |b〉rk+1 and |a〉lk ⊗ |b〉

r
k+1 respectively we obtain

∂

∂t
Mσk

a,b(t) = − i
2

∑

a′,b′,σ′k

(Heff
1 )a,b,σka′,b′,σ′k

M
σ′k
a′,b′(t) (3.35)

∂

∂t
Ca(t) =

i

2

∑

a′

(Heff
2 )aa′Ca′(t), (3.36)

where Mσk
a,b is the center tensor in the mixed canonical representation with respect to

site k and Ca is the center matrix in the mixed canonical representation with respect
to the bond between site k and k + 1. The effective Hamiltonians Heff

1/2 are given as

(Heff
1 )a,b,σka′,b′,σ′k

:= 〈a|lk−1 ⊗ 〈σk| ⊗ 〈b|
r
k+1 H |a′〉

l
k−1 ⊗ |σ′k〉 ⊗ |b′〉

r
k+1 (3.37)

(Heff
2 )aa′ := 〈a|lk ⊗ 〈a|

r
k+1 H |a′〉

l
k ⊗ |a′〉

r
k+1 . (3.38)

As these equations are a bit complicated we show a pictorial representation of (3.37)
and (3.38) in Fig. 3.3(a) and (b), respectively.
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Figure 3.3: Graphical depiction of the effective Hamiltonians (3.37, 3.38) for a single
site (a) and a single bond update (b) respectively. The depicted tensor networks
correspond to a lattice of size 4. The effective Hamiltonian is the one for site 3 (a)
and the bond in between sites 2 and 3 (b).

There are four sources of error for TDVP, namely, the error of the projection onto the
tangent space, the time step error stemming from the Trotter-Suzuki decomposition,
the error of the local exponentiation of Heff

1/2 and the error stemming from the suc-
cessive truncation of the MPS. All of those errors can in principle be controlled. The
Trotter-Suzuki error is usually rather small because it scales cubically with the time
step and the local exponentiation is usually also exact (depending on the settings of
the local solver). The projection error however depends on the bond dimension as
the projectors are built from the state, thus having large bond dimension keeps the
projection error in check. The inherent problem of single-site TDVP is that it does
not allow for an increase in bond dimension from time step to time step which leads
to an increasing projection error. Were we to do the same derivation for two-site
TDVP, we would obtain similar equations with the difference, that we also obtain
updates for two-site tensors. This difference is quite important as it means that in
two-site TDVP one can allow for increasing bond dimensions, which may be neces-
sary in order to correctly describe the time evolution. In the case where one allows
for increasing bond dimension, the main remaining error is the truncation error. It
can be controlled as described before by truncating only weakly, but depending on
the complexity of the problem at hand the increasing bond dimension may lead to
long runtimes. Overall it has to be noted that given a certain maximal bond dimen-
sion D, TDVP is bound to be faster than the global Krylov method, as it largely
profits from the locality of its formulation.
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3.5 Symmetries

Let H be the Hamiltonian of our system of interest, O any observable and H the
Hilbert space. If H commutes with O this means that there exists a basis in which
both of them are diagonal. Now assume that O has a set of distinct eigenvalues
σ = {λi : λi 6= λj, ∀i, j}. Then if |σ| < dim(H) there are multiple bases in which O
is diagonal. Picking an arbitrary one of those and expressing H in it, yields a block
diagonal form. This means in order to find the eigenstates of H one only has to find
the eigenstates for every block.
Moreover assume |Ψ, λ〉 is a state such that O |Ψ, λ〉 = λ |Ψ, λ〉, then

Of(H) |Ψ, λ〉 = λf(H) |Ψ, λ〉 , (3.39)

where f(H) is some analytic function of H. This statement might seem trivial, but
it has quite a few important consequences when doing DMFT. First of all it means
that when one starts DMRG from a state with a given set of quantum numbers,
that are conserved by the Hamiltonian then DMRG will not change those quantum
numbers as it is a variational approach that works by application of the Hamiltonian.
Thus if one wants to consistently find the global ground state of the Hamiltonian
one needs to identify all the conserved quantum numbers and start a DMRG within
each of the different quantum number sectors.
More importantly a conserved quantum number always corresponds to a symmetry
of the Hamiltonian, which can and should be implemented on a tensor network level.
In this work we are not going into detail about how to do this, we instead refer to
Claudius Hubig’s PhD thesis1 [81]. We want to stress that if one does not implement
all the symmetries of the Hamiltonian into ones lattice, then the DMRG may get
stuck in a quantum number sector unknowingly [82]. This would mean that one
might find a local minimum of the Hamiltonian instead of a global one and thus
obtains wrong results for all the correlators computed from said faulty ground state.
Another important consequence is that if the quantum numbers are such that the
particle creation operators c†i of the problem change the quantum numbers in a well
defined way then this leads to a block structure for the correlators computed from
the ground state within DMFT. Assume that the c†i are such that:

Oc†i |Ψ, λ〉 = λ′c†i |Ψ, λ〉 (3.40)

1Claudius Hubig is the original author of the tensor network toolkit SyTeN [80] that was
used during this thesis and his thesis gives an extensive introduction about symmetries in tensor
networks.



28 3. Introduction to Matrix Product States

with λ′ = λ+ ∆λi and |Ψ, λ〉 defined as a above. Then a given correlator

〈Ψ, λ| cje−τ(H−E0)c†i |Ψ, λ〉 (3.41)

can only be finite if ∆λi = ∆λj. This is rather important as it explains, why often
times within DMFT all dynamical quantities like local Green’s functions and self
energies have identical block structure. In addition treating the quantum numbers
correctly is a key ingredient necessary to properly account for degenerate ground
states present in some models as we will introduce in Sec. 4.2.



Chapter 4

Matrix-Product-State based
Impurity Solver

In this chapter we want to introduce the MPS-based impurity solver most of the
DMFT results in this work were obtained with. The impurity solver we used is called
the Optimized Basis Tensor Network Impurity Solver (OTIS) and was developed in
equal parts by the author of this work and Martin Grundner. Previous versions of this
solver have already successfully been applied in the context of DFT+DMFT [4, 35]
as well as model calculations [34]. All MPS calculations included in the solver are
performed using the SyTen toolkit [80, 81]. To this date our solver is able to per-
form calculations on both the real and the imaginary frequency axis. However as
the author of this thesis mainly focussed on the imaginary frequency part the real
frequency version was mainly implemented by Martin Grundner. Thus for details
on the real frequency implementation we refer the reader to his works [83, 84]. The
goal of this chapter is to guide the reader through all the steps necessary to perform
successful DMFT calculations. Namely in Secs. 4.1-4.4 we are going to explain in
detail how given an hybridisation one can obtain the self-energy of the impurity prob-
lem by the use of MPS. As DMFT usually works at fixed chemical potential further
steps are needed to perform computations at fixed density. Those are explained in
Sec. 4.5. When we are interested in real frequency quantities, but our results were
obtained on the imaginary axis, we have to resort to numerical analytic continuation
a topic which is covered in Sec. 4.6. Finally, in Sec. 4.7 we are going to explain how
to interface new models into our solver.
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4.1 Discretization

As mentioned in Chap. 2 the starting point for the impurity solver is some non-
interacting Green’s function G(iωn) for the impurity model. The task of the solver
is to find the interacting Green’s function G(iωn) for a system that features local
interactions given that the non-interacting model is described by G(iωn). Now the
first step is to define a model that behaves like G(iωn) in the absence of interactions.
The usual choice is the Anderson Impurity Model (AIM) [66]. Therefore, we want to
start with a discrete version of the AIM and derive its non-interacting Green’s func-
tion, from which we will identify how to properly determine the AIM’s parameters
such that it mimics G(iωn).

4.1.1 The non-interacting Anderson Impurity Model

The Hamiltonian of the discrete AIM for a system consisting of a bath and multiple
impurities is given by:

H = Himp +Hhyb +Hbath (4.1)

Himp =
∑

i,j∈I

ξi,jc
†
icj +

∑

i,j,n,m∈I

Vijnmc
†
ic
†
jcncm (4.2)

Hhyb =
∑

i∈I

∑

k∈B

γikc
†
ick + h.c. (4.3)

Hbath =
∑

k∈B

εkc
†
kck. (4.4)

Here ξ are single-particle terms on the impurity cluster, V is the interaction on the
impurity cluster, γ are the hopping elements between bath and impurity cluster and
ε are the on-site potentials in the bath. We denoted the set of impurity orbitals by
I and the set of bath orbitals by B. For this section we will assume that there is no
interaction (V = 0) since we want to determine the non-interacting Green’s function
for the AIM. The approach we pursue is based on the derivation of an equation
of motion for the Green’s function. This is similar to the solution presented in
Ref. [85], but while their derivation is given on the real frequency axis, here we focus
on the imaginary axis. The time ordered non-interacting Green’s function G0

ij(τ)
with i, j ∈ I is given as follows:

G0
ij(τ) = −Θ(τ) 〈0| ci(τ)c†j |0〉+ Θ(−τ) 〈0| c†jci(τ) |0〉 , (4.5)
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where we denoted the ground state as |0〉. Taking the derivative of (4.5) with respect
to τ we obtain

∂G0
ij

∂τ
(τ) = − δ(τ) 〈0| ci(τ)c†j |0〉 −Θ(τ) 〈0| [H, ci](τ)c†j |0〉

− δ(−τ) 〈0| c†jci(τ) |0〉+ Θ(−τ) 〈0| c†j [H, ci](τ) |0〉 . (4.6)

The commutator [H, ci](τ) yields

[H, ci](τ) = −
∑

k

γikck(τ)−
∑

l∈I

ξilcl. (4.7)

Inserting this expression into (4.6) we find

∂G0
ij

∂τ
(τ) = −δ(τ)δij −

∑

k∈B

γikG
0
kj(τ)−

∑

l∈I

ξilG
0
lj(τ), (4.8)

which defines an equation of motion for G0(τ). Repeating the same steps for G0
kj(τ)

with i ∈ I and k ∈ B we obtain

∂G0
kj

∂τ
(τ) = −Θ(τ) 〈0| [H, ck](τ)c†j |0〉+ Θ(−τ) 〈0| c†j[H, ck](τ) |0〉 . (4.9)

Here the terms going with δ(τ) immediately vanished as δjk = 0. The commutator
yields

[H, ck](τ) =
∑

i∈I

γ∗ik[c
†
kci, ck] + εk[c

†
kck, ck]

= −
∑

i∈I

γ∗ikci − εkck. (4.10)

Inserting this into (4.9) we obtain

∂G0
kj

∂τ
(τ) = −

∑

i∈I

γ∗ikG
0
ij(τ)− εkG0

kj(τ). (4.11)

It is now useful to insert the Fourier transform of G(τ) =
∑

nG(iωn)e−iωnτ into (4.8)
and (4.11). This lets us obtain the following equations in frequency domain:

−iωnG0
ij(iωn) = −δij −

∑

k∈B

γikG
0
kj(iωn)−

∑

l∈I

ξilG
0
lj(iωn) (4.12)

−iωnG0
kj(iωn) = −

∑

l∈I

γ∗lkG
0
lj(iωn)− εkG0

kj(iωn) (4.13)
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It follows that

G0
kj(iωn) =

∑

l∈I

γ∗lk
iωn − εk

G0
lj(iωn). (4.14)

Now we can insert this into the upper equation and obtain

−iωnG0
ij(iωn) = −δij −

∑

l∈I

∑

k∈B

γ∗lkγik
iωn − εk

G0
lj(iωn)−

∑

l∈I

ξilG
0
lj(iωn). (4.15)

Finally, we can identify the so called discrete Hybridisation function ∆D(iωn)

∆D
ij (iωn) =

∑

k∈B

γikγ
∗
jk

iωn − εk
(4.16)

and write the above as a matrix equation

−iωnG0(iωn) = −1−∆D(iωn)G0(iωn)− ξG0(iωn). (4.17)

Thus we obtain

iωn1− ξ −∆D(iωn) =
(
G0(iωn)

)−1
. (4.18)

Replacing G0(iωn) by the Weiss field G(iωn) we obtain

∆(iωn) = iωn1− ξ − (G(iωn))−1 . (4.19)

Here we introduced the hybridisation ∆(iωn) that the AIM has to mimic so that
it is the single site problem described by G(iωn). Thus starting with some non-
interacting Green’s function G(iωn) we can set up our discrete AIM to reproduce
the correct non-interacting behaviour by fitting the parameters γik and εk such that
∆D(iωn) ≈ ∆(iωn).
Note that all local terms should be absorbed into ξ as otherwise ∆(iωn) does not
decay to 0 as iωn increases, making it impossible to fit with the shape of ∆D(iωn),
which will in practice yield wrong results as the fits become unfaithful.

4.1.2 Fitting the Hybridisation

In the most general case ∆(iωn) is a matrix valued function and the parameters γik,
εk are obtained by optimizing the cost function

χ(γik, εk) =
1

Ncut

Ncut∑

n

ω−αn
∑

ij

∣∣∣∣∣∆ij(iωn)−
∑

k

γikγ
∗
jk

iωn − εk

∣∣∣∣∣

2

. (4.20)
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Here Ncut is a cut off that is introduced because points at high frequencies only con-
tain little information due to the decaying 1

iωn−εk
terms. In all applications of this

thesis we chose Ncut such that the fitting interval includes Matsubara frequencies up
to ωn = 6 eV, which is fairly high. Therefore, it is fair to assume that not much more
information is contained in higher frequencies.
α is a parameter that can be used to weight different regions of the fit. In general
we found it to be good practice to use α = 1 for metals and α = 0 for insulators.
The reason for this choice is that in the case of a metal ∆(iωn) tends to be finite
in the limit of ωn → 0. As the low Matsubara frequencies are closest to the real
axis one should try to fit them most accurately. The reason for choosing α = 0 for
insulators is that in the limit of ωn → 0 the hybridisation ∆(iωn) is zero as there is a
gap around ω = 0 on the real axis. This tends to make the hardest to fit region quite
simple, as it is not necessary to put an energy εk close to 0 and therefore insulators
are far easier to fit. Thus in our applications we found that it was not necessary
to emphasize the importance of low frequencies through the weighting function to
obtain a satisfactory fit.
We only recently became aware that in Ref. [86] it was proposed to use Tr|Σ(iωn)|2
as a weighting function instead of ω−αn , where Σ(iωn) is the impurity self-energy
of the last iteration and Tr denotes a matrix trace. While originally introduced in
the context of ED, the arguments in Ref. [86] are based on the minimization of the
self-energy functional [56, 58], which may also be interesting in the context of MPS,
where small baths are not as much of a problem. Since insulators are however already
well fit with a few bath sites this would likely only be useful, when fitting metallic
states. However during this thesis the use of this alternative weighting function was
not benchmarked which is why we leave its investigation for further studies.
Note that in principle as we are working at zero temperature ωn should be contin-
uos, however we have to choose some discretization of the frequency axis. We believe
it is reasonable to choose the frequencies as if they were Matsubara frequencies at
some fictitious inverse temperature β, i.e. ωn = (2n+1)π

β
. Here β should be chosen

sufficiently high as to ensure good resolution. In practice fits become harder the
higher β. In most of the applications within the context of this thesis we were using
β = 200 eV−1.
This procedure to obtain the parameters for the discrete impurity problem was first
introduced by M. Caffarel and W. Krauth [28] in the context of ED solvers. In gen-
eral it is safe to say that we will be using far more sites than ED and therefore the
above mentioned cost function optimization is more complicated.
For this reason we use a two step optimization procedure. In both steps we use the
basinhopping algorithm [87, 88] implementation of SciPy [89]. The basinhopping
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algorithm starts with an initial guess for the parameters γik, εk and then takes a step
with a specified step size in parameter space. At position of the new parameters a
local optimizer [90] is called which finds a local minimum close to those new param-
eters. Similar to simulated annealing [91] this step is accepted if the local minimum
has a lower cost function than the previous parameters or otherwise with a proba-
bility e−

1
T

(χold−χnew), where T is a parameter that can be tuned to control how likely
new steps are accepted. This search runs until a specified maximal number of steps
has been completed, after which the optimal parameter set is returned.
The first step of our two step procedure starts parallel on every core with separate
random initial guesses. The control parameter T is usually set to 1 so that the search
is not restricted to a too small region of the parameter space. While in principle one
may use any of the local optimizers implemented within SciPy [90] in conjunction
with their basinhopping algorithm, we have implemented an analytic version of the
gradient and Hessian of the cost function. It is therefore reasonable to use local
optimizers that make use of both.
In the second step we take as initial guess the best parameter set we found in the
first step, but start calculations in parallel at varying step sizes. We then run
basinhopping again with gradually decreasing T until the optimal parameter set
does not change or a timeout condition is reached. In practice we tend to use the
trust-krylov [92] method for the initial search and the dogleg [93] method for
the refined optimization. The reason for this choice is that dogleg seemed to be the
fastest and therefore most suited for the refined search, while it sometimes seemed
to get stuck in local minima when used for the global search where the trust region
krylov method performed best.
In Fig. 4.1 we show a comparison of fits with different number of sites for a both a
typical metallic and a typical insulating system. The first observation that should
be made is that indeed as mentioned above the insulating hybridisation on the imag-
inary axis (b2) tends to zero, while the metallic one (a2) does not. This is the case
because ∆(iωn) is an analytic function which means that limiωn→0 ∆(iωn) coincides
with limω→0 ∆(ω). The fact that the real part of ∆(iωn) in Fig. 4.1 is zero is special
to the displayed case, as the system shown is particle hole symmetric. However, the
behaviour of the fits is similar also in non-particle hole symmetric cases. Inspecting
the deviation from the exact hybridisation (a3, b3) we find that in the metallic case
Lb = 8 bath sites seem to be sufficient to describe the system as errors are dropping
to ≤ 10−3. Comparing this to the insulating case we find that the fits are already
rather well converged with only Lb = 4 bath sites.
In practice, how many bath sites have to be used to describe the problem with a
certain accuracy is very much problem dependent. In principle, one should always
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Figure 4.1: (a) Hybridisation for a semi circular density of states on the real axis (a1),
when fit on the imaginary axis (a2) with varying number of bath sites Lb and the
deviation from the exact hybridisation on the imaginary axis (a3). Panels (b1,b2,b3)
show the same for a gapped hybridisation that consists of twice the hybridisation of
a semi circular density of states once shifted to positive and once to negative frequen-
cies. The fits have been made with α = 1 (a) and α = 0 respectively. Hybridisations
with gap (b) are the typical case for insulators while gapless hybridisations (a) are
the usual case for metals. The exact hybridisation in panels (a2, b2) is depicted by
a black line, however as the higher accuracy fits are essentially on top it can not be
seen.
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(a) (b) (c)

Figure 4.2: Pictorial representation of a impurity model with three impurities for
the case of (a) a full matrix, (b) a block diagonal (one 2×2 and one 1×1 block) and
(c) a diagonal hybridisation respectively. The big circles depict the impurity sites,
while the small ones represent bath sites. Hopping is only allowed in between sites
that are connected by a line.

use as many bath sites as possible to arrive at the best possible description. It should
be noted at this point that there may be systems that are extremely complicated to
compute on a tensor network level and do not allow for a large amount of bath sites.
If one is faced with such a problem the algorithm can still be run with fewer number
of bath sites, but special care should be given to the interpretation of results.

4.1.3 Block structure

As mentioned in the above section in the general case the hybridisation will be
matrix-valued. However in almost all cases it will have a block diagonal form that
is protected by the symmetry of the problem, e.g. a problem which is spin conserv-
ing will not have entries in the hybridisation that connect electrons with spin up
and spin down character. This can and should be used as it is computationally far
less demanding to fit multiple hybridisation functions with smaller matrix dimen-
sion. Also if the block structure is ignored, numerical errors might introduce small
hopping elements that connect symmetry protected sectors, therefore destroying the
initial symmetry of the system. This is especially detrimental when one afterwards
wants to exploit the symmetry on a tensor network level.
In order to make this more clear we show a pictorial representation of the impurity
models structure for the cases of a fully diagonal, a block diagonal and a full matrix
hybridisation in Fig. 4.2. As can be seen from comparing the panels (a,b,c) the con-
nectivity of the impurity problem largely depends on the shape of the hybridisation
and it should therefore be accounted for by fitting disconnected blocks separately.
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In fact a large class of problems has fully diagonal hybridisations allowing for every
element to be fit separately which largely reduces the computational effort in the
cost function optimization.

4.2 Ground State Search

Now that we have setup the Hamiltonian by determining the bath parameters γik, εk
we can turn towards solving the impurity model. Our goal is to compute the Mat-
subara Green’s function G(iωn) which is the Fourier transform of the time ordered
Green’s function in imaginary time

Gij(τ) = −Θ(τ) 〈0| ci(τ)c†j |0〉+ Θ(−τ) 〈0| c†jci(τ) |0〉 . (4.21)

Here |0〉 is the ground state of the impurity problem, which is why in a first step to
obtain G(iωn) we need to find |0〉.
This is achieved by applying DMRG (cf. Sec. 3.2), which however is a variational
method. As mentioned in Sec. 3.5 in practice our impurity model will have multiple
symmetries. Starting DMRG in a given symmetry sector yields the lowest energy
eigenstate in that sector. Thus to make sure that we find the global ground state,
we would have to search every single symmetry sector. Depending on the symmetry
in question the number of sectors can however be very large, e.g. assume we have a
system with a total number of L = 27 sites as it is the case for a system with three
impurities and Lb = 8 per impurity. If we assume that we have the U(1) symmetries
particle number (N) and spin (Sz) conservation then allowed sectors are

N ∈ {0, . . . , 54}, Sz ∈
{
{−N

2
, . . . , N

2
} if N ≤ 27

{−54−N
2
, . . . , 54−N

2
} if N > 27.

(4.22)

Already for this simple case the number of possibilities would be quite large (784
possibilities). So it is important to search many sectors in parallel as well as restrict
their number by smart assumptions. For example, one can restrict the number of
sectors significantly by solving the single particle part of the Hamiltonian. This
makes it easy to obtain the number of occupied orbitals and therefore the particle
number Nguess in the absence of interaction.
Afterwards one should still search a few particle number sectors around the guessed
occupation number Nguess, however, so far we did not encounter a deviation larger
than the maximal impurity occupation. An additional reasonable assumption can be
made on the spin. Namely, when not treating a ferromagnetic system there should
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usually be equally many up and down orbitals occupied. Thus it is a fair assumption
to search only within sectors featuring small spin quantum numbers. When treating
a new system it makes sense to include initially a large number of sectors and see for
which typical spin quantum numbers the energy is rather low and then only search
those. A reasonable guess is to restrict the spin quantum numbers to those of the
impurity cluster. In the above example the maximal spin would be Sz = 3

2
due there

being three impurity orbitals.
With these restrictions in place we would only need to search the sectors

N ∈ {Nguess − 6, . . . , Nguess + 6}, Sz ∈
{
−3

2
,−1,−1

2
, 0,

1

2
, 1,

3

2

}
, (4.23)

which amounts to a search in 54 sectors, assuming Nguess is even. If needed this
can be further restricted as OTIS is designed such that the user can easily build in
their own set of sectors they want to search in. However, 54 sectors are not really
a problem when computing in parallel. OTIS allows for parallelisation both on the
cores of a single machine and over multiple machines via the use of MPI (Message
Passing Interface), which makes searches of rather large numbers of sectors feasible.
Also after running a few iterations the sector does usually not change anymore, which
could in principle be used to further restrict the above condition. In practice, we
tend not to do this as we value the safety of searching a large number of sectors over
the speed up. The symmetries implemented in OTIS so far are

Symmetry quantum numbers
U(1)× (SU(2) or U(1)) N , (S or Sz)

U(1)n × (SU(2) or U(1)) N1, . . . , Nn,(S or Sz)
Z2

n × (SU(2) or U(1)) P1, . . . , Pn,(S or Sz)
U(1) N

.

Here the U(1)n symmetry is needed for particle number conservation in every band
in case one treats multi-band problems with density-density interaction only. The
Z2

n is necessary for multi-band problems where band parity is conserved, e.g. for
Kanamori-type Hamiltonians [22]. Especially when treating symmetries that have
an additional quantum number per band it becomes necessary to further reduce the
sectors searched. One possibility is to restrict the search to identical band quantum
numbers for degenerate bands. Once one has obtained a converged result it is good
practice to check the sector by running another iteration on top allowing more sec-
tors to make sure the correct one has been found.
After reading about the possible combinations of quantum numbers and all the sec-
tors that have to be searched, the reader might be tempted to think that it might be
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best to just run the computations with less symmetries. However, there are multiple
reasons why including as many symmetries as possible is highly recommended. First
of all DMRG is a variational method and not including some symmetry might lead to
finding only a local minimum which in most cases renders the current DMFT itera-
tion not only useless, but may destroy convergence. Second the block structure of all
the dynamical quantities like the hybridisation ∆(iωn), Green’s function G(iωn) and
self-energy Σ(iωn) are usually protected by the symmetries of the problem. Therefore
not including a symmetry might wrongfully destroy the block structure. Last but
not least there are problems that have degenerate ground states [94, 95]. Treating
those appropriately is only possible if they are in different symmetry sectors, which
might not be the case when one does not include all the symmetries of the problem.
The treatment of degenerate ground states is also tied to the time-evolution that has
to be performed upon excitations, which is why for now we close this section and
postpone this discussion towards the end of the next section.

4.3 Time Evolution

Having obtained the ground state we can compute the time ordered Green’s function
of the impurity model as

Gij(τ) = −Θ(τ) 〈0| ci(τ)c†j |0〉+ Θ(−τ) 〈0| c†jci(τ) |0〉 . (4.24)

Here |0〉 is the ground state and ci (c†j) are the annihilation (creation) operators of
electrons on the impurity site/orbital with index i (j). The time dependence of ci(τ)
is given by

ci(τ) = eτHcie
−τH . (4.25)

With this definition in place we obtain

Gij(τ) = −Θ(τ) 〈0| cie−τ(H−E0)c†j |0〉+ Θ(−τ) 〈0| c†jeτ(H−E0)ci |0〉 . (4.26)

Here we used, that the ground state is an eigenstate of the Hamiltonian and intro-
duced the ground state energy E0. For implementation purposes it is now useful to
rephrase (4.26) in terms of time evolutions that have to be performed. Those are

|pi〉 (τ) := e−τ(H−E0)c†i |0〉 (4.27)

|hi〉 (τ) := e−τ(H−E0)ci |0〉 . (4.28)
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We call |pi〉 (|hi〉) the imaginary time evolution of the particle (hole) excitation
respectively. Inserting these excitations into (4.26) we obtain

Gij(τ) = −Θ(τ) 〈pi|pj(τ)〉+ Θ(−τ) 〈hj|hi(−τ)〉 (4.29)

= −Θ(τ) 〈pi|pj(τ̃)〉+ Θ(−τ) 〈hj|hi(τ̃)〉 , (4.30)

where we introduced τ̃ = |τ | in the last line to further underline the direction in
which the time evolution has to be taken. Namely, both particle and hole excitation
have to be evolved forwards in imaginary time. This amounts to performing twice
as many time evolutions as there are impurity sites. In order to keep this feasible
it is very important to compute the time evolutions in parallel. To this aim OTIS
distributes all time evolutions equally among machines that are used within MPI
parallelisation and then further distributes all cores of said machines onto specific
time evolutions. The overlaps are calculated on the fly during time evolution, however
in some systems overlap computation may also be a bottle neck as during the time
evolution only one core is used for the overlap calculations and there might be a large
number of overlaps to compute depending on the matrix dimension of G(τ). Thus
when all time evolution processes are finished the remaining overlaps get equally
distributed over all cores and are then computed in parallel.
The careful reader may have realised that the time evolution operator e−τ(H−E0) has
only positive eigenvalues λ < 1, therefore leading to a decay in norm. As we are
working at T = 0 K we have to compute the time evolutions until the overlaps in
(4.30) are well decayed. How fast this decay is, depends very heavily on the system at
hand, as in essence we are applying the exponential of H−E0 onto the Hamiltonians
single particle (hole) excitation subspace. This means that the rate of decay in
essence corresponds to the size of the energy gap in between the ground state and
the single particle (hole) excitation subspace. As we are simulating the problem on a
finite size lattice the gaps are always finite. However, they are far larger in insulating
systems than they are in metals.
In practice this means that we perform the time evolutions until the norm of the
excitations is decayed under 4 × 10−8 or until some final time τmax is reached. In
typical insulating systems the first condition is usually met first, while in metallic
systems the behaviour tends to be the other way around. If the final time condition
is met and the norm is not sufficiently decayed we supplement the time evolution by
a subsequent linear prediction [96].
How large one has to choose τmax depends is problem dependent. However, in most
applications τmax = 200 eV−1 was a sufficient abort condition. Whether or not τmax is
sufficient is best judged by comparing if the linear prediction does still change when
τmax is increased. An example can be seen in Fig. 4.3, which will be discussed in
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more detail in Sec. 4.3.3. Finally having ensured proper decay, we perform a Fourier
transformation to obtain G(iωn):

G(iωn) =

∫ ∞

−∞
eiωnτG(τ)dτ (4.31)

4.3.1 Degenerate Blocks

In general the impurity problem has a Hamiltonian H of the form

H =
∑

i,j,k,l∈I

Vi,j,k,lc
†
ic
†
jckcl +

∑

i,j∈I,B

Ti,jc
†
icj, (4.32)

where V and T are the two- and single-particle tensor, respectively, and I (B) denotes
the set of impurity (bath) sites. Every creation or annihilation operator changes the
symmetry of the state in a well defined way.
As an example let us for simplicity consider a U(1) × U(1) (particle number and
spin) symmetric system with two impurities, then

I = {(1, ↑), (1, ↓), (2, ↑), (2, ↓)}. (4.33)

Here, the first entry of each bracket is the orbital index while the second is the respec-
tive spin. We further assume Ti,j is such that there is hopping between impurities 1
and 2 but not between different spins as otherwise the spin U(1) symmetry would be
broken. For the same reason Vi,j,k,l is also not allowed to modify a states spin. We
can then label the ground state |0〉 with its spin Sz and particle number N as those
are conserved due to the symmetry

|0〉 := |0, N, Sz〉 . (4.34)

With this definition in place we can write a slightly modified version of (4.26)

Gij(τ) = −Θ(τ) 〈0, N, Sz| cie−τ(H−E0)c†j |0, N, Sz〉
+ Θ(−τ) 〈0, N, Sz| c†jeτ(H−E0)ci |0, N, Sz〉 . (4.35)

We can again rephrase this in terms of the particle and hole excitations, however this
time as we know that ci annihilates a particle and changes the spin by ∆Sz = ±0.5 we
can also label the excitations by their change of quantum numbers wrt. the ground
state

Gij(τ) = −Θ(τ) 〈pi, 1,∆Siz|pj(τ), 1,∆Sjz〉
+ Θ(−τ) 〈hj,−1,−∆Sjz |hi(−τ),−1,−∆Siz〉 . (4.36)
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Note that also the time evolution does not change the quantum numbers as the time
evolution operator can be written as a function of H. Therefore the above overlaps
can only be finite if i, j are such that ∆Sjz = ∆Siz leading to the following block
structure of G(τ)

G(τ) =

(
G↑(τ) 0

0 G↓(τ)

)
with Gσ(τ) =

(
G1σ,1σ(τ) G1σ,2σ(τ)
G2σ,1σ(τ) G2σ,2σ(τ)

)

This yields the two orbital subspaces S1 = {(1, ↑), (2, ↑)} and S2 = {(1, ↓),(2, ↓)}. If
in addition the Hamiltonian is invariant under the exchange of S1 and S2 we know
that

G↑(τ) = G↓(τ), (4.37)

In which case we call the corresponding blocks in the Green’s function degenerate.
Such block degeneracies can be used to great efficiency as one can see in this ex-
ample. Due to the equality of the two blocks, it is only necessary to compute one
of them reducing the amount of time evolutions needed by a half. In practice, one
should always make sure that the blocks are actually degenerate before reducing the
number of time evolutions.

4.3.2 Treatment of degenerate ground states

In most systems strictly adhering to the above descriptions already results in the
correct time-ordered Green’s function G(τ) at thermal equilibrium and T = 0 K.
However, in some systems there are multiple degenerate ground states [82, 94, 95]
which makes it less straight forward to compute G(τ).
Even though the prescription that we are going to derive in this section has been
applied in a specialised form in Refs. [82, 95], we are not aware of a published
derivation. Thus we want to derive the procedure here.
To understand how the above algorithm has to be modified to account for degenerate
ground states it is useful to go one step back and consider how one would in principle
compute the Green’s function at finite temperature

Gβ
i,j(τ) = −Θ(τ)

〈
eτHcie

−τHc†j

〉
β

+ Θ(−τ)
〈
c†je

τHcie
−τH

〉
β
. (4.38)
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Here β is the inverse temperature and the expectation values have to be taken with
respect to the Gibb’s state at β:

〈A〉β :=
1

Zβ
Tr
(
A e−βH

)
(4.39)

Zβ = Tr
(
e−βH

)
, (4.40)

where A is an arbitrary operator. We are interested in the limit β → ∞. In this
limit the smallest energy contribution will dominate the partition sum Zβ. Thus it
is useful to write

Zβ = Tr
(
e−βH

)
= Tr

(
e−β(H−E0)

)
e−βE0 . (4.41)

with E0 being the ground state energy. With this the expectation value 〈A〉β becomes

〈A〉β =
Tr
(
A e−β(H−E0)

)

Tr (e−β(H−E0))
= Tr

(
A

e−β(H−E0)

Tr (e−β(H−E0))

)
. (4.42)

Now using that e−β(H−E0) is diagonal in the eigenbasis of the Hamiltonian we can
write

〈A〉β = Tr

(
A

∑
λ e
−β(Eλ−E0) |λ〉 〈λ|∑
λ e
−β(Eλ−E0)

)
. (4.43)

Taking the limit β →∞ we obtain

lim
β→∞
〈A〉β =

1

Ndeg

∑

λ:Eλ=E0

〈λ|A |λ〉 (4.44)

where Ndeg is the number of degenerate ground states. As we can see from (4.44)
the correct way to compute the expectation value is to evaluate it wrt. a equally
weighted mixed superposition of the degenerate ground states.
Computing an expectation value like (4.44) is only possible if in every symmetry
sector there is at maximum one state with energy E0. This is what we call a scenario
where we can resolve the ground state degeneracy within our symmetry. Otherwise
it is impossible to build an exactly equally weighted superposition as in principle we
would already obtain a random superposition of degenerate ground states out of a
sector that contains more than one state with energy E0.
From the above expression one might now expect that one has to compute G(τ)
for every single ground state therefore making the computation Ndeg times more
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expensive. However as before, the implemented symmetries come to our rescue:
As mentioned in the last section the application of ci (c†i ) changes the quantum
numbers in a well defined way and as all the states in (4.44) are in different symmetry
sectors we can as well compute the expectation value by a single pure state, namely

|Ψ〉 =
1√
Ndeg

∑

λ:Eλ=E0

|λ〉 . (4.45)

With this state we can now compute G(τ) as

Gij(τ) = −Θ(τ) 〈Ψ| cie−τ(H−E0)c†j |Ψ〉+ Θ(−τ) 〈Ψ| c†jeτ(H−E0)ci |Ψ〉 . (4.46)

Writing this expression in terms of the states |λ〉 and introducing an additional
quantum number label Q we obtain:

Gij(τ) = − Θ(τ)
1

Ndeg

∑

λ,λ′

〈λ′, Qλ′ | cie−τ(H−E0)c†j |λ,Qλ〉

+ Θ(−τ)
1

Ndeg

∑

λ,λ′

〈λ′, Qλ′| c†jeτ(H−E0)ci |λ,Qλ〉 (4.47)

The expectation values in the above equation are only finite when one of the following
cases holds

Gij(τ) 6= 0 if

{
Qλ = Qλ′ ∧ ∆Qi = ∆Qj

Qλ 6= Qλ′ ∧ ∆Qi 6= ∆Qj,
(4.48)

where we introduced the quantum number change induced by ci as ∆Qi. This means
that the only mixed terms, that can arise by using the pure superposition (4.45) in-
stead of the mixed one (4.44) violate the block structure that is enforced by the
symmetry. These violations can however easily be identified and discarded by sim-
ply ignoring contributions outside of the block structure.. All finite contributions
within the block structure are then guaranteed to be equal to a computation wrt. a
mixed superposition.

4.3.3 Linear Prediction

As mentioned before in metallic systems one usually stops the time evolution at some
τmax at which the Green’s function is not yet fully decayed. Performing a Fourier
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Figure 4.3: Linear prediction error and its influence on the corresponding Green’s
function G>(iωn) for different maximally reached times τmax in time evolution. The
calculation was done wrt. a single band Bethe lattice with 4 eV bandwidth. G>(τ) =
〈pi|pj(τ)〉 is the particle part of (4.30) and G>(iωn) (b) is its Fourier transform. The
error (a) is given with respect to a time evolution with τmax = 400 eV−1. The black
diamonds in panel (b) correspond to a time evolution with τmax = 400 eV−1 without
supplementary linear prediction.

transform upon a not fully decayed function yields deviations at low frequencies and
might induce oscillations in G(iωn) as the long time limit in essence gets cut off and
thus G(iωn) becomes a step function. For this reason we use linear prediction [96]
to further predict the long time behaviour of G(τ).
For illustration we show in Fig. 4.3 a comparison between time evolutions until dif-
ferent maximal times τmax. In panel (a) we can see how the prediction compares to
an actual time evolution and find that in the case at hand it seems to be sufficient
to perform a time evolution until τmax = 100 eV−1 as the error drops under 10−3.
Of course longer times tend to yield an improvement. In panel (b) we compare the
resulting Fourier transforms and find that indeed the only computation that gives a
major deviation in the lowest frequency point is the one with τmax = 50 eV−1. All
the other calculations agree very well (up to O(10−3)). Most importantly, we can
see that the calculation until τmax = 400 eV−1 does yield major deviations if no pre-
diction is used. This leads us to the conclusion that we have to use linear prediction
to ensure capturing low frequency behaviour correctly.
The following derivation can quite similarly be found in Ref. [96], but for complete-
ness we also want to present it here.
Linear prediction takes a data set xj = x(tj) on a linearly spaced time grid tj = j∆t
and extends it further by fitting exponentials of the form αe(iω+η)t with α ∈ C and
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ω, η ∈ R to the data xj. To achieve this we make the ansatz

x̃n = −
p∑

i=0

aixn−i (4.49)

where x̃ is the value for the time step that is to be determined given the last p time
steps. Now one can determine the coefficients ai by minimizing the cost function χ
over a fit interval

χ(a) =
∑

n∈Ifit

|x̃n − xn|2 (4.50)

Here we denoted by Ifit the fit interval. The coefficients a can now be obtained by
simply taking the derivative of χ(a) wrt. a∗i

∂χ

∂a∗i
=

p∑

j=1

∑

n∈Ifit

x∗n−ixn−jaj +
∑

n∈Ifit

x∗n−ixn
!

= 0 (4.51)

This can be phrased as linear system of equations

Ra = −r (4.52)

with Rij =
∑

n∈Ifit
x∗n−ixn−j and ri =

∑
n∈Ifit

x∗n−ixn. Solving this system of equations
we obtain ai, which we can, in principle, use to compute the predicted time series
by the relation (4.49). However it might be useful to instead extract some more
information about the form that time series will take. To this aim we define

A =




−a1 −a2 −a3 . . . −ap
1 0 0 . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0




(4.53)

and using xn := (xn−1, . . . , xn−p)
T we can write

x̃n+1 = Ax̃n. (4.54)

It is now useful to decompose A into its right eigenvectors. Let αi be the (possibly
complex) eigenvalues of A and Y the matrix of right eigenvectors, then

x̃n+m = (Amxn)1 = (AmY Y −1xn)1

= (Y dmAY
−1xn)1 =

p∑

i=1

αmi ci (4.55)
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with ci = Y1i(Y
−1xn)i. As we expect the time series to decay we would expect to

only obtain eigenvalues αi such that |αi| < 1, however, in practice this is not the
case. Thus to ensure decay, we set ci → 0 if |αi| ≥ 1. Note however, that since the
fit resulted in those finite weights ci, setting them to 0 will induce a discontinuity. It
is therefore advised to compute the fraction of weight that has been discarded as an
error measure

w =

∑
i:|αi|≥1 |ci|∑p
i=1 |ci|

. (4.56)

If the fraction of discarded weight w is too large it is reasonable to discard the
prediction and try again with different parameters as a significant discontinuity will
lead to an error in G(iωn). The main parameters that can be chosen for linear
prediction are the number of points to be fitted Nfit, the index of the time where the
predicted time series is supposed to start Nobs and the number of exponentials (αmi )
that is used for the extrapolation p.
In case one chooses Nobs smaller than the last time step in the unpredicted time series,
it is important to discard all time points later than xNobs

as otherwise a discontinuity
may be introduced, which again leads to oscillations in G(iωn).
As not every time series is the same, and usually over the course of multiple iterations
the shape of the time series can change quite significantly, it might not be wise to fix
the parameters Nfit, Nobs and p for an entire DMFT calculation. A better approach
is to optimize those parameters dependent on the to be predicted time series xn. To
this aim we compute an in sample error

ε = ‖xNobs
− x̃err

Nobs
‖∞. (4.57)

Here x̃err is computed starting from the last point before the fit interval so that ε
corresponds to the difference of the actual values in the fit interval to the case where
one would predict the data within from the p data points prior to the fit interval. The
norm ‖ · ‖∞ is defined as the maximum distance in a single element of the vector.
With this we have obtained two distinct measures for the quality of a prediction.
Namely, the in sample error ε and the discarded weight fraction w. Using those we
define a cost function that is supposed to be optimized

χ(Nfit, Nobs, p) = max (ε(Nfit, Nobs, p), w(Nfit, Nobs, p)) . (4.58)

The problem with the optimization of this cost function is that it takes integers as
input, which makes most of the available standard optimization routines difficult to
use. Due to this problem we designed our own optimizer.
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The optimizer works by performing a random walk through parameter space, adjust-
ing the maximally allowed step size once some maximal number of steps (in practice
O(100)) has been reached. The steps are taken in random directions in parameter
space with random step size smaller than the maximum step that is currently al-
lowed. When adjusting the step size the new random walk starts from the optimum
that has so far been found. The optimizer stops when the step size has become zero
in every direction. This procedure is run in parallel on every core of the master node
for the DMFT run, resulting usually in 32 independent random walks. In the end
the best result is chosen for the actual prediction.
The entire linear prediction algorithm can be extended to matrix valued functions
by replacing the values at every time step in (4.50) with matrices and the norm by
the Frobenius norm. Assume that instead of a scalar time series we insert a matrix
of dimensions L × L then the system of equations for determining a stays formally
the same however the definitions of R and r change

Rmat
ij =

L∑

k,l=1

∑

n∈Ifit

(xkln−i)
∗xkln−j (4.59)

rmat
i =

L∑

k,l=1

∑

n∈Ifit

(xkln−i)
∗xkln . (4.60)

With these new definitions we can then define the matrix A as above, however, this
time the weights of the eigenvectors are going to be matrix valued. They can be
computed as (cmat

i )kl = Y1i(Y
−1(xn)kl). Here again xn is a vector of matrices and the

weights are computed element wise. We define the fraction of discarded weight wmat

and the prediction error εmat as

wmat =

∑
i:αi≥1

∑L
k,l=1

∣∣ckli
∣∣

∑p
i=1

∑L
k,l=1

∣∣ckli
∣∣ (4.61)

εmat = max
kl

∥∥(xNobs
)kl − (x̃err

Nobs
)kl
∥∥
∞ (4.62)

Note how the extension to matrices is written such that all the definitions reduce to
the scalar version when L = 1 as such it seems like a natural extension. In practice
the idea would be to use the matrix valued algorithm in cases where the offdiagonals
are slowly decaying or initially increasing as with the additional information from
the diagonals we may have a better chance in predicting the correct behaviour. The
algorithm is implemented in our toolkit, however, since we did not encounter any
good use cases since its implementation it is largely untested.
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4.4 Self-Energy

In the end, what the impurity solver needs to provide to the DMFT self-consistency
loop is the self-energy of the impurity system Σ(iωn) as it is needed to compute the
local Green’s function of the lattice system within the local self-energy approximation
Gloc(iωn) =

∑
k∈1.BZ (1(iωn + µ)−Hk − Σ(iωn)))−1. The most straight forward way

to obtain the self-energy is to use Dyson’s equation [64]

Σ(iωn) = G(iωn)−1 −G(iωn)−1. (4.63)

Here, G(iωn) is the non-interacting impurity Green’s function and its inverse is given
by

G−1(iωn) = 1(iωn + µ)− ξ −∆(iωn), (4.64)

with ξ being the single particle Hamiltonian on the impurity and ∆(iωn) the hybridi-
sation. In principle, one has a choice, namely one could either use the continuous

hybridisation or the discrete version ∆D
ij (iωn) =

∑
l

γilγ
∗
jl

iωn−εl
as introduced in Sec. 4.1.

We highly recommend the discretized version ∆D
ij (iωn) as it is the hybridisation that

actually corresponds to the model that was solved within DMRG. If one uses the
continuous version one does not obtain the self-energy of the discretized problem nor
does one get the the self-energy corresponding to the continuous problem that is to
be approximated but something in between.
It should be mentioned, that even when one uses the discrete version the self-energy
Σ(iωn) might become unphysical at large frequencies ωn. This is due to the fact that
both G(iωn) and G(iωn) are numerical quantities which decay at large frequencies.
Thus taking the difference of their inverses tends to blow up the error which can lead
to unphysical positive imaginary parts on the diagonal of Σ(iωn).
Depending on the quantities of interest this may or may not be a problem. If one is
for example only interested in Gloc(iωn) this is not really a problem as in the limit
of large ωn the diagonal is anyway dominated by iωn so that small positive values of
Σ(iωn) do not make a difference. However, if the desired quantity is Σ(iωn) itself, it
may be desirable to avoid this problem by having a more numerically stable way of
computing Σ(iωn). In order to achieve this Bulla et al.[97] introduced an additional
correlator Γ(iωn) with which the self-energy can be computed as matrix product of
Γ(iωn) and G−1(iωn). As the original work [97] concerns itself specifically with the
Hubbard model but we might also be interested in other interaction Hamiltonians,
we will derive the form of Γ(iωn) for a general impurity model with two-particle term
V in the following.
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4.4.1 The V -Correlator

This derivation is relatively similar to the solution of the non-interacting AIM in
Sec. 4.1 with the only difference that this time V 6= 0. From now on for simplicity
when we denote no indices, then V will be defined as:

V =
∑

i,j,n,m

Vijnmc
†
ic
†
jcncm (4.65)

Repeating the steps in Sec. 4.1 the time derivative of Gij(τ) is given by

∂Gij

∂τ
(τ) = −δ(τ)δij −

∑

k∈B

γikGkj(τ)−
∑

i∈I

ξilGlj(τ) + Γij(τ) (4.66)

with

Γij(τ) := −Θ(τ) 〈0| [V, ci](τ)c†j |0〉+ Θ(τ) 〈0| c†j[V, ci](τ) |0〉 . (4.67)

The equation of motion for the mixed bath-impurity Green’s function Gkj(τ) is the
same as in the non-interacting case because V only acts on the impurity

∂Gkj

∂τ
(τ) = −

∑

i∈I

γ∗ikGij(τ)− εkGkj(τ) (4.68)

Now we can compute the Fourier transform of equations (4.67) and (4.68) to obtain

−iωnGij(iωn) = − δij −
∑

k∈B

γikGkj(iωn)−
∑

l∈I

ξilGlj(iωn)

+ Γij(iωn) (4.69)

−iωnGkj(iωn) = −
∑

l∈I

γ∗lkGlj(iωn)− εkGkj(iωn). (4.70)

This can be decoupled in exactly the same way as in Sec. 4.1 and after some algebra
we obtain the relation

−iωnGij(iωn) = −δij −
∑

l∈I

(
∆D
il (iωn) + ξil

)
Glj(iωn) + Γij(iωn). (4.71)

Shifting the identity to the left and the term proportional to iωn to the right side of
the equation, we multiply by G−1 to obtain

(G−1)ij = iωnδij −∆D
ij (iωn)− ξij +

∑

l∈I

Γil(iωn)(G−1(iωn))lj. (4.72)
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Identifying (G0(iωn)−1)ij = iωnδij −∆D
ij (iωn)− ξij yields

(G0(iωn)−1)ij − (G−1)ij = −
∑

l∈I

Γil(iωn)(G−1(iωn))lj. (4.73)

But the left side of this equation is nothing else than Dyson’s equation and therefore
the self-energy is given by

Σ(iωn) = −Γ(iωn)G−1(iωn) (4.74)

with

Γij(iωn) = −
∫
dτeiωnτΘ(τ) 〈0| [V, ci](τ)c†j |0〉

+

∫
dτeiωnτΘ(−τ) 〈0| c†j[V, ci](τ) |0〉 . (4.75)

Please note that to compute this correlator one does not need to perform more time
evolutions but merely additional overlaps. However, as Γ(iωn) is a different correlator
it may decay with a different rate than G(iωn) possibly introducing a need for longer
time evolutions. This behaviour can differ from system to system.

4.5 Calculations at fixed impurity occupation

The standard DMFT procedure works at fixed chemical potential µ which then leads
to some total occupation number on the impurity cluster. It might be desirable how-
ever to compute directly at a fixed particle number n and determine µ such that this
occupation is realised.
As we will explain in the next section, the local occupation number can be computed
from the local Green’s function Gloc(iωn) =

∑
k∈1.BZ (1(iωn + µ)−Hk − Σ(iωn)))−1.

The idea is therefore to start at some chemical potential µ0, compute the occupation
number and adjust µ depending on if it is higher or lower than the target density [98].
In essence this is a bisection of n(µ) for a given hybridisation ∆(iωn) and self-energy
Σ(iωn). The result of this bisection procedure is a guessed chemical potential µguess

such that the occupation number extracted from Gloc(iωn) equals our target density
n. Note that this is approximative because Σ(iωn) was computed at a certain chem-
ical potential and therefore changing µ would also change Σ(iωn), which we ignore.
Within a single iteration of DMFT this procedure simultaneously yields an update in
∆(iωn) and µ. Therefore only when µ converges, ∆(iωn) will. This can be problem-
atic when trying to apply the procedure to an insulating calculation as there will be
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multiple chemical potentials yielding the same or very similar occupation numbers,
which may result in jumping chemical potentials. In order to get this under control
one eventually has to fix the chemical potential to a value yielding the correct target
density.

4.5.1 Tail fitting

In the last section we mentioned that it was possible to extract the occupation
numbers of a system out of its Green’s function. The easiest way to do this is by
using the time ordered Green’s function G(τ)

G(τ) = −Θ(τ) 〈0| c(τ)c† |0〉+ Θ(−τ) 〈0| c†c(τ) |0〉 . (4.76)

Here we suppressed all indices as we are right now only interested in diagonal com-
ponents. Evaluating this expression at τ = 0− we find

G(τ = 0−) = 〈0| c†c |0〉 (4.77)

Unfortunately in many cases we do not have direct access to the time ordered Green’s
function but only to its Fourier transform G(iωn). Thus we need to perform a
Matsubara frequency summation

G(τ) =
1

β

∑

n

G(iωn)e−iωnτ . (4.78)

Here the β usually corresponds to the temperature the Green’s function is computed
at, in our case this would be β = ∞ as we are working at T = 0 K. However as we
are using an artificial β for the frequency discretization we will also use it here. In
practice if β is chosen high enough (β ≈ 100 − 200eV−1) the summation does yield
very good results even though performed as for finite temperatures.
Performing the sum in (4.78) is somewhat tricky as the Green’s function G(iωn) has
a infinitely long high frequency tail, while we only have access to a finite number of
data points. The idea is to fit the high frequency behaviour of G(iωn) and separate
G(iωn) = G̃(iωn) + Gtail(iωn), where G̃(iωn) does now only have finite support and
Gtail(iωn) is known analytically [99, 100]

Gtail(iωn) =
∑

k

ak
1

iωn − bk
, (4.79)
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where ak and bk are parameters. Interestingly, ak and bk can be related to the high
frequency moments of the Green’s function by defining u = 1

iωn
and computing

µn =
1

n!
lim
u→0

∂n

∂un
G(1/u) =

1

n!
lim
u→0

∂n

∂un

∑

k

ak
u

1− bku
(4.80)

µn =

{∑
k akb

n−1
k if n > 0

0 else.
(4.81)

Here (4.81) can be shown rather straight forward by induction. The connection
between the moments µn and the ak and bk is very useful as we may obtain the
moments from a least square fitting problem

χ =
∑

n

∣∣∣∣∣G(iωn)−
M∑

k=1

µk
1

(iωn)k

∣∣∣∣∣

2

(4.82)

where M denotes the maximal amount of moments taken into consideration and χ is
to be minimized. As the ansatz is linear in µn we can again reduce the minimization
to solving a linear system of equations

Aµ = c (4.83)

ck =
∑

n

G(iωn)

(−iωn)k
(4.84)

Akj =
∑

n

1

(−1)k(iωn)k+j
. (4.85)

Having determined µn we can obtain the tail Green’s function by choosing ar-
bitrary poles bk on the positive and negative axis. In praxis we took integers
bk ∈ {0,−1, 1,−2, 2, . . . }. From (4.81) we can read off

µ = V a (4.86)

Vkl = bk−1
l (4.87)

Thus, we can obtain ak = (V −1µ)k, and determine Gtail(iωn) which we now have to
perform an analytic Matsubara summation on

Gtail(τ = 0−) = lim
τ ↑ 0−

1

β

∑

n

Gtail(iωn)e−iωnτ (4.88)

= lim
τ ↑ 0−

∮

C
dz Gtail(z)nF (z)e−zτ (4.89)

=
∑

k

ak
1

1 + eβbk
. (4.90)
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Figure 4.4: Contour C in the complex plane enclosing the poles of the weighting
function nF (z) = 1

1+eβz
(a) and deformed to enclose the poles of Gtail(z) (b). All

lines are meant to extend to infinity and the circles are supposed to have infinite
radius. The lines that are at infinite distance can be added or removed at will as
those have no weight in the integral (4.89) due to the choice of nF (z). This makes
the deformation from (a) to (b) possible without changing the value of the integral.
The poles of nF (z) and Gtail(z) are depicted as red and purple crosses respectively.

Here nF (z) = 1
1+eβz

is the Fermi-Dirac distribution that is used as a weighting func-
tion both to introduce poles at the Matsubara frequencies and to make the integrand
vanish as |z| → ∞. The steps in between equations (4.88, 4.89, 4.90) involve com-
plicated manipulations. In the first step we are introducing nF (z) that has its poles
exactly at the Matsubara frequencies and therefore the integral over the contour
enclosing those poles (cf. 4.4 (a)) is equal to the Matsubara summation. We then
deform the contour to enclose the poles of Gtail(z). This is possible as the Fermi-
Dirac distribution and the term e−zτ ensure that the integrand vanishes in the limit
|z| → ∞ when τ is negative. Therefore we can add and remove contours at infinite
radius for free. With this deformation we can conclude that the integral is also equal
to the sum over the residua of the poles of Gtail(z) and therefore end up with (4.90),
i.e. the contribution coming from the tail. In order to obtain the occupation number
we now need to add the contribution of the Green’s function G̃(iωn)

〈0| c†c |0〉 =
1

β

∑

n

G̃(iωn) +
∑

k

ak
1

1 + eβbk
(4.91)
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Here the remaining Matsubara summation should only have finite support (as we
subtracted the tail) and thus it can be carried out numerically. This entire procedure
depends very much on the fact that G(iωn) can be fitted well, if this is not the case,
then the occupation number obtained may be wrong. In practice, we fit M = 10
moments µn to the last 20% of G(iωn) data which tended to yield good results at
auxiliary β = 200 eV−1 and 1025 frequency points. Within the projects treated in the
context of this thesis we used both our own implementation of the above mentioned
method and the TRIQS implementation [99, 100]. However, when working with the
latter (in the BaOsO3 project) we simply used the default parameters which amounts
to M = 3 moments.

4.6 Analytic Continuation

The single particle Green’s function is analytic on the upper half of the complex
plane [101], which means in principle the real axis and imaginary axis data contains
the same information. Even though many interesting quantities like polarizations,
mass enhancement and in principle all single particle static quantities can be com-
puted on the imaginary axis, sometimes the quantity of interest lies on the real axis.
An example would be the (momentum resolved) spectral function that can be used,
e.g. to compare to ARPES, where it is the quantity that is measured.
The transformation from the real axis to the imaginary axis is given by [102]

G(iωn) =

∫

R
dω

A(ω)

iωn − ω
(4.92)

where A(ω) = − 1
π
ImG(ω) is the spectral function belonging to G(z). In principle

the above can be interpreted as a matrix equation

G(iωn) =
ωmax − ωmin

Nω

∑

k

A(ωk)

iωn − ωk
(4.93)

=
∑

k

Kω
nkA(ωk) (4.94)

where we introduced a discretization ωk of the real frequency axis with ωmax and
ωmin defining the boundary of the support of A(ω). Now the only remaining task
would be to invert the kernel Kω, however this problem is numerically ill-conditioned
and therefore a direct inversion is bound to lead to unreasonable results. The reason
for this ill-conditioning can intuitively be understood from (4.92) which is in essence
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nothing other than a sum over (iωn − εk)
−1 where εk are all the eigen energies in

the single particle excitation subspace of the Hamiltonian. While on the real axis
those summands are extremely peaked functions, on the Matsubara axis they are
very smooth. Thus the information about the pole structure is smoothed out and in
essence partially lost due to numerical accuracy.
It is for this reason that there exist many different analytic continuation algo-
rithms, e.g. Pade approximants [103], Nevanlinna [104] and the maximum entropy
method [105, 106]. All these methods come with parameters that one can fine tune
to obtain more reasonable analytic continuations. The problem is that all of them
might look different on the real axis due to the suppression of information when
encoded on the Matsubara axis. When performing analytic continuations one should
therefore make sure to vary the parameters used until the result seems rather stable
against parameter change. Furthermore, it is helpful to compare to alternative ana-
lytic continuation techniques.
We do want to stress at this point that concerning checking the validity of our an-
alytic continuations we are in a very favourable spot. Namely, using our impurity
solver one is also able to run DMFT directly on the real axis. The discussion of the
real axis algorithm is left to Martin Grundner’s PhD Thesis [83] as its testing and
implementation was mainly his work. However, using said implementation allows
us to compare our analytic continuations to data computed directly on the real fre-
quency axis, allowing for direct assessment of the quality of the continued data.
We want to use this section to share some experience we gained when using said
algorithms in particular the TRIQS [99] implementation of the maximum entropy
method (maxent) [107].

4.6.1 Continuation of Green’s functions

The continuation of an imaginary frequency Green’s function G(iωn) using maxent
amounts to minimizing the functional

Qα[A] =
1

2
χ2[A]− αS[A] (4.95)

with

χ2[A] =
∑

i

1

σ2
i

[
G(τi)−

∫
dω

e−τiω

1 + e−ωβ
A(ω)

]2

(4.96)

S[A] =

∫
dω

[
A(ω)−D(ω)− A(ω) log

A(ω)

D(ω)

]
(4.97)
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Figure 4.5: (a) χ2 for multiple values of α together with the line fits onto the overfit-
ting and transition regions of α. The dashed line shows the value for α that is picked
as optimal by the line fit analyser. (b) The exact spectral function (blue) together
with the analytic continuation obtained by maxent (red). The black dots are the
points on which A(ω) is optimized, while the red lines are a spline interpolation by
third order polynomials. This example is up to a few changed parameters the same
as in the TRIQS/maxent documentation [107].

where D(ω) is the so called default model that encodes prior knowledge about the
form of the spectral function, G(τi) is the Fourier transform of G(iωn) at discrete
times τi, σi is the error of G(τi), β is the inverse temperature and α is a parameter
that has to be determined. In practice, all those integrals are discretized, for β we
use our auxiliary inverse temperature βaux with which we discretized our frequency
grid iωn (cf. Sec. 4.1) and we use a flat default model D(ω) representing no previous
knowledge.
The functional Qα is minimized over a range of values for α and successively the
behaviour of χ2 with α is used to determine which α yields the most faithful result.
For large values of α entropy maximization is largely favoured, leading to results
similar to D(ω), while at small values of α one only tries to optimize χ2, which leads
to overfitting as the features in G(τ) are strongly suppressed. Therefore, the optimal
α lies somewhere in the middle.
TRIQS comes with a variety of different analysers, that attempt to find the optimal α.
When performing analytic continuations we used the line fit analyser. In Fig. 4.5(a)
we show the typical behaviour of χ2 with α, together with two lines fit onto χ2 in
certain regions of α on a double logarithmic scale. The blue line is fit onto the low α
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regime, where χ2 becomes essentially constant (i.e. where the overfitting happens),
while the red line is fit into the transition between noise fitting and overfitting. The
α at the crossing of the red and blue line is picked as the optimal α, for which the
result of the optimization is then the output of maxent. The choice of alpha range
is essential for this to work. We need to choose values of α, such that the overfitting
regime is reached, but the noise fitting is not within the range, as otherwise the line
fit will not only fit the transition but also parts of the noise fitting regime. As the
fit is in logarithmic scale we tend to use a logarithmic spacing in α. In panel (b)
we show the exact spectral function that we obtained analytically together with the
result for the optimal value of α. As the evaluation of the cost function in the end
depends on the number of frequency points one does usually not want to discretize
in a too fine way, which is why the rest of the frequency range has to be obtained by
interpolation. We typically use around 500 frequency points for our maxent runs. In
practice it makes sense to test out if the result improves with more points, though
in the cases we tested above 500 there usually was not a significant improvement
to be observed. TRIQS also allows for different frequency spacings. We used the
hyperbolic grid, when working on BaOsO3 and the linear grid in the context of t-
CuO, as the latter is an insulator and therefore there are no features close to the
Fermi level.
In case the quantity of interest is not only the spectral function, but the entire
Green’s function one can make use of Kramer’s Kronig relations [102]

G(ω + iη) =

∫

R
dω′

A(ω′)

ω′ − ω − iη . (4.98)

This way we can simply discretize A(ω) very finely and choose some small but finite
η to obtain back the full Green’s function G(ω).

4.6.2 Continuation of self-energies

In many situations it is actually more useful to compute the analytic continuation
of self-energies rather than Green’s functions. Not only can the local Green’s func-
tion within the typical approximations of DMFT be computed from the impurity
self-energy (cf. Sec. 2.2), but also the momentum resolved Green’s function can be
obtained directly from the self-energy

G(k, ω + iη)αν =
[
(1(ω + iη)−H(k)− Σ(ω + iη))−1]

αν
. (4.99)

where α, ν are orbital indices, H(k) is the single particle Hamiltonian in momentum
space, η is some broadening and Σ is the self-energy.
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This means that when computing momentum resolved spectral functions one would
either have to do an analytic continuation for every k-point of interest, a task that
is not really feasible as analytic continuation depends strongly on the parameters, or
one can simply perform a single analytic continuation on the self-energy. The benefit
of the latter is immediately clear.
The imaginary part of the self-energy − 1

π
ImΣ(ω) does not have to decay like 1/ω2,

which is why it is not a valid spectral function and therefore needs special care before
we can apply the maxent procedure introduced above. We can resolve this issue in
one of two possible ways. The direct route would be to fit the high frequency tail
of Σ(iωn) and subtract the constant and the first order moment, that then have to
be treated analytically, similar to Sec. 4.5.1. The remaining part of Σ behaves like a
spectral function and can therefore be continued. On the other hand we can use the
inversion method [106, 108], that is we define an auxiliary Green’s function Gaux as

Gaux(iωn) = [iωn1− C − Σ(iωn)]−1 , (4.100)

where C is a constant Hermitian matrix. This approach is very useful in that it
does not involve tail fits and one obtains a further parameter C that can be varied
to make the maxent result stable. The auxiliary Green’s function Gaux(iωn) can be
continued as described in the last section. Using the resulting Gaux(ω) we obtain the
self-energy Σ(ω) by the inverting the above relation (4.100)

Σ(ω) = ω1− C −G−1
aux(ω). (4.101)

In practice, we usually chose C = limωn→∞Σ(iωn) + λ1 where λ is a constant we
varied until the self-energy seemed stable against minor changes of λ.

4.6.3 Continuation of matrix-valued functions

In principle, the maximum entropy method can also be applied on matrix valued
functions [106]. However to the current date, the algorithm is not available to public
use. The only way to perform maxent on matrix-valued functions that is supported
so far is element-wise analytic continuation, which can however not guarantee the
positive definiteness of the spectral function. Typical consequences can be seen in
Fig. 4.6. The auxiliary Green’s function Gaux(ω) that is continued looses its positive
definiteness and the successive inversion that is needed to obtain the self-energy
back leads to unphysical behaviour. Interestingly, using the self-energy from Fig. 4.6
to compute the momentum resolved spectral function (not shown) actually gives
qualitative agreement with the one obtained directly on the real axis in the lower
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Figure 4.6: Chosen diagonal (a) and offdiagonal (b) element of the self-energy
Σ(ω) for a matrix-valued CDMFT calculation in the context of the t-CuO project
(cf. Chap. 6). The blue and red curves show the real and imaginary part of Σ(ω) as
computed with at a broadening η = 0.05 eV on the real axis, while the purple and
orange curves show the same computed by an analytic continuation from imaginary
data using the inversion method. The parameter C for the inversion method was
adjusted such that in the white area the self-energy does not become significantly
unphysical, while in the greyed out area it clearly does.

band, while the artefacts only show up in the upper band. This was achieved by
choosing C = limωn→∞Σ(iωn) + λ1 with λ = −3.5 eV to shift towards the lower end
of the spectrum. The same can also be done for the upper band by shifting λ in the
other direction. The exact value does not matter, as the continuation stays rather
stable also when changing λ slightly. For the t-CuO project (cf. Chap. 6) from which
this data was taken the region of interest is actually the lower band, which makes
this approach quite interesting.
In the actual project we did in the end refrain from using analytic continuation as
we also had access to the data computed directly on the real axis. In general, we
would recommend that, whenever the quantity of interest is only obtainable on the
real axis it is best to also compute it there if possible.

4.7 A word about interfacing new models

It is likely that future users of the impurity solver will want to solve models that
have not yet been treated within the context of this thesis. This is why as a wrap
up of this chapter we want to explain the steps necessary to introduce new models.
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The impurity solver has to be supplied with an initial hybridisation ∆(iωn). This is
usually obtained by setting the self-energy Σ(iωn) to be 0 and demanding the non-
interacting impurity Green’s function to be equal to its counterpart on the lattice
system Gloc

0 (iωn). We then obtain:

∆0(iωn) = 1(iωn + µ)− ξ −Gloc
0 (iωn)−1 (4.102)

where ξ denotes the local terms of the non-interacting Hamiltonian and µ is the
chemical potential. Thus the user needs to provide a way to compute Gloc

0 (iωn).
Furthermore a way to close the self-consistency loop is needed, but this can usually
be done in a very similar fashion as

Gloc
0 (iωn) =

1

(2π)d

∫

BZ

dk [1(iωn + µ)−H(k)]−1 (4.103)

Gloc(iωn) =
1

(2π)d

∫

BZ

dk [1(iωn + µ)−H(k)− Σ(iωn)]−1. (4.104)

where Σ(iωn) is the impurity self-energy, which is equal to the lattice self-energy
within the DMFT approximations (cf. Sec. 2.2). Thus once one has provided a
way to compute Gloc

0 (iωn), Gloc(iωn) can simply be computed by putting iωn1 →
iωn1− Σ(iωn). The same is true for the update of ∆(iωn):

∆(iωn) = 1(iωn + µ)− ξ −Gloc(iωn)−1 − Σ(iωn). (4.105)

The models implemented so far are one band 2D lattice models with arbitrary hop-
ping parameters for both DMFT, CDMFT and DCA1, a bethe lattice model for
DMFT and a TRIQS interface for real materials calculations. The latter is rather
general and does only need an input file that can be generated from Wannier90 [109].
For more details on the TRIQS DFT + DMFT interface please consult the docu-
mentation on their webpage [98, 110].
In case the interaction Hamiltonian and the symmetries of the problem are already
implemented there is nothing left to do. However, let’s assume that we want to
compute a model that uses an interaction that was not used before. In that case we
need to add an option to the parameter specifying the interaction. So far we support
Hubbard, Hubbard-Kanamori and density-density-only Hubbard-Kanamori interac-
tions. Further we need to add the interaction tensor Vijkl to the setup of the MPS

1DCA was not introduced in depth in this work, as we did not use it in any project. For an
introduction we refer the reader to Nils-Oliver Linden’s PhD thesis [82]
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lattice in the OTIS module lat.init TV. The interaction tensor has to be provided
in a way that the contraction is supposed to be normal ordered

Hint =
∑

ijkl

Vijklc
†
ic
†
jckcl, (4.106)

where the indices i, j, k, l are running over orbitals and spins on the impurity. Assume
our model does also have a symmetry that was not used within the impurity solver
before. This would mean we have to implement a new symmetry within SyTen.
The way to achieve this is well documented on the SyTen webpage [80] as well as
Claudius Hubig’s PhD thesis [81]. After the symmetry has been implemented on
the tensor network level we need to tell the impurity solver to create a lattice with
said symmetry in the module lat.lat gen as well as in which order the sectors with
different quantum numbers have to be searched. The latter can be done in the module
dmrg.sector managment. Also in case we do not specify that the model is diagonal
in all dynamic quantities we will have to define a new block structure corresponding
to this symmetry within the bookkeeping framework of OTIS. If we further know
that some blocks are degenerate for the model in question we should also provide
this information to the bookkeeping framework as this can greatly speed up the
calculation. The OTIS bookkeeping framework is very self explanatory and examples
for existing symmetries can be found in the module util.init bookkeeping.
All this might sound complicated at first but it is not only straight forward but
please note that what was described in this section is not only the steps necessary
to interface a new band structure, but a completely new Hamiltonian with new
symmetries.

4.7.1 Additional steps for SU(2) symmetries

Also non-abelian symmetries like e.g. the SU(2) spin symmetry can be used within
tensor network applications [81, 111]. If one wishes to do so the implementation of
the interaction term is however a bit more involved as it needs to be written in an
explicitly SU(2) invariant way. In SyTen the approach is to write the Hamiltonian
in terms of dot products of spinors containing single particle operators. While the
general concept is introduced in Claudius Hubig’s PhD thesis [81], in OTIS we have
a framework that attempts to translate the U(1) symmetric formulation of the in-
teraction tensor directly into coefficients for those dot products. Thus the only task
left for the user is to supply the U(1) formulation of Vijkl in a way that it can be
parsed into an SU(2) symmetric version. The possible dot products pijkl consisting



4.7 A word about interfacing new models 63

of two creators and two annihilators are given by:

pijkl =





c†i↑c
†
j↓ck↑cl↓ + c†i↓c

†
j↓ck↓cl↓ + c†i↑c

†
j↑ck↑cl↑ + c†i↓c

†
j↑ck↓cl↑ ∆S = 0

c†i↑c
†
j↑ck↑cl↓ + c†i↑c

†
j↓ck↑cl↑ + c†i↑c

†
j↑ck↓cl↑ + c†i↓c

†
j↑ck↑cl↑ ∆S = 1

c†i↓c
†
j↓ck↓cl↑ + c†i↓c

†
j↓ck↑cl↓ + c†i↓c

†
j↑ck↓cl↓ + c†i↑c

†
j↓ck↓cl↓ ∆S = 1

c†i↑c
†
j↓ck↓cl↑ + c†i↓c

†
j↑ck↑cl↓ + c†i↑c

†
j↑ck↓cl↓ + c†i↓c

†
j↓ck↑cl↑ ∆S ∈ {0, 1, 2}

(4.107)

Here the second and the third term explicitly break the U(1) symmetry and therefore
they can not contribute to the Hamiltonian. Thus the rules for Vijkl are:

i 6= j ∧ k 6= l





Vi↑j↓k↑l↓ = Vi↓j↓k↓l↓ = Vi↑j↑k↑l↑ = Vi↓j↑k↓l↑

Vi↑j↑k↑l↓ = Vi↑j↑k↓l↑ = Vi↑j↓k↑l↑ = Vi↓j↑k↑l↑ = 0

Vi↓j↓k↓l↑ = Vi↓j↓k↑l↓ = Vi↓j↑k↓l↓ = Vi↑j↓k↓l↓ = 0

Vi↑j↓k↓l↑ = Vi↓j↑k↑l↓ = Vi↑j↑k↓l↓ = Vi↓j↓k↑l↑(= 0)

(4.108)

i 6= j ∧ k = l





Vi↑j↓k↑l↓ = Vi↓j↑k↓l↑

Vi↑j↑k↑l↓ = Vi↑j↑k↓l↑ = 0

Vi↓j↓k↓l↑ = Vi↓j↓k↑l↓ = 0

Vi↓j↑k↑l↓ = Vi↑j↓k↓l↑(= 0)

(4.109)

i = j ∧ k 6= l





Vi↑j↓k↑l↓ = Vi↓j↑k↓l↑

Vi↓j↑k↑l↑ = Vi↑j↓k↑l↑ = 0

Vi↑j↓k↓l↓ = Vi↓j↑k↓l↓ = 0

Vi↓j↑k↑l↓ = Vi↑j↓k↓l↑(= 0)

(4.110)

i = j ∧ k = l

{
Vi↑j↓k↑l↓ = Vi↓j↑k↓l↑

Vi↓j↑k↑l↓ = Vi↑j↓k↓l↑(= 0)
(4.111)

where we separated the spin indices ↑, ↓ from the orbital indices i, j, k, l. When all
these rules are followed OTIS can construct the coefficients for the dot products in
(4.107) automatically. Even though the last line of (4.107) does also contain the
∆S = 0 sector we recommend only using dot products in the shape of the first line,
which is why in (4.108)-(4.111) we put (= 0) in brackets. In case it is necessary
to also include products of the last lines kind, make sure to check that the SU(2)
Hamiltonian gives the same results as its U(1) counterpart. The last step necessary is
to tell the dot products computed within the module lat.lat gen onto which sectors
of the new symmetry they are supposed to project. There are plenty of symmetries
already implemented that act as examples. The rule is that when performing a dot
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product the result has to be projected into the sector that corresponds to the change
the resulting operator should have on quantum numbers. For further details see the
documentation of SyTen [80].



Chapter 5

BaOsO3: A Hund’s metal in the
presence of strong spin-orbit
coupling

The following results are based on the author’s publication [2].

In correlated materials many of the emerging properties originate in the complex
interplay of many factors like e.g. Hubbard interaction U , Hund’s coupling JH , and
band structure details like crystal field splitting [38, 39] and the presence of van-Hove
singularities [41] (vHs) close to the Fermi level [17, 18]. Additionally, when atomic
numbers become large spin-orbit coupling (SOC) becomes relevant [112–114] yield-
ing a broken U(1) symmetry in the spin sector and introducing a finite polarization
between orbitals with different total angular momentum that supports the formation
of Mott insulating states [112, 115–118].
A class of materials that has raised a significant amount of interest in recent years are
Hund’s metals in which the Hund’s coupling JH leads to stronger mass enhancement,
and favours the metallic over the insulating state [18, 119–125]. For the case of the t2g

orbitals being the active shell it can be argued that Hund’s coupling reduces the Mott
gap when the shell is occupied by either two or four electrons [18]. An important
Hund’s metal that has extensively been studied both from experiment and theory is
Sr2RuO4 [4, 35, 126–146]. Apart from the before mentioned effects of Hund’s cou-
pling, it was found that the presence of a vHs close to the Fermi level plays an impor-
tant role in regard of the surprisingly strong electronic correlation effects, like e.g. the
very high mass enhancement in Sr2RuO4 [4, 138, 143, 145]. Including the comparably
small SOC (λ = 0.1 eV) in the study of Sr2RuO4 [35, 126, 133, 135, 139, 140, 146]
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did however not yield any effect on the quasiparticle mass enhancement. Still it had
important consequences on the shape of the Fermi surface [126, 132, 135] by split-
ting otherwise degenerate bands. Further, in accordance with experiment, SOC was
found to be enhanced by roughly a factor two as compared to the bare value due to
the presence of electronic correlations [35, 133, 139, 140, 146].
This being said, SOC is not very sizeable in 3d and 4d materials, e.g. only roughly
0.1 eV in the case of Sr2RuO4 i.e. about three to four times smaller than JH . The
question arises if Hund’s metal physics can survive SOC of comparable size to JH as
its polarizing tendency favours an insulating state.
An ideal candidate to investigate this question is BaOsO3, a transition metal oxide
with 4 electrons in the t2g shell. BaOsO3 crystallizes in a cubic perovskite structure
and shows metallic behaviour in optical and transport measurements on polycrys-
talline samples [37, 147]. Specific heat measurements show an enhancement of a
factor 2.2 over the bare band value [37], which is an indication of sizeable electronic
correlations as it can likely be traced back to a mass enhancement of similar size.
This, together with the characteristic Hund’s metal filling, points towards BaOsO3

being a Hund’s metal. However, the sizeable SOC of 0.3 eV favours a band insulat-
ing state, standing in contrast both with strong dynamic correlations and with the
metallic behaviour. Furthermore in DFT calculations without the inclusion of SOC
it was shown, that BaOsO3 features a vHs directly at the Fermi level [148], which
we can expect to have a strong impact on the effect of electronic correlations.
In this chapter we will first give an introduction to the model Hamiltonian that we
studied in the basis of cubic harmonics. We will then discuss the transformation into
the total angular momentum (J) basis, and why this is the appropriate basis to think
in in order to understand the physics of BaOsO3. After those introductory sections
we will discuss the correlated spectral functions and compare them to DFT results,
investigate the influence of the vHs, by varying the strength of SOC and present
results at the other possible Hund’s metal filling of two electrons. Further, we will
analyse how the quasi particle mass enhancement depends on SOC and Hund’s cou-
pling, identifying a competition between the two. In the end of this chapter we
present a phase diagram we mapped out in the U -λ plane, which puts our findings
in context with experiment [37].

5.1 Model Hamiltonian

The active orbitals of BaOsO3 are the 5d orbitals, which are depicted in Fig. 5.1.
In the cubic harmonic basis the d orbitals are labelled by {dxy, dyz, dxz, dz2 , dx2−y2}
and can be further divided into the eg = {dz2 , dx2−y2} and the t2g = {dxy, dyz, dxz}
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Figure 5.1: Illustration of the d orbitals in the cubic harmonic basis together with a
unit cell of BaOsO3. The orbitals are the osmium orbitals, while the other atoms in
the unit cell are simply depicted as red (oxygen) and purple (barium) spheres. The
upper and lower row show the eg and t2g orbitals respectively.

submanifolds. Due to the presence of the electrons in the p-orbitals of the surround-
ing oxygen atoms the eg orbitals are energetically less favourable than the t2g ones.
The reason for this behaviour can be seen in Fig. 5.1. Namely, when comparing the
orientation of the orbitals in the upper row (eg) to those in the lower row (t2g) we
observe that the eg orbitals are pointing directly into the direction of the oxygens,
while the t2g orbitals are pointing between them. It is for this reason that the elec-
trons in the eg orbitals feel a stronger repulsion from the electrons within the oxygen
orbitals. This lifting of the degeneracy between the d-orbitals is known as crystal
field splitting [38, 39]. In fact in BaOsO3 the t2g bands are the only ones crossing
the Fermi level, which is why we treat those as correlated orbitals in our DMFT
calculations.
We obtained the hopping elements for our tight binding model by fitting maximally
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localized Wannier functions [149, 150] to the DFT bands around the Fermi level
using the wien2wannier [151] and Wannier90 [109] packages. These fits and the cor-
responding DFT calculations were performed by our colleague Manuel Zingl.
We include electron-electron interaction on our three active orbitals via a Hubbard-
Kanamori-type Hamiltonian [22],

HK = U
∑

m

nm↑nm↓ + U ′
∑

m 6=m′
nm↑nm′↓ + (U ′ − JH)

∑

m<m′

nmσnm′σ +

− JH
∑

m 6=m′
d†m↑dm↓d

†
m′↓dm′↑ + JH

∑

m6=m′
d†m↑d

†
m↓dm′↓dm′↑. (5.1)

Here the dmσ (d†) are the annihilation (creation) operators of an electron with spin
σ in the orbital m ∈ {xy, xz, yz} while nmσ measures the occupancy of the latter.
The parameters U , U ′ and JH are the intra- and inter-orbital Hubbard interaction
and Hund’s coupling, respectively. In the t2g manifold the inter orbital Hubbard
interaction is given by U ′ = U−2JH [18]. For the calculations performed on BaOsO3

we believe that U ∼ 2.55 eV and J ∼ 0.27 eV are reasonable parameters as these
values were reported in Ref. [152] for NaOsO3 and LiOsO3 and similar ones were also
found in Ref. [153] for BaOsO3. In addition to this parameter set that we consider
physical we probe a large range of interaction parameters for U and the SOC strength
λ.
This Hamiltonian can be rephrased by defining the total spin, orbital momentum
and particle number operators ~S, ~L and N

~S =
1

2

∑

m

∑

σσ′

d†mσ~τσσ′dmσ′ (5.2)

Lm = i
∑

m′m′′

∑

σ

εmm′m′′d
†
m′σdm′′σ (5.3)

N =
∑

mσ

nmσ. (5.4)

Here ~τ is the vector of Pauli matrices and ε is the Levi-Civita tensor. With these
definitions in place and using U ′ = U − 2JH the Hamiltonian (5.1) can be written
as [18]

HK = (U − 3JH)
N(N − 1)

2
− 2JH ~S

2 − JH
2
~L 2 +

5

2
JN, (5.5)

a form which will prove useful when we discuss the competition of SOC and Hund’s
coupling. Also from (5.5) we get a direct physical interpretation of what Hund’s
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coupling JH does, namely, it attempts to maximize first the total spin ~S 2 and then
the total orbital momentum ~L 2. The fact that it prioritizes spin can be seen from
the prefactor of the two operators ~S 2 and ~L 2.
The local SOC term which we consider is by definition a single particle term as
it couples the orbital momentum of a single electron to its spin. Thus to get its
representation in second quantisation we have to evaluate its matrix elements in first
quantisation. Denote by |dα, σ〉 the t2g orbitals, then

HSOC = −λ
∑

αβσσ′

〈
dα, σ

∣∣∣∣∣
∑

i

lisi

∣∣∣∣∣ dβ, σ
′

〉
d†ασdβσ′ . (5.6)

Here we denoted the SOC strength by λ and the single particle orbital momentum
(spin) operator by ~l (~s). Inserting an identity yields

HSOC = −λ
∑

αβγi

∑

σσ′σ′′

〈dα, σ |li |dγ, σ′′〉 〈dγ, σ′′| si| dβ, σ′〉 d†ασdβσ′

= −iλ
2

∑

αβγi

∑

σσ′σ′′

〈
dα, σ

∣∣εiαγ |dγ, σ′′〉 〈dγ, σ′′| τ iσ′′,σ′
∣∣ dβ, σ′

〉
d†ασdβσ′

= −iλ
2

∑

iασ′σβ

τ iσσ′ εiαβ d
†
ασdβσ′ . (5.7)

As we can see in the last expression HSOC breaks the U(1) spin symmetry. This
would have severe consequences on the computational effort as symmetries speed up
MPS calculations significantly. However, there is another U(1) symmetry that can
be exploited, when we change the basis of our single particle orbitals.

5.1.1 Basis of total angular momentum

Intuitively one might already realise, that we could simply express the SOC term in
the basis of total angular momentum ~j = ~l + ~s, as then

~l · ~s =
1

2

(
~j,2 −~l 2 − ~s 2

)
, (5.8)

which is diagonal in said basis. The problem that arises with this transformation is
that we do not have access to the full basis set of the d-orbitals and thus the transfor-
mation into the spherical harmonics Y l

m with l = 2 can not be done. However, it can
be shown, that the t2g submanifold behaves like an effective l = 1 subspace [40, 82]
and we can therefore transform into the spherical harmonics Y 1

m. From there another
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basis transformation can be employed to arrive at the total angular momentum basis
set of ~j = ~l + ~s. In the following we only give the form of HSOC in the total angular
momentum basis (J-basis) together with the transformation matrices. For more de-
tails the interested reader may resort to Refs. [40, 82].
As the effective orbital momentum has l = 1 and every electron carries spin s = 1

2
,

the total angular momentum quantum number is going to take the values j ∈ {1
2
, 3

2
}.

Assuming the same convention as in [82] we denote the orbitals with j = 3
2

by qm and
the ones with j = 1

2
by dm where m is the projection onto the z-direction. Ordering

the basis as {q 3
2
, q 1

2
, q− 1

2
, q− 3

2
, d 1

2
, d− 1

2
} the Hamiltonian HSOC takes the form

HJ
SOC = −λ




1
2

0 0 0 0 0
0 1

2
0 0 0 0

0 0 1
2

0 0 0
0 0 0 1

2
0 0

0 0 0 0 −1 0
0 0 0 0 0 −1



.

(5.9)

The transformation matrix UJ that has to be applied to the t2g orbitals in the basis
order {dxy↑, dxy↓, dyz↑, dyz↓, dxz↑, dxz↓} is given by




q 3
2

q 1
2

q− 1
2

q− 3
2

d 1
2

d− 1
2




=




0 0 −1√
2

0 −i√
2

0√
2
3

0 0 −1√
6

0 −i√
6

0
√

2
3

1√
6

0 −i√
6

0

0 0 0 1√
2

0 −i√
2

−1√
3

0 0 −1√
3

0 −i√
3

0 1√
3

−1√
3

0 i√
3

0




︸ ︷︷ ︸
UJ




dxy↑
dxy↓
dyz↑
dyz↓
dxz↑
dxz↓



.

(5.10)

We observe that in this basis HSOC is diagonal. Also HK (5.5) does not change
total angular momentum, thus so far it seems like all dynamical quantities would be
diagonal in this basis. However note that as all the orbitals have to be rotated, the
hybridisation ∆(iωn) will be rotated as well. In the cubic harmonic basis ∆(iωn) is
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diagonal so let us write

∆(iωn) =




a 0 0 0 0 0
0 a 0 0 0 0
0 0 b 0 0 0
0 0 0 b 0 0
0 0 0 0 c 0
0 0 0 0 0 c



,

(5.11)

with a = a(iωn), b = b(iωn) and c = c(iωn). Rotating this into the J-basis we obtain

∆J(iωn) =




α 0 β 0 0 γ
0 δ 0 β η 0
β 0 δ 0 0 −η
0 β 0 α −γ 0
0 η 0 −γ ξ 0
γ 0 −η 0 0 ξ




(5.12)

where we defined the following functions

α =
b+ c

2
, β =

c− b
2
√

3
, γ =

b− c√
6
, δ =

2

3
a+

b+ c

6

η =

1√
2
(b+ c)−

√
2a

3
, ξ =

a+ b+ c

3
.

At first glance this might seem problematic, as the terms β and γ are now again
breaking the newly found U(1) symmetry. Taking a close look at the expressions for
those terms though we find, that if the hybridisation is the same for the dyz and the
dxz orbital, then this largely simplifies

∆J(iωn) =




α 0 0 0 0 0
0 δ 0 0 η 0
0 0 δ 0 0 −η
0 0 0 α 0 0
0 η 0 0 ξ 0
0 0 −η 0 0 ξ



.

(5.13)

Typically this is the case for tetragonal unit cells as there the dxz and dyz orbitals
are degenerate. This degeneracy can be understood by imagining the orbitals in
Fig. 5.1 in a unit cell that is elongated along the z-direction. From the above we
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can now extract a block structure S1 = {q 3
2
}, S2 = {q− 3

2
}, S3 = {q 1

2
, d 1

2
}, S4 =

{q− 1
2
, d− 1

2
}, which corresponds to the conservation of the z-projection of the total

angular momentum ~j. Defining ∆̃(iωn) = ∆J(iωn)+HJ
SOC and reading off the blocks

yields:

∆̃1,2(iωn) = α− λ

2
, ∆̃3,4(iωn) =

(
δ − λ

2
±η

±η ξ + λ

)
, (5.14)

which means that the 1x1 blocks are degenerate and the 2x2 blocks are degenerate
up to a rotation with σz. One can numerically check, that neither HK nor any
other part of the impurity Hamiltonian changes when rotating the orbitals in S4

by σz. Further one can check that switching the orbital in S1 with the one in S2,
or switching the orbitals in S3 and σz · S4 leaves HK and all other terms invariant.
Therefore the blocks {S1, S2} and {S3, σz · S4} are degenerate and can be treated as
described in Sec. 4.3.1 yielding a speed up of factor 2 as only half the blocks of the
Green’s function have to be computed.
In the case of BaOsO3 the unit cell is even cubic, making the hybridisations equal
for dxy, dyz and dxz, due to symmetry (see Fig. 5.1). This yields an hybridisation
proportional to the identity with which we obtain six 1x1 blocks where every orbital
with equal j is degenerate

∆̃1,2,3,4(iωn) = a− λ

2
, ∆̃5,6(iωn) = a+ λ. (5.15)

Exploiting this further reduces the computation time by one third. Note that cur-
rently the symmetry responsible for this additional factorization is not implemented.
The latter is only present in this case, as the hybridisation does no longer feature
terms, that can change j. Not having this additional symmetry implemented had no
negative influence on the convergence of the DMFT loop.
The fact that all the dynamical quantities are diagonal in the J-basis is why it is
most natural to discuss the physics of BaOsO3 in this basis. Before moving on to
discuss the physics of BaOsO3 we briefly want to give an overview of the impurity
solver parameters that were used for the calculations.

5.1.2 Computational details

We perform DMFT calculations for this model with and without Hund’s coupling
as well as with and without SOC. Without the inclusion of SOC the Hamiltonian is
SU(2) symmetric and we are able to use five quantum numbers for the calculation:
the occupation number parity of each orbital, the total particle number and the
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spin. As was detailed in this section, upon inclusion of SOC we perform calculations
in the total angular momentum basis and use only the total particle number and
the total angular momentum as quantum numbers. In the case of JH = 0 we gain
further symmetries namely the conservation of the particle number in each orbital
(in the J-basis). For the DMFT calculations presented in this chapter we use at least
Lb = 6 bath sites per spin and orbital yielding a total of Ltot = 21 for calculations
with SU(2) symmetry and Ltot = 42 without. We perform time evolutions until a
final time of τ = 100 eV−1 in steps of ∆τ = 0.05 eV−1.
Now that we have these technical details out of the way we can turn towards the
result obtained for BaOsO3 starting with the discussion of its spectral function in
the next section.

5.2 Spectral functions

The starting point of our investigation is the band structure obtained by DFT using
the Wien2k [154] toolkit. All DFT calculations were performed by Manuel Zingl.
In Fig. 5.2 we present the band structure of BaOsO3 and its density of states (DOS) as
obtained by DFT. Note that in both panels (a,b) the active orbitals are the only ones
crossing the Fermi surface and are clearly separated from the surrounding orbitals,
which we therefore approximate as either full or empty. The DOS has multiple
contributing orbitals. As shown in panels (c,d) the main contribution arises from
the Os-t2g orbitals, while there is also a large contribution from oxygen. The Os-t2g

orbitals hybridize with the oxygen p-orbitals to the effective ones that we describe
via the localized Wannier orbitals. A very prominent feature which is present in the
absence of SOC is the vHs directly at the Fermi level (c), that can be traced back
to the flat bands present in panel (a). However, upon inclusion of SOC the vHs
gets split into two parts above and below the Fermi level (d). In Sr2RuO4 the large
mass enhancement, a trademark of strong electron-electron correlations, was partially
traced back to the presence of a vHs close to the Fermi level [4, 138, 143, 145]. We
therefore expect that in BaOsO3 SOC will yield a reduction in mass enhancement,
as it leads to a splitting of the vHs, reducing the weight of the DOS around the
Fermi level. The careful reader might have recognized that in panels (c,d) there is a
slight discrepancy between the Wannier fit and the bands obtained from DFT. This
discrepancy is due to the fact, that in the DFT calculation potential momentum
dependent SOC terms were taken into account, while on the Wannier model we just
added a local SOC term. The reason for this decision is that we wanted to vary the
SOC strength over a large range of parameters without having to perform new DFT
calculations for each parameter set. Apart from these slight discrepancies however
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Figure 5.2: Band structure (top row) and density of states (bottom row) as obtained
by DFT together with a Wannier fit (purple) of the active orbitals. Panels (a) and
(b) show the band structure with and without the inclusion of SOC along a high
symmetry path through the Brillouin zone. The lower row shows the density of
states (DOS) with (c) and without (d) the inclusion of SOC.

we believe that our Wannier fit describes the low energetic bands of BaOsO3 to very
high accuracy.
In Fig. 5.3 we present the spectral function of BaOsO3 obtained by DMFT upon
inclusion of electron-electron interactions. The calculations were performed using
the parameter set we consider physical (U = 2.55 eV, JH = 0.27 eV, λ = 0.3 eV)
without (a,b) and with (c,d) the inclusion of SOC respectively. We observe that
BaOsO3 is a moderately correlated metal with strongly renormalized quasiparticle
bands at low energies, and substantially incoherent states at higher energies. Without
the inclusion of SOC we still find the vHs at the Fermi level (b) and its splitting with
SOC (d) is relatively unaffected by electronic correlations.
The inverse quasi particle renormalization Z−1 can be computed from the self-energy
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Figure 5.3: Momentum resolved (a,c) and local (b,d) correlated spectral functions for
the physical parameter set U = 2.55 eV, JH = 0.27 eV without (top row) and with
SOC λ = 0.3 eV (bottom row). The momentum resolved spectral function (a,c) is
depicted along a high symmetry path in the Brillouin zone. The inset in (b) shows a
zoom onto the two side peaks found in the local spectral function when not including
SOC.

as

Z−1 = 1− lim
ωn→0

∂ImΣ(iωn)

∂ωn
(5.16)

and is within the local self-energy approximation (c.f. Sec. 2.1.2) equivalent to the
quasi particle mass enhancement m∗/m. The calculated mass enhancement of 2.3
upon the inclusion of SOC is in excellent agreement with the specific heat enhance-
ment of 2.2 measured in experiment [37]. This good agreement with experiments
indicates that our choice of interaction parameters for BaOsO3 is meaningful. We
find that the overall band width of the correlated spectral function is roughly com-
parable to the one of the non-interacting model.
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Interestingly in Fig. 5.3 (b) we find two side peaks located roughly at ±0.1 eV. These
peaks are not present in the non-interacting DOS (c.f. Fig. 5.2 (c)). Similar side peaks
were previously observed in both model [124, 125, 155, 156] and real materials calcu-
lations [4, 131, 145, 157] and their emergence has been identified as a characteristic
feature of Hund’s metals. However contrary to the case of BaOsO3 the side peak
was usually only observed on either the occupied side of the spectrum for systems
with more than half-filled shells or the unoccupied side in case of less than half-filled
shells, but never on both sides as in Fig. 5.3 (b). We could not recover those peaks
when ignoring Hund’s coupling (JH = 0) nor when including Hund’s coupling but
considering a semi-circular DOS (spectral functions not shown), which is why we
attribute the emergence of those side peaks to both the presence of the vHs in close
vicinity to the Fermi level and the inclusion of Hund’s coupling. This interpretation
is also inline with the fact that no such side peaks are present in the spectral function
for the system with SOC (c.f. Fig. 5.3) as SOC splits the vHs away from the Fermi
level. Note that the two peaks found in the calculation with SOC are already present
without the inclusion of electronic correlations (Fig. 5.2 (d)). We believe that the
reason for the emergence of the side peaks on both sides of the spectrum is due to the
highly symmetric DOS of BaOsO3 in the range from −0.5 eV to 0.5 eV. However, at
the current point this is just speculation and we recommend that these peaks should
be investigated in more detail in future studies.
We want to stress at this point that even though SOC is not sufficiently strong to
drive the system into a band insulating state the mass enhancement gets reduced
from Z−1 = 3.3 without SOC to Z−1 = 2.3 when including SOC. One characteristic
of Hund’s metals is that the finite JH leads to large mass enhancement. However as
discussed before, the presence of the vHs at the Fermi level is also a factor favouring
strong correlations. Thus the question arises if the reduction of mass enhancement
can be traced back to SOC splitting the vHs, thereby removing it from the Fermi
level. This will be investigated in the following section.

5.3 Influence of the van-Hove singularity

We start by investigating the influence the splitting of the vHs has on electronic
correlations. To this aim we perform a numerical experiment which we present in
Fig. 5.4. Namely we shift the non-interacting DOS, such that the shell is occupied
by only 2 electrons. This removes the vHs from the Fermi level as can be seen in
Fig. 5.4 (b). Note that due to the particle-hole symmetry of the Hubbard-Kanamori
Hamiltonian [22] this means that the influence of electronic correlations should not
change. SOC on the other hand is not particle-hole symmetric, thus in order to obtain
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Figure 5.4: Non-interacting DOS for n = 4 (a) and n = 2 (b) electrons in the
active orbitals at different values of SOC strength λ. Note that the sign of SOC
was inverted for the n = 2 case to also favour the band insulating state at large λ.
The dashed black line indicates the Fermi level. Panel (c) depicts the inverse quasi
particle renormalization at varying SOC strength λ. The dotted and dashed line
correspond to the mass enhancement of the j = 3/2 and j = 1/2 bands respectively,
while the solid line depicts the diagonal elements of the mass enhancement in the
cubic harmonic basis set. The black dashed line in panel (c) indicates the physical
value of the SOC strength λ.

the same large SOC strength limit we reverse its sign for this experiment favouring
the two j = 1/2 orbitals over the four j = 3/2 orbitals that would otherwise be
preferred. In Fig. 5.4 we show how the non-interacting DOS in the original model
(a) and the numerical experiment (b) depend on the SOC strength λ. As expected in
the original model the DOS at the Fermi level is strongly decreasing as SOC increases.
In the two electron case (b) we still observe a splitting of the vHs but contrary to
the four electron case (a) the dependency of the DOS around the Fermi level on
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SOC is much weaker. Computing the quasi particle renormalization for both cases
reveals an intriguing behaviour (c), namely starting from λ = 0 we observe that the
renormalization is much stronger for the original four electron system than for the
two electron case, which is likely due to the removal of the vHs from the Fermi level.
Furthermore, when increasing λ the mass enhancement Z−1 in the four electron case
shows a very steep decrease, while in the n = 2 case the dependency seems to be
much weaker. This is again completely in line with the behaviour of the DOS around
the Fermi level in Fig. 5.4 (a,b). At large SOC strength λ both models approach
Z−1 = 1 which is reasonable as we setup our numerical experiment such that it
also favours the band insulator in this limit, and a band insulator is at its core a
single particle phenomenon. We also see that the j = 1/2 bands are always stronger
correlated than the j = 3/2 bands. We think that this is due to the j = 3/2 orbitals
being four fold degenerate while the j = 1/2 orbitals are only two fold degenerate,
yielding a larger active space for the latter. The careful reader may have recognized
that in Fig. 5.4 (c) actually the mass enhancement of the n = 2 case is initially
increasing (from λ = 0 to λ = 0.3 eV), even though the DOS around the Fermi level
is not changing significantly (b). We believe that this is due to both the j = 1/2
and the j = 3/2 subspaces crossing the point of integer occupancy around this value
of SOC strength. The results presented in this section give clear evidence of how
dramatic the impact of band structure effects can be for electronic correlations.

5.4 SOC, Hubbard and Hund’s physics

In this section we want to get an understanding about the importance of Hund’s
physics in BaOsO3. In order to achieve this we computed the mass enhancements
and polarizations ∆n = nj= 3

2
−nj= 1

2
in between the j = 3/2 and j = 1/2 orbitals for

a broad range of Hubbard interaction parameters U , two values of JH as well as a
large variety of SOC strengths λ. We present these results in Fig. 5.5. Let’s start by
discussing our findings without the inclusion of Hund’s coupling. In Fig. 5.5 (a) we
observe that the mass enhancement seems to depend overall rather weakly on SOC.
Furthermore, we find that at higher values of U it stays essentially constant up to
some critical value of SOC strength λ, where it drastically drops to 1. This is best
seen in the curve corresponding to U = 3.825 eV. Similar behaviour was already
observed in model calculations on a semi circular DOS [114], however, even upon
inclusion of Hund’s coupling. This could hint towards Hund’s coupling being neces-
sary to make the mass enhancement sensitive to the vHs close to the Fermi level, as
here the dependence is rather weak. Turning our attention towards the polarization
(Fig. 5.5 (c)) we can see that without the inclusion of Hund’s coupling the polariza-
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Figure 5.5: (Top row) Diagonal elements of the mass enhancement in the basis of
cubic harmonics Z−1

c for JH = 0 eV (a) and JH = 0.27 eV (b) for multiple values
of Hubbard interaction U and SOC strength λ. (Bottom row) Polarizations ∆n =
nj= 3

2
− nj= 1

2
in between the j = 3/2 and j = 1/2 orbitals for JH = 0 eV (c) and

JH = 0.27 eV for multiple values of U and λ. In all panels open circles correspond
to metallic states, while full circles represent insulators.

tion increases steeply and for all the U values full occupation of the j = 3/2 orbitals
is actually achieved. It is only then when the material becomes insulating. Thus for
all the interaction parameters probed without Hund’s coupling the only insulating
states we found were band insulators. This does however not mean that there can
not be any Mott insulators at finite SOC, it just means that to find those one would
likely have to go to far larger Hubbard interaction U .
Upon inclusion of Hund’s coupling JH = 0.27 eV multiple things change. On the
one hand the mass enhancement (Fig. 5.5 (b)) drastically increases at low values of
SOC strength λ. On the other hand the mass enhancement does now continuously
decrease when varying λ and does not just stay constant until a critical value of λ.
This again underlines the aforementioned claim that Hund’s coupling is the part of
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the interaction that is sensitive to the vHs close to the Fermi level. Furthermore, we
find that the polarizations (Fig. 5.5 (d)) seem to increase significantly slower than
in the case without Hund’s coupling. Actually none of the parameter sets probed
upon inclusion of Hund’s coupling reaches full polarization. Indeed the smoothness
of this transition at finite JH seems to be a generic feature independent of band struc-
ture [114]. This generality hints towards a competition between SOC and Hund’s
coupling as the latter stops the former from fully filling up the j = 3/2 orbitals.
This competition can actually be explained by an argument in the atomic limit. In
the original publication [2] we did not give a derivation. However, here we want
to be more elaborate and present the argument in more detail within the next sec-
tion. Wrapping up this section we conclude that even though the increase of mass
enhancement by inclusion of Hund’s coupling is less than in 3d/4d Hund’s met-
als [4, 119, 143, 144, 157] it is still a significant increase of about 50% even in the
presence of SOC. Furthermore, Hund’s coupling has the additional important role
of counteracting the polarizing effect of SOC. We can therefore claim that Hund’s
physics survives even at SOC as strong as λ = 0.3 eV and call BaOsO3 a moderately
correlated Hund’s metal.

5.4.1 The atomic limit

In the last section we observed that there seems to be a competition between Hund’s
coupling and SOC. Here we present evidence that this competition can be explained
by a consideration in the atomic limit.
When the system only consists of a singular atom the Hamiltonian becomes

H = HK +HSOC (5.17)

HK = (U − 3JH)
N(N − 1)

2
− 2JH ~S

2 − JH
2
~L 2 +

5

2
JN (5.18)

HSOC = −iλ
2

∑

iασ′σβ

τ iσσ′ εiαβ d
†
ασdβσ′ (5.19)

where the d (d†) are creation (annihilation) operators in the cubic harmonic basis,
~S, ~L and N are defined as in Eqs. (5.2) - (5.4). Note that we only have a singular
atom and we do already know its overall filling N to be equal to 4, thus all the
terms going with N are essentially constants in this section. The only other terms
HK depends on are proportional to ~S 2 and ~L 2. It would therefore be beneficial to
represent our Hilbert space in a basis where those two operators are diagonal, so
that we can identify the states that are favoured by HK . Currently we represent our
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Hilbert space as

H = P−
[
H⊗4
s= 1

2

⊗H⊗4
c

]
, (5.20)

where theHs= 1
2

denotes the Hilbert space of the spin (i.e. C2),Hc denotes the Hilbert
space spanned by the cubic harmonic basis set and the projector P− projects onto
the completely antisymmetric part of the wave function. As we discussed already in
Sec. 5.1 the t2g states can be represented by spherical harmonics corresponding to
an effective orbital momentum with l = 1. Thus the Hilbert space can be written as

H = P−
[
H⊗4
s= 1

2

⊗H⊗4
l=1

]
= P−

[(
2
⊕
S=0
HS

)
⊗
(

4
⊕
L=0
HL

)]
. (5.21)

Here in the second step we performed angular momentum summation in the first and
second term respectively to be able to label the Hilbert space by total spin (HS) and
orbital momentum (HL). Doing so would allow us to identify which of the multiplets
is favoured by HK . The ultimate goal would be to compute the overlap the state
favoured by HSOC, namely, the one fully occupying the j = 3/2 states, has with
the multiplet. However, performing four angular momentum additions in both the
first and the second term would result in a massive calculation as we would have to
compute Clebsch-Gordan coefficients (CGC) for every summation successively.
A lot of this effort can be alleviated by performing a particle hole transform, that
is we shift from describing the particles occupying the t2g shell to describing the
orbitals who are left empty. We consider the transform

d†ασ → ηαdασ (5.22)

with

ηα =

{
1 if α ∈ {xy, xz}
−1 if α ∈ {yz}. (5.23)

One can check that under this transformation the terms in the Hamiltonian transform
as

~S 2 → ~S 2 (5.24)

~L 2 → ~L 2 (5.25)

N → 6−N (5.26)

HSOC → −HSOC. (5.27)
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Thus as the particle number on our atom is fixed HK stays invariant up to the
addition of constants. HSOC changes sign and therefore does now favour the full
occupation of the j = 1/2 orbitals with holes, which makes perfect sense as this
is physically the same as favouring the occupation of the j = 3/2 orbitals with
electrons. Our particle hole transformed Hilbert space can now be represented as

Hph = P−
[
H⊗2
s= 1

2

⊗H⊗2
l=1

]
= P−

[(
1
⊕
S=0
HS

)
⊗
(

2
⊕
L=0
HL

)]
, (5.28)

where in the second step we performed an angular momentum addition to again label
the subspaces by their total spin S and orbital momentum L. It is now interesting
to investigate the basis of the subspaces for given S and L.
HS is spanned by

HS=1 =





|1S=1〉 = |↑↑〉
|0S=1〉 = 1√

2
(|↑↓〉+ |↓↑〉)

|−1S=1〉 = |↓↓〉
(5.29)

HS=0 =
{
|0S=0〉 = 1√

2
(|↑↓〉 − |↓↑〉) (5.30)

where |mS〉 represents the state with total spin S and projection on the z-direction
m, while the arrows on the right represent holes with the corresponding spin. The
brackets on the right side denote the span over the enclosed states.
HL is spanned by

HL=2 =





|2L=2〉 = |1, 1〉
|1L=2〉 = 1√

2
(|1, 0〉+ |0, 1〉)

|0L=2〉 = 1√
6

(|−1, 1〉+ |1,−1〉+ 2|0, 0〉)
|−1L=2〉 = 1√

2
(|−1, 0〉+ |0,−1〉)

|−2L=2〉 = |−1,−1〉

(5.31)

HL=1 =





|1L=1〉 = 1√
2

(|1, 0〉 − |0, 1〉)
|0L=1〉 = 1√

2
(|1,−1〉 − |−1, 1〉)

|−1L=1〉 = 1√
2

(|0,−1〉 − |−1, 0〉)
(5.32)

HL=0 =
{
|0L=0〉 = 1√

3
(|1,−1〉+ |−1, 1〉 − |0, 0〉) (5.33)

where |mL〉 is the state with total orbital momentum L and projection of the same
onto the z-axis m. The states |m1,m2〉 on the right are the spherical harmonics for
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the effective l = 1 in the t2g manifold where the first (second) hole is in the state
with orbital momentum in z-direction m1 (m2).
Note that the states in HL=2, HL=0 and HS=1 are symmetric under exchanging
the holes, while those in HL=1 and HS=0 are antisymmetric. This allows us to
immediately apply the projection P− and obtain for the particle hole transformed
Hilbert space

Hph = P−
[(

1
⊕
S=0
HS

)
⊗
(

2
⊕
L=0
HL

)]
(5.34)

= (HS=1 ⊗HL=1)⊕ (HS=0 ⊗HL=2)⊕ (HS=0 ⊗HL=0) (5.35)

In each of these three subspaces HK takes a constant value. Their energies are up to
the constants stemming from the occupation number ES=1,L=1 = −5

2
JH , ES=0,L=2 =

−JH and ES=0,L=0 = 0 respectively. Therefore, HK clearly favours the S = 1, L = 1
subspace. For the following argument it is also useful to think about the overall total
angular momentum supported by these subspaces respectively. Performing another
angular momentum addition in each of the subspaces we obtain

Hph =
(
HL=1,S=1
J=2 ⊕HL=1,S=1

J=1 ⊕HL=1,S=1
J=0

)
⊕HS=0,L=2

J=2 ⊕HS=0,L=0
J=0 . (5.36)

Please note how total angular momentum J = 0 is only supported, when S = 1,
L = 1 or S = 0, L = 0. As we will show the state with full occupation of the j = 1/2
orbitals has total angular momentum J = 0, thus it is only possible to not have
a competition between HK and HSOC, when said state is contained in HL=1,S=1

J=0 as
this is the subspace that both has J = 0 and is favoured by HK . In order to check
this we have to identify the state HSOC favours in the same basis as we have for
HK . Therefore, we yet again write the particle-hole transformed Hilbert space in a
different manner

Hph = P−
[
H⊗2
s= 1

2

⊗H⊗2
l=1

]
(5.37)

= P−
[(
Hs= 1

2
⊗Hl=1

)
⊗
(
Hs= 1

2
⊗Hl=1

)]
(5.38)

= P−
[(
Hl=1,s= 1

2

j= 3
2

⊕Hl=1,s= 1
2

j= 1
2

)
⊗
(
Hl=1,s= 1

2

j= 3
2

⊕Hl=1,s= 1
2

j= 1
2

)]
(5.39)

= P−
[(
Hj= 3

2
⊗Hj= 3

2

)
⊕
(
Hj= 1

2
⊗Hj= 3

2

)
⊕
(
Hj= 3

2
⊗Hj= 1

2

)]

⊕ P−
[
Hj= 1

2
⊗Hj= 1

2

]
. (5.40)

In (5.39) we performed the angular momentum summation first between each holes
orbital momentum and spin. Note that this is equivalent to rotating the single
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particle orbitals into the basis of the total angular momentum per particle as we
did in Sec. 5.1.1. Then in the last step we suppressed the l, s labels to not further
bloat up the equation. We want to have a first quantized description of the state
that describes the full occupation of j = 1/2 orbitals with holes. Therefore, the only
subspace we are interested in is

HSOC = P−
[
Hj= 1

2
⊗Hj= 1

2

]
= P−

[
Hj1= 1

2
,j2= 1

2
J=1 ⊕Hj1= 1

2
,j2= 1

2
J=0

]
(5.41)

whose subspaces are given by

Hj1= 1
2
,j2= 1

2
J=1 =





|1J=1〉 = |1
2
, 1

2
〉

|0J=1〉 = 1√
2

(
|1
2
,−1

2
〉+ |−1

2
, 1

2
〉
)

|−1J=1〉 = |−1
2
,−1

2
〉

(5.42)

Hj1= 1
2
,j2= 1

2
J=0 =

{
|0J=0〉 = 1√

2

(
|1
2
,−1

2
〉 − |−1

2
, 1

2
〉
)
. (5.43)

Here the |mj1 ,mj2〉 represent the state with one hole having total angular momentum
in z-direction mj1 while the other one has mj2 . As we can immediately see all the
states in the J = 1 subspace are symmetric under particle exchange, thus they are
projected out by P−. Now we have to write both the state favoured by SOC and the
one favoured by HK in the basis of spin and the spherical harmonics to be able to

compute an overlap. For this we need the basis representation of Hs= 1
2
,l=1

j= 1
2

in terms

of spherical harmonics

Hs= 1
2
,l=1

j= 1
2

=

{
|1
2 j= 1

2

〉 = 1√
3

(
|↑, 0〉 −

√
2|↓, 1〉

)

|−1
2 j= 1

2

〉 = 1√
3

(
|↓, 0〉 −

√
2|↑,−1〉

) (5.44)

Thus in the original basis the state |SOC〉 favoured by HSOC is given by

|SOC〉 =
1

3
√

2
|↑, 0, ↓, 0〉 − 1

3
|↓, 1, ↓, 0〉 − 1

3
|↑, 0, ↑,−1〉

+

√
2

3
|↓, 1, ↑,−1〉 − (1↔ 2) , (5.45)

where we denoted by |ms1 ,ml1 ,ms2 ,ml2〉 for a state with two holes, where the i-th
hole has spin msi and orbital momentum mli in z-direction. For the state favoured
by Hund’s coupling |S = 1, L = 1, J = 0〉 we obtain

|S = 1, L = 1, J = 0〉 =
1√
6
|↑, 0, ↑,−1〉+

1√
6
|↓, 1, ↓, 0〉 − 1

2
√

3
|↑, 1, ↓,−1〉

− 1

2
√

3
|↓, 1, ↑,−1〉 − (1↔ 2). (5.46)



5.5 Classification of Phases in the U-λ-plane 85

With this we can compute their overlap

〈S = 1, L = 1, J = 0|SOC〉 = −
√

2

3
(5.47)

which proves, that |SOC〉 is not fully contained in the S = 1, L = 1 multiplet. Since
we are already at it, we might as well also compute the overlap with the only other
state, that has J = 0, namely

|S = 0, L = 0, J = 0〉 =
1√
6

(|↑, 1, ↓,−1〉 − |↑, 0, ↓, 0〉 − |↓, 1, ↑,−1〉)

− (1↔ 2) . (5.48)

Thus we obtain for the overlap

〈S = 0, L = 0, J = 0|SOC〉 = −
√

1

3
(5.49)

and with this we can write the |SOC〉 in the basis labelled by S, L, J as

|SOC〉 = −
√

2

3
|S = 1, L = 1, J = 0〉 − 1√

3
|S = 0, L = 0, J = 0〉 . (5.50)

Note that the state with S = 0, L = 0 and J = 0, is the state that is the least
favourable for Hund’s coupling JH . Therefore its competition with SOC that was
observed in the last section can be understood already at this level even without the
inclusion of any band structure effects. Putting it in a very pictorial way, Hund’s
coupling wants to align the angular momentum and spin of all the electrons, while
SOC just wants to align every particles spin with its own orbital momentum. These
two orientations are however not simultaneously fulfillable, yielding a competition
as long as both JH and the SOC strength λ are finite. Please note that the above
consideration is only valid for materials in which the t2g shell hosts four electrons as
throughout the section we assumed N = 4.

5.5 Classification of Phases in the U-λ-plane

After this very extensive investigation of the competition between Hund’s coupling,
SOC and also the role of the vHs we now want to place BaOsO3 in a paramagnetic
phase diagram in the U -λ plane, presented in Fig. 5.6 (a). We find an insulating
(squares) and a metallic (circles) phase, which we identified by studying the local
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(a) (b) (c)

Figure 5.6: Phase diagram in the U − λ plane at constant JH = 0.27 eV (a). We
depict metallic states by open circles and insulting states by squares. As there is no
sharp transition but rather a crossover between the Mott and the band insulating
state we encode the states character (Mott-like or band-like) in the symbol colours
(see main text for details). Real (b) and imaginary (c) part of the self-energy for
JH = 0.27 eV and selected values of U and λ (in eV). The solid and dashed lines
correspond to the j = 3/2 and j = 1/2 bands, respectively. In order to show all self-
energies on a comparable scale we shifted the real parts by the chemical potential
and rescaled both imaginary and real part by 1/U .

Green’s function Gloc(iωn) in the limit ωn → 0. In this limit due to the analyticity of
Gloc, the Green’s functions on the real axis and on the imaginary axis coincide. Thus
when the spectrum has a gap the imaginary part of Gloc tends to zero as ωn → 0. The
first interesting observation that can be made from Fig. 5.6 (a) is that the metallic
regime is located on the lower left triangle of the phase diagram, i.e. at small U and
λ. This tells us that Hubbard interaction and SOC work together to stabilize the in-
sulating regime. Indeed this observation can be understood by the polarizing nature
of the Hubbard interaction together with the SOC favouring the j = 3/2 orbitals.
The latter leads to a polarization that can then be enhanced upon by the electron-
electron interaction. As discussed in Sec. 5.2 at physical parameters (dashed lines in
Fig. 5.6) BaOsO3 is metallic, however, it is rather close to the insulating regime. We
want to note that our phase diagram is consistent with an unpublished calculation
by Dai [158].
Investigating the insulating regime further we find states of two different characters
namely Mott and band insulator like states. At high U and λ = 0 we expect a Mott
insulating regime, where the insulating nature stems from strong electronic correla-
tion effects, while in the high λ region we find the band insulating phase. The latter,
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contrary to the Mott state, is at its core a single particle effect as it stems from the
gap induced by separating the j = 1/2 from the j = 3/2 orbitals. When U , JH and λ
are finite the transition between the Mott and the van-Vleck state is continuos as we
did already observe in Sec. 5.4 and more specifically Fig. 5.5. Therefore, we decided
to introduce a colour coding in the phase diagram (Fig. 5.6 (a)). Namely, we define
a measure for electronic calculations χ(U, λ) = |minj,ωn ImΣj(iωn)| where Σj(ωn) is
the self-energy of an orbital with total angular momentum j. χ is a good measure,
as in the band insulating case the self-energy should be completely frequency inde-
pendent, and as it is decaying to 0 as ωn →∞ its imaginary part has to be equal to
0 for all ωn. Furthermore ImΣj(iωn) is always smaller than 0, thus taking the mini-
mum actually gives us the largest value it has in magnitude. In the figure the colour
scaling is such that for χ > 0.5 eV the darkest colour is given otherwise its linearly
interpolated between 0 and 0.5 eV. In panels (b,c) of Fig. 5.6 we show the real and
imaginary parts of self-energies for a few typical values of U and λ with the goal of
illustrating the differences between the insulating states. The case U = 1.275 eV,
λ = 1.8 eV shows a typical band insulating state with almost constant self-energy,
but nevertheless not unimportant correlations, as they lead to a further separation
of the j = 1/2 and j = 3/2 state. This is what we call a static correlation effect,
as it does not depend on frequency. On the other hand we show with U = 15 eV,
λ = 0 a typical Mott insulating case. Note the strong frequency dependence in both
the real and imaginary parts. This is what we like to refer to as dynamic correlation
effects. With U = 15 eV, λ = 0.1 eV we also show a Mott insulator in the presence
of small SOC. Even though there is a large static level splitting in the real part, the
dynamic effect is even stronger, which can also be seen in the imaginary part. Due
to the presence of such strong dynamic correlation effects we still identify this state
as a Mott insulator. This is far from trivial as one could have thought that as soon
as SOC introduces a slight polarization between the j = 1/2 and j = 3/2 states
the Hubbard interaction would enhance this effect so strongly that one immediately
arrives in the band insulating limit. However, we find that this is not the case.
Note also that the dynamic correlations, best seen in the imaginary part, are always
stronger in the j = 1/2 bands. As already explained in Sec. 5.4 this is likely due to
the larger active space in those orbitals.
Finally we present also the self-energies which we find for the realistic parameter set
(U = 2.55 eV, λ = 0.3 eV). We find sizeable dynamic correlation effects, best seen in
the imaginary part. Further we observe that in contrast to the Mott insulating case
at small SOC (U = 15 eV, λ = 0.1 eV) at low frequencies the splitting in the real part
is smaller than at high frequencies, which we interpret as the dynamic correlations
helping to reduce the gap between the j = 1/2 and j = 3/2 states therefore favouring
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the metallic state. This is likely an effect of Hund’s coupling as Hubbard interaction
at integer fillings does not favour a metallic state [18]. The reason why this effect
can not be seen in the other parameter regimes is because in those either U or λ is
dominating the effects of JH .
The splitting found in the real part of the self-energy can be interpreted as a
correlation-driven enhancement of the SOC as splitting the j = 3/2 from the j = 1/2
bands is in essence exactly what SOC does. However, contrary to the case of
Sr2RuO4 [4, 35, 114, 133, 140], where the real parts are almost constant, in BaOsO3

they are strongly frequency dependent. This makes it difficult to talk about an ef-
fective SOC, as SOC is a term in the Hamiltonian and therefore static. As we are
describing a low energy model of the problem we define λeff := λ+ 2

3
∆ReΣj(iωn → 0)

as the splitting in the low frequency limit as proposed in Ref. [114]. The splitting
between the components of the real part of the self-energy in this limit is about
0.34 eV, which yields λeff ≈ 0.53 eV. This means that, at low frequencies, SOC is
effectively enhanced by roughly a factor of 1.8, which is slightly less than the factor
of 2 found for Sr2RuO4 and Sr2MoO4 [4, 35, 133, 140]. Upon inspecting Fig. 5.3
(c) one however finds, that the splitting of the bands introduced by SOC does not
seem to have significantly increased by including electronic correlations. This can be
explained by the fact that the mass of the quasi particles to which those bands corre-
spond does also get renormalized. Including the mass renormalization we obtain an
effective splitting of ∼ Zλeff which in our case is about 0.23 eV. Investigating again
Fig. 5.3(c) we find that the splitting at the X point is of magnitude 0.25 eV, which
coincides very well to the splitting we would expect for the quasi-particle bands.

5.6 Summary

Within this chapter we investigated the electronic structure and correlation effects
in BaOsO3. We started by discussing the bandstructure and DOS obtained from
DFT and found that in the absence of SOC, there is a vHs located directly at the
Fermi surface. This vHs is split upon the inclusion of SOC, which reduces the
weight of the DOS around the Fermi level, raising the question whether inclusion of
electron-electron interactions via a Hubbard-Kanamori interaction term may already
be sufficient to drive the system into a insulating state.
To address this question, we studied the spectral functions upon inclusion of electron-
electron interaction computed using DMFT. Our findings are that the SOC of about
0.3 eV is not sufficient to drive the system into a band insulating regime, in contrast
to e.g. the 5d iridate NaIrO3 [159, 160].
In order to understand the influence the vHs has on electronic correlations, we per-
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formed calculations at an artificial filling of two electons in the t2g shell. Adjusting
the filling to two electrons yields a shift in the chemical potential, which removes the
vHs from the Fermi level, while remaining at a characteristic Hund’s metal filling [18].
By comparing the quasi particle mass enhancement obtained at a filling of two and
four electrons, we find that indeed electronic correlations are strongly enhanced by
the presence of the vHs. This is similar to the ruthenates Sr2RuO4 [4, 127–129, 131–
145] and BaRuO3 [161, 162], where the van-Hove singularity is known to strongly
impact electronic correlations.
With the goal of studying the influence of SOC on electronic correlations we per-
formed calculations at varying SOC strength and find that indeed at low SOC quasi
particle mass enhancements are strongly enlarged by Hund’s coupling. At increasing
SOC, however, we find a non-trivial decrease in electronic correlations that we can
trace back to two effects. First, due to the splitting of the vHs with SOC the den-
sity of states around the Fermi level gets reduced, yielding a decrease in electronic
correlations. Second, we identify a competition between the atomic states favoured
by SOC and Hund’s coupling (c.f. Sec. 5.4.1), which diminishes the influence of the
latter.
Finally, we place BaOsO3 in a phase diagram in the U -λ plane, where we identify
a metallic, a Mott and a band insulating regime. Further, we find that, consistent
with experiment [37], BaOsO3 is on the boundary of the metal-insulator transition.
Concluding this chapter, we want to emphasize that electronic correlations in BaOsO3

are governed by a complex interplay of Hund’s physics, SOC and details of the band
structure (vHs). It is this interplay that makes BaOsO3 an highly interesting mate-
rial to study and we believe that our work therefore contributes to a more complete
understanding of strongly correlated materials and their fascinating properties.





Chapter 6

Formation of weakly coupled
sublattices in thin films of
tetragonal CuO

The following results are based on the author’s publication [1].

In the last 35 years a great research effort has been made to investigate high-
temperature superconductivity in cuprates [16, 47, 163–166]. Early on their quasi
2D planes were identified as key elements for the understanding of the cuprates low-
energy physics and therefore two-dimensional (2D) models were proposed [48, 167–
171].
Most cuprates do however feature distortion or disorder effects not captured by typ-
ical models and therefore a highly symmetric ideal cuprate would be an important
step to connect materials and low-energy models. A class of candidate materials are
polymorphs of pure CuO planes [172]. Unfortunately, contrary to other binary tran-
sition metal oxides (MnO, FeO, CoO, NiO), CuO crystallizes in a lower symmetric
monoclinic structure [42] and not in a cubic or tetragonal phase that is made up of
CuO planes.
However, a few years ago it was shown that when thin films of CuO are grown on a
SrTiO3 substrate [43–45] a structure consisting of tetragonal 2D planes stacked in a
staggered configuration along the c-direction is realized.
Multiple first principles studies including DFT with hybrid functionals [173–176]
and DFT+U [177, 178] followed and gave insights about the electronic structure of
tetragonal CuO (t-CuO).
In addition, they proposed an antiferromagnetic stripe order [173, 174, 176], which
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is in agreement with experimental findings from resonant inelastic x-ray scattering
(RIXS) [49]. Extrapolation from other binary transition metal oxides [43, 179] and
estimates from first principles calculations [173, 174, 176] place the Néel temperature
around ∼ 800 K, which is much higher than the critical temperature of its monoclinic
bulk phase (TN ∼ 220K [180]) and therefore indicates much stronger antiferromag-
netic correlations. It is due to these observations that we also studied magnetic
properties within CDMFT and variational cluster approximation (VCA) [57] choos-
ing clusters that allow for this ordering. Note that VCA was not introduced in this
thesis as the author is not the expert on the method, however, in the section pre-
senting the VCA results (Sec. 6.6) we will give a short overview.
t-CuO was measured to be an insulator with quite sizeable gap ∆ > 2.35 eV via
angle-resolved photoemission spectroscopy (ARPES) [45] and its electronic struc-
ture was used to construct effective three- and one-band t− J models [45, 181, 182].
The effective one-band model derived from RIXS in Ref. [49] is in qualitative agree-
ment with the one derived from a Zhang-Rice singlet [48] (ZRS) description [182]
and is thus the one we were considering during this thesis.
In Sec. 6.1 we will introduce the model we used for our CDMFT and VCA calcu-
lations. Further, we are going to investigate the dynamical influence of the inter-
sublattice hopping td in Sec. 6.2 by analysing the corresponding elements of the
Matsubara self-energy computed by CDMFT with the impurity solver introduced
in Chap. 4. Our key finding is that the inter-sublattice correlations are heavily
suppressed as compared to local and short-range intra-sublattice correlations, which
formally justifies to regard t-CuO as weakly-coupled interlaced CuO2 lattices. Mo-
tivated by this observation, we introduce in Sec. 6.3 a block-construction scheme
for self-energies which allows us to treat twice the amount of correlated electronic
orbitals for the same computational cost. In Sec. 6.4 we use this efficient scheme
together with our impurity solver working directly on the real axis [36, 83, 84, 183–
185] to reproduce equal energy maps and momentum resolved spectral functions in
remarkable agreement with ARPES measurements without the need for analytic con-
tinuation. In Sec. 6.5 we analyse the magnetic ordering in t-CuO as a function of
temperature using CTQMC and identify two driving mechanisms for the insulating
phase. Finally, in Sec. 6.6 we give brief introduction to VCA and use it to predict
the presence of superconductivity (SC). As a direct consequence of the sublattice
decoupling, we find coexistence of magnetic stripe order and superconductivity of
dxy-symmetry, whereas the usual cuprate dx2−y2 order is strongly suppressed. This
can be interpreted as pairing only happening within sublattices and is therefore an
exciting result.
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Figure 6.1: (a) Rock salt crystal structure of tetragonal CuO. (b) slab of CuO within
the a-b plane. Bright (dark) red atoms indicate the sublattice A and B of our
model. (c) Two identical Cu-sublattices and indication of the hoppings td, t, t

′ and
t′′ included in the model. The arrows sketch the stripe order considered throughout
the paper. Highlighted in blue and green are the magnetic sublattices that correspond
to the stripe order. (d-g) Clusters including different hopping terms as discussed in
the text.

6.1 Model Hamiltonian

In Fig. 6.1 we show the crystal structure of thin films of t-CuO. As mentioned in the
last section, t-CuO consists of 2D planes that are stacked in a staggered configuration
(see Fig. 6.1(a)). Due to the large separation between layers the material can be
treated as quasi 2D, which is why we consider a single plane of CuO, that can be
interpreted as two interpenetrating CuO2 sublattices (see Fig. 6.1(b)). The model
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we consider is a single band Hubbard model [15, 22, 23]

H = U
∑

i

ni↑ni↓ +
∑

i,j,σ
|i−j|=a

tdc
†
iσcjσ +

∑

i,j,σ
|i−j|=

√
2a

tc†iσcjσ

+
∑

i,j,σ
|i−j|=2a

t′c†iσcjσ +
∑

i,j,σ
|i−j|=2

√
2a

t′′c†iσcjσ (6.1)

with i, j being site indices and σ ∈ {↑, ↓}.
Contrary to the approach of wannierising orbitals obtained from DFT in Chap. 5,
here we use single particle terms (td = −0.1 eV, t = 0.44 eV, t′ = −0.2 eV, t′′ =
0.075 eV) that were obtained as a result of fitting the magnon dispersion, measured
by RIXS, with a t-J model in Ref. [49]. In Fig. 6.1(c) we depict these hopping matrix
elements graphically. Please note that the nearest neighbour hopping td is roughly
four times smaller than the next nearest neighbour hopping. The reason can be
found in Fig. 6.1(a,b) where it becomes apparent, that the oxygen atoms lie between
next nearest neighbours instead of nearest neighbours. Thus thinking in terms of a
Zhang-Rice singlet [48](ZRS) construction it becomes apparent that the dominating
hopping has to be next-nearest-neighbour, as the mechanism behind it is the coupling
to a virtual ZRS state that is formed between a hole on the oxygen p-orbitals and the
copper dxy orbital. Note that this is different from usual cuprates, where the oxygens
are between nearest-neighbours and thus the copper dx2−y2 orbital would contribute
to the ZRS. Additionally td is the only hopping term that connects the two CuO2

sublattices. We use a Hubbard interaction of interaction strength U = 7 eV, that is
significantly stronger than the one in Ref. [49]. However, such strong interactions are
necessary to obtain a gap larger than the experimental lower bound of 2.35 eV [45].
Similar values of U have been used in LDA+U calculations [177, 178], which gives us
confidence in our choice for the interaction strength. Note that Fig. 6.1(c) also shows
the magnetic stripe order in a single layer of t-CuO. This order was not enforced by
any kind of static field in our calculations. The only input we gave was a self-energy
corresponding to an initially polarized system afterwards we let the system relax
over the iterations and still obtained stripe order. We mentioned in Chap. 2 that
in CDMFT an entire cluster of sites is treated as impurity system. Such clusters
are depicted in Fig. 6.1(d-g). Namely, Fig. 6.1(d,e) show the clusters used to in-
vestigate the sublattice decoupling, while the ones depicted in Fig. 6.1(f,g) are the
ones needed for the block-construction. The careful reader may have realised that
the super lattice construction consisting of the cluster Fig. 6.1(f) would not span
the entire lattice, but only one CuO2 sublattice. This is indeed true, but as we will
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explain in Sec. 6.3 this is exactly what is needed for the efficient calculation of the
diamond cluster in Fig. 6.1(g).

Concluding this section we want to give a few details about typical parameters for
our solver used in this project. The calculations on the imaginary axis were carried
out using a Matsubara frequency grid corresponding to a fictitious temperature of
βfict = 200 eV−1, a number of bath sites Lb = 8 (Lb = 6) per correlated site for
clusters containing two (four) sites and allowing for a maximal bond dimension of
2048 during ground state searches. The time evolution was performed until the
norm of the excitations decayed under 10−8. Calculations on the real axis were
carried out with a broadening of 0.05, a number of bath sites Lb = 274 (Lb =
200) per correlated site in the case of clusters with two (four) sites and allowing a
maximal bond dimension of 1536 during ground state searches. The time evolution
was performed until Tmax = 60 eV−1. For details about the VCA calulations and
CDMFT + CTQMC we refer the reader to the original work [1].
With those computational details out of the way we can now concentrate on the
intriguing physics in t-CuO.

6.2 Sublattice decoupling

A major point of this project was figuring out the microscopic origin of the CuO2

sublattice decoupling in t-CuO, which is hard to argue for on the single particle
level as the inter sublattice hopping td is roughly of the same order of magnitude
(|td| ∼ t/4) as the leading order hopping t. It is therefore important to take into
account the self-energy which captures the modification the non-interacting Hamil-
tonian experiences due to the interaction with the other electrons. CDMFT seems
like the perfect framework to investigate the effect of treating non-local correlation
effects mediated by different hopping terms as by the choice of our impurity cluster
we can decide which hopping term is treated perturbatively and which in an exact
manner. Namely, all those contained within the cluster are treated exactly, while the
others are encoded in the bath degrees of freedom. Thus to investigate the dynamical
influence of td it makes sense to treat two kinds of clusters. One where the cluster is
located on a single CuO2 sublattice and the coupling to the second sublattice is fully
encoded in the bath degrees of freedom, and another bigger one, that contains one
such cluster on every sublattice. We can then compare the results we obtain, when
pretending that the sublattices are disconnected, to the calculation on the larger
cluster. The former consists essentially only of two copies of the self-energy obtained
from the smaller cluster. We apply this idea by computing the self-energy for the
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Figure 6.2: Comparison between selected elements of the self-energy computed on
two different clusters using the solver introduced in Chap. 4. Note the difference in
scales between panels (a,b) and (c). The components shown belong to the block of
the up-spin self-energy. The small graphics in each panel depict whether the self-
energy element corresponds to local or hopping terms and in the latter case to which.
Different coloured sites correspond to different CuO2 sublattices.

t− td cluster and the t dimer respectively (cf. Fig. 6.1(d,e)).
In Fig. 6.2 we show chosen elements of the self-energy computed in the above de-
scribed manner at zero temperature (T = 0 K). We denote the local component
by Σloc(iωn) and the components corresponding to the nearest and next nearest
neighbour hopping Σtd(iωn) and Σt(iωn), respectively. In Fig. 6.2(a,b) we show the
self-energy elements already included on the dimer and find that the inclusion of
the second sublattice and the inter sublattice hopping td does actually not change
the self-energy significantly. Furthermore, as shown in Fig. 6.2(c) the self-energy
component corresponding to the inter sublattice hopping is about three orders of
magnitude smaller than the self-energy elements contained on a single sublattice.
Actually we computed the relative difference of the self-energies via the Frobenius
norm and found it to be on order 10−4 over the entire frequency range. This indicates
that electronic correlation effects are not affected by the presence of the second sub-
lattice. This is far from trivial given the relative size of the inter sublattice hopping
wrt. the leading order hopping (|td| ∼ t/4) and means that electronic correlations
strongly favour the hopping of electrons on a single sublattice. We believe that the
driving mechanism behind the formation of sublattices is that the hoppings td, t, t

′

and t′′ are not monotonically decaying with distance. The leading order hopping
is favoured by correlations no matter if its nearest or next nearest neighbour. In
typical cuprates the nearest neighbour hopping is of leading order and the entire lat-
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tice is connected through leading order hopping processes. However, in t-CuO this
is not the case, here the fact that the next-nearest neighbour hopping is of leading
order means that only one CuO2 sublattice can be reached via leading order hopping
processes. We believe that it is for this reason that the inter-lattice self-energy is
strongly suppressed.
Not only does this result explain the physical origin of the sublattice decoupling
and justifies thinking of t-CuO as two disconnected sublattices, it also enables us to
devise a block construction scheme for the efficient calculation of self-energies. We
will introduce this scheme in Sec. 6.3, but before we do we want to mention a few
interesting results connected to the sublattice decoupling that were not shown in the
original work.

6.2.1 Exact Diagonalization study

With the goal of a better classification of the sublattice decoupling we investigated
the t − td cell depicted in Fig. 6.1(e) by the means of exact diagonalization. The
reason why we chose the t − td cluster is that it is the smallest cluster that we can
properly investigate the sublattice decoupling with. Note that within this investiga-
tion we do not consider any form of self-consistency loop or addition of bath sites,
but simply investigate the four sites composing the t− td cell, which means all other
hopping terms are ignored.
Numbering the sites such that odd numbered sites belong to sublattice A and even
numbered ones to sublattice B, we define two states which we want to use to char-
acterize the eigenstates of the system. Those states are given by

|t〉 = ŝ13ŝ24 |0〉 (6.2)

|td〉 =
1√
2

(ŝ12ŝ34 − ŝ23ŝ41) |0〉 (6.3)

with ŝij = 1√
2

(
c†i↑c

†
j↓ − c†i↓c†j↑

)
and |0〉 being the vacuum. The operator ŝij was

chosen such that applied to a dimer consisting out of the sites i and j it creates
the double occupancy of the zero momentum state but projects out the real space
double occupancies. The guess of those states was motivated by the minimization of
the kinetic energy along the bonds connected by the hoppings t and td, respectively.
However, as Hubbard repulsion strongly penalizes double occupancies we projected
those out. One can check that the overlap 〈t|td〉 vanishes, which means that those
states might be good candidates to distinguish the ground states character.
In Fig. 6.3(a) we show the lowest energy eigenstates of the t − td cluster together
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Figure 6.3: (a) Lowest energy eigenstates of the t−td cluster and their corresponding
energy in dependency of td. The colour coding is done wrt. the function χ(td) =
|〈td|E(td)〉|−|〈t|E(td)〉|, where |E(td)〉 is a eigenstate at given td. The upper and lower
end of the colour bar correspond to χ = ±1 respectively. (b) Graphical depiction of
the states |td〉 and |t〉 the overlaps in (a) are computed with, where |0〉 is the vacuum.
Note that the state |t〉 corresponds to essentially independent subsystems.

with a graphical depiction (Fig. 6.3) of the states we just introduced to characterize
the ground state. Investigating panel (a) we observe that around |td/t| = 1 the
ground state changes its character. Namely, starting from td = 0 the ground state
has |t〉 character, corresponding to two essentially decoupled dimers. However, when
|td/t| > 1 two energy eigenstates, one with |td〉 and one with |t〉 character, cross and
thus the new ground state is of |td〉 character, which abruptly changes the behaviour
of the system from two disconnected dimers to a state that entangles all the sites.
This observation may give an indication why the self-energy presented in Fig 6.2
corresponds to two essentially decoupled sublattices. At the ratio of |td/t| ∼ 1/4
corresponding to t-CuO we are still deep within the regime where the ground state
has |t〉 character and the change happens very abruptly due to the level crossing,
which might explain why |td/t| ∼ 1/4 is not so much different from td = 0, at least for
the effect of electronic correlations. However, we have to be careful not to interpret
to much into this result, as not only are we ignoring all the higher order hopping
terms in this investigation but we are also very far from the thermodynamic limit as
we ignore the rest of the lattice. Thus the results in this subsection should rather
be a thought of as a possible indication for the weak dependence on the value of td
than a definite proof.
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Figure 6.4: (a) Dispersion relation in the non-interacting limit for different values
of td. Blue (red) momenta correspond to negative (positive) energies. The white
line depicts the Fermi surface. (b) Density of states in the non-interacting limit
for varying td. The curves correspond to the equally coloured td in (a). The black
dashed line depicts the Fermi level. The heat maps are normalized such that they
are centered at zero energy. The maximum and the minimum of the heat maps are
set to the most extremal energies in the band, that still allow for said centering.

6.2.2 Non-interacting limit

Motivated by our findings in the exact diagonalization study, but struck with the
realisation that those may be obtained under too strongly simplified conditions we
decided to investigate t-CuO ignoring the strong Hubbard repulsion. This might
sound a bit far from our original model as U = 7 eV is everything but not negligible.
However, we do not want to actually obtain data for the full problem from this
investigation, but rather find hallmarks of why the self-energy in Fig. 6.2 depends so
weakly on td. Given that there are only two inputs to CDMFT, namely, the dispersion
relation of the lattice in the thermodynamic limit and the impurity cluster, it makes
sense to investigate both also individually. Having treated the cluster problem in the
last subsection, here we want to investigate the non-interacting limit.
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In Fig. 6.4(a) we show the Brillouin zone coloured with respect to the energy of
the respective momentum states. The blue regions are occupied by electrons, while
the red regions are empty. Investigating the Fermi surface for the case td = 0 we
find, respecting the periodicity of the BZ, two disconnected circles enclosing the
unoccupied states. The states with negative energies are found in the middle of the
BZ and on the diagonals. Tuning td this changes slowly, as for td ∈ [−0.2 eV, 0] the
Fermi surface gets slightly twisted, emptying out more and more states close to the
middle of the BZ. This change is rather slight in comparison to what happens at
stronger td, where an entire region of the BZ is pushed through the Fermi surface.
Namely, the states in the middle of the Fermi surface that used to be occupied empty
all the sudden leading to a completely different shape of the Fermi surface. Please
note that this changes the topology of the Fermi surface. Before the reformation at
td ∼ −0.35 eV it consists of two disconnected circles, while afterwards, taking into
account the periodicity of the BZ, the Fermi surface only consists of a single circle.
An abrupt change in the Fermi surface topology like this is in the literature referred
to as a Lifshitz transition following Lifshitz’s original paper [186]. In Fig. 6.4(b)
we show the non-interacting density of state as for the same values for which we
also present the maps of the Brillouin zone in Fig. 6.4(a). We note that in the
td = 0 case there is a single van-Hove singularity (vHs), that gets split as we tune
td towards negative values. The part of the vHs that moves towards the occupied
side, gets smeared out, while the one moving towards the Fermi surface becomes
sharper. The latter eventually crosses the Fermi surface for |td| > 0.3 eV, which is
also where the Lifshitz transition happens. We remind the reader that the relevant
value of td for t-CuO is −0.1 eV for which the Fermi surface appears far more similar
to the case of td = 0, than to the case after the vHs crosses the Fermi surface. Note
that even when hole-doping t-CuO we should still be on this side of the transition
even though a density lower than half-filling would yield a shift of the DOS towards
higher frequencies. Making this shift large enough to move the vHs through the
Fermi surface would require a filling lower than 0.7 electrons per band which is
significantly stronger doping than studied in this work. Please also note that since
td is the next-neighbour hopping the Fermi surface after the transition should in its
shape/topology correspond to the dispersion of typical cuprates with monotonically
decreasing hoppings. Again similar to last subsection our observations can not be
directly transferred to the full interacting problem as the strong Hubbard repulsion
may have all kinds of unforeseen effects. However, we believe that the observations
from exact diagonalisation and the non-interacting limit contribute towards a more
complete discussion of the sublattice decoupling.
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6.3 Block construction and cluster orientation

Here we want to give a quick overview of two refinements we used with respect
to the pure CDMFT framework, namely, the block construction scheme for self-
energies, that allows us to obtain a better momentum resolution and the averaging
over cluster orientations that eliminates artificially favouring certain directions in
momentum resolved spectra.

6.3.1 Block construction

In the last section we showed on the example of the dimer and t− td cluster that the
dynamical influence of the td hopping is negligible. As td is the only term connecting
the two CuO2 sublattices this can be used to treat clusters consisting of twice as
many sites.
The idea is to assume that the self-energy becomes block diagonal with one block
per sublattice. This is true if the components corresponding to td vanish and all the
other components of the self-energy are not influenced by td. As shown in Fig. 6.2
this seems to be a fair assumption.
Furthermore, since the two CuO2 sublattices are identical, it is enough to just com-
pute the block of one sublattice and determine the other one from symmetry. Thus
we only need to solve the impurity problem within one sublattice to obtain the self-
energy. Once it is obtained we construct the full self-energy by the scheme just
described and close the self-consistency loop with the full dispersion including td.
This way effects of td are still included on a perturbative level. After closing the self-
consistency loop we project down onto one of those blocks and obtain an impurity
problem on the unit cell of a single sublattice (Fig. 6.1(f)). In the following we will
perform block construction calculations treating a plaquette cluster on a single sub-
lattice (Fig. 6.1(f)) which we then use to build a diamond cluster on the full lattice
(Fig. 6.1(g)). The benefit of having more sites in the unit cell is that the momentum
resolution is increased as longer ranged correlation effects are taken into account.
By this construction we are able to obtain a momentum resolution corresponding to
an eight site cluster with the computational effort of treating a impurity model with
four correlated sites. In the following we will refer to the described diamond cluster
as block construction.

6.3.2 Cluster Orientation

Most of the results in this project were obtained by using the diamond cluster or
the dimer as unit cells. However, those clusters break the rotational symmetry of
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Figure 6.5: Sketch of the two possible orientations within a given magnetic stripe
order for (a) the dimer and (b) the diamond cluster. Panels (c) and (d) show the
corresponding equal energy maps obtained at E = −2.2 eV using these cluster ori-
entations as well as their mean. The dashed black line indicates the BZ of a single
sublattice.
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the lattice as rotating them by 90◦ results in a different cluster setup as depicted
in Fig. 6.5(a,b). It is for this reason that for the remainder of this chapter we
will average over those two equivalent orientations whenever displaying momentum
resolved spectra. This averaging approach goes by the name oriented cluster DMFT
and was already introduced in Refs. [187, 188] and applied to Sr2IrO4[187–189]. The
result of this procedure can be seen in Fig. 6.5(c,d), where we display equal energy
maps computed with the dimer and diamond cluster respectively. The sub panels
(c1,c2,d1,d2) show the spectra obtained by only choosing one direction, while the
ones in sub panels (c3,d3) display the averaged result. We observe that the dimer
results are far more sensitive to the orientation, however apart from the minimum
in the middle of the BZ their average is already very similar to the energy maps
computed with the block construction. This implies that the dimer results already
capture very well the physics in t-CuO, which indicates that the most important
physical content of the extended unit cells is actually the delocalisation along the
dominating bonds, as we argued in Sec. 6.2. Furthermore, the block construction
does only seem to depend very weakly on its orientation, which we interpret as a
hint towards convergence in cluster size.

6.4 Spectral functions

In this section we compare the momentum resolved spectral functions that were
computed using the block construction scheme to experimental data from ARPES
measurements [45]. The results presented in this section were computed using our
solver but working directly on the real axis [36, 83, 84, 183–185], allowing to directly
access the real frequency data without the need for analytic continuation. The
computations to obtain the results presented in this section were performed in equal
parts by the author and Martin Grundner [83, 84].
In Fig. 6.6(a) we show an equal energy map computed at −2.2 eV, which in our
model is at the top of the valence band. This equal energy cut reproduces well the
experimentally measured data (cf. [45] Fig. 1(a)). Namely we are able to reproduce
the four strong maxima, that are close to the center of the BZ and are offset by
90◦. Furthermore we are also able to reproduce the replica features outside the BZ
that corresponds to a single CuO2 sublattice (dashed black line). In contrast to
ARPES our method is not subject to matrix element effects [190] which is why our
replicas do not undergo any additional intensity modulations. The reason why the
replicas are not perfect is because the sublattices are not entirely disconnected. If
this was the case (td = 0), then the true BZ would be the one of a single sublattice
and everything outside would just be periodically repeated. Thus the presence of
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Figure 6.6: Spectral function A(k, ω). (a) Equal energy map at E = −2.2 eV where
the dashed black line depicts the first BZ of a single sublattice. (b) A(k, ω) along
high-symmetry k-path as computed with the block-construction scheme and com-
pared to the experimentally measured dispersion (purple circles in inset) extracted
from Ref. [45] and shifted by 0.4 eV in order to align the chemical potentials. The
dashed blue line in (b) depicts the energy (-2.2 eV) at which the equal energy cut
was calculated.

the replica features is a hallmark of the weak coupling between the sublattices. The
fact that there is only very slight asymmetry is due to electronic correlation effects.
In more detail, since the inter sublattice components of the self-energy are strongly
suppressed the inter sublattice hopping td is kept bare, while electronic correlations
roughly enhance the leading order hopping by a factor of 2 (see Fig. 6.2). Comparing
the correlation enhanced value of t with td, we find that the former is roughly 10
times larger, which explains why the asymmetry is so small even though the bare
td is roughly one fourth of the bare t. Note that the asymmetry from choosing a
cluster orientation was taken care of by the averaging procedure introduced in the
last section. The remaining asymmetry between x and y direction is solely due to
the antiferromagnetic stripe order. In Fig. 6.6(b) we show the momentum resolved
spectral function along a high symmetry path through the BZ. Note that the path is
the one depicted as dashed blue line in Fig. 6.6(a) and the spectrum was measured
along the same path by ARPES (Ref. [45] Fig. 2(a)). Comparing to the latter we
find good agreement. In particular the low energetic band that is separated from
the rest of the Hubbard band at higher binding energy coincides quite well with the
experimental data (see inset of Fig. 6.6(a)). This band stems from a spin-polaron
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i.e. a hole propagating in the antiferromagnetic background. It is reasonable that this
feature is well captured by our model as the hopping elements we used were obtained
by fitting the magnon dispersion and in essence the spin-polaron should in some sense
be a electronic hole interacting with those magnons. In addition to this low energy
feature we are the first ones to reproduce the vanishing spectral weight around the X
point, a feature that could not be reproduced by a self-consistent Born approximation
(SCBA) calculation on a ZRS spin model [48, 182]. In addition to those features the
experiment also shows a lower lying band that is labelled with β in the experimental
work [45]. It is not possible for us to reproduce this additional band, as our model is
a single band Hubbard model reproducing well the Zhang-Rice [48, 182] like band,
while the β band was identified to have a different symmetry [45, 172]. We want
to mention that upon hole-doping the additional holes are expected to be hosted on
the oxygen p-orbitals which form Zhang-Rice-singlets with the holes in the copper d-
orbitals [48, 172]. Thus as the β band has different character and is further removed
from the Fermi level it is not expected to play a significant role upon doping. Apart
from the missing β band the agreement of our computed spectra with experiment is
quite striking.

6.5 Finite Temperature Analysis

In the literature there have been multiple predictions about Néel temperature for the
antiferromagnetic stripe order in t-CuO [43, 173, 174, 179] which motivated us to
closer investigate the finite temperature behaviour of our model. We thus perform
finite temperature CDMFT calculations by the use of a continuos time quantum
Monte Carlo (CTQMC) solver [53–55]. These finite temperature CDMFT+CTQMC
calculations were performed by Benjamin Bacq-Labreuil.
In order to get a feeling for the cluster size dependence of our results we perform
calculations using the dimer and the block construction clusters (Fig. 6.1(d,g)).
In Fig. 6.7(a) we show the staggered magnetization corresponding to the stripe order
for both the dimer and block construction clusters. Our first observation is that the
finite temperature curves nicely extrapolate to the zero temperature results obtained
from the solver introduced in Chap. 4. Furthermore we identify the inverse temper-
ature βc at which the order melts for the dimer and the block construction cluster
to be βdimer

c = 14.5 eV−1 and βblock
c = 18.5 eV−1 respectively. Those correspond to

critical temperatures T dimer
c ≈ 800 K and T block

c ≈ 627 K. In order to not disrupt
the flow of this section too much we will explain details about how we obtained the
critical temperature and the error bars in the next subsection. We observe that the
dimer cluster still overestimates the magnetic order, while the block construction
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Figure 6.7: (a) Staggered magnetization calculated using the dimer cluster and the
block-construction. The dashed black lines indicate the β = ∞ result computed
with the impurity solver on the imaginary axis introduced in Chap 4, while the finite
temperature results were obtained by CTQMC [53–55]. The vertical lines depict the
inverse critical temperature βc = (18.5± 0.7) eV−1 ((14.5± 0.8) eV−1) for the block-
construction (dimer) cluster. The shaded area depicts the error bar for βc. (b) Real
part of the diagonal components of the self-energy for different inverse temperatures
β indicated by black circles in (a). The curves shown left correspond to the spin up
(solid) and down (dashed) components on a cluster site. On the right, we show the
self-energy at the two cluster momenta K1 = (0, 0) (dashed) and K2 =

(
0, π

a

)
(solid)

respectively.

which also includes slightly higher ranged correlations leads to a lower value. We
might now be tempted to interpret these as predictions for the Néel temperature.
However as we are considering a 2D model, ignoring the other layers stacked upon
the c-axis there should not be a long range magnetic stripe order as fluctuations
between the equivalent directions should immediately destroy the order [191]. Thus
the long-range order we observe in our finite temperature calculations is rather a
hallmark of choosing one of the equivalent stripe orientations in a mean-field like
approach. Still, we believe that the reduction of Tc upon extending the cluster size
nevertheless shows the importance of including in-plane spin fluctuations.
In Fig. 6.7(b) we show real parts of Matsubara self-energies at three characteristic
temperatures, namely one in the paramagnetic (PM) regime, one in the transition
region and one in the antiferromagnetic (AF) regime. Again the first observation
is that the finite temperature CTQMC data seems to converge asymptotically to
the MPS results for increasing β. We also see that the frequency dependence gets
strongly suppressed as temperature decreases (that is as polarization increases). This
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can be interpreted in terms of a smaller active space for the electrons (holes) which
leave less room for dynamic electronic correlation effects. Please note that the static
correlation effects are still sizeable though as can be seen from the large but close
to constant values the self-energy takes. The smaller active space in the ordered
phase can be thought of in terms of electrons being frozen in place as moving in the
direction of the stripes is forbidden by Pauli’s exclusion principle, and while being
allowed, hopping perpendicular to stripe direction is penalized by the large Hubbard
repulsion U . Even in the paramagnetic regime (here at β = 10 eV−1) the material
is still insulating as the Matsubara Green’s function does still tend to 0 (not shown
here). However in the PM case we can not argue by the means of reduced active
space, here it is rather a momentum selective dynamic level splitting that suppresses
electron dynamics by largely penalizing non-zero momentum states. In the follow-
ing we want to elaborate in a bit more detail about how we extracted the critical
temperatures.

6.5.1 Details on the estimation of the critical temperatures

In order to extract the estimate to the critical temperature during the last section
we fitted a function of the form

M(T ) = θ(Tc − T )γ

(
1− T

Tc

)β

to the staggered magnetization. Here γ, Tc and β are fit parameters and θ is the
Heaviside step function, that was added in order to make the fits more stable. Note
that here β is the critical exponent of the transition, while βc in the following denotes
the inverse critical temperature.
To improve our fitting procedure we inspected the Matsubara self-energies and found
upper and lower boundaries for βc. Namely, on the one hand we set the lower
boundary such that the spin splitting vanishes since this indicates that electrons
with different spins behave completely identical and thus the system is for sure not
antiferromagnetic. On the other hand the upper boundary is set such that the
imaginary part of the diagonal components of the self-energy tends to 0 as ωn → 0.
This is a reasonable choice as in the case of a paramagnetic Mott insulator the self-
energy is divergent somewhere in the gap. Since our chemical potential is set such
that ω = 0 roughly corresponds to the middle of the gap, the vanishing self-energy
indicates that we are not anymore in the paramagnetic phase. By this criterion we
identify βc = 16 eV−1 (βc = 20 eV−1) and βc = 13 eV−1 (βc = 17 eV−1) as upper and
lower boundary for the dimer and block-construction clusters, respectively.
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Varying the upper and lower boundaries of the fit interval we obtain a collection
of fits, of which we discard those, which either display a deviation bigger than 0.05
from any data point or which do not give βc in the region that was determined by
inspection of the self-energies.
Thus we end up with a collection of valid fits over which we average the resulting βc.
The error bars in Fig. 6.7(a) correspond to the standard deviation in the set of valid
fits.
The average values we obtain for the critical exponent are β = 0.44 ± 0.15 (β =
0.66 ± 0.34) for the block-construction (dimer) respectively. The errors are again
determined as the standard deviation in the set of valid fits. Finally, we note that
the exponents are in good agreement with the expected mean-field critical exponent
of β = 0.5 [192].
Having identified the driving mechanisms of the insulating phases in both regimes at
half-filling, in the next section we want to move away from half-filling and investigate
the consequences the sublattice decoupling has on superconductivity.

6.6 Superconductivity upon Hole-Doping

We investigate the behaviour upon hole doping by the use of the variational cluster
approximation (VCA) [57, 193, 194], which is a well established quantum cluster
technique. It is based on finding the stationary points of the self-energy functional
Ω(Σ), which is a Legendre transform of the Baym-Kadanoff functional introduced
in Sec. 2 and approximates the grand potential of the system in the space of clus-
ter self-energies [56–58]. It is complementary to the DMFT techniques used in the
previous section as the spirit of those is to approximate the Baym-Kadanoff func-
tional while VCA approximates a Legendre transform of the same. Within VCA one
usually solves a cluster system for its self-energy which is then used to compute the
self-energy functional. The approach is then to vary the existing single particle terms
of the cluster Hamiltonian to find the stationary point of the grand potential. This
procedure is particularly well suited to check for stable symmetry breaking solutions
as it allows for the introduction of additional symmetry breaking Weiss fields, which
can also be varied. One can than check if the inclusion of said fields yields a stable
stationary point with even lower grand potential, which would thereby be favoured
in the thermodynamic system. The VCA computations yielding the results of this
section were performed by Benjamin Lenz.
It was shown in previous studies [195, 196] on t− t′−U models at half-filling, which
in our case would correspond to taking into account only t and td, that the compe-
tition between antiferromagnetic Néel order and superconductivity of dx2−y2 type is
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Figure 6.8: (a) Self-energy functional Ω as a function of filling n for different solutions
within VCA: Antiferromagnetic stripe order (AFS), superconductivity (SC) of dxy or
dx2−y2 symmetry as well as coexistence of all three. Panel (b) shows the corresponding
order parameters; the colors correspond to the solutions presented in (a). The red
curves in (b) are special as in the coexistence case there are different order parameters
for the same solution, which is why we distinguish them via symbols.

prevalent in the case of td > t, while in the case of td < t the competition between
stripe order and superconductivity of dxy type is key. In our case however we are
interested in the superconducting order away from half-filling.
We therefore included symmetry breaking fields that correspond to two kinds of
superconducting order parameters namely one for dxy and one for dx2−y2 order. Fur-
thermore we also introduced an antiferromagnetic Weiss field to include the stripe
order and since we wanted to perform our investigation at finite doping we also varied
the chemical potential of the cluster and the lattice system µ′ and µ. The cluster
we considered is the diamond cluster depicted in Fig. 6.1(g) without the use of block
construction. The latter is not possible due to the inclusion of the symmetry break-
ing field favouring the dx2−y2 superconductivity. Note that in principle in CDMFT
we could also make the above investigation, however this would at least need us to
treat a full eight site cluster with additional bath sites and without enforcing particle
number conservation, which if at all possible would yield massive computation times.
In Fig. 6.8(a) we show the stationary points of the self-energy functional as function
of the filling per orbital n upon introduction of multiple kinds of symmetry breaking
Weiss fields. While all the solutions are lower in energy than the paramagnetic nor-
mal state we find that the solution obtained by putting all the fields in competition
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is the most stable over the entire range of doping checked.
In Fig. 6.8(b) we show the different order parameters. For all but the coexistence
solution we simply show the order parameter of the phase that is favoured by the
Weiss field, while for the coexistence solution we present the corresponding order pa-
rameter for magnetic stripe order, and both spatial symmetries of superconductivity
(dxy and dx2−y2). We observe that starting from large magnetization and almost van-
ishing superconducting order parameters at half filling, the magnetization decreases
as we dope the system, while the 〈dxy〉 order parameter increases. Even though we
include the corresponding Weiss field the 〈dx2−y2〉 order parameter is strongly sup-
pressed due to an apparent competition with the former two orders.
This result is very exciting to us as in the context of sublattice decoupling the domi-
nating dxy type superconductivity can be interpreted as dx2−y2 superconductivity on
every sublattice. As dx2−y2 type pairing is the one found in usual cuprates made up of
a single CuO2 lattice with monotonically decreasing hopping terms, we can interpret
this result as the sublattice decoupling even carrying through to the superconducting
state in case of hole doping.

6.7 Summary

Within this chapter we investigated the tetragonal phase of CuO by the means of
a single band Hubbard model of which the single particle parameters were obtained
from fitting the magnon dispersion in Ref. [49]. The inspection of Matsubara self-
energies revealed that electronic correlations strongly favour the hopping on a single
sublattice, leading to a very weak coupling to the second sublattice. With the goal of
deepening our understanding of the mechanism behind this decoupling we further in-
vestigate a minimal unit cell by the means of exact diagonalisation finding that in this
simplified model the decoupling is protected by a level crossing. In order to make the
jump to a simplified model in the thermodynamic limit we also study the dispersion
of the non-interacting problem, finding that the Fermi surface of the non-interacting
model has different topology than the one of cuprates with spatially monotonically
decreasing hopping terms. Both the level splitting in the exact diagonalisation case
as well as the topologically distinct Fermi surface of the non-interacting problem are
interpreted as an indication for the robustness of the sublattice decoupling. Using
this decoupling we motivated a block construction scheme for our cluster calcula-
tions with which we performed CDMFT calculations directly on the real axis to
obtain momentum resolved spectra and compare them to the spectra measured in
ARPES experiment [45], which yields excellent agreement and thereby shows that
single band Hubbard model is sufficient to describe the electronic structure of t-
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CuO as long as local and short ranged correlation effects are treated appropriately.
We further investigate the behaviour at finite temperature and identify the driving
mechanism behind the insulating states both in the paramagnetic and the antiferro-
magnetic regime. Furthermore by comparing magnetizations obtained for different
cluster sizes we can conclude that in-plane spin correlations seem to be important
to take into account when determining a critical temperature for the transition to
the stripe ordered state. Finally, we investigated the order t-CuO exhibits upon hole
doping by the means of VCA and find a coexistence of antiferromagnetic stripes with
dxy-type superconductivity. The latter of which can be interpreted as the sublattice
decoupling carrying through to the superconducting state.





Chapter 7

Conclusion and Outlook

In this thesis we studied electronic correlation effects in the materials BaOsO3 and the
tetragonal phase of CuO by the means of DMFT and its cluster extension CDMFT.
In Chap. 1 we gave an introduction to the topic of electronic correlation effects in
real materials. We discussed that band theory can break down, when atomic orbitals
become closely localized around their respective atoms position. Furthermore we
gave a motivation to employ DMFT as the current state of the art technique to treat
electronic correlations and band structure effects on an equal footing. In Chap. 2 we
introduced DMFT and CDMFT using the effective action formalism, which lead us
to identify DMFT and CDMFT as approximations to the Baym-Kadanoff functional.
We gave an indepth discussion of the self-consistent construction of the single particle
Green’s function and also introduced the concept of reperiodizing Green’s functions
in the case of CDMFT. In Chap. 3 we introduce the concept of matrix product
states, matrix product operators together with the algorithms that are used for
ground state searches and time evolutions. In Chap. 4 we introduced the MPS-based
impurity solver on the imaginary axis that was implemented and optimized as a
large part of this work. We gave a detailed overview of all the steps necessary to
perform DMFT on the imaginary axis at effectively zero temperature by the use of
MPS. In particular we discussed the importance of symmetries for the convergence
of ground state searches and the block structure of dynamical quantities, such as, the
impurity self-energy. We also gave a detailed description of how to further enhance
the solver by addition of new symmetries and what steps have to be taken to interface
it with future models. Equipped with this knowledge in Chap. 5 we presented the
results obtained in our study of BaOsO3 [2]. The most notable being that BaOsO3

is a moderately correlated Hund’s metal, in which strong spin orbit coupling and
Hund’s coupling are in competition. We identified the origin of this competition by
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studying the atomic limit, and also found that the splitting of a van-Hove singularity
close to the Fermi level has important consequences for the strength of electronic
correlations. In Chap. 6 we discussed the results of our recent study [1] on electronic
correlation effects in the tetragonal phase of CuO (t-CuO). Our key results are the
formal justification of regarding t-CuO as two weakly coupled CuO2 sublattices due to
inter-sublattice correlations being strongly suppressed, as a consequence of the strong
on-site correlation effects. In addition, by the use of variational cluster approximation
we are able to identify the symmetry of the superconducting order upon hole-doping
and show that the sublattice decoupling carries over to the superconducting state.

Outlook

The author believes that the impurity solver on the imaginary axis that was set up
in close collaboration with Martin Grundner is in extremely good shape and for the
problems that the solver is currently able to treat there is not much room for im-
provement.
However, it would be of great interest to implement a finite temperature extension
as the solver is currently only able to treat problems at zero temperature. Currently,
one has to resort to different solvers like CTQMC to access higher temperatures as
we did in the project on t-CuO (cf. Sec. 6.5). Having a finite temperature extension
would be highly desirable as it would enable the study of zero and non-zero temper-
ature by the use of a single impurity solver. To our knowledge, currently this is only
possible with exact diagonalization, which, however, can not reach as large system
sizes. Additionally, it would add another tool to the toolbox for multi messenger
type of approaches.
Furthermore, a framework to study superconductivity within the context of DMFT
would be desirable, as the origin of unconventional superconductivity is a key object
of current research [16, 47, 163–166]. Possible ways to realise said framework would
be partial particle hole transformation or in the case where spin-mixing single parti-
cle terms are present the Nambu formalism [197, 198]. An instructive explanation for
partial particle hole transformation is presented in Benjamin Lenz’s PhD thesis [199].
The author is well aware that studying superconductivity yields the problem of no
longer being able to hold on to the U(1) particle number conservation symmetry,
which might yield long computation times. However, the use of the recently intro-
duced projected purification method [200] may alleviate some of those problems.
With regard of the projects presented within this thesis, we believe that a more thor-
ough study about the emergence of the side peaks in the spectral function of BaOsO3

is a promising perspective. This could for example be done by simpler model calcu-
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lations featuring a van-Hove singularity close to the Fermi-level. It might even be
interesting to tune the position of the vHs as we in principle did when considering
SOC in the context of BaOsO3.
Furthermore, we believe that our results on t-CuO show the importance of achieving
hole doping in the system. Not only may one be able to confirm the symmetry of the
superconducting order parameter predicted in this thesis, but by growing multiple
layers of t-CuO one might even be able to investigate a possible dependence as a
function of the number of layers grown.
It is the authors belief that all research directions proposed in this section are worth
pursuing, which underlines just how interesting strongly correlated materials really
are. Investigating their intriguing properties would not be possible without sophis-
ticated methods like DMFT and the respective impurity solvers it relies on. We
therefore believe that the development and optimization of novel methods and al-
gorithms contributes strongly towards an holistic understanding of the microscopic
properties of these materials and are proud to have made a contribution towards this
exciting field of research.
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Rev. B 77, 064427 (2008).

[196] S. R. Hassan, B. Davoudi, B. Kyung, and A.-M. S. Tremblay, Phys. Rev. B
77, 094501 (2008).

[197] L. P. Gor’kov, Soviet Physics JETP 7(3), 735 (1958).

[198] Y. Nambu, Phys. Rev. 117, 648 (1960).

[199] B. Lenz, Unconventional Phases in Two-Dimensional Hubbard and Kondo-
Lattice Models by Variational Cluster Approaches, Ph.D. thesis (2017).
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