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Summary 

With the emergence of the rapidly developing fields of omics and informatics, the 21st century 

has seen extraordinary advances in biological sciences. Omics technologies (genomics, 

tran-scriptomics, proteomics, metabolomics, metagenomics, phenomics, etc.) have made it 

possible to measure biological molecules of different classes in a high-throughput manner. 

Informatics has enabled us to see the big picture within the biological systems by interpreting 

those large datasets. As proteins are closer to a gene’s function than the gene itself, proteomics 

has evolved as a major omics technology that enabled the analysis of all proteins in a mixture. 

Over the last decade, proteomic data has accumulated at an unprecedented rate, posing a slew 

of computational problems. In this thesis, I have attempted to familiarize readers with three 

such challenges that demand significant amount of computational effort. The opening chapter 

of my thesis serves as an introduction to the three challenges whereas the following chapters 

describe the methods I developed to overcomes these hurdles. 

One of the key questions when studying protein function is to discover with which other 

proteins a protein of interest interacts with (alt: forms a complex with). Protein complexes 

mediate virtually all biological functions within a cell. During my thesis I developed a platform 

to comprehend the conceptual and technical underpinnings of protein complex discovery. 

Existing computational methods for predicting protein complexes rely mainly on traditional 

machine learning, which require multiple experiments in various modalities to generate a large 

amount of labeled data. Nevertheless, the complexomic experiments entail preparing, 

measuring, and analyzing numerous samples in the mass spectrometer, which comes at the 

expense of significant measurement time. Moreover, to the best of my knowledge, no full-

fledged graphical user interface (GUI) based application existed in the literature that enables 

users to explore such complex datasets, perform sanity checks, and provide high-quality 

dynamic visualization of extracted information with ease. Since the majority of the researchers 
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in the proteomics community are wet lab scientists, a GUI is always favored over a command 

line application. Therefore, I proposed a desktop application ComplexMiner that promises a 

user friendly and aesthetic frontend to explore protein complexes in datasets generated by 

native liquid chromatography (LC) followed by mass spectrometry (MS). We employed one 

shot learning which is a variant of deep learning paradigm that aims to discover protein 

complexes with fewer complexomic experiments. However, ComplexMiner is still in the 

development and testing phase therefore, releasing it soon as an open-source software is my 

prime vision.  

Other challenges inherent in the comprehensive analysis of high-throughput protein interaction 

data is the problem of batch effects, missing values, lack of effective visualization resources,  

and the issue of dealing with only few replicates in a given proteomic experiment. When I 

started my PhD, no workflow existed that combined robust statistical inference with dynamic 

visualization of the protein interaction network for the purpose of differential enrichment 

analysis of proteomics data. Therefore, I developed an easy-to-use pipeline in R, that facilitated 

users to analyze high-throughput proteomic datasets and to improve visualization of protein 

interaction network, I developed a software forceNetwork++ using R and JavaScript. 

Furthermore, using forceNetwork++, I designed a web application MiGENet 

(https://migenet.shinyapps.io/migenet/) which enabled researchers to extract spatial 

information regarding connectivity and molecular mechanisms. As a proof-of-concept, this 

web application has been used to visualize a large bait-prey interaction network regulating 

mitochondrial gene expression. 

Finally, I also developed a software (ImShot) that allows a reliable identification of peptides 

from MALDI imaging and a novel strategy for integrating datasets from imaging mass 

spectrometry (IMS) with shotgun proteomics. The new ImShot software combines information 

from IMS and shotgun proteomics (LC-MS) measurements of serial sections of the same tissue. 
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It takes advantage of a two-group comparison to determine the search space of IMS masses 

after an unbiased hierarchical clustering aided deisotoping of the corresponding spectra. 

Ambiguity in annotations of IMS peptides when comparing with LC-MS datasets is eliminated 

by introduction of a novel scoring system (MLP score) that identifies the most likely parent 

protein of a detected peptide in the corresponding IMS dataset.  

All the software pipelines, web, and desktop applications that I developed as a part of my PhD 

are open-source and freely available on my GitHub account 

(https://github.com/wasimaftab?tab=repositories). I hope that my efforts will inspire readers to 

pursue future research in this very exciting and rapidly growing field of study. 
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Zusammenfassung 

Die technologische Entwicklung der letzten Jahrzehnte hat es möglich gemacht, biologische 

Moleküle verschiedener Klassen im Hochdurchsatzverfahren zu messen. Die enorme 

Datenmenge, die durch diese sogenannten -omics Technologien (Genomik, Transkriptomik, 

Proteomik, Metabolomik, Metagenomik, Phenomik usw.) generiert wurden, führte zur 

Etablierung eines neuen Forschungsbereichs im Rahmen der Lebenswissenschaften: der 

Bioinformatik. Die Bioinformatik hat es uns ermöglicht aus dieser großen Datenfülle ein 

molekulares Gesamtbild der biologischen Systeme zu erkennen und führte zur Entdeckung 

neuer unerwarteter Zusammenhänge. Die Fokussierung meiner Arbeiten auf die Proteomik 

beruht auf der Erkenntnis, dass das Endprodukt eines Gens wesentlich komplizierter und 

funktionsnäher ist als das Gen selbst. In dieser Arbeit habe ich versucht, die Leser mit drei 

großen Herausforderungen zur Interpretation und Darstellung proteomischer Daten vertraut zu 

machen, die einen erheblichen Rechenaufwand erfordern. Das Eröffnungskapitel meiner 

Arbeit dient als Einführung in die drei Herausforderungen, auf die ich in den folgenden 

Kapiteln ausführlicher eingehe. 

Eine der wichtigsten Fragen bei der Untersuchung der Funktion von Proteinen ist die Frage, 

mit welchen anderen Proteinen ein bestimmtes Protein interagiert (d. h. einen Komplex bildet).  

Proteinkomplexe vermitteln praktisch alle biologischen Funktionen innerhalb einer Zelle. Die 

Charakterisierung von Proteinkomplexen in ihrer Gesamtheit ist unerlässlich, um die 

Geheimnisse dieser komplexen zellulären Maschinerie zu entschlüsseln. Während meiner 

Doktorarbeit habe ich eine Plattform entwickelt, um die konzeptionellen und technischen 

Grundlagen der Entdeckung von Proteinkomplexen zu verstehen. Bestehende 

computergestützte Methoden zur Vorhersage von Proteinkomplexen stützen sich hauptsächlich 

auf traditionelles maschinelles Lernen, das mehrere Experimente in verschiedenen Modalitäten 

erfordert, um eine große Menge an markierten Daten zu erzeugen. Die Komplexomik-
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Experimente erfordern jedoch die Vorbereitung, Messung und Analyse zahlreicher Proben im 

Massenspektrometer, was mit einem erheblichen Zeitaufwand für das Massenspektrometer 

verbunden ist. Darüber hinaus gibt es meines Wissens in der Literatur keine vollwertige 

Anwendung auf der Basis einer grafischen Benutzeroberfläche (GUI), die es dem Benutzer 

ermöglicht, solche komplexen Datensätze zu erforschen, die Korrektheit zu überprüfen und die 

extrahierten Informationen auf einfache Weise dynamisch zu visualisieren. Um eine solche 

Analyse auch für Wissenschaftler ohne bioinformatischen Hintergrund zu ermöglichen, habe 

ich die Desktop-Anwendung ComplexMiner entwickelt, die eine benutzerfreundliche und 

ästhetisch ansprechende Oberfläche zur Untersuchung von Proteinkomplexen in Datensätzen 

bietet. Dabei habe ich eine One-Shot-Learning Methode eingesetzt, eine Variante des Deep-

Learning-Paradigmas, das darauf abzielt, Proteinkomplexe mit weniger biologischen 

Experimenten zu entdecken. ComplexMiner befindet sich allerdings noch in der Entwicklungs- 

und Testphase, wobei ich hoffe es bald als Open-Source-Software veröffentlichen zu können. 

weitere Herausforderungen bei der umfassenden Analyse von Proteininteraktionsdaten mit 

hohem Durchsatz sind das Problem der Batch-Effekte, der fehlenden Werte, des Mangels an 

effektiven Visualisierungshilfsmitteln und des Umgangs mit nur wenigen Replikaten in einem 

bestimmten Proteomikexperiment. Meines Wissens gab es (zu Beginn meiner Promotion) 

keine Software, de eine robuste statistische Inferenz mit einer dynamischen Visualisierung des 

Proteininteraktionsnetzwerks zum Zweck der differenziellen Anreicherungsanalyse von 

Proteomikdaten kombiniert.  Daher habe ich eine einfach zu bedienende Pipeline in R 

entwickelt, die es den Nutzern erleichtert, proteomische Hochdurchsatzdatensätze zu 

analysieren, und um die Visualisierung von Proteininteraktionsnetzwerken zu verbessern, habe 

ich die Software forceNetwork++ mit R und JavaScript entwickelt. Darüber hinaus habe ich 

mit Hilfe von forceNetwork++ eine Webanwendung entwickelt (MiGENet 

(https://migenet.shinyapps.io/migenet/)), mit der Forscher räumliche Informationen über 
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Interaktion und molekulare Mechanismen extrahieren können. Als Machbarkeitsnachweis 

wurde diese Webanwendung verwendet, um ein großes Bait-Prey-Interaktionsnetzwerk zu 

visualisieren, das die mitochondriale Genexpression reguliert. 

Schließlich habe ich auch eine Software (ImShot) entwickelt, die eine zuverlässige 

Identifizierung von Peptiden aus der MALDI-Bildgebung und eine neuartige Strategie zur 

Integration von Datensätzen aus der bildgebenden Massenspektrometrie (IMS) mit der 

Shotgun-Proteomik ermöglicht. Die neue ImShot-Software kombiniert Informationen aus 

IMS- und Shotgun-Proteomics-Messungen (LC-MS) von aufeinanderfolgenden Schnitten 

desselben Gewebes. Sie nutzt die Vorteile eines Zwei-Gruppen-Vergleichs, um den Suchraum 

der IMS Massen nach einer Deisotopisierung der entsprechenden Spektren  (mit Hilfe von 

unvoreingenommenem hierarchischen Clustering) zu bestimmen. Mehrdeutigkeit in den 

Annotationen von IMS-Peptiden beim Vergleich mit LC-MS-Datensätzen wird durch die 

Einführung eines neuartigen Scoring-Systems (MLP-Score) beseitigt, das das 

wahrscheinlichste Vorläuferprotein eines detektierten Peptids im entsprechenden IMS-

Datensatz identifiziert.  

Alle Software-Pipelines, Web- und Desktop-Anwendungen, die ich im Rahmen meiner 

Promotion entwickelt habe, sind Open-Source und auf meinem GitHub-Konto frei verfügbar 

(https://github.com/wasimaftab?tab=repositories). Ich hoffe, dass meine Bemühungen die 

Leser dazu inspirieren werden, zukünftige Forschungen in diesem sehr spannenden und schnell 

wachsenden Forschungsbereich zu betreiben. 
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1. Introduction 

Proteins implement nearly all cellular functions. Therefore, studying proteins can improve our 

understanding of cell as an integrated system. The study of proteins on a large scale is known 

as proteomics (Blackstock and Weir, 1999; Anderson and Anderson, 1998). Mass spectrometry 

(MS) that measures the mass-to-charge ratio of molecules in a sample has become an essential 

tool in proteomics research. Currently, two different types of mass spectrometry techniques are 

used in proteomics: top-down and bottom-up approaches. The use of top-down proteomics is 

mostly employed to determine distinct proteoforms (Smith et al., 2013). In contrast, bottom-up 

approaches quantify small peptides derived from proteins prior to MS analysis via protease-

mediated cleavage (Eidhammer et al., 2013). The computational methods presented in this 

thesis are based on bottom-up MS datasets, hence I will focus on this proteomics approach 

solely. 

1.1 Experimental approaches 

1.1.1 General proteomics 

In bottom-up approach, cleavage of protein is mainly done using trypsin as it produces 

peptides that are 6-25 amino acids long, which is ideal for the mass spectrometer. A typical 

workflow of bottom-up proteomics is shown in Fig. 1.1. As the mixture of peptides generated 

from all proteins in a cell is highly complex (E.coli cell lysate, for example, contains 

approximately 2.5k-5k proteins (Eidhammer et al., 2013)), the peptide sample must be 

separated further using reversed phase chromatography (RPC) directly coupled to the mass 

spectrometer.  RPC separates peptides primarily on the basis of their hydrophobicity and after 

ionization, the sample is ionized using Electrospray ionization (ESI) and injected into the mass 

spectrometer. Within the mass spectrometer, the ions are separated based on their mass to 

charge ratio (m/z) by the mass analyzer and detected in using an ion detector. 
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Fig. 1.1: A typical workflow of shotgun proteomics [Image adapted from (Hupé, 2012); 

Licensed under CC BY-SA 3.0 ]. 

When the ions collide with the detector, a mass spectrum is generated, and the corresponding 

data is stored in files with a proprietary format defined by the MS instrument's vendor. After 

the MS data processing software has identified the peptides in the sample they are mapped to 

the corresponding proteins. 

MS experiments have two primary objectives: peptide identification and quantification. 

Typically, identification is accomplished by comparing the MS2 spectrum to a database using 

MS data processing software. However, quantification approaches can be classified into two 

categories based on the researcher's resources and/or objectives: label-based quantification and 

label-free quantification. 

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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1.1.1.1 Label based quantification (LBQ) 

In this peptide quantification approach, peptides are labeled with stable isotopes that have 

a defined mass shift, such that their observed mass in the MS1 or MS2 spectrum is shifted 

relative to the unlabeled peptide. Two of the more frequently used techniques are stable isotope 

labeling with amino acids in cell culture (SILAC) and isobaric tag for relative and absolute 

quantitation (iTRAQ). 

 

Fig. 1.2: iTRAQ reagent-based shotgun proteomics using iTRAQ-4-plex as an example 

[Image source: (Aftab and Imhof, 2021); Licensing information: Appendix B]. 

i. iTRAQ 

It is an isobaric labeling method for measuring the amount of protein in multiple samples 

in a single experiment and can be used to compare 4 or 8 samples at once. The iTRAQ reagents 

are composed of three groups: a reporter, a reactive, and a balancer (See Fig. 1.2). The reactive 

group of an iTRAQ reagent is used to label peptides in multiple samples by covalently binding 

to their free amines, which are typically found at the N-terminus and lysine side chain. There 

are several different types of iTRAQ reagents, but they all have the same cumulative mass of 

different groups. Their chemistry has been optimized to ensure that all labeled peptides elute 

simultaneously from the liquid-chromatography (LC) system and can be quantified using so-

called reporter ions (See Fig. 1.2). This article contains a more detailed description of how to 
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use iTRAQ reagents for protein complex and profiling studies (Zieske, 2006). There exist 

several tools (Tyanova et al., 2016a; Matrix-Science, 2021; Chen et al., 2021; SCIEX-

ProteinPilot, 2021; Röst et al., 2016) for analyzing reporter-based data. However, MaxQuant 

(Tyanova et al., 2016a) is most popularly employed. 

ii. SILAC 

It is based on metabolically incorporating stable isotope labeled amino acids into the 

entire proteome. In this technique, cells are labeled with lysine and arginine, which retain 

stable, non-radioactive isotopes. In SILAC, two distinct populations of cells are cultured in two 

separate mediums. The light medium contains amino acids with the natural isotopes and the 

heavy medium contains stable isotope labeled amino acids.   All the proteins from the cells 

cultured in heavy medium have amino acids in the heavy state after a sufficient number of cell 

divisions. In quantifying SILAC, we compare the ratio of introduced isotope-labeled peptides 

to unlabeled peptides. The signal intensities from light and heavy samples allow for a 

quantitative comparison of their relative abundance in the mixture.  

To investigate protein-protein interactions using SILAC method, protein complexes are 

immunoprecipitated from a mixture of labeled cell lysates. Using SILAC, it is possible to 

efficiently distinguish specifically interacting proteins from non-specific background proteins. 

The abundance of specific interaction partners purified from the bait sample is significantly 

higher than the one from the control sample, resulting in quantified ratios much higher than 

one. In comparison, the abundance of non-specific background proteins should be comparable 

between the bait and control samples, resulting in a ratio close to one. When investigating 

exogenous, endogenous, or inducible PPIs, quantitative proteomics based on SILAC can be 

used to identify the proteins that interact specifically (Chen et al., 2015). Although, there are 

multiple software (Röst et al., 2016; Mortensen et al., 2010; Matrix-Science, 2021; Tyanova et 
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al., 2016a) available for processing SILAC data, MaxQuant (Tyanova et al., 2016a) is the most 

popular software for processing raw files from SILAC experiments. 

1.1.1.2 Label free quantification (LFQ) 

Labelling can result in a defined and measurable mass shift so that you can know, based 

on the mass, which sample you're working with. However, there is another type of 

quantification known as label-free quantification, and one of the more recently developed 

methods that works exceptionally well is intensity-based absolute quantification. As one might 

expect, label-free means that no mass tag or stable isotope labeling is required to obtain 

quantitative data. LFQ has a number of advantages over label-based proteomics, including its 

low cost and lack of the need for costly labeling reagents. Additionally, label-free quantitative 

proteomics is more time efficient than some label-based techniques, which include extensive 

labeling stages (Abdallah et al., 2012). However, the drawback here is high variability as LFQ 

approach do not control it internally.  Here, I will elaborate on the LFQ approaches that are 

relevant to the computational methods presented in this thesis. 

i. Intensity Based Absolute Quantification (iBAQ) 

The underlying principle of iBAQ is quite straightforward.  When developing a 

quantitative metric for the level of expression of a particular protein 𝑃𝑖 in a mixture, the first 

step is to determine which identified peptides can be mapped to 𝑃𝑖. The cumulative intensity 

of those peptides is then divided by the number of theoretically observable peptides based on 

prior knowledge of 𝑃𝑖 's sequence and the specificity of the digestion enzyme used, which is 

typically trypsin. This is to address the issue of larger proteins naturally generating more 

peptides due to their size. 

The concept is similar to that of mRNA sequencing data analysis, in which the sequencing 

reads of a transcript are divided by the transcript length to account for the fact that longer 

transcripts simply generate more fragments. This corrected value is referred to as iBAQ score 
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of 𝑃𝑖, and it can be calculated for any protein of interest. It has been demonstrated that the 

iBAQ score correlates very well with the initial amount of protein injected into the mass 

spectrum (Schwanhäusser et al., 2011).  A protein's iBAQ score can be defined mathematically 

as, 

  𝑖𝐵𝐴𝑄 =
∑ 𝐼𝑗

𝑛
𝑗=1

𝑁
 (1.1) 

Where 𝐼𝑗→ is the intensity value of the jth peptide 

N is the total number of theoretically observable peptides 

n is the total number of observed peptides 

This calculation is provided as an option in MS data processing software programs like 

MaxQuant (Tyanova et al., 2016a; Cox and Mann, 2008).  

Another very useful feature of iBAQ is that if you analyze the proteome thoroughly, i.e., if you 

quantify the levels of almost every protein in the mixture and keep track of how much protein 

was in your sample and how much of that protein was actually input into the mass spectrometer, 

you can then estimate the absolute copy numbers or absolute concentrations of proteins in your 

original sample based on the quantified levels. Thus, the fraction of iBAQ scores for a 

particular protein relative to the sum of all iBAQ scores is proportional to the fraction of protein 

in your initial sample. The iBAQ score can be used to estimate the total number of copies in a 

cell. Schwanhäusser and colleagues used it to estimate the absolute copy number per cell for a 

variety of proteins in a fibroblast cell line in an incredibly impressive manner (Schwanhäusser 

et al., 2011). 

When it comes to identifying as many proteins as possible in a sample, shotgun or discovery 

proteomics is the method of choice. Occasionally, however, the objective is to consistently 

identify and precisely quantify the same set of proteins under a variety of conditions. Then 

targeted proteomics may be the optimal technique, and in this section, we will discuss the most 

popular targeted proteomics approach in recent years: Selected Reaction Monitoring (Fig. 1.3) 
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serves as a foundation for comprehending SWATH-MS, a mass spectrometry technique that 

we used in our complexomics study. 

ii. Selected Reaction Monitoring (SRM) 

SRMs are typically determined using triple quadrupole mass spectrometers, with the first 

quadrupole Q1 acting as a mass filter to isolate a single peptide. The second quadrupole Q2 

acts as a collision chamber, fragmenting the peptide selected. The third quadrupole Q3 

performs the same function as the mass filter, but this time it filters the fragment ions of the 

selected peptide that hit the detector. Finally, a SRM measurement records the pairs (precursor, 

fragmentation-ion) over time to generate a chromatographic trace, also referred to as an SRM 

trace (Fig. 1.2).  

By utilizing this SRM trace, software programs can accurately identify and quantify individual 

proteins, which is frequently not the case with conventional shotgun proteomic approaches. 

Readers will find this tutorial (Lange et al., 2008) very interesting as it discusses the application 

of SRM to quantitative proteomics. 

 

Fig. 1.3: SRM workflow; performed on a triple quadrupole mass spectrometer [Image 

source: (Aftab and Imhof, 2021); Licensing information: Appendix B]. 

Datasets obtained employing data-dependent acquisition (DDA) based bottom-up proteomics 

approach contains many missing values (Fig. 1.4). In DDA, during the MS1 scan, the 

instrument randomly selects the n most abundant peptides for MS2. As a result, you obtain 

snapshots of MS2 spectra that correspond to the specified time point in MS1 space. The critical 

point here is that the precursor space is sampled discontinuously in both mass and retention 
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time (tr) dimensions, and because the on-the-fly heuristic is to select only the few most 

abundant peptides, quantification is biased toward high abundance species. As a result, 

numerous intensities corresponding to proteins/peptides are missing. In SRM, the MS 

instrument's role is to sample the precursor space deterministically based on the target peptides. 

The precursor space is sampled discontinuously in mass dimensions but continuously in the tr 

dimensions in this case. However, the instrument monitors a relatively small number of 

precursors per run, despite the instrument's accuracy and consistency in quantification. 

 

Fig. 1.4: Quantitative peptide/protein matrix- Columns are fractions, or the conditions and 

the rows are typically proteins/peptides. The colors in each cell represents intensity of a 

protein/peptide in the corresponding fraction. Higher intensities are shown using darker color. 

Missing values are depicted in white colors. [Image adapted from: (Aftab and Imhof, 2021); 

Licensing information: Appendix B]. 

So, is it possible to achieve SRM-like accuracy and consistency in quantification while 

covering almost the entire precursor space? The answer is yes, if we use a technique called 

sequential window acquisition of all theoretical mass spectra (SWATH-MS), which is one of 

the most advanced data independent acquisition (DIA) technologies available. Precursor 

selection is deterministic in DIA, and the instrument selects only the specified precursors. On 
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the other hand, data acquisition is completely untargeted/unbiased, i.e., you are not required to 

specify which peptide you are interested in. Proteomics researchers seek consistent and precise 

quantification of all peptides in multiple samples to address a variety of biological questions, 

and SWATH aims to accomplish just that. 

iii. SWATH-MS 

SWATH-MS divides the precursor space into chunks of small m/z precursor isolation 

windows over the measurable m/z range. A swath is an ensemble of fragment ion spectra 

acquired over the chromatographic range for a specified isolation window. The transitions 

(precursor, fragmentation-ion pairs) are then recorded using a high-resolution Q-TOF mass 

spectrometer. However, unlike SRM, SWATH does not target specific peptides (Fig. 1.5).  

The resulting MS/MS signals from SWATH are continuous in both mass and time dimensions, 

allowing for a more comprehensive coverage of the proteome. This comes at the cost of 

extremely complex spectra that cannot be analyzed using conventional tools. Skyline 

(MacLean et al., 2010), PeakView (SCIEX-PeakView), Spectronaut (Bernhardt et al., 2012), 

and OpenSWATH (Röst et al., 2017) are all popular programs for deciphering complex 

SWATH spectra. Skyline and OpenSWATH are both free to use. Skyline has a graphical user 

interface and can also be used from the command line. In comparison, OpenSWATH only has 

a command line interface, making it more cumbersome to use. Additionally, third-party 

software packages are required to use OpenSWATH, as it makes use of a variety of tools from 

other sources to process DIA datasets. 
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Fig. 1.5: Concept of SWATH based MS- (A) SWATH-MS measurements are performed 

using a quadrupole as first mass analyzer and a TOF or Orbitrap as second mass analyzer. (B) 

SWATH data acquisition scheme. (C) The MS1 full scan detects all peptide precursors eluting 

at a given time point. For example, in the mass range from 925 to 950 m/z, three co-eluting 

peptide species are detected (green, red, and blue). (D) The corresponding MS2 scan with a 

precursor isolation window of 925–950 m/z represents a mixed MS2 spectrum with fragments 



Computational methods in proteomics  Wasim Aftab 

 21 

of all three peptide species [Image adapted from: (Ludwig et al., 2018); Licensed under CC 

BY 4.0]. 

SWATH-MS is more suitable for the current scenario as it generates fuller datasets by  

significantly reducing protein quantification uncertainties. But this comes at the cost of an 

additional computational burden. In order to set up a SWATH data analysis pipeline, the first 

step is to create a spectral library. In order to identify and quantify proteins in a sample, DIA 

data processing software utilizes information (non-redundant peptide transitions, tr,  etc.) stored 

in a spectral library and correlate with the corresponding information from the peptides in a 

sample. 

 

Fig. 1.6: Steps to generate spectral library for processing DIA-SWATH data [Image 

source: (Aftab and Imhof, 2021); Licensing information: Appendix B]. 

Generation of a spectral library: The most frequently used method to generate a spectral 

library is to pool a small aliquot of the cell extract for DDA measurements. After analyzing 

this DDA data, one can create a curated, annotated, and unique collection of fragment ion 

(MS2) spectra which is known as spectral library. It is critical to align the tr of the library 

peptides with the tr of the sample peptides. This is accomplished by spiking in the peptides with 

covering a broad range of tr in both the library and in the samples. Biognosys standard peptides 

(Bernhardt et al.) are frequently used for this purpose. The steps to generate a spectral library 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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using ProteinPilot (SCIEX-ProteinPilot) and PeakView (SCIEX-PeakView) are depicted in 

Fig. 1.6. 

Tsou CC and colleagues recently proposed a tool called DIA-Umpire (Tsou et al., 2015) that 

can generate spectral libraries directly from DIA data, saving time by omitting the experiments 

required to generate a classical spectral library. Additionally, deep learning (DL) approaches 

have resulted in methods for constructing theoretical spectral libraries by predicting the ion 

intensities of peptide fragments (Gessulat et al., 2019; Tiwary et al., 2019). These theoretical 

libraries have the potential to augment or even replace traditional spectral libraries. However, 

more research is needed to determine the extent to which these theoretical libraries outperform 

their classical counterparts in solving actual biological problems. 

Generation of protein/peptide quantification dataset: PeakView receives the raw SWATH 

data, as well as the spectral library generated in the preceding step, and processes it (Fig. 1.6). 

As a result of that a final protein/peptide quantification matrix is produced, in which each row 

represents a protein profile over a range of fractions (labeled in columns). To discover protein 

complexes, it is imperative to cluster these elution profiles, which is a challenging task because 

of the inherent noise in the bottom-up proteomics data. 

1.1.2 Proteomic profiling for protein complex discovery 

1.1.2.1 Protein complexes drive almost all functions in a cell 

Proteins hardly ever exist as single subunits but rather interact with other proteins to form 

bigger protein assemblies or complexes. These complexes are in charge of executing a 

multitude of functions within cells including formation of cytoskeleton, transportation of cargo, 

metabolism of substrates to produce energy, replication of DNA, protection and maintenance 

of the genome, transcription, and translation of genes to gene products, maintenance of protein 

turnover, and protection of cells from internal and external damaging agents (Srihari et al., 
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2017). Thus, discovering the composition of protein complexes is critical to understand the cell 

as an interconnected system (Guruharsha et al., 2011). 

 

Fig. 1.7: Cells contain highly connected protein networks- The tiny blue dots represent 

protein complexes and the interactions among them are shown by light blue lines [Image 

source: (Aftab and Imhof, 2021); Licensing information: Appendix B]. 

A densely connected network of proteins/protein complexes exists in all cellular systems (Fig. 

1.7). When somewhere in these densely linked networks a mutation occurs, the effect(s) 

spreads across the whole network via several PPIs. Thus, when a gene is mutated in such a way 

that the corresponding amino acid change impairs its interaction with one or more partners, a 

phenomenon known as edgetic perturbation (disturbing many edges within a network) occurs 

(Dreze et al., 2009). This mutation may result in a variety of diseases (Dreze et al., 2009). 

Because of the high degree of connectivity in the network, such perturbations can have a 

significant impact on a large portion of the protein network and, consequently, on the 

physiology of a cell (Diss and Lehner, 2018). When such critical changes occur in a cell, one 

way to investigate and predict their consequences is to create a map of protein complexes and 

then compare the network maps of the wild type and the disturbed (mutant) system. 
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Understanding the molecular biology of protein interaction networks may be made easier 

because of such investigations. Moreover, the MS-based protein correlation profiling that I 

present in this thesis may help increase our understanding of proteins whose functions are 

unknown (Crozier et al., 2017; Webb-Robertson et al., 2015; Havugimana et al., 2012). Here, 

I present an integration of experimental and computational techniques to find protein 

complexes in a cell extract. The methods entail fractionating native protein complexes using 

native LC followed by a tryptic digest and quantitative reversed phase chromatography (RPC) 

coupled to mass spectrometry to quantify protein complexes, as well as sophisticated 

computational methods to extract information from complex datasets (Fig. 1.8). 

 

Fig. 1.8: Workflow to detect protein complexes in a cell extract- the protein extract is 

obtained from a population of cells and is further fractionated using liquid chromatography to 

separate protein complexes from each other [Image source: (Aftab and Imhof, 2021); Licensing 

information: Appendix B]. 

1.1.2.2 Role of  LC and MS in protein complex discovery 

To successfully isolate protein complexes from complex mixtures, the quality of the 

extracts is critical. To accomplish this, the mixture's complexity should be determined using a 
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traditional DDA shot gun proteomics experiment. If the number of proteins identified is 

consistent with expert knowledge (typically between 5000 and 10,000 proteins can be 

identified from whole cell extracts isolated from higher eukaryotes), the extract can be further 

fractionated. One of the most significant difficulties in this procedure is the relatively narrow 

dynamic range of many MS-based experiments. As a result, only extremely abundant protein 

complexes or subunits of them are detected. Havugimana et al. (Havugimana et al., 2012) 

suggests very deep fractionation by using multiple orthogonal modalities to deal with it. 

Chromatographic separation techniques based on size and charge have been widely used to 

address this problem (Havugimana et al., 2012; Webb-Robertson et al., 2015; Crozier et al., 

2017). 

i. Size Exclusion Chromatography (SEC) 

SEC is a chromatographic technique that separates protein molecules based on their size 

differences as they elute from an SEC column. Spherical particles with defined pore sizes fill 

the column. Protein molecules larger than the pore sizes of the beads are unable to diffuse into 

them and thus elute first. Molecules ranging in size from very large to extremely small can 

penetrate the pores to varying degrees depending on their size. A molecule that is smaller than 

the smallest pore in the resin can enter the total pore volume. Eluted last are molecules that 

enter the total pore volume. 

ii. Ion-exchange chromatography (IEX) 

IEX is based on the reversible electrostatic interaction of protein with separation matrix. 

Beads which are either negatively charged (Strong cation exchange, SCX) or positively 

charged (Strong anion exchange, SAX) are packed into the chromatography column, which is 

also attached to a solvent support, such as glass or polystyrene, to yield protein complexes that 

are separated using increasing concentrations of salt ions such as Na+ for SCX or Cl- For SAX. 

Protein complexes with a higher net negative charge require a higher concentration of anions 
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hence eluting later than the complexes with a lesser net negative charge and vice versa is true 

for cationic exchange chromatography. Some factors, such as plate numbers, resin's peak 

capacity, and the type of analyte all contribute to determining the resolution (i.e., how well can 

very similar protein complexes be separated) of a native liquid chromatography column. 

(Madadlou et al., 2011; Loughran and Walls, 2011). In highly complex samples such as whole 

cell lysates there is simply not enough resolution to specifically separate these complexes. In 

order to achieve a higher resolution, measurements must be more time-consuming, which 

quickly becomes impractical. The trade-off between high resolution and the capacity to 

measure a variety of physiological variables can be performed by doing replicate tests on 

various modalities and then examining how consistently the apexes of a pair of proteins are 

aligned across all replicates. A Co-Apex score (defined later) can be generated from the above-

mentioned procedure and could potentially be used to penalize/boost every pair of elution 

profile. 

Once the protein complexes are separated (under native conditions) into different fractions, it 

is essential to identify and quantify proteins in each fraction. This is done using the bottom-up 

MS  approach (Fig 1.1, Sec 1.1). Although most methods in the literature (Skinnider M, 2021; 

Havugimana et al., 2012; Guruharsha et al., 2011; Crozier et al., 2017) relies on DDA MS 

approach to discover protein complex, in recent past a method named CCprofiler (Heusel et 

al., 2019) (based on SEC followed by SWATH-MS) has demonstrated that DIA is a good 

alternative to resolve protein complexes present in an extract. One of the primary objectives of 

MS in this context is to maximize protein identification and quantification in the sample. 

SWATH-MS has the potential to provide the most exhaustive data in this regard, as it can 

theoretically cover the entire precursor space, resulting in very few missing values. Due to the 

stochastic peak selection process used in DDA experiments, missing values for proteins present 

in samples are a significant issue in quantitative proteomics using DDA. 
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1.1.2.3 Capturing transient interaction 

The experimental strategies outlined so far are useful in providing a broad perspective of 

PPIs in a cell extract/system. However, they lack spatiotemporal control, which means it is 

difficult to know which proteins interact with the bait at a specific point in time, particularly, 

when the bait interacts with a certain interactor or when it is a subunit of a specific protein 

complex (Kenkel, 2018). Moreover, it is challenging to detect weak/transient protein 

interactions which are typically important in biological processes. Thus, scientists have 

attempted complementary approaches to detect dynamic protein interactions based on in-vivo 

labelling (Sears et al., 2019; Roux et al., 2012; Roux et al., 2013; Schopp et al., 2017; Varnaitė 

and MacNeill, 2016). BioID is the first and most widely employed method (Roux et al., 2013) 

in this category is described next. 

i. BioID 

Proximity-dependent Biotin identification, also referred to as BioID, is a new method for 

detecting weak or transient protein-protein interactions (PPIs). Biotin, often known as Vitamin 

H, is a co-enzyme that is covalently linked to the active site of a specific group of proteins 

termed Biotin dependent carboxylases and decarboxylases. The attachment of Biotin to its 

target protein occurs in two steps, both of which are mediated by the Biotin protein ligase (Fig. 

1.9A). The biotin molecule is first activated by ATP, and then linked to a free amine group of 

the target protein, often a lysine amino acid. Biotin protein ligases have a very high specificity 

for their natural targets. Even though biotinylation occurs in almost all species, fewer than five 

proteins per creature are spontaneously biotinylated. BirA is the name of the biotin protein 

ligase in E. coli that naturally biotinylates just one protein. Kwon and Beckett (Kwon and 

Beckett, 2000) circumvented BirA's selectivity by engineering a mutant R118G capable of 

prematurely releasing biotin in its active state. BirA* is a mutant of BirA that was utilized to 

create the BioID method. Biotin in its active state is very reactive and either rapidly biotinylates 
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adjacent free amine groups or is quickly hydrolyzed. Streptavidin beads aid in the purification 

of biotin-containing molecules because the biotin molecule has a strong non-covalent 

interaction with streptavidin. 

 

Fig. 1.9: Mechanisms of BioID- Showing (A) biotin protein ligase (BPL) reaction, which is a 

two-step (shown in red dashed boxes) reaction catalyzed by the BPL. In the first step, addition 

of ATP activates the biotin molecule. In the second step activated biotin molecule gets attached 

to the free amine group of a target protein. Product of biotinylation reaction is shown in green 

box. [Image adapted from (Henke and Cronan, 2014); Licensed under CC BY ] (B) 

Biotinylation of a protein is a three-step process, in step 1, bait protein is fused with mutant 

protein BirA*. In the next step, biotin and ATP added to cell culture. BirA* and ATP convert 

biotin into its active form. Finally,  the activated biotin molecules biotinylate nearby proteins 

by getting attached to their lysine group. 

The idea of BioID was suggested in 2004 (Choi‐Rhee et al., 2004) and developed in 2012 by 

Roux and colleagues (Roux et al., 2012). It relies on the fusion of a bait protein shown as 

protein A (Step 1, Fig. 1.9B) with BirA*. However, the fusion of protein A with BirA* must 

be performed in such a way that the properties of protein A remain unaltered. i.e., protein A 

https://creativecommons.org/licenses/by/4.0/
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must be able to interact with its ligands, such as protein B, in the same way that it would 

normally do in the cell. Biotin and ATP are added to the cell culture media (Step 2, Fig. 1.9B) 

to distinguish between proteins that interact with or are nearby protein A in the cell and proteins 

that are further away (protein C in Fig. 1.9B). Biotin is converted to its active form in the 

presence of BirA* and ATP. The activated Biotin molecule either binds to a lysine of a nearby 

protein or is hydrolyzed, making it inactive. As a result, the closer a protein is to BirA*, the 

more likely it is to be biotinylated (Step 3, Fig. 1.9B).  Biotinylated proteins are subsequently 

isolated using affinity capture with streptavidin beads and identified using mass spectrometry.  

There are several benefits of using BioID method:  

1. Only proteins that were in proximity or interacting with the bait at the time of labelling 

get biotinylated and can be easily enriched using streptavidin affinity capture.  

2. BioID enables both the bait and the prey to interact in their natural environment. This 

minimizes the risk of environmental incompatibility that could occur if another method 

was used.  

3. BioID is able to detect weak and transient interactions.  

However, the method does have its disadvantages: 

1. The level of biotinylation of a protein does not necessarily reflect the level of interaction 

of that protein with the bait. Perhaps that protein just has either more or less lysine 

groups to be biotinylated.  

2. Low abundant proteins may be difficult to detect with the BioID technique, whereas 

highly abundant proteins can get artificially biotinylated. 

3. Biotinylation is a permanent modification that has the potential to alter the behavior of 

certain proteins.  

Although BioID is a relatively new technology, it has been extensively used in recent years. 

For example, Kyle J Roux's team used it to study Lamin A, a critical structural component of 
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the nuclear envelope of mammalian cells (Roux et al., 2012). Another group of scientists used 

BioID to discover proteins that interact with HIV-1 Gag, a structural polyprotein that mediates 

virus assembly of HIV by trafficking to the plasma membrane (Le Sage et al., 2015). Lambert 

et al. conducted a comparative study of chromatin-associated protein complexes using BioID 

and Affinity purification coupled with mass spectrometry(AP-MS) and discovered that BioID-

MS recovered histone-associated proteins with less abundance bias than AP-MS (Lambert et 

al., 2015). Khan et al. compared BioID to their previously published AP-MS proteomic dataset 

using HopF2b as bait in the model plant Arabidopsis thaliana. In addition to many common 

protein interactions, they found several novel ones using BioID (Khan et al., 2018). Using 

proximity-based biotinylation based proteomics, a complex multi-layered structure of the 

chromocenter in Drosophila has recently been discovered (Kochanova et al., 2020). We 

recently used BioID based proteomics to understand how the translational activators: Cbp3-

Cbp6, Cbs1, Cbs2, and Cbp1 regulate the translation of COB mRNA and we discovered a novel 

feedback loop by which these translational activators control the translation COB mRNA 

(Salvatori et al., 2020b). In another recent study we combined individual BioIDs of 40 baits to 

generate a large bait-prey network which revealed several key factors involved in 

mitochondrial gene expression (Singh et al., 2020). 

ii. How BioID is compared with other PPI capturing experiments? 

In past decades the proteomics community has been very active in developing 

experimental methods to explore PPI and this is evident by the existence of enormous number 

of articles on this domain in PubMed. As mentioned above proteins seldom function alone, 

rather by interacting with other proteins in different protein complexes and sometimes same 

protein shown additional functions (also known as a moonlighting protein) in altered cell 

conditions, under the influence of a stimuli or in pathological states and so on (Jeffery, 2018).  
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Fig. 1.10: Depending on the aim of the investigator this flowchart serves as a practical 

guide to select an appropriate experimental approach to study protein interaction- PDL 

→ proximity dependent labelling; AP → affinity purification; BN → blue native gel; XL → 

cross-linking; SEC → size exclusion chromatography; IP → immunoprecipitation [Image 

adapted from (Iacobucci et al., 2020); Licensing information: Appendix A)]  

Therefore, the understanding of a biological process is tightly related to the resolution of the 

interactome of a protein of interest. Depending on the aim(s) of an investigator, the biochemical 

procedures that have been developed to capture PPIs can be broadly classified as targeted or 

untargeted (Fig. 1.10). BioID based proximity labeling approach is applicable in vivo and is 

able to capture specific dynamic interactions, mainly due to the ability to biotinylate proteins 

quickly within a small radius of bait. Other methods in comparison have some drawbacks: like 

Pull-down assays work only in-vitro. Co-immunoprecipitation requires highly specific 

antibodies which necessitates tweaking the protocols for each target. Cross-linking 

experiment’s major drawback is highly  tedious downstream data analysis. Moreover, the 

search space grows exponentially as the number of peptides increases (Leitner et al., 2010; Yu 
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and Huang, 2018). Size exclusion chromatography suffers from low resolution. BN requires 

enormous amount of MS data analysis. Although BioID too has some disadvantages (Sec. 

1.1.2.3), it allows the investigator to obtain a high resolution interactome that contains transient 

interactions and to reduce the complexity of downstream data analysis. I present the challenges 

associated with analyzing BioID proteomics data and provide computational methods to tackle 

them in chapter 3. 

1.1.3 Spatial proteomics  

Proteomic studies over the years have aimed at understanding the functional landscape of 

cells by optimum mapping of protein profiles at steady state and following a variety of 

perturbations in space and time. In addition to conventional LC-MS, emergence of Imaging 

mass spectrometry (IMS) has added a new dimension enabling observation of protein profiles 

in situ. IMS is a new chemical imaging technique that enabled us to obtain more information 

about biological samples than ever before possible (Cornett et al., 2007; McDonnell and 

Heeren, 2007; Stoeckli et al., 2001). It has emerged as a powerful tool allowing label free 

detection of numerous biomolecules in situ. In contrast to shotgun proteomics, 

proteins/peptides can be detected directly from biological tissues and correlated to its 

morphology, providing critical clinical information. Currently, the two ionization procedures 

that have revolutionized the use of mass spectrometers are matrix-assisted laser desorption 

ionization (MALDI) and electrospray ionization (ESI), which in turn has made it possible for 

scientists to analyze biological substances much more easily (El-Aneed et al., 2009). MALDI 

based IMS is more popular because it produces singly charged peptides and proteins thus 

minimizing the complexity of IMS spectra. Therefore, in the next section I will elaborate on 

principles of IMS in the light of MALDI technique. 
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Fig. 1.11: MALDI Imaging mass spectrometry- Steps involved in an MALDI-IMS 

experiment. 

1.1.3.1 MALDI-IMS 

In a nutshell, MALDI-IMS enables direct imaging of biomolecules (proteins, peptides, 

metabolites, etc.) on a tissue surface, providing a spatial map which is crucial in tissue-based 

clinical research. To comprehend MALDI-IMS, it is critical to first and foremost understand 

the underlying technology, mass spectrometry (Fig. 1.1, sec. 1.1.1). In order to preserve the 

structural and chemical integrity of the tissue, the specimen is coated with a matrix solution. 

The matrix which frequently composed of organic acid or, more recently, nanoparticles is a 

critical component of MALDI-IMS. Spraying is the most common application method, as it 

results in the formation of a homologous matrix layer atop the sample. A consistent layer is 

necessary for the generation of unbiased data. The matrix facilitates mass spectrometry by 

localizing the sample, analytes and providing an ionization environment. Once deposited, 

matrix particles crystallize with the analytes, stabilizing them and preparing them for laser 

distribution (Left panel, Fig. 1.11). The Matrix selectively crystallizes with molecules of 

certain size, range, or characteristics, thus varying its composition can narrow down the 

window to find your molecules of interest.   Following that, laser is used to vaporize and ionize 

the analyte simultaneously. Typically, a solid-state laser with ~355 nm is used. The sample 

space is divided into grids, with each square referred to as a raster (Middle panel, Fig. 1.11). 
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Within each raster, the laser beam ionizes a spot, and the resulting ions are passed through a 

mass spectrometer as described earlier, resulting in the generation of a mass spectrum for each 

spot in the sample. The data for a particular analyte can be extracted using its distinct mass-to-

charge peak, and an image can be created using the intensity at each spot (Right panel, Fig. 

1.11) (Hanrieder et al., 2011). 

Traditionally, resolution of MALDI IMS has been limited by the size of the crystal. Once hit 

with laser, the entire crystal will be vaporized and sent to a mass spectrometer, making it the 

smallest resolvable detail in the image. Degradation of the organic matrix also worsens the 

signal to noise ratio. However, the recent use of nanoparticle matrix has alleviated these 

limitations (Sugiura and Setou, 2010; Banazadeh et al., 2018; Kratochvíl et al., 2021). Now, 

resolution is only dependent on the size of the laser dot, which can range from 200 μm – sub 

μm. However, decreasing the size of the laser dots will lengthen the analysis time as more spots 

need to be analyzed. Thus, there is a tradeoff between resolution and imaging speed. It is also 

possible to only image a portion of the sample to increase the speed. MALDI IMS has a lower 

resolution than common imaging modalities such as immunohistochemistry but compensates 

with its feature of multi-analyte detection.  

Since its inception, IMS studies have successfully mapped molecular profiles to tissue 

morphologies in the disease context. Discovery of biomarkers and biological categorization of 

relevant diseases was also possible through IMS based investigations (Meistermann et al., 

2006; Rauser et al., 2010; Gustafsson et al., 2011; Balluff et al., 2017; de San Roman et al., 

2017; Pauker et al., 2019). However, most of these studies included complementary validation 

of IMS data as direct identification of molecules was not possible. Although metabolic profiles 

of tissues can now be identified in a relatively better way than before (Marcotte et al., 1999; 

Palmer et al., 2017), proteins/peptides cannot be identified yet by IMS leading to sub-optimal 

understanding of functional profiles of different cell types within tissues. Lack of high-
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throughput MS2 modalities for peptides within the current IMS setups, especially MALDI-

IMS result in this reduced identification rates. Further, due to lack of defined fragmentation 

modes, MS2 of peptides generates a mixture of fragment ions leading to ambiguous 

downstream identification. Therefore, complementation of MALDI-IMS with orthogonal 

shotgun proteomics has been adopted as a feasible approach in the recent past (Alberts et al., 

2018; Longuespée et al., 2019; Schober et al., 2012; Huber et al., 2018; Groseclose et al., 2007; 

Franck et al., 2009). 

1.2 Computational approaches 

1.2.1 Computational methods for general proteomics 

 

      (A)                                                   (B) 

Fig. 1.12: Missing values in proteomics dataset- Showing (A) percentage of missing values 

in each replicate, at least 4% of values are missing in every replicate. (B) different combinations 

of missing values across replicates. Notice 268 proteins were identified and quantified in all 

the replicates, while missing values were found in at least one replicate for the remaining 

proteins. 
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A primary goal in mass spectrometry-based proteomics is to detect significant changes in 

protein abundance. This is especially important when studying subjects belonging to treatment/ 

control, mutant/wild-type, or diseased/healthy groups. Therefore, critical statistical data 

analysis tools are needed to prevent inaccurate conclusions. This inspired computational 

biologists to develop methods for extracting hidden patterns from large and complex proteomic 

datasets. These computational tools are typically released in the form of packages written in 

the R programming language, which includes a large number of statistical libraries that aid 

with data analysis. Nevertheless, knowledge discovery from proteomic datasets is challenging 

because of multiple factors, viz. batch effects, missing values, small number of replicates, lack 

of resource(s) for effective visualization of protein networks etc.  

1.2.1.1 Challenges in high-throughput proteomic data analysis 

i. Missing values 

Missing values in proteomics dataset is a common scenario which occurs when a protein 

is quantified in some of the replicates but not all (Fig. 1.12A). Missing values can interfere 

with the statistical tests, one needs to handle them appropriately. The best would be working 

with full dataset i.e., with no missing values. However, as shown in Fig. 1.12B, there is no 

protein in which one more replicate is missing a value. Since it is common to apply t-test in the 

downstream analysis of proteomics data to assess the significant changes in protein abundances 

between groups, therefore, if missing values are not imputed properly then it can give rise to a 

set of proteins with artificially high fold change which might contribute to the set of false 

positives. 

ii. Batch effects 

Batch effects can occur when subsets of data are collected in a manner that systematically 

differs from the ways the other subsets of data are collected. The systematic differences refer 

to the innate differences between batches that may occur in time, place, instrument, calibration 
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of instruments or persons doing the experiment and many more. For example, starting blocks 

of animals on separate weeks, assaying samples in different runs, or euthanizing some of the 

animals at a time. Batches aren't themselves necessarily a problem and are sometimes 

unavoidable in many cases, but it takes planning to make sure they are organized correctly.  

 

Fig. 1.13: Sanity checks to detect batch effects are important while analyzing proteomics 

data- Data is simulated from a normal distribution to demonstrate batch effect. Showing (A1) 

Boxplots of the replicates from two groups. (A2) Corresponding Multidimensional scaling 

(MDS) plots. (B1) Boxplots of the replicates from two groups after introducing batch effect 

(B2) MDS plot after introducing batch effects. (C1) Boxplots of the replicates from two groups 

after correcting batch effect. (C2) MDS plot after batch correction. 

Batch effects can cause confounding if the treatments are in some way related to the batches. 

In the extreme, this can happen if all of one treatment was processed in one batch and all of a 

different treatment was processed in another batch. We can avoid confounding treatment 

effects with batch effects by balancing treatments within batches. This helps ensure that we 

don't create an association between the time, place or measurement method and our outcomes 
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of interest. If each batch is a little different then there is some variability in the data that is 

caused by the batches. In some cases, the variability from batch could be just as big or bigger 

than the treatment effects. But if we balance treatment groups across batches, that variability 

is balanced across treatments as well. Then we can account for batches using a statistical model. 

It is always preferable to perform sanity checks to ensure that no batch effect exists in the data. 

In case there is batch effect in data then it is critical to deal with it, generally an MDS plot is 

an easy and potent way to detect batch effect (Fig. 1.13). There are many software packages in 

R that provide functions for batch effect correction (Leek JT, 2021; Ritchie ME, 2021). 

However, it is important to keep in mind that these methods will lead to exaggerated confidence 

in downstream analysis if the batch-group design is unbalanced (Nygaard et al., 2016). 

iii. Small number of replicates  

For some of the proteomics experiments the number of replicates could be very small. For 

example, in the clinical setup often there is not enough sample to go for many replicates which 

can affect the statistical inference during the downstream data analysis when using traditional 

methods like t-test. Bayesian estimation for 2 groups comparison has been shown to supersede 

the classical t-test (Kruschke, 2013) and for small sample sizes the inference using Bayesian 

approach is far more stable. 

iv. Challenges in visualizing protein interaction networks  

High throughput proteomic experiment such as BioID often yields hundreds of protein 

interactions which are typically visualized as static network graphs. However, when such a 

static network contains large number of nodes and edges then interpreting it becomes extremely 

difficult. Also, the process of generating data structure compatible to network visualization 

software from the dataset is a tedious job. The choice of appropriate graph/network layout 

while visualizing the protein interaction network is another crucial factor to consider. The idea 

of network layouts emerged to address the challenges pertaining to generic graph visualization: 
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Given: A graph 𝛤 = (𝛽, 𝜀) 

Find: Legible and uncomplicated drawing of 𝛤 

The force-directed (FD) network layout organizes nodes and edges in the graph in a unified 

and aesthetically pleasing manner. Therefore, it is well suited for visualizing large protein 

interaction networks. It works according to a force model which exploits Coulomb's law and 

Hooke's law to implement an energy-based node placement algorithm (Eades, 1984; 

Fruchterman and Reingold, 1991). In FD layout, nodes are represented as electrically charged 

particles in a Euclidean plane that repel each other whereas the edges bridging them attract 

adjacent particles mimicking a spring-force. The algorithm iteratively repositions nodes so that 

sum of all the forces become zero, pushing the system to attain an equilibrium. 

While R  packages (Leek et al., 2012; Gandrud, 2017; Ritchie et al., 2015) exist to address 

most of the aforementioned challenges independently, unavailability of a comprehensive data 

analysis pipeline (covering meaningful analysis and visualization) makes the data analysis task 

even more overwhelming, especially for an investigator with limited computational experience. 

Tyanova et al. provided a GUI named Perseus (Tyanova et al., 2016b) that offers a set of 

statistical approaches to help wet lab scientists. However, the resulting plots are not publishable 

and require additional graphics editing tools. A limitation of Perseus while performing t-test is 

that it does not compute fully moderated t statistics (See Tools sec. 2.1.1.4), which has been 

shown to outperform the standard t statistics (Kammers et al., 2015). Moreover, it is not 

possible to include batch information in the model during differential enrichment analysis in 

Perseus. Rather, it offers a two-step approach to deal with batch effects: First, the batch-effects 

are removed from the data and then the resulting data is used for t-test. But this two-step 

approach can lead to wrong conclusions in some cases (See 1.2.1.1). Another GUI, PANDA-

view (Chang et al., 2018), written in Python, is quite similar to Perseus in terms of features and 

also suffers from the similar issues. Additionally, these desktop apps lack the ability to create 
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interactive network plots, which are critical for deducing biological implications from the data 

(See sec 3.1.2 in Results). Therefore, to address these concerns we proposed an easy-to-use 

pipeline (See Tools sec. 2.1) that includes data pre-processing, stable statistical inference and, 

ability to visualize and interact with the protein interaction networks. 

1.2.2 Computational methods for protein complex prediction 

Researchers had employed sophisticated computational approaches to discover protein 

complexes. Using Drosophila melanogaster as a model organism, Guruharsha et al., had 

applied a hypergeometric distribution error model to score the PPIs before clustering them 

using Markov clustering algorithm (Guruharsha et al., 2011). Havugimana et al. used machine 

learning based approach to filter noise from protein interaction datasets in multiple steps prior 

to clustering using a soft clustering method (discussed later in this section) (Havugimana et al., 

2012). Crozier et al., used machine learning approach proposed by Havugimana et al., to 

discover novel complexes in the parasite Trypanosoma brucei (Crozier et al., 2017). Heusel et 

al., employed protein correlation profiling to discover complexes in HEK293 cell line (Heusel 

et al., 2019). However, they did not use machine learning because the focus was on basic 

detection and quantification rather than de novo complex prediction. 

It is interesting to note that there is no precise formula or set of rules that can be used to detect 

protein complexes from the complexomics datasets. Rather, it is more suitable to model the 

protein complex prediction problem as a pattern recognition challenge, where one uses labeled 

data to train an algorithm to capture regularities in the data. Machine learning, a branch of 

artificial intelligence, is an excellent fit for this task. Especially, if the aim is to discover novel 

protein complexes. As mentioned in sec. 1.1.2.1 (Fig. 1.8), here the computational challenge is 

to cluster the protein profiles (obtained using LC followed by bottom-up MS). Nevertheless, to 

cluster the data with extremely high sensitivity, the data must be treated with a series of 
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sophisticated computational steps that have shown promising results in previous 

attempts  (Crozier et al., 2017; Webb-Robertson et al., 2015; Havugimana et al., 2012). 

1.2.2.1 Noise modelling and missing value imputation 

The quantitative protein/peptide matrix generated by DDA-MS has a high proportion of 

zeros and/or low spectral counts. While these zeros/low values frequently correlate extremely 

well with one another, they contribute little in building good predictors for machine learning. 

Havugimana et al. proposed adding noise to the data matrix artificially to address this issue 

(Havugimana et al., 2012). Researchers have approached missing value imputation in a variety 

of ways. Tyanova et al. proposed using a truncated normal distribution located near the lower 

tail of the original data distribution to generate random values (Tyanova et al., 2016b). 

Karpievitch et al. proposed a method for random selection based on the censoring probability 

calculated from the ANOVA model parameters (Karpievitch et al., 2012). Webb-Robertson et 

al. conducted a review of several imputation methods, which readers are encouraged to read 

(Webb-Robertson et al., 2015). Noise modelling step is not essential for SWATH-MS data. 

However, if there is some missing values then appropriate imputation algorithm should be 

employed before feature extraction step which is described next. 

1.2.2.2 Extraction of PPI features from experimental dataset(s) 

In order to predict protein complex, it is imperative to predict each binary interaction that 

comprise the complex. In other words, to solve protein complex prediction challenge one need 

to first solve the PPI prediction problem. One of the major problems while applying machine 

learning in this scenario is the need of good features that can discriminate between a PPI and 

non interaction. Some of the important features that can be extracted from data are described 

below. 

i. Pearson correlation 
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An elution profile contains the quantified intensities of a protein in each fraction. A 

Pearson correlation can be computed for each pair of protein elution profiles, which serves as 

a feature for the PPIs. Pearson correlation (r) is defined mathematically as follows for the 

elution profiles of two proteins x and y: 

 𝑟 =
∑(𝑥−�̅�)(𝑦−�̅�)

√∑(𝑥−�̅�)2 ∑(𝑦−�̅�)2
 (1.2) 

Where, �̅� and �̅� are the means of x and y respectively. 

 

Fig. 1.14: Example showing similarity between two binary vectors using wcc- 𝑂𝑥𝑦
𝑖  is the 

intermediate correlation between x and y [Image source: (Aftab and Imhof, 2021); Licensing 

information: Appendix B]. 

ii. Weighted cross correlation (wcc) 

The Pearson correlation coefficient defined above does not consider changes in the 

elution profiles. The wcc can be used to compare the intensity of a protein within a single 

fraction to the values in another protein's chromatographic neighborhood. It is also possible to 

account for relative shifts in the elution profiles by weighing different fractions in the 

neighborhood. Havugimana et al. ranked the features they used in their exploratory analysis of 

protein complexes in human, and wcc was a top-ranking feature (Havugimana et al., 2012). 

The mathematical definition of similarity based on wcc is as follows: (de Gelder et al., 2001),  

 𝑆𝑥𝑦 =
∫ 𝑊(∆)𝐶𝑥𝑦(∆)𝑑∆

√∫ 𝑊(∆)𝐶𝑥𝑥(∆)𝑑∆ ∫ 𝑊(∆)𝐶𝑦𝑦(∆)𝑑∆
 (1.3) 

Where, ∆ implies relative shift between the elution profiles 

𝐶𝑥𝑥 and 𝐶𝑦𝑦 are the auto correlation functions 
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W is the weighting function. 

Fig. 1.14 demonstrates wcc using two sample vectors using weighing equal to one (Bodis, 

2007). 

iii. Co-apex score 

It quantifies the degree to which the apexes of a pair of elution profiles align across 

replicates. Thus, the co-Apex score for a PPI is a ratio of the number of replicates in which the 

apexes of a pair of  elution profiles align to the total number of replicate experiments. These 

techniques are frequently used to extract features from datasets (Phanse et al., 2016; 

Havugimana et al., 2012; Crozier et al., 2017). 

1.2.2.3 Extraction of PPI features from the literature 

Additionally, incorporating genomic and proteomic evidence from the literature can aid 

in the discovery of protein complexes (Havugimana et al., 2012; Webb-Robertson et al., 2015). 

Typically, these features are usually stored in a database as evidence codes for PPIs. STRING 

(Szklarczyk et al., 2018) and HumanNet (Hwang et al., 2019) are two widely used databases. 

HumanNet (v2) is the most recent version, and it contains a probabilistic gene network of 

17,929 validated protein-coding genes spanning 525,537 interactions. HumanNet is 

constructed using a modified Bayesian integration of 21 different types of 'omics' data, with 

each data type weighted according to the degree of functional interaction between human 

genes. Each interaction in HumanNet is weighted according to a log likelihood score, which 

quantifies the probability that a functional interaction is true or false. 

STRING has imported many PPIs from other databases in addition to the ones they predicted. 

The PPIs in STRING forms a Bayesian network, which means each link has a probability 

associated with it. The most recent version of STRING (v11) contains PPIs from 5090 

organisms, totaling 3,091,648,416 edges. However, if only high-scoring (>0.7) interactions are 
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considered, that number drops to 152,484,793. Some of the frequently used features from the 

literature is described below. 

i. Conserved Neighborhood 

If the neighborhood of two genes encoding proteins is conserved across multiple 

genomes, there may be a possibility of functional interaction between the proteins. (Dandekar 

et al., 1998).  

ii. Gene Fusion 

The Rosetta Stone method has revealed that two or more interacting proteins in one 

genome can occasionally fuse into a single protein in another genome. (Marcotte et al., 1999). 

iii. Co-Evolution 

The concept here is interacting proteins tend to co-evolve. This feature has previously been 

used to predict PPIs in humans and bacteria. (Tillier and Charlebois, 2009; Pazos and Valencia, 

2001).  

iv. mRNA Co-Expression 

It is well established that there is a positive correlation between mRNA expression patterns 

and interacting proteins, and that these patterns are frequently conserved throughout evolution. 

(Eisen et al., 1998; Marcotte et al., 1999; Lee et al., 2004). 

v. Protein domain co-occurrence 

It has been demonstrated that two proteins can interact via some of their shared/co-

occurring domains. (Wang et al., 2011). 

vi. Text mining 

Text mining methods aims is to extract facts and relationships between entities from text. 

In this context, the term "entity" refers to proteins. It processes text in a variety of ways, one 

of the most important of which is natural language processing (NLP). The published literature 

is a treasure trove of PPI data. STRING mines PubMed for PPIs. One of the most significant 
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challenges in extracting PPIs from the literature is the enormous variety of possible gene 

names. Su(var)205 and HP1a, for example, should recognize the same named entity. Named-

entity recognition is an active area of NLP research and in biomedical domain it poses even 

more challenges due to inconsistent usage of gene names in the literature. As a result, text 

mining is not as confident feature for a PPI as other features. Readers might find this 

introduction to biomedical NLP quite exciting (Cohen and Demner-Fushman, 2014). 

1.2.2.4 Application of Machine learning to predict PPI 

The Fig. 1.15 depicts a pipeline that utilizes ML for predicting PPI which is an important 

step towards solving protein complex detection problem. As previously described, ML is an 

appropriate tool for solving the current problem since it facilitates the detection of patterns 

even when no explicit rules describing those patterns exist. After extraction of features from 

the dataset, next step is to label the PPI. 

 

Fig. 1.15: Computational pipeline to discover putative protein complex using machine 

learning- The top panel depicts how the extracted features are used to train a machine learning 

model that is then used to predict the PPIs. The bottom panel demonstrates the multistage 

filtering of protein interactions followed by clustering of PPIs to detect of protein complexes. 

[Image adapted from: (Aftab and Imhof, 2021); Licensing information: Appendix B]. 
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i. Ground truth 

Researchers employed mainly supervised machine learning approaches for protein 

complex prediction (Havugimana et al., 2012; Crozier et al., 2017). In supervised machine 

learning, we must provide a labeled feature matrix to the machine learning model. In this 

context, a feature matrix is a collection of extracted features that represent either PPI or non 

interaction. Thus, each row in the matrix implies a PPI/non interaction, and each column 

implies a feature. The feature matrix is then divided into three parts: the training set, the test 

set, and the validation set. Then, for each PPI in the training and validation sets, we label it as 

interacting/non-interacting or, more frequently, as 1/0 or positive PPI/negative PPI. We provide 

no labels for the test set. 

Readers will soon realize that this is the most challenging part of the machine learning-based 

complex prediction pipeline. The critical question here is: from where do we obtain true or 

positive PPIs? And how do you define a negative PPI? As you will see shortly, the latter is 

significantly more difficult to answer than the former. 

Numerous databases contain true PPIs (positive PPIs in the present context). For instance, 

BioGrid (Oughtred et al., 2018) contains inferences about physical and genetic interactions 

based on numerous high-throughput experiments. STRING (Szklarczyk et al., 2018) is a 

collection of functional and physical interactions originating from a variety of species. The 

Centre for Cancer Systems Biology (CCSB) catalogs protein interactions from humans, yeast, 

viruses, and plants (Yu et al., 2011; Guo et al., 2008; Rolland et al., 2014). (Pagel et al., 2004) 

created the MIPS Mammalian Protein-Protein Interaction Database (MPPI) to store manually 

curated protein interactions from yeast and mammals. CORUM (Giurgiu et al., 2018) is a 

database of mammalian protein complexes that have been manually annotated. HumanNet 

(Hwang et al., 2019) is a database of human protein interactions. These already-identified PPIs 

are also referred to as ground truth in machine learning terminology. However, because the 
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majority of experiments are conducted solely to infer true PPIs, the resource for negative 

interaction is quite limited. Only 2171 protein pairs that are less likely to interact are cataloged 

in the Negatome Database 2.0 (Blohm et al., 2013). As a result, people developed heuristics to 

generate negative interactions.  Havugimana et al. defined a negative interaction pair by 

associating two proteins that were previously annotated as being in two distinct complexes 

(Havugimana et al., 2012). Fig. 1.16 illustrates this concept, where negative PPI implies a pair 

of proteins that are less likely to interact. As you may have guessed, the validity of this heuristic 

is contingent upon previously identified interactions, and the absence of an interaction does not 

imply a negative interaction. In another study, Crozier et al. defined negative pairs (also known 

as negative PPIs) by randomly selecting a pair of proteins from the set of proteins present in 

their ground truth dataset (Crozier et al., 2017). This heuristic also has the potential to introduce 

false negative interactions. Due to the possibility that some of the randomly sampled PPIs are 

in fact true interactions. 

 

Fig. 1.16: A heuristic approach towards negative PPI generation [Image source: (Aftab and 

Imhof, 2021); Licensing information: Appendix B]. 

ii. Classification Algorithm 
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Numerous researchers have used random forests to solve the PPI classification problem 

(Crozier et al., 2017; Havugimana et al., 2012). Additionally, some investigators have made 

use of support vector machines (Webb-Robertson et al., 2015; Guo et al., 2008).. Recently, as 

deep learning has gained popularity, many researchers have turned to deep neural network-

based architectures to solve this problem (Sun et al., 2017; Tian et al., 2016; Hashemifar et al., 

2018). The advantage of these deep architectures is that the classifiers automatically select 

features. However, these classifiers require a large amount of training data to produce accurate 

results. My recommendation is to start with a simple classifier and gradually increase its 

complexity until the desired performance is achieved. 

iii. Feature Selection 

It is critical to comprehend the significance of features in machine learning classification. 

Using irrelevant features may result in longer training times and may cause the model to 

become overfit (Bermingham et al., 2015). Researchers have employed innovative ways for 

improving classification accuracy through feature selection. Before training a random forest 

classifier for PPI interaction prediction, Havugimana et al. used a greedy stepwise feature 

selection algorithm (Havugimana et al., 2012). There are numerous additional methods for 

selecting features, and while a discussion of them is beyond the scope of this chapter. Readers 

can find detailed information about them in this reference (Guyon and Elisseeff, 2003). 

iv. Training a ML classifier 

While choosing machine learning to solve a problem, the first thing one should determine 

is the type of training. There are two types of training that are generally available: supervised 

and unsupervised. Due to the fact that the supervised approach is the most frequently used 

method for solving the current problem, we will confine our discussion to it.  

One can use the training set to train a single machine learning algorithm or an ensemble of 

algorithms. Training a machine learning classifier includes fine-tuning a number of parameters, 
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which is beyond the scope of this thesis to explore in depth. However, the primary goal of 

training for the PPI classification task is to minimize classification error/loss, which is a critical 

parameter. A type of error that many machine learning algorithms attempt to minimize is sum 

squared error (SSE), which is defined as, 

 𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦�̂�)
2 (1.4) 

Where, 𝑦𝑖 → actual label of a PPI and 𝑦�̂� → predicted label for that PPI. We check the SSE in 

each training epoch and continue training until the SSE falls below a predefined threshold after 

a predetermined number of epochs. If the SSE is unable to reach the desired threshold despite 

extensive training, the model is said to be underfit. 

Once the SSE is sufficiently small, we turn our attention to model validation. Here, we examine 

the SSE using the validation dataset. If the difference between the training and validation errors 

is too large, the model is said to be overfit. 

Overfitting and underfitting are two major issues that must be addressed during the training 

phase of any machine learning algorithm. As a result, a cycle of training-validation-training is 

frequently conducted. We can be confident in the training only when the training error is small 

and the gap between the training error and the validation error is also small. Only after we are 

sufficiently confident in our training should we proceed to testing. 

When you feed feature vectors corresponding to a set of unlabeled PPIs (test dataset) into the 

classifier during testing, the classifier outputs a probabilistic score for each PPI. If the score for 

a PPI is zero or close to zero, we consider it to be a false interaction; however, if the score is 

close to one or one, we consider it to be a true PPI.  

v. Imbalanced Dataset Problem 

When the number of samples in one class is much greater than the number of samples in 

other, the dataset is said to be imbalanced. Assume that a proteomics experiment identifies and 
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quantifies n proteins from a sample of a particular species. Then all possible pairs of PPIs that 

those n proteins could generate are, 

 𝑛𝐶2
=

𝑛!

2!(𝑛−2)!
 (1.5) 

Plugging in n = 3000, a realistic expectation for today's mass spectrometers, results in 4.5 

million theoretical PPIs, of which only a few will be labeled as positive interactions. Most 

public databases that host true PPIs, such as BioGrid (Oughtred et al., 2018), contain ~0.5 

million PPIs for Homo sapiens, ~76 thousand for Drosophila melanogaster, and ~30 thousand 

for Mus musculus. As a result, the labeled dataset (after feature extraction) will contain many 

more false interactions than true ones. Class imbalance is a significant issue, because if a 

machine learning-based binary classifier is trained without addressing the class imbalance, the 

model will be completely biased toward the class with the most samples. The Synthetic 

Minority Oversampling Technique (SMOTE) has been used by machine learning researchers 

to attempt to address this issue (Chawla et al., 2002). Others have attempted to train a classifier 

ensemble using an equal number of negative and positive PPIs  (Crozier et al., 2017). 

Nonetheless, it is critical to recognize that class imbalance is inherent in the PPI prediction 

problem and must be effectively addressed. 

1.2.2.5 Denoising a predicted PPI matrix 

The amount of noise in the predicted interaction matrix can be further reduced by 

removing the edges lacking support from the network topology. Havugimana et al. 

(Havugimana et al., 2012) determined connectivity using a multi-step diffusion procedure, 

which can be defined mathematically as, 

 𝐶 = 𝑒𝜆𝑀 − 𝜆 ∗ 𝑀 (1.6) 

Where, M→ predicted PPI matrix 

λ→ Inverse of the largest eigenvalue of M. 
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In order to denoise the PPI interaction matrix, edges with connectivity less than a threshold 

value τ are deleted from the matrix M. Let us refer to this denoised matrix as 𝑀†, which can 

then be calibrated based on the information about protein co-localization in the sample. Here 

the idea is to penalize any PPI that results from two proteins located in different cellular 

compartments by computing a score using the PPI prediction scores in 𝑀† and the GO-CC 

scores (Consortium, 2004). Therefore, the combined score matrix (R) is defined 

mathematically as, 

 𝑅 = (1 − 𝑀†) ∗ (1 −
𝑆

𝑆𝑚𝑎𝑥
) (1.7) 

Where, S → maximum pairwise similarities matrix, each cell (𝑆𝑖𝑗) of which is the maximum 

pairwise similarity between the two groups of GO-CC terms to which protein i and protein j 

are annotated. 

𝑆𝑚𝑎𝑥 → A normalizing factor can be used as the maximum value among all the semantic 

similarity scores. 

In order to get a thorough understanding of the scoring presented in Eqn. (1.7) readers are 

encouraged to read this article (Yang et al., 2012). 

1.2.2.6 Cluster the denoised PPI matrix 

To identify the densely connected areas in the denoised PPI matrix, we need to cluster 

the PPIs.  There are two main types of clustering methods: hard clustering and soft clustering. 

A data point is never assigned to more than one cluster when using hard clustering. The K-

means clustering algorithm is a widely used hard clustering algorithm. Soft clustering, on the 

other hand, assigns a score (membership probability) to each data point, allowing it to belong 

to several different clusters. Soft clustering methods are more appropriate in our situation 

because a protein can be found in a variety of different complexes at the same time. In other 

words, it is possible that protein complexes will overlap. Shuye and colleagues developed a 

comprehensive CYC2008 catalogue, which contains 408 heteromeric protein complexes in S. 
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cerevisiae that were manually curated (Pu et al., 2008). 207 proteins out of 1628 proteins in 

CYC2008 are found to be involved in multiple complexes (Yang et al., 2012). This clearly 

indicates that we require a clustering algorithm that allows a protein to participate in multiple 

clusters. ClusterONE (Yang et al., 2012), developed by Nepusz et al., addresses these issues 

by detecting overlapping protein complexes from PPI datasets. ClusterONE has been widely 

used in a number of studies with the goal of detecting protein complexes from PPI data 

(Havugimana et al., 2012; Crozier et al., 2017; Webb-Robertson et al., 2015). 

 
(A) 

 
(B) 

Fig. 1.17: stringApp can be used to import PPIs from STRING into the Cytoscape 

environment- (A) From a Cytoscape session, search interaction partners of a protein (mcm3 

in this example) in the STRING database (B) The extracted MCM complex from STRING 
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database becomes available in the current Cytoscape session via stringApp [Image source: 

(Aftab and Imhof, 2021); Licensing information: Appendix B]. 

1.2.2.7 Network analysis using Cytoscape 

Cytoscape is an open-source software for visualizing and analyzing data in the form of a 

two-dimensional matrix (Shannon et al., 2003). It was originally intended for knowledge 

discovery from biological experiment datasets, but over time, users added plugins to solve 

problems in other domains such as social network analysis, semantic web, and so on. 

Cytoscape's most recent version can be downloaded from the download page 

(https://cytoscape.org/download.html). It is an excellent workbench for network data analysis, 

with over 200 plugins. Additionally, it is possible to integrate PPIs from the user's own 

laboratory measurements with PPIs from multiple databases. For instance, users can import 

PPI from STRING DB and augment it in Cytoscape using stringApp, as illustrated in Fig. 1.17. 

Cytoscape also includes an application for the ClusterONE algorithm discussed previously. In 

Fig. 1.18, we demonstrate how to use it in Cytoscape. Readers are encouraged to read the 

tutorials (https://github.com/cytoscape/cytoscape-tutorials/wiki) that have been officially 

released to get started with the Cytoscape. 

Researchers mainly employed DDA based proteomic approaches (except Heusel et al. (Heusel 

et al., 2019)) for protein complex prediction. However, as mentioned earlier, DDA based 

shotgun proteomics results in datasets with many missing values which induce uncertainties in 

the quantified proteins. Moreover, the approaches of Guruharsha et al. (Guruharsha et al., 2011)  

and Havugimana et al. (Havugimana et al., 2012) necessitate undertaking either a significant 

number of IP or LC (orthogonal modalities) experiments. This results in a significant increase 

in MS instrument usage time, which creates a bottleneck in a multiuser environment. Moreover, 

not each published computation method is available for the user to analyze his/her data. Among 

the previously mentioned computational approaches, only Heusel et al. (Heusel et al., 2019) 
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and Skinnider et al. (Skinnider M, 2021) has provided codes, but they are available as 

MATLAB scripts/R packages/command line interfaces (CLIs) with no or little GUI support. 

Since most of the scientists in the proteomics community are researchers having mainly wet 

lab expertise, a full-fledged GUI is always preferred over CLIs. Therefore, to fill this gap and 

to enable an investigator to discover bona fide as well as novel protein complexes from a 

relatively small number of datasets, I developed a desktop application ComplexMiner (Wasim 

Aftab)(Chapter 2). 

 
(A) 

 
(B) 

Fig. 1.18: Cytoscape ClusterONE app- (A) Loading a network file (B) Running ClusterONE 

[Image source: (Aftab and Imhof, 2021); Licensing information: Appendix B]. 
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1.2.3 Computational methods for spatial proteomics 

1.2.3.1 IMS and LCMS data integration 

The combination of the aforementioned (sec 1.1.3.1) orthogonal MS technologies have 

led from poor to substantial identification of proteins in a contextual manner. The main reason 

for this variability was the lack of appropriate strategies that could effectively combine data 

from these two platforms into an efficient screening module of proteins in situ. Although these 

studies could successfully identify important disease associated molecules, most of the 

attempts involved considerable manual curation leading to very limited number of identified 

discriminative masses (Alberts et al., 2018; Longuespée et al., 2019).  

 

Fig. 1.19: Rationale behind IMS and LC-MS  data integration- from IMS experiment we 

determine the differential spatial regions between the diseased and healthy tissues; by 

performing LC-MS experiment we quantify the differences; informatics allows us to 

demonstrate what way they are different by combining the information from the two orthogonal 

MS technologies. 

More successful approaches were associated with measurements of in situ tryptic peptides with 

very high mass accuracy (comparable to LC-MS) leading to the analysis method being 
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particularly resource intensive (Schober et al., 2012; Huber et al., 2018). In addition, these 

approaches were exclusive of the two-group comparison scenario (healthy vs. diseased) 

thereby providing very limited biological insights as part of a data analysis pipeline. None of 

the approaches developed so far has a defined integrated ‘one-in-all’ workflow/software 

leading to the tedious task of combining multiple platforms with substantial manual input. 

 

To address these concerns, we introduce ImShot, a conveniently designed software that can be 

deployed as a screen for probabilistic identifications of proteins in situ in a disease vs healthy 

context. ImShot is based on a systematic matching of spatially resolved peptide masses from 

MALDI-IMS with  their corresponding identified proteins in LC-MS. The rationale behind 

IMS and LC-MS  data integration in ImShot is depicted in Fig. 1.19. We provide this 

bioinformatics pipeline in the form of a desktop application built using web technologies on 

Electron framework (Electron, 2013) aimed at seamless plug-n-play operation. Electron, which 

is an open-source software framework, streamlines the development process with the help of a 

web environment. It builds an application that feels native and at the same time looks 

aesthetically pleasing. Conventional desktop apps in comparison appear outdated as interface 

elements, charts and plots are not as captivating as in an Electron application. In addition, as 

Electron apps run on a browser, thereby allowing it to render interactive graphics. This allows 

us to observe unforeseen patterns and trends in otherwise hidden information within the data. 

Although in recent years Electron apps have gained large popularity in other domains (OpenJS-

Foundation, 2021), to the best of our knowledge, no proteomic data analysis platform has used 

it so far in spite of the need for convenient GUI and graceful visualization of data. While 

developing ImShot, we tried to establish its applicability as a general tool that would be useful 

in different situations and to different users. It is largely independent of the measurement 

platforms as the algorithm depends on general data format instead of proprietary ones. In the 
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current version it can integrate shotgun proteomics and MALDI-IMS datasets to address 

questions involving two group comparisons, like diseased vs healthy or high-calorie vs low-

calorie diets etc.  In addition, the software can operate in dual mode, i.e., its functions and 

features can individually be used to solve research problems in shotgun proteomics alone. In 

addition, we also provide an R package to facilitate ImShot’s command line mode of operation. 

The ImShot desktop app and R package can be installed and run on all major operating systems 

(Windows, Linux and macOS).  

1.3 Aims of the thesis 

The inundation of proteomic data over the last decade has given rise to a multitude of 

computational challenges and the methods to solve them have progressed along with 

proteomics technologies (Srihari et al., 2017). My objective in this thesis is to familiarize 

readers with some of these challenges with a particular emphasis on cutting-edge 

computational methods.  

Today’s shotgun proteomic experiments aimed at capturing biological differences between two 

groups (viz. diseased/healthy) generate enormous, multi-dimensional datasets comprising 

information about biological, technical, and experimental variables. Due to the lack of a 

comprehensive data analysis pipeline, it has been incredibly difficult to derive insight from 

these complex datasets. Therefore, an easy-to-use pipeline is developed to facilitate differential 

enrichment analysis and effective visualization of massive protein interaction data. 

Almost every cellular process is executed by protein complexes. To understand how the 

cellular machinery works, it is critical to identify and characterize all protein assemblies. Due 

to the lack of precise deconvolution rules, discovering novel protein complexes is a challenging 

task. In addition, due to the absence of an effective GUI (capable of comprehensive analysis), 

exploring complexomics datasets has been frequently intimidating. As a result, a desktop 

application called ComplexMiner is proposed.  
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Most tissues, where the diagnostic information of diseases is intact, are very complex and 

heterogeneous with respect to variety of cell types present. Understanding spatial protein 

profiles has therefore become imperative for better interpretation of disease effects and possible 

mechanisms. While IMS can conserve the spatial distribution of molecular species on tissue, 

the inability to identify peptides directly (in situ) has been a limitation of MALDI-IMS based 

spatial proteomics. To overcome this, ImShot, a user-friendly desktop application that 

combines information from MALDI-IMS and LC-MS data, is designed. 
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2. Tools 

In this chapter, I will describe the tools that I have developed to tackle the computational 

challenges mentioned in the Introduction. 

 
(A) 

 
(B) 

Fig. 2.1: Limma pipeline to analyze proteomic datasets- (A) Illustrating the BioID 

proteomics data analysis pipeline using results from MQ search as input. It has different 

modules for data cleaning and detecting significant changes in protein abundances in two 

groups. Output from pipeline comes in the form of an interactive volcano plot and tab-separated 

values (TSV) files listing exclusive proteins in treatment, control, and results of the two-group 

comparison. [Image adapted from (Salvatori et al., 2020a); Licensed under CC BY 4.0 ] (B) 

Automating the generation of bait-prey interaction network (from the Limma results) using R 

and visualizing it in the Cytoscape. 

https://creativecommons.org/licenses/by/4.0/
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2.1 Computational pipeline for differential enrichment analysis and 

effective visualization of high throughput proteomics datasets 

We present the data analysis pipeline in the light of BioID proteomics approach, but it is also 

applicable to any proteomic experiment that aims to capture the biological differences in two 

groups (viz. diseased/healthy). To detect significant changes in protein abundance, we need to 

perform two-group comparisons. For this purpose, I have developed a data analysis pipeline 

(Fig. 2.1A) in R that employs moderated t-test (described later) to perform differential 

enrichment analysis. But first, we must filter and prepare the data for statistical analysis via a 

number of pre-processing steps (Fig. 2.1A) that are elaborated in the next section. 

2.1.1 Statistical quantification and generation of volcano plots 

Input to the pipeline is the proteingroups.txt file obtained from MaxQuant (Tyanova et al., 

2016a) search. The statistical analysis comprises of the following steps: 

2.1.1.1 Data filter 

The data cleaning is done in the following four steps: 

i. First, the contaminant proteins are removed from the dataset. To do so, code 

investigates the columns: Reverse, Potential contaminant and Only identified by site 

and removes all rows that contains the symbol +.  

ii. Then the script finds and removes any blank proteins, i.e., bait and control replicates 

have all zeros for such proteins. 

iii. Then it finds the proteins for which either all control replicates or all replicates in 

treatment group has only zeros. It extracts such ‘exclusively enriched’ proteins from 

the dataset and puts them into separate files as they do not participate into two-group 

comparisons. The reason for excluding such proteins is as follows: In a two-group 

comparison, the null hypothesis (H0) is that the replicate means of the proteins in 

each group are equal and we need statistical tests to see if this is indeed true, when 
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H0 is not true we reject it and accept the alternate hypothesis (H1). But in the case of 

‘exclusively enriched’ proteins, no tests needed as all the proteins in one group has 

zero and in other group has non-zero means. 

iv. Code further removes the proteins based on k out of N criteria: where N is the 

number of replicates in one group (treatment/control) and for each protein, k implies 

the desired number of non-zero values out of N replicates. The code applies this 

criterion individually for each group and keeps only those proteins that satisfy it in 

both the groups simultaneously. 

2.1.1.2 Log transformation and missing value imputation 

 

Fig. 2.2: Concept of missing value imputation algorithm - Original data distribution after 

log2 transformation is shown in blue and the tiny normal distribution (obtained by shifting and 

shrinking the original distribution) from where missing values are drawn randomly is shown in 

red. 

Then the script log transforms the filtered dataset so that the outcome is normally 

distributed, and statistical tests become applicable. However, this transformation produces 

many undefined values (NaNs) also popularly known as missing values. We used the 

imputation algorithm proposed in (Tyanova et al., 2016b) because it allows us to randomly 

draw values from a distribution meant to simulate values below the detection limit of the MS 

instrument. To achieve that, the script creates a tiny normal distribution by shrinking and 

downshifting the original data distribution and then imputes the missing values randomly from 

that tiny normal distribution as depicted in Fig. 2.2.  
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2.1.1.3 Normalization 

While running the pipeline, users will be asked if they want to normalize data prior to 

two-group comparison. There are two modes of normalization supported. 

Normalize by subtracting median: This method normalizes the protein intensities in each 

experiment by subtracting the median of the corresponding experiment. 

Column wise median normalization of the data matrix: Assume the protein quantification 

matrix is called y. Then, this approach can be implemented using following three lines of R 

code: 

row_avg <- rowMeans(y) 

y3 <- matrixStats::colMedians(y - matlab::repmat(row_avg, 1, ncol(y))) 

y4 <- y - matlab::repmat(y3, nrow(y), 1)  

In words, it first subtracts from the columns (experiments) of y, the row average of y. Then 

computes median of each experiment (column wise) and saves the results in another variable 

y3. Finally, the normalized matrix y4 is obtain by subtracting y3 from y. This procedure ignores 

missing values and assumes that the bulk of rows remained unchanged. 

After the pipeline executes successfully, it will create volcano plot in html format and will also 

save 'exclusively enriched' proteins (if any) with corresponding LFQ/iBAQ values. 

2.1.1.4 Two-group comparison (H0: means are equal) 

In order to determine the proteins that are statistically significant in two groups, our 

pipeline employs Limma (Linear Models for Microarray Data)  moderated t-test statistics as 

proposed in (Kammers et al., 2015) over standard t test. Limma was originally developed to 

find differentially enriched genes in microarray-based experiments and since many years it is 

a state of the art to analyze data from gene expression experiments such as RNA-seq. It employs 

empirical Bayes approach that uses the entire dataset to shrink the estimated sample variances 

for each gene towards a pooled estimate (Lönnstedt and Speed, 2002; Smyth, 2004). This 
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statistical approach results in much more stable and powerful inference compared to ordinary 

t statistics mainly when the number of replicates is small (Smyth, 2004; Yu et al., 2011). Very 

often proteomics datasets come with small replicates/sample sizes (See sec. 1.2.1.1) where such 

Bayesian treatment is appropriate and has therefore gained some popularity within the 

proteomics community over time (Brusniak et al., 2008; Salvatori et al., 2020b; Schwammle 

et al., 2013; Ting et al., 2009; van Ooijen et al., 2018). It comprises of following two steps, 

i. First, a code module fits multiple linear models for every protein. 

ii. Then another module uses that linear model fit information and by employing an 

empirical Bayes method it computes the moderated t-statistics, which results in 

shrinkage of a protein’s variance towards a pooled estimate, thereby providing stable 

inference.  

The two-group comparison module runs in two modes: either use full data or remove exclusive 

proteins before Limma analysis. Code will ask you to provide treatment and control names. It 

will guide by printing the instructions on your RStudio console.  

2.1.2 Automation of bait-prey interaction network generation 

For each two-group comparison, the pipeline (Fig. 2.1A) saves the moderated t-test results 

in a TSV file (with a timestamp in the filename). Therefore, when you have multiple 

baits/treatments, you’ll end up creating many such timestamped files. The bait-prey interaction 

information is hidden within these files. So, to avoid time consuming and error prone manual 

data mining we have extended the pipeline of Fig. 2.1A to include automatic generation of bait-

prey interaction network table as illustrated in Fig. 2.1B. The Rscript that automates this 

process, accepts the path of the folder containing multiple timestamped TSV files as input. It 

asks users first, to specify a log fold change cutoff. Then, for every TSV file in that folder, it 

will print a list of iBAQ/LFQ column names and ask the user to enter a bait name from that 

list. Here assumption is that iBAQ/LFQ columns will contain bait names. Using that 
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information, the code will create a virtual list of bait-prey interactions that have fold-change ≥ 

1.5 and p < 0.05. After that, the code will print a message if that file is processed successfully. 

Finally, when all TSV files are processed, code will concatenate those virtual lists into one, 

print top 10 rows that list and save all the proximity interactions as Links.xlsx in the same 

directory where the TSV files are present. Users can then visualize the bait-prey interaction 

network by loading the excel file in Cytoscape (Shannon et al., 2003), an open-source software 

for visualizing complex networks and integrating them with information from other sources. 

However, the network graphs are rendered in static manner which is problematic for large 

protein interaction network (See sec. 1.2.1.1). 

2.1.3 Effective visualization of large protein interaction networks 

To deal with the data visualization challenge mentioned in the Introduction (Sec. 1.2.1.1), 

we developed a network visualization routine using R and JavaScript (JS) that allow users to 

interact with the network and extract information from it. The software was built by modifying 

the source code of networkD3 R package (Gandrud, 2017) which lacked certain desired 

functionalities (Discussed later in sections 3.1.2 and 4.1). We created an improved HTML 

widget forceNetwork ++ by significantly modifying the source codes of forceNetwork and 

associated JS subroutines from networkD3 package. We then used forceNetwork++ to develop 

a dashboard called MiGENet (Singh et al., 2020) which served as a platform for the user to 

interact with large protein interaction network. 

2.2 Computational approaches to discover protein complexes 

We employed Superose® 6 SEC followed by SWATH-MS on Drosophila embryonic extract 

and quantified ~1400 proteins spanning across 42 fractions. The dataset is shown in Fig. 2.3 

where the protein elution profiles (in rows) are clustered based on hierarchical clustering 

method to visualize the presence of clusters (sanity check).  
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Fig. 2.3: Superose® 6 size exclusion chromatography dataset- Contains ~1400 protein 

elution profiles spanning over 42 fractions. Min-max normalization was applied prior to 

hierarchical clustering of elution profiles. Elution of standard proteins are marked with arrows. 

 

Fig. 2.4: A wireframe of ComplexMiner desktop application 

As we mentioned in the introduction that ComplexMiner (written using Python, R, JS, HTML 

and CSS) is conceived to help users to analyze the complexomics datasets. However, 

ComplexMiner is not fully developed yet but initial testing has shown some promising result 
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(See sec. 3.2). It is an easy-to-use desktop application for protein complex discovery aimed at 

providing the bench scientist a support in analyzing complexomic datasets (See wireframe in 

Fig. 2.4). Here, the complex discovery is governed by the Siamese neural network (SNN) 

architecture depicted in Fig. 2.5. A Siamese network employs two or more identical 

subnetworks with the same architecture, parameters, and weights.  Two subnetworks with the 

purpose of extracting features accept as input a pair of elution profiles (X1, X2 in Fig. 2.5). 

Then the difference between the extracted features (F1, F2 in Fig. 2.5) is feed to a fully 

connected network which acts as a binary classifier. The output from the classifier is converted 

to a probability (between 0 and 1) value with the help of sigmoid scaling operation. Finally, 

the scaled value is feed to a layer that computes training loss (𝐿) which is proportional to the 

binary cross-entropy between the between the predicted and the true label values: 

 𝐿 = −𝑦 ∗  𝑙𝑜𝑔(�̂�)  −  (1 −  𝑦)  ∗  𝑙𝑜𝑔(1 −  �̂�) (2.1) 

Where, 𝑦, �̂� imply the true and predicted labels respectively. 

 

Fig. 2.5: Architecture of a Convolutional neural network to solve PPI classification task- 

X1, X2 are the two elution profiles that are passed through two subnetworks sharing identical 

weights yielding the corresponding feature vectors F1, F2. [Image adapted from 

https://www.mathworks.com/help/deeplearning/ug/train-a-siamese-network-to-compare-

images.html ] 

While developing ComplexMiner, I programmed a MATLAB command line software, 

CoreClust. It was developed with the goal of rapidly discovering protein complexes from a 

https://www.mathworks.com/help/deeplearning/ug/train-a-siamese-network-to-compare-images.html
https://www.mathworks.com/help/deeplearning/ug/train-a-siamese-network-to-compare-images.html
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single dataset. Although it is less sensitive than machine learning-based methods, it can quickly 

identify bona fide protein complexes and hence can be used as a sanity check module alongside 

ML-based approaches. The CoreClust algorithm is described below. 

 

Fig. 2.6: Concept of CoreClust algorithm- (A-B) Shows the cluster exploration phase, only 

first steps of two passes of the cluster exploration phase is shown. (C) Shows the cluster fusion 

phase. 

2.2.1 CoreClust algorithm 

It works in the following two steps:  

Step1: Given n elution profiles, this step comprises of n-1 passes. In each pass p (p = 1, 2, …n-

1) it selects pth elution profile and computes pairwise Pearson correlation with the other n-p 

profiles  and clusters the elution profiles that have high correlation (>= 0.95) with the pth  profile 

(Fig. 2.6A-B). However, this step creates clusters that have many redundant entries. To 
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understand this issue, consider pth  profile has high correlation with k other profiles that are part 

of cluster Cp and consider that (p+1)th  profile has high correlation with m other profiles that 

are part of cluster Cp+1. The clusters Cp and Cp+1 will have at least k elements in common. To 

reduce this redundancy, CoreClust algorithm fuses highly redundant clusters in step 2. 

Step 2: In this step, CoreClust generates a vector containing overlap coefficient (OC) for each 

pair of complexes then, iteratively fuses clusters with high overlap (OC >= 0.75) as depicted 

in Fig. 2.6C. OC is defined mathematically as follows, 

 𝑂𝐶 =
|𝐶1∩𝐶2|

min (|𝐶1|,|𝐶2|)
 (2.2) 

2.3 Integrating shotgun proteomics and MALDI-IMS datasets to 

directly identify proteins in situ 

 

Fig. 2.7: IMS and LC-MS data integration pipeline 

The datasets to develop ImShot comes from our previously published study (Lahiri et al., 2021) 

where we used the serial sections of mice testes and performed in situ trypsin digestion prior 

measuring them in the imaging mass spectrometer. This way we obtained the spatial 

distribution of the peptides within the healthy and diseased tissues to get an idea about where 

the diseased and healthy tissues differ (Fig. 2.7). In a parallel, using the serial sections from 

same mice testes we conducted LC-MS/MS experiments to identify and quantify the protein 
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from where those peptides originated. This gave an idea about what is different between the 

tissues and by how much (Fig. 2.7). 

Here, I will elaborate on the computational method and readers are encouraged to read our 

previous study (Lahiri et al., 2021) for details about experimental setup. 

 

Fig. 2.8: ImShot modules and data integration pipeline - Panel to the left of dotted vertical 

line (Input) shows that ImShot accepts datasets from both the IMS (peptide clusters) and LC-

MS (MaxQuant output: proteingroups.txt/peptides.txt) experiments as input. The ImShot panel 

consists of 3 segments: i) Data processing and statistical analysis. This is responsible for 

transforming LC-MS and IMS datasets in a format that is compatible for data integration 

module. ii) Data integration module. This segment identifies the parent protein of each IMS 

peptide by associating it to an LC-MS peptide based on mass matching and MLP scoring. iii) 

Functional assessment/validation module. This serves as a validation tool for the MLP scoring 

by integrating information from the literature through GO and Pathway enrichment analysis. 

The arrows show information flow between the modules to actualize the data integration 

pipeline.  
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2.3.1 Overview of ImShot algorithm 

The ImShot software employs an algorithm that identifies peptides from imaging mass 

spectrometry (IMS) datasets based on comparison with corresponding proteomic data followed 

by a scoring method. It initially processes data from both IMS and LC-MS to filter for 

experimental, analytical, and isotopic contaminants. The individual mass lists thus created from 

the two complementary techniques are matched within a user-specified tolerance that depends 

on the measurement accuracy of the mass spectrometry platforms used. The resulting 

ambiguity arising from one-to-many mass annotations is subsequently resolved by ranking the 

peptide masses according to a novel scoring system. To further validate the likelihood of 

peptide identification from IMS, the software has functional validation tools like GO and 

Pathway analysis that associates biological processes to the most likely region within a tissue 

specimen. ImShot has been developed using a modular structure that allows the user and/or the 

developer to customize their individual needs. It also therefore enables a user to use this 

software for analyzing LC-MS data separately. Finally, we have developed this whole package 

into an open source, convenient, user-friendly desktop application. The software operates in 

three modes (Fig. 2.8), viz. Data processing & statistical analysis, data integration and 

Functional test/validation. 

2.3.2 Data processing  

Data processing in the backend is done in R. Each block depicted in Fig. 2.8 is subdivided 

into modules that individually carry out the desired tasks for the user. The details on how those 

modules operate are as follows. 

2.3.2.1 LC-MS data cleaning 

Output text files (proteingroups.txt and peptides.txt) from the MaxQuant (MQ) search 

can be used as input files for this module. This module filters the identified protein list 

according to the following steps: 
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i. In a first step, this module removes proteins classified as contaminants from the 

dataset. Within ImShot the algorithm searches the columns Reverse, Potential 

contaminant and Only identified by site for positive entries and removes all rows that 

contain the + sign. 

ii. Following that, the algorithm takes care of any blank proteins that is included in the 

MQ list of identified proteins. The program removes rows (proteins) from the dataset 

that contain only zeros for all replicates in all conditions. 

iii. The filtered dataset is log transformed to ensure its normal distribution for subsequent 

performance of statistical tests. As mentioned before that, this transformation results 

in missing values. Missing values in proteomics dataset is a common scenario which 

occurs when a protein is quantified in some of the replicates but not all. Since such 

missing values can interfere with the statistical tests, one needs to handle them 

appropriately. Missing values are imputed from a normal distribution (Fig. 2.2). 

iv. Finally, as an added feature of this software, users can extract gene names with a 

regular expression that can be displayed in the resulting interactive volcano plot. 

2.3.2.2 IMS data cleaning 

The main aim of this module is to create monoisotopic IMS mass lists from peptide 

measurements. Owing to the lack of physio-chemical separation of the peptides generated on 

tissues, a serious problem of overlapping isotopic envelopes arise in almost all the spectral 

files. Peaks at isotopic positions are often masked by peaks belonging to entirely different 

peptide(s) (left top panel of Fig. 2.9). Deisotoping of imaging mass spectra has therefore been 

an unresolved challenge in the field so far.  

In this algorithm, we took advantage of the fact that distinct peptides (at isotopic positions) 

from a tissue display distinct distribution patterns (left middle panel of Fig. 2.9). Subsequently, 

we have used the unbiased hierarchical clustering algorithm of SCiLS Lab (SCiLS) to segregate 
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the entire IMS dataset into its component spatial clusters. These clusters are therefore 

characterized by peptides having identical distribution pattern (left middle panel of Fig. 2.9). 

Since spatial distributions of isotopic peaks of the same peptide are supposed to be identical, 

we applied the deisotoping algorithm on the mass lists that distinguished one cluster from the 

other. We did not encounter any isotopic envelope violating the above-mentioned condition in 

our IMS datasets (Lahiri et al., 2021). 

 

Fig. 2.9: Generating mono-isotopic IMS mass lists by filtering overlapping spectra – (A) 

Upper panel (Spectrum in *.mis files) shows a supposed isotopic envelope extracted from a 

MALDI IMS spectrum. The supposed isotopic peaks show very distinct spatial distribution 

patterns (HE tissue images alongside the peaks). The middle panel (Hierarchical clustering 

(SCiLS Lab)) shows the segregation of the complex spectra into those of distinct peptides (m/z 

= 1326 and 1385.75 in this case). The spatial distributions of masses at isotopic positions are 

identical in this case (ion images below the isotopic envelopes). Deisotoping algorithm is 

applied on these spectra to generate the mono isotopic IMS mass lists (bottom panel). (B) Non 

apical peak assignments in some cases by proprietary software e.g., SCiLS lab. It highlights 

the importance of the peak correction module in ImShot. 
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i. Deisotoping 

In general, the most intense peak (usually the 1st) of an isotopic envelope is considered 

as the monoisotopic peak that comprises of the naturally occurring most abundant elemental 

isotopes. Deisotoping was performed using standard tolerances which for MALDI was ± 0.15, 

50% for m/z and intensity respectively, i.e., for any m/z =𝑚 we removed all the m/zs (𝑚𝑖) 

falling within the interval: 𝑚+0.85 ≥ 𝑚𝑖  ≥ 𝑚+1.15. Following the deisotoping step, we 

observed non-apical assignment of a small fraction (~20-25%) of all the monoisotopic m/z 

values in a cluster (right panel of Fig. 2.9). For example, the apex of for a peptide peak is at 

m/z = 731.5 but SCiLS Lab assigns the value at m/z = 731.9, since it deals with m/z intervals 

rather than m/z peaks. Since our aim is to identify peptides from IMS by comparing it with LC-

MS data, we applied the following peak correction algorithm to the ‘incorrectly’ assigned m/z 

values. 

ii. Peak correction 

To correct a peak corresponding an m/z = 𝑚, ImShot scans a 1 m/z window that contains 

𝑚. If the intensity of 𝑚 is not the highest within that window then, it updates 𝑚 with the m/z 

value corresponding to the highest peak there. The rationale here is, for MALDI based 

ionization method there can be only one peak within a 1 m/z window. Following the peak 

correction on the monoisotopic mass list, we generate the final IMS mass list as an output of 

the IMS data cleaning module. This list is subsequently compared with LC-MS data to identify 

the corresponding parent proteins. 

2.3.3 Statistical analysis and data integration 

2.3.3.1 Bayesian statistics for LC-MS data 

This module enables users to determine the significantly enriched proteins by employing 

Limma moderated t-test statistics as described in section 2.1.1.4. ImShot employs the Limma 

R package (Ritchie et al., 2015) in the backend to computationally compare two groups 
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(healthy vs. diseased) in proteomics datasets. For every protein, the t statistics 𝑡𝑜𝑟𝑑 is computed 

using the mathematical formula presented in eq. (2.3). Where, 𝑙𝑓𝑐 implies difference between 

means of the two groups in log2 scale and 𝜎, 𝜎𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 imply residual standard deviation and 

unscaled standard deviation respectively. 

 𝑡𝑜𝑟𝑑 =
𝑙𝑓𝑐

𝜎𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑∗𝜎
 (2.3) 

 𝑡𝑚𝑜𝑑 =
𝑙𝑓𝑐

𝜎𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑∗𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 (2.4) 

 ∆𝜎=
𝜎−𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝜎
∗ 100 (2.5) 

The Limma moderated t statistics 𝑡𝑚𝑜𝑑 is computed using the mathematical formula presented 

in eq. (2.4). Where, 𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 imply posterior value of 𝜎 which is obtained by applying 

empirical Bayes method on the entire data. Therefore, for any 𝑙𝑓𝑐 ≠ 0 if 𝜎 > 𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 then 

|𝑡𝑜𝑟𝑑| < |𝑡𝑚𝑜𝑑 |. Thus, the processed and analyzed (for enrichment) LC-MS mass list is created 

(at the peptide level, in this case) for the sub-sequent step of data integration. 

2.3.3.2 Data integration 

This module performs the task of combining and comparing IMS and LC-MS datasets 

with an aim to identify the parent proteins of the peptides detected in IMS. To accomplish this 

task, the software uses the following two sub-modules: 

i. Tolerance search 

The monoisotopic mass list for every spatial cluster is searched within either diseased or 

healthy set of enriched LC-MS peptides depending on the occurrence of the respective cluster. 

Since the accuracy of measurement differs according to the measurement platform (ion source, 

mass analyzer, etc.) the search is performed within a certain tolerance (τ). This part of the 

module has been kept flexible (user specified input) keeping in mind the wide variety of 

measurement platforms that the users might use. 
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Fig. 2.10: Data integration challenges and solutions- When IMS masslist is searched inside 

LC-MS masslist (corresponding to one of the groups) within a tolerance it results in ambiguity 

as shown in red speech balloon. The Data integration module of ImShot resolves the ambiguity 

by ranking peptide by MLP scores where peptide with highest MLP score is most likely. When 

an IMS peptide with mass 860.41 Da is searched inside LC-MS masslist it results in 5 possible 

matches however, as DDDLNLR has the highest MLP score it is the most likely peptide among 

the five. 

ii. MLP scoring 

Owing to the relatively low accuracy of IMS as compared to conventional shotgun 

proteomic measurements, the tolerance search yields a 1:many mapping between IMS and LC-

MS peptides, i.e., one IMS peptide mass is annotated to multiple LC-MS peptides originating 

from different parent proteins (Fig. 2.10). To resolve this ambiguity, we devised a novel scoring 

method that ranks the identity of peptides (as being part of the parent protein) based on the 

following equation: 

 𝑀𝐿𝑃 =
𝜇 ∗ log2 𝑓𝑐

𝑝𝑚𝑜𝑑
 (2.6) 



Computational methods in proteomics  Wasim Aftab 

 76 

where 𝜇 is the mean intensity of a peptide across the replicates in either diseased or healthy 

group, 𝑝𝑚𝑜𝑑 is the Limma moderated p-value of the same peptide and log2𝑓𝑐 implies the fold 

change between the diseased and healthy groups, which is defined as follows, 

 log2 𝑓𝑐 = log2 [
𝜇𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑

𝜇ℎ𝑒𝑎𝑙𝑡ℎ𝑦
] (2.7) 

The intensities used here can be raw intensity, iBAQ or LFQ values, depending on the need of 

the user. Likelihood of a peptide to belong to its corresponding identified parent protein was 

correlated to increasing MLP score for that peptide based on the following reasoning: 

a. Peptides of relatively higher abundance are preferably detected in MALDI-IMS mainly 

due to the lack of any separation technique and competitive co-crystallization of 

matrix/biomolecules (𝜇). Hence peptides (belonging to certain proteins) having a higher 

𝜇 value among the multiple possibilities are most likely the ones that are detected in 

IMS. 

b. The search space for a peptide belonging to a cluster detected in IMS measurements is 

narrowed down to either healthy or diseased LC-MS data depending on their occurrence 

in the corresponding tissues ( log2𝑓𝑐). This increases the likelihood of a peptide 

belonging to a particular protein with very high confidence. 

c. Inclusion of the moderated p-value in the scoring system is used to increase the 

likelihood of a peptide belonging to a given parent protein even further (𝑝𝑚𝑜𝑑). Lower 

the 𝑝𝑚𝑜𝑑, higher the score and higher the probability of an IMS peptide to belong to its 

corresponding identified protein. 

Therefore, peptides from spatial IMS clusters with top MLP scores are regarded as belonging 

to the corresponding parent protein identified in LC-MS. Fig. 2.8 shows the interaction between 

the modules of ImShot to actualize the data integration. 
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2.3.4 Functional assessment/validation 

The IMS peptides identified in the previous step can be screened here based on the 

correlation of their identity to occurrence of specific biological processes in the most likely 

tissue compartment. To perform this task ImShot uses the following two modules: 

2.3.4.1 GO analysis 

This module allows users to associate a common theme to the genes/proteins of interest 

that can help answering the biological question. Gene ontology (GO) provides annotation for 

genes or gene products at different domains: cellular component, molecular function, and 

biological process that are organized in the form of directed acyclic graphs (DAGs) data 

structure. It is possible that proteins could be annotated to multiple GO nodes. Moreover, due 

to the nature of DAG data structure a gene annotated to a particular node also inherits 

annotation from the ancestors of that node. Therefore, in order to find out if a GO term enriched 

in specified list of genes not by chance, ImShot calculates p-values as proposed in this study 

(Boyle et al., 2004): 

 𝑝 = 1 − ∑
(𝑀

𝑖
) ∗ (𝑁−𝑀

𝑛−𝑖
)

(𝑁
𝑛)

𝑘−1
𝑖=0  (2.8) 

Where, 𝑁 is the number of genes/proteins in background list, 𝑀 is the number of genes within 

that list that have direct/indirect annotation to the GO node of interest, 𝑛 represents the length 

of the list corresponding to the genes of interest and 𝑘 is the number of genes within that list 

which are annotated to the node. ImShot uses an R package called ClusterProfiler (Karpievitch 

et al., 2012) in the backend to perform the GO over representation test. For the background use 

in ImShot, the user can either use the global background provided in ClusterProfiler or can use 

a gene/protein list of their own, which contains customized background list for user specific 

needs. The results are displayed in the form of a network graph and a table. Network graph 
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(rightmost panel of Fig. 2.8(C)) shows association between gene and GO terms, an edge is 

drawn between a gene and a GO term if and only if gene is found enriched in that term. 

2.3.4.2 Pathway analysis 

Pathway analysis module allows users to associate a common theme to the genes/proteins 

of interest by annotating (statistically significant manner) them to the biological pathways. 

Often knowledge of affected (due to treatment) biological pathways can help answering the 

biological question. Here, we used the R package ReactomePA (Yu and He, 2016) to discover 

biological pathways in which the genes/proteins of interest participate. Like GO analysis 

module, the ReactomePA package use hypergeometric distribution model to calculate P-values 

to determine whether any pathways in Reactome database annotate a specified list of genes at 

a frequency greater than that would be expected by chance. In addition, ImShot also supports 

pathway enrichment analysis using KEGG database, thereby increasing the applicability of the 

software for the community. Just like GO analysis, results are displayed in the form of a 

network graph and a table. Network graph (bottom graph in rightmost panel of Fig. 2.8(C)) 

shows association between Pathway terms, an edge is drawn between two Pathway terms if at 

least one common gene is found to be enriched the two Pathways. 

2.3.5 Development of ImShot desktop application  

ImShot desktop application was developed using the open-source software framework 

Electron that allow users to build desktop applications by integrating web technologies such as 

JavaScript (JS), HTML and CSS. It does so by combining Chromium rendering engine and the 

Node.js runtime. Fig. 2.11A depicts the multi-process architecture of Electron, which consists 

of two types of processes: the main process and renderer process. The main process’s prime 

task is to start the application and respond to its lifecycle events such as creation and destruction 

of renderer process. It is also responsible for communicating with OS via system APIs. The 
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Renderer process uses Chromium engine (the core code module of the Chromium, open-source 

version of Google’s Chrome web browser) to render a web page as an independent process.  

 
(A) 

 
(B) 

Fig. 2.11: Software architecture- Shows (A) the architecture of Electron framework, which 

combines the core web browsing component of Chromium with the low-level system access of 

Node.js to create platform independent applications that have great UI like web applications 

and high performance like native applications. (B) the architecture of ImShot software. 

Frontend comprises of HTML, CSS, and JavaScript (JS) and backend is programmed in R. JS 

intermediates between the two ends using inter-process communication. User’s request and 

processed results are exchanged in the form of JSON objects.  Electron packages the whole 

code base into a single executable that can run in standalone mode in all major OS platforms. 
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It handles fetching and rendering HTML, loading any referenced CSS and JavaScript, styling 

the page accordingly, and executing the JavaScript. However, unlike typical web pages, it has 

privilege to interact with OS by-means-of the Node.js runtime. The Node.js runtime uses 

Google’s open source V8 engine to interpret JavaScript and provide APIs for accessing the 

filesystem, loading code from external modules, and communicating with other programming 

language. We used the child_process module of node.js with the help of js-call-r package 

(codejie) to call functions written in R programming language that perform data wrangling (in 

the backend) as depicted in Fig. 2.11B. The child_process module provides the ability to spawn 

subprocesses who can easily communicate with each other with a messaging system. We used 

the child_process.spawnSync() function which spawns child process in a synchronous manner 

that blocks the event loop until the spawned process either exits or is terminated. i.e., we wait 

until the R code that is being executed on a child process is finished execution. The data is then 

passed between JS and R in the form of a JSON (JavaScript Object Notation) object (JSON). 

JSON is a lightweight data-interchange format that helps us to achieve minimal communication 

latency. Moreover, data in JSON format is easy for humans to read and write and is easy for 

machines to parse and generate. We JSONify (to encode in JSON format) the data to be sent 

to R and in R environment we un-JSONify (to decode from JSON format) the received data so 

that R code can use them. Finally, we JSONify the R output and send to JS where it gets un-

JSONified for displaying in the frontend. 
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3. Results 

3.1 Biological implications derived by applying Limma proteomics 

pipeline and web application MiGENet 

3.1.1  Limma proteomics pipeline aided the discovery of a novel pathway 

in yeast mitochondria that regulates translation of a specific mRNA  

 

Fig. 3.1: Cbp1, Cbs1, Cbs2 and the Cbp3-Cbp6 complex co-ordinate in a feedback loop 

to regulate the translation of COB mRNA. [Image reused from (Salvatori et al., 2020a) under 

author’s rights in Elsevier’s proprietary journals; Licensing information: Appendix C] 

The mitochondrial respiratory chain is composed of proteins that are encoded by both nuclear 

and mitochondrial genes.  To ensure effective assembly, the two-expression systems must 

https://www.elsevier.com/about/policies/copyright#:~:text=In%20order%20for%20Elsevier%20to,between%20the%20author%20and%20Elsevier.&text=For%20articles%20published%20under%20the,authors%20transfer%20copyright%20to%20Elsevier.
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coordinate closely. Translational activators the nuclear encoded proteins that interact with their 

client mRNA (mitoribosome) regulates the translation of mitochondrial mRNAs. As a result, 

the activators exert strict control over the production of mitochondrial proteins. Translational 

activators Cbp1, Cbs1, Cbs2, and the Cbp3-Cbp6 complex are required for cytochrome b 

synthesis the core subunit of complex III. By employing the data analysis pipeline presented in 

Tools (Sec. 2.1), we discovered a biochemical pathway via which these translational activators 

regulate COB mRNA translation. This feedback loop (Fig. 3.1) is dependent on the alternating 

binding of Cbs1 and Cbp3-Cbp6 at the mitochondrial ribosome's polypeptide tunnel exit. When 

COB mRNA translation is inhibited, Cbs1 binds to the polypeptide tunnel exit and holds COB 

mRNA, preventing it from being translated. When Cbp3-Cbp6, that has been released from its 

complex III assembly intermediate, interacts with the polypeptide tunnel exit, translation is 

triggered. Cbp3-Cbp6 induces the migration of Cbs1, resulting in the availability of COB 

mRNA for translation. 

3.1.2 MiGENet enabled mining of spatial information about connectivity 

and molecular mechanisms regulating mitochondrial gene 

expression 

Mitochondria have their own machinery for gene expression, which requires several 

proteins for transcription, RNA processing, translation, and assembly of the newly synthesized 

subunits. By using the data analysis pipeline and the web application MiGENet (developed 

using forceNetwork++ widget, see sec. 2.1.3 in Tools), we identified a large network of factors 

involved in biogenesis of mitochondrial proteins in baker's yeast. The interactive graphic 

system of MiGENet empowered users to interact and extract information even from the densest 

regions of the network (Fig. 3.2) which enabled them to gain knowledge about the 

mitochondrial gene expression machinery in a fast and efficient manner. 
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Fig. 3.2: MiGENet is a resource to visualize and interact with large protein interaction 

networks: Showing a snapshot of interactive network graph and demonstrating features of 

MiGENet that enable users to extract neighbors of a searched protein. 

3.2 Results obtained by applying CoreClust and SNN methods 

 

Fig. 3.3: CoreClust algorithm discovered 177 protein complexes in our SEC dataset. 

https://migenet.shinyapps.io/migenet/


Computational methods in proteomics  Wasim Aftab 

 84 

 

Fig. 3.4: Some of the bona fide complexes that were discovered by applying CoreClust 

algorithm on our SEC dataset- Elution of the subunits of protein complex is marked with red 

asterisk. 
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After applying CoreClust, on our SEC dataset (Fig. 2.3 in Tools) we discovered 177 

clusters/protein complexes (Fig. 3.3). Locations of the elution profiles for the 3 standard 

proteins with molecular weights 669 kDa, 440 kDa and 158 kDa were noted (marked with 

arrows in Fig. 2.3 in Tools), using this information we validated the output of CoreClust 

algorithm. The rationale is, if sum of the molecular weights of the subunits of a protein complex 

is within the milestones set by the standard proteins, then we consider that protein complex as 

a true complex. Using this heuristic, we found some of the bona fide protein complexes such 

as large and small subunit of ribosome, Chaperonin containing T-complex, Eucaryotic 

translation initiation complex etc. as  depicted in Fig. 3.4. CoreClust is a quick and dirty way 

to detect protein complexes, but due to inherent noise in the complexomics datasets, one should 

employ machine learning as it can even recognize not so obvious patterns in the data. Thus, 

increasing the sensitivity of protein complex (putative) discovery pipeline. ComplexMiner is 

developed with this goal in mind. 

The prime goal of the Siamese subnetworks (See sec. 2.2, Fig.  2.5) in ComplexMiner 

application is to create a pair of feature vectors that are easily classifiable in the fully connected 

layer. If the profiles are very similar, then after sufficient number of iterations the subnetworks 

generate very similar feature vectors; otherwise, they produce very dissimilar feature vectors 

as demonstrated in Fig. 3.5.  Fig. 3.5A shows elution profiles of two subunits from mcm 

complex, as they are part of a protein complex, they elute together from a chromatography 

column. When they are fed to the subnetworks then, after ~1000 iterations the SNN generates 

the corresponding feature vectors as shown in Fig. 3.5B. Notice they almost overlap with each 

other. On the other hand, when two non interacting protein pairs went through the same 

operation as before, the corresponding feature vectors look quite different (Figures 3.5C-D). 

So, in essence, SNN tries to maximize the differences (in the feature space) between dissimilar 

input pairs and minimize the same in case of similar pairs.  
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Fig. 3.5: Feature space during training- (A) Shows a pair of elution profiles of interacting 

proteins MCM3, MCM5 (subunits of MCM complex). (B) Shows the feature vectors of the 

profiles after ~1000 iteration. (C) Shows a pair of elution profiles of non-interacting proteins. 

(D) Shows corresponding feature vectors after ~1000 iteration. 
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3.3 ImShot to facilitate spatial proteomics 

3.3.1 Moderated t-test yields more significant and biologically relevant 

proteins 

 

Fig. 3.6: Limma moderated t-test provides more powerful inference - Top panel shows a 

volcano plot after two group comparisons using Limma statistics where dots with red colors 
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correspond to statistically significant proteins having (𝑙𝑓𝑐 > 2 || 𝑙𝑓𝑐 < −2) & 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05 

that are overlapping between standard t-test and LIMMA. The green dots in the plot show the 

proteins that become statistically significant only when LIMMA is applied. The Venn diagram 

in the middle panel demonstrates that Limma statistics yields 12 more proteins than ordinary 

t-test. These were used in GO-CC enrichment analysis whose results are depicted in the bottom 

panel in the form of a gene-GO term network. Two distinct GO clusters are observed: the red 

rounded dashed rectangle displays the cluster of terms enriched in AROM+ proteins, whereas 

the green rounded dashed rectangle highlights the cluster of terms enriched in WT proteins.  

Table 1: Statistically significant proteins determined exclusively using Limma statistics 

gene lfc tord pord tmod pmod σ σposterior Δσ 

Fsip2 -2.58786 -2.54893 0.063377 -3.17401 0.017473 1.243452 0.998568732 19.69 

Afm 2.304437 2.729307 0.05248 3.371293 0.013497 1.034089 0.837170525 19.04 

Vtn 2.282418 2.318201 0.081297 2.88337 0.025814 1.20584 0.969483584 19.6 

Hist1h1e 2.10801 2.072954 0.106872 2.581464 0.039149 1.245457 1.000120384 19.7 

Lum 2.611408 2.718441 0.053072 3.377887 0.013382 1.176523 0.946837126 19.52 

Serpinf1 2.453236 2.521249 0.06527 3.134472 0.018413 1.191706 0.958562629 19.56 

Ccdc136 -2.11621 -2.22431 0.090179 -2.7628 0.030447 1.165223 0.938113925 19.49 

Col12a1 3.304637 2.097001 0.104005 2.639595 0.036104 1.93006 1.533317489 20.56 

Lypd4 -2.61134 -2.53249 0.064494 -3.1553 0.017911 1.262879 1.01360433 19.74 

Fmo2 2.138849 1.976454 0.119285 2.466548 0.045988 1.325376 1.062028449 19.87 

Tex33 -2.00396 -2.1484 0.098158 -2.66628 0.034791 1.142407 0.920511851 19.42 

Atp1a4 -2.0369 -2.51776 0.065513 -3.1028 0.019206 0.990835 0.804009894 18.86 

lfc → log fold change; pord → p-values corresponding to the t-statistics (tord); pmod → p-values corresponding to 

the moderated t-statistics (tmod); σ →  sample standard deviations for each gene/protein; σposterior → posterior values 

for σ; Δσ → percentage shrinkage 

Applying Limma based moderated t-test in the dataset from our recent study on aromatase 

induced male infertility (Lahiri et al., 2021) we found that 12 more proteins (Fig. 3.6, green 
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points on the volcano plot; Table 1) turned out to be statistically significant using Limma 

moderated t-test when compared to the ordinary t-test. For all these proteins, we observe that 

the percentage shrinkage (𝛥𝜎) in sample variance (computed using Eqn (2.5)) is always positive 

(Table 1) and |𝑡𝑚𝑜𝑑| is always greater than |𝑡𝑜𝑟𝑑|. As higher t-value is associated with smaller 

p-value, we observe that Bayesian modelling yields more statistically significant proteins when 

compared to ordinary t-test by shrinking the sample variance towards a pooled estimate. 

However, to learn if these additional statistically significant proteins are at all relevant 

biologically, we performed GO enrichment analysis using the GO analysis module of ImShot. 

In GO-CC enrichment network we notice that most of the proteins that are significantly 

upregulated upon aromatase overexpression, are involved in regulation of the extracellular 

matrix (ECM) (Fig. 3.6, lower red panel). Interestingly, it has been shown that components of 

the ECM are upregulated in men suffering from infertility (Adam et al., 2012; Alfano et al., 

2019). In case of WT, we observe the prominence of acrosomal membrane and protein 

complexes required for high-energy cellular processes (as expected in case of normal 

spermatogenesis) (Fig. 3.6, lower green panel). Together, these results justify the application 

of Bayesian modelling over ordinary t-test: we not only get more proteins that are statistically 

significantly different between two conditions but also can get more information that describes 

the condition biologically. 

3.3.2 Deisotoping and peak correction prevents false positive inclusion 

and loss of information 

Re-analysis of our previously published data (Lahiri et al., 2021) and further analysis on 

the same dataset revealed a substantial reduction in the number of peaks after deisotoping 

(Table 2). Since the isotopic peaks of the same peptide has identical spatial distribution, 

deisotoping could get rid of false positive peaks. The peak correction module allowed us to 

reduce the false positives further by including apical m/z values, thereby preventing loss of 
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information that could otherwise have affected the matching of IMS data with that of the LC-

MS measurements. Together, these modules reduced the false positives by 46.23%. Without 

the deisotoping and peak corrections we would lose many more peptides and some among them 

could be crucial in understanding the biological differences between the disease and healthy 

tissues. Moreover, retaining more legitimate peptide peaks could also help better integration 

with the LC-MS data because, during the data integration step, peptides identified in IMS are 

searched in the set of peptides identified by LC-MS experiment.  

3.3.3 Localization of proteins and pathways in situ validates MLP 

scoring 

Results of the tolerance search shows that ~63% of m/z values (spanning over the IMS 

clusters mentioned in Table 2) bear the 1:many correspondences with the identified peptides in 

LC-MS. As described before, we apply a novel scoring method (MLP scoring) to resolve this 

ambiguity. However, validation of our reasoning behind the scoring approach is required to 

impart further confidence in the applicability of this scoring method, in general. In addition to 

validating experimentally the distribution pattern of a subset of peptides identified in IMS 

measurements (Lahiri et al., 2021), we attempted to further validate the scoring here by using 

modules from ImShot itself and available public data as a proof of concept. The GO and 

Pathway analysis modules of the Functional assessment/validation section (Fig. 2.8 right panel 

in Tools) are used here to assess the functional relevance of the peptides by dint of their spatial 

localization. 
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Fig. 3.7: Validating MLP scoring computationally - (A) HE stained image of AROM+ 

mouse testis. The deep blue pattern within the tissue represents an interstitial cluster detected 

exclusively in AROM+. The peptides from this cluster were searched in corresponding LC-MS 

data and the results after MLP scoring are shown in different colors according to the ranks. (B) 

Some proteins having peptides with top MLP scores are highlighted (in Pink) in the volcano 

plot, showing that they were also highly enriched in the LC-MS data corresponding to AROM+ 

mice. (C) Gene-GO term network after over-representation test using proteins from the table 

annotated with highest MLP scores (1st group). Tiny fixed sized grey nodes in the network 

represent genes and larger light-colored nodes (variable sizes, see size legend) represent GO 

terms. An edge between a gene node and GO term node indicate that the term was not enriched 

by chance. (D) Gene-Pathway network after over-representation test using proteins from the 

table annotated with highest MLP scores (1st group). Nodes in the network represent Reactome 

pathways. Two pathways are joined with an edge if they share enriched (not by chance) genes. 

Thickness of an edge is proportional to the number of common genes. Nodes are colored 
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according to p-value of over-representation test and the color gets darker as the p-value 

decreases. 

3.3.4 Computational validation 

We first opted to validate the parent proteins of peptides (with highest MLP score) from a 

cluster observed exclusively in the interstitial spaces of AROM+ testis (Fig. 3.7A). Here we 

observe that peptides from proteins like mimecan, different chains of collagen and prolargin, 

which have previously been shown to be involved in extracellular matrix assembly and 

regulation (Mayer et al., 2016; Lahiri et al., 2021; Alfano et al., 2019) have acquired the highest 

MLP scores (Fig. 3.7A). In addition, we find that the interstitial cluster is enriched in biological 

processes related to connective tissue formation involving ECM components (Fig. 3.7C) and 

hemostasis. This is in line with the observation that interstitial spaces and the ECM components 

involved therein are severely affected in the AROM+ phenotype (Adam et al., 2012; Alfano et 

al., 2019). At the same time, these proteins are also observed to be highly enriched in AROM+ 

LC-MS data (Fig. 3.7B). Applying expert knowledge and database mining on the peptides 

identified with highest, second highest and third highest MLP scores for the above cluster (Fig. 

3.7A), we could say that the biological relevance decreases as the MLP scores decreases. 

Therefore, the MLP scoring based ranking method is providing us with probable protein 

identification in situ with reasonable accuracy and minimum false positives. Consistent with 

the GO analysis and other findings, from pathway analysis we see that extracellular matrix 

organization through collagen synthesis and assembly (Fig. 3.7D) and immune responses 

characterize the interstitial cluster in AROM+ testis. This provides further timber to our ranking 

method for identifying peptides in situ. 

3.3.5 Literature based validation 

 As a further step of validating the identity of the IMS peptides by MLP scoring, we 

proceeded to compare our findings with publicly available data. To avoid a specific disease 
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model, we chose peptides localized to the seminiferous tubules of the WT testis. The 

‘identified’ proteins in the WT seminiferous tubules are all responsible for healthy 

development and functioning of testis. We generated ion images (Fig. 3.8) for those peptides 

from our previously published (Lahiri et al., 2021) dataset, which clearly demonstrates their 

tubular localization in the WT mouse testis. Comparing the distribution with human testes cross 

sections (Khan et al., 2018), we observe that the proteins identified by MLP scoring indeed 

localizes to the testicular tubules (Fig. 3.8). This serves as an additional and strong validation 

of our MLP scoring method. 

 

Fig. 3.8: Validating MLP scoring based on literature- Distribution pattern of some 

important proteins in IMS measurements (identified using MLP scoring) in WT tissue. Ion 

images (zoom: 600μm) from our IMS experiments indicate these proteins are distributed in 

tubular regions of WT mice testis and the distribution patterns in the corresponding 

immunohistochemical staining (IHC) images from human tissue atlas (Tissue-Atlas, 2021) also 

corroborate with this finding. 

3.3.6 ImShot: The desktop application and GUI 

ImShot GUI has two parts: sidebar and main panels (Fig. 3.9A). The sidebar contains the 

different modules of the software as dropdown menus. For the two-group comparison 

(LIMMA), it renders high resolution interactive volcano plot along with a numeric input box 
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for fold change adjustment that allow users for desired data thresholding (Fig. 3.9B). Users can 

also save the plot in the PNG file format. ImShot also shows the Limma moderated t-test results 

in the form of a searchable table which can be exported as excel or csv format (Fig. 3.9C).  

 

Fig. 3.9: ImShot GUI - (A) ImShot GUI sidebar (yellow dashed rectangle) and main panel 

(red dashed rectangle). The sidebar panel can toggle upon clicking on the icon enclosed in 

white dashed rectangle. (B) Interactive volcano plot. Reddish dots indicate statistically 

significant proteins after LIMMA moderated t-test ((𝑙𝑓𝑐 > 2 || 𝑙𝑓𝑐 < −2) & 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.05) 

and q-value based FDR control. The plot updates automatically when the log fold change/FDR 

is tuned using the input boxes provided. Additionally, the plot can be updated according to 

whether or not a p-value adjustment is desired. Placing the cursor on a data point of the volcano 

plot provides information about the protein identity, its fold change and p-value (reddish 



Computational methods in proteomics  Wasim Aftab 

 95 

rectangle). (C) Searchable table after LIMMA moderated statistics. (D) Protein-GO term 

interaction network after over representation test. Tiny dark colored, fixed sized nodes 

represent proteins and light colored, variable sized node represent GO terms and their sizes are 

proportional to the numbers of proteins involved in them. A protein is connected to a GO term 

via an edge if and only if the term is enriched (pvalue is adjusted) in that protein. (E) Searchable 

table after GO analysis. (F) Pathway-Pathway interaction network after over representation 

test. Two pathways are connected via an edge if and only if both are enriched (pvalue is 

adjusted) in at least one common protein. Size of a node is proportional to the number of 

proteins involved in it and the color is proportional to the adjusted pvalue, lower pvalue maps 

to darker color. (G) Searchable table after Pathway over representation test. Contents from all 

the tables can be copied into the clipboard or exported as CSV/EXCEL by clicking 

corresponding buttons on top the tables (shown in dashed red rectangle). 

For the GO and Pathway enrichments analyses, it creates high-resolution plots of GO-gene and 

Pathway-Pathway interaction networks using the top 10 most significant GO and Pathway 

terms respectively (Fig. 3.9D and Fig. 3.9F). The plots can be exported as PNG image files. 

These plots in the GUI are zoomable and the nodes are highly flexible allowing the users to 

select nodes of their choice for rearranging them freely (see video tutorial) to create a network 

map according to their convenience and need. ImShot also shows the over representation test 

results in the form of a searchable table (for top 10 most significant GO terms/Pathways) below 

the network plot which can be exported as excel or csv format (Fig. 3.9E and Fig. 3.9G)). 

In addition, ImShot maintains an operation log that allow users to record all the steps along 

with names of the files and version of R used. This paves the way for the user to reproduce the 

data analysis later without any ambiguity. 
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4. Discussion and Outlook 

4.1 How Limma proteomics pipeline and forceNetwork++ facilitates 

knowledge discovery form high-throughput proteomics datasets? 

To highlight how our approach aids a researcher confronting with high-throughput proteomic 

data analysis, I will discuss the salient features of forceNetwork++ (Fig. 4.1) and Limma 

proteomics pipeline. 

 

Fig. 4.1: Comparing forceNetwork and forceNetwork++ in the context of effective 

visualization of  protein-protein interaction network- The improved forceNetwork++ 

function contains features (that aid in the effective visualization of PPI networks) that were 

either limited or absent in the original forceNetwork function from networkD3 R package. 

4.1.1 Improved statistical inference 

Proteomic studies often use t-tests to identify differentially expressed proteins. In section 

3.2.1, I have shown that how applying moderated t-statistics from the empirical Bayes approach 

can improve outcomes. In order to demonstrate the power of Limma statistics, the pipeline 

outputs two volcano plots: one using the classical t-test and the other employing moderated t-

test. Since the plots are interactive and the pipeline also provides the associated data, it is easy 

to compare and assess the power of Limma statistics over ordinary t-test. In this way, our easy-

to-use proteomics data analysis pipeline enables an investigator to extract insights from data 

even with limited computational experience. 
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4.1.2 Extraction of exclusively enriched proteins 

The Limma proteomics pipeline allows user to extract list(s) of ‘exclusively enriched’ 

proteins (See sec. 2.1.1.1). These exclusive proteins are often of prime biological importance. 

This is a critical aspect of our pipeline since it enables the user to deduce biological implications 

from the list(s) of exclusive proteins via GO and Pathway analyses. 

4.1.3 Improved interaction with the large network plot 

The MiGENet app developed using forceNetwork++ allows users to search a protein inside 

large network and extract its immediate neighbors in a separate plot (Fig. 4.1). Moreover, a 

table listing the interactors of the searched protein with log2 fold change is also provided as an 

output (Fig. 3.2).  This is an extremely important feature because users can quickly gain 

knowledge about the biological system. By facilitating  effective visualization of complex 

protein-protein interaction landscapes, forceNetwork++ has enabled researchers understand the 

network biology of the biological systems (Singh et al., 2020; Lukacs et al., 2021).  

 

Fig. 4.2: MiGENet offers interactive visualization of volcano plots for each two-group 

comparison. 
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4.1.4 Interactive visualization of volcano plots 

For every bait, MiGENet app incorporates the volcano plots after Limma based moderated 

t-test. Therefore, on a single platform, users can combine information from volcano plots and 

bait-prey interaction network plot, greatly speeding up interpretation and knowledge discovery 

(Fig. 4.2). 

4.1.5 Code reusability 

Given that the Limma proteomics pipeline's code for data pre-processing and statistical 

analysis is written in R, it makes sense to design a graphics system in R. Therefore, to develop 

an improved graphics system, I choose to reuse codes from networkD3 R package because it  

uses HTML widgets (Web-page-htmlwidgets, 2021) to render D3 like interactive network in a 

force-directed layout from R environment. HTML widgets offer a platform to generate R 

bindings to JavaScript libraries so that calling JavaScript functions within R environment 

becomes feasible. The benefit of using HTML widgets is that they can render in different 

context viz. in the shiny apps (Web-page-shiny, 2021), R console and R Markdown. This 

approach of reusing existing software to create new software is referred to as code reuse or 

software reuse, and it is one of the best practices in software engineering. Since the source code 

of forceNetwork++ is written in a modular fashion therefore, it can be reused further in another 

software. This is what we did when we used forceNetwork++ to build MiGENet app. 

Currently, the data analysis pipeline and the visualization software (forceNetwork++ ) are 

distributed separately, requiring the user to perform two installations. However, it would be 

more convenient to have them integrated into a single piece of software. My future outlook is 

to convert the entire data analysis pipeline into a full-fledged GUI application capable of 

directly communicating with network visualization software such as Cytoscape. This gives the 

user the flexibility of visualizing their data in a variety of ways/layouts. 



Computational methods in proteomics  Wasim Aftab 

 99 

4.2 How ComplexMiner will aid in protein complex discovery? 

In ComplexMiner, we employed one-shot learning which is a subset of machine learning to 

improve protein complex prediction. The Siamese network based one-shot learning 

architecture (Fig. 2.5) enables the discovery of protein complexes with fewer datasets. Siamese 

networks are commonly employed to learn relationships between two comparable entities in 

several problem domains viz. image recognition, signature verification, paraphrase 

identification (Bromley et al., 1993; Yin and Schütze, 2015; Koch et al., 2015) etc. However, 

to the best of my knowledge, it has never been used to solve protein complex prediction 

problem. 

ComplexMiner offers a computational platform with several  benefits. Possible uses of the 

software include exploring complexomics datasets, visualizing discoveries, and passing output 

to other software for additional analysis. For instance, it can send the network table containing 

cluster information directly to a Cytoscape session. This way users familiar with Cytoscape 

can alter the appearance of the network graph and perform additional analysis. In addition, 

ComplexMiner allows user to query a list of proteins in the dataset and visualize their elution 

profiles. Another striking feature of ComplexMiner is the ability to visualize data in the form 

of an interactive heatmap. With the advancement of MS technologies, now a typical 

complexomic experiment can quantify 4000-5000 elution profiles across dozens of fractions. 

Interactive visualization of such a dataset is a real challenge. ComplexMiner tries to solve this 

by enabling GPU to handle visualization and interaction. User will be able to drag select a 

cluster from the heatmap and query for PPI in the String database and the novel connections 

will be shown in different colors than connections found in the String database. In addition to 

complex discovery, ComplexMiner provides several sanity-checks to test the quality of the 

dataset. We will integrate CoreClust, a standalone command line utility, into ComplexMiner 

to speed up the discovery of  bona fide protein complexes. Because ComplexMiner is still in 
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the development and testing stages, my primary goal is to make it available as open-source 

software as soon as possible. 

4.3 How ImShot facilitates spatial proteomics? 

ImShot is the first software of its kind to provide an end-to-end analysis of diseased vs healthy 

systems by integrating two orthogonal MS technologies. The software can be used in any two-

group comparison i.e., animal models, patient samples etc. allowing user flexibility in terms of 

experimental context. The software elegantly deals with both the IMS and LC-MS data and 

integrates them through a conveniently designed GUI that does not require either proteomic or 

computational expertise to operate.   

While dealing with IMS data, ImShot performs a very crucial task of deisotoping the peptide 

spectra based on spatial data segregation. In absence of deisotoping, the resulting IMS spectra 

would be biased towards an overestimation of the number of peptide peaks and will also include 

ambiguous annotations of peptide masses when comparing with LC-MS data. To the best of 

our knowledge, this is the only software that deisotopes IMS peptide spectra to get rid of false 

positives. The novel method of ranking of IMS peptides in case of multiple annotations (based 

on our proposed MLP scoring) associates most likely biological pathways with the most 

probable areas of the tissue. Computational, experimental and literature based validation of the 

ranking method has imparted sufficient confidence in our scoring approach, which can now be 

applied to any type of tissues for two-group comparisons.   

The GUI based software for LC-MS data analysis mainly either have been desktop applications 

running only on Windows platform (Tyanova et al., 2016b; Rigbolt et al., 2011) or web 

applications (Weiner et al., 2018; Gallant et al., 2020; Efstathiou et al., 2017). Though web 

apps have many benefits, their stability depends on the state of the server running the 

application, number of users accessing it, network bandwidth etc. Moreover, often these web 

apps are written using shiny R package (Weiner et al., 2018; Gallant et al., 2020) which 
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provides easy to use APIs to render output of R script(s) in web page(s) (al.). However, as the 

shiny documentation mentioned “Debugging Shiny applications can be challenging” 

(RStudio-Inc., 2021). No software is free from bug. Therefore, effective debugging will not 

only boost development time but will also enable software developers to be more creative with 

the design and implementation of their ideas. Generally, breakpoints are employed for 

debugging a software. A breakpoint is a point in a program where it is intentionally stopped or 

paused for debugging purposes. However, in shiny apps this is not so flexible as the 

documentation states: “Unfortunately, breakpoints aren’t helpful in all situations. For 

technical reasons, breakpoints can only be used inside the shinyServer function. You can’t use 

them in code in other .R files.” (RStudio-Inc., 2021). One can use browser function instead of 

a breakpoint whenever the code execution needs to stop. This will activate the debugger 

irrespective of the file containing the command. But the drawback is that the developers must 

remember to remove the browser function calls every time they want to commit code to a 

repository. On the other hand, the desktop applications so far have been lacking the aesthetics 

in the charts and plots and often users need to write additional scripts or use graphics editing 

software to make publication quality figures. However, in ImShot we have tried to incorporate 

the best of the two worlds i.e., it produces high quality graphics like a web app and at the same 

time runs natively on user’s computer. Thereby, ImShot GUI allows the user to analyze data in 

an independent manner free of external influencing factors, viz. internet connection/bandwidth, 

cloud computing limitations etc.  

ImShot feels almost like a native web app that can read and write data besides accessing 

computer’s file system. Moreover, Electron framework saves time by providing a large pool of  

Application Programming Interfaces (APIs) which the developers can integrate into their 

desktop apps quite easily. It is an opensource software under MIT license, which therefore 

practically allows anyone to view and modify its source codes to adapt or extend it to use in 
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more customized environments. The front and backends of ImShot operate in an independent 

manner. The major benefit of this approach is that implementation of new features become 

very time efficient. Other advantages of this mode that can be used by developers for further 

improvement/customization are code optimization, modularity, faster deployment, and 

flexibility in switching frameworks. Modular architecture of ImShot’s codebase in another 

critical advantage, where each function performs a specific task. Therefore, the modules are 

available to use independently. Since ImShot performs lots of statistical computations in the 

backend, the use of R makes a perfect choice and usage of HTML, CSS, JS in the front-end 

make the software extremely flexible and feature rich. In addition, it also records the R code 

runtime which allows a software developer to monitor and optimize (if needed) the backend. 

ImShot desktop app provides question mark icons with hover effects next to every interface 

element (input, dropdown box, file upload wizard etc.) to guide users about the meaning of the 

input making the app quite easy to use. Moreover, ImShot generates the tables, plots and graphs 

in time efficient manner and they’re of publication quality already. 

ImShot is freely available in the GitHub (https://github.com/wasimaftab/ImShot) with detailed 

instructional material on its various use cases. I am also planning to augment many more 

functionalities based on user feedback in the future releases of ImShot.   

 

 

 

 

 

https://github.com/wasimaftab/ImShot
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List of abbreviations  

ANOVA - Analysis of variance 

API – Application Programming Interface 

AP-MS - Affinity purification coupled with mass spectrometry 

AROM+ - Mice overexpressing human P450 aromatase   

ATP - Adenosine triphosphate 

BioID - Proximity-dependent biotin identification 

BN - Blue native gel 

BPL - Biotin protein ligase 

ClusterONE - Clustering with overlapping neighborhood expansion 

COB  -  cytochrome b 

DAG - Directed acyclic graph 

DDA - Data dependent acquisition 

DIA - Data independent acquisition 

DL - deep learning  

ECM  - Extracellular matrix 

ESI - electrospray ionization 

FD - Force-directed 

GO – Gene ontology 

GPU - Graphics processing unit 

GUI - Graphical user interface 

HIV - Human immunodeficiency virus 

HTML - HyperText Markup Language 

iBAQ - Intensity based absolute quantification 

IEX - Ion exchange 
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IHC - Immunohistochemical staining  

IMS - Imaging mass spectrometry 

IP - Immunoprecipitation 

iTRAQ - Isobaric tag for relative and absolute quantitation  

JS – Java script 

JSON - Java script object notation 

KEGG - Kyoto encyclopedia of genes and genomes 

LBQ - Label based quantification 

LFQ - Label free quantification 

Limma - Linear models for microarray data 

MALDI-IMS – Matrix assisted laser desorption/ionisation imaging mass spectrometry 

MCM - Minichromosome maintenance protein complex 

MDS - Multidimensional scaling 

ML – Machine learning 

MLP – Most likely peptide 

MQ – MaxQuant 

MS – Mass spectrometry 

NLP - Natural language processing 

OC - Overlap coefficient 

OS – Operating system 

PDL - Proximity dependent labelling 

PNG - Portable Network Graphics 

PPI – Protein-protein interaction 

RPC - Reversed phase chromatography 

SAX - Strong anion exchange 
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SCX - Strong cation exchange 

SEC - Size exclusion chromatography 

SILAC  - Stable isotope labeling with amino acids in cell culture 

SMOTE - Synthetic minority oversampling technique 

SNN - Siamese neural network 

SRM - Selected Reaction Monitoring 

SSE - Sum squared error 

SWATH-MS – Sequential window acquisition of all theoretical fragment ion spectra mass 

spectrometry  

TOF – Time of flight 

TSV - Tab-separated values 

UI - User interface 

WT – Wild type 

XL – Cross linking 
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