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Zusammenfassung

Die Beschreibung quantenmechanischer Systeme, wie großer Moleküle, aus der Grundlagenperspektive ist,
dank des Fortschritts numerischer Verfahren und der enormen Rechenleistung moderner Computer, in greifbare
Nähe gerückt. In dieser Arbeit implementieren wir einen Rahmen zur Erweiterung des Matrix-Produkt-Zus-
tand-Ansatzes zu höheren Topologien und zeigen, wie mit diesen Zuständen physikalische Eigenschaften großer
Systeme berechnet werden können. Wir diskutieren diverse mögliche Anwendungen, die zumeist über den ur-
sprüglichen, eindimensionalen Einsatzbereich von MPS hinaus gehen. Dies führt zu neuen Fragestellungen, wie
der Notwendigkeit, sich mit Systemen ohne konkreten Dimensionlitätsbegriff zu befassen, sowie der Implemen-
tierung neuer Algorithmen zur Berechnung von Observablen. Wir besprechen sowohl statische, als auch dynamische
Tensornetzwerkanwendungen und beschäftigen uns ausgiebig mit der Frage der dynamischen Adaptierung der Ein-
teilchenorbitale. Anschließend verwenden wir eine neue Methodik zur Behandlung großer, lokaler Hilberträume
mit gebrochener * (1) Teilchenzahlerhaltung, um Fermi-Bose-Gemische effizient zu beschreiben. Dies ermächtigt
uns, im Folgenden, zu zweierlei Untersuchungen.

Zuerst behandeln wir das statische, eindimensionale Hubbard-Holstein-Modell erneut und berechnen ein
Phasendiagramm mit hoher numerischer Güte. Auch wenn es sich hierbei nicht um eine Grundlagenrechnung
handelt, so ist sie doch von hohem Interesse für die theoretische Deutung realistischer Systeme, wie wir im
entsprechenden Teil argumentieren werden. Zusätzlich zu der antiferromagnetischen und der Peierls Phase, die
bereits in früheren Untersuchungen gefunden worden sind, können wir auch die Existenz einer metallischen Phase
dazwischen bestätigen. Des Weiteren finden wir ein zuvor nicht beschriebenes Signal in der metallischen Phase.
Dieses wird gekennzeichnet durch eine breitere Phononenverteilung und das Erscheinen von nur einer Anregung
ohne Energiedifferenz, welche höchst wahrscheinlich ein Spin-Gap hat, jedoch kein Charge-Gap.

Im Folgenden wenden wir uns der ab-initio Behandlung großer organischer Moleküle außerhalb des Gle-
ichgewichts, in Abwesenheit der Gültigkeit der Born-Oppenheimer Näherung, zu. Wir nutzen unsere Methoden
zur Simulation der Dynamik der zwei niedrig-liegenden Anregungen des Pyrazin-Moleküls (1 und (2 und stellen
eine Übereinstimmung mit vorherigen Arbeiten fest. Des Weiteren erkennen wir, dass die Dynamik größtenteils
durch die klassische, reduzierte Dichtematrix korrekt wiedergegeben wird. Dann wenden wir uns dem Thema
unseres Hauptinteresses zu, der Singulett-Spaltung in großen, organischen Molekülen. Singulett-Spaltung ist ein
spinerlaubter, photo-physikalischer Prozess, bei dem ein Singulett Exciton in zwei Triplett Excitone zerfällt. Es
wird angenommen, dass dadurch ein Verschieben der theoretischen Grenze für die Effizienz von Solarzellen erreicht
werden kann, und daher wird diesem Prozess eine Schlüsselrolle bei der Entwicklung neuer Photovoltaikgeräte
zugesprochen. Wir finden eine hervorragende Übereinstimmung mit experimentellen Messungen in dem von uns
untersuchten 1,4-bis(11-phenyltetracen-5-yl)Benzol Molekül und können des Weiteren diejenigen Moden fest-
stellen, die für den Energietransfer zwischen den Systemen verantwortlich sind. Weiterhin berechnen wir den
Ertrag an Triplett Elektronen für verschiedene, im Experiment einstellbare, Parameter und finden auch hier eine
Übereinstimmung mit den Messungen. Eine charakteristische Zeitskala gibt sich zu erkennen, die unabhängig von
den elektronischen Parametern ist. Daher untersuchen wir deren Ursprung, im Zuge dessen unsere Analyse zeigt,
dass es sich hierbei um einen durch Kohärenzen getriebenen Prozess handelt. Des Weiteren wird der Ursprung
des Zusammenbruchs der Kohärenzen, durch ein Kombinationsvorgehen aus Analytik und Numerik, untersucht.
Dies ermöglicht uns nicht nur, den exakten Wert dieser Zeitskala anzugeben, sondern verbindet auch den Grund für
den Zeitpunkt des Zusammenbruchs der Kohärenzen mit dem Ausbilden von Quasiteilchen und der Renormierung
derer effektiver Tunnelamplituden.



Abstract

Describing quantum mechanical systems, like large molecules, from first principles has come within reach
of numerical techniques due to the progress in method development and the enormous computational power of
modern day computers. In this thesis we establish a framework in order to extend the matrix product state ansatz
to higher topologies and demonstrate how to compute physical properties of large systems with these states.
We discuss various possible applications mostly going further than the original domain of applicability for one-
dimensional systems. This introduces additional issues like the necessity to deal with systems without a notion of
dimensionality, as well as implementing new algorithms in order to be able to compute observables. We discuss
static and dynamic applications of tensor networks and deal extensively with the question of single particle orbitals
and their optimization on the fly. We then use a new method for the treatment of large local Hilbert spaces with
broken * (1) particle number symmetry in order to describe efficiently Fermi-Bose mixtures. This enables us to do
investigations of two systems.

First, we revisit the static one-dimensional Hubbard-Holstein model and map out its phase diagram faithfully.
Even though not a first principles model, it is still of high interest in the theoretical clarification of realistic
systems, as we shall argue. In addition to the antiferromagnetic phase and the Peierls phase known from previous
investigations, we can also confirm the existence of an intermediate metallic phase. Furthermore, we find new
features within the metallic phase which were not described before. These include the existence of a broader
phonon distribution and the emergence of a single gapless mode which is most likely spin gapped but does not have
a charge gap.

Second, we turn to the ab-initio out-of-equilibrium investigation of the dynamics of large organic molecules
in the vicinity of a breakdown of the Born-Oppenheimer approximation. We benchmark our methods with the
pyrazine molecule and its two low lying excitations (1 and (2 and find agreement to previous works. Furthermore,
we find the main part of the dynamics to be captured by the classical reduced density matrix. Then we turn to
our main topic of interest, the singlet fission in large organic molecules. Singlet fission is a spin-allowed photo
physical process in which a singlet exciton decays into two triplets excitons. It is widely believed to be able to shift
the theoretical bounds of solar cells and therefore might be key to the development of new photo voltaic devices.
In addition to an excellent agreement to experimental data, we investigate the modes which dominate the energy
transfer in 1,4-bis(11-phenyltetracen-5-yl)benzene and compute the triplet electron yield for various experimentally
tuneable parameters. This, as well, is in good agreement with experimental measurements. A characteristic time-
scale arises, which is independent of the chosen electronic parameters. Therefore, we investigate its origin where
our analysis shows that it is a coherence-driven process. Furthermore, the origin of the breakdown of coherence
is investigated with a hybrid approach between analytics and numerics. This not only enables us to give an exact
numerical value for this time-scale, but also attaches the reason for the particular value to quasi particle formation
and the renormalization of their effective hopping elements.
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Introduction 1
The underlying physical laws necessary for the mathematical theory of a large part of physics and the
whole of chemistry are thus completely known, and the difficulty is only that the exact application of
these laws leads to equations much too complicated to be soluble.

(Paul Adrien Maurice Dirac. Quantum mechanics of many-electron systems. Proceedings of the

Royal Society of London. Series A, 123(792), 1929)

Many physicists might have encountered this statement in one or the other form. I personally remember hearing
something similar, i.e. that “the rest is chemistry”, after deriving the hydrogen spectrum from the Schrödinger
equation in my undergraduate studies. It might seem tempting to believe that the solution of the fundamental
equations is just a formality and the efforts of science should be focussed toward deriving new laws instead of
dealing with known ones. However, we believe that this is not the case and that we need to be able to solve quantum
systems in order to learn interesting occurrences of nature.1 After all we would not be dealing with it in this thesis
otherwise. Most likely, the reductionist approach of the last century and its enormous success in explaining a
variety of phenomena might have led to a misinterpretation of Dirac’s statement. He was quite certainly aware of
the necessity for solving the complicated equations that describe matter.

As a matter of fact, the fundamental quantum equations governing most of the every-day experience are known
[LP00]. But reductionism can not explain the plethora of materials around us. Quite in contrast their properties are
emergent due to the large number of particles [And72].2 Unfortunately, a large number of particles can make exact
solutions next to impossible, which is by no means a problem restricted to physics and commonly referred to as the
curse of dimensionality. We certainly do not claim to have fully grasped the interplay of nature and emergence, in
fact our scientific goals are much more modest. In the course of this thesis, however, we set our goal to solving
(numerically) the equations Dirac referred to for some many particle systems, where this is possible, and explore
the rich amount of physics they can show.

There is an informal separation between those who describe the outcome of experiments on a phenomenological
level and the ones who try to extrapolate the reduced constituents back to macroscopic systems. As we belong to
the latter one, our aim is, in the best case, to take the many-body generalization of the Schrödinger equation for #
particles

§k(C, G1, . . . , G# ) = �i�̂ (C, G1, . . . , G# )k(C, G1, . . . , G# ) , (1.1)

where the dot-notation means time derivative, and find solutions. If the Hamiltonian �̂ is not explicitly time
dependent, we can split off the time evolution and look at the static eigenvalue problem

�̂ (G1, . . . , G# )k(G1, . . . , G# ) = ⇢k(G1, . . . , G# ) , (1.2)

with ⇢ being the energies of our system. Even the static part is far from being trivial. If we, for instance, have a
look at the Hamiltonian describing a generic molecule, neglecting relativistic effects, we need to take into account
the motion of all nuclei � and all electrons 8 and their pairwise electrostatic interaction, i.e. the five terms

�̂ = �
#’
8=1

�8
2<8
�

’
8�

/�4
2
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’
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2��
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"’
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��
2<�

+

’
�<�

/�/�4
2

|G� � G� |
. (1.3)

For the sake of completeness we would like to mention that also relativistic effects can be accounted for [BKK18,
SBG+20, BVV+20].

1From here on I will refer to the reader and myself as “we”.
2Even tough I am not a big fan of Goethe, I have to agree with Mephisto here [vG01]: “Dann hat er die Teile in seiner Hand, Fehlt leider!

nur das geistige Band.”

1



2 Chapter 1. Introduction

Since eq. (1.3) seems impossible to solve – where should we even start? For the moment, let us state that the
motion of the nuclei can be separated from the motion of the electrons via the well known Born-Oppenheimer
approximation (BO approximation) with which we are going to deal in more detail in chapter 7. This makes the last
two terms in eq. (1.3) vanish or constant, respectively, leaving us behind with a constant dependence on the nuclear
position in the second term. As any other quantum mechanical wavefunction, k(G1, . . . , G# ) might be expanded
in terms of a basis in order to find a meaningful representation [Gau28, Sla28]. Typically, one chooses a single
particle basis of the individual constituents {i8 (G)}8 to do so. These do not necessarily have to be eigenfunctions
of the single particle Hamiltonian, it is sufficient if they are complete, i.e. every state in the Hilbert space can be
formed by their linear combination. However, in the original approach by Hartree [Har28a, Har28b, Har28c, S47]
it was argued that the product of the individual single particle wavefunctions should be a good approximation to
the true many-body wavefunction

k(G1, . . . , G# ) = q81 (G1) . . . q8# (G# ) , (1.4)

where we choose a suitable level 8 9 for each particle 9 . Since this wavefunction actually sees the exchange of two
particles, but real quantum particles are indistinguishable (up to a phase upon exchange), we can introduce the
totally anti-symmetric superposition of all wavefunctions [Hei26, Sla29],

k(G1, . . . , G# ) = det

26666664

q1 (G1) . . . q1 (G# )
.
.
.

.
.
.

.

.

.

q! (G1) . . . q! (G# )

37777775
/
p
#! , (1.5)

also known as Slater determinant. This is a valid wavefunction for fermions and in the case of bosons one just
replaces det ! perm. Working with this wavefunction representation made the first description of atomic and
molecular properties by means of quantum mechanics possible through the well known Hartree Fock (HF) method
[Foc30, Sla30]. Actually, these Slater determinants form a basis of the complete many-body Hilbert space H , i.e.
any state within it can be written as superposition

k(G1, . . . , G# ) =
’
81...8!

281...8! det

26666664

q81 (G1) . . . q81 (G# )

.

.

.

.
.
.

.

.

.

q8! (G1) . . . q8! (G# )

37777775
, (1.6)

where the 2 coefficients are to be determined for the individual state. Unfortunately, this also has a few downsides
which are quite peculiar to work with. The main obstacle is the high degree of inefficiency as we are “counting” all
particles and keeping track of their state. But this is quite unnecessary, as quantum particles obey the aforementioned
indistinguishability, therefore, we do not care about the individual particles. This is more an artefact of our non-
quantum information storage system.

Inefficiency is eased by the introduction of the second quantization [Foc32] which turns to a much more efficient
way of accounting. Instead of keeping track of each individual particle we just note down how many particles are
in a certain orbital, i.e.

det

26666664

q1 (G1) . . . q1 (G# )
.
.
.

.
.
.

.

.

.

q! (G1) . . . q! (G# )

37777775
! |=1i1 |=2i2 . . . |=!i! = |=1 . . . =!i (1.7)

for =8 excitations in the orbitals q8 , created by means of the creation and annihilation algebra

|1i8 = 2̂
†

8 |0i8 |0i8 = 2̂8 |1i8 . (1.8)

Note that the (anti-) commutation algebra of the particles is now shifted into the operators which span these Hilbert
spaces |=1 . . . =!i = (2̂

†

1)
=1
. . . (2̂

†

!)
=! |0i, which is also a nice property of this framework. This leaves us with the

task of determining the coefficients 2 for the wavefunction

|ki =
’
=1...=!

2=1...=! |=1 . . . =!i , (1.9)



3

which is quite easily said and close to impossible for realistically large systems. If we call the number of particles
which can be in a single particle state 3 and have a total of ! of such orbitals the size of this coefficient vector is
3
! = dimH , i.e. we still have to struggle with the exponentially large state space of many particles. Therefore, this

procedure of exact diagonalization (ED) can only be done for small systems. Even upon exploitation of symmetries
it can only be pushed to e.g. 30 to 50 spins [WL18, WL20].

Fortunately, nature is not that crude to us. Methods do exist which all have their custom domain, thus enabling
us to compute quantum many-body properties of large systems efficiently, at least from a numerical perspective.
One of the more prominent ones is the density functional theory (DFT) [HK64, KS65, Ull12] which maps the
many-body Schrödinger equation to a single particle equation, allowing one to solve it efficiently. However, DFT
introduces a so called exchange correlation functional where it stores all the system’s specific information and
which is a highly unpleasant quantity. For weakly correlated cases one can approximate this functional quite well,
however, in the strong correlation limits the results start deviating [SG88, SGN95]. Furthermore, there are Monte
Carlo methods [MRR+53] which focus on deriving the partition sum of the system, instead of the wavefunction.
As the partition sum is an integral and the convergence of typical Monte-Carlo methods goes as ⇠ <

�1/2, where
< is the number of random samples, the convergence seems guaranteed. Yet, this is only possible as long as the
particles do not suffer from a sign problem [TW05], i.e. the NP-hard reconstruction of the sign of the probability
distribution. Unfortunately, this is not the case for fermions and frustrated problems. Furthermore, one often
struggles with the zero temperature limit.

In the course of this thesis we shall focus on treating molecules with large Hilbert spaces by means of tensor
network methods. These methods, which we shall introduce in the next chapter, were originally designed for zero
temperature (but can also go beyond) and are able to capture a significant part of the entangled many-body Hilbert
space [Whi92, Whi93, VGRC04, Sch05, Sch11]. We will focus on using as little approximation as necessary and
try to link system properties to microscopic causes. As it turns out, it is possible to treat many systems with
a reasonable amount of resources [CKG04, VAL+18, FML+19, MXY+21, FGL21, CHH+22]. We will start off
by explaining how to generalize the tensor network ansatz for loop free networks [NC13, MVS+15, GVW+18] in
chapter 3 and describe all the necessary components to set up an extremely powerful toolbox in the treatment of
strongly correlated systems [LS03, RNW06, Sch11, BLMR11]. Furthermore, we will continue explaining how
to extend static quantum wavefunctions [HCO+11, HLO+16, PKS+19, BA20] and look at dynamic properties of
systems in a well controlled fashion in chapter 5. We will deal intensively with the question of the choice of
single particle orbitals [KVLE16] in chapter 6 and finish the technical discussion with an extension beyond BO
approximation quantum dynamics [KSP21, SKM+21, MXY+21].

The second part of this work is divided into two chapters. First, we will execute very careful investigation
of static electronic systems going beyond the BO approximation by means of an idealized electron-phonon model
[HF83, Nas87, Tak96, Tak96, Hir85, HF83, MSJ04, TAA07]. Here, we discuss the previous findings of the
employed model and why we believe there are new unknown so far features which we tried to map out faith-
fully [MGS+22]. Second, we are going to discuss the exact out-of-equilibrium quantum dynamics of molecules
[WLX+21, THRB+15a, ZXJL16, RCT18, CBP+13, Tao19, ZZL17, XSBF+19, THRB+15a, MST+17, BG, GB21,
SXC+20, SLH+21, STM+19] and present results obtained by our framework for two molecules of our choice. One
of them [MXY+21] is of particular interest for the field of organic semiconductors in that it might be able to
improve the efficiency of light harvesting significantly. We compare our calculated results to experiment to check
the reliability of our methods and are going to see that our model is in excellent agreement. Furthermore, we
deal with the question of how to increase the light harvest by tuneable parameters in experiment. Lastly, we shall
combine analytical and numerical results in order to figure out the microscopic origin for the photo-absorption
properties.





Tensor networks





Genesis 2
Originally invented for local one-dimensional (1d) systems, the density matrix renormalization group (DMRG)
[Whi92, Whi93] and its formulation in terms of matrix product states (MPS) [Sch11] soon became a de facto
standard for the treatment of strongly correlated quantum condensed matter systems.

Basically, DMRG extends Wilson’s ideas, targeting the Kondo problem nowadays known as numerical renor-
malization group (NRG) [Wil75]. The combination of the renormalization group (RG) approach, i.e. trying to
isolate relevant degrees of freedom and getting rid of the irrelevant ones, combined with the enormous potential of
the rising computational power of modern day computers [Moo65] provided a powerful way to study systems with
a macroscopic number of degrees of freedom. By isolating high energy contributions to the system, Wilson was
able to derive an effective Hamiltonian and solve the system exactly. Unfortunately, NRG has strong limitations
regarding the models it can be efficiently deployed for [Wil75, Sch05, Whi92, Sch11]. This motivated White
(who was a former student of Wilson) to search for other means to locate irrelevant degrees of freedom. In his
ground-breaking work [Whi92] from 1992 he provided the calculation which is the basis for modern-day DMRG
and tensor network approaches. Essentially, the idea is to decimate basis states with low density matrix spectral
weight instead of those with high energies. Given this procedure, an optimal representation is found for a chosen
truncation threshold [Whi92].

Let us elaborate a bit on this, following the argumentation from [Sch05]. Consider a 1d bipartite system
�⌫ = � ⌦ ⌫, i.e. its wave function reads

|ki =
<�’
0=1

<⌫’
1=1
 01 |0i |1i . (2.1)

Here,  01 2 C are coefficients and the basis states |0i 2 � and |1i 2 ⌫ are elements of the respective subspaces.
Now we want to approximate this wave function by using a smaller number of basis states, e.g. in �, therefore
defining the expansion (with unknown coefficients)

|k̃i =
<0�’
00=1

<⌫’
1=1
 ̃001 |00i |1i <

0

�  <� . (2.2)

The question arises, how to choose the coefficients  ̃001 and the new basis {|00i} in such a way that |k̃i is as close
as possible to the original state |ki, given a fixed value of <0�. Expanding the new basis in terms of the old one,
i.e. |00i =

Õ
0 2000 |0i, yields

|k̃i =
’
0010

 ̃0012000 |0i |1i . (2.3)

This reduces the problem to an optimization, namely minimize the distance

��|ki � |k̃i
��2

2 = 1 � 2 Re

 ’
0100

 ⇤01 ̃0012000

!
+

’
001

�� ̃001��2 (2.4)

by varying 2 and  ̃. By first minimizing with respect to  ̃ we obtain

1 �
’
0001

2
⇤

000d012001 = 1 �
’
00
h0
0
|d |0

0
i . (2.5)

We recognize this as the Rayleigh quotient, being minimal for |00i an eigenvector of the density matrix d = |ki hk | of
the wave function. Therefore, the eigenbasis of d is our ideal expansion basis and the accuracy of the approximation
is controlled by the number of eigenvectors taken into account (ordered by increasing eigenvalues h00 |d |00i = _00 ).

7
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As already mentioned in eq. (1.6), the Hilbert spaces of many-body wave functions are usually too large to
solve exactly with an arbitrary number of determinants. However, a subsystem consisting of a small number of
orbitals can usually be treated exactly. Therefore, the optimal compression scheme leads to the definition of the
(a bit general) DMRG sweeping pattern: Firstly, we solve a subsystem of �⌫. Secondly, we compress via the
reduced density matrix (RDM) criterion, and finally, we iterate until the desired convergence sets in. Typically, one
chooses the subspace small such that the computational cost remains controllable, i.e. one or two orbitals. Even
though this seems slightly basic and modern day tensor network algorithms have come a long way, becoming quite
sophisticated, this procedure is at the heart of any DMRG approach.

The existence of two different classes of DMRG should be mentioned, the infinite and the finite system approach.
The main difference is in the partitioning of the system during the sweeping procedure, both illustrated in fig. 2.1.
The infinite system DMRG actually operates in the thermodynamic limit1, i.e. increasing the sizes (of both parts

(a)

(b)

Figure 2.1: Illustration of the different block growing procedures. Figure 2.1a shows the block growing by adding another
site to both subsystems. Figure 2.1b shows the system block growing at cost of the environment block.

of the bipartite system) and particle number from a finite initial value, while keeping the density constant. This
way, a recursive procedure is defined. What may sound like a shenanigan at first – after all, how do we simulate an
infinite system on a finite computer? – turns out to be possible by reaching a fixed point within the space of density
matrices [Sch11]. Therefore, one does not have to continue calculations ad infinitum.

As is illustrated in fig. 2.1a, we take a given finite bipartite system and add two orbitals to each part. Then we
solve for the exact ground state of this composition. With this solution we can obtain the RDM and compress, such
that the needed resources do not become unmanageable. When reaching a fixed point, we know that the solution
will not change upon reiteration and is the same as in the thermodynamic limit. Unfortunately, the infinite size
algorithm has severe shortcomings in regards to convergence, especially regarding observables computed from
the wave functions [Sch05]. This, and the fact that it only works on translationally invariant systems, explains
why nowadays it is not as extensively used as the finite size algorithm, as molecules or impurity models are not
translationally invariant.

The finite system size DMRG does not have such shortcomings. It has a very well controlled error measure,
given by the so called truncated weight of the truncation, i.e. the sum of the squares of RDM eigenvalues
corresponding to discarded eigenvectors. The main difference is that the growing/shrinking of one system part is
accompanied by matching shrinking/growing of the other one. By this procedure the system size is always constant
and, as we usually operate in a canonical ensemble, the density is therefore kept constant as well. This way, the
entire system is present at every step of the algorithm in the Hamiltonian, providing for a stable solution [Sch05].
This comes at the price of having to operate on large systems and usually at the need of extrapolating results to the
thermodynamic limit. For some applications, however, this is not even necessary, e.g. in cold atom experiments
[BDZ08, CDS19] with fixed number of atoms or for molecular calculations cutting off the (discrete) orbital space
at some point. The latter were extensively studied in the course of this thesis.

The attentive reader might have asked themselves the following question: Given we don’t have convergence
issues for our system, who can guarantee that there is a reduced Hilbert space in which the problem is representable
while still feasible? Or to phrase it differently: Why should <

0

� be actually in a regime where we can simulate the
system in polynomial time, given that <� grows exponentially? Of course, as one would expect, this depends on

1Of at least one dimension.
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the considered system. For the systems originally targeted, i.e. gapped local 1d Hamiltonians, it turns out that there
is always a finite dimensional reduced Hilbert space to represent the ground state [VC06, Sch11]. This is explained
through the connection between the entanglement entropy (�|⌫ of the partitions

(�|⌫ = � tr ( d̂ ln d̂) = �
’
0

_0 ln_0 (2.6)

and the decay of the eigenvalues of the RDM d̂. If one would seek arbitrary states, the situation would be hopeless.
However, ground states (and other low energy states) usually obey an area law. This means that instead of scaling
extensively (as the entropy usually does), their entanglement entropy scales with the surface area involved in the
bipartition. Since 1d systems have areas of constant size, this explains the success of the approach. This restricts
the Hilbert space under consideration to a “corner” of the full one (strictly speaking a subspace), giving a physical
reason for the feasibility of the algorithm. After all we are not probing the entire space, we merely ask questions
which can be answered.

However, for generic two-dimensional systems, as well as systems with no notion of dimensionality, e.g.
molecules in orbital space, no such guarantee exists. Even though there are occasional higher dimensional systems
which obey area law-like rules [PEDC05, CEP07] and also cases in which one is able to find a satisfying solution
by making use of brute force allocation of computational resources [HSML21, SW12], often the approaches are not
fruitful and additional efforts are necessary in order to capture the correct physics of these systems [LS03, BLMR11].
It must be mentioned that some natural extensions of the 1d ansatz do exist, which seem quite promising at the
moment, particularly the adaption of the tensor network topology, one of which is going to be the subject of the
upcoming chapter 3. Ultimately, much of the efforts in this thesis were directed toward such questions. Given there
is no strict limit on the representability of the quantum system, can we still find an approximate representation that
will do the job? In the course of this work, we shall explore in which cases it was possible and in which it was not,
and if so why.

We are returning to our original algorithm for a second, as in recent years a more clear representation of the
DMRG procedure has emerged. Basically, the argument dates back to [OR95], albeit in this work the approach is
in the infinite system DMRG framework. Upon noticing that the block growing procedure, i.e. its action on the
basis states

|0
0
i�• =

’
0=8

"
=8
000 |0i� |=8i• (2.7)

during DMRG could be exploited, they proposed to use this as a variational ansatz, the so called MPS. To phrase
it differently, one can look at the coefficients "

=8
000 as maps taking the individual Hilbert spaces to a joint one and

in this context DMRG is the way to find the optimal projector, given fixed accuracy [OR95]. When reaching the
fixed point of a homogenous system, the " matrices could be used to construct the entire state. This motivated to
propose the same ansatz as a framework for a variational optimization of the (rank 3) tensors " in finite system
size DMRG [DMDNS98]. Starting from a block consisting of a single site, one can obtain the full MPS

|ki =
’
=1...=!

"
=1 · . . . · "

=! |=1 . . . =!i (2.8)

by recursive construction. The dimensionality of this matrices is a central control parameter called the bond
dimension <. This makes an MPS basically just an ansatz class for many-body wave functions involving a large
number of free parameters. By variational optimization of these parameters, in order to minimize the energy
expectation value, one can find a low energy eigenstate which usually turns out to be the ground state. In this
process the compression according to the RDM criterion gets replaced by a truncation making use of the singular
value decomposition (SVD), a numerical procedure scaling cubic and being equivalent to the former [Sch05].
The central connection here can be made between the eigenvalues of the RDM and the singular values of the
decomposition

"
=8 = * ·

2666666664

B1

B2
.
.
.

BA

3777777775
· +

† , _0 = B
2
0 , (2.9)
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where * and + are unitary. There are a few subtle differences regarding the equivalence of DMRG and MPS
variational optimization which the interested reader can find in [Sch11].

It should be mentioned that MPS were not originally developed in the DMRG context but were known to different
mathematical and physical communities beforehand. A particularly clean overview of the historic (re-)discoveries
of the MPS ansatz class in different contexts can be found in [Pae20].

Another decent nice way to interpret the MPS ansatz is as a controlled tuning between the HF method and
ED which we both described in chapter 1. The ED wave function corresponds to exponentially many Slater
determinants, summend up with the correct coefficients. However, in the HF method one usually stays with one
determinant/permanent and optimizes within the space of single particle orbitals to obtain a good result. Translating
this to the MPS language a state with bond dimension < = 1 corresponds to a single determinant state

|ki =
’
=1...=!

2=1 . . . 2=! |=1 . . . =!i 2=8 2 C , (2.10)

while the bond dimension of <  3
! is the ED solution in eq. (1.9). Note that one usually choses the orbitals on

which is operated beforehand in the DMRG procedure.
Coming originally from quantum information theory, a particularly useful notation found its entry to the tensor

networks community [Pen71]. As can be seen in fig. 2.2 one represents each tensor with a node having as many
legs as its rank. Connected lines indicate tensor-tensor contraction. By doing so, one can write down complicated
contractions and tensor operations by drawing nodes and connecting them with lines. As we shall see, this is going
to prove useful and even gives us intuition when extending to more general tensor networks. A few comments are

=1 =2 =3 =4 =5

. . .

Figure 2.2: Diagrammatic representation of an MPS. The arrows indicate the flow of quantum numbers, therefore guaranteeing
their conservation.

needed about the representation of operators in terms of tensor networks. It seems evident that without a feasible
way to construct operators, a good representation of the state is almost worthless. We postpone the way to find
the representation of an arbitrary operator �̂ to a later point in time, and for now simply observe the fact that any
operator can be written as

�̂ =
’
=1...=!
=01...=

0

!

F=01=1 ,... ,=0!=!
|=
0

1 . . . =
0

!i h=1 . . . =! | . (2.11)

Now we make use of the fact that the joint local Hilbert spaces can form a 32 dimensional Hilbert space by tensoring
=
0

8 ⌦ =8 = :8 . This is a manifestation of the fact that there exists an isomorphism between the operators on a Hilbert
space and the states of a twice as large Hilbert space. The corresponding mapping of the bijection yields

�̂ =
’
:1...:!

F:1...:! |:1 . . . :!i =
’
:1...:!

,
:1 · . . . ·,

:! |:1 . . . :!i , (2.12)

where we used the MPS representation of an arbitrary state. Now we can just return to the operator in the original
space by writing

�̂ =
’
=1...=!
=01...=

0

!

,
:1 · . . . ·,

:! |=
0

1 . . . =
0

!i h=1 . . . =! | . (2.13)

This is the so called matrix product operator (MPO) form of the operator �̂ and is displayed in fig. 2.3.
Albeit all the interesting physical phenomena 1d systems might exhibit, strongly correlated physics barely

restricts to these types of systems. For higher dimensions one can usually count on mean-field-like approaches,
since quantum fluctuations are typically weaker compared to 1d [SW12]. However, a current frontier of condensed
matter physics involves two-dimensional (2d) systems for instance. Here, correlation effects can get into play while



11

=
0

1

=1

=
0

2

=2

=
0

3

=3

. . .

Figure 2.3: Diagrammatic representation of an MPO.

also a richer geometry is present. Strongly correlated molecules where the orbital structure obeys no notion of
dimensionality at all are also of much interest as well. Last but not least, multi-orbital impurity models with non-
local interactions should be mentioned, albeit living on 1d geometry not being necessarily optimally represented.
All these models share the problem that the scaling of the entanglement entropy bounding our bond dimension <

is not well controlled. For 2d systems, the necessary bond dimension to capture the correct physics typically scales
exponentially in one of the dimensions, whereas it is well controlled in the other [Sch11]. For the other examples,
it depends strongly on the choice of orbitals and their ordering on the 1d chain.

Even though a lot of progress was made mapping these types of systems to MPSes [Whi96, WM99, DMS12,
QCS+20] the question arises if one can change the topology of the tensor network in such a way that it resembles the
physical nature of the system. There are a variety of topologies present, each tailored to a special class of system.
To be mentioned are, e.g., the projected entangled pair state (PEPS) structures which resemble the actual geometry
of a 2d system by introducing rank 5 tensors out of which the state consists [VC04, VWPGC06]. Unfortunately,
operations on PEPS networks are not as well behaved as on the MPS structure and many operations become
exponential or even worse when performed exactly [SWVC07]. Additionally complicating is the fact that PEPS
networks contain so called loops, i.e. there is more than one way to connect two nodes. As we shall see, loop-free
networks obey highly important properties, making calculations more stable and efficient. Nevertheless, there
are strong schemes to target these difficulties in PEPS and this direction in tensor networks, more precisely their
generalization to infinite PEPS is a very promising area of open research.

Another topology extending the MPS ansatz but remaining loop free is the so called tree tensor network
state (TTNS), whose special case – the binary tensor tree (BTT) – is displayed in fig. 2.4. The fundamental

=1

=2 =3

=4 =5
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.

.
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.

.

.

.

Figure 2.4: Structure of BTT, i.e. a special TTNS with coordination number three.

idea of a TTNS is to drop the strictly planar geometry of MPS while still insisting on the loop freeness of the
network [SDV06, MVLN10]. This is achieved by opening the number of virtual bonds (meaning all bonds which
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do not belong to a physical quantum number =8) to be more than one in one direction. The other direction strictly
keeps one virtual bond, i.e. every tensor in the network has exactly one root leg but may have arbitrary virtual
descendant legs. Therefore, the BTT is a TTNS with two descendant legs. The pictographical representation
in fig. 2.4 formalizes to

|ki =
’
=1...=!
{0818 }

"
=1
000111

"
=2
010212

"
=3
110313

· · · |=1 . . . =!i =
’
=1...=!

"
=1 � "

=2 � · · · � "
=! |=1 . . . =!i . (2.14)

It should be noted that we denoted matrix multiplication in the MPS case by · while in the TTNS case we write
� which means contraction over all common indices. The total number of virtual bonds is called the coordination
number. As one easily observes, this leaves only one path to connect any two nodes, namely by determining the
last site both nodes have as a common ancestor. Since each node in the tree has only one root, there is only one
path to get to this common ancestor. Connecting these two paths leaves us with the path connecting any two nodes.
If one of the nodes happens to be an ancestor of the other the situation is even easier.

One of the main advantages of this topology strikes immediately, namely that the construction resembles a higher
dimensionality than a 1d system, even though it is itself not 2d. This can be used to shape the cluster of lattice sites
in multiple ways. Usually, one tries to create subtrees of strongly correlated sites and stack these orbitals near to
each other. These subtrees are then placed somewhere low in the tree (compare fig. 2.4 for up and down areas of
the tree) connected by tensors above which need to be in contact with all sites. During the decimation processes of
DMRG, a significant advantage can be achieved this way, in that artificial correlation through suboptimal clustering
of orbitals can be suppressed. As one would expect this can be exploited excellently in the context of chemical
molecules [NC13, MVS+15, WVN14a]. Usually, these applications have a global coupling between the orbitals.
However, groups of orbitals may be strongly involved amongst each other while only weakly correlated to other
groups of orbitals, for instance due to molecular symmetries or screening effects. Hence, it makes sense to place
the orbitals, which are correlated to all other orbitals, on top and cluster the remaining ones in a hand-picked way
at the bottom. It should be mentioned that the TTNS geometry is also known in other communities in different
contexts, e.g. among the chemists, it is often used in the context of the multi-configurational time-dependent
Hartree (MCTDH) method [MMC90, Man08]. However, the fundamental difference between MCTDH and the
tensor network methods described here is that MCTDH uses a first quantized wave function. Therefore, a number
of subtleties arises between the different methods making them difficult to compare and often more useful or less
useful to a certain system of choice.

Of course also condensed matter systems find an application on TTNS [MVLN10, GRS+17]. For instance,
one can create long MPS subchains which obey the same advantageous scaling as a pure linear geometry while
connecting one of the edges of these via a rank 4 tree tensor to other MPS chains. In cases in which the rows of
the system are only weakly entangled this creates a more local connection improving the number of basis states
necessary to display the state faithfully. This also works in a dynamical mean-field theory (DMFT)-like context
where we need to connect different baths and impurities, however interaction among the baths is usually negligible.
It shall be mentioned that many other possible mappings exist which can substantially improve the amount of
computational effort needed.

Finally, an important advantage of TTNS lies in the fact that tensor networks with coordination number I > 2 are
able to capture algebraically decaying correlations, while a pure MPS (with I = 2) can only display exponentially
decaying ones for finite bond dimensions [MVLN10, WVN14a]. This statement is derived from the fact that
overlaps and expectation values of |ki (as shall also be discussed in sections 3.3.1 and 3.3.5) can be constructed via
recursive contraction of system parts for loop-free networks [Sch11]. This recursive construction is in fact linear
and can therefore be displayed via a matrix-multiplication with matrices of dimension <

2. From this, the general
statement can be derived that in the thermodynamic limit any correlator ⇠ (8 � 9) = hk |$8$ 9 |ki, computed from
this kind of state, will take the form

⇠ (8 � 9) = 21 +

<2’
0=2

2:4
� |8� 9 |/b: . (2.15)

Here, the coefficients and the decay length b: depend on the linear map for the recursive construction and its
eigensystem. The important point is that an MPS is always displaying the correlator as linear sum of exponentially
decaying function, since |8 � 9 | just grows linearly in system size. From the TTNS however the situation is quite



13

different, as one can estimate the largest possible distance

! = 1 + I

.’
:

(I � 1):�1 =
I(I � 1). � 2

I � 2
(2.16)

exponentially growing with the number of layers . in the hierarchy of fig. 2.4 [SDV06, GVW+18]. This implies a
logarithmic scaling of . ⇠ ln ! and therefore an algebraic representation in eq. (2.15).

Summarizing this briefly, we found a variational ansatz for quantum many-body wavefunctions optimal for a
given amount of resources, originating from the idea of real space decimating quantum systems, in order to obtain
the physically relevant degrees of freedom. We did not discuss algorithmic details which shall be presented in
the following chapters. Possible extensions of topology were discussed and we became acquainted with the main
frameworks of this work, namely the MPS and TTNS. These are going to prove extremely powerful and flexible
in the study of low-dimensional quantum systems in the strong correlation regime. However, they tend to come
with some caveats which we have to resolve before being able to continue and exploit the full power of these
computational methods.





Tree-tensor networks 3
As we have seen, TTNS not only enable us to structure a system on a tensor network more efficiently, they are even
able to represent observables correctly with finite bond dimension, where MPS fails. They do so by fundamentally
changing the paradigm of planar topology to obtain a structure of clustered sub-trees, while still upholding the
loop freeness of the network. However TTNS come, like other tensor network topologies, with a fundamental
problem. This is related to the variational optimization (which is at the heart of the most important ground-state
and time-evolution schemes, the DMRG and the time-dependent variational principle (TDVP)). For these types of
algorithms it is (as we shall see in section 3.3.6) necessary to apply an operator to a state locally, i.e. perform
the operation depicted in fig. 3.1. However, variational applications tend to get stuck, when only performed on a

.

.

.

.

.

.

.

.

.

Figure 3.1: Application of an operator to a TTNS. Note that black tensors belong to the tensor network, while white nodes
are merging tensors. Note that there is a number of not explicitly defined descendant nodes (also sometimes called leaves).

single orbital [Sch11, HMSW15, PKS+19]. Usually one avoids this by contracting the tensors corresponding to
two orbitals together and performing the algorithms on this joint Hilbert space. This is indicated in fig. 3.1 by the
fact, that the physical indices are double arrows, i.e. their dimension can be either 3 or 32 and that the number of
nodes to the right (also called leaves) is not fixed explicitly. In the course of this work we will fix the topology to be
a BTT (i.e. the coordination number being I = 3). Therefore single orbital update schemes have an effective I = 3,
while two site schemes have I = 4. As is easily verified [Sch11, PKS+19, GVW+18] the computational cost for this
algorithm scales as the O

�
<
I+1

3eff
�
. This is problematic since the algorithm gets more and more expensive with

increasing number of participating orbitals. For the MPS case, this was not a severe problem, since forming joint
Hilbert space between neighbouring orbitals only raised 3eff but not the coordination number I. This motivates the
three-legged tree tensor network state (T3NS), which we will now discuss.

Three-legged tree tensor network state 3.1
The T3NS [GVW+18] essentially tries to combine the best of both worlds, the pleasant scaling of the MPS during
variational optimization and the topological advantages of the BTT. It does so by proposing the following structure:

Rank 3 tensors parametrize the physical degrees of freedom in the single particle orbitals, these we call physical
nodes. They are connected with other physical nodes either directly (as in the MPS case) or via so called branching
nodes. Branching nodes are rank three BTT-like nodes "A01, which do not carry a physical index. This structure
can be seen in fig. 3.2. Here we have MPS subchains, which are connected via branching nodes in the middle of the
chain, and do not introduce additional cost, i.e. their optimization scales with O

�
<

3
3eff

�
. Single site optimization

of branching nodes scales with O
�
<

4� , i.e. instead of the effective local Hilbert space size we have a factor of
< more. For typical applications 3eff ⌧ <, therefore branching nodes are expensive to optimize and need to be
placed with care. The two-site optimization scheme’s numerical cost is O

�
<

4
3eff

�
. Note that this scaling is true
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Figure 3.2: Structure of a T3NS. Black and red sites are physical, while grey ones are branching nodes.

for both, two physical orbitals involved, as well as a simple physical-branching construction. The only difference
is the increase in the effective local Hilbert space dimension. It should be noted that each additional physical
orbital involved into the optimization will increase the effective coordination number by one, thus resulting in
a larger scaling with a factor of <3, effectively staying one factor of < below the result of the BTT structure.
However, usually these many orbital optimizations are very expensive in central processing unit (CPU) time, and
given marginal improvements in the accuracy, are not worth the effort [GVW+18].

Having described the new tensor network structure, we would like to demonstrate the most common operations
necessary for computations. Before doing such, it is appropriate to introduce a framework in order to deal with
fermionic Hilbert spaces.

Fermionic Hilbert spaces 3.2
Up until now we have avoided dealing with the nature of the basis states |=1 . . . =!i of the #-particle Hilbert space.
Usually, one defines a many body basis set by the number of particles occupying (previously fixed) single particle
orbitals. In order to do so, we have to define a vacuum state |0i, containing no particles, and some operators 2̂† and
2̂ which create or annihilate particles in these single particle orbitals [BPE09], respectively. Usually these operators
obey some algebra and the annihilator destroys the vacuum, i.e.

h
2̂
(†)

8 , 2̂
(†)

9

i
⌥

= 0 , (3.1)h
2̂8 , 2̂

†

9

i
⌥

= X8 9 , (3.2)

2̂8 |0i = 2̂8 |01i . . . |0!i = 0 . (3.3)

We indicate the statistics of the particles involved through the subscript, telling us to use the commutator or the
anti-commutator. However, we did suppress through the notation that the bookkeeping counting the number of
excitations in single particle orbitals is defined with respect to some reference ordering of the orbitals n. If we
wanted to be completely accurate we should indicate this ordering, e.g. by the subscript

|=1 . . . =!in = 2̂
†=1
n1 . . . 2̂

†=!
n! |0i . (3.4)

Of course, this is an issue completely related to bookkeeping and does not influence the physical quantities anyhow.
With this definition we can represent any tensor )̂ as [BPE09]

)̄ =
’
Æ= Æ<

n hÆ=|)̂ | Æ<im |Æ=) ( Æ< | , (3.5)



Section 3.2. Fermionic Hilbert spaces 17

i.e. its numerical representation, indicated by a bar over the symbol. We introduced the fixed numerical bases
|Æ=), which are defined with respect to some ordering n and later on are the basis for the implementation on a
computer. Furthermore, we obtain the coefficients of the tensor n hÆ=|) | Æ<im for this ordering, which is the data
stored in memory. If we want to display the same tensor with a different ordering of otherwise equal orbitals we
can use the relation between creation operators eq. (3.1) and write

|=1 . . . = 9= 9+1 . . . =!in = (±1) =̂ 9 =̂ 9+1 |=1 . . . = 9+1= 9 . . . =!in = (±1) =̂ 9 =̂ 9+1 |=1 . . . = 9= 9+1 . . . =!in0 , (3.6)

where again we have different signs for different exchange statistics [BPE09, BWHV17]. Note that Hilbert spaces
spanned by the application of bosonic operators do not care about the ordering of orbitals, while fermionic ones do.

Jordan-Wigner transformation 3.2.1

The first strategy in order to handle the fermionic character of a tensor network is to map it to a strictly bosonic
basis. This can be done by means of a Jordan-Wigner transformation [JW28]. We are going to demonstrate this
for the creation operator, however all calculations for the annihilation operator are analogous. Assuming we have a
bosonic Hilbert space consisting of ! single particle orbitals. The global operator putting a particle into orbital 8
can be defined as

2̂
†

8 = 1̂1 ⌦ · · · ⌦ 1̂8�1 ⌦ 0̂
†

8 ⌦ 1̂8+1 ⌦ · · · ⌦ 1̂! , (3.7)

where we introduced a local single-site operator (SSO) matrix 0̂
†. This operator acts solely on the desired orbital

and all other ones are transformed under an identity SSO 1̂. Applying another global creator, it will not differ what
is applied first, since the creator SSOs commute among each other and every one commutes with the identity. This
is just the behaviour we expect bosonic operators to show. However, for fermions we expect the multiplication to
respect the anti-commutation defined in eq. (3.1). Therefore we need to introduce the phase factor

2̂
†

8 ! exp ©≠
´
ic
8�1’
9=1

=̂ 9
™Æ
¨
2̂
†

8 =
8�1÷
9=1

eic=̂ 9
2̂
†

8 =
8�1÷
9=1

 
1̂ 9 + =̂ 9

 
1’
:=0

(ic):
:!
� 1

!!
2̂
†

8 =
8�1÷
9=1

⇣
1̂ 9 � 2=̂ 9

⌘
2̂
†

8

=
8�1÷
9=1

%̂ 9 2̂
†

8 = %̂1 ⌦ · · · ⌦ %̂8�1 ⌦ 0̂
†

8 ⌦ 1̂8+1 ⌦ · · · ⌦ 1̂! ,

(3.8)

where we defined the parity operator, which has the entry ±1 when the site is unoccupied/occupied, given by the
fermionic occupation number being either zero or one. As one can easily check, by just plugging in the definitions
into the anti-commutator and using the known commutation relations of the creators with the occupation number
operator, these operators now fulfil the desired algebra eqs. (3.1) and (3.2).

The change in the operator structure is now twofold. First we chose one side of the system which is equipped
with parities. This is a resemblance of the fact that we introduced an artificial ordering of modes. For a strictly 1d
system this might seem trivial, since the system is planar and therefore each site is either to the left or to the right
of another site. However this gets more involved when changing to non-planar topologies like a TTNS. There, this
contradicts the locality of the original ansatz, e.g. one has to count from top to bottom left and then to bottom right.
Furthermore the operators do not change only one orbital anymore, but all the orbitals to one side of the active site
(one should keep in mind that the term site refers to an artificial ordering for any non-MPS-like topology).

For a strictly planar system this is worth the effort. By introducing this transformation, which does not change
the Hilbert space but is just a phase factor, we are able to avoid dealing with the exchange statistics. In practice one
only has to adjust operators, not the wavefunction which is also an implementation advantage. Since most operators
are constructed via usage of these elementary operators, no additional runtime is introduced [HMS17]. The devil
is, however, in the detail here, namely in the planar topology of the system. Planar means that any contraction of
the tensor network can be performed without two legs having to cross. For an MPS this is always possible (as we
shall see in sections 3.2.2 and 3.3) but a tree topology needs further carefulness. There, one needs to introduce
so called swap-gates, which multiply two legs with a corresponding phase factor when they cross, e.g. during a
contraction [COBV10]. This gets very unhandy and complicated very fast, since each operation has to be checked
for its correctness and one missing swap-gate can make an entire chain of results go wrong. Also, this breaks the
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encapsulation of code, i.e. low level tensor operations have to be implemented at many high level instances of
operations. This makes the framework which we will introduce next especially useful for the implementation and
bookkeeping of tensor networks going beyond MPS.

Explicit bookkeeping 3.2.2

The basic idea of the explicit bookkeeping is defining a framework which, even though working on the numerical
basis {|Æ=)}, keeps track of the exchanges in order. It accounts for them by multiplying the coefficients with the
corresponding phase factors. The usual operator to swap the ordering of two neighboring modes in the numerical
basis is given by matrix multiplication with [BK02, BPE09]

|0, 0) (0, 0| + |0, 1) (1, 0| + |1, 0) (0, 1| � |1, 1) (1, 1| . (3.9)

Note that a minus sign is only introduced when both orbitals are occupied, which differs from the usual definition
of the term swap-gate. Since any permutation of modes can be displayed as successive permutation of neighboring
modes until the desired order is reached, a reordering between non-neighboring modes changes the matrix elements
of the computational basis as [BPE09]

( ÆDÆGÆEÆI |⌫̄
0
| Æ<) = (�1) |G | |E | ( ÆDÆEÆGÆI |⌫̄ | Æ<) , (3.10)

i.e. we need to introduce a phase factor, depending on the number of occupied modes in ÆG and ÆE, which we called |G |

and |E |. The same logic holds true when contracting two fermionic tensors �̂ and ⌫̂ in the numerical representation

�̂ =
’
Æ= Æ? Æ<

(Æ= Æ? |�| Æ<) |Æ= Æ?i h Æ< |

⌫̂ =
’
Æ: Æ@ Æ=0

(Æ: |⌫ |Æ=
0
Æ@) |Æ:i hÆ=

0
Æ@ | .

(3.11)

We desire the contraction in Fock-space ⇠̂ = ⌫̂ �= �̂ given in components by [BPE09]

(Æ: Æ? |⇠ | Æ< Æ?) =
’
Æ=

(�1) | ? | |@ | (Æ: |⌫ |Æ= Æ@) (Æ= Æ? |�| Æ<) . (3.12)

The parity prefactor comes from the expansion of eq. (3.11) and permuting according to eq. (3.6). This rule tells us
that we can just contract tensors in the numerical basis as if they were bosonic, we just have to pick up the correct
parity when contracting legs which are not next to each other. Together with the rule for partial traces [BPE09], i.e.

trA �̂ =
’
Æ= Æ<ÆA

(Æ=ÆA | �̂| Æ<ÆA) |Æ=i h Æ< | , (3.13)

we can write the rule for arbitrary contractions in the numerical basis

⇠̂ = trA
⇣
⌫̂ �= �̂

⌘
=

’
Æ< Æ@ Æ: Æ? Æ=ÆA

(�1) | ? | |@ |+|A | ( | ? |+|@ | ) (Æ:ÆA |⌫ |Æ= Æ@) (Æ= Æ? |�| Æ<ÆA) |Æ: Æ?i h Æ< Æ@ | . (3.14)

Equipped with this we are now able to define our fermionic tensor network framework, the rules we have to follow
are:

1. Any tensor )̂ can be expanded in a (somehow ordered) basis with respect to its components

)̂ =
’
0123

)
abcd
0132 |0ia |1ib |2ic dh3 | . (3.15)

Here, 0, 1, 2 and 3 are some sets of fermionic modes.

2. Tensor products form joint Hilbert spaces, i.e.

|012i = |0i |1i |2i , h012 | = h0 | h1 | h2 | . (3.16)
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3. Permuting any number of modes gives a definite parity prefactor %G = (�1) |G | = ±1, which can be
successively computed by permuting single modes. The notation |G | refers to a set of occupied modes of the
tensor )̂ , i.e. an index of the component.

4. Tensors in our framework always preserve quantum numbers due to global symmetries. Taking any product
construction from two Hilbert spaces we can expand the new basis in terms of the old one

| Æ<im =
’
Æ=Æ:

2
Æ=Æ: |Æ=
Æ
:in�k . (3.17)

By making use of the total particle number #̂ Æ< = #̂Æ= � #̂ Æ: and its conservation we obtain

|< | | Æ<im = ( |=| + |: |) |Æ=Æ:in�k , (3.18)

which implies % |< | = % |= |+|: | or put differently

% |< |+|= |+|: | = 1 . (3.19)

From this rule it also immediately follows that any bipartition of legs has the same parity.

5. We continue working with bosonic tensors in the numerical basis

)̄ =
’
0123

)0123 |012) (3 | (3.20)

with respect to some fixed ordering. Any reordering or contraction needs to be taken into account by the
multiplication of the necessary parity into the coefficients. From here on, bosonic states are referred to with
regular bra-ket notation. The information about the fermionic character is hidden implicitly in the coefficients.
Furthermore, we will often make use of a convenient shorthand notation, when certain information is not
necessary. We will introduce an Einstein-summation and suppress the tensor contents )0123 when they are
not needed, i.e. we write ) = |0i |1i |2i h3 | but mean what is written in eq. (3.20).

6. Equation (3.14) implies that a contraction between two fermionic tensors is not given by the sole contraction
in the numerical basis, but rather by the contraction in the original Fock-space. This can be depicted in the
numerical bosonic basis by permuting the respective legs next to each other (by making use of item 3) and
then executing

. . . hG | �G |Gi . . . . (3.21)

(a) We also introduce the sometimes useful definition of the supertrace str(·). The supertrace is a reduction
of legs by contraction, which is in contrast to the regular trace where the reduction takes place by taking
overlaps with basis elements and summing over them. This corresponds to doing a second step like
in eq. (3.12) instead of eq. (3.13) to obtain eq. (3.14). Therefore, the supertrace is not basis independent,
but it differs from the true trace by a parity prefactor, i.e.

trA (·) = strA (%A ·) . (3.22)

However, just like the true trace the super trace is cyclic due to item 4, as is easily verified.

7. Hermitian conjugation † reverses the tensor leg direction and ordering and complex-conjugates the coefficients
of the tensor, i.e.

()0123 |0i |1i |2i h3 |)
† = )

⇤

0123 |3i h2 | h1 | h0 | . (3.23)

8. The overlap between two tensors � and ⌫ is defined as

h�|⌫i = tr1 (⌫)
⇣
�
†
�: (⌫) ⌫

⌘
= %1 (⌫) �

†
� ⌫ , (3.24)

where we introduced the shorthard notation : (⌫) and 1(⌫) for all kets and bras of ⌫, respectively. Note
that switching the contraction and the trace would be possible and will give the same result, because the
only difference would be a parity of all kets instead of all bras. This number has to be the same according
to items 3 and 4, since it is a bipartition. The norm of a tensor is then just given as |�| =

p
h�|�i.
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Before we continue to demonstrate common operations on a T3NS we have to fix one last definition, namely
how we define our tensors. For practical reasons we defined the MPS and MPO tensors in our toolkit to look like

" = |;i |?i hA | (3.25)
, = |;i |?

0
i h? | hA | , (3.26)

respectively. ; is the left or root index, while A is the right or descendant index, and ? and ?
0 are physical indices.

For the branching nodes we defined the order

⌫ = |Ai h1 | h0 | (3.27)

for both, the state and operator tensors, where we introduced the root leg A and the descendants 0 and 1. By
choosing the network constituents like this, contractions between neighboring tensors in the network are possible
without introduction of additional signs. Furthermore, the physical legs of the state are kets, which is also desirable
since wave functions usually do not live in a dual space. The highest node in the tree (which is uniquely defined
due to the absence of loops) will carry the quantum number sector of the total Hilbert space on its left or root leg.

Operations 3.3

Norms and overlaps 3.3.1

The most basic operation is to compute the norm of a T3NS or the overlap between two such states. Given no
branching nodes we can define two states

|ki = 01 |0?1i h1| �1 02 |1?2i h2| ,
|qi = 0

0

1 |0
0
?
0

1i h1
0
| �10 0

0

2 |1
0
?
0

2i h2
0
|

(3.28)

where the 08 are the coefficients of the MPS. The overlap is then defined as

hq |ki = tr2

⇣
q
†
�?8$?8 ,0$00 k

⌘
.

= %2 0
0⇤

1 0
0⇤

2 0102 |2i h?21| � |1i h?10| � |0?1i h1| � |1?2i h2|
= %20

0⇤

1 0
0⇤

2 0102 |2i h?21| |1i h1| � |1?2i h2|
= %20

0⇤

1 0
0⇤

2 0102 |2i h?2 | |?2i h2|

= %20
0⇤

1 0
0⇤

2 0102 (�1) |2 | = 0
0⇤

1 0
0⇤

2 0102 ,

(3.29)

just as we expected. Again we can define the norm as | | |ki | |2 =
p
hk |ki.

For the T3NS the situation is a bit more complicated. Defining the state as

|ki = |0?1i h1| � |1i h32| � |2?2i h20 | � |3?3i h30 | (3.30)

resembles the state in fig. 3.3. Wanting to compute the overlap we obtain

tr2030


|30i h?33| |20i h?22| |23i h1| |1i h?10| �?1 ?2 ?30 |0?1i h1| |1i h32| |2?2i h20 | |3?3i h30 |

�

= % |20 | |30 |

✓
|30i h?33|

◆ ✓
|20i h?22|

◆
|23i h32|

✓
|2?2i h20 |

◆ ✓
|3?3i h30 |

◆

= % |20 | |30 | |23i h32| |20i h20 | |30i h30 |
= |23i h32| = % |2 | |3 | .

(3.31)

This is again just as we expected, since we can see in fig. 3.3 these two legs cross during the contraction, i.e. they
need to be swapped via eq. (3.9). Also note that for the planar part of the diagram crossings now occur, which
explains why the MPS does not need a sign introduced. Introducing other contraction orderings which result in
different intermediate signs will in the end lead to the same overall sign, both for the MPS and the T3NS topology.
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Figure 3.3: Overlap of two T3NSes.

Canonical normalization 3.3.2

The mindful reader might have asked themselves, if the ED- and the MPS representation are equivalent. This is
closely related to the question if the MPS representation of a wave function is unique. To get a good understanding
of this it is instructive to estimate the number of elements in both wave function representations. The ED tensor
2=1...=! has maximally 3

! degrees of freedom, while an MPS has

2
!/2’
8=1

3
28 = 232 3

!
� 1

3
2 � 1

, (3.32)

which is somewhat larger. It is to mention that the maximal bounds are rarely satisfied, e.g. due to symmetries
making tensors sparse but also due to the fact that the MPS usually finds an optimal representation in a small
subspace of the full Hilbert space. However, this mere theoretical argument for the worst-case scenario is useful
to actually see that the representations can not be equivalent, since the MPS has more degrees of freedom. This
is related to the gauge of a tensor network [Sch11], i.e. the fact that we can introduce an identity by means of an
arbitrary invertible matrix *̂ in between our MPSes, without changing our state

"̂
=8 · "̂

=8+1 = "̂
=8 · *̂

�1
· *̂ · "̂

=8+1 . (3.33)

Note that this operation is planar and does not introduce any fermionic signs.
One usually exploits this fact by using a special one among the gauges, which is called the mixed canonical

picture. This can always be employed as long as the tensor network does not have loops, i.e. there is only one way
to connect two nodes [Sch11]. The basic principle is given by the observation that all matrices can be decomposed
via an SVD

"̂ = "; ?A |;i |?i hA | = *; ?G |;i |?i hG | �G$G0 (GG0 |Gi hG
0
| �G0$G00 +G00A |G

00
i hA | , (3.34)

where * and + are unitary matrices and ( is diagonal in the so called singular values. Note that also here no sign
needs to be introduced due to the planarity of the operation which is depicted in fig. 3.4a. Through successive
application of the SVD, for the MPS in any direction and for the TTNS in root direction, and multiplication of the
transfer tensor (̂ · +̂ into the direction of application one can obtain a state which consists entirely of normalized
tensors, as is depicted in fig. 3.4b. The only remaining not normalized tensor is the one on the root node, where
we can not shift the transfer tensor further. The advantage of this particular representation lies in the computation
of overlaps with states like this. Since any operator besides the active side (in our case the root node) is an unitary
matrix, a partial contraction with its complex conjugate will give

|;
0
i h; | �*

⇤

; ?G |G
0
i h? | h;

0
| �*; ?G |;i |?i hG | = |G

0
i hG | (3.35)
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Figure 3.4: Normalization of tensors in order to create a canonical representation. Again black nodes are branching and white
nodes are physical.

for a right-/root-normal MPS/TTNS or

% |A |+
⇤

G?A |A
0
i h? | hG

0
| �+G?A |Gi |?i hA | � |Ai hA

0
| = % |A |% | ? | |Gi hG

0
| = % |G | |Gi hG

0
| (3.36)

for a left-normalized MPS or a TTNS normalized towards a certain node in the middle of the tree. Note that the
parity %A in the latter case comes from the definition of the trace in eq. (3.24). This “inheritance” of the parity
factor for the index-direction over which is traced is typical for the entire framework and we will encounter it again
for other operations. This holds true as long as the respective tensor content is correctly normalized. Therefore,
any overlap can be computed by sole involvement of the active site, if both participating states are canonically
normalized. We then simply write

hq|ki = trA
✓
q
⇤
k |;
0
i h; | � |A

0
i h? | h;

0
| � |;i |?i hA | � % |A | |Ai hA

0
|

◆

= q
⇤
k ,

(3.37)

and analogously on a branching node, if necessary. This way we are not only able to compute overlaps without
having to contract the entire network, sometimes it even helps speeding up expectation values. In particular when
computing expectation values with operators which leave parts of the system invariant (i.e. act with identities on
these orbitals) we can neglect them safely for the price of several SVDs. The easy computation of tensor network
contractions is furthermore crucial at the heart of variational optimizations like the DMRG or the TDVP algorithm.
The most time-consuming part of these types of algorithms is the application of the effective Hamiltonian (reduced
to just one orbital) on the local MPS/T3NS state tensor. When the state is in a canonical form, the generalized
eigenvalue problem of this effective Hamiltonian reduces to a regular eigenvalue problem due to the overlap matrix
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Figure 3.5: T3NO applied to a T3NS.

collapsing to an identity [Sch11]. Therefore, the algorithm does not only get more feasible but also substantially
more numerically stable.

Finally, a discussion regarding normalization of a TTNS in analogy to the left-normalization of MPSes up to
a certain node is in order. Given a node we can just root-normalize the entire tree and then follow the path from
the root to the target node, always normalizing towards the path’s direction. Physical nodes will show a similar
structure as in a MPS, branching nodes will be pointing either towards the A-or the B-direction.

State-operator application 3.3.3

Another important operation which we often need to perform is the application of a three-legged tree tensor network
operator (T3NO) to a T3NS. We define the application of the operator �̂ to a state |ki, resulting in a new state as

|�ki = �̂ �Æ= |ki . (3.38)

By the notation �Æ= we once intent to sum over all physical indices. Note however, that there is no trace this time for
the ingoing legs at the ends of the network. Furthermore, the T3NO has the special property that its physical and
branching nodes have different ranks. Therefore, the multiplication of the physical nodes is going to be regular while
the branching nodes would need the involvement of an outer product. To avoid this we make use of the fact that
we want the virtual legs to live on a joint Hilbert space and avoid the outer product by clever contraction. Through
this we also save some orders in computation complexity. This contraction strategy is also called zip-up [Sch11],
because one works on one node only and sweeps through the system. In case of a physical node the tensors have to
be contracted like

|;
0
i |?
0
i h? | hA

0
| �? |;i |?i hA | = % |A 0 | | ? | |;

0
i |?
0
i hA
0
| h? | � |;i |?i hA |

= % |A 0 | | ? | |;
0
;i |?

0
i hA
0
A | .

(3.39)

By making use of the fuse-and split tensors, | ;̃i h;0 | h; | and |Ai |A
0
i hÃ |, whose application is planar and does not

introduce any signs we obtain

% |A 0 | | ? | |Ãi |?
0
i hÃ | . (3.40)

This is the new MPS tensor, however we introduced a parity factor of % |A 0 | | ? | which is exactly the Jordan-
Wigner parity we would have gotten if we transformed the operators according to eq. (3.8). So the total block is
multiplied with a minus sign if the orbital is occupied and an odd number of particles is residing on the right part
of the system (remember our artificial ordering and the Einstein summation).

For applying an operator to a state on a branching node we similarly get

|Ai h1 | h0 | � |A
0
i h1

0
| h0
0
| = % |1 | |00 | |Ai |A

0
i h1

0
| h1 | h0

0
| h0 |

= % |1 | |00 | |Ãi h1̃ | h0̃ | ,
(3.41)



24 Chapter 3. Tree-tensor networks

; A

;0 A 0

?

?0

?0

?00

Figure 3.6: Multiplication of two T3NOs. The branching nodes are left away, since their contraction works the same for states
and operators.

were the second step is again possible by introducing the respective fuses and splits. Once more, we observe the
parity which is necessary for this contraction, however its nature is somewhat different. This is not due to the
anti-commutation of physical degrees of freedom, like in the Jordan-Wigner case, it is rather caused by the right
leg of the state and the left leg of the operator crossing during the contraction. Therefore, this parity actually would
belong to the application of a fermionic swap gate, just as is the case in section 3.3.1.

Operator-operator application 3.3.4

Another largely significant operation, especially when it comes to construction of global Hamiltonians from local
SSOs [HMS17], is the multiplication of two operators, i.e. �̂ = �̂ � ⌫̂. Since the branching nodes obey the same
contraction rule (remember they are rank 3 tensors without physical indices) we shall only discuss details of the
physical ones in this section. The contraction rule and parity prefactor is otherwise the same as in section 3.3.3.
Following the nomenclature from fig. 3.6 we obtain

|;
0
i |?
00
i h?

0
| hA | �?0 |;i |?

0
i h? | hA | = |;i

✓
|;
0
i |?
00
i h?

0
| hA
0
|

◆
|?
0
i h? | hA |

= % | ?0 | |A 0 | |;i

✓
|;
0
i |?
00
i hA
0
| h?
0
|

◆
|?
0
i h? | hA |

= % | ?0 | |A 0 | |;i |;
0
i |?
00
i hA
0
| h? | hA |

= %( | ?0 |+| ? | ) |A 0 | | ;̃i |?
00
i h? | hÃ | ,

(3.42)

by again introducing respective merges, i.e. | ;̃i h;0 | h; | and |Ai |A
0
i hÃ |. Again, we introduced the same parity factor

a Jordan-Wigner transformation would have needed. Therefore, we can safely say the operation does not involve
any swap-gates, just as we expected for a planar operation.

Expectation values & block construction 3.3.5

Of course, having a wavefunction and operators is rather unpractical if one is not able to compute observables from
it. Often one is interested in expectation values of states with certain operators or, speaking more generally, their
overlap elements, i.e. hq|�̂ |ki. We write our constituents as

|ki = |0i |?1i h1| �
✓
. . .

◆
� |41 � 1i |?41i h41 | � |42 � 1i |?42i h42 | � . . . (3.43)

�̂ = |0̃i |?01i h?1 | h1̃| �
✓
. . .

◆
� |4̃1 � 1i |?041i h?41 | h4̃1 | � |4̃2 � 1i |?042i h?42 | h4̃2 | � . . . (3.44)

|qi = |00i |?01i h1
0
| �

✓
. . .

◆
� |4

0

1 � 1i |?041i h4
0

1 | � |4
0

2 � 1i |?042i h4
0

2 | � . . . . (3.45)
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Here we mention the nodes at the ends of the tree explicitly and hide the bulk inside the first large bracket. Note
that, while the tree has only one root node (?1), it can have an arbitrary number of external vacuum nodes ?48 ,
which is indicated by the second dots. We can then define the matrix element of the operator � with the two states
k, q as

hq|�̂ |ki = tr{48 }

"
|00i h0̃| h0| �00̃00 q

†
�?08

� �?8 k �48

 ÷
8

|48i |4̃8i h4
0

8 |

! #
(3.46)

=

 ÷
8

% |48 |

!
|00i h0̃| h0| � q

†
� � � k �

 ÷
8

|48i |4̃8i h4
0

8 |

!
. (3.47)

Note that we are contracting over the physical indices and the ket (sometimes also called outgoing) dummy indices,
but tracing over the bra (incoming) dummy ones. This choice is arbitrary but gets fixed once done and resembles
the choice we did in our framework. In eq. (3.47) we went from the fermionic trace to the super trace by introducing
the respective parity prefactors. Now everyone is contracted with everyone (after all we want to obtain a scalar).
Usually one chooses the ends of the tree 48 in such a way, that they carry the vacuum quantum number, since the root
0 has to carry the Hilbert space sector. Of course the parity of the vacuum (no particles) is always zero, therefore
this factor can be set to one. However, it is a good idea to guarantee for an assertion of the vacuum character of the
external legs on runtime, since there are applications where outer legs may not carry vacuum quantum numbers.

As usual we would like to have a local recipe which can be applied recursively in order to minimize the
computational cost [Sch11]. By virtue of making use of item 4 again, we can shift full tensors to an arbitrary
position in eq. (3.47). Therefore, we move all the elements of k, � and q which belong to the same orbital together.
Starting from the outer vacuum nodes, one is always able to write

% |4 | |4 � 1i |?4i h4 | � |4̃ � 1i |?04i h?4 | h4̃ | � |40i h?04 | h40 � 1| � |4i |4̃i h40 | (3.48)
= % |4 |% | ?4 | % | 4̃ | | ?4 | |4 � 1i |4̃ � 1i h40 � 1| (3.49)

for an arbitrary (physical) node. This object we call a (right-) block and depict it in fig. 3.7a. The % | 4̃ | | ?4 | factor is
again the Jordan-Wigner parity, which we need to incorporate the fermionic character of the particles. % |4 |% | ?4 |

is equal to % |4�1 | , due to item 4, since it is a bipartition of legs. Therefore, we say that right-blocks “inherit”
the original parity of the fermionic trace in their construction, which is a point crucial to variational optimization
algorithms, as we shall see in section 3.3.6. As already mentioned, the construction of left blocks do not have these
parity factors and also inherits this behaviour, i.e.

|00i h0̃| h0| � |0i |?1i h1| � |0̃i |?01i h?1 | h1̃| � |10i h?01 | h0
0
| (3.50)

= %
| ?1 | |1̃ | |1

0
i h1̃| h1| . (3.51)

The last piece remaining to check is the role of branching nodes for the block construction in expectation values,
as is shown in fig. 3.7b exemplary for the construction of a contraction towards the root. First we have

% |0 |% |1 | |Ai h1 | h0 | � |Ãi h1̃ | h0̃ | � |0
0
i |1
0
i hA
0
| (3.52)

= % |A | % | 0̃ | |1 | |Ai |Ãi hA
0
| , (3.53)

which also inherits the parity and furthermore exhibits the swap-gate corresponding to the crossing of 0̃ and 1.
When constructing contractions downwards the tree we first get

|A
0
i hÃ | hA | � |Ai h1 | h0 | � |Ãi h1̃ | h0̃ | � |A

0
i h1

0
| h0
0
| (3.54)

= |A
0
i h1̃ | h1 | h0̃ | h0 | � |0

0
i |1
0
i hA
0
| (3.55)

|A
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0
i |1
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0
| �

(
|0i |0̃i h0

0
|

|1i |1̃i h1
0
|

(3.56)

=

(
% |00 | |1

0
i h1̃ | h1 |

% |10 | |0
0
i h0̃ | h0 |

. (3.57)

Here, it holds true again that the contractions downwards the tree do not introduce any additional parities. The only
necessary parity is the one induced by two legs of the binary node crossing.
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(a) Physical
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q⇤

(b) Branching

Figure 3.7: Different contraction schemes for the computation of a matrix element from T3NSes and a T3NO.

Optimization 3.3.6

The last basic operation we need to discuss in order to complete our fermionic tensor network framework is the
variational optimization. This is at the heart of algorithms like DMRG and TDVP, although the realization and
computation details might be different, either due to the operation used or e.g. multi orbital update schemes.
It should be mentioned that operations like the variational truncation of states or the variational application of
operators share the same framework due to a large similarity. In principle one always takes an input state and
defines a function which one tries to minimize while changing the state. In the case of DMRG this function is the
energy, which we try to minimize through application of the Hamiltonian in a sophisticated way [Sch11]. For TDVP
one tries to minimize the distance between the application of the Hamiltonian and the solution to the time-evolution
via the Schrödinger equation by projection onto a certain MPS manifold [HCO+11, HLO+16]. Similar are the
variational truncation and application, where one tries to sweep through the system and find a close representation
to the state itself or an operator-application to the state while keeping the bond dimension small [Sch11]. Let us
look at the DMRG case exemplary, where we define the optimization function to be

5 ("
=8
,"

=8 ⇤) = hk |�̂ |ki � _ hk |ki , (3.58)

where the Lagragian-multiplier _ ensures normalization [Sch11]. Finding the minimum of 5 with respect to the
! matrices {"

=8 } is a highly non-linear complicated problem, which one usually trades for an iterative linear
optimization with respect to single variational parameters, i.e.

m 5

m"
=8 ⇤

= 0 . (3.59)

Now we want to analyze the different parts of the derivative in order to find out how we should operate on the
tensor network. As we discussed in the previous sections the overlap can be written in terms of the left-and
right-contractions

m hk |ki

m"
?⇤

=
m

m"
?⇤

trA
✓
|;
0
i h; | � |;i |?i hA | � |A

0
i h? | h;

0
| � |Ai hA

0
|

◆
, (3.60)

where we usually use the canonical normalization of the tensor network to collapse |;
0
i h; | and |Ai hA

0
| to be identity

matrices. Then the derivate reduces to
m

m

�
|Āi h?̄ | h;̄ |

�
✓
% |A | |;i |?i hA | � |Ai h? | h; |

◆
(3.61)

= % |A 0 | | ;̄i | ?̄i hĀ | , (3.62)
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Figure 3.8: DMRG update scheme assignment for arbitrary number of orbitals involved (indicated by the double arrow).
Note that physical-branching contractions work similarly just with two blocks to the right. The same holds true for single-site
branching updates.

which looks like the usual MPS form eq. (3.25), however with a parity prefactor of % |A | coming from the right
block. Note that we exchanged the parity of the right leg with the one of the conjugated right leg, as they are the
same in any case.

Now we need the same analysis for the energy expectation value, i.e.

m hk |�̂ |ki

m"
?⇤

=
m trAÃ

�
|;
0
i h;̃ | h; | � |;i |?i hA | � | ;̃i |?

0
i h? | hÃ | � |A

0
i h?

0
| h;
0
| � |Ai |Ãi hA

0
|
�

m

�
|Āi h?̄ | h;̄ |

� (3.63)

= % |A 0 | | ;̄i h;̃ | h; | � |;i |?i hA | � | ;̃i |?
0
i h? | hÃ | � |Ai |Ãi hĀ | (3.64)

= % |A 0 | % | ? | |Ã | | ;̄i | ?̄i hĀ | , (3.65)

where it is again found that the same structure holds, including the parity from the right block % |A | and the physical
Jordan-Wigner parity % | ? | |Ã | . Due to conservation rules we can change the parity over the double index AÃ for the
parity of the conjugated leg A

0. Now comes the crucial point for the derivation of our DMRG substitution rule.
While the parity of the expectation value in eq. (3.64) is desired in order to guarantee for the expectation value to
be a trace, the one in the new site tensor eq. (3.62) is certainly not. Therefore we have to invert the parity to obtain
the substitution rule displayed in fig. 3.8

|;i |?i hA |  � % |A 0 | |;
0
i h;̃ | h; | � |;i |?i hA | � | ;̃i |?

0
i h? | hÃ | �

�
% |A 0 | |Ai |Ãi hA

0
|
�

. (3.66)

This means that when computing the updated site tensor (usually by means of the super-trace) one has to multiply
the right contraction with a parity prefactor corresponding to the occupation of the conjugated right leg. In order
to not mix up the parities it is important to keep in mind that according to our findings in section 3.3.5 we do not
compute right blocks, but right blocks with parity prefactors, as each right block inherits the parity recursively and
as can be seen in the last bracket of eq. (3.66). Therefore we have found the correct substitution rule in the fermionic
Hilbert space framework and can just continue to work with bosonic tensors. One only has to multiply a parity
prefactor during the eigensolver iterations into each vector in order to get the correct assignment. A particulalry
important point which should not be forgotten is that typical eigensolvers like, e.g. the Krylov- or Davidson-method
also make use of norms of the vectors and overlaps between them. Since our substitution rule returns the vectors
without any parities we can make use of the norm and overlap functions defined in section 3.3.1 without hesitating.
This means that during a call of such a function all ingoing legs of the vector (or equivalently all outgoing legs of
the conjugated vector) need to be multiplied with a parity prefactor.

In principle one could also do the same derivation for a single branching node or for a combination of an
arbitrary number of physical and branching nodes, some of which are shown in fig. 3.9. However, we do not need
to go through all the details again, it is sufficient to say that in principle one could always merge the two right
blocks from a binary node configuration into a single one by means of merge tensors. The same can be done with
the current site tensors of the state and operator. Even though this procedure should not be chosen, since it is
computationally very expensive, from the theoretical point of view it will result in the update scheme in eq. (3.66)
again, just with a product parity % |A 0 | = % |00 |% |10 | , after handling with the emerging Jordan-Wigner -and swap-gate
parities. In general we can then just apply a parity to all ingoing legs of all right blocks and always obtain the
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Figure 3.9: Different possible update schemes in a T3NS, showing here in an exemplary fashion: Single node update and
physical branching contractions with one or two physical nodes. Whenever two or more indices are involved in the optimization
the variational subspace between the two orbitals gets infinite dimensional and therefore only truncated through the SVD
procedure of separating the tensors. However, if less than two physical indices are involved one should employ a subspace
expansion [HMSW15].
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Figure 3.10: Energy convergence of a three-band Hubbard-Kanamori Hamiltonian with ! = 120 sites.

correct result.

|;i |?i |1i |0i  � % |00 |% |10 | |;
0
i h;̃ | h; | � |;i |?i |1i |0i � | ;̃i |?

0
i h? | h1̃ | h0̃ | � |0i |0̃i h0

0
| � |1i |1̃i h1

0
| (3.67)

Equipped with these set of rules we are able to do a variety of different operations. As already mentioned this also
holds true for variational truncation and application of T3NOs and for the TDVP. However, whenever encountering
a new operation during implementation of these types of tensor networks it is always good to come back to the set
of rules defined in section 3.2.2 and write down the contractions in order to figure out potential parity prefactors.
Even if the lack of a pure sign might not sound severe at first, a wrong implementation will cause randomly
fluctuating results very fast. Especially during variational optimization, e.g. the energy starting to jump between
very large negative and positive numbers, which destroys the results immediately. For observables, the situation
is even more dangerous if incorrectly implemented since wrong signs might cancel each other out, making only
some results wrong. When simulating systems without pre-existing benchmarks this becomes a highly dangerous
game. Therefore, any handling of these fermionic tensor networks should involve a careful and sophisticated prior
calculation and extensive testing.

Orbital order 3.4
So far we discussed the topology and how we can use it to optimize tensor network methods, however the topology
is not the only screw we can adjust to simulate a quantum system. Independent of topology the question arises, how
to map the single particle orbitals to nodes in the network. In contrast to the case of 1d spin- or Hubbard-chains
there is no such thing as an à priori clear mapping for either higher dimensional systems or quantum chemical
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systems where all orbitals couple to each other

�̂ =
’
8 9 ,f

C8 9 2̂
†

8,f 2̂ 9 ,f +
1
2

’
B?@A
ff0

EB?@A 2̂
†

B,f 2̂
†

?,f0 2̂A ,f0 2̂@,f . (3.68)

As portrayed, the matrices C and E are model dependent dense objects which are degenerate in the spin indices due
to lack of spin-orbit coupling, which is why we suppress the spin indices [MG02, SC12]. For systems going beyond
the BO approximation similar global couplings, depictured as Fermi-Bose mixtures, can be found [Fre31a, Fre31b].
The coefficients arise from the transition to second quantization as matrix elements of the electronic Hamiltonian
with the single particle orbital basis as

C8 9 =

*
q 9 ,f (ÆA)

������
��
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+

’
�

�/4
2���ÆA � Æ'�
���
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���� 4
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|ÆA1 � ÆA2 |

���� qA ,f (ÆA1)q@,f0 (ÆA2)

�
. (3.70)

We can interpret the diagonal elements of C as chemical potential of the respective orbital, while the off-diagonals
give the hopping probability between orbitals. Furthermore, the elements of E describe the coupling strength of the
two body interactions.

As we have argued in chapter 2 the factor controlling the validity of the approximation of a wave function on
a tensor network is the entanglement entropy as a proxy to the needed kept singular values during the truncation.
However, the entanglement entropy is an inherent basis dependent quantity [LS03, MHR05, CS11, RNW06], as can
be seen in the following simplified example. Consider the Hubbard tight-binding chain with periodic boundaries
in 1d

�̂/C = �
’
8,f

2̂
†

8,f 2̂8+1,f + 2̂
†

8+1,f 2̂8,f . (3.71)

This model is translationally invariant, therefore one usually transforms it into momentum space (labeled by :)

�̂/C = �2
’
:,f

cos : =̂:,f , (3.72)

where we introduced the particle number =̂:,f for the momentum algebra of 0̂:,f and 0̂
†

:,f . Now, one can solve the
model easily by successively filling up the Fermi-sea from momenta : = 0. For instance, the two particle singlet
ground state can be written by momentum excitations transformed from the vacuum and back to real space as
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†
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◆
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While the former is a simple product state of bond dimension < = 1 and therefore bipartition entropy zero, the
latter is a linear combination of all distributions of two particles with opposite spin onto ! lattice sites. Even though
the representation of the latter with !

2 terms might be reduced to a smaller number through truncation (we found a
final bond dimension of < = 4 during DMRG, for a ! = 30 site system), it is not a product state, which resembles
the entropy spectrum being non-zero. Quite in contrast, the form of the bipartite entropy is given by the famous
Calabrese-Cardy formula [CC04]

((G) =
2

3
ln

✓
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!

⌘◆
+ 2
0 , (3.75)

with the central charge 2 being the number of independent gapless single particle excitations [FK90].
The essential message from this small gymnastics is, that the choice of basis matters much in tensor networks.

Not only must one be careful in what basis to use but also in how to assign it to an MPS or a TTNS. Despite
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the absence of a recipe or general strategy there are powerful tools to use in order to find out how to perform
accordingly. Usually it is illustrative to think about how much “connection” is between two orbitals, e.g. due to
physical intuition. For instance in a chemical system it is always a decent starting point to group orbitals of the same
point group symmetry together, since a direct hopping between orbitals of different irreducible representations
(irreps) is symmetry forbidden [WVN14b, CKG04, LS03].

In general, one needs to take care of two parts. First we have to find an optimal (or at least better than the
present one) order after which we need to change the order in the network according to this map. In the following
we shall discuss the key points how to do both.

Swap-gates 3.4.1

Assume we want to exchange the degrees of two degrees of freedom on a lattice, for simplicity they are neighboring.
We require an operator *̂ mapping a state to another one with permuted basis elements. For the many-body vacuum,
this means changing the bookkeeping of orbitals, i.e.

|0i = |0102 . . . 0!i = |0201 . . . 0!i , (3.76)

whereas for the operator algebra we already know what is to do from section 3.2.2. In order to clarify what this
symbolic notation means it is instructive to recall the relation between a basis ket and the original single particle
orbital. |=1=2=3i means we have =8 particles in orbital number 8. This corresponds to the wave function

det

2666664

q1 (ÆG1) . . . q1 (ÆG# )

q2 (ÆG1) . . . q2 (ÆG# )

q3 (ÆG1) . . . q3 (ÆG# )

3777775
/
p
#! , (3.77)

with the particles distributed accordingly (for bosons it would be the permanent). Therefore a swap of the nodes
on our tensor network just corresponds to a redefinition of the single particle orbitals, i.e. 1̃ = 2 and 2̃ = 1,
and therefore another bookkeeping in the Fock-space, i.e. |01̃02̃ . . .i. Even though this swapping of degrees of
freedom is not restricted to homogenous lattices, i.e. Hilbert spaces where each orbital obeys the same occupation
properties, it is especially easy for these. This is because only the occupation numbers of the basis kets have to
be exchanged and the coefficients in the expansion have to be adjusted accordingly. For an inhomogeneous lattice
one has to take a careful tensor product of the individual Hilbert spaces of the sites and exchange the degrees of
freedom in the joint space.

On a tensor network this operation becomes somewhat more local, since we do not need to operate on the full
coefficient tensor, but it is enough to operate on the two site Hilbert space, just like in the case of a DMRG step. For
our special case of a system containing branching nodes we just contract three sites with two physical indices, but
this does merely introduce additional complication. The question remains on how to obtain these gates generically
without an additional implementation effort. For this, one can make use of the merge tensors, which are essential to
any implementation and therefore should be preexisting. They are defined as an identity taking two Hilbert spaces
to a joined one, therefore merging two indices together, or vice versa splitting an index to two separate Hilbert
spaces. Taking the two physical indices ?1 and ?2 of the sites we want to swap, we create two merges, first with the
order ?1, ?2 and then with ?2, ?1 yields two rank-three tensors. Their contraction along the large Hilbert spaces
yields

*

?01 ,?
0

2
?1 ,?2 =

’
?

"
?
?1 ,?2"

?
?01 ,?

0

2
, (3.78)

which is the swap-gate we have been looking for. This rank-four tensor is a generalization of eq. (3.9) (which is for
spinless fermions) to an arbitrary basis.

Once we are able to construct this transformation, we can construct arbitrary changes in representation by
successive application of these gates, which is outlined in alg 1. In this algorithm we start at the bottom of the tree
(or the right side of the MPS) and exchange the nodes of the tensor network until it is in the desired position. Then
we go up iteratively until the entire network has the desired ordering. The algorithm is bounded by ! (! + 1)/2
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Figure 3.11: Application of a swap-gate to a MPS in order to exchange two sites. The same pattern is applied twice to the
operator with the transformation and its complex-conjugate.

Algorithm 1: Successively swap sites in order to implement new ordering ?.
Data: |ki and �̂ w.r.t. to input order [1, 2, . . . , !] and a new order ? = [?1, ?2, . . . , ?!].
Result: |ki and �̂ w.r.t. to ?.

1 Def swap:
2 k; ?1 ?2A  k

1
; ?1G
� k

2
G;2A

;

3 k; ?1 ?2A  *

?01 ?
0

2
?1 ?2 � k; ?1 ?2A ;

4 k
1
; ?1G

,k
2
G;2A
 split k; ?1 ?2A via SVD;

5 �̂  �̂
1
� �̂

2;
6 �̂  *̂ � �̂ � *̂

†;
7 �̂1, �̂2  split �̂ via SVD;
8 exchange 2= and 2=+1;
9 return;

10 current position 8  bottom-most node (if more than one exists then right-most of them);
11 current order 2 = [21, . . . , 2!]  [0, 1, . . . ];
12 while 8 < root do
13 if 28 < ?8 then
14 9  index of element of 2 which is equal to ?8;
15 ÆG  path from 9 to 8 (going from top to bottom);
16 = 9 ;
17 while = < 8 do
18 swap (=, = + 1);
19 = = + 1;
20 end
21 end
22 8  next left mode in layer, if none exists go to right-most node of layer above;
23 end
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Figure 3.12: Schematic graph connecting each node in the tensor network with a value, darker color means higher value.
This graph does not correspond to the MPS topology but rather represents the correlations between orbitals in eq. (3.68). In this
particular example (a converged naphthalene molecule in (10e, 10o)) all sites are talking to each other, while certain orbitals
seem to be correlated stronger.

swaps (if every node is maximally distant to its target position) where each swap consists out of a rather cheap
multiplication and a rather expensive SVD.

The advantage of the described procedure is the reuse of the existing state and operator, without the need to redo
calculations or reconstruction. Especially when doing time-evolution, this proves to be convenient. However the
main problem is that since operators can not be normalized, the SVD can cause errors in the truncation [HMS17] and
therefore destroy the validity of the Hamiltonian. Therefore, in cases where the Hamiltonian can be reconstructed
cheaply and one can re-obtain the state (e.g. DMRG) it can also be worthwhile discarding everything and restarting
directly with the optimized order ?.

Fiedler reordering 3.4.2

Now that we have talked about how to perform a reordering, we want to come back to the question how to find a
good order. This is by no means a trivial question and there is no closed answer, i.e. there is no black-box-like
procedure, which can give good mappings with low costs for arbitrary systems. Here, a connection to graph theory
comes in handy, namely we can enlist all the nodes {8} in the network and interconnect them to each other. We
give each connection between two nodes 8 and 9 a weight �8 9 [BLMR11], as can be seen in fig. 3.12. Each node
represents an orbital, while the weight we give to the node corresponds to some measure telling us how strongly
correlated the two orbitals are. This measure is usually chosen to be the mutual information between the two
sites [RNW06], which is defined via the entanglement of orbital RDMs. Given two sites 8 and 9 we can compute
the RDMs by tracing out everything except the respective orbitals

d̂8 = tr{0}\8 |ki hk | , (3.79)
d̂8 9 = tr{0}\{8 9 } |ki hk | , (3.80)

where we defined the set {0} to include all basis-kets. From these we can compute the orbital entropies

(( d̂) = � tr( d̂ ln d̂) , (3.81)
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for the respective subset of the total Hilbert space. The mutual information is defined as the Kulback-Leibler
divergence of the probability distribution of the individual spaces and the two orbital spaces [DMD+21]. Assuming
the probability distribution for excitations is given by eqs. (3.79) and (3.80), we write

�8 9 =
’
=8= 9

d=8= 9 ln
d=8= 9

d=8 d= 9

(3.82)

=
�
(( d̂8) + (( d̂ 9 ) � (( d̂8 9 )

� �
1 � X8 9

�
, (3.83)

where we defined the excitation probability for =8 in orbital 8 as the real number d=8 , etc. The Kronecker delta
ensures that the diagonal elements are zero. This is sometimes also referred to as the amount of information which
is in the joint Hilbert space, but not in the individual ones [Sha48]. It should be mentioned that this framework
can be generalized to an arbitrary number of involved orbitals [SBS+17], however usually the costs for computing
higher order RDMs get very expensive fast.

From this point Legeza et al. [BLMR11] suggested to create a scalar function for optimization by incorporating
the distance between sites |8 � 9 | in the tensor network, i.e. defining

5 (?) =
’
8 9

�8 9 |?(8) � ?( 9) |
[ , (3.84)

where [ is a coefficient to weigh the impact of the distance and ? : N! ! N! is a bijection. Note that we are
optimizing with respect to the order ? for which 5 gets minimal, i.e. formally defined [ABH98]

?(8) < ?( 9) < ?(:) ) �8 9 � �8: and � 9: � �8: . (3.85)

This can be read as putting the orbitals with large mutual information close to each other, while others which are
stronger correlated can be put into distance and is also called the seriation problem. Trying to brute force all
combinatorial possibilities is obviously NP-hard in the system size [GP97]. In the special case where [ = 2, i.e.
we can write the cost function as a matrix vector product, there exists a closed feasible solution [ABH98]. The
rigorous proof is very technical, therefore we restrict ourselves to sketching the basic idea. First, one has to replace
the integer permutations by continuous variables. Since we do not want the trivial solution of all elements of the
vector being zero, we have to enforce normalization by an additional constraint. Furthermore, the arbitrariness
of the ordering with respect to global translation is fixed by demanding the one norm of the solution being zero.
Therefore, the problem becomes an optimization problem

min
G

 ’
8 9

�8 9 (G8 � G 9 )
2
� _

’
8

G8 � _
0

 ’
8

G
2
8 � 1

!!
(3.86)

in a real valued vector space. By defining the Laplacian of the mutual information matrix !� = � � ⇡, where

⇡ = diag

 ’
8

�18
’
8

�28 . . .

!
, (3.87)

the problem reduces to diagonalizing the Laplacian of � [ABH98]. As the graph is connected, the first eigenvalue
will be zero and the second one is the Fiedler value with the accompanying Fiedler vector [Fie73, Fie89] which
gives the solution for the optimal order defined in eq. (3.85).

In practice one can then perform the following steps in order to find a better ordering.

1. Perform a DMRG with low bond dimension, such that the computational costs are cheap, but push it far
enough such that the basic physics are captured.

2. Compute the mutual information matrix �8 9 from the reduced systems.

3. Diagonalize its Laplacian !� .

4. Compute the Fiedler-vector.

5. Reorder (and possibly repeat to further optimize).
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This quite simple procedure enables us to find a good ordering of arbitrary systems just by probing its Hamiltonian.
As previously mentioned, usually small bond dimensions < ⇡ 512 are enough to obtain good results and since one
can perform several iterations it is not catastrophic if the first runs do not capture the entire physics. Due to the
decreased resource requirement the next run is going to capture more of the system and the reordering will improve
to a greater degree.

It should be mentioned for this algorithm that it can make sense to restrict the transformation space to certain
permutations. For instance, in [BLMR11] it is argued that orbitals belonging to the same symmetry group (discussed
in section 4.2) are kept tight, i.e. permutation within blocks and of total blocks are allowed, but not of orbitals of
different symmetry irreps. At least in the chemical context one can say that hopping between orbitals of different
symmetry irreps is prohibited, only the interaction term can connect distant orbitals. Also in another context this
hand-imposed constraints can make sense, e.g. in DMFT when one wants to restrict permutations between baths.
In both cases one prevents the algorithm from doing senseless orderings due to local minima by suppressing these
manually.

Simulated annealing 3.4.3

Although the Fiedler reordering can improve convergence of non-local Hamiltonians on artificially mapped tensor
networks [LS04, BLMR11, LS03], it is somewhat difficult to use non-MPS-like topologies. The reason is that
the output of this algorithm is a vector of permutations, optimizing the distance between sites with high mutual
information. However, the representation in a vector has a somewhat planar origin and therefore needs a careful
mapping on higher order topologies as well as a careful thought on distance measures. Furthermore, for the iterative
approach of the minimization with low amount of resources it can be beneficial not to do greedy optimizations.

Luckily Fiedler is not the only reordering algorithm, another one worth mentioning is the simulated annealing.
It was even brought in contact with tensor networks earlier [TVF02, RNW06] than the Fiedler algorithm. Simulated
annealing is basically very familiar to the Metropolis algorithm [MRR+53] in that it tries to approximate a solution
of exponentially many configurations by a stochastic minimum search. A variety of interesting problems can be
targeted by simulated annealing. Apart from the already mentioned Monte Carlo algorithms, industrial relevant
problems like the traveling salesman [MGPO89, KGV83] and quantum algorithms trying to break cryptographic
systems [Sho97, MOI20] are some of the many to mention.

The basic idea is to mimic the behavior of a metal cooling down, where we substitute the energy, which is
usually minimized by the configuration of the system by some other objective function � (?) depending on the
configuration ?. One starts with the initial configuration and does random operations changing the ordering. In our
special case we choose to change two random sites or two neighboring random sites in an alternating fashion. For
each new configuration we compute the relative change in the cost function � and keep the change if it decreased
the cost or keep it with the probability of the Boltzmann weight if it did not. Doing so, we successively decrease
the cost, while we circumvent local minima in the minimization landscape with the possibility of jumping out of
them with a certain probability. However, these “hoppings” get less possible with increasing simulation time, since
the temperature ) is chosen as a monotonically decreasing function of the iteration step. This way the system is
going to always going to find a minimum in the optimization landscape, yet will be kicked out of minima more
often, the higher the temperature. If the problem is somehow well behaved, usually the first minimum which the
system can not be kicked out of is going to be a global minimum or at least a minimum deeper than the minima
in the proximity. Since we are typically interested in decreasing the cost function and will iterate multiple times,
it is thus sufficient to operate like this to find a good representation, which will be improved over time and finally
converges to the true solution. In many cases we found better results by annealing, even on the MPS, than by means
of the Fiedler reordering.

It should be addressed that for system sizes becoming large (e.g. for us the heuristic threshold was ! ⇡ 40) the
sheer number of configurations (as already mentioned growing like !!) might make it necessary to run the annealing
for many iterations. This can be circumvented by mixing the annealing procedure with a divide and conquer-like
approach. Furthermore, a crossover with the genetic algorithm might be of value. Let us briefly comment on both
of them. Divide and conquer basically explains itself, employing several workers who run over different parts of
the system and only exchange within these subparts. Doing so, the number of configurations is diminished by a
lot at the expense of long range exchanges getting possible only through successive multiple permutations. This
makes sense since usually we start with an ordering which is not completely off, e.g. with clustering of irreps,
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Algorithm 2: Finding an optimized order via simulated annealing.
Data: Objective function � (2) and temperature function ) (8) (8 being the iteration step, the temperature

decreasing with increasing number of iterations), threshold n and maximum iterations 8max.
Result: Optimized order ? which has � (?) < � ( [0, 1, 2, . . . ]) and in the best case is the global minimum.

1 2  [0, 1, . . . , !];
2 ?  [0, 1, . . . , !];
3 while 8 < 8max or |�8�1 � �8 | > n do
4 Pick random index 1 < 0 < !;
5 if 8 is even then
6 Pick another random index 0 < 1 < !;
7 2

0
 [21 . . . 21 . . . 20 . . . 2!];

8 else
9 2

0
 [21 . . . 20+1 20 . . . 2!];

10 end
11 X 

� (20 )�� (2)
� (20 )+� (2) ;

12 if X < 0 or e�X/) (8) > random number then
13 2  2

0;
14 if � (2) < � (?) then
15 ?  2;
16 end
17 end
18 8  8 + 1;
19 end

which we do not want to separate anyways, as mentioned before. Additionally, we can employ parallelization over
multiple threads in the implementation, which is always desired. The genetic algorithm [TUR50, Rec71] is very
close to the ideas of simulated annealing, we used it as an additional layer within the buckets of each worker. The
basic principle is again to do random permutations and also recombinations (mimicking the behavior of cells in
nature) in order to create new generations of settings. By iterating and creating several generations, which then in
turn are subject to some kind of selection process, we include an additional measure, speeding up convergence but
also enabling the system to be kicked out of local minima. The genetic algorithm is usually limited due to its slow
convergence, and the sheer number of possibilities one has to realize through several generations. But using it as a
tool in combination with simulated annealing we achieved some decent results with it.





Chemistry tools 4
Reduced density matrices 4.1

Often when computing observables from wave functions, it is essential to have access to RDMs of the system. A
RDM is a matrix containing all physical information about a subpart of the Hilbert space, which one can obtain
from the full state by a subsequent integration of unnecessary degrees of freedom. In the following we do not
want to deal with RDMs in detail but merely with their efficient construction on tensor networks. We basically
distinguish between two kinds of reduced systems. When integrating out particles we talk about particle reduced
density matrices (pRDMs), while for the orbital case we say orbital reduced density matrices (oRDMs). The
former has applications when doing electronic structure theory, e.g. complete active space self-consistent field
(CAS-SCF) [ZN08], while some of the applications of the latter we already discussed in section 3.4.2.

A pRDM is defined from the total system |ki via integration over all respective particles, e.g. for one or two
particles

W8 9 ,f = hk |2̂†8,f 2̂ 9 ,f |ki (4.1)

�B?@A ,ff0 = hk |2̂†B,f 2̂
†

@,f0 2̂A ,f0 2̂?f |ki . (4.2)

From these we can compute any single- and two-particle observables. Note that they are highly symmetric, e.g.
that W is hermitian and therefore it holds that �B?@A ,ff0 = �?BA@,ff0 = �@AB?,f0f = �A@?B,f0f . This will later
reduce the number of matrix elements we need to compute by a lot.

As already mentioned, the oRDM can be computed of the wave function by integrating out everything except a
few sub orbitals

d̂8 = tr\8 |ki hk | =
’

=1...=8�1
=8+1...=!

h=1 . . . =8�1=8+1 . . . =! |ki hk |=1 . . . =8�1=8+1 . . . =!i . (4.3)

This means we mute all degrees of freedom in the orbitals, except for the sites under investigation. The case of two
orbitals is fairly straight forward

d̂8 9 =
’

=1...=8�1
=8+1...= 9�1
= 9+1...=!

h=1 . . . =8�1=8+1 . . . = 9�1= 9+1 . . . =! |ki hk |=1 . . . =8�1=8+1 . . . = 9�1= 9+1 . . . =!i , (4.4)

where we chose 8 < 9 , without loss of generality.
It should be mentioned that the generalization to more than two particles or orbitals can sometimes be utilized

(e.g. [SBS+17]), and conceptually goes in the same spirit. However, due to the high computational cost to obtain
these quantities, and since they were not needed during the course of this thesis, we do not describe them here.

Particle reduced density matrix 4.1.1

Computing eqs. (4.1) and (4.2) brute force results in a horrible runtime behaviour. Apart from the aforementioned
symmetries of these objects, one also has to compute contractions of large dimensional states several times
redundantly. Usually the dimensionality of the involved operators is small and their application to the state does not
change it significantly. In order to get a speedup it is crucial to reuse contractions as often as possible and compute
all matrix elements involved in them.

37
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%̂ %̂ %̂ 2̂

2̂†

Figure 4.1: Tensor network written out pictographically for one element of W. The symbol %̂ either refers to a Jordan-
Wigner parity or an identity, depending on the utilized framework.

Starting off with the easiest example, i.e. the 1pRDM of a MPS, as is depicted in fig. 4.1. In order to minimize
the amount of needed operations, we will first left-normalize the network inbetween entirely. This way all operations
which need to be performed are focussed on the area between 8 and 9 , if we keep right-normalizing after each
iteration step. Of course for the last site this is the entire system, but sweeping through the chain, the amount of
work continuously decreases until the final site which only needs one computation. This is an expression of the
hermiticity of W, i.e. the number of independent (complex) elements reduces to ! (! + 1)/2. Therefore we proceed
as follows

1. Left-normalize the state.

2. Compute the occupation of the site, i.e. W 9 9 = hk |=̂ 9 |ki and store it.

3. Compute the right block 'AÃA 0 on site 9 consisting of the state site tensor k, its conjugate and the local
representation of 2̂ .

(a) Compute W: 9 = hk |2̂
†

: 2̂ 9 |ki from ', k and 2̂
†
· % for the site to the left.

(b) Extend the right-block with % and k to the site on the left.
(c) Reiterate until the last site is reached.

4. Right-normalize the current site and continue to the left.

While the naive computation would have ! times a cubic cost for each element in W, i.e. ⇠ !
2
· !<

3, we can reduce
it through this scheme to ⇠ !

2
<

3. So we gained an order of magnitude, as can also be observed in fig. 4.2.
The generalizations necessary for the 2pRDM are far from trivial, but conceptually in the same spirit. We again

try to exploit permutation symmetries of the � matrix and furthermore reuse contractions as often as possible. This
involves a sophisticated procedure in which the RDMs are treated for each possible combination of indices. We
start with the easy case, namely the ones which can be reduced to the form of 1pRDMs, for which we already know
an efficient procedure, i.e.

�8 9 9 9 ,ff̄ = hk |2̂†8,f 2̂
†

9 , f̄ 2̂ 9 f̄ 2̂ 9 f |ki , (4.5)

where we include both cases, 8 = 9 and 8 < 9 . The more complicated case is the one where either two indices are
different or all of them are. We renounce to sketch the algorithm in detail for this here, since it would become
rather extensive, but as an example we demonstrate the flow tree in fig. 4.3. Last but not least, we want to mention
that the generalization to a tree is conceptually straightforward but encorporates some advanced bookkeeping. We
need to introduce an artificial order, e.g. top nodes are labeled before bottom nodes and nodes on the left come
before the ones one the right. Then one only has to compute the overlap elements for each site with all sites below
and to the left.
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Figure 4.2: Computation time for the pRDM of a half filled Hubbard wave function of bond dimension < = 10 scaling with
system size. Note that with increasing system size overheads get smaller and we even obtain two orders in magnitude by virtue
of sparse tensors.
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Figure 4.3: Flowchart showing how to reuse the tensors most efficiently.
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(a) (b)

Figure 4.4: Pictographic representation of 1oRDMs and 2oRDMs assuming canonical normalization for all sites not involved.

Orbital reduced density matrix 4.1.2

The computation of oRDMs is somewhat different, since the definition is more abstract than just using expectation
values. Taking the definitions in eqs. (4.3) and (4.4) and plugging in the tensor network ansatz we obtain

h=1 . . . =8�1=8+1 . . . =! |ki =
’
=08

�
=1
. . . �

=8�1
"
=08⌫

=8+1
. . . ⌫

=! |=
0

8i (4.6)

) d̂8 =
’
Æ=0\=08

’
=8 =̃8

�
=01 �

=08�1"
=8
⌫
=08+1⌫

=0! |=8i h=̃8 | �
=01

†
�
=08�1

†
"
=̃8 †

⌫
=08+1

†
⌫
=0!

† (4.7)

=
’

=8 =̃8 ,01

"
=8
01"

=̃8
01

†
|=8i h=̃8 | , (4.8)

if we assume canonical normalization. If the Hamiltonian from which we computed the state is symmetric under
some transformation, by virtue of the Wigner-Eckart theorem [Wig27, Eck30] we can even say that =8 = =̃8 , i.e.
the matrix is only non-zero on its diagonals. Pictographically this reduces to a remarkably easy representation, as
can be seen in fig. 4.4. We just need to left-/right-normalize all the sites on the left/right of the orbital whose RDM
we are seeking and then contract over the virtual indices. This even extends naturally to higher order RDMs on
any network, e.g. 2oRDMs can be computed by starting from one of the orbitals, leaving the virtual legs in the
direction of the other one open. Then we contract with the state and its conjugate, muting the physical indices until
we reach the target site. For TTNS it is basically the same, only that branching nodes do not have physical indices,
so they are completely contracted in. Here, it is instructive to remind oneself of the concept of root-normalization
(see section 3.3.2) in order to obtain a correct result. Furthermore, one should again reuse the existing contractions
as often as possible, since for high bond dimension states their computation is still expensive. So when we need
several RDMs like e.g. in sections 3.4.2 and 3.4.3 it is worthwhile first to compute for each site involved the 1RDM
and then recursively the block and the 2RDMs. For the tree this again involves an artificial ordering, as in the
section before.

One last remark to make is that there exists an approach based on matrix elements in order to compute each
element of the RDM without direct tensor manipulations [RNW06, BTB+13]. In this approach each matrix element
is computed by one matrix element, e.g.

h0| d̂8 |0i = hk | (1 � =̂8,#) (1 � =̂8,") |ki . (4.9)

Usually it is computationally very expensive to use this approach, but we employed it in one particular case, when
we had ground states in the HF basis, but we desired the RDM in a natural orbital (NO) basis. It can be cheaper than
transforming the Hamiltonian into a new basis and starting simulations from zero. If we obtain the eigensystem,
e.g. the NOs from the 1pRDM

eigensystem: C!⇥! ! {R! ,C!⇥!}

W 7!

©≠≠≠
´

_1
.
.
.

_!

™ÆÆÆ
¨

, * (4.10)
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we can transform the operators algebra via

2̂U =
!’
8=1
hU |8i 2̂8 =

©≠≠≠
´
* ·

©≠≠≠
´

2̂1
.
.
.

2̂!

™ÆÆÆ
¨

™ÆÆÆ
¨U

(4.11)

2̂
†

U =
!’
8=1
h8 |Ui 2̂

†

8 =
©≠≠≠
´
*

†
·

©≠≠≠
´

2̂
†

1
.
.
.

2̂
†

!

™ÆÆÆ
¨

™ÆÆÆ
¨U

. (4.12)

Note that while * is an unitary, it is multiplied both times from the left, which means the transformation of two
operator terms is not trivial, i.e.

=̂U =
’
8 80

*
⇤

8 U*U80 2̂
†

8 2̂80 . (4.13)

We shall not discuss this procedure in detail, since it is of mere technical nature, we just refer to the tables 4.1
and 4.2 for an overview on how to compute the individual elements for a Hubbard basis [RNW06, BTB+13].
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Table 4.1: Definition of the operators necessary for the computation of matrix elements and representation of the 1oRDM.

Molecular symmetries 4.2
So far the role of symmetries in a tensor networks has not been addressed. In almost all branches of physics,
symmetries play a crucial role, from guiding to theoretical arguments, to simplifying calculations. As we are
interested in quantum many-body problems, where the problems usually suffer from the curse of dimensionality, it
is common to heavily exploit symmetries to impose conditions decreasing the number of degrees of freedom. In
order to understand how this works, we shall give a simplified example [Sch11]. Assume we have a system whose
Hamiltonian commutes with some total particle number, i.e.

⇥
#̂ , �̂

⇤
= 0. This implies that due to a common
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(0, 0) (1,�1/2) (1, 1/2) (2,�1) (2, 0) (2, 1) (3,�1/2) (3, 1/2) (4, 0)
�� � # # � � " " � ## �2 #" "# 2� "" # 2 2 # " 2 2 " 22
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"#

2�
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5/12 6/11 7/10 8/9
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"" 11/11
# 2
2 #

6/16 �8/14
14/8 16/6

" 2
2 "

11/16 12/15
�15/12 16/11

22 16/16
Table 4.2: Representation of the 2oRDM from matrix elements.

eigenbasis the eigenvectors |ki of �̂ are labeled by eigenvalues of #̂

#̂ |ki = #̂

’
=801

k
=8
01 |0i |=8i |1i = # |ki , (4.14)

where we assumed a canonical MPS representation of the wave function and # is the total particle number. The
action of the global number operator on the number kets is rather trivial, since it is just defined via a tensor product

#̂ |=8i = =8 |=8i . (4.15)

The same way we can obtain the action on the left- and right-bases, e.g.

#̂ |0i = #̂

’
=1...=8�1

�
=1
. . . �

=8�1 |=1 . . . =8�1i = (=1 + . . . + =8�1) |0i = =0 |0i . (4.16)

With the last equality we introduced the notion of the “particle number of a leg”. This directly implies that either
=0 + =8 + =1 = # , or the elements k

=8
01 are zero. This rather primitive example is the consequence of a much

deeper and more sophisticated statement, namely the Wigner-Eckart theorem [Wig27, Eck30]. It basically states
that a tensor invariant under a symmetry transformation decomposes into a tensor product of smaller blocks which
are labeled by irreducible representations (irreps) of this symmetry transformation and tensors of numbers only
determined by the symmetry group called Clebsch-Gordon coefficients (CGCs). In our case of the Abelian particle
number group, the CGCs are just identities multiplied with Kronecker deltas which exactly enforce the statement
given by eq. (4.14) [SPV10, SPV11].

From a numerical point of view, we can just store the tensor blocks themselves with their irreps and leave away
the zeros. This is advantageous from several aspects, e.g. that the neglected zeros do not occupy the memory or
do not need to be taken into account during tensor operations. Furthermore during contractions, we can just ignore
tensors whose quantum numbers do not fit, instead of painfully computing them just to find that their norm is (close
to) zero in the end. This results in an improved scaling by typical factors of 10 � 1000, depending on the model.

We should mention that in the condensed matter context we usually talk about global symmetries, i.e. the
symmetry transformation under which the Hamiltonian is invariant does not depend on the orbital itself. For
instance in the particle number case, the symmetry transformation associated with the conserved number is often
something like the transformation of the operator algebra

2̂8 ! eiU
2̂8 2̂

†

8 ! e�iU
2̂
†

8 , U 2 R, 88 (4.17)
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(a) (b)

Figure 4.5: Molecular single particle orbitals of naphthalene in a (10e, 10o) cc-pVDZ basis.

which leaves two body Hamiltonians (e.g. eq. (3.68)) invariant. In other context, e.g. high energy or lattice gauge
theories, the symmetry transformation is local, depending on the orbitals position, i.e. U ! U8 . This can be
accounted for in the traditional tensor network approach by doubling the size of the MPS [ZCR13, BHVA+14,
BCC+19]. However, these methods were not used in the scope of this thesis and therefore we only want to mention
them for the sake of completeness.

With this powerful symmetry framework at hand we can decompose the tensor network with arbitrary symme-
tries, e.g. common ones are Z: , * (1) but even (* (2) and (* (3). One solely requires the irreps belonging to the
basis state and the CGCs, which can be constructed generically, even if the procedure itself is very complicated
and needs to be reimplemented for every group [Wei12]. When dealing with chemical problems an essential class
of groups is the molecular symmetry groups. These are the symmetries which can be attributed to single particle
orbitals of the molecule. Before we continue to a systematic characterization, we shall give a brief example by
studying the molecular orbitals in fig. 4.5. These real space wave functions are obtained by the HF method on a
linear combination of atomic orbitals (LCAO) ansatz. The sign of the wave function is represented by different
colors. The crucial point is what happens when changing the position of the molecule in space. The molecule
or its quantum dynamics do not know about the coordinate system we set up, therefore all quantities measured
must remain the same. However, we can observe that e.g. rotating the molecule along the plane in which it lies
in fig. 4.5a exchanges the sign of the wave function, while in fig. 4.5b it stays invariant. Still since the electronic
density is the absolute value of the wave function this does not affect observables. To phrase it differently, both are
symmetric, just in another fashion as we shall experience shortly.

As for now, we will progress in the theory. Usually, the important symmetries for a molecule are characterized
by the :-fold rotation or cyclic group ⇠: (sometimes also called Z:), the mirror symmetry ⇠B , the inversion
symmetry ⇠8 and the group of joint rotation and reflection called improper rotations (: [AdP06]. As the name
already suggests the cyclic group ⇠: characterizes molecules which are invariant under a rotation of 2c/: around
a certain axis, e.g. the water or the hydrogen peroxide molecule. Many molecules posses more than one symmetry
axis, therefore one usually refers to the one of the highest degree : , which is referred to as principal axis [AdP06].
The mirror symmetry ⇠B describes when a molecule can be mirrored along some 2d area and remains the same.
Prominent planes are, e.g. the ones parallel to the principal axis (called fE) or the one orthogonal to it (called
f⌘) [AdP06]. Examples would be the water molecule or benzene here again. Then there is the inversion symmetry
⇠8 simply multiplying every coordinate vector with a global minus sign. Molecules like naphthalene or ethane are
transformed into themselves by such. Finally, the concatenations of rotations and reflections are called improper
rotations (: . Restricting to mirror plane axis we arrive at the chemically important Dieder group ⇡: , which is, e.g.,
realized in ethylene, and is non-Abelian for any : > 2 [AdP06]. Concluding, it shall be mentioned that there are
more molecular symmetry groups which partially contain other symmetry groups or themselves are subgroups to
other groups [AdP06].

How is this related to tensor networks and their numerical representation? Assuming our Hamiltonian to be
constructed from matrix elements of these single particle orbitals as described in eqs. (3.69) and (3.70), restricts
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the values of the C and E matrices which can be non-zero. Since integrals of molecular orbitals are scalars and
therefore do not change under symmetry transformations, the orbitals must pair up in such a way under the integral
that the signs introduced by the transformation cancel out, otherwise the matrix element is zero [AdP06]. This
means for instance that hopping elements between sites of different transformation behavior must vanish, as well
as interaction terms which do not respect the symmetry. The wave function itself is defined in a certain symmetry
sector and the application of the Hamiltonian can not change this particular sector to another one.

The last piece needed in order to connect our molecular symmetry framework to the Wigner-Eckart type of
tensor decomposition are character tables. We take the finite group ⌧ and would like to represent its (linear) action
via a set of matrices � by some map d

⌧ = {61, . . . , 6=}
d
! {W1, . . . , W=} = � . (4.18)

In general, there exist multiple representations of a group, however, there is a particularly interesting subset of
representations called the irreps. An irrep is a special map which represents the elements of ⌧ in such a way, that

ö, ( � except , = {0} such that d(6) · F 2 , 8F 2 , , 6 2 ⌧ . (4.19)

In other words there is no subset (except for the trivial ones) whose elements will end up in that subgroup again
upon arbitrary group action. Usually, representations are no irreps, however, for our molecular symmetry cases the
elements of the representation can be brought into the form of a direct sum of irreps [Mas98, Hal15],

W = W1 � W2 � . . . � W< =

W1

W2

W<

.
.
.

2666666666666666666666664

3777777777777777777777775

, (4.20)

where each W8 matrix operates on its subspace only. Qua constructio the action of the matrices will not be further
decomposable onto smaller subspaces. The number of existent irreps is determined by the number of conjugacy
classes. The conjugacy classes contain operations of the same type or more formally speaking the conjugacy class
of an element W is defined as

{W
0
2 � | 9 [ 2 � such that W0 = [

�1
W[} . (4.21)

The number of classes is simply equivalent to the number of irreps [AdP06]. We will use this to visualize the
representations of a group in square character tables. The columns are labeled by the conjugacy classes of the
group, while the rows are labeled by the irreps. The entries are then given by the trace of one of the transformation
matrices in this irrep and called characters. Since the elements of the conjugacy class are related by a similarity
transformation and the trace is cyclic under permutations, all elements of the class have the same character. An
example for this is shown in table 4.3, where two common Abelian symmetry groups are presented. The characters
describe the action of group elements categorized by the irrep. Characters may also have special properties, e.g.
the one of the identity operation is equal to the degeneracy of orbitals belonging to this irrep.

At this point we return to the application to tensor networks [LS03, CKG04, WVN14b]. Basically, the key
point here is to observe that many-body kets inside the Hilbert space and its subspaces transform under irreps of the
symmetry group which the Hamiltonian is invariant under. Or, to phrase it differently, we restrict the Hilbert space
to be spanned by vectors which are part of a sub Hilbert space in accordance with the symmetry. This makes it
possible to label every element in this Hilbert space by an irrep. We just extend this with the molecular symmetries,
as is usually done by the spin symmetry and now write [WVN14b]

|= = 0, BI = 0, � = 0i , |= = 1, BI = 1/2, � = 0i , |= = 1, BI = �1/2, � = 0i , |= = 2, BI = 0, � = 0i . (4.22)
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Z4 0 mod 4 1 mod 4 2 mod 4 3 mod 4

�1 1 1 1 1
�2 1 i �1 �i
�3 1 �1 1 �1
�4 1 �i �1 i

⇠2E ⇢ ⇠2 fE f
0
E

�1 1 1 1 1
�2 1 1 �1 �1
⌫1 1 �1 1 �1
⌫2 1 �1 �1 1

Table 4.3: Two examples for customary character tables. The cyclic group Z: might be familiar from the condensed matter
context, where one uses it to represent 2c periodic momenta, e.g. in hybrid lattices. In this context it characterises rotations
of multiples of 90� around an axis. The ⇠2E group is probably most prominent for being the symmetry group of the water
molecule. It describes (apart from the trivial identity operation ⇢) the rotation of 180� around the axis going through the oxygen
atom while symmetrically bisecting the hydrogens. Furthermore, there is the mirror plane in which the molecule itself lies and
the mirror plane going through the oxygen flipping the hydrogens.

The extension to (* (2) works with the same principle. Here, we used 0 as a placeholder for the symmetry irrep to
which the respective orbital belongs to, i.e. which determines the transformation of e.g. the HF orbital the matrix
elements originated from. The notation � = 0 refers to the empty or doubly filled orbital belonging to the trivial
representation of the group which maps all elements to the identity element of the algebra �. The advantage of this
method now is, as mentioned before, that a contraction of two vectors belonging to different irreps is immediately
zero and does need next to no CPU-time. However, in order to be able to perform all the operations necessary for
our variational optimizations or to compute observables the tensor product of two irreps is required

|=, BI , �i ⌦ |=
0
, B
0

I , �
0
i . (4.23)

In most of the cases this is not going to be an irrep itself, luckily there exists a way to decompose it into a direct sum
of such through the means of CGCs [Hal15]. Since we worked solely with Abelian point groups, the incorporation
of CGCs is not the sophisticated procedure usually necessary. Rather we can easily decompose the product

|=, BI , �i ⌦ |=
0
, B
0

I , �
0
i = |=̃, B̃I , �̃i (4.24)

by means of the character table. The element on the right hand side is just determined by multiplying the characters
of the elements on the left hand side and searching in the character table for the correct result [AdP06]. Before
we demonstrate this for a particular example, please note that in our case this direct sum only has one addend, but
usually it would be more, e.g. in the (* (2) case

|( = 1/2i ⌦ |( = 1/2i = |( = 0i � |( = 1i . (4.25)

Serving the purpose of better understanding, two examples are highlighted, one with Z4 and the other one with
⇠2E . If we multiply �2 and �4 we arrive at the trivial representation �1, just as we expected. On the other hand,
�2 ⌦ ⌫2 = ⌫1 by means of table 4.3.

To briefly summarize the approach to implement molecular symmetries in a tensor network:

1. Denote the irreps by some label, e.g. integer numbers or the labels common in chemical literature.

2. Define the product decomposition via the character table. In the Abelian case it is just a hard-coded function
connecting two elements to another one. In the non-Abelian case we need the correct computation of CGCs.

3. Create an inhomogeneous lattice where the sites are labeled with respect to their transformation behaviour
under the group action by irreps. Empty and doubly occupied orbitals belong to the trivial representation
here. Up-and down-spin belong to the same orbital if there exists an exchange symmetry.

4. Proceed with the tensor network methods in an ordinary fashion.





Time evolution 5
As mentioned previously, DMRG was originally designed for systems in equilibrium and is incredibly powerful for
their description by solving the time independent many-body Schrödinger equation

� |ki = ⇢0 |ki , (5.1)

in order to obtain the state |ki with the lowest energy ⇢0, and possibly some low lying excitations. However,
many interesting features of physical many-body systems are no properties of the static system but need to
incorporate dynamics. Therefore, early on, people tried to extend the DMRG to be able to compute time dependent
properties [Hal95, Jec02, KW99]. Interestingly, these works did not try to construct the time dependent wave
function from the ground state but rather tried to compute momentum space correlators with the help of the
momentum representation of operators. Doing so, they basically extended the DMRG algorithm for a rather
expensive construction of powers of the Hamiltonian applied to the ground state, which is superficially similar to
computing the time evolution via the application of the operator exponential

|k(C)i = e�iC �̂
|k(0)i =

✓
1 � iC�̂ � C

2

2
�̂

2
+ . . .

◆
|k(0)i . (5.2)

Here, we defined the Hamiltonian to be time independent, otherwise we would need a Dyson-series [Dys49].
These approaches are not perfect, one needs to struggle in manifold ways, e.g. one needs to run the entire

algorithm for each frequency [Jec02], furthermore, an explicit construction of several Lanczos vectors is always
required. Since these get increasingly expensive, usually the approximation gets unfaithful for high energy ex-
citations, which can be treated by more involved techniques and the additional representation of the vectors in a
truncated basis (it is DMRG after all) comes in additionally [KW99].

This motivated to look for a way to compute time-dependent states from an initial state (e.g. an excited state
or a ground state to a different Hamiltonian), unfortunately time evolution is somewhat different from ground
state searches. While the MPS ansatz is custom tailored to 1d quantum states, i.e. the solution gets increasingly
accurate during the simulation. Time evolution does not have this convenient feature. This means we can afford
to not find the perfect ground state during a DMRG sweep, the error will be corrected later on, while a wrong
time evolved state is plainly wrong. Due to this a variety of time evolution methods for tensor networks were
established [PKS+19], ranging from explicit integration [LXW03, CM02] to the Trotterization [Suz76a] of the time
evolution operator [Vid03] today known as time-evolving block decimation (TEBD). It shall be mentioned these
can also be used for imaginary time, for instance to do calculations at finite temperature [VGRC04].

Each of these methods suffer from shortcomings, to begin with, the explicit construction of the powers of �̂
(applied to the state), also referred to as global Krylov method, is enormously expensive in CPU-time and memory,
while in turn very precise. Since norms of MPOs grow exponentially in the system size !, one can usually not
construct the full time evolution operator, the number of vectors necessary would be beyond any reason. However
one can exploit the propagator property of the time evolution operator, i.e.

*̂ (C, 0) = exp
�
�i(C � 0)�̂

�
= exp

�
�i(C � C0)�̂

�
exp

�
�i(C0 � 0)�̂

�
(5.3)

to decompose the total time C = �C/=. If = is large enough, the convergence of the Krylov subspace is given via
a few vectors and we just have to apply the evolution operator many times. The primary cost is then the zip-up
application of the operator to the state as we already discussed in section 3.3.3, followed by a direct truncation.
Both operations can be estimated cubically in the bond dimension < for each lattice site. TEBD also involves the
application of operators, but in the form of several two site gates. The basic principle is to divide the Hamiltonian
into sub-lattices whose operator algebras commute, such that one can exponentiate �̂ explicitly very cheaply,
provided the time step is small again. That reduces the time evolution to sweeps through the system, creating two
orbital Hilbert spaces and applying the respective gate. However, while the splitting into disjoint sublattices is easy
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for local Hamiltonians, running TEBD for generic systems is rather tricky. It involves a complicated procedure in
which one swaps orbitals (compare to section 3.4.1), such that the respective sites for the next gate application lie
next to each other. After a successful application one has to swap the sites back.

This served as a motivated to look for the construction of a solution for the time evolution of tensor networks
which can operate on arbitrary systems while intrinsically making use of the locality of the ansatz and being
(hopefully) cheap enough to evolve to long times. The currently best method to do so is time-dependent variational
principle (TDVP), which we will be discussing in the following.

Time-dependent variational principle 5.1
TDVP is the application of the Dirac-Frenkel principle [Dir30, Fre34] for the time evolution of quantum states to a
tensor network. Broadly speaking it is a time evolution method for any variational state ansatz. Dirac tried to time
evolve Hartree states, i.e. product state ansatzes for many body wave functions (which in our framework would have
bond dimension < = 1). He realized that the time evolution will not preserve the product state property, i.e. the
state will become a correlated state. As a solution he proposed to project down the state back to a product state, with
the projector keeping the disturbance of the state minimal. In a more modern language one says that the number of
all states with a fixed bond dimension formulates a manifold as a subregion of the Hilbert space [LOV15]. In order
to keep the state expressible in the MPS form during the time evolution process one needs to formulate a projector
into the tangent space of the state.

We begin with the Schroedinger equation, giving the time evolution of a state at a certain time

|k(C)i
• = �i�̂ |k(C)i , (5.4)

connecting the time derivative of the wave function with itself. Enforcing that the time evolution stays within the
original Hilbert space we extend this to

|k(C)i
• = �i%̂k

�
�̂ |k(C)i

�
(5.5)

with the projector %̂k taking state from one manifold to a reduced bond dimension manifold [HLO+16, PKS+19].
This way we ensure that, even though we can not represent the state correctly with the original amount of resources,
it is as close as possible to the true state. Following the argument of [HLO+16] we need the basis vectors of the
tangent space
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in order to compute elements of this space. Therefore, any state can be expanded as

|⇥[⌫]i =
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⌫
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where ⌫ are arbitrary coefficients. Our aim is then to find the representation of %̂k , such that it satisfies
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Together with the definition of the left-and right-bases |Ui , |Vi this gives the shape of the projector [HCO+11,
HLO+16]
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For the moment this did not make the solution of the equation easier, but rather a lot trickier, as we are now
confronted with

|k(C)i
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This can be dissolved by Trotterization of eq. (5.11), meaning that instead of the full equation we seek a solution for
each summand individually [Tro59, Suz76b, Suz85]. Therefore, we arrive at an hierarchy of differential equations
for wave functions |k8i and |q8i, where 8 is the hierarchy step and k8 is the solution of the first term, while q8

corresponds to the second term [PKS+19]. We begin with the first site and evolve for a small time step �C
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For a canonically normalized state we can close from the left side with the conjugate bases hV | h=1 | hU |, therefore
we obtain differential equations soley for the local site tensors

§"
=01
U0V0 = �i

’
UV=1

hV
0
=
0

1U
0
|�̂ |U=1Vi "

=1
UV = �i

’
UV=1

(�eff)
=01=1
U0V0 ,UV"

=1
UV (5.14)

§
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where ⇠ is the transfer tensor which naturally arises when trying to obtain the bond bases by exploiting |Ūi =Õ
U=1 �

=1
UŪ |=1i for the left-normalized MPSes. Looking at the indices as multi-indices, these equations both have

the charm of matrix-vector multiplications, which can be solved by exponentiating the tensor, e.g. via a Lanczos
procedure as

"
=1
UV (�C) = e�i�̂eff�C · "
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UV (0) (5.16)

⇠ŪU (�C) = ei�̂eff�C · ⇠ŪU (0) . (5.17)

We proceed now site by site and always use the integrated solution at time-step �C as an input to the next, i.e. for
any iteration step we do
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Note that if we keep shifting the orthogonality center in order to maintain canonical normalization, the equations
always collapse to differential equations for one rank three (or two) tensor.

Next we want to prove that our expansion scheme actually is equivalent to the full solution of the time-dependent
Schroedinger equation, i.e. that |k! (�C)i = |k(�C)i. For this we define the shorthands
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and expand the 8-th iteration step as
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i.e. the 8-th step depends on the 8 � 1-iteration step. Recursively putting this formula into itself for |k! (C)i until
one arrives at |k0 (0)i yields up to second order [PKS+19]
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This is equal up to first order to the true solution
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or to put it differently, if the time-step is small enough the solution is correct. We make use of the composition
property and split the entire time evolution into small slides.

We can even improve this further by taking half the time-step �C/2 and making a forward and a backward
evolution. By this we get rid of all the commutators in second order, since they cancel each other due to reversed
order and the anti-symmetry of the commutator [PKS+19]. This doubles the price of the exponentiation of the
effective Hamiltonian (which is usually the most expensive in variational algorithms), however the necessary
contractions are all already preexistent and therefore the algorithm is exact in second order while usually staying
below twice the CPU-time.

The careful reader might have raised the questions why we actually want to stay on the original MPS manifold,
i.e. why we want to keep the bond dimension fixed. After all we have no guarantee that the state we are seeking
is well represented with the bond dimension profile of the initial state. The case is even worse since usually
correlations grow exponentially in time for 1d quantum systems [Osb06, GKSS05, CC05]. They usually saturate
for some long time limit but this just means that the necessary bond dimension is huge [CC05]. Eventually, this
can destroy the area law which originally made the tensor network ansatz possible in the first place. However, for
many setups it can still be possible to do time evolution of tensor network states and reach excellent results for
intermediate and long times [Sch11]. In order to be able to do so we need to allow the bond dimension to grow such
that it can leave the subspace of the initial state. This is usually done by the two-site algorithm which just mimics
the two-site optimization scheme of DMRG. For ground states, one gradually updates two sites, then shifts to the
next site continuing with updated site and a new site (like a [12] 3 4 · · · ! 1 [23] 4 . . . scheme). Therefore, the
tangent space is needed with respect to the two orbital subspace, i.e. we again have an infinite amount of variational
parameters between them. By splitting the two orbital tensor when moving on to the next site we truncate this to a
predefined value <

0 or l =
Õ
A BA , which is hopefully enough to describe the state correctly. The two site tangent

space elements are in analogy to eq. (5.7)
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where we are now looking at the two site variational subspace [HLO+16]. This leads to a projector of the
form [HLO+16]
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The application and Trotterization then lead to the local update scheme [PKS+19]
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The solution to this is the evolution in the two orbital Hilbert space

"
=8=8+1
UV (�C) = e�i�̂eff�C · "=8=8+1 (0) (5.32)

followed by the back evolution of the site in sweep direction

"
=8+1 (�C) = ei�̂eff�C · "=8+1 (0) . (5.33)

If one splits the evolution into back-and forward-sweep while taking half the time step, one again arrives at a second
order integrator just like for the single site case [PKS+19].

One last thing to mention is that apart from the usually dominant truncation error and the Trotter error we
discussed, there are two more possible sources of errors in TDVP. First, the exponentiation of the effective
Hamiltonian to construct the local solutions in eqs. (5.16) and (5.17) is not exact since we cut it off after some
finite value [PKS+19]. This error is usually controlled by the time step and therefore very much under control. The
second possible source is the projection error originating from the fact that the definition of the projectors eq. (5.10)
is only exact if |ki is actually the true state. When truncating the state this will disturb the projector and lead
to wrong results [PKS+19]. This error is usually also subdominant and can be improved by increasing the bond
dimension, just as for the truncation error. Furthermore, it can be well monitored by comparing the variance of the
state with local methods like the two site variance [HHS18].

TDVP on TTNS 5.2
Now we want to generalize our finding for the time evolution of MPS to trees what we are going to do mostly
according to [BA20]. Basically, it is the same procedure again, the site tensors just have more than two virtual legs.
For this we have to break with the locality of the ansatz and define an artificial ordering of modes and branching
tensors again. In our cases we always chose it to be from top to bottom and from left to right, i.e. the last node is
the right-most and bottom-most one. Consider a contraction between a branching and a physical node, canonically
normalized as it was described in section 3.3.2

|ki =
’
A01=8

"
=8
A01 |Ai |=8i |1i |0i . (5.34)

For our setup we did not only test this scheme, but also the case where one has solely one node, be it physical
or branching and the contraction of two physical and a branching node as we shall discover soon. For didactical
reasons we will perform the calculations on this one. Elements of our tangent space are again parametrized in the
following way [HLO+16, BA20]

|⇥[⌫]i =
’
A01=8

⌫
=8
A01 |Ai |=8i |1i |0i , (5.35)

where ⌫ are again the coefficients of the vector expansion. As in the MPS case, the kernel of the map ⇥ represents
is not empty but rather

ker⇥ =

(
⌫
=8
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�����⌫=8A01 =
’
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⌘ )
.

(5.36)
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Where the - objects are arbitrary matrices and # (G)
=8 is the site tensor when the entire network is normalized

towards the G neighbour of site 8 [BA20]. Here, we also introduce the sign of the leg, which is one if the leg is
pointing towards the last node and minus one otherwise. This is an artefact of the fact that the tensor network ansatz
has more degrees of freedom than necessary (as also discussed in section 3.3.2) which need to be gauge-fixed. We
change notation to label the indices with greek symbols, with which we want to indicate that this works for any of
the bonds and there is no particular connection between the ordering of the indices and the topology and more, and
impose the gauge constraint

’
UW=8

⇣
⌫
=8
UV0W

⌘†
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UVW = 0 8V, V

0, 88 < ! . (5.37)

This will be our Lagrange multiplier to the otherwise same optimization problem as in eq. (5.8)

min
⌫

" ’
=8UVW

⌫
=8
UVW

†
⌫
=8
UVW � ⌫

=8
UVW

†
�
=8
UVW � �

=8
UVW

†
⌫
=8
UVW �

!�1’
8=1

’
VV0

_
8
VV0

’
UW=8

⌫
=8
UV0W

†
# (V)

=8
UVW

#
. (5.38)

This objective can be minimized by taking the derivative m/m⌫
=̄8
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which yields
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or plugging in the Lagrange multiplier

⌫
=8
UVW = �

=8
UVW �

’
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which gives the form of the projector as [BA20]
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Note, that we arbitrarily chose U to connect to the root node of 8 and that the notation 8+1, 8+2 is meant symbolically
as the left and right leaves.

With these powerful equations at hand we have the possibility to formulate the single-site, the two-node and the
two-site TDVP for T3NS. The application of the projector again leads to a modified Schrödinger equation which
is then solved by Trotterizing into a hierarchy of differential equations. The canonical normalization reduces the
problems to local ones, one forward and one backward in time. However, what does actually change is the pattern in
which we apply our effective Hamiltonian and what the sites are which are back-evolved, as we demonstrate in alg 3.
As we can see the concepts of forward evolution of the variational Hilbert space and the subsequent backward
evolution stay the same. However, apart from the concept of an artificial (planar) ordering a new important concept
comes into play, the one of the leg pointing towards the end of the path through this ordering. So we do not update
the nodes in order but rather only update if we do not come along this node again following the path through
the system. Otherwise, we just normalize the entire network to work with local equations, i.e. we canonically
normalize the state and compute new contractions for the system. When actually using a true two orbital algorithm
we can spare one additional evolution by checking if we would need to later on do so and if so, not evolving back.
Regarding the sweeping patterns they are rather trivial with the exception of the two site update, which is described
in fig. 5.1. Usually coming from the top we perform the update 1� first before recursively visiting the subtree on
the left. When coming back from there we do 2� and afterwards visit the subtree on the right. And finally returning
from there we go up by performing 3�.

Before closing this quite technical section let us write a few words on the difference between the two-node
and the two-site TDVP. Since the two-node version has a factor of 3 less entries the computations are usually
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Algorithm 3: Performing TDVP on a T3NS.
Data: MPS state |k (0) i and MPO Hamitlonian �̂
Result: Evolved state |k (�C/2) i

1 Def evolveSingle:
2 Compute time evolution of single site " (�C/2)  e�i�eff�C/2" (0);
3 Split away the bond �⇠ = " (e.g. via an SVD);
4 "  �;
5 Compute⇠  ei�eff�C/2⇠;
6 Multiply⇠ into the next site.;
7 return;
8 Def evolveTwoNode:
9 Compute time evolution of physical branching contraction " (�C/2)  e�i�eff�C/2" (0) ;

10 Split the two tensors again shifting the orthogonality center into the sweep direction %(⌫ = ";
11 Store the one which is not in sweep direct;
12 Back evolve the other one "  ei�eff�C/2";
13 return;
14 Def evolveTwoSide:
15 Compute time evolution of physical branching physical contraction " (�C/2)  e�i�eff�C/2" (0) ;
16 Split into two tensors, the current physical site tensor and a physical branching contraction in the sweep direction. Multiply the singular values

weights into the latter. %⇠ = ";
17 if update direction < direction on the path to ! then
18 Back evolve the entire remainder⇠  ei�eff�C/2⇠;
19 end
20 Split the remaining site tensor into branching and physical again ⌫%0 = ⇠ shifting the orthogonality center into the physical site;
21 if update direction = direction on the path to ! then
22 Back evolve the second physical tensor %0  ei�eff�C/2%0;
23 end
24 return;
25 Def update:
26 if sweeping direction = current element on path ?8 then
27 if 8 is a physical node then
28 Update according to one of the pattern, i.e. evolveSingle, evolveTwoNode or evolveTwoSide.;
29 end
30 if 8 is a branching node then
31 if doing an update involving two physical nodes then
32 Normalize network towards sweeping direction;
33 else
34 Update according to pattern;
35 end
36 end
37 else
38 Normalize network towards sweeping direction;
39 end
40 return;
41 Define a path going from the root to the last node ! and store it ?  [?1 , . . . ?!�1 ];
42 Start on the root: 8  A>>C ;
43 while 8 < ! do
44 update;
45 Follow path to next node;
46 return;
47 end
48 while 8 < A>>C do
49 update;
50 Go path backwards to previous node;
51 return;
52 end

1�

2�

3�

Figure 5.1: Showing three possible ways to perform an update, involving two physical nodes and a branching node.
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(a) Green’s function from with two-node updates.
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(b) Error compared to two-site updates.
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Figure 5.2: Green’s function for an ! = 660 real time DMFT calculation of a three band model with different time evolution
schemes.
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Figure 5.3: Time evolution of the occupation of the initially doubly occupied site.

faster, especially when using larger local Hilbert spaces. However, it is not a pure single site algorithm since the
variational space of subsequent steps overlaps by always one node. This way, it can be very practical when the
propagation of excitations is too fast for single site [CC05] but we still do not want to employ the full two site
algorithm. We benchmarked a numerically challenging DMFT calculation where an improvement up to the factor
of the local dimension 3 can be achieved in fig. 5.2. However, it is still not a total substitute for the full algorithm,
since it can get stuck and display wrong results thereafter. As an example for this we included the benchmark of a
three site system, initialized with a double occupation on one site. The dynamics are governed by the Hamiltonian

�̂ = �
’
h8, 9 i

2̂
†

8 2̂
†

9 +

3’
8=1

=̂"#,8 , (5.42)

i.e. the system penalizes double occupancies. The result of this can be seen in fig. 5.3 where we recognize that
the initial occupation decays to different modes, as it should, for the two-site algorithm but that the system freezes
for the physical branching complex. In retrospective this is not all too surprising, since a double occupancy is
an excitation for this model, however the system can not re-distribute the particle somewhere else. Therefore,
excitations of these kind are stuck on the orbital permanently and results will be wrong. However, nothing forces
one to just use one algorithm, i.e. we made good experiences with hybrid approaches. One can save a lot of runtime
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Figure 5.4: Sweeping pattern for six subchains in the MPS. We start by synchronizing the links which have a circle above
them, either through a two site update for the boundaries or by three single site updates such that each site gets the updated
environment of the other worker. Then we sweep in the direction of the arrow followed by another sync and a subsequent
backsweep.

by running TDVP first with two sites, intermediately with just two nodes and at the end, when the system allows it,
run the pure single site algorithm. The knowledge when to switch from one algorithm to another is however model
dependent and often has to be acquired by a trial and error like approach, e.g. by scaling the bond dimension and
checking whether it is converged or not [KLR18].

Parallel TDVP 5.3
In the following we will approach the real space parallelization of TDVP [SGL+20]. Certainly, the term “real
space” might be misleading since we do not always work in a position basis. What we are constating is that the
orbitals which make up the nodes in the tensor network are variationally optimized in parallel. This idea came
up originally in the ground state context [SW13], where different workers (i.e. cores on a CPU, CPUs or even
computers) simultaneously perform the application of the effective Hamiltonian in subchains of the MPS. Therefore
each subchain has to have the opposite sweeping direction of its neighbors. This way, each worker will need to have
the resources an individual worker will have, e.g. when parallelizing over tensor blocks, each worker will need the
respective number of threads and the amount of memory a serial run would require. The runtime will be the one of
the slowest worker, therefore we need to split the workers in such a way that they all approximately need the same
time. A dynamic adaption can be reasonable in cases where the bond dimension profile changes during the course
of the optimization.

When two workers meet at the boundary of their area they do a joint update, sometimes also referred to as
synchronization. The four core steps of the iterative pattern are summarized graphically in fig. 5.4. The basic idea
is that since DMRG is an inherently local method, information about an orbital is shifted successively to all other
orbitals via the sweeping. Therefore, if nodes are far apart from each other, the optimization will still be correct
even if the environment is outdated, because updates which were performed on one bucket are unknown to the
others. Of course this works best for strictly local Hamiltonians. If the convergence is not smooth enough one can
mix the serial and the parallel procedure at the cost of having to recompute contractions. Apart from some cases,
e.g. when systems build up irreversible domain walls, this is a valid procedure, after all we continuously improve
the state.

From a technical point of view the main difficulty is to get a mixed canonical representation in each worker. We
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rely heavily on the system being left- and right-normalized for the equations to get local and stable, since we do not
want to deal with generalized eigenvalue problems. For this to be possible we must introduce several orthogonality
centres, which can be done to arbitrary high order by inverting the singular value tensor, e.g.

|ki =
’
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�
=1 · "

=2 · ⌫
=3 · ⌫

=4 · . . . |Æ=i =
’
Æ=

�
=1 · �

=2 · ( · ⌫
=3 · ⌫

=4 · . . . |Æ=i (5.43)

=
’
Æ=

�
=1 · �

=2 · ( · (
�1

· ( · ⌫
=3 · ⌫

=4 · . . . |Æ=i =
’
Æ=

�
=1 · "

=2 · (
�1

· "
=3 · ⌫

=4 · . . . |Æ=i , (5.44)

where � are left-normalized, ⌫ are right-normalized and " is the orthogonality center [SW13]. In order to establish
one orthogonality center for each worker we need to compute one matrix of inverse singular values for each worker
except for the last one, which can be done quite easily while normalizing the state. Basically nowhere in eq. (5.25)
the order of the Trotterization plays a role. Up to the order we expand we are free to choose any application
pattern for the local solution of the differential equation, i.e. no one forces us to update 1 ! 2 ! 3 ! . . . . We
usually proceed this way, because it minimizes the number of contractions to compute. Even the application of the
projector eq. (5.29) leads to local equations eqs. (5.32) and (5.33) again, since we can always absorb (

�1
" = � or ⌫.

The fact that changes if we proceed in parallel is that we do not go through with the recursive chain eq. (5.25) but
we basically do it for the subsystems disconnectedly and put together the local tensors in the end. To phrase it
differently, the environment at the connecting point is always outdated after the first optimization of the adjacent
worker. If the Hamiltonian would be local, this would not be a problem, however the more non-local the system
gets, the larger the error of the parallel approach will become. Nevertheless, we certainly had a decent experience
with the parallel approach and for reasonable mappings the errors are well controlled.

We can therefore formulate the parallel TDVP algorithm [SGL+20] by the following steps.

1. Prepare the state with several orthogonality centers and set the workers to be at the boundary of adjacent
bins.

2. Contract to obtain the two site Hilbert space

k
=8=8+1
01 =

’
G

"
=8
0G · (

�1
GG · "

=8+1
G1 . (5.45)

3. Compute and store the time-evolution with a half time-step.

4. Split k again into "
=8 , (�1 and "

=8+1 .

5. Compute and store the contractions with (
�1 multiplied into the right MPS for the left worker and vice versa.

6. Back evolve the left MPS in the left worker and vice versa with a half time-step.

7. Sweep through the subsystems in a regular fashion with a half time-step.

8. Do the two-site evolution, build the contractions according to item 5 and do the back transformation with a
full and a half time-step, respectively.

9. Sweep back to the original position.

10. Do only a forward evolution with a half time-step.

This procedure breaks the separation of the forward and backward sweep explicitly in item 8, however we made
the experience that it is not only faster but also deviates less from the serial TDVP. At the end we arrived at a state
evolved by the two-site TDVP to the next step on the time grid. The reason we do not use the single-site algorithm
is that we can always implement the boundary synchronization as a joint update.

It is useful to implement this in both shared memory and distributed memory models. The shared memory
model exploits several cores in a node to run the parallelization, e.g. by means of an open multi-processing (open
MP) [Ope08] for loop. The implementation of this is rather unchallenging since it only needs a compiler directive
for the sweeping being done in parallel. The synchronization is done by handing over the necessary data from one
worker to its neighboring one. The distributed memory model using the message passing interface (MPI) [mpi93]
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is a bit more involved. Here, each machine starts a sweep on the respective sub-part of the tensor network to then
synchronize over the network connection.

Next we want to get a sense for the size of the error caused by the parallelization, therefore we are going to have
a look at the distance between the serial and parallel evolved states

k |k1i � |k8ik
2 , (5.46)

where 8 is the number of real-space workers used. This difference is shown in figs. 5.5a and 5.5c. For the real
time case we used a ! = 32 Hubbard-Holstein model in the intermediate coupling regime, both for electrons and
phonons. The ground state we excited with a bosonic particle in the middle of the chain. As we can see, the
difference is in a still numerically controllable fashion, however it is increasing monotonously. Furthermore we
observe no big additional error due to the use of additional workers, which we attribute to the locality of the model.
For the imaginary time case we tested the time-evolution of an excitation above the ground state in a ! = 35
impurity model that was obtained within the first iteration of DMFT. As we can see, there is a sharp increase of
the error at the simulation start followed by an almost constant error only depending on the segment size. All in
all, the error is smaller than would be relevant for the DMFT application, meaning that the parallelization is a well
controlled algorithm in this case.

Furthermore, we want to look at the norms, e.g. as a proxy of the unitarity breaking in real-time evolution. The
relative norm distance

k |k1i (C)k � k |k8i (C)k

k |k1i (C)k
(5.47)

is shown in figs. 5.5b and 5.5d. We choose to look at the relative distance since the norm decays quite fast in
imaginary time, therefore differences are in different orders of magnitude. It is to mention that its decay is actually
of physical significance in order to compute observables, therefore its precision is of high value. The magnitude of
the norm difference compared to the serial run as a proxy measure of the projection error is in accordance with the
error previously observed. However, in real time applications, usually the norm starts deviating at some point and
afterwards grows quite rapidly [SGL+20]. This point was not reached in our simulations yet, since they are merely
for demonstration purposes, but usually one can renormalize the wave function if so. In many cases this does not
strongly affect observables computed from the state and they are still in good agreement with the serial run. For
the imaginary time case we can observe a similar behaviour as before, there is a strong increase before saturating
to a constant value. With increasing number of workers the error increases as before, however it is not constantly
rising as can be seen by the difference between two and four workers compared to four and eight workers. The
sharp minima at early times we attribute to the change of sign in the norm difference.

Last but not least we want to have a look at the runtime, whose improvement was the aim of this attempt in the first
place. Figure 5.5e shows the real time (not the CPU-time) for different number of workers in the real time evolution.
First we observe the plateau between two and four workers, meaning that the additional involvement of workers
did not improve the performance in this area. From our experience this is a typical behaviour for intermediate
number of workers, as mentioned before the total runtime is dominated by the slowest worker. Therefore, the
additional workers might take load of the former workers, however there is still a region whose optimization takes
significantly longer than the other ones. This is also the reason for the weak scaling of higher number of workers,
e.g. an speedup of three for eight workers. We can address this in two ways, i.e. either we can adapt the bounds
dynamically or we can chose them manually. For the latter one we simulate a test run and log the runtimes of each
individual optimization. Using this method, we gain a good estimation on how to set the workers, such that the
runtimes of each worker in the manual definition are the same. The dynamic worker adaption needs to estimate the
runtimes of the individual segments as well, however through some algorithm we move the worker bounds during
the synchronization of the second half step. As long as the shift does not violate the bounds of another worker it
is sufficient to perform a regular two site update followed by the construction of new environment tensors into the
moving direction as well as a new canonical normalization of the state.

Now that we have seen the extent of the errors one might be curious if they can be accounted for. Our claim
was always, that there might be a way to account for the wrong-doing in such a way, that we subtract the introduced
deviance in eq. (5.25) in order to arrive at eq. (5.26) again. To investigate this one might look at the easiest possible
system, i.e. two workers splitting the chain in the middle at the first time-step. The first synchronization is still
correct and the two half sweeps in the individual workers are also undisturbed (at least for each subsystem). What
one would have to do to obtain the correct TDVP evolved wave function is to continue the sweeping in the other
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(a) Error in real time PTDVP.
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(b) Norm deviance in real time PTDVP.
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(d) Norm deviance in imaginary time PTDVP.
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Figure 5.5: Different numerical control parameters for real and imaginary time evolution in parallel (always compared to the
serially evolved state).
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half of the respective worker, instead of putting the local tensors into the same state and performing another sync.
However, the problem in identifying the necessary terms here is that the Trotterization happens on the global wave
function level and the application of the projector reduces everything to local equations, while the PTDVP directly
operates on the local tensors. We believe that a future investigation could deal with the question how to bring back
the local solutions performed in the neighboring subsystem of a worker to the trotterized form and expand them in
order to learn more about the errors of the algorithm. This way one could account for them fully or at least create
an estimate on the error made for the respective type of the system. Otherwise, one relies on heuristic studying of
case-by-case Hamiltonians in order to pinpoint the stability of the algorithm.





Mode transformation 6
As of now the reader is likely aware of the importance of the orbital basis when doing non 1d calculations in tensor
networks. Usually, when operating on molecular ground state problems the starting point is the HF method. First,
one chooses a set of atomic orbitals, i.e. a full basis of real space wave functions {q8 (ÆG)}82� . This basis does not
have to be an eigenbasis of the actual atomic problem, it just needs to be orthonormal, such that one can expand the
true problem. Often one chooses basis-sets with useful properties, e.g. the Gaussian or Slater basis whose radial
part looks like

q8 (A) = e�UA2
(6.1)

q8 (A) = A
=e�UA . (6.2)

After multiplying with the spherical harmonics and normalizing the entire product to one, one obtains a total atomic
orbital. From these we form an LCAO ansatz [SO96]

j 9 (ÆG) =
’
82�

' 98q8 (6.3)

to obtain molecular orbitals. Note that choosing ' to be a permutation (i.e. to consist of zeros and ones only)
corresponds to a reordering of modes as in section 3.4. This implies the interpretation of mode transformation as a
“natural extension” of the reordering idea.

For the many-body wave functions the Slater determinant (or permanent) ansatz looks like
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, (6.4)

whose energy we seek to minimize by means of the electronic Hamiltonian [SO96]

⇢ [k] = hk |�̂ |ki . (6.5)

For this purpose we optimize with respect to the elements '8 9 . The solution is obtained by a quite sophisticated
mapping to an eigenvalue problem, which gives us a numerically cheap spectrum, exact in the < = 1 approximation.
However, this is not the scope of this chapter and therefore we refer the determined reader to the excellent derivation
in [SO96]. The point we are trying to highlight is the following: it is true that the energy can be seen as a functional
of the wave function, but what the HF method actually does is to view it as an optimization problem for the ! ⇥ !

0

dimensional matrix ' (the number of atomic and molecular orbitals is not necessarily the same)

min
k

⇢ [k] = min
'

⇢ (') . (6.6)

Since the normalization of the wave function fixes the prefactor this is the only optimization target. Once one has
the converged result, one can compute an active space via eqs. (3.69) and (3.70) and include correlations into the
calculations. This means that we superpose linear combinations of the determinaant with arbitrary coefficients. In
this context it makes sense to extend the problem from a pure basis optimization to one simultaneously operating
on the basis and the variational parameters

min
'

⇢ (') ! min
',2

⇢ (2=1...=! , ') , (6.7)

where 2=1...=! are the usual ED coefficients.
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A common form of doing this simultaneous optimization is the well known CAS-SCF method [Roo80, SAHR81,
RTS80] and in particular the implementation using tensor networks [ZN08]. Here, one self-consistently optimizes
the wave function variationally for the basis and the energy, starting from an initial basis. Thereafter, one can
compute from the converged result the one and two pRDMs, which are related to the gradient and Hessian of the
energy functional. By searching for a minimum in the energy functional optimization space with respect to the
basis rotation, one can achieve an optimal '. This we reiterate until the desired convergence in the state and its
basis is achieved.

The idea of mode transformation [KVLE16, GL21] is conceptually similar but different in implementation.
Since the determination of a global* is in general very challenging, we rather try to achieve a global transformation
through subsequent application of rotations of the single particle basis * 2 C!⇥! as

* = . . . ·*3 ·*2 ·*1 , (6.8)

where each *8 2 C!⇥! takes the form

*8 = 1(1)
⌦ 1(2)

⌦ . . . ⌦ )
(8,8+1)

⌦ . . . ⌦ 1(!) , )
(8,8+1)

2 H8 ⌦H8+1 . (6.9)

The key point is, that after each local optimization of the variational parameters for the energy, we optimize the
basis as well. Therefore we obtain rotations on the two orbital Hilbert space, which do not change the computational
basis itself, but just superpose the elements in it in a different fashion. This connects the algebras of the two bases
via eqs. (4.11) and (4.12). Since the optimized nodes overlap with the nodes targeted next, not only can a non-local
* be reached this way, but rather it is immediately reached after the first sweep. Therefore, we have to deal with a
dense Hamiltonian the entire time, which comes with its own caveats as we shall see in the upcoming sections.

Our aim is now to figure out how the transformation of the single particle basis
 
q1

q2

!
�!

"
)11 )12

)21 )22

#  
q1

q2

!
(6.10)

acts on our MPS system. Note that in principle this is tensored with all the other ! � 2 orbitals which are in turn hit
by an identity matrix. However, since we only operate on the two orbital subspace we can leave away the remaining
system for this consideration and keep in mind that 1 and 2 might later on refer to any adjacent sites. Since this
representation of the rotation in first quantization is a bit difficult to work with, we would rather have the direct
impact onto the second quantized Hilbert space. Therefore we write e.g. the creation operator in its most general
form and insert two identities
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 ’
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!
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(6.11)

=
’
80800

=,=0 ,=00

[(=) 80 h=
0
|= + 1iU Uh=|=

00
i800 |=

0
i80 800 h=

00
| , (6.12)

where we assumed a finite local Hilbert space of size 3. [(=) is a normalization factor, that depends on the specific
model and which is not of any further interest right now. The overlap elements 80 h=

0
|= + 1iU and Uh=|=

00
i800 are

numbers and can be obtained, e.g. by integration. If overlaps of different occupation give zero we even reobtain the
super-diagonal structure of the creation operator in the U basis. However, this is a slightly complicated task so for
now we will restrict to fermions, which will restrict all occupations to either zero or one and therefore simplify to

2̂
†

U =
’
8

h8 |Ui 2̂
†

8 = )U12̂
†

1 + )U22̂
†

2 . (6.13)

Since any tensor is spanned by the elements of the Hilbert space which are created by successive application of
creators onto the vacuum, this gives a path to proceed. If we want to rotate a tensor out of our network into
another single particle basis we just apply the transformation matrix ) to the coefficients. The detailed impact on a
fermionic basis is going to be demonstrated in section 6.1.

In order for us to be able to work solely on the coefficients we need to confirm the following. Usually, one does
not keep track of the basis states in a tensor network implementation. Upon multiplying the transformation into the
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coefficients and relabelling the basis we crucially rely on the algebra of creation and annihilation operators being
preserved. The transformation can be obtained through

h
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U , 2̂
(†)

V

i
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’
8 9

)
(⇤)

U8 )
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V 9

h
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= 0 (6.14)
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for any bilinear function [ · , · ], in our case the anti-commutator. Therefore, by choosing ) unitary we have the
advantage of preserving the distances and angles inside the Hilbert spaces and furthermore would automatically
keep * unitary.

The attentive reader might have noticed a contradiction by now. Originally we claimed that we are going to
optimize an energy function with respect to variational parameters and the single particle basis, but our choice of
unitary transformations will keep the energy constant qua construction. Therefore, we need a different criterion
to minimize. Usually one chooses proxy measures to reduce the mutual information, typically local accessible
quantities like functions of the singular value spectrum. These have the advantage that they can be computed quite
cheaply from already present objects during twosite DMRG. Hence, if the optimization is successful, we will reach
a better energy in the next step with a lower bond dimension.

This harmless seeming choice enhances the optimization problem by a component already present in DMRG
type of ansatzes, namely we enforce the state to have low entanglement and low energy. In customary DMRG, the
SVD truncation during sweeping implicitly chooses a bond basis which minimizes the overall entanglement of the
state. With mode transformation this effect tends to get even more weight in the optimization, since not only the
bond basis is optimized for minimal entropy but also the single particle basis. In applications where the desired state
is minimal in energy and entropy this can be a convergence booster. However, there are models in which energy and
entanglement optimization are competing aims, probably most prominently the doped 2d Fermi-Hubbard model
at intermediate coupling [QCS+20]. Here, the ground state and the low lying excitations are very close in energy,
while the excitations have the lower entanglement [QCS+20]. This interplay usually makes DMRG calculations not
only a matter of resources, but in addition one needs to force the model into the correct low energy state, e.g. by
use of magnetic pinning fields [SW12, EWN17, QCS+20]. Therefore, the use of mode transformation needs to be
carefully controlled in order to avoid producing wrong results, as mistaking a low lying excitation for the ground
state.

Fermionic mode transformation 6.1
In this section we want to demonstrate the algorithmic details of the application of mode transformation to
electrons [KVLE16]. As mentioned in chapter 6, a general recipe is more complicated due to the structure of
the transformation and ambiguities between first and second quantization, and has not been implemented yet to
present day. We therefore restrict ourselves to two special cases. The first are fermions without spin, i.e. the only
implemented symmetry for the tensors is a * (1)= particle number conservation. The second one are fermions with
particle number and I component of their spins conserved, i.e. the symmetry group is * (1)= ⌦ * (1)I . Assuming
we are at a twosite DMRG step of an MPS, the wave function takes the form

|ki =
’
01=8
=8+1

k
=8=8+1
01 |0i |1i |=8=8+1i . (6.16)

The application to a general tensor network active site tensor (in our case it was the T3NS) works completely
analogous, since all operations are planar and additional virtual legs are not involved in the algorithm to follow. In
other words we just substitute |1i ! |1i |2i and continue with the same recipe. As aforementioned the rotation of
the single particle orbitals q8 (G) and q8+1 (G) only acts on the physical basis |=8=8+1i. The way it acts on the basis
ket depends on the possible symbols = can take and the commutation relations of the occupied states.
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We will commence with the easiest case, i.e. spinless fermions, which are either occupied or not = 2 {0, 1}.
The two orbital Hilbert space is of size four and spanned by the basis

= = 0 : |0i ,
= = 1 : |10i , |01i ,
= = 2 : |2i . (6.17)

The first element of the basis belongs to the = = 0 irrep, while the middle ones belong to = = 1 and the last one to
= = 2. As the first and the last element are one dimensional, their transformation may only be a complex phase eiU,
otherwise they would not be unitary. We implemented the mode transformation both with real and complex valued
matrices, the difference being the number of free parameters of the rotation matrices to optimize. Of course number
of iterations necessary to converge increases with the number of free parameters, since the parameter space gets
larger. However, the additional degree of freedom did usually not bring any advantages in the basis and therefore
we mostly worked with the real representation, i.e. we can fix the transformation in the empty and doubly occupied
sectors to be one. From this point on we shall therefore specialize to* 2 R!⇥! . Returning to the spinless fermions,
only the single particle sector is non-trivial and transforms as

|10i = 2̂
†

1 |0i !
⇣
*112̂

†

1 +*122̂
†

2

⌘
|0i = *11 |10i +*12 |01i (6.18)
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2 |0i !
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2

⌘
|0i = *21 |10i +*22 |01i . (6.19)

The transformation behaviour of the basis can be written compact in matrix-vector notation, i.e.

©≠≠≠≠≠
´

|0i
|10i
|01i
|2i

™ÆÆÆÆÆ
¨
! * (U) ·

©≠≠≠≠≠
´

|0i
|10i
|01i
|2i

™ÆÆÆÆÆ
¨

(6.20)

with the rotation matrix on the two orbital sub Hilbert space being defined as

* (U) ⌘

|0i |10i |01i |11i

|11i
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|00i

|2i1

cosU � sinU

sinU cosU

1

266666666666664

377777777777775

, (6.21)

whereU is the parameter describing the rotation. Note, that the trigonometric functions come from the representation
of the *8 9 in SO(2), the group of two dimensional real unitaries. Setting aside the task how to find a reasonable U,
we notice that in principle, the application of this twosite gate into the variational tensor rotates the wave function
into the new single particle basis
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(6.22)

where we combined =8 and =8+1 into a multi-index = for convenience. Note, that we made use of the fact that
the local degrees of freedom do not change which causes the preservation of the operator algebra in eq. (6.15)
through our special choice of *. Otherwise, the redefinition of the last equality sign would not be possible, but we
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would need to introduce a new local Hilbert space with new labelings, respecting the algebra of the transformed
basis. However here, we just apply the gate which disentangles the two sites the most and repeat with the site into
sweeping direction and its next neighbor.

The same game can be played for fermions carrying spin indices, however it is a bit more bookkeeping. In
principle we already have encountered the two orbital reduced subspace for spinfull fermions in table 4.2. Therefore
we know that it is 16 dimensional, decomposes into nine sectors and is spanned by the kets

= = 0, BI = 0 : |0i ,

= = 1, BI = �1/2 : |0 #i , |# 0i ,

= = 1, BI = +1/2 : |0 "i , |" 0i ,

= = 2, BI = �1 : |# #i ,

= = 2, BI = 0 : |0 2i , |# "i , |" #i , |2 0i ,

= = 2, BI = +1 : |" "i ,

= = 3, BI = �1/2 : |# 2i , |2 #i ,

= = 3, BI = +1/2 : |" 2i , |2 "i ,

= = 4, BI = 0 : |4i . (6.23)

Due to the fact that every single particle orbital can be occupied by an up- and a down-spin (actually itself being a
tensor product of species of the previous case in eq. (6.21)) we need to proceed with caution, since every species
itself transforms like

 
q1f (G)

q2f (G)

!
! * (Uf)

 
q1f (G)

q2f (G)

!
, (6.24)

in first quantization. We account for this by introducing two independent rotations for the degrees of freedom
f 2 {", #}, a setup commonly known as unrestricted Hartee Fock (UHF) [PN54]. If we write down the rotations
in each subsector we arrive at the total transformation matrix * (U", U#). Again we find ourselves in the situation
that all one dimensional subsectors are only allowed to transform trivially by a factor of one. Not particularly
surprising in the one particle subsectors, each element transforms with the unitary itself. Interestingly, the three
dimensional subspaces transform with the rotation matrix of the empty degree of freedom and a flipped sign of Uf .
The former is due to the property of unitarity matrices to have determinant one, which cancels some coefficients in
the transformation, and the fact that no orbital can be occupied twice. The latter is because of the anti-commutation
of creation operators. Finally, the complicated two particle sector can be, as already mentioned, decomposed into
up- and down-kets
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, (6.25)

which explains the form of an dyadic product of the individual transformations * (U") �* (U#). Bringing together
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all these results we arrive at the total transformation matrix * (U", U#) given by
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(6.26)
The application is completely analogous to eq. (6.22), since this is also a twosite gate of square matrix dimension
3

2.
For some applications it might be useful to write the blocks parametrized through Uf via an exponential

function, i.e.

* = exp
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Therefore, we want to note the individual generators of the blocks, e.g. for the two dimensional subspaces we have

� = ±

"
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1 0

#
, (6.28)

where the positive sign belongs to one particle subspace and the negative sign to three particles. The same



Section 6.1. Fermionic mode transformation 67

calculation for the two particle subspace yields the two generators
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So far we only talked about the wavefunction, however, it is also necessary to switch the computational basis of
all operators. We already encountered the transformation behaviour of local operators, which can be done at any
point by virtue of the matrix* and arithmetic MPO operations [HMS17]. However, since the operator algebra gets
superposed, we end up with single orbital creation and annihilation operators of dimension !. This accounts for a
scaling of at best bond dimension O

�
!

2? � , where ? is the number of particles the operator involves. Upon naive
construction, it is even one order higher, not to speak of the cost of truncation algorithms for MPOs [HMS17].
Therefore, we rather proceed by applying the scheme sketched in fig. A.1, where we sandwich the operator with the
transformation and its hermitian conjugate, such that the MPO is also transformed to the new basis. The twosite
MPO is present during variational optimization anyways, in order to compute the effective Hamiltonian [Sch11],
and the multiplication of the two gates into it is usually very cheap. Furthermore, we only have to do it once we have
found a transformation we want to actually keep, in contrast to the state, as we are going to see in a second. The
only trouble is the bond dimension of the Hamiltonian. Since the underlying Hamiltonian is now dense, the SVD
we use to separate the two orbitals from each other is not going to find a representation as sparse as for the input
Hamiltonian. In our experience a combination of a rescaled SVD without truncation and delinearization [HMS17]
followed by a global truncation after a few sweeps gives the best results. Nevertheless, the bond dimension will
increase, even in the best cases and the additional cost is going to condense into the most extensive part of tensor
network algorithms. Therefore a careful balance needs to be found between the input MPO bond dimension and
the growth during the mode transformation, as well as the speedup gained by disentanglement compared to the
additional complexity of the operator application.

We discussed earlier in this section why it is important to be careful with the number of free parameters
introduced into the transformation and how particles of different species might decouple through use of different
rotation matrices. For our typical benchmark system the energy was much lower with less sweeps, when we made
use of two parameters instead of just one, i.e. when we chose U" < U#. Of course, the optimization took longer
due to more parameters, but that might seem like a price to pay. However, recent developements [Leg21] tend to
point into the direction that the short term energy drop due to more freedom in the parameter space is bought with a
high price. Namely, for some of the models we described before, in particular the 2d Fermi-Hubbard, where there
is a strong competition between entropy and energy minimization [QCS+20] the UHF can increase the problem by
creating a heavy imbalance between the (originally exchange symmetric) up- and down-spin. Therefore, a careful
investigation and a shift away from the greedy optimization scheme can be very useful in order to avoid getting
stuck in wrong states. This can be done quite easily by enforcing the Uf to be equal.

Determining the transformation matrix 6.1.1

Now, that we have a stable framework to rotate a fermionic basis and have found the transformation matrices, let us
come to the question of how to find a suited matrix *. For this, we first want to look at the functions we actually
want to optimize. First of all, the transformation matrices in eqs. (6.21) and (6.26) are periodic with respect to
shift of the arguments U! U + 2c. Therefore, our search space is restricted to [0, 2c[ for each species we want to
treat independently. However, in order to find a meaningful optimization criterion it is necessary to find a scalar
objective which can be optimized for a minimum, i.e. we are searching for a cost function 5 (*) = 5 (U). There is
a lot of room for playing around with this and the resulting basis is going to depend strongly on the choice of the
objective. Two particular choices of cost functions proved very useful to us, therefore we want to introduce them
here briefly. First, there is the 1-norm of the singular value spectrum [KVLE16], which we obtain when splitting
the two orbital wavefunction into individual orbitals again via an SVD

k
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G1 . (6.30)
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(a) Enforcing the parameters to be the same.
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Figure 6.1: Example optimization landscape of a 2d Fermi-Hubbard model for the 1-norm cost function defined in eq. (6.31).

A normalized state has singular values ranging from zero to one, however through the application of the effective
Hamiltonian this bound is shifted above one. As we have argued in eqs. (2.6) and (2.9) the spectrum is somewhat
connected to the bipartition entropy and therefore to the computational resources required. Hence, we can define
the function to minimize as

5 (U) =
’
G

|BG (U) | , (6.31)

where the U dependency is hidden in the application of the unitary and a subsequent SVD. The advantage of this
cost function is that it treats all singular values on equal footing, therefore we found it to be especially useful for
early stages of, e.g., the DMRG.

When one wants to use the 1-norm on a T3NS, a minor modification is needed. Since a two site update involves
the joint space of two physical and a branching node we will always have two individual bonds with their spectra
involved. However, the two Hilbert spaces of the bonds (introduced by two subsequent SVDs) have completely
unrelated bases, so comparing them to each other (what we do, when we sum up the spectra) is not well defined.
We circumvented this problem by normalizing the total function with respect to the initial cost function value. This
we need to compute and store anyways, such that we can reject transformations which did not meet our acceptance
criteria (which we are going to discuss in a second). Therefore, we add up the relative change in bases for both
bonds

5̃ (U) =
51 (U)
51 (0) +

52 (U)
52 (0)

2
, (6.32)

which results in eq. (6.31) for a single MPS bond.
The second possibility is to take the logarithm of the (fourth power of the) 4-norm of the singular value

spectrum [KVLE16], i.e.

5 (U) = ln

 ’
G

BG (U)
4

!
. (6.33)

which has the advantage that it suppresses long singular value tails and hence was often used by us in advanced
stages. Furthermore, it can be constructed without an explicit SVD by means of the tensor contractions in fig. 6.2,
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Figure 6.2: Computation of the 4-norm of the singular value spectrum from contractions for a canonically normalized state.

assuming the state is canonically normalized’
=01=0000
=̃10=0

k
==0

01 k
=0=00⇤
001 k

=00 =̃
0010k

==̃⇤
010 =

’
=01=0000
=̃10=0
GG0220

�
=
0G(GG⌫

=0

G1⌫
=0⇤
1G0(G0G0�

=00⇤
G000�

=00
002(22⌫

=̃
210�

=⇤
020(2020⌫

=̃
2010⇤ (6.34)

=
’
GG0220

 ’
0=

�
=
0G�

=⇤
020

!

|            {z            }
=XG20

 ’
1=0

⌫
=0

G1⌫
=0⇤
1G0

!

|            {z            }
=XGG0

 ’
=0000

�
=00
002�

=00⇤
G000

!

|               {z               }
=XG02

 ’
=̃10

⌫
=̃
210⌫

=̃⇤
2010

!

|              {z              }
=X220

=
’
G

B
4
G , (6.35)

with a cost scaling like ⇠ O
�
3

3
<

3� similar to the scaling of the SVD. Another advantage of this cost function is
that its Jacobian and Hessian with respect to U can be computed with moderate effort by means of the chain rule
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Often the additional information about the optimization space proves useful in order not to get stuck in local minima
and speed up the convergence. While the first term is rather trivial for our representations of the unitary eqs. (6.21)
and (6.26), the derivate(s) of the 4-norm with respect to the unitary needs some involved algebra. However, the
diagrammatic representation in fig. 6.2b makes the derivative a lot easier here. The Jacobian is given by the sum
of the contraction of the diagram without one of the *

† each, while for the Hessian we can just leave out both
occurrences of *†.

Finally, we arrive at the algorithm necessary for the determination of the minimum of the objective with
respect to the rotation. For the derivative free version of the optimization in eq. (6.31), i.e. we only have access
to function evaluations, we usually use the well known Nelder-Mead scheme [NM65, TVF02] (sometimes also
referred to as Downhill-Simplex method). This algorithm is specialized to non-linear optimization problems and
in our application found a minimum of the cost function within typically ⇠ 30 iterations for each free parameter.
In order not to get stuck, we do a global reordering approximately every seven to ten sweeps and either restart with
the reordered Hamiltonian (e.g. in DMRG) or also reorder the state (e.g. in TDVP). The basic idea is to form a
simplex in the optimization space of dimension 3, i.e. an object with 3 + 1 corners and use geometric operations to
go down the cost function, while decreasing the surface of the simplex to a desired accuracy. Therefore, we bisect
the area within the optimization space for so long, until we are sure to be in a minimum. As one can image, the
method is highly dependent on the initial value, which usually does not bother us, since we are working iteratively.
Methods involving derivates shall not be mentioned in this section, since we will encounter the first derivative in
section 6.2.1. Second derivative methods, like e.g. Dogleg [POW70], are in principle possible and are expected to
increase performance but were not part of the work of this thesis.
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Generic ansatz 6.2
Up until now we discussed how to change single particle bases, and implemented a framework to do so for fermionic
bases with Abelian symmetries without changing distances and angles inside the Hilbert space. We chose this
particularly easy case, since fermionic orbitals can only be occupied or unoccupied, therefore the transformation
behaviour of the kets in eq. (6.12) is simplified a lot. However, we might be curious to see, if this can be extended
towards several directions. Our aim is to have a generic transformation, written down in a fully automated fashion,
regardless of the particle content of the Hilbert space. In order to derive this from a pedagogical point-of-view, let
us look at bosons with local occupation = = 2. The two orbital joint Hilbert space of the local bases {|0i , |1i , |2i}
is given by

= = 0 : |0i ,
= = 1 : |01i , |10i ,
= = 2 : |02i , |11i , |20i ,
= = 3 : |12i , |21i ,
= = 4 : |4i . (6.37)

Some transformations might be trivial again, like the zero and the four sector or the one particle sector, which we
expect to transform similarly, as before. But, how does e.g. the two particle transformation look like? We again
want to write each basis ket as application of single orbital operators on the vacuum and derive its transformation
under rotations of the basis by the transformation of the operator algebra. If we could find a closed form and the
algebra would be preserved, we would have a chance to write down a similar transformation as before. Introducing
for instance a rotation of the basis elements 1, 2 to new elements 1̃, 2̃, has according to eq. (6.12), the impact

1̂
†

U =
1’
==0

[(=)

"
1̃h= + 1|= + 1iU Uh=|=i1̃ |= + 1i1̃ 1̃h=|

:::::::::

+ 1̃h= + 1|= + 1iU Uh=|=i2̃ |= + 1i1̃ 2̃h=|
:::::::::

+ 2̃h= + 1|= + 1iU Uh=|=i1̃ |= + 1i2̃ 1̃h=|
:::::::::

+ 1̃h= + 1|= + 1iU Uh=|=i2̃ |= + 1i2̃ 2̃h=|
:::::::::

#
U = 1, 2 .

(6.38)

on the algebra. Even though it might be tempting to redefine the underlined elements in the transformation as 1̂†
1̃
,

1̂
†

1̃
1̂

2̃
, 1̂†

2̃
1̂

1̃
and 1̂

†

2̃
, a closer look reveals that this is not as easily done as in the fermionic case. The reason for

this is the sum over more than one element. In the fermionic case [(=) = 1 and the sum collapses to one term
due to the Pauli exclusion principle. Therefore, we can simply define the content of the overlaps of the two bases
as optimization coefficients and search for them. Here, the prefactors depend on the occupation number itself.
This is why we can not just pull them out of the sum in order to define a new operator algebra, unspoken of the
normalization of two operator terms. Note that this is really just a matter of two particles occupying the same level.
For instance, hard core bosons with the same space as eq. (6.17) can be exposed to this procedure, while (* (2)
fermions with the properties

= = 0, ( = 0 : |0, 0i ,
= = 1, ( = 1/2 : |1, 1/2; 0, 0i , |0, 0; 1, 1/2i ,

= = 2, ( = 0 : |2, 0; 0, 0i , |1, 1/2; 1, 1/2i , |0, 0; 2, 0i ,
= = 2, ( = 1 : |1, 1/2; 1, 1/2i ,

= = 3, ( = 1/2 : |2, 0; 1, 1/2i , |1, 1/2; 2, 0i ,

= = 4, ( = 0 : |4, 0i . (6.39)

fail again due to up- and down-spin occupying the same spinor.
This was our starting point where we wondered whether it is possible to apply mode transformation to generic

systems without knowing the exact details of the rotation, which we most likely could not enforce correctly anyway.
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Therefore, we took away the restriction that the unitary needed to depicture the rotation of single particle orbitals.
This rather simple statement changes the setup entirely, for good and for worse, as we shall see in the following.
Assuming we have a twosite gate, i.e. a square matrix of dimension 3

2, the only restrictions are that it

i. does not violate the symmetry of the computational basis,

ii. preserves the nature of the physical degrees of freedom and

iii. is unitary, such that it preserves the Hilbert space structure.

Any rotation matrix *, living on the two orbital Hilbert space H1 ⌦H1 which is block diagonal in the irreps of the
symmetry transformation and whose blocks are unitary themselves, fulfils these three properties.

However, there are several problems with this approach. First, making the entries of the unitary themselves, the
variation parameters introduced more degrees of freedom than allowed. If you look at eq. (6.26) for instance, even
fixing the one dimensional blocks, there remain 32 parameters. For most non-convex optimization algorithms this
is too costly to operate on. Furthermore, typical optimization algorithms will also not find an unitary solution, but
only try to minimize the objective, two tasks which are nearly always not compatible with each other. For instance,
a simple gradient descent search will look for the direction of the steepest descent and basically just executes

*  * � Y
m 5 (*)

m*

, (6.40)

with Y being a parameter. As is seen quite easily, this is not unitary anymore, i.e. we obtain
✓
* � Y

m 5 (*)

m*

◆†
* � Y

m 5 (*)

m*

= 1 � 2Y Re
✓
*

†
m 5

m*

◆
+ Y

2
���� m 5
m*

����
2

, (6.41)

a quantity which is far from being unitary. Of course a subsequent QR decomposition might account for this, but
in our experience the QR usually destroys the minimum character of the solution.

In order to handle these severe shortcommings, we came up with a different ansatz for the unitary. Due to the
constraint that each block of the matrix needs to be unitary itself (or even more restrictive, be a member of the
($ (=)), we can make the following statement. Each block *

(8) inside *, belonging to the symmetry species 8 can
be written as

*
(8) = exp

 
i
’
9

�
(8)
9 ⇠ 9

!
, (6.42)

where � 9 are the generators of the ($ (=), ⇠ 9 are arbitrary coefficients and the sum over 9 runs over as many
elements, as the group has degrees of freedom. For example, ($ (2) has the previously encountered single degree
of freedom, ($ (3) has three degrees of freedom, and ($ (4) has six. Higher block dimensions can in principle
be constructed automatically, however, for non of our investigated cases they were necessary. Note that a complex
transformation would utilize the (* (=) as symmetry group, which has higher dimension, but not twice as high,
due to the restrictions of the symmetry group. Since the individual Hilbert spaces are disjoint we can finally write
the total transformation matrix as

* = exp (i� · ⇠) , (6.43)

where � is the total generator

� =

�
(2)

�
(3)

26666666666666666664

37777777777777777775

(6.44)
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System Single particle basis free parameters Total unitary free parameters

* (1) spinless fermions 1 1
* (1) hard-core bosons 1 1
* (1) ⇥* (1) spinfull fermions 2 10
(* (2) ⇥* (1) spinfull fermions 1 5
* (1) bosons = = 2 1 5
* (1) bosons = = 3 1 14

Table 6.1: Number of free parameters compared for different systems. It is important to emphasize, that not for all of the
systems a closed expression for the mode transformation exists. As a rule of thumb we had a linear scaling of 30 iterations
per species in the number of parameters for the Nelder-Mead-based, derivative-free optimization. All values are given for a
completely real transformation matrix.

and ⇠ is a vector of the length of the total unitary optimization subspace. This is an important fact that is worth
reemphasizing, by constructing the form of the unitary explicitly. In that way, we optimize only in the subspace of
the unitary rotations and therefore do neither have too many open parameters, nor have to do a QR of the matrix
afterwards. The only thing remaining is to construct the full � matrix (as a rank-three tensor), which can be done
once initially and reused afterwards. Note that the additional leg is a vacuum dummy leg which is mirrored on
the vector ⇠. For non-Abelian cases, the only extension is the necessity for CGCs. These we can easily take from
merging tensors for the generator, since they are of rank three as well. The vector gets a singleton, since its values
are optimized anyways and therefore the initial CGCs are not important.

Even though we have reduced the number of parameters significantly, we still have a high-dimensional non-
convex optimization problem to tackle at each energy optimization step. To get a feeling for the spaces involved,
we want to refer to table 6.1. It becomes very apparent that, the space got drastically reduced, but in some cases
is still quite high dimensional. As we have previously mentioned, the incorporation of more information about
our objective is definitely going to be beneficent for the convergence behaviour and the resource consumption.
However, it is for example not a priori straightforward to obtain the derivate of an arbitrary cost function with
respect to ⇠. Thus, we will be discussing how this becomes possible.

Automatic di�erentiation 6.2.1

As discussed in the last section, the more we know about our objective, the easier it gets to optimize. Apart from
a few special cases however, it is difficult to obtain the generic derivative of 5 when operating numerically, let
alone in tensor networks. However, a way to compute semi-analytical gradients for arbitrary functions exists, called
automatic differentiation (AD) [Wen64]. This technique is a highly flexible tool which is broadly used among many
areas, e.g. from environmental science over finance mathematics to neural networks (for an overview the interested
reader might have a look at [BC05]).

Basically, the idea of AD works as follows, assuming we can write the function evaluation as a concatenation
of operations on an input data leading to an output data. Furthermore we presume, that we know the derivative for
each of these operations. The former statement is formalized as

5 : C= ! R
⇠ 7! 5 (⇠) = ( 5< � 5<�1 � . . . � 51) (⇠) (6.45)

58 : C=8 ! C=8+1

H8�1 7! H8 = 58 (H8�1) , (6.46)

where ⇠ and all the 58 can be multi-dimensional, but are not necessarily of the same dimensions or rank. For 5

itself, we always know we have a scalar objective. The only necessity is that the data structure of the inputs is the
same as the previous outputs, e.g. =0 = = and =<+1 = 1. Being interested in the total gradient, we write by means
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21

22 exp cos

+ 5 (21, 22)

Figure 6.3: The compute graph of eq. (6.49).

of the chain rule

r⇠ 5 =
m 5

mH1
·
m 51 (⇠)

m⇠

=
✓
m 5

mH2
·
m 52 (H1)

mH1

◆
·
m 51 (⇠)

m⇠

(6.47)

= . . . =
m 5<

mH<�1
· . . . ·

m 52
mH1

·
m 51
m⇠

, (6.48)

noting that the individual gradients are contracted over their mutual indices, as is indicated by the “ · ” symbol.
This is where the second assumption comes in. If we know how to compute the derivative of each operation, we
can compute the total gradient relatively easy. We follow the flow of operations recursively back from the result to
the inputs and compute each derivate element, a pattern known as backward sweep AD. At each step we contract
the gradient into the previous gradients. Finally, we obtain a numerical exact representation of the gradient without
the need to use numerically unstable difference quotients. The entire pattern is visualized in fig. B.2 for our 1-norm
cost function eq. (6.31) and the generic ansatz (described in section 6.2).

The implementation in tensor networks [LLWX19, Hub19] is technically a bit sophisticated but conceptually
straight forward. For this, the input tensor for the computation of 5 gets extended by an object we call “compute
node”. This compute node stores all the data necessary for the flow back to the initial input node, in addition to the
aforementioned partial gradients, e.g. by previous compute nodes and cached objects. Of course for the input tensor
itself the compute node is trivial. Starting from the input tensor, each new operation successively instantiates a
compute node of the applied operation. When the final result is then obtained, we flow back the compute graph and
compute each partial derivative from the cached data while contracting it with the results of the previous compute
node. In the syten toolkit [HLL+] this is especially easy due to the use of automated tensor leg contractions of the
“STensor” class.

In order to understand this concept better, the following presents a simple one dimensional analytic example
with the function

5 (21, 22) = 21 + cos e22 . (6.49)

Together with the partial functions

51 (⇠) =

 
21

e22

!
= H1 , 52 (H1) =

 
(H1)1

cos(H1)2

!
= H2 , 53 (H2) = (H2)1 + (H2)2 , (6.50)

we are able to write the function, whose compute graph is visualized in fig. 6.3, as 5 (2) = 53 ( 52 ( 51 (2))). The
gradient then resolves via the partial derivates as

m 5

m⇠

=
m 53
mH2

·
m 52
mH1

·
m 51
m⇠

=
⇣
1 , 1

⌘ "
1 0
0 � sin(H1)2

# "
1 0
0 e22

#
=

⇣
1 , �e22 sin e22

⌘
. (6.51)

As we see, we obtain the (trivial) correct gradient, just by the means of the partial objects. Once implemented
correctly, this provides us with an extremely powerful framework to differentiate any tensor network with respect
to any constituent tensor within it, which is as exact as our numerics allow, and relatively cheap to obtain. Usually,
the cost of the derivative evaluation is around the same order of magnitude as the function evaluation itself.

Apart from the trivial implementation of functions like tensor-tensor addition or contraction, there are recipes
of highly non-trivial functions in the AD community. For instance, for our implementation the QR decompo-
sition [WLL10] or the SVD [Tow16] were highly important. Each function operating on a tensor needs to be
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therefore equipped with the necessary information to generate its own compute node or cancel if called without
such functionality.

In principle, this closes our discussion of the generic application of unitaries to two orbital Hilbert spaces.
Basically, we now know everything needed in order to implement the rotation matrix and optimize its parameters
efficiently in tensor networks.

Derivative of matrix exponential 6.2.2

Before discussing results of the method introduced, we would like to discuss the derivative of one function, which
is not completely trivial. Basically, we neglected the question of how to obtain the specific partial gradients up
until now. Looking at the compute graph in fig. B.2 we see a lot of functions, whose gradient is not a priori clear.
Fortunately, except for one of them, we where able to find literature on the partial gradients, as described in the
previous section. However, the derivative of the exponential of a matrix was not easily obtained. As a disclaimer,
we would like to mention here, that we firmly believe that someone has solved this problem before, but there is no
immediate literature on this, therefore we tried to derive it ourselves.

The question is, given the function

5 (�) = eC � 2 C=⇥= (6.52)

with the input matrix � 2 C=⇥= and C being a number, how can we obtain a closed form of

m 5

m�8 9
(6.53)

from quantities available, i.e. 5 , �, etc? In the fashion of the gradient as derivate along a direction in a vector space,
we define the unit “vectors” in the matrix space as

(⇢01)8 9 = X8 9X01 , ⇢ = 1 � 1 . (6.54)

For each entry in the matrix this gives a matrix only containing zeros and unity for the respective direction, e.g.

⇢11 =

2666666664

1 0 . . . 0
0 0 . . . 0
.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 . . . 0

3777777775
. (6.55)

By means of this we can define the directional partial derivative via the limit [Coo15]

m exp(C �)
m�8 9

= lim
⌘!0

eC (�+⌘⇢8 9 ) � eC �
⌘

, (6.56)

which resembles the definition of the usual (scalar) exponential function. Therefore, the derivative is expected
to be the function itself multiplied with some factor, our aim should now be to bring the derivative in this
form. However, we can not just pull out the exponential, since the terms consist of non-commuting matrices.
Therefore, we make use of the Zassenhaus formula (closely related to the Baker-Campbell-Hausdorff formula
(BCH) [Bak01, Cam97, Hau06] and the Suzuki-Trotter decomposition [Tro59, Suz76b, Suz76a])

exp
�
C (� + ⌘⇢8 9 )

�
= exp (C �) · exp

�
C⌘⇢8 9

�
· exp

✓
�
C
2

2
⇥
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⇤ ◆
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✓
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⇥
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⇤ ⇤
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⇥
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⇥
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24
⇥ ⇥ ⇥

�, ⌘⇢8 9
⇤
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, �

⇤
+ O

⇣
⌘

2
⌘◆

O
⇣
C
5
⌘

. (6.57)
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We recognize a power expansion in C with the exponents having a term of order O (⌘) and for the higher powers,
terms scaling at least quadratically in ⌘. Since we are interested in the small ⌘ limit, we can Taylor expand, which
leads us, up to first order, to

m exp(C �)
m�8 9

=
eC �
⌘

✓⇣
1 + C⌘⇢8 9 + O

⇣
⌘

2
⌘⌘ ✓

1 �
C
2

2
⇥
�, ⌘⇢8 9

⇤
+ O
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⌘

2
⌘◆ ✓

1 +
C
3

6
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⇣
C
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⌘
� 1
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(6.58)
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=
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⌘
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⇣
⌘

2
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, (6.60)

where we defined the =-th nesting of the commutator as [ · , · ]=. Executing the limit ⌘! 0 we arrive at the closed
form

m exp(C �)
m�8 9

= �eC �
 
1’
==1

(�C)
=

=!
⇥
�, ⇢8 9

⇤
=�1

!
, (6.61)

which is the matrix product of the original exponential and some factor introduced by the derivative, in analogy to
the scalar case.

In principle, this is sufficient to compute the derivative, we can just truncate the series after some = terms
and compute the gradient from the objects �, ⇢ and 5 (�), to which we have quite easy access. We can even
compute each term in the sum from the previous term, i.e. set up a recursive pattern to decrease the cost. However,
the norm of the commutator decreases quite slowly, such that we typically needed around 20 iterations until we
reached convergence, e.g. for fermionic sites. This makes the computation not only quite costly, but also prone to
catastrophic cancellation [Gol91] due to the alternating sign in the series. We solved this problem by reformulating
the series in an exact fashion, without the need to truncate.1 The key observation of the procedure [Bra20], is the
fact that [ · , · ]= is a bilinear map from two matrices to another matrix. Therefore, if we map the space of matrices
to an isomorphic space of vectors, the operation [�, · ]= is the pendant of a matrix multiplication with a vector.
Such a bijection V(8, 9) could for instance be a fuse or split tensor multiplied into the matrix to which [�, · ]= is
applied. The central claim now is that higher order commutators behave like powers of the matrix application, i.e.

[�, · ]= = [�, · ]
= . (6.62)

This claim we prove via induction, i.e. starting from

[�, · ]0⌫ = ⌫ = [�, · ]
0
⌫ (6.63)

[�, · ]1⌫ = [�, ⌫] = [�, · ]
1
⌫ (6.64)

we can make the step

[�, · ]=+1⌫ = [�, [�, ⌫]=] = [�, · ] [�, · ]
=
⌫ = [�, · ]

=+1
⌫ . (6.65)

With respect to the scalar product defined by the Frobenius norm, we can investigate the (anti-) hermiticity properties
of the matrix for two arbitrary vectors �, ⌫

h�| [�, ⌫]i = tr
⇣
�
†
[�, ⌫]

⌘
= tr

⇣ ⇥
�
†
, �

⇤
⌫

⌘
= ± tr

⇣
[�, �]

†
⌫

⌘
= ± h[�, �] |⌫i , (6.66)

where plus sign holds for � being hermitic and the minus sign for � being anti-hermitic, i.e. the matrix in our
isomorphic space inherits its hermiticity properties from �. Finally, we write down the representation of the matrix

�V (:,;) ,V (8, 9 ) =
� ⇥
�, ⇢8 9

⇤ �
:; , (6.67)

1For historical reasons we referred to this procedure internally as the “first Bramberger solution”.
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with which we can write eq. (6.61) as

" (�) =
1’
==1

(�C)
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=!
⇥
�, ⇢8 9
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=�1 =

1’
==1
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=( b ⇤W)=�1

=
1’
==1
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*⇡
=�1

*
† (6.68)

= *

1
b
⇤
⇡

⇣
e�C b ⇤⇡ � 1

⌘
*

† . (6.69)

Here, we defined the hermitian matrix W and the residual prefactor b, which is one in the case of a hermitian matrix
and i for an anti-hermitian one. Since we diagonalized the matrix it now can be easily exponentiated

" (�) = * diag

e�C b ⇤31 � 1

b
⇤
31

,
e�C b ⇤32 � 1

b
⇤
32

, . . . ,
e�C b ⇤3= � 1

b
⇤
3=

�
*

† . (6.70)

It is worthwhile stepping back for a second an observing the result again. We have achieved to map our problem
from a numerically highly unstable series to the problem of merging the correct legs of a tensor and diagonalizing
a relatively small hermitian matrix. This makes it possible to compute the derivative for arbitrary exponents �, we
just have to transform the result back into the original basis. We formalize the entire algorithm.

1. Compute eC � .

2. Construct ⇢ .

3. Compute the commutator � =
⇥
�, ⇢8 9

⇤
.

4. Merge the matrix legs of � into one leg and the index legs 8, 9 into another, therefore obtaining a true matrix.

5. Diagonalize �, obtaining *⇡*
†.

6. Set each element of ⇡ to

i. exp
�
e�C3 � 1

�
/3, if the eigenvalue 3 > 0, or

ii. use l’Hopital’s rule and set the element to �C otherwise.

7. Multiply to � = *⇡*
† again.

8. Demerge into the original matrix legs and 8, 9 .

9. Multiply � with �eC � to obtain the final derivative.

Finally, we have everything to implement and compute the general unitary and its derivative and can therefore
start benchmarking the algorithm.

Operator bond dimension 6.2.3

Overcoming the rotation of single particle orbitals in eq. (6.38) and introducing the ansatz in eq. (6.43) we hid
one thing, namely the behaviour of the operator under this transformation. As we mentioned in previous sections
and visualized in fig. A.1, we sandwich the Hamiltonian with the adjoint of the rotation from the left and the
rotation itself from the right. Starting from the most general Hamiltonian, which restricts to maximally two particle
interaction (and suppressing the spin indices from eq. (3.68), as they are not important for the argument)

� =
’
8 9

C8 9 2̂
†

8 2̂ 9 +

’
B?@A

EB?@A 2̂
†

B 2̂
†

? 2̂@ 2̂A (6.71)

and rotating

2̂
(†)

8 ! *812̂
(†)

1 +*822̂
(†)

2 (6.72)
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we will maximally change the content of the C and E objects. However, the operator bond dimension F = O
�
!

2�
bound [HMS17] remains valid at any time. This of course only goes under the assumption, that we use the usual
tricks [HMS17] in order to avoid numerical garbage piling up in the operator and hence finding a good representation.
When one uses the pre-MPS way to construct Hamiltonians from partially pre-summed complementary operators
[CKN+16, KVLE16] the same logic holds. There, only the operator terms which belong to changed orbitals have to
be updated by recomputation. Since we have direct access to the global * matrix, we do need to transform further
observables, they can just be reconstructed after the optimal basis has been found.

For our construction scheme in eq. (6.43) which only restricts itself to be unitary, this is no longer the case. We do
know that the transformed Hamiltonian will be representable in some second quantized basis, but its representation
in this basis might contain arbitrary high particle interactions
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†
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†
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B 2̂? 2̂@ 2̂A + . . . , (6.73)

which in turn shifts the bond dimension bound to O (!
]
), where ] is the highest interaction introduced. Of course,

this does not mean that this immediately happens, but depending on the system at hand and the truncation procedure
after the rotation, this can have severe consequences. For instance, we have observed systems whose bond dimension
reaches O (20 000) after just two sweeps with this method. Of course the computational speed-up in the state bond
dimension is then completely destroyed by this scaling. Therefore a careful observation and control of the algorithm
is of high relevance for its application and we are not able to currently offer a manual for procedure. This has to be
the subject of future research efforts.

One path we followed, was to extend the cost function by the bond dimension of the operator and a scaling
factor [, i.e.

5 (⇠) ! 5 (⇠) + [ 5̃ (,) , (6.74)

where , is the twosite MPO tensor. [ can be utilized to choose how much one wants to weigh the operator.
Please note, that we are again comparing spectra of different Hilbert spaces, therefore a relative measure as in
eq. (6.32) is necessary. As 5 we chose the four norm of the spectrum eq. (6.33), as we can compute it with the same
scaling as the one norm, as discussed before, but we avoid taking SVDs. Since operators can not be normalized,
in contrast to wave functions, and their norms usually grow exponential in system size, the spectra consists of
quite large numbers, even when using the rescaled SVD. What we found is that the additional term complicates the
optimization landscape (described in fig. 6.1) so much that our usual algorithms do not find minima in a reasonable
number of iteration steps. However, it would be feasible to find a way in the future to get better control of the
operator bond dimension, in order to push this method to new potential domains, irrespective of the fermionic or
generic ansatz chosen.

One last remark we want to make is that using the generic ansatz prevents rotation of the original basis to
the new one in order to compute observables the usual way. However, we can use the same method as before,
i.e. sandwiching the Hamiltonian, on an arbitrary operator, e.g. the identity MPO. This way we obtain the global
representation of the unitary as an MPO itself and can then rotate global quantities between the different bases
by means of operator-operator applications, see section 3.3.4. Of course, here the same catastrophic scaling can
happen, which would then make the calculation useless, apart from trivial quantities, e.g. entropies and energies.

2d Fermi-Hubbard model benchmarks 6.3
The Hubbard model [HF63, Kan63, Gut63] has been of physical interest for over half a decade now. Its basic idea
is as simple as the model itself is written down: How does the tendency of spinfull electrons to delocalize play
out against their repulsion due to electrostatic effects and Pauli’s principle [Pau25]? This is manifested through the
simple looking Hamiltonian model (given in the canonical ensemble)

�̂/C = �
’
h8, 9 if

2̂
†

8f 2̂ 9 f +*/C

’
8

=̂
"#,8

, (6.75)

where the former is controlled through the tunnelling amplitude C and the latter via the on-site repulsion*. This can
be a good model to approximate an atomic grid, in which the atoms keep their electrons tightly bound to themselves,
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Figure 6.4: Bond dimension of the operator in fermionic ( ) and AD ( ) orbital optimization plotted against the
optimization step. The system at use is an 8 ⇥ 8 Fermi-Hubbard model with * = 8 and 1/8-th doping. Note, that the periodic
decreasing comes from the trivial bond dimensions at the edges of the MPO. Furthermore, the theoretical bound ( ) on
a fully dense quartic MPO bond dimension is F  2!2

+ 3! + 2 = 8386 [HMS17], which is not violated. The initial bond
dimension before mode transformation was F = 6.
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Figure 6.5: Schematic representation of the Z-mapping of a 2d lattice to a MPS. While the hoppings along the G-axis can be
attributed to neighbouring nodes, the hopping along the H-axis always will be !G nodes away. Double occupancies are penalized
with an energy contribution of *. Note, that one could also do a snake mapping, i.e. connecting the edges of the rows. This
would make the number of nodes between rows variable between one and 2!G � 1, in our case depending on how far the upper
node is from the right edge.

however the individual atoms are close enough, such that hopping can occur between nearest neighbours. The
geometry of the grid is basically left open in this formulation and can be arbitrary, however, in our case the grid
shall be a 2d square lattice as is shown in fig. 6.5. The interaction between electrons of different grid points is
neglected, only the double occupation of two electrons of opposite spin is penalized with an energy gain of *.
We consider each atom to have only one non-degenerate electronic orbital, e.g. because higher lying orbitals are
separated through a large energy gap.

Of course, this is a simplification of reality and far from being ab-initio, however the idea is to isolate interesting
physics and attribute it to simple origins. In particular, the Hubbard model and related models are candidates for
modelling high)2 superconductivity [BM86, Dag94] in cuprates [And87, ZR88]. For ordinary superconductors the
microscopic origin [BCS57a, BCS57b] can be attributed to the instability of the Fermi-sea towards perturbations
with an attractive electron-electron interaction [Coo56] and the subsequent formation of composite bosonic particles,
so called Cooper pairs. However, due to the low binding energy of Cooper pairs their formation is restricted to low
temperatures, i.e. above )2 & O (10 K) the composite particles break into their constituents again. Therefore, one
can also see the Hubbard model as a “natural” extension, asking how superconductivity can occur given repulsion
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Figure 6.6: Bond entropies for the ! = 6 lattice at half filling getting brighter with increasing number of iterations.

of the constituents.
Coming back to the model and neglecting its applications, we can see that it is solely controlled by two

parameters. Being only interested in the singlet ground state, we have the ration between hopping and repulsion
and the number of particles present, i.e. the filling factor d = #/!, as parameters. It is also common to work
with the doping of the model, i.e. how much the particle number is away from being half filled d = 1 + X). Even
though the model is quite simple looking, it is far from trivial to solve for large systems sizes. There exists a variety
of literature for different regimes, e.g. for the under-doped model [ZCC+17, TLJ+13, AM07] or at half filling
[LAB+15, SWicv+21, QSA+21]. Especially the latter can be well accessed by Monte-Carlo methods, since it does
not suffer from the sign problem [Hir85]. However, the doped case, which is of particular physical interest, just
recently got treated in a conclusive manner, where it was found that the ground state consists of stripes and that it
is not superconducting [QCS+20].

For our test of the fermionic mode transformation we ran quadratic lattices with two system sizes, i.e. ! = 6
and ! = 8 at */C = 8. Furthermore, the transformation matrix of the spin species were enforced to have the same
rotation angle U, a procedure which has higher energies during the optimization process than UHF calculations.
However, this resembles the physical situation of the system, i.e. an invariance under exchange of up-and down-
spin. We chose periodic boundary conditions since the mode transformation is able to find the momentum space
representation for translationally invariant systems in 1d and this might be also beneficial in higher dimensions.
For the doping we used half filling and the doping of X = 1/8 which was employed in [QCS+20]. As discussed
in the latter, the competition between entropy and energy minimization, in combination with the large system
sizes necessary, makes a faithful simulation quite difficult. Furthermore, the suspected stripe ground state has a
mean-field wavelength of _ = 1/X [VT18], which would tend to make systems below width of ! = 8 frustrated in
simulations.

We initiate our simulation by a run at bond dimension < = 512 which results in a quite high Rényi entropy,
as can be seen in fig. 6.6. This can be attributed to the artificial 1d! 2d mapping which introduces long range
hopping in the MPS. This is followed by a reordering of the modes according to the mutual information criterion
(as was explained in section 3.4) which causes an immediate drop of the overall entropy. In the subsequent steps,
the bond dimension grows up to the final value of < = 2048 which leads to a growth of the entropy. However, the
mode transformation counteracts this growth by minimizing the singular value spectrum.

As for the energy, we clearly see large drops in fig. 6.7 in some of the iterations after mode transformations have
been applied, even though bond dimension is kept constant at these iterations. This resembles the fact, that we did
not choose the local transformations to be greedy, in order to avoid getting stuck in local minima, as the search for
good modes takes several iterations. The particle densities and spins in fig. 6.8 show the typical antiferromagnet
(AFM) order in the half filled 2d Fermi-Hubbard model [HT89]. The particles try to maximally delocalize in order
to minimize the energy and therefore the distribution is not differing more than 1⇥ 10�5 from unity, while the spins
are alternating.
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Figure 6.7: Minimal energy density for each iteration during the DMRG mode transformation process for a 2d Fermi-Hubbard
model with periodic boundaries. Half filling (X = 0) is shown on the left H-axis and the doped model is shown on the right.
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Figure 6.8: Density and spin expectation values for the half filled Fermi-Hubbard model with mode transformation. The spins
resemble AFM order and are depicted true to scale.



Projected purification 7
So far, we have encountered systems in- and out-of-equilibrium, but we have not yet talked about systems beyond
the BO approximation. We mentioned in section 3.4, that Hamiltonians for such systems exist, but did not dive
into any further detail. Therefore, prior to discussing on tensor network methods for such systems, we will spare a
moment to explain their derivation from the Schrödinger equation.

Basically, the idea of Born and Oppenheimer [BO27] is to split off the nuclear motion in the molecular
Hamiltonian eq. (1.3) and treat each problem separately. In order to do so, we introduce a mean nuclear mass "

and define j = (</")
1/4, where < is the electron mass. This enables us to write the total Hamiltonian as

� = )4 (r8) +* (G8 , G� ) + )= (r� ) = �0 + j
4
�1 , (7.1)

where lower case indices 8 are counting electrons, while capital indices � count nuclei. This way, the nuclear motion
can be treated perturbation-like, with the parameter j being very small, even for the lightest nuclei. One common
physical picture is that the electrons are so much lighter than the nuclei, that their motion follows instantaneously.
The authors then argue that the solution of the j = 0 limit, i.e. frozen nucleus motion G� = const. leads to an
electronic wave function iG� (G8), only parametrically depending on the nuclear positions. Furthermore, we obtain
corresponding eigen energies ⇢

(0) , which only depend on the relative nuclear coordinates, a concept nowadays
referred to as potential energy surface (PES). A subsequent expansion of the relative nuclear coordinates with
respect to small changes j leads to a series of differential equations for the total molecular wave function [BO27].
The zeroth and first order corresponds to the lattice being in equilibrium, especially the former is solved by a product
state ansatz of the nuclear and electronic wavefunctions. The second and third order belong to lattice vibrations and
are therefore more complicated to solve. This originates in the fact that the second order correction is the first term
containing contributions from �1 [BO27]. Higher order corrections give higher order lattice corrections, which
are usually not of particular interest to us. Expanding the solutions of the perturbed electronic wave functions in
the nuclear frozen electronic basis leads to a total wave function representation [BO27]

k(G8 , G� ) =
’
:

b: (G� )iG� ,: (G8) , (7.2)

where the b: (G� ) are some functions for the nuclei, yet to be determined.
In order to derive the validity of this ansatz we plug the total wave function back into the eigenvalue eq. (7.1)

and eliminate the electronic part of the wave function, which leads to [Gla44, SIS+15, Mus16]

(�el + �n) b (G� ) = ⇢b (G� ) . (7.3)

Here, �el is a diagonal matrix of the electronic energies and �n is defined via the remaining terms as

�n (G� ) =

26666664

hi1 |)= |i1i . . . hi1 |)= |i i
.
.
.

.
.
. . . .

hi |)= |i1i . . . hi |)= |i i

37777775
. (7.4)

Since the derivative with respect to nuclear coordinates hits the parametric dependency of the electronic wave
functions as well, we thus obtain three terms for the nuclear part [Gla44, Mus16]

’
:0

 
X::0)= + hi: |)= |i:0 i +

’
�

hi: |?� |i:0 i
?�

"�

!
b:0 (G� ) . (7.5)

As long as the second and third term in eq. (7.5) can be neglected, we can treat the electronic and nuclear systems
separate from each other and just form product wave functions. The second term is a scalar, which is somewhat
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related to the change of the electronic wave functions with nucleus position. As argued previously, this is not exactly
relevant to our cause. On the other hand we have the last term, whose diagonal elements are zero for time reversal
invariant systems and whose off-diagonals can be shown to be negligible, if the PESes do come close anywhere in
the parameter space [Smi69].

If we want to go beyond the adiabatic approximation, we rely on the incorporation of the nuclear grid and its
motion. Especially when dealing with calculations from first principles, we need to depicture the correct interaction
and can not make use of effective models. In order to restore the diagonal character of eq. (7.3), it is therefore
common to do a diabatic transformation of the electronic levels [Lic63, Smi69]. This introduces a unitary rotation
in such a way, that the total matrix becomes diagonal.

From here, one can start to investigate at the molecule in the presence of nuclear vibrations. The dependency of
the PES on the lattice coordinates is usually a slightly complicated configuration. However, we are only interested
in the proximity to some minimal configuration, i.e. corrections to the equilibrium. Therefore, it is common
practice to approximate the PES as harmonic oscillator around this minimum position [Mus16]. This is expressed
in a Taylor series of the potential ⇢ (0)

(G� ) up to the second order. Together with the kinetic energy of the nuclei,
we can therefore write

’
�

 
?

2
�

2"�
+
"�l

2
�

2
G

2
�

!
, (7.6)

which translates in second quantization to the well known
’
�

l� (=̂� + 1/2) . (7.7)

The occupation numbers = counts the quasi-particle excitations of the lattice vibrations, called phonons. Phonons
are bosonic particles, i.e.

h
1̂
(†)

8 , 1̂
(†)

9

i
= 0 , (7.8)h

1̂8 , 1̂
†

9

i
= X8 9 , (7.9)

whose individual levels might count occupations = 2 [0,1[.
As for the third term in eq. (7.5), this is the vibronic coupling term, which is proportional to hi: |mG� |i:0 i and

connects the electronic and the phononic orbitals. Here strikes the advantage of a diabatic transformation [Lic63,
Smi69]: We can exchange the derivative of the electronic functions on the nuclear coordinate and get a term
depending on the transformation matrix between adiabatic and diabatic orbitals and the PESes only. As the
excitation energy is then usually approximated to be linear in the displacement of the nucleus [SIS+15], we arrive
at the electron-phonon coupling term to the second quantized Hamiltonian

’
8 9 �

68 9 ,�

⇣
1̂
†

� + 1̂�

⌘
2̂
†

8 2̂ 9 . (7.10)

As we shall see in section 9.1, there also exist Hamiltonians which couple the electronic algebra to higher powers
of the displacement 1̂†� + 1̂� . The diagonal terms 8 = 9 can be interpreted as the proximity to electronic density,
causing the vibrating nuclei to change motion and therefore change the energy. The off-diagonal terms 8 < 9 in
turn belong to vibrations which are influenced by electrons hopping to other orbitals.

Common methods 7.1
In order to study the impact these additional new degrees of freedom have on our tensor network approach, let us
have a look at one of the easiest possible models incorporating lattice vibrations, i.e. the Holstein model [Hol59]

�/C = �
’
h8, 9 i

2̂
†

8 2̂ 9 +*

’
h8, 9 i

=̂8 =̂ 9 + l0
’
�

=̂� + 6

’
8,�

⇣
1̂
†

� + 1̂�

⌘
=̂8 . (7.11)
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While this model exhibits the usual fermionic particle number conservation due to the symmetry 2̂
(†)
! e±iU

2̂
(†) ,

no such symmetry exists for the bosonic particles. This is caused by the electron-phonon coupling, which transforms
non-invariant. The physical picture is plausible, since lattice vibrations can be triggered by certain processes from
“nowhere”, as long as energy is conserved. However, this leads to higher occupation of the vibrational orbitals
with phonons. For our usual tensor network ansatz this is quite severe, since the exploitation of symmetries in the
tensor representation is crucial to the feasibility of solutions, as we explained in section 4.2. Without it, the tensors
are not going to be as sparse, resulting in a significantly increased usage of CPU-time and memory consumption
(we will show examples in chapter 9). For realisticly large systems this can be a curse, confining their exact first
principle studies to strong limitations.

The situation gets aggravated by the fact that the vibration modes can technically be occupied by an arbitrary
particle number, since they do not obey Pauli’s exclusion principle. We certainly need to truncate the local Hilbert
space at some finite value =ph, since we are operating on a computer. However, the value for the truncation needs
to be high enough, such that the system does not see the truncation. If states which are necessary to describe the
wave function correctly are cut off, this will result in plain wrong results. For DMRG-like ansatzes, which were
developed for a low number of local degrees of freedom the scaling can be quite challenging when =ph gets large.
Several methods exist to handle these type of systems [SKM+21]. Before detailing out the method we used, a brief
overview is in order.

In the condensed matter community, probably one of the earliest is the pseudo-site method [JW98, ZJW99].
In order to avoid large local Hilbert spaces the representation of 0, 1, . . . , =ph on a single orbital is therefore
decomposed onto several auxiliary sites, all having a local basis of e.g. 0, 1. The occupation of higher values
are then in turn expressed through their binary representation at the cost of introducing couplings between the
auxiliaries, e.g. on a single site this reads

|3i = |1i20 ⌦ |1i21 ⌦ |0i22 ⌦ |0i23 =
nÃ
8=0

|18i28 . (7.12)

Here, we have a total eight-dimensional local Hilbert space 3 = 8, going up to =ph = 7, and as a consequence, each
phononic site will become n = dln 3/ln 2e new sites. This works quite well for systems with local electron-phonon
coupling, however for the molecular systems treated within this thesis, which have long range couplings anyway,
this results in an unreasonable high demand for resources. For instance, the bosonic creation operator looks like

1̂
† =

=ph�1’
==0

p
= + 1 |= + 1i h=| =

=ph�1’
==0

p
= + 1

Ã
8 9

|18i28 2 9 h1 9 | , (7.13)

obviously multiplying this with other operators results in dense long range couplings.
Another method dealing with large local Hilbert spaces is the local basis optimization (LBO) [ZJW98, BDV+15].

The basic idea is to optimize the local basis with respect to the phononic oRDM (see section 4.1.2) at each
optimization step, in order to find an optimal representation [SKM+21], similar as DMRG does for the site tensor.
First, we extend each site tensor by a matrix containing the basis rotation, i.e. "=

;A !
Õ
=0 "

=0

;A +
=0= . Then, at each

optimization step of the canonical site tensor, we compute the SVD with respect to the physical bond. Subsequently,
we perform a DMRG like optimization of the contraction of the transfer tensor and the rotation matrix, which is
subsequently again split via a SVD. Finally, the transfer tensor is multiplied back into the site tensor, leaving the
MPS open for an iteration on all sites and the transformation matrix again as an unitary. The improvement of the
local basis due to these operations will be a reduction of the local dimension to a value between 1  3̃  3.

Finally, we want to mention the existence of a method very common in the chemistry community, namely the
MCTDH [MMC90, Man08, Man09, ZXJL16, RCT19, MMC92]. Here, the idea is to decompose the many-body
wave function in first quantization (particularly in real space representation) into a recursive TTNS representation
and make use of the Dirac-Frenkel variational principle [Dir30, Fre34]. This leads to equations of motion for the
expansion coefficients and the basis functions, which are superficially similar to those of TDVP. The local degrees
of freedom of the tree then become the discretized positions in space. One of the main problems however, is the
representation of the Hamiltonian in a fashion which makes the ansatz solvable. Similar to the application of �eff
to the wave function being the most expensive part of TDVP, this becomes the most expensive part of MCTDH.
One of the down-sides here is that, due to the representation in real space, the incorporation of symmetries becomes
very non-trivial. The necessary symmetry groups are substancially complicated, typically non-Abelian ones, which
makes the implementation effort rather complex.
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In order to handle the earlier problems, we now want to introduce the projected purification (PP) mapping
[KSP21, SKM+21, Pae20], a technique which handles various difficulties of phononic models at once, which was
the main method used for this thesis.

Mapping 7.2
Assume we have a wave function expanded in orbitals which are labeled by the irreps of some global conserved
quantity #̂ =

Õ!
8=1 =̂8

|ki =
’
=1...=!

2=1 ,...,=! |=1, . . . , =!i . (7.14)

We want to emphasize, that this procedure is not restricted to particle number symmetries, in principle any global
(Abelian) symmetry can be restored like this.1 However, depending on “how much” the Hamiltonian is violating
the quantum number conservation, we are going to see more blocks (discussed in detail in section 8.2). Continuing,
we introduce a somewhat artificial doubling of the total Hilbert space [KSP21, SKM+21, Pae20], i.e. every orbital
8 becomes two orbitals (8, 8̄), i.e.

|ki =
’
=1...=!
=̄1...=̄!

2=1 ,...,=! ,=̄1...,=̄! |=1, . . . , =! , =̄1, . . . , =̄!i . (7.15)

These are called “physical” and “bath” orbitals and are visualized in fig. 7.1. The attentive reader might recognize
the similarity in notation to purification in finite temperature MPS approaches [VGRC04, Sch11]. However, the
key difference is, that we will restrict ourselves to the sub-manifold of the original Hilbert space entirely. In order
to do so we impose a gauge-condition on the coefficients of the state

=8 + =̄8 < =ph = 3 � 1 ) 2=1...=! =̄1...=̄! = 0 . (7.16)

Plugging eq. (7.16) back into eq. (7.15) we obtain the new representation of the wave function

|ki =
’
=1...=!

2=1 ,...,=! ,=ph�=1...,=ph�=!|                        {z                        }
=2=1 ,...,=! ,=ph

|=1, . . . , =! , =ph � =1, . . . , =ph � =!i , (7.17)

where we obtained the new unknown coefficients 2 which only depend on the original degrees of freedom and =ph.
If we now define the total particle number operator

ˆ̃
# = #̂ +

ˆ̄
# , (7.18)

we see that we restored the particle number conservation
⇣
#̂ +

ˆ̄
#

⌘
|ki =

’
=1 ,...,=!

2=1 ,...,=! ,=ph

⇣
#̂ +

ˆ̄
#

⌘
|=1, . . . , =!i |=ph � =1, . . . , =ph � =!i

=
’

=1 ,...,=!

2=1 ,...,=! ,=ph!=ph |=1, . . . , =!i |=ph � =1, . . . , =ph � =!i = !=ph |ki (7.19)

at the cost of introducing some additional nodes. Therefore, we can just introduce the total (physical and bath)
particle number as a conserved quantity again, irrespective of the Hamiltonian commuting with the individual
terms or not. This transforms the dense blocks of local dimension 3 to 3 sparse blocks of reduced dimension
one. This has manifold advantages compared to the standard approach. Mainly, a lot of unnecessary zeros are
left out therefore saving resources in CPU and memory. This can make calculations several orders of magnitude
faster [KSP21, SKM+21, Pae20, MXY+21], especially when exploiting the usual parallelization over tensor blocks.
Also, we make operations numerically more stable due to smaller blocks. Furthermore, the relation between the

1Non-Abelian symmetries should obey the same logics but need a more complicated gauge condition.
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Figure 7.1: Demonstration of the PP mapping. Figure 7.1a demonstrates a state with two types of orbitals, 5 belongs to
the symmetry which is not violated, ? to the one which we want to restore. The notation with the brackets is borrowed from
chemistry and means repeat as often as necessary. The super site could be for instance a tight binding like electronic orbital,
energetically well separated from the higher orbitals and a vibrating lattice component. Figure 7.1b is the usual doubling, also
applied in purification [VGRC04], where we introduce a larger total Hilbert space. Figure 7.1c then finally shows the state
projected into the subspace of the purification by means of the function =̄ = 6(=).

truncation of the bonds between the physical and bath sites and the 1oRDM of the phononic super-site is of high
interest, as we shall see in a second.

Before we continue discussing the projected purification (PP) mapping, we shall take a step backwards and
prove that the representation eq. (7.15) together with the gauge condition eq. (7.16) is actually isomorphic to the
original problem. In order to do so, we want to prove that a set of all functions spanned by variation of the 2 in
eq. (7.14) is isomorphic to the set of all functions in eq. (7.17), given the gauge is enforced [KSP21]. First we
define for convenience

=̄ = 6(=) = =ph � = , (7.20)

and note that with each X=̄8 ,6 (=) we introduce to the wave function in eq. (7.15), we eradicate =ph degrees of
freedom. Therefore, the resulting total dimensionality of the purified subspace H ⌦ H is of the original size 3

! .
Furthermore, we note that we can form a joint Hilbert space of the physical and bath sites by means of contraction
with an isomorphism [SPV10, SPV11, SV12]. Such isomorphism, commonly also referred to as merge tensors,
takes two legs, e.g. of dimension 3, and upon contraction results in a merged local Hilbert space of size 3

2.
Contracting the physical and bath site over their mutual link, and the physical legs with an isomorphism, results in
a dense tensor which belongs solely to the irrep of =ph but is of dimension 3 if the gauge condition was imposed.
However, inside the original Hilbert space H , the structure is preserved. If there were no symmetry-violating terms
in the state, one can even reconstruct the decomposition into irreps, otherwise it will be truly dense. As one can
easily check, the subsequent contraction of all physical and bath sites will lead to the representation of the MPS in
the original basis. Therefore, we have found an isomorphism between the two spaces.

For the usual DMRG/TDVP procedure we need an initial state before we can start the algorithm. This can be
easily constructed from pre-existing methods by restricting the occupation number (or any other symmetry) of the
purified and the bath sites to the vacuum and afterwards applying a transformation MPO. This MPO contains only
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5 ?

1

Figure 7.2: Possible mapping to combine the advantages of the T3NS with the PP mapping. Actual physical sites are aligned
in the chain, while the bath sites are split away by means of the branching nodes.

identity operators, mapping everything to itself on all sites except the bath orbitals where we apply the matrix

) ⌘
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1 0 . . . 0

3777777775
. (7.21)

After that, we can prepare the symmetry-violated orbitals in any way we wish, usually by the application of creation
and annihilation operators, see section 7.4. It should be mentioned, that there also exists the possibility to map
any state from H ⌦H onto the purified subspace by application of a projection MPO. However, we found that the
bond dimension of the MPO grows quite fast and therefore the application and the handling of the state afterwards
gets quite tedious. Once our subspace representation is obtained, we can simply proceed with ordinary tensor
network methods.

One special property of the PP mapping is that, since we have decomposed one orbital into several sites, the
two-site DMRG method [Sch11] works as an effective single site update scheme. We mainly focused on two ways,
in order to map the electronic and phononic degrees of freedom. Either we chose a joint representation of the
electronic and the physical orbital in fig. 7.1c, or we actually split all three into separate orbitals. The former was the
original method presented in [KSP21], however we found the latter to be advantageous, mainly because the local
Hilbert space of the merged sites is of size =f ⇥=ph ⇠ 100. Nevertheless, since the largest bond dimension is usually
the one between purified and bath site, it would be interesting for future investigations to apply a mapping, merging
the bath and the fermionic site and therefore creating a homogenous bond dimension profile. Also, ansatzes where
one combines TTNS and PP, as is demonstrated in fig. 7.2, might be beneficient to the system.

However, in order to overcome this effective reduction of the variational Hilbert space, we found it useful to
do a lot of low accuracy sweeps with the single site update pattern [HMSW15] at the beginning of the run. This
basically constructs the next iteration step in the Krylov subspace and expands the basis with it before the truncation
happens. Therefore, it can help to overcome these artificially introduced convergence preventers.

As a final remark we would like to mention, that single orbital observables of the purified sites now involve two
actual orbitals. Therefore, their computation needs additional care, if one does not want to be wasteful of resources.
We found it particularly useful to implement the evaluation of typical observables via hand-crafted functions which
perform the contractions between physical and bath sites in the correct fashion.

Automatic truncation 7.3
Through the PP mapping we have recovered the * (1) particle number symmetry of our phononic systems again,
which was desirable from a computational perspective. However, we have not yet discussed the large number of
local degrees of freedom present in the typical setup. By initializing the system the way we explained it before, i.e.
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by the vacuum and the full orbital for the purified and bath sites respectively, only the bonds between super-sites
will not belong to product states. Therefore, even if we are depicting all possible occupations = = 0, . . . , =ph, we
only keep track of one sparse block of dimension one, i.e. the choice of =ph is unimportant for the cost of the state.
Of course the magic is hidden in the representation of the Hamiltonian, as it has to contain all possible mappings
from all quantum numbers of the state |ki to all quantum numbers of the state |�̂ki, which the given system can
do under the gauge condition eq. (7.16). This leads to the Hamiltonian usually having the full local dimension 3.
However after truncation, which has do be done only once in the beginning of the simulation, the operator bond
dimension is usually quite small (⇠ O (10)), which enables us to work with the reduced one dimensional blocks
efficiently.

So how does the PP mapping influence the local dimension of the state, e.g. in a variational procedure? The first
impression might be that through the application of the Hamiltonian, we introduce new possible occupations on the
MPS, resulting in the local dimension getting denser with increasing simulation time. Particles will be shifted from
the bath sites into the physical system and superposition of different combinations will be introduced into the state.
After all we do not expect the system to be a product state between the super-sites, or the fermionic orbitals and the
physical-bath complexes. However, the interesting question arises, almost naturally, about the interpretation of the
bonds between physical and bath sites. In order to understand this, we need to understand the relation between the
RDM of the (physical) phononic system.

From basic quantum mechanics we know that the diagonal entries of the RDM are related to the probability of
finding the system in the corresponding state. If we want to know, e.g. what is the probability to find two phonons
on orbital 8, we need to compute d̂8 (as described in eq. (4.8)) and look at the diagonal entry belonging to = = 2.
It is important to note, that here by orbital 8 we mean the product space between 8% and 8⌫. We already know
about the connection between the RDM and the SVD truncation from eq. (2.9), however we now are interested in
the RDM of the physical site only. Therefore, following the argument from [KSP21, Pae20], we define the map,
bringing states in H to the purified subspace of the doubled Hilbert space as �. The action on operators in the PP
space therefore is given by

% 3 $̂% = �$̂�
�1 , 8$̂ 2 H , (7.22)

where we called the set of all states in the doubled spaces respecting the gauge condition %. From this definition
immediately follows
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that the tensor coefficients are equivalent in the different bases. For the special case of the expectation value of the
local particle number excitation we therefore obtain [KSP21, Pae20]’

=8
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’
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d=̃8 =̃8 =̃8 , (7.24)

which promptly implies, that the diagonals of the 1oRDM are the same for the super-site and for the local physical
site in the PP mapping only. If we now compute the RDM with eq. (4.8), which we derived earlier, but shift
the orthogonality center away from the orbitals, such that all orbitals are either left- or or right-normalized but
connected through the singular value bond we recognize that
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This relation demystifies the nature of the virtual bond between physical and bath site, the strength of its truncation
simply controls the approximation of the local Hilbert space size. By choosing a singular value threshold C, we
demand that phononic excitations, whose probability is smaller than this, are discarded. If we are to choose a
truncated weight F as sum of discarded singular values we discard phononic excitations until this threshold is
reached. If we just set hard cut-off on the bond dimension <, the < most important phononic modes are going to
be incorporated. However, the important message is that due to our mapping, the system is always going to choose
as many phonons as are necessary in order to describe the system with the predefined accuracy. This is a somewhat
automatic truncation, with the restriction that the total Hilbert space can not exceed the predefined value =ph. For
large systems with different requirements in 3, in order to describe the state correctly, this is a guaranteed way to
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always use exactly as many phonons as necessary. As such, we never waste resources, given a reasonable choice of
the initial parameters.

Finally, we would like to mention that it might be beneficial to choose an inhomogeneous truncation depending
on which bond we are actually truncating. Especially for non-1d systems, physical correlation between super-sites
might build up, which need to be translated through the system by the sweeping pattern. This resembles a high
bond dimension in the bulk of the chain. However, it might be possible to truncate the bonds between the physical
and bath sites stronger than the ones between the super-sites, without losing much accuracy. At present time, this
remains a highly experimental procedure, which needs to be hand-crafted every time and will need more careful
investigation in the future.

Operators 7.4
The final question of this chapter is of more practical relevance: How do we actually construct Hamiltonians in
the new mapping? We know, that there is an isomorphism, i.e. there exists exactly one element in % for each
element in H . The urging question on how to actually find it comes to mind. Usually, one needs to know the
representation of the SSOs, from which one can then construct the Hamiltonian according to a recipe, like eq. (3.68),
irrespective of the method [Sch11, CKN+16, HHS18, PKM17, KDTR15]. Therefore, our aim is going to be finding
a representation of the creators and annihilators.

We know from eq. (7.23), that the matrix elements of the operators themselves should not change. Furthermore,
we know from eq. (7.19) that however the SSO acts on the orbital, the total change should be compensated, such
that the total particle number is conserved. This motivates the representation of the operators as [KSP21, Pae20]

1̂8 =
3�1’
==0

p
= + 1 |=i8 8 h= + 1| ⌦ |= + 1i8 8 h=| (7.26)

1̂
†

8 =
3�1’
==0

p
= + 1 |= + 1i8 8 h=| ⌦ |=i8 8 h= + 1| , (7.27)

if the operator breaks the global * (1) symmetry in the original Hilbert space H . Otherwise, all operators are just
tensored with identities in the auxiliary space. Please note, that the matrix elements of the bath sites are always
ones, irrespective of the occupation or the particle content’s nature. For instance, if we purify fermions, we will
not use Jordan-Wigner parities on the bath sites.

As now one can easily verify, the application of operators build up from these building blocks always stays
within the given sub-manifold, provided that the state was originally in the purified subspace. The bath nodes just
act as reservoirs for the physical system, particles can jump from it to the physical part of the system, where they
will interact with each other or e.g. fermions. Of course the reverse process of jumping back to the reservoir is also
possible. We will always preserve the gauge condition, which guarantees the description of the correct physical
system.

With this recipe we close our technical discussion, define a system, double the degrees of freedom for all
sites which do not preserve the symmetry in the Hamiltonian, and construct the operators according to eqs. (7.26)
and (7.27). The remaining algorithms can be used in the usual pre-existing fashion.



Applications





The Hubbard-Holstein model 8
We have already encountered Hubbard like models in section 6.3 dealing with the idealized interplay between
individual electronic delocalization and pairwise repulsion. What went without saying in the pure Hubbard model
[HF63, Kan63, Gut63]
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8f 2̂ 9 f +*/C
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"#,8

, (8.1)

was, that we made use of the BO approximation (also see chapter 7), assuming that the particles are much lighter
than the nuclei. In this course, we described the motion of the electrons alone and assumed that they would follow
the motion of the several orders of magnitude heavier grid points instantaneously. Intuitively, the validity of this
approximation increases with heavier cores. However, we have already discussed that the striking criterion for
the BO approximation to be valid is the separation of all PESes. Then we could model the nuclei as static and
incorporate the electrons in the conduction band as freely tunnelling among electronic orbitals, one belonging to
each grid point.

However, there might be cases where one wants to model the Hubbard interaction of the electrons but also take
into account motion of the nuclei. Hydrogen for example, is suspected to become metallic and even superconducting
at low temperatures and high pressures and therefore is currently a topic of great interest [WH35, Ash68, BSOG04,
KY11, ZSS16, HM21]. This could be modelled by a grid consisting of the protons (and neutrons, depending on
the isotope) and electrons which are tightly bound to the B orbital but could transition between the nuclei. Other
interesting applications like fullerenes where individual carbon atoms are replaced with alkali metals exist as well.
Here, one also needs to take into account both inter electronic and electron-lattice interactions [TES+91, HRH+91,
Gun97, TAA07]. But apart from applicability it is an interesting theoretical task to investigate the interplay between
inter electronic and electron-phonon interactions.

As discussed in previous chapters, a good description for the motion of the grid can be achieved via the
incorporation of harmonic vibrations. This introduces contributions to the Hamiltonian twofold. First, we can
argue that the vibrational motion of the cores is typically described well by the perturbations around a stable
minimum [Jon24b, Jon24a]. The second order expansion around this minimum gives us (as already mentioned in
eq. (7.6)) a harmonic oscillator, which in second quantization leads to an energetic contribution of

�̂l/C = l0/C
’
�

1̂
†

� 1̂� . (8.2)

Here, we assumed a homogenous vibration frequency l0 for each node in the system [Hol59]. Note that we
introduced uppercase roman indices for phononic orbitals while sticking with lowercase latin indices for electronic
orbitals to provide a better explanation. It is common practice to drop the separation for cases in which each site
has one orbital of both types and just refer to the “supersite” as the total orbital 8  8 ⌦ �. Second, we have a
contribution to the energy from the coupling of lattice vibrations to the electronic density. Intuitively, proximity to
electrons might cause nuclei to start motion and nuclear motion influences electronic motion in turn. This is given
by the first order Taylor expansion of the PES with the coupling strength 6 [Hol59]

�̂c/C = �6/C
’
8
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8 + 1̂8

⌘
=̂8 . (8.3)

Note that in this type of coupling the phonons can not distinguish between up- and down-spin and therefore make the
system completely symmetric under spin exchange. The sum of these four contributions is the Hubbard-Holstein
model [Hol59]

�̂ = �̂el + �̂l + �̂c , (8.4)
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Figure 8.1: Phase boundaries of the 1d Hubbard-Holstein model for different system sizes. The angle bisector ( ) marks
the transition from the spin density wave (SDW) to the metallic phase while the black lines show the critical coupling obtained
from fitting the charge density wave (CDW) order parameter in eq. (8.12) for various system sizes (! = 64 , ! = 96 ,
! = 128 ). Previous DMRG results for the phase boundary obtained from [TAA07] are also displayed ( ).

which introduces the coupling to the lattice via Einstein phonons, i.e. dispersionless phonons which only couple
among each other indirectly via the electrons. This model, just like the pure Hubbard model itself, is not ab-initio
but depends on the choice of the prefactors to the individual Hamiltonians in a cartoonish way. However, again the
aim is not to describe a realistic system with this Hamiltonian but to investigate the effect simple mechanisms have
in a quantum mechanical setup.

The Hubbard-Holstein model has previously been investigated in various fashions for many of the different
parameter configurations introduced by the dimensionality 3, the particle doping X, l0, * and 6. Among the many
scientific works before us we want to mention that there are mean-field [HF83, Nas87, Tak96], ED [Tak96, Hir85],
RG [CB84, YI96], Monte-Carlo [HF83, MSJ04] and DMRG [TAA07] investigations for 1d [HF83, Tak96, PA00,
TC03] and 2d [PA00, MSJ04] lattices. These were conducted for the adiabatic (l0 ! 0) [HF83, Nas87] and
the anti-adiabatic (l0 ! 1) [HF83, Nas87, PA00] limit. Furthermore, various fillings were investigated [Hir85,
YI96, BPK74]. The application of couplings beyond the dispersionless Einstein phonons, as well as anharmonic
couplings are also present [HF83, LSC17, PHCS+21].

In the following we want to give an overview of our results for the simulation of the Hubbard-Holstein model
by means of PP-DMRG. These results have not fully converged into a coherent picture yet, as the interpretation of
the data is currently still work in progress. However, a few interesting observations can already be settled with the
existing data.

Phase diagram 8.1
Due to the large amount of free parameters the system can exhibit various rich phases. We focussed mainly
on the region where the hopping and the lattice vibrations are of comparable magnitude, i.e. l0/C = 2 to be
more precise. We did so, since it is a difficult regime, both to analytics as well as numerics. Around half
filling (X = 0), there is often a characteristic behavior depending on the effective coupling _ = 262

/l0 � *

[TAA07, GHW+15, MNH+17, KS17, CSYS20], depicted in fig. 8.1. Typically, when the on site repulsion is
stronger than the electron-phonon interaction, i.e. we are in the regime _ < 0, we have a spin density wave (SDW)
order. Here, the system becomes an AFM consisting of alternating spins and hence is a Mott insulator. In contrast,
for regions where the electron-phonon interaction is much larger than the electronic repulsion, i.e. _ & 1.5, the
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system undergoes a Peierls transition resulting in an translationally invariant charge density wave (CDW) which is
also insulating.

We fixed our calculations to the simplest case, namely 1d, and the particle number to be at half filling. In
accordance to the previous works, we did not only find a phase transition between the described orders, but also a
third phase above _ > 0, before the system becomes Peierls insulating due to the large effective coupling. Previous
DMRG investigations found the size of this phase to be growing with the frequency l0 [TAA07]. However, it is
worthwhile spending some time in investigating this region as its nature was described differently depending on the
method employed. The main candidate natures for this region were insulating, metallic or with a dominating pairing
correlation [GHW+15]. As in this phase not only interactions are not negligible but also competing, controlled
analytical results are difficult to obtain. Methods like ED and Monte-Carlo suffer from typical problems like system
size or finite temperature. And the DMRG approach is quite tricky due to the large local Hilbert space and the
* (1) symmetry violation of the electron-phonon coupling. However, this makes this model seem custom tailored
to our PP approach which we are going to employ for ground state searches now.

Following the DMRG investigation in [TAA07], we wanted to investigate the dominating order in the system.
For this we need to set up some order parameters and compute them as observables from our converged ground
states |ki. The candidates for the order in the chain are spin, charge and pairing correlations, depicted by the
matrices
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I
9 |ki spin correlator, (8.5)
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For our investigation we did not account ?- and 3-wave correlations, as they were found subdominant to the others
in [TAA07]. This is also in accordance with previous findings indicating B-wave to be the important mechanism for
the region, where the electron-phonon coupling is larger than the on-site repulsion [YZS99]. All simulations were
performed for the system size ! = 128 and final bond dimension of < = 8192, if not stated differently, in order to
mimic the thermodynamic limit.

We start off with analyzing them by plotting the correlation functions exemplarily for the three characteristic
regimes of the system in fig. 8.2. In order to minimize boundary effects we measured the correlations of the
system from the center site. Beginning with the SDW region of the phase diagram, the envelope of all three
curves clearly shows algebraic decay. The spin correlations are the ones decaying slowest, just as expected. It is
interesting to observe that there is a region in the middle of the maximal distance to the center site where the graph
is a perfect line, making it possible to extract a good decay coefficient here by fitting. Nonetheless, this region is
quite narrow. Furthermore, we have characteristic oscillations in the short range and boundary regimes which get
weaker as we approach the middle region. Previous investigations often fitted the decay by just taking into account
a subset of sites, e.g. just every second site [TAA07], (the maxima) or measured in multiples of five site distances
[GHW+15]. We note that the maxima of our curve also provide a relatively straight line. Deep in the CDW,
phase the correlations of the system are rather different. Here, we clearly have an exponential decay of all curves,
which we cut off after 30 sites for the sake of visualization. As the value approaches numbers below the numerical
precision, i.e. the flat region for spin and charge, the exact values of the results are no longer faithful, but given
the low order of magnitude can just be considered zero. As always, the most interesting region is the one where
both interactions are competing due to comparable strength, as can be seen for the effective coupling of _ ⇠ 0.1
and _ ⇠ 1. In this metallic regime the decay seems to be algebraic again for both cases if one fits the maxima
and neglects the boundaries. However, while shortly after the transition from the AFM the oscillations are quite
large and the possible exponents are strongly competing, the charge gets progressively dominant with increasing
electron-phonon coupling.

The investigation of the intermediate regime is worthwhile continuing as its phenomena are very rich. We
would like to get a deeper understanding of its properties and also investigate the mechanism behind the emergence
of this state, as we shall do in the following.
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(a) * = 1.5, 6 = 0.5 in the SDW.
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(b) * = 0.5, 6 = 2 in the CDW.
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(c) * = 0.5, 6 = 0.77 in the intermediary region.
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(d)* = 0.5, 6 = 1.22 in the intermediary region.
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Figure 8.2: The three correlation functions described in eqs. (8.5) to (8.7) plotted against the distance to the middle for
characteristic points in the (*, 6) plane. The system at use is exemplarily chosen to be ! = 128 with a final bond dimension of
< = 8192.

Phonon distribution 8.2
Now that we have an introductory overview over the physics of the Hubbard-Holstein model, we want to investigate
the influence of the phonons on the electronic systems. We know that generally, the electrons tend to organize in an
AFM order through the electron repulsion at half filling and that the effective interaction mediated by the phonons
attracts the electrons to each other. Until we hit the phase boundary of* = 6

2, the electron-phonon coupling mainly
renormalizes the value of * to a smaller value but going beyond this boundary results in the electrons feeling more
and more attractive interaction. Therefore, we want to investigate the role the phonons play in this procedure by
means of the RDM of the phononic orbital in the middle of the system � = !/2 = 64, i.e.

d̂� = tr\� |ki hk | . (8.10)

Note that this definition also involves integrating out the electronic orbitals. In particular, we are interested in the
diagonal elements 5� (=) depicted in fig. 8.3, as they determine the excitation probability of this phononic occupation
mode. Here we show the distribution for the four characteristic cases discussed earlier in section 8.1.

All four curves in fig. 8.3a share the fact that the maximum of the distribution is at = = 0, as the excitation of
phonons costs energy through the vibration part of the Hamiltonian eq. (8.2). Furthermore, they all show a kind
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Figure 8.3: The phononic excitation probability in the middle of the chain for the points presented in fig. 8.2 is shown in 8.3a.
Furthermore, we investigate the width of the distribution for the entire phase diagram in 8.3b by means of the Shannon entropy
of the distribution extrapolated to < !1.

of exponential decay for the low lying modes accompanied by a tail behaviour for the higher ones. In the SDW
phase the decay of the curve is quite steep as one would expect due to the low electron-phonon interaction. The
excitation probability for modes above = > 9 is so small that it is not resolved by our numerics with a truncated
weight of 1 ⇥ 10�14 and also cuts off singular values below that value immediately. For the CDW we recognize
a slower decay for which however approximately the same number of phonons’ excitation probability lies above
our truncated weight. This means that higher occupations are more likely found than in the SDW but there is also
an interplay with the tendency of the electrons to localize in this regime due to effective electron attraction. The
distribution has a long tail with excitation probabilities below the numerical precision going up to = = 27, which
we cut off for accuracy and visualization reasons.

The two distributions in the metallic phase exhibit an interesting behaviour between the two extreme cases, as
the electron-phonon coupling is quite strong in this regime but the electrons are also still mobile. Both distributions
have a width between the distributions of SDW and CDW and show an interesting kink aroung = = 5. After that
there is quite a long tail of excitation probabilities going up to = = 10 and = = 15. However, it is fairly tedious to
discuss every distribution in the distinct parameter regimes by visualization and therefore we want to introduce a
(scalar) measure for the broadness of the distribution. A meaningful way to do so is through the Shannon entropy
of the distribution function

(( d̂) = �
’
=

5 (=) ln 5 (=) . (8.11)

This quantity is basically a measure for the amount of * (1) symmetry breaking of the phononic occupations and
gives us a good estimate for the role the phononic interaction play in the system for various parameters. We plotted
the Shannon entropy for the entire phase diagram of the Hubbard-Holstein model in the regime investigated by us
in fig. 8.3b. It is interesting to observe, that the role of the phonons is basically independent of the value of *
before crossing the phase boundary from the AFM to the metallic phase, i.e. * = 6

2. The phononic distribution
has the same broadness for all values of the electron repulsion. When entering the metallic regime there are two
possible behaviors. For the electron-phonon coupling still below a certain value, the independence pattern of the
AFM is reproduced just with a slightly higher value width. However, before going to the Peierls phase there is an
interesting region of comparatively high phonon distribution width tilted with the effective interaction line * = 6

2.
This twofold nature of the metallic phase is quite remarkable and was not described before to our knowledge. It
is currently still under our investigation and will be characterized in more detail in our future work. Finally, when
going into the CDW phase we see an immediate drop of the distribution function attributed to the double occupation
pattern and hence the immobility of the electrons. This phase boundary is also tilted with the angle bisector. The
mosaic patterns, mainly in the above left corner, can be most likely attributed to the difficulty of DMRG calculations
due to frustration and the formation of domain wall-like patterns here.
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Figure 8.4: CDW order parameter extrapolated to < !1 plotted against the effective coupling _ for various values of *.

To conclude with the final discussion of this section, we will be looking at the CDW phase and its phononic
observables in greater detail. For this we have chosen the CDW order parameter [JW98, SKM+21]

-CDW =
1
!

’
8

(�1)8 hk |1̂†8 + 1̂8 |ki (8.12)

depending on the phonon displacement Ĝ = 1̂
†
+ 1̂ . This is easily extracted from the converged wave function |ki

by an expectation value computation even though some additional attention is required due to the PP mapping. The
results depending on _ are shown for various electron repulsion strengths *, in fig. 8.4. Meaningful observations
can be extracted from this plot. First of all, we see that all curves are strictly zero in the SDW phase, just as we
would expect it and there clearly is a transition to a phase which is a CDW. Also a few outlying points can be
observed where the calculations had a hard time converging, however, the overall trend can be seen and is quite
striking. There is a discontinuous jump which moves from around _ ⇡ 2 to _ ⇡ 1.4 with increasing value of *, just
as expected from looking at fig. 8.3b.

Central charge 8.3
In order to look a deeper look into the twofold nature of the metallic phase, we want to investigate the central charge
now. We have already encountered the central charge 2 during our discussion of orbital order in section 3.4 as a
prefactor occuring in the Calabrese-Cardy formula [CC04]. However, there we used the formula for a system with
periodic boundaries since we needed the :-space representation of the ground state. The modification for open
boundaries, as was used for our investigation of the Hubbard-Holstein model is given by [CC04]
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where 2̃ is now a different constant than before but not of interest to us right now. In itself, this formula is quite
remarkable as it is valid for any 1d model, irrespective of its nature, as long as it can be derived from conformal
field theory (CFT). Therefore, the result is exact for a critical system, however, once a gap opens up (also due to
finite size effects) we will only obtain an approximate fit to this function. Nevertheless, the central charge is a
decent measure to obtain the independent number of gapless excitations above the ground state [Gia04]. Since
we are seeking to get a grasp on the nature of the highlighted region in fig. 8.3b this information is useful in the
interpretation.
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Figure 8.5: Central charge obtained from the scaling to the middle method [STC19] and extrapolated to < !1.

From the MPS side we can obtain the entanglement entropy easily by sweeping through the system via an SVD
keeping the system canonically normalized (see section 3.3.2). From the sigular values BU obtained at each bond G

one can compute the entanglement entropy easily via summation as

((G) = �
’
U

B
2
U ln B

2
U . (8.14)

The only remaining thing is to fit these functions to the functional form in eq. (8.13). It should be mentioned that the
entanglement entropy is a basis dependent quantity, but if the state is actually converged, i.e. the bond dimension
is large enough, the sweeping procedure only fixes a gauge resulting in the same value. However, since we have
a finite system we will always encounter boundary effects in the entanglement entropy measured. Previous works
have used sophisticated methods in order to get this under control, e.g. [MWS20] extended the fit function by a
contribution suppressing the boundary values resulting in an increased weight for the bulk. We implemented this
method and experienced an improvement in the stability of the fits and the obtained values. However, we decided
to go with another method as the aforementioned method introduces additional parameters whose tuning were not
straightforward to us. We followed the “scaling to the middle” ansatz introduced by Campbell et al [STC19]. In
this method one uses the central charge fit eq. (8.13) but restricts it to a domain size ⇡ symmetrically including
all nodes left and right the middle of the chain. One starts from a domain size ⇡ = ! and subsequently reduces
the size by the same amount of nodes left and right until one reaches a desired cutoff value. This will generate a
sequence of ⇡ 7! 2 which is a function itself for each fitted value of the domain size. The scaling to the middle
consists then, as the name already says, by fitting these values to function form itself and extracting the true value
by the extrapolation to ⇡ ! 0. One can also restrict the maximum and minimum domain size ⇡ to values below
! and above too small values in order to suppress overfitting and edge effects [STC19]. Overall, we were able to
extract quality central charges by this method, as we shall discuss in the following.

We have visualized the central charge in dependency of the effective coupling _ in fig. 8.5. We can clearly
see that after the transition to the metallic phase from the SDW, the number of independent gapless modes is
two, i.e. up and down electrons. In the CDW, phase both gaps are expected to open up and become rather large.
Therefore, the notion of the central charge becoming zero for the large _ limit also seems reasonable. However,
what happens in between is immensely interesting, i.e. there seems to be a phase were the number of gapless
particles is one. The region seems to coincide with the region in the metallic phase where the Shannon entropy of
the phonon distribution function gets large. Up until now we have not figured out, what the nature of this region is
but hope to do so in future investigations. What can be said is that we currently do not believe that the mechanism
visible here is B-wave pairing due to theoretical arguments. Namely, it was shown [HF83] that integrating out the
phonons at finite frequencies l0 results in a Hamiltonian local in space and slightly off-local in time. The latter is
exponentially suppressed with increasing value of l0. Hence, due to the Mermin-Wagner theorem [MW66] and
the duality between thermal and quantum phase transitions in 3 and 3 � 1 [Sac11], respectively, no breaking of a
continuous symmetry can be established here.
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Figure 8.6: Variance of the central charge fit to eq. (8.13) for various domain sizes ⇡ for * = 1.

It seems appropriate to mention that in [STC19] it was also discussed that the scaling to the middle method
can be used for more than just determining central charges. Turning the usual disadvantages of finite numerics
to ones own advantage the authors pointed out there, that due to the fact that one needs a gapless system for the
Calabrese-Cardy formula to be exact, the emergence of a bad fit indicates a gap. Therefore, they suggested to use
the variance of the fit to the functional form as an order parameter proxy to distinguish a transition between two
gapped states and tested it quite successfully for the extended Hubbard model. In order to get a feeling where
our system might be gapped, we did the same in fig. 8.6. One needs to proceed with caution here since too small
domain values ⇡ will not show the critical behavior we anticipate and too large ones are going to incorporate the
boundaries again. Therefore, we chose to plot the variance of the domain sizes from 82 to 104 in our ! = 128
system size model by means of heuristics. We can see that for the area directly after the transition to the metallic
phase the variance is of O

�
10�3� indicating a small gap. Around _ = 0.7 there is a minimum of the function which

could be connected to an unknown feature of the metallic phase, as in the remaining region until the system crosses
over to the CDW the system seems to have a large gap. The question if the system becomes gapless at this transition
point is still open to us. Going into the CDW phase, the error first becomes larger which is intuitive as the system
has a large spin and charge gap here, followed by a decline of the variance to small values. This can be attributed
to the fact that the central charge becomes zero in this regime and therefore the prefactor of the fit eq. (8.13) just
vanishes, i.e. making the fit well suited without telling us anything about the gap.

Thus we are able to confirm that, even though the variance of the central charge fit is a purely numerical quantity
with no physical equivalent, it might serve as a proxy to tell us something about the system. All in all there seems
to be an interesting feature when both interactions present in the system are of comparable size shortly before the
electron-phonon coupling becomes dominating, which was unknown prior to the best of our knowledge. In this
region the number of gapless modes becomes one while there has to be a gap opening of unknown nature.

Gaps 8.4

To finalize our discussion of the gaps we want to evaluate two kinds of gaps which are especially accessible within
the symmetry protected DMRG setup, i.e. the spin gap �B and the charge gap �2. In order to obtain both of them
we need to search for the lowest energy state in a doped regime of the Hubbard-Holstein Hamiltonian. For this we
introduce the notation ( = (# , BI) for the sector of the total many-body Hilbert space H which has # particles and
I component of the spin BI . As we are interested in the behaviour at half filling we fixed the chemical potential
such that the ground states lives in the (# = !, BI = 0) space. For the gaps we need the lowest lying excitations in
the sectors (!, 1), (! + 2, 0) and (! � 2, 0), whose energy we refer to as ⇢B , ⇢2 and ⇢�2, respectively. Then we can
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Figure 8.7: Spin and charge gap for * = 1 plotted against the effective coupling, extrapolated to <, ! ! 1. Note that this
time also the SDW region, i.e. negative effective couplings, are included in the figure.

define the gaps as

�B = ⇢B � ⇢ spin gap, (8.15)
�2 = ⇢2 + ⇢�2 � 2⇢ charge gap, (8.16)

where ⇢ is the energy of the half filled ground state. The former corresponds to replacing one down spin with an
up spin while the latter corresponds to adding or withdrawing two particles in such a way that the total spin stays
constant.

For visualisation reasons we have again chosen to demonstrate one slice out of the phase diagram in fig. 8.7, as
the larger/smaller values of * just move the transition point to the left/right, respectively. We can clearly see that
both gaps are near zero in the SDW region (_ < 0) and in the metallic regime. However, given finite numerics it is
always a bit difficult to state if the gap is closed or just exponentially small. To this end, a finite size extrapolation
1/! ! 0 is crucial to observe a qualitativly right result. Increasing the electron-phonon coupling 6 we see that
first the spin gap opens up slightly before _ = 1, whereas the charge gap opens up later around _ = 1.4.

This pattern of two different behaviours in the metallic phase and close to the CDW transition might help us
again to interpret the nature of the metallic phase. Apparently, the gapless single particle excitation we encountered
in section 8.3 in this regime does not have a charge gap but is spin gapped. This might indicate that these gapless
modes are spin up and down pairs, as the additional spins cost the system energy.





Molecular dynamics 9
Now, we want to deal with the out-of-equilibrium dynamics of realistic molecules with lattice vibrations incor-
porated. One might wonder why anyone would do so, since we spend quite of lot of effort on arguing how
the solution of the electronic system decouples from the nuclear motion (see chapter 7). However, there are
many chemical phenomena where it is by now well established, that a pure electronic description is not suffi-
cient [BG17, MKW+17, BMK+16, TR17, SM10, Cas18, STM+19]. As described before, this gets necessary due
to the PESes getting close to each other for some nuclear configuration.

In order to do so, we typically rely on converged many-body calculations of the electronic system for several
configurations, e.g. the ground state and an excited state. These can be obtained e.g. through DFT [HK64] or, as in
our case, CAS-SCF [ZN08] (excited state) calculations. Once these are given, we know the energy and transition
amplitudes between different levels which lead to the Hamiltonian description of the system via the many-body
modes 8, 9

�̂el =
’
8 9

C8 9 2̂
†

8 2̂ 9 . (9.1)

Here, as in the remaining part of this chapter, we will stick to the notation, that electronic levels are labeled by
lowercase latin indices. The diagonal elements of C are the level energies and the off-diagonals are coupling among
them. Since our particles are excitons, the nature of the creation and annihilation algebra is typically the same as
for hard-core bosons. Nevertheless, we usually do not have more than one “particle” in the electronic system, i.e.
anti-commutation and commutation are the same.

To study the dynamics, we typically initialize the system in an excited state |k(0)i, or a superposition of such,
and observe the Hamiltonian time evolution

|k(C)i = exp
�
�iC�̂

�
|k(0)i , (9.2)

mostly using TDVP. This resembles the experimental preparation of the molecule in an excited state, e.g. through a
laser or other incoming radiation. Of course eq. (9.1) is not particularly interesting, since it is an integrable system
[Deu18] and therefore can be solved quite easily. Not to mention of the small Hilbert space size, since we are after
all only interested in a few low lying states. Furthermore, the system can not thermalize [Deu18], resulting in the
time-evolution being Rabi-like oscillations between the eigenstates. This means that as long as the particle number
is conserved the “density” will change between the levels periodically [ZXJL16].

When we include the vibronic Hamiltonian, this is changed due to indirect coupling mediated through the
phonons. Now energy can be transferred from the electronic system into lattice vibrations and vice versa, leading
to richer dynamics. In turn, this makes the system more complicated to solve for the typically required number
of vibrational modes. In order to handle the complex requirements imposed by the molecule, we make use of the
previously described PP mapping to restore the broken * (1) particle number conservation symmetry. Of course
the particle number of the electronic system is also conserved and can be exploited however, the small number
of electronic modes usually makes this part not as challenging. This way the Hamiltonian is quite sparse and the
entire tensor network decomposes into symmetry protected tensors. Furthermore we do not need to investigate each
mode’s local Hilbert space size, we just choose a number which is large enough and let the automatic truncation do
the rest.

Before we continue to detail specific models, let us spare a few words on the time-scales, which can be reached.
Initially, the electronic state is either a product state (in the case of an excitation) or a state of low bond dimension
(for superpositions of excitations). This is due to the fact that our excitons are eigenstates of the electronic energy
Hamiltonian. The initial state of the phononic Hilbert space was set to be the vacuum in the course of this thesis.
This is due to the fact, that we always operated at zero temperature. In principle, one could, e.g. by means of
a second purification [BKP+22], start the PP time-evolution from a finite temperature state which would result in
an initial occupation of lattice vibrations. However, this goes beyond the scope of our investigation and is going
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Figure 9.1: Chemical skeleton of the pyrazene molecule. Note, that the notation with the double bonds inside the ring is
symbolic, in reality the electrons delocalize.

to be subject of future research efforts. During time-evolution, the bond dimension typically grows exponentially
[CC05, Sch11, PKS+19]. But since we start from a very low value, the coefficient of the scaling is essential for the
regime until we can time evolve. Heuristically, we can make the statement, that we were usually able to reach several
hundreds of femtoseconds with our simulations, depending on the structure of the electronic system. Typically,
the constraining factor is the bond dimension between the most relevant physical and bath sites in the vibronic
system which gets large due to a high number of phonons necessary. This then leads to an enormous demand
for computational resources (after all < and 3 are now large) which typically exceeds the memory available. In
cases where only the runtime was high, we made careful use of the PTDVP [SGL+20] algorithm (see section 5.3).
However, typically the memory demand was the most problematic point, restricting us to common random-access
memory (RAM) availability in high-performance computing (HPC) of 1 TB to 2 TB. This makes our method
especially promising for all kinds of first principle out-of-equilibrium applications where the essential physics
take place on short time scales. It is to mention that other methods exist which can reach up to several thousand
picoseconds [ETDW03, WLX+21], e.g. Redfield theory [RED65] which basically has no limitation on evolution
time. Here, one approximates the vibronic subsystem as bath for the electronic subsystem, an approximation which
is often valid and leads to good results in the weak coupling regime. But for the systems we investigated, i.e. with
strong coupling, the Redfield theory produces qualitatively different results than our first principles study, implying
its invalidity for this domain and depicting the competition between time scales and coupling strength.

Pyrazine 9.1
We began our investigation with Pyrazine, an organic molecule with the formula C4H4N2, whose chemical structure
is shown in fig. 9.1. Pyrazine has long been a benchmark model for any first principles calculation of molecular
dynamics [RWMC99, XLY+19, BR19]. Our model involves the two lowest electronic singlet states (1 and (2, both
at the equilibrium position. As the former belongs to the ⌫3D and the latter to ⌫2D of the molecular symmetry ⇡2⌘
(see section 4.2), they do not couple to each other [RWMC99]. They only contribute to the Hamiltonian through
their energy gap 2�, i.e.

�̂el = �
⇣
2̂
†

B2 2̂B2 � 2̂
†

B1 2̂B1

⌘
. (9.3)

The nuclear system is represented by 24 modes, ordered in ascending frequency

� 2 {160, 161, 60, 61, 4, 11, 100, 170, 5, 1, 12, 181, 180, 14, 90, 3, 191, 190, 81, 80, 13, 71, 2, 201} , (9.4)

and whose matrix elements we obtained from [RWMC99]. Note, that we refer to phononic orbitals with uppercase
latin indices. Our system is now described by the total Hamiltonian [Fre31a, Fre31b]
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We recognize again the energy contribution from the vibrations of the phonons, with each individual contribution
given by the vibration frequency l. Furthermore, we have the already encountered linear coupling 6 between the
displacement Ĝ =

⇣
1̂
†
+ 1̂

⌘
/
p

2 and the excitonic density. Last but not least, there is the second order expansion term
which results in a bilinear and quadratic coupling, given by ⌧. Through this coupling, there is indirect mediation
between the electronic states. The target goal of the simulation is going to be to find out how the excitation decays.

Our starting point for the size of the local Hilbert space were previous investigations [XLY+19], where a
maximum of =ph = 24 was needed. Therefore, we fixed our =ph to be 31 maximally however, we also performed
calculations with =ph = 63 to make sure our approximations were justified. As mentioned before, the initial size
of the local Hilbert space only leads to a minor increase of computational complexity during the Hamiltonian
construction. We initialize the system to be entirely in the excited state, i.e.

|k(0)i = |B2i (9.6)

and use two-site TDVP to time evolve. The growth of bond dimension during the sweeping is truncated by a
truncated weight of X = 1 ⇥ 10�7 while restricting the accuracy of the individual vectors to 1 ⇥ 10�5, according to
the criterion of Hochbruck and Lubich [HL97].

As we have by now extensively discussed, the question of ordering is crucial in order to be able to maintain
the calculation for as long as possible. We compared the two mappings described in fig. 9.2 to each other, i.e.
first putting the electronic modes to one side of the MPS, and second putting them in the center of the chain
[XLY+19]. Of course many more possibilities exist to map the nodes, but not only that but we can also rotate
the coefficient tensors 6 and ⌧, in order to describe the coupling in a different fashion, as is usual in e.g. DMFT
[KRU08, dVSW15, BMG+21]. However, this was not investigated in the course of this thesis and shall be target of
future research efforts.

Numerical stability 9.1.1

The first thing we wanted to check is the numerical stability of the algorithm, as the combination of the PP mapping
and TDVP was previously never used with a non-local Hamiltonian. Therefore, we chose a relatively small time-
step of �C = 0.2 eV�1 which kept the exponentiation error well controlled (see section 5.1). The total calculation
took around 5.8 ⇥ 103 s ⇡ 1.5 h real time to reach a simulation time of 131 fs, which is roughly one order of
magnitude smaller than the reference calculation in [XLY+19]. As a proxy for the projection error [PKS+19] we
chose the norm deviation from the initial state. Even though this is a rough approximation, the degree to which the
time-evolution violates unitarity gives a good estimate of the error occurred. If one wanted to compute the actual
projection error in twosite TDVP, one could compute the variance of |k(C)i and its single and twosite variance,
according to [HHS18]. However, for Hamiltonians with such large local Hilbert spaces and global coupling between
the orbitals such a calculation would be highly expensive which made it numerically unfeasible for our calculations.
Especially squaring the Hamiltonian for the total variance is usually a highly expensive task, which is also prone
to catastrophic cancellation [HMS17, PKM17, HHS18]. We mentioned before, that we do not restrict the bond
dimension but rather define a truncated weight X, which controls the validity of the approximation [Sch05, Sch11].
In practice this means defining a very high value for <, such that this bound is never actually saturated. Therefore,
another control criterion to check suitable description of the state within the sub-manifold defined by the simulation
parameters is the evolution of the bond dimension profile. Finally, we want to check if the local Hilbert space
size is converged. For this we proceed with the same simulation with the two different values of 3 = 32 and
3 = 64. The results for all these numerical control parameters are shown in fig. 9.3. The norm error seems to be
of constant order of magnitude throughout the entire simulation, independent of the system setup. Furthermore, it
is consistent with the truncated weight we chose, i.e. X = 1 ⇥ 10�7. However, we notice, that while the projection
error seems to be insensitive to the local Hilbert space size, mapping the electronic nodes to the middle makes the
projection error around 30 % larger. This observation is also in agreement with the fact that the maximum bond
dimension necessary increases quite drastically for the middle mapping. After all we remember, that the TDVP
projector is exact in the infinite bond dimension limit (see section 5.1 and [PKS+19]). As the information between
vibrational modes of the same frequency must be transported delocally and through the excitonic sites, the resource
requirement increases such that the calculation went out of memory around 30 fs. Here, a mapping which orders
the nodes in increasing frequency along one half and continues along the other half might be beneficial. Since
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Figure 9.2: Different possible mappings of the pyrazine Hamiltonian to a chain. We can either try to put the electronic levels
to the edge of the system or put them into the middle. As the coupling of the vibration modes is global, they will all be connected
to each other. Therefore, the bonds will have to communicate the action of the Hamiltonian through the entire system.
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Figure 9.3: Numerical control parameters for two electronic and 24 vibrational modes. The deviation from the initial norm is
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( ) and =ph = 63 ( ). Furthermore, we show the maximum bond dimension on the right axis for the electronic nodes in
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Figure 9.4: Time-evolution of the electronic densities. In addition to the occupation of the electronic levels we also plotted
the magnitude of the off-diagonal elements of the electronic RDM, which is a measure for the coherence of the two states.

this would again involve long range couplings between nodes of approximately the same vibration frequency, we
decided against this mapping and continued with the electronic nodes at the left edge of the MPS. In this ordering
the maximum bond dimension is never saturated during the simulation time and the memory requirements are
easier to handle. Furthermore, we can observe two plateau-like regimes in fig. 9.3, which might indicate different
regimes in the time-evolution. It is also interesting to see that the larger local Hilbert space results in a slightly
larger bond dimension requirement from the point where the middle mapping breaks down, and where the first
plateau for the edge mapping sets in. This might be attributed to singular value tails, which were otherwise cut
away but now slightly increase the dimension of physical-branching bonds. However, the impact is remarkably
small and as we shall note shortly, observables are not affected, making calculations with the smaller Hilbert space
well converged. Therefore, our requirement for the number of local phononic modes is in accordance with previous
results [XLY+19].

Electronic properties 9.1.2

Now that we are confident that our calculations are numerically well controlled, we would like to investigate the
decay behavior of the excitation (2. For this we take a look at the electronic densities in fig. 9.4, which are obtained
for the edge mapping and local Hilbert space size 3 = 32, as was described in the last section. We observe the total
tendency of the system to decay to the (1 state with some additional features. The initial kink around at early times
< 5 fs we attribute to the time it takes for the phonon dynamics to set in. However, it does not influence the decay
of the (2 population until around 30 fs, where there is the inversion of the two graphs. Excitingly, this coincides
with the point where the simulation either goes out of memory or reaches the first plateau. After that, there is a
long region where the system seems to be steady, i.e. a plateau in occupation. Our interpretation of this is, that the
light phononic modes set in early and after their dynamics has subsided, the system reaches this area. With some
delay then the excitation of heavier vibrations set in, which causes the bump with the peak around 90 fs. However,
this is not sufficient to push the system out of the previous state and the occupation of (2 again decays in favour
of (1. Finally, almost all electronic density is attributed to the lower lying level and the system does not seem to
change any longer.

In order to further understand the electronic system, we investigate the RDM with all the phonos integrated out

d̂el = trph |k(C)i hk(C) | . (9.7)

As we are working in the reduced subspace of one excitonic particle only, the electronic space is spanned by the
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two vectors |(1 = 1, (2 = 0i and |(1 = 0, (2 = 1i. Therefore, we write the RDM as

d̂el =

"
d0 F

F
⇤ 1 � d0

#
, (9.8)

which we can always do, as the matrix has to be hermitian and of trace one, i.e. it only has two independent degrees
of freedom. While the diagonal elements fix the occupation of the individual elements, F 2 C tells us if the system
is in a coherent superposition. In particular, the magnitude |F | gives a measure for the “delocalization” between the
two electronic states, which is why we plotted it on the right axis of fig. 9.4. Even though, there is a jump of several
orders of magnitude shortly before the crossing, the mixing is always within the range of quite small number and
therefore never reaches the maximal coherent superposition which would correspond to |F | = 1/2. Therefore, the
electronic dynamic can be described purely classical.

The above observations motivated us to claim the hypothesis that the phonons serve as bath for the excitonic
system. Given this would be true, we could make the ansatz that near the equilibrium we have an effective
Hamiltonian, such that

d̂el ⇡ e�V�̂eff . (9.9)

As the RDM in eq. (9.7) lives in the two-dimensional one particle subspace, so does �̂eff . Based on the previous
observation that the electrons do not delocalize but instead are captured by a nearly classical mixture we make the
ansatz

�̂
0
eff = �� ·

"
=̂(1 0
0 =̂(2

#
+ const. , (9.10)

in which we assume the effective Hamiltonian is diagonal in the occupations of the electronic levels. In order to
analyze the effect of the phononic bath we study the time evolution of the eigenvalues of the electronic RDM by
rotating into the eigenbasis

d̂ =
1

1 + e�V�0
eff

"
e�V�0

eff 0
0 1

#
⌘

"
d1 0
0 d0

#
, (9.11)

which allows us to write down the quotient

?1 = d1/d0 = e�V�0
eff . (9.12)

Therefore, if we can fit V in such a way that the ratio of the RDM diagonals and the Boltzmann weight are the
same, we have found the effective temperature. We do so by a heuristic fit to V� = 3/2 in fig. 9.5, where we
interpret the level with the smaller occupation as the ground state with energy n0. As one can see, the agreement
is quite exact, even though the fitting procedure consisted merely of guessing the number. This excellent match
between the postulated, classical density matrix description and the found dynamics of the diagonal elements of
the Hamiltonian also implies an adiabatic time-evolution, since the effective temperature is merely constant.

Autocorrelation function & phononic properties 9.1.3

In the following we are going to discuss the remaining observables of the system. We begin by looking at the
auto-correlation function

⇠ (C) = hk(0) |k(C)i , (9.13)

which is easily obtained from the wave function and the initial state and shown in fig. 9.6. As we can see, the
states are initially nearly parallel, a feature which decays within the initial time period which is reasonable as the
Hilbert space is exponentially large and we exploit highly excited states through the time-evolution. However, it is
also interesting to see that a transient phase between the two states builds up in the imaginary part of the overlap.
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Figure 9.5: Fitting the eigenvalues of the electronic RDM (on the left axis, ) to the Boltzmann weight of the lowest
energy state (on the right axis, ).
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Figure 9.6: Real ( ) and imaginary ( ) part of the overlap of |k(C)i with the initial excitation (2 are plotted on the
left axis with the corresponding time steps at the bottom. In addition, we plotted the Fourier transform ( ) on the right axis
with the corresponding energies at the top. For the latter we used g = 66 fs.

Furthermore, fig. 9.6 exhibits an oscillatory behaviour around the envelope of orthogonality to the initial excitation.
The nature of this oscillation is studied through the absorption spectrum, defined via the Fourier transform of ⇠ (C)

[Muk95]

� (l) / Re
1π

0

dC ⇠ (C) exp (ilC � C/g) , (9.14)

where g is an appropriately short effective relaxation time, sometimes also referred to as broadening. We observe
good qualitative agreement to [XLY+19], where the absorption spectra were compared to MCTDH and experiment.
The features, peaks and their relative heights are correctly reproduced in the correct energy range. However, the
resolution seems to be limited through the final time and through the fact that we used a truncated weight which
was one order of magnitude higher. Both are important findings which we will take over to the next section, where
we want to obtain results as accurate as possible.
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Figure 9.7: Time-evolution for the occupation of selected phononic orbitals.

The last physical property of the pyrazine molecule we want to address is the occupations of the phononic
modes. For this we chose a subset of particular orbitals with rich dynamics and displayed them in fig. 9.7. The
remaining modes were either quite constant in occupation after the transient regime or did not build up occupation
at all. We recognize that the mode 11 has the maximal occupation of O (10) and is rather constant after the level
crossing of the electronic states has occurred. However, this should not tempt us to believe that the phononic Hilbert
space could have been chosen smaller. The large Hilbert space is required in order to represent the long tails of
the spectrum of the RDM faithfully, as we shall discuss in section 9.2.4. The remaining nodes show interesting
oscillatory behavior, with oscillations of constant frequency and amplitude. Last but not least, the interesting bump
of 60 should be noticed, whose occurrence is shortly after the depopulation of (1, which we attributed to the heavy
phononic modes. At this point in the simulation time, this mode is depopulated. However, once the electronic
system goes back to being mainly (1, it is populated again to the same level it was before.

Singlet fission 9.2

Now that we have described our experiences with benchmark systems, we want to turn to the main object of
scientific interest. The highly prominent target of our calculations are molecules exhibiting singlet fission (SF),
a class of systems in which excitonic coupling to lattice vibrations can not be neglected [MKW+17, BMK+16,
TR17, SM10, Cas18]. SF is a process taking place in organic molecules upon photo-absorption. Thereby, a singlet
exciton is converted into two triplet excitons while upholding spin conservation [ZZM10, SM10, MH17, Cas18]. In
doing so, SF can increase the yield of organic semi-conductors in order to develop solar cells with higher efficiency
[CLT+13, HN06]. However, a systematic approach to understand the mechanism and categorizing materials which
are of use is still in the scientific process. Therefore, our aim was to perform a first principles simulation for possible
candidate materials. As it turned out, the exact coupling of large number of vibrational modes to the diabatic states
was in fact crucial for this. Even though many orbitals could be neglected, the amount of necessary modes is still
relatively high for tensor network methods. Our previous ansatzes proved to be highly fruitful in order to obtain
reliable results.

Before we go on with our discussion of SF and the material we simulated, we shall pay some attention to
limiting factors in photo-absorption.



Section 9.2. Singlet fission 109

The Shockley-Queisser limit & multiple exciton generation 9.2.1

The basic functioning principle of the photo-absorption [Ein05] in a solar cell is easily explained, without going
to much into detail. Electrons in the valence band are excited into the conduction band by a photon, leaving back a
hole in the former. In the conduction band they are free and can be subject to electrical fields inducing motion, e.g.
by a p-n junction. The difference in energy between the two bands is the band-gap � which needs to be smaller
than the photon’s energy in order to excite the particle. However, the question arises, what size of the band-gap is
optimal to maximize the output of the construction. Small � leads to many excitations which are short-living due
to their scattering with the nuclear grid, while large � leads to few particles which are in turn energetically highly
excited. As one can already estimate, there is some kind of interplay with an optimum in between.

When Shockley and Queisser formulated their bound on the efficiency [ of a single p-n junction [SQ61], semi-
empirical results on the efficiency of solar cells were known [Lof56, Pri55, PVR54, CFP54]. However, they pursued
a rather different approach idealizing the solar cell subject to light from the sun as an object exposed to black-body
radiation. This way they were able to make a statement about the maximal efficiency of any material, irrespective
of the actual real world setup, a property which is compared by them to the second law of thermodynamics
[Car24, Cla50, Cla54, Tho52]. There, the maximal efficiency of no process might be larger than the efficiency of
the Carnot process [Car24], i.e. it just depends on the ratio of temperature differences between the reservoirs.

Since the calculations necessary to arrive at the previous bound are quite extensive, we restrict ourselves to
sketching the proofs idea and refer the interested reader to [SQ61]. First, Shockley and Queisser put a solar cell at
)2 = 0 into a cavity with temperature )B , assuming that the former has an energy gap of �. Then, they continue
with the computation of what they call ultimate efficiency, i.e. the idealization that photons with energy below �
do not cause anything while photons above � cause an electric charge at the corresponding voltage. Lastly, they
make use of Planck’s distribution [Pla01] to write down the number of photons absorped

&B /

1π
l6

dl
l

2

e�VB\l � 1
(9.15)

and compare it to the total energy density the sun emits

%B /

1π
0

dl
l

3

e�VB\l � 1
. (9.16)

The ratio of these two quantities gives (up to factors) the ultimate efficiency. They argue that the function has a
maximum and determine it by numerical means at 44 % for a band-gap of � = 1.1 eV. However, they are even able
to refine this bound by taking into account the radiative combination, i.e. the decay of an electron-hole pair upon
emission of a photon, and finite solar cell temperature. Furthermore, also formation and decay of excitons without
photonic involvement and the removal of an electron-hole pair are taken into account. Finally, they define a rate
equation and demand, that the total rate of all processes is zero which leads them to a new value for [. This value
is the ultimate efficiency multiplied with some correcting functions [SQ61]. The maximum of this function is also
determined to be [ ⇡ 30 % at � = 1.1 eV for )B = 6000 K and )2 = 300 K.

Thus, for a quite long time the statement that single junction solar cells could not get more efficient was
believed to be true. However, this belief got challenged by a new development in organic semi-conductors research,
otherwise we would of course not be dealing with it. In the derivation of the Shockley-Queisser limit [SQ61] the
explicit assumption was made, that each photon gets translated to one electron hole pair in the semi-conductor.
Around the millennium this idea got challenged by the observation of more than one particle-hole pair created by
incoming radiation in quantum dots [SK04, SPK05, EBJ+05, SSPK06, MBN+06, NBL+10], referred to as multiple
exciton generation (MEG). This was not accounted for in the original derivation of Shockley and Queisser and it
motivated the rederivation of the detailed balance limit by Hanna and Nozik [HN06]. They did so by following
a derivation similar to the original one however, they introduced an additional function namely, the number of
excited particles and called it the quantum yield . = . (⇢). This function is then multiplied into the integrand
of eqs. (9.15) and (9.16) in order to account for multiple charge carriers per photon. As the true nature of this
function is unknown in general, they proposed three model dependencies of the ratio between light quanta and
particles. First, they looked at a step-function which increases the quantum yield every time a multiple of a certain
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energy is reached to model quantum dot like behavior. Second, they looked at a combination of two step-functions
which are only non-zero if their corresponding energy threshold has been reached but one has twice the yield of the
other. Between the gap and twice the gap the yield is one, above the gap the yield is two. In this course they also
introduce singlet fission as possible mechanism to achieve a quantum yield modelled by this function. And last, a
step function which turns into a linear curve after a second threshold has been reached.

These yield functions are then tested with several photo-absorbing setups, i.e. single gap absorbers, the
electrolysis of water to hydrogen and oxygen and a construct they call tandem cell, consisting of two solar cells
which might be coupled serially or in parallel. Various possible numbers of excitons are taken into account.
Particularly interesting, already two excitons shift the maximum efficiency of the cell to being [ ⇡ 42 % if the
band-gap of the chosen material is slightly smaller than in the Shockley-Queisser case [HN06] namely, around
1 eV. For the tandem solar-cell construction even values around [ ⇡ 1/2 can be achieved in theory.

All of the above mentioned methods rely on the solar-cell material to produce multiple charge carriers per
photon, a task easily described in theory but difficult to realize in an exploitable fashion in experiment. However,
the decay of single excitons into two triplet excitons in some organic materials was a known phenomenon to some
scientific communities [MAG69, GPV69, SS68, SJS+65] in the context of fluorescence. Therefore, after the works
introduced in this section, SF became a target of scientific interest with the goal of finding candidate materials to
increase the efficiency of solar-cells. In addition to inducing MEG, the products of the photo-absorption process
have another striking advantage, i.e. their statistics. Since the produced excitons are triplets, they are symmetry
protected from decaying back to the ground state [SM10]. This makes the typical free path length of triplet excitons
(⇠ µm) around a hundert times larger than for the singlet case (⇠ 10 nm) [NLZ+10, IB11]. Of course, they could do
the reverse process of singlet fusion and two of the triplets result in a singlet again which can be recombined, e.g.
under photo-emission. However, this is a process which needs certain circumstances to happen, e.g. current works
indicate the spatial proximity is crucial for a fusion and therefore spatially distant triplet production increases the
SF yield [WLX+21].

Concluding this rather dense section, we saw that the theoretical efficiency upon photo-absorption is limited
and how this limit could be shifted to a larger value upon multiple exciton generation (MEG). We also chose one
mechanism to generate MEG namely singlet fission (SF) which has also the advantage of creating long living
excitons. In the upcoming chapter we want to discuss the mechanism in order to induce singlet fission.

Vibronic coupling 9.2.2

SF is known to happen in two manners, intermolecular (xSF) and intramolecular singlet fission (iSF). While in
the former the fission process takes place between crystalline structures of stacked molecules [JNM13a, SM10],
in the latter it takes place within covalently linked chromophore units which allows much easier control of the
inter-chromophore orientation and interaction [THRB+15b, BXW+15]. This is achieved by manipulation of the
molecular bridging parts and the environment, e.g. via the solvent. In the course of this thesis we only dealt
with iSF and will therefore sometimes refer to it simply as singlet fission. In addition, previous investigations
[WLX+21, THRB+15a, ZXJL16, RCT18, CBP+13, Tao19, ZZL17, XSBF+19, THRB+15a, MST+17, BG, GB21,
SXC+20, SLH+21, STM+19] have resolved two driving mechanisms behind the triplet production in organic
molecules, i.e. thermally activated and coherently driven SF. Thermally activated SF typically takes place on
a relatively large time-scale of more than a ps [THRB+15b]. In contrast, the coherently driven SF is a process
happening much faster, i.e. typically on time-scales below 100 fs [MST+17]. As the time-scale for our simulation is
set by the inverse units of the Hamiltonian1 these ultra fast processes were of particular interest to our first principle
methods.

In order to model the triplet generation faithfully it is by now a well accepted fact that one has to incorporate the
vibrations of the atomic lattice [SM10, Cas18]. In fact, in many models the electronic states decouple due to small
hopping amplitudes between them or symmetry forbidden transitions [ZZM10, EBJ+05]. The lattice vibrations then
induce coherence between the otherwise unrelated excitonic levels and thereby cause an effective mediated transition
possibility. The necessity to go beyond the Born-Oppenheimer approximation (BO approximation) when modelling
was discussed in a theoretical context [ZZM10, BHR14, ASD15, TR17], as well as through the investigation of
materials exhibiting SF by spectroscopy [MKW+17, BMK+16]. In particular, the former typically showed that the

1The units of the Hamiltonian are [�̂ ] = eV, whose inverse corresponds to 1 eV�1 ^= 0.658 212 fs for \ = 1 = 2.
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Figure 9.8: Chemical structure of the tetracene para-dimer resolved from different perspectives.

coupling of the identified electronic states gets enhanced by the phonons in such a way, that an ultra fast triplet
population is achieved, otherwise no “density” is distributed to the electronic many-body levels belonging to the
triplets. The experimental results backed up this claim in particular by identifying signals belonging to vibrational
modes and relating these to conical intersection in the potential energy surface (PES), just as we discussed in
chapter 7.

Model 9.2.3

Motivated by all these prior results and in particular by the investigation in [WLX+21], in which the iSF in
tetracene oligomers was explored, we began our analysis of the 1,4-bis(11-phenyltetracen-5-yl)benzene (tetracene
para-dimer), shown in fig. 9.8. Tetracene (C18H12) is a hydrocarbon basically consisting of four benzene rings
attached to each other and is the building block for these molecules. The chemical convention distinguishes between
the carbon atoms which the individual units dock to via the ortho, meta and para keyword, i.e. if the tetracene units
dock on nearest neighboring, next to nearest neighboring or second to next carbon atoms. These units are then
attached to each other covalently by a phenyl group to form oligomers. In particular, the aforementioned work dealt
with the question of the relevance of spatial distance for the triplet yield of the system experimentally, i.e. they
looked at dimers, trimers and tetramers. For us the yield itself was not the immediate guiding question, rather we
wanted to model with the minimal amount of approximations. Hence, we began our investigation with the dimer.
This leads to the phononic Hamiltonian, given by the individual energy of the vibronic modes l� and the linear
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Figure 9.9: Schematic plot of the five diabatic states used to model the SF in the tetracene para-dimer. The position of the
levels on the H-axis corresponds to the energies of the electronic many-body wavefunctions, which is the chemical potential in
our exciton model eq. (9.18), but is not true to scale.

coupling between the excitonic density and the phononic displacement 68 9 ,� as
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The form of the model is similar to eq. (9.5), of course with the coefficients being different. However, here we only
needed to include the first order coupling in Ĝ to achieve excellent results.

Before we come to the nature of the vibronic modes, let us talk about the representation of the electronic
system, which we modelled by means of five diabatic states, depicted in fig. 9.9. The locally excited (LE) states are
representing the molecule after photo-absorption from the ground state. The excitation might reside in any of the
chromophore units, therefore we have two of them labeled by a subscript. An analysis of the determinats belonging
to this state reveals that they mostly consist of exciting one electron from the highest occupied molecular orbital
(HOMO) to the lowest unoccupied molecular orbital (LUMO), as is also shown in the scheme. Furthermore, the
involvement of charge transfer (CT) states is crucial for the correct description of the system. These correspond to
cationic and anionic intermediate situations of the molecule in which the excitation is taken from the HOMO of
the corresponding chromophore and placed in the LUMO of the neighboring tetracene unit. As one can imagine,
these electrically charged non-equilibrium states are higher in energy and therefore, the molecule tries to avoid
these by decaying to lower lying states. Of course, the most important constituent is still missing, namely the triplet
electrons. As previous investigations have shown [ZZM10], the localized triplets in the chromophores can also
be interpreted as electron-hole bound states which are correlated into an overall singlet state [SM10, JM70], here
referred to as triplet pair (TT) state. Usually, the investigation of the dissociation into two spatially seperated triplets
and recombination processes are detached topics [May16, MCBGZ19] and were therefore also not investigated by
us. This enables us to again write down the total Hamiltonian of the tetracene para-dimer as [Fre31a, Fre31b]
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where the energy of the electronic states is the chemical potential, i.e. the diagonals of + while the transition
amplitude between electronic states is given by the off-diagonals.

The actual values for the + matrix are obtained using the state averaged complete active space self consistent
field (SA-CASSCF) method for excited states [BR20]. In this method, the single particle orbital space of the
electrons is divided into core, active and virtual orbitals. Subsequently, the time independent Schrödinger equation
of the active space is solved variationally under optimization of the many-body coefficients and the single particle
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|LE1i |LE2i |CT1i |CT2i |TTi
|LE1i 2.9635 0.279 -0.0857 0.035 0.0431 0.039 -0.0535 0.052 0.0002 0.000
|LE2i 2.9637 0.280 0.0535 0.052 -0.0431 0.040 -0.0002 0.000
|CT1i 3.3645 0.276 -0.0007 0.001 -0.0612 0.055
|CT2i 3.3645 0.276 -0.0612 0.055
|TTi 3.1493 0.516

Table 9.1: Excitonic Hamiltonian elements +8 9 and their corresponding thermal fluctuations f8 9 (defined in eq. (9.21)) at
300 K in units of eV. The first entry per cell is + , while the second entry denotes f for the given pair of diabatic states 8, 9 .

orbitals. For our calculations we made use of the 6 � 31⌧ (3) single particle basis set and in order to recreate
the notion of locality in the delocalized molecular orbitals we used the Pipek-Mezey method [PM89]. Finally,
we computed the elements of + by means of the complete active space configuration interaction (CASCI). The
resulting diabatic chemical potentials and couplings are presented in table 9.1. As we have expected, the coupling
between the LEs and CTs is relatively large compared to the coupling between LEs and TT. However, the indirect
pathway superexchange path [BHR13a, BHR13b, JNM13b, MMW+16] in which the excitation decays to the triplets
via LE!CT!TT has a way higher transition probability and is going to be the main mechanism of TT population,
as we are going to see.

As described in chapter 7, we then distort the equilibrium geometry along the vibrational mode &� to compute
a PES in order to obtain the exciton-phonon coupling. From this, the resulting values for 6 are computed by taking
the gradient with respect to the spatial coordinate

68 9 ,� = r&�+8 9 (
Æ
&) . (9.19)

In order to figure out, which vibrational modes out of the total 258 are the most relevant we computed the spectral
density according to

�8 9 (l) =
’
�

6
2
8 9 ,� X(l � l� ) (9.20)

and plotted it in appendix C. It can be recognized, that the diagonal excitonic coupling is dominated by high
frequency modes around 1400 cm�1. Two modes contribute in particular to this frequency range namely, the ones
at 1409.61 cm�1 and 1411.18 cm�1. We labeled these notorious modes, which are depicted in appendix D, � = 184
and � = 185 and note, that they correspond to collective vibration of the chromophore’s backbones. Due to the
stark change of the molecular orbitals this induces, a change in the excitonic energies is caused which influences the
chemical potentials in+ . In contrast, the off-diagonal excitonic couplings seem to be stronger for modes with lower
frequencies in particular, around 415 cm�1. This is explained by the fact, that these modes represent the twisting of
the connecting phenyl group which mainly varies the transition probabilities, as they depend on the overlap between
the chromophore units. The chromophores themselves remain unaltered under this vibration. We neglect all
modes which trigger relative fluctuation below 0.1 % and whose frequencies correspond to oscillation time below
our simulation time. This leaves us with 76 phononic modes in total, ranging from 10.18 cm�1 to 1714.2 cm�1

(0.0013 eV to 0.2125 eV) which we need to incorporate in our simulations.
Finally, we want to justify the employment of zero temperature methods and compute the temperature-dependent

fluctuations of the excitonic Hamiltonian at 300 K according to

f8 9 =

vuuut 1π
0

dl �8 9 (l) coth Vl/2 , (9.21)

which is shown in table 9.1 and appendix C. As we can see, the thermal fluctuations are quite small compared to
zero temperature which makes our ansatz justified and the results compareable.
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Figure 9.10: Numerical control parameters of the tetracene para-dimer for the different initial states described in the main
text. ‘ The maximum bond dimension is shown in black for the localized (dotted), bright (solid) and dark (dashed) initial state.
Again, we use the norm deviation as a measure for the projection error and show it in blue with the same schemes for the initial
state as the bond dimension.

Numerical stability 9.2.4

Based on our previous experiences with the pyrazine molecule (see section 9.1) we chose to map the five electronic
orbitals to the left of the MPS and attach the phononic modes in ascending frequency to the right, just as it is
described in the upper part of fig. 9.2. However, we wanted to be assured that our numerics are well controlled and
therefore investigated the two main sources of error again. Even tough TDVP has four sources of error, i.e. the
projection error, the truncation error, the exponentiation error, and the Trotter error, our main targets were the former
two, again. Due to the latter two the error depends on the time-step and how fast powers of the Hamiltonian decay.
As the time-step is typically chosen to be small this makes the Trotter error subleading to the other types [PKS+19].
Furthermore, the exponentiation error is caused by the (formally) inexact solution of the local differential equation
([PKS+19] and section 5.1) and can be very well controlled again by the criterion of [HL97].

We truncated the growth in bond dimension by cutting off as many singular values until the threshold of
X = 1 ⇥ 10�8 is reached. However, we also set an upper bond dimension of < = 6144 after which we cut off the
smallest singular values. Until this bond dimension is not reached, we can trust the results to lie within the chosen
truncated weight. After that a careful investigation of the results needs to be undertaken in order to assure the data
being trustable. We modelled the system after photo-excitation by means of three possible initial states, i.e.

|k(0)i = |localizedi = |LE1i , (9.22)

|k(0)i = |brighti = ( |LE1i + |LE2i) /
p

2 , (9.23)

|k(0)i = |darki = (|LE1i � |LE2i) /
p

2 , (9.24)

which, as the names already suggest confine the excitation to one of the chromophores (as the molecule is symmetric
it does not matter which one) or distributes it along both chromophores. The dark initial state can not be realized
as it belongs to a forbidden transition, but was investigated out of curiosity. All phononic orbitals were prepared
with an initial occupation of zero. As we can observe in fig. 9.10, there is an oscillatory growth behaviour in the
maximum bond dimension and the maximum which we defined is not saturated for the two physical cases until late
in simulation time. Furthermore, the maximum bond dimension which saturates the bound belongs to the bond
between the physical bath construction of the mode no. 184 and does therefore not influence relations between
supersites. This also explains the oscillatory behaviour, as the occupation of the phononic modes also oscillates. It
originates from the high number of phononic modes necessary, as we shall see in fig. 9.12. We will observe the
RDMs there and check that the results are in fact trustable. For the dark initial state the situation is undoubtedly
different. While the evolution of the maximum bond dimension is quite similar to the others for the first 40 fs,
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Figure 9.11: The speedup in CPU-time for the tetracene para-dimer on an Intel®Xeon®Gold 6130 CPU (2.10 GHz) with two
processors and 32 cores in total. Hyperthreading was enabled on the machine but not exploited by us. Note the logarithmic
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it skyrockets after that immediately to the maximum where it stays for the rest of the simulation except for an
interesting kink around 50 fs. Most likely is the system showing similar oscillatory behavior as before.

The projection error seems to be well controlled, as before, and therefore the norm deviance is of quite constant
order of magnitude over time for the different initial states. While the difference in norm error of the bright initial
state is approximately 50 % higher than the one for the localized one, the dark initial state is one order of magnitude
higher. As the main source of projection error is an insufficient bond dimension to display the projector to the
original Hilbert space sub-manifold correctly, this is reasonable given the bond dimension profile in fig. 9.10.
However, it is to note that we described the formally ⇠ 10137 dimensional Hilbert space of the tetracene para-dimer
with a state using 1.3 GB on disk exactly, only using O (10 GB to 100 GB) of RAM during the calculations.

The resulting speedup in computation time between the molecule with and without the PP-mapping can be
observed in fig. 9.11. Here, we compared the PP-mapping with a total local Hilbert space size of 3 = 64 to a
pure TDVP with the same Hilbert space size and one of size of =ph = 50. This is the smallest Hilbert space size
which we could choose in order to have results of the phononic RDM in accordance with our truncated weight of
X = 1 ⇥ 10�8. As we can see, the PP-mapping is a factor of 100 faster than the symmetry free version which is
not only caused by the parallelization over tensor blocks but also through the automatic truncation (section 7.3)
of low weight blocks. Furthermore, note that the calculations without symmetry protected tensors went above the
maximum memory threshold of the machine of 200 GB around 9 fs to 10 fs while we were able to maintain our
calculations until 260 fs. Another convenient aspect of the employed representation is that through the suppression
of unnecessary zeros in the tensor blocks, the MPO bond dimension stays quite low. While the pure MPO has
a maximum bond dimension of 200, we were able to construct an operator with a bond dimension around 20.
As the application of the effective Hamiltonian to the state is the most expensive part of variational optimization
algorithms [Sch11] this will also save us a lot of runtime, not to speak of the construction of blocks, etc.

As a final remark on numerics and stability of the simulations we want to discuss the necessary size for the local
Hilbert space, before continuing with physical observables. We already described, how choosing an insufficiently
large Hilbert space will result in the system “seeing the edge” of such and therefore in wrong results. After all an
RDM

d̂� (C) = tr\� |k(C)i hk(C) | (9.25)

has to be of trace one therefore, the system tends to renormalize the suppressed probability to lower lying modes,
if the modes necessary for the description are not present. Typically, this would result in a combination of a
population inversion and explosion of the bond dimension. Therefore, we investigated the phononic RDM of
the already described characteristic mode no. 184 whose bond between physical-and bath-site corresponded to
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Figure 9.12: Excitation probability for phononic occupation modes of the vibrational orbital no. 184 during the time-evolution.

the maximum bond dimension in this parameter regime. The result, in the form of the diagonal elements of the
phononic RDM, is presented in fig. 9.12. Here, we repeated the calculation for smaller values of 3 and checked
the influence on the system. As we can see, the maximum of the distribution is always around the zero occupation
point which indicates that no population inversion took place. Furthermore, the decay for the approximately first
ten phononic modes is always correctly described, even for small local Hilbert spaces like 3 = 8. However, the
results for the largest Hilbert space reveals that the tail of the phonon distribution is much longer than the smaller
Hilbert spaces can provide for intermediate times. This leads to a relaxation of the distribution for later times in
the simulation in the true model while the MPSes with too small local dimension can not display the decay of these
excitations correctly. As a consequence, they are going to remain in an energetically higher excited state while the
molecule actually would relax away from this.

We shall try estimating these errors induced by those wrong results which are of the order of X(d� )== ⇠ 10�5

for the occupations = = 10 to 30. The energy of the lattice vibrations enters the Hamiltonian linearly according to
eq. (9.18). Therefore, the approximate error in energy introduces scales like hk(C) |=̂� |k(C)i =

Õ
= = · (d� )== whose

numerical value is given by

30’
==10

= · X(d� )== ⇠ 10�3 (9.26)

for each time-evolution step of the mode no. 184 in the corresponding time regime. The error for other modes might
be smaller than this particular mode, however, their errors are accumulated into the total wavefunction over time
and therefore make the deviance quite severe. We therefore have no other way than to use the large local Hilbert
space of at least 50 phonons. As we do not have to account for too large Hilbert spaces from the computational
perspective, we fixed the maximum 3 to be 64. All following results were obtained with this setup, if not stated
otherwise.

Absorption spectrum & energy transfer 9.2.5

Now that we are certain that our caluclations are well behaved, let us discuss the actual physically relevant data
we can extract from the simulation of the tetracene para-dimer. The initial state of our time-evolution is the bright
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Figure 9.13: Simulated absorption spectrum compared to experimental values from [WLX+21].

excitonic state from eq. (9.23), i.e.

|k(0)i = |brighti ⌦ |j(0)i , (9.27)

where |j(0)i is the vacuum state of the phononic sub Hilbert space (in the PP representation). The absorption
spectrum is obtained similarly as before from the Fourier transform of the autocorrelation function

� (l) / Re
1π

0

dC hj(0) | hbright| e�iC �̂
|brighti |j(0)i eilC�C/g , (9.28)

where we choose the broadening g in such a way that the 0 � 0 and the 0 � 1 peaks fit the experimental spectra
[WLX+21]. With a numerical value of g = 230 fs this is achieved and we display it in fig. 9.13. In particular, we see
that the relative height of the peaks fits excellently, as well as their positions and the range of the spectrum. Even
the small shoulders in the blue wavelength and adjacent to the ultraviolet (UV) spectrum are correctly resolved.
However, the peak position is slightly higher than for the experiment. We attribute this and the lower valley depth
of the simulated spectrum to the neglected phononic modes, i.e. the ones which were too heavy for our simulation
time or had not enough spectral density (see section 9.2.2). Marginal energy contributions which would otherwise
flow into these subsystems are now distributed to the existing orbitals. Nevertheless, these small deviances are
certainly acceptable given the high degree of agreement to experiment and could be the subject of small future
investigations.

Next, we want to look at the energy contributions of the different subsystems to the total energy. This is easily
achieved by taking the Hamiltonian in eq. (9.18) and splitting into the three constituent parts, i.e. the electronic,
the vibrational and the exciton-phonon coupling. The time-evolution of the energy is then obtained by computing
expectation values ⇢G (C) = hk(C) |�̂G |k(C)i /kk(C)k, where G corresponds to one of the three options. As we can
observe in fig. 9.14, the excitonic part of the energy almost remains constant in the region of the initial value, i.e.
the energy of the LEs (see table 9.1), except for a small wiggly area in the beginning. Quite in contrast, the energy
of the phonons and the exciton-phonon coupling show strong oscillatory behaviour. We can see the amplitude of
the oscillation itself showing damped oscillatory behaviour if we look at the envelope of the energies. In order to
figure out which frequencies are the ones contributing most to the energy transfer we Fourier transformed the time
dependent energies and showed them in fig. 9.14. This reveals that there are two peaks belonging to the vibrational
modes dominating the energy transfer between the subsystems, they are located around 1420 cm�1 and 1620 cm�1.
The modes which are employed in this frequency range are in particular

1420 cm�1 : modes no. 184, 185 and 186 ,
1620 cm�1 : modes no. 209, 210 and 211 ,

especially the former are modes found already by previous investigations [ZXJL16, BMK+16, SAW+19] to be of
high importance to the energy transfer. As formerly mentioned, these modes belong to the collective vibration of
the molecule’s backbone and have shown dominant peaks in the spectral densities in appendix C, particularly in the
diagonal excitonic coupling.



118 Chapter 9. Molecular dynamics

(a)

0 50 100 150 200 250

�2

0

2

time [fs]

E
[e

V
]

vibration ex-ph coupling electron

(b)

500 1,000 1,500 2,000

�50

0

50

100

wavenumber [cm�1]
FT

am
pl

itu
de

[e
V
]

vibration
ex-ph coupling

Figure 9.14: Time-evolution of the partial energies and their respective Fourier transforms.

Electronic properties & solvent polarity 9.2.6

For practical purposes the most important question is of course the triplet yield or its slope, respectively. If the
investigated material should be employed to harvest light in a solar cell we are mainly interested in how many
charge carriers we can expect, but also in which parameter regimes we need to do so and how to realize these in
experiment. Therefore, our starting point in this section shall be the excitonic occupations, shown in fig. 9.15.
The first two cases, i.e. the localized and the bright initial state, are the physically realizable ones and show very
similar behaviour. They both have a delay until the CT population builds up which emphasizes the importance of
the indirect pathway. Furthermore, both are ultrafast processes in the sense that the triplet population builds up
in the sub 100 fs regime by an almost constant growth rate. The LEs and CTs show oscillatory behavior in time
with a frequency of about 0.12 fs�1. This frequency coincides with the energy gap of two eigenstates of the pure
excitonic Hamiltonian which carry the main weight in the expansion of the eigenbasis in term of the diabatic states.
This demonstrates, that the excitonic coupling is the main driving force on transient time-scales until the coherence
mediated by the phonons starts to set in. The oscillations get suppressed over time which we interpreted as a sign
that the phononic bath was chosen large enough for the system to achieve relaxation into an incoherent exciton
dynamics, as we are also going to discuss in a second. Also, it is interesting to observe that the delocalization of
the initial excitation over two chromophores results in pretty much twice the triplet yield especially, in the light of
the findings of [WLX+21], i.e. the spatial delocalization as driving force for the triplet generation. Finally, we want
to mention the results from the dark initial state, also shown in fig. 9.15. Here, we can see a significantly different
behavior including the formation of a plateau in TT occupation for transient times, resulting in a higher final yield
than in the previous two cases. Furthermore, also a decay of triplet population can be observed after approximately
80 fs, a phenomenon not present in the other two cases. However, as such an initial state after photo-absorption can
not be realized, the investigation of this initial state is more of an academic motivation and less of a practical one.

Before we continue on coherence of the excitonic system, we consider it important to investigate the solvent
polarity. It has been previously shown [XSF+20], that the polarity of the solvent material in which we put our
organic semi-conductor will have an influence on the CTs. In particular, [WLX+21] investigated the dependency
for several solvent materials, i.e. the relation between the LE and CT energy level and the inverse of the dielectric
constant of the solvent. It was found, that while the LEs are mostly insensitive to the polarity, the CT states come
down in energy the more polar the solvent gets. From an intuitive point of view this makes sense, as mentioned
before the CTs are energetically high lying anionic and cationic intermediate states. However, the more polar the
environment gets, the easier it is for these to be populated, i.e. for the system to transfer charge from chromophore
to the other which resembles in the energy.

Therefore, we tried to map out a kind of phase-diagram of the tetracene para-dimer tuning its energy levels
in CT and TT. It should be mentioned, that the tuning of the TT levels is not realizeable in experiment however,
was done by us in order to estimate the impact in general. The resulting maximum TT occupations are shown in
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Figure 9.15: Excitonic occupations for different possible initial states, i.e. a localized, bright and dark excitation.

fig. 9.16. Here, the LE-CT gap is plotted on the G-axis while the difference between TT and CT is on the H-axis.
The actual computed value for the TT energy level lies at ⇢CT � ⇢TT = 0.2 eV, i.e. in the middle of the diagram.
As we can observe, irrespective of the value on the H-axis the TT yield increases upon increasing of the solvent
polarity. We expect the function connecting the yield and the CT energy levels to be of parabolic shape however, the
minimum and the width are unknown presently. Apparently, the phonons induce hopping from the LEs to the CTs
which then in turn decay into the energetically nearest state, i.e. the TT. We find the maximum number of triplet
electron being 14 % to 25 % which is in quite good agreement to the experimental findings of 21 % [WLX+21].2

We also plotted the time-evolution for selected points in the phase-diagram in fig. 9.16. As expected, we see
different values for the solvent polarity and the TT level resulting in different final yields. However, a striking
feature exposes itself in this graph, i.e. a characteristic kink around 35 fs. This feature is completely independent
of the configuration of the excitonic energy levels and stands out, as for all of the datapoints 2/3 of the total
triplet yield are produced until the time corresponding to this kink. The first interpretation for this might be
relating to the most important phononic modes, whose period is about 25 fs, to this characteristic time-scale.
As we have already argued, the effective transition from the LEs to the TT state is controlled by the effect the
phonons have on the excitonic system. Mainly, the mechanism behind iSF is driven by the coherence, which is
small given the pure excitonic Hamiltonian in table 9.1. However, the lattice vibrations induce phonon-assisted
hoppings, following Fermi’s golden rule, which leads to a coherence between the excitonic modes for a finite
lifetime [CLJ+11, MZ15, ZXJL16, RCT18]. As previously, we wanted to investigate the quantum coherences of
the molecule during the simulation and therefore computed the excitonic RDM and its eigensystem

d̂ex (C) = trph |k(C)i hk(C) | =
’
8, 92-

h8 | d̂ex (C) | 9i |8i h 9 | =
’
_

_(C) |_(C)i h_(C) | , (9.29)

2Since every triplet pair decays into two triplet electrons, their number is twice the occupation of the TT level.
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Figure 9.16: Maximum occupation of the TT yield for different values of the chemical potentials, i.e. the diagonals in + of
eq. (9.18), on the left. Note, that these values belong to different times during the simulation as the highest possible occupation
was always chosen over the entire range. Full time-evolution of the TT level of selected points on the right.
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Figure 9.17: Type-evolution of the eigenvectors |h_ |8i | of the electronic RDM. Note, that the eigenvalues are sorted by
magnitude, in our case from top (largest) to bottom (smallest).

where - is the set containing the five diabatic modes and _ labels the elements of the eigensystem of d̂ex. The
overlap elements h_(C) |8i form a matrix determining the degree of coherence between the corresponding initial
basis vectors over time. We computed these from the time-evolved wavefunction and plotted it in fig. 9.17.

As one can recognize, for times C < C0 ⇡ 30 fs the system is in coherent superpositions but between different
sets of levels for different times. The LE levels are coherent over the entire simulation time which is reasonable, as
they were intialized in such a state (see eq. (9.23)) and do not loose much occupation to the other levels, as is clearly
seen in fig. 9.15. The CTs show similar behaviour up until ⇠ 10 fs which is related to the already mentioned indirect
pathway. After that, they start delocalizing with the TT level which reaches its maximum around 25 fs where these
three levels are basically in an equal weighted superpositon. Following that, the system basically decomposes into
unrelated blocks for the rest of the simulation time, expect for the aforementioned LEs. Note that the eigenvectors
of the RDM are sorted by their weight and therefore their ordering might change during time-evolution, explaining
the diagonal pattern in fig. 9.17. Neglecting the subleading off-diagonal terms for C > C0 we can find an approximate
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decomposition for the RDM

d̂ex (C)

����
C>C0

⇡ d̂LE (C) � d̂CT (C) � d̂TT (C) = exp
�
�C

�
�̂LE � �̂CT � �̂TT

� �
// (C) , (9.30)

where the effective Hamiltonians governing the excitonic subsystems look like

�̂LE = �
’

8, 92{1,2}

✓
ln_4 (C) hLE8 |_4 (C)i

⌦
_4 (C)

��LE 9
↵
|LE8i hLE 9 | + ln_5 (C) hLE8 |_5 (C)i

⌦
_5 (C)

��LE 9
↵
|LE8i hLE 9 |

◆

(9.31)

�̂CT = �
✓

ln_1 (C) |CT1i hCT1 | + ln_2 (C) |CT2i hCT2 |

◆
(9.32)

�̂TT = � ln_3 (C) |TTi hTT| . (9.33)

We thus see, that time-scale of the coherences coincides with the timespan in which the main TT production is
reached. After that, the systems are basically evolving decoupled from each other and classically according to their
respective effective Hamiltonians. This emphasises the importance of the coherence induced among the excitonic
levels by the phonons to the SF process. However, this does not explain the origin of this time-scale. How the
phononic bath changes the effective Hamiltonian for the excitonic system shall be therefore discussed next.

Lang-Firsov transformation 9.2.7

In order to investigate the effect the phonons have on the excitonic system we made use of a generalized Lang-Firsov
transformation [LF63, HvdL07]. Originally developed for Holstein type of models, this method makes it able to
derive an effective low energy theory for composite electron-phonon systems in some limits and reveal the nature
of the renormalized mass of electrons. For this we define the operator *̂ = e�(̂ given the operator

(̂ =
’
8 9 ,�

�8 9 ,� 2̂
†

8 2̂ 9

⇣
1̂
†

� � 1̂�

⌘
(9.34)

similar to the exciton-phonon coupling term, however with so far unknown coefficients �. This way, we can
transform the Hamiltonian according to

�̂ = e�(̂
⇣
e(̂ �̂e�(̂

⌘
e(̂ . (9.35)

This somewhat artificial construct will soon prove to be useful as we take the inner braket and try to evaluate it.
The degrees of freedom left open are the values of the � tensor which we will choose in such a way, that the
exciton-phonon coupling vanishes, at least to first order.

As a lemma from BCH [Bak01, Cam97, Hau06] we may write the Hamiltonian product with the exponential
matrices as

e(̂ �̂e�(̂ =
1’
==0

⇥
(̂, �̂

⇤
=

=!
= �̂ +

⇥
(̂, �̂

⇤
+

1
2
⇥
(̂,

⇥
(̂, �̂

⇤ ⇤
+ . . . , (9.36)

where [ · , · ]= is again the regular commutator nested = times. Unfortunately, we can not evaluate this expression
to arbitrary high order exactly, we can get a good approximation though by truncating after the first element of the
series. Due to the linearity of the commutator the Hamiltonian in eq. (9.18) can be splitted into three terms and
evaluated individually

⇥
(̂, �̂

⇤
=

⇥
(̂, �̂ex

⇤
+

⇥
(̂, �̂ph

⇤
+

⇥
(̂, �̂c

⇤
. (9.37)
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For the first commutator we can compute3

⇥
(̂, �̂ex

⇤
=

’
8 9 �

�
�8 9 � � � 98�

�
2̂
†

8 2̂ 9

⇣
1̂
†

� � 1̂�

⌘
(9.38)

�8 9 � =
’
0

+80�0 9� . (9.39)

Furthermore, the second commutator evaluates to

⇥
(̂, �̂ph

⇤
= �

’
8 9 �

l��8 9 � 2̂
†

8 2̂ 9

⇣
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†

� + 1̂�

⌘
. (9.40)

And finally, the coupling Hamiltonian’s commutator looks like

⇥
(̂, �̂c

⇤
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’
8 901

⌦8 901 2̂†0 2̂1 2̂
†
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⌦8 901 =
’
�

68 9 ��01� (9.42)

⌫8 9 � � =
’
0

680��0 9� . (9.43)

By choosing �8 9 � = 68 9 �/l� we can obtain the desired cancellation of the electron-phonon coupling. Furthermore,
this makes � and ⌫ symmetric in the excitonic indices which induces a cancellation in the commutators of eqs. (9.38)
and (9.41). This reduces the total commutator to two terms, i.e.

⇥
(̂, �̂

⇤
= �

’
8 9 �

68 9 � 2̂
†

8 2̂ 9
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1̂
†

� + 1̂�

⌘
� 2

’
8 901

⌦8 901 2̂
†

8 2̂ 9 2̂
†

0 2̂1 . (9.44)

As mentioned before, we neglect all the higher order commutators in eq. (9.36) and obtain for the transformed
Hamiltonian

e(̂ �̂e�(̂ ⇡
’
8 9

+8 9 2̂
†

8 2̂ 9 +

’
�

l� 1̂
†

� 1̂� � 2
’
8 901

⌦8 901 2̂
†

8 2̂ 9 2̂
†

0 2̂1 , (9.45)

or equally the back-transformed Hamiltonian

�̂ ⇡

’
8 9

+8 9 e�(̂ 2̂†8 2̂ 9e
(̂
+

’
�

l� e�(̂ 1̂†� 1̂�e
(̂
� 2

’
8 901

⌦8 901e�(̂ 2̂†8 2̂ 9 2̂
†

0 2̂1e(̂ . (9.46)

As our original question was to investigate the effect the phononic system has on the exciton coupling, we will
now mainly be interested in the renormalization of the + matrix. The other two terms will induce higher order
electron-phonon couplings upon expansion in addition to the vibration energy and the quartic term.

Next we define the vector containing the algebra of excitonic operators ĉ† =
⇣
2̂
†

LE1, 2̂
†

LE2, 2̂
†

CT1, 2̂
†

CT2, 2̂
†

TT

⌘
which enables us to write

+8 9 e�(̂ 2̂†8 2̂ 9e
(̂ = exp

 
�

’
�
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⇣
1̂
†

� � 1̂�

⌘!
+8 9 2̂

†

8 2̂ 9 exp

 ’
�
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⇣
1̂
†

� � 1̂�

⌘!
, (9.47)

where ⇤ is a vector of length 76, containing 5 ⇥ 5 matrices. The reason for this quite complicated gymnastics is,
that now we can rotate into the eigenbasis of ⇤� = '

†
⇡ �' where we checked for all values of the exciton-phonon

coupling the positivity of the matrix numerically. Furthermore, the new vectors f̂†� = ĉ'† get multiplied to the new
densities f̂†� f̂� whose spectrum is between zero and one, due to the Hilbert space sector we are operating in. As

3 [�, ⌫⇠ ] = [�, ⌫]⇠ + ⌫[�,⇠ ] and [�⌫,⇠ ] = �[⌫,⇠ ] + [�,⇠ ]⌫ tend to be extremely useful identities in all these calculations.
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Figure 9.18: Schematic illustration of the coherence mechanism of composite exicton-phonon particles in addition to the
enhancement of the CT-TT hopping.

both other elements in the term are strictly positive, the sign of the hopping elements in + is only determined by
the action of the exponentials. Therefore, we expand to first order
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In the last line we have made use of the fact that the system is in the one exciton subspace and defined the excitonic
enhancement operator �*̂ which is proportional to the momentum operator of the vibration mode i

⇣
1̂
†
� 1̂

⌘
.

By evaluation of expectation values of the enhancement with the time-evolved state |k(C)i we can estimate the
effect the phonon coupling will have on the excitonic hoppings. Therefore, we have a nice interplay between an
approximate analytical result and data which is easily computed from our numerics. If the sign of the enhancement
is negative, the energy will be lowered upon delocalization of the effective exciton-phonon particles. Therefore,
the particles tend to be in a coherent superposition. If the sign gets positive, the particles will gain energy from
localization and therefore tend to remain in one electronic state. The evaluated enhancement over time for the
transition of the CT to the TT level is shown in fig. 9.18. Furthermore, the other constituent of the indirect path, i.e.
the transition from LE to CT is shown in fig. E.5. As we can clearly see, the coherent and the incoherent regime
match with the sign of the CT-TT enhancement. Once the excitonic occupation is transferred to the intermediate
charged states, it has to decay due to energetic considerations. As long as the sign of the enhancement is negative,
it will preferably do so to the TT state. This enables us to propose the formation of quasi particles and their
time-dependent mass as the mechanism behind the coherence time C0 and determine it to be approximately 35 fs.
Interestingly, the renormalization of the transition between LE and CT is almost constant in time and two orders of
magnitude smaller than the transition from the charged molecular states.





Conclusion, Summary & Outlook 10
We came a long way during the course of this thesis. We began by explaining the difficulties of quantum many-body
problems and why tensor networks are custom tailored for their treatment in 1d to simulate toy models as well as for
ab-initio calculations. In order to extend the applicability to systems of higher dimension and even systems without
the notion of dimensionality we introduced the concept of TTNS and implemented them in the SyTen toolkit
[HLL+]. Despite being loop free, the TTNS is no longer a planar network which leads to the necessity of a special
treatment for fermions. Therefore, a framework connecting the order of fermionic legs and operations on them was
derived keeping automatic track of the introduced parities. Furthermore, we derived the signs introduced by the
most common operators on tensor networks in order to obtain the correct pen and paper results. We found that
some operations need extensive care upon implementation and set some guidelines for possible future operations
whose implementation might be desired.

We extensively dealt with the question on how to map orbitals “artificially” to a network for most generic cases
and explained two blackbox tools in order to do so. An algorithm to change the ordering of a pre-existing network
on the fly without regeneration of all constituents was derived. Concluding the setup of our network we introduced
fast ways to obtain RDMs by a bookkeeping device splitting up the individual constituents and making reuse of
them as often as possible. The speedup was benchmarked to be at least two orders of magnitude in the easiest case.
We also explained how to obtain oRDMs in a different basis than the one chosen for the DMRG calculation.

Leaving the field of static wavefunctions we explained the necessity for local methods and introduced the
TDVP. The discussion of a generalization for TTNS was discussed and implemented in our toolkit with various
sweeping patterns. The domains of use for these patterns were benchmarked. Furthermore, we implemented a real
space parallel version of the TDVP speeding up calculations by simultaneously pursuing the local time-evolution of
individual orbitals and implemented it in shared and distributed memory. In the course of this implementation,
some changes to extend the functionality of tensor operations to GPUs were introduced by means of the CUDA
library and its BLAS interface.

We extended the question for orbital order in tensor networks by introducing the notion of fermionic mode
transformation, i.e. on the fly successive rotations of the single particle orbitals. This aimed at deriving a black
box procedure to reduce the correlation of states during variational optimization procedures. Different possible
objectives for this minimization were discussed. An elaboration why the extension to generic bases is difficult
was given which lead us to a generic ansatz for the transformation matrix only being bound by requiring unitarity.
Since this ansatz increased the number of free parameters in a non-convex optimization process we introduced the
automatic differentiation to the tensor network to obtain numerically exact derivates. The derivation of a derivative
for the matrix exponential became necessary in this course which we were able to do in a highly elegant way. Finally,
we elaborated on the MPO resources growing unpleasantly in both frameworks and stated that future investigations
could reactivate this method by finding ways to get this under control. Also, a benchmark for the 2d Fermi-Hubbard
model was given.

As the final piece of the tensor network part we dealt with systems going beyond the BO approximation. The
derivation of appropriate second quantized Hamiltonians was discussed and we gave an overview to common
methods used in this field. Subsequently, we introduced a new method to restore a broken quantum symmetry
in tensor networks and deal with large local Hilbert spaces simultaneously. Even though this seems custom
tailored to Fermi-Bose mixtures this can even be used for other setups to restore symmetries. The mapping to
an MPS was demonstrated and we discussed the issue of automatic truncation via the chosen parameters for the
variational optimization. The construction of generic operators in this method was discussed as well. Concluding
the theoretical considerations this led us to the application of our framework to real models.

We began by an application of our framework to the 1d Hubbard-Holstein model, one of the easiest models
combining spinful electrons and lattice vibrations. The phase diagram was mapped out again highly faithfully
since, even though prior investigations had found meaningful phases, they all suffered from some sort of problem.
Thereby, we were able to confirm the limits in which one interaction strength dominates, and the metallic region
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inbetween. However, we also encountered a fascinating new behavior prior unknown which is up to date target of
our scientific efforts. We checked for the role that the phonons play in this and investigated the gapless excitations
above the ground state, as well as the gaps themselves.

Finally, we discussed the main goal of this thesis, i.e. simulating a large molecule ab-initio. For this two
cases were chosen, first, a rather small calculation on pyrazine and second, a highly demanding first principles
calculation of singlet fission (SF) in the tetracene para-dimer. Even though our focus was on the numerical control
and accuracy, in the case of the pyrazine, we were still able to derive some interesting physics from it and do a
thermodynamic approach. This mainly revealed classical dynamics. For the tetracene para-dimer the situation was
significantly different. We initially began by introducing the reason for the current scientific interest in SF, namely,
the theoretical limitation to which materials can be used for photo-absorption, the Shockley-Queisser limit, and the
believe that this can be overcome by SF. This was followed by an quasi-exact coupling of five low lying diabatic
modes to a high number of phononic modes and the subsequent numerically exact time-evolution. A comparison to
the experimental absorption spectrum indicated the high faithfulness of our calculation. Furthermore, we clarified
which phononic modes are driving the energy transfer between the systems. In an attempt to change the electronic
yield after photo-absorption we started investigating the dependency of the solvent polarity as an experimentally
tuneable parameter. Not only did we again find excellent agreement to experiment, but also we were able to make
statements about which solvents are beneficial to our cause. As all solvents tested obtained a characteristic pattern
we looked into the electronic RDM which revealed that the coherence of the diabatic states is responsible for this.
Last but not least, we combined approximate analytical and numerical tools in order to explain the origin of this
behavior and attributed it to quasi particle formation. These quasi particles change their delocalization behavior
exactly at the characteristic time scale which could then be determined by us to high accuracy.

So far regarding what we have done, but where do we go from here? The framework derived by our tensor
networks is highly powerful and enables us to extrapolate microscopic degrees of freedom to a macroscopic system
for many occasions. Even though it is not a black box procedure to derive generic solutions for quantum properties
of materials, there is still much to explore. We firmly believe, that we can continue to systematically investigate
organic molecules in the vicinity of lattice vibrations by these tools. By tuning the experimental parameters but also
by going to more realistic setups like finite temperature and larger complexes, these systematics can be extended
even further. Certainly, the best case would be to describe realizable setups in which the efficiency of organic
semi-conductors could be increased. We have started to describe the benefits of other tensor network topologies but
there is much more to explore and maybe even a combination with other techniques can be achieved. In the course
of this it might get necessary to introduce new computational models, even though, the increase of computational
resources is still showing an impressive exponential growth, the resources can be taken more non-locally. Also,
looking further into the direction of GPUs and into the current developements of TPUs (which we did not deal with
in the course of this work at all) might be useful for this cause. Although these might seem like purely technical
issues, they might be the key ingredients to obtaining the extrapolation from microscopic degrees of freedom to
macroscopic systems which we originally targeted. We do share the believe, that these methods are not custom
tailored but rather brute force, and there might exist solutions which are much more beautiful or elegant. But for
the time being it is worth trying to obtain results in both directions, since a result in itself is not dependent on the
beauty of its derivation. In conclusion, we are confident it is a highly interesting time to be involved in science and
there is still substantial room for discovery.
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Mode transformation application scheme A
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Figure A.1: Application scheme for the twosite gates in mode transformation. We subsequently apply two-site gates to the
state and the operator in such a way that adjacent legs overlap. This way we introduce a global rotation in both the state and the
operator.
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Automatic di�erentiation compute graph B
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Figure B.2: Compute graph of the cost function in eq. (6.31) by the application scheme explained in section 6.2 and
section 6.2.1.
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Spectral densities and thermal fluctuations of the
tetracene para-dimer C
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Figure C.3: Spectral densities computed for the tetracene para-dimer from eq. (9.20). The left axis shows the spectral density
of the individual phononic modes for different diagonal and off-diagonal excitonic couplings. The right axis shows the relative
fluctuation at room temperature to table 9.1 which indicates that the incorporation of temperature for the tetracene para-dimer
is not necessary.



Section D. Illustration of the vibrational modes of the tetracene para-dimer 131

Illustration of the vibrational modes of the
tetracene para-dimer D

(a) Mode no. 1 (6.7 cm�1) (b) Mode no. 45 (415.0 cm�1)

(c) Mode no. 167 (1277.0 cm�1) (d) Mode no. 168 (1277.7 cm�1)

(e) Mode no. 184 (1409.6 cm�1) (f) Mode no. 185 (1411.2 cm�1)

(g) Mode no. 210 (1624.9 cm�1) (h) Mode no. 211 (1625.4 cm�1)

Figure D.4: Graphical depiction of the most import vibrational modes of the tetracene para-dimer.
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Enhancement of excitonic Hamiltonian for the
tetracene para-dimer E
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drawn on the right axis while the CT-TT one is one the left axis.



Symbols
H context dependent Hilbert space H .

1̂ identity matrix, 1̂ = diag [1, 1, . . . , 1] .

2̂ fermionic annihilation operator, |0i = 2̂: |:i .

1̂ bosonic annihilation operator, |0i = 1̂: |:i .

1̂
† bosonic creation operator, |:i = 1̂

†

: |0i .

C complex valued vector space C .

2̂
† fermionic creation operator, |:i = 2̂

†

: |0i .

e Euler’s number, e = lim
=!1

(1 + 1/=)= .

i imaginary unit, i2 = �1 .

=ph Total number of truncated phonons, 0  =  =ph .

R real valued vector space R .
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Abbreviations
1d one-dimensional.

2d two-dimensional.

AD automatic differentiation.

AFM antiferromagnet.

BCH Baker-Campbell-Hausdorff formula.

BCS Bardeen-Cooper-Schrieffer theory.

BFGS2 Broyden-Fletcher-Goldfarb-Shanno algorithm.

BLAS Basic Linear Algebra Subprograms.

BO approximation Born-Oppenheimer approximation.

BTT binary tensor tree.

CAS-SCF complete active space self-consistent field.

CASCI complete active space configuration interaction.

CDW charge density wave.

CFT conformal field theory.

CGC Clebsch-Gordon coefficient.

CPU central processing unit.

CT charge transfer.

CUDA Compute Unified Device Architecture.

DFT density functional theory.

DMFT dynamical mean-field theory.

DMRG density matrix renormalization group.

ED exact diagonalization.

GPU graphics processing unit.

HF Hartree Fock.

HOMO highest occupied molecular orbital.

HPC high-performance computing.
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irrep irreducible representation.

iSF intramolecular singlet fission.

LBO local basis optimization.

LCAO linear combination of atomic orbitals.

LE locally excited.

LUMO lowest unoccupied molecular orbital.

MCTDH multi-configurational time-dependent Hartree.

MEG multiple exciton generation.

MPI message passing interface.

MPO matrix product operator.

MPS matrix product state.

NO natural orbital.

NP-hard non-deterministic polynomial-time hard.

NRG numerical renormalization group.

open MP open multi-processing.

oRDM orbital reduced density matrix.

PEPS projected entangled pair state.

PES potential energy surface.

PP projected purification.

pRDM particle reduced density matrix.

QR QR.

RAM random-access memory.

RDM reduced density matrix.

RG renormalization group.

SA-CASSCF state averaged complete active space self consistent field.

SDW spin density wave.

SF singlet fission.

SSO single-site operator.

SVD singular value decomposition.

T3NO three-legged tree tensor network operator.

T3NS three-legged tree tensor network state.
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TDVP time-dependent variational principle.

TEBD time-evolving block decimation.

tetracene para-dimer 1,4-bis(11-phenyltetracen-5-yl)benzene.

TPU tensor processing unit.

TT triplet pair.

TTNS tree tensor network state.

UHF unrestricted Hartee Fock.

UV ultraviolet.

xSF intermolecular singlet fission.
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[BC05] H. M. Bücker and G. F. Corliss. A bibliography on automatic differentiation. In H. M. Bücker,
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Annalen der Physik, 169(12):481–506, 1854.

[CLJ+11] Wai-Lun Chan, Manuel Ligges, Askat Jailaubekov, Loren Kaake, Luis Miaja-Avila, and X.-Y.
Zhu. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer.
Science, 334(6062):1541–1545, 2011.

[CLT+13] Daniel N. Congreve, Jiye Lee, Nicholas J. Thompson, Eric Hontz, Shane R. Yost, Philip D. Reuss-
wig, Matthias E. Bahlke, Sebastian Reineke, Troy Van Voorhis, and Marc A. Baldo. External
quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Sci-

ence, 340(6130):334–337, 2013.
[CM02] M. A. Cazalilla and J. B. Marston. Time-dependent density-matrix renormalization group: A

systematic method for the study of quantum many-body out-of-equilibrium systems. Phys. Rev. Lett.,
88:256403, Jun 2002.
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[PHCS+21] G. Paleari, F. Hébert, B. Cohen-Stead, K. Barros, RT. Scalettar, and G. G. Batrouni. Quantum monte

carlo study of an anharmonic holstein model. Phys. Rev. B, 103:195117, May 2021.
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White, and Shiwei Zhang. Absence of superconductivity in the pure two-dimensional hubbard model.
Phys. Rev. X, 10:031016, Jul 2020.
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A. Y. N. Schröder, David H. P. Turban, Jishan Wu, Nicholas D. M. Hine, Neil C. Greenham, Alex W.
Chin, Akshay Rao, Philipp Kukura, and Andrew J. Musser. A molecular movie of ultrafast singlet
fission. Nature Communications, 10(1):4207, 2019.
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[VGRC04] F. Verstraete, J. J. Garcı́a-Ripoll, and J. I. Cirac. Matrix product density operators: Simulation of

finite-temperature and dissipative systems. Phys. Rev. Lett., 93:207204, Nov 2004.
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[VT18] Tuomas I. Vanhala and Päivi Törmä. Dynamical mean-field theory study of stripe order and 3-wave

superconductivity in the two-dimensional hubbard model. Phys. Rev. B, 97:075112, Feb 2018.
[VWPGC06] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac. Criticality, the area law, and the

computational power of projected entangled pair states. Phys. Rev. Lett., 96:220601, Jun 2006.
[Wei12] Andreas Weichselbaum. Non-abelian symmetries in tensor networks: A quantum symmetry space

approach. Annals of Physics, 327(12):2972–3047, 2012.
[Wen64] R. E. Wengert. A simple automatic derivative evaluation program. Commun. ACM, 7(8):463–464,

aug 1964.
[WH35] E. Wigner and H. B. Huntington. On the possibility of a metallic modification of hydrogen. The

Journal of Chemical Physics, 3(12):764–770, 1935.
[Whi92] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett.,

69:2863–2866, Nov 1992.
[Whi93] Steven R. White. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B,

48:10345–10356, Oct 1993.
[Whi96] Steven R. White. Spin gaps in a frustrated heisenberg model for cav4$9. Phys. Rev. Lett., 77:3633–

3636, Oct 1996.
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