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Zusammmenfassung
Das Standardmodell der Teilchenphysik deckt nur etwa 5% der Energiedichte des
Universums ab. Die restlichen Komponenten, Dunkle Materie (DM) und Dunkle
Energie, sind noch weitgehend unbekannt. Das Λ-Cold-Dark-Matter kosmologische
Modell, welches kollisionslose und vor dem Materie-Strahlung-Gleichgewicht nicht-
relativistische DM postuliert, ist äußerst erfolgreich bei der Erklärung von astronomis-
chen Beobachtungen auf großen Skalen, jedoch versagt seine Vorhersagekraft auf
kleinen (Kiloparsec-) Skalen. In dieser Arbeit werden drei Modifikationen des Λ-Cold-
Dark-Matter-Modells vorgestellt, welche die Diskrepanzen zwischen Beobachtungen
und Vorhersagen auf kleinen Skalen lösen. Ihre gemeinsamen Merkmale sind eine
späte kinetische Entkopplung zwischen den Teilchen der Dunklen Materie und einem
relativistischen Streupartner, welche das Power-Spektrum der Dunklen Materie bei
kleinen Skalen unterdrückt, und die Einführung von Selbstwechselwirkungen, welche
den Entropietransfer zwischen verschiedenen Regionen der Dunklen Materie erhöhen.
Das erste Modell untersucht die Möglichkeit eines vollständig abgeschotteten Dunklen
Sektors mit einer dunklen U(1)-Eichsymmetrie, sowie mehreren Generationen von dun-
klen Fermionen. Das zweite Modell beinhaltet die Möglichkeit einer Kopplung zwis-
chen Dunkler Materie und Neutrinos, welche als relativistische Streupartner dienen.
Das dritte Modell bietet hingegen einen Annihilationskanal der Dunklen Materie in
Elektronen und Positronen.

Die DM-Dichte spielt eine wichtige Rolle bei der Bestimmung der Streuungsraten
(beziehungsweise Annihilations-/Zerfallsraten), welche zum Nachweis von DM führen
könnten. Ihre großräumige Verteilung ist durch numerische Simulationen im ΛCDM-
Modell gegeben, aber astrophysikalische Effekte können Auswirkungen auf lokaler
Ebene haben. Der letzte Teil dieser Arbeit untersucht die Möglichkeit der Erzeu-
gung von lokalisierten DM-Überdichten durch gravitative Wechselwirkungen zwischen
DM und einem rotierenden Schwarzen Loch: Einfallende Teilchen können innerhalb
der Ergosphäre des Schwarzen Lochs zerfallen und bevorzugt entlang der Rotation-
sachse ausgestoßen werden. Es wird gezeigt, dass dieser Effekt zu einem schwachen
DM-Strahl führt.
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Abstract
The Standard Model of particle physics covers only about 5% of the energy density of
the Universe. The remaining components, Dark Matter (DM) and Dark Energy, are
largely unknown. The Λ Cold Dark Matter (ΛCDM) cosmological model, postulating
DM which is collisionless and non-relativistic before matter-radiation equality, is ex-
tremely successful at explaining astronomical observations at large scales; however, its
predictive power fails at small (kiloparsecs) scales. In this work, three modifications of
the ΛCDM model are presented which resolve the discrepancies between observations
and predictions at small scales. Their common features are: a late kinetic decoupling
between the DM particles and a relativistic scattering partner, suppressing the DM
power spectrum at small scales, and the introduction of self-interactions, increasing
the entropy transfer between DM regions. The first model consists of a completely se-
cluded Dark Sector with a U(1) gauge symmetry and multiple generations of fermions.
The second one includes the option of a coupling between DM and neutrinos, which
serve as relativistic scattering partners. The third model features a DM annihilation
channel into electrons and positrons.

The DM density plays an important role in determining the scattering (or annihi-
lation/decay) rates which could lead to DM detection. Its large-scale distribution is
given by ΛCDM numerical simulations, but astrophysical effects can have a relevant
impact locally. The final part of this thesis studies the possibility of generating local-
ized DM overdensities through gravitational interactions between DM and a rotating
black hole: infalling particles can scatter or decay within the black-hole’s ergosphere
and be expelled preferentially along the rotation axis. It is shown that this effect cre-
ates a faint DM beam.
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1 Introduction

1.1 The structure of Dark Matter at small scales

This thesis is devoted to the discussion of small-scale properties of Dark Matter. Since
the discovery of Dark Matter via gravitational observations, a lot of effort has been
made to understand its real nature. While a lot of constraints on the properties of
Dark Matter have been set, the puzzle is still far from being solved. In particular,
direct and indirect detection experiments have not been decidedly successful yet. In-
deed, Dark Matter remains particularly elusive to non-gravitational observations. For
this reason, a lot of new motivation for Dark Matter research currently comes from
cosmological observations. In particular, new insights can be gained by looking at
the Dark Matter properties at small scales, since in that range particle properties
(e.g. self-interaction cross sections) can be probed without the explicit need for a
connection to the Standard Model. Furthermore, at small scales, discrepancies be-
tween observations and predictions by the established Λ Cold Dark Matter (ΛCDM)
cosmological model have been noticed and, thus, new physics seems to be unavoidable.

The ΛCDM model has been highly successful at explaining the Universe and its
history. From the existence of the Cosmic Microwave Background to the accelerated
expansion of the Universe, the list of the puzzles solved by the ΛCDM model is long.
Some of the unsolved issues between this model and observations at small scales are
the following. The Dark Matter density near the center of halos, below distances
of a few kiloparsecs, is lower than expected. Furthermore, the number of observed
satellites of the Milky Way is lower than predicted by simulations and the bright-
est dwarf spheroidal satellites have velocity profiles which are incompatible with the
most massive Dark Matter subhalos. Finally, the rotation curves in the inner regions
of galaxies can vary greatly even between galaxies which otherwise have very similar
properties. These discrepancies with observations might open the way to modifica-
tions of the ΛCDM model. Three such specific modifications will be discussed in this
thesis. The common ground between them is given by the fact that they all feature
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1 Introduction

self-interacting Dark Matter and a late kinetic decoupling between the Dark Matter
particles and some relativistic scattering partner. These two features are crucial to
solving the above mentioned small-scale problems.

Self-interactions facilitate energy transport within the halo and thus eliminate cuspy
density profiles. A lower central density also makes it possible for the most massive
observed satellites of the Milky Way to be located in the most massive subhalos.
Furthermore, self-interactions increase the velocity dispersion of Dark Matter particles
which means that the Dark Matter density profile is more sensitive to the baryon
density near the center of each halo. This can explain the differences between inner
rotational curves of similar halos. Since the ΛCDM is in very good agreement with
observations at large scales, self-interactions should change structures only at small
ones. This is the case for velocity-dependent self-interaction cross sections: at large
scales the rotational velocities are much larger and the Dark Matter particles can be
regarded as being collisionless.

When Dark Matter particles stay in thermal equilibrium with a relativistic scattering
partner until late times, the elastic momentum transfer between them washes out
any structures that might form up until the time when the two kinds of particles
are decoupled from each other. This can explain the lack of observations of dwarf
spheroidal satellites of the Milky Way with masses below 108 − 1010 solar masses.

The first model described in this thesis and implementing such features is a simple
Dark Matter model with a U(1) gauge symmetry. It postulates a completely secluded
dark sector with no bridge to the Standard Model and thus no possibility of direct or
indirect detection. However, predictions made by such a model could still be tested
against observations of the structure of the Universe at small scales. Beyond the Dark
Matter candidate, the proposed theory postulates a massive U(1) gauge boson, which
mediates velocity-dependent self-interactions between the Dark Matter particles, and
a very light dark fermion, which constitutes a relativistic scattering partner for Dark
Matter up until temperatures of a few hundred eV.

The second model is a Dark Matter model which couples to the Standard Model
through a sterile-neutrino bridge. This mediates an effective coupling to Standard
Model neutrinos. Indeed, within this model, the relativistic scattering partners of Dark
Matter are Standard Model neutrinos. This is of particular interest since neutrinos
are the only particles in the Standard Model that can efficiently maintain elastic
scatterings with Dark Matter until late times and can thus provide a solution to the
small-scale problems.
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1.2 Local Dark Matter overdensities

The final Dark Matter model is one where the Dark Matter particles have an anni-
hilation channel into electrons and positrons. This renders it particularly interesting
from the perspective of indirect detection, for example through experiments searching
for electron and positron excesses in cosmic rays. In this case, self-interactions cannot
be mediated by the same boson which facilitates annihilations into leptons, since this
would require Dark Matter to be electromagnetically charged.

All of these models are discussed with a special focus on the consequences they
have for the small-scale structure of Dark Matter. In particular, they all solve the
small-scale problems mentioned above: cusp vs core, too-big-to fail, missing satellites
and diversity of rotation curves.

1.2 Local Dark Matter overdensities

The second part of the thesis is dedicated to the investigation of a specific scenario
which might generate local Dark Matter overdensities. In order to explain some of
the tentative signals of Dark Matter annihilation (or decay) which have been mea-
sured, a boost factor for the cross section is usually postulated a posteriori to enhance
the annihilation rate of Dark Matter. While no clear reason for such a boost factor
is known, possible causes include inhomogeneities in the Dark Matter densities and
Sommerfeld enhanced cross sections. A third possibility is considered here: a Dark
Matter overdensity might be generated by rotating supermassive black holes.

The formation of astrophysical jets from rotating black holes is mostly due to elec-
tromagnetic processes and thus does not involve Dark Matter particles. However,
gravitational effects contribute to jet formation as well: particles from the accretion
disk can fall into the ergosphere and be expelled preferentially along the rotation axis
through the Penrose process. Thus, in principle, Dark Matter particles can be colli-
mated by rotating supermassive black holes and yield a Dark Matter overdensity along
the axis of rotation. The Carter constant is used to determine which of the Dark
Matter particles in the accretion disk have the potential to end up in the beam. After
numerically scanning the parameter space of the infalling particles, an upper bound
for the Dark Matter density near the rotation axis is obtained. The consequence is
that this effect is negligible at large distances from the black hole. However, the pres-
ence of a Dark Matter beam is confirmed by the analysis of the Dark Matter density
at different distances from the rotation axis: at greater angles from it the Dark Matter
density decreases rapidly. Furthermore, it is shown that supermassive black holes with
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1 Introduction

masses of approximately a billion solar masses produce the largest beam densities and
that the closer to the Schwarzschild radius the larger is the Dark Matter density.
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2 The current status of Dark Matter
and the open questions

This chapter contains a brief summary of the current status of Dark Matter research
as well as an outlook on the many open questions which still remain. Particular focus
is laid on the small-scale properties of Dark Matter, forming the basis for the research
presented in the subsequent chapters.

2.1 The ΛCDM model

The ΛCDM model, also known as the concordance model, is the most widely accepted
and successful model of cosmology. Its predictive power is huge (CMB, large-scale
structure, abundance of primordial elements, accelerated expansion, etc.) and rests
on just six free parameters which are fitted to cosmological observations. The evolution
of the universe is governed by the Friedmann equations,

(
ȧ (t)
a (t)

)2

= 8πG
3 ρ− k

a2 (t) (2.1.1)

and
ä (t)
a (t) = −4πG

3 (ρ+ 3p) , (2.1.2)

where a (t) is the scale factor, G is Newton’s gravitational constant, ρ is the energy
density present in the universe, p is the pressure and k is the curvature of spacetime.
These equations follow from the Friedmann-Robertson-Walker metric, i.e. the most
generic metric which embodies the empirical properties of homogeneity and isotropy,

ds2 = −dt2 + a2 (t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 (θ) dφ2

)]
. (2.1.3)
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2 The current status of Dark Matter and the open questions

The ΛCDM model assumes a flat universe (k = 0), which is in excellent agreement
with experiments [1]. The energy density has three main components: dark energy,
cold dark matter (CDM) and ordinary (almost exclusively baryonic) matter. Their
dimensionless energy densities are [1] ΩΛ ≈ 0.69, ΩCDM ≈ 0.26 and Ωb ≈ 0.05 respec-
tively, where Ωi = ρi/ρcrit. and ρcrit. is the critical energy density of the universe.

2.1.1 Evidence of Dark Matter

There is large evidence for the Dark Matter component of the universe. Historically,
the first main hint at the existence of Dark Matter came from the application of
the virial theorem to the Coma cluster by F. Zwicky in 1933 [2], who concluded
that the mass of the cluster is dominated by some new form of matter. Further
early signals of Dark Matter came from observations of rotational curves of spiral
galaxies which appear to be flat at large radii [3, 4]. This is incompatible with the
assumption that galaxies only contain ordinary matter, since in that case the velocity
profile would fall as r−1/2 at large radii. The existence of Dark Matter can be inferred
also from both strong and weak gravitational lensing observations [5, 6], which give
important information on the total mass of observed objects. The measurement of the
temperature of interstellar gas through X-ray detection provides another proof of the
existence of Dark Matter: the observed temperature is higher than expected, indicating
the presence of more than just the visible matter [7]. The angular power spectrum of
the temperature fluctuations of the Cosmic Microwave Background provides yet more
evidence for Dark Matter. The peak structure agrees perfectly with a flat universe
(1st peak) with baryons and non-baryonic dark matter (2nd and 3rd peaks). The
Cosmic Microwave Background radiation provides also another important information:
the baryonic density fluctuations at the time of recombination were at most of the
order of 10−4, i.e. δρ/ρ . 10−4. This, however, is insufficient to create the non-linear
inhomogeneities, δρ/ρ � 1, observed today in the short period of time elapsed since
recombination [8]. Finally, absorption spectra of Lyman-α lines are also in agreement
with the ΛCDM model [9].

2.1.2 Particle properties of Cold Dark Matter

Although much is known about the density and distribution of Dark Matter, its particle
properties remain quite unconstrained.

A lower bound on the mass of Dark Matter particle comes from the observation that

6



2.1 The ΛCDM model

Figure 2.1: The angular power spectrum of the Cosmic Microwave Background Radi-
ation confirms the existence of Dark Matter. Figure from Ref. [1].

Dark Matter should be coherent at the scales of dwarf galaxies, which is equivalent to
a constraint on its de Broglie wavelength. On the other end of the spectrum, an upper
bound of m . 1070 eV can be found by arguments of stability of globular clusters
which would otherwise be disrupted if Dark Matter particles were more massive than
that. Thus, in principle, an incredibly wide range of masses is allowed.

Of course, Dark Matter should be stable on cosmological time scales. It should
also be electrically neutral or at least interact very weakly with the Standard Model
[10, 11, 12].

Within the ΛCDM model, Dark Matter is assumed to be collisionless. However, this
does not necessarily have to be the case. Constraints on self-interactions of Dark
Matter at the scales of clusters, σχχ/mχ < 1 cm2 g−1, follow from observations of
cluster mergers [13].

In the ΛCDM model, Dark Matter is also assumed to be cold, i.e. it should be
non-relativistic long before the time of matter-radiation equality. Indeed, hot Dark
Matter is highly disfavored because it leads to large damping scales and excessively
suppresses the matter power spectrum of the Universe [14].

2.1.3 Direct and indirect Dark Matter detection

A large number of experiments are currently being carried out in order to detect Dark
Matter particles. The search for Dark Matter particles is being pursued on three
fronts: direct detection, indirect detection and Dark Matter production at colliders,
as exemplified in Fig. 2.2.

Direct detection experiments look for scintillation resulting from nucleon-Dark Mat-
ter interactions, mostly deep underground to avoid the background coming from inter-
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2 The current status of Dark Matter and the open questions

DM

DM

SM

SM

di
re

ct
de

te
ct

io
n

indirect detection

DM production

Figure 2.2: The current possible paths for Dark Matter search: direct detection, indi-
rect detection and production.

actions with cosmic rays. The negative results so far have lead to stringent constraints
on the cross-section for WIMP-nucleon scattering [15]. Recently, an excess in the low-
energy electronic recoil data was measured at the XENON1T experiment which might
be explained by bosonic Dark Matter with a mass of approximately 2 keV [16].

Indirect detection experiments search for annihilation or decay products of Dark
Matter particles. While there is no definitive evidence, a number of anomalous events
have been measured, which could be explained by the presence of Dark Matter:
positron excesses were observed by the PAMELA detector [17] and the AMS-02 exper-
iment [18], while rare highly energetic neutrino events have been detected by IceCube
[19].

2.2 Dark Matter at small scales

Much is known about the properties of Dark Matter at large scales; however, at the
scales of kiloparsecs, there are still observations which cannot be explained by the
usual Cold-Dark-Matter model. These will be discussed in this section.
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2.2 Dark Matter at small scales

2.2.1 Cuspy Dark Matter halos

The density profile of a Dark Matter halo can be quite accurately predicted through
N -body simulations of collisionless Dark Matter. The Navarro-Frenk-White (NFW)
profile [20],

ρNFW (r) = ρ0

r
rs

(
1 + r

rs

)2 , (2.2.1)

is the most famous result of such simulations. The parameters depend on the particular
characteristics of each halo. In particular, the slope α = d log ρdm/d log r of the profile
for small radii is α ≈ −1 in the case of a NFW profile. This corresponds to a rotation
curve behaving as v (r) ∝

√
r at small radii.

Measurements of galaxy rotation curves have been undertaken in order to compare
them with these predictions. Dwarf galaxies are very well suited for such observa-
tions, because their dynamics is mostly governed by Dark Matter. Another testing
ground are low surface brightness galaxies, due to their high mass-to-light ratio Υ∗

and especially quiescent evolution, which helps to exclude supernova-driven outflows
and other baryonic effects as possible factors affecting the observed rotation curves
[21]. Both types of galaxies display rotation curves which are much flatter for small
radii, v (r) ∝ r [22, 23, 24], meaning that they favor a Dark Matter density profile
with a shallower inner slope, α ≈ 0.

The difference between the expected density profile and the one inferred from ob-
servations is known as the “cusp versus core” problem. It is important to note, that
these differences appear only at small radii of approximately ∼ 1 kpc, while measure-
ments and simulations agree at larger scales.

2.2.2 Missing satellites

Another tension between the ΛCDM predictions and observations is given by the so-
called missing satellites problem. Indeed, ΛCDM simulations predict that halos like
the one of the Milky Way should have several hundreds of smaller subhalos [25, 26, 27].
This is in accordance with the hierarchical structure formation which assumes that
larger structures in the Universe have formed from smaller ones. On the other hand,
only about 50 satellite dwarf galaxies have been observed so far within the virial radius
of the Milky Way [28, 29]. Historically, this number was much lower at the time when
this discrepancy was first noted [30] and has since increased to the current value of
approximately 50 thanks to observations of fainter objects which remained previously
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2 The current status of Dark Matter and the open questions

unnoticed. It is, however, highly unlikely that more such discoveries could fill the gap
between the predictions and the observations.

It should be noted that missing satellites have been reported also within the Local
Group but not for the Virgo cluster. Thus, like the cusp vs core problem, this is
only related to small scales. A possible solution is given by the hypothesis that the
missing satellites have not been observed due to their extremely low baryonic content.
This depletion of baryons in dwarf halos could be due to heating of the gas after the
reionization epoch which suppresses gas accretion in low-mass halos [31].

In this work, possible modifications of the ΛCDM model are considered which allow
to solve the missing satellites problem without the need for baryonic effects [32, 33, 34].
In particular, all the models discussed feature a late (i.e. at T < 1 keV) kinetic
decoupling of the Dark Matter particles from some relativistic scattering partner and
can successfully address this problem by suppressing Dark Matter structure at mass
scales below Mhalo . 108 − 1010M� [35, 36, 37].

2.2.3 Diversity of rotation curves

Galaxy observations revealed another puzzle at small scales. When plotting the ro-
tational velocity of each galaxy at a radius of 2 kpc versus the maximal rotational
velocity, i.e. the velocity at very large radii, a large diversity in the inner velocities
becomes apparent: even though two galaxies might have the same maximal velocity,
their velocity at r = 2 kpc can vary by as much as 50 km/s [38]. Since rotational ve-
locity and density profile are correlated, this means that similar halos can have very
different inner density profiles.

2.2.4 Too big to fail

By abundance matching [8], i.e. establishing a monotonic one-to-one correspondence
between the Milky Way subhalos predicted by ΛCDM simulations and the observed
galaxy satellites, it is expected that the brightest (and thus most massive) satellites are
located in the most massive subhalos. However, the observed low rotational velocities
of these massive satellites are incompatible with the high central densities of the most
massive subhalos [39]. It remains unclear why the most massive subhalos should fail
to form galaxies, in particular since their gravitational potential is the deepest and
any stripping gas mechanisms would be less effective than on the smaller halos.

Explicitly, ΛCDM simulations predict subhalos with inner circular velocities larger

10



2.2 Dark Matter at small scales

than 25 km/s. However, the most massive satellites observed, which should have the
fastest circular velocities, reach at most vcirc ≈ 20 km/s.

This discrepancy is not peculiar to the satellites of the Milky Way: field galaxies
and satellites of Andromeda show the same problem [40].

The too big to fail and the cusp vs core problems can be solved simultaneously
by the same mechanism, since they both would benefit from smaller central densities
in Dark Matter subhalos. On the one hand, a smaller central density yields a more
cored profile, while on the other hand, a smaller density implies a smaller rotational
velocity near the center and thus the most massive satellites could be hosted by the
most massive subhalos after all.
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3 Flavored U(1) dark sector at small
scales

The first and simplest one of the models discussed in this thesis, addressing the small-
scale problems of ΛCDM explained in Chapter 2, is presented in this chapter. A U(1)
sector secluded from the rest of the Standard Model is postulated and the possibility
of multiple Dark Matter generations is considered.

3.1 Introduction

The model presented in this Chapter is the simplest one, in the sense that it consists of
a secluded Dark Sector and can thus evade a number of phenomenological constraints
which would apply if Dark Matter were coupled in some way to the Standard Model.
In fact, this model is not completely secluded since thermal production is assumed
and thus a very early coupling between the Dark Sector and the Standard Model is
present. However, this coupling ceases to be relevant at early times (T � TBBN) and
from that moment forward there is no contact between the two sectors.

The main goal of this model is to obtain a simple theory which is able to explain
simultaneously the observed Dark Matter relic density and the discrepancies between
ΛCDM predictions and observations at small scales. The simplest way to achieve this
is by introducing at least three new kinds of particles in the Dark Sector: two Dirac
fermions and one U(1) gauge mediator. The heavier of the two Dirac fermions is the
Dark Matter candidate, while the lighter one is its relativistic scattering partner which
allows for a late kinetic decoupling. Furthermore, the U(1) gauge boson mediates
self-interactions between the Dark Matter particles. These two features allow to solve
the small scale problems of ΛCDM, as will be discussed in the rest of this Chapter.

Moreover, an expansion of this simple model is presented as well: the possibility
of multiple generations, i.e. further pairs of heavy and light fermions in the Dark
Sector, is analyzed. This allows for a larger choice of parameters yielding the desired
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3 Flavored U(1) dark sector at small scales

phenomenology.
Even though the new particles are secluded from the Standard Model, a number of

constraints must still be taken into consideration. In particular, quantum consistency
of the new theory and the deviation of the effective number of neutrino degrees of
freedom will be discussed in detail.

3.2 Assumptions

The main assumptions within this model are the following.

1. Coupling to the Standard Model: The Dark Sector is assumed to have
been in thermal equilibrium with the Standard Model only at early times, long
before Big Bang Nucleosynthesis. After that, the Dark Sector is assumed to
decouple completely from the Standard Model. This assumption is motivated
by the lack of definitive non-gravitational evidence for Dark Matter particles.
Such a secluded Dark Sector is usually known as a nightmare scenario, because
it does not allow any direct or indirect detection of Dark Matter processes.
However, such a model could still be tested via cosmological observations, e.g.
comparisons between observations and predictions of small-scale structures.

2. Visible entropy: It is assumed that the entropy of the Standard Model is
not affected by the Dark Sector, i.e. the effective number of entropy degrees
of freedom g∗,S of SM particles is unchanged. This means in particular that
even though the Dark Sector and the Standard Model were in thermal contact
at early times, no entropy transfer has taken place (e.g. no annihilations of dark
particles into Standard-Model particles).

3. Dark Matter: The mass of the Dark Matter candidates is assumed to lie in
the TeV range. This is a valid assumption, since it is well known that masses in
this range accompanied by an interaction below the weak scale are able to solve
the small-scale problems [41, 42]. For this reason, a mediator with mass in the
MeV range is also assumed.

4. Quantum consistency: The theory is assumed to be anomaly-free to ensure
that unitarity is not violated. This poses constraints on the charges, which will
be discussed in Sec. 3.3.2.
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3.3 The Dark Sector

5. Symmetry breaking: It is postulated that the U(1) gauge symmetry present in
the Dark Sector is spontaneously broken before the electroweak phase transition.
It will be shown in Section 3.6.1 that this ensures that the Dark Matter particles
have already attained their mass before freezing out and thus the correct relic
density is recovered.

3.3 The Dark Sector

The dark sector is assumed to be populated by 2N fermions χ(j) and χ′ (j) with j ∈
{1, . . . , N} which are singlets under the symmetries of the Standard Model. The total
number of fermions must be even due to quantum consistency as will be shown below.
Furthermore a vector mediator Xµ and a complex scalar field H̃ are also present. The
postulated model has the following Lagrangian density:

L =
N∑
j=1

χ
(j)
L i /Dχ(j)

L +
N∑
j=1

χ
(j)
R i /Dχ(j)

R +
N∑
j=1

χ
′ (j)
L i /Dχ′ (j)

L +
N∑
j=1

χ
′ (j)
R i /Dχ′ (j)

R

−
N∑
j=1

χ
(j)
L

H̃

vd
m(j)
χ χ

(j)
R −

N∑
j=1

χ
′ (j)
L

H̃∗

vd
m

(j)
χ′ χ

′ (j)
R − H.c. (3.3.1)

−1
4X

µνXµν − ε

2B
µνXµν +

(
DµH̃

)∗
DµH̃ − λ

2
(
H̃∗H̃ − v2

d

)2
+ a2H̃∗H̃H†H .

Here, χ(′)
L and χ

(′)
R are the left- and right-chiral projections of the fermionic fields, re-

spectively. The covariant derivative Dµ is defined as Dµ = ∂µ − iXµQ, where Q is
the charge operator corresponding to the U(1)DS symmetry in the Dark Sector. Note
that the symmetry of the dark sector is denoted by U(1)DS in order to distinguish
it from the U(1)Y symmetry of the Standard Model. The dark fermions have chiral
charges Q(j)

L , Q(j)
R , Q′ (j)

L , and Q
′ (j)
R , and H̃ has charge QH̃ . Bµν is the field-strength

tensor of the vector boson Bµ corresponding to the U (1)Y symmetry of the Standard
Model, before the electroweak phase transition. Xµν is the field-strength tensor asso-
ciated with the new mediator Xµ and is defined as Xµν = ∂µXν − ∂νXµ. Since it is
allowed by the symmetry of the theory, a kinetic mixing term BµνXµν is included for
completeness. ε is a real parameter determining the strength of this mixing. Due to
this coupling, the dark fermions obtain Standard-Model charges QLε and QRε. This
poses a strict constraint on the parameter ε which will be discussed in a later Section.
vd is the location of the minimum of the potential for the complex scalar field, while
λ is the coupling strength of this potential. Furthermore, the parameter a describes
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3 Flavored U(1) dark sector at small scales

the coupling between the dark complex scalar field and the Higgs doublet H in the
Standard Model. This is the only relevant coupling between the Dark Sector and the
Standard Model and will be discussed in more detail in the following.

3.3.1 Spontaneous symmetry breaking

The role of the complex scalar field H̃ is very similar to that of the Higgs field in the
Standard Model. The complex scalar potential in Eq. (3.3.1) allows for a spontaneous
symmetry breaking which results in the mediator X becoming massive at late times.
The potential −λ/2

(
H̃∗H̃ − v2

d

)2
is minimized by H̃0 = vd. The field H̃ (x) can be

expanded around this minimum as H̃ (x) = vd + h̃ (x) /
√

2 in unitary gauge, where
h̃ (x) is a real scalar field. After the symmetry breaking, h̃ attains a mass mh̃ =√

2λvd. Furthermore, the kinetic term
(
DµH̃

)∗
DµH̃ yields a term XµX

µ ∗Q2
H̃
v2

d when
expanded around the minimum of the complex scalar potential. This means that the
previously massless mediator X now acquires a mass mX = QH̃vd. It should be noted
that in order for this to happen, it is crucial that H̃ is charged under the U(1)DS

symmetry. Finally, the symmetry breaking is also responsible for the Dirac masses
of the fermions of the theory, m(j)

χ and m
(j)
χ′ , thanks to the Yukawa couplings in Eq.

(3.3.1).

3.3.2 Quantum consistency

The newly postulated U(1)DS symmetry in the Dark Sector is non-anomalous if the
condition ∂µ

〈
JµU(1)DS

JαU(1)DS
JβU(1)DS

〉
= 0 is satisfied. Here, JµU(1)DS

is the current

JµU(1)DS
=

N∑
j=1

(
Q

(j)
L χ(j)γµχ

(j)
L +Q

(j)
R χ(j)γµχ

(j)
R

)

+
N∑
j=1

(
Q

′ (j)
L χ′ (j)γµχ

′ (j)
L +Q

(j)
R χ′ (j)γµχ

′ (j)
R

)
(3.3.2)

and 〈 . . . 〉 denotes the expectation value of the operator it surrounds. This condition
is the same as for the Standard Model U(1)Y symmetry and yields the following
constraint on the charges,

N∑
j=1

(Q(j) 3
L −Q

(j) 3
R ) =

N∑
j=1

(Q′ (j) 3
R −Q

′ (j) 3
L ) . (3.3.3)
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3.3 The Dark Sector

Also analogously to the Standard Model, the grav2 × U (1)DS anomaly vanishes if the
condition

N∑
j=1

(Q(j)
L −Q

(j)
R ) =

N∑
j=1

(Q′ (j)
R −Q

′ (j)
L ) (3.3.4)

is satisified.

These charges are furthermore related to the charge of the dark scalar field H̃

through the Yukawa coupling in Eq. (3.3.1), from which it follows that

QH̃ = Q
(j)
L −Q

(j)
R , (3.3.5)

QH̃ = Q
′ (j)
R −Q

′ (j)
L . (3.3.6)

From Eq. (3.3.4) it is clear that the number of χ fermions must be equal to the
number of χ′ fermions. Indeed, considering Nχ flavors for the χ particles and Nχ′ for
the χ′ ones, the condition in Eq. (3.3.4) can be rewritten as

(Nχ −Nχ′)Qh̃ = 0 . (3.3.7)

This means that Nχ
!= Nχ′ .

A relation for the charges satisfying both Eq. (3.3.4) and Eq. (3.3.3) is then given
by

Q
(j)
L = −Q′ (j)

L , Q
(i)
R = −Q′ (j)

R . (3.3.8)

Other solutions are present as well, but this one can be chosen without loss of gener-
ality.

3.3.3 Further remark on the dark charges

As discussed in Section 3.3.1, the mass of the dark mediator is mX = QH̃vd. Since
by assumption (3.) mX is supposed to lie in the MeV range and by assumption
(5.) vd = O (1) TeV, the conclusion QH̃ . 10−6 can be drawn. In particular, this
means that Q(j)

R ≈ Q
(j)
L and Q

′ (j)
R ≈ Q

′ (j)
L is true for all j ∈ {1, . . . , N}. Thus, the

approximation gj ≈ Q
(j)
L ≈ Q

(j)
R is valid. Analogously, the approximation gj ≈ Q

′ (j)
L ≈

Q′ (j)
r can be made as well. The kinetic terms of the dark fermions are thus of the form

χ(j)i
(
/∂ − i /Xgj

)
χ(j) and χ′ (j)i

(
/∂ − i /Xg′

j

)
χ′ (j).
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3 Flavored U(1) dark sector at small scales

3.4 Relevant cross sections and decay rates

The cross sections which are relevant for the cosmological phenomenology of this
model are calculated in this section. The annihilation cross section will determine the
Dark Matter relic density. The temperature of kinetic decoupling will follow from the
elastic scattering cross section and the self-interaction cross section will be responsible
for decreasing the Dark Matter density near the center of halos.

3.4.1 Dark Matter annihilation

The Dark Matter particles can annihilate both into lighter dark fermions and into the
dark mediator X. The diagrams for these two processes are given in Fig. 3.1 and Fig.
3.2.

The amplitude for the first process Mχ(i)χ(i)→χ(′) (j)χ(′) (j) is given by

−iMχ(i)χ(i)→χ′ (j)χ′ (j) = gig
′
j

1
(p1 + p2)2 −m2

X

[
gµν −

(p1 + p2)µ (p1 + p2)ν
m2
X

]
× [u (p3) γνv (p4)] [v (p2) γµu (p1)] . (3.4.1)

Since the mass of the annihilation products, m(j)
χ(′) , is assumed to be negligible, the

amplitude can be simplified as

−iMχ(i)χ(i)→χ(′) (j)χ(′) (j) = gig
(′)
j

gµν

(p1 + p2)2 −m2
X

[u (p3) γνv (p4)] [v (p2) γµu (p1)] ,

(3.4.2)
where the massless Dirac equations, u (p3) /p3 = 0 and /p4v (p4) = 0, have been used.
The average of the square of this amplitude is then

〈 ∣∣∣M2
χ(i)χ(i)→χ(′) (j)χ(′) (j)

∣∣∣〉 =

(
gig

(′)
j

)2

4
32(

(p1 + p2)2 −m2
X

)2

(
m2
χ(i) (p3 · p4)

+ (p1 · p4) (p2 · p3) + (p1 · p3) (p2 · p4)) . (3.4.3)

The prefactor 1/4 is due to the average over all ingoing spins. In the center-of-mass
frame and in the non-relativistic limit, i.e. ~p1, ~p2 ≈ 0, the averaged amplitude can be
further simplified to

〈 ∣∣∣M2
χ(i)χ(i)→χ(′) (j)χ(′) (j)

∣∣∣〉 = 2
(
gig

(′)
j

)2
. (3.4.4)

18
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where also the relation mχ(i) � mX has been used. The thermally averaged cross
section can then immediately be obtained from the amplitude and reads

〈σvrel〉χ(i)χ(i)→χ(′) (j)χ(′) (j) = 1
16π

(
gig

′
j

)2

m2
χ(i)

. (3.4.5)

The two diagrams in Fig. 3.2 represent Dark Matter annihilations into the dark
mediator X and have amplitudes

−iM1 = −ig2
i v (p2) γµ

/p1 − /p3 +mχ(i)

(p1 − p3)2 −m2
χ(i)

γνu (p1) εν (p3) εµ (p4) (3.4.6)

and

−iM2 = −ig2
i v (p2) γµ

/p1 − /p4 +mχ(i)

(p1 − p4)2 −m2
χ(i)

γνu (p1) εν (p4) εµ (p3) . (3.4.7)

These amplitudes must be added to obtain the total amplitude Mχ(i)χ(i)→XX = M1 +
M2. In the center-of-mass frame and in the non-relativistic limit, the average of the
squared amplitude is

〈 ∣∣∣Mχ(i)χ(i)→XX

∣∣∣2〉 = 4g4
i

1(
2m2

χ(i) −m2
X

)2

(
2m4

χ(i) + 4m2
χ(i)m

2
X

)
. (3.4.8)

This can be further simplified using mχ(i) � mX ,

〈 ∣∣∣Mχ(i)χ(i)→XX

∣∣∣2〉 = 2g4
i . (3.4.9)

The thermally averaged cross section is finally given by

〈σvrel〉χ(i)χ(i)→XX = 1
16π

g4
i

m2
χ(j)

. (3.4.10)

Eqs. (3.4.5) and (3.4.10) can be combined to obtain the total cross section for the
annihilation of Dark Matter particles χ(i),

〈
σann, χ(i)vrel

〉
= π

m2
χ(i)

 N∑
j=1

α′ 2
ij +

N∑
j=1

Θ
(
mχ(i) −mχ(j)

)
α2
ij + Θ

(
mχ(i) −mX

)
α2
ii

 ,

(3.4.11)
where the notation αij ≡ gigj/4π and α′

ij ≡ gig
′
j/4π has been introduced. The Heavi-
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Figure 3.1: The Dark Matter annihilation channel into lighter fermions χj.
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Figure 3.2: The Dark Matter annihilation channel into the mediator X.

side step functions ensure that only annihilations into lighter products are considered.

3.4.2 Elastic scattering

The cross section for the process of elastic scattering in Fig. 3.3 determines the kinetic
decoupling of the Dark Matter particles from the radiation plasma of the Dark Sector.

The amplitude of this process is

−iM =
igig

′
j

(p4 − p2)2 −m2
X

(
gµν −

(p4 − p2)µ (p4 − p2)ν
m2
X

)
(3.4.12)

×
[
uχ(i) (p3) γµuχ(i) (p1)

] [
uχ′ (j) (p4) γνuχ′ (j) (p2)

]
. (3.4.13)

The longitudinal part of the propagator can be neglected here as well, since uχ′ (j) (p4) /p4 ≈
0 and /p2uχ′ (j) (p2) ≈ 0. The average of the squared amplitude can thus be approxi-
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mated by

〈
|M|2

〉
≈

8g2
i g

′ 2
j(

(p4 − p2)2 −m2
X

)2

[
−
(
m(i)
χ

)2
p2 · p4 + p1 · p4p2 · p3 + p1 · p2p3 · p4

]
.

(3.4.14)
In the center-of-mass frame and assuming that the heavy dark fermions have negligible
spatial momentum, the averaged squared amplitude is

〈
|M|2

〉
=

16g2
i g

′ 2
j

(2E2 (1 − cos (θ)) +m2
X)2E

2
(
m(i)
χ

)2
(

1 − sin2
(
θ

2

))
, (3.4.15)

where θ is the angle between the ingoing and outgoing χ′ (j)’s and E is their energy.
The momentum-transfer cross section

σT =
∫ 2π

0
dϕ

∫ 1

−1
d cos (θ) (1 − cos (θ))

(
dσ
dΩ

)
CM

(3.4.16)

can then be computed and yields

σTvrel = 2
3π

g2
i g

′ 2
j

m4
X

E2 , (3.4.17)

where vrel is the relative velocity between the ingoing particles χ(i) and χ′ (j).
Averaging over a Fermi-Dirac distribution in the highly relativistic approximation,

since ~p � mχ′ (j) , finally yields

〈σTvrel〉 = 2
3πg

2
i g

′ 2
j

1
4m4

X

∫∞
0 dp p4 1

exp
(
p
T

)
+1∫

dp p2 1
exp
(
p
T

)
+1

(3.4.18)

= 1
π
G2
ij′

80ζ (5)
ζ (3) T 2 , (3.4.19)

where G′
ij =

√
2gig′

j/4m2
X has been introduced.

3.5 Constraints on the parameter set

3.5.1 Masses in the Dark Sector

The dark matter particles χ(i) are assumed to be stable and produced in local ther-
mal equilibrium. Then, by requiring partial-wave unitarity of the scattering matrix, a
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χ(i) χ(i)

χ′ (j) χ′ (j)

p1 p3

q X

p2 p4

Figure 3.3: The diagram for the elastic scattering between the Dark Matter candidates
and lighter particles in the Dark Sector.

maximal value for the annihilation cross section in the primordial Universe as a func-
tion of m(i)

χ can be found. Since the relic density depends directly on this cross section,
this bound can be transformed into a universal bound on the mass of the Dark Matter
particle, m(i)

χ < O(300) TeV, by imposing Ωχ(i)h2 < 1 [43].

The lightest dark fermion is the last scattering partner of Dark Matter and should
be relativistic at the time of kinetic decoupling, Tkd. Without loss of generality this
lightest fermion can always be renamed as χ′ (1) and then m

(1)
χ′ � Tkd must hold.

A much more stringent constraint comes from requiring that the relic density of this
lightest scattering partner is negligible. The relic density for this hot relic is Ωχ′ (1)h2 =
7.83 × 10−2 (geff/g∗, S) (m/eV) [44], which in this case yields Ωχ′ (1)h2 & mχ′ (1)/35 eV
and requiring a negligible contribution, e.g. Ωχ′ (1)h2 < 0.02, implies the constraint
m

(1)
χ′ < 0.68 eV.

3.5.2 Coupling to the Standard Model

Constraints on the scalar portal between the Dark Sector and the Standard Model
apply [45]. Indeed, through the scalar portal with coupling a2 the Standard Model
Higgs particle gets a slightly different mass. After diagonalizing the mass matrix,
the variation of the Standard Model Higgs mass Mh up to orders of a2 is ∆M2

h =
a2v2

d. This, together with the assumption vd & Mh (as by assumption (5.)) and the
experimental error on the Higgs mass ∆Mh . 0.17 GeV [46], implies the constraint
a . 10−3 on the bridge coupling a.
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3.5.3 Dark charges

The condition that the Dark Matter particles must have been thermally produced can
be formulated as

〈
σχ′ (j)χ′ (j)→χ(i)χ(i)vrel

〉
nχ′ (j)

(
mχ(j)

)
> H

(
mχ(i)

)
, (3.5.1)

since T = mχ(i) is the temperature at which production of χ(i) stops. This condition
must apply to all Dark Matter particles which contribute significantly to the final Dark
Matter relic density. With the relevant part in the cross section in Eq. (3.4.11) and
using H (T ) = 1.66

√
106.75T 2/MPl and nχ′(j) (T ) = (3ζ (3) /4π2)4T 3, the condition

α′
ij > 3.87

√
mχ(i)

MPl
for all j ∈ {1, . . . , N} (3.5.2)

is derived, where MPl is the Planck mass.

3.5.4 Effective degrees of freedom

Within the Standard Model the energy density of radiation can be parametrized as

ρrad = ργ + π2

30
7
4NνT

4
ν , (3.5.3)

where the effective number of neutrinos is Nν = 3.046. The presence of the newly
postulated Dark Sector modifies this expression to

ρrad = ργ + π2

30
7
4NeffT

4
ν , (3.5.4)

where Neff = Nν + ∆Neff and

∆Neff = Nν
ρ

(DS)
rel
ρν

. (3.5.5)

Here, ρ(DS)
rel is the energy density of all relativistic particles in the Dark Sector.

From Eq. (3.5.5) it is clear that the ratio between the temperatures of the Dark
Sector TDS and that of neutrinos Tν plays a crucial role in determining ∆Neff. Assuming
that the Dark Sector and the Standard Model are in thermal contact until some
temperature TD, the ratio ε ≡ (TDS/Tν)3 can be computed by requiring the entropy
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3 Flavored U(1) dark sector at small scales

densities of the two sectors to be conserved separately,

sSM

sDS
= const. . (3.5.6)

Immediately after the decoupling of the two sectors, i.e. right after TD, the temperature
of the Standard Model and the one of the Dark Sector are still the same. This means

gS, SM (TD)
gS, DS (TD) = const. , (3.5.7)

where gS,DS are the entropy degrees of freedom of the Dark Sector and gS,SM are the
ones of the Standard Model. At some different time, characterized by a temperature
TDS in the Dark Sector and Tν for the neutrinos in the Standard Model, the above
ratio becomes

gS,SM (Tν)
gS,DS (TDS)

T 3
ν

T 3
DS

= const. . (3.5.8)

Note that the effective number of degrees of freedom is given with respect to the
temperature of the neutrinos and not to the temperature of the photons.

The explicit expression for ε (TDS) is thus finally

ε (TDS) = gS,DS (TD)
gS,SM (TD)

gS,SM (Tν)
gS,DS (TDS) . (3.5.9)

It should be noted, that assumption (2.) was necessary to obtain the above expression
for ε.

The value of ∆Neff at the time of neutron-proton freeze-out is highly constrained by
Big Bang Nucleosynthesis. Indeed, the effect on the 4He abundance can be quantified
in the following way. The presence of extra degrees of freedom increases the neutron-
proton freeze-out temperature T fr

γ by

∆T fr
γ ' T fr

γ

1
6

7
4

∆Neff

gSM
(
T fr
γ

) , (3.5.10)

where gSM
(
T fr
γ

)
are the relativistic energy degrees of freedom of the Standard Model

at the time of freeze-out [47]. This, in turn, modifies the neutron-to-proton ratio at
the time of Big Bang Nucleosynthesis by

∆
(
nn
np

)
BBN

' mn −mp

T fr
γ

(
nn
np

)
BBN

∆T fr
γ

T fr
γ

, (3.5.11)
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3.5 Constraints on the parameter set

where nn and np are the neutron and proton number densities, respectively. The 4He
mass fraction Yp ' (2nn/ (nn + np))BBN thus increases as well by

∆Yp ' Yp

(
1 − Yp

2

) 1
6
mn −mp

T fr
γ

7
4

∆Neff

gSM
(
T fr
γ

) . (3.5.12)

Therefore, measurements of the 4He mass fraction implicitly impose a constraint
on ∆Neff at the time of neutron-proton freeze-out. The first case considered is the one
with N = 1. Since by assumption (5.) the temperature of decoupling between the
Dark Sector and the Standard Model is in the O (100) GeV range and by assumption
(3.) m(1)

χ ≈ 1 TeV, the only relativistic particles at TD are the mediator X and the light
scattering partner χ′ (1), i.e. gS,DS (TD) = 7/2+3 = 6.5. At the neutron-proton freeze-
out temperature by assumption (3.) only the light fermions χ′ (1) are still relativistic
and thus gS,DS

(
T fr
γ

)
= 3.5. The entropy degrees of freedom of the Standard Model

are gS,SM (TD) = 106.5 and gS,SM
(
T fr
γ

)
= 2 × + 3 × 7/4 + 2 × 7

4 = 10.75. It should
be noted that at this time, the electron-positron annihilation has not happened yet
and thus neutrinos and photons still have the same temperature. In consequence, the
deviation of the effective number of degrees of freedom is given by

∆Neff = Nν
ρχ′

ρν
= 2ε 4

3
(
T fr
γ

)
≈ 0.214 . (3.5.13)

In an analogous way, the value of ∆Neff at the time of neutron-proton freeze-out can
be calculated for the case of two generations, i.e. N = 2. The main difference is simply
that more possibilities are available depending on the mass scale of the extra particles.
The results are summarized in Table 3.1. The constraint ∆Yp . 0.004 [48] implies
a constraint ∆Neff . 0.36 at the time of neutron-proton freeze-out [47]. This allows
only scenarios I and IV from Table 3.1. For N > 2 only the equivalent of scenario I in
Table 3.1 is acceptable, which has the same phenomenology of the scenario of N = 1.

The deviation of the effective number of neutrinos at the time of recombination is
constrained as well. Indeed, an increase in the energy density at the temperature of
recombination implies a larger expansion rate which would cause noticeable effects on
the CMB power spectrum: the first peak would be higher and the other peaks would
be shifted towards higher multipoles [47]. Within this model, at the temperature of
recombination (Trec ≈ 0.3 eV) only the lightest fermions in the Dark Sector satisfying
m

(j)
χ′ < Trec can still be relativistic and can contribute to the expression in Eq. 3.5.5.
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3 Flavored U(1) dark sector at small scales

N = 1 N = 2
I II III IV V VI

m(1)
χ m

(1)
χ′ ,m(2)

χ ,m(1)
χ m(1)

χ ,m(2)
χ m(1)

χ m(1)
χ ,m(2)

χ m(1)
χ m(1)

χ

TD
m

(1)
χ′ m

(1)
χ′ ,m(2)

χ m(2)
χ

T fr
γ

m
(1)
χ′ m

(2)
χ′ m

(2)
χ′ m

(2)
χ′ m

(1)
χ′ ,m

(2)
χ′ m

(1)
χ′ ,m(2)

χ ,m
(2)
χ′ m

(1)
χ′ ,m

(2)
χ′

∆Neff
(
T fr
γ

)
0.21 0.21 0.38 0.57 0.30 0.39 0.45

Table 3.1: Mass spectra of dark fermions in accordance with the assumptions. Masses
written in the first row lie well above the temperature of decoupling between
the Dark Sector and the Standard Model, TD. Masses in the third row lie
well below the temperature of neutron-proton freeze-out T fr

γ .

T

The generic expression for the energy density of each species χ′ (j) is

ρDS
χ′ (j)

(
Tχ′ (j)

)
=
gχ′ (j)

2π2

∫ ∞

m
(j)
χ′

√
E2 −

(
m

(j)
χ′

)2

exp
(

E
T
χ′ (j)

)
+ 1

E2dE . (3.5.14)

It should be noted here that the temperature Tχ′ (j) is that of the particles in the Dark
Sector. After recombination, Tχ′ (j) is related to the photon temperature by

Tχ′ (j) = ε (Trec)
1
3

( 4
11

) 1
3
Tγ . (3.5.15)

Thus, after using the reparametrization z = E/Tχ′ (j) and inserting ρν = (7π2/120)NνT
4
ν

in Eq. (3.5.5), the deviation at recombination becomes

∆Neff (Trec)
ε (Trec)

4
3

= 60
7π4

∑
j

gχ′ (j)

∫ ∞

x
′ (j)
rec

z2
√
z2 −

(
x

′ (j)
rec
)2

exp (z) + 1 dz , (3.5.16)

where x′ (j)
rec = m

(j)
χ′ ε (Trec)−1/3 (4/11)−1/3 /Trec was introduced and the sum runs over

all j’s such that the corresponding particles still give a non-negligible contribution to
the energy density at the time of recombination.

For the case N = 1, Eq. (3.5.16) can be computed univocally and the result
only depends on the mass of the only remaining particle. This is represented in
Fig. 3.4. The maximal deviation from the Standard Model value is obtained for
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Figure 3.4: The value of ∆Neff at the time of recombination as a function of the mass
m

(1)
χ′ for the case of N = 1.

the case of massless particles, while already for values of approximately 1 eV the
deviation is negligible, although the constraint m(1)

χ′ . 0.65 eV from Sec. 3.5.1 should
also be taken into account. If one chooses m(1)

χ′ = 0.6 eV, satisfying this constraint,
the corresponding value for ∆Neff at recombination is ∆Neff ≈ 0.03 which lies well
within the range expected by observations [1]. Even the limiting case m(1)

χ′ ≈ 0 yields
values of ∆Neff ≈ 0.188 which still lie within the constraints [1]. Furthermore, since
∆Neff

(
T fr
γ

)
≈ 0.214 is larger than ∆Neff (Trec), this provides a possible explanation for

the decrease of the effective number of degrees of freedom between BBN- and CMB-
based measurements [1].

For the case N = 2 the situation is less straightforward. For example, if m(2)
χ′ is much

larger than the temperature of recombination, then its contribution to Eq. 3.5.16 is
effectively negligible and ∆Neff remains unchanged. However, if it has a mass similar
to m

(1)
χ′ , the deviation increases approximately by a factor of two. For example, the

case m(1)
χ′ = m

(2)
χ′ = 0.6 eV yields ∆Neff ≈ 0.06 which is still comfortably within the

bounds given by Planck [1], while the case m(1)
χ′ = m

(2)
χ′ = 0, yielding ∆Neff ≈ 0.38, is

excluded.
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3 Flavored U(1) dark sector at small scales

3.6 Cosmological observables

The most important cosmological observables are discussed in this section: the relic
abundance, the temperature of kinetic decoupling with the corresponding damping
masses, and the cross section for self-interactions.

3.6.1 The relic abundance

The relic abundance of the Dark Matter particles is determined by the Boltzmann
equation,

(L− C)
[
fχ(i)

]
(~p) = 0 , (3.6.1)

which describes the evolution of the Dark Matter distribution function, fχ(i) . The
operator L is the Liouville operator, which is defined by

L
[
fχ(i)

]
=

dfχ(i)

dλ = m(i)
χ

dpi
dτ

∂fχ(i)

∂pi
, (3.6.2)

where τ denotes the proper time of the particles and the affine parameter λ = τ/mχ(i)

has been used. In a flat Friedmann-Robertson-Walker universe, the geodesic equation
allows the Liouville operator to be rewritten as

L
[
fχ(i)

]
= E

(
∂t −Hpi

∂

∂pi

)
fχ(i) , (3.6.3)

where H = ȧ/a is the Hubble parameter. As discussed in Section 3.4.1, any dark
fermion χ(j) has three possible annihilation channels: some lighter (but still heavy)
fermions χ(i), the much lighter χ′ (i) and the mediator X. For this reason, the collision
term in Eq. (3.6.1) is given by the sum of the contributions of these three processes,

C
[
fχ(j)

]
(~p) = C1

[
fχ(j)

]
(~p) + C2

[
fχ(j)

]
(~p) + C3

[
fχ(j)

]
(~p) , (3.6.4)

where

C1
[
fχ(j)

]
(~p) =

∑
i

Θ
(
mχ(j) −m(i)

χ

) ∫ d3 ~p2

E2

d3 ~p3

E3

d3 ~p4

E4
δ4 (p1 + p2 − p3 − p4) |M1|2

×
[
fχ(i) (~p3) fχ(i) (~p4)

(
1 − fχ(j) (~p2)

) (
1 − fχ(j) (~p)

)
−fχ(j) (~p) fχ(j) (~p2)

(
1 − fχ(i) (~p3)

) (
1 − fχ(i) (~p4)

)]
, (3.6.5)
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C2
[
fχ(j)

]
(~p) =

∑
i

∫ d3 ~p2

E2

d3 ~p3

E3

d3 ~p4

E4
δ4 (p1 + p2 − p3 − p4) |M2|2

×
[
fχ′ (i) (~p3) fχ′ (i) (~p4)

(
1 − fχ(j) (~p2)

) (
1 − fχ(j) (~p)

)
−fχ(j) (~p) fχ(j) (~p2)

(
1 − fχ′ (i) (~p3)

) (
1 − fχ′ (i) (~p4)

)]
(3.6.6)

and

C3
[
fχ(j)

]
(~p) =

∫ d3 ~p2

E2

d3 ~p3

E3

d3 ~p4

E4
δ4 (p1 + p2 − p3 − p4) |M3|2

×
[
fX (~p3) fX (~p4)

(
1 − fχ(j) (~p2)

) (
1 − fχ(j) (~p)

)
−fχ(j) (~p) fχ(j) (~p2) (1 − fX (~p3)) (1 − fX (~p4))

]
. (3.6.7)

Here, M1, M2 and M3 are the scattering amplitudes for annihilation into heavy dark
fermions, lighter dark fermions and the mediator, respectively.

Using the diluted-gas approximation, 1 − fχ(i) ≈ 1, 1 − fχ′ (i) ≈ 1 and 1 − fX ≈
1, and the fact that all particles other than χ(j) are in thermal equilibrium (e.g.
fX (~p3) fX (~p4) = f

(eq)
χ(j) (~p) f (eq)

χ (~p2)) the collision term can be rewritten as

C
[
fχ(j)

]
(~p) =

∫ d3~p2

(2π)3σannvrel
[
f

(eq)
χ(j) (~p) f (eq)

χ(j) (~p2) − fχ(j) (~p) fχ(j) (~p2)
]
. (3.6.8)

It should be noted that this is the whole collision term, since the information about the
different annihilation channels is now contained in the total annihilation cross section
from Eq. (3.4.11).

From fχ(i) =
(
nχ(i)/n

(eq)
χ(i)

)
f

(eq)
χ(i) follows

f
(eq)
χ(i) (~p) f (eq)

χ(i) (~p2) − fχ(i) (~p) fχ(i) (~p2) = f
(eq)
χ(i) (~p) f (eq)

χ(i) (~p2)
1 −

n2
χ(i)

n
(eq)
χ(i)

 , (3.6.9)

where nχ(i) is the number density of the χ(i) particles. Dividing Eq. (3.6.1) by E and
integrating over ~p finally yields

ṅχ(i) + 3Hnχ(i) =
(
n

(eq)
χ(i)n

(eq)
χ(i) − nχ(i)nχ(i)

)
〈σannvrel〉 . (3.6.10)

The derivative of the particle yield Yχ(i) , defined as Yχ(i) = nχ(i)/s where s is the
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3 Flavored U(1) dark sector at small scales

Universe’s entropy density, is then

Ẏχ(i) =
ṅχ(i)

s
− ṡ

s2nχ(i) (3.6.11)

=
ṅχ(i)

s
+ 3H

nχ(i)

s
(3.6.12)

= 1
s

〈σannvrel〉
(
n

(eq)
χ(i)n

(eq)
χ(i) − nχ(i)nχ(i)

)
(3.6.13)

= 〈σannvrel〉 s
(
Y

(eq)
χ(i) Y

(eq)
χ(i) − Yχ(i)Yχ(i)

)
, (3.6.14)

where the Boltzmann equation was used in the last step and Y
(eq)
χ(i) ≡ n

(eq)
χ(i)/s.

After defining x = mχ(i)/T , the time derivative can be rewritten as d/dt = Hxd/dx.
This allows to express the change of Yχ(i) w.r.t. x as

dYχ(i)

dx = − λ

x2

(
Yχ(i)Yχ(i) − Y

(eq)
χ(i) Y

(eq)
χ(i)

)
(3.6.15)

with the efficiency λ ≡ 〈σannvrel〉 s (x = 1) /H (x = 1).

Since at late times, i.e. at large values of x, the equilibrium particle yield is expo-
nentially suppressed, the differential equation can be solved by separation of variables.
The integration is done between the time of freeze-out xf, when the χ(i)’s departed
from the equilibrium distribution, and the asymptotic value x → ∞. This yields

1
λY∞

− 1
λYf

= 1
xf

, (3.6.16)

which can be further simplified to

Y∞ = xf

λ
, (3.6.17)

when using the approximation Yf � Y∞. Using Y∞, the relic density today is given by

Ωχ(i)h2 =
Y∞s0mχ(i)

ρc/h2 , (3.6.18)

where s0 is the entropy density today, ρc is the critical energy density today and
h = 0.674 ± 0.005 is the Hubble parameter today in units of 100 km/s Mpc[1].

The time of freeze-out xf appearing in Y∞ is obtained from the condition

〈vrelσann〉n(eq)
χ(i) (xf) != H(xf) . (3.6.19)
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Since H (xf) = H (x = 1) x−2
f and n

(eq)
χ(i) (xf) = n

(eq)
χ(i) (x = 1) x−3/2

f e−xf+1, this condition
can be rewritten as

C = x
− 1

2
f exf , (3.6.20)

with

C =
〈vrelσann〉|x=1 n

(eq)
χ(i) (x = 1) e

H (x = 1) . (3.6.21)

The exact solution of Eq. (3.6.20) is xf = W0 (2C2) /2, where W0 is the principal
branch of the Lambert W function. A sufficiently good approximation for large values
of C is

xf ≈ ln (C) −
1
2 ln (ln (C))

1 + 1
2 ln−1 (C)

. (3.6.22)

Introducing α = ∑
j αijΘ

(
m(i)
χ −mχ(j)

)
+ α′

ijΘ
(
m(i)
χ −mχ′ (j)

)
+ Θ

(
m(i)
χ −mX

)
and

choosing α ≈ 0.1 and mχ(i) ≈ 10 TeV, xf ≈ 30 is obtained. This choice of parameters
is in accordance with the values which will later be found to be the most phenomeno-
logically desirable ones in this model.

Using this value of xf and the other parameters of this model the relic density from
Eq. (3.6.18) can be written as

Ωχ(i)h2 ≈ 0.06
(
α

0.1

)−2 ( mχ(i)

10TeV

)2
. (3.6.23)

Taking into account the Dark-Matter antiparticles, χ(i), the total relic density is then
Ω
χ(i)χ(i)h

2 ≈ 0.12 for α ≈ 0.1 and mχ(i) ≈ 10 TeV, in agreement with ΛCDM predic-
tions.

3.6.2 Self-interactions

Self-interactions are well known to be able to solve the cusp vs core, too big to fail and
diversity problems [41, 49, 50, 51]. To maintain the large-scale success of collisionless
Dark Matter, self-interactions should only become relevant at small scales, i.e. towards
the center of the halo. These collisions increase the entropy of the Dark Matter
phase-space distribution near the center and thus create a flattened density profile
and a Dark Matter distribution which is more spherical rather than elliptical [52].
Furthermore, since the inner regions of subhalos have a shallower density profile, their
velocity profiles are modified as well: the rotational velocity is smaller at smaller radii
compared to simulations within the ΛCDM model. This has been shown to solve the
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3 Flavored U(1) dark sector at small scales

too big to fail problem [41]. Finally, due to these self-interactions in the inner regions
of halos, the Dark Matter density behaves like an ideal gas and must satisfy the
hydrodynamic equilibrium condition, σ2

0∇2 ln (ρdm) = −4πG (ρdm + ρb), where σ0 is
the one-dimensional Dark Matter velocity dispersion. Thus, the Dark Matter density
profile near the center, ρdm, is highly dependent on the baryonic density, ρb, which
can vary greatly depending on the formation history of each galaxy. This provides a
solution to the diversity problem [51].

To address all the small-scale problems mentioned above, the value of
〈
σT/mχ(i)

〉
v0

should lie between 0.1 cm2 g−1 and 1 cm2 g−1 at small scales. Specifically, at the
scale of dwarf galaxies, where vtherm ≈ 30 km/s,

〈
σT/mχ(i)

〉
30

≈ 1 cm2 g−1 should hold;
at large scales, where vtherm ≈ 1000 km/s, the condition

〈
σT/mχ(i)

〉
100

< 0.1 cm2 g−1

should be satisfied. Here, the average is taken over a Maxwell-Boltzmann distribution
centered around the most probable velocity v0,

〈σT 〉vtherm

mχ(i)
= 1
m

(i)
χ

∫
d3v

1
(2πvtherm)3/2 e

− v2
v2

therm σT . (3.6.24)

Since in this case both attractive (χ(i)χ(i)) and repulsive (χ(i)χ(i) and χ(i)χ(i)) inter-
actions are present, σT must be taken as the average over the cross section of these
two kinds of interactions. The cross section for self-interactions in the classical regime
(mχ(i)v/mX � 1) for a repulsive potential is

σclas
T =


2π2

m2
X
β2 log (1 + β−2) β . 1

π2

m2
X

(log (2β) − log (log (2β)))2 β & 1
, (3.6.25)

while for an attractive potential it is

σclas
T =


4π
m2
X
β2 log (1 + β−1) β . 10−1

8π
m2
X

β2

1+1.5β1.65 10−1 . β . 103 (3.6.26)

where β = 2αiimX/
(
mχ(i)v2

)
. Both cross sections are taken from Ref. [42]. With

the final choice of parameters presented in Sec. 3.7,
〈
σT/mχ(i)

〉
30

≈ 1 cm2/ g and〈
σT/mχ(i)

〉
30

≈ 8 × 10−3 cm2/ g are obtained.
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3.6.3 Damping masses

The mass of the smallest protohalos within this model is determined by the tempera-
ture of kinetic decoupling between the Dark Matter particles and their last relativistic
scattering partner. Indeed, as long as the Dark Matter particles are in thermal equi-
librium with relativistic particles, any overdensities which might begin to form are
washed out by these interactions with high momentum transfer. This ceases to hap-
pen at kinetic decoupling and thus the masses of the smallest structures are given by
the total mass contained within the Hubble radius at that time,

Md = 4
3πρm

1
H (Tkd)3 . (3.6.27)

In principle, the largest between the above expression and the free-streaming cut-off
mass should be taken, but the latter is negligible in this case, being proportional to
1/T 3/2

kd .

The analytic expression for the temperature of kinetic decoupling Tkd given a specific
particle model is

Tkd

mχ(i)
=
((

a

n+ 2

) 1
n+2

Γ
(
n+ 1
n+ 2

))−1

, (3.6.28)

as given in Ref. [53]. In the above expression n is the exponent appearing in the
elastic-scattering amplitude, |M|2 ∝

(
E/mχ(i)

)n
, and a is defined as

a =
√√√√ 5

2 (2π)9 geff
(n+ 4)!ζ (n+ 4)

(
TDS

T

)n+4
cn
MPl

mχ(i)

(
1 − 2−(n+3)

)
. (3.6.29)

geff is the effective number of heat-bath degrees of freedom immediately after the
kinetic decoupling and cn is defined by

〈
|M|2t=0

〉
= cn

(
E/mχ(i)

)n
. Comparison with

Eq. (3.4.19) shows that in this case n = 2. The temperature of kinetic decoupling of
the particles χ(i) from the particles χ′ (j) is then given by

Tkd

mχ(i)
=


( 5

2 (2π)9 geff

) 1
2 124

21 π
6

(
gig

′
j

)2

m4
X

MPlm
3
χ(i)ε

3Tν
T


1
4

Γ
(3

4

)
−1

. (3.6.30)
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This can be brought to a much simpler form for the case N = 1,

Tkd ≈ 147 eV ε|−1/2
Tkd

(
10 TeV
m

(i)
χ

) 1
4
Ω

χ(i)χ(i)h
2

0.12

1/4 (
QH̃

2 × 10−8

)(
vd

40 TeV

)(
T

Tν

)3/2
,

(3.6.31)
by making use of the fact that g1g

′
1 is fully determined by the relic density in Eq.

(3.6.23) for N = 1 and that mX =
√

2QH̃vd. The parameters with the strongest
influence on the temperature of kinetic decoupling areQH̃ and vd. Here, it was assumed
that the elastic scattering between the Dark Matter candidates and the mediator X
ceases to be efficient at much earlier times, since the X particles are much heavier.

Having computed the temperature of kinetic decoupling and using ρm (Tkd) =
(Ωm, 0ρcrit., 0/s (T0)) s (Tkd), Eq. (3.6.27) can be explicitly written as [54]

Md ≈ 4.67 × 109 g∗, S (Tkd)
g

3
2∗ (Tkd)

(
keV
Tkd

)3

M� . (3.6.32)

Here M� is the solar mass, g∗, S is the number of effective degrees of freedom in
entropy and g∗ the number of effective relativistic degrees of freedom. For example,
for the case of N = 1, i.e. with ε|Tkd

= 0.187 and with all other parameters as in
Eq. (3.6.31), a damping mass value of Md ≈ 3 × 1010 M� is obtained. Contrary to
Md ≈ M⊕ which is usually obtained in the ΛCDM Model, the suppression of small
structures is significant within this model. Indeed, the damping mass should lie in the
range between 109 M� and 5 × 1010 M� in order to successfully address the missing
satellites problem [35, 36].

3.7 Results

The final choice of parameters is highly constrained for the case N = 1. Requiring
the correct relic density imposes a relation between mχ(1) and the coupling between
light and heavy particles, α. Furthermore, the self-interaction cross-section depends
strongly on the mass of the mediator, mX . Finally, all of these parameters play a
role in determining the temperature of kinetic decoupling. A complete parameter set
solving all small-scale problems simultaneously is presented in Table 3.2. With this
choice, a temperature of kinetic decoupling of Tkd ≈ 0.456 keV is obtained, which then
corresponds to a damping mass of Md ≈ 3 × 1010M�. Furthermore, the cross section
for self-interaction is approximately

〈
σT/mχ(1)

〉
30

≈ 1 cm2/ g at small scales.
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3.7 Results

Parameter Approximate value
mχ(1) 10 TeV
mX 1.1 MeV
mχ′,(1) < 0.65 eV
g1 1.3
g′

1 1.3
Qh̃ 2 × 10−8

vd 40 TeV

Table 3.2: The parameters of this model which solve all the small-scale problems si-
multaneously for the case N = 1.

The case of N = 2 is more flexible. Indeed, the presence of more masses and
couplings gives a larger choice of parameter values yielding the desired phenomenology.
The scenario I given in Table 3.1 is equivalent to the case N = 1. This is because the
heavier particles can annihilate into the lightest among them before the decoupling
of the Dark Sector from the Standard Model, leaving a heavy particle and a light
scattering partner like in the case N = 1. Within scenario II the ratio ε between
the temperatures of the Dark Sector and the Standard Model increases. As can be
seen from Eq. (3.6.31), this implies that slightly larger masses for the mediator and
smaller couplings can be chosen leading to the same value of the temperature of
kinetic decoupling. In particular, smaller couplings mean that the mass of the Dark
Matter candidate can be smaller (see Eq. (3.6.23)). In this special case masses of
around 2 TeV can be obtained easily while still satisfying the small- and large-scale
requirements simultaneously. The scenario III is in principle equivalent to scenario II.
However, it should be noted that the values of ∆Neff which can be seen in Table 3.1
lie well outside the range expected by Planck measurements [1] and thus, this scenario
is disfavored compared to scenario II. Scenario IV represents a mixed Dark Matter
scenario which is in principle equivalent to scenario I and the case N = 1. It should be
noted that it has the best possible values of ∆Neff among all possibilities with N = 2,
except of course for scenario I. Finally, scenarios V and VI are equivalent to I and II
respectively but have larger values of ∆Neff which renders them unfavorable due to
Planck measurements.
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4 Neutrinophilic Dark Matter

In this Chapter, a different model is presented, which considers the idea of neutrinos as
the last scattering partners of Dark Matter particles. The model successfully satisfies
all bounds that were previously thought to exclude the possibility of neutrinos as
scattering candidates and, at the same time, gives a valid explanation to all small-
scale problems of ΛCDM.

4.1 Standard Model particles as relativistic scattering
partners

The question of whether the relativistic scattering partner of the Dark Matter particles
can be a Standard Model particle is crucial for experiments and has been discussed at
great lengths in the literature.

The number density of hadrons is highly suppressed after the QCD phase transition
and thus, if one is interested in a late kinetic decoupling, only leptons and photons
can be considered as relativistic scattering partners.

There are a lot of constraints on the interactions between such particles and Dark
Matter. In particular, even though charged leptons have been considered [55] for
the role of relativistic scattering partners of Dark Matter, they must be discarded
because they would yield protohalo masses in the range of 10−6 − 10−1M�, which
are incompatible with the missing satellites problem [56]. While some models with
neutrinos as the last scattering partners and a vector mediator have been presented
in the past [57], they have been later ruled out by constraints coming from the Z,
W, and kaon decays as well as electron-neutrino scattering [58]neutrinophilic models
with scalar mediators have been ruled out by the constraints given in Refs. [59]
and [60] Sommerfeld enhancement and constraints coming from CMB measurements
[61]. The conclusion in the literature was that the elastic scattering partner of Dark
Matter should be dark [61]. The work described in this chapter is a proof of concept
showing that neutrinophilic models are in fact still possible, if one allows for two
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4 Neutrinophilic Dark Matter

mediators providing the correct relic density and cross sections for self-interaction
[32]. Furthermore, this model is UV-complete, has no dark-photon/photon mixing at
one loop [61, 62] and is compatible with BBN and all other cosmological constraints.

4.2 The Lagrangian of the theory

The particle content of the Dark Sector is assumed to consist of two Majorana fields ψ
and n and three real scalar fields φ,Φ, and X. The roles played by these particles are
summarized in Table 4.1. Before discussing each new field in detail, the full Lagrangian
is presented below.

Particle Role
ψ DM candidate
n Late kinetic decoupling
φ Self-interactions
Φ Symmetry breaking
X Freeze-in

Table 4.1: A summary of the roles played by each particle in the neutrinophilic model.

The proposed Lagrangian consists of a completely dark sector Lds and a bridge into
the Standard Model via a coupling to sterile neutrinos Lnb,

L = Lds + Lnb . (4.2.1)

The dark sector Lagrangian can be again separated into kinetic terms and interactions,

Lds = Lkin + Lint . (4.2.2)

The kinetic terms of the theory are given by

Lkin = 1
2ψ

(
i/∂ −mψ

)
ψ + 1

2n
(
i/∂ −mn

)
n− 1

2φ
(
� +m2

φ

)
φ

−1
2Φ�Φ − 1

2X
(
� +m2

X

)
X . (4.2.3)

mψ, mn, and mφ are the real and positive mass parameters. Note that since ψ is a
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4.2 The Lagrangian of the theory

Majorana field, the spinor ψ has the form

ψ = ψL + ψCL , (4.2.4)

where ψCL denotes the charge-conjugated ψL. The kinetic part of the Lagrangian for
ψ can then be written out explicitly as

LMaj
kin = 1

2ψLi
/∂ψL + 1

2ψ
C
L i/∂ψL − 1

2mψ

(
ψCLψL + ψLψ

C
L

)
. (4.2.5)

The same is of course valid for the other Majorana field n.

The relevant interaction terms are

Lint = 1
2gφψψφψ + 1

2gφnnφn+ 1
2gXψXψ − V [φ,Φ] . (4.2.6)

Only the cosmologically relevant dimension-four interaction terms have been consid-
ered. While other terms could be present too, it was assumed that their couplings are
negligible when compared to the ones presented here. The potential V [φ,Φ] in Eq.
(4.2.6) is given by

V [φ,Φ] = `

4
(
Φ2 − v2

Φ

)2
+ x

4Φ2φ2 , (4.2.7)

where vΦ, ` and x are real parameters. This potential allows for a spontaneous sym-
metry breaking which modifies the mass of the field φ, as will be explained later.

The neutrino bridge between the dark sector and the Standard Model is given by

Lnb = iyLσ2H
∗n+H.c. . (4.2.8)

Here, L denotes the Standard Model lepton doublet L = (νL, eL) andH is the Standard
Model Higgs doublet. n is a sterile neutrino, since it is a right-handed version of
the Standard Model neutrino which does not transform under the SU (3)C × SU (2)L
symmetry and has hypercharge Y = 0. For simplicity, it is assumed that it is only
coupled to the first generation of neutrinos, but a generalization to all three generations
is straightforward. Neutrino oscillations and the Pontecorvo-Maki-Nakagawa-Sakata
matrix are neglected as well. The precise origin of the mass of the sterile neutrino is
beyond the scope of this study. For example, a dark Higgs model could be introduced:
a dark Higgs field with expectation value vd could couple to some heavy fermion field
ψ̃ and give a mass of mn ∼ v2

d/mψ̃ to the sterile neutrino. After the spontaneous
symmetry breaking of the SM Higgs boson a term of the form yv√

2νn appears in the
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4 Neutrinophilic Dark Matter

Lagrangian, where v is the vacuum expectation value of the Higgs field. Assuming
the existence of a Majorana mass term for the SM neutrino of the form −mννν and
taking into account the mass term for the sterile neutrino in Eq. (4.2.3), the mass
matrix

mnν =
 mn

yv√
2

yv√
2 mν

 (4.2.9)

is obtained. With the approximation yv � mn and mν � mn the eigenvalues of mnν

are mn and mν − y2v2/2mn. The mass of the SM neutrino would thus be slightly
changed due to the presence of this sterile neutrino. From here on the eigenstates
corresponding to these masses will be called n and ν, substituting the initial definitions
of these fields.

The motivation behind each term in the Lagrangian can now be presented. The
Majorana fermion ψ is assumed to be the Dark Matter candidate and a singlet of
the symmetries of the Standard Model. It should be noted that the Lagrangian is
invariant under the transformation ψ → − ψ. This accidental Z2 symmetry ensures
the stability of the Dark Matter particles. A coupling between Dark Matter and sterile
neutrinos is mediated by the scalar φ in Eq. (4.2.6). φ is furthermore responsible for
self-interactions between Dark Matter particles.

The neutrino bridge in Eq. (4.2.8) creates an effective coupling (discussed in more
detail below) between the Dark Matter particles and SM neutrinos. It is a necessary
ingredient which makes it possible for Dark Matter to couple only to SM neutrinos and
not charged leptons while still respecting all gauge symmetries. It will be shown, that
it is possible to choose the parameters of the theory in such a way that this coupling
lasts until temperatures below the keV range, making SM neutrinos the last elastic
scattering partners of Dark Matter.

As will be discussed in detail in Section 4.6.1, the mediator φ cannot be responsible
for a late kinetic decoupling and the correct Dark Matter relic density at the same time.
Indeed, to ensure a late kinetic decoupling, the coupling between φ and ψ will have
to be chosen in such a way that the annihilation process ψψ → φφ depletes the Dark
Matter population before becoming ineffective due to the expansion of the Universe.
For this reason, another Yukawa coupling between some new scalar field X and Dark
Matter must be present as well. The decay of X into two ψ’s after the freeze-out of ψ
from φ restores the Dark Matter population and ensures a correct relic density.

Finally, a scalar field Φ must also be postulated. This field is coupled to the scalar
mediator φ and undergoes a spontaneous symmetry breaking through the potential in
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4.2 The Lagrangian of the theory

Event Temperature
mX O (1) PeV
mψ O (1) TeV
decoupling of φ from the Standard Model ∼ 0.5TeV
baryogenesis ∼ 100 GeV
QCD phase transition ∼ 150 MeV
m

(SSB)
φ O (10) MeV

neutrino decoupling ∼ 1 MeV
Big Bang Nucleosynthesis ∼ 100 keV
freeze-in of φ and Φ . 30 keV
kinetic decoupling ∼ 0.6keV
spontaneous symmetry breaking of Φ O (100) eV
mφ O (10 − 100) eV
recombination 0.26 − 0.33 eV

Table 4.2: A preview of the thermal evolution of the Universe and the relevant energy
scales within the neutrinophilic Dark Matter model.

Eq. (4.2.7). This allows to change the mass of φ after the phase transition, which is
required to tune the cross section for self-interaction to the desired values. This will
be explained in more detail in Section 4.2.2.

Table 4.2 summarizes the thermal evolution of this neutrinophilic model.

Having motivated the role of each particle, the rest of this Section is devoted to
more quantitative details about the Lagrangian and the new fields.

4.2.1 Effective coupling

The neutrino bridge mediates an effective coupling between the scalar boson φ and
the Standard Model neutrinos ν. In particular the coupling represented in Fig. 4.1a
can be summarized as an effective coupling gν with

gν = Y 2gφn
2m2

n

, (4.2.10)

where Y = y
√

2v, resulting in the effective diagram represented in Fig. 4.1b.
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ν ν

φΦ Φ

Y√
2

Y√
2gφ

p1
n n

p3

p3

(a) The coupling between the Dark Sector and the Standard Model at high energies.

ν ν

φ

gν

p1 p2

p3

(b) The effective coupling between the Dark Sector and the Standard Model.

Figure 4.1: The diagrams representing the coupling of the Dark Sector to the Standard
Model.

4.2.2 Symmetry breaking

The field Φ undergoes a spontaneous symmetry breaking thanks to the potential in
Eq. (4.2.7). After attaining its minimal value vΦ, it can be expanded around it as

Φ = vΦ + Φ̃ . (4.2.11)

Inserting this expansion in the potential in Eq. (4.2.7) leads to

V
[
Φ̃, φ

]
= − `

4
(
Φ̃4 + 4vΦΦ̃2 + 4vΦa

3
)

− x

2v
2
Φφ

2 − x

2 Φ̃2φ2 − xvΦΦ̃φ2 . (4.2.12)

Clearly, the quadratic term in Φ̃ corresponds to a mass of mΦ̃ =
√

2`vΦ, while the term
− (x/2) vΦφ

2 represents a correction to the mass of the scalar φ which now becomes
m

(SSB)
φ =

√
m2
φ + xv2

Φ. The superscript in m
(SSB)
φ signifies that the mass is the one

after the spontaneous symmetry breaking.

It is this spontaneous symmetry breaking which allows the mediator of self-interactions
φ to yield the correct values of the cross section at late times, while bypassing neu-
trinophilic constraints at earlier times [58, 59, 60].
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4.3 Relevant cross sections and decay rates

4.2.3 Mass hierarchy

Finally, the assumed mass hierarchy of the model is presented and motivated here.
The assumed relation between the masses of the particles is

mX � mn > mψ, mh � m
(SSB)
φ � mφ, mΦ̃, mν . (4.2.13)

The field X is postulated to be the most massive one. It will be shown that its mass
can be as high as PeV in order to yield the correct relic density.

The mass of the scalar field φ is originally very small (in the eV range) to allow
a late kinetic decoupling. However, after the spontaneous symmetry breaking of the
field Φ, it increases to values into the MeV range. The field Φ̃ has a negligible mass
too, such that it does not contribute to the Dark Matter relic density.

The Dark Matter particles are assumed to have a mass in the TeV range. This is
necessary to resolve the small-scale problems and satisfy all constraints, as will be
explained in more detail later. The sterile neutrino n has a mass in the TeV range as
well.

4.3 Relevant cross sections and decay rates

In this section the relevant cross sections and decay rates are discussed. The cross
section for the annihilation process ψψ → φφ and the decay rate of X → ψψ will
be relevant for computing the relic density of Dark Matter. The cross section for the
elastic scattering process ψν → ψν determines the time of kinetic decoupling. The
self-interaction ψψ → ψψ, mediated by the light scalar mediator φ, is important to
resolve the cusp vs. core problem.

4.3.1 Annihilation cross-section for the Dark Matter candidates

The cross section for the process

ψ + ψ → φ+ φ (4.3.1)

is given by the two diagrams in Figure 4.2. The amplitudes for the two diagrams are

M1 = −ivL (p2)
/p1 − /p3 +mψ

(p1 − p3)2 −m2
ψ

uL (p1) g2
φψ (4.3.2)
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ψ φ

ψ φ
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p2

p3

p4

ψ φ
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Figure 4.2: The diagrams contributing to the annihilation cross section for the Dark
Matter candidates.

and
M2 = −ivL (p2)

/p1 − /p4 +mψ

(p1 − p4)2 −m2
ψ

uL (p1) g2
φψ . (4.3.3)

They must be added, squared and averaged over all possible spins in order to ob-
tain the amplitude of the whole process,

〈
|M|2

〉
= 〈 (M1 + M2)∗ (M1 + M2)〉 . In

the center-of-mass frame, using the approximations p1 = (mψ,mψ~vrel/2) and p2 =
(mψ,−mψ~vrel/2), and neglecting mφ, the average of the squared amplitude is

〈
|M|2

〉
≈ 1

2g
4
φψv

2
rel (4.3.4)

neglecting terms of order v4
rel and higher.

The resulting cross section for this annihilation process is

〈vrelσann〉 = π

4
α2

m2
ψ

v2
rel, (4.3.5)

where α ≡ g2
φψ/4π was introduced.

4.3.2 Decay of the mediator X

The heavy mediator X can decay into two Dark Matter particles due to the interaction
term in the Lagrangian

1
2gXψXψ. (4.3.6)

The amplitude for this process is given by

M = gX
2 uL (p2) vL (p3) . (4.3.7)
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X

ψ

ψ

p1

p2

p3

Figure 4.3: The diagram for the decay of the X mediator into Dark Matter particles.

All momenta are indicated in Fig. 4.3. The average over all spins of the square of this
amplitude can be computed as

〈
|M|2

〉
= g2

X

2 (p2 · p3) . (4.3.8)

This amplitude can be further simplified after inserting the momenta p1 = (mX ,~0),
p2 = (mX/2, ~p) and p3 = (mX/2,−~p) in Eq. (4.3.8),

〈
|M|2

〉
= g2

X

4 m2
X . (4.3.9)

Note that |~p|2 = m2
X/4 − m2

ψ has been approximated by |~p|2 ≈ m2
X/4, because to

mX � mψ.
The decay rate in the rest frame of the mediator X is related to the amplitude by

Γ = |~p2|
8πm2

X

〈
|M|2

〉
. (4.3.10)

The final decay rate is

ΓX→ψψ = g2
X

64πmX . (4.3.11)

4.3.3 Elastic scattering ψ + ν → ψ + ν

The Dark Matter particles remain in thermal equilibrium with the Standard Model
for a long time thanks to the efficient momentum transfer between the ψ’s and the
neutrinos. Indeed the temperature of kinetic decoupling is determined by the moment
in time when the scattering ψ+ν → ψ+ν ceases to be efficient, i.e. when Γψ+ν→ψ+ν <
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H.

The amplitude for this process is given by

M = −gφψgν
m2
φ

gµν [u (p3) γµu (p1)] [u (p4) γνu (p2)] , (4.3.12)

as can be seen from Fig. (4.4). Here, the massive φ propagator around has been
approximated as −i

(
gµν − qµqµ/m

2
φ

)
/
(
q2 −m2

φ

)
≈

(
i/m2

φ

)
gµν since q2 � m2

φ is
assumed. The average of the squared amplitude can be simplified as

〈
|M|2

〉
= 8g2

φψg
2
ν

1
m4
φ

[(p1 · p2) (p3 · p4) + (p1 · p4) (p2 · p3)

−m2
ν (p1 · p3) −m2

ψ (p2 · p4) + 2m2
νm

2
φ

]
. (4.3.13)

Using mν ≈ 0 and p1 · p2 = mψE = p3 · p4, where E is the energy of the neutrino, the
averaged squared amplitude can be further simplified to

〈
|M|2

〉
= 16 · 8G2

Dm
2
ψE

2 , (4.3.14)

where the Fermi constant G2
D = 2g2

φψg
2
ν/16m4

φ has been introduced.

This leads to the cross section

σvrel = 8
π
GDE

2 , (4.3.15)

where the fact that E � mψ was used to approximate the final result. The thermal
average is defined by

〈σvrel〉 = 1∫
f (~p) d3~p

(2π)3

∫
σvrelf (~p) d3~p

(2π)3 , (4.3.16)

where f (~p) is the Fermi-Dirac distribution

f (E) = 1
1 + exp

(
E
T

) . (4.3.17)

Eq. (4.3.16) can be rewritten as an integral over the energy by using the spherical
symmetry of the expression

〈σvrel〉 = 1∫∞
0 E2f (E) dE

∫ ∞

0
dEE2σvrelf (E) . (4.3.18)
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ψ ψ

ν ν

p1 p3

p2 p4

qφ

Figure 4.4: The diagram for the elastic scattering of Dark Matter particles with Stan-
dard Model neutrinos.

These are known integrals that yield the following result containing the Riemann-Zeta
function ζ,

〈σvrel〉 = 15 · 8ζ (5)
πζ (3) G2

DT
2 . (4.3.19)

4.3.4 Cross section for self-interactions

The dark fermions ψ can interact with each other thanks to a force mediated by the
scalar φ. The numerical solution for the cross section for these purely repulsive self-
interactions in the classical limit mψv/mφ � 1 is found in Ref. [42],

σT ≈ 2π
m2
φ

β2 ln
(
1 + β−2

)
(4.3.20)

Here, the definition β ≡ 2αmφ/ (mψv
2
rel) was used. This expression is valid for the

case β . 1, which is realized within this model as will be explained later.

4.4 Constraints from particle physics

4.4.1 Constraints on the masses

The Dark Matter particles ψ are assumed to be stable and produced in local thermal
equilibrium. By requiring partial-wave unitarity of the scattering matrix, the bound
mψ < O(300) TeV follows [43] (see also Section 3.5.1).
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A lower bound on the mass of the Dark Matter particles, mψ > O (1)MeV, can
furthermore be inferred from the Planck measurements of the effective number of
neutrinos [1], since the considered Dark Matter particles are assumed to remain in
thermal contact with neutrinos until late times.

In principle, mn, mφ, andmX are not bounded in any way other than by the assumed
mass hierarchy in Eq. (4.2.13). Constraints would arise if, for example, the X’s or
n’s were to remain in thermal equilibrium with with the neutrinos after the time of
neutrino decoupling [56].

4.4.2 Constraints on the couplings

The couplings gφψ, gφn, and gX are assumed to lie in the perturbative regime. Fur-
thermore, bounds on the Yukawa bridge to SM neutrinos constrain Y to satisfy
Y 2/2mn . 5 GeV [63].

Since there is no coupling between the Dark Sector and charged leptons, the only
decays providing constraints on the effective neutrino coupling gν are those of Z0, W±,
and K±.

For m(SSB)
φ ≈ 10 MeV the additional decay channel Z0 → ν ν φ has a rate ΓZ0→ν ν φ ≈

0.18 GeV g2
νNν/3. Here, a specific value for the mass of φ after the symmetry breaking

was chosen, educated by the optimal value described later. However, it should be
noted that the value of the decay rate does not depend strongly on m

(SSB)
φ . The

error on the Z0 decay is 0.0023 Gev [46]. This implies a bound gν . 0.2/
√
Nν . Since

the elastic scattering rate Γel is proportional to Nνg
2
ν , its upper bound is independent

of the number of neutrinos Nν . Note that this is only relevant if φ has not decayed
earlier, in which case the decay Z0 → ν ν ν ν would be dominant and the constraint
would be relaxed.

The error on the decay of the charged electroweak boson W± is 0.042 Gev [46]. The
contribution coming from the new possible decay W → ν e φ must then lie within this
error. Assuming again m

(SSB)
φ ≈ 10 MeV, this implies gν ≤ O (1), which is weaker

than the previous constraint.

Finally, the last decay affected by the Dark Sector is the decay of K±. The new
decay channel K → µνφ is now added to the most common one, K → νµ. The ratio
between these two decay rates is almost constant for energies of the outgoing muon in
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the range 165.5 − 205.5 MeV [46],

ΓK→µνφ

ΓK→νµ

≈ 7.4 × 10−4g2
ν . (4.4.1)

Here, m(SSB)
φ ≈ 10 MeV was assumed as well. The decay rate ΓK→µνφ is bounded from

above by the decay rate ΓK→µννν . 2.7 × 10−6Γtotal [64]. This implies the strongest
constraint yet on the coupling between the dark scalar and Standard-Model neutrinos,
gν . 7 × 10−2. Note that much stronger constraints will be derived in the following
section due to cosmological restrictions.

This concludes the discussion about the constraints on the new couplings. It must be
noted that the process νe → νe is not affected at tree level by the presence of the Dark
Sector, which only couples to neutrinos and not charged leptons [58]. Furthermore,
constraints coming from lepton number violation and decays into mesons [59] are
negligible compared to other constraints discussed here. Finally, while this is not
relevant to this specific model, it is interesting to remark that if there were Nφ copies
of the dark scalar φ, the coupling to neutrinos would behave as gν ∝ 1/

√
Nφ and the

constraints given above would have to be adjusted accordingly.

4.5 Constraints from cosmology

4.5.1 Equilibrium condition for the scalar fields φ and Φ

The condition that the φ particles must have been in thermal equilibrium with the Φ
particles before the spontaneous symmetry breaking at TSSB must be imposed. This
condition can be formulated as

〈σφφ→ΦΦvrel〉nφ (TSSB) & H (TSSB) , (4.5.1)

where H is the Hubble parameter. Using 〈σφφ→ΦΦvrel〉 = (1/32πm2
φ)x2, nφ (TSSB) =

(mφT/2π)3/2 exp (−mφ/TSSB) and H (TSSB) ≈ 3.05T 2
SSB/MPl, the condition on the cou-

pling x between the φ’s and the Φ’s becomes

x & 10−13
(

mφ

100 eV

) 1
4
(
TSSB

100 eV

) 1
4
. (4.5.2)

The fact that the mass mφ should be approximately 100 eV was already used here for
the non-relativistic number density nφ. The reason behind mφ ≈ 100 eV will be shown
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in Sec. 4.6.2.

4.5.2 Constraints on gν

The particles φ and Φ are very light before the spontaneous symmetry breaking and
would violate constraints coming from Big Bang Nucleosynthesis. The deviation of
the effective number of neutrino degrees of freedom at the time of neutron-proton
freeze-out T fr

γ is

∆Neff
(
T fr
γ

)
= Nν

ρφ
(
T fr
γ

)
+ ρΦ

(
T fr
γ

)
ρν
(
T fr
γ

) . (4.5.3)

This is only within the bounds coming from measurements of the 4He abundance if
the ratio T 4

φ/T
4
ν is well below 1. For this reason, the φ and Φ particles must be produced

out of equilibrium through a freeze-in mechanism [65]. This is the case if the condition

Γeq
(
T fr
γ

)
< H

(
T fr
γ

)
(4.5.4)

is satisfied, where Γeq is the equilibrium annihilation rate of the particles φ, i.e. Γeq =
〈σφφ→ννvrel〉n(eq)

φ . This implies the constraint on the coupling gν < 10−6. The produced
φ’s should have a temperature Tφ ≈ (0.1)1/3 Tν in order to yield ∆Neff

(
T fr
γ

)
≈ 0.05,

satisfying the Big Bang Nucleosynthesis constraints.
A lower bound on gν is given by deleptonization arguments regarding the observation

of SN1987A [60]. In particular this implies gν & 1.6 × 10−6 MeV/m(SSB)
φ . As will be

explained later, a value of m(SSB)
φ ≈ 10 MeV is particularly favored in order to obtain

the desired self-interactions. This implies gν & 10−7.
Combining the lower and the upper bound, 10−7 . gν . 10−6, a value of gν ≈ 10−7

will be assumed throughout the rest of the discussion of this model without loss of
generality.

4.5.3 Lower bound on mn

The ratio Tφ ≈ (0.1)1/3 Tν described above at the time of neutrino decoupling is
achieved if the φ particles freeze-out from the Standard Model plasma at early tem-
peratures, before the QCD phase transition. At those temperatures the number of
degrees of freedom is still high enough to generate such a difference of temperatures
between the two sectors. Indeed, for a freeze-out at the temperautre of the QCD phase
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transition, the ratio at the time of neutrino decoupling is

T 3
φ, νD

T 3
ν,νD

= gS, SM (TνD)
gS, SM (TQCD) ≈ 0.17 . (4.5.5)

The condition for a freeze-out before the temperature of the QCD phase transition is

Γφφ→nν < H (TQCD) , (4.5.6)

where Γφφ→nν is the annihilation rate of the φ’s. This condition implies a lower bound
on the mass mn, (

gν
10−6

)(
gφn
1

)(TeV
mn

)
≤ O (1) . (4.5.7)

4.5.4 Relic density of Φ̃

After the spontaneous symmetry breaking, the remaining field Φ̃ contributes to the
energy density of the Universe. It is a hot relic with relic density [47]

ΩΦ̃h
2 ≈ mΦ̃

150 eV
. (4.5.8)

Since mΦ̃ can be chosen to be arbitrarily small, the condition that this particle does
not contribute significantly to the relic density of the universe is easily satisfied.

4.5.5 Cosmic Microwave Background

The deviation of the effective number of neutrinos at the time of recombination is
given by

∆Neff (Trec) = 8
7

( 4
11

)− 4
3
[
ρrad (Trec)
ργ (Trec)

− 1
]

−Nν . (4.5.9)

At recombination the scalar field φ has already decayed and the radiation energy
density consists of ρrad = ργ +ρν +ρΦ̃. With this the variation of the effective number
of degrees of freedom becomes becomes

∆Neff (Trec) = Nν

[(11
4

) 4
3 T 4

ν, rec

T 4
γ, rec

− 1
]

+ 4
7

(11
4

) 4
3 T 4

Φ̃, rec

T 4
γ, rec

. (4.5.10)
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Using the fact that the ratio of entropy densities

sγ + sφ + sΦ̃
sγ

= const. (4.5.11)

is constant during the evolution of the Universe, the following relation between temper-
atures right after neutrino decoupling (denoted by the index “νD”) and temperatures
right after CMB (denoted by the index “rec”) can be derived,

(
Tν, νD

Tγ, νD

)3
1 + 8

7
1
Nν

(
Tφ, νD

Tν, νD

)3
 =

(
Tν, rec

Tγ, rec

)3 (
1 +

sΦ̃, rec

sν, rec

)
. (4.5.12)

Since the Φ̃’s and the neutrinos are in thermal equilibrium at recombination, the ratio
of their entropy densities is

sΦ̃, rec

sν, rec
= 4

7
1
Nν

, (4.5.13)

which implies

(
Tν, rec

Tγ, rec

)4

=
(
Tν, νD

Tγ, νD

)4

(
1 + 8

7
1
Nν

(
Tφ, νD
Tν, νD

)3
) 4

3

(
1 + 4

7
1
Nν

) 4
3

. (4.5.14)

Inserting this in Eq. (4.5.10) and using again the assumption due to the freeze-in
Tφ,νD ≈ (0.1)1/3 Tν,νD and Nν = 3.046 yields

∆Neff (Trec) ≈ − 0.02 . (4.5.15)

This result is well within the existing experimental bounds [1]. It should be noted that
such a value could potentially explain the tension about the decrease of the effective
number of neutrinos between BBN- and CMB-based measurements [1].

4.5.6 Decay channel for X

The decay of the X particles repopulates the Dark Matter relic abundance after the
chemical decoupling from the φ particles as will be discussed in Section 4.6.1. For
this reason, two conditions can be imposed on the coupling gX . The first one is
that this freeze-in of the X particles should happen after the Dark Matter freeze-out,
i.e. ΓX→ψψ < H (Tf ), where Tf is the temperature of freeze-out. The second one is
that this decay should stop before Big Bang Nucleosynthesis, i.e. ΓX→ψψ > H (TνD).
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Using H (T ) =
√

(8πG/3) (π2/30) g∗ (T )T 2, where g∗ (T ) is the effective number of
relativistic degrees of freedom, the resulting constraints on the coupling gX are

4 × 10−5
(

TνD
2.3 MeV

)(
g∗ (TνD)
10.75

)1/4

.
(

gX
3 × 10−10

)(
mX

PeV

)1/2

.
(30
xf

)(
g∗ (Tf)
108.75

)1/4 (
m

TeV

)
. (4.5.16)

4.6 Cosmological observables

The relevant cosmological observables of this model are discussed in this section: the
Dark-Matter relic density, the temperature of kinetic decoupling, the damping masses
and finally the cross section for self-interactions.

4.6.1 Relic abundance

As discussed in Section 3.6.1, the relic abundance of the Dark Matter particles is
determined by the Boltzmann equation

(L− C) [fψ] (~p) = 0 , (4.6.1)

which describes the evolution of the Dark Matter distribution function. In this case,
the collision term is given by

C [fψ] (~p) =
∫ d3 ~p2

E2

d3 ~p3

E3

d3 ~p4

E4
δ4 (p1 + p2 − p3 − p4) |M|2

× [fφ (~p3) fφ (~p4) (1 − fψ (~p2)) (1 − fψ (~p))

−fψ (~p) fψ (~p2) (1 − fφ (~p3)) (1 − fφ (~p4))] , (4.6.2)

since gφψ � gν is assumed, which implies that the main process responsible for the
freeze-out of the Dark Matter particles is given by ψψ → φφ.

Analogously to the discussion in Section 3.6.1, the Boltzmann equation can be
rewritten as

dYψ
dx = − λ

x2

(
YψYψ − Y

(eq)
ψ Y

(eq)
ψ

)
(4.6.3)

with the efficiency λ ≡ 〈σannvrel〉 s (x = 1) /H (x = 1), the particle yield Yψ = nψ/s

and Y
(eq)
ψ = n

(eq)
ψ /s, and the unitless quantity x = mψ/T .
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This differential equation implies a constant value at large values of x of

Y∞ = xf

λ
, (4.6.4)

where xf = mψ/Tf marks the time of freeze-out of the Dark Matter particles, when
they started departing from the equilibrium distribution. The relic density today and
Y∞ are related by

Ωψh
2 = Y∞s0mψ

ρc/h2 , (4.6.5)

where s0 is the entropy density today, ρc is the critical energy density today and
h = 0.674 ± 0.005 [1].

The time of freeze-out xf appearing in Y∞ is obtained from the condition

〈vrelσann〉n(eq)
ψ (xf) != H(xf) (4.6.6)

and has the exact solution xf = W0 (2C2) /2, where W0 is the principal branch of the
Lambert W function.

Using this value of xf and the other parameters of this model, the relic density from
Eq. (4.6.5) is calculated to be

Ωψh
2 ≈ 0.12

(
α

0.1

)−2 ( mψ

TeV

)
. (4.6.7)

In particular, it should be noted that α ≈ 0.1 is required to recover the expected
relic density. However, larger values of α are needed for a late kinetic decoupling as
will be shown in the next section. The two requirements are in contradiction. To solve
this problem, another mechanism is needed to generate the correct relic density: the
out-of-equilibrium decay of the X boson at late times. The particle yield of the X
scalar is

dYX
dx = 3

8π5
MPlΓX→ψψ

g
3/2
∗ (Tf)m2

X

(mX

mψ

x)3K1

(
mX

mψ

x

)
, (4.6.8)

where K1
(
mX
mψ
x
)

is the first Bessel function of the second kind. This late freeze-in
repopulates the Dark Matter density and yields

Ωψh
2 ≈ 0.12

(
gX

8 × 10−11

)2
(

114
g∗ (Tf)

)3/2 (
mψ

TeV

)(PeV
mX

)
. (4.6.9)
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10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8

gX

10−6

10−4

10−2

100

102

104

106

m
X

Pe
V IceCube

Ωψ
h
2

Figure 4.5: Constraints on the relation between the coupling constant gX and the mass
of the heavy scalar X. The shaded region represents the parameter space
allowed by Eq. (4.5.16), while the solid line comes from the condition
for the correct relic density in Eq. (4.6.9). The dashed line represents
the IceCube measurements of ultra-energetic neutrinos in the PeV regime.
Dark Matter with mass mψ = 1 TeV is assumed.
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Figure 4.6: The intersection between the Hubble expansion rate (dashed line) and the
rate of elastic scattering (solid line) gives a good approximation for the
temperature of kinetic decopuling.

4.6.2 Kinetic decoupling

The temperature of kinetic decoupling marks the moment in time when the momen-
tum exchange between the Dark Matter particles and the SM neutrinos is no longer
efficient at maintaining thermal equilibrium between the two. In order to solve the
missing satellites problem, this should happen at late times, preferably after Big Bang
Nucleosynthesis and before recombination. A lower bound of Tkd & 100 eV is given by
Lyman-α measurements [66, 67]. A sufficient approximation for Tkd is obtained after
imposing the condition

〈σelvrel〉nν (Tkd) = H (Tkd) , (4.6.10)

i.e. by determining the temperature at which the expansion of the universe is faster
than the rate of the elastic scattering (see also Figure 4.6). A more precise calculation
of Tkd, which yields very similar results in this case, can be done following Ref. [53].
For mφ ≈ O (1) keV and mψ ≈ O (1) TeV values of Tkd ≈ 0.6 keV are obtained, which
allow to solve the missing satellites problem.

4.6.3 Damping scales

The temperature of kinetic decoupling determines the size of the smallest Dark Matter
structures in the Universe. Indeed, any structure contained within the set of points
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which can be reached by neutrinos before Tkd will be destroyed by them. This set of
points is a sphere with radius H−1 (Tkd) and the mass contained within it is

Md = 4π
3 ρm (Tkd) 1

H3 (Tkd) . (4.6.11)

Using ρm (Tkd) = (Ωm, 0ρcrit., 0/s (T0)) s (Tkd), this can be explicitly written as [54]

Md ≈ 4.67 × 109 g∗, S (Tkd)
g

3
2∗ (Tkd)

(
keV
Tkd

)3

M� . (4.6.12)

Here, M� is the solar mass, g∗, S is the number of effective degrees of freedom in entropy
and g∗ the number of effective relativistic degrees of freedom. This is precisely at
the scale of dwarf galaxies which is required to solve the missing satellites problem
[35, 56, 68, 66]. This result strongly departs from the values obtained with WIMPs
within the ΛCDM model [69, 70],

Md,WIMP ≈ 30M⊕

(10 MeV
Tkd

)3
, (4.6.13)

where M⊕ is the mass of the Earth.

In principle, between the damping mass due to free streaming and the one due to
acoustic damping, the larger one should be taken. Here, however, free streaming is
negligible, since the corresponding damping masses are proportional to 1/T 3/2

kd which
is subdominant to 1/T 3

kd for late kinetic decouplings [70].

It should be noted how requiring such a kinetic decoupling highly constrains the
parameters α and mφ. While it is in principle possible to choose mφ freely and adjust
α accordingly in order to obtain the correct value of Tkd, this is not always compatible
with the requirements about self-interactions which will be explained in Section 4.6.4.
Indeed, it will be shown that only a value of mφ in the sub-keV range is acceptable

4.6.4 Self-interactions

Self-interactions are mediated by the φ scalar and are crucial to successfully address
the cusp vs. core, too-big-to-fail and diversity problems. For this purpose, the elastic
cross section should be approximately 〈σT/mψ〉vtherm

≈ 1 cm2 g−1 [71]. Here, the angled
brackets denote an average over a Maxwell-Boltzmann distribution with mean value
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vtherm,
〈σT 〉vtherm

mψ

= 1
mψ

∫
d3v

1
(2πvtherm)3/2 e

− v2
v2

therm σT . (4.6.14)

More specifically, the cross section should be velocity dependent in order to address the
small-scale problems and leave the situation unchanged at large scales. At the scales
of dwarf galaxies (. O (1) keV) it should have an approximate value of 〈σT 〉30 /mψ ≈
1.0 cm2 g−1 [61, 50, 41], where the average velocity is 30km/s. At large scales, i.e.
at the scale of galaxy clusters (& O (10) Mpc), it should have a value satisfying
〈σT 〉1000 /mψ . 0.1 cm2 g−1. Using Eq. (4.3.20), values of mφ ≈ O (1) MeV are needed
to obtain values of 〈σT 〉 /mψ in the desired range [42]. However, values ofmφ . 1000 eV
are required to have a late kinetic decoupling. This is solved within this model thanks
to the phase transition taking place after kinetic decoupling (TSSB < Tkd) and gives a
new much larger mass to the scalar φ. An example of a choice of parameters yielding
the correct self-interaction cross sections would be mψ ≈ 1 TeV and m

(SSB)
φ ≈ 5 MeV.

4.7 Results

Having discussed each single cosmological observable on its own, it is now possible to
present an explicit choice of parameters which solve all small-scale problems at once.
It is summarized in Table 4.3.

As discussed in Section 4.5.2, the effective coupling between φ and SM neutrinos
is highly constrained and must satisfy gν ≈ 10−7. The other couplings should lie in
the perturbative regime as well, but are not subject to such stringent bounds. A good
choice for gφn is gφn ≈ 0.02. Then Y 2/(2m2

n) ≈ 4 × 10−3 follows immediately from the
relation between gν and gφn (see Eq. (4.2.10)). Remembering that Y = y

√
2 〈H〉 and

the fact that the sterile neutrinos are here supposed to have a mass approximately in
the TeV range, an estimate y ≈ 0.1 can be calculated, using 〈H〉 ≈ 246 GeV for the
expectation value of the Higgs field. These tiny couplings make the field φ chemically
decouple at early temperatures (at T ≈ TeV) from the SM-neutrinos in order to evade
Big Bang Nucleosynthesis constraints. The acceptable values for α (and thus gφψ)
depend on the choice for the parameter mφ. For example, α ≈ 10−2 (i.e. gφψ ≈ 0.3) is
needed if mφ ≈ 10 keV, while α ≈ 10−1 (i.e. gφψ ≈ 1) is required in the case mφ ≈ 30
eV. The coupling gX is also dependent on the mass of the heaviest boson X, as seen in
Fig. (4.5). In view of the Ice Cube measurements of ultra-energetic neutrinos [19], the
preferred value is gX ≈ 10−11, as can also be seen from Fig. 4.5. Finally, concluding
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the presentation of the couplings, the couplings in the scalar potential x and ` are
fully determined by the choice of the masses mΦ̃ and m(SSB)

φ discussed below as well as
by the condition that the spontaneous symmetry breaking happens at a temperature
TSSB ≈ 100 eV.

The mass of the Dark Matter particles is mψ ≈ 0.3 − 1 TeV, although lower masses
would be allowed if there were more than one copy of the boson X. Similarly, the
sterile neutrinos should have mn ≈ 20 TeV. It is due to these large masses of ψ and
n that the cubic interactions between them and the light boson φ are suppressed.
The value of the mass of the φ boson after the spontaneous symmetry breaking in the
Dark Sector can be chosen to be m(SSB)

φ ≈ 1−5 MeV. This allows to obtain the correct
cross sections for self-interactions. Before the symmetry breaking, the mass parameter
should lie in the range mφ ≈ 30 − 1000 eV for a late kinetic decoupling solving the
missing satellites problem. The heavy boson X should have a mass mX ≈ O (1) PeV
in order to yield the correct relic density by decaying after the freeze-out between Dark
Matter and the light bosons φ. Furthermore, rare decays of the X particle could
possibly explain the observation of three neutrinos with energies in the PeV range
by the IceCube collaboration [19]. Regardless of these measurements, Fig. 4.5 clearly
indicates that the mass of X should lie in the range between O (1) TeV and O (100)
PeV. Finally, the mass of the scalar field Φ̃ after the spontaneous symmetry breaking
should be mΦ̃ ≈ O (1) µeV in order to give only a negligible contribution to the DM
relic density. It should be noted here that the other fields φ, X and n have decayed
earlier, such that the relic density is only given by the Dark Matter particles ψ.

With this parameter set, all constraints presented in Sections 4.4 and 4.5 are satis-
fied, while at the same time the cosmological observables discussed in Section 4.6 are
such that the small-scale problems are resolved.

59



4 Neutrinophilic Dark Matter

Parameter Approximate Value
mψ 0.3 − 1 TeV
mn 20 TeV
mφ 30 − 1000 eV
m

(SSB)
φ 1 − 5 MeV

mX 1 PeV
mΦ̃ � 1 eV
gν 10−7

gφn 0.02
gφψ 0.3 − 1

Table 4.3: A summary of all the parameters able to solve the small-scale problems
within the neutrinophilic Dark-Matter model.
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5.1 Introduction

The final model considered studies the possibility of a Dark Matter annihilation chan-
nel into positrons and electrons [33]. A particle model is constructed which simulta-
neously addresses all small-scale problems of ΛCDM and could lead to Dark Matter
detection as electron-positron excesses in cosmic rays. Indeed, a large number of ex-
periments have been looking for electron or positron excesses (e.g. ATIC [72], CALET
[73], PAMELA [74]). In particular, the DAMPE collaboration [75] claimed to have
measured a peak in the cosmic rays positron spectrum at energies of approximately
1.4 TeV. Even though the validity of those results has since been challenged [73], a
leptophilic Dark Matter model remains an interesting possibility to analyze, for its
aptness to be experimentally verified.

The model assumes a fermionic Dark Matter candidate, which annihilates through
some mediator into electrons and positrons. The mass of the Dark Matter candidate
is assumed to lie above the TeV range, i.e. the region which has only recently been
reached by experiment detectors. Of course, such an annihilation into Standard-Model
particles means that a lot of constraints must be taken into account: for example, the
modification to the electron’s anomalous magnetic moment due to these new interac-
tions should lie within the current experimental error.

At the same time, the other goal of this model is to resolve the cusp vs core, too-big-
to-fail, missing satellites and diversity problems. This poses further constraints on the
new parameters of the theory and even requires the introduction of an extra mediator
to ensure a late kinetic decoupling which would otherwise be impossible together with
annihilations at E & 1 TeV into electrons and positrons.
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5.2 Lagrangian

The Lagrangian of the theory consists of three terms, LDS = Lkin + Llept + Lint. Lkin

contains the kinetic terms for the new particles. Llept describes the coupling of the
Dark Matter candidates to all charged leptons in the Standard Model. Lint describes
all other interaction operators up to dimension-4 which are allowed by the symmetries
of the model.

The kinetic part of the Lagrangian is

Lkin = χ
(
i/∂ −mχ

)
χ+

(
D∗
µ∆+ ∗

) (
Dµ∆+

)
−m2

∆+∆+ ∗∆+ − 1
2∆0

(
� +m2

∆0

)
∆0

(5.2.1)
with Dµ = ∂µ − ig′Bµ. This can be written more explicitly as

Lkin = χ
(
i/∂ −mχ

)
χ− ∆+ ∗

(
� +m2

∆+

)
∆+ + ig′Bµ

[(
∂µ∆+ ∗

)
∆+ − ∆+ ∗

(
∂µ∆+

)]
+g′ 2BµB

µ
∣∣∣∆+

∣∣∣2 − 1
2∆0

(
� +m2

∆0

)
∆0 . (5.2.2)

The fields introduced in the above expressions are the following. The Dark Matter
candidate χ is a Dirac field, ∆+ is a complex scalar field, ∆0 is a real scalar field and
B is the gauge boson of the U(1)Y hypercharge symmetry of the Standard Model. g′

is the corresponding coupling.

The Yukawa interaction between Dark Matter particles and charged leptons is given
by

Llept = −giχ∆+liR − giliR
(
∆+

)∗
χ . (5.2.3)

Here, lR is the right-handed charged lepton triplet, lR = (eR, µR, τR)T , and gi for
i ∈ {e, µ, τ} distinguishes the couplings between the different leptons. From this
interaction, it is clear that the complex scalar field ∆+ must carry a U(1) charge
as well. Dark Matter particles are assumed to couple only to right-handed charged
leptons. This is necessary in order to satisfy constraints on the lepton anomalous
magnetic moment, as will be shown in Sec. 5.4.3.

Finally, the other interactions of the theory are described by

Lint = −a1
(
∆+

)∗
∆+

(
∆0
)2

− µ+
(
∆+

)∗
∆+∆0 − 1

6µ0
(
∆0
)3

+ g0χ∆0χ . (5.2.4)

All the new parameters a1, g0, µ+ and µ0 are real. Each term plays a specific role
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for the phenomenology of the theory. The first one is responsible for the depletion
of the ∆+ particles. The second one allows the ∆0 particles to decay. The third one
enables IR-dominant, purely uncharged interactions. Finally the last one facilitates
self-interactions between the Dark Matter particles. All these features will be discussed
in great detail in the rest of this Section.

5.2.1 Mass hierarchy

As mentioned in the introduction, the mass of the Dark Matter candidate is assumed
to lie in the TeV range. This was originally motivated by the DAMPE collaboration’s
claim of having measured a peak in the positron’s cosmic ray excess at energies of
approximately 1.4 TeV [75]. However, the TeV range is an interesting one regardless
of such claims, being at the frontier of the current experiments.

A mass degeneracy between the charged scalar fields and Dark Matter is assumed
in order to suppress annihilations of the charged mediator into Dark Matter particles
and allow an enhanced elastic scattering with electrons as will be discussed in Sec.
5.5.2. This mass degeneracy is parametrized as

m∆+ −mχ ≡ d > 0 with δ ≡ d

mχ

� 1 . (5.2.5)

The condition me < d < mµ,mτ is also imposed, where me ≈ 0.5 MeV, mµ ≈ 105
MeV, and mτ ≈ 1.7 GeV are the masses of the electron, muon, and tau, respectively.
This particular condition enables a resonance in the elastic scattering between electrons
and Dark Matter which might reestablish thermal equilibrium between the two at
temperatures below 1 keV (see Sec. 5.5.2 for more details).

Finally, the mass of the uncharged scalar ∆0 is assumed to be significantly smaller,
namely in the keV range. As will be discussed in Secs. 5.5.2 and 5.5.3, this allows for
the resolution of the Dark Matter small-scale problems.

5.3 Relevant cross sections and decay rates

All relevant scatterings and decays are calculated and discussed in this section.
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5.3.1 Annihilation into charged leptons

The Yukawa coupling in Eq. (5.2.3) creates an annihilation channel for Dark Matter
into charged leptons, as depicted in Fig. 5.1. This annihilation could potentially
be observed as a Cosmic Ray Excess from different experiments. Furthermore, this
process is responsible for the freeze-out of Dark Matter as will be discussed in Sec.
5.5.1, where the Dark Matter relic density is computed.

The average of the squared amplitude for the process in Fig. 5.1 is

〈
|M|2

〉
=

∑
spins

1
4

g4
i[

(p1 − p3)2 −m2
∆+

]2 [uR (p3)u (p1)]∗ [uR (p3)u (p1)]

× [v (p2) vR (p4)]∗ [v (p2) vR (p4)] , (5.3.1)

which, with the identity tr {γµγν} = 4gµν , can be written explicitly as

〈
|M|2

〉
= g4

i[
(p1 − p3)2 −m2

∆+

]2 (p1 · p3) (p2 · p4) . (5.3.2)

Assuming highly non-relativistic Dark Matter particles, m∆+ ≈ mχ � me, and in the
center-of-mass frame, i.e. p1 = p2 =

(
mχ,~0

)
, p3 = (mχ, ~p) and p4 = (mχ,−~p) with

|~p| =
√
m2
χ −m2

i , the squared amplitude is
〈

|M|2
〉

≈ g4
i /4. This can be inserted in

the expression for the cross section,

σ = 1
4πvrel

1
2E12E2

|~p|
(E1 + E2)

〈
|M|2

〉
, (5.3.3)

and yields

〈σvrel〉 χχ→lR, ilR, i
= πα2

i

8
1
m2
χ

√
1 − δ′ 2

i . (5.3.4)

Here, the notation αi = g2
i /4π and δ′

i = mi/mχ with i ∈ {e, µ, τ} has been introduced.
Furthermore, the angled brackets 〈 . . . 〉 denote the thermal average using relative
velocities, which is trivial in this case, since there is no energy dependence in this
non-relativistic limit.

5.3.2 Annihilation of the charged mediator

The principal annihilation channel for the charged mediator is the four-point inter-
action with coupling strength a1 in Eq. (5.2.4). The averaged squared amplitude is
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χ liR

χ liR

p1 p3

q ∆+

p4p2

Figure 5.1: The annihilation channel for Dark Matter into charged leptons.

〈
|M|2

〉
= a2

1. In the center-of-mass frame and in the non-relativistic limit, i.e. with
p1 = p2 =

(
m∆+ ,~0

)
, p3 = (m∆+ , ~p) and p4 = (m∆+ ,−~p) with |~p| =

√
m2

∆+ −m2
∆0 , the

cross section is

〈vrelσ∆+∆+→∆0∆0〉 = πα2
1

4 (m∆+)2

√√√√1 − m2
∆0

m2
∆+

, (5.3.5)

where α1 = a1/4π has been introduced. In principle, s-channel annihilations mediated
by ∆0 are also possible. In this case, the cross section is proportional to µ2

0µ
2
+/m

4
∆+

under the assumption m∆+ � m∆0 . Thus, this channel is negligible compared to the
four-point interaction described above if µ2

0µ
2
+/m

4
∆+ � a2

1.
It should be also noted that annihilations into the Dark Matter particles χ have a

cross section which is proportional to
(
1 −m2

χ/m
2
∆+

)5/2
. By the assumed mass de-

generacy, mχ/m∆+ is close to one and thus, this annihilation channel is kinematically
suppressed. Furthermore, the annihilation process of the ∆+’s into right-handed elec-
trons is p-wave suppressed, since in the center-of-mass frame the final state has a total
angular momentum of +1.

5.3.3 Elastic scattering with electrons

Electrons are a long lasting elastic scattering partner of the Dark Matter candidates
through the diagrams in Fig. 5.2.

The average of the squared amplitude for the process χe → χe in Fig. 5.2a is

〈
|M|2

〉
= g4

i[
(p1 − p3)2 −m2

∆+

]2 2 (p1 · p3) 2 (p2 · p4) . (5.3.6)

In the non-relativistic approximation, p1 ≈
(
mχ,~0

)
, p2 ≈ (me (1 + v2/2) ,me~v), valid
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χ eR

eR χ

p1 p3

q ∆+

p2 p4

(a) Elastic scattering of χ with electrons.

χ

eRχ

eR

p2

p1

q

∆+

p3

p4

(b) Elastisc scattering of χ with electrons.

Figure 5.2: The diagrams responsible for the elastic scattering of Dark Matter with
electrons.

at temperatures T � me, and assuming that only the direction of the electron’s
momentum is changed after the scattering, the differential cross section becomes

dσ

dΩ = 1
4π2

me

mχ +me

(
1 + v2

2

)mχme

(
1 + v2

2

)
g4
i[

m2
χ +m2

e − 2mχme

(
1 + v2

2

)
−m2

∆+

]2 .
(5.3.7)

Using again the definitions δ = (m∆+ −mχ) /mχ and δ′
e = me/mχ, the momentum-

transfer cross section σT =
∫

dΩ (1 − cos (θ)) dσ/dΩ can finally be written as

σχ eT ≈ g4
i

16π
m2
e

4m4
χ

1[
−δ − δ′

e

(
1 + v2

2

)
+ 1

2 (−δ2 + δ′ 2
e )
]2 . (5.3.8)

The average of the squared amplitude of the process described by Fig. 5.2b is very
similar, 〈

|M|2
〉

= g4
i[

(p1 − p2)2 −m2
∆+

]2 2 (p1 · p2) 2 (p3 · p4) , (5.3.9)

and leads to the momentum-transfer cross section

σχ eT ≈ g4
i

16π
m2
e

4m4
χ

1[
−δ + δ′

e

(
1 + v2

2

)
+ 1

2 (−δ2 + δ′ 2
e )
]2 . (5.3.10)

The behavior of these two cross sections is quite different. Both have a divergence for
some specific value of δ. The divergences are located at

δχdiv =
√
δ′ 2
e − δ′

e (2 + v2) + 1 − 1 , (5.3.11)
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δχdiv =
√
δ′ 2
e + δ′

e (2 + v2) + 1 − 1 . (5.3.12)

However, for the scattering of χ with electrons the assumption m∆+ −mχ > me implies
that the divergence in Eq. (5.3.11) can never be attained, since δχdiv ≤ δ′

e for all values
of v. Indeed, the corresponding cross section is always bounded from above by

σχeT ≤ g4
e

16π
1

16m2
χ

. (5.3.13)

On the other hand, the elastic scattering between χ and e is divergent. For small
velocities the cross section is enhanced a lot when δ ≈ δ′

e. A more precise choice
for the value of δ will be given in Sec. 5.7, where the possibility of a late kinetic
decoupling thanks to this resonant behavior is discussed.

5.3.4 Elastic scattering with ∆0

The Dark Matter particles χ can scatter elastically with the light dark mediators ∆0

as well. The process is represented in Fig. 5.3. The amplitude is given by

iM = (ig0) (iµ0)
i

(p1 − p3)2 −m2
∆0

u (p3)u (p1) . (5.3.14)

With the average of the square of this amplitude

〈
|M|2

〉
= 2g2

0µ
2
0[

(p1 − p3)2 −m2
∆0

]2 (p1 · p3 +m2
χ

)
, (5.3.15)

the differential cross section in the center-of-mass frame is

dσ
dΩ = g2

0µ
2
0

32π2Ecm

p1 · p3 +m2
χ[

(p1 − p3)2 −m2
∆0

]2 . (5.3.16)

It should be noted that all spatial momenta have the same magnitude in this reference
frame and thus p1 · p3 = m2

χ + |~p|2 (1 − cos (θ)), where θ is the angle between the
ingoing and the outgoing momenta. Analogously, (p1 − p3)2 = −2 |~p|2 (1 − cos (θ)).
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5 Leptophilic Dark Matter

The momentum-transfer cross section for this elastic scattering is then

σT =
∫ 2π

0
dϕ

∫ π

0
dθ sin (θ) (1 − cos (θ)) g2

0µ
2
0

32π2E2
cm

2m2
χ + |~p|2 (1 − cos (θ))[

2 |~p|2 (2 − cos (θ)) +m2
∆0

]2 .
(5.3.17)

While the integral over ϕ is immediate and simply gives a factor of 2π, the integral
over θ requires the change of variables y = 1 − cos (θ). This yields

σT = g2
0µ

2
0

16πE2
cm

1
4 |~p|4

2m2
χ

∫ 2

0
dy y(

y + m2
∆0

2|~p|2

)2 + |~p|2
∫ 2

0
dy y2(

y + m2
∆0

2|~p|2

)2

 . (5.3.18)

Both integrals are solvable by splitting the fractions into sums of multiple, lower order
fractions. The result is

σT = g2
0µ

2
0

16πE2
cm

1
4 |~p|4

{
2m2

χ

[
log

(
m2

∆0 + 4 |~p|2

m2
∆0

)
− 4 |~p|2

4 |~p|2 +m2
∆0

]

+ |~p|2
[
−m2

∆0

|~p|2
log

(
m2

∆0 + 4 |~p|2

m2
∆0

)
+ 8 |~p|2 + 4m2

∆0

4 |~p|2 +m2
∆0

]}
(5.3.19)

= g2
0µ

2
0

16πE2
cm

1
4 |~p|4

{(
2m2

χ −m2
∆0

)
log

(
m2

∆0 + 4 |~p|2

m2
∆0

)

+
(
−4m2

χ + 4 |~p|2 + 2m2
∆0

) 2 |~p|2

4 |~p|2 +m2
∆0

}
. (5.3.20)

This can be brought to a much simpler form in the low-energy regime, i.e. when most
of the energy of the Dark Matter candidates is their rest energy. This is indeed
the relevant regime for elastic scattering, which is still expected to happen at low
temperatures T � mχ. The center-of-mass energy is thus dominated by E2

cm ≈ m2
χ.

Furthermore, m2
χ � m2

∆0 is assumed within this model and can be used to simplify
the result even more. The result is finally expressed as a function of the energy of the
∆0’s, E2 = m2

∆0 + |~p|2. With these assumptions the momentum-transfer cross section
for the elastic scattering between χ and ∆0 is

σT = g2
0µ

2
0

16π

log
(

4E2−3m2
∆0

m2
∆0

)
− E2−m2

∆0
E2− 3

4m
2
∆0

2 (E2 −m2
∆0)2 . (5.3.21)
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χ χ

∆0 ∆0

p1 p3

q ∆0

p2 p4

Figure 5.3: The elastic scattering between Dark Matter and the uncharged ∆0’s.

Thus, this elastic scattering is particularly dominant at temperatures close to the mass
of ∆0.

5.3.5 Self-interactions

The last term in Eq. (5.2.4) mediates self-interactions between the Dark Matter
particles. In this model, the self-interactions are purely attractive, since they are
mediated by a scalar particle.

In order to address the small-scale problems, a velocity-dependent cross section is
required: this allows to modify Dark Matter structures at small scales, where the
velocity is smaller, while leaving them unchanged at large scales, where the velocity is
larger. Such a behavior is obtained in the regime where non-perturbative effects are
relevant, i.e. outside of the Born regime when α2

0mχ/m∆0 > 1, with α0 = g2
0/4π. An

analytic fit for the cross section in the classical limit, mχvrel/m∆0 � 1, can be found
in Refs. [42, 76] and is

σT = 8π
m2

∆0

β2

1 + 1.5β1.65 . (5.3.22)

Here, β = α0m∆0/ (mχv
2
rel) . 103 is assumed. This assumption is warranted as will

become clear later, once the most favored values for the masses of the theory have
been presented.

5.3.6 Decay of ∆+

The charged scalars ∆+ can decay into electrons and Dark Matter via the Yukawa
coupling in Eq. (5.2.3). It should be remarked that ∆+ cannot decay into other
leptons, i.e. muons and taus, due to the assumption m∆+ − mχ < mµ,mτ . The
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5 Leptophilic Dark Matter

process is represented in Fig. 5.4 and the corresponding amplitude is

iM = u (q1)
1 + γ5

2 gev (q2) . (5.3.23)

With the usual trace identities, the average of the amplitude squared is

〈
|M|2

〉
= 2g2

e (q1 · q2) . (5.3.24)

In the center-of-mass frame, the decay rate is then

Γ∆+→χeR = |~q1|
8πm2

∆+
2g2

e (q1 · q2) . (5.3.25)

In this reference frame, i.e. with p =
(
m∆+ ,~0

)
, q1 = (Eχ, ~q1), and q2 = (Ee,−~q1), the

magnitude of the outgoing momentum can be written as

|~q1| =
√(

m∆+ −
√
m2
χ + |~q1|2

)2
−m2

e . (5.3.26)

This can be solved for |~q1| and yields

|~q1| =

√√√√√(m2
∆+ −m2

χ

)2
− 2m2

e

(
m2
χ +m2

∆+

)
+m4

e

4m2
∆+

. (5.3.27)

Using the definition δ = (m∆+ −mχ) /mχ, the first term under the square root can
be written as

(
m2

∆+ −m2
χ

)2
= δ2m2

χ (m∆+ +mχ)2. Furthermore, using the valid ap-
proximations mχ +m∆+ ≈ 2mχ and mχ/m∆+ ≈ 1, the final expression for |~q1| is

|~q1| ≈ mχ

√
δ2 − δ′ 2

e + 1
4δ

′ 4
e , (5.3.28)

where δ′
e = me/mχ has been used again. It should be noted that the last term under

the square root could easily be neglected, since in this model δ′
e � 1.

With (q1 · q2) =
[
(q1 + q2)2 − q2

1 − q2
2

]
/2, the product (q1 · q2) can be simplified as

(q1 · q2) ≈ m2
χ

(
δ − δ′ 2

e

2

)
, (5.3.29)

where the approximation mχ + m∆+ ≈ 2mχ has been used once more. Here, again,
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∆+

eR

χ

p

q1

q2

Figure 5.4: The decay channel for the charged scalar.

the second term in the parenthesis is negligible, since δ′ 2
e � δ′

e < δ.

Putting everything all back together yields

Γ∆+→χeR ≈ 1
4πg

2
emχ

√
δ2 − δ′ 2

e δ . (5.3.30)

As an example, this corresponds to a lifetime of τ∆+ = 1/Γ ≈ 4×10−13 s if g2
e/4π = 0.1,

mχ = 2.2 TeV and m∆+ −mχ = 1.01me.

5.4 Parameters and constraints

A number of constraints on the parameters of this theory must be taken into consid-
eration. In particular, a lot of particle constraints are necessary, since the Dark Sector
is directly in contact with the Standard Model. Constraints coming from cosmological
observations are present as well.

5.4.1 µ0 and µ+

All new couplings are assumed to allow perturbative expansions. In particular, for the
dimensionful couplings µ0 and µ+ this translates to µ+ . m∆+ and µ0 . m∆0 . The
first constraint, µ+ . m∆+ , comes from the one-loop correction of the µ+∆0 (∆+)∗ ∆+

interaction represented in Fig. 5.5a. The corresponding amplitude is proportional to

M ∝ µ3
+

∫ d4k

(2π)4
1

k2 −m2
∆0

1
(q1 − k)2 −m2

∆+

1
(q2 − k)2 −m2

∆+

, (5.4.1)
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∆+ ∆+

p ∆0
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(a)

∆0 ∆0

p ∆0

q1

q1 − k

∆0

q2 − k

∆0

q2
k

∆0

(b)

Figure 5.5: The diagrams responsible for µ+ � m∆+ and µ0 � m∆0 .
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which can be rewritten as

M ∝ µ3
+

∫ 1

0
dxdydzδ (x+ y + z − 1)

∫ d4k

(2π)4
1

[k2 − ∆]3
(5.4.2)

using Feynman parameters. Here, ∆ is given by

∆ = −zyp2 + (1 − x)2 m2
∆+ + xm2

∆0 . (5.4.3)

Neglecting factors of π and i and performing the integration over d4k, the amplitude
can be written as

M ∝
µ3

+
m2

∆+

∫ 1

0
dxdydzδ (x+ y + z − 1) 1

−zy p2

m2
∆+

+ (1 − x)2 + x
m2

∆0
m2

∆+

. (5.4.4)

The result is proportional to µ+(µ+/m∆+)2 up to a large but finite numerical factor
dependent on p2/m2

∆+ and m2
∆0/m2

∆+ coming from the integral. Thus µ+ � m∆+

must hold to allow perturbative expansions.

The condition µ0 � m∆0 can be derived completely analogously from the vertex
correction in Fig. 5.5b. In this case, the amplitude for the correction to the vertex is
proportional to

M ∝ µ3
0

∫ d4k

(2π)4
1

k2 −m2
∆0

1
(q1 − k)2 −m2

∆0

1
(q2 − k)2 −m2

∆0

(5.4.5)

and can be rewritten as

M ∝ µ3
0

∫ 1

0
dxdydzδ (x+ y + z − 1)

∫ d4k

(2π)4
1

[k2 − ∆]3
(5.4.6)

using Feynman parameters with ∆ = m2
∆0 (1 + x2 − x+ zy). Again, up to factors of

i and π the amplitude is then

M ∝ µ0
µ2

0
m2

∆0

∫ 1

0
dxdydzδ (x+ y + z − 1) 1

1 + x2 − x+ zy
. (5.4.7)

Since the integral is finite and only yields a numerical factor, it is clear that the
condition µ0 � m∆0 must hold to allow for a perturbative theory.
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5.4.2 Thermal production

Another constraint comes from the following requirements. The Dark Matter candi-
dates should have been thermally produced and have been in thermal equilibrium with
the Standard Model at some point in time. In this model, the process governing Dark
Matter annihilation and production is χχ ↔ lR, i lR, i. At a temperature T ≈ mχ,
Dark Matter production stops and the number density of χ starts to decrease right up
until the moment when the expansion of the universe is faster than the annihilation
rate, i.e. at the temperature of freeze-out. Requiring that Dark Matter was thermally
produced means that the condition

〈σvrel〉 χχ→lR, ilR, i
nχ (mχ) > H (mχ) (5.4.8)

must be fulfilled. With Eq. (5.3.4) this can be rewritten as

πα2
i

8
1
m2
χ

√
1 − δ′ 2

i

2m3
χ

(2π)
3
2
e−1 >

π

3

(
g∗

10

) 1
2 m2

χ

MPl
. (5.4.9)

With
√

1 − δ′ 2
i ≈ 1 and g∗ = 106.75 at temperatures in the range of TeV, the constraint

on the coupling αi becomes

αi > 13.6
√
mχ

MPl
. (5.4.10)

5.4.3 Anomalous magnetic moment

Within this model, each charged lepton’s vertex gets a new contribution coming from
the interaction represented in Fig. 5.6. This modifies their anomalous magnetic mo-
ment. The amplitude corresponding to this new interaction is

iMµ
i = −g2

i eu (q2)
1 − γ5

2

∫ d4k

(2π)4
/k +mχ

k2 −m2
χ

1
(q1 − k)2 −m2

∆+

1
(q2 − k)2 −m2

∆+

× (qµ1 + qµ2 − 2kµ) 1 + γ5

2 u (q1) , (5.4.11)

where i ∈ {e, µ, τ}. Using Feynman parameters this can be rewritten as

iMµ
i = −g2

i eu (q2)
1 − γ5

2

∫ 1

0
dxdydzδ (1 − x− y − z)

∫ d4k

(2π)4
/k + y/q1 + z/q2 +mχ

[k2 − ∆]3

× (qµ1 + qµ2 − 2kµ − 2yqµ1 − 2zqµ2 ) 1 + γ5

2 u (q1) , (5.4.12)
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where ∆ = (1 − x)2 m2
i − yzp2 +xm2

χ − (1 − x)m2
e + (1 − x)m2

∆+ and the substitution
k → k+ yq1 + zq2 was performed. The numerator of the quantity to be calculated can
be reformulated as

Nµ = 1
4u (q2) [/k (1 + γ5) + ymi (1 − γ5) + zmi (1 + γ5)]u (q1)

× [(1 − 2y) qµ1 + (1 − 2z) qµ2 − 2kµ] , (5.4.13)

(5.4.14)

after using the Dirac equation on the on-shell spinors u (q1) and u (q2). All terms linear
in k will vanish after the d4k integration and can thus be neglected. Furthermore, the
correction to the anomalous magnetic moment will be proportional to the prefactor
of iσµνpν , while terms proportional to γµ and γ5 are irrelevant [77]. This allows to
rewrite the numerator in a simpler way by keeping only the relevant terms,

Nµ ∼ 1
4u (q2) [−2kµ/k (1 + γ5) + ymi (1 − γ5) ((1 − 2y) qµ1 + (1 − 2z) qµ2 )

+zmi (1 + γ5) ((1 − 2y) qµ1 + (1 − 2z) qµ2 )]u (q1) (5.4.15)

∼ 1
4u (q2)mi (1 − x) [(1 − 2y) qµ1 + (1 − 2z) qµ2 ]u (q1) . (5.4.16)

The Gordon identity, which can be rewritten both as

u (q2) qµ1u (q1) = u (q2)
[
miγ

µ − 1
2p

µ − i
2σ

µνpν

]
u (q1) (5.4.17)

and
u (q2) qµ2u (q1) = u (q2)

[
miγ

µ + 1
2p

µ − i
2σ

µνpν

]
u (q1) , (5.4.18)

makes it possible to finally obtain the relevant terms in the numerator of the amplitude,

Nµ ∼ 1
2mix (1 − x)u (q2)

(
− i

2σ
µνpν

)
u (q1) . (5.4.19)

The second form factor is defined as the proportionality factor appearing in

iMµ = −ieu (q2)
[
other form factors + iσµνpν

2mi

F2

(
p2

m2
i

)]
u (q1) , (5.4.20)

and thus, in this case, the new contribution to it is

δF2
(
p2 = 0

)
= ig2

i

m2
i

2

∫
dxdydzδ (1 − x− y − z)

∫ d4k

(2π)4
x (1 − x)
[k2 − ∆]3

. (5.4.21)
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The integration over d4k yields −i/ (32π2∆) and with the approximation mχ ≈ m∆+

and m2
i � m2

χ the contribution to the second form factor for each charged lepton’s
vertex is

δF2
(
p2 = 0

)
≈ g2

em
2
i

64π2

∫
dxdydzδ (1 − x− y − z) x (1 − x)

m2
χ

(5.4.22)

= g2
em

2
i

64π2
1

12m2
χ

(5.4.23)

= αe
144πδ

′ 2
i . (5.4.24)

The corresponding values for each charged lepton are presented in Table 5.1 and lie
within the experimental errors for the observed anomalous magnetic moments [46].

It should be noted, that this is the reason why the assumption of a Yukawa coupling
with only right-handed leptons as in Eq. 5.2.3 is crucial for the viability of this
theory. This can be seen as follows. If the coupling in Eq. (5.2.3) would not to
discriminate between right- and left-handed particles, the amplitude for the one-loop
vertex correction would be

iMµ
i = −g2

i eu (q2)
∫ 1

0
dxdydzδ (1 − x− y − z)

∫ d4k

(2π)4
/k + y/q1 + z/q2 +mχ

[k2 − ∆]3

× (qµ1 + qµ2 − 2kµ − 2yqµ1 − 2zqµ2 )u (q1) , (5.4.25)

where i ∈ {e, µ, τ} and ∆ is the same as for the purely right-handed interaction, since
the denominator is not affected. The numerator is slightly modified. After using the
Dirac equation and the Gordon identity analogously to the previous calculation, the
numerator can be rewritten as

Ñµ ∼ u (q2) 2x [(1 − x)mi +mχ]
(

− i
2σ

µνpν

)
u (q1) (5.4.26)

up to terms that are irrelevant for the anomalous magnetic moment. Comparison with
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Lepton experimental error δF2 δF̃2

e ≈ 3 × 10−13 6 × 10−17 7 × 10−10

µ ≈ 8 × 10−9 2 × 10−12 1.4 × 10−7

τ ≈ 2 × 10−2 6 × 10−10 2 × 10−6

Table 5.1: The contribution to the anomalous magnetic moment of each charged lepton
and the corresponding experimental error [46]. δF̃2 for electrons and muons
is too large and thus a coupling to both right- and left-handed particles is
excluded. αi = 0.1 and mχ ≈ 1 TeV was used to obtain these values.

Eq. (5.4.20) yields

δF̃2
(
p2 = 0

)
= g2

imi

16π2

∫ 1

0
dxdydzδ (1 − x− y − z) x [(1 − x)mi +mχ]

∆

≈ g2
imi

16π2
1
m2
χ

∫ 1

0
dxdydzδ (1 − x− y − z)x [(1 − x)mi +mχ]

= g2
i

16π2
mi

m2
χ

[ 1
12mi + 1

6mχ

]

= αi
π

( 1
48δ

′ 2
i + 1

24δ
′
i

)
, (5.4.27)

where the same approximations on ∆ were used as in the previous calculation. The
main difference with respect to the purely right-handed interaction is that here the
variation on the anomalous magnetic moment is linear in δ′

i instead of quadratic. Since
δ′
i � 1, this renders this contribution much larger than the purely right-handed one.

Table 5.1 includes these values as well as the experimental bounds on the anomalous
magnetic moments for each charged lepton. From these it is clear that purely right-
handed interactions are necessary to satisfy experimental constraints.

5.4.4 Effective number of neutrinos

The presence of new particles in the Dark Sector might modify processes like Big Bang
Nucleosynthesis and recombination due to the added energy in the Universe. The
relativistic energy of the Universe is parametrized through ∆Neff as

ρrad (Tγ) = ργ (Tγ) + π2

30
7
4Nν

( 4
11

) 4
3
T 4
γ + π2

30
7
4

( 4
11

) 4
3

∆NeffT
4
γ , (5.4.28)
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Figure 5.6: The new one-loop contribution to the anomalous magnetic moment of elec-
trons.

where ρrad is the energy of all particles that are relativistic at a temperature Tγ. For
this model, this can be rewritten as

∆Neff (Tγ) = ρDS (TDS)
π2

30
7
4

(
4
11

) 4
3 T 4

γ

, (5.4.29)

where ρDS is the energy density of all relativistic particles in the Dark Sector and TDS is
the temperature in the Dark Sector at a given temperature Tγ in the Standard-Model
plasma.

As discussed in Section 3.5.4, ∆Neff should be smaller than 0.36 at the time of
neutron-proton freeze-out (T fr

γ ) in order to be compatible with measurements of the
abundances of light elements in the Universe [48, 47]. At that time (T ≈ 100 keV),
only the uncharged scalars, ∆0’s, were still relativistic and thus ρDS = (π2/30)T 4

∆0 .
The ratio T∆0/Tγ needed for computing Eq. (5.4.29) is obtained by making use of the
fact that gs,DST

3
∆0 and gs,SMT

3
γ are conserved separately after the decoupling of the

Dark Sector from the Standard Model, which happens at energies in the TeV range.
gs,DS and gs,SM are the degrees of freedom in entropy in the Dark Sector and the
Standard Model respectively. This means,

T 3
∆0

T 3
γ

=
gs, SM

(
T fr
γ

)
gs, SM (TeV)

gs, DS (TeV)
gs, DS

(
T fr
γ

) = 10.75
106.75 ≈ 0.1 . (5.4.30)
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With this, the deviation from the effective number of neutrinos, ∆Neff, at the time of
neutron-proton freeze-out is

∆Neff
(
T fr
γ

)
= 4

7

(11
4

) 4
3 T 4

∆0

T 4
γ

≈ 0.1 , (5.4.31)

which is well within boundaries imposed by measurements of the 4He abundance [48].
After the decay of the uncharged scalars into photons at T∆0 ≈ 10 keV, the photon

temperature increases. Taking into account the fact that the ∆0’s were already colder
than the photon plasma as described by Eq. (5.4.30), the temperature of the photons
after this decay is

T 3
γ =

(
2 +

(
T∆0
T ′
γ

)3
)
T ′ 3
γ

2 ≈ 1.05T ′ 3
γ , (5.4.32)

where T ′
γ denotes the temperature of the photons right before the heating due to

the ∆0 decay. This changes the Tν/Tγ ratio from (Tν/Tγ)3 = (4/11) to (Tν/Tγ)3 =
(4/11) × 0.95 and thus the defining equation for ∆Neff implies that

7
4Nν

( 4
11

) 4
3

(0.95)
4
3 T 4

γ
!= 7

4Nν

( 4
11

) 4
3
T 4
γ + 7

4∆Neff

( 4
11

) 4
3
T 4
γ (5.4.33)

at low temperatures. This corresponds to an effective number of neutrino degrees of
freedom at recombination of

Nν + ∆Neff = Nν (0.95)
4
3 ≈ 2.85 (5.4.34)

or equivalently ∆Neff ≈ − 0.19. This value is within the experimental constraints
given in Ref. [1] for ∆Neff at the time of recombination.

5.5 Cosmological observables

The most relevant cosmological observables are discussed in this section.

5.5.1 Relic density

Even though ∆+ and χ have very similar masses, the total Dark Matter relic density
at present times is dominated by the χ particles, since the ∆+ particles decay before
the freeze-out of the dark fermions. Analogously to Sec. 4.6.1, the relic density can
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be written as
Ωχh

2 = Y∞s0mχ

ρc/h2 , (5.5.1)

where again Y∞ = xf/λ is determined by

λ = 〈σannvrel〉 s (x = 1)
H (x = 1) (5.5.2)

and
xf = −1

2W0

(
− 2
C2

)
. (5.5.3)

Here, C = n(eq)
χ (x = 1) 〈σannvrel〉 e/H (x = 1) and W0 is the principal branch of the

Lambert W function. Thus, with the cross section from Eq. (5.3.4), the relic density
can be written as

Ωχh
2 ≈ 0.06

(
αl

0.06

)−2 ( mχ

1.4 TeV

)2
, (5.5.4)

where αl = ∑
i∈{e, µ, τ} αi was introduced. To obtain this expression, xf ≈ 30 has been

computed from Eq. (5.5.3), assuming mχ ≈ 1.4 TeV and αl ≈ 0.06. It should be noted
that the factor

√
1 − δ′ 2

i appearing in the annihilation cross section is negligible when
computing the relic density for Dark Matter masses in the range considered here.

Of course, Ωχh
2 = Ωχh

2 holds, since there is no asymmetry between particles and
antiparticles. The total Dark Matter relic density is easily consistent with the values
required by the ΛCDM model.

5.5.2 Kinetic decoupling

The elastic scattering rate between the χ’s and the right-handed electrons is

Γχe, el =
〈
σχeT vrel

〉
ne . (5.5.5)

Assuming a neutral Universe, the electron number density at temperatures in the 100
eV range is given by ne (T ) ≈ 0.89ηbnγ (T ), where ηb is the baryon-to-photon ratio
and the factor of 0.89 is due to the fact that approximately eightynine percent of the
baryons are protons. This is the number density after the freeze-out of the electrons.

Since σχeT does not depend on any momenta in this non-relativistic limit, the average
over the thermal distribution, denoted by 〈 . . . 〉, must be performed only on the relative
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velocity vrel,

〈vrel〉 =
∫ d3~p

(2π)3vrelf (~p)∫ d3~p
(2π)3f (~p)

, (5.5.6)

where ~p is the momentum of either the Dark Matter candidates or the electrons in the
center-of-mass frame.

In this frame,
vrel = |~p| ECM

EχEe
≈ |~p| mχ +me

mχme

. (5.5.7)

The distribution function in the non-relativistic limit can be written as

f (~p) ≈ exp
−

mχ +me + 1
2~p

2mχ+me
mχme

T

 (5.5.8)

and thus the thermal average is

〈vrel〉 = 2
√

2√
π

√
T

√
me

. (5.5.9)

Inserting this in Eq. (5.5.5) yields the scattering rate,

Γχe, el ≈ 4
√

2
π

0.89 ζ (3)
√
me

√
1 + δ′

eσ
χe
T T

7
2 . (5.5.10)

Due to the resonance of σχeT for δ ≈ δ′
e it is possible to choose the masses of the

theory in such a way that elastic scattering becomes again efficient at temperatures
below keV’s although only for a short period of time. This is represented in Fig.
5.7. For example, choosing δ = 1.001me/mχ, mχ = 2.2 TeV and αe = 0.02 yields
a temperature of kinetic decoupling of Tkd = 420 eV. However, due to the divergent
behavior, the χ’s and e’s are not in thermal contact long enough to establish thermal
equilibrium effectively. Indeed, with the mentioned parameter set they are in thermal
contact for about fifteen daysfixed by choosing much lower masses, e.g. for mχ ≈ 1010

eV the time of thermal contact is approximately twenty years.

While this first kind of elastic scattering only involves the Dark Matter antiparticles
χ the scattering with the uncharged scalar ∆0 involves both χ and χ. Starting from
Γχ∆0, el =

〈
σχ∆0

T vrel
〉
n∆0 the scattering rate can be computed to be

Γχ∆0, el ≈ 1
3π2mχ

∫ ∞

m∆0
dEf∆0 (E) ∂

∂E

((
E2 −m2

∆0

)2
σχ∆0

T

)
, (5.5.11)
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Figure 5.7: The late kinetic decoupling regime at sub-keV temperatures.

following Ref. [69]. This expression was used to numerically find the temperature at
which the scattering rate becomes smaller than the Hubble rate. The result depends
very strongly on the mass of ∆0. A value of Tkd ≈ 420 eV is obtained for mχ = 1.4
TeV, g0 ≈ 0.06, µ0/m∆0 ≈ 0.02 and m∆0 ≈ 7 keV. Even a small change in the mass of
the mediator, e.g. m∆0 ≈ 1 keV, requires a reduction by a factor of 100 in the product
of the coupling constants g0µ0/m∆0 in order to yield a similar temperature of kinetic
decoupling. In general, smaller values ofm∆0 result in a smaller Tkd. Moderate changes
in the value of mχ do not affect the temperature of this kinetic decoupling significantly.

Both elastic scattering rates and the expansion rate of the Universe are represented
in Fig. 5.7.

5.5.3 Self-interactions

The exchange of the light scalar mediator ∆0 mediates self-interactions between the
Dark Matter particles with the cross section given in Eq. (5.3.22). As discussed in Sec-
tion 3.6.2, the relevant quantity to alleviate the cups vs core problem is 〈σT/mχ〉vtherm

,
where 〈 . . . 〉vtherm

denotes the thermal average over a Maxwell-Boltzmann distribution
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with average velocity vtherm,

〈σT/mχ〉vtherm
= 4π

∫ dv
(2πv2

therm)
3
2
v2e

− 1
2

v2
v2

therm
σT

mχ

. (5.5.12)

In particular, the relevant values are 〈σT/mχ〉30 and 〈σT/mχ〉1000, where vtherm =
30 km/s and vtherm = 1000 km/s are the average velocities at the scales of dwarf galax-
ies and clusters respectively. The integral in Eq. (5.5.12) can be evaluated numer-
ically. As an example, for g0 ≈ 0.055, m∆0 = 7 keV, and mχ = 1.4 TeV the values
〈σT/mχ〉30 ≈ 1 cm2/g and 〈σT/mχ〉1000 ≈ 3 × 10−5 cm2/g are obtained. The largest
impact on this value comes from the choice of g0: even a small decrease in this cou-
pling strength produces much smaller values of 〈σT/mχ〉30.

5.6 Small-scale structure

A late kinetic decoupling can successfully resolve the missing satellites problem. For
this purpose, Tkd should lie below the temperature of Big Bang Nucleosynthesis [32,
33, 34] and above approximately 100 eV, as required by Lyman-α constraints [66, 78].
Indeed, for Tkd ≈ 420 eV the mass of the smallest Dark Matter protohalos is (see also
Sec. 3.6.3)

Md ≈ 4.67 × 109 g∗, S (Tkd)
g

3
2∗ (Tkd)

(
keV
Tkd

)3

M� . (5.6.1)

This lies precisely in the required range, suppressing structures at scales as large as
those of dwarf galaxies [36, 35]. As discussed in the other models as well, free-streaming
can be neglected here [70]. Furthermore, Dark Matter simulations where interactions
with relativistic particles are present until late times show that the concentration
parameter of small halos is reduced as well, decreasing the cusp/core discrepancy [79].

As discussed previously in Sec. 3.6.2, self-interacting Dark Matter is able to provide
a solution to the cusp vs core, too-big-to-fail and diversity problems. Cross sections
of approximately 〈σT/mχ〉30 ≈ 1 cm2/g are effective for flattening the density and
velocity profiles and create cores that are highly dependent on the formation history
of the galaxy [79, 51]. At the same time, the cross section should be much smaller at
large scales: the bound 〈σT/mχ〉1000 . 0.1 cm2/g can be inferred from cluster lensing
surveys [80]. The values presented in Sec. 5.5.3 satisfy precisely these constraints and
provide a solution to the cusp vs core, too-big-to-fail and diversity problems.
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5.7 Results
The two main objectives of the model presented in this section were to provide a
possible solution to the small-scale problems of ΛCDM and to include an annihilation
channel of Dark Matter into electrons and positrons at the TeV scale which could
potentially be detected by experiments. In order to reach both goals, the following
particles were introduced in the Dark Sector:

• χ, the Dark Matter candidate,

• ∆+, the mediator which allows annihilations into charged leptons, and

• ∆0, which mediates self-interactions between the Dark Matter particles.

Two mediators are necessary, since one of them is charged under the Standard Model
U(1) symmetry and thus could not possibly mediate self-interactions unless the Dark
Matter particles where charged under this symmetry as well. Since this is highly
constrained, a new neutral mediator ∆0 had to be introduced.

The ideal choice for the parameters of this theory was presented in Sec. 5.5 and is
summarized in Table 5.2. The parameters mχ and αl are the only ones which fix the
relic density in Eq. 5.5.4. It is thus possible to fix the Dark Matter mass to lie in the
TeV range, e.g. mχ = 1.4 TeV. This implies α` = 0.06 or, analogously, gi = 0.5 for
i ∈ {e, µ, τ}. Next, the parameters g0 and m∆0 are fixed by requiring the correct cross
section for self-interactions as discussed in Sec. 5.5.3. The only free parameter left in
the elastic scattering rate between Dark Matter and ∆0 is the coupling µ0. Choosing
µ0 = 0.02m∆0 yields the correct temperature of kinetic decoupling as in Sec. 5.5.2.
This satisfies the constraint µ0/m∆0 . 1 which allows perturbative expansions. A
similar temperature of kinetic decoupling for the elastic scattering between electrons
and Dark Matter is obtained if d = (m∆+ −mχ) /mχ = 1.001, although the period of
contact is not long enough to establish thermal equilibrium. Finally, the parameter µ+

is only relevant for the decay of ∆0. The value of µ+ can thus remain arbitrary as long
as it satisfies the constraint µ+/m∆+ . 1 required by the assumption of perturbativity.
Finally, with these parameters, the annihilation channel for Dark Matter into electrons
and positrons has a cross section 〈σχχ→eReRvrel〉 ≈ 10−27cm3/s.
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Parameter Approximate value
mχ 1.4 TeV
m∆+ 1.001me +mχ

m∆0 7 keV
g0 0.06
gi 0.5
αl 0.06

µ0/m∆0 0.02
µ+/m∆+ . 1

Table 5.2: The parameters of the leptophilic model.
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6 Dark Matter beams of rotating
black holes

6.1 Introduction

Astrophysical jets produced by supermassive black holes are usually explained by the
magnetic Blandford-Znajek process [81]. In principle, however, gravitational effects
can contribute to the resulting jets as well [82, 83]. While a magnetic origin of the jets
only works for charged particles, a gravitational one could include neutral particles
as well. In particular, Dark Matter particles would be affected too. It is therefore
interesting to investigate whether such Dark Matter jets can be formed by rotating
supermassive black holes [84]. This is particularly relevant for future prospects of
Dark Matter detection.

There have been quite a few experimental signals which are claimed to correspond
to indirect Dark Matter detection, e.g. PAMELA [17], ATIC [85], FERMI/LAT [86],
H.E.S.S. [87]. However, most possible explanations require the introduction of a boost
factor in order to produce a signal strong enough to be compatible with the observa-
tions [88, 89, 85]. The cause of these boost factors remains uncertain; the proposed
possibilities include density inhomogeneities at small scales [90] or Sommerfeld en-
hanced annihilation cross sections [91].

A further scenario will be discussed in this chapter. Some of the Dark Matter
particles within the halo around a supermassive Kerr black hole move along geodesics
which lead them into the ergosphere. There, they can collide with other particles (or
simply decay) in such a way that one Dark Matter particle is ejected back outside of
the ergosphere (see Fig. 6.1). This is the well known Penrose process [92], which allows
to extract energy from a black hole. In Ref. [93] it was shown that a set of collimated
geodesics along the rotational axis can be produced in this way, by integrating the
geodesic equation for Kerr spacetimes numerically.

Here, an upper bound for the density of Dark Matter particles which are present in
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the jets of supermassive black holes is calculated numerically in order to investigate
whether it might enhance the indirect-detection signals. Indeed, the presence of a
Dark Matter beam is confirmed and its profile and dependence on the mass of the
black hole are analyzed. However, it turns out that this effect must be ruled out as a
source of significant Dark Matter overdensities in the proximity of the Earth, due to
the faintness of the beam.

A

B
ergosphere

r+

z

Figure 6.1: A schematic representation of the system under consideration: a particle
falls into the ergosphere, interacts with another one and lands into a beam
along the rotation axis. r+ is the outer event horizon of the Kerr spacetime.

6.2 The Carter constant

In this section, the Kerr spacetime and one of its constants of motion along geodesics,
the Carter constant, are introduced. The Carter constant will play a crucial role in
determining which of the Dark Matter particles falling in from the accretion disk have
the potential to end up in the beam.

6.2.1 The Kerr spacetime

The Kerr metric for a rotating black hole in Boyler-Lindquist coordinates is given by

ds2 = −
(

1 − 2Mr

Σ2

)
dt2 + sin2 (θ)

(
r2 + a2 + 2Mra2 sin2 (θ)

Σ2

)
dφ2

−4Mar sin2 (θ)
Σ2 dtdφ+ Σ2

∆ dr2 + Σ2dθ2 , (6.2.1)
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where Σ2 = r2 + a2 cos2 (θ) and ∆ = r2 − 2Mr + a2 and a is the black hole’s angular
momentum per unit of mass. This spacetime has two event horizons at r+ = M +√
M2 − a2 and r− = M−

√
M2 − a2. Furthermore, the region known as the ergosphere

between the outer horizon r+ and the surface described by the equation (r −M)2 =
r2 − a2 cos2 (θ) is such that all particles within it must move along the direction of
rotation of the black hole but can otherwise move towards or away from the center.
Within this region, energy can be extracted from the black hole via the Penrose process.

6.2.2 The Carter constant from the geodesic equation

The equation of motion of a particle for a non-rotating neutral black hole is determined
by the three constants m, E and Lz, i.e. the particle’s mass, energy and angular
momentum, respectively. For the case of a Kerr black hole a fourth constant, known
as the Carter constant, is needed [94]. Integrating the geodesic equation for the θ-
component

Σ2 duθ
dτ = −1

2∂θ
(
Σ2gαβ

)
uαuβ − 1

2∂θΣ
2 (6.2.2)

and introducing the conserved quantities E = −ut and L = uφ following from the
Killing vectors kµ = (1, 0, 0, 0) and `µ = (0, 0, 0, 1) respectively, it follows that the
quantity

Q = (uθ)2 + a2 cos2 (θ)
(
1 − E2

)
+ cos2 (θ)

sin2 (θ) L2 (6.2.3)

is conserved. It should be noted that this is the Carter constant for a particle of unit
mass. For a particle with arbitrary mass m the Carter constant reads

Q = (pθ)2 + cos2 (θ)
(
a2
(
m2 − E2

)
+ L2

sin2 (θ)

)
. (6.2.4)

6.3 The Dark Matter density in the beam

The relevant quantity for determining the existence of a Dark Matter beam is the Dark
Matter density of the particles ejected from the ergosphere along the rotation axis
ρout (~x). In what follows, it will be given in units of the Dark Matter density in the
proximity of the Earth, ρDM,� ≈ 0.4 GeV/cm3 [95]. Consequently, the Dark Matter
particles can be assumed to have unit mass without loss of generality. An explicit
expression for ρout (~x) will be derived in this section. The numerical evaluation of this
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rin

vr,in∆t

dz

z

Figure 6.2: The infinitesimal volume of infalling Dark Matter particles. The filled dot
denotes the location of the Black Hole.

expression will be discussed in Section 6.5.
It is useful to start by considering the number of particles within an infinitesimal

solid ring at some radius rin close to the equatorial plane of the rotating black hole.
This is represented in Fig. 6.2. The total number of particles within this ring is given
by

dNin =
∫ ~vin, max

~vin, min
d3~vinf (~vin) ρin2πrinvr, in∆t dz . (6.3.1)

In the above expression, ρin is the Dark Matter density at radius rin and 2πrinvr∆tdz
is the volume of the solid ring. f (~vin) is the velocity distribution of the particles
for which an explicit expression will be given in Section 6.4.3. dNin thus represents
the number (or total mass, since m = 1) of particles within this ring with velocities
between ~vin, min and ~vin, max.

Among the particles falling towards the ergosphere those must be selected which
have the potential to emerge from it in a jet along the rotation axis. For a given
ingoing velocity ~vin it is possible to compute the height above the equatorial plane
z (~vin, ~vout, θ) at which particles have to be located in order to end up at the loca-
tion determined by (rout, θ) with velocity ~vout. The suitable approximations used to
establish the relation z (~vin, ~vout, θ) are discussed in Sec. 6.4.2.

The infinitesimal interval where particles with initial velocities ~vin must be in order
to end up in the beam within the angle dθ and with outgoing velocities in the interval
between ~vout and ~vout + d~vout is

dz = d4z

dvr, outdvφ, outdvθ, outdθ
dvr, outdvφ, outdvθ, outdθ . (6.3.2)

This means that the number of outgoing particles per unit of volume in phase space
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rout

vr,out∆t

routdθ

θ

z

Figure 6.3: The infinitesimal volume occupied by the infalling particles after they have
been ejected from the ergosphere. The volume element is given by dV =
2πr2

out sin (θ) dθ. The filled circle denotes the location of the black hole.

is

dNout = η
2M
rin

∫
d3 ~vinf ( ~vin) ρin2πrinvr, in∆t

× d4z

dvr, outdvφ, outdvθ, outdθ
dvr, outdvφ, outdvθ, outdθ . (6.3.3)

Here, two additional factors have been added. The first one, η, is the Penrose efficiency.
The second one, 2M/rin, gives the probability of an interaction happening in the
ergosphere.

On the other hand, the number of particles within the phase-space volume d3~vout

can also be written as

dNout (~vout, rout, θ) = d3ρout

dvr, outdvφ, outdvθ, out
(~vout, rout, θ) dvr, outdvφ, outdvθ, out

×2πr2
out sin (θ) vr, out∆tdθ . (6.3.4)

In the above expression dV = 2πr2
out sin (θ) vr, out∆tdθ was used, i.e. a solid section of

a sphere as in Fig. 6.3. The integration around the φ direction was possible due to
the cylindrical symmetry of the system.
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Comparing Eq. (6.3.4) with Eq. (6.3.3) yields the Dark Matter density in the beam,

ρout (~vmax
out , rout, θ) − ρout

(
~vmin

out , rout, θ
)

= η
(2M
rin

) ∫
d3~vout

∫
d3 ~vinf (~v) rinvrρin

r2
out sin (θ) vr, out

d4z

dvr, outdvφ, outdvθ, outdθ
. (6.3.5)

This quantity will be computed in Section 6.5.

6.4 Approximations

A number of assumptions and approximations must be made in order to compute the
outgoing Dark Matter density in Eq. (6.3.5). They are presented and explained in the
following.

6.4.1 Relevant radius for the ingoing particles

The construction described above only takes into consideration infalling particles start-
ing at some fixed radius rin near the equatorial plane. In principle, however, particles
landing in the beam could be infalling from any distance from the center of the halo.
A more accurate description would thus take into account all of them and trace their
geodesics into the ergosphere and in the beam. However, in order to make the numeri-
cal calculation easier, only particles starting at rin are considered as an approximation.
This is valid for computing an upper bound for ρout, as long as an appropriate value
for rin is chosen. Multiple simultaneous effects lead to a preferred value of rin: on the
one hand, further away from the halo’s center the Dark Matter density is smaller and
thus fewer particles will be falling towards the ergosphere; on the other hand at larger
radii a larger volume will be included by the solid ring. It is thus advised to take as
a starting radius the one which maximizes the outgoing density ρout. As an example,
for the Andromeda galaxy, a numerical calculation shows that a radius rin ≈ 0.1 pc
should be taken.

6.4.2 Carter constant

Two assumptions must be made about the Carter constant. First, it is assumed that
after the scattering in the ergosphere, each outgoing particle follows a geodesic with
the same Carter constant as the infalling one, Qin = Qout. This is in line with the
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6.4 Approximations

assumption made in Ref. [93]. Second, it is assumed that all particles whose value of
the Carter constant allows it end up in the beam. Since the correct Carter constant
is a necessary but not sufficient condition for this to happen, this assumption again
leads only to an upper bound for the Dark Matter density.

Keeping all other parameters fixed and solving Qin = Qout for z (~vin, ~vout) gives then
the height above the equatorial plane at which particles must find themselves in order
to end up in the beam. Differentiation with respect to the outgoing velocities, ~vout,
and azimuthal angle at the point of detection, θ, then yields the height of the infalling
ring making sure that all particles within that volume have the possibility to produce
an overdensity in the beam. This must be done for each velocity ~vin. It should be
noted that not all choices of ~vout and ~vout yield a real value for z, which reduces the
parameter space.

The explicit expression for the Carter constant in Eq. (6.2.3) can be simplified both
for the case of ingoing and outgoing particles. For a particle which is located in the
accretion disk and is infalling towards the ergosphere of a rotating black hole, the angle
θin satisfies cos (θin) ≈ z/rin, where z is the height above the equatorial plane and rin is
the distance to the center of the black hole. Since the particles are assumed to lie close
to the equatorial plane [93], the projection of their distance to the center on this plane
is approximately equal to rin. Furthermore, in this approximation, z � rin holds. For
known black holes which have masses up to M = 6.6 × 1010 M�, the relation a2 � r2

is valid up to small radii rin ≈ 0.001 pc. Thus, for the present purpose, the Carter
constant for infalling particles is well approximated by

Qin ≈ γ̃2r2v2
θ + z2

r2

a2
(

1 − γ̃2
(

1 − 2M
r

))
+ 1

1 − 2M
r

γ̃2

2Ma

r
+ r

√
1 − 2M

r
vφ

2
 ,

(6.4.1)
where a modified time-dilation factor, γ̃, was introduced as

γ̃ = 1√
1 − v2

φ + 2Ma

r2
√

1− 2M
r

vφ − v2
r − v2

θ

. (6.4.2)

For outgoing particles near the rotation axis, i.e. in the jet, the first-order approx-
imation sin (θ) ≈ θ and cos (θ) ≈ 1 can be made. This is reasonable as long as the
outgoing particles are being detected at a large distance from the black hole. The re-
sult will be an approximate angular profile for the Dark Matter density. Of course,
for smaller distances or larger angles more terms must be taken into account. The
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6 Dark Matter beams of rotating black holes

condition r2 � a2 that was used in the case of the infalling particles is even stronger
in this case, since the outgoing particles are measured far away from the black hole
and close to its axis. With this, the Carter constant for outgoing particles becomes

Qout ≈ γ2r2v2
θ + γ2r2v2

φ + a2
(

1 − γ2
(

1 − 2M
r

))
+ 4γ2Mavφθ . (6.4.3)

Here, γ is the usual Lorentz factor γ2 = 1/
√

1 − v2
φ − v2

r − v2
θ .

6.4.3 Distribution function

It is assumed that the velocity distribution of the Dark Matter particles in the halo is
Gaussian in all three directions,

f (~vin) = 1
(2π)

3
2
√

|det (Σ)|
exp

(
−1

2 (~vin − ~v0)T Σ−1 (~vin − ~v0)
)
. (6.4.4)

For simplicity, the covariance matrix Σ is assumed to be diagonal, i.e. Σ = diag (Σr,Σφ,Σθ).
~v0 is the mean velocity of the particles within the halo. Since on average they are
orbiting the black hole, the only non-vanishing component is the one in the φ direc-
tion, i.e. ~v0 = (0, vφ, 0, 0). At the radius considered here, rin ≈ 0.1 pc, a mean angular
velocity of vφ, 0 ≈ 500 km/s can be estimated from present data on the rotation curve
of the Milky Way [96]. However, it should be noted that the final result is not strongly
affected by the choice of vφ, 0: values of 100 km/s and 1000km/s yield similar outcomes.

In order to estimate the value of Σr one can refer to Fig. 2 of Ref. [97] to obtain the
mass accretion rate, dM/dt, of supermassive black holes. Equating this to the infall
rate of particles around the black hole a value for the standard deviation σr =

√
Σr

can be obtained. Explicitly, the equation to be solved is

dM
dt = 4πr2

inρ (rin)
∫ 1

0

1√
2πσ2

r

e

(
− v2

r
2σ2
r

)
vrdvr . (6.4.5)

The right-hand side is the mass of Dark Matter going through a shell in an infinitesimal
time interval. Solving this equation numerically gives an estimate for σr. The standard
deviation in the other directions is assumed to be the same, i.e. σr = σφ = σθ.

The velocity distribution must then be multiplied with the density of dark matter
at rin in order to obtain the total number of particles with velocity ~vin per unit of
volume. In particular, for rin = 0.1 pc and assuming a cored dark matter profile [41],
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the dark matter density can be approximated by ρin (0.1 pc) = 30ρDM, �, where ρDM, �

is the Dark Matter density in the vicinity of the Earth.

6.4.4 Penrose efficiency

The efficiency of the Penrose process is defined as

η = Eextr.

M
, (6.4.6)

where M is the mass of the black hole and Eextr. is the energy which can be extracted
from it via the Penrose process. For neutral extremal black holes a maximal value
of 0.52 can be obtained [98]. Here, a much more conservative value of η = 0.01
corresponding to black holes with angular momentum a = 0.5M will be used. However,
as is apparent from Eq. (6.3.5), the exact value of the Penrose efficiency does not affect
the final result significantly.

6.5 Numerical results

With the approximations presented in the previous section, Eq. (6.3.5) can be com-
puted numerically. The numerical code takes the parameter set {M, a, rin, rout, θ, vφ,0,

σ, η, ρin} as an input and yields the Dark Matter density at (rout, θ). Furthermore,
the integration limits for the ingoing and outgoing velocities must be set as well.
Instead of simply taking the largest possible interval of integration, a more compu-
tationally efficient solution is to consider only the region in the velocity space which
actually contributes to ρout. This is the region where the following conditions are sat-
isfied: the impact parameter is real and its fourth derivative appearing in Eq. (6.3.5)
is non-vanishing.

6.5.1 Example: Andromeda galaxy

As a first example, the Dark Matter density along the rotation axis of the black hole at
the center of the Andromeda galaxy can computed at a distance rout = 780 kpc, i.e. the
approximate distance to the Solar system. The precise parameters for the numerical
calculation are summarized in Table 6.1. For this parameter set the integration bounds
for the velocities can be further restricted by logarithmically scanning all possible
values and discarding those which contribute by less than a factor of 10−3 to the
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6 Dark Matter beams of rotating black holes

Andromeda galaxy
M 108 M�
a 0.5M
rin 0.1 pc
rout 780 kpc
vφ, 0 10−3c
σ 0.006
η 0.01

Table 6.1: The parameters used to compute the Dark Matter density of particles
ejected from the ergosphere of the black hole at the center of the Andromeda
galaxy.

final result. Specifically, this means that geodesics with very low |~vin| can safely
be neglected and the same holds for outgoing geodesics with large outgoing angular
velocities vθ, out, vφ, out > 10−8. Furthermore, a lower bound on the outgoing radial
velocity is given by vr, out > rout/tAndromeda, where tAndromeda ≈ 1010 yrs is the age of
the Andromeda galaxy. With this, a Dark Matter density of ρDM ≈ 10−12 is found
at a distance of 780 kpc from the Andromeda galaxy. This result shows that no local
Dark Matter overdensities can be produced in this way. However, in the next section
it will be shown that a Dark Matter beam is indeed present although a very faint one.

6.5.2 Features of the Dark Matter beam

In order to confirm the presence of a Dark Matter beam along the axis of a rotating
black hole, the Dark Matter density has been computed for different distances from
the black hole and at various distances from the rotation axis. This is represented in
Fig. 6.4 for a black hole of the same mass as the one at the center of the Andromeda
galaxy. The distance from the axis of the black hole d is given by d = routθ. The
numerical calculation is not able to go to arbitrarily small values of θ, especially
for larger rout’s, due to the finite machine precision. In these cases, the central values
close to the axis at large distances from the black hole have been approximated by
the neighboring values at larger θ (this is the reason for the uniform central behavior
for rout > 103 pc in Fig. 6.4). Indeed, an increase towards the center is expected with
higher θ resolution. Furthermore, it should be noted that the results in the lower left
and right corners in Fig. 6.4 should be discarded, since the approximation θ � 1 is
not valid there.

Fig. 6.4 confirms the existence of a faint beam of Dark Matter particles along the

96
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rotation axis of a black hole. Indeed, for each value of rout the Dark Matter density
is largest near the axis and decreases rapidly away from it. Furthermore, it is noticed
that the Dark Matter density increases by many orders of magnitude closer to the
black hole.
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Figure 6.4: The DM density in units of ρDM,�, the DM density in the Earth’s prox-
imity, at different distances from the rotating black hole, rout and different
distances from the rotation axis.

6.5.3 Dependence on mass and distance

Fig. 6.5 shows a 2d scan of the Dark Matter density obtained for different black hole
masses and distances from the black hole. The angle from the rotation axis is kept
constant at θ = 10−8 for each point. The range of black hole masses maps the range of
masses from the observed supermassive (non-stellar) black holes. A minimal distance
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6 Dark Matter beams of rotating black holes

of 1 pc from the black hole is chosen, corresponding to approximately a thousand
Schwarzschild radii for the most massive black holes considered. Fig. 6.5 shows that
closer to the black hole the Dark Matter density is larger, as can be seen from the
beam profile in Fig. 6.4 as well. Furthermore, black hole masses between 108 M� and
109M� are found to yield the highest Dark Matter densities. With this information
overdensities up to 40 ρDM,� can be found by combining a black hole mass of 108.5 M�

with low rout of 10 pc and small distances to the rotation axis.
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at different distances from the rotating black hole and for different values
of the black hole’s mass.
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6.5.4 Dependence on the angular momentum

The dependence of ρout on the angular momentum a can be analyzed by computing ρout

for different values ranging between a = 0 and a = M . For a = 0, ρout is eight orders
of magnitude smaller than for the case a = 0.5M . The reason for a non-vanishing ρout

even in the case a = 0 is that this numerical approach based on the Carter constant
takes into account all possible geodesics: the result for a = 0 is due to those geodesics
which go directly from the region considered at a radius rin to the location at which
the Dark Matter density is evaluated (rout, θ). The fact that ρout is significantly lower
in the case a = 0 shows that the Dark Matter beam is enabled the special properties
of the Kerr spacetime.

For different non-vanishing values of a the resulting ρout’s have similar values, but
the following trend is observed: the beam becomes narrower when a approaches the
maximal value a = M , while it is less collimated for small values of a. A quantitative
analysis of this effect would be possible only with higher numerical precision.

6.6 Conclusion
The goal of this chapter was to show the existence of a gravitational mechanism which
produces a Dark Matter beam along the axis of a rotating black hole. The main results
are summarized by Fig. 6.4 and Fig. 6.5, which show that there is indeed a collimated
beam, that the Dark Matter density within the beam is largest close to the black hole
and that the largest Dark Matter densities are obtained for black holes with a mass
of approximately 108 − 109 M�. Far from the black hole, the density in the beam is
found to be many orders of magnitude smaller than the Dark Matter density in the
proximity of the Earth. In conclusion, this mechanism can be excluded as a possible
source of a boost for the local detection rate of Dark Matter.
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7 Conclusion

The first goal of this thesis was to present certain modifications of the ΛCDM model
in order to explain the discrepancies between current observations and simulations
regarding the small-scale structure of the Universe. The common ground between all
three proposed models consists of late kinetic decouplings and self-interactions. If the
Dark Matter candidate remains in thermal contact with a relativistic scattering partner
until temperatures below approximately 1 keV, the formation of small Dark Matter
protohalos with masses below 108 M� is suppressed. Interactions between the Dark
Matter particles favor an entropy exchange from the center of a halo’s core towards
outer regions. The result is a flattened Dark Matter density profile. For each model
it was explicitly shown that agreement with ΛCDM predictions is guaranteed at large
scales. Furthermore, cosmological and astrophysical constraints were also shown to be
satisfied. The implications of each new Dark Sector for the small-scale structure of
the Universe was discussed in detail and was found to be in agreement with current
observations, thus solving the small-scale problems of the ΛCDM model.

The secluded U(1) Dark Sector shows that a simple extension of the usual Cold
Dark Matter paradigm is able to successfully address the small-scale problems. Its
drawback is that neither direct nor indirect detection of Dark Matter particles is
possible. However, tests of this theory are still possible by comparing cosmological
predictions and observations with more and more precision. Multiple generations of
dark fermions were considered. While the case N = 1 is already sufficient for resolving
the small-scale problems (albeit only for a strongly restricted parameter space), more
generations could still play an important role, for example if observations requiring
smaller mediator masses should arise. The fact that the Dark Sector is completely
secluded from the Standard Model makes this model particularly flexible, as only few
constraints apply.

The neutrinophilic Dark Matter model shows that neutrinos can indeed serve as the
relativistic scattering partner of Dark Matter. It was shown that in order to allow
for a late kinetic decoupling between Dark Matter and neutrinos, the relic density of
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Dark Matter should be generated by a freeze-in mechanism. While this model only
serves as a proof of concept, it also suggests possible rare decays into neutrinos which
might be detected at neutrino observatories.

Finally, the third model shows the possibity of a coupling between Dark Matter and
charged leptons. This can explain some of the tentative Dark Matter signals obtained
through cosmic ray detection. The constraints on this model are the strongest ones
discussed. In particular, it was shown that in order for the theory to satisfy constraints
on the leptonic anomalous magnetic moments, the Dark Matter particles can only
couple to right-handed leptons. The charged leptons cannot keep a thermal equilibrium
with Dark Matter until late times and thus a further scalar in the Dark Sector had to
be introduced for the sake of resolving all small-scale problems of ΛCDM.

In the final part of this work, a new mechanism generating a faint Dark Matter beam
along the axis of rotating black holes has been presented. The system considered
consists of Dark Matter particles falling into the ergosphere of a Kerr black hole
and being ejected close to the rotation axis through the Penrose process. The Dark
Matter density was found to drop off sharply further away from the rotation axis,
confirming the existence of a collimated beam. The dependence of the Dark Matter
density in the beam on the angular momentum and mass of the black hole and on
the distance from the ergosphere has been analyzed. The beam is more collimated
for larger angular momenta. Furthermore, black hole masses of approximately 108.5

solar masses have been shown to yield the largest Dark Matter densities. However,
the Dark Matter density is many orders of magnitude smaller than the Dark Matter
density near the Earth, which means that detection rates cannot be enhanced through
this effect.
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