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Abstract xi

Abstract

Deep learning has revolutionized AI and deep neural networks, in particular, have been

hugely successful in a wide range of applications. Deep neural network architectures with

different inductive biases have been proposed in different communities. In the computer vi-

sion community, Convolutional Neural Networks (CNNs), first proposed in the 1980’s, have

become the standard visual classification model. Recently, as alternatives to CNNs, Cap-

sule Networks (CapsNets) and Vision Transformers (ViTs) have been proposed. CapsNets,

which were inspired by the information processing of the human brain, are considered to

have more inductive bias than CNNs, whereas ViTs are considered to have less inductive

bias than CNNs. All three classification models have received great attention since they

can serve as backbones for various downstream tasks, e.g. object detection and semantic

segmentation. However, these models are far from being perfect.

As pointed out by the community, there are two weaknesses in standard Deep Neural

Networks (DNNs). One of the limitations of DNNs is lack of explainability. Even though

they can achieve or surpass human expert performance in the image classification task, the

DNN-based decisions are difficult to understand. In many real-world applications, how-

ever, individual decisions need to be explained. The other limitation of DNNs is adversarial

vulnerability. Concretely, the small and imperceptible perturbations of inputs can mislead

DNNs. The vulnerability of deep neural networks poses challenges to current visual clas-

sification models. The potential threats thereof can lead to unacceptable consequences.

Besides, studying model adversarial vulnerability can lead to a better understanding of

the underlying models.

Our research aims to address the two limitations of DNNs. Specifically, we focuses on

deep visual classification models, especially the core building parts of each classification

model, e.g. dynamic routing in CapsNets and self-attention module in ViTs.

We argue that both the lack of explainability and adversarial vulnerability can be

attributed to the difference in the visual features used by visual recognition models and

the human visual system to recognize objects. Namely, the visual clues used by standard

CNNs are different from the ones used by our visual system. The differences make the

interpretation of classifications difficult. Similarly, the differences also leave attackers the

chance to manipulate decisions with quasi-imperceptible input perturbations.

We have analyzed if the brain-inspired Capsule Network (CapsNet) performs more ro-

bustly than the CNNs. Our investigation on CapsNet shows CapsNets with more inductive
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bias do not perform better than CNNs. The dynamic routing therein can even harm the

robustness, in contrast to the common belief. Compared to CNNs and CapsNets, Vision

Transformers (ViTs) are considered to have less inductive bias in its architecture. Given

the patch-wise input image representation of ViT, we dissect ViT with adversarial patch

attack methods. We find that vision transformers are more robust to naturally corrupted

patches than CNNs, whereas they are more vulnerable to adversarial patches. Specifically,

the attention module can effectively ignore natural corrupted patches. However, when

attacked by an adversary, it can be easily fooled.

Overall, our work provides a detailed analysis of CNNs, CapsNet, and ViTs in terms of

explainability and robustness. The contribution of this thesis will facilitate the application

of existing popular deep visual classification models and inspires the development of more

intelligent classifiers in the future.



Zusammenfassung

Deep Learning hat die Künstliche Intelligenz revolutioniert, und insbesondere sind tiefe

neuronale Netze in einer Vielzahl von Anwendungen sehr erfolgreich. Architekturen der

tiefen neuronalen Netze mit unterschiedlichen induktiven Verzerrungen werden in ver-

schiedenen Arbeiten vorgestellt. In der Community des Computersehens sind Convolu-

tional Neural Networks (CNNs), die erstmals in den 1980er Jahren vorgestellt wurden, zum

Standardmodell für die visuelle Klassifikation geworden. Als Alternativen zu CNNs werden

kürzlich Capsule Networks (CapsNets) und Vision Transformers (ViTs) vorgestellt. Cap-

sNets, die von der Informationsverarbeitung des menschlichen Gehirns begeistert wurden,

gelten als mehr induktiv verzerrt als CNNs, während ViTs als weniger induktiv verzerrt als

CNNs angesehen werden. Alle drei Klassifikationsmodelle erfahren viel Aufmerksamkeit,

da sie als Backbone für verschiedene nachgelagerte Aufgaben dienen können, z.B., Ob-

jekterkennung und Semantische Segmentierung. Allerdings sind diese Modelle weit davon

entfernt, perfekt zu sein.

Wie die Gemeinschaft darauf hingewiesen hat, gibt es zwei Schwachstellen in stan-

dardmäßigen Deep Neural Networks (DNNs). Eine der Einschränkungen von DNNs ist die

mangelnde Erklärbarkeit. Obwohl sie die Leistung menschlicher Experten bei der Bildklas-

sifizierungsaufgabe erreichen oder übertreffen können, sind die DNN-basierten Entschei-

dungen schwer zu verstehen. In vielen echten Anwendungen müssen jedoch einzelne Entschei-

dungen erklärt werden. Die andere Einschränkung von DNNs ist die gegnerische Verlet-

zlichkeit. Nämlich können die kleinen und nicht wahrnehmbaren Störungen der Eingaben

DNNs irreführen. Die Verletzlichkeit der DNNs stellt aktuelle visuelle Klassifizierungsmod-

elle vor Herausforderungen. Die potenziellen Bedrohungen davon können zu inakzeptablen

Konsequenzen führen. Außerdem kann die Forschung von gegnerische Verletzlichkeit der

Modelle zu einem besseren Verständnis der zugrunde liegenden Modelle führen.

Unsere Forschung zielt darauf ab, die beiden Einschränkungen von DNNs anzugehen.

Nämlich konzentrieren wir uns auf tiefe visuelle Klassifikationsmodelle, insbesondere auf
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die Kernbestandteile jedes Klassifikationsmodells, z. dynamisches Routing von CapsNets

und Selbstaufmerksamkeitsmodul von ViTs.

Wir argumentieren, dass sowohl der Mangel an Erklärbarkeit als auch die Verletzlichkeit

von DNNs auf den Unterschied in den visuellen Merkmalen zurückzuführen sind, die von

visuellen Erkennungsmodellen und dem menschlichen visuellen System zur Erkennung von

Objekten verwendet werden. Die visuellen Hinweise, die von standardmäßigen CNNs ver-

wendet werden, unterscheiden sich nämlich von denen, die von unserem visuellen System

verwendet werden. Die Unterschiede erschweren die Interpretation der Klassifikationen.

Ebenso lassen die Unterschiede Angreifern auch die Möglichkeit, Entscheidungen mit quasi

unmerklichen Eingabestörungen zu manipulieren.

Wir haben analysiert, ob das vom Gehirn begeisterte Capsule Network (CapsNet) eine

robustere Leistung als die CNNs erbringt. Unsere Forschung zu CapsNet zeigt, dass

CapsNets mit stärker induktiver Verzerrung nicht besser als CNNs verhalten. Entge-

gen der landläufigen Meinung kann das darin enthaltene dynamische Routing sogar der

Robustheit schaden. Im Vergleich zu CNNs und CapsNets wird davon ausgegangen,

dass Vision Transformers (ViTs) eine weniger induktive Verzerrung in ihrer Architektur

aufweisen. Angesichts der patchweisen Eingabebilddarstellung von ViT analysieren wir

ViT mit gegnerischen Patch-Angriffsmethoden. Wir stellen fest, dass Vision Transformer

gegenüber natürlich beschädigten Patches robuster als CNNs sind, während sie verlet-

zlicher für gegnerische Patches sind. Insbesondere kann das Selbstaufmerksamkeitsmodul

natürlich beschädigte Patches effektiv ignorieren. Wenn es jedoch von einem Gegner ange-

griffen wird, kann es leicht getäuscht werden.

Insgesamt liefert unsere Arbeit eine detaillierte Analyse von CNNs, CapsNet und ViTs

in Bezug auf Erklärbarkeit und Robustheit. Der Beitrag dieser Arbeit wird die Anwendung

bestehender populärer tiefer visueller Klassifikationsmodelle erleichtern und die Entwick-

lung intelligenterer Klassifikatoren in der Zukunft anregen.
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Chapter 1

Introduction

1.1 Motivation

Artificial intelligence changes our daily lives in many perspectives. The recent advances of

artificial intelligence are mainly powered by Deep Learning method [69]. As a revolutionary

technique, Deep Learning methods are also embraced by other disciplines, e.g. bioscience

and astronomy. As a representative model in the framework of deep learning, deep neural

networks (DNNs) dominate the community due to their powerful expressiveness. However,

two limitations of deep neural networks prevent their wide application in safety-critical

domains, e.g. the medical domain and autonomous driving system.

One of the limitations of deep neural networks is their lack of explainability. Even

though the DNN-based intelligent system can achieve or surpass human expert perfor-

mance on some tasks, it is not clear how the system reaches its decisions. For exam-

ple, Deep convolutional neural networks (DCNNs) achieve start-of-the-art performance on

many tasks, such as visual object recognition [115, 49, 121, 57]. However, since they lack

transparency, they are considered as ”black box” solutions. In real-world applications,

however, individual decisions need to be explained to gain the trust of the users. e.g., au-

tonomous driving systems should reassure passengers by giving explanations when braking

the car abruptly [65, 66]. Decisions made by deep models are also required to be verified

in the medical domain. Mistakes of unverified models could have an unexpected impact

on humans or lead to unfair decisions [79, 46]. Besides, AI applications must comply with

related legislation, e.g., the right to explanation in GDPR of the European Union [108].

The other limitation of deep neural networks is limited generalization robustness. When

deep neural networks are deployed in real-world applications, the input can deviate from
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Figure 1.1: The overview of deep visual classification model architectures. This figure is

based on the figures in [25, 49, 102]

the training data distribution. The inference on the input with overlapped patterns [102],

affine-transformed pattern [102, 37], and natural corruption [52] can result in unexpected

results. Besides the robustness to out-of-distribution data, the low robustness to artificial

perturbation also raises great concern in the community. Concretely, the small and im-

perceptible artificial perturbations of inputs can mislead DNN-based intelligent systems.

For example, given an image correctly classified by a deep convolutional neural network,

a hardly human-perceptible artificial perturbation can cause the convolutional neural net-

work to misclassify the image when added to it. The vulnerability of Deep Learning poses

challenges to current intelligent systems. The adversarial images on CNNs can pose poten-

tial threats to security-sensitive CNN-based applications, e.g., face verification [112] and

autonomous driving [26]. The potential threats thereof can lead to unacceptable conse-

quences. Besides, the existence of adversarial images demonstrates that the object recogni-

tion process in CNNs is dramatically different from that in human brains. Hence, the study

of adversarial examples on deep neural networks can also lead to a better understanding

of the underlying object recognition models.

Since [68] proposed the AlexNet, deep neural networks have revolutionized the computer

vision community. In the image classification task, the classification model consists of two

parts, i.e., feature extractor and classifier. The modules that extract features from input

images are also adopted as feature extractor (dubbed backbone) in downstream tasks,

e.g., object detection [29, 48] and semantic segmentation [83, 144, 15]. The improvement

of the classification models often also benefits the downstream tasks due to the improved

backbone. In this thesis, we focus on deep visual classification models from the perspectives

of explainability and robustness.
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As one of the representatives of deep visual classification models, convolutional neural

networks have dominated the computer vision community in the last decade [68]. How-

ever, CNNs suffer from many limitations, e.g., only local information aggregation at lower

layers and the broken equivariance. Recently, the community has been attempting to

propose new models to overcome the limitations. Two among them have received great

attention from the community. The one is Capsule Networks (CapsNet) which is inspired

by the information processing in the human brain [102]. Compared to CNNs, CapsNet

is more inductively-biased where the partial information processing in the human brain

is integrated into the model, e.g., the transformation process. The other is Vision Trans-

former(ViT) [25]. Given the success of Transformer in natural language processing (NLP),

the work [25] generalizes Transformer architectures to image classification task by rep-

resenting the input image as a sequence of image patches. Compared to CNNs, ViTs

are less inductive-biased where information aggregation is also possible at lower layers.

Convolutional Neural Networks, Capsule Networks, and Vision Transformers raise great

attention in the community. Hence, in this work, we mainly focus on the three deep visual

classification models.

In the rest of this chapter, we first introduce background knowledge about CNNs, Cap-

sNets, and ViTs in Section 1.2. Then, in Section 1.3, we present a summary of the explain-

ability of deep visual classifications and describe our contributions to the explainability of

deep visual classification models. Last, in Section 1.4, we show the categorization of the

robustness of deep visual classifications and describe our contributions to the robustness

of deep visual classification models.

Contributions. In this dissertation, our contributions can be summarized from two

perspectives. From the perspective of explainability, we first present a novel method, called

CLRP, to explain CNN-based image classifications in Chapter 2. Then, in Chapter 3, we

present our interpretable capsule networks whose predictions can be explained with built-in

modules. Last, we show our understanding of ViT-based image classifications in Chapter 7.

From the perspective of robustness, our contributions mainly focus on the role the model

architecture plays in terms of both natural robustness and adversarial robustness. We

present our findings and improvements of Capsule Networks’ natural robustness to non-

additive perturbation in Chapters 4 and 5, and further propose our adversary Vote Attack

method to show the vulnerability of CapsNets in Chapter 6. Besides, we introduce our

understanding of the robustness of ViT-based classifications to patch-wise perturbations

in Chapter 7.
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1.2 Background Knowledge

1.2.1 Convolutional Neural Networks

To recognize the patterns of the images, many operations have been proposed, e.g., Scale-

Invariant Feature Transform (SIFT) [84], Histogram of Oriented Gradients(HOG) [22], and

Convolution. Especially, the convolutional operation dominates the community in the last

decade as an image feature extraction operation.

Formally, convolution is a mathematical operation on two functions that produces a

third function that expresses how the shape of one is modified by the other. In the domain

of computer vision, the discrete variant of convolution is adopted since the images are

saved as discrete signals. Concretely, given an image X ∈ R(C×H×W ) and a convolution

kernel k ∈ R(C×P×Q), the feature map H ∈ R(H′×W ′) extracted by the convolution kernel

is computed as

H(i, j) =
C∑

c=1

P∑

p=1

Q∑

q=1

X(c, i+p−1, j+q−1) k(c, p, q), (1.1)

where (i, j) is the index of elements in the feature map H , C is the number of channels of

input images and (P,Q) are the size of the feature map. A single kernel corresponds to a

single feature map. Multiple kernels are often applied to extract multiple feature maps.

Besides, the pooling (subsampling) operation is applied to the feature maps extracted

by convolution operation to aggregate the visual information. In the pooling operation,

the mean operation or the max operation is often applied. The pooling operation with size

(s, s) can be expressed as

H ′
(i, j) =

P
max
p=1

H(i, j). (1.2)

Convolution can be further applied to the pooled feature maps. The convolutional and

pooling operations are applied alternatively on the image to obtain the final feature maps.

The features HL
(i, j) extracted by a list of convolutional operations and pooling opera-

tions are taken as the final image representation. A single or multiple fully connected layers

(i.e. a MLP module) is used as classifier that maps the features into the ground-truth class.

Z = MLP (HL
(i, j)) (1.3)

The output probabilities can be obtained by applying softmax function on the logits Z.

The predicted class is defined as argmax(Zi).
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Figure 1.2: The overview of LeNet-5 architecture [70].

The work [70] proposes Convolution Neural Network (CNN) in the end-to-end learning

framework to recognize hand-written digits. Therein, LeNet-5 is the classic instance of

convolution neural networks, which is visualized in Fig. 1.2. The proposed LeNet-5 starts

with two convolutional layers, and each is followed by a pooling layer. Then, a three-layer

MLP module maps the feature to the logits.

Figure 1.3: The overview of AlexNet architecture [68].

Given the limited computational resource, the architecture and the corresponding train-

ing strategy proposed in [70] does not scale well to the large-scale dataset. With the advance

of the computational power, the work [68] proposes AlexNet, which achieves impressive

accuracy on ImageNet-1k dataset. AlexNet consists of five convolutional layers, some of

which are followed by max-pooling layers, and three fully-connected layers with a final 1000-

way softmax. In terms of model architecture, AlexNet is deeper and wider than LeNet-5.

From the perspective training strategy, to make AlexNet work well, the work [68] proposes

non-saturating neurons, i.e., Rectified Linear Units (ReLUs) to activate the neurons and
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Figure 1.4: The overview of Residual block with skip connection [49].

Figure 1.5: The overview of ResNet architecture [49].

employs dropout method to regularize the training process. Especially, they propose a

GPU-specific implementation of GPU operation to make the training process feasible.

One intuitive way to improve AlexNet is to build deeper layers. However, the AlexNet

with deeper layers does not converge well during training due to the gradient vanishing

problem. Namely, the gradients become zeros or close to zeros when propagating from

the output layer to low layers. Due to the gradient vanishing problem, the parameter

update of low layers is challenging. To overcome the challenges, the work [49] proposes

skip-connection, which can propagate the gradients from deep layers to low layers directly

by skipping some intermediate layers.

The block with such a skip connection is called residual block. A popular residual block

is shown in Fig. 1.4. As an instance, the work [49] proposes ResNet which consists of a list

of residual blocks. When equipped with skip connections, ResNets with even more than

100 layers can converge well. ResNets still dominate the computer vision community. We

show the ResNet18 in Fig. 1.5 as an example where 18 layers are built into the ResNet to

extract features.
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Figure 1.6: The overview of CapsNet architectures. The CapsNet architecture consists of

four components, such as primary capsule extraction, voting, routing, and class-conditional

reconstruction. The primary capsule extraction module first maps the raw input features

to low-level capsules. The voting process transforms low-level capsules to make votes with

a transformation matrix. Then, the routing module identifies the weight of each vote and

computes the final high-level capsules. In the last part, the reconstruction subnetwork

reconstructs input images from capsules to regularize the learning process.

Convolutional Network Follow-Ups: The CNN-based deep visual classifier has al-

ready surpassed human-level performance in the image classification task [63]. In the last

years, the architectures of convolutional neural networks have still been improved from

different perspectives. On the one hand, the more advanced architectures have been pro-

posed to further push the state-of-the-art performance [121, 57, 21]. On the other hand,

the efficiency of architecture has received great attention since real-world CNN-based ap-

plications often require less memory consumption and computational cost. The efficiency

of architecture has been addressed from different perspective, e.g., light-weight architecture

design [56, 143], architecture pruning [71, 47, 45, 87], and distilling knowledge from large

architectures to small architectures [53, 99, 38]. More recently, many researchers focus

on neural architecture search where the architectures are searched automatically from a

predefined search space [148, 77, 78]. The found architecture can surpass the manually

designed ones.

1.2.2 Capsule Networks

Inspired by the information process in the human brain, Hinton proposes Capsule Networks

(CapsNet) [102]. Different from CNNs, CapsNets represent a visual entity with a vector

instead of a single scale value, called Capsule. CapsNets [102] encode visual entities with
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capsules. Each capsule is represented by an activity vector (e.g., the activation of a group

of neurons), and elements of each vector encode the properties of the corresponding entity.

The length of the activation vector indicates the confidence of the entity’s existence. The

output classes are represented as high-level capsules.

The most popular version of Capsule Networks is Dynamic Routing Capsule Networks

(DR-CaosNet). We introduce the architecture details of DR-CapsNet as follows. As shown

in Fig. 1.6, CapsNet starts with one (or more) convolutional layer(s) that convert the

raw pixel intensities X into low-level visual entities ui. Concretely, CapsNet extracts

feature maps of shape (C ′, H ′,W ′) from input image X ∈ R(C×H×W ) with two standard

convolutional layers where C ′, H ′, W ′ are the number of channels, the height, and the width

of the feature maps, respectively. The extracted feature maps are reformulated as primary

capsules (C ′/Din, H
′,W ′, Din) where Din is the dimensions of the primary capsules. There

are N = C ′/Din∗H ′∗W ′ primary capsules all together. Each capsule ui, a Din-dimensional

vector, consists of Din units across Din feature maps at the same location. For example,

the red bar marked with ui in Fig. 1.6 is a low-level capsule.

In the voting process, each primary capsule is transformed to make a vote with a

transformation matrix W ij ∈ R(Din×N∗Dout) in, where N is the number of output classes

and Dout is the dimensions of output capsules. The vote from the i-th low-level capsules

to the j-th high-level capsules is

ûj|i = W ijui. (1.4)

Then, a routing module is applied to identify weight for each vote. Given all N votes

ûj|i of the L-th layer with N capsules, M high-level capsule sj of the (L+ 1)-th layer with

M capsules, the routing process is

sj =
N∑

i

cijûj|i (1.5)

where cij is a coupling coefficient that models the degree with which ûj|i is able to predict

sj. The capsule sj is shrunk to a length in [0, 1) by a non-linear squashing function g(·),
which is defined as

vj = g(sj) =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

. (1.6)

By doing the squashing operation, the length of the vector is mapped to [0, 1) that rep-

resents the confidence of the high-level entity’s existence. In DR-CapsNet, the high-level

capsules correspond to output classes, and its length means the output probability.



1.2 Background Knowledge 9

Note that the coupling coefficients {cij} in Equation 1.5 are computed by an iterative

routing procedure. They are updated so that high agreement (aij = vT
j ûj|i) corresponds

to a high value of cij.

cij =
exp(bij)∑
k exp(bik)

(1.7)

where initial logits bik are the log prior probabilities and updated with bik = bik + aij in

each routing iteration. The coupling coefficients between a i-th capsule of the L-th layer

and all capsules of the (L+ 1)-th layer sum to 1, i.e.,
∑M

j=1 cij = 1. The steps in Equations

1.9, 1.5, 1.6, and 1.7 are repeated K times in the routing process, where sj and cij depend

on each other.

The length of the final output capsule vj corresponds to the output probability of

the j-th class. Different from CNNs where cross-entropy loss is often applied to compute

classification loss. In DR-CapsNet, the margin loss function is applied to compute the

classification loss

Lk =Tk max(0,m+ − ‖vk‖)2

+ λ(1− Tk) max(0, ‖vk‖ −m−)2
(1.8)

where Tk = 1 if the object of the k-th class is present in the input. As in [102], the

hyper-parameters are often empirically set as m+ = 0.9, m− = 0.1 and λ = 0.5.

A reconstruction sub-network reconstructs the input image from all N output capsules

with a masking mechanism. The ones corresponding to the non-ground-truth classes are

masked with zeros before being transferred to the reconstruction sub-network. Due to

the masking mechanism, only the capsule of the ground-truth class is visible for the re-

construction. Hence, the reconstruction process is called class-conditional reconstruction.

The reconstruction loss is computed as a regularization term in the loss function.

Capsule Network Follow-Ups: Many routing mechanisms have been proposed to im-

prove the performance of CapsNet, such as Expectation-Maximization Routing [54], Self-

Routing [43], Variational Bayes Routing [96], Straight-Through Attentive Routing [2], and

Inverted Dot-Product Attention routing [126]. An alternative to the routing mechanism

to aggregate information is proposed in work [34] where they replace the dynamic routing

with a multi-head attention-based graph pooling approach. To reduce the parameters of

CapsNet, a matrix or a tensor is used to represent an entity instead of a vector [54, 95]. The

size of the learnable transformation matrix can also be reduced by the matrix/tensor repre-

sentations. Besides, the work [37] proposes to share a transformation matrix to reduce the
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Figure 1.7: The overview of Vision Transformer Architectures. The figure is taken

from [25].

network parameters. Another way to improve CapsNet is to integrate advanced modules

of ConvNet into CapsNet, e.g., skip connections [49, 95] and dense connections [57, 92].

1.2.3 Vision Transformers

Transformers with self-attention-based architectures have become the model of choice in

natural language processing (NLP) [127]. Inspired by the success of Transformers in NLP

community, the work [25] proposes Vision Transformer(ViT) where they replace the convo-

lutions entirely with self-attention layers and achieve remarkable performance in the image

classification task. As a promising alternative to CNNs, Vision Transformer raises the

great attention of our community.

Different from CNNs, ViT represents an input image as a sequence of image patches.

Then, the list of self-attention modules are applied to the sequence of image patches se-

quentially. We now introduce the details of the primary Vision Transformer architecture

in [25]. As shown in Fig. 1.7, the input image X ∈ R(C×H×W ) is split into image patches

{xi ∈ RP×P×C |i ∈ (1, 2, 3, ..., H/P ×W/P )} where P is the patch size. The embedding

of each patch is extracted from the raw image patch with linear projection parameters

W 0 ∈ R(HW/P 2×Dp). Before the application of self-attention module, the position informa-
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Figure 1.8: The overview of Transformer Encoder.

tion of image patches is also integrated into the patch embedding. The embedding of the

patch xi is described as

E0
i = xi ·W 0 + PEi, (1.9)

where PEi is the position embedding of the image patch {xi, which encodes the patch

position information in the input images. The position embedding PEi could be manually

designed or learnable. In ViT, the learnable version is adopted.

A learnable class-token embedding E0
0 is added into the list of patch embeddings. The

class embedding in the last layer is taken as the image embedding for classification. We

now introduce the transformer encoder where the list of blocks is applied to transform

the input embeddings. As shown in Fig. 1.8, each block consists of two main modules,

namely, a multi-head self-attention module to model the inter-patch relationship and an

MLP module to project each patch respectively.

When the self-attention module with a single head in l + 1-th layer is applied to input

patches {El
i ∈ RDp |i ∈ (0, 1, 2, 3, ..., H/P ×W/P )} in the l-th layer, the output embedding

of the patch El
i is

K l+1
i = W l+1

k ·El
i,

Ql+1
i = W l+1

q ·El
i,

V l+1
i = W l+1

v ·El
i,

Al+1
i = Softmax(Ql+1

i ·K l+1
0 , Ql+1

i ·K l+1
1 , ..., Ql+1

i ·K l+1
H/P×W/P+1, ),

El+1
i =

H/P×W/P+1∑

j=1

Al+1
ij · V j.

(1.10)
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In this equation, the key, query, and value of patch embedding is computed first. The

attention of El+1
i to all patches in l-th layer is obtained with the query of i-th patch and

all keys. The output embedding El+1
i is the weighted sum of all values of patches. The

output embeddings of different heads are concatenated as the final embedding. Then, an

MLP module with two MLP layers is applied to project the final embedding of each patch

into a new feature space. The final embedding of the class-token patch is taken as the

image representation to classify the image. A linear classifier maps the features to output

space.

Vision Transformer Follow-Ups: Since the ViT was proposed, many new vision trans-

former architectures have been proposed [124, 44, 81]. A hybrid architecture that consists

of both convolutional layers and self-attention blocks has also been explored [33, 136].

Besides, the pure patch-based architecture without attention mechanism has also been

proposed [123]. By the time this thesis is written, the arm-race between ResNet and Vi-

sion Transformers is still going on [82]. Recently, many researchers employ the Transformer

architecture as a uniform architecture that model both images and texts [93, 129].
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Approach Description

Saliency Maps

Identifying the relevance of each input pixel to the out-

put class [114, 7, 109, 113, 120, 116, 41, 118, 20, 107, 97,

147, 28].

Counterfactual Explanation
Identifies how the given input could change such that the

classifier would output a different specified class [12, 32].

Explanatory Sentences
Generating natural language sentences that describe the

class-discriminative pixels [50, 51].

Supporting Training Images
Identifying training images most responsible for a given

prediction [67].

Built-in Explanation
Generating Explanations with built-in modules (in ex-

plainable classifier) for a given prediction [67].

Disentangled Representations
Identifying the human-interpretable properties of the

recognized object in the input image [106, 102, 61, 146].

Table 1.1: Summarization of different approaches for explaining image classifications.

1.3 Explanability of Deep Visual Classifications

1.3.1 Introduction

Deep Neural Networks (DNNs) have shown impressive performance in high-dimensional

input data. Especially, the performance of DNNs can even surpass human-level perfor-

mance in the image classification task. The traditional machine learning methods classify

images with hand-crafted images, while DNNs make predictions based on the features

learned automatically from data with an optimization algorithm. Hence, it is challenging

to understand the classification decisions made by DNNs. In recent years, many directions

have been explored to explain individual image classifications. We summarize and roughly

categorize them in Table 1.1. We introduce each approach as follows.

Saliency Maps, as intuitive explanations, have received great attention in the commu-

nity. The saliency map is a heat map, each element of which indicates the importance of

the pixel in the corresponding position. The saliency map is expected to have recognizable

patterns like the objects in the input image. The primary work [114] takes the vanilla gra-

dient of the loss with respect to the input as the saliency map. However, the gradients are

noisy and the pattern therein is barely recognizable. To improve the saliency map, many
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methods have been proposed [114, 117, 7, 109, 113, 120, 116, 41, 118, 35, 36]. The primary

method and the improved variants are model-aware, which leverage the parameters and the

gradients of neural networks to compute saliency maps. Besides the model-aware methods,

the model-agnostic saliency methods are also preferred in many scenarios. For example,

they are able to explain any classifiers; the explanations produced from two or more differ-

ent types of models are comparable; an ensemble model can be explained without requiring

knowledge of model components. There are two types of model-agnostic saliency methods.

The one is to build an explanation generation model, e.g. a neural network with U-net

architecture [100, 20, 107]. The other is to approximate the local decision boundary of the

underlying model with an explainable model, e.g., linear classifier [97]. The explanation

generated from the explainable surrogate model can be used to explain individual decisions.

Counterfactual Explanation describes what changes to the situation would have resulted

in arriving at the alternative decision. In the case of image classification, Counterfactual

Explanation is the counterfactual image, which indicates that the output will become the

target class if the input image is replaced with the counterfactual image. The work [12]

creates a counterfactual image with a conditional generative model, which generates part

of the pre-defined image region conditional on the rest of the image. The desired property

of the generated image is to most change the classifier’s decision. Another work [32]

formulates the generation of the counterfactual image as an image editing problem. Their

method performs well even in the fine-grained classifications.

Natural language, as a natural interface, has also been explored to explain the visual

classifications. The works [50, 51] build modules to generate natural language sentences to

explain the decisions where the sentences describe the class-discriminative features. The

explanatory sentences are different from the caption/description generated by multi-model

models. The contemporary vision-language models describe image content but fail to tell

class-discriminative features which justify visual predictions.

Another way to explain visual classifications is to identify the training points most

responsible for a given prediction. To trace a model’s prediction back to its training data,

the work [67] leverages influence functions, i.e., a classic technique from robust statistics.

Given a classification, they can be the most responsible training image that supports the

predictions. The created explanation can tell where the local decision boundary of the

model came from at a specific data point.

The approaches introduced above are post-hoc. Namely, the explanations are created

for off-shelf models without intervening in their training process. An alternative to post-
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hoc explanation methods is to integrate dedicated modules into the model to be trained,

e.g. attention mechanism [34], explanation module [20] and prototype module [14]. In

the inference stage, the modules can be used to create explanations directly. The created

explanations are dubbed built-in explanations, which are more efficient and easy to create.

The image representations learned by DNNs are often distributed, which makes the

classification decision less explanation. It is difficult to interpretable the decision process

inside the model. One way to mitigate this problem is to constrain the model to learn

disentangled representations where each element of representation corresponds to a human-

understandable concept [106, 102, 61, 146].

In this subsection, we have introduced the popular methods applied to explain individ-

ual classification decisions. In the rest of this section, we present our contributions towards

understanding the classifications. Specifically, we briefly introduce our works on the topic

of explaining classification decisions made by Convolutional Networks, Capsule Networks,

and Vision Transformers.

1.3.2 Explainability of Convolutional Neural Network-based Clas-

sification

A large number of saliency methods have been proposed to better understand individ-

ual decisions of deep convolutional neural networks. As one of the representatives, the

Layer-wise Relevance Propagation (LRP) approach is able to create pixel-wise explana-

tory saliency maps. LRP method has also been widely applied to many tasks in different

domains, e.g., in medical domain [140] and in NLP [5].

The explanations generated by LRP are known to be pixel-wise and instance-specific.

However, the discriminativeness of the explanations has not been evaluated yet. Ideally, the

visualized objects in the explanation should correspond to the class that the class-specific

neuron represents. Namely, the explanations should be class-discriminative.

Our work [41] evaluates the discriminativeness of the explanations generated by LRP.

Concretely, we evaluate the explanations generated by LRP on the off-the-shelf models,

e.g., VGG16 [115] pre-trained on the ImageNet dataset [23]. The results are shown in Fig.

1.9. For each test image, we create four saliency maps as explanations. The first three ex-

planation maps are generated for top-3 predictions, respectively. The fourth one is created

for randomly chosen 10 classes from the top-100 predicted classes (which ensure that the

score to be propagated is positive). The white text in each explanation map indicates the
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Figure 1.9: The explanations generated by LRP on VGG16 Network. The images from

validation datasets of ImageNet are classified using the off-the-shelf models pre-trained on

the ImageNet. The classifications of the images are explained by the LRP approach. For

each image, we generate four explanations that correspond to the top-3 predicted classes

and a randomly chosen multiple-classes. The explanations are not class-discriminative.

class the output neuron represents and the corresponding classification probability. The

generated explanations are instance-specific, but not class-discriminative. In other words,

they are independent of class information. The explanations for different target classes,

even randomly chosen classes, are almost identical.

Based on LRP, our work [41] proposes Contrastive Layer-wise Relevance Propagation

(CLRP), which is capable of producing instance-specific, class-discriminative, pixel-wise

explanations. Before introducing our CLRP, we first discuss the conservative property

in the LRP. In a DNN, given the input X = {x1, x2, x3, · · · , xn}, the output Y =

{y1, y2, y3, · · · , ym}, the score Syj (activation value) of the neuron yj before softmax layer,

the LRP generate an explanation for the class yj by redistributing the score Syj layer-

wise back to the input space. The assigned relevance values of the input neurons are

R = {r1, r2, r3, · · · , rn}. The conservative property is defined as follows: The generated

saliency map is conservative if the sum of assigned relevance values of the input is equal

to the score of the class-specific neuron,
∑n

i=1 ri = Syj .

The overview of the CLRP are shown in Fig. 1.10. We first describe the LRP as follows.

The j-th class-specific neuron yj is connected to input variables by the weights W of layers

between them. The neuron yj models a visual concept O. For an input example X, the

LRP maps the score Syj of the neuron back into the input space to get relevance vector

R = fLRP (X,W , Syj). In our contrastive LRP, we construct a dual virtual concept O,

which models the opposite visual concept to the concept O. For instance, the concept O
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Figure 1.10: The figure shows an overview of our CLRP. For each predicted class, the

approach generates a class-discriminative explanation by comparing two signals. The blue

line means the signal that the predicted class represents. The red line models a dual

concept opposite to the predicted class. The final explanation is the difference between the

two saliency maps that the two signal generate.

models the zebra, and the constructed dual concept O models the non-zebra. One way

to model the O is to select all classes except for the target class representing O, i.e. the

dashed red lines in Fig. 1.10 are connected to all classes except for the target class zebra.

Next, the score Syj of target class is uniformly redistributted to other classes. Given the

same input example X, the LRP generates an explanation Rdual = fLRP (X,W , Syj) for

the dual concept. The Contrastive LRP is defined as follows:

RCLRP = max(0, (R−Rdual)) (1.11)

where the function max(0,X) means replacing the negative elements of X with zeros.

The difference between the two saliency maps cancels the common parts. Without the

dominant common parts, the non-zero elements in RCLRP are the most relevant pixels.

Besides the qualitative evaluation, we also evaluate the explanations quantitatively with

a Pointing Game and an ablation study. Both qualitative and quantitative evaluations show

that the CLRP generates better explanations than the LRP.

1.3.3 Explainability of Capsule Network-based Classification

Capsule Networks, as alternatives to Convolutional Neural Networks, have been proposed

to recognize objects from images. The current literature demonstrates many advantages

of CapsNets over CNNs. However, how to create explanations for individual classifications

of CapsNets has not been well explored.
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Figure 1.11: The illustration of GraCapsNets: The extracted primary capsules are trans-

formed and modeled as multiple graphs. The pooling result on each graph (head) corre-

sponds to one vote. The votes on multiple graphs (heads) are averaged to generate the

final prediction.

The widely used saliency methods are mainly proposed for explaining CNN-based clas-

sifications; they create saliency map explanations by combining activation values and the

corresponding gradients, e.g., Grad-CAM. They combine activation values and the received

gradients in specific layers, e.g., deep convolutional layers. In CapsNets, instead of deep

convolutional layers, an iterative routing mechanism is applied to extract high-level visual

concepts. Hence, these saliency methods cannot be trivially applied to CapsNets. Besides,

the routing mechanism makes it more challenging to identify interpretable input features

relevant to a classification.

To overcome the lack of interpretability, we can either propose new post-hoc interpre-

tation methods for CapsNets or modify the model to have build-in explanations. In our

published work [34], we explore the latter. Specifically, we propose interpretable Graph

Capsule Networks (GraCapsNets), where we replace the routing part with a multi-head

attention-based Graph Pooling approach. Our GraCapsNet includes an attention-based

pooling module, with which individual classification explanations can be created effectively

and efficiently.

As introduced in Background Section, CapsNets start with convolutional layers that

convert the input pixel intensities X into primary capsules ui (i.e., low-level visual entities).

Each ui is transformed to vote for high-level capsules ûj|i with learned transformation

matrices. Then, a routing process is used to identify the coupling coefficients cij, which

describe how to weight votes from primary capsules. Finally, a squashing function is

applied to the identified high-level capsules sj so that the lengths of them correspond to

the confidence of the class’s existence.
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Different routing mechanisms differ only in how to identify cij. Routing processes de-

scribe one way to aggregate information from primary capsules into high-level ones. In

our GraCapsNets, we implement the information aggregation by multi-head graph pooling

processes. In CapsNets, the primary capsules represent object parts, e.g., the eyes and

nose of a cat. In our GraCapsNets, we explicitly model the relationship between the pri-

mary capsules (i.e., part-part relationship) with graphs. Then, the followed graph pooling

operations pool relevant object parts from the graphs to make a classification vote. Since

the graph pooling operation reveals which input features are pooled as relevant ones, we

can easily create explanations to explain the classification decisions.

The overview of our GraCapsNets is illustrated in Fig. 1.11. In GraCapsNet, the

primary capsules ui are transformed into a feature space. All transformed capsules u′i
are modeled as multiple graphs. Each graph corresponds to one head, the pooling result

on which corresponds to one vote. The votes on multiple heads are averaged as the final

prediction.

The transformed capsules u′i can be modeled as multiple graphs. A graph consists

of a set of nodes and a set of edges. As shown in Fig. 1.11, the primary capsules are

reshaped from L groups of feature maps. Each group consists of C feature maps of the

size K ×K. Correspondingly, the transformed capsules u′i where i ∈ {1, 2, ...K2} form a

single graph with K2 nodes. Each node corresponds to one transformed capsule u′i, and

the activation vector of u′i is taken as features of the corresponding node. The graph edge

can be represented by an adjacency matrix, where different priors can be modeled. The

spatial relationship between primary capsules is modeled in our work.

Given node features Xl ∈ R(K2×Dout) and adjacency matrix A ∈ R(K2×K2) in the l-th

head of GraCapsNet. We first compute the attention of the head as Attl = softmax(AXlW)

where W ∈ RDout×M are learnable parameters. Dout is the dimension of the node features

and M is the number of output classes. The output is of the shape (K2 ×M). In our

GraCapsNet for object recognition, Attl corresponds to the visual attention of the heads.

The graph pooling output Sl ∈ R(M×Dout) of the head is computed as Sl = (Attl)TXl.

The final predictions of GraCapsNets are based on all L heads with outputs Sl where

l ∈ {1, 2, ..., L}. The output capsules are V = squash( 1
L

∑L
l=1 Sl).

In our GraCapsNet, we can use visual attention as built-in explanation to explain the

predictions of GraCapsNets. The averaged attenion over l heads is

E =
1

L

L∑

l=1

Attl (1.12)
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Figure 1.12: Adversarial Patch Attack or Natural Patch Corruption on Vision Transformer.

where Attl corresponds to the attention of the l-th head. The created explanations E are

of the shape (K2 ×M). Given the predicted class, the K × K attention map indicates

which pixels of the input image support the prediction.

The explanations for individual classifications of GraCapsNets can be created in an

effective and efficient way. Surprisingly, without a routing mechanism, our GraCapsNets

can achieve better classification performance and better adversarial robustness, and still

keep other advantages of CapsNets, namely, disentangled representations and affine trans-

formation robustness.

1.3.4 Explainability of Vision Transformer-based Classification

The recent advances in Vision Transformer (ViT) have demonstrated its impressive perfor-

mance in image classification [25, 124], which makes it a promising alternative to Convolu-

tional Neural Network (CNN). Unlike CNNs, ViT represents an input image as a sequence

of image patches. Then, a self-attention mechanism is applied to aggregate information

from all patches. The attention can be used to create saliency maps to explain ViT-based

classification decisions, e.g. with Rollout Attention method [1]. The patch-wise input im-

age representation in ViT makes the following question interesting: How does the attention

of ViT change when individual input image patches are perturbed with natural corruptions

or adversarial perturbations? For example, Fig. 1.12 illustrates the case where a single

patch of the input is perturbed or attacked.
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(a) Clean Image (b) with Naturally Corrupted Patch (c) with Adversarial Patch

Figure 1.13: Images with patch-wise perturbations (top) and their corresponding atten-

tion maps (bottom). The attention mechanism in ViT can effectively ignore the naturally

corrupted patches to maintain a correct prediction, whereas it is forced to focus on the

adversarial patches to make a mistake. The images with corrupted patches are all cor-

rectly classified. The images with adversary patches in subfigure 1.13c are misclassified as

dragonfly, axolotl, and lampshade, respectively.

In our work [40], we study the robustness of vision transformers to patch-wise per-

turbations. Surprisingly, we find that vision transformers are more robust to naturally

corrupted patches than CNNs, whereas they are more vulnerable to adversarial patches.

Furthermore, we conduct extensive qualitative and quantitative experiments to understand

the classification under patch perturbations.

We have revealed that ViT’s stronger robustness to natural corrupted patches and

higher vulnerability against adversarial patches are both caused by the attention mecha-

nism. Specifically, the attention model can help improve the robustness of vision transform-

ers by effectively ignoring natural corrupted patches. However, when vision transformers

are attacked by an adversary, the attention mechanism can be easily fooled to focus more

on the adversarially perturbed patches and cause a mistake.

Digging down further, we find the reason behind this is that the self-attention mech-

anism of ViT can effectively ignore the natural patch corruption, while it’s also easy to

manipulate the self-attention mechanism to focus on an adversarial patch. This is well

supported by rollout attention visualization [1] on ViT. As shown in Fig. 1.13 (a), ViT

successfully attends to the class-relevant features on the clean image, i.e., the head of the

dog. When one or more patches are perturbed with natural corruptions, shown in Fig. 1.13

(b), ViT can effectively ignore the corrupted patches and still focus on the main foreground

to make a correct prediction. In Fig. 1.13 (b), the attention weights on the positions of
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naturally corrupted patches are much smaller even when the patches appear in the fore-

ground. In contrast, when the patches are perturbed with adversarial perturbations by an

adversary, shown in Fig. 1.13 (c), ViT is successfully fooled to make a wrong prediction

because the attention of ViT is misled to focus on the adversarial patches instead.

In our work [40], we provide our understanding of the attention changes of ViT when

individual input image patches are perturbed with natural corruptions or adversarial per-

turbations.
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Natural

Robustness

Additive Natural Corruption

Robustness to the noisy images that are added

with various noise [72, 52], such as, white noise,

blur, weather, and digital categories.

Non-Additive Affine Transformation
Robustness to the images that are affine-

transformed from standard ones [13, 102, 37].

Additive

Dense Attack
Robustness to the images where all pixels can

be changed under a certain constraint [30, 85].

Adversarial

Robustness

Sparse Attack
Robustness to the images where only a few pix-

els of each image can be manipulated [90].

Patch Attack

Robustness to the perturbed images where only

a single patch (a specific region) of each image

can be manipulated [10, 62].

Non-Additive

Transformation

-Based Attack

Robustness to adversarial images that is cre-

ated by delicated affine transformations [135].

Sementic Attack
Robustness to semantic adversarial images that

is created by image synthesis [55].

Table 1.2: Categorization of Robustness in Image Classification Task.

1.4 Robustness of Deep Visual Classification Models

1.4.1 Introduction

In this thesis, we mainly consider two types of robustness, namely, natural robustness and

adversarial robustness. When an image is captured, different corruption can happen, e.g.,

the existence of white noise, the effect of weather, the compression in the digitalization

process, and random affine transformation. The robustness to these images with natural

corruption is denoted as natural robust. Adversarial robustness describes the robustness

of models to adversarial images, which is created by an adversary. Both natural robustness

and adversarial robustness are critical in some safety-critical domains. We summarize and

categorize the robustness in Tab. 1.2.

Besides the type of attacks in Tab. 1.2, adversarial attacks can be categorized into

targeted and untargeted ones. The goal of targeted attacks is to mislead the model to a

specific target class, while the goal of untargeted ones is to fool the model to make wrong

predictions.

In terms of the availability of the target models, adversarial attacks can also be cat-

egorized into white-box and black-box attacks. The white-box attacks assume that the
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adversary has all access to target models including model parameters, model architectures,

and even defense methods. In contrast, in the setting of black-box attacks, the adversary

can only obtain the output of the target model. The black-box attacks have also received

great attention since it is realistic in real-world applications.

The implementation of white-box attacks is relatively cheap where they create adversar-

ial examples with the gradients of the self-defined objective function with respect to inputs.

However, the implementation of black-box attacks can be computationally expensive given

the limited available information. One way to created adversarial examples in a black-box

fashion is to leverage their transferability [80, 138, 24, 149, 42, 134, 58, 59, 76, 130], namely,

the adversarial examples created on one model can also fool another. The adversary first

trains a surrogate model on the same training data as the one used for the target model

and creates adversarial examples on the surrogate model to fool the target model, which

is called transfer-based black-box attack. However, the transfer-based black-box attacks

require access to the training data of the target model. To overcome the limitation, the

query-based black-box attacks have been proposed where the attacks are based on the

outputs obtained by querying the target models directly [16, 17, 8, 17, 3].

In addition, based on the constraints on the adversarial images, the generated adver-

sarial perturbations can be quasi-imperceptible or unbounded. The popular metric of to

measure the distance between clean images and adversarial image is `p norm [90], such

as, `1, `2 and `∞. However, the metric is not perfectly aligned with human perception.

The more advanced metric has also been explored in the community, e.g., Wasserstein

distance [133].

Given the potential threats posed by adversarial attacks, many defense strategies have

been proposed to build adversarially robust models. One of the most effective defense

methods is adversarial training, which creates adversarial examples and adds them to

the training dataset in each training iteration. Besides, the pre-processing methods have

been explored to purify adversarial examples [31, 125, 11, 110, 141, 142, 4, 64, 132, 98,

128, 74, 131, 119]. However, some of the defense strategies have broken again in later

publications [6]. Some defense methods provide certified robustness to break arm-race

between adversary and defense [94, 60, 19, 75, 105, 103, 86, 104]. Even many methods

have been published to address, the accuracy of the model under attacks is still much lower

than the accuracy on clean images, especially on the large dataset [137]. In addition to

building robust model, another way to address the threats is to detect adversarial examples

first [139, 27, 89, 73, 145, 101, 18].
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In this subsection, we categorize the robustness of image classifications. Our contri-

butions of this thesis mainly focus on the role the model architecture plays in terms of

both natural robustness and adversarial robustness. In the rest of this section, we present

our contributions towards the robustness of image classification models, such as Capsule

Networks and Vision Transformers.

1.4.2 Robustness of Capsule Network-based Classification

Human visual recognition is quite insensitive to affine transformations. For example, enti-

ties in an image, and a rotated version of the entities in the image, can both be recognized

by the human visual system, as long as the rotation is not too large. Convolutional Neural

Networks (CNNs), the currently leading approach to image analysis, achieve affine ro-

bustness by training on a large amount of data that contain different transformations of

target objects. Given limited training data, a common issue in many real-world tasks, the

robustness of CNNs to novel affine transformations is limited [102].

With the goal of learning image features that are more aligned with human percep-

tion, Capsule Networks (CapsNets) have recently been proposed [102]. Our work [37] first

investigates the effectiveness of components that make CapsNets robust to input affine

transformations, with a focus on the routing algorithm. However, recent work [88] shows

that all routing algorithms proposed so far perform even worse than a uniform/random

routing procedure.

From both numerical analysis and empirical experiments, our investigation reveals that

the dynamic routing procedure contributes neither to the generalization ability nor to the

affine robustness of CapsNets. Therefore, it is infeasible to improve the affine robustness by

modifying the routing procedure. Instead, we investigate the limitations of the CapsNet

architectures and propose a simple solution. Namely, we propose to apply an identical

transformation function for all primary capsules and replace the routing with a simple

averaging procedure.

Besides the high affine transformation robustness, CapsNets also demonstrate other ad-

vantages, such as the ability to recognize overlapping digits and the semantic representation

compactness. In recent years, It has been suggested that CapsNets have the potential to

surpass the dominant convolutional networks in these aspects [102, 54, 95, 37]. However,

there lack of comprehensive comparisons to support this assumption, and even for some

reported improvements, there are no solid ablation studies to figure out which ones of the

components in CapsNets are, in fact, effective.
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In our work [39], we first carefully examine the major differences in design between the

capsule networks and the common convolutional networks adopted for image classification.

The difference can be summarized as a non-shared transformation module, a dynamic

routing layer to automatically group input capsules to produce output capsules, a squashing

function, a marginal classification loss, and a class-conditional reconstruction sub-network

with a reconstruction loss.

Unlike previous studies [102, 54] which usually take CapsNet as a whole to test its

robustness, our work [39] instead tries to study the effects of each of the above components

in their effectiveness on robustness. We consider the three different aspects, such as the

robustness to affine transformations, the ability to recognize overlapping digits, and the

semantic representation compactness.

Our investigations reveal that some widely believed benefits of Capsule networks could

be wrong:

1. The dynamic routing actually may harm the robustness to input affine transforma-

tion, in contrast to the common belief;

2. The high performance of CapsNets to recognize overlapping digits can be mainly

attributed to the extra modeling capacity brought by the transformation matrices.

3. Some components of CapsNets are indeed beneficial for learning semantic represen-

tations, e.g., the conditional reconstruction and the squashing function, but they are

mainly auxiliary components and can be applied beyond CapsNets.

In addition to these findings, we also enhance common ConvNets by the useful compo-

nents of CapsNet, and achieve greater robustness. Our investigation shows that Capsule

Network is not more robust than Convolutional Network.

1.4.3 Robustness of Vision Transformer-based Classification

CapsNets with brain-inspired architectures have more inductive bias than CNNs. Different

from CapsNet, Vision Transformer (ViT) [25] has less architecture bias than CNNs. ViT

processes the input image as a sequence of image patches. Then, a self-attention mechanism

is applied to aggregate information from all patches. Existing works have shown that

ViTs are more robust than CNNs when the whole input image is perturbed with natural

corruptions or adversarial perturbations [9, 111, 91]. Given the patch-based architecture

of ViT, our work studies the robustness of ViT to patch-based perturbation.
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Two typical types of perturbations are considered to compare the robustness between

ViTs and CNN (e.g., ResNets [49]). One is natural corruptions [52], which is to test models’

robustness under distributional shift. The other is adversarial perturbations [122, 31],

which are created by an adversary to specifically fool a model to make a wrong prediction.

We reveal that ViT does not always perform more robustly than ResNet. When indi-

vidual image patches are naturally corrupted, ViT performs more robustly than ResNet.

However, when input image patch(s) are adversarially attacked, ViT shows a higher vul-

nerability. Digging down further, we find the reason behind this is that the self-attention

mechanism of ViT can effectively ignore the natural patch corruption, while it’s also easy

to manipulate the self-attention mechanism to focus on an adversarial patch.

Based on the patch-based architectural structure of vision transformers, we further

investigate the sensitivity of ViT against patch positions and patch alignment of adversarial

patches. First, we discover that ViT is insensitive to different patch positions, while ResNet

shows high vulnerability on the central area of input images and much less on corners. We

attribute this to the architecture bias of ResNet where pixels in the center can affect more

neurons than the ones in corners. In contrast, each patch within ViT can equally interact

with other patches regardless of its position. Further, we find that for ViT, the adversarial

perturbation designed to attack one particular position can successfully transfer to other

positions of the same image as long as they are aligned with input patches. In contrast,

the ones on ResNet hardly do.

To summarise, in our work [40], we compare ViT and CNNs in terms of the robustness

to natural patch corruptions or adversarial patch attacks.
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Abstract. A number of backpropagation-based approaches such as
DeConvNets, vanilla Gradient Visualization and Guided Backpropaga-
tion have been proposed to better understand individual decisions of deep
convolutional neural networks. The saliency maps produced by them
are proven to be non-discriminative. Recently, the Layer-wise Relevance
Propagation (LRP) approach was proposed to explain the classification
decisions of rectifier neural networks. In this work, we evaluate the dis-
criminativeness of the generated explanations and analyze the theoreti-
cal foundation of LRP, i.e. Deep Taylor Decomposition. The experiments
and analysis conclude that the explanations generated by LRP are not
class-discriminative. Based on LRP, we propose Contrastive Layer-wise
Relevance Propagation (CLRP), which is capable of producing instance-
specific, class-discriminative, pixel-wise explanations. In the experiments,
we use the CLRP to explain the decisions and understand the difference
between neurons in individual classification decisions. We also evaluate
the explanations quantitatively with a Pointing Game and an ablation
study. Both qualitative and quantitative evaluations show that the CLRP
generates better explanations than the LRP.

Keywords: Explainable deep learning · LRP ·
Discriminative saliency maps

1 Introduction

Deep convolutional neural networks (DCNNs) achieve start-of-the-art perfor-
mance on many tasks, such as visual object recognition [10,26,29], and object
detection [7,18]. However, since they lack transparency, they are considered
as “black box” solutions. Recently, research on explainable deep learning has
received increased attention: Many approaches have been proposed to crack
the “black box”. Some of them aim to interpret the components of a deep-
architecture model and understand the image representations extracted from
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-20893-6 8) contains supplementary material, which is avail-
able to authorized users.
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deep convolutional architectures [5,12,14]. Examples are Activation Maximiza-
tion [6,25], DeConvNets Visualization [32]. Others focus on explaining the
individual classification decisions. Examples are Prediction Difference Analy-
sis [21,24], Guided Backpropagation [25,27], Layer-wise Relevance Propagation
(LRP) [3,15], Class Activation Mapping [23,36] and Local Interpretable Model-
agnostic Explanations [19,20].

More concretely, the models in [17,36] were originally proposed to detect
object only using category labels. They work by producing saliency maps of
objects corresponding to the category labels. Their produced saliency maps can
also explain the classification decisions to some degree. However, the approaches
can only work on the model with a specific architecture. For instance, they might
require a fully convolutional layer followed by a max-pooling layer, a global
average pooling layer or an aggregation layer, before a final softmax output
layer. The requirement is not held in most off-the-shelf models e.g., in [10,26].
The perturbation methods [19–21] require no specific architecture. For a single
input image, however, they require many instances of forward inference to find
the corresponding classification explanation, which is computationally expensive.

The backpropagation-based approaches [3,25,27] propagate a signal from
the output neuron backward through the layers to the input space in a single
pass, which is computationally efficient compared to the perturbation meth-
ods. They can also be applied to the off-the-shelf models. In this paper, we
focus on the backpropagation approaches. The outputs of the backpropagation
approaches are instance-specific because these approaches leverage the instance-
specific structure information (ISSInfo). The ISSInfo, equivalent to bottleneck
information in [13], consist of selected information extracted by the forward
inference, i.e., the Pooling switches and ReLU masks. With the ISSInfo, the
backpropagation approaches can generate instance-specific explanations. A note
on terminology: although the terms “sensitivity map”, “saliency map”, “pixel
attribution map” and “explanation heatmap” may have different meanings in
different contexts, in this paper, we do not distinguish them and use the term
“saliency map” and “explanation” interchangeably.

The primal backpropagation-based approaches, e.g., the vanilla Gradient
Visualization [25] and the Guided Backpropagation [27] are proven to be inappro-
priate to study the neurons of networks because they produce non-discriminative
saliency maps [13]. The saliency maps generated by them mainly depend on ISS-
Info instead of the neuron-specific information. In other words, the generated
saliency maps are not class-discriminative with respect to class-specific neurons
in output layer. The saliency maps are selective of any recognizable foreground
object in the image [13]. Furthermore, the approaches cannot be applied to
understand neurons in intermediate layers of DCNNs, either. In [8,32], the dif-
ferences between neurons of an intermediate layer are demonstrated by a large
dataset. The neurons are often activated by certain specific patterns. However,
the difference between single neurons in an individual classification decision has
not been explored yet. In this paper, we will also shed new light on this topic.
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The recently proposed Layer-wise Relevance Propagation (LRP) approach is
proven to outperform the gradient-based approaches [15]. Apart from explaining
image classifications [11,15], the LRP is also applied to explain the classifications
and predictions in other tasks [2,28]. However, the explanations generated by the
approach has not been fully verified. We summarise our three-fold contributions
as follows:

1. We first evaluate the explanations generated by LRP for individual classifica-
tion decisions. Then, we analyze the theoretical foundation of LRP, i.e., Deep
Taylor Decomposition and shed new insight on LRP.

2. We propose Contrastive Layer-wise Relevance Propagation (CLRP). To gen-
erate class-discriminative explanations, we propose two ways to model the
contrastive signal (i.e., an opposite visual concept). For individual classifica-
tion decisions, we illustrate explanations of the decisions and the difference
between neuron activations using the proposed approach.

3. We build a GPU implementation of LRP and CLRP using Pytorch Frame-
work, which alleviates the inefficiency problem addressed in [24,34].

Related work is reviewed in the next section. Section 3 analyzes LRP theoreti-
cally and experimentally. In Sect. 4, the proposed approach CLRP is introduced.
Section 5 shows experimental results to evaluate the CLRP qualitatively and
quantitatively on two tasks, namely, explaining the image classification deci-
sions and understanding the difference of neuron activations in single forward
inference. The last section contains conclusions and discusses future work.

2 Related Work

The DeConvNets were originally proposed for unsupervised feature learning
tasks [33]. Later they were applied to visualize units in convolutional networks
[32]. The DeConvNets maps the feature activity to input space using ISSInfo
and the weight parameters of the forward pass. [25] proposed identifying the
vanilla gradients of the output with respect to input variables are their relevance.
The work also showed its relation to the DeConvNets. They use the ISSInfo in
the same way except for the handling of rectified linear units (ReLUs) activa-
tion function. The Guided Backpropagation [27] combine the two approaches to
visualize the units in higher layers.

The paper [3] propose LRP to generate the explanations for classification
decisions. The LRP propagates the class-specific score layer by layer until to
input space. The different propagation rules are applied according to the domain
of the activation values. [15] proved that the Taylor Expansions of the function
at the different points result in the different propagation rules. Recently, one of
the propagation rules in LRP, z -rule, has been proven to be equivalent to the
vanilla gradients (saliency map in [25]) multiplied elementwise with the input [9].
The vanilla Gradient Visualization and the Guided Backpropagation are shown
to be not class-discriminative in [13]. This paper rethinks the LRP and evaluates
the explanations generated by the approach.
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Existing work that is based on discriminative and pixel-wise explanations are
[4,23,34]. The work Guided-CAM [23] combines the low-resolution map of CAM
and the pixel-wise map of Guided Backpropagation to generate a pixel-wise and
class-discriminative explanation. To localize the most relevant neurons in the
network, a biologically inspired attention model is proposed in [31]. The work
uses a top-down (from the output layer to the intermediate layers) Winner-
Take-All process to generate binary attention maps. The work [34] formulate
the top-down attention of a CNN classifier as a probabilistic Winner-Take-All
process. The work also uses a contrastive top-down attention formulation to
enhance the discriminativeness of the attention maps. Based on their work and
the LRP, we propose Contrastive Layer-wise Relevance Propagation (CLRP)
to produce class-discriminative and pixel-wise explanations. Another publica-
tion related to our approach is [4], which is able to produce class-discriminative
attention maps. While the work [4] requires modifying the traditional CNNs by
adding extra feedback layers and optimizing the layers during the backpropa-
gation, our proposed methods can be applied to all exiting CNNs without any
modification and further optimization.

3 Rethinking Layer-Wise Relevance Propagation

Each neuron in DCNNs represents a nonliear function XL+1
i = φ(XLWL

i +bL
i ),

where φ is an activation function and bL
i is a bias for the neuron XL+1

i . The
inputs of the nonliear function corresponding to a neuron are the activation
values of the previous layer Xi or the raw input of the network. The output of
the function are the activation values of the neuron XL+1

i . The whole network
are composed of the nested nonlinear functions.

To identify the relevance of each input variables, the LRP propagates the
activation value from a single class-specific neuron back into the input space,
layer by layer. The logit before softmax normalization is taken, as explained
in [3,25]. In each layer of the backward pass, given the relevance score RL+1

of the neurons XL+1, the relevance RL
i of the neuron XL

i are computed by
redistributing the relevance score using local redistribution rules. The most often
used rules are the z+-rule and the zβ-rule, which are defined as follows:

z+-rule: RL
i =

∑

j

xiw
+
ij∑

i′ xi′w+
i′j

RL+1
j

zβ-rule: RL
i =

∑

j

xiwij − liw
+
ij − hiw

−
ij∑

i′ xi′wi′j − li′w+
i′j − hi′w−

i′j

RL+1
j

(1)

where wij connecting XL
i and XL+1

j is a parameter in L-th layer, w+
ij =

wij ∗ 1wij>0 and w−
ij = wij ∗ 1wij<0, and the interval [l, h] is the domain of

the activation value xi.
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Fig. 1. The images from validation datasets of ImageNet are classified using the off-
the-shelf models pre-trained on the ImageNet. The classifications of the images are
explained by the LRP approach. For each image, we generate four explanations that
correspond to the top-3 predicted classes and a randomly chosen multiple-classes.
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3.1 Evaluation of the Explanations Generated by the LRP

The explanations generated by LRP are known to be instance-specific. However,
the discriminativeness of the explanations has not been evaluated yet. Ideally,
the visualized objects in the explanation should correspond to the class the class-
specific neuron represents. We evaluate the explanations generated by LRP on
the off-the-shelf models from torchvision, specifically, AlexNet [10], VGG16 [26]
and GoogLeNet [29] pre-trained on the ImageNet dataset [22].

The experiment settings are similar to [15]. The zβ-rule is applied to the
first convolution layer. For all higher convolutional layers and fully-connected
layers, the z+-rule is applied. In the MaxPooling layers, the relevance is only
redistributed to the neuron with the maximal value inside the pooling region,
while it is redistributed evenly to the corresponding neurons in the Average
Pooling layers. The biases and normalization layers are bypassed in the relevance
propagation pass.

The results are shown in Fig. 1. For each test image, we create four saliency
maps as explanations. The first three explanation maps are generated for top-3
predictions, respectively. The fourth one is created for randomly chosen 10 classes
from the top-100 predicted classes (which ensure that the score to be propagated
is positive). The white text in each explanation map indicates the class the
output neuron represents and the corresponding classification probability. The
explanations generated by AlexNet are blurry due to incomplete learning (due
to the limited expressive power). The explanations of VGG16 classifications are
sharper than the ones created on GoogLenet. The reason is that VGG16 contains
only MaxPooling layers and GoogLenet, by contrast, contains a few average
pooling layers.

The generated explanations are instance-specific, but not class-
discriminative. In other words, they are independent of class information. The
explanations for different target classes, even randomly chosen classes, are almost
identical. The conclusion is consistent with the one summarised in the paper
[1,5], namely, almost all information about input image is contained in the pat-
tern of non-zero pattern activations, not their precise values. The high similar-
ity of those explanations resulted from the leverage of the same ISSInfo (see
Sect. 3.2). In summary, the explanations are not class-discriminative. The gener-
ated maps recognize the same foreground objects instead of a class-discriminative
one.

3.2 Theoretical Foundation: Deep Taylor Decomposition

Motivated by the divide-and-conquer paradigm, Deep Taylor Decomposition
decomposes a deep neural network (i.e. the nested nonliear functions) iteratively
[15]. The propagation rules of LRP are derivated from Deep Taylor Decomposi-
tion of rectifier neuron network. The function represented by a single neuron is
XL+1

j = max(0,XLWL
j + bL+1

j ). The relevance RL+1
j of the neurons XL+1

j is
given. The Deep Taylor Decomposition assumes RL+1

j = max(0,XLWL
j +bL+1

j ).
The function is expanded with Taylor Series at a point Xr

i subjective to
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max(0,XrLWL
j + bL+1

j ) = 0. The LRP propagation rules are resulted from
the first degree terms of the expansion.

One may hypothesize that the non-discriminativeness of LRP is caused by
the first-order approximation error in Deep Taylor Decomposition. We proved
that, under the given assumption, the same propagation rules are derived, even
though all higher-order terms are taken into consideration (see the proof in the
supplementary material). Furthermore, we found that the theoretical foundation
provided by the Deep Taylor Decomposition is inappropriate. The assumption
RL+1

j = max(0,XLWL
j + bL+1

j ) = XL+1
j is not held at all the layers except for

the last layer. The assumption indicates that the relevance value is equal to the
activation value for all the neurons, which, we argue, is not true.

In our opinion, the explanations generated by the LRP result from the ISS-
Info (ReLU masks and Pooling Switches). The activation values of neurons are
required to create explanations using LRP. In the forward pass, the network
output a vector (y1, y2, · · · , ym). In the backward pass, the activation value of
the class y1 is layer-wise backpropagated into input space. In fully connected
layers, only the activated neurons can receive the relevance according to any
LRP propagation rule. In the Maxpooling layers, the backpropagation conducts
an unpooling process, where only the neuron with maximal activations inside the
corresponding pooling region can receive relevance. In the convolutional layer,
only specific part of neurons Rconv1 in feature map have non-zero relevance in the
backward pass. The part of input pixels Pinput live in the convolutional regions
of those neurons (Rconv1). Only the pixels Pinput will receive the propagated
relevance. The pattern of the Pinput is the explanation generated by LRP.

The backward pass for the class y2 is similar to that of y1. The neurons
that receive non-zero relevance are the same as in case of y1, even though their
absolute values may be slightly different. Regardless of the class chosen for the
backpropagation, the neurons of each layer that receive non-zero relevance stay
always the same. In other words, the explanations generated by LRP are inde-
pendent of the class category information, i.e., not class-discriminative.

In summary, in deep convolutional rectifier neuron network, the ReLU masks
and Pooling Switches decide the pattern visualized in the explanation, which
is independent of class information. That is the reason why the explanations
generated by LRP on DCNNs are not class-discriminative. The analysis also
explains the non-discriminative explanations generated by other backpropaga-
tion approaches, such as the DeConvNets Visualization [32], The vanilla Gradient
Visualization [25] and the Guided Backpropagation [27].

4 Contrastive Layer-Wise Relevance Propagation

Before introducing our CLRP, we first discuss the conservative property in the
LRP. In a DNN, given the input X = {x1, x2, x3, · · · , xn}, the output Y =
{y1, y2, y3, · · · , ym}, the score Syj

(activation value) of the neuron yj before
softmax layer, the LRP generate an explanation for the class yj by redistributing
the score Syj

layer-wise back to the input space. The assigned relevance values
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Fig. 2. The figure shows an overview of our CLRP. For each predicted class, the app-
roach generates a class-discriminative explanation by comparing two signals. The blue
line means the signal that the predicted class represents. The red line models a dual
concept opposite to the predicted class. The final explanation is the difference between
the two saliency maps that the two signal generate. (Color figure online)

of the input neurons are R = {r1, r2, r3, · · · , rn}. The conservative property is
defined as follows:

Definition 1. The generated saliency map is conservative if the sum of assigned
relevance values of the input neurons is equal to the score of the class-specific
neuron,

∑n
i=1 ri = Syj

.

In this section, we consider redistributing the same score from different class-
specific neurons respectively. The assigned relevance R are different due to dif-
ferent weight connections. However, the non-zero patterns of those relevance
vectors are almost identical, which is why LRP generate almost the same expla-
nations for different classes. The sum of each relevance vector is equal to the
redistributed score according to the conservative property. The input variables
that are discriminative to each target class are a subset of input neurons, i.e.,
Xdis ⊂ X. The challenge of producing the explanation is to identify the dis-
criminative pixels Xdis for the corresponding class.

In the explanations of image classification, the pixels on salient edges always
receive higher relevance value than other pixels including all or part of Xdis.
Those pixels with high relevance values are not necessary discriminative to the
corresponding target class. We observe that Xdis receive higher relevance values
than that of the same pixels in explanations for other classes. In other words,
we can identify Xdis by comparing two explanations of two classes. One of the
classes is the target class to be explained. The other class is selected as an
auxiliary to identify Xdis of the target class. To identify Xdis more accurately,
we construct a virtual class instead of selecting another class from the output
layer. We propose two ways to construct the virtual class.

The overview of the CLRP are shown in Fig. 2. We describe the CLRP for-
mally as follows. The j−th class-specific neuron yj is connected to input variables
by the weights W = {W 1,W 2, · · · ,WL−1,WL

j } of layers between them, where
WL means the weights connecting the (L−1)−th layer and the L−th layer, and
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WL
j means the weights connecting the (L− 1)−th layer and the j−th neuron in

the L−th layer. The neuron yj models a visual concept O. For an input example
X, the LRP maps the score Syj

of the neuron back into the input space to get
relevance vector R = fLRP (X,W , Syj

).
We construct a dual virtual concept O, which models the opposite visual

concept to the concept O. For instance, the concept O models the zebra,
and the constructed dual concept O models the non-zebra. One way to
model the O is to select all classes except for the target class representing
O. The concept O is represented by the selected classes with weights W =
{W 1,W 2, · · · ,WL−1,WL

{−j}}, where W {−j} means the weights connected to
the output layer excluding the j−th neuron. E.g. the dashed red lines in Fig. 2
are connected to all classes except for the target class zebra. Next, the score Syj

of target class is uniformly redistributted to other classes. Given the same input
example X, the LRP generates an explanation Rdual = fLRP (X,W , Syj

) for
the dual concept. The Contrastive Layer-wise Relevance Propagation is defined
as follows:

RCLRP = max(0, (R − Rdual)) (2)

where the function max(0,X) means replacing the negative elements of X with
zeros. The difference between the two saliency maps cancels the common parts.
Without the dominant common parts, the non-zero elements in RCLRP are the
most relevant pixels Xdis. If the neuron yj lives in an intermediate layer of a
neural network, the constructed RCLRP can be used to understand the role of
the neuron.

Similar to [34], the other way to model the concept O is to negate
the weights WL

j . The concept O can be represented by the weights W =
{W 1,W 2, · · · ,WL−1, −1 ∗ WL

j }. All the weights are same as in the concept
O except that the weights of the last layer WL

j are negated. In the experi-
ments section, we call the first modeling method CLRP1 and the second one
CLRP2. The contrastive formulation in [34] can be applied to other backpropa-
gation approaches by normalizing and subtracting two generated saliency maps.
However, the normalization strongly depends on the maximal value that could
be caused by a noisy pixel. Based on the conservative property of LRP, the
normalization is avoided in the proposed CLRP.

5 Experiments and Analysis

In this section, we conduct experiments to evaluate our proposed approach. The
first experiment aims to generate class-discriminative explanations for individual
classification decisions. The second experiment evaluates the generated explana-
tions quantitatively on the ILSVRC2012 validation dataset. The discriminative-
ness of the generated explanations is evaluated via a Pointing Game and an
ablation study. The last experiment aims to understand the difference between
neurons in a single classification forward pass.
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Fig. 3. The images of multiple objects are classified using VGG16 network pre-trained
on ImageNet. The explanations for the two relevant classes are generated by LRP and
CLRP. The CLRP generates class-discriminative explanations, while LRP generates
almost same explanations.

5.1 Explaining Classification Decisions of DNNs

In this experiment, the LRP, the CLRP1 and the CLRP2 are applied to gen-
erate explanations for different classes. The experiments are conducted on a
pre-trained VGG16 Network [26]. The propagation rules used in each layer
are the same as in the Sect. 3.1. We classify the images of multiple objects.
The explanations are generated for the two most relevant predicted classes,
respectively. The Fig. 3 shows the explanations for the two classes (i.e., Zebra
and African elephant). The explanations generated by the LRP are same
for the two classes. Each generated explanation visualizes both Zebra and
African elephant, which is not class-discriminative. By contrast, both CLRP1
and CLRP2 only identify the discriminative pixels related to the corresponding
class. For the target class Zebra, only the pixels on the zebra object are visual-
ized. Even for the complicated images where a zebra herd and an elephant herd
co-exist, the CLRP methods are still able to find the class-discriminative pixels.

We evaluate the approach with a large number of images with multiple
objects. The explanations generated by CLRP are always class-discriminative,
but not necessarily semantically meaningful for every class. One of the reasons
is that the VGG16 Network is not trained for multi-label classification. Other
reasons could be the incomplete learning and bias in the training dataset [30].

The implementation of the LRP is not trivial. The one provided by their
authors only supports CPU computation. For the VGG16 network, it takes
the 30 s to generate one explanation on an Intel Xeon 2.90 GHz × 6 machine.
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(a) Pointing Accuracy On the AlexNet (b) Pointing Accuracy On the VGG16

Fig. 4. The figure shows the localization ability of the saliency maps generated by
the LRP, the CLRP1, the CLRP2, the vanilla Gradient Visualization and the Guided
Backpropagation. On the pre-trained models, AlexNet and VGG16, the localization
ability is evaluated at different thresholds. The x-axis corresponds to the threshold that
keeps a certain percentage of energy left, and the y-axis corresponds to the pointing
accuracy.

The computational expense makes the evaluation of LRP impossible on a large
dataset [34]. We implement a GPU version of the LRP approach, which reduces
the 30 s to 0.1824 s to generate one explanation on a single NVIDIA Telsa
K80 GPU. The implementation alleviates the inefficiency problem addressed
in [24,34] and makes the quantitative evaluation of LRP on a larget dataset
possible.

5.2 Evaluating the Explanations

In this experiments, we quantitatively evaluate the generated explanations on
the ILSVRC2012 validation dataset containing 50, 000 images. A Pointing Game
and an ablation study are used to evaluate the proposed approach.

Pointing Game: To evaluate the discriminativeness of saliency maps, the paper
[34] proposes a pointing game. The maximum point on the saliency map is
extracted and evaluated. In case of images with a single object, a hit is counted
if the maximum point lies in the bounding box of the target object, otherwise a
miss is counted. The localization accuracy is measured by Acc = #Hits

#Hits+#Misses .
In case of ILSVRC2012 dataset, the naive pointing at the center of the image
shows surprisingly high accuracy. Based on the reason, we extend the pointing
game into a difficult setting. In the new setting, the first step is to preprocess
the saliency map by simply thresholding so that the foreground area covers p
percent energy out of the whole saliency map (where the energy is the sum of
all pixel values in saliency map). A hit is counted if the remaining foreground
area lies in the bounding box of the target object, otherwise a miss is counted.

The Fig. 4 show that the localization accuracy of different approaches in
case of different thresholds. With more energy kept, the remained pixels are less
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Table 1. Ablation study on ImagNet Validation dataset. The dropped activation values
after the corresponding ablation are shown in the table.

Random vanilGrad [25] GuidedBP [27] LRP [3] CLRP1 CLRP2

AlexNet 0.0766 0.1716 0.1843 0.1624 0.2093 0.2030

VGG16 0.0809 0.3760 0.4480 0.3713 0.3844 0.3913

likely to fall into the ground-truth bounding box, and the localization accuracy is
low correspondingly. The CLRP1 and the CLRP2 show constantly much better
pointing accuracy than that of the LRP. The positive results indicate that the
pixels that the contrastive backpropagation cancels are on the cluttered back-
ground or non-target objects. The CLRP can focus on the class-discriminative
part, which improves the LRP. The CLRP is also better than other primal
backpropagation-based approaches. One exception is that the Guided Backprop-
agation shows a better localization accuracy in VGG16 network in case of high
thresholds. In addition, the localization accuracy of the CLRP1 and the CLRP2
is similar in the deep VGG16 network, which indicates the equivalence of the
two methods to model the opposite visual concept.

Ablation Study: In the Pointing Game above, we evaluate the discriminative-
ness of the explanations according to the localization ability. In this ablation
study, we evaluate the discriminativeness from another perspective. We observe
the changes of activation in case of ablating the found discriminative pixels. The
activation value of the class-specific neuron will drop if the ablated pixels are
discriminative to the corresponding class.

For an individual image classification decision, we first generate a saliency
map for the ground-truth class. We identify the maximum point in the generated
saliency map as the most discriminative position. Then, we ablate the pixel of
the input image at the identified position with a 9 × 9 image patch. The pixel
values of the image patch are the mean value of all the pixel values at the same
position across the whole dataset. We classify the perturbated image and observe
the activation value of the neuron corresponding to the ground-truth class. The
dropped activation value is computed as the difference between the activations
of the neuron before and after the perturbation. The dropped score is averaged
on all the images in the dataset.

The experimental results of different approaches are shown in the Table 1.
For the comparison, we also ablate the image with a randomly chosen position.
The random ablation has hardly impact on the output. The saliency maps corre-
sponding to all other approaches find the relevant pixel because the activations
of the class-specific neurons dropped a lot after the corresponding ablation. In
both networks, CLRP1 and CLRP2 show the better scores, which means the
discriminativeness of explanations generated by CLRP is better than that of
the LRP. Again, the Guided Backpropagation shows better score than CLRP.
This ablation study only considers the discriminative of the pixel with maxi-
mal relevance value, which corresponds to a special case in the Pointing Game,
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namely, only one pixel with maximal relevance is left after the thresholding. The
two experiments show the consistent result that the Guided Backpropagation is
better than LRP in the special case. We do not report the performance of the
GoogLeNet in the experiments. Our approach shows that the zero-padding oper-
ations of convolutional layers have a big impact on the output of the GoogLeNet
model in torchvision module of Pytorch. The impact leads to a problematic
saliency map (see supplementary material).

5.3 Understanding the Difference Between Neurons

The neurons of DNNs have been studying with their activation values. The
DeConvNets [32] visualize the patterns and collect the images that maximally
activate the neurons, given an image set. The activation maximization method
[6,16] aims to generate an image in input space that maximally activates a single
neuron or a group of neurons. Furthermore, the work [8,35] understand the
semantic concepts of the neurons with an annotated dataset. In this experiment,
we aim to study the difference among neurons in a single classification decision.

The neurons of low layers may have different local receptive fields. The differ-
ence between them could be caused by the different input stimuli. We visualize
high-level concepts learned by the neurons that have the same receptive fields,
e.g., a single neuron in a fully connected layer. For a single test image, the
LRP and the CLRP2 are applied to visualize the stimuli that activate a specific
neuron. We do not use CLRP1 because the opposite visual concept cannot be
modeled by the remaining neurons in the same layer.

In VGG16 network, we visualize 8 activated neurons x1−8 from the fc1 layer.
The visualized maps are shown in Fig. 5. The image is classified as a toyshop
by the VGG16 network. The receptive field (the input image) is shown in the
center, and the 8 explanation maps are shown around it. While the LRP produces
almost identical saliency map for the 8 neurons (in Fig. 5a), the CLRP2 gains
a meaningful insight about their difference, which shows that different neurons
focus on different parts of images. By comparison (see Fig. 5b), the neurons
x1, x2, x3 in the first row are activated more by the lion, the gorilla, and the
monkey respectively. The neurons x4, x5 in the second row by the eye of the
elephant and the bird respectively. The right-down one x6 by the panda. The
last two neurons x7 and x8 focus on the similar patterns (i.e., the tiger).

To our knowledge, there is no known work on the difference between neurons
in an individual classification decision and also no evaluation metric. We evaluate
the found difference by an ablation study. More concretely, we first find the
discriminative patch for each neuron (e.g., x1−8) using CLRP2. Then, we ablate
the patch and observe the changes of neuron activations in the forward pass.
The discriminative patch of a neuron is identified by the point with maximal
value in its explanation map created by CLRP2. The 9 × 9 neighboring pixels
around the maximum point are replaced with the values that are mean of pixel
values in the same positions across the whole dataset.

The ablation study results are shown in the Fig. 5c. The positive value in
the grid of the figure means the decreased activation value, and the negative
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(a) Explanations by LRP (b) Explanations by CLRP (c) Ablation Study

Fig. 5. The figures show explanation maps of neurons in fc1 layers. The explanations
generated by LRP are not discriminative. By contrast, the ones generated by CLRP
explain the difference between the neurons.

ones mean the activations increase after the corresponding ablation. In case of
the ablation corresponding to neuron xi, we see that the activation of xi is
significantly dropped (could become not-activated). The maximal droped values
of each row often occur on the diagonal axis. We also try with other ablation
sizes and other neurons, which shows the similar results. The ablations for the
last two neurons x7 and x8 are same because their explanation maps are similar.
The changes of activations of all other neurons are also the same for the same
ablation. We found that many activated neurons correspond to same explanation
maps.

6 Conclusion

The explanations generated by LRP are evaluated. We find that the explana-
tions are not class-discriminative. We discuss the theoretical foundation and
provide our justification for the non-discriminativeness. To improve discrimina-
tiveness of the generated explanations, we propose the Contrastive Layer-wise
Relevance Propagation. The qualitative and quantitative evaluations confirm
that the CLRP is better than the LRP. We also use the CLRP to shed light on
the role of neurons in DCNNs.

We propose two ways to model the opposite visual concept the class-specific
neuron represents. However, there could be other more appropriate modeling
methods. Even though our approach produces a pixel-wise explanation for the
individual classification decisions, the explanations for similar classes are similar.
The fine-grained discriminativeness are needed to explain the classifications of
the intra-classes. We leave the further exploration in future work.
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Abstract

Capsule Networks, as alternatives to Convolutional Neural
Networks, have been proposed to recognize objects from im-
ages. The current literature demonstrates many advantages
of CapsNets over CNNs. However, how to create explana-
tions for individual classifications of CapsNets has not been
well explored. The widely used saliency methods are mainly
proposed for explaining CNN-based classifications; they cre-
ate saliency map explanations by combining activation val-
ues and the corresponding gradients, e.g., Grad-CAM. These
saliency methods require a specific architecture of the un-
derlying classifiers and cannot be trivially applied to Cap-
sNets due to the iterative routing mechanism therein. To
overcome the lack of interpretability, we can either propose
new post-hoc interpretation methods for CapsNets or modi-
fying the model to have build-in explanations. In this work,
we explore the latter. Specifically, we propose interpretable
Graph Capsule Networks (GraCapsNets), where we replace
the routing part with a multi-head attention-based Graph
Pooling approach. In the proposed model, individual clas-
sification explanations can be created effectively and effi-
ciently. Our model also demonstrates some unexpected ben-
efits, even though it replaces the fundamental part of Cap-
sNets. Our GraCapsNets achieve better classification perfor-
mance with fewer parameters and better adversarial robust-
ness, when compared to CapsNets. Besides, GraCapsNets
still keep other advantages of CapsNets, namely, disentangled
representations and affine transformation robustness.

1 Introduction
In past years, Convolutional Neural Networks (CNNs) have
become the standard model applied in object recognition.
Our community has been pursuing more powerful CNN
models with compact size (He et al. 2016). Besides, two
weaknesses of CNNs have also been intensively investigated
recently. Namely, 1) Adversarial Vulnerability (Szegedy
et al. 2014): The predictions of CNNs can be misled by im-
perceptible perturbations of input images. 2) Lack of Inter-
pretability (Simonyan, Vedaldi, and Zisserman 2013): The
predictions of standard CNNs are based on highly entangled
representations. The two weaknesses might be attributed to
the fact that the representations learned by CNNs are not
aligned to human perception.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recently, Capsule Networks (CapsNets) (Sabour, Frosst,
and Hinton 2017) have been proposed and received much at-
tention since they can learn more human-aligned visual rep-
resentations (Qin et al. 2020). The disentangled represen-
tations captured by CapsNets often correspond to human-
understandable visual properties of input objects, e.g., ro-
tations and translations. Recent work on CapsNets aims to
propose more efficient routing algorithms (Hinton, Sabour,
and Frosst 2018; Hahn, Pyeon, and Kim 2019; Zhang,
Edraki, and Qi 2018; Tsai et al. 2020) and understand the
contributions of the routing algorithms (Gu and Tresp 2020;
Gu, Wu, and Tresp 2021).

However, how to explain individual classifications of
CapsNets has been less explored. The state-of-the-art
saliency methods are mainly proposed for CNNs, e.g., Grad-
CAM (Selvaraju et al. 2017). They combine activation val-
ues and the received gradients in specific layers, e.g., deep
convolutional layers. In CapsNets, instead of deep convo-
lutional layers, an iterative routing mechanism is applied
to extract high-level visual concepts. Hence, these saliency
methods cannot be trivially applied to CapsNets. Besides,
the routing mechanism makes it more challenging to iden-
tify interpretable input features relevant to a classification.

In this work, we propose interpretable Graph Capsule
Networks (GraCapsNets). In CapsNets, the primary cap-
sules represent object parts, e.g., eyes and nose of a cat. In
our GraCapsNets, we explicitly model the relationship be-
tween the primary capsules (i.e., part-part relationship) with
graphs. Then, the followed graph pooling operations pool
relevant object parts from the graphs to make a classifica-
tion vote. Since the graph pooling operation reveals which
input features are pooled as relevant ones, we can easily cre-
ate explanations to explain the classification decisions. Be-
sides the interpretability, another motivation of GraCapsNets
is that the explicit part-part relationship is also relevant for
object recognition, e.g., spatial relationships.

The classic graph pooling algorithms are clustering-
based, which requires high computational complexity. It is
challenging to integrate these graph pooling algorithms into
neural networks. Recent progress on graph pooling modules
of Graph Neural Networks makes similar integrations possi-
ble. E.g., (Ying et al. 2018) proposed a differentiable graph
pooling module, which can be integrated into various neural
network architectures in an end-to-end fashion.



The capsule idea is also integrated into Graph Neural
Networks for better graph classification (Verma and Zhang
2018; Xinyi and Chen 2019). They treat node feature vec-
tors as primary capsules and aggregates information from
the capsules via a routing mechanism. Different from their
works, we integrate graph modeling into CapsNets for bet-
ter object recognition. On the contrary, our GraCapsNets
treat capsules as node feature vectors and represent them as
graphs so that we can leverage graph structure information
(e.g., the spatial part-part relationship between object parts).

Our main contribution of this work is to propose Gra-
CapsNets, where we replace the fundamental routing part
of CapsNets with multi-head attention-based Graph Pooling
operations. On GraCapsNets, we can create explanations for
individual classifications effectively and efficiently. Besides,
our empirical experiments show that GraCapsNets achieve
better performance with fewer parameters and also learn dis-
entangled representations. GraCapsNets are also shown to
be more robust to the primary white adversarial attacks than
CNNs and various CapsNets.

2 Related Work
Routing Mechanism: The goal of routing processes in Cap-
sNets is to identify the weights of predictions made by low-
level capsules, called coupling coefficients (CCs) in (Sabour,
Frosst, and Hinton 2017). Many routing mechanisms have
been proposed to improve Dynamic Routing (Sabour, Frosst,
and Hinton 2017); they differ from each other only in how
to identify CCs.

Dynamic Routing (Sabour, Frosst, and Hinton 2017) iden-
tifies CCs with an iterative routing-by-agreement mecha-
nism. EM Routing (Hinton, Sabour, and Frosst 2018) up-
dates CCs iteratively using the Expectation-Maximization
algorithm. (Chen and Crandall 2019) removes the compu-
tationally expensive routing iterations by predicting CCs
directly. To improve the prediction of CCs further, Self-
Routing (Hahn, Pyeon, and Kim 2019) predicts CCs using a
subordinate routing network. However, (Gu and Tresp 2020)
shows that similar performance can be achieved by simply
averaging predictions of low-level capsules without learning
CCs. In this work, we propose Graph Capsule Networks,
where a multi-head attention-based graph pooling mecha-
nism is used instead of routing.

Graph Pooling: Earlier works implement graph pooling
with clustering-based graph coarsening algorithms, e.g., Gr-
aclus (Dhillon, Guan, and Kulis 2007), where the nodes
with similar representations are clustered into one. In later
works (Set2Set (Vinyals, Bengio, and Kudlur 2015) and
SortPool (Zhang et al. 2018)), the graph features are also
taken into consideration. However, they require the order-
ing of the nodes by a user-defined meaningful criterium.
Recently, the seminal work (Ying et al. 2018) proposes a
differentiable graph pooling module, which can be com-
bined with various neural network architectures in an end-
to-end fashion. For simplification of (Ying et al. 2018), top-
K pooling (Gao and Ji 2019; Knyazev, Taylor, and Amer
2019) and self-attention pooling (Lee, Lee, and Kang 2019)
have been proposed. Almost all the graph pooling strate-
gies have been mainly used for graph classification. Based

Algorithm 1: Capsule Networks
Input: An image X

Output: Class capsules V ∈ RM×Dout

1. Extract primary capsules ui ∈ RDin from input X;
2. Transform each ui into ûj|i ∈ RDout ;
3. Identify all cij with a routing process;
4. Compute sj =

∑N
i=1 cij ∗ ûj|i;

5. Output capsules vj = squash(sj)

on the work (Ying et al. 2018), we propose multiple-heads
attention-based graph pooling for object recognition.

Adversarial Robustness: (Szegedy et al. 2014) shows
that imperceptible image perturbations can mislead stan-
dard CNNs. Since then, many adversarial attack methods
have been proposed, e.g., FGSM (Goodfellow, Shlens, and
Szegedy 2015), C&W (Carlini and Wagner 2017). Mean-
while, the approaches to defend these attacks have also
been widely investigated, e.g., Adversarial Training (Madry
et al. 2017; Athalye, Carlini, and Wagner 2018), Certified
Defenses (Wong and Kolter 2018; Cohen, Rosenfeld, and
Kolter 2019). One way to tackle the adversarial vulner-
ability is to propose new models that learn more human
perception-aligned feature representations, e.g., CapsNets
(Sabour, Frosst, and Hinton 2017; Qin et al. 2020). Recent
work (Hinton, Sabour, and Frosst 2018; Hahn, Pyeon, and
Kim 2019) shows that CapsNets with their routing processes
are more robust to white-box adversarial attacks.

Interpretability: A large number of interpretation meth-
ods have been proposed to understand individual classi-
fications of CNNs. Especially, saliency maps created by
post-hoc methods, as intuitive explanations, have received
much attention. We categorize the methods into two cate-
gories. The first category is architecture-agnostic, such as,
vanilla Gradients (Grad) (Simonyan, Vedaldi, and Zisserman
2013), Integrated Gradients (IG) (Sundararajan, Taly, and
Yan 2017) as well as their smoothed versions (SG) (Smilkov
et al. 2017). The second one requires specific layers or archi-
tecture of models, e.g., Guided Backpropagation (Springen-
berg et al. 2014; Gu and Tresp 2019), DeepLIFT (Shrikumar,
Greenside, and Kundaje 2017), LRP (Bach et al. 2015; Gu,
Yang, and Tresp 2018), Grad-CAM (Selvaraju et al. 2017).
Only the architecture-agnostic methods can be trivially gen-
eralized to CapsNets due to the routing mechanism therein.
In our GraCapsNets, the explanations can be created with
attention in the graph pooling operations.

3 Graph Capsule Networks
We first briefly review CapsNets. As shown in Algorithm 1,
CapsNets start with convolutional layers that convert the in-
put pixel intensities X into primary capsules ui (i.e., low-
level visual entities). Each ui is transformed to vote for
high-level capsules ûj|i with learned transformation matri-
ces. Then, a routing process is used to identify the coupling
coefficients cij , which describe how to weight votes from
primary capsules. Finally, a squashing function is applied
to the identified high-level capsules sj so that the lengths of



Figure 1: The illustration of GraCapsNets: The extracted primary capsules are transformed and modeled as multiple graphs.
The pooling result on each graph (head) corresponds to one vote. The votes on multiple graphs (heads) are averaged to generate
the final prediction.

Algorithm 2: Graph Capsule Networks
Input: An image X

Output: Class capsules V ∈ RM×Dout

1. Extract primary capsules ui ∈ RDin from input X;
2. Project each ui into the feature space u′i ∈ RDout ;
3. Model all u′i as multiple graphs;
4. Compute sj ∈ RDout with multi-head graph pooling;
5. Output capsules vj = squash(sj)

them correspond to the confidence of the class’s existence. A
reconstruction part works as regularization during training.

Different routing mechanisms differ only in the 3rd step,
i.e., how to identify cij . Routing processes describe one way
to aggregate information from primary capsules into high-
level ones. In our GraCapsNets, we implement the informa-
tion aggregation by multi-head graph pooling processes.

As shown in Algorithm 2, GraCapsNets differ from Cap-
sNets in the steps of 2, 3, and 4. In GraCapsNet, the primary
capsules ui are transformed into a feature space. All trans-
formed capsules u′i are modeled as multiple graphs. Each
graph corresponds to one head, the pooling result on which
corresponds to one vote. The votes on multiple heads are
averaged as the final prediction. The GraCapsNets is also
illustrated in Figure 1.

In CapsNets, most of the parameters are from the transfor-
mation matrix Wt ∈ RN×Din×(M∗Dout) where Din, Dout

are the dimensions of input primary capsules and output
high-level capsules, N is the number of primary capsules,
and M is the number of output classes. In GraCapsNets,
the transformation matrix is Wt ∈ RN×Din×Dout and the
trainable parameters in the graph pooling layer is W ∈
RDout×M . Hence, the parameters are reduced signigicantly.

3.1 Multiple Heads in GraCapsNets
We now introduce how to model all transformed capsules u′i
as multiple graphs. A graph consists of a set of nodes and a
set of edges.

As shown in GraCapsNet in Figure 1, the primary cap-
sules are reshaped from L groups of feature maps. Each

group consists of C feature maps of the size K × K.
Correspondingly, the transformed capsules u′i where i ∈
{1, 2, ...K2} form a single graph with K2 nodes. Namely,
the capsules of the same type (the ones on the same feature
maps but different locations) are modeled in the same graph.
Each node corresponds to one transformed capsule u′i, and
the activation vector of u′i is taken as features of the corre-
sponding node.

The graph edge information can be represented by an ad-
jacency matrix, in which different priors can be modeled,
e.g., camera geometry (Khasanova 2019) and spatial rela-
tionships (Knyazev et al. 2019). In this work, we model the
spatial relationship between primary capsules since they can
be computed without supervision.

For the above graph with K2 nodes, elements in the adja-
cency matrix A ∈ RK2×K2

can be computed as

Aij = e(−
‖pi−pj‖2

2σ2
) (1)

where i, j are indice of nodes and pi ∈ R2,pj ∈ R2 are co-
ordinates of the nodes, i.e. from (1, 1) to (K,K). Similarly,
we can build l graphs (heads) in total with the same adjcency
matrix. They differ from each other in node features.

3.2 Graph Pooling in GraCapsNets
Given node features Xl ∈ R(K2×Dout) and adjacency ma-
trix A ∈ R(K2×K2) in the l-th head of GraCapsNet, we now
describe how to make a vote for the final prediction by a
attention-based graph pooling operation. We first compute
the attention of the head as

Attl = softmax(AXlW) (2)

where W ∈ RDout×M are learnable parameters. Dout is
the dimension of the node features and M is the number of
output classes. The output is of the shape (K2 ×M). In our
GraCapsNet for object recognition, Attl corresponds to the
visual attention of the heads.

The visual attention describes how important each low-
level visual entity is to an output class. We normalize atten-
tion output with softmax function in the first dimension, i.e.,
between low-level entities. Hence, the attention on a visual



Datasets MNIST Fashion MNIST CIFAR10
Model #Para.(M) Accuracy #Para.(M) Accuracy #Para.(M) Accuracy

CapsNets (Sabour, Frosst, and Hinton 2017) 6.54 99.41(± 0.08) 6.54 92.12(± 0.29) 7.66 74.64(± 1.02)
GraCapsNets 1.18 99.50(± 0.09) 1.18 93.1(± 0.09) 2.90 82.21(± 0.11)

Table 1: Compared to CapsNets, GraCapsNets achieve slightly better performance on grayscale image datasets and significantly
better performance on CIFAR10 with fewer parameters.

entity could be nearly zero for all classes. Namely, a visual
entity can abstain from voting. When some visual entities
correspond to the noisy background of the input image, the
noise can be filtered out by the corresponding abstentions.

The attention is used to pool nodes of the graph for output
classes. The graph pooling output Sl ∈ R(M×Dout) of the
head is computed as

Sl = (Attl)TXl. (3)
The final predictions of GraCapsNets are based on all L

heads with outputs Sl where l ∈ {1, 2, ..., L}. The output
capsules are

V = squash(
1

L

L∑

l=1

Sl) (4)

Following CapsNets (Sabour, Frosst, and Hinton 2017),
the squashing function is applied to each high-level capsule
sj ∈ RDout .

squash(sj) =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(5)

and the loss function used to train our GraCapsNets is

Lk =Tk max(0,m+ − ‖vk‖)2

+ λ(1− Tk)max(0, ‖vk‖ −m−)2
(6)

where Tk = 1 if the object of the k-th class is present. As
in (Sabour, Frosst, and Hinton 2017), the hyper-parameters
are often empirically set as m+ = 0.9, m− = 0.1 and λ =
0.5. The effectiveness of Graph Pooling as well as Multiple
Heads is verified in the experimental section.

3.3 Interpretability in GraCapsNets
There is no interpretation method designed specifically for
CapsNets. The existing ones were proposed for CNNs. Only
the architecture-agnostic ones (Simonyan, Vedaldi, and Zis-
serman 2013; Sundararajan, Taly, and Yan 2017; Smilkov
et al. 2017) can be trivially generalized to CapsNets, which
only requires the gradients of the output with respect to the
input.

In our GraCapsNet, we can use visual attention as built-in
explanation to explain the predictions of GraCapsNets. The
averaged attenion over l heads is

E =
1

L

L∑

l=1

Attl (7)

where Attl corresponds to the attention of the l-th head. The
created explanations E are of the shape (K2 ×M). Given
the predicted class, theK×K attention map indicates which
pixels of the input image support the prediction.

4 Experiments
Many new versions of CapsNets have been proposed, and
they report competitive classification performance. How-
ever, the advantages of CapsNets over CNNs are not only
in performance but also in other properties, e.g., disentan-
gled representations, adversarial robustness. Additionally,
instead of pure convolutional layers, ResNet backbones(He
et al. 2016) are often applied to extract primary capsules to
achieve better performance.

Hence, in this work, we comprehensively evaluate our
GraCapsNets from the four following aspects. All scores re-
ported in this paper are averaged over 5 runs.

1. Classification Performance: Comparison of our GraCap-
sNets with original CapsNets built on two convolutional
layers and the ones built on ResNet backbones.

2. Classification Interpretability: Comparison of explana-
tions in Section 3.3 with the ones created by the
architecture-agnostic saliency methods.

3. Adversarial Robustness: Comparison of GraCapsNets
with various CapsNets and counter-part CNNs.

4. We show GraCapsNets also learn disentangled represen-
tations and achieve similar transformation robustness.

4.1 Classification Performance
The datasets, MNIST (LeCun et al. 1998), F-MNIST (Xiao,
Rasul, and Vollgraf 2017) and CIFAR10 (Krizhevsky et al.
2009), are used in this experiment. The data preprocessing,
the arhictectures and the training procedure are set iden-
tically to (Sabour, Frosst, and Hinton 2017) Correspond-
ingly, in GraCapsNets, 32 heads and 8D primary capsules
are used. 3 × 3 kernels are used in Conv layers to obtain
graphs with 144 nodes on MNIST, 196 nodes on CIFAR10.

Comparison with the original CapsNets The classifi-
cation results are reported in Table 1. In grayscale images,
GraCapsNets achieve slightly better performance with fewer
parameters. In CIFAR10, our model outperforms the Cap-
sNet by a large margin. The reason behind this is that our
graph pooling process can better filter out the background
noise. The pixel values of the background of grayscale im-
ages are often zeros, not noisy. Hence, our model performs
much better on realistic datasets.

Ablation Study on Multiple Heads In this experiment,
we set the number of feature maps fixed (e.g., 256 on F-
MNIST). We train GraCapsNets with different number of
heads 2n where n ∈ {0, 1, ...7}. The corresponding dimen-
sions of the primary capsules are 2n where n ∈ {8, 7, ...1}.
The performance is shown in Figure 2. The GraCapsNet
with more heads achieves better performance in general.



Models #Para.(M) FLOPs(M) CIFAR10 SVHN

Backbone + Avg 0.27 41.3 7.94(±0.21) 3.55(±0.11)
Backbone + FC 0.89 61.0 10.01(±0.99) 3.98(±0.15)

Dynamic Routing (Sabour, Frosst, and Hinton 2017) 5.81 73.5 8.46(±0.27) 3.49(±0.69)
EM Routing (Hinton, Sabour, and Frosst 2018) 0.91 76.6 10.25(±0.45) 3.85(±0.13)

Self-Routing (Hahn, Pyeon, and Kim 2019) 0.93 62.2 8.17(±0.18) 3.34(±0.08)
GraCapsNets 0.28 59.6 7.99(±0.13) 2.98(±0.09)

Table 2: Comparison to state-of-the-art CapsNets performance on the benchmark datasets.
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Figure 2: Ablation study on multiple heads: Given fixed
channels, the GraCapsNets with more heads perform bet-
ter in general. The GraCapsNets with too many heads can
degrade a little since the small primary capsules are not able
to represent visual entities well.

However, when too many heads are used, the performance
decreases a little. In that case, the dimensions of the primary
capsules are too small to capture the properties of low-level
visual entities. Overall, our model is not very sensitive to the
number of heads. When the number heads vary from 16 to
64, our models show similar performance with tiny variance.

Ablation Study on Graph Pooling In GraCapsNets, we
model the transformed capsules as multiple graphs. The spa-
tial relationship between the transformed capsules is mod-
eled in each graph. To investigate the effectiveness of the
graph modeling, we compare GraCapsNets with closely re-
lated pooling operations as well as routing mechanisms.

Top-K graph pooling (Gao and Ji 2019; Knyazev, Tay-
lor, and Amer 2019), simplified version of our graph pool-
ing approach, projects node features into a feature space,
and chooses the top-K ones to coarsen the graph, where the
graph structure (spatial relationship) is not used. In addition,
the trainable routing algorithm (Chen and Crandall 2019)
predict directly which primary capsules should be routed
to which output capsules. In No-routing algorithm (Gu and
Tresp 2020), the transformed capsules are simply averaged
to obtain output capsules. The two routing algorithms are
strong baselines and leverage no graph information when
aggregating information.

We report the performance of different graph pooling op-
erations and routing algorithms in Figure 3. Our Graph-
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Figure 3: Ablation Study on Graph Pooling: GraCapsNets
with graph modeling outperform others.

Pooling with different heads outperforms others on both
datasets, which indicate the effectiveness of the part-part re-
lationship modeled in our Graph-Pooling process.

Comparison with various CapsNets on ResNet Back-
bones The backbones are supposed to extract more accurate
primary capsules. To compare with various CapsNets, we
also build our GraCapsNets on their backbones. Following
(Hahn, Pyeon, and Kim 2019), we apply Dynamic routing,
EM-routing, Self-routing, and our Multi-head Graph Pool-
ing on the ResNet20 (He et al. 2016) backbone. Two CNN
baselines are Avg): the original ResNet20 and FC): directly
followed by Conv + FC without pooling.

The performance is reported in Table 2. Our GraCap-
sNets outperform previous routing algorithm slightly, but
with fewer parameters and less computational cost. Our
GraCapsNets achieve better performance than similar-sized
CNNs. The size of GraCapsNets is even comparable to the
original ResNet20. Besides the popular routing mechanisms
above, other new CapsNets architectures (Ahmed and Tor-
resani 2019) and Routing mechanisms (Zhang, Edraki, and
Qi 2018; Tsai et al. 2020) have also been recently proposed.
They report scores on different backbones in different set-
tings. Compared to scores reported in their papers, ours also
achieves comparable performance with fewer parameters.



(a) Visual Attention as Explanations on F-MNIST Dataset.

(b) Visual Attention as Explanations on CIFAR10 Dataset.

Figure 4: Visual Attention in GraCapsNets: the models focus on discriminative input visual features, e.g., the handles of the
handbags and the wings of the planes.

4.2 Classification Interpretability

The predictions of GraCapsNet can be easily explained with
their visual attention. We visualize the attention in infer-
ences and compare them with the explanations created by
other appliable interpretation methods, namely, Grad (Si-
monyan, Vedaldi, and Zisserman 2013), IG (Sundararajan,
Taly, and Yan 2017), Grad-SG and IG-SG (Smilkov et al.
2017). In this experiment, the settings of these methods fol-
low Captum package (Kokhlikyan et al. 2019). Only Gra-
CapsNets are used. We use the ones with basic architecture
from Section 4.1.

Qualitative Evaluation We make predictions with our
GraCapsNets for some examples chosen randomly from test
datasets. The visual attention is visualized on the original
input in Figure 4. The color bars right indicate the impor-
tance of the input features, where blue corresponds to little
relevance, dark red to high relevance.

For instance, in F-MNIST, the trouser legs and the gap
between them are relevant for the recognition of the class
Trouser, the handles is to Bag; In CIFAR10, the wings to
Plane, and the heads (especially the noses) to Dog. Since
the visual attention is more aligned with human-vision per-
ception, the observations also explain why our models are
more robust to adversarial examples. We also visualize ex-
planations created by all baseline methods, which are less
interpretable.

Quantitative Evaluation The quantitative evaluation of
saliency map explanations is still an open research topic
(Sturmfels, Lundberg, and Lee 2020). In this work, we quan-
titatively evaluate explanations with a widely used met-
ric, i.e. Area Over the Perturbation Curve (AOPC) (Samek
et al. 2017)AOPC = 1

L+1 〈
∑L

k=1 f(X
(0))−f(X(k))〉p(X),

where L is the number of pixel deletion steps, f(·) is the
model, X(K) is the input image after k perturbation steps.
The order of perturbation steps follow the relevance order of
corresponding input pixels in explanations. In each pertur-
bation step, the target pixel is replaced by a patch (5 × 5)
with random values from [0, 1]. The higher the AOPC is, the
more accurate the explanation are.
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Figure 5: Quantitative evaluation of explanations with
AOPC metric: Our Graph-Att performs the best.

The AOPC scores are shown in Figure 5. The difference
between the baseline methods and their smoothed versions is
small since our model is robust to input random perturbation
noise. Our Graph-Att achieve better scores than other expla-
nations. On F-MNIST dataset, IG is not better than Grad,
even worse than Random. The existing advanced interpreta-
tion methods are not suitable for capsule-type networks. For
more methods SquaredGrad and VarGrad (Adebayo et al.
2018), our methods are orthogonal to them and can also be
combined with them.

Efficiency In GraCapsNets, the single explanation created
by visual attention can be obtained in half forward pass with-
out backpropagation. Grad requires a single forward and
backward pass. IG interpolates examples between a base-
line and inputs, which requires M(=50) times forward and
backward passes. SG variants achieve smoothy explanation
by adding different noise into inputs, which require N(=10)
times more forward and backward passes, i.e., N*M(=500)
for IG-SG. In summary, the explanations inside our GraCap-
sNets is better and require less computational cost.
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Figure 6: On SVHN and CIFAR10, the attack methods attack our models (GP) with less success rate.

4.3 Adversarial Robustness
The work (Hahn, Pyeon, and Kim 2019) also claims that
their routing mechanism is more robust to adversarial at-
tacks. Follow their settings, we compare our model with
routing algorithms in terms of the adversarial robustness.

In this experiment, we use the trained models in Section
4.1. FGSM (Goodfellow, Shlens, and Szegedy 2015) (a pri-
mary attack method) and C&W (Carlini and Wagner 2017)
are applied to create adversarial examples. Their hyperpa-
rameter settings are default in Adversarial Robustness 360
Toolbox (Nicolae et al. 2018). The same settings are used
to attack all models. Instead of choosing a single perturba-
tion threshold, we use different thresholds, i.e., in the range
[0.01, 0.05] with the interval of 0.01.

Attack success rate is used to evaluate the model robust-
ness. Only correctly classified samples are considered in this
experiment. An untargeted attack is successful when the pre-
diction is changed, and a targeted attack is successful if the
input is misclassified into the target class.

Figure 6 shows the success rates of CNNs (Avg, FC), Cap-
sNets (DR, EM, SR) and our GraCapsNets (GP) under untar-
geted setting. Overall, CapsNets with various routing algo-
rithms more robust than CNNs. Especially, when the strong
attack C&W is used under a large threshold of 0.05, all the
predictions of CNNs can be misled by perturbations. The at-
tack methods achieve less success rate on our models (GP).
The experiments on the targeted setting also show similar re-
sults. In our models, the attention-based graph pooling pro-
cess can filter out part of noisy input features, which makes
successful attacks more difficult.

4.4 Disentangled Representations and
Transformation Robustness

In CapsNets, the reconstruction net reconstructs the origi-
nal inputs from the disentangled activity vectors of the out-
put capsules. When elements of the vector representation are
perturbated, the reconstructed images are also changed cor-
respondingly. We also conduct the perturbation experiments
on output capsules of GraCapsNet. Similarly, we tweak one
dimension of capsule representation by intervals of 0.05 in
the range [−0.25, 0.25]. The reconstructed images are vi-
sualized in Figure 7. We can observe that our GraCapsNet
also captures disentangled representations. For instance, the
property Size of the class Bag in F-MNIST.

(a) MNIST Dataset

(b) F-MNIST Dataset

Figure 7: Disentangled Individual Dimensions of Represen-
tations in GraCapsNets: By perturbing one dimension of an
activity vector, the variations of an input image are recon-
structed.

On the affine transformation benchmark task, where mod-
els are trained on the MNIST dataset and tested on the
AffNIST dataset (novel affine transformed MNIST images),
the CapsNets are shown to be more robust to input affine
transformations than similar-sized CNNs (79% vs. 66%)
(Sabour, Frosst, and Hinton 2017). Following their setting,
we also test our GraCapsNet on this benchmark, the test per-
formance on AffNIST dataset is slightly better (80.45%).

5 Conclusion
We propose an interpretable GraCapsNet. The explanations
for individual classifications of GraCapsNets can be cre-
ated in an effective and efficient way. Surprisingly, without
a routing mechanism, our GraCapsNets can achieve better
classification performance and better adversarial robustness,
and still keep other advantages of CapsNets. This work also
reveals that we cannot attribute the advantages of CapsNets
to the routing mechanisms, even though they are fundamen-
tal parts of CapsNets.
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Abstract

Convolutional neural networks (CNNs) achieve transla-
tional invariance by using pooling operations. However, the
operations do not preserve the spatial relationships in the
learned representations. Hence, CNNs cannot extrapolate
to various geometric transformations of inputs. Recently,
Capsule Networks (CapsNets) have been proposed to tackle
this problem. In CapsNets, each entity is represented by
a vector and routed to high-level entity representations by
a dynamic routing algorithm. CapsNets have been shown
to be more robust than CNNs to affine transformations
of inputs. However, there is still a huge gap between
their performance on transformed inputs compared to un-
transformed versions. In this work, we first revisit the
routing procedure by (un)rolling its forward and backward
passes. Our investigation reveals that the routing procedure
contributes neither to the generalization ability nor to the
affine robustness of the CapsNets. Furthermore, we explore
the limitations of capsule transformations and propose
affine CapsNets (Aff-CapsNets), which are more robust to
affine transformations. On our benchmark task, where
models are trained on the MNIST dataset and tested on the
AffNIST dataset, our Aff-CapsNets improve the benchmark
performance by a large margin (from 79% to 93.21%),
without using any routing mechanism.

1. Introduction
Human visual recognition is quite insensitive to affine

transformations. For example, entities in an image, and
a rotated version of the entities in the image, can both
be recognized by the human visual system, as long as the
rotation is not too large. Convolutional Neural Networks
(CNNs), the currently leading approach to image analysis,
achieve affine robustness by training on a large amount of
data that contain different transformations of target objects.
Given limited training data, a common issue in many
real-world tasks, the robustness of CNNs to novel affine
transformations is limited [23].

With the goal of learning image features that are more
aligned with human perception, Capsule Networks (Cap-
sNets) have recently been proposed [23]. The proposed
CapsNets differ from CNNs mainly in two aspects: first,
they represent each entity by an activation vector, the
magnitude of which represents the probability of its ex-
istence in the image; second, they assign low-level entity
representations to high-level ones using an iterative routing
mechanism (a dynamic routing procedure). Hereby, Cap-
sNets aim to keep two important features: equivariance of
output-pose vectors and invariance of output activations.
The general assumption is that the disentanglement of
variation factors makes CapsNets more robust than CNNs
to affine transformations.

The currently used benchmark task to evaluate the affine
robustness of a model is to train the model on the stan-
dard MNIST dataset and test it on the AffNIST1 dataset.
CapsNets achieve 79% accuracy on AffNIST, while CNNs
with similar network size only achieve 66% [23]. Although
CapsNets have demonstrated their superiority on this task,
there is still a huge performance gap since CapsNets achieve
more than 99% on the untransformed MNIST test dataset.

In our paper, we first investigate the effectiveness of
components that make CapsNets robust to input affine trans-
formations, with a focus on the routing algorithm. Many
heuristic routing algorithms have been proposed [10, 25, 16]
since [23] was published. However, recent work [19] shows
that all routing algorithms proposed so far perform even
worse than a uniform/random routing procedure.

From both numerical analysis and empirical experi-
ments, our investigation reveals that the dynamic routing
procedure contributes neither to the generalization ability
nor to the affine robustness of CapsNets. Therefore, it is
infeasible to improve the affine robustness by modifying the
routing procedure. Instead, we investigate the limitations of
the CapsNet architectures and propose a simple solution.
Namely, we propose to apply an identical transformation
function for all primary capsules and replace the routing by
a simple averaging procedure (noted as No Routing).

1Each example is an MNIST digit with a small affine transformation.
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Our contributions of this work can be summarized as
follows: 1) We revisit the dynamic routing procedure of
CapsNets; 2) We investigate the limitations of the current
CapsNet architecture and propose a more robust affine
Capsule Networks (Aff-CapsNet); 3) Based on extensive
experiments, we investigate the properties of CapsNets
trained without routing. Besides, we demonstrate the
superiority of Aff-CapsNet.

The rest of this paper is organized as follows: Section
2 first reviews CapsNets and related work. Section 3
investigates the effectiveness of the routing procedure by
(un)rolling the forward and backward passes of the iterative
routing iterations. Section 4 shows the limitations of current
CapsNets on the affine transformations and proposes a
robust affine CapsNet (Aff-CapsNet). Section 4 conducts
extensive experiments to verify our findings and proposed
modifications. The last two sections discuss and conclude
our work.

2. Background and Related Work
In this section, we first describe the CapsNets with

dynamic routing and then review related work.

2.1. Fundamentals of Capsule Networks

CapsNets [23] encode entities with capsules. Each cap-
sule is represented by an activity vector (e.g., the activation
of a group of neurons), and elements of each vector encode
the properties of the corresponding entity. The length of
the activation vector indicates the confidence of the entity’s
existence. The output classes are represented as high-level
capsules.

A CapsNet first maps the raw input features to low-level
capsules and then routes the low-level capsules to high-level
ones. For instance, in image classification tasks, a CapsNet
starts with one (or more) convolutional layer(s) that convert
the pixel intensities into low-level visual entities. A fol-
lowing capsule layer of the CapsNet routs low-level visual
entities to high-level visual entities. A CapsNet can have
one or more capsule layers with routing procedures.

Given a low-level capsule uuui of the L-th layer with N
capsules, a high-level capsule sssj of the (L+1)-th layer with
M capsules, and a transformation matrix WWW ij , the routing
process is

û̂ûuj|i =WWW ijuuui, sssj =
N∑

i

cijû̂ûuj|i (1)

where cij is a coupling coefficient that models the degree
with which û̂ûuj|i is able to predict sssj . The capsule sssj
is shrunk to a length in (0, 1) by a non-linear squashing
function g(·), which is defined as

vvvj = g(sssj) =
‖sssj‖2

1 + ‖sssj‖2
sssj
‖sssj‖

(2)

The coupling coefficients {cij} are computed by an
iterative routing procedure. They are updated so that high
agreement (aij = vvvTj û̂ûuj|i) corresponds to a high value of
cij .

cij =
exp(bij)∑
k exp(bik)

(3)

where initial logits bik are the log prior probabilities and
updated with bik = bik + aij in each routing iteration.
The coupling coefficients between a i-th capsule of the L-
th layer and all capsules of the (L + 1)-th layer sum to 1,
i.e.,

∑M
j=1 cij = 1. The steps in Equations 1, 2, and 3 are

repeated K times in the routing process, where sssj and cij
depend on each other.

2.2. Related Work

Routing Algorithms: Many papers have improved the
routing-by-agreement algorithm. [27] generalizes existing
routing methods within the framework of weighted kernel
density estimation and proposes two fast routing methods
with different optimization strategies. [6] proposes an
attention-based routing procedure with an attention module,
which only requires a fast forward-pass. The agreement
aij can also be calculated based on a Gaussian distribution
assumption [10, 2] or distance measures [16] instead of the
simple inner product.

Since the routing procedure is computationally expen-
sive, several works propose solutions reducing the com-
plexity of the iterative routing process. [25] formulates the
routing strategy as an optimization problem that minimizes
a combination of clustering-like loss and a KL distance
between the current coupling distribution and its last states.
[17] approximates the expensive routing process with two
branches: a master branch that collects primary information
from its direct contact in the lower layer and an aide branch
that replenishes the master branch based on pattern variants
encoded in other lower capsules.

Understanding the Routing Procedure: [4] incorpo-
rates the routing procedure into the training process by
making coupling coefficients trainable, which are supposed
to be determined by an iterative routing process. The
coupling coefficients are independent of examples, which
stay unchanged in the testing phase. What they proposed is
simply to reduce the iterative updates to a single forward
pass with prior coupling coefficients. [5] removes the
routing procedure completely and modifies the CapsNet
architectures. Their pure CapsNets achieve competitive
performance. However, it has not been investigated how
the properties of their CapsNets, e.g., the robustness to
affine transformation, will be affected by the removal of
the routing procedure. Furthermore, [19] shows that many
routing procedures [23, 10, 25, 16] are heuristic, and
perform even worse than a random routing assignment.
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Figure 1: The gradients of the loss w.r.t. randomly choosen
û̂ûum|i are visualized. The blue lines correspond to the
unrolled routing iterations in Gradient Backpropagation,
while the yellow lines to rolled routing iterations.

3. Revisiting the Dynamic Routing of CapsNets
In this section, we analyze dynamic routing, both theo-

retically and empirically. By unrolling the backpropagation
of the routing procedure and rolling the forward propa-
gation of the routing procedure, we show which role the
routing procedure plays in CapsNets.

3.1. Backpropagation through Routing Iterations

The forward pass of an iterative routing process can be
written as the following iterative steps

sss
(t)
j =

N∑

i

c
(t)
ij û̂ûuj|i

vvv
(t)
j = g(sss

(t)
j )

c
(t+1)
ij =

exp(bij +
∑t

r=1 vvv
(r)
j û̂ûuj|i)

∑
k exp(bik +

∑t
r=1 vvv

(r)
k û̂ûuk|i)

(4)

where the superscript t ∈ {1, 2, ...} is the index of an
iteration. The c

(1)
ij and bij are initialized as in Equation 3.

Assuming that there are K iterations and the classifica-
tion loss is L(yyy, ttt), where yyy = (‖vvv(K)

1 ‖, · · · , ‖vvv(K)
M ‖) is the

prediction and ttt the target, the gradients through the routing
procedure are

∂L
∂û̂ûum|i

=
∂L

∂vvv
(K)
m

∂vvv
(K)
m

∂sss
(K)
m

c
(K)
im +

M∑

j=1

∂L
∂vvv

(K)
j

∂vvv
(K)
j

∂sss
(K)
j

û̂ûuj|i
∂c

(K)
ij

∂û̂ûum|i

(5)
The gradients are propagated through the unrolled routing
iteration via the second item of Equation 5, which is also
the main computational burden of the expensive routing

procedure in CapsNets. By unrolling this term, we prove
that

∂L
∂û̂ûum|i

≈ C · ∂L
∂vvv

(K)
m

∂vvv
(K)
m

∂sss
(K)
m

c
(K)
im (6)

where C is a constant, which can be integrated into the
learning rate in the optimization process (see the proof in
Appendix A). The approximation means that the gradients
flowing through c

(K)
ij in Equation 5 can be ignored. The

c
(K)
ij can be treated as a constant in Gradient Backpropaga-

tion, and the routing procedure can be detached from the
computational graph of CapsNets.

To confirm Equation 6 empirically, we visualize ∂L
∂û̂ûum|i

.
Following [23], we train a CapsNet on the MNIST dataset.
The architecture and the hyper-parameter values can be
found in Appendix B. We first select capsule predictions
û̂ûuj|i randomly prior to the routing process and then visualize
their received gradients in two cases: 1) unrolling the
routing iterations as in [23]; 2) rolling the routing iterations
by taking all cij as constants in Gradient Backpropagation
(i.e., ignoring the second item in Equation 5). As shown in
each plot of Figure 1, the gradients of the two cases (blue
lines and yellow lines) are similar to each other.

In this section, we aim to show that the intrinsic contri-
bution of the routing procedure is to identify specified con-
stants as coupling coefficients c(K)

ij . Without a doubt, both
computational cost and memory footprint can be saved by
rolling the routing iterations in Gradient Backpropagation.
The computational graphs of the two cases can be found in
Appendix C.

3.2. Forward Pass through Routing Iterations

The forward iterative routing procedure can be for-
mulated as a function, mapping capsule predictions û̂ûu to
coupling coefficients, i.e., û̂ûu → CCC(K) = {c(K)

ij } where the
indexes of low-level capsules i vary from 1 to N and the
indexes of high-level capsules j vary from 1 to M . Given an
instance, without loss of generality, we assume the ground-
truth class is the M -th (i.e., vvvM ). With the idea behind the
CapsNet, the optimal coupling coefficients CCC∗ = {c∗ij} of
the instance can be described as

CCC∗ = max
{cij}

f(û̂ûu) = max
{cij}

(

N∑

i

ciM û̂ûuM|ig(
∑

i

ciM û̂ûuM|i)

−
M−1∑

j

N∑

i

cijû̂ûuj|ig(
∑

i

cijû̂ûuj|i))

(7)

where the first term describes the agreement on the target
class, and the second term corresponds to the agreement on
non-ground-truth classes. The optimal coupling coefficient
CCC∗ corresponds to the case where the agreement on the
target class is maximized, and the agreement on the non-
ground-truth classes is minimized.
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Figure 2: The green lines correspond to the model with
dynamic routing, while the magenta ones to the model
without routing procedure. For both models, the agreement
on the target class increases with training time, and the
agreement on the non-ground-truth classes decreases. The
values are averaged over the whole training or test dataset.

Many routing algorithms differ only in how they approx-
imateCCC∗. For instance, the original work [23] approximates
CCC∗ with an iterative routing procedure. Without requiring
iterative routing steps, [4] makes {bij} trainable to approx-
imate {c∗ij}. Their proposal can be understood as only one-
step routing with learned prior coupling coefficients. By
further reformulation, we show that the optimal sss∗j can be
learned, without a need for coupling coefficients, as

sss∗j =

N∑

i

c∗ijû̂ûuj|i =
N∑

i

c∗ijWWW
∗
ijuuui =

N∑

i

WWW ′
ijuuui. (8)

In the training process, the transformation matrix WWW ij

is updated via Gradient Decent Method. The coupling
coefficients cij are determined by the agreement between
low-level capsules and the corresponding high-level cap-
sules. The training process ends up with parameter values
sss∗j ,WWW

∗
ij , c

∗
ij . As shown in Equation 8, the CapsNet can

achieve the same results by simply learning a transforma-
tion matrixWWW ′

ij without c∗ij . In other words, the connection
strengths c∗ij between low-level capsules and high-level
capsules can be learned implicitly in the transformation
matrixWWW ′

ij . Therefore, we can conclude that different ways
to approximate CCC∗ do not make a significant difference
since the coupling coefficients will be learned implicitly.

We visualize the implicit learning process of the cou-
pling coefficients. In our experiments, we introduce the
no-routing approach, where we remove the iterative rout-
ing procedure by setting all coupling coefficient cij as a
constant 1

M . In each training epoch, the agreement on
the target class and on the non-ground-truth classes is
visualized in Figure 2. As a comparison, we also visualize

the corresponding agreement values of CapNets with the
dynamic routing process. We can observe that, during the
training process, the agreement on the target class increases
(in the left plot) for both cases, and the agreement on the
non-ground-truth classes decreases (in the right plot). In
other words, f(û̂ûu) increases in both CapNets with/without
routing procedure, meaning that the coupling coefficients
can be learned implicitly.

In summary, the affine robustness of CapsNet can not be
contributed to the routing procedure. We conclude that it
is not infeasible to improve the robustness of CapsNet by
modifying the current routing-by-agreement algorithm.

4. Affine Robustness of Capsule Networks
Besides the dynamic routing process, the other dif-

ference between CapsNets and traditional CNNs is the
CapsNet architecture. CapsNets represent each entity with
a capsule and transform it to high-level entities employing
transformation matrices. In this section, we investigate the
limitation of the transformation process in terms of affine
robustness and propose robust affine capsule networks.

4.1. The Limitation of CapsNets

The CapsNet starts with two convolutional layers, which
converts the pixel intensities to form primary (low-level)
capsules (e.g., the red cuboid in Figure 3 is a capsule uuui).
Each primary capsule has a certain receptive field (e.g., the
image patch xxxi marked with the yellow rectangle). For all
inputs, the coordinates of the receptive field of uuui are the
same. In other words, a primary capsule can only see a
specific area in input images. We denote the corresponding
converting process by uuui = pi(xxxi).

Each primary capsule is transformed to high-level cap-
sules with the corresponding transformation matrix. Each
transformation matrix WWW ij learns how to transform the i-
th low-level capsule to the j-th high-level one, i.e., û̂ûuj|i =
tj|i(uuui). The transformation process corresponding to the
input patch xxxi can be described as

û̂ûuj|i =WWW ijuuui = tj|i(uuui) = tj|i(pi(xxxi)). (9)

The transformation matrix WWW ij can only make meaningful
transformations for the entities that have, at some point,
appeared in the position of xxxi. The input domain of the
transformation function tj|i(·) is Ui.

In the testing phase, if novel affine transformations are
conducted on the input, the corresponding transformation
process tj|i(pi(xxx′

i)) are not meaningful since pi(xxx
′
i) is not

in the input domain Ui. In other words, the transformation
matrix WWW ij does not describe a meaningful transformation
since the entities ofxxx′

i have never appeared in the position of
the patch xxxi during training. Hence, the CapsNet is limited
in its generalization ability to novel affine transformations
of inputs.
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Figure 3: Illustration of the limitations of CapsNets: The transformation matrix WWW ij can only transform uuui to high-level
capsules, while WWW kj can only make meaningful transformations on uuuk. When an input is transformed (e.g., rotated), the
receptive field corresponding to uuui is not xxxi any more. For the novel uuui, the transformation process using WWW ij can fail.

4.2. Robust Affine Capsule Networks

To overcome the limitation above, we propose a very
simple but efficient solution. Concretely, we propose
to use the same transformation function for all primary
capsules (i.e., ensuring tj|i(·) ≡ tj|k(·)). We implement
a robust affine capsule network (Aff-CapsNet) by sharing
a transformation matrix. Formally, for Aff-CapsNets, we
have

WWW ij =WWW kj , ∀ i, k ∈ {1, 2, · · · , N} (10)

where N is the number of primary capsules. In Aff-
CapsNets, the transformation matrix can make a meaningful
transformation for all primary capsules since it learns how
to transform all low-level capsules to high-level capsules
during training. The transformation matrix sharing has also
been explored in a previous publication [21]. The difference
is that they aim to save parameters, while our goal is to make
CapsNets more robust to affine transformations.

From another perspective, primary capsules and high-
level capsules correspond to local coordinate systems and
global ones, respectively. A transformation matrix is
supposed to map a local coordinate system to the global
one. One might be wondering that the transformation from
each local coordinate system to a global one requires a
specific transformation matrix. In existing architectures,
the coordinate system is high-dimensional. Hence, a single
shared transformation matrix is able to make successful
transformations for all local coordinate systems.

5. Experiments and Analysis
The experiments include two parts: 1) We train CapsNets

with different routing mechanisms (including no routing) on
popular standard datasets and compare their properties from
many perspectives; 2) We show that Aff-CapsNets out-
perform CapsNets on the benchmark dataset and achieves
state-of-the-art performance. For all the experiments of this

section, we train models with 5 random seeds and report
their averages and variances.

5.1. Effectiveness of the Dynamic Routing

In Section 3, we show that the routing mechanism can be
learned implicitly in CapsNets without routing procedure.
Our experiments in this section aim to investigate if the
advantages of CapsNets disappear when trained with no
routing. We consider the following routing procedures in
our training routines:

1. Dynamic-R: with standard dynamic routing in [23];

2. Rolled-R: with a rolled routing procedure by treating
coupling coefficients as constants during Gradient
Backpropagation, as analyzed in Section 3.1;

3. Trainable-R: one-step routing with trainable coupling
coefficients, as in [4];

4. No-R: without routing procedure, which is equivalent
to the uniform routing in [19, 5].

We train CapsNets with different routing procedures de-
scribed above on four standard datasets, namely, MNIST
[15], FMNIST [26], SVHN [18] and CIFAR10 [13]. The
performance is reported in Table 1.

Given the performance variance for each model, the
performance between different models is relatively small.
The reason behind this is that coupling coefficients can
be learned in transformation matrices implicitly, and all
the models possess a similar transformation process. The
models trained with No-R do not prevent the learning
of coupling coefficients. We can also observe that the
models with Trainable-R or No-R show a slightly better
performance than the other two. To our understanding, the
reason is that they do not suffer the polarization problem of
coupling coefficients [17].
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Datasets MNIST FMNIST SVHN CIFAR10
Dynamic-R 99.41(± 0.08) 92.12(± 0.29) 91.32(± 0.19) 74.64(± 1.02)

Rolled-R 99.29(± 0.09) 91.53(± 0.22) 90.75(± 0.52) 74.26(± 0.94)

Trainable-R 99.55(± 0.04) 92.58(± 0.10) 92.37(± 0.29) 76.43(± 1.11)

No-R 99.54(± 0.04) 92.53(± 0.26) 92.15(± 0.29) 76.28(± 0.39)

Table 1: The performance of CapsNets with different routing procedures on different standard datasets is shown, where the
standard (untransformed) test datasets are used. We can observe that the routing procedures do not improve performance.

From this experiment, we can only conclude that the
routing procedure does not contribute to the generalization
ability of CapsNets. In work [23], CapsNets show many
superior properties over CNNs, besides the classification
performance. In the following, we analyze the properties
of CapsNets with No-R and compare them with CapsNets
with Dynamic-R.

5.1.1 On learned Representations of Capsules

When training CapsNets, the original input is reconstructed
from the activity vector (i.e., instantiation parameters) of
a high-level capsule. The reconstruction is treated as a
regularization technique. In CapsNets with Dynamic-R
[23], the dimensions of the activity vector learn how to
span the space containing large variations. To check such
property of CapsNets with No-R, following [23], we feed
a perturbed activity vector of the ground-truth class to
decoder network.

Figure 4: Disentangled Individual Dimensions of Capsules:
By perturbing one dimension of an activity vector, the
variations of an input image are reconstructed.

The perturbation of the dimensions can also cause vari-
ations of the reconstructed input. We show some examples
in Figure 4. The variations include stroke thickness, width,
translation, rotation, and various combinations. In Figure
5, we also visualize the reconstruction loss of the models
with Dynamic-R and the ones with No-R. The CapsNets
with No-R show even less reconstruction error and can
reconstruct inputs better.

Figure 5: The average reconstruction loss of CapsNets with
Dynamic-R and No-R on the test dataset is shown in each
epoch of the training process.

5.1.2 Parallel Attention Mechanism between Capsules

Dynamic routing can be viewed as a parallel attention
mechanism, in which each high-level capsule attends to
some active low-level capsules and ignores others. The
parallel attention mechanism allows the model to recognize
multiple objects in the image even if objects overlap [23].
The superiority of the parallel attention mechanism can be
shown on the classification task on MultiMNIST dataset
[9, 23]. Each image in this dataset contains two highly over-
lapping digits. CapsNet with dynamic routing procedure
shows high performance on this task.

In this experiment, we show that the parallel attention
mechanism between capsules can be learned implicitly,
even without the routing mechanism. Following the experi-
mental setting in [23], we train a CapsNet with No-R on the
same classification task of classifying highly overlapping
digits. The model No-R achieves 95,49% accuracy on
the test set, while the one with Dynamic-R achieves 95%
accuracy. The removal of the routing procedure does
not make the parallel attention mechanism of CapsNets
disappear.

5.1.3 Robustness to Affine Transformation

CapsNets are also known for their robustness to affine
transformation. It is important to check whether the re-
moval of the routing procedure affects the affine robustness.
We conduct experiments on a standard benchmark task.
Following [23], we train CapsNets with or without routing
procedure on the MNIST training dataset and test them on
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(a) Without a routing procedure: the test accuracy of CapsNets and
Aff-Capsnets on on the expanded MNIST test set and the AffNIST
test set.

(b) With the dynamic routing: the test accuracy of CapsNets and
Aff-Capsnets on the expanded MNIST test set and the AffNIST
test set.

Figure 6: For both cases (with or without routing procedure), Aff-CapsNets clearly outperform CapsNets on the AffNIST
test dataset.

the affNIST dataset. The images in the MNIST training
dataset are placed randomly on a black ground of 40 × 40
pixels to match the size of images in affNIST dataset. The
CNN baseline is set the same as in [23].

It is hard to decide if one model is better at generalizing
to novel affine transformations than another one when they
achieved different accuracy on untransformed examples. To
eliminate this confounding factor, we stopped training the
models when they achieve similar performance, following
[23]. The performance is shown in Table 2. Without routing
procedure, the CapsNets show even better affine robustness.

In summary, our experiments show that the dynamic
routing procedure contributes neither to the generalization
ability nor to the affine robustness. Due to the high affine
robustness of CapsNet cannot be attributed to the routing
procedure: Instead, it is the inductive bias (architecture) of
CapsNets that contributes to the affine robustness.

5.2. Affine Robustness of Aff-CapsNets

In Section 4, we proposed Aff-CapsNets that are more
robust to the novel affine transformations of inputs. In
this experiment, we train Aff-CapsNets with Dynamic-R
and No-R respectively. As a comparison, we also train
CapsNets with or without dynamic routing correspondingly.

We visualize the test accuracy on the expanded MNIST
test set and the AffNIST test set. The performance is shown
in Figure 6. The lines show the averaged values, while the
colored areas around the lines describe the variances caused
by different seeds. Figure 6a shows the accuracy of models
trained without a routing procedure. We can observe that

Models Test on MNIST Test on AffNIST

CNN [23] 99.22% 66%
Dynamic-R [23] 99.23% 79%

No-R 99.22% 81.81%

Table 2: The performance on the expanded MNIST test set
and the AffNIST test set.

the Aff-CapsNets constantly shows better accuracy than
CapsNets on AffNIST. To a great extent, our Aff-CapsNets
covers the performance gap between the test accuracy on
untransformed examples and that on transformed ones.

In addition, the Aff-CapsNet architecture is still effec-
tive, even when the dynamic routing is applied in training
(see Figure 6b). We can also observe that the CapsNets with
dynamic routing overfit to the current viewpoints. With
the training process going on, the coupling coefficients are
polarized (become close to 0 or 1) [17]. The polarization of
the coupling coefficient causes the overfitting. Furthermore,
the training with dynamic routing is more unstable than
without routing. The variance of model test performance
in Figure 6b is much bigger than the ones in Figure 6a.

We now compare our model with previous work. In
Table 3, we list the performance of CNN variants and
CapsNet variants on this task. Without training on AffNIST
dataset, our Aff-CapsNets achieve state-of-the-art perfor-
mance on AffNIST test dataset. This experiment shows that
the proposed model is robust to input affine transformation.
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Models Trained on
AffNIST?

MNIST AffNIST

Marginal. CNN [28] Yes 97.82% 86.79%
TransRA CNN[1] Yes 99.25 % 87.57%

BCN [3] Mix* 97.5% 91.60%

CNN [23] No 99.22% 66%
Dynamic-R [23] No 99.23% 79%
GE-CAPS [16] No - 89.10%

SPARSECAPS [22] No 99% 90.12%
Aff-CapsNet + No-R No 99.23% 93.21(±0.65)%

Table 3: Comparison to state-of-the-art performance on the
benchmark task.

6. Discussion
The difference between the regular CNNs, Aff-

Capsnet and CapsNets: Each neuron in the convolutional
layer is connected only to a local spatial region in the input.
However, each element in a capsule layer (with or without
dynamic routing) is connected to all elements of all input
capsules. By considering global information, the features
extracted by the capsule layer might be more useful for
some tasks, e.g., affine-transformed image classification or
semantic image segmentation.

What is the difference between a fully connected (FC)
layer and the capsule layer without dynamic routing? In an
FC layer, each neuron is also connected to all neurons of the
preceding layer. Compared with FC layers, convolutional
layers show inductive biases, which are Local Connection
and Parameter Sharing. Similarly, capsule layers might
show a new inductive bias, namely, a new way to combine
activations of the preceding layer.

The relationship between CapsNet architectures and
CNN architectures is illustrated in Figure 7. CapsNets
might be considered as new architectures parallel to CNNs.
In the past years, our community has focused on exploring
CNN architectures manually or automatically. The figure il-
lustrates that there is ”space” outside of the CNN paradigm:
CapsNets, or even other unexplored options.

Going Deeper with CapsNets: One way to make Cap-
sNets deep is to integrate advanced techniques of training
CNNs into CapsNets. The integration of skip connections
[8, 21] and dense connections [11, 20] have been proven to
be successful. Instead of blindly integrating more advanced
techniques from CNN into CapsNets, it might be more
promising to investigate more into the effective components
in CapsNets. Our investigation reveals that the dynamic
routing procedure contributes neither to the generalization
ability nor to the affine robustness of CapsNets. Such
conclusion is helpful for training CapsNets on large scale
datasets, e.g., the ImageNet 1K dataset [7].

Figure 7: The relationship between different CNN architec-
tures and Capsule Network architectures.

Application of CapsNets to Computer Vision Tasks
Besides the object recognition task, CapsNets are also
applied to many other computer vision tasks, for exam-
ples, object segmentation [14], image generation models
[12, 24], and adversarial defense [10]. It is not clear
whether routing procedures are necessary for these tasks.
If routing is not required here as well, the architectures of
CapsuleNets can be integrated into these vision tasks with
much less effort.

The Necessity of the Routing Procedure in CapsNets
[23] demonstrated many advantages of CapsNets with
dynamic routing over CNNs. However, our investigation
shows that all the advantages do not disappear when the
routing procedure is removed. Our paper does not claim
that routing does not have any benefits but rather poses the
question to the community: What is the routing procedure
really good for? If the routing procedure is not necessary
for a given task, CapsNets have the chance of becoming an
easier-to-use building block.

7. Conclusion
We revisit the dynamic routing procedure of CapsNets.

Our numerical analysis and extensive experiments show
that neither the generalization ability nor the affine ro-
bustness of CapsNets is reduced by removing the dynamic
routing procedure. This insight guided us to focus on the
CapsNet architecture, instead of various routing procedures,
to improve the affine robustness. After exploring the
limitation of the CapsNet architecture, we propose Aff-
CapsNets, which improves affine robustness significantly
using fewer parameters.

Since this work mainly focused on the robustness to
affine transformation, we investigate the standard CapsNets
with dynamic routings. Other beneficial properties have
also been shown in improved CapsNets, like adversarial
robustness and viewpoint invariance. Further analysis of
these properties will be addressed in future work.
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[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[16] Jan Eric Lenssen, Matthias Fey, and Pascal
Libuschewski. Group equivariant capsule networks.
In Advances in Neural Information Processing
Systems, pages 8844–8853, 2018.

[17] Hongyang Li, Xiaoyang Guo, Bo DaiWanli Ouyang,
and Xiaogang Wang. Neural network encapsulation.
In ECCV, pages 252–267, 2018.

[18] Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning.
2011.

[19] Inyoung Paik, Taeyeong Kwak, and Injung Kim. Cap-
sule networks need an improved routing algorithm.
ArXiv, abs/1907.13327, 2019.

[20] Sai Samarth R Phaye, Apoorva Sikka, Abhinav Dhall,
and Deepti R Bathula. Multi-level dense capsule
networks. In Asian Conference on Computer Vision,
pages 577–592. Springer, 2018.

[21] Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru
Jayasekara, Hirunima Jayasekara, Suranga Senevi-
ratne, and Ranga Rodrigo. Deepcaps: Going deeper
with capsule networks. In CVPR, pages 10725–10733,
2019.

[22] David Rawlinson, Abdelrahman Ahmed, and Gideon
Kowadlo. Sparse unsupervised capsules generalize
better. arXiv preprint arXiv:1804.06094, 2018.

[23] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
Dynamic routing between capsules. In Advances in
neural information processing systems, pages 3856–
3866, 2017.

[24] Raeid Saqur and Sal Vivona. Capsgan: Using dy-
namic routing for generative adversarial networks. In
Science and Information Conference, pages 511–525.
Springer, 2019.

[25] Dilin Wang and Qiang Liu. An optimization view on
dynamic routing between capsules. In ICLR Worksop,
2018.

[26] Han Xiao, Kashif Rasul, and Roland Vollgraf.
Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[27] Suofei Zhang, Quan Zhou, and Xiaofu Wu. Fast
dynamic routing based on weighted kernel density
estimation. In International Symposium on Artificial
Intelligence and Robotics, pages 301–309. Springer,
2018.

[28] Jian Zhao, Jianshu Li, Fang Zhao, Xuecheng Nie,
Yunpeng Chen, Shuicheng Yan, and Jiashi Feng.
Marginalized cnn: Learning deep invariant represen-
tations. In BMVC, 2017.

7293



Supplementary Material
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Appx. A: Proof of Equation 6

Given that there are K iterations and the classification
loss of is L(yyy, ttt), where yyy = (‖vvv(K)

1 ‖, · · · , ‖vvv(K)
M ‖) is the

prediction and ttt the target, the gradients through the routing
procedure are
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As described in the paper, the coupling coefficients of
the Digit Layer are computed as
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(2)
where the superscript t is the index of an iteration, and
Bik = bik +

∑t
r=1 vvv

(r)
k û̂ûuk|i.

When unrolling the routing procedure (a factor of the
second term in Equation 1), we have
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∂û̂ûum|i
= c

(K)
ij (1− c

(K)
ij )

∂B
(K−1)
ij
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Since cik ∈ (0, 1), by unrolling the above formulation fur-

ther, we have
∂c

(K)
ij

∂û̂ûum|i
≈ 0.

At end of the training process, the coupling coefficients
are polarized. There are close either to 1 or to 0. When cim
is close to 1, the second term in Equation 1 can be ignored.
We have
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When cim is close to 0, We have
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im (1 + û̂ûum|i(1− c

(K)
im )

∂B
(K−1)
im
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where C is a constant for the given û̂ûum|i. The constant can
be absorbed into the learning rate when propagated back to
scale the gradients of network parameters.

Appx. B: Experimental Setting of CapsNet

Figure 1. The Architecture of CapsNet used in the Experiments.

Training batch size 128
Training epochs 100
Learning rate 0.001
Routing iterations 3
Reconstruction weight 0.0005
Optimizer Adam

Table 1. The Hyper-parameters of the Training Process.

1



Appx. C: Visualizing Computational Graphs

Figure 2. The computational graph of computing ∂v̂j
∂û̂ûuj|i

where the
coupling coefficients are treated as a function value of û̂ûuj|i. The
gradients are propagated through the iterative routing iterations.

Figure 3. The computational graph of computing ∂v̂j
∂û̂ûuj|i

where the
coupling coefficients are treated as constants in gradent backprop-
agation.
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Abstract

The Capsule Network is widely believed to be more ro-
bust than Convolutional Networks. However, there are no
comprehensive comparisons between these two networks,
and it is also unknown which components in the CapsNet
affect its robustness. In this paper, we first carefully exam-
ine the special designs in CapsNet that differ from that of
a ConvNet commonly used for image classification. The
examination reveals five major new/different components
in CapsNet: a transformation process, a dynamic rout-
ing layer, a squashing function, a marginal loss other than
cross-entropy loss, and an additional class-conditional re-
construction loss for regularization. Along with these ma-
jor differences, we conduct comprehensive ablation studies
on three kinds of robustness, including affine transforma-
tion, overlapping digits, and semantic representation. The
study reveals that some designs, which are thought critical
to CapsNet, actually can harm its robustness, i.e., the dy-
namic routing layer and the transformation process, while
others are beneficial for the robustness. Based on these find-
ings, we propose enhanced ConvNets simply by introduc-
ing the essential components behind the CapsNet’s success.
The proposed simple ConvNets can achieve better robust-
ness than the CapsNet.

1. Introduction
The Capsule network (CapsNet) [24] was proposed to

address the intrinsic limitations of convolutional networks
(ConvNet) [14], such as the exponential inefficiency and
the lack of robustness to affine transformations. In recent
years, It has been sugested that CapsNets have the poten-
tial to surpass the dominant convolutional networks in these
aspects [24, 8, 21, 3, 2, 16]. However, there lack compre-
hensive comparisons to support this assumption, and even
for some reported improvements, there are no solid abla-
tion studies to figure out which ones of the components in
CapsNets are, in fact, effective.

In this paper, we first carefully examine the major dif-

ferences in design between the capsule networks and the
common convolutional networks adopted for image classi-
fication. A common convolutional network follows a simple
algorithm flow, using a backbone convolutional network to
extract image features, a global average pooling layer plus a
linear layer to produce the classification logits (or optionally
several fully connected layers [13]), and an N -way Soft-
Max loss to drive the learning. To be better aligned with
the capsule (vector) representations, the capsule networks
introduce several special components. These components
involve (see Fig. 1 for detailed architectures):

• a non-shared transformation module, in which the pri-
mary capsules are transformed to execute votes by
non-shared transformation matrices;

• a dynamic routing layer to automatically group input
capsules to produce output capsules with high agree-
ments in each output capsule;

• a squashing function, which is applied to squash the
capsule vectors such that their lengths distribute in the
range of [0, 1);

• a marginal classification loss to work together with the
squashed capsule representations;

• a class-conditional reconstruction sub-network with a
reconstruction loss, targeting at recovering the origi-
nal image from the capsule representations. This sub-
network acts as a regularization force, in complemen-
tary to the classification loss.

Unlike previous studies [24, 8] which usually takes Cap-
sNet as a whole to test its robustness, we instead try to study
the effects of each of the above components in their effec-
tiveness on robustness. We consider the three different as-
pects shown in [24]:

• the robustness to affine transformations,

• the ability to recognizing overlapping digits,

• the semantic representation compactness.
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Our investigations reveal that some widely believed ben-
efits of Capsule networks could be wrong:

1. The ConvNets baseline adopted in comparison with
CapsNets is weak [24]. Concretely, there is no global
average pooling layer before the classification head in
this baseline, which sacrifices the ability of spatial in-
variance to some extent and is harmful for generaliza-
tion to novel views. In fact, a ConvNet with an ad-
ditional global average pooling layer can outperform
CapsNet by a large margin in the robustness to affine
transformation;

2. The dynamic routing actually may harm the robustness
to input affine transformation, in contrast to the com-
mon belief;

3. The high performance of CapsNets to recognize over-
lapping digits can be mainly attributed to the extra
modeling capacity brought by the transformation ma-
trices.

4. Some components of CapsNets are indeed beneficial
for learning semantic representations, e.g., the condi-
tional reconstruction and the squashing function, but
they are mainly auxiliary components and can be ap-
plied beyond CapsNets.

In addition to these findings, we also enhance com-
mon ConvNets by the useful components of CapsNet, and
achieve greater robustness. The paper is organized as fol-
lows: Sec. 2 introduces the CapsNet and related work. In
Sec. 3, we examine the behavior of CapsNets and ConvNets
on three kinds of robustness, one by one, and component by
component. The last section concludes our work and dis-
cusses future work.

2. Background and Related Works
Capsule Network with Dynamic Routing [24]: The
CapsNet architecture is shown in Fig. 1. CapsNet first ex-
tracts feature maps of shape (C,H,W ) from pixel inten-
sities with two standard convolutional layers where C, H ,
W are the number of channels, the height, and the width of
the feature maps, respectively. The extracted feature maps
are reformulated as primary capsules (C/Din, H,W,Din)
where Din is the dimensions of the primary capsules. There
are M = C/Din ∗H ∗W primary capsules in total. Each
capsule uuui, a Din-dimensional vector, consists of Din units
across Din feature maps at the same location. Each primary
capsule is transformed to make a vote with a transformation
matrix WWW ij ∈ R(Din×N∗Dout), where N is the number of
output classes and Dout is the dimensions of output cap-
sules. The vote is

û̂ûuj|i = uuuiWWW ij . (1)

The routing mechanism takes all votes into consideration
and identify a weight cij for each vote û̂ûuj|i. Concretely, the
routing process iterates over the following three steps

sss
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where the superscript t is the index of an iteration starting
from 1 and g(·) is a squashing function that maps the length
of the vector sssj into the range of [0, 1). The bik is the log
prior probability. The squashing function is

vvvj = g(sssj) =
‖sssj‖2

1 + ‖sssj‖2
sssj
‖sssj‖

. (3)

The length of the final output capsule vvvj corresponds to the
output probability of the j-th class. The margin loss func-
tion is applied to compute the classification loss

Lk =Tk max(0,m+ − ‖vk‖)2

+ λ(1− Tk)max(0, ‖vk‖ −m−)2
(4)

where Tk = 1 if the object of the k-th class is present in
the input. As in [24], the hyper-parameters are often empir-
ically set as m+ = 0.9, m− = 0.1 and λ = 0.5.

A reconstruction sub-network reconstructs the input im-
age from all N output capsules with a masking mechanism.
The ones corresponding to the non-ground-truth classes are
masked with zeros before being transfered to the recon-
struction sub-network. Due to the masking mechanism,
only the capsule of the ground-truth class is visible for the
reconstruction. Hence, the reconstruction process is called
class-conditional reconstruction. The reconstruction loss is
computed as a regularization term in the loss function.

Capsule Network Follow-Ups: Many routing mecha-
nisms have been proposed to improve the performance of
CapsNet, such as Expectation-Maximization Routing [8],
Self-Routing [6], Variational Bayes Routing [23], Straight-
Through Attentive Routing [1], and Inverted Dot-Product
Attention routing [25]. To reduce the parameters of Cap-
sNet, a matrix or a tensor has been used to represent an
entity instead of a vector [8, 21]. The size of the learnable
transformation matrix can be reduced by the matrix/tensor
representations. Another way to improve CapsNets is to in-
tegrate advanced modules of ConvNets into CapsNets, e.g.,
by skip connections [7, 21] and dense connections [11, 18].

Besides, the robustness of CapsNet has also been inten-
sively investigated. Both new routing mechanisms [8] and
new architectures [12] can improve the affine transforma-
tion robustness. The work [3] achieves the best performance
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Figure 1: The overview of ConvNet and CapsNet architectures: The ConvNet-FC is a naive ConvNet architecture, while
ConvNet-Avg is the one commonly used in image classifications. The CapsNet consists of primary capsule extraction, a
transformation process, a routing process, and a class-conditional reconstruction, which is far more complex than ConvNets.

on the transformation robustness benchmark by simply re-
moving the dynamic routing and by sharing the transforma-
tion matrix. The work also revealed that the high transfor-
mation robustness of CapsNets could not be attributed to
the dynamic routing mechanism. The work [4] replaces the
dynamic routing with a multi-head attention-based graph
pooling approach to achieve better interpretability. The re-
placement of the routing does not harm the robustness of
CapsNet, even though it is the fundamental part of Cap-
sNets. These claims further motivate us to investigate the
individual components of CapsNet.

Additionally, CapsNet with new routing mechanisms
can achieve high adversarial robustness [6]. However, the
work [17] shows CapsNet can be fooled as easily as Cov-
Net. Recent work shows that the class-conditional recon-
struction sub-network of CapsNet is useful to detect adver-
sarial examples [20, 19]. The work [5] designs the first at-
tack method specific for CapsNet, which reduces the robust
accuracy and increases the rate to pass the adversarial de-
tection. Due to the attack-defense arms race, it is difficult
to draw a solid conclusion on the adversarial robustness of
CapsNet. Hence, in this work, we mainly focus on the ad-
vantage of CapsNet demonstrated in [24].

3. Empirical Studies on Capsule Network

In this section, we conduct empirical studies on the ro-
bustness of CapsNets. Before we dive into the studies, we
first introduce the architectures of CapsNets and ConvNets.
The CapsNet we focus on in this work is Capsule Networks
with dynamic routing [24]. Since the research on CapsNets
is still at a primary stage, the work [24] compares their Cap-

sNet with a LeNet-type ConvNet [14], called ConvNet-FC.
The ConvNet-FC and CapsNet are illustrated in Fig. 1 on
28×28 MNIST images. The notation Conv(C, K, S) stands
for a convolutional layer where C, K, S are the number of
channels, the kernel size, and the stride size, respectively.
FC(N) is a fully connected layer where N is the number
of output units. All Conv and FC are followed by a ReLU
activation function.

ConvNet-FC: The simple ConvNet baseline used in [24]
is Conv(256, 5, 1) + Conv(256, 5, 1) + Conv(128, 5, 1) +
FC(328) + FC(192) + Softmax(10). The three standard con-
volutional layers and two fully connected layers are applied
to extract features from input images. An N -way Softmax
is applied to obtain the output distribution. During training,
cross-entropy loss is typically applied.

CapsNet: The CapsNet with Dynamic Routing in [24]
is Conv(256, 9, 1) + Conv(256, 9, 2) + Dynamic Rout-
ing, followed by a reconstruction sub-network, FC(512)
+ FC(1024) + FC(28×28). The feature maps are com-
puted with the two standard convolutional layers. The ex-
tracted feature maps (256, H, W) is reshaped into primary
capsules (32*H*W, 8) where H and W are the height and
width of feature maps. The primary capsules are squashed
by the squashing function in Equation (3) and then trans-
formed to make votes with the learned transformation ma-
trices (32*H*W, 8, 160). The vote of each primary capsule
is 160-dimensional. The dynamic routing in Equation (2) is
applied to the votes to identify their weights. The output of
the dynamic routing is 160-dimensional, i.e. representing
10 16-dimensional output capsules. The squashing function
in Equation (3) is applied to output capsules to map their
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(a) MNIST dataset (b) AffNIST dataset (c) MultiMNIST dataset

Figure 2: Visualization of datasets: While MNIST dataset corresponds to standard hand-written digits, AffNIST dataset
consists of affine-transformed MNIST images. MultiMNIST dataset consists of images with two overlapping digits. In the
figure, the two overlapping digits are marked with two different colors, i.e., yellow and magenta.

lengths into [0, 1). The length of an output capsule is inter-
preted as a class output probability. In the training process,
the margin loss in Equation (4) is applied as the classifica-
tion loss. In the class-conditional reconstruction process,
a masking mechanism is applied to output capsules, where
the capsules, corresponding to non-ground-truth classes, are
masked with zeros. The input image is reconstructed from
the masked output capsules. The reconstruction loss is used
to regularize the training process.

By comparing the two networks, we can summarize
5 major differences between ConvNets and CapsNets,
namely, a transformation process, a dynamic routing layer,
a squashing function, the use of a marginal loss instead
of a cross-entropy loss, and a class-conditional reconstruc-
tion regularization. With these differences, CapsNet outper-
forms ConvNet-FC in terms of robustness to affine trans-
formation and overlapping digits recognition as well as in
learning compact semantic representations. In this section,
we will investigate these advantages one by one. In each of
our studies, we attempt to answer the following questions:

1. Do ConvNet-FC and CapsNets perform differently?

2. Which components of CapsNets make the difference?

3. How bridge the gap between the two networks?

3.1. Robustness to Input Affine Transformation

Settings: To examine the transformation robustness of
both models, we use the popular benchmark [24, 3] where
models are trained on MNIST and tested on AffNIST. In
AffNIST [24], the original 28×28 MNIST images are first
padded with 6 pixels to 40×40 image and then affine trans-
formed, namely, rotation within 20 degrees, shearing within
45 degrees, scaling from 0.8 to 1.2 in both vertical and hori-
zontal directions, and translation within 8 pixels in each di-
rection. In the training dataset, the 28×28 MNIST images
are placed randomly on a black background of 40×40 pix-
els without further transformation. The image examples are
visualized in Fig. 2. The performance on both MNIST and
AffNIST test datasets is reported. All scores are averaged
over 5 runs across this paper.

Besides ConvNet-FC and CapsNet, we include the state-
of-the-art model on the benchmark in this experiment,

namely, Aff-CapsNet. It simplifies CapsNet by removing
dynamic routing and sharing the transformation matrix in
the transformation process.

Following [24, 3], the Adam optimizer is used to train
the models with an initial learning rate of 0.001 and a batch
size of 128. In CapsNet, the reconstruction loss is scaled
down by 0.0005 so that it does not dominate the margin loss
during training. It is hard to decide which model is more
robust to affine transformations when they achieved differ-
ent accuracy on untransformed examples. To eliminate this
confounding factor, we stopped training the models when
they achieve similar performance (i.e. about 99.22%), fol-
lowing [24].

Models #Para. MNIST AffNIST

GE-CapsNet [15] - 98.42 89.10
SPARSECAPS [22] - 99 90.12

SCAE [12] - 98.5 92.21
EM-CapsNet [8] - 99.2 93.1

ConvNet-FC [24] 35.4M 99.22 66
CapsNet [24] 13.5M 99.23 79

CapsNet-NoR [3] 13.5M 99.22 81.81
Aff-CapsNet-DR [3] 7.5M 99.22 89.03

Aff-CapsNet [3] 7.5M 99.23 93.21

ConvNet-Avg 5.3M 99.22 94.11

Table 1: Comparison on the transformation robustness
benchmark: The generalization performance to AffNIST
is reported when models achieve similar performance on
MNIST test dataset. Our simple ConvNet-Avg is more ro-
bust than CapsNet to input affine transformations.

Results and Analysis: The performance is reported in
Tab. 1. We can observe that there is a gap between ConvNet-
FC and CapsNet. As reported in [24, 3], the CapsNet out-
performs ConvNet-FC, and Aff-CapsNet outperforms Cap-
sNet. We take Aff-CapsNet (a simplified CapsNet) as a
baseline and conduct further ablation studies on the com-
ponents of CapsNet in Tab. 2. We report the model test per-
formance on both un-transformed MNIST test images and
novel affine-transformed ones. No early stopping is applied
in the ablation studies.
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Factors Routing Shared TransM Squash-fn Reconstion Loss Train-MNIST Test-MNIST Test-AffNIST

Routing NoR X X X MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

DR - - - - 100 99.21(± 0.31) 90.07(± 0.98)

Shared TransM NoR XXX X X MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

- ××× - - - 100 98.98(± 0.04) 80.49(± 0.34)

Squash-fn NoR X XXX X MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

- - ××× - - 99.75 97.93(± 0.13) 80.42(± 0.39)

Reconstruction
NoR X X conditional MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

- - - normal - 100 99.43(± 0.28) 95.09(± 0.56)

- - - ××× - 100 99.39(± 0.26) 93.49(± 0.46)

Loss NoR X X X MarginLoss 100 99.29(± 0.13) 93.55(± 1.47)

- - - - CE Loss 100 99.27(± 0.05) 94.67(± 0.43)

Table 2: The performance on MNIST training dataset, MNIST test dataset, and AffMNIST test dataset are reported, respec-
tively (in percentage %). Dynamic Routing (DR) and Margin loss are even harmful to the transformation robustness, while
the squashing function (Squash-fn) and the shared transformation matrix (Shared TransM) are beneficial.

The transformation process can be seen as a fully con-
nected (FC) layer since the transformation matrices therein
are equivalent to the parameters of an FC layer. Why is
Aff-CapsNet more robust than CapsNet? The transforma-
tion robustness of CapsNet can be improved by sharing the
transformation matrix. When the transformation matrix is
shared and no routing is applied in Aff-CapsNet, the trans-
formation process is essential to conduct group 1 × 1 con-
volutional operations, global average pooling operations,
and an average operation on the pooling results of dif-
ferent groups. A further study shows that the number of
groups has no effect on the robustness (see Supplement A).
Hence, we attribute the superior performance of the sharing
transformation matrix to the global average pooling opera-
tion. Why is CapsNet more robust than ConvNet-FC? The
ConvNet-FC has two fully connected layers, while CapsNet
has a functionally similar one. Another difference between
them is the kernel size. Our study shows that large ker-
nels are also beneficial to achieve transformation robustness
(see Tab. 3). This argument also echoes our claim above.
Namely, both global average pooling and large kernels im-
prove the robustness by increasing receptive fields.

In Tab. 2, the dynamic routing is even harmful to the
transformation robustness, which is also supported by the
Tab. 1. In addition, when no squashing function is applied,
CapsNet has to regress the capsule length to extreme values
(e.g., 0 or 1), which is a hard task and leads to unsatisfying
performance (even on the training dataset). The margin loss
can slightly weaken the transformation robustness of Cap-
sNet, while reconstruction makes no difference to it. The
non-conditional reconstruction slightly improves the perfor-
mance since it updates all capsules in each training iteration.

Based on our findings, we propose a new simple Con-
vNet baseline, called ConvNet-Avg. It starts with the two
convolutional layers and terminates with a global average
pooling and an output layer, which is also a common ar-

chitecture used in image classification. The cross-entropy
loss is applied to train the model. To make a fair compar-
ison, we use the same convolutional layers as in CapsNet
and Aff-CapsNet, namely, Conv(256, 9, 1) + Conv(256, 9,
2) + Global AvgPool + FC(10) (see Fig. 1). It is hard to de-
cide which model is better at generalizing to affine transfor-
mations when they achieved different accuracy on untrans-
formed examples. We follow previous work and stop train-
ing the models when they achieve similar test performance
(99.22%). As shown in Tab. 1, our simple ConvNet-Avg
achieves slightly better performance with fewer parameters.

Conclusions: 1) Compared to ConvNet-FC, CapsNet
achieves better test performance with fewer parameters on
AffNIST. We attribute the gap to the kernel size. 2) Dy-
namic routing can harm the transformation robustness of
CapsNet. When the routing is removed, the uniform av-
erage of votes (i.e., NoR) aggregates the global information
better. 3) Our baseline ConvNet-Avg outperforms CapsNets
significantly. It consists of only convolutional layers and a
global average pooling layer, and no advanced component
from SOTA ConvNets. The simplicity of ConvNet-Avg in-
dicates that CapsNets are even less robust to affine transfor-
mation than ConvNets in a fair comparison.

3.2. Recognizing overlappping digits

Settings: The work [24] shows that the CapsNet is able
to recognize overlapping digits by segmenting them. To
check this property, we use the MultiMNIST dataset, which
is generated by overlaying a digit on top of another digit but
from a different class. Specifically, a 28×28 MNIST image
with a digit is first shifted up to 4 pixels in each direction
resulting in a 36×36 image. The resulting image is over-
laid to another image from different classes but the same set
(training dataset or test dataset). For each image in MNIST,
we can create N (from 1 to 1K) images. See Fig. 2c for
some examples from data.
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Kernels K(3, 3) K(5, 5) K(7, 7) K(9, 9) K(11, 11)
Models #Para. Astd Aaff #Para. Astd Aaff #Para. Astd Aaff #Para. Astd Aaff #Para. Astd Aaff

CapsNet 16.1M 96.31 61.36 14.4M 98.18 70.34 13.5M 98.74 75.82 13.5M 99.26 79.12 14.3M 99.1 86.79
ConvNet-FC 49.5M 96.54 64.57 35.4M 99.23 66.08 25.2M 99.03 66.76 18.8M - - 16.19M - -
ConvNet-Avg 0.59M 97.14 86.58 1.70M 98.58 90.95 3.23M 99.1 92.31 5.30M 99.22 94.11 7.96M 99.34 90.58

Table 3: The effect of the kernel sizes on the transformation robustness of different models: Both standard accuracy (Astd)
and the generalization accuracy (Aaff ) on transformed data are reported. The large kernels make positive contributions to the
transformation robustness. When the same kernel size is applied, ConvNet-Avg outperforms both ConvNet-FC and CapsNet.

The classification of an image with overlapping digits is
correct if both digits are correctly classified (the top 2 output
classes match the ground truth). The margin loss can be
applied to compute the classification loss. In the ConvNet
baselines, the sigmoid function is applied to logits instead of
softmax to obtain output probabilities since this is a multi-
target classification task, and the binary cross-entropy loss
is applied to compute the classification loss.

In the training process, the CapsNet is first applied to
the overlapping digits to obtain output capsules. During re-
construction, a ground-truth class is picked at a time, and
the capsule corresponding to the class is kept for the re-
construction while others are masked with zeros. In other
words, we run the reconstruction sub-network twice, each
for one digit. The reconstruction loss can be computed sim-
ilarly since the images of individual digits are available.

Results and Analysis: The overlapping digit recogni-
tion performance is reported in Tab. 4 where the individual
components of CapsNets are ablated. The reconstruction
sub-network helps to improve the recognition performance.
However, it does not have to be class-conditional. The re-
construction loss regularizes the training process so that the
information about both digits is encoded in features and
high-level capsules. The margin loss can be directly applied
to a multi-target classification task, which outperforms the
standard binary cross-entropy loss. Both the reconstruction
and the margin loss can be applied to enhance a ConvNet.

When a vector representation is applied, the squash-
ing function plays an important role. When applying the
squashing function to the primary capsules, the feature
maps are group-wise normalized. The information is com-
municated across different channels, which can help to
better disentangle overlapping digits. Additionally, Cap-
sNet has to regress the non-squashed capsule length to cer-
tain values. Since the regression task is hard, CapsNets
achieve unsatisfying performance on both the training and
test dataset. The analysis echoes the one in Sec. 3.1.

The dynamic routing process identifies the weights for
votes, which results in a higher modeling capacity than the
uniform averaging operation on votes. Other components
that support the CapsNet’s modeling capacity are the trans-
formation matrices. When a shared transformation matrix
is applied, the model performance drops dramatically. We

check the ConvNet-Avg on this task and observe that Cap-
sNet outperforms ConvNet-Avg significantly. The reason
behind this is that the global pooling operation can be harm-
ful for recognizing overlapping digits since it aggregates a
feature map into a single unit. The convolutional layer it-
self is not able to disentangle the overlapping digits into
different feature maps. In CapsNet, the transformation pro-
cess acts as a fully connected layer, which avoids the global
average pooling. Hence, we argue that the high modeling
capacity is the essential reason why CapsNet performs well
on the overlapping digits recognition task.

×1 ×5 ×10 ×100 ×1000
Num. of Data Examples (× 60000 of MNIST)

80

90

A
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CapsNet
ConvNet-FC(LK)

Figure 3: ConvNet-FC(LK) outperforms CapsNet on Mul-
tiMNIST dataset with different data sizes.

FC layers in ConvNet-FC can maintain richer informa-
tion (features at all locations) for distinguishing overlapping
digits. Note that the baseline ConvNet-FC in [24] has a
smaller kernel size than in CapsNet. Hence, we propose to
apply ConvNet-FC with large kernels (ConvNet-FC(LK))
to this overlapping digits recognition task. In ConvNet-
FC(LK), we also reduce the units of fully connected lay-
ers to save parameters so that it can be compared to Cap-
sNets. When the same large kernel is applied, ConvNet-
FC(LK) outperforms the CapsNet and sets a new SOTA on
this benchmark (97.11% vs. 95.18%). When different train-
ing data sizes and different kernel sizes are applied in the
experiments, the simple ConvNet-FC(LK) outperforms the
CapsNet consistently (See Fig. 3 and Supplement B).

Conclusions: 1) All the components contribute to the
ability of CapsNet to recognize overlapping digits. 2) The
transformation process with a non-shared transformation
matrix and a dynamic routing to weight votes bring high
modeling capacity, which essentially supports the high per-
formance of CapsNet in this task. 3) The simple ConvNet-
FC(LK) with similar parameters performs better than Cap-
sNet on this benchmark, which indicates that CapsNet is not
more robust than ConvNet to recognize overlapping digits.
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Factors Routing Shared TransM Squash-fn Reconstion Loss Train-MultiMNIST Test-MultiMNIST

Routing DR ××× X X MarginLoss 94.03 93.26(± 0.24)

NoR - - - - 90.28 90.07(± 0.29)

Shared TransM DR ××× X X MarginLoss 94.03 93.26(± 0.24)

- XXX - - - 86.92 86.44(± 0.37)

Squash-fn DR ××× XXX X MarginLoss 94.03 93.26(± 0.24)

- - ××× - - 87.71 87.24(± 0.53)

Reconstruction
DR ××× X conditional MarginLoss 94.03 93.26(± 0.24)

- - - normal - 93.83 93.19(± 0.30)

- - - ××× - 90.28 90.17(± 0.26)

Loss DR ××× X X MarginLoss 94.03 93.26(± 0.24)

- - - - BCE Loss 91.64 91.19(± 0.35)

Table 4: The ablation study on components of CapsNet: The performance of models trained on 6M overlapping digits. All
individual components make positive contributions to the ability to recognize overlapping digits. The transformation matrices
contribute the most; the performance drops dramatically if a shared transformation matrix is applied.

3.3. Semantic Capsule Representations

Settings: In CapsNets, when a single element in a cap-
sule is perturbated, the reconstructed images are visually
changed correspondingly [24], see Fig. 4d. The visual
changes often correspond to human-understandable seman-
tic object variations. In this experiment, we investigate
which components support the semantic representations.
Since this property is mainly demonstrated by a reconstruc-
tion sub-network, we introduce three models below:

ConvNet-CR: This ConvNet baseline has the same num-
ber of parameters as in CapsNet and the same reconstruc-
tion sub-network. Its architecture is Conv(256, 9, 1) +
Conv(256, 9, 2) + FC(160), where 160 corresponds to
the dimensions of output capsules and the parameters in
FC(160) corresponds to the non-shared transformation ma-
trices of CapsNet. The 160 activations are grouped into 10
groups where each group corresponds to an output capsule.
The sum of 16 activations in each vector corresponds to a
logit. The sigmoid function is applied to each logit to obtain
the output probability. The reconstruction sub-network re-
constructs the input from (the 160 activations) with a mask-
ing mechanism, similar to that in CapsNet.

ConvNet-R: In this baseline, an output layer FC(10)
is built on the 160 activations of ConvNet-CR instead
of grouping them. The reconstruction sub-network of
ConvNet-CR reconstructs the input from the 160 activations
directly, without the masking mechanism.

ConvNet-CR-SF: This baseline equips ConvNet-CR
with the squashing function in Equation (3). The feature
maps from Conv(256, 9, 2) are mapped into vectors with
the same shape of primary capsules, and the vectors are
squashed. Each element of the vectors is fully connected to
160 units of the next layer. The 160 activations are grouped
to obtain the 10 output vectors. The vectors are similarly
squashed so that their lengths stand for the output probabil-
ity of the corresponding class. This baseline is equivalent to

CapsNet without a routing mechanism (CapsNet-NoR).
In CapsNet, several units can correspond to a similar se-

mantic concept. An interesting question to investigate is,
what percentage of neurons strongly react to changes of a
given latent factor. We propose a metric to evaluate such
compactness. Given a latent factor z (e.g. rotation) and an
image X, we compute the semantic compactness score with
the following steps:

1. Creating a list of images with different rotation degrees;

2. Obtaining their representation vectors via forward in-
ferences (the vectors of ground-truth classes are kept);

3. Computing the variance of the vectors in each dimen-
sion V arV arV ar and normalize them by their sum V arV arV arn;

4. Computing the KL divergence between the normalized
variance values V arV arV arn and a uniform prior.

The compactness score is averaged over the whole dataset.
The higher the score is, the more compact the semantic rep-
resentation becomes. The intuition behind the score is that,
if only one unit changes when images are rotated, the nor-
malized variance will be one-hot, and the relative entropy
to uniform prior is the maximum.

Results and Analysis: After training, we perform the
capsule perturbation experiments on the 160 activations, as
in [24]. In CapsNet, we tweak one dimension of capsule
representations by intervals of 0.05 in the range [-0.2, 0.2].
The reconstructed images are visualized in Fig. 4d. The se-
mantic changes of images can be observed, e.g., the rotation
and the stroke thickness. We find that the reconstructed im-
ages in ConvNets stay almost unchanged visually when per-
turbing the corresponding activation with the same range.
The observation can be caused by the too-small perturba-
tion range for the unit activations. Hence, we increase the
range gradually until the reconstructed image cannot be rec-
ognized where we reach the range of [-8, 8]. The recon-
structed images are shown in Fig. 4. In ConvNet-R, the
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Figure 4: The reconstructed images are shown when a single unit is perturbed. The reconstruction only helps when the
class-conditional masking mechanism is applied. The squashing function improves the visual response further.

(a) Reconstruction in ConvNet-R (b) Reconstruction in ConvNet-CR (c) Reconstruction in ConvNet-CR-SF

Figure 5: The reconstruction from feature space to the input space: In ConvNet-R, the capsule representations of different
classes are entangled in feature space; the ones in ConvNet-CR are clearly separated due to the class-conditional masking
mechanism. When a squashing function is applied to squash the vector, the representations live within a manifold. The
representation constraints improve the network’s ability to extrapolate object variations.

Datasets MNIST

Factors Rotation Trans-X Trans-Y Scale Shear-X Shear-Y

ConvNet-R 0.0003 0.0016 0.0009 0.0004 0.0003 0.0007

ConvNet-CR 0.0028 0.0038 0.0032 0.0052 0.0058 0.0022

ConvNet-CR-SF 0.0325 0.2010 0.3192 0.0146 0.0476 0.0506

CapsNet 0.0031 0.0107 0.0464 0.0026 0.0098 0.0021

Table 5: The representation compactness: The class-
conditional reconstruction and the squashing function im-
prove the compactness, while dynamic routing reduces it.

semantics of reconstructed images is not sensitive to all in-
dividual dimensions in Fig. 4a. In ConvNet-CR, where the
class-conditional reconstruction is applied, the changes of
representation unit also cause the semantic changes of re-
constructed images in Fig. 4b. When the squashing function
is applied, the representations in ConvNet-CR-CF strongly
react to the perturbations in Fig. 4c.

Both the class-conditional reconstruction mechanism
and the squashing function can help ConvNets to learn
meaningful semantic representations. The two components
characterize the function learned by the reconstruction sub-
network, which maps representations from feature space
back to input space. We illustrate the characteristics of
these functions in Fig. 5, using an example with a 2D in-
put space and 3 output classes. The ConvNet-R recon-
structs inputs from the features that are entangled to some
degree. In ConvNet-CR, the features of different classes are
perfectly separated since the features are class-conditional.

The ConvNet-CR-CF constrains the feature space further
by squashing the vectors so that they live inside a mani-
fold. We also report the compactness score of each model
in Tab. 5. We speculate that it is these constraints that im-
prove the representation’s compactness. More experiments
on the FMNIST dataset can be found in Supplement C.

Conclusions: Both the class-conditional reconstruction
and the squashing function help CapsNet learn meaning-
ful semantic representations, while dynamic routing is even
harmful. The two components can be integrated into Con-
vNets, where ConvNet-CR-SF learns better semantic com-
pact representations than CapsNets.

4. Conclusion
We reveal 5 major differences between CapsNets and

ConvNets and study 3 properties of CapsNets. We show
that dynamic routing is harmful to CapsNets in terms of
transformation robustness and semantic representations. In
each presented task, a simple ConvNet can be built to out-
perform the CapsNet significantly. We find that there is no
single ConvNet that can outperform CapsNet in all cases.
Hence, we conclude that CapsNets with dynamic routing
are not more robust than ConvNets. We leave further explo-
rations for future work, e.g., concerning different datasets,
and other properties of CapsNets, and other CapsNets.

The dynamic routing aggregates information from low-
level entities into high-level ones. The aggregation can be
also be done by a graph pooling operation [4]. In ConvNets,
the relationship between low-level entities is also explored
in aggregation [9, 10]. More aggregation approaches wil be
explored in future work.
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Capsule Network is Not More Robust than Convolutional Network

(Supplementary Materials)

Figure 1: The overview of ConvNet and CapsNet architectures: The kernel sizes are marked with red color, and the capsule
types (the groups) are marked with a dashed green box.

1. Supplement A: the effect of the number of capsule groups and the capsule sizes
In Section 3.1 of the paper, we study the effect of components of CapsNet on its affine transformation robustness. This

supplement section shows the effect of architecture configurations on the transformation robustness, namely, the number of
capsule dimensions (capsule size) and the number of capsule groups (marked with a green box in Fig. 1).

Factors Num-groups Caps-size Routing SharedM Squash-fn Reconstion Loss Test-MNIST Test-AffNIST

Num-groups

1 8 NoR X squash X MarginLoss 99.26(± 0.27) 93.73(± 0.51)

2 - - - - - - 99.21(± 0.44) 92.92(± 0.62)

8 - - - - - - 99.45(± 0.38) 94.03(± 0.31)

32 - - - - - - 99.32(± 0.23) 93.55(± 0.39)

Caps-size
32 8 NoR X squash X MarginLoss 99.28(± 0.33) 93.55(± 0.61)

16 16 - - - - - 99.24(± 0.31) 93.99(± 0.24)

8 32 - - - - - 99.19(± 0.49) 94.01(± 0.37)

Table 1: The CapsNets with various architectures are trained only on MNIST dataset. The performance on MNIST train-
ing dataset, MNIST test dataset, and AffMNIST test dataset are reported, respectively (in percentage %). When CapsNet
architecture is configured differently, the corresponding performance is reported. Given the variance, the number of capsule
groups and the capsule size have no effect on the transformation robustness of CapsNet.

The performance on MNIST training data, MNIST test data, and AffNIST test data are reported in Tab. 1. The differ-
ent architecture configurations with the same parameters make no difference in the generalization performance, given the
variance. This study shows that the number of capsule dimensions and the number of capsule groups have no effect on the
generalization ability of CapsNet to input affine transformations.



2. Supplement B: the effect of the kernel sizes on the ability to recognize overlapping digits
This study investigates the effect of the kernel sizes on the overlapping digits recognization ability of different models,

such as ConvNet-FC and CapsNet. The performance of the models with different kernel sizes is reported in Tab. 2. To be
noted that the model size of ConvNet-FC becomes smaller when large kernels are applied. The reason behind this is that the
large kernels lead to smaller feature maps in case of no padding, which further leads to smaller units in the fully connected
layer in ConvNet-FC. In CapsNet, the smaller feature maps lead to smaller transformation matrices.

Kernels K(3, 3) K(5, 5) K(7, 7) K(9, 9) K(11, 11)

Models #Para. Astd #Para. Astd #Para. Astd #Para. Astd #Para. Astd

CapsNet 13.0M 76.01 11.6M 78.92 11.1M 79.65 11.4M 80.22 12.5M 81.97

ConvNet-FC 38.7M 85.23 26.7M 85.78 18.5M 85.77 14.1M 85.19 13.5M 85.34

Table 2: The effect of the kernel sizes on the overlapping digits recognization ability of different models: The application of
large kernels can improve the model’s ability to recognize overlapping digits. ConvNet-FC outperforms CapsNet, even when
the same model size is kept.

In the table, given a kernel size and the data size (×10), we report both the model size and the accuracy to classify
overlapping digits of each model. ConvNet-FC outperforms CapsNet on this overlapping digits recognization task when the
same kernel size is applied. Especially, when the kernel size 9×9 is applied, the model sizes of ConvNet-FC and CapsNet
are similar, and ConvNet-FC outperforms CapsNet by 3.37%.

3. Supplement C: Semantic Representations
In CapsNets, when a single element of the vector representation is perturbated, the reconstructed images are also visually

changed correspondingly. We conduct the same experiment on different models we build, namely, ConvNet-R, ConvNet-CR,
and ConvNet-CR-SF as well as CapsNet. The more figures on MNIST dataset are shown in Fig. 2.

In addition, we also verify our claims on FMNIST dataset. Similarly, we visualize the reconstructed images under different
perturbations in Fig. 3. We also report the semantic compactness score of the learned representations in Tab. 3. Given the
perturbation range, we also reduce the perturbation interval to show more intermediate images in Fig. 4 and Fig. 5. All
the visualizations, as well as the table, show consistent results with the ones on MNIST. Namely, both the class-conditional
reconstruction mechanism and the squashing function can help ConvNet learn meaningful semantic representations.

Datasets MNIST FMNIST

Factors Rotation Trans-X Trans-Y Scale Shear-X Shear-Y Rotation Trans-X Trans-Y Scale Shear-X Shear-Y

CNN-R 0.0003 0.0016 0.0009 0.0004 0.0003 0.0007 0.0005 0.0004 0.0006 0.0005 0.0009 0.0002

CNN-CR 0.0028 0.0038 0.0032 0.0052 0.0058 0.0022 0.0038 0.0019 0.0012 0.0016 0.0042 0.0031

CNN-CR-SF 0.0325 0.2010 0.3192 0.0146 0.0476 0.0506 0.0062 0.0078 0.0233 0.0092 0.0074 0.0159

CapsNet 0.0031 0.0107 0.0464 0.0026 0.0098 0.0021 0.0018 0.0017 0.0022 0.0013 0.0022 0.0018

Table 3: The representation compactness: The class-conditional reconstruction and the squashing function improve the
compactness, while dynamic routing reduces it. This claim is true on both MNIST and FMNIST datasets.
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Figure 2: The reconstructed images on MNIST dataset are shown when a single unit of representation is perturbed. We
show the images on some classes where images and classes are selected randomly. The reconstruction only helps when the
class-conditional masking mechanism is applied. The squashing function improves the visual response further.
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Figure 3: The reconstructed images on FMNIST dataset are shown when a single unit of representation is perturbed. We
show the images on some classes where images and classes are selected randomly. They are Pullover, Bag, and boot. The
observation is consitent with the one on MNIST.
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Figure 4: The reconstructed images on MNIST dataset are shown when a single unit of representation is perturbed. We reduce
the perturbation interval to obtain more reconstructed images. The conclusion is the same. Namely, the reconstruction only
helps when the class-conditional masking mechanism is applied, and the squashing function improves the visual response
further.
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Figure 5: The reconstructed images on FMNIST dataset are shown when a single unit of representation is perturbed. The
reconstruction only helps when the class-conditional masking mechanism is applied. The squashing function improves the
visual response further.
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ABSTRACT

Standard Convolutional Neural Networks (CNNs) can be easily fooled by images
with small quasi-imperceptible artificial perturbations. As alternatives to CNNs,
the recently proposed Capsule Networks (CapsNets) are shown to be more ro-
bust to white-box attacks than CNNs under popular attack protocols. Besides, the
class-conditional reconstruction part of CapsNets is also used to detect adversar-
ial examples. In this work, we investigate the adversarial robustness of CapsNets,
especially how the inner workings of CapsNets change when the output capsules
are attacked. The first observation is that adversarial examples misled CapsNets
by manipulating the votes from primary capsules. Another observation is the high
computational cost, when we directly apply multi-step attack methods designed
for CNNs to attack CapsNets, due to the computationally expensive routing mech-
anism. Motivated by these two observations, we propose a novel vote attack where
we attack votes of CapsNets directly. Our vote attack is not only effective but also
efficient by circumventing the routing process. Furthermore, we integrate our vote
attack into the detection-aware attack paradigm, which can successfully bypass the
class-conditional reconstruction based detection method. Extensive experiments
demonstrate the superior attack performance of our vote attack on CapsNets.

1 INTRODUCTION

A hardly perceptible small artificial perturbation can cause Convolutional Neural Networks (CNNs)
to misclassify an image. Such vulnerability of CNNs can pose potential threats to security-sensitive
applications, e.g., face verification (Sharif et al., 2016) and autonomous driving (Eykholt et al.,
2018). Besides, the existence of adversarial images demonstrates that the object recognition process
in CNNs is dramatically different from that in human brains. Hence, the adversarial examples have
received increasing attention since it was introduced (Szegedy et al., 2014; Goodfellow et al., 2015).

Many works show that network architectures play an important role in adversarial robustness (Madry
et al., 2018; Su et al., 2018; Xie & Yuille, 2020; Guo et al., 2020). As alternatives to CNNs, Cap-
sule Networks (CapsNets) have also been explored to resist adversarial images since they are more
biologically inspired (Sabour et al., 2017). The CapsNet architectures are significantly different
from those of CNNs. Under popular attack protocols, CapsNets are shown to be more robust to
white-box attacks than counter-part CNNs (Hinton et al., 2018; Hahn et al., 2019). Furthermore, the
reconstruction part of CapsNets is also applied to detect adversarial images (Qin et al., 2020).

In image classifications, CapsNets first extract primary capsules from the pixel intensities and trans-
form them to make votes. The votes reach an agreement via an iterative routing process. It is not
clear how these components change when CapsNets are attacked. By attacking output capsules di-
rectly, the robust accuracy of CapsNets is 17.3%, while it is reduced to 0 on the counter-part CNNs
in the same setting. Additionally, it is computationally expensive to apply multi-step attacks (e.g.,
PGD (Madry et al., 2018)) to CapsNets directly, due to the costly routing mechanism. The two
observations motivate us to propose an effective and efficient vote attack on CapsNets.
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Figure 1: The overview of Capsule Networks: the CapsNet architecture consists of four components,
i.e., primary capsule extraction, voting, routing, and class-conditional reconstruction.

The contributions of our work can be summarised as follows: 1). We investigate the inner working
changes of CapsNets when output capsules are attacked; 2). Motivated by the findings, we propose
an effective and efficient vote attack; 3). We integrate the vote attack in the detection-aware attack
to bypass class-conditional reconstruction based adversarial detection. The next section introduces
background knowledge and related work. Sec. 3 and 4 investigate capsule attack and introduce our
vote attack, respectively. The last two sections show experiments and our conclusions.

2 BACKGROUND KNOWLEDGE AND RELATED WORK

Capsule Networks The overview of CapsNets is shown in Figure 1. CapsNets first extract primary
capsules uuui from the input image xxx with pure convolutional layers (or CNN backbones). Each
primary capsule uuui is then transformed to make votes for high-level capsules. The voting process,
also called transformation process, is formulated as

û̂ûuj|i =WWW ijuuui. (1)

Next, a dynamic routing process is applied to identify weights cij for the votes û̂ûuj|i, with i ∈
{1, 2, . . . , N} corresponding to indices of primary capsules and j ∈ {1, 2, . . . ,M} to indices of
high-level capsules. Specifically, the routing process iterates over the following three steps

sss
(t)
j =

N∑

i

c
(t)
ij û̂ûuj|i, vvv

(t)
j = g(sss

(t)
j ), c

(t+1)
ij =

exp(bij +
∑t

r=1 vvv
(r)
j û̂ûuj|i)

∑
k exp(bik +

∑t
r=1 vvv

(r)
k û̂ûuk|i)

, (2)

where the superscript t indicates the index of iterations starting from 1, and g(·) is a squashing
function (Sabour et al., 2017) that maps the length of the vector sssj into the range of [0, 1). The bik
is the log prior probability. Note that the routing process is the most expensive part of CapsNets.

The final output capsules are computed as vvvj = g(
∑N
i=1 cij ∗ û̂ûuj|i) where cij is the output of the

last routing iteration. The output capsules are represented by vectors, the length of which indicates
the confidence of the entitys’ existence. In the training phase, the class-conditional reconstruction
net reconstructs the input image from the capsule corresponding to the ground-truth class t, i.e.,
x̂̂x̂x = r(vvvt). The reconstruction error d(xxx, x̂̂x̂x) = ‖x̂̂x̂x− xxx‖2 works as a regularization term. All above
notations will be used across this manuscript.

To improve CapsNets (Sabour et al., 2017), various routing mechanisms have been proposed, such
as (Hinton et al., 2018; Zhang et al., 2018; Hahn et al., 2019; Tsai et al., 2020). The advanced
techniques of building CNNs or GNNs have also been integrated into CapsNets successfully. For
example, the multi-head attention-based graph pooling is applied to replace the routing mechanism
(Gu & Tresp, 2020b). The CNN backbones are applied to extract more accurate primary capsules
(Rajasegaran et al., 2019; Phaye et al., 2018). To understand CapsNets, (Gu & Tresp, 2020a) inves-
tigates the contribution of dynamic routing to the input affine transformation robustness. This work
focuses on its contribution to the adversarial robustness.

(Hinton et al., 2018; Hahn et al., 2019) demonstrated the high adversarial robustness of CapsNets.
However, it has been shown in (Michels et al., 2019) that the robustness does not hold for all attacks.
In addition, many defense strategies proposed for CNNs are circumvented by later defense-aware
white-box attacks (Athalye et al., 2018). Given the previous research line, we argue that it is nec-
essary to explore CapsNet architecture-aware attacks, before we give any claim on the robustness
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of CapsNets. To the best of our knowledge, there is no attack specifically designed for CapsNets in
current literature.

Adversarial Attacks Given the outputs f(xxx) of an input in a CNN, attacks fool the model by
creating perturbations to increase the loss L(f(xxx + δδδ), yyy) where L(·) is the standard cross-entropy
loss and δδδ indicates a `p-bounded perturbation. The one-step Fast Gradient Sign Method (FGSM
(Goodfellow et al., 2015)) creates perturbations as

δδδ = ε · sign(∇δδδL(f(xxx+ δδδ), yyy)). (3)

The multi-step Projected Gradient Descent (PGD (Madry et al., 2018)), is defined as

δδδ ← clipε(δδδ + α · sign(∇δδδL(f(xxx+ δδδ), yyy))). (4)

Other popular multi-step attacks also include Basic Iteractive Method (BIM (Kurakin et al., 2017))
Momentum Iterative Method (MIM (Dong et al., 2018)). Besides, C&W attack (Carlini & Wagner,
2017b) and Deepfool (Moosavi-Dezfooli et al., 2016) are popular strong attacks on the `2-norm
constraint.

Adversarial Detection Besides adversarial attack and defense (Madry et al., 2018; Chen et al.,
2020; Li et al., 2020), adversarial detection has also received much attention (Xu et al., 2017; Ma
et al., 2020). Many CNN-based adversarial detection methods were easily bypassed by constructing
new loss functions (Carlini & Wagner, 2017a). Adversarial images are not easily detected. The
most recent work (Qin et al., 2020) leverages the class-conditional reconstruction net of CapsNets
to detect adversarial images.

Given any input xxx, the predictions and the corresponding capsule are f(xxx) and VVV , respectively.
The input is flagged as an adversarial image, if the reconstruction error is bigger than a pre-defined
threshold ‖r(vvvp)− xxx‖2 > θ where p = argmax f(xxx) is the predicted class. The reconstruction net
r(·) reconstructed the input from the capsule vvvp of the predicted class. The choice of θ involves a
trade-off between false positive and false negative detection rates. Instead of tuning this parameter,
the work (Qin et al., 2020) simply sets it as the 95th percentile of benign validation distances. A
strong detection-aware reconstructive attack is also proposed to verify the effectiveness of the pro-
posed detection method in (Qin et al., 2020). The reconstructive attack is a two-stage optimization
method where it first creates a perturbation δδδ to fool the prediction as in Equation (5), and updates
the perturbation further to reduce the reconstruction error as in Equation (6),

δδδ ← clipε(δδδ + α · β · sign(∇δδδL(f(xxx+ δδδ), yyy))), (5)

δδδ ← clipε(δδδ + α · (1− β) · sign(∇δδδ
∥∥r(vvvf(xxx)),xxx

∥∥
2
), (6)

where α is the step size, and β is a hyper-parameter to balance the losses in the two stages.

3 CAPSULE ATTACK ON CAPSULE NETWORKS

Attack Formulation. In CNNs, under certain constraints, the adversary finds adversarial perturba-
tion of an instance by maximizing the classification loss. In CapsNets, the length of output capsules
corresponds to the output probability of the classes. Similarly, the adversarial perturbation can be
obtained by first mapping the length of output capsules to logits Z(xxx)j = log(‖vvvj‖2) and solving
the maximization problem in Equation (7). In this formulation, output capsules are attacked directly,
which is called Caps-Attack.

δδδ∗ = argmax
δδδ∈Nε

H(Z(xxx+ δδδ), yyy) = L(softmax(Z(xxx+ δδδ)), yyy), (7)

whereNε = {δδδ : ‖δδδ‖p ≤ ε} with ε > 0 being the maximal perturbation. This optimization problem
can be naturally solved using the algorithm designed for the attack against CNNs, such as FGSM
(see Equation (3)) (Goodfellow et al., 2015) and PGD (see Equation (4)) (Madry et al., 2018).

Analysis. In CapsNets, the primary capsule uuui can make a positive or negative vote for the j-th class
or abstain from voting. It depends on the relationship between vvvj and û̂ûuj|i. The vote from uuui for
the j-th class is positive if cos(vvvj , û̂ûuj|i) > 0, otherwise negative if cos(vvvj , û̂ûuj|i) < 0. The similarity
value cos(vvvj , û̂ûuj|i) = 0 corresponds to abstention of the primary capsules.
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Figure 2: The left-to-right columns correspond to statistics of predictions on clean images, under
Caps-Attack, and under Vote-Attack, respectively. The first row corresponds to the statistics on
ground-truth classes, and the second row corresponds to the classes with the largest output proba-
bilities that are not ground-truth (L-NGT) classes. In each subplot, the x-axis indicates the cosine
similarity value between the vote û̂ûuj|i and the output capsule vvvj . The blue histogram shows the
percentage of votes falling in bins divided by the similarity values in x-axis. The green histogram
corresponds to the strength of votes (the averaged length of the votes û̂ûuj|i). The red curve presents
the averaged weight (i.e., cij , see Equation (2)) of votes at each bin. Please refer to the main context
for more in-depth analysis of this figure.

How do the votes change when CapsNets are attacked by adversarial images? We investigate this
question with experiments and visualize the results. We firstly train a CapsNet with Dynamic Rout-
ing (DR-CapsNet) (Sabour et al., 2017) on the CIFAR10 dataset (Krizhevsky et al., 2009). With
the standard well-trained DR-CapsNet (92.8% test accuracy), we classify all clean images in the
test dataset and extract all votes û̂ûuj|i and output capsules vvvj of the ground-truth (GT) classes. We
compute cos(vvvj , û̂ûuj|i) in all classifications and split them into 100 equal-width bins in the range of
[−1, 1]. In each bin, we compute the averaged length of all û̂ûuj|i and average of all coupling coeffi-
cients cij therein. Note that cij identified by the routing process stands for the weights of the vote
û̂ûuj|i. The results are visualized in Figure 2a. The majority of primary capsules make positive votes
(more votes with positive similarity values in blue bins).

To obtain adversarial images, we apply PGD attack to the clean image classifications on the DR-
CapsNet where 17.3% robust accuracy is obtained. Similarly, we extract corresponding information
from the classifications of adversarial images on the ground-truth class and visualize the results in
Figure 2b. The votes corresponding to cos(vvvj , û̂ûuj|i) ≈ 0 are invalid since they have only tiny impact
on final prediction. The adversarial images make votes invalid by manipulating the votes and the
weights of them. Concretely, the votes on adversarial images are û̂ûu′j|i. The voting weights identified
by the routing process are c′ij . Both are manipulated by adversarial images so that the output capsule
vvv′j =

∑N
i=1 c

′
ij ∗ û̂ûu′j|i is orthogonal to most votes û̂ûu′j|i. Namely, the adversarial images make the

majority of votes invalid for the ground-truth class (the concentration of votes around the zero).

To understand how votes change on non-ground-truth classes, we also visualize the corresponding
information on the classes with the Largest output probabilities that are Not Ground-Truth classes
(L-NGT classes) in Figure 2d and 2e. We mark differences between the two plots with dashed gray
boxes. We can observe that the votes for L-NGT classes become stronger since both the coupling
coefficients (the red line) and the strength of their positive votes (the green bins) become larger.

Drawbacks. The above analysis explains why the attack method originally designed for CNNs
still works for CapsNets. The first drawback of Caps-Attack is its limited effectiveness. As will
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be shown in later experiments, under the same attack method, CapsNets are much more robust
than CNNs. Since the routing process is the main difference between CapsNets and CNNs, we
attribute the higher robustness of CapsNets to the conjecture that the routing process obfuscates the
gradients used to generate adversarial examples. One intuitive way to mitigate it is to approximate
the routing process, e.g., with Backward Pass Differentiable Approximation (BPDA) (Athalye et al.,
2018). However, it is non-trivial to approximate the routing process with several routing iterations.
The second drawback of Caps-Attack is the low efficiency. The widely used multi-step gradient-
based attacks require many times forward and backward passes on the whole CapsNet to generate
adversarial examples, e.g., under PGD attack. Caps-Attack are computationally expensive due to
the costly iterative routing mechanism of CapsNets.

4 VOTE ATTACK ON CAPSULE NETWORKS

The above two drawbacks of Caps-Attack inspire us that it is necessary to develop adversarial attack
methods specifically for CapsNets, rather than directly applying the attack methods designed for
CNNs to attack CapsNets. In this work, we propose to directly attack the votes (see Equation (8))
rather than the final output capsules of CapsNets, dubbed Vote-Attack. The behind rationale is that
the vote û̂ûuj|i exactly corresponds to the output class j, though it is an intermediate activation of
CapsNets. Besides, when the votes from primary capsules are attacked, the corresponding weights
(i.e., cij , see Equation (2)) identified by the routing process will also be changed. Thus, the attacked
votes could mislead the corresponding outputs of CapsNets.

Specifically, given an input-label pair (xxx,yyy), the N votes from primary capsules are û̂ûu−|i = f iv(xxx)
where i ∈ {1, 2, . . . , N}. The average of the N votes is first computed and then squashed wtih the
squashing fucntion g(·). The vector lengths of the squashed one correspond to output probabilities.
Formally, the Vote-Attack on xxx is defined as

δδδ∗ = argmax
δδδ∈Nε

H(log(g( 1
N

N∑

i=1

f iv(xxx+ δδδ))), yyy). (8)

In the formulation above, we first average the votes and squash the averaged vote. There are two
intuitive variants of the proposed Vote-attack. The one is to first squash their votes and then average
the squashed votes. The other is to average the loss caused by all votes. Instead of opimizing
on the loss computed on the squahed averaged vote, we can compute the loss of individual vote
seperatedly and average them. More details about these two variants of our Vote-Attack can be
found in Appendix A.

The maximization problem of Equation (8) can be approximately solved with popular attack method,
e.g., PGD attack. When PGD is taken as the underlying attack, the proposed Vote-Attack method
can reduce the robust accuracy of DR-CapsNets from 17.3% (with Caps-Attack) to 4.83%.

Our Vote-Attack can also be extended to targeted attack by simply modifying the attack loss function
of Equation (8) into δδδ∗ = argmaxδδδ∈Nε

l(log(g( 1
N

∑N
i=1 f

i
v(xxx+ δδδ))), ttt) where ttt is the target class.

Analysis. We also visualize the votes on the adversarial images created by our Vote-Attack. On the
GT classes (see Figure 2c), our Vote-Attack increase the negative votes and decrease the positive
votes, when compared to Caps-Attack in Figure 2b. On the L-NGT classes, the positive votes are
strengthened further by our Vote-Attack, which leads to more misclassifications. See the difference
in dashed gray boxes, where both the length of positive votes and the weights become larger (where
the similarity values are about 1.0).

Advantages. It is interesting to find that the proposed Vote-Attack could alleviate the drawbacks
of CapsNets. Firstly, since the routing process is excluded, Vote-Attack could mitigate the gradient
obfuscation when computing the gradient to generate adversarial samples. Hence, the attack perfor-
mance of Vote-Attack is expected to be higher than Caps-Attack. Secondly, since the costly routing
process is removed from the attack method, Vote-Attack will be more efficient than Caps-Attack.
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5 EXPERIMENTS

In this section, we verify our proposal via empirical experiments. We first show the effectiveness of
Vote-Attack on CapsNets in the regular training scheme and the adversarial training one. We also
show the efficiency of Vote-Attack. Besides, we apply Vote-Attack to bypass the recently proposed
CapsNet-based adversarial detection method. All the reported scores are averaged over 5 runs.

5.1 EFFECTIVENESS OF VOTE ATTACK ON CAPSNETS

Models: We take ResNet18 as a CNN baseline. In couter-part CapsNets, we apply resnet18 back-
bone to extract primary capsules uuu ∈ (64× 4× 4, 8) where the outputs of the backbone are feature
maps of the shape (512, 4, 4) and 64 is the number of capsule groups, 8 is the primary capsule size.
The primary capsules are transformed to make 64 × 4 × 4 votes û̂ûu ∈ (64× 4× 4, 10, 16) with the
learned transformation matrices WWW ∈ (64× 4× 4, 8, 160). The size of output capsule is 16, and
10 are the number of output classes. The votes û̂ûu reach an agreement vvv ∈ (10, 16) via the dynamic
routing meachnism. The length of 10 output capsules are the probabilites of 10 output classes.

Datasets: The popular datasets CIFAR10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011)
are used in this experiment. The standard preprocess is applied on CIFAR10 for training: 4 pixels
are padded on an input of 32× 32, and a 32× 32 crop is randomly sampled from the padded image
or its horizontal flip. For `∞-based attacks, the perturbation range is 0.031 (CIFAR10) and 0.047
(SVHN) for pixels ranging in [0, 1]. For `2-based attacks, the `2 norm of the allowed maximal
perturbation is 1.0 for both datasets.

White-Box Attacks We train CNNs and CapsNets with the same standard training scheme where
the models are trained with a batch size of 256 for 80 epochs using SGD with an initial learning rate
of 0.1 and moment 0.9. The learning rate is set to 0.01 from the 50-th epoch. We apply popular
`∞-based attacks (FGSM (Goodfellow et al., 2015), BIM (Kurakin et al., 2017), MIM (Dong et al.,
2018),PGD (Madry et al., 2018)) and `2-based attacks (C&W attack (Carlini & Wagner, 2017b),
Deepfool (Moosavi-Dezfooli et al., 2016)) to attack the well-trained models. The hyper-parameters
mainly follow the Foolbox tool (Rauber et al., 2017). In CapsNets, Capsules and Votes are taken as
targets to attack, respectively.

Table 1: The robust accuracy of ResNets and CapsNets are shown under popular attacks on CIFAR10
and SVHN datasets. Vote-Attack is much more effective than Caps-Attack and compatible with
different underlying attacks.

Model Target FGSM BIM MIM PGD Deepfool-`2 C&W-`2

On CIFAR10 Dataset, the model accuracy are ResNet 92.18(±0.57) and CapsNet 92.80(±0.14).

ResNet Logits 16.6(±0.76) 0.15(±0.05) 0(±0) 0(±0) 0.08(±0.05) 0.24(±0.14)

CapsNet Caps 44.55(±1.6) 24.43(±1.95) 21.69(±2.52) 17.3(±1.35) 26.55(±0.43) 18.91(±1.5)

Votes 26.21(±1.66) 8.12(±0.13) 9.20(±3.44) 4.83(±0.05) 20.83(±0.78) 6.66(±0.32)

On SVHN Dataset, the model accuracy are ResNet 94.46(±0.14) and CapsNet 94.16(±0.02).

ResNet Logits 14.57(±2.73) 2.9(±0.47) 0.06(±0.02) 0.06(±0.02) 3.05(±0.45) 2.16(±0.1)

CapsNet Caps 58.32(±1.34) 50.25(±0.88) 40.09(±1.65) 34.82(±2.11) 45.76(±1.17) 44.29(±1.07)

Votes 49.16(±1.0) 31.46(±0.22) 14.22(±0.23) 8.11(±0.3) 39.31(±0.56) 27.94(±0.14)

The standard test accuracy and the robust accuracy under different attacks are reported in Table
1. The CapsNets and the counter-part CNNs achieve similar performance on normal test data. The
strong attack PGD can mislead all the classifications of ResNet. However, it is less effective to attack
output capsules. Our Vote-Attack can reduce the robust accuracy of CapsNets significantly across
different attack methods. We also check the `0, `1, `2 norms of the perturbations created by different
attack methods in Appendix B. In most cases, the different norms of perturbations corresponding to
Vote-attack is similar to the ones to Caps-attack.

We also verify the effectiveness of Vote-Attack from other perspectives, such as, the targeted attacks,
the transferability of adversarial examples and the adversarial robustness on affine-transformed in-
puts. The experimental details of the targeted Vote Attack are in the Appendix C. The transferability
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of the created adversarial examples is investigated in Appendix D. The adversarial examples created
by Vote-attack are more transferable than the ones by Caps-attack.

CapsNets are shown to be robust to input affine transformation (Sabour et al., 2017; Gu & Tresp,
2020a). When inputs are affine transformed, the votes in CapsNets also change correspondingly.
We also verify the effectiveness of Vote-Attack in case of affine transformed inputs. We consider
two cases: 1) The CapsNet built on standard convolutional layers (Sabour et al., 2017) is trained on
MNIST dataset and tested on AffNIST dataset. 2) The CapsNet built on a backbone (i.e. ResNet18)
is trained on the standard CIFAR10 training dataset and tested on affine-transformed CIFAR10 test
images. In both cases, our Vote-Attack achieves higher attack success rates than Caps-Attack. More
details about this experiment can be found in Appendix E. This experiment shows that our Vote-
Attack is more effective than Caps-Attack when the inputs are affine-transformed.

Under Vote-Attack, the robust accuracy of CapsNets is still higher than that of counter-part CNNs.
However, we did claim CapsNets are more robust for two reasons. 1) CapsNets possess more net-
work parameters due to transformation matrices. 2) The potential attacks can reduce the robust
accuracy further. This study demonstrates that the high adversarial robustness of CapsNets can be a
fake sense, and we should be careful to draw any conclusion about the robustness of CapsNets.

Adversarial Training In this experiment, we verify the effectiveness of Vote-Attack in the context
of Adversarial Training. We train models with adversarial examples created by Caps-Attack where
PGD with 8 iterations is used. For training a more robust model, we also combine Vote-Attack and
Caps-Attack to create adversarial examples where a new loss from the two attacks is used.

The underlying attack method used in this experiment is PGD with 40 iterations. The model perfor-
mance is reported in Table 2 under different training schemes. We can observe that the Vote-Attack
(corresponding to the last column) is more effective than Caps-Attack (corresponding to the second
last column) under adversarial training. When we include Vote-Attack to improve the adversarial
training (AT v.s. AT +Votes), the robust accuracy of CapsNets is increased under both Caps-Attack
and Vote-Attack.

The Vote-Attack only attacks part of the model. During adversarial training, the model can adapt
the routing process to circumvent the adversarial perturbations. Therefore, it is not effective to do
adversarial training only using Vote-Attack.

Table 2: The robustness of CapsNets with different training schemes on CIFAR10 and SVHN
datasets: Vote-Attack is also effective to attack models with adversarial training; It can also be
applied to improve adversarial training.

Dataset Traning ResNet CapsNet
Astd Logits Astd Caps Votes

CIFAR10
Natural 92.18(±0.57) 0 92.8(±0.14) 17.30(±1.35) 4.83(±0.05)

AT 79.45(±1.27) 43.91(±0.62) 75.0(±0.04) 45.49(±0.78) 43.65(±0.85)

AT + Votes - - 76.42(±0.37) 49.62(±0.56) 44.12(±0.32)

SVHN
Natural 94.46(±0.14) 0.06(±0.02) 94.16(±0.02) 34.82(±2.11) 8.11(±0.30)

AT 87.9(±0.08) 36.05(±0.33) 86.0(±0.80) 33.40(±1.36) 30.44(±1.08)

AT + Votes - - 83.89(±0.73) 39.13(±0.96) 34.92(±0.98)

5.2 EFFICIENCY OF VOTE ATTACK ON CAPSNETS

In the last subsection, we demonstrate the effectiveness of Vote-Attack from different perspectives.
We now show the efficiency of Vote-Attack. In our Vote-Attack, no routing process is involved
in both forward inferences and gradient backpropagations. To show the efficiency of Vote-Attack
empirically, we record the time required by each attack to create a single adversarial example and
average them across the CIFAR10 test dataset. A single Nvidia V100 GPU is used.

The required time is reported in Table 3. The time on SVHN dataset is almost the same as in CI-
FAR10 since both input space dimensions are the same (i.e., 32, 32, 3). The column corresponding
to Astd shows the time required to classify a single input image. Compared to the logit attack in
CNNs, Caps-Attack in CapsNets requires more time to create adversarial examples since the dy-
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namic routing is computationally expensive. Our Vote-Attack can create adversarial images without
using the routing part, and reduce the required time significantly. However, the required time is
still more than that on CNNs. The reason behind this is that the current deep learning framework is
highly optimized on the convolutional operations, less on the voting process.

Table 3: The averaged time required by each attack to create an adversarial example is reported on
CIFAR10 test dataset. Vote-Attack requiring less time is more efficient than Caps-Attacks.

Model Target Astd FGSM BIM MIM PGD Deepfool C&W

ResNet Logits 4.14ms 12.13ms 83.34ms 165.76ms 324.53ms 186.77ms 409.38ms

CapsNet Caps 5.65ms 17.45ms 120.75ms 242.97ms 471.81ms 607.84ms 612.79ms
Votes 14.89ms 105.09ms 196.11ms 414.58ms 295.28ms 448.31ms

5.3 BYPASSING CLASS-CONDITIONAL CAPSULE RECONSTRUCTION BASED DETECTION

In this experiment, we demonstrate that class-conditional capsule reconstruction based detection
can be bypassed by integrating our Vote-Attack in the detection-aware attack method. Following
the work (Qin et al., 2020), we use the original CpasNet architecture (Sabour et al., 2017) for this
experiment. The architecture details are shown as follows.

CapsNets, two standard convolutional layers, Conv1(C256, K9, S1), Conv2(C256, K9, S2), are
used to extract primary capsules of shape (32×6×6, 8). The output capsule of shape (10, 16) can
be obtained after the dynamic routing process. The output capsules will be taken as input for a
reconstruction net with (FC160-FC512-FC1024-FC28×28). In the reconstruction process, only one
of the output capsules is activated, others are masked with zeros. Since the input contains the class
information, the reconstruction is class-conditional. The capsules corresponding to the ground-truth
class will be activated during training, while the winning capsule (the one with maximal length) will
be activated in the test phase.

Two CNN baseline models are considered. CNN+CR uses the same architecture without routing and
group 160 activations into 10 groups where the sum of 16 activations is taken as a logit. The same
class-conditional reconstruction mechanism is used. CNN+R does not group 160 activations and
reconstructs the input from activations without a masking mechanism. More details of the baseline
models can be found in (Qin et al., 2020).

Given an input, it will be flagged as adversarial examples if its reconstruction error is bigger than
a given threshold d(xxx, x̂̂x̂x) > θ. Following (Qin et al., 2020), we set θ as 95th percentile of recon-
struction errors of benign validation images, namely, 5% False postive rate. We report Success Rate
S = 1

K

∑N
i (f(xxx + δδδ) 6= y) and Undetected Rate R = 1

K

∑N
i (f(xxx + δδδ) 6= y) ∩ (d(xxx, x̂̂x̂x) ≤ θ).

Both detection-agnostic and detection-aware attacks introduced in Sec. 2 are considered.

Table 4: Different attacks are applied to circumvent the class-conditional reconstruction adversarial
detection method on FMNIST dataset. The attack success rate and undetected rate (S/R) are re-
ported for each attack. The integration of Vote-Attack in the detection-aware attack increases both
the attack success rate and the undetected rate significantly.

Attacks Model Target Astd FGSM BIM PGD C&W

Detection-agnostic
Attack

CNN+R Logits 90.95 85.8/63.3 100/80.0 100/75,7 86,4/68.8
CNN+CR Logits 91.79 89.4/66.4 97.4/70.4 97.9/67.9 77.3/77.1

CapsNet Caps 91.85 40.2/29.3 88.8/53.1 90.6/51.4 70.7/54.1
Votes 74.8/46.1 94.6/59.2 94.7/55.3 90.5/50.1

Detection-aware
Attack

CNN+R Logits 90.95 85.3/77.3 99.7/95.0 100/92.1 -
CNN+CR Logits 91.79 89.3/75.9 96.3/82.3 96.2/81.2 -

CapsNet Caps 91.85 41.8/37.2 87.9/78.7 89.7/78.2 -
Votes 76.8/66.5 95.1/85.2 95.6/86.1 -

The results on FMNIST dataset are reported in Table 4. In detection-agnostic attacks, we apply our
Vote-Attack to attack CapsNets directly without considering the detection mechanism. The CapsNet
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Figure 3: This figure shows the clean images and the corresponding adversarial images created
by Caps-Attack and Vote-Attack in a targeted setting. The attack target class is set to the digit 0.
The adversarial images created by the two attack methods are visually similar. The observation
also echoes the previous findings in Appendix B, where we show that the perturbations created by
Caps-Attack and Vote-Attack have similar norms.

used in this experiment is built on standard convolutional layers instead of backbones in previous
experiments. Our Vote-Attack still achieve a higher success rate than Caps-Attack. It indicates that
the Vote-Attack is effective across different architectures. Furthermore, the undetected rate is also
increased correspondingly. In detection-aware attacks, the integration of our Vote-Attack increases
the attack success rate and undetected rate significantly. More results on MNIST and SVHN datasets
are shown in Appendix F.

Under the class-conditional capsule reconstruction based detection, some of the undetected exam-
ples are not imperceptible anymore, as shown in (Qin et al., 2020). Some images are flipped into
the attack target classes when attacked, although a small perturbation threshold is applied. Some
images are hard to flip, e.g., the ones with a big digit or thin strokes. We also visualize the adver-
sarial examples created by Caps-Attack and our Vote-Attack in Figure 3. More figures and details
are shown in Appendix G. We find that there is no obvious visual difference between the adversarial
examples created by the two attacks. This finding echoes a previous experiment, where we compute
the different norms (i.e., the `0, `1, `2 norms) of the created perturbations. The perturbations have
similar norms (see Appendix B). Hence, the adversarial examples created by the two attacks are
visually similar.

6 CONCLUSIONS AND FUTURE WORK

We dive into the inner working of CapsNets and show how it is affected by adversarial examples.
Our investigation reveals that adversarial examples can mislead CapsNets by manipulating the votes.
Based on the investigation analysis, we propose an effective and efficient Vote-Attack to attack Cap-
sNets. The Vote-Attack is more effective and efficient than Caps-Attack in both standard training and
adversarial training settings. Furthermore, Vote-Attack also demonstrates the superiority in terms of
the transferability of adversarial examples as well as the adversarial robustness on affine-transformed
data. Last but not least, we apply our Vote-Attack to increase the undetected rate significantly of the
class-conditional capsule reconstruction based adversarial detection.

The idea of attacking votes of CapsNet can also be applied to different versions of CapsNets. How-
ever, some adaptions are required since different CapsNet versions can have significantly different
architectures. For instance, in EM-CapsNet (Hinton et al., 2018), a capsule corresponding to an
entity are represented by a matrix, and the confidence of the entity’s existence is represented by the
activation of a single neuron. The possible adaption could be attacking votes by flipping the neuron
activations that represents the existence of entities. Recently, many capsule networks have been pro-
posed, to name a few (Hinton et al., 2018; Zhang et al., 2018; Rawlinson et al., 2018; Hahn et al.,
2019; Ahmed & Torresani, 2019; Gu & Tresp, 2020a; Tsai et al., 2020; Ribeiro et al., 2020). We
leave the further exploration on different versions of CapsNet in future work.

Even though CapsNets still seem to be more robust than counter-part CNNs under our stronger
Vote-Attack, it is too early to draw such a conclusion. We conjecture that the robust accuracy of
CapsNets can be reduced further. In future work, we will explore more strong attacks as well as the
certifications to compare the robustness of CNNs and CapsNets.
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A TWO VARIANTS OF VOTE ATTACK

We have another two choices when attacking votes in CapsNet directly. Choices 1: In Equation (8),
we first average the votes and squash the averaged vote. Another choice is to first squash their votes
and then average the squashed votes. Our experiments show that this option is similarly effective.

δδδ∗ = argmax
δδδ∈∇

H(log( 1
N

N∑

i=1

g(f iv(xxx+ δδδ))), yyy). (9)

Choices 2: Another choice is to average the loss caused by all votes. Instead of opimizing on the
loss computed on the squahed averaged vote, we can compute the loss of individual vote seperatedly
and average them, namely,

δδδ∗ = argmax
δδδ∈∇

1

N

N∑

i=1

L(g(f iv(xxx+ δδδ)), yyy). (10)

The loss of each vote can differ from each other significantly. The large part of loss can be caused
by a small part of votes. In other words, the gradients of received by the input can be caused mainly
by a few too strong votes. This choice is less effective, compared to the one in Equation (8).

We use the same emperimental setting as in Sec. 5. Under the same PGD attack on CIFAR10
dataset, the robust accuracy corresponding to the choice 1 is 4.06(±1.12), and it is effective, similar
to Equation (8). The choice 2 with the robust accuracy 43.31(±2.46) does not work well since the
gradients received by inputs are dominated only by a small part of votes.

B NORMS OF PERTURBATIONS CREATED BY DIFFERENT ATTACKS

On CIFAR10 and SVHN datasets, we compute the different norms of perturbations created by dif-
ferent attacks. On each dataset, we first select the examples that are successfully attacked by both
Vote-Attack and Caps-Attack on CapsNets as well as the corresponding attack on ResNets from the
test dataset. Then, we obtain the created perturbations created by the corresponding attacks. The `0,
`1 and `2 norm of perturbations are shown in Table 5 on CIFAR10 dataset and Table 6 on SVHN
dataset.

In most cases, Vote-Attack and Caps-Attack create perturbations with similar norms. Under BIM
attack, we can observe that `1 and `2 norms corresponding to Vote-Attack are higher than the ones
to Caps-Attack. Both are smaller than the ones corresponding to other multi-step attacks (e.g.,
PGD). The reason behind this is that the BIM attack does not converge since only 10 iterations
are used by default in FoolBox tool (50 iterations in PGD). Given the same iterations before the
convergence, Vote-Attack accumulates the relatively consistent gradients. Vote-Attack converges
faster than Caps-Attack, which explains our observation.

In addition, the `2 attack find the minimal perturbations to misled the classifier. The different norms
of perturbations is small. Our Vote-Attack finds samller perturbations in SVHN dataset and similar
ones in CIFAR10 dataset. This obervation indicate that the performance of attack method can also
depend on the datasets.

C VOTE TARGETED ATTACK

We create adversarial examples in targeted attack settings on CIFAR10 and SVHN datasets. The
used models are the same as in the untargeted setting. The target classes are selected uniformly
at random from the non-ground-truth classes. The attack is successful if the created adversarial
examples are classified as the corresponding target classes by the underlying classifier.

The attack success rate (%) is reported in Table 7. In the targeted attack setting, our Vote-Attack
achieves a significantly higher attack success rate than Caps-Attack. This exeriment show that our
Vote-Attack is still effective when extended to the targeted attack setting.
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Table 5: The `0, `1, and `2 norms of perturbations created by different attacks are shown on CI-
FAR10 dataset. Overall, the perturbations created by our Vote-Attack have similar norms to the
ones by Caps-Attack.

Model Target FGSM BIM MIM PGD Deepfool-`2 C&W-`2

`0 norm
ResNet Logits 3054.7 2797.1 3071.9 3057.4 1533.5 2942.2

CapsNet Caps 3054.5 2489.2 3071.6 3066.3 1431.7 2977.4
Votes 3054.6 2741.1 2523.9 3065.7 1534.8 2978.1

`1 norm
ResNet Logits 93.96 53.07 77.89 77.38 0.21 0.51

CapsNet Caps 93.93 28.79 78.86 53.36 0.32 0.42
Votes 93.91 43.68 78.71 54.03 0.32 0.51

`2 norm
ResNet Logits 1.7041 1.1089 1.4974 1.4849 0.0059 0.0105

CapsNet Caps 1.7037 0.6471 1.5066 1.1035 0.0092 0.0087
Votes 1.7035 0.6753 1.5047 1.1155 0.0091 0.0104

Table 6: The `0, `1, and `2 norms of perturbations created by different attacks are shown on SVHN
dataset. In `∞-attack methods, the perturbations created by our Vote-Attack have similar norms to
the ones by Caps-Attack. In `2-attack methods, our Vote-attack can find smaller perturbations to
fool the underlying classifier.

Model Target FGSM BIM MIM PGD Deepfool-`2 C&W-`2

`0 norm
ResNet Logits 3066.9 2854.1 3071.9 3066.0 1754.4 2972.7

CapsNet Caps 3067.4 2552.2 3071.8 3070.3 2103.4 2931.1
Votes 3067.2 2587.6 3071.8 3069.7 875.0 2924.9

`1 norm
ResNet Logits 94.83 59.18 80.75 111.37 0.48 0.65

CapsNet Caps 94.88 32.99 77.77 79.37 0.52 0.87
Votes 94.86 35.06 78.00 80.33 0.24 0.15

`2 norm
ResNet Logits 1.7136 1.2041 1.5357 2.1657 0.0141 0.0149

CapsNet Caps 1.7142 0.7283 1.4920 1.6464 0.0161 0.0172
Votes 1.7140 0.7677 1.4954 1.6442 0.0074 0.0029

D TRANSFERABILITY OF ADVERSARIAL EXAMPLES

We also investigate the transferability of adversarial examples created by Caps-Attack and Vote-
Attack on CIFAR10 dataset. We consider three models, VGG19 (Simonyan & Zisserman, 2015),
ResNet18 and CapsNets. The PGD is used as the underlying attack. We measure the transferability
using Transfer Sucess Rate (TSR).

The TSR of different adversarial examples is reported in Table 8. The adversarial examples created
on CNNs are more transferable. Especially, the ones created on ResNet18 can be transferred to
CapsNets very well. The reason behind this is that CapsNets also the ResNet18 bone to extract
primary capsules. By comparing the last two columns in Table 8, we can observe that the adversarial
example created by Vote-Attack is more transferable than the ones created by Caps-Attack.

E ADVERSARIAL ROBUSTNESS ON AFFINE-TRANSFORMED DATA

CapsNets learn equivariant visual representations. When inputs are affine transformed, the votes
also changes correspondingly. In this experiment, we aim to verify the effectiveness of Vote-Attack
when inputs and their votes in Capsnets changed. The model is trained the same as before. We
translate the test images with 2 pixels randomly and rotate the images within a given pre-defined
degree.
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Table 7: The targeted attack success rates (%) are shown on CIFAR10 and SVHN datasets. In
the targeted attack setting, our Vote-Attack is significantly more effective than Caps-Attack when
combined with popular attacks.

Model Target FGSM BIM MIM PGD Deepfool-`2 C&W-`2

On CIFAR10 Dataset, the model accuracy are ResNet 92.18(±0.57) and CapsNet 92.80(±0.14).

ResNet Logits 39.13(±3.11) 98.47(±0.68) 99.71(±0.33) 99.97(±0.04) 10.47(±0.11) 97.99(±1.39)

CapsNet Caps 9.58(±0.16) 27.91(±2.11) 48.38(±0.21) 65.94(±0.92) 9.43(±0.48) 34.07(±1.38)

Votes 10.67(±0.32) 32.66(±2.09) 61.08(±4.71) 75.35(±0.91) 9.55(±0.64) 41.41(±5.85)

On SVHN Dataset, the model accuracy are ResNet 94.46(±0.14) and CapsNet 94.16(±0.02).

ResNet Logits 43.06(±3.37) 91.72(±0.42) 98.15(±0.02) 99.78(±0.04) 11.84(±0.45) 93.97(±0.82)

CapsNet Caps 5.82(±0.06) 38.58(±0.59) 49.04(±0.89) 68.94(±2.11) 6.82(±1.12) 44.64(±0.96)

Votes 7.28(±1.73) 48.25(±1.02) 65.35(±0.28) 91.68(±1.06) 7.57(±1.06) 62.93(±0.55)

Table 8: The transferability of adversarial examples created on CNNs and CapsNets on CIFAR10
dataset: the ones created on CNNs are more transferable than on CapsNets; the ones created with
Vote-Attack are more transferable than the ones with Caps-Attack.

Attacks on Source Model
VGG19 (Logits) ResNet18 (Logits) CapsNet (Caps) CapsNet (Votes)

Target
Models

VGG19 83.79(±0.18) 93.94(±0.28) 35.64(±0.96) 41.49(±0.19)

ResNet18 71.81(±1.04) 97.26(±1.84) 37.59(±6.25) 43.45(±8.13)

CapsNet 80.38(±1.79) 97.53(±0.57) 46.43(±5.56) 55.34(±6.26)

The robust accuracy of affine-transformed images is shown in Table 9 on CIFAR10 dataset. Un-
der different rotation degrees, our Vote-Attack is still effective. It consistently reduces the robust
accuracy of CapsNets, when compared to Caps-Attack.

Table 9: When inputs are affine-transformed in CIFAR10 dataset, the Vote-Attack is still more
effective to create adversarial examples than Caps-Attack.

Model Target (0, ±0◦) (±2, ±15◦) (±2, ±30◦) (±2, ±60◦) (±2, ±90◦)

ResNet Astd 92.18(±0.57) 85.64(±0.46) 68.11(±1.12) 48.47(±0.30) 42.07(±0.22)

Logits 0 0 0 0 0

CapsNet
Astd 92.8(±0.14) 86.09(±0.39) 69.44(±1.96) 49.37(±2.43) 42.62(±1.64)

Caps 17.3(±1.35) 5.82(±1.86) 2.89(±1.05) 1.63(±0.51) 1.11(±0.38)

Votes 4.83(±0.05) 1.15(±0.38) 0.54(±0.22) 0.32(±0.16) 0.23(±0.08)

We also conduct experiments on AffNIST dataset. In this experiment, the original CapsNet archi-
tecture and the original CNN baseline in (Sabour et al., 2017) are used. The modes are trained on
standard MNIST dataset and tested on AffNIST dataset. In AffNIST dataset, the MNIST images
are transformed, namely, rotated, translated, scaled, or sheared. More details about this dataset
are in this resource 1. The perturbation threshold and the attack step size are set to 0.3 and 0.01,
respectively. The other hyper-parameters are defaults in the Foolbox tool (Rauber et al., 2017).

The test accuracy on the untransformed test dataset (Astd), the accuracy on the transformed dataset
(Aaff ) and the robust accuracy under different attacks are reported in Table 10. Our Vote-Attack
achieve higher attack success rates than Caps-Attack.

1https://www.cs.toronto.edu/ tijmen/affNIST/
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Table 10: The test accuracy on the dataset with untransformed images and the one on the dataset
with transformed images are reported (in %). CapsNet achieves better transformtation robustness
than the original CNN baseline. The robust accuracy of different models are also reported under
different attacks. We can observe that it is more effective to attack Votes instead of output capsules
in CapsNet.

Model Target Astd Aaff FGSM BIM MIM PGD

ResNet Logits 99.22 66.08 10.18 0 0 0

CapsNet Caps 99.22 79.12 15.61 4.27 1.01 0.48
Votes 10.43 1.33 0 0

F BYPASSING CLASS-CONDITIONAL RECONSTRUCTION ON MNIST,
FMNIST AND SVHN

The integration of our Vote-attack into detection-aware attack is effective to bypass the class-
conditional reconstruction detection method. To verify this, we also conduct experiments on dif-
ferent datasets, such as MNIST and SVHN. The results are reported in Table 11. On the All three
datasets, both detection-aware and detection-agnostic attacks achieve high attack success rate and
undetected rate, when combined with our Vote-attack.

Table 11: Different attacks are applied to circumvent the class-conditional reconstruction adversarial
detection method. The attack success rate and undetected rate (S/R) are reported for each attack. On
all the three popular datasets, the integration of Vote-Attack in the detection-aware attack increases
both the attack success rate and the undetected rate significantly.

DataSet Model Astd Attacks Target FGSM BIM PGD

MNIST CapsNet 99.41
Detection-agnostic Caps 13.3/6.3 73.3/31.7 77.9/33.1

Votes 38.8/15.1 92.3/35.4 93.4/34.1

Detection-aware Caps 16.1/13.6 71.7/52.7 77.2/57.8
Votes 44.8/34.9 92.1/66.8 93.4/67.1

FMNIST CapsNet 91.85
Detection-agnostic Caps 40.2/29.3 88.8/53.1 90.6/51.4

Votes 74.8/46.1 94.6/59.2 94.7/55.3

Detection-aware Caps 41.8/37.2 87.9/78.7 89.7/78.2
Votes 76.8/66.5 95.1/85.2 95.6/86.1

SVHN CapsNet 91.32
Detection-agnostic Caps 83.2/78.1 99.1/92.3 99.6/92.2

Votes 95.5/88.8 99.9/93.2 99.9/93.3

Detection-aware Caps 84.2/80.1 97.8/95 97.8/94.7
Votes 90.6/90.8 100/96.7 100/96.8

G VISUALIZING UNDETECTED ADVERSARIAL EXAMPLES

We also visualize the adversarial examples created by Caps-Attack and Vote-Attack in Figure 4. In
this experiment, following (Qin et al., 2020), we use a detection-aware attack method and set the
attack target class is 0. The standard setting 0.047 is used in the case of input range [0, 1], which
corresponds to 12 of the pixel range of 255. In Figure 4, Some adversarial examples are flipped to
target class to human perception, although the perturbation threshold is small. For some examples,
it is hard to flip them, e.g., the ones with a big digit and thin strokes.

By comparing the adversarial examples created by Caps-Attack and Vote-Attack, we can find that
there is no obvious visual difference between the adversarial examples. The observation also echos
with our experiment in Appendix B. In that experiment, we compute the different norms of the per-
turbations created by different methods. The results in Table 5 and 6 show the perturbations created
by Caps-Attack and Vote-Attack have similar norms. Hence, the adversarial examples created by
Caps-Attack and Vote-Attack are also visually similar.
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(a) Clean images in SVHN test dataset

(b) Adversarial images created by Vote-Attack

(c) Adversarial images created by Vote-Attack

Figure 4: The first subfigure shows clean test images of the SVHN dataset. The second subfigure
shows the adversarial images created by Caps-Attack. Different rows correspond to different weights
to reduce reconstruction error in Equation (6) (i.e., the second attack step in detection-aware attack
method). Some images are flipped, and some hard ones are not. The images in the third subfigure
are the adversarial images created by Vote-Attack. There is no obvious visual difference between the
adversarial examples created by the two attacks. To be noted that the images are randomly selected
(not cherry picked).
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Abstract

The recent advances in Vision Transformer (ViT) have demonstrated its impressive performance in
image classification, which makes it a promising alternative to Convolutional Neural Network (CNN).
Unlike CNNs, ViT represents an input image as a sequence of image patches. The patch-wise input image
representation makes the following question interesting: How does ViT perform when individual input
image patches are perturbed with natural corruptions or adversarial perturbations, compared to CNNs? In
this work, we study the robustness of ViT to patch-wise perturbations. Surprisingly, we find that ViTs are
more robust to naturally corrupted patches than CNNs, whereas they are more vulnerable to adversarial
patches. Furthermore, we conduct experiments to understand the robustness to patch perturbations. We
have revealed that the attention module can help improve the robustness of ViT by effectively ignoring
natural corrupted patches. However, when ViTs are attacked by an adversary, the attention mechanism can
be easily fooled to focus more on the adversarially perturbed patches and cause a mistake. Based on our
analysis, we propose a simple method to improve the robustness of ViT to adversarial patches. Extensive
qualitative and quantitative experiments verified our findings, understanding, and improvement of ViT
robustness to patch-wise perturbations.

1 Introduction
Recently, Vision Transformer (ViT) has demonstrated impressive performance [7, 8, 10, 14, 15, 25, 46, 48, 49],
which makes it become a potential alternative to convolutional neural networks (CNNs). Meanwhile, the
robustness of ViT has also received great attention [5, 20, 38, 40, 41, 44]. On the one hand, it is important to
improve its robustness for safe deployment in the real world. On the other hand, diagnosing the vulnerability
of ViT can also give us a deeper understanding of its underlying working mechanisms. Existing works have
intensively studied the robustness of ViT and CNNs when the whole input image is perturbed with natural
corruptions or adversarial perturbations [2, 3, 5, 28, 40]. Unlike CNNs, ViT processes the input image as a
sequence of image patches. Then, a self-attention mechanism is applied to aggregate information from all
patches. In this work, instead, we study the robustness of ViT to patch-wise perturbations based on its special
patch-based architecture.

In this work, two typical types of perturbations are considered to compare the robustness between ViTs
and CNN (e.g., ResNets [16]). One is natural corruptions [17], which is to test models’ robustness under
distributional shift. The other is adversarial perturbations [13, 43], which are created by an adversary to
specifically fool a model to make a wrong prediction. Surprisingly, we find ViT does not always perform more
robustly than ResNet. When individual image patches are naturally corrupted, ViT performs more robustly
than ResNet. However, when input image patch(s) are adversarially attacked, ViT shows a higher vulnerability
than ResNet.

Digging down further, we conduct extensive qualitative and quantitative experiments to understand the
robustness to patch perturbations. We have revealed that ViT’s stronger robustness to natural corrupted patches
and higher vulnerability against adversarial patches are both caused by the attention mechanism. Specifically,
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(a) Clean Image (b) with Naturally Corrupted Patch (c) with Adversarial Patch

Figure 1: Images with patch-wise perturbations (top) and their corresponding attention maps (bottom). The
attention mechanism in ViT can effectively ignore the naturally corrupted patches to maintain a correct
prediction in figure b, whereas it is forced to focus on the adversarial patches to make a mistake in figure
c. The images with corrupted patches are all correctly classified. The images with adversary patches in
subfigure 1c are misclassified as dragonfly, axolotl, and lampshade, respectively.

the self-attention mechanism of ViT can effectively ignore the natural patch corruption, while it’s also easy to
manipulate the self-attention mechanism to focus on an adversarial patch. This is well supported by rollout
attention visualization [1] on ViT. As shown in Fig. 1 (a), ViT successfully attends to the class-relevant features
on the clean image, i.e., the head of the dog. When one or more patches are perturbed with natural corruptions,
shown in Fig. 1 (b), ViT can effectively ignore the corrupted patches and still focus on the main foreground to
make a correct prediction. In Fig. 1 (b), the attention weights on the positions of naturally corrupted patches
are much smaller even when the patches appear on the foreground. In contrast, when the patches are perturbed
with adversarial perturbations by an adversary, ViT is successfully fooled to make a wrong prediction, as
shown in Fig. 1 (c). This is because the attention of ViT is misled to focus on the adversarial patch instead.

When the attention is misled to focus on the adversarial patch, all patch embeddings are mainly based on the
embedding of the adversarial patch, which leads to deviated image representation. An intuitive solution to
mitigate this is to modify attention so that the attention is forced not to attend to a single patch. We propose a
simple way to implement the solution. It is called Smoothed Attention where we scale the temperature of
the softmax operation in the attention. In Smoothed Attention, the normal patches also contribute to patch
embeddings of the next layer, which can boost the robustness of ViT.

Our main contributions can be summarized as follows:

• Based on a fair comparison, we find that ViT is more robust to natural patch corruption than ResNet,
whereas it is more vulnerable to adversarial patch perturbation.

• We conduct extensive analysis to understand our observations. Specifically, we reveal that the self-
attention mechanism can effectively ignore natural corrupted patches to maintain a correct prediction
but be easily fooled to focus on adversarial patches to make a mistake.

• Inspired by our analysis, we show attention smoothing can improve the robustness of ViT against
adversarial patches since smoothed attention does not focus on a single patch.

2 Related Work
Robustness of Vision Transformer. The robustness of ViT have achieved great attention due to its great
success [2, 3, 4, 5, 18, 28, 29, 30, 33, 33, 34, 38, 40, 44, 50]. On the one hand, [5, 36] show that vision
transformers are more robust to natural corruptions [17] compared to CNNs. On the other hand, [5, 36, 40]
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Table 1: Comparison of popular ResNet and ViT models. The difference in model robustness can not be
blindly attributed to the model architectures. It can be caused by different training settings. WS, GN and WD
correspond to Weight Standardization, Group Normalization and Weight Decay, respectively.

Model Pretraining DataAug Input Size WS GN WD

ResNet [16] N N 224 N N Y
BiT [22] Y N 480 Y Y N
ViT [10] Y N 224/384 N N N
DeiT [46] N Y 224/384 N N N

demonstrate that ViT achieves higher adversarial robustness than CNNs under adversarial attacks. These
existing works, however, mainly focus on investigating the robustness of ViT when a whole image is naturally
corrupted or adversarially perturbed. Instead, our work focuses on patch perturbation, given the patch-based
architecture trait of ViT. The patch-based attack [12, 20] and defense [32, 41] methods have also been proposed
recently. Different from their work, we aim to understand ViT-based classifications under patch-based natural
corruption and adversarial patch perturbation.

Adversarial Patch Attack. The seminal work [35] shows that adversarial examples can be created by
perturbing only a small amount of input pixels. Further, [6, 24] successfully creates universal, robust, and
targeted adversarial patches. These adversarial patches therein are often placed on the main object in the
images. The works [11, 31] shows that effective adversarial patches can be created without access to the
target model. However, both universal patch attacks and black-box attacks are weak to be used for our study.
They can only achieve very low fooling rates when a single patch of ViT (only 0.5% of image) is attacked. In
contrast, the white-box attack [21, 23, 26, 37, 47] can fool models by attacking only a very small patch. In
this work, we apply the most popular adversarial patch attack in [21] to both ViT and CNNs for our study.

3 Experimental Settings to Compare ViT and ResNet
Fair Base Models. We list the state-of-the-art ResNet and ViT models and part of their training settings
in Tab. 1. The techniques applied to boost different models are different, e.g., pretraining. A recent work
[3] points out the necessity of a fair setting. Our investigation finds weight standardization and group
normalization have also a significant impact on model robustness (More in Apeendix A). This indicates that
the difference in model robustness can not be blindly attributed to the model architectures if models are trained
with different settings. Hence, we build fair models to compare ViT and ResNet as follows.

First, we follow [46] to choose two pairs of fair model architectures, DeiT-small vs. ResNet50 and DeiT-tiny
vs. ResNet18. The two models of each pair (i.e. DeiT and its counter-part ResNet) are of similar model sizes.
Further, we train ResNet50 and ResNet18 using the exactly same setting as DeiT-small and Deit-tiny in [46].
In this way, we make sure the two compared models, e.g., DeiT-samll and ResNet50, have similar model
sizes, use the same training techniques, and achieve similar test accuracy (See Apeendix A). The two fair base
model pairs are used across this paper for a fair comparison.

Adversarial Patch Attack. We now introduce adversarial patch attack [21] used in our study. The first step is
to specify a patch position and replace the original pixel values of the patch with random initialized noise δ.
The second step is to update the noise to minimize the probability of ground-truth class, i.e. maximize the
cross-entropy loss via multi-step gradient ascent [27]. The adversary patches are specified to align with input
patches of DeiT.

Evaluation Metric. We use the standard metric Fooling Rate (FR) to evaluate the model robustness. First,
we collect a set of images that are correctly classified by both models that we compare. The number of
these collected images is denoted as P . When these images are perturbed with natural patch corruption or
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Table 2: Fooling Rates (in %) are reported. DeiT is more robust to naturally corrupted patches than ResNet,
while it is significantly more vulnerable than ResNet against adversarial patches. Bold font is used to mark the
lower fooling rate, which indicates the higher robustness.

Model # Naturally Corrupted Patches # Adversarial Patches

32 96 160 196 1 2 3 4

ResNet50 3.7 18.2 43.4 49.8 30.6 59.3 77.1 87.2
DeiT-small 1.8 7.4 22.1 38.9 61.5 95.4 99.9 100

ResNet18 6.8 31.6 56.4 61.3 39.4 73.8 90.0 96.1
DeiT-tiny 6.4 14.6 35.8 55.9 63.3 95.8 99.9 100

adversarial patch attack, we use Q to denoted the number of images that are misclassified by the model. The
Fooling Rate is then defined as FR = Q

P . The lower the FR is, the more robust the model is.

4 ViT Robustness to Patch-wise Perturbations
Following the setting in [46], we train the models DeiT-small, ResNet50, DeiT-tiny, and ResNet18 on
ImageNet 1k training data respectively. Note that no distillation is applied. The input size for training is
H = W = 224, and the patch size is set to 16. Namely, there are 196 image patches totally in each image.
We report the clean accuracy in Apeendix A where DeiT and its counter-part ResNet show similar accuracy
on clean images.

4.1 Patch-wise Natural Corruption
First, we investigate the robustness of DeiT and ResNet to patch-based natural corruptions. Specifically, we
randomly select 10k test images from ImageNet-1k validation dataset [9] that are correctly classified by both
DeiT and ResNet. Then for each image, we randomly sample n input image patches xi from 196 patches
and perturb them with natural corruptions. As in [17], 15 types of natural corruptions with the highest level
are applied to the selected patches, respectively. The fooling rate of the patch-based natural corruption is
computed over all the test images and all corruption types. We test DeiT and ResNet with the same naturally
corrupted images for a fair comparison.

We find that both DeiT and ResNet hardly degrade their performance when a small number of patches are
corrupted (e.g., 4). When we increase the number of patches, the difference between two architectures emerges:
DeiT achieves a lower FR compared to its counter-part ResNet (See Tab. 2). This indicates that DeiT is more
robust against naturally corrupted patches than ResNet. The same conclusion holds under the extreme case
when the number of patches n = 196. That is: the whole image is perturbed with natural corruptions. This is
aligned with the observation in the existing work [5] that vision transformers are more robust to ResNet under
distributional shifts.

In addition, we also increase the patch size of the perturbed patches, e.g., if the patch size of the corrupted
patch is 32× 32, it means that it covers 4 continuous and independent input patches as the input patch size is
16× 16. As shown in Fig. 2 (Left), even when the patch size of the perturbed patches becomes larger, DeiT
(marked with red lines) is still more robust than its counter-part ResNet (marked with blue lines) to natural
patch corruption.

4.2 Patch-wise Adversarial Attack
In this section, we follow [21] to generate adversarial patch attack and then compare the robustness of DeiT
and ResNet against adversarial patch attack. We first randomly select the images that are correctly classified
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Figure 2: DeiT with red lines shows a smaller FR to natural patch corruption and a larger FR to adversarial
patch of different sizes than counter-part ResNet.

by both models from imagenet-1k validation daset. Following [21], the `∞-norm bound, the step size, and the
attack iterations are set to 255/255, 2/255, and 10K respectively. Each reported FR score is averaged over
19.6k images.

As shown in Tab. 2, DeiT achieves much higher fooling rate than ResNet when one of the input image
patches is perturbed with adversarial perturbation. This consistently holds even when we increase the number
of adversarial patches, sufficiently supports that DeiT is more vunerable than ResNet against patch-wise
adversarial perturbation. When more than 4 patches (∼2% area of the input image) are attacked, both DeiT
and ResNet can be successfully fooled with almost 100% FR.

When we attack a large continuous area of the input image by increasing the patch size of adversarial patches,
the FR on DeiT is still much larger than counter-part ResNet until both models are fully fooled with 100%
fooling rate. As shown in Fig. 2 (Right), DeiT (marked with red lines) consistently has higher FR than ResNet
under different adversarial patch sizes.

Taking above results together, we discover that DeiT is more robust to natural patch corruption than ResNet,
whereas it is significantly more vulnerable to adversarial patch perturbation.

5 Understanding ViT Robustness to Patch Perturbation
In this section, we design and conduct experiments to analyse the robustness of ViT. Especially, we aim to
obtain deep understanding of how ViT performs when its input patches are perturbed with natural corruption
or adversary patches.

5.1 How ViT Attention Changes under Patch Perturbation?
We visualize and analyze models’ attention to understand the different robustness performance of DeiT
and ResNet against patch-wise perturbations. Although there are many existing methods, e.g., [39, 42, 52],
designed for CNNs to generate saliency maps, it is not clear yet how suitable to generalize them to vision
transformers. Therefore, we follow [21] to choose the model-agnostic vanilla gradient visualization method
to compare the gradient (saliency) map [51] of DeiT and ResNet. Specifically, we consider the case where
DeiT and ResNet are attacked by adversarial patches. The gradient map is created as follow: we obtain the
gradients of input examples towards the predicted classes, sum the absolute values of the gradients over three
input channels, and visualize them by mapping the values into gray-scale saliency maps.

Qualitative Evaluation. As shown in Fig. 3 (a), when we use adversarial patch to attack a ResNet model,
the gradient maps of the original images and the images with adversarial patch are similar. The observation
is consistent with the one made in the previous work [21]. In contrast to the observation on ResNet, the
adversarial patch can change the gradient map of DeiT by attracting more attention. As shown in Figure 3 (b),
even though the main attention of DeiT is still on the object, part of the attention is misled to the adversarial
patch. More visualizations are in Appendix B .
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Table 3: Quantitative Evaluation. Each cell lists the percent of patches in which the maximum gradient value
inside the patches is also the maximum of whole gradient map. SUM corresponds to the sum of element
values inside patch divided by the sum of values in the whole gradient map. The average over all patches is
reported.

Towards ground-truth Class Towards misclassified Class

SUM MAX SUM MAX

Patch Size 16 32 16 32 16 32 16 32

ResNet50 0.42 1.40 0.17 0.26 0.55 2.08 0.25 0.61
DeiT-small 1.98 5.33 8.3 8.39 2.21 6.31 9.63 12.53

ResNet18 0.24 0.74 0.01 0.02 0.38 1.31 0.05 0.13
DeiT-tiny 1.04 3.97 3.67 5.90 1.33 4.97 6.49 10.16

Quantitative Evaluation. We also measure our observation on the attention changes with the metrics in [21].
In each gradient map, we score each patch according to (1) the maximum absolute value within the patch
(MAX); and (2) the sum of the absolute values within the patch (SUM). We first report the percentage of
patches where the MAX is also the maximum of the whole gradient map. Then, we divide the SUM of the
patch by the SUM of the all gradient values and report the percentage.

As reported in Tab. 3, the pixel with the maximum gradient value is more likely to fall inside the adversarial
patch on DeiT, compared to that on ResNet. Similar behaviors can be observed in the metric of SUM. The
quantitative experiment also supports our claims above that adversarial patches mislead DeiT by attracting
more attention.

(a) on ResNet50 under Adversary Patch Attack

(b) on DeiT-small under Adversary Patch Attack

Figure 3: Gradient Visualization. the clean image, the images with adversarial patches, and their corresponding
gradient maps are visualized. We use a blue box on the gradient map to mark the location of the adversarial
patch. The adversary patch on DeiT attracts attention, while the one on ResNet hardly do.

Besides the gradient analysis, another popular tool used to visualize ViT is Attention Rollout [1]. To further
confirm our claims above, we also visualize DeiT with Attention Rollout in Fig. 4. The rollout attention also
shows that the attention of DeiT is attracted by adversarial patches. The attention rollout is not applicable
to ResNet. As an extra check, we visualize and compare the feature maps of classifications on ResNet.
The average of feature maps along the channel dimension is visualized as a mask on the original image.
The visualization also supports the claims above. More visualizations are in Appendix C. Both qualitative
and quantitative analysis verifies our claims that the adversarial patch can mislead the attention of DeiT by
attactting it.

However, the gradient analysis is not available to compare ViT and ResNet on images with natural corrupted
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(a) Attention on ResNet18 under Adversary Patch Attack

(b) Attention on DeiT-tiny under Adversary Patch Attack

Figure 4: Attention Comparison between ResNet and DeiT under Patch Attack. The clean image, the
adversarial images, and their corresponding attention are visualized. The adversary patch on DeiT attract
attention, while the ones on ResNet hardly do.

(a) Attention on ResNet18 under Natural Patch Corruption

(b) Attention on DeiT-tiny under Natural Patch Corruption

Figure 5: Attention Comparison between ResNet and DeiT under Natural Patch Corruption. The clean image,
the naturally corrupted images, and their corresponding attention are visualized. The patch corruptions on
DeiT are ignored by attending less to the corrupted patches, while the ones on ResNet are treated as normal
patches.

patches. When a small number of patch of input images are corrupted, both Deit and ResNet are still able to
classify them correctly. The slight changes are not reflected in vanilla gradients since they are noisy. When a
large area of the input image is corrupted, the gradient is very noisy and semantically not meaningful. Due
to the lack of a fair visualization tool to compare DeiT and ResNet on naturally corrupted images, we apply
Attention Rollout to DeiT and Feature Map Attention visualization to ResNet for comparing the their attention.

The attention visualization of these images is shown in Fig. 5. We can observe that ResNet treats the naturally
corrupted patches as normal ones. The attention of ResNet on natually patch-corrupted images is almost the
same as that on the clean ones. Unlike CNNs, DeiT attends less to the corrupted patches when they cover the
main object. When the corrupted patches are placed in the background, the main attention of DeiT is still kept
on the main object. More figures are in Appendix D.

5.2 How Sensitive Is ViT Vulnerability to Attack Patch Positions?
To investigate the sensitivity against the location of adversarial patch, we visualize the FR on each patch
position in Fig. 6. We can clearly see that adversarial patch achieves higher FR when attacking DeiT-tiny
than ResNet18 in different patch positions. Interestingly, we find that the FRs in different patch positions of
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(a) Patch Attack FRs on ResNet18
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(b) Patch Attack FRs on DeiT-tiny

Figure 6: Patch Attack FR (in %) in each patch position is visualized. FRs in different patch positions of
DeiT-tiny are similar, while the ones in ResNet18 are center-clustered.

(a) Corner-biased Images

(b) Center-biased Images

Figure 7: Collection of two sets of biased data. The fist set contains only images with corner-biased object(s),
and the other set contains center-biased images.

DeiT-tiny are similar, while the ones in ResNet18 are center-clustered. A similar pattern is also found on
DeiT-small and ResNet50 in Appendix E.

Considering that ImageNet are center-biased where the main objects are often in the center of the images, we
cannot attribute the different patterns to the model architecture difference without further investigation. Hence,
we design the following experiments to disentangle the two factors, i.e., model architecture and data bias.
Specifically, we select two sets of correctly classified images from ImageNet 1K validation dataset. As shown
in Fig. 7a, the first set contains images with corner bias where the main object(s) is in the image corners. In
contrast, the second set is more center-biased where the main object(s) is exactly in the central areas, as shown
in Fig. 7b.

We apply patch attack to corner-biased images (i.e., the first set) on ResNet. The FRs of patches in the center
area are still significantly higher than the ones in the corner (See Appendix F). Based on this, we can conclude
that such a relation of FRs to patch position on ResNet is caused by ResNet architectures instead of data bias.
The reason behind this might be that pixels in the center can affect more neurons of ResNet than the ones in
corners.

Similarly, we also apply patch attack to center-biased images (the second set) on DeiT. We observe that the
FRs of all patch positions are still similar even the input data are highly center-biased (See Appendix G).
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Table 4: Transferability of adversarial patch across different patch positions of the the image. Translation
X/Y stands for the number of pixels shifted in rows or columns. When they are shifted to cover other patches
exactly, adversarial patches transfer well, otherwise not.

Trans-(X,Y) (0, 1) (0, 16) (0, 32) (1, 0) (16, 0) (32, 0) (1, 1) (16, 16)

ResNet50 0.06 0.31 0.48 0.06 0.18 0.40 0.08 0.35
DeiT-small 0.27 8.43 4.26 0.28 8.13 3.88 0.21 4.97

ResNet18 0.22 0.46 0.56 0.19 0.49 0.68 0.15 0.49
DeiT-tiny 2.54 29.15 18.19 2.30 28.37 17.32 2.11 21.23

Hence, we draw the conclusion that DeiT shows similar sensitivity to different input patches regardless of the
content of the image. We conjecture it can be explained by the architecture trait of ViT, in which each patch
equally interact with other patches regardless of its position.

5.3 Are Adversarial Patches on ViT Still Effective When Shifted?
The work [21] shows that the adversarial patch created on an image on ResNet is not effective anymore when
shifted even a single pixel away. We also conduct similar experiments on DeiT. We find that the adversarial
patch perturbation on DeiT does not transfer well either when only shifted a single-pixel away. However,
when shifted to match another input patch exactly, the adversarial patch is still highly effective, as shown in
Tab. 4.

Namely, the adversarial perturbation can be still effective when aligned with a different patch. The reason
behind this is that, when the adversarial patch is switched to another patch, the network attention can still be
misled as shown in Tab. 5. When shifted in a single pixel, the structure of perturbation is destroyed due to
the patch split of DeiT. Additionally, We find that the adversarial patch perturbation barely transfers across
images or models regardless of the alignment. Details can be found in Appendix H.

6 Improving ViT Robustness to Adversarial Patch
Given an input image x ∈ RH×W×C , ViT [10] first reshapes the input x into a sequence of image patches
{xi ∈ R(H

P ·WP )×(P 2·C)}Ni=1 where P is the patch size and N is the number of patches. A class-token patch is
concatenated to the patch sequence. A set of self-attention blocks is applied to obtain patch embeddings of the
l-th block {xl

i}Ni=1. The class-token patch embedding of the last block is mapped to the output.

The patch embedding of the i-th patch in the l-th layer is the weighted sum of all patch embedding {xl−1
j }Ni=0

of the previous layer. The weights are the attention weights obtained from the attention module. Formally, the
patch embedding xl

i is computed with following equation

xl
i =

N∑

j=0

αij · xl−1
j , αij =

exp(Zij)∑N
j=0 exp(Zij)

(1)

where αij is the attention weight that stands for the attention of the i-th patch of the l-th layer to the j-th patch
of the (l-1)-th layer. Zij is the scaled dot-product between the key of the j-th patch and the query of of the
i-th patch in the (l-1)-th layer, i.e., the logits before softmax attention.

Given a classification, we denote the patch embedding of the clean image as x∗li . When the k−th patch is
attacked, the patch embedding of the i-th patch in the l-th layer deviates from x∗li . The deviation distance is
described as

d(xl
i,x

∗l
i ) =

N∑

j=0

αij · xl−1
j −

N∑

j=0

α∗
ij · xl−1

j , (2)
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where α∗ij is the attention weight corresponding to the clean image. Our analysis show that the attention is
misled to focus on the attacked patch. In other words, αik is close to 1, and other attention weights are close
to zero.

The original attention can be replaced by smoothed attention with temperature scaling in the softmax operation.
Formally, the smoothed attention is

αij =
exp(Zij/T )∑N
j=0 exp(Zij/T )

, (3)

where T (> 1) the hyper-parameter that determines the smoothness of the proposed attention. With the
smoothed attention, the deviation of the patch embedding from the clean patch embedding is smaller (see
proof in Appendix).

d(x♦l
i ,x

∗l
i ) =

N∑

j=0

α♦l
ij · xl−1

j −
N∑

j=0

α∗
ij · xl−1

j < d(xl
i,x

∗l
i ) (4)
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Figure 8: Improving robustness of ViT with Smoothed Attention.

The smoothed attention forces self-
attention not to focus on a single patch.
By doing this, ViT becomes more ro-
bust to adversarial patches. We apply the
method to ViT and report the results in
Fig. 8. Under different temperatures, the
smoothed attention can improve the ad-
versarial robustness of ViT to adversar-
ial patches and hardly reduce the clean
accuracy. Note that we do not claim at-
tention smoothing as a defense method
against various patch attacks, which is
not the focus of this paper. Our analysis
with smoothed attention mainly aims to
further verify our understanding of ViT.

7 Discussion
In previous sections, we leverage the state-of-the-art patch attack method to study the most primary ViT
architecture and ResNet. In this section, we present our further investigation into different model variants and
different patch attacks.

Investigation into More Models. Other than the architectures presented in the main paper, we also studied
different versions of ViT [10, 25, 46], CNN [16, 19] as well as Hybrid architectures [14]. Following the
experimental setting in section 3, we train all the models and report fooling rate on each model in Fig. 9. Four
main conclusions can be drawn from the figure.

1). CNN variants are more robust than ViT models. 2). The robustness of LeViT model [14] with hybrid
architecture (i.e., Conv Layers + Self-Attention Blocks) lives somewhere between ViT and CNNs, as expected.
3). Swin Transformers [25] are as robust as CNNs since attention cannot be manipulated by a single patch
due to hierarchical attention and the shifted windows therein. The self-attention in Swin Transformers is
only conducted on patches within a local region. With shifted windows, a single patch will interact with
patches from different groups in different layers. Both designs make effective adversarial patches challenging.
That’s the reason why Swin Transformer performs more robustly than popular ViTs. 4). Mixer-MLP [45]
uses the same patch-based architecture as ViTs and has no attention module. Mixer-base with FR (31.36) is
comparable to ResNet and more robust than ViTs. The results confirm that the vulnerability of ViT can be
attributed to self-attention mechanism.
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Figure 9: We report Fooling Rates on different versions of ViT, CNN as well as Hybrid architectures under
Adversarial Patch Attack.

The attention smoothing by temperature scaling can improve the robustness of DeiT and Levit. Meanwhile,
the improvement on Swin Transformers is only tiny since they will not focus on the single adversarial patch
by natural design with the original hierarchical attention.

Investigation into More Patch Attacks. 1) Imperceptible Patch Attack In this work, we use unbounded
local patch attacks where the pixel intensity can be set to any value in the image range [0, 1]. The adversarial
patches are often visible, as shown in Fig. 1. In a more popular setting of adversarial attack and defense, the
maximally allowed change of the input value is 8/225, in which the adversarial perturbation is imperceptible
human vision. We also compare ResNet and DeiT under this setting.

In the case of a single patch attack, the attacker achieves FR of 2.9% on ResNet18 and 11.2% on DeiT-tiny.
More scores and visualization of the images with imperceptible perturbation can be found in Appendix I. DeiT
is still more vulnerable than ResNet when attacked with imperceptible patch perturbation. When the patch
size to attack is set to be the whole image size, it is exactly the same as the standard attack. We show that both
ResNet and DeiT can be easily fooled When the standard attack setting is applied.

2) Targeted Patch Attack. Targeted attack can be achieved by setting the attack objective to maximize the
probability of the target class. We also compare DeiT and ResNet under the targeted attack above. In the
experiment, we randomly select a target class except for the ground-truth class for each image. In the case of a
single attack patch, the attacker achieves FR of 15.4% on ResNet18 and 32.3% on DeiT-tiny. Under targeted
attack, DeiT is more vulnerable than ResNet. The claim also holds on the other model pair (ResNet50 7.4%
vs. DeiT-small 24.9%). Visualization of adversarial patches is in Appendix J.

3) Patch Attack with Different Strength. In our experiment, as in [21], the attack iteration is set to 10k. We
also check how many iterations are required to attack the classification successfully. The required iterations
are averaged on all patch positions of the misclassified images. The required attack iterations on DeiT-tiny is
less than that on ResNet18 (65 vs. 342). The observation also holds on DeiT-small and ResNet50 (294 vs.
455). This experiment shows DeiT is more vulnerable than ResNet from another perspective.

4) ViT (non)-specific Patch Attacks. When the adversarial patch is aligned perfectly with an ViT input patch,
the patch attack can be seen as an instance of ViT-specific patch attack since there is no input patch in ResNet.
As reported in Tab. 2, ViT is more vulnerable than ResNet. We also study ViT-agnostic patch attack where the
adversarial patch of the same size as an input patch is placed to a random area of the image. The covered
area can involve pixels from multiple input patches. We find that DeiT becomes less vulnerable to adversarial
patch attack, e.g., the FR on DeiT-small decreases from 61.5% to 47.9%. When the adversarial patch is not
aligned with the input patch, i.e., only part of patch pixels can be manipulated, the attention of DeiT is less
likely to be misled. Under such ViT-agnostic patch attack, ViT is still more vulnerable than ResNet.
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8 Conclusion
This work first shows an interesting observation on the robustness of ViT to patch perturbations. Namely, vision
transformer (e.g., DeiT) is more robust to natural patch corruption than ResNet, whereas it is significantly
more vulnerable against adversarial patches. A deep understanding of the observation is then provided. We
reveal that the self-attention mechanism of ViT can effectively ignore natural corrupted patches but be easily
misled to adversarial patches to make mistakes. Based on our analysis, we show attention smoothing can
improve the robustness of ViT to adversarial patches. We hope this study can help the community better
understand the robustness of ViT to patch perturbations.
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A Training Setting Affect Model Robustness
We train ResNet18 on CIFAR10 in the standard setting [16]. To study the impact of training settings on model
robustness, we train models with different input sizes (i.e., 32, 48, 64), with or without Weight Standardization
and Group Normalization to regularize the training process. The foolong rate of single patch attack is reported.
Especially, with our experiments, we find that Weight Standardization and Group Normalization can have a
significant impact on model robustness (See Tab. 5). The two techniques are applied in BiT [22] to improve its
performance. However, they are not applied to standard ViT and DeiT training settings. Hence, the robustness
difference between ViT and BiT cannot be attributed to the difference between model architectures.

Note that a comprehensive study of the relationship between all factors of training and model adversarial
robustness is out of the scope of this paper. We aim to point out that these factors can have an impact on
model robustness to different extents. The robustness difference cannot be blindly attributed to the difference
of model architectures. We need to build new fair base models to study the robustness of ResNet and ViT.

Table 5: Study of the training factors on the relation to model robustness: While the input size has minor
impact on model robustness in the first tabular, Weight Standardization (WS) and Group Normalization (GN)
can change model robustness significantly in the second tabular.

Model Input Size

ResNet18 32 48 64

Clean Accuracy 93.4 93.8 93.7
FR of Patch Attack 35.9 42.2 39.2

Model Training Techniques

ResNet18 No WS GN WS + GN

Clean Accu 93.4 93.6 92.0 93.8
Patch Attack FR 35.9 51.3 52.6 71.1

Table 6: Fair base models. DeiT and counter-part ResNet are trained with the exact same setting. Two models
of each pair achieve similar clean accuracy with comparable model sizes.

Model Model Size Clean Accuracy

ResNet50 25M 78.79
DeiT-small 22M 79.85

ResNet18 12M 69.39
DeiT-tiny 5M 72.18

B Gradient Visualization of Adversarial Images under Patch Attack
We first get the absolute value of gradient received by input and sum them across the channel dimension. The
final values are mapped into gray image scale. We also mark the adversarial patch with a blue bounding box
in the visualized gradient maps.

The adversarial patch noises with different patch size of 32 are shown on DeiT and ResNet in Fig. 14, 15. In
each row of these figures, we fist show the clean image and visualize the gradients of inputs as a mask on the
image. Then, we show the images with patch noises on different patch positions, and the gradient masks are
also shown following the corresponding adversarial images.

C More Figures of Attention on Different Patch Sizes and Positions
In this appendix section, we show more Attention Rollout on DeiT and Feature Map Masks on ResNet. The
adversarial patch noises are shown (i.e., P=32) in Fig. 16 and 17. In each row of these figures, we fist show the
clean image and visualize the attention as a mask on the image. Then, we show the images with patch noises
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on different patch positions, and the attention masks are also shown following the correspond adversarial
images.

D Attention under Natural Patch Corruption and Adversarial Patch
Attack

The rollout attention on DeiT and Feature Map mask on ResNet on naturally corrupted images are shown
in Fig. 18 and 19. We can observe that ResNet treats tha corrupted patches as normal ones. On DeiT, the
attention is slightly distract by naturally corrupted patches when they are in the background. However, the
main attention is still on the main object of input.

E Fooling Rates of Each Patch on ResNet50 and DeiT-small
The FRs in different patch positions of DeiT are similar, while the ones in ResNet are center-clustered. A
similar pattern can also be found on DeiT-small and ResNet50 in Fig. 10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Row Index of Patch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Co
lu

m
n 

In
de

x 
of

 P
at

ch

22 28 32 37 39 37 30 31 27 28 24 27 23 12

25 25 20 27 23 27 23 22 21 17 17 23 18 14

31 27 26 25 26 32 34 31 24 29 26 18 22 12

34 26 26 25 36 39 37 34 31 30 26 25 18 19

37 27 30 29 33 39 40 32 32 33 23 25 25 21

39 28 29 30 32 36 41 39 43 40 30 27 27 27

39 29 34 40 42 42 42 37 47 43 39 33 30 28

39 37 41 42 41 41 44 46 39 32 36 34 35 28

42 30 40 42 42 43 48 44 43 31 32 29 36 32

38 30 31 33 38 38 45 45 41 34 30 30 28 30

32 25 33 36 42 39 43 40 36 32 30 21 22 26

29 17 27 31 34 37 35 32 32 31 32 25 20 25

22 14 25 29 28 39 27 30 34 25 21 15 16 18

17 16 24 27 37 29 33 30 29 28 26 18 14 9
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Figure 10: Patch Attack FR (in %) in each patch position is visualized on ResNet50 and DeiT-small.

F Fooling Rates of Each Patch on ResNet and DeiT on Corner-biased
Data

In the coner-biased image set, the FR on ResNet is still center-clustered, as shown in Fig. 11a.

G Fooling Rates of Each Patch on ResNet and DeiT on Center-biased
Data

In the center-biased image set, the FR on DeiT is still similar on different patch postions, as shown in Fig. 11b.
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(a) FRs of ResNet18 on Corner-biased Data
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(b) FRs of DeiT-tiny on Center-biased Data

Figure 11: Patch Attack FR (in %) in each patch position is visualized on ResNet18 and DeiT-tiny on biased
data.

H Transferability of Adversarial Patches across Images, Models, and
Patch Positions

As shown in Tab. 7, the adversarial patch noise created on a given image hardly transfer to other images.
When large patch size is applied, the patch noises on DeiT transfer slightly better than the ones on ResNet.

Table 7: Transferability of adversarial patch across images

Models ResNet50 DeiT-small ResNet18 DeiT-tiny

across images (Patch Size=16) 3.5 2.1 3.4 6.4
across images (Patch Size=112) 8.1 13.4 10.6 21.5

The transferbility of adversrial noise between Vision Transformer and ResNet has already explored in a
few works. They show that the transferability between them is remarkablely low. As shown in Tab. 8, the
adversarial patch noise created on a given image does not transfer to other models.

Table 8: Transferability of adversarial patch across models

Patch Size=16
Models ResNet50 DeiT-small ResNet18 DeiT-tiny ResNet50 DeiT-small ResNet18 DeiT-tiny

ResNet50 - 0.3 0.16 2.2 - 5.25 8 11.75
DeiT-small 0.04 - 0.09 1.79 5.5 - 9.25 12.25

ResNet18 0.09 0.22 - 1.9 5.75 5 - 12
DeiT-tiny 0.04 0.13 0.06 - 5.5 5 9.25 -

When they are transfered to another patch, the adversarial patch noises are still highly effective. However, the
transferability of patch noise can be low, when the patch is not aligned with input patches. The claim on the
patch noise with size of 112 is also true, as shown in Tab. 9.
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Table 9: Transferability of adversarial patch across patch positions

Model ResNet50 DeiT-small ResNet18 DeiT-tiny

across positions (0, 4) 6.25 5.25 11.25 12.75
across positions (0, 16) 5.75 34.5 11.5 54
across positions (0, 64) 6 22 9.5 30.75

across positions (4, 0) 6.5 5.75 9.75 12.5
across positions (16, 0) 7.25 35 10.25 54
across positions (64, 0) 5.5 18.25 9.25 31

across positions (4, 4) 6 4.75 8.5 13.5
across positions (16, 16) 4.5 18.5 9 33
across positions (64, 64) 6 9.75 8.25 17.5

I More Settings and Visualization of Adversarial Examples with Im-
perceptible Noise

In the standard adversarial attack, the artificial noise can be placed anywhere in the image. In our adversarial
patch attack, we conduct experiments with different patch sizes, which are multiple times the size of a single
patch. The robust accuracy under different attack patch sizes is reported in Tab. 10. We can observe that DeiT
is more vulnerable than ResNet under imperceptible attacks.

Table 10: Adversarial Patch Attack with Imperceptible Perturbation . FRs are reported in percentage.

Model PatchSize=16 PatchSize=32 PatchSize=112 PatchSize=224

ResNet50 2.9 20.9 98.3 100
DeiT-small 4.1 38.7 100 100

ResNet18 3.1 26.0 99.1 100
DeiT-tiny 11.2 46.8 100 100

The clean images and the adversarial images created on different models are shown in Fig. 12. The adversarial
perturbations created with imperceptible patch attack are imperceptible for human vision.

J Visualization of Adversarial Patch Noise
Besides reporting the FRs, we also visualize the adversarial patch perturbation created on ResNet and DeiT.
The adversarial patch perturbation are shown in Fig. 13a and 13c. We are not able to recognize any object in
the target class.

Following Karmon et al. ’s LaVAN, we enhance the attack algorithm where we place the patch noise on
different patch positions in different images in each attack iteration. From the visualization of the created
noise in Fig. 13b and 13d, we can recognize the object/object parts of the target class on both ResNet and
DeiT. In this section, we conclude that the recognizability of adversarial patch noise is dependent more on
attack algorithms than the model architectures.
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(a) Clean Images

(b) Adversarial Examples on ResNet18

(c) Adversarial Examples on DeiT-tiny

(d) Adversarial Examples on ResNet50

(e) Adversarial Examples on DeiT-small

Figure 12: Visualization of Adversarial Examples with Imperceptible Patch Noise: The adversarial images
with patch noise of size 112 in the left-upper corner of the image are visualized. Please Zoom in to find the
subtle difference.

(a) Patch Noise on ResNet50 under the 1st Setting (b) Patch Noise on ResNet50 under the 2nd Setting

(c) Patch Noise on DeiT-small under the 1st Setting (d) Patch Noise on DeiT-small under the 2nd Setting

Figure 13: Visualization of Adversarial Patch Perturbations under different Settings: In the 1st setting, the
patch noise is created to fool a single classification in a given patch position. The goal in the 2nd setting to
mislead the classifications of a set of images at all patch positions.
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Figure 14: Gradient Visualization on DeiT-small with Attack Patch size of 32
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Figure 15: Gradient Visualization on ResNet50 with Attack Patch size of 32
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Figure 16: Rollout Attention on DeiT-small with Attack Patch size of 32 on Adversarial Images
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Figure 17: Averaged Feature Maps of ResNet50 as Attention with Attack Patch size of 32 on Adversarial
Images

23



Are Vision Transformers Robust to Patch Perturbations?

Figure 18: Rollout Attention on DeiT-small with Attack Patch size of 32 on Corrupted Images
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Figure 19: Averaged Feature Maps of ResNet50 as Attention with Attack Patch size of 32 on Corrupted
Images
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Chapter 8

Conclusion

In this dissertation, we have studied the explainability and robustness of deep visual clas-

sification models. Especially, we focus on the popular deep visual neural networks, namely,

Convolutional Neural Networks (CNNs), Capsule Networks (CapsNets), and Vision Trans-

formers (ViTs). From the perspective of explainability, we propose an explanation tool for

CNNs and interpretable CapsNets and provide an understanding of ViT-based classifica-

tions. Besides, by studying the core building component of each component, e.g., dynamic

routing in CapsNets and self-attention in ViTs, we reveal the weakness of their predictions

when natural and adversarial perturbations are injected into input images. The contribu-

tion of this thesis will facilitate the application of existing popular deep visual classification

models and inspires the development of more intelligent classifiers in the future.

In Chapter 2, we first evaluate the explanations generated by LRP and find that the

generated explanations are not class-discriminative. To improve discriminativeness of the

generated explanations, we propose the Contrastive Layer-wise Relevance Propagation

(CLRP). Both qualitative and quantitative evaluations confirm that the CLRP is better

than the LRP. As an explanation tool, our CLRP is able to generate class-discriminative,

pixel-wise explanations for the individual CNN-based classification decisions.

In Chapter 3, we propose an interpretable Graph Capsule Networks (GraCapsNet).

The built-in explanations for individual classifications of GraCapsNets can be created in

an effective and efficient way. Surprisingly, our model also demonstrates some unexpected

benefits, even though it replaces the fundamental part of CapsNets. Our GraCapsNets

achieve better classification performance with fewer parameters and better adversarial

robustness when compared to CapsNets. Besides, GraCapsNets still keep other advantages

of CapsNets, namely, disentangled representations and affine transformation robustness.
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When applied to classify images, our GraCapsNet is able to offer classification explanations

in an effective and efficient way.

In Chapters 4 and 5, We first analyze the robustness of CapsNets to input affine trans-

formation and attribute their robustness to CapsNet architecture instead of dynamic rout-

ing. Based on our exploration of the limitation of the CapsNet architecture, we propose

AffCapsNets, which improves affine transformation robustness significantly using fewer

parameters. Furthermore, we summarize 5 major differences between CapsNets and Con-

vNets and study 3 properties of CapsNets. We show that dynamic routing is harmful to

CapsNets in terms of transformation robustness and semantic representations. In each

presented task, a simple ConvNet can be built to outperform the CapsNet significantly.

Overall, we conclude that Dynamic Routing Capsule Network is Not More Robust than

Primary Convolutional Neural Networks.

In Chapter 6, we focus on the adversarial robustness of CapsNets. By revealing how

it is affected by adversarial examples, our investigation reveals that adversarial examples

can mislead CapsNets by manipulating the votes. We propose an effective and efficient

Vote-Attack to attack CapsNets. The Vote-Attack is more effective and efficient than the

standard Caps-Attack in both standard training and adversarial training settings. The

adversarial robustness of CapsNets can be reduced to a similar level to the counterpart

CNNs under our proposed Vote Attack.

In Chapter 7, based on the architectural traits of Vision Transformers, we study the

following question interesting: How does ViT perform when individual input image patches

are perturbed with natural corruptions or adversarial perturbations, compared to CNNs?

Based on a fair comparison, we find that ViT is more robust to natural patch corruption

than ResNet, whereas it is more vulnerable to adversarial patch perturbation. We conduct

extensive analysis to understand our observations. Specifically, we reveal that the self-

attention mechanism can effectively ignore natural corrupted patches to maintain a correct

prediction but be easily fooled to focus on adversarial patches to make a mistake. Inspired

by our analysis, we show attention smoothing can improve the robustness of ViT against

adversarial patches since smoothed attention does not focus on a single patch. This chapter

shows that self-attention boost the robustness to natural patch perturbations, but reduce

the robustness to adversarial patch.

We argue that the adversarial vulnerability and the lack of explainability of deep visual

classification models can be attributed to the difference between the current deep visual

neural network-based classification and human visual recognition. The advanced mod-
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ules of existing deep vision classification models, i.e., skip connections, dynamic routing,

and self-attention, do not necessarily make image classification more aligned with human

perception. In this dissertation, we develop tools to make the existing deep visual classi-

fications more explainable and robust and reveal the large gap between the existing deep

visual classifications and human-aligned object recognition. We believe that this disserta-

tion will contribute to the application of existing popular deep visual classification models

and inspire the development of more human-aligned classification models.

Different from the image classification task, it is often multi-goal oriented for our human

perception to recognize objects. For example, during object recognition, we often easily

locate objects, segment objects from the cluttered background, and recall the relationship

of the object with other concepts.

In future work, we will study the robustness of visual structured models, e.g., object de-

tection, semantic segmentation, and scene graph generation. Furthermore, we will explore

integrating external knowledge to improve the robustness of vision systems, e.g., design-

ing new architectures to leverage text knowledge for improving robustness. Besides the

explainability and the robustness, we will also explore the efficiency of the visual systems

to facilitate their applications. Especially, we are interested in improving efficiency from

the perspective of cognitive perception.

Overall, my research goal is to build explainable, robust, and efficient visual systems.

With my research, I am dedicated to making AI more intelligent and safer.
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